
Advances in Information Security 89

Tiffany Bao
Milind Tambe
Cliff Wang Editors

Cyber
Deception
Techniques, Strategies, and Human
Aspects

Advances in Information Security

Volume 89

Series Editors

Sushil Jajodia, George Mason University, Fairfax, VA, USA

Pierangela Samarati, Milano, Italy

Javier Lopez, Malaga, Spain

Jaideep Vaidya, East Brunswick, NJ, USA

The purpose of the Advances in Information Security book series is to establish
the state of the art and set the course for future research in information security.
The scope of this series includes not only all aspects of computer, network security,
and cryptography, but related areas, such as fault tolerance and software assurance.
The series serves as a central source of reference for information security research
and developments. The series aims to publish thorough and cohesive overviews on
specific topics in Information Security, as well as works that are larger in scope
than survey articles and that will contain more detailed background information.
The series also provides a single point of coverage of advanced and timely topics
and a forum for topics that may not have reached a level of maturity to warrant a
comprehensive textbook.

Tiffany Bao • Milind Tambe • Cliff Wang
Editors

Cyber Deception
Techniques, Strategies, and Human Aspects

Editors
Tiffany Bao
Arizona State University
Tempe, AZ, USA

Milind Tambe
Harvard University
Cambridge, MA, USA

Cliff Wang
Army Research Office
Adelphi, MD, USA

ISSN 1568-2633 ISSN 2512-2193 (electronic)
Advances in Information Security
ISBN 978-3-031-16612-9 ISBN 978-3-031-16613-6 (eBook)
https://doi.org/10.1007/978-3-031-16613-6

© This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright
protection may apply 2023
Chapters “Using Amnesia to Detect Credential Database Breaches” and “Deceiving ML-Based Friend-
or-Foe Identification for Executables” is licensed under the terms of the Creative Commons Attribution
4.0 International License (http://creativecommons.org/licenses/by/4.0/). For further details see license
information in the chapter.
All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other physical way, and transmission or information storage and
retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known
or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-031-16613-6
https://doi.org/10.1007/978-3-031-16613-6
https://doi.org/10.1007/978-3-031-16613-6
https://doi.org/10.1007/978-3-031-16613-6
https://doi.org/10.1007/978-3-031-16613-6
https://doi.org/10.1007/978-3-031-16613-6
https://doi.org/10.1007/978-3-031-16613-6
https://doi.org/10.1007/978-3-031-16613-6
https://doi.org/10.1007/978-3-031-16613-6
https://doi.org/10.1007/978-3-031-16613-6
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Preface

This book introduces cutting-edge research works in cyber deception, a research
topic that has been actively studied and significantly advanced in the past decade.
With the focus on cyber deception, this book spans a wide variety of areas, including
game theory, artificial intelligence, cognitive science, and cybersecurity. This book
will address three core cyber deception research elements as follows:

1. Understanding of human’s cognitive behaviors in decoyed network scenarios
2. Development of effective deceptive strategies based on human behaviors
3. Design of deceptive techniques enforcing deceptive strategies

The research introduced in this book will identify the scientific challenges, highlight
the complexity, and inspire future research of cyber deception.

This book can be used as a professional book by cybersecurity practitioners and
researchers, or a supplemental textbook for educational purposes. Readers will be
able to learn the state of the art in cyber deception to conduct follow-up research or
translate related research outcome to practice.

Tempe, AZ, USA Tiffany Bao
Cambridge, MA, USA Milind Tambe
Triangle Park, NC, USA Cliff Wang

v

Acknowledgments

We would like to thank all the contributors for their dedication to this book. Special
thanks go to Ms. Susan Lagerstrom-Fife and Ms. Shanthini Kamaraj for their kind
support of this book. Finally, we thank the Army Research Office for their financial
support under the grant numbers W911NF-17-1-0370.

vii

Contents

Diversifying Deception: Game-Theoretic Models for Two-Sided
Deception and Initial Human Studies . 1
Mohammad Sujan Miah, Palvi Aggarwal, Marcus Gutierrez, Omkar
Thakoor, Yinuo Du, Oscar Veliz, Kuldeep Singh, Christopher Kiekintveld,
and Cleotilde Gonzalez

Human-Subject Experiments on Risk-Based Cyber Camouflage Games. . 25
Palvi Aggarwal, Shahin Jabbari, Omkar Thakoor, Edward A. Cranford,
Phebe Vayanos, Christian Lebiere, Milind Tambe, and Cleotilde Gonzalez

Adaptive Cyberdefense with Deception: A Human–AI Cognitive
Approach . 41
Cleotilde Gonzalez, Palvi Aggarwal, Edward A. Cranford,
and Christian Lebiere

Cognitive Modeling for Personalized, Adaptive Signaling for
Cyber Deception . 59
Christian Lebiere, Edward A. Cranford, Palvi Aggarwal, Sarah Cooney,
Milind Tambe, and Cleotilde Gonzalez

Deceptive Signaling: Understanding Human Behavior Against
Signaling Algorithms . 83
Palvi Aggarwal, Edward A. Cranford, Milind Tambe, Christian Lebiere,
and Cleotilde Gonzalez

Optimizing Honey Traffic Using Game Theory and Adversarial
Learning . 97
Mohammad Sujan Miah, Mu Zhu, Alonso Granados, Nazia Sharmin,
Iffat Anjum, Anthony Ortiz, Christopher Kiekintveld, William Enck,
and Munindar P. Singh

Mee: Adaptive Honeyfile System for Insider Attacker Detection 125
Mu Zhu and Munindar P. Singh

ix

x Contents

HoneyPLC: A Next-Generation Honeypot for Industrial Control
Systems . 145
Efrén López Morales, Carlos E. Rubio-Medrano, Adam Doupé, Ruoyu
Wang, Yan Shoshitaishvili, Tiffany Bao, and Gail-Joon Ahn

Using Amnesia to Detect Credential Database Breaches . 183
Ke Coby Wang and Michael K. Reiter

Deceiving ML-Based Friend-or-Foe Identification for Executables 217
Keane Lucas, Mahmood Sharif, Lujo Bauer, Michael K. Reiter,
and Saurabh Shintre

Diversifying Deception: Game-Theoretic
Models for Two-Sided Deception and
Initial Human Studies

Mohammad Sujan Miah, Palvi Aggarwal, Marcus Gutierrez,
Omkar Thakoor, Yinuo Du, Oscar Veliz, Kuldeep Singh,
Christopher Kiekintveld, and Cleotilde Gonzalez

1 Introduction

Both civilian and military computer networks are under increasing threat from
cyberattacks, with the most significant threat posed by Advanced Persistent Threat
(APT) actors. These attackers use sophisticated methods to compromise networks
and remain inside, establishing greater control and staying for long periods to
gather valuable data and intelligence. These attackers seek to remain undetected,
and estimates from APT attacks show that they are often present in a network for
months before they are detected [31].

Cyber deception methods use deceptive decoy objects like fake hosts (hon-
eypots), network traffic, files, and even user accounts to counter attackers in a
variety of ways [1, 13, 28]. They can create confusion for attackers, make them
more hesitant and less effective in executing further attacks, and can help to gather

An earlier version of some parts of the work was published in the proceedings of the 53rd Hawaii
International Conference on System Sciences (HICSS), 2020, pp. 01–20.

M. S. Miah · M. Gutierrez · O. Veliz · C. Kiekintveld (�)
Department of Computer Science, University of Texas at El Paso, El Paso, TX, USA
e-mail: msmiah@miners.utep.edu; mgutierrez22@miners.utep.edu; osveliz@utep.edu;
cdkiekintveld@utep.edu

P. Aggarwal · Y. Du · K. Singh · C. Gonzalez
Carnegie Mellon University, Pittsburgh, PA, USA
e-mail: palvia@andrew.cmu.edu; yinuod@andrew.cmu.edu; kuldeep2g@andrew.cmu.edu;
coty@cmu.edu

O. Thakoor
University of Southern California, Los Angeles, CA, USA
e-mail: othakoor@usc.edu

© This is a U.S. government work and not under copyright protection in the U.S.;
foreign copyright protection may apply 2023
T. Bao et al. (eds.), Cyber Deception, Advances in Information Security 89,
https://doi.org/10.1007/978-3-031-16613-6_1

1

 31368 2385 a 31368 2385 a

 885 45775 a 885 45775 a

msmiah@miners.utep.edu
msmiah@miners.utep.edu
msmiah@miners.utep.edu

 11239
45775 a 11239 45775 a

mgutierrez22@miners.utep.edu
mgutierrez22@miners.utep.edu
mgutierrez22@miners.utep.edu

 23630
45775 a 23630 45775 a

osveliz@utep.edu
osveliz@utep.edu

 -2016 46882 a -2016
46882 a

cdkiekintveld@utep.edu
cdkiekintveld@utep.edu

 885 50756 a 885 50756
a

palvia@andrew.cmu.edu
palvia@andrew.cmu.edu
palvia@andrew.cmu.edu

 10682 50756 a 10682 50756
a

yinuod@andrew.cmu.edu
yinuod@andrew.cmu.edu
yinuod@andrew.cmu.edu

 20793 50756 a 20793 50756
a

kuldeep2g@andrew.cmu.edu
kuldeep2g@andrew.cmu.edu
kuldeep2g@andrew.cmu.edu

 -2016 51863 a -2016 51863
a

coty@cmu.edu
coty@cmu.edu

 885 55738 a 885 55738
a

othakoor@usc.edu
othakoor@usc.edu
https://doi.org/10.1007/978-3-031-16613-6_1
https://doi.org/10.1007/978-3-031-16613-6_1
https://doi.org/10.1007/978-3-031-16613-6_1
https://doi.org/10.1007/978-3-031-16613-6_1
https://doi.org/10.1007/978-3-031-16613-6_1
https://doi.org/10.1007/978-3-031-16613-6_1
https://doi.org/10.1007/978-3-031-16613-6_1
https://doi.org/10.1007/978-3-031-16613-6_1
https://doi.org/10.1007/978-3-031-16613-6_1
https://doi.org/10.1007/978-3-031-16613-6_1
https://doi.org/10.1007/978-3-031-16613-6_1

2 M. S. Miah et al.

information about the behavior and tools of various attackers. They can also increase
the ability of defenders to detect malicious activity and actors in the network. This
deception is especially critical in the case of APT attackers, who are often cautious
and skilled at evading detection [32]. Widespread and effective use of honeypots and
other deceptive objects is a promising approach for combating this class of attackers.

However, the effectiveness of honeypots and other deceptive objects depends
crucially on whether the honeypot creators can design them to look similar enough
to real objects, to prevent honeypot detection and avoidance. This design goal
especially holds for APT threats, which are likely to be aware of the use of such
deception technologies and will actively seek to identify and avoid honeypots, and
other deceptive objects, in their reconnaissance [32, 35]. A well-known problem
with designing successful honeypots is that they often have characteristics that can
be observed by an attacker that will reveal the deception [14]. Examples of such
characteristics include the patterns of network traffic to a honeypot, the response
times to queries, or the configuration of services which are not similar to real hosts
in the network. However, with some additional effort, these characteristics can be
made more effective in deception (e.g., by simulating more realistic traffic to and
from honeypots).

In this chapter, we introduce a game-theoretic model of the problem of designing
effective decoy objects that can fool even a sophisticated attacker. In our model, real
and fake objects may naturally have different distributions of characteristic features
than an attacker could use to tell them apart. However, the defender can make some
(costly) modifications to either the real or the fake objects to make them harder
to distinguish. This model captures some key aspects of cyber deception that are
missing from other game-theoretic models. In particular, we focus on whether the
defender can design convincing decoy objects, and what the limitations of deception
are if some discriminating features of real and fake objects are not easily maskable.

We also present several analyses of fundamental questions in cyber deception
based on our model. We analyze how to measure the informativeness of the signals
in our model and then consider how effectively the defender can modify the features
to improve the effectiveness of deception in various settings. We show how different
variations in the costs of modifying the features can have a significant impact on
the effects of deception. We also consider the differences between modifying only
the features of deceptive objects and being able to modify both real and deceptive
objects (two-sided deception). While this is not always necessary, in some cases, it
is essential to enable effective deception. We also consider deception against naïve
attackers, and how this compares to the case of sophisticated attackers.

Next, we present an exploratory study that looked into the effectiveness of a
two-sided deception technique using a human-attackers trial. In the experiment, we
used a network topology with an equal number of real machines and honeypots
where we modify the features of a system using an experimental test bed (HackIT).
We first categorized the adaptable features of both real machines and honeypots,
then changed the features’ characteristics and observed the attackers’ behavior after
modification. Finally, we discuss the results of our case study in no-deception, one-
sided, and two-sided situations.

Diversifying Deception: Game-Theoretic Models for Two-Sided Deception and. . . 3

Later section in this chapter will discuss how our game model relates to work
in adversarial learning and how this model could be applied beyond the case of
honeypots to, for example, generating decoy network traffic.

2 Motivating Domain and Related Work

While the model we present may apply to many different types of deception and
deceptive objects, we will focus on honeypots as a specific case to make our
discussion more concrete and give an example of how this model captures essential
features of real-world deception problems. Honeypots have had a considerable
impact on cyber defense in the 30 years since they were first introduced [29].

Over time, honeypots have been used for many different purposes and have
evolved to more sophisticated designs with more advanced abilities to mimic
real hosts and to capture useful information about attackers [5, 18, 20]. The
sophistication of honeypots can vary dramatically, from limited low-interaction
honeypots to sophisticated high-interaction honeypots [9, 18, 22].

Here, we do not focus on the technological advancements of honeypots, but
rather on the game-theoretic investigation of honeypot deception. There have been
numerous works that emphasize this game-theoretic approach to cyber deception
as well. Our work builds upon the Honeypot Selection Game (HSG), described by
Píbil et al. [13, 21]. Much like the HSG, we model the game using an extensive
form game. We extend the HSG model with the introduction of features, which
are modifiable tokens in each host that enable more robust deceptions and allow to
model more realistic settings. Several game-theoretic models have been established
for other cyber defense problems [4, 17, 24, 26], specifically for deception as
well [25, 33]; however, these consider attribute obfuscation as the means of
deception rather than use of decoy objects.

Reference [34] notably investigate the use of honeypots in the smart grid to mit-
igate denial-of-service attacks through the lens of Bayesian games. Reference [16]
also model honeypots mitigating denial-of-service attacks in a similar fashion but in
the Internet-of-Things domain. Reference [8] tackle a similar “honeypots to protect
social networks against DDoS attacks” problem with Bayesian game modeling.
These works demonstrate the broad domains where honeypots can aid. This work
differs in that we do not model a Bayesian incomplete information game.

A couple of works also consider the notion of two-sided deception, where the
defender deploys not only real-looking honeypots but also fake-looking real hosts.
Rowe et al. demonstrate that using two-sided deception offers an improved defense
by scaring off attackers [23]. Caroll and Grosu introduced the signaling deception
game where signals bolster a deployed honeypot’s deception [6]. Our work differs
in that we define specific features (signals) that can be altered and revealed to the
attacker. Shi et al. introduce the mimicry honeypot framework, which combines
real nodes, honeypots, and fake-looking honeypots to derive equilibria strategies to
bolster defenses [27]. They validated their work in a simulated network. This notion

4 M. S. Miah et al.

of two-sided deception is quickly becoming a reality; De Gaspari et al. provided a
prototype proof-of-concept system where production systems also engaged in active
deception [7].

3 Feature Selection Game

Feature Selection Game (FSG) models the optimal decisions for a player (the
defender) who is trying to disguise the identity of real and fake objects so that the
other player (the attacker) is not able to reliably distinguish between them. Each
object in the game is associated with a vector of observable features (characteristics)
that provides an informative signal that the attacker can use to detect fake objects
more reliably. The defender can make (limited) changes to these observable features,
at a cost. Unlike many models of deception, this game model considers the
possibility that the defender can make changes to both the real and fake objects;
we refer to this as 2-sided deception.

The original feature vector is modeled as a move by nature in a Bayesian game.
Real and fake objects have different probabilities of generating every possible
feature vector. How useful the features are to the attacker depends on how similar
the distributions for generating the feature vectors are; very similar distributions
have little information while very different distributions may precisely reveal which
objects are real or fake. The defender can observe the features and may choose to
pay some cost to modify a subset of the features. The attacker observes this modified
set of feature vectors and chooses which object to attack. The attacker receives a
positive payoff if he selects a real object, and a negative one if he selects a honeypot.

To keep the initial model simple, we focus on binary feature vectors to represent
the signals. We will also assume that the defender can modify a maximum of one
feature. Both of these can be generalized in a straightforward way, at the cost of a
larger and more complex model.

3.1 Formal Definition of Feature Selection Game

We now define the Feature Selection Game (FSG) formally by the tuple .G =
(K r,Kh, N, vr, vh, Cr, Ch, P r, P h, τ, χ).

• .K r denotes the set of real hosts and .Kh denotes the set of honeypots. Altogether,
we have the complete set of hosts .K = K r ∪ Kh. We denote the cardinalities of
these by .k = |K|, .r = |K r|, .h = |Kh|.

• .[n] is the set of features that describe any given host. The sequence of feature
values of a host is referred to as its configuration. Thus, the set of different
possible configurations is .{0, 1}n.

• .vr, .vh denote the importance values of the real hosts and honeypots, respectively.

Diversifying Deception: Game-Theoretic Models for Two-Sided Deception and. . . 5

Fig. 1 The extensive form game tree with one real host, one honeypot and 1 feature in each host.
The importance value of real host is 10, whereas the modification cost of a feature is 3. The same
values for the honeypot are 5, 1, respectively

• .Cr, .Ch denote the cost vectors associated with modifying a single feature of a
real host and a honeypot, respectively, and are indexed by the set of features N .
Thus, .Cr

i is the cost of modifying the ith feature of a real host.
• .P r : {0, 1}n → [0, 1] is probability distribution over feature vectors for real

hosts.
• .P h : {0, 1}n → [0, 1] is the probability distribution over feature vectors for

honeypots.
• The collection of all possible information sets is denoted by .τ .
• .χ : {0, 1}kn × D → τ is a function that given the initial network and a defender

action, outputs the attacker’s resultant information set .I ∈ τ . Here, D is the set
of defender actions.

An example of a small FSG with 1 real host, 1 honeypot, and 1 feature for each
host is shown in Fig. 1. The probability distributions .P r(0) = P r(1) = 0.5 and
.P h(0) = P h(1) = 0.5 are randomly generated for each feature combination.

3.2 Nature Player Actions

We assume that both players know the probability distributions .P r and .P h that
define how the feature vectors are selected by nature for real and honeypot hosts,
respectively. Nature generates the network configurations as per the distributions
.P r and .P h. Thus, the network state .x = (x1, . . . , xk) is generated as per the joint

6 M. S. Miah et al.

distribution .P x where .P x(x) = ∏r
i=1 P r(xi) × ∏k

i=r+1 P h(xi). Both players can
compute the distribution .P x. For example, in Fig. 1 .P x = 0.25 for network 0R1D
is calculated from .P r(0.) = 0.5 and .P h(1.) = 0.5. Here, 0R1D refers to the 1st
feature’s status of real host and decoy object (honeypot).

3.3 Defender Actions

The defender observes the network configuration .x ∈ X, selected by nature as per
probability distribution .P x. Then he chooses an appropriate action .d ∈ D, which
is to change at most one feature of any single host. Thus, D has .nk + 1 different
actions. This action results in a configuration .x′ ∈ {0, 1}nk that the attacker observes,
defining his information set .I ∈ τ as described previously. In the example of Fig. 1,
given the initial network configuration 0R0D, the defender can alter a feature which
results into 0R1D or 1R0D, or make no change leading to 0R0D as the attacker’s
observation.

3.4 Attacker Actions

The attacker observes the set of feature vectors for each network but does not
directly know which ones are real and which are honeypot. Thus, any permutation
of the host configurations is perceived identically by the attacker. Hence, the
attacker’s information set is merely characterized by the combination of the host
configurations and thus represented as a multiset on the set of host configurations
as the Universe. For example, in Fig. 1, the networks 0R1D and 1R0D belong to
the same information set. Given the attacker’s information set, he decides which
host to attack. When indexing the attack options, we write the information set as an
enumeration of the k host configurations, and we assume a lexicographically sorted
order as a convention. Given this order, we use a binary variable .aI

i to indicate that
when he is in the information set I , the attacker’s action is to attack host .i ∈ K .

3.5 Utility Functions

A terminal state t in the extensive form game tree is characterized by the sequence of
actions that the players (nature, defender, attacker) take. The utilities of the players
can be identified based on the terminal state that the game reaches. Thus, given
a terminal state t as a tuple .(x, j, a) of the player actions, we define a function
.U(t) = U(x, j, a) such that the attacker gains this value while the defender loses
as much. That is, this function serves as the zero-sum component of the player

Diversifying Deception: Game-Theoretic Models for Two-Sided Deception and. . . 7

rewards. In particular, if the action a in the information set .χ(x, j) corresponds to
a real host, then .U(x, j, a) = vr, whereas if it corresponds to a honeypot, then
.U(x, j, a) = −vh. Intuitively, the successful identification of a real host gives a
positive reward to the attacker otherwise gives a negative reward that is equal to the
importance value of a honeypot. The expected rewards are computed by summing
over the terminal states and considering the probabilities of reaching them. Finally,
the defender additionally also incurs the feature modification cost .Cr

i or .Ch
j if his

action involved modifying ith feature of a real host or j th feature of a honeypot,
respectively.

3.6 Solution Approach

We solve this extensive form game with imperfect information using a linear
program. For solving this game in sequence form [15], we create a path from
the root node to the terminal node that is a valid sequence and consists of a list of
actions for all players. Then we compute defender’s behavioral strategies on all valid
sequences using a formulated LP as follows, where .Ud and .Ua are the utilities of the
defender and the attacker. To solve the program, we construct a matrix .X[0 : 2kn] of
all possible network configurations, and then the defender chooses a network .x ∈ X

to modify. In network x, any action d of the defender leads to an information set
I for the attacker. Different defender’s actions in different networks can lead to the
same information set .I ∈ τ . Then, in every information set I , the attacker chooses
a best response action to maximize his expected utility.

.max
∑

xεX

∑

jεD

∑

iεK

Ud(x, j, i) dx
j P xa

χ(x,j)
i . (1)

s.t.
∑

(x,j):χ(x,j)=I

Ua(x, j, i)dx
j P x aI

i ≥
∑

(x,j):χ(x,j)=I

Ua(x, j, i′) dx
j P x aI

i

∀i, i′ ∈ K ∀I ∈ τ . (2)

dx
j ≥ 0 ∀x ∈ X ∀j ∈ D. (3)

∑

jεD

dx
j = 1 ∀x ∈ X. (4)

∑

iεK

aI
i = 1 ∀I ∈ τ (5)

8 M. S. Miah et al.

The program’s objective is to maximize the defender’s expected utility, assuming
that the attacker will also play a best response. In the above program, the only
unknown variables are the defender’s actions D (the strategies of a defender in
a network .x ∈ X) and the attacker’s actions .aI . The inequality in Eq. 2 ensures
that the attacker plays his best response in this game, setting the binary variable .aI

i

to 1 only for the best response i in each information set. Equation 3 ensures that
the defender strategies in a network x is a valid probability distribution. Equation 4
makes sure that all probability for all network configurations sum to 1. Finally, Eq. 5
ensures that the attacker plays pure strategies.

4 Empirical Study of FSG

The FSG game model allows us to study the strategic aspects of cyber deception
against a sophisticated adversary who may be able to detect the deception using
additional observations and analysis. In particular, we can evaluate the effectiveness
of cyber deception under several different realistic assumptions about the costs and
benefits of deception, as well as the abilities of the players. We identify cases where
deception is highly beneficial, as well as some cases where deception has limited or
no value. We also show that in some cases, using two-sided deception is critical to
the effectiveness of deception methods.

4.1 Measuring the Similarity of Features

One of the key components of our model is that real hosts and honeypots generate
observable features according to different probability distributions. The similarity of
these distributions has a large effect on the strategies in the game, and the outcome
of the game. Intuitively, if out-of-the-box honeypot solutions look indistinguishable
from existing nodes on the network the deception will be effective without any
additional intervention by the defender. However, when the distributions of features
are very dissimilar the defender should pay higher costs to modify the features to
disguise the honeypots. In some cases this may not be possible, and the attacker will
always be able to distinguish the real hosts and honeypots.

Measuring the similarity of the feature distributions is a somewhat subtle issue,
since the defender can make changes to a limited number of features. Standard
approaches such as Manhattan distance or Euclidean distance do not provide a good
way to compare the similarity due to these constraints. We use a measure based
on the Earth Mover’s Distance (EMD) [19], which can be seen as the minimum
distance required to shift one pile of earth (probability distribution) to look like
another. This measure can be constrained by the legal moves, so probability is only
shifted between configurations that are reachable by the defender’s ability to change
features.

Diversifying Deception: Game-Theoretic Models for Two-Sided Deception and. . . 9

Fig. 2 Earth Mover’s Distance process. (a) Displays the initial feature configuration probability
distributions .Pr and .Ph and where to move slices of the distribution from .Ph and (b) Shows the
updated .Ph after the conversion, resulting in a final EMD of .0.5

In the experiments, we allow the defender to modify only a single feature in the
network and the EMD determines the minimum cost needed to transform a weighted
set of features to another where the probability of each feature configuration is
the weight. The ground dissimilarity between two distributions is calculated by the
Hamming distance. This distance between two distributions of equal length is the
number of positions at which the comparing features are dissimilar. In other words,
it measures the minimum number of feature modification or unit change required
to make two sets of feature indistinguishable. We model the distance from moving
the probability of one configuration (e.g., turning .[0, 0] into .[0, 1]) to another by
flipping of a single bit at a time with a unit cost of 1. This can be seen visually in
Fig. 2 where we calculate the EMD of moving the honeypot’s initial distribution
into that of the real node’s initial distribution.

In our experiments we will often show the impact of varying levels of similarity
in the feature distributions. We generated 1000 different initial distributions for the
features using uniform random sampling. We then calculated the similarities using
the constrained EMD and selected 100 distributions so that we have 10 distributions
in each similarity interval. We randomly select these 10 for each interval from the
ones that meet this similarity constraint in the original sample. This is necessary
to balance the sample because random sampling produces many more distributions
that are very similar than distributions that are further apart, and we need to ensure
a sufficient sample size for different levels of similarity. we present the results
by aggregating over the similarity intervals of .0.1 and average ten results in each
interval.

10 M. S. Miah et al.

4.2 Deception with Symmetric Costs

Our first experiment investigates the impact of varying the similarity of the feature
distributions. We also vary the values of real host and honeypot. As the similarity
of the distributions .P r and .P h decreases, we would expect a decrease in overall
expected defender utility. We can see this decrease in Figs. 3a and b as we vary

Fig. 3 Comparison of defender utility when the real host’s importance value (a) doubles that of
the honeypot and (b) equals that of the honeypot. Here we see one-sided deception provides a
comparable defense despite a high initial dissimilarity

Diversifying Deception: Game-Theoretic Models for Two-Sided Deception and. . . 11

the similarity measured using EMD. In Figs. 3a and b, we compare the utility
differences between an optimal defender that can only modify the features of the
honeypot (one-sided deception), an optimal defender that can modify features of
both the honeypot and real host (two-sided deception), and a baseline defender that
cannot make any modifications against a fully rational best response attacker.

In Fig. 3a, the honeypot has the same importance value as the real host, while
in Fig. 3b, the honeypot value is half of the real host. The first observation is
that in both cases the value of deception is high relative to the baseline with no
deception, and this value grows dramatically as the feature distributions become
more informative (higher EMD). In general, the defender does worse in cases where
the hosts have different values. Two-sided deception does have a small advantage
in cases with highly informative features, but the effect is small. Here, the costs of
modifying the features are symmetric, so there is little advantage in being able to
modify the feature on either the honeypot or the real host, since the defender can
choose between these options without any penalty.

To further investigate the issue of one-sided and two-sided deception, we fix
the honeypot features modification costs and increased real host modification costs
as reflected in Table 1. Here, we compare how increasing the real host’s feature
modification negatively affects the defender’s expected utility. As the cost for
modifying the real hosts increases relative to the cost of modifying honeypots, the
defender must make more changes on honeypots in order to maximize his utility.
Altering the real system in this case is not feasible and does not provide a good
return on investment.

Traditionally network administrators avoid altering features in their real hosts
on the network and simply employ one-sided deception, attempting to alter the
honeypot to look like a real host. In the case where modifying a real host to look less
believable might be too costly or even impossible, one-sided deception is an obvious

Table 1 Parameters used in
HFSG experiments. RIV
denotes real system’s
importance value, RMC
denotes real system’s feature
modification cost, HpIV
denotes importance value of
honeypot, and HpMC denotes
feature modification cost of
honeypot. All numbers are
normalized to 1

RMC HpMC

Figure RIV F 1 F 2 F 1 F 2 HpIV

3a 1.0 0.25 0.1 0.1 0.25 0.5

3b 1.0 0.25 0.1 0.2 0.1 1.0

4 (Both (A)) 1.0 0.25 0.1 0.1 0.2 0.5

4 (Both (B)) 1.0 0.5 0.2 0.1 0.2 0.5

4 (Both (C)) 1.0 1.0 0.5 0.1 0.2 0.5

5 (Exp-1) 1.0 0.1 .∞ 0.1 .∞ 1.0

5 (Exp-2) 1.0 0.1 .∞ .∞ 0.1 1.0

6 (Exp-1) 1.0 0.2 0.2 0.2 0.2 1.0

6 (Exp-2) 1.0 0.15 0.25 0.25 0.15 1.0

6 (Exp-3) 1.0 0.1 0.3 0.3 0.1 1.0

6 (Exp-4) 1.0 0.05 0.35 0.35 0.05 1.0

6 (Exp-5) 1.0 0.0 0.4 0.4 0.0 1.0

8 1.0 0.25 0.1 0.2 0.1 1.0

12 M. S. Miah et al.

Fig. 4 Comparison of defender utility when the cost of modifying the real host features is different
than modifying the honeypot features

choice as demonstrated in Fig. 4. However, when these real feature modifications are
not too costly, we see that two-sided provides a noticeable increase in defenses when
the feature distributions are increasingly dissimilar.

4.3 Deception with Asymmetric Costs

While the results so far have suggested that one-sided deception may be nearly as
effective as two-sided deception, they have all focused on settings where the costs of
modifying features are symmetric for real and fake hosts. We now investigate what
happens when the costs of modifying different features are asymmetric. We start
with the extreme case where some features may not be possible to modify at all.

In our examples with two features, we can set the unmodifiable features for the
real and honeypot hosts to be the same or to be opposite. In Fig. 5, we show the
results of the game when we set the modification costs of some features to infinity.
If the same feature for the real host and honeypot are unmodifiable, then there is
little the defender can do to deceive an intelligent attacker when they are highly
dissimilar. However, when the features that cannot be modified are different for the
real and honeypot hosts, we see a very different situation. In this case the defender
benefits greatly from being able to use two-sided deception, since he can avoid the
constraints by modifying either the real or fake hosts as needed.

In our next experiment, we investigate less extreme differences in the costs of
modifying features. We set the costs so that they are increasingly different for

Diversifying Deception: Game-Theoretic Models for Two-Sided Deception and. . . 13

Fig. 5 Comparison of defender utility when some features cannot be modified

real and honeypot hosts, so modifying one feature is cheap for one but expensive
for the other, but not impossible. We show the results of using either one or two-
sided deception for varying levels of initial feature distribution similarity in Fig. 6.
The specific costs are given in Table 1. We see that there is very little difference
when the initial distributions are similar; this is intuitive since the attacker has little
information and deception is not very valuable in these cases. However, we see a
large difference when the initial distributions are informative. As the difference in
the feature modification costs increases, the value of two-sided deception increases,
indicating that this asymmetry is crucial to understanding when two-sided deception
is necessary to employ effective deception tactics.

We also expect that the number of features available to the players will have a
significant impact on the value of deception. While the current optimal solution
algorithm does not scale well, we can evaluate the differences between small
numbers of features, holding all else equal. Figure 7 presents the results of the
modeling HFSG with variable number of features. We found that when the number
of features is increased two-sided deception becomes more effective than one-sided
deception. The defender in this case has more opportunity to alter the network
by changing the features and make it the more confusing network to the attacker.
However, the defender payoff decreases with more features due to the constraint on
how many features he can modify and the total cost of modifying these features.

14 M. S. Miah et al.

Fig. 6 Impact of modification cost over various initial similarity parameters

4.4 Deception with Naïve Attackers

The previous empirical results all assumed a cautiously rational attacker who
actively avoided attacking honeypots. This is a common practice, because fully
rational actors present the highest threat. In cybersecurity, these fully rational
attackers might be an experienced hacker or APT. However, these are not the only
threats faced in cybersecurity and we cannot assume that these attacking agents
are always cautious and stealthy. For example, many attacks on networks may be
conducted by worms or automated scripts that are much simpler and may be much
more easily fooled by deceptive strategies.

We now consider a more naïve attacker that does not consider the defender’s
deception. He observes the hosts on the network and assumes no modifications
were made. Based on all observations for a particular network he calculates his

Diversifying Deception: Game-Theoretic Models for Two-Sided Deception and. . . 15

Fig. 7 Comparison of defender utility when increasing the number of features

Fig. 8 Comparison of defender utility of a naïve attacker versus a fully rational attacker. Here, the
naïve attacker does not consider the defender’s utility or strategy at all

best response but does predict the defender’s optimal strategy. The results of the
experiment are shown in Fig. 8 and the costs given in Table 1.

The best case is when the defender can perform two-sided deception against a
naïve attacker and the worst case is when the defender performs no deceptive actions
against a fully rational attacker. These two cases form an upper- and lower-bound as

16 M. S. Miah et al.

seen in Fig. 8. Two-sided deception is more effective in this case when the feature
distributions are similar, while the opposite was true for a rational attacker. Overall,
deception strategies are much more effective against naïve attackers.

5 Human Experiment

In this section, we explain the human experiment conducted using an experimental
testbed HackIT [2]. HackIT provides various capabilities such as network creation
with different sizes, configurable machine features, and manipulation of topologies
for conducting human experiments. This experiment was conducted with a network
size of 40 machines, including 20 honeypots and 20 real machines. These machines
were used with different configurations to achieve deception based on the experi-
mental conditions.

5.1 Experimental Design

In this experiment, we study the effectiveness of a two-sided deception strategy. We
define two between-subject conditions: default, where both real machines and hon-
eypots have default configurations; and 2-sided deception, where the configuration
of both real and honeypot is modified. The real machines were configured with the
default honeypot configuration, and the honeypots were configured with the default
real configuration shown in Table 2.

In each condition, there are two identical rounds of 25 min each. The proportion
of honeypots (20 out of 40 machines) remains the same across conditions and
rounds. The honeypots were allocated randomly in the network. The real and
honeypots used in the study have multiple features as shown in Table 2. These
features were configured based on the experimental conditions.

Table 2 The configuration of Real machines and Honeypots

Features Default honeypot Default real machine

OS Obsolete OS Up to date

Ports & services Normal ports, honeypot ports Normal ports

Exploit information Obsolete Up to date

Exploit success rate 100% 40%

Link latency 1 ms 0.2 ms

Virtual/physical machine VM Physical

Running processes 2 processes 10 processes

File system (1 user folder
with 5.∼6 sub-folders)

4.∼5 empty or access-deny
folders

1 empty or access-deny folder

Diversifying Deception: Game-Theoretic Models for Two-Sided Deception and. . . 17

5.2 Experiment Task

In this experiment, the participant played the role of an attacker. The goal of an
attacker was to steal a file “pin.txt” containing confidential credit card pin numbers
stored in different systems on the network. The network contains 40 systems, and
participants can explore and exploit as many systems as they can within a given
time frame. For the exploration and exploitation of a system on the network, the
participants were provided tools which were accessible through commands, as
shown in Table 3.

The first step in the experimental task is information gathering by accessing
available tools using the given commands nmap, checkHS, and info_ exploit
commands. There are some commands which have a cost associated with it as these
commands provide some extra information to the participants. The participants have
limited time in the experiment, when participants use these particular commands,
the cost (i.e., time) is detected from their remaining time. The “checkHS” command
is to detect the existence of deceptive strategies. The reliability of “checkHS”
command is only 50% and it cost approximately 10 s to participants. It generate
a score from 0 to 1 representing the likelihood of the system being deceptive (0
= “not deceptive” to 1 = “deceptive”). To find the most promising attack path,
participants can collect more detailed information about exploits, including its
disclosure date, using “info_exploit exploit”. Attackers could decide to attack the
system they explored or gather more information about other systems.

Table 3 Available commands for participants

Execution place Command name Command use

Pre-Exploitation nmap -sL all Scan the network and find which
system are available in network

nmap System Scan a system to know open ports,
application vulnerabilities, and OS

nmap System [-rtt] Provides benchmark RTT and RTT of
the current system

checkHS Check Honeypot score, i.e., detect the
existence of deceptive strategies

info_ exploit exploit Gather information about specific
exploit

use_exploit Use exploit to target a system

Post-Exploitation ls List all files present in the current
directory

cd Traverse through the directories

ps -A Lists all running processes on the
system

checkVM To check machine is a physical system
or a virtual environment

scp To transfer “pin.txt” file from the
system to attacker system

18 M. S. Miah et al.

When the participants are ready to exploit a machine, they need to select an
exploit for that system. To exploit a vulnerability on a machine, they need to
execute the “use_ exploit” command. For example, the participant can run the
following command to exploit SQL injection vulnerability on System1: “use_exploit
sql_injection System1.” The “use_exploit” command might require multiple tries to
gain success. The participants can also switch to another vulnerability on the same
system.

Once the participants gain access to the server, they may do further recon-
naissance with the following commands- “ls,” “cd,” “ps -A,” and “checkVM.”
After collecting enough information and traversing through various directories,
participants may decide whether to steal the file using scp command or leave the
system without stealing the file. The scp command takes two parameter filename and
destination as follow: scp pin.txt address. The participant gets feedback about the
success or failure of the operation. If the system is a real machine and participants
steal “pin.txt” file, they earn 100 points and if they logout without stealing the
file, then they earn 30 points. Similarly, if the system is a honeypot and they steal
“pin.txt” file, they lose 100 points and if they do not steal and logout, then they lose
30 points. Participants can continue exploration and exploitation until they run out
their allocated time.

5.3 Participants

We recruited participants through advertisements on different social media
platforms, targeted cybersecurity groups, university email groups, and Amazon
Mechanical Turk. We used a cybersecurity screening test to select the participants
for the study. The screening test was based on various practical and theoretical
knowledge of cybersecurity such as- information gathering, network scanning,
network exploitation, and tools used in these tasks. A total of 10 questions from a
pool of 18 were presented to each participant, and participants had to score 70% to
get selected. A total of 71 participants passed, out of 95 participated in the screening
test. Qualified participants were scheduled for an online study of 60 min. A total of
35 participants appeared in to the main study. Participants were randomly assigned
to one of the two conditions, default (.n = 14) and 2-sided deception condition
(n=21). Participants aged between 18 and 62 years (Mean: 33, SD: 9.9). After the
successful completion of the experiment, all participants were given a base payment
of $12 and could earn a bonus up to $10.

5.4 Results

We measured the performance of participants in different experimental conditions.
We measured the proportion of honeypot exploitation and the proportion of data

Diversifying Deception: Game-Theoretic Models for Two-Sided Deception and. . . 19

Table 4 Proportion of Attacks in two experimental conditions

Honeypots Default 2-sided

Exploitation 0.36 (0.04) 0.62 (0.04)

Data exfiltration 0.36 (0.05) 0.52 (0.04)

exfiltration on honeypots. Table 4 represents the mean and standard error of the
dependent variables.

The proportion of honeypot attacks is higher in 2-sided deception condition
compared to the default condition. There is a statistically significant difference
between groups as determined by one-way ANOVA (F(1, 33) = 21.44, p =
0.0001). The statistical analysis revealed that the proportion of honeypot attacks
are significantly higher in 2-sided condition compared to the default condition. Our
results suggest that modifying the features of both real and honeypot machines
produces more attacks than using the default features.

After successful exploitation of any system, data exfiltration is the next step in
the task. The proportion of data exfiltration is significantly different between groups
as determined by one-way ANOVA (F(1,33) = 4.84, p = 0.035). The statistical
analysis revealed that the proportion of data exfiltration is significantly higher in 2-
sided condition compared to the default condition. Our results suggest that attackers
steal more data, i.e., use SCP commands more often when features are modified
compared to the default condition. The detailed results of human experiment are
presented in another paper [3].

6 Discussion and Further Applications

Our model gives a new and more nuanced way to think about the quality of different
deception strategies, and how robust they are to an adversary being able to see
through the deception. We can identify which features the defender should focus
on modifying to make the deception more effective, including features of the real
objects. In addition, we can correctly identify cases where deception is not the best
solution because the costs of creating a believable deception may be higher than
the value they create. We conclude by discussing some connections to adversarial
machine learning and an additional case where our model could be applied beyond
honeypots.

6.1 Adversarial Learning

Recently, adversarial machine learning models have shown great promise in generat-
ing deceptive objects, focusing mostly on images and video applications [11, 12, 30],

20 M. S. Miah et al.

though they have the potential to generalize to many other types of deceptive objects.
The most well-known approach is Generative Adversarial Networks (GAN) [10],
which rely on a pair of neural networks, one to generate deceptive inputs, and the
other to detect differences between real and fake inputs. The intuition for these
is often that the networks are playing a zero-sum game, though the interpretation
is vague and there is no formal game presented. Our model can be viewed as a
formalization of the game these types of machine learning algorithms are playing,
though there are some differences. We specifically consider the costs of modifying
different features of the objects, as well as the possibility of modifying the real
distribution in addition to the fake one. On the other hand, GANs typically are
used in much larger problems with vast numbers of complex features, and they do
not find optimal solutions. Also, they use abstracted representations of the feature
space in the learning process, and it is not clear exactly how this works or what the
implications are.

We believe that further developing and scaling this model to address more
complex feature deception problems will help to understand the theoretical qualities
of GANs and related methods better. In particular, we can better understand the
limits that these AML methods may have based on the costs and infeasibility
of modifying features in some cases, as well as giving optimal or bounded
approximations of the solutions to small feature deception games, which can then be
used to provide clear quality comparisons for machine learning methods that may
scale to much more complex problems but without specific quality guarantees.

6.2 Disguising Network Traffic

While we presented our model using honeypots as a motivating domain, there are
many other possible applications. We briefly discuss another example here to make
this point. There are many reasons to disguise network traffic to look like other
traffic; defenders may wish to do this to generate fake traffic to support honeypots
or to conceal the properties of real traffic on their networks otherwise. Attackers
also may want to make their network traffic appear similar to real traffic to avoid
detection.

While network traffic, in general, has a very large number of possible features,
an increasing fraction of traffic is encrypted, which hides many of the deep features
of the data. However, it is still possible to do an analysis of encrypted traffic
based on the source, destination, routing, timing and quantity characteristics, etc.
Our model can be used to analyze how to optimize the properties of real and
decoy traffic to improve the effectiveness of the decoy traffic, based on the costs
of modifying different features. For example, modifying traffic to be sent more
frequently will clearly have costs in increased network congestion, while modifying
some features of the real traffic may not be feasible at all (e.g., the source and
destination). Even simple versions of our model with relatively few features could be
used to optimize decoy network traffic in encrypted settings, where there is limited

Diversifying Deception: Game-Theoretic Models for Two-Sided Deception and. . . 21

observable information about the traffic. The unencrypted case allows for many
more possible features, so it would require larger and more complex versions of our
model to analyze, which would require more scalable algorithms to solve exactly
using our model, or the application of approximation methods and adversarial
learning techniques.

6.3 Limitations

The time and memory complexities of the game model depend on n, k, feature
modification options, and the amount of sampling; which makes the model grow
exponentially. To avoid computational complexity, we tested our model with two
machines, one each of type (real and honeypot) with two features in each. Extending
the model to include more machine types and features is straightforward, although
the optimization problem will become much more difficult to solve. A scalable
algorithm will need to be developed to solve larger size games.

7 Conclusions

Deception is becoming an increasingly crucial tool for both attackers and defenders
in cybersecurity domains. However, existing formal models provide little guidance
on the effectiveness of deception, the amount of effort needed to sufficiently disguise
deceptive objects against motivated attackers, of the limits of deception based on the
costs of modifying the features of the deceptive objects. Also, most analyses only
consider how to make deceptive objects look real, and not how real objects can be
modified to look more like deceptive ones to make the task of deception easier. In
this chapter, we present a formal game-theoretic model of this problem, capturing
the key problem of disguising deceptive objects among real objects when an attacker
may observe external features/characteristics. We also demonstrate the effectiveness
of this technique using a human experiment.

Our model of FSG allows us to investigate many aspects of how a defender
should optimize efforts to conceal deceptive objects, which can be applied to
honeypots, disguising network traffic, and other domains. This also gives a more
theoretical foundation to understand the benefits and limitations of adversarial
learning methods for generating deceptive objects. We show that the symmetry
or asymmetry of the costs of modifying features is critical to whether we need
to consider 2-sided deception as part of the strategy, and we also show that in
some cases deception is either unnecessary or too costly to be effective. Also, the
sophistication of the attackers makes a great difference; in cases with naïve attackers
deception is even more effective, even when considering a low-cost strategy.

Our results from human experiments demonstrate that it is possible to make
honeypots more effective when we manipulate the features of the honeypot design

22 M. S. Miah et al.

compared to using a default configuration of honeypots. The empirical data show
that both the rate of honeypot exploitation and data exfiltration increase when
features are manipulated. Particularly, the effectiveness of deception increases
by making honeypots look like real machines and additionally, by making real
machines look like honeypots (2-sided deception).

Acknowledgments This research was sponsored by the Combat Capabilities Development
Command, Army Research Laboratory and was accomplished under Cooperative Agreement
Number W911NF-13-2-0045 (ARL Cyber Security CRA) and by the Army Research Office and
accomplished under grant number W911NF-17-1-0370 (MURI Cyberdeception). The views and
conclusions contained in this document are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied, of the Army Research Laboratory or
the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for
Government purposes without standing any copyright notation.

References

1. Achleitner, S., La Porta, T., McDaniel, P., Sugrim, S., Krishnamurthy, S.V., Chadha, R.: Cyber
deception: Virtual networks to defend insider reconnaissance. In: Proceedings of the 8th ACM
CCS International Workshop on Managing Insider Security Threats, pp. 57–68. ACM (2016)

2. Aggarwal, P., Gautam, A., Agarwal, V., Gonzalez, C., Dutt, V.: Hackit: a human-in-the-loop
simulation tool for realistic cyber deception experiments. In: International Conference on
Applied Human Factors and Ergonomics, pp. 109–121. Springer (2019)

3. Aggarwal, P., Du, Y., Singh, K., Gonzalez, C.: Decoys in cybersecurity: An exploratory study
to test the effectiveness of 2-sided deception. Preprint (2021). arXiv:2108.11037

4. Alpcan, T., Başar, T.: Network Security: A Decision and Game-Theoretic Approach. Cam-
bridge University Press (2010)

5. Bringer, M.L., Chelmecki, C.A., Fujinoki, H.: A survey: Recent advances and future trends in
honeypot research. Int. J. Comput. Network Inf. Secur. 4(10), 63 (2012)

6. Carroll, T.E., Grosu, D.: A game theoretic investigation of deception in network security. Secur.
Commun. Networks 4(10), 1162–1172 (2011)

7. De Gaspari, F., Jajodia, S., Mancini, L.V., Panico, A.: Ahead: A new architecture for active
defense. In: Proceedings of the 2016 ACM Workshop on Automated Decision Making for
Active Cyber Defense, pp. 11–16. ACM (2016)

8. Du, M., Li, Y., Lu, Q., Wang, K.: Bayesian game based pseudo honeypot model in social
networks. In: International Conference on Cloud Computing and Security, pp. 62–71. Springer
(2017)

9. Garg, N., Grosu, D.: Deception in honeynets: A game-theoretic analysis. In: 2007 IEEE SMC
Information Assurance and Security Workshop, pp. 107–113. IEEE (2007)

10. Goodfellow, I.: Nips 2016 tutorial: Generative adversarial networks. Preprint (2016).
arXiv:1701.00160

11. Grosse, K., Papernot, N., Manoharan, P., Backes, M., McDaniel, P.: Adversarial perturbations
against deep neural networks for malware classification. Preprint (2016). arXiv:1606.04435

12. Huang, L., Joseph, A.D., Nelson, B., Rubinstein, B.I., Tygar, J.: Adversarial machine learning.
In: Proceedings of the 4th ACM Workshop on Security and Artificial Intelligence, pp. 43–58.
ACM (2011)

13. Kiekintveld, C., Lisy, V., Pibil, R.: Game-theoretic foundations for the strategic use of
honeypots in network security. Adv. Inf. Secur. 56, 81–101 (2015)

14. Krawetz, N.: Anti-honeypot technology. IEEE Secur. Privacy 2(1), 76–79 (2004)

Diversifying Deception: Game-Theoretic Models for Two-Sided Deception and. . . 23

15. Kroer, C., Sandholm, T.: Extensive-form game abstraction with bounds. In: Proceedings of the
Fifteenth ACM Conference on Economics and Computation, pp. 621–638. ACM (2014)

16. La, Q.D., Quek, T.Q., Lee, J., Jin, S., Zhu, H.: Deceptive attack and defense game in honeypot-
enabled networks for the internet of things. IEEE Internet Things J. 3(6), 1025–1035 (2016)

17. Laszka, A., Vorobeychik, Y., Koutsoukos, X.D.: Optimal personalized filtering against spear-
phishing attacks. In: AAAI (2015)

18. Mairh, A., Barik, D., Verma, K., Jena, D.: Honeypot in network security: a survey. In:
Proceedings of the 2011 International Conference on Communication, Computing & Security,
pp. 600–605. ACM (2011)

19. Monge, G.: Mémoire sur la théorie des déblais et des remblais. Histoire de l’Académie Royale
des Sciences de Paris (1781)

20. Nawrocki, M., Wählisch, M., Schmidt, T.C., Keil, C., Schönfelder, J.: A survey on honeypot
software and data analysis. Preprint (2016). arXiv:1608.06249

21. Píbil, R., Lisỳ, V., Kiekintveld, C., Bošanskỳ, B., Pěchouček, M.: Game theoretic model of
strategic honeypot selection in computer networks. In: International Conference on Decision
and Game Theory for Security, pp. 201–220. Springer (2012)

22. Provos, N.: Honeyd-a virtual honeypot daemon. In: 10th DFN-CERT Workshop, Hamburg,
Germany, vol. 2, p. 4 (2003)

23. Rowe, N.C., Custy, E.J., Duong, B.T.: Defending cyberspace with fake honeypots. J. Comput.
2(2), 25 (2007)

24. Schlenker, A., Xu, H., Guirguis, M., Kiekintveld, C., Sinha, A., Tambe, M., Sonya, S.,
Balderas, D., Dunstatter, N.: Don‘t bury your head in warnings: A game-theoretic approach
for intelligent allocation of cyber-security alerts. In: IJCAI (2017)

25. Schlenker, A., Thakoor, O., Xu, H., Fang, F., Tambe, M., Tran-Thanh, L., Vayanos, P.,
Vorobeychik, Y.: Deceiving cyber adversaries: A game theoretic approach. In: AAMAS (2018).
http://dl.acm.org/citation.cfm?id=3237383.3237833

26. Serra, E., Jajodia, S., Pugliese, A., Rullo, A., Subrahmanian, V.: Pareto-optimal adversarial
defense of enterprise systems. ACM Trans. Inf. Syst. Secur. (TISSEC) 17(3), 11 (2015)

27. Shi, L., Zhao, J., Jiang, L., Xing, W., Gong, J., Liu, X.: Game theoretic simulation on the
mimicry honeypot. Wuhan Univ. J. Nat. Sci. 21(1), 69–74 (2016)

28. Spitzner, L.: Honeypots: Tracking Hackers, vol. 1. Addison-Wesley Boston (2002)
29. Stoll, C.: The Cuckoo’s Egg: Tracking a Spy Through the Maze of Computer Espionage.

Doubleday (1989)
30. Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., Fergus, R.:

Intriguing properties of neural networks. Preprint (2013). arXiv:1312.6199
31. The Mandiant�Intelligence CenterTM: Apt1: Exposing one of China’s cyber espionage units.

Mandiant, Tech. Rep (2013). https://www.fireeye.com/content/dam/fireeye-www/services/
pdfs/mandiant-apt1-report.pdf

32. Virvilis, N., Vanautgaerden, B., Serrano, O.S.: Changing the game: The art of deceiving
sophisticated attackers. In: 2014 6th International Conference On Cyber Conflict (CyCon
2014), pp. 87–97. IEEE (2014)

33. Wang, W., Zeng, B.: A two-stage deception game for network defense. In: Decision and Game
Theory for Security (2018)

34. Wang, K., Du, M., Maharjan, S., Sun, Y.: Strategic honeypot game model for distributed denial
of service attacks in the smart grid. IEEE Trans. Smart Grid 8(5), 2474–2482 (2017)

35. Zou, C.C., Cunningham, R.: Honeypot-aware advanced botnet construction and maintenance.
In: International Conference on Dependable Systems and Networks (DSN’06). pp. 199–208.
IEEE (2006)

http://dl.acm.org/citation.cfm?id=3237383.3237833
http://dl.acm.org/citation.cfm?id=3237383.3237833
http://dl.acm.org/citation.cfm?id=3237383.3237833
http://dl.acm.org/citation.cfm?id=3237383.3237833
http://dl.acm.org/citation.cfm?id=3237383.3237833
http://dl.acm.org/citation.cfm?id=3237383.3237833
http://dl.acm.org/citation.cfm?id=3237383.3237833
http://dl.acm.org/citation.cfm?id=3237383.3237833
http://dl.acm.org/citation.cfm?id=3237383.3237833
https://www.fireeye.com/content/dam/fireeye-www/services/pdfs/mandiant-apt1-report.pdf
https://www.fireeye.com/content/dam/fireeye-www/services/pdfs/mandiant-apt1-report.pdf
https://www.fireeye.com/content/dam/fireeye-www/services/pdfs/mandiant-apt1-report.pdf
https://www.fireeye.com/content/dam/fireeye-www/services/pdfs/mandiant-apt1-report.pdf
https://www.fireeye.com/content/dam/fireeye-www/services/pdfs/mandiant-apt1-report.pdf
https://www.fireeye.com/content/dam/fireeye-www/services/pdfs/mandiant-apt1-report.pdf
https://www.fireeye.com/content/dam/fireeye-www/services/pdfs/mandiant-apt1-report.pdf
https://www.fireeye.com/content/dam/fireeye-www/services/pdfs/mandiant-apt1-report.pdf
https://www.fireeye.com/content/dam/fireeye-www/services/pdfs/mandiant-apt1-report.pdf
https://www.fireeye.com/content/dam/fireeye-www/services/pdfs/mandiant-apt1-report.pdf
https://www.fireeye.com/content/dam/fireeye-www/services/pdfs/mandiant-apt1-report.pdf
https://www.fireeye.com/content/dam/fireeye-www/services/pdfs/mandiant-apt1-report.pdf
https://www.fireeye.com/content/dam/fireeye-www/services/pdfs/mandiant-apt1-report.pdf
https://www.fireeye.com/content/dam/fireeye-www/services/pdfs/mandiant-apt1-report.pdf

Human-Subject Experiments on
Risk-Based Cyber Camouflage Games

Palvi Aggarwal, Shahin Jabbari, Omkar Thakoor, Edward A. Cranford,
Phebe Vayanos, Christian Lebiere, Milind Tambe, and Cleotilde Gonzalez

1 Introduction

Rapidly growing cybercrime [13, 15, 25] has elicited effective defense against
adept attackers. Many recent works have proposed Cyber deception techniques to
thwart the reconnaissance—typically a crucial phase prior to attacking [17, 22]. One
deception approach is to camouflage the network by attribute obfuscation [7, 10, 40]
to render an attacker’s information incomplete or incorrect, creating indecision
over their infiltration plan [5, 10, 11, 30]. Optimizing such a deceptive strategy is
challenging due to many practical constraints on feasibility and costs of deploying,

Section 1-4 are based on Thakoor et al. [38] and section 7-8 are based on Aggarwal et al. [2].
Additional details can be found in those papers.

P. Aggarwal (�)
Department of Computer Science, University of Texas, El Paso, TX, USA
e-mail: paggarwal@utep.edu

S. Jabbari (�)
Drexel University, Philadelphia, PA, USA
e-mail: shahin@drexel.edu

O. Thakoor · P. Vayanos
University of Southern California, Los Angeles, CA, USA
e-mail: othakoor@usc.edu; phebe.vayanos@usc.edu

E. A. Cranford · C. Lebiere · C. Gonzalez
Carnegie Mellon University, Pittsburgh, PA, USA
e-mail: cranford@cmu.edu; cl@cmu.edu; coty@cmu.edu

M. Tambe
Harvard University, Allston, MA, USA
e-mail: milind_tambe@harvard.edu

© This is a U.S. government work and not under copyright protection in the U.S.;
foreign copyright protection may apply 2023
T. Bao et al. (eds.), Cyber Deception, Advances in Information Security 89,
https://doi.org/10.1007/978-3-031-16613-6_2

25

 31368 2385 a 31368 2385 a

 885
40240 a 885 40240 a

paggarwal@utep.edu
paggarwal@utep.edu

 885 44115 a 885 44115 a

shahin@drexel.edu
shahin@drexel.edu

 885 47989 a 885 47989
a

othakoor@usc.edu
othakoor@usc.edu

 8432 47989 a 8432 47989 a

phebe.vayanos@usc.edu
phebe.vayanos@usc.edu
phebe.vayanos@usc.edu

 885 51863 a 885 51863 a

cranford@cmu.edu
cranford@cmu.edu

 8650 51863 a 8650 51863 a

cl@cmu.edu
cl@cmu.edu

 13906
51863 a 13906 51863 a

coty@cmu.edu
coty@cmu.edu

 885 55738 a 885 55738
a

milind_tambe@harvard.edu
milind_tambe@harvard.edu
https://doi.org/10.1007/978-3-031-16613-6_2
https://doi.org/10.1007/978-3-031-16613-6_2
https://doi.org/10.1007/978-3-031-16613-6_2
https://doi.org/10.1007/978-3-031-16613-6_2
https://doi.org/10.1007/978-3-031-16613-6_2
https://doi.org/10.1007/978-3-031-16613-6_2
https://doi.org/10.1007/978-3-031-16613-6_2
https://doi.org/10.1007/978-3-031-16613-6_2
https://doi.org/10.1007/978-3-031-16613-6_2
https://doi.org/10.1007/978-3-031-16613-6_2
https://doi.org/10.1007/978-3-031-16613-6_2

26 P. Aggarwal et al.

as well as critically dependent on the attacker’s decision-making governed by
his behavioral profile, and attacking motives and capabilities. Game theory offers
an effective framework for tackling both these aspects and has been successfully
adopted in security problems [3, 21, 31, 33].

Attacking a machine amounts to launching an exploit for a particular system
configuration—information that is concealed or distorted due to the deceptive
defense, thus, an attempted attack may not succeed. Recent game-theoretic models
for deception via attribute obfuscation [32, 37] have a major flaw in ignoring this
risk of attack failure as they assume that an attempted attack is guaranteed to provide
utility to the attacker. Furthermore, assuming that humans will act and choose the
best option available, in terms of expected values, is problematic, as psychologists
have known for decades that humans can only be boundedly rational [18, 34] and
act according to simple heuristics [12]. This was demonstrated recently in a human-
subject experiments that aimed at evaluating an optimal defense strategy (proposed
by Schlenker et al. [32]) against a random strategy [1]. Several previous works
attempt to address this issue. For example, the Quantal response theory [23] asserts
that humans exhibit bounded rationality. However, such strategies severely affect
the performance of a deployed strategy, which has not been considered by previous
work.

In this paper, we present Risk-based Cyber Camouflage Games (RCCG) — a
crucial refinement over previous models via redefined strategy space and rewards to
explicitly capture the uncertainty in attack success. As foundation, we first consider
rational attackers and show analytical results including NP-hardness of optimal
strategy computation and its mixed-integer linear program (MILP) formulation
which, while akin to previous models, largely requires independent reasoning.
Furthermore, we consider risk-averse attackers modeled using Prospect theory [41]
and present a solution (PT) that estimates model parameters from data to compute
optimal defense. Finally, we demonstrate the effectiveness of our approach by exam-
ining the human attacker behavior in human-in-the-loop behavioral experiments.

1.1 Related Work

Cyber Deception Games [32] and Cyber Camouflage Games (CCG) [37] are game-
theoretic models for Cyber deception via attribute obfuscation. In these, the defender
can mask the true configuration of a machine, creating uncertainty in the associated
reward the attacker receives for attacking the machine. These have a fundamental
limitation, namely the assumption that the attacked machine is guaranteed to provide
utility to the attacker. Furthermore, they do not consider that human agents tend to
deviate from rationality, particularly when making decisions under risk. Our refined
model handles both of these crucial issues.

A model using Prospect theory is proposed in [43] for boundedly rational attack-
ers in Stackelberg security games (SSG) [36]. However, it relies on using model
parameters from previous literature, discounting the fact that they can largely vary

Human-Subject Experiments on Risk-Based Cyber Camouflage Games 27

for the specific experimental setups. We provide a solution that learns the parameters
from data, as well as a robust solution to deal with uncertainty in the degree of
risk-aversion and broadly the parametrization hypothesis. A robust solution for
unknown risk-averse attackers has been proposed for SSGs in [29], however, it aims
to minimize the worst-case utility, whereas we take the less conservative approach
of minimizing worst-case regret. Previous works on uncertainty in security games
consider Bayesian [19], interval-based [20], and regret-based approaches [24],
however, these do not directly apply due to fundamental differences between
RCCGs and SSGs as explained in [37].

Another approach in [43] is based on the Quantal Response model [23]. However,
the attack probabilities therein involve terms that are exponential in rewards, which
in turn are non-linear functions of integer variables in our model, leading to an
intractable formulation. However, we show effectiveness of our model-free solution
for this behavior model as well.

Machine learning models such as Decision Tree and Neural Networks have
been used for estimating human behavior [9]. However, the predictive power of
such models typically comes with an indispensable complexity (non-linear kernels,
functions and deep hidden layers of neural nets, sizeable depth and branching factor
of decision trees, etc.). This does not allow the predicted human response to be
written as a simple closed-form expression of the instance features, viz, the strategy
decision variables, preventing a concise optimization problem formulation. This is
particularly problematic since the alternative of searching for an optimal solution via
strategy enumeration is also non-viable — due to the compact input representation
via a polytopal strategy space [16] in our model.

MATCH [26] and COBRA [27] aim to tackle human attackers in SSGs that
avoid the complex task of modeling human decision-making and provide robustness
against deviations from rationality. However, their applicability is limited in Strictly
Competitive games where deviation from rationality always benefits the defender,
they reduce to the standard minimax solution.

2 Risk-Based Cyber Camouflage Games

Here, we describe the components of the RCCG model, explicitly highlighting the
key differences with respect to the CCG model [37].

The network is a set of k machines .K := {1, . . . , k}. Each machine has a true
configuration (TC), which is an exhaustive tuple of attributes so that machines
having the same TC are identical. We use .S := {1, . . . , s} to denote the set of all
TCs. The true state of the network (TSN) is a vector .n = (ni)i∈S with .ni denoting
the number of machines with TC i. Note that .

∑
i∈S ni = k.

The defender can disguise the TCs using deception techniques. More concretely,
we assume each machine is “masked” with an observed configuration (OC). The
set of OCs is denoted by .T. Similar to a TC, an OC corresponds to an attribute

28 P. Aggarwal et al.

tuple that fully comprises the attacker view, so that machines with the same OC are
indistinguishable from each other.

We represent the defender strategy as an integer matrix .�, where .�ij is the
number of machines with TC i, masked with OC j . The observed state of the
network (OSN) is a function of .�, denoted as .m(�) := (mj (�))j∈T, where
.mj(�) = ∑

i �ij denotes the number of machines under OC j for strategy .�.
Deception is often costly and not any arbitrary deception strategy is feasible. To

model this, we use feasibility constraints given by a (0,1)-matrix .�, where .�ij = 1
if a machine with TC i can be masked with OC j . Next, we assume that masking a
TC i with an OC j (if so feasible) has a cost of .cij incurred by the defender, denoting
the aggregated cost from deployment, maintenance, degraded functionality, etc. We
assume the total cost is to be bounded by a budget B.

These translate to linear constraints to define the valid defender strategy set:

F =
⎧
⎨

⎩
�

∣
∣
∣
∣
∣
∣

�ij ∈ Z≥0, �ij ≤ �ijni ∀(i, j) ∈ S× T,
∑

j∈T
�ij = ni ∀i ∈ S,

∑

i∈S
∑

j∈T
�ij cij ≤ B

⎫
⎬

⎭
.

The first and the third constraints follow from the definitions of .� and .n. The second
and fourth impose the feasibility and budget constraints, respectively.

A machine with TC i gets successfully attacked if the attacker uncovers the
disguised OC and uses the correct exploit corresponding to TC i. In this case,
the attacker receives a utility .vi—his valuation of TC i. Collectively, these are
represented as a vector .v. Analogously, we define valuations .u representing the
defender’s loss.

For ease of interpretation, we assign a 0 utility to the players when the attack is
unsuccessful, which sets a constant reference point. Hence, unlike CCGs, valuations
cannot be freely shifted. Furthermore, a successful attack typically is undesirable for
the defender, and to let the valuations be typically positive values, they represent the
defender’s loss; its minimization is the defender objective unlike maximization in
CCGs.

3 Rational Attackers

We first consider rational attackers which have been extensively studied in previous
work. The attacker having to choose a TC-OC pair (i.e., the true configuration and
observed configuration pair) as an attack here rather than just an OC as in the CCG
model [37] requires entirely new techniques for our analytical results, despite a close
resemblance to the optimization problem as below.

Previous work on general-sum Stackelberg games typically uses Strong Stackel-
berg equilibria (SSE), that is, in case of multiple best responses, it is assumed that
the follower breaks ties in favor of the leader (i.e., minimizing defender loss). The

Human-Subject Experiments on Risk-Based Cyber Camouflage Games 29

leader can induce this with mixed strategies, which is not possible in RCCGs since
the defender is restricted to pure strategies [14].

Hence, we consider the worst-case assumption that the attacker breaks the ties
against the defender, leading to Weak Stackelberg Equilibria (WSE) [6]. WSE does
not always exist [42], but it does when the leader can only play a finite set of pure
strategies, as in CCG. Hence, we assume that the attacker chooses a best response to
the defender strategy .�, maximizing the defender loss in case of a tie. This defender
utility is denoted as .Uwse(�), defined as the optimal value of the inner Optimization
Problem (OP) in the following, while the defender aims to compute a strategy to
minimize .Uwse(�) as given by the outer objective.

. argmin
�

max
i,j

Ud(�, i, j) (1)

s.t. U a(�, i, j) ≥ U a(�, i′, j ′) ∀i′ ∈ S, ∀j ′ ∈ T.

First, we show results on optimal strategy computation shown for the important
special cases — the zero-sum and unconstrained settings. While similar results
have been shown for CCG, independent proof techniques are needed herein due
to the difference in our model structure. We then focus our attention on general-sum
games.

In the zero-sum setting, the defender loss equals the attacker reward, i.e., .v = u.

Theorem 1 Zero-sum RCCG is NP-hard. ��
For the special unconstrained setting (i.e., with no feasibility or budget con-

straints), we show the following.

Proposition 1 Unconstrained zero-sum RCCG always has an optimal strategy that
uses just one OC, thus computable in .O(1) time. ��

Although both of these results also hold for CCG, they require independent
derivation. We next focus on the unconstrained RCCG.

Proposition 2 Unconstrained RCCG always has an optimal strategy that uses just
two OCs. ��

This result is crucial for an efficient algorithm to compute an optimal strat-
egy (Algorithm 1), named Strategy Optimization by Best Response Enumeration
(SOBRE). SOBRE constructs an optimal strategy with two OCs, due to Proposition
2, with attacker best response being OC 1 without loss of generality. It classifies the
candidate strategies by triplets .(i, n,m) (Line 2) where the attacker best response
is .(i, 1), and OC 1 masks n machines of TC i, and m machines in total. It uses
a subroutine DPBRF (Dynamic Programming for Best Response Feasibility) to
construct a strategy yielding the desired best response (Line 6) if it exists, and
then compares the defender utility from all such feasible candidates, to compute
the optimal (Lines 7,8).

30 P. Aggarwal et al.

Algorithm 1: SOBRE
1 Initialize minUtil ← ∞
2 for i = 1, . . . , s; n = 0, . . . ni; m = n, . . . , k do
3 if (n/m < (ni − n)/(|K| − m)) continue
4 util ← (n/m)ui

5 if (util ≥ minUtil) continue
6 if DPBRF(i, n,m)

7 Update minUtil ← util

8 Return minUtil

Theorem 2 The optimal strategy in an unconstrained RCCG can be computed in
time .O(k)4. ��

Since the input can be expressed in .O(st) bits, SOBRE is pseudo-polynomial
time algorithm. However, it becomes a poly-time algorithm under the practical
assumption of constant-bounded no. of machines per TC, (so that, .k = O(s),
or more generally, if k in terms of s is polynomially bounded). In contrast,
unconstrained CCG is NP-hard even under this restriction. This distinction arises
since in RCCG, the best response utility given the attack strategy and the no. of
machines masked by the corresponding OC depends on only the count of attacked
TC as opposed to all the TCs in CCG.

We next focus on the constrained RCCG. For this setting, .Uwse(�) is given by
OP (1), and thus, computing its minimum is a bilevel OP. Reducing to a single-level
MILP is typically hard [35]. In particular, computing an SSE allows such a reduction
due to attacker’s tiebreaking favoring the defender’s objective therein, however,
the worst-case tiebreaking of WSE does not. Notwithstanding the redefined attack
strategies, a single-level OP can be formulated analogous to CCGs by assuming
an .ε-rational attacker instead of fully rational. It can be shown that for sufficiently
small .ε, it gives the optimal solution for rationality.

. min
�,q,γ,α

γ . (2)

s.t. α, γ ∈ R, � ∈ F, q ∈ {0, 1}|I|×|J|

q11 + . . . + qst ≥ 1 . (2a)

ε(1 − qij) ≤ α − U a(�, j, i) ∀i ∈ S ∀j ∈ T. (2b)

M(1 − qij) ≥ α − U a(�, j, i) ∀i ∈ S ∀j ∈ T. (2c)

Ud(�, j, i) ≤ γ + M(1 − qij) ∀i ∈ S ∀j ∈ T. (2d)

qij ≤ �ij ∀i ∈ S ∀j ∈ T. (2e)

The defender aims to minimize the objective .γ which captures the defender’s
optimal utility. The binary variables .qij indicate if attacking .(i, j) is an optimal
attacker strategy, and as specified by (2a), there must be at least one. As per (2b)

Human-Subject Experiments on Risk-Based Cyber Camouflage Games 31

and (2c), .α is the optimal attacker utility, and this enforces .qij = 1 for all the
.ε-optimal attacker strategies (using a big-M constant). Equation (2e) ensures that
only the OCs which actually mask a machine are considered as valid attacker
responses. Finally, (2d) captures the worst-case tiebreaking by requiring that .γ is
the highest defender loss from a possible .ε-optimal attacker response. Using an
alternate strategy representation with binary decision variables enables linearization
to an MILP that can be sped up with symmetry-breaking cuts [37].

4 Boundedly Rational Attackers and Prospect Theory

A well-studied model for the risk-behavior of humans is prospect theory [41]. In
this model, humans make decisions to maximize the prospect, which differs from
the utilitarian approach in that the reward value and the probability of any event
are transformed as follows. The theory assumes a value transformation function R

that is monotone increasing and concave such that the outcome reward v (value of
the machine attacked) gets perceived as .R(v) by the attacker. A parameterization
of the form .Rλ(v) = c(v/c)λ is commonly considered in the literature, with
.λ < 1 capturing the risk-aversion of the attacker. We use .c = maxi vi so that the
perceived values are normalized to the same range as true values. Prospect theory
also proposes a probability weighting function .�, such that the probability p of an
event is perceived as .�(p). A function of the form .�δ(p) = pδ/(pδ + (1 −p)δ)1/δ

has been previously proposed in literature, parametrized by .δ.In our problem, the
attack success probability p is a non-linear non-convex function of the decision
variables .�ij and applying a function as above loses tractability. For simplicity,
we omit the probability weighting from our solution which shows effective results
regardless. Future work could explore the benefits of incorporating this additional
complexity.

Thus, each of the attacker’s strategies has a prospect

.fλ(�, i, j) = �ij

m�(j)
Rλ(vi) (3)

as a function of the player strategies, parametrized by .λ. This value transformation
makes the problem inherently harder (even in the simpler zero-sum setting).

The main challenge arises from learning .λ. Once .λ is estimated, the defender
computes an optimal strategy for the prospect-theoretic attacker, by simply modi-
fying (2), replacing the valuations .vi with the transformed values .Rλ(vi) as in (3).
More generally, with this replacement, all results from Sect. 3 for rational attackers
apply here too.

32 P. Aggarwal et al.

4.1 Learning Model Parameters from Data

Suppose we have data consisting of a set of instances .N from a study such as
Aggarwal et al. [1]. A particular instance .n ∈ N corresponds to a particular human
subject that plays against a particular defense strategy .�n and decides to attack
.(in, jn) having the maximum prospect. The instances come from different subjects
who may have a different parameter .λ values. However, at the time of deployment,
the defender cannot estimate the risk-averseness of an individual in advance and
play a different strategy accordingly. Hence, we aim to compute a strategy against a
fixed .λ that works well for the whole population. Due to different subjects, different
instances may have different attack responses for the same defender strategy, and
requiring a strict prospect-maximization may not yield any feasible .λ. Hence, we
define the likelihood of an instance, by considering a soft-max function instead, so
that the probability of attacking .(in, jn) is

.Pn(λ) = exp(fλ(�n, in, jn))
∑

i,j exp(fλ(�n, i, j))
.

Using the Maximum Likelihood Estimation approach, we choose .λ which max-
imizes the likelihood .

∏
n Pn(λ), or, log likelihood .

∑
n log Pn(λ). Finding such

a solution via the standard approach of gradient descent does not have the
convergence guarantee due to the non-convexity of the likelihood function and,
hence, we resort to grid search instead.

5 Human-Subject Experiments

We conduct human experiment to evaluate two masking strategies, WSE and PT.
The WSE strategy develops the OC to TC mapping (.� matrix) by minimizing the
expected losses for defenders against a rational attacker. In contrast, the PT strategy
generates the .� matrix by minimizing the defender’s expected loss against risk-
averse attackers. Table 1 presents the utility for attack and loss for the defender
after a successful attack on TCs. In the WSE strategy, the rewards are considered
as presented in Table 1. However, in the PT strategy, the rewards are transformed
replacing the valuation .va

i with the transformed values .Rλ(v
a
i). The value of .λ =

0.75 parameter is estimated from human decisions in a random masking strategy.
The data for random masking strategy was collected using the same procedure
mentioned in Sect. 5.3. Using the WSE and PT strategies, we generated 10 .� for
each condition. Both strategies considered feasibility constraints and the number
of TCs and OCs. In an experimental testbed called CyberVAN [8], we deployed
these matrices and evaluated the performance of masking strategies against human
attackers. The details of this experiment can be found in Aggarwal et al. [2].

Human-Subject Experiments on Risk-Based Cyber Camouflage Games 33

Table 1 Attacker’s rewards
and defender’s losses per true
configuration

TC Attacker’s rewards Defender’s losses

Slackware 15 9

Xbox 11 10

ubuntu8 2 6

WinXPEmb 13 4

avayagw 14 3

FreeBSD 11 10

WinXP 2 14

win2008 11 2

win2k 7 8

win7pro 10 5

win7ent 9 8

OpenWrt 7 12

OpenBSD 15 15

Linux 6 15

cisco2500 13 12

5.1 Experimental Setup in CyberVAN

In the CyberVAN testbed, the true configuration (TC) of the machines was masked
to the observable configuration (OC) using the Honeyd service. Masking of virtual
machine TCs to OCs using the strategy matrix generated by the WSE and PT
algorithms. The Honeyd configuration file masks the operating systems and ports
of TCs with OCs to trick the network scanning tools [28].

Participants were assigned a virtual machine running kali operating system to
perform the task. Each machine was configured with a scanning tool (i.e., Zenmap)
and attack scripts. The task consists of 10 rounds (preceded by 1 practice round).
Participants were provided a different pre-generated .� matrix in each round that
provides TC to OC mappings of 15 virtual machines.

After logging in to the virtual machine, participants were asked to start the task
using the start script, as shown in Fig. 1. The start script provides the IP address
range and the .� matrix for the practice round. Similar information is also provided
for the main rounds. The .� matrix describes the type and number of machines
present in the network (TC) and their corresponding masked configuration (OC).
The .� matrices were randomly selected for each participant and the virtual machine
configuration was different in each round. Figure 2 presents an example of a .�

matrix used in one of the conditions. To help interpret the matrix, participants
were provided with information about the way the TCs were mapped into the OCs.
For example, in the sample matrix, there are 6 TCs (avayagw, Ubuntu8, Win7pro,
Win7ent, WinXP, Slackware) that are mapped to 3 OCs (FreeBSD, Win7pro, and
Ubuntu8). In the given matrix, for example, 5 machines are shown as FreeBSD,
of which 3 are actually avayagw and 2 are Ubuntu8. In addition to mapping
information, we provide the utility of each TC along with the matrix. Participants

34 P. Aggarwal et al.

Fig. 1 Steps involved in the CyberVAN Task for Human participants

Fig. 2 Sample .� Matrix:
columns represent the
observable configuration and
rows represent the true
configuration.

could use this information to calculate their probability of success and the expected
utility of attacking a particular machine.

In each round, participants perform two phases: exploration and attack. In the
exploration phase, participants used Zenmap utility to probe the machines using the
Nmap command and obtain information of the open ports, operating systems, and
running services (according to the OC). Participants could scan machines in any
order. The output of Nmap command provided the observable features of network
to the participants. After the exploration phase, participants go through the attack
phase, where they decide which machine to attack and what type of exploit to
use to conduct the attack. To decide what machine to attack after exploration,
participants could use the information collected in exploration phase, the payoff for
each machine and the mapping matrix. Participants were provided the rewards that
they would obtain if they were successful in their attack. Note that the utility of the
attacker is different than the loss of the defender for each TC, and the information
about the defender’s losses is not available to attackers.

Human-Subject Experiments on Risk-Based Cyber Camouflage Games 35

The attacker’s utilities are randomly allocated between a range of 2 and 15
to represent the low, medium, and high valued machines in the network. The
corresponding defender’s losses were assigned with the assumption that the value
of a TC may or may not be the same for the attacker and defender. Thus, some TCs
have equal defender’s losses, and others are either lower or higher than the attacker’s
gain. The attacker’s rewards and the defender’s losses for the TCs remained the same
across all 10 rounds. Participants earned the sum of the points accumulated during
the 10 rounds, which were directly translated into a bonus monetary earned to the
participant.

5.2 Participants

Participants were recruited through advertisements via various university email
groups, social media, and cybersecurity targeted groups. To be qualified to par-
ticipate, participants were required to pass an online test of basic cybersecurity
knowledge, which included questions on various attacks, network protocols, scan-
ning tools for networks, etc. The questions were adopted from previously published
research by Ben-Asher and Gonzalez [4]. Only qualified participants were sched-
uled for an online study of 90 min. The demographics of participants are presented
in Table 2. After the successful completion of the experiment, all participants were
paid a base payment of $18. In addition, for each successful exploit, participants
received 1 point, which accumulated and were converted to a monetary bonus
($1 per 10 points). Participants could earn up to $15 in bonus based on their
performance.

Table 2 Demographics Demographic Value WSE (N=25) PT (N=20)

Age Mean 24.4 28.7

SD 4.2 5.8

Sex Male 90% 41%

Female 10% 47%

Not specified 0% 12%

Education Master’s 54% 29%

Bachelor’s 41% 47%

PhD 5% 17%

Experience Little 40% 47%

Some 50% 35%

A lot 5% 0%

Expert 5% 11%

No experience 0% 5%

36 P. Aggarwal et al.

5.3 Experimental Process

First, participants provided informed consent and completed the demographic
questionnaire. Next, they were provided video and text instructions regarding the
goal of the task and the general procedure. Instructions were followed with a brief
instruction comprehension test. Participants received feedback if they incorrectly
answered a question in the test. Participants were provided the contact details of the
research assistant and they could ask any clarification questions before proceeding
with the experiment.

During the instructions, the participants were informed that the experiment would
take up to 90 min and would consist of 11 rounds. After finishing the instruction,
participants were provided with login and password information for the virtual
machine. Once logged on their machine, participants could see a cheat sheet to
help them throughout the task. In the terminal window, participants started the task
and received information such as IP addresses, the .φ matrix, and payoffs during
each round. In each round, participants were asked to probe the machines using an
Nmap command like “Nmap -O 172.16.31.31” to gather information about open
ports and operating systems on this IP address. They were also allowed to scan a
specified range of IP addresses in each round together using a command like “Nmap
-O 172.16.31.31-61.” Next, using the attack script, participants decided what IP
addresses to attack by selecting an appropriate exploit. Participants received points
if the exploit matched with the true configuration; otherwise, they received zero
points. Once they finished all rounds, we asked for their feedback regarding the
experiment.

5.4 Experiment Results

Participants generally scanned all machines before launching an attack. In the
practice round, each participant exploited between a minimum of 1 and a maximum
of 7 machines.

We analyzed the data collected in the WSE and PT conditions during the 10
actual rounds. We randomly allocated 10 matrices to participants during the 10
rounds. To measure the effectiveness of each matrix, we measured the average
attacker’s utility and their success rate. We also analyzed the algorithm (i.e.,
defender) loss.

5.4.1 Attacker’s Success Rate

We calculated the rate with which participants used the correct exploit. Table 3
shows the average success rate of participants in the WSE and PT conditions.
Participants are slightly more successful when paired with the WSE compared to

Human-Subject Experiments on Risk-Based Cyber Camouflage Games 37

Table 3 Average success
rate and defender’s losses for
each matrix and overall in
WSE and PT algorithms for
Human and IBL Model and
their corresponding RMSE
values

Success rate Attacker’s utility Defender’s loss

Matrix WSE PT WSE PT WSE PT

1 0.37 0.70 3.42 5.50 2.50 6.25

2 0.29 0.25 2.45 3.33 3.54 2.55

3 0.54 0.25 3.08 2.75 5.71 1.50

4 0.46 0.20 2.16 2.05 5.16 2.60

5 0.33 0.10 2.66 1.10 2.50 0.20

6 0.38 0.25 1.14 2.10 2.50 1.70

7 0.46 0.30 1.75 2.95 5.17 0.90

8 0.33 0.35 2.51 5.25 4.46 3.15

9 0.46 0.25 2.62 2.70 6.75 1.50

10 0.38 0.40 3.33 4.55 2.08 1.25

Mean 0.399 0.305 2.54 3.17 4.037 2.160

the PT algorithm, but this difference was not statistically significant (0.40 .∼ 0.30;
F(1, 42) = 3.02, p = 0.09). The success rates in each matrix during the 10 rounds are
shown in Table 3. Although it appears that human attackers exploited the machines
more successfully in the WSE than the PT condition (except matrix 1), in most of
the matrices the difference between WSE and PT was not significant. In matrix
1, human attackers experience an option with 100% chances of success in the
PT condition. Thus, the success rate was higher in PT compared to WSE only in
matrix 1.

The attacker’s utility for each condition is shown in Table 3. For each successful
exploit, the attacker gained points in accordance to Table 1. We observe that the
attackers gained slightly more points in the PT masking algorithm compared to WSE
algorithm. However, the statistical test revealed no significant difference between
the masking conditions, (2.54 .∼ 3.17; F(1, 42) = 1.83, p.=0.18). None of the
differences within each matrix was significant (.p >0.05). We also compared the
average attacker’s utility with the best option utility. The attacker’s gained less
points in both WSE and PT algorithms compared to the best option utility. The
matrix-wise analysis in Table 3 shows that human attackers consistently earned
fewer points when WSE algorithm was deployed.

5.4.2 Defender’s Losses

The losses for each of the two defense algorithms against humans are shown in
Table 3. For each successful exploit, the attacker gained points and the defender
lost points in accordance with Table 1. We find that the WSE defender lost more
points compared to PT masking algorithm. The statistical test revealed a significant
difference between the masking conditions (4.03 .> 2.16; F(1, 42) = 10.40,
p.<0.002). We also found that there is a significant differences between matrices
(F(9, 378) = 2.23, p.=0.02) and interaction between conditions and matrices, (F(9,

38 P. Aggarwal et al.

378) = 3.19, p.<0.001). The average defender’s losses per defense strategy (.�
matrix) are shown in Table 3. The defender’s losses were higher for WSE algorithm
compared to the PT algorithm for all matrices except in matrix 1.

6 Summary

In the cybersecurity domain, it is difficult to gain an understanding of the attacker’s
decision-making due to the lack of such decision data. Defense algorithms often
rely on the assumption that attackers are rational decision makers and often take
the best course of action. Using human experiments, [1] provided insights that
human attackers have risk-aversion bias while making cyberattack decisions. In this
paper, we present Risk-based Cyber Camouflage Games (RCCG) to capture the
crucial uncertainty in the attack success. First, for rational attackers, we show NP-
hardness of equilibrium computation, a pseudo-polynomial time algorithm for the
special unconstrained setting, and an MILP formulation for the general constrained
problem. Furthermore, to tackle attackers with risk-averseness, we propose a
Prospect theory-based approach (PT) that estimates the attacker’s behavior from
human data in random masking strategy and generate optimal masking scenarios.

Our numerical results show that PT shows a significant improvement for
homogeneous populations and for a high-risk aversion compared to WSE.

To validate the numerical findings, we conducted an experiment with human
attackers. We tested the effectiveness of PT and WSE algorithms against human
attackers. The PT strategy was calibrated using human attacker’s data collected in
an experiment in which humans were pitted against random strategies. This data
set helped estimate the risk-averse parameter, .λ = 0.75, for the PT strategy. The
results of the comparison between WSE and PT strategies showed that the strategies
were not different with respect to the attackers success, but they were different
with respect to the defender loss. The PT strategy resulted in lower defender losses
compared to WSE. These results against human attackers are in agreement with the
numerical findings in Thakoor et al. [39] which evaluated these strategies against
simulated risk-averse attacker populations. In other words, these results support
the idea that game theoretic and ML methods that account for human bounded
rationality can produce better defense strategies than methods that assume full
rationality, both in theory and in practice, against human attackers.

Through human experimentation, [1] provided insights about human’s risk-
aversion bias and [39] developed a masking algorithm to exploit such behavior in
attacker’s decisions. To accurately represent the risk-aversion, we collected human
data with a random masking strategy and adapted the PT model to the risk-aversion
parameter. This research validates the numerical findings of Thakoor et al. [39]’s
masking algorithm in a human experiment.

Although the algorithm and the experiments in this paper have been conducted
for a limited number of nodes and simple network structures, the masking algo-
rithms are capable of including network constraints that apply in other realistic

Human-Subject Experiments on Risk-Based Cyber Camouflage Games 39

settings. Through experiments, we developed an understanding of how human
attackers make decisions. Attackers are not rational; instead they act according to
decision biases including certainty and risk-aversion. Human attackers shift from
the expected optimal actions that some defense algorithms assume; they make
suboptimal decisions. When defense algorithms are designed to exploit such biases
in attacker decision-making, they could reduce the overall losses incurred from
cyberattacks.

Acknowledgments This work is sponsored by the Army Research Office (grant W911NF-17-1-
0370).

References

1. Aggarwal, P., Thakoor, O., Mate, A., Tambe, M., Cranford, E.A., Lebiere, C., Gonzalez, C.:
An exploratory study of a masking strategy of cyberdeception using CyberVAN. In: HFES
(2020)

2. Aggarwal, P., Thakoor, O., Jabbari, S., Cranford, E.A., Lebiere, C., Tambe, M., Gonzalez, C.:
Designing effective masking strategies for cyberdefense through human experimentation and
cognitive models. Comput. Secur. 117, 102671 (2022)

3. Alpcan, T., Başar, T.: Network Security: A Decision and Game-Theoretic Approach (2010)
4. Ben-Asher, N., Gonzalez, C.: Effects of cyber security knowledge on attack detection. Comput.

Human Behav. 48, 51–61 (2015)
5. Berrueta, D.: A Practical Approach for Defeating Nmap OS-Fingerprinting (2003)
6. Breton, M., Alj, A., Haurie, A.: Sequential Stackelberg equilibria in two-person games. J.

Optim. Theory Appl. (1988)
7. Chadha, R., Bowen, T., Chiang, C.J., Gottlieb, Y.M., Poylisher, A., Sapello, A., Serban,

C., Sugrim, S., Walther, G., Marvel, L.M., Newcomb, E.A., Santos, J.: CyberVAN: A
cyber security virtual assured network testbed. In: MILCOM 2016 - 2016 IEEE Military
Communications Conference, Nov 2016. https://doi.org/10.1109/MILCOM.2016.7795481

8. Chadha, R., Bowen, T., Chiang, C.-Y.J., Gottlieb, Y.M., Poylisher, A., Sapello, A., Serban, C.,
Sugrim, S., Walther, G., Marvel, L.M., et al.: CyberVAN: A cyber security virtual assured
network testbed. In: MILCOM 2016-2016 IEEE Military Communications Conference,
pp. 1125–1130. IEEE (2016)

9. Cooney, S., Wang, K., Bondi, E., Nguyen, T., Vayanos, P., et al.: Learning to signal in the
goldilocks zone: Improving adversary compliance in security games. In: ECML/PKDD (2019)

10. De Gaspari, F., Jajodia, S., Mancini, L.V., Panico, A.: Ahead: A new architecture for active
defense. In: SafeConfig (2016)

11. Ferguson-Walter, K., LaFon, D., Shade, T.: Friend or faux: Deception for cyber defense. J. Inf.
Warfare (2017)

12. Gigerenzer, G., Todd, P.M.: Simple Heuristics That Make Us Smart. Oxford University Press,
USA (1999)

13. Goel, V., Perlroth, N.: Yahoo Says 1 Billion User Accounts Were Hacked, December 2016.
https://www.nytimes.com/2016/12/14/technology/yahoo-hack.html

14. Guo, Q., Gan, J., Fang, F., Tran-Thanh, L., Tambe, M., An, B.: On the inducibility of
Stackelberg equilibrium for security games. CoRR, abs/1811.03823 (2018)

15. Gutzmer, I.: Equifax Announces Cybersecurity Incident Involving Consumer Information
(2017). https://investor.equifax.com/news-and-events/news/2017/09-07-2017-213000628

16. Jiang, A.X., Chan, H., Leyton-Brown, K.: Resource graph games: A compact representation
for games with structured strategy spaces. In: AAAI (2017)

https://doi.org/10.1109/MILCOM.2016.7795481
https://doi.org/10.1109/MILCOM.2016.7795481
https://doi.org/10.1109/MILCOM.2016.7795481
https://doi.org/10.1109/MILCOM.2016.7795481
https://doi.org/10.1109/MILCOM.2016.7795481
https://doi.org/10.1109/MILCOM.2016.7795481
https://doi.org/10.1109/MILCOM.2016.7795481
https://doi.org/10.1109/MILCOM.2016.7795481
https://www.nytimes.com/2016/12/14/technology/yahoo-hack.html
https://www.nytimes.com/2016/12/14/technology/yahoo-hack.html
https://www.nytimes.com/2016/12/14/technology/yahoo-hack.html
https://www.nytimes.com/2016/12/14/technology/yahoo-hack.html
https://www.nytimes.com/2016/12/14/technology/yahoo-hack.html
https://www.nytimes.com/2016/12/14/technology/yahoo-hack.html
https://www.nytimes.com/2016/12/14/technology/yahoo-hack.html
https://www.nytimes.com/2016/12/14/technology/yahoo-hack.html
https://www.nytimes.com/2016/12/14/technology/yahoo-hack.html
https://www.nytimes.com/2016/12/14/technology/yahoo-hack.html
https://www.nytimes.com/2016/12/14/technology/yahoo-hack.html
https://investor.equifax.com/news-and-events/news/2017/09-07-2017-213000628
https://investor.equifax.com/news-and-events/news/2017/09-07-2017-213000628
https://investor.equifax.com/news-and-events/news/2017/09-07-2017-213000628
https://investor.equifax.com/news-and-events/news/2017/09-07-2017-213000628
https://investor.equifax.com/news-and-events/news/2017/09-07-2017-213000628
https://investor.equifax.com/news-and-events/news/2017/09-07-2017-213000628
https://investor.equifax.com/news-and-events/news/2017/09-07-2017-213000628
https://investor.equifax.com/news-and-events/news/2017/09-07-2017-213000628
https://investor.equifax.com/news-and-events/news/2017/09-07-2017-213000628
https://investor.equifax.com/news-and-events/news/2017/09-07-2017-213000628
https://investor.equifax.com/news-and-events/news/2017/09-07-2017-213000628
https://investor.equifax.com/news-and-events/news/2017/09-07-2017-213000628
https://investor.equifax.com/news-and-events/news/2017/09-07-2017-213000628

40 P. Aggarwal et al.

17. Joyce, R.: Disrupting Nation State Hackers. USENIX Association, San Francisco, CA (2016)
18. Kahneman, D.: A perspective on judgment and choice: mapping bounded rationality. American

Psychologist 58(9), 697 (2003)
19. Kiekintveld, C., Marecki, J., Tambe, M.: Approximation methods for infinite Bayesian

Stackelberg games: Modeling distributional payoff uncertainty. In: AAMAS (2011)
20. Kiekintveld, C., Islam, T., Kreinovich, V.: Security games with interval uncertainty. In:

AAMAS (2013)
21. Laszka, A., Vorobeychik, Y., Koutsoukos, X.D.: Optimal personalized filtering against spear-

phishing attacks. In: AAAI (2015)
22. Mandiant: Apt1: Exposing one of China’s cyber espionage units (2013)
23. McKelvey, R., Palfrey, T.: Quantal response equilibria for normal form games. Games Econ.

Behav. 10(1), 6–38 (1995)
24. Nguyen, T.H., Yadav, A., An, B., Tambe, M., Boutilier, C.: Regret-based optimization and

preference elicitation for Stackelberg security games with uncertainty. In: AAAI (2014)
25. Peterson, A.: OPM says 5.6 million fingerprints stolen in cyberattack, five times as many as

previously thought, September 2015. https://www.washingtonpost.com/news/the-switch/wp/
2015/09/23/opm-now-says-more-than-five-million-fingerprints-compromised-in-breaches

26. Pita, J., John, R., Maheswaran, R., Tambe, M., Kraus, S.: A robust approach to addressing
human adversaries in security games. In: ECAI, pp. 660–665 (2012a)

27. Pita, J., John, R., Maheswaran, R., Tambe, M., Yang, R., Kraus, S.: A robust approach to
addressing human adversaries in security games. In: AAMAS, pp. 1297–1298 (2012b)

28. Provos, N.: Honeyd-a virtual honeypot daemon. In: 10th DFN-CERT Workshop, Hamburg,
Germany, vol. 2, p. 4 (2003)

29. Qian, Y., Haskell, W., Tambe, M.: Robust strategy against unknown risk-averse attackers in
security games. In: AAMAS (2015)

30. Rahman, M., Manshaei, M., Al-Shaer, E.: A game-theoretic approach for deceiving remote
operating system fingerprinting. In: CNS, pp. 73–81 (2013)

31. Schlenker, A., Xu, H., Guirguis, M., Kiekintveld, C., Sinha, A., Tambe, M., Sonya, S.,
Balderas, D., Dunstatter, N.: Don‘t bury your head in warnings: A game-theoretic approach
for intelligent allocation of cyber-security alerts (2017)

32. Schlenker, A., Thakoor, O., Xu, H., Fang, F., Tambe, M., Tran-Thanh, L., Vayanos, P.,
Vorobeychik, Y.: Deceiving cyber adversaries: A game theoretic approach. In: AAMAS (2018)

33. Serra, E., Jajodia, S., Pugliese, A., Rullo, A., Subrahmanian, V.S.: Pareto-optimal adversarial
defense of enterprise systems. ACM Trans. Inf. Syst. Secur. (TISSEC) 17(3), 11 (2015)

34. Simon, H.A.: Rational choice and the structure of the environment. Psychological Review
63(2), 129 (1956)

35. Sinha, A., Malo, P., Deb, K.: A review on bilevel optimization: From classical to evolutionary
approaches and applications. IEEE Trans. Evol. Comput. 22(2), 276–295 (2018)

36. Tambe, M.: Security and Game Theory: Algorithms, Deployed Systems, Lessons Learned
(2011)

37. Thakoor, O., Tambe, M., Vayanos, P., Xu, H., Kiekintveld, C., Fang, F.: Cyber camouflage
games for strategic deception. In: GameSec (2019)

38. Thakoor, O., Jabbari, S., Aggarwal, P., Gonzalez, C., Tambe, M., Vayanos, P.: Exploiting
bounded rationality in risk-based cyber camouflage games. In: GameSec (2020a).

39. Thakoor, O., Jabbari, S., Aggarwal, P., Cleotilde, G., Tambe, M., Vayanos, P.: Exploiting
bounded rationality in risk-based cyber camouflage games. In: International Conference on
Decision and Game Theory for Security (2020b)

40. Thinkst: Canary (2015). https://canary.tools/
41. Tversky, A., Kahneman, D.: Prospect theory: An analysis of decision under risk. Econometrica

47(2), 263–291 (1979)
42. von Stengel, B., Zamir, S.: Leadership with commitment to mixed strategies. Technical report,

2004
43. Yang, R., Kiekintveld, C., Ordonez, F., Tambe, M., John, R.: Improving resource allocation

strategy against human adversaries in security games. In: ICJAI (2011)

https://www.washingtonpost.com/news/the-switch/wp/2015/09/23/opm-now-says-more-than-five-million-fingerprints-compromised-in-breaches
https://www.washingtonpost.com/news/the-switch/wp/2015/09/23/opm-now-says-more-than-five-million-fingerprints-compromised-in-breaches
https://www.washingtonpost.com/news/the-switch/wp/2015/09/23/opm-now-says-more-than-five-million-fingerprints-compromised-in-breaches
https://www.washingtonpost.com/news/the-switch/wp/2015/09/23/opm-now-says-more-than-five-million-fingerprints-compromised-in-breaches
https://www.washingtonpost.com/news/the-switch/wp/2015/09/23/opm-now-says-more-than-five-million-fingerprints-compromised-in-breaches
https://www.washingtonpost.com/news/the-switch/wp/2015/09/23/opm-now-says-more-than-five-million-fingerprints-compromised-in-breaches
https://www.washingtonpost.com/news/the-switch/wp/2015/09/23/opm-now-says-more-than-five-million-fingerprints-compromised-in-breaches
https://www.washingtonpost.com/news/the-switch/wp/2015/09/23/opm-now-says-more-than-five-million-fingerprints-compromised-in-breaches
https://www.washingtonpost.com/news/the-switch/wp/2015/09/23/opm-now-says-more-than-five-million-fingerprints-compromised-in-breaches
https://www.washingtonpost.com/news/the-switch/wp/2015/09/23/opm-now-says-more-than-five-million-fingerprints-compromised-in-breaches
https://www.washingtonpost.com/news/the-switch/wp/2015/09/23/opm-now-says-more-than-five-million-fingerprints-compromised-in-breaches
https://www.washingtonpost.com/news/the-switch/wp/2015/09/23/opm-now-says-more-than-five-million-fingerprints-compromised-in-breaches
https://www.washingtonpost.com/news/the-switch/wp/2015/09/23/opm-now-says-more-than-five-million-fingerprints-compromised-in-breaches
https://www.washingtonpost.com/news/the-switch/wp/2015/09/23/opm-now-says-more-than-five-million-fingerprints-compromised-in-breaches
https://www.washingtonpost.com/news/the-switch/wp/2015/09/23/opm-now-says-more-than-five-million-fingerprints-compromised-in-breaches
https://www.washingtonpost.com/news/the-switch/wp/2015/09/23/opm-now-says-more-than-five-million-fingerprints-compromised-in-breaches
https://www.washingtonpost.com/news/the-switch/wp/2015/09/23/opm-now-says-more-than-five-million-fingerprints-compromised-in-breaches
https://www.washingtonpost.com/news/the-switch/wp/2015/09/23/opm-now-says-more-than-five-million-fingerprints-compromised-in-breaches
https://www.washingtonpost.com/news/the-switch/wp/2015/09/23/opm-now-says-more-than-five-million-fingerprints-compromised-in-breaches
https://www.washingtonpost.com/news/the-switch/wp/2015/09/23/opm-now-says-more-than-five-million-fingerprints-compromised-in-breaches
https://www.washingtonpost.com/news/the-switch/wp/2015/09/23/opm-now-says-more-than-five-million-fingerprints-compromised-in-breaches
https://www.washingtonpost.com/news/the-switch/wp/2015/09/23/opm-now-says-more-than-five-million-fingerprints-compromised-in-breaches
https://canary.tools/
https://canary.tools/
https://canary.tools/

Adaptive Cyberdefense with Deception:
A Human–AI Cognitive Approach

Cleotilde Gonzalez, Palvi Aggarwal, Edward A. Cranford,
and Christian Lebiere

1 Introduction

The decision making process of cyber defenders who protect information networks
is highly specialized and complex. Cyber defenders (i.e., analysts) constantly
monitor the network for possible intrusions. The existence of multiple sensors
results in a large amount of diverse network activity data, which is used in making
critical decisions such as stopping potentially malicious processes and restoring
systems to a secure state. Cyber security tools, such as intrusion detection systems
(IDS) and Machine Learning (ML) techniques, support traffic monitoring, filter
out data, and organize large amounts of network events by preprocessing and
classifying data, reducing the information workload of the human analyst. However,
multiple limitations in the current technologies for cyber defense remain, including
that most current defense technologies are static, they generate a large number
of false positives, they do not adapt according to the status of the network, they
do not consider predictions of potential actions of attackers and regular users
of the network, and ultimately they do not support the work of human analysts
appropriately [24].

Our research program spearheaded the idea of generating dynamic, adaptive, and
personalized cyber defense capabilities using deception. Our research has made it
clear that current defense algorithms based on game theory and ML techniques are
effective in theory, but often ineffective when paired against actual human attack

C. Gonzalez (�) · E. A. Cranford · C. Lebiere
Carnegie Mellon University, Pittsburgh, PA, USA
e-mail: coty@cmu.edu; cranford@cmu.edu; cl@cmu.edu

P. Aggarwal
University of Texas, El Paso, TX, USA
e-mail: paggarwal@utep.edu

© This is a U.S. government work and not under copyright protection in the U.S.;
foreign copyright protection may apply 2023
T. Bao et al. (eds.), Cyber Deception, Advances in Information Security 89,
https://doi.org/10.1007/978-3-031-16613-6_3

41

https://avxhm.se/blogs/hill0

 31368 2385 a 31368 2385 a

 885 51863 a 885 51863 a

coty@cmu.edu
coty@cmu.edu

 7083 51863 a 7083 51863
a

cranford@cmu.edu
cranford@cmu.edu

 14847 51863 a 14847 51863 a

cl@cmu.edu
cl@cmu.edu

 885 55738 a 885 55738
a

paggarwal@utep.edu
paggarwal@utep.edu
https://doi.org/10.1007/978-3-031-16613-6_3
https://doi.org/10.1007/978-3-031-16613-6_3
https://doi.org/10.1007/978-3-031-16613-6_3
https://doi.org/10.1007/978-3-031-16613-6_3
https://doi.org/10.1007/978-3-031-16613-6_3
https://doi.org/10.1007/978-3-031-16613-6_3
https://doi.org/10.1007/978-3-031-16613-6_3
https://doi.org/10.1007/978-3-031-16613-6_3
https://doi.org/10.1007/978-3-031-16613-6_3
https://doi.org/10.1007/978-3-031-16613-6_3
https://doi.org/10.1007/978-3-031-16613-6_3

42 C. Gonzalez et al.

actions [2]. This is largely due to the assumptions that these algorithms make
regarding human rationality and their lack of capabilities for real-time adaptation to
human actions [2, 6]. In this research program, it has become clear that to properly
design adaptive cyber defense strategies, one needs quantitative, robust models of
human cognitive decision making that have been validated in the context of cyber
defense [24]. Furthermore, the design and study of deceptive defense strategies (e.g.,
decoying, signaling, masking) is essential to this program. Deceptive techniques
play a key role for the defender to learn about the adversaries and to impair the
attacker’s strategies and the trust they may have in their own tools and sensors. In
this research program, we created a framework in which ML and game theoretic
models can be informed by cognitive models of attackers and users, and we have
tested its potential effectiveness in a variety of platforms from abstract to naturalistic
cyber deception settings [25].

This chapter will summarize the current state of this research program. We
will also outline the next steps required to achieve a complete long-term vision of
dynamic, adaptive, and personalized levels of autonomy for Human–AI teaming in
cyber defense.

2 A Research Framework and Summary of New Insights for
Adaptive Cyber Defense

Our research program over the past years has addressed a number of challenges and
advanced the concept of cyber defense towards adaptive and personalized deception
strategies. A research framework was first discussed in [25] including potential
deception strategies, defense algorithms, testbeds, and cognitive models used in
developing and testing personalized defenses. This initial research framework has
evolved in the past years with additional research on the benefits and effectiveness
of other deception strategies, our demonstration of this approach in complex and
naturalistic testbeds, and our consideration of end-users who are often the initial
target of cyberattacks through phishing.

Figure 1 presents an updated view of our research framework. The research
framework is composed of 5 steps: (1) Generate a defense strategy; (2) Deploy the
defense strategy in a testbed; (3) Collect human decisions through experimentation
(i.e., attacker and/or end-user); (4) Generate cognitive modeling data through
simulation of human decision processes (i.e., “cognitive clone”); and (5) Use the
beliefs and data generated from cognitive clones to improve defense strategies. Each
of these steps is explained below, including a summary of the current state of our
research.

Adaptive Cyberdefense with Deception: A Human–AI Cognitive Approach 43

Fig. 1 Current research framework for cyber defense with deception

2.1 Generate a Defense Strategy

Defense strategies involve the selection of deception techniques (e.g., signaling,
decoying, and masking) and algorithms for the distribution of defense resources
(e.g., Strong Stackelberg Equilibrium with Persuasion, peSSE, and ML algorithms
including Decision Tree, and Epsilon Rationality).

2.1.1 Deception Techniques

The literature regarding deception in cybersecurity proposes a taxonomy of decep-
tion techniques that correspond to the game-theoretic notions of private information,
actors, actions, and duration [28]. The authors use these game-theoretic notions to
describe a set of 6 techniques of deception: perturbation, moving target defense,
masking, mixing, decoying, and signaling.

Perturbation refers to the application of noise in the information provided
regarding machine capabilities (e.g., operating system, ports, and services). Moving
target defense refers to the idea of changing attack surfaces and creating random
configurations; for example, by using probabilistic strategies. Masking refers to
hiding valuable information using attributes or adding noise; for example, deceptive
routing of traffic. Mixing relates to a technique of hiding valuable information in an
attempt to make the entry and exit nodes unlinkable; for example, masking informa-
tion of real servers or honeypots. Decoying refers to using “fake” machines such as
honeypots, honeynets, honeybots, etc. Finally, signaling refers to the strategic use
of information to bias human actions without changing the underlying structure of

https://avxhm.se/blogs/hill0

44 C. Gonzalez et al.

the network. In our research, we have used three techniques of deception: Signaling,
decoying, and masking.

Signaling Strategy Signaling theory addresses a fundamental problem in the
communication between a sender (the signaler) and a receiver: whether the sender’s
message is conveying the truth or manipulating the information to her benefit [21].
Signaling has been used in Stackelberg Security Games (SSGs) in a way that makes
it incentive-compatible for a sender to transmit a message that partially reveals her
private information, since the receiver cannot know the underlying information with
certainty [28].

In the context of cybersecurity, attackers may gather information from scanning
nodes in the network (i.e., “pull information”); but also, defenders may strategically
use signals to provide deceptive information to the attacker (i.e., “push informa-
tion”). The goal is to prevent attackers from attacking and lead them to reveal their
intentions and identity. We have investigated signaling strategies in SSGs, where
these strategies essentially identify a proportion of times in which a deceptive signal
could be sent from the defender to the attacker (e.g., how often to say that an
unprotected node is protected or say that a protected node is unprotected). Research
regarding signaling is a promising area of research in SSGs [12, 35].

Deceptive warning messages or explicit information such as network structure,
number of nodes in the network, operating systems, ports, services, network traffic,
round trip time information, and unpatched vulnerabilities in the network could
all be used by the defender to deceive the attacker. In our research, we have
considered three relevant dimensions for the investigation of signaling in SSGs:
(1) The frequency of deceptive signals, (2) the level of information revealed to the
attacker, and (3) the type of signal and content of the signal.

The frequency of deceptive signals is a common theme of current research
in SSGs. However, current algorithms optimizing the signal frequency are less
successful than expected [12, 35]. The reason is that humans are not rational,
they learn from their experience, and they adapt accordingly. For example, if the
defender deceives too frequently, the attacker will have a chance to learn this
tendency, leading the defense strategy astray. Generally, any non-adaptive algorithm
of defense will tend to be ineffective against human attackers, and SSG researchers
believe that there is a Goldilocks Zone, an optimal level of deception that could be
more effective to improve the attacker’s compliance in cybersecurity games [13].

Our current work on signaling strategies for deception is largely summarized
in a companion chapter in this volume. A major conclusion from that work is the
key role that cognitive models of attackers’ behavior have played in informing the
development of adaptive and personalized signaling algorithms in Cyberdefense
[15, 18]. We elaborate on these adaptive and personalized signaling algorithms in
the companion chapter and in the sections below.

Masking Strategy Masking has been used to hide facts about reality (e.g., a
defender can mask vulnerabilities to showcase that the computer is secure). For
example, before implementing the real defense, a defender could mask the Server
Message Block service version to showcase it is a patched and secure network.

Adaptive Cyberdefense with Deception: A Human–AI Cognitive Approach 45

Defenders also use mimicking software and services to imitate the ground truth
[30]. The intention is to manipulate the features of a system to make it appear more
or less valuable to the attacker, and to increase the attacker’s time spent in planning
and compromising the network. Masking is done during reconnaissance, which is
the first step in the cyber kill chain cycle (i.e., involving reconnaissance, lateral
movement, and exploitation). During reconnaissance, attackers gather information
about a target using different scanning tools (e.g., Nmap, Nessus, Nikto, etc.) to
learn about the network infrastructure, services, and vulnerabilities. These scanning
tools provide information such as the number of systems and their connections,
operating systems, and ports and services in the network.

The major research challenge is to determine how to accomplish masking to
minimize the expected losses from an attack. Past research used game-theoretic
solutions to design efficient masking algorithms [30]. Specifically, the authors
developed a zero-sum SSG intended to design an optimal association of systems’
true configurations with the observed configurations that minimize the utility of
the adversary. This masking strategy is designed to optimize how the network will
deceptively respond to the adversary’s actions during reconnaissance. The optimal
strategy was tested against synthetic “powerful" (i.e., who are fully aware of how
the defender masks the information during reconnaissance) and naive adversaries
(i.e., an adversary with a fixed set of preferences over the observed information).

In our work, we have investigated the effect of masking during the network
reconnaissance phase [2, 34]. Specifically, we have evaluated “optimal” masking
strategies against human adversaries and compared human performance in the
optimal strategy against a random masking strategy [2, 6]. We observe that, contrary
to what is observed in simulation studies with optimal making algorithms, in
experimental studies with human attackers, the optimal masking algorithms were
unsuccessful and similar to random masking strategies. Our analyses suggest that
this is due to a general effect of risk aversion in humans. Human attackers often try
to attack machines where the probability of success is high, even when the potential
reward is low.

In our most recent work [6], we relaxed the assumption of rationality of the
attackers made by Game Theory/Machine Learning defense algorithms, and we
provide a cognitive model of human attackers that can inform these defense
algorithms (more of this will be discussed below). We generated two masking
strategies of defense, risk averse and rational, and the effectiveness of these two
masking strategies were compared in an experiment with human attackers. The
results indicate that the risk-averse strategy, which accounts for human bounded
rationality, can reduce the defense losses compared to the rational masking strategy.

Decoy Strategy A decoy tactic is another popular concept used by defenders to
identify attackers and gather information about their techniques [7]. Honeypots,
honeynets, and honeytokens are classic examples of decoy deception. In our
research, we have used decoys in abstract games to evaluate models of defense
[5, 26]. Specifically, we investigate the effectiveness of various algorithms for
defensive cyber deception in an adversarial decision making task using human

https://avxhm.se/blogs/hill0

46 C. Gonzalez et al.

experiments. A combinatorial Multi-Armed Bandit task represents an abstract
version of a realistic problem in cybersecurity: allocating limited resources for
defense in a way that an adversary can be most successfully deceived to attack
“fake” nodes (i.e., honeypots) instead of real ones. We proposed six algorithms
with different degrees of determinism, adaptivity, and customization to the human
adversary’s actions and tested those algorithms in six separate behavioral studies.
We found that humans learned and took advantage of defense algorithms that are
deterministic, non-adaptive, and not customized. At the same time, not all dynamic
algorithms were effective, but our results suggested that adaptivity is an important
feature of defense algorithms.

In recent work, we have investigated the design of honeypots. Specifically, the
effectiveness of honeypots depends on their configuration, which would influence
whether attackers perceive honeypots as “real" machines or not. We investigated the
design of honeypots and real machines used in a simulated network and manipulated
the features of the machines to test the effectiveness of the decoying strategies
against humans attackers. We found that any type of deception (on honeypots and
on honeypots and real machines) is better than no deception at all, and our study
provides defenders with information on how to manipulate the observable features
of honeypots and real machines to create more uncertainty for attackers and improve
Cyberdefense [3].

2.1.2 Game Theory and Machine Learning Algorithms for Allocation of
Defense Resources

Our collaborators (see Chaps. 1 and 2 in this volume) have developed innovative
combinations of SSG algorithms for the distribution of limited defense resources
and optimization methods from game theory, signaling theory, and ML. We have
used their algorithms in combination with the deception strategies explained above
in human-in-the-loop experiments. We contributed to this line of SSG research by
(1) providing insights from human experiments regarding human trust to signals
that are deceptive and truthful and (2) creating cognitive models that represent the
decisions made by would-be human attackers that can inform the algorithms for the
allocation of defense resources. The results from our experiments have informed
the ML and game theory algorithms to make them more effective against human
attackers [34].

Table 1 summarizes the algorithms that we have used in experimental settings,
particularly in the insider attack game (see next section). The Insider Attack
Game (IAG) was deployed under various experimental conditions to assess the
effectiveness of deceptive signals on the decision making of attackers. The table
highlights the high-level feature differences between the defense algorithms. The
level of signaling was varied at three levels: no signal, signal uncovered nodes
(1-sided signaling), and signals on both covered and uncovered nodes (2-sided
signaling). Our research approach also considers the attacker type, i.e., signaling
algorithms for both rational attacks and boundedly rational attackers. Finally, the

Adaptive Cyberdefense with Deception: A Human–AI Cognitive Approach 47

Table 1 Signaling algorithms used in experiments with the Insider Attack Game (IAG)

Deception Algorithm Signal on Attacker type Adaptive

No signal peSSE None Rational Non-adaptive

No signal Epsilon rationality None Rational Non-adaptive

1-sided peSSE Uncovered nodes Rational Non-adaptive

1-sided peSSE-FI Uncovered nodes Rational Non-adaptive

1-sided Epsilon rationality Uncovered nodes Rational Non-adaptive

1-sided Decision Tree Uncovered nodes Boundedly rational Adaptive

1-sided Cognitive Signaling Uncovered Boundedly rational Personalized

2-sided peSSE Both Rational Non-adaptive

2-sided Decision tree Both Boundedly rational Adaptive

2-sided Neural network Both Boundedly rational Adaptive

2-sided Epsilon rationality Both Rational Non-adaptive

algorithms vary between different levels of adaptability: non-adaptive, i.e., the
signaling algorithm does not consider the past actions of the attacker, adaptive, i.e.,
learn the distribution of the attacker’s actions and personalized, i.e., adapt the signal
based on the individual attacker. Below is a brief summary of these algorithms.
Expanded explanations and results from experimental work with humans against
each of these algorithms are summarized in a companion chapter of this volume
(Aggarwal et al.).

No-signaling Algorithm is a baseline condition where no signal is used. A
signal is never presented to the attacker, regardless of whether a defender is
present or absent (i.e., no deception was used). The No-signaling algorithm uses
Stackelberg Security Games and calculates Strong Stackelberg Equilibrium (SSE)
[35] to allocate defenders in the network.

1-sided Deception uses the Strong Stackelberg Equilibrium with Persuasion
(peSSE) algorithm [35]. This algorithm improves defense against a perfectly
rational attackers compared to strategies that do not use signaling. For a given target,
the peSSE finds the optimal combination of bluffing (sending a deceptive message
that the target is monitored when it is not) and truth-telling (sending a truthful
message that the target is covered) so that a rational attacker would not attack in
the presence of a signal. The peSSE algorithm exploits the information asymmetry
between defender and attacker. Defenders have more and accurate information
about the network whereas attackers could only observe the mixed strategy. Xu
et al. [35] exploited this asymmetry by strategically injecting information to
attackers via signaling. In this technique, defender (sender) strategically reveals
information about their strategy to the attacker (receiver) to influence the attacker’s
decision making. The peSSE signaling scheme presents signals with probabilities
calculated according to the peSSE algorithm, as described above. The peSSE-FI
(Full-Information) signaling scheme extends the assumption of perfect rationality
by ensuring that attackers have full knowledge of the probabilities of deception
available to them, in addition to monitoring probabilities. In another version of

https://avxhm.se/blogs/hill0

48 C. Gonzalez et al.

peSSE, Epsilon Rationality defenders consider an epsilon rational model for
resource allocation. All the algorithms mentioned above are non-adaptive, as they
do not consider the actions of the attacker for generating signals. A Decision Tree
algorithm predicts the attacker’s actions to generate signals. In the 1-sided version
of this algorithm, the decision tree is considered adaptive, given the algorithm relies
on attack prediction for generating defense.

2-sided Deception was first introduced by Cooney et al. [13]. They extended the
peSSE by considering deceptive signals on both covered as well as on uncovered
nodes. Cooney et al. [13] developed 2-way peSSE algorithm which lowers the
overall frequency of showing a signal and introduces uncertainty for the rational
attacker when no signal is shown. Cooney et al. [13] also focused on increasing
the compliance of boundedly rational attackers by manipulating the frequency of
signals. Two additional ML models, decision tree (DT) and a neural network
(NN), were used for identifying the Goldilocks zone and generating signals against
a boundedly rational attacker.

A Cognitive Signaling algorithm is different type of algorithm from the other
algorithms in this list. This was developed by Cranford et al. [18] using the attacker’s
“cognitive clone” in the insider attack game. As we will explain later, a cognitive
clone is a cognitive model that aims at emulating the decisions a human makes in a
task. This model generates human attack predictions and these predictions are used
to modify the signaling strategy dynamically and in a personalized way (i.e., based
on the particular actions of an individual attacker) [18, 19].

2.2 Deploy Defense Strategies in Testbeds that Vary in Realism
and Complexity

One of the strengths of our research program is that we have been able to
demonstrate our approach to cyber deception in a large variety of testbeds and
interactive security games, where we have experimented with several deception
techniques. Figure 2 classifies the testbeds and games we have used into two
dimensions: the complexity of the task and the realism of the environment.

The Box Game is an abstract, 2-stage, 2-alternative SSG. In stage 1, a defender
allocates resources to one of two boxes with 0.5 probability according to the optimal
resource allocation SSE algorithm (i.e., pure strategy) [35]. In stage 2, the defender
sends a signal to influence the attacker’s decision making to her benefit by exploiting
the fact that the attacker is unaware of the pure strategy at any given time. Using this
game, we have investigated how humans acting as “attackers” (i.e., treasure hunters)
behave under various frequencies of deceptive signals. In other words, the question
is how often should a defender send a deceptive signal to gain the most benefit?

The Honey Game is an abstract representation of a common cybersecurity
problem. A defender (i.e., the defense algorithm) assigns decoys to protect network
resources and an adversary (i.e., a human) aims to capture those resources. In this

Adaptive Cyberdefense with Deception: A Human–AI Cognitive Approach 49

Fig. 2 Cybersecurity games and testbeds used in our research program vary in two dimensions:
Complexity and realism

game, the network has 5 nodes. Each node in the network is assigned a value of the
node, a cost of attacking the node, and a cost of defending nodes. The reward of
attacking a non-honeypot appears as a positive number on the top of each node. The
cost of attacking a honeypot appears as a negative number at the bottom of the node.

At the beginning of each round, the defender spends a budget to turn some
subset of the nodes into honeypots, such that the total cost is lower than the budget.
Once the defender deploys honeypots the adversary selects a node to attack. If the
adversary’s chosen node is not a honeypot, the adversary receives the reward and the
defender receives a reward of zero. If the adversary’s chosen node was a honeypot,
the adversary receives the negative reward and the defender receives the positive
reward. However, the adversary may also decide to “pass", which is a “safe" choice,
where an adversary and the defender receive a reward of 0. Each game is composed
of a set of 50 rounds. At the end of each game, the game resets, so that at the
beginning of each game a new action from the defense algorithm is drawn (i.e.,
a combination of nodes are selected to be honeypots). The adversaries are only
informed of the rewards they receive after each action, and they do not directly
observe all selected honeypots in the defense action.

This game has been reported in studies [5, 26], where we investigate the
effectiveness of various defense algorithms, from which we have demonstrated the
importance of adaptivity in a defense algorithm: compared to other non-adaptive
algorithms, adaptivity leads to more successful defense.

The IAG is an escalation of the box game, as it increases the number of nodes
to six, and adds more contextual information to the nodes (e.g., gains and losses,
and probabilities of coverage) [14, 19]. The allocation of defense resources is more
complicated as only two out of the six nodes can be protected at a time. The attacker
has access to the abstract information about the node, i.e., the value of each node,

https://avxhm.se/blogs/hill0

50 C. Gonzalez et al.

losses if the node is protected, and the probability of each node being protected.
As an example, the IAG has been used to test the signaling strategy for deception
in a cybersecurity scenario where the participants play a role of an attacker (a
company’s employee) who tries to attack the computers to gain points. The company
has six computers and only two security defenders to monitor these computers. The
defenders could only protect two computers at a time. To secure more computers,
we use signaling to send warnings to deceive attackers [13].

In each trial, the player analyzes the information about each node and selects
a computer to attack. They may receive a signal from the defender and then
decide whether to proceed with the attack or withdraw it. The signaling algorithm
determines whether to send a truthful signal or a deceptive signal [13]. As it is
summarized in companion chapters in this volume, we have investigated the human
response to deceptive signaling based on many defense algorithms, and we have
also investigated the human sensitivity to the framing of the signal [17]. Using
cognitive models that emulate the attacker’s actions, we have developed adaptive
and personalized signaling schemes that learn about attacker’s actions and adjust
signals accordingly [18]. An adaptive signaling scheme starts by sending truthful
signals to the attacker (i.e., to gain trust), then, according to the attacker’s level
of trust, the algorithm adapts to whether the next signal should be a truthful or
deceptive by balancing the benefits of exploit trust in the signal against the costs of
rebuilding trust in the signal if it is found to be deceptive. We demonstrate how this
scheme reduces the probability of attack, although at the expense of giving up more
attacks in the first few trials [18, 19]. Most recent results on this game are reported
in the next two chapters.

Many cyberattacks start by taking advantage of end-user cognitive and social
vulnerabilities through phishing [29]. In our research program, we have also
considered this important aspect of cyber defense by experimenting and building
cognitive models of users’ decisions to classify emails as phishing or benign.

The Phishing Training Task consists of an interface in which an email is
presented and three responses are requested: an identification decision of whether
an email was phishing or not; confidence in the classification decision; and
potential responses to such an email. The task may present feedback regarding the
accuracy of the classification decision after each trial. A player in this task earns
points according to the accuracy of the classification decisions made, which are
accumulated throughout the game. The emails in this task are a set of 186 phishing
samples from a phishing email corpus (.N = 680) collected in a past study [29].
Emails were classified based on the performance with which participants detected
these as phishing emails in the study [29], as complex or simple phishing emails.
This task has been used to demonstrate ways in which email phishing detection can
be improved through training [31, 32], and to illustrate cognitive models of end-
users that emulate the accuracy of phishing detection has been created [16]. Our
current research is exploring the use of the cognitive model of the user to guide the
selection of training messages, to demonstrate the benefit of adaptive training.

The HackIT Game is a generic web-based framework for cybersecurity to
study human learning and decision making of attackers and defenders [1]. HackIT

Adaptive Cyberdefense with Deception: A Human–AI Cognitive Approach 51

includes more semantic information such as network nodes, representing the
characteristics of real nodes; deception tactics: masking, decoying; and commands,
which are used for communication with the network. The defender protects the
real nodes using deception tactics and the attacker’s goal is to identify the real
network nodes and exploit them. In HackIT, the attacker gathers information (pull
information) such as operating systems, open and closed ports, services on the
network nodes, and vulnerabilities from the network using probing action. Attackers
could communicate with the network in HackIT using tools such as Nmap and
gain information about network nodes, topologies, and configurations. However,
attackers are not aware of the strategies used by defenders and they must learn those
strategies overtime by playing multiple rounds. HackIT has the potential to simulate
many real-world dynamic situations in the laboratory: manipulating deception tactic
(e.g., decoying and masking); frequency of deceptive signals (e.g., using different
proportion of honeypots in the network or testing optimal placement of honeypots);
and manipulating the content of the signal (e.g., use different configurations of
honeypots).

HackIT has been used recently to investigate the effects of honeypots in
various network topologies and the design of the features involved in deception. In
human-in-the-loop experiments using HackIT we have studied the effectiveness of
deploying honeypots in different network topologies [4]: Layered and Star topolo-
gies, in which honeypots are randomly allocated. Results indicate that Layered
topologies result in more exploits on honeypots compared to the Star topology.

HackIT has also been used to investigate the 2-way deception strategy with
honeypots [3]. We advance past research by experimentally testing the effectiveness
of 2-way deception in a game that presents attackers with a simulated network with
confidential assets potentially stored on the machines. Participants who play the role
of attackers are provided with commands to exploit the security of the network. The
machines in the network are protected by honeypots. Our experimental conditions
present participants with traditional honeypots (i.e., Default), or honeypots that
look like real machines (i.e., 1-sided deception), or both, i.e., honeypots that
look like real machines and real machines that look like honeypots (i.e., 2-
sided deception). We find it is possible to make honeypots more effective when
we manipulate the features of the honeypot design compared to using a default
configuration of honeypots. Particularly, the higher the confusion level created by
manipulating the design of honeypot features and real nodes, the more honeypots
are attacked and the more data exfiltration is performed on honeypots. CyberVAN
is a security testbed built on top of Virtual Ad hoc Network (VAN) for cybersecurity
research [11]. CyberVAN is capable of speedy creation of high-fidelity strategic
and tactical network scenarios using virtual machines, simulated networks, physical
nodes and physical networks. These scenarios could be controlled by either GUI
or commands on a console. CyberVAN is capable of generating realistic cyber
experimentation environments which include simulated cyberattacks, cyber defense,
providing synthetic users for creating realistic network traffic, and creating human-
in-the-loop environments for validating various defense algorithms. Specifically, for
cyber deception experiments, CyberVAN can provide different deception tactics

https://avxhm.se/blogs/hill0

52 C. Gonzalez et al.

such as masking (by hiding/faking the configuration of nodes) and decoying (by
using honeypots, honeynets, honeytokens, etc.). The information manipulated for
creating deception includes network structure, number of nodes in the network,
operating system, ports, services, vulnerabilities, network round trip time, network
traffic, etc. The proportion of deception could be controlled using different defense
algorithms which could be integrated in CyberVAN. Attackers could interact with
virtual machines using various network scanning tools (e.g., Nmap) to gather
information during the probing phase.

Recently, we have used CyberVAN to test the effectiveness of masking strategies
in a realistic scenario and to help in the development of cognitive models of cyber
attackers (see below) [6]. Masking strategies for Cyberdefense (i.e., disguising
network attributes to hide the real state of the network) are predicted to be effective
in simulated experiments. However, it is unclear how effective they are against
human attackers. Two masking strategies of defense were generated using Game
Theory and Machine Learning (ML) algorithms. The effectiveness of these two
masking strategies of defense, risk averse and rational, were compared in an
experiment with human attackers. We collected attacker’s decisions against the two
masking strategies. The results indicate that the risk-averse strategy can reduce the
defense losses compared to the rational masking strategy.

2.3 Collect Human Decisions Through Experimentation and
the Construction of Cognitive Clones

Based on the descriptions above, it is clear that our research program heavily relies
on two behavioral methods: experimentation and cognitive modeling.

The studies we conduct are most commonly designed to test specific hypotheses
regarding the effectiveness of a defense algorithm or a deception technique. We
conduct these human experiments using an interactive testbed (see Fig. 2), to collect
human decisions online. The results also help inform the development of cognitive
models that emulate human behavior (i.e., attackers or end-users). Such cognitive
models (i.e., “cognitive clones”) are digital representations of human memory
holding an individual’s experience of a particular task (also called “cognitive
twins,” see [33]). Cognitive models are dynamic and adaptable computational
representations of the cognitive structures and mechanisms involved in cognitive
tasks such as processing information for decision making. Also, cognitive models
are generative, in the sense that they actually make decisions in similar ways like
humans do, rather than being purely data-driven approaches [24]. In this regard,
cognitive models differ from purely statistical approaches, such as machine learning,
that are often capable of evaluating stable, long-term sequential dependencies from
existing data but fail to account for the dynamics of human cognition and human
adaptation to novel situations (see Lebiere et al. chapter in this volume).

Adaptive Cyberdefense with Deception: A Human–AI Cognitive Approach 53

We have built cognitive clones of the attacker in many tasks, and of the end-
user in the training phishing task. All cognitive models developed in this project
specifically rely on Instance-Based Learning Theory (IBLT) [23], a theory of
decisions from experience. IBLT’s algorithm and mechanisms have been published
in multiple papers in the past [14, 15, 18, 23], thus, here we provide only a general
description.

The general IBLT process involves: (1) recognition and retrieval of past experi-
ences (i.e., instances) according to their similarity to a current decision situation;
(2) generation of the expected utility of various decision alternatives by using past
experiences; (3) choice of the option that best generalizes past experiences to new
decisions; and (4) feedback processes that update past experiences based on the
observation of decision outcomes. In IBLT, an “instance” is a memory structure
that results from the potential alternatives evaluated. These memory representations
consist of three elements: a situation (a set of attributes that give a context to
the decision); a decision (the action taken corresponding to an alternative in a
state); and a utility (expected utility or experienced outcome of the action taken
in a state). Each instance in memory has an Activation value, which represents
how readily available that information is in memory, and it is determined by its
history (especially recency and frequency), its similarity to the current situation,
and random noise [9]. Activation of an instance is used to determine the probability
of retrieval of an instance from memory as a function of its activation relative
to the activation of all instances in memory. The expected utility of a choice
option is calculated based on blending past outcomes. The blending mechanism
used in decision making models is defined by the sum of all past experienced
outcomes weighted by their probability of retrieval (e.g., [22, 27]). Reflecting the
general idea of an expected value in decision making, the blended value involves
the experienced probability of events, which is based on the activation equation.
At each time step, the IBL algorithm recognizes a situation in the environment
(based on similarity), calculates the expected utility of the option being evaluated
(through blending past experiences), determines when to stop evaluating additional
alternatives, and at that point decides to make a choice by selecting the option that
has the maximum blended value. Feedback, which might be immediate or delayed,
updates the instance(s) in memory that lead to this particular outcome in the task.
This process goes on over time, as past instances determine current decisions, which
lead to learning new instance(s).

The cognitive clones developed in this project have illustrated how humans
behave and exhibit nominally “irrational” behaviors (e.g., confirmation bias) that
reflect capacity and information limitations, and how their decisions are based on
past experience. Importantly, cognitive clones can predict individualized human
decisions at any particular point going forward in time. This characteristic of
cognitive models is important because it provides predictions of human decisions
dynamically and applicable to the particular experience of a decision maker.

The strength of our cognitive modeling approach for adaptive signaling is
explained in detail in the context of the Insider Attack Game and the Signaling
deceptive technique, in a separate chapter of this volume (Lebiere et al.). However,

https://avxhm.se/blogs/hill0

54 C. Gonzalez et al.

IBL models have also been used in the current program to generate cognitive clones
in all other tasks of this program (shown in Fig. 2), and to demonstrate other
deception techniques (decoying and masking). For example, Aggarwal et al. [6],
recently proposed an IBL cognitive model that accurately represents and predicts
the attacker’s decisions in the CyberVAN environment. The model is able to capture
the data at the aggregate and at the individual levels of attackers making decisions in
both rational and risk-averse defense algorithms. Furthermore, this model was used
to generate simulated data that represents attack decisions in CyberVAN, which was
used to inform ML defense algorithms to generate new defense strategies.

2.4 Improving the Adaptivity of Defense Strategies

An attacker interacts with a network to gather information about the network
structure, the number of nodes in the network, their configuration, protocols, and
unpatched vulnerabilities by passively or actively probing the network [8]. Active
and passive probing leaves information about attackers in the network which could
be used by defenders to learn about attackers and improve their defense based on the
attackers activities. Similarly, an end-user interacts with the network often through
handling email, which might allow an adversary access to the network.

Having created “cognitive clones” of the attacker and end-user in handling email,
we can use such cognitive models to influence the defense strategy in real-time, and
adapt the defense in a dynamic fashion. A cognitive signaling algorithm closes the
loop (see Fig. 1), by using the predictions of the cognitive clones and modifying
the defense strategy dynamically. Such an approach has been initially illustrated in
[18, 19]. However, we have not yet demonstrated how cognitive clones can influence
Machine Learning and Game Theory algorithms directly or how they can help select
appropriate defense strategies. This is the last step in our approach and the current
stage in our research project.

3 Conclusion: Towards Adaptive Human–AI Teaming for
Cyber Defense

To fully “close the loop” and be able to achieve a full level of dynamic and
adaptive autonomy, we need to advance the science of Human–AI teaming. To
advance the capabilities of cyber defense to a whole new level of effectiveness,
collaboration among AI, cognitive clones, and humans will be required. A Human–
AI team will aim at deploying the most effective defense strategies utilizing cyber
deception. Our long-term goal is to advance the analysts’ capabilities for early
detection of cyberattacks against constantly evolving adversaries, and to reduce
the defenders’ overhead by approaching defense activities in collaborative teams.
Figure 3 illustrates this vision.

Adaptive Cyberdefense with Deception: A Human–AI Cognitive Approach 55

Fig. 3 A vision of Human–AI cyberdefense teams

To develop such advanced vision of cyber defense, we will need to engage in
research involving collaborative and adversarial hybrid teams involving humans and
machines. In such future framework, we will generate cognitive clones of the human
defenders that will collaborate with the human and AI to determine the defense
strategies to deploy in real-time.

In our vision of the future of adaptive cyber defense, AI defenders will have
significantly larger computing capabilities than humans analysts. AI defenders will
rapidly obtain activity throughout the network and be able to detect and predict
the potential vulnerabilities in the network. Cognitive models will play a critical
role in working with AI defenders. Cognitive models will trace human actions
(attackers, defenders, and end-users) observed in the network in real-time and make
predictions regarding human beliefs and potential next actions. Cognitive clones of
human defenders will emerge. In the past, we have already created cognitive models
of human defenders [20], but these models will need to be significantly improved,
given the most recent research advances.

Furthermore, our framework for adaptive cyber defense will no longer be an
individualistic approach to defense. We will need to engage in research that will
help create a team of cognitive models that are informed by the human defender’s
actions, the predictions of attackers and end-users’ cognitive clones, and the ML/AI
capabilities. These Human–AI teaming capabilities will need to be significantly
advanced by considering research regarding human behavior in teams [10]. The
Human–AI Cognitive teams will determine the explicit cyber defense strategies that
the human defender can decide to deploy in the network.

Our current research program has achieved significant theoretical and empirical
progress towards developing the next generation of Human–AI teaming using
cognitive models integrated into an adaptive cyber defense framework.

https://avxhm.se/blogs/hill0

56 C. Gonzalez et al.

Acknowledgments This research was sponsored by the Army Research Office and accomplished
under grant number W911NF-17-1-0370 (MURI Cyberdeception). Some of the work discussed in
this chapter was sponsored by the Combat Capabilities Development Command Army Research
Laboratory and was accomplished under Cooperative Agreement Number W911NF-13-2-0045
(ARL Cyber Security CRA).

References

1. Aggarwal, P., Gautam, A., Agarwal, V., Gonzalez, C., Dutt, V.: HackIT: a human-in-the-
loop simulation tool for realistic cyber deception experiments. In: International Conference
on Applied Human Factors and Ergonomics, pp. 109–121. Springer (2019)

2. Aggarwal, P., Thakoor, O., Mate, A., Tambe, M., Cranford, E.A., Lebiere, C., Gonzalez, C.:
An exploratory study of a masking strategy of cyberdeception using cybervan. In: Proceedings
of the Human Factors and Ergonomics Society Annual Meeting, vol. 64, pp. 446–450. SAGE
Publications Sage CA, Los Angeles, CA (2020)

3. Aggarwal, P., Du, Y., Singh, K., Gonzalez, C.: Decoys in cybersecurity: An exploratory study
to test the effectiveness of 2-sided deception. Preprint (2021a). arXiv:2108.11037

4. Aggarwal, P., Du, Y., Singh, K., Uttrani, S., Dutt, V., Gonzalez, C.: Effectiveness of deploying
honeypots in different network topologies (2021b)

5. Aggarwal, P., Gutierrez, M., Kiekintveld, C.D., Bošanskỳ, B., Gonzalez, C.: Evaluating
adaptive deception strategies for cyber defense with human adversaries. Game Theory and
Machine Learning for Cyber Security, pp. 77–96 (2021c)

6. Aggarwal, P., Thakoor, O., Jabbari, S., Tambe, M., Cranford, E.A., Lebiere, C., Gonzalez, C.:
Designing effective masking strategies for cyberdefense through human experimentation and
cognitive models. Computers and Security (2021d)

7. Al-Shaer, E., Wei, J., Hamlen, K.W., Wang, C.: Honeypot deception tactics. In: Autonomous
Cyber Deception, pp. 35–45. Springer (2019)

8. Almeshekah, M.H., Spafford, E.H.: Cyber security deception. In: Cyber Deception, pp. 23–50.
Springer (2016)

9. Anderson, J.R., Lebiere, C.J.: The Atomic Components of Thought. Psychology Press (2014)
10. Buchler, N., Rajivan, P., Marusich, L.R., Lightner, L., Gonzalez, C.: Sociometrics and

observational assessment of teaming and leadership in a cyber security defense competition.
Comput. Secur. 73, 114–136 (2018)

11. Chadha, R., Bowen, T., Chiang, C.Y.J., Gottlieb, Y.M., Poylisher, A., Sapello, A., Serban,
C., Sugrim, S., Walther, G., Marvel, L.M., et al.: Cybervan: A cyber security virtual assured
network testbed. In: MILCOM 2016-2016 IEEE Military Communications Conference, pp.
1125–1130. IEEE (2016)

12. Cooney, S., Vayanos, P., Nguyen, T.H., Gonzalez, C., Lebiere, C., Cranford, E.A., Tambe,
M.: Warning time: Optimizing strategic signaling for security against boundedly rational
adversaries. In: Proceedings of the 18th International Conference on Autonomous Agents and
MultiAgent Systems, pp. 1892–1894. International Foundation for Autonomous Agents and
Multiagent Systems (2019)

13. Cooney, S., Wang, K., Bondi, E., Nguyen, T., Vayano, P., Winetrobe, H., Cranford, E.A.,
Gonzalez, C., Lebiere, C., Tambe, Milind: Learning to signal in the goldilocks zone: Improving
adversary compliance in security games. In: Joint European Conference on Machine Learning
and Knowledge Discovery in Databases. Springer (2019)

14. Cranford, E.A., Lebiere, C., Gonzalez, C., Cooney, S., Vayanos, P., Tambe, M.: Learning about
cyber deception through simulations: Predictions of human decision making with deceptive
signals in Stackelberg security games. In: CogSci (2018)

15. Cranford, E.A., Gonzalez, C., Aggarwal, P., Cooney, S., Tambe, M., Lebiere, C.: Towards
personalized deceptive signaling for cyber defense using cognitive models. In: 17th Annual
Meeting of the International Conference on Cognitive Modelling, Montreal, CA (2019)

16. Cranford, E.A., Lebiere, C., Rajivan, P., Aggarwal, P., Gonzalez, C.: Modeling cognitive
dynamics in end-user response to phishing emails. In: 17th Annual Meeting of the International

Adaptive Cyberdefense with Deception: A Human–AI Cognitive Approach 57

Conference on Cognitive Modelling, Montreal, CA (2019)
17. Cranford, E.A., Gonzalez, C., Aggarwal, P., Tambe, M., Lebiere, C.: What attackers know and

what they have to lose: Framing effects on cyber-attacker decision making. In: Proceedings
of the Human Factors and Ergonomics Society Annual Meeting, vol. 64, pp. 456–460. SAGE
Publications Sage CA, Los Angeles, CA (2020)

18. Cranford, E.A., Lebiere, C., Aggarwal, P., Gonzalez, C., Tambe, M.: Adaptive cyber decep-
tion: Cognitively-informed signaling for cyber defense. In: Proceedings of the 53rd Hawaii
International Conference on System Sciences (submitted). IEEE (2020)

19. Cranford, E.A., Gonzalez, C., Aggarwal, P., Tambe, M., Cooney, S., Lebiere, C.: Towards a
cognitive theory of cyber deception. Cognitive Science 45(7), e13013 (2021)

20. Dutt, V., Ahn, Y.S., Gonzalez, C.: Cyber situation awareness: modeling detection of cyber
attacks with instance-based learning theory. Human Factors 55(3), 605–618 (2013)

21. Gambetta, D.: Signaling, p. 168–194. Oxford University Press (2011). https://doi.org/10.1093/
oxfordhb/9780199215362.013.8

22. Gonzalez, C., Dutt, V.: Instance-based learning: Integrating sampling and repeated decisions
from experience. Psychological Review 118(4), 523 (2011)

23. Gonzalez, C., Lerch, J.F., Lebiere, C.: Instance-based learning in dynamic decision making.
Cognitive Science 27(4), 591–635 (2003)

24. Gonzalez, C., Ben-Asher, N., Oltramari, A., Lebiere, C.: Cognition and technology. In: Cyber
Defense and Situational Awareness, pp. 93–117. Springer (2014)

25. Gonzalez, C., Aggarwal, P., Lebiere, C., Cranford, E.: Design of dynamic and personalized
deception: A research framework and new insights (2020)

26. Gutierrez, M., Cernỳ, J., Ben-Asher, N., Aharonov-Majar, E., Bosanskỳ, B., Kiekintveld, C.,
Gonzalez, C.: Evaluating models of human behavior in an adversarial multi-armed bandit
problem. In: CogSci, pp. 394–400 (2019)

27. Lejarraga, T., Dutt, V., Gonzalez, C.: Instance-based learning: A general model of repeated
binary choice. J. Behav. Decis. Mak. 25(2), 143–153 (2012)

28. Pawlick, J., Colbert, E., Zhu, Q.: A game-theoretic taxonomy and survey of defensive deception
for cybersecurity and privacy. Preprint (2017). arXiv:1712.05441

29. Rajivan, P., Gonzalez, C.: Creative persuasion: A study on adversarial behaviors and strategies
in phishing attacks. Front. Psychol. 9, 135 (2018)

30. Schlenker, A., Thakoor, O., Xu, H., Tambe, M., Vayanos, P., Fang, F., Tran-Thanh, L.,
Vorobeychik, Y.: Deceiving cyber adversaries: A game theoretic approach. In: International
Conference on Autonomous Agents and Multiagent Systems (2018)

31. Singh, K., Aggarwal, P., Rajivan, P., Gonzalez, C.: Training to detect phishing emails: Effects
of the frequency of experienced phishing emails. In: Proceedings of the Human Factors and
Ergonomics Society Annual Meeting, vol. 63, pp. 453–457. SAGE Publications Sage CA, Los
Angeles, CA (2019)

32. Singh, K., Aggarwal, P., Rajivan, P., Gonzalez, C.: What makes phishing emails hard for
humans to detect? In: Proceedings of the Human Factors and Ergonomics Society Annual
Meeting, vol. 64, pp. 431–435. SAGE Publications Sage CA, Los Angeles, CA (2020)

33. Somers, S., Oltramari, A., Lebiere, C.: Cognitive twin: A cognitive approach to personalized
assistants (2020)

34. Thakoor, O., Jabbari, S., Aggarwal, P., Gonzalez, C., Tambe, M., Vayanos, P.: Exploiting
bounded rationality in risk-based cyber camouflage games. In: International Conference on
Decision and Game Theory for Security, pp. 103–124. Springer (2020)

35. Xu, H., Rabinovich, Z., Dughmi, S., Tambe, M.: Exploring information asymmetry in two-
stage security games. In: Twenty-Ninth AAAI Conference on Artificial Intelligence (2015)

https://avxhm.se/blogs/hill0

https://doi.org/10.1093/oxfordhb/9780199215362.013.8
https://doi.org/10.1093/oxfordhb/9780199215362.013.8
https://doi.org/10.1093/oxfordhb/9780199215362.013.8
https://doi.org/10.1093/oxfordhb/9780199215362.013.8
https://doi.org/10.1093/oxfordhb/9780199215362.013.8
https://doi.org/10.1093/oxfordhb/9780199215362.013.8
https://doi.org/10.1093/oxfordhb/9780199215362.013.8
https://doi.org/10.1093/oxfordhb/9780199215362.013.8
https://doi.org/10.1093/oxfordhb/9780199215362.013.8

Cognitive Modeling for Personalized,
Adaptive Signaling for Cyber Deception

Christian Lebiere, Edward A. Cranford, Palvi Aggarwal, Sarah Cooney,
Milind Tambe, and Cleotilde Gonzalez

1 A Framework for Personalized Adaptive Cyber Deception

Deceptive tactics have been deployed across many cybersecurity techniques, includ-
ing the strategic allocation of honeypots [22], masking the properties of systems
[32], and more recently, a technique adapted from physical security systems uses
deceptive signaling to expand the perceived coverage of limited defense resources
[41]. Deception typically involves the strategic presentation of truthful and false
information to an adversary, to mislead and gain an advantage over them, and
succeeds by exploiting human processing constraints and perceptual, cognitive, and
social biases [27, 30]. Despite the many advantages of traditional cybersecurity
techniques for thwarting attacks, many of them are static, and adversaries succeed
in their attacks as they continuously adapt to find and exploit new vulnerabil-
ities. Therefore, adaptive techniques are required that can continuously assure
effectiveness.

C. Lebiere (�) · E. A. Cranford
Department of Psychology, Carnegie Mellon University, Pittsburgh, PA, USA
e-mail: cl@cmu.edu; cranford@cmu.edu

P. Aggarwal · C. Gonzalez
Social and Decision Sciences Department, Carnegie Mellon University, Pittsburgh, PA, USA
e-mail: palvia@andrew.cmu.edu; coty@cmu.edu

S. Cooney
USC Center for AI in Society, University of Southern California, Los Angeles, CA, USA
e-mail: cooneys@usc.edu

M. Tambe
Center for Research in Computation and Society, Harvard University, Boston, MA, USA
e-mail: milind_tambe@harvard.edu

© This is a U.S. government work and not under copyright protection in the U.S.;
foreign copyright protection may apply 2023
T. Bao et al. (eds.), Cyber Deception, Advances in Information Security 89,
https://doi.org/10.1007/978-3-031-16613-6_4

59

 31368 2385 a 31368 2385 a

 885 44115 a 885 44115 a

cl@cmu.edu
cl@cmu.edu

 6142 44115 a 6142 44115
a

cranford@cmu.edu
cranford@cmu.edu

 885
47989 a 885 47989 a

palvia@andrew.cmu.edu
palvia@andrew.cmu.edu
palvia@andrew.cmu.edu

 10682 47989 a 10682 47989
a

coty@cmu.edu
coty@cmu.edu

 885 51863 a 885 51863
a

cooneys@usc.edu
cooneys@usc.edu

 885
55738 a 885 55738 a

milind_tambe@harvard.edu
milind_tambe@harvard.edu
milind_tambe@harvard.edu

60 C. Lebiere et al.

Human–machine interactions have typically been engineered as static systems,
and cybersecurity systems are no exception. However, recent technological devel-
opments have led to a push toward personalized and adaptive interactions. To meet
those requirements, underlying system policies and algorithms must be tailored to
individuals and therefore built upon accurate models of human behavior. Currently,
personalized system policies and algorithms are often tailored to a population, or the
average human behavior, or even based on erroneous assumptions/models of human
behavior (e.g., that humans make perfectly rational decisions). It is well known that
humans are, at best, boundedly rational [34] and that they learn through experience
and can adapt accordingly. Consequently, predicting individual human behavior can
be difficult. Statistical, or machine learning, models of adversaries are very good at
explaining the statistics of the environment and the probability of making decisions
in particular situations but often rely on large amounts of data to make accurate
predictions of individual human decisions. In this chapter, we argue that behavior
generative cognitive models can do so without relying on large amounts of training
data and, most importantly, can help explain human behavior.

Insights from cognitive modeling not only inform how humans learn and
adapt to cyber deception techniques but can also be used to personalize and
adapt system algorithms to be more robust against future attacks. Therefore, we
present a framework for using cognitive models to drive personalized and adaptive
cybersecurity systems. As shown by the information flow depicted in Fig. 1, as an
adversary interacts with a cybersecurity system (arrow 1), static policies can limit
the effectiveness of automated defense algorithms (arrow 4). Cognitive models of
the adversary can be inserted into the loop to predict and explain human behavior as
they interact with the system. When deployed alongside the system, a cognitive

Fig. 1 Framework for using cognitive models for personalized, adaptive security systems

https://avxhm.se/blogs/hill0

Cognitive Modeling for Personalized, Adaptive Signaling for Cyber Deception 61

model can observe an adversary’s interactions with the system to predict their
behavior in real time (arrow 2). Combined with techniques that align the model
with the individual, such as model/knowledge-tracing (discussed below in Sect. 4),
a cognitive model can adapt to an individual. The cognitive model can therefore be
used to inform the underlying security algorithm to drive an adaptive defense that is
personalized to an individual and robust to future attacks (arrow 3).

2 Modeling the Adversary

The first step in developing personalized, adaptive cybersecurity systems is to build
accurate models of the adversary. Cognitive models are particularly useful because
they can offer explanations of the human reasoning and decision-making process
that contribute to behavior. The predicted performance can inform how and why
humans react in particular ways to particular situations.

2.1 What Is a Cognitive Model?

Cognitive models provide an introspectable, white-box abstraction of human cogni-
tive processes. Cognitive architectures are computational implementations of the
basic cognitive mechanisms that drive those processes. When cognitive models
are grounded in a cognitive architecture, such as Adaptive Control of Thought—
Rational (ACT-R; [2, 5]), they provide a falsifiable theory for understanding human
cognition. ACT-R provides a constrained, principled framework for modeling
complex human behavior that can generate predictions, and also explanations, of
human reasoning and decision-making. ACT-R has been used to model complex
cognition across a range of decision-making tasks, including repeated binary-
choice decisions [17, 25], multi-person/multi-choice games such as Stackelberg
security games (SSGs) and backgammon [1, 31, 40], dynamic environments such
as social dilemmas and supply chain management [18–21, 24], and automated
malware/intrusion detection systems [38, 39].

ACT-R is a hybrid architecture that represents knowledge as symbolic infor-
mation while sub-symbolic computational processes operate on these structures to
determine their availability and applicability in order to simulate human cognition
and learning. The architecture is decomposed into multiple interacting modules that
represent various cognitive faculties, such as knowledge, action selection, working
memory, perception, and motor actions. Declarative knowledge is knowledge of
facts and constitutes what is often referred to when talking about human memory.
Meanwhile, procedural knowledge is knowledge of skills and is represented as
production rules consisting of a set of conditions and actions. The procedural
module uses declarative knowledge to perform tasks and make decisions. ACT-R
uses buffers to hold the results of operations in each module, which can be thought

62 C. Lebiere et al.

of as the knowledge currently available in working memory. When the contents
of the buffers match the conditions of a production rule, an action is executed,
and the contents of the buffers are modified to trigger further action or knowledge
elaboration.

To make decisions, declarative knowledge is retrieved from memory via a
production rule. Declarative knowledge is formally represented as chunks, which
consist of slot-value pairs to represent information. A chunk is retrieved from
declarative memory based on its activation strength and its similarity to the content
of the retrieval buffer (i.e., the requested knowledge pattern). The activation Ai of
an instance i is determined by the following equation:

Ai = ln
n∑

j=1

t−d
j + MP ∗

∑

k

Sim (vk, ck) + εi (1)

The first term reflects the power law of practice and forgetting, where tj is the
time since the jth occurrence of instance i and d is the decay rate of each occurrence,
which is set to the standard ACT-R value of 0.5. The second term is a partial
matching process reflecting the similarity between the current context elements (ck)
and the corresponding context elements for the instance in memory (vk), scaled by a
mismatch penalty (MP; but which was set to the ACT-R default of 1.0 in the model
presented here). A variance parameter εi introduces stochasticity in retrieval and
is a random value from a logistic distribution with a mean of zero and variance
parameter s of 0.25 (ACT-R standard). Similarities between numeric slot values
are computed on a linear scale from 0.0, an exact match, to −1.0. Symbolic slot
values are either an exact match or maximally different, which was set to −2.5 in
the presented model, a relatively large value that minimizes similarities between
different types of categorical situations/actions.

A Boltzmann softmax equation determines the probability of retrieving an
instance Pi based on its activation strength:

Pi = e
Ai

/
t

∑
j e

Aj
/
t

(2)

A temperature parameter t can be used to scale probabilities according to the
activation such that low temperatures result in a greater proportion assigned to
the highest activated instances and high temperatures result in proportions being
more randomly distributed regardless of activation strength. The model presented
here sets the temperature to 1.0, which results in retrieval probabilities reflecting
the original probability distribution, unbiased toward or against the most active
instances.

https://avxhm.se/blogs/hill0

Cognitive Modeling for Personalized, Adaptive Signaling for Cyber Deception 63

2.2 Modeling Decisions from Experience

In many human–machine interactions, including for cybersecurity, there are ample
situations where human decisions are made from experience, offering a great
opportunity to leverage the powerful modeling methodology of instance-based
learning (IBL) to model these decisions and adapt a system to the individual.
According to IBL theory [16, 19], decisions are made by generalizing across past
experiences, or instances, that are similar to the current situation. Experiences are
represented by the contextual features of the decision, the action/choice made, and
the outcome/utility of the decision. As humans interact with their environment,
they accumulate experiences in memory. For each new situation, an expectation
is generated from memory for each action/choice, based on the similarity of the
current situation to past instances in memory, and their recency and frequency in
memory. The choice with the best outcome, or highest expected utility, is selected.
This choice, its contextual features, and the associated outcome/utility are stored in
memory as a new instance that can then influence future decisions.

IBL is a domain-general, memory-based theory of experiential learning, which
means that it does not require explicit engineering of strategies. Nor does it require
any hand-modeling of reward functions. IBL models decision-making as learning
through experiential interaction with the environment. Formally, IBL utilizes ACT-
R’s blendingmechanism [23] to make aggregate retrievals from memory in order to
generate expectations for the outcome of an action in a given situation. Typically,
the most active chunk is retrieved from memory. However, the blending process
retrieves a chunk representing the interpolation of past instances. According to
blending, an expected outcome of a particular choice is the value V that best satisfies
the constraints of all matching instances i weighted by their probability of retrieval,
where satisficing is defined as minimizing the dissimilarity between the consensus
value V and the actual answer Vi contained in instance i:

argmin
V

∑

i

Pi × (1 − Sim (V , Vi))
2 (3)

When the values are numerical and the similarity function is linear, the process
simplifies to a weighted average by the probability of retrieval, where .Vt =∑n

i=1Pi × Vit . Therefore, in summary, the outcomes of past instances are weighted
by their recency, frequency, and similarity to the current instance (i.e., probability
of memory retrieval) to produce an expected outcome via blending.

A combination of instance-based learning models, grounded in a cognitive
architecture like ACT-R, can be used to drive robust adaptive and personalized
systems. As an adversary interacts with a system, an IBL model can observe the
human and predict their behavior. This information can then be used to inform the
system to provide personalized and adaptive interventions. For the present research,
we highlight the methodologies’ strengths for adapting a deceptive signaling
algorithm to individual attackers in an insider attack scenario.

64 C. Lebiere et al.

2.3 Deceptive Signaling for Cybersecurity

Recent developments in cybersecurity have proposed using deceptive signals to
deter attacks on uncovered systems beyond any capabilities of static defenses that do
not use signaling or only use truthful signals. Finding the right balance of deceptive
signaling so that the attacker continues to believe the signal is crucial to the success
of the strategy. Recently, game-theoretic research on deceptive signaling algorithms
in Stackelberg security games (SSGs) has optimized the strategic allocation of
limited defenses and the rate of deception so that a rational attacker would not
attack when presented with a signal [41]. SSGs model the interaction between an
attacker and a defender where a defender plays a particular strategy (i.e., random
patrolling of an airport terminal), the attacker observes the strategy, and then the
attacker takes action. Under this framework, researchers have developed algorithms,
such as the strong Stackelberg equilibrium (SSE), that optimally allocate limited
defense resources across a set of targets [36]. These algorithms have been applied
successfully across a number of physical security systems (e.g., protecting ports,
scheduling air marshals, and mitigating poachers; [28, 33, 35, 36]). Such security
practices could be applied to the cyber realm, for example, in scheduling active
monitoring of security systems by network administrators (e.g., security analysts).

Xu et al. [41] extended the SSG models by incorporating elements of signaling,
in which a defender (sender) strategically reveals information about their strategy
to the attacker (receiver) in order to influence the attacker’s decision-making [6,
8]. Sending a message that reveals the protection status of the target can influence
attacker behavior. For example, a truthful message that reveals a target is monitored
can deter attacks, but adversaries can attack with impunity when a message reveals
the target is not monitored. However, defenders can use a combination of truthful
and deceptive signals to help deter attacks on unprotected resources. Xu et al.’s
solution, the strong Stackelberg equilibrium with persuasion (peSSE), improves
defense against a perfectly rational attacker compared to strategies that do not use
signaling. For a given target, the peSSE finds the optimal combination of bluffing
(sending a deceptive message that the target is monitored when it is not) and truth-
telling (sending a truthful message that the target is covered) so that a rational
attacker would not attack in the presence of a signal.

In practice, the SSE allocates defenses proportionally across the set of targets
so that the expected values of all targets are equal. Once defenses are scheduled,
the attacker can choose a target to attack. Then, as determined by the peSSE, the
defender will send a signal to the attacker revealing the protection status of the
target, which may sometimes be deceptive. Based on this information, the attacker
can then choose to continue the attack or withdraw. If the attacker continues the
attack, then they will receive a penalty if the target is truly monitored, but a reward
if the target is open. The peSSE sends deceptive signals at a rate that makes the
expected value of attacking a target, given a signal, equal to the expected value
of withdrawing the attack, or zero. Therefore, under the assumption of perfect

https://avxhm.se/blogs/hill0

Cognitive Modeling for Personalized, Adaptive Signaling for Cyber Deception 65

rationality, when presented with a signal, an attacker will always break ties in favor
of the defender and choose the safer option, to withdraw the attack.

2.3.1 Insider Attack Game (IAG)

The Insider Attack Game (IAG) is an online game designed to investigate the
interaction between an attacker and defender in a cybersecurity scenario, gain a
better understanding of how humans react to deceptive signals, and assess the
effectiveness of various signaling schemes [11, 15]. The left side of Fig. 2 shows a
screenshot of the game interface. Players take the role of the attacker at the center of
the screen (i.e., a company employee) and their goal is to score points by “hacking”
computers to steal proprietary data. There are six computers from which to choose
to attack, but only two security analysts (i.e., defenders controlled by a computer
algorithm) that can monitor one computer each. If the player attacks a computer that
is monitored, they lose points denoted by the number of red stars, but if the computer
is not monitored, then they win points denoted by the number of yellow stars. As
shown in the top-middle of Fig. 2, each computer shows its reward for winning,
penalty for losing, and the probability that the computer is being monitored (which
reflects the SSE for the game).

Players make repeated attempts at attacking computers. On each turn, the player
must first select a computer to attack. Then, the signaling algorithm determines
whether to send a truthful signal or a deceptive signal. As depicted in the bottom-
right of Fig. 2, in the IAG with six targets and two analysts, the peSSE presents a
signal every time a target is monitored, or 33% of trials on average. Additionally,
the peSSE sends a signal half of the time when a target is not monitored, or 33% of

Fig. 2 Insider Attack Game interface, zoom inlay of a target, example signal message, description
of the decision procedure, and the average coverage/signaling probabilities

66 C. Lebiere et al.

trials on average. This means that, on average, a signal is deceptive half of the time.
At this rate, the expected value of attacking given a signal is zero, the same expected
value as withdrawing the attack. Therefore, a perfectly rational adversary that only
attacks with a positive expected value (i.e., in the absence of a signal) is predicted
to attack on 33% of trials on average (i.e., when a signal is not presented).

The top-right of Fig. 2 shows an example message signaling that a target is
currently being monitored. If the computer is not being monitored, then the first
line of the message is omitted. After reading the message, the player must decide
whether to continue their attack or withdraw and earn zero points. Players play four
rounds of 25 trials each (after an initial five trials of practice). The payoff structures
and monitoring probabilities of the targets are different in each round. Coverage
and signaling of targets were precomputed for each trial. Therefore, each individual
player experiences the same coverage and signaling schedule.

2.3.2 Modeling Adversary Behavior in the IAG

Cranford et al. [15] presented the results of 98 human participants playing the
IAG against the peSSE signaling scheme and a cognitive model of an attacker that
accurately predicts human performance and helps explain their behavior. The left
side of Fig. 3 shows the mean probability of attack across trials. The dashed line
at the bottom of the graph shows the predicted probability of attack of a perfectly
rational adversary (33%). The results showed that humans attacked far more often
than predicted, almost 80% of trials.

It is clear that humans do not make perfectly rational decisions. Instead, human
behavior can be explained as decisions from experience [19]. Our IBL model
performs the task like humans by selecting targets to attack, being presented a
signal, and deciding whether to continue the attack or withdraw. In the IAG, the
experiences, or instances, are represented by the features of the decision. This
includes the context of the selected target, the decision, and the outcome. The
context includes the monitoring probability [0.0, 1.0], reward [1, 10], and penalty
values [−1, −10] associated with the selected target and whether a warning signal
was presented [present, absent]. The possible decisions are to attack or withdrawing,
and the outcome is the reward or penalty based on the decision. In a given situation,

Fig. 3 Results of the IBL model compared to humans playing the IAG against the peSSE. (Figure
adapted from Cranford et al. [13])

https://avxhm.se/blogs/hill0

Cognitive Modeling for Personalized, Adaptive Signaling for Cyber Deception 67

for each possible decision, an associated utility is computed through blended
memory retrieval weighted by contextual similarity to past instances. The decision
with the highest expected utility is made. However, withdrawing always results in
zero points. Therefore, the model only needs to determine the utility of attacking in
order to make a choice. If the value is greater than zero, then the model attacks, else
it withdraws.

For each trial, the model first selects a target with the highest expected outcome,
generated via blending, and then decides whether to continue the attack or withdraw
based on whether a signal was presented. For this decision, the model uses blending
to generate an expected outcome for the given target, but only on the basis of the
signal and ignores the values of the target context (i.e., the target information is
occluded from the participants, so it is plausible that they do not consider the target
information beyond deciding which target to select initially). An instance is then
saved in memory that represents the model’s expected outcome. Humans tend to
remember not only the actual experience but also their expectations prior to the
experience [26]. This results in additional positive (or negative) instances, which
in turn generates a confirmation bias whereby one’s pre-conception of winning (or
losing) perpetuates itself in future trials, even when it is ultimately disconfirmed.
Based on the value of the expected outcome, a decision is made, and the action and
outcome slots of the current instance are updated to reflect the action taken by the
model and the ground-truth outcome. This final instance is saved in memory and
thereby influences future decisions. Therefore, two instances are saved to memory
on each trial, one reflecting the expected outcome and the other reflecting the ground
truth outcome.

The model continues for four rounds of 25 trials each. The model behavior
reflects its experiences. If an action results in a positive/negative outcome, then its
future expectations will be increased/decreased, and the model will be more/less
likely to select and attack that target in the future. Also, the impact of a particular
past experience on future decisions strengthens with frequency and weakens with
time.

The model was run 1000 times to simulate a population of individuals and to
generate stable estimates of human performance. As shown on the left side of Fig. 3,
the model is highly accurate at predicting human performance (total RMSE = 0.04),
even matching the trial-to-trial variations that reflect the underlying coverage and
signaling schedules (total r = 0.73), and that accuracy increases over time. Not
only does the model match the average human performance in the IAG, but it also
matches well to the individual performance. The right side of Fig. 3 shows the
distribution of participants by their mean probability of attack. Like humans, some
model simulations attack at a fairly low rate, while a large proportion attack 95% of
the time or more.

In summary, Cranford et al. [15] show that human decision-making in the IAG
is largely influenced by memory dynamics across past experiences. The peSSE
suffers because human biases (e.g., recency, frequency, and confirmation) lead
to overweighting of certain outcomes that often results in inflated expectations.
Humans fail to fully comply with the signal because they are more likely to expect

68 C. Lebiere et al.

a positive outcome than a negative one as belief in the signal deteriorates. While
deception is an effective tool for preventing malicious behaviors, the experience of
successfully calling a bluff can reduce compliance with the signal. Regaining trust
in the signal is difficult, if not impossible, to do under static signaling schemes.
Therefore, an adaptive signaling scheme is needed that adjusts the rate of deception
to dynamically balance (re)building trust in the signal and exploiting it, thus
optimizing compliance.

3 Predicting Adversarial Behavior

Unlike a statistical, or machine learning, model of attackers that can explain the
statistics of the environment and the probability of making decisions in particular
situations and that rely on large amounts of data to make accurate predictions of
human decisions, behavior generative cognitive models can do so without relying
on large amounts of training data and, most importantly, can help explain human
behavior. In fact, cognitive models need no training data at all because the goal is
not to model the data but instead to model human cognition when performing the
task. Therefore, this also means that cognitive models can be robust to changes in the
environment, given the task procedures remain the same. Because cognitive models
also have the capacity to learn quickly (i.e., at human speed), they can be used to
model individual learning.

For example, our cognitive model of backgammon playing learned to play the
game at a high level in about a thousand games, a scale of practice compatible
with human experience [31]. That contrasts with machine learning models that can
attain higher performance but at the cost of requiring hundreds of thousands or even
millions of games of experience, an amount incompatible with human limitations
(e.g., [37]). Cognitive models replicate fast human learning, including in the
backgammon domain, through a combination of symbolic knowledge representation
and sub-symbolic (statistical) generalization.

Our IBL model of the IAG can therefore predict situations (e.g., counterfactuals)
for which there is no data currently available, so we used our cognitive model
as synthetic subjects to explore manipulations of the environment. For example,
Cooney et al. [9, 10] attempted to use game theory and machine learning algorithms
to improve the deceptive signaling algorithm to account for the boundedly rational
human behavior observed against the peSSE. Two of the algorithms examined
included a decision tree machine learning method and an epsilon rationality game
theory approach (the latter being an adaptation of the Bounded Rationality Assump-
tion in Stackelberg Solver [BRASS] algorithm; [29]). While human experiments
showed that neither of the algorithms was significantly more effective than the
peSSE, the model was used to make a priori predictions of human behavior. These
predictions, although discouraging for the signaling algorithms, ultimately were

https://avxhm.se/blogs/hill0

Cognitive Modeling for Personalized, Adaptive Signaling for Cyber Deception 69

Fig. 4 Model makes accurate predictions of human behavior, generated prior to running human
subjects experiments, across two alternative signaling schemes, the left based on decision trees
(DT) and the right based on epsilon rationality (ER)

highly accurate when compared to human performance, as can be seen in Fig. 4.
The model was able to accurately predict the mean probability of attack across
trials, as well as the trial-to-trial fluctuations in performance that are attributed to
the underlying, static signaling scheme. The ability of cognitive models to predict
the effect of manipulations that have not yet been implemented and tested against
human adversaries makes it possible to greatly speed up the development of those
defensive techniques and expand the range of techniques considered.

4 Observing the Adversary: Personalizing the Model

The goal for personalized, adaptive cybersecurity is to model the individual, not
the population. In the models presented above, each run of the model produces its
own decision and learning experience. That is, each run represents an individual in
a population. The model can reproduce the entire distribution of individual behavior
due to stochasticity in the activation calculus, the IBL learning loop, and representa-
tion variants (e.g., each run begins with a randomized set of instances that represent
a practice round). However, in order to drive personalized, adaptive cybersecurity
systems, we must be able to model a specific individual at a specific time. It is clear
that individual attackers behave differently from one another, and each may learn
and adjust behavior after repeated experiences with deceptive signals. Therefore,
a model of the individual must be able to reflect those differences, both initially
and resulting from experience, including from the intervention itself. An adaptive
signaling scheme based on cognitive principles can be used to adjust the rate of
deception, tailored to an individual’s behavior, so as to maintain belief in the signal.

To personalize deception, two techniques can be used. One method runs the
full cognitive model alongside the human adversary, in combination with model-
tracing techniques, to align the model to the human in real time and uses the model

70 C. Lebiere et al.

predictions to directly inform the signaling scheme. The limitation of this method is
that computational processing time increases linearly with the number of instances
in memory. Since human decision-making is stochastic, the model is probabilistic,
and a possibly large number of Monte Carlo runs must be collected to generate
reliable predictions. Therefore, such a model can become unwieldy in practice.
Another method is to use a closed-form solution that approximates the cognitive
model predictions. In this chapter, we focus on the latter method but first describe
the former method.

To align a model’s behavior with the human’s experience and decisions, we use
a combination of model-tracing and knowledge-tracing. Both methods are used to
align the model’s memory with that of the human it is tracing. Model-tracing aligns
the actions and outcomes of the model with those observed of the human, while
knowledge-tracing is used when we must infer the knowledge that humans have
acquired to maintain accurate predictability.

4.1 Model-Tracing

As described in Cranford et al. [13], model-tracing is a technique commonly used
to adjust feedback provided to the student in intelligent tutoring systems (see [4]).
The alignment helps ensure future model predictions are adapted and optimized to
the interaction with the human. For example, geometry tutors use model-tracing to
keep track of where errors are made so that the learning experience can be tailored
to the individual [3]. We use model-tracing to synchronize the IBL model with
the human’s observed actions and experience in the IAG task. After each trial,
the instance saved in memory that represents the model’s decision and outcome
is changed to reflect the human’s action and outcome (i.e., the action and outcome
slots are changed to match the human’s). Therefore, during the next trial, the model
makes predictions based on the exact experience of the human and not on what it
would have done based on its own past instances. With more trials, the model is
expected to make more accurate predictions of a particular human’s actions, as the
model’s memory aligns better with that of the human.

4.2 Knowledge-Tracing

Both model-tracing and knowledge-tracing are used to align the model’s memory
with that of the human; however, knowledge-tracing is used to align the model’s
expectations to those of the human and must therefore be inferred. When making
a decision to attack or withdraw, the model produces instances that represent the
expected outcome of attacking, which contributes to confirmation bias, and these
instances must also be changed. Knowledge-tracing is therefore used to resolve any
discrepancies in knowledge or strategy. Knowledge-tracing can be used to infer

https://avxhm.se/blogs/hill0

Cognitive Modeling for Personalized, Adaptive Signaling for Cyber Deception 71

Fig. 5 Effectiveness of model/knowledge-tracing techniques for predicting human performance
and learning in the IAG. (Figure adapted from Cranford et al. [13])

the expectations humans had prior to making a decision that would contribute to
confirmation bias. For example, if the model and human both decided to attack (or
both withdraw), then nothing needs change and the expected outcome generated
by the model can be used to infer the human’s expectation. However, if the model
expects a positive outcome for attacking, but the human withdrew the attack, then
we can infer that the human expected to lose (or vice versa). For these instances, we
can modify the expected outcome slot to match the expectations of the attacker. We
cannot infer this expectation precisely, so we set the expected outcome to either the
reward or penalty of the selected target.

Using a combination of model- and knowledge-tracing, we tested the model’s
ability to predict individual behavior in the IAG. The cognitive model was run
alongside the human data when paired against the peSSE. On each trial, the model
makes a prediction and is then aligned to the human before making the next
prediction. The left side of Fig. 5 shows the probability of agreement between
each model run and the human it traced. The results show that the model is
highly accurate at predicting individual behavior in the IAG, and the predictability
increases the more experience the model accumulates of the individual it is tracing.
After only a few instances (i.e., around trial 15), all model runs are above chance,
0.50. The right side of Fig. 5 shows the overall probability of attacking for the model
and the human it traced, with an astonishing r2 = 0.95. These results highlight the
model’s ability to adapt to an individual by aligning the model’s memory with that
of the human and could feasibly be used to personalize a signaling algorithm.

5 Using Cognitive Models to Inform Adaptive Defense

A traditional approach to modeling the individual attacker for purposes of adapting
interventions would be to collect sufficient data on that user, training a machine
learning model with that data, and then using that model to predict their behavior.
That approach has several drawbacks, however. First, it is likely that the machine

72 C. Lebiere et al.

learning model will require considerably more data than can be collected on a single
individual. Second, the data-driven model can only make predictions in situations
that have been encountered before. Third, the machine learning model is effectively
a black box that makes predictions without being able to explain their rationale.

Using information leveraged from cognitive models, an adaptive signaling
scheme can be developed to improve deceptive techniques by personalizing the
system to the individual. Our initial solution to this problem is to interleave blocks
of trials with only truthful signals between blocks of trials with deceptive signals.
The assumption is that experiences of rewards when a signal is present increase the
probability of attacking in the future, while experiences of penalties given a signal
reduce the probability of attacking in the future. Therefore, eliminating deceptive
signals for a short period of time can help increase penalties and restore belief in the
signal. The goal for the cognitive signaling scheme is to induce, and preserve, the
belief that attacking given a signal will result in a loss.

Relying on the attacker’s history of behavior, this new cognitive signaling
scheme estimates the current probability of attack given a signal and judges whether
the cost of issuing a truthful block outweighs the benefits of a deceptive block to
effectively reduce the future probability of attack given a signal. At the beginning
of each block of trials, a closed-form equation of the current probability of attack
given a signal, reflecting the blending process used in generating expectations and
the recency and frequency power laws in chunk activations, can be formulated based
on the times t since past actual decisions made by the attacker, as

P now
est (A|S) =

∑wins
i t−d

i + ∑losses
j t−d

j∑wins
i t−d

i + ∑losses
j t−d

j + ∑draws
k t−d

k

(4)

Next, we estimate the change in the probability of attack given a signal from
a truthful block. Therefore, we need to make an additional assumption as to how
wins and losses impact choice. We assume that the attacker will follow the same
decision-making process, keeping the same format reflecting probability matching
behavior:

P now
ass (A|S) =

∑wins
i t−d

i∑wins
i t−d

i + ∑losses
j t−d

j

(5)

The impact of a truthful block of size b on .P now
ass (A|S) .P now

ass (A|S) results
in a new estimate .P then

ass (A|S) P then
ass (A|S) with an expected number .

1
3 ∗ b ∗

P now
est (A|S) P now

est (A|S) of losses distributed randomly across the block, where 1/3
is the mean probability of sending a signal in a truthful block. For the present
implementation, block size b is set to 10. This value was chosen as a reasonable
compromise that provides enough opportunities for switching blocks while allowing
for enough experience within a block to impact behavior.

The adaptive cognitive signaling scheme is as follows: the next block will use a
truthful signal if the following comparison of the cost in terms of additional attacks

https://avxhm.se/blogs/hill0

Cognitive Modeling for Personalized, Adaptive Signaling for Cyber Deception 73

allowed in the next block is less than its benefits (i.e., the number of attacks saved
in the remaining r trials during the rest of the experiment after that block):

1

3
∗ b ∗ [

1 − P now
est (A|S)

]
< α ∗ r ∗

[
P now
ass (A|S) − P then

ass (A|S)
]

(6)

where 1/3 is the difference in probability of a signal being generated between
deceptive (66.6%) and truthful blocks (33.3%), and α is a discount parameter that
can take any value between 0.0 and 1.0 (default is 1/3). The discount parameter is
an assumption of how long the impact of the truthful block on the probability of
attack given a signal will persist. If we assume that it will persist until the end and
all future blocks will be deceptive blocks, then the right value would be 2/3 (i.e., the
percentage of trials when a signal is generated). If it would persist indefinitely but
all future blocks are truthful blocks, then that value would be 1/3. In practice, it will
be somewhere between 1/3 and 2/3, depending on the mix of truthful and deceptive.
The effect of the signal will dilute over time, so the minimum 1/3 is a reasonable
default value.

In summary, the cognitive signaling scheme uses a closed-form version of the
model decision procedure to optimize the tradeoff between the cost of building trust
in the signal using blocks of truthful signals and the benefits of exploiting that trust
in future blocks of deceptive signals.

5.1 Cognitive Signaling Scheme Evaluation

The effectiveness of the cognitive signaling scheme was examined through cognitive
model simulations and a human behavioral experiment. The cognitive model of the
attacker presented above was run through 1000 simulations against the cognitive
signaling scheme, and these predictions were then compared to the performance
of human participants. For the human experiment, 100 participants were recruited
via Amazon Mechanical Turk (mTurk). All mTurk participants resided in the
United States. For completing the experiment and submitting a completion code,
participants were paid $1 plus $0.01 per point earned in the game, up to a maximum
of $5.50. One participant was removed from the analysis because of incomplete data
due to data recording errors, resulting in a final N of 99.

As this was an initial study, all players began with a block of truthful signals to
establish baseline belief in the signal. As before, players played four rounds of 25
trials each, with a different set of targets each round. Every 10 trials overall, the
algorithm determined whether to switch to a different type of block: either using
only truthful signals or using deception according to the peSSE. Figure 6 shows
the proportion of players that received a truthful block across each of the 10 blocks
in the game. The first block is always a truthful block. From there, depending on
the individual’s behavior, the cognitive signaling scheme assigned more truthful or
deceptive blocks. The second block was always deceptive, and the third block was

74 C. Lebiere et al.

Fig. 6 Proportion of truthful
blocks assigned by the
cognitive signaling scheme
per block of 10 trials,
comparing the model to
humans

Fig. 7 Histograms showing models’ ability to predict the full range of human behavior

about evenly divided between truthful and deceptive. Over time, the proportion of
truthful blocks declines because the estimated reduction in the future probability
of attack over the remaining blocks does not outweigh the near-term term costs of
issuing a truthful block.

To assess human and model performance, the data was analyzed for the
probability of attack across trials. The results initially revealed that the scheme
is effective at influencing human behavior beyond the peSSE, but only for some
humans. As shown in the histogram in Fig. 7, the model fails to account for
approximately 44% of participants that attacked at a rate of 95% or more. However,
if we separate participants into two groups, the model is highly accurate at predicting
the performance of the approximately 56% of participants that attack at a rate less
than 95% (left side of Fig. 7). For the participants that attacked at a rate greater than
95%, the cognitive signaling scheme did not influence behavior even after giving
these participants, almost exclusively, truthful blocks. Looking back, Fig. 6 shows
the proportion of truthful blocks assigned per block of 10 trials for the two separate
groups. The cognitive signaling scheme presented the same proportion of truthful
blocks to the model as it did to those participants that attacked less than 95% of the
time. However, the scheme continued to present truthful blocks to the other group
of participants because they continued attacking undeterred in the face of a signal.

Figure 8 shows the probability of attack across trials for humans compared to
the model when playing against the cognitive signaling scheme, which is compared
to human performance when playing against the peSSE. Compared to the peSSE,
the cognitive signaling scheme further reduces the probability of attack, but at the
expense of giving up more attacks in the first block. Because all signals are truthful
in the first block of the cognitive signaling condition, fewer signals are sent to deter

https://avxhm.se/blogs/hill0

Cognitive Modeling for Personalized, Adaptive Signaling for Cyber Deception 75

Fig. 8 Comparing the effectiveness of the cognitive signaling scheme to the peSSE for humans
compared to model predictions

attacks overall. The effect of an initial truthful block is immediately observable by
a relatively lower probability of attack in trials 10 through 20 (which is always a
deceptive block), and this trend continues throughout the game.

To further assess the effectiveness of the signaling scheme, we examine defender
utility. To compute defender utility, the defender is penalized one point every time
the player attacks a target that is not monitored and zero points otherwise (e.g., if a
player attacks a target that is monitored, or does not attack). This means, the more
often players attack in the face of a deceptive signal, the worse will be defender
utility. Since targets are not monitored on an average of 66.6% of trials, a defender
utility less than −17 (i.e., >2/3 of 25 trials) means the signaling scheme is better
than a purely truthful signaling scheme, while a utility greater than −9 is ideal (i.e.,
<1/3 of 25 trials).

As shown in Fig. 8, the cognitive signaling scheme provides better defense for a
subset of humans, as indicated by low defender utility values that match what was
predicted by the model. However, against some participants, the scheme performs
about as poorly as would be expected given no signals. In fact, in a post-experiment
survey that asked an open-ended question about what strategy participants used
when faced with a signal, a majority of participants that attacked more than 95%
responded explicitly that they ignored the signal.

An informal analysis was conducted with two independent coders, and the
responses were categorized based on the features in which decisions were based
or the reported actions taken. Discrepancies between coders were resolved through
discussion. Figure 9 shows the distribution of responses for each group of partic-
ipants, those that attacked greater than 95% compared to those that attacked less
than 95%. For the group that attacked more than 95%, almost 23% reported that
they ignored the signal while another ~10% reported that they always attacked (but
did not explicitly mention whether they attended the signal or not). Approximately
10% reported that they stayed and continued attacking the same target even after
suffering a loss, while ~15% switched to another target and continued attacking.
The remaining participants reported a mixed strategy, weighing the risk against the
reward, using intuition, some other noncategorized strategy, or no strategy, while
some falsely reported that they withdrew when faced with a signal. Meanwhile, for
the group that attacked less than 95%, none reported that they ignored the signal,
while approximately 20% reported that they withdrew in the face of a signal, ~12%

76 C. Lebiere et al.

Fig. 9 Reported strategies or features used when deciding whether to continue the attack or
withdraw when faced with a signal, comparing participants that attacked more than 95% to those
that attacked less than 95%

withdrew if the monitoring probability was high, another ~12% weighed the risk
against the reward to decide, and ~10% switched targets after seeing a signal.
The remaining participants reported a mix of other strategies, decided randomly,
or used no strategies. Overall, the survey results showed that some participants
ignored the signal and treated all instances as if the signal was neutral. This means
that the signaling scheme will not be effective against these participants because
the expected value of attacking given a signal is combined with the expected
value of attacking given no signal. Therefore, with only two analysts, the overall
expected values would be positive, and thus deciding to always attack is a natural
consequence.

Based on these findings, we created a version of the cognitive model that does not
consider the signal when generating an expected outcome of attacking the selected
target. For this version, blending samples equally across past instances regardless
of the signal, and so only recency and frequency of past instances play a role in
decisions. As shown in Fig. 8, the model attacks 96.0% of trials (SD = 15.1%), with
54% of simulations attacking 100% of trials and 35.8% attacking greater than 95%.
As shown on the right side of Fig. 7, the model matches well to the distribution
of humans that attack ≥95%, and the other measures such as percent of truthful
blocks presented (Fig. 6) and defender utilities (right side of Fig. 8). These results
stress the importance of understanding the features that individuals consider in their
decisions since one’s representation of the decision context strongly influences the
chosen action.

https://avxhm.se/blogs/hill0

Cognitive Modeling for Personalized, Adaptive Signaling for Cyber Deception 77

5.2 Discussion

The results of the adaptive, personalized signaling scheme showed improvement
upon traditional game-theoretic signaling schemes for cyber defense by using a
computational model of human cognition. The peSSE signaling scheme offers
effective defense against boundedly rational human adversaries compared to not
signaling. However, the algorithm optimizes the rate of deception for perfectly
rational adversaries, which results in a static scheme that is not personalized to indi-
vidual attackers. Through experimentation and cognitive modeling, we learned how
humans respond to deceptive signals and developed a cognitive signaling scheme
that is adaptive and based on cognitive principles. Cognitive model predictions
showed that the solution is promising at further influencing human behavior beyond
the capabilities of the peSSE. These predictions were verified in human experiments,
and the results helped shed additional light on individual differences in human
behavior.

The cognitive model predicts that human decisions are made by aggregated
retrieval across past experiences based on the similarity to the current situation [19].
These decisions are influenced by the frequency and recency of past experiences,
cognitive biases, and representation of information in memory. These are the core
assumptions for the cognitive signaling scheme.

Two key insights gleaned from the cognitive model regarding human behavior are
that: (1) decisions are highly affected by confirmation bias, and (2) it is important
to consider what features the individual factors in their decision. The cognitive
signaling scheme leveraged this information to induce bias and influence human
behavior. Specifically, by relying on observations of actual human behavior, the
cognitive signaling scheme estimated the probability of attack given a signal and, if
it was too high, would send only truthful signals for a period of time in an attempt
to rebuild trust in the signal and ultimately increase compliance. Continued attacks
given truthful signals should strengthen the expectation that attacking in the future,
given a signal, will result in a loss.

5.2.1 Open Questions

An open question for the cognitive signaling scheme is how long do we need to
display truthful signals to regain trust and thus compliance? Currently, the approach
gives up some attacks early on with an initial truthful block, but this is done in order
to increase belief in the signal for the rest of the experiment. The algorithm only
determines whether to switch to a different type of signal after a block of 10 trials.
Ten is a reasonable value, but the algorithm could be called as often as every trial.
The implications of this are unclear at this point. It could result in too few truthful
signals in a row to impact behavior, or it could help further personalize the scheme
so that it is better adapted to the individual. Future research is aimed at exploring
ways to optimize the proportion of truthful to deceptive signals over a period of
time.

78 C. Lebiere et al.

Cranford et al. [15] showed that humans seem to ignore the context of the selected
target, and only consider the signal when making decisions of whether to continue
to attack. This insight allowed us to simplify the cognitive signaling scheme and
focus on reducing the overall probability of attack given a signal, and not need to
take into account individual target values. After all, the SSE normalizes targets, so
their expected values are equal [36].

An important observation from the human experiments was that the cognitive
signaling scheme is only effective for some participants, while others seem to
ignore the signal when making decisions. This further highlights the importance
of accurately representing decision features. For participants that do not consider
the signal, all targets are treated equally. Thus, trying to reduce the probability of
attack given a signal by adjusting the rate of deception may prove fruitless when the
overall expected values are positive for all targets. An alternative method to combat
such adversaries could be to shift coverage instead of, or in addition to, adjusting the
rate of deception. For example, while it might be difficult or impossible to extract
attack preferences to influence behavior, it might be possible to extract selection
preferences and shift coverage to induce more experiences of loss given a signal.
Driving the expected value of attacking to negative values could result in attackers
starting to pay attention to the signal, which in turn would raise the effectiveness
of cognitive signaling. Future research is aimed at exploring the potential of this
method.

5.2.2 Limitations and Extensions

A limitation of the current approach is that it relies only on deceiving when given
a signal. Meanwhile, players can attack with impunity when no signal is presented.
An alternative approach is to use deception in two ways: when a signal is present
and when it is absent. In this way, the attacker can lose points when a signal
is absent, instilling further uncertainty in their decisions. In fact, recent research
explored several game-theoretic algorithms that employ two-way deception that
proved better than one-way deception against human participants [9, 10]. Future
research is aimed at exploring the potential of using two-way deception in the
current cognitive signaling approach.

We have already used two-way deception in an alternative cognitive signal
scheme, but it has not been tested against human participants [12]. In that scheme,
the model- and knowledge-tracing are used to trace human behavior in real time
to make predictions about the human’s probability of attack given a signal and
determine on a trial-to-trial basis whether to give a signal based on the underlying
coverage. The scheme shows potential, and the use of two-way signaling is an
enhancement over the current approach. Where the current approach stands out is
in the fact that it is a closed-form solution that relies on a simplified version of the
cognitive model to make predictions of individual behavior. However, there is room
to refine the current cognitive signaling approach through the discount parameter,
the size of the truthful block, and the assumptions concerning the likelihood of

https://avxhm.se/blogs/hill0

Cognitive Modeling for Personalized, Adaptive Signaling for Cyber Deception 79

various coverage conditions. Future research will further explore the complexities
of the cognitive signaling scheme.

One caveat to these approaches is that they rely on observing and tracking an
individual’s behavior. In the real world, it may prove difficult, if not impossible, to
track all, or even some, of an adversary’s actions. Luckily, the methods are robust
and can be tailored to a population, sub-group, or even a time window of attacks.
While not as effective as at the individual level, such a method could still reliably
influence individual human behavior.

Another limitation is capturing real-world incentives. The payments offered for
performance in the experiment are in line with typical practice, and by having
a low base pay with a high potential for bonus tied to the points earned in the
game, we ensured that participants (mTurkers who are driven by maximizing
their pay per minute) were sufficiently motivated to maximize their points earned.
However, the payments do not compare to the rewards and dangers present in
real-world cybersecurity breaches. A version of the experiment using an initial
endowment has proven effective at preventing careless exploration at the start of the
experiment before rewards have been accumulated and could be lost [14]. Modeling
behavior using scaled-up rewards would allow exploration of the impact of higher
stakes.

5.2.3 Future Research

In conclusion, we have outlined an initial approach to deceptive signaling for cyber
defense that relies on cognitive models of attacker behavior to balance the rate of
deception in an attempt to keep belief in the signal high. The cognitive signaling
scheme is adaptive and personalized and can therefore be used to induce biases and
influence attackers to comply with the signal beyond the capabilities of any static
scheme.

Future research is aimed at improving upon the current cognitive signaling
scheme. Recent research has shown that, when deployed in the real world to mitigate
poaching, the peSSE is less effective than predicted because it fails to account
for various forms of uncertainty [7]. A potential direction includes incorporating
uncertainty at a couple different levels: first in the system’s ability to reliably detect
an attacker, then in the system’s ability to make sure that its deceptive signal is
seen and correctly processed by the attacker. Another related direction is to use
the cognitive model to adapt not only the deceptive signal when an attacker is
detected but also the initial coverage scheme. This is particularly important since
the effectiveness of the deceptive signal is partly conditioned on the adequacy
of the coverage. For instance, for the portion of attackers that seems bent to
always attacking, the coverage needs to be effective enough in anticipating the
locations of their attacks so as to drive their expected gains into negative territory.
Fortunately, the cognitive model already predicts the attacker’s target, so it can
be used directly to adapt coverage in a manner similar to adapting the deceptive
signaling.

80 C. Lebiere et al.

6 Conclusion

In this chapter, we have introduced the concept of personalized cognitive models
and how they can be used to inform deceptive signaling. We provided a general
introduction to cognitive modeling techniques and concepts including general goals,
capabilities and limitations, cognitive architectures, and instance-based learning. We
showed that cognitive models’ reliance on generative mechanisms has predictive
capabilities beyond those of purely data-driven techniques such as machine learning
that can be used to evaluate the effectiveness of cyber defense techniques without
requiring full implementation and test. Cognitive models can account for the
entire range of human performance, including levels of expertise and individual
differences. Techniques such as knowledge-tracing and model-tracing can align a
specific cognitive model against an individual behavior trace, enabling personalized
interventions. Because cognitive models are analytically tractable, they can guide,
inform, and optimize the design of cyber deception techniques. We illustrated
these concepts using an insider attacking game meant to abstract the dynamics and
decision-making characteristics of real-world cyber defense. Future research direc-
tions in the development and application of cognitive models to cyber deception for
defense offer the promise of scaling this approach to real-world problems.

Acknowledgments This research was sponsored by the Army Research Office and accomplished
under MURI Grant Number W911NF-17-1-0370.

References

1. Abbasi, Y.D., Ben-Asher, N., Gonzalez, C., Kar, D., Morrison, D., Sintov, N., Tambe, M.:
Know your adversary: insights for a better adversarial behavioral model. In: Proceeding of
the 38th Annual Conference of Cognitive Science Society, pp. 1391–1396. Cognitive Science
Society, Austin (2016)

2. Anderson, J.R., Lebiere, C.: The Atomic Components of Thought. Erlbaum, Mahwah (1998).
https://doi.org/10.4324/9781315805696

3. Anderson, J.R., Boyle, C.F., Yost, G.: The geometry tutor. J. Math. Behav. 5, 5–20 (1986)
4. Anderson, J.R., Corbett, A.T., Koedinger, K., Pelletier, R.: Cognitive tutors: lessons learned. J.

Learn. Sci. 4, 167–207 (1995). https://doi.org/10.1207/s15327809jls0402_2
5. Anderson, J.R., Bothell, D., Byrne, M.D., Douglass, S., Lebiere, C., Qin, Y.: An integrated

theory of the mind. Psychol. Rev. 111(4), 1036–1060 (2004). https://doi.org/10.1037/0033-
295X.111.4.1036

6. Battigalli, P.: Rationalization in signaling games: theory and applications. Int. Game Theory
Rev. 8(01), 67–93 (2006). https://doi.org/10.2139/ssrn.635244

7. Bondi, E., Oh, H., Xu, H., Fang, F., Dilkina, B., Tambe, M.: To signal or not to signal: exploit-
ing uncertain real-time information in signaling games for security and sustainability. Proc.
AAAI Conf. Artif. Intell. 34(02), 1369–1377 (2020). https://doi.org/10.1609/aaai.v34i02.5493

8. Cho, I.-K., Kreps, D.M.: Signaling games and stable equilibria. Q. J. Econ. 102(2), 179–221
(1987). https://doi.org/10.2307/1885060

9. Cooney, S., Vayanos, P., Nguyen, T.H., Gonzalez, C., Lebiere, C., Cranford, E.A., Tambe,
M.: Warning time: optimizing strategic signaling for security against boundedly rational

https://avxhm.se/blogs/hill0

-563 41328 a -563 41328 a

 11223 44649 a 11223
44649 a

 23769 46863 a 23769
46863 a

 9414 50184 a 9414 50184
a

 19286 53505 a 19286 53505 a

 2416 55718 a 2416 55718 a

Cognitive Modeling for Personalized, Adaptive Signaling for Cyber Deception 81

adversaries. In: Proceedings of the 18th International Conference on Autonomous Agents and
Multiagent Systems (AAMAS), pp. 1892–1894. IFAAMS, Montreal (2019)

10. Cooney, S., Wang, K., Bondi, E., Nguyen, T., Vayanos, P., Winetrobe, H., Cranford, E. A.,
Gonzalez, C., Lebiere, C., Tambe, M.: Learning to signal in the goldilocks zone: improving
adversary compliance in security games. In: Proceedings of the Joint European Conference on
Machine Learning and Knowledge Discovery in Databases. Wurzburg (2019)

11. Cranford, E. A., Lebiere, C., Gonzalez, C., Cooney, S., Vayanos, P., Tambe, M.: Learning about
cyber deception through simulations: Predictions of human decision making with deceptive
signals in Stackelberg Security Games. In: Proceedings of the 40th Annual Conference of the
Cognitive Science Society, pp. 258–263. Madison (2018)

12. Cranford, E. A., Gonzalez, C., Aggarwal, P., Cooney, S., Tambe, M., Lebiere, C.: Towards
personalized deceptive signaling for cyber defense using cognitive models. In: Proceedings of
the 17th Annual Meeting of the International Conference on Cognitive Modeling. Montreal
(2019)

13. Cranford, E.A., Gonzalez, C., Aggarwal, P., Cooney, S., Tambe, M., Lebiere, C.: Toward
personalized deceptive signaling for cyber defense using cognitive models. Top. Cogn. Sci.
12, 992–1011. Wiley-Blackwell (2020). https://doi.org/10.1111/tops.12513

14. Cranford, E.A., Gonzalez, C., Aggarwal, P., Tambe, M., Lebiere, C.: What attackers know and
what they have to lose: framing effects on cyber-attacker decision making. Proc. Hum. Factors
Ergon. Soc. Annu. Meet. 64(1), 456–460 (2020). https://doi.org/10.1177/1071181320641102

15. Cranford, E.A., Gonzalez, C., Aggarwal, P., Tambe, M., Cooney, S., Lebiere, C.: Towards a
cognitive theory of cyber deception. Cogn. Sci. 45, e13013, 1–28. Wiley-Blackwell (2021).
https://doi.org/10.1111/cogs.13013

16. Gonzalez, C.: The boundaries of instance-based learning theory for explaining decisions from
experience. Prog. Brain Res. 202, 73–98 (2013). https://doi.org/10.1016/B978-0-444-62604-
2.00005-8

17. Gonzalez, C., Dutt, V.: Instance-based learning: integrating decisions from experience in
sampling and repeated choice paradigms. Psychol. Rev. 118(4), 523–551 (2011). https://
doi.org/10.1037/a0024558

18. Gonzalez, C., Lebiere, C.: Instance-based cognitive models of decision making. In: Zizzo,
D., Courakis, A. (eds.) Transfer of Knowledge in Economic Decision-Making, pp. 148–165.
Macmillan, New York (2005)

19. Gonzalez, C., Lerch, J.F., Lebiere, C.: Instance based learning in dynamic decision making.
Cogn. Sci. 27(4), 591–635 (2003). https://doi.org/10.1007/978-3-319-11391-3_6

20. Gonzalez, C., Ben-Asher, N., Martin, J.M., Dutt, V.: A cognitive model of dynamic cooperation
with varied inter-dependency information. Cogn. Sci. 39(3), 457–495 (2015). https://doi.org/
10.1111/cogs.12170

21. Juvina, I., Saleem, M., Martin, J.M., Gonzalez, C., Lebiere, C.: Reciprocal trust mediates deep
transfer of learning between games of strategic interaction. Organ. Behav. Hum. Decis. Process.
120(2), 206–215 (2013). https://doi.org/10.1016/j.obhdp.2012.09.004

22. Kiekintveld, C., Lisy, V., Pibil, R.: Game-theoretic foundations for the strategic use of
honeypots in network security. In: Jajodia, S., Shakarian, P., Subrahmanian, V., Swarup, V.,
Wang, C. (eds.) Cyber Warfare, pp. 81–101. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-14039-1_5

23. Lebiere, C.: A blending process for aggregate retrievals. In: Proceedings of the 6th ACT-R
Workshop. George Mason University, Fairfax (1999)

24. Lebiere, C., Wallach, D., West, R. L.: A memory-based account of the prisoner’s dilemma
and other 2 × 2 games. In: Proceedings of the Third International Conference on Cognitive
Modeling, pp. 185–193. Groningen (2000)

25. Lebiere, C., Gonzalez, C., Martin, M.: Instance-based decision making model of repeated
binary choice. In: Proceedings of the Eighth International Conference on Cognitive Modeling,
pp. 67–72. Ann Harbor (2007). https://doi.org/10.1184/R1/6571190.v1

26. Lebiere, C., Pirolli, P., Thomson, R., Paik, J., Rutledge-Taylor, M., Staszewski, J., Anderson,
J.R.: A functional model of sensemaking in a neurocognitive architecture. Comput. Intell.
Neurosci. 2013, 921695 (2013). https://doi.org/10.1155/2013/921695

 14673 17405 a 14673
17405 a

 18053 20726
a 18053 20726 a

 -563 24046 a -563 24046 a

 18437 26260 a 18437 26260
a

 32220 29581 a 32220
29581 a

12635 36223 a 12635 36223 a

29283 38437 a 29283 38437 a

 8923 42865 a 8923 42865 a

 25964 46186 a 25964 46186 a

 11406 56148 a 11406 56148 a

 11694 59469 a 11694 59469 a

82 C. Lebiere et al.

27. Mokkonen, M., Lindstedt, C.: The evolutionary ecology of deception. Biol. Rev. 91(4), 1020–
1035 (2016). https://doi.org/10.1111/brv.12208

28. Pita, J., Jain, M., Ordónez, F., Portway, C., Tambe, M., Western, C., Kraus, S.: ARMOR
security for Los Angeles International Airport. In: Proceeding of the Twenty-Third AAAI
Conference on Artificial Intelligence, pp. 1884–1885. Chicago (2008)

29. Pita, J., Jain, M., Ordóñez, F., Tambe, M., Kraus, S., Magori, R.: Effective solutions for real-
world Stackelberg games: when agents must deal with human uncertainties. In: Proceedings
of 8th International Conference on Autonomous Agents and Multiagent Systems (AAMAS)
(2009)

30. Rowe, N.C., Rrushi, J.: Introduction to Cyberdeception. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-41187-3

31. Sanner, S., Anderson, J.R., Lebiere, C., Lovett, M.C.: Achieving efficient and cognitively plau-
sible learning in backgammon. In: Proceedings of the Seventeenth International Conference
on Machine Learning. Morgan Kaufmann, San Francisco (2000). https://doi.org/10.1184/R1/
6613298.v1

32. Schlenker, A., Thakoor, O., Xu, H., Fang, F., Tambe, M., Tran-Thanh, L., Vayanos, P.,
Vorobeychik, Y.: Deceiving cyber adversaries: a game theoretic approach. In: Proceedings of
the 17th AAMAS (IFAAMAS), pp. 892–900. Stockholm (2018)

33. Shieh, E., An, B., Yang, R., Tambe, M., Baldwin, C., Meyer, G.: PROTECT: a deployed
game theoretic system to protect the ports of the United States. In: Proceedings of the 11th
International Conference on Autonomous Agents and Multiagent Systems (AAMAS), pp. 13–
20. Valencia (2012)

34. Simon, H.A.: Rational choice and the structure of the environment. Psychol. Rev. 63(2), 129–
138 (1956). https://doi.org/10.1037/h0042769

35. Sinha, A., Fang, F., An, B., Kiekintveld, C., Tambe, M.: Stackelberg security games: looking
beyond a decade of success. In: Proceedings of the 27th International Joint Conference on
Artificial Intelligence, pp. 5494–5501. Stockholm (2018). https://doi.org/10.24963/ijcai.2018/
775

36. Tambe, M.: Security and Game Theory: Algorithms, Deployed Systems, Lessons Learned.
Cambridge University Press, Cambridge (2011). https://doi.org/10.1017/CBO9780511973031

37. Tesauro, G.: Connectionist learning of expert backgammon evaluations. In: Proceedings of the
Fifth International Conference on Machine Learning, pp. 200–206. University of Michigan,
Ann Arbor (1988). https://doi.org/10.1016/B978-0-934613-64-4.50026-8

38. Thomson, R., Lebiere, C., Bennati, S.: Human, model, and machine: a complementary
approach to big data. In: Association for Computing Machinery Proceedings of the IARPA
Workshop on Human Centered Big Data Research, pp. 27–31. Raleigh (2014). https://doi.org/
10.1145/2609876.2609883

39. Thomson, R., Cranford, E.A., Lebiere, C.: Achieving active cybersecurity through agent-based
cognitive models for detection and defense. In: Proceedings of the 1st International Conference
on Autonomous Intelligent Cyber-defence Agents (AICA 2021) (2021)

40. West, R.L., Lebiere, C.: Simple games as dynamic, coupled systems: randomness and other
emergent properties. J Cogn Syst Res. 1(4), 221–239 (2001). https://doi.org/10.1016/S1389-
0417(00)00014-0

41. Xu, H., Rabinovich, Z., Dughmi, S., Tambe, M.: Exploring information asymmetry in two-
stage security games. In: Proceedings of the National Conference on Artificial Intelligence, pp.
1057–1063. Austin (2015)

https://avxhm.se/blogs/hill0

 4533 800 a 4533 800 a

 29283 9656 a 29283 9656 a

 24604 14084 a 24604
14084 a

 4063 25153 a 4063 25153
a

 21494 28474 a 21494 28474
a

 17711 31795 a 17711 31795 a

 6754 35116 a 6754 35116 a

 29283 38437 a 29283 38437
a

 23245 45079 a 23245
45079 a

Deceptive Signaling: Understanding
Human Behavior Against Signaling
Algorithms

Palvi Aggarwal, Edward A. Cranford, Milind Tambe, Christian Lebiere,
and Cleotilde Gonzalez

1 Introduction

Security resources are often limited and, therefore, require careful planning to
effectively use these resources. Just like in the physical world, in the cyber world
defenders cannot protect all the resources in the network and they must deploy
their limited defense resources effectively. Stackelberg Security Games (SSG) have
been widely used to address this critical allocation of limited defense resources
in airports, wildlife protection, etc. [10, 13, 14]. The Stackelberg Security Game
(SSG) models the interaction between a leader (i.e., defender) and a follower (i.e., an
attacker) and helps security agencies optimally allocate limited resources using the
Strong Stackelberg Equilibrium (SSE) to mitigate security threats [15]. However,
the optimal allocation of defense resources in naturalistic settings can be costly. Xu
et al.[15] proposed an extension of the SSG framework to incorporate signaling,
a security mechanism that can be cheaper and more flexible to deploy. With
signaling, defenders strategically reveal some information about the defense strategy
to the attacker to influence their decision-making without actually reallocating their
defenses [1, 2]. Xu et al.[15] present the Strong Stackelberg Equilibrium with

P. Aggarwal (�)
Carnegie Mellon University, Pittsburgh, PA, USA

Department of Computer Science, University of Texas at El Paso, El Paso, TX, USA
e-mail: paggarwal@utep.edu

E. A. Cranford · C. Lebiere · C. Gonzalez
Carnegie Mellon University, Pittsburgh, PA, USA
e-mail: cranford@cmu.edu; cl@cmu.edu; coty@cmu.edu

M. Tambe
University of Southern California, Los Angeles, CA, USA
e-mail: othakoor@usc.edu

© This is a U.S. government work and not under copyright protection in the U.S.;
foreign copyright protection may apply 2023
T. Bao et al. (eds.), Cyber Deception, Advances in Information Security 89,
https://doi.org/10.1007/978-3-031-16613-6_5

83

 31368 2385 a 31368 2385 a

 885 47989 a 885 47989 a

paggarwal@utep.edu
paggarwal@utep.edu

 885 51863 a 885 51863
a

cranford@cmu.edu
cranford@cmu.edu

 8650 51863 a 8650 51863 a

cl@cmu.edu
cl@cmu.edu

 13906 51863 a 13906
51863 a

coty@cmu.edu
coty@cmu.edu

 885 55738 a 885 55738
a

othakoor@usc.edu
othakoor@usc.edu
https://doi.org/10.1007/978-3-031-16613-6_5
https://doi.org/10.1007/978-3-031-16613-6_5
https://doi.org/10.1007/978-3-031-16613-6_5
https://doi.org/10.1007/978-3-031-16613-6_5
https://doi.org/10.1007/978-3-031-16613-6_5
https://doi.org/10.1007/978-3-031-16613-6_5
https://doi.org/10.1007/978-3-031-16613-6_5
https://doi.org/10.1007/978-3-031-16613-6_5
https://doi.org/10.1007/978-3-031-16613-6_5
https://doi.org/10.1007/978-3-031-16613-6_5
https://doi.org/10.1007/978-3-031-16613-6_5

84 P. Aggarwal et al.

Persuasion (peSSE) to optimally determine the type of signal to send (e.g., truthful
or deceptive) depending on the actual status of the defense in the asset being
protected. Theoretically, the use of signals improves the defender’s utility against
a perfectly rational attacker compared to strategies that do not use signaling. For
a given target, the peSSE finds the optimal combination of deception (sending a
deceptive message that the target is covered when it is not) and truth-telling (sending
a truthful message that the target is covered) so that the attacker continues to believe
the bluff. The goal of the peSSE is to reduce attacks on uncovered targets. Attackers
earn a reward for successful attacks, suffer a loss for failed attacks, and earn zero for
withdrawing. When a target is covered, the peSSE will always send a true signal.
When uncovered, the peSSE will send a deceptive signal with a probability that
brings the attacker’s expected value of attacking, given a signal, to zero. This makes
it equal to the utility of withdrawing the attack, and, based on standard game-
theoretic assumptions of perfect rationality, the attacker will break ties in favor of
the defender and withdraw.

In past research, we have proposed that peSSE is also suitable for cyber defense
[8], where optimizing the probability of sending a deceptive signal can mitigate
attacks on uncovered targets with little overhead. However, peSSE is based on
the assumption of the attacker’s perfect rationality, while humans exhibit, at best,
bounded rationality [12]. To address this weakness of peSSE, researchers have
begun to develop signaling algorithms for security against boundedly rational
attackers [3]. However, these algorithms do not offer a substantial improvement over
the peSSE in terms of reducing attacks and minimizing the loss of the defender. The
main reason is that these algorithms assume rational behavior as specified by game
theory optima such as Nash equilibria and human behavior systematically deviates
from those theoretical descriptions. Human subjects exhibit learning –they do not
generally compute the equilibria based on perfect knowledge of the interaction
but rather have to painstakingly accumulate the information through experience
and then make satisficing decisions by limited cognitive means. These deviations
typically manifest themselves through systematic cognitive biases that reflect the
interaction between limited cognitive mechanisms and the statistics of the task.
Additionally, human behavior is dominated by individual differences in knowledge
and capacity that manifest themselves as substantial variations in behavior.

To further address the weakness of peSSE, Gonzalez, Aggarwal, Cranford, and
Lebiere [8] proposed a research framework for dynamic, personalized deception for
cyber deception. This framework implements SSG algorithms for the distribution
of limited defense resources with signaling theory (e.g., peSSE) to gain insights
into human behavior from human-in-the-loop experiments, and cognitive modeling
using instance-based learning theory (IBLT) to create personalized defense algo-
rithms.

Using the framework proposed by Gonzalez et al. [8], in this chapter, we evaluate
various signaling algorithms that consider rational human behavior and compare
them with non-signaling algorithms. In addition, we compare the rational signaling
algorithm against algorithms that consider bounded rationality in human behavior.

https://avxhm.se/blogs/hill0

Deceptive Signaling: Understanding Human Behavior Against Signaling Algorithms 85

This chapter will summarize the results of various human experiments conducted to
evaluate signaling algorithms.

2 Insider Attack Game

Insider Attack Game (IAG) is an online game that was developed to replicate a
real-world scenario in the laboratory [4]. Following the two-stage SSG scenario,
the IAG involves two stages. In the first stage, the defenders protect the nodes with
limited resources, and in the second stage, the defenders send deceptive signals to
the confused attacker. The IAG involves six nodes, and the defender could only
protect two nodes. In the IAG, human participants play the role of employees
who are insider attackers and plan to gain points by attacking various nodes.
However, two security analysts (i.e., “defenders”) monitor the computers. Attackers
can earn points if they avoid the defenders but lose points if they are caught.
Strong Stackelberg Equilibrium (SSE) optimizes the allocation of defenders and
provides the monitoring probability (m-prob) of each computer based on its reward
and penalty values [14]. An attacker observes the information on the computers
and makes a move by selecting a computer to attack. In the second stage, after a
computer is selected, defenders use the signaling techniques to strategically reveal
potentially deceptive information to the attacker about whether the computer is
being monitored [15]. The attacker follows by deciding whether to continue the
attack or withdraw. A screenshot of the task interface is shown in Fig. 1. Attackers
perform four rounds of 25 trials each, following an initial practice round of five
trials. For each round, attackers are presented with six new computer targets,
each with a different payoff (reward or penalty) structure. On a given trial, the
two defenders monitor one computer each. Attackers can view information that
describes the reward and penalty values of each target, as well as the monitoring
probability (i.e., the average proportion of trials that the target is monitored). This
information is provided to participants assuming that attackers are well prepared for
the attack and gathered this information in the reconnaissance phase.

In each trial, attackers first select one of the targets to attack. After selection,
they are presented with a signal (truthful or deceptive) on whether the computer is
being monitored (Fig. 1b). If the message indicates that the computer is monitored,
then the signal is present; otherwise, it is absent. The attacker must then decide
whether to continue or withdraw the attack. An attack is considered successful and
the attacker gain associated rewards if the computer was not monitored, otherwise,
the attacker loses points. If attackers choose to withdraw the attack, they will receive
zero points. Table 1 shows the rewards, penalties, and monitoring probabilities (m-
prob) for each computer in each round. The monitoring probabilities for each target
are derived by computing the SSE, which allocates defenses across a round in such a
manner that the expected value of attacking each computer is positive and all equal.
Each attacker experiences the same coverage and signaling schedule throughout the
game. That is, the SSE allocates defenses across the 25 trials for each round, and so
predetermines which targets are monitored during each trial.

86 P. Aggarwal et al.

Fig. 1 Insider Attack Game (a) Interface presenting 6 nodes and information on each node and
(b) presenting signal message

Table 1 Payoff structure for each target in each round

Round Target 1 Target 2 Target 3 Target 4 Target 5 Target 6

Round 1 [2, .−1, 0.22] [8, .−5, 0.51] [9, .−9, 0.42] [9, .−10, 0.40] [2, .−6, 0.08] [5, .−5, 0.36]

Round 2 [5, .−3, 0.41] [8, .−5, 0.48] [7, .−6, 0.41] [8, .−9, 0.37] [5, .−7, 0.27] [2, .−4, 0.05]

Round 3 [3, .−3, 0.30] [9, .−4, 0.60] [6, .−6, 0.40] [5, .−8, 0.29] [3, .−6, 0.20] [2, .−2, 0.20]

Round 4 [4, .−3, 0.37] [6, .−3, 0.51] [7, .−7, 0.40] [5, .−10, 0.24] [5, .−9, 0.26] [3, .−4, 0.23]

Note 1 The first number in brackets is the reward, the second number is the penalty, and the
third is the probability that the computer is being monitored on any given trial, [payment, penalty,
m-prob]

3 Signaling Algorithms

Research on Stackelberg Security Games (SSGs) led to the development of algo-
rithms that have greatly improved physical security systems (e.g., protecting ports,
scheduling air marshals, and mitigating poachers) through the optimal allocation
of limited defense resources [9, 11, 13, 14]. Xu et al. [15] extended these models
by incorporating elements of signaling, in which a defender (sender) strategically
reveals information about their strategy to the attacker (receiver) to influence the

https://avxhm.se/blogs/hill0

Deceptive Signaling: Understanding Human Behavior Against Signaling Algorithms 87

Table 2 Signaling algorithms

Deception Algorithm Signal on Attacker type Adaptive

No-signal peSSE None Rational Non-adaptive

No-signal Epsilon rationality None Rational Non-adaptive

1-sided peSSE Uncovered nodes Rational Non-adaptive

1-sided peSSE-FI Uncovered nodes Rational Non-adaptive

1-sided Epsilon rationality Uncovered nodes Rational Non-adaptive

1-sided Decision tree Uncovered nodes Boundedly rational Adaptive

1-sided Cognitive signaling Uncovered Boundedly rational Personalized

2-sided peSSE Both Rational Non-adaptive

2-sided Decision tree Both Boundedly rational Adaptive

2-sided Neural network Both Boundedly rational Adaptive

2-sided Epsilon rationality Both Rational Non-adaptive

attacker’s decision-making [1, 2]. Their solution, the Strong Stackelberg Equilib-
rium with Persuasion (peSSE), improves defender utility against a perfectly rational
attacker compared to strategies that do not use a signaling. For a given target,
the peSSE finds the optimal combination of deceptive and truthful signals, so the
attacker continues to believe the signal.

Table 2 summarizes the algorithms that we have used in experimental settings,
particularly in the insider attack game (see next section). IAG was deployed under
several experimental conditions to assess the effectiveness of deceptive signals
in attack decision-making. The table highlights the high-level feature differences
between defense algorithms. The level of signaling was varied at three levels: no-
signal, signal uncovered nodes (1-sided signaling), and signals on both covered
and uncovered nodes (2-sided signaling). Our research approach also considers
the attacker type, i.e., signaling algorithms for both rational attacks and boundedly
rational attackers. Finally, the algorithms vary between different levels of adaptabil-
ity: non-adaptive, i.e., the signaling algorithm does not consider the past actions
of the attacker, adaptive, i.e., learns the distribution of the attacker’s actions and
personalized, i.e., adapt the signal based on the individual attacker. Below is a brief
summary of these algorithms.

No-signaling Algorithm is a baseline condition in which no signal is used.
A signal is never presented to the attacker, regardless of whether a defender is
present or absent (i.e., no deception was used). The no-signaling algorithm uses
Stackelberg Security Games and calculates Strong Stackelberg Equilibrium (SSE)
[15] to allocate defenders in the network.

1-sided Deception uses the Strong Stackelberg Equilibrium with Persuasion
(peSSE) algorithm [15]. This algorithm improves defense against perfectly rational
attackers compared to strategies that do not use a signaling. For a given target,
the peSSE finds the optimal combination of bluffing (sending a deceptive message
that the target is monitored when it is not) and truth-telling (sending a truthful
message that the target is covered) so that a rational attacker would not attack in

88 P. Aggarwal et al.

the presence of a signal. The peSSE algorithm exploits the information asymmetry
between the defender and the attacker. Defenders have more accurate information
about the network, whereas attackers could only observe the mixed strategy. Xu et
al.[15] exploited this asymmetry by strategically injecting information to attackers
through signaling. In this technique, the defender strategically reveals information
about their strategy to the attacker to influence the attacker’s decision-making. The
peSSE signaling scheme presents signals with probabilities calculated according
to the peSSE algorithm, as described above. The peSSE-FI (Full-Information)
signaling scheme extends the assumption of perfect rationality by ensuring that
attackers have full knowledge of the probabilities of deception available to them,
in addition to monitoring probabilities. In another version of peSSE, Epsilon
Rationality defenders consider an epsilon rational model for resource allocation.
All the algorithms mentioned above are non-adaptive, as they do not consider the
actions of the attacker to generate signals. A Decision Tree algorithm predicts the
attacker’s actions to generate signals. In the 1-sided version of this algorithm, the
decision tree is considered adaptive, since the algorithm relies on attack prediction
to generate defense.

2-sided Deception was first introduced by Cooney et al. [3]. They extended the
peSSE by considering deceptive signals both on the covered and on the uncovered
nodes. Cooney et al. [3] developed a 2-way peSSE algorithm which lowers the
overall frequency of showing a signal and introduces uncertainty for the rational
attacker when no signal is shown. Cooney et al. [3] also focused on increasing
the compliance of boundedly rational attackers by manipulating the frequency of
signals. Two additional ML models, decision tree (DT) and a neural network
(NN), were used for identifying the Goldilocks zone and generating signals against
a boundedly rational attacker.

A Cognitive Signaling algorithm is a different type of algorithm from the
other algorithms in this list. This was developed by Cranford et al. [5, 6] using
the attacker’s “cognitive clone” in the insider attack game. A cognitive clone is a
cognitive model that aims at emulating the decisions a human makes in a task. This
model generates human attack predictions and these predictions are used to modify
the signaling strategy dynamically and individually (i.e., based on the particular
actions of an individual attacker) [6, 7]. The details of personalized and adaptive
training are discussed in chapter 4 of this book.

4 Methods

4.1 Participants

One thousand seventy-nine participants participated in 11 experiments. The demo-
graphics of these participants is shown in Table 3. All participants were recruited
through Amazon Mechanical Turk (mTurk) and had a 90% or higher approval rate

https://avxhm.se/blogs/hill0

Deceptive Signaling: Understanding Human Behavior Against Signaling Algorithms 89

Table 3 Demographics Condition Sample size Age Gender (Female%)

NS 97 35.48 40%

NS-ER 99 33.94 28%

1-Sided-psse 100 34.55 42%

1-Sided-psse_FI 96 35.44 46%

1-Sided-DT_FI 98 36.02 45%

1-Sided-ER_FI 96 35.81 39%

1-Sided-CogSig 99 35.80 44%

2-Sided-pesse_FI 99 33.63 48%

2-Sided-LR 100 36.69 49%

2-Sided-NN 99 35.82 36%

2-SidedDT 96 34.71 33%

with at least 100 Human Intelligence Tasks (HIT) approved, resided in the USA, and
had not participated in other conditions. Participants who completed the experiment
and submitted the completion code received $1 as a base payment. Participants
could earn a bonus of up to $ 4.50. We remove all participants for incomplete
or duplicate participation. Demographic data within each condition are shown in
Table 3.

4.2 Procedure

The experiment was conducted in Amazon Mechanical Turk. The experiment was
advertised as “A fun game of decision-making to help keep our systems safe!!”
Participants clicked the link of one of the experimental conditions and were
presented for the first time with a consent form and asked a few demographic
questions. After providing the informed consent, participants received instructions
on how to play the game. Participants were told that they would take on the role of
an employee in a company and that their goal was to steal proprietary information
by attacking computers. They could receive points for attacking computers that were
not monitored by one of the two defenders, as denoted by the number of yellow stars
displayed on the targets (see Fig. 1a), but could lose points for attacking computers
that were monitored by a defender, as denoted by the number of red stars displayed.
Participants were informed that they would earn $1 for completing the game and the
questionnaire and would earn an additional $0.02 per point accumulated throughout
the game up to a maximum of $4.50. After reading the instructions, the participants
answered a few questions to test their knowledge of how to play the game and
received feedback on the accuracy of their answers. After receiving the feedback,
they could proceed to the game.

Participants started playing a practice round of five trials to become familiar
with the interface and then played four rounds of the game for 25 trials per round.
The targets changed for each round as defined in Table 1. The location of the

90 P. Aggarwal et al.

targets within the display was randomly assigned between participants but did
not change within a round. Participants started a round by pressing a “continue”
button indicating that they were ready to begin. For each trial, participants began
by selecting one of the six targets with the click of a mouse. After clicking the
target, one of two messages was displayed depending on the coverage and signaling
schedule defined for the experimental condition (e.g., see Fig. 1b). One message
reads, “This computer is being monitored! Do you want to access this computer?”
if the computer was monitored or presented with a deceptive signal. The other
message reads, “Do you want to access this computer?” if the computer was not
monitored (in the No-Signal condition, this message was displayed every time
regardless of coverage, and participants were never warned that the computer was
being monitored). Participants responded by either clicking a “yes” or a “no” button.
If participants responded “yes” and continued the attack, then they received the
number of points denoted by the yellow stars if the target was not monitored but
lost the number of points denoted by the red stars if the target was monitored. The
total points earned in a round are displayed in the top right of the interface. If they
responded “no” and withdrew their attack, then they receive zero points. In the full-
information condition (psse-FI), for the second message above, participants were
also told, “X% of time this computer appears as ‘monitored’ the analyst is NOT
actually present.” Where X was replaced with the percent of the time the signal is
deceptive for that target.

After completing 25 trials, participants received feedback on their score for the
round and their cumulative score across rounds. At the end of the fourth round,
participants were provided their final score and then pressed an “ok” button to
continue a post-game survey of 10 questions. These data were not analyzed and are
not discussed further. After completing the survey, the participants were thanked
for their participation and given a completion code. Participants had to return to the
Mechanical Turk experiment website and enter their completion code to claim their
reward. Participants were paid the $1 base rate plus their earned bonuses within 24
h of completing the experiment.

5 Results

In the following sections, we analyze the performance of various defense algorithms
using two dependent variables: (1) the proportion of attack actions and (2) the utility
of the defenders. Defenders are assigned .−1 points if the attack was successful and
0 points if the attack was unsuccessful.

https://avxhm.se/blogs/hill0

Deceptive Signaling: Understanding Human Behavior Against Signaling Algorithms 91

5.1 Is Signaling Effective?

We analyzed the proportion of attack actions in signaling algorithms and no-
signaling algorithms. We combine all experimental conditions in signaling con-
ditions (i.e., 1-sided deception, 2-sided deception, and cognitive signaling) and
compare it with the no-signal condition (combining the decisions of both no-signal
conditions). Figure 2(left) shows the proportion of attack actions under signal and
no-signal conditions. We observe that when attackers were not provided any signals,
they attacked almost all the time. However, attackers reduced attack actions when
they provided signals, regardless of the type of signal or algorithm. The difference
between signal and no-signal condition was significant (0.95>0.77; .F(1, 956) =
205.8, p < 0.0003).

Next, we analyze the utility of the defender in no-signaling and signaling algo-
rithms. Figure 2(right) shows that defenders benefit from using signaling algorithms
compared to no-signaling algorithms. Defender’s utility was significantly higher in
signaling conditions (combined 1-sided, cognitive, and 2-sided signaling) compared
to no-signaling conditions (.−0.55>.−0.65; .F(1, 956) = 13.01, p < 0.0003).
Overall, the use of signaling algorithms reduced the proportion of attacks and
increased the defender’s utility. Therefore, signaling is an effective strategy to deter
cyberattacks. In the following sections, we evaluate different types of signaling
algorithms for their effectiveness against attackers.

Fig. 2 Defender’s Utility in different signaling and no-signaling algorithms

92 P. Aggarwal et al.

5.2 Effect of Rational 1-sided and 2-sided Signaling Against
No Signaling

We analyze the effect of 1-sided and 2-sided signaling against the no-signal
condition in Fig. 3. The proportion of attacks is significantly different in three
types of algorithms (.F(2, 763) = 57.57, p < 0.0001). The proportion of attack
actions in Fig. 3(left) shows that both 1-sided and 2-sided deception are effective
against the no-signal condition. Post hoc analyses using the Tukey HSD criterion
for significance indicated that the average proportion of attacks in 1-sided signal
condition is significantly lower (M = 0.82, SD = 0.21) than in the no-signal
algorithm (M = 0.98, SD = 0.05). Similarly, we found that the average proportion of
attacks in 2-sided signal condition is significantly lower (M = 0.76, SD = 0.18) than
in the no-signal algorithm (M = 0.98, SD = 0.05). We observe that when attackers
did not provide any signals, they attacked almost all the time. However, attackers
reduced attack actions when they were provided signals irrespective of the type of
signal or algorithm. We also found that the proportion of attacks was significantly
lower in 2-sided signal condition (M = 0.76, SD = 0.18) compared to the 1-sided
signal (M = 0.82, SD = 0.21).

Within the 1-sided deception condition, the proportion of attack actions is the
lowest in the 1-sided-psse algorithm. However, the post hoc analysis suggests that
there are no significant differences within 1-Sided signal algorithms. Within the
2-sided signal condition, the proportion of attacks is lowest in the 2-sided-NN

Fig. 3 Defender’s Utility in different signaling and no-signaling algorithms

https://avxhm.se/blogs/hill0

Deceptive Signaling: Understanding Human Behavior Against Signaling Algorithms 93

algorithm. Similar to the 1-sided signal condition, the post hoc analysis indicates
that there are no significant differences with 2-sided signaling algorithms. The
2-sided-NN algorithm (M = 0.73, SD = 0.18) produced less number of attacks
compared to the 1-sided-psse-FI (M = 0.80, SD = 0.18) and 1-sided-DT-FI (M =
0.85, SD = 0.15).

Defender’s Utility We analyzed the defender’s utility in various no-signaling and
signaling algorithms. Figure 3(right) shows that defenders benefit from using signal-
ing algorithms compared to those without signaling algorithms. Defenders’ losses
are significantly different in three types of algorithms (.F(2, 763) = 32.94, p <

0.0001). We observe that overall the defender’s utility for is lower for no-signal
condition (M.= −66.75, SD = 8.06) compared to 1-sided signaling (M.= −58.05,
SD = 14.62) and 2-sided signaling conditions (M.= −53.96, SD = 14.84).

We also compared the utility of the defenders within each panel of Fig. 3(right).
First, we compared the algorithms within 1-sided signaling algorithms. We observed
that the DU was significantly lower in the 1-sided-DT-FI algorithm (M.= −59.80,
SD = 8.44) compared to 1-sided-psse (M.= −54.19, SD = 14.49). Thus, the 1-sided-
DT algorithm was the worst among all 1-sided ML algorithms when compared
on the basis of defender’s utility. We also compared the algorithms within a 2-
sided deception panel and observed no statistical differences in DU between various
algorithms.

5.3 Adaptive Signaling Using Cognitive Models

In the above sections, we analyzed the effect of signaling using algorithms that
assume rational human behavior. We developed another algorithm for signaling that
adapts the proportion of signals based on the attacker’s actions. In this section,
we compare adaptive 1-sided signaling with the best algorithm in 1-sided signal
condition (i.e., 1-sided-psse) and 2-sided signal condition (i.e., 2-sided-NN). We
observe in Fig. 4(left) that cognitive signaling slightly reduced the proportion of
attacks compared to the 1-sided psse algorithm. However, we observed no statistical
difference between the two algorithms. The attacks in 1-sided cognitive signaling
are similar to the 2-sided-NN algorithm. Thus, adapting signals using cognitive
models is helpful, however, we need to address the limitations of the cognitive
model to further improve the performance of this algorithm. Future directions will
be discussed later in this chapter. We also analyzed the defender’s utility in three
algorithms in Fig. 4(right). Although, we observe that with a 1-sided cognitive
signaling algorithm, the defender’s utility slightly increased, however, the difference
was not significant. The defender’s utility is the highest in the 2-sided-NN algorithm,
however, this was not significantly different from 1-sided-pesse and 1-sided-CogSig
algorithms.

94 P. Aggarwal et al.

Fig. 4 Proportion of attacks and defender’s utility in no-signal, ER signaling and cognitive signing

5.4 Discussion

With limited resources, it is difficult to protect all assets in a network. In this
chapter, we showcase the effectiveness of deception in the form of signaling to
reduce attacks and increase the utility of the defender. We compared signaling
algorithms against no-signaling algorithms and observed that the proportion of
attacks was reduced by approximately 20%. Thus, signaling helps create deterrence
and reduce attack action. We evaluated various signaling algorithms, i.e., signaling
only on uncovered nodes (1-sided signaling) and signaling on both covered and
uncovered nodes (2-sided signaling). We observed that both 1-sided signaling
and 1-sided signaling algorithms were effective over the no-signaling algorithms.
Furthermore, 2-sided signaling reduced attacks even further compared to 1-sided
signaling algorithms. This indicates that by increasing the levels of uncertainty,
deceptive signals effectively deter attackers from attacking the network. We assume
that fixed amounts of deception may not work for all the attackers. Therefore, we
also conducted experiments using an adaptive 1-sided signaling algorithm that was
developed using a cognitive model [6]. The 1-sided cognitive signaling slightly
reduced the proportion of attacks and improved the defender’s utility, but the
difference was not significantly different from other 1-sided signaling algorithms.
The cognitive signaling algorithm could be improved by adapting the signals to
attacker actions or by creating uncertainty on the protected nodes as well. In the
future, we plan to improve the signaling scheme by considering the cognitive models
of humans in designing the signaling scheme.

https://avxhm.se/blogs/hill0

Deceptive Signaling: Understanding Human Behavior Against Signaling Algorithms 95

Acknowledgments This research was sponsored by the Army Research Office and accomplished
under grant number W911NF-17-1-0370 (MURI Cyberdeception). Some of the work discussed in
this chapter was sponsored by the Combat Capabilities Development Command Army Research
Laboratory and was accomplished under Cooperative Agreement Number W911NF-13-2-0045
(ARL Cyber Security CRA).

References

1. Battigalli, P.: Rationalization in signaling games: Theory and applications. Int. Game Theory
Rev. 8(01), 67–93 (2006)

2. Cho, I.K., Kreps, D.M.: Signaling games and stable equilibria. Q. J. Econ. 102(2), 179–221
(1987)

3. Cooney, S., Wang, K., Bondi, E., Nguyen, T., Vayano, P., Winetrobe, H., Cranford, E.A.,
Gonzalez, C., Lebiere, C., Tambe, Milind: Learning to signal in the goldilocks zone: Improving
adversary compliance in security games. In: Joint European Conference on Machine Learning
and Knowledge Discovery in Databases. Springer (2019)

4. Cranford, E.A., Lebiere, C., Gonzalez, C., Cooney, S., Vayanos, P., Tambe, M.: Learning about
cyber deception through simulations: Predictions of human decision making with deceptive
signals in Stackelberg security games. In: CogSci (2018)

5. Cranford, E.A., Gonzalez, C., Aggarwal, P., Cooney, S., Tambe, M., Lebiere, C.: Towards
personalized deceptive signaling for cyber defense using cognitive models. In: 17th Annual
Meeting of the International Conference on Cognitive Modelling, Montreal, CA (2019)

6. Cranford, E.A., Lebiere, C., Aggarwal, P., Gonzalez, C., Tambe, M.: Adaptive cyber decep-
tion: Cognitively-informed signaling for cyber defense. In: Proceedings of the 53rd Hawaii
International Conference on System Sciences (submitted). IEEE (2020)

7. Cranford, E.A., Gonzalez, C., Aggarwal, P., Tambe, M., Cooney, S., Lebiere, C.: Towards a
cognitive theory of cyber deception. Cognitive Science 45(7), e13013 (2021)

8. Gonzalez, C., Aggarwal, P., Lebiere, C., Cranford, E.: Design of dynamic and personalized
deception: A research framework and new insights (2020)

9. Pita, J., Jain, M., Ordónez, F., Portway, C., Tambe, M., Western, C., Paruchuri, P., Kraus, S.:
Using game theory for Los Angeles airport security. AI Magazine 30(1), 43–43 (2009)

10. Pita, J., Jain, M., Tambe, M., Ordóñez, F., Kraus, S.: Robust solutions to Stackelberg
games: Addressing bounded rationality and limited observations in human cognition. Artificial
Intelligence 174(15), 1142–1171 (2010)

11. Shieh, E., An, B., Yang, R., Tambe, M., Baldwin, C., DiRenzo, J., Maule, B., Meyer,
G.: Protect: A deployed game theoretic system to protect the ports of the United States.
In: Proceedings of the 11th international conference on autonomous agents and multiagent
systems, vol. 1, pp. 13–20. Citeseer (2012)

12. Simon, H.A.: Rational choice and the structure of the environment. Psychological Review
63(2), 129–138 (1956)

13. Sinha, A., Fang, F., An, B., Kiekintveld, C., Tambe, M.: Stackelberg security games: Looking
beyond a decade of success. In: IJCAI, pp. 5494–5501 (2018)

14. Tambe, M.: Security and Game Theory: Algorithms, Deployed Systems, Lessons Learned.
Cambridge University Press (2011)

15. Xu, H., Rabinovich, Z., Dughmi, S., Tambe, M.: Exploring information asymmetry in two-
stage security games. In: Twenty-Ninth AAAI Conference on Artificial Intelligence (2015)

Optimizing Honey Traffic Using Game
Theory and Adversarial Learning

Mohammad Sujan Miah, Mu Zhu, Alonso Granados, Nazia Sharmin,
Iffat Anjum, Anthony Ortiz, Christopher Kiekintveld, William Enck,
and Munindar P. Singh

1 Introduction

Advanced Persistent Threats (APTs) are a significant concern for enterprises. In
APT attacks, advanced adversaries take slow and deliberate steps over months
and even years to compromise critical resources (e.g., workstations and servers)
in a network. A key step in the kill chain of APTs is reconnaissance. Historically,
reconnaissance is largely active, for example, using network port scanning to iden-
tify which hosts are running which services. In response, many enterprises closely
monitor their networks for scanning attacks. However, passive reconnaissance
methods such as packet-sniffing and statistical traffic analysis are widely adopted
in identifying network weaknesses. Although advanced encryption techniques
limit the information available to traffic analysis, encrypted network traffic can
still have observable characteristics like packet sizes and inter-arrival times that
reveal useful information to attackers and is thus a potential threat for network
security [8, 21]. Sophisticated adversaries possess knowledge about communication

M. S. Miah · N. Sharmin · C. Kiekintveld (�)
Department of Computer Science, University of Texas at El Paso, El Paso, TX, USA
e-mail: msmiah@miners.utep.edu; nsharmin@miners.utep.edu; cdkiekintveld@utep.edu

M. Zhu · I. Anjum · W. Enck · M. P. Singh
Department of Computer Science, North Carolina State University, Raleigh, NC, USA
e-mail: mzhu5@ncsu.edu; ianjum@ncsu.edu; whenck@ncsu.edu; mpsingh@ncsu.edu

A. Granados
University of Arizona, Tucson, AZ, USA
e-mail: alonsog@email.arizona.edu

A. Ortiz
Microsoft AI for Good Research Lab, Redmond, WA, USA
e-mail: anthony.ortiz@microsoft.com

© This is a U.S. government work and not under copyright protection in the U.S.;
foreign copyright protection may apply 2023
T. Bao et al. (eds.), Cyber Deception, Advances in Information Security 89,
https://doi.org/10.1007/978-3-031-16613-6_6

97

https://avxhm.se/blogs/hill0

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-16613-6_6&domain=pdf

 885
44115 a 885 44115 a

11239 44115 a 11239 44115 a

22115 44115 a 22115 44115 a

 885 47989 a 885 47989
a

 8128 47989 a 8128 47989 a

 15424 47989 a 15424 47989
a

23032 47989 a 23032 47989 a

 885 51863 a 885 51863 a

 885 55738 a 885 55738 a

 -2016 61494 a -2016 61494 a

98 M. S. Miah et al.

types and maintain databases of well-known traffic patterns and protocols such as
UDP, TCP, VoIP, and ESP, among others. From the raw traffic, an adversary can
determine likely features of the source and destination without needing to decrypt
sensitive information. The adversary can also distinguish statistical characteristics
used for communication by different protocols. There are currently no perfect
methods to prevent traffic analysis completely.

Simultaneously, Software Defined Networking (SDN) technology is emerging
as a powerful primitive for enterprise network security. SDN offers a global
perspective on network communications between hosts. It can be used as an
enhanced tool to identify network scanning, provide flexible access control to
mitigate attackers bypassing defenses such as firewalls, and even prevent spoofing.
However, SDN technology leads to increased functionality within network elements
(e.g., switches), which makes them potential targets for attack. A compromised SDN
switch is particularly dangerous because it can perform reconnaissance passively. As
a result, defenders may have little or no indication that an APT is in progress.

In this chapter, we introduce our approach dubbed Snaz (for “snag and zap”) to
address the threat of passive network reconnaissance. Snaz uses honey traffic: fake
flows deceptively crafted to make a passive attacker think specific resources (e.g.,
workstations and servers) exist and have specific unpatched, vulnerable software.
Snaz assumes that the adversary knows about the possibility of honey traffic and
uses game theory to characterize how best to send honey traffic. For doing so,
we demonstrate how a defender can either successfully deflect an adversary or
deplete the adversary’s resources using an “optimal” amount of honey traffic. Here,
optimality means causing the least possible disruption to normal user operations.

We model this defender–attacker interaction as a two-player non-zero-sum
Stackelberg game. In this game, the defender sends honey traffic to confound the
adversary’s knowledge. However, if the defender sends too much honey traffic,
the network may become overloaded. In contrast, the adversary wishes to act on
information obtained using passive reconnaissance (e.g., a banner string indicating
that a server is running a vulnerable version of the Apache web server). However, if
the adversary acts on information in the honey traffic, it will unknowingly attack an
intrusion detection node and be discovered. Thus, the game presents an opportunity
to design an optimal strategy for defense.

Next, we present an empirical evaluation of the performance of our game model
solutions under different conditions, as well as the scalability of the algorithm and
some useful properties of the optimal solutions. Then, we show how we emulate
Snaz in Mininet [9] and show the network overhead that results from honey traffic.

The remaining sections in this chapter discuss obfuscation technique that
can effectively protect computer network infrastructure from attacks using traffic
analysis. We go through the vulnerabilities of network traffic and the techniques
that may be used to help attackers identify these flaws. Then, we introduce a novel
algorithm for obfuscating network traffics that obtains state-of-the-art performance,
i.e., is competitive with previous methods. The algorithm uses adversarial machine
learning techniques to find realistic small perturbations that can improve security

Optimizing Honey Traffic Using Game Theory and Adversarial Learning 99

and privacy against traffic analysis. Finally, we provide a comparative analysis
between our proposed approach and previous work.

2 Motivation and Related Work

Enterprise network administrators are increasingly concerned with Advanced Per-
sistent Threats (APTs). In APTs, adversaries first obtain a small foothold within the
network and then stealthily expand their penetration over the course of months and
sometimes years. The past decade has provided numerous examples of such targeted
attacks, e.g., Carbanak [16], OperationAurora [27]. Such attacks require significant
planning. Initially, adversaries identify attack vectors including (1) vulnerable
servers or hosts, (2) poorly configured security protocols, (3) unprotected creden-
tials, and (4) vulnerable network configurations. To do so, they leverage network
protocol banner grabbing, active port scanning, and passive monitoring [4, 24].
Examples of different types of desired information and corresponding attacks are
shown in Table 1.

Software Defined Networking (SDN) has the potential to address operational and
security challenges that large enterprise networks face [26]. SDN provides flexibility
to programmatically and dynamically re-configuring traffic forwarding within a
network [28] and provides opportunities for granular policy enforcement [23].
However, these more functional network switches form a large target for attackers
as they can provide a foothold to perform data plane attacks using advanced
reconnaissance and data manipulation and redirection [2]. Using one or more
compromised switches, an adversary can learn critical information to mount attacks,
including network topology and software and hardware vulnerabilities [5, 20].

Deception is an important tactic against adversary reconnaissance. A variety
of approaches have applied game-theoretic analysis to cyber deception [38, 51].
Many of these previous works have focused on how to effectively use honeypots
(fake systems) as part of network defense [7, 22, 39, 47]. This has included work

Table 1 Example of types of information used for attacks

Target type Analysis space Examples

Fingerprinting OS TTL, Packet Size, DF Flag,
SackOk, NOP Flag, Time
Stamp

Windows 2003 and XP

Server software, version,
service type

Default banners Apache HTTP 2.2, Windows
Server 2003

Network topology,
forwarding logic

Flow-rule update frequency,
controller-switch
communication

Lack of TLS adoption,
modified flow rules

Employee Credentials,
personal information

Server–client traffic header
and data

HTTP traffic, HTTPS traffic
with weak TLS/SSL

https://avxhm.se/blogs/hill0

100 M. S. Miah et al.

on signaling games where the goal is to make real and fake systems hard to
distinguish [29]. The work on security games (including games modeling both
physical and cybersecurity) focuses on deception to manipulate the beliefs of an
attacker [1, 19, 45, 49]. Another approach [42] proposes a game model of deception
in the reconnaissance phase of an attack, though they do not consider honey flows.
Stackelberg game models have been used to find optimal strategies for cyber-
physical systems [13].

Network traffic obfuscation is another way of deception that can effectively deal
with APT attacks. There are also numerous reasons why network administrators
need to use traffic obfuscation. For example, sometimes Internet resources may
become inaccessible due to an unavoidable circumstance, but an administrator may
want to meet performance benchmarks by shaping the network traffic. Several previ-
ous articles have proposed network obfuscation systems. Encryption and padding in
traffic features at a variety of levels, such as ciphertext formats, stateful protocol
semantics, and statistical properties, are effective ways of preventing statistical
traffic analysis [12, 40]. Guan et al. [17] show that sending dummy traffic with
real traffic (called packet padding) can manipulate an adversary’s observation to a
particular traffic pattern and efficiently camouflage network traffic. However, this
approach is usually inefficient and sometimes incurs immense network overhead.
Another approach is to pad real packets to make them uniform size instead of
creating a dummy packet, but it can also delay packet transmission. Wright et
al. [48] propose a convex optimization algorithm to modify real-time VoIP and
WEB traffic, which is optimal in terms of padding cost and reduces the accuracy
of different classifiers. Later, Ciftcioglu et al. [8] propose a water-filling optimizing
algorithm for optimal chaff-aided traffic obfuscation where packet morphing is
performed by adding either chaff bytes or chaff packets and showing that the
algorithm can maximize obfuscation given a chaff budget.

Machine learning techniques are quite common in classifying the various types
of IP traffic [33]. Bar-Yanai et al. [3] present a classifier that is robust to the
statistical classification of real-time encrypted traffic data. Mapping network traffic
from different applications to the preselected class of service (COS) is still a
challenging task. One approach uses predetermined statistical application signatures
of connections, sessions, and application-layer protocols to determine the COS class
for particular datagrams [10, 41].

Zander et al. [50] use unsupervised machine learning to classify unknown and
encrypted network protocols where flows are classified based on their network
characteristics. Though classification methods are effective for statistical traffic
analysis, many machine learning algorithms are vulnerable to adversarial attacks.
An attacker can generate adversarial samples by adding small perturbation to the
original inputs intent to mislead machine learning models [14, 15]. They also train
their own model with adversarial samples and transfer the samples to a victim model
in order to produce incorrect output by the victim classifier [48]. Currently, no
method is effective against adversarial examples [18, 34, 36]. Papernot et al. [36]
introduce adversarial sample crafting techniques that exploit adversarial sample
transferability across the machine learning.

Optimizing Honey Traffic Using Game Theory and Adversarial Learning 101

Several mathematical and ML methods for crafting adversarial example exploit
the gradient of the loss function or the target of classification [6, 14, 35, 37, 43].
Verma et al. [46] propose loss functions and the “Carlini–Wagner L2” (also
called CW) algorithm to craft network traffic using a post-processing operation
to the generated distributions. However, the proposed approach sometimes creates
invalid perturbations and distributions for each attack that do not match real-
world settings. But, in our method, we impose more generalized constraints in
generating adversarial network traffic samples; we generate a valid perturbation and
distribution for every test sample that results in a more robust attack than in previous
work.

3 Snaz Overview

Snaz is a deception system designed to mislead or delay passive reconnaissance
by an adversary. Snaz provides this deception using honey traffic that is precisely
controlled by the defender. The following sections will provide a high-level
overview of the system and threat model.

3.1 Snaz Architecture

Snaz uses honey traffic to mislead adversaries using passive network reconnais-
sance. This deception consists of network flows with fake information, which we
call honey flows. Traditionally, a network flow is defined as a 5-tuple: source IP,
source port, destination IP, destination port, and protocol (e.g., TCP). For simplicity,
we assume that honey flows include network flows in both directions to simulate real
network communication.

Honey flows can fake information in network flow identifiers. For example, a
honey flow can attempt to make the adversary believe a non-existent host has a
specific IP address or a host is running a server on a specific port. Due to the
flexible packet forwarding capabilities of SDN, the defender can route honey flows
through any path it chooses, e.g., to tempt an adversary that has compromised a
switch on a non-standard path. Honey flows can fake information in the packet
payload itself. For example, network servers often respond with a banner string
indicating the version of the software and sometimes even the OS version of the host.
Attackers often use this banner information to identify unpatched vulnerabilities on
the network. Honey flows can simulate servers with known vulnerabilities, making
it appear as if there are easy targets. If at any point the adversary acts on this
information (i.e., connects to a fake IP address), Snaz redirects the traffic to an
intrusion detection node. Since the intrusion detection node does not normally
receive network connections, the existence of any traffic directed toward it indicates
the presence of an adversary on the network.

https://avxhm.se/blogs/hill0

102 M. S. Miah et al.

Fig. 1 Snaz uses honey traffic to mislead adversaries

Figure 1 shows a simplified example of honey flows causing an adversary to
update its belief. The figure shows two real hosts: Host 1 is with vulnerability type
V 1, and Host 2 is with vulnerability type V 2. The adversary has compromised
Switch 2 and observes all packets passing through it. Without honey traffic, the
adversary can easily identify the vulnerabilities on the hosts (e.g., via banner strings)
and attack them. In the figure, Snaz simulates the existence of two fake hosts
(Host 3 and Host 4) using honey traffic. If the adversary is unaware of Snaz, it will
probabilistically attack either Host 3 or Host 4 and be quickly detected. However,
if the adversary is aware of Snaz (the scenario we consider in this chapter), it must
keep track of all real and fake vulnerability information. How the defender and
attacker act is the crux of our game-theoretic model in Sect. 3.3.

3.2 Threat Model and Assumptions

The adversary’s goal is to compromise networked resources, e.g., workstations
and servers, without detection. The adversary does not know what hosts are
on the network or which hosts have vulnerabilities. It must discover vulnerable
hosts using network reconnaissance. The adversary assumes that the defender
has deployed state-of-the-art intrusion detection systems that can identify active
network reconnaissance such as network port scanning. However, we assume the
adversary has gained a foothold on one or more network switches (an upper bound
of which is defined by the model). Using this vantage point, the adversary is able
to inspect all packets that flow through the compromised switches. In doing so, it
can learn (1) network topology and which port servers are listening to by observing

Optimizing Honey Traffic Using Game Theory and Adversarial Learning 103

network flow identifiers and (2) about the installed software versions by observing
server and client banner strings.

We assume the adversary can map between banner strings and known vulner-
abilities and their corresponding exploits. We conservatively assume this mapping
can occur on the switch or can be done without the knowledge of the defender.
We assume the adversary has the capability to initiate new network flows from the
switch while forging the source IP address, as response traffic will flow back through
the compromised switch and terminate as if it was delivered to the real host. Finally,
we assume that the adversary is rational and is aware of the existence of Snaz and
that honey traffic may be sent to fake hosts. However, the adversary does not know
the specific configuration of Snaz, such as the distribution of honey traffic.

We assume the defender’s network contains real hosts with exploitable vul-
nerabilities. The defender is aware of some, but not all of these vulnerabilities.
For example, the defender’s inventory system may indicate the existence of an
unpatched and vulnerable server, but due to production requirements, the server
is not yet patched. We further assume the defender can identify valuations of
each network asset and approximate the valuation of the assets to the attacker
(e.g., domain controllers that authenticate users are valuable targets). We assume
that the SDN controller and the applications running on the controller are part
of the trusted computing base (TCB). We further assume that the communication
between the SDN controller and uncompromised switches is protected and not
observable to the adversary (e.g., via SSL or an out-of-band control network). As
a result, the adversary cannot alter the controller configuration or forwarding logic
of uncompromised switches. Finally, we assume that the network utilization is not
near maximum capacity during normal operation. However, exceeding honey traffic
may cause congestion and cause network degradation.

3.3 Game Model

An important question we must answer to deploy Snaz effectively is how to
optimize the honey traffic to be created by Snaz, including how much traffic to
create of different types. This decision must balance many factors, including the
severity of different types of vulnerabilities, their prevalence on the network, and
the costs of generating different types of honey flows (e.g., the added network
congestion). In addition, a sophisticated APT attacker may be aware of the possible
use of this deception technique, so the decisions should be robust against optimal
responses to honey traffic by such attackers. Finally, we note that many aspects of
the environment can change frequently; for example, new zero-day vulnerabilities
may be discovered that require an immediate response, or the characteristics of the
real network traffic may change. Therefore, we require a method for making fast
autonomous decisions that can be adjusted quickly.

We propose a game-theoretic model to optimize the honey flow strategy for
Snaz. Our model captures several of the important factors that determine how flows

https://avxhm.se/blogs/hill0

104 M. S. Miah et al.

should be deployed against a sophisticated adversary, but it remains simple enough
that we can solve it for realistic problems in seconds (see Sect. 3.4 for details)
allowing us to rapidly adapt to changing conditions. Specifically, we model the
interaction as a two-player non-zero-sum Stackelberg game between the defender
(leader) and an attacker (follower) where the defender (Snaz) plays a mixed strategy
and the attacker plays pure strategy. This builds on a large body of previous work
that uses Stackelberg models for security [44], including cyber deception using
honeypots [39].

We now formally define the strategies and utilities of the players using the
notation listed in Table 2. We assume that the defender is using Snaz as a mitigation
for a specific set of i vulnerabilities that we label Vi . Every flow on the network
indicates the presence of at most one of these types of vulnerabilities in a specific
host. The real network traffic is characterized by the number of real flows Ri that
indicate vulnerability type Vi . The pure strategies for Snaz are vectors that represent
the number of honey flows that are created that indicate each type of vulnerability
Vi ; we write �ij to represent the marginal pure action of creating j flows of type
Vi . These fake flows do not need to interact with real hosts; they can advertise the
existence of fake network assets (i.e., honeypots). The defender can play a mixed
strategy that randomizes the number of flows of each type that are created, which we
denote by �. To keep the game finite, we define the maximum number of flows that
can be created of each type as Ri . The attacker’s pure strategy ai represents choosing
to attack a flow of type Vi or not to attack. We assume the attacker cannot reliably
distinguish real flow and honey flow, so an attack on a specific type corresponds to
drawing a random flow from the set of all real and fake flows of this type.

The utilities for the players depend on which vulnerability type the attacker
chooses, as well as on how many real and honey flows of that type are on the
network. An attack on a real flow will result in a higher value for the attacker than
on a honey flow of the same type and vice versa for the defender. Specifically, if the
attacker chooses type Vi , it gains a utility υ

a,r
i , which is greater than or equal to the

Table 2 Game notation

d Defender

a Attacker

Vi ∈ V Set of i types of vulnerabilities in the network

Ri Number of real flows indicating Vi

Hi Upper bound on the number of honey flows indicating Vi

�ij Action of selecting j ∈ [0, Hi] honey flows for Vi

� Defender’s mixed strategy as the marginal probabilities over {�i0, . . . , �iHi
}

Ci Cost of creating each honey flow that indicates Vi

υ
a,r
i υ

a,h
i The value the attacker gains from attacking a real or fake flow of type Vi

υ
d,r
i υ

d,h
i The value the defender loses from an attack against a real or fake flow of type Vi

ai Denotes the action of attacking a flow of type Vi where a0 is the no-attack action,
yielding 0 payoff

Optimizing Honey Traffic Using Game Theory and Adversarial Learning 105

value for attacking a honey flow of the same type υ
a,h
i (which may be negative or 0).

We assume that this component of the utility function is zero sum, so the defender’s
values are υ

d,r
i = −υ

a,r
i and υ

d,h
i = −υ

a,h
i . The defender’s utility function includes

a cost term Ci that models the marginal cost of adding each additional flow of type
Vi (for example, the additional network congestion which can vary depending on
the type of flow). If the defender plays strategy � and the attacker attacks the Vi ,
the defender’s expected utility is defined as follows:

Ud(�, i) = P r
i υ

d,r
i + (1 − P r

i)υ
d,h
i − Ch. (1)

Here, P r
i denotes the probability of attacking a vulnerability of type Vi which

can be calculated as follows:

RSMN(mc, P) =
∑

j∈{0,...,Hi }
�ij (Ri/(j + Ri)).

The overall cost Ch for playing � is given by Eq. 1:

Ch =
∑

i∈V

∑

j∈{0,...,Hi }
(�ij × j × Ci).

Analogously, the expected utility for the attacker is given by

Ua(�, i) = P r
i υ

a,r
i + (1 − P r

i)υ
a,h
i . (2)

3.3.1 Snaz Game Example

Consider a network with two types of vulnerabilities. Let the values be υa,r =
(10, 20) and υa,h = (−5,−10) and the cost of creating a honey flow indicating
each type of vulnerability be C = (1, 0.5). The total number of real vulnerabilities
for each type is R = (5, 5), and the upper bound on honey flows is H = (2, 3).
Thus, at most two honey flows of 1st vulnerability type and three honey flows of the
second vulnerability type can be created. Now, consider if the defender plays the
following strategy �:

https://avxhm.se/blogs/hill0

106 M. S. Miah et al.

In strategy �, the defender creates one honey flow 50% of the time and two
honey flows 50% of the time with a Type 1 vulnerability. The defender also creates
three honey flows 100% of the time with a Type 2 vulnerability. The attacker’s best
response is to attack vulnerability Type 2 with expected utility Ua(�, 2) = 8.75,
and the defender utility is Ud(�, 2) = −11.75.

3.3.2 Optimal Defender’s Linear Program

Our objective is to compute a Stackelberg equilibrium that maximizes the defender’s
expected utility, assuming that the attacker will also play its best response. To
determine the equilibrium of the game, we formulate a linear program (LP) where
the attacker’s pure strategy a is a binary variable. We create a variable for each
defender’s pure strategy �i,j , the action of creating j honey flows for Vi . The
following LP computes the defender’s optimal mixed strategy for each type of
vulnerability under the constraint that the attacker plays a pure strategy best
response:

max
i∈V

Ud(�, i) ai (3)

s.t. ai ∈ {0, 1}, �ij ∈ [0, 1]

Ua(�, i) ai ≥ Ua(�, i′) ai ∀ i, i′ ∈ V (4)

∑

j∈{0,...,Hi }
�ij = 1 ∀�i ∈ � (5)

∑

i∈V

ai = 1. (6)

In the above formulation, the unknown variables are the defender’s strategy
{�i0, . . . , �iHi

} for each �i ∈ � and the attacker’s action ai . Equation 3 is the
objective function of the LP that maximizes the defender’s expected utility. The
inequality in Eq. 4 ensures that the attacker plays a best response. Finally, Eq. 5
forces the defender’s strategy to be a valid probability distribution.

3.4 Simulations and Model Analysis

We now present some results of simulations based on our game-theoretic model,
as well as with an initial implementation of honey flow generation in an emulated
network environment. We show that our game theory model can produce solutions
that improve over simple baselines and can be calculated fast enough to provide

Optimizing Honey Traffic Using Game Theory and Adversarial Learning 107

Fig. 2 Simple Network Topology used for Mininet Simulation

solutions for realistic networks. We also examine how the optimal solutions change
based on the parameters of the model to better understand the structure of the
solutions and the sensitivity to key parameters of the decision problem.

3.4.1 Preliminary Testbed Evaluation

We have constructed a preliminary honey flow system in the emulated environment
of Mininet [30]. We want to show the possibility of generating plausible honey traffic
in an emulated network. And we want to evaluate the effects of the deception in a
more realistic context. We work on a small topology, as shown in Fig. 2. As shown
in the figure, we consider four real and two fake hosts.

Some additional parameters are as follows:

• Client 1 connects with Server 1, while Client 2 connects with Server 2. In the
simulation, each of these two clients sends 500 packets to the servers and receives
corresponding replies.

• The fake clients are connected with the system and can send packets with fake
vulnerabilities to each other.

• All the links in our simulation are 1 MBit/s bandwidth with a 10ms delay and 2%
probability loss.

• The values assigned to the servers are 2 and real clients have a value of 1 for both
attacker and defender.

We visualize the simulation results with two types of vulnerabilities in Fig. 3.
In this test, we increase the amount of honey flows from the fake clients from 0 to
500 packets. The honey flows from fake client 1 are with vulnerabilities of type 1,
while fake client 2 sends honey flows with vulnerabilities of type 2. Besides, we

https://avxhm.se/blogs/hill0

108 M. S. Miah et al.

Fig. 3 Defender and attacker utility

experiment with different costs of honey flow generation. The dashed lines in Fig. 3
show the expected utilities when we generate one honey flow with a cost of 0.001
and solid lines represent that defender has to endure a cost of 0.0001 to generate
each honey flow.

Although the simulation does not use the game-theoretic optimization, it conveys
the idea that increasing the number of honey flows remarkably reduces the
effectiveness of adversarial efforts. Meanwhile, we see that the cost of honey flow
generation significantly affects defender utility.

3.4.2 Snaz Game Theory Solution Quality

Our next set of experiments focuses on evaluating the solution quality of the
proposed Stackelberg game model for optimizing Snaz honey flows compared to
some plausible baselines: (1) not generating honey flows at all and (2) using a
uniform random policy for generating honey flows. We average the results over
100 randomly generated games, each with five types of vulnerabilities. We set the
number of real flows for each type of vulnerability to 500. We set the upper bound
on the number of honey flows for each type as (uniformly) randomly generated
from [500,1000]. The values are described in the caption, and we vary the costs
of creating flows as shown in Fig. 4. In these studies, We used the same important
values for all five categories of vulnerabilities, which are described in the caption.
In the graphs, the horizontal axes show various honeyflow generation costs and the
vertical axes represent the defender’s payoffs.

The results in Fig. 4 show that the game-theoretic solution significantly outper-
forms the two baselines in most settings, demonstrating the value of optimizing
the honey flow generation based on the specific scenario. We note that the cost of

Optimizing Honey Traffic Using Game Theory and Adversarial Learning 109

Fig. 4 Comparison of defender utility when the defender uses different values: (a) the value of
attacking a fake vulnerability is zero and a real is one and (b) the value of attacking a fake
vulnerability is the same as real value and the values are randomly generated from the interval
[0.5, 1.0]

https://avxhm.se/blogs/hill0

110 M. S. Miah et al.

generating a honey flow has a significant impact on the overall result. When the
cost is high, the game-theoretic solution is similar to not generating flows at all
(since they are not highly cost-effective). Random honey flow generation can be
detrimental for the defender. When the cost is low, the performance of the game-
theoretic solution is similar to that of the uniform random policy; since flows are
so cheap, it is effective to create a large number of them without much regard to
strategy. At intermediate costs, which is the most likely scenario in real applications,
the value of the strategic optimization is highest.

In our second experiment, we consider vulnerabilities with different values and
examine the variation in the optimal solution as we vary the number of real flows.
We use five vulnerabilities with the values of the real systems (0.8, 0.5, 0.9, 0.6,
and 1.0) and attacking any fake system gives 0. Then, we set the upper bound of
honey flows for each type of vulnerability that the defender can create to 1500. The
honeyflow generation cost is 0.0005 for all types. The results in Fig. 5 show that the
defender’s strategy is to create more honey flows for the high-valued vulnerabilities.
As the number of real flows increases, the cost of adding flows to create a high ratio
is substantial and the overall number created drops for all types.

3.4.3 Solution Analysis

We now analyze how the ratio of honey flows to real flows changes in the optimal
solution as we change the number of real flows. In Fig. 6, the network setup consists

Fig. 5 Defender’s optimal strategy as the number of real flows varies. The vertical axis of the
graph shows the various ratios of honey and real flow for different types of vulnerabilities where
the number of the real flow is variable

Optimizing Honey Traffic Using Game Theory and Adversarial Learning 111

Fig. 6 The defender utility with varying honey flow ratios

of four vulnerabilities with values of (10, 20, 30, 40) and fake flows with values
of (9, 18, 27, 32). The cost of generating each honey flow is 0.1. We show the
defender’s expected utility as we increase the ratio of honey flows to real flows.
Each line represents a different number of real flows in the original game. We see
that the defender utility increases as we add honey flows, but only up to a point;
when the marginal value is less than the cost, the optimal solution is to stop adding
additional flows. We see this in the shape of the curves.

3.4.4 Scalability Evaluation

In a practical application of Snaz, we would need to be able to calculate the optimal
strategy quickly, since the network may change frequently, leading to changing
game parameters. For example, the number of real flows will change over time,
as will the number of hosts in the network. In addition, the values of traffic and
vulnerabilities, and the specific vulnerabilities we are most interested in can change
(e.g., due to the discovery of new vulnerabilities). We evaluate the scalability of
the basic LP solution for this game as we increase the size of the game in two
key dimensions: (1) by increasing the number of vulnerability types and (2) by
increasing the number of flows.

We randomly generate games holding the other parameters constant to evaluate
the solution time. The results are shown in Fig. 7. Though the solution time increases
significantly as we increase the complexity of the game, we were able to solve
realistic size games with a large number of flows and vulnerability types of interest
within just a couple of seconds using this solution algorithm. This result signifies

https://avxhm.se/blogs/hill0

112 M. S. Miah et al.

Fig. 7 Comparison of computational time when (a) varying the number of vulnerabilities and (b)
varying the number of honey flows

Optimizing Honey Traffic Using Game Theory and Adversarial Learning 113

that we can apply this to optimize honey flows in realistically sized networks with a
fast response rate; with further optimization, we expect that the scalability could be
improved significantly beyond this basic algorithm.

4 Decoy Traffic Generation Approach

One major limitation of the previous study is that we talked about using decoy
traffic to confuse the adversary’s information gathering through passive network
reconnaissance, but we did not go into much detail about how to create realistic
deceptive flows. The adversarial machine learning is a possible way of generating
realistic honeyflows. To mimic the behavior of real traffic, we can use a GAN
(Generative Adversarial Networks) generator that uses the real traffic and generate
the fake data as a honeyflow. Generally, the GAN model is trained to generate its
own vectors from latent space, which then decode into realistic network flows.
But increasing the frequency of generating different types of honeyflows will
incur increased network congestion and various types of generation-related cost.
Therefore, instead of developing fake traffic from scratch, obfuscating network
traffic can prevent statistical traffic analysis where an adversary can classify different
applications and protocols from the observable statistical properties. The use of
obfuscation also helps to reduce the risk of passive reconnaissance. In general,
network traffic has a huge number of features but most of the traffic features
are encrypted, which hides much information of the target system. However, it is
still possible to analyze encrypted traffic based on the source, destination, routing,
timing, quantity, and other characteristics. Obfuscating unencrypted features can
significantly delay reconnaissance.

In the remaining of this chapter, we discuss the benefit of network traffic obfusca-
tion and represent some adversarial learning techniques to obfuscate network traffic.

5 Network Traffic Obfuscation

Machine learning methodologies can help attackers to identify various applications
and protocols. The performance of the classifier depends on the accuracy of
collected information. Network traffic obfuscation is a technique where network
traffic is manipulated (e.g., by adding dummy bytes with the packets to increase
packet size) to limit the attacker’s gathering of information by causing errors in the
classification models. This obfuscation approach is effective at reducing the risk of
passive reconnaissance where an attacker gathers traffic and uses statistical analysis
to categorize different patterns (e.g., protocols, applications, and user information).
A major challenge with this approach is to determine the optimal algorithm for

https://avxhm.se/blogs/hill0

114 M. S. Miah et al.

masking the features of the traffic effectively, but within the constraints of feasible
modifications and limited resources or network overhead.

Encryption and mimicry are two basic obfuscation methods, but they cannot
remove fingerprints from metadata (e.g., packet size and inter-arrival timing). The
adversaries can classify encrypted traffic based on statistical features, including
packet and payload byte counts [11, 31]. Using mimicry, it is possible to shape
a protocol to look like another, even though statistical fingerprints of the metadata
would still be preserved [11, 41]. In this work, we consider data obfuscation methods
that can be applied to network traffic. Our goal is to find more robust solutions
for network administrators as defenders in performing statistical obfuscation while
minimizing unnecessary overhead using AML.

We use Adversarial Machine Learning (AML) technique to solve this problem,
where a defender seeks to protect the network from an adversary by finding realistic
small perturbations that are added to the network traffic to reduce the accuracy
of machine learning traffic classifiers. We begin by introducing the Restricted
Traffic Distribution Attack (RTDA), an algorithm for realistic adversarial traffic
generation that can be applied in real-world networks. Then, we calculate the
average perturbation cost for a real system and provide a comparative analysis
between our proposed approach and previous work. Our solution technique is a
novel approach for generating adversarial examples that obtains state-of-the-art
performance while considering more realistic constraints on perturbations.

5.1 Experimental Setup

This section describes our classification model and dataset, building on the previous
work in [46]. In Sect. 5.3, we discuss our proposed approach in detail. Also, Table 3
shows the notation used below.

Table 3 Important notation Notations Description

τ Original traffic

τθ Modified traffic

δ Perturbation amount

fθ Classification model

ρ Application class set

x Feature vector

xadv Adversarial feature vector

Lp Distance metric

Optimizing Honey Traffic Using Game Theory and Adversarial Learning 115

Table 4 Class composition
and number used in this work
from the dataset

Classification Flow type Number

Bulk FTP 11,539

Database Postgres, SQLNet, Oracle, Ingres 2648

Mail IMAP, POP2/3, SMTP 28,567

Services X11, DNS, Ident, LDAP, NTP 2099

P2P KaZaA, BitTorrent, Gnutella 2094

WWW WWW 328,091

5.1.1 Dataset

We perform experiments on the Internet Traffic Network dataset [32]. This dataset
was generated by monitoring a research facility host with 1000 users connected
via Gigabit Ethernet link. The objects to classify are traffic flows that represent the
flow of one or more packets between the host and the client during a complete TCP
connection. Each flow was manually classified. Table 4 shows the class information,
flow types per class, and flow count. Following Verma et al. [46], we only include
classes with at least 2000 samples in our training set.

5.1.2 Realistic Features

Each sample is composed of 249 features that were observed during generation time.
In a real-time traffic transmission, the defender has the capability only to increase
the size of the packets. Therefore, we do not use inter-arrival time as a feature. Our
work shows that only using packet size is sufficient to attack a network. We select
the 0, 25, 50, 75, and 100 percentiles of the IP packet sizes from both client to server
and server to client. We normalized these features to the range (0, 1).

5.1.3 Classification Model

We replicate the training approach and neural network model used in the previous
work [46]. The training model is a three-layer neural network with 300, 200, and
100 hidden units and applies a rectified linear function in every layer. We process
the data by randomly dividing it into three datasets—5000 validation samples, 5000
test samples, and the remaining samples as training. Due to high class imbalance, we
randomly sample the training set, so every class has an equal number of examples.
We train the network using mini-batches of size 1000 for 300 epochs. The results
are found in Table 5.

https://avxhm.se/blogs/hill0

116 M. S. Miah et al.

Table 5 Neural network
accuracy per class

Class Accuracy

Bulk 95%

Database 97%

Mail 95%

P2P 96%

Service 85%

WWW 91%

5.2 Adversarial Settings

We now formalize the models for the defender and the attacker. We also discuss
some well-known approaches for generating adversarial examples.

5.2.1 Defender Model

We model the problem by considering an adversarial setting where a defender (d)
tries to protect a network from an adversary (α). The goal of α is to observe d’s
network and classify its traffic flows (τ is an individual flow) by using statistical
analysis, while d disguises τ by changing their features. A modified flow τθ can
potentially result in α misclassifying τθ as relating to a different application or
protocol class (σ) rather than the true one (ρ). We consider that d knows the
attacker model f and observations O for training. That is, d is capable to create
a substitute model fθ for τθ . The transferability property of AML supports that any
adversarial example that can fool a machine learning algorithm can also fool other
machine learning algorithms irrespective of the implementation [36]. Therefore, d
uses AML techniques to find an optimal way for generating τθ by considering that
the traffic recipient has mechanisms for inverting the changes. However, in adding
perturbations, d must adhere to the following constraints:

• The basic constraints on a protocol must be preserved. For example, packet size
and timing cannot be the negative, and packet sizes must lie between the specified
minimum and maximum.

• The network is constrained by performance benchmarks meaning that the
network supports a maximum threshold of latency.

• The AML model should use small input perturbations for creating τθ since a large
alteration of τ can break the protocol constraints and incur unnecessary network
overhead.

5.2.2 Adversary Model

We assume that α observes a particular flow between a source and destination where
the flow is always bidirectional. It has the required tools to analyze meta statistical

Optimizing Honey Traffic Using Game Theory and Adversarial Learning 117

signatures (e.g., packet size) and trains its classifier fθ based on these features,
using 0, 25, 50, 75, and 100 percentiles of the IP packets in both directions. The
objective of α is to correctly classify the application set {ρ1, ρ2, . . . , ρn} observed
in d’s traffic τ , where n is the possible number of classes. Therefore, α determines
a probability distribution over n classes by using fθ (x), where x is a feature vector
of {x1, x2, . . . , xn} obtained from O.

5.2.3 Obfuscation Approaches

Let C(x) be the classification of x by a model and C∗(x) be the true class.
Adversarial learning finds a perturbation δ such that when added to an input x,
C∗(x) �= C(x + δ). The value of δ should be small enough when added to x for
producing xadv = x + δ, which implies that the difference between xadv and x

should be almost imperceptible. While many approaches can be used for generating
adversarial examples, Szeged et al. [43] use the L-BFGS optimization procedure for
generating an adversarial example xadv when input x is given and formulates the
problem as

min ||x − xadv||2 + λJ (fθ (x
adv), t true).

The first term sets the penalty for large perturbations to x and the second one
penalizes when the classification deviates from the target class t true. The loss
function between t true and output of the classifier fθ (x

adv) is denoted by J . λ > 0
is the model parameter.

The Carlini–Wagner L2 attack is a robust iterative algorithm that creates
adversarial examples with minimum perturbation [6]. This attack for a target class t

is formalized as

min ||1

2
(tanh(w) + 1) − x||2 + λfθ (

1

2
(tanh(w) + 1), such thatC∗(x) �= t,

where fθ is defined by

fθ (x
adv) = max(max{Z(xadv)i : i �= t} − Z(xadv)t ,−k)

and δ = 1
2 (tanh(w) + 1) − x is the perturbation of the adversarial sample. Here,

λ is chosen empirically through binary search and k controls the confidence of
misclassification occurrence.

For generating untargeted adversarial perturbations, Goodfellow et al. [14] pro-
posed a fast single-step method. This method determines an adversarial perturbation
under L∞ norm where the perturbation is bounded by the parameter ε that results in
the highest increase in the linearized loss function. It can be obtained by performing
one step in the gradient sign’s direction with step-width ε.

https://avxhm.se/blogs/hill0

118 M. S. Miah et al.

xadv = x + ε sign(�xJ (fθ (x
adv), t true)).

Here, L∞ computes the maximum change to any of the coordinates:

||x − xadv||∞ = max(|x1 − xadv
1 |, |x2 − xadv

2 |, . . . , |xn − xadv
n |)

Szeged et al. [6] used L∞ distance metrics to generate the CWL∞ attack, where
the optimization function is defined by the following:

λ minfθ (x + δ) + ||δ||∞
and δ = 1

2 (tanh(w) + 1) − x.
This method has a lower success rate, but it is simple and computationally

efficient [25].

5.3 Restricted Traffic Distribution Attack

We define an attack that can be translated readily to a real-life setting. To ensure the
perturbation yields a valid distribution, we have constrained our attack in two ways:
the attack is not allowed to reduce the packet size, and the generated distribution
should preserve the monotonic non-decreasing property. We solve this problem by
enforcing these constraints directly in the adversarial optimization framework.

Notice that it is possible to reduce the packet size in a distribution by inserting
small dummy packets into the traffic, but this approach introduces a larger overhead
into the network than only appending dummy bytes.

5.3.1 Perturbation Constraints

Given a distribution x, a general adversarial algorithm finds a perturbation δ for
which it minimizes a distance metric Lp and changes the correct classification:
C∗(x) �= C(x+δ). This perturbation has no restrictions with respect to the direction
that it modifies the original distribution. Instead, we clip every value below zero in
the perturbation during learning:

minimize Lp(x, x + (δ)+), such thatC(x + (δ)+) = t,

where (f)+ stands for max(f, 0) and t is not the correct label.

Optimizing Honey Traffic Using Game Theory and Adversarial Learning 119

5.3.2 Distribution Constraints

Given a batch of adversarial distributions A, we define an operation that identifies
every adversarial sample with decreasing consecutive features.

Let (Ai, Ai+1) be consecutive features in the batch A. We compute the following
operation:

diff := (Ai − Ai+1)
+.

We update our distribution based on this value: Ai+1 := Ai+1 + diff .
For a valid sample, the operation will result in 0, but for an invalid one, it

will compute the difference between features, so after the update we automatically
get non-decreasing features. This operation is sequentially applied to every pair of
consecutive features in the same distribution during the optimization of the attack.

5.3.3 Framework

These restrictions in an attack should generate a valid adversarial distribution if
convergence is possible. In this work, we choose the Carlini–Wagner attack for L2
and L∞ norm as our frameworks.

Implementation Details

We re-implement the Carlini–Wagner attack for L2 and L∞ norms. For the initial
c, we select 10−3 and 10−1, respectively, and search for five steps with 1000 as the
maximum number of iterations. In our algorithm, we clip the perturbation before
adding to the batch and then apply the series of operations to correct the distribution.
We also replicate Verm et al.’s [46] method by applying a post-processing operation
to the generated distributions from the CW L2 attack.

5.4 Results

We test our two RTDA frameworks against previous adversarial approaches (Fig. 8).
We compare the attacks by evaluating how realistic the generated distributions

are and the success rate for fooling the neural network. To evaluate how realistic
an attack is, we compare the ratios of valid perturbations and valid distributions for
each attack. The results are shown in Table 6 for realistic attacks and Table 7 for
success rate per class.

Prior work did not consider the limitations of a perturbation in real-world set-
tings. Our algorithm is more realistic than previous attacks. Both of our frameworks
generate a valid perturbation and distribution for every test sample. Post-processing

https://avxhm.se/blogs/hill0

120 M. S. Miah et al.

Fig. 8 A comparison of every L2 adversarial example generated from the same distribution.
Notice the negative packet size generated by CW L2 and the reduction of the 0th and 100th
percentile by post-processing CW L2. In contrast, RTDA generates an adversarial by only
increasing the 50th percentile

Table 6 Percentage of valid adversarial samples

Valid perturbation Valid distribution

RTDA CW L2 100% 100%

Post-processing CW L2 0% 100%

CW L2 0% 20%

RTDA CW L∞ 100% 100%

CW L∞ 0% 22%

Table 7 Success rate per class (Fraction of instances for which an adversarial was found)

Database Bulk Mail P2P Services WWW

RTDA CW L2 100% 100% 95% 93% 100% 95%

Post-processing CW L2 75% 33% 29% 50% 53% 84%

CW L2 100% 100% 100% 100% 100% 100%

RTDA CW L∞ 100% 100% 74% 72% 67% 100%

CW L∞ 100% 100% 100% 100% 100% 100%

has the disadvantage that resultant distributions may no longer be adversarial
examples. Our approach directly finds attacks in the valid space enabling us
to optimize for the best attacks. Therefore, RTDA substantially outperforms the
success rate of the previous post-processing CW L2 attack in every class. Even

Optimizing Honey Traffic Using Game Theory and Adversarial Learning 121

Table 8 Average norm and
perturbation

Lp δ mean (Bytes)

RTDA CW L2 0.015 14.5

Post-processing CW L2 0.012 15.4

CW L2 0.011 12.9

RTDA CW L∞ 0.033 19.41

CW L∞ 0.026 15.74

with the additional constraints, our attacks L2 and L∞ are just 2% and 14% apart,
respectively, from their unrestricted versions.

Both attacks have a larger norm in comparison to previous approaches. Surpris-
ingly, RTDA L2 has a smaller perturbation than the post-processed approach. On
average, our attack can be applied to a system by increasing each packet by 14.5
bytes. Table 8 compares the corresponding norm and average perturbation for each
approach.

6 Conclusion

This chapter discussed two techniques to employ deceptively crafted traffic flows
to improve network security. In the first work, we introduced Snaz, a technique that
uses honey traffic to confound the knowledge gained by the adversary through pas-
sive network reconnaissance. We defined a Stackelberg game model for optimizing
one of the key elements of Snaz, the quantity and type of honey flows to create. This
model balances cost and value trade-offs in the presence of a sophisticated attacker
but can still be solved fast enough to be used in a dynamic network environment.

In the second part of the chapter, we proposed a novel network traffic obfus-
cating approach that is robust against network traffic attackers, where we leverage
adversarial attacks as a mechanism to obfuscate network traffic. Our adversarial
machine learning algorithm outperforms previous approaches, achieving state-of-
the-art results and reducing the perturbation’s network overhead.

Acknowledgments The Army Research Office supported this work under award W911NF-17-1-
0370. The views and conclusions contained in this document are those of the authors and should
not be interpreted as representing the official policies, either expressed or implied, of the Army
Research Laboratory or the U.S. Government. The U.S. Government is authorized to reproduce
and distribute reprints for government purposes without standing any copyright notation.

References

1. An, B., Tambe, M., Ordonez, F., Shieh, E., Kiekintveld, C.: Refinement of strong Stackelberg
equilibria in security games. In: Twenty-Fifth AAAI Conference on Artificial Intelligence
(2011)

https://avxhm.se/blogs/hill0

122 M. S. Miah et al.

2. Antikainen, M., Aura, T., Särelä, M.: Spook in your network: Attacking an SDN with
a compromised OpenFlow switch. In: Bernsmed, K., Fischer-Hübner, S. (eds.) Secure IT
Systems, pp. 229–244. Springer International Publishing, Cham (2014)

3. Bar-Yanai, R., Langberg, M., Peleg, D., Roditty, L.: Realtime classification for encrypted
traffic. In: International Symposium on Experimental Algorithms, pp. 373–385. Springer
(2010)

4. Bartlett, G., Heidemann, J., Papadopoulos, C.: Understanding passive and active service
discovery. In: Proceedings of the 7th ACM SIGCOMM Conference on Internet Measurement
(IMC), pp. 57–70. ACM (2007)

5. Benton, K., Camp, L.J., Small, C.: OpenFlow vulnerability assessment. In: Proceedings of
the Second ACM SIGCOMM Workshop on Hot Topics in Software Defined Networking,
HotSDN ’13, pp. 151–152. ACM, New York, NY, USA (2013). https://doi.org/10.1145/
2491185.2491222

6. Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks. In: 2017 IEEE
Symposium on Security and Privacy (SP), pp. 39–57. IEEE (2017)

7. Carroll, T.E., Grosu, D.: A game theoretic investigation of deception in network security. Secur.
Commun. Networks 4(10), 1162–1172 (2011)

8. Ciftcioglu, E., Hardy, R., Chan, K., Scott, L., Oliveira, D., Verma, G.: Chaff allocation and
performance for network traffic obfuscation. In: 2018 IEEE 38th International Conference on
Distributed Computing Systems (ICDCS), pp. 1565–1568. IEEE (2018)

9. De Oliveira, R.L.S., Schweitzer, C.M., Shinoda, A.A., Prete, L.R.: Using Mininet for emu-
lation and prototyping software-defined networks. In: 2014 IEEE Colombian Conference on
Communications and Computing (COLCOM), pp. 1–6. IEEE (2014)

10. Duffield, N.G., Roughan, M., Sen, S., Spatscheck, O.: Statistical, signature-based approach to
IP traffic classification (Feb 9 2010), US Patent 7,660,248

11. Dusi, M., Crotti, M., Gringoli, F., Salgarelli, L.: Tunnel hunter: Detecting application-layer
tunnels with statistical fingerprinting. Computer Networks 53(1), 81–97 (2009)

12. Dyer, K.P., Coull, S.E., Shrimpton, T.: Marionette: A programmable network traffic obfus-
cation system. In: 24th USENIX Security Symposium (USENIX Security 15), pp. 367–382.
USENIX Association, Washington, D.C. (Aug 2015). https://www.usenix.org/conference/
usenixsecurity15/technical-sessions/presentation/dyer

13. Feng, X., Zheng, Z., Mohapatra, P., Cansever, D.: A Stackelberg game and Markov modeling
of moving target defense. In: International Conference on Decision and Game Theory for
Security, pp. 315–335. Springer (2017)

14. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples.
Preprint (2014). arXiv:1412.6572

15. Goodfellow, I., Papernot, N., McDaniel, P., Feinman, R., Faghri, F., Matyasko, A., Ham-
bardzumyan, K., Juang, Y.L., Kurakin, A., Sheatsley, R., et al.: cleverhans v0. 1: an adversarial
machine learning library. Preprint (2016). arXiv:1610.00768

16. Group-IB: Fox-IT: Anunak: Apt against financial institutions (2014)
17. Guan, Y., Fu, X., Xuan, D., Shenoy, P.U., Bettati, R., Zhao, W.: NetCamo: camouflaging

network traffic for QoS-guaranteed mission critical applications. IEEE Trans. Syst. Man
Cybern. A Syst. Hum. 31(4), 253–265 (2001)

18. He, W., Wei, J., Chen, X., Carlini, N., Song, D.: Adversarial example defense: Ensembles
of weak defenses are not strong. In: 11th {USENIX} Workshop on Offensive Technologies
({WOOT} 17) (2017)

19. Horák, K., Zhu, Q., Bošanskỳ, B.: Manipulating adversary’s belief: A dynamic game approach
to deception by design for proactive network security. In: International Conference on Decision
and Game Theory for Security, pp. 273–294. Springer (2017)

20. Jero, S., Bu, X., Nita-Rotaru, C., Okhravi, H., Skowyra, R., Fahmy, S.: BEADS: Automated
attack discovery in OpenFlow-based SDN systems. In: Proceedings of the International
Symposium on Research in Attacks, Intrusions, and Defenses (RAID), vol. 10453, pp. 311–
333. LNCS (2017)

 25964 11870 a 25964 11870 a

https://doi.org/10.1145/2491185.2491222

 21428 31795 a 21428
31795 a

https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/dyer

Optimizing Honey Traffic Using Game Theory and Adversarial Learning 123

21. Karthika, C., Sreedhar, M.: Statistical traffic pattern discovery system for wireless mobile
networks. Comput. Sci. Telecomm. 45(1), 63–70 (2015)

22. Kiekintveld, C., Lisỳ, V., Píbil, R.: Game-theoretic foundations for the strategic use of
honeypots in network security. In: Cyber Warfare, pp. 81–101. Springer (2015)

23. Kim, H., Feamster, N.: Improving network management with software defined networking.
IEEE Commun. Mag. 51(2), 114–119 (2013). https://doi.org/10.1109/MCOM.2013.6461195

24. Kondo, T.S., Mselle, L.J.: Penetration testing with banner grabbers and packet sniffers. J.
Emerg. Trends Comput. Inf. Sci. 5(4), 321–327 (2014)

25. Kurakin, A., Goodfellow, I., Bengio, S.: Adversarial examples in the physical world. Preprint
(2016). arXiv:1607.02533

26. Levin, D., Canini, M., Schmid, S., Schaffert, F., Feldmann, A.: Panopticon: Reaping the
benefits of incremental SDN deployment in enterprise networks. In: 2014 USENIX Annual
Technical Conference (USENIX ATC 14), pp. 333–345. USENIX Association, Philadelphia,
PA (2014)

27. Matthews, T.: Operation Aurora – 2010’s major breach by Chinese hackers (2019). https://
www.exabeam.com/information-security/operation-aurora/

28. McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford, J., Shenker,
S., Turner, J.: OpenFlow: Enabling innovation in campus networks. SIGCOMM Comput.
Commun. Rev. 38(2), 69–74 (2008). https://doi.org/10.1145/1355734.1355746

29. Miah, M.S., Gutierrez, M., Veliz, O., Thakoor, O., Kiekintveld, C.: Concealing cyber-decoys
using two-sided feature deception games. In: Proceedings of the 53rd Hawaii International
Conference on System Sciences (2020)

30. Mininet: Mininet an instant virtual network on your laptop (or other pc) (2018). https://mininet.
org/

31. Mohajeri Moghaddam, H., Li, B., Derakhshani, M., Goldberg, I.: SkypeMorph: Protocol
obfuscation for tor bridges. In: Proceedings of the 2012 ACM Conference on Computer and
Communications Security, pp. 97–108 (2012)

32. Moore, A.W., Zuev, D.: Internet traffic classification using Bayesian analysis techniques. In:
Proceedings of the 2005 ACM SIGMETRICS International Conference on Measurement and
Modeling of Computer Systems, pp. 50–60 (2005)

33. Nguyen, T.T., Armitage, G.: A survey of techniques for internet traffic classification using
machine learning. IEEE Commun. Surv. Tutor. 10(4), 56–76 (2008)

34. Ortiz, A., Fuentes, O., Rosario, D., Kiekintveld, C.: On the defense against adversarial exam-
ples beyond the visible spectrum. In: MILCOM 2018-2018 IEEE Military Communications
Conference (MILCOM), pp. 1–5. IEEE (2018)

35. Ortiz, A., Granados, A., Fuentes, O., Kiekintveld, C., Rosario, D., Bell, Z.: Integrated learning
and feature selection for deep neural networks in multispectral images. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 1196–1205
(2018)

36. Papernot, N., McDaniel, P., Goodfellow, I.: Transferability in machine learning: from phenom-
ena to black-box attacks using adversarial samples. Preprint (2016). arXiv:1605.07277

37. Papernot, N., McDaniel, P., Jha, S., Fredrikson, M., Celik, Z.B., Swami, A.: The limitations
of deep learning in adversarial settings. In: 2016 IEEE European Symposium on Security and
Privacy (EuroS&P), pp. 372–387. IEEE (2016)

38. Pawlick, J., Colbert, E., Zhu, Q.: A game-theoretic taxonomy and survey of defensive deception
for cybersecurity and privacy. ACM Comput. Surv. (CSUR) 52(4), 82 (2019)

39. Píbil, R., Lisỳ, V., Kiekintveld, C., Bošanskỳ, B., Pěchouček, M.: Game theoretic model of
strategic honeypot selection in computer networks. In: International Conference on Decision
and Game Theory for Security, pp. 201–220. Springer (2012)

40. Pinheiro, A.J., Bezerra, J.M., Campelo, D.R.: Packet padding for improving privacy in
consumer IoT. In: 2018 IEEE Symposium on Computers and Communications (ISCC), pp.
00925–00929 (2018)

https://avxhm.se/blogs/hill0

 16895 5228 a 16895 5228 a

 32220 15191 a 32220 15191 a

https://www.exabeam.com/information-security/operation-aurora/

 13387 19619 a 13387
19619 a

 29109 24046 a 29109 24046 a

https://mininet.org/

124 M. S. Miah et al.

41. Roughan, M., Sen, S., Spatscheck, O., Duffield, N.: Class-of-service mapping for QoS: a
statistical signature-based approach to IP traffic classification. In: Proceedings of the 4th ACM
SIGCOMM Conference on Internet Measurement, pp. 135–148 (2004)

42. Schlenker, A., Thakoor, O., Xu, H., Fang, F., Tambe, M., Tran-Thanh, L., Vayanos, P.,
Vorobeychik, Y.: Deceiving cyber adversaries: A game theoretic approach. In: Proceedings
of the 17th International Conference on Autonomous Agents and MultiAgent Systems, pp.
892–900. International Foundation for Autonomous Agents and Multiagent Systems (2018)

43. Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., Fergus, R.:
Intriguing properties of neural networks. Preprint (2013). arXiv:1312.6199

44. Tambe, M.: Security and Game Theory: Algorithms, Deployed Systems, Lessons Learned.
Cambridge University Press (2011)

45. Thakoor, O., Tambe, M., Vayanos, P., Xu, H., Kiekintveld, C.: General-sum cyber deception
games under partial attacker valuation information. In: AAMAS, pp. 2215–2217 (2019)

46. Verma, G., Ciftcioglu, E., Sheatsley, R., Chan, K., Scott, L.: Network traffic obfuscation: An
adversarial machine learning approach. In: MILCOM 2018-2018 IEEE Military Communica-
tions Conference (MILCOM), pp. 1–6. IEEE (2018)

47. Wagener, G., Dulaunoy, A., Engel, T., et al.: Self adaptive high interaction honeypots driven
by game theory. In: Symposium on Self-Stabilizing Systems, pp. 741–755. Springer (2009)

48. Wright, C.V., Coull, S.E., Monrose, F.: Traffic morphing: An efficient defense against statistical
traffic analysis. In: NDSS, vol. 9. Citeseer (2009)

49. Yin, Y., An, B., Vorobeychik, Y., Zhuang, J.: Optimal deceptive strategies in security games: A
preliminary study. In: Proc. of AAAI (2013)

50. Zander, S., Nguyen, T., Armitage, G.: Self-learning IP traffic classification based on statistical
flow characteristics. In: International Workshop on Passive and Active Network Measurement,
pp. 325–328. Springer (2005)

51. Zhu, M., Anwar, A.H., Wan, Z., Cho, J.H., Kamhoua, C., Singh, M.P.: A survey of defensive
deception: Approaches using game theory and machine learning. IEEE Commun. Surv. Tutor.
(COMST) 23(3), 1–35 (2021). https://doi.org/10.1109/COMST.2021.3102874

11145 29581 a 11145 29581 a

Mee: Adaptive Honeyfile System for
Insider Attacker Detection

Mu Zhu and Munindar P. Singh

1 Introduction

An advanced persistent threat (APT) is a challenging form of cyberattack in which
an attacker carries out long-term plan to become an inside attackers. Chen et
al. [9] define six stages of an APT attack: (1) reconnaissance, (2) delivery, (3)
initial intrusion, (4) command and control (C2), (5) lateral movement, and (6) data
exfiltration. In the first three stages, an attacker gathers user information, such as
accounts and passwords via phishing, and creates backdoors in a compromised
device. Then, the attacker can remotely control and access the victim’s device
without being detected by traditional cybersecurity technologies, such as Intrusion
Detection System (IDS) and firewall. Recent research focuses on blocking an APT
[17, 22, 23]. In contrast, our research focuses on the detection of insider attacks.

Following Salem et al. [21], insider threats are divided into two types: traitors,
who misuse their legitimate credentials, and masqueraders, who impersonate a
legitimate user (and, generally, know less than a traitor about where the victim’s
valuable information resides). The masquerader-type insider attack is difficult to
detect as the attacker leverages legal authentications to intrude devices and harvest
sensitive data. As a result, traditional defensive approaches are insufficient to
detect and respond to insider attacks. This work uses defensive deception against
masquerader-type insider attacks to fill this gap.

Defensive deception [15] is an effective method to mitigate and detect attacks,
such as reconnaissance [2, 5] and insider attacks [7, 8]. Where traditional cyberse-
curity focuses on attacker actions, defensive deception focuses on anticipating such

M. Zhu · M. P. Singh (�)
Department of Computer Science, North Carolina State University, Raleigh, NC, USA
e-mail: mzhu5@ncsu.edu; mpsingh@ncsu.edu

© This is a U.S. government work and not under copyright protection in the U.S.;
foreign copyright protection may apply 2023
T. Bao et al. (eds.), Cyber Deception, Advances in Information Security 89,
https://doi.org/10.1007/978-3-031-16613-6_7

125

https://avxhm.se/blogs/hill0

 31368 2385 a 31368 2385 a

 885 55738
a 885 55738 a

mzhu5@ncsu.edu
mzhu5@ncsu.edu

 8128 55738 a 8128 55738 a

mpsingh@ncsu.edu
mpsingh@ncsu.edu
https://doi.org/10.1007/978-3-031-16613-6_7
https://doi.org/10.1007/978-3-031-16613-6_7
https://doi.org/10.1007/978-3-031-16613-6_7
https://doi.org/10.1007/978-3-031-16613-6_7
https://doi.org/10.1007/978-3-031-16613-6_7
https://doi.org/10.1007/978-3-031-16613-6_7
https://doi.org/10.1007/978-3-031-16613-6_7
https://doi.org/10.1007/978-3-031-16613-6_7
https://doi.org/10.1007/978-3-031-16613-6_7
https://doi.org/10.1007/978-3-031-16613-6_7
https://doi.org/10.1007/978-3-031-16613-6_7

126 M. Zhu and M. P. Singh

actions [3]. Deception has two goals: confusion, i.e., wasting the adversary’s effort
and hiding sensitive information, and detection, i.e., identifying malicious actions.

Honeyfiles, or decoy documents, are a lightweight defensive deception technol-
ogy [8, 24, 29] comprising two major tasks: (1) generate content in a honeyfile
[1, 26, 27] and (2) decide number and placement of honeyfiles [8, 11, 24]. Bowen
et al. [8] propose the Decoy Document Distributor (.D3) system, which generates
and places decoy documents in a file system. Salem and Stolfo [20] analyze
how legitimate users and adversaries are affected by the number and location of
honeyfiles. Raising the number of honeyfiles on a device increases the probability
of the adversary being confused and detected but at the cost of resource consumption
and increasing the false-positive rate of detecting an attacker by confusing legitimate
users.

How can a defender decide how many honeyfiles to place and where to place
them to increase the effectiveness of detecting and disrupting attackers while reduc-
ing the impact on regular users? We introduce a honeyfile approach named Mee
geared toward a large-scale enterprise network. Mee demonstrates decentralized
deployment, that is, by any user. It also demonstrates centralized control, that
is, the defender analyzes suspicious behavior across the network to determine the
number and placement of honeyfiles for each device. This approach helps a defender
accomplish the following:

• Detect an attack in progress.
• Detect a compromised device because an attacker who enters a device’s filespace

needs to explore it to locate valuable data and is likelier to touch a honeyfile than
legitimate users who are familiar with their file systems.

We consider the attacker a masquerader-type adversary who can penetrate
devices but does not identify the locations of valuable files on that device. Thus,
the attacker needs to explore the victim’s device and search for valuable files.
Assume that the attacker is aware of the existence of the honeyfile system but cannot
distinguish honeyfiles from regular files.

Our contributions include the following:

• We propose Mee as a novel honeyfile system for detecting insider attackers in
enterprise networks that dynamically adjusts the number of honeyfiles placed on
each device.

• We describe a Bayesian game model to analyze the optimal strategies for the
attacker and the defender.

• We simulate and compare Mee with the traditional honeyfile approach and show
that Mee is more effective at detecting insider attackers and has a more negligible
impact on legitimate users.

Organization
The rest of this chapter is organized as follows. Section 3 describes our problem in
terms of details about insider attacker and the threat model. Section 4 introduces the
design of our honeyfile system. Section 5 describes our scenario and model design.

Mee: Adaptive Honeyfile System for Insider Attacker Detection 127

Section 7 compares Mee with the traditional honeyfile system. Section 8 describes
the conclusions and our future directions.

2 Related Work

Yuill et al. [28] define defensive deception as the defender plan actions to mislead
the attacker to take or not take specific action for improving the system security.
Almeshekah and Spafford [4] improve the concept of cyber deception by consid-
ering confusion and refining the definition as “planned actions taken to mislead or
confuse attackers and thereby cause them to take (or not take) specific actions that
aid computer-security defenses.” Pawlick et al. [19] and Zhu et al. [30] collect and
introduce current deception technologies. The authors investigate the game theory
and machine-learning-based deception research and analyze their (dis)advantages.
Zhu et al. [31] design a deceptive network flow via the generative adversarial
network (GAN) to disturb the attacker’s reconnaissance.

The honeyfile system is an intrusion detection mechanism based on deception.
Specifically, honeyfiles are decoy or deceptive files intended to lure the attack-
ers’ access. Yuill et al. [29] design a file server with a honeyfile system and
show how honeyfiles confuse and detect threats. Gómez-Hernández et al. [11]
leverage honeyfile-based security system, named R-lock, to against ransomware.
Ben Whitham [27] design a high-interaction system that can analyze the selected
document and generate a corresponding honeyfile to mimic the selected document.

Game theory applies well in defensive deception to assist the players (e.g.,
attackers or defenders) in searching for the optimal solution. Pawlick et al. [18]
use signaling games to model interactions between the defender and APT attackers.
Wan et al. [25] and Cho et al. [10] use a hypergame model to show how differences
in perceptions of the players affect decision-making. Anwar and Zhu et al. [6] design
a hypergame model to help the defender select high-interaction honeypots or low-
interaction honeypots against network reconnaissance. Although much deception
research applies game theory to assist defenders in planning strategies, most of them
only consider a defender and an attacker as the players. This work leverages the
Bayesian game to model the interaction between the attacker, the defender, and the
legitimate users. We aim to search for the optimal solution that confuses the attacker
more and disturbs the users less.

The Bayesian game is a game model in that all players do not know their
opponents’ types, actions, or payoffs, and each player knows its type, a set of
actions, and corresponding payoffs. Hence, each player has a subjective prior
probability distribution of their opponent’s type [12]. La et al. [14] proposed a two-
player attacker-defender Bayesian game in an IoT network considering honeypot as
the deception method. Mao et al. [16] used honeypots in a non-cooperative Bayesian
game with imperfect, incomplete information where an attacker is a leader and a
defender is a follower. Huang and Zhu [13] discussed several deception techniques,

https://avxhm.se/blogs/hill0

128 M. Zhu and M. P. Singh

such as honeypots and fake personal profiles. In addition, the authors propose a static
Bayesian game to detect the stealthy and deceptive characteristics of an attacker.

3 Problem Statement

We focus on masquerader-type insider attackers in an enterprise network environ-
ment. The attacker can gather authorization of device owners and search for the
valuable files in target devices without triggering traditional defensive technologies,
such as IDS. By considering deployed honeyfiles, the attacker may have three results
after penetrating a device:

Success: Viewing or transferring valuable files from a device.
Invalid: Not finding a valuable file, i.e., suffering wasted effort but no additional

loss.
Defeat: Triggering alarms by touching honeyfiles. The defender would update

its belief about the network’s security level while cleaning or replacing
the compromised device, because of which the attacker would lose a
compromised device and have wasted its effort.

An adversary does reconnaissance before attacking to investigate whether a device
contains valuable files to save energy. Thus, an insider attacker has clear intent
regarding what information is valuable and targets devices accordingly. For exam-
ple, an attacker who sought a final exam in a university would target several specific
professors in a particular department, not a random device. Therefore, we name the
device owner’s identity, such as professor, student, and CEO, as organizational role.
One insider attacker may pay more attention to several specific organizational roles.

4 Design of Mee System

The use of honeyfile has two purposes: to confuse the attacker with false information
and detect any unauthorized access to connected devices. The number of honeyfiles
in one device can significantly change the effectiveness of a honeyfile system.
However, current honeyfile research mainly focuses on the honeyfile system in a
single device, which cannot provide adequate observation to assist the defender in
estimating the security situation and changing the number of honeyfiles. In contrast,
we consider all devices in an entire enterprise network. Specifically, we have a
central controller, named Mee controller, that receives information (e.g., about
accesses to honeyfiles) from and instructs clients, named Mee clients, which reside
on individual devices. Following instructions from the Mee controller, Mee client
increases or decreases the number of honeyfiles.

Mee: Adaptive Honeyfile System for Insider Attacker Detection 129

4.1 Mee Client Design

The Mee client is an application endpoint that resides on each device. A Mee client
generates and deletes honeyfiles and detects suspicious behaviors on a honeyfile
that include opening, modifying, deleting, and transferring. When anyone acts on a
honeyfile, the corresponding Mee client sends the alarm to the Mee controller and
receives the controller’s instructions.

Honeyfiles need to be placed and named well to avoid confusing legitimate users
and attract attention from the adversary. Salem and Stolfo [20] empirically studied
decoy documents. They invited 52 students to download and install decoy docu-
ments and monitored the students’ behaviors to figure out the suitable placement
and names of decoy documents that minimize false positives. Although we mainly
focus on the number of honeyfiles in each device, we incorporate some current
honeyfile research, such as which honeyfile names the attacker interests more. Thus,
we assign a sensitivity, .Hs ∈ [1, 3], to each honeyfile. A higher value represents a
greater attraction for both the adversary and a legitimate user.

Legitimate users may touch honeyfile by accident. However, even if the users
accidentally act on, such as open or read, honeyfiles, they have a lower chance to
edit or transfer honeyfiles. To capture this feature, we assign seriousness of action
on a honeyfile to reflect howmuch of a security threat the action can be. We consider
two levels of seriousness:

Weak: Open or close a honeyfile.
Strong: Edit, transfer, or apply tools such as zip and tar.

When anyone (e.g., the user or attacker) touches honeyfiles, the Mee client collects
corresponding sensitivity and seriousness values and sends them to the Mee
controller.

4.2 Mee Controller Design

The Mee controller represents the defender across the network. It receives alarms
from Mee clients and analyzes them to update its beliefs about the security level of
each device. Then, it instructs each client to create or delete a specified number of
honeyfiles on its device. Upon receiving an alarm, the controller determines whether
the described access is by a legitimate user or an attacker. We define .HNj as the
number of honeyfiles on device j . This number is adjusted based on the defender’s
beliefs about how secure a device is and the attacker’s goals. To assist the Mee
controller in making the optimal decision, we describe the following measures of
the alarm analysis to assess network security situations.

Device Group and Group Risk Level
We assume that the insider attacker targets files placed on devices belonging to
specific organizational roles, which we model as groups. For example, in a univer-

https://avxhm.se/blogs/hill0

130 M. Zhu and M. P. Singh

sity, we may have groups for professors, students, and accountants. Meanwhile, one
device can be included in multiple groups. For example, one device may belong to
groups “professor” (.Gprofessor) and “engineering” (.Gengineering). Below, .Gi is the set
of devices in the group i, and .HGi denotes the number of honeyfiles in the group
i, overloading the notation for the number of honeyfiles in device d. We use .Ri to
represent the risk level of group i. Higher .Ri represents a higher probability of being
the target group of an attacker. If someone touches a honeyfile on a device in group
i, the defender raises the corresponding .Ri .

Group Risk Level Update
Recall the sensitivity of a honeyfile and the seriousness of an action from Sect. 4.1.
Equation 1 computes the change of risk level of group g due to a single action a on
a specific honeyfile, h.

We define the group risk update (.�riskg(h, a)) as the product of the honeyfile
sensitivity and the action seriousness divided by the number of honeyfiles in the
group.

.�riskg(h, a) = sensitivityh ∗ seriousnessa
HGg

. (1)

Through the group risk level updating, the Mee controller evaluates the security
situation for each group. To compare a group’s security situation to the rest of the
network, we introduce .R−i with a negative in the subscript to denote the average
group risk level of all groups except group i. Equation 2 shows how we calculate
.R−i , where NG denotes the number of groups in a network.

.R−i =
∑

j �=i Rj

NG − 1
. (2)

Based on .R−i and .Ri , we use the classification as Dangerous, Medium, and Safe to
separate groups (as shown in Equation 3).

.Classification =
⎧
⎨

⎩

Dangerous if Ri > R−i ∗ 2
Medium if R−i < Ri < R−i ∗ 2

Safe if Ri < R−i .

(3)

Via the group risk level, the Mee controller can evaluate the security situation of
all the groups. If the insider attacker tends to compromise the device based on the
roles of the device owner, the Mee controller increases the number of honeyfiles in
each device whose group obtains a high group risk level.

Mee: Adaptive Honeyfile System for Insider Attacker Detection 131

4.3 Communication Between Mee Client and Controller

As we discussed above, Mee clients and controller exchange messages by which the
controller evaluates the network security situation and asks Mee clients to adjust the
number of honeyfiles in the corresponding device. Therefore, we name Honeyfile
Alarm as the messages that transfer from all Mee clients to the controller. Each
honeyfile alarm contains a tuple .〈CN,HN,AS〉, where CN represents the client
name, HN represents the honeyfile that is acted on, and AS represents the action
upon the triggered honeyfile. In contrast, Command is the message that is from
Mee controller to each Mee client, which contains a tuple as .〈CN, I 〉. Here, CN

represents the target host of the command, and I represents the instructions that the
Mee client needs to follow with.

The Mee system is shown in Fig. 1. If anyone acts on a honeyfile, the Mee
client sends honeyfile alarm to Mee controller. The alarm contains information that
includes the location of the triggered honeyfile, corresponding honeyfile sensitivity,
and action seriousness, which are used to update the belief of the Mee controller,
such as each group’s risk level. All alarms are stored in Mee controller as well.
Based on the group risk and alarm history, the Mee controller sends the command
to Mee clients to adjust the number of honeyfiles in the device or check the device
if necessary.

Fig. 1 Mee system structure

https://avxhm.se/blogs/hill0

132 M. Zhu and M. P. Singh

5 Scenario and Model

In this section, we describe the model of insider attackers, the defender, and users,
and also the interaction between them.

5.1 Network and Node Model

An enterprise network environment includes connected end-user devices, such as
computers and laptops. As introduced in Sect. 4.2, these devices are separated
into groups based on their respective owners’ roles. Each group’s group risk level
indicates its security situation.

All connected personal devices (e.g., laptop) have an installed Mee client, which
can generate or delete honeyfile. Let .NFi denote the number of honeyfiles in device
i. Following the concept of file sensitivity, each created honeyfile has a value to
represent the attraction for attackers and regular users.

5.2 Attacker Model

We assume an attacker conducts reconnaissance before it attempts to penetrate
a device. Specifically, the adversary gathers full perception of all the users’
basic information, including their organizational roles (such as CEO, professor,
administrator), to guide it to select target devices. We also assume an insider attacker
can access and explore a victim device without triggering traditional defensive
technologies, such as IDSs. The attacker is rational and has knowledge of the
existence of the honeyfile system but cannot distinguish a honeyfile from a regular
file. However, as the insider attacker is unfamiliar with the file location in the victim
device, it needs to explore a penetrated device to search for valuable files.

Attacker Actions
We consider the following action set:

Penetrate Device: Leverage legitimate authorization to penetrate a device (but
without knowledge of its file system).

Search: Explore device i to search for valuable files.
File Read: Open, read, or close a file in device i.
File Transfer or Modify: Transfer, edit, or delete a file.

Attacker Payoff
We separate the attacker payoff into Effectiveness (EA): the benefit which the
attacker gets from an action; Action Cost (AC): cost to attacker to deploy action
i; and Impact of Failure (IF): cost to attacker if the attacker touches a honeyfile.

Mee: Adaptive Honeyfile System for Insider Attacker Detection 133

5.3 Defender Model

Mee combines decentralized deployment of honeyfiles with centralized control to
adjust the number of honeyfiles in each connected device. Specifically, the Mee
controller monitors the devices and decides how many honeyfiles to place on
each device. The defender’s goal is to maintain group risk levels and detect a
compromised device.

Defender Actions
We design four actions for the defender:

Check: Inform a device’s Mee client to check for existing backdoors or update
OS and application to avoid vulnerabilities. Upon doing so, set the number of
honeyfiles on the device resets to the initial value and the group risk level value
to the .R−i (defined in Sect. 4.2) value.

Increase the number of honeyfiles on a device.
Decrease the number of honeyfiles on a device.
No change: Maintain current strategy and save resources.

Note that in Mee, the defender chooses an action based on alarms from deployed
honeyfiles as well as the network security situation. For example, if the defender
receives an alarm from a device in the dangerous group, the defender has a higher
probability to choose the check action.

Defender Payoff
The defender’s payoff has four parts:

Effectiveness (ED) Reward when a malicious action is detected, e.g., by recov-
ering the compromised device and misleading the attacker with honeyfile.

Defense Cost (DC) Cost of deploying an action.
Failure in Protecting Real File (FR) Punishment upon failing in protecting real

files.
Impact to Legitimate User (IN) False positive if a user accidentally opens,

closes, transfers, or modifies a honeyfile.

5.4 Model of Legitimate User

We model the behaviors of legitimate users to capture Mee’s impact on them.
Therefore, we design the user action set as:

Login: Access a device.
Search: Explore a device, e.g., open a folder and search for a file.
Read a file.
Transfer, modify, or delete a file.

https://avxhm.se/blogs/hill0

134 M. Zhu and M. P. Singh

No matter what organizational roles are, the users may access their devices and
read or modify their target files at any time. Therefore, given our threat and system
models, there are two differences between insider attackers and legitimate users.

First, the login behaviors from regular users across the network are relatively
randomly distributed. As a result, if there is no insider attacker in the environment,
all devices have the same chance to be logged in by their owner. In contrast, the
insider attacker would compromise the device based on the roles of the device
owner. Second, users can quickly locate a target file as they are familiar with the
file system, but a masquerader, lacking such knowledge, would have a relatively
random movement to search for valuable files. Therefore, an insider attack has a
greater chance to act on a honeyfile than a legitimate user.

6 Honeyfile Game with Mee

We consider the honeyfile game as a two-player dynamic Bayesian game. The two
players update their beliefs according to the game’s evolution. One player, named
by player a, is the defender who can deploy honeyfiles within connected devices
to detect insider attackers. Another player, denoted by player b, has two potential
types: insider attacker and regular user. Although the type of the defender is the
common knowledge to the players, the defender does not know another player’s
type. However, it can generate its belief by observing honeyfile alarms from each
device. Let .t ∈ T = [0, 1] represent the player b’s type, where .t = 0 represents a
legitimate user and .t = 1 represents an attacker.

In the defender’s belief, we use .σa = p to denote the probability that player b
is an attacker (.t = 1) and .σu = 1 − p to denote the probability that player b is
a legitimate user (.t = 0). An alarm from a Mee client represents an observation
from player b. The defender has no knowledge of which device is compromised.
Therefore, the honeyfile alarms may represent the detection of an attacker or false
alarms from legitimate users. To make an optimal decision, the defender needs to
estimate player b’s type based on its belief, including the corresponding group risk
level and the history of previous alarms. With the definition of action seriousness
and the two players’ action sets, Fig. 2 explains the decision tree between the two
players.

Utility Function
Let .w ∈ [1, 3] denote the worth of a regular file, where a higher number represents
a more valuable file. For simplicity, we stipulate that an insider attacker obtains a
gain of w if it reads a file and obtains .2 ∗ w if it transfers or modifies a file. Let
.cc denote the cost of compromising a device, .cr represent the cost of reading a file,
and .ct represent the cost of transferring or modifying a file. Recall the definition of
honeyfile sensitivity and action seriousness. We use .hp to denote the punishment
of an attacker when it acts on a honeyfile. For simplicity, we stipulate that the
punishment of reading a honeyfile is .hp, and the punishment of transferring or

Mee: Adaptive Honeyfile System for Insider Attacker Detection 135

Fig. 2 Decision tree of the honeyfile game: Step 1: player b obtains a type from nature, which is
the root of the decision tree, as its private information. Step 2: After player b triggering a honeyfile
alarm, if player b is an attacker, the path of decision tree goes to the upside. On the other hand,
the path goes down. Step 3: The defender (player a) chooses its action based on the perspective of
player b’s type

Table 1 Player b is an insider attacker. The tuples below include .〈defender’s payoff, attacker’s
payoff.〉

Read a file Transfer or modify a file

Check device .α ∗ rcd − ccd , βw − (1 − β)hp −
rcd − cr

.α ∗ rcd − ccd , 2βw − (1 − β)hp −
rcd − ct

Increase honeyfile .−ca, βw − (1 − β)hf − cr .−ca, 2βw − 2(1 − β)hf − ct

Decrease honeyfile .−ca, βw − (1 − β)hf − cr .−ca, 2βw − 2(1 − β)hf − ct

No change .0, βw − (1 − β)hf − cr .0, 2βw − 2(1 − β)hf − ct

modifying a honeyfile is .2 ∗ hp. Let .β ∈ [0, 1] represent the probability that
an insider attacker estimates an actual file. The attacker calculates .β based on its
history, such as how many honeyfiles and actual files it touches.

We use .ca to represent the cost when the defender adjusts (e.g., increases
and decreases) the number of honeyfiles. Let .ccd represent the cost of checking
device action and .rcd represent the reward if the defender successfully recovers a
compromised device. Meanwhile, .−rcd represents the loss of an insider attacker if
the defender recovers a compromised device. Let .α represent the probability that
the defender thinks the device is compromised.

Table 1 shows the expected payoff when an insider attacker acts on a file. Note
that the payoff in Table 1 does not include the cost of compromising a device. As
a rational player, an insider attacker expects that the reward from real files in a
device is larger than the cost of compromising the device. In other words, if NR

represents a set of real files that an attacker acts on (e.g., reads and transfers), it
expects .cc <

∑
nr∈NR(wnr − cr(nr)) + ∑

nr∈NR(2wnr − ct(nr)). Table 2 shows the
payoff of the defender when player b is a legitimate user.

https://avxhm.se/blogs/hill0

136 M. Zhu and M. P. Singh

Table 2 Player b is a legitimate user. The tuples below include .〈defender’s cost, user’s cost .〉
Read a file Transfer or modify a file

Check device .α ∗ rcd − ccd , 0 .α ∗ rcd − ccd , 0

Increase honeyfile .−ca, 0 .−ca, 0

Decrease honeyfile .−ca, 0 .−ca, 0

No change .0, 0 .0, 0

Dynamic Game
The honeyfile game is repeatedly played between player a and player b. Let .kt

represent the timeline of one game, where .t = 0, 1, 2, Here, at any one time,
only one player b (e.g., an insider attacker or a legitimate user) is active. Player b first
obtains its type from nature as private information. Upon one player b finishing its
objective, such as an attacker gathering enough valuable files or a user obtaining the
target file, this player b exits the game, and another player b comes in to participate.
The player a (e.g., the defender) keeps accumulating its beliefs throughout the game.
Specifically, the defender updates its belief about the type of player b after receiving
honeyfile alarms. It chooses actions based on all the gathered information, such as
group risk levels and honeyfile locations, from the beginning of the game.

7 Implementation and Evaluation

We adopt these metrics to quantify performance:

Attacker payoff (.〈EA,AC, IF 〉) We evaluate the attacker’s payoff based on the
definition in Sect. 5.2.

Defender payoff (.〈ED,DC,FR, IN〉) The defender’s payoff is calculated using
the definition in Sect. 5.3.

Accuracy measures: To compare the accuracy of Mee with the traditional honey-
file system, we calculate false-positive rate (FPR), true-positive rate (TPR), and
the area under receiver operating characteristic (ROC) curve.

7.1 Simulation Settings

We compare Mee with the traditional honeyfile system via a simulation. In the
testbed, we deploy 114 devices and separate them into 20 groups. The installed
Mee client in each connected device can create or remove honeyfiles following the
Mee controller’s command. Meanwhile, theMee controller can estimate the network
security situation via receiving honeyfile alarms from Mee clients.

Mee: Adaptive Honeyfile System for Insider Attacker Detection 137

Adversary Setting
The action set of an insider attacker is {Penetrate, Search, Read, Transfer} (as
introduced in Sect. 5.2). The insider attacker selects several groups as its target
groups and has a higher probability of penetrating the devices within the target
groups rather than randomly selecting a device to attack. Specifically, in all the
following tests, an attacker has a ten percent probability of randomly choosing a
target device to compromise (without considering the target group) and a ninety
percent probability of selecting a device in the target group(s).

Assume that an insider attacker can penetrate any device across the network and
explore the compromised machine to search for valuable files. However, not every
compromised device contains a valuable file. In each simulation, the attacker starts
from an initial budget, representing the expected cost for searching and gathering the
valuable files on every device. Suppose the cost of searching for valuable files within
a compromised device is more than the initial budget. The attacker can choose to
abandon the current device and penetrate another device instead.

User Setting
To calculate the defender’s cost and false-positive rate of the honeyfile alarm, we
model the behaviors of legitimate users in our simulation. A user has an action set
[Login, Search, Read File, Transfer or Modify File]. Besides, the user obtains a full
map of their file systems, which can assist the legitimate user in accessing a target
file faster than the attacker. However, every user has a ten percent probability of
choosing an incorrect action or action target. Thus, the user may act on a honeyfile
and generate a false alarm.

Although the last three actions of the user model are the same as the correspond-
ing actions in the attacker model, we emphasize the differences between legitimate
users and the adversary. At first, each legitimate user has a clear target file and has
complete knowledge of the file system. Thus, the user can locate any file in the
device without a random search. And then, users access the corresponding devices
at any time, so the distribution of login behaviors across the network is random. In
contrast, the insider attacker tends to perform the compromise action relying on its
target group(s) but randomly explores the file system.

Defender Setting
We simulate both the traditional honeyfile system, in which the number of honeyfiles
in each device is static, and Mee, in which dynamic adjusts the number of honeyfiles
in each device. The defender has an action set [Check Device, No Change] for the
traditional honeyfile system, and an action set [Check Device, No Change, increase
honeyfile decrease honeyfile] for Mee (as introduced in Sect. 5.3).

Honeyfile Generation
Following Gómez-Hernández et al. [11], we monitor honeyfiles using inotify
-tools, which is a library and a set of command-line programs for Linux
that monitors and acts upon file system events. Specifically, our client uses
inotify-tools to detect actions, such as open, close, and modify, on a
honeyfile. Then, the Mee client sends such information to the Mee controller.

https://avxhm.se/blogs/hill0

138 M. Zhu and M. P. Singh

For simplicity, we consider only txt file in our research, i.e., files with the txt
extension. For the traditional honeyfile system simulation, we deploy the same
number of honeyfiles in each device. Then, we change the number of honeyfiles
in each device and observe the defender’s performance, the attacker’s cost, and the
false/true-positive rate. For Mee, we deploy 40 honeyfiles in each device as the
initial statement. The defender can modify the number of honeyfiles based on its
belief of network security situation.

7.2 Comparing Mee with the Traditional Honeyfile System

A traditional honeyfile system does not adjust the number of honeyfiles in each
device and maintain group risk levels. To simulate a traditional honeyfile system,
we deploy a fixed number of honeyfiles in each connected device. As discussed in
Sect. 7.1, we separate the devices into 20 groups and posit that the insider attacker
prefers to attack Groups 3 (G3) and 4 (G4). We evaluate the performance of the
traditional honeyfile system and Mee based on various numbers of honeyfiles and
the group risk level update.

Adjusting the Number of Honeyfiles with Mee
Mee changes the number of honeyfiles in each connected device to reduce unnec-
essary overhead and the impact on legitimate users. Figure 3a records the variance
of the number of honeyfiles in each group. We assign ten insider attackers and 200
legitimate users in this test. Because the attacker’s target groups are G3 and G4,
Mee automatically adjusts and deploys more honeyfiles in these two groups than
others. The average numbers of honeyfiles in G3 and G4 are 29 and 30, whereas the
average number of honeyfiles in other groups is 18.

Fig. 3 Mee’s performance: (a) numbers of honeyfiles in different groups; (b) group risk updates
without Mee; (c) group risk updates with Mee

Mee: Adaptive Honeyfile System for Insider Attacker Detection 139

Group Risk Level of Traditional Honeyfile System and Mee
Figure 3b shows the result of group risk level update with the traditional honeyfile
system. The X-axis represents the timeline in one test, and the Y-axis represents the
group risk level. Each player joins in and performs as a legitimate user or an insider
attacker in each time slot. The group risk levels of G3 and G4 (dotted red and dashed
green lines) are much higher than other groups (solid gray lines), representing the
tendency of the attacker’s movement to be captured via the group risk level updating.

With the same setting, Mee controller receives and analyzes honeyfile alarms
from Mee clients to maintain the group risk level. Figure 3c shows the group risk
level updating with Mee. Anyone who triggers the honeyfile alarm makes group
risk levels rise. Suppose Mee controller confirms that a group has an abnormal (e.g.,
much higher than other groups) group risk level. It can apply check action and reset
the corresponding group risk level to .R−i (introduced in Sect. 5.3). In Fig. 3c, the
red dash line and solid green line represent the group risk levels of G3 and G4 (e.g.,
the attacker’s target groups). We use the blue dotted line for the rest of the group’s
risk levels to denote their average value.

Defender and Attacker Payoffs with Traditional Honeyfiles and with Mee
We then calculate the defender’s payoff by considering ten insider attackers and 200
legitimate users. The players’ payoff calculations follow the setting of Sect. 5. For
the traditional honeyfile system, we increase the number of honeyfiles in each device
from 0 to 100. As shown in Fig. 4a, the defender payoff (blue dashed line) keeps
increasing before the number of honeyfiles in each device is less than forty and
decreasing later. The results show that growing the number of honeyfiles can assist
the defender in increasing its payoff because the defender can detect the insider
attackers more effectively. But the redundancy of honeyfiles may disrupt legitimate
users—and disrupt them more and more as the number of honeyfiles is increased,
thereby generating more false-positive alarms that only confuse the defender to
check a safe device. Note that Mee system can automatically adjust the number of
honeyfiles in the system. The straight (orange) line represents the defender payoff
when we deploy Mee with the same attacker and user settings.

With the same setting as above, Fig. 4b records the attacker’s payoff given a
certain number of honeyfiles in the environment. The X-axis represents the number
of honeyfiles in each device, and the Y-axis represents the attacker’s payoff. With a
traditional honeyfile system, more honeyfiles can significantly reduce the attacker’s
payoff. However, compared with Fig. 4a, the overhead of honeyfiles also disturbs
the defender’s performance. Also, the straight orange line represents the attacker
payoff when we apply Mee.

TPR and FPR with the Traditional Honeyfile System and with Mee
We calculate the false-positive rate (FPR), true-positive rate (TPR), and the area
under the ROC curve for the traditional honeyfile system and Mee. The area under
the ROC curve is defined as .ROCarea = T PR ∗ (1 − FPR).

https://avxhm.se/blogs/hill0

140 M. Zhu and M. P. Singh

Fig. 4 Comparison between the traditional honeyfile system and Mee

We consider positive, negative, true positive, false positive as metrics for the
defender:

Positive: Defender detects that an insider attacker is present.
Negative: Believes that the honeyfile alarm is triggered by a legitimate user.
True positive: Detection of the insider attacker rather than a legitimate user.
False positive: Misunderstanding of honeyfile alarm triggered by a user.

With the same test settings as above, Fig. 4c shows the TPR and FPR of the
traditional honeyfile system and Mee. The solid green line and dashed brown line
show the TPR and FPT of the traditional honeyfile system, while the orange solid
and dashed lines represent Mee. With the traditional honeyfile system, increasing
the number of honeyfiles in each device can significantly raise the TPR but also
brings the high FPR. Mee maintains the TPR at a high level and reduces the FPR.

We then test the performance of the traditional honeyfile system andMee with the
different number of insider attackers. Following the definition of action seriousness
in Sect. 4.1, with the different number of actions on honeyfile, we define several
situations for insider attacker detection with a traditional honeyfile system. Figure 5
shows the ROC obtained with different definitions of detection. For example, the red
marks represent the defender detection is triggered if anyone acts on the honeyfile
in one device with at least two weak actions or one strong action. Within each
detection definition, we increase the number of insider attackers in one test from
1 to 100. As shown in Fig. 5, when weak action=2 and strong action=1, the ROC
value concentrates within high TPR and FPR, which indicates that the detection is
extra sensitive. Even if a traditional approach detects insider attackers, it generates
many false-positive alarms that confuse the defender and impact legitimate users.
Meanwhile, increasing the number of attackers does not significantly influence the
performance of the traditional honeyfile system. When weak action=3 and strong
action=2 (shown as green marks in Fig. 5), although the FPR reduces, the TPR is
lower than that when weak action=2 and strong action=1, which represents that a
large number of insider attackers escape detection. Orange marks in Fig. 5 represent

Mee: Adaptive Honeyfile System for Insider Attacker Detection 141

Fig. 5 True and
false-positive rate of
traditional and Mee honeyfile
system

the performance of Mee, showing that Mee can reduce the FPR and maintain a high
level of the TPR. From the figure showing ROC area, it becomes clear that Mee
yields better performance than previous approaches.

8 Conclusion and Future Work

Defensive deception technologies are commonly used to delay and detect stealthy
attacks. Honeyfile systems are a simple and lightweight deception technology that is
widely applied. We designMee as a novel honeyfile system to confuse and detect the
insider attacker. Mee leverages centralized control and decentralized deployment to
adjust the number of honeyfiles in each connected device. With Mee, the defender
can reduce the overhead and the false-positive alarms from the legitimate users. We
use game theory to model the interaction between the defender, the attacker, and

https://avxhm.se/blogs/hill0

142 M. Zhu and M. P. Singh

legitimate users. To measure the performance of Mee, we simulate and compare it
with the traditional honeyfile system. The results show that Mee can significantly
reduce the average number of honeyfiles in the whole network. As a result, Mee
avoids deploying unnecessary honeyfiles and decreasing the impact on legitimate
users.

Future Work
This research assumes each device has an equal workload. Hence, all the honeyfiles
in the network obtain the same probability that legitimate users act on them.
However, in the real world, some users may have a higher likelihood of touching a
honeyfile, such as those using the device more frequently than others. Therefore, we
will consider the environment with a more realistic model and model the legitimate
user with more details in our future work.

Acknowledgments The Army Research Office supported this work under award W911NF-17-1-
0370. The views and conclusions contained in this document are those of the authors and should
not be interpreted as representing the official policies, either expressed or implied, of the Army
Research Laboratory or the U.S. Government. The U.S. Government is authorized to reproduce
and distribute reprints for Government purposes without standing any copyright notation.

References

1. Abay, N.C., Akcora, C.G., Zhou, Y., Kantarcioglu, M., Thuraisingham, B.: Using deep learning
to generate relational HoneyData. In: Autonomous Cyber Deception, pp. 3–19. Springer (2019)

2. Achleitner, S., La Porta, T., McDaniel, P., Sugrim, S., Krishnamurthy, S.V., Chadha, R.: Cyber
deception: Virtual networks to defend insider reconnaissance. In: Proceedings of the 8th ACM
CCS International Workshop on Managing Insider Security Threats, pp. 57–68 (2016)

3. Almeshekah, M.H., Spafford, E.H.: Planning and integrating deception into computer security
defenses. In: Proc. New Security Paradigms Workshop, pp. 127–138 (2014)

4. Almeshekah, M.H., Spafford, E.H.: Cyber security deception. In: Cyber Deception, pp. 23–50.
Springer (2016)

5. Anjum, I., Zhu, M., Polinsky, I., Enck, W.H., Reiter, M.K., Singh, M.P.: Role-based deception
in enterprise networks. In: Proceedings of the 11th ACM Conference on Data and Application
Security and Privacy (CODASPY), pp. 65–76. ACM, Online (Apr 2021). https://doi.org/10.
1145/3422337.3447824

6. Anwar, A.H., Zhu, M., Wan, Z., Cho, J.H., Singh, M.P., Kamhoua, C.A.: Honeypot-based cyber
deception against malicious reconnaissance via hypergame theory. In: IEEE Global Commu-
nications Conference: Communication & Information Systems Security, Rio de Janeiro, Brazil
(Dec 2022)

7. Ben Salem, M., Stolfo, S.: Combining baiting and user search profiling techniques for
masquerade detection. J. Wireless Mobile Netw. Ubiquit. Comput. Depend. Appl. 3(1) (Mar
2012)

8. Bowen, B.M., Hershkop, S., Keromytis, A.D., Stolfo, S.J.: Baiting inside attackers using decoy
documents. In: Proc. Int’l Conf. on Security and Privacy in Communication Systems, pp. 51–
70. Springer (2009)

9. Chen, P., Desmet, L., Huygens, C.: A study on Advanced Persistent Threats. In: Proc. IFIP
Int’l Conf. on Communications and Multimedia Security, pp. 63–72. Springer (2014)

https://doi.org/10.1145/3422337.3447824
https://doi.org/10.1145/3422337.3447824
https://doi.org/10.1145/3422337.3447824
https://doi.org/10.1145/3422337.3447824
https://doi.org/10.1145/3422337.3447824
https://doi.org/10.1145/3422337.3447824
https://doi.org/10.1145/3422337.3447824

Mee: Adaptive Honeyfile System for Insider Attacker Detection 143

10. Cho, J.H., Zhu, M., Singh, M.P.: Modeling and analysis of deception games based on
hypergame theory. In: Autonomous Cyber Deception, pp. 49–74. Springer (2019)

11. Gómez-Hernández, J.A., Álvarez-González, L., García-Teodoro, P.: R-Locker: Thwarting
ransomware action through a honeyfile-based approach. Comput. Secur. 73, 389–398 (2018)

12. Harsanyi, J.C.: Games with incomplete information played by “Bayesian” players, I–III Part I.
The basic model. Management Science 14(3), 159–182 (1967)

13. Huang, L., Zhu, Q.: Dynamic Bayesian games for adversarial and defensive cyber deception.
In: Autonomous Cyber Deception, pp. 75–97. Springer (2019)

14. La, Q.D., Quek, T.Q., Lee, J., Jin, S., Zhu, H.: Deceptive attack and defense game in honeypot-
enabled networks for the Internet-of-Things. IEEE Internet Things J. 3(6), 1025–1035 (2016)

15. Lu, Z., Wang, C., Zhao, S.: Cyber deception for computer and network security: Survey and
challenges. Preprint (2020). arXiv:2007.14497

16. Mao, D., Zhang, S., Zhang, L., Feng, Y.: Game theory based dynamic defense mechanism for
SDN. In: Proc. Int’l Conf. on Machine Learning for Cyber Security, pp. 290–303. Springer
(2019)

17. Marchetti, M., Pierazzi, F., Guido, A., Colajanni, M.: Countering advanced persistent threats
through security intelligence and big data analytics. In: 2016 8th International Conference on
Cyber Conflict (CyCon), pp. 243–261. IEEE (2016)

18. Pawlick, J., Colbert, E., Zhu, Q.: Modeling and analysis of leaky deception using signaling
games with evidence. IEEE Trans. Inf. Foren. Secur. 14(7), 1871–1886 (2018)

19. Pawlick, J., Colbert, E., Zhu, Q.: A game-theoretic taxonomy and survey of defensive deception
for cybersecurity and privacy. ACM Comput. Surv. (CSUR) 52(4), 1–28 (2019)

20. Salem, M.B., Stolfo, S.J.: Decoy document deployment for effective masquerade attack
detection. In: Proc. Int’l Conf. on Detection of Intrusions and Malware, and Vulnerability
Assessment, pp. 35–54. Springer (2011)

21. Salem, M.B., Hershkop, S., Stolfo, S.J.: A survey of insider attack detection research. In:
Insider Attack and Cyber Security, pp. 69–90. Springer (2008)

22. Shan-Shan, J., Ya-Bin, X.: The APT detection method based on attack tree for SDN. In:
Proceedings of the 2nd International Conference on Cryptography, Security and Privacy, pp.
116–121 (2018)

23. Tankard, C.: Advanced persistent threats and how to monitor and deter them. Network Security
2011(8), 16–19 (2011)

24. Voris, J., Jermyn, J., Boggs, N., Stolfo, S.: Fox in the trap: Thwarting masqueraders via
automated decoy document deployment. In: Proceedings of the Eighth European Workshop
on System Security, pp. 1–7 (2015)

25. Wan, Z., Cho, J.H., Zhu, M., Anwar, A.H., Kamhoua, C., Singh, M.P.: Foureye: Defensive
deception against advanced persistent threats via hypergame theory. IEEE Trans.Network Serv.
Manag. (2021)

26. Whitham, B.: Minimising paradoxes when employing honeyfiles to combat data theft in mil-
itary networks. In: Proc. Military Communications and Information Systems Conf. (MilCIS),
pp. 1–6. IEEE (2016)

27. Whitham, B.: Automating the generation of enticing text content for high-interaction honey-
files. In: Proc. 50th Hawaii Int’l Conf. on System Sciences (2017)

28. Yuill, J.J.: Defensive computer-security deception operations: Processes, principles and tech-
niques. Ph.D. thesis, North Carolina State University (2007)

29. Yuill, J., Zappe, M., Denning, D., Feer, F.: Honeyfiles: Deceptive files for intrusion detection.
In: Proc. 5th Annual IEEE Information Assurance Workshop, pp. 116–122 (2004)

30. Zhu, M., Anwar, A.H., Wan, Z., Cho, J.H., Kamhoua, C.A., Singh, M.P.: A survey of defensive
deception: Approaches using game theory and machine learning. IEEE Commun. Surv. Tutor.
23(4), 2460–2493 (2021). https://doi.org/10.1109/COMST.2021.3102874

31. Zhu, M., Xi, R., Sharmin, N., Miah, M., Kiekintveld, C., Singh, M.P.: Honeyflow: Decoy net-
work traffic generation via Generative Adversarial Network. In: IEEE Global Communications
Conference: Communication & Information Systems Security, Rio de Janeiro, Brazil (Dec
2022)

https://avxhm.se/blogs/hill0

https://doi.org/10.1109/COMST.2021.3102874
https://doi.org/10.1109/COMST.2021.3102874
https://doi.org/10.1109/COMST.2021.3102874
https://doi.org/10.1109/COMST.2021.3102874
https://doi.org/10.1109/COMST.2021.3102874
https://doi.org/10.1109/COMST.2021.3102874
https://doi.org/10.1109/COMST.2021.3102874
https://doi.org/10.1109/COMST.2021.3102874

HoneyPLC: A Next-Generation
Honeypot for Industrial Control Systems

Efrén López Morales, Carlos E. Rubio-Medrano, Adam Doupé, Ruoyu Wang,
Yan Shoshitaishvili, Tiffany Bao, and Gail-Joon Ahn

1 Introduction

Industrial Control Systems (ICSs) are widely used by many industries including
public utilities such as the power grid, water, and telecommunications [48]. These
utilities are integral to people’s daily life, and any interruption to them may
cause significant damage and losses. The increasingly interconnected nature of
modern ICS makes them more vulnerable than ever to cyberattacks. For example,
a cyberattack that targets a power grid would potentially lead to blackouts in a
city or across an entire geographical region. Regrettably, this proposition is no
longer a fiction. The number of attacks targeting ICS has been steadily increasing
since the infamous Stuxnet malware first showed the world that ICS networks are
not secure [14]. Also, in 2015, a cyberattack targeting the Ukrainian power grid
successfully took down several of its distribution stations. The ensuing outages left
approximately 225,000 people without access to electricity for several hours [7].

E. L. Morales · C. E. Rubio-Medrano (�)
Texas A&M University—Corpus Christi, Corpus Christi, TX, USA
e-mail: elopezmorales@islander.tamucc.edu; carlos.rubiomedrano@tamucc.edu

A. Doupé · R. Wang · Y. Shoshitaishvili · T. Bao
Arizona State University, Tempe, AZ, USA
e-mail: doupe@asu.edu; fishw@asu.edu; yans@asu.edu; tbao@asu.edu

G.-J. Ahn
Arizona State University, Tempe, AZ, USA
Samsung Research, Seoul, Republic of Korea
e-mail: gahn@asu.edu

© This is a U.S. government work and not under copyright protection in the U.S.;
foreign copyright protection may apply 2023
T. Bao et al. (eds.), Cyber Deception, Advances in Information Security 89,
https://doi.org/10.1007/978-3-031-16613-6_8

145

 31368 2385 a 31368 2385 a

 885 46882 a 885 46882 a

elopezmorales@islander.tamucc.edu
elopezmorales@islander.tamucc.edu
elopezmorales@islander.tamucc.edu

 15157
46882 a 15157 46882 a

carlos.rubiomedrano@tamucc.edu
carlos.rubiomedrano@tamucc.edu
carlos.rubiomedrano@tamucc.edu

 885
50756 a 885 50756 a

doupe@asu.edu
doupe@asu.edu

 7396 50756 a 7396 50756 a

fishw@asu.edu
fishw@asu.edu

 13647 50756 a 13647
50756 a

yans@asu.edu
yans@asu.edu

 19583 50756 a 19583 50756 a

tbao@asu.edu
tbao@asu.edu

 885 55738 a 885 55738 a

gahn@asu.edu
gahn@asu.edu
https://doi.org/10.1007/978-3-031-16613-6_8
https://doi.org/10.1007/978-3-031-16613-6_8
https://doi.org/10.1007/978-3-031-16613-6_8
https://doi.org/10.1007/978-3-031-16613-6_8
https://doi.org/10.1007/978-3-031-16613-6_8
https://doi.org/10.1007/978-3-031-16613-6_8
https://doi.org/10.1007/978-3-031-16613-6_8
https://doi.org/10.1007/978-3-031-16613-6_8
https://doi.org/10.1007/978-3-031-16613-6_8
https://doi.org/10.1007/978-3-031-16613-6_8
https://doi.org/10.1007/978-3-031-16613-6_8

146 E. L. Morales et al.

1.1 The Problem: Preventing Attacks Targeting ICS via PLCs

One of the key components of ICS networks is Programmable Logic Controllers,
better known as PLCs [48]. PLCs are commonly found in supervisory control and
data acquisition or SCADA systems. These systems are used to control separated
assets that require centralized data acquisition which are a type of ICS [48]. Figure 1
illustrates these relationships. PLCs control mission-critical electrical hardware
such as pumps or centrifuges, effectively serving as a bridge between the cyber and
the physical worlds. Because of their critical role, PLCs have been recently targeted
by cyberattacks, which attempt to disrupt their proper functioning in an effort to
affect their corresponding ICS as a whole. As an example, PLCs were the primary
target of the Stuxnet malware as they controlled critical physical processes in a
nuclear facility. To better understand cyberattacks against ICS and PLCs, several
honeypots have been proposed [5, 15, 16, 24, 39, 51]. However, current honeypot
implementations for ICS fail to provide the necessary features to capture data for
most recent and sophisticated attack techniques. For example, a common limitation
exhibited by most of the existing approaches is their low-interaction nature: they
usually rely on basic and shallow simulations of network protocols, which usually
lack complex functionality that limits the attack vectors and makes them easy to
discover by attackers. These shortcomings heavily restrict the value of the attack
data that can be gathered by these ICS honeypots.

1.2 Challenges for Solving the Problem

Providing a solution to these issues comes with a set of unique challenges. First, it is
difficult to achieve meaningful, step-by-step protocol simulation that can eventually

Fig. 1 The relationship
between ICS, SCADA, and
PLCs, as well as Distributed
Control Systems (DCSs) [23],
Operational Technology
(OT) [13], and
Cyber-Physical Systems
(CPSs) [44] SCADA

ICS

DCS

PLCOTCPS

https://avxhm.se/blogs/hill0

HoneyPLC: A Next-Generation Honeypot for ICS 147

result in high-level, deceiving interactions between honeypots and attackers. These
inadequate simulations complicate concealing the true nature of honeypots up to
the point accurate and valuable data, e.g., the actual malicious ladder logic code
itself can be retrieved from attackers for further analysis. Second, several network
protocols largely used in ICS, e.g., S7comm [51], are proprietary, in the sense that
no detailed documentation on them is publicly available, which prevents an effective
understanding of the protocol, including hidden configuration parameters as well as
implicit, undocumented assumptions, which can ultimately reveal the true nature of
a honeypot to an attacker. Moreover, existing PLCs used in practice vary in terms
of configuration settings, supported protocols, and the way they are customized for
different application domains. Creating a general framework that can effectively
support such heterogeneity of PLCs devices, regardless of their brand and model,
without requiring the edition of large and clumsy configuration files, represents a
non-trivial challenge.

1.3 Proposed Approach: A Next-Generation Honeypot for ICS

To alleviate the aforementioned concerns targeting ICS worldwide and effectively
tackle the research challenges just discussed, this chapter presents HoneyPLC:
a high-interaction, extensible, and malware-collecting honeypot modeling PLCs,
which is specifically crafted for ICS. HoneyPLC includes advanced simulations of
the most common network protocols found in PLCs, namely, the TCP/IP Stack,
S7comm, HTTP, and SNMP, addressing the challenges introduced by inadequate
simulations and protocol closeness as discussed before. As an example, our
TCP/IP Stack simulation benefits from the introduction of a novel technique called
fingerprint reversing, which allows for accurately modeling TCP, ICMP, and UDP
probes at runtime, providing an effective, customized response to each interaction as
initiated by an attacker, largely increasing the level of engagement and subsequent
deception. In addition, our simulation of the S7comm protocol, which is core to
PLC communications, provides a level of simulation that is able to trick even
proprietary tools such as the Siemens Step7 Manager [4]. Moreover, HoneyPLC
also provides enhanced extensibility features, allowing for PLCs of different models
and manufacturing brands to be effectively simulated, thus addressing the PLC
heterogeneity challenge just discussed. We have successfully tested this feature
using five real PLCs, allowing for HoneyPLC to currently support out of the box
the Siemens S7-300, S7-1200, and S7-1500, the Allen-Bradley MicroLogix 1100,
and the ABB PM554-TP-ETH PLCs. HoneyPLC also implements an advanced
simulation of the internal memory blocks featured by modern PLCs, allowing for
the automated capture and storage of malicious ladder logic programs, which can
be later analyzed to reveal new attacking techniques.

The features just discussed are, to the best of our knowledge, exclusive to
HoneyPLC and also significantly advance the state of the art for ICS honeypots.
This positions HoneyPLC as a convenient and flexible tool that can serve as a

148 E. L. Morales et al.

reliable basis for the analysis and understanding of emerging threats and attacks,
as well as the subsequent development of protection techniques for ICS.

1.4 Contributions to Scientific Literature

Overall, this chapter makes the following contributions:

1. It provides a summary of the limitations and shortcomings of existing ICS
Honeypots and discusses how they address (or not) emerging malware threats, as
well as new ICS technology, e.g., new PLC models and ICS network protocols.

2. It presents HoneyPLC, a high-interaction honeypot for PLCs, which not only
solves many of the limitations of related approaches but also provides convenient
support for further understanding and eventually defeating emerging threats for
ICS.

3. It introduces the HoneyPLC PLC Profiler Tool, which allows for the effective
simulation of many different PLCs regardless of their model and manufacturer.

4. Finally, experimental evidence is provided showing that HoneyPLC is not only
effective at engaging and deceiving state-of-the-art tools for network recon-
naissance but also outperforms existing honeypots in the literature, achieving
a performance level comparable to real PLC devices.

1.5 Source Code Availability and Chapter Roadmap

In an effort to further open and produce reproducible science, HoneyPLC and all our
experimental results are available online.1 This chapter is an extended version of a
paper that appeared at the Proceedings of the 2020 ACM SIGSAC Conference on
Computer and Communications Security (ACM CCS’20) [25], and it is organized
as follows: Sect. 2 introduces detailed information about PLCs, honeypots, ICS-
specific malware, as well as similar approaches found in the literature. Section 3
elaborates on the lack of support of such existing approaches for handling emerging
threats for ICS, resulting in a problem that is then addressed in Sect. 4. Later, Sect. 5
presents experimental evidence of the suitability of HoneyPLC for being deployed
in practice by precisely describing testing environments, procedures, and results.
Subsequently, Sect. 6 delves into a discussion about how our approach ranks up
against current literature and outlines what future research could be undertaken as a
result of this work. Finally, Sect. 7 concludes this chapter.

1 https://github.com/sefcom/honeyplc.

https://avxhm.se/blogs/hill0

https://github.com/sefcom/honeyplc
https://github.com/sefcom/honeyplc
https://github.com/sefcom/honeyplc
https://github.com/sefcom/honeyplc
https://github.com/sefcom/honeyplc

HoneyPLC: A Next-Generation Honeypot for ICS 149

2 Background and Related Work

Before diving into the details of HoneyPLC, we present some background on the
tools and technologies that are addressed in further sections, namely, PLCs them-
selves, network reconnaissance tools, malware specifically tailored for disrupting
ICS, and honeypots that have been developed for protecting ICS environments.

2.1 Programmable Logic Controllers

A Programmable Logic Controller (PLC) is a small industrial computer designed
to perform logic functions based on input provided by electrical hardware such as
pumps, relays, mechanical timers, switches, etc. PLCs have the capability of con-
trolling complex industrial processes, making them ubiquitous in ICS and SCADA
environments [47]. Some popular PLC manufacturers include Siemens [45], Allen-
Bradley [2], and ABB [1]. Internally, PLCs have programmable memory blocks that
store instructions to implement different functions, for example, input and output
control, counting, logic gates, and arithmetic calculations.

2.2 Network Reconnaissance Tools

In practice, the process of network reconnaissance involves identifying the topology
of a network, the protocols used, the different devices that may be connected through
it, etc. Since such a process is essential for carrying out successful attacks to ICS
and PLCs, we now present a set of tools for network reconnaissance that are widely
used in practice, which were used to evaluate HoneyPLC as it is discussed in Sects. 3
and 5.

2.2.1 Nmap

Nmap or “Network Mapper” [26] is a popular open-source utility that is able to
detect the operating system and services that a particular device is running by
sending raw IP packets over the network. Once a given detection scan is completed,
Nmap can either report a single OS match or a list of potential OS guesses, each
guess with its own confidence percentage rate, in the range of 0 to 100, where 0
denotes the complete absence of confidence and 100 denotes a complete confidence
on the projected guess result.

150 E. L. Morales et al.

2.2.2 PLCScan

PLCScan [43] is a reconnaissance tool used to scan PLC devices in a given network.
PLCScan reveals PLCs that implement the S7comm protocol over TCP port 102 or
the Modbus protocol over TCP port 502. It is written as a command line Python
script and lists PLC information including basic hardware, serial number, name of
the PLC, and firmware version.

2.2.3 Shodan

Shodan is a search engine and crawler [27] specifically tailored for devices exposed
across the Internet, e.g., webcams, routers, and ICS devices, among others. The
Shodan Honeyscore (part of the Shodan API [27]) is a tool that checks whether a
device is a honeypot or not. Given an IP address, the Shodan Honeyscore calculates
the probability that the host is a honeypot, in a range between 0.0 and 1.0, where
0.0 means that the host is definitively a real system and 1.0 means the host is
definitively a honeypot. According to Shodan’s creator, the following criteria are
used for calculating Honeyscores [28]: (1) too many open network ports, (2) a
service not matching the environment, for example, an ICS device running on AWS
EC2, (3) known default settings of known honeypots, (4) if a host was initially
classified as a honeypot, then it is highly likely that it remains a honeypot today,
even though its configuration may look real, (5) a Machine Learning classification
algorithm (not disclosed), and, finally, (6) the same configuration being used across
multiple honeypots.

2.3 Exemplary ICS Malware

Recently, a series of dedicated malware instances have attempted to disrupt the
functioning of ICS environments, and some of them have been successful and have
ultimately resulted in costly damages. With that in mind, we now present a summary
of the malware that is most relevant to the problem addressed by our proposed
HoneyPLC approach.

2.3.1 Stuxnet

The first ever-documented cyber-warfare weapon, Stuxnet, was a turning point in
the history of cybersecurity [12], targeting PLC models 315 and 417 made by
Siemens to modify their inner ladder logic code while concealing itself from ICS
administrators [21]. The malware would first spread itself via USB sticks and
the local network, looking for vulnerable Windows workstations. Later, it would
proceed to infect the Step7 and WinCC Siemens proprietary software by hijacking

https://avxhm.se/blogs/hill0

HoneyPLC: A Next-Generation Honeypot for ICS 151

a Dynamic Link Library (DLL) file used to communicate with the PLCs. Finally,
the malicious ladder logic payload would be dropped only on the aforementioned
models based on specific manufacturer numbers and memory blocks.

2.3.2 Pipedream Toolkit

Pipedream is the seventh documented malware that specifically targets ICS [11]. It
is not a single-purpose malware but a modular framework that includes multiple
exploits that target different ICS devices. These devices include Open Platform
Communications Unified Architecture (OPC UA) servers, Schneider Electric PLCs,
and OMRON PLCs. Pipedream is believed to have been developed by a nation state
or a state-sponsored group and was classified as an advanced persistent threat or
APT by the Department of Energy or DOE [8].

2.3.3 Dragonfly

Also known as Havex malware [37], Dragonfly was a large-scale cyberespionage
campaign that targeted ICS software in the energy sector in the United States and
Europe. In order to infect its targets, three different attack vectors were used. First,
a spam campaign that used spear phishing targeted senior employees in energy
companies. Second, Watering Hole attacks [37] that compromised legitimate energy
sector websites were deployed to redirect the target to another compromised website
that hosted the Lightsout exploit, which ultimately dropped the Oldrea or Karagany
malwares [10] in the target’s host. The third and final attack vector used was a
dedicated trojanized software (legitimate software that is turned into malware),
the attackers leveraged to successfully compromise various legitimate ICS software
packages, ultimately inserted their own malicious code. Once a host was infected,
the Havex malware leveraged legitimate functionality available through the OPC
protocol to draw a map of the industrial devices present in the ICS network. This
kind of data would be highly valuable when designing future attacks. Dragonfly was
entirely focused on spying and gathering information on ICS networks.

2.3.4 Crashoverride

Otherwise known as Industroyer [46], CRASHOVERRIDE is a sophisticated
malware designed to disrupt ICS networks used in electrical substations. It shows in-
depth knowledge of ICS protocols used in the electrical industry that would only be
possible with access to specialized industrial equipment. CRASHOVERRIDE dealt
with physical damage by opening circuit breakers and keeping them open even if
the grid operators tried to close them back to restore the system. It is believed to
have been the cause of the power outage in Ukraine in December of 2016 [14].

152 E. L. Morales et al.

2.4 Honeypots for ICS

Honeypots are computer systems that purposefully expose a set of vulnerabilities
and services that can be probed, analyzed, and ultimately exploited by an attacker
[33], allowing for all possible interaction data to be monitored, logged, and stored
for future analysis. A summary of existing ICS honeypots is shown in Table 1.

2.4.1 Low-Interaction Honeypots

Low-interaction honeypots offer the least amount of functionality to an attacker
[29, 33]. The services exposed by this kind of honeypot are usually implemented
using simple scripts and finite state machines. Because of their limited interaction,
attackers may not be able to complete their attack steps or may even realize that
their target is a fake system. On the other hand, low-interaction honeypots cannot be
fully compromised as they are not real systems, which greatly reduces maintenance
costs and time invested in configuration and deployment. Gaspot [50] is a low-
interaction honeypot written as a Python script that simulates a gas tank gauge.
It can be modified to change temperature, tank name, and volume. The SCADA
HoneyNet Project was the first honeypot implementation specifically built for ICS
[39, 49]. This project was aimed at developing a software framework capable of
simulating ICS devices like PLCs using Python scripts. Conpot [16] is also a low-
interaction ICS honeypot implementation that simulates a Siemens S7-200 PLC and
can be manually modified to simulate other PLCs by editing an XML file.

2.4.2 High-Interaction Honeypots

High-interaction honeypots lie on the other side of the spectrum, as they strive to
offer the same level of interaction as a real system [29]. CryPLH is a high-interaction
honeypot that simulates an S7-300 Siemens PLC [5] and includes HTTP, HTTPS,
S7comm, and SNMP services running on a Linux host that has been modified to
accept connections on specific ports. The S7comm protocol is simulated by showing
an incorrect password response and the TCP/IP Stack is simulated via the Linux
kernel. S7commTrace [51] provides a high-interaction simulation of the S7comm
protocol and supports the Siemens S7-300 PLC. Antonioli et al. [3] proposed a
high-interaction honeypot that leverages the MiniCPS framework to simulate the
Ethernet/IP protocol and a generic PLC. HoneyPhy [24] provides a novel physics-
aware model to simulate a generic analog thermostat and the DNP3 protocol.

https://avxhm.se/blogs/hill0

HoneyPLC: A Next-Generation Honeypot for ICS 153

Ta
bl

e
1

C
om

pa
ri

so
n

of
ex

is
tin

g
PL

C
H

on
ey

po
ts

in
th

e
lit

er
at

ur
e

an
d

H
on

ey
PL

C

K
ey

s:
○␣

=
N

o
co

ve
ra

ge
;�

=
L

im
ite

d
co

ve
ra

ge
;○

=
O

pt
im

al
co

ve
ra

ge

A
pp

ro
ac

h/
T

C
P/

IP
st

ac
k

O
ut
-o
f-
th
e-
B
ox

IC
S

ne
tw

or
k

L
ad

de
r

L
og

ic
Ph

ys
ic

s
Fe

at
ur

e
E

xt
en

si
bi

lit
y

si
m

ul
at

io
n

PL
C

s
se

rv
ic

es
ca

pt
ur

e
in

te
ra

ct
io

n
L

og
gi

ng

G
as

po
t[

50
]

○␣
○␣

�
○␣

○␣
�

○

SC
A

D
A

H
on

ey
N

et
[3

9]
○␣

○
�

○
○␣

○␣
○

C
on

po
t[

16
]

�
○␣

�
○

○␣
○␣

○

D
ig

ita
lB

on
d’

s
H

on
ey

ne
t[

49
]

○␣
○␣

�
○

○␣
○␣

○

D
iP

ot
[6

]
�

○␣
�

○
○␣

○␣
○

SH
aP

e
[2

0]
�

○␣
�

�
○␣

○␣
○

C
ry

PL
H

[5
]

○␣
�

�
○

○␣
○␣

○␣

S7
co

m
m

T
ra

ce
[5

1]
�

○␣
�

�
○␣

○␣
○

A
nt

on
io

li
et

al
.[

3]
�

�
�

○
○␣

�
○

H
on

ey
Ph

y
[2

4]
�

○␣
�

�
○␣

�
○␣

H
on

ey
PL

C
○

○
○

○
○

○␣
○

Se
ct

io
ns

ad
dr

es
si

ng
fe

at
ur

e
4.

2,
5.

2
4.

3,
5.

3,
5.

4
4.

2,
5.

2
4.

3,
5.

6
4.

4,
5.

7
6

4.
5

154 E. L. Morales et al.

3 Limitations of Existing Honeypots

Despite the benefits of honeypots previously discussed, existing honeypots, shown
in Table 1, fail to provide the necessary features to capture data on sophisticated
attacks, thus exhibiting the following limitations:

L-1 Limited Extensibility. A common limitation in the current literature is the
narrow extensibility support for the many different PLC devices and network
services that are used in ICS in practice and have already been targeted by
recent attacks. As an example, Stuxnet and the Kemuri attack targeted differ-
ent kinds of PLCs, whereas CRASHOVERRIDE targeted different network
services, as was discussed in Sect. 2. Following Table 1, several approaches in
the literature provide limited extensibility capabilities, which mostly include
the manual edition of XML files to support additional PLCs. This process,
besides being tedious and time-consuming, may be highly error-prone and may
ultimately reveal the true nature of a honeypot to attackers if implemented
incorrectly. This is aggravated by the fact most of the approaches in the
literature support only one or two PLC models only. In contrast, HoneyPLC
currently provides out-of-the-box support for 5 PLCs of three major brands, as
detailed in Sect. 5.2.

L-2 Limited Interaction. Current approaches mostly provide limited functionality
when it comes to TCP/IP Stack simulations, as well as native ICS network
protocols, as described in Sect. 2. This is a serious limitation that stops current
approaches from extracting value from adversarial interactions and malware.
As an example, CRASHOVERRIDE leveraged advanced ICS protocol features
that are not supported by low-interaction honeypots. This would ultimately
result in the loss of highly valuable data. Even high-interaction honeypots fail
to provide advanced enough protocol simulations. For example, CryPLH [5]
implements the S7comm protocol using a Python script that only simulates
an incorrect password screen. HoneyPLC solves this limitation by providing
extended support for various networks protocols, as we will discuss in Sect. 4.3
and evaluate through experiments in Sects. 5.3–5.6.

L-3 Limited Covert Operation. The moment an attacker discovers the true nature
of a honeypot, it is game over, as the attacker might stop interacting with
it altogether and stop revealing her attack methods. Therefore, honeypots
should aim to fool widely used network reconnaissance tools, e.g., Nmap,
introduced in Sect. 2.2, to maintain their covert operation. In such regard,
the SCADA HoneyNet Project [39] is the only approach in the literature that
provides a convincing deception to attackers. Also, Linux Kernel simulations,
implemented by several approaches in the literature, e.g., CryPLH, fail to
deceive Nmap. Other work fails to attempt or even mention such a crucial
feature. To overcome this, HoneyPLC provides advanced network simulations
intended to deceive reconnaissance tools, as shown in Sect. 4.3.

L-4 No Malware Collection. The highly specialized nature of ICS devices calls for
better analysis, dissection, and understanding techniques specifically tailored

https://avxhm.se/blogs/hill0

HoneyPLC: A Next-Generation Honeypot for ICS 155

for emerging malware trends. In such regard, honeypots are a great tool to
collect and analyze malware [34]. However, as shown in Table 1, there exist no
honeypots for ICS in the literature that can provide such functionality. To solve
this, HoneyPLC provides a novel feature to capture ladder logic, as described
in Sects. 4.4 and 5.7.

4 HoneyPLC: A Convenient High-Interaction Honeypot For
PLCs

Having described the limitations of existing approaches, we now present Honey-
PLC, an extensible, high-interaction, and malware-collecting honeypot for ICS.
HoneyPLC provides advanced protocol simulations, e.g., TCP/IP, S7comm, HTTP,
and SNMP, achieving an interaction level comparable to real PLCs, ultimately
introducing low-to-moderate levels of risk as well as low maintenance costs. We
start by providing an illustrative use case scenario, which exemplifies how the
different inner modules and components of HoneyPLC interact with an attacker
at runtime when an attempt to compromise a PLC is made. Later, we elaborate on
how HoneyPLC solves each of the limitations highlighted in Sect. 3.

4.1 Illustrative Use Case Scenario

For illustrative purposes, we present an example use case scenario featuring
HoneyPLC, which is based on the architectural design graphically shown in Fig. 2.
After this case scenario has been completed, HoneyPLC may have been able to
collect crucial information about the attack inside its logging infrastructure: (1) the
public IP address of the attacker, (2) the specific PLC memory blocks the attacker
was targeting and, best of all, the critical piece, and (3) the ladder logic program
he/she has injected. Later on, such a malware sample can be analyzed at the byte
level to get a better understanding of the malicious instructions that the attacker
wanted the PLC to execute. In Sect. 6, we elaborate on this idea as a part of our
future work.

4.1.1 Initial Setup

As it will be further discussed in Sect. 4.2, HoneyPLC can be extended to simulate
PLCs of different models, communication protocols, and/or manufacturer brands.
With that in mind, the very first step when using HoneyPLC includes choosing the
PLC Profile featuring the desired real-life PLC that will be exposed to attackers as
a honeypot. This process is shown in Fig. 2 (Step 1). PLC Profiles can be chosen

156 E. L. Morales et al.

Fig. 2 The architecture of HoneyPLC. Before deployment, a PLC profile is selected from a
repository (1). Later, at runtime, an attacker may initiate contact via a dedicated protocol, e.g.,
S7comm (2). Communications are then processed by the Personality Engine (3), later forwarded
to the S7comm server (5), and are eventually logged by the interaction data framework (6). Finally,
all code injected by the attacker is captured within the repository module (7)

from a dedicated repository included as a part of HoneyPLC. For the rest of this
case scenario, let us assume the S7-1200 model is selected.

4.1.2 Fingerprinting

Once HoneyPLC is deployed, an attacker may try to fingerprint it using a recon-
naissance tool such as Nmap or PLCScan (Fig. 2 (Step 2)). When initial contact is
established, all the TCP/IP requests will be handled by the HoneyPLC’s Personality
Engine, which in turn is based on features provided by the Honeyd [9] tool, as it will
be further discussed in Sect. 4.3 (Fig. 2 (Step 3)). Since the S7-1200 PLC model was
selected in the beginning, the Personality Engine will use the appropriate fingerprint

https://avxhm.se/blogs/hill0

HoneyPLC: A Next-Generation Honeypot for ICS 157

contained within the PLC Profile to reply to communications started by Nmap. At
this point, Nmap may confirm to the attacker that she is dealing with a PLC and not
a honeypot, as we show in Sect. 5.

4.1.3 Reconnaissance

In a subsequent step, an attacker might try to initiate an S7comm connection to
check what PLC memory blocks are available. As mentioned in Sect. 2, such a
process is crucial when attempting to modify the inner ladder logic code of a PLC.
The connection is first handled by the HoneyPLC’s Network Services module and
later forwarded to a dedicated S7comm server (Fig. 2 (Step 4)). The S7comm server
then replies with the requested information, and the Integration Framework forwards
the replies to the attacker. In the meantime, the S7comm server is logging all the
interactions, including the attacker’s source IP address and memory block requests
made to the PLC.

4.1.4 Code Injection

At this point, when the attacker identifies a PLC memory block suitable for injec-
tion, he/she uses an S7comm application like PLCinject [41] to load ladder logic
code into the PLC, effectively overwriting any preexisting code and introducing
a custom-made malicious payload (Fig. 2 (Step 5)). As a result, the HoneyPLC’s
S7comm server will write the code into the dedicated HoneyPLC repository, which
is managed by the Interaction Data module (Fig. 2 (Steps 6 and 7)).

4.1.5 Confirmation and Farewell

Finally, the attacker has two options. First, he/she can continue interacting with
HoneyPLC, e.g., trying to download the MIB via the SNMP protocol to get more
information about the network configuration or any banner present. Second, she
might stop interacting altogether, at which point HoneyPLC’s work is over.

4.2 Supporting PLC Extensibility

As described in Sect. 3, existing approaches in the literature provide limited support
for the large variety of PLC models currently in the market, which limits their
suitability for being used in practice. To solve this issue, this section starts by
describing how different PLC models are supported by HoneyPLC by means of so-
called PLC Profiles and then moves on to describe how other models in the market

158 E. L. Morales et al.

can be supported by developing new PLC Profiles by means of the HoneyPLC PLC
Profiler Tool.

4.2.1 PLC Profiles

The PLC Profile Repository, shown in Fig. 2 (Step 1), is a collection of PLC Profiles
that hold all the required data to simulate a given PLC. It communicates with the
Integration Framework and Network Services modules to customize the PLC that
HoneyPLC is simulating at any given time and addresses the lack of extensibility
discussed in Limitation L-1. In turn, a PLC Profile is a collection of three discrete
datasets, which allow HoneyPLC to simulate a particular PLC device by means of
highly customized simulations of network interactions, as it will be discussed in
Sect. 4.3.

• SNMP MIB. A Management Information Base (MIB) is a standard used by
SNMP agents. Because most PLC devices implement a simple SNMP agent, a
custom MIB is needed for HoneyPLC to provide a realistic SNMP simulation.

• Nmap Fingerprint. A plain text file with the Nmap fingerprint to effectively
simulate the TCP/IP Stack of a particular PLC device. As it will be detailed
later in this section, this fingerprint allows HoneyPLC to effectively engage and
deceive well-known reconnaissance tools such as Nmap.

• Management Website. Some PLC devices provide a light webserver with a splash
screen and some configuration options. Because of this, a PLC Profile includes a
copy of such website, including, but not limited to, image, HTML, and CSS files.

4.2.2 PLC Profiler Tool

The HoneyPLC Profiler Tool automates the creation of new HoneyPLC Profiles. It
interfaces with three different applications: Nmap, (Sect. 2.2), snmpwalk [35], and
wget [36]. To obtain the profile for a target PLC, the HoneyPLC Profiler requires
the IP address of the PLC device as the only input. Then, the Profiler runs a series of
queries to obtain the three discrete sets of data from the target PLC described before:
an SNMP MIB, a website directory, and an Nmap fingerprint. First, snmpwalk is
used for reading all the available Object IDs (OIDs) from the public community
string, creating an identical MIB to the one used by the PLC. OIDs may include,
among other important configuration settings, the unique identifier of the PLC, as
well as its base IP address. Second, Nmap’s OS detection is used to get the TCP/IP
stack fingerprint of the target PLC, in a process that includes scanning all well-
known TCP and UDP ports. This fingerprint will be later leveraged by HoneyPLC’s
Integration Framework to provide meaningful TCP/IP interactions as a response to
requests initiated by an attacker. Third, wget is used to download a complete copy of
the splash screen or administration website, if any. Finally, the HoneyPLC Profiler

https://avxhm.se/blogs/hill0

HoneyPLC: A Next-Generation Honeypot for ICS 159

will create a custom directory that can be used by HoneyPLC, inside its dedicated
PLC Profile Repository, shown in Fig. 2 (1), to simulate the target PLC.

4.3 Supporting Operational Covertness

As described in Sect. 3, being able to engage attackers without revealing a honeypot
nature is crucial for obtaining valuable information on the vectors, techniques,
and goals being used for compromising PLCs. To this end, this section describes
how HoneyPLC supports meaningful network interactions leveraging the TCP, IP,
S7comm, SNMP, and HTTP protocols, which are widely used by PLCs in practice.

4.3.1 TCP/IP Simulation

Within HoneyPLC’s Integration Framework, depicted in Fig. 2, a sophisticated
TCP/IP Stack simulation is implemented by leveraging Honeyd [33], a popular
framework for honeypot simulation, as well as Nmap, discussed in Sect. 2.2. The
process is depicted in Fig. 3. Initially, when a new PLC is to be modeled by
HoneyPLC, Nmap is used to generate a detailed TCP/IP Stack fingerprint for it.
Next, such a fingerprint is integrated with the Honeyd fingerprint database, by
appending it to Honeyd’s nmap-os-db text file. Later, at runtime, when a tool

Fig. 3 The HoneyPLC personality engine: first, a PLC Profile is selected from the repository,
including its Nmap fingerprint (1). When an attacker tries to fingerprint HoneyPLC using Nmap,
such a tool will send a series of Probes to determine the OS or Device (2). HoneyPLC will then
reply with appropriately crafted responses that simulate a real PLC, thus effectively deceiving
Nmap and the attacker (3)

160 E. L. Morales et al.

like Nmap tries to fingerprint a HoneyPLC host, HoneyPLC Personality Engine,
leveraging Honeyd, will respond with the appropriate fingerprint information.
To achieve this, the Engine reads a particular fingerprint from Nmap’s database
and reverses it, which means that when Honeyd simulates a particular device, it
introduces its IP/TCP Stack peculiarities: TCP SYN packet flags, IMCP packet
flags, and timestamps. The generation of accurate Nmap fingerprints imposed a
variety of challenges. First, PLC devices of different manufacturers and models use
different UDP and TCP ports that are not standard or may not be properly defined
within the device manuals, e.g., port 2222 for the MicroLogix 1100 PLC. The
lack of heterogeneity required us to perform a manual inspection, which was time-
consuming and error-prone. Second, we analyzed the Nmap reports that contain
the fingerprint results and modified the format to be compatible with the Honeyd
fingerprint database. Third, an extensive analysis of the Nmap reports containing the
fingerprint results was also required, such that important changes can be introduced
for producing better results, i.e., changes in the overall format to make the newly
produced fingerprint compatible with the Honeyd fingerprint database. Additionally,
the creation of accurate Honeyd templates brought its own set of challenges. For
HoneyPLC to provide enhanced interaction capabilities, which can engage attackers
for extended periods of time (as we further describe in Sect. 4.3), we significantly
improved the standard simulation scripts included within Honeyd. Specifically,
we used the subsystem virtualization feature provided by Honeyd: this feature
facilitates the integration of the different HoneyPLC components.

4.3.2 S7comm Server

Within HoneyPLC’s Network Services Module, depicted in Fig. 2, the S7comm
server provides a sophisticated simulation of the Siemens proprietary protocol. It
simulates a real Siemens PLC and exposes several memory blocks via TCP port
102. At the time of writing this work, Siemens had not released the specifications
of S7comm protocol and the information that is available has been collected by
third parties like the Snap7 project [31] and the Wireshark Wiki [38]. We leveraged
the Snap7 framework [31, 40] to write an S7comm server application in C++. We
modified and recompiled the source code of the main Snap7 library to add our own
features. These include logging the S7comm interactions, ladder logic capture, and
PLC firmware specifications for all three Siemens PLC models, for example, CPU
model, serial number, PLC name label, and copyright among others.

4.3.3 SNMP Server

Within HoneyPLC’s Network Services Module, the SNMP Agent implements
an advanced simulation of the SNMP protocol along with believable MIB data,
effectively allowing HoneyPLC to reply to any external SNMP server query. SNMP
is commonly used in practice to monitor network connected devices and listens

https://avxhm.se/blogs/hill0

HoneyPLC: A Next-Generation Honeypot for ICS 161

Fig. 4 The HoneyPLC SNMP and the Webserver agents. The MIB database and the website HTTP
files, obtained from a PLC profile, are first loaded by each agent (1). Then, the attacker may use
SNMPWalk as well as an HTTTP client to establish connection with HoneyPLC (2). Later, each
agent will reply to each request using the information obtained from the PLC profile (3)

to requests over UDP port 161. Since real PLCs do implement SNMP agents,
implementing this sub-component adds to the deception capabilities of HoneyPLC.
Our simulation process, shown in Fig. 4 (top), can be described as follows: in
practice, a typical SNMP setup includes a Manager as well as an Agent module.
The SNMP Manager continually queries the Agent for up-to-date data. an SNMP
Agent exposes a set of data known as Management Information base or MIB. In
order to simulate the SNMP protocol, we use the light Python application snmpsim,
which simulates an SNMP Agent based on real time or archived MIB data. When
an SNMP request is received by HoneyPLC, the SNMP Agent replies with an OID
as a real PLC would do.

4.3.4 HTTP Server

Finally, the HoneyPLC’s HTTP server provides an advanced simulation of the
HTTP server of the Real PLCs and serves websites found in real PLCs, as
illustrated in Fig. 4 (bottom). As an example, most Siemens PLC devices include an
optional HTTP service to manage some of its internal configuration features. This
functionality was in turn implemented with lighttpd [19], a lightweight webserver
to handle all HTTP quests. When an HTTP request hits HoneyPLC, its Integration
Framework relays the request to the lighttpd server. Later, the webserver replies with
the website data from a HoneyPLC profile.

162 E. L. Morales et al.

4.4 Ladder Logic Collection

HoneyPLC’s S7comm Server holds the novel Ladder Logic Capture feature. It
writes any ladder logic program that an attacker uploads to HoneyPLC. When an
adversary uploads a ladder logic program to any of the S7comm Server memory
blocks, while trusting it to be a real PLC, this feature automatically writes them into
the file HoneyPLC filesystem with the corresponding timestamp. These captured
ladder logic programs can be analyzed at a later stage at the byte level to expose
ladder logic instructions and then extract new attack patterns used by adversaries
targeting PLCs. We implemented the Ladder Logic Capture component leveraging
the Snap7 framework using C++, in a similar fashion as the S7comm Server.
Additionally, we modified the Snap7 framework main library files to integrate this
feature at the Linux OS level.

4.5 Implementing Record Keeping via Logging

The Interaction Data component holds all of the interaction data gathered by
HoneyPLC. It maintains two kinds of data. First, it contains all logs produced by
our S7comm servers, the SNMP agent, and the HTTP server. Second, it contains all
the ladder logic programs that get injected via the S7comm server. This component
communicates directly with the Network Services component. We configured
Honeyd, lighttpd, snmpsim, and the S7comm Server to automatically log all
interactions. The S7comm Server writes to the file system all interactions including
IP address of originating host, timestamp, and memory block ID in the case of
reading or writing. Next, snmpsim logs IP information what OIDs were accessed
and timestamps. Finally, the lighttpd webserver includes all the major features of
a modern webserver with detailed logging that includes IP address information,
accesses website files, and timestamps. All of them log every interaction all the
time.

5 Evaluation

As shown throughout Sect. 4, HoneyPLC is designed to effectively deceive attackers
into believing that they are dealing with real PLCs. This section starts by enu-
merating a set of experimental questions, which are based on the limitations of
existing approaches as presented in Sect. 3. Then we present a series of experiments
designed to provide affirmative answers to each question backed up by experimental
evidence. For this purpose, we used the following PLC models: Siemens S7-300,
S7-1200, and S7-1500, as well as the Allen-Bradley MicroLogix 1100 and the
ABB PM554-TP-ETH, which are shown in Fig. 5, as these models are common in

https://avxhm.se/blogs/hill0

HoneyPLC: A Next-Generation Honeypot for ICS 163

Fig. 5 PLCs procured for experimental purposes including, from left to right, Siemens S7-300,
S7-1500, S7-1200, Allen-Bradley MicroLogix 1100, and ABB PM554-TP-ETH

practice. As an example, a query2 on Shodan [27], shows more than a 1700 Internet-
facing PLCs across several different countries. For each experiment, we describe
its environmental setup, the methodologies used, and the results obtained. Table 2
shows a summary of the experiments we performed comparing HoneyPLC with
other honeypots in the literature whose implementation was either available online
or was obtained from their authors upon request. A description of the obtained
results is provided next, and an extended discussion comparing HoneyPLC with
related work is shown in Sect. 6.

5.1 Experimental Questions

As an initial step, we now enumerate the research questions we have attempted to
collect evidence for by means of the experiments shown later in this section. For
each question, we describe how it relates to the limitations described in Sect. 3 and
what subsections presented later address it.

Q-1 Can HoneyPLC support different real PLCs?
Since current approaches provided limited support for various types of PLCs
being widely used by ICS in practice, we were interested in exploring the
capabilities of HoneyPLC to model different PLCs using the PLC Profiler Tool
described in Sect. 4.2. This question is related to Limitation L-1, as discussed in
Sect. 3. We strive to answer to this question in Sects. 5.2 and 5.2.5.

Q-2 Can HoneyPLC conceal its honeypot nature from attackers?

2 https://www.shodan.io/search?query=siemens+port%3A102.

https://www.shodan.io/search?query=siemens+port%3A102
https://www.shodan.io/search?query=siemens+port%3A102
https://www.shodan.io/search?query=siemens+port%3A102
https://www.shodan.io/search?query=siemens+port%3A102
https://www.shodan.io/search?query=siemens+port%3A102
https://www.shodan.io/search?query=siemens+port%3A102
https://www.shodan.io/search?query=siemens+port%3A102
https://www.shodan.io/search?query=siemens+port%3A102
https://www.shodan.io/search?query=siemens+port%3A102

164 E. L. Morales et al.

Ta
bl

e
2

E
xp

er
im

en
ta

lc
om

pa
ri

so
n

of
PL

C
H

on
ey

po
ts

K
ey

s:
○␣

=
N

o
co

ve
ra

ge
;�

=
L

im
ite

d
co

ve
ra

ge
;○

=
O

pt
im

al
co

ve
ra

ge

E
xp

er
im

en
t

C
on

po
t[

16
]

SC
A

D
A

H
on

ey
N

et
[3

9]
G

as
po

t[
50

]
S7

co
m

m
tr

ac
e

[5
1]

H
on

ey
PL

C

N
m

ap
�

○
�

�
○

(S
ec

t.
5.

3)

PL
C

Sc
an

○
�

N
/A

�
○

(S
ec

t.
5.

3)

H
on

ey
sc

or
e

○
○␣

○␣
○␣

○

(S
ec

t.
5.

4)

St
ep

7
M

an
ag

er
○␣

○␣
N

/A
○␣

○

(S
ec

t.
5.

5)

PL
C

in
je

ct
○␣

�
○␣

○␣
○

(S
ec

t.
5.

7)

https://avxhm.se/blogs/hill0

HoneyPLC: A Next-Generation Honeypot for ICS 165

Table 3 PLC devices supported by ICS Honeypots

Approach Supported PLC devices

Gaspot [50] Veeder Root Guardian AST

SCADA HoneyNet [39] Siemens CP 343-1

Conpot [16] Siemens S7-200, Allen Bradley LOGIX5561

Digital Bond’s Honeynet
[49]

Modicon Quantum PLC

DiPot [6] Siemens S7-200

SHaPe [20] IEC 61850-Compliant PLC

CryPLH [5] Siemens S7-300

S7commTrace [51] Siemens S7-300

Antonioli et al. [3] Generic PLC

HoneyPhy [24] Generic Analog Thermostat

HoneyPLC Siemens S7-300, S7-1200, S7-1500, Allen-Bradley MicroLogix 1100,

ABB PM554-TP-ETH

More specifically, can HoneyPLC fool widely used reconnaissance tools? Also,
we were interested in obtaining evidence regarding the interactions HoneyPLC
may have obtained when deployed in the wild, i.e., via an Internet connection.
This question is related to Limitations L-2 and L-3. We elaborate on this question
in Sects. 5.3, 5.4, and 5.6.

Q-3 Can HoneyPLC effectively capture Ladder Logic code?
Since capturing Ladder Logic code represents a highly desirable feature for
analyzing threats to ICS, we were interested in exploring the capabilities of
HoneyPLC, as described in Sect. 4, to properly carry out such task. This question
is related to Limitation L-4 and is addressed in Sect. 5.7.

5.2 Case Study: PLC Profiling

As mentioned in Sect. 3, current state-of-the-art honeypots for PLCs have been
modeled over a limited number of PLCs, as shown in Table 3, and support for
any extensions is quite limited. Therefore, we were interested in exploring the
capabilities of HoneyPLC to support PLCs of different models and manufacturers.

5.2.1 Profiling Siemens PLCs

First, we evaluate the ability of HoneyPLC to support PLCs manufactured by
Siemens which are very common both in industry deployments and in academic
research [42].

166 E. L. Morales et al.

5.2.2 Environment Description

For our first case study, we procured three Siemens PLCs: the S7-300, the S7-1200
and the S7-1500 models, which are shown in Fig. 5. Each PLC was connected to a
special power supply and data or Ethernet cables. Additionally, we used the Siemens
Step7 Manager, tools to configure IP addressing. We also deployed the HoneyPLC
Profiler Tool and Python 3 in a laptop host where we connected our PLCs.

5.2.3 Methodology

We connected each PLC model to our experimental laptop host and used our
command line-based HoneyPLC Profiler Tool to create the PLC Profiles for the
three PLCs. To launch the tool, we input the PLC IP address and the name of PLC
Profile directory. While the HoneyPLC Profiler Tool starts querying data from the
PLC progress messages are shown including error messages, if any. We encountered
some difficulties while developing and testing the Profiler Tool. First, we had to
expand the number of ports scanned to obtain a better Nmap fingerprint, so that
Nmap reports it with a higher confidence. We also had to make adjustments to
download the PLC websites to include images and correct HTML paths. Also, it
was necessary to manually modify the PLC profile HTML files to correct broken
links.

5.2.4 Results

Overall, we were successful in creating all three PLC profiles. These profiles
were saved in our experimental laptop host file system and were later used in
the other experiments depicted in this section. The HoneyPLC Profiler Tool took
approximately 5 min to create each profile and we only had to make some
small manual modifications to some HTML files, as mentioned before. For PLCs
produced by Siemens, the retrieval of their corresponding profiles may be facilitated
if the SNMP and the web server services are properly activated beforehand by
following the instructions provided by the manufacturer or by using any other
S7comm-enabled software, e.g., the Step7 Manager. Failure to perform this step
may result in the creation of an incomplete profile.

5.2.5 Profiling Allen-Bradley and ABB PLCs

Additionally, we were interested in exploring the capabilities of HoneyPLC to
support PLC manufacturers other than Siemens, so we can provide some general
recommendations for practitioners interested in obtaining additional PLC profiles.

https://avxhm.se/blogs/hill0

HoneyPLC: A Next-Generation Honeypot for ICS 167

5.2.6 Environment Description

For this case study, we procured the Allen-Bradley MicroLogix 1100 and the ABB
PM554-TP-ETH PLCs, which are shown in Fig. 5. Additionally, we used Allen-
Bradley and ABB software tools to configure their IP addresses.

5.2.7 Methodology

As with our previous case study, we deployed the HoneyPLC Profiler Tool and
Python 3 in a laptop host and connected each PLC to a special power supply.
Also, we connected each PLC model to our experimental laptop host and used our
command line-based HoneyPLC Profiler Tool as before.

5.2.8 Results

We successfully produced a profile for each of the PLCs under analysis and obtained
the following recommendations to practitioners. First, for non-Siemens PLCs, it
may become necessary to identify the network services they provide, as different
vendors may implement a variety of protocols on different ports. As an example, the
Allen-Bradley MicroLogix 1100 PLC uses port 80 to implement a light web server,
similar to Siemens PLCs, whereas such a feature is not implemented by the ABB
PM554-TP-ETH. Second, both non-Siemens PLCs under study also fail to support
the SNMP service, which prevents the HoneyPLC Profiler Tool from retrieving a
MIB database. Third, the Allen-Bradley MicroLogix 1100 PLC implements the
industry standard EtherNet/IP protocol on port 2222 for configuration purposes,
which differs from Siemens models that use the proprietary S7comm protocol.
These differences may ultimately result in PLC Profiles that are different from the
ones obtained for Siemens PLCs and may need to be subsequently addressed on a
case-by-case basis. Fourth, whereas the Siemens PLCs use the proprietary S7comm
protocol for loading Ladder Logic programs, the Allen-Bradley MicroLogix 1100
uses the Ethernet/IP protocol. In such regard, the ABB PM554-TP-ETH PLC uses
the Nucleus Sand Database, which is mostly used for database record keeping, and
whose use in PLC devices is not customary. Because both protocols are not currently
supported by HoneyPLC, additional modifications may be required. For example,
for the M554-TP-ETH PLC Profile, we modified the Honeyd template to open port
1201 as a Nucleus Sand DB simulation that can be used through the subsystem
virtualization is not currently supported. For the MicroLogix 1100 PLC Profile, we
modified the Profiler Tool port scan range to include not only well-known ports but
also registered ports such as port 2222. Finally, Table 3 provides a comparison of
the PLC models supported out of the box by related honeypots for ICS, which were
also shown in Table 1. The positive results obtained in our two case studies give
support to answer Q-1 in the affirmative.

168 E. L. Morales et al.

5.3 Resilience to Reconnaissance Experiment

The moment the true nature of HoneyPLC (or any other honeypot) is revealed
to an attacker, the quantity and value of the gathered interaction data may sig-
nificantly decrease. Therefore, we aimed to test the resilience of HoneyPLC to
Nmap and PLCScan, described in Sect. 2, which are well-known tools for recon-
naissance. Additionally, we tested how existing honeypots, namely Gaspot [50],
S7commTrace [51], SCADA HoneyNet [39], and Conpot [30], perform in this
regard.

5.3.1 Environment Description

Our experimental setup was composed of two physical computers: a desktop and a
laptop host. The desktop host featured Ubuntu 18.04 LTS along with HoneyPLC,
as well as the following tools: Honeyd, lighttpd, snmpsim, and S7comm server.
We built Honeyd version 1.6d from source; the latest version is available in the
official GitHub repository [9]. Also, we installed the lighttpd web server version
1.4.45. Next, we installed snmpsim version 0.4.7 and all its dependencies. Finally,
we installed our S7comm server and our custom library. Conversely, the laptop
host included the latest version of Nmap 7.80 as well as the three Siemens PLCs
fingerprints in Nmap’s fingerprint database nmap-os-db that were obtained as a
result of the previous experiment. Additionally, we installed the latest version of
PLCScan obtained from GitHub [43]. Both hosts were directly connected via an
Ethernet cable. Subsequently, we downloaded and deployed the related honeypots
mentioned before and connected them to the scanning host so that all of them would
be in the local network.

5.3.2 Methodology

To create a baseline to compare the results of our experiments, the Nmap confidence
data of the real PLCs featured in the previous experiment was obtained. With that in
mind, a second test environment was composed of an additional host with Ubuntu
18.04 LTS and Nmap 7.80. Later, the additional host was directly connected to one
of the three different PLCs (S7-300, S7-1200, and S7-1500) using an Ethernet cable.
We installed the Step7 Manager in order to configure the network settings of the
PLCs. Next, two different sets of Nmap scans were conducted with OS detection
enabled: one set for HoneyPLC and another set for the real PLCs. Each PLC
model was scanned 10 times. For the HoneyPLC experiment, the corresponding
HoneyPLC Profile was installed so that the aforementioned applications were
correctly configured. Next, we used PLCScan to scan each PLC Profile in similar

https://avxhm.se/blogs/hill0

HoneyPLC: A Next-Generation Honeypot for ICS 169

Fig. 6 Nmap scan results for
the S7-300 PLC profile

fashion as the Nmap methodology. Afterwards, we turned to Gaspot, S7commTrace,
SCADA HoneyNet, and Conpot. Each honeypot was scanned with Nmap’s OS
detection enabled 10 times. Finally, we used PLCScan on S7commTrace, SCADA
HoneyNet, and Conpot. Gaspot was omitted as it does not support the S7comm
protocol.

5.3.3 Results

The results of our Nmap experiment can be seen in Fig. 7 and show that for all
three PLC models, the real PLCs gets the best confidence by a small margin.
However, our PLC Profiles as provided by HoneyPLC were really close behind,
thus providing positive evidence that our approach can provide effective covertness,
as required by our question Q-2. When Nmap cannot detect a perfect OS match,
it suggests near-matches. The match has to be very close for Nmap to do this by
default. Nmap will tell you when an imperfect match is printed and display its
confidence level (percentage) for each guess [32]. As an example, Fig. 6 shows the
Nmap Scan results for our S7-300 PLC Profile. These results are encouraging since
for all scans across all sets Nmap identified the correct PLC model with the highest
confidence. Our PLCScan experiments were also successful, as we were able to
obtain and provide real PLC data using PLCScan against HoneyPLC for all three
PLC Profiles. In addition, SCADA HoneyNet was identified as a Siemens CP 343-
1 PLC, and however, Gaspot, S7commTrace, and Conpot were fingerprinted as
Linux OS with a 100% confidence, with no mention of any PLC device. Regarding
PLCScan, Conpot was identified as an S7-200 PLC and SCADA HoneyNet and
S7commTrace provided connection information but displayed an empty PLCScan
report. Our results are even more significant due to the fact that a Linux kernel
simulation of the TCP/IP Stack, as implemented by several related approaches,
including Gaspot and Conpot, will not deceive Nmap [5].

170 E. L. Morales et al.

Fig. 7 Nmap scan results. All three profiles obtained at least a 90% confidence rate. The S7-300
and S7-1200 profile obtained rates comparable with their real counterparts. Gaspot and Conpot are
fingerprinted as a Linux OS host with a 100% confidence, so they are excluded from this chart

5.4 Shodan’s Honeyscore Experiment

As with the previous experiment, Shodan, described in Sect. 2.2, is actively
leveraged in practice, along with its corresponding Shodan API to detect honeypots
exposed to the Internet with a high degree of accuracy. Therefore, we were interested
in the capabilities of HoneyPLC to deal with this state-of-the-art tool.

5.4.1 Environment Description

For this experiment, we deployed three AWS EC2 instances accessible from the
Internet with the following specifications: 2 vCPUs, 4GB RAM, and Ubuntu 18.04
LTS OS, exposing TCP ports 80 and 102 and UDP port 161. Then, we deployed
HoneyPLC on each one of them featuring all of our three PLC profiles, following
the configuration steps detailed in the previous experiment. We also deployed four
additional AWS instances hosting Conpot, Gaspot, S7commTrace, and SCADA
HoneyNet.

https://avxhm.se/blogs/hill0

HoneyPLC: A Next-Generation Honeypot for ICS 171

Fig. 8 Shodan Honeyscore results. Our HoneyPLC PLC profiles perform better than other
honeypots found in Shodan and at the same level as real PLCs

5.4.2 Methodology

We obtained the Shodan Honeyscores, whose methodology is described in Sect. 2.2,
of each of our HoneyPLC PLC Profiles, other honeypots for the same PLC models
that were publicly exposed to the Internet and Gaspot, Conpot, S7commTrace, and
SCADA HoneyNet. For such a purpose, we leveraged Shodan to gather data of
Internet-facing real PLCs and PLCs flagged as honeypots. We looked at open ports,
geolocation, Honeyscore, PLC model and IP addresses. Later, we compared these
data to the one obtained for our HoneyPLC PLC Profiles. Once deployed to the
Internet, it took about a week for Shodan to index our honeypots and identify the
S7comm and HTTP services on ports 102 and 80.

5.4.3 Results

The results of our Shodan experiment, depicted in Fig. 8, show that Shodan assigns
a Honeyscore of 0.0 to our S7-300 profile and how this Honeyscore compares to
real S7-300 PLCs and other S7-300 honeypots found in the wild. Moreover, our
S7-1200 and S7-1500 profiles got a 0.3 Honeyscore, which is comparable with
the one obtained by real S7-1200 PLCs as indexed by Shodan. Unfortunately, at
the time this experiment was performed, we were not able to find any S7-1200
honeypots in Shodan for comparison. Regarding the other four AWS instances,
S7commTrace, Gaspot, and SCADA HoneyNet were not indexed by Shodan as
they crashed when Shodan’s crawler tried to interact with them. Thus, they could
not be assigned a Honeyscore. Conpot, however, was successfully indexed and

172 E. L. Morales et al.

was assigned a 0.3 Honeyscore. Overall, these results add compelling evidence
with respect to Question Q-2, showing that HoneyPLC is effective at maintaining
covertness against state-of-the-art reconnaissance tools.

5.5 Step7 Manager Experiment

We designed an experiment to test the capabilities of the HoneyPLC S7Comm
Server, discussed in Sect. 4.3, against Step7 Manager [4], a Siemens proprietary
software used to configure, write, and upload ladder logic programs to PLCs. For
comparison purposes, we attempted to perform the same experiment on Conpot,
the SCADA HoneyNet, and S7commTrace, which claim support for the S7comm
protocol, as shown in Table 2.

5.5.1 Environment Description

For this experiment, we used a Windows XP virtual environment installed on a
desktop host. Additionally, we installed HoneyPLC, the related work honeypots
shown in Table 2, and all three Siemens PLC Profiles in different Ubuntu 18 LTS
VMs and connected them to the Windows XP host.

5.5.2 Methodology

To test the compatibility of a particular honeypot with Step7 Manager, we performed
the following: first, we attempted a direct, initial connection to the tool by using the
‘Go Online’ GUI feature. Second, we used Step7 Manager to list all the memory
blocks contained within a given honeypot. Third, we also tried to upload a memory
block to each honeypot, and finally, in a reciprocal action, we tried to download the
contents of a memory block, which was previously stored by each honeypot under
test.

5.5.3 Results

Our results show that HoneyPLC is the only implementation capable of han-
dling all of the functionality previously mentioned, as is shown in Table 2.
Conpot, S7commTrace, and SCADA HoneyNet were able to establish the initial
connection, and however, the Step7 Manager threw a connection timeout error,
preventing any further interaction and resulting in an aborted execution. Moreover,
as S7commTrace is a high-interaction honeypot that implements features similar
to the ones provided by HoneyPLC’s S7comm Server, we strove to provide an
extended comparison between them. The HoneyPLC S7comm Server improves over

https://avxhm.se/blogs/hill0

HoneyPLC: A Next-Generation Honeypot for ICS 173

Table 4 Comparison of
S7comm function codes

S7comm implementation Functions Subfunctions

HoneyPLC 13 18

S7commTrace 12 14

S7commTrace by providing more functions and subfunctions as shown in Table 4.
Specifically, it adds an error response function and insert block, delete block,
blink LED, and cancel password subfunctions. The error response function and the
delete and insert block functions, in particular, are important when injecting ladder
logic programs and connecting with Step7 Manager. Overall, besides providing
compatibility with Step7 Manager, HoneyPLC also provides enhanced capabilities
for capturing ladder logic, e.g., reading and writing memory blocks, which are not
supported by S7commTrace.

5.6 Internet Interaction Experiment

In order to explore the capabilities of HoneyPLC to interact with external, non-
controlled agents, e.g., attackers, we designed an experiment intended to expose the
PLC Profiles discussed in previous experiments to remote connections via Internet.

5.6.1 Environment Description

We leveraged the environmental setup we designed for our previous Shodan-based
experiment in Sect. 5.4. Also, we used the same AWS EC2 instances equipped with
PLC Profiles for the S7-300, S7-1200, and S7-1500 PLCs.

5.6.2 Methodology

We exposed the EC2 instances to the Internet for a period of 5 months. Using
the HoneyPLC logging capabilities discussed in Sect. 4.5, we logged all received
interactions. Later on, we analyzed such logs and obtained the results we discuss
next.

5.6.3 Results

As a result of this experiment, more than 5GB of data were recorded. Table 5
shows the different S7comm function commands received by each PLC Profile.
The fact that we recorded these functions means that external agents interacted
with HoneyPLC beyond a simple connection performing reconnaissance tasks.
Additionally, we received 4 PLC Stop functions on our S7-300 Profile, which stops

174 E. L. Morales et al.

Table 5 S7comm function commands received

PLC profile Setup communication Read SZL PLC stop List blocks

S7-300 600 1013 4 80

S7-1200 202 324 0 0

S7-1500 292 343 0 0

Table 6 HTTP and SNMP interactions received

PLC profile HTTP conversations HTTP login attempts SNMP get requests

S7-300 2060 205 1925

S7-1200 1791 30 567

S7-1500 13 0 1271

the current ladder logic program execution, suggesting that external agents tried to
disrupt the PLCs’ operation. Table 6 shows that our honeypots also received thou-
sands of HTTP conversations and logged multiple HTTP authentication attempts
on their administration websites, including the usernames and passwords used by
the external parties. These authentication attempts could have been made by web
crawlers or malicious actors trying different well-known or default passwords to log
into the PLCs admin website. Additionally, we also recorded thousands of SNMP
get requests that downloaded our PLC Profile’s MIBs several times. Table 7 shows
the distribution of S7comm connections based on geographical location. It can be
noted that countries with most connections have historically been either the target
or the initiators of attacks against ICS [14] recorded in the literature. Finally, at the
time of writing this chapter, no attempts to inject malicious ladder logic into our
honeypots were recorded. Such an attack would have been signaled by an attempt to
write a memory block inside a PLC. Despite this limitation, the amount and nature
of the interactions obtained provide additional support for affirmatively answering
Question Q-2, showing that HoneyPLC can effectively engage external agents and
tools.

5.7 Ladder Logic Capture Experiment

Finally, we were interested in exploring the capabilities of HoneyPLC to properly
collect Ladder Logic malware that is injected by attackers, following the Case
Scenario described in Sect. 4.1.

5.7.1 Environment Description

For this experiment, we leveraged the same HoneyPLC AWS test environment
described in Sect. 5.4 for our Shodan experiment. Additionally, we locally deployed

https://avxhm.se/blogs/hill0

HoneyPLC: A Next-Generation Honeypot for ICS 175

Table 7 S7comm connections received by geolocation

Geo-location S7-300 S7-1200 S7-1500 Geo-location S7-300 S7-1200 S7-1500

United States 359 142 250 Netherlands 22 13 11

United Kingdom 2 1 3 Japan 8 2 2

Turkey 2 0 1 Italy 1 0 0

Switzerland 3 1 1 Iceland 1 1 2

Sweden 1 1 1 Hong Kong 2 1 1

South Korea 1 0 0 Germany 18 9 12

Slovakia 0 1 1 France 10 5 7

Singapore 4 3 5 Denmark 1 1 0

Russia 28 12 14 China 42 16 26

Romania 6 2 4 Canada 3 2 3

Poland 1 0 0 Bulgaria 2 1 0

Panama 2 1 3 Belize 3 3 3

Fig. 9 Ladder Logic payload
example found in the Stuxnet
malware

Conpot, Gaspot, S7commTrace, and SCADA HoneyNet. For Gaspot, we down-
loaded the latest version from GitHub [15] and installed it in an Ubuntu 18 LTS
host. Next, for Conpot, we also downloaded the latest version from GitHub [30]
and installed it from source in an Ubuntu 18 LTS host. Finally, we deployed the
latest version of the SCADA HoneyNet [39] also in an Ubuntu 18 LTS. We faced
some problems deploying the SCADA HoneyNet as it is currently not maintained
at all (the latest version was released in 2004), and however, we were able to deploy
the S7comm portion of the honeypot, enabling us to conduct this experiment. To
test our implementation, we employed PLCinject [18], a research tool published by
the SCADACS team, which is capable of injecting arbitrary compiled ladder logic
programs into a PLC memory block. Figure 9 shows a sample of the ladder logic
code dropped by the Stuxnet malware. We also set up a laptop host with Ubuntu
18.04 LTS installed with the latest version of PLCinject available on GitHub [41].
Since PLCinject also leverages the Snap7 framework, we installed a custom library
and compiled PLCinject from source. We also used the Windows XP host described
in Sect. 5.5 with Step7 Manager.

5.7.2 Methodology

Figure 10 illustrates our setup and methodology. The PLCinject host contains the
ladder logic program sample that PLCinject will upload into HoneyPLC, which

176 E. L. Morales et al.

Fig. 10 Capturing Ladder Logic: initially, the attacker selects a malicious program and leverages
PLCinject (1), which then establishes communication with an AWS instance running Honey-
PLC (2). Malicious code is injected into a previously selected memory block exposed by the
S7comm server (3) and finally written into a file repository (4)

resides inside an AWS instance exposing a set of standard PLC memory blocks. We
leveraged the capabilities of PLCinject to connect and interact with the HoneyPLC
host, eventually injecting the desired Ladder Logic program by using the command
line. Later, using the Step7 Manager GUI, we created a new project and wrote
a sample ladder logic to be injected into HoneyPLC. Next, we used the Step7
Manager to list the available memory blocks and then use the upload function to
inject the sample ladder logic program into HoneyPLC. Later, we conducted another
set of experiments focused on Gaspot, Conpot, S7commTrace, and the SCADA
HoneyNet. We configured each of the honeypots with the correct IP addresses and
ports and used PLCinject and the Step7 Manager to write the sample program into
them, following the same process used for HoneyPLC.

5.7.3 Results

Our experiments were successful as we were able to inject a sample ladder logic
program into HoneyPLC using both, PLCinject and the Step7 Manager. After the
injection was completed, we logged into our honeypot file system and found the
ladder logic file with its corresponding timestamp, which matched the contents of
the blocks previously updated to PLCinject, as described in the previous paragraph.
More to the point, after the Step7 Manager injection was completed, we downloaded
our own sample program from HoneyPLC’s S7comm server and used the ladder
logic editor (included with Step7 Manager) to corroborate that our sample program
was in fact saved in HoneyPLC’s S7comm server. It is worth mentioning that the
Step7 Manager did not crash or threw any errors while interacting with HoneyPLC’s

https://avxhm.se/blogs/hill0

HoneyPLC: A Next-Generation Honeypot for ICS 177

S7comm server. This adds evidence as to the level of interaction that HoneyPLC
provides. Regarding the Gaspot honeypot, our results show that it is not possible
to inject any program into it. In fact, the TCP connection times out, and there is
no reply. The results from Conpot show that it can, in fact, open a connection to
TCP port 102, and however, it is reset, and the program upload cannot continue.
S7commTrace results in the S7comm connection not being established. Finally, the
S7comm portion of the SCADA HoneyNet accepts the TCP port 102 connection and
starts the upload function needed to upload the ladder logic program, and however,
after the upload function ends, there is no data saved or even transmitted. There
results provide evidence for answering Question Q-3 affirmatively.

6 Discussion and Future Work

Before rounding up this chapter, we now present an extended discussion on the
novelty, the features, and the experimental results obtained using HoneyPLC, as
presented in previous sections. Also, we engage in a short discussion on the
observed shortcomings of our approach and discuss interesting topics for future
work that may benefit from using HoneyPLC as a supporting framework.

6.1 Comparing HoneyPLC with Previous Approaches

Following the comparison shown in Table 1, HoneyPLC provides significant
improvements over the current state of the art of honeypots for PLCs. First, Honey-
PLC provides better covertness capabilities than the ones provided by related works
in the literature, as shown in the experimental procedures summarized in Table 2.
Moreover, as detailed in Sect. 4.3, HoneyPLC provides advanced TCP/IP simulation
based on Honeyd, plus the careful simulation of different domain-specific protocols.
Whereas the simulation of various protocols is shared by many approaches in the
literature, only HoneyPLC and SCADA HoneyNet [39] leverage the rich simulation
features provided by the Honeyd framework. Second, the extensibility features of
HoneyPLC, discussed in Sect. 4.2, allow for the effective simulation of different
PLCs deployed in practice, as it was shown in the experimental procedures detailed
in Sect. 5.2. Such a feature is not shared by any other approach in the literature, as
shown in Table 1. Only a few approaches provide limited extensibility features, but
those are mostly based on manually changing some configuration settings for the
PLCs they support. As shown in Sect. 4.2, the HoneyPLC’s Profiler Tool supports
the collection and configuration settings for different real PLCs, which may allow
for practitioners to create and distribute PLC Profiles for HoneyPLC for many
different brands and models used in practice. Finally, HoneyPLC’s Ladder Logic
Capture feature is optimal for the understanding and analysis of malicious programs
tailored for PLCs, which is not provided by any other related work, as shown in
Table 2.

178 E. L. Morales et al.

6.2 Limitations

Despite the innovative features of HoneyPLC and the promising evaluation results
shown in Sect. 5, we identified the following limitations to our approach. First,
as shown in Table 1, HoneyPLC does not provide support for modeling physical
interactions as depicted by PLCs in practice. To solve this, future versions of
HoneyPLC may be enhanced with a generic, general-purpose framework that
facilitates the collection and subsequent modeling of physical interactions that
can further engage and deceive attackers. Second, despite numerous attempts, we
were unable to test HoneyPLC against Stuxnet, shown in Sect. 2.3, up to the
point in which PLCs are injected with Ladder Logic code. This problem was also
encountered by seasoned partners in industry, as it was revealed to us in private
conversations. As an alternative, we strove to replicate a similar code injection
scenario as shown in Sect. 5.7. Finally, as discussed in Sect. 5.6, we were not able
to capture any Ladder Logic code injection attempts while exposing HoneyPLC to
the internet during an extended period of time. We believe that such a thing may
not necessarily represent a limitation in the capabilities of our approach, as shown
in Sect. 5.7. However, we agree that future work focused on capturing instances of
malicious code may obtain significant evidence of the suitability of HoneyPLC for
engaging and deceiving external agents.

6.3 Future Work

First, we plan to add support to other ICS specific network protocols such as
Modbus, which is widely implemented by other approaches in the literature. Second,
we plan to expand the PLC Profile Repository of HoneyPLC, which is graphically
depicted in Fig. 2 as an important part of our approach, to include several different
PLC Profiles simulating other real PLCs widely used in practice, which may
have been produced by different manufacturers and may include a diverse set of
configuration options. We believe such a feature will likely increase the impact of
HoneyPLC in many different projects in the research community, as well as in real-
life ICS environments. Third, we plan to use HoneyPLC as a basis for simulating
rich ICS infrastructures completely in software, modeling components like SCADA
and other devices. Current ICSs are proprietary, closed, and composed of a plethora
of costly devices, which clearly complicates the effective development and testing of
new protection tools by researchers. In such regard, we believe that HoneyPLC can
be combined with other emerging technologies such as software-defined networks
(SDN) [22], to produce an automated, highly configurable, and automated approach
effectively simulating ICS environments. Finally, we plan to turn HoneyPLC into a
comprehensive suite for malware analysis for ICS by incorporating Ladder Logic
analysis tools such as ICSREF [17], as well as other works such as PLCinject,
featured in Sect. 5.7.

https://avxhm.se/blogs/hill0

HoneyPLC: A Next-Generation Honeypot for ICS 179

7 Conclusions

Attacks targeting ICS are now more real than ever and their consequences may be
catastrophic. In such regard, honeypots help us understand and prepare for these
attacks, and however, current implementations do not allow us to analyze and
tackle brand new threats as desired. To overcome this situation, we have introduced
HoneyPLC, a convenient and flexible honeypot, which significantly pushes the
state of the art of the field forward. Additionally, we have provided experimental
evidence that demonstrates that HoneyPLC outperforms existing honeypots in the
literature, achieving a performance level comparable to real PLC devices. Finally,
the HoneyPLC advanced extensibility features, which may allow HoneyPLC to
better serve the heterogeneous world of ICS. As an example, we expect for
practitioners to create and openly distribute many new PLC Profiles for a variety
of PLCs used in practice, thus positioning HoneyPLC not only as a helpful tool
for preventing and deterring ongoing attacks but also as the starting point for
designing and evaluating new protection technologies for mission-critical cyber-
physical systems and infrastructure.

Acknowledgments This work was supported in part by the National Science Foundation (NSF)
under grant 1651661, the Department of Energy (DoE) under grant DE-OE0000780, the Army
Research Office under grant W911NF-17-1-0370, the Defense Advanced Research Projects
Agency (DARPA) under the agreements HR001118C0060 and FA875019C0003, the Institute for
Information & communications Technology Promotion (IITP) under grant 2017-0-00168 funded
by the Korea government (MSIT), a grant from the Center for Cybersecurity and Digital Forensics
(CDF) at Arizona State University, and a grant from Texas A&M University—Corpus Christi. Any
opinions, findings, conclusions, or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the United States Government or any agency
thereof.

References

1. ABB: Plc automation. https://new.abb.com/plc. Accessed: 2020-02-24
2. Allen-Bradley: Programmable controllers. https://ab.rockwellautomation.com/Programmable-

Controllers. Accessed: 2020-02-24
3. Antonioli, D., Agrawal, A., Tippenhauer, N.O.: Towards high-interaction virtual ics honeypots-

in-a-box. In: Proc. of the 2nd ACM Workshop on Cyber-Physical Systems Security and
Privacy, pp. 13–22 (2016)

4. Berger, H.: Automating with STEP7 in STL and SCL: programmable controllers Simatic S7-
300/400. Publicis (2006)

5. Buza, D.I., Juhász, F., Miru, G., Félegyházi, M., Holczer, T.: Cryplh: Protecting smart energy
systems from targeted attacks with a plc honeypot. In: Int. Workshop on Smart Grid Security,
pp. 181–192. Springer (2014)

6. Cao, J., Li, W., Li, J., Li, B.: Dipot: A distributed industrial honeypot system. In: Int.
Conference on Smart Computing and Communication, pp. 300–309. Springer (2017)

7. Case, D.U.: Analysis of the cyber attack on the Ukrainian power grid. Electricity Information
Sharing and Analysis Center (E-ISAC) vol. 388 (2016)

8. Cybersecurity (CISA) I.S.A.: Apt cyber tools targeting ics/scada devices (2022). https://www.
cisa.gov/uscert/ncas/alerts/aa22-103a

https://new.abb.com/plc
https://new.abb.com/plc
https://new.abb.com/plc
https://new.abb.com/plc
https://new.abb.com/plc
https://ab.rockwellautomation.com/Programmable-Controllers
https://ab.rockwellautomation.com/Programmable-Controllers
https://ab.rockwellautomation.com/Programmable-Controllers
https://ab.rockwellautomation.com/Programmable-Controllers
https://ab.rockwellautomation.com/Programmable-Controllers
https://ab.rockwellautomation.com/Programmable-Controllers
https://www.cisa.gov/uscert/ncas/alerts/aa22-103a
https://www.cisa.gov/uscert/ncas/alerts/aa22-103a
https://www.cisa.gov/uscert/ncas/alerts/aa22-103a
https://www.cisa.gov/uscert/ncas/alerts/aa22-103a
https://www.cisa.gov/uscert/ncas/alerts/aa22-103a
https://www.cisa.gov/uscert/ncas/alerts/aa22-103a
https://www.cisa.gov/uscert/ncas/alerts/aa22-103a
https://www.cisa.gov/uscert/ncas/alerts/aa22-103a
https://www.cisa.gov/uscert/ncas/alerts/aa22-103a

180 E. L. Morales et al.

9. DataSoft/Honeyd: (2020). https://github.com/DataSoft/Honeyd. Original-date: 2011-12-
09T22:40:03Z

10. Dragos, I.: Crashoverride: Analysis of the threat to electric grid operations (2017). Online:
https://dragos.com/blog/crashoverride/CrashOverride-01.pdf

11. Dragos, I.: Chernovite’s pipedream malware targeting industrial control systems (ics) (2022).
https://www.dragos.com/blog/industry-news/chernovite-pipedream-malware-targeting-
industrial-control-systems/

12. Falliere, N., Murchu, L.O., Chien, E.: W32. stuxnet dossier. White paper, Symantec Corp.,
Security Response 5(6), 29 (2011)

13. Hahn, A.: Operational technology and information technology in industrial control systems. In:
Cyber-security of SCADA and Other Industrial Control Systems, pp. 51–68. Springer (2016)

14. Hemsley, K.E., Fisher, E., et al.: History of industrial control system cyber incidents. Tech.
rep., Idaho National Lab.(INL), Idaho Falls, ID (United States) (2018)

15. Hilt, S.: Gaspot released at blackhat 2015 (2016). https://github.com/sjhilt/GasPot
16. Jicha, A., Patton, M., Chen, H.: Scada honeypots: An in-depth analysis of conpot. In: 2016

IEEE Conference on Intelligence and Security Informatics (ISI), pp. 196–198. IEEE (2016)
17. Keliris, A., Maniatakos, M.: ICSREF: A framework for automated reverse engineering of

industrial control systems binaries. In: Network and Distributed System Security Symposium,
(NDSS). The Internet Society (2019)

18. Klick, J., Lau, S., Marzin, D., Malchow, J.O., Roth, V.: Internet-facing plcs-a new back orifice.
Blackhat USA, pp. 22–26 (2015)

19. Kneschke, J.: Lighttpd-fly light. https://www.lighttpd.net/ (2020)
20. Kołtyś, K., Gajewski, R.: SHaPe: A honeypot for electric power substation. J. Telecomm. Inf.

Technol. (4), 37–43 (2015)
21. Langner, R.: Stuxnet: Dissecting a cyberwarfare weapon. IEEE Secur. Priv. 9(3), 49–51 (2011)
22. Lantz, B., Heller, B., McKeown, N.: A network in a laptop: Rapid prototyping for software-

defined networks. In: Proc. of the 9th ACM SIGCOMM Workshop on Hot Topics in Networks,
Hotnets-IX. Association for Computing Machinery, New York, NY, USA (2010)

23. Lian, F.L., Moyne, J., Tilbury, D.: Network design consideration for distributed control
systems. IEEE Trans. Control Syst. Technol. 10(2), 297–307 (2002)

24. Litchfield, S., Formby, D., Rogers, J., Meliopoulos, S., Beyah, R.: Rethinking the honeypot for
cyber-physical systems. IEEE Internet Comput. 20(5), 9–17 (2016)

25. López-Morales, E., Rubio-Medrano, C., Doupé, A., Shoshitaishvili, Y., Wang, R., Bao, T., Ahn,
G.J.: HoneyPLC: A next-generation honeypot for industrial control systems. In: Proceedings
of the 2020 ACM SIGSAC Conference on Computer and Communications Security, CCS ’20,
pp. 279–291. Association for Computing Machinery, New York, NY, USA (2020). https://doi.
org/10.1145/3372297.3423356

26. Lyon, G.F.: Nmap network scanning: The official Nmap project guide to network discovery
and security scanning. Insecure (2009)

27. Matherly, J.: Complete guide to shodan. Shodan, LLC (2016-02-25), vol. 1 (2015)
28. Matherly, J.: Personal communication (2019)
29. Mokube, I., Adams, M.: Honeypots: concepts, approaches, and challenges. In: Proc. of the

45th Annual Southeast Regional Conference, pp. 321–326 (2007)
30. MushMush: Conpot (2020). https://github.com/mushorg/conpot
31. Nardella, D.: Snap7 (2018). http://snap7.sourceforge.net/
32. nmap.org: Os detection (2022). https://nmap.org/book/man-os-detection.html
33. Provos, N.: Honeyd-a virtual honeypot daemon. In: 10th DFN-CERT Workshop, Hamburg,

Germany, vol. 2, p. 4 (2003)
34. Provos, N., Holz, T.: Virtual Honeypots: From Botnet Tracking to Intrusion Detection. Pearson

Education (2007)
35. Repository, U.M.: snmpwalk - retrieve a subtree of management values using snmp getnext

requests (2019). http://manpages.ubuntu.com/manpages/bionic/man1/snmpwalk.1.html
36. Repository, U.M.: Wget - the non-interactive network downloader (2019). http://manpages.

ubuntu.com/manpages/disco/en/man1/wget.1.html

https://avxhm.se/blogs/hill0

https://github.com/DataSoft/Honeyd
https://github.com/DataSoft/Honeyd
https://github.com/DataSoft/Honeyd
https://github.com/DataSoft/Honeyd
https://github.com/DataSoft/Honeyd
https://dragos.com/blog/crashoverride/CrashOverride-01.pdf
https://dragos.com/blog/crashoverride/CrashOverride-01.pdf
https://dragos.com/blog/crashoverride/CrashOverride-01.pdf
https://dragos.com/blog/crashoverride/CrashOverride-01.pdf
https://dragos.com/blog/crashoverride/CrashOverride-01.pdf
https://dragos.com/blog/crashoverride/CrashOverride-01.pdf
https://dragos.com/blog/crashoverride/CrashOverride-01.pdf
https://dragos.com/blog/crashoverride/CrashOverride-01.pdf
https://www.dragos.com/blog/industry-news/chernovite-pipedream-malware-targeting-industrial-control-systems/
https://www.dragos.com/blog/industry-news/chernovite-pipedream-malware-targeting-industrial-control-systems/
https://www.dragos.com/blog/industry-news/chernovite-pipedream-malware-targeting-industrial-control-systems/
https://www.dragos.com/blog/industry-news/chernovite-pipedream-malware-targeting-industrial-control-systems/
https://www.dragos.com/blog/industry-news/chernovite-pipedream-malware-targeting-industrial-control-systems/
https://www.dragos.com/blog/industry-news/chernovite-pipedream-malware-targeting-industrial-control-systems/
https://www.dragos.com/blog/industry-news/chernovite-pipedream-malware-targeting-industrial-control-systems/
https://www.dragos.com/blog/industry-news/chernovite-pipedream-malware-targeting-industrial-control-systems/
https://www.dragos.com/blog/industry-news/chernovite-pipedream-malware-targeting-industrial-control-systems/
https://www.dragos.com/blog/industry-news/chernovite-pipedream-malware-targeting-industrial-control-systems/
https://www.dragos.com/blog/industry-news/chernovite-pipedream-malware-targeting-industrial-control-systems/
https://www.dragos.com/blog/industry-news/chernovite-pipedream-malware-targeting-industrial-control-systems/
https://www.dragos.com/blog/industry-news/chernovite-pipedream-malware-targeting-industrial-control-systems/
https://www.dragos.com/blog/industry-news/chernovite-pipedream-malware-targeting-industrial-control-systems/
https://github.com/sjhilt/GasPot
https://github.com/sjhilt/GasPot
https://github.com/sjhilt/GasPot
https://github.com/sjhilt/GasPot
https://github.com/sjhilt/GasPot
https://www.lighttpd.net/
https://www.lighttpd.net/
https://www.lighttpd.net/
https://www.lighttpd.net/
https://doi.org/10.1145/3372297.3423356
https://doi.org/10.1145/3372297.3423356
https://doi.org/10.1145/3372297.3423356
https://doi.org/10.1145/3372297.3423356
https://doi.org/10.1145/3372297.3423356
https://doi.org/10.1145/3372297.3423356
https://doi.org/10.1145/3372297.3423356
https://github.com/mushorg/conpot
https://github.com/mushorg/conpot
https://github.com/mushorg/conpot
https://github.com/mushorg/conpot
https://github.com/mushorg/conpot
http://snap7.sourceforge.net/
http://snap7.sourceforge.net/
http://snap7.sourceforge.net/
http://snap7.sourceforge.net/
https://nmap.org/book/man-os-detection.html
https://nmap.org/book/man-os-detection.html
https://nmap.org/book/man-os-detection.html
https://nmap.org/book/man-os-detection.html
https://nmap.org/book/man-os-detection.html
https://nmap.org/book/man-os-detection.html
https://nmap.org/book/man-os-detection.html
https://nmap.org/book/man-os-detection.html
http://manpages.ubuntu.com/manpages/bionic/man1/snmpwalk.1.html
http://manpages.ubuntu.com/manpages/bionic/man1/snmpwalk.1.html
http://manpages.ubuntu.com/manpages/bionic/man1/snmpwalk.1.html
http://manpages.ubuntu.com/manpages/bionic/man1/snmpwalk.1.html
http://manpages.ubuntu.com/manpages/bionic/man1/snmpwalk.1.html
http://manpages.ubuntu.com/manpages/bionic/man1/snmpwalk.1.html
http://manpages.ubuntu.com/manpages/bionic/man1/snmpwalk.1.html
http://manpages.ubuntu.com/manpages/bionic/man1/snmpwalk.1.html
http://manpages.ubuntu.com/manpages/bionic/man1/snmpwalk.1.html
http://manpages.ubuntu.com/manpages/bionic/man1/snmpwalk.1.html
http://manpages.ubuntu.com/manpages/disco/en/man1/wget.1.html
http://manpages.ubuntu.com/manpages/disco/en/man1/wget.1.html
http://manpages.ubuntu.com/manpages/disco/en/man1/wget.1.html
http://manpages.ubuntu.com/manpages/disco/en/man1/wget.1.html
http://manpages.ubuntu.com/manpages/disco/en/man1/wget.1.html
http://manpages.ubuntu.com/manpages/disco/en/man1/wget.1.html
http://manpages.ubuntu.com/manpages/disco/en/man1/wget.1.html
http://manpages.ubuntu.com/manpages/disco/en/man1/wget.1.html
http://manpages.ubuntu.com/manpages/disco/en/man1/wget.1.html
http://manpages.ubuntu.com/manpages/disco/en/man1/wget.1.html
http://manpages.ubuntu.com/manpages/disco/en/man1/wget.1.html

HoneyPLC: A Next-Generation Honeypot for ICS 181

37. Response, S.I.: Dragonfly: Cyberespionage attacks against energy suppliers. Tech. Rep., July
(2014)

38. S7comm - The Wireshark Wiki (2016). https://wiki.wireshark.org/S7comm
39. SCADA HoneyNet Project: Building Honeypots for Industrial Networks (2020). http://

scadahoneynet.sourceforge.net/
40. SCADACS: Snap7 (2017). https://github.com/SCADACS/snap7
41. SCADACS/PLCinject (2020). https://github.com/SCADACS/PLCinject. Original-date: 2015-

07-13T09:38:19Z
42. Schwartz, M.D., Mulder, J., Trent, J., Atkins, W.D.: Control system devices: Architectures and

supply channels overview. Sandia Report SAND2010-5183, Sandia National Laboratories,
Albuquerque, New Mexico, vol. 102, 103 (2010)

43. Searle, J.: plcscan (2015). https://github.com/meeas/plcscan
44. Shi, J., Wan, J., Yan, H., Suo, H.: A survey of cyber-physical systems. In: 2011 International

Conference on Wireless Communications and Signal Processing (WCSP), pp. 1–6 (2011).
https://doi.org/10.1109/WCSP.2011.6096958

45. Siemens: The intelligent choice for your automation task: Simatic controllers. https://new.
siemens.com/global/en/products/automation/systems/industrial/plc.html. Accessed: 2020-02-
24

46. Slowik, J.: Anatomy of an attack: Detecting and defeating crashoverride. VB2018, October
(2018)

47. Stouffer, K., Falco, J., Scarfone, K.: Nist special publication 800-82: Guide to industrial control
systems (ics) security. National Institute of Standards and Technology (NIST), Gaithersburg,
MD (2008)

48. Stouffer, K., Lightman, S., Pillitteri, V., Abrams, M., Hahn, A.: Nist special publication 800-82,
revision 2: Guide to industrial control systems (ics) security. National Institute of Standards
and Technology (2014)

49. Wade, S.M.: Scada honeynets: The attractiveness of honeypots as critical infrastructure security
tools for the detection and analysis of advanced threats (2011)

50. Wilhoit, K., Hilt, S.: The gaspot experiment : Unexamined perils in using gas-tank-monitoring
systems. GitHub repository (2020)

51. Xiao, F., Chen, E., Xu, Q.: S7commtrace: A high interactive honeypot for industrial control
system based on s7 protocol. In: Int. Conference on Information and Communications Security,
pp. 412–423. Springer (2017)

https://wiki.wireshark.org/S7comm
https://wiki.wireshark.org/S7comm
https://wiki.wireshark.org/S7comm
https://wiki.wireshark.org/S7comm
https://wiki.wireshark.org/S7comm
http://scadahoneynet.sourceforge.net/
http://scadahoneynet.sourceforge.net/
http://scadahoneynet.sourceforge.net/
http://scadahoneynet.sourceforge.net/
https://github.com/SCADACS/snap7
https://github.com/SCADACS/snap7
https://github.com/SCADACS/snap7
https://github.com/SCADACS/snap7
https://github.com/SCADACS/snap7
https://github.com/SCADACS/PLCinject
https://github.com/SCADACS/PLCinject
https://github.com/SCADACS/PLCinject
https://github.com/SCADACS/PLCinject
https://github.com/SCADACS/PLCinject
https://github.com/meeas/plcscan
https://github.com/meeas/plcscan
https://github.com/meeas/plcscan
https://github.com/meeas/plcscan
https://github.com/meeas/plcscan
https://doi.org/10.1109/WCSP.2011.6096958
https://doi.org/10.1109/WCSP.2011.6096958
https://doi.org/10.1109/WCSP.2011.6096958
https://doi.org/10.1109/WCSP.2011.6096958
https://doi.org/10.1109/WCSP.2011.6096958
https://doi.org/10.1109/WCSP.2011.6096958
https://doi.org/10.1109/WCSP.2011.6096958
https://doi.org/10.1109/WCSP.2011.6096958
https://new.siemens.com/global/en/products/automation/systems/industrial/plc.html
https://new.siemens.com/global/en/products/automation/systems/industrial/plc.html
https://new.siemens.com/global/en/products/automation/systems/industrial/plc.html
https://new.siemens.com/global/en/products/automation/systems/industrial/plc.html
https://new.siemens.com/global/en/products/automation/systems/industrial/plc.html
https://new.siemens.com/global/en/products/automation/systems/industrial/plc.html
https://new.siemens.com/global/en/products/automation/systems/industrial/plc.html
https://new.siemens.com/global/en/products/automation/systems/industrial/plc.html
https://new.siemens.com/global/en/products/automation/systems/industrial/plc.html
https://new.siemens.com/global/en/products/automation/systems/industrial/plc.html
https://new.siemens.com/global/en/products/automation/systems/industrial/plc.html
https://new.siemens.com/global/en/products/automation/systems/industrial/plc.html

Using Amnesia to Detect Credential
Database Breaches

Ke Coby Wang and Michael K. Reiter

1 Introduction

Credential database breaches have become a widespread security problem. Verizon
confirmed 3950 database breaches globally between Nov. 2018 and Oct. 2019
inclusive; of those 1665 breaches for which they identified victims, 60% leaked cre-
dentials [43].1 Credential database breaches are the largest source of compromised
passwords used in credential stuffing campaigns [42], which themselves are the
cause of the vast majority of account takeovers [41]. Unfortunately, there is usually
a significant delay between the breach of a credential database and the discovery
of that breach; estimates of the average delay range from 7 [23] to 15 [41] months.
The resulting window of vulnerability gives attackers the opportunity to crack the
passwords offline (if the stolen credential database stores only password hashes),
to determine their value by probing accounts using them [41], and then to either
use them directly to extract value or sell them through illicit forums for trafficking
stolen credentials [41, 42].

Decoy passwords have been proposed in various forms to interfere with the
attacker’s use of a stolen credential database. In these proposals (see Sect. 2), a

This paper is originally appeared in the Proceedings of the 30th USENIX Security Symposium,
August 2021.

1 This number excludes 14 breaches of victims in Latin America and the Caribbean for which the
rate of credential leakage was not reported.

K. C. Wang · M. K. Reiter (�)
Duke University, Durham, NC, USA
e-mail: kwang@cs.unc.edu; coby.wang@duke.edu; michael.reiter@duke.edu

© This is a U.S. government work and not under copyright protection in the U.S.;
foreign copyright protection may apply 2023
T. Bao et al. (eds.), Cyber Deception, Advances in Information Security 89,
https://doi.org/10.1007/978-3-031-16613-6_9

183

https://avxhm.se/blogs/hill0

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-16613-6_9&domain=pdf

 885 55738 a 885 55738
a

 8719 55738
a 8719 55738 a

 17528 55738 a 17528
55738 a

 -2016 61494 a -2016 61494 a

184 K. C. Wang and M. K. Reiter

site (the target) stores decoy passwords alongside real passwords in its credential
database, so that if the attacker breaches the database, the correct passwords are
hidden among the decoys. The attacker’s entry of a decoy password can alert the
target to its breach; the term honeywords has been coined for decoys used in this
way [25].

While potentially effective, honeywords suffer from two related shortcomings
that, we believe, have limited their use in practice. First, previous proposals
that leverage honeywords require a trusted component to detect the entry of a
honeyword, i.e., a component that retains secret state even after the target has
been breached. Such a trusted component is a strong assumption, however, and begs
the question of whether one could have been relied upon to prevent the breach of
the target’s database in the first place. Second, the effectiveness of honeywords
depends on the indistinguishability of the user-chosen password from the decoys
when they are exposed to an attacker. However, because so many users reuse their
chosen passwords across multiple accounts [11, 36, 44], an attacker can simply test
(or stuff) all passwords for an account leaked from the target at accounts for the
same user at other sites. Any password that works at another site is almost certainly
the user-chosen password at the target.

In this paper, we resolve both of these difficulties and realize their solutions
in a framework called Amnesia. First, we show that honeywords can be used to
detect a target’s database breach with no persistent secret state at the target, a
surprising result in light of previous work. Specifically, we consider a threat model
in which the target is breached passively but completely and potentially repeatedly.
Without needing to keep secrets from the attacker, Amnesia nevertheless enables
the target to detect its own breach probabilistically, with benefits that we quantify
through probabilistic model checking. Our results show, for example, that Amnesia
substantially reduces the time an attacker can use breached credentials to access
accounts without alerting the target to its breach.

To address credential stuffing elsewhere to distinguish the user-chosen password
from the honeywords, Amnesia enables the target to monitor for the entry of
passwords stolen from it at other sites, called monitors. Via this framework,
incorrect passwords entered for the same user at monitors are treated (for the
purposes of breach detection) as if they had been entered locally at the target.
One innovation to accomplish this is a cryptographic protocol by which a monitor
transfers the password attempted in an unsuccessful login there to the target, but
only if the attempted password is one of the passwords (honey or user-chosen) for
the same account at the target; otherwise, the target learns nothing. We refer to
this protocol as a private containment retrieval (PCR) protocol, for which we detail
a design and show it secure. Leveraging this PCR protocol, we show that Amnesia
requires no trust in the monitors for the target to accept a breach notification. In
other words, even if amonitor is malicious, it cannot convince an unbreached target
that it has been breached.

We finally describe the performance of our Amnesia implementation. Our
performance results suggest that the computation, communication, and storage
costs of distributed monitoring are minimal. For example, generating a monitoring

Using Amnesia to Detect Credential Database Breaches 185

response takes constant time and produces a constant-size result, as a function of the
number of honeywords, and is practical (e.g., no more than 10ms and about 1KB,
respectively).

To summarize, our contributions are as follows:

• We develop the first algorithm leveraging honeywords by which a target site can
detect the breach of its password database, while relying on no secret persistent
state. We evaluate this design using probabilistic model checking to quantify the
security it provides.

• We extend this algorithm with a protocol to monitor accounts at monitors
to detect the use of the target’s honeywords there. Our algorithm is the first
such proposal to ensure no false detections of a database breach, despite even
malicious behavior by monitors.

• A core component of this algorithm is a new cryptographic protocol we term a
private containment retrieval protocol, which we detail and prove correct.

• We describe the performance of our algorithm using an implementation and show
that it is practical.

2 Related Work

Within research on decoy passwords, we are aware of only two proposals by which
a target can detect its own breach using them. Juels and Rivest [25] coined the
term honeywords for decoy passwords submitted in login attempts to signal to a
site that it was breached by an attacker. In their proposal and works building on it
(e.g., [14]), the target is augmented with a trusted honeychecker that stores which
of the passwords listed with the account is the user-chosen one; login attempts with
others alert the site to its breach. Almeshekah et al. [2] use a machine-dependent
function (e.g., hardware security module) in the password hash at the target site to
prevent offline cracking of its credential database if breached. Of more relevance
here, an attacker who is unaware of this defense and so attempts to crack its
database offline will produce plausible decoy passwords (ersatzpasswords) that,
when submitted, alert the target site to its breach. The primary distinction between
these proposals and ours is that ours permits a target to detect its own breach
without any secret persistent state. In contrast, these proposals require a trusted
component—the honeychecker or the machine-dependent function—whose state is
assumed to remain secret even after the attacker breaches the site. In addition, we
reiterate that ersatzpasswords are effective in alerting the target to its breach only if
the attacker is unaware of the use of this scheme, as otherwise the attacker will know
that passwords generated through offline cracking without access to the machine-
dependent function are ersatzpasswords.

Other uses of decoy passwords leverage defenses at other, unbreached sites—
either their online guessing defenses generically [5, 28] or their cooperation to check
for decoy passwords specifically [5, 48]—to defend accounts whose credentials

https://avxhm.se/blogs/hill0

186 K. C. Wang and M. K. Reiter

have been stolen, whether by phishing [48], user device compromise [5], or the
target site’s database breach [28]. While we extend our design in Sect. 5 to monitor
for a target’s honeywords being submitted in login attempts at monitors, to our
knowledge our design is the first to eliminate the need for the target to trust another
site in order to accept that a detected breach actually occurred. Specifically, in our
design a monitor, even if malicious, cannot convince an unbreached site that it has
been breached.

Various other works have leveraged decoy accounts to detect credential database
breaches, i.e., accounts with no owner that, if ever accessed, reveal the breach of the
account’s site or a site where a replica of the account was created (e.g., [14, 21]).
In Tripwire [13], each decoy account is registered with a distinct email address and
password, for which the password at the email provider is the same. Any login to the
email account (provided that the email provider is itself not compromised) suggests
the breach of the website where that email address was used to register an account.
Like the previously discussed proposals, this design places trust in the detecting
party (the email provider or, in this case, the researchers working with it) to be
truthful when reporting the breach of a target. Indeed, DeBlasio et al. report that
sites’ unwillingness to trust the evidence they provided of the sites’ breaches was an
obstacle to getting them to act.2 Moreover, the utility of artificial accounts hinges
critically on their indistinguishability from real ones, and if methods using them
became effective in hindering attacker activity, ensuring the indistinguishability of
these accounts would presumably become its own arms race. Our design is agnostic
to whether it is deployed on real or decoy accounts, sidestepping the need for
convincing decoy accounts but also demanding attention to the risks to real accounts
that it might introduce.

To be fair, generation of honeywords that are sufficiently indistinguishable
from real ones is itself a topic of active investigation (e.g., [1, 14, 45]). Here we
will simply assume that a site can generate honeywords in isolation to satisfy
certain properties, detailed in Sect. 3. The development of methods to achieve these
properties is a separate concern.

An alternative to decoy passwords or accounts for defending against a breach
of a site’s credential database is for the site to instead leverage a breach-hardening
service. Even after having breached the target’s credential database, the attacker
must succeed in an online dictionary attack with the breach-hardening service
per stolen credential he wishes to use, provided that the breach-hardening service
is itself not simultaneously breached (e.g., [15, 30–32, 40]). While differing in
their details, these schemes integrate the breach-hardening service tightly into the
target’s operation, in the sense that, e.g., the benign failure of a breach-hardening
service would interfere with login attempts at the target. In contrast, while the

2 The paper concludes, “A major open question, however, is how much (probative, but not
particularly illustrative) evidence produced by an external monitoring system like Tripwire is
needed to convince operators to act, such as notifying their users and forcing a password reset” [13,
Section 8].

Using Amnesia to Detect Credential Database Breaches 187

benign failure of our monitors would render them useless for helping to detect the
target’s breach, the operation of the target would be otherwise unaffected.

3 Honeywords

We assume the existence of a randomized honeyword generator HoneyGen that,
given an account identifier a, user-chosen password πa , and integer k, produces a
set �a containing πa and k other strings and having the following properties. We
use “←” to denote assignment of the result of evaluating the expression on its right

to the variable on its left, and “
$←” to denote sampling an element uniformly at

random from the set on its right and assigning the result to the variable on its left.
First, the essential purpose of honeywords is to make it difficult for an adversary

who breaches a credential database to determine which of the passwords listed for
an account a is the user-chosen one. In other words, for any attacker algorithm A

that is given the account identifier a and its set of passwords �a , we assume

P
(
π = πa

∣
∣�a ← HoneyGen(a, πa, k);π ← A(a,�a)

) ≈ 1

k + 1
(1)

Second, because honeywords are intended to alert the target to a breach of its
credential database, avoiding false alarms requires that an adversary be unable to
generate a honeyword for an account without having actually breached the target. In
particular, this property would ideally be achieved even if the user-chosen password
πa is known, e.g., because the user was phished or because she reused πa as her
password at another site that was compromised. While these place the user’s account
at the target at risk, neither equates to the target’s wholesale breach and so should
not suffice to induce a breach detection at the target. That is, for any attacker
algorithm B that knows only the account identifier a and user-chosen password
πa , we assume:

P
(
π ∈ �a \ {πa}

∣∣�a ← HoneyGen(a, πa, k);π ← B(a, πa)
) ≈ 0 (2)

This assumption implies that any two invocations of HoneyGen(a, πa, k)

produce sets �a , �′
a that intersect only in �a with near certainty. Otherwise, an

adversary B(a,�a) that invokes �′
a ← HoneyGen(a, πa, k) and returns a random

π ∈ π ′
a \ {πa} would violate (2). In other words, (2) implies that the honeywords

generated at two different sites for the same user’s accounts are distinct, even if the
user reuses the same password for both accounts.

https://avxhm.se/blogs/hill0

188 K. C. Wang and M. K. Reiter

4 Detecting Honeyword Entry Locally

The first contribution of this paper is in demonstrating how the target site can detect
its own breach while relying on no secret persistent state. We detail the threat model
for this section in Sect. 4.1 and provide the detection algorithm in Sect. 4.2. We
demonstrate the efficacy of this algorithm in Sect. 4.3.

4.1 Threat Model

Our goal is to enable a site, called the target, to detect that its credential
database has been stolen. We assume that the target uses standard password-based
authentication, i.e., in which the password is submitted to the target under the
protection of a cryptographic protocol such as TLS.

We allow for an attacker to breach the target passively only, in which case it
captures all persistent storage at the site associated with validating or managing
account logins. Throughout this paper, this persistent storage is denoted DB, and
information associated specifically with account a is denoted DBa . In particular,
the information captured includes the passwords listed for each of the site’s
user accounts (DBa .auths); if stored as salted hashes, the attacker can crack the
passwords offline. The attacker also captures any long-term cryptographic keys of
the site. As will become relevant below, we allow the attacker to capture the site’s
persistent storage multiple times, periodically.

We stress that the information captured by the attacker includes only information
stored persistently at the site. Recall that the principle behind honeywords is to
leverage their use in login attempts to alert the target that its credential database
has been stolen. As such, we must assume that transient information that arrives in
a login attempt but is not stored persistently at the site is unavailable to the attacker.
Otherwise, the attacker would simply capture the correct password for an account
once the legitimate owner of that account logs in. Since the site’s breach leaks any
long-term secrets, this assumption implies that the cryptographic protocol protecting
user logins provides perfect forward secrecy [20]3 or that the attacker simply cannot
observe login traffic. Similarly, we assume that despite breaching the target site, the
attacker cannot predict future randomness generated at the site.

We also highlight that, like in Juels and Rivest’s honeyword design [25], we
do not consider the active compromise of the target. In particular, the integrity of
the target’s persistent storage is maintained despite the attacker’s breach, and the
site always executes its prescribed algorithms. Without this assumption, having the

3 Cohn-Gordon et al. [9] observe that for a passive attacker, perfect forward secrecy implies
protection not only against the future compromise of the long-term key but also its past
compromise.

Using Amnesia to Detect Credential Database Breaches 189

target detect its own breach is not possible. We do, however, permit the attacker to
submit login attempts to the target via its provided login interface.

Finally, while the adversary might steal passwords chosen by some legitimate
users of the target (e.g., by phishing, keylogging, or social engineering) and be a
user of the site himself, Amnesia leverages the activity of other account owners,
each of whose chosen password is indistinguishable to the attacker in the set of
passwords listed for her account. As such, when we refer to account owners below,
we generally mean ones who have not been phished or otherwise compromised.

4.2 Algorithm

In this section we detail our algorithm for a target to leverage honeywords for
each of its accounts to detect its own breach. Somewhat counterintuitively, in our
design the honeywords the target site creates for each account are indistinguishable
from the correct password, even to itself (and so to an attacker who breaches
it)—hence the name Amnesia. However, the passwords for an account (i.e., both
user-chosen and honey) are marked probabilistically with binary values. Marking
ensures that the password last used to access the account is always marked (i.e.,
its associated binary value is 1). Specifically, upon each successful login to an
account, the set of passwords is remarked with probability premark, in which case the
entered password is marked (with probability 1.0) and each of the other passwords
is marked independently with probability pmark. As such, if an attacker accesses the
account using a honeyword, then the user-chosen password becomes unmarked with
probability premark(1 − pmark). In that case, the breach will be detected when the
user next accesses the account, since the password she supplies is unmarked.

More specifically, the algorithm for the target to detect its own breach works
as follows. The algorithm is parameterized by probabilities pmark and premark, and
an integer k > 0. It leverages a procedure mark shown in Fig. 1, which marks the
given element e with probability 1.0, marks other elements of DBa .auths for the
given account a with probability pmark, and stores these markings in the credential
database for account a as the function DBa .marks.

Fig. 1 Procedure mark, used in Sects. 4–5

https://avxhm.se/blogs/hill0

190 K. C. Wang and M. K. Reiter

Password Registration When the user sets (or resets) the password for her
account a, she provides a user-chosen password π . The password registra-
tion system generates DBa.auths ← HoneyGen(a, π, k) and then invokes
mark(a, π).

Login When a login is attempted to account a with password π , the outcome
is determined as follows:

• If π �∈ DBa.auths, then the login attempt is unsuccessful.
• If π ∈ DBa.auths and DBa.marks(π) = 0, then the login attempt is

unsuccessful and a credential database breach is detected.
• Otherwise (i.e., π ∈ DBa.auths and DBa.marks(π) = 1) the login attempt

is successful.4 In this case,mark(a, π) is executed with probability premark.

This algorithm requires that a number of considerations be balanced if an
attacker can breach the site repeatedly to capture its credential database many times.
Consider that:

• Repeatedly observing the passwords left marked by user logins permits the
attacker to narrow in on the user-chosen password as the one that is always
marked. This suggests that legitimate logins should remark the passwords as
rarely as possible (i.e., premark should be small) or that, when remarking occurs,
doing so results in passwords already marked staying that way (i.e., pmark should
be large).

• If the attacker accesses an account between two logins by the user, a remarking
must occur between the legitimate logins if there is to be any hope of the second
legitimate login triggering a detection (i.e., premark should be large).

• If the attacker is permitted to trigger remarkings many times between consecutive
legitimate logins, however, then it can do so repeatedly until markings are
restored on most of the passwords that were marked when it first accessed the
account. The attacker could thereby reduce the likelihood that the next legitimate
login detects the breach. This suggests that it must be difficult for the attacker
to trigger many remarkings on an account (i.e., premark should be small) or that
when remarkings occur, significantly many passwords are left unmarked (i.e.,
pmark should be small).

All of this is complicated by the fact that the target site cannot distinguish
between legitimate and attacker logins, of course. While an anomaly detection
system (ADS) using features of each login attempt other than the password entered
(e.g., [18]) could provide a noisy indication, unfortunately our threat model permits
the attacker to learn all persistent state that the target site uses to manage logins; this

4 Or more precisely, the stage of the login pipeline dealing with the password is deemed successful.
Additional steps, such as a second-factor authentication challenge, could still be required for the
login to succeed.

Using Amnesia to Detect Credential Database Breaches 191

would presumably include the ADS model for each account, thereby enabling the
adversary to potentially evade it. For this reason, we eschew this possibility, instead
settling for a probability premark of remarking passwords on a successful login and,
if so, a probability pmark with which each password is marked (independently), that
together balance the above concerns. We explore such settings in Sect. 4.3.

4.3 Security

Methodology To evaluate the security of our algorithm, we model an attack as a
Markov decision process (MDP) consisting of a set of states and possible transitions
among them. When the MDP is in a particular state, the attacker can choose
from a set of available actions, which determines a probability distribution over
the possible next states as a function of the current state and the action chosen.
Using probabilistic model checking, we can evaluate the success of the adversary in
achieving a certain goal (see below) under his best possible strategy for doing so. In
our evaluations below, we use the Prism model checker [29].

The basic distributions for modeling our algorithm for a single account are
straightforward. Let �� denote the number of passwords that the attacker always
observes as marked in � breaches of the target, with each pair of breaches separated
by at least one remarking in a legitimate user login. (Breaches with no remarking
between them will observe the same marks.) Then,�� ∼ binomial

(
k, (pmark)

�
) +

1, where the “+ 1” represents the user-chosen password, which remains marked
across these � remarkings. Now, letting �n denote the number of these passwords
that are marked after an adversary-induced remarking, conditioned on �� = n + 1,
we know �n ∼ binomial (n, pmark) + 1, where the “+ 1” represents the marked
password that the adversary submitted to log into the account, which remains
marked with certainty. If�n = α+1 after the adversary’s login, then the probability
of the target detecting its own breach upon the legitimate user’s next login to this
account is 1 − α+1

n+1 .
To turn these distributions into a meaningful MDP, however, we need to specify

some additional limits.

• The number of attacker breaches until it achieves � that each follows a distinct
remarking induced by a legitimate user login is dependent not only on premark
but also on the rate of user logins. In our experiments, we model user logins as
Poisson arrivals with an expected number λ = 1 login per time unit. We permit
the attacker to breach the site and capture all stored state at the end of each time
unit.

• Even with this limit on the rate of legitimate user logins, an attacker that breaches
the site arbitrarily many times will eventually achieve �� = 1 and so will know
the legitimate user’s password. In practice, however, the attacker cannot wait
arbitrarily long to access an account, since there is a risk that his breaches will
be detected by other means (i.e., not by our algorithm). To model this limited
window of vulnerability, we assume that the time unit in which the breach is

https://avxhm.se/blogs/hill0

192 K. C. Wang and M. K. Reiter

discovered by other means (at the end of the time unit), and so the experiment
stops, is represented as a random variable � distributed normally with mean μstop
and relative standard deviation χstop = 0.2. For example, assuming a seven-
month average breach discovery delay [23], an account whose user accesses it
once per week on average, would have μstop ≈ 30 time units (weeks).

• Once the attacker logs into the account with one of the n + 1 passwords that it
observed as always marked in its breaches, it can log in repeatedly (i.e., resample
�n) to leave the account with marks that minimize its probability of detection
on the next legitimate user login. If allowed an unbounded number of logins, it
can drive its probability of detection to zero. Therefore, we assume that the site
monitors accounts for an unusually high rate of successful logins, limiting the
adversary to at most � per time unit.

Let random variable � denote the time unit at which the attacker logs into the
account for the first time, and let random variable � ≤ � denote the time unit at
which the attacker is detected. That is, � < � means that our algorithm detected
the attacker before he was detected by other means. Moreover, note that � < �,
since our algorithm can detect the attacker only after he logs into the account. We
define the benefit of our algorithm to be the expected number of time units that our
algorithm deprives the attacker of undetectably accessing the account, expressed as
a fraction of the number of time units it could have done so in the absence of our
algorithm. In symbols:

benefit = E (�− �) − E (�− �)

E (�− �)
= 1 − E (�− �)

E (�− �)
(3)

When computing benefit, we do so for an attacker strategy maximizing E (�− �),
i.e., against an attacker that maximizes the time for which it accesses the account
before it is detected.

Results The computational cost of model checking this MDP is such that we could
complete it for only relatively small (but still meaningful) parameters. The results
we achieved are reported in Figs. 2, 3, and 4. To explore how increasing each of k,
�, and μstop affects benefit, each of the tables in Fig. 2 corresponds to modifying
one parameter from the baseline table shown in Fig. 2a, where k = 48, � = 4,
and μstop = 8. Each number in each table is the benefit of a corresponding
〈premark, pmark〉 parameter pair, where higher numbers are better. When k is
increased from 48 to 64 (Fig. 2b), we can see a slight boost to the benefit. However,
increasing � or μstop, shown in Fig. 2c and d, respectively, causes benefit to drop
slightly. The reasons behind these drops are that larger � (i.e., more repeated logins
by the attacker) give him a better chance to leave with a reduced probability of
detection, and a larger μstop allows the attacker to observe more user logins and so
more remarkings (to minimize ��) before he is detected by other means.

This latter effect is illustrated in Fig. 3, which shows benefit as a function of
μstop. When μstop ≤ 7, the settings pmark = 0.2, premark = 0.9 yield the best
benefit among the combinations pictured in Fig. 3. However, as μstop grows, the
longer time (i.e., larger �) the attacker can wait to access the account affords him a

Using Amnesia to Detect Credential Database Breaches 193

Fig. 2 benefit of local detection, as k (b), � (c), and μstop (d) are increased individually from
the “baseline” (a) of k = 48, � = 4, and μstop = 8. (a) Baseline. (b) k = 64. (c) � = 8. (d)
μstop = 12

lower �� and so a lower probability of being detected when the legitimate user
subsequently logs in. This effect can be offset by decreasing premark (Fig. 3a),
increasing pmark (Fig. 3b), or both.

The impact of � is shown in Fig. 4, which plots benefit as a function of k for
various �. Figure 4 shows that even when the attacker logs in more frequently than
the user by a factor of � = 10, our algorithm still remains effective with benefit ≈
0.5 for moderately large k. That said, while Fig. 4 suggests that increasing k into
the hundreds should suffice, we will see in Sect. 5 that an even larger k might be
warranted when credential stuffing is considered.

Interpreting benefit As we define it, benefit is a conservative measure, in two
senses. First, benefit is calculated (via probabilistic model checking) against the
strongest attacker possible in our threat model. Second, benefit is computed only
for one account, but detection on any account is enough to inform the target of

https://avxhm.se/blogs/hill0

194 K. C. Wang and M. K. Reiter

Fig. 3 benefit as a function of μstop with varying premark and varying pmark (k = 32,� = 4).
(a) pmark = 0.2. (b) premark = 0.9

Fig. 4 benefit as a function
of k with varying �

(pmark = 0.3, premark = 1.0,
μstop = 8)

its breach. For an attacker whose goal is to assume control of a large number of
accounts at the target (vs. one account specifically), the detection power of our
algorithm will be much higher.

That said, quantifying that detection power holistically for the target is not
straightforward. Recall that benefit is defined in terms of time units wherein the
legitimate user is expected to login λ = 1 time. As such, the real-time length of
this unit for a frequently accessed account will be different than for an infrequently
accessed one. And, since μstop is expressed in this time unit, μstop will be larger for
a frequently accessed account than for an infrequently accessed one, even though
the real-time interval that passes before a site detects its own breach by means
other than Amnesia might be independent of the legitimate login rates to accounts.
Thus, extrapolating the per-account benefit to the security improvement for a target
holistically requires knowledge of the legitimate login rates across all the sites’
accounts as a function of real time, adjusting μstop (and χstop) accordingly per
account, and translating the per-account benefits back into a real-time measure.

Using Amnesia to Detect Credential Database Breaches 195

5 Detecting Remotely Stuffed Honeywords

When a credential database is breached, it is common for attackers to submit the
login credentials therein (i.e., usernames and passwords) to other sites, in an effort
to access accounts whose user sets the same password as she did at the breached
site. These attacks, called credential stuffing, are already the primary attack yielding
account takeovers today [41]. But even worse for our purposes here, credential
stuffing enables an attacker to circumvent the honeywords at a breached target site:
If a user reused her password at another site, then stuffing the breached passwords
there will reveal which is the user-chosen password, i.e., as the one that gains access.
The attacker can then return to the target site with the correct password to access
the user’s account at the target.

The design in this section mitigates credential stuffing as a method to identify
the user’s chosen password, by ensuring that stuffing honeywords at other sites
probabilistically still alerts the target site to its breach. At a high level, the target
maintains a set of monitor sites and can choose to monitor an account at any of
those monitors. To monitor the account at a monitor, the target sends the monitor
a private containment retrieval (PCR) query for this account identifier, to which the
monitor responds after any unsuccessful login attempt to this account (potentially
even if the account does not exist at the monitor). In the abstract, a PCR query is a
private (encrypted) representation of a set X of elements known to the target, and
a response computed with element e reveals to the target the element e if e ∈ X
and nothing otherwise. In this case, the target’s set X contains the local password
hashes for the user’s account. If a monitor then sends a response computed using
some e ∈ X, the target can treat e as if it were attempted locally, permitting the
detection of a breach just as in Sect. 4.

5.1 Threat Model

As in Sect. 4.1, we allow the adversary to breach the target passively, thereby
learning all information persistently stored by the site for the purpose of determining
the success of its users’ login attempts. We highlight that in this section, the
breached information includes a private key that is part of the target’s stored state
for managing login attempts in our algorithm. So, if the target is breached, then this
private key is included in the data that the attacker learns.

We permit the attacker that breaches the target to also actively compromise
monitors, in which case these monitors can behave arbitrarily maliciously. Mali-
cious monitors can refuse to help the target detect its own breach via our design,
e.g., by simply refusing to respond. However, our scheme must ensure that even
malicious monitors cannot convince a target that it has been breached when it has
not. Moreover, maliciousmonitors should not be able to leverage their participation
in this protocol to attack passwords at a target that is never breached.

https://avxhm.se/blogs/hill0

196 K. C. Wang and M. K. Reiter

We do not permit the attacker to interfere with communication between a
(breached or unbreached) target and an uncompromised monitor. Otherwise, the
attacker could prevent the target from discovering its breach by simply refusing to
let it communicate with uncompromised monitors.

Our design assumes that different sites can ascertain a common identifier a

for the same user’s accounts at their sites, at least as well as an attacker could.
In practice, this would typically be the email address (or some canonical version
thereof, see [46]) registered by the user for account identification or password reset
purposes.

5.2 Private Containment Retrieval

The main building block for our design is a private containment retrieval (PCR)
protocol with the following algorithms.

• pcrQueryGen is an algorithm that, on input a public key pk and a set X,
generates a PCR query Y ← pcrQueryGenpk(X).

• pcrRespGen is an algorithm that, on input a public key pk, an element
e, and a query Y ← pcrQueryGenpk(X), outputs a PCR response Z ←
pcrRespGenpk(e, Y).

• pcrReveal is an algorithm that on input the private key sk corresponding to
pk, an element e′ ∈ X, and a response Z← pcrRespGenpk(e, Y) where Y←
pcrQueryGenpk(X), outputs a Boolean z← pcrRevealsk(e

′, Z) where z = true
iff e′ = e.

Informally, this protocol ensures that Y reveals nothing about X (except its size) to
anyone not holding sk; that Z computed on e �∈ X reveals nothing about e (except
e �∈ X); and that if pcrRevealsk(e

′, Z) = true, then the party that computed Z

knows e′. We make these properties more precise and provide an implementation in
Sect. 6.

5.3 Algorithm

We first provide greater detail about how the target maintains its credential
database. Whereas in Sect. 4 we left hashing of the honey and user-chosen pass-
words in DBa .auths implicit, in this section we need to expose this hashing
explicitly for functional purposes. Consistent with current best practices, the target
represents DBa .auths as a set of hashes salted with a random κ-bit salt DBa .salt,
including one hash f (s, π) of the user-chosen password π where s ← DBa.salt
and a salted hash f (s, π ′) for each of k honeywords π ′. Then, testing whether π is
either a honey or user-chosen password amounts to testing f (s, π) ∈ DBa.auths.
In addition to these refinements, for this algorithm the target is also initialized with
a public-key/private-key pair 〈pk, sk〉 for use in the PCR protocol, and a set S of

Using Amnesia to Detect Credential Database Breaches 197

possible monitors (URLs). If the target R is breached, then all of DB, S, and
〈pk, sk〉 are captured by the attacker.

The algorithm below treats local logins at the target R similar to how they were
treated in Sect. 4, with the exception of exposing the hashing explicitly. In addition,
the algorithm permits R to ask monitor S to monitor a. To do so, R sends a PCR
query Y to S computed on DBa .auths. Upon receiving this request, S simply saves
it for use on each incorrect login to a at S, to generate a PCR response to R. The
hash encoded in this response is then treated at R (for the purposes of detecting a
breach) as if it has been entered in a local login attempt. In sum, the protocol works
as described below.

Password Registration at R When the user (re)sets the password for her
account a at the target site R, she provides her chosen password π . The
password registration system at R executes:

• �a ← HoneyGen(a, π, k)

• DBa.salt
$←{0, 1}κ

• DBa.auths ← {f (DBa.salt, π ′)}π ′∈�a

• mark(a, f (DBa.salt, π))

Login Attempt at R For a login attempted to account a with password π at
R, the outcome is determined as follows, where h ← f (DBa.salt, π)):

• If h �∈ DBa.auths, the login attempt is unsuccessful.
• If h ∈ DBa.auths and DBa.marks = 0, then the login attempt is

unsuccessful and a credential database breach is detected.
• Otherwise (i.e., h ∈ DBa.auths and DBa.marks = 1), the login attempt is

successful and R executes mark(a, h) with probability premark.

R Monitors a at S At an arbitrary time, R can ask S ∈ S to monitor account
a by generating Y← pcrQueryGenpk(DBa.auths) and sending 〈a, DBa .salt,
pk, Y 〉 to S.

S Receives a Monitoring Request 〈a, s, pk, Y 〉 from R S saves
〈R, a, s, pk, Y 〉 locally.
Login Attempt at S For an unsuccessful login attempt to an account a using
(incorrect) password π , if S holds a monitoring request 〈R, a, s, pk, Y 〉, then it
computes Z ← pcrRespGenpk(f (s, π), Y) and sends 〈a,Z〉 to R.

R Receives a Monitoring Response 〈a,Z〉 If pcrRevealsk(h, Z) is false
for all h ∈ DBa.auths, then R discards 〈a,Z〉 and returns. Otherwise, let
h ∈ DBa.auths be some hash for which pcrRevealsk(h, Z) is true. R detects
a breach if DBa.marks(h) = 0 and otherwise executes mark(a, h) with
probability premark.

198 K. C. Wang and M. K. Reiter

In the above protocol, the only items received by the monitor S in 〈a, s, pk, Y 〉
are all available to an attacker who breaches R. In this sense, a malicious S gains
nothing that an attacker who breaches the target R does not also gain, and in fact
gains less, since it learns none of sk, DBa .auths, or S. Indeed, the only advantage
an attacker gains by compromising S in attacking passwords at R is learning the salt
s = DBa.salt, with which it can precompute information (e.g., rainbow tables [35])
to accelerate its offline attack on DBa .auths if it eventually breaches R. If this
possibility is deemed too risky, R can refuse to send s to S in its request but instead
permit S to compute f (s, π ′) when needed by interacting with R, i.e., with f being
implemented as an oblivious pseudo-random function (OPRF) [17] keyed with s,
for which there are efficient implementations (e.g., the DH-OPRF implementation
leveraged by OPAQUE [24]). This approach would require extra interaction between
S and R per response from S, however, and so we do not consider this alternative
further here.

S should authenticate a request 〈a, s, pk, Y 〉 as coming from R, e.g., by requiring
that R digitally sign it. Presuming that this digital signing key (different from
sk) is vulnerable to capture when R is breached, S should echo each monitoring
request back to R upon receiving it. If R receives an echoed request bearing its own
signature but that it did not create, it can again detect its own breach. (Recall that
we cannot permit the attacker to interfere with communications between R and an
uncompromised S and still have R detect its breach.)

In practice, a monitor will not retain a monitoring record forever, as its list of
monitoring records—and the resulting cost incurred due to generating responses to
them—would only grow. Moreover, it cannot count on R to withdraw its monitoring
requests, since R does not retain records of where it has deposited what requests,
lest these records be captured when it is breached and the attacker simply avoid
monitored accounts. Therefore, presumably a monitor should unilaterally expire
each monitoring record after a period of time or in a randomized fashion. We do not
investigate specific expiration strategies here, nor do we explore particular strategies
for a target to issue monitoring requests over time.

5.4 Security

Several security properties are supported directly by the PCR protocol, which will
be detailed in Sect. 6. Here we leverage those properties to argue the security of our
design.

No Breach Detected by Unbreached target If the target R has not been
breached, then the PCR protocol will ensure that S must know h for it to generate
a Z for which pcrRevealsk(h, Z) returns true at R. Assuming S cannot guess a
h ∈ DBa.auths without guessing a password π such that h = f (s, π) and that
(ignoring collisions in f) guessing such a π is infeasible (see (2)), generating such
a Z is infeasible for S unless the user provides such a π to S herself. Since the only

Using Amnesia to Detect Credential Database Breaches 199

such π she knows is the one she chose during password registration at R, π is the
user-chosen password at a. And, since R has not been breached, the hash of π will
still be marked there. As such, R will not detect its own breach.

No Risk to Security of Account at Unbreached target If the target R has not
been breached, then the PCR request Y reveals nothing about DBa .auths (except
its size) to S. As such, sending a monitoring request poses no risk to the target’s
account.

No Risk to Security of Account at Uncompromised monitor We now consider
the security of the password π for account a at themonitor S (if this account exists
at S). First recall that S generates PCR responses only for incorrect passwords
attempted in local login attempts for account a; the correct password at S will not be
used to generate a response. Moreover, S could even refuse to generate responses for
passwords very close to the correct password for a, e.g., the correct password with
typos [7]. Second, the PCR protocol ensures that the target R learns nothing about
the attempted (and again, incorrect) password π if S is not compromised, unless R

included h = f (s, π) in the set from which it generated its PCR query Y . In this
case, pcrRevealsk(h, Z) returns true but, again, R already guessed it.

Detection of the target’s Breach We now consider the ability of R to detect its
own breach by monitoring an account a at an uncompromised monitor S, which
is the most nuanced aspect of our protocol’s security. Specifically, an attacker
who can both repeatedly breach R and simultaneously submit login attempts at an
uncompromised S poses the following challenge: Because this attacker can see what
hashes for a are presently marked at R, it can be sure to submit to S a password for
one of the marked hashes at R, so that the induced PCR response Z will not cause R

to detect its own breach. Moreover, if the user reused her password at both R and S,
then the attacker will know when it submits this password to S, since S will accept
the login attempt.

As such, for R to detect its own breach in these (admittedly extreme) circum-
stances, the attacker must be unable to submit enough stolen passwords for a to S

to submit the user-chosen one with high probability, in the time during which it can
repeatedly breach R and before the next legitimate login to a at R or S. To slow the
attacker somewhat, R can reduce pmark and premark to limit the pace of remarkings
and, when remarkings occur, the number of hashes that are marked (which are the
ones that the attacker can then submit to S).

Two other defenses will likely be necessary, however. First, R can greatly
increase the attacker’s workload by increasing the number of honeywords per
account, say to the thousands or tens of thousands (cf., [28]). Second, since
honeywords from R submitted to S will be incorrect for the account a at S, online
guessing defenses (account lockout or rate limiting) at S can (and should) be used
to slow the attacker’s submissions at S. In particular, NIST recommends that a site
“limit consecutive failed authentication attempts on a single account to no more than
100” [19, Section 5.2.2], in which case an attacker would be able to eliminate, say,
at most 2% of the honeywords for an account with 5000 honeywords stolen from

200 K. C. Wang and M. K. Reiter

R by submitting them in login attempts at S. Our design shares the need for these
defenses with most other methods for using decoy passwords [5, 14, 25, 28, 48].
In particular, if the user reused her password at other sites that permit the attacker
to submit passwords stolen from the target without limitation, then the attacker
discovering the user’s reuse of that password is simply a matter of time, after which
the attacker can undetectably take over the account.

5.5 Alternative Designs

The algorithm presented above is the result of numerous iterations, in which we
considered and discarded other algorithm variants for remote detection of stuffed
honeywords. Here we briefly describe several variants and why we rejected them.

• The target could exclude the known (entered at password reset) or likely (entered
in a successful login) user-chosen password π from the monitor request, i.e.,
Y ← pcrQueryGenpk(DBa.auths \ {f (s, π)}). In this case, any “non-empty”
PCR response Z (i.e., pcrRevealsk(h, Z) returns true for some h ∈ DBa.auths)
would indicate a breach. However, combining the data breached at the target
with Y at a malicious monitor would reveal the password not included in Y as
the likely user-chosen one.

• Since a monitor returns a PCR response only for an incorrect password
attempted locally, the target could plausibly treat any non-empty PCR response
as indicating its breach. That is, if the user reused her password, it would not be
used to generate a response anyway, and so the response would seemingly have
to represent a honeyword attempt. However, if the user did not reuse her target
password at the monitor, then her mistakenly entering it at the monitor would
cause the target to falsely detect its own breach.

• The monitor could return a PCR response for any login attempt, correct or
not, potentially hastening the target detecting its own breach. However, a PCR
request would then present an opportunity for a malicious target to guess k + 1
passwords for the account at the monitor, and be informed if the user enters one
there.

• Any two PCR responses for which pcrRevealsk returns true with distinct h, h′ ∈
DBa.auths is a reliable breach indicator; one must represent a honeyword. This
suggests processing responses in batches, batched either at themonitor or target.
However, ensuring that the attacker cannot artificially “fill” batches with repeated
password attempts can be complex; batching can delay detection; and batching
risks disclosure of a user-chosen password if one might be included in a response
and responses are saved in persistent storage (to implement batching).

Using Amnesia to Detect Credential Database Breaches 201

6 Private Containment Retrieval

Recall that in the algorithm of Sect. 5, upon receiving a monitoring request for an
account a from a target, amonitor stores the request locally and uses it to generate
a PCR response per failed login attempt to a. Since a response is generated per failed
login attempt, it is essential that pcrRespGen be efficient and that the response Z

be small. Moreover, considering that a database breach is an uncommon event for
a site, we expect that most of the time, the response would be generated using a
password that is not in the set used by the target to generate the monitoring request.
(Indeed, barring a database breach at the target, this should never happen unless
the user enters at the monitor her password for her account at the target.) So, in
designing a PCR, we place a premium on ensuring that pcrReveal is very efficient
in this case.

6.1 Comparison to Related Protocols

Since the monitor’s input to pcrRespGen is a singleton set (i.e., a hash), a natural
way to achieve the functionality of a private containment retrieval is to leverage
existing private set intersection (PSI) protocols, especially unbalanced PSIs that
are designed for the use case where two parties have sets of significantly different
sizes [8, 26, 27, 39, 42]. Among these protocols, those based on oblivious pseudo-
random functions (OPRFs) [26, 27, 39, 42] require both parties to obliviously agree
on a privacy-preserving but deterministic way of representing their input sets so
at least one party can compare and output elements in the intersection, if any. To
achieve this, both parties participate in at least one round of interaction (each of at
least two messages) during an online phase, and so would require more interaction
in our context than our framework as defined in Sect. 5. Chen et al. [8] proposed
a PSI protocol with reduced communication, but at the expense of leveraging fully
homomorphic encryption. And, interestingly, these unbalanced PSI protocols, as
well as private membership tests (e.g., [34, 38, 46, 47]), are all designed for the case
where the target has the smaller set and themonitor has the larger one, which is the
opposite of our use case.

Among other PSI protocols that require no more than one round of interaction,
that of Davidson and Cid [12] almost meets the requirements of our framework on
the monitor side: its monitor’s computation complexity and response message size
are manageable and, more importantly, constant in the target’s set size. However,
in their design, the query message size depends on the false-positive probability (of
the containment test) due to their use of Bloom filters and bit-by-bit encryption,
while ours is also constant in the false-positive probability. If applied in our context,
their design would generate a significantly larger query and so significantly greater
storage overhead at the monitor than ours, especially when a relatively low false-

202 K. C. Wang and M. K. Reiter

positive probability is enforced. For example, to achieve a 2−96 false-positive
probability, their query message would include ≈131× more ciphertexts than ours.

Our PCR protocol, on the other hand, is designed specifically for the needs
of our framework, where the target has a relatively large set and the monitor’s
set is smaller (in fact, of size 1) that keeps changing over time. Our protocol
requires only one message from themonitor to the target. In addition, the response
message computation time and output size is constant in the target’s set size.
We also constructed our algorithm so that determining that pcrRevealsk(h, Z) is
false for all h ∈ DBa.auths, which should be the common case, costs much less
time than finding the h ∈ DBa.auths for which pcrRevealsk(h, Z) is true. We
demonstrate these properties empirically in Sect. 6.5. While our protocol leverages
tools (e.g., partially homomorphic encryption, cuckoo filters) utilized in other
protocols (e.g., [47]), ours does so in a novel way and with an eye toward our specific
goals here.

6.2 Building Blocks

Partially Homomorphic Encryption Our protocol builds on a partially homomor-
phic encryption scheme E consisting of algorithms Gen, Enc, isEq, and +[·].

• Gen is a randomized algorithm that on input 1κ outputs a public-key/private-key
pair 〈pk, sk〉 ← Gen(1κ). The value of pk determines a prime r for which the
plaintext space for encrypting with pk is the finite field 〈Zr ,+,×〉 where + and
× are addition and multiplication modulo r , respectively. For clarity below, we
denote the additive identity by 0, the multiplicative identity by 1, and the additive
inverse of m ∈ Zr by − m. The value of pk also determines a ciphertext space
Cpk = ⋃

m Cpk(m), where Cpk(m) denotes the ciphertexts for plaintext m.
• Enc is a randomized algorithm that on input public key pk and a plaintext m,

outputs a ciphertext c ← Encpk(m) chosen uniformly at random from Cpk(m).
• isEq is a deterministic algorithm that on input a private key sk, plaintext m, and

ciphertext c ∈ Cpk, outputs a Boolean z ← isEqsk(m, c) where z = true iff
c ∈ Cpk(m).

• +[·] is a randomized algorithm that, on input a public key pk and ciphertexts
c1 ∈ Cpk(m1) and c2 ∈ Cpk(m2), outputs a ciphertext c ← c1+pkc2 chosen
uniformly at random from Cpk(m1+m2).

Note that our protocol does not require an efficient decryption capability. Nor does
the encryption scheme on which we base our empirical evaluation in Sect. 6.5,
namely “exponential ElGamal” (e.g., [10]), support one. It does, however, support
an efficient isEq calculation.

Given this functionality, it will be convenient to define a few additional operators

involving ciphertexts. Below, “�
d= �′” denotes that random variables � and �′ are

distributed identically; “Z ∈ (X)α×α′
” means that Z is an α-row, α′-column matrix

Using Amnesia to Detect Credential Database Breaches 203

of elements in the set X; and “(Z)i,j ” denotes the row-i, column-j element of the
matrix Z.

•
∑

pk denotes summing a sequence using +pk, i.e.,

z∑
pk

k=1

ck
d= c1+pkc2+pk . . . +pkcz

• If C ∈ (Cpk)
α×α′

and C′ ∈ (Cpk)
α×α′

, then C+pkC′ ∈ (Cpk)
α×α′

is the result of
component-wise addition using +pk, i.e., so that

(
C+pkC′)

i,j

d= (C)i,j+pk
(
C′)

i,j

• If M ∈ (Zr)
α×α′

and C ∈ (Cpk)
α×α′

, then M ◦pk C ∈ (Cpk)
α×α′

is the
result of Hadamard (i.e., component-wise) “scalar multiplication” using repeated
application of +pk, i.e., so that

(
M ◦pk C

)
i,j

d=
(M)i,j∑

pk
k=1

(C)i,j

• If M ∈ (Zr)
α×α′

and C ∈ (Cpk)
α′×α′′

, then M ∗pkC ∈ (Cpk)
α×α′′

is the result
of standard matrix multiplication using +pk and “scalar multiplication” using
repeated application of +pk, i.e., so that

(
M ∗pkC

)
i,j

d=
α′∑

pk
k=1

(M)i,k∑
pk

k′=1

(C)k,j

Cuckoo Filters A cuckoo filter [16] is a set representation that supports insertion
and deletion of elements, as well as testing membership. The cuckoo filter uses a
“fingerprint” function fp : {0, 1}∗ → F and a hash function hash : {0, 1}∗ →
[β], where for an integer z, the notation “[z]” denotes {1, . . . , z}, and where β is
a number of “buckets”. We require that F ⊆ Zr \ {0} for any r determined by
〈pk, sk〉 ← Gen(1κ). For an integer bucket “capacity” χ , the cuckoo filter data
structure is a β-row, χ -column matrix X of elements in Zr , i.e., X ∈ (Zr)

β×χ . Then,

the membership test e
?∈ X returns true if and only if there exists j ∈ [χ] such that

either

(X)hash(e),j = fp(e) or (4)

(X)hash(e)⊕hash(fp(e)),j = fp(e) (5)

204 K. C. Wang and M. K. Reiter

Cuckoo filters permit false positives (membership tests that return true for elements
not previously added or already removed) with a probability that, for fixed χ , can
be decreased by increasing the size of F [16].

6.3 Protocol Description

Our PCR protocol is detailed in Fig. 5. Figure 5a shows the message flow, which
conforms with the protocol’s use in our algorithm of Sect. 5, and Fig. 5b shows
the procedures. In this protocol, the target R has a public-key pair 〈pk, sk〉 for
the encryption scheme defined in Sect. 6.2 and a cuckoo filter X. In the context
of Sect. 5, X holds the password hashes (for k honeywords and one user-chosen
password) for an account. pcrQueryGenpk simply encrypts each element of the
cuckoo filter individually and returns this matrix Y as the PCR query. R sends pk
and Y to the monitor S in message m1.

S has an input e—which is the hash of a password entered in a failed login
attempt, in the algorithm of Sect. 5—and invokes pcrRespGenpk(e,Y) to produce a
response 〈Z,Z′〉. pcrRespGen first generates a 2×β matrixQwith 1 at the indices
i1 and i2 in the first and second rows, respectively (lines s2–s4), and 0 elsewhere,
and a 2 × χ matrix F that contains encryptions of −fp(e) (lines s5–s6). Referring
to line s8, the operation Q ∗pkY thus produces the two buckets (rows) of Y that
could include a ciphertext of fp(e) (ignoring collisions in fp), and

(
Q ∗pkY

) +pk F
produces a matrix where that ciphertext (if any) has been changed to a ciphertext
of 0. This ciphertext of 0 remains after multiplying this matrix component-wise by
the random matrix M to produce Z. The remaining steps (lines s9–s12) simply
rerandomize Z and transform this ciphertext of 0 to a ciphertext of fp′(e) in Z′, for
a fingerprint function fp′ : {0, 1}∗ → F that is “unrelated” to fp. (We will model
fp′ as a random oracle [4] for the security argument in Sect. 6.4.) Rerandomization
using M′ in the creation of Z′ is essential to protect the privacy of e if e �∈ X, since
without rerandomizing, the component-wise differences of the plaintexts of Z and
Z′ would reveal fp′(e) to R.

For (an artificially small) example, suppose β = 3, χ = 1, and that the monitor
S invokes pcrRespGenpk(e,Y) where i1 = hash(e) = 3 and i2 = hash(e) ⊕
hash(fp(e)) = 2. Furthermore, suppose that (X)i1,1

d= Encpk(e). Then,

Q ∗pkY d=
[
0 0 1
0 1 0

]
∗pk

⎡

⎣
c1

c2

Encpk(e)

⎤

⎦ d=
[
Encpk(e)

c2

]

and so

(
Q ∗pkY

) +pkF
d=

[
Encpk(e)

c2

]
+pk

[
Encpk(− e)

Encpk(− e)

]
d=

[
Encpk(0)

Encpk(m2− e)

]

Using Amnesia to Detect Credential Database Breaches 205

Fig. 5 Private containment retrieval protocol, with matrices X ∈ (Zr)
β×χ ; Y ∈ (Cpk)

β×χ ; Q ∈
(Zr)

2×β ;M,M′ ∈ (Zr)
2×χ ; F,F′,Z,Z′ ∈ (Cpk)

2×χ . (a) Message flow. (b) Procedures

206 K. C. Wang and M. K. Reiter

where c2 ∈ Cpk(m2). Assuming m2 �= e, we then have

Z d= M◦pk
((
Q ∗pkY

) +pkF
)

d=
[

m3

m4

]
◦pk

[
Encpk(0)

Encpk(m2− e)

]
d=

[
Encpk(0)
Encpk(m5)

]

where m3,m4
$← Zr \ {0} and so m5 �= 0. Finally,

Z′ d= (
M′◦pkZ

) +pkF′

d=
([

m6

m7

]
◦pk

[
Encpk(0)
Encpk(m5)

])
+pk

[
Encpk(fp

′(e))
Encpk(fp

′(e))

]
d=

[
Encpk(fp

′(e))
Encpk(m8)

]

where m6,m7
$← Zr and so m8 is uniformly random in Zr .

Given this structure of 〈Z,Z′〉, pcrRevealsk(e′, 〈Z,Z′〉) must simply find the
location 〈î, ĵ 〉 where Z holds a ciphertext of 0 (line r5) and, unless there is none
(line r6), return whether the corresponding location in Z′ is a ciphertext of fp′(e′)
(line r7).

6.4 Security

The use of this protocol to achieve the security arguments of Sect. 5.4 depends on the
PCR protocol achieving certain key properties. We present these properties below.

Security Against a Malicious monitor When the target R is not breached, our
primary goals are twofold. First, we need to show that monitoring requests do not
weaken the security of R’s accounts or, in other words, that the request Y does not
leak information about X (except its size). This is straightforward, however, since in
this protocol S observes only ciphertexts Y and the public key pk with which these
ciphertexts were created. (The target R need not, and should not, divulge the result
of the protocol to the monitor S.) As such, the privacy of X reduces trivially to the
IND-CPA security [3] of the encryption scheme.

The second property that we require of this protocol is that a malicious monitor
be unable to induce the target to evaluate pcrRevealsk(e

′, 〈Z,Z′〉) to true for any
e′ ∈ X unless the monitor knows e′. That is, in the context of Sect. 5, we want
to ensure that the monitor must have received (a password that hashes to) e′ in a
login attempt, as otherwise the monitor might cause the target to falsely detect
its own breach. This is straightforward to argue in the random oracle model [4],
however, since if fp′ is modeled as a random oracle, then to create a ciphertext(
Z′)

i,j
∈ Cpk(fp

′(e′)) with non-negligible probability in the output length of fp′, S
must invoke the fp′ oracle with e′ and so must “know” it.

Using Amnesia to Detect Credential Database Breaches 207

Security Against a Malicious target Though our threat model in Sect. 5.1 does
not permit a malicious target for the purposes of designing an algorithm for it to
detect its own breach, a monitor will participate in this protocol only if doing so
does not impinge on the security of its own accounts, even in the case where the
target is malicious. The security of themonitor’s account a is preserved since if the
monitor correctly computes pcrRespGenpk(e,Y), then the output 〈Z,Z′〉 carries
information about e only if some (Y)i,j ∈ Cpk(fp(e)), i.e., only if the target already
enumerated this password among the k + 1 in Y (ignoring collisions in fp). That is,
even a malicious target learns nothing about e from the response computed by an
honest monitor unless the target already guessed e (or more precisely, fp(e)).

This reasoning requires that pk is a valid public key for the cryptosystem, and so
implicit in the algorithm description in Fig. 5 is that the monitor verifies this. This
verification is trivial for the cryptosystem with which we instantiate this protocol in
Sect. 6.5.

Proposition Given 〈pk,Y〉 and e where (Y)i,j �∈ Cpk(fp(e)) for each i ∈ [β],
j ∈ [χ], if themonitor correctly computes 〈Z,Z′〉 ← pcrRespGenpk(e,Y), then

P

(
(Z)i,j ∈ Cpk(m) ∧ (

Z′)
i,j

∈ Cpk(m
′)
)

= 1

r(r − 1)

for any i ∈ [2], j ∈ [χ], m ∈ Zr \ {0}, and m′ ∈ Zr . ��
Proof Since each (Y)i,j �∈ Cpk(fp(e)) by assumption, the constructions of Q and
F imply that

(
Q ∗pk Y

)
i,j

�∈ Cpk(fp(e)) and so
((
Q ∗pk Y

) +pk F
)
i,j

�∈ Cpk(0) for
any i ∈ [2], j ∈ [χ]. Then, since (M)i,j is independently and uniformly distributed
in Zr \ {0}, it follows that (Z)i,j=

(
M ◦pk

((
Q ∗pkY

) +pkF
))

i,j
∈ Cpk(m) for m

distributed uniformly in Zr \{0}, as well. Finally, since (
M′)

i,j
is independently and

uniformly distributed in Zr , we know that
((
M′ ◦pk Z

) +pk F′)
i,j

∈ Cpk(m
′) for m′

distributed uniformly in Zr . ��
The proposition above shows that the plaintexts in the response are uniformly

distributed if (Y)i,j �∈ Cpk(fp(e)). The following proposition also points out that the
ciphertexts are uniformly distributed.

Proposition If themonitor follows the protocol, then

P
(
(Z)i,j = c

∣∣(Z)i,j ∈ Cpk(m)
) = 1

|Cpk(m)|

P
((
Z′)

i,j
= c

∣∣(Z′)
i,j

∈ Cpk(m)
) = 1

|Cpk(m)|
for any i ∈ [2], j ∈ [χ], m ∈ Zr , and c ∈ Cpk(m). ��

208 K. C. Wang and M. K. Reiter

Proof This is immediate since +pk ensures that for c1 ∈ Cpk(m1) and
c2 ∈ Cpk(m2), c1+pkc2 outputs a ciphertext c chosen uniformly at random from
Cpk(m1+m2). ��

6.5 Performance

We implemented the protocol of Fig. 5 to empirically evaluate its computation
and communication costs. The implementation is available at https://github.com/
k3coby/pcr-go.

Parameters In our implementation, we instantiated the underlying cuckoo filter
with bucket size χ = 4, as recommended by Fan et al. [16]. We chose fingerprints
of length 224 bits to achieve a low false-positive probability, i.e., about 2−221. For
the underlying partially homomorphic encryption scheme, we chose exponential
ElGamal (e.g., see [10]) implemented in the elliptic-curve group secp256r1 [6] to
balance performance and security (roughly equivalent to 3072-bit RSA security or
128-bit symmetric security).

Experiment Setup Our prototype including cuckoo filters and cryptography, were
implemented in Go. We ran the experiments reported below on two machines with
the same operating system and hardware specification: Ubuntu 20.04.1, AMD 8-
core processor (2.67GHz), and 72GiB RAM. These machines played the role of
the target and the monitor. We report all results as the means of 50 runs of each
experiment and report relative standard deviations (rsd) in the figure captions.

Results We report the computation time of pcrQueryGen, pcrRespGen, and
pcrReveal in Fig. 6. As shown in Fig. 6a, the computation time of pcrQueryGen
is linear in the target’s set size (i.e., k + 1). One takeaway here is that even if the
number of honeywords is relatively large, e.g., k = 1000, it only takes the target
about 100ms to generate a query with four logical CPU cores. Moreover, since a
query is generated only when choosing to monitor an account at a monitor, the
target can choose when to incur this cost. Figure 6b shows that the computational
cost of PCR response generation is essentially unchanged regardless of k. This is
important so that the computational burden on the monitors does not increase even
if the target grows its number of honeywords per account. Another observation
from Fig. 6b is that it only takes less than 9ms for the monitor, with even a single
logical core, to produce a response when a failed login attempt occurs.

The computation time of arge′∈XpcrRevealsk(e′, 〈Z,Z′〉) is shown in Fig. 6c–d
in two separate cases: when for all e′ ∈ X is pcrRevealsk(e

′, 〈Z,Z′〉) = false (and
so the result = ⊥, Fig. 6c) and when for some e′ ∈ X, pcrRevealsk(e

′, 〈Z,Z′〉) =
true (i.e., the result �= ⊥, Fig. 6d). We report these cases separately since they have
significantly different performance characteristics. Again, we expect the former to
be the common case. This operation takes constant time in the former case, since
the target needs only to test if any of the 2χ ciphertexts (e.g., 8 ciphertexts with

 26483 11674 a 26483
11674 a

https://github.com/k3coby/pcr-go

Using Amnesia to Detect Credential Database Breaches 209

Fig. 6 Runtimes of pcrQueryGenpk(X), pcrRespGenpk(e, Y), and arge′∈X pcrRevealsk(e
′,

〈Z,Z′〉) when = ⊥ and when �= ⊥, as functions of k + 1 with varying numbers of logical
CPU cores. (a) pcrQueryGenpk(X) (rsd < 0.10). (b) pcrRespGenpk(e,Y) (rsd < 0.10). (c)
arge′∈X pcrRevealsk(e

′, 〈Z,Z′〉) = ⊥ (rsd < 0.20). (d) arge′∈X pcrRevealsk(e
′, 〈Z,Z′〉) �= ⊥

(rsd < 0.65)

χ = 4) are encryptions of zeros. In our experiments for Fig. 6d, the element e′
for which pcrRevealsk(e

′, 〈Z,Z′〉) = true was randomly picked from X, and the
target immediately returned once e′ was identified. So the position of e′ in X has
a large impact on the computation time for each run, yielding an increased relative
standard deviation. Since the target on average performs approximately k+1

2 isEq
operations to identify e′ in this case, the cost is linear in the target’s set size, as
shown in Fig. 6d.

As shown in Fig. 7, the query (message m1) is of size linear in the target’s set
size, while the response (m2) size is constant (≈1KB). These communication and
storage costs are quite manageable. For example, even 100,000 monitoring requests
would require only about 32GB of storage at themonitor when k + 1 = 4096.

Performance Example To put these performance results in context, consider the
STRONTIUM credential harvesting attacks launched against over 200 organizations
from September 2019 to June 2020. Microsoft [33] reported that their most
aggressive attacks averaged 335 login attempts per hour per account for hours or
days at a time, and that organizations targeted in these attacks saw login attempts
on an average of 20% of their total accounts. So, if all of a target’s monitors had

210 K. C. Wang and M. K. Reiter

Fig. 7 Message size as a
function of R’s password set
size for a (rsd < 0.01)

been attacked simultaneously by STRONTIUM, then 20% of the target’s monitoring
requests would have been triggered to generate responses to the target. Suppose that
in the steady state, the target had maintained a total of x active monitoring requests
across all of itsmonitors.

We now consider two scenarios. First, if monitors would not have limited the
number of incorrect logins per account that induced monitoring responses, then
each triggered monitoring request would have induced an average of 335 monitoring
responses per hour. As such, the target would have averaged (20%)(335)(x) = 67x
monitoring responses per hour, or 67

3600x monitoring responses per second. Since in
our experiments, processing each monitoring response averaged ≈ 0.002s on a 2-
core computer (Fig. 6c), this computer could have sustained the processing load that
would have been induced on the target provided that x < 3600

(0.002)(67) ≈ 26,865
monitoring requests. Even if all x monitoring requests had been active at the same
monitor, this monitor (using the same type of computer) could have sustained
generating responses as long as x < 3600

(0.005)(67) ≈ 10,746, since generating
responses on a 2-core computer averaged ≈0.005s (Fig. 6b). If the x monitoring
requests had been spread across even only three monitors, however, the bottleneck
would have been the target.

The second scenario we consider is one in which monitors would have limited
the number of incorrect logins per account that induced a monitoring response,
as recommended in Sect. 5.4. If each monitor would have limited the number of
consecutive incorrect logins (and so monitoring responses) to 100 per account [19,
Section 5.2.2], then the target would have averaged (20%)(100)(x) = 20x
monitoring responses per hour and, using reasoning similar to that above, could
have absorbed the induced processing load provided that x < 3600

(0.002)(20) = 90,000
monitoring requests. And, in the extreme case that the same monitor held all x

monitoring requests, the monitor (using the same type of computer) could have
sustained generating responses for x < 3600

(0.005)(20) = 36,000 monitoring requests.

Using Amnesia to Detect Credential Database Breaches 211

7 Discussion

In this section we discuss various risks associated with Amnesia. The first is a
general risk associated with Amnesia, and the others are specific to the distributed
defenses against credential stuffing proposed in Sect. 5.

Password Reset Because detection happens in Amnesia when the legitimate user
logs into her account at the target after the attacker has, the attacker can try to
interfere with breach detection by changing the account password upon gaining
access to the account. The legitimate user will be locked out of her account and
so will presumably be forced to reset her password, but this will not serve as
unequivocal evidence of the breach; after all, users reset their passwords all the time,
due to simply forgetting them [22]. As such, target sites should utilize a backup
authentication method (e.g., a code sent to a contact email or phone for the account)
before enabling password reset.

Denial-of-Service Attacks There are mainly two potential ways of launching
denial-of-service (DoS) attacks against a target: one in which the attacker submits
login attempts at a high rate to a benign monitor to induce monitor responses to
the target, and one in which a malicious monitor directly sends responses to the
target at a high rate. The former DoS should be difficult for an attacker to perform
effectively, since it requires the attacker to know or predict where the target will
send monitoring requests and for what accounts. While we have not prescribed a
specific strategy by which a target deploys monitor requests, such a strategy would
need to be unpredictable; otherwise, rather than using this knowledge to conduct
DoS, the attacker could instead use it to sidestep the accounts at sites while they
are monitored, to avoid alerting the target to its breach. Another reason the former
DoS will likely be ineffective is that, as discussed in Sect. 5.4, a target that can
be breached repeatedly must rely on monitors to slow stuffing attacks to identify
a user’s reused password. These defenses will correspondingly help defend the
target from this type of DoS. The latter DoS against a target, i.e., by a malicious
monitor, would alert the target that this monitor is either conducting DoS or not
implementing these slowing defenses. In either case, the target can remove this
monitor from its list ofmonitors and drop responses from it.

As any site, a monitor should deploy state-of-the-art defenses against online
guessing attacks which, in turn, can benefit targets as discussed above and in
Sect. 5.4. The primary DoS risk introduced by Amnesia to monitors is the storage
overhead of monitoring requests, though as discussed in Sect. 6.5, this need not be
substantial. Moreover, the monitor has discretion to expire or discard monitoring
requests as needed, and so can manage these costs accordingly.

User Privacy Privacy risks associated with remote monitoring of a user account
include revealing to monitors the targets at which a user has an account and
revealing to a target when a user attempts to log into a monitor. To obscure
the former information, a target could send (ineffective) monitoring requests for
accounts that have not been registered locally, e.g., using inputsX to pcrQueryGen

212 K. C. Wang and M. K. Reiter

consisting of uniformly random values. The latter information will likely be
naturally obscured since failed login attempts to an account at a monitor due to
automated attacks (online guessing, credential stuffing, etc.) would trigger PCR
responses even if the account does not exist at the monitor and can outnumber
failed login attempts by a legitimate user even if it does [41]. In addition, amonitor
could further obscure user login activity on accounts for which it holds monitoring
requests by generating monitoring responses at arbitrary times using uniformly
random passwords.

Incentives to Monitor Accounts Given the overheads that monitoring requests
induce on monitors, it is natural to question whether monitors have adequate
incentives to perform monitoring for targets and, if so, at what rates. Moreover,
these questions are complicated by site-specific factors.

On the one hand, large disparities in the numbers of accounts at various sites that
might participate in a monitoring ecosystem could result in massive imbalances in
the monitoring loads induced on sites. For example, issuing monitoring requests at
a rate to induce expected steady-state monitoring of, say, even 10% of Gmail users’
accounts, each at only a single monitor, would impose ≈180 million monitoring
requests across monitors on an ongoing basis [37]. This could easily induce more
load onmonitors than they would find “worth it” for participating in this ecosystem.

On the other hand, dependencies among sites might justify substantial moni-
toring investment by the web community as a whole. For example, the benefit
to internet security in the large for detecting a breach of Google’s credential
database quickly is considerable: as one of the world’s largest email providers, it
is trusted for backup authentication and account recovery (via email challenges)
for numerous accounts at other sites. Indeed, as discussed above, some form of
backup authentication needs to be a gatekeeper to resetting account passwords at a
site who wishes to itself participate as target in our design, to ensure it will detect
its own breach reliably. Such a site might thus be willing to participate as amonitor
for numerous accounts of a target site on which many of its accounts depend for
backup authentication.

Balancing these considerations to produce a viable monitoring ecosystem is a
topic of ongoing research. We recognize, however, that establishing and sustaining
such an ecosystem might benefit from additional inducements, e.g., monetary
payments from targets to monitors or savings in the form of reduced insurance
premiums for sites that agree to monitor for one another.

8 Conclusion

In this paper, we have proposed Amnesia, a methodology for using honeywords
to detect the breach of a site without relying on any secret persistent state. Our
algorithm remains effective to detect breaches even against attackers who repeatedly
access the target site’s persistent storage, including any long-term cryptographic

Using Amnesia to Detect Credential Database Breaches 213

keys. We extended this algorithm to allow the target site to detect breaches when the
attacker tries to differentiate a (potentially reused) real password from honeywords
by stuffing them at other sites. We realized this remote detection capability using a
new private containment retrieval protocol with rounds, computation, communica-
tion, and storage costs that work well for our algorithm. We expect that, if deployed,
Amnesia could effectively shorten the time between credential database breaches
and their discovery.

Acknowledgments This research was supported in part by grant numbers 2040675 from the
National Science Foundation and W911NF-17-1-0370 from the Army Research Office. The views
and conclusions in this document are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied, of the National Science Foundation,
Army Research Office, or the U.S. Government. The U.S. Government is authorized to reproduce
and distribute reprints for Government purposes notwithstanding any copyright notices herein.

References

1. Akshima, Chang, D., Goel, A., Mishra, S., Sanadhya, S.K.: Generation of secure and reliable
honeywords, preventing false detection. IEEE Trans. Depend. Secure Comput. 16(5), 757–769
(2019).

2. Almeshekah, M.H., Gutierrez, C.N., Atallah, M.J., Spafford, E.H.: ErsatzPasswords: ending
password cracking and detecting password leakage. In: 31st Annual Computer Security
Applications Conference, pp. 311–320 (2015)

3. Bellare, M., Desai, A., Pointcheval, D., Rogaway, P.: Relations among notions of security for
public-key encryption schemes. In: Advances in Cryptology—CRYPTO 1998, volume 1462 of
Lecture Notes in Computer Science (1998)

4. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing efficient
protocols. In: 1st ACM Conference on Computer and Communications Security (1993)

5. Bojinov, H., Bursztein, E., Boyen, X., Boneh, D.: Kamouflage: Loss-resistant password
management. In: European Symposium on Research in Computer Security, volume 6345 of
Lecture Notes in Computer Science (2010)

6. Certicom Research: SEC 2: recommended elliptic curve domain parameters (2000). http://
www.secg.org/SEC2-Ver-1.0.pdf. Standards for Efficient Cryptography

7. Chatterjee, R., Athayle, A., Akhawe, D., Juels, A., Ristenpart, T.: pASSWORD tYPOS and
how to correct them securely. In: 37th IEEE Symposium on Security and Privacy, pp. 799–818
(2016)

8. Chen, H., Laine, K., Rindal, P.: Fast private set intersection from homomorphic encryption. In:
24nd ACM Conference on Computer and Communications Security (2017)

9. Cohn-Gordon, K., Cremers, C., Garratt, L.: On post-compromise security. In: 29th IEEE
Computer Security Foundations Symposium (2016)

10. Cramer, R., Gennaro, R., Schoenmakers, B.: A secure and optimally efficient multi-authority
election scheme. In: Advances in Cryptology—EUROCRYPT ’97, volume 1233 of Lecture
Notes in Computer Science, pp. 103–118 (1997)

11. Das, A., Bonneau, J., Caesar, M., Borisov, N., Wang, X.: The tangled web of password reuse.
In: ISOC Network and Distributed System Security Symposium (2014)

12. Davidson, A., Cid, C.: An efficient toolkit for computing private set operations. In: 22nd
Australasian Conference on Information Security and Privacy, volume 10343 of Lecture Notes
in Computer Science (2017)

32586 39137 a 32586 39137 a

http://www.secg.org/SEC2-Ver-1.0.pdf

214 K. C. Wang and M. K. Reiter

13. DeBlasio, J., Savage, S., Voelker, G.M., Snoeren, A.C.: Tripwire: Inferring internet site
compromise. In: 17th Internet Measurement Conference (2017)

14. Erguler, I.: Achieving flatness: selecting the honeywords from existing user passwords. IEEE
Trans. Parallel Distrib. Syst. 13(2), 284–295 (2015)

15. Everspaugh, A., Chaterjee, R., Scott, S., Juels, A., Ristenpart, T.: The Pythia PRF service. In:
24th USENIX Security Symposium, pp. 547–562 (2015)

16. Fan, B., Andersen, D.G., Kaminsky, M., Mitzenmacher, M.D.: Cuckoo filter: practically
better than Bloom. In: 10th ACM Conference on Emerging Networking Experiments and
Technologies, pp. 75–88 (2014)

17. Freedman, M.J., Ishai, Y., Pinkas, B., Reingold, O.: Keyword search and oblivious pseudoran-
dom functions. In: 2nd Theory of Cryptography Conference, volume 3378 of Lecture Notes in
Computer Science (2005)

18. Freeman, D., Jain, S., Dürmuth, M., Biggio, B., Giacinto, G.: Who are you? A statistical
approach to measuring user authenticity. In: 23rd ISOC Network and Distributed System
Security Symposium (2016)

19. Grassi, P.A., et al.: Digital Identity Guidelines: Authentication and Lifecycle Management
(2017). https://doi.org/10.6028/NIST.SP.800-63b. NIST Special Publication 800-63B.

20. Günther, C.G.: An identity-based key-exchange protocol. In: Advances in Cryptology—
EUROCRYPT ’89, volume 434 of Lecture Notes in Computer Science, pp. 29–37 (1989).

21. Herley, C., Florêncio, D.: Protecting financial institutions from brute-force attacks. In: 23rd
International Conference on Information Security, volume 278 of IFIP Advances in Informa-
tion and Communication Technology, pp. 681–685 (2008)

22. HYPR: New password study by HYPR finds 78% of people had to reset a password they forgot
in past 90 days (2019). https://www.hypr.com/hypr-password-study-findings/

23. IBM Security: Cost of a data breach report 2020 (2020). https://www.ibm.com/security/digital-
assets/cost-data-breach-report/

24. Jarecki, S., Krawczyk, H., Xu, J.: OPAQUE: an asymmetric PAKE protocol secure against
pre-computation attacks. In: Advances in Cryptology—EUROCRYPT 2018, volume 10822 of
Lecture Notes in Computer Science, pp. 456–486 (2018)

25. Juels, A., Rivest, R.L.: Honeywords: making password-cracking detectable. In: 20th ACM
Conference on Computer and Communications Security (2013)

26. Kales, D., Rechberger, C., Schneider, T., Senker, M., Weinert, C.: Mobile private contact
discovery at scale. In: 28th USENIX Security Symposium (2019)

27. Kiss, Á, Liu, J., Schneider, T., Asokan, N., Pinkas, B.: Private set intersection for unequal set
sizes with mobile applications. In: 17th Privacy Enhancing Technologies Symposium, vol. 4,
pp. 177–197 (2017)

28. Kontaxis, G., Athanasopoulos, E., Portokalidis, G., Keromytis, A.D.: SAuth: protecting
user accounts from password database leaks. In: 20th ACM Conference on Computer and
Communications Security (2013)

29. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic real-time
systems. In: International Conference on Computer Aided Verification, volume 6806 of Lecture
Notes in Computer Science (2011)

30. Lai, R.W.F., Egger, C., Schröder, D., Chow, S.S.M.: Phoenix: rebirth of a cryptographic
password-hardening service. In: 26th USENIX Security Symposium, pp. 899–916 (2017)

31. MacKenzie, P., Reiter, M.K.: Delegation of cryptographic servers for capture-resilient devices.
Distrib. Comput. 16(4), 307–327 (2003)

32. MacKenzie, P., Reiter, M.K.: Networked cryptographic devices resilient to capture. Interna-
tional J. Inform. Secur. 2(1), 1–20 (2003)

33. Microsoft Threat Intelligence Center: STRONTIUM: Detecting new patterns in credential
harvesting (2020). https://www.microsoft.com/security/blog/2020/09/10/strontium-detecting-
new-patters-credential-harvesting/

34. Nojima, R., Kadobayashi, Y.: Cryptographically secure Bloom-filters. Trans. Data Privacy 2(2),
131–139 (2009)

 2416 17405 a 2416 17405 a

 8270 25153 a 8270 25153
a

 20412 26260 a 20412 26260 a

https://www.ibm.com/security/digital-assets/cost-data-breach-report/

 6767
53934 a 6767 53934 a

https://www.microsoft.com/security/blog/2020/09/10/strontium-detecting-new-patters-credential-harvesting/

Using Amnesia to Detect Credential Database Breaches 215

35. Oechslin, P.: Making a faster cryptanalytic time-memory trade-off. In: Advances in
Cryptology—CRYPTO 2003, volume 2729 of Lecture Notes in Computer Science, pp. 617–
630 (2003)

36. Pearman, S., Thomas, J., Naeini, P.E., Habib, H., Bauer, L., Christin, N., Cranor, L.F., Egelman,
S., Forget, A.: Let’s go in for a closer look: Observing passwords in their natural habitat. In:
24th ACM Conference on Computer and Communications Security (2017)

37. Petrov, C.: 50 Gmail statistics to show how big it is in 2020 (2020). https://techjury.net/blog/
gmail-statistics/

38. Ramezanian, S., Meskanen, T., Naderpour, M., Junnila, V., Niemi, V.: Private membership test
protocol with low communication complexity. In: 11th International Conference on Network
and System Security, volume 10394 of Lecture Notes in Computer Science (2017)

39. Resende, A.C.D., Aranha, D.F.: Faster unbalanced private set intersection. In: 22nd Interna-
tional Conference on Financial Cryptography and Data Security, pp. 203–221 (2018)

40. Schneider, J., Fleischhacker, N., Schröder, D., Backes, M.: Efficient cryptographic password
hardening services from partially oblivious commitments. In: 23rd ACM Conference on
Computer and Communications Security, pp. 1192–1203 (2016)

41. Shape Security: 2018 credential spill report (2018). https://info.shapesecurity.com/rs/935-
ZAM-778/images/Shape_Credential_Spill_Report_2018.pdf

42. Thomas, K., Li, F., Zand, A., Barrett, J., Ranieri, J., Invernizzi, L., Markov, Y., Comanescu,
O., Eranti, V., Moscicki, A., Margolis, D., Paxson, V., Bursztein, E.: Data breaches, phishing,
or malware? Understanding the risks of stolen credentials. In: 24th ACM Conference on
Computer and Communications Security (2017)

43. Verizon: 2020 data breach investigations report (2020). https://enterprise.verizon.com/
resources/reports/dbir/

44. Wang, C., Jan, S.T.K., Hu, H., Bossart, D., Wang, G.: The next domino to fall: empirical
analysis of user passwords across online services. In: 8th ACM Conference on Data and
Application Security and Privacy (2018)

45. Wang, D., Cheng, H., Wang, P., Yan, J., Huang, X.: A security analysis of honeywords. In: 25th
ISOC Network and Distributed System Security Symposium (2018)

46. Wang, K.C., Reiter, M.K.: How to end password reuse on the web. In: 26th ISOC Network and
Distributed System Security Symposium (2019)

47. Wang, K.C., Reiter, M.K.: Detecting stuffing of a user’s credentials at her own accounts. In:
29th USENIX Security Symposium (2020)

48. Yue, C., Wang, H.: BogusBiter: a transparent protection against phishing attacks. ACM Trans.
Internet Technol. 10(2), 1–31 (2010)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

 25617 6335 a 25617 6335
a

https://techjury.net/blog/gmail-statistics/

 20571 17405 a 20571 17405 a

https://info.shapesecurity.com/rs/935-ZAM-778/images/Shape_Credential_Spill_Report_2018.pdf

 23350 24046 a 23350 24046 a

https://enterprise.verizon.com/resources/reports/dbir/

6756 41781 a 6756 41781 a

Deceiving ML-Based Friend-or-Foe
Identification for Executables

Keane Lucas, Mahmood Sharif, Lujo Bauer, Michael K. Reiter,
and Saurabh Shintre

1 Introduction

Deceiving an adversary who may, e.g., attempt to reconnoiter a system before
launching an attack, typically involves changing the system’s behavior such that
it deceives the attacker while still permitting the system to perform its intended
function. For example, if a system hosting a database is using deception to defend
against attack, it may employ measures that cause the attacker to believe that the
system is running a different version of a database or that it is running other services.
At the same time, legitimate clients of the system should continue to be able to
interact with the database.

This chapter is based on the following paper: Keane Lucas, Mahmood Sharif, Lujo Bauer,
Michael K. Reiter, and Saurabh Shintre. Malware makeover: Breaking ML-based static analysis
by modifying executable bytes. In Proceedings of the ACM Asia Conference on Computer and
Communications Security, 2021. https://doi.org/10.1145/3433210.3453086.

K. Lucas · L. Bauer (�)
Carnegie Mellon University, Pittsburgh, PA, USA
e-mail: keanelucas@cmu.edu; lbauer@cmu.edu

M. Sharif
Tel Aviv University and VMware, Tel Aviv, Israel
e-mail: mahmoods@vmware.com

M. K. Reiter
Duke University, Durham, NC, USA
e-mail: michael.reiter@duke.edu

S. Shintre
NortonLifeLock Research Group, Sunnyvale, CA, USA
e-mail: saurabh.shintre@nortonlifelock.com

© This is a U.S. government work and not under copyright protection in the U.S.;
foreign copyright protection may apply 2023
T. Bao et al. (eds.), Cyber Deception, Advances in Information Security 89,
https://doi.org/10.1007/978-3-031-16613-6_10

217

 31368 2385 a 31368 2385 a

https://doi.org/10.1145/3433210.3453086
https://doi.org/10.1145/3433210.3453086
https://doi.org/10.1145/3433210.3453086
https://doi.org/10.1145/3433210.3453086
https://doi.org/10.1145/3433210.3453086
https://doi.org/10.1145/3433210.3453086
https://doi.org/10.1145/3433210.3453086

 885 44115 a 885 44115 a

keanelucas@cmu.edu
keanelucas@cmu.edu

 9581 44115 a 9581 44115 a

lbauer@cmu.edu
lbauer@cmu.edu

 885 47989 a 885 47989 a

mahmoods@vmware.com
mahmoods@vmware.com

 885 51863 a 885 51863 a

michael.reiter@duke.edu
michael.reiter@duke.edu
michael.reiter@duke.edu

 885 55738 a 885 55738
a

saurabh.shintre@nortonlifelock.com
saurabh.shintre@nortonlifelock.com
saurabh.shintre@nortonlifelock.com
https://doi.org/10.1007/978-3-031-16613-6_10
https://doi.org/10.1007/978-3-031-16613-6_10
https://doi.org/10.1007/978-3-031-16613-6_10
https://doi.org/10.1007/978-3-031-16613-6_10
https://doi.org/10.1007/978-3-031-16613-6_10
https://doi.org/10.1007/978-3-031-16613-6_10
https://doi.org/10.1007/978-3-031-16613-6_10
https://doi.org/10.1007/978-3-031-16613-6_10
https://doi.org/10.1007/978-3-031-16613-6_10
https://doi.org/10.1007/978-3-031-16613-6_10
https://doi.org/10.1007/978-3-031-16613-6_10

218 K. Lucas et al.

We seek to create deceptive behaviors by leveraging evasion attacks against deep
neural networks (DNNs). In particular, we propose to model an attacker as a DNN
whose input is a trace of the observable behavior of a defended system. We then
attempt evasion attacks that modify the observed behavior of the defended system
such that the modified behavior obeys the above constraints: deceiving the attacker
(into taking some action other than the action that would compromise the defended
system), while remaining compatible with the original intended behavior of the
system.

A central challenge in developing strategies for deception is the difficulty of
evaluating them: attackers’ behavior is often not well enough understood to evaluate
how it would change in response to changes in the behavior of the system under
attack. Hence, we develop and evaluate techniques for implementing deception by
studying a proxy problem: malware detection.

Modern malware detectors, both academic (e.g., [4, 44]) and commercial
(e.g., [25, 90]), increasingly rely on machine learning (ML) to classify executables
as benign or malicious based on features such as imported libraries and API calls.
In the space of static malware detection, where an executable is classified prior to
its execution, recent efforts have proposed deep neural networks (DNNs) that detect
malware from binaries’ raw byte-level representation, with effectiveness similar to
that of detectors based on hand-crafted features selected through tedious manual
processing [54, 76].

As old techniques for obfuscating and packing malware (see Sect. 4) are ren-
dered ineffective in the face of static ML-based detection, recent advances in
adversarial ML might provide a new opening for attackers to bypass detectors.
Specifically, ML algorithms, including DNNs, have been shown vulnerable to adver-
sarial examples—modified inputs that resemble normal inputs but are intentionally
designed to be misclassified. For instance, adversarial examples can enable attackers
to impersonate users that are enrolled in face-recognition systems [85, 86], fool
street-sign recognition algorithms into misclassifying street signs [30], and trick
voice-controlled interfaces to misinterpret commands [21, 74, 83].

In the malware-detection domain, the attackers’ goal is to alter programs to
mislead ML-based malware detectors to misclassify malicious programs as benign
or vice versa. In doing so, attackers face a non-trivial constraint: in addition
to misleading the malware detectors, alterations to a program must not change
its functionality. For example, a keylogger altered to evade being detected as
malware should still carry out its intended function, including invoking necessary
APIs, accessing sensitive files, and exfiltrating information. This constraint is
arguably more challenging than ones imposed by other domains (e.g., evading
image recognition without making changes conspicuous to humans [30, 85, 86])
as it is less amenable to being encoded into traditional frameworks for generating
adversarial examples, and most changes to a program’s raw binary are likely to
break a program’s syntax or semantics. Prior work proposed attacks to generate
adversarial examples to fool static malware-detection DNNs [27, 49, 55, 72, 89]
by adding adversarially crafted byte values in program regions that do not affect
execution (e.g., at the end of programs or between sections). These attacks can be

Deceiving ML-Based Friend-or-Foe Identification for Executables 219

defended against by eliminating the added content before classification (e.g., [56]);
we confirm this empirically.

In contrast, we develop a new way to modify binaries to both retain their func-
tionality and mislead state-of-the-art DNN-based static malware detectors [54, 76].
We leverage binary-diversification tools—originally proposed to defend against
code-reuse attacks by transforming program binaries to create diverse variants [52,
71]—to evade malware-detection DNNs. While these tools preserve the functional-
ity of programs by design (e.g., functionality-preserving randomization), their naïve
application is insufficient to evade malware detection. We propose optimization
algorithms to guide the transformations of binaries to fool malware-detection
DNNs, both in settings where attackers have access to the DNNs’ parameters (i.e.,
white-box) and ones where they have no access (i.e., black-box). The algorithms
we propose can produce program variants that often fool DNNs in 100% of
evasion attempts and, surprisingly, even evade some commercial malware detectors
(likely over-reliant on ML-based static detection), in some cases with success
rates as high as 85%. Because our attacks transform functional parts of programs,
they are particularly difficult to defend against, especially when augmented with
complementary methods to further deter static or dynamic analysis (as our methods
alone should have no effect on dynamic analysis). We explore potential mitigations
to our attacks (e.g., by normalizing programs before classification [3, 18, 98]) but
identify their limitation in thwarting adaptive attackers.

In a nutshell, the contributions of our work are as follows:

• We repair and extend prior binary-diversification implementations to iteratively
yield candidate transformations. We also reconstruct them to be composable,
more capable, and resource-efficient. The code is available online.1

• We propose a novel functionality-preserving attack on DNNs for static malware
detection from raw bytes (Sect. 3). The attack precisely composes the updated
binary-diversification techniques, evades defenses against prior attacks, and
applies to both white- and black-box settings.

• We evaluate and demonstrate the effectiveness of the proposed attack in different
settings, including against commercial malware detectors (Sect. 4). We show
that our attack effectively undermines ML-based static analysis, a significant
component of state-of-the-art malware detection, while being robust to defenses
that can thwart prior attacks.

• We explore the effectiveness of prior and new defenses against our proposed
attack (Sect. 5). While some defenses seem promising against specific variants of
the attack, none explored neutralize our most effective attack, and they are likely
vulnerable to adaptive attackers.

1 https://github.com/pwwl/enhanced-binary-diversification.

https://github.com/pwwl/enhanced-binary-diversification
https://github.com/pwwl/enhanced-binary-diversification
https://github.com/pwwl/enhanced-binary-diversification
https://github.com/pwwl/enhanced-binary-diversification
https://github.com/pwwl/enhanced-binary-diversification
https://github.com/pwwl/enhanced-binary-diversification
https://github.com/pwwl/enhanced-binary-diversification

220 K. Lucas et al.

2 Background and Related Work

We first discuss previous work on DNNs that detect malware by examining program
binaries. We then discuss research on attacking and defending ML algorithms
generally, and malware detection specifically. Finally, we provide background on
binary-randomization methods, which serve as building blocks for our attacks.

2.1 DNNs for Static Malware Detection

We study attacks targeting two DNN architectures for detecting malware from
the raw bytes of Windows binaries (i.e., executables in Portable Executable
format) [54, 76]. The main appeal of these DNNs is that they achieve state-of-the-
art performance using automatically learned features, instead of manually crafted
features that require tedious human effort (e.g., [4, 43, 50]). Due to their desirable
properties, computer-security companies use DNNs similar to the ones we study
(i.e., ones that operate on raw bytes and use a convolution architectures) for malware
detection [24].

The DNNs proposed by prior work follow standard convolutional architectures
similar to the ones used for image classification [54, 76]. Yet, in contrast to image
classifiers that classify continuous inputs, malware-detection DNNs classify discrete
inputs—byte values of binaries. To this end, the DNNs were designed with initial
embedding layers that map each byte in the input to a vector in .R

8. After the
embedding, standard convolutional and non-linear operations are performed by
subsequent layers.

2.2 Attacking and Defending ML Algorithms

Attacks on Image Classification Adversarial examples—inputs that are minimally
perturbed to fool ML algorithms—have emerged as challenge to ML. Most prior
attacks (e.g., [9, 11, 14, 33, 70, 91]) focused on DNNs for image classification,
and on finding adversarial perturbations that have small Lp-norm (p typically
.∈ {0, 2,∞}) that lead to misclassification when added to input images. By limiting
perturbations to small Lp-norms, attacks aim to ensure that the perturbations are
imperceptible to humans. Attacks are often formalized as optimization processes;
e.g., Carlini and Wagner [14] proposed the following formulation for finding
adversarial perturbations that target a class .ct and have small L2-norms:

. arg min
r

Losscw(x + r, ct) + κ · ||r||2

Deceiving ML-Based Friend-or-Foe Identification for Executables 221

where x is the original image, r is the perturbation, and .κ is a parameter to tune the
L2-norm of the perturbation. .Losscw is a function that, when minimized, leads .x + r

to be (mis)classified as .ct . It is roughly defined as:

.Losscw(x + r, ct) = max
c �=ct

{Lc(x + r)} − Lct (x + r)

where .Lc is the output for class c at the logits of the DNN—the output of the one-
before-last layer. Our attacks use .Losscw to mislead the malware-detection DNNs.

Attacks on Static Malware Detection Modern malware-detection systems often
leverage both dynamic and static analyses to determine maliciousness [8, 25, 44, 90,
93]. While in most cases an attacker would hence need to adopt countermeasures
against both of these types of analyses, in other situations, such as potential attacks
on end-user systems protected predominantly through static analysis based anti-
virus detectors [20, 95], defeating a static malware detector could be sufficient for
an attacker to achieve their goals. Even when a combination of static and dynamic
analyses is used for detecting malware, fooling static analysis is necessary for an
attack to succeed. Here we focus on attacks that target ML-based static analyzers
for detecting malware.

Multiple attacks were proposed to evade ML-based malware classifiers while
preserving the malware’s functionality. Some (e.g., [26, 88, 97, 102]) tweak malware
to mimic benign files (e.g., adding benign code-snippets to malicious PDF files).
Others (e.g., [1, 27, 35, 41, 49, 55, 72, 89]) tweak malware using gradient-based
optimizations or generative methods (e.g., to find which APIs to import). Still others
combine mimicry and gradient-based optimizations [79].

Differently from some prior work (e.g., [1, 79, 97]) that studied attacks against
dynamic ML-based malware detectors, we explore attacks that target DNNs for
malware detection from raw bytes (i.e., static detection methods). Furthermore,
the attacks we explore do not introduce adversarially crafted bytes to unreachable
regions of the binaries [49, 55, 89] (which may be possible to detect and sanitize
statically, see Sect. 4.4), or by mangling bytes in the header of binaries [27]
(which can be stripped before classification [78]). Instead, our attacks transform
actual instructions of binaries in a functionality-preserving manner to achieve
misclassification.

More traditionally, attackers use various obfuscation techniques to evade mal-
ware detection. Packing [12, 80, 92, 94]—compressing or encrypting binaries’ code
and data, and then uncompressing or decrypting them at run time—is commonly
used to hide malicious content from static detection methods. As we explain later
(Sect. 3.1) we mostly consider unpacked binaries in this work, as is typical for
static analysis [12, 54]. Attackers also obfuscate binaries by substituting instructions
or altering their control-flow graphs [16, 17, 45, 92]. We demonstrate that such
obfuscation methods do not fool malware-detection DNNs when applied naïvely
(see Sect. 4.3). To address this, our attacks guide the transformation of binaries via
stochastic optimization techniques to mislead malware detection.

222 K. Lucas et al.

Pierazzi et al. formalized the process of adversarial example generation in the
problem space and used their formalization to produce malicious Android apps that
evade detection [73]. Our attack fits the most challenging setting they describe,
where mapping the problem space to features space is non-invertible and non-
differentiable.

Most closely related to our work is the recent work on misleading ML algorithms
for authorship attribution [65, 75]. Meng et al. proposed an attack to mislead
authorship attribution at the binary level [65]. Unlike the attacks we propose, Meng
et al. leverage weaknesses in feature extraction and modify debug information
and non-loadable sections to fool the ML models. Furthermore, their method
leaves a conspicuous footprint that the binary was modified (e.g., by introducing
multiple data and code sections to the binaries). While this is potentially acceptable
for evading author identification, it may raise suspicion when evading malware
detection. Quiring et al. recently proposed an attack to mislead authorship attribution
from source code [75]. In a similar spirit to our work, their attack leverages an
optimization algorithm to guide code transformations that change syntactic and
lexical features of the code (e.g., switching between printf and cout) to mislead
ML algorithms for authorship attribution.

Defending ML Algorithms Researchers are actively seeking ways to defend against
adversarial examples. One line of work, called adversarial training, aims to train
robust models largely by augmenting the training data with correctly labeled adver-
sarial examples [33, 46, 47, 57, 62, 91]. Another line of work proposes algorithms to
train certifiably (i.e., provably) robust defenses against certain attacks [22, 51, 60, 67,
103], though these defenses are limited to specific types of perturbations (e.g., ones
with small L2- or L∞-norms). Moreover, they often do not scale to large models
that are trained on large datasets. As we show in Sect. 5, amongst other limitations,
these defenses would also be too expensive to practically mitigate our attacks.
Some defenses suggest that certain input transformations (e.g., quantization) can
“undo” adversarial perturbations before classification [37, 61, 64, 81, 87, 100, 101].
In practice, however, it has been shown that attackers can adapt to circumvent such
defenses [5, 6]. Additionally, the input transformations that have been explored
in the image-classification domain cannot be applied in the context of malware
detection. Prior work has also shown that attackers [13] can circumvent methods
for detecting the presence of attacks (e.g., [31, 34, 64, 66]). We expect that such
attackers can circumvent attempts to detect our attacks too.

Prior work proposed ML-based malware-classification methods designed to
be robust against evasion [28, 43]. However, these methods either have low
accuracy [43] or target linear classifiers [28], which are unsuitable for detecting
malware from raw bytes.

Fleshman et al. proposed to harden malware-detection DNNs by constraining
parameter weights in the last layer to non-negative values [32]. Their approach aims
to prevent attackers from introducing additional features to malware to decrease
its likelihood of being classified correctly. While this rationale holds for single-
layer neural networks (i.e., linear classifiers), DNNs with multiple layers constitute

Deceiving ML-Based Friend-or-Foe Identification for Executables 223

complex functions where feature addition at the input may correspond to feature
deletion in deep layers. As a result of the misalignment between the threat model
and the defense, we found that DNNs trained with this defense are as vulnerable to
prior attacks [55] as undefended DNNs.

2.3 Binary Rewriting and Randomization

Software diversification is an approach to produce diverse binary versions of
programs, all with the same functionality, to resist different kinds of attacks, such
as memory corruption, code injection, and code reuse [58]. Diversification can be
performed on source code, during compilation, or by rewriting and randomizing
programs’ binaries. In this work, we build on binary-level diversification techniques,
as they have wider applicability (e.g., self-spreading malware can use them to evade
detection without source-code access [68]). Nevertheless, we expect that this work
can be extended to work with different diversification methods.

Binary rewriting takes many forms (e.g., [38, 52, 53, 63, 71, 82, 99]). Certain
methods aim to speed up code via expensive search through the space of equivalent
programs [63, 82]. Other methods significantly increase binaries’ sizes, or leave con-
spicuous signs that rewriting took place [38, 99]. We build on binary-randomization
tools that have little-to-no effect on the size or run time of randomized binaries,
thus helping our attacks remain stealthy [52, 71]. We present these tools and our
extensions thereof in Sect. 3.2.

3 Technical Approach

Here we present the technical approach of our attack. Before delving into the details,
we initially describe the threat model.

3.1 Threat Model

We assume that the attacker has white-box or black-box access to DNNs for
malware detection that receive raw bytes of program binaries as input. In the white-
box setting, the attacker has access to the DNNs’ architectures and weights and can
efficiently compute the gradients of loss functions with respect to the DNNs’ input
via forward and backward passes. On the other hand, the attacker in the black-box
setting may only query the model with a binary and receive the probability estimate
that the binary is malicious.

The DNNs’ weights are fixed and cannot be controlled by attackers (e.g., by
poisoning the training data). The attackers use binary rewriting to manipulate

224 K. Lucas et al.

the raw bytes of binaries and cause misclassification while keeping functionality
intact. Namely, attackers aim mislead the DNNs while ensuring that the I/O
behavior of program and the order of syscalls remain the same after rewriting. In
certain practical settings (e.g., when both dynamic and static detection methods
are used [92]) evading static detection techniques as the DNNs we study may be
insufficient to evade the complete stack of detectors. Nonetheless, evading the static
detection techniques in such settings is necessary for evading detection overall. In
Sect. 4.6, we show that our attacks can evade commercial detectors, some of which
may be using multiple detection methods.

Attacks may seek to cause malware to be misclassified as benign or benign bina-
ries to be misclassified as malware. The former may cause malware to circumvent
defenses and be executed on a victim’s machine. The latter induces false positives,
which may lead users to turn off or ignore the defenses [39]. Our methods are
applicable to transform binaries in either direction, but we focus on transforming
malicious binaries in this chapter.

As is common for static malware detection [12, 54], we assume that the binaries
are unpacked. While adversaries may attempt to evade detection via packing, our
attack can act as an alternative or a complementary evasion technique (e.g., once
packing is undone). Such a technique is particularly useful as packer-detection
(e.g., [12]) and unpacking (e.g., [15]) techniques improve. In fact, we found that
packing with a popular packer increases the likelihood of detection for malicious
binaries (see Sect. 4.6), thus further motivating the need for complementary evasion
measures.

As is standard for ML-based malware detection from raw bytes in particular
(Sect. 2.1), and for classification of inputs from discrete domains in general
(e.g., [59]), we assume that the first layer of the DNN is an embedding layer. This
layer maps each discrete token from the input space to a vector of real numbers
via a function .E(·). When computing the DNN’s output .F(x) on an input binary x,
one first computes the embeddings and feeds them to the subsequent layers. Thus,
if we denote the composition of the layers following the embedding by .H(·), then
.F(x) = H(E(x)). While the DNNs we attack contain embedding layers, our attacks
conceptually apply to DNNs that do not contain such layers. Specifically, for a DNN
function .F(x) = �n−1(. . . �i+1(�i(. . . �0(x) . . .)) . . .) for which the errors can be
propagated back to the .(i + 1)th layer, the attack presented below can be executed
by defining .E(x) = �i(. . . �0(x) . . .).

3.2 Functionality-Preserving Attack

The attack we propose iteratively transforms a binary x of class y (y=0 for benign
binaries and y=1 for malware) until misclassification occurs or a maximum number
of iterations is reached. To keep the binary’s functionality intact, only functionality-
preserving transformations are used. In each iteration, the attack determines the
subset of transformations that can be safely used on each function in the binary. The

Deceiving ML-Based Friend-or-Foe Identification for Executables 225

attack then randomly selects a transformation from each function-specific subset and
enumerates candidate byte-level changes. Each candidate set of changes is mapped
to its corresponding gradient. The changes are only applied if this gradient has
positive cosine similarity with the target model’s loss gradient.

Algorithm 1: White-box attack
Input : F = H(E(·)), LF, x, y, niters
Output: x̂

1 i ← 0;
2 x̂ ← RandomizeAll(x);
3 while F(x̂) = y and i < niters do
4 for f ∈ x̂ do
5 ê ← E(x̂);

6 g ← ∂LF(x̂,y)

∂ê
;

7 o ← RandomTransformationType();
8 x̃ ← RandomizeFunction(x̂, f, o);
9 ẽ ← E(x̃);

10 δf = ẽf − êf ;
11 if gf · δf > 0 then
12 x̂ ← x̃;
13 end
14 end
15 i ← i + 1;
16 end
17 return x̂;

Algorithm 1 presents the pseudocode of the attack in the white-box setting. The
algorithm starts with a random initialization. This is manifested by transforming
all the functions in the binary in an undirected way. Namely, for each function in
the binary, a transformation type is selected at random from the set of available
transformations and applied to that function without consulting loss-gradient simi-
larity. When there are multiple ways to apply the transformation to the function, one
is chosen at random. The algorithm then proceeds to further transform the binary
using our gradient-guided method for up to .niters iterations.

Each iteration starts by computing the embedding of the binary to a vector
space, .ê, and the gradient, g, of the DNN’s loss function, .LF, with respect to the
embedding. Particularly, we use the .Losscw, presented in Sect. 2, as loss function.
Because the true value of g is affected by any committed function change and
could be unreliable after transforming many preceding functions in large files, it
is recalculated prior to transforming each function (lines 5–6).

Ideally, to move the binary closer to misclassification, we would manipulate
the binary so that the difference of its embedding from .ê + αg (for some scaling
factor .α) is minimized (see prior work for examples [49, 55]). However, if applied
naively, such manipulation would likely cause the binary to be ill-formed or change
its functionality. Instead, we transform the binary via functionality-preserving

226 K. Lucas et al.

transformations. As the transformations are stochastic and may have many possible
outcomes (in some cases, more than can be feasibly enumerated), we cannot
precisely estimate their impact on the binary a priori. Therefore, we implement
the transformation of each function, f , as the acceptance or denial of candidate
functionality-preserving transformations we iteratively generate throughout the
function, where we apply a transformation only if it shifts the embedding in a
direction similar to g (lines 5–13). More concretely, if .gf is the gradient with respect
to the embedding of the bytes corresponding to f , and .δf is the difference between
the embedding of f ’s bytes after the attempted transformation and its bytes before,
then each small candidate transformation is applied only if the cosine similarity (or,
equivalently, the dot product) between .gf and .δf is positive. Other optimization
methods (e.g., genetic programming [102]) and similarity measures (e.g., similarity
in the Euclidean space) that we tested did not perform as well.

If the input was continuous, it would be possible to perform the same attack in a
black-box setting after estimating the gradients by querying the model (e.g., [42]). In
our case, however, it is not possible to estimate the gradients of the loss with respect
to the input, as the input is discrete. Therefore, the black-box attack we propose
follows a general hill-climbing approach (e.g., [88]) rather than gradient ascent.
The black-box attack is conceptually similar to the white-box one, and differs only
in the method of checking whether to apply attempted transformations: Whereas
the white-box attack uses gradient-related information to decide whether to apply a
transformation, the black-box attack queries the model after attempting to transform
a function and accepts the transformation only if the probability of the target class
increases.

Transformation Types We consider two families of transformation types [52, 71].
As the first family, we adopt and extend transformation types proposed for in-place
randomization (IPR) [71]. Given a binary to randomize, Pappas et al. proposed
to disassemble it and identify functions and basic blocks, statically perform four
types of transformations that preserve functionality, and then update the binary
accordingly from the modified assembly. The four transformation types are: (1)
replacing instructions with equivalent ones of the same length (e.g., sub eax,4
.→ add eax,-4); (2) reassigning registers within functions or sets of basic
blocks (e.g., swapping all instances of ebx and ecx) if this does not affect code
that follows; (3) reordering instructions using a dependence graph to ensure that
no instruction appears before one it depends on; and (4) altering the order in
which register values are pushed to and popped from the stack to preserve them
across function calls. To maintain the semantics of the code, the disassembly and
transformations are performed conservatively (e.g., speculative disassembly, which
is likely to misidentify code, is avoided). IPR does not alter binaries’ sizes and
has no measurable effect on their run time [71]. Figure 1 shows examples of
transforming code via IPR.

The original implementation of Pappas et al. was unable to produce the majority
of functionally equivalent binary variants that should be achievable under the
four transformation types. Thus, we extended and improved the implementation

Deceiving ML-Based Friend-or-Foe Identification for Executables 227

Fig. 1 An illustration of IPR. We show how the original code (a) changes after replacing
instructions with equivalent ones (b), reassigning registers (c), reordering instructions (d), and
changing the order of instructions that preserve register values (e). We provide the hex encoding of
each instruction to its right. The affected instructions are boldfaced and colored in red

in various ways. First, we enabled the transformations to compose: unlike Pappas
et al.’s implementation, our implementation allows us to iteratively apply different
transformation types to the same function. Second, we apply transformations more
conservatively to ensure that the functionality of the binaries is preserved (e.g., by
not replacing add and sub instructions if they are followed by instructions that read
the flags register). Third, compared to the previous implementation, ours handles a
larger number of instructions and function-calling conventions. In particular, our
implementation can rewrite binaries containing additional instructions (e.g., shrd,
shld, ccmove) and less common calling conventions (e.g., nonstandard returns
via increment of esp followed by a jmp instruction). Last, we fixed significant
bugs in the original implementation. These bugs include incorrect checks for writes
to memory after reads, as well as memory leaks which required routine experiment
restarts.

The second family of transformation types that we build on is based on
code displacement (Disp) [52]. Similarly to IPR, Disp begins by conservatively
disassembling the binary. The original idea of Disp is to break potential gadgets
that can be leveraged by code-reuse attacks by moving code to a new executable
section. The original code to be displaced has to be at least five bytes in size so
that it can be replaced with a jmp instruction that passes control to the displaced
code. If the displaced code contains more than five bytes, the bytes after the jmp are
replaced with trap instructions that terminate the program; these would be executed
if a code-reuse attack is attempted. In addition, another jmp instruction is appended
to the displaced code to pass control back to the instruction that should follow. Any
displaced instruction that uses an address relative to the instruction pointer (i.e.,
IP) register is also updated to reflect the new address after displacement. Disp has
a minor effect on binaries’ sizes (.∼2% increase on average) and causes a small
amount of run-time overhead (.<1% on average) [52].

We extend Disp in two main ways. First, we allow it to displace any set of
consecutive instructions within a basic block, not only ones that belong to gadgets.
Second, instead of replacing the original instructions with traps, we replace them
with semantic nops—sets of instructions that cumulatively do not affect the memory

228 K. Lucas et al.

Fig. 2 A context-free grammar for generating semantic nops. .S is the starting symbol; .� the empty
string; arth indicates an arithmetic operation (specifically, add, sub, adc, or sbb); invarth
indicates its inverse; logic indicates a logical operation (specifically, and, or, or xor); and r
and v indicate a register and a randomly chosen integer, respectively

or register values and have no side effects [17]. These semantic nops get jumped to
immediately after the displaced code is done executing.

While nops can be defined atomically (e.g., by a nop instruction), initial failures
to mislead malware detection indicated that a rich semantic nop language is needed
for successful attacks. Such a language enables the attack to search through a large
set of functionally equivalent programs to evade DNNs. Therefore, we developed a
context-free grammar to create diverse semantic nops (see Fig. 2). At a high level,
a semantic nop is an atomic instruction; or an invertible instruction that is followed
by a semantic nop and then by the inverse instruction (e.g., push eax followed by
a semantic nop and then by pop eax); or two consecutive semantic nops. When
the flags register’s value is saved (i.e., between pushfd and popfd instructions), a
semantic nop may contain instructions that affect flags (e.g., add and then subtract a
value from a register); and when a register’s value is saved (i.e., between push
r and pop r), a semantic nop may contain instructions that affect the register
(e.g., decrement it by a random value). Using the grammar for generating semantic
nops, for example, one may generate a semantic nop that stores the flags and ebx
registers on the stack (pushfd; push ebx), performs an operation that might
affect both registers (e.g., add ebx, 0xff), and then restores the registers (pop
ebx; popfd).

When using Disp, our attacks start by displacing code up to a certain budget, to
ensure that the resulting binary’s size does not increase above a threshold (e.g., 1%
above the original size). We divide the budget (expressed as the number of bytes
to be displaced) by the number of functions in the binary and attempt to displace
exactly that number of bytes per function. If multiple options exist for what code in
a function to displace, we choose at random. If a function does not contain enough
code to displace, then we attach semantic nops after the displaced code to meet
the per-function budget. In the rare case that the function does not have any basic

Deceiving ML-Based Friend-or-Foe Identification for Executables 229

Fig. 3 An example of
displacement. The two
instructions staring at address
0x4587 in the original code
(a) are displaced to starting
address 0x4800. The
original instructions are
replaced with a jmp
instruction and a semantic
nop (see (b)). To consume the
displacement budget,
semantic nops are added
immediately after the
displaced instructions and
just before the jmp that
passes the control back to the
original code. Semantic nops
are shown in boldface and red

block larger than five bytes, we skip that function. Figure 3 illustrates an example
of displacement where semantic nops are inserted to replace original code as well
as after displaced code, to consume the budget. Then, in each iteration of modifying
the binary to cause it to be misclassified, new semantic nops are chosen at random
and used to replace the previously inserted semantic nops if that moves the binary
closer to misclassification.

Some of the semantic nops contain integer values that can be set arbitrarily (e.g.,
see line 12 of Fig. 2). In a white-box setting, the bytes of the binary that correspond
to these values can be set to perturb the embedding in the direction that is most
similar to the gradient. Namely, if an integer value in the semantic nop corresponds
to the ith byte in the binary, we set this ith byte to .b ∈ {0, . . . , 255} such that the
cosine similarity between .E(b)−E(x̂i) and .gi is maximized. This process is repeated
each time a semantic nop is drawn to replace previous semantic nops in white-box
attacks.

Known methods [18] for detecting and removing semantic nops from binaries
might appear viable for defending against Disp-based attacks. However, as we
discuss in Sect. 5, attackers can leverage various techniques to evade semantic-nop
detection and removal.

Limitations Our implementation leaves room for improvement. For instance, it does
not displace code that has been displaced in earlier iterations. A better implementa-
tion might apply displacements recursively. Furthermore, the composability of IPR

230 K. Lucas et al.

and Disp transformations could be improved. In particular, when applying both Disp
and IPR transformations to a binary, both types of transformations affect the original
instructions of the binary. However, IPR does not affect the semantic nops that are
introduced by Disp. Despite room for improvement, our implementation is already
sufficient to generate successful attacks (see below).

4 Evaluation

In this section, we comprehensively evaluate our attack. We first detail the DNNs
and data used for evaluation. We then show that naïve, random transformations that
are not guided via optimization do not lead to misclassification. Subsequently, we
evaluate variants of our attack in the white- and black-box setting and compare with
prior work. We then evaluate our attack against commercial anti-viruses and close
the section with experiments to validate that the attacks preserve functionality.

4.1 Datasets and Malware-Detection DNNs

4.1.1 Dataset Composition

Our dataset, VTFeed, contains raw binaries of malware samples targeting Windows
machines. As such, the binaries adhere to the Portable Executable format (PE; the
standard format for .dll and .exe files) [48]. Overall, we use significantly more
samples than similar prominent prior work (e.g., [4, 50]).

VTFeed was collected by sampling the VirusTotal feed for PE binaries, represent-
ing binaries encountered in practice by anti-virus vendors. Collection took around
two weeks and was restricted to binaries first seen in 2020, to ensure recency, and
smaller than 5 MB. Following prior work [2], binaries were filtered and labeled
as benign (resp., malicious) if they were classified as malicious by 0 (resp., over
40) anti-virus vendors as aggregated by VirusTotal. The dataset contains 278,316
binaries with a roughly even distribution between benign and malicious binaries.
We sampled training, test, and validation sets at a ratio of 80%, 10%, and 10%,
respectively. Exact numbers can be seen in Table 1.

Table 1 The number of
benign and malicious binaries
used to train, validate, and
test the DNNs

VTFeed Train Val. Test

Benign 111,258 13,961 13,926

Malicious 111,395 13,870 13,906

Deceiving ML-Based Friend-or-Foe Identification for Executables 231

4.1.2 DNN Training

Using the malicious and benign samples, we trained two malware-detection DNNs.
All DNNs receive binaries’ raw bytes as inputs and output the probability that the
binaries are malicious. The first DNN (henceforth, AvastNet), proposed by Krčál
et al. [54], receives inputs up to 512 KB in size. The second DNN (henceforth,
MalConv), proposed by Raff et al. [76], receives inputs up to 2 MB in size. Except
for the batch size (set to 32 due to memory limitations), we used the same training
parameters reported in prior work. When using binaries for training, we excluded
their headers so the DNNs would not rely on header values, which are easily
manipulable, for classification [27].

Each DNN achieves test accuracy of about 99% (see Table 2). Even when
restricting the false positive rates (FPRs) conservatively to 0.1% (as is often done
by anti-virus vendors [54]), the true positive rates (TPRs) remain as high as 94–
96% (i.e., 94–96% of malicious binaries are detected). These results are superior
to those reported in the original papers both for classification from raw bytes and
from manually crafted features [54, 76]. This is likely because VTFeed was sampled
over a narrow time span, and expect the performance would slightly decrease if we
increased the diversity of the dataset.

In addition to the two DNNs that we trained, we evaluated our attacks using a
publicly available DNN (henceforth, Endgame) trained by Anderson and Roth [2].
Endgame has a similar architecture to MalConv. The salient differences are that: (1)
Endgame’s input dimensionality is 1 MB (compared to 2 MB for MalConv); and (2)
Endgame uses the PE header for classification. On a dataset curated by a computer-
security company, Endgame achieved about 92% TPR when the FPR was restricted
to 0.1% [2].

To evaluate attacks against the DNNs, we selected binaries according to three
criteria. First, the binaries had to be unpacked. We used standard packer detectors,
Packerid [84] and Yara [96], and deemed binaries as unpacked only if no detector
exhibited a positive detection. This method is similar to the one followed by Biondi
et al. [12].2 We also filtered out binaries labeled as packed in their VirusTotal
metadata. While the data used to train and test the DNNs included packed binaries,
the high accuracy of the DNNs on the test samples suggests that the DNNs’
performance was not impacted by (lack of) packing. Second, the binaries had to
be classified correctly and with high confidence by the DNNs that we trained. In

Table 2 The DNNs’
accuracy and the TPR at the
operating point where the
FPR equals 0.1%

Accuracy TPR @

Train Val. Test 0.1% FPR

AvastNet 99.89% 98.59% 98.60% 94.78%

MalConv 99.97% 98.67% 98.53% 96.08%

2 Biondi et al. used three packer-detection tools instead of two. Unfortunately, we were unable to
get access to one of the proprietary tools.

232 K. Lucas et al.

particular, malicious binaries had to be classified as malicious and the estimated
probability that they are malicious had to be above the threshold where the FPR
is 0.1%. Consequently, our evaluation of the attacks’ success is conservative: the
attacks would be more successful for binaries that are initially classified correctly,
but not with high confidence. Third, the binaries’ sizes had to be smaller than the
DNNs’ input dimensionality. We further restricted the binaries’ sizes to be smaller
than smallest input dimensionality of our DNNs (AvastNet at 512 KB). While the
DNNs can classify binaries whose size is larger than the input dimensionality (as
can be seen from the high classification accuracy on the validation and test sets), we
avoided large binaries as a means to prevent evasion by displacing malicious code
outside the input range of the DNNs. Using these criteria, we selected 100 malicious
binaries from the test set to evaluate the attacks against each of the three DNNs.

The total number of samples we collected is comparable to that used in prior
work on evading malware detection [49, 55, 88, 89].

4.2 Attack-Success Criteria

We executed the attacks for up to 200 iterations, stopping early if the binaries
were misclassified at the operating point where the FPR equals 0.1%. For malicious
binaries, this meant that they were misclassified as benign with a probability higher
than a model-specific threshold set to achieve 0.1% FPR. This follows the threshold
typically used by anti-virus vendors (e.g., [54]). We also found that attack success
on the same binary, given identical experiment parameters, was often stochastic.
Therefore, we repeated each attack 10 times to get a reliable measure of attack
success.

We compared the overall success of attacks in two ways: by the percentage of
binaries that were misclassified in at least 1 of the 10 repeated attacks on them
(coverage); and the overall percentage of attacks that were successful across all
attacked binaries (potency). Coverageis a measure of what percentage of binaries
our attack can be successful on whereas potency is a measure of the how often a
single attack trial succeeds. As a result of this definition, coverage will always be
higher than potency.

4.3 Randomly Applied Transformations

We first evaluated whether naïvely transforming binaries at random would lead to
evading the DNNs. For each binary that we used to evaluate the attacks we created
200 variants using the IPR and Disp transformations and classified them using the
DNNs. We transformed the binaries sequentially and at random. Namely, starting
from the original variant, we created the next variant by transforming every function
using a randomly picked transformation type that was applied at random. If any of

Deceiving ML-Based Friend-or-Foe Identification for Executables 233

the variants were misclassified by a DNN given the 1% FPR threshold, we would
consider the evasion attempt successful. We set Disp to increase binaries’ sizes
by 5% (i.e., the displacement budget was set to 5% of the binary’s original size).
We selected 200 and 5% as parameters for this experiment because our attacks
were executed for 200 iterations at most and achieved almost perfect success when
increasing binaries’ sizes by 5% (see below). This technique was most effective
when attempting to misclassify malware as benign on Endgame, where four binaries
evaded detection. However, for all other attempts to evade, no more than three
binaries were successful.

Hence, we conclude the DNNs are robust to naïve transformations and more
principled approaches are needed to mislead them.

4.4 White-Box Attacks vs. DNNs

In the white-box setting, we evaluated seven variants of our attack. One variant, to
which we refer to as IPR, relies on the IPR transformations only. Three variants,
Disp-1, Disp-3, and Disp-5, rely on the Disp transformations only, where the
numbers indicate the displacement budget as a percentage of the binaries’ sizes (e.g.,
Disp-1 increases binaries’ sizes by 1%). The last three attack variants, IPR+Disp-
{1,3,5}, use the IPR and Disp transformations combined.

We set 5% as the maximum displacement budget and 200 as the maximum
number of iterations, as the attacks were almost always successful with these
parameters.

The results of the experiments are provided in Fig. 4 where the lighter part of the
bar represents potency and the darker part represents coverage. One can immediately
see that attacks using the Disp transformations were more successful than IPR.
While showing some effectiveness in evading Endgame, IPR at best achieves a
coverage of 52% while Disp of all budgets on all three models are able to cause
at least 92% of binaries to be misclassified.

Moreover, Disp-5 achieved misclassification on all binaries except one on
AvastNet. As one would expect, attacks with higher displacement budgets were
more successful than attacks with lower displacement budgets. However, the main

Random IPR Disp-1 Disp-3 Disp-5 IPR+Disp-1 IPR+Disp-3 IPR+Disp-50
20
40
60
80

100

Bi
na

rie
s

m
is

cl
as

si
fie

d
(%

)

Avast
Endgame
MalConv

Fig. 4 Attack-success rates in the white-box setting. We show potency as the lighter bars and
coverage as the darker bars

234 K. Lucas et al.

difference we see is in the potency of the attack, whereas the coverage only differs
by a single missed binary between Disp-3 and Disp-5.

In addition to achieving higher coverage and potency, another advantage of
Disp-based attacks over IPR-based ones is their time efficiency. While displacing
instructions at random from within a function with n instructions has .O(n) time
complexity, certain IPR transformations have .O(n2) time complexity. For example,
reordering instructions requires building a dependence graph and extracting instruc-
tions one after the other. If every instruction in a function depends on previous ones,
this process takes .O(n2) time. In practice, we found that IPR-based, Disp-based, and
IPR+Disp-based attacks took 4424, 283, and 961 s on average, respectively.3

Combining IPR with Disp achieved noticeably better results in fewer iterations
than respective Disp-only attacks when the budget for Disp is low. For example,
IPR+Disp-1 had 11% higher potency than Disp-1 when misleading Endgame to
misclassify a malicious binary as benign (61% vs. 50% potency). Thus, in certain
situations, Disp and IPR can be combined to fool the DNNs while increasing
binaries’ sizes less than Disp alone.

For our most performant attack, IPR+Disp-5, we re-executed the attacks with
significantly more difficult success criteria. We changed the threshold for attack
success to MalConv and AvastNet’s FNR of 0.01%. Beating this threshold means
that a transformed binary must appear less malicious than the least malicious 0.1%
of malware in the dataset. For MalConv, our potency drops from 97% to 92%, while
coverage drops from 100% to 99%. For AvastNet, potency drops from 95% to 90%
and coverage from 100% to 95%. These results demonstrate our attack’s ability to
evade more cautious ML detectors, even though this threshold is unlikely to be used
as it would flag roughly a third of benign binaries as malware.

In Fig. 5, we averaged and plotted the classification output of the models and
the resultant misclassifications of the binaries over the iterations of each attack. As
shown, the majority of successful attacks that incorporate Disp succeeded in a single
iteration, with almost all successful attacks occurring within ten iterations. We also
examined the performance of the attacks as a function of the number of modifiable
functions in a binary. On average, 89% of functions in a binary were modifiable. As

0 100 101 102
0

25

50

75

100

%
 m

is
cl

as
si

fie
d

Random

0 100 101 102

IPR

0 100 101 102

Disp

0.01
0.03
0.05

0 100 101 102

IPR+Disp

0.01
0.03
0.05

Num iterations

Fig. 5 A contrasting view showing the potency over iteration for the white-box attacks

3 Times were computed on four machines: one with 2.2GHz AMD Opteron CPU and 128GB RAM,
one with 3.4GHz Intel-i7 CPU and 24GB RAM, one with 2.2Ghz AMD Ryzen 3900X and 64GB
RAM, and one with 2.7GHz Intel-i5 CPU and 24GB RAM.

Deceiving ML-Based Friend-or-Foe Identification for Executables 235

0 500
modifiable function count

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0 500
modifiable function count
0

20

40

60

80

100

tim
e

pe
r i

te
ra

tio
n

(s
)

0

50

100

150

200

nu
m

 it
er

at
io

ns

0 500
modifiable function count
0

20

40

60

80

100

tim
e

pe
r i

te
ra

tio
n

(s
)

0

50

100

150

200

nu
m

 it
er

at
io

ns

0 500
modifiable function count
0

20

40

60

80

100

tim
e

pe
r i

te
ra

tio
n

(s
)

0

50

100

150

200

su
cc

es
s

nu
m

 it
er

at
io

ns

Fig. 6 As the number of modifiable functions increased, the average number of iterations to
success decreased, while the time to execute an iteration increased. The lines in each plot are the
best fit degree-3 polynomials. (a) Success (all attacks). (b) Time (all attacks). (c) Time (IPR). (d)
Time (Disp)

expected, attacks were less likely to succeed when the binaries had few functions to
modify (Fig. 6a). Consistent with that finding, as the number of modifiable functions
(and number of functions overall) in a binary increased, the average number of
iterations required for an attack to succeed decreased (Figs. 6b–d). This trend held
across different types of attacks but was more pronounced for less successful attacks
(IPR) than more successful ones (Disp), as the vast majority of the latter completed
within a small number of iterations.

Finally, we compared the evasion success rates of our attack with a representative
prior attack proposed by Kreuk et al. [55]. To mislead DNNs, this attack appends
adversarially crafted bytes to binaries. These bytes are crafted via an iterative algo-
rithm that first computes the gradient .gi of the loss with respect to the embedding
.E(xi) of the binary .xi at the ith iteration, and then sets the adversarial bytes to
minimize the .L2 distance of the new embedding .E(xi+1) from .E(xi) + εsign(gi),
where .ε is a scaling parameter. We tested three variants of the attack which increase
the binaries’ sizes by 1%, 3%, and 5%. We used .Losscw as the loss function. As
with our attacks, we executed Kreuk et al.’s attacks for up to 200 iterations, stopping
sooner if misclassification occurred. We set .ε=1, as we empirically found it leads to
high evasion success.

The variants of Kreuk et al.’s attack achieved success rates comparable to our
attack. Kreuk-5 was almost always able to mislead the DNNs—it achieved 99% and
98% success rate when attempting to mislead Endgame and MalConv, respectively,
to misclassify malicious binaries, and 100% success rate in all other attempts.
Also similar to our attacks, the success rates increased as the attacks increased the
binaries’ sizes. However, as described in Appendix 1, their attack is easier to defend
against by sanitizing bytes (specifically, by masking with zeros) in sections that do
not contain instructions.

4.5 Black-Box Attacks vs. DNNs

As explained in Sect. 3, because the DNNs’ input is discrete, estimating gradient
information to mislead them in a black-box setting is not possible. So, the black-box

236 K. Lucas et al.

version of Algorithm 1 uses hill climbing to query the DNN after each attempted
transformation to decide whether to keep the transformation. Because querying
the DNNs after each attempted transformation significantly increased the run time
of the attacks (.∼30.× on a machine with GeForce GTX 980 GPU), we limited
our experiments to Disp transformations with a displacement budget of 5%. We
executed the attacks up to 200 iterations, stopped early if misclassification occurred,
and repeated them three times each to account for stochasticity.

The attacks were most successful against MalConv, achieving a coverage of 95%
and potency of 92%. AvastNet and Endgame were only slightly more robust with
attack coverages of 92% and 59% and potencies of 87% and 56%, respectively.
These results show our attack remains effective even in a black-box setting.

4.6 Commercial Anti-Viruses

To assess whether our attacks affect commercial anti-viruses, we tested the mali-
cious transformed binaries that were misclassified by the DNNs in the white-box
setting on the anti-viruses available via VirusTotal [19]—a service that aggregates
the results of 68 commercial anti-viruses. Since anti-viruses often rely in part on
static analysis, with increasing integration of ML, we expected that the malicious
binaries generated by our attacks would be detected by fewer anti-viruses than the
original binaries.

Due to contractual constraints, we were unable to perform this experiment
with our previously described dataset. Thus, we resorted to using binaries taken
from other sources. In this alternate dataset, we used 21,741 malicious binaries
belonging to seven malware families that were published by Microsoft as part
of a malware-classification competition [78]. We complemented these binaries
with 19,534 benign binaries collected by installing standard packages (browsers,
productivity tools, etc.) on a newly created 32-bit Windows 7 virtual machine.4 After
splitting the binaries for training (21,217), testing (9105), and validation (10,953),
we trained variants of MalConv and AvastNet that achieved 99.15% and 98.92%
test accuracy, respectively. Subsequently, we collected 95 malicious binaries from
VirusShare [77] that pertain to the seven malware families from the Microsoft
competition. We then transformed these malicious binaries using our white-box
attack to evade the DNNs we trained as well as Endgame, and tested how often
the transformed binaries were detected by anti-viruses on VirusTotal.

Original Binaries As a baseline, we first classified the original binaries using
the VirusTotal anti-viruses. As one would expect, all the malicious binaries were
detected by several anti-viruses. The median number of anti-viruses that detected
any particular malware binary as malicious was 55, out of 68 total anti-viruses.

4 Specifically, we used the Ninite and Chocolatey (https://ninite.com/ and https://chocolatey.org/)
package managers to install 179 packages.

https://ninite.com/
https://ninite.com/
https://ninite.com/
https://chocolatey.org/
https://chocolatey.org/
https://chocolatey.org/

Deceiving ML-Based Friend-or-Foe Identification for Executables 237

Random Transformations To further gauge the efficacy of our guided attack over
random diversification, we used commercial anti-viruses to classify binaries that
were transformed at random using the Disp and IPR transformations (as described
in Sect. 4.3). We found that certain anti-viruses were susceptible to such simple
evasion attempts, presumably due to using fragile detection mechanisms such as
signatures. The median number of anti-viruses that correctly detected the malicious
binaries decreased from 55 to 43.

Packing We tested whether anti-viruses were susceptible to evasion via packing.
We used UPX [69], one of the most popular packers [80], and packed binaries
using the highest compression ratios. Interestingly, packing malicious binaries was
counter-productive for evading anti-viruses. Packed malicious binaries were more
likely to be detected as malware—the median number of anti-viruses that correctly
detected malicious binaries increased from 55 for the original binaries to 59 after
packing.

Our Attacks Compared to the original malicious binaries and randomly transformed
ones, the malicious binaries transformed by our attacks were detected by fewer anti-
viruses. The median number of anti-viruses that correctly detected the malicious
binaries decreased from 55 for the original binaries and 42 for ones transformed at
random to 33–36, depending on the attack variant and the targeted DNN. According
to a Kruskal-Wallis test, this reduction is statistically significant (.p <0.01 after
Bonferroni correction). In other words, the malicious binaries that were transformed
by our attacks were detected by only 49%–53% of the VirusTotal anti-viruses in the
median case. Table 3 in Appendix 2 summarizes each attack variant’s effect on the
number of positive detections by anti-viruses.

Because our attack should not affect any dynamic analysis (due to the desired
attack property of functional invariance), these results indicate some anti-viruses
may be over-reliant on static analyses and/or ML. We also highlight these results
cannot only be attributed to breaking signature-based defenses, as the randomly
transformed binaries (which were transformed for an equal number of iterations)
would have been equally likely to evade anti-viruses as our attacks.

Furthermore, several anti-virus vendors that were misled by our attacks advertise
the use of ML detectors. Evading the ML detectors of those vendors was necessary
to mislead their anti-viruses. A glance at vendors’ websites showed that 15 of
the 68 vendors explicitly advertise relying on ML for malware detection. These
anti-viruses were especially susceptible to evasion by our attacks. Even more
concerning, a popular and highly credible anti-virus whose vendor claims to rely
on ML misclassified 85% of the malicious binaries produced by one of our attacks
as benign. Generally, malicious binaries that were produced by our attacks were
detected by a median number of 7–9 anti-viruses of the 15—down from 12 positive
detections for the original binaries. All in all, our results support that binaries that
were produced by our attacks were able to evade ML-based static detectors that are
used by anti-virus vendors.

238 K. Lucas et al.

4.7 Correctness

A key feature of our attacks is that they transform binaries to mislead DNNs while
preserving their functionality. We followed standard practices from the binary-
diversification literature [52, 53, 71] to ensure that the functionality of the binaries
was kept intact after being processed by our attacks. First, we transformed ten
different benign binaries (e.g., python.exe of Python version 2.7, and Cygwin’s5

less.exe and grep.exe) with our attacks and manually validated that they
functioned properly after being transformed. For example, we were still able to
search files with grep after the transformations. Second, we transformed the .exe
and .dll files of a stress-testing tool6 with our attacks and checked that the
tool’s tests passed after the transformations. Using stress-testing tools to evaluate
binary-transformation correctness is common, as such tools are expected to cover
most branches affected by the transformations. Third, and last, we also transformed
ten malware binaries and used the Cuckoo Sandbox [36]—a popular sandbox for
malware analysis—to check that their behavior remained the same. All ten binaries
attempted to access the same hosts, IP addresses, files, APIs, and registry keys
before and after being transformed.

5 Potential Mitigations

Our proposed attacks achieved high success rates at fooling DNNs for malware
detection in white-box and black-box settings. The attacks were also able to mislead
commercial anti-viruses, especially ones that leverage ML algorithms. To protect
users and their systems, it is important to develop mitigation measures to make
malware detection robust against evasion by our attacks. Our efforts to explore
mitigations, however, have met with limited success.

5.1 Prior Defenses

We considered several prior defenses to mitigate our attacks, but, unfortunately,
most showed little promise. For instance, adversarial training (e.g., [33, 57]) is
currently infeasible, as the attacks are computationally expensive. Depending on
the attack variant, it took an average of 283 to 4424 s to run an attack. As a result,
running just a single epoch of adversarial training would to take several weeks (using
our hardware configuration), as each iteration of training requires running an attack

5 https://www.cygwin.com/.
6 https://www.passmark.com/products/performancetest/.

https://www.cygwin.com/
https://www.cygwin.com/
https://www.cygwin.com/
https://www.cygwin.com/
https://www.passmark.com/products/performancetest/
https://www.passmark.com/products/performancetest/
https://www.passmark.com/products/performancetest/
https://www.passmark.com/products/performancetest/
https://www.passmark.com/products/performancetest/
https://www.passmark.com/products/performancetest/

Deceiving ML-Based Friend-or-Foe Identification for Executables 239

for every sample in the training batch. Moreover, while adversarial training might
increase the DNNs’ robustness against attackers using certain transformation types,
attackers using new transformation types may still succeed at evasion [29]. Defenses
that provide formal guarantees (e.g., [51, 67]) are even more computationally
expensive than adversarial training. Moreover, those defenses are restricted to
adversarial perturbations that, unlike the ones produced by our attacks, have small
L∞- and L2-norms. Prior defenses that transform the input before classification
(e.g., via quantization [101]) are designed mainly for images and do not directly
apply to binaries. Lastly, signature-based malware detection would not be effective,
as our attacks are stochastic and produce different variants of the binaries after
different executions.

Differently from prior attacks on DNNs for malware detection [49, 55, 89], our
attacks do not merely append adversarially crafted bytes to binaries, or insert them
between sections. Such attacks may be defended against by detecting and sanitizing
the inserted bytes via static analysis methods (e.g., similarly to the proof of concept
shown in Sect. 4.4, or using other methods [56]). Instead, our attacks transform
binaries’ original code and extend binaries only by inserting instructions that are
executed at run time at various parts of the binaries. As a result, our attacks are
difficult to defend against via static or dynamic analyses methods (e.g., by detecting
and removing unreachable code), especially when augmented by measures to evade
these methods.

Binary normalization [3, 18, 98] is a defense that initially seemed viable for
defending against our attacks. The high-level idea of normalization is to employ
certain transformations to map binaries to a standard form and thus undo attackers’
evasion attempts before classifying the binaries as malicious or benign. For example,
Christodorescu et al. proposed a method to detect and remove semantic nops
from binaries before classification and showed that it improves the performance
of commercial anti-viruses [18]. To mitigate our Disp-based attacks, we considered
using the semantic nop detection and removal method followed by a method to
restore the displaced code to its original location. Unfortunately, we realized that
such a defense can be undermined using opaque predicates [23, 68]. Opaque
predicates are predicates whose value (w.l.g., assume true) is known a priori to the
attacker but is hard for the defender to deduce. Often, they are based on .NP-hard
problems [68]. Using opaque predicates, attackers can produce semantic nops that
include instructions that affect the memory and registers only if an opaque predicate
evaluates to false. Since opaque predicates are hard for defenders to deduce, the
defenders are likely to have to assume that the semantic nops impact the behavior of
the program. As a result, the semantic nops would survive the defenders’ detection
and removal attempts. As an alternative to opaque predicates, attackers can also use
evasive predicates—predicates that evaluate to true or false with an overwhelming
probability (e.g., checking if a randomly drawn 32-bit integer is equal to 0) [10]. In
this case, the binary will function properly the majority of the time and may function
differently or crash once every many executions.

The normalization methods proposed by prior work would not apply to the
transformations performed by our IPR-based attacks. Therefore, we explored

240 K. Lucas et al.

methods to normalize binaries to a standard form to undo the effects of IPR
before classification. We found that a normalization process that leverages the IPR
transformations to produce the form with the lowest lexicographic representation
(where the alphabet contains all possible 256 byte values) prevented IPR-based
attacks. Formally, if .[x] is the equivalence class of binaries that are functionally
equivalent to x and that can be produced via the IPR transformation types, then the
normalization process produces an output .norm(x) ∈ [x], such that, .norm(x) ≤ xi

for every .xi ∈ [x]. Appendix 3 presents an algorithm that computes the normalized
form of a binary when executed for a large number of iterations and approximates
it when executed for a few iterations. At a high level, the algorithm applies the IPR
transformations iteratively in an effort to reduce the lexicographic representation
after every iteration. We found that executing the algorithm for ten iterations
was sufficient to defend against IPR-based attacks. In particular, we executed the
normalization algorithm using the malicious and benign binaries produced by the
IPR-based attacks to fool Endgame in the white-box setting and found that the
success rates dropped to 3% and 0%, respectively, compared to 62% and 74% before
normalization. At the same time, the classification accuracy over the original bina-
ries was not affected by normalization. As our experiments in Sect. 4 have shown,
generating functionally equivalent variants of binaries via random transformations
results in correct classifications almost all of the time. Normalization of binaries
deterministically led to specific variants that were correctly classified with high
likelihood.

5.2 Masking Random Instructions

While normalization was useful for defending against IPR-based attacks, it cannot
mitigate the more pernicious Disp-based attacks that are augmented with opaque
or evasive predicates. Moreover, normalization has the general limitations that
attackers could use transformations that the normalization algorithm is not aware
of or could obfuscate code to inhibit normalization. Therefore, we explored
additional defensive measures. In particular, motivated by the fact that randomizing
binaries without the guidance of an optimization process is unlikely to lead to
misclassification, we explored whether masking instructions at random can mitigate
attacks while maintaining high performance on the original binaries. The defense
works by selecting a random subset of the bytes that pertain to instructions and
masking them with zeros (a commonly used value to pad sections in binaries). While
the masking is likely to result in an ill-formed binary that is unlikely to execute
properly (if at all), the masking only occurs before classification, which does not
require a functional binary. Depending on the classification result, one can decide
whether or not to execute the unmasked binary.

We tested the defense on binaries generated via the IPR+Disp-5 white-box attack
on Kaggle and found that it was effective at mitigating attacks. For example,
when masking 25% of the bytes pertaining to instructions, the success rates of

Deceiving ML-Based Friend-or-Foe Identification for Executables 241

the attack decreased from 83%–100% for malicious and benign binaries against
the three DNNs to 0%–20%, while the accuracy on the original samples was only
slightly affected (e.g., it became 94% for Endgame). Masking less than 25% of the
instructions’ bytes was not as effective at mitigating attacks, while masking more
than 25% led to a significant decrease in accuracy on the original samples.

5.3 Detecting Adversarial Examples

To prevent binaries transformed with our attacks (i.e., adversarial examples) from
fooling malware detection, defenders may attempt to deploy methods to detect them.
In cases of positive detections of adversarial examples, defenders may immediately
classify them as malicious (regardless of whether they were originally malicious
or benign). For example, because Disp-based attacks increase binaries’ sizes and
introduce additional jmp instructions, defenders may train statistical ML models
that use features such as binaries’ sizes and the ratio between jmp instructions and
other instructions to detect adversarial examples. While training relatively accurate
detection models may be feasible, we expect this task to be difficult, as the attacks
increase binaries’ sizes only slightly (1%–5%), and do not introduce many jmp
instructions (7% median increase for binaries transformed via Disp-5). Furthermore,
approaches for detecting adversarial examples are likely to be susceptible to evasion
attacks (e.g., by introducing instructions after opaque predicates to decrease the ratio
between jmp instructions and others). Last, another risk that defenders should take
into account is that the defense should be able to precisely distinguish between
adversarial examples and non-adversarial benign binaries that are transformed by
similar methods to mitigate code-reuse attacks [52, 71].

5.4 Takeaways

While masking a subset of the bytes that pertain to instructions led to better
performance on adversarial examples, it was still unable to prevent all evasion
attempts. Although the defense may raise the bar for attackers and make attacks
even more difficult if combined with a method to detect adversarial examples, these
defenses do not provide formal guarantees and so attackers may be able to adapt to
undermine them. For example, attackers may build on techniques for optimization
over expectations to generate binaries that would mislead the DNNs even when
masking a large number of instructions, in a similar manner to how attackers can
evade image-classification DNNs under varying lighting conditions and camera
angles [7, 30, 85, 86]. In fact, prior work has already demonstrated how defenses
without formal guarantees are often vulnerable to adaptive, more sophisticated,
attacks [6]. Thus, since there is no clear defense to prevent attacks against the
DNNs that we studied in this work, or even general methods to prevent attackers

242 K. Lucas et al.

from fooling ML models via arbitrary perturbations, we advocate for augmenting
malware-detection systems with methods that are not based on ML (e.g., ones using
templates to reason about the semantics of programs [17]), and against the use of
ML-only detection methods, as has become recently popular [25].

6 Conclusion

We develop techniques to defend systems through deception by studying the proxy
problem of malware detection; in particular, we develop evasion attacks on DNNs
for malware detection. Differently from prior work, the attacks do not merely insert
adversarially crafted bytes to mislead detection. Instead, guided by optimization
processes, our attacks transform the instructions of binaries to fool malware
detection while keeping functionality of the binaries intact. As a result, these attacks
are challenging to defend against. We conservatively evaluated different variants of
our attack against three DNNs under white-box and black-box settings and found
the attacks successful as often as 100% of the time. Moreover, we found that the
attacks pose a security risk to commercial anti-viruses, particularly ones using ML,
achieving evasion success rates of up to 85%. We explored several potential defenses
and found some to be promising. Nevertheless, adaptive adversaries remain a risk,
and we recommend the deployment of multiple detection algorithms, including ones
not based on ML, to raise the bar against such adversaries.

Acknowledgments We would like to thank Leyla Bilge, Sandeep Bhatkar, Yufei Han, and
Kevin Roundy for helpful discussions. This work was supported in part by the Multidisciplinary
University Research Initiative (MURI) Cyber Deception grant under ARO award W911NF-17-
1-0370; by NSF grants 1801391 and 2113345; by the National Security Agency under award
H9823018D0008; by gifts from Google and Nvidia, and from Lockheed Martin and NATO through
Carnegie Mellon CyLab; by a CyLab Presidential Fellowship and a NortonLifeLock Research
Group Fellowship; and by a DoD National Defense Science and Engineering Graduate fellowship.

Appendix 1: Comparison to Kreuk et al. and Success After
Sanitization

While Kreuk et al.’s attack achieved success rates comparable to ours, their attack
is easier to defend against. As a proof of concept, we implemented a sanitization
method to defend against the attack using our alternate dataset described in Sect. 4.6.
The method finds all the sections in a binary that do not contain instructions
(using the IDAPro disassembler [40]) and masks the sections’ content with zeros.
As Kreuk et al.’s attack does not add functional instructions to the binaries, the
defense masks the adversarial bytes that the attack introduces. Consequently, the
evasion success rates of the attack drop significantly. In fact, except for when

Deceiving ML-Based Friend-or-Foe Identification for Executables 243

attempting to mislead the Endgame DNN with malicious binaries, the success
rates of the Kreuk attacks dropped below 15%. This defense had little-to-no effect
on our attacks, however: e.g., Disp-5 still achieved 92% and 100% success rates
against MalConv for malicious and benign binaries, respectively. Moreover, the
classification accuracy remained high both for malicious (99%) and benign (93%)
binaries after the defense. Figure 7 in Appendix 1 presents the full results of the
impact of sanitization on attacks’ success on the Kaggle dataset.

Figure 7 shows the success rates of attacks when sanitizing bytes in sections that
do not include instructions. In particular, we replaced byte values in such sections
with zeros, as described in Sect. 4.4. Our attacks maintained high success rates after
sanitization (e.g., .>90% for Disp-5), whereas the success rates of the Kreuk attacks
dropped below 15% in most cases.

Appendix 2: Our Attacks’ Transferability to Commercial
Anti-Viruses

Table 3 summarizes the effect of different attack variants on the number of positive
detections (i.e., classification of binaries as malicious) by the anti-viruses featured
on VirusTotal. Sect. 4.6 describes the experiment and explains the results.

Fig. 7 Attacks’ success rates
(measured by the percentage
of misclassified binaries) in
the white-box setting when
masking out bytes in sections
that do not include
instructions before
classification

IPR+Disp-5 Kreuk-50
20
40
60
80

100

Bi
na

rie
s

m
is

cl
as

si
fie

d
(%

)

Avast
Endgame
MalConv

Table 3 The median number of VirusTotal anti-viruses that positively detected (i.e., as mali-
cious) malicious binaries that were transformed by our white-box attacks (columns) to mislead the
different DNNs (rows). The median number of anti-viruses that positively detected for the original
malicious binaries is 55. Cases in which the change in the number of detections is statistically
significant are in bold

DNN IPR Disp-1 Disp-3 Disp-5 IPR+Disp-1 IPR+Disp-3 IPR+Disp-5

AvastNet – 36 35 36 36 35 36
Endgame 33 35 36 35 35 36 35
MalConv – 36 35 36 36 35 36

244 K. Lucas et al.

Appendix 3: In-Place Normalization

In this section, we present a normalization process to map binaries to a standard
form and undo the effect of the IPR transformations on classification. Specifically,
the normalization process maps binaries to the functionally equivalent variant with
the lowest lexicographic presentation that is achievable via the IPR transformation
types. For each transformation type, we devise an operation that would decrease
a binary’s lexicographic representation when applied: (1) instructions would be
replaced with equivalent ones only if the new instructions are lexicographically
lower (.Eqv); (2) registers in functions would be reassigned only if the byte rep-
resentation of the first impacted instruction would decrease (.Regs); (3) instructions
would be reordered such that each time we would extract the instruction from the
dependence graph with the lowest byte representation that does not depend on any of
the remaining instructions in the graph (.Ord1); and (4) push and pop instructions
that save register values across function calls would be reordered to decrease the
lexicographic representation while maintaining the last-in-first-out order (.Ord2).
Figure 8 depicts an example of replacing one instruction with an equivalent one
via .Eqv to decrease the lexicographic order of code.

Fig. 8 An example of normalizing code via .Eqv. The original code (a) is transformed via .Eqv (b)
to decrease the lexicographic order

Fig. 9 The normalization process can get stuck in a local minima. The lexicographic order of the
original code (a) increases when reassigning registers (b) or reordering instructions (c). However,
composing the two transformation (d) decreases the lexicographic order

Deceiving ML-Based Friend-or-Foe Identification for Executables 245

Unfortunately, as shown in Fig. 9, when the different types of transformation
types are composed, applying individual normalization operations does not neces-
sarily lead to the binary’s variant with the minimal lexicographic representation, as
the procedure may be stuck in a local minima. To this end, we propose a stochastic
algorithm that is guaranteed to converge to binaries’ normalized variants if executed
for a sufficiently large number of iterations.

The algorithm receives a binary x and the number of iterations .niters as inputs.
It begins by drawing a random variant of x, by applying all the transformation
types to each function at random. The algorithm then proceeds to apply each of
the individual normalization operations to decrease the lexicographic representation
of the binary while self-supervising the normalization process. Specifically, the
algorithm keeps track of the last iteration an operation decreased the binary’s
representation. If none of the four operations affects any of the functions, we deduce
that the normalization process is stuck in a (global or local) minima, and a random
binary is drawn again by randomizing all functions and the normalization process
restarts.

When .niters → ∞ (i.e., the number of iterations is large enough). This algorithm
would eventually converge to a global minima. Namely, it would find the variant
of x with the minimal lexicographic representation. In fact, we are guaranteed
to find .norm(x) even if we simply apply the transformation types at random x

for .niters → ∞ iterations. When testing the algorithm with two binaries of
moderate size, we found that .niters=2000 was sufficient to converge for the same
respective variants after every run. These variants are likely to be the global minima.
However, executing the algorithm for 2000 iterations is computationally expensive,
and impractical within the context of a widely deployed malware-detection system.
Hence, for the purpose of our experiments, we set .niters=10, which we found to be
sufficient to successfully mitigate the majority of attacks.

References

1. Anderson, H.S., Kharkar, A., Filar, B., Roth, P.: Evading machine learning malware detection.
Black Hat (2017)

2. Anderson, H.S., Roth, P.: Ember: An open dataset for training static PE malware machine
learning models. Preprint (2018). arXiv:1804.04637

3. Armoun, S.E., Hashemi, S.: A general paradigm for normalizing metamorphic malwares. In:
Proc. FIT (2012)

4. Arp, D., Spreitzenbarth, M., Hubner, M., Gascon, H., Rieck, K., Siemens, C.: Drebin: Effective
and explainable detection of android malware in your pocket. In: Proc. NDSS (2014)

5. Athalye, A., Carlini, N.: On the robustness of the CVPR 2018 white-box adversarial example
defenses. arXiv:1804.03286 (2018)

6. Athalye, A., Carlini, N., Wagner, D.: Obfuscated gradients give a false sense of security:
Circumventing defenses to adversarial examples. In: Proc. ICML (2018)

7. Athalye, A., Engstrom, L., Ilyas, A., Kwok, K.: Synthesizing robust adversarial examples. In:
Proc. ICML (2018)

246 K. Lucas et al.

8. Avast Software: Avast malware detection and blocking. https://www.avast.com/en-us/
technology/malware-detection-and-blocking (2020). Accessed 12/09/2020

9. Baluja, S., Fischer, I.: Adversarial transformation networks: Learning to generate adversarial
examples. In: Proc. AAAI (2018)

10. Barak, B., Bitansky, N., Canetti, R., Kalai, Y.T., Paneth, O., Sahai, A.: Obfuscation for evasive
functions. In: Proc. TCC (2014)

11. Biggio, B., Corona, I., Maiorca, D., Nelson, B., Šrndić, N., Laskov, P., Giacinto, G., Roli, F.:
Evasion attacks against machine learning at test time. In: Proc. ECML PKDD (2013)

12. Biondi, F., Enescu, M., Given-Wilson, T., Legay, A., Noureddine, L., Verma, V.: Effective,
efficient, and robust packing detection and classification. Computers and Security (2018)

13. Carlini, N., Wagner, D.: Adversarial examples are not easily detected: Bypassing ten detection
methods. In: Proc. AISec (2017)

14. Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks. In: Proc. IEEE
S&P (2017)

15. Cheng, B., Ming, J., Fu, J., Peng, G., Chen, T., Zhang, X., Marion, J.Y.: Towards paving the way
for large-scale windows malware analysis: Generic binary unpacking with orders-of-magnitude
performance boost. In: Proc. CCS (2018)

16. Christodorescu, M., Jha, S.: Testing malware detectors. In: Proc. ISSTA (2004)
17. Christodorescu, M., Jha, S., Seshia, S.A., Song, D., Bryant, R.E.: Semantics-aware malware

detection. In: Proc. IEEE S&P (2005)
18. Christodorescu, M., Kinder, J., Jha, S., Katzenbeisser, S., Veith, H.: Malware normalization.

Tech. rep., U. Wisconsin-Madison (2005)
19. Chronicle: Virustotal. https://www.virustotal.com/ (2004–). Online; accessed 17 June 2019
20. Cisco: Clamav: Creating signature for clamav. https://www.clamav.net/documents/creating-

signatures-for-clamav (2020). Accessed 12/10/2020
21. Cisse, M., Adi, Y., Neverova, N., Keshet, J.: Houdini: Fooling deep structured prediction

models. In: Proc. NIPS (2017)
22. Cohen, J.M., Rosenfeld, E., Kolter, J.Z.: Certified adversarial robustness via randomized

smoothing. Preprint (2019). arXiv:1902.02918
23. Collberg, C., Thomborson, C., Low, D.: A taxonomy of obfuscating transformations. Tech.

rep., The University of Auckland (1997)
24. Coull, S., Gardner, C.: What are deep neural networks learning about malware? https://www.

fireeye.com/blog/threat-research/2018/12/what-are-deep-neural-networks-learning-about-
malware.html (2018). Online; accessed 1 July 2019

25. Cylance Inc.: Cylance: Artificial intelligence based advanced threat prevention. https://www.
blackberry.com/us/en/cylance (2019). Accessed 6/17/2019

26. Dang, H., Huang, Y., Chang, E.C.: Evading classifiers by morphing in the dark. In: Proc. CCS
(2017)

27. Demetrio, L., Biggio, B., Lagorio, G., Roli, F., Armando, A.: Explaining vulnerabilities of deep
learning to adversarial malware binaries. Preprint (2019). arXiv:1901.03583

28. Demontis, A., Melis, M., Biggio, B., Maiorca, D., Arp, D., Rieck, K., Corona, I., Giacinto, G.,
Roli, F.: Yes, machine learning can be more secure! A case study on android malware detection.
IEEE Transactions on Dependable and Secure Computing (2017)

29. Engstrom, L., Tsipras, D., Schmidt, L., Madry, A.: A rotation and a translation suffice: Fooling
CNNs with simple transformations. In: Proc. NeurIPSW (2017)

30. Evtimov, I., Eykholt, K., Fernandes, E., Kohno, T., Li, B., Prakash, A., Rahmati, A., Song, D.:
Robust physical-world attacks on machine learning models. In: Proc. CVPR (2018)

31. Feinman, R., Curtin, R.R., Shintre, S., Gardner, A.B.: Detecting adversarial samples from
artifacts. arXiv:1703.00410 (2017)

32. Fleshman, W., Raff, E., Sylvester, J., Forsyth, S., McLean, M.: Non-negative networks against
adversarial attacks. Preprint (2018). arXiv:1806.06108

33. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. In:
Proc. ICLR (2015)

https://www.avast.com/en-us/technology/malware-detection-and-blocking
https://www.avast.com/en-us/technology/malware-detection-and-blocking
https://www.avast.com/en-us/technology/malware-detection-and-blocking
https://www.avast.com/en-us/technology/malware-detection-and-blocking
https://www.avast.com/en-us/technology/malware-detection-and-blocking
https://www.avast.com/en-us/technology/malware-detection-and-blocking
https://www.avast.com/en-us/technology/malware-detection-and-blocking
https://www.avast.com/en-us/technology/malware-detection-and-blocking
https://www.avast.com/en-us/technology/malware-detection-and-blocking
https://www.avast.com/en-us/technology/malware-detection-and-blocking
https://www.avast.com/en-us/technology/malware-detection-and-blocking
https://www.virustotal.com/
https://www.virustotal.com/
https://www.virustotal.com/
https://www.virustotal.com/
https://www.clamav.net/documents/creating-signatures-for-clamav
https://www.clamav.net/documents/creating-signatures-for-clamav
https://www.clamav.net/documents/creating-signatures-for-clamav
https://www.clamav.net/documents/creating-signatures-for-clamav
https://www.clamav.net/documents/creating-signatures-for-clamav
https://www.clamav.net/documents/creating-signatures-for-clamav
https://www.clamav.net/documents/creating-signatures-for-clamav
https://www.clamav.net/documents/creating-signatures-for-clamav
https://www.clamav.net/documents/creating-signatures-for-clamav
https://www.fireeye.com/blog/threat-research/2018/12/what-are-deep-neural-networks-learning-about-malware.html
https://www.fireeye.com/blog/threat-research/2018/12/what-are-deep-neural-networks-learning-about-malware.html
https://www.fireeye.com/blog/threat-research/2018/12/what-are-deep-neural-networks-learning-about-malware.html
https://www.fireeye.com/blog/threat-research/2018/12/what-are-deep-neural-networks-learning-about-malware.html
https://www.fireeye.com/blog/threat-research/2018/12/what-are-deep-neural-networks-learning-about-malware.html
https://www.fireeye.com/blog/threat-research/2018/12/what-are-deep-neural-networks-learning-about-malware.html
https://www.fireeye.com/blog/threat-research/2018/12/what-are-deep-neural-networks-learning-about-malware.html
https://www.fireeye.com/blog/threat-research/2018/12/what-are-deep-neural-networks-learning-about-malware.html
https://www.fireeye.com/blog/threat-research/2018/12/what-are-deep-neural-networks-learning-about-malware.html
https://www.fireeye.com/blog/threat-research/2018/12/what-are-deep-neural-networks-learning-about-malware.html
https://www.fireeye.com/blog/threat-research/2018/12/what-are-deep-neural-networks-learning-about-malware.html
https://www.fireeye.com/blog/threat-research/2018/12/what-are-deep-neural-networks-learning-about-malware.html
https://www.fireeye.com/blog/threat-research/2018/12/what-are-deep-neural-networks-learning-about-malware.html
https://www.fireeye.com/blog/threat-research/2018/12/what-are-deep-neural-networks-learning-about-malware.html
https://www.fireeye.com/blog/threat-research/2018/12/what-are-deep-neural-networks-learning-about-malware.html
https://www.fireeye.com/blog/threat-research/2018/12/what-are-deep-neural-networks-learning-about-malware.html
https://www.fireeye.com/blog/threat-research/2018/12/what-are-deep-neural-networks-learning-about-malware.html
https://www.fireeye.com/blog/threat-research/2018/12/what-are-deep-neural-networks-learning-about-malware.html
https://www.blackberry.com/us/en/cylance
https://www.blackberry.com/us/en/cylance
https://www.blackberry.com/us/en/cylance
https://www.blackberry.com/us/en/cylance
https://www.blackberry.com/us/en/cylance
https://www.blackberry.com/us/en/cylance
https://www.blackberry.com/us/en/cylance

Deceiving ML-Based Friend-or-Foe Identification for Executables 247

34. Grosse, K., Manoharan, P., Papernot, N., Backes, M., McDaniel, P.: On the (statistical)
detection of adversarial examples. Preprint (2017). arXiv:1702.06280

35. Grosse, K., Papernot, N., Manoharan, P., Backes, M., McDaniel, P.: Adversarial examples for
malware detection. In: Proc. ESORICS (2017)

36. Guarnieri, C., Tanasi, A., Bremer, J., Schloesser, M.: The Cuckoo Sandbox. https://
cuckoosandbox.org/ (2012). Accessed 6/21/2019

37. Guo, C., Rana, M., Cisse, M., van der Maaten, L.: Countering adversarial images using input
transformations (2018)

38. Harris, L.C., Miller, B.P.: Practical analysis of stripped binary code. ACM SIGARCH Comput.
Architect. News 33(5), 63–68 (2005)

39. Herley, C.: So long, and no thanks for the externalities: the rational rejection of security advice
by users. In: Proc. NSPW (2009)

40. Hex-Rays: IDA: About. https://www.hex-rays.com/products/ida/. Online; accessed 13
September 2019

41. Hu, W., Tan, Y.: Generating adversarial malware examples for black-box attacks based on
GAN. Preprint (2017). arXiv:1702.05983

42. Ilyas, A., Engstrom, L., Madry, A.: Prior convictions: Black-box adversarial attacks with
bandits and priors. In: Proc. ICLR (2019)

43. Incer, I., Theodorides, M., Afroz, S., Wagner, D.: Adversarially robust malware detection using
monotonic classification. In: Proc. IWSPA (2018)

44. Jindal, C., Salls, C., Aghakhani, H., Long, K., Kruegel, C., Vigna, G.: Neurlux: Dynamic
malware analysis without feature engineering. In: Proc. ACSAC (2019)

45. Junod, P., Rinaldini, J., Wehrli, J., Michielin, J.: Obfuscator-llvm–software protection for the
masses. In: Proc. IWSP (2015)

46. Kannan, H., Kurakin, A., Goodfellow, I.: Adversarial logit pairing. Preprint (2018).
arXiv:1803.06373

47. Kantchelian, A., Tygar, J., Joseph, A.D.: Evasion and hardening of tree ensemble classifiers.
In: Proc. ICML (2016)

48. Kennedy, J., Batchelor, D., Robertson, C., Satran, M., LeBLanc, M.: PE format. https://docs.
microsoft.com/en-us/windows/desktop/debug/pe-format (2019). Accessed on 06-03-2019

49. Kolosnjaji, B., Demontis, A., Biggio, B., Maiorca, D., Giacinto, G., Eckert, C., Roli, F.:
Adversarial malware binaries: Evading deep learning for malware detection in executables.
In: Proc. EUSIPCO (2018)

50. Kolter, J.Z., Maloof, M.A.: Learning to detect and classify malicious executables in the wild.
Journal of Machine Learning Research (2006)

51. Kolter, J.Z., Wong, E.: Provable defenses against adversarial examples via the convex outer
adversarial polytope. In: Proc. ICML (2018)

52. Koo, H., Polychronakis, M.: Juggling the gadgets: Binary-level code randomization using
instruction displacement. In: Proc. AsiaCCS (2016)

53. Koo, H., Chen, Y., Lu, L., Kemerlis, V.P., Polychronakis, M.: Compiler-assisted code random-
ization. In: Proc. IEEE S&P (2018)

54. Krčál, M., Švec, O., Bálek, M., Jašek, O.: Deep convolutional malware classifiers can learn
from raw executables and labels only. In: Proc. ICLRW (2018)

55. Kreuk, F., Barak, A., Aviv-Reuven, S., Baruch, M., Pinkas, B., Keshet, J.: Adversarial examples
on discrete sequences for beating whole-binary malware detection. In: Proc. NeurIPSW (2018)

56. Kruegel, C., Robertson, W., Valeur, F., Vigna, G.: Static disassembly of obfuscated binaries.
In: Proc. USENIX Security (2004)

57. Kurakin, A., Goodfellow, I., Bengio, S.: Adversarial machine learning at scale. In: Proc. ICLR
(2017)

58. Larsen, P., Homescu, A., Brunthaler, S., Franz, M.: SoK: Automated software diversity. In:
Proc. IEEE S&P (2014)

59. Le, Q., Mikolov, T.: Distributed representations of sentences and documents. In: Proc. ICML
(2014)

https://cuckoosandbox.org/
https://cuckoosandbox.org/
https://cuckoosandbox.org/
https://www.hex-rays.com/products/ida/
https://www.hex-rays.com/products/ida/
https://www.hex-rays.com/products/ida/
https://www.hex-rays.com/products/ida/
https://www.hex-rays.com/products/ida/
https://www.hex-rays.com/products/ida/
https://www.hex-rays.com/products/ida/
https://docs.microsoft.com/en-us/windows/desktop/debug/pe-format
https://docs.microsoft.com/en-us/windows/desktop/debug/pe-format
https://docs.microsoft.com/en-us/windows/desktop/debug/pe-format
https://docs.microsoft.com/en-us/windows/desktop/debug/pe-format
https://docs.microsoft.com/en-us/windows/desktop/debug/pe-format
https://docs.microsoft.com/en-us/windows/desktop/debug/pe-format
https://docs.microsoft.com/en-us/windows/desktop/debug/pe-format
https://docs.microsoft.com/en-us/windows/desktop/debug/pe-format
https://docs.microsoft.com/en-us/windows/desktop/debug/pe-format
https://docs.microsoft.com/en-us/windows/desktop/debug/pe-format
https://docs.microsoft.com/en-us/windows/desktop/debug/pe-format

248 K. Lucas et al.

60. Lecuyer, M., Atlidakis, V., Geambasu, R., Hsu, D., Jana, S.: Certified robustness to adversarial
examples with differential privacy. In: Proc. IEEE S&P (2019)

61. Liao, F., Liang, M., Dong, Y., Pang, T., Zhu, J., Hu, X.: Defense against adversarial attacks
using high-level representation guided denoiser. In: Proc. CVPR (2018)

62. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning models
resistant to adversarial attacks. In: Proc. ICLR (2018)

63. Massalin, H.: Superoptimizer: A look at the smallest program. ACM SIGARCH Computer
Architecture News 15(5), 122–126 (1987)

64. Meng, D., Chen, H.: Magnet: A two-pronged defense against adversarial examples. In: Proc.
CCS (2017)

65. Meng, X., Miller, B.P., Jha, S.: Adversarial binaries for authorship identification. Preprint
(2018). arXiv:1809.08316

66. Metzen, J.H., Genewein, T., Fischer, V., Bischoff, B.: On detecting adversarial perturbations.
In: Proc. ICLR (2017)

67. Mirman, M., Gehr, T., Vechev, M.: Differentiable abstract interpretation for provably robust
neural networks. In: Proc. ICML (2018)

68. Moser, A., Kruegel, C., Kirda, E.: Limits of static analysis for malware detection. In: Proc.
ACSAC (2007)

69. Oberhumer, M., Molnar, L., Reiser, J.: UPX: The ultimate packer for executables. https://upx.
github.io/. Online; accessed 1/13/2020

70. Papernot, N., McDaniel, P., Jha, S., Fredrikson, M., Celik, Z.B., Swami, A.: The limitations of
deep learning in adversarial settings. In: Proc. IEEE Euro S&P (2016)

71. Pappas, V., Polychronakis, M., Keromytis, A.D.: Smashing the gadgets: Hindering return-
oriented programming using in-place code randomization. In: Proc. IEEE S&P (2012)

72. Park, D., Khan, H., Yener, B.: Generation evaluation of adversarial examples for malware
obfuscation. In: Proc. ICMLA, pp. 1283–1290 (2019)

73. Pierazzi, F., Pendlebury, F., Cortellazzi, J., Cavallaro, L.: Intriguing properties of adversarial
ml attacks in the problem space. In: Proc. IEEE S&P (2020)

74. Qin, Y., Carlini, N., Goodfellow, I., Cottrell, G., Raffel, C.: Imperceptible, robust, and targeted
adversarial examples for automatic speech recognition. In: Proc. ICML (2019)

75. Quiring, E., Maier, A., Rieck, K.: Misleading authorship attribution of source code using
adversarial learning. In: Proc. USENIX Security (2019)

76. Raff, E., Barker, J., Sylvester, J., Brandon, R., Catanzaro, B., Nicholas, C.K.: Malware
detection by eating a whole exe. In: Proc. AAAIW (2018)

77. Roberts, M.: Virusshare. https://virusshare.com/ (2012). Online; accessed 18 June 2019
78. Ronen, R., Radu, M., Feuerstein, C., Yom-Tov, E., Ahmadi, M.: Microsoft malware classifica-

tion challenge. Preprint (2018). arXiv:1802.10135
79. Rosenberg, I., Shabtai, A., Rokach, L., Elovici, Y.: Generic black-box end-to-end attack against

state of the art API call based malware classifiers. In: Proc. RAID (2018)
80. Roundy, K.A., Miller, B.P.: Binary-code obfuscations in prevalent packer tools. ACM

Computing Surveys (CSUR) 46(1), 4 (2013)
81. Samangouei, P., Kabkab, M., Chellappa, R.: Defense-GAN: Protecting classifiers against

adversarial attacks using generative models. In: Proc. ICLR (2018)
82. Schkufza, E., Sharma, R., Aiken, A.: Stochastic superoptimization. In: Proc. ASPLOS (2013)
83. Schönherr, L., Kohls, K., Zeiler, S., Holz, T., Kolossa, D.: Adversarial attacks against automatic

speech recognition systems via psychoacoustic hiding. In: Proc. NDSS (2019)
84. Sconzo, M.: Packer yara ruleset. https://github.com/sooshie/packerid (2014). Online; accessed

18 June 2019
85. Sharif, M., Bhagavatula, S., Bauer, L., Reiter, M.K.: Accessorize to a crime: Real and stealthy

attacks on state-of-the-art face recognition. In: Proc. CCS (2016)
86. Sharif, M., Bhagavatula, S., Bauer, L., Reiter, M.K.: Adversarial generative nets: Neural

network attacks on state-of-the-art face recognition. Preprint (2017). arXiv:1801.00349
87. Srinivasan, V., Marban, A., Müller, K.R., Samek, W., Nakajima, S.: Counterstrike: Defending

deep learning architectures against adversarial samples by langevin dynamics with supervised
denoising autoencoder. Preprint (2018). arXiv:1805.12017

https://upx.github.io/
https://upx.github.io/
https://upx.github.io/
https://upx.github.io/
https://virusshare.com/
https://virusshare.com/
https://virusshare.com/
https://github.com/sooshie/packerid
https://github.com/sooshie/packerid
https://github.com/sooshie/packerid
https://github.com/sooshie/packerid
https://github.com/sooshie/packerid

Deceiving ML-Based Friend-or-Foe Identification for Executables 249

88. Srndic, N., Laskov, P.: Practical evasion of a learning-based classifier: A case study. In: Proc.
IEEE S&P (2014)

89. Suciu, O., Coull, S.E., Johns, J.: Exploring adversarial examples in malware detection. In:
Proc. AAAIW (2018)

90. Symantec: How does Symantec Endpoint Protection use advanced machine learning?
https://techdocs.broadcom.com/us/en/symantec-security-software/endpoint-security-and-
management/endpoint-protection/all/Using-policies-to-manage-security/preventing-and-
handling-virus-and-spyware-attacks-v40739565-d49e172/how-does-use-advanced-machine-
learning-v120625733-d47e275.html (2019). Accessed on 01-12-2020

91. Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I.J., Fergus, R.:
Intriguing properties of neural networks. In: Proc. ICLR (2014)

92. Szor, P.: The Art of Computer Virus Research and Defense. Pearson Education (2005)
93. TrendMicro: Trendmicro machine learning. https://www.trendmicro.com/vinfo/us/security/

definition/machine-learning (2020). Accessed 12/09/2020
94. Ugarte-Pedrero, X., Balzarotti, D., Santos, I., Bringas, P.G.: SoK: Deep packer inspection: A

longitudinal study of the complexity of run-time packers. In: Proc. IEEE S&P (2015)
95. Vipre: Vipre android security. https://www.vipre.com/vipre-android-security/ (2020).

Accessed 12/10/2020
96. VirusTotal: Packer yara ruleset. https://github.com/Yara-Rules/rules/tree/master/Packers

(2016). Online; accessed 18 June 2019
97. Wagner, D., Soto, P.: Mimicry attacks on host-based intrusion detection systems. In: Proc. CCS

(2002)
98. Walenstein, A., Mathur, R., Chouchane, M.R., Lakhotia, A.: Normalizing metamorphic

malware using term rewriting. In: Proc. SCAM (2006)
99. Wang, S., Wang, P., Wu, D.: Uroboros: Instrumenting stripped binaries with static reassem-

bling. In: Proc. SANER (2016)
100. Xie, C., Wu, Y., van der Maaten, L., Yuille, A., He, K.: Feature denoising for improving

adversarial robustness. Preprint (2018). arXiv:1812.03411
101. Xu, W., Evans, D., Qi, Y.: Feature squeezing: Detecting adversarial examples in deep neural

networks. In: Proc. NDSS (2018)
102. Xu, W., Qi, Y., Evans, D.: Automatically evading classifiers. In: Proc. NDSS (2016)
103. Zhang, H., Yu, Y., Jiao, J., Xing, E.P., Ghaoui, L.E., Jordan, M.I.: Theoretically principled

trade-off between robustness and accuracy. Preprint (2019). arXiv:1901.08573

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://techdocs.broadcom.com/us/en/symantec-security-software/endpoint-security-and-management/endpoint-protection/all/Using-policies-to-manage-security/preventing-and-handling-virus-and-spyware-attacks-v40739565-d49e172/how-does-use-advanced-machine-learning-v120625733-d47e275.html
https://techdocs.broadcom.com/us/en/symantec-security-software/endpoint-security-and-management/endpoint-protection/all/Using-policies-to-manage-security/preventing-and-handling-virus-and-spyware-attacks-v40739565-d49e172/how-does-use-advanced-machine-learning-v120625733-d47e275.html
https://techdocs.broadcom.com/us/en/symantec-security-software/endpoint-security-and-management/endpoint-protection/all/Using-policies-to-manage-security/preventing-and-handling-virus-and-spyware-attacks-v40739565-d49e172/how-does-use-advanced-machine-learning-v120625733-d47e275.html
https://techdocs.broadcom.com/us/en/symantec-security-software/endpoint-security-and-management/endpoint-protection/all/Using-policies-to-manage-security/preventing-and-handling-virus-and-spyware-attacks-v40739565-d49e172/how-does-use-advanced-machine-learning-v120625733-d47e275.html
https://techdocs.broadcom.com/us/en/symantec-security-software/endpoint-security-and-management/endpoint-protection/all/Using-policies-to-manage-security/preventing-and-handling-virus-and-spyware-attacks-v40739565-d49e172/how-does-use-advanced-machine-learning-v120625733-d47e275.html
https://techdocs.broadcom.com/us/en/symantec-security-software/endpoint-security-and-management/endpoint-protection/all/Using-policies-to-manage-security/preventing-and-handling-virus-and-spyware-attacks-v40739565-d49e172/how-does-use-advanced-machine-learning-v120625733-d47e275.html
https://techdocs.broadcom.com/us/en/symantec-security-software/endpoint-security-and-management/endpoint-protection/all/Using-policies-to-manage-security/preventing-and-handling-virus-and-spyware-attacks-v40739565-d49e172/how-does-use-advanced-machine-learning-v120625733-d47e275.html
https://techdocs.broadcom.com/us/en/symantec-security-software/endpoint-security-and-management/endpoint-protection/all/Using-policies-to-manage-security/preventing-and-handling-virus-and-spyware-attacks-v40739565-d49e172/how-does-use-advanced-machine-learning-v120625733-d47e275.html
https://techdocs.broadcom.com/us/en/symantec-security-software/endpoint-security-and-management/endpoint-protection/all/Using-policies-to-manage-security/preventing-and-handling-virus-and-spyware-attacks-v40739565-d49e172/how-does-use-advanced-machine-learning-v120625733-d47e275.html
https://techdocs.broadcom.com/us/en/symantec-security-software/endpoint-security-and-management/endpoint-protection/all/Using-policies-to-manage-security/preventing-and-handling-virus-and-spyware-attacks-v40739565-d49e172/how-does-use-advanced-machine-learning-v120625733-d47e275.html
https://techdocs.broadcom.com/us/en/symantec-security-software/endpoint-security-and-management/endpoint-protection/all/Using-policies-to-manage-security/preventing-and-handling-virus-and-spyware-attacks-v40739565-d49e172/how-does-use-advanced-machine-learning-v120625733-d47e275.html
https://techdocs.broadcom.com/us/en/symantec-security-software/endpoint-security-and-management/endpoint-protection/all/Using-policies-to-manage-security/preventing-and-handling-virus-and-spyware-attacks-v40739565-d49e172/how-does-use-advanced-machine-learning-v120625733-d47e275.html
https://techdocs.broadcom.com/us/en/symantec-security-software/endpoint-security-and-management/endpoint-protection/all/Using-policies-to-manage-security/preventing-and-handling-virus-and-spyware-attacks-v40739565-d49e172/how-does-use-advanced-machine-learning-v120625733-d47e275.html
https://techdocs.broadcom.com/us/en/symantec-security-software/endpoint-security-and-management/endpoint-protection/all/Using-policies-to-manage-security/preventing-and-handling-virus-and-spyware-attacks-v40739565-d49e172/how-does-use-advanced-machine-learning-v120625733-d47e275.html
https://techdocs.broadcom.com/us/en/symantec-security-software/endpoint-security-and-management/endpoint-protection/all/Using-policies-to-manage-security/preventing-and-handling-virus-and-spyware-attacks-v40739565-d49e172/how-does-use-advanced-machine-learning-v120625733-d47e275.html
https://techdocs.broadcom.com/us/en/symantec-security-software/endpoint-security-and-management/endpoint-protection/all/Using-policies-to-manage-security/preventing-and-handling-virus-and-spyware-attacks-v40739565-d49e172/how-does-use-advanced-machine-learning-v120625733-d47e275.html
https://techdocs.broadcom.com/us/en/symantec-security-software/endpoint-security-and-management/endpoint-protection/all/Using-policies-to-manage-security/preventing-and-handling-virus-and-spyware-attacks-v40739565-d49e172/how-does-use-advanced-machine-learning-v120625733-d47e275.html
https://techdocs.broadcom.com/us/en/symantec-security-software/endpoint-security-and-management/endpoint-protection/all/Using-policies-to-manage-security/preventing-and-handling-virus-and-spyware-attacks-v40739565-d49e172/how-does-use-advanced-machine-learning-v120625733-d47e275.html
https://techdocs.broadcom.com/us/en/symantec-security-software/endpoint-security-and-management/endpoint-protection/all/Using-policies-to-manage-security/preventing-and-handling-virus-and-spyware-attacks-v40739565-d49e172/how-does-use-advanced-machine-learning-v120625733-d47e275.html
https://techdocs.broadcom.com/us/en/symantec-security-software/endpoint-security-and-management/endpoint-protection/all/Using-policies-to-manage-security/preventing-and-handling-virus-and-spyware-attacks-v40739565-d49e172/how-does-use-advanced-machine-learning-v120625733-d47e275.html
https://techdocs.broadcom.com/us/en/symantec-security-software/endpoint-security-and-management/endpoint-protection/all/Using-policies-to-manage-security/preventing-and-handling-virus-and-spyware-attacks-v40739565-d49e172/how-does-use-advanced-machine-learning-v120625733-d47e275.html
https://techdocs.broadcom.com/us/en/symantec-security-software/endpoint-security-and-management/endpoint-protection/all/Using-policies-to-manage-security/preventing-and-handling-virus-and-spyware-attacks-v40739565-d49e172/how-does-use-advanced-machine-learning-v120625733-d47e275.html
https://techdocs.broadcom.com/us/en/symantec-security-software/endpoint-security-and-management/endpoint-protection/all/Using-policies-to-manage-security/preventing-and-handling-virus-and-spyware-attacks-v40739565-d49e172/how-does-use-advanced-machine-learning-v120625733-d47e275.html
https://techdocs.broadcom.com/us/en/symantec-security-software/endpoint-security-and-management/endpoint-protection/all/Using-policies-to-manage-security/preventing-and-handling-virus-and-spyware-attacks-v40739565-d49e172/how-does-use-advanced-machine-learning-v120625733-d47e275.html
https://techdocs.broadcom.com/us/en/symantec-security-software/endpoint-security-and-management/endpoint-protection/all/Using-policies-to-manage-security/preventing-and-handling-virus-and-spyware-attacks-v40739565-d49e172/how-does-use-advanced-machine-learning-v120625733-d47e275.html
https://techdocs.broadcom.com/us/en/symantec-security-software/endpoint-security-and-management/endpoint-protection/all/Using-policies-to-manage-security/preventing-and-handling-virus-and-spyware-attacks-v40739565-d49e172/how-does-use-advanced-machine-learning-v120625733-d47e275.html
https://techdocs.broadcom.com/us/en/symantec-security-software/endpoint-security-and-management/endpoint-protection/all/Using-policies-to-manage-security/preventing-and-handling-virus-and-spyware-attacks-v40739565-d49e172/how-does-use-advanced-machine-learning-v120625733-d47e275.html
https://techdocs.broadcom.com/us/en/symantec-security-software/endpoint-security-and-management/endpoint-protection/all/Using-policies-to-manage-security/preventing-and-handling-virus-and-spyware-attacks-v40739565-d49e172/how-does-use-advanced-machine-learning-v120625733-d47e275.html
https://techdocs.broadcom.com/us/en/symantec-security-software/endpoint-security-and-management/endpoint-protection/all/Using-policies-to-manage-security/preventing-and-handling-virus-and-spyware-attacks-v40739565-d49e172/how-does-use-advanced-machine-learning-v120625733-d47e275.html
https://techdocs.broadcom.com/us/en/symantec-security-software/endpoint-security-and-management/endpoint-protection/all/Using-policies-to-manage-security/preventing-and-handling-virus-and-spyware-attacks-v40739565-d49e172/how-does-use-advanced-machine-learning-v120625733-d47e275.html
https://techdocs.broadcom.com/us/en/symantec-security-software/endpoint-security-and-management/endpoint-protection/all/Using-policies-to-manage-security/preventing-and-handling-virus-and-spyware-attacks-v40739565-d49e172/how-does-use-advanced-machine-learning-v120625733-d47e275.html
https://techdocs.broadcom.com/us/en/symantec-security-software/endpoint-security-and-management/endpoint-protection/all/Using-policies-to-manage-security/preventing-and-handling-virus-and-spyware-attacks-v40739565-d49e172/how-does-use-advanced-machine-learning-v120625733-d47e275.html
https://techdocs.broadcom.com/us/en/symantec-security-software/endpoint-security-and-management/endpoint-protection/all/Using-policies-to-manage-security/preventing-and-handling-virus-and-spyware-attacks-v40739565-d49e172/how-does-use-advanced-machine-learning-v120625733-d47e275.html
https://techdocs.broadcom.com/us/en/symantec-security-software/endpoint-security-and-management/endpoint-protection/all/Using-policies-to-manage-security/preventing-and-handling-virus-and-spyware-attacks-v40739565-d49e172/how-does-use-advanced-machine-learning-v120625733-d47e275.html
https://techdocs.broadcom.com/us/en/symantec-security-software/endpoint-security-and-management/endpoint-protection/all/Using-policies-to-manage-security/preventing-and-handling-virus-and-spyware-attacks-v40739565-d49e172/how-does-use-advanced-machine-learning-v120625733-d47e275.html
https://techdocs.broadcom.com/us/en/symantec-security-software/endpoint-security-and-management/endpoint-protection/all/Using-policies-to-manage-security/preventing-and-handling-virus-and-spyware-attacks-v40739565-d49e172/how-does-use-advanced-machine-learning-v120625733-d47e275.html
https://techdocs.broadcom.com/us/en/symantec-security-software/endpoint-security-and-management/endpoint-protection/all/Using-policies-to-manage-security/preventing-and-handling-virus-and-spyware-attacks-v40739565-d49e172/how-does-use-advanced-machine-learning-v120625733-d47e275.html
https://techdocs.broadcom.com/us/en/symantec-security-software/endpoint-security-and-management/endpoint-protection/all/Using-policies-to-manage-security/preventing-and-handling-virus-and-spyware-attacks-v40739565-d49e172/how-does-use-advanced-machine-learning-v120625733-d47e275.html
https://techdocs.broadcom.com/us/en/symantec-security-software/endpoint-security-and-management/endpoint-protection/all/Using-policies-to-manage-security/preventing-and-handling-virus-and-spyware-attacks-v40739565-d49e172/how-does-use-advanced-machine-learning-v120625733-d47e275.html
https://www.trendmicro.com/vinfo/us/security/definition/machine-learning
https://www.trendmicro.com/vinfo/us/security/definition/machine-learning
https://www.trendmicro.com/vinfo/us/security/definition/machine-learning
https://www.trendmicro.com/vinfo/us/security/definition/machine-learning
https://www.trendmicro.com/vinfo/us/security/definition/machine-learning
https://www.trendmicro.com/vinfo/us/security/definition/machine-learning
https://www.trendmicro.com/vinfo/us/security/definition/machine-learning
https://www.trendmicro.com/vinfo/us/security/definition/machine-learning
https://www.trendmicro.com/vinfo/us/security/definition/machine-learning
https://www.trendmicro.com/vinfo/us/security/definition/machine-learning
https://www.vipre.com/vipre-android-security/
https://www.vipre.com/vipre-android-security/
https://www.vipre.com/vipre-android-security/
https://www.vipre.com/vipre-android-security/
https://www.vipre.com/vipre-android-security/
https://www.vipre.com/vipre-android-security/
https://www.vipre.com/vipre-android-security/
https://github.com/Yara-Rules/rules/tree/master/Packers
https://github.com/Yara-Rules/rules/tree/master/Packers
https://github.com/Yara-Rules/rules/tree/master/Packers
https://github.com/Yara-Rules/rules/tree/master/Packers
https://github.com/Yara-Rules/rules/tree/master/Packers
https://github.com/Yara-Rules/rules/tree/master/Packers
https://github.com/Yara-Rules/rules/tree/master/Packers
https://github.com/Yara-Rules/rules/tree/master/Packers
https://github.com/Yara-Rules/rules/tree/master/Packers
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Preface
	Acknowledgments
	Contents
	Diversifying Deception: Game-Theoretic Models for Two-Sided Deception and Initial Human Studies
	1 Introduction
	2 Motivating Domain and Related Work
	3 Feature Selection Game
	3.1 Formal Definition of Feature Selection Game
	3.2 Nature Player Actions
	3.3 Defender Actions
	3.4 Attacker Actions
	3.5 Utility Functions
	3.6 Solution Approach

	4 Empirical Study of FSG
	4.1 Measuring the Similarity of Features
	4.2 Deception with Symmetric Costs
	4.3 Deception with Asymmetric Costs
	4.4 Deception with Naïve Attackers

	5 Human Experiment
	5.1 Experimental Design
	5.2 Experiment Task
	5.3 Participants
	5.4 Results

	6 Discussion and Further Applications
	6.1 Adversarial Learning
	6.2 Disguising Network Traffic
	6.3 Limitations

	7 Conclusions
	References

	Human-Subject Experiments on Risk-Based Cyber Camouflage Games
	1 Introduction
	1.1 Related Work

	2 Risk-Based Cyber Camouflage Games
	3 Rational Attackers
	4 Boundedly Rational Attackers and Prospect Theory
	4.1 Learning Model Parameters from Data

	5 Human-Subject Experiments
	5.1 Experimental Setup in CyberVAN
	5.2 Participants
	5.3 Experimental Process
	5.4 Experiment Results
	5.4.1 Attacker's Success Rate
	5.4.2 Defender's Losses

	6 Summary
	References

	Adaptive Cyberdefense with Deception: A Human–AI Cognitive Approach
	1 Introduction
	2 A Research Framework and Summary of New Insights for Adaptive Cyber Defense
	2.1 Generate a Defense Strategy
	2.1.1 Deception Techniques
	2.1.2 Game Theory and Machine Learning Algorithms for Allocation of Defense Resources

	2.2 Deploy Defense Strategies in Testbeds that Vary in Realism and Complexity
	2.3 Collect Human Decisions Through Experimentation and the Construction of Cognitive Clones
	2.4 Improving the Adaptivity of Defense Strategies

	3 Conclusion: Towards Adaptive Human–AI Teaming for Cyber Defense
	References

	Cognitive Modeling for Personalized, Adaptive Signaling for Cyber Deception
	1 A Framework for Personalized Adaptive Cyber Deception
	2 Modeling the Adversary
	2.1 What Is a Cognitive Model?
	2.2 Modeling Decisions from Experience
	2.3 Deceptive Signaling for Cybersecurity
	2.3.1 Insider Attack Game (IAG)
	2.3.2 Modeling Adversary Behavior in the IAG

	3 Predicting Adversarial Behavior
	4 Observing the Adversary: Personalizing the Model
	4.1 Model-Tracing
	4.2 Knowledge-Tracing

	5 Using Cognitive Models to Inform Adaptive Defense
	5.1 Cognitive Signaling Scheme Evaluation
	5.2 Discussion
	5.2.1 Open Questions
	5.2.2 Limitations and Extensions
	5.2.3 Future Research

	6 Conclusion
	References

	Deceptive Signaling: Understanding Human Behavior Against Signaling Algorithms
	1 Introduction
	2 Insider Attack Game
	3 Signaling Algorithms
	4 Methods
	4.1 Participants
	4.2 Procedure

	5 Results
	5.1 Is Signaling Effective?
	5.2 Effect of Rational 1-sided and 2-sided Signaling Against No Signaling
	5.3 Adaptive Signaling Using Cognitive Models
	5.4 Discussion

	References

	Optimizing Honey Traffic Using Game Theory and AdversarialLearning
	1 Introduction
	2 Motivation and Related Work
	3 Snaz Overview
	3.1 Snaz Architecture
	3.2 Threat Model and Assumptions
	3.3 Game Model
	3.3.1 Snaz Game Example
	3.3.2 Optimal Defender's Linear Program

	3.4 Simulations and Model Analysis
	3.4.1 Preliminary Testbed Evaluation
	3.4.2 Snaz Game Theory Solution Quality
	3.4.3 Solution Analysis
	3.4.4 Scalability Evaluation

	4 Decoy Traffic Generation Approach
	5 Network Traffic Obfuscation
	5.1 Experimental Setup
	5.1.1 Dataset
	5.1.2 Realistic Features
	5.1.3 Classification Model

	5.2 Adversarial Settings
	5.2.1 Defender Model
	5.2.2 Adversary Model
	5.2.3 Obfuscation Approaches

	5.3 Restricted Traffic Distribution Attack
	5.3.1 Perturbation Constraints
	5.3.2 Distribution Constraints
	5.3.3 Framework

	5.4 Results

	6 Conclusion
	References

	Mee: Adaptive Honeyfile System for Insider Attacker Detection
	1 Introduction
	2 Related Work
	3 Problem Statement
	4 Design of Mee System
	4.1 Mee Client Design
	4.2 Mee Controller Design
	4.3 Communication Between Mee Client and Controller

	5 Scenario and Model
	5.1 Network and Node Model
	5.2 Attacker Model
	5.3 Defender Model
	5.4 Model of Legitimate User

	6 Honeyfile Game with Mee
	7 Implementation and Evaluation
	7.1 Simulation Settings
	7.2 Comparing Mee with the Traditional Honeyfile System

	8 Conclusion and Future Work
	References

	HoneyPLC: A Next-Generation Honeypot for Industrial ControlSystems
	1 Introduction
	1.1 The Problem: Preventing Attacks Targeting ICS via PLCs
	1.2 Challenges for Solving the Problem
	1.3 Proposed Approach: A Next-Generation Honeypot for ICS
	1.4 Contributions to Scientific Literature
	1.5 Source Code Availability and Chapter Roadmap

	2 Background and Related Work
	2.1 Programmable Logic Controllers
	2.2 Network Reconnaissance Tools
	2.2.1 Nmap
	2.2.2 PLCScan
	2.2.3 Shodan

	2.3 Exemplary ICS Malware
	2.3.1 Stuxnet
	2.3.2 Pipedream Toolkit
	2.3.3 Dragonfly
	2.3.4 Crashoverride

	2.4 Honeypots for ICS
	2.4.1 Low-Interaction Honeypots
	2.4.2 High-Interaction Honeypots

	3 Limitations of Existing Honeypots
	4 HoneyPLC: A Convenient High-Interaction Honeypot For PLCs
	4.1 Illustrative Use Case Scenario
	4.1.1 Initial Setup
	4.1.2 Fingerprinting
	4.1.3 Reconnaissance
	4.1.4 Code Injection
	4.1.5 Confirmation and Farewell

	4.2 Supporting PLC Extensibility
	4.2.1 PLC Profiles
	4.2.2 PLC Profiler Tool

	4.3 Supporting Operational Covertness
	4.3.1 TCP/IP Simulation
	4.3.2 S7comm Server
	4.3.3 SNMP Server
	4.3.4 HTTP Server

	4.4 Ladder Logic Collection
	4.5 Implementing Record Keeping via Logging

	5 Evaluation
	5.1 Experimental Questions
	5.2 Case Study: PLC Profiling
	5.2.1 Profiling Siemens PLCs
	5.2.2 Environment Description
	5.2.3 Methodology
	5.2.4 Results
	5.2.5 Profiling Allen-Bradley and ABB PLCs
	5.2.6 Environment Description
	5.2.7 Methodology
	5.2.8 Results

	5.3 Resilience to Reconnaissance Experiment
	5.3.1 Environment Description
	5.3.2 Methodology
	5.3.3 Results

	5.4 Shodan's Honeyscore Experiment
	5.4.1 Environment Description
	5.4.2 Methodology
	5.4.3 Results

	5.5 Step7 Manager Experiment
	5.5.1 Environment Description
	5.5.2 Methodology
	5.5.3 Results

	5.6 Internet Interaction Experiment
	5.6.1 Environment Description
	5.6.2 Methodology
	5.6.3 Results

	5.7 Ladder Logic Capture Experiment
	5.7.1 Environment Description
	5.7.2 Methodology
	5.7.3 Results

	6 Discussion and Future Work
	6.1 Comparing HoneyPLC with Previous Approaches
	6.2 Limitations
	6.3 Future Work

	7 Conclusions
	References

	Using Amnesia to Detect Credential Database Breaches
	1 Introduction
	2 Related Work
	3 Honeywords
	4 Detecting Honeyword Entry Locally
	4.1 Threat Model
	4.2 Algorithm
	4.3 Security

	5 Detecting Remotely Stuffed Honeywords
	5.1 Threat Model
	5.2 Private Containment Retrieval
	5.3 Algorithm
	5.4 Security
	5.5 Alternative Designs

	6 Private Containment Retrieval
	6.1 Comparison to Related Protocols
	6.2 Building Blocks
	6.3 Protocol Description
	6.4 Security
	6.5 Performance

	7 Discussion
	8 Conclusion
	References

	Deceiving ML-Based Friend-or-Foe Identification for Executables
	1 Introduction
	2 Background and Related Work
	2.1 DNNs for Static Malware Detection
	2.2 Attacking and Defending ML Algorithms
	2.3 Binary Rewriting and Randomization

	3 Technical Approach
	3.1 Threat Model
	3.2 Functionality-Preserving Attack

	4 Evaluation
	4.1 Datasets and Malware-Detection DNNs
	4.1.1 Dataset Composition
	4.1.2 DNN Training

	4.2 Attack-Success Criteria
	4.3 Randomly Applied Transformations
	4.4 White-Box Attacks vs. DNNs
	4.5 Black-Box Attacks vs. DNNs
	4.6 Commercial Anti-Viruses
	4.7 Correctness

	5 Potential Mitigations
	5.1 Prior Defenses
	5.2 Masking Random Instructions
	5.3 Detecting Adversarial Examples
	5.4 Takeaways

	6 Conclusion
	Appendix 1: Comparison to Kreuk et al. and Success After Sanitization
	Appendix 2: Our Attacks' Transferability to Commercial Anti-Viruses
	Appendix 3: In-Place Normalization
	References

