

Quantum Computing (Second

Edition)

A pathway to quantum logic design

Hafiz Md Hasan Babu

Department of Computer Science and Engineering,

University of Dhaka, Dhaka, Bangladesh

IOP Publishing, Bristol, UK

© IOP Publishing Ltd 2023

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system or transmitted in any form or by any means, electronic,
mechanical, photocopying, recording or otherwise, without the prior
permission of the publisher, or as expressly permitted by law or under terms
agreed with the appropriate rights organization. Multiple copying is permitted
in accordance with the terms of licences issued by the Copyright Licensing
Agency, the Copyright Clearance Centre and other reproduction rights
organizations.

Permission to make use of IOP Publishing content other than as set out above
may be sought at permissions@ioppublishing.org.

Hafiz Md Hasan Babu has asserted his right to be identified as the author of
this work in accordance with sections 77 and 78 of the Copyright, Designs and
Patents Act 1988.

ISBN 978-0-7503-5683-1 (ebook)
ISBN 978-0-7503-5681-7 (print)
ISBN 978-0-7503-5684-8 (myPrint)
ISBN 978-0-7503-5682-4 (mobi)

DOI 10.1088/978-0-7503-5683-1

Version: 20230601

IOP ebooks

British Library Cataloguing-in-Publication Data: A catalogue record for this
book is available from the British Library.

Published by IOP Publishing, wholly owned by The Institute of Physics, London

IOP Publishing, No.2 The Distillery, Glassfields, Avon Street, Bristol, BS2 0GR,
UK

US Office: IOP Publishing, Inc., 190 North Independence Mall West, Suite 601,
Philadelphia, PA 19106, USA

mailto:permissions@ioppublishing.org

Contents

Preface to the Second Edition

Acknowledgments

Author biography

Acronyms

Part I Quantum logic

1 Quantum logic

1.1 Overview
1.2 Motivations towards quantum computing
1.3 The relationship between reversible and quantum
logic
1.4 Quantum computers
1.5 The working principles of quantum computers
1.6 The evolution of quantum computers
1.7 Why pursue quantum computing?
1.8 Summary

Critical thinking questions
References

2 Basic definitions of quantum logic

2.1 The quantum qubit

2.2 The quantum gate
2.2.1 The quantum Feynman gate
2.2.2 The quantum Tofolli gate
2.2.3 The quantum Fredkin gate

2.3 Garbage outputs
2.4 Constant inputs
2.5 Area
2.6 Power
2.7 Delay
2.8 Depth
2.9 Quantum cost
2.10 Quantum gate calculation complexity
2.11 Summary

Critical thinking questions
References

3 The quantum qubit string comparator

3.1 Characteristics of a quantum comparator
3.2 The quantum magnitude comparator
3.3 The design of a quantum comparator

3.3.1 Example
3.4 Summary

Critical thinking questions
References

4 The quantum full-adder and subtractor

4.1 The quantum adder
4.1.1 The quantum full-adder

4.2 The quantum subtractor
4.2.1 The quantum half-subtractor
4.2.2 The quantum full-subtractor

4.3 Summary
Critical thinking questions
References

5 The quantum multiplexer and demultiplexer

5.1 The quantum multiplexer
5.1.1 The quantum 2-to-1 multiplexer
5.1.2 Quantum 4-to-1 multiplexer

5.1.3 The quantum 2n-to-1 multiplexer
5.2 The quantum demultiplexer

5.2.1 The quantum 1-to-2 demultiplexer
5.2.2 The quantum 1-to-4 demultiplexer

5.2.3 Quantum 1-to-2n demultiplexer
5.3 Summary

Critical thinking questions
References

6 The quantum adder circuits

6.1 The quantum carry skip adder
6.2 The quantum comparison circuit
6.3 The quantum 2-to-1 multiplier circuit

6.4 The design of a quantum carry skip adder
6.4.1 The four-qubit quantum carry skip adder
6.4.2 The n-qubit quantum carry skip adder
6.4.3 Calculation of the area and power of a quantum
carry skip adder circuit
6.4.4 Complexity of the n-qubit quantum carry skip
adder circuit

6.5 The quantum BCD adder
6.6 Summary

Critical thinking questions
References

7 The quantum multiplier–accumulator

7.1 The importance of a quantum multiplier–accumulator
7.2 The quantum multiplication technique
7.3 Reduction of the garbage outputs and ancillary inputs
of quantum circuits
7.4 The design of a quantum multiplier circuit

7.4.1 The quantum ANDing circuit
7.4.2 The quantum full-adder circuit
7.4.3 The n × n-qubit quantum multiplier

7.5 Accumulator
7.6 Summary

Critical thinking questions
References

8 The quantum divider

8.1 Division algorithms
8.1.1 Classical integer division algorithms
8.1.2 Quantum integer division algorithms

8.2 The importance of the quantum divider
8.3 The tree-based quantum division technique

8.3.1 Definitions and properties of the division
technique
8.3.2 The algorithm of the division technique

8.4 The design of a quantum divider circuit
8.4.1 A technique to minimize the number of
ancillary inputs in the quantum circuit realization
8.4.2 The components of the quantum divider circuit

8.5 Summary
Critical thinking questions
References

9 The quantum BCD priority encoder

9.1 The properties of a quantum encoder
9.2 The design of a quantum BCD priority encoder circuit

9.2.1 The quantum BCD priority encoder circuit
9.2.2 Analysis of the properties of the encoder circuit

9.3 Summary
Critical thinking questions
References

10 The quantum decoder

10.1 The characteristics of a quantum decoder

10.2 The design of a quantum decoder
10.2.1 The quantum decoder circuit
10.2.2 Analysis of the properties of the circuits

10.3 Summary
Critical thinking questions
References

11 The quantum square root circuit

11.1 The properties of a quantum square root function
11.2 The design of a quantum square root circuit

11.2.1 The quantum adder/subtractor circuit
11.2.2 The quantum square root circuit
11.2.3 Analysis of the properties of the quantum
circuit

11.3 Summary
Critical thinking questions
References

12 Quantum latches and counter circuits

12.1 The properties of quantum latches
12.2 The design of quantum latches

12.2.1 The quantum SR latch
12.2.2 The quantum D latch
12.2.3 The quantum T latch
12.2.4 The quantum J–K latch

12.3 The properties of quantum counter circuits

12.4 The design of quantum counters
12.4.1 The quantum asynchronous counter
12.4.2 The quantum synchronous counter

12.5 Summary
Critical thinking questions
References

13 The quantum controlled ternary barrel shifter

13.1 Ternary quantum gates
13.1.1 The quantum ternary Peres gate
13.1.2 The quantum ternary modified Fredkin gate

13.2 The properties of ternary quantum circuits
13.3 The quantum barrel shifter

13.3.1 Logical right shift
13.3.2 Arithmetic right shift
13.3.3 Right rotation
13.3.4 Logical left shift
13.3.5 Arithmetic left shift
13.3.6 Left rotation

13.4 The design of a quantum ternary barrel shifter
13.4.1 The optimized quantum ternary barrel shifter
13.4.2 The properties of the designed circuit

13.5 Summary
Critical thinking questions
References

14 Quantum RAM, quantum ROM, and quantum

cache memory

14.1 The quantum n-to-2n decoder
14.2 The quantum memory unit
14.3 The construction procedure of QRAM
14.4 Quantum ROM
14.5 Quantum cache memory
14.6 Summary

Critical thinking questions
References

15 The quantum arithmetic logic unit

15.1 The design of a quantum ALU
15.1.1 The first approach
15.1.2 The second approach
15.1.3 The third approach

15.2 Summary
Critical thinking questions
References

16 Quantum programmable logic devices

16.1 The quantum programmable array logic
16.1.1 The design procedure and working principles
of quantum PAL
16.1.2 The importance and applications of quantum
PAL

16.2 The quantum programmable logic array

16.2.1 The design procedure and working principles
of quantum PLAs
16.2.2 The importance and applications of quantum
PLAs

16.3 The quantum complex programmable logic device
16.3.1 The design procedure and working principles
of quantum CPLDs
16.3.2 The importance and applications of quantum
CPLD

16.4 The quantum field-programmable gate array
16.4.1 The design procedure and working principles
of quantum FPGAs
16.4.2 The importance and applications of FPGAs

16.5 Summary
Critical thinking questions
References

17 The quantum processor circuit

17.1 Introduction
17.2 Basic definitions
17.3 The block diagram of a quantum processor
17.4 The basic components of a quantum processor

17.4.1 The quantum RAM
17.4.2 The quantum instruction register
17.4.3 The quantum program counter
17.4.4 The quantum decoder
17.4.5 The quantum multiplexer

17.4.6 The quantum arithmetic logic unit
17.4.7 The quantum accumulator

17.5 Applications
17.6 Summary

Critical thinking questions
References

18 Applications of quantum computing technology

18.1 Optimization
18.1.1 The Roswell Park Cancer Institute
18.1.2 Volkswagen group
18.1.3 Recruit Communications

18.2 Machine learning
18.2.1 QxBranch
18.2.2 Los Alamos National Laboratory
18.2.3 NASA

18.3 Biomedical simulations
18.4 Financial services
18.5 Computational chemistry
18.6 Logistics and scheduling
18.7 Cyber security
18.8 Circuit, software, and system fault simulation
18.9 Weather forecasting
18.10 Summary

Critical thinking questions
References

Part II Quantum fault tolerance

19 Quantum fault-tolerant circuits

19.1 The need for quantum fault-tolerant circuits
19.2 The fault-tolerant quantum adder

19.2.1 The fault-tolerant full-adder
19.3 The fault-tolerant multiplier

19.3.1 The fault-tolerant signed multiplier
19.4 The quantum fault-tolerant integer divider

19.4.1 The restoring division algorithm
19.4.2 The subtractor module
19.4.3 The conditional addition operation module
19.4.4 Quantum restoring integer division circuitry

19.5 Summary
Critical thinking questions
References

Part III Quantum-dot cellular automata

20 Quantum-dot cellular automata

20.1 Fundamentals of QCA circuits
20.1.1 Area
20.1.2 Delay
20.1.3 Kink energy
20.1.4 Power
20.1.5 Overall cost

20.2 The QCA cell
20.3 Information and data propagation
20.4 Basic QCA elements and gates

20.4.1 The QCA majority voter
20.4.2 The QCA AND gate
20.4.3 The QCA OR gate
20.4.4 The QCA NOT gate
20.4.5 The QCA wire

20.5 The QCA clock
20.5.1 Special cell arrangements and symmetric
cells
20.5.2 The NOT gate clock zones
20.5.3 The majority voter clock zones

20.6 Summary
Critical thinking questions
References

21 The QCA adder and subtractor

21.1 The Ex-OR gate
21.2 The QCA half-adder and -subtractor
21.3 The QCA full-adder and full-subtractor

21.3.1 Implementation of the full-adder and full-
subtractor

21.4 Summary
Critical thinking questions
References

22 The QCA multiplier and divider

22.1 The QCA multiplier
22.1.1 Multiplication networks
22.1.2 QCA multiplication networks
22.1.3 Multiplier design

22.2 The QCA divider
22.2.1 The non-restoring binary divider
22.2.2 Divider implementation

22.3 Summary
Critical thinking questions
References

23 QCA asynchronous and synchronous counters

23.1 The asynchronous counter
23.1.1 The dual-edge triggered J–K flip-flop
23.1.2 The design of dual-edge triggered J–K flip-
flop
23.1.3 The asynchronous backward counter

23.2 The synchronous counter
23.2.1 QCA synchronous counters

23.3 Summary
Critical thinking questions
References

24 The QCA decoder and encoder

24.1 The QCA decoder

24.1.1 The QCA 2-to-4 decoder
24.1.2 The QCA 3-to-8 decoder

24.2 The QCA encoder
24.2.1 The QCA turbo encoder design
24.2.2 The RC encoder with single-feedback
24.2.3 The RC encoder with multi-feedback

24.3 Summary
Critical thinking questions
References

25 The QCA multiplexer and demultiplexer

25.1 The QCA 2-to-1 multiplexer
25.2 The QCA 4-to-1 multiplexer
25.3 The QCA 1-to-2 demultiplexer
25.4 The QCA 1-to-4 demultiplexer
25.5 Multiplexing/demultiplexing using QCA

25.5.1 The effect of the selector line (S0,S1) on the
2-to-1 MUX/1-to-2 DEMUX

25.6 Summary
Critical thinking questions
References

26 QCA flip-flops

26.1 QCA D flip-flops
26.2 QCA J–K flip-flops
26.3 QCA SR flip-flops

26.4 QCA T flip-flops
26.5 Applications
26.6 Summary

Critical thinking questions
References

27 QCA programmable logic devices

27.1 The QCA programmable array logic
27.2 The QCA programmable logic array
27.3 The QCA field-programmable gate array
27.4 The importance and applications of QCA
programmable logic devices
27.5 Summary

Critical thinking questions
References

28 QCA RAM, ROM, and cache memory

28.1 The RAM cell
28.2 The QCA ROM
28.3 The QCA cache memory
28.4 Summary

Critical thinking questions
References

29 The QCA processor circuit

29.1 Introduction
29.2 Basic definitions

29.3 The block diagram of a QCA processor
29.4 The basic components of a QCA processor

29.4.1 The QCA RAM
29.4.2 The QCA instruction register
29.4.3 The QCA accumulator
29.4.4 The QCA decoder
29.4.5 The QCA multiplexer
29.4.6 The QCA program counter
29.4.7 The QCA ALU

29.5 Summary
Critical thinking questions
References

30 Applications of QCA technology

30.1 High performance
30.2 Small size
30.3 Low power consumption
30.4 Encryption and authentication
30.5 Higher data speed
30.6 Image processing
30.7 Summary

Critical thinking questions
References

Part IV QCA fault tolerance

31 QCA fault-tolerant circuits

31.1 The necessity of QCA fault-tolerant circuits
31.2 The fault-tolerant QCA majority gate
31.3 The fault-tolerant QCA 1-to-2 demultiplexer
31.4 The fault-tolerant QCA full-adder
31.5 The fault-tolerant QCA SRAM cell
31.6 The fault-tolerant QCA subtractor
31.7 The fault-tolerant QCA multiplier
31.8 Summary

Critical thinking questions
References

To my respected, wonderful parents and also to my beloved

wife, daughter, and son who made it possible for me to write

this book

Preface to the Second Edition

The rise of nanotechnology has led to an increasing role for

quantum computing in the development of smaller and

more energy-efficient computers. By leveraging the

principles of quantum mechanics, certain computations can

be performed at significantly higher speeds. Quantum

computing represents one of the most promising

nanotechnologies for creating modern and compact

computer systems. Unlike traditional computers that rely on

binary logic, quantum computers operate on a

fundamentally different concept. They exploit quantum

entanglement to simultaneously evaluate multiple

probabilities. The processing and memory unit of a quantum

computer system is becoming small like an atom and the

switching techniques have reached the peak of their

development. Consequently, a completely fresh mindset is

needed for constructing computing machines. Recently,

advancements in mathematics, materials science, and

computer engineering have brought quantum computing

from the realm of theory into practical implementation.

This quantum computing book covers basic themes of

quantum computing in the first part, fault-tolerant quantum

computing in the second part, quantum-dot cellular

automata (QCA) in the third part and QCA fault-tolerant

circuits in the fourth part. Each part has a critical thinking

question section for the readers.

The book covers the design aspects of quantum

computing, specifically focusing on the design of various

quantum circuits. These circuits include important

components such as adder, multiplier, divider, encoder,

decoder, barrel shifter, comparator, and arithmetic logic unit

(ALU) as well as the processor itself. These quantum circuits

serve as the essential building blocks of a functioning

quantum computer. By studying the content of this book,

readers will gain a comprehensive understanding of

quantum computing, ranging from basic concepts to

advanced topics. This knowledge will empower them to

create new and innovative quantum circuits. Additionally,

the book explores the significance of quantum error

correction, which has greatly enhanced the potential of

quantum computing technology in the long run. With the

implementation of quantum error correction, the encoded

quantum information can be safeguarded against errors

resulting from uncontrolled interactions with the

environment or imperfect execution of quantum logical

operations.

This book also covers the area of fault-tolerant quantum

computing, focusing on the designs of various fault-tolerant

quantum circuits, including adder, multiplier, and divider.

Achieving fault tolerance in quantum circuits is a highly

intricate task. It involves the development of circuits that

can effectively protect qubits from quantum errors resulting

from insufficient control over environmental interactions. By

studying this section, readers will get a greater level of

knowledge of fault-tolerant quantum circuits and acquire the

knowledge necessary to design their own fault-tolerant

circuits. QCA (Quantum-dot Cellular Automata) represents a

novel computational paradigm that encodes binary

information through charge configurations within individual

cells, departing from the conventional approach of using

current switches. In QCA, computation is achieved solely

through Coulombic interactions, eliminating the need for

current flow. This revolutionary paradigm offers a potential

solution for transistor-less computation at the nanoscale. By

studying this book, the readers will achieve a deep

knowledge of QCA and the design processes involved in

creating various quantum circuits using QCA design

software. Additionally, they will become familiar with the

costs associated with QCA circuits, including cell area,

delay, kink energy, and power consumption.

In the last part, the QCA fault-tolerant circuits are

discussed. The necessity of QCA fault-tolerant circuits, fault-

tolerant QCA majority gate, fault-tolerant QCA 1-to-2

demultiplexer, fault-tolerant QCA full-adder, fault-tolerant

QCA SRAM cell, fault-tolerant QCA subtractor and fault-

tolerant QCA multiplier are presented in this part.

This comprehensive book serves as an invaluable

resource for both quantum computing researchers,

professionals and students. Given the scarcity of books in

this particular field, it fills an important gap and provides a

wealth of knowledge. Whether you're a beginner or an

advanced reader, this book caters to a wide range of

expertise levels, making it suitable for individuals at any

stage of their quantum computing journey.

Acknowledgments

I would like to express my sincerest gratitude and particular

appreciation to the various researchers in the field of

quantum computing. The contents in this quantum

computing book have been compiled from a wide variety of

research works, where the researchers are pioneers in their

respective fields. All the research articles related to the

contents are listed at the end of each chapter.

I am grateful to my parents and family members for their

endless support. Most of all, I want to thank my lovely wife

Mrs Sitara Roshan, my sweet daughter Ms Fariha Tasnim,

and my sweet son Md Tahsin Hasan for their invaluable

cooperation in completing this book.

Finally, I am also grateful to all of those who have

provided immense support and their valuable time to finish

this book, in particular my beloved students Nitish Biswas,

Md Tareq Hasan, and Rownak Borhan Himel.

Author biography

Dr Hafiz Md Hasan Babu

Dr Hafiz Md Hasan Babu is currently working as a

Professor in the Department of Computer Science and

Engineering as well as the Dean in the Faculty of

Engineering and Technology of the University of Dhaka,

Bangladesh. In addition, at present, he is a member (part-

time) of the Bangladesh Accreditation Council, Ministry of

Education of the Government of the Peopleʼs Republic of

Bangladesh. He is also the Director of the Board of Directors

of the Bangladesh Submarine Cable Company Limited. Dr

Hasan Babu was the Chairman of the Department of

Computer Science and Engineering of the University of

Dhaka from 2003 to 2006 and Pro-Vice-Chancellor of The

National University of Bangladesh from 2016 to 2020. He

was also a Professor and the founding Chairman of the

Department of Robotics and Mechatronics Engineering,

University of Dhaka, Bangladesh. Dr Hasan Babu obtained

his PhD in Electronics and Computer Science in Japan under

a Japanese Government Scholarship and received his MSc

degree in Computer Science and Engineering in the Czech

Republic under a Czech Government Scholarship. He also

received a DAAD Research Fellowship from Germany.

Dr Hafiz Md Hasan Babu was awarded the Dr M O Ghani

Memorial Gold Medal by the Bangladesh Academy of

Sciences in 2017 for his excellent research work in the

progress of physical sciences in Bangladesh. In addition, he

was awarded the UGC Gold Medal Award-2017 in the

Mathematics, Statistics and Computer Science category for

his research work on quantum multiplier–accumulator

devices. He is currently an Associate Editor of the well-

known research journal IET Computers and Digital

Techniques, published by the Institution of Engineering and

Technology of the United Kingdom. He was a member of the

Prime Ministerʼs ICT Task Force in Bangladesh. Dr Hasan

Babu was also the President of the Bangladesh Computer

Society for the session 2017–20. At present, he is the

President of the International Internet Society, Bangladesh

chapter.

Professor Dr Hafiz Md Hasan Babu has published more

than a hundred research papers. Three of his research

papers have received top research awards at international

conferences.

In addition, he has published the following four textbooks

for graduate and post-graduate students with three well-

known publishers in the UK and USA :

Hasan Babu H M 2020 Quantum Computing: A Pathway

to Quantum Logic Design (Bristol: IOP Publishing)

Hasan Babu H M 2021 Reversible and DNA Computing

(Chichester: Wiley)

Hasan Babu H M 2022 VLSI Circuits and Embedded

Systems (Boca Raton, FL: CRC Press)

Alam M J, Hu G, Hasan Babu H M and Xu H 2022 Control

Engineering Theory and Applications (Boca Raton, FL:

CRC Press)

Acronyms

ALU arithmetic logic unit

CPLD complex programmable logic device

CPU central processing unit

CSM carry shift multiplication

MSD most significant digit

ODQ overflow detection qubit

PLA programmable logic array

PLD programmable logic device

PNS partial numerator subtractor

PPA partial product addition

PPG partial product generation

QCA quantum-dot cellular automata

QCSA quantum carry skip adder

QFS quantum full-subtractor

QIP quantum information processing

QPAL quantum programmable array logic

RAM random access memory

Part I

Quantum logic

An overview of quantum circuits

Quantum computation and quantum information are the

study of the information processing tasks that can be

accomplished using quantum mechanical systems.

Quantum computation is an application of quantum

mechanics, where the evolution of a quantum system is

described by a quantum algorithm. This observation

suggests that quantum computing can be used as an

introduction to quantum mechanics, because quantum

computation and quantum information offer an excellent

conceptual laboratory for understanding the basic concepts

and unique aspects of quantum mechanics.

Advancements in higher-level integration and fabrication

processes have resulted in better logic circuits and energy

loss has also been reduced dramatically over the last few

decades. This trend of the reduction of heat in computation

also has its physical limit. It is well understood that in logic

computation every bit of information loss generates kT ln 2
joules of heat energy, where k is Boltzmann’s constant of

1.38 × 10−23
 J K−1 and T is the absolute temperature of the

environment. At room temperature, the dissipating heat is

around 2.9 × 10−21
 J. The energy loss limit is also important

as it is likely that the growth of heat generation as a cause

of information loss will be noticeable in the future.

Quantum computing is an emerging technology that has

the potential to change the perspectives and applications of

computing in general. A wide range of applications can be

enabled, from faster algorithmic solutions of still-difficult

classical problems to theoretically more secure

communication protocols. A quantum computer uses the

quantum mechanical effects of particles or particle-like

systems, and a major similarity between quantum and

classical computers is that both are abstracted as

information processing machines. Whereas a classical

computer operates on classical digital information, a

quantum computer processes quantum information, which

shares similarities to analog signals. One of the central

differences between the two types of information is that

classical information is more fault-tolerant compared to its

quantum counterpart.

It is possible to visualize a quantum circuit as a series of

gates acting on the qubits which are abstracted as wires.

The wires do not have a direct physical representation, but

are associated with a temporal axis. The inputs are on the

left of the diagram, the outputs on the right, and in each

time step a quantum gate is applied to a qubit’s state

abstracted by the wire. It is standard to assume that the

inputs are being initialized in the computational basis ∣ 0 >,

and it will be indicated if the case is otherwise.

Reliable quantum circuits are the result of designing

circuits that operate directly on encoded quantum

information, but the circuit’s reliability is also increased by

supplemental redundancies, such as sub-circuit repetitions.

Reliable quantum circuits have not been widely used, and

one of the major obstacles is their vast associated resource

overhead, however, recent quantum computing

architectures show promising scalabilities. Consequently,

the number of particles used for computing can be

increased more easily and the classical control hardware

(inherent for quantum computation) is also more reliable.

The number of output bits is relatively small compared to

the number of input bits in most computing tasks. For

example, in a decision problem, the output is only one bit

(yes or no) and the input can be as large as desired.

However, computational tasks in quantum computing

require that all of the information encoded in the input

should be preserved in the output. One might expect to

obtain further speed-ups by adding instructions to allow the

computation of a quantum circuit.

Quantum communication and computation study

information transmission and processing as physical

phenomena that follow the laws of quantum mechanics.

Considering quantum mechanics introduces new

possibilities, such as private communication with quantum

cryptography or efficient factoring algorithms. Most

quantum information protocols and algorithms can be

explained as a sequence of transformations applied to a

known initial state and a final measurement stage. The

intermediate evolution is usually the key to the procedure.

This state evolution can be studied from different

perspectives.

This part of the book starts with some background and

preliminary studies on quantum logic and some

characteristics, as well as the evolution of quantum

computers, which are discussed in chapter 1. Many of the

quantum gates are included in multiple chapters. Basic

definitions of the different efficiency parameters of quantum

logic which are needed to design quantum circuits are

described in chapter 2. Chapter 3 presents the

characteristics and design procedure of a quantum bit string

comparator. The designs for a quantum full-adder and

quantum subtractor circuits are shown in chapter 4. In this

chapter, the design techniques for a quantum full-adder as

well as a quantum half-subtractor and full-subtractor are

described. The design for a quantum multiplexer and

quantum demultiplexer are discussed in chapter 5. In this

chapter, a quantum 2-to-1 multiplexer, a quantum 4-to-1

multiplexer, and a quantum 2n
-to-1 multiplexer are shown.

In addition, a quantum 1-to-2 demultiplexer, a quantum 1-

to-4 demultiplexer, and a quantum 1-to-2n
 demultiplexer are

also provided in this chapter. Chapter 6 presents the design

of a quantum adder circuit which is optimized in terms of

quantum cost. The four-bit quantum carry skip adder and

eight-bit quantum carry skip adder circuits are described in

this chapter. The design for a quantum multiplier

accumulator is described in chapter 7. The reduction of

garbage outputs and ancillary inputs of quantum circuits is

also described in this chapter. Chapter 8 presents the

quantum divider circuit. The tree-based quantum division

technique is also described in this chapter.

The design procedure and analysis of the properties of a

quantum binary coded decimal (BCD) priority encoder

circuit are introduced in chapter 9. Chapter 10 describes the

design procedure and analysis of the properties of a

quantum decoder circuit. The quantum square root circuit is

described in chapter 11. In this chapter, the design of a

quantum adder/subtractor circuit is also shown. The designs

for a quantum SR latch, quantum D latch, quantum T latch,

and quantum J–K latch are discussed in chapter 12. The

quantum asynchronous and quantum synchronous counters

are also introduced in this chapter. Chapter 13 presents the

design of a quantum controlled ternary barrel shifter circuit.

In this chapter, quantum ternary Peres gates and quantum

ternary modified Fredkin gates are used. The construction

procedure of quantum random access memory is shown in

chapter 14. The construction procedure for a quantum

memory unit is also given in this chapter. Three approaches

for designing a quantum arithmetic logic unit are described

in chapter 15. Chapter 16 presents the quantum

programmable logic devices such as quantum PAL, quantum

PLA, quantum FPGA, quantum CPLD and chapter 17

presents the details of quantum processor circuit. Finally,

several real-life applications of quantum computing

technology are given in chapter 18.

IOP Publishing

Quantum Computing (Second Edition)

A pathway to quantum logic design

Hafiz Md Hasan Babu

Chapter 1

Quantum logic

Learning objectives

Learn about quantum computers and quantum

logic.

Describe the operation of a quantum computer.

Study the superposition of the states that a qubit

can represent.

Understand how quantum and reversible logic

interact with one another.

Discuss the significance of quantum computers.

Know the benefits and drawbacks of quantum

computers.

Obtain information about the background of a

quantum computer.

Understand the differences between conventional

and quantum computers.

In the age of developing nanotechnology, quantum

computing can play an incredibly important role in

developing more compact and lower power consumption

computers. The main appeal of quantum logic originates in

its reflection of the physical law of energy conservation, in

which the creation or destruction of energy is impossible,

and only transformation from one form to another is

possible. Hence, the fundamental law of energy

conservation is incorporated into the logic design of circuits

and systems by the quantum logic. The motivation to

implement circuits and systems using quantum computing

is the fact that, theoretically, the internal computations in

quantum logic systems consume no power.

1.1 Overview

Quantum computing is a technology which consumes less

power and for which the design is compact. In irreversible

logic, energy dissipation is a common phenomenon since

every bit loss causes energy loss in the irreversible

operation. Quantum logic circuits are necessarily reversible

and hence there is no dissipation of energy while processing

a bit in quantum computation.

Quantum technology is one of the most promising

nanotechnologies which are useful for designing modern

circuits. Logic design with quantum logic is of great interest

in recent technologies which allow scaling to atomistic

dimensions. In this particular logic design approach,

quantum cells are arranged in a particular fashion to define

the logic. A classical gate cannot handle the superposition of

states represented by a qubit (discussed in the section 2.1

of chapter 2). Thus, this forms the special case of the

quantum device.

Quantum registers, which are necessary for the

implementation of a quantum electronics device, combine n

qubits to form larger Hilbert spaces Hn using the tensor

product (⊗) operator to form

∣ Ψ⟩ =∣ Ψ1⟩⊗ ∣ Ψ2⟩ ⊗ ⋯ ⊗ ∣ Ψn⟩ =
n

∑
i=0

∣ αi ∣ i⟩;

where αi ∈ C, ∣ Ψi⟩ represents a qubit and

n

∑
i=0

∣ αi ∣2= 1.

High-speed multiplication has always been a fundamental

requirement of high-performance processors and systems.

In quantum signal processing (QSP) applications,

multiplication is one of the most utilized arithmetic

operations. Improving multiplier design directly benefits the

high-performance embedded processors and QSP

applications used in consumer and industrial electronic

products. Moreover, quantum information processing (QIP)

is a high-impact research area in quantum information

science to construct a quantum computer. The main goal of

QIP is to harness the fundamental laws of quantum

mechanics to improve all aspects (e.g. acquisition,

transmission, and processing) of information processing

dramatically as well as to enhance the performance of

quantum computers.

There are several tasks for which a quantum computer

will be useful. The first, which is mentioned most frequently,

is that quantum computers will be able to read secret

messages communicated over the Internet using current

technologies such as Rivest–Shamir–Adleman (RSA), Diffie–

Hellman, and other cryptographic protocols; these protocols

are based on the difficulty of number theoretic problems

such as factoring and discrete logarithms. In addition,

quantum computers are also useful for scientists conducting

virtual experiments and searching huge amounts of data.

1.2 Motivations towards quantum

computing

Quantum logic is a great achievement for very-large-scale

integrated (VLSI) circuit design, and can work faster than

classical logic circuits. Quantum circuits are used to build

quantum super computers and can solve complex problems

in polynomial time. Quantum algorithms are used to

implement quantum circuits.

Quantum bits have the important property of

superposition, which means that the values of quantum bits

can stay in more than one position at the same time, which

is impossible in the case of the classical logic designs.

Reversible computation supports binary (0, 1) values,

whereas quantum logic can hold multiple values (binary,

ternary, quaternary, etc). The multi-value support makes

quantum circuits more compact and efficient with optimal

delay. Unlike the two fixed values 0 or 1 of classical logic,

quantum bits can take the values of a linear combination of

0 and 1. Quantum circuits are inherently reversible and

there is no dissipation of energy in quantum circuits. Thus

these circuits prevent the loss of information, since energy

dissipation causes bit or information loss. The above-

mentioned properties of quantum logic circuits have

motivated researchers to design circuit components using

quantum logic.

1.3 The relationship between

reversible and quantum logic

Reversible logic circuits have one-to-one mapping between

inputs and outputs. In other words, if the number of outputs

in a logic circuit is equal to the number of inputs, and any

input pattern may map to a unique output pattern, it is

called a reversible logic circuits.

All reversible circuits can be represented by quantum

logic gates. Quantum circuits maintain the rules of

reversible logic. Quantum logic circuits must have a one-to-

one relationship between the input and output vectors like

reversible logic. Quantum logic gates have unique unitary

matrices which are also present in reversible logic. However,

there are also differences between these two types of logic.

Unlike in quantum logic, the superposition of bits and

multiple values is not possible in reversible logic. Thus both

similarities and differences exist between reversible and

quantum logic.

Reversible circuits have broad applications in

nanocomputing. Nanoelectronics engineering that would

enable device scaling down to a molecular levels will almost

surely imply a cellular architecture with near-neighbor

connectivity. The scheme which has been developed to

physically realize such a concept is called the quantum-dot

cellular automaton (QCA). QCA have drawn a lot of attention

for their very small feature size and ultra-low power

consumption, which make them one candidate suitable for

replacing complementary metal-oxide semiconductor

(CMOS) technology.

1.4 Quantum computers

In 1959, Richard Feynman noted that ‘as electronic

components begin to reach microscopic scales, effects

projected by quantum mechanics occur’. He advised that it

might be used in the design of more powerful computers. In

particular, quantum researchers hope to bind the

superposition. In the quantum mechanical world, objects do

not necessarily have visibly defined states. A traditional

digital computer works with binary digits that can be in one

of two states, denoted as 0 and 1; thus, for example, a four-

bit computer register can hold any one of 16 (24
) possible

numbers. However, a quantum bit (qubit) exists in a

wavelike superposition of values from 0 to 1; thus, for

example, a four-qubit computer register can hold 16

different numbers concurrently. In theory, a quantum

computer can therefore control many values in parallel, so

that a 30-qubit quantum computer would be equivalent to a

digital computer proficient at performing 10 trillion floating-

point operations per second.

During the 1980s and 1990s, the theory of quantum

computers advanced considerably beyond Feynman’s early

assumptions. In 1985, David Deutsch designated the

structure of quantum logic gates for a universal quantum

computer. In 1994, Peter Shor established an algorithm to

factor numbers with a quantum computer that would

involve six qubits (although more qubits would be essential

for factoring large numbers in a rational time).

In 1998, Isaac Chuang, Neil Gershenfeld, and Mark

Kubinec produced the first quantum computer (two-qubit)

that could be burdened with data and output a result.

Although their system was rational for only a few

nanoseconds and slight from the perspective of solving

meaningful problems, it verified the principles of quantum

computation. This type of quantum computer can be

prolonged by using molecules with more individually

addressable elements. In March 2000, Emanuel Knill,

Raymond Laflamme, and Rudy Martinez reported that they

had generated a seven-qubit quantum computer. However,

many researchers are skeptical about extending magnetic

techniques much beyond 10 to 15 qubits because of

diminishing consistency among the elements.

Quantum computers established on semiconductor

technology are yet another opportunity. In a collective

approach a discrete number of free electrons (qubits) reside

within incredibly small sections known as quantum dots.

Although relying on decoherence, such quantum computers

are constructed on well-established, solid-state procedures

and offer the prospect of readily applying integrated circuit

‘scaling’ technology. In addition, large groups of identical

quantum dots could theoretically be contrived on a single

silicon chip. The chip controls an external magnetic field

that controls the electron spin states, while neighboring

electrons are weakly coupled through quantum mechanical

effects. An array of covered wire electrodes allows individual

quantum dots, which have been discussed.

1.5 The working principles of

quantum computers

The huge amount of processing power created by computer

designers has not yet been able to satisfy the desire for

speed and computing ability. In 1947, Howard Aiken claimed

that only six electronic digital computers would satisfy the

computing needs of the United States. Others have made

similar inaccurate predictions about the amount of

computing power that would satisfy the increasing needs of

technological. Of course, Aiken did not take into account the

large amounts of data produced by scientific research, the

explosion of personal computers, or the appearance of the

Internet, which further driven the need for computing power.

Scientists have already constructed basic quantum

computers that can carry out certain calculations. Quantum

computers will harness the power of atoms and molecules

to achieve memory and processing activities. Quantum

computers have the potential to achieve certain controls

significantly faster than any silicon-based computer. In this

book, the reader will learn what the design mechanisms of a

quantum computer and just how they will be adapted for

the next era of computing.

It is not necessary to look back too far to find the origins

of quantum computing, as it was first conceived of less than

30 years ago. On the other hand, classical computers have

been used, with many difficulties, for a comparatively long

time. Paul Benioff is credited with being the first to apply

quantum theory to computers, in 1981, when he posited

creating a quantum Turing machine.

1.6 The evolution of quantum

computers

Quantum computing is still in its emerging stages. There is a

long way to go before a functionally running quantum

computer can be built, let alone brought to the market.

However, progress in this new technology is occurring

regularly and no chronological record can ever be complete.

What follows is a brief timeline clarifying key areas of

progress in quantum computing. Much of the technical

development has been achieved in this century, while most

of the primary theoretical perspectives were laid down in

the late twentieth century.

In 1980, Paul Benioff was the first to design a computer

which operated under quantum mechanical principles. His

idea of a quantum computer was based on Alan Turing’s

famous paper tape computer, described in his article

published in 1936. In 1981, Feynman proved that it was

impossible to simulate quantum systems on a classical

computer. His argument hinged on Bell’s theorem, written in

1964. In 1985, David Deutsch published a report describing

the world’s first universal quantum computer. He showed

how such a quantum machine could reproduce any

realizable physical system. Enthusiasm for creating the first

quantum computer was stimulated by Paul Shor’s algorithm

in 1994. Shor described a method for factorizing large

integers. This had serious implications for cryptography,

which relies on this operation being difficult in order to keep

codes secure. Shor’s algorithm searched for periodicities in

long integer-sequences of repeated digits. It used the

quantum principles of superposition to scour for periodicities

in the astonishingly fast time of a few minutes. To perform

this same computation on a classical computer would take

longer than the age of the Universe. In 1996, Lov Grover

used quantum mechanics to solve an old unstructured

search problem. For example, if someone wants to match a

large database of names with a long list of telephone

numbers, a classical computer could only solve this problem

by querying each name with a telephone number until it

found the right one, which is not fewer than O(N). Grover’s

quantum algorithm, however, produces the output value

using only O(√N) evaluations of the function.

In 2000, the first working five-qubit nuclear magnetic

resonance (NMR) computer was put through its paces at the

Technical University of Munich. Shortly after, the Los Alamos

National Laboratory surpassed this feat with a working

seven-qubit NMR quantum computer.

The year 2001 is known for the demonstration of Shor’s

algorithm. A team at the IBM Almaden Research Center in

California succeeded in factorizing the integer 15 into 5 and

3. They used a thimbleful of a bespoke liquid containing

billions of molecules. The molecules were constructed from

five fluoride and two carbon atoms, each with their own

nuclear spin state. The molecules worked as a seven-qubit

quantum computer when pulsed with electromagnetic

waves and monitored using NMR.

In 2006, researchers offered a new functioning standard

by monitoring a 12-qubit quantum system with only minimal

decoherence. NMR quantum information processors were

used to decrypt the computation. These quantum controls

led to the hope that higher-qubit quantum computers might

be available one day. The same year, scientists took a step

closer to the building of a quantum gate, the quantum

representation of a mathematical rule. Also in 2006,

scholars created molecules of quantum-dot pairs. These

have great potential for quantum computers, in particular if

more complex elements can be created.

This book focuses on how quantum gates and quantum

representations of different circuits are to be designed to

make a complete quantum computer. Readers will be

motivated to design such circuits and to make quantum

representations of different sequential and logical circuits of

their own with different examples and designs of the circuit.

1.7 Why pursue quantum computing?

Despite the most remarkable wave of technological

inventions, there are definite computational problems that

the digital revolution still cannot seem to solve, even though

some of these computational problems could be solved by

scientific advances. Although conventional computers have

doubled in processing speed and power nearly every two

years for decades, they still do not appear to be fast enough

to solve these enduring problems. In the long run, to solve

the world’s most tenacious computing problems

competently, we will need to turn to an utterly new and

more capable machine: the quantum computer.

Finally, the dissimilarity between a classical computer

and a quantum computer is not like the difference between

an old car and a new one. Instead, it is like the difference

between a horse and a hawk: while one can run, the other

can fly. Classical computers and quantum computers

certainly have that difference. In this chapter we have taken

a careful look at where the key differences lie and have take

a profound plunge into what makes quantum computers

unique.

1.8 Summary

This chapter mainly introduces researchers to quantum logic

and simply delineates why future generations will choose

quantum computing instead of conventional computers. In

this chapter, the relation between reversible and quantum

logic, the salient principles of quantum computers, their

evolution, and necessity are described briefly.

Critical thinking questions

1. Why do quantum computers perform better than

conventional computers?

2. Give an explanation of the distinction between bits and

qubits in terms of quantum computing and conventional

computing.

3. How do reversible and quantum logic relate to each

other?

4. What makes quantum computing superior to

conventional computers for future generations?

References

[1] Bonsor K and Strickland J 2000 How quantum computers work How Stuff

Works https://computer.howstuffworks.com/quantum-computer.htm
(Accessed: 4 December 2018)

[2] Wikipedia Quantum cellular automaton
https://en.wikipedia.org/wiki/Quantum_cellular_automaton (Accessed: 4
December 2018)

[3] Holton W C Quantum computer Encyclopædia Britannica

https://www.britannica.com/technology/quantum-computer (Accessed: 4
December 2018)

[4] Timeline of quantum computers Quantum Computing 101

http://quantumly.com/timeline-of-quantum-computing-history-of-quantum-
computers//-dates.html (Accessed: 4 December 2018)

[5] Akbar E P A, Haghparast M and Navi K 2011 Novel design of a fast
reversible Wallace sign multiplier circuit in nanotechnology Microelectron.

J. 42 973–81
[6] Barenco A, Bennett C H, Cleve R, DiVincenzo D P, Margolus N, Shor P,

Sleator T, Smolin J A and Weinfurter H 1995 Elementary gates for quantum
computation Phys. Rev. A 52 3457

[7] Cai X-D, Wu D, Su Z-E, Chen M-C, Wang X-L, Li L, Liu N-L, Lu C-Y and Pan
J-W 2015 Entanglement-based machine learning on a quantum computer
Phys. Rev. Lett. 114 110504

[8] Cohen D W 2012 An Introduction to Hilbert Space and Quantum Logic

(Berlin: Springer)
[9] Dibbo S V, Babu H M H and Jamal L 2016 An efficient design technique of a

quantum divider circuit IEEE Int. Symp. on Circuits and Systems (ISCAS)

(Piscataway, NJ: IEEE) pp 2102–5
[10] Kitaev A Y 1997 Quantum computations: algorithms and error correction

Russ. Math. Surv. 52 1191–249

https://computer.howstuffworks.com/quantum-computer.htm
https://en.wikipedia.org/wiki/Quantum_cellular_automaton
https://www.britannica.com/technology/quantum-computer
http://quantumly.com/timeline-of-quantum-computing-history-of-quantum-computers//-dates.html
http://dx.doi.org/10.1016/j.mejo.2011.05.007
http://dx.doi.org/10.1103/PhysRevA.52.3457
http://dx.doi.org/10.1103/PhysRevLett.114.110504
http://dx.doi.org/10.1070/RM1997v052n06ABEH002155

[11] Landaurer R 1961 Irreversibility and heat generation in the computational
process IBM J. Res. Dev. 5 183–91

[12] Li D-F, Wang R-J, Zhang F-L, Deng F-H and Baagyere E 2015 Quantum
information splitting of arbitrary two-qubit state by using four-qubit cluster
state and bell-state Quantum Inf. Process. 14 1103–16

[13] Nielsen M A and Chuang I 2002 Quantum Computation and Quantum

Information 10th edn (Leiden: Cambridge University Press)
[14] Schubert M and Rana F 2006 Analysis of terahertz surface emitting

quantum-cascade lasers IEEE J. Quantum Electron. 42 257–65
[15] Tóth G, Timler J and Lent C S 1998 Quantum computing with quantum-dot

cellular automata using coherence vector formalism Proc IEEE Int.

Workshop on Computational Electronics (IWCE-6)

http://dx.doi.org/10.1147/rd.53.0183
http://dx.doi.org/10.1007/s11128-014-0906-8
http://dx.doi.org/10.1109/JQE.2005.863138

IOP Publishing

Quantum Computing (Second Edition)

A pathway to quantum logic design

Hafiz Md Hasan Babu

Chapter 2

Basic definitions of quantum logic

Learning objectives

Discuss quantum qubits.

Understand how the gate’s area affects the circuit’s

size.

Define several quantum gates.

Acquire knowledge of the strength, depth, and

delay of any quantum circuit.

Obtain information about the garbage outputs and

constants inputs.

Determine the cost of a quantum circuit and the

complexity of quantum gates.

Quantum computing was advanced as a technological

attempt to build a propositional structure that would permit

relating the events of interest in quantum mechanics.

Quantum computing seeks to replace the Boolean structure

which, although appropriate for addressing classical physics,

is insufficient for representing atomic elements. The

scientific structure of the propositional linguistics of classical

systems is a power set, partly ordered by set enclosure, with

a pair of operations that denote conjunction and disjunction.

During the progress of quantum computing, numerous

lines of study have tried to address quantum mechanics

from a logical viewpoint. This book offers a map of these

multiple methods in order to familiarize the reader with the

very different approaches and problems deliberated in the

quantum computing literature. When possible, redundant

theories, algorithms, and examples are avoided in order to

provide an instinctive understanding of the ideas before

designing or presenting the associated mathematics.

The procedure of a two-qubit ‘controlled-NOT’ quantum

logic gate has been designed which, in concurrence with

simple single-qubit operations, forms a common quantum

logic gate for quantum computation. The two quantum

qubits placed in the internal and external degrees of

freedom of a single trapped element which is first laser

cooled to the zero-point energy. Decoherence properties are

acknowledged for the operation, and the prospect of

expanding the system to more qubits seems favorable.

2.1 The quantum qubit

A quantum bit (qubit) is typically derived from the state of a

two-level quantum system, such as the ground and excited

states of an atom or the vertical and horizontal polarizations

of a single photon. A qubit, represented by ∣ A⟩, is the basic

unit of information in a quantum computer, which can hold

two states, 0 or 1, simultaneously or at different times. A

qubit can also be a superposition (both states at the same

time) of these two states, i.e. a linear combination of the

binary values ⟩ and ⟩ (α ∣ 0⟩i + β ∣ 1⟩i, where α and β

are the probabilities of being in the ⟩ and ⟩ states,

respectively), whereas classical bits or binary bits are in one

of two possible states, labeled 1 and 0.

2.2 The quantum gate

A quantum gate is a basic quantum circuit operating on a

small number of qubits. Previously, various quantum gates

1 0
1 0

with different functionalities have been designed. Among

them, the NOT, CNOT, controlled-V, and controlled-V+ gates

represent an important class of quantum gates. These gates

are shown in figure 2.1. In this figure the control, target, and

contact qubits are represented by the ∙, ⊕, and ∣ symbols,

respectively. In a quantum gate the number of outputs must

be equal to the number of inputs.

Figure 2.1. Basic quantum gates. (a) Quantum NOT

gate. (b) Quantum CNOT gate. (c) Controlled-V gate. (d)

Controlled-V+ gate.

2.2.1 The quantum Feynman gate

The quantum Feynman gate is a 2 × 2 quantum gate which

implements the logical functions of P = A and Q = A ⊕ B,

and is illustrated in figure 2.2. The quantum Feynman gate

can be used for copying a bit. When B is set to zero, then

the output vector will be P = A and Q = A, which ensures

copying of the input A.

Figure 2.2. The quantum Feynman gate.

2.2.2 The quantum Tofolli gate

The quantum Tofolli gate is a 3 × 3 gate in which A, B, and C

are input vectors and the output vectors are P = A, Q = B,

and R = AB ⊕ C logical functions. The quantum Tofolli

gate can implement the ‘AND’ operation when C is set to

zero. The quantum Tofolli gate is presented in figure 2.3. The

Tofolli gate is an important quantum gate and is widely

applied in the construction of quantum circuits.

Figure 2.3. The quantum Tofolli gate.

2.2.3 The quantum Fredkin gate

The quantum Fredkin gate is illustrated in figure 2.4, which

is a 3 × 3 quantum gate in which A, B, and C are the input

vectors and the output vectors are P = A, Q = ĀB ⊕ AC,

and R = ĀB ⊕ AB logical functions. One of the important

applications of the quantum Fredkin gate is swapping. The

input bit A is used as a control bit which decides whether

the other two bits will swap or not, which is illustrated in

figure 2.5. It shows that the quantum Fredkin gate can swap

the values when A is set to 1.

Figure 2.4. The quantum Fredkin gate.

Figure 2.5. Swapping of the quantum Fredkin gate.

2.3 Garbage outputs

In a quantum gate the number of outputs must be equal to

the number of inputs. As a consequence, there are usually

some outputs which are not required further. They are called

garbage outputs. Each garbage output incurs a heavy price.

In figure 2.1(b), the output ∣ A⟩ is the garbage output for

the CNOT quantum gate.

2.4 Constant inputs

Constant inputs are the inputs which are added to a function

to make the one-to-one mapping between inputs and

outputs. For example, to perform the adder operation using

a double Peres gate (DPG) quantum circuit, the C input bit in

figure 2.6 has to remain 0 and this input is called the

constant input.

Figure 2.6. Quantum realization of the DPG circuit.

2.5 Area

The area of a gate is defined by the circuit size. This size

varies according to the number of quantum gates of the

circuit. As the basic quantum gates are fabricated with

quantum dots with size ranging from several to tens of

nanometers (10−9
 m) in diameter, the size of basic quantum

gates ranges from 50 Å–300 Å. The angstrom (Å) is a unit

equal to 10−10 m (one ten-billionth of a meter) or 0.1 nm. Its

symbol is the Swedish letter Å . Quantum circuits can be

implemented with the basic quantum gates and the

quantum cost of a gate depends on the number of basic

quantum gates needed to implement it. Thus the area of a

gate can be defined as follows: A = Nq × Sq, where A =
area, Nq = number of quantum gates, and Sq = size of basic

quantum gates. According to the circuit size, the area of the

quantum Toffoli gate is ((50 × 5) Å–(300 × 5) Å) = (250 Å–

1500 Å), where the number of quantum gates of the

quantum Toffoli gate is five.

2.6 Power

The power of a gate is defined by the energy consumed.

The energy of basic quantum gates is 142.3 meV

(microelectronvolts). Quantum circuits can be implemented

with basic quantum gates and the quantum cost of a gate

depends on the number of basic quantum gates needed to

implement it. Thus the power of a gate can be defined as

follows, for example: the energy of the Toffoli gate is (5 ×
142.3) meV = 711.5 meV, where the number of quantum

gates of the quantum Toffoli gate is five.

2.7 Delay

The delay represents the critical delay of the circuit. In delay

calculations, the logical depth is used as the measure of the

delay. The delays of all 1 × 1 and 2 × 2 quantum gates are

taken as the unit delay, designated by Δ. Any quantum gate

can be designed from 1 × 1 and 2 × 2 quantum gates, such

as the CNOT quantum, controlled-V, or Controlled-V+ gates.

Thus the delay of a quantum gate can be computed by

calculating its logical depth when it is designed using

smaller 1 × 1 and 2 × 2 quantum gates. Each 2 × 2

quantum gate in the logic depth contributes to 1Δ delay. For

example, the quantum Toffoli gate requires 5Δ delay, as

shown in figure 2.3.

2.8 Depth

The depth of a quantum circuit is the maximum number of

stages or slices where each stage or slice represents a

quantum gate or a number of quantum gates along the

same vertical line.

A quantum circuit is constructed using different quantum

gates. These quantum gates are placed in different input

lines. To find the depth of any quantum circuit, it is

necessary to divide it into some slices. There may be more

than one quantum gate in any slice. The maximum number

of slices is considered as the depth of that quantum circuit.

For example, consider the Thapliyal Ranganathan (TR) gate-

based half subtractor, shown in figure 2.7. This quantum

circuit needs four quantum gates to be implemented. Now,

to find the depth of this circuit, it will be divided into stages

according to the quantum gates. The vertical lines are used

to split the circuit into slices. In the first slice there is a

controlled-V+ gate, in the second slice there is a CNOT gate,

and in the third and fourth slices there are controlled-V

gates. This circuit has a maximum of four slices, as

numbered in the figure. Thus it can be said that the depth of

the circuit is 4.

Figure 2.7. Illustration of the depth of a quantum

circuit.

2.9 Quantum cost

The quantum cost of a quantum circuit is the number of

basic quantum gates in the circuit. Quantum cost is an

important measure of the performance of a quantum circuit.

The quantum cost of the basic quantum gates, such as the

NOT, CNOT, controlled-V, and controlled-V+ gates, is

considered to be 1. The quantum circuit in figure 2.7

consists of four basic quantum gates and thus the quantum

cost of this circuit is 4.

2.10 Quantum gate calculation

complexity

The quantum gate calculation complexity refers to the

number of quantum gates (NOT, CNOT, controlled-V, and

controlled-V+) used to synthesize the given circuit, with ρ

being the NOT quantum gate calculation complexity, σ the

CNOT quantum gate calculation complexity, and Ω the

controlled-V (controlled-V+) gate calculation complexity. For

example, the DPG quantum circuit has two CNOT quantum

gates and four controlled-V (controlled-V+) gates. Therefore,

the quantum gate calculation complexity of the DPG

quantum circuit is 2σ + 4Ω, which is depicted in figure 2.6.

2.11 Summary

Quantum gates and quantum networks offer a very useful

language for constructing any quantum computer or

quantum multi-particle circuits (which are basically the

same). Now the question is, whether it possible to build

quantum logic gates or not.

Single-qubit quantum gates are viewed as comparatively

easy to implement. For example, a classic quantum optical

realization uses elements as qubits and switches their states

with laser light pulses of appropriately selected frequency,

strength, and duration; any recommended superposition of

two selected logical states can be prepared in this way.

Research into quantum computation and all of its all

possible variations has become vigorously active and any

comprehensive review of the field cannot help but be

obsolete as soon as it is written. Here, only some of the very

basic knowledge has been provided, hoping that this will

serve as a good starting point to enter into the field.

Critical thinking questions

1. What are the characteristics of qubits?

2. How can qubits be controlled?

3. How much more powerful is a qubit than a bit?

4. How many qubits are there in a quantum computer?

5. Design circuits for implementing the quantum AND and

quantum OR operations using the basic quantum gates.

Write descriptions of the circuits implementing quantum

AND and quantum OR operations.

References

[1] Oxford quantum http://oxfordquantum.org/ (Accessed: 5 December 2018)
[2] Balandin A A and Wang K L 1999 Implementation of quantum controlled-not

gates using asymmetric semiconductor quantum dots Quantum Computing

and Quantum Communications (Berlin: Springer) pp 460–7
[3] Landaurer R 1961 Irreversibility and heat generation in the computational

process IBM J. Res. Dev. 5 183–91
[4] Li X, Steel D, Gammon D and Sham L J 2004 Quantum information

processing based on optically driven semiconductor quantum dots Opt.

Photonics News 15 38–43
[5] Mohammadi M and Eshghi M 2009 On figures of merit in reversible and

quantum logic designs Quantum Inf. Process. 8 297–318
[6] Monroe C, Meekhof D M, King B E, Itano W M and Wineland D J 1995

Demonstration of a fundamental quantum logic gate Phys. Rev. Lett. 75
4714

[7] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum

Information 10th edn (Leiden: Cambridge University Press)

http://oxfordquantum.org/
http://dx.doi.org/10.1147/rd.53.0183
http://dx.doi.org/10.1364/OPN.15.9.000038
http://dx.doi.org/10.1007/s11128-009-0106-0
http://dx.doi.org/10.1103/PhysRevLett.75.4714

[8] Shende V V, Prasad A K, Markov I L and Hayes J P 2003 Synthesis of
reversible logic circuits IEEE Trans. Comput.-Aided Des. Integr. Circuits

Syst. 22 710–22
[9] Toffoli T 1980 Reversible computing International Colloquium on Automata,

Languages, and Programming (Berlin: Springer) pp 632–44
[10] Zhou R-G, Li Y-C and Zhang M-Q 2014 Novel designs for fault tolerant

reversible binary coded decimal adders Int. J. Electron. 101 1336–56

http://dx.doi.org/10.1109/TCAD.2003.811448
http://dx.doi.org/10.1080/00207217.2013.832388

IOP Publishing

Quantum Computing (Second Edition)

A pathway to quantum logic design

Hafiz Md Hasan Babu

Chapter 3

The quantum qubit string comparator

Learning objectives

Understand the characteristics of a quantum comparator.

Understand how a circuit for a two-qubit quantum comparator is built.

Learn how to use a quantum magnitude comparator.

Study the comparison between different algorithms for an n-qubit string

comparator.

Learn how to construct an n-qubit quantum comparator.

Mention applications of a quantum comparator.

The quantum qubit string comparator enables the implementation of a quantum

algorithm using conditional statements, a fundamental structure for designing

algorithms. This widens the number of applications where quantum algorithms

can be used and at the same time it brings quantum programmers close to some

of the successful techniques used in classical computation based on

comparisons. For example, constructing a database composed of only prime

numbers is possible using the quantum qubit string comparator.

3.1 Characteristics of a quantum comparator

A comparator, as the name suggests, compares a signal on one input of an op-

amp, as shown in figure 3.1, with a known voltage called the reference voltage

on the other input. The comparator is nothing other than an open loop op-amp

with two analog inputs (differential input) and one digital output (signal ended

output). The op-amp has a very large gain used in an open loop. Hence the

output may be in the positive or negative saturation voltage depending upon

which input is larger. An op-amp is perfectly suited for comparator applications

because of its high input impedance and large open loop gain.

Figure 3.1. An open loop op-amp.

The important characteristics of a quantum comparator are:

1. Speed of operation.

2. Accuracy.

3. Compatibility of output.

3.2 The quantum magnitude comparator

A quantum magnitude comparator is a logic circuit that first compares the sizes

of A and B and then determines the result among A > B, A < B, and A = B.

When the two numbers in the comparator circuit are two one-qubit numbers, the

result will be only one bit from 0 and 1. Thus the circuit is called a one-qubit

magnitude comparator, which is the basis of comparison of the two numbers of

the n qubits. A quantum qubit string comparator is designed for the quantum

qubit string comparator circuit. In this chapter two quantum states are identified

by providing a comparison status, such as equality or larger or smaller, after

performing a comparison between these states. In addition, this chapter shows

that the quantum qubit string comparator enables the implementation of

conditional statements in quantum computation, which is a basic structure for

designing a comparison algorithm. However, the design requires a huge number

of quantum gates, garbage outputs, and constant inputs. Moreover, the design

does not show the area and power requirements of the circuit. A quantum

comparator circuit is designed by using quantum dot cellular automata. The

design requires a huge number of quantum gates and garbage outputs.

An ASIC implementation of a low power area efficient folded binary

comparator circuit was invented in 2014. This comparator consists of a pre-

computation unit and an encoder block. The basic principle is to group the binary

inputs into digit sets. The digit sets are sent to the pre-computation unit starting

from the most significant digit (MSD) to check for equality, and the computations

in the pre-computation unit are stopped at the first digit set which produces a 1

as the output. The corresponding digit set is then sent to the carry look-ahead

(CLA) encoder block to find the greater of the two inputs. However, as this is an

irreversible comparator circuit, this circuit has huge dynamic power dissipation.

3.3 The design of a quantum comparator

There are two important properties to define a quantum gate, which are as

follows:

Property 3.1.

Each quantum gate has an unique unitary matrix. A complex square matrix U is

unitary only if

U *U = UU * = I,

where I is the identity matrix and U * is the conjugate transpose of U.

Property 3.2.

A quantum state is represented by a state vector in a Hilbert space over complex

numbers.

The matrices for the controlled-E and controlled-E+ gates are

Mcontrolled ‐E = (); Mcontrolled‐E+ = ().

The conjugate transpose of Mcontrolled ‐E is Mcontrolled‐E+ and vice versa. After

multiplying Mcontrolled‐E and Mcontrolled‐E+, an identity matrix is obtained which is

Mcontrolled‐E × Mcontrolled‐E+ = () × () = () = I.

The controlled-E and controlled-E+ gates have a unique matrix which is unitary.

Figures 3.2(a) and (b) show diagrams of the controlled-E and controlled-E+ gates.

Figure 3.2. Controlled gates. (a) Controlled-E+ gate. (b) Controlled-E gate.

The matrices for the XN (MXN) gate and its conjugate transpose (MXN*) are

given below:

− i/2 − i/2

− i/2 i/2

i/2 i/2

i/2 − i/2

− i/2 − i/2

− i/2 i/2

i/2 i/2

i/2 − i/2

1 0

0 1

MXN = MXN * = .

After multiplying MXN and MXN*, an identity matrix is obtained which is given

below:

MXN × MXN * = × = = I.

Thus the XN gate has a unique matrix which is unitary. Figure 3.3 shows a

diagram of the XN gate.

Figure 3.3. XN gate.

Algorithm 3.1 describes the computational process for the designed method

for the proof of the time complexity. The technique of comparison of the

comparator has four basic steps. First, sort the two numbers and also calculate

their middle bit position. Second, find Ex-OR of the middle bit position and decide

based on that value whether to go to the left half or to the right half of the

numbers. Third, repeat the second step after entering into the left or right half

and also calculate Ex-OR of the other bits at the same time. Finally, take a

decision if any value of Ex-OR is ∣ 1⟩ as to which number is greater, otherwise

carry out Ex-NOR to find whether they are equal or not.

Property 3.3.

Algorithm for the comparison technique for an n-quantum bit string comparator

which requires a time complexity of O(2(2 + log n)).

Proof. Let n be the number of qubits of two strings. To sort two strings of n qubits

in parallel using merge sorting, the total time complexity in the best case is

O(log n). Now each string is divided into half (n/2) of the original string when

the comparison technique works in each time. Thus it reduces the working space

by half. In the worst case, the comparison technique operations need to be

0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1

0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1

0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1

0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

executed on both the left and right halves of the two n-qubit strings, where the

time required for one half is the run time (T (∣ n/2 ∣)) for half (n/2) of the n-qubit

string using the comparison technique, and the time required for the other half is

the same, which is treated as the time for copying the same operations in the

other half of the string. In contrast, in the best case only the left/right half

operations need to be executed. The positions of the qubit strings are stored in

two different arrays. When comparing two qubits, the two arrays containing the

qubit positions need to be accessed in parallel and the complexity of an array

access is O(1). According to the algorithm, Ex-OR of the midpoint of the sorted

strings is performed and depending on the result, the left/right half of unsorted

strings is used for comparison. Hence we need to access the two unsorted arrays

of strings again and this also has time complexities. Thus the recurrence of the

comparison technique in the best case can be specified as

T (n) = T (∣ n/2 ∣) + 1,

where T(n) denotes the run time of the comparison technique, T (∣ n/2 ∣) is the

time required to perform operations on the left/right half of the n-qubit strings, n

is the length of the qubit strings, and a constant 1 (one) is the time for midpoint

qubit operation of the qubit string.

Algorithm 3.1. Algorithm of the comparison technique.

Guess

It is assumed that the solution of the recurrence is T(n) = O(logn), i.e. it is true iff

T(n) ⩽ c(log(n)), where c > 0 is a constant.

Proof by substitution. Assume that this bound holds for all positive m < n in the

particular m = [n/2], where n is the number of qubits and m is a constant term.

It yields that

T (n/2) ⩽ c(log(∣ n/2 ∣)).

By substituting into the recurrence,

(3.3

.1)

Thus, T (n) ⩽ c(log(n)), that is, T (n) = O(log n). Therefore, the total time

complexity of the comparison algorithm in the best case is sorting time +

comparison time + array of position access time + array of unsorted qubits

access time:

Thus this completes the proof and the property 3.3 is true.

The design of a quantum comparator consists of two circuits: the midpoint

qubit comparison (MQC) circuit and rest qubit comparison (RQC) circuit. First, the

most significant quantum bits are compared using the MQC circuit. Second, the

rest of the qubits are compared using the RQC circuit, where each qubit

comparison is performed by one RQC circuit. In figure 3.4 the MQC circuit

consists of two controlled-E gates, one controlled-E+ gate, three CNOT gates, and

one XN gate. This circuit generates the following three outputs and produces one

garbage output which is ∣ g1⟩:

Figure 3.4. The MQC circuit. Reproduced with permission from [2].

Copyright 2017 IEEE.

In figure 3.5 the RQC circuit consists of four controlled-E gates, three

controlled-E+ gates, one XN gate, and eight CNOT gates. This circuit generates

three outputs, and it produces two garbage outputs which are ∣ g1⟩ and ∣ g2⟩:

T (n) ⩽ c(log(∣ n/2 ∣)) + 1

= c(log(n)) − c(log(2)) + 1

= c(log(n)) − c + 1

⩽ c(log(n)) as long as c ⩾ 1.

= O(log n) + O(log n) + O(2) + O(2)

= O(2(2 + log n)).

∣ En/2⟩ = ∣ An/2⟩⊙ ∣ Bn/2⟩

∣ Gn/2⟩ = ∣ An/2

∣ Ln/2⟩ = ∣ Bn/2⟩.

Bn/2

An/2

(3.3

.2)

(3.3

.1.1

)

Figure 3.5. The RQC circuit. Reproduced with permission from [2].

Copyright 2017 IEEE.

3.3.1 Example

To construct a two-qubit quantum comparator circuit, one MQC circuit and one

RQC circuit are needed to perform the greater than, less than, and equality

operations. In figure 3.6 the detailed quantum circuit for a two-qubit comparator

is shown. The midpoint is the qubits in position 1. At first, the midpoint qubits

∣ A1⟩ and ∣ B1⟩ are applied in an MQC circuit to generate the following outputs:

Then the outputs of the MQC circuit (∣ E1⟩, ∣ G1⟩, ∣ L1⟩) and the rest of the

qubits (∣ A0⟩, ∣ B0⟩) are used as inputs to the next circuit which is the RQC

circuit. This circuit produces the final outputs

∣ AGBn/2−1⟩ = ∣ Gn/2⟩+ ∣ En/2⟩. ∣ An/2−1 ⟩

∣ ALBn/2−1⟩ = ∣ Ln/2 ∣ En/2⟩. ∣ An/2−1Bn/2−1⟩

∣ AEBn/2−1⟩ = ∣ AGBn/2−1⟩⊙ ∣ ALBn/2−1⟩.

Bn/2−1

∣ E1⟩ = ∣ A1⟩⊙ ∣ B1⟩

∣ G1⟩ = ∣ A1B1⟩3

∣ L1⟩ = ∣ A1B1⟩.

∣ AGB0⟩ = ∣ G1⟩+ ∣ E1⟩. ∣ A0(B0)⟩

∣ ALB0⟩ = ∣ L1⟩+ ∣ E1⟩. ∣ (A0)B0⟩

∣ AEB0⟩ = ∣ AGB0⟩⊙ ∣ ALB0⟩.

(3.3

.1.2

)

Figure 3.6. The two-qubit quantum comparator circuit. Reproduced

with permission from [2]. Copyright 2017 IEEE.

Similarly, an n-qubit quantum comparator circuit can be constructed using

one MQC circuit and maximum (n − 1) RQC circuits or minimum ((n/2) − 1) RQC

to perform the greater than, less than, and equality operations. In figure 3.7 the

detailed quantum circuit for an n-qubit quantum comparator is shown.

Figure 3.7. The n-qubit quantum comparator circuit. Reproduced with

permission from [2]. Copyright 2017 IEEE.

3.4 Summary

This chapter presents the design methodology for a noble quantum n-qubit

comparator using a fast comparison technique. The time complexity of the

comparison technique is O(logn) where n is the number of qubits. The

comparator was constructed in two steps. First, bit comparisons for greater than

and less than operations were performed in parallel. Then a bit comparison for

the equality operation was performed. The quantum comparator circuit can be

used in designing different quantum circuits, such as quantum processing units,

complex arithmetic circuits, and communication systems. Thus the design which

has been shown in this chapter should help the reader understand the next three

chapters better. In addition, the concept of designing a quantum bit string

comparator will help in designing the quantum subtraction, multiplier, divider,

and adder circuits.

Critical thinking questions

1. What are the characteristics of a quantum comparator?

2. Describe the quantum magnitude comparator.

3. How many steps are required to build a quantum comparator? Explain in

detail.

4. Is it possible to draw a four-qubit comparator? If possible then write the

pseudocode for a four-qubit comparator.

5. Design a four-qubit comparator circuit and describe the design procedure.

References

[1] Barwad R 2015 The characteristics of comparator Polytechnic Hub

http://www.polytechnichub.com/characteristics-comparator/ (Accessed: 5 December 2018)
[2] Babu H M H, Jamal L, Dibbo S V and Biswas A K 2017 Area and delay efficient design of a quantum bit

string comparator IEEE Computer Society Annual Symp. on VLSI (Piscataway, NJ: IEEE) pp 51–6
[3] Das J C and De D 2016 Reversible comparator design using quantum dot-cellular automata IETE J. Res.

62 323–30
[4] Dibbo S V, Babu H M H and Jamal L 2016 An efficient design technique of a quantum divider circuit

IEEE Int. Symp. on Circuits and Systems (Piscataway, NJ: IEEE) pp 2102–5
[5] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Leiden:

Cambridge University Press)
[6] Phaneendra P S, Vudadha C, Sreehari V and Srinivas M B 2014 An optimized design of reversible

quantum comparator 27th Int. Conf. VLSI Design and 13th Int. Conf. Embedded Systems (Piscataway,
NJ: IEEE) pp 557–62

[7] Saravanakumar N, Nirmalkumar A, Nandhakumar A and Kanyakumari G E 2013 ASIC implementation
of low power area efficient folded binary comparator Int. J. Eng. Technol. 5 4582

[8] Velagaleti S 2009 A novel high speed dynamic comparator with low power dissipation and low offset
Doctoral dissertation National Institute of Technology, Rourkela.

http://www.polytechnichub.com/characteristics-comparator/
http://dx.doi.org/10.1080/03772063.2015.1088407

IOP Publishing

Quantum Computing (Second Edition)

A pathway to quantum logic design

Hafiz Md Hasan Babu

Chapter 4

The quantum full-adder and

subtractor

Learning objectives

Become familiar with the quantum adder.

Investigate the quantum subtractor.

Acquire knowledge of a quantum full-adder with a

suitable circuit.

Learn how to construct quantum full- and half-

subtractors.

In circuit design the quantum adder and quantum subtractor

are the circuits that are capable of adding or subtracting

numbers. In this chapter quantum adder, namely quantum

half-adder and quantum full-adder, circuits and quantum

subtractor, namely quantum half-subtractor and quantum

full-subtractor, circuits are presented with their quantum

representations.

4.1 The quantum adder

A quantum adder is a circuit in electronics that implements

the addition of numbers. In many computers and other

types of quantum processors, quantum adders are used to

calculate addition and similar operations in the quantum

arithmetic logic unit (ALU) and also in other parts of

quantum processors. These can be constructed for many

numerical representations, such as excess-3 or binary coded

decimal. Quantum adders are classified into two types:

quantum half-adder and quantum full-adder. The quantum

half-adder circuit has two inputs, A and B, which add two

input digits and generate a carry and a sum. The quantum

full-adder circuit has three inputs, A, B, and C, which add

three input numbers and generate a carry and a sum. Table

4.1 is the truth table of a quantum half-adder. From this

table we can obtain the quantum half-adder circuitʼs

outputs, which are

Table 4.1. The truth table of the quantum half-adder.

A B Carry Sum

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

The output equations of the quantum half-adder can be

mapped with a quantum Peres gate, as shown in figure 4.1,

and the quantum half-adder can be obtained by putting C =

0, which is illustrated in figure 4.2. The quantum cost of the

quantum half-adder is 4 and the delay is 4Δ.

Sum = A ⊕ B

Carry = AB.

Figure 4.1. The quantum Peres gate.

Figure 4.2. The quantum Peres gate as a quantum

half-adder.

4.1.1 The quantum full-adder

Table 4.2 is the truth table of a quantum full-adder. From

this table we can obtain the output of the quantum full-

adder circuit:

Table 4.2. The truth table of the quantum full-adder.

Sum = A ⊕ B ⊕ Cin

Carry = (A ⊕ B)Cin ⊕ AB.

A B Cin Carry SumA B Cin Carry Sum

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

The output equations of the quantum full-adder can be

mapped with the quantum modified Thapliyal Srinivas gate

(MTSG), as shown in figure 4.3, and the quantum full-adder

can be obtained by putting D = 0, which is shown in figure

4.4. The cost of the quantum full-adder is 6 and the delay is

5Δ.

Figure 4.3. The quantum MTSG.

Figure 4.4. The quantum MTSG as a quantum full-

adder.

4.2 The quantum subtractor

A quantum subtractor is also an important logic component

in circuit design. Quantum subtractors are classified into two

types: quantum half-subtractors and quantum full-

subtractors. The quantum half-subtractor circuit has two

inputs, A and B, where the half-subtractor performs the A −

B operation.

4.2.1 The quantum half-subtractor

Table 4.3 is the truth table of a quantum half-subtractor.

From this table we can obtain the quantum half-subtractor

circuit:

Table 4.3. The truth table of the quantum half-subtractor.

A B Borrow Difference

0 0 0 0

0 1 1 1

1 0 0 1

1 1 0 0

The output equations of the quantum half-subtractor can

be mapped with a quantum Thapliyal Ranganathan (TR)

gate, as shown in figure 4.5, and the quantum half-

subtractor can be obtained by putting C = 0, which is shown

in figure 4.6. The cost of the quantum half-subtractor is 4

and the delay is 4Δ.

Figure 4.5. The quantum TR gate.

Difference = A ⊕ B

Borrow = AB̄

Figure 4.6. The quantum half-subtractor.

4.2.2 The quantum full-subtractor

The quantum full-subtractor circuit has three inputs, A, B,

and Cin, which realizes the operation Y = A − B − C.

Table 4.4 is the truth table of a quantum full-subtractor.

From this table we can obtain the output of the quantum

full-subtractor circuit:

Table 4.4. The truth table of the quantum full-subtractor.

A B Cin Borrow Difference

0 0 0 0 0

0 0 1 1 1

0 1 0 1 1

0 1 1 1 0

Difference = A ⊕ B ⊕ Cin

Borrow = (A ⊕ B)Cin ⊕ AB.̄

A B Cin Borrow Difference

1 0 0 0 1

1 0 1 0 0

1 1 0 0 0

1 1 1 1 1

A quantum full-subtractor can be designed using two

quantum TR gates, shown in figure 4.7. Figure 4.8 is the

optimized version of the quantum full-subtractor. The cost of

the quantum full-subtractor is 6 and the delay is 4Δ.

Figure 4.7. The quantum full-subtractor by cascading

two quantum TR gates.

Figure 4.8. The optimized quantum full-subtractor.

4.3 Summary

This chapter presents the quantum full-adder and quantum

full-subtractor from the quantum half-adder and quantum

half-subtractor circuits. The costs of the quantum adder and

quantum subtractor circuits are discussed for better

understanding of the circuits.

Critical thinking questions

1. What are the applications of quantum adders and

quantum subtractors?

2. Distinguish between quantum subtractors and quantum

adders.

3. In terms of the semantics of its inputs and outputs, what

distinguishes a quantum half-adder from a quantum full-

adder?

4. Using the quantum half-adder, design circuit diagrams

for the quantum full-adder.

5. Construct a four-qubit adder–subtractor using quantum

full adders and quantum basic gates.

6. What is the purpose of using quantum adders and

quantum subtractors in a quantum processor?

References

[1] Babu H M H, Islam Md R, Chowdhury S M A and Chowdhury A R 2004
Synthesis of full-adder circuit using reversible logic Proc. 17th Int. Conf. on

VLSI Design (Mumbai) pp 757–60
[2] Babu H M H, Islam R, Chowdhury A R and Chowdhury S M A 2003 On the

realization of reversible full-adder circuit Int. Conf. on Computer and

Information Technology pp 880–3
[3] Babu H M H, Islam R, Chowdhury A R and Chowdhury S M A 2003

Reversible logic synthesis for minimization of full-adder circuit Proc.

Euromicro Symp. Digital System Design pp 50–4
[4] Babu H M H, Jamal L and Saleheen N 2013 An efficient approach for

designing a reversible fault tolerant n-bit carry look-ahead adder IEEE Int.

SOC Conf. pp 98–103
[5] Cheng K-W and Tseng C-C 2002 Quantum full adder and subtractor

Electron. Lett. 38 1343–4
[6] Cuccaro S A, Draper T G, Kutin S A and Moulton D P 2004 A new quantum

ripple-carry addition circuit arXiv: quant-ph/0410184
[7] Khan M H A and Perkowski M A 2007 Quantum ternary parallel

adder/subtractor with partially-look-ahead carry J. Syst. Archit 53 453–64
[8] Monfared A T and Haghparast M 2016 Design of new quantum/reversible

ternary subtractor circuits J. Circuits Syst. Comput. 25 1650014
[9] Murali K V R M, Sinha N, Mahesh T S, Levitt M H, Ramanathan K V and

Kumar A 2002 Quantum-information processing by nuclear magnetic
resonance: experimental implementation of half-adder and subtractor
operations using an oriented spin-7/2 system Phys. Rev. A 66 22313

[10] Takahashi Y 2009 Quantum arithmetic circuits: a survey IEICE Trans.

Fundam. Electron. Commun. Comput. Sci. 92 1276–83
[11] Takahashi Y, Tani S and Kunihiro N 2010 Quantum addition circuits and

unbounded fan-out Quantum Inf. Comput. 10 872–90

http://dx.doi.org/10.1049/el:20020949
https://arxiv.org/abs/quant-ph/0410184
http://dx.doi.org/10.1016/j.sysarc.2007.01.007
http://dx.doi.org/10.1142/S0218126616500146
http://dx.doi.org/10.1103/PhysRevA.66.022313
http://dx.doi.org/10.1587/transfun.E92.A.1276
http://dx.doi.org/10.26421/QIC10.9-10-12

IOP Publishing

Quantum Computing (Second Edition)

A pathway to quantum logic design

Hafiz Md Hasan Babu

Chapter 5

The quantum multiplexer and

demultiplexer

Learning objectives

Study the quantum multiplexer (MUX).

Define the quantum demultiplexer (DEMUX).

Formulate design procedures for a 2-to-1 quantum

MUX, 4-to-1 quantum MUX, and 8-to-1 quantum

MUX with proper circuits.

Construct a 1-to-2 quantum DEMUX, 1-to-4

quantum DEMUX, and 1-to-8 quantum DEMUX with

suitable circuits.

Acquire knowledge of designing a 1-to-2n quantum

MUX.

Design a 1-to-2n quantum DEMUX.

In large-scale computing systems, it is necessary for a

single line to carry two or more signals. One signal can be

placed on one line at a time. To allow us to select and place

the signal on a common line we use a circuit called the

quantum multiplexer (MUX). The purpose of a quantum MUX

is to select the input of any n input lines and feed that to

one output line. The function of a quantum demultiplexer

(DEMUX) is the inverse of the function of the quantum MUX.

5.1 The quantum multiplexer

This section presents the design of the quantum multiplexer.

The quantum multiplexer causes the transmission of a large

number of information units over a smaller number of

channels. Architecturally, a digital multiplexer is a logic

circuit that puts one out of several inputs to a single output.

A set of selected inputs controls the inputs. Generally a

quantum multiplexer has m inputs and n selected inputs,

where m = 2n.

5.1.1 The quantum 2-to-1 multiplexer

A 2-to-1 quantum multiplexer is the smallest unit of

architecture of a quantum multiplexer. The characteristic

function of a quantum multiplexer is s
′
0I0 + s0I1. A

quantum Fredkin gate, as shown in figures 5.1(a) and (b),

can be used as a 2-to-1 quantum multiplexer as it can map

the characteristic function of a quantum multiplexer.

Figure 5.1. The quantum Fredkin gate. (a) Quantum

circuit of a quantum Fredkin gate. (b) Symbol of a

quantum Fredkin gate.

Let I0 and I1 be the inputs and S0 the selected input of a

2-to-1 quantum multiplexer. When S0 = 0, then input I0
transmits to the output Y and when S0 = 1 then input I1
transmits to the output Y. Figure 5.2 shows the architecture

of a quantum 2-to-1 multiplexer using a quantum Fredkin

gate. The quantum cost and delay of this quantum 2-to-1

multiplexer are 5 and 5Δ, respectively. Moreover, the

number of garbage outputs is 2.

Figure 5.2. The quantum Fredkin gate as a quantum

2-to-1 multiplexer.

5.1.2 Quantum 4-to-1 multiplexer

The quantum 4-to-1 multiplexer has four inputs, two select

lines, and one output. Figure 5.3 illustrates the design of a

quantum 4-to-1 multiplexer, where I0, I1, I2, and I3 are the

inputs, and S0 and S1 are the select lines. The bit

combination of select lines controls the function of the 4-to-

1 quantum multiplexer as presented in table 5.1. Three

quantum Fredkin gates are used in this design. Thus the

quantum cost of the quantum 4-to-1 multiplexer is 15 and

the delay is 15Δ in the logic circuits, respectively; the

number of garbage outputs is 5.

Figure 5.3. The quantum 4-to-1 multiplexer.

Table 5.1. Function of the S0 and S1 select lines.

S0 S1 Output (O)

0 0 I0

0 1 I1

1 0 I2

1 1 I3

5.1.3 The quantum 2n-to-1 multiplexer

Figure 5.4 shows the design of a quantum 8-to-1

multiplexer. As the consequence of the design of quantum

multiplexers, a 2n-to-1 multiplexer can be constructed using

two 2n−1-to-1 quantum multiplexers and one 2-to-1

quantum multiplexer. Figure 5.5 presents the 2n
-to-1

multiplexer, and the properties of the 2n
-to-1 quantum

multiplexer are given in property 5.1.

Figure 5.4. The quantum 8-to-1 multiplexer.

Figure 5.5. The block diagram of 2n-to-1 multiplexers.

Property 5.1.

A quantum 2n-to-1 multiplexer can be designed with 2n − 1
gates, which produces 2n + n − 1 garbage outputs. It also

requires 5(2n − 1) quantum cost and a delay of 5(2n − 1)Δ
, where n denotes the number of selection lines and Δ

denotes the unit-delay.

5.2 The quantum demultiplexer

This section presents the design of the quantum

demultiplexer. A quantum DEMUX is a device that takes a

single input line and routes it to one of several digital output

lines. A quantum demultiplexer of 2n outputs has n select

lines which are used to select the output line to which to

send the input. A quantum demultiplexer is also called a

data distributor. The quantum demultiplexer can be used to

implement general purpose logic. By setting the input to

true, the DEMUX behaves as a decoder. The reverse of a

quantum multiplexer is the quantum demultiplexer.

5.2.1 The quantum 1-to-2 demultiplexer

A 1-to-2 quantum demultiplexer is the smallest unit of the

architecture of a quantum demultiplexer. The characteristic

function of a 1-to-2 quantum demultiplexer is s′
0D s0D on

the different output lines, as shown in table 5.2. The

quantum Fredkin gate can be used as a 1-to-2 quantum

demultiplexer as it can map the characteristic functions of a

quantum demultiplexer.

Table 5.2. The truth table of a 1-to-2 quantum demultiplexer.

S Y1 Y0

0 0 D

1 D 0

Let D be the inputs and S0 is the select input of a 1-to-2

demultiplexer. When S0 = 0, then the D input is transmitted

to the second output Y0 and when S0 = 1, then the D input

is transmitted to the third output Y 1. Figure 5.6 shows the

architecture of a quantum 1-to-2 demultiplexer using a

quantum Fredkin gate. The quantum cost and delay of this

quantum 1-to-2 demultiplexer are 5 and 5Δ, respectively.

Moreover, the number of garbage outputs is 1.

Figure 5.6. The quantum Fredkin gate as a quantum

1-to-2 demultiplexer.

5.2.2 The quantum 1-to-4 demultiplexer

The quantum 1-to-4 demultiplexer has two select lines, one

data input, and four outputs. Figure 5.7 shows the design of

a quantum 1-to-4 demultiplexer where Y 0, Y 1, Y 2, and Y 3
are the outputs, and S0 and S1 are the select lines. The bit

combination of select lines controls the function of the 1-to-

4 demultiplexer, as shown in table 5.3. Three quantum

Fredkin gates are used in this design. Thus the quantum

cost of the quantum 1-to-4 demultiplexer is 15 and the

delay of the quantum 1-to-4 demultiplexer is 15Δ,

respectively; the number of garbage outputs is 2.

Figure 5.7. The quantum 1-to-4 demultiplexer.

Table 5.3. The truth table of a 1-to-4 demultiplexer.

S1 S0 Y3 Y2 Y1 Y0

0 0 0 0 0 D

0 1 0 0 D 0

1 0 0 D 0 0

1 1 D 0 0 0

5.2.3 Quantum 1-to-2n demultiplexer

Figure 5.8 shows the design of a quantum 1-to-8

demultiplexer. As the consequence of the design of quantum

demultiplexers, a 1-to-2n quantum demultiplexer can be

constructed using 1-to-2n−1 quantum demultiplexers and

2n−1
 quantum Fredkin gates, which is shown in figure 5.9.

The properties of the 1-to-2n quantum demultiplexer are

given in property 5.2.

Figure 5.8. The quantum 1-to-8 demultiplexer.

Figure 5.9. The block diagram of a 1-to-2n

demultiplexer.

Property 5.2.

A quantum 1-to-2
n
 demultiplexer can be designed with

2n − 1 gates which produce n garbage outputs. It also

requires a 5(2n − 1) quantum cost and a delay of

5(2n − 1)Δ, where n denotes the number of selection

inputs and Δ denotes the unit-delay.

5.3 Summary

In this chapter the quantum MUX and DEMUX are presented

and explained with quantum circuit representations. In the

multiplexer section a 2-to-1 MUX, 4-to-1 MUX, and 8-to-1

MUX are described and generalized to the 2n
-to-1

multiplexer. In the demultiplexer section a 1-to-2 DEMUX, 1-

to-4 DEMUX, and 1-to-8 DEMUX are described and

generalized to the 1-to-2n
 demultiplexer. Moreover, the

quantum costs and delays of the multiplexers and

demultiplexers are provided.

Critical thinking questions

1. What are the major applications of quantum MUXs and

quantum DEMUXs?

2. Discuss the distinction between a quantum MUX and

quantum DEMUX.

3. What function does the quantum MUX perform when the

enable input is high? Explain.

4. Distinguish the difference between the two primary

quantum multiplexing methodologies.

5. Which type of concept is used in a quantum DEMUX?

6. For the 1-to-8 quantum DEMUX, how many select lines

are required? Explain.

7. For the 4-to-1 quantum MUX and 1-to-4 quantum

DEMUX, write down the pseudocode.

References

[1] Haghparast M and Monfared A T 2017 Novel quaternary quantum decoder,
multiplexer and demultiplexer circuits Int. J. Theor. Phys. 56 1694–707

[2] Khan M H A 2008 Reversible realization of quaternary decoder, multiplexer,
and demultiplexer circuits 38th Int. Symp. on Multiple Valued Logic (ISMVL

2008) pp 208–13
[3] Mardiris V A and Karafyllidis I G 2010 Design and simulation of modular 2n

to 1 quantum-dot cellular automata (QCA) multiplexers Int. J. Circuit Theory

Appl. 38 771–85

http://dx.doi.org/10.1007/s10773-017-3315-9
http://dx.doi.org/10.1002/cta.595

IOP Publishing

Quantum Computing (Second Edition)

A pathway to quantum logic design

Hafiz Md Hasan Babu

Chapter 6

The quantum adder circuits

Learning objectives

Discuss the quantum carry skip adder (QCSA).

Learn the procedure to calculate the size and output power of a QCSA circuit.

Acquire knowledge of the quantum comparison circuit.

Find out the complexity of the n-qubit QCSA.

Learn how to design a QCSA.

Describe a quantum binary coded decimal (BCD) adder.

Construct a quantum 2-to-1 multiplier circuit.

Design algorithms for describing the four-qubit QCSA and the n-qubit QCSA.

Several types of adders are used in computing systems, such as quantum carry skip adders

(QCSAs), quantum binary coded decimal (BCD) adders, and so on. Among them the most

common is the quantum ripple carry adder in which quantum full-adders are connected in

series and the carry is propagated through all the stages and hence requires more carry

propagation time to generate the carry output. Carry look-ahead quantum adders are the

fastest of all the quantum adders since the carry output is generated in parallel

computation, but this requires a large number of gates. The QCSA is the most promising

quantum adder which presents a compromise between hardware and performance

compared to both quantum adders mentioned above. In the quantum full-adder operation,

if either of the inputs is a logical one, then the cell will propagate the carry input to carry

output. Hence the ith quantum full-adder carry input Ci will propagate to its carry output,

Ci+1, when Pi = Xi ⊕ Yi.
In computers, numbers are stored in straight binary format. Due to the inherent

characteristics of floating-point numbers and limitations in storage formats, not all floating-

point numbers can be represented with the desired precision. Thus computing in decimal

format is gaining popularity as losses due to precision can be avoided in this format.

However, the hardware support for binary arithmetic allows it to be performed faster than

decimal arithmetic. Faster hardware for decimal floating-point arithmetic is also imminent

as it has importance in financial and Internet-based applications. Thus faster circuits for

BCD numbers will have a great impact as they are likely to be incorporated in more

complex circuits, such as future mathematical processors.

In this chapter the QCSA and quantum BCD adder circuits are presented in sections 6.1

and 6.5, respectively.

6.1 The quantum carry skip adder

Quantum adders are used widely in generic computers because they are very important for

adding data in the processor. The simplest quantum adder is the quantum ripple carry

adder. It is easy to understand and implement. A more complex quantum adder is the

QCSA. It is used widely due to its superior performance compared to the quantum ripple

carry adder. In this chapter an n-qubit QCSA is presented which has fewer quantum gates.

It also produces fewer garbage outputs and requires less area, power, and delay. With the

help of these properties, the efficiency of the quantum logic synthesis of an n-qubit carry

skip adder has also been proved in this chapter.

Quantum adders are one of the most common elements in circuit design since addition

is a fundamental operation for any kind of digital system. However, traditional ripple carry

adders have some defects such as low computing efficiency and long delay. When

generalizing and designing large quantum adders, the quantum ripple carry adder can end

up with a large number of quantum gates, garbage outputs, and constant inputs, and high

hardware complexity. The reason behind this lies in the carry propagation. If the carry

propagation is not performed in an effective way a huge summation network is required to

design a large scale adder. In order to overcome the disadvantages mentioned above, a

new kind of adder called the QCSA is used which has a shorter delay.

6.2 The quantum comparison circuit

The quantum comparison circuit (QCC) is constructed, as depicted in figure 6.1, with 11

inputs comprising three constant inputs. This quantum circuit consists of four CNOT gates

and three quantum Peres gates. The circuit performs the following function:

X = (A3 ⊕ B3) ⋅ (A2 ⊕ B2) ⋅ (A1 ⊕ B1) ⋅ (A0 ⊕ B0).

If all Ai ≠ Bi, X will generate the value 1. The number of quantum gate is calculated as

follows: 4 × 1 + 4 × 3 = 16.

Figure 6.1. The quantum comparison circuit.

6.3 The quantum 2-to-1 multiplier circuit

The quantum multiplier (MUX) block carries out the function as Cout = Cin ⋅ X ⋅ Co ⋅ X
where X comes from the quantum comparison circuit and Cout comes from the last

quantum full-adder in the four-bit quantum ripple carry adder. Its quantum design is

illustrated in figure 6.2 which has a CNOT gate and two quantum Peres gates. The number

of quantum gate is 1 × 1 + 4 × 2 = 9.

Figure 6.2. The quantum 2-to-1 MUX circuit. Reproduced with permission from [18].

Copyright 2014 IEEE.

6.4 The design of a quantum carry skip adder

The QCSA is constructed by cascading a four-qubit carry skip adder. Each four-qubit carry

skip adder contains a four-qubit ripple carry adder, a comparison circuit, and a 2-to-1

quantum MUX. If the two inputs are completely reversed, then the carry entering the

quantum carry skip adder will simply be propagated to the next four-qubit carry skip adder.

Thus there is no need for the next quantum carry skip adder to wait for the carry-in created

by this current four-qubit carry skip adder. Therefore, the delay generated by the carry

qubit can be shortened. Each comparison block is used for un-equivalence in input qubits.

A quantum MUX is responsible for selecting a generated carry or a propagated (previous)

carry with its selection line being the output of the comparison circuit just described. If

each four-qubit carry skip block Ai ≠ Bi, then it can be said that a carry can skip over the

block. Otherwise, if Ai = Bi it can be said that the carry must be generated in the block.

In the following subsections a four-qubit quantum carry skip adder circuit is constructed

and then an n-qubit quantum carry skip adder circuit is shown.

6.4.1 The four-qubit quantum carry skip adder

A four-qubit QCSA circuit is designed using a four-qubit ripple carry adder along with a

comparison circuit. The quantum comparison circuit ensures that the comparison of each

block is indeed unequal. In this regard, a quantum MUX circuit is used that is responsible

for selecting a generated carry or a propagated (previous) carry with its selection line

which is considered as the output of the quantum comparison circuit.

The quantum four-qubit ripple carry adder circuit is constructed by cascading a double

Peres gate (DPG) quantum circuit, where the DPG works as a quantum full-adder, depicted

in figure 6.3, where two four-qubit binary additions are performed, such as A and B

together with the input carry Cin being first added in the quantum ripple carry adder circuit

to produce the binary sum and the carry out. The number of quantum gates of this circuit is

6 × 4 = 24 and the delay is 18Δ. Then the quantum comparison gate (QCG) constructs the

quantum 2-to-1 MUX module for generating the carry, shown in figures 6.1 and 6.2,

respectively. Finally, all circuits are combined and the four-qubit quantum carry skip adder

is obtained, shown in figure 6.4. The design procedure of a four-qubit quantum carry skip

adder circuit is shown using algorithm 6.1.

Figure 6.3. A four-bit quantum ripple carry adder. Reproduced with permission from

[18]. Copyright 2014 IEEE.

Figure 6.4. The four-qubit QCSA. Reproduced with permission from [18]. Copyright

2014 IEEE.

Algorithm 6.1. Construction of a quantum four-qubit QCSA.

6.4.2 The n-qubit quantum carry skip adder

A four-qubit QCSA circuit is constructed using a four-qubit quantum ripple carry adder, a

QCG, and a quantum 2-to-1 MUX gate (QMG), as shown in figure 6.4. Therefore, an n-qubit

quantum carry skip adder circuit can be constructed by cascading (N = n/4) four-qubit

QCSA circuits, as shown in figure 6.5. The process is described by algorithm 6.2.

Figure 6.5. The n-qubit QCSA circuit. Reproduced with permission from [18].

Copyright 2014 IEEE.

Algorithm 6.2. Construction of an n-qubit QCSA.

6.4.3 Calculation of the area and power of a quantum carry skip adder

circuit

Area is an important issue in designing a circuit. If the area of a circuit is very large, the

cost of that circuit will increase. The area of a gate is defined by the feature size. This size

varies according to the quantum cost of the gate. As basic quantum gates are fabricated

using quantum dots, with sizes ranging from several to tens of nanometers (10−9
 m) in

diameter, the size of the basic quantum gates ranges from 50 Å to 300 Å. The angstrom (Å)

is a unit equal to 10−10
 m (one ten-billionth of a meter) or 0.1 nm. Its symbol is the Swedish

letter Å . Quantum circuits can be implemented with the basic quantum gates and the

quantum cost of a gate depends on the number of basic quantum gates needed to

implement it. Thus the area of a gate can be defined as follows: A = Nq × Sq, where A =
area, Nq = number of quantum gates, and Sq= size of basic quantum gates. According to

the feature size of the DPG quantum circuit the area is ((50 Å × 6) to (300 Å × 6)) = (300 Å

to 1800 Å) where the number of quantum gates of the DPG circuit is 6. Algorithm 6.3

describes the area calculation of the n-bit QCSA circuit.

Algorithm 6.3. Calculation of the area for an n-bit QCSA circuit.

Power is also an important issue in designing a circuit. One should design a circuit which

needs little power. The power of a gate is defined by the energy. The energy of the basic

quantum gate is 142.3 meV. Quantum circuits can be implemented with basic quantum

gates and the quantum cost of a gate depends on the number of basic quantum gates

needed to implement it. Thus the power of a gate can be defined as follows: P = Nq × Eq,

where P = power, Nq = number of quantum gates, and Eq = energy of basic quantum

gates. For example, the energy of the DPG quantum circuit is (6 × 142.3) meV

(microelectronvolts) = 853.8 meV, where the number of quantum gates of DPG circuit is 6.

Algorithm 6.4 describes the power calculation of the n-bit QCSA circuit.

Algorithm 6.4. Calculation of power for an n-bit QCSA circuit.

6.4.4 Complexity of the n-qubit quantum carry skip adder circuit

The complexities of a quantum circuit in terms of quantum gates, garbage output, and

delay, etc, are very important as they have a great impact during the physical

implementation. In this subsection the different complexities of an n-qubit QCSA circuit

have been presented.

Property 6.1.

An n-qubit QCSA circuit requires 49N quantum gates where N = n/4.

Proof The above statement is proved by mathematical induction. As the number of

quantum gate of a DPG quantum circuit is six, the number of quantum gates of a four-qubit

quantum ripple carry adder is 24. A four-qubit QCSA requires a four-qubit quantum ripple

carry adder, a QCC for which the number of quantum gates is 16, and a quantum 2-to-1

MUX for which the number of quantum gates is 9. Thus the total number of quantum gates

(NOG) required to construct a four-qubit QCSA circuit is NOG4 = NOGDPG × 4 + NOGQCG +

NOGQMG = 6 × 4 + 16 + 9 = 49.

Thus the statement holds for base case n = 4.

Assume that the statement holds for n = k. Thus a k-qubit QCSA can be realized with

49K quantum gates, where K = k/4.

A (k + 1)-qubit QCSA requires (k + 1) number of QCSA blocks. As a result, the total

number of quantum gates required to construct a (k + 1)-qubit QCSA is 49 × (K + 1),

where K = k/4. Thus the statement holds for n = k + 1.

Therefore an n-qubit QCSA circuit can be realized with 49N quantum gates, where N =

n/4.

Property 6.2.

An n-qubit QCSA circuit produces 43NΔ quantum delay, where Δ is the unit delay and N =

n/4.

Proof A QCSA circuit consists of a quantum ripple carry adder circuit, a quantum

comparison circuit, and a quantum 2-to-1 MUX circuit. A one-qubit quantum ripple carry

adder circuit requires 6Δ delay. Thus the total delay for an n-qubit quantum ripple carry

adder circuit is 6nΔ delay.

A QCC and a quantum 2-to-1 MUX require 16Δ and 9Δ delay, respectively. As there are

2(n – 1) controlled-V gates at the same level of an n-qubit quantum ripple carry adder

circuit, the 2(n – 1)Δ delay can be deducted from the total delay of the quantum ripple

carry adder circuit. Thus the delay of a four-qubit QCSA circuit is

6 × 4Δ + 16Δ + 9Δ − 2(4 − 1)Δ = 24Δ + 16Δ + 9Δ − 8Δ + 2Δ = 49Δ − 6Δ = 43
.

Therefore, the total delay of an n-qubit QCSA circuit is 43NΔ where N = n/4.

Example 6.1.

When n = 4, the total delay of a four-qubit QCSA circuit is (43 × 1)Δ = 43Δ, where N =

n/4 = 4/4 =1.

Property 6.3.

An n-qubit QCSA circuit requires 18Nσ + 31NΩ quantum gate calculation complexity, where

σ is the CNOT gate calculation complexity, Ω is the controlled-V (controlled-V+) gate

calculation complexity, and N = n/4.

Proof From property 6.2 it is found that a QCSA circuit consists of a quantum ripple carry

adder circuit, a QCC, and a quantum 2-to-1 MUX circuit. A one-qubit quantum ripple carry

adder circuit has 2σ CNOT quantum gate calculation complexity and 4Ω controlled-V

(controlled-V+) quantum gate calculation complexity. Thus the quantum gate calculation

complexity of the four-qubit quantum ripple carry adder circuit is (2 × 4)σ = 8σ for eight

CNOT gates, and (4 × 4) = 16Ω for 16 controlled-V (controlled-V+) gates, of the QCC is 7σ

for seven CNOT gates and 9Ω for nine controlled-V (controlled-V+) gates, and of the

quantum 2-to-1 MUX is 3σ for three CNOT gates and 6Ω for six controlled-V (controlled-V+)

gates, i.e. 8σ + 16Ω + 7σ + 9Ω + 3σ + 6Ω = 18σ + 31Ω quantum gate calculation

complexity.

Therefore, the total quantum gate calculation complexity for an n-qubit QCSA circuit is

18Nσ + 31NΩ where N = n/4.

Example 6.2.

When n = 4, the total quantum gate calculation complexity of a four-qubit QCSA circuit is

(18 ×1)σ + (31 ×1)Ω = 18σ + 31Ω, where N = n/4 = 4/4 = 1.

Property 6.4.

An n-qubit QCSA circuit requires 2450N Å area, where Å is the unit of measuring area and N

= n/4.

Proof. From property 6.2 it is found that a QCSA circuit consists of a quantum ripple carry

adder circuit, a QCC, and a quantum 2-to-1 MUX circuit. A one-qubit quantum ripple carry

adder circuit requires 6Δ quantum gates. Thus the total number of quantum gates for the

n-qubit quantum ripple carry adder circuit is 6n. Moreover, the QCC and the quantum 2-to-

1 MUX require 16 and 9Δ quantum gates, respectively. Thus the area for a four-qubit QCSA

circuit is ((6 × 4 + 16 + 9) × 50) Å = 2450 Å. Therefore, the total area for an n-qubit QCSA

circuit is 2450N Å, where N = n/4.

Property 6.5.

An n-qubit QCSA circuit produces 6972.7N meV power, where meV is the unit of measuring

power and N = n/4.

Proof As an n-qubit QCSA has 6n quantum gates for the quantum ripple carry adder, 16

quantum gates for the QCC, and 9 quantum gates for the quantum MUX, as described in

property 6.1, the power for an four-qubit QCSA circuit is ((6 × 4 + 16 + 9) × 142.3) meV =

6972.7 meV.

Therefore, the total power for an n-qubit QCSA circuit is 6972.7N meV where N = n/4.

Property 6.6.

An n-qubit QCSA circuit can produce 14N garbage outputs, where N = n/4.

Proof The above statement is proved by mathematical induction.

In a four-qubit QCSA, the quantum ripple carry adder does not produce any garbage, but

each QCC and quantum MUX produces ten and four garbage outputs, respectively, as

shown in figure 6.3. Thus a four-bit QCSA produces G4 = GQCG + GQMG = 10 + 4 = 14

garbage outputs. Thus the statement holds for base case n = 4.

Assume that the statement holds for n = k. Thus a k-qubit QCSA circuit produces 14K

garbage outputs, where K = k/4.

A (k + 1)-qubit QCSA requires (k + 1) QCSA blocks. As a result, the total number of

garbage outputs produced for a (k + 1)-qubit QCSA is 14 × (K + 1) where K = k/4. Thus the

statement holds for n = k + 1.

Therefore, an n-qubit QCSA circuit can be realized with 14N garbage outputs, where N =

n/4.

Example 6.3.

When n = 4, see figure 6.5, the total garbage outputs of a four-qubit QCSA are as follows:

(14 × 1) = 14, where N = n/4 = 4/4 =1.

6.5 The quantum BCD adder

The BCD adder comprises three units, a four-qubit binary adder, an over-9-detection unit,

and a correction unit. The first part is a binary adder which performs on two four-qubit BCD

digits and a one-qubit carry input. The second part, the over-9-detector, recognizes if the

result of the first part is more than 9 or not. Finally, in the third part, if the output of the

detector overflow detection qubit (ODQ) is 1, the sum is added to by 6, otherwise do

nothing. The four-qubit binary adder is the cascade of a four-qubit carry–propagate adder.

The detection part is constructed using two AND gates and one OR gate. The correction

unit adds 0 to the binary number if the binary result is less than 10 and adds 6 to the

binary result if it is more than 9.

Let A and B be two one-digit BCD numbers. The BCD addition procedure of these

numbers is shown in figure 6.6(a) and the detailed architecture of a conventional or

irreversible BCD adder is shown in figure 6.6(b).

Figure 6.6. BCD addition. (a) BCD addition procedure. (b) Detailed architecture of a

conventional or irreversible BCD adder.

Let A3A2A1A0 and B3B2B1B0 be two BCD numbers to be added and the resulting

number is represented by Z3Z2Z1Z0. The carry out is represented by C4C3C2C1. C4 is 1

when the resulting number is greater than binary 1111, i.e. decimal 15. As the single digit

of the BCD number goes up to 9 (binary 1001), the maximum sum of the two one-digit BCD

numbers is 19 (= 9 + 9 + 1), shown in table 6.1.

Table 6.1. The binary sum of two BCD numbers.

BCD1 BCD2 Binary sum

BCD1 BCD2 Binary sum

A3A2A1A0 B3B2B1B0 Z3Z2Z1Z0

0 0 0 0 0 0 0 0 0 0 0 0

⋅ ⋅ ⋅

⋅ ⋅ ⋅

⋅ ⋅ ⋅

⋅ ⋅ ⋅

1 0 0 1 1 0 0 1 1 0 0 1 0 (decimal 18, if carryin = 0)

1 0 0 1 1 0 0 1 1 0 0 1 1 (decimal 19, if carryin = 1)

In this section the quantum BCD adder is presented. Four quantum full-adders can be

used to design a four-bit quantum full-adder (a quantum full-adder is presented in section

4.1.1). Two quantum Fredkin gates and one quantum Toffoli gate can be used as the

overflow detection unit. Finally, one quantum Peres gate, one quantum full-adder, and one

quantum Ex-OR gate can be used to construct the correction unit. The whole design of the

one-digit quantum BCD adder is shown in figure 6.7.

Figure 6.7. A one-qubit quantum BCD adder.

Property 6.7.

Let gpa be the minimum number of garbage outputs for a quantum four-qubit parallel

adder, god be the minimum number of garbage outputs produced by the overflow detection

circuit, and gocl be the minimum number of garbage outputs for overflow correction logic.

Let gBCD be the number of garbage outputs for a quantum BCD adder, then

gBCD ⩾ gpa + god + gocl, where gpa ⩾ 8, god ⩾ 0, and gocl ⩾ 2.

Proof. A quantum BCD adder consists of a four-qubit quantum parallel adder, overflow

detection logic, and overflow correction logic circuits. A four-bit parallel adder consists of

four full-adders and, according to figure 6.7, a four-bit parallel adder will be realized by at

least eight garbage outputs. Thus the minimum number of garbage outputs for a quantum

four-bit parallel adder is gpa = 8.

In the overflow detection logic circuit, the overflow expression F = (Z1 + Z2)Z3 ⊕ C4 is

realized and, according to figure 6.7, the quantum BCD overflow detection unit can be

realized using at least zero garbage outputs. Thus the minimum number of garbage

outputs for the overflow detection unit is god ⩾ 0.

In the overflow correction logic, overflow F is propagated. According to the design

presented in this section, overflow correction logic generates only two garbage outputs.

Thus the minimum number of garbage outputs for overflow correction logic is gocl ⩾ 2.

As a result, the total number of garbage outputs for a quantum BCD adder is

gBCD ⩾ gpa + god + gocl, where gpa ⩾ 8, god ⩾ 0, and gocl ⩾ 2.

Property 6.8.

Let gtpa be the minimum number of quantum gates for a quantum four-bit parallel adder,

gtod be the minimum number of quantum gates required by the overflow detection circuit,

and gtocl be the minimum number of quantum gates for the overflow correction logic

circuit. Let gtBCD be the total number of quantum gates for a quantum BCD adder, then

gtBCD = gtpa + gtod + gtocl, where gpa = 24, god = 15, and gocl = 11.

Proof A quantum BCD adder consists of four-qubit quantum parallel adder, overflow

detection logic, and overflow correction logic circuits. A four-qubit parallel adder consists of

four quantum full-adders and each quantum full-adder is realized by six quantum gates.

Thus minimum number of gates for a quantum four-qubit parallel adder is

gtpa = 4 × 6 = 24.

In the overflow detection logic, three blocks are used, each of which has five quantum

gates. Thus the minimum number of gates for the overflow detection logic is gtod = 15.
In the overflow correction logic, one quantum Peres gate, one quantum full-adder, and

one quantum Ex-OR gate are used to construct the correction unit. The quantum Peres gate

consists of four quantum gates, and one quantum full-adder consists of six quantum gates.

Thus the minimum number of quantum gates for the overflow correction logic is

gtocl = 4 + 6 + 1 = 11.

As a result, the total number of quantum gates for a quantum BCD adder is

gtBCD = gtpa + gtod + gtocl, where gpa = 24, god = 15, and gocl = 11.

6.6 Summary

This chapter presents the design methodology of an n-qubit QCSA circuit with optimal

delay and a quantum BCD adder. An efficient algorithm is shown for designing a compact

QCSA. The BCD adder is designed using quantum full-adder circuits. The efficiency of the

design is proved by presenting several properties. It is shown that the circuit has been

constructed with the optimum number of quantum gates, delays, garbage outputs,

quantum gate calculation complexity, area, and power. The adder is the basic arithmetic

unit of a computer system and it can be used in diverse areas, such as complex quantum

arithmetic circuits.

The design which has been shown in this chapter will help the reader to understand the

next chapter better. In addition, the concept of designing a QCSA will help in designing

quantum multiplier–accumulator circuits.

Critical thinking questions

1. How can the minimal propagation delay for a carry skip adder be calculated?

2. Which two methods are used to decrease the latency in quantum adders?

3. Construct the quantum comparison circuit and describe how it works.

4. Explain the properties of the quantum BCD adder.

5. Design an eight-qubit QCSA and explain its operation so that it may be implemented.

6. How many inputs are there in a quantum BCD adder?

7. Find the total quantum gate calculation complexity of a four-qubit QCSA circuit, when n

= 6.

8. Calculate the total delay of a four-qubit QCSA circuit, when n = 8.

References

[1] Álvarez-Sánchez J J, Álvarez-Bravo J V and Nieto L M 2008 A quantum architecture for multiplying signed integers J.
Phys.: Conf. Ser. 128 012013

[2] Babu H M H and Chowdhury A R 2005 Design of a reversible binary coded decimal adder by using reversible 4-bit
parallel adder 18th Int. Conf. on VLSI Design and 4th Int. Conf. on Embedded Systems Design pp 255–60

[3] Babu H M H and Chowdhury A R 2006 Design of a compact reversible binary coded decimal adder circuit J. Syst.

Archit. 52 272–82
[4] Balandin A A and Wang K L 1999 Implementation of quantum controlled-NOT gates using asymmetric

semiconductor quantum dots Quantum Computing and Quantum Communications (Berlin: Springer) pp 460–7
[5] Biswas A K, Hasan M M, Chowdhury A R and Babu H M H 2008 Efficient approaches for designing reversible binary

coded decimal adders Microelectron. J. 39 1693–703
[6] Biswas A K, Hasan M M, Hasan M, Chowdhury A R and Babu H M H 2008 A novel approach to design BCD adder

and carry skip BCD adder 21st Int. Conf. on VLSI Design (VLSID) pp 566–71
[7] Bose A and Babu H M H 2015 Optimized designs of reversible fault tolerant BCD adder and fault tolerant reversible

carry skip BCD adder 18th Int. Conf. on Computer and Information Technology (ICCIT) pp 202–7
[8] Bose A, Babu H M H and Gupta S 2015 Design of compact reversible online testable ripple carry adder IEEE Int.

WIE Conf. on Electrical and Computer Engineering (WIECON-ECE) pp 556–60
[9] Bruce J W, Thornton M A, Shivakumaraiah L, Kokate P S and Li X 2002 Efficient adder circuits based on a

conservative reversible logic gate IEEE Proc. Computer Society Annual Symp. on VLSI (Piscataway, NJ: IEEE) pp 83–
8

[10] Guyot A, Hochet B and Muller J-M 1987 A way to build efficient carry-skip adders IEEE Trans. Comput. C-36 1144–
52

[11] Haghparast M 2011 Design and implementation of nanometric fault tolerant reversible BCD adder Australian J.

Basic Appl. Sci. 5 896–901
[12] Hamacher V C, Vranesic Z G and Zaky S G 2002 Computer Organization (New York: McGraw-Hill)
[13] Haque M U, Sworna Z T, Babu H M H and Biswas A K 2018 A fast FPGA-based bcd adder Circuits Syst. Signal

Process. 37 4384–408
[14] Hung W N N, Song X, Yang G, Yang J and Perkowski M 2006 Optimal synthesis of multiple output Boolean functions

using a set of quantum gates by symbolic reachability analysis IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst.

25 1652–63
[15] Islam M et al 2010 Fault tolerant variable block carry skip logic (VBCSL) using parity preserving reversible gates

arXiv:1009.3819
[16] Islam M S, Rahman M M, Begum Z and Hafiz M Z 2009 Fault tolerant reversible logic synthesis: carry look-ahead

and carry-skip adders Int. Conf. on Advances in Computational Tools for Engineering Applications (Piscataway, NJ:
IEEE) pp 396–401

[17] Lin Y S and Radhakrishnan D 2008 Delay efficient 32-bit carry-skip adder VLSI Des. 2008 9
[18] Lisa N J and Babu H M H 2014 A compact realization of an n-bit quantum carry skip adder circuit with optimal delay

NASA/ESA Conf. on Adaptive Hardware and Systems (AHS) (Piscataway, NJ: IEEE) pp 270–7
[19] Lisa N J and Babu H M H 2015 Design of a compact ternary parallel adder/subtractor circuit in quantum computing

IEEE Int. Symp. on Multiple-Valued Logic pp 36–41
[20] Mano M M and Kime C R 2008 Logic and Computer Design Fundamentals (Upper Saddle River, NJ: Pearson

Prentice-Hall)
[21] Mohammad M, Eshghi M, Haghparast M and Bahrololoom A 2008 Design and optimization of reversible BCD

adder/subtractor circuit for quantum and nanotechnology based systems World Appl. Sci. J. 4 787–92
[22] Mohammadi M, Haghparast M, Eshghi M and Navi K 2009 Minimization and optimization of reversible BCD-full

adder/subtractor using genetic algorithm and don’t care concept Int. J. Quantum Inf. 7 969–89
[23] Nagendra C, Irwin M J and Owens R M 1996 Area-time-power tradeoffs in parallel adders IEEE Trans. Circuits Syst.

II 43 689–702

http://dx.doi.org/10.1016/j.sysarc.2005.05.005
http://dx.doi.org/10.1016/j.mejo.2008.04.003
http://dx.doi.org/10.1109/TC.1987.1676855
http://dx.doi.org/10.1007/s00034-018-0770-3
http://dx.doi.org/10.1109/TCAD.2005.858352
http://arxiv.org/abs/1009.3819
http://dx.doi.org/10.1155/2008/218565
http://dx.doi.org/10.1142/S0219749909005523
http://dx.doi.org/10.1109/82.539001

[24] Pang Y, Wang J and Wang S 2012 A 16-bit carry skip adder designed by reversible logic 5th Int. Conf. on Biomedical

Engineering and Informatics (Piscataway, NJ: IEEE) pp 1332–5
[25] Thapliyal H and Vinod A P 2006 Transistor realization of reversible TSG gate and reversible adder architectures

IEEE Asia Pacific Conf. on Circuits and Systems (Piscataway, NJ: IEEE) pp 418–21
[26] Velagaleti S 2009 A novel high speed dynamic comparator with low power dissipation and low offset Doctoral

dissertation National Institute of Technology, Rourkela.
[27] Viamontes G F, Markov I L and Hayes J P 2005 High-performance quantum circuit simulation QuIDDPro

http://vlsicad.eecs.umich.edu/Quantum/qp/ (Accessed: 19 March 2020)
[28] Yao A C-C 1993 Quantum circuit complexity Proc. IEEE 34th Annual Foundations of Computer Science pp 352–61

http://vlsicad.eecs.umich.edu/Quantum/qp/

IOP Publishing

Quantum Computing (Second Edition)

A pathway to quantum logic design

Hafiz Md Hasan Babu

Chapter 7

The quantum multiplier–accumulator

Learning objectives

Describe the significance of the quantum multiplier–accumulator

(QMAC) circuit.

Construct a quantum multiplier circuit using a quantum AND

operation and a quantum full-adder circuit.

Develop an algorithm to explain multiplication.

Construct an n × n quantum multiplier circuit.

Discuss ways to reduce the garbage outputs and ancillary inputs

of quantum circuits.

All quantum signal processing (QSP) algorithms use the quantum

multiplier–accumulator (QMAC) operation for high-performance quantum

processing systems. This operation is needed in filters, Fourier

transforms, etc, since it eases the computation of convolution. A QMAC

unit comprises of a quantum multiplier, quantum adder, and quantum

accumulator. The quantum multiplier multiplies the inputs and gives the

result to the quantum adder, which adds the quantum multiplier result to

the previously accumulated result. A QMAC unit is used to perform the

multiplication and quantum accumulator operations together to avoid

unnecessary overhead on the processor in terms of processing time and

the on-chip memory requirements.

High-speed multiplication has always been a fundamental requirement

of high-performance processors and systems. In QSP applications,

multiplication is one of the most utilized arithmetic operations. Improving

multiplier design directly benefits the high-performance embedded

processors and QSP applications used in consumer and industrial

electronic products. Moreover, quantum information processing (QIP) is a

high-impact research area in quantum information science for

constructing a quantum computer. The main goal of QIP is to harness the

fundamental laws of quantum mechanics to improve all aspects (e.g.

acquisition, transmission, and processing) of information processing

dramatically, as well as enhance the performance of quantum computers.

There are several tasks for which a quantum computer will be useful. The

one that is mentioned most frequently is that quantum computers will be

able to read secret messages communicated over the Internet using the

current technologies such as Rivest–Shamir–Adleman (RSA), Diffie–

Hellman, and other cryptographic protocols that are based on the

difficulty of number-theoretic problems such as factoring and discrete

logarithms. In addition, quantum computers are also useful for scientists

for conducting virtual experiments and searching in huge amounts of

data.

7.1 The importance of a quantum multiplier–

accumulator

The scope of the optimization of time complexity as well as the

optimization of garbage outputs and constant inputs has been addressed,

which has motivated the introduction of a completely new and efficient

technique of multiplication for quantum multipliers with optimum time

complexity. Time complexity reduction also minimizes the number of

operations and hardware complexity. It is necessary to introduce an

efficient and faster multiplication algorithm to optimize time complexity.

Thus a new, faster, more efficient, and optimal tree-based multiplication

technique which works like the breadth fast search (BFS) algorithm is

introduced in this chapter.

To implement the quantum multiplier using the quantum multiplication

technique, a new quantum full-adder (QFA) circuit and a new quantum

ANDing circuit (QAC) are introduced with the fewest number of gates and

less area, power, and gate level delay. In this chapter two algorithms for

the construction of quantum partial product generation (PPG) and partial

product addition (PPA) circuits are shown using QFA circuits and QACs

that work in the manner of a heuristic algorithm, and divide and conquer

algorithm, respectively, and a combination of them implements the

quantum multiplier using the quantum multiplication technique and

reduces the number of quantum gates, garbage outputs, and constant

inputs, and the amount of area, power, and delay compared to the best

known multipliers.

A large number of ancillary inputs and garbage outputs results in

increased area, delay, power, and quantum cost. Thus it is important to

design the quantum multiplier as well as the QMAC unit in such a way

that they reduce the ancillary inputs and garbage outputs. For this

purpose, in this chapter a new algorithm for designing the QMAC unit is

described which is similar to the greedy algorithm. A QMAC unit is formed

by combining quantum multiplier, full-adder, and quantum accumulator

circuits. Thus the QMAC circuit has reduced ancillary inputs, garbage

outputs, delay, area, power, quantum costs, and implementation

complexities. Furthermore, this circuit is compact and efficient and

requires a minimum number of quantum gates. In addition, this chapter

presents a very novel and unparalleled design of a quantum multiplier as

well as a QMAC unit that reduces the garbage outputs and ancillary

inputs.

7.2 The quantum multiplication technique

The quantum multiplier is a very important device for quantum arithmetic

logic units (ALUs). With advances in technology, researchers are trying to

design quantum multipliers with high speed and low power consumption

to make them suitable for various high-speed, low power, and compact

VLSI implementations. To achieve high speed and low power consumption

in a quantum multiplier, a tree-based multiplication technique is shown.

Property 7.1.

A tree is a finite set T such that:

1. One node r ∈ T is designated as the root.

2. The remaining nodes are partitioned into disjoint sets T1, T2, … , Tk,

where each of the sets is a tree and k ⩾ 0.

Property 7.2.

In a tree, each node can have any number of child nodes.

Property 7.3.

The partial product addition tree is a tree consisting of nodes in levels

where the nodes in each level contain the products and their additions.

Property 7.4.

A node of a tree contains the information or data. A node may be a child

or parent node.

Property 7.5.

The level of a node is the distance of that node from the root, where the

distance between two vertically adjacent nodes is one.

Example 7.1.

A tree, and its child and parent nodes, with the root and level are

depicted in figure 7.1. In this figure node A is at the top of the tree and is

called the root. Nodes which are just the next level of the root (B, C, D in

figure 7.1) are the parent nodes and nodes at the bottom level are called

the leaf or the child nodes of the previous parent node (I and J are the

child nodes of the parent node D as shown in figure 7.1). To go to node E

from root node A of the tree of figure 7.1, first it is necessary to go to

node B from root node A and then node E from node B. The distance from

root node A to node B is 1, and from node B to node E is 1. Thus the total

distance of node E from root node A is 2. Therefore, node E is at level 2.

Property 7.6.

The set of qubits that is to be multiplied with other qubits is called the

multiplicand.

Property 7.7.

The qubits which are multiplied with the qubits of the multiplicand are

called the multiplier.

Example 7.2.

The multiplier and multiplicand qubits are depicted in figure 7.2.

∣ A7⟩ ∣ A6⟩ ∣ A5⟩ ∣ A4⟩ ∣ A3⟩ ∣ A2⟩ ∣ A1⟩ ∣ A0⟩ is the set of the

multiplicand qubits and ∣ B7⟩ ∣ B6⟩ ∣ B5⟩ ∣ B4⟩ ∣ B3⟩ ∣ B2⟩ ∣ B1⟩ ∣ B0⟩
is the set of the multiplier qubits, as shown in figure 7.2.

Quantum logic preserves the properties of a linear combination of

multiple states (superposition), whereas binary logic preserves the

properties of only two states. Thus a multiplication algorithm based on

the superposition states of quantum computing is shown. However, the

multiplication technique is a generalized algorithm which is applicable for

both quantum and classical computations.

The technique has two basic steps. First, partial products are

generated in such a way that the copying of multiplicand qubits,

multiplier qubits, and ANDing operations are performed in parallel, which

results in the faster generation of partial products. Second, partial

product additions are performed using a tree structure, where the tree

has ((log2n) – 1) levels. In the first layer of the tree, four successive rows

of the partial product array are added by adders in parallel. In the

following levels, the rate of increase of the number of adders will be (n +

2 + i), where i = 1, 2, …, ((log2n) − 2) and n is the number of qubits. This

technique is described by algorithm 7.1. The working principle of

algorithm 7.1 is presented using example 7.3.

Algorithm 7.1. Multiplication technique.

Example 7.3.

The method is described using the following example.

To multiply two eight-qubit numbers, such as

{∣ A7⟩ ∣ A6⟩ ∣ A5⟩ ∣ A4⟩ ∣ A3⟩ ∣ A2⟩ ∣ A1⟩ ∣ A0⟩} (multiplicand qubits)

and {∣ B7⟩ ∣ B6⟩ ∣ B5⟩ ∣ B4⟩ ∣ B3⟩ ∣ B2⟩ ∣ B1⟩ ∣ B0⟩} (multiplier

qubits), the partial product generation and partial product addition

processes using the designed method for the given numbers are shown in

figures 7.2 and 7.3, respectively. In figure 7.2 the partial products are

generated using the partial product generation array and the symbol ‘X’

indicates the absence of the partial product term. In this figure AiBi
indicates the partial product terms, PAi is the result of the addition of

the partial products, and M i is the final multiplication result. Since in this

example the number of qubits is n = 8, the partial product addition tree

requires ((log2n) − 1) = 2 levels, as shown in figure 7.3. At the first level,

the partial products are added in two different nodes A11 and A12, and at

the next level, there is a node A21 in which partial addition results are

added to form the final result of the multiplication, as shown in figure 7.3,

where the symbol ‘+’ inside a node indicates the partial product addition

operation.

Property 7.8.

The time complexity of the multiplication approach is at least O((3log2n)

+ 1), where n is the number of multiplicand and multiplier qubits.

Proof. Property 7.8 is proved by mathematical induction. For an n-qubit

multiplier and multiplicand, a total log2n2 of ANDing and copying

operations are required in the partial product generation array. Thus the

time for the ANDing and copying operations is T(A) = O(log2n2).

To generate the partial product addition tree and to perform the

addition of the partial products in the partial product addition tree, log22n

operations are required, when the multiplier and multiplicand are n

qubits. Thus the total time required to generate the partial product

addition tree and perform the partial product addition is

T (P) = O(log22n).

When n = 1, we have the one-qubit multiplier and multiplicand. Thus the

time required for this multiplication is

T (1) = 1 = O(log2n
2 + log22n) = O((3 log21) + 1).

Therefore, the statement holds for the base case n = 1.

Assume that the statement is true for n = k and we have the k-qubit

multiplier and multiplicand. Thus the time for this multiplication is T(k) =

O(log2k + log22k) = O((3log2k) + 1).

When n = (k + 1), i.e. we have the (k + 1)-qubit multiplier and

multiplicand, the total required time for this multiplication is

T (k + 1) = O(log2(k + 1)2 + log22(k + 1)) = O((3 log2(k + 1)) + 1).

Therefore, the statement is true for n = (k + 1).

Thus, for all n, the time required for the multiplication process of an n-

qubit multiplicand and multiplier is

T(n) = T(A) + T(P) = O(log2n) + O(log22n) = O(2log2n + log2n + log22)

= O(3log2n + 1).

Thus the time complexity of the multiplication approach is at least

O((3log2n) + 1).

It is important to note that this multiplication algorithm is also suitable

for quantum computation. In quantum computation the smallest particles

are known as qubits, which are always in motion and can be

superpositioned at any time. Therefore, the execution time of any

quantum computation becomes random and probabilistic due to the

superposition of the particles. Whenever the quantum particles are in the

‘cat state’ (a special pure quantum state, where the quantum particles

are in a fixed equal superposition of all being ∣0〉 and ∣1〉, i.e. ∣00...0〉 +

∣11...1〉), one can compute the execution time when performing any

quantum operation, which in turns measures the time complexity of the

quantum operation. As a result, in the case of quantum computation, the

time complexity of the multiplication method will be similar when both

the multiplicand qubits and multiplier qubits are in the ‘cat state’.

Property 7.9.

The multiplication algorithm holds multiple states of the superposition of

quantum logic.

Proof. In the multiplication algorithm, the partial product addition is

performed using a tree-based structure. Let T be the partial product

addition tree of ∣ϕ〉 where the qubit ∣ϕ〉 is used to denote a multiplier or a

multiplicand qubit. By applying an addition, the operator Ai on the ith

qubit simply changes the superposition α ∣ 0⟩i + β ∣ 1⟩i (where α and β
are the probabilities of being in the ∣0〉 and ∣1〉 states, respectively) of

that qubit located at any arbitrary leaf (nodes at the bottom level of the

tree) to a different superposition α′ ∣ 0⟩i + β′ ∣ 1⟩i.

Thus the individual sum of the partial products can be represented by

the partial product addition tree (T) using property 7.1 which holds the

multiple states of the superposition of quantum logic.

Figure 7.1. Examples of a tree, root, node, and level. Reproduced

with permission from [4]. Copyright 2017 Springer Nature.

Figure 7.2. An example of the multiplication method. Reproduced

with permission from [4]. Copyright 2017 Springer Nature.

Figure 7.3. Partial product addition using the tree structure.

Reproduced with permission from [4]. Copyright 2017 Springer

Nature.

A quantum multiplication circuit is designed using the multiplication

method, which is shown in section 7.4.

7.3 Reduction of the garbage outputs and

ancillary inputs of quantum circuits

Quantum computers of many qubits are extremely difficult to realize. This

sets the major objective of optimizing the number of ancillary (constant)

input qubits and the number of garbage outputs in quantum circuits. In

other words, in the case of choosing between increasing the garbage

outputs and increasing the number of gates in a quantum circuit

implementation, the preference should be given to the design method

that delivers the minimum amount of garbage outputs, as reducing

garbage outputs and constant inputs in turn improves the logical

complexity and quantum costs of the circuits. Sometimes in quantum

circuits a huge number of ancillary (constant) inputs leads to an increase

in the size (area) of the circuit as well as gate level delays and power

consumption. This is, in particular, a problem in quantum computation,

since in quantum circuits input lines are a highly limited resource (caused

by the fact that the number of circuit lines corresponds to the number of

qubits). Furthermore, if the numbers of constant inputs in the quantum

circuits increase, it may decrease the reliability of the circuits. Thus

keeping the number of constant inputs as small as possible is an

important issue. As the optimization of the ancillary input bits and

garbage outputs may produce a compact circuit in terms of the quantum

cost, power, and delay, it is always the primary focus to optimize the

number of ancillary input bits and garbage outputs when designing a

circuit.

Different minimization algorithms and tree-based designs are given to

decrease the number of ancillary inputs and garbage outputs. In addition

to the algorithms, new quantum adder, quantum ANDing, and quantum

multiplier circuits are used in order to reduce the ancillary inputs and

garbage outputs in the final circuit.

This solution enables us to overcome the overheads of increasing gate

level delay, quantum cost, area, and power due to decreasing the

number of garbage outputs and constant inputs in quantum circuits.

7.4 The design of a quantum multiplier circuit

In this section a quantum multiplier circuit is designed using a

multiplication algorithm. The techniques of fast multiplication as well as

the quantum ANDing circuit and quantum full-adder, and the design of a

compact quantum multiplier and quantum n × n multiplier circuit are

presented in this subsection.

7.4.1 The quantum ANDing circuit

In this subsection a new 3 × 3 QAC is shown. The input vector (Iv) and the

output vector (Ov) of the circuit are as follows:

Figure 7.4 shows the diagram of the 3 × 3 QAC and the circuit can also

be realized by the decomposition of the quantum Toffoli gate. In the QAC,

five basic quantum gates are used. Thus the quantum cost is 5. The

output ∣Q〉 is the result of the ANDing of qubits ∣A〉 and ∣C〉. The truth

table corresponding to the QAC is shown in table 7.1. It can be verified

from the truth table that the input pattern corresponding to a particular

output pattern can be uniquely determined. To perform the ‘AND’

operation using QAC, the ∣B〉 input qubit in figure 7.4 has to remain ∣0〉.

Thus the QAC can be used to design the partial product generation

circuit.

Figure 7.4. A quantum circuit for the ANDing operation. Reproduced

with permission from [4]. Copyright 2017 Springer Nature.

Table 7.1. Reversibility of 3 × 3 QAC circuit.

Input Output

A B C P Q R

0 0 0 0 0 0

0 0 1 0 0 1

0 1 0 0 1 0

0 1 1 0 1 1

∣ Iv⟩ = {∣ A⟩, ∣ B⟩, ∣ C⟩}; and

∣ Ov⟩ = {∣ A⟩, ∣ AC ⊕ B⟩, ∣ C⟩}.

Input Output

A B C P Q R

1 0 0 1 0 0

1 0 1 1 1 1

1 1 0 1 1 0

1 1 1 1 0 1

7.4.2 The quantum full-adder circuit

A quantum full-adder is a circuit that performs the arithmetic sum of

three input qubits. It consists of three inputs and two outputs. If we take

three input variables A, B, Cin and two output variables S (sum) and Cout

(carry), then the following equations can be used to obtain the outputs:

Quantum full-adders are versatile and widely used building blocks in

quantum arithmetic circuits. In this subsection a new 4 × 4 QFA circuit is

shown.

The input vector Iv and the output vector Ov of the circuit are as

follows:

Figure 7.5 shows the diagram of the 4 × 4 QFA circuit. In this figure,

the output ∣R〉 is the S (sum) and ∣S〉 is the Cout (carry). The number of

quantum gates of the QFA circuit is six and so the quantum cost is 6. The

truth table corresponding to the QFA circuit is shown in table 7.2. It can

be verified from the truth table that the input pattern corresponding to a

particular output pattern can be uniquely determined. The QFA circuit is

designed in such a way that it can be used efficiently as a quantum full-

S = A ⊕ B ⊕ Cin

Cout = AB ⊕ BCin ⊕ CinA.

∣ Iv⟩ = {∣ A⟩, ∣ B⟩, ∣ C⟩, ∣ D⟩}; and

∣ Ov⟩ = {∣ A⟩, ∣ A ⊕ B⟩, ∣ A ⊕ B ⊕ C⟩, ∣ AB ⊕ (A ⊕ B)C ⊕ D⟩}.

adder by setting the fourth input qubit as a constant zero ∣0〉. Algorithm

7.2 describes the design of QFA circuit as a quantum full-adder.

Figure 7.5. The quantum full-adder circuit, when ∣D〉 = ∣0〉.

Reproduced with permission from [4]. Copyright 2017 Springer

Nature.

Table 7.2. Reversibility of 4 × 4 QFA circuit.

Input Output

A B C D P Q R S

0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 1

0 0 1 0 0 0 1 0

0 0 1 1 0 0 1 1

0 1 0 0 0 1 1 0

0 1 0 1 0 1 1 1

0 1 1 0 0 1 0 1

0 1 1 1 0 1 0 0

1 0 0 0 1 1 1 0

Input Output

A B C D P Q R S

1 0 0 1 1 1 1 1

1 0 1 0 1 1 0 1

1 0 1 1 1 1 0 0

1 1 0 0 1 0 0 1

1 1 0 1 1 0 0 0

1 1 1 0 1 0 1 1

1 1 1 1 1 0 1 0

Algorithm 7.2. Construction of the quantum full-adder.

7.4.2.1 The quantum multiplier circuit

The design of the quantum multiplier is composed of two components:

the quantum PPG circuit and a quantum PPA circuit. The quantum PPG

circuit and quantum PPA circuit are described in the following sections.

The number of constant input and garbage output lines has been reduced

significantly by using quantum memory elements.

7.4.2.2 The quantum partial product generation circuit

The quantum PPG which is constructed using the QACs, takes the

multiplicand and multiplier qubits as the input and produces the partial

products as outputs. The multiplier qubits and the multiplicand qubits are

fed to a component which produces partial products. The QAC has been

used to construct this part.

Example 7.4.

To construct a 4 × 4 quantum PPG circuit, sixteen QACs are needed to

perform the ANDing operations for generating the partial products. In

figure 7.6 the detailed quantum partial product generation circuit for a 4

× 4 quantum multiplier is shown. In this figure the qubit ∣C0〉 is used as

the constant input lines; and qubits ∣Xi〉 and ∣Yi〉 are the input qubits of

the multiplicand and multiplier, respectively. The partial products denoted

by the qubits ∣XiYi〉 are the outputs of the PPG circuit, where the symbol

‘⋯’ is used to denote the single constant input line and also the single

garbage output line, which are reused in the circuit wherever it is

necessary.

Figure 7.6. The quantum PPG circuit of a 4 × 4 multiplier.

Reproduced with permission from [4]. Copyright 2017 Springer

Nature.

7.4.2.3 The quantum partial product addition circuit

The quantum PPA circuit adds column-wise the partial products that have

been generated by the quantum PPG circuit. The PPA circuit is

constructed using the QFA circuits. The construction procedure of the

quantum PPA circuit is as follows.

To construct a quantum PPA circuit a tree structure is followed,

consisting of levels. A PPA tree is created with ((log2n) − 1) levels. At the

first level of the PPA tree, there are n/4 nodes, where each node

represents the addition by a quantum adder f the successive four rows of

a partial product array. In the following levels of the tree, the addition

operations are performed between two predecessor nodes, where the

rate of increase of the number of adders will be (n + 2 + i), where i = 1,

2, …, ((log2n) − 2) and n is the number of qubits. Finally, the

multiplication result is obtained in the ((log2n) − 1)th level of the tree.

Example 7.5.

To construct a 4 × 4 quantum PPA circuit, ten QFA circuits are needed to

perform the addition operations for generating the PPA. In figure 7.7 the

detailed quantum PPA circuit for a 4 × 4 multiplier is shown. In this figure

the qubit ∣C0〉 is used as the constant in the input lines. This PPA circuit

takes the partial products of qubits (∣XiYi〉) as inputs and generates the

result of addition denoted by the qubit ∣Si〉 as the output, where the

symbol ‘⋯’ is used to denote the single constant input line and also the

single garbage output line, which are reused in the circuit wherever

necessary.

Figure 7.7. The quantum PPA circuit of a 4 × 4 quantum multiplier.

Reproduced with permission from [4]. Copyright 2017 Springer

Nature.

7.4.3 The n × n-qubit quantum multiplier

A 4 × 4 quantum multiplier is constructed using QACs and QFA circuits.

First, a quantum PPG circuit is constructed using a QAC circuit to generate

partial products for a 4 × 4 quantum multiplier. The quantum PPA circuit

is constructed for PPA using QFA circuits and obtains a 4 × 4 quantum

multiplier. The generalized block diagrams for an n × n quantum PPG and

quantum PPA circuits are shown in figures 7.8 and 7.9, respectively,

where the qubit ∣C〉 is the constant input and the qubit ∣S〉 stands for the

sum of the qubits. In figure 7.8 each of the QAC blocks takes a

multiplicand qubit ∣Xi〉 and a multiplier qubit ∣Yi〉 and generates the

product terms of qubits ∣XiYi〉 as outputs, which are carried out on the PPA

circuits. The block diagram of the PPA circuit as shown in figure 7.9 is

constructed by the QFA blocks where each QFA block takes two partial

products of qubits ∣XiYi〉 and performs the addition of the products in

which the sum (∣S〉) is the output of the block. Thus the construction

procedure of an n × n quantum multiplier circuit is as follows: at first an n

× n quantum PPG circuit is generated and then the quantum PPA circuit

of an n × n multiplier is constructed using algorithm 7.3.

Figure 7.8. The quantum PPG circuit of an n × n quantum multiplier.

Reproduced with permission from [4]. Copyright 2017 Springer

Nature.

Figure 7.9. The quantum PPA circuit of an n × n quantum multiplier.

Reproduced with permission from [4]. Copyright 2017 Springer

Nature.

Algorithm 7.3. Quantum partial product addition circuit.

Property 7.10.

The depth of the design of the quantum multiplier circuit is O(9n +

14log2n), where n is the number of qubits of the multiplicand and

multiplier.

Proof. The above statement is proved by the method of mathematical

induction. A 2 × 2 PPG and a 2 × 2 PPA circuit are required for

constructing a 2 × 2 quantum multiplier circuit using the design of the

tree-based multiplier, where the total number of stages (depth) in a 2 × 2

PPG circuit is 20 and the number of stages (depth) in a 2 × 2 PPA circuit

is 12.

When n = 2 for a 2 × 2 quantum multiplier circuit, the total depth of

the 2 × 2 quantum multiplier circuit is

D2×2 = DPPG + DPPA

= 20 + 12 = 18 + 14 = 9n + 14log2n; [∵ n = 2 here].

Thus the statement holds for the base case n = 2.

Assume that the statement also holds for n = k, which is a k × k

quantum multiplier circuit. Thus Dk×k = 9k + 14 log2k. Therefore, the

depth of the (k + 1) × (k + 1) quantum multiplier circuit is

D(k+1)×(k+1) = 9(k + 1) + 14 log2(k + 1).
Thus the statement is also true for n = (k + 1) and thus the depth of

the design of the quantum multiplier circuit is O(9n + 14log2n).

It is important to note that the depth of the quantum multiplier circuit is

exponential or linear, whereas the depth of the quantum multiplier is

logarithmic.

7.5 Accumulator

A quantum accumulator is a quantum register used by the quantum

central processing unit (CPU) of a quantum computer to temporarily store

arithmetic and logic data. However, it is rarely used to refer to modern

quantum CPUs because the term ‘register’ emerged at the turn of the

millennium. Any quantum ALU operation can have one of the two

operands stored in the quantum accumulator. This is only an example,

but to add two qubits together, one would go into the quantum

accumulator and the other into memory or a general-purpose quantum

register. The two integers are used as the quantum ALUʼs input when it is

put into action.

The two-qubit quantum accumulator is made up of two quantum D-flip

flops, each of which is composed of four quantum NAND operations and

one quantum AND operation. The inputs of the quantum AND operation

are ∣LOAD〉 and ∣CLK〉, and the outputs of the quantum AND operation

serve as the input for each quantum D-flip flop. The final outputs of a

quantum accumulator circuit come from the first and second quantum D-

flip flops, respectively. The circuit diagram of a quantum accumulator is

shown in figure 7.10.

Figure 7.10. The quantum accumulator.

This type of quantum register is known as a quantum accumulator,

which serves as a momentary storage space and stores a value used as a

bridge in logical and mathematical processes. For example, while

performing the operation ‘5 + 6 + 7’, the quantum accumulator will

initially store the value 5, then the value 11, and eventually the value 18.

If the result of the quantum AND operation is ∣1〉, then the data will be

stored in the quantum accumulator. There will be no data saved in the

accumulator if the output of the quantum AND operation is ∣0〉.

7.6 Summary

This chapter presents the design methodology of a novel quantum

multiplier–accumulator unit using quantum multiplier and quantum

accumulator circuits. As the multiplier is the major component of a

multiplier–accumulator unit, in this chapter a new design methodology of

the quantum multiplier device is presented using a multiplication

technique. The design methodology generates the partial products using

the quantum ANDing circuit and performs the addition of partial products

in parallel by using the quantum full-adders with reduced ancillary and

garbage bits. The unique tree-based multiplication technique along with

the use of quantum full-adders and quantum ANDing circuits reduces the

number of ancillary and garbage bits in the quantum multiplier design. A

quantum accumulator circuit is also shown which is more compact and

efficient. The design methodology can be integrated as part of a quantum

CPU, quantum signal processing, and quantum ALU, optimized in terms of

ancillary inputs and garbage outputs.

Critical thinking questions

1. Give a short explanation of the characteristics of a quantum

multiplier–accumulator.

2. Construct a 6 × 6 multiplier circuit using a quantum accumulator

circuit and quantum adder circuits.

3. Is it possible to construct a 5 × 5 quantum accumulator circuit? If so,

design it using the appropriate circuits.

4. Give a brief explanation of how the ancillary input and garbage

output of a quantum circuit work.

5. Prove that the quantum superposition states of the multiplication

algorithm may exist in numerous states.

6. Identify the multiplication strategyʼs temporal complexity, when n is

9.

7. Describe briefly the reduction of an ancillary input and a garbage

output of a quantum circuit.

8. Is it possible to get rid of the garbage value from the circuit below?

Explain in detail.

References

[1] Ömer B QCL—a programming language for quantum computers http://tph.tuwien.ac.at/
∼oemer/qcl.html (Accessed: 5 December 2018)

[2] Akbar E P A, Haghparast M and Navi K 2011 Novel design of a fast reversible Wallace sign
multiplier circuit in nanotechnology Microelectron. J. 42 973–81
Á Á

http://tph.tuwien.ac.at/~oemer/qcl.html
http://dx.doi.org/10.1016/j.mejo.2011.05.007

[3] Álvarez-Sánchez J J, Álvarez-Bravo J V and Nieto L M 2008 A quantum architecture for
multiplying signed integers J. Phys.: Conf. Ser. 128 012013

[4] Babu H M H 2017 Cost-efficient design of a quantum multiplier-accumulator unit Quantum

Inf. Process. 16 30
[5] Cai X-D, Wu D, Su Z-E, Chen M-C, Wang X-L, Li L, Liu N-L, Lu C-Y and Pan J-W 2015

Entanglement-based machine learning on a quantum computer Phys. Rev. Lett. 114 110504
[6] Chakrabarti A and Sur-Kolay S 2008 Designing quantum adder circuits and evaluating their

error performance Int. Conf. on Electronic Design (Piscataway, NJ: IEEE) pp 1–6
[7] Cormen T H 2001 Introduction to Algorithms ed Cormen T H (ed) , Leiserson C E (ed) ,

Rivest R L (ed) and Stein C (ed) (Cambridge, MA: MIT Press)
[8] Hung W N N, Song X, Yang G, Yang J and Perkowski M 2006 Optimal synthesis of multiple

output Boolean functions using a set of quantum gates by symbolic reachability analysis IEEE

Trans. Comput.-Aided Des. Integr. Circuits Syst. 25 1652–63
[9] Kaye P et al 2007 An Introduction to Quantum Computing (Oxford: Oxford University Press)

[10] Kitaev A Y 1997 Quantum computations: algorithms and error correction Russ. Math. Surv.

52 1191–249
[11] Kotiyal S, Thapliyal H and Ranganathan N 2014 Circuit for reversible quantum multiplier

based on binary tree optimizing ancilla and garbage bits 27th Int. Conf. on VLSI Design and

13th Int. Conf. on Embedded Systems (Piscataway, NJ: IEEE) pp 545–50
[12] Li D-F, Wang R-J, Zhang F-L, Deng F-H and Baagyere E 2015 Quantum information splitting

of arbitrary two-qubit state by using four-qubit cluster state and Bell-state Quantum Inf.

Process. 14 1103–16
[13] Maynard C M and Pius E 2014 A quantum multiply-accumulator Quantum Inf. Process. 13

1127–38
[14] Mogensen T Æ 2013 Garbage-free reversible constant multipliers for arbitrary integers Int.

Conf. on Reversible Computation (Berlin: Springer) pp 70–83
[15] Nielsen M A and Chuang I 2002 Quantum Computation and Quantum Information (Leiden:

Cambridge University Press)
[16] Ramya P R and Vani Y S 2013 Optimization and implementation of reversible BCD adder in

terms of number of lines Int. J. Reconfigurable Embedded Syst. 2 21–6
[17] Schubert M and Rana F 2006 Analysis of terahertz surface emitting quantum-cascade lasers

IEEE J. Quantum Electron. 42 257–65
[18] Viamontes G F, Markov I L and Hayes J P 2005 High-performance quantum circuit simulation

QuIDDPro http://vlsicad.eecs.umich.edu/Quantum/qp/ (Accessed: 19 March 2020)
[19] Wille R, Soeken M and Drechsler R 2010 Reducing the number of lines in reversible circuits

Proc. 47th Design Automation Conf. (New York: ACM) pp 647–52
[20] Yao A C-C 1993 Quantum circuit complexity Proc. IEEE 34th Annual Foundations of

Computer Science pp 352–61

http://dx.doi.org/10.1007/s11128-016-1455-0
http://dx.doi.org/10.1103/PhysRevLett.114.110504
http://dx.doi.org/10.1109/TCAD.2005.858352
http://dx.doi.org/10.1070/RM1997v052n06ABEH002155
http://dx.doi.org/10.1007/s11128-014-0906-8
http://dx.doi.org/10.1007/s11128-013-0715-5
http://dx.doi.org/10.11591/ijres.v2.i1.pp21-26
http://dx.doi.org/10.1109/JQE.2005.863138
http://vlsicad.eecs.umich.edu/Quantum/qp/

IOP Publishing

Quantum Computing (Second Edition)

A pathway to quantum logic design

Hafiz Md Hasan Babu

Chapter 8

The quantum divider

Learning objectives

Discuss the traditional integer division algorithm.

Construct a quantum divider circuit.

Design an algorithm of the quantum integer division.

Acquire knowledge about the components of the quantum divider circuit.

Explain the importance of the quantum divider.

Implement an n-qubit quantum divider circuit using its algorithm.

Describe the technique for tree-based quantum division.

Among all the fundamental operations in a quantum computer, division is the most

complex operation. Division invokes operations such as addition, multiplication, and

subtraction. The quantum divider is an indispensable part of a quantum processor and

comprises arithmetic sub-modules such as a quantum comparator, quantum adder,

quantum multiplier, and quantum subtractor.

A computer processor is composed of a large number of units to execute instructions.

Arithmetic units are important units in computer hardware because they have many uses

in computer systems. Therefore, designing quantum circuits for arithmetic units is very

important. One of these arithmetic units is the division unit. The division circuit is a

somewhat complicated component in computer hardware.

8.1 Division algorithms

This section presents classical integer division algorithms as well as quantum algorithms

for integer division.

8.1.1 Classical integer division algorithms

Integer division is a basic part of the elementary theory of computation. A number of

classical integer division algorithms have some advantages and disadvantages. The

textbook division algorithm for integer division described by Knuth is similar to

conventional mathematical division, where both the dividend and the divisor must be two-

word integers and it has a time complexity of O(n3). This division algorithm is more

complex and slower than other division algorithms. Moller showed an improved integer

division algorithm which solved the problem of dividing a two-word integer by a single-word

integer using single-word approximate reciprocals. This method requires a lower

multiplication time and omits the most significant half of the products. However, this

technique requires a time complexity of O(n2) and still needs more operations to perform

the division. The restoring division algorithm first operates on fixed-point fractional

numbers and uses an extra register to save the partial numerators obtained by the

multiplication, and then reuses the result when the result of the subtraction is negative.

This method has a time complexity of O(n2).

8.1.2 Quantum integer division algorithms

There is no explicit quantum integer division algorithm. All the algorithms incorporate

quantum division in the classical integer division algorithms. One of the most well-known

algorithms in the field of quantum computation is Shorʼs factorization algorithm. This is a

quantum algorithm that finds the factors of a composite integer in polynomial time with a

great probability of success. Division is not incorporated in this factorization algorithm as

well as other implementations of the modular exponentiation part of Shorʼs algorithm. The

quantum modular exponentiation architecture is described for Shorʼs factoring algorithm,

where division has been incorporated. It is currently one of the most renowned design

architectures of integer division using Shorʼs quantum factoring algorithm. This quantum

modular exponentiation circuit requires (9n + 2) qubits and has a depth of O(2000n2),

where n is the number of qubits to be factored. The time complexity of this method for

quantum integer division is O(72(log2n)3).

Alireza devised a design to implement the quantum divider for the division of two n-

qubit fixed-point numbers in binary format using the restoring division algorithm. The

design methodology reduces the number of ancillary qubits and eliminates the use of

quantum arithmetic sub-modules such as quantum shift register, quantum adder,

subtractor, etc. However this architecture requires a time complexity of (5n/6)2 + O(n2)
and a total 3n3 + 6n2 + n operations are required, where n is the number of qubits of the

dividend and divisor.

All the above-mentioned quantum algorithms for integer division have a high time

complexity and a high total number of operations to perform the division operation of two

arrays of qubits representing integers. Therefore it is expedient to incorporate a new

quantum division algorithm for integer division with minimal time complexity and number

of operations.

8.2 The importance of the quantum divider

In this chapter the optimization of time complexity as well as the reduction of number of

operations are addressed, which has motivated the introduction of a completely new and

efficient technique of integer division with optimum time complexity. Time complexity is

the amount of instructions that will be executed during the run time of that particular

algorithm. Obviously, the greater the time complexity of the algorithm, the more

operations the are, and the greater is the delay of simulation. A large time complexity

makes the algorithm slower. Increasing the time complexity of an algorithm is likely to

increase the number of operations. This increase in turn increases the cost and delay of the

execution of operations. Algorithmic complexity is the property of an algorithm which is

mapped to the amount of computational resources used by the algorithm. This factor is

analogous to the engineering productivity for a repeating or continuous process. Thus if the

complexity changes, the resources such as memory space, access time, cost, delay, area,

and power of execution of the algorithm will also fluctuate proportionally. This will make the

simulation of the algorithm more vulnerable, particularly in the case of large sets of data.

The reduction of this time complexity minimizes the number of operations and hardware

complexities as well. This optimization in turn makes the division operation faster. Thus it is

expedient to reduce the time complexity of the division algorithm to make it faster and

more efficient. Researchers are looking for an efficient and faster division algorithm to

optimize time complexity. Therefore a new, faster, more efficient, and optimal tree-based

division technique which works like the breadth fast search (BFS) algorithm is introduced in

this chapter.

8.3 The tree-based quantum division technique

In this section a tree-based quantum division algorithm is described to perform the division

operation of the integers, which is the first such ever presented in the literature. The

quantum algorithms for integer division based on the classical division algorithms require a

large time complexity and a greater number of operations to execute the division of the

dividend by the divisor.

8.3.1 Definitions and properties of the division technique

In this subsection the terms divisor, dividend, quotient, remainder, partial numerator, node,

leaf, and root, and the properties of the tree that are used frequently throughout this

chapter are elaborated to establish the main purpose and the theme of this chapter.

Definition 8.1.

The qubits representing the integer that is to be divided are called the dividend.

Definition 8.2.

The qubits of the integer that divides the dividend are known as the divisor.

Definition 8.3.

The quotient is the resulting qubits of the integer obtained by dividing the dividend using

the divisor.

Definition 8.4.

In any step of the division process when the quotient qubits are multiplied with the divisor

qubits, it generates partial numerator qubits that are subtracted from the original dividend

qubits.

Definition 8.5.

Remainder qubits representing integers are the result obtained after subtracting the

current partial numerator qubits from the original divisor qubits.

Example 8.1.

Suppose a qubit string of integer {∣1〉∣1〉∣0〉∣1〉∣0〉} is divided by {∣1〉∣0〉∣1〉}, then first one

is the dividend and the second qubit string is the divisor. The quotient is {∣1〉∣0〉∣1〉}, the

partial numerator is {∣1〉∣0〉∣1〉}, and the remainder is {∣1〉}. Figure 8.1 illustrates this

scenario.

Property 8.1.

A connected graph G is called a tree if:

1. The removal of any of its edges makes G disconnected.

2. The top most node r ∈ G is designated as the root.

3. The remaining nodes are partitioned into disjoint sets G1, G2, …, Gk, where each of the

sets is a tree and k ⩾ 0.

4. G is connected and contains no closed path or cycles.

Definition 8.6. (Node)

A node in a tree contains the information or data. The node may be a child or a parent

node.

Definition 8.7. (Level)

The level of a node is the unique path of that node from the root of the tree.

Example 8.2.

A tree, its child and parent nodes, root, and level are depicted in figure 8.2.

Figure 8.1. The divisor, dividend, remainder, quotient, and partial numerator.

Figure 8.2. Example of a tree, root, node, and level.

8.3.2 The algorithm of the division technique

In the algorithm the tree structure approach is used for simplicity and generality as well as

optimizing the time complexity through parallelism. A tree-based division algorithm makes

the operation faster and it also simplifies the circuits.

The technique of division has five basic steps:

Step 1. First the midpoint qubit of the dividend is determined and the dividend is split

using the quantum dividend splitter (QDS) circuit, as shown in figure 8.3. The first half

will be taken after splitting, as shown in figure 8.1.

Step 2. Then the partial numerator qubits are generated in such a way that the

copying and ANDing operations of the divisor and quotient qubits are done in parallel in

the split dividend for faster operation. In this step, first an additional ∣0〉 is added at the

beginning of the first half of step 1 to form the divisor qubits and then the quotient

qubits are multiplied with the divisor qubits to obtain the results which are stored in the

partial numerator qubit generation (PQG) array. Figure 8.3 illustrates the procedure.

Step 3. In this step the partial numerator additions are performed in a tree structure

known as the partial numerator addition (PNA) tree, where the tree has ((log2n) − 1)

levels for numerator generation and addition. In the first level, four concurrent rows of

the PQG array are combined by adders in parallel, and in the next levels (up to ((log2n)

− 1)th) the results of the additions between the individual qubits of divisor and

quotient are added together to form the partial numerator. According to example 8.3

we have n = 4. Thus only ((log2n) − 1) = 1 levels are needed to complete the addition

of the results of the multiplication stored in the PQG array, as shown in figure 8.4.

Step 4. Now a partial numerator subtractor (PNS) tree with only one level is necessary

for subtracting the partial numerator from the original dividend. Figure 8.5 illustrates

the procedure.

Step 5. If there is no remainder after subtraction, then the division is complete, where

the quotient qubits form the result. Otherwise, the remainders are added at the

beginning positions of the rest of the qubits of the dividend before splitting the newly

formed dividend. Repeat the same operation until a remainder exists. In example 8.3

there are remainders after step 4. Thus the same process is repeated, as shown in

figure 8.6.

Figure 8.3. Step 2, multiplication of the divisor and quotient, and storing the result in

the PQG array.

Figure 8.4. Step 3, the partial numerator obtained by addition in the PNA tree.

Figure 8.5. Step 4, subtraction of a partial numerator from the original dividend in

the PNS tree.

Figure 8.6. Step 5, repetition of the same process until there is a remainder.

Algorithm 8.1 describes the division technique while example 8.3 explains it.

Algorithm 8.1 Division technique.

Example 8.3.

Let the divisor be a qubit string {∣ 1⟩ ∣ 0⟩ ∣ 0⟩} and the dividend be

{∣ 1⟩ ∣ 1⟩ ∣ 1⟩ ∣ 1⟩ ∣ 0⟩ ∣ 0⟩}. First, it is necessary to split the dividend according to

algorithm 8.1. After splitting, a dividend consisting of the first three qubits, i.e. {∣1〉∣1〉∣1〉},

is obtained. In the next step the partial numerator qubits (∣1〉, ∣0〉, ∣0〉, ...) are generated by

the copying and ANDing operations of the divisor {∣1〉∣0〉∣0〉} and quotient qubit {∣1〉}.

Then the PNA tree is generated and the partial numerator {∣1〉∣0〉∣0〉} is produced by the

addition operations of the partial numerator qubits generated in the previous step. Then a

PNS tree with a single level is generated and the partial numerator {∣1〉∣0〉∣0〉} is

subtracted from the split dividend {∣1〉∣1〉∣1〉}. In the next step the remainder {∣1〉∣1〉} is

added at the beginning of the rest of the dividend qubits {∣1〉∣0〉∣0〉} and the newly formed

dividend becomes {∣1〉∣1〉∣1〉∣0〉∣0〉}. Now again, after splitting, the dividend becomes three

qubits, i.e. {∣1〉∣1〉∣1〉}. Again the partial numerator produced by the PNA tree using

quotient {∣1〉} is {∣1〉∣0〉∣0〉}, which is subtracted from the split dividend in the PNS tree

and the remainder {∣1〉∣1〉} is added at the beginning of the rest of the dividend qubits and

that becomes {∣1〉∣1〉∣0〉∣0〉}. No more splitting is needed and using the divisor {∣1〉∣0〉∣0〉}

and quotient {∣1〉∣1〉}, a partial numerator {∣1〉∣1〉∣0〉∣0〉} is produced, which is then

subtracted from the dividend {∣1〉∣1〉∣0〉∣0〉}; there is no remainder. Thus the quotient

qubits form the result of the division, i.e. {∣1〉∣1〉∣1〉∣1〉}. This whole procedure is clarified in

the figures 8.1 and figure 8.3–8.6.

Property 8.2.

The time complexity of the division algorithm is at least O(3n((log2n) + 1) − n), where n is

the number of qubits of the dividend.

Proof. Let n be the size of the dividend and m be the size of the divisor arrays of qubits, n

⩾ m. For a one-qubit division, the best known method requires a time complexity of

(5/6)2 + O(1), whereas the best case time complexity of the division algorithm for one

qubit is O(2).

According to the algorithm, in the first step the dividend is split and it requires the best

case time complexity of T(P) = O(log2n), where n is the number of qubits of the dividend.

In the second step a PNA tree is produced to perform the addition of the partial

numerators. Assume that T is the PNA tree and N(n) is the total number of levels of the

tree. Thus, first the required time for the numerator generation and addition of the partial

numerators is calculated using a tree structure by the method of mathematical induction. It

is assumed that the time of numerator generation and addition operations using the tree is

O((log2n) − 1).

When n = 1, T is a single level tree. Thus N(1) = 1 = ∣ (log21) − 1 ∣. Thus the statement

holds for the base case which is n = 1.

Assume N(i) = ∣ (log2i) − 1 ∣ for 0 ⩽ i < n. A partial product addition tree consists of (n –

1) levels and the root node. Thus,

N(n) = 2 × N(n − 1) + 1 = log2(2n − 2) − 2 + 1

= (log2n) + (log22) − (log22) − 1 = (log2n) − 1.

Therefore in the best case, the time for the generation and the addition operation of the

numerator using a PNA tree is T(G) = O((log2n) − 1).

In the third step it is necessary to access arrays. The array access time is linear and it is

O(1). According to the algorithm, three arrays have to be accessed: one for storing partial

numerators, one for storing quotients, and the last one for storing partial remainders. Thus,

in the best case, the total access time for three arrays is T (A) = O(3).

In the fourth step the subtraction of the partial numerator from the partitioned dividend

is performed which requires T(S) = O(log2n) time in the best case. Thus, in the best case,

the total time complexity of the division algorithm is T(N) = T(P) + T(G) + T(A) + T(S)

=O(log2n) + O((log2n) − 1) + O(3) + O(log2n) = O(3((log2n) +1) − 1).

Therefore the division algorithm requires a time complexity of O(3((log2n +1) − 1) in the

best case, where n is the number of dividend qubits. Thus the division algorithm requires a

time complexity of O(3n((log2n) +1) − n) for the n times iterations of the division process.

8.4 The design of a quantum divider circuit

Quantum divider design techniques are a very important topic at present. All the quantum

divider circuits are designed using naive approaches. The designs of these quantum divider

circuits require high area, delay, power, and quantum costs. As these designs produce

quantum divider circuits with higher depths, the design techniques are not efficient

enough. Thus a tree-based design algorithm is introduced. The splitting operation of the

dividend is first performed in the root node of a tree. The partial numerator generator and

addition circuits are considered as the parent nodes of the tree. In the last level of the tree

there will be leaf nodes for the subtractors, which are the child nodes of the numerator

generator and addition nodes.

8.4.1 A technique to minimize the number of ancillary inputs in the

quantum circuit realization

In a quantum circuit an important parameter to measure the performance is the number of

qubits in the circuit required for it to operate. It is expected that the number of qubits is to

be optimized during the realization of quantum circuits. The number of input lines of the

circuit is the indicator of required qubits as the input lines are limited resources in quantum

circuits. Extra ancillary input lines help to increase the number of input lines. Therefore, in

this subsection a merging technique is shown to optimize the number of ancillary inputs in

large quantum circuits. This procedure works like the merge join algorithm. First it is

necessary to divide the initial quantum circuit into sub-modules, then find the number of

ancillary input lines in those sub-modules. Now combine the sub-modules and form the

original structure up to the m(2n)th ancillary input lines, where n is the number of qubits of

each operand and m is the number of ancillary inputs in each sub-module.

Finally, calculate whether the number of quantum gates in the ancillary lines of the sub-

modules are even or odd. If the value is odd, combine the quantum gates of the ancillary

input lines of the sub-modules with the quantum gates in each of the m(2n + 1)th and m(2n

+ 2)th ancillary input lines of the initial circuit and then combine the first half of the

quantum gates in the ancillary input lines of the odd sub-modules with quantum gates in

the m(2n + 1)th ancillary input line of the initial circuit. Then combine the other half of the

quantum gates in the ancillary input lines of the other half of the odd sub-modules with the

gates in the ancillary input lines of the even sub-modules and the gates of the m(2n + 2)th

ancillary input line of the initial circuit. Algorithm 8.2 gives the procedure of the

minimization of the number of ancillary input lines and example 8.4 describes the whole

scenario.

Algorithm 8.2. Reduction of the number of ancillary input lines in the design of the

quantum divider circuit.

Example 8.4.

Consider the sub-modules of the quantum ANDing circuit (QAC) presented in figure 8.7.

Suppose we need to combine eight (2n+1
 = 22+ = 8) of these sub-modules (the QACs) of

the quantum divider circuit to form a two-qubit quantum numerator generator circuit, as

shown in figure 8.8, where the number of ancillary inputs in each sub-module (the QAC) is

1 (m = 1) and the number of quantum gates in the ancillary line of the sub-module is 3.

Thus according to algorithm 8.2, the first four (2n = 22 = 4) sub-modules (the QACs) are

combined without joining the ancillary input lines. Thus the QNG circuit will have four

ancillary input lines at its input from the four QACs.

Figure 8.7. The quantum circuit for the ANDing operation.

Combine three quantum gates on the ancillary input line of sub-module 7 (ancillary

input line 7) with the three quantum gates on the ancillary input line of sub-module 8

(ancillary input line 8) and place them on the sixth (m(2n + 2)th = 6th) ancillary input line

of the initial QNG circuit. Figure 8.8 provides the block diagram to show how the sub-

modules are combined to reduce the number of ancillary inputs according to algorithm 8.2

to form a two-qubit QNG circuit. In this figure the ancillary input line 7 and ancillary input

line 8 are joined together and form the ancillary input line 6 of the QNG circuit. Similarly,

ancillary input line 5 and ancillary input line 6 are joined together and finally form the QNG

circuit with reduced ancillary inputs. The algorithm requires only six ancillary inputs instead

of eight, as shown in figure 8.8. A detail of this implementation at the gate level is

illustrated in figure 8.9.

Figure 8.8. Block diagram to illustrate algorithm 8.2 to reduce ancillary inputs in a

two-qubit QNG circuit.

8.4.2 The components of the quantum divider circuit

The main components of the quantum divider circuit are the QAC, quantum full-subtractor

circuit, QNG circuit, quantum numerator addition (QNA) circuit, and QDS circuit. These

circuit components of the quantum divider are elaborated in the following.

8.4.2.1 The quantum ANDing circuit

A new 3 × 3 QAC which performs the ANDing operation is presented in this subsection. The

input vector, Iv, and the output vector, Ov, of the circuit are as follows:

Here the input ∣B〉 is the target qubit and ∣A〉 and ∣C〉 are two control qubits. The QAC is

constructed by two controlled-V, one controlled-V+, and two CNOT gates, as shown in

figure 8.7. Hence the quantum cost of the QAC is 5. The corresponding truth table of the

circuit is shown in table 8.1. To perform the AND operation using the QAC the ∣B〉 input

qubit in figure 8.7 has to remain ∣0〉.

Figure 8.9. A two-qubit QNG circuit.

Table 8.1. Reversibility of a 3 × 3 QAC.

Input Output

A B C P Q R

0 0 0 0 0 0

0 0 1 0 0 1

0 1 0 0 1 0

0 1 1 0 1 1

1 0 0 1 0 0

1 0 1 1 1 1

1 1 0 1 1 0

1 1 1 1 0 1

8.4.2.2 The quantum full-subtractor circuit

A QFS is a quantum circuit that performs the arithmetic subtraction of three input qubits. It

consists of three inputs and two outputs. If we take three input variables as ∣A〉, ∣B〉, and

∣C〉, and two output variables ∣D〉 (difference) and ∣Bout〉 (borrow), then the following

equations can be used to obtain the outputs:

∣ Iv⟩ = {∣ A⟩, ∣ B⟩, ∣ C⟩}; and

∣ Ov⟩ = {∣ A⟩, ∣ AC ⊕ B⟩, ∣ C⟩}.

In this subsection, a new 4 × 4 QFS circuit is shown. The input vector (Iv) and the output

vector (Ov) of the circuit are as follows:

∣Iv〉 = {∣B〉, ∣D〉, ∣C〉, ∣A〉}; and

∣Ov〉 = {∣B〉, (∣C〉.())⊕ (.B〉), ∣C〉, ∣A〉⊕∣B〉⊕∣C〉}.

Here the input ∣D〉 is the target qubit and ∣A〉, ∣B〉, and ∣C〉 are control qubits. The QFS

circuit is constructed by three controlled-V, one controlled-V+, and two CNOT gates, as

shown in figure 8.10. Hence the quantum cost of the QFS circuit is 6. The corresponding

truth table of the circuit is shown in table 8.2. Input ∣A〉 is used to take the role of the

borrow in and output ∣S〉 is the borrow out, as shown in figure 8.10. Output ∣P〉 is the

difference of the inputs ∣B〉, ∣C〉, and borrow in ∣A〉. The QFS circuit is designed in such a

way that it can act as a full-subtractor by setting ∣D〉 = ∣0〉.

Figure 8.10. The quantum full-subtractor, when ∣D〉 = ∣0〉.

Table 8.2. Reversibility of a 4 × 4 QFS circuit.

Input Output

A B C D P Q R S

0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 1

0 0 1 0 1 0 1 1

0 0 1 1 1 0 1 0

0 1 0 0 1 1 0 1

0 1 0 1 1 1 0 0

0 1 1 0 0 1 1 1

0 1 1 1 0 1 1 0

1 0 0 0 1 0 0 0

∣ D⟩ =∣ A⟩⊕ ∣ B⟩⊕ ∣ C⟩

∣ Bout⟩ = (∣ C⟩. ()) ⊕ (.B⟩).∣ A ⊕ B⟩ ∣ A

∣ A ⊕ B⟩ ∣ A

Input Output

A B C D P Q R S

1 0 0 1 1 0 0 1

1 0 1 0 0 0 1 0

1 1 0 0 0 1 0 0

1 1 0 1 0 1 0 1

1 1 1 0 1 1 1 1

1 1 1 1 1 1 1 0

8.4.2.3 The quantum dividend splitter circuit

A 4 × 4 QDS circuit is shown that takes the string of dividend qubits and divides it into two

parts which are carried out to the QFS circuit. The input vector Iv and the output vector Ov
of the circuit are as follows:

In figure 8.11 the last input is the target qubit (∣0〉) and other inputs are control qubits.

The QDS circuit is constructed by two controlled-V, one controlled-V+, one NOT, and four

CNOT gates, as shown in figure 8.11. Hence the quantum cost of the QDS circuit is 8. The

main purpose of the QDS circuit is to separate the set of qubits of the dividend. If the

dividend consists of four qubits, the midpoint qubit (second qubit) passes as (∣Dd[i/2]〉)

output. Then the inputs, the first and third input qubits, are Ex-ORed, which goes out as

outputs ∣GDd[i/2]〉 and ∣LDd[i/2]〉, respectively, as shown in figure 8.11.

Figure 8.11. The QDS circuit.

8.4.2.4 The quantum numerator generator circuit

∣ Iv⟩ = {∣ Dd[i/2]⟩,Di[j/2]⟩, ∣ 0⟩, ∣ 0⟩}; and

∣ Ov⟩ = {∣ Dd[i/2]⟩, ,

⋅ ∣ Dd[i/2]⟩),

⋅ ∣ Di[j/2]⟩)}.

(∣ Dd[i/2]⟩⊕ ∣ Di[j/2]⟩)

(∣ Di[j/2]⟩

(∣ Dd[i/2]⟩

The QNG circuit takes the divisor and quotient as the input and produces partial

numerators as outputs by performing all possible ANDing operations using the divisor and

quotient qubits. The divisor qubits and the quotient qubits are fed to this component which

produces the product terms of the qubits known as partial numerators. The QAC has been

used to construct this part. If n-qubit divisors and n-qubit quotients are used, the QNG

circuit requires (2n+1) QACs and m(2n + n) ancillary input lines, where m is the number of

ancillary qubits in each QAC. Thus, including the divisor and quotient qubits, a total of 2n +

m(2n + n) qubits are required to construct the n-qubit QNG circuit.

Example 8.5.

To construct a two-qubit QNG circuit, (2n 1) = 8 QACs and m(2n + n) = 6 ancillary input

lines are required, where m is the number of ancillary qubits in each QAC (here, m = 1). In

figure 8.8 the detailed two-qubit QNG circuit is shown. From figure 8.8 it is clear that the

two-qubit QNG circuit needs 2n + m (2n + n) = 4 + 6 = 10 qubits according to the

ancillary input reduction, as shown in algorithm 8.2.

8.4.2.5 The quantum numerator addition circuit

The QNA circuit adds column-wise the partial numerators that have been generated by the

QNG circuit. The quantum full-adder (QFA) is used to construct the QNA circuit. For an n-

qubit QNA circuit, (5n/2) QFAs are needed. Thus for that purpose m(2n + n) ancillary input

lines are needed, where m is the number of ancillary qubits in each QFA. If the number of

QFAs required to construct the QNA circuit is greater than five (when n ≥ 4), then it is

necessary to reduce the ancillary input lines by combining these lines of the quantum

gates according to the reduction algorithm.

Example 8.6.

To construct a two-qubit QNA circuit, (5n/2) = 5 QFA circuits are required to perform the

addition operations of the partial numerators generated by QNG. Since the number of QFAs

is 5, merging of the quantum gates is not required to reduce the number of ancillary input

lines. Thus the five ancillary input lines are required. In figure 8.12 the detailed quantum

numerator addition circuit (QNA) for a two-qubit divider is shown.

Figure 8.12. The two-qubit QNA circuit.

8.4.2.6 The n-qubit quantum divider

The tree-based design structure of the quantum divider circuit reduces the depth of the

circuit. The design also minimizes the number of ancillary inputs. In this subsection, details

of the design of a two-qubit quantum divider circuit are presented using algorithm 8.3, as

shown in figure 8.13. In addition, a block diagram of an n-qubit quantum divider circuit

using the two-qubit quantum divider circuit is presented using algorithms 8.2 and 8.3, as

shown in figure 8.14.

Figure 8.13. The two-qubit quantum divider circuit.

The algorithm for the tree-based architecture of an n-qubit quantum divider circuit

works recursively. This algorithm first creates the design of the two-qubit divider circuit

using a procedure of micro-division and then it is called recursively to generate an n-qubit

quantum divider circuit, where in the procedure of micro-division of the algorithm 8.3, the

QDS first splits the dividend and sends it to the subtractor for the subtraction operation.

Then, the QNG circuit generates the partial numerators that are added using the QNA

circuit and the outputs of the QNA circuits are carried to the QDS circuit for the subtraction

operation. In figure 8.14, a block diagram of an n-qubit quantum divider applying algorithm

8.3 is presented. The n-qubit quantum divider circuit consists of (n/2) two-qubit QNG

circuits, (n/2) two-qubit QNA circuits, n QFS circuits, and (log2n) QDS circuits.

The number of quantum wires can be minimized using the quantum memory elements

in a quantum circuit. As a consequence the unwanted outputs (garbage outputs) can be

reduced using quantum memory elements.

Here, this concept of the quantum memory element is used to reduce the number of

garbage outputs. There is a single garbage output line that collects garbage from different

locations and stores it in the memory locations for further reuse and thus shrinks the

number of garbage output lines in the circuit design, as shown in figure 8.14.

Figure 8.14. The block diagram of the four-qubit quantum divider circuit.

Algorithm 8.3. Design of an n-qubit quantum divider circuit.

Example 8.7.

A four-qubit quantum divider circuit is designed using a two-qubit quantum divider, as

shown in figure 8.13, by applying algorithm 8.3. According to the design procedure of

algorithm 8.3, a four-qubit quantum divider circuit requires two (log2n = log24 = 2) QDS

circuits, two (n/2 = 4/2 = 2) two-qubit QNG circuits, two (n/2 = 4/2 = 2) two-qubit QNA

circuits, and four QFS circuits. First the QDS splits the dividend in half until it is a two-qubit

dividend. Then this two-qubit goes to the QFS where the partial numerator qubit is

subtracted from the dividend qubit, which is obtained by the QDS and the recursive

procedure of micro-division of algorithm 8.3 (two-qubit divider design). If the result of the

subtraction is ∣0〉, then the quotient is the result of division of the four-qubit quantum

divider circuit, as constructed by algorithm 8.3, otherwise the remainder qubits are added

at the beginning positions of the initial dividend to form a new dividend which is split

further. To obtain a four-qubit quantum divider circuit, the procedure of micro-division of

algorithm 8.3 continues until the remainder exists. The four-qubit quantum divider circuit is

shown in figure 8.15.

Figure 8.15. The block diagram of an n-qubit quantum divider circuit.

Property 8.3.

The depth of the design of the quantum divider circuit is at least O(32n + 8 log2n), where n

is the number of qubits of the dividend.

Proof. The above-mentioned statement is proved by the method of mathematical induction.

A QDS circuit, a two-qubit QNG circuit, a two-qubit QNA circuit, and two QFS circuits are

required for constructing a two-qubit quantum divider circuit using the design method of

the tree-based divider in the best case where there is no remainder after the first iteration.

The total number of stages in a QDS circuit is eight and the numbers of stages in a two-

qubit QNG circuit, a two-qubit QNA circuit, and a QFS circuit are 34, 18, and 6, respectively.

When n = 2, i.e. for a two-qubit quantum divider circuit, the total depth of the two-qubit

quantum divider circuit in the best case is

Thus the statement holds for the base case n = 2.

Assume that the statement also holds for n = k, which is a k-qubit quantum divider

circuit.

Thus Dk‐qubit = 32k + 8log2k.

Now in the best case, (k + 1)/2 two-qubit QNG circuits, (k + 1)/2 two-qubit QNA circuits,

(k + 1) QFS circuits, and log2(k + 1) QDS circuits are needed for the n = (k + 1)-qubit

quantum divider circuit.

Thus the depth of the (k + 1)-qubit quantum divider circuit is

Dtwo‐qubit = DQDS + DQNG + DQNA + 2 × DQFS

= 8 + 34 + 18 + 2 × 6 = 64 + 8 = 32n + 8 log2n; [∵ n = 2 here].

D(k+1)‐qubit = log2(k + 1) × DQDS + ((k + 1)/2) × DQNG

+((k + 1)/2) × DQNA + (k + 1) × DQFS = 8 log2(k + 1) + 17(k + 1) +

= 32(k + 1) + 8 log2(k + 1).

Therefore, the statement is also true for n = (k + 1).

Thus, the depth of the design of the quantum divider circuit is at least O(32n + 8log2n).

□

8.5 Summary

In this chapter a tree-based quantum integer division algorithm is developed. This division

technique is a paragon in the emerging technologies in computer aided design, since it has

reduced time complexity to a large extent. The technique reduces the number of ancillary

input lines in the quantum circuit, which in turn enables the reduction of the required

qubits for the circuit to operate. In addition to this, an algorithm is introduced using a tree

structure that is applicable for designing compact quantum divider circuits with optimum

depth. The quantum divider design algorithm with optimized depth is an epoch-making

achievement in the field of quantum computation.

Critical thinking questions

1. Explain the quantum division algorithm.

2. Summarize the characteristics of the quantum divider in details.

3. What factors are allowed to reduce the number of ancillary inputs in the quantum

circuit realization? Explain in detail.

4. Write the components of the quantum divider circuit and explain each of the

components in detail.

5. For a two-qubit quantum divider circuit, what will be the total depth of the two-qubit

quantum divider circuit in the best case when n = 4?

References

[1] Abdessaied N, Wille R, Soeken M and Drechsler R 2013 Reducing the depth of quantum circuits using additional
circuit lines Int. Conf. on Reversible Computation (Berlin: Springer) pp 221–33

[2] Aggarwal N, Asooja K, Verma S S and Negi S 2009 An improvement in the restoring division algorithm (needy
restoring division algorithm) 2nd IEEE Int. Conf. on Computer Science and Information Technology (Piscataway, NJ:
IEEE) pp 246–9

[3] Barenco A, Bennett C H, Cleve R, DiVincenzo D P, Margolus N, Shor P, Sleator T, Smolin J A and Weinfurter H 1995
Elementary gates for quantum computation Phys. Rev. A 52 3457

[4] Bera D, Green F and Homer S 2007 SIGACT News Complexity Theory Column 55
https://mathcs.clarku.edu/~fgreen/papers/constQDepthSurvey.pdf

[5] Cheng K-W and Tseng C-C 2002 Quantum full adder and subtractor Electron. Lett. 38 1343–4
[6] Cormen T H 2001 Introduction to Algorithms ed Cormen T H (ed) , Leiserson C E (ed) , Rivest R L (ed) and Stein C

(ed) (Cambridge, MA: MIT Press)
[7] Cuccaro S A, Draper T G, Kutin S A and Moulton D P 2004 A new quantum ripple-carry addition circuit arXiv: quant-

ph/0410.184
[8] Deutsch D E 1989 Quantum computational networks Proc. R. Soc. Lond. A 425 73–90
[9] Haghparast M and Navi K 2007 A novel reversible full adder circuit for nanotechnology based systems J. Appl. Sci. 7

3995–4000
[10] Kaye P et al 2007 An Introduction to Quantum Computing (Oxford: Oxford University Press)
[11] Khosropour A, Aghababa H and Forouzandeh B 2011 Quantum division circuit based on restoring division algorithm

Eighth Int. Conf. on Information Technology: New Generations (Piscataway, NJ: IEEE) pp 1037–40
[12] Knuth D E 2007 Seminumerical algorithms The Art of Computer Programming vol 2 3rd edn (Reading, MA:

Addison-Wesley)
[13] Moller N and Granlund T 2011 Improved division by invariant integers IEEE Trans. Comput. 60 165–75
[14] Nielsen M A and Chuang I L 2000 Quantum computation Quantum Information (Cambridge: Cambridge University

Press)
[15] Pavlidis A and Gizopoulos D 2012 Fast quantum modular exponentiation architecture for Shorʼs factorization

algorithm arXiv: 1207.0511
[16] Ramya P R and Vani Y S 2013 Optimization and implementation of reversible BCD adder in terms of number of lines

Int. J. Reconfigurable Embedded Syst. 2 21–6
[17] Sultana S and Radecka K 2014 Reversible architecture of computer arithmetic Int. J. Comput. Appl. 93 6
[18] Yao A C-C 1993 Quantum circuit complexity Proc. 34th IEEE Annual Foundations of Computer Science (Piscataway,

NJ: IEEE) pp 352–61

http://dx.doi.org/10.1103/PhysRevA.52.3457
https://mathcs.clarku.edu/~fgreen/papers/constQDepthSurvey.pdf
http://dx.doi.org/10.1049/el:20020949
http://arxiv.org/quant-ph/0410184
http://dx.doi.org/10.1098/rspa.1989.0099
http://dx.doi.org/10.3923/jas.2007.3995.4000
http://dx.doi.org/10.1109/TC.2010.143
http://arxiv.org/abs/1207.0511
http://dx.doi.org/10.11591/ijres.v2.i1.pp21-26
http://dx.doi.org/10.5120/16281-5852

IOP Publishing

Quantum Computing (Second Edition)

A pathway to quantum logic design

Hafiz Md Hasan Babu

Chapter 9

The quantum BCD priority encoder

Learning objectives

Define the quantum encoder.

Discover the attributes of an encoder.

Design a quantum binary coded decimal (BCD)

priority encoder.

Construct a 2n-to-n quantum BCD priority encoder

circuit.

Develop an algorithm of the quantum BCD priority

encoder circuit.

Analyze the characteristics of the encoder circuit.

In quantum circuit design, energy dissipation has become a

crucial factor that needs to be taken into consideration.

Since irreversible computing is one of the most significant

causes of energy dissipation, designing quantum circuits

using quantum gates is an efficient way to reduce the

energy dissipation of the circuit. Although binary coded

decimal (BCD) encoders are one of the most common types

of unit circuits, they are all designed in an irreversible way.

The encoder is an essential element in many quantum

devices. The BCD encoder is one of the most notable and

common encoders in quantum systems. However, the

conventional BCD encoder has certain faults in addition to

energy dissipation, such as confused output codes when two

or more inputs are valid. Considering these drawbacks, it is

obviously necessary to focus on identifying a useful

quantum BCD priority encoder circuit which not only

resolves the problem of confused codes, but also dissipates

little energy.

In this chapter the design of a quantum BCD priority

encoder circuit that consists of quantum gates is analyzed.

9.1 The properties of a quantum

encoder

Unlike a quantum multiplexer that selects one individual

data input line and then sends these data to a single output

line or switch, a quantum encoder takes all its data inputs

one at a time and then converts them into a single encoded

output. Thus a quantum encoder is a multi-input quantum

logic circuit that converts the logic level 1 data at its inputs

into an equivalent code at its output.

Generally, quantum encoders produce outputs of two-

qubit, three-qubit, or four-qubit codes, depending on the

number of data input lines. An n-qubit quantum encoder has

2n input lines and n-qubit output lines. A 4-to-2 quantum

encoder circuit is shown in figure 9.1.

Figure 9.1. The block diagram of the 4-to-2 quantum

encoder circuit and its truth table.

The output lines of a quantum encoder generate the

input line whose value is equal to 1 and are available to

encode either a decimal or hexa-decimal input pattern to,

typically, a binary or BCD output code.

One of the main disadvantages of standard quantum

encoders is that they can generate the wrong output code

when there is more than one input present at logic level 1.

For example, if inputs D1 and D2 are both HIGH at logic 1 at

the same time, the resulting output is neither at 01 or at 10,

but will be at 11, which is an output that is different to the

actual input present. Also, an output code of all logic 0s can

be generated when all of its inputs are at 0 OR when input

D0 is equal to one.

One simple way to overcome this problem is to ‘prioritize’

the level of each input pin and thus, if there was more than

one input at logic level 1, the actual output code would only

correspond to the input with the highest designated priority.

This type of quantum encoder is known commonly as a

priority encoder or P-encoder for short.

The priority encoder solves the problems mentioned

above by allocating a priority level to each input. The

priority encoder’s output corresponds to the currently active

input which has the highest priority. Thus when an input

with a higher priority is present, all other inputs with a lower

priority will be ignored.

The priority encoder comes in many different forms with

an example of an eight-input priority encoder along with its

truth table shown in figure 9.2.

9.2 The design of a quantum BCD

priority encoder circuit

In this section a quantum 2n
-to-n BCD priority encoder

circuit is presented. The optimized 2n
-to-n BCD priority

encoder circuit is designed using quantum gates. The

working principle of an 8-to-3 quantum priority encoder is

shown in figure 9.2.

Figure 9.2. The block diagram of a 8-to-3 quantum

priority encoder and its truth table.

9.2.1 The quantum BCD priority encoder circuit

A traditional 8-to-3 BCD encoder has eight inputs which are

I0 to I7, and three outputs which are A, B, and C. All the

inputs and outputs are required to be binary. The function of

a traditional BCD encoder can be represented as

A = I7 + I6 + I5 + I4

B = I7 + I6 + I3 + I2

C = I7 + I5 + I3 + I1.

Different to traditional BCD encoders, the function of the

BCD priority encoder has priority levels. To be more precise,

I7 has the highest priority level and the other inputs’ priority

levels decrease in turn, so that I0 has the lowest. For

example, if I5 and I3 are both 1 and the rest of the inputs are

0, then since I5 is in a higher priority level, the encoder will

ignore I3 and regard it as the situation where only I5 is 1 and

the rest of the inputs are all 0. The truth table of a BCD

priority encoder is shown in table 9.1. ‘X’ represents

uncertain values of inputs.

Table 9.1. The truth table of a quantum BCD priority encoder.

Input Output

I7 I6 I5 I4 I3 I2 I1 I0 A B C

1 X X X X X X X 1 1 1

0 1 X X X X X X 1 1 0

0 0 1 X X X X X 1 0 1

0 0 0 1 X X X X 1 0 0

0 0 0 0 1 X X X 0 1 1

0 0 0 0 0 1 X X 0 1 0

0 0 0 0 0 0 1 X 0 0 1

0 0 0 0 0 0 0 1 0 0 0

In order to design quantum BCD priority encoder circuit,

irreversible logic gates such as AND and OR gates are not

allowed in the circuit. Thus the functions of a traditional

priority BCD encoder are transformed to a form which can

be converted conveniently into a circuit diagram. An 8-to-3

quantum BCD priority encoder is shown in figure 9.3, where

quantum NOT gates in all inputs are utilized to obtain the

inverse. In the second step the OR function is completed

using quantum gates. Similarly, figure 9.2 presents a 4-to-2

quantum BCD priority encoder circuit.

Figure 9.3. The quantum 4-to-2 BCD priority encoder

circuit. Reproduced with permission from [6]. Copyright

2014 IEEE.

Figure 9.4. The quantum 8-to-3 BCD priority encoder

circuit. Reproduced with permission from [6]. Copyright

2014 IEEE.

For example, consider the function of A. The inputs will

be I ′
7, I ′

6, I ′
5, and I ′

4 at the first step, then the inputs I ′
5, I ′

4
and the additional input 1 are connected with quantum

gates. Hence it produces I5 + I4. In the same way we can

obtain I7 + I6. Finally, by cascading I5 + I4, I7 + I6, and

the additional input line 1, I7 + I6 + I5 + I4 will be

obtained, which is illustrated in figure 9.4. The generalized

algorithm to construct a quantum 2n-to-n BCD priority

encoder circuit is presented in algorithm 9.1.

Algorithm 9.1. Constructing a 2n
-to-n quantum BCD

priority encoder circuit.

9.2.2 Analysis of the properties of the encoder

circuit

In this subsection the properties of a quantum 2n-to-n BCD

priority encoder circuit are presented.

Property 9.1.

A quantum 2n-to-n BCD priority encoder circuit (n ⩾ 2) can

be realized with

[5 [2(2
2

n
− 1) + 2n−2 (n − 2)] + (2n − 1)] quantum gates,

where n is the number of output bits.

Proof. The property 9.1 is proved by mathematical

induction. A 4-to-2 BCD encoder circuit consists of NOT

quantum gates and quantum Toffoli gates, and is shown in

figure 9.3. Thus the total number of quantum gates (NOQG)

required to construct 4-to-2 BCD priority encoder circuit is

Thus the statement holds for base case n = 2.

Assume that the statement holds for n = k. Thus a

quantum 2k-to-k BCD priority encoder circuit can be realized

with [5[2(2
2

k
− 1) + 2k−2 (k − 2)] + (2k − 1)] quantum

gates.

A 2
k+1

-to-(k + 1) BCD priority encoder circuit requires (2

k+1
 – 1) quantum NOT gates and

5 [2(2
2

k+1
− 1) + 2k+1−2 (k + 1 − 2)] quantum Toffoli

gates. As a result, the total number of quantum gates

required to construct a 2k+1-to-(k + 1) BCD priority encoder

circuit is

(2k+1 − 1) + 5 [2(2
2

k+1
− 1) + 2k+1−2 (k + 1 − 2)].

Thus the statement holds for n = k + 1.

Therefore, a quantum 2n-to-n BCD priority encoder

circuit can be realized with

[5 [2(2
2

n
− 1) + 2n−2 (n − 2)] + (2n − 1)] quantum gates.

NOQG4‐to‐2 = NOQGNOT + 5 × NOQGToffoli

= (22 − 1) + 5 × [2(2
2

2
− 1) + 22−2(2 − 2)]

= (4 − 1) + 5 × [2(2 − 1) + 2 × 0)]

= 3 + 5 × 2

= 13

= (4 − 1) + 5 × [2(2 − 1) + 2 × 0)].

Property 9.2.

A quantum 2
n
-to-n BCD priority encoder circuit produces

[5 [2(2
2

n
− 1) + 2n−2 (n − 2)] + 1]Δ quantum delay,

where Δ is the unit delay and n is the number of output bits.

Proof. A quantum BCD priority encoder circuit consists of

quantum Toffoli gates and quantum NOT gates. A quantum

Toffoli gate require 5Δ delay and a quantum NOT gate

requires 1Δ delay. Thus 2n number of quantum Toffoli gates

require 5 [2(2
2

n
− 1) + 2n−2 (n − 2)]Δ delay. Therefore,

the total delay of a quantum 2
n
-to-n BCD priority encoder

circuit is [5 [2(2
2

n
− 1) + 2n−2 (n − 2)] + 1]Δ, where 2n –

1 is the number of NOT gates at the same level.

Example 9.1.

When n = 3 in figure 9.4, the total delay of an 8-to-3 BCD

priority encoder is

[5 [2(2
2

3
− 1) + 23−2 (3 − 2)] + 1] = 41Δ.

Property 9.3.

A quantum 2
n
-to-n BCD priority encoder circuit requires

[(3Ω + 2σ) [2(2
2

n
− 1) + 2n−2 (n − 2)] +(2n − 1)]

quantum gate calculation complexity, where n is the

number of output bits, σ is the CNOT gate calculation

complexity, and Ω is the controlled-V or controlled-V
+

 gate

calculation complexity.

Proof. From property 9.1 it is found that a quantum BCD

priority encoder circuit consists of quantum Toffoli gates and

quantum NOT gates. A quantum Toffoli gate has 2σ CNOT

quantum gate calculation complexity and 3Ω controlled-V

(controlled-V+) quantum gate calculation complexity. Thus

the total quantum gate calculation complexity for a 2
n
-to-n

quantum BCD priority encoder circuit is

2 [2(2
2

n
− 1) + 2n−2 (n − 2)] σ for

2[2(2
2

n
− 1) + 2n−2 (n − 2)] CNOT gates, 3

[2(2
2

n
− 1) + 2n−2 (n − 2)]Ω for 3

[2(2
2

n
− 1) + 2n−2 (n − 2)] controlled-V (controlled-V+)

gates, and (2n − 1)ρ for (2n − 1) NOT gates, i.e.

[(3Ω + 2σ) [2(2
2

n
− 1) + 2n−2 (n − 2)] + ρ(2n − 1)]

quantum gate calculation complexity.

Example 9.2.

When n = 3 in figure 9.4 the total quantum gate calculation

complexity of an 8-to-3 quantum BCD priority encoder

circuit is (3 + 2) [2(2
2

3
− 1) + 23−2 (3 − 2)] +

(23 − 1)] = 7 + 16σ + 24Ω.

Property 9.4.

A quantum 2n-to-n BCD priority encoder circuit requires

[250 [2(2
2

n
− 1) + 2n−2 (n − 2)] + 50 (2n − 1)] Å area,

where n is the number of output bits and Å is the unit of

measuring area.

Proof. From property 9.1 it is found that a quantum BCD

priority encoder circuit consists of quantum Toffoli gates and

quantum NOT gates. A quantum Toffoli gate has five

quantum gates. Thus a quantum 2
n
-to-n BCD priority

encoder circuit requires 5[2(2
2

n
− 1) + 2n−2 (n − 2)]

quantum Toffoli gates. Moreover, a quantum 2n-to-n BCD

priority encoder requires an extra (2n − 1) quantum NOT

gates to obtain inverted input. Therefore, the total area for a

quantum 2n-to-n BCD priority encoder circuit is ((5

[2(2
2

n
− 1) + 2n−2 (n − 2)] × 50) + (2n − 1) × 50) Å =

(250 [2(2
2

n
− 1) + 2n−2 (n − 2)] + (2n − 1) × 50) Å.

Property 9.5.

A quantum 2
n
-to-n BCD priority encoder circuit requires

142.3× [5[2(2
2

n
− 1) + 2n−2 (n − 2)] + (2n − 1)] meV

power, where n is the number of output bits and meV is the

unit of measuring power.

Proof. From property 9.1 it is found that a quantum BCD

priority encoder circuit consists of quantum Toffoli gates and

quantum NOT gates. A quantum Toffoli gate has five

quantum gates. Thus a quantum 2n-to-n BCD priority

encoder circuit requires 5[2(2
2

n
− 1) + 2n−2 (n − 2)]

quantum Toffoli gates. Moreover, a quantum 2
n
-to-n BCD

priority encoder requires an extra (2n − 1) quantum NOT

gates to obtain inverted input. Therefore, the total power for

a quantum 2
n
-to-n BCD priority encoder circuit is 142.3 ×

[5[2(2
2

n
− 1) + 2n−2 (n − 2)] + (2n − 1)] meV, where

meV is the unit of measuring power.

Property 9.6.

A quantum 2n-to-n BCD priority encoder circuit produces [2

n
+ [[2(2

2

n
− 1) + 2n−2 (n − 2)] − n]] garbage outputs,

where n is the number of output bits.

Proof. The above statement is proved by mathematical

induction.

In a quantum realization of 4-to-2 BCD encoder circuit,

each input line produces 2
2
 = 4 garbage outputs, whereas

quantum Toffoli gate produces

[2(2
2

2
− 1) + 22−2 (2 − 2)] − 2 = [2 × 1 + 1 × 0] – 2 = 0

garbage outputs, as shown in figure 9.3. Thus a 4-to-2 BCD

produces G4‐to‐2 = Ginput_lines + GToffoli = 22+

[2(2
2

2
− 1) + 22−2 (2 − 2) − 2]= 4 + [2 + 0 – 2] = 4

garbage outputs.

Thus the statement holds for base case n = 2.

Assume that the statement holds for n = k. Thus a

quantum 2
k
-to-k BCD priority encoder circuit produces [2

k
+

[[2(2
2

k
− 1) + 2k−2 (k − 2)] − k]] garbage outputs.

A 2k+1-to-(k + 1) BCD priority encoder circuit produces 2

k+1 garbage outputs from input lines and

[[2(2
2

k+1
− 1) + 2k+1−2 (k + 1 − 2)] − (k + 1)] garbage

outputs from quantum Toffoli gates. As a result, the total

number of garbage outputs produced for an 2
k+1

-to-(k + 1)

BCD priority encoder circuit is

[2k+1 + [2(2
2

k+1
− 1) + 2k+1−2 (k + 1 − 2) − (k + 1)]].

Thus the statement holds for n = k + 1.

Therefore a quantum 2
n
-to-n BCD priority encoder circuit

can be realized with [2n +

[[2(2
2

n
− 1) + 2n−2 (n − 2)] − n]] garbage outputs.

Example 9.3.

When n = 3 in figure 9.4 the total garbage outputs of an 8-

to-3 BCD priority encoder are 23
 +

[2(2
2

3
− 1) + 23−2 (3 − 2)] − 3 = 8 + 8 − 3 = 13.

Property 9.7.

A quantum 2
n
-to-n BCD priority encoder circuit requires

[2(2
2

n
− 1) + 2n−2 (n − 2)] constant inputs.

Proof. From property 9.1 it is found that a quantum BCD

priority encoder circuit consists of quantum Toffoli gates and

quantum NOT gates. Quantum Toffoli gates are used to

perform the OR operation with one constant input. As a

quantum 2n-to-n quantum BCD priority encoder circuit

requires [2(2
2

n
− 1) + 2n−2 (n − 2)] quantum Toffoli

gates, the total number of constant inputs is

[2(2
2

n
− 1) + 2n−2 (n − 2)].

Example 9.4.

When n = 3 in figure 9.4, the total constant inputs of an 8-

to-3 BCD priority encoder are

[2(2
2

3
− 1) + 23−2 (3 − 2)] = 6 + 2 = 8.

9.3 Summary

This chapter presents the design methodology of a 2
n
-to-n

quantum BCD priority encoder circuit, where n is the

number of output bits. An algorithm has been presented for

designing a compact 2n-to-n quantum BCD priority encoder

circuit. The circuit has been constructed with the optimum

number of quantum gates, garbage outputs, constant

inputs, delays, quantum gate calculation complexity, area,

and power. The efficiency of the design has been proved by

presenting several properties. The BCD encoder designed

using quantum logic has the obvious advantage of low

power dissipation, so it can be applied in wireless sensors,

quantum signal processing, parallel circuits, etc.

Critical thinking questions

1. Outline the characteristics of the quantum encoder.

2. Describe briefly the characteristics of the quantum BCD

priority encoder.

3. Solve the following problems using the circuit given

below.

i. Find the overall latency, when n = 5.

ii. Find the overall complexity of the quantum gate

calculations, when n = 5.

iii. Find the total garbage outputs, when n = 5.

iv. Calculate the total number of constant inputs, when

n = 5.

References

[1] Aspencore Priority encoder Electronics Tutorial https://www.electronics-
tutorials.ws/combination/comb_4.html (Accessed: 4 December 2018)

[2] Abdel-Hafeez S and Harb S 2006 A VLSI high-performance priority encoder
using standard CMOS library IEEE Trans. Circuits Syst. II: Express Briefs

53 597–601
[3] Cleve R and Watrous J 2000 Fast parallel circuits for the quantum Fourier

transform arXiv: quant-ph/0006004
[4] Delgado-Frias J G and Nyathi J 1998 A VLSI high-performance encoder with

priority lookahead Proc. 8th Great Lakes Symp. VLSI (Piscataway, NJ: IEEE)
pp 59–64

https://www.electronics-tutorials.ws/combination/comb_4.html
http://dx.doi.org/10.1109/TCSII.2006.876412
https://arxiv.org/abs/quant-ph/0006004

[5] Fsaifes I, Lepers C, Obaton A-F and Gallion P 2006 DS-OCDMA
encoder/decoder performance analysis using optical low-coherence
reflectometry J. Lightwave Technol. 24 3121

[6] Lisa N J and Babu H M H 2014 Minimization of a reversible quantum 2n-to-
n BCD priority encoder IEEE/ACM Int. Symp. on Nanoscale Architectures

(NANOARCH) (Piscataway, NJ: IEEE) pp 77–82
[7] Voyiatzis I, Gizopoulos D and Paschalis A 2005 Accumulator-based test

generation for robust sequential fault testing in DSP cores in near-optimal
time IEEE Trans. Very Large Scale Integr. Syst. 13 1079–86

[8] Wang J-C, Pang Y and Xia Y 2012 A BCD priority encoder designed by
reversible logic Wavelet Active Media Technology and Information

Processing (ICWAMTIP), 2012 Int. Conf. on (Piscataway, NJ: IEEE) pp 318–
21

[9] Wang W, Swamy M N S and Ahmad M O 2002 A new architecture of RRNS
error-correcting QC encoder/decoder and its FPGA implementation IEEE

Int. Symp. on Circuits and Systems 5 (Piscataway, NJ: IEEE) p V
[10] Yunru L, Yeqing Y, Shaojie C and Lijun C 2011 Reversible watermarking

algorithm for wireless sensor network using method of multi-node
negotiation Int. Conf. on E-Business and E-Government (Piscataway, NJ:
IEEE) pp 1–4

http://dx.doi.org/10.1109/JLT.2006.878039
http://dx.doi.org/10.1109/TVLSI.2005.857159

IOP Publishing

Quantum Computing (Second Edition)

A pathway to quantum logic design

Hafiz Md Hasan Babu

Chapter 10

The quantum decoder

Learning objectives

Define a quantum decoder.

Construct an n-to-2n quantum decoder circuit.

Discuss the characteristics of a quantum decoder.

Describe the algorithm of an n-to-2n quantum decoder.

Discover how to construct a quantum decoder circuit.

Explain the characteristics of a quantum decoder circuit.

Multiple valued logic is a promising approach to reduce the width of quantum

circuits. Moreover, quaternary logic is considered a good choice for future

quantum computing technology and hence it is very suitable for the encoded

realization of binary logic functions through its grouping of two qubits together

into quaternary values. The quaternary decoder is an essential unit of

quaternary quantum systems.

A quantum decoder is a fundamental building block in many computing

systems, which can take the form of a multiple-input, multiple-output logic

circuit that converts coded inputs into coded outputs, where the input and

output codes are different. Quantum decoders have been used in the memory

system and input/output (I/O) of microprocessors.

In this chapter a useful quantum decoder circuit is designed. The quantum

decoder circuit that consists of a quantum 2-to-4 decoder circuit and quantum

Fredkin gates is analyzed.

10.1 The characteristics of a quantum decoder

The term ‘decoder’ means to translate or decode coded information from one

format into another. Thus a quantum decoder transforms a set of quantum

input signals into an equivalent output.

A quantum decoder is a quantum logic device that has inputs of two-qubit,

three-qubit, or four-qubit codes depending on the number of data input lines.

Thus a quantum decoder that has a set of two or more qubits will be defined

as having an n-qubit code, and therefore it has 2n
 possible values. A quantum

decoder generally decodes a quantum value.

If a quantum decoder receives n inputs, it activates only one of its 2n

outputs based on that input, where all other outputs are deactivated.

For example, an quantum inverter (quantum NOT gate) can be classified as

a 1-to-2 quantum decoder as one input and two outputs (21) are possible,

because with an input ∣ A⟩ it can produce two outputs ∣ A⟩ and

A⟩ (not ‐ A⟩) as shown in figure 10.1.

Figure 10.1. A quantum inverter circuit.

A standard combinational logic decoder is an n-to-m decoder, where m ⩽

2n, and whose output Q is dependent only on its present input states. In other

words, a quantum decoder looks at its current inputs, determines which binary

code or binary number is present at its inputs, and selects the appropriate

output which corresponds to that binary input.

The block diagram of a quantum 2-to-4 decoder circuit with its truth table is

shown in figure 10.2. The two-qubit inputs labeled A and B are decoded into

one of four outputs, where each output represents one of the miniterms of the

two input variables (each output = a miniterm).

Figure 10.2. Block diagram of a quantum 2-to-4 decoder circuit and

truth table.

The inputs A and B determine which output line from Q0 to Q3 is HIGH with

logic level 1 while the remaining outputs are LOW with logic 0. Thus only one

output can be active (HIGH) at a time. Therefore, the output line with HIGH

identifies its correspondence binary code located at the input. In other words it

decodes the binary input.

∣¯∣

Some quantum decoders have an additional input pin labeled ‘enable’ that

controls the outputs from the device. This extra input allows the quantum

decoder outputs to be turned ON or OFF as required. These types of quantum

decoders are commonly used as ‘memory address decoders’ in

microprocessor memory applications.

It can be said that a quantum decoder is a quantum demultiplexer with an

additional data line that is used to enable the quantum decoder. An alternative

way of looking at the quantum decoder circuit is to regard inputs A, B, and C

as address signals. Each combination of A, B, or C defines a unique memory

address.

10.2 The design of a quantum decoder

In this subsection a quantum n‐ to‐ 2n decoder circuit is shown. The optimized

quantum n‐to‐2n
 decoder circuit is described using a 2-to-4 quantum decoder

and quantum Fredkin gates.

10.2.1 The quantum decoder circuit

A 2-to-4 decoder generates four logical AND functions ÁB́, ÁB, AB́, AB. The

quantum 2-to-4 decoder design generates all four necessary AND function

using one quantum Peres gate and three CNOT quantum gates, as shown in

figure 10.3. A 3-to-8 decoder is designed using one 2-to-4 quantum decoder

circuit and four quantum Fredkin gates, as shown in figure 10.4. Using the

same approach, an n-to-2
n

 decoder can be designed. The design of a 4-to-16

decoder is presented in figure 10.5. The generalized algorithm for constructing

a quantum n-to-2n decoder circuit is presented in algorithm 10.1.

Figure 10.3. The quantum 2-to-4 decoder circuit. Reproduced with

permission from [5]. Copyright 2013 IEEE.

Figure 10.4. The quantum 3-to-8 decoder circuit. Reproduced with

permission from [5]. Copyright 2013 IEEE.

Figure 10.5. The quantum 4-to-16 decoder circuit.

Algorithm 10.1. Constructing an n-to-2
n
 quantum decoder circuit.

10.2.2 Analysis of the properties of the circuits

In this section the properties of a quantum n-to-2
n
 decoder circuit are

presented.

Property 10.1.

A quantum n-to-2n decoder circuit can be realized with

[7 × (3 × ⌈2n−5⌉) + 5 × (2n/2)] quantum gates, when n ⩾ 4 and n/2 = 2,

where n is the number of input bits.

Proof. The above statement is proved by mathematical induction. A 2-to-4

decoder circuit requires one quantum Peres gate and three quantum CNOT

gates. Thus the number of quantum gates of a 2-to-4 decoder circuit is seven,

where the numbers of quantum Peres gates and quantum CNOT gates are 4

and 1, respectively. A 4-to-16 decoder circuit consists of three 2-to-4 decoder

circuits and eight quantum Fredkin gates, where the number of quantum

Fredkin gates is 5. Thus the total number of quantum gates required to

construct 4-to-16 decoder circuit is NOQG4-to-16 = 5 × NOQGFredkin + 7 ×

NOQG2-to-4

= 5 × (24/2) + 7 × (3 × ⌈24−5⌉) = 61 = 5 × (24/2) + 7 × (3 × ⌈24−5⌉).

Thus the statement holds for base case n = 4. Assume that the statement

holds for n = k. Thus a quantum k- to-2k decoder circuit can be realized with

quantum gates when k ⩾ 4 and k/2 = 2.

A (k + 1)-to-2
k+1

 decoder circuit requires 7 × (3 × (⌈2k+1−5⌉)) quantum 2-

to-4 decoders and quantum Fredkin gates. As a result, the total number of

quantum gates required to construct a (k+1)-to-2
k+1

 decoder circuit is

(7 × (3 × ⌈2k+1−5⌉) + 5 × (2k+1 + 2n/2)) when k ⩾ 4 and k/2 = 2. Thus the

statement holds for n = k + 1. Therefore a quantum n-to-2n decoder circuit

can be realized with [7 × (3 × ⌈2n−5⌉) + 5 × (2n/2)] quantum gates when

n ⩾ 4 and n/2 = 2.

Similarly, a quantum n-to-2n decoder circuit can be realized with

[7 × (3 × ⌈2n−6⌉) + 5 × (2n/2)] quantum gates when n ⩾ 4 and n/2 ≠ 2.

Property 10.2.

A quantum n-to-2
n
 decoder circuit produces

[7 × (3 × ⌈2n−5⌉) + 5 × (2n/2)]Δ quantum delay when n ⩾ 4 and n/2 = 2,

where Δ is the unit delay.

Proof. From property 10.1 it is found that the number of quantum gates of an

n-to-2
n
 decoder circuit are [7 × (3 × ⌈2n−5⌉) + 5 × (2n/2)] when n ⩾ 4 and

n/2 = 2. Therefore the total delay of a quantum n-to-2
n
 decoder circuit is

[7 × (3 × ⌈2n−5⌉) + 5 × (2n/2)]Δ quantum delay when n ⩾ 4 and n/2 = 2.

Similarly, a quantum n-to-2n decoder circuit produces

[7 × (3 × ⌈2n−6⌉) + 5 × (2n/2)]Δ quantum delay when n ⩾ 4 and n/2 ≠ 2.

Property 10.3.

A quantum n-to-2n decoder circuit requires

350 × (3 × ⌈2n−5⌉) + 250 × (2n/2) Å area when n ⩾ 4 and n/2 = 2, where Å

is the unit of measuring area.

Proof. From property 10.1 a quantum 2-to-4 decoder has seven quantum gates

and a quantum Fredkin gate has five quantum gates. Thus a quantum n-to-2
n

decoder circuit requires [7 × (3 × ⌈2n−5⌉) + 5 × (2n/2)] quantum gates

when n ⩾ 4 and n/2 = 2. Therefore the total area for a quantum n-to-2
n

decoder circuit is

[50 × 7 × (3 × ⌈2n−5⌉) + 5 × (2n/2)] = 350 × (3 × ⌈2n−5⌉) + 250 × (2n/2)
Å when n ⩾ 4 and n/2 = 2.

Similarly, a quantum n-to-2
n
 decoder circuit requires

350 × (3 × ⌈2n−6⌉) + 250 × (2n/2) Å area when n ⩾ 4 and n/2 ≠ 2, where Å

is the unit of measuring area.

Property 10.4.

A quantum n-to-2n decoder circuit requires

[996.1 × (3 × ⌈2n−5⌉) + 711.5 × (2n/2)] meV power when n ⩾ 4 and n/2 =

2, where meV is the unit of measuring power.

Proof. From property 10.1 a 2-to-4 quantum decoder has seven quantum gates

and a quantum Fredkin gate has five quantum gates. Thus a quantum n-to-2n

decoder circuit requires [7 × (3 × ⌈2n−5⌉) + 5 × (2n/2)] quantum gates

when n ⩾ 4 and n/2 = 2. Therefore the total power for a quantum n-to-2
n

decoder circuit is (142.3 × [7(3 × ⌈2n−5⌉) + 5 × (2n/2)]) meV power when

n ⩾ 4 and n/2 = 2, where meV is the unit of measuring power.

Similarly, a quantum n-to-2n decoder circuit requires

[996.1 × (3 × ⌈2n−6⌉) + 711.5 × (2n/2)] meV power when n ⩾ 4 and n/2

≠ 2, where meV is the unit of measuring power. □

Property 10.5.

A quantum n-to-2n decoder circuit can be realized with

(2(3 × ⌈2n−5⌉) + (2n/2)) constant inputs when n ⩾ 4 and n/2 = 2, where n

is the number of input bits.

Proof. The above statement is proved by mathematical induction. The

quantum 2-to-4 decoder circuit requires two constant inputs and a quantum

Fredkin gate requires one constant input. A 4-to-16 decoder circuit requires six

constant inputs from three 2-to-4 decoder circuits and eight constant inputs

from eight quantum Fredkin gates. Thus the total number of constant inputs

required to construct a 4-to-16 decoder circuit (NOQG4-to-16) is NOCI4-to-16 =

NOCIFredkin + NOCI2-to-4

= (24/2) + 2 × (3 × ⌈24−5⌉) = 14 = (24/2) + 2 × (3 × ⌈24−5⌉). Thus the

statement holds for base case n = 4. Assume that the statement holds for n =

k. Thus a quantum k-to-2k decoder circuit can be realized with

(2(3 × ⌈2k−5⌉) + (2k/2)) constant inputs when k ⩾ 4 and k/2 = 2.

A (k+ 1)-to-2k+1 decoder circuit requires (2k+1/2) constant inputs for

quantum Fredkin gates and (2(3 × ⌈2k+1−5⌉)) constant inputs for quantum 2-

to-4 decoders. As a result, the total number of constant inputs required to

construct a (k + 1)-to-2k+1 decoder circuit is (2(3 × ⌈2k+1−5⌉) + (2k+1/2))
when n ⩾ 4 and n/2 = 2. Thus the statement holds for n = k + 1. Therefore a

quantum n-to-2
n
 decoder circuit can be realized with

(2(3 × ⌈2n−5⌉) + (2n/2)) constant inputs when n ⩾ 4 and n/2 = 2, where n

is the number of input bits.

Similarly, a quantum n-to-2n decoder circuit can be realized with

(2(3 × ⌈2n−6⌉) + (2n/2)) constant inputs when n ⩾ 4 and n/2 ≠ 2, where n

is the number of input bits. □

Property 10.6.

A quantum n-to-2
n
 decoder circuit requires (3Ω + 4σ)[3 × ⌈2n−5⌉) + (2n/2)]

quantum gate calculation complexity when n ⩾ 4 and n/2 = 2, where σ is the

CNOT gate calculation complexity and Ω is the controlled-V or controlled-V+

gate calculation complexity.

Proof. From property 10.1, a quantum 2-to-4 decoder and a quantum Fredkin

gate both have 4σ CNOT quantum gate calculation complexity and 3Ω

controlled-V (controlled-V
+

) quantum gate calculation complexity. Thus the

total quantum gate calculation complexity for an n-to-2
n
 decoder circuit is

(3Ω + 4σ)[3 × ⌈2n−5⌉) + (2n/2)] quantum gate calculation complexity

when n ⩾ 4 and n/2 = 2, where σ is the CNOT gate calculation complexity and

Ω is the controlled-V or controlled- V+ gate calculation complexity.

Similarly, a quantum n-to-2
n
 decoder circuit requires

(3Ω + 4σ)[3 × ⌈2n−6⌉) + (2n/2)] quantum gate calculation complexity,

when n ⩾ 4 and n/2 ≠ 2, where σ is the CNOT gate calculation complexity and

Ω is the controlled-V or controlled-V
+

 gate calculation complexity.

10.3 Summary

This chapter presents the design methodology of an n-to-2
n
 quantum decoder

circuit, where n is the number of input bits. A technique to calculate the

quantum gate complexity of quantum circuits has been shown. The efficiency

of the design is proved by several properties. The decoder designed using

quantum logic has obvious advantages of low power dissipation. Thus it can

be applied very well in wireless sensors, network components, and quantum

signal processing, etc.

Critical thinking questions

1. Explain the properties of a quantum decoder.

2. How many 3 × 8-line quantum decoders with an enable input line are

needed to construct a 6 × 64-line quantum decoder without using any

additional logic gates? Explain in detail.

3. How many logic gates are needed to represent the output of a 2-to-4

quantum decoder? Use a figure to explain.

4. What will happen if in a 2-to-4 quantum decoder, the enable pin is set to 1

and the inputs A and B are set to 0 and 0, respectively? Describe briefly.

5. Describe the applications of a quantum decoder.

References

[1] Aspencore Binary decoder Electronics Tutorials https://www.electronics-
tutorials.ws/combination/comb_5.html (Accessed: 5 December 2018)

[2] Weisstein E W Square root Wolfram MathWorld http://mathworld.wolfram.com/SquareRoot.html
(Accessed: 22 December 2018)

[3] Chrzanowska-Jeske M 1993 Architecture and synthesis issues in FPGAs Proc. NORTHCON’93

Electrical and Electronics Convention pp 102–5
[4] Haghparast M and Monfared A T 2017 Novel quaternary quantum decoder, multiplexer and

demultiplexer circuits Int. J. Theor. Phys. 56 1694–707
[5] Lisa N J and Babu H M H 2013 A compact realization of a reversible quantum n-to-2 n decoder 4th

Int. Conf. on Electronics Information and Emergency Communication (Piscataway, NJ: IEEE) pp 90–
3

[6] Sharmin F, Polash M M A, Shamsujjoha M, Jamal L and Babu H M H 2011 Design of a compact
reversible random access memory 4th IEEE Int. Conf. on Computer Science and Information

Technology 10 103–7

https://www.electronics-tutorials.ws/combination/comb_5.html
http://mathworld.wolfram.com/SquareRoot.html
http://dx.doi.org/10.1007/s10773-017-3315-9

[7] Voyiatzis I, Gizopoulos D and Paschalis A M 2005 Accumulator-based test generation for robust
sequential fault testing in DSP cores in near-optimal time IEEE Trans. Very Large Scale Integr. VLSI

Syst. 13 1079–86
[8] Yunru L, Yeqing Y, Shaojie C and Lijun C 2011 Reversible watermarking algorithm for wireless

sensor network using method of multi-node negotiation Int. Conf. on E-Business and E-Government

(Piscataway, NJ: IEEE) pp 1–4

http://dx.doi.org/10.1109/TVLSI.2005.857159

IOP Publishing

Quantum Computing (Second Edition)

A pathway to quantum logic design

Hafiz Md Hasan Babu

Chapter 11

The quantum square root circuit

Learning objectives

Explain the square root function.

Develop an algorithm for an n-qubit quantum square root.

Understand the characteristics of the square root function.

Make a circuit analysis of the quantum square root.

Learn how to create a quantum square root circuit design.

Determine the complexity of the quantum gate easily.

A square root of x is a number r such that r2 = x. It is also written in the form

x1/2
 or, in particular, √x. This chapter is focused on identifying a useful quantum

square root circuit. The quantum conditions and design of a quantum square root

circuit are analyzed. These circuits consist of quantum adder/subtractor circuits

and CNOT gates.

11.1 The properties of a quantum square root

function

The principal of a quantum square root function f (x) = √x (usually just referred

to as the ‘square root function’) is a function that maps the set of nonnegative

real numbers onto itself. In geometrical terms, the square root function maps the

area of a square to its side length.

The quantum square root of x is rational if and only if x is a rational number

that can be represented as a ratio of two perfect squares. The square root

function maps rational numbers into algebraic numbers (a superset of the rational

numbers).

For all real numbers

√x2 =∣ x ∣= x =

For all nonnegative real numbers x and y, √xy = √x√y and √x = x
1
2 .

The quantum square root function is continuous for all nonnegative x and

differentiable for all positive x. If f denotes the square root function, its derivative

is given by

x if x ⩾ 0

− x if x < 0.

f′(x) =
1

2√x
.

The Taylor series of √1 + x about x = 0 converges for ∣ x ∣⩽ 1:

√1 + x =
∞

∑
n=0

(−1)n(2n)!

(1 − 2n)(n!)(4n)
xn = 1 +

1

2
x −

1

8
x2 +

1

16
x3 −

5

128
x4 + ...

The quantum square root of a nonnegative number is used in the definition of

the Euclidean norm (and distance), as well as in generalizations such as Hilbert

spaces. It defines an important concept of standard deviation using the theory of

probability and statistics. It has a major use in the formula for roots of a quadratic

equation, such as quadratic fields and rings of quadratic integers which are based

on square roots. These are important in algebra and have uses in geometry.

Square roots frequently appear in mathematical formulas elsewhere, as well as in

many physical laws.

11.2 The design of a quantum square root circuit

In this section an n-bit quantum square root circuit is shown. The optimized n-bit

quantum square root circuit is designed using QAS circuits and CNOT gates.

11.2.1 The quantum adder/subtractor circuit

A QAS circuit is constructed using a Haghparast–Navi gate (HNG) quantum circuit

and CNOT quantum gates. It is constructed directly at the quantum level. A one-

bit QAS circuit is a combinational quantum circuit which adds three bits X, Y , Z
(where Z is the carry-in for the circuit) and generates a sum S(X ⊕ Y ⊕ Z) and a

carry-out Cout, ((X ⊕ Y)Z ⊕ XY), or subtracts X − Y − Z resulting in a

difference D, (X ⊕ Y ⊕ Z ⊕ 1), and a borrow Bout, ((X ⊕ Y)Z ⊕ XY ⊕ 1). Thus

the inputs to this circuit are data signals, X, Y, and Z, a control signal A/S and a

constant input bit 0. The outputs are sum, carry, A/Sg, which is an A/S control

signal propagating to the next block, and two garbage outputs g1 and g2. A CNOT

quantum gate with a control signal A/S and a target Y, as well as a full-adder

implemented by a HNG quantum circuit, contribute to the QAS block. When A/S is

set to 0, then CNOT passes the true copy of Y. When A/S is 1, then Y ′ is produced

at the output of CNOT, and X + Y ′+Z is performed, where ′ denotes the

complement sign. The A/Sg output of each block is used as a control signal A/S to

the consecutive block. To obtain a true copy of input Y for further operation,

another CNOT gate is added between lines A/S and A/S ⊕ Y with control at A/Sg,

which performs the operation A/S ⊕ Y ⊕ A/S = Y. The structure of a QAS circuit is

shown in figure 11.1.

Figure 11.1. The QAS circuit.

11.2.2 The quantum square root circuit

An array structure of a non-restoring square root circuit uses classical controlled

adder/subtractor blocks. The (2 × 4) = 8-bit non-restoring circuit realizes a digit-

by-digit scheme, where at each iteration computed in each row, only one digit of

the square root is performed. Based on this structure the quantum square root

circuit is created using the QAS circuit presented in figure 11.1. A few additional

CNOT gates are added to provide fan-out signals. In the quantum square root

circuit, the QAS circuit is incorporated from figure 11.1 and reuses the copy of

input signal Y of the previous stage for the next stage square root operation. A (2

× 4) = 8-bit quantum square root circuit with the input x1x2x3x4x5x6x7x8, the

four-bit square root output q1q2q3q4, and the eight-bit remainder output

r1r2r3r4r5r6r7r8 are presented in figure 11.2. The order of the QAS signal

propagation is in the direction from right to left. Hence the right-most QAS2 circuit

in the top row of figure 11.2 takes the control input A/S. In the classical design,

first the A/S signal is set to ‘1’ in order to calculate the first digit of the square

root. A/S input to 1 is also set. The outputs A/Sg and Cout of the QAS2 circuit are

connected to the left QAS1 circuit. To provide the inverted A/S as well as A/S itself,

each inverter in a classical implementation is replaced by a CNOT. In addition,

since each square root bit from each row (qi) is the control signal for the next row

as shown in figure 11.2, it is necessary to fan-out qi. In quantum implementation a

CNOT gate is used to generate a copy of a required signal. For example, to obtain

a copy of q1, a CNOT gate is also used with the I/O mapping: q1, 0 → q1, q1 ⊕ 0.

Figure 11.2. The (2 × 4) = 8-qubit quantum square root circuit.

A two-qubit quantum square root circuit with four-bit input x1x2x3x4, two-qubit

square root output q1q2, and four-qubit remainder output r1r2r3r4 is constructed

using six QAS circuits and six CNOT gates arranged in two rows. Therefore, an n-

qubit quantum square root circuit with the 2n-qubit input x1 x2, ..., x2n, the n-qubit

square root output q1q2, ..., qn and the 2n-qubit remainder output r1r2, ..., r2n can

be constructed using [∑n
i=1(i + 2) − 1] QAS circuits and 4n – 2 CNOT gates

arranged in n rows, presented in figure 11.3, where n is the number of output

qubits. In addition, 4n – 2 CNOT gates are used to control the fan-out signals. The

generalized algorithm for constructing a compact n-qubit quantum square root

circuit is presented in algorithm 11.1.

Algorithm 11.1. Constructing an n-qubit quantum square root circuit.

Figure 11.3. Block diagram of an n-qubit quantum square root circuit.

11.2.3 Analysis of the properties of the quantum circuit

In this subsection the properties of an n-qubit quantum square root circuit are

presented.

Property 11.1.

An n-qubit quantum square root circuit can be realized with

[8[∑n
i=1(i + 2) − 1] + 4n − 2] quantum gates, where n is the number of output

bits.

Proof. Property 11.1 is proved by mathematical induction.

A two-qubit square root requires six QAS circuits where the number of quantum

gates of the QAS circuit is eight. Moreover, this circuit needs an extra six CNOT

gates. Thus the total number of quantum gates required to construct a two-qubit

quantum square root (NOG2) circuit is

Thus the statement holds for base case n = 2.

NOG2 =
2

∑
i=1

(i + 2) − 1] + (4 × 2 − 2)

= 8 × [(1 + 2) + (2 + 2) − 1] + 6

= 8 × [3 + 4 − 1] + 6

= 54.

Assume that the statement holds for n = k. Thus a quantum k-qubit square

root circuit can be realized with [8[∑k
i=1(i + 2) − 1] + 4k − 2] quantum gates.

A (k + 1)-qubit quantum square root circuit requires [8[∑k+1
i=1 (i + 2) − 1]] QAS

circuits and [4(k + 1) − 2] CNOT gates. As a result, the total number of quantum

gates required to construct a (k + 1)-qubit quantum square root circuit is

[8[∑k+1
i=1 (i + 2) − 1] + 4(k + 1) − 2].

Thus the statement holds for n = k + 1.

An n-qubit quantum square root circuit can be realized with 8[

∑n
i=1(i + 2) − 1] + 4n − 2 quantum gates, where n is the number of output bits.

Property 11.2.

An n-qubit quantum square root circuit produces the following quantum delay:

(8[∑n
i=1(i + 2) − 1] + 4n − 2 − [∑n

i=1(i + 2) − 1])Δ, where n is the number

of output qubits and Δ is the unit of delay.

Proof. A quantum square root circuit consists of QAS circuits and CNOT gates. In a

one-qubit QAS circuit, 8Δ delay is required. Thus the total delay for an n-qubit QAS

circuit is (8[∑n
i=1(i + 2) − 1])Δ delay. A quantum square root circuit requires (4n

– 2)Δ additional delay. As there are [∑n
i=1(i + 2) − 1] controlled-V + gates at the

same level with a CNOT gate of an n-qubit quantum square root circuit,

[∑n
i=1(i + 2) − 1]Δ delay can be deducted from the total delay of the quantum

square root circuit. Therefore, the total delay of a quantum square root circuit is

(8[∑n
i=1(i + 2) − 1] + 4n − 2 − [∑n

i=1(i + 2) − 1])Δ.

Example 11.1.

When n = 4 in figure 11.1, the total delay of a (2 × 4)-qubit = 8-bit quantum

square root circuit is (8[∑4
i=1(i + 2) − 1] + 4 × 4 − 2 – [∑4

i=1(i + 2) − 1])Δ =

133Δ.

Property 11.3.

An n-qubit quantum square root circuit requires

[(4 + 4)[∑n
i=1(i + 2) − 1] + 4n − 2] quantum gate calculation complexity, where

n is the number of output qubits, σ is CNOT gate calculation complexity, and Ω is

the controlled-V or controlled-V
+

 gate calculation complexity.

Proof. From property 11.1, it is found that a quantum square root circuit consists

of a QAS circuit and CNOT gates. A one-bit QAS circuit has eight quantum gates.

Thus an n-qubit quantum square root circuit requires 8[∑n
i=1(i + 2) − 1] QAS

circuits. Moreover, a quantum square root circuit needs an extra 4n – 2 CNOT

gates. Therefore, the total area for an n-bit quantum square root circuit is

((8[∑n
i=1(i + 2) − 1] × 50) + (4n − 2) × 50)) Å =

400[∑n
i=1(i + 2) − 1] + 200n − 100 Å.

Property 11.4.

An n-qubit quantum square root circuit produces

1138.4[∑n
i=1(i + 2) − 1] + 569.2n − 284.6 meV, where n is the number of

output bits and meV is the unit of measuring power.

Proof. From property 11.1, it is found that a quantum square root circuit consists

of a QAS circuit and CNOT gates. A one-bit QAS circuit has eight quantum gates.

Thus an n-qubit quantum square root circuit has 8[∑n
i=1(i + 2) − 1] QAS circuits.

Moreover, a quantum square root circuit needs an extra 4n – 2 CNOT gates.

Therefore, the total power for an n-qubit quantum square root circuit is

11.3 Summary

This chapter presents a design methodology of an n-qubit quantum square root

circuit, where n is the number of output qubits. An algorithm is shown for design

the compact n-qubit quantum square root circuit using a quantum

adder/subtractor circuit. A new technique to calculate the quantum gate

complexity of quantum circuits is shown in this chapter. The circuit has been

constructed with the optimum number of quantum gates, garbage outputs,

delays, quantum gate calculation complexity, area, and power. The design is more

scalable and performs much better than its counterparts, e.g. the n-qubit

quantum square root circuit requires (8[∑n
i=1(i + 2) − 1] + 4n − 2) quantum

gates, (8[∑n
i=1(i + 2) − 1] + 4n − 2 − [∑n

i=1(i + 2) − 1])Δ delay,

((4Ω + 4σ)[∑n
i=1(i + 2) − 1] + 4n − 2) quantum gate calculation complexity,

(400[∑n
i=1(i + 2) − 1] + 200n − 100)Ao area, and

(1138.4[∑n
i=1(i + 2) − 1] + 569.2n − 284.6) meV power, where n is the number

of output qubits, σ is the CNOT gate calculation complexity, Ω is the controlled-V

(controlled-V
+

) gate calculation complexity, ρ is the NOT gate calculation

complexity, Δ is the unit delay, Å is the unit of measuring area, and meV is the

unit of measuring power. The efficiency of the design is also proved by several

properties. The square root is the basic arithmetic unit of a computer system. For

example, numerical analysis, complex number computations, statistical analysis,

computer graphics, and radar signal processing are among the fields where

quantum square root circuits can be used.

Critical thinking questions

1. Describe the characteristics of the quantum square root function.

2. Discuss some applications for the quantum adder/subtractor circuit.

3. Analyze some features of the n-qubit square root circuit.

4. From the circuit shown in figure below, calculate the total delay, when n = 4.

((8 [
n

∑
i=1

(i + 2) − 1] × 142.3) + (4n − 2) × 142.3) meV

= 1138.4[
n

∑
i=1

(i + 2) − 1] + 569.2n − 284.6 meV.

References

[1] Square root Wikipedia https://en.wikipedia.org/wiki/Square_root (Accessed: 6 December 2018)
[2] Semiconductor Industry Association 2006 International technology roadmap for semiconductors, 2005

edition ITRS http://www.itrs.net/
[3] Balandin A A and Wang K L 1999 Implementation of quantum controlled-NOT gates using asymmetric

semiconductor quantum dots Quantum Computing and Quantum Communications (Berlin: Springer) pp
460–7

[4] Black P E, Kuhn D R and Williams C J 2002 Quantum computing and communication Advances in

Computers vol 56 (Amsterdam: Elsevier) pp 189–244
[5] Gandhi S M, Devishree J and Mohan S S 2014 A new reversible SMG gate and its application for

designing twoʼs complement adder/subtractor with overflow detection logic for quantum computer-based
systems Computational Intelligence, Cyber Security and Computational Models (Berlin: Springer) pp
259–66

[6] Hamacher V C, Vranesic Z G, Zaky G, Vransic Z and Zakay S 1996 Computer Organization pp 224–238
(New York: McGraw-Hill)

[7] Jain V K and Lin L 1998 Nonlinear DSP coprocessor cells-one and two cycle chips Proc. 1998 IEEE Int.

Symp. on Circuits and Systems vol 2 (Piscataway, NJ: IEEE) pp 264–7
[8] Samavi S, Sadrabadi A and Fanian A 2008 Modular array structure for non-restoring square root circuit

J. Syst. Archit. 54 957–66
[9] Shor P W 1999 Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum

computer SIAM Rev. 41 303–32
[10] Sultana S and Radecka K 2011 Reversible implementation of square-root circuit 18th IEEE Int. Conf. on

Electronics, Circuits and Systems (Piscataway, NJ: IEEE) pp 141–4
[11] Sultana S, Radecka K and Pang Y 2011 A study on relating redundancy removal in classical circuits to

reversible mapping 29th IEEE Int. Conf. on Computer Design (Piscataway, NJ: IEEE) pp 206–11

https://en.wikipedia.org/wiki/Square_root
http://www.itrs.net/
http://dx.doi.org/10.1016/j.sysarc.2008.04.004
http://dx.doi.org/10.1137/S0036144598347011

IOP Publishing

Quantum Computing (Second Edition)

A pathway to quantum logic design

Hafiz Md Hasan Babu

Chapter 12

Quantum latches and counter

circuits

Learning objectives

Define a latch with a brief description.

Understand the uses of latches.

Describe the properties of latches.

Discuss the characteristics of quantum counter

circuits.

Find out ways to construct quantum SR latch,

quantum D latch, quantum T latch, and quantum J–

K latch circuits.

Construct a synchronous and an asynchronous

quantum counter circuit with descriptions.

A quantum latch is a circuit that has two stable states and

can be used to store state information. It is the basic

storage element in sequential logic. A quantum counter is a

quantum register which produces a specified output

sequence or counts the clock pulses arriving at the clock

input. It has a wide variety of applications in almost all

fields, such as industrial, domestic, security, surveillance,

and communication, to name just a few. The properties

along with the designs for the quantum latches and

quantum counters are discussed in this chapter.

12.1 The properties of quantum

latches

The current model of computing is based on the concept of

a state machine. Such a machine exhibits different

behaviors depending on the value of its current state. Thus

some structure is required to keep track of this state. The

basic building block used in memory of current computers is

the quantum flip-flop, which themselves are built out of

quantum latches. There are various types of quantum

latches, but the basic type upon which other designs are

generally based is the quantum set–reset (SR) latch. The

primary inputs of such a structure are ∣ S⟩ (set) and ∣ R⟩
(reset). A diagram illustrating a quantum NOR gate

implementation of a block diagram of a quantum SR latch is

given in figure 12.1.

Figure 12.1. The block diagram of a quantum SR

latch.

A variety of quantum latches has been introduced in

several research works. This chapter examines the behavior

of some of these quantum latches. Quantum realizations of

latches are also included in this chapter. These quantum

latches may be used to emulate a traditional SR latch. The

behavior of the quantum SR latch is characterized by the

truth table in table 12.1.

Table 12.1. The next state values for the quantum SR latch.

Inputs Next state

S R Q+ Q+

0 0 Q Q

0 1 0 1

1 0 0 1

1 1 Not permitted

12.2 The design of quantum latches

In this section, some quantum latches are shown. Sections

12.2.1–12.2.4 describe the quantum SR latch, quantum D

latch, quantum T latch, and quantum J–K latch, respectively.

12.2.1 The quantum SR latch

The quantum SR latch can be designed using two cross-

coupled NOR gates or two cross-couple NAND gates. The S

input sets the latch to 1, while the R input resets the

quantum latch to 0. The cross-coupled NOR gate strategy

was used to design the Fredkin gate based quantum SR

latch and the cross-coupled NAND gate strategy was used to

design the quantum Toffoli gate based quantum SR latch.

The modified Toffoli gate (MTG) based quantum SR latch

was also introduced. These quantum SR latch designs do

not have an enable signal (clock).

The characteristic equation of the quantum SR latch can

be written as Q+ = S + R · Q. From the characteristic

equation it is observed that for five-input combinations (S =

0, R = 0, Q = 1), (S = 1, R = 0, Q = 0), (S = 1, R = 0, Q =

1), (S = 1, R = 1, Q = 0), and (S = 1, R = 1, Q = 1), it will be

Q+ = 1. In order to design a quantum SR latch that can

work for all input combinations, the output Q is modified for

the selective input combinations as follows. When (S = 1, R

= 1, Q = 0) the output Q+
 is assigned the value of 0 and

when (S = 1, R = 1, Q = 1) the output Q+
 is assigned the

value of 1. Thus when S = 1 and R = 1, we have Q+ = Q.

After the modifications in the output for these two selective

input combinations, it is observed that now for only four

input combinations (S = 0, R = 0, Q = 1), (S = 1, R = 0, Q =

0), (S = 1, R = 0, Q = 1), and (S = 1, R = 1, Q = 1), will it be

Q+
 = 1.

The modified truth table of the quantum SR latch is

shown in table 12.2. From table 12.1 a new characteristic

equation Q+
 = (S ⊕ Q) ∙ (S ⊕ R) ⊕ Q is derived for the

quantum SR latch. The quantum SR latch is shown in figure

12.2.

Figure 12.2. The quantum SR latch.

Table 12.2. The modified truth table of the quantum SR latch.

S R Q Q+

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 0

1 1 1 1

12.2.2 The quantum D latch

The characteristic equation of the quantum D latch can be

written as Q+
 = D · E + E · Q. When the enable signal

(clock) is 1, the value of the input D is reflected at the

output, that is Q+ = D. When E = 0 the quantum latch

maintains its previous state, that is Q+ = Q.

This can be understood as follows. From the

characteristic equation of the quantum D latch Q+
 = D · E +

E · Q, it can be seen that for four input combinations (E =

0, D = 0, Q = 0), (E = 0, D = 1, Q = 0), (E = 1, D = 0, Q =

0), and (E = 1, D = 0, Q = 1), the output Q+
 is 0. The

addition of one garbage output can resolve only two output

positions since one qubit can produce only two distinct

output combinations. The quantum D latch is shown in

figure 12.3.

Figure 12.3. The quantum D latch.

12.2.3 The quantum T latch

The characteristic equation of the quantum T (toggle) latch

can be written as Q+ = (T · Q) · E + E · Q. However, the

same result can also be obtained from Q+ = (T · E) ⊕ Q.

The T latch is a complementing quantum latch which

complements its value when T = 1, that is when T = 1 and E

= 1 then Q+ = Q. When T = 0, the quantum T latch

maintains its state and there will be no change in the

output. The quantum T latch characteristic equation can be

directly mapped to the quantum Peres gate and the fan-out

at output Q can be avoided by cascading the quantum

Feynman gate (it is seen that T · E ⊕ Q matches the

template of the quantum Peres gate). The design is shown

in figure 12.4. It is seen that for the four input combinations

(E = 0, T = 0, Q = 0), (E = 0, T = 1, Q = 0), (E = 1, D = 0, Q

= 0), and (E = 1, T = 1, Q = 1), the output Q+
 is 0.

Figure 12.4. The quantum T latch. Reproduced with

permission from [7]. Copyright 2010 IEEE.

The design of a quantum T latch has both Q output and

the complementary Q output. In this section a quantum T

latch is introduced based on quantum Peres and quantum

Feynman gates with the outputs Q and Q. The quantum T

latch is shown in figure 12.5.

Figure 12.5. The quantum J–K latch.

12.2.4 The quantum J–K latch

From the characteristic equation of the quantum J–K latch

for the eight input combinations (E = 0, J = 0, K = 0, Q = 0),

(E = 0, J = 0, K = 1, Q = 0), (E = 0, J = 1, K = 0, Q = 0), (E =

0, J = 1, K = 1, Q = 0), (E = 1, J = 0, K = 0, Q = 0), (E = 1, J

= 0, K = 1, Q = 0), (E = 1, J = 0, K = 1, Q = 1), and (E = 1, J

= 1, K = 1, Q = 1), the output Q+ is 0.

The quantum J–K latch has the capability of setting the

output, resetting the output, or complementing the output

depending on the value of J and K. When E (clock) is 1, the J

input can set the output to 1 (when J = 1), the reset input

can reset the output to 0 (when K = 1), and when both J and

K are set to 1 the output Q is complemented.

The quantum J–K latch does not produce the

complemented output Q. Thus a quantum realization of the

quantum J–K latch is illustrated in figure 12.5 which

produces both the output Q and its complement Q. In this

design the Feynman gate is used to generate the

complement of the output Q.

12.3 The properties of quantum

counter circuits

The important feature of the quantum counter circuit is that

different subsystems of a digital system can be controlled

by the sequence generated; timing signals can be

generated and clocks of different frequencies can be

generated. A variety of counters are available. They can be

classified as quantum synchronous and asynchronous

counters based on clock input, positive edged or negative

edged counters based on the clock trigger, binary or decade

counters based on the counts, up, down or up/down

counters based on the direction of the count, and J–K, T, or

D based counters based on the quantum latches used in the

quantum counter circuit.

The primitive logic blocks used in quantum counters are

quantum latches and combinational gates. Quantum

asynchronous or quantum ripple counters do not use a

common clock and the output of one stage affects the clock

input of the next stage. In a quantum synchronous counter

the clock is given simultaneously to all the quantum latches.

The total qubits of the counter do not change

simultaneously but synchronously at the rising or falling

edge of the clock, depending on the type of edge triggered

latches that are used in the counter.

12.4 The design of quantum counters

In this section the design of synchronous and asynchronous

quantum counter circuits is shown.

12.4.1 The quantum asynchronous counter

In a quantum asynchronous counter the quantum T latches

are arranged in such a way that the output of one latch is

connected to the clock input of the next higher order latch.

The output of a latch triggers the next latch. The latch

holding the least significant qubit receives the incoming

count pulse. A four-qubit quantum asynchronous counter is

shown in figure 12.6.

Figure 12.6. The quantum asynchronous counter.

12.4.2 The quantum synchronous counter

In a quantum synchronous counter, the clock pulses are

applied to the inputs of all the latches at a time. A latch is

complemented depending on the input value T and the

clock pulse. The latch in the least significant position is

completed with every clock pulse. A latch in another

position is complemented only when all the outputs of

preceding latches produce 1, and same strategy is followed

here to implement the quantum synchronous counter. Figure

12.7 shows the four-qubit quantum synchronous counter.

Figure 12.7. The four-qubit quantum synchronous

counter.

12.5 Summary

This chapter presents the design methodologies of four

quantum latches (quantum SR latch, quantum D latch,

quantum T latch, and quantum J–K latch) and two quantum

counter circuits (quantum asynchronous counter and

quantum synchronous counter). A further application would

be to use the latches towards the design of complex

quantum sequential circuits such as flip-flops, storage

registers, and shift registers, etc. In addition, the quantum

counters can also be used to build quantum sequential

circuits of higher order and complex design of quantum

computers. These designs form the basis of a quantum

arithmetic circuit design and thus contribute to reducing

power dissipation.

Critical thinking questions

1. Describe the characteristics of quantum latches.

2. How many stable states can a quantum latch contain?

Explain in detail.

3. What happens when both of the quantum SR latches’

inputs are high? Explain with an example.

4. Give an explanation of the analysis process of the

primary step of the quantum SR latch.

5. Describe several types of quantum latches and explain

each one in detail.

6. Explain the properties of the quantum counter.

7. Describe the differences between a quantum

asynchronous counter and a quantum synchronous

counter.

References

[1] Chuang M-L and Wang C-Y 2008 Synthesis of reversible sequential
elements ACM J. Emerging Technol. Comput. Syst. 3 4

[2] Picton P 1996 Multi-valued sequential logic design using Fredkin gates
Mult.-Valued Log. J. 1 241–51

[3] Rice J E 2008 An introduction to reversible latches Comput. J. 51 700–9
[4] Thapliyal H and Ranganathan N 2010 Design of reversible sequential

circuits optimizing quantum cost, delay, and garbage outputs ACM J.

Emerging Technol. Comput. Syst. 6 14
[5] Thapliyal H and Vinod A P 2007 Design of reversible sequential elements

with feasibility of transistor implementation IEEE Int. Symp. on Circuits and

Systems (Piscataway, NJ: IEEE) pp 625–8

http://dx.doi.org/10.1145/1324177.1324181
http://dx.doi.org/10.1093/comjnl/bxm116
http://dx.doi.org/10.1145/1877745.1877748

[6] Thapliyal H and Zwolinski M 2006 Reversible logic to cryptographic
hardware: a new paradigm 49th IEEE Int. Midwest Symp. on Circuits and

Systems (Piscataway, NJ: IEEE) pp 342–6
[7] Thapliyal H and Ranganathan N 2010 Design of reversible latches

optimized for quantum cost, delay and garbage outputs 23rd International

Conference on VLSI Design (Piscataway, NJ: IEEE) pp 235–240

http://dx.doi.org/10.1109/VLSI.Design.2010.74

IOP Publishing

Quantum Computing (Second Edition)

A pathway to quantum logic design

Hafiz Md Hasan Babu

Chapter 13

The quantum controlled ternary barrel shifter

Learning objectives

Examine ternary quantum gates.

Learn about the right rotation, left rotation, right shift, logical left shift, arithmetic

right shift, and logical left shift of a quantum shifter circuit.

Comprehend the quantum ternary Peres gate.

Construct a quantum ternary barrel shifter.

Become familiar with the quantum ternary modified Fredkin gate.

Mention the properties of a quantum ternary barrel shifter.

Talk about the characteristics of the quantum ternary circuit.

Most mathematical operations in quantum computing need shifting and rotation

operations. Some of these applications are convolution, correlation, multiplication, etc. This

requirement has made the use of shifters an important functional part of modern

computers. To make these shifters faster, barrel shifters are being designed. Barrel shifters

can shift data in one single clock cycle and they do not have an inbuilt memory, and this

makes the response of the systems faster when compared to other flip-flop shifters.

A barrel shifter is an n input and n output quantum logic circuit in which k select lines

control the shift operation. A barrel shifter can be unidirectional, allowing data to be shifted

only to the left (or the right), or bidirectional, which allows data to be rotated or shifted in

both directions. A barrel shifter with n inputs and k select lines is called an (n, k) barrel

shifter. Among the different designs of barrel shifter, the logarithmic barrel shifter is the

most widely used because of its simple design, smaller area, and the elimination of the

decoder circuitry. The conventional irreversible design of a logarithmic barrel shifter is

shown in figure 13.1. An n-bit logarithmic barrel shifter contains log2(n) stages, where the

ith stage either shifts over 2i bits or leaves the data unchanged. Each stage of a

logarithmic barrel shifter is controlled by a control bit. If the control bit is set to one, the

input data will be shifted in the associated stage, otherwise it remains unchanged.

Figure 13.1. The block diagram of the (n, k) logarithmic barrel shifter.

13.1 Ternary quantum gates

The elementary logical operation of quantum computing can be performed using

conditional two-qubit logic gates, which are called quantum Muthukrishnan–Stroud gates

(quantum M–S gates). The generalized quantum ternary gate (GQTG) is built on top of

quantum M–S gates. The ternary quantum logics are ∣ 0⟩, ∣ 1⟩, and ∣ 2⟩ . A quantum M–S

gate for ternary logic is presented in figure 13.2, where the input A acts as the control input

and input B works as the controlled input. The output of the circuit P is equal to the input A.

If A = 2 the other output Q is the Z-transform, where Z ∈ {+1, +2, 12, 01, 21} of the input

B, otherwise Q = B. The Z-transforms are as follows: +1 and +2 indicate increasing by one

and two, respectively, and 12, 01, and 02 stand for swap the last, first, and middle two

values.

Figure 13.2. The quantum M–S gate.

The diagram of a GQTG and its representation by a quantum M–S gate are illustrated in

figure 13.3. The controlling input A controls an abstract ternary multiplexer (a conditional

gate) which operates on the controlled input B. From the value of A, a ternary shift

operation is employed on B.

Figure 13.3. The GQTG using quantum M–S gates. (a) The GQTG. (b) The quantum

realization of an M–S gate.

13.1.1 The quantum ternary Peres gate

The quantum Peres gate is an important concept in universal computing and the ternary

quantum version of this gate is also important for ternary quantum logic synthesis. The

quantum ternary Peres gate (QTPG) is a 3 × 3 quantum gate, mapping (A, B, C) to (P = A,

Q = A + B, R = AB + C), where A, B, C are the inputs and P, Q, R are the respective

outputs. The QTPG is implemented using seven quantum M–S gates and six quantum shift

gates. Thus the number of quantum gates is 13. The quantum M–S and quantum shift

gates based on QTPG are shown in figure 13.4.

Figure 13.4. The realization of a QTPG using quantum M–S gates.

13.1.2 The quantum ternary modified Fredkin gate

The quantum Fredkin gate (see figure 2.4 in section 2.2.3) is a binary gate, and the

quantum ternary modified Fredkin gate (QTMFG) is a multi-valued sequential logic gate.

The QTMFG is a universal gate for quantum multi-valued sequential logic. Figure 13.5

presents a realization of the QTMFG using quantum M–S gates.

Figure 13.5. The realization of a QTMFG using quantum M–S gates.

13.2 The properties of ternary quantum circuits

The ternary quantum gate calculation complexity refers to the number of ternary quantum

gates (quantum M–S gates, quantum shift gates) used to synthesize the given circuit. Let ϵ

be the quantum M–S gate calculation complexity and γ be the quantum shift gates

calculation complexity. For example, the quantum ternary Feynman gate (QTFG) (figure 2.2

in in section 2.2.1) has two quantum M–S gates and two quantum shift gates. Therefore,

the quantum gate calculation complexity is 2ϵ + 2γ, which is depicted in figure 13.6.

Figure 13.6. The realization of a QTFG using quantum M–S gates.

13.3 The quantum barrel shifter

As shown in figure 13.1, a barrel shifter has n input and n output logic circuits in which k

select lines control the bit shift operation. The design of a quantum barrel shifter presents

design methodologies which can perform six operations: logical right shift, arithmetic right

shift, right rotate, logical left shift, arithmetic left shift, and left rotate. For illustration, all of

these operations are shown in table 13.1 for an eight-bit logarithmic barrel shifter where

the eight-bit input data are denoted as i7, i6, i5, i4, i3, i2, i1, i0, where i7 is the sign bit, and

the shift or rotate operation is performed by three bits, and X denotes the shifted result.

Table 13.1. Operations of an eight-bit barrel shifter with three-bit shift value.

Operation performed X (final output
a

)

Logical right shift 000i7i6i5i4i3

Arithmetic right shift i7i7i7i7i6i5i5i3

Operation performed X (final output
a

)

Right rotation i2i1i0i7i6i5i4i3

Logical left shift i4i3i2i1i0000

Arithmetic left shift i7i3i2i1i0000

Left rotation i4i3i2i1i0i7i6i5

aThe input data are i7i6i5i4i3i2i1i0.

All the operations that can be performed by a logarithmic barrel shifter, as shown in

table 13.1, are as follows.

13.3.1 Logical right shift

As illustrated in table 13.1 a three-bit logical right shift operation right shifts the input data

by three bits and sets the left-most three bits to zero. Thus the output will be 000i7i6i5i4i3
.

13.3.2 Arithmetic right shift

A three-bit arithmetic right shift operation right shifts the input data bit by three bits and

sets the left-most three bits to the sign bit (i7). Thus the output will be i7i7i7i7i6i5i4i3 .

13.3.3 Right rotation

A three-bit right rotation operation performs a right shift operation on input data by three

bits. Further, the left-most three bits are set to the right-most three bits of the original

input data. As illustrated in table 13.1, the final output after the right rotation operation will

be i2i1i0i7i6i5i4i3 as the input data i7i6i5i4i3i2i1i0 are shifted three times to the right

and the three left-most bits (i7i6i5) are set to the three right-most bits (i2i1i0) of the

original data.

13.3.4 Logical left shift

A three-bit logical left shift operation left shifts the input data by three bits and sets the

right-most three bits to zero. Thus the final output will be i4i3i2i1i0000 .

13.3.5 Arithmetic left shift

In the arithmetic left shift operation the sign bit of the input data remains intact and the

remaining bits are logically left shifted by three bits. As illustrated in table 13.1 the output

will be i7i3i2i1i0000 as the input data i7i6i5i4i3i2i1i0 are logically left shifted by three bits

and the sign bit (i7) remains intact.

13.3.6 Left rotation

A three-bit left rotation operation performs a left shift operation on the input data by three

bits. Further, the right-most three bits are set to the left-most three bits of the original

input data. As illustrated in table 13.1, the final output after the left rotation operation will

be i4i3i2i1i0i7i6i5 as the input data i7i6i5i4i3i2i1i0 are shifted three times to the left and

the three right-most bits (i2i1i0) are set to the three left-most bits (i7i6i5) of the original

data.

13.4 The design of a quantum ternary barrel shifter

In this section two new designs for a quantum ternary barrel shifter are shown. The design

of the quantum ternary barrel shifter and the properties of the designed circuits are shown

in detail.

13.4.1 The optimized quantum ternary barrel shifter

Two new designs for a quantum ternary barrel shifter are shown in this subsection.

Unidirectional and bidirectional quantum barrel shifters are designed. A unidirectional

barrel shifter shifts data only to the left (or right). A four-bit quantum ternary unidirectional

barrel shifterʼs block diagram, shown in figure 13.7, has two stages (ki, i = 0, 1) and it is

constructed using QTFGs, QTMFGs, and QTPGs. A bidirectional logarithmic logical shifter is

a non-rotating barrel shifter which can shift input data to the left or right. It has a control

signal (K) for determining the direction of the shift. If the K signal is set to zero, the logical

shifter will work as a logical right shifter, otherwise it will work as a logical left shifter. For

example, a four-bit quantum ternary bidirectional barrel shifterʼs block diagram, illustrated

in figure 13.8, has two stages (ki, i = 0, 1) and it is constructed using QTFGs, QTMFGs, and

QTPGs. The QTFG is utilized to avoid fan-out. Moreover, the QTMFGs and QTPGs are applied

as 2-to-1 multiplexers and AND gates, respectively. The (4, 2) quantum ternary

unidirectional and bidirectional logical barrel shifters, which are depicted in figures 13.7

and 13.8, respectively, take n3, n2, n1, n0 as data inputs and k1, k0 as select inputs. The

(4, 2) quantum ternary unidirectional and bidirectional logical barrel shifters can be

generalized for quantum (n, k) ternary unidirectional and bidirectional logical barrel

shifters, respectively. The ternary gate representation of the (4, 2) quantum ternary

bidirectional barrel shifter is depicted from figures 13.9–13.12 for each step.

Figure 13.7. The block diagram of a quantum ternary unidirectional barrel shifter.

Figure 13.8. The block diagram of a (4, 2) quantum ternary bidirectional barrel

shifter.

Figure 13.9. The realization of a (4, 2) quantum ternary bidirectional barrel shifter

(step 0) using quantum M–S gates. Reproduced with permission from [3]. Copyright

2015 IEEE.

Figure 13.10. The realization of a (4, 2) quantum ternary bidirectional barrel shifter

(step 1) using quantum M–S gates. Reproduced with permission from [3]. Copyright

2015 IEEE.

Figure 13.11. The realization of a (4, 2) quantum ternary bidirectional barrel shifter

(step 2) using quantum M–S gates. Reproduced with permission from [3]. Copyright

2015 IEEE.

Figure 13.12. A realization of a (4, 2) quantum ternary bidirectional barrel shifter

(step 3) using quantum M–S gates. Reproduced with permission from [3]. Copyright

2015 IEEE.

13.4.2 The properties of the designed circuit

In this subsection the properties of the (n, k) quantum ternary barrel shifter are presented.

Property 13.1.

A QTPG is utilized for AND operation in the design. Every stage in the barrel shifter is

denoted by i. Thus the number of required QTPGs in each stage is equal to 2i – 1, i = 0, 1,

…, k − 1. Thus in the design, k stages will have a total of NQTPG.TU = (∑k−1
i=0 2i) − 1 =

2k − 2 QTPGs. The QTMFGs are responsible for shifting/rotating of data input bits. Each

stage has n QTMFGs except for the last stage. The last stage requires only n/2 QTMFGs.

Thus there are k − 1 stages which require n QTMFGs and the last stage requires n/2

QTMFGs, but there are 2k – 2 QTMFGs which are replaced by QTPGs. Hence in the design

the total number of QTMFGs is NQTMFG.TU = ((n(k – 1) + n/2) – (2
k
 – 2)). QTFGs are used

for copying signals. The number of QTFGs in the input stage is (n – 1). Hence the design

can be realized with NQTFG.TU = (n − 1) QTFGs. Therefore the design requires NQTPG.TU

= 2
k
 – 2, NQTMFG.TU = ((n(k – 1) + n/2) – (2

k
 – 2)), NQTFG.TU = n – 1 ternary quantum

gates, where n is the number of bits, k is the total number of stages of the circuit, and

NQTPG.TU, NQTMFG.TU, and NQTFG.TU are the total number of ternary quantum Peres,

ternary modified quantum Fredkin, and quantum ternary Feynman gates, respectively.

Property 13.2.

The QTPG is utilized as an AND gate in the design. Every stage in the barrel shifter is

denoted by i. Thus the number of required QTPGs in each stage is equal to 2i
, i = 0, 1, …, k

– 1. Thus in the design k stages will have a total of NQTPG.TB = ∑k−1
i=0 2i

 = 2k
 – 1 QTPGs.

The input stage and the output stage of the circuit need n/2 QTMFGs and the barrel shifter

requires (n – 2i) QTMFGs for the rest of the stages. Thus an n-bit bidirectional barrel shifter

with k stages will have a total of NQTMFG.TB = ∑k−1
i=0 (

n

2
+ n

2 + n − 2i) =

∑k−1
i=0 (n + n − 2i) = (k + 1)n −∑k−1

i=0 (2i) = (k + 1)n – (2
k
 – 1) MQFGs. Fan-out gates

must be used for copying the signal in the quantum circuit. One of the fan-out gates is a

QTFG. The number of QTFGs in each stage is (n – 2
i
). Hence the circuit can be realized with

NQTFG.TB = ∑k−1
i=0 (n − 2i) QTFGs. Therefore, the design requires NQTPG.TB = 2

k
 – 1,

NQTMFG.TB = (k + 1)n – (2k – 1), and NQTFG.TB = ∑k−1
i=0 (n − 2i) ternary quantum gates,

where n is the number of bits, k is the total number of stages of the circuit, and NQTPG.TB,

NQTMFG.TB, and NQTFG.TB are the total number of ternary quantum Peres, ternary

modified quantum Fredkin, and quantum ternary Feynman gates, respectively.

Property 13.3.

The ternary quantum unidirectional and bidirectional barrel shifters are realized by QTPGs,

QTFGs, and QTMFGs with the number of quantum gates being 13, 4, and 41, respectively.

Thus the optimized (n, k) quantum ternary unidirectional and bidirectional barrel shifters

require (13NQTPG.TU + 41NQTMFG.TU + 4NQTFG.TU) and (13NQTPG.TB + 41NQTMFG.TB

+ 4NQTFG.TB) quantum gates, respectively, where n is the number of bits and k is the

total number of stages of the circuit.

Property 13.4.

The ternary quantum unidirectional and bidirectional barrel shifters are realized using

QTPGs, QTFGs, and QTMFGs. A QTPG has 7ϵ quantum M–S gate calculation complexity and

6γ quantum shift gate calculation complexity, a QTFG has 2ϵ quantum M–S gate calculation

complexity and 2γ quantum Shift gate calculation complexity; and a QTMFG has 20ϵ

quantum M–S gate calculation complexity and 21γ quantum shift gate calculation

complexity. Thus the total quantum gate calculation complexities are

(7NQTPG.TU ϵ + 6NQTPG.TU γ + 20NQTMFG.TU ϵ + 21NQTMFG.TU γ + 2NQTFG.TU ϵ + 2NQTF

and(7NQTPG.TB ϵ + 6NQTPG.TB γ + 20NQTMFG.TB ϵ + 21NQTMFG.TB γ + 2NQTFG.TB ϵ + 2N

for the ternary quantum unidirectional and bidirectional barrel shifters, respectively, where

ϵ is the M–S quantum gate calculation complexity and γ is the shift quantum gate

calculation complexity.

Property 13.5.

The optimized (n, k) ternary unidirectional and bidirectional barrel shifters produce at least

n(k − 1) and nk garbage outputs, respectively, where n is the number of bits and k is the

total number of stages of the circuit.

Proof. The above statement has been proved by the method of contradiction. Suppose (n,

k) ternary quantum unidirectional and bidirectional barrel shifters do not produce at least

n(k − 1) and nk garbage outputs, respectively, where n is the number of bits and k is the

total number of stages of the circuit.

In every stage of the ternary quantum unidirectional and bidirectional barrel shifters,

QTPGs and QTMFGs produce one garbage output, except for the first and last stages. In

other words, in each row the quantum barrel shifter produces at least n garbage outputs.

There are k – 1 and k numbers of stages in the unidirectional and bidirectional quantum

barrel shifters, respectively. Thus (k – 1) stages of a unidirectional quantum barrel shifter

will have a total of n(k – 1) garbage outputs, whereas k stages of a bidirectional quantum

barrel shifter produce nk garbage outputs. Thus the optimized (n, k) unidirectional and

bidirectional quantum ternary barrel shifters produce at least n(k – 1) and nk garbage

outputs, respectively.

This contradicts the supposition that (n, k) unidirectional and bidirectional quantum

ternary barrel shifters do not produce at least n(k − 1) and nk garbage outputs,

respectively. Hence the supposition is false and the property 13.5 is true and this

completes the proof.

13.5 Summary

In this chapter two new design methodologies for a quantum ternary barrel shifter are

presented. The optimized shifters are designed using quantum ternary Feynman gates,

quantum ternary modified Fredkin gates, and quantum ternary Peres gates. The quantum

ternary barrel shifters will be useful in a wide variety of applications in signal processing

systems. A general use of barrel shifters is in the hardware employment of floating-point

arithmetic. For a floating-point add or subtract operation, the significants of the two

numbers must be associated, which requires shifting the smaller number to the right and

increasing its exponent until it matches the exponent of the larger number. This is

performed by subtracting the exponents and using the barrel shifter to shift the smaller

number to the right by the difference in one cycle. If a shifter were used, shifting by n-bit

positions would need n clock cycles.

Critical thinking questions

1. Is the ternary quantum gate universal? If so, give an example with an explanation.

2. Describe the characteristics of ternary quantum gates.

3. Describe the differences between quantum ternary gates and quantum two-valued

gates.

4. Write a brief description of each type of quantum barrel shifter and describe their

characteristics.

5. Describe the procedure to optimize a quantum ternary barrel shifter.

References

[1] Khan A I, Nusrat N, Khan S M, Hasan M and Khan M H A 2007 Quantum realization of some ternary circuits using
Muthukrishnan–Stroud gates 37th Int. Symp. on Multiple-Valued Logic (Piscataway, NJ: IEEE) p 20

[2] Kotiyal S, Thapliyal H and Ranganathan N 2010 Design of a ternary barrel shifter using multiple-valued reversible
logic 10th IEEE Conf. on Nanotechnology (Piscataway, NJ: IEEE) pp 1104–8

[3] Lisa N J and Babu H M H 2015 A compact representation of a quantum controlled ternary barrel shifter 2015 IEEE

Int. Symp. on Circuits and Systems (Piscataway, NJ: IEEE) pp 2145–8
[4] Muthukrishnan A and Stroud C R Jr 2000 Multivalued logic gates for quantum computation Phys. Rev. A 62 052309
[5] Nia N H 2012 Design of an optimized reversible ternary and binary bidirectional and normalization barrel shifters

for floating point arithmetic Life Sci. J 9 1904–15
[6] Peres A 1985 Reversible logic and quantum computers Phys. Rev. A 32 3266

http://dx.doi.org/10.1103/PhysRevA.62.052309
http://dx.doi.org/10.1103/PhysRevA.32.3266

IOP Publishing

Quantum Computing (Second Edition)

A pathway to quantum logic design

Hafiz Md Hasan Babu

Chapter 14

Quantum RAM, quantum ROM, and

quantum cache memory

Learning objectives

Define quantum random access memory (RAM).

Discuss quantum memory units.

Construct a RAM with a quantum n-to-2n decoder.

Describe the procedure of a quantum RAM.

Explain the algorithm of a quantum decoder.

Quantum random access memory (RAM) is a highly versatile

device for storing and accessing information. It consists of

an array of memory cells (write-enabled master–slave flip-

flop) where information is stored in the form of qubits. Each

cell is associated with a unique address, i.e. a number which

identifies the location of the cell. The main characteristic of

quantum RAM is that each memory cell can be addressed

separately as well and hence the designation is ‘random

access’. To access a cell, its address must be provided by a

decoder. The device will then output the content of the

memory cell.

If the quantum decoder has n selection qubits, the

quantum RAM is capable of addressing 2n different memory

locations: when given an n-qubit address k, quantum RAM

returns the qubit string fk which is stored in the memory slot

of the database labeled k. Figure 14.1 presents the general

architecture of a 2n × m quantum RAM, where n is the

selection bits of the quantum decoder and m is the number

of qubits of input data.

Figure 14.1. General architecture of RAM.

This chapter focuses on the construction procedure and

the complexities of quantum RAM, and it describes each of

the underlying components in the quantum circuitry to build

quantum RAM.

14.1 The quantum n-to-2n decoder

A quantum decoder is a collection of quantum logic gates

set up in such a way that, for an input combination, all

output terms are low except one. These terms are the

miniterms which use a variable only once. Thus, when an

input combination changes, two outputs will change. Let

there be n inputs, then the number of outputs will be 2n. In

other words, there will be one line at the output for each

possible input. Figure 14.2 presents the block diagram of a

quantum n-to-2n
 decoder. Table 14.1 presents the truth

table of a quantum 2-to-4 decoder circuit.

Figure 14.2. Block diagram of a quantum n-to-2n

decoder.

Table 14.1. Truth table of the quantum 2-to-4 decoder.

Input Output

EN A B Y3 Y2 Y1 Y0

Input Output

EN A B Y3 Y2 Y1 Y0

0 X X 0 0 0 0

1 0 0 0 1 0 1

1 0 1 0 0 1 0

1 1 0 0 1 0 0

1 1 1 1 0 0 0

A quantum decoder can be realized using the quantum

Feynman double gate (QF2G) and quantum Fredkin gate

(QFRG). Figure 14.3 illustrates the QRFG and QF2G. Figure

14.3(a) presents the quantum Fredkin gate and figure

14.3(b) presents the symbol for a quantum Fredkin gate.

The quantum cost of the 2-to-4 decoder circuit is 12.

Figure 14.3. (a) The quantum Fredkin gate. (b) The

symbol for a quantum Fredkin gate. (c) The

simultaneous generation of two terms. (d) The quantum

Feynman double gate.

The quantum 1-to-2 decoder (a) and the quantum 2-to-4

decoder (b) are shown in figure 14.4, A higher order

quantum decoder, such as the 3-to-8 decoder can be

designed with a 2-to-4 quantum decoder and an additional

four QFRGs, as shown in figure 14.5. In the same way an n-

to-2n
 quantum decoder can be designed with

(n − 1)‐to‐2n−1
 quantum decoders and an additional 2n−1

QFRGs. Algorithm 14.1 presents the construction of an n-to-

2n quantum decoder.

Algorithm 14.1. The quantum n-to-2n
 decoder (S,

QF2G, QFRG).

Figure 14.4. Quantum decoders for n = 1 and n = 2.

(a) The quantum 1-to-2 decoder. (b) The quantum 2-to-

4 decoder.

Figure 14.5. The quantum 3-to-8 decoder.

Line 5 of the algorithm assigns the input to the QF2G for

the first control bit (S0), whereas line 7 assigns the first two

inputs to the QFRG for all the remaining control bits. Lines

8–9 assign the third input to the FRG for n = 2, while lines

10–12 assign the third input to the QFRG through a

recursive call to the previous quantum decoder for n = 2.

Line 15 returns the outputs. The complexity of this

algorithm is O(n), where n is the number of data qubits. The

quantum decoder is used to address the row of memory

cells of the QRAM.

14.2 The quantum memory unit

In quantum RAM, there are write-enabled master–slave flip-

flops (MSFFs). To design a write-enabled MSFF, first of all a D

latch is needed. Figure 14.6 presents the quantum D latch,

and it can be seen that a QFRG and a QF2G are used in this

circuit. The QFRG is needed to produce Q, whereas QF2G

produces Q+ and Q. The equations for the latch are

Qn = D. CLK + C LK′. Qn−1 and Q+ = Q0 (n is time

varying), which are used to capture the logic level when the

data are present and the clock is SET. A quantum D latch

can be realized with seven quantum gates, two garbage

outputs, and a quantum cost of 7.

Figure 14.6. The quantum D latch.

After designing the quantum D latch, the quantum write-

enabled MSFF (QMSFF) can be designed with two D latches

and additional QFRGs and QF2Gs. Figure 14.7 illustrates the

architecture of a QMSFF.

Figure 14.7. The write-enabled QMSFF.

The write-enabled QMSFF works on two modes (read and

write), since the data are both read from and written into

the QRAM. The CLK signal provides the clock pulse, if CLK =

1, the D input is stored in the first latch, i.e. master flip-flop,

but the second latch cannot change state. When CLK = 0

the first latchʼs output is stored in the second latch, i.e. the

slave flip-flop, but the first latch cannot change state. The

CLK signal is maintained by the first QF2G. In figure 14.7 W

works as the write enable bit. It determines whether a read

or a write operation is performed. When W = 1 a write

operation is performed. The W and CLK outputs are

propagated to the next MSFF if required and Q indicates the

output of the MSFF.

The circuit consists of two D flip-flops connected

together. When the clock is high, it can be found from the

quantum circuit that the QMSFF consists of a QFRG, two

QF2Gs, and two quantum D latches (the D latch is presented

in figure 12.3 of section 12.2.2).

Considering the unused clock pulses as garbage outputs,

this design has six garbage outputs and has a quantum cost

of 23.

14.3 The construction procedure of

QRAM

To design QRAM, the addressable components, i.e. the

decoder and memory component MSFF, are replaced by the

quantum decoder and QMSFF. Then the OR gates are

replaced by Ex-OR gates. Additionally, quantum Toffoli gates

(QTGs), as shown in figure 14.8, are used to propagate both

the CLK and write-enabled bit W while diminishing the fan-

out problem. Figure 14.9 presents the block diagram of

2n × m QRAM. The working principles of QRAM are as

follows.

Figure 14.8. (a) The QTG. (b) The symbol for the QTG.

Figure 14.9. The block diagram of the 2n × m
quantum RAM.

In the 2n × m RAM, n is the number of control bits of the

quantum decoder and 2n
 decoded outputs are the row

selection bits. For a particular combination of n input

variables of the configured quantum decoder, only one out

of 2n
 outputs is active at a time. This active output is

propagated through the second output of the QTG, which

acts as the CLK and hence selects only one row of the array

of memory units as the CLK propagate through the row of

the QMSFF.

The write bit W specifies whether there is a read or a

write operation. When W = 1 or high, then the m data-

inputs D0 to Dm−1 are written in the m flip-flops of the

selected row as W is propagated by the third output of the

QTG throughout the selected row.

When W = 0 or low, then the m outputs Q0 to Qm−1 are

the previously stored bits in the flip-flops, and they are read

from the m flip-flops of the selected row. The use of a

quantum CNOT gate (Ex-OR gate) eliminates the fan-out

problem. These gates also perform the Ex-OR operations of

the outputs of the flip-flops in a column.

In addition, for simplicity the quantum circuit of 4 × 2

quantum RAM is given in figure 14.10. This circuit is

developed by combining the quantum 2-to-4 decoder (figure

14.5(a)), eight QMSFFs (figure 14.7), four QTGs (figure

14.8), and twelve quantum CNOT gates. In figure 14.10 the

red lines indicate the output and the blue lines indicate the

clock pulse.

Figure 14.10. The 4 × 2 quantum RAM.

14.4 Quantum ROM

Quantum read-only memory (ROM) is a non-volatile

memory. This means it receives data and permanently

writes it on a chip, and it lasts even after turning off the

computer. The data are coded to not be overwritten. Thus

ROM is used for things such as printer software or any start-

up program. A quantum ROM stores the instructions that are

required to start a computer. This operation is referred to as

‘bootstrapping’. Quantum ROM chips are not only used in

computers but can also be used in other electronic items.

In the architecture of quantum 4-to-2 ROM, as shown in

figure 14.11, there are three quantum operations (NOT,

AND, and OR) with three quantum gates (NOT, V, and V+).

The output of the decoder is operated with four quantum OR

operations together and produces the desired output qubits

∣F1〉 and ∣F2〉 of a quantum 4-to-2 ROM. The working

principle of the quantum ROM is as follows: (i) When input

qubits ∣A〉, ∣B〉 = ∣0〉, ∣0〉, the ∣D0〉 line will open. Thus the

value of ∣D0〉 will be ∣1〉 and ∣D1〉 to ∣D3〉 will be ∣0〉. The

output qubits of ∣F1〉 and ∣F2〉 perform OR operations with

∣D0〉 = ∣1〉, ∣D1〉 = ∣0〉, ∣D2〉 = ∣0〉, and ∣D3〉 = ∣0〉 to generate

∣1〉. (ii) When the input qubits ∣A〉, ∣B〉 = ∣1〉, ∣0〉, the ∣D1〉

line will open. Thus the value of ∣D1〉 will be ∣1〉 and ∣D0〉,

∣D2〉, and ∣D3〉 will be ∣0〉. The output qubits of ∣F1〉 and ∣F2〉

perform OR operations with ∣D0〉 = ∣0〉, ∣D1〉 = ∣1〉, ∣D2〉 =

∣0〉, and ∣D3〉 = ∣0〉 to generate ∣1〉. (iii) When the input

qubits ∣A〉, ∣B〉 = ∣0〉, ∣1〉, the ∣D2〉 line will open. Thus the

value of ∣D2〉 will be ∣1〉 and ∣D0〉, ∣D1〉, and ∣D3〉 will be ∣0〉.

The output qubits of ∣F1〉 and ∣F2〉 perform OR operations

with ∣D0〉 = ∣0〉, ∣D1〉 = ∣0〉, ∣D2〉 = ∣1〉, and ∣D3〉 = ∣0〉 to

generate ∣1〉. (iv) When the input qubits ∣A〉, ∣B〉 = ∣1〉, ∣1〉,

the ∣D3〉 line will open. Thus the value of ∣D3〉 will be ∣1〉 and

∣D0〉 to ∣D2〉 will be ∣0〉. The output qubits of ∣F1〉 and ∣F2〉

perform OR operations with ∣D0〉 = ∣0〉, ∣D1〉 = ∣0〉, ∣D2〉 =

∣0〉, and ∣D3〉 = ∣1〉 to generate ∣1〉.

Figure 14.11. The 4-to-2 quantum ROM.

14.5 Quantum cache memory

Quantum cache memory can be used in a quantum system

due to its speed and reliability. It can pass and obtain data

very frequently. The mapping and swapping techniques in

the quantum cache memory are very optimized. The circuit

diagram of a one-qubit quantum cache memory is depicted

in figure 14.12. The circuit diagram of the one-qubit

quantum cache memory consists of four quantum NAND

and three quantum AND operations. Again, ∣R/W〉 = ∣1〉

indicates the READ operation and ∣R/W〉 = ∣0〉 indicates the

WRITE operation. And here ∣S〉 indicates the selection of the

qubit, where ∣S〉 = ∣1〉 means the selection of memory.

Figure 14.12. The circuit diagram of a one-qubit

quantum cache memory.

Using quantum technology, the arrangement of a 4-to-2

qubit quantum cache memory is shown in figure 14.13. The

quantum 4-to-2 cache memory consists of a quantum 2-to-4

decoder which decodes the input qubits into qubits with

outputs. Here, R indicates the quantum cache memory cell.

The circuit diagram of the quantum 4-to-2 quantum cache

memory includes a 2-to-4 quantum decoder, eight quantum

cache memory cells, and six quantum OR operations, where

the inputs consist of two qubits and the ∣R/W〉 signal. In

addition, DI inputs are used for writing the data into the

quantum memory.

Figure 14.13. The circuit diagram of quantum 4-to-2

cache memory.

The four locations (00, 01, 10, 11) in the quantum cache

memory are addressed by two qubits ∣A〉 and ∣B〉. In order to

read from location 00, the address ∣A〉∣B〉 = 00 and ∣R/W〉 =

∣1〉. The quantum decoder selects ∣0〉 as high. ∣R/W〉 = ∣1〉

will apply ∣0〉 at the clock inputs of the two quantum cache

memory cells of the top row and it will also apply ∣1〉 at the

inputs of the output quantum AND operations, thus

transferring the outputs of the two quantum D flip-flops to

the inputs of the two quantum OR operations. The other

inputs of the quantum OR operations will be ∣0〉. Thus, the

outputs of the two quantum cache memory cells of the top

row will be transferred to DO1 and DO0, which perform a

READ operation. In the case of a WRITE operation, the two-

qubit data are presented at ∣DI1〉 ∣DI0〉. Suppose ∣A〉 ∣B〉 =

∣0〉 ∣0〉. The top row is selected as 00 = 1. Input bits at ∣DI1〉

and ∣DI0〉 will, respectively, be applied at the inputs of the

quantum D flip-flops of the top row. Because ∣R/W〉 = ∣1〉,

the clock inputs of both the quantum D flip-flops of the top

row are ∣1〉; thus, the D inputs are transferred to the outputs

of the quantum flip-flops. Therefore, data at ∣DI1〉 ∣DI0〉 will

be written into the quantum cache memory.

14.6 Summary

Quantum RAM is an essential component in quantum

memory devices. This chapter focuses on the design

procedure for QRAM. This chapter covers the design

procedures of the quantum decoder step by step for

addressing the RAM and the QMSFF (the unit memory

component of RAM). A composite quantum realization of 4 ×

2 quantum RAM is also given at the end of the chapter

which will help the reader to understand quantum RAM

better.

Critical thinking questions

1. Describe the properties of quantum RAM.

2. Briefly discuss some applications of quantum RAM.

3. What is the access time for quantum RAM?

4. How many memory locations can a quantum RAM chip

access if it has n input address lines?

5. For read and write operations in a quantum RAM, which

control signals are selected? Explain in detail.

References

[1] Asfestani M N and Heikalabad S R 2017 A novel multiplexer-based
structure for random access memory cell in quantum-dot cellular automata
Physica B 521 162–7

[2] Fredkin E and Toffoli T 2001 Conservative logic Collision-Based Computing

(Berlin: Springer) p 47–81
[3] Giovannetti V, Lloyd S and Maccone L 2008 Architectures for a quantum

random access memory Phys. Rev. A 78 52310
[4] Mahammad S N and Veezhinathan K 2010 Constructing online testable

circuits using reversible logic IEEE Trans. Instrum. Meas. 59 101–9
[5] Sayem A S M and Mitra S K 2011 Efficient approach to design low power

reversible logic blocks for field programmable gate arrays IEEE Int. Conf.

on Computer Science and Automation Engineering 4 251–5
[6] Shamsujjoha M, Babu H M H and Jamal L 2013 Design of a compact

reversible fault tolerant field programmable gate array: a novel approach in
reversible logic synthesis Microelectron. J. 44 519–37

[7] Sharmin F, Polash M M A, Shamsujjoha M, Jamal L and Babu H M H 2011
Design of a compact reversible random access memory 4th IEEE Int. Conf.

on Computer Science and Information Technology vol 10 pp 103–7
[8] Tanaka M, Sato R, Hatanaka Y and Fujimaki A 2016 High-density shift-

register-based rapid single-flux-quantum memory system for bit-serial
microprocessors IEEE Trans. Appl. Supercond. 26 1–5

[9] Tayari M and Eshghi M 2011 Design of 3-input reversible programmable
logic array J. Circuits Syst. Comput. 20 283–97

[10] Thapliyal H and Ranganathan N 2010 Design of reversible sequential
circuits optimizing quantum cost, delay, and garbage outputs ACM J.

Emerging Technol. Comput. Syst. 6 14

http://dx.doi.org/10.1016/j.physb.2017.06.059
http://dx.doi.org/10.1103/PhysRevA.78.052310
http://dx.doi.org/10.1109/TIM.2009.2022103
http://dx.doi.org/10.1109/CSAE.2011.5952845
http://dx.doi.org/10.1016/j.mejo.2013.02.005
http://dx.doi.org/10.1109/TASC.2016.2555905
http://dx.doi.org/10.1142/S0218126611007256
http://dx.doi.org/10.1145/1877745.1877748

IOP Publishing

Quantum Computing (Second Edition)

A pathway to quantum logic design

Hafiz Md Hasan Babu

Chapter 15

The quantum arithmetic logic unit

Learning objectives

Discuss the quantum arithmetic logic unit (ALU).

Explain the design architecture of an ALU.

Understand the purposes of ALUs.

Learn three approaches for constructing ALUs.

Examine the basic operations of ALUs.

The arithmetic logic unit (ALU) is a major component of the

central processing unit of a computer system. It performs all

processes related to arithmetic and logic operations that

need to be performed on instruction words. An ALU executes

one of the different micro-operations for performing the

instructions on two operands A and B depending on the

control signal inputs, and is suitable for quantum technology

and embedded processors. The ALU can carry out Boolean

functions, namely Ex-OR, AND, OR, NAND, NOR, and

multiplexer (MUX), as well as basic arithmetic operations,

such as addition (ADD) and subtraction (SUB). In this

chapter three different designs of quantum ALUs are

presented. The main basic operations that are required to

realize an ALU are as follows:

ADD (addition): (A,B) → (A,A + B).

SUB (subtraction): (A,B) → (A,A − B).

EX-OR (bitwise exclusive-OR): (A,B) → (A,A ⊕ B).

AND (bitwise-AND): (A,B) → (A,A ∧ B).

OR (bitwise-OR): (A,B) → (A,A ∨ B).

NOP (no operation): (A) → (A).

15.1 The design of a quantum ALU

The component of the computer system that executes the

majority of data-processing operations is called the central

processing unit (CPU). The CPU is constructed using three

major components, consisting of the control unit, ALU, and

processor unit. The ALU plays an important role and

performs the required micro-operations for executing the

instructions. In order to design an effective quantum ALU,

the number of logical and arithmetic calculations produced

on the outputs must be considered in addition to the

quantum cost and other evaluation parameters. The

quantum ALU circuit produces a large number of

calculations at the least quantum cost.

15.1.1 The first approach

The quantum ALU has eight inputs and eight outputs. The

simple quantum gates employed in the implementation of

all ALUs are covered in this chapter. In the first approach,

the six logical calculations of the result output are AND,

NOR, NAND, OR, ADD, and SUB. The inputs consist of three

data inputs (A, B, and Cin), three select lines (S0,S1,S2),

and two constant inputs. The circuit can generate all

selector inputs on the outputs (S0,S1,S2). The eight outputs

are S0, S1, and S2 propagated to the output, Cout/borrow,

result, and three garbage outputs. It produces two

arithmetic and four logical operations.

The first approach for designing a one-bit quantum ALU is

illustrated in figure 15.1 which shows five dotted rectangles,

four V, two V+, and eight CNOT gates. A dotted rectangle is

equivalent to a CNOT gate with a cost of one. The total

quantum cost of the circuit is 19. The functions produced by

the first approach are presented in table 15.1. From table

15.1, depending on the values in the selected inputs, the

circuit produces six functions, namely ADD and SUB, which

are arithmetic functions, and AND, NAND, OR, and NOR,

which are logical functions.

Figure 15.1. The quantum ALU (first approach).

Reproduced with permission from [4]. Copyright 2016

Springer Nature.

Table 15.1. Different functions of the quantum ALU (first approach).

S2 S1 S0 Result Functions

0 0 0 (AB) AND

0 0 1 (A + B) NOR

0 1 0 (AB) NAND

0 1 1 (A + B) OR

S2 S1 S0 Result Functions

1 0 0 A ⊕ B ⊕ Cin ADD

1 0 1 A ⊕ B ⊕ Cin SUB

15.1.2 The second approach

This quantum ALU has nine inputs and nine outputs and is

illustrated in figure 15.2. The quantum ALU logic gates use

two dotted rectangles, eight V, four V+
, and six CNOT

gates. From the ALU three input values (A, B, and Cin), three

select lines (S0,S1,S2,S3,S4), and one constant input are

selected. The principal outputs are F (as the product output)

and Cout.

Figure 15.2. The quantum ALU (second approach).

Reproduced with permission from [4]. Copyright 2016

Springer Nature.

In the second approach the total quantum cost is 24.

There are two garbage values and one constant input. It has

nine circuit lines and five selection lines. The presented

design can be implemented with seven gates. Here it is

clear that the inputs A, B, and Cin can be controlled

depending on the values of the selection and carry input

lines. The product output is F (as a final output) which will

be obtained from 12 different operations, either arithmetic

or logical, depending upon the values of Cin (as the carry

input) and the selection lines. The other primacy output is

carry out (Cout). The 12 operations generated in the second

approach are given in table 15.2. A special function is

selected through (S0,S1,S2,S3,S4). The presented circuit

has two main outputs (result and Cout). This circuit has five

select control signals with a provision to realize 12 logical

and arithmetic operations. The total elementary operations

of the second ALU design are shown in table 15.2. By

transforming the expressions based on the second

approach, an extension of the ALU can perform other

operations (such as NAND and NOR), which are the

universal functions. Therefore, the second approach for the

ALU circuit can implement several universal and arithmetic

operations, namely ADD, SUB, AND, NAND, OR, NOR, EX-OR,

and EX-NOR. Moreover, an n-bit ALU can be constructed by

cascading n of these one-bit ALU circuits.

Table 15.2. Simple operations of the quantum ALU (second approach).

Result CinS0 S1 S2 S3 S4 Transformations Descrip

A + B 0 0 0 0 0 0 F = A + B + 0 ADD wi

carry

A + B + 1 1 0 0 0 0 0 F = A + B + 1 ADD wi

carry

A − B 1 0 1 0 0 0 F = A + B′+1 SUB

Result CinS0 S1 S2 S3 S4 Transformations Descrip

+ +

A ⊕ B 0 0 0 0 1 0 F = A ⊕ B Exclusiv

OR

A ∧ B 0 0 0 1 1 0 F = A ∧ B Bitwise

A ∨ B 0 1 1 1 1 1 F = (A′∧B′)′ Bitwise

(A ⊕ B)′ 0 0 0 0 1 1 F = (A ⊕ B)′ Exclusiv

NOR

A + 1 1 0 0 0 0 0 F = A + 0 + 1 Self-

increme

A

A− 1 1 0 1 0 0 0 F = A + 1′+1 Self-

decrem

of A

A′ 0 1 0 0 0 0 F = A′+0 + 0 Bitwise

negatio

A

A′ 1 1 0 0 0 0 F = A′+0 + 1 Comple

of A

A 0 0 0 0 0 0 F = A + 0 + 0 NOP (no

operati

15.1.3 The third approach

The quantum ALU has seven inputs and seven outputs. The

third approach for a one-bit quantum ALU is illustrated in

figure 15.3. Four V, two V+
, and six CNOT gates are

employed to construct the ALU. From the ALU, two input

values (A, B) and five selectors (S0,S1,S2,S3,S4) are used

for the input and the primary outputs.

Figure 15.3. The quantum ALU (third approach).

Reproduced with permission from [4]. Copyright 2016

Springer Nature.

In the third approach the total quantum cost is 12. There

are no garbage values or constant inputs. The product

output (result) will be obtained from the ten different

operations presented in table 15.3. After transforming the

expressions which are based on the third approach, an

extension of the ALU can perform basic arithmetic–logical

operations (ADD, SUB, NSUB, Ex-OR, NOP). The third

approach is a garbage-free quantum ALU, which has no

constant inputs.

Table 15.3. Basic operations of the quantum ALU (third approach).

S0 S1 S2 S3 S4 ALU operations Description

1 1 0 0 0 F = A + B ADD

1 1 1 0 1 F = B − A SUB

1 1 0 1 1 F = A – B NSUB

1 0 0 0 0 F = A ⊕ B EX-OR

0 0 0 0 0 F = B NOP

1 1 0 1 0 F = B + A + 1 ADD with carry

1 1 1 1 1 F = B – A – 1 SUB with borrow

1 1 0 0 1 F = A – B – 1 NSUB with borrow

1 0 1 0 0 F = A ⊕ B EX-NOR

0 0 1 0 0 F = B Negation of B

15.2 Summary

In this chapter three approaches are explained for one-bit

quantum arithmetic logic unit design, constructed using a

combination of simple quantum gates. All the ALUs can

handle many simple logical and arithmetic operations,

namely addition, subtraction, bitwise-AND, bitwise-OR,

NAND, NOR, exclusive-OR, exclusive-NOR, negation, and

complement. In order to design a cost-effective quantum

ALU, the number of logical and arithmetic calculations

produced on the outputs must be considered. The ALU

designs are evaluated in terms of the number of circuit

lines, garbage outputs, constant inputs, and quantum cost.

Moreover, the ALU designs are versatile approaches for the

realization of quantum computing, having both remarkably

low power consumption and nano-scaling. Therefore, the

designs are implemented with simple quantum gates which

have the scope to be realized in nanotechnology based

systems, such as quantum cellular automata and other

nano-scale architectures. The described circuits can be used

in a wide variety of large quantum systems which enhance

the performance of quantum computers. Furthermore, an

optimized ALU is a requirement in computer systems and

digital signal processors for the design of the instruction

sets for more complex systems and low power VLSI design

in nanotechnology, quantum computers, and programmable

computing devices.

Critical thinking questions

1. Describe the characteristics of a quantum ALU.

2. Discuss some applications of a quantum ALU.

3. What is a quantum arithmetic logic unit and how does it

work?

4. What kinds of operations can a quantum ALU perform?

5. Describe the simplest approach for designing a quantum

ALU.

References

[1] Bennett C H 1973 Logical reversibility of computation IBM J. Res. Dev. 17
525–32

[2] Dirac P A M 1981 The Principles of Quantum Mechanics (Oxford: Oxford
University Press) Number 27

[3] Große D, Wille R, Dueck G W and Drechsler R 2008 Exact synthesis of
elementary quantum gate circuits for reversible functions with don’t cares
38th Int. Symp. on Multiple Valued Logic pp 214–9

http://dx.doi.org/10.1147/rd.176.0525

[4] Haghparast M and Bolhassani A 2016 Optimization approaches for
designing quantum reversible arithmetic logic unit Int. J. Theor. Phys. 55
1423–37

[5] Kaye P et al 2007 An Introduction to Quantum Computing (Oxford: Oxford
University Press)

[6] Landauer R 1961 Irreversibility and heat generation in the computing
process IBM J. Res. Dev. 5 183–91

[7] Lim J, Kim D-G and Chae S-I 1999 Reversible energy recovery logic circuits
and its 8-phase clocked power generator for ultra-low-power applications
IEICE Trans. Electron. 82 646–53

[8] Morrison M and Ranganathan N 2011 Design of a reversible ALU based on
novel programmable reversible logic gate structures IEEE Computer Society

Annual Symp. on VLSI (Piscataway, NJ: IEEE) pp 126–31
[9] Morrison M and Ranganathan N 2013 A novel optimization method for

reversible logic circuit minimization IEEE Computer Society Annual Symp.

on VLSI (Piscataway, NJ: IEEE) pp 182–7
[10] Morrison M A 2012 Design of a reversible ALU based on novel reversible

logic structures Thesis University of South Florida, Tampa, FL
[11] Nielsen M A and Chuang I 2002 Quantum Computation and Quantum

Information 10th edn (Leiden: Cambridge University Press)
[12] Moore G E 2000 Cramming more components onto integrated circuits

Readings in Computer Architecture (San Francisco, CA: Morgan Kaufmann)
p 56

[13] Thomsen M K, Glück R and Axelsen H B 2010 Reversible arithmetic logic
unit for quantum arithmetic J. Phys. A: Math. Theor. 43 382002

[14] Toffoli T 1980 Reversible computing Int. Coll. on Automata, Languages, and

Programming (Berlin: Springer) pp 632–44
[15] Weste N H E and Harris D 2015 CMOS CMOS VLSI Design: A Circuits and

Systems Perspective (India: Pearson Education)

http://dx.doi.org/10.1007/s10773-015-2782-0
http://dx.doi.org/10.1147/rd.53.0183
http://dx.doi.org/10.1088/1751-8113/43/38/382002

IOP Publishing

Quantum Computing (Second Edition)

A pathway to quantum logic design

Hafiz Md Hasan Babu

Chapter 16

Quantum programmable logic

devices

Learning objectives

Define the quantum programmable array logic

(PAL).

Acquire knowledge about the quantum complex

programmable logic device (CPLD) and explain how

it works.

Construct a quantum PAL with appropriate circuits

and explain how it works.

Discuss the importance and uses of quantum

CPLDs.

Learn about the uses of quantum PAL.

Describe quantum field-programmable gate arrays

(FPGAs) with their properties and working

principles.

Become familiar with the quantum programmable

logic array (PLA) and discuss its working principles.

Become aware of the significance and uses of

quantum FPGAs.

Quantum programmable logic devices (PLDs) are the most

crucial part of a quantum computer. One of the hot topics in

the research field of quantum hardware design is how to

construct a complex quantum system with low power

consumption, low cost, and good performance. Quantum

PLDs come in four primary varieties, each of which has a

number of benefits, including lower development costs,

minimal space, low power requirements, shorter design

cycles, high switching speeds, high design security, simple

design modifications, high reliability, and simple circuit

testing.

It is important to note that the time requirements for

logic design and design checking are very important factors

for quality quantum circuits, even though the design is

simple. For quantum PLDs, implementing new technology is

easier and faster. Thus, the quantum computer is more

dependable and faster due to all of the above benefits.

16.1 The quantum programmable

array logic

A form of quantum PLD known as quantum programmable

array logic (PAL) is used to implement a certain quantum

logical function and has programmable quantum AND array

operations and fixed quantum OR array operations. Only the

quantum AND array may be programmed, making it simpler

to operate. The quantum programmable read-only memory

(PROM) and additional output quantum logic are the main

components of quantum PAL, which are utilized to achieve a

certain desired quantum function with fewer components.

16.1.1 The design procedure and working

principles of quantum PAL

A quantum PAL with m inputs and n outputs is depicted in

figure 16.1 Every quantum AND operation available in the

quantum PAL is coupled to one of these inputs. The user can

choose how the input lines and quantum AND operations

are connected since the connection matrix is customizable.

This implies that, depending on the logic, each and every

input line must be connected to either a single or a multiple

quantum AND operation. The logical ‘and’ functionality

between the input lines becomes apparent as a result. With

the aid of quantum PAL, the following expression is derived:

Figure 16.1. The quantum PAL.

∣X〉 = ∣AB〉 + ∣AC′〉

∣Y〉 = ∣AB′〉 + ∣BC′〉.

The sum of products is represented by the two functions

just mentioned. The above two equations require two

quantum OR operations and four quantum AND operations,

respectively. The second quantum OR operation, which

creates ∣Y〉, will use the output of the first two quantum AND

operations as its input, and the other two quantum AND

operations’ output will be the second quantum OR

operationʼs output.

Although it is programmed, the quantum AND array

operation must operate with a fixed quantum OR array

operation to meet the requirements of PAL.

16.1.2 The importance and applications of

quantum PAL

In comparison to a silicon-based circuit, quantum PAL is

much more cost-effective and extremely efficient. It

provides both high security and reliability. Low power is

needed for its functioning and its design is more versatile. A

quantum PAL works more quickly than quantum

programmable logic arrays (PLAs). The most popular version

of a quantum programmable logic device (PLD) is called the

quantum PAL, and it is utilized in different quantum circuits

such as quantum counters, quantum state machines,

quantum decoders, quantum synchronization circuits,

quantum bus interfaces, quantum parallel-to-serial

converters, quantum serial-to-parallel converters, quantum

glue logic converters, and quantum combinational logic

circuits.

16.2 The quantum programmable

logic array

The quantum programmable logic device called the

quantum programmable logic array (PLA) has the ability to

operate in two different quantum array operations:

programmable quantum AND and programmable quantum

OR operation. In light of this, it is the most versatile

quantum PLD. The inputs of quantum AND operation in this

case are programmable. It follows that each quantum AND

operation accepts inputs from quantum variables that are

both normal and complemented. Therefore, it is possible to

program any of the quantum inputs depending on the

demand. By using these quantum AND procedures, it is

possible to generate only the necessary quantum product

terms.

The inputs of the quantum OR operation, in this case, can

likewise be programmed. Due to the fact that all outputs of

quantum AND operation are used as inputs for each

quantum OR operation, it is easy to write any number of

necessary product terms. As a result, the outputs of

quantum PAL take the form of a sum-of-products.

16.2.1 The design procedure and working

principles of quantum PLAs

A quantum PLA is constructed with m outputs and n inputs,

as shown in figure 16.2. Fuse inputs enable the quantum

AND array and quantum OR array operations by making

them both programmable. Quantum AND matrices or arrays

generate product terms by the quantum AND operation,

which are then ORed to obtain the desired quantum

function.

Figure 16.2. The quantum programmable logic array.

Let us use a quantum PLA to implement the following

quantum function:

∣X〉 = ∣AB〉 + ∣AC′〉; and

∣Y〉 = ∣AB′〉 + ∣BC〉 + ∣AC′〉.

The above two quantum functions are presented in sum-

of-products form. The final quantum functions ∣X〉 and ∣Y〉

consist of two and three product terms, respectively. In each

quantum function, the same product term, ∣A〉∣C′〉, is

utilized. For generating these two quantum functions, two

programmable quantum OR operations and four

programmable quantum AND operations are required.

Both conventional and supplemented inputs of variables

are accessible to the programmable AND operations. The

inputs of each quantum AND operation in the preceding

illustration include ∣A〉, ∣B〉, ∣B′〉, ∣C〉, and ∣C′〉. Therefore, it

is necessary to program only the necessary product so that

each quantum AND operation can produce one product

term. Each programmed quantum OR operation has access

to all of these product terms at its inputs. However, it is only

required to program the necessary product terms to

generate the corresponding quantum functions by each

quantum OR operation.

16.2.2 The importance and applications of

quantum PLAs

More versatility is offered by quantum PLAs since they offer

programmable quantum AND operation arrays and

programmable quantum OR operation arrays. Quantum

PLAs have received widespread recognition as compact and

space-saving alternatives to many complex circuits, most

notably in feedback and control systems, where a lot of

factor variables are required for the system to function

effectively. The quantum PLA has a higher rate of speed and

is more cost-effective. Its purpose is to provide datapath

control. The quantum PLA is also used in quantum counter

circuits. In addition, the quantum PLA serves as a quantum

decoder. A programmed input/output (I/O) employs the

quantum PLA as a quantum bus interface.

16.3 The quantum complex

programmable logic device

A logic device with fully programmable quantum AND/OR

array operations and macrocells is referred to as a complex

programmable logic device (CPLD). The primary building

elements of a CPLD are macrocells, which have complicated

quantum logic operations, and quantum logic for

implementing disjunctive normal form expressions. The

quantum AND/OR array operations can perform a variety of

quantum logic operations and are completely

reprogrammable. Another way to think of macrocells is as

functional building blocks that carry out quantum sequential

or quantum combinatorial logic.

16.3.1 The design procedure and working

principles of quantum CPLDs

Quantum CPLDs have a large number of logic blocks, each

of which has 8–16 macrocells. Each logic block performs a

distinct quantum function. Hence each logic block has a

complete network of connected macrocells. These blocks

could be linked together or not, depending on their intended

usage. The inputs and outputs of these functional blocks are

coupled by a global interconnection matrix (GIM). It is

possible to change the contacts between the functional

blocks by rearranging the connectivity matrix. The CPLD is

connected to the outside by a few input and output blocks.

Figure 16.3 presents the block diagram of the architecture of

a CPLD.

Figure 16.3. The block diagram of a quantum CPLD.

The quantum CPLD architecture depicted in figure 16.3

has four quantum PLD function blocks. The links between

the function blocks can be programmed. Interconnections

between function blocks are made using a switch matrix.

Additionally, the switch matrix of a quantum CPLD may or

may not be entirely connected. It indicates that the

quantum CPLD does not allow all connections between

outputs and inputs of the function block. A typical quantum

PAL device has a complexity of only a few hundred logic

operations, whereas CPLDs have thousands of quantum

logic operations. The quantum realization of each PLD inside

a quantum CPLD is shown in figure 16.4.

Figure 16.4. Programmable logic devices in a CPLD.

This quantum PLD consists of three quantum AND

operations, two quantum OR operations, one quantum D

flip-flop (D-FF), and one quantum multiplexer. The first

quantum OR operation (the first pink box) receives inputs

from the outputs of the first two blue boxes, which are

quantum AND operations. The second quantum OR

operation, which is related to quantum XOR operations, is

then fed the output of the first quantum OR operation along

with the output of the most recent quantum AND

operations. The output of the quantum XOR operation is

then passed into the quantum multiplexer and quantum D

flip-flop. The output of the quantum D-FF serves as the

quantum MUXʼs additional input. The final result is thus

received via the quantum MUX.

16.3.2 The importance and applications of

quantum CPLD

An electrical quantum component which is used to create

reconfigurable quantum circuits is called a quantum PLD. A

quantum PLD has an undetermined function at the moment

of creation, in contrast to quantum logic which is built using

discrete logic operations with fixed functions. Quantum

CPLDs are perfect for demanding control applications that

require excellent performance. Design-wise, they are simple

and capable of reducing board area. They are devices with

high reliability, low running costs, and low development

cost. In addition, they create revenue more quickly.

16.4 The quantum field-

programmable gate array

A two-dimensional array of cells known as a quantum field-

programmable gate array (quantum FPGA) is an integrated

quantum circuit which is built around a matrix of

customizable logic blocks (CLBs) connected by

programmable interconnects. It is made up of input/output

pads, logic blocks with programmable interconnects, and

reconfigurable interconnects. The logic blocks of a quantum

FPGA could be memory components such as quantum flip-

flops or quantum memory blocks. The logic blocks can carry

out both straightforward and intricate computational

quantum operations.

16.4.1 The design procedure and working

principles of quantum FPGAs

The fundamental building block of a quantum FPGA is a

quantum CLB, which is shown in figure 16.5. It is a logic cell

that may be set up or programmed to carry out particular

tasks. The connection block is joined to these building

blocks. Quantum D flip-flops, quantum look-up tables (LUTs),

and quantum 2-to-1 multiplexers are the three components

of each quantum CLB. Quantum D flip-flops are employed as

storage components. The right output is obtained by the

multiplexer.

Figure 16.5. The configurable logic block.

The brain of the quantum FPGA is a quantum LUT. It

includes every logical result that could be produced by the

design. The quantum LUT must be able to store all

conceivable expression combinations. Quantum flip-flops,

quantum LUTs, and quantum multiplexers are connected to

create a quantum FPGA logic block. A quantum D flip-flop, a

quantum LUT, and a quantum multiplexer were used to

construct the straightforward quantum FPGA logic block in

figure 16.5. A straightforward two-input quantum LUT

consists of one quantum AND operation, one quantum CNOT

operation, and one quantum OR operation. The input of the

quantum D flip-flop and multiplexer will be the output of the

quantum LUT. The quantum D flip-flop is a sequential circuit

made up of one CNOT and four quantum NAND operations.

The output of the quantum D flip-flop is used as the input in

the quantum multiplexer. Two quantum AND operations, one

quantum CNOT operation, and one quantum OR operation

are used to create a 2-to-1 quantum MUX. For the quantum

FPGA logic block, the quantum multiplexer produces the

desired output.

16.4.2 The importance and applications of

FPGAs

One of the most widely used parts of quantum circuits is the

quantum FPGA. The use of quantum FPGAs has many

benefits. These benefits include reconfigurable computing,

affordability, high density, fast registers, and resource

routing. Its applications are distinctive. Additionally, it is

versatile and reusable. Quantum FPGAs could be a perfect

fit for various markets, including aerospace and military,

due to their programmable nature. Quantum FPGAs are

being used for next-generation full-feature consumer

applications, such as high-performance convergent

handsets, information appliances, home networking, and

residential set-top boxes. It can also be very useful in

applications for diagnosis, monitoring, and therapy.

16.5 Summary

Quantum PLDs are integrated circuits with quantum

programmable logic. Both arrays of quantum AND

operations and quantum OR operations are used in PLDs.

Four different PLDs have been presented in this chapter.

These quantum PLDs are quantum CPLDs, quantum FPGAs,

quantum PLAs, and quantum PALs. The design procedures

and the working principles, along with the importance and

applications of these PLDs have been discussed here.

Critical thinking questions

1. For quantum programmable logic functions, which type

of quantum PLD should be used? Explain in detail.

2. Explain the differences between a quantum PLA and

quantum PAL.

3. What are the advantages of quantum PLA over quantum

ROM?

4. Which is more flexible, quantum PAL or a quantum PLA?

Explain.

5. Describe the drawbacks of quantum programmable logic

arrays.

6. What are the primary benefits of designing a circuit

using quantum PLDs?

7. Explain the applications of quantum PLDs.

8. What happens once a quantum PAL has been

programmed? Explain.

9. What is the main programming unit in a quantum FPGA?

Discuss it in detail.

10. In a quantum LUT operation, how many combinations

are supported?

11. Describe the three fundamental components of a

quantum FPGA.

References

[1] Bocko M F, Herr A M and Feldman M J 1997 Prospects for quantum
coherent computation using superconducting electronics IEEE Trans. Appl.

Supercond. 7 3638–41
[2] Cong W, Bičák J, Kubizňák D and Mann R B 2021 Quantum detection of

inertial frame dragging Phys. Rev. D 103 024027
[3] Karafyllidis I G 2005 Quantum computer simulator based on the circuit

model of quantum computation IEEE Trans. Circuits Syst. I: Regul. Pap. 52

1590–6
[4] Mia M S and Babu H M H 2014 An efficient approach to design a reversible

fault tolerant programmable array logic J. Bangladesh Electron. Soc. 14 71–
81

[5] Ömer B 2005 Classical concepts in quantum programming Int. J. Theor.

Phys. 44 943–55
[6] Singla P and Malik N K 2012 A cost-effective design of reversible

programmable logic array arXiv:1204.5525
[7] Vartiainen J J, Möttönen M and Salomaa M M 2004 Efficient decomposition

of quantum gates Phys. Rev. Lett. 92 177902
[8] Viamontes G F, Markov I L and Hayes J P 2004 High-performance QuIDD-

based simulation of quantum circuits Proc. Design, Automation and Test in

Europe Conf. and Exhibition vol 2 (Piscataway, NJ: IEEE) pp 1354–5
[9] Viamontes G F, Rajagopalan M, Markov I L and Hayes J P 2003 Gate-level

simulation of quantum circuits Proc. Asia and South Pacific Design

Automation Conf. pp 295–301

http://dx.doi.org/10.1109/77.622206
http://dx.doi.org/10.1103/PhysRevD.103.024027
http://dx.doi.org/10.1109/TCSI.2005.851999
http://dx.doi.org/10.1007/s10773-005-7071-x
http://arxiv.org/abs/1204.5525
http://dx.doi.org/10.1103/PhysRevLett.92.177902

IOP Publishing

Quantum Computing (Second Edition)

A pathway to quantum logic design

Hafiz Md Hasan Babu

Chapter 17

The quantum processor circuit

Learning objectives

Discuss the basic definition of a quantum processor.

Learn about the fundamental concepts of and

suitable circuits for the quantum instruction

register (IR), quantum program counter (PC),

quantum decoder, quantum multiplexer (MUX), and

quantum accumulator.

Define the fundamental elements of a quantum

processor.

Explain the quantum IR with its logical circuit.

Acquire knowledge from the complete block

diagram of a quantum processor.

Define the functions of a quantum processor.

Describe a quantum random access memory (RAM)

with a suitable circuit.

The quantum logic circuitry that responds to and executes

the fundamental instructions which power a computer is

known as a quantum processor, also referred to as the

quantum central processing unit (CPU). It interprets the

majority of computer commands, and the quantum CPU is

regarded as the primary and most significant integrated

circuitry chip in a quantum computer. With this processor, a

difficult mathematical operation, such as multiplication,

division, or addition, is completed. The quantum computerʼs

instructions and processing power come from the quantum

processor. The faster a quantum computer can finish a task,

the more potent and modern the quantum processor is. This

chapter only focuses on the most powerful quantum

processor components.

17.1 Introduction

In the 1970s, Richard Feynman asserted that it is possible to

imitate physics with a computer. He made the initial

discovery of nanotechnology, which uses individual atoms

and molecules to create complex atomic structures. The

method of technology employed to control individual states

is known as ‘quantum nanotechnology’. In the spring of

1988, Drexler taught the first formal course in

nanotechnology at Stanford University. He raised the

prospect of nanosized systems, and Drexler and Merkle

developed a machine for computing energies called a

molecular machine, which is a composition of static systems

without knowledge of their dynamics. For many years,

several research teams have attempted to model various

parts of nanomachines. In addition, Peter Shor developed a

method in 1994 that can factor a number N in O((logN))

time and O(logN)) space. This algorithm is known as Shorʼs

algorithm. At an IBM demonstration in 2001, a team

presented an algorithm that could factor 15 into 3 and 5. To

do this, they employed a seven-qubit quantum computer.

Shorʼs algorithm was used to construct a seven-qubit

register. A physical mechanism for employing individual

atomic ions, whose electrical states store the quantum bits

of information, was then put forth by Cirac and Zoller. The

altered quantum information can be carried by a single

trapped ion. At the National Institute of Standards and

Technology, David Winelandʼs team presented an ion-

trapped quantum computer.

A two-level system can be used to implement quantum

information or a qubit; the first level is the spin of an

electron in a magnetic field, and the second level is to

employ two levels of an atom. With the fidelity required for

fault-tolerant quantum computing (QC) employing high

threshold quantum error correction codes, qubits are

initialized and handled using single-qubit gates, two-qubit

gates, qubit state preparation, and readout.

The development of a practical quantum computer still

faces numerous obstacles despite the great promise of

trapped ions. To make a functional quantum processor,

DiVincenzo demonstrated five essential requirements in

2000. He stated that a physical system must have the

following characteristics. (i) Well-defined two-level quantum

systems, or qubits, that can be isolated from their

surroundings. (ii) The ability to initialize the system into a

well-defined and determinate initial state. (iii) Qubit

decoherence times that are significantly longer than the

gate times. (iv) A collection of universal quantum gates that

can be applied to any qubit (or pair of qubits, in the case of

two qubits). (v) A qubit-specific measurement capability.

Only a few qubit technologies, such as trapped ions, have so

far met all of DiVincenzoʼs original requirements for high

fidelity. ‘Well-characterized’ refers to a qubit in a number of

distinct ways. Its physical characteristics should be known

precisely, including the qubitʼs internal Hamiltonian (which

determines its energy eigenstates, which are frequently, but

not always, assumed to be the ∣0i and ∣1i states), the

presence of and couplings to other qubit states, interactions

with other qubits, and couplings to external fields that might

be used to manipulate the qubitʼs state. The quantum

computerʼs control system should be built in such a way

that there is little chance that the system would ever enter

states such as the third, fourth, etc, levels of the qubit.

17.2 Basic definitions

The term ‘central processor’ or ‘main processor’ refers to a

CPU. A quantum computerʼs input/output operations can be

carried out via a similar quantum electronic circuit to a

digital computerʼs CPU. The computer programʼs

instructions are carried out via basic mathematical and

logical operations. The CPU is in charge of managing all

types of data flow and instructions. The quantum CPU is

made up of five main parts:

1. Quantum control unit (CU).

2. Quantum register.

3. Quantum arithmetic logic unit (ALU).

4. Quantum random access memory (RAM).

5. Quantum buses.

1. Quantum control unit. A quantum circuit that issues

commands to a computer processor is called a control unit.

Numerous selection circuits, including multiplexers,

decoders, and other devices, make up the control unit.

2. Quantum register. The smallest collection of qubits

that can store the locations that make up a quantum

processor is a quantum register. Any type of data, including

a qubit sequence, instructions, and a storage address, can

be stored in a quantum register.

3. Quantum ALU. The quantum ALU was initially

described by Oskin et al as a component of a quantum

computer architecture. The programʼs arithmetic operations

are managed by the arithmetic unit. The quantum ALU unit

performs all types of mathematical operations, including

addition, subtraction, division, and multiplication.

4. Quantum RAM. Quantum RAM, often known as volatile

memory, is part of the quantum CPU that aids in boosting

system performance. The primary function of quantum RAM

is to temporarily store and access data.

5. Quantum buses. Whether computers are

supercomputers, quantum computers, or conventional

computers, buses are necessary for data transfer between

processors and other parts. For this reason, the quantum

processor that powers quantum computers will be discussed

in this chapter, where buses will be employed similarly to

other types of computers. Address bus, control bus, and

data bus are the three types of buses that are covered

briefly in the architecture of fundamental components.

17.3 The block diagram of a quantum

processor

The CPU, which manipulates data and carries out

commands, is the brain of a computer. Many entire circuits,

including the instruction register (IR), program counter (PC),

multiplexer, ALU, and RAM, etc, are included in it. Since it is

a quantum processor, all circuits are constructed using

quantum logic gates. The comprehensive block diagram of a

quantum processor is shown in figure 17.1.

Only the fundamental CPU components are visible in this

entire two-qubit processor. To conduct useful work, CPUs

require two inputs: instructions and data. The IRʼs job is to

instruct the CPU on what operations should be carried out

on the data. Here qubit-like information is used to represent

instructions. The memory stores the inputs to the CPU. As

shown in figure 17.1, the instruction register receives RAM

data from memory, and the CPU cycles through a cycle of

fetching instructions. It is first fetched, then decoded, and

then executed. The ‘fetch–decode–execute’ cycle can be

used to describe this procedure. Data are transmitted from

memory to the instruction register, which initiates the cycle.

It should be noted that data sent from memory will always

use the data bus to convey data. Selecting the machine

language from the IR allows the unique qubit patterns to be

removed before being delivered to the quantum decoder.

Decoding encoded data from one format to another is the

decoderʼs main function. Because of the quantum decoder,

the cycleʼs second stage can now function. The decoder

indicates which qubit pattern will be used and activates the

circuit required to carry out the specific operation. The

following instruction will start the circuit working if the

procedure was completed successfully. The instruction

register is a special-purpose register that holds the current

instruction being executed. When the CPU fetches an

instruction from memory, it stores it in the instruction

register. The program counter is increased by one memory

address upon completion of the instruction. This is how this

quantum processor operates overall.

Figure 17.1. The quantum processor.

17.4 The basic components of a

quantum processor

The following components have been combined to create a

whole quantum processor, such as a quantum RAM,

quantum IR, quantum program counter, quantum decoder,

quantum multiplexer, quantum ALU, and quantum

accumulator. In the quantum CPU, data are also transferred

from one component to another using buses. The data bus,

address bus, and control bus are the three different types of

buses.

The data bus, which transports data back and forth

between the CPU and RAM, is bidirectional. The address bus,

which connects other components such as primary storage

and input/output devices to the processor, is unidirectional

and is used to transfer memory addresses.

The final bus is a control bus, which is used to connect

processors to other parts that check if everything is moving

from one place to another smoothly or not. These are

additional crucial CPU elements that must function properly

in order to perform useful work.

Now, the other components of a quantum CPU are

discussed below.

17.4.1 The quantum RAM

For the purpose of mimicking 4-to-2 qubit RAM, two address

lines are required, each of which must have one ancillary bit

and must be in CNOT form. This combination of address

lines will be used as the input for 2-to-4 decoders, each of

which consists of four quantum AND gates and has a single

enable input.

This decoder provides four select lines, and each chosen

line will traverse every RAM cell. Keep in mind that the RAM

will calculate words as 2k, where k is the address line, 2
k
 is

the total number of n-bit words, and k × 2
k
 is the decoder

combination. This two-qubit RAM consists of four distinct

RAM cells, each of which has three inputs such as ∣In0〉 or

∣In1〉, read/write inputs, and a line selector. A quantum OR

gate, which generates the final output, will take the output

from four quantum RAM cells as its input. This is how a 4-to-

2 qubit RAM is designed as a whole, as shown in figure 17.2.

Figure 17.2. The 4-to-2 qubit quantum RAM.

The primary and volatile memory is the most crucial part

of a CPU and stores data for a brief period of time. Figure

17.2 shows a 4-to-2 qubit RAM implementation. Each of the

four independent ‘words’ of memory in this quantum RAM is

two qubits wide. There are three inputs and one output for

the quantum RAM cell. Figure 17.3 accurately and fully

describes the circuit of a quantum RAM cell. Two quantum

RAM cells that are set up so that both qubits may be

accessed simultaneously make up a word. Two address lines

are needed for four words of memory. The two-qubit address

lines ∣A0〉 and ∣A1〉 are used as input to a 2-to-4 decoder,

which chooses one of the four words. The decoder is

activated by the memory-enabled input. None of the

memory addresses will be chosen if the memory enable is

set to ∣0〉, which is the case for all of the decoderʼs output.

One of the four words is chosen, however, when the

memory enables are ∣1〉. The value in the two address lines

determines which word is chosen. The read/write input

determines the operation once a word has been chosen.

Figure 17.3. The quantum RAM cell.

The four qubits of the chosen word pass through the

quantum OR gates to the output ∣Z0〉 and ∣Z1〉 terminals

during the read operation. However, the data from the input

lines is transferred into the four quantum cells of the chosen

word during the write process. The non-selected quantum

RAM cells become disabled and retain their original qubit.

However, none of the words are chosen when the memory

enable input that enters the decoder is identical to ∣0〉, and

all quantum cells remain intact regardless of the read/write

inputʼs value. The RAM operates in the manner described

below. The quantum RAM cell is described below.

The RS flip-flop has been used in the creation of the

quantum RAM cell. Each word will include m × n total

quantum cells, where m stands for words with n bits. The

quantum cell contains one output line with the label

‘Output’, three input lines labeled ‘Select’, ‘Read/Write’, and

‘Input’, and three input lines. Either reading or writing can

be accessed using the ‘choose’ input. The cell executes the

memory operation when the select line is high or ∣1〉.

However, if the quantum cellʼs select line is low or set to ∣0〉,

the cell is not motivated to execute a read from or write to.

The following input is ‘Read/Write’, which will be handled by

a system clock. The ‘read’ phase will be carried out if the

clock value on the read/write line is ∣0〉, and the ‘write’

phase will be carried out if it is ∣1〉. Think about the selected

cell for a moment. In such a scenario, if the clock value is

∣0〉, the contents of the cell must be read, and this time the

output value will only be dependent on the flip-flopʼs Q

value. However, if Q is low, the output of the cell will be ∣0〉,

and if Q is high, the output of the cell will be ∣1〉. This occurs

because the cellʼs output has a quantum AND gate with

three inputs such as negated read/write, select, and Q, and

both ‘negated read/write’ and ‘select’ are currently high.

17.4.2 The quantum instruction register

There are sixteen quantum AND operations in the quantum

instruction register. It has been broken into two segments

because it is a big circuit. Eight quantum AND operations

are contained in the first part as shown in figure 17.4, and

eight more are contained in the second part as shown in

figure 17.5. The block diagram of this register is shown in

figure 17.6.

Figure 17.4. The block diagram of a quantum IR.

Figure 17.5. The four-qubit instruction register (first

part).

Figure 17.6. The four-qubit instruction register

(second part).

A two-qubit CPU uses this instruction register; hence the

instructions will be 4. A minimum set of four instructions,

namely LOAD A, LOAD B, ADD A B, and OUT, can be defined.

The primary utility of the instruction registers, a type of

special-purpose register, is to hold the instructions that the

quantum computer is now executing. That instruction is now

being performed and is stored in an instruction register. The

instruction word is stored in the IR. Any instruction that the

CPU retrieves from memory is first temporarily put in the

instruction register.

A qubit word or code that specifies a particular operation

to be carried out can be the instruction. The instruction is

subsequently decoded and executed by the CPU.

17.4.3 The quantum program counter

The first of the two quantum D flip-flips that make up the

quantum program counter (PC) is constructed using four

quantum NAND gates, which are depicted using green

boxes. According to figure 17.7, this quantum D flip-flop

provides two outputs, one of which has been skipped

because it is not necessary to display it. Four quantum

NAND gates, which are restricted to a violet color box, make

up another quantum D flip-flop. Additionally, this quantum D

flip-flop produces two outputs. There are only two outputs

that serve as inputs as shown in figure 17.7. Therefore, the

remaining two outputs have been omitted. This two-qubit

program counter is appropriate for processors with two

qubits. The circuit structure of this quantum program

counter is shown below.

Figure 17.7. The two-qubit program counter register.

This program counter is used to store the subsequent

instruction that will be carried out. The program counter is

increased by one after the current instruction is finished. In

memory, each instruction and piece of data has a unique

address. For instance, the program counter will initially be

loaded with address 2 if a program starts with an instruction

placed in memory location 2. The PC is increased by one to

the following address, which is 3, when this command is

carried out. A programʼs instructions always store

themselves in the same order in the memory. Here, ∣D0〉 and

∣D1〉 stand for inputs from which the quantum D flip-flop

processes and outputs the desired result.

17.4.4 The quantum decoder

The 2-to-4 quantum decoder, which is utilized in two-qubit

CPUs, consists of four quantum AND operations and a single

enable input. With and without CNOT form, ∣A0〉 and ∣A1〉 are

inputs, and ∣D0〉, ∣D1〉, ∣D2〉, and ∣D3〉 are outputs. The circuit

structure of a quantum 2-to-4 decoder is given below.

It is a combinational quantum circuit with n input lines

and a potential for 2n output lines. Each output has a single

product, and these quantum AND operations are used to

produce this product. When the enable input is ∣1〉, the

minimum of two input qubits are ∣A0〉 and ∣A1〉. However, if

the enable input is set to ∣0〉, all of the decoderʼs outputs

will be equal to ∣0〉, and if it is set to ∣1〉, just one of these

four outputs will be active, i.e. ∣1〉.

17.4.5 The quantum multiplexer

Four data input lines, from ∣D0〉 to ∣D3〉, two select lines, ∣S0〉

and ∣S1〉, and one output line make up a 4-to-1 quantum

multiplexer (MUX), as shown in figure 17.8.

Figure 17.8. The quantum 2-to-4 decoder circuit.

Figure 17.9. The 4-to-1 quantum MUX.

There are other ways to present a 4-to-1 quantum MUX,

however, in this case, three 2-to-1 quantum MUXs are used

to design the 4-to-1 quantum MUX. The quantum MUX can

be formulated as 2n-to-1. The 2-to-1 quantum MUX is

treated as one MUX. Any one of the four input lines may be

chosen via the select lines ∣S0〉 and ∣S1〉 to connect the

output lines.

Multiple inputs and a single output are provided by the

multiplexer. Two quantum AND operations construct a

quantum 2-to-1 MUX. A quantum OR gate will accept its

input from the result of two quantum AND gates. From a

quantum 2-to-1 MUX two least significant qubit outputs are

produced, which are propagated. In this way, the desired

result is obtained.

17.4.6 The quantum arithmetic logic unit

This is a two-qubit ALU that uses two to four quantum

decoders to choose among sixteen quantum AND

operations. Among the addition, multiplication, subtraction,

and division quantum operations, only one of the quantum

operations is carried out by the 2-to-4 quantum decoder

(figure 17.9). The circuit structure of a quantum decoder is

shown in figure 17.10.

Figure 17.10. The two-qubit quantum ALU.

A quantum decoder is used to perform all quantum

operations such as addition and subtraction, etc. A brief

description of each quantum operation is given below.

1. The quantum adder. This quantum adder performs

addition using quantum X-OR, AND, and OR operations. An

illustration of this quantum operation is presented in figure

17.11.

Figure 17.11. The quantum adder operation.

Figure 17.11 shows that the first adder generates a sum

and Cout, where Cout is the Cin of the following adder.

Additionally, the entire adder has a Cout and the final

output.

2. The quantum subtractor. A quantum subtractor works

by subtracting two quantum numbers and is constructed

using a quantum complete subtractor. The circuit is as

follows. A combinational quantum circuit known as a

complete subtractor may execute the subtraction of two

qubits, where ∣A〉 and ∣B〉 are control bits, ∣Bin〉 is the borrow

input, ∣D〉 is the difference output, and Bout is the borrow

out. Here, the symbols ∣A〉 and ∣B〉 stand for minuend and

subtrahend, respectively, while ∣0〉 is the constant target

qubit. Figure 17.12 shows that the first full subtractor results

in a difference, and Bout is the Bin of the following full

subtractor. Finally, this entire subtractor has a Bout and a

second output.

Figure 17.12. The quantum subtractor operation.

3. The quantum multiplier. Two quantum digits are

required for a two-qubit quantum multiplier. For the main

circuit of a quantum function representing a two-qubit

multiplier, four quantum AND gates and two quantum half

adders are required. In this case, the multiplication will be

done by the quantum AND gates, and the partial product

terms or carry will be added by quantum half adders (figure

17.13). Thus, the final quantum multiplier circuit is as

follows.

Figure 17.13. The quantum multiplier operation.

It is first necessary to carry out quantum AND operations.

Let the quantum digits ∣A1〉, ∣A0〉 and ∣B1〉, ∣B0〉 be the

multiplicand and multiplier, respectively. Given that in a

quantum circuit the target qubit, ∣1〉, is taken to be a

constant qubit, in this circuit, the partial product terms will

be added by the quantum half adders, while the quantum

AND gate will execute the multiplication. These quantum

operations result in a straightforward four-qubit output.

4. The quantum divider. First, the quantum AND logical

operation is required for a two-qubit quantum divider. Three

inputs have been utilized in this quantum AND operation.

The third input of the first quantum AND gate has been

connected to the second quantum AND gate operations

once more to prevent dilution, allowing to obtain the output

of quantum AND operations with just three inputs. The block

diagram in figure 17.14 is a two-qubit divider.

Figure 17.14. The quantum divider operation.

First, there are four quantum AND gates in this circuit by

taking three inputs. The third input of the first quantum AND

gate is connected to the second quantum AND gate once

again to prevent circuit dilution. This connection makes it

possible to obtain the output of quantum AND operations

with just three inputs. In order to obtain the precise output

of ∣Y1〉, the output of the quantum AND gate must then be

connected with the input of the quantum OR gate. The

fundamental characteristic of a quantum logic circuit is that

the exact output of a quantum AND gate serves as a target

qubit which is obtained by using the constant ∣1〉. For a

maximum two-qubit output, two-bit divisor, and two-bit

divisible are used to finish this circuit. Let ∣A0〉 and ∣A1〉 be

∣1〉 and ∣0〉, respectively, and let ∣B0〉 and ∣B1〉 be ∣1〉 and

∣1〉, respectively, where ∣A0〉∣A1〉 is the divisor and ∣B0〉∣B1〉

is the dividend. This is the two qubit quantum dividerʼs

fundamental mode of operation. For better understanding,

the full quantum subtractor is given in figure 17.15.

Figure 17.15. The quantum full subtractor operation.

17.4.7 The quantum accumulator

One quantum AND gate and two quantum D flip-flops make

up a two-qubit accumulator with the help of quantum NAND

gates. The inputs of the quantum AND gate are ∣LOAD〉 and

∣CLK〉, and its output will be used as the input for each

quantum D flip-flop. Following quantum logical operations,

the first and second quantum D flip-flops provide the first

and second outputs, respectively. The circuit structure is

shown in figure 17.16.

Figure 17.16. The two-qubit quantum accumulator.

This is a quantum register which is called a quantum

accumulator that serves as a temporary storage area and

stores a value used as a bridge in logical and mathematical

processes. In the operation ‘2 + 3 + 4’, for instance, the

accumulator will initially store the value 2, then the value 5,

and finally the value 9.

In the event that the output of the quantum AND gate is

∣1〉, the data will be saved in the accumulator. Additionally,

no information will be saved in the accumulator if the output

of the quantum AND is ∣0〉.

17.5 Applications

It has already been established that quantum computing

employs numerous methods to handle a variety of issues.

Groverʼs database search method and Shorʼs integer

factoring techniques are the two most well-known quantum

algorithms. Additionally, Fourier transformations, error

correction, and additionally, novel techniques that can move

the state from one place to another include quantum

teleportation and quantum key exchange. Such an

algorithm, which can factor a huge number in polynomial

time, was found by Peter Shor in 1994. He demonstrated

how this approach can be used to defeat the RSA

cryptosystem. This algorithm has a high possibility of

providing the proper response, and by repeating the

algorithm, it can also lower the likelihood that it will fail.

Groverʼs algorithm is yet another crucial algorithm.

This method was created for searching databases that

have not been sorted. This approach, for instance, helps

speed up brute force key searches for symmetric key

encryption systems such as AES. It takes O(N) operations to

search a size N unsorted array. Additionally, it requires O(N)

for classical algorithms. It might be more accurate to refer

to this algorithm as an inverting function. It may also be

used to calculate the mean and median of a set of data as

well as to solve the collision problems. O(3/2) can be used to

calculate the connectedness of an n-vertex graph. This has

many benefits, one of which is the ability to execute parallel

computations, which boosts system performance. The

superposition state makes it simple to store the 2n inputs in

n qubits. Arbitrary quantum computation can be carried out

using n qubits as its input. Additionally, it can be utilized in

computational chemistry, artificial intelligence, machine

learning, pharmaceutical research and development,

computer security and encryption, forecasting the weather,

etc.

17.6 Summary

The goal of this chapter is to present potential architectural

designs for the quantum processor. This chapter examines

particular high-performance architecture concepts for

quantum processors. Then, it describes designing a two-

qubit central processing unit and its operating procedures.

An efficient quantum processor with high system

performance and a high error correction rate can be

designed with the presented algorithms.

Critical thinking questions

1. Describe how the quantum control bus, quantum data

bus, and quantum address bus are different from one

another.

2. What are the typical values of a quantum RAM?

3. How many locations in memory can be accessed by a

quantum RAM chip if it has n address input lines?

4. Describe the applications of a quantum RAM.

5. Describe the role of a quantum ALU in a quantum

processor.

6. Using a circuit diagram, describe how a quantum

decoder works.

7. How many enable lines are there in a quantum 2-to-4

decoder? Explain why a quantum decoder needs an

enable line.

8. Using a quantum 2-to-1 MUX, construct a quantum 4-to-

1 MUX.

9. What does the quantum instruction register contain?

10. What type of data is stored in a quantum instruction

register?

11. Describe the uses of the quantum instruction register.

References

[1] Abrams D S and Lloyd S 1997 Simulation of many-body Fermi systems on a
universal quantum computer Phys. Rev. Lett. 79 4

[2] Arute F et al 2019 Quantum supremacy using a programmable
superconducting processor Nature 574 505–10

[3] Ernst D et al 2003 Razor: a low-power pipeline based on circuit-level timing
speculation Proceedings. 36th Annual IEEE/ACM Int. Symp. on

Microarchitecture p 7
[4] Ewald R H 2019 An introduction to quantum computing and its application

Quantum Technology and Optimization Problems: First Int. Workshop

(Munich) 18 March (Berlin: Springer) pp 3–8
[5] Jain R 2019 Introduction to Quantum Computing and its Applications to

Cyber Security (St. Louis County, MO: Washington University in Saint
Louis)

[6] Kanamori Y and Yoo S-M 2020 Quantum computing: principles and
applications J. Int. Technol. Inf. Manag. 29 43–71

[7] Marchenkov A 2020 Reaction: can we grow a quantum processor? Chem. 6
801–2

[8] Preskill J 1998 Computing: pro and con proceedings: mathematical Phys.

Eng. Sci. 454 469–86
[9] Schmidt F et al 2003 Realization of the Cirac–Zoller controlled-NOT

quantum gate Nature 422 408–11
[10] Tarasov V E 2009 Quantum nanotechnology Int. J. Nanosci. 8 337–44
[11] Thomsen M K, Glück R and Axelsen H B 2010 Reversible arithmetic logic

unit for quantum arithmetic J. Phys. A: Math. Theor. 43 382002

http://dx.doi.org/10.1103/PhysRevLett.79.2586
http://dx.doi.org/10.1038/s41586-019-1666-5
http://dx.doi.org/10.58729/1941-6679.1410
http://dx.doi.org/10.1016/j.chempr.2020.03.018
http://dx.doi.org/10.1098/rspa.1998.0171
http://dx.doi.org/10.1038/nature01494
http://dx.doi.org/10.1142/S0219581X09005517
http://dx.doi.org/10.1088/1751-8113/43/38/382002

IOP Publishing

Quantum Computing (Second Edition)

A pathway to quantum logic design

Hafiz Md Hasan Babu

Chapter 18

Applications of quantum computing

technology

Learning objectives

Demonstrate how to apply quantum computing to

machine learning.

Explain how to solve optimization issues.

Discuss how to apply biomedical simulations using

quantum computing technology.

Learn how to employ quantum technologies in

computational chemistry and financial services.

Acquire knowledge about the uses of quantum

technology in circuits, software, simulation of

system faults, and weather forecasting.

Discover how quantum technology can be used for

scheduling, logistics, and cyber security.

There are many potential future uses for quantum

computing technology. This is an important phenomenon

that could change the total level of computing in the coming

decade and the computers we know today will become

museum pieces. In this chapter we discuss some real world

applications of quantum computers/circuits. The basic

structure of a quantum computer is shown in figure 18.1.

Figure 18.1. A quantum computer.

18.1 Optimization

Optimization problems are some of the most difficult

problems to solve.

Imagine that you are building a house and have a list of

things you need to have in your home. However, you cannot

afford the cost of everything on your list since you have

limited finances. What you truly need to work out is the

combination of things which will give you the best value for

your money.

This is a case of an optimization issue, where you are

attempting to locate the best combination of things given a

few requirements. While issues with only a couple of

decisions are simple, as the number of decisions increases,

they rapidly become difficult to settle ideally. With only 270

on/off switches, there are more conceivable combinations

than there are molecules in the Universe! These types of

advancement issues exist in various areas, for example

framework structures, mission arrangements, aircraft

planning, money related investigations, web searches, and

malignant growth radiotherapy. These are some of the most

complex issues on the planet, with tremendous potential

advantages for organizations, individuals, and science if

ideal solutions can be achieved quickly.

It is easily understandable how quantum computing can

help in these types of scenarios. Some of these optimization

problems are examined below, where quantum computers

are playing a role in solving them.

18.1.1 The Roswell Park Cancer Institute

Enhancement techniques are a basic requirements to supply

enough radiation to kill malignant cells while avoiding non-

carcinogenic adjacent cells. Researchers at Roswell Park,

which is shown in figure 18.2, utilized a D-Wave framework

for use in quantum annealing for beamlet intensity

optimization for intensity-modulated radiation therapy.

Figure 18.2. The Roswell Park Cancer Institute.

18.1.2 Volkswagen group

Volkswagen was the primary vehicle maker to utilize a

quantum PC to determine traffic streams, as shown in figure

18.3. Their researchers carried out an explorative study of

traffic stream improvement. Utilizing information from

10 000 taxis in Beijing, they modified a calculation to

improve the movement times of taxis in the city.

Figure 18.3. Non-optimized and optimized traffic flow

research using quantum computers. Reproduced from

[11]. CC BY 4.0.

18.1.3 Recruit Communications

Recruit Communications and D-Wave are working together

to apply quantum processing to showcasing, promoting, and

correspondence. The first task was to streamline the

proficiency of coordinating notices to clients for web

publicizing.

18.2 Machine learning

When you look at a photograph it is simple for you to

identify the distinct elements in the picture: trees,

mountains, and so forth. This assignment is relatively easy

for humans, however, it is a tremendously difficult job for

PCs to accomplish. This is because software engineers do

not know how to characterize the essence of a ‘tree’ in PC

code.

Machine learning is the best way to deal with this issue,

using which developers can devise algorithms that naturally

determine how to perceive the ‘substance’ of objects by

recognizing repeating designs in enormous quantities of

information. In view of the amount of information involved in

this procedure, and the vast number of potential

combinations of information components, this is a

computationally costly issue. Similarly to other streamlining

issues, these types of tasks can be mapped to the local

ability of the D-Wave quantum computer.

18.2.1 QxBranch

Predicting the result of an election is a challenge.

Consolidating quantum processing with neural system

innovations could enhance predictions, as indicated by the

work carried out by QxBranch. They utilized such a system

in a simple manner to predict the 2016 US presidential race.

An example of embedding a problem into a quantum

computation model is shown in figure 18.4.

Figure 18.4. Example of embedding a problem into a

quantum computation model.

18.2.2 Los Alamos National Laboratory

Utilizing a set of 2429 pictures of faces, Los Alamos National

Laboratory researchers utilized unsupervised machine

learning techniques by means of framework factorization to

break down large datasets. This is one of the numerous

quick reaction extensions that Los Alamos scientists have

carried out on the D-Wave quantum computing framework,

first introduced at Los Alamos, which is shown in figure 18.5.

Figure 18.5. The National Security Sciences Building

at Los Alamos National Laboratory. Photo courtesy of

Los Alamos National Laboratory.

18.2.3 NASA

Machine learning depends strongly on inspecting complex

likelihood calculations. NASA researchers effectively

prepared the D-Wave 2X framework for picture information

collection in a generative unsupervised learning setting,

which stands out as one of the most challenging ideal

models in machine learning.

18.3 Biomedical simulations

With quantum computers we can mimic and model sub-

atomic structures. In 2012, analysts at Harvard University

utilized a D-Wave One quantum PC, as shown in figure 18.6,

to understand the riddle of how a few proteins overlap.

Figure 18.6. D-Wave quantum computers. Reproduced

courtesy of [3].

‘The model comprised of scientific portrayals of amino

acids in a cross section, associated by various

communication qualities’ wrote Geoffrey Brumfiel in a news

article for Nature about the Harvard specialists’ protein

collapsing models, noting that ‘[t]he D-Wave PC found the

least setups of amino acids and associations, which relates

to the most efficient collapsing of the proteins.’ While the

innovation was not even close to complete—as the

researchers wrote, ‘10 000 estimations utilizing an 81-qubit

rendition of the examination gave the right answer only

multiple times’—it had the ability to achieve a remarkable

accomplishment by displaying the behavior of protein

collapsing with some level of exactness.

18.4 Financial services

Quantum processing is now on its way. D-Wave, an

organization supported by Goldman Sachs and Bezos

Expeditions, among others, introduced its first business

quantum computer, the D-Wave 2000Q, a quantum

enhancing framework with 2000 qubits.

Notwithstanding their limitations, these computers are

being used in specialist fields as demonstrated by the

Harvard teamʼs utilization of D-Waveʼs first model in 2012.

The frameworks could be utilized for complex budgetary

displays. Quantum computing could be utilized to discover

‘better approaches to show budgetary information’ and

exclude ‘key worldwide hazard factors’, as per IBM. A

development architecture of a quantum computing network

by IBM is shown in figure 18.7.

Figure 18.7. IBM expands the quantum computing

network.

‘It is extraordinary to assemble frameworks to help Wall

Street better oversee hazards utilizing this sort of

innovation’, D-Wave Systems President and CEO Vern

Brownell told Bloomberg News: ‘They spend a ton on

figuring power to oversee risk.’

18.5 Computational chemistry

There are numerous issues in materials science that could

accomplish tremendous results if we could simple locate the

correct catalyst or procedure to construct a new material, or

to produce a current material more productively. Currently,

notable efforts are being made to utilize traditional PCs to

mimic mixture interactions, yet much of the time the

problems prove too difficult to solve traditionally. Thus the

first thought, introduced by Richard Feynman, is why not

utilize a quantum PC to reproduce the quantum mechanical

procedures that occur. Here are only a few of the myriad of

critical issues that could see significant solutions if only we

could understand them:

1. Supplanting the Haber procedure to deliver ammonium

nitrate for use in fertilizers.

2. Finding new materials that can be used to achieve a

room-temperature superconductor.

3. Discovering a catalyst that can enhance the efficiency of

carbon capture.

4. Devising a new battery science that can improve

performance compared to current lithium-ion batteries.

18.6 Logistics and scheduling

Numerous standard improvements made in industry can be

categorized under coordination and planning. Consider an

aircraft coordination supervisor who needs to make sense of

how to organize aircraft to achieve the best management at

minimal cost, or a manufacturing plant supervisor who has a

regularly changing combination of machines, stock,

generation requests, and individuals, and requirements to

limit cost and throughput times while improving yield.

Consider, on the other hand, a chief assessor at a car

organization who needs to make sense of the optimal costs

of a considerable variety of vehicle choices to enhance

consumer loyalty and benefit. Although traditional

calculations are utilized extensively to perform such tasks,

some questions might be too difficult for traditional

processing, while a quantum approach might have the

capacity achieve such a task.

18.7 Cyber security

Digital security is becoming a more significant problem

these days as threats around the globe are expanding their

capacities and we are becoming progressively more

powerless as we increase our reliance on advanced digital

frameworks. Different strategies to combat digital security

risks can be created utilizing quantum machine learning

approaches to perceive the dangers ahead of time and

alleviate the harm that they may cause.

18.8 Circuit, software, and system

fault simulation

When one develops expansive programming with a huge

number of lines of code or substantial ASIC chips that have

billions of transistors, it can become very difficult and costly

to assess them for correctness. There can be billions or

trillions of different states and it is unthinkable for a

traditional PC to check each and every one in simulation. In

addition to wanting to comprehend what will happen when a

framework is working normally, one also needs to

understand what occurs if there is an equipment or other

error. Will the framework identify this error and does it have

a recovery system to alleviate any conceivable issues? The

costs of a error can be high, as some of these frameworks

may be utilized in situations where lives or a huge number

of money may depend on their being error-free. By utilizing

quantum computing to help in these simulations, one may

be able to provide a vastly improved assessment of their

performance in a much shorter time.

18.9 Weather forecasting

National Oceanic and Atmospheric Administration (NOAA)

Chief Economist Rodney F Weiher has claimed that almost

30% of the US GDP ($6 trillion) is specifically or in an

oblique way influenced by the weather, affecting food

production, transportation, and retail, among others. The

capacity to more accurately predict the weather would have

huge advantages for numerous fields, while also providing

better opportunities to protect people from extreme weather

events.

While this has been an objective of researchers for quite

some time, the conditions underlying weather and the

climate include numerous factors, making traditional

simulations protracted. As quantum specialist Seth Lloyd

pointed out, ‘[u]tilizing a traditional PC to perform such

investigation may take longer than it takes the real climate

to advance!’ This inspired Lloyd and partners at MIT to

demonstrate that the conditions that determine the climate

have a concealed wave nature which is amenable to be

addressed by a quantum computer.

The executive of design at Google, Hartmut Neven,

likewise noticed that quantum computers allowed better

atmosphere models that could provide us with a greater

understanding of how humans are affecting the natural

world. These models are what we base our estimations of

future warming on, and what will enable us to determine

what steps need to be taken now to prevent future

calamities. The United Kingdomʼs national weather service,

the benefit Met Office, has recently started putting

resources into such developments to meet the energy and

adaptability requirements they will be facing from 2020

onward for larger scale computing.

Thus we can easily understand that quantum computers

are the future of computing. All the types of quantum

computers are very important for various types of

computational problems. We only discuss some of its

greater impacts, but there are many other areas where we

will see the effects of the future of computing—quantum

computing.

18.10 Summary

This chapter describes different applications of quantum

computing. Quantum computing is leading to a paradigm

shift in many ways. Quantum computing provides access to

new levels of computational ability and it also inspires new

ways of thinking. As we look at problems in new ways, this

can, in turn, contribute new ideas for how we could advance

classical computation as well. With more and more

individuals conceiving problems from different angles, more

and more ideas and results will emerge. In the world of

quantum evolution, we will exercise the ability to think

about problems in new ways, become familiar with

programming quantum computers, and even simulate this

work so that we can obtain useful quantum computers.

Critical thinking questions

1. Why does quantum computing technology need to be

optimized? Explain using an example.

2. Give some examples of optimization problems that can

be solved with quantum computing.

3. How is quantum computing applied in machine

learning? Give some examples.

4. How does quantum computing technology affect cyber

security?

References

[1] Jackson M 2017 6 things quantum computers will be incredibly useful for
SingularityHub https://singularityhub.com/2017/06/25/6-things-quantum-
computers-will-be-incredibly-useful-
for/#sm.0000trlmgo7c0f9mwo3107yechmv7 (Accessed: 27 December 2018)

[2] Volkswagen 2018 Avoiding traffic jams and surviving tsunamis Volkswagen

https://www.volkswagenag.com/en/news/stories/2018/06/avoiding-traffic-
jams-and-surviving-tsunamis.html (Accessed: 27 December 2018)

[3] D-Wave Practical quantum computing D-Wave

https://www.dwavesys.com/home (Accessed: 27 December 2018)

https://singularityhub.com/2017/06/25/6-things-quantum-computers-will-be-incredibly-useful-for/#sm.0000trlmgo7c0f9mwo3107yechmv7
https://www.volkswagenag.com/en/news/stories/2018/06/avoiding-traffic-jams-and-surviving-tsunamis.html
https://www.dwavesys.com/home

[4] D-Wave 2012 Harvard researchers use D-Wave quantum computer to fold
proteins D-Wave https://www.dwavesys.com/news/harvard-researchers-use-
d-wave-quantum-computer-fold-proteins (Accessed: 27 December 2018)

[5] NASA Quantum computing NASA Advanced Supercomputing Division

https://www.nas.nasa.gov/projects/quantum.html (Accessed: 27 December
2018)

[6] Microsoft Quantum computing applications for innovation and impact
https://www.microsoft.com/en-us/quantum/quantum-computing-
applications (Accessed: 27 December 2018)

[7] LANL Quantum Institute Los Alamos National Laboratory

https://www.lanl.gov/collaboration/research-opportunities/quantum-
institute.php (Accessed: 27 December 2018)

[8] QxBranch QxBranch builds software and applications for quantum
computers QxBranch https://www.qxbranch.com/quantum-computing/
(Accessed: 27 December 2018)

[9] Recruit Communications and D-Wave Collaborate to Apply Quantum
Computing to Marketing, Advertising, and Communications Optimization
https://www.globenewswire.com/en/news-
release/2017/05/12/1202661/0/en/Recruit-Communications-and-D-Wave-
Collaborate-to-Apply-Quantum-Computing-to-Marketing-Advertising-and-
Communications-Optimization.html (Accessed 27 December 2018)

[10] Roswell Park https://www.roswellpark.org/ (Accessed: 27 December 2018)
[11] Neukart F, Compostella G, Seidel C, Dollen D V, Yarkoni S and Parney B

2017 Traffic flow optimization using a quantum annealer Front. ICT 4 29

https://www.dwavesys.com/news/harvard-researchers-use-d-wave-quantum-computer-fold-proteins
https://www.nas.nasa.gov/projects/quantum.html
https://www.microsoft.com/en-us/quantum/quantum-computing-applications
https://www.lanl.gov/collaboration/research-opportunities/quantum-institute.php
https://www.qxbranch.com/quantum-computing/
https://www.globenewswire.com/en/news-release/2017/05/12/1202661/0/en/Recruit-Communications-and-D-Wave-Collaborate-to-Apply-Quantum-Computing-to-Marketing-Advertising-and-Communications-Optimization.html
https://www.roswellpark.org/
http://dx.doi.org/10.3389/fict.2017.00029

Part II

Quantum fault tolerance

An overview of quantum fault-

tolerant circuits

A fault is an error that occurs in a system which forces the

system to deviate from its normal behavior. The purpose of

fault tolerance is to enable reliable quantum computations

when the computerʼs basic components are unreliable. To

achieve this, the qubits in the computer are encoded in

blocks of a quantum error-correcting code, which allows the

state to be corrected even when some qubits are wrong. A

fault-tolerant protocol prevents catastrophic error

propagation by ensuring that a single faulty gate or time

step produces only a single error in each block of the

quantum error-correcting code. The fault models vary

according to the type of description that is being

considered, which in turn varies according to the level of

abstraction.

Fault tolerance is the property that enables a system to

operate accurately in the presence of the failure of one or

more of its components. Fault tolerance in a quantum circuit

reflects the robustness of the system. Fault-tolerant systems

are capable of detecting and correcting faults. If the logic

circuit itself is made of fault-tolerant components, then the

detection and correction of faults in the circuit become

cheaper, easier, and more simple. To achieve fault

tolerance, the first step is to identify the occurrence of a

fault. To detect the occurrence of a fault, parity-preserving

techniques are considered as one type of solution. Any fault

that affects only one signal is detectable at the circuitʼs

primary outputs in fault-tolerant quantum circuits.

A conventional circuit dissipates energy to reload missing

information because of overlapped mapping between input

and output vectors. Quantum computing recovers this

energy loss and prevents bit errors by including fault-

tolerant mechanisms. A fault-tolerant quantum circuit is

capable of preventing error at the outputs. The goal of any

program to produce a fault-tolerant logic gate is to

implement a universal set of gates with the properties of

fault tolerance. Essentially, the goal is to implement a set of

gates that will allow any arbitrary quantum computation.

In practice, quantum computers are difficult to

implement. The reason for this is that they require the

qubits they are constructed of to be isolated from the

environment and remain completely unaltered by any

processes other than the logical gates which are applied to

them. In reality, such isolation is extremely difficult to

achieve. Undesired interactions with the qubits’

surroundings, and even imperfect executions of quantum

gates and measurements, all introduce the possibility of

error. These errors are by nature random, so in the modeling

it is considered that faults are probabilistic events that occur

throughout the evolution of a quantum circuit. Here, the

ramifications of the error rates and circuit designs are

considered, which will inform the basis for fault-tolerant

quantum computations.

Quantum computers appear to be capable, at least in

principle, of solving certain problems far faster than any

conceivable classical computer. In practice, quantum

computing technology is still in its infancy. While a practical

and useful quantum computer may eventually be

constructed, at present we cannot envision clearly what the

hardware of that machine will be like. Nevertheless, one can

be quite confident that any practical quantum computer will

incorporate some types of error correction in its operation.

Quantum computers are far more susceptible to making

errors than conventional digital computers, and some

method of controlling and correcting such errors will be

needed to prevent a quantum computer from crashing.

The basic idea of error-correcting codes is that, to store

and transmit data without said data being compromised, it

is necessary to build some kind of larger mathematical

structure to serve as a shield for the structure containing

the data. This shield must be effective, namely, it should be

able to both survive one or more errors and should be able

to correct those errors over time by restoring the original

state.

This part of the book describes some background and

preliminary studies of quantum fault-tolerant circuits in

Chapter 19. The approach for designing a fault-tolerant

quantum adder (full-adder) is given in this chapter. A design

for a fault-tolerant multiplier (signed multiplier) is also

shown. Finally, the design procedure for a quantum fault-

tolerant integer division circuit is introduced in this chapter.

In this design a restoring division algorithm as well as

quantum restoring integer division circuitry are introduced.

IOP Publishing

Quantum Computing (Second Edition)

A pathway to quantum logic design

Hafiz Md Hasan Babu

Chapter 19

Quantum fault-tolerant circuits

Learning objectives

Explain the significance of quantum fault-tolerant

circuits.

Discuss the restorative division algorithm and the

quantum failure resilient integer divider.

Become familiar with the fault-tolerant quantum

full-adder.

Describe the operational module for conditional

addition.

Construct a fault-tolerant multiplier in an

appropriate manner.

Demonstrate the circuitry for integer division in

quantum restoration.

Discuss a fault-tolerant signed multiplier with its

design procedure.

The discovery of quantum error correction has greatly

improved the long-term prospects for quantum computing

technology. Encoded quantum information can be protected

from the errors that arise due to uncontrolled interactions

with the environment, or due to imperfect implementations

of quantum logical operations. Recovery from errors can

work effectively even if occasional mistakes occur during

the recovery procedure.

19.1 The need for quantum fault-

tolerant circuits

The discovery of quantum effects alone is not sufficient to

ensure that a quantum computer can perform reliably. To

carry out a quantum error-correction protocol we must first

encode the quantum information we want to protect and

then repeatedly perform recovery operations that reverse

the errors that accumulate. However, encoding and

recovery are themselves complex quantum computations,

and errors will inevitably occur while we perform these

operations. Thus we need to find methods for recovering

from errors that are sufficiently robust to succeed with high

reliability even when some errors are made during the

recovery step.

Furthermore, to operate a quantum computer, we must

process the information of two or more encoded qubits that

interact with one another and if an error occurs in one qubit,

then that qubit interacts with another quantum gate and the

error is likely to propagate to the second qubit. We must

design the gates to minimize the propagation of error.

Incorporating quantum error correction will surely

complicate the operation of a quantum computer. To

establish the redundancy needed to protect against errors,

the number of elementary qubits will have to increase. The

encoded information on performing gates and inserting

periodic error-recovery steps will slow down the

computation.

A device that works perfectly even when its primary

components are imperfect is said to be fault-tolerant. With

the development of fault-tolerant methods, it will be

possible, in principle, for the operator of a quantum

computer to actively intervene to stabilize the device

against errors in a chaotic environment. In the long run,

fault tolerance might be achieved in practical quantum

computers by a rather different route—with intrinsically

fault-tolerant hardware. Such hardware, designed to be

impervious to localized influences, could be operated

relatively unsupervised, yet could still store and process

quantum information robustly.

Fault-tolerant quantum computing falls under the

framework of proposed ideas that allow qubits to be

protected from quantum errors introduced by the

inadequate control of environmental interactions, called

quantum error correction (QEC). Moreover, the appropriate

innovations in quantum circuits will be implemented in both

QEC and encoded logic operations in such a way as to avoid

these errors cascading through quantum circuits. By

avoiding a cascade of errors, there comes a point (when the

fundamental accuracy of individual qubits is high enough),

when the QEC is correcting more errors than are being

created. Once this threshold has been achieved, the

expansion of the size of the protective quantum will

exponentially decrease the failure of the encoded

information and allows us to achieve algorithms

implemented with noisy devices.

The parity-preserving quantum circuits are a class of

quantum logic with the additional property that the parity of

the input is the same as the parity of the output. A quantum

circuit will be parity-preserving if the Ex-OR of the inputs

matches the EX-OR of the outputs, i.e. the parity of the

input and the output remains the same.

19.2 The fault-tolerant quantum

adder

A quantum adder is a quantum circuit that performs the

addition operation. In a full-adder, two binary numbers and

a carry or overflow bit might be the input to complete the

addition operation. The output of the circuit will be the sum

(19.

1)

(19.

2)

and another carry bit. Full-adders are commonly connected

to each other to add bits to an arbitrary length of bits, such

as 32 or 64 bits.

Fault tolerance is the ability of a system to hold its

normal operation without failure when some part of the

system fails to operate properly. It increases the wear-out

time for any system at a cost of increased hardware. Fault-

tolerant approaches must be incorporated in any safety-

critical system for continued functioning without failure

even if an error occurs in the system.

The adder is an important circuit in quantum circuit

design. To design a fault-tolerant quantum full-adder some

basic circuits are necessary, which are discussed in the next

section.

19.2.1 The fault-tolerant full-adder

In this section, the conventional full-adder, as presented in

figure 19.1, is discussed and a fault-tolerant full-adder is

designed. Finally, the quantum fault-tolerant full-adder is

presented. A classic full-adder, as shown in figure 19.1, will

have two inputs and one carry or overflow bit and from the

truth table (table 19.1) the following expressions can be

achieved:

Sum = A ⊕ B ⊕ C

Carry = (A ⊕ B)C ⊕ AB.

Figure 19.1. A conventional full-adder.

Table 19.1. The truth table of a conventional full-adder.

A B C Sum Carry

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

Based on equations (19.1) and (19.2) a parity-preserving

logic gate called the fault-tolerant full-adder (FTFA) is

implemented and is presented in figure 19.2. In order to

verify that the implemented gate has worked as a fault-

tolerant quantum adder, the corresponding truth table of

the gate is presented in table 19.2. It can be seen from the

truth table that the input and output vectors show one-to-

one mapping and at the same time the condition of the

input parity A ⊕ B ⊕ C ⊕ D ⊕ E is equal to the output

parity P ⊕ Q ⊕ R ⊕ S ⊕ T .

Figure 19.2. The block diagram of an FTFA.

Table 19.2. The truth table of a quantum FTFA.

Input Output

A B C D E P Q R S T

0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 1

0 0 0 1 0 1 1 1 1 1

0 0 0 1 1 1 1 1 1 0

0 0 1 0 0 0 0 1 0 0

0 0 1 0 1 0 0 1 0 1

0 0 1 1 0 1 1 0 0 0

0 0 1 1 1 1 1 0 0 1

0 1 0 0 0 0 1 1 0 1

Input Output

A B C D E P Q R S T

0 1 0 0 1 0 1 1 0 0

0 1 0 1 0 1 0 0 0 1

0 1 0 1 1 1 0 0 0 0

0 1 1 0 0 0 1 0 1 0

0 1 1 0 1 0 1 0 1 1

0 1 1 1 0 1 0 1 0 1

0 1 1 1 1 1 0 1 0 0

1 0 0 0 0 1 1 1 0 0

1 0 0 0 1 1 1 1 0 1

1 0 0 1 0 0 0 0 1 1

1 0 0 1 1 0 0 0 1 0

1 0 1 0 0 1 1 0 1 1

1 0 1 0 1 1 1 0 1 0

1 0 1 1 0 0 0 1 1 1

1 0 1 1 1 0 0 1 1 0

1 1 0 0 0 1 0 0 1 0

1 1 0 0 1 1 0 0 1 1

Input Output

A B C D E P Q R S T

1 1 0 1 0 0 1 1 1 0

1 1 0 1 1 0 1 1 1 1

1 1 1 0 0 1 0 1 1 0

1 1 1 0 1 1 0 1 1 1

1 1 1 1 0 0 1 0 0 1

1 1 1 1 1 0 1 0 0 0

From figure 19.2 it is discovered that if the inputs D = 0

and E = 0, the extended fault-tolerant full-adder (EFTFA)

generates three garbage outputs, which is the minimum

(see figure 19.3).

Figure 19.3. The block diagram of an EFTFA, when D =

0 and E = 0.

The equivalent quantum circuit of the EFTFA is illustrated

in figure 19.4 and the dotted rectangle in the figure is

equivalent to a 2 × 2 CNOT gate. Therefore, the quantum

cost of the FTFA is 8.

Figure 19.4. The quantum implementation of the

EFTFA. Reproduced with permission from [9]. Copyright

2014 Taylor and Francis.

19.3 The fault-tolerant multiplier

Fault-tolerant multiplier circuits have special importance

because of the fact that they are the integral components of

computer systems, mobile devices, and most audio/video

components. To implement a fault-tolerant multiplier,

quantum representations of the Ex-OR, NAND, and basic

logic operations are needed. The parity-preserving quantum

fault-tolerant operations are as follows:

A. Quantum fault-tolerant Ex-OR operation: figure 19.5

presents the block diagram (block A) and the quantum

realization for the XOR operation, where the inputs are

A, B, and C, and the outputs are P = A, Q = A ⊕ B, and

R = A ⊕ C.

B. Quantum fault-tolerant basic logic operations: figure

19.6 presents the block diagram (block B) and the

quantum realization for basic logic operations, where

the inputs are A, B, and C, and the outputs are P = A,

Q = ĀB ⊕ AC, and R = ĀC ⊕ AB.

C. Quantum fault-tolerant NAND, Ex-OR, and basic logic

operations: figure 19.7 presents the block diagram

(block C) and the quantum realization for the NAND,

XOR, and basic logic operations, where the inputs are A,

B, and C, and the outputs are P = AC̄ ⊕ BC,

Q = A ⊕ B, and R = AC̄ ⊕ B̄C.

D. Quantum fault-tolerant half-adder operation: figure

19.8 presents the block diagram (block D) of half-adder

operation and its quantum realization, where the inputs

are A, B, C, and D and the outputs are P = A,

Q = A ⊕ B, R = AB ⊕ C, and S = AB̄ ⊕ D.

E. Quantum fault-tolerant full-adder operation: figure

19.9 presents the block diagram (block E) of full-adder

operation and the quantum realization, where the inputs

are A, B, C, D, and E and the outputs are

P = AC ⊕ BC̄, Q = A ⊕ B, R = A ⊕ B ⊕ C,

S = (A ⊕ B)C ⊕ AB ⊕ D, and T = AB̄ ⊕ E. The

working principles of block E are presented in table

19.3.

Figure 19.5. The fault-tolerant quantum realization of

Ex-OR operation. (a) Block diagram. (b) Quantum

implementation of block A.

Figure 19.6. The fault-tolerant quantum realization of

basic logic operations. (a) Block diagram. (b) Quantum

implementation of block B. Reproduced with permission

from [9]. Copyright 2014 Taylor and Francis.

Figure 19.7. The fault-tolerant quantum realization of

NAND, Ex-OR, and basic logic operations. (a) Block

diagram. (b) Quantum implementation of block C.

Figure 19.8. The fault-tolerant quantum realization of

the half-adder operation. (a) Block diagram. (b)

Quantum implementation of block D.

Figure 19.9. The fault-tolerant quantum realization of

full-adder operation. (a) Block diagram. (b) Quantum

implementation of block E.

Table 19.3. The truth table for block E.

Input Output

A B C D E P Q R S T

0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 1

0 0 0 1 0 0 0 0 1 0

0 0 0 1 1 0 0 0 1 1

0 0 1 0 0 0 0 1 0 0

0 0 1 0 1 0 0 1 0 1

0 0 1 1 0 0 0 1 1 0

0 0 1 1 1 0 0 1 1 1

0 1 0 0 0 1 1 1 0 0

0 1 0 0 1 1 1 1 0 1

0 1 0 1 0 1 1 1 1 0

0 1 0 1 1 1 1 1 1 1

0 1 1 0 0 0 1 0 1 0

0 1 1 0 1 0 1 0 1 1

Input Output

A B C D E P Q R S T

0 1 1 1 0 0 1 0 0 0

0 1 1 1 1 0 1 0 0 1

1 0 0 0 0 0 1 1 0 1

1 0 0 0 1 0 1 1 0 0

1 0 0 1 0 0 1 1 1 1

1 0 0 1 1 0 1 1 1 0

1 0 1 0 0 1 1 0 1 1

1 0 1 0 1 1 1 0 1 0

1 0 1 1 0 1 1 0 0 1

1 0 1 1 1 1 1 0 0 0

1 1 0 0 0 1 0 0 1 0

1 1 0 0 1 1 0 0 1 1

1 1 0 1 0 1 0 0 0 0

1 1 0 1 1 1 0 0 0 1

1 1 1 0 0 1 0 1 1 0

1 1 1 0 1 1 0 1 1 1

1 1 1 1 0 1 0 1 0 0

Input Output

A B C D E P Q R S T

1 1 1 1 1 1 0 1 0 1

19.3.1 The fault-tolerant signed multiplier

The speed of the multiplier plays an important role in the

performance of a system. In general the speed of a

multiplier depends on the algorithm and the structure of the

circuits. The Baugh–Wooley algorithm is adopted to perform

the multiplication process, as shown in figure 19.10. Baugh–

Wooley algorithms can be used directly in the complement

multiplier, improving the speed of the multiplier. It only

needs one kind of full-adder which requires supplements

and it can be achieved as shown in figure 19.9(a).

Figure 19.10. The modified Baugh–Wooley signed

multiplier.

In the signed multiplier, a Wallace tree structure is

applied for implementing one for n operands. In order to

reduce the carry transfer delay of the partial product in the

adder array of the multiplier, it is necessary to design its

Wallace tree. In other words, it improves the operating

speed in the whole adder array. In the Wallace tree, the bits

with the same weight in the corresponding partial products

are added together rather than one by one, as shown in

figure 19.11. Usually, a full-adder is used to accomplish the

addition of bits with the same weight. In the layers of the

Wallace tree, the number of partial product vectors can be

decreased according to the proportion 3:2, e.g. every three

figures produces one sum bit and one carry bit. The fault-

tolerant signed multiplier is shown in figure 19.12.

Figure 19.11. The block diagram of a fault-tolerant

quantum circuit for partial product generation.

Figure 19.12. The block diagram of a fault-tolerant

quantum circuit for signed multiplier generation.

The fault-tolerant quantum signed multiplier is composed

of block D and block E, which are the quantum realizations

of half-adder and full-adder circuits, respectively.

19.4 The quantum fault-tolerant

integer divider

Dividers are one of the major computational units in

quantum arithmetic. Integer division has applications in the

circuit design of quantum algorithms, computation of power

series, and trigonometric functions. Quantum computers of

many qubits are extremely difficult to realize. Thus the

number of qubits in quantum circuits needs to be

minimized. The fabrication constraint of realizing quantum

circuits with a large number of qubits has the objective of

optimizing the number of ancillary qubits in a quantum

circuit. Designing a scalable and reliable quantum computer

is necessary now as well as in the future. Hence fault-

tolerant quantum circuits are being explored based on

Cliford and T gates.

Cliford+T gates based on a quantum circuit design of

integer division are presented with n ancillary qubits, where

n is the number of qubits in the operands. The design has

no garbage outputs and the quantum circuit is based on the

restoring division algorithm. It employs optimized quantum

designs of conditional integer ADD operation and integer

subtraction.

19.4.1 The restoring division algorithm

The restoring division algorithm for quantum circuits is

shown in algorithm 19.1. In the algorithm, the inputs are: (i)

∣ Q[0:n−1]⟩, n-qubit register in which the dividend is stored;

(ii) ∣ D[0:n−1]⟩, n-qubit register in which the divisor is loaded;

and (iii) ∣ R[0:n−1]⟩, n-qubit remainder register which is

initiated to 0 at the start. Therefore, for initiating ∣ R[0:n−1]⟩,
n ancillary qubits are required. The algorithm executes

repeatedly and from the algorithm it can be observed that

at the end of n iterations the quotient is ∣ Q[0:n−1]⟩ and the

remainder is ∣ R[0:n−1]⟩. The divisor is retained at the output.

The quantum circuits that are required to develop the

hardware implementation of the restoring division algorithm

are: (i) left shift operation circuitry; (ii) n-qubit quantum

subtractor; and (iii) conditional ADD operation circuitry.

Combining ∣ R[0:n−2]⟩ and ∣ Q[n−1]⟩ forms an n-qubit

register which is actually equal to performing a left shift

operation. By aggregating the qubits in this way, a separate

left shift operation circuitry is not necessary.

Algorithm 19.1. Restoring division algorithm.

19.4.2 The subtractor module

Figure 19.13 shows the symbol and working principle of the

quantum subtractor circuitry. The subtractor circuitry takes

two n-qubit inputs a[0:n−1] and b[0:n−1]. The input a is

regenerated at the output. The n-qubit output s[0:n−1] has

the result of the subtraction of b and a, i.e. b − a. Figure

19.14 presents the circuit design of an N-qubit subtractor

based on an N-qubit quantum ripple carry adder. As

demonstrated in figure 19.14, a quantum ripple carry adder

is required to develop a quantum subtractor circuitry. The

approach that is followed for developing the quantum

subtractor circuitry is b − a = . Both inputs are

passed through the quantum ripple carry adder. The input

qubits b[0:n−1] are complemented at the start and at the end.

The qubits a[0:n−1] are just passed through the quantum

ripple carry adder.

Figure 19.13. Graphical representation of a quantum

subtractor.

(+ a)b

Figure 19.14. A quantum subtractor based on an N-

qubit ripple carry adder.

19.4.3 The conditional addition operation

module

Figure 19.15 presents the graphic symbol of the quantum

conditional ADD operation circuit. The quantum controlled

ADD operation circuitry operates as follows: (i) when the

input labeled ‘ctrl’ is high, the circuit output is

∣ P⟩ =∣ B + A⟩, and (ii) when the ‘ctrl’ input is low, the

circuit output is ∣ P⟩ =∣ B⟩. The complete working circuit of

quantum conditional ADD operation circuitry is

demonstrated in figure 19.16 for four-qubit operands. The

quantum conditional ADD circuit uses a modified version of

the ripple carry adder. The addition architecture uses Peres

gates to perform the addition operation. The Peres gate can

be decomposed into a quantum Feynman and a Toffoli gate.

By replacing the Feynman gates with three input quantum

Toffoli gates, it will be possible to use the control line (ctrl)

to perform addition or no operation. It is possible to extend

the four-qubit operands to any operand size.

Figure 19.15. Graphical representation of the

conditional ADD operation.

Figure 19.16. The circuit design of the quantum

conditional ADD operation. Reproduced with permission

from [8].

19.4.4 Quantum restoring integer division

circuitry

Figure 19.17 presents the quantum circuit of restoring

division for one iteration. The details of the movement of

the circuit are as follows:

Figure 19.17. The quantum restoring integer divider

circuitry design for a single iteration. Reproduced with

permission from [8].

Step 1. The ∣ D[0:n−1]⟩ keeps the divisor, ∣ R[0:n−1]⟩
initialized to zero, and ∣ Q[0:n−1]⟩ holds the dividend.

Step 2. Let ∣ Q[n−1]⟩ and ∣ R[0:n−2]⟩ be one combined

register. This allows us not to use a left shifting circuit thus

saving quantum resources.

Step 3. The combined register mentioned above in step

2 and ∣ D[0:n−1]⟩ are given as inputs to the quantum

subtractor circuitry. Register ∣ D[0:n−1]⟩ emerges unchanged.

The combined register now holds the result of subtraction of

the R and D registers. Let us call this result ∣ R − D[0:n−1]⟩.
Step 4. Qubits ∣ R − D[n−1]⟩ and ∣ R[n−1]⟩ are supplied

to a CNOT gate. ∣ R − D[n−1]⟩ is the control qubit and

∣ R[n−1]⟩ is the target qubit. The target now holds the value

of ∣ R − D[n−1]⟩ because ∣ R − D[n−1]⟩ is always zero

throughout the computation.

Step 5. The ∣ R − D[n−1]⟩ computed in step 4 now acts

as the control qubit to the conditional ADD circuit.

∣ R − D[0:n−1]⟩ and ∣ D[0:n−1]⟩ are two n-qubit inputs to the

conditional ADD operation circuit. The outputs of conditional

ADD operation are collected. ∣ R − D[n−1]⟩ is

complemented.

Step 6. All the above operations constitute the first

iteration. From algorithm 19.1 it can be seen that the whole

circuit is iterated n times. Hence the circuit in figure 19.17 is

also iterated n times. This is done by using the outputs of

the first iteration which will be used as inputs for the next

iteration.

Step 7. This process continues for n iterations. In figure

19.18 I1 represents the first iteration, I2 represents the

second iteration, and In represents the nth iteration. The

steps 1 through 6 have to go through each iteration until it

reaches n iterations.

Figure 19.18. The quantum restoring integer divider

circuitry design (for n iterations). Reproduced with

permission from [8].

Step 8. At the end of n iterations, the quotient is

∣ Q[0:n−1]⟩, the remainder is ∣ R[0:n−1]⟩, and the divisors are

retained.

19.5 Summary

In this chapter fault-tolerant adder, multiplier, and division

circuits are described with illustrations. The fault-tolerant

quantum half-adder and full-adder are discussed and we

show how circuits function as parity-preserving. The fault-

tolerant quantum adder circuits, namely FTFA and EFTFA,

are described and implemented using quantum gates, and it

is shown that a fault-tolerant adder can be used for

implementing all Boolean functions. In the fault-tolerant

quantum multiplier design a Wallace tree structure is

explained and demonstrated. A resource efficient design of

the quantum circuitry of integer division is presented by

optimizing the quantum circuit modules, and knitting them

together efficiently. It is observed that a non-restoring

division algorithm can be an attractive choice to design a

quantum integer division circuit when minimizing the

number of qubits is of primary concern. The designs can be

integrated in larger data path subsystem designs to provide

resource efficient implementation of quantum algorithms.

Critical thinking questions

1. Describe why quantum fault-tolerant circuits are

needed.

2. Discuss some applications for quantum fault-tolerant

circuits.

3. What distinguishes a quantum full-adder circuit from a

quantum fault-tolerant full-adder circuit? Draw a

diagram to explain.

4. Describe the restoring process for a quantum fault-

tolerant integer divider.

References

[1] Amy M, Maslov D, Mosca M and Roetteler M 2013 A meet-in-the-middle
algorithm for fast synthesis of depth-optimal quantum circuits IEEE Trans.

Comput.-Aided Des. Integr. Circuits Syst. 32 818–30
[2] Baugh C R and Wooley B A 1973 A twoʼs complement parallel array

multiplication algorithm IEEE Trans. Comput. 100 1045–7
[3] Khosropour A, Aghababa H and Forouzandeh B 2011 Quantum division

circuit based on restoring division algorithm 8th Int. Conf. on Information

Technology: New Generations (Piscataway, NJ: IEEE) pp 1037–40
[4] Kliuchnikov V, Maslov D and Mosca M 2012 Fast and efficient exact

synthesis of single qubit unitaries generated by Clifford and T gates
arXiv:1206.5236

[5] Li J, Peng X, Du J and Suter D 2012 An efficient exact quantum algorithm
for the integer square-free decomposition problem Sci. Rep. 2 260

[6] Qi X, Chen F, Zuo K, Guo L, Luo Y and Hu M 2012 Design of fast fault
tolerant reversible signed multiplier Int. J. Phys. Sci. 7 2506–14

[7] Thapliyal H and Ranganathan N 2013 Design of efficient reversible logic-
based binary and BCD adder circuits ACM J. Emerging Technol. Comput.

Syst. 9 17
[8] Thapliyal H, Varun T S S and Munoz-Coreas E 2016 Quantum circuit design

of integer division optimizing ancillary qubits and T-count arXiv:1609.01241
[9] Zhou R-G, Li Y-C and Zhang M-Q 2014 Novel designs for fault tolerant

reversible binary coded decimal adders Int. J. Electron. 101 1336–56

http://dx.doi.org/10.1109/TCAD.2013.2244643
http://dx.doi.org/10.1109/T-C.1973.223648
http://arxiv.org/abs/1206.5236
http://dx.doi.org/10.1038/srep00260
http://dx.doi.org/10.1145/2491682
http://arxiv.org/abs/1609.01241
http://dx.doi.org/10.1080/00207217.2013.832388

Part III

Quantum-dot cellular automata

An overview of quantum-dot cellular

automata

Quantum-dot cellular automata (QCA) are not transistor-

based, they are a type of nanotechnology. In QCA the basic

element is a cell containing multiple quantum dots. The

interaction between cells is purely Coulombic and there is

no physical transport of charge. QCA are very promising for

a number of reasons, among which their low power

consumption and high density are two important features.

Therefore, they seem to be appropriate for designing

circuits for general-purpose computation as well as for

embedded applications. Digital design in QCA is the focus of

this part of the book.

QCA technology was introduced in 1993. It consists of an

array of cells. Each cell contains several quantum dots, each

of which is a nanoparticle or a crystal made of

semiconducting materials such as silicon, cadmium,

selenide, etc. A cell typically contains four quantum dots at

the corners of a square and one central dot. Due to Coulomb

interactions, electrons may occupy two ‘diametrically’

opposite quantum dots (or two antipodal sites). Labeling the

quantum dots at the corners from 1 to 4 (in order), it can be

observed that electrons may occupy dots 1 and 3 (or 2 and

4). Each cell has bi-stable behavior, facilitating its use in

large scale cellular arrays. The physical interaction between

neighboring cells is used to implement various logic

functions. The key aspect of QCA is that the interaction

between cells is purely Coulombic and there is no transport

of charge between cells. The notion of cellular automata

(CA) is due to the fact that the state of a given cell at a

particular time depends on the state of its neighbors during

the previous clock cycle.

Arrays can, in general, be regular or irregular and can

lead to realization of various logic functions. Early efforts

were created on a single QCA device using different

approaches. Semiconductor, molecular, and magnetic

implementations have been pursued. One of the earliest

logic functions realized was the three-input majority gate.

This has been used for computation of other basic logic

functions, such as AND and OR. Combining a majority gate

with an inverter has facilitated the realization of NAND,

NOR, and other logic elements. All circuits in QCA

technology are clocked. Clocking serves as a means of

synchronization. Further, circuits for the realization of

arithmetic functions may involve some types of wires

crossing in the plane.

Contemporary microprocessors and application-specific

integrated circuits are largely based on the complementary

metal-oxide semiconductor (CMOS) technology. It is believed

that the performance of various circuits in current CMOS-

based architectures is close to reaching the limit. When the

feature size of transistors is reduced to a nanometer,

quantum effects such as tunneling take place. Further, when

device scaling takes place, the interconnections do not scale

automatically due to the effects of wire resistance and

capacitance. This part of the book introduces the reader to

QCA, an emerging nanotechnology and an alternative to

CMOS. We also examine the problem of designing efficient

circuits using QCA.

The changes that the QCA devices have experienced

have been evolutionary, but the most advanced chips still

use the same computing paradigm as their predecessors.

There is a lot of expectation that new paradigms will be

developed for the processing of information. CMOS

technology uses current switching, whereas QCA deal with

encoding the binary information as they are arrays of cells

and every cell has quantum dots. The interaction of the

quantum mechanics with the Coulomb force in every cell

determines the cell state.

In the near future, the era of ‘beyond CMOS’ will begin,

as the scaling of the current CMOS technology will reach the

fundamental limit. QCA are a transistorless computation

paradigm and a viable candidate for ‘beyond CMOS’ device

technology. The continued and fast dimensional scaling of

CMOS will eventually approach the fundamental limit. Also,

short channel effects, high power dissipation, and quantum

effects are limiting the further scaling of current CMOS

technology devices. Emerging device technology could

overcome the scaling limitation in the current CMOS

technology. Single electron transistors (SETs), QCA, and

resonant tunneling diodes (RTDs) are some of the ‘beyond

CMOS’ technologies. Among these evolving

nanotechnologies, QCA are the most favorable technology.

QCA can achieve a device density of 1012 devices/cm2 and

an operating speed of THz. The QCA device paradigm can

replace field-effect transistor (FET) based logic and exploits

the quantum effects of small size. QCA are a means of

representing binary information on cells through which no

current flows, and achieving device performance by the

coupling of those cells.

This part of the book starts with some fundamentals of

QCA circuits, which are provided in Chapter 20. Many of the

QCA gates are included in this chapter. The designs for a

QCA cell and QCA clock are described here. Chapter 21

presents the characteristics and design procedure of QCA

adder and subtractor circuits. The designs of a QCA half-

adder and -subtractor as well as a QCA full-adder and -

subtractor are also provided here. The designs for a QCA

multiplier and divider circuit are shown in Chapter 22. In this

chapter, the technique of the non-restoring binary divider is

described. The QCA asynchronous and synchronous

counters are introduced in Chapter 23. The design of a dual-

edge triggered J–K flip-flop is also discussed in this chapter.

The design procedures of the QCA decoder and encoder

circuit are introduced in Chapter 24. In this chapter, a QCA

2-to-4 decoder and QCA 3-to-8 decoder are shown. In

addition, the design of an encoder with single-feedback and

multi-feedback is also given in this chapter. Chapter 25

describes the design for a QCA multiplexer and

demultiplexer circuit. In this chapter, a QCA 2-to-1

multiplexer and QCA 4-to-1 multiplexer are presented. In

addition, a QCA 1-to-2 demultiplexer and QCA 1-to-4

demultiplexer are provided. Chapter 26 describes QCA flip-

flops and Chapter 27 covers QCA programmable logic

devices. Chapter 28 presents the design for a QCA random

access memory (RAM) cell, read only memory (ROM), and

cache memory. In addition, the design procedures for

instruction memory, data memory, arithmetic logic units

(ALUs), and integrated processors are also described in this

chapter. Chapter 29 describes the QCA processor circuit,

and Chapter 30 provides examples of applications of QCA

technology.

IOP Publishing

Quantum Computing (Second Edition)

A pathway to quantum logic design

Hafiz Md Hasan Babu

Chapter 20

Quantum-dot cellular automata

Learning objectives

Learn the significance of quantum-dot cellular

automata (QCA).

Learn the fundamental QCA components and gates.

Discuss the fundamentals of QCA circuits.

Discuss the QCA clock and its zone.

Describe the structure of a QCA cell.

Become familiar with QCA wires, unique cell

configurations, and symmetric cells.

Acquire knowledge about information and data

propagation through QCA.

Quantum-dot cellular automata (QCA) are a new

computational paradigm which encode binary information

by charge configuration within a cell instead of using the

conventional current switches. As there is no current flow,

the Coulombic interaction is sufficient for computation. This

revolutionary paradigm provides a possible solution for

transistorless computation at the nanoscale. QCA allow

operating frequencies in a high range with a small feature

size and ultra-low power consumption. Currently, devices

are becoming smaller and consume low power with a higher

frequency of operation. For this reason, optimizing the

overall cost is becoming more difficult day by day.

(20.

1.1)

For circuit layout and functionality checking, a simulation

tool for QCA circuits, QCA Designer, is used. This tool allows

users to create a custom layout and then verify QCA circuit

functionality using simulations. It includes two different

simulation engines such as a bi-stable approximation and a

coherence vector.

20.1 Fundamentals of QCA circuits

The basic properties of QCA circuits are area, delay, power,

and overall cost. The descriptions of basic components are

given below.

20.1.1 Area

The area of a QCA circuit is the area of the base rectangular

block on which the circuit is plotted. The area of a QCA

circuit is determined by multiplying the vertical length and

horizontal length of the circuit. Thus, the area (A) of a QCA

circuit is calculated as

A = Ch × Cw × L2,

where Ch = maximum number of cells in height, Cw =

maximum number of cells in width, and L = length of a cell.

The units to measure the area are m2, nm2
, and μm2.

Example 20.1.

If a circuit has 22 cells in the maximum horizontal chain, 25

cells in the maximum vertical chain, and the length of a cell

is 20 μm2, then the area of the circuit is A = 0.22 μm2.

20.1.2 Delay

Delay represents the number of clock cycles to generate the

output from an input. For a QCA circuit, the delay is the

(20.

1.2)

(20.

1.3)

value with the maximum clock cycle among all clock cycles

of different input paths to the same output of the QCA

circuit. The delay (D) is determined as

D = maxDi∈Da
(Di),

where Da = the set of minimum clock cycles of each

path, Di = the ith element of the set Da, the measuring unit

of delay is the clock cycle.

Example 20.2.

If a QCA circuit contains three different input paths such as

D1,D2, and D3 to the same output and the paths need

12, 11, and 13 clock cycles to reach the same corresponding

output, then the delay of the QCA circuit is 13 clock cycles.

20.1.3 Kink energy

Kink energy Ekink represents the energy difference between

two horizontally or vertically adjacent polarized cells with

the same or the opposite polarization and electrostatics

(Coulombʼs law) gives the means to calculate its value.

According to Coulombʼs law the following equation is

obtained:

Ekink = Fq × d,

where q = the charge of an electron and d = the

distance between two repulsive electrons.

20.1.4 Power

It is known that in a tightly coupled environment and for an

irreversible operation, each cell will dissipate Ekink for each

cycle. If the delay for each cycle is constant, then the power

dissipation is proportional to Ekink. The power dissipation of

(20.

1.4)

(20.

1.5)

any QCA circuit is directly related to the number of cells

needed to design the circuit. Thus the power (P) is

measured as

P = N × Pr,

where N = the number of cells of the circuit and Pr =

the relative power of a cell. The measuring unit of power is a

relative value. Thus it has no unit. The power needed for a

four-dot QCA is taken as 1 unit.

If a circuit needs 2345 cells and the relative power of the

QCA cell is 0.4, then the power of the QCA cell is P = 938.

20.1.5 Overall cost

Cost is the parameter of a circuit which defines its efficiency.

Cost in a QCA circuit is the measurement in terms of area,

power, and delay. The overall cost of a circuit can be

formulated in different ways. The overall cost of a circuit can

be calculated as

Cost = N × Pr × A × D,

where N = the number of cells (i.e. complexity implies

to power), Pr = relative power of a cell (which equals 1 for a

standard four-dot QCA cell), A = the area of the circuit, and

D = the delay of the circuit.

Thus the derivation of the overall cost for a standard

four-dot QCA cell is Cost = Area × Delay × P ower.

20.2 The QCA cell

In general, an electronics-based transistor functions through

the transportation of electrons, whereas QCA apply the

adjustment of electrons in a fixed area of tiny square

nanometers. QCA are implemented in a small quadratic

region which is called the QCA cell. Each small square cell

contains exactly four potential dots to hold the extra

electrons. Electrons can only reside in the potential dots.

The QCA innovation depends on the association of bi-stable

QCA cell outlines from four quantum dots. A schematic chart

of a basic cell structure is shown in figure 20.1. The cell is

charged by two free electrons by burrowing between nearby

spots. These electrons have a tendency to possess antipodal

locales as an after-effect of their shared electrostatic

Coulombic repulsion.

Figure 20.1. The structure of a QCA cell.

The potential dots are connected with electron tunnel

junctions. They can be opened for the electrons to travel

through them under a particular condition by a clock signal.

Without any interaction from outside, the two electrons will

try to separate from each other as far as possible due to the

Coulomb force that acts between them. As a result they will

reside in diagonally located potential dots, because the

diagonal is the largest possible distance for them to reside

(figure 20.2).

Figure 20.2. Electrons in potential dots.

There are two diagonals in a square, which means the

electrons can reside in exactly two possible variants in the

QCA cell. Regarding these two arrangements, they are

interpreted as a binary 0 and binary 1, i.e. each cell can be

in two states. The state 0 and the state 1 are shown in

figure 20.2. A binary system is something familiar, as

Boolean logic is used already in todayʼs computers. There, a

high voltage is often interpreted as binary 1 and a low

voltage as binary 0.

20.3 Information and data

propagation

If two QCA cells are placed next to each other, it is possible

to exchange their states, i.e. the adjustments of the

electrons in them. The QCA cell that should transfer its state

to a neighboring cell must have its tunnel junctions closed,

and the tunnel junctions in the neighboring cell have to be

opened to allow the electrons to travel through the tunnel

junctions between the potential wells. As soon as they open,

the electrons in the neighboring cell are pushed by the

Coulomb force of the original cell as far away as possible. As

they are also pushed away from each other, they will travel

into the same potential wells as in the original cell. As soon

as the tunnel junctions are closed again, the transfer of the

state is completed.

The state of a cell can also be transferred to multiple

neighboring cells. This works in the same way as for a single

neighboring cell, but the tunnel junctions of all the

sequentially neighboring cells should be opened at the

same time, which makes the transfer much faster than

transferring the state cell by cell. This allows us to build

‘wires’ made of QCA cells to transport information over

larger distances.

20.4 Basic QCA elements and gates

So far we know how to interpret and transport information

with QCA cells, as shown in figure 20.3, but yet we lack the

possibility of computations. For QCA cells, the basic gate is a

three-input majority voter. It is built from five cells, arranged

as a cross.

Figure 20.3. Binary interpretation of adjustments.

20.4.1 The QCA majority voter

It is known that the Coulomb forces of several electrons are

summed up and the majority voter takes advantage of this

effect. The cells at the top, at the left, and at the bottom

work as input connection cells. As the Coulomb forces of the

electrons of all input cells sum up, the middle cell adjusts to

the majority of adjustments of the input connection cells.

Finally the output cell adjusts to the middle cell and the

resulting state of the majority vote, as shown in figure 20.4,

can be obtained from the output cell.

Figure 20.4. The QCA majority voter.

20.4.2 The QCA AND gate

As we work in the field of QCA with known binary

representation, it is preferable to have further logic gates

with which we are already familiar. With a slight

modification, it is possible to turn the majority voter into an

AND gate.

The Boolean AND outputs are 1 if all inputs are 1,

otherwise 0. Regarding two inputs of the majority voter, as

the inputs of an AND gate and the voter should not output 1

if only one of the two inputs is 1, a fixed cell is added as the

third input that is always in the state 0. If both AND inputs

are 1, the two ones sum up to a stronger Coulomb force

than the single fixed 0 cell and the majority voter is turned

into a two-input AND gate, as shown in figure 20.5. The

fixed cell can be obtained by setting it to the 0 state and

never opening the electron tunnel junctions.

Figure 20.5. The QCA AND gate.

20.4.3 The QCA OR gate

The OR gate is built almost exactly like the AND gate, but

instead of a fixed 0, a fixed 1 QCA cell must be attached as

one input. The fixed 1 cell sums up to a stronger Coulomb

force with a single other input being adjusted to 1, so that

the OR gate will output 1, if one of the free inputs is 1.

20.4.4 The QCA NOT gate

It is also possible to build a QCA NOT gate, as shown in

figure 20.6. The implementation in QCA takes advantage of

the geometry of cell adjustments. One QCA wire is forked to

two wires. The switch of the cell adjustment takes place by

putting the output cell next to the forked wires so that only

the corners touch. Since only cell corners are touching the

right of the fork and the cells at the end of the fork will have

the same adjustment, and the cells of the right fork will not

adjust with an electron close to an electron at the corner at

the end of the fork, the adjustment on the right of the fork

will be inverted. This makes a 1 at the input and a 0 at the

output and vice versa.

Figure 20.6. The QCA NOT gate.

20.4.5 The QCA wire

A string of QCA cells acts like a wire. A representation of a

QCA wire is shown in figure 20.7. Within each clock cycle,

half of the wire is active for signal transmission, while the

other half remains steady. In the middle of the following

clock cycle, half of the past active clock zone is deactivated

and the remaining active zone cells trigger the recently

initiated cells to be polarized. In this way the signal

propagates from one clock zone to the next.

Figure 20.7. The QCA wire that propagates the signal

across the circuit.

20.5 The QCA clock

A QCA cell has four clock zones, where each clock zone has

four stages: switch, hold, release, and relax. Figure 20.8

demonstrates its operation process. In the switch stage the

QCA cells start as unpolarized and their inter-dot potential

boundaries are low. The obstructions are then raised in the

middle stage and the QCA cells can be polarized as per the

condition of the driver of the QCA gate (i.e. the information

cell). It is in this clock stage that the real calculation (or

exchanging) happens. Before the end of this clock stage,

boundaries are sufficiently high to stifle any electron

burrowing and cell states are settled. In the hold stage

boundaries are held high, so the output of the sub-exhibit

can be utilized as inputs to the following stage. In the

release stage barriers are imposed and cells are permitted

down to an unpolarized state. Finally, in the fourth clock

stage, the relax stage, cell barriers are brought down and

cells stay in an unpolarized state. Figure 20.8 demonstrates

every clock zone flag and shows the pipeline component. All

cells in a sure zone are controlled by the same QCA clock

signal. Cells in every zone perform a particular count and

the condition of a zone is then settled. Thus, they can serve

as data signs to the following zone and data moves in a

pipelined manner.

Figure 20.8. The four phases of a QCA clocking

mechanism.

20.5.1 Special cell arrangements and

symmetric cells

During the design of a QCA circuit, the situation is likely to

occur that QCA wires have to be crossed. In contrast to

classic transistor technology where wires can only cross by

inserting another layer, QCA wires can be crossed in the

same layer. This works by introducing a QCA cell type where

the four potential wells are not in the corners of the cell but

in the middle of the edges, as shown in figure 20.9.

Figure 20.9. The symmetric adjustable QCA cell.

If several of these QCA cells are put together to form a

wire, the adjustment of the succeeding cell is inverted to its

predecessor and so on. The advantage of this type of QCA

cell originates in its symmetric effect of Coulomb force on

regular cells. Although the electrons do interact with

electrons in neighboring regular QCA cells, through the

symmetry they do not push the electrons in regular QCA

cells to a particular adjustment. In the other direction

electrons in a regular cell do not push the electrons in a

symmetric cell into a particular potential well. This allows

the construction of wire crossings, as shown in figure 20.10,

of these QCA cells with regular ones. A crossing is built

using a continuous wire of special cells, building a gap in

across a wire of regular cells.

Figure 20.10. The QCA wire crossing.

Of course it has to be possible to connect symmetric QCA

cells to regular ones and vice versa. This works by putting a

regular cell as a neighbor of two symmetric cells near the

beginning or end of a wire of symmetric cells. One has to

take care as to which two symmetric cells are chosen, as

neighbors of this type are in the inverted adjustment

depending on the necessary adjustment, the original or the

inverted one, as shown in figure 20.11.

Figure 20.11. The connections between symmetric

and regular QCA cells.

20.5.2 The NOT gate clock zones

Since the NOT gate has a slightly critical zone of arranged

QCA cells, it is important to put the cells in the proper clock

zones to avoid randomly flipped adjustments of electrons

near the forking wire.

The clock zone of the input should end at the beginning

of the ‘fork’. The complete fork itself, i.e. the U-shaped wire,

should be in the subsequent clock zone of the input and the

output should be in the subsequent clock zone of the fork.

The QCA NOT gate clock zones are shown in figure 20.12.

Figure 20.12. The QCA NOT gate clock zones.

20.5.3 The majority voter clock zones

For the majority voter it is important that all cells are in the

same clock zone. Putting some cells in different clock zones

can lead to incorrect results. The center cell and the three

input cells plus the output cell have to be in the same clock

zone. The QCA majority voter clock zones are presented in

figure 20.13.

Figure 20.13. The QCA majority voter clock zones.

20.6 Summary

This chapter presents the basic components of quantum-dot

cellular automata. The QCA circuit’s overall cost in terms of

the cell area, delay, kink energy, and power is described

here. This chapter explains the QCA clock and its zone, QCA

wires and their crossing, and the connection between

symmetric and regular QCA cells. The ideas in this chapter

will help the reader to understand the different

implementations of QCA logic.

Critical thinking questions

1. Describe the applications of QCA circuits.

2. What interpretation should be given to negative results

from the necessary QCA criteria?

3. Find the area of the circuit if a circuit has 20 cells in the

maximum horizontal chain, 15 cells in the maximum

vertical chain, and the length of a cell that is 12 μm.

4. Find the delay of the QCA circuit if a QCA circuit contains

three different input paths such as D1, D2, and D3 to the

same output and need 15, 12, and 17 clock cycles to

reach the same corresponding output.

5. Find the power of the QCA cell if a circuit needs 3325

cells. Please note that the relative power of the QCA cell

is 1.4.

6. Describe some disadvantages of the QCA circuits.

References

[1] Nano-Arch Online 2012 Quantum-dot cellular automata (QCA) University of

Erlagen http://www.cs3.tf.uni-
erlangen.de/Research/KOMINA/QCA_slides.pdf (Accessed: 6 December
2018)

[2] Gladshtein M 2011 Quantum-dot cellular automata serial decimal adder
IEEE Trans. Nanotechnol. 10 1377–82

[3] Liu M and Lent C S 2005 Power dissipation in clocked quantum-dot cellular
automata circuits 63rd Device Research Conf. Digest vol 1 (Piscataway, NJ:
IEEE) pp 123–4

[4] Liu M 2006 Robustness and power dissipation in quantum-dot cellular
automata PhD Thesis University of Notre Dame, IN
https://www3.nd.edu/~lent/pdf/nd/Robustness_and_Power_Dissipation_in_
Quantum-Dot_Cellular_Automata.pdf

[5] Momenzadeh M, Huang J, Tahoori M B and Lombardi F 2005
Characterization, test, and logic synthesis of and-or-inverter (AOI) gate
design for QCA implementation IEEE Trans. Comput.-Aided Des. Integr.

Circuits Syst. 24 1881–93
[6] Tahoori M B, Huang J, Momenzadeh M and Lombardi F 2004 Testing of

quantum cellular automata IEEE Trans. Nanotechnol. 3 432–42
[7] Timler J and Lent C S 2002 Power gain and dissipation in quantum-dot

cellular automata J. Appl. Phys. 91 823–31

http://www.cs3.tf.uni-erlangen.de/Research/KOMINA/QCA_slides.pdf
http://dx.doi.org/10.1109/TNANO.2011.2138714
https://www3.nd.edu/~lent/pdf/nd/Robustness_and_Power_Dissipation_in_Quantum-Dot_Cellular_Automata.pdf
http://dx.doi.org/10.1109/TCAD.2005.852667
http://dx.doi.org/10.1109/TNANO.2004.834169
http://dx.doi.org/10.1063/1.1421217

IOP Publishing

Quantum Computing (Second Edition)

A pathway to quantum logic design

Hafiz Md Hasan Babu

Chapter 21

The QCA adder and subtractor

Learning objectives

Discuss the QCA Ex-OR gate with its proper circuit.

Describe the construction procedure of a full-

subtractor using QCA.

Design the QCA half-adder circuit.

Discuss how to build a QCA full-adder.

Construct a half-subtractor using QCA logic.

Mention the uses of QCA full-subtractors.

A quantum dot is a nano-crystal made of semiconductor

material that exhibits quantum mechanical properties. The

flow of information in the quantum-dot cellular automaton

(QCA) cell is based on the interaction of switching cells. It

encodes the binary information as the electronic

configuration of a cell. In this chapter the adder and

subtractor circuits are discussed using the QCA

implementation of the exclusive-OR (Ex-OR) gate. This

model has the potential for combinational circuits that are

compatible with QCA gates within the nanoscale.

The basic logic gates, i.e. Ex-OR and exclusive-NOR (Ex-

NOR) gates, are used in the design of digital circuits. These

gates have special functions and applications. They are

particularly useful in arithmetic operations as well as code

generators. The Ex-OR and Ex-NOR gates are usually found

as two-input gates. No multiple-input Ex-OR/Ex-NOR gates

are available since they are complex to fabricate using

current hardware. The design has a complexity of cells and

coplanar cross-overs or multiple layers that need to be

implemented.

21.1 The Ex-OR gate

It is possible to implement all combinational and sequential

logic functions by properly arranging cells so that the

polarization of one cell can adjust the polarization of a

nearby cell. A schematic representation of an Ex-OR gate in

terms of a QCA majority gate and the truth table of this gate

are shown in figure 21.1 and table 21.1, respectively. A

representation of an Ex-OR gate using the QCA Designer

tool is shown in figure 21.2.

Figure 21.1. Schematic of the Ex-OR gate.

Figure 21.2. The QCA Ex-OR gate.

Table 21.1. The truth table of the Ex-OR gate.

A B A ⊕ B

0 0 0

0 1 1

1 0 1

1 1 1

21.2 The QCA half-adder and -

subtractor

A half-adder is implemented by using the combination of an

Ex-OR gate and an AND gate. The half-adder circuits could

be implemented using different logics. The schematic of a

half-adder is shown in figure 21.3 with its truth table shown

in table 21.2, and the QCA implementation of figure 21.3 is

presented in figure 21.4.

Figure 21.3. The design of a half-adder circuit.

Figure 21.4. The design of a QCA half-adder circuit.

Table 21.2. The truth table of a half-adder.

Input Output

A B Sum Carry

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

The half-adder circuit might be used to make the

subtractor circuit with the addition of one NOT gate. The

schematic diagram of a subtractor circuit is shown in figure

21.5 with its truth table in table 21.3.

Figure 21.5. The half-subtractor.

Table 21.3. The truth table of the half-subtractor.

Input Output

A B Difference Borrow

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

Figure 21.6 represents the QCA implementation of the

half-subtractor circuit.

Figure 21.6. The QCA half-subtractor.

(21.

1)

(21.

2)

21.3 The QCA full-adder and full-

subtractor

Imagine a full-adder with three inputs (A, B, and C). The C

input will act as the carry bit which is transferred from the

previous stage. The implementation function of a full-adder

is

Sum = A ⊕ B ⊕ C,

Carry = AB + AC + BC.

As can be seen from equations (21.1) and (21.2), each

full-adder has two outputs (sum and carry) and the sum

output is the result of Ex-OR of circuit inputs. According to

equation (21.2) it should also be noted that carry can be

defined as an output of the three-input majority gate (with

A, B, and C as its inputs). Hence, it is possible to design an

optimal full-adder in QCA technology with this simple

reason. The implementation of this full-adder is shown in

figure 21.7. This figure shows that the space occupied and

the number of cells used in the proposed circuit are smaller

than in the circuits using only three-input and five-input

majority gates.

Figure 21.7. Implementation of the full-adder in QCA

technology. Reproduced with permission from [9]. CC

BY 4.0.

As can be seen from figure 21.7, the design can be

generalized to higher bit number full-adder design using the

coplanar method. This is the advantage of this full-adder.

21.3.1 Implementation of the full-adder and

full-subtractor

A full-subtractor circuit is composed of three inputs like the

full-adder. The sub and borrow outputs of the full-subtractor

are as follows:

(21.

3)

(21.

4)

Sub = A ⊕ B ⊕ C,

Borrow = AB + AC + BC.

Since the sub output of the full-subtractor is the same

as sum in the full-adder (see equations (21.3) and (21.4)),

implementing full-adder and full-subtractor circuits in one

integrated structure is reasonable. Again it should be

mentioned that from equations (21.3) and (21.4), to

generate the carry and borrow a majority gate is needed.

Since both circuits have the same inputs and use the

majority and similar Ex-OR gates, it is possible to design an

integrated circuit for both operations. Therefore, a new full-

adder and full-subtractor structure with the minimum

number of quantum cells will be introduced.

Figure 21.8 shows the implementation of the proposed

circuit. As it is obvious in the figure, this circuit makes use of

all the gates in the adder. Although an inverter gate and one

majority gate are added to the circuit, it is more efficient in

comparison to other circuits in terms of the number of cells

and area. As can be seen, the full-adder and full-subtractor

have fewer cells and smaller area with good delay

performance.

Figure 21.8. Implementation of the full-adder and full-

subtractor in QCA technology. Reproduced with

permission from [9]. CC BY 4.0.

21.4 Summary

This chapter presents the QCA adder and subtractor circuits.

The half-adder and half-subtractor circuits are designed from

the Ex-OR gate and the schematic and QCA implementation

of the circuits are described. Moreover, the full-adder and

full-subtractor are presented together in the QCA

implementation.

Critical thinking questions

1. Describe a method to construct a compact QCA adder.

2. Describe the uses of QCA subtractors.

3. Is it possible to use a QCA adder circuit as a QCA

subtractor? Explain using an appropriate figure.

4. What do the terms minuend and subtrahend denote in a

QCA subtractor?

5. Let the inputs of a QCA adder be A and B. What will the

output be if A = B?

References

[1] Ahmad F, Bhat G M and Ahmad P Z 2014 Novel adder circuits based on
quantum-dot cellular automata (QCA) Circuits Syst. 5 142

[2] Hayati M and Rezaei A 2015 Design of novel efficient adder and subtractor
for quantum-dot cellular automata Int. J. Circuit Theory Appl. 43 1446–54

[3] Lakshmi S K 2010 Efficient design of logical structures and functions using
nanotechnology based quantum dot cellular automata design Int. J. Comp.

Appl. 3 35–42
[4] Polisetti S and Santhosh K 2008 QCA based multiplexing of 16 arithmetic

and logical subsystem—a paradigm for nano computing 3rd Annual IEEE-

Int. Conf. on Nano/Micro Engineering Molecular System, Hainan Island,

China (Piscataway, NJ: IEEE)
[5] Rani T S, Karmakar S, Metri A A and Sharan P 2015 Comparative study of

half adder and subtractor circuits based on quantum-dot cellular automata
(QCA) Int. Conf. on Advances in Computer and Communication Engineering

vol 3 pp 61–7
[6] Shahidinejad A and Selamat A 2012 Design of first adder/subtractor using

quantum-dot cellular automata Adv. Mater. Res. 403 3392–7
[7] Tougaw P D and Lent C S 1999 Logical devices implementation using

quantum dot cellular automata J. Appl. Phys. 75 1818
[8] Walus K, Dysart T J, Jullien G A and Budiman R A 2004 QCADesigner: a

rapid design and simulation tool for quantum-dot cellular automata IEEE

Trans. Nanotechnol. 3 26–31
[9] Zoka S and Gholami M 2019 A novel efficient full adder–subtractor in QCA

nanotechnology Int. Nano Lett. 9 51–4

http://dx.doi.org/10.4236/cs.2014.56016
http://dx.doi.org/10.1002/cta.2019
http://dx.doi.org/10.4028/www.scientific.net/AMR.403-408.3392
http://dx.doi.org/10.1063/1.356375
http://dx.doi.org/10.1109/TNANO.2003.820815
http://dx.doi.org/10.1007/s40089-018-0256-0

IOP Publishing

Quantum Computing (Second Edition)

A pathway to quantum logic design

Hafiz Md Hasan Babu

(22.

1)

Chapter 22

The QCA multiplier and divider

Learning objectives

Explain the QCA multiplier.

Calculate the bit product matrix for four-bit multiplication using QCA.

Understand the multiplication network.

Define the QCA divider.

Discuss QCA multiplication networks with an example.

Construct a QCA divider.

Design a multiplier for the QCA.

In this chapter the QCA multiplier and divider circuits are discussed with

schematic diagrams and QCA layouts. For the multiplier circuit, the filter

network is explained and illustrated and finally the QCA implementation is

presented. For the divider circuit, non-restoring division techniques are

explained using a schematic and the QCA layout.

22.1 The QCA multiplier

The multiplier has important functions in signal processing and various other

applications. With advancements in technology, high speed, low power

consumption, regularity of layout and hence low area, or even a combination

of these, can be applied in one multiplier. This makes them suitable for

various high speed, low power, and compact implementations. In general, the

multiplication method uses add and shift algorithms.

To perform multiplication of two numbers, we need to start with the filter

networks, i.e. the finite impulse response (FIR) filter, and the output of the

network is defined by

yi =
N−1

∑
k=0

bkxi−k.

Let Z −1
 be the one cycle delay operator such that Z −1xi = xi−1. Z o

 is

defined by the unit operator and Z −n
 is defined by Z −n = Z −1Z −n+1. The

(22.

2)

characteristics are the following:

Z −nxi = xi−n.
Z −1F(x) = F(Z −1x).
If C is the time invariant, Z −1C = C.

Equation (22.2) can be implemented by the network presented in figure

22.1. The circles in the figure with bi represent multiplication by the constant

written inside them and ⊕ entails the addition of two inputs. The data xi, bi,

and yi are words of arbitrary size.

Figure 22.1. The FIR filter network.

In the pipeline design both upper and lower signal lines take the same

additional delay units. It is assumed that Z − 1
4 comprises the possibility and

application of the Z − 1
2 delay element to each section with upper and lower

lines. Equation (22.3) proves that figure 22.2 provides the correct filter output

result with N/2 cycle delays.

Figure 22.2. The pipelined FIR filter network.

yi = ∑N−1
k=0 bkxi−k

= ∑N−1
k=0 bkZ −kxi

= (∑N−1
k=0 bkZ −k)xi.

(22.

3)

The pipelined FIR filter outputs are the following:

22.1.1 Multiplication networks

The above relations of a channel system can be connected for the duplication

procedure. Let us consider an example, where an unsigned number

framework is imagined; figure 22.3 shows the bit item matrix for an unsigned

multiplication. For this situation only single digit calculations are utilized in

the network, so all additions and multiplications utilize binary calculations. A

one-digit multiplication is addressed by a logical AND and a one-digit addition

presents to a full-adder. The fundamental difference between the FIR filter

and the multiplication network is the treatment of the carry-out of the full-

adder. The channel organizes an inside use carry flow stream, yet the

multiplication arrangement needs distinct signal streams, so the system for

multiplication ought to be changed in a similar manner to the filter channel.

Figure 22.3. The bit product matrix for unsigned multiplication.

Let (ai; bi) be the multiplicand and multiplier pair and pi be the product

sum of the bit position i. Bits ai and pi correspond to the words xi and yi of the

filter example. The position i is considered as the input applied at time i.

Define the sum and carry-out of the full-adder at the ith time and jth location

as (sij, cij) when 0 ⩽ i ⩽ 2N − 1 and 0 ⩽ j ⩽ N − 1, where j is numbered

= Z − 1
2 (bN−1Z − 3

2 (N−1) + Z − 1
2 (bN−2Z − 3

2 (N−2) + ⋯ + Z − 1
2 (b0Z 0)))xi

= Z − N
2 bN−1Z −(N−1)xi + Z − N

2 bN−2Z −(N−2)xi + ⋯ + Z − N
2 b0xi

Z − N
2 (∑N−1

k=0 bkZ −k)xi

= Z − N
2 yi.

(22.

4)

(22.

5)

from right to left. Assume that the sum generation takes at least Z − 1
2 and the

carry generation takes at least Z − 1
4 . Although figures 22.1 and 22.2 ignored

the zeroth full-adder, the derivation includes that adder. The implementation

can be performed in two ways:

Equation (22.4) sends the carry-out in a backward direction with

minimum delay. Equation (22.5) instead uses a feedback loop to the adder

itself using a one clock delay unit. Both handle the carry-out correctly,

carrying it to the higher bit calculation. They are called a carry shift

multiplication (CSM) and a carry delay multiplication (CDM), respectively.

Figures 22.4 and 22.5 present the network diagrams based on equations

(22.4) and (22.5). From the stream direction of the information in and out,

they are called right-to-left (RtL) systems. The calculated yield line of a full-

adder is the carry-out. The CSM configuration has the advantage of the least

delay for the convey shift while the CDM configuration minimizes the latency

of the yield.

Figure 22.4. The RtL carry shift multiplication network.

In this realization, the minimum latency from the first input to first output

is either 3N/4 or N/2 cycles. From figure 22.1 the redirected output to the

right side, which is the same side to the input in figure 22.5 is present for the

(sij, cij) = Add(bjZ
− 7

4 jai, Z − 3
4 si(j−1), Z − 1

4 ci(j+1))

= Add(bjai− 7
4 j, s(i− 3

4)(j−1), c(i− 1
4)(j+1))

(sij, cij) = Add(bjZ
− 3

2 jai, Z − 1
2 si(j−1),Z −1cij

)

= Add(bjai− 3
2
, s(i− 1

2)(j−1), c(i−1)j).

(22.

6)

redirection graph and for a pipeline design, can be redrawn as shown in figure

22.6 using the following equation:

Figure 22.5. The RtL carry delay multiplication network.

Figure 22.6. The redirected FIR filter network.

Finally, figure 22.6 is a network design which is comparable to figure 22.2.

The main difference is that there exists a much smaller latency from the first

input to the first output. Figure 22.7 presents the block diagram of a

redirected pipelined FIR filter network which can easily be derived from figure

22.6.

Z − 1
2 yi = Z − 1

2 (∑N−1
k=0 bkZ −k)xi

= Z − 1
2 (∑N−1

k=0 bkZ − k
2 Z − k

2)xi

= Z − 1
2 (∑N−1

k=0 Z − k
2 bkZ − k

2)xi.

(22.

7)

(22.

8)

Figure 22.7. The redirected pipelined FIR filter network.

Based on figure 22.6, the multiplication networks are represented by

equations (22.7) and (22.8) depending on the carry-out handling. Figures 22.8

and 22.9 show the respective network implementations. Similarly, the

networks are called a right-to-right (RtR) networks and they are distinguished

by the carry flow as either CSM or CDM networks. The CSM design has the

minimum delay of the carry shift and the CDM design has the minimum

latency to the output:

Figure 22.8. The RtR carry shift multiplication network.

(sij, cij) = Add(bjZ
− 1

4 jai, Z − 3
4 si(j+1), Z − 1

4 ci(j−1))

= Add(bjai− 1
4 j, s(i− 3

4)(j+1), c(i− 1
4)(j−1))

(sij, cij) = Add(bjZ
− 1

2 jai, Z − 1
2 si(j+1),Z −1cij

)

= Add(bjai− 1
2
, s(i− 1

2)(j+1), c(i−1)j).

Figure 22.9. The RtR carry delay multiplication network.

22.1.2 QCA multiplication networks

The QCA circuit has a four-phase clock and the circuit areas are divided into

four clock zones. One clock zone delay is denoted by the D−1 operator which

corresponds to a quarter cycle. That is, D−4 = Z −1. Based on the QCA circuit

characteristics, one clock zone delays a quarter clock, so that the delay

matches one D−1
 operation. Assume a logical AND operation delay by one

D−1
 operation and one full-adder sum and carry-out computation from the

input delay by D−2 and D−1 operations, respectively. Wires also cause some

delay based on the wire length. After incorporating these characteristics the

filter networks are redrawn as figures 22.10 and 22.11. The delay amounts in

the upper and lower signal flows in either case are chosen to make one clock

cycle difference between the adjacent paths.

Figure 22.10. The FIR filter network for QCA.

(22.

9)

(22.

10)

(22.

11)

(22.

12)

Figure 22.11. The redirected FIR filter network for QCA.

From the filter network examples, the multiplier networks for QCA are

drawn. Based on equations (22.4)–(22.5) and (22.7)–(22.8), equations (22.9)–

(22.10) and (22.11)–(22.12) are reorganized for QCA multiplication. The

former figures are revised by the carry flow routes. The serial multiplier can

be realized with four distinct possibilities, as shown in figures 22.12, 22.13,

22.14, and 22.15. The multiplier block diagram and the modified multiplier

block diagram are presented in figures 22.16 and 22.17, respectively.

(sij, cij) = Add(bjD
−7j−2ai, D−3si(j−1), D−1ci(j+1))

= Add(bjai−7j−2, s(i−3)(j−1), c(i−1)(j+1))

(sij, cij) = Add(bjD
−6j−2ai, D−2si(j−1),D−4cij

)

= Add(bjai−6j−2, s(i−2)(j−1), c(i−4)j)

(sij, cij) = Add(bjD
−j−2ai, D−3si(j+1), D−1ci(j−1))

= Add(bjai−j−2, s(i−3)(j+1), c(i−1)(j−1))

(sij, cij) = Add(bjD
−2j−2ai, D−2si(j+1),D−4cij

)

= Add(bjai−2j−2, s(i−2)(j+1), c(i−4)j).

Figure 22.12. The RtL CSM network for QCA.

22.1.3 Multiplier design

The multiplication track is spread over a structure like figure 22.5 except

multiplying Z − 1
2 to all the horizontal stream delay units. This design

intrinsically experiences a lengthy delay and has an redundant right-most full-

adder. An RtR structure is nominated for QCA execution since it is know to

reduce the inactivity of the first input and output. The final proposal has two

substitutes, as depicted in figures 22.12 and 22.13. Figure 22.14 presents the

general block diagrams of QCA multipliers and figure 22.15 shows the block

diagrams of the improved designs for QCA circuits.

Figure 22.13. The RtL CDM network for QCA.

Figure 22.14. The RtL CSM network for QCA.

Figure 22.15. The RtR CDM network for QCA.

Figure 22.16. Multiplier block diagrams. (a) RtR CSM. (b) RtR CDM.

22.1.3.1 QCA implementation

Figure 22.18 describes the bit product matrix for four-bit multiplication.

Figure 22.17. Modified multiplier block diagrams. (a) RtR CSM. (b) RtR

CDM.

Figure 22.18. The bit product matrix for four-bit multiplication.

Full-adders are used for the carry shift multiplier and bit-serial addresses

are used for the carry delay multiplier. Those addresses are made using the

carry flow adder (CFA), which is a layout optimized ripple carry adder. The bit-

serial adder is similar to the full-adder except that the carry-in and carry-out

are connected internally with a one clock delay. Figures 22.19 and 22.20 show

the schematics and layouts of both adders.

Figure 22.19. One-bit adder schematic. (a) Full-adder. (b) Bit-serial

adder.

Figure 22.20. QCA one-bit adder layouts. (a) Full-adder. (b) Bit-serial

adder. Reproduced with permission from [2]. Copyright 2007 IEEE.

Using the above mechanism, the four-bit RtR CSM and CDM are designed

as shown in figure 22.17. These block diagrams are used to implement the

multiplier circuits, as shown in figures 22.21 and 22.22. Multipliers for larger

word sizes can also be implemented easily by adding additional bit slices, i.e.

32-bit CSM and CDM are shown in figures 22.23 and 22.24.

Figure 22.21. The layout of a four-bit QCA carry shift multiplier.

Reproduced with permission from [2]. Copyright 2007 IEEE.

Figure 22.22. The layout of a four-bit QCA carry delay multiplier.

Reproduced with permission from [2]. Copyright 2007 IEEE.

Figure 22.23. The layout of a 32-bit QCA carry shift multiplier.

Reproduced with permission from [2]. Copyright 2007 IEEE.

Figure 22.24. The layout of a 32-bit QCA carry delay multiplier.

Reproduced with permission from [2]. Copyright 2007 IEEE.

22.2 The QCA divider

The divider is the most entangled and tedious circuit among all the math

units. However, for the advancement of exact instrumentation, i.e. for

spaceflight and radar innovations, the divider is vital. Numerous calculations

are utilized for the execution of the divider, specifically re-establishing, non-

re-establishing, Sweeney, Robertson and Tocher techniques, and the Newton

iterative calculation. Re-establishing and non-re-establishing calculations

contain expansion and subtraction, which are appropriate for coordinated

circuit usage. The generally utilized calculation in the divider is the non-re-

establishing division, and Huanqing displayed the structure of a non-re-

establishing binary array divider in QCA.

22.2.1 The non-restoring binary divider

To understand the non-restoring division, it is necessary to explain the

restoring division algorithm. The following notation will be used in the divider

section:

N: numerator or dividend

Y: denominator or divisor

Ri: partial remainder after ith iterations, i = number of iterations

n: number of bits

q: quotient set for the algorithm

Q: quotient for the division

(22.

13)

(22.

14)

(22.

15)

(22.

16)

(22.

17)

The restoring algorithm is the basic method for division operation, and the

details of the method are described by the following set of equations:

qi+1 = {

Ri+1 = 2Ri − qi+1. Y .

The partial remainder is going through a left shift of Ri and a subtraction:

Ri+1 = 2Ri − 1. If Ri + 1 is positive, then qi+1 = 1, else qi+1 = 0 and a

restoring addition is needed, as shown in equation (22.15). The addition is

used to restore the proper partial remainder, Ri+1 = Ri+1 + Y = 2Ri, as

shown in equation (22.17).

To overcome the problems of restoring division, we undertake an

alternative method of binary division, the non-restoring division also known as

the add–subtraction alternate algorithm, and the relevant divider is called

non-restoring division (NRD). In this algorithm if a negative partial remainder

is produced at the end of a certain cycle, no restoration is executed.

The non-restoring division operation is performed by the following

formulas:

qi+1 = {

Ri+1 = {

r = {

where i = 0, 1, ⋯ , n − 1 is the recursion index. The initial partial

remainder R0 equals the dividend, and r is the final remainder.

In this manner, from equations (22.15)–(22.17) above it is anything but

difficult to see that each time the negative partial remainder portion shows

up, the non-re-establishing calculation makes one expansion stride not

exactly as the re-establishing strategy. Thus there will be a very critical

reduction of the quantity of clock cycles over the whole division process.

In binary non-restoring division, partial remainders are obtained by a

subtraction or an addition between the dividend and the successively right-

shifted versions of the divisor. The quotient bit is determined by the sign of

1, if 2Ri > Y

0, if 2Ri < Y ,

1, if Ri > 0

0, if Ri < 0,

2Ri − Y , if Ri > 0

2Ri + Y , if Ri < 0,

2−n. Rn, if Rn > 0

2−n. (Rn + Y) if Rn < 0,

the partial remainder which also decides whether to add or subtract the

shifted divisor in the next cycle.

A two-dimensional array of pipelined two’s-complement adder/subtractor

cells (CAS cells) can be used to implement the non-restoring algorithm.

Fundamentally the array consists of columns of carry propagate adders with

one controlled input bit P. Figures 22.25(a) and (b) illustrate an array divider

with a two-bit divisor (0. y1y2) and an four-bit dividend (0. x1x2x3x4). The

first bit of both the divisor and dividend are their signs, it is used to represent

a positive number. Each logic cell is made up of a full-adder and an Ex-OR

gate. The Ex-OR gate provides the divisor input to the full-adder. The control

signal P determines the function of the CAS cell, namely whether an addition

or a subtraction is to be executed. The two-bit divisor and the double-length

four-bit dividend are imported at the top and right edges of the array,

respectively. At first, a three-bit quotient is produced at the left side of the

array. Then every quotient bit is transported to the next row as the control

signal P and the low carry of the right-most cell. The three-bit final reminder

appears at the bottom of the array.

Figure 22.25. The binary array divider. (a) CAS cell. (b) Four-bit

dividend, two-bit divisor.

In this section, the presented QCA multiplication circuit depends on

pipeline engineering. The sequential parallel multiplier is a conceivable

answer for this requirement, and the standard QCA pipeline configuration has

the advantage of reducing wire delays.

22.2.2 Divider implementation

The non-restoring array divider is composed of CAS cells that have one full-

adder and one Ex-OR gate. Figure 22.26 shows the CAS cell layout. The Ex-OR

gate is demonstrated in the dashed box and it can be designed using only

four majority gates and one inverter, its delay is a full clock cycle. The rest of

the cell is a one-bit full-adder; it can be constructed using only three majority

gates and two inverters. The full-adder takes three inputs,

(Ex‐OROUT , A, and Ci) and gives two outputs (Si = A ⊕ B ⊕ Ci and

Co = MAJ(A, B, Ci)). Both the outputs have a latency of 1 1
4

 clock cycles.

The different colors in the layout are used to distinguish different clock zones.

Figure 22.26. The QCA layout of the CAS cell.

An n-bit divider is formed by combining n2 CAS cells to the regular array

shown in figure 22.27; only n = 3 is presented here for simplicity. In the figure

the total number of QCA cells is 3742 and the area of the divider layout is

6.22 μm2. Compare this to the eight-bit NRD implemented by 45 nm
complementary metal-oxide semiconductor (CMOS) technology which has an

area of 2015.64 μm2
. It is very easy to see that the QCA NRD is much more

area efficient than the normal divider because the area of the eight-bit QCA

NRD is 56.98 μm2
, which also shows the advantage of the QCA device over

traditional transistors.

Figure 22.27. The QCA representation of the 3 × 3 non-restoring array

divider.

22.3 Summary

QCA multiplier and divider circuits are structured with detailed calculations.

For the multiplier, a four-bit and 32-bit carry shift multiplier, and a four-bit and

32-bit carry delay multiplier are described. For the divider, a non-re-

establishing binary array divider is discussed using QCA technology. It is built

using CAS cell blocks.

Critical thinking questions

1. Describe the applications of the QCA multiplier with appropriate

examples.

2. What kind of network is used in multiplication networks? Describe the

network using a diagram.

3. How many types of distinct possibilities can be realized by the serial QCA

multiplier? Describe each category in detail.

4. Describe the differences between the QCA multiplier and the QCA divider.

References

[1] Cappa M and Hamacher V C 1973 An augmented iterative array for high-speed binary division
IEEE Trans. Comput. C-22 172–5

[2] Cho H et al 2007 Serial parallel multiplier design in quantum-dot cellular automata 18th IEEE

Symp. on Computer Arithmetic (Piscataway, NJ: IEEE) pp 7–15
[3] Cho H and Swartzlander E E 2006 Modular design of conditional sum adders using quantum-dot

cellular automata 6th IEEE Conf. on Nanotechnology vol 1 (Piscataway, NJ: IEEE) pp 363–6
[4] Cohen D 1987 A mathematical approach to computational network design Systolic Signal

Processing Systems (New York: Marcel Dekker) pp 1–29
[5] Cui H, Cai L, Yang X, Feng C and Qin T 2014 Design of non-restoring binary array divider in

quantum-dot cellular automata IET Micro Nano Lett. 9 464–7
[6] Shin S-H, Jeon J-C and Yoo K-Y 2013 Wire-crossing technique on quantum-dot cellular automata

NGCIT2013, the 2nd Int. Conf. on Next Generation Computer and Information Technology vol 27

pp 52–7
[7] Walus K, Dysart T J, Jullien G A and Budiman R A 2004 QCADesigner: a rapid design and

simulation tool for quantum-dot cellular automata IEEE Trans. Nanotechnol. 3 26–31
[8] Wang Y and Lieberman M 2004 Thermodynamic behavior of molecular-scale quantum-dot cellular

automata (QCA) wires and logic devices IEEE Trans. Nanotechnol. 3 368–76

http://dx.doi.org/10.1109/T-C.1973.223680
http://dx.doi.org/10.1049/mnl.2014.0148
http://dx.doi.org/10.1109/TNANO.2003.820815
http://dx.doi.org/10.1109/TNANO.2004.828576

IOP Publishing

Quantum Computing (Second Edition)

A pathway to quantum logic design

Hafiz Md Hasan Babu

Chapter 23

QCA asynchronous and synchronous

counters

Learning objectives

Define an asynchronous counter.

Explain the asynchronous backward counter.

Construct a dual-edge triggered J–K flip-flop using

QCA.

Design a three-bit asynchronous backward counter

and a two-bit counter circuit in QCA.

Discuss the synchronous counter in detail.

Construct one-bit and three-bit synchronous

counter circuits using QCA.

Acquire knowledge of QCA synchronous counters.

In this chapter, quantum-dot cellular automaton (QCA)

asynchronous and synchronous counters are described. In

the asynchronous counter section, a dual-edge triggered J–K

flip-flop is presented with its schematic and QCA

implementation. In the synchronous counter section, J–K-

type and T-type flip-flops are explained with their graphic

symbols, schematics, and QCA layouts.

23.1 The asynchronous counter

In this section a falling-edge triggered J–K flip-flop is

designed based on a QCA implementation. A dual-edge

triggered J–K flip-flop is designed using QCA by arranging

special clock zones precisely and serially. The dual-edge

triggered flip-flop requires half of the clock compared to the

falling-edge triggered J–K flip-flop and the clock power

consumption can be reduced significantly. Based on dual-

edge triggered J–K flip-flop an asynchronous backward

counter design is explored.

23.1.1 The dual-edge triggered J–K flip-flop

A dual-edge triggered J–K flip-flop is designed with a dual-

edge triggered structure. The QCA cells have quantum dots

18 nm in width and 5 nm in height. They are placed on a

grid with a cell center-to-center distance of 20 nm. Figure

23.1 shows the layout of the dual-edge triggered structure.

Its input is a clock pulse (CP) and the output will only be

high level when the CP is at its rising and falling edge. The

output is added as the level input for level-triggered J–K flip-

flop, as shown in figure 23.2.

Figure 23.1. Layout of a dual-edge triggered structure.

Figure 23.2. A level-triggered J–K flip-flop description.

It is necessary to take some precaution with the CP,

because it is different to the QCA clock zone signal. It is just

an input of a flip-flop while the QCA clock zone signal

controls signal flow. Here the different shades of gray

represent the different clock zones (clock zones 0, 1, 2, and

(23.

1)

3). The truth table of the dual-edge triggered structure is

given in table 23.1.

Table 23.1. The truth table of figure 23.1.

CP CPold
AND 1 =

∪ CPold

AND 2 =

CP ∪
OR

1 0 1 0 0 0 0

1

n → 0
1 1 0 1 0 1

0 1 0 1 0 0 0

0

n → 1
0 0 1 0 1 1

23.1.2 The design of dual-edge triggered J–K

flip-flop

A dual-edge triggered J–K flip-flop is constructed using the

aforementioned dual-edge triggered structure. The dual-

edge triggered J–K flip-flop comprises QCA logic gates, such

as AND gates, OR gates, and inverters. A schematic diagram

of the dual-edge triggered J–K flip-flop is shown in figure

23.3, in which the dual-edge triggered structure is shown by

the dotted box. The state transfer equation of the dual-edge

triggered J–K flip-flop is

Qn+1 = Qn + (level input)(J + Qn).

CP CPold CP CPold

level input Qn K

Figure 23.3. Schematic diagram of the dual-edge

triggered J–K flip-flop.

The layout of the dual-edge triggered J–K flip-flop is

shown in figure 23.4. The three yellow boxes denote the J, K,

and CP inputs, respectively. From the layout it can be

observed that there is a clock cycle delay at the output of

(J
n

+ Qn) to ensure timing and delay matching. This

makes sure that the CP can capture the values of J, K at the

front edge when the CP is falling or rising. When the edge of

the CP is applied, the level input becomes 1. Then the level-

triggered J–K flip-flop carries through a different operation

according to J and K. The dual-edge triggered structure and

the level-triggered J–K flip-flop compose a dual-edge

triggered J–K flip-flop. The detailed functional description of

this dual-edge triggered J–K flip-flop is as follows:

Q K

Figure 23.4. Layout of the dual-edge triggered J–K flip-

flop.

1. If J = 0, K = 0, and level input = 0, the outputs of the

dual-edge triggered J–K flip-flop do not change. If the

falling or rising edge of the clock pulse is applied, level

input = 1 and, according to equation (23.1), the output

at the end of the edge is Qn+1 = Qn
. This is called a

holding state.

2. If J = 0, K = 1, and level input = 0, the output of the

dual-edge triggered J–K flip-flop does not change. If the

falling or rising edge of the clock pulse is applied, level

input = 1 and, according to equation (23.1), the output

at the end of the edge is Qn+1 = 0. This is called set 0

in J–K flip-flop.

3. If J = 1, K = 0, and level input = 0, the output of the J–K

flip-flop does not change. If the falling or rising edge of

the clock pulse is applied, level input = 1 and, according

(23.

2)

to equation (23.1), the output at the end of the edge is

Qn+1 = 1. This is called set 1 in the J–K flip-flop.

4. If J = 1, K = 1, and level input = 0, the output of the J–K

flip-flop does not change. If the falling edge of clock

pulse is applied, level input = 1 and, according to

equation (23.1), the output at the end of the edge is

Qn+1 = Qn
. At this time J–K flip-flop will act as a one-bit

counter.

23.1.3 The asynchronous backward counter

Any sequential logic circuits can be designed using the J–K

flip-flop and additional combinational circuits. Counters are

widely used sequential circuits in digital systems. In this

section the QCA implementation of a mod-8 asynchronous

backward counter is described using the dual-edge

triggered J–K flip-flop.

The equation of the n-bit asynchronous backward counter

is

A counter circuit has n flip-flops and it includes 2n

possible states. A mod-8 counter can count from 0 to 7. On

the other hand, the backward counter, which is from 7 to 0,

that is the state Q3Q2Q1 is

111 → 110 → 101 → 100 → 011 → 010 → 001 → 000, as

presented in equation (23.2). Large modular size counters

can be implemented by simply adding additional bit slices of

dual-edge triggered J–K flip-flops. The schematic diagram of

Ji = Ki = 1, i = 1

Ji = Ki = ¯Qi−1, i = 1, 2, 3, ⋯ , n

CPi = { CP,i=1,2
Qi−1,i=3,4,⋯,n

}.

a three-bit asynchronous backward counter is shown in

figure 23.5(a) and its QCA implementation is shown in figure

23.5(b). In this design, three dual-edge triggered J–K flip-

flops are applied. The first two dual-edge triggered J–K flip-

flops are clocked by CP, and the last dual-edge triggered J–K

flip-flop is clocked by the inversion of Q2. It can be seen

from the figure that the inputs of J and K of the first dual-

edge triggered J–K flip-flop are logic 1 and the output Q1 will

change state for every CPʼs rising and falling edges. Then

the CP is delayed the same number of clock cycles as the

first dual-edge triggered J–K flip-flop is delayed. Then the

delayed CP and Q1 are imported to the second dual-edge

triggered J–K flip-flop simultaneously. The Q2 will change its

state depending on the value of Q1
. When Q1 = 0, Q2 will

change its state, and when Q1 = 1, Q2 will hold its state. The

mechanism of the last dual-edge triggered J–K flip-flop is the

same as the previous flip-flops. The only difference is that it

is driven by Q2. Similarly, a QCA encoder with multi-

feedback is presented in figure 23.6.

Figure 23.5. The QCA encoder with multi-feedback. (a)

Block diagram. (b) QCA layout.

Figure 23.6. The QCA three-bit asynchronous

backward counter. (a) Block diagram. (b) QCA layout.

23.2 The synchronous counter

The synchronous counter circuit can be constructed using

any types of flip-flops. In QCA technology, synchronous

counters have been implemented based on the J–K-type flip-

flop (J–K-FF) and T-type flip-flop (T-FF). However, to-date

there has been no implementation of synchronous counters

using the D-type flip-flop (D-FF) in QCA technology. Here,

efficient QCA synchronous counters are designed based on

D-FFs. A QCA falling-edge triggered cascaded design is

discussed in this section which employs well-optimized

level-sensitive D-FFs in parallel with an ‘edge-to-level’

converter to realize synchronous counters with different bit

sizes.

An innovative QCA design of a level-sensitive D-FF is

explained here with the goal of building a high performance

constructive model for implementing different sequential

circuits in QCA technology, in particular QCA counters. The

D-FF is a memory element with two inputs (D and CLK) and

an output (Q) whose graphic symbol is shown in figure

23.7(a). It implements the following functionality:

transparent (Q follows input D) and hold (Q remains

unchanged). The logic function of the level-sensitive D-FF

design can be expressed using equation (23.3).

Figure 23.7. The QCA sensitive D-flip-flop. (a) Graphic

symbol. (b) Schematic diagram. (c) QCA

implementation. Reproduced with permission from [1].

Copyright 2017 Elsevier.

(23.

3)

(23.

4)

The operation of this D-FF is shown in table 23.2.

According to this table when the clock (CLK) signal is

activated by 1, the value of data input (D) is stored in the

output (Q) and when CLK signal is deactivated by 0, the

output is not changed. Due to the fact that majority gates

are key components in designing QCA circuits, the

corresponding design equation can also be represented

based on majority voter gates, as shown in equation (23.4):

Qt = CLK. D + . Qt−1

Qt = Maj(Maj(CLK, D, ‵0’), Maj(, Qt−1, ‵0’)).

Table 23.2. The operation table of the level-sensitive D-FF.

CLKin(t − 1) CLKin(t) CLKout

0 0 0

0 1 0

1 0 1

1 1 0

The corresponding schematic diagram of the level-

sensitive D-FF is illustrated in figure 23.7(b). According to

this figure, the design requires three majority gates

connected together in two successive gate-levels. Figure

23.7(c) depicts the QCA layout of a D-FF with regular clock

zones. It is implemented using the 4 × 4 USE grid with

square dimensions of 5 × 5 QCA cells. As shown in figure

23.7(c), when the CLK signal is in ‘high’, the input bit D is

CLK

CLK

transferred into the output Q and stored in the closed loop.

On the other hand, when the CLK signal is in ‘low’, the

stored value is preserved in the loop due to a QCA pipelined

process. It consists of 74 cells in an area of 0.1 μm2 and a

latency of 1.5 QCA clocking cycles from input to output.

23.2.1 QCA synchronous counters

In this subsection a well-optimized QCA design of n-bit

synchronous counter is described. A counter design

comprises n D-FFs and other simple combinational circuits

to generate 2n
 ascending count states. The level-sensitive

D-FF is susceptible to noise if the period of the positive level

is long in the clock signal. In this case, the output of D-FF

would have a race-round condition. In order to avoid this

unstable phenomenon, an ‘edge-to-level’ converter is

essential to enable the edge detecting technique in the D-

FF. The edge-to-level converter is used to create a narrow

pulse with each falling transition of the input signal. The

input and output signals of a falling-edge converter are

shown in figure 23.8(a). The edge-to-level converter is

constructed in QCA technology and its layout is shown in

figure 23.8(b). This converter utilizes the inherent capability

of QCA clocking zones. Apparently, an AND logic operation

between the inversion value of the current clock signal and

its delayed version (by one QCA clock cycle) are used to

generate a narrow pulse at each negative transition (high-

to-low) of the input signal. This converter operates based on

the operation table demonstrated in table 23.3.

Figure 23.8. The falling-edge converter. (a) Signals.

(b) QCA layout. Reproduced with permission from [1].

Copyright 2017 Elsevier.

Table 23.3. The operation table of the falling-edge converter.

CLK D Qt State

0 0 Qt−1 Hold

0 1 Qt−1

1 0 0 Transparent

1 1 1

The sensitive D-FF can be used for designing a one-bit

counter by attaching a falling-edge converter at the clock

terminal, as shown in figure 23.8(a). We can see from figure

23.8(a) that a one-bit counter can be constructed using a

simple and robust D-FF feeding back the inversed output

value directly to the input D at each falling edge of the clock

signal. Moreover, an AND gate is placed at the converter

output to add the control mechanism to the counter through

the count enable (CE) terminal. As a result, the output Q0

changes to its opposite value on each CLK falling edge when

the CE signal is actively high. The corresponding QCA layout

is explored in figure 23.9(b). The QCA layout is achieved by

employing the sensitive D-FF and falling-edge converter, as

shown by the dashed rectangular boxes in the figure.

Figure 23.9. The one-bit counter. (a) Block diagram.

(b) QCA layout. Reproduced with permission from [1].

Copyright 2017 Elsevier.

The one-bit counter in figure 23.9 can be expanded for

building n-bit synchronous counters. As an example, the

three-bit synchronous counter is designed, as shown in

figure 23.10, by employing the same building block that is

depicted by a solid red rectangular box. As illustrated in

figure 23.10(a), this counter is implemented by cascading

three level-sensitive D-FFs. It is worth mentioning that to

create a QCA falling-edge design, an edge-to-level converter

is connected to the clock terminal of each D-FF. Count

enable signals are evaluated as CE0 = 1, CE1 = Q0, and

CE2 = Q0Q1. As a result, the three outputs of D-FFs

(Q2Q1Q0) count through 000–001–010–011–100–101–110–

111 (from decimal 0 to 7, returning 0 again). The

corresponding efficient QCA layout is shown in figure

23.10(a). The QCA layout is achieved by employing three

level-sensitive D-FFs that are clocked by a falling-edge

converter simultaneously. The counter is a high-speed QCA

structure where the input-to-output delay is only two QCA

clocking cycles.

Figure 23.10. The three-bit counter. (a) Block

diagram. (b) QCA layout. Reproduced with permission

from [1]. Copyright 2017 Elsevier.

Generally, an n-bit synchronous counter can be

implemented, as shown in figure 23.11, in single-layer by

involving a cascade structure of n level-sensitive D-FFs that

are clocked in parallel using a falling-edge converter and

controlled by a logical AND of the previous outputs.

Figure 23.11. The n-bit synchronous counter.

Reproduced with permission from [1]. Copyright 2017

Elsevier.

23.3 Summary

In this chapter asynchronous and synchronous counters are

explained with the block diagrams and QCA

implementations. A three-bit asynchronous backward

counter and two-bit counter circuits are implemented in

QCA. For the synchronous counter, one-bit and three-bit

counter circuits are designed with block diagrams and QCA

implementations.

Critical thinking questions

1. What are the uses of QCA asynchronous counters in

daily life?

2. What are the main drawbacks of QCA asynchronous

counters?

3. Which QCA counter is capable of eliminating the internal

propagation delay of the QCA asynchronous counter?

Describe in detail.

4. Why are QCA asynchronous counters called QCA ripple

counters?

5. Which drawbacks does a QCA synchronous counter

overcome?

6. Why do QCA synchronous counters operate more

quickly? Explain in detail.

7. What is the propagation delay in QCA synchronous

counter circuits?

References

[1] Abutaleb M M 2017 Robust and efficient quantum-dot cellular automata
synchronous counters Microelectron. J. 61 6–14

[2] Angizi S, Sayedsalehi S, Roohi A, Bagherzadeh N and Navi K 2015 Design
and verification of new n-bit quantum-dot synchronous counters using
majority function-based JK flip-flops J. Circuits Syst. Comput. 24 1550153

[3] Nelson V and Nagle H 1995 Digital Logic Circuit Analysis and Design

(Englewood Cliffs, NJ: Prentice-Hall)
[4] Sheikhfaal S, Navi K, Angizi S and Navin A H 2015 Designing high speed

sequential circuits by quantum-dot cellular automata: memory cell and
counter study Quantum Matter 4 190–7

[5] Wu C-B, Xie G-J, Xiang Y-L and Lv H-J 2014 Design and simulation of dual-
edge triggered sequential circuits in quantum-dot cellular automata J.

Comput. Theor. Nanosci. 11 1620–6
[6] Yang X, Cai L, Zhao X and Zhang N 2010 Design and simulation of

sequential circuits in quantum-dot cellular automata: falling edge-triggered
flip-flop and counter study Microelectron. J. 41 56–63

http://dx.doi.org/10.1016/j.mejo.2016.12.013
http://dx.doi.org/10.1142/S0218126615501534
http://dx.doi.org/10.1166/qm.2015.1192
http://dx.doi.org/10.1166/jctn.2014.3541
http://dx.doi.org/10.1016/j.mejo.2009.12.008

IOP Publishing

Quantum Computing (Second Edition)

A pathway to quantum logic design

Hafiz Md Hasan Babu

Chapter 24

The QCA decoder and encoder

Learning objectives

Define the QCA decoder.

Construct the QCA turbo encoder.

Explain the QCA 2-to-4 decoder with its circuit.

Learn the resistor–capacitor (RC) encoder with

single-feedback.

Construct a QCA 3-to-8 decoder.

Acquire knowledge of an RC encoder with multi-

feedback.

Define the QCA encoder.

In modern computing, the encoder and decoder are used to

convert data from one form to another. The encoder and

decoder are used frequently in communication systems,

namely telecommunication, networking, and end-to-end

transfer of data. They are also used for the easy

transmission of data, which are replaced with codes and

then transmitted. At the end of the receiver, the coded data

are collected from the code and then processed for display.

The encoder and decoder have a wide variety of

applications domains, such as the fast synchronization of

multiple motors in industries, military applications, flying

robots with night vision flying cameras, robotic vehicles with

metal detectors, radiofrequency based home automation

systems, and automatic health monitoring systems.

24.1 The QCA decoder

The Ex-OR and decoder are the most valuable functions in

the Boolean circuit family and have been of central concern

in the QCA field for quite a while. One type of QCA Ex-OR

gate is investigated in this section which will be utilized to

design a decoder circuit. The truth table of the Ex-OR gate is

given in table 24.1. The investigation covers the way that

the general circuit can be streamlined if the significant

yields as ĀB and AB̄ can be adjusted. Along these lines,

one single settled cell is utilized with polarization 1 in the

larger part functions to play out the AND activities in both of

the cases, i.e. ĀB and AB̄. Figures 24.1(a) and (b) suggest

this concept.

Figure 24.1. The QCA 2-to-4 decoder. (a) Schematic

for the 2-to-4 decoder circuit. (b) Three-input majority

gate implementation of the 2-to-4 QCA decoder. (c)

QCA layout. Reproduced with permission from [2].

Copyright 2016 Elsevier.

(24.

1)

Table 24.1. The truth table of the Ex-OR logic.

Inputs Output

A B Y = A ⊕ B

0 0 0

0 1 1

1 0 1

1 1 0

Two majority voters (MVs) generating ĀB and AB̄ are

ORed together to obtain the output of Ex-OR gate. The

three-input majority function implementation of an Ex-OR

gate is

24.1.1 The QCA 2-to-4 decoder

The Ex-OR gate is extended to design a 2-to-4 decoder. A 2-

to-4 decoder consists of those two previous components as

ĀB and AB̄ along with two others, ĀB and AB̄. The

procedure for designing decoders results in a reduced cell

Y = M(F1(, O, B), 1, F2(A, 0,))

= M(B, 1, A)

= B + A .

A B

A B

A B

(24.

3)

(24.

2)

count. The following equations implement the QCA decoder

circuit.

A. Calculation for

B. Calculation for AB

Table 24.2 and figure 24.2(a) show the truth table and

the schematic diagram of the 2-to-4 decoder. An entire four

clock zones or one clock cycle are required to synchronize

the full circuit. In the plan the outputs of any majority gate

acts as the input to the next gate at the same clock sector.

Thus the interval of the whole circuit has been condensed to

a large degree.

A B

P = .

= (+).

= (A +).

= A. + .

= . .

(B)A A

A B A

B A

A A B

A B

P = . A

= (+). A

= (B +). A

= A. + A. B

= A. B.

(A)B

B A

A

A

Figure 24.2. The 3-to-8 QCA decoder. (a) The three-

input majority gate implementation of the 3-to-8 QCA

decoder. (b) QCA layout. Reproduced with permission

from [2]. Copyright 2016 Elsevier.

Table 24.2. The truth table for the 2-to-4 decoder.

(24.

4)

(24.

5)

Inputs Output

A B Ā. B̄ Ā. B A. B̄ AB

0 0 1 0 0 0

0 1 0 1 0 0

1 0 0 0 1 0

1 1 0 0 0 1

The majority functions relevant to this implementation

are given in equations (24.4) and (24.5). The majority gate

representation and the QCA layout of the circuit design are

given in figures 24.1(b) and (c), respectively.

24.1.2 The QCA 3-to-8 decoder

The 2-to-4 decoder module is reached out to actualize the 3-

to-8 decoder. Furthermore, the activity is performed with the

acquired parts from 2-to-4 decoder modules which are used

R = F(, 0,)

= . (A + B)

=

A (B)A

A

AB

S = F(A, 0,)

= A. (A +)

= AB.

(A)B

B

to accomplish the yields of the 3-to-8 decoder. The third

contribution as C has been brought into the non-rearranged

and modified structures through QCA wires to perform AND

tasks with each of the recently arrived segments to

determine the comparing yields. Here the wire intersections

are required to expand the data sources and yields of the

circuit outside the circuit. Now, it adds up to eight clock

zones (two clock cycles) which is maintained according to

the synchronization of the tasks. Comparative tasks are

helpful in planning the 4-to-16 partner as well. For this

situation and onwards crosses it cannot be used. The related

majority gate execution and the QCA design of the 3-to-8

decoder circuit are given in figures 24.2(a) and (b),

respectively. Furthermore, the equivalent of the 4-to-16

decoder is given in figure 24.3, and the programmable logic

array (PLA)-based decoder circuit is illustrated in figure

24.4.

Figure 24.3. The QCA 4-to-16 decoder. (a) Three-input

majority gate layout of the 4-to-16 QCA decoder. (b)

QCA layout. Reproduced with permission from [2].

Copyright 2016 Elsevier.

Figure 24.4. The QCA 4-to-16 PLA-based decoder. (a)

The block diagram of a PLA-based adder. (b) Majority

gate realization of a decoder-based PLA. (c) The QCA 4-

to-16 PLA-based decoder. Reproduced with permission

from [2]. Copyright 2016 Elsevier.

24.2 The QCA encoder

The encoder generates a high-performance convolutional

code, i.e. turbo code, which closely approaches the channel

capacity. The turbo code is a kind of error correction code

(ECC) with a good performance of checking and correcting

errors. It is widely used in mobile communications and

satellite communications to protect information against

distortion. It can also be applied to fault-tolerant computing.

That is, the use of ECC leads to a scheme in which

computation takes place in the encoded space, whereby

errors are corrected locally, and encoding and decoding are

only necessary at the beginning and end, respectively, of

the computation.

24.2.1 The QCA turbo encoder design

The turbo encoder implements the convolution

computation, feedback, and interleaver, as shown in figure

24.5.

1. Convolution computation implementation. In traditional

circuits, the calculation components and registers of the

resistor–capacitor (RC) encoder are isolated. The

synchronization of the circuit is controlled by registers.

However, in QCA the calculation components and

interconnection generally present considerable delays

that likewise assume a vital role in synchronization. The

inborn shift registers and ‘processing-in-wire’ nature of

QCA ensures that the RC encoder should be included in

the calculation design with the register inserted.

2. Feedback implementation. The synchronization of

feedback presents difficulty in executing an RC encoder.

To meet this ongoing requirement, every novel

information and comparing input bit should at the same

time plot at the calculation unit. Consequently, the input

must be implemented simultaneously. If this is the case,

the numerous input circuits cannot offer sufficient

delays to the current MUX based plan. Taking the case in

figure 24.5(b), for example, the planning imperative of

the feedback circle is one CLK delay (1D = 1 CLK delay).

The current MUX cannot be utilized to make information

picking meaningful since it has expended something like

one CLK delay. The delay expands the number of circles

by utilizing a time-scaling strategy. Thus there will be an

extended interval between two nearby active sources of

information. Even though this approach does not change

the planning of a protest segment, it causes a chain

reaction in the general framework. In this way, a latency

sparing substitution of MUX is the center of feedback

execution.

3. Interleaver implementation. At the parallel-to-serial

converting stage the right shift-register of the

interleaver is about to accept the next group of

transposed bits from the left shift-register. However,

there are random states remaining in it due to the cyclic

four-phase clocking mechanism. Therefore, the

competition logjam between the random states and

novel bits should be broken. A parallel-to-serial

converter is also employed to construct a serial

shift/copy/shift-register (SCSR) structure for the

programmable array of logic. It avoids competition by

programming a suite of clock signals for the SCSR

structure. However, this incurs high complexity of

timing, in particular when many SCSR structures are

used in a circuit. Hence, a simple parallel-to-serial

converter is a major factor in achieving interleaver

design.

Figure 24.5. The turbo encoder. (a) Block diagram of a

turbo encoder. (b) Block diagram of an RC encoder. (c)

Model of an interleaver.

24.2.2 The RC encoder with single-feedback

In this section, the design of the RC encoder in figure

24.6(a) is discussed. It is an extreme case of single-

feedback as there is only one CLK delay for the loop.

Therefore, the design can cope with this case, it would be fit

for the other single-feedbacks.

Figure 24.6. The QCA RC encoder with single-

feedback. (a) Block diagram. (b) QCA layout.

Reproduced with permission from [10]. Copyright 2015

IEEE.

Figure 24.6(a) demonstrates the changed block outline of

the RC encoder in figure 24.5(b). It is linked by a convolution

calculation element (set apart by a dashed square shape)

and a solitary input circle. To perform the convolution

calculation, a fan-out is utilized to offer parallel paths, rather

than the sequential to parallel structure in an ordinary

circuit. Every one of the paths is relegated with different

quantities of delays. Thus every bit goes through them at

different speeds. In this way the bits obtained at different

times can meet at the calculation unit. Code words are also

obtained in progression.

Figure 24.6(a) demonstrates the QCA format of this RC

encoder. The two arrows demonstrate the feedback paths

that compare to the single-input in the square outline. The

modulo-2 adder in the input circle works in the parallel

frame rather than in the other plan since they expend more

than one CLK, engendering delay. The strobe switches and

switch cells are set apart by dashed square shapes and dark

shadows, respectively.

In the feedback loop, the strobe switch is employed for

data choosing. One end of the branch line is connected to a

fixed 0 cell, while the main line is joined to the feedback

path. The strobe switch alternates between 0 and the

feedback signal. If there is no valid feedback signal, 0 is

transmitted to the modulo-2 adder so as to protect the feed

forward path from the interference caused by untimely

feedback signal.

It is important to note that the delay in each path of the

convolution computation element in figure 24.6(b) denotes

the relative propagation delay from point A to point B. Given

path 2 as the reference path, path 1 and path 3 consume

two and one CLK delay more than path 2, respectively.

When there are not sufficient delays to implement the three

paths, the same number of delays can be supplemented to

each path. This does not affect the final result except

increasing the corresponding delays.

(24.

6)

24.2.3 The RC encoder with multi-feedback

The contrasted and single-feedback use of multi-inputs in

QCA raises more complex time issues, caused by the

interconnection. In addition, there are many cases that

cannot be executed directly for a multi-input plot. For

example, figure 24.7(a) demonstrates a square outline of a

run-of-the-mill RC encoder with multi-feedback. Each

register is associated with a feedback path. It is difficult to

meet the constant prerequisite if the multi-input is built

directly using QCA devices. To structure the RC encoder for

multi-feedback, two questions arise: (i) can any multi-input

be changed into an equivalent single-feedback or linked

single-feedback and (ii) how is this done? Considering the

encoder in figure 24.7(a), for example, it is possible to

obtain the exchange function H(D) = 1+D2

1+D+D2+D3+D4 . The

numerator and denominator of the transfer function indicate

the feed forward and feedback, respectively. Obviously, the

transfer function of the equivalent single-feedback must be

of the type of H(D) =
f(D)
1+Dn , and n > 4. Here, the single-

feedback transformation, it is computed as

H(D) = 1+D2

1+D+D2+D3+D4 ⋅
(1+D)

(1+D)

= 1+D+D2+D3

1+D5 .

Figure 24.7. The QCA RC encoder with multi-feedback.

(a) Classic block diagram. (b) Transformed block

diagram. (c) QCA layout. Reproduced with permission

from [10]. Copyright 2015 IEEE.

Thus the transformed block diagram and the

corresponding layout are obtained, as shown in figures

24.7(b) and (c). In this way, a multi-feedback is transformed

into the concatenation of a convolution computation

element and a single-feedback loop. Similarly the transfer

functions of RC encoder with multi-feedback are denoted as

H(D) = 1
1+a1D1+a2D2+⋯+anDn , where a1, a2, ⋯ , an ∈ 0, 1

and are not 0 at the same time.

Thus the first problem is equivalent to whether any

transfer function H(D) = 1
1+a1D1+a2D2+⋯+anDn in Galois

field GF(16.6) can be transformed to the H(D) =
f(D)

(1+Dp)
 or

H(D) =
f(D)

(1+Dh)⋯(1+Dl)
 type.

Property 24.1.

For any Galois field GF(q), q = prime power, xqn
 = product

of all monic and irreducible polynomials over GF(q), whose

degree divides n.

Since the above polynomials are Boolean arithmetic, they

are in field GF(2). In GF(2), x is a monic and irreducible

polynomial of degree 1. Therefore, when q = 2, a similar

property shows.

Property 24.2.

For GF(2), x2n−1

− 1 = the product of all monic and

irreducible polynomials (except the polynomial x) over

GF(2), whose degree divides n. In GF(2), modulo-2 ‘−’ is

equal to modulo-2 ‘+’. Thus x2n−11 − 1 is really equal to

x2n−1
+ 1. Except for the polynomial x, the other monic and

irreducible polynomials are all in the form of

1 + a1x1 + a2x2 + ⋯ + anxn. Moreover, any product of

these polynomials is still in this form in GF(2). Therefore,

this theorem can just settle the problem of multi-feedback

discussed above.

According to the properties, a multi-feedback can be

changed into a single-feedback when the denominator

polynomial of its transfer function is irreducible. Otherwise,

it can be transformed into concatenated single-feedbacks

when the denominator polynomial is reducible. In the

second case, the reducible polynomial should first be

factorized into the product of irreducible polynomials. Then

the multi-feedback can be further transformed into single-

feedbacks according to the first case. The issues of the

irreducibility test and the factorization of the polynomial in

GF(2) are the common mathematics issues and can be

settled by some calculators such as Magma. The relevant

procedures are not discussed in detail here. To sum up, any

multi-feedback of an RC encoder can be changed into the

single-feedback type.

24.3 Summary

In this chapter, the decoder and encoder circuits are

described using quantum dot cellular automata. 3-to-8 and

4-to-16 QCA decoder circuits are considered and presented

explicitly with the functional descriptions. For the encoder

circuit, a QCA turbo encoder and an RC encoder with single-

and multi-feedback are described with block figures and

QCA layouts.

Critical thinking questions

1. Describe the applications of QCA decoders and QCA

encoders.

2. Is it possible to draw a QCA 5-to-32 decoder using a

QCA 2-to-4 decoder and a QCA 3-to-8 decoder? If it is,

then draw the circuit and explain the procedure.

3. What differentiates the QCA decoder and the QCA

encoder from one another?

4. What is the process for designing a QCA turbo encoder?

5. Describe the differences between an RC encoder with

single-feedback and an RC encoder with multi-feedback.

References

[1] WatElectronics 2019 Different types of encoder and decoder and its uses
WatElectronics.com https://www.efxkits.us/different-types-encoder-decoder-
applications/ (Accessed: 25 December 2018)

[2] De D, Purkayastha T and Chattopadhyay T 2016 Design of QCA based
programmable logic array using decoder Microelectron. J. 55 92–107

https://www.efxkits.us/different-types-encoder-decoder-applications/
http://dx.doi.org/10.1016/j.mejo.2016.06.005

[3] Gladshtein M 2011 Quantum-dot cellular automata serial decimal adder
IEEE Trans. Nanotechnol. 10 1377–82

[4] Jagarlamudi H S, Saha M and Jagarlamudi P K 2011 Quantum dot cellular
automata based effective design of combinational and sequential logical
structures World Acad. Sci. Eng. Technol. Int. J. Comput. Electr. Automat.

Control Inf. Eng. 5 1529–33
[5] Kianpour M and Sabbaghi-Nadooshan R 2012 A conventional design for

CLB implementation of a FPGA in quantum-dot cellular automata (QCA)
Proc. of the 2012 IEEE/ACM Int. Symp. on Nanoscale Architectures pp 36–
42

[6] Kianpour M and Sabbaghi-Nadooshan R 2014 A novel quantum-dot cellular
automata CLB of FPGA J. Comput. Electron 13 709–25

[7] Niemier M T and Kogge P M 1999 Logic in wire: using quantum dots to
implement a microprocessor Proc. 6th IEEE Int. Conf. on Electronics,

Circuits and Systems vol 3 pp 1211–5
[8] Thompson R M 2011 A look at the special number field sieve using ideals as

implementable in the magma computational algebra software system
Doctoral Dissertation San Diego State University

[9] Vetteth A, Walus K, Dimitrov V S and Jullien G A 2002 Quantum dot cellular
automata carry-look-ahead adder and barrel shifter IEEE Emerging

Telecommunications Technologies Conf. pp 2–4
[10] Zhang M, Cai L, Yang X, Cui H and Feng C 2015 Design and simulation of

turbo encoder in quantum-dot cellular automata IEEE Trans. Nanotechnol.

14 820–8

http://dx.doi.org/10.1109/TNANO.2011.2138714
http://dx.doi.org/10.1007/s10825-014-0590-z
http://dx.doi.org/10.1109/TNANO.2015.2449663

IOP Publishing

Quantum Computing (Second Edition)

A pathway to quantum logic design

Hafiz Md Hasan Babu

Chapter 25

The QCA multiplexer and demultiplexer

Learning objectives

Describe the 2-to-1 QCA multiplexer with its circuit.

Learn about the 1-to-2 QCA demultiplexer.

Demonstrate the 4-to-1 QCA multiplexerʼs circuit clearly.

Construct a 1-to-4 QCA demultiplexer.

Define the QCA demultiplexer.

Acquire knowledge about the techniques of QCA

multiplexer and demultiplexer implementation.

The multiplexer (MUX) is the most common combinational circuit

utilized in digital logic systems and it is an exceptionally valuable

electronic circuit that is utilized in numerous applications, for

example, signal directing, information interchange, and data

transport control applications. An efficient quantum-dot cellular

automaton (QCA) MUX/demultiplexer (DEMUX) design is important

for current research networks. Multiplexers are utilized in different

fields where various types of information need to be transmitted

utilizing a solitary line. The multiplexer allows the transmission of

different kinds of information utilizing a solitary transmission line. It

can be utilized to activate an immense amount of memory in the

PC simultaneously.

25.1 The QCA 2-to-1 multiplexer

In this section, a new approach is described to implement the 2-to-

1 multiplexer. Any Boolean function can be implemented using a

MUX. It has 2n
 inputs, one output, and n = 1 select lines, which

transfers one of input to the output based on the value of the select

(25.

1)

lines. In addition, the MUX has been constructed using the rotating

majority gate (RMG) which presents less complexity and enables

powerful techniques in terms of implementing logic.

A schematic representation of the 2-to-1 MUX is shown in figure

25.1(a). It has two data inputs I0 and I1, one select line S0, and one

output (MUX). The block diagram is shown in figure 25.1(b). The

output logic expression for the 2-to-1 MUX is

Output = I0 + I1S0.

Figure 25.1. The 2-to-1 multiplexer. (a) Schematic

symbol. (b) Majority logic diagram. (c) The QCA layout 2-

to-1 MUX.

S0

(25.

3)

(25.

2)

From equation (25.1) it is clear that two AND gates, one OR

gate, and an inverter are required to design the 2-to-1 MUX. The

QCA equivalent block diagram is shown in figure 25.1(b). The

layout of the 2-to-1 MUX design is presented in figure 25.1(c). The

output (MUX) generates precise, highly polarized signals (shown

inside the rectangles) leading to a high drivability for the circuit.

The implemented MUX has an area of 0.01 μm2, a circuit

complexity of 16 cells, and a latency of 0.5 clock delays. The QCA

majority output logic expression of the 2-to-1 MUX is

Output = Mj(Mj(I0, S0, 0), Mj(I1, S0, 0), 1).

25.2 The QCA 4-to-1 multiplexer

The diagram of the 4-to-1 MUX is shown in figure 25.2(a). It is

created using the concatenation of three 2-to-1 MUXs. The first two

MUXs have a shared control signal link represented by S0. The

yields of the first two MUXs are fed to the third MUX, acting as an

input where the regulator is provided by S1. It has four data input

lines I0, I1, I2, and I3 and a single output (Y0). The block

illustration of a 4-to-1 MUX is shown in figure 25.2(b). The output

logic appearance for the 4-to-1 MUX is functions as

Output = Mj(Mj(Mj(Mj(I0, , 0), Mj(I1, S0, 0), 1),),

Mj(Mj(Mj(I2, , 0), Mj(I − 3, S0, 0), 1), S1)).

S0 S1

S0

Figure 25.2. The 4-to-1 multiplexer. (a) Schematic symbol. (b)

Majority logic diagram. (c) The QCA layout for the 4-to-1 MUX.

(a) Schematic symbol. (b) Majority logic diagram. (c) The QCA

layout 2-to-1 MUX.

From equation (25.3) it is clear that six AND gates, four OR

gates, and three inverters are required to design a 4-to-1 MUX. The

QCA layout of the design is shown in figure 25.2(c). It has an area

of 0.11 μm2, circuit complexity of 79 cells, and a latency of 1.5

clock delays.

25.3 The QCA 1-to-2 demultiplexer

(25.

4)

(25.

5)

The DEMUX is a reverse process of the multiplexer. It produces

parallel lines from a serial data input line. It has 2n
 outputs and n

select lines which transfer a single data input line corresponding to

the particular output data line based on the value of select lines.

A schematic representation and the truth table of the 2-to-1

DEMUX is shown in figure 25.3(a). It has a single data input line A,

two outputs (I0, I1), and a select line S0. The QCA equivalent block

diagram is shown in figure 25.3(b). The output logic expression for

the 2-to-1 MUX is

I0 = AS0

I1 = AS0.

Figure 25.3. The 1-to-2 demultiplexer. (a) Schematic

symbol. (b) Majority logic diagram. (c) The QCA layout.

(25.

6)

(25.

8)

(25.

9)

(25.

10)

(25.

11)

(25.

7)

Reproduced with permission from [1]. Copyright 2018

Elsevier.

From equations (25.4) and (25.5) it is understandable that two

AND gates and an inverter are required to construct the 2-to-1

DEMUX. The QCA layout of the 2-to-1 DEMUX design is shown in

figure 25.3(c). The DEMUX has an area of 0.03 μm2, a circuit

complexity of 21 cells, and a latency of 0.5 clock delays. It is clear

that when input A = 1 and control S0 = 0, then I0 = 1. Again when

input A = 1 and control S0 = 1, then I1 = 1. The QCA majority

output logic expression of the 2-to-1 DEMUX are

I0 = Mj(A, , 0)

I1 = Mj(A, S0, 0).

25.4 The QCA 1-to-4 demultiplexer

A graphic illustration of the 1-to-4 DEMUX is shown in figure 25.4. It

has a single data input line A, four outputs (I0, I1, I2, I3), and a

select line S0, S1. The equivalent block diagram is shown in figure

25.4(b). The output logic expression for the 4-to-1 MUX is

I0 = AS0. S1

I1 = AS0. S1

I2 = AS0. S1

I3 = AS0. S1.

S0

Figure 25.4. The 1-to-4 demultiplexer. (a) Schematic symbol.

(b) Majority logic diagram. (c) The QCA layout. Reproduced

with permission from [1]. Copyright 2018 Elsevier.

From equations (25.8)–(25.11) it is clear that four three-input

AND gates and two inverters are required to design the 1-to-4

DEMUX. The QCA equivalent block diagram is shown in figure

25.4(c). The DEMUX has an area of 0.18 μm2, circuit complexity of

187 cells, and latency of 1.75 clock delays.

The QCA majority output logic expressions of the 1-to-4 DEMUX

are

(25.

12)

(25.

13)

(25.

14)

(25.

15)

I0 = Mj(AS0, S1, 0)

I1 = Mj(AS0, S1, 0)

I2 = Mj(AS0, S1, 0)

I3 = Mj(AS0, S1, 0).

25.5 Multiplexing/demultiplexing using

QCA

Multiplexing is the process in which data streams coming from

different sources are combined and transmitted over a single data

channel. In practice, a MUX is used to realize the concept of

multiplexing. It allows one to select one of many possible sources.

There are several data inputs and one of them is routed to the

output (possibly the shared communication channel). It can be

done using a selector line. The select inputs determine which data

input gets through. The DEMUX performs the reverse process of

multiplexing and routes the separated signals to their

corresponding receiver. It allows one to select one of many possible

destinations. A DEMUX has one data input and several data

outputs. The data output can be selected using a selector line. Both

the MUX and DEMUX are combined into a single device which has

the capability to process outgoing and incoming signal lines, as

shown in figure 25.5(a).

Figure 25.5. The 1-to-4 MUX/DEMUX using QCA. (a)

Schematic symbol. (b) Majority logic diagram. (c) The QCA

layout. Reproduced with permission from [1]. Copyright 2018

Elsevier.

The idea of the proposed method is to design a novel ultra-high

speed data multiplexing/demultiplexing circuit for computer

network systems. The schematic logic symbol of the 2-to-1

MUX/DEMUX is shown in figure 25.5(a). It consists of a MUX, which

has two inputs (I0, I1) and a single selector line S0. The number of

selector lines is equal to [log2n], where n is the number of inputs.

Conversely, a DEMUX is a device that takes a single input signal

line and selects one of many data output lines, which is connected

to the single input line (possibly the shared channel). The majority

logic diagram of the 2-to-1 MUX/DEMUX is shown in figure 25.5(b).

In this case, a logic value of 0 would connect I0 to the output

channel; a logic value of 1 would connect I1 to the output channel.

The QCA layout of the 2-to-1 MUX/DEMUX is shown in figure

25.5(c). MUXs is used in computer memory to maintain a vast

amount of memory in the computers, and also to decrease the

number of copper lines necessary to connect the memory to other

parts of the computer.

25.5.1 The effect of the selector line (S0, S1) on the

2-to-1 MUX/1-to-2 DEMUX

Here, S0 and S1 are the two selector lines at the both transmitter

and receiver ends of the MUX and DEMUX.

If S0 and S1 are low, the top AND gate of the MUX and DEMUX is

open and I0 is copied to Q0.

If S0 and S1 is high, the bottom AND gate of MUX and DEMUX is

open and I1 is copied to Q1.

Both the MUX and DEMUX are synchronized using the proper

clocking signals.

25.6 Summary

This chapter presents an approach to deal with 2-to-1 MUX and 1-

to-2 DEMUX circuits using a two-electron four-dot QCA. The 2-to-1

MUX has been used to execute the essential digital elements

required for QCA. Any higher level MUX/DEMUX can be designed

utilizing the 2-to-1 MUX and 1-to-2 DEMUX, respectively. In this

way, utilizing the 2-to-1 MUX and 1-to-2 DEMUX, a 4-to-1 MUX and

a 1-to-4 DEMUX are defined.

Critical thinking questions

1. What are the QCA multiplexer and QCA demultiplexer? Explain

them with diagrams?

2. What are the differences between a QCA multiplexer and a QCA

demultiplexer?

3. How does the transport layer perform for QCA multiplexing and

QCA demultiplexing?

4. Describe the characteristics of the QCA multiplexer and the

QCA demultiplexer.

5. Using a 2-to-1 QCA multiplexer and a 4-to-1 QCA multiplexer,

design a 8-to-1 QCA multiplexer.

References

[1] Ahmad F 2018 An optimal design of QCA based 2n:1/1:2 n multiplexer/demultiplexer
and its efficient digital logic realization Microprocess. Microsyst.–Embedded

Hardware Des. 56 64–75
[2] Amiri M A, Mahdavi M and Mirzakuchaki S 2008 QCA implementation of a MUX-

based FPGA CLB Int. Conf. on Nanoscience and Nanotechnology (Piscataway, NJ:
IEEE) pp 141–4

[3] Asfestani M N and Heikalabad S R 2017 A novel multiplexer-based structure for
random access memory cell in quantum-dot cellular automata Physica B 521 162–7

[4] Askari M and Taghizadeh M 2011 Logic circuit design in nano-scale using quantum-
dot cellular automata Eur. J. Sci. Res. 48 516–26

[5] Chandra D J and Debashis D 2016 Shannonʼs expansion theorem-based multiplexer
synthesis using QCA Nanomater. Energy 5 53–60

[6] Kim K, Wu K and Karri R 2007 The robust QCA adder designs using composable QCA
building blocks IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst 26 176–83

[7] Mardiris V A and Karafyllidis I G 2010 Design and simulation of modular 2n to 1
quantum-dot cellular automata (QCA) multiplexers Int. J. Circuit Theory Appl. 38 771–
85

[8] Momenzadeh M, Tahoori M B, Huang J and Lombard F 2004 Quantum cellular
automata: new defects and faults for new devices Proc. 18th Int. Parallel and

Distributed Processing Symp. (Piscataway, NJ: IEEE) pp 207–14
[9] Mukhopadhyay D and Dutta P 2012 Quantum cellular automata based novel unit 2:1

multiplexer Int. J. Comput. Appl. 43 22–5
[10] Sabbaghi-Nadooshan R and Kianpour M 2014 A novel QCA implementation of mux-

based universal shift register J. Comput. Electron. 13 198–210
[11] Tahoori M B, Momenzadeh M, Huang J and Lombardi F 2004 Defects and faults in

quantum cellular automata at nano scale Proc. 22nd IEEE VLSI Test Symp.

(Piscataway, NJ: IEEE) pp 291–6
[12] Teodosio T and Sousa L 2007 QCA-LG: a tool for the automatic layout generation of

QCA combinational circuits Norchip 2007 (Piscataway, NJ: IEEE) pp 1–5

http://dx.doi.org/10.1016/j.micpro.2017.10.010
https://doi.org/10.1109/ICONN.2008.4639266
http://dx.doi.org/10.1016/j.physb.2017.06.059
http://dx.doi.org/10.1680/jnaen.15.00008
http://dx.doi.org/10.1109/TCAD.2006.883921
http://dx.doi.org/10.1002/cta.595
https://doi.org/10.1109/IPDPS.2004.1303234
http://dx.doi.org/10.5120/6077-8196
http://dx.doi.org/10.1007/s10825-013-0500-9
https://doi.org/10.1109/VTEST.2004.1299255
https://doi.org/10.1109/NORCHP.2007.4481078

IOP Publishing

Quantum Computing (Second Edition)

A pathway to quantum logic design

Hafiz Md Hasan Babu

Chapter 26

QCA flip-flops

Learning objectives

Explain the QCA D flip-flop in detail with the proper

circuit.

Discuss the QCA SR flip-flop with the circuit.

Describe the working procedure of the QCA J–K flip-

flop in detail.

Acquire knowledge about the QCA T flip-flop.

Design a QCA J–K flip-flop with its truth table.

Construct a QCA T flip-flop using a QCA J–K flip-flop.

Computer scientists have been drawn to quantum-dot

cellular automata (QCA) as a nanotechnology because of

their remarkable qualities, including their small size and low

power consumption. QCA flip-flops are sequential circuits

whose output is dependent on both the inputʼs history and

its current state. Using this technology to design several

QCA circuits and present logic gates in an ideal structure

has been considered here. This chapter covers the QCA D

flip-flops, J–K flip-flops, SR flip-flops, and T flip-flops, which

are crucial components in the design of QCA

nanotechnology circuits.

26.1 QCA D flip-flops

(26.

1)

(26.

2)

The QCA D flip-flop is also known as the delay (D) flip-flop

because it adds a delay between the input and the output. It

is one that recognizes the clockʼs edge and reflects it in the

output:

Qb = = B. CLK +

Q = = A. CLK + = A. CLK + .Q.

The equations from the previous section are used here

to create the QCA D flip-flop. The circuits of all flip-flops in

this chapter are designed using this equation. In order to

construct a QCA D flip-flop, A is changed to D and B to D′, as

illustrated in figure 26.1(b).

.QB. CLK Q

.QbA. CLK Qb B. CLK

Figure 26.1. The QCA D flip-flop. (a) Schematic for the

D flip-flop. (b) QCA layout.

The clock pulse direction is shown by the symbols ↓ and

↑. These symbols are interpreted in D type flip-flops as

edge-triggers.

The D flip-flop needs two inputs, a ‘set’ input and a

‘reset’ input, in order to operate. Due to the fact that the

two input signals now complement one another, it is

possible to set and reset the outputs using an inverter and

just one input. The single input D of a D flip-flop is known as

the ‘data’ input. Flip-flops are established when the data

input is set to 1, and they change and become reset when

the data input is set to 0. This would be useless, however,

as each pulse delivered to this data input would result in a

change in the flip flopʼs output. Only the D input condition is

replicated to the output Q when the clock input is set to

true. This serves as the foundation for the D flip-flop

sequential device. The flip-flopʼs set and reset inputs are

both set to 1 when the clock input is at 1. As a result, it will

keep the data on its output that were there prior to the clock

shift and not modify its state. The output is, to put it simply,

‘latched’ at 0 or 1 as shown in table 26.1.

Table 26.1. The truth table of the QCA D flip-flop.

Clock D Q Q′ Description

↓ ≫ 0 X Q Q′ Memory no change

↑ ≫ 1 0 0 1 Reset Q ≫ 0

↑ ≫ 1 1 1 0 Set Q ≫ 1

26.2 QCA J–K flip-flops

The QCA J–K flip-flop overcomes the drawbacks of the QCA

SR flip-flop. The QCA J–K flip-flop operates in a similar

manner as the QCA SR flip-flop. The flip-flop is set and reset

by the inputs J and K acting as inputs S and R, respectively.

In contrast to QCA SR flip-flops, which produce invalid states

as outputs when both inputs are set to 1, the QCA J–K flip-

flops do not produce invalid states even when both the ‘J’

and ‘K’ flip-flops are set to 1, as shown in table 26.2. This is

the only difference between the QCA J–K flip-flops and the

QCA SR flip-flops (figure 26.2).

Figure 26.2. The QCA J–K flip-flop. (a) Schematic for

the J–K flip-flop. (b) QCA layout for the J–K flip-flop.

Table 26.2. The truth table of a QCA J–K flip-flop.

J–K inputs Outputs SR inputs

J K Q Q′ S R

0 0 0 0 0 X

0 0 1 1 X 0

0 1 0 0 0 X

0 1 1 0 0 1

1 0 0 1 1 0

1 0 1 1 X 0

1 1 0 1 1 0

1 1 1 0 0 1

Q is the current state, and Q′ is the state that results

from applying the J and K inputs. There will be eight

different combinations for the two inputs J and K. The

appropriate Q′ state is discovered for every combination of

J, K, and Q. Q′ merely denotes the values that the J–K flip-

flop will eventually produce following the value of Q. Writing

the values of S and R necessary to subtract each Q′ from its

associated Q completes the table. In other words, the values

of S and R needed to switch the flip-flopʼs state from Q to Q′
are recorded.

26.3 QCA SR flip-flops

The QCA SR flip-flop, often referred to as a QCA SR latch, is

one of the most fundamental sequential logic circuits that is

conceivable (figure 26.3).

Figure 26.3. The QCA SR flip-flop. (a) Schematic for

the SR flip-flop. (b) QCA layout for the SR flip-flop.

The QCA SR flip-flop has two complementing outputs, Q

and Q′, and two inputs, S and R, designated as set and

reset, respectively, as shown in table 26.3.

Table 26.3. The truth table of a QCA SR flip-flop.

State S R Q Q′ Description

Set 1 0 0 1 Set Q′ ≫ 1

1 1 0 1 No change

Reset 0 1 1 0 Reset Q′ ≫ 0

1 1 1 0 No change

Invalid 0 0 1 1 Invalid condition

The QCA SR flip-flop has two inputs, set and reset, and is

a bistable device with one bit of memory. Inputs S and R set

and reset devices, producing the outputs 1 and 0,

respectively. A fundamental flip-flop, the NAND gate QCA SR

flip-flop feeds information from both of its outputs back to

its opposite input. The single data bit is stored in the

memory circuit using this circuit. The QCA SR flip-flop hence

has a total of three inputs, namely S and R, as well as

current output Q. The present history or state is relevant to

this output Q. The phrase ‘flip-flop’ refers to how the device

really functions, since it may be ‘flipped’ into a logic set

state or ‘flopped’ back into the opposing logic reset state.

26.4 QCA T flip-flops

In the QCA T flip-flop there is only one data input (T), one

clock input, two outputs (Q and Q′), as shown in table 26.4,

and one basic flip-flop known as the T (trigger or toggle)

QCA flip-flop. It is a modified version of the QCA J–K flip-flop.

The J and K inputs are joined to form a single input called T,

which is then used to build the QCA T flip-flops. This is why a

QCA T flip-flop is often referred to as a single input QCA J–K

flip-flop (figure 26.4).

Figure 26.4. The QCA T flip-flop. (a) Schematic for the

T flip-flop. (b) QCA layout for the T flip-flop.

Table 26.4. The truth table of a QCA T flip-flop.

T Q Q′

0 0 0 Unchanged/hold

0 1 1 Unchanged/hold

1 0 1 Toggle

1 1 0 Toggle

The inputs J and K are related to obtaining the QCA T flip-

flop. Both AND gates are disabled when T = 0. The output

remains unchanged as a result. The output toggles when T

equals 1. When the T input is set to false or 0, the next state

of the T flip-flop is equivalent to the present state. In that

situation, the next state will be 0 if the toggle input is set to

0 and the current state is also 0. The following state will be

1 if the toggle input is set to 0 and the current state is 1.

When the toggle input is set to 1, the flip-flopʼs next state is

the opposite of the one it is in right now. When the present

state is 0 and the toggle input is set to 1, the following state

will be 1, in that scenario. When the present state is set to 1

and the toggle input is set to 1, the next state will be 0 and

vice versa, as shown in figure 26.4.

26.5 Applications

As complementary metal-oxide semiconductor (CMOS)

transistor size continues to decrease, it will soon reach its

limit. In order to continuously advance the development of

electrical devices, a substitute device must be found. A

potential tool for creating digital circuits is the QCA. QCA

have the potential to be one of the most promising

nanotechnologies due to their advantages over transistor-

based technology, including their higher speed, smaller size,

and lower power consumption. Compared to traditional

digital electronics devices, all QCA electrical devices have

additional advantages. The benefits of QCA flip-flops

outweigh those of conventional flip-flops significantly. They

are mainly used in dividers for frequencies, counters,

storage registers, shifts registers, data storage, latches,

exchange of data, and memory.

26.6 Summary

The QCA SR flip-flop is used as a fundamental component of

flip-flops, which are further used to build QCA flip-flops such

as the D, T, and J–K QCA flip-flops. This is a novel method for

designing nanoscale QCA flip-flops that requires less

complicated hardware. The QCA flip-flops created with the

method outlined here can be used to create any type of

memory storage device. Using the QCA designer simulation

tool, the layout has been developed and the simulation

results have been confirmed.

Critical thinking questions

1. Describe the applications of QCA D flip-flops and QCA T

flip-flops.

2. What are the benefits and drawbacks of QCA flip-flops?

3. Discuss the differences between the QCA SR flip-flop

and the QCA J–K flip-flop.

4. What problem of QCA SR flip-flops is resolved by the

QCA J–K flip-flop?

5. What are J and K in the QCA J–K flip-flop? Explain in

detail.

References

[1] Abdullah-Al-Shafi M and Bahar A N 2017 Ultra-efficient design of robust RS
flip-flop in nanoscale with energy dissipation study Cogent Eng. 4 1391060

[2] Chakrabarty R, Mahato D K, Banerjee A, Choudhuri S, Dey M and Mandal N
K 2018 A novel design of flip-flop circuits using quantum dot cellular
automata (QCA) IEEE 8th Annual Computing and Communication Workshop

and Conf. (Piscataway, NJ: IEEE) pp 408–14
[3] Gholamnia Roshan M and Gholami M 2018 Novel D latches and D flip-flops

with set and reset ability in QCA nanotechnology using minimum cells and
area Int. J. Theor. Phys. 57 3223–41

[4] Hashemi S and Navi K 2012 New robust QCA D flip flop and memory
structures Microelectron. J. 43 929–40

[5] Jeon J-C 2020 Low-complexity QCA universal shift register design using
multiplexer and D flip-flop based on electronic correlations J. Supercomput.

76 6438–52
[6] Lim L A, Ghazali A, Yan S C T and Fat C C 2012 Sequential Circuit Design

Using Quantum-dot Cellular Automata (QCA) (Piscataway, NJ: IEEE) pp
162–7

[7] Majeed A H, Alkaldy E, bin Zainal M S and Nor D B M D 2019 Synchronous
counter design using novel level sensitive T-FF in QCA technology J. Low

Power Electron. Appl. 9 27
[8] Rezaei A 2017 Design of optimized quantum-dot cellular automata RS flip

flops Int. J. Nanosci. Nanotechnol. 13 53–8
[9] Sasamal T N, Singh A K and Ghanekar U 2019 Design of QCA-based D flip

flop and memory cell using rotated majority gate Smart Innovations in

Communication and Computational Sciences (Berlin: Springer) pp 233–47
[10] Shamsabadi A S, Ghahfarokhi B S, Zamanifar K and Movahedinia N 2009

Applying inherent capabilities of quantum-dot cellular automata to design:
D flip-flop case study J. Syst. Archit. 55 180–7

http://dx.doi.org/10.1080/23311916.2017.1391060
http://dx.doi.org/10.1007/s10773-018-3840-1
http://dx.doi.org/10.1016/j.mejo.2012.10.007
http://dx.doi.org/10.1007/s11227-019-02962-y
http://dx.doi.org/10.3390/jlpea9030027
http://dx.doi.org/10.1016/j.sysarc.2008.11.001

IOP Publishing

Quantum Computing (Second Edition)

A pathway to quantum logic design

Hafiz Md Hasan Babu

Chapter 27

QCA programmable logic devices

Learning objectives

Provided a thorough demonstration of QCA

programmable array logic (PAL).

Learn about the QCA field-programmable gate array

(FPGA).

Describe the QCA programmable logic array (PLA)

and explain how to build one.

Build a QCA FPGA with an appropriate circuit.

Explain the significance and uses of QCA

programmable logic devices (PLDs).

Researchers in the VLSI domain are experimenting with

quantum-dot cellular automata (QCA) to reduce the number

of complementary metal-oxide semiconductor (CMOS)

transistors. It is possible to research and create

programmable logic devices (PLDs) using QCA circuits. This

chapter describes simple QCA-based programmable logic

devices such as programmable logic arrays (PLAs),

programmable array logic (PAL), and field-programmable

gate arrays (FPGAs). With the help of the QCA designer tool,

the provided cell structures are copied, tested, and

simulated. With regard to the area covered and cell

complexity, these designs are good.

27.1 The QCA programmable array

logic

A programmable AND array and fixed OR array are the main

features of QCA PAL. It is employed to carry out logic

functions. The block diagram of a QCA PAL is shown in figure

27.1.

Figure 27.1. The block diagram for a QCA PAL.

It has m outputs and n inputs. A buffer gate and an

inverter gate are present on each input. The normal input is

supplemented by a buffer gate, while the complement or

inverted input is supplemented with a NOT gate. The

internal structure of the QCA PAL is depicted in figure 27.2.

Figure 27.2. The QCA PAL layout.

The product terms can be programmed through the fuse

link. This implies that the user can choose how the inputs

and QCA AND gates are connected. The fuse link must be

positioned at the interconnection if a specific input line is to

be linked to the QCA AND gate. The fixed QCA OR gate is

then supplied with the outputs of the QCA AND gate. The

output line of the QCA AND gate is connected to the

equivalent input of the QCA OR gate depending on the

function that is desired. The result of this process is the

realization of the logic function in the sum-of-products

(SOPs) form.

27.2 The QCA programmable logic

array

The simplest, smallest, and least expensive kind of

programmable logic devices are called QCA PLAs. The AND,

OR, and NOT gates can be replaced by SPLDs on circuit

boards. This structure enables the construction of logic

functions in the sum-of-products form. The block diagram of

a QCA programmable logic array is shown in figure 27.3 and

the QCA PLA layout is shown in figure 27.4.

Figure 27.3. The block diagram of a QCA PLA.

Figure 27.4. The QCA PLA layout.

There are n inputs, inverters, an input buffer, m outputs,

and an output buffer in this device. The inputs of the QCA

AND and QCA OR arrays both include fuses, which make

them programmable.

The inputs of the QCA AND gates in this case are

configurable. This means that each QCA AND gate contains

inputs for variables that are both normal and

complemented. It is possible to program any of those inputs

depending on the requirement. Therefore, by employing

these QCA AND gates, the necessary product words can be

produced. In this case, QCA OR gates’ inputs can be

programmed as well. As a result, it would be easy to design

any number of necessary product terms because each QCA

OR gate accepts the outputs of all QCA AND gates as inputs.

As a result, QCA PAL will produce results in the form of a

sum of products.

27.3 The QCA field-programmable

gate array

A matrix of reconfigurable QCA logic blocks coupled with

programmable interconnects is the basis of QCA FPGAs,

which are integrated circuits. The essential building blocks

of a QCA FPGA architecture are thousands of QCA

customizable logic blocks (CLBs), which are connected to

one another by a network of programmable interconnects

known as a fabric. The block diagram of a QCA FPGA is

shown in figure 27.5.

Figure 27.5. Architecture for a QCA FPGA.

A QCA CLB only has one input and one output on each

side. One input of a nearby QCA CLB is directly connected to

a QCA CLBʼs four outputs. In a similar manner, a QCA CLBʼs

four inputs are directly connected to its single output from

adjacent QCA CLBs. Four QCA look-up tables (LUTs) are used

in the proposed QCA CLB, and each one is situated on the

appropriate side of the QCA CLB, as shown in figure 27.6.

Each QCA LUT computes a separate QCA logic function with

four inputs, as seen on the right side of figure 27.6. The

outputs of nearby QCA CLBs on the ‘north’, ‘south’, ‘east’,

and ‘west’ sides are connected to those four inputs (n, s, e,

and w), in that order. All four QCA LUTs’ corresponding

inputs are connected to one another at the top level of the

QCA CLB using a bus line. The north, south, east, and west

QCA LUT outputs are represented by N, S, E, and W,

respectively. As a result, the QCA CLBʼs outputs can each be

any function of their neighbors’ inputs.

Figure 27.6. The block diagram for the QCA CLB.

Each QCA LUT has an output circuit, a sixteen-bit

memory, and a 4-to-16 QCA decoder, as shown in figure

27.7(a). The decoderʼs functions include turning on one of

the sixteen lines and choosing the memory cell located at

the address given by the four inputs. A 4-to-16 QCA decoder

is produced by combining one first-stage QCA decoder with

four second-stage QCA decoders, as shown in figure 27.7(b).

Figure 27.7. The QCA decoder. (a) Layout for the

second-stage QCA decoder. (b) The layout for a 4-to-16

QCA decoder.

Figure 27.8. The QCA one-bit memory cell.

A QCA LUTʼs primary components are memory cells. They

are required to hold programmed values so that the QCA

decoder can carry out QCA logic operations based on

address lines (inputs n, s, e, and w).

Finally, three sub-components make up an LUT, such as a

4-to-16 QCA decoder, a sixteen-bit QCA memory, and an

output QCA circuit. The QCA one-bit memory cell is shown in

figure 27.8 and a complete layout for the QCA LUT is shown

in figure 27.9.

Figure 27.9. The layout for the QCA LUT.

A QCA memory cellʼs enable line is linked to the

decoderʼs corresponding enable line by a connecting wire.

Likewise, a memory cellʼs output is coupled with the

appropriate input of the output circuit. The time delay

between the QCA decoderʼs inputs and its output is eleven

clock cycles.

27.4 The importance and applications

of QCA programmable logic devices

QCA PLDs are parts of electronic systems without a fixed

purpose. QCA PLDs perform a variety of tasks, such as

device-to-device interfacing, data communication, signal

processing, data display, timing and control operations, as

well as nearly every other task that a system needs to do.

QCA memory cells regulate and specify the operation of the

logic as well as the connections between the different logic

functions. QCA FPGAs are often utilized today because they

offer a quicker design-to-market time than QCA application-

specific integrated circuits (ASICs). They are suited for

counters and quadrature decoders, parity checkers,

checksums, error detection and correction, various counter

and register types, LUTs, memory, and input/output (I/O)

controllers for nanoprocessors.

27.5 Summary

This chapter provides logical circuit descriptions for QCA

PAL, QCA PLAs, and QCA FPGAs. It also demonstrates how

sophisticated QCA programming logic devices can be

created and copied. These circuits’ designs demonstrate

extremely low power dissipation. QCA cells can be used to

build QCA PLDs, paving the way for QCA nanocircuits.

Critical thinking questions

1. Describe the differences between QCA PLAs and QCA

PAL.

2. Describe the uses for QCA PLAs and QCA PAL.

3. What are the benefits and drawbacks of QCA FPGAs?

4. Which programming module controls the QCA FPGA?

Explain in detail.

5. Describe the core elements of a QCA FPGA.

6. What are the disadvantages of a QCA programmable

logic array?

References

[1] Awasthi A, Saxena K K and Arun V 2021 Sustainable and smart metal
forming manufacturing process Mater. Today Proc. 44 2069–79

[2] De D, Purkayastha T and Chattopadhyay T 2016 Design of QCA based
programmable logic array using decoder Microelectron. J. 55 92–107

http://dx.doi.org/10.1016/j.matpr.2020.12.177
http://dx.doi.org/10.1016/j.mejo.2016.06.005

[3] Ganesh E N 2011 Implementation of programmable logic devices in
quantum cellular automata technology Comput. Sci. Telecommun. 31 51–65

[4] Lantz T and Peskin E 2006 A QCA implementation of a configurable logic
block for an FPGA IEEE Int. Conf. on Reconfigurable Computing and FPGAs

(Piscataway, NJ: IEEE) pp 1–10
[5] Thaddeus Niemier M, Rodrigues A F and Kogge P M 2002 A potentially

implementable FPGA for quantum dot cellular automata 1st Workshop on

Non-Silicon Computation vol 69 pp 38–45
[6] Tougaw P D and Lent C S 1994 Logical devices implemented using quantum

cellular automata J. Appl. Phys. 75 1818–25
[7] Wang J, Sun L, Wang Y and Dai S 2021 A method based on LS-SVM to

estimate time-domain Green function J. Mar. Sci. Technol. 26 973–85
[8] Wang Y and Lieberman M 2004 Thermodynamic behavior of molecular-scale

quantum-dot cellular automata (QCA) wires and logic devices IEEE Trans.

Nanotechnol. 3 368–76

http://dx.doi.org/10.1063/1.356375
http://dx.doi.org/10.1007/s00773-020-00767-w
http://dx.doi.org/10.1109/TNANO.2004.828576

IOP Publishing

Quantum Computing (Second Edition)

A pathway to quantum logic design

Hafiz Md Hasan Babu

Chapter 28

QCA RAM, ROM, and cache memory

Learning objectives

Describe the significance of the QCA random

access memory (RAM) cell.

Construct a QCA read only memory (ROM) and

explain it in detail.

Explain the QCA RAM cell with the appropriate

circuit.

Explain the QCA cache memory.

Become familiar with QCA ROM.

Construct a QCA cache memory and explain how to

do so in detail.

In this chapter, the QCA random access memory (RAM) cell,

read only memory (ROM), and cache memory are discussed

with graphical representation and QCA execution.

28.1 The RAM cell

Memory is one of the critical parts of any computerized

framework. It is also of value to construct a fast and greatly

upgraded QCA RAM.

Generally, there are two types of RAM cell designs in QCA

which are categorized as loop-based and line-based

according to the operational manner of the QCA circuits. In

the loop-based RAM cell structures, the storing mechanism

is achieved using a loop that contains all four clocking

zones. In contrast, line-based RAM cell structures use a QCA

line to save the previous value of the output. There is an

early effort to present a loop-based QCA RAM cell and its

schematic diagram is illustrated in figure 28.1. The

presented architecture is based on the D latch and a loop

which is used to save the memory content. In the QCA

implementation, it also takes two clock cycles to transmit

the input signal to the output.

Figure 28.1. The RAM cell structure without set/reset.

(a) Schematic symbol. (b) QCA implementation.

Reproduced with permission from [1]. Copyright 2015

Elsevier.

However, a QCA RAM without set and reset ability might

be implemented. As is shown in figure 28.1(a), this design

has a loop-based mechanism and is constructed based on

an SR latch. When select = 1 and write/read = 0 the content

of the RAM cell is not changed and can be read, but when

select = 1 and write/read = 1 the new input will be

transmitted to the output. In this structure a coplanar wire

crossing method has been employed. Furthermore this

design has used only one cell in some of the clocking zones,

which increases the noise sensitivity of the circuit, as shown

in figure 28.1(b).

RAM cell engineering with set and reset capacity has

been presented, and is shown in figure 28.1(b). This

structure is made up of two 2-to-1 multiplexers. One of

these multiplexers is used as the D latch by joining the yield

flag to the main multiplexerʼs information input line. At the

point when the select and compose/read signals are equal

to 1, new information will be embedded in RAM cell,

otherwise the reading task can be performed by setting the

compose/read flag to 0. It utilizes a single multiplexed wire

for set and reset tasks. This flag additionally decides the

substance of the cell only when the select flag is

deactivated by 0 and the compose/read flag is actuated by

1. The inertness of this RAM circuit is 1.75 clock cycles for

transmission of the info flag to yield the cell, as shown in

figure 28.2(b). As is shown in figure 28.2, another design of

the RAM cell is given an indistinguishable task from the

principal configuration in figure 28.1. This structure is based

on a D latch with a non-robust three-input majority gate

structure, and the set and reset capacity of the RAM is

deficient in this design.

Figure 28.2. The RAM cell structure with set/reset. (a)

Schematic symbol. (b) QCA implementation.

Reproduced with permission from [1]. Copyright 2015

Elsevier.

28.2 The QCA ROM

Nanotechnology is contributing to the introduction of new

digital media with higher capacity and performance which

allows digital data to be stored at the nano-scale. The QCA

ROM is described a with a simple structure. The simplified

ROM can store 2.5 Gbits of digital data per cm
2
.

Typical ROMs consist of data bit cells, decoders, and

three-state buffers. Each bit cell has a select input and an

output line. When the select input line is active, binary

information appears at the output line. Figure 28.3 shows

the QCA structure of a ROM. The select input has been

added to the cell using an AND operation. An array of bit

cells can be selected based on the address given by a

decoder.

Figure 28.3. The QCA structure of a ROM. Reproduced

with permission from [1]. Copyright 2015 Elsevier.

The block diagram of a simple ROM is shown in figure

28.4. Each ROM consists of some bit cells. The block

diagram of each bit cell and its corresponding QCA structure

are shown in figure 28.5. Current semiconductor memories

achieve random access by connecting the memory cells to

the bit lines in parallel. These kinds of ROM cell outputs are

connected to the bit lines, which behave similarly to wires or

gates. As a result, when the bit cell is not selected, the

output of that cell is 0 and when selected the output of the

cell is 0 or 1 depending on the binary bit stored in the cell.

Consequently, the bit value stored in the selected cell would

come on to the output bit line of the ROM. This is a kind of

serial OR that is very easy to implement using QCA cells.

Figure 28.6 shows how the serial OR can be carried out on

multiple inputs with QCA technology. Figure 28.7 shows a 2-

to-4 QCA decoder layout.

Figure 28.4. The block diagram of a ROM bit cell and

its corresponding QCA structure. Reproduced with

permission from [11]. Copyright 2008 IEEE.

Figure 28.5. The block diagram of a typical 4 × 4

ROM. Reproduced with permission from [11]. Copyright

2008 IEEE.

Figure 28.6. The QCA serial OR. Reproduced with

permission from [11]. Copyright 2008 IEEE.

Figure 28.7. The QCA 2-to-4 decoder. Reproduced with

permission from [11]. Copyright 2008 IEEE.

28.3 The QCA cache memory

QCA cache memory is an additional memory system that

temporarily stores information and commands to speed up

processing. It is an extremely rapid memory type that keeps

information and instructions that are accessed frequently so

they are always available for use in subsequent processing.

QCA static RAM (SRAM) is used as QCA cache memory due

to its incredibly fast performance. Temporary data produced

for the quantum computer can be stored in QCA cache

memory because of this high speed. In this section, QCA

cache memory is built using QCA SRAM which is based on

the majority gate. A customized gate called the majority

gate generates output that is equal to the majority of input

logic levels. The majority of the gateʼs output will be 1 if the

majority of its inputs are 1, otherwise, it will be 0. Figure

28.8 depicts the logic diagram for the majority gate-based

memory cell that has been constructed as follows.

Figure 28.8. The architecture of a one-bit QCA cache

memory using the majority gate.

Basically, the write/read, select, input, and output signals

are present in the QCA memory cell that has been created.

When used in a large array, the select line can be utilized as

a row select or a column select. For selecting the cell, the

outputs of the row or column QCA decoders can be linked to

the chosen line. No matter what other input lines are

present, the output when select = 0 is 0. This indicates that

the circuit will be in the hold state and that the specific cell

will not be chosen for memory operation. When select is set

to 1, the write/read input will be used to perform the write

and read operations. The write operation will be carried out

when write/read = 1. Because the majority of inputs to a

majority gate are 1 and 0, respectively, the Q is 1 if the

input is 1. Write/read = 0 and Q will be in hold mode during

read operations, reading the previously stored data.

Using QCA technology, the majority gate-based one-bit

cache memory arrangement in figure 28.9 is designed. To

obtain the whole layout of the QCA memory cell, many

fundamental gates, such as the QCA AND gate, QCA OR

gate, QCA NOT gate, and majority gate, are developed and

combined. An undistorted output is received because of how

carefully all the cells’ timing has been planned.

Figure 28.9. The QCA layout for a one-bit cache

memory.

28.4 Summary

In this chapter, the structure of a QCA RAM is demonstrated.

There are two kinds of RAM cell engineering, specifically

circle/loop-based and line-based. In the QCA ROM structure

it is shown how an improved ROM may be able to store 2.5

Gbits of computerized information per cm
2. The details of

QCA cache memory is also discussed in this chapter.

Critical thinking questions

1. In QCA RAM, which control signals are chosen for the

read and write operations? Explain in detail.

2. Describe the applications of QCA RAM and QCA ROM.

3. What are the benefits and drawbacks of using QCA

cache memory?

4. For a QCA RAM chip with n input address lines, how

many memory locations can it access?

5. What are the differences between QCA cache memory

and QCA RAM?

References

[1] Angizi S, Sarmadi S, Sayedsalehi S and Navi K 2015 Design and evaluation
of new majority gate-based RAM cell in quantum-dot cellular automata
Microelectron. J. 46 43–51

[2] Berzon D and Fountain T J 199 A memory design in QCAs using the squares
formalism Proc. 9th Great Lakes Symp. on VLSI (Piscataway, NJ: IEEE) pp
166–9

[3] Dehkordi M A, Shamsabadi A S, Ghahfarokhi B S and Vafaei A 2011 Novel
RAM cell designs based on inherent capabilities of quantum-dot cellular
automata Microelectron. J. 42 701–8

[4] Fazzion E, Fonseca O L H M, Nacif J A M, Neto P V, Fernandes A O and
Silva D S 2014 A quantum-dot cellular automata processor design Proc. 27th

Symp. on Integrated Circuits and Systems Design (New York: ACM) p 29
[5] Harish B G and Narashimaraja P 2020 Design of QCA based one-bit memory

cell RJET 7 6119–24
[6] Hashemi S and Navi K 2012 New robust QCA D flip flop and memory

structures Microelectron. J. 43 929–40
[7] Kim K, Wu K and Karri R 2005 Towards designing robust QCA architectures

in the presence of sneak noise paths Proc. Conf. on Design, Automation and

Test in Europe-Volume 2 (Piscataway, NJ: IEEE) pp 1214–9
[8] Kubacki M and Sosnowski J 2019 Exploring operational profiles and

anomalies in computer performance logs Microprocess. Microsyst. 69 1–15
[9] Lin A 2010 Carbon Nanotube Synthesis, Device Fabrication, and Circuit

Design for Digital Logic Applications (Redwood City, CA: Stanford
University)

http://dx.doi.org/10.1016/j.mejo.2014.10.003
http://dx.doi.org/10.1016/j.mejo.2011.02.006
http://dx.doi.org/10.1016/j.mejo.2012.10.007
http://dx.doi.org/10.1016/j.micpro.2019.05.007

[10] Niamat M, Panuganti S and Raviraj T 2010 QCA design and implementation
of SRAM based FPGA configurable logic block 53rd IEEE Int. Midwest

Symp. on Circuits and Systems (Piscataway, NJ: IEEE) pp 837–40
[11] Rahimi E and Nejad S M 2008 Quantum-dot cellular ROM: a nano-scale

level approach to digital data storage 6th Int. Symp. on Communication

Systems, Networks and Digital Signal Processing (Piscataway, NJ: IEEE) pp
618–21

[12] Schulhof G, Walus K and Jullien G A 2007 Simulation of random cell
displacements in QCA ACM J. Emerging Technol. Comput. Syst. 3 2

[13] Shamsabadi A S, Ghahfarokhi B S, Zamanifar K and Movahhedinia N 2009
Applying inherent capabilities of quantum-dot cellular automata to design:
D flip-flop case study J. Syst. Archit.—Embedded Syst. Des. 55 180–7

[14] Shulaker M M, Hills G, Patil N, Wei H, Chen H-Y, Wong H-S P and Mitra S
2013 Carbon nanotube computer Nature 501 526

[15] Taskin B and Hong B 2008 Improving line-based QCA memory cell design
through dual phase clocking IEEE Trans. Very Large Scale Integr. VLSI

Syst. 16 1648–56
[16] Vankamamidi V, Ottavi M and Lombardi F 2005 A line-based parallel

memory for QCA implementation IEEE Trans. Nanotechnol. 4 690–8
[17] Vankamamidi V, Ottavi M and Lombardi F 2008 A serial memory by

quantum-dot cellular automata (QCA) IEEE Trans. Comput. 57 606–18
[18] Vetteth A, Walus K, Dimitrov V S and Jullien G A 2003 Quantum-dot cellular

automata of flip-flops ATIPS Lab. 2500 1–5
[19] Walus K, Vetteth A, Jullien G A and Dimitrov V S 2003 RAM design using

quantum-dot cellular automata NanoTechnology Conf. vol 2 pp 160–3
[20] Walus K, Mazur M, Schulhof G and Jullien G A 2005 Simple 4-bit processor

based on quantum-dot cellular automata (QCA) 16th IEEE Int. Conf. on

Application-Specific Systems, Architecture Processors (Piscataway, NJ:
IEEE) pp 288–93

[21] Yang X, Cai L and Zhao X 2010 Low power dual-edge triggered flip-flop
structure in quantum dot cellular automata Electron. Lett. 46 825–6

[22] Yang X, Cai L, Zhao X and Zhang N 2010 Design and simulation of
sequential circuits in quantum-dot cellular automata: falling edge-triggered
flip-flop and counter study Microelectron. J. 41 56–63

http://dx.doi.org/10.1145/1229175.1229177
http://dx.doi.org/10.1016/j.sysarc.2008.11.001
http://dx.doi.org/10.1038/nature12502
http://dx.doi.org/10.1109/TVLSI.2008.2003171
http://dx.doi.org/10.1109/TNANO.2005.858589
http://dx.doi.org/10.1109/TC.2007.70831
http://dx.doi.org/10.1049/el.2010.1090
http://dx.doi.org/10.1016/j.mejo.2009.12.008

IOP Publishing

Quantum Computing (Second Edition)

A pathway to quantum logic design

Hafiz Md Hasan Babu

Chapter 29

The QCA processor circuit

Learning objectives

Learn about QCA processors.

Construct a QCA instruction register.

Provide basic definitions of a QCA processor.

Discuss design skills for a QCA accumulator and a

QCA decoder.

Construct the block diagram of a QCA processor.

Explain a QCA program counter and a QCA

multiplexer with the appropriate design

architecture.

Briefly discuss the fundamental parts of a QCA

processor.

Demonstrate a QCA arithmetic logic unit (ALU) with

an appropriate circuit.

Use a graphic to illustrate QCA random access

memory (RAM).

Computer scientists are interested in quantum-dot cellular

automata (QCA) as a new emerging nanotechnology to

replace the current complementary metal-oxide

semiconductor (CMOS) technology since they have special

properties such as high frequency, extremely small feature

size, and low power consumption. Any Boolean function may

be represented using the majority gate and inverter, which

are the fundamental components of a QCA. A processor

based on QCA is fully implemented in this chapter. The

input/output, elementary arithmetic, and logic operations

are performed by a processor, which is a key component of

QCA computers, which are nano-sized, use incredibly little

power, and may even operate at terahertz clock rates.

29.1 Introduction

According to Gordon Moore of the Intel Corporation, the

number of transistors in semiconductors should increase

roughly every two years. This prediction, known as Mooreʼs

law, has amazingly held true for more than 40 years. In

CMOS technology, the number of transistors has followed

Mooreʼs law. Reducing the transistor size will result in a

circuit that is faster and uses less energy. However, as this

technology develops below the sub-micron level, other

issues appear. Several physical constraints, such as the

quantum effect and unpredictable behavior at low currents,

as well as technological constraints, such as power

consumption, design complexity, and lithography

complexity, preclude the development of micro-electronic

systems that obey Mooreʼs law.

Because of this, scientists have developed several

technologies, including the single-electron transistor,

nanocarbon tubes, molecular switches, and others.

However, in recent years, numerous studies have focused

on employing QCA technology to construct nano-scale

circuits, and scientists and designers of digital circuits

expect that CMOS will be replaced by this revolutionary

technology. The fundamental functionality and functioning

of a QCA cell have been demonstrated and implemented

physically since in the late 1990s. Following that, other

designs based on QCA have been presented. These designs

range in size from tiny devices such as adders or XORs to

large ones such as processors. QCA technology is used to

create a QCA processor in this chapter.

29.2 Basic definitions

The term ‘central processor’ or ‘main processor’ refers to a

central processing unit (CPU). A QCA computerʼs

input/output operations are carried out using a particular

type of quantum electronic circuit. Logic and basic math

operations carry out the instructions of the computer

program. The CPU manages all types of data transfer and

instruction flow. The CPU consists of five main parts:

1. QCA control unit (CU).

2. QCA register.

3. QCA arithmetic logic unit (ALU).

4. QCA random access memory (RAM).

5. QCA buses.

1. QCA CU. This type of QCA circuit sends instructions to a

computer processor. The control unit is made up of

numerous selection circuits, including multiplexers and

decoders.

2. QCA register. This is a part of a QCA processor that can

store the smallest set of qubit data used in

nanoprocessors. A register can store any type of data,

including instructions, a qubit sequence, and a storage

address.

3. QCA ALU. The programʼs execution of arithmetic

operations is under the control of the arithmetic unit.

The ALU unit performs all common arithmetic operations

including subtraction, division, and multiplication.

4. QCA RAM. RAM, often known as volatile memory, is a

part of the CPU that aids in boosting the efficiency of

the system. Data access and storage on a short-term

basis are the major functions of QCA RAM.

5. QCA bus. Whether they are quantum, super, or classical,

buses are necessary for data transfer between

processors and other parts of all computers. In order to

understand in a better way how buses work in

computers, a QCA processor is presented below. The

architecture of the fundamental components provides a

brief description of the three types of buses: the address

bus, the control bus, and the data bus.

29.3 The block diagram of a QCA

processor

The CPU, which manipulates data and carries out

commands, is the brain of a computer. Numerous entire

circuits, including the instruction register (IR), program

counter (PC), multiplexer (MUX), ALU, RAM, etc, are included

in it. As it is a QCA processor, all circuits are constructed

using QCA logic gates. A comprehensive block diagram of a

QCA processor is shown in figure 29.1.

Figure 29.1. The QCA processor.

Only the most fundamental CPU components are visible

in this entire two-bit QCA processor. To carry out useful work

using QCA CPUs, they require two inputs, such as

instructions and data. The purpose of the IR is to instruct

the CPU on how to proceed with the data. A bit is used to

represent instructions. Inputs to the CPU are kept in the

memory. As can be seen in figure 29.1, the CPU functions

are carried out in a cycle of fetching instructions as QCA

RAM data from memory enters into the instruction register.

It is decoded after it has been fetched before being

executed. The ‘fetch–decode–execute’ cycle is the name of

this process. Data are transmitted from memory to the

instruction register, which initiates the cycle. It should be

noted that data sent from memory will always use the data

bus to convey data. Selecting the machine language from

the IR allows the unique bit patterns to be removed before

being delivered to the decoder. Decoding encoded data

from one format to another is the decoderʼs main function.

Because of the QCA decoder, the cycleʼs second stage can

now function. The decoder indicates which bit pattern will

be used and activates the circuit required to carry out the

specific operation. The circuit will start working with the

instruction if the operation was completed successfully.

29.4 The basic components of a QCA

processor

A complete QCA processor has been designed using the

components listed below, as shown in figure 29.1. The

components of a QCA CPU include:

1. QCA RAM.

2. QCA PC.

3. QCA decoder.

4. QCA MUX.

5. QCA ALU.

6. QCA accumulator.

In the QCA CPU, data are also transferred from one

component to another using buses. The data bus, address

bus, and control bus are the three different types of buses.

The data bus, which transports data back and forth between

the CPU and RAM, is bidirectional. The address bus, which

connects other components such as primary storage and

input/output devices to the processor, is unidirectional and

used to transfer memory addresses. The final bus is the

control bus, which is used to connect processors to other

parts that check to see if everything is moving from one

place to another smoothly or not. These are additional

crucial CPU elements that must function properly in order to

perform useful work. Now, we will cover each element of a

QCA CPU briefly.

29.4.1 The QCA RAM

For the purpose of emulating 4-to-2 QCA RAM, as shown in

figure 29.2, two address lines are required, each of which

must be in NOT form. This combination of address lines will

be used as the input for two to four decoders, each of which

consists of four QCA AND gates and has a single enable

input. This decoder provides us with four select lines, and

each select line will traverse every RAM cell. Keep in mind

that the RAM will calculate words as 2∧ k, where k is the

address line, 2 ∧ k is the total number of n-bit words, and k

× 2 ∧k is the decoder combination. This two-bit RAM

comprises four distinct RAM cells, each of which has three

inputs: In0 or In1, read/write inputs, and a line selector. A

QCA OR gate, as shown in figure 29.3, which creates the

final output, will take the output from four QCA RAM cells as

its input. This is how a 4-to-2 bit QCA RAM is designed as a

whole.

Figure 29.2. The 4-to-2 bit QCA RAM.

Figure 29.3. The 4-to-1 QCA OR.

This figure illustrates a 4-to-2 bit QCA RAM

implementation, which is made up of four distinct ‘words’ of

memory, each of which is two bits wide. The QCA RAM cell is

equipped with three inputs and one output. Figure 29.4

explains accurately the entire circuit of a QCA RAM cell. Two

QCA RAM cells combined into one word is allowed for

simultaneous access to both bits. Two address lines are

necessary for memory with four words. The two-bit address

lines A0 and A1 are the inputs that run through a 2-to-4

decoder and choose one of the four words. The input with

memory support turns on the decoder. All of the decoderʼs

output will be 0 if the memory enable is set to 0, which

means that none of the memory addresses will be chosen in

that situation. However, one of the four words is chosen

when the memory enable values are 1. The value in the two

address lines chooses the term. Once a word has been

chosen, the operation is determined by the read/write input.

The four bits of the chosen word are passed to the output Z0

and Z1 terminals of the QCA OR gates during the read

operation.

The data, however, are transferred into the four QCA

cells of the chosen word during the write operation from the

input lines. Unselected QCA RAM cells become disabled and

retain their previous bit forever. Although none of the words

are chosen when the memory enable input that enters the

decoder is equal to 0, all QCA cells stay intact regardless of

the read/write inputʼs value. The way RAM operates is

described above. The QCA RAM cell is described below.

Figure 29.4. The QCA RAM cell.

The QCA RAM cell is created utilizing an RS flip-flop.

There will be m × n total QCA cells per word, where m

stands for words with n bits. The QCA cell contains one

output line with the label ‘output’ and three inputs with the

labels ‘select’, ‘read/write’, and ‘input’. For access to either

reading or writing, use the ‘choose’ input. A memory action

is carried out in the cell when the select line is high or 1.

The cell is not interested in performing a read from or write

to when the QCA cellʼs choose line is low or 0, though. The

next input is labeled ‘read/write’, and a system clock will

handle this input. The read/write lineʼs clock will indicate

‘read’ if its value is 0 and perform the ‘write’ phase if it is 1.

Take into consideration the chosen cell. The output value

will only depend on the Q value of the flip-flop in this

scenario if the clock value is 0, in which case the contents of

the cell must be read. However, the output of the cell will be

0 if Q is low and 1 if Q is high.

29.4.2 The QCA instruction register

Figure 29.5 depicts the sixteen QCA AND operations that

make up the QCA instruction register. This instruction is the

part of a two-bit CPU. Hence the instruction value will be 2∧

2 = 4.

Figure 29.5. The four-bit QCA instruction register.

An instruction register is a unique kind of register that is

primarily used to hold the instructions that the quantum

computer is currently executing. Every input is in QCA NOT

form, which is used as a QCA 4-to-1 AND input in this case,

as shown in figure 29.6. That instruction is now being

performed and is stored in an instruction register. The

instruction word is stored in the QCA IR. Any instruction that

the QCA CPU retrieves from QCA memory is then stored

momentarily in the QCA instruction register.

Figure 29.6. The QCA gate. (a) The QCA NOT gate. (b)

The QCA 4-to-1 AND gate.

A bit word or code that specifies a particular operation to

be carried out can be the instruction. The instruction is

subsequently decoded and executed by the CPU.

29.4.3 The QCA accumulator

The two QCA D flip-flops in the two-bit QCA accumulator are

each constructed from four QCA NAND gates, and there is

one QCA AND gate in the QCA accumulator. The inputs of

the QCA AND gate are LOAD and CLK, and the output that is

acquired from the QCA AND gate serves as the input for

each QCA D flip-flop. Following logical execution, the first

and second QCA D flip-flops provide the first and second

outputs, respectively. The circuit diagram is shown in figure

29.7.

Figure 29.7. The two-bit QCA accumulator.

This type of QCA register, known as a QCA accumulator,

serves as a momentary storage area and maintains a value

that is used as a bridge in logical and mathematical

processes. For instance, in the operation ‘2 + 3 + 4’, the

QCA accumulator will initially store the value 2, then the

value 5, then the value 9. When the output of the QCA AND

gate is 1, the data will be deposited into the accumulator.

No information will be saved in the accumulator if the

output of the QCA AND gate is 0.

29.4.4 The QCA decoder

The 2-to-4 QCA decoders, which uses four QCA AND

operations with a single enabling input, are utilized in two-

bit QCA CPUs. D0, D1, D2, and D3 are outputs, and A0 and A1

are inputs with and without NOT form, respectively. The

circuit of a 2-to-4 QCA decoder is shown in figure 29.8.

Figure 29.8. The 2-to-4 QCA decoder.

The QCA decoder is a combinational QCA circuit with n

input lines and a maximum output capacity of 2 ∧ n lines.

Each output has a single product, which is achieved through

these QCA AND operations. The value for the two input

variables A0 and A1 will be minimum when the enable input

value is 1. But if the enable input is set to 0, then all of the

decoderʼs outputs will be equal to 0, and if it is set to 1,

then one of these four outputs will be active, namely 1.

29.4.5 The QCA multiplexer

Two inputs, In1 and In2, one select input, S, and one output,

Y, make up a 2-to-1 multiplexer (MUX). The output can be

connected to either of the inputs, depending on the choose

signal. One selection is required to perform these actions

since there are only two feasible ways to connect the inputs

to the outputs given the two input signals. The output will

be switched to the In1 input if the selection line is low; if it is

high, the output will be switched to the In2 input. The 2-to-1

multiplexer shown in figure 29.9 joins two one-bit inputs to a

single destination.

Figure 29.9. The 2-to-1 QCA MUX.

29.4.6 The QCA program counter

Two QCA D flip-flops make up the QCA program counter, as

shown in figure 29.10. The next instruction to be performed

will be stored using this program counter. Upon completion

of the current instruction, the program counter is raised by

one. Each instruction and piece of data in memory has a

unique address.

Figure 29.10. The two-bit QCA program counter

register.

The QCA PC will first be loaded with address 2 if a

program starts with an instruction located at memory

location 2, for instance. The QCA PC is increased by one

when this instruction is carried out, moving it to the address

3 next. The sequential memory location for storing the

instructions in a program is followed at all times.

29.4.7 The QCA ALU

Any computer deviceʼs fundamental structure is the ALU.

Addition, subtraction, increment, decrement, AND, OR, XOR,

XNOR, and other arithmetic and logical operations are

included in ALU. One of the multiple and combinational

operation structures is the ALU, which has selection lines for

carrying out various operations. The QCA ALU circuit is

shown in figure 29.11.

Figure 29.11. The two-bit QCA ALU.

The proposed QCA ALU has operations for QCA AND, QCA

OR, QCA XOR, and QCA ADD. The QCA MUX 2:1, QCA XOR,

and full adder enhanced structures are applied in this

design. Instead of using any of the Boolean equations, the

QCA MUX 2:1 and QCA XOR make use of a quintessential

property of QCA cells. The suggested QCA ALU uses a

complete QCA adder with little complexity, minimal latency,

and extremely high speed. It also contains a three-input

majority gate. QCA ALUs, which load data from QCA input

registers, handle the majority of a QCA CPUʼs activities. A

QCA register is a tiny bit of storage that comes with a QCA

CPU. A QCA output register is where the QCA ALU saves the

outcome of the operation the control unit instructs it to

execute on the data. Between these QCA registers, the QCA

ALU, and QCA memory, the QCA control unit transfers the

data. Thus, the QCA ALU typically has storage locations for

input operands, adding operands, the accumulated result

(stored in an accumulator), and shifting results. Gated

circuits regulate both the bit flow and the operations carried

out on them in the QCA ALUʼs subunits.

29.5 Summary

One of the CMOS technology alternatives is the newly

developed QCA nanotechnology. The circuits connected to

the QCA flip-flops are another crucial component in the

design of each processorʼs arithmetic and logic unit. The

core QCA processor components are the QCA decoder, QCA

accumulator, QCA ALU, and QCA RAM, which are presented

in this chapter in a new configuration. The QCA processor

discussed in this chapter has a quick response time and less

complexity with low power consumption.

Critical thinking questions

1. How many locations in QCA memory can be accessed by

a QCA RAM chip if it has n address input lines?

2. Describe the applications of a QCA RAM.

3. Describe the role of a QCA ALU in a QCA processor.

4. Describe the uses of the QCA instruction register.

5. Describe how the QCA control bus, QCA data bus, and

QCA address bus are different from one another.

6. Using a QCA 2-to-1 MUX, construct a QCA 4-to-1 MUX.

7. What type of data are stored in a QCA instruction

register?

8. How many enable lines are there in a QCA 2-to-4

decoder? Explain why a QCA decoder needs an enable

line.

9. What are the typical values of a QCA RAM?

10. What does the QCA instruction register contain?

11. Using a circuit diagram, describe how a QCA decoder

works.

12. How does QCA accumulator work for 7 + 2 + 5?

13. Write down the basic definitions of a QCA processor.

14. Illustrate the working principle of a QCA processor with

the block diagram.

15. Give a succinct description of the QCA RAM with the

relevant circuit.

References

[1] Angizi S, Sarmadi S, Sayedsalehi S and Navi K 2015 Design and evaluation
of new majority gate-based RAM cell in quantum-dot cellular automata
Microelectron. J. 46 43–51

[2] Devadoss R, Paul K and Balakrishnan M 2011 P-QCA: a tiled programmable
fabric architecture using molecular quantum-dot cellular automata ACM J.

Emerging Technol. Comput. Syst 7 1–20
[3] Fazzion E, Fonseca O L H M, Nacif J A M, Neto O P V, Fernandes A O and

Silva D S 2014 A quantum-dot cellular automata processor design 27th

Symp. on Integrated Circuits and Systems Design (Piscataway, NJ: IEEE) pp
1–7

[4] Gholamnia Roshan M and Gholami M 2018 Novel D latches and D flip-flops
with set and reset ability in QCA nanotechnology using minimum cells and
area Int. J. Theor. Phys. 57 3223–41

[5] Heikalabad S R and Gadim M R 2018 Design of improved arithmetic logic
unit in quantum-dot cellular automata Int. J. Theor. Phys. 57 1733–47

[6] Kumar M and Sasamal T N 2017 An optimal design of 2-to-4 decoder circuit
in coplanar quantum-dot cellular automata Energy Procedia 117 450–7

[7] Lent C S and Tougaw P D 1997 A device architecture for computing with
quantum dots Proc. IEEE 85 541–57

[8] Majeed A H, Alkaldy E, Zainal M S, Navi K and Nor D 2019 Optimal design
of ram cell using novel 2:1 multiplexer in QCA technology Circuit World 46
147–58

[9] Tougaw P D and Lent C S 1994 Logical devices implemented using quantum
cellular automata J. Appl. Phys. 75 1818–25

[10] Walus K, Vetteth A, Jullien G A and Dimitrov V S 2003 RAM design using
quantum-dot cellular automata NanoTechnology Conf. 2 pp 160–3

http://dx.doi.org/10.1016/j.mejo.2014.10.003
http://dx.doi.org/10.1145/2000502.2000506
http://dx.doi.org/10.1007/s10773-018-3840-1
http://dx.doi.org/10.1007/s10773-018-3699-1
http://dx.doi.org/10.1016/j.egypro.2017.05.170
http://dx.doi.org/10.1109/5.573740
http://dx.doi.org/10.1108/CW-06-2019-0062
http://dx.doi.org/10.1063/1.356375

[11] Walus K, Mazur M, Schulhof G and Jullien G A 2005 Simple 4-bit processor
based on quantum-dot cellular automata (QCA) IEEE Int. Conf. on

Application-Specific Systems, Architecture Processors (Piscataway, NJ:
IEEE) pp 288–93

IOP Publishing

Quantum Computing (Second Edition)

A pathway to quantum logic design

Hafiz Md Hasan Babu

Chapter 30

Applications of QCA technology

Learning objectives

Learning about the performance of QCA.

Explain how QCA circuits consume less power.

Discuss the use of QCA circuits for encryption.

Explain the importance of any circuit with smaller

size.

Explain QCA for image processing.

Quantum-dot cellular automata (QCA) represent a

developing approach that makes it possible to create

nanoscale circuits. They use electrostatic and quantum

phenomena as their foundation. There are many potential

applications of QCA technology. A real-life QCA processor is

shown in figure 30.1. Other QCA applications are discussed

in this chapter.

Figure 30.1. A real-life QCA processor.

30.1 High performance

In recent years, its high power consumption, slow speed,

and density beyond 10 nm have restricted the adoption of

complementary metal-oxide semiconductor (CMOS)

technology. The QCA is employed for high-speed

applications. It is an alternative of classical CMOS

technology. Essentially, QCA is based on a cell. With the

appropriate charge set-up, each cell can represent one bit. It

comprises two charged electrons and four quantum dots.

The two electrons can only be positioned in two quantum

positions that are diametrically opposite because of the

force of Coulombic repulsion. QCA has a higher capacity to

deliver excellent performance in terms of clock frequency,

and the employment of QCA on the nanoscale has a bright

future.

30.2 Small size

The nanotechnology field of QCA is growing and they have

the potential to be smaller than CMOS-based technologies.

In addition, QCA have a lower cost and they simplify the

circuits. In QCA it is also possible to have huge circuits in a

small space.

30.3 Low power consumption

QCA can cut down the amount of power used by digital

circuitry. The cost will also be lower because less power is

used. For instance, one of the crucial functions in a digital

signal processing (DSP) unit is the low power multiply

accumulator (MAC) in QCA technology, which can enhance

voice processing, video coding, and digital filtering, among

other functions. Voice processing using QCA technology is

shown in figure 30.2.

Figure 30.2. Voice processing using QCA technology.

30.4 Encryption and authentication

In this technology, crucial components include quantum

cells and quantum-dot cellular automata at the nanoscale.

The nanotechnology of quantum-dot cellular automata has

enabled linkages in the security realm, such as in

cryptographic circuits, where the security is improved. The

data security using QCA technology is shown in figure 30.3.

Figure 30.3. Data security using QCA technology.

30.5 Higher data speed

Higher data speeds between transceivers are made possible

via optical networking, which is essential for decreasing

data losses. One of the most promising nanotechnologies is

QCA, which requires smaller areas (60% less design area

than CMOS technology) and creates circuits with high speed

by requiring fewer cycles than other CMOS designs to

minimize scaling difficulties. Thus a high data rate and high-

speed network are the advantages of QCA technology. A

high-speed QCA network is shown in figure 30.4.

Figure 30.4. A higher data speed network.

30.6 Image processing

QCA represent a promising nanoelectronic technology that

could be used in a variety of image processing applications.

By utilizing parallel processing, greater silicon-area usage

and clock speed optimization, QCA architecture offers better

performance. Image processing using QCA is shown in figure

30.5.

Figure 30.5. Image processing using QCA.

30.7 Summary

The topic of this chapter is the applications of QCA. QCA

provide a few key benefits, such as faster speed, larger

circuit density, and reduced power dissipation. Additionally,

they are utilized in the construction of frequently used

electronic modules. QCA have promise for greater use in all

sectors because of its significant advantages.

Critical thinking questions

1. What factors contribute to the high performance of QCA

technology?

2. Describe some of the useful features of QCA technology.

3. How does the QCA technology reduce the size of a

device? Describe the steps.

4. What secure method does QCA technology use to

transfer data?

References

[1] Amiri M A, Mirzakuchaki A and Mahdavi M 2011 A5/1 implementation in
quantum cellular automata Nanosci. Nanotechnol. 1 58–63

[2] Amiri M A, Mirzakuchaki S and Mahdavi M 2011 Cryptography in quantum
cellular automata Cellular Automata: Innovative Modelling for Science and

Engineering (Rijeka: InTech) pp 285–96
[3] Christie J A 2015 Molecular Quantum Cellular Automata: Synthesis and

Characterization (Notre Dame, IN: University of Notre Dame)
[4] Hariprasad A and Rao Ijjada S 2019 Quantum-dot cellular automata

technology for high-speed high-data-rate networks Circuits Syst. Signal

Process 38 5236–52
[5] Haris K, Efstratiadis S N, Maglaveras N and Katsaggelos A K 1998 Hybrid

image segmentation using watersheds and fast region merging IEEE Trans.

Image Process. 7 1684–99
[6] Qadir F, Ahmad P Z, Wani S J and Peer M A 2013 Quantum-dot cellular

automata: theory and application Int. Conf. on Machine Intelligence and

http://dx.doi.org/10.5923/j.nn.20110102.11
http://dx.doi.org/10.1007/s00034-019-01119-9
http://dx.doi.org/10.1109/83.730380

Research Advancement (Piscataway, NJ: IEEE) pp 540–4
[7] Silva D S, Sardinha L H B, Vieira M A M, Vieira L F M and Neto O P V 2015

Robust serial nanocommunication with QCA IEEE Trans. Nanotechnol. 14
464–72

http://dx.doi.org/10.1109/TNANO.2015.2407696

Part IV

QCA fault tolerance

An overview of QCA fault-tolerant

circuits

A systemʼs fault tolerance is simply its capacity to function

normally even when one or more of its components fail; it

does not matter if it is a network, computer system, cloud

cluster, or something else. Alternatively, fault tolerance

describes how an operating system (OS) handles and

accommodates hardware or software problems. When the

fundamental components of the computer are faulty, fault-

tolerant computing enables reliable quantum-dot cellular

automaton (QCA) computation. Fault tolerance is the ability

to identify and fix errors. Recently, QCA have emerged as a

notable alternative to complementary metal-oxide

semiconductor (CMOS) technology. They have a high

integration density, potential as a computational fabric for

nano-computing systems, ultra-high velocity, efficient

energy, and low area for designing circuits. Fault-tolerant

circuits offer reliability through computation redundancy

cells. QCA-based circuits are unreliable and error-prone

because they frequently experience numerous

manufacturing flaws and variations. Therefore, designing

fault-tolerant circuits is crucial for their reliable

implementation. The main advantage of fault tolerance is to

reduce or eliminate the possibility of systems failing due to

a component error. Thus the following chapter on fault-

tolerant QCA systems discusses a number of fault-tolerant

designs, including fault-tolerant static random access

memory (SRAM) cells, adders, multipliers, and subtractors.

IOP Publishing

Quantum Computing (Second Edition)

A pathway to quantum logic design

Hafiz Md Hasan Babu

Chapter 31

QCA fault-tolerant circuits

Learning objectives

Understand the importance of QCA fault-tolerant

circuits.

Discuss the fault-tolerant QCA static random access

memory (SRAM) cell in detail.

Become familiar with the QCA fault-tolerant

majority gate.

Provide a figure to illustrate the fault-tolerant QCA

subtractor.

Construct a fault-tolerant QCA demultiplexer.

Explain the fault-tolerant QCA multiplier.

Describe a fault-tolerant QCA full-adder with a

relevant diagram.

Quantum-dot cellular automaton (QCA) technology is a

viable substitute for silicon transistors at the nanoscale due

to its incredibly small size and incredibly low power

consumption. Fault-tolerant QCA structures are a hot topic

of study because the design of QCA circuits is constrained

by the high defect rate during manufacture. That is why, in

this chapter, fault-tolerant QCA gates, such as the 1-to-2

QCA demultiplexer, QCA full-adder, QCA static random

access memory (SRAM) cell, and QCA subtractor will be

presented.

31.1 The necessity of QCA fault-

tolerant circuits

Researchers are looking into alternatives to complementary

metal-oxide semiconductor (CMOS) transistors, such as

graphene field-effect transistors (FET), silicon nanowire

transistors, single electron transistors, carbon nanotube

FETs, tunnel FETs, etc. QCA, a new binary computer

paradigm, are one of the most popular nanotechnologies to

replace CMOS technology.

The fact that QCA are a novel technology makes them

vulnerable to different kinds of fabrication-related errors and

process variances. As a result, QCA-based circuits present

serious reliability-related problems due to their error-prone

nature. Thus, the development of fault-tolerant QCA-based

circuits is becoming increasingly necessary to address the

reliability concerns.

It has been discovered, however, that flaws created

during deposition may be more harmful and may result in

catastrophic errors in QCA circuits. The errors of cell

deposition include cell omission, misalignment,

displacement, and excess cell deposition, among others.

The capacity to continue operating properly in the face of

a failure is known as fault tolerance. When one or more of a

fault-tolerant designʼs components fail, the intended

operation may still be carried out, although at a reduced

level. This is done at the expense of either performance

degradation or significant hardware overhead.

31.2 The fault-tolerant QCA majority

gate

Two different forms of fault-tolerant QCA majority gates will

be suggested in this chapter. Fault-tolerant three-input

majority gates and fault-tolerant five-input majority gates

make up the first group. Figure 31.1 depicts the fault-

tolerant three-input majority gate.

Figure 31.1. The fault-tolerant three-input majority

gate.

To account for single-cell omission faults in this

architecture, the baseline three-input majority is increased

by five cells. Notably, there is no need for a multi-layer

design for cascading because the output of our cell is

accessible. Additionally, since no rotating cells are needed,

the complexity and expense of manufacturing are reduced.

This structure is assessed in this section using physical

verification based on a single-cell omission fault.

In figure 31.2 a five-input majority gate is presented

which is used to create the random access memory (RAM)

cell. This five-input majority gate is the only one utilized for

low-power applications.

Figure 31.2. The fault-tolerant five-input majority

gate.

The symmetrical design of the majority gate that is being

proposed will help designers create better physical control.

Additionally, this design can quickly modify different levels

of any circuit with an excellent output derivation.

31.3 The fault-tolerant QCA 1-to-2

demultiplexer

Demultiplexer circuits are frequently used in communication

systems, QCA technology, and digital electronics. The

demultiplexer circuit transfers data from a single input to

several output lines. It is recognized as a distributor of data.

Inverter and majority gates have been used to create the

majority of QCA circuits, although they typically respond

poorly when there are general defects. The demultiplexer

transforms serial input data into several parallel output lines

(figure 31.3).

Figure 31.3. The fault-tolerant QCA 1-to-2

demultiplexer.

The proposed demultiplexer has input, selector, and

output lines (O1, O2) as well as one input line (IN). Typically,

it moves the inputs to one of the outputs based on the value

of the selector (S) line. One fault-tolerant inverter and two

fault-tolerant majority gates are used to schematize the

suggested circuit. Two clock phases are required to generate

the outputs. The waves are created by the simulator

software using logic 0 and 1. The values designated by the

black rectangle signify the clock, the values designated by

the red rectangle the output values, and the values

designated by the blue rectangle the input values. The

purpose of the introduced QCA construct for fault-tolerant 1-

to-2 QCA demultiplexer construction is clearly evident once

the data are analysed.

31.4 The fault-tolerant QCA full-adder

In building QCA arithmetic circuits, adders are essential, in

particular the one-bit adder. Even though several complete

adders have been built, their fault tolerance still needs more

research. In this section, a full-adder is created using a

three-input and a five-input majority gate, as shown in

figure 31.4.

Figure 31.4. The fault-tolerant one-bit QCA adder.

In this section, a new full-adder was created using a

three-input and a five-input majority gate, as seen in figure

31.4. It is important to note that it works for a single missing

cell defect.

31.5 The fault-tolerant QCA SRAM cell

One of the most important components of any electronic

system is the RAM cell. The two forms of RAM cell

architecture used in QCA are loop-based and line-based. The

loop-based type of design is utilized entirely for SRAM

memory cell design in the QCA field. The storing mechanism

of this structure is operated by wrapping a small amount of

data around a wire-loop made up of QCA cells. Popular logic

operations, including the QCA D latch, QCA SR latch, QCA

multiplexer, and majority gates, are frequently utilized in

this scenario. A fault-tolerant QCA majority-based SRAM cell

is shown in figure 31.5.

Figure 31.5. The fault-tolerant QCA majority-based

SRAM cell.

Two fault-tolerant line-based RAM cells with the capacity

to set and reset values are suggested in this section. A

three-input fault-tolerant majority gate is employed in this

structure. Four majority gates with three inputs each and

one with five inputs make up the design of the RAM.

Additionally, there are four control lines in this design: set,

reset, select, and write (read). In the initial state, it

generates (set = 0 and rest = 0) when the select line is

activated (1) and the write/(read) line is set to 1, then the

input data will be sent to the output and, as a result, the

write operation will be carried out. Additionally, the select

and write/(read) signals are assigned to 1 and 0 for the read

operation. The RAM cellʼs stored bit will be set to 1 in the set

mode, where set = 1 and reset = 0. The RAM cellʼs bit will

also be reset to 0 in the reset mode, where set = 0 and

reset = 1.

31.6 The fault-tolerant QCA

subtractor

A difference and borrow combination QCA circuit with two

inputs and two outputs is called a QCA half-subtractor. The

Boolean expression for a half-subtractor is as follows:

Difference = A ⊕ B

Borrow = .

Figure 31.6 depicts the block diagram of the half-

subtractor.

AB

Figure 31.6. The block diagram of the QCA half-

subtractor.

It makes use of the parity-preserving Fredkin gate (FRG)

and the reversible Feynman double gate (F2G). There are

two inputs, A and B, as well as a control line, ctrl, that

determine how it operates. Subtraction is carried out by the

circuit when the control signal ctrl is at logic 1. The

difference line is depicted as D, and its borrow signal as Br.

While the garbage signals are g1 to g5, the remaining four

inputs, which are referred to as constants, are compelled to

logic 0. Figure 31.7 shows the F2G and figure 31.8 shows

the FRG.

Figure 31.7. The QCA F2G.

Figure 31.8. The QCA double FRG.

The output vector is O(P, Q, and R), while the input

vector is I(A, B, and C). P = A, Q = A ⊕ B, and R = A ⊕ C

define the outputs. In figure 31.8 a QCA implementation of

the FRG is presented. Only four majority gates are used in

this FRG. This design reduces failure rates, ensures that

there is no interference, and has a practical compact layout.

This FRG maximizes circuit density, uses the fewest

possible gates, and focuses on designing the circuit with the

fewest possible QCA cells. As a result, the design

significantly decreases both the complexity and the area

used. QCA cells can easily execute this design.

31.7 The fault-tolerant QCA multiplier

A multiplier is just a factor that increases the basic value of

another thing. Partial product generation and the addition of

partial products are the main causes of propagation delay in

a multiplication operation (figure 31.9).

Figure 31.9. The block diagram of a QCA fault-tolerant

multiplier.

Two bits are required for a two-bit fault-tolerant QCA

multiplier. To construct the primary circuit for a two-bit

multiplier, it primarily requires four fault-tolerant QCA AND

gates and two fault-tolerant QCA half-adders (figure 31.10).

Figure 31.10. The QCA fault-tolerant AND gate.

In this case, the multiplication will be done by the AND

gates, and the partial product terms or carry will be added

by half-adders (figure 31.11).

Figure 31.11. The QCA fault-tolerant half-adder.

It is necessary to first carry out QCA AND operations.

Consider the QCA numbers A1, A0 and B1, B0 which

represent the multiplicand and the multiplier, respectively.

In this circuit, the partial product terms are added by the

half-adders, while the AND gate will execute the

multiplication. These logical procedures result in a

straightforward four-bit output.

31.8 Summary

In this chapter, two fault-tolerant majority systems are

suggested: a three-input majority gate and a five-input

majority gate that can tolerate a single omission defect.

Comparing this design to other state-of-the-art

implementations, it is simpler, takes up less space, and uses

less energy. The fault-tolerant demultiplexer, complete

adder, SRAM, subtractor, and multiplier presented in this

chapter are revolutionary architectures.

Critical thinking questions

1. Why do QCA fault-tolerant circuits need to be built?

2. Is it possible to design a seven-input majority gate

which is fault-tolerant? If so, draw the circuit.

3. What are the differences between regular QCA circuits

and fault-tolerant QCA circuits?

4. Describe the benefits and drawbacks of a fault-tolerant

QCA 1-to-2 demultiplexer over a conventional QCA 1-to-

2 demultiplexer.

References

[1] Ahmadpour S-S, Mosleh M and Heikalabad S R 2019 Robust QCA full-
adders using an efficient fault-tolerant five-input majority gate Int. J. Circuit

Theory Appl. 47 1037–56

http://dx.doi.org/10.1002/cta.2634

[2] Ahmadpour S-S, Mosleh M and Heikalabad S R 2020 The design and
implementation of a robust single-layer QCA ALU using a novel fault-
tolerant three-input majority gate J. Supercomput. 76 10155–85

[3] Bahar A N and Waheed S 2013 Double Feynman gate (F2G) in quantum-dot
cellular automata (QCA) Int. J. Comput. Sci. Eng. 2 351–5

[4] Du H, Lv H, Zhang Y, Peng F and Xie G 2016 Design and analysis of new
fault-tolerant majority gate for quantum-dot cellular automata J. Comput.

Electron. 15 1484–97
[5] Hariprasad A and Ijjada S R 2019 Quantum-dot cellular automata

technology for high-speed high-data-rate networks Circuits Syst. Signal

Process. 38 5236–52
[6] Kaur P and Dhaliwal B S 2012 Design of fault tolerant full adder/subtarctor

using reversible gates Int. Conf. on Computer Communication and

Informatics (Piscataway, NJ: IEEE) pp 1–5
[7] Khosroshahy M B, Moaiyeri M H and Abdoli A 2022 Design and energy

analysis of a new fault-tolerant SRAM cell in quantum-dot cellular automata
Opt. Quant. Electron. 54 593

[8] Majeed A H, Alkaldy E, Zainal M S, Navi K and Nor D 2019 Optimal design
of RAM cell using novel 2:1 multiplexer in QCA technology Circuit World 46
147–58

[9] Mohammadi Z, Navi K and Sabbaghi-Nadooshan R 2020 Design of testable
reversible latches by using a novel efficient implementation of Fredkin gate
Int. J. Electron. 107 859–78

[10] Raj M, Gopalakrishnan L and Ko S-B 2019 Fast quantum-dot cellular
automata adder/subtractor using novel fault tolerant exclusive-OR gate and
full adder Int. J. Theor. Phys. 58 3049–64

[11] Seyedi S, Navimipour N J and Otsuki A 2021 Design and analysis of fault-
tolerant 1:2 demultiplexer using quantum-dot cellular automata nano-
technology Electronics 10 2565

[12] Singh G, Raj B and Sarin R K 2018 Fault-tolerant design and analysis of
QCA-based circuits IET Circuits Devices Syst. 12 638–44

http://dx.doi.org/10.1007/s11227-020-03249-3
http://dx.doi.org/10.1007/s10825-016-0918-y
http://dx.doi.org/10.1007/s00034-019-01119-9
http://dx.doi.org/10.1007/s11082-022-03992-2
http://dx.doi.org/10.1108/CW-06-2019-0062
http://dx.doi.org/10.1080/00207217.2019.1692243
http://dx.doi.org/10.1007/s10773-019-04184-7
http://dx.doi.org/10.3390/electronics10212565
http://dx.doi.org/10.1049/iet-cds.2017.0505

	Title
	Copyright
	Contents
	Preface to the Second Edition
	Acknowledgments
	Author biography
	Acronyms
	Part I Quantum logic
	1 Quantum logic
	1.1 Overview
	1.2 Motivations towards quantum computing
	1.3 The relationship between reversible and quantum logic
	1.4 Quantum computers
	1.5 The working principles of quantum computers
	1.6 The evolution of quantum computers
	1.7 Why pursue quantum computing?
	1.8 Summary
	Critical thinking questions
	References

	2 Basic definitions of quantum logic
	2.1 The quantum qubit
	2.2 The quantum gate
	2.2.1 The quantum Feynman gate
	2.2.2 The quantum Tofolli gate
	2.2.3 The quantum Fredkin gate
	2.3 Garbage outputs
	2.4 Constant inputs
	2.5 Area
	2.6 Power
	2.7 Delay
	2.8 Depth
	2.9 Quantum cost
	2.10 Quantum gate calculation complexity
	2.11 Summary
	Critical thinking questions
	References

	3 The quantum qubit string comparator
	3.1 Characteristics of a quantum comparator
	3.2 The quantum magnitude comparator
	3.3 The design of a quantum comparator
	3.3.1 Example
	3.4 Summary
	Critical thinking questions
	References

	4 The quantum full-adder and subtractor
	4.1 The quantum adder
	4.1.1 The quantum full-adder
	4.2 The quantum subtractor
	4.2.1 The quantum half-subtractor
	4.2.2 The quantum full-subtractor
	4.3 Summary
	Critical thinking questions
	References

	5 The quantum multiplexer and demultiplexer
	5.1 The quantum multiplexer
	5.1.1 The quantum 2-to-1 multiplexer
	5.1.2 Quantum 4-to-1 multiplexer
	5.1.3 The quantum 2n-to-1 multiplexer
	5.2 The quantum demultiplexer
	5.2.1 The quantum 1-to-2 demultiplexer
	5.2.2 The quantum 1-to-4 demultiplexer
	5.2.3 Quantum 1-to-2n demultiplexer
	5.3 Summary
	Critical thinking questions
	References

	6 The quantum adder circuits
	6.1 The quantum carry skip adder
	6.2 The quantum comparison circuit
	6.3 The quantum 2-to-1 multiplier circuit
	6.4 The design of a quantum carry skip adder
	6.4.1 The four-qubit quantum carry skip adder
	6.4.2 The n-qubit quantum carry skip adder
	6.4.3 Calculation of the area and power of a quantum carry skip adder circuit
	6.4.4 Complexity of the n-qubit quantum carry skip adder circuit
	6.5 The quantum BCD adder
	6.6 Summary
	Critical thinking questions
	References

	7 The quantum multiplier–accumulator
	7.1 The importance of a quantum multiplier–accumulator
	7.2 The quantum multiplication technique
	7.3 Reduction of the garbage outputs and ancillary inputs of quantum circuits
	7.4 The design of a quantum multiplier circuit
	7.4.1 The quantum ANDing circuit
	7.4.2 The quantum full-adder circuit
	7.4.3 The n × n-qubit quantum multiplier
	7.5 Accumulator
	7.6 Summary
	Critical thinking questions
	References

	8 The quantum divider
	8.1 Division algorithms
	8.1.1 Classical integer division algorithms
	8.1.2 Quantum integer division algorithms
	8.2 The importance of the quantum divider
	8.3 The tree-based quantum division technique
	8.3.1 Definitions and properties of the division technique
	8.3.2 The algorithm of the division technique
	8.4 The design of a quantum divider circuit
	8.4.1 A technique to minimize the number of ancillary inputs in the quantum circuit realization
	8.4.2 The components of the quantum divider circuit
	8.5 Summary
	Critical thinking questions
	References

	9 The quantum BCD priority encoder
	9.1 The properties of a quantum encoder
	9.2 The design of a quantum BCD priority encoder circuit
	9.2.1 The quantum BCD priority encoder circuit
	9.2.2 Analysis of the properties of the encoder circuit
	9.3 Summary
	Critical thinking questions
	References

	10 The quantum decoder
	10.1 The characteristics of a quantum decoder
	10.2 The design of a quantum decoder
	10.2.1 The quantum decoder circuit
	10.2.2 Analysis of the properties of the circuits
	10.3 Summary
	Critical thinking questions
	References

	11 The quantum square root circuit
	11.1 The properties of a quantum square root function
	11.2 The design of a quantum square root circuit
	11.2.1 The quantum adder/subtractor circuit
	11.2.2 The quantum square root circuit
	11.2.3 Analysis of the properties of the quantum circuit
	11.3 Summary
	Critical thinking questions
	References

	12 Quantum latches and counter circuits
	12.1 The properties of quantum latches
	12.2 The design of quantum latches
	12.2.1 The quantum SR latch
	12.2.2 The quantum D latch
	12.2.3 The quantum T latch
	12.2.4 The quantum J–K latch
	12.3 The properties of quantum counter circuits
	12.4 The design of quantum counters
	12.4.1 The quantum asynchronous counter
	12.4.2 The quantum synchronous counter
	12.5 Summary
	Critical thinking questions
	References

	13 The quantum controlled ternary barrel shifter
	13.1 Ternary quantum gates
	13.1.1 The quantum ternary Peres gate
	13.1.2 The quantum ternary modified Fredkin gate
	13.2 The properties of ternary quantum circuits
	13.3 The quantum barrel shifter
	13.3.1 Logical right shift
	13.3.2 Arithmetic right shift
	13.3.3 Right rotation
	13.3.4 Logical left shift
	13.3.5 Arithmetic left shift
	13.3.6 Left rotation
	13.4 The design of a quantum ternary barrel shifter
	13.4.1 The optimized quantum ternary barrel shifter
	13.4.2 The properties of the designed circuit
	13.5 Summary
	Critical thinking questions
	References

	14 Quantum RAM, quantum ROM, and quantum cache memory
	14.1 The quantum n-to-2n decoder
	14.2 The quantum memory unit
	14.3 The construction procedure of QRAM
	14.4 Quantum ROM
	14.5 Quantum cache memory
	14.6 Summary
	Critical thinking questions
	References

	15 The quantum arithmetic logic unit
	15.1 The design of a quantum ALU
	15.1.1 The first approach
	15.1.2 The second approach
	15.1.3 The third approach
	15.2 Summary
	Critical thinking questions
	References

	16 Quantum programmable logic devices
	16.1 The quantum programmable array logic
	16.1.1 The design procedure and working principles of quantum PAL
	16.1.2 The importance and applications of quantum PAL
	16.2 The quantum programmable logic array
	16.2.1 The design procedure and working principles of quantum PLAs
	16.2.2 The importance and applications of quantum PLAs
	16.3 The quantum complex programmable logic device
	16.3.1 The design procedure and working principles of quantum CPLDs
	16.3.2 The importance and applications of quantum CPLD
	16.4 The quantum field-programmable gate array
	16.4.1 The design procedure and working principles of quantum FPGAs
	16.4.2 The importance and applications of FPGAs
	16.5 Summary
	Critical thinking questions
	References

	17 The quantum processor circuit
	17.1 Introduction
	17.2 Basic definitions
	17.3 The block diagram of a quantum processor
	17.4 The basic components of a quantum processor
	17.4.1 The quantum RAM
	17.4.2 The quantum instruction register
	17.4.3 The quantum program counter
	17.4.4 The quantum decoder
	17.4.5 The quantum multiplexer
	17.4.6 The quantum arithmetic logic unit
	17.4.7 The quantum accumulator
	17.5 Applications
	17.6 Summary
	Critical thinking questions
	References

	18 Applications of quantum computing technology
	18.1 Optimization
	18.1.1 The Roswell Park Cancer Institute
	18.1.2 Volkswagen group
	18.1.3 Recruit Communications
	18.2 Machine learning
	18.2.1 QxBranch
	18.2.2 Los Alamos National Laboratory
	18.2.3 NASA
	18.3 Biomedical simulations
	18.4 Financial services
	18.5 Computational chemistry
	18.6 Logistics and scheduling
	18.7 Cyber security
	18.8 Circuit, software, and system fault simulation
	18.9 Weather forecasting
	18.10 Summary
	Critical thinking questions
	References

	Part II Quantum fault tolerance
	19 Quantum fault-tolerant circuits
	19.1 The need for quantum fault-tolerant circuits
	19.2 The fault-tolerant quantum adder
	19.2.1 The fault-tolerant full-adder
	19.3 The fault-tolerant multiplier
	19.3.1 The fault-tolerant signed multiplier
	19.4 The quantum fault-tolerant integer divider
	19.4.1 The restoring division algorithm
	19.4.2 The subtractor module
	19.4.3 The conditional addition operation module
	19.4.4 Quantum restoring integer division circuitry
	19.5 Summary
	Critical thinking questions
	References

	Part III Quantum-dot cellular automata
	20 Quantum-dot cellular automata
	20.1 Fundamentals of QCA circuits
	20.1.1 Area
	20.1.2 Delay
	20.1.3 Kink energy
	20.1.4 Power
	20.1.5 Overall cost
	20.2 The QCA cell
	20.3 Information and data propagation
	20.4 Basic QCA elements and gates
	20.4.1 The QCA majority voter
	20.4.2 The QCA AND gate
	20.4.3 The QCA OR gate
	20.4.4 The QCA NOT gate
	20.4.5 The QCA wire
	20.5 The QCA clock
	20.5.1 Special cell arrangements and symmetric cells
	20.5.2 The NOT gate clock zones
	20.5.3 The majority voter clock zones
	20.6 Summary
	Critical thinking questions
	References

	21 The QCA adder and subtractor
	21.1 The Ex-OR gate
	21.2 The QCA half-adder and -subtractor
	21.3 The QCA full-adder and full-subtractor
	21.3.1 Implementation of the full-adder and full-subtractor
	21.4 Summary
	Critical thinking questions
	References

	22 The QCA multiplier and divider
	22.1 The QCA multiplier
	22.1.1 Multiplication networks
	22.1.2 QCA multiplication networks
	22.1.3 Multiplier design
	22.2 The QCA divider
	22.2.1 The non-restoring binary divider
	22.2.2 Divider implementation
	22.3 Summary
	Critical thinking questions
	References

	23 QCA asynchronous and synchronous counters
	23.1 The asynchronous counter
	23.1.1 The dual-edge triggered J–K flip-flop
	23.1.2 The design of dual-edge triggered J–K flip-flop
	23.1.3 The asynchronous backward counter
	23.2 The synchronous counter
	23.2.1 QCA synchronous counters
	23.3 Summary
	Critical thinking questions
	References

	24 The QCA decoder and encoder
	24.1 The QCA decoder
	24.1.1 The QCA 2-to-4 decoder
	24.1.2 The QCA 3-to-8 decoder
	24.2 The QCA encoder
	24.2.1 The QCA turbo encoder design
	24.2.2 The RC encoder with single-feedback
	24.2.3 The RC encoder with multi-feedback
	24.3 Summary
	Critical thinking questions
	References

	25 The QCA multiplexer and demultiplexer
	25.1 The QCA 2-to-1 multiplexer
	25.2 The QCA 4-to-1 multiplexer
	25.3 The QCA 1-to-2 demultiplexer
	25.4 The QCA 1-to-4 demultiplexer
	25.5 Multiplexing/demultiplexing using QCA
	25.5.1 The effect of the selector line (S0,S1) on the 2-to-1 MUX/1-to-2 DEMUX
	25.6 Summary
	Critical thinking questions
	References

	26 QCA flip-flops
	26.1 QCA D flip-flops
	26.2 QCA J–K flip-flops
	26.3 QCA SR flip-flops
	26.4 QCA T flip-flops
	26.5 Applications
	26.6 Summary
	Critical thinking questions
	References

	27 QCA programmable logic devices
	27.1 The QCA programmable array logic
	27.2 The QCA programmable logic array
	27.3 The QCA field-programmable gate array
	27.4 The importance and applications of QCA programmable logic devices
	27.5 Summary
	Critical thinking questions
	References

	28 QCA RAM, ROM, and cache memory
	28.1 The RAM cell
	28.2 The QCA ROM
	28.3 The QCA cache memory
	28.4 Summary
	Critical thinking questions
	References

	29 The QCA processor circuit
	29.1 Introduction
	29.2 Basic definitions
	29.3 The block diagram of a QCA processor
	29.4 The basic components of a QCA processor
	29.4.1 The QCA RAM
	29.4.2 The QCA instruction register
	29.4.3 The QCA accumulator
	29.4.4 The QCA decoder
	29.4.5 The QCA multiplexer
	29.4.6 The QCA program counter
	29.4.7 The QCA ALU
	29.5 Summary
	Critical thinking questions
	References

	30 Applications of QCA technology
	30.1 High performance
	30.2 Small size
	30.3 Low power consumption
	30.4 Encryption and authentication
	30.5 Higher data speed
	30.6 Image processing
	30.7 Summary
	Critical thinking questions
	References

	Part IV QCA fault tolerance
	31 QCA fault-tolerant circuits
	31.1 The necessity of QCA fault-tolerant circuits
	31.2 The fault-tolerant QCA majority gate
	31.3 The fault-tolerant QCA 1-to-2 demultiplexer
	31.4 The fault-tolerant QCA full-adder
	31.5 The fault-tolerant QCA SRAM cell
	31.6 The fault-tolerant QCA subtractor
	31.7 The fault-tolerant QCA multiplier
	31.8 Summary
	Critical thinking questions
	References

