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Preface 

The principal change, in revising this book, has been the addition of a new 
chapter, primarily on periodic waveforms. The subject of Fourier series has 
been presented using the rules-and-pairs method, in particular for the com-
mon case of real periodic functions. The topic of Fourier transforms of dis-
crete waveforms is also included, leading to a discussion of periodic discrete 
waveforms in particular, with reference to the fast Fourier transform. 

Errors in the original text, mainly typographical, have been corrected, 
and at a number of points in the text, the mathematics, and the figures have 
been revised for greater clarity. Some further small additions and illustrations 
have been included, particularly in Chapters 2 and 3. 

A significant further addition is the provision of a disk containing MAT-
LAB programs, including those for all the principal graphical figures. Readers 
can run these programs with the same parameters to reproduce the figures 
and vary these parameters for their particular interests or requirements.

Again grateful acknowledgment is due to the publisher’s reviewer, 
remaining anonymous, for encouragement and for useful and perceptive  
comments.

DHB 2011
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xv

Preface to the First Edition

The basic material for this book has been accumulated over the author’s 
working lifetime of about forty years. The rules-and-pairs approach to Fou-
rier transforms has been employed with good effect in a wide variety of prob-
lems, from pulse Doppler radar spectra to delay compensation, from antenna 
array patterns to efficient clutter simulation. It has been found to be generally 
easy and effective, quickly yielding useful results and allowing the user to 
see clearly the relationships between functions and transforms, waveforms, 
and spectra, rather than losing sight of these in the complexities of integra-
tion. It seemed, however, that the benefits of this approach should be better 
known, and the initial intention was to produce a technical note for use by 
the author’s colleagues and successors. However, the interest shown and en-
couragement given by Artech House have been gratefully received and the 
opportunity to publicize the technique more widely has been taken.

The support of Roke Manor Research in providing the facilities and 
freedom to write this book is gratefully acknowledged, as are also the backing 
of C. J. Tarran and the reviewing of S. H. W. Simpson. The final acknowl-
edgment is to the publisher’s reviewer, remaining anonymous, who provided 
encouragement and useful comments.

DHB 2002
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1
Introduction

1.1  Aim of the Work

The Fourier transform is a valuable theoretical technique, used widely in 
fields such as applied mathematics, statistics, physics, and engineering. How-
ever, the relationship between a function and its transform is given by an 
integral, and a certain amount of tedious integration may be required to ob-
tain the transform in a given application. In general, the user of this math-
ematical tool is interested in the functions and their transforms and not in 
the process of obtaining one from the other, which, even if not difficult, may 
be complicated and require care to avoid any small slip leading to an error in 
the result. If the transform function could be obtained without integration, 
this would be welcomed by most users. In fact, anyone performing many 
transforms in a particular field, such as radar, where the spectra correspond-
ing to various, perhaps rather similar, waveforms are required, would notice 
that certain waveforms have certain transforms and that certain relationships 
between waveforms lead to corresponding relationships between spectra. By 
knowing a relatively small number of waveform-transform pairs and the rules 
for combining and scaling transforms, a very substantial amount of Fourier 
transform analysis can be carried out without any explicit integration at all—
the integrations are prepackaged within the set of rules and pairs.

The aim of this book is to present again the rules-and-pairs approach 
to Fourier transforms, first defined systematically by Woodward [1], and to  
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illustrate its use. The rules and pairs, and notation, are given in Chapter 2, 
and the remaining chapters employ the technique in a number of areas of 
application. These are mainly in the field of signal or waveform processing 
(though not Chapter 8), but the technique is general, of course, and this 
choice should certainly not imply that other users of the Fourier transform 
should not also find the technique of interest and value.

The aim is not to provide a handbook of solutions to particular prob-
lems in the areas covered, though some results may be found particularly 
interesting and useful. More specifically, it is to show how such problems 
might be tackled and how the technique can be used with ingenuity in a va-
riety of ways. These produce results that would be more difficult and tedious 
to obtain by integration and may not be so easy to interpret and understand. 
In fact an important advantage of the method, aided by the notation used, is 
the greater clarity regarding the nature of the transforms, obtained by keep-
ing attention on the functions rather than on the mechanics of integration. 
While the illustrations given may not include a reader’s particular problem, 
some examples may well be close enough to suggest how the problem could 
be tackled by the rules-and-pairs method and perhaps solved more easily than 
otherwise. Once the user has become familiar with the method, many results 
can be obtained remarkably easily and concisely, and the complexity of prob-
lems to which this method can be applied is surprising. 

1.2  Origin of the Rules-and-Pairs Method for Fourier Transforms

With the arrival of the technology of electronics, early in the last century, 
the possibilities for handling information—sending, receiving, and process-
ing it—expanded immensely over that possible with the mechanical technol-
ogy, however ingenious, of the nineteenth century. The need to understand 
the limits of performance, whatever the technology available, and the depen-
dence of performance on various parameters, such as bandwidth and signal-
to-noise ratio, led to the rise of the subject of information theory. Under the 
stimulus of war, a new application of electronics, radar, developed rapidly in 
the 1930s and 1940s and again theoretical analysis followed. In 1953, P. M. 
Woodward’s monograph, Probability and Information Theory with Applica-
tions to Radar [1] appeared. The topics of radar detection, accuracy, resolu-
tion, and ambiguity, in the later chapters are generally the reasons for the 
references to this book in modern radar textbooks, but, leading up to his con-
clusions, Woodward needed results in the field of waveform analysis, and this 
is the subject of his Chapter 2, in which his rules and pairs are introduced. 
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Waveforms and spectra are connected, of course, by a Fourier transform re-
lationship, and this technique is the principal tool of the time-and-frequency 
analysis that Woodward implies is the basis of much of the mathematical 
study of information theory, radio, and radar.

It is not claimed that Woodward’s rules and pairs in themselves are par-
ticularly original. The pairs are well known and, as Woodward says, the rules 
are “known by heart by most circuit mathematicians.” What is perhaps new is 
the careful specification of the set of rules and the committed and consistent 
use of them to obtain transforms very directly and concisely. In addition to the 
results required for the mathematical study of radar, Woodward derives very 
neatly important general results (again, already known) such as Parseval’s theo-
rem, sampling theorems, and Poisson’s formula, using this approach. What is 
more clearly new and valuable is Woodward’s contribution to notation, in-
cluding the rect and sinc functions, the comb function, and the rep operator. 
The term sinc function has since become more widely accepted and used, al-
though, regrettably, there is ambiguity, with some writers using sincx to mean 
sinx/x instead of, as here, sinpx/px. (We follow Woodward’s definition here; 
in this form sinc is a more natural and more elegant function, with expressions 
less cluttered with factors of p, particularly in the Fourier transform applica-
tion.) The comb function and the rep operator are used for describing sampled 
or repetitive waveforms and their spectra, and hence enable the whole field of 
Fourier series to be incorporated, in principle, into the field of Fourier trans-
forms, as shown in Chapter 4. Thus, Fourier series can now be seen as particu-
lar forms of the Fourier transform, rather than the Fourier transform seen just 
as a limiting case of the Fourier series. For suitable waveforms, this enables the 
Fourier series coefficients to be obtained without explicit integration.

1.3  Outline of the Rules-and-Pairs Method

To use the method, the function to be transformed must first be expressed 
carefully in the notation in which the rules and pairs are expressed (i.e., in 
terms of the basic functions included in the table of Fourier transform pairs). 
This table gives the transforms of these functions, and the table of rules  
provides the relationships between these transforms (sums, products, convo-
lutions, and appropriate scaling factors, for example) as determined by the 
relationships between the input basic functions.

The notation is specific and specialized, but is reasonably natural and 
quickly absorbed, and is given in Chapter 2 with the tables of the rules and 
pairs. Having obtained the transform using the rules and pairs, the resulting 
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expression requires interpretation and may benefit from rearranging and sim-
plifying. Sketches of the functions can be useful to bring to life a mathemati-
cal expression, and illustrations of functions and their transforms have been 
provided fairly generously in Chapters 2, 3, and 4, particularly.

A feature of the notation is that a given function (or waveform) can 
sometimes be correctly described in more than one way, leading to more than 
one expression for its transform (or spectrum), though of course these expres-
sions must be equivalent. One of these expressions will be more appropriate 
and convenient for the particular case under study than another, so there is 
an art, based on experience and imagination (such as required for solving cer-
tain differential equations or some problems in integration) in choosing the 
description of the waveform that will yield the spectrum represented in the 
required form. This alternative description approach is particularly effective 
in producing general results or theorems, as Woodward shows. A good ex-
ample is in Woodward’s proof of the sampling theorem in the time domain, 
given in Chapter 5, where, by expressing the spectrum of a waveform in two 
different ways, the equivalence of a continuous waveform and its sampled 
form is established.

1.4  The Fourier Transform and Generalized Functions

The concept of the Fourier series seems intuitively very reasonable—that any 
periodic function can be represented by a sum of elementary periodic func-
tions, either sine and cosine functions, or, equivalently, complex exponentials. 
The frequencies of the elementary functions are integer multiples (including 
zero, giving a constant function) of the repetition frequency of the periodic 
function. The sum may turn out to be infinite, but users of this mathematical 
tool are generally content to let mathematicians justify such a sum, determin-
ing the conditions under which it converges; however, for problems arising 
in practice, in physics or engineering, for example, it is obvious that such a 
sum does converge. Thus we can put, for f a real or complex function of a real 
variable x, with period X,

0 1

( ) cos(2 / ) sin(2 / ) exp(2 / )n n n
n n n

f x a nx X b nx X c inx X
¥ ¥ ¥

= = =-¥
= + =å å åπ π π 	 (1.1)

(By expressing the trigonometric functions as complex exponentials we can 
relate cn to an and bn. From now on, we restrict our attention exclusively to 
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the complex exponential series, other than in Chapter 4.) The coefficients of 
the series are found by integration over one cycle of the function, so that, for 
example,

	
0

0

/2

/2

1
( )exp( 2 / )

x X
n

x X
c f x in x X dx

X

+

-
= -ò π 	 (1.2)

The Fourier transform can be obtained as the limiting case of the Fou-
rier series when the period is increased toward infinity and the fundamen-
tal frequency falls to zero. In this case, as X ® ¥ we put n/X®y, 1/X®dy, 
cn®g(y)dy, where g is a continuous function replacing the discrete series cn, 
and the summations in (1.1) become integrals. Thus (1.1) and (1.2) become, 
respectively,

	
 

 
( ) ( )exp(2 )f x g y ixy dy

¥

-¥
= ò π 	 (1.3)

and

	
 

 
( ) ( )exp( 2 )g y f x ixy dx

¥

-¥
= -ò π 	 (1.4)

Here g(y) is the Fourier transform of f (x). Even the practical user, 
not concerned about problems of convergence, knowing that he has a well- 
behaved continuous function with no poles, for example, and believing that 
there is a well-behaved solution for his problem, will find there is a difficulty 
here. Whereas it is clear that the integral in (1.2) converges (has a finite value) 
because it is over a finite interval, the same does not necessarily hold for the 
integral in (1.4), which is over an infinite interval. (The former is absolutely 
integrable for such a function—that is, the integral of the modulus of the 
integrand is finite—and the latter is not necessarily so.) The simplest func-
tion for which this difficulty arises is the constant function, and it is clear that 
the value of this mathematical tool would be severely limited if it could not 
handle even this case. 

An approach to finding the Fourier transform of a constant function, 
say f (x) = 1, for all real x, is to find a sequence of functions that do have trans-
forms as given by (1.4) and that approach f in the limit of some parameter. 
For example, we could choose fn(x)  to be the function exp(-px2/n2). Putting 
this into (1.4), we find that its transform is gn( y) = nexp(-pn2y2). We see that 
in the limit as n ® ¥, fn(x) ® f (x) = 1, in that however small we choose the 
positive number e, for any x we can find a value of n such that fn(x) > 1 - e. 
Also gn(y) ® g(y), where gn(0) ® ¥, and gn(y) ® 0; otherwise, as, for any 
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nonzero y and positive e, however small, we can always find a value of n such 
that gn(y) < e. The limiting function g is the Dirac d-function, which plays 
an important part in this theory. It is not strictly a function in the ordinary 
sense, but is a generalized function in Lighthill’s terminology [2]. 

The fact that there is some difficulty in using (1.4) where f (x) is a con-
stant function (and also if it is periodic) does not mean that such functions 
do not have Fourier transforms. This problem has been tackled formally, and 
the subject of Fourier transforms put on a rigorous basis by Laurent Schwarz. 
However, to do this it was necessary to generalize the idea of a function to 
include the d-function, and indeed the term generalized function has been 
introduced by Temple and presented clearly and accessibly by Lighthill [2]. It 
is shown in this text that, in general, ordinary functions satisfy the definition 
of generalized functions (as a limiting sequence of suitable functions). This 
means, in practice, that we can confidently accept and include d-functions 
(and rows of delta-functions, in the case of a line spectrum) with ordinary 
functions for the purpose of Fourier transform operations and analysis.

The d-function has been obtained as the limit of a series of Gaussian 
functions (as also in Woodward [1], on pp. 15 and 28), of a series of trian-
gular functions and also in Figure 2.3 of Chapter 2, of a series of rectangular 
functions and of sinc functions. The fact that different sequences can be used 
is included in Lighthill’s definition, though his functions should be differen-
tiable everywhere, which actually rules out the series of triangular and rect-
angular functions.

There is no reference to generalized function theory by Woodward; 
Schwarz’s work was published in 1950–51, only shortly before Woodward’s  
book (1953), and the further spreading of these ideas by Temple (1955) and 
Lighthill (1958) followed later. The Dirac delta-function is an example of 
the not uncommon case where physics and engineering have required a new 
mathematical tool. This has been devised and given a very reasonable justi-
fication (e.g., as the limit of a series of triangular functions), only later to be 
given a more rigorous mathematical definition.

1.5  Complex Waveforms and Spectra in Signal Processing

The method uses the complex Fourier transform, by which a waveform, real 
or complex, is expressed as a sum or integral of complex exponentials (see 
Equation (1.3)), which are elementary complex waveforms. The idea of a 
complex waveform should not be seen as only a mathematical convenience, 
with the real-world waveform taken to be just the real part. The elementary 
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complex waveform exp2pift can be represented as the pair of real waveforms 
cos2pft and sin2pft in two channels, which must be handled appropriately 
(i.e., according to the rules of complex arithmetic). We recall that a complex 
number can be represented as an ordered pair of real numbers (i.e., z = x + 
iy can be written as (x,y), satisfying the rules (x1,y1) + (x2,y2) = (x1+ x2,y1+ y2) 
and (x1,y1) ´ (x2,y2) = (x1x2 - y1y2, x1y2 + x2y1)). This avoids the explicit use of 
the imaginary constant i, if this worries the practical user, but we need only 
consider that i acts as a form of switch that moves a waveform from channel 1  
(“real”) to channel 2 (“imaginary”), or from channel 2 to channel 1, with a 
sign change in this case. We note that by using complex waveforms, meaning 
is given to the idea of negative frequency. Compared with the positive fre-
quency form, this corresponds to an inversion of the waveform in the second 
channel (i.e., the pair (cos2pft,-sin2pft)).

In signal processing, it is convenient to use the analytic signal, which 
is the complex waveform corresponding to the real waveform that is pres-
ent, as received, for example, from a radio or radar antenna or sonar sensor. 
Thus, if the waveform is expressed as a(t)cos(2pf0t + f(t)), that is, a carrier 
at intermediate frequency (IF) or radio frequency (RF) f0, modulated (time 
varying) in both amplitude and phase, in the general case, then we form the 
complex form a(t)expi(2pf0t + f(t)), which is the pair {a(t)cos(2pf0t + f(t)), 
a(t)sin(2pf0t + f(t))}. The second member of this pair is obtained from the 
first by a Hilbert transform, which in effect performs a wideband –90° phase 
shift. (Thus all cosine components in the signal, whatever their frequencies, 
become sines, and sines become –cosines.) In practice this can be achieved 
with a high degree of fidelity (for moderate fractional bandwidths) by a 3-dB  
hybrid directional coupler. The two (real) outputs of this coupler can be con-
sidered the required (complex) waveform pair. The advantage of using the 
analytic signal is that (at least when on a carrier) the spectrum is “one-sided,” 
with only positive frequency components, in contrast to the two-sided spec-
trum of the real waveform. If the complex waveform is then mixed down to 
complex baseband, using the complex local oscillator (LO) exp(-2pif0t), we 
obtain the complex waveform a(t)exp(if(t)), which is the part of the waveform 
(the modulation) containing the information of interest. At baseband, the 
spectrum will contain both positive and negative frequencies from the com-
ponents of the incoming signal with frequencies above and below the LO fre-
quency, respectively. The spectrum is not necessarily symmetrical, in general.

If the two real baseband waveforms are sampled (simultaneously) and 
digitized, the pairs of samples are available as complex numbers for any pro-
cessing computation required. The two signal channels are commonly re-
ferred to as I and Q, for in phase and in (phase) quadrature, with respect to 
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the IF or RF form. This is rather clumsy, as the I refers to the real channel, 
rather than the imaginary. A more elegant terminology would be P and Q for 
in phase and in quadrature.

1.6  Outline of the Contents

The rules and pairs themselves are presented in Chapter 2, but, before they 
are given, the notation in which they are expressed is defined and illustrated. 
Four examples using the technique are then taken, which provide an intro-
duction to the method and show how easily some useful and important re-
sults can be obtained. Two appendices, of material effectively in parenthesis, 
are added; one gives an outline of the derivations of the rules and pairs, and 
the other obtains the properties of the extremely useful sinc function, the 
transform of the rectangular pulse, using the rules.

The remaining chapters provide examples and illustrations of the use of 
the technique. It will be seen that the results have all been obtained without 
any (explicit) integration whatsoever, and indeed, except for some expres-
sions that are used to define the problem in terms of Fourier transforms, 
there are few symbols of integration to be seen. The first of these, Chapter 3, 
on pulse spectra, covers one of the most natural applications of the tech-
nique. For readers new to the method, Chapters 2 and 3 should provide a 
relatively straightforward introduction to its use. Of the following chapters, 
while Chapters 4 and 5 may be of more interest theoretically than practically, 
Chapters 6 through 8 show the method applied in practical areas, giving 
some impressive results relatively easily.

In Chapter 4 the application of the method to periodic waveforms, as 
an alternative to the usual Fourier series approach using integration is shown. 
In particular, the common case of the analysis of real waveforms is taken, 
with a number of illustrations. The application to discrete waveforms is in-
cluded here. Although the discrete Fourier transform (DFT) is not necessarily 
periodic, the very valuable fast Fourier transform (FFT) method is (generally 
implicitly), and the method shows clearly the forms of these waveforms and 
spectra.

Sampling, particularly relevant for digital signal processing, is studied 
in Chapter 5. The basic sampling theorems are given (following Woodward’s 
examples), which give the minimum sampling rate necessary to retain all the 
information in a waveform of finite bandwidth. Some further forms of sam-
pling are also analyzed, which again may be of more theoretical than practical 
interest. These results are certainly obtained more easily than in the earlier 



	 Introduction	 �

papers on these sampling methods, which did not use Woodward’s method 
and notation.

The question of deriving a series of samples offset in time from the orig-
inal series is considered in Chapter 6. These interpolated samples correspond 
to the samples that would have been obtained by sampling the waveform with 
the time offset. The ability to do this, when the waveform is no longer avail-
able, is important, as it provides a sampled form of the delayed waveform. If 
the waveform is sampled at the minimum rate to retain all the waveform in-
formation, accurate interpolation requires combining a substantial number of 
input samples for each output value. It is shown that oversampling—sampling  
at a higher rate than actually necessary—can reduce this number very consid-
erably, to quite a low value. The user can compare the disadvantage, if any, 
of sampling slightly faster with the saving on the amount of computation 
needed for the interpolation. One example (from a simulation of clutter in a 
radar MTI system) is given where the reduction in computation can be very 
great indeed. 

The problem of compensating for spectral distortion is considered in 
Chapter 7. Compensation for delay (a phase error linear in frequency) is 
achieved by a similar technique to interpolation, but amplitude compensa-
tion is interesting in that it requires a new set of transform pairs, including 
functions derived by differentiation of the sinc function and defined here. 
The compensation is seen to be very effective for the problems chosen, and 
again oversampling can greatly reduce the complexity of the implementation. 
The problem of equalizing the response of a wideband antenna array used 
for a radar application is used as an illustration, showing the technique to be 
remarkably effective.

Finally in Chapter 8 we take advantage of the fact that there is a Fou-
rier transform relationship between the illumination of a linear aperture and 
its beam pattern. In fact, rather than a continuous aperture, we concentrate 
mostly on the regular linear array, which is a sampled aperture, and math-
ematically has a correspondence with the sampled waveforms considered in 
earlier chapters. Two forms of the problem are considered—the low sidelobe 
directional beam and a much wider sector beam, covering an angular sec-
tor with uniform gain. Similar results could be achieved, in principle, for 
the continuous aperture, but it would be difficult in practice to apply the 
required aperture weighting (or tapering). The question of generating a re-
quired pattern from an irregular linear array is also considered, in particular 
for a sector beam. 

We note that some of Chapter 3 and much of Chapters 5 through 8 
analyze periodic waveforms (with line spectra) or sampled waveforms (with 
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periodic spectra), implying a requirement for Fourier series analysis rather 
than the nonperiodic Fourier transform. However, it would not make the 
problems any easier to turn to conventional Fourier series analysis. As re-
marked earlier, the classical Fourier series theory is now, as Lighthill states on 
p. 66 of [2], included in the more general Fourier transform approach. Us-
ing Woodward’s notation, the ease with which the method applies (without 
requiring integration) to nonperiodic functions applies also to periodic ones, 
and no distinction, except in notation, is needed.

Finally, the included disk of MATLAB programs should be of interest 
and use to the reader. This contains the programs for all the main figures, 
giving results and illustrations in the form of graphical plots. The program 
names are those of the figures (with, for example, Fig608 or Fig614, be-
ing the files of the program for Figure 6.8 or 6.14). The preambles include 
definitions of all the parameters required as well as at least one example  
MATLAB statement for running the program. A statement can be pasted 
into the MATLAB command window and run to reproduce the figure. The 
user can then change parameters to obtain other results, according to his or 
her interest or requirements. Some of the programs require the sinc derivative 
functions, which are defined in Chapter 7 and called sncr for the rth deriva-
tive. A program snc(r,x) is included on the disk, which returns values for ar-
guments x and order r (with r set to zero for the sinc function itself ).
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2
Rules and Pairs

2.1  Introduction

In this chapter we present the basic tools and techniques for carrying out 
Fourier transforms of suitable functions without using integration. In the 
rest of the book, the definitions and results given here will be used to obtain 
useful results relatively quickly and easily. Some of these results are well estab-
lished, but these derivations will serve as valuable illustrations of the method, 
indicating how similar or related problems may be tackled. 

The method has already been outlined in Chapter 1. First, the function 
to be transformed is described formally in a suitable and precise notation. 
This defines the function in terms of some very basic, or elementary, func-
tions, such as rectangular pulses or δ-functions, which are combined in vari-
ous ways, such as by addition, multiplication, or convolution. Each of these 
elementary functions has a Fourier transform, the function and its transform 
forming a transform pair. Next, the transform is carried out by using the 
known set of pairs to replace each elementary waveform by its transform and 
by using a set of established rules that relate how the transforms are com-
bined to the way the input functions were combined. For example, addition, 
multiplication, and convolution of functions transform to addition, convolu-
tion, and multiplication of transforms, respectively. Finally, the transform 
expression needs interpretation, possibly after rearrangement. Diagrams of 
the functions and transforms can be helpful and are widely used here.
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We begin by defining the notation used. Some of these terms, such as 
rect and sinc, have been adopted more widely to some extent, but rep and 
comb are less well known. We include a short discussion on convolution, as 
this operation is important in this work. It is the operation in the transform 
domain corresponding to multiplication in the original domain (and vice 
versa). This is followed by the rules relating to Fourier transforms and a set of 
Fourier transform pairs. We then include four illustrations as examples before 
the main applications in the following chapters.

2.2  Notation

2.2.1  Fourier Transform and Inverse Fourier Transform

Let u and U be two (generalized) functions related by

	 π¥

-¥
= ò 2( ) ( ) ixyu x U y e dy	 (2.1)

and

	
π¥ -

-¥
= ò 2( ) ( ) ixyU y u x e dx	 (2.2)

U is the Fourier transform of u, and u is the inverse Fourier transform of U. 
We have used a general pair of variables, x and y, for the two transform do-
mains, but in the very widespread application of these transforms in spectral 
analysis of time dependent waveforms, we choose t and f, associated with time 
and frequency. We take the transforms in this form, with 2π in the exponen-
tial (so that in spectral analysis, for example, we use the frequency f, rather 
than the angular frequency ω = 2πf   ) in order to maintain a high degree of 
symmetry between the definitions; otherwise, we need to introduce a factor 
of 1/2π in one of the expressions for the transform or 1/Ö2π in both. We find 
it convenient to keep generally to a convention of using lowercase letters for 
the waveforms, or primary domain functions, and uppercase for their trans-
forms, or spectra. We indicate a Fourier transform pair of this kind by

	 u Û U	 (2.3)

with Þ implying the forward transform and Ü the inverse.
We note that there remains a small asymmetry between the expressions; 

the forward transform (deriving U from u) has a negative exponent and the 
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inverse has a positive exponent. Many functions used are symmetric, and for 
these the forward and inverse transform operations are identical. However, 
when this is not the case, it may be important to note just which transform is 
needed in a given application. 

2.2.2  rect and sinc

The rect function is defined by

	
ì - < <ï= Îí < - >ïî

�
 1     for  1/2 +1/2

rect  ( )
0     for  1/2 and +1/2

x
x x

x x 	 (2.4)

(and rect(±½) = ½). This is a very commonly encountered gating func-
tion. This pulse is of unit width, unit height and is centered at zero (Figure 
2.1(a)). A pulse of width T, amplitude A and centered at time t0 is given by 
Arect((t ‑ t0)/T), shown in Figure 2.1(b). In the frequency domain, a rectan-
gular frequency band of width B, centered at f0, is defined by rect((f – f0)/B). 
A pulse, or a filter, with this characteristic is not strictly realistic (or realizable) 
but may be sufficiently close for many investigations.

The Fourier transform of the rect function is the sinc function, given 
by

	
π π ≠= ∈

=
�

          
sin( )/ for 0sinc ( )
         1            for 0

x x xx x
x

ìï
í
ïî

	 (2.5)

This is illustrated in Figure 2.2(a) and a shifted, scaled form is shown in 
Figure 2.2(b). This follows Woodward’s definition [1] and is a neater func-
tion than sinx/x, which is sometimes (confusingly) called sincx (or the un-
scaled sinc function). It has the properties:

Figure 2.1  rect functions. (a) rect(x), and (b) Arect[t – t0 /T ].
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1.	 sincn = 0, for n a non-zero integer;

2.	 sinc 1xdx
¥

-¥
=ò ;

3.	 2sinc 1xdx
¥

-¥
=ò ;

4.	 sinc( )sinc( ) mnx m x n dx
¥

-¥
- - =ò δ , where m and n are integers and 

δmn is the Kronecker-δ (δmn = 1 if m = n, δmn = 0 if m ¹ n);

5.	 sinc sinc (1/ )sincax bx a bxÄ =  ( , ,  0)a b a b�Î ³ > , where Ä indi-
cates convolution, defined in Section 2.2.5.

For the function sinx/x the results are more untidy, with π or π2 appearing. 
Property 4 can be stated in the following form: the set of shifted sinc functions 
{ }sinc( ) : ,x n n x� �- Î Î  is an orthonormal set on the real line. These re-
sults are easily obtained by the methods presented here, and are derived in Ap-
pendix 2A. In proving properties 3 and 4, we used the useful general result

	 ( ) (0)u x dx U
¥

-¥
=ò 	 (2.6)

which follows from the definition of the inverse Fourier transform in (1.4) on 
putting y = 0. Thus, if a function u can be expressed in terms of the functions 
given in the list of pairs (Table 2.2), we can obtain the definite integral of u 
(over the range -¥ to ¥) without actually doing any integration, but just set-
ting the value of the variable in the transform of u to zero.

Despite the 1/x factor, this function is analytic on the real line. The 
only point where this property may be in question is at x = 0. However, as

	
0 0

lim  sinc lim  sinc 1
x x

x x
®+ ®-

= = ,	

Figure 2.2  sinc functions. (a) sinc(x), and (b) Asinc((f – f0)/F.
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by defining sinc(0) = 1 we ensure that the function is continuous and differen
tiable at this point. Useful facts about the sinc function are that its 4-dB beam 
width (i.e., the width of the beam at 4 dB below the peak) is almost exactly equal 
to half the width at the first zeros (at ±1 in the basic function and at ±F in the 
scaled version of Figure 2.2(b)), the 3-dB width is 0.886 and the first sidelobe 
peak is at the rather high level of -13.3 dB relative to the peak of the main lobe.

2.2.3  d-function and Step Function 

The δ‑function is not a proper function but can be defined as the limit of a 
sequence of functions that have integral unity, the sequence converging point-
wise to zero everywhere on the real line except at zero. Suitable sequences of 
functions fn such that lim ( ) ( )n

n
f x x

®¥
= δ  are rectn nx, nexp(-πn2x 2), trin nx 

(see (3.6)), and sincn nx, illustrated in Figure 2.3. This function consequently 
has the properties

Figure 2.3  Four series approximating δ-functions.
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δ(x − x0)u(x)
	

d
¥ == ∈

≠
�

          
for  0( ) ( )

0 for  0

xx x
x

	

(2.7) and

	 δ
¥

-¥
=ò ( ) 1x dx 	 (2.8)

In fact the generalized function defined by Lighthill [2] requires the members 
of the sequence to be differentiable everywhere; this actually rules out the rect 
and tri function sequences. From (2.7) we note that we can put

	 0 0 0( ) ( ) ( ) ( )x x u x x x u x- = -δ δ  	 (2.9)

(assuming u is bounded) as the product on the left is zero everywhere except 
at x0. In particular, we note ( ) ( ) ( ) (0)x u x x u=δ δ . From (2.8) and (2.9) we 
deduce the useful property

	 0 0( ) ( ) ( )
I

x x u x dx u x- =ò δ 	 (2.10)

where I is any interval containing x0. Thus the convolution (defined in Sec-
tion 2.2.5) of a function u with a δ-function at x0 is given by

	 ¢  ¢ ¢( ) ( ) ( )  ( ) ( )u x x x u x x  x x dx u x xÄ - = -  - = -0  0  0δ δ
¥

-¥ò 	 (2.11)

(i.e., the waveform is shifted so that its previous origin becomes the point x0, 
the position of the δ‑function). The function u itself could be a δ-function; 
for example,

	
1 2 1 2 1 2- Ä - = - - - = - +( ) ( ) ( ) ( ) ( ( ))x x x x x x x x x dx x x xδ δ δ δ δ

¥

-¥
¢ ¢ ¢ò

(2.12)

Thus, convolving δ-functions displaced by x1 and x2 from the origin gives a 
δ‑function at (x1 + x2).

The δ-function in the time domain represents a unit impulse occurring 
at the time when the argument of the δ-function is zero (i.e., δ(t - t0)), which 
represents a unit impulse at time t0. In the frequency domain, it represents a 
spectral line of unit power (see Section 4.2.1). A scaled δ-function, such as 
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Aδ(x – x0), is described as being of strength A. In diagrams, such as Figure 
2.6, this is represented by a vertical line of height A at position x0. 

The unit step function h(x), shown in Figure 2.4(a), is here defined by

	
 >= ∈

<
�

          1 for  0
( ) ( )

0 for  0

x
h x x

x
	 (2.13)

(and h(0) = ½). It can also be defined as the integral of the δ‑function:

	 h x dδ ξ ξ
-¥

= ò( ) ( )
x

,	 (2.14)

and the δ-function is the derivative of the step function.
The step function with the step at x0 is given by h(x - x0) (Figure 2.4(b)).

2.2.4  rep and comb

The rep operator produces a new function by repeating a function at regular 
intervals specified by its suffix. For example, if p(t) is a description of a pulse, 
an infinite sequence of pulses at the repetition interval T is given by u(t), 
shown in Figure 2.5, where

	 ( ) rep ( ) ( )T
n

u t p t p t nT
¥

=-¥
= = -å 	 (2.15)

The shifted waveforms p(t – nT) may be overlapping. This will be the 
case if the duration of p is greater than the repetition interval T. Any repetitive 
waveform can be expressed as a rep function—any section of the waveform 
one period long can be taken as the basic function and this is then repeated 
(without overlapping) at intervals of the period.

Figure 2.4  Step functions. (a) Unit step, and (b) scaled and shifted step.
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The comb function derived from a continuous function replaces the 
function by δ-functions at regular intervals, specified by the suffix, with 
strengths given by the function values at those points; that is,

	 comb ( ) ( ) ( )T
n

u t u nT t nT
¥

=-¥
= -å δ 	 (2.16)

In the time domain, this represents an ideal sampling operation. In the fre-
quency domain, the comb version of a continuous spectrum is the line spec-
trum corresponding to the repetitive form of the waveform, which gave the 
continuous spectrum. 

The function combTu(t) is illustrated in Figure 2.6, where u(t) is the 
underlying continuous function, shown dotted, and the comb function is the 
set of δ-functions.

2.2.5  Convolution

We denote the linear convolution of two functions u and v by Ä, so that

	
¥ ¥

-¥ -¥
Ä = - = -¢ ¢ ¢ ¢ ¢ ¢ò ò( ) ( ) ( ) ( ) ( ) ( )u x v x u x x v x dx u x v x x dx 	 (2.17)

One reason for requiring such a function is to find the response of a linear, 
time-invariant system to an input u(t) when the system’s response to a unit 
impulse (at time zero) is v(t). The response at time t to an impulse at time 

Figure 2.5  The rep operator.

Figure 2.6  The comb function.
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t¢ is thus v(t - t¢). We divide u into an infinite sum of impulses u(t¢)dt¢ and 
integrate, so that the output at time t is

	
¥

-¥
- = Ä¢ ¢ ¢ò ( ) ( ) ( ) ( )u t v t t dt u t v t 	 (2.18)

The reason for the reversal of the response v (as a function of t¢) is because 
the later the impulse u(t¢)dt¢ arrives, the earlier in the impulse response is its 
contribution to the total response at time t.

It is clear, from the linear property of integration, that convolution is 
distributive and linear so that we have

	 u Ä (av + bw) = au Ä v + bu Ä w	 (2.19)

where a and b are constants. It is also the case that convolution is commuta-
tive (so u Ä v = v Ä u) and associative, so that

	 u Ä (v Ä w ) = (u Ä v) Ä w,	 (2.20)

and we can write these simply as u Ä v Ä w without ambiguity. Thus we are 
free to rearrange combinations of convolutions within these rules and evalu-
ate multiple convolutions in different sequences, as shown in (2.20).

It is useful to have a feel for the meaning of the convolution of two 
functions. The convolution is obtained by sliding one of the functions (re-
versed) past the other and integrating the point-by-point product of the func-
tions over the whole real line. Figure 2.7(a) shows the result of convolving 
two rect functions, rect(t/T1) and rect(t/T2), with T1 < T2, and Figure 2.7(b) 
shows that the value of the convolution at the point -t0 is given by the area 
of overlap of the functions, when the “sliding” function, rect(t/T1), shown 
dashed, is centered at -t0. We note that overlap begins when t = -(T1 + 
T2)/2 and increases linearly until the smaller pulse is within the larger, at 
(T1 - T2)/2. The magnitude of the flat top is just T1, the area of the smaller 
pulse, for these unit height pulses. This is equal to the area of overlap when 
the narrower pulse is entirely within the wider one. For pulses of magnitudes 
A1 and A2 the level would be A1A2T1, and for pulses centered at t1 and t2 the 
convolved response would be centered at t1 + t2. 

In many cases we will be convolving symmetrical functions such as 
rect or sinc, but if we have a nonsymmetric one it is important to note 
from (2.17) that u(x - x¢), considered as a function of x¢, is not only 
shifted by x (the sliding parameter) but is reversed with respect to u(x¢). In 
Figure 2.8(a) we show the result of convolving an asymmetric triangular 
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pulse with a rect function, and in Figure 2.8(b) we show, on the left, that 
the reversed triangular pulse is used when it is the sliding function; on 
the right, we show that, because of the commutativity of convolution, we 
could equally well use the rect function as the moving one, which, being 
symmetric, is unchanged when reversed, of course.

2.3  Rules and Pairs

The rules and pairs, which are at the heart of this technique of Fourier analy-
sis, are given in Table 2.1. The rules are relationships that apply generally to 
all functions (u and v in the table) and their transforms (U and V  ). The pairs 
are certain specific Fourier transform pairs. All these results are proved or 
derived in outline in Appendix 2.2. 

In this table, the rules labelled b are derivable from those labelled a  
using other rules, but it is convenient for the user to have both a and b ver-
sions. We see that there is a great deal of symmetry between the a and b ver-
sions, with differences of sign in some cases.

To illustrate such a derivation, we derive Rule 6b from Rule 6a. Let U 
be a function of x with transform V, then from Rule 6a

	 U(x - x0) Û V ( y)exp(-2pix0y)	

Figure 2.7  �Convolution of two rect functions. (a) Full convolution, and (b) value at a single 
point.
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From Rule 4, if u(x) Û U(y), then U(x) Û u(-y), so in this case we 
have

	 U(x) Û V(y) = u(-y)	

and so

	 U(x - x0) Û u(-y)exp(-2pix0y)	 (2.21)

Now we use Rule 4 again, in reverse (i.e., if Z(x) Û z(-y), then z(x) Û Z(y)), 
so that (2.21) becomes

	 u(x)exp(2piy0 x) Û U(y - y0)	

on renaming the constant x0 as y0, and this is Rule 6b. However, in this case, 
the result is easily obtained from the definition of the Fourier transform in 
(2.2), as shown in Appendix 2B. 

In Table 2.2, not only are pairs 1b, 2b, and 3b derivable from the cor-
responding a form, but the pairs 7 through 11 are all derivable from other 
pairs using the rules, and these are indicated by the P and R notation, which 
will be used subsequently. Although they are not fundamental, these results 
are included for convenience, as they occur frequently.

Figure 2.8  �Convolution with a nonsymmetric function. (a) Full convolution, and (b) value 
at a single point.
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An important point follows from Rule 3. For a real waveform we have

	 u(t) = u(t)*	

so, from R3,

	 U( f ) = U(-f   )*	 (2.22)

or

	 UR( f  ) + iUI( f  ) = UR(-f  ) - iUI (-f  ),	 (2.23)

where UR and UI  are the real and imaginary parts of U.
We see from (2.22) that for a real waveform, the negative frequency part 

of the spectrum is simply the complex conjugate of the positive frequency 

Table 2.1
Rules for Fourier Transforms

Rule Function Transform Notes

_ u (x ) U (y ) See (2.1), (2.2)

1 au + bv aU + bV a, b constants (a, b Î, –� in general)

2 u (−x ) U (−y )

3 u*(x ) U*(−y ) * indicates complex conjugate

4 U (x ) u (−y )

5 u (x/X ) |X|U (Xy ) Î�X , X constant

6a u (x – x0) U (y )exp(−2πix0y ) Î�0x , x0 constant

6b u (x)exp(2πixy0) U (y – y0) Î�0y , y0 constant

7a uv U Ä V (2.17)

7b u Ä v UV

8a combXu |Y |repYU (2.16), (2.15), Y = 1/X, constant

8b repXu |Y |combYU

9a u¢(x) 2πiyU (y ) Prime indicates differentiation

9b −2πixu (x) U¢(y )

10a ξ ξ
-¥ò ( )
x

u d δ
π

+(0) ( ) ( )
2 2

U y U y
iy

10b δ
π

-(0) ( ) ( )
2 2

u x u x
ix

η η
-¥ò ( )
y

U d
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Table 2.2
Fourier Transform Pairs

Pair Function Transform Notes

1a 1 δ (y) (2.7)

1b δ (x) 1

2a h (x) δ
π

+( ) 1
2 2
y

iy

(2.13)

2b δ
π

-( ) 1
2 2
x

ix

h(y)

2c sgn(x)

π
1
iy

3a rect(x) sinc(y) (2.4), (2.5)

3b sinc(x) rect(y)

4 tri(x) sinc2y (3.6)

5 exp(-x)
π+

1
1 2 iy

(x ³ 0) Laplace transform

6 exp(-πx 2) exp(−πy 2)

7a δ (x – x0) exp(−2πix0y) P1b, R6a

7b exp(2πiy0x) δ (y – y0) P1a, R6b

8a cos2πy0x (δ (y – y0) + δ (y + y0))/2 P7b, P1a

8b sin2πy0x (δ (y – y0) − δ (y + y0))/2i P7b, P1a

9a u (x)cos2πy0x (U (y – y0) + U (y + y0))/2 R6b

9b u (x)sin2πy0x (U (y – y0) − U (y + y0))/2i R6b

10 exp(−ax) 1/(a + 2πiy ) (a > 0, x ³ 0)) P5, R5
11 exp(−x2/2s 2) σ π π σ- 2 2 22 exp( 2 )y P6, R5
12 combX (1) |Y |combY (1) Y = 1/X 

13a ramprx irsncry (7.11), (7.17)

13b sncr x irrampry P13a, R4

a, x0, y0, X, Y, s all real constants and also Î�,x y

part and contains no extra information. It follows (see (2.23)) that the real 
part of the spectrum of a real function is always an even function of frequency 
and the imaginary part is an odd function. (Often spectra of simple wave-
forms are either purely real or imaginary—see P8a and P8b, for example).  
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Thus, for real waveforms we need only consider the positive frequency part 
of the spectrum, remembering that the power at a given frequency is twice 
the power given by this part because there is an equal contribution from 
the negative frequency component. (A short discussion and interpretation of 
negative frequencies is given in Section 1.5.)

2.4  Four Illustrations 

2.4.1  Narrowband Waveforms

The case of waveforms modulated on a carrier is described by P9a or P9b 
(which could be considered rules as much as pairs). Although these relations 
apply generally, we consider the frequently encountered narrowband case, 
where the modulating or gating waveform u has a bandwidth that is small 
compared with the carrier frequency, f0. We see that the spectrum, in this case, 
consists of two essentially distinct parts—the spectral function U, centered at 
f0 and at –f0. Again, for a real waveform, the negative frequency part of the 
waveform contains no extra information and can safely be neglected (apart 
from the factor of two when evaluating powers). However, strictly speaking, 
the function U centered at –f0 may have a tail that stretches into the positive 
frequency region, and in particular it may stretch to the region around f0 if 
the waveform is not sufficiently narrowband. In that case, the contribution of 
U( f + f0) in the positive frequency range must not be neglected. 

Figure 2.9 shows how the spectrum U( f   ) of the baseband waveform 
u(t) is centered at frequencies +f0 and -f0 when modulating (or multiplying, 
in the mathematical representation) a carrier. When applied to the carrier 
2cos2πf0t we see, from P8a, that we just have U shifted to these frequencies. 
When applied to 2sin2πf0t we obtain, from P8b, -iU centered at f0 and iU 
at -f0. We have chosen a real baseband waveform u(t), so that its spectrum 
is shown with a symmetric, or even, real part and an antisymmetric, or odd, 
imaginary part, as shown earlier for real waveforms. We see that this property 
holds for the spectra of the real waveforms u(t)cos2πf0t and u(t)sin2πf0t.

2.4.2  Parseval’s Theorem

Another result, Parseval’s theorem, follows easily from the rules. Writing out 
Rule 8a using the definitions of Fourier transform, on the left side, and con-
volution on the right, ((2.1) and (2.17)), gives
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	 π ψ ψ ψ
¥ ¥-
-¥ -¥

= -ò ò2( ) ( ) ( ) ( )ixyu x v x e dx U V y d 	 (2.24)

Putting y = 0 in this equation and then replacing the variable of integration 
y by y gives

	
¥ ¥

-¥ -¥
= -ò ò( ) ( ) ( ) ( )u x v x dx U y V y dy	 (2.25)

Replacing v by v* and using R3, gives Parseval’s theorem:

	
¥ ¥

-¥ -¥
=ò ò( ) ( )* ( ) ( )*u x v x dx U y V y dy	 (2.26)

Taking the particular case of v = u then gives

	 ¥ ¥

-¥ -¥
=ò ò

2 2
( ) ( )u x dx U y dy

	 (2.27)

Figure 2.9  Spectra of modulated carrier, (real) narrowband waveforms.
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This simply states that the total energy in a waveform is equal to the 
total energy in its spectrum. For a real waveform we have 

	
¥ ¥

-¥
=ò ò

2
2

0
( ) 2 ( )u x dx U y dy	 (2.28)

using U(y) = U(-y)* for the spectrum of a real waveform.

2.4.3  The Wiener-Khinchine Relation

This states that the autocorrelation function of a waveform is given by the 
(inverse) Fourier transform of its power spectrum. For a waveform u with 
(amplitude) spectrum U, the power spectrum is |U |2 and, from R2 and R3 
we see that U*( f   ) is the transform of u*(-t), so we have

	 u(t)Äu*(-t) Û U( f   ) ´ U*( f   ) = |U( f   )|2	 (2.29)

Writing out the convolution we have

	

¥ ¥

¥ -¥
Ä - = - - = - =¢ ¢ ¢ò ò-

( ) * ( ) ( ) * ( ) ( ) * ( ) ( )u t u t u t t u t dt u s u s t ds r t

(2.30)

where s = t - t¢ and r(t) is the autocorrelation function for a delay of t. The 
delay, or time shift between the correlating waveforms, is generally given the 
symbol τ, rather than t, used for the usual time variable. Thus we have, from 
(2.29) and (2.30),

	 r (τ) Û |U( f  )|2,	 (2.31)

which is the Wiener-Khinchine relation, obtained very concisely by this method. 
Note the difference between (2.30)—correlation—and (2.17)—convo-

lution. In (2.30) the sliding function is not time reversed, and also (if com-
plex) its conjugate is required.

2.4.4  Sum of Shifted sinc Functions

In this section, we derive two interesting results using the rules-and-pairs 
technique. First we find an expression for the spectrum of a finite train of 
evenly spaced δ-functions (or equivalently an expression for the sum of a set 
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of regularly spaced complex exponentials). Let the N δ-functions be spaced 
about the time origin at intervals T; then, we have a waveform u given by

	
( 1)/2

( 1)/2

1
( ) ( )

N

k N

u t t kT
N

-

=- -
= +å δ 	 (2.32)

and so, from P1b and R6a, its spectrum is 

	 π
-

=- -
= å

( 1)/2

( 1)/2

1
( ) exp(2 )

N

k N

U f ikfT
N

	 (2.33)

Now we take the identity

	
( 1)/2

( 1)/2

rect rect ( ) rect ( )
N

k N

t t t
t kT N u t

NT T T

-

=- -
= Ä + = Äå δ 	 (2.34)

where the rect pulse of length NT has been divided into N contiguous pulses 
of length T, as shown in Figure 2.10. Taking the Fourier transforms we have, 
using R5, R7b, P3a

	 =sinc sinc( ). ( )NT NfT NT fT U f 	

so that 

	
π
π

= =sinc sin
( )

sinc sin
NfT N fT

U f
fT N fT

	 (2.35)

This neat result can also be obtained, with little more effort, by noting 
that the set of complex exponentials in (2.33) forms a finite geometric series, 
with ratio between the terms of exp(2πif T ). However, the following result, 
expressing the sum of an infinite series of shifted sinc functions in closed 
form, would be more difficult to obtain by an alternative method. 

Figure 2.10  Alternative forms of rect function.
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We can also put u in (2.32) in the form (for N odd)

	
1

( ) comb (rect )T
t

u t
N NT

= 	 (2.36)

with transform

	

¥

=-¥

¥

=-¥

= = -

= -

å

å

1
( ) rep ( sinc ) sinc ( )

sinc ( ),

F
k

k

U f NT NfT N f kF T
NT

N fT k (2.37)

where F = 1/T. 
If we plot these expressions for U we find that (2.37) gives a series of 

main lobes with value +1, while (2.35) gives the identical series when N 
is odd, but when N is even the lobes alternate in sign. (To evaluate (2.35) 
at integer multiples of F we need L’Hôpital’s Rule, as the denominator is 
zero at these points. Taking the differentials, and using FT  = 1, we ob-
tain π π -= = - ( 1)( ) cos /cos ( 1)k NU kF kN k , for k an integer. For N odd (and 
hence (N – 1) and k(N – 1) even) we have U(kF ) = 1 for all k, which is also 
the result given by (2.37). However, for N even (and N – 1 odd), the parity 
of k(N – 1) will be that of k, so we have alternations in sign.)

The discrepancy is because the derivation of (2.37) is only valid for odd 
N. For even N we do not have a line in u at 0, but at ±T/2, . . . (as shown in 
Figure 2.10), so to use the comb function, which has lines at 0, ±T, . . . , we 
need to shift the rect function by T/2, before applying the comb operation, 
and then we need to shift the result back by –T/2. Thus, for N even we have

	 δ -æ ö= + Ä ç ÷è ø
1 /2

( ) ( /2) comb rectT
t T

u t t T
N NT

	 (2.38)

with transform, using P1b, P3a, R5, R6a, R7b, R8a, 

	
π π

π π

−

¥
− −

=-¥

=

= −∑ ( )

( ) (rep ( sinc ))

sinc ( )

ifT ifT
F

ifT i f kF T

k

F
U f e NTe NfT

N

e e N f kF T

	

(2.39)

	

π
¥ ¥

=-¥ =-¥
= - = - -å åsinc ( ) ( 1) sinc ( ) ( even)ik k

k k

e N f kF T N fT k N
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From (2.35) and combining (2.37) and (2.39) we have (for all N, k integral)

	
π
π

¥
-

=-¥
= = - -å ( 1)sin

( ) ( 1) sinc ( )
sin

N k

k

N fT
U f N fT k

N fT
	 (2.40)
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Appendix 2A: Properties of the sinc Function

1.	 sinc n = 0 (n a non-zero integer).

When n ¹ 0, as sin nπ = 0, we have sinc n = sin nπ/nπ = 0. Also, 
for x small,

	
2sin ( )

sinc 1  . . .
3!

x x
x

x
= = - +π π

π
	

so, as 0,  sinc 1x x® ± ® .

2.	
¥

-¥
=ò sinc 1xdx .

We can write

	 π¥ ¥
=-¥ -¥ =

= = =ò ò 2
0

sinc sinc rect 1ixy
y

y o
xdx xe dx y 	

Here we have converted the integral into an inverse Fourier transform 
(though the variable in the transform domain here has the value zero), and 
used P3.

3.	
¥

-¥
=ò 2sinc 1xdx .
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We have, using R7 and P3,

	
π¥ ¥

=-¥ -¥ =
= ´ = Ä =ò ò 22

0
sinc sinc sinc  rect rect 1ixy

y
y o

xdx x x e dx y y

rectyÄ recty is a triangular function, with peak value 1 at y = 0. (This 
convolution is shown in Figure 3.4 in Chapter 3, with A = 1 and T = 1  
in this case.)

4.	 δ
¥

-¥
- - =ò sinc( )sinc( ) mnx m x n dx .

If m = n the integral is 

	
¥ ¥

-¥ -¥
- = =ò ò2 2sinc ( ) sinc 1x n dx xdx 	

using the result for property 3.
If m ¹ n then

	 π¥ ¥

-¥ -¥ =
- - = - -ò ò 2

0
sinc( )sinc( ) sinc( )sinc( ) ixy

y
x m x n dx x m x n e dx

	
2 2

0
rect( ) rect( )imy iny

y
e y e y- -

=
= Äπ π

	

on using R7a, R6a, and P3b. Forming the convolution integral this 
becomes

	 π π¥ - - -¢ ¢
-¥ =

-¢ ¢ ¢ò 2 2 ( )

0
rect( ) rect( )imy in y y

y
e y e y y dy 	

	
π¥ - ¢

-¥
= -¢ ¢ ¢ò 2 ( ) rect( )rect( )i n m ye y y dy 	

	
π¥ - ¢

-¥
= = - =¢ ¢ò 2 ( ) rect( ) sinc( ) 0i n m ye y dy n m ,

	
on using rect(-y¢) = rect(y¢), rect2(y¢) = rect(y¢), P3a and Property 1.

5.	 sinc sinc (1/ )sincax bx a bxÄ =       ( , ,  0)a b a b�Î ³ >

We give two proofs of this, as a further example of the benefit of using 
the integration-free rules-and-pairs technique. The first is via the Fourier 
transform, using this method, and the second requires contour integra-
tion. The first is very simple and concise, while the second requires con-
siderably more effort.
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(i)	 Proof using the Fourier transform

�The Fourier transform of sinc sincax bxÄ  is given, from P3b, R5 
and R7b, by

	 sinc sinc (1/ )rect( / )rect( / )ax bx ab y a y bÄ Þ 	

The product of the rect functions, centered on zero, and of differ-
ent width gives a rect function of width equal to the narrower one, as 
illustrated in Figure 2A.1. In this case, with a ³ b,

	 (1/ )rect( / )rect( / ) (1/ )rect( / )ab y a y b ab y b= 	

Taking the inverse transform, using P3b and R5 again, we have

	 Ü(1/ )sinc (1/ )rect( / )a bx ab y b 	

(ii)	Proof using contour integration.

Writing out the convolution, and then expressing the sines in ex-
ponential form, we have

	

π π
π π π

¥

-¥

- ¢ ¢Ä = × = = +¢
- ¢ ¢ò 2

sin ( ) sin 1
sinc sinc . . . ( * )

( ) (2 )

a x x bx
ax bx dx I I

a x x bx i ab

where

	
( ) ( )

( )

i a b x i a b x
i ax e e

I e dx
x x x

- +¢ ¢¥-
-¥

-= ¢
-¢ ¢ò

π π
π

	

We now consider the integral K of e ikz/z(u–z) = e k(ix–y)/z(u-z) (k ³ 0, 
z = x + iy) round the rectangular contour C shown in Figure 2A.2. On the 
vertical sides we have x = ±¥, y ³ 0, so, as e ix is bounded, the denominator 
dominates and the integrand is zero for all values of y. On the top side y = ¥ 

Figure 2A.1  Product of rect functions.
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so again the integrand is zero (with k ³ 0) for all values of x. Thus, the only 
side along which it is not zero is along the real axis where y = 0 and z = x, so 
that we have

	
¥ ¥

-¥ -¥
−= = = >

− − −∫ ∫ ∫ ( 0)
( ) ( ) ( )

ikz ikx ikx

C

e e e
K dz dx dx k

z u z x u x x x u
	

We now use the contour integral result 

	 ( ) 2 (residues within the contour )

(residues on the contour ).

C
f z dz i C

i C

p

p

=

+

∫ 	

where f (z) has simple singularities. (The residue for a singularity at p, for ex-
ample, if f (z) is put in the form f (z) = g (z)/(z – p), is g (p).) The singularities 
in this case are at 0 and u, on the contour, so with this result we have

	
1 ikue

K i
u u

æ ö
= -ç ÷è ø

π 	

Using this result in I (with x¢ for x, x for u and π(a – b) or π(a + b) for 
k) we obtain

	

i bx

- -( )i ax i bx i bxπ π= - - + =(1 1 )I e e
ie i e eπ π π

π π

π π

- + -

= =

( ) ( )

22 sin
*

i a b x i a b x

x x

I
x

	

and putting this into the sinc convolution above we have

	 æ öi bx bx1 4 sin sin 1π π π
ππ

Ä = = =ç ÷è ø

2

2sinc sinc sinc
(2 )

ax bx bx
x ab x ai ab

Figure 2A.2  Contour for integral in sinc convolution.
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(The point where we used the condition a ³ b is when we required k to be 
nonnegative in the contour integration. This is required to make the inte-
grand zero on the y = ¥ part of the contour.)

Appendix 2B: Brief Derivations of the Rules and Pairs

2B.1  Rules

R1: This follows from the linearity of integration.

•   R2: 

( ) ( )U y z x= −

( )π π
¥

-¥
− − = − −∫ ∫( )exp( 2 ) ( )exp 2 ( )u x ixy dx u z iz y dz

¥

-¥

=

•   R3: 	 æ ö* ( )exp( 2 ) ( )exp(2 ( )) *u x ixy dx u x ix y dzπ π
¥ ¥

-¥ -¥
- = è øò ò 	

	 ( ) 

 
( )exp 2 ( ) * * ( )u x ix y dz U y

¥

-¥
æ ö= - - = -è øò π 	

•   R4:

 	

π π
¥ ¥

-¥ -¥
- = -

= -

ò ò( )exp( 2 ) ( )exp2 ( )

( )

U x ixy dx U x ix y dx

u y 	

	 (using the inverse transform, as in (2.1)).

•   R5(a): X > 0, z = x/X = x/½X½

	

π π
¥

-¥
− = −

= =

∫ ∫( / )exp( 2 ) ( )exp( 2 )

( ) ( )

u x X ixy dx X u z iz Xy dz

XU Xy X U Xy 

-¥

¥

	

•   R5(b): X < 0, z = x/ X = -x/½X½

	 π π
¥ ¥

-¥ ¥
- = -ò ò

–
( / )exp( 2 ) ( )exp(2 )u x X ixy dx X u z iz X y dz	

	 π
¥

¥
= - - = - =ò–

( )exp( 2 ( )) ( ) ( )X u z iz X y dz X U X y X U Xy 	

•   R6a:	 - - = - +0 0( )exp( 2 ) ( )exp( 2 ( ) )u x x ixy dx u z i z x y dzπ π
¥ ¥

-¥ -¥ò ò 	

	 0( )exp( 2 )U y ix y= - π     (z = x - x0)	

•
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•   R6b: ( )exp(2 )exp( 2 )u x ixy ixy dxπ π

π

¥

-¥

¥

-¥

-

= - -

ò

ò

0

0( )exp( 2 ( )u x ix y y dx

	

	

0( )U y y= -
	

•   R7a: 

	

( )exp(2 ) ( )exp( 2 )U z ixz v x ixy dxdz

π

π π

¥

-¥

¥ ¥

-¥ -¥

-

= -

ò

ò ò

( ) ( )exp( 2 )u x v x ixy dx
	

	
π

¥ ¥

-¥ -¥

¥

-¥

= - -

= - = Ä

ò ò

ò

( ) ( )exp( 2 ( ))

( ) ( ) ( ) ( )

U z v x ix y z dxdz

U z V y z dz U y V y

	

•   R7b: The transform of u(x)Äv(x) is, using x - z = t, 

	

π

π

¥ ¥

-¥ -¥

¥ ¥

-¥ -¥

- -

= - +

ò ò

ò ò

( ) ( )exp( 2 )

( ) ( )exp( 2 ( ) )

u z v x z ixy dxdz

u z v t i z t y dtdz
	

	

π π

π

¥ ¥

-¥ -¥

¥

-¥

= - -

= -

ò ò

ò

( )exp( 2 ) ( )exp( 2 )

( ) ( )exp( 2 )

u z izy v t ity dtdz

U y v t ity dt
	

	 ( ) ( )U y V y= 	

•   �R8a: Let ( ) comb ( ) ( ) ( )X
n

v x u x u nX x nX
¥

=-¥
= = -å δ , then the trans-

form is (from P1b and R6a)

	 ( ) ( )exp( 2 )
n

V y u nX inXy
¥

=-¥
= -å π 	
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This is in the form of a Fourier series, with period 1/X = Y, and 
the coefficients are given by integration of V (weighted with a complex 
exponential) over one period:

	 π= ò0

1
( ) ( )exp(2 / )

Y
u nX V y in y Y dy

Y 	

Also, from the Fourier transform,

	
( ) ( )exp(2 ) ( )exp(2 / )u nX U z inXz dz U z inz Y dzπ π

¥¥ +

-¥
=-¥

= = åò ò
( 1)m Y

mY
m

,

on dividing the range of integration into units of length Y. Putting y = 
z – mY for each value of m,

	 ( )π
¥

=-¥
= + +åò0

( ) ( )exp 2 ( ) / )
Y

m

u nX U y mY in y mY Y dy

	 π
¥

=-¥
= +åò0

( )exp(2 / )
Y

m

U y mY iny Y dy	

Comparing the two expressions for u(nX) we see that

	
¥

=-¥
= + =å( ) ( ) rep ( )Y

m

V y Y U y mY Y U y 	

(This is in line with Woodward’s comment [1], following his list of rules 
and pairs, that the transform relationship between comb and rep “can 
be justified by resorting to a Fourier series representation.” NB: The rule 
actually uses |Y | rather than Y; however, from the definitions it is clear 
that rep–xu = repXu and comb–xu =  combXu, so |Y | can replace Y.) 

R8b: Let ( ) rep ( ) ( )X
m

v x u x u x mX
¥

=-¥
= = -å , which is periodic, with 

period X, so we can put v as a Fourier series:

	 ( ) exp(2 / )n
n

v x a inx X
¥

=-¥
= å π 	

with the coefficients given by

	 π= ò0

1
( )exp(–2 / )

X
na v x inx X dx

X
	

•
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Substituting for v in rep form, the coefficients are given by

	 π
¥

=-¥
= - -åò0

1
( )exp( 2 / )

X
n

m

a u x mX inx X dx
X

	

and then putting z = x + mX, we have

	 ( )π
¥ +

=−¥
= −∑ ∫

( 1)1
( )exp 2 ( – )/ )

m X
n

mX
m

a u z in z mX X dz
X

	

	 ( )π
¥ +

=-¥
= -å ò

( 1)1
( )exp 2 /

m X

mX
m

u z inz X dz
X

	

as exp(2πinm) = 1. This gives

	 na  ( )π
¥

-¥
= - =ò1 1

( )exp 2 / ( / )u z inz X dz U n X
X X

	

Then, substituting for the an in v,

	 π
¥

=-¥
= å1

( ) ( / )exp(2 / )
n

v x U n X inx X
X

	

and, taking the Fourier transform,

	 δ
¥

=-¥
= - =

=

å 1/
1 1

( ) ( / ) ( / ) comb ( )

comb ( )

X
n

Y

V y U n X y n X U y
X X

Y U y	

(from the definition of the comb function) where Y = 1/X.

R9a: 	 π
¥

-¥
= ò( ) ( )exp(2 )u x U y ixy dy	

	
π π

¥

-¥
=¢ ò( ) 2 ( )exp(2 )u x iyU y ixy dy

	

so ( )u x¢  is the inverse Fourier transform of 2 ( )iyU yπ  where u¢ is the 
derivative of u.

R9b:	   π
¥

-¥
= -ò( ) ( )exp( 2 )U y u x ixy dx

	 π π
¥

-¥
= - -¢ ò( ) 2 ( )exp( 2 )U y ixu x ixy dx 	

•

•
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so ( )U y¢  is the Fourier transform of 2 ( )ixu x- π  where U ¢ is the deriva-
tive of U.

R10a: 	 ξ ξ ξ ξ ξ
¥

-¥ -¥
= − = ⊗∫ ∫( ) ( ) ( ) ( ) ( )

x
u d u h x d u x h x 	

Taking the transform (using R7b and P2a) gives 

	
δ δξ ξ

π π-¥

 
→ + = + 

 
∫

( ) (0) ( ) ( )1
( ) ( )

2 2 2 2

x y U y U y
u d U y

iy iy
	

where we have also used (2.9).

R10b: = - = Ä( ) ( ) ( ) ( ) ( )U d U h y d U y h yη η η η η
-¥ -¥ò ò
y ¥

Taking the inverse transform gives 

	
δ η η

π -¥
æ ö- Üç ÷è ø ò( ) 1

( ) ( )
2 2

yx
u x U d

ix
	

where we have used R7a and P2b.

2B.2  Pairs

P1a: A derivation, using P6 (and R5), is given in Section 1.4.

P1b: This follows from P1a, with R4 and using δ(-y) = δ( y).

P2a and P2c: Defining the signum function by

	
ì >ï= Îí

- <ïî
�

            1                          for  0
sgn( ) ( )

1                         for  0

x
x x

x
	

(and sgn(0) = 0) the unit step function h can be written as

	 2h(x) = 1 + sgn(x)	

We now require the transform of sgn which can be given by expressing the 
signum function as the limit of an antisymmetric decaying exponential function, 
with the form -exp(l x) for x < 0 and exp(–l x) for x > 0 (and l > 0):

	
è ø- - + - -ò òlim exp( )exp( 2 ) exp( )exp( 2 )x ixy dx x ixy dx

λ
λ π λ π

¥

-¥®
æ ö0

00

•

•

•

•

•

¥
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	 ç ÷iy iyè ø

æ ö- - -exp( 2 ) exp( 2 )x ixy x ixy
λ

λ π λ π
λ π λ π

¥

® -¥
= - -ç ÷

- +

0

0
0

lim
2 2

	

	 ® ®iy iyç ÷- +è ø2 20 0λ λ

π
λ π λ π λ π

æ öæ ö --= - - = ç ÷-è ø2 2 2 2
41 1
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With this result the Fourier transform of h(x) is now found to be, using P1a, 
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P2b: From P2a and R4 the transform of 
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x
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 is h(-y), 

then we use R2, with δ(-x) = δ(x).
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P3b: From P3a and R4, with rect(-y) = rect(y).

P4: See (3.7) and (3.8), using P3a and R7b.

P5: The transform of exp(-x)h(x) (or exp(-x) for x ³ 0) is
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- - = - = +
+ +ò0

0

exp (1 2 ) 1
exp( )exp( 2 )

1 2 1 2

iy x
x ixy dx

iy iy
	

•   P6: 
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where z = x + iy. We perform a contour integration round the contour 
shown in Figure 2B.1; as there are no poles within the contour the 
contour integral is zero, and as the contributions at z = ±¥ + iη (0 £ 
η £ y) are zero, we have

	 - + - =exp( ) exp( ) 0z dz z dzπ π
¥+ ¥

-¥+ -¥ò ò2 2iy

iy
,	

so the required integral is equal to the real integral π
¥

¥
-ò 2

–
exp( )x dx, 

which has the value 1.
P7– P11: These are all found using the earlier pairs and the rules, as 
indicated.

P12: From the definitions, ((2.15) and (2.16)) we can express the 
comb function for a constant as a rep function: 

	 comb (1) ( ) rep ( )X X
n

x nX x
¥

=-¥
= - =å δ δ 	

and then, by P1b and R8b, the transform is |Y  |combY (1) where Y = 1/X.
A more rigorous approach is taken in Lighthill [2], particularly for 

the derivations of the transform of the δ-function, P1b, the transform 
of the signum function, used in obtaining P2a, and the comb and rep 
transforms.

P13a: See Section 7.3 in Chapter 7. 

P13b: From P13a and R4 we have

	 snc ramp ( ) ( 1) ramp ( )r r r r
ri x y yÛ - = - 	

On multiplying by (–i)r we have

	 snc ramp ( )r r
r x i yÛ 	

•

•

•

•

Figure 2B.1  Contour for integral required for P5.
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3
Pulse Spectra

3.1  Introduction

In this chapter we consider the spectra of pulses and pulse trains. Signals used 
in radar, sonar, and radio and telephone communications often turn out to 
be combinations of certain quite simple basic waveforms or of variations on 
them. For example, the rectangular pulse is an almost universal feature of ra-
dar waveforms, and although the perfect pulse is a mathematical idealization, 
it is often closely realized in practice, and the approximation is good enough 
for an analysis based on the idealization to give very useful results very simply 
in some cases.

One reason for studying the spectrum of a pulse, or pulse train, can 
be to investigate the interference that the pulse transmission will generate 
outside the frequency band allocated. The sharp-edged rectangular pulse is 
particularly poor in this respect, producing quite high interference levels at 
frequencies several times the radar bandwidth away from the radar operating 
frequency. The interference levels can be lowered quite considerably by re-
ducing the sharp, vertical edges in various ways. Giving the edges a constant 
finite slope, so that the pulse becomes trapezoidal, produces a considerable 
improvement, as shown later in Section 3.2. The triangular pulse (Section 3.3)  
is a limiting case of the trapezoidal, with the flat top reduced to zero. The 
asymmetric trapezoidal and triangular pulses (with sides of different magni-
tude slope) are considered in Section 3.4 and Section 3.5. While the practical 
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use of such pulses is not obvious, these are interesting exercises in the use of 
the rules-and-pairs method, showing that this gives solutions for the spectrum 
quite easily and concisely, once a suitable approach has been found. Another 
form of pulse, smoother than the rectangular pulse, is the raised cosine, and 
this is shown to have considerably improved spectral sidelobes (Section 3.6). 
The trapezoidal pulse still has sharp corners, and rounding these is the subject 
of Section 3.7 and Section 3.8. Finally the spectra of pulse trains, as might be 
used in radar, are studied in the next three sections.

3.2  Symmetrical Trapezoidal Pulse

The rectangular pulse, with zero rise and fall times, may be a reasonable ap-
proximation in many cases but for short pulses the rise and fall times may not 
be negligible compared with the pulse width and may need to be taken into 
account. The symmetrical trapezoidal pulse is particularly easily analyzed by 
the methods used here. We noted in Chapter 2 (Figure 2.7) that such a pulse 
of width T between the half amplitude points and with rise and fall times of 
τ can be expressed as the convolution of rect functions (illustrated in Figure 
3.1): 

	 ( ) (1/ )rect( / ) rect( / )u t t A t Tτ τ= Ä 	 (3.1)

The scaling factor 1/τ keeps the peak height the same, as the narrow pulse 
now has unit area, though often we are not interested in the scaling factors as 
much as the shapes and relative levels of the waveforms and spectra. The rise 
and fall times of the edges is τ and the pulse is of width T at the half ampli-
tude points. The spectrum (from R7b, P3a and R5) is 

	 ( ) sinc( )sinc( )U f AT f f Tτ= 	 (3.2)

Figure 3.1  Symmetrical trapezoidal pulse.
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Thus, the spectrum is that of the pulse of length T multiplied by the broader 
sincfτ function, the transform of the shorter pulse. This will narrow slightly 
the width of the main lobe of the spectrum and also reduce the sidelobe lev-
els, as shown in Figure 3.2, where τ = 0.4T in this example. 

An application of this result would be to answer (approximately) the 
question of what rise time, relative to the half-amplitude width, will mini-
mize the first sidelobes of the spectrum. We note that the function sincfT has 
its first zeros at ±1/T and ±2/T and the first sidelobes peak at about ±3/2T. 
Clearly, we will be very close to minimizing the first sidelobes if we make the 
first zeros of the sincfτ function occur at these points. Thus, we require

	 1/τ = 3/2T, or τ = 2T/3	 (3.3)

This is not of course the precisely optimized solution, but this approximate 
result is close to optimum and is very easily solved by these methods. In fact, 
the peak spectral sidelobes are 28.8 dB below the peak in this case, compared 
with only 13.3 dB for the rectangular pulse. If we chose τ = 0.6992T, cor-
responding to placing the first null of the wide sinc more precisely at the 
position of the first peak of the narrow sinc (at ±1.4303/T ), then we improve 
the sidelobe discrimination slightly to 30.7 dB. This spectrum is illustrated in 
Figure 3.3, with the spectrum of the rectangular pulse shown by dotted lines, 
for comparison. (The frequency axis is in units of 1/T.)

3.3  Symmetrical Triangular Pulse 

A pulse of this shape may arise in practice as a result of convolving rectangu-
lar pulses of equal width in the process of demodulating a spread spectrum 
waveform (e.g., Figure 3.4). It is the limiting version of the trapezoidal pulse 
and is given (with τ = T ) by 

	 ( ) (1/ )rect( / ) rect( / )u t T t T A t T= ⊗ 	 (3.4)

Figure 3.2  Product of sinc functions.
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Figure 3.3  �Spectrum of low sidelobe trapezoidal pulse. (a) Linear form, and (b) logarithmic 
form.
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with spectrum, from (3.2)

	 2( ) sinc ( )U f AT f T= 	 (3.5)

This is the amplitude spectrum. The power spectrum is a sinc4 function and 
is shown in logarithmic form in Figure 3.5, with the rect pulse spectrum for 
comparison shown dotted. The frequency is in units of 1/T as before. This 
spectrum has its 3-dB points at ±0.32/T, its value at ±1/2T is nearly 8 dB 
below the peak value, and the maximum sidelobes are 26.5 dB below the 
peak. 

Figure 3.4  Symmetrical triangular pulse.

Figure 3.5  Spectrum of triangular pulse.
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In a case where triangular pulses are used frequently, it could be useful 
to define a triangular function tri such that

	
1  for 1 0

tri( ) 1  for   0 1

  0      otherwise

x x
x x x


+ − < ≤

=  − ≤ <



	 (3.6)

and then we have 

	 tri( ) rect( ) rect( )x x x= ⊗ 	 (3.7)

and the transform pair

	
2tri( ) sinc ( )x y⇔ 	 (3.8)

We note that tri(x/X) extends from –X to X, with half-amplitude width X.

3.4  Asymmetric Trapezoidal Pulse 

A linear rising edge of duration τ is given by the convolution of a step func-
tion and a pulse of duration τ (Figure 3.6). 

If the height of the edge is to remain at the same level as the step func-
tion, then the convolving pulse must have a height of 1/τ. With these results 
we can define the asymmetric trapezoidal pulse of unit height, centered (at 
its half amplitude points) at the origin, with width T at this level, and with 
rise and fall times of τ1 and τ2, by the difference of two such modified step 
functions (Figure 3.7). These have rising and falling edges of the required 
durations and are centered at –T/2 and +T/2. The waveform is given by

	
1 1 2 2

1 1
( ) rect rect

2 2
t T t T

u t h t h t
τ τ τ τ

      = ⊗ + − ⊗ −            
	 (3.9)

Figure 3.6  Rising edge of width τ.
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The Fourier transform of this waveform is given, using P2a, R6a in addition 
to the now more familiar P3a and R5, by

	 1 2
( ) ( )1 1

( ) sinc( ) sinc( )
2 2 2 2

ifT if Tf f
U f f e f e

if if
p pd dt t

p p
−   

= + − +   
   

	

(3.10)

As the δ-function is zero except at 0, we can put 
0

1sinc( ) ( ) sinc(0) ( ) ( )iftf f e f e fπτ δ δ δ= = , as in (2.9), and similarly for the 
sinc( f τ2)δ( f ) term so that the δ‑function terms cancel and we have

	 1 2sinc( ) sinc( )
( )

2

if T if Tf e f e
U f

if

π πτ τ
π

−−
= 	 (3.11)

We note that the spectrum for the unit height symmetrical pulse, given by 
putting τ1 = τ2 = τ in this expression, is

sinc( )( ) sinc( )sin( )
( ) sinc( )sinc( )

2

if T if Tf e e f f T
U f T f f T

if f

π πτ τ π τ
π π

-−
= = =

which is the result given in (3.2) (with A = 1 in this case). Equation (3.11) is 
a neat and compact expression for the spectrum of this asymmetric function 
and is very easily found by these methods. 

Two examples of the spectrum of an asymmetric pulse are given in 
Figure 3.8. Only the positive frequency side is given, as these power spectra, 
of real waveforms, are symmetric about zero frequency, as discussed at the 
end of Section 2.3. The frequency scale is in units of 1/T, where T is the 
half amplitude pulse width. For comparison, the spectra of the symmetric 
pulses, with rise and fall times equal to the mean of those of the asymmetric 
pulses, are shown by dotted curves. This mean width in the second example, 
shown in Figure 3.8(b), is 0.7T. This is very close to the value found in Sec-
tion 3.2, which places the null due to the slope at the peak of the first sid-
elobe of the underlying rectangular pulse spectrum, with the result given in  

Figure 3.7  Asymmetrical trapezoidal pulse.



48	 Fourier Transforms in Radar and Signal Processing

Figure 3.3(b). We see, in Figure 3.8(b), that the asymmetry has raised the low 
first sidelobe about 4 dB, while with the sharper edges and higher sidelobes 
of Figure 3.8(a) the effect of asymmetry is not seen until considerably further 
out in the pattern.

3.5  Asymmetric Triangular Pulse

We can consider the asymmetrical triangular pulse as a limiting case of 
the trapezoidal pulse. We note that the flat top of the trapezoidal pulse 

Figure 3.8  �Asymmetric trapezoidal pulse spectra. (a) Edges 0.2T and 0.3T, and (b) edges 
0.6T and 0.8T.
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(Figure 3.7) is of length T - (τ1 + τ2)/2, so if we set T = (τ1 + τ2)/2,we have 
a flat top of zero width, and we have a triangular pulse with rising edge of 
length τ1 and falling edge of length τ2 (Figure 3.9(a)). 

Its spectrum is given by (3.11) with T, the half-amplitude width, re-
placed by (τ1 + τ2)/2. However, this pulse has the time origin at the midpoint 
between the half-amplitude points and the peak at D. = (τ1 – τ2)/4, while it 
may be preferred to have the origin at the peak position of the pulse. Thus, 
if u(t) is the pulse in Figure 3.9(a), then v(t) = u(t + Dτ) is the required pulse, 
shown in Figure 3.9(b) with the peak at 0. From R6a, this time shift multi-
plies the spectrum by 2πifDτ. Applying this to (3.11), and substituting for T 
and Dτ gives 

	 1 2sinc( ) sinc( )
( )

2

if iff e f e
V f

if

π τ π ττ τ
π

1 2-−
= 	 (3.12)

as the spectrum of the triangular pulse with its peak at t = 0. This result is also 
obtainable, alternatively, by centering the edges at –τ1/2 and τ2/2, instead of 
±T/2, and by placing the steps of the step functions of Figure 3.7 at these 
points. Then (3.9) is replaced by

	
1 1 2 2

1 1
( ) rect rect

2 2
t t

v t h t h t
τ τ

τ τ τ τ
1 2      = ⊗ + − ⊗ −            

	 (3.13)

and this leads to (3.12) in the same way that (3.9) leads to (3.11). 

Figure 3.9  �Asymmetric triangular pulse. (a) Half-amplitude points centered about time ori-
gin, and (b) peak at time origin.
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We note that, as the pulse width at the half-amplitude points is T = 
(τ1 + τ2)/2, the rise and fall times relative to T are 2τ1/(τ1 + τ2) and 2τ2/(τ1 + 
τ2), which sum to 2. Unlike the trapezoidal pulse, only one parameter is 
needed to define the shape of this pulse; we could choose T1, the relative rise 
time, in which case the relative fall time is T2 = 2 – T1, or the ratio of the two 
edge times, r = τ1/τ2, in which case T1 = 2r/(r + 1) and T2 = 2/(r + 1).

An example of the spectrum of an asymmetric triangular pulse is given 
in Figure 3.10. The normalized frequency is again 1/T, where T is now (τ1 + 
τ2)/2. The ratio r was 2/3, giving rise and fall times relative to the half-ampli-
tude width of 0.8 and 1.2. The symmetric pulse, with r = 1, is shown dotted, 
for comparison.

3.6  Raised Cosine Pulse 

We define this pulse as being of width T at the half amplitude points, which is 
consistent with the definitions of the earlier triangular and trapezoidal pulses. 
Then a unit amplitude pulse is part of the waveform (1 + cos2πf0t)/2, where 

Figure 3.10  Asymmetric triangular pulse spectrum, ratio of rise and fall times 2/3.
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f0 = 1/2T (i.e., 2T is the duration of a cycle of the cosine). This waveform is 
gated for a time 2T so the pulse is given by

	 u(t) = rect(t/2T )(1 + cos2πf0t)/2	 (3.14)

The unit amplitude pulse is shown in Figure 3.11(a), with the time axis in 
units of T.

The spectrum is thus, using P3a, P1a, P8a, and R5

	 [ ]( )1 0 02( ) 2 sinc2 ( ) ( ) ( ) 2U f T f T f f f f fδ δ δ= Ä + - + + 	

	       ( )10 0 02sinc( / ) [sinc( / 1) sinc( / 1)]T f f f f f f= + - + + ,	 (3.15)

as convolution with a δ-function corresponds to a shift in the position of the 
δ-function. 

This spectrum is seen to consist of three closely overlapping sinc func-
tions. These are shown as dotted lines in Figure 3.11(b), with the pulse spec-
trum as the solid line. The frequency axis is in units of f0 or 1/2T. These sum 
to give a spectral shape with first zeros at ±2f0 or ±1/T (and zeros in general 
at n/2T for n integral, |n| ≥ 2) with quite low spectral sidelobes. These are 
shown more clearly in logarithmic form in Figure 3.12, with the spectrum 
of the gating pulse for comparison. The highest spectral sidelobes are 31 dB 
below the peak. These lower sidelobes could be expected from the much 
smoother shape of this pulse, compared with the rectangular or triangular 
pulses, the highest sidelobes of which are 13 dB and 27 dB below the peak, 
respectively. We note that the cost of lower sidelobes is a broadening of the 
main lobe, relative to the spectrum of the gating pulse of width 2T. The 
broadening is by a factor of 1.65 at the 4-dB points. 

As an aside, it is interesting to note how similar the two shapes in Figure 
3.11 are. In fact they are both close to the Gaussian shape, the function that 
is the same shape as its transform (P6). These three shapes are illustrated in 
Figure 3.13.

Pulse shapes of the form (1 – a – b) + acosπt/T + bcos2πt/T (gated from 
–T to T ) are easily transformed by the method used here. These include the 
Hamming window and the Blackman window as well as the Hann window 
(the raised cosine function considered here) with a = ½, b = 0.

The transform of this more general form is easily seen to be an exten-
sion of (3.15):

	 ( )( 0 0 02(1 )sinc( / ) sinc( / 1) sinc( / 1)T a b f f a f f f f- - + - + +
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Figure 3.11  Raised cosine pulse. (a) Normalized waveform, and (b) normalized spectrum.
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	 ( )+ - + +0 0sinc( / 2) sinc( / 2)b f f f f 	
( f0 = 1/2T )

If a base of width T is preferred, we replace T by T/2.

3.7  Rounded Pulses

The step discontinuity of rectangular pulses is the cause of the poor spectrum 
with high sidelobes. This discontinuity in level is removed by generating ris-
ing and falling edges of finite slope. In the case of the symmetric trapezoidal 
pulse, this is achieved by the convolution of the rectangular pulse with an-
other, shorter rectangular pulse, as shown in Section 3.2. This reduction in 
discontinuity improves the sidelobe levels. There are still discontinuities in 
slope for these pulses, and these can be removed by another convolution, with 
a further reduction in sidelobe levels. The convolution need not, in principle, 
be with a rectangular pulse, but this is perhaps the simplest and is the example 
taken here. 

Figure 3.12  Raised cosine pulse spectrum, log scale.
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Figure 3.14 illustrates the effect of convolution with a rectangular pulse 
on one of the corners of the trapezoidal pulse. The pulse is of length T and 
over the region −T/2 to +T/2 relative to the position of the corner the wave-
form rises as t2, returning to a constant slope (rising as t) after this interval.

Convolving the trapezoidal pulse with this rectangular pulse will round 
all four corners in a similar manner. If f (t) describes the trapezoidal pulse 
waveform and F( f ) is its spectrum, then for the rounded waveform we have 
(from R7b, P3a and R5)

	 ( ) (1/ )rect( / ) ( )sincf t T t T F f f TÄ Û ,	 (3.16)

Figure 3.13  Comparison of raised cosine function, its transform, and the Gaussian function.

Figure 3.14  Rounded corner of width T.
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that is, the spectrum is multiplied by the spectrum of the short pulse, which 
lowers the sidelobes further.

In practice, a pulse is likely to be rounded by stray capacitance, which 
could be modeled by the circuit shown in Figure 3.15. In electrical engineer-
ing notation the frequency response of this network is given by

	
1

2
1

1 2 11 2

(1/ ) 1
( )

1 /(1/ )

R j C
A

R R j CRR R j C

ωω
ωω

-

-
+= =

+ ++ +
	 (3.17)

where j 2 = −1 and ω is the angular frequency 2πf. In the notation we use here 
this becomes

	 2

1 2 1 1 2

1 1
( )

1 / 2 1 2
R

A f
R R if CR R R ifπ π τ

= = ×
+ + + +

	 (3.18)

where	 1 2

1 2

CR R
R R

τ =
+

	 (3.19)

The product of capacitance and resistance has the dimension of time, so 
τ represents a time constant for the circuit, and the factor R2/(R1 + R2) 
is the limiting attenuation to low frequency signals (approaching DC or 
f = 0). 

The impulse response a(t) of this circuit is the (inverse) Fourier trans-
form of the frequency response, and from P5 and R5, we have (apart from 
the scaling factor R2/[R1 + R2])

	 /1
( ) ta t e τ

τ
-=

 
(t ³ 0) or /1

( ) ( )ta t e h tτ
τ

-= 	 (3.20)

where h is the step function. The response of the circuit to a pulse is given 
by the convolution of the pulse and the impulse response. We look first at 

Figure 3.15  Model for stray capacitance.
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the effect on the rising edge of the trapezoidal pulse, given by ( ) ( )g t kt h t= ×  
(i.e., g(t) = kt for t>0). This is

	
  ( )/ ( )/
  0

1
( ) ( ) ( ) ( )

tt t t tk
a t g t e h t t kt h t dt t e dtτ τ

τ τ
¥ - - - -¢ ¢
-¥

Ä = - =¢ ¢ ¢ ¢ ¢ ¢ò ò 	

	 ( )/(1 )tk t e ττ -= - -       (t > 0)	 (3.21)

For large t/τ the exponential term becomes small and we see that the re-
sponse approaches k(t − τ), instead of kt, corresponding to a delay of τ. With 
a similar effect on the falling edge, we see that this delay applies to the pulse 
as a whole (in addition to the rounding distortion), assuming τ is small 
compared with the pulse duration. We note that if we move the rectangular 
rounding pulse of Figure 3.14 so that it starts, like the exponential impulse 
response, at time zero, rather than at – T/2, then this rectangular “impulse 
response” causes a delay of T/2, so this pulse with length T = 2τ will give the 
same delay as the exponential impulse and will be approximately equivalent. 
Figure 3.16 shows the spectral power factors (in both linear and logarith-
mic form) multiplying the original pulse spectrum in the two cases, sinc22fτ 
for the rectangular pulse and 1/(1 + (2πfτ)2) for the stray capacitance. The 
power spectrum of the smoothed pulse is that of the spectrum of the original 
pulse multiplied by one of these spectra. Assuming the smoothing impulse 
response is fairly short compared with the pulse length, the spectrum of the 
pulse will be mainly within the main lobe of the impulse response spectrum. 
We see that the sidelobe pattern of the pulse will be considerably reduced 

Figure 3.16  �Power spectra for rect and exponential impulse responses. (a) Linear form, 
and (b) logarithmic form.



	 Pulse Spectra	 57

Figure 3.17  �Effect of rounding on trapezoidal pulse spectrum. (a) Exponential (capacita-
tive) rounding, (b) rectangular pulse rounding.
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by the smoothing (e.g., by about 10 dB at ±0.4/τ from center frequency). 
We also see that the rect pulse of width 2τ gives a response fairly close to the 
stray capacitance filter with time constant τ, as expected by the earlier argu-
ment considering delay.

We show the effect of these forms of rounding on the spectrum of the 
asymmetric trapezoidal pulse used for Figure 3.8, with the time constant τ = 
0.3T. In Figure 3.17(a), we see the effect of rounding by the exponential im-
pulse response of (3.20), due to capacitance, as in Figure 3.15. The sidelobes 
are lowered considerably, as should be expected. The response with rectangu-
lar rounding, with a pulse width of 2τ, in Figure 3.17(b) is very similar, except 
near the frequency 3/2T (normalized frequency 1.5), which corresponds to 
the position of the first null of the rect spectrum.

3.8  General Rounded Trapezoidal Pulse

Here we consider the problem of rounding the four corners of a trapezoidal 
pulse independently (i.e., over different time intervals, with rect pulses or 
even with different rounding functions). This may not be a particularly likely 
problem to arise in practice in connection with radar, but the solution to 
this awkward case is interesting and illuminating, and may be of use in some 
other application.

The problem of the asymmetrical trapezoidal pulse was solved in Sec-
tion 3.4 by forming the pulse from the difference of two step-functions, each 
of which was convolved with a rectangular pulse to form a rising edge. By  
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Figure 3.18  Rising edge as the difference of two Ramp functions.



	 Pulse Spectra	 59

using different width rectangular pulses, we were able to obtain different 
slopes for the front and back edges of the pulse. 

In this case, we extend this principle by expressing the convolving rect 
pulses themselves as the difference of two step functions. The (finite) rising 
edge can then be seen to be the difference of two infinite rising edges, as 
shown in Figure 3.18. Each of these, which we call Ramp functions, is pro-
duced by the convolution of two unit step functions, as shown in Figure 3.19 
and defined in (3.22). 

We define the Ramp function, illustrated in Figure 3.19, by

	 Ramp(t - T ) = h(t)Äh(t - T ),	 (3.22)

so that

	

0                          for  0
Ramp( ) ( )

                          for  0

t
t t

t t

£ì
= Îí >î

�
	

(3.23)

(A different, finite, ramp function is required in Chapter 7; this is called 
ramp.) Having now separated the four corners of the trapezoidal pulse 
into the corners of four Ramp functions, they can all be rounded sepa-
rately by convolving the Ramp functions with different width rect func-
tions (or other rounding functions, if required) as in Figure 3.14, before 
combining to form the smoothed pulse. Before obtaining the Fourier 
transform of the rounded pulse, we obtain the transform of the trapezoi-
dal pulse in the form of the four Ramp functions (two for each of the 
rising and falling edges).

In mathematical notation, the rising edge of Figure 3.18 can be ex-
pressed in the two ways

	 ( )0
1 2( ) rect ( ) ( ) ( )

t T
h t h t h t T h t T

T
-æ öÄ = Ä - - -ç ÷è øD

	

	 1 2Ramp( ) Ramp( )t T t T= - - - 	 (3.24)

Figure 3.19  Ramp function.
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(T0 is the midpoint of the rect function, at (T2 + T1)/2, and DT = T2 - T1 is 
its width.) The Fourier transform of the left side is, from P2a, P3a, R7b, R5, 
and R6a, 
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(3.25)

where we have used δ( f - f0)u( f ) = δ( f - f0)u( f0) in general (see (2.9)), so 
δ(  f )sincf DTexp(-2p if T0) = δ( f ). The transform of the difference of the 
Ramp functions on the right side is, using (3.22), P2a, R7b, and R6a,

    
( )1 2

( ) ( )1 1
exp( 2 ) exp( 2 )

2 2 2 2
f f

if T if T
if if

δ δ π π
π π

é ùæ ö æ ö
+ + - - -ê úç ÷ ç ÷è ø è øë û

	 (3.26)

Using T0 = (T1 + T2)/2 and DT = T2 – T1, as in Figure 3.18, the difference of 
the exponential terms becomes ( )π π π- D - - D0exp( 2 ) exp( ) exp( )if T if T if T  
or 2isin(πf DT )exp(-2πif T0) so, again using (2.9), (3.26) becomes 
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	(3.27)

which is the same as (3.25), as expected. 
We are now in a position to find the spectrum of the trapezoidal pulse 

shown in Figure 3.20, with different roundings of each corner. This pulse 
is separated, as shown, into four Ramp functions and has rising and falling 
edges of width DTr and DTs, centered at Tr and Ts, respectively. The edges, 
formed from pairs of Ramp functions, are normalized to unity by dividing by 
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the width, DTr or DTs. (They certainly have to be scaled to the same height if 
the initial and final levels are to be the same.) Thus, this pulse is given by 

	
( ) ( )1 2 3 4

1 1
Ramp( ) Ramp( ) Ramp( ) Ramp( )

r s
t T t T t T t T

T T
- - - - - - -

D D 	

	
	 (3.28)

To round a corner we replace Ramp(t − Tk) with rk(t)ÄRamp(t − Tk), where 
rk(t) is a rounding function of unit integral (such as the rect pulse in Figure 
3.14). For a function with this property, it follows (see (2.6)) that R(0) = 1, 
where R is the Fourier transform of r.

The rounded rising edge, given by ( )1 1 2 2( ) ( ) Ramp( ) ( ) Ramp( )r re t r t t T r t t T T= Ä - - Ä - D
( )1 1 2 2( ) ( ) Ramp( ) ( ) Ramp( )r re t r t t T r t t T T= Ä - - Ä - D , can be written, from the definition of Ramp in 

(3.22), 

	 ( )1 1 2 2( ) ( ) ( ) ( ) ( ) ( )r re t h t r t h t T r t h t T T= Ä Ä - - Ä - D 	 (3.29)

with transform
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(3.30)

following the approach of the nonrounded case of (3.25) to (3.27). (The last two 
lines again use the result δ( f )g( f ) = δ ( f )g(0), from (2.9). We note that the 

Figure 3.20  Unit height trapezoidal pulse.
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term in square brackets at f = 0 in the second line becomes sinc(0) = 1.) Combin-
ing the two edges, the δ‑functions disappear, as in forming the spectrum of the 
asymmetric trapezoidal pulse in Section 3.4 (equations (3.10) and (3.11)), to give  
the final result for the spectrum of the generally rounded trapezoidal pulse:
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As a check, we note that if we used a single rounding function, r, with trans-
form R, the expression in (3.31) reduces to

	 2 2sinc sinc
( )

2 2
r sr sif T if Tf T f T

R f e e
if if

π π
π π

- -é ùD D-ê ú
ë û

,	 (3.32)

which (with Tr = −T/2, Ts = T/2, DTr = τ1, and DTs = τ2) is seen from (3.11) 
to be exactly the result of smoothing the asymmetrical trapezoidal pulse with 
the function r.

3.9  Regular Train of Identical RF Pulses

This waveform could represent, for example, an approximation to the output 
of a radar transmitter using a magnetron triggered at regular intervals. The 
waveform is defined by

	 { }0( ) rep rect( / )cos2Tu t t f tτ π= 	 (3.33)

where the pulses of length τ of a carrier at frequency f0 are repeated at the 
pulse repetition interval T and shown in Figure 3.21. 

Figure 3.21  Regular train of identical RF pulses.
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We note that the rep operator in (3.33) applies to a product of two 
functions, so the transform will be (by R8b and R7a) a comb version of a 
convolution of the transforms of these functions. We could express the cosine 
as a sum of exponentials, but more conveniently we use P9a in which this and 
the convolution have already been done. Thus (from P3a, P9a, R8b, and R5) 
we obtain

	 { }1/ 0 0( ) ( /2 )comb sinc ( ) sinc( )TU f T f f f fτ τ τ= - + + 	 (3.34)

This spectrum is illustrated (in the positive frequency region) in Figure 
3.22.

Thus, we see that the spectrum consists of lines (which follows from 
the repetitive nature of the waveform) at intervals 1/T, with strengths given 
by two sinc function envelopes centered at frequencies f0 and – f0. As dis-
cussed in Chapter 2, the negative frequency part of the spectrum is just 
the complex conjugate of the real part, for a real waveform, and provides 
no extra information. (In this case the spectrum is real, so the negative fre-
quency part is just a mirror image of the real part.) However, as explained 
in Section 2.4.1, the contribution of the part of the spectrum centered at 
–f0 in the positive frequency region can only be ignored if the waveform is 
sufficiently narrowband (i.e., if f0 >> 1/τ), the approximate bandwidth of 
the two spectral branches.

An important point about this spectrum, which is very easily made 
evident by this analysis, is that, although the envelope of the spectrum is 
centered at f0, there is, in general, no spectral line at f0. This is because the 
lines are at multiples of the pulse repetition frequency (PRF) (1/T ) and 
only if f0 is an exact multiple of the PRF will there be a line at f0. Return-
ing to the time domain, we would not really expect power at f0 unless the 
carrier of one pulse was exactly in phase with the carrier of the next pulse. 

Figure 3.22  Spectrum of regular RF pulse train.
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For there to be power at f0, there should be a precisely integral number 
of wavelengths of the carrier in the repetition interval T (i.e., the carrier 
frequency should be an exact multiple of the PRF). This is the case in the 
next example.

3.10  Carrier Gated by a Regular Pulse Train

This waveform would be used, for example, by a pulse Doppler radar. A 
continuous stable frequency source is gated to produce the required pulse 
train (Figure 3.23). Again we take T for the pulse repetition interval τ  for 
the pulse length and f0 for the carrier frequency. The waveform is given by

	 u(t) = (repT (rect t/τ))cos2pf0t	 (3.35)

and its transform, shown in Figure 3.24, (using R7a, R8b, P3a, and P8a) is 

	 U( f ) = (τ/2T )comb1/T(sinc fτ) Ä (d( f - f0) + (d( f + f0))	 (3.36)

Denoting the positive frequency part of the spectrum by U+ and assuming the 
waveform is narrowband enough to give negligible overlap of the two parts 
of the spectrum, we have

	 U+( f ) = (τ/2T )comb1/T (sincfτ) Ä d( f - f0)	 (3.37)

The function comb1/T sincfτ is centered at zero and has lines at multiples of 
1/T, including zero. Convolution with δ( f – f0) simply moves the center of 
this whole spectrum up to f0. Thus, there are lines at f0 + n/T (n integral, –∞ 
to ∞), including one at f0. In general there is not a line at f = 0; this is only 
the case if f0 is an exact multiple of 1/T. Unlike the previous case, we would 
expect the waveform to have power at f0 as the pulses all consist of samples of 
the same continuous carrier at this frequency.

Figure 3.23  Carrier gated by a regular pulse train.
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3.11  Pulse Doppler Radar Target Return

In this case we take the model for the target echo received by a pulse Doppler 
radar to be a number of coherent pulses with their amplitudes modulated by 
the beam shape of the radar as it sweeps past the target. (The echo is actually 
modulated twice, on transmission and on reception, so the beam shape is 
applied squared.) Here, for simplicity, we approximate this modulation first 
by a rectangular function of width θ (i.e., θ is the time on target). A more 
general case will be taken later. The pulse train is given by u in (3.35) so the 
waveform received from a stationary point target is given, apart from an am-
plitude scaling factor, but with the modulation imposed by the beam, by

	 x(t) = rect (t/q )u(t)	 (3.38)

(as rect2 = rect). The spectrum (from R7a, P3a, and R5) is 

	 X(t) = qsincfq Ä U( f )	 (3.39)

where U is given in (3.36). The convolution effectively replaces each δ-func-
tion in the spectrum U by a sinc function. This is of width 1/θ (at the 4-dB 
points), which is normally very small compared with the envelope sinc func-
tion of the spectrum, which has width 1/τ, and also is small compared with 
the line spacing 1/T if θ >> T (i.e., many pulses are transmitted in the time on 
target). In fact, there will also be a Doppler shift on the echoes, if the target is 
moving relative to the radar. If it has a relative approaching radial velocity v, 
then the frequencies in the received waveform should be scaled by the factor 
(c + v)/(c – v), where c is the speed of light. This gives an approximate overall 
spectral shift of +2vf0/c (assuming v << c, and the spectrum is narrowband, so 

Figure 3.24  Spectrum of regularly gated carrier.
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that all significant spectral energy is close to f0 or − f0). Figure 3.25 illustrates 
the form of the spectrum of the received signal. Stationary objects (or “clut-
ter”) produce echoes at frequency f0 and at intervals n/T about f0, all within 
an envelope defined by the pulse spectrum (as in Figure 3.25). The smaller, 
moving target echoes produce lines offset from the clutter lines, so that such 
targets can be seen, as a consequence of their relative movement, in the pres-
ence of otherwise overwhelming clutter. 

Figure 3.25 is diagrammatic; the filter bank may be at baseband ( f0 = 0) 
or a low IF and may be realized digitally. By suitable filtering, not only can  
the targets be seen, but an estimate is obtained of the Doppler shift, and 
hence of the target radial velocity.

As indicated by (3.39), all the lines are broadened by the spectrum of 
the beam modulation response (squared) but a rectangular beam, as taken 
earlier, is not realistic, except as a very rough approximation. In Chapter 8 
we see that, for a linear aperture, the beam shape is essentially the inverse 
Fourier transform of the aperture illumination function, and with a constant 
angular rotation rate this becomes the (one-way) beam modulation. (We re-
quire the small angle approximation sinθ ≈ θ, which is generally applicable 
in the radar case, near broadside.) If the aperture function is rect(x/X ), where 
X is the width of the aperture in wavelengths, then the beam shape is of the 
form sinc(αX), where α is the azimuth angle (in radians). If the beam scans 
at constant speed say α = kt, then the received pulse train is modulated by a 
function of the form (sinckXt)2 and the target echo spectrum is the transform 
of this (i.e., it is the triangular function, tri( f /kX ), from P4,R4,R5). The 

Figure 3.25  Spectrum of pulse Doppler radar waveform.
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width of this function (given by f0 = kX at the half-amplitude, or 6 dB points) 
determines the width of the filters and hence the velocity resolution. 

To put in some reasonable values, let X = 30 wavelengths, for a 3m 
aperture at S-band (3 GHz), and if the rotation period is 3 seconds, then 
k = 2π/3 rad/sec and kX = 60π/3, or approximately 60 Hz. At this carrier 
frequency, a target with a radial velocity of 1m/s will give a Doppler shift of  
20 Hz so the line broadening is only equivalent to about 3 m/s wide.

If we put the weighting function in the form a(x)rect(x/X ), the beam 
shape is ( )2( ) sinc( )A Xα αÄ and the two-way response is (A(a)Äsinc(a X ))2. 
The echo modulation is ( )2( ) sinc( )A kt kXtÄ  and the line shape, broadened by  
this modulation, is a( f /k)rect( f /kX )Äa( f /k)rect( f /kX )). Because of the 
mixture of convolution and multiplication, this expression is not easily sim-
plified for typical functions a, though it may be possible to obtain estimates of 
the line shape and its width by making approximations. In general, weighting 
functions that give desirable low-sidelobe responses produce broader main 
lobes, reducing the resolution by a factor of up to two.

3.12  Summary 

The spectra of a number of pulses and of pulse trains have been obtained 
in this chapter using the rules-and-pairs method. As remarked earlier, the 
aim is not so much to provide a set of solutions on this topic as to illustrate 
the use of the method so that users can become familiar with it and then 
solve their own problems using it. Thus, whether all the examples correspond 
demonstrably to real problems (e.g., finding the spectra of the asymmetric 
trapezoidal pulse and, particularly, this pulse with different roundings of each 
corner) is not the question—the variety of possible user problems cannot 
be anticipated, after all—but rather the examples are meant to demonstrate 
various ways of applying the method to yield solutions neatly and concisely 
without any explicit integration.
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4
Periodic Waveforms, Fourier Series, 
and Discrete Fourier Transforms

4.1  Introduction

In this section, we consider some aspects of periodic waveforms, using the 
rules-and-pairs method. First we note that these waveforms do not have finite 
energy, so that the result following Parseval’s Theorem (2.27), equating the 
waveform energy with an equivalent form based on the spectrum, cannot be 
applied. Instead, it is shown in Section 4.2 that the relevant quantity in this 
case is power, rather than energy, and expressions for the powers of the wave-
forms and spectra are derived using the rules and pairs.

Periodic waveforms can be represented as Fourier series, of course. A 
periodic waveform has a line spectrum, given in the rules-and-pairs approach 
by a set of d-functions whose strengths give the coefficients of the series ob-
tained by the standard method, using integration. If we express a periodic 
function u, with repetition interval T, in the form 

	
( ) exp2n

n

u t c inFtπ
¥

=-¥
= å

	
(4.1)
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as in (1.1), then by P1a and R6b the spectrum is given by

	
( ) ( )n

n

U f c f nFδ
¥

=-¥
= -å ,

	
(4.2)

where F = 1/T is the fundamental frequency of the waveform. The coef-
ficients are found, using the orthogonality of the complex exponential func-
tions over one period. That is,

	
exp( 2 / )exp(2 / )

T
nm

I
imt T int T dt Tπ π δ- =ò ,

where IT is an interval of length T, and dmn is the Kronecker-d. Thus, we 
have

	
1/ ( )exp( 2 )

T
n

I
c T u t inFt dtπ= -ò 	

(4.3)

Equations (4.1) and (4.3) would normally define a Fourier series relation-
ship. Equation (4.2) gives the spectrum formally as a function of frequency, 
but usually only the coefficients cn are needed. Equivalent equations can be 
obtained for the expressions in trigonometric form, using sine and cosine 
series, using the orthogonality of the sine and cosine functions over one 
period.

In the case of a regular train of pulses of finite duration, the spectrum is 
simply a sampled form of the continuous spectrum of a single pulse. This is 
shown very simply by the rules-and-pairs method—if s(t) is the pulse wave-
form, repeated with period T, then the pulse train is represented by repT s(t), 
which has transform FcombF S(  f  ), where F = 1/T and S is the spectrum of 
the pulse, the transform of s. We see that we replace the continuous function 
S by a discrete function, consisting of d-functions (or spectral lines) at mul-
tiples of F and of strength FS(nF ), F times the value of S at these frequency 
points. Thus, if we have a train of pulses of one of the forms already analyzed 
in Chapter 3 (Section 3.2 through Section 3.8) we obtain the spectrum of 
the pulse train immediately by sampling the pulse spectrum at the points nF 
(and multiplying by F ).

However, the Fourier transform obtained here, by the rules-and-pairs 
method, expresses the waveform in terms of complex exponential functions 
of frequency (cisoids)—as an integral over a frequency continuum in the non



	 Periodic Waveforms, Fourier Series, and Discrete Fourier Transforms	 71

periodic case, or as a sum over discrete frequencies in the periodic case. (So, 
for example, cn is the coefficient of exp2pinFt, the component at frequency 
nF, in the Fourier series of (4.1)) This expansion in terms of complex expo-
nentials may not be the most convenient for the user. Fourier series analysis  
can be applied, of course, to real-valued or complex-valued functions,  
expressing them in terms of either real functions (possibly with complex coef-
ficients) or complex functions. However, generally the main area of applica-
tion is to real functions, expressed more naturally as a sum of real functions 
(sines and cosines) rather than as a sum of complex exponentials. In Section 
4.3, we show how to obtain the Fourier series coefficients for this case, using 
the rules-and-pairs approach, without having to perform any of the usual 
integration. To illustrate the method, we take as examples a rectangular pulse 
train, a sawtooth waveform, periodic triangular waveforms (symmetric and 
asymmetric), and rectified sinewaves (half-wave and full-wave.)

The discrete Fourier transform (DFT) differs from the other Fourier 
transforms in this book. For these other transforms, the input waveforms 
are mathematical functions, which may describe, with varying degrees of ac-
curacy, actual physical quantities. For the DFT, considered in Section 4.4, 
the input of the transform is a set of data samples, without necessarily any 
explicit mathematical description. Thus, the waveform is discrete, rather than 
continuous, though it may be considered to be a sampled form of an implicit 
underlying continuous function. The case of general discrete waveforms is 
taken initially. If the data is considered to be from a regularly sampled wave-
form (described by a comb function), its spectrum, from the comb-rep pair, 
is a repetitive, or periodic, function of frequency. This has the advantage 
that only a single period is needed to define the spectrum. However, in gen-
eral this spectrum is continuous, and the question arises of how to sample it 
suitably in order to describe it in finite terms. If we sample it regularly (and 
take the condition that the sampling interval is an integer submultiple of 
the repetition interval), then we find that this spectrum is both periodic and 
regularly sampled, and its inverse transform is a waveform that is also both 
periodic and regularly sampled. The number of samples in one period of the 
spectrum is found to be equal to the number of input samples, the number 
in one period of the supposed periodic waveform. This is the basis for the fast 
Fourier transform (FFT), which is an efficient implementation of this DFT. 
We show how the DFT is implemented—in particular, we derive the coef-
ficients relating the spectral components to the input data samples, using the 
rules-and-pairs technique, and give an example, using the MATLAB FFT as 
an illustration of the principles. 
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4.2  Power Relations for Periodic Waveforms

4.2.1  Energy and Power 

If u(t) represents the voltage at an instant t across a resistor with resistance R, 
then 2( )u t R is the rate of conversion of electrical energy into heat at time t,  
and the integral of this over some time interval gives the heat energy gener-
ated during this interval. In general, ignoring R, as a fixed scaling factor we 

consider 
2( )u t dtò  to be the energy in the waveform in appropriate units. It 

may be convenient to keep to this terminology even when u does not repre-
sent a physical quantity, such as voltage or the amplitude of a wave, and we 
simply mean the integrated square modulus of the function. 

In the discussion of Parseval’s theorem in Section 2.4.2 we have as-
sumed that the waveform u in (2.27) is a finite energy waveform (i.e., that 
the infinite integral on the left side of this equation [and consequently also 
that on the right] converges). For this to be the case, we must have u(t) ® 0 
as t ® ±¥. (This is a necessary but not sufficient condition. For example, as 
|u|2 is monotonic, at large values of t its value must also fall faster than t –1.) 
For the repetitive waveforms considered in this chapter, this condition is not 
met, and (2.27) is not applicable. Instead we can consider the mean energy 
per unit time, or power, and this is the appropriate measure, rather than en-
ergy, for these waveforms. The mean power in a waveform u over an interval 

of length T is given by 21
( )

T
u t dt

T ò  (where 
Tò  indicates integration over this 

interval) and for a (statistically stationary) random waveform we could esti-
mate the power level by taking the limit as T ® ¥. However, for a periodic 
function, there is a natural time interval to choose, which is its period of rep-
etition. This approach is used to obtain results equivalent to (2.27) for both 
the case of a periodic waveform, which has a spectrum of discrete lines, and 
a sampled waveform, which has a periodic spectrum. The equivalent result 
for a waveform that is both sampled and repetitive, as used for the DFT, is 
given in Section 4.4.

4.2.2  Power in the d -Function

We know that the integral of the d-function is unity, but what is the value 
of 2( )f dfδò ? In order to tackle this question, we return to the definition of 
the d-function (given in Section 2.2.3) as the limit of a suitable sequence of 
functions of unit integral, such that the limiting function is nonzero only 
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at a single point. In this case, we take the sinc function as the basis for our 
sequence.

Consider first the waveform

	 ( ) rect /nu t t n= ,	

a rectangular pulse of length n, with spectrum

	 ( ) sincnU f n nf= 	

The energy in the waveform is given by

	
2 2| ( ) | rect ( / ) rect( / )n nE u t dt t n dt t n dt n

¥ ¥ ¥

-¥ -¥ -¥
= = = =ò ò ò ,

	
(4.4)

as rect2 = rect. The spectral energy is

	
2 2 2 2| ( ) | sinc ( ) sinc ( ) ( )nU f df n nf df n nf d nf n

¥ ¥ ¥

-¥ -¥ -¥
= = =ò ò ò .

	
(4.5)

using property 3 of the sinc function (Section 2.2.2). The equality of the 
waveform and spectral energies is in agreement with Parseval’s Theorem (see 
(2.27)). Now we consider the limit of the sequences of the functions un and 
Un. We have

	
lim ( ) lim (rect / ) 1n

n n
u t t n

®¥ ®¥
= =

	

and

	
lim ( ) lim ( sinc ) ( )n

n n
U f n nf fδ

®¥ ®¥
= = ,

	

using the definition of the d-function given in Section 2.2.3. We now see 
from (4.4) and (4.5) that the energy in these functions lim ( )n

n
E

®¥
 is infinite. 

(This answers the question at the start of this section.) However, the power 
in each waveform un is given by dividing by the pulse length n, so is given by 
pn = En/n = 1. As this is independent of n, it is clear that this is also the power 
of the limiting waveform, the constant function u(t) = 1, which has transform 
d(  f   ) (i.e., the power represented by a d-function of unit strength is unity, 
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and the power in a d-function of strength a is thus |a|2). It seems reasonable 
to suppose that a more complex function, with a spectrum of many lines, will 
have power given by the sum of the powers in the spectral lines, and this is 
proved in the next section (see (4.14)). This is also true of shifted d-functions, 
as U(  f   ) = d(  f - f0) has transform u(t) = exp2πif0t and |u(t)|2 = 1.

4.2.3  General Periodic Function

A periodic waveform is not one of finite energy, but if we take one period of 
it then we have a finite energy waveform, for which the energy equation of 
(2.27) holds, following directly from Parseval’s Theorem. Let the periodic 
function be u with repetition interval T and let v be a single period of u, ob-
tained by gating (see Figure 4.1). Then we have

	 =( ) rect( / ) ( )v t t T u t  and also ( ) rep ( )Tu t v t= 	 (4.6)

Their spectra are given by

( ) sinc( ) ( )V f T f T U f= Ä  and =( ) comb ( )FU f F V f .    (F = 1/T)	 (4.7)

Writing out the comb function we can put U in the form

	
= - = -( ) ( ) ( ) ( )U f F V nF f nF U f nFδ δå å nn n

,
	 (4.8)

where Un = FV(nF  ) is the strength of the d-function at frequency nF in the 
spectrum of U.

Figure 4.1  Waveforms and spectra for a periodic function.
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From the two spectral expressions in (4.7) we have

	 = Ä( ) sinc( ) comb ( )FV f f T V f 	 (4.9)

	
δ= ⊗ − = −∑ ∑sinc ( ) ( ) ( )sinc(( ) )

n n
fT V nF f nF V nF f nF T

	

( )sinc( )
n
V nF f T n= -å 	

(4.10)

Sn here means summation over all n, from –¥ to ¥. This shows that the spec-
trum V can be represented by its samples at intervals F = 1/T, interpolated 
using sinc functions. This result holds for any spectrum V as long as the cor-
responding waveform v is within the interval [–T/2,T/2]. It is the converse 
of the waveform interpolation result given in (5.2). These waveforms and 
spectra are illustrated diagrammatically in Figure 4.1.

As v is now a finite energy waveform, we can use the result (2.27) from 
Parseval’s Theorem. In this case, the energy in v and hence in one period of 
u is Ev, given by

	
2 2( ) ( )v

T
E v t dt u t dt

¥

-¥
= =ò ò 	

(4.11)

Strictly, from the definition of v, 
Tò  should mean integration over the interval 

–T/2 to T/2, the range over which the rect function has value unity, but in 
fact it could be over any interval of length T, which would contain one whole 
period of u.

Using (4.10) we have

	

¥ ¥

-¥ -¥
= - -å åò ò2

( ) ( )sinc( ) ( )* sinc( )
n m

V f df V nF fT n V mF f T m df
	

	

¥

-¥
= - -å åò1 ( ) ( )* sinc( )sinc( ) ( )

n m
T V nF V mF f T n f T m d fT

2( ) ( )* ( )nmn m n
F V nF V mF F V nFδ= =å å å ,

	
(4.12)

where we have used property 4 of the sinc function (see Section 2.2.2), the 
orthonormal property of the set of shifted sinc functions. Here dnm is the 
Kronecker-d, unity if m = n and zero if m ¹ n. 
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Equation (4.12) is an interesting result in itself: for a spectrum V, where 
the waveform v is within the interval [–T/2,+T/2 ], the integral of the con-
tinuous function |V |2 is F times the sum of samples of |V |2 taken at intervals 
F =1/T.

The power in waveform u is thus given by pu where

	

22 221 1
( ) ( ) ( )v

u n

E
p v t dt V f df F V nF

T T T

¥ ¥

-¥ -¥
= = = = åò ò

	
(4.13)

using (2.27) and (4.12). From (4.8) we have Un = FV(nF  ), and so, from 
(4.11) and (4.13), we have finally, for the power in u,

	

2 21
( ) nnT

u t dt U
T

= åò
	

(4.14)

This confirms that the power in the periodic waveform u is equal to the sum 
of the square moduli of the d-function strengths in its line spectrum (i.e., the 
powers of the frequency components) as proposed in Section 4.2.2. 

If u is the repeated form of a known pulse waveform s, then from  
u(t) = repT s(t) we have 

	
2 2rep ( ) ( )T nT

s t dt F S nF= åò 	
(4.15)

(NB: In general one period of repTs(t) is not necessarily equal to s(t) because 
of the overlapping of repeated versions when the duration of s is greater than 
T. Only if s is time limited, with value zero outside the interval –T/2 to +T/2, 
can we replace repTs(t) by s(t) in (4.15).)

We can present this result in a form rather closer to the Parseval result 
for finite energy waveforms (2.27) by integrating the sampled form of the 
power spectrum:

	
δ

¥ ¥

-¥ -¥
= - =å åò ò2 2 2comb ( ) ( ) ( ) ( )F n n

S f df S nF f nF df S nF

as the integrals of the d-functions are unity. Thus (4.15) becomes

	

¥

-¥
=ò ò 22

rep ( ) comb ( )T F
T

s t dt F S f df
	

(4.16)
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This result shows that the energy in one period of a repetitive waveform 
is given by the integral of the sampled power spectrum times the sampling 
interval (in the frequency domain).

4.2.4  Regularly Sampled Function

If u is sampled regularly at intervals t, then its spectrum is repetitive at in-
tervals f = 1/t. In this case, we take the same approach as in Section 4.2.3, 
except that we gate out one period of the spectrum instead of one period of 
the waveform. Defining ( ) rect( / ) ( )V f f U fφ= , we obtain results such as

	
2 2

( ) ( )V f df U f df
φ

=ò ò 	

and 

	
( ) ( )sinc( )

n
v t v n t nτ φ= -å ,

	

leading to 

	
2 2( ) ( )

n
v t dt v nτ τ= åò ,

	

corresponding to (4.11), (4.10), and (4.12) respectively, and to un = tn(nt). 
Using these results in (2.27) gives:

	

221
( )nn

u U f df
φτ

=å ò
	

to obtain (as f t = 1) the equivalent of (4.14):

	

22 1
( )nn

u U f df
φφ

=å ò
	

(4.17)

If u is the sampled form of a pulse waveform s, so that u(t) = combt s(t) and 
( ) rep ( )U f S fφφ= , we have, corresponding to (4.15),

	

22( ) rep ( )
n

s n S f dfφφ
τ τ =å ò 	

(4.18)
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4.2.5  Note on Dimensions

In this section we justify the energy and power expressions in dimensional 
terms, as it is not always evident what forms the expressions represent. The 
notation here is that [u] represents the dimension of a waveform, [U ] that of 
a spectrum, and [T ] and [F ] are the dimensions of time and frequency. We 
also use the symbol ~ to mean “has the same dimension as.” Thus, we have 
[F ] ~ [T ]–1. We will also take, as a convention, [u2] to have the dimension of 
power so that [u2][T ] ~ energy (as in Section 4.2.1).

From the definitions (1.3) and (1.4), we see that [u] ~ [U ][F ] and [U ] ~  
[u][T ], then in (2.27) the left side has dimension [u2][T ], or energy, and the 
right side has dimension [U 2][F ] ~ [u2][t]2[F ] ~ [u2][T ], again an energy 
expression. Thus, this equation does equate the waveform and spectral energy 
for a finite energy waveform.

It is important to notice that for sampled waveforms and spectra, 
the samples, as d-function strengths, do not have the same dimension as 
the sampled function. In (4.8), for example, we note that integrating over 
a frequency interval In including only the line at frequency nF, we have 

=ò ( )
n

n
I

U f df U  so that Un has the dimension [U ][F ] (not [U ]). (In fact 

[Un] ~ [u].) Similarly, for a sampled waveform, we find that the samples 
un have dimension [u][T ], or [U ]. We see that the left side of (4.14) has 
dimension [u2], or power, and so has the right side, given that [Un] ~ [u], as 
required. The left side of (4.17) has dimension [U ]2/[T ], and the right side 
has dimension [U ]2[F ], and these are both energy expressions, so this equa-
tion matches the energy in one period of the spectrum with the sum of the 
square magnitudes of the waveform samples divided by the sample interval. 
Finally, for the regularly sampled periodic function of Section 4.4.3, we see 
that the two sides of (4.59) have the dimension of energy, so this effectively 
equates the energy in one period of the waveform with that in one period of 
the spectrum.

4.3  Fourier Series of Real Functions Using Rules and Pairs

4.3.1  Fourier Series Coefficients

The rules-and-pairs method, as used here, is a fully complex method, giving 
the complex spectra of both real and complex waveforms. Thus, even for a 
real waveform, the waveform is expressed as a sum, or integral, of complex 
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exponential functions of the form exp2pift. In general (though not necessar-
ily), Fourier series analysis is applied to periodic real waveforms, which are ex-
pressed as sums of real functions (sines and cosines) with real coefficients. In 
this section, we show how these coefficients are obtained from the spectrum 
given by the rules-and-pairs method, in the case of periodic real waveforms, 
and in the following three sections examples are given for square, sawtooth, 
triangular, and rectified sinewave waveforms.

Given that u is periodic, with repetition interval T, the spectrum U is a 
comb function and so can be put in the form 

	
( ) ( )n

n

U f c f nFδ
¥

=-¥
= -å

	
(4.19)

where F = 1/T. The waveform can be expressed, from the inverse transform, 
as

	
( ) exp2n

n

u t c inFtπ
¥

=-¥
= å ,

	
(4.20)

and we see that the coefficients cn weight both the d-functions in the spec-
trum and also the complex exponentials in the expansion of the waveform. 
We now want to express u as a Fourier series in the form 

	
0

1

( ) ( cos2 sin2 )n n
n

u t a a nFt b nFtπ π
¥

=
= + +å

	
(4.21)

as in (1.1), and now we need the coefficients a0, an, and bn. From (4.20) we 
have

	

2( ) (cos2 sin2 )inFt
n n

n n

u t c e c nFt i nFtπ π π
¥ ¥

=-¥ =-¥
= = +å å

	

	

0
1 1

(cos2 sin2 ) (cos2 sin2 )n n
n n

c c nFt i nFt c nFt i nFtπ π π π
¥ ¥

-
= =

= + + + -å å

0
1

( )cos2 ( )sin2n n n n
n

c c c nFt i c c nFtπ π
¥

- -
=

= + + + -å
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Now for real waveforms we have ( ) ( )*U f U f- =  for any frequency f 
(see (4.2.1)), so, in (4.19), c–n = cn* and

	 * 2Ren n n n nc c c c c-+ = + = 	

and 

	 * 2 Imn n n n nc c c c i c-- = - = 	

so finally we have

	
0

1

( ) (2Re cos2 2Im sin2 )n n
n

u t c c nFt c nFtπ π
¥

=
= + -å

	
(4.22)

where c0 is also real. Comparing (4.21) and (4.22) we have

	 0 0, 2Re  and 2Imn n n na c a c b c= = = - 	 (4.23)

Thus, to find the Fourier series coefficients for a real periodic wave-
form, we obtain the spectrum U by the rules-and-pairs method, which gives 
the coefficients cn, then use (4.23). This method is illustrated in the following 
sections.

4.3.2  Fourier Series of Square Wave

A square wave of period T is given by a regular train of rectangular pulses of 
length T/2, so can be represented in the form 

	

2
( ) rep rectT

t
u t

T
æ ö= ç ÷è ø 	

(4.24)

with transform

	

æ ö æ ö= =ç ÷ ç ÷è ø è ø
1

( ) comb sinc comb sinc
2 2 2 2

F F
fT fTT

U f F
	

	

1
sinc ( )

2 2n

nFT
f nFδ

¥

=-¥
= -å

	
(4.25)
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where F = 1/T. Now we note that 

	
= = ÎË1 1

sinc sinc ( )
2 2 2 2

n
nFT n

c n
 	

(4.26)

	

π
π π

-= = − ( 1)/2sin( /2) 1
( 1) ( odd)nn

n
n n 	

when n is odd, and is zero when n is even (n ¹ 0). (cn is defined as in Sec-

tion 4.3.1, such that ( ) ( )n
n

U f c f nFδ
¥

=-¥
= -å ). As cn is real, we have, from 

Section 4.3.1, ( 1)/22 ( 1) 2n
n na c nπ-= = -  (n odd) or 0 (n even), and bn = 0, 

for n =1 to ¥, and we see also from (4.26) that a0 = c0 = 1/2, as expected, as 
this is the mean level of the waveform. Thus, the Fourier series for the square 
wave u is

	

( 1)/2

1

1 2 ( 1)
( ) cos2

2

n

n

u t nFt
n

π
π

¥ -

=

-= + å ,
	

(4.27)

agreeing with the result given by conventional Fourier analysis and obtained 
without using any integration.

This is for the case illustrated in Figure 4.2(a), where the pulse train is 
centered on zero, giving an even function, which would be expected to give 
an expansion in terms of even functions (i.e., cosines) only. It is interesting 
to take the case shown in Figure 4.2(b), where the function (apart from the 
mean level) is an odd function and should give a sine series only.

In this case, the pulses are offset by T/4, so the waveform is given by 

	

æ ö-= ç ÷è ø
( /4

( ) rep rect
/2

T
t T

v t
T 	

(4.28)

and its transform, using R6a, is

- -æ ö æ öf T if T f T if Tπ π= =ç ÷ ç ÷è ø è ø
2 1

( ) comb sinc exp comb sinc exp
2 2 4 2 2 2

F F
T

V f F

1 1
sinc exp ( ) sinc exp ( )

2 2 2 2 2 2n n

nFT inFT n in
f nF f nF

π πδ δ
¥ ¥

=-¥ =-¥

- -= - = -å å
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Thus we have  
sin /21 1

sinc exp sin
2 2 2 2 /2 2

n
nn in n i

c i
n n

ππ π
π π

- -æ ö= = - =è ø , for  

n odd, and cn = 0 for n even (n > 0). In this case the Fourier series coefficients 
are 0 0 1/2a c= = , 2Re 0n na c= =  (n > 0), and 2Im 2/n nb c nπ= - = (n odd). 
Thus, the Fourier series for this square wave is

	 1

1 2 1
( ) sin2

2 n

v t nFt
n

π
π

¥

=
= + å

 
(n odd)

	
(4.29)

The approximations to the square waves, taking the constant term plus 
the first N sinusoidal terms using these series for u and v, are given in Figure 
4.2(c) (for N = 4, or n = 1 to 7) and (d) (N = 7).

For a regular pulse train (centered on zero in this case) with a duty ratio 
r (r < 1), the pulses are of length rT and the waveform is given by

Figure 4.2  �Square wave synthesis from Fourier series. Square wave with (a) pulse cen-
tered at time zero, (b) pulse starting at time zero; waveform formed using (c) 
four terms of even series, and (d) seven term of odd series.
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( ) rep rectT

t
u t

rT
æ ö= ç ÷è ø 	

(4.30)

The spectrum is

	 = =( ) comb ( sinc ) comb (sinc )F FU f F rT frT r frT 	

	
sinc( ) ( ) sinc( ) ( )

n n

r rnFT f nF r rn f nFδ δ
¥ ¥

=-¥ =-¥
= - = -å å

	
(4.31)

Thus, 0 0a c r= = , 
sin

n
rn

c
n

π
π

= , 
2sin

2Ren n
rn

a c
n

π
π

= = , and bn = 0. We note 

the value of the constant term is r, the mean level, as expected. Putting r = 
1/2 gives the square wave case.

4.3.3  Fourier Series of Sawtooth

A sawtooth waveform of period T, of amplitude 2, mean level zero, and cen-
tered at the time origin is shown in Figure 4.3(a). This is an odd function, so 
its Fourier series will be given by a sum of sinewaves only. This waveform can 
be represented in the form 

	
( ) rep rampT

t
u t

T
æ öæ ö= ç ÷è øè ø 	

(4.32)

where we define ramp(x) = 2xrect(x), as in Section 7.3 in Chapter 7, where 
this function is discussed further, and is illustrated in Figure 7.2. The trans-
form, using the pair given in (7.18) is given by 

	
δ

¥

=-¥
= = -å1 1( ) comb ( snc ) snc ( ) ( )F

n

U f F iT f T i nFT f nF
	

where F = 1/T and 1snc (sinc )/x d x dxπ=  (see (7.17)). As snc10 = 0 we have 
a0 = c0 = 0, and as cn is imaginary we have an = 0, and 

	 π

+-= - = - =
1

1
2( 1)

2Im 2snc ( 0)
n

n nb c n n
n

>
 

(n > 0)
	

(4.33)
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(From (7.20) we have snc1n = (cospn – sincn)/np = (–1)n/np (n > 0).) The 
Fourier series for the sawtooth u is thus

	

æ ö2 sin2 2 sin4 sin6nFt Ft Ftπ π ππ
π π

¥
+

=
= - = - + -ç ÷è øå 1

1

( ) ( 1) sin2  . . .
2 3

n

n

u t Ft
n

	
(4.34)

The sawtooth shown in Figure 4.3(b) is given by

	

/21 1
( ) rep ramp

2 2
T

t T
v t

T
-æ öæ ö= + ç ÷ç ÷è øè ø 	

(4.35)

and after Fourier transforming as before we have

	 1 1snc exp( )/2 ( 1) snc /2 /2n
nc i n in i n i nπ π= - = - = 	

Figure 4.3  �Sawtooth wave synthesis from Fourier series. Sawtooth (a) centered at time 
zero, (b) with ramp starting at time zero; waveform formed using (c) five terms, 
and (d) ten terms.
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(using snc1n from earlier). Thus, 0 0 1/2a c= = , 2Re 0n na c= = , and 
2Im 1/n nb c nπ= - = - . In this case, the sawtooth is given by

	 1

1 1 sin2
( )

2 n

nFt
v t

n
π

π

¥

=
= - å

	
(4.36)

The approximate sawtooth waveforms obtained by taking terms up to 
n = 5 in (4.34) and n = 10 in (4.36) are shown in Figure 4.3(c) and (d),  
respectively.

4.3.4  Fourier Series of Triangular Waves

The symmetrical triangular wave shown in Figure 4.4(a), with period T, can 
be written

	

æ ö
= ç ÷è ø

( ) rep tri
/2

T
t

u t
T 	

(4.37)

where the function tri(x) is defined in (3.6). From R5 and P4 the transform 
is 

Figure 4.4  �Triangular waves. (a) Symmetric, (b) asymmetric, and (c) asymmetric wave 
synthesized using four terms.
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δ

¥

=-¥

æ ö= = -ç ÷è ø å2 21
( ) comb sinc sinc ( )

2 2 2 2
F

n

f TT n
U f F f nF

	
(4.38)

Thus, 21
sinc

2 2
n

n
c = , so 0

1
2

a = , 
2

sin( /2)
2Re

/2
n n

n
a c

n
π

π
æ ö

= = ç ÷è ø
, or 

22
nπ

æ ö
ç ÷è ø  for n 

odd and 0 for n even, and bn = 0 for all n. In this case the Fourier series coef-
ficients are found very directly, without integration, by the rules-and-pairs 
method.

For the asymmetrical triangular wave, shown in Figure 4.4(b), we can 
use the asymmetric triangular pulse of Section 3.5 (with peak at t = 0) formed 
as the differences of two step functions convolved with different width rect 
pulses. Taking this pulse, the triangular wave is given by

	 ( )( ) rep ( )Tu t v t= 	

where v(t) is given in (3.13), and this has the transform given in (3.12), so 
that the spectrum of the triangular wave of Figure 4.4(b) is given by

	

π τ π τ

π

1 2- −
=   

 

1 2sinc( ) sinc( )
( ) comb

2

if if

F
f T e f T e

U f F
if

	

	

π τ π τ
δ

π

−¥

=−¥

−= − −∑
1 2

1 2sinc sinc
( )

2

inF inF

n

nFT e nFT e
i f nF

n

1 2
1 2sinc sinc

( )
2

inr inr

n

nr e nr e
i f nF

n

π π

δ
π

-¥

=-¥

-
= - -å

	
(4.39)

where rk = Tk/T = FTk (so r1 + r2 = 1 as T1 + T2 = T ). 
To first order, as n ® 0 (for n real), we have 

	

1 2
0 1 2

0 0

( ) 1
lim (1 ... (1 ...) lim

2 2 2n n

n r ri
c inr inr

n n

π
π π

π π® ®

+-æ ö= + + - - + = =ç ÷è ø 	

so 0 0 1/2a c= = , as expected. Also,

	
1 1 2 2sinc sin sinc sin

2Ren n
nr nr nr nr

a c
n

π π
π

+
= = 	 (4.40)
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2 2

1 1 2 2sinc sincr nr r nr= + 	

and

	

1 1 2 2nr nr nr nrπ π
π

-
= - =

sinc cos sinc cos
2Imn nb c

n 	
(4.41)

Except for certain particular values of r1 and r2, these expressions do not sim-
plify further. Using these coefficients up to n = 4 with r1 = 0.3 and r2 = 0.7 
gives the waveform shown in Figure 4.4(c). 

If we put r1 = r2 = 0.5 (giving the symmetrical case) then we find 

	

2 2 21 1
sinc sinc sinc

2 2 2 2 2
n

n n n
a = + =

	

and bn = 0, which are the coefficients for the symmetric triangular wave found 
earlier. Also, if we put r1 = 1 and r2 = 0, we have sincnr1 = 0, so that an = 0 
(n > 0), and sincnr2 = 1, so that bn = –1/np, as found in Section 4.3.3 for the 
sawtooth waveform of Figure 4.3(b).

We could, alternatively, form the asymmetric triangular pulse as the 
difference of two ramp functions. In this case, we define the wave shown in 
Figure 4.4(b) by

	
( )1

( ) 1 ( )
2

u t v t= +
	

where 

	

1 2

1 2

/2 /2
( ) ramp rampT

t T t T
v t rep

T T

æ ö+ +æ ö æ ö= -ç ÷ ç ÷ç ÷è ø è øè ø 	

(We note that v(t) ranges from –1 to +1 so u(t) ranges from 0 to 1, as required.) 
Following through the analysis, using the pair 1ramp sncx i yÛ , gives

	 1 1 1 1 2 1 2 22Re ( snc sin snc sin )n na c r nr nr r nr nrπ π= = - + 	

	 2 1 2 2 1 1 1 12Im snc cos snc cosn nb c r nr nr r nr nrπ π= - = - 	

Putting 1snc (cos sinc )/x x x xπ π= - , and using r1 + r2 = 1, we can show that 
these expressions for an and bn reduce to those in (4.40) and (4.41).
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4.3.5  Fourier Series of Rectified Sinewaves

We consider first the half-wave rectified waveform, shown in Figure 4.5(a). 
This can be represented as a repetitive form of the first half-cycle of the sine
wave, obtained by gating. Thus, for a sinewave of frequency F and period  
T = 1/F this waveform is given by

	

π
ì üæ ö-ï ï= í ýç ÷è øï ïî þ

1
2

/4
( ) rep sin2 rect

/2
T

t T
u t Ft

T
	

(4.42)

with transform

 

- - +æ ö( ) ( )f F f F fT πδ δ -= Äç ÷è ø1
2

2 /4( ) comb sinc
2 2 2

if T
F

T
U f F e

i 	
(4.43)

Figure 4.5  �Rectified sinewaves. (a) Half-wave rectified sinewave, (b) half-time rectified 
sinewave synthesized using four cosine terms, and (c) full-wave rectified sine
wave synthesized using seven cosine terms.
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(We have used P8b, P3a, R8b, R7a, R5, and R6a.) Performing the convolu-
tions with the d-functions, we obtain
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Writing out the comb function (defined in (2.19)) we obtain (using 
FT = 1)
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Thus, the coefficients cn (putting exp(pi/2) = i) are given by
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Then,
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(4.44)

We note cn is real for n even and imaginary for n odd, so, putting n = 2m,
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Noting sin(2m – 1)p/2 = (–1)m + 1 and sin(2m + 1)p/2 = (–1)m, we obtain

	
2 2

1 1 1 2
2 1 2 1 (4 1)

ma
m m mπ π
- -æ ö= + =ç ÷è ø- + - 	

(4.45)

For n odd we see that (n – 1)/2 and (n + 1)/2 are integers so that (by sinc 
property 1) sinc(n – 1)/2 = sinc(n +1)/2 = 0, except for n = 1, so we have
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	 1 12Im 1/2b c= - =  and bn = 0 (n odd, n > 1)	 (4.46)

We can now write the Fourier series of the half-wave rectified sinewave using 
(4.44), (4.45), and (4.46), as
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¥
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The half-wave rectified waveform of (4.42), generated using only four 
cosine terms is shown in Figure 4.5(b), with slight rounding of the corners at 
the edges of the half-cycles, and a little residual ripple. If we had begun with 
a cosine waveform, and gated a half-cycle centered on t = 0, the expressions 
would have been simpler (with no exponential factors) and, being a sym-
metrical function, there would be only cosine contributions, as the reader 
might confirm.

The full-wave rectified waveform is based on the same gated half-cycle 
as the half-wave, but repeated at intervals T/2, so is given by
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and its spectrum is 
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which leads to
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and we see that the spectrum contains frequencies that are only multiples of 
2F. Putting exp(pi/2) = i and exp(pi) = –1, the coefficients of the complex 
spectrum are
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(4.50)
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Thus,
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(4.51)

and 
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As the coefficients c2n are real, b2n = 0 for all n, and the Fourier series 
for this waveform is
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(4.53)

The full-wave rectified waveform of (4.53) using seven cosine terms is 
shown in Figure 4.5(c). The sharp corners between successive half-cycles are 
slightly rounded, in this approximation.

4.4  Discrete Fourier Transforms

4.4.1  General Discrete Waveform

In Section 4.4, we see how we can use the rules-and-pairs technique to un-
derstand the spectra of discrete time waveforms, leading in particular to the 
DFT and realized in practice in the FFT. The waveforms are finite data sets 
of values taken at specific instants—discrete points in time—and may be 
samples from a known function or may be a set of experimental values, for 
which the underlying, or implicit, function is not known. 

As usual, we need first to express the data as a function of time. As this 
function has nonzero values only at discrete points in the time domain, it is 
represented by d-functions at these points. (Thus, the function is in fact a 
generalized function, as discussed in Section 1.4 in Chapter 1.) Initially we 
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take the most general case where we have N data values sn taken at N instants 
tn, and we write the waveform function as

	 1

( ) ( )
N

n n
n

s t s t tδ
=

= -å
	

(4.54)

The spectrum is given (from P1b, R6a) by 

	 1

( ) exp( 2 )
N

n n
n

S f s iftπ
=

= -å
	

(4.55)

Given the data set {( , ) : 1 to }n ns t n N= , we can evaluate (4.55) for any 
frequency. If the times tn are irregular (in particular, if the intervals are not 
rationally related), then there is no definite structure to S, which is an infinite 
spectrum (i.e., there are no frequency values, positive or negative, beyond 
which the spectrum is zero). In general any finite waveform has an infinite 
spectrum, as shown in Appendix 4A. Furthermore, the spectrum does not 
die away as f ® ±¥, but maintains the same general level, averaged over a 
sufficient interval. Figures 4.6(a) and (b) show an example of a finite discrete 
waveform and its spectrum. (The modulus of the complex spectrum is plot-
ted.) We note that the waveform, consisting of d-functions, has infinite en-
ergy and so also has the spectrum. However, the infinite spectrum would only 
be needed to reconstitute the waveform s perfectly. If we limited the spectrum 
to the frequency range –F/2 to F/2, we see, by taking =¢( ) ( )rect /S f S f f F  ,  
that this gives the waveform ( ) ( ) sinc /s t s t F t T= Ä¢  (putting T = 1/F ), shown 
in Figure 4.6(c). The d-functions are replaced by sinc functions, which could 
be an acceptable approximation if these were narrow enough (i.e., if T, which 
defines their width, were small compared with the separation of the closest 
samples). In this example, F is 15 times the reciprocal of the mean separa-
tion, which is one time unit, so T is one fifteenth the mean separation of the 
samples. If the samples were uniformly spaced this would give a spectrum 
repeating at intervals of one frequency unit. Clearly, the approximation will 
become better as the amount of spectral energy within the gate increases. In 
this case, both the spectrum and the waveform have finite energy. If we took 
a triangular spectral window, with a sinc2 transform, the sidelobe levels would 
be lower. This can be seen by running the program Fig406. We note that the 
power spectrum (or the modulus of the amplitude, as plotted here) will be 
essentially the same wherever the gate is placed; the effect of shifting the gate 
from the frequency origin is to apply a progressive phase factor (by R6b), 
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which will have no substantial effect on the peaks, though the sidelobe details 
will change with the sidelobe patterns from the peaks interfering differently.

Another example of a transform of a discrete function of this kind is 
given in Chapter 8, applied to the case of an irregular linear array of antennas. 
The samples, in this case taken in space rather than in time, are of a finite, or 
gated, sinc function, giving a (nearly) rectangular response in the transform 
domain, near the origin (Figure 8.10(a)). However we see that the response 
is not strictly periodic, because of the irregular spacing of the samples, which 

Figure 4.6  �Spectrum and waveforms of general finite discrete time series. (a) Finite ir-
regular time series, (b) infinite spectrum, and (c) waveform of gated spectrum.
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are roughly regularly spaced in this example (i.e., the elements are slightly dis-
placed randomly form regular positions), with “repetitions” becoming more 
degraded on moving further away from the origin. 

4.4.2  Transform of Regular Time Series

In this case we take the data to be from N samples spaced in time at equal 
intervals t, so, taking the time relative to the first sample, the waveform is 
given by
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(4.56)

The spectrum is given by 
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We see that the exponentials in (4.57) are unchanged on replacing f  by  
f + f, where f = 1/t, so that S( f   ) = S(  f + f) (i.e., S is periodic in the frequency  
domain) at intervals f. It follows, from the orthogonality of the complex exponen-
tial functions over one period, (i.e., exp(2 / )exp( 2 / ) nm

I
inf imf df

φ
π φ π φ φδ- =ò ,  

where dnm is the Kronecker-d ), that

	

1
( )exp(2 )n
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φ
π τ

φ
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(4.58)

where If is an interval of length f, the repetition period. By comparing (4.57) 
and (4.58) with the Fourier series expressions (using complex exponentials) in 
(4.1) through (4.3), we see that these equations represent what may be called 
an inverse Fourier series (finite, in this case). In the case of the Fourier series 
(4.1), we expand a periodic waveform as a series of complex exponentials, the 
spectrum being a set of d-functions whose strengths are the coefficients of the 
series (which may be finite or infinite). In the case of the discrete time series, 
we find that this series gives the coefficients of the expansion of the periodic 
spectrum as a series of complex (negative) exponentials. In the first case, the 
exponentials are functions of time, and in the second case (equation (4.57)) 
they are functions of frequency. These two cases are illustrated diagrammati-
cally in Figure 4.7.
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If we were given a periodic spectrum S (one cycle being sufficient to 
define it) and wanted to find out what time series this spectrum represented, 
our procedure would depend on how S is presented. If it has the form of a 
repeated known function, expressible in terms of functions in the table of 
Fourier transform pairs, then we could use the rules-and-pairs method as 
in Section 4.2 (using the inverse transform). If it were given only as a set of 
values, then one approach would be to carry out the integral in (4.58) nu-
merically, over any interval of one period If. However, a more satisfactory 
alternative is given in the next section. 

4.4.3  Transform of Sampled Periodic Spectrum

In the last section the question arose of how to define a continuous spectrum, 
such as S in (4.58), which is not described by a known function. The only 
obvious solution is to specify it by a set of values taken across the spectrum, 
and most suitably by equally spaced samples. This gives an approximation 
but could, in principle, be made as accurate as required by sampling finely 
enough. If we choose the spectral sampling interval F so that there is an in-
tegral number N of these intervals in one spectral period f, then the samples 
will occur at the same relative points in each period, as illustrated in Figure 
4.8. (See Appendix 4B. It is also shown there that, with this condition, rep 
and comb are commutative.) In this case, we only need these N values to 
represent the spectrum in sampled form.

Figure 4.7  �(a) Fourier series and (b) “inverse” Fourier series (transform of discrete 	
waveform).
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Let S¢ be the sampled form of S, then we have

	 =¢( ) comb ( )FS f S f 	 (4.59)

with inverse transform

	 =¢( ) rep ( )Ts t T s t 	 (4.60)

where T = 1/F. We see that the regularly sampled form of S is actually the 
spectrum of a repeated form of the regular time series s, Figure 4.8(c). We 
also see that the original finite series waveform s(t) is obtained correctly as one 
period of s¢(t)/T.

Putting f = NF, with N an integer, we also find, taking reciprocals, that 
t = T/N, so that there are N time sample intervals in the repetition period T. 
Then, expanding the comb function, (4.59) gives

	
= - = -( ) ( ) ( ) ( )S f S mF f mF S f mFδ δ

¥ ¥
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¢ å å m

m m 	

where Sm = S(mF ) are the strengths of the d-functions in the comb (or sam-
pled) form of S. From (4.57) we have
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Figure 4.8  Discrete waveforms and spectra.
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Using Ft = FT/N = 1/N we have
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(4.61)

As remarked earlier, we only need the N values of Sm within one period 
of S, as these will be the same in other periods. (We see from (4.61) that  
Sm + kN = Sm for all integers k, using exp(2pikn) = 1, with k and n integer.) In 
principle we could take any N successive values of m to define a period of S, 
but it seems most satisfactory to begin at zero frequency, with m = 0.

The inverse transform is given by
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(4.62)

This can be shown by a similar approach or quite easily by the matrix repre-
sentation of Section 4.4.6 in (4.67).

Two comments may be made on (4.61) and (4.62). First, if we prefer to 
number the time and frequency samples as 1 to N, rather than 0 to N – 1, but 
make the first sample correspond to the zero time or zero frequency sample, re-
spectively, then the mn product in the exponentials is replaced by (m – 1)(n – 1). 
Second, if the number of time samples nt in the given data set is less than N, the 
desired number of samples in one spectral period, then we add N – nt zero values 
to make up the number. This is not an arbitrary choice but follows from the 
inverse transform. If the continuous spectrum of the single discrete waveform 
s(t), of length nt samples, is sampled at rate F = f/N, the inverse transform of 
this sampled spectrum gives a repeated waveform, with repetitions at intervals 
of N samples, and hence there must be N – nt zero values in between. 

The derivation of (4.62), other than from the matrix form of the trans-
form and its inverse, is similar to that of (4.61) but a little more complex. We 
provide it here for interest. As the sampled form S ¢ of the spectrum S is also 
periodic, we can put, from (4.58),
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( )exp(2 )n

I
s S f inf df

φ
π τ

φ
=¢ ¢ò

	

where If is a frequency interval of length f. We now substitute for S ¢ us-
ing (4.59), putting Sm for S(mF), taking the interval to include m = 0  
to m = N – 1, and, using the d-function property given in (2.10), 
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exp(2 ) ( ) exp(2 )imf f nF df imnFπ τ δ π τ- =ò  (where the range of integra-
tion includes the d-function, as here) to obtain
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Then, from (4.60), we have, using fT = NFT = N and Ft = FT/N = 1/N 
again,
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and this is (4.62).

4.4.4  Fast Fourier Transform

At first sight it appears in (4.61) that many coefficients (approaching N 2/2) 
are required to give all the Sm from the data values sn. In fact, as exp2pi = 1, 
we could take integer multiples of N from the product mn and replace mn by 
mn mod N. This leaves only N distinct values for the coefficients. However, 
there are still N 2 products of data samples with coefficients in (4.61), which 
may be very large for a DFT of large order (given by N ). Fast DFT algorithms  
(FFTs) take advantage of any available factorization of N to order the mul-
tiplications efficiently to reduce the number required. (In the limit, when N 
is a power of 2 only, say 2k, this is reduced to Nk, a reduction by a factor of 
over 100 when k is 10.)

The MATLAB function fft for the transform of order N gives the values 
of Sm, for m from 0 to N – 1, which shows a whole period beginning at zero 
frequency (the constant, or DC component). However, if it is preferred to 
show the spectrum centered near zero frequency, the program fftshift shifts 
the solution given by fft by half a period of the periodic spectrum to give a 
solution equivalent to a single period centered on zero frequency. Thus the 
first half is moved forward half a period and the second half moved back, to 
give the solution centered on zero. This is illustrated in Figure 4.9. When 
N is even (Figure 4.9(a)) the values of m = 0 to N/2 – 1 are moved ahead of 
the values N/2 to N – 1. These last values, because of the periodicity of the 
spectrum (over N frequency intervals) are the same as the values from – N/2 
to – 1, so we now have values for one period from – N/2 to N/2 – 1, as il-
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lustrated. When N is odd (Figure 4.9(b)) the first element is for the m value  
(N + 1)/2, which is equivalent, on subtracting N, to – (N – 1)/2.

4.4.5  Examples Illustrating the FFT and DFT 

To illustrate these ideas and expressions, in this section we take the case of 
a symmetric triangular pulse with a low-order DFT. The pulse is shown, as 

Figure 4.9  Use of fftshift to center spectrum near zero. (A) N even, and (b) N odd.
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the real time series [0 1 2 3 2 1 0 0 0], in Figure 4.10(a), with its spectrum in 
Figure 4.10 (b). The FFT order is 9, and this is the length of the vectors of 
the time series and the spectral coefficients. First we note that the spectrum 
has the symmetric real part and antisymmetric imaginary part given by a real 

waveform. Also, from (4.61), the FFT gives 
1

0 0

N
nn

S s
-

=
= å , which is seen to 

be 9 in this case. 

Figure 4.10  Triangular pulse and spectrum (FFT order 9).
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If we take the triangular pulse to be centered at time zero, then it would 
extend from m = –3 to +3, as shown in part (c), but the FFT requires one 
period starting at zero, so the time series is [3 2 1 0 0 0 0 1 2], as shown in 
(e). This shows half the pulse centered at zero and half the next repetition of 
the pulse, centered at time sample 9. This real symmetric waveform gives a 
real symmetric spectrum, as expected from R2 and R3. If u(t) = u(–t) then 
U(  f   ) = U(–f   ), and if u(t) = u*(–t) then U(  f   ) = U*(  f   ). The time and fre-
quency sequences plotted in (c) and (d) are given from those of (e) and (f ) 
by the fftshift function or the ifftshift function (so for (c) it is [0 1 2 3 2 1 0 
0 0]).

We could obtain the waveform in (e) from that in (a) by shifting back 
three time samples, given by convolving the waveform with d(t + 3t). From 
P1b and R6a, this multiplies the spectrum by exp(6pift). Putting f = mF, 
and mFt = m/N = m/9, in this case, we find that if we multiply the spectrum 
samples in (b) by exp2mpi/3(m = 0 to 8), we correctly obtain the spectrum 
values shown in (f ).

In Figure 4.10(d) and (f ), we show the transform of the triangular pulse 
shown in (c) or (e) (not in repeated form and not sampled) as the continuous 
curve. As the pulse is given by 3tri(t/3t), its spectrum is 9tsinc2(3ft) (from 
P4, R5), and this is what is plotted as the continuous curve. (The first zero 
of the sinc function is at f = 1/3t = f/3 = NF/3 = 3F, as N = 9 (i.e., at m = 3,  
as seen in the figure). Figure 4.10(d) shows that the FFT (dashed curve) 
does not give exactly the spectrum of the waveform that has been sampled 
(i.e., as the sampled waveform is an approximation, the spectrum is also an 
approximation). The inaccuracy is seen mainly in the tails of the spectrum (in 
the middle of (f ) and at the sides of (d)) and is due to the overlapping of the 
repeated forms of the spectrum of the single pulse. 

The tails of the spectrum are not improved by increasing the order of 
the FFT, as shown in Figure 4.11, where the order is 20. The waveform rep-
etition interval is now 20 samples, with the basic waveform unchanged but 
with more zeros between repetitions, as shown in part (a). (We have chosen 
a sampling interval of 1/2 ms in this case, as a specific example.) The benefit 
of the higher order is only to increase the sampling density of the spectrum. 
In order to improve the approximation of the tails of the FFT spectrum to 
that of a single sampled pulse, we need to increase the pulse sampling rate. 
This represents the pulse more accurately, and in Fourier transform terms 
it increases the spectral repetition period. This is shown in Figure 4.11(b), 
where the sampling time is now ¼ ms, and the match up to the midpoint of 
2 kHz is much better.
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4.4.6  Matrix Representation of DFT

We can express the DFT in a vector-matrix representation, writing (4.61) in 
the form

	 =S Ts	 (4.63)

where -= T
0 1 1[ . . . ]  Ns s ss  is an N-vector containing the input data 

and -= T
0 1 1[ . . . ]NS S SS  contains the output data, the DFT spec-

trum sample values. (The raised suffix T indicates transposition.) The N ´ N  
matrix T represents the transform operation, and has components given, 
from (4.61), by

	 π= - = -exp( 2 / ) ( , 0 to 1)mnt imn N m n N 	 (4.64)
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Figure 4.11  Triangular pulse and spectrum (FFT order 20).
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As noted in Section 4.4.3, if we prefer to label the components of s and S from 
1 to N, then we put exp( 2 ( 1)( 1)/ )mnt i m n Nπ= - - -  with m,n = 1 to N.

Now we note that component mn of the product THT (H indicating 
complex conjugate transpose) is given by
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(4.65)

If n = m we have H( )mm N=T T , but if n ¹ m we put exp2 ( )/i m n Nα π= -  
and then
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after summing the geometric series and noting that exp2 ( ) 1N i m nα π= - = , as 
m – n is integral. Thus,

	
H N=T T I	 (4.66)

where I is the N ´ N identity matrix. As T is symmetric (tmn = tnm) we have  
TH = T* (with * representing complex conjugate), so from (4.66) we have 
NT–1= TH = T*, and so the inverse DFT is given, from (4.63) by

	
1 * N-= =s T S T S 	 (4.67)

or, in the form given in (4.62),
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(n = 0 to N - 1)

	

The conjugate relation between the coefficients in the forward and inverse 
DFT parallels that of the Fourier transform definitions in (1.4) and (1.3).

From the vector-matrix representation, we can obtain directly the power 
relation for repetitive, sampled waveforms. From (4.63) we have
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(4.68)

This result, apparently asymmetric between time and frequency components, 
can easily be confirmed for the MATLAB implementation. We also note 
that, if 2

ms  is the power in a line defined by a d-function of strength sm (see 

Section 4.2.2), then 
1

2

0

N

m
m

s
-

=
å  represents the power in the waveform. Tak-

ing the power in the spectrum S to be the mean square value, this is given by 

averaging over one period, 
φ

φò 2
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I
S f df . Equating the powers of the wave-

form and spectrum, and using (4.68), we have 
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(where If is an interval of one period, as before). This is very similar to the 
result in (4.12); under appropriate conditions, the integral of a continuous 
function can be replaced by a sum of regular samples of the function multi-
plied by the sampling interval.

4.4.7  Efficient Convolution Using the FFT

We can perform the convolution of two finite energy waveforms numeri-
cally by sampling these waveforms at suitable resolution and carrying out the 
procedure described in Section 2.2 (i.e., slide one waveform in time-reversed 
form past the other, multiply the two waveforms point by point, and sum the 
result. This is an approximation in the same way as numerical integration is 
an approximation, but the error can be made as low as desired by fine enough 
sampling. As a simple example, we take two waveforms with samples [1 3 2] 
and [1 3 5 6 4 2]. These arrays give the nonzero samples; the waveforms are 
implicitly infinite, with all the other samples having value zero. Taking the 
smaller sequence as the sliding waveform, and reversing it to become [2 3 1], 
we see that the first convolved value is given by 1 ́  1 = 1, the second by 3 ́  1 +  
1 ´ 3 = 6, and so on, to give [1 6 16 27 32 26 14 4]. If there are n1 values in 
the first sequence and n2 in the second, the length of the result of the convolu
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tion is n1 + n2 – 1 and the total number of (nonzero) multiplications required 
is n1n2. (This is seen most easily by noting that each value in one sequence 
multiplies each of the values in the other sequence at some point.) While 
the computational load is trivial in this example, if we have two substantial 
sequences, of length 10000, for example, the number of multiplications be-
comes 108, which is more significant.

To reduce the computational work required we use rule 7b, the fact that 
the convolution of two waveforms, u and v, has a spectrum that is the prod-
uct of the spectra of the waveforms. Thus, we transform the two waveforms, 
using the efficient FFT, multiply their spectra, U and V, point by point, and 
inverse transform the result UV, to obtain the result uÄv. However, we must 
consider the orders of the FFT and its inverse (IFFT) required. First, the 
waveforms used must be of the same length, so that the results of their FFTs 
are the same length and can be multiplied together. Second, we note that the 
length, n12 = n1 + n2 – 1, of the convolved sequence w = uÄv is greater than 
that of u or v. Thus, the spectrum of w must be of length at least n12 to avoid 
overlapping, or aliasing, as we know from Section 4.4.3 that the discrete 
spectrum of length N transforms to a waveform periodic over N samples. In 
the earlier example, where n1 = 3 and n2 = 6, we need transforms of length 
at least 8, so we choose sequences s1 = [1 3 2 0 0 0 0 0] and s2 = [1 3 5 6 4 
2 0 0]. Using the following MATLAB statements, S1 = fft(s1); S2 = fft(s2); 
S12 = S1.*S2; s12 = ifft(S12), we obtain the result [1.0000 6.0000 16.0000 
27.0000 32.0000 26.0000 14.0000 4.0000], agreeing with the previous re-
sult obtained directly. If we use FFTs of order 9, by adding another sample 
of zero to each of s1 and s2, we have the same result, except for another zero 
in the result sequence, and some added values of ±0.0000i, indicating the 
existence of very small errors due to finite word lengths in the arithmetic.

In order to obtain maximum benefit from this approach, it is probably 
best to arrange the FFT orders to be a power of 2. Thus, we expand the se-
quences (by adding samples of zero) from lengths n1 and n2 to length N = 2m, 
where m is the lowest power of 2 such that N ³ (n1 + n2 – 1). We now have 
to carry out three transforms each of mN multiplications, plus a product of 
the N-point spectra, requiring N multiplications. Overall we have N(3m + 1) 
multiplications, compared with n1n2, performing the convolution directly. If 
we had n1 = n2 = 2m–1 – that is, the lengths of the sequences for convolution 
are equal, and a power of 2, then n1 + n2 = 2m = N, so the condition for N is 
satisfied, and the direct convolution requires n1n2 = 22m-2 = N 2/4 multiplica-
tions. Using the three Fourier transforms, the saving, in this aspect of the 
computation, is by a factor of N/4(3m+1), or 2m–2/(3m+1). If we take input 
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sequences of length 8192, so that m = 14, then this factor is over 95. For 
sequences 8 times longer, with m = 17, the factor is 630.

If we carry out the same procedure using discrete transforms of the 
same length as the given series (with one augmented with zeros, if necessary) 
we obtain the circular (or periodic) convolution of the series. Thus if we take 
s1 = [1 3 2 0 0 0] and s2 = [1 3 5 6 4 2], form S1, S2 and then S12 and s12, 
we obtain the result [15.0000 10.0000 16.0000 27.0000 32.0000 26.0000]. 
This is what would be given if we shortened the full convolution given by the 
8-point transform by taking the last two terms (14 and 4) and adding them 
to the first two (1 and 6). This is because the 6-point sampling of the product 
spectrum gives a waveform repetitive at six time intervals, so the result of 
the linear convolution of the two series will overlap itself. This result is also 
obtainable directly in the time domain, by convolving the series [1 3 2] with 
a repetitive form of s2 and taking one period of the result.

4.5  Summary

We have looked at three aspects of periodic waveforms in this chapter using 
the rules-and-pairs technique. In Section 4.2, having noted that power, rather 
than energy, is the appropriate measure for these waveforms, we derived ex-
pressions for the power of periodic waveforms corresponding to the energy 
expression for finite energy waveforms given by Parseval’s Theorem. We also 
obtained a corresponding result for a sampled finite energy waveform. The 
result for sampled, periodic functions, as used for the FFT, is obtained after 
finding the relation between the DFT spectrum to the input data.

Next we considered performing Fourier series analysis on periodic 
waveforms using the rules-and-pairs method. In its basic form this is quite 
straightforward, but it gives the function as a sum of complex exponential 
functions, which may not be the most convenient form. Fourier series are 
very often required for the case of real functions, expressing these as sums 
of real functions, sines, and cosines, rather than complex exponentials. In 
Section 4.3, we showed how to obtain the Fourier series coefficients of real 
periodic functions for this case, without explicit integration, and illustrated 
the method by analyzing square waves, sawtooth waveforms, triangular wave-
forms, and rectified sinewaves.

The third topic covered was that of the discrete Fourier transform, the 
Fourier transform of discrete waveforms. In the general case the transform is 
a continuous function, and in the case of a regularly sampled waveform it is 
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periodic. If we require a sampled spectrum, this is seen to be the transform 
of a periodic waveform, and this is the case for the FFT. The DFT theory 
is given, using the rules and pairs, and the relation between the spectrum 
sample values and the input data samples, is derived. Some results used in the 
theory are justified in an appendix. The use of the rules and pairs, by keeping 
attention on the waveforms, aided by figures for illustration, may help clarify 
the ideas used. 

Appendix 4A: Spectrum of Time-Limited Waveform

We define a time-limited waveform p(t) as one that has no energy outside 
some finite time interval. Thus, for this waveform there is some T such that p 
is zero outside the interval [–T/2,T/2]. For such a waveform, there is no over-
lapping when the waveform is repeated at intervals T (or greater). It would 
be desirable if the spectrum were similarly limited (in frequency, in this case) 
because if the spectrum P(  f   ) is required but only repfP(  f   ) is available, then 
one period of repfP(  f   ) contains P(  f   ) precisely if there is no overlapping, 
but not otherwise. Unfortunately a time-limited waveform does not have a 
frequency-limited spectrum—there is no f such that the spectrum has no en
ergy outside [–f/2, f/2]. We can show this by writing the waveform identity

	 ( ) rect( / ) ( )p t t T p t= 	

which transforms to the spectral identity

	
( )¥

-¥
= Ä = - ¢ ¢ ¢ò( ) sinc( ) ( ) sinc ( ) ( )P f T f T P f f f T P f df 	 (4A.1)

From the right-hand side of this equation we see that spectral com-
ponent P(  f ¢)df at frequency f ¢ is spread over the whole frequency range, 
contributing P(  f  ¢)dfsinc(  f – f  ¢)T to the total convolution integral. Although 
the sinc function decreases in magnitude as f ® ±¥, there is no frequency 
beyond which there is no energy, and, although there may be single points 
at which the value of P is zero, there cannot be an interval over which P (on 
the left of (4A.1)) is zero without P (on the right) being zero everywhere. We 
conclude that a time-limited waveform has a frequency-unlimited spectrum 
which, when repeated, will always have some degree of overlap (or aliasing). 
However, as the spectrum always dies away at large enough frequency values 
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(positive and negative) there will be frequencies f such that there can be neg-
ligible energy outside ±f/2, and negligible overlap, for practical purposes.

Appendix 4B: Constraint on Repetition Period

Let the given time series, with sampling interval t, be given by combt  p(t) 
where p is the continuous function that has been sampled. (In the case of 
experimental data, p is an unknown, implicit function.) Then we define 
u as the waveform obtained by repeating this series at intervals T, so that 

( )( ) rep comb ( )Tu t p tτ= . The waveform, where T = (m + a)t, with m an 
integer and 0 < a < 1, is illustrated in Figure 4B.1(a). We see that u is not 
a regularly sampled form of repT( p) in this case. The spectrum of u is given 
by ( )( ) comb rep ( )FU f F P fφφ=  (where F = 1/T and f = 1/t), illustrated 
in Figure 4B.1(b). In this case we see that, though repfP is periodic, U is not 
periodic as the lines within the successive repetitions of P occur at differ-
ent points in the waveform. (Strictly speaking, if a were a rational fraction, 
then U would be periodic, though not at intervals F.) We note, taking the 
reciprocal of the relation between T and t, that f = (m + a)F. If we want 
the spectrum to be really periodic, so that all intervals of length f contain the 
same set of d - functions, then we must have a = 0 (i.e., the period of the 
spectrum must be an integer times the line spacing). Similarly, the period of 

Figure 4B.1  �Effect of nonintegral ratio of period to sample interval. (a) repT (combT p(t)) not 
a comb function, and (b) combφ (repF (p(f )) not a rep function.
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the waveform must be (the same) integer times the sampling interval so that 
the samples in each repetition lie on a single comb sequence.

If the period of the rep operator is an integer multiple of the sampling 
interval of the time series combt p(t) then we obtain the same result whether 
we repeat the sampled waveform or sample the repeated waveform. (This is 
the case whether or not the repeated waveforms overlap.) Thus we have

	 rep (comb ( )) comb (rep ( ))T Tp t p tτ τ= 	

This is not the case if T/t is not integral, as shown in Figure 4B.1(a). On 
expanding the comb and rep functions, we see that the coefficient of d(t – kt) 
(the line at t = kt) on each side of the equation is given (within a constant) 
by

	

( ) ( ) ( )

( )

 . . .  ( ) ( ) ( ) ( 2 )

 . . . , or ( )
n

p k m p k p k m p k m

p k nm

τ τ τ τ

τ¥
=-¥

+ + + + - + -

+ +å 	

where T = mt.
Thus, if (and only if) the rep operator repeats at an interval that is an 

integer times the sampling interval of a comb function, then rep and comb 
are commutative.
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5
Sampling Theory

5.1  Introduction

In this chapter, we use the rules-and-pairs notation and technique to derive 
several sampling theorem results, very concisely in some cases. In fact, the 
wideband (or baseband) sampling theorem and the Hilbert sampling theorem 
for narrowband (or RF and IF) waveforms are obtained here following the 
derivations of Woodward [1]. Two other narrowband sampling techniques, 
uniform sampling and quadrature sampling, have been analyzed by Brown [2], 
but these results have been obtained here much more easily using Woodward’s 
approach and have been extended to show what sampling rates are acceptable, 
rather than just giving the minimum sampling rates presented by Brown.

Woodward’s technique is to express the spectrum U of the given wave-
form u in a repetitive form, then gate it to obtain the spectrum again. The 
Fourier transform of the resulting identity shows that the waveform can be 
expressed as a set of impulses of strength equal to samples of the waveform, 
suitable interpolated. This is the converse of repeating a waveform to obtain a 
line spectrum: if a waveform is repeated at intervals T, a spectrum is obtained 
consisting of lines (δ-functions in the frequency domain) at intervals F = 1/T, 
with envelope U, the spectrum of u. Conversely if a spectrum U is repeated 
at intervals F, we obtain a waveform of impulses (δ‑functions in the time do-
main) at intervals T = 1/F with envelope u, the (inverse) transform of U. The 
problem in this case is to express the spectrum precisely as a gated repetitive 
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form of itself. In general, this can only be done by specifying that U should 
have no power outside a certain frequency interval, and that there should 
be no overlapping when U is repeated. (In one case, quadrature sampling 
overlapping is allowed, provided a condition is met, but this is for the case 
of a strictly band-limited spectrum.) This finite bandwidth condition is not 
a completely realizable one—it corresponds with an infinite waveform (see 
Appendix 4A)—but can be interpreted as the condition that U should have 
negligible power (rather than no power) outside the given band. The values 
that are considered negligible will depend on the system and are not analyzed 
here. However, the approach used here can be used to determine, or at least 
to estimate, the effect of spectral overlap, which is in fact aliasing. 

Brown’s approach is to express the waveform u as an expansion in terms 
of orthogonal time functions. In fact these orthogonal functions are just the 
set of displaced interpolating functions of the Woodward approach, the in-
terpolating function being the Fourier transform of the spectral gating func-
tion. It is necessary to show that this set of functions, which varies with the 
sampling technique used, is complete. This method is rather complicated 
compared with Woodward’s, which can use the standard results for Fourier 
series using sets of complex exponential, or trigonometrical, functions. Fur-
thermore, the Woodward approach seems generally easier to understand and 
so to modify or apply to other possible sampling methods. 

5.2  Basic Technique

First, we present the basic technique that is used in subsequent sections to 
derive the sampling theory results. Because a regularly sampled waveform, 
which is the ultimate target, has a repetitive spectrum, we repeat the spec-
trum U of the given waveform u at frequency intervals F, then gate (or filter) 
this spectrum to obtain U again. This identity is then Fourier transformed 
to produce an identity between the waveform and an interpolated sampled 
form of itself. Because this is an identity, it means that all the information in 
the original waveform u is contained in the sampled form. (The definition of 
the interpolating function is also needed if it is required to reconstitute the 
analogue waveform u.) In symbols, we write

	 ( )( ) rep ( ) ( )FU f U f G f= 	 (5.1)

	 1/( ) (1/ )comb ( ) ( )Fu t F u t g t= Ä 	 (5.2)
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where G(  f   ) is the spectral gating function and g(t) is its transform (i.e., the 
impulse response of a filter with frequency response G ). 

The comb function consists of a set of impulse responses (δ-functions) 
at intervals T = 1/F of strength equal to the value of the function u at the 
instant of the impulse:

	 combT u(t) = Su(nT  )d (t - nT ) 	 (5.3)

The convolution of a function g with a δ-function simply transfers the origin 
of g to the position of the δ-function. Thus, equations (5.2) and (5.3) give, 
with T = 1/F, 

	 u(t) = TcombTu(t)Äg (t) = T Su(nT )d(t - nT )Ä g(t)

	 = T  Su(nT )g(t - nT )	 (5.4)

This makes clear the identity between u and its sampled form, when correctly 
interpolated by the function g with the scaling factor T.

In the following sections of this chapter, the starting point is equa-
tion (5.1), choosing the appropriate sampling frequency F and spectral gat-
ing function G, in the different cases. The basic problem is to express U in 
terms of a gated repetitive form of itself, where the repetition frequency F is 
chosen so that no spectral overlapping occurs. We are primarily concerned 
with determining F, which is the required sampling rate (to retain all the 
information and reconstitute the signal if required), and are less concerned 
with the gating function G. Nevertheless G must be accurately defined to es-
tablish the identity (5.1). The transform of G, the interpolating function g, is 
obtained on transforming the waveform expressed in its gated form and could 
be used to reconstitute the waveform from its sampled form, in principle, but 
this is not usually required. In Sections 5.3 and 5.4 (wideband and uniform 
sampling), we simply repeat the spectrum of u. In Section 5.5 (Hilbert sam-
pling), we also include the spectrum of û, the Hilbert transform of u, and, in 
Section 5.6 (quadrature sampling), we include a quarter wave delayed form 
of u. The sampling techniques of Sections 5.4 and 5.6 are for narrowband 
waveforms—signals on a carrier.

5.3  Wideband Sampling

By a wideband waveform u, we mean here a waveform containing energy 
at all frequencies from zero up to some maximum W beyond which there 
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is no spectral energy. A real waveform has a complex spectrum U that is 
conjugate symmetric about zero, so real waveforms of interest have spectra 
within the interval [−W,W] (Figure 5.1). However, the analysis is not limited 
to real waveforms. If the waveform is complex, we still take the spectrum to 
have no energy outside this interval (i.e., W is the largest positive or negative 
frequency). If we repeat this spectrum at intervals 2W it will not overlap, as 
there is no spectral energy outside this interval, so we can write the identity

	 U( f   ) = rep2WU( f   )rect( f  /2W  )	 (5.5)

where we have equated the spectrum to a gated portion of the repeated form 
of the spectrum itself (Figure 5.1) Taking the Fourier transform we obtain

	 u(t) = comb1/2Wu(t)Äsinc2Wt	 (5.6)

This is the particular form of (5.2) for this sampling case. This equation states 
that u is equal to itself sampled at a rate of 2W (i.e., at intervals 1/2W  ) and 
correctly interpolated; the interpolating function in this case is sinc2Wt. The 
equivalent form of (5.4) is

	 u(t) = Su(nT )sinc(t - nT )	 (5.7)

and the equivalence of the waveform to its interpolated sampled form is il-
lustrated in Figure 5.2.

It is clear (from Figure 5.1, for example) that if we repeat the spectrum 
at intervals 2W′, where W′ > W, we still obtain the spectrum U on gating 

Figure 5.1  Gated repeated waveform.
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with either 2W or 2W′ bandwidth. Thus, any sampling rate greater than 2W 
is also adequate.

Thus, we have the wideband sampling theorem:

If a real waveform has no spectral energy above a maximum frequency 
W, then all the information in the waveform is retained by sampling it 
at a rate 2W (or higher).

In principle, reconstituting the waveform in this case is achieved by 
driving a rectangular bandwidth low pass filter with impulses of strength 
proportional to the sample values and at the sample times. In practice, an 
approximation to u could be formed easily as a boxcar waveform from the 
sample values (simply holding the value u(nT  ) constant over the interval 
[nT,(n + 1)T  ). Smoothing this with a low pass filter would give a better ap-
proximation to u.

One reason for specifying real waveforms in the statement of the theo-
rem is that complex waveforms do not have symmetric spectra and may have 
different maximum values of positive and negative frequencies. We could 
omit “real” and replace W by |W| if required. However, of particular interest 
is the case of the one-sided spectrum of positive frequencies only. This is the 
Hilbert sampling case, discussed in Section 4.5.

Figure 5.2  Sampled waveform with interpolating functions.
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5.4  Uniform Sampling

5.4.1  Minimum Sampling Rate

We define a real narrowband (or IF) waveform as one that has negligible 
power outside a frequency band W centered on a carrier frequency f0, where 
W/2 < f0. The complex spectrum of a real IF waveform consists of two bands 
centered at ±f0. We label these U+ and U− for convenience, as shown in Figure 
5.3. For such a waveform, we find that it is not necessary to sample at twice 
the maximum frequency (i.e., at 2f0 + W here) as in the case of a wideband 
waveform, but at approximately twice the bandwidth.

We initially restrict W so that the upper edge of the signal band fu is 
an integer multiple of W (i.e., fu = f0 + W/2 = kW for k integral). The lower 
edge of the band is then at (k – 1)W. The spectrum can now be repeated at 
intervals 2W without overlap as 2f0 = (2k – 1)W, so a displacement of 2kW or 
2(k – 1)W moves the spectral band U−, centered at –f0, adjacent to the band 
U+ at f0 without overlapping it (Figure 5.4). Thus we can write

	 0 0
2

( ) ( )
( ) rep ( ) rect rectW

f f f f
U f U f

W W
- +ì üæ ö æ ö= +í ýç ÷ ç ÷è ø è øî þ

	 (5.8)

again representing U as a gated repeated form of itself. The transform of this 
equation is

	 ( )0 02 2
1/2

1
( ) comb ( ) sinc

2
if t if t

Wu t u t W Wt e e
W

π π-= Ä + 	 (5.9)

Thus, u is equal to itself sampled at a rate 2W and interpolated by the func-
tion sincWtcos(2πf0t), which is the impulse response of an ideal rectangular 
bandpass filter of bandwidth W centered at frequency f0.

We now remove the condition relating f0 and W. We note that a spec-
trum within a band (fu − W, fu) is also within the band (fu − W′, fu) if W′ ³ W. 

Figure 5.3  Narrowband spectrum.
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Thus, if W does not satisfy the condition fu = kW (k integral), we choose the 
smallest W′ > W that does satisfy it. More specifically, if fu = (k + α)W, where 
0 £ α < 1, we choose W′ so that fu = kW′, and we can write k = [fu/W], where 
[x] means the largest integer contained in x. Then repeating the spectrum at 
intervals 2W′ again produces a nonoverlapping spectrum (Figure 5.5), but 
this time with some gaps (of size 2(W′ − W  )) due to the difference between 
W′ and W. 

It is clear that to regain U from the repeated form of the spectrum 
shown in Figure 5.5 it is only necessary to gate with the same gating func-
tion as before (given in (5.8)—gates of width W centered at +f0 and −f0) 
leading to the same interpolating function, sincWtcos(2πf0t). Brown [2] in 
effect uses the more complicated interpolating function sinc(2W′t)cos2πf0′t, 
where f0′ = f0 − (W′ − W  )/2. This corresponds to using the gating function 
rect((f − f0′  )/W′  ), which will also gate out U as required (Figure 5.6) but is 
more complicated than necessary.

5.4.2  General Sampling Rate

The minimum sampling rate 2fu/k, found in the previous section, is such that 
the band U−  shifted by 2kW′ is just above U+ when the repetitive spectrum is 
formed (Figure 5.5). If W′ is increased above this value, this band will move 
up in frequency, and so will the band U−, shifted by 2(k − 1)W′, which will 

Figure 5.4  Allowed spectral shifts.

Figure 5.5  rep2WU(f ) near +f0.



118	 Fourier Transforms in Radar and Signal Processing

eventually start to overlap U+. This will define a (local) maximum allowed 
sampling rate, and this occurs when 2(k – 1)W′ = 2fl, where fl is the frequency 
at the lower edge of the signal band (Figure 5.7). Thus, the allowed sampling 
rate 2W′ ranges from a minimum value 2fu/k to a maximum 2fl/(k – 1). As k 
is defined here by fu = (k + α)W, we also have fl   = fu – W = (k – 1 + α)W, and  
we see that the range of allowed sampling rates 2W′ is given by

2fu/k = 2(k + a)W/k £ 2W ¢ £ 2(k - 1 + a)W/(k - 1) = 2fl/(k - 1)	 (5.10)

It is convenient to define a relative sampling rate r as the actual rate divided 
by the minimum value possible (to retain all the signal data) 2W, so that the 
allowed relative rate 2W′/2W becomes

	 (k + a)/k £ r £ (k - 1 + a)/(k - 1)	 (5.11)

or

	 1 + a/k £ r £ 1 + a/(k - 1)	 (5.12)

If the sampling rate is increased above the “maximum” 2fl/(k − 1), we 
see from Figure 5.7 that U− will overlap U+ until the rate rises to 2fu/(k − 1) 
when we reach a new local minimum value for the allowed sampling rate. 
The rate can now be increased to a new local maximum 2fl/(k − 2) before 

Figure 5.6  Selecting U(f ).

Figure 5.7  Maximum sampling rate.
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overlap starts again. In general, we see that allowed relative sampling rates 
are given by

	 (k + a)/n £ r £ (k - 1 + a)/(n - 1)   (n = k, k -1, . . . ,1)	 (5.13)

In the n = 1 case, we only have a minimum rate; the maximum rate in this 
case is unbounded. Putting n = k gives the absolute minimum rate, 1 + α/k. 
The allowed relative sampling rates are given in the shaded regions of Figure 
5.8 as a (multivalued) function of the center frequency normalized to the 
bandwidth. (We note f0 = fu – W/2 = (k + α – ½)W, so its minimum normal-
ized value is ½ , when k = 1 and α = 0.)

We note from Figure 5.8 that the lowest range of allowed rates becomes 
very narrow at high values of f0/W. This indicates that the sampling rate 
should be carefully chosen in this case, and perhaps should be synchronized 
to some frequency in the signal band. The minimum rate is in fact defined by 
fu, but there is no actual signal power here (from the definition of W  ) so it 
would be more convenient to use f0. The allowed band of relative rates, from 
(5.12), is between 1 + α/k and 1 + α/(k − 1), so 1 + α/(k − ½) would be near the  
mean of these. The actual rate, with this choice, is thus 2W(k + α − ½)/(k − ½) =  
2f0/(k − ½). This rate is indicated by the dashed lines and is very close to the 
minimum rate for higher values of f0/W (e.g., above 3½).
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Figure 5.8  Relative sampling rates (uniform sampling).
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We note that if f0/W = ½ we have effectively a wideband waveform of 
positive frequency bandwidth W (see Figure 5.3), and with positive frequen-
cies extending from 0 to W. The minimum uniform sampling rate in this 
case is 2W (see Figure 5.8), which agrees with the result in Section 5.3 for a 
wideband waveform. We also note that the minimum rate is substantially dif-
ferent from 2W (when r = 1) only for large fractional bandwidths (W/f0 large 
and so f0/W small). For small fractional bandwidths of, for example, a few 
percent, which is often the case for radio and radar signals, whether at high 
frequency (HF), very high frequency (VHF), ultra-high frequency (UHF), or 
microwave frequency, the correct rate will be very close to 2W, and setting it 
actually at 2W will generally give negligible degradation.

Finally, we state a simplified form of the uniform sampling theorem for 
narrowband waveforms, which is not as neatly defined as for the wideband 
case:

If a real waveform has no spectral energy outside a frequency band of 
width W centered on a carrier of frequency f0, then all the information 
in the waveform is retained by sampling it at a rate 2rW, where r is given 
in (5.13). (k and α in (5.13) are given by k + α = f0/W + ½, k integral 
and 0 £ α < 1; k is the largest integer in f0/W + ½).

We note that for small fractional bandwidths, we can sample at rate 
2f0/(k – ½), synchronizing to the center frequency, and this is very close to 
optimum.

5.5  Hilbert Sampling  

Given a real waveform u, the complex waveform v = u + iû has a spectrum 
consisting of positive frequency components only, where û is the Hilbert 
transform of u, defined in Appendix 5A. (In effect, the Hilbert transform ap-
plies a wideband 90° phase shift, as shown in this appendix.) For narrowband 
waveforms, a 3-dB coupled line directional coupler is a very good approxima-
tion to a Hilbert transformer, which generates û from u. The two outputs of 
such a coupler are a Hilbert transform pair and may be considered to form 
a complex waveform, if the rules for complex arithmetic are observed when 
processing this two-channel waveform.

If W is the width of the bands, centered on −f0 and f0, outside which 
U has negligible power, then we can see that V is within a band of width W, 
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centered on +f0 only, and so can be repeated at intervals W without overlap-
ping (Figure 5.9).

Thus, we can write the identity

	 ( ) ( )0( ) rep ( ) rect ( )/WV f V f f f W= - 	 (5.14)

Performing the inverse Fourier transform using P3b, R8a, R6b, and R5, we 
obtain

	 1/ 0( ) (1/ )comb ( ) ( sinc exp2 )Wv t W v t W Wt if tπ= Ä 	 (5.15)

Now u is the real part of v, so taking the real part of both sides we obtain

	 π

π

= Ä

- Ä

1/ 0

1/ 0

( ) comb ( ) (sinc cos2 )

ˆcomb ( ) (sinc sin2 )

W

W

u t u t Wt f t

u t Wt f t

	
(5.16)

We see that u is equal to a combination of samples of u and û ap-
propriately interpolated, the samples being taken at intervals 1/W (i.e., at 
a rate W  ). We also note that by taking the imaginary part of v from (5.15) 
we obtain the sampled form of û. If we repeat the spectrum at intervals W′ > 
W, corresponding to sampling at the rate W′, we still have a nonoverlapping 
spectrum. This could be gated with a rectangular window of any width from 
W to W′ to obtain V again. Thus, we obtain the Hilbert sampling theorem, 
which is more simply stated than the uniform sampling theorem, for the 
same type of waveform:

If a real waveform u has no spectral energy outside a frequency band of 
width W centered on a carrier of frequency f0, then all the information 
in the waveform is retained by sampling it and its Hilbert transform û 
at a rate W (or higher). (The complex samples, with real and imaginary 
parts the samples of u and û, respectively, are of the analytic waveform 

Figure 5.9  repWV(f ) near +f0.
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corresponding to u. This has a spectrum of positive frequencies only, the 
positive side of the spectrum of u.)

We note that the sampling rate is independent of f0, unlike the case for 
uniform sampling or quadrature sampling (an approximation to Hilbert sam-
pling, described in Section 5.6). As pointed out by Woodward, a real waveform 
of duration T and bandwidth W requires (as a minimum) 2WT real values  
to specify it completely. Either we take real samples at a rate 2W (as given by 
wideband sampling, or as the minimum rate for uniform or quadrature sam-
pling) or complex samples at the rate W (each containing two real values, in 
the real and imaginary parts) in the case of Hilbert sampling. The waveform 
can be said to require 2WT degrees of freedom for its specification.

5.6  Quadrature Sampling

5.6.1  Basic Analysis

If it is not convenient or practical to use a quadrature coupler, or any other 
method, to produce the Hilbert transform of a narrowband waveform, an 
approximation to the transformed waveform can be obtained by delaying 
the signal by a quarter cycle of its carrier frequency. This follows from the 
fact that the Hilbert transform is equivalent to a delay of π/2 radians (for all 
frequency components, as shown in Appendix 5.1) so the quarter cycle delay 
will be correct at the center frequency and nearly so for frequencies close to it. 
The smaller the fractional bandwidth, the better this approximation becomes. 
As this is an approximation to the Hilbert transform, it follows that sampling 
at the rate W (the Hilbert sampling rate) will not, in general, sample the 
waveform adequately to retain all the information contained in it. However, 
we will see that the method will in fact sample correctly, by compensating for 
the phase variation, but at the cost, compared with Hilbert sampling, of re-
quiring an increased sampling rate, which depends on the ratio of bandwidth 
to center frequency (similarly to the case of uniform sampling).

If u(t) is the basic waveform, with spectrum U(f  ), then a delayed ver-
sion u(t − τ) has spectrum U(f  )exp(−2pifτ). If we repeat the spectrum of u at 
intervals W, corresponding to sampling at the rate W, we will obtain an over-
lapping spectrum which, when gated, is not equal to U in general. However, 
a suitable combination of the repeated spectra of u and its delayed version will 
give U after gating. We start by imposing the condition 2f0 = kW, where k is 
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an integer, so that there is complete overlap of the two parts of the spectrum 
of u and also of the two parts of the spectrum of its delayed version, when 
repeated (Figure 5.10).

The appropriate identity for U is

	 U(  f   ) = ½{repWU(  f   ) + exp(2pift)repW [U(  f   )exp(-2pif t)]}

	                          ´{rect(  f - f0)/W + rect(  f + f0)/W}	 (5.17)

if τ is correctly chosen. (We note that if the delay is ¼ cycle at the center fre-
quency, τ = 1/4f0, then U(  f 0)exp(-2pif0τ) is the 90° shifted, or Hilbert trans-
form, component.) To check the identity in (5.17), we consider the output 
of the positive frequency spectral gate—for frequencies in the range f0-W/2 <  
f < f0 + W/2. In this interval we have, as there is overlap of the negative fre-
quency part of the spectrum, moved up by 2f0, or 2kW, for some integer k,

½{U(  f  ) + U(  f  - 2f0) + exp(2p if  t )[U(  f  )exp(-2p if  t ) + U(  f -2f0)
´ exp(-2p i(   f - 2f0)t )]} = U(  f  ) + ½U(  f  - 2f0){1 + exp(4p if0t )} 

	 (  f0 – W/2 < f  < f0 + W/2)	 (5.18)

This is simply U(  f  ), as required, if we choose τ such that 4f0τ = 1, or, 
more generally, if 4f0τ = 2m + 1, where m is an integer. The same condition 
results if we consider the output of the negative frequency gate—we simply 
replace f0 by –f0 throughout. Thus, the required delay is seen to be an odd 
number of quarter wavelengths of the carrier, or center frequency, f0 (i.e., one 
quarter cycle in the simplest case). Taking the (inverse) Fourier transform of 
the identity for U(  f  ) in (5.17) we have

u(t) = ½{(1/W  )comb1/W u(t) + d(t + t)Ä(1/W  )comb1/W u(t – τ)}Ä2Wφ(t)

	         = comb1/W u(t)Äφ(t) + comb1/W u(t – τ)Äφ(t + τ)	 (5.19)

Figure 5.10  Basic quadrature sampling.
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where φ is the interpolating function. This is obtained from the (inverse) 
Fourier transform of the spectral gating function Φ, defined by

	 2WΦ(  f  ) = rect[(  f  − f0)/W  ] + rect[(  f  + f0)/W  ]	 (5.20)

Thus,

	 2Wφ(t) = Wsinc(Wt)[exp(2πif0t) + exp(−2πif0t)]

or

	 φ(t) = sinc(Wt)cos(2πf0t)	 (5.21)

This interpolating function also appears in the uniform sampling case 
(see (5.9)) and the Hilbert sampling case (see (5.16)). Equation (5.19) states 
that the real waveform u is equal to the sum of the waveform obtained by 
sampling u at intervals 1/W (i.e., at rate W  ) and interpolating with the func-
tion φ and the waveform obtained by sampling a quarter-wave delayed ver-
sion of u and interpolating with a quarter-wave advanced version of φ. 

To remove the condition relating W and f0, we choose W′ ³ W such 
that 2f0 = kW′, where k = [2f0/W  ], the largest integer in 2f0/W. We then re-
peat the spectrum at intervals W′, which corresponds to sampling at the rate 
W′, but we can keep the same spectral gating function and hence the same 
interpolating function. The minimum required sampling rate, relative to the 
minimum possible rate, equal to the bandwidth W, is r = W′/W = 1 + α/k if 
2f0/W = k + α. This minimum rate is plotted in Figure 5.11, and this is the 
rate given by Brown [2]. 

If W′ is increased to higher values such that 2f0 = nW′ for n integral, 
n < k, we again obtain sampling rates which will retain the waveform infor-
mation. These are shown by the dashed lines in Figure 5.11. The required 
sampling frequency could be obtained in practice by synchronizing W′ to a 
submultiple of 2f0 (ideally the kth, for the minimum rate).

5.6.2  General Sampling Rate

Unlike the uniform sampling case, the required sampling rates determined so 
far are precise (Figure 5.11) instead of within bands (as in Figure 5.8). This 
is because the delay has been chosen to be a quarter cycle of f0 (or an odd 
number of quarter cycles). In fact, on replacing 2f0 by kW′ in (5.18), where 
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kW′ is the frequency shift that takes U−, centered at −f0, onto U+, centered at 
+f0, we see that the condition to be satisfied is 2kW′τ = 2m + 1 (m an integer). 
If we relate the delay τ to the sampling rate W′ instead of directly to f0, then 
we have more freedom of choice of W′. In Figure 5.12(a) we see part of the 
function repWU−, the signal band at –f0 repeated at intervals W, in the region 
of +f0 where 2f0 is not an integer multiple of W. If we consider the part of 
this spectrum that overlaps the band of width W, centered at +f0, we see that 
there is a mixture of parts of U− shifted by kW and by (k + 1)W. If the delay is 
correct to make U− disappear when shifted by kW, then it is not quite correct 
when shifted by (k + 1)W, and a small amount of spectral overlap occurs.

The minimum repetition rate to avoid this is shown in Figure 5.12(b), 
where W′ (>W  ) is such that (k + 1)W′ moves U− just beyond the gated region  
(between fl and fu). Because W′ > W, gaps of width W′ – W now occur between 
the repeated versions of U−. The minimum required value of W′ is given by  
(k + 1)W′ = 2fu. (In fact, other local minimum rates are given by W′ such 
that (n + 1)W′ = 2fu, for n integral n < k.) We note, in Figure 5.12(b) that 
part of the signal band occupied by U+ (between fl and fu) has no overlap, in 
which case there is no problem, and part has an overlap of U– shifted by kW′. 
As stated earlier, putting kW′ into (5.18) instead of 2f0, shows that the delay 
must satisfy 2kW′τ = 1. Thus, with the condition on W′, we find that {4kfu./ 
(k + 1) = 1}τ (i.e., the delay should be (1 + 1/k) times a quarter cycle of the 
upper edge of the signal band, fu, or an odd multiple of this).

If we increase the sampling rate further, we reach the condition shown 
in Figure 5.12(c), where the band U− shifted by (k – 1)W′ has just reached the 

Figure 5.11  Relative sampling rates (basic quadrature sampling).
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lower edge of the gated band. This is when (k – 1)W′ = 2fl (or, again, more 
generally when (n – 1)W′ = 2fl  for n an integer and n £ k). The delay required 
is (1 − 1/k) times a quarter cycle of the lower edge of the signal band, fl (or 
an odd multiple of this). 

To summarize, the minimum and maximum relative sampling rates W′/
W are given in general, (with n £ k) by rm = 2fu/W(n + 1) and rM = 2fl W(n – 1), 
where fu = f0 + W/2 and fl = f0 – W/2; a central rate (very close to the mean  
of these two) is rc = 2f0/nW. However, although these rates are valid, we are 
generally interested in keeping the sampling rate as low as conveniently possi-
ble, and this corresponds to taking the highest value of n (i.e., k). In fact n < k 
corresponds to the continuations of lines from lower k values, as illustrated in 
Figure 5.13. Thus, taking the case giving the lowest sampling rates, we have

	
2 2

1 1
u lf f

W
k k

£ £¢
+ -

 and 02 f
W

k
»¢ 	 (5.22)

with corresponding delay values

	
1 1

4 4l u

k k
kf kf

τ- +£ £  and 
0

1
4 f

τ » 	 (5.23)

Figure 5.12  �Shifted positions of U−. (a) 2f0 = (k + α)W (0 < α <1), (b) 2fu = (k + 1)W¢, and 	
2f1 = (k – 1)W¢.
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The relative sampling rates, r = W′/W, are given, from (5.22) with 2f0 = 
(k + α)W, and putting 2f0 ± W = (k + α ± 1)W for 2fu and 2fl, 

	 1 1
1 1

r
k k
α α+ £ £ +
+ -

 and 1r
k
α» + 	 (5.24)

We note that if α = 0 (i.e., 2f0/W is integral), then r = 1, and quadra
ture sampling is as good as Hilbert sampling in this case.

The allowed sampling rates relative to the bandwidth W are given in 
the shaded areas in Figure 5.14. The maximum and minimum rates rM and 
rm define the boundaries, and the central value rc is shown as dashed lines in 
Figure 5.14. We note from Figure 5.14 that there are no unallowed sampling 
rates above 2W. This is because when the interval between repetitions of U− 
becomes 2W, it is not possible to have parts of more than one repetition of 
U− in the gating interval (see Figure 5.12(b) or (c) with W′ ³ 2W  ), so if the 
delay is correctly chosen the U− contribution in this interval can always be 
removed. (By putting x = f0/W = (k + α)/2 and equating rm at k and rM at 
k + 1, with α = 2x − k, we find these lines meet at x = k + ½ and the common 
value of r is 2, as shown in Figure 5.14).

Because the required delay for the actual minimum sampling rate 
((k + 1)/4kfu) is no longer exactly a quarter cycle (or an odd number of quar-
ter cycles) of the carrier, this sampling has been termed modified quadrature 
sampling in the title of Figure 5.14. However, the general rates given in Figure 
5.14 may not be very convenient in practice, as they require the delay to be 
proportional to a quarter of a cycle of fu, which may not be as easy as choosing 
it to be 1/4f0, as assumed in Figure 5.11. In fact the central rate 2f0/k (shown 
by the dashed lines in Figure 5.14) does require this more convenient delay, 

Figure 5.13  Lines of relative sampling rates.
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and for low fractional bandwidths (higher f0/W values) we see that this is close 
to the minimum rate.

Thus we can now state a quadrature sampling theorem:

If a real waveform u has no spectral energy outside a frequency band of 
width W centered on a carrier of frequency f0, then all the information 
in the waveform is retained by sampling it, and a delayed version of it, is 
at a rate given by rW, where r is given in (5.24), and the delay (which is 
close to a quarter cycle of f0), is given in (5.23). Complex samples, where 
the real parts are the samples of u and the imaginary parts are the samples 
of the delayed form, correspond to samples of the analytic waveform 
derived from u, equivalent to Hilbert sampling. 

5.7  Low IF Analytic Signal Sampling

A signal u(t), on a carrier at frequency f0, can be written ( )0( ) ( )cos 2 ( )u t a t f t tπ φ= +  

( )0( ) ( )cos 2 ( )u t a t f t tπ φ= + and, at least in principle, we can derive its Hilbert transform, 
( )0ˆ( ) ( )sin 2 ( )u t a t f t tπ φ= +  and hence the complex form ( )0ˆ( ) ( ) ( )exp 2 ( )u t iu t a t i f t tπ φ+ = + 
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Figure 5.14  Relative sampling rates (modified quadrature sampling).
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( )0ˆ( ) ( ) ( )exp 2 ( )u t iu t a t i f t tπ φ+ = + . The information in this signal is contained in the am-
plitude and phase functions a(t) and φ(t), and what is required for digital 
signal processing is a digital form of the analytic signal a(t)expiφ(t). This is 
what is given by Hilbert sampling and quadrature sampling, discussed earlier, in 
particular from the point of view of finding the minimum sampling rate needed 
to preserve all the signal information. An alternative method of obtaining the 
sampled analytic, or complex baseband, signal is given in this section. This is 
simpler to implement in practice—not requiring the Hilbert transform or an 
accurate quarter cycle delay, and sampling in only a single channel, rather than 
in two—at the cost of requiring a higher sampling rate. At the minimum, this 
single sampling device, or analogue to digital converter (ADC), operates at just 
twice the rate of the two ADCs needed for the alternative methods.

The method requires bringing the signal carrier frequency down from 
the normally relatively high radio frequency (RF) to a low intermediate fre-
quency (IF). To avoid the two parts of the spectrum overlapping, we see that 
we must have f0 ³ W/2. The samples we require are those corresponding to 
the complex baseband waveform V(  f   ), given by

	 0( ) 2 ( )V f U f f+= + 	 (5.25)

which is the positive frequency part of the spectrum (the spectrum of the equiv-
alent complex waveform) centered at zero frequency (baseband) rather than 
at the IF carrier, f0. We see that, given U, we can obtain V by first shifting U 
by –f0, then gating it with 2rect(  f  /W  ) (Figure 5.15). In order to obtain the 
repetitive element in the spectrum, to give the δ-functions in the time domain 
corresponding to the sample values, we note that we can repeat this shifted U 
spectrum, without overlapping, at intervals F ³ 2f0 + W, so that we have 

	 [ ]0( ) rep 2 ( ) rectF
f

V f U f f
W

= + 	 (5.26)

Taking the (inverse) transform, using P3b, R8a, R6b, R5, and R7b we 
have 

Figure 5.15  Low IF sampling spectra.
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	 [ ]1/ 0
2

( ) comb ( )exp( 2 ) sincF
W

v t u t if t Wt
F

π= - Ä 	 (5.27)

Thus, the analytic, complex baseband waveform is given by sampling the real 
IF waveform u multiplied by the complex exponential exp(−2πif0t)—that is, 
after mixing down to baseband using a complex local oscillator (LO) at the 
signal’s center frequency, f0. (Again, in principle, to form this waveform we 
interpolate the samples obtained at intervals 1/F, where the sampling rate F 
is 2f0 + W or higher, with sinc functions.) In fact, we do not have to provide 
this LO waveform in continuous form, as we note that

	 [ ]π π δ
¥

=-¥
= − ⊗ −∑1/ 0 0comb ( )exp(2 ) ( / )exp( 2 / ) ( / )F

n

u t if t u n F inf F t n F 	

(5.28)

and we see that we multiply the samples of u by the sampled form of the com-
plex exponential waveform. In the case where the IF carrier is f0 = W/2 and the 
sampling rate F is the minimum 2W, we see that F is just 4f0 and the sampled 
complex LO values are given by exp(−πin/2) or (−i)n (i.e., we just multiply the 
real samples of u by 1, −i, −1, and i in turn, a particularly simple form of down-
conversion). This gives a train of complex samples at rate 4f0, which are actually 
either real with imaginary part zero or imaginary with real part zero. 

If the IF is greater than W/2 (up to 3W/2) then we can repeat the 
spectrum at the smaller interval of 2f0 + W, rather than 4f0, but in this 
case the complex down-conversion factors are not so simple, being given 
by ( )0exp /(1 /2 )in W fπ- + , leading to complex samples with both real and 
imaginary parts nonzero, in general. If the carrier frequency is not too high, 
then the 4f0 sampling rate may be preferred for its simplicity, even when it is 
not the very minimum rate. 

If the IF is considerably higher than the bandwidth, then lower sam-
pling rates that avoid overlapping can be used, such as uniform sampling, 
as discussed in Section 5.4, of which this method is an example. Using the 
notation of Section 5.4, the lowest IF case corresponds to fu = W and k = 1. 
For higher IF values, we have fu = f0 + W/2 = kW′, where W′ is the lowest 
value above (or equal to) W such that fu/W′ is an integer, k. Then the mini-
mum required sampling rate is 2W′ = (2f0 + W)/k, and the complex down-
conversion factors are exp(−2πif0nT), where T = 1/2W′ leading to the factors 

( )0exp /(1 /2 )ikn W fπ- + . Again this is an awkward form to apply, but if we 
chose the slightly higher sampling rate of 2f0/(k − ½), as suggested in Sec-
tion 5.4, then the down-conversion factors become simply exp(–pin(k – ½)) 
or −in for k odd and in for k even. However, sampling with a finite window 
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width on a high IF may require care, as discussed in the next section, and 
keeping the IF low would generally be preferable. 

5.8  High IF Sampling 

If we sample at a relatively high IF, the time taken to obtain a sample of the 
waveform may become significant compared with the period of the carrier. 
We take for our model a device that integrates the waveform over a short 
interval τ, the sample value recorded being the mean waveform value over 
this interval, the integral divided by τ. We see that this value is the same as 
would be given by a device that sampled instantaneously the waveform given 
by sliding a (1/τ)rect(t/τ) function across the waveform and integrating (i.e., 
forming the convolution of the waveform with the rect function). Thus, if 
u is the waveform, the samples actually correspond to the waveform v given 
by

	 v(t) = u(t)Ä(1/τ)rect(t/τ)	 (5.29)

The spectrum of this is 

	 V(  f  ) = U(  f  )sinc(  fτ)	 (5.30)

Figure 5.16(a) shows the spectrum of V compared with that of U, shown 
as a rectangular band (in the positive frequency region only). With a low car-
rier frequency f0, compared with 1/τ (i.e., with τ a small fraction of the period 
of the carrier), in position “a,” there is relatively modest distortion across the 
signal band. At a higher center frequency, position “b” (shown with a larger 
bandwidth), the distortion is more serious. At position “c,” where the window 
is one cycle of f0 (  f0τ = 1), the distortion is severe and totally unacceptable. 
However in position “d,” where the sinc function is near a stationary value, 
the distortion is very low. This is at f0τ = 1.434, so the window τ should be 
about 1.4 cycles of the carrier for a low-distortion result.

Although this may be interesting, it is probably not very practical. This 
is partly as the timing of 1.4 cycles may not in practice be accurate, moving 
the response to a more distorted part of the spectrum, but also the accuracy 
of the rect function may not be good, modifying the spectrum to a form that 
may have considerable slope at this point. 

If we explore what window for integration would be ideal, we note that 
if we put w(t) for the window shape, instead of the rect function in (5.29), 
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the signal spectrum would be multiplied by its transform W(  f   ), replacing the  
sinc function in (5.30). Ideally, we would like this to be flat over the band U, 
and this requires a rect function in the frequency domain and a sinc function 
window in the time domain. If we choose w(t) = (1/τ)sinct/τ then W(  f   ) = 
rectf τ. This has value 1 out to 1/2τ, which must be greater than f0 + Df /2, 
where Df is the bandwidth, in order to cover the signal band, as shown in 
Figure 5.16(b). 

Thus, we require τ £ 1/(2f0 + Df  ), or rather less than half a cycle of 
the carrier. However the window, to give a reasonable approximation to the 
sinc function, would have to be many times τ in width or extend over several 

Figure 5.16  �Spectrum of IF waveform sampled over a nontrivial interval. (a) Rectangular 
window, and (b) sinc window.
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cycles of the carrier. This would be a good distortionless way of sampling, but 
it is difficult to see how this could be implemented in practice.

5.9  Summary 

In this chapter we have shown how the rules-and-pairs method can be used 
to obtain some sampling results very neatly and concisely. The main aim 
was to determine the minimum sampling rates that would retain the signal 
information, but in some cases the method was used to find what other rates 
would be acceptable (not necessarily all rates above the minimum). This was 
first applied to sampling wideband signals, with significant spectral power 
from some maximum W down to zero frequency. The information in a real 
waveform is all retained by sampling it at the rate 2W (or any higher rate). 
The second example, uniform sampling, applies to a narrowband signal, a 
signal on a carrier with a spectrum limited to a band of frequencies around 
the carrier. In this case, the rates acceptable are dependent on the ratio of 
the bandwidth W to the center frequency, f0, being at least 2W and generally 
higher. This form of sampling is an example of the case where some higher 
sampling rates are not allowed if distortion is to be avoided. 

A different approach is to convert the real waveform into the complex 
waveform that has the given waveform as its real part. This requires deriving 
the imaginary part from the real part by means of a Hilbert transform. In 
principle this is applicable to both wideband and narrowband waveforms, 
though it is more likely to be applied to the latter in practice (after down-
conversion to complex baseband). Given the complex waveform we find, very 
quickly, that we only have to sample (in the two channels, real and imagi-
nary) at the rate W (or any higher rate) to obtain complex samples represent-
ing the waveform. It is this complex form that is normally required for digital 
signal processing. 

Hilbert sampling seems a very satisfactory approach, but it does de-
pend on the provision of a good Hilbert transform, which is equivalent to a 
wideband (all frequency) phase shift of 90°. A close approximation to Hil-
bert sampling, for narrowband waveforms, is quadrature sampling, where the 
Hilbert transform is replaced by a delay, essentially equal to a quarter of the 
carrier period. This provides the 90° shift of the carrier and close to 90° for 
frequencies close to the carrier. However, it is not exact—the signal envelope 
is delayed in the imaginary channel, which is a form of distortion, but in 
principle the waveform could be reconstituted by correct interpolation, with 
compensation for this delay. Nevertheless the analysis shows that all the data 
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in the signal can be retained by sampling at the correct rate and with the cor-
rect delay, but generally this rate is higher than for Hilbert sampling and, as 
with uniform sampling, depends on the ratio of W to f0. Also, like the uni-
form sampling case, not all rates above the minimum are allowed. 

The last method we consider is uniform sampling on a low IF, with 
down-conversion effectively achieved with the sampling. This includes the 
case of sampling at four times the carrier (IF) frequency and gives a par-
ticularly simple way of providing the complex baseband samples without the 
need for a Hilbert transformer or a quarter wave delay, so it is an attractive 
method to implement. The required sampling rate in a single channel is, at 
the minimum, twice that needed in the two channels for the other methods.

Finally, we consider the effect of trying to sample on too high an IF. 
If the sampling gate duration becomes a significant fraction of the carrier 
period, then there will be some spectral distortion. This is very easily shown 
using a simple model for the sampling analog-to-digital converter (ADC). 
However, it is also shown that the spectral distortion can be made low by 
careful choice of the ratio of the high IF period to the sampling gate width, 
using a rectangular window or by using, perhaps impractically, a window of 
near sinc function shape.
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 Appendix 5A: The Hilbert Transform 

A real waveform u has a spectrum U of positive and negative frequencies, with 
all the information about it contained in one half of the spectrum. (We have 
already seen, in Section 2.3, that the negative frequency components are just 
the complex conjugate of those of the corresponding positive frequencies.) 
We can define a complex function v = u + iû that has a positive frequency 
spectrum only, if we can form û, with spectrum Û, such that iÛ is equal to U 
for positive frequencies and to −Û for negative frequencies. Thus, given

	 v(t) = u(t) + iû(t),	 (5A.1)
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with spectrum

	 V(  f   ) = U(  f   ) + iÛ(  f   ),	 (5A.2)

if we choose

	
>ì

= í - <î

( )            for  0ˆ( )
( )        for  0

U f f
iU f

U f f
	 (5A.3)

and Û(0) = 0) the spectrum of v is given by
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	 (5A.4)

and V(0) = U(0)). This is a spectrum of positive frequencies only, as required. 
To find û, we note from (5A.4) that V(  f   ) can be written as 2U(  f   )h(  f   ), so 
taking the inverse transform, using P2b, we have
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t t 	 (5A.5)

(We can also put, from (5A.3), ˆ( ) ( )sgn( )iU f U f f= , so that, from P2c and 
R4 we have ˆ( ) ( ) ( 1/ )iu t u t itπ= Ä - , leading directly to (5A.5)).

The Hilbert transform of u(t) = cos2πf0t is û(t) = sin2πf0t; this can be 
found using (5A.5) (treating τ as a complex variable and using contour in-
tegration) or, more simply, by choosing the function for û that converts the 
two-line spectrum (at −f0 and +f0) of u into the single line spectrum of v (at 
+f0 only) (i.e., that makes v a single complex exponential). In this case v(t) is 
given by

	 v(t) = cos2pf0t + isin2pf0t = exp2pif0t	

and so V(  f   ) = δ(  f − f0), which is a single line at +f0. The spectra of u and 
iû are δ δ- + +0 0½( ( ) ( ))f f f f  and δ δ- - +0 0½( ( ) ( ))f f f f , respectively, 
which satisfy the form of (5A.3). Similarly, the Hilbert transform of sin2πf0t 
is −cos2πf0t, so that in this case

	 v(t) = sin2πf0t − icos2πf0t = −iexp2πif0t	
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Both these Hilbert transforms correspond to a phase shift of −π/2 ra-
dians, as cos(2pf0t - p/2) = sin2pf0t and sin(2pf0t - p/2) = -cos2pf0t. This  
is the case for all frequency components of a real waveform, so we see that 
the Hilbert transform is equivalent to a wideband (all-frequency) phase shift 
of −π/2.
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6
Interpolation for Delayed Waveform 
Time Series

6.1  Introduction 

Here we consider the question, given a time series obtained by regular sam-
pling of some waveform, how do we form the time series of a delayed ver-
sion of the waveform? Clearly there is no real problem for a delay that is a 
multiple of the sampling period—instead of the current sample from the 
undelayed waveform, we just take the correctly delayed sample. The required 
series could be obtained from a shift register clocked at the sampling rate. 
Thus, we are left with the problem of generating series corresponding to de-
lays of less than a sampling period. We consider only sampled analytic signals 
(complex time series), and we show that considerable benefits, in terms of 
reduced computation, are given if the waveform is sampled at a rate above 
the minimum required to retain all its information (see Chapter 5)—the case 
of oversampling. 

We first investigate, in Section 6.2, the weights on the taps of a trans-
versal filter required to give the series for the delayed waveform, derived with-
out reference to the waveform. This filter is thus suitable for the general case, 
where any waveform (subject to it being within a given bandwidth) may be 
taken and where its power spectrum is not necessarily known. We start with 
the case of the minimum sampling rate and then explore the gains possible 
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with an oversampled waveform. In Section 6.3, we find the weights that give 
the optimum series in the sense of the least mean square error (or error in 
power) between the interpolated series and the true series for the delayed 
waveform. The error arises because to achieve perfect interpolation in prin-
ciple, ignoring practical problems of finite word lengths and sampling quan-
tization, an infinitely long filter would be required, in general.

Two applications of interpolation are given in Sections 6.4 and 6.5. 
The first shows a remarkable reduction in computational load in generating 
simulated radar clutter, which is sampled at the pulse repetition frequency 
(PRF), typically a few kilohertz, and a much higher rate than the bandwidth 
of the clutter waveform (a few tens of hertz). The second shows how interpo-
lation can be used for resampling—generating the sequence of samples that 
would have been obtained by sampling a signal at a rate different from that 
actually used.

6.2  Spectrum Independent Interpolation

In this section, we show how a finite impulse response (FIR) filter can be 
designed to achieve the required interpolation, with the coefficients easily 
obtained using the rules-and-pairs method. Generally, this requires quite a 
long filter if the interpolation is to be achieved with high fidelity when sam-
pling at the minimum rate necessary to preserve the full information. More 
interestingly, we then consider the case where the waveform is sampled at a 
rate above this minimum—the oversampled case—and find that, by taking 
advantage of this higher rate, very considerable gains in terms of reducing the 
filter length, and so the required computation, can be achieved for compa-
rable performance.

6.2.1  Minimum Sampling Rate Solution

Given a time series of samples of a continuous waveform, sample values of 
that waveform at other times can be calculated by taking a weighted combi-
nation of the given samples. A suitable set of weights will produce a time se-
ries corresponding to samples taken at a certain interval, or delay, after those 
of the input. This produces a time series corresponding to a delayed version 
of the waveform. The series itself is not delayed, except perhaps by a whole 
number of sample periods; it is otherwise synchronous with the input series. 
Figure 6.1 illustrates the structure, which is in fact a transversal, or finite 
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impulse response (FIR), filter. The delay T between taps is identical with the 
sampling period, and we note that the output of the center tap, with weight 
w0, can be considered to be the undelayed waveform, if an overall delay of 
nT can be accepted. In this case, it is possible to obtain (relatively) negative 
delays as well as positive ones (e.g., if all the weights were zero except the first, 
w-n, then the relative delay of the output series would be -nT  ). We take the 
time series to be that of a complex baseband waveform of finite bandwidth 
with spectrum in the band –F/2 to + F/2, corresponding to an RF or IF wave-
form of bandwidth F. The minimum sampling rate to retain the information 
in the waveform is F, and initially we take this to be the sampling rate for 
the time series, but subsequently we investigate the benefit, from the point of 
view of more efficient interpolation, of sampling at a higher rate. If the signal 
waveform is u(t) and the spectrum is U(f   ), then we can write the identity

	 =( ) rect( / )rep ( )FU f f F U f 	 (6.1)

This states that U is equal to a suitably gated portion of a repetitive form of 
itself (Figure 6.2). 

Figure 6.1  FIR filter for interpolation.

Figure 6.2  Equivalent forms of U(f ).
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The inverse Fourier transform of this (from P3b, R5, R7b, and R8a) is 

	
1/

1
( ) sinc( ) comb ( ) sinc( / ) comb ( )F Tu t F Ft u t t T u t

F
= Ä = Ä

	
(6.2)

where T is the sampling period and T = 1/F. The function combTu(t) is a set 
of d-functions at intervals T of strengths given by the waveform values at the 
sampling point (as defined in (2.16)). Putting the comb function in this form 
we have, using (2.11) for the convolution with a d-function,

	
( ) sinc( / ) ( ) ( ) ( )sinc

r
r

t rT
u t t T u rT t rT u rT
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(6.3)

where we use Sr to imply summation over all integer r. This shows how to cal-
culate u(t) at any time t from the given set of samples at times 0, ±T, ±2T, . . .  
(i.e., {u(rT  ): r = -¥ to +¥}). We place a sinc function, scaled by the sample 
value, at each sample position and sum these waveforms (Figure 6.3). In par-
ticular, if t = kT, where k is an integer, then ( )sinc ( )/t rT T-  = sinc(k – r) = 
dk, as sinc(x) = 0 for x a nonzero integer and sinc(0) = 1, and we have

	
( ) ( ) ( )krr

u kT u rT u kTδ= =å 	

as required. (dkr is the Kronecker-d; dkr = 0 for k ¹ r, dkk = 1 for all k.)

Figure 6.3  Equivalent forms of u(t).
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To determine the function value at time t (where we only need to con-
sider |t| £ T/2) we have, from (6.3)
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(6.4)

In practice we cannot obtain u(t) exactly, as this requires an infinite 
number of terms, but the weights applied generally fall (though not necessar-
ily monotonically) for samples further away from the interpolated sample 
time (within ±T/2 of the center), so we curtail the series when the weights 
become small. We note that the weights, given by τ= -sinc(( )/ )rw rT T ,  
are dependent on the delay required, t. In fact, we consider them to be  
functions of r = t/T, the delay in units of the sampling interval, T. Thus, we have 

( ) sinc( ) sinc( )rw r rρ ρ ρ= - = -  (as the sinc function is symmetric). We assume 
that the delay has been matched as far as possible by shifts of a whole number of 
sampling intervals, so that the fractional interval r is between -1/2 and +1/2.

The worst case for interpolation is for delays of ±T/2, at the maximum dis-
tance from a sample. The interpolation factor, or weight, applied to the output of 
tap r (i.e., to samples at time rT relative to the center tap output) in this case is

	 π π π+= - = - - = - -1(½) sinc( ½) sin( ( ½)) ( ½) ( 1) ( ½)r
rw r r r r 	 (6.5)

The tap weights are given in decibel form as the discrete points on the 
curve in Figure 6.4 for three delay values. For the case of a delay of 0.1T (with 
symbol +), the weight is close to unity for the zero delay tap and falls quite 
rapidly for the other weights. At a delay of 0.5T, the weights (given by a dot 
symbol) are equal for the first two closest taps (numbers 0 and 1) and then 
fall away rather slowly. For a delay of 0.25T, the weight pattern (symbol ´) is  
intermediate, but closer to the 0.5T case, falling away only slightly faster. If 
we take –30 dB as the weight level below which we will neglect the contribu-
tions, then we see that we need only about 7 taps for the 0.1T delay, but 14 
at 0.25T and 20 at 0.5T.
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6.2.2  Oversampling and the Spectral Gating Condition

For a (complex) waveform of bandwidth F, the minimum sampling rate at 
which the waveform can be sampled without losing information is F. (This 
is the case using Hilbert sampling; see Chapter 5. With other forms of sam-
pling, we may need slightly higher rates.) If we sample at a lower rate, then 
the repeating spectra will overlap, and the resulting set of samples would cor-
respond to the result of sampling a slightly different waveform (a distorted 
form of the waveform) at this lower rate. This effect is known as aliasing. 
However if we sample at any rate higher than F, no spectral overlapping 
occurs; we retain all the waveform information and could reconstruct the 
waveform with correct interpolation. This is less efficient than sampling at 
the minimum rate in the sense that more work is done than is necessary, but 
we will see that it enables us to achieve much more efficient interpolation.

Let the sample rate be F¢ = qF, where q > 1, so that the interval between 
samples is now T¢ = 1/F¢ = T/q. In this case, the spectrum of the sampled 
waveform repeats at the interval F¢, which is greater than the width of the 

Figure 6.4  FIR filter weights for interpolation, at minimum sampling rate.
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basic spectrum, so there are gaps in the spectrum of the sampled waveform 
as shown in Figure 6.5. We see that we can put the identity for the wave-
form spectrum, corresponding to (6.1) for the minimum sampling rate, in 
the modified form

	 U(  f   ) = G(  f   )repF ¢U(  f   )	 (6.6)

where an example of the gating function G is shown in the figure. For (6.6) to 
be true, we see that there are two conditions that G must satisfy:

	 G(  f   ) = 1 for | f  | < F/2  and  G(  f   ) = 0 for |  f  | > F ¢ - F/2 = (q – ½)F.	
(6.7)

The first of these conditions is to ensure that there is no spectral dis-
tortion, and the second ensures that there is no aliasing (i.e., no energy is 
included from repeated parts of the spectrum). G is not defined in the regions 
[-(q – ½)F, -F/2 ] and [F/2, (q – ½)F  ] (except that it must remain finite) as 
there is no spectral power in these regions. Thus, we are free to choose G to be 
of any form as long as it satisfies the conditions (6.7). In the case of sampling 
at the minimum rate, F, we have q = 1, so the regions of free choice are of zero 
width and we are forced to make G the rect function, as in (6.1). We could 
note, as a more general form for the second condition in (6.7), that G should 
be zero only on all the intervals | f - nF¢| < F/2 (n = -¥ to +¥, n ¹ 0) (i.e., for 
all bands of width F centered on all frequencies nF except n = 0). However, 
this will not generally be a useful relaxation of the condition.

From (6.6), taking the inverse Fourier transforms, we have

	 φ¢ ¢= Ä = Ä¢( ) (1/ ) ( ) comb ( ) ( ) comb ( )T Tu t F g t u t t u t 	 (6.8)

where the interpolating function is

	 φ = =¢ ¢( ) (1/ ) ( ) ( )t F g t T g t 	 (6.9)

Figure 6.5  Spectrum of time series of u sampled at rate F ¢.
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and g is the inverse Fourier transform of G. Expanding the comb function, 
we have

	
φ= - =¢ ¢ ¢å å( ) ( ) ( / ) ( )rr r

t rT u rT w t T u rT

= Ä -( ) ( ) ( ) ( )u t t t rT u rTφ δ ¢ ¢år

	

Thus, the weights are given, for a delay t = rT ¢, by

	 ( )( ) ( )rw r Tρ φ ρ= - ¢ 	 (6.10)

The samples in this case are at intervals T¢ so the worst-case delay is 
T ¢/2, smaller than the value at the minimum sampling rate, T/2, so there is 
some easing of the interpolation problem, but this is small compared with 
that obtainable from good choices of the gating function. Before consider-
ing these, we take the case of the simplest form of the gating function that 
takes advantage of oversampling (Figure 6.6). This is G(f   ) = rect[f /(2F¢-F  )], 
or rect[f /(2q-1)F  ], and the interpolating function is given, from (6.9) (and 
P3b, R5), by

	
( ) ( )(2 1) (2 1)

( ) sinc (2 1) sinc (2 1) /
q F q

t q Ft q t T
qF q

φ - -= - = -
	

(6.11)

The characteristic width of this function, T/(2q – 1), is narrower than the 
sample separation, T/q, so we should be able to use fewer taps for a given 
lower limit to the tap weight magnitudes. The weights for a delay t = rT¢ = 
rT/q (with 0.5 0.5ρ- < £ ) are, from (6.10) and (6.11),

	

2 1 (2 1)( ) 2 1
( ) sinc sinc( )r

q q r q
w x y

q q q
ρρ

æ ö æ ö- - - -= = +ç ÷ ç ÷è ø è ø 	
(6.12)

Figure 6.6  Optimum rectangular gate for oversampled time series.
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where x = (r - r) and y = (q – 1)x/q. (The variables x and y will be used in the 
weights required for the three further gating functions considered in Section 
6.2.3.) We note from (6.12) that if r, and hence t, is zero wr(0) is nonzero for 
all values of r, unlike the minimum sampling case illustrated in Figure 6.3, 
where wr (0) = 0 except for w0(0), which is 1, so it is not immediately obvious 
how this sampling method produces the correct values at the sampling points, 
let alone between them. In particular w0(0) = (2q – 1)/q, which approaches 
the value 2 for large q. Figure 6.7 illustrates the case where a flat part of the 
waveform, with constant value unity, has been sampled at an oversampling 
rate of q = 3. We see that at the sample points, the weight value is 5/3, but 
the contributions from the interpolating sinc functions from nearby sample 
points are negative, bringing the value down to the correct level of unity.

The weights given by (6.12) for oversampling factors of 2 and 3 are 
shown in Figure 6.8, for comparison with the values for the minimum sam-
pling rate (q = 1) plotted in Figure 6.4. The same set of delays has been taken. 
These plots show that the weight for the tap nearest to the interpolation 
point (taken to be the center tap here) can be greater than unity, that the 
weight magnitudes do not necessarily fall monotonically as we move away 
from this point, and that much the same number of taps is required, above 
a given weight level, such as –30 dB. At first this last point might seem  
unexpected—there is no significant benefit from using the wider spectral gate 
that is possible with oversampling. However, the relatively slow falling off of 
the tap weight values is a result of the relatively slowly decaying interpolating 
sinc function, and this in turn is the result of using the rectangular gate, with 
its sharp, discontinuous edges. This is the case whether or not we have over
sampling. The solution, if fewer taps are to be required, is to use a smoother 
spectral gating function, and this is the subject of the next section.

Figure 6.7  Flat waveform oversampled.
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6.2.3  Three Spectral Gates

Trapezoidal Gate

The first example of a spectral gate without the sharp step discontinuity of the 
rect function is given by a trapezoidal function (Figure 6.9). As illustrated, in 
this figure and also in Section 3.1, this symmetrical trapezoidal shape is given 
by the convolution of two rectangular functions with a suitable scaling factor. 
The widths of these rect functions has been chosen so that G, as in Figure 
6.5, has the minimum flat top width necessary and slope of maximum length, 
extending to the edges of the repetitions of the spectrum centered at +qF and 
–qF. The convolution of unscaled rect functions has a peak (plateau) level of 
(q – 1)F, the area of the smaller rect function, so we define G by

	

æ ö æ ö
= Äç ÷ ç ÷- -è ø è ø

1
( ) rect rect

( 1) ( 1)
f f

G f
q F qF q F 	

(6.13)

Thus, on taking the transform, we have ( )( ) sinc( )sinc ( 1)g t qF qFt q Ft= -  , and 
the interpolating function is given, from (6.9) with T  ¢ = 1/qF, by

	 f(t) = sinc(qFt) sinc(q - 1)Ft	 (6.14)

From (6.8) we have

	 u(t) = sinc(qFt)sinc(q - 1)Ft Ä comb1/F ¢u(t)	 (6.15)

The interpolating function f is now a product of sinc functions, and this 
has much lower sidelobes than the simple sinc function (e.g., see Figure 3.2).  

Figure 6.9  Trapezoidal spectral gate.
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To interpolate at time t = rT ¢, where -0.5 < r £ 0.5 (i.e., t is a fraction of a 
tap interval), we consider the contribution from time sample r, giving

	 wr( r) = f((r - r)T ¢) = sinc(r - r) sinc[(r - r)(q - 1)/q].	 (6.16)

Now let x = r - r and y = (q - 1)x/q (as in (6.12)), then

	 wr( r) = sincx sincy = sinXsinY/XY	 (6.17)

where X = px and Y = py. If we take the case of r = 1/2, the worst case, as 
in Section 6.2.1, we have sinX = sinp(r – ½) = (-1)r+1, and if we take q = 2 
(sampling at twice the minimum rate), then y = x/2 and sinY = ±1/Ö2, for r 
integral, and so the magnitudes of the tap weights are

	 φ π= - = -¢ 2 2(½) (( ½) ) 2 ( ½)rw r T r 	 (6.18)

Comparing this with (6.5), we see that the weight values now fall very much 
faster, and this is illustrated in Figure 6.10, for comparison with Figures 6.4 
and 6.8. We see that the number of taps above any given level has been re-
duced dramatically—above -30 dB, for example, from 20, 15, and 7 for the 
three delays chosen, at q = 1, to 4, 3, and 3 at q = 2 and as few as 2, 3, and 2 
at q = 3. Above the –40-dB level, the number of taps needed at 0.5T is found 
to be 65 at the minimum sampling rate, but only 8 for q = 2 and q = 3.

Trapezoidal Rounded Gate

The trapezoidal function of Figure 6.9 still has slope discontinuities, though 
not the step discontinuities that the rect function has. The corners of the trap-
ezoid can be rounded by another rect convolution, to make three convolved 
rect functions in total. Equivalently, we can consider that the combination 
of the two narrower rect functions, one removing the steps and the other 
removing the abrupt slope changes, together form a trapezoidal pulse (see 
Figure 6.11), and this then rounds the largest rectangular pulse. As before,  
the main rect function is of width qF (as in Figure 6.9) and the overall round-
ing pulse is of base length (q - 1)F, as this is the space available for the round-
ing on each side. Let the two shorter rectangular pulses be of length a(q – 1) 
F and (1 - a)(q – 1)F where 0 < a £ 0.5. Then their convolution will be of 
the required length (q – 1)F, as shown in the upper part of Figure 6.11. If 
these pulses are of unit height, then the trapezoidal pulse will be of height 
a(q – 1)F, the area of the smaller pulse, so we need to divide by this factor to 
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form a trapezoidal pulse of unit height. The area A of the (unit height) trap-
ezoidal pulse is the same as that of the wider rectangle, (1 - a)(q - 1)F, so we 
also have to divide by this factor when we perform the second convolution in 
order to make the height of G unity, as required. Thus, we have

2 2
rect( / ) rect( / ( 1) ) rect( /(1 )( 1) )

( )
(1 )( 1)

f qF f q F f q F
G f

q F

α α
α α

Ä - Ä - -=
- - 	

(6.19)

The interpolating function f is given by

	 ( )( ) (1/ ) ( ) sinc sinc( ( 1) )sinc (1 )( 1)t qF g t qFt q Ft q Ftφ α α= = - - - 	 (6.20)

Let t = (r - r)T¢ as before (with -0.5 < r £ 0.5), and also x = qFt = r - r  
and y = (q – 1)x/q, as before, then

	 ρ φ ρ α α′= − = −( ) (( ) ) sinc sinc( )sinc((1 ) )rw r T x y y 	
	 = sincx sincy1 sincy2	 (6.21)

where y1 = ay and y2 = (1 - a)y. If we want the weights in terms of the sine 
function then

	
ρ = 1 2

1 2

sin sin sin
( )r

X Y Y
w

XY Y

where X = px, Y1 = apy and Y2 = (1 - a)py.
If a = 0.5 we have a triangular pulse for the rounding convolution, but this 

may make the edge too sharp. As we reduce a, we go through the trapezoidal 
rounding toward the rectangular case considered in Section 6.2.3. The weights 
for the same three delays as before are plotted in Figure 6.12 for oversampling 
factors of 2 and 3, and for a value for a of 1/3. Again, we see that very few taps are 
needed, compared with the rectangular case, and the weight values are seen to be 
falling away more rapidly than for the simple trapezoidal case, as expected.

Raised Cosine Rounded Gate 

Here we use a raised cosine pulse for rounding instead of the trapezoidal 
pulse. This pulse is of the form 1 + cos(af   ), so it has a minimum value of zero 
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and is gated to one cycle width, which is the required value (q – 1)F. If 2A 
is its peak value, then the pulse shape (in the frequency domain) is given by 

( ) ( ){ }rect /( 1) 1 cos 2 /( 1)A f q F f q Fπ- + -  (see Figure 6.13). This has inte-
gral A(q – 1)F, due to the raised offset only, as the integral of the single cycle 
of the cosine function within the rect gate is zero. In order to make the area 
unity, we take A = 1/(q – 1)F. Applying this to the main spectral gating rect 
function to give the smoothed form we have

	

π   + − = ⊗   − −   

1 cos(2 /( 1) )
( ) rect rect

( 1) ( 1)

f q Ff f
G f

qF q F q F
	

(6.22) 

and 

	

( ) ( )
( ) sinc sinc( 1) ( )

2
t t t t

g t qF qFt q Ft t
δ δδì ü- D + + Dæ ö= - Ä +í ýç ÷è øî þ

where Dt = 1/(q – 1)F. On performing the d-function convolutions, the in-
terpolating function is 

	
( ) ( )

φ =

= - + - - + - +

1
( ) ( )

1 1
sinc sinc( 1) sinc ( 1) 1 sinc ( 1) 1

2 2

t g t
qF

qFt q Ft q Ft q Ft{ }
	

(6.23)

The term in brackets (i.e., {}) has much lower sidelobes, though a wider 
main lobe, than the basic sinc function, as should be expected from the form 

Figure 6.13  Raised cosine rounding.
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of the gating, or windowing, function G (Hann weighting). With the same 
notation as used earlier, we have for the delay t = rT¢,

	

( ) ( )( ) ( ) ( )rw r T g r T qFρ φ ρ ρ= - = -¢ ¢

{ }1 1
sinc sinc sinc( 1) sinc( 1)

2 2
x y y y= + - + +

	
(6.24)

where x and y are as before (in (6.17) and (6.21)).
We can simplify this slightly on putting

	

sin ( 1) sin sinc
sinc( 1)

( 1) ( 1) 1
y y y y

y
y y y

π π
π π

± -± = = =
± ± ±

∓
	

so that

	
2

sinc sinc
( ) sinc sinc 1

2(1 ) 2(1 ) 1
r

y y x y
w x y

y y y
ρ

æ ö
= + - =ç ÷- +è ø - 	

(6.25)

In terms of sine functions, this is

	
2

sin sin
( )

(1 )
r

X Y
w

XY y
ρ ==

-

with X and Y as in (6.17)).
Compared with the case of the trapezoidal gate in equation (6.17), there 

is an extra factor in the denominator of 1 - y2, which is effective in reducing 
the magnitudes of wr when r is large (and hence so are x and y). Figure 6.14 
shows the weights for the same delays and oversampling factors as before, and 
we see that the weight values fall even faster than with trapezoidal rounding, 
as a result of the very smooth form of this rounding.

6.2.4  Results and Comparisons

In this section, we give the tap weights (in decibels) for the case r = 1/2 (i.e., 
for the worst-case interpolation, half-way between two taps). For smaller r 
the weight values will fall faster with r. For small delays (very much less than 
T¢/2), oversampling may hardly be needed to keep down the number of taps 
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while maintaining good signal fidelity, but in many applications a delay may 
be required, and here we evaluate the tap weights for the worst case. 

Results for four different interpolation expressions are obtained, follow-
ing the different spectral gating functions given earlier. These are, with r the 
required delay as a fraction of the sampling interval and q the factor by which 
the data is oversampled, 

1.	 Maximum width rectangular gating (6.12)

	

2 1
( ) sinc( )r

q
w x y

q
ρ

æ ö-= +ç ÷è ø  
(x = r - r, y = (q - 1)x/q)

2.	 Trapezoidal spectral gating (6.17)

	 wr( r) = sincx sincy	

3.	 Rectangular gate with trapezoidal rounding (6.21)

	 wr( r) = sincx sinc(1 - a)y sincay  (0 < a <1)

4.	 Rectangular gate with raised cosine rounding (6.25)

	
ρ =

- 2
sinc sinc

( )
1

r
x y

w
y

Figure 6.15 shows, in contour plot form, how the filter tap weights vary 
with oversampling rate, for the worst-case delay of 0.5T. The tap weights are 
given in decibel form with tap number along the X axis and oversampling 
rate along the Y axis. The contours are at 10-dB intervals. Only integer values 
for the tap numbers are meaningful, of course, but these expressions are not 
restricted to integer values of r and so contour plots can be drawn. 

The plots give a general impression of the benefit of oversampling and 
allow some comparison of gating functions. In general, the faster the weights 
fall with tap number, the better, so that when the values are below some low 
enough value, the taps are not required, and the filter length is limited. In 
these plots the lowest contour level is –70 dB, and we see there are consider-
able areas below this level in the cases of the trapezoidal rounded gate and the 
raised cosine rounded gate.
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These occur at quite modest oversampling rates and for reasonably 
short filter lengths (15 taps, for example, from r = –7 to +7, and q = 1.5). On 
the other hand, for the rectangular gate there are tap values at only –30 dB for 
the highest parameter values plotted, near r = 10 and q = 2, with only a very 
slow improvement as these increase. 

We see how the weight values fall only slowly at q = 1 for all methods, 
but only a small increase to 1.2, for example, reduces the levels rapidly, except 
for the rectangular gate. The poor performance of the rectangular gate in rate 
of fall of coefficient strength with increasing sampling factor is consistent 
with the discussion of Figure 6.8 in Section 6.2.2.

6.3  Least Squared Error Interpolation

6.3.1  Method of Minimum Residual Error Power

In Section 6.2 we saw how to approximate the time series for the sampled 
delayed waveform, given the time series of a sampled waveform. The ap-
proximation is not exact because only a finite set of FIR filter taps can be 
used in practice. The error in curtailing the filter is not evaluated because 
this will depend on the actual waveform, and the approach of that section is 
independent of the waveform, given that it is of finite bandwidth. In this sec-
tion a different approach is taken; the question tackled is: given a finite length 
filter, what is the set of tap weights that minimizes the error (in power) in the 
delayed waveform series? To answer this question, we do not need the actual 
waveform, but only its power spectrum, and some example spectral shapes are 
taken in Section 6.3.2 to illustrate the theory.

Figure 6.16 shows the FIR filter model, similar to Figure 6.1, with the 
waveforms x added. We do not distinguish between the continuous wave-
forms and the sampled forms, as we know that, correctly interpolated, the 
sampled series form will give the continuous one exactly for a band-limited 
signal. Let the required output waveform be delayed by rT relative to the 
waveform x(t) at the center tap, so it is given by x(t - rT  ). T is the sampling 
period, and r (where –0.5 < r < 0.5) is the delay offset as a fraction of this in-
terval. Although x(t - rT  ) is indicated as the actual filter output in the figure, 
this could only be achieved with an infinite set of taps, correctly weighted; 
the actual output, with the tap weights derived next, is a least squared error  
approximation to this. The error waveform, the difference between the de-
sired output and that given by the FIR filter, is e(t), given by
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( ) ( ) ( )

n

k
k n

e t x t T x t kT wρ
=-

= - - -å
	

(6.26)

Taking the Fourier transform of this equation we have

	
( ) ( )exp( 2 ) ( )exp( 2 ) ( ) ( )

n

k
k n

E f X f if T X f ifkT w X f G fπ ρ π
=-

= - - - =å
	

(6.27)

where

	
( ) exp( 2 ) exp( 2 )

n

k
k n

G f if T ifkT wπ ρ π
=-

= - - -å
	

(6.28)

The error power p, considered to be a function of the set of weights, is 
given by

	

2 2 2
( ) ( ) ( )p E f df X f G f df

¥ ¥

-¥ -¥

= =ò ò
	

(6.29)

Figure 6.16  FIR filter for interpolation.
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(Here the limits of the second integral could be –F/2 and F/2 as x is taken to 
be band limited, with no spectral power outside this interval.) We suppose 

that the waveform is of unit power so that 
2

( ) 1X f df
¥

-¥

=ò . From (6.28) we 

have

	

2| ( ) | 1 2Re exp(2 ( ) ) *

exp(2 ( ) ) * ,

n

r
k n

n n

k h
k n h n

G f if k T w

if k h T w w

p r

p

=−

=− =−

  = − − 
  

+ −

∑

∑ ∑
	

(6.30)

Inserting this into (6.29) we can express the error power in a vector-
matrix form by

	 p(w) = 1 - 2Re{wHa} + wHBw	 (6.31)

where we define

	
T

1[   . . . ]n n nw w w- - +=w ,	 (6.32)

and the elements of the vector a and the matrix B, of sizes 2n+1 and  
(2n+1) ´ (2n+1), respectively, are given by

	 ( )( )ka r k Tρ= -   and  ( )( )khb r k h T= - 	 (6.33)

where 

	

2
( ) ( ) exp(2 )r X f if dfτ π τ

¥

-¥

= ò
	

(6.34)

(The upper suffices T and H indicate matrix transpose and complex con-
jugate (Hermitian) transpose, respectively). We see that the components ak 
and bkh are values of the autocorrelation function of the waveform x, as r is 
the inverse Fourier transform of the power spectrum of x, and this gives the 
autocorrelation function, by the Wiener-Khintchine theorem (see Section 
2.4.3).
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By differentiating p(w) with respect to w* and setting the differential to 
zero (e.g., see Brandwood [1]) we find that p is a minimum when the weight 
vector is w0 given by

	 w0 = B-1a	 (6.35)

and the minimum error power is p0, given by

	 p0 = 1 – aHB-1a	 (6.36)

To calculate w0 and p0 we only require a and B, the components of 
which are all obtained from the autocorrelation function of the waveform. 
We do not need to postulate particular waveforms for x in order to calculate 
the optimum weight and the minimum residue, which will depend on the 
number of taps, the sampling interval, and the delay—only its spectral power 
function. Choosing some simple functions, which approximate likely spectra 
of real signals, it is possible to obtain values for the weights and the residues 
quite easily. In the next section, we use the rules-and-pairs technique to find 
the autocorrelation function for five spectral shapes, and in Section 6.3.3 we 
show some results.

6.3.2  Power Spectra and Autocorrelation Functions

Rectangular Spectrum

In this case, we take the power spectrum |X(  f   )|2 to be given by (1/F   )rect(  f /F   ),  
the factor 1/F being required to normalize the total power to unity. The 
inverse Fourier transform of this is r(t) = sinc(Ft), so we have, for the com-
ponents of a and B,

	 ( )sinc ( )ka k FTρ= -   and  ( )sinc ( )khb k h FT= - 	 (6.37)

The minimum sampling rate is equal to the bandwidth F so the sam-
pling period is T = 1/F, but more generally if the sampling rate is qF then we 
have T = 1/qF, or FT = 1/q so that (6.37) becomes

	 ( )sinc ( )/ka k qρ= -   and  ( )sinc ( )/khb k h q= - 	 (6.38)



162	 Fourier Transforms in Radar and Signal Processing

Triangular Spectrum

A triangular shape of base width F can be formed as the convolution of two 
rectangular functions of width F/2, as in Section 3.3. This has a peak value of 
F/2, and so, with base width F, an area of F  2/4. In order to have a total area of 
unity, representing the total power in the power spectrum, we divide by this 
factor, so the spectrum and the autocorrelation function are given by

	 = Ä2 2( ) (4/ )rect(2 / ) rect(2 / )X f F f F f F   and  2( ) sinc ( /2)r Fτ τ= 	

(6.39)

The required coefficients are thus

	 ( )2sinc ( )/2ka k qρ= -   and  ( )2sinc ( )/2khb k h q= - 	 (6.40)

Raised Cosine Spectrum

The raised cosine power spectrum of unit area is given by (1/F  )(1 + cos(2pf /
F  ))rect( f /F  ).

The transform of the raised cosine, as in Section 3.6, gives the autocor-
relation function sinc(Ft) + 1/2(sinc(Ft - 1) + sinc(Ft + 1)) and hence

	

1 1
sinc sinc 1 sinc 1

2 2
k

k k k
a

q q q
ρ ρ ρæ ö æ ö æ ö- - -= + - + +ç ÷ ç ÷ ç ÷è ø è ø è ø 	

(6.41a)

and 

	

1 1
sinc sinc 1 sinc 1

2 2
kh

k h k h k h
b

q q q

æ ö æ ö æ ö- - -= + - + +ç ÷ ç ÷ ç ÷è ø è ø è ø 	
(6.41b)

Gaussian Spectrum

The region of the domain over which the Gaussian, or normal, distribution 
function is nonzero (its support) is unbounded, so there is, strictly, no mini-
mum sampling (or Nyquist) frequency F corresponding to sampling that will 
represent this function exactly. However, we can approximate the spectrum, 
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for practical purposes, by taking F to be the bandwidth at which the spectral 
power density has fallen to some low level, A decibels below the spectral 
peak, such that sampling at frequency F produces an acceptable low level of 
aliasing. This defines the variance of the spectrum as s 2 = F 2/1.84A. The 
normalized spectrum is

	

2 2 21
( ) exp( /2 )

2
X f f σ

πσ
= -

	
(6.42)

and its transform, from P6 with R5, is

	
2 2 2( ) exp( 2 )r τ π σ τ= - 	 (6.43)

Expressing the variance in terms of the spectral limit level, A, we obtain (with 
FT = 1/q)

π ρ= - -2 2 2exp( 2 ( ) /1.84 )ka k Aq   and 
2 2 2exp( 2 ( ) /1.84 )khb k h Aqπ= - - 	

(6.44)

Trapezoidal Spectrum

As in Section 3.2, we form a symmetrical trapezium with a base of width F 
and a top of width aF (0 < a < 1) by the convolution of two rect functions of 
width (1 – a)F/2 and (1 + a)F/2. These are the widths of the sloping edges 
and the half-height width, respectively (as in Figure 3.1). Using unit rect 
functions this gives a peak height of (1 - a)F/2, which would give an area of 
(1 - a)(1 + a)F 2/4 so we have to divide by this factor to give the normalized 
spectrum:

= + - - Ä +2 2( ) (4/(1 )(1 ) )rect(2 /(1 ) ) rect(2 /(1 ) )X f a a F f a F f a F
	

(6.45)

The transform is

	 ( ) ( )( ) sinc (1 ) /2 sinc (1 ) /2r a F a Fτ τ τ= - + 	 (6.46)
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as shown in Figure 3.2, with a = 3/7. We note that taking a = 1 or a = 0 gives 
the result for the rectangular or triangular spectral case, respectively, as limit-
ing cases of the trapezoidal form. Finally, we have

	 ( ) ( )sinc (1 )( )/2 sinc (1 )( )/2ka a k q a k qρ ρ= - - + - 	 (6.47a)

and

	 ( ) ( )sinc (1 )( )/2 sinc (1 )( )/2khb a k h q a k h q= - - + - 	 (6.47b)

6.3.3  Error Power Levels

The error power, given in (6.36) is shown, in contour plot form, in Fig-
ure 6.17, for two of these spectral shapes, the rectangular, using (6.38), and 
the raised cosine, using (6.41). The errors are for the worst case, a delay of 
half a sample period (a = 0.5). These give the powers as a function of both 
the number of taps used and the oversampling factor. Although the contour 
lines, which are at 5-dB intervals, are continuous, only the values at integral 
tap numbers are meaningful, of course, and the error powers are only calcu-
lated at these abscissa values. These plots show that even modest oversam-
pling rates are effective in reducing the number of taps for a given required 
mismatch level or alternatively greatly reducing the mismatch power for a 
fixed number of taps. For example, with nine taps, the mismatch power for 
the rectangular spectrum is reduced from above –15 dB to about –53 dB on 
increasing the rate from 1 to 1.5 (oversampling by 50 percent). The general 
patterns for these two spectra are quite similar, though the more compact 
raised cosine spectrum has lower mismatch power than the rectangular spec-
trum at the same parameter values, as might be expected. (For this spectrum 
and nine taps, the power falls from –30 dB with no oversampling to nearly 
–60 dB with 40 percent oversampling.) The results for the other spectral 
shapes are similar and generally between these two.

Figure 6.18 presents results for the rectangular spectrum with an ex-
panded range of taps and a reduced range of oversampling factors. We see 
that even with 60 taps, the mismatch power when sampling at the mini-
mum rate is about –22 dB, while with 10 percent oversampling this level 
is achieved using only eight taps, and at 25 percent only five taps are re-
quired. We also see that using 20 taps, the mismatch power at the minimum  
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sampling rate is about -17 dB but this falls to –50 dB at an oversampling 
rate of only 1.15. These figures show that even with quite low oversampling 
rates, considerable reductions in computation for a given performance level 
or considerable improvement in performance for a given computational 
effort is achievable.

6.4  Application to Generation of Simulated Gaussian Clutter

Here we take a particular example to show that that taking advantage of 
oversampling can give a very substantial saving in computation. The prob-
lem considered is to generate simulated clutter, as seen in a given range gate, 
for modeling radar performance. In this case, the clutter is taken to have a 
complex amplitude distribution that is normal (or Gaussian) and also has a 
Gaussian power spectrum. We show first, in Section 6.4.1, that the required 
waveform can be generated by an FIR filter fed with a sequence of pseudoran-
dom samples from a normal distribution at the required sample rate, which 

Figure 6.18  Mismatch power for rectangular spectrum.
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is the radar pulse repetition frequency (PRF). As the bandwidth of the clut-
ter waveform is very much lower than the radar PRF, the clutter waveform 
is greatly oversampled, and the cost in computation is high. (Despite high 
speeds of computation, the large, complex simulations that require clutter 
in many range gates in this radar example can take significant times to carry 
out, and efficient computation is of value.) In Section 6.4.2, we show that 
the clutter waveform can be generated at a much lower sampling rate, though 
still oversampled, and then efficient interpolation is used to give the samples 
at the PRF, as required. This is shown to reduce the overall computation 
requirement by a very large factor. The parameters we use for this example 
are 10 kHz for the PRF and 10 Hz standard deviation for the spectrum of 
the clutter waveform. 

6.4.1  Direct Generation of Gaussian Clutter Waveform 

Any linear combination of independent normally distributed sequences will 
also be normally distributed (see Mardia et al. [2], for example). An FIR filter 
of length L fed with a sequence of samples from a normal distribution forms 
a linear combination of L samples and will produce output samples at inter-
vals L, which are independent and normally distributed. The output samples 
that are at less than L sample intervals apart are not independent, as they are 
linear combinations of partially overlapping sets of samples, and the choice 
of FIR filter weights will determine the degree of dependence between suc-
cessive samples (i.e., the rate of change of the values, or, equivalently, the fre-
quency spectrum of the output sequence). If |H(  f   )|2 is the power spectrum  
required, then the square root of this gives (within an arbitrary phase factor) 
the required amplitude spectrum and the inverse Fourier transform of this 
gives the required filter impulse response. In the case of an FIR filter, the 
filter weights, or tap coefficients, are set to the sampled values of the required 
impulse response (Figure 6.19). (It is clear that an impulse at the input will 
emerge at the output as a series of impulses scaled by the coefficients, and this 
is the filter impulse response.) If f is the bandwidth of the spectrum, then we 
know, from Section 6.4, that the sampling rate must be f or greater, and so 
the delay between taps in the FIR filter must be 1/f or less. The intervals at 
which the Gaussian impulses are generated and fed into the filter to give the 
output Gaussian sequence must match this delay, of course. (In this case, the 
sampling rate is the PRF F, which is very much greater than the bandwidth 
of the spectrum.)
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In the case of a Gaussian power spectrum of standard deviation s and 
3dB bandwidth 2.36s we have

	 H(  f   )2 ~ exp(-f   2/2s 2)	 (6.48)

where we write ~ to indicate we are not concerned here with the particular 
scaling factor. As in Section 6.3.2, we have an infinite frequency region over 
which the spectral power density is finite, so we approximate the spectrum 
as being finite over the bandwidth 2rs such that the density at ± rs is small 
enough to allow us to neglect the spectral tails and hence the aliasing power. 
At these points, we have H(±rs)2 = exp(–r2/2), and this has fallen to –35 dB, 
as a suitable low level below the peak, at r = Ö(7ln10) » 4. In this case the 
total bandwidth, outside which there is considered to be negligible spectral 
power, is 8s. In this example this is 80 Hz, which is very low compared with 
the PRF of 10 kHz, and we see that the required clutter waveform is over
sampled by a factor of 125.

From (6.47) we have σ π σ π− = −~ 2 2 2( ) exp( /4 ) exp( ( /2 ) )H f f f  
and so, using P6 and R5, we obtain, for the required filter impulse response,

	
π σ π π σ− = −~ 2 2 2 2( ) exp( (2 ) ) exp( 4 )h t t t

	
(6.49)

The FIR filter coefficients from the sampled impulse response are given by 

	
2 2 2 2( ) exp( 4 )rh h rT r Tπ σ= = - 	 (6.50)

where T = 1/F is the sampling interval. If we take coefficients to the -40 dB 
level, then we have 8p 2s 2rm

2T 2 = 4ln10, or

	

ln10/2
0.342m

F F
r

π σ σ
= =

	
(6.51)

where ±rm
 are the indices of the first and last coefficients.

We can now estimate the amount of computation required to pro-
duce the simulated clutter directly. With F = 104 Hz and s = 10 Hz, we 
see that rm = 342, so there are 685 taps, and this is the number of complex  
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multiplications needed for each output sample (in addition to generating the 
inputs from a normal distribution).

6.4.2  Efficient Clutter Waveform Generation, Using Interpolation

In this case we generate Gaussian clutter with the required bandwidth but at 
a much lower sampling rate, fs, and then interpolate to obtain the samples 
at the required rate F (Figure 6.20). Thus, we will need F/fs times as many 
interpolations as samples. From Section 6.2, we know that with moderate 
oversampling rates, we can achieve good interpolation with very few taps. Let 
the number of taps in the interpolation filter be m, and the number in the 
Gaussian FIR filter is, from (6.51), 0.684 fs/s (+1, which we neglect) so that 
the average number of complex multiplications per output sample is 

	 ν σ σ= + = + 2(0.684 / )/( / ) 0.684 /s s sm f F f m f F 	 (6.52)

We have taken the effective bandwidth of the Gaussian spectrum (the width 
at the –35dB points) to be 8s, and with an oversampling factor of q we have 
fs = 8sq, giving

	
243.7 /m q Fν σ= + 	 (6.53)

Figure 6.20  Gaussian waveform generation with interpolation.
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In Figure 6.12 we see that with an oversampling factor of 3 we need 
only four taps, weighted above the -40-dB level, to interpolate up to the 
maximum time shift of half the sampling interval. Using these figures (i.e.,  
m = 4, q = 3, F = 104 Hz, and s = 10 Hz), in (6.53) we obtain n = 4.4, a factor 
of over 150 lower than in the direct sampling case. There will have to be F/2fs 
sets of four weights (or 21 sets in this example, as fs = 240 Hz) to interpolate 
from -1/2fs to +1/2fs (for a symmetrical bank of F/fs filters).

6.5  Resampling

An application of interpolation is to obtain a resampled time series. In this 
case, data has been obtained by sampling some waveform at one frequency, 
F1, but the series that would have been obtained by sampling this waveform 
at a different frequency, F2, is now required. We consider first the case where 
F1/F2 is rational and so can be expressed in the form n1/n2 with n1 and n2 
mutually prime (with no common factor). Figure 6.21 illustrates the method, 
where we have take n1 = 4 and n2 = 7, and F1/F2 = 4/7. Over a time interval 
T = n1T1 = n2T2, the pattern repeats, where T1 = 1/F1 and T2 = 1/F2, and if 
the output sequence is timed so that some samples are at zero shift relative 
to the input, then there will be further time shifts of . . . –2, –1, 0, 1, 2, . . .  
in units of DT = T/n1n2. The input sample period is T1 = T/n1 = n2DT, so 
n2 delays are required, from 0 to n2 – 1 in units of DT. Allowing negative 
relative delays, we require delays from –(n2-1)/2 to +(n2-1)/2 for n2 odd, or 
-n2/2+1 to +n2/2 for n2 even, keeping the delay magnitudes to within half a 
period of F1. In Figure 6.21, the required time shifts for the different pulses 
are shown, in units of DT, with F1/F2 = 4/7, and we see the delays required 
are from -3DT to +3DT. Over a period of four input pulse intervals, there are 
seven output pulses, with seven different delays, one of which is zero. We also 
see that if the frequency ratio were inverted in this figure, so that the input 

Figure 6.21  Resampling.
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samples are shown by the dashed lines and the outputs by the continuous 
lines, then four time shifts, of –1, +2, +1 and zero only, relative to the nearest 
input sample, are required.

If the input sequence is oversampled, we can use the results of Sec-
tion 6.3.2 to reduce the size of the sampling FIR filters and so achieve quite 
economical resampling, requiring only a few multiplications for each out-
put sample. Only n2 -1 time shifts are needed, and the number of distinct 
vectors defining the FIR filter coefficients is only (n2 - 1)/2 (n2 odd) or 
n2/2 (n2 even) (as the set coefficients are the same for positive and negative 
shifts, applied in reverse order, with a shift of the input sequence), and 
these can be precomputed and stored. The processing need not be in real 
time, of course—with the input and output pulses arriving and departing 
at the actual intervals specified. If the input data were stored, after sam-
pling in real time, of course, the output sequence could then be generated 
at leisure, as these samples are the values that would have been obtained by 
real-time sampling at the new frequency. However, if real-time resampling 
is required (e.g., on continuous data), then economical computation could 
be particularly useful.

If the frequency ratio is not rational, some modifications are necessary. 
In the case of a block of stored data, it may be acceptable to find a good 
rational approximation to this ratio. As this is an approximation, the output 
frequency will not be exactly the specified frequency, and if the waveform is 
regenerated as if the samples were at this frequency (e.g., by a standard sound 
card, in the case of audio data), then there will be a slight frequency scaling 
of the whole signal. In the case of continuous, real-time data, this would re-
quire dropping, or inserting, a sample from time to time, generally causing an 
unacceptable distortion of the sound. An alternative would be to accurately 
calculate the required delay for each pulse and then the FIR filter tap weights, 
using equations from Section 6.2. Further, the calculated delay could be ap-
proximated to the nearest of a suitably fine set of values over the half output 
sample period (positive or negative) and the precalculated set of weights for 
this delay would be applied. (The topic of resampling is well covered in the 
literature, but the emphasis here is on the implementation and benefit of 
oversampling.)

6.6  Summary 

In this chapter, we have shown how the rules-and-pairs method can be used 
to obtain results in the field of interpolation for a sampled time series, simply 
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and with insight into the underlying principles. The first main application 
was to find the FIR filter weights that would provide interpolation for any 
band-limited signal. In principle, this filter will be infinitely long for perfect 
interpolation, so in practice a finite filter will always give only an approxi-
mation to the correct interpolated waveform. However, a filter of suitable 
length will give as good an approximation as may be required. For waveforms 
sampled at the minimum rate, this could be quite long (perhaps one hundred 
or more taps, for good fidelity), but if the sampling is at a higher rate (i.e., the 
waveform is oversampled), the filter length for a given performance is found 
to fall quite dramatically. This saving in computation could be valuable in 
large simulations, or in providing real-time delayed waveforms in wide band-
width systems, for example. 

This first approach does not give a definite estimate of the accuracy of 
the interpolated waveform, which could be measured, for example, by com-
paring this waveform from the FIR filter with the exact delayed waveform. 
This will depend on the spectrum of the waveform, and no particular spec-
trum, within the specified finite bandwidth, is assumed. This is the subject 
of the second approach, which is to define the filter that will minimize the 
power in the error signal (i.e., the difference between the interpolated series 
and the exact series) for a given power spectrum. In this case, a few simple 
spectral shapes were taken to illustrate the technique. In practice, the actual 
signal spectrum could perhaps be considered a good approximation to one of 
these. In fact, the actual shape does not make a great deal of difference, given 
a reasonable degree of oversampling, with the rectangular spectrum being 
rather the poorest, but also not a likely form, in practice. Again, oversampling 
can be used to reduce greatly the filter length and the number of multiplica-
tions for each output sample.

Two applications of interpolation were studied. The first was for the 
case of generating a greatly oversampled Gaussian waveform. It was shown 
that generating the Gaussian waveform at a much lower oversampled rate and 
then interpolating could give a great reduction (two orders of magnitude) 
in the amount of computation needed. The second example was the case of 
resampling, where a sample sequence is required corresponding to having 
sampled a waveform at a different rate from that actually used. (The previ-
ous example is a special case of resampling, where the output frequency is a 
simple multiple of the input.) Again, this process could be made considerably 
more economical if the input sequence is oversampled. These examples may 
not solve any reader’s actual problem, but they may provide indications of 
how to do so, in particular with the simplification and clarity given by the 
rules-and-pairs approach.
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7
Equalization

7.1  Introduction 

In this chapter, we consider the problem of compensating for some known 
frequency distortion over a given band. One source of distortion is an un-
wanted delay and the resulting distortion is a phase variation, that is linear 
with frequency. This particular case, of delay mismatch, was the subject of 
Chapter 6 and the method of correction, or equalization, used in Section 7.5 
here is basically the same as in Section 6.3. However we are also concerned 
with other forms of frequency distortion, so in this chapter the approach is 
more general and amplitude variation over the band is also included. In order 
to do this, a new Fourier transform pair is introduced in Section 7.3, the 
ramp function, which is a linear slope across the band, and its transform, the 
snc1 function, which is a scaled first derivative of the sinc function. In fact, 
a set of transform pairs is defined. These are the integer powers of the linear 
variation across the band (rampr) and the scaled derivatives of correspond-
ing order of the sinc function (sncr). The sinc and rect functions are seen to 
be the first (or zeroth-order) members of these sets. With these results, any 
amplitude variation, expressed as a polynomial function of frequency across 
the band of interest, has a Fourier transform that is a sum of sncr functions. A 
simple example of amplitude equalization is given in Section 7.4.

The method of equalization outlined in Section 7.2 is based on mini-
mizing a weighted mean squared error across the band. The error at each 
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frequency is the (complex) amplitude mismatch between the equalized re-
sult (normally imperfect) and the ideal, or perfectly equalized, response. The 
weighting, as in Section 6.3, is given by the spectral power density function 
of the signal. This has the advantage that the equalization will tend to be best 
where there is most signal power and hence the effect of mismatch would be 
the most serious. If no weighting is required (e.g., if the signal spectrum is to-
tally unknown and uniform emphasis across the band is considered most ap-
propriate), then we simply replace the spectral function by the rect function. 
It is not likely that the spectrum needs to be accurately known and specified 
in practice, as a reasonable approximation to the spectral shape will give a 
result close to that given by an exact form and considerably better than the 
rather unrealistic unweighted (or constant) shape defined by the rect func-
tion, which gives full weight up to the very edges of the band, where normally 
the signal power will have fallen to a negligible level. Thus, as in Section 6.3, 
simplifying the spectrum to one of a few tractable forms should be satisfac-
tory. Suitable forms to choose from include the normal (or Gaussian) shape, 
the raised cosine, or the (symmetric) trapezoidal shape.

In Sections 7.6 and 7.7, we apply the theory given in Sections 7.2 and 
7.3 to a specific problem, that of forming broadband sum and difference 
beams as required for radars using monopulse. We take the simple example of 
a 16-element regular linear array to illustrate the application. It would not be 
difficult to extend the problem to larger, perhaps planar (two-dimensional) 
arrays—this would increase the number of channels to be equalized, each 
with its own compensation requirement, but the actual form of the equaliza-
tion calculation is essentially the same in each case, with different parameters. 
Thus, although this simple array may not be particularly likely to be used in 
practice, it is quite adequate to illustrate the benefit of equalization in this ap-
plication, showing a striking improvement obtained with quite modest com-
putational requirements, given a moderate degree of oversampling. 

The radar sum beam (i.e., its normal search beam, giving maximum 
signal to noise ratio) requires only delay compensation, and this could be 
provided for each element by the results of Section 6.3. However, Section 7.6 
includes results for the full array response with equalization, not considered 
in Chapter 6, and also provides an introduction to Section 7.7, where the dif-
ference beam is considered. This beam, one form of which can be defined as 
a derivative (with respect to angle) of the sum beam, is used for fine angular 
position measurement. The required form should have a zero response in the 
radar look direction, for which the sum beam response is a maximum. For 
this example, we carry out equalization in each channel in amplitude as well 
as phase, and the results of Section 7.3 are now required. 
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7.2  Basic Approach

The problem to be tackled is that of compensating for a given frequency-
dependent distortion in a communications channel, as illustrated in Figure 
7.1. A waveform u with baseband spectrum U is received with some chan-
nel distortion G, such that at (baseband) frequency f the spectral compo-
nent received is G(  f   )U(  f   ) instead of just U(  f   ). The signal is then passed 
through a filter with frequency response K(  f   ) such that the output spectrum,  
K(  f   )G(  f   )U(  f   ), is close to the undistorted signal spectrum, U(  f   ). Clearly 
the ideal required filter response at frequency f is simply K(  f   ) = 1/G(  f   ), but 
in practice this filter may not be exactly realizable (e.g., if it is a finite impulse 
response digital filter, except in the unlikely case that K consists of a set of 
d-functions corresponding to a number of delays at multiples of the sampling 
interval). In this case, we design the filter to give a best fit, in some sense, of 
K(  f   )G(  f   )U(  f   ) to U(  f   ) over the signal bandwidth. In fact the fit we choose 
is the least squared error solution, a natural and widely used criterion that has 
the advantage of yielding a tractable solution, at least in principle, and this is 
found to require the application of Fourier transforms. In order to compen-
sate for G, we need to know the form of this function. This may be known 
from the nature of the system, as in the application in Sections 7.6 and 7.7, 
or a reasonable estimate may be available from channel measurements. In 
Figure 7.1 we show the incoming signal on a carrier, at frequency f0, which is 
generally the case for radio and radar waveforms. This is down-converted to 
complex baseband (often in more than one mixing process) and, we assume, 
digitized for processing, including equalization and detection. 

The amplitude error between the filter output and the desired response 
in an infinitesimal band df at frequency f is given by (K(  f   )G(  f   )U(  f   ) - 
U(  f   ))df, so the total squared error is 

	

¥

-¥
-ò 2 2

( ) ( ) 1 ( )K f G f U f df
	

(7.1)

Figure 7.1  Equalization in a communications channel.
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We note that as the signal spectrum U is included in the error expres-
sion, we will actually perform a weighted squared error match of KG to unity 
at all frequencies (the “equalized” solution), where the weighting function 
is the spectral power density function of the signal. This means that more 
emphasis is placed on compensating for distortion in regions where there is 
more signal power, which is generally preferable to compensating with uni-
form emphasis over the whole band, including parts where there may be little 
or no signal power.

The equalizing filter is of the form shown in Figure 6.1 or Figure 6.16, 
and if the filter coefficients are given by vr for delay rT, where T is the sam-
pling period, then the impulse response of the filter, of length 2n + 1 taps, is 
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(7.2)

and its frequency response is the Fourier transform of this, which is (from 
P1b and R6a)
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Thus, we can put
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(7.4)

The error power that is to be minimized, as a function of the weight 
vector v (where v = [v–n v–n+1 . . . . vn]T), is given from (7.1), on substituting 
for KG – 1 from (7.4) by
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where the summations are from –n to n. In vector-matrix form, this  
becomes

	 p(v) = vHBv – 2Re(vHa) + c	 (7.5)

where the components of a and B are given by
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(7.6)

and
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(7.7)

and c is ò|U(  f   )|2df. We can normalize the error power relative to the signal 
power by dividing by c or, equivalently, by normalizing U so that c = 1; we 
will take this to be the case. We note that (7.6) and (7.7) are in the form of 
inverse Fourier transforms. If r1(t) and G(  f   )*|U(  f   )|2 are a Fourier pair, and 
so are r2(t) and |G(  f   )|2|U(  f   )|2, then from (7.6) and (7.7) we have

	 1( )ra rTρ=   and  ( )2 ( )rsb r s Tρ= - 	 (7.8)

Here T is the sampling interval, so if there is oversampling by a factor q 
we have T = 1/qF. As in Section 6.3 we differentiate p in (7.5) with respect to 
v to find that the mismatch error is minimized at v0, given by

	 v0 = B-1a	 (7.9)

and the minimum (normalized) squared error is 

	 p(v0) = 1 – aHB-1a = 1 – aHv0	 (7.10)
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We note that aHB–1a is real as, from (7.7), B is Hermitian (i.e., bsr = 
brs*). Thus, in order to find the tap weights for the equalization filter that 
are optimum (in the sense of giving least squared error), we need only |U|2, 
the power spectrum of the signal and G, the complex channel response, and 
then we perform the Fourier transforms defined in (7.6) and (7.7) to give 
the components of a and B, followed by some simple matrix processing. The 
derivation of a and B in the case of a simple delay mismatch has been given 
earlier in Section 6.3, but the cases of frequency-dependent amplitude mis-
matches as well are considered in Sections 7.4 and 7.7. The delay mismatch 
is a linear phase dependence on frequency, but we do not go on to cover the 
case of nonlinear phase correction, as the Fourier methods illustrated here are 
less convenient for handling phase functions rather than amplitude functions 
(which are normally, but not necessarily, real).

To summarize the method for equalization:

1.	 We need an expression for the distortion as a function of frequency, 
G(  f   ), and an expression for the spectral weighting across the band, 
|U(  f   )|2, which is taken to be zero outside the signal band.

2.	 We obtain the functions of time r1(t) and r2(t) as the inverse  
Fourier transforms of G(  f   )*|U(  f   )|2 and |G(  f   )|2|U(  f   )|2 to obtain 
the components of a and B as in (7.8), where T is the sampling 
interval and filter tap spacing.

3.	 The optimum weight vector for the FIR filter is v0, given by (7.9).

A number of comments may be made on the rather concise summary 
here:

(a)	 If the distortion is given by (or approximated as) a polynomial func-
tion, often, but not necessarily, of low order (linear or quadratic), 
then the ramp and snc functions introduced later (and given as P13a 
and P13b in the pairs table) are generally necessary for the solution.

(b)	In the simplest case, we take |U(  f   )|2 to be rect(  f  /F ). This corre-
sponds to no weighting across the band and will give a useful degree 
of equalization.

(c)	 For some functions G and |U |2 the products G*|U |2 and |G|2|U|2 
may not be easy to transform. If their separate transforms are obtain-
able, then the convolution of these will give the required transforms 
of the products, by R7b. If |U|2 can be approximated as a raised 
cosine function, then, as its transform includes three d-functions  
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(see Section 3.6), this should give a solution in terms of the trans-
form of G. If it is approximated as a trapezoidal (or triangular) 
shape, then the approach will be to split the transform into three 
(or two) intervals in the frequency domain.

7.3  ramp and sncr Functions

Although the function G, describing the channel frequency response that is 
to be compensated, may be defined over the whole frequency domain, we are 
interested only in its form in the frequency interval containing significant sig-
nal energy. If, as we have generally assumed, the signal is limited (after down-
conversion to complex baseband) to the band (-F/2,F/2), then it will make 
no difference in the Fourier transform integrals of (7.6) and (7.7) if the func-
tion rect(f  /F ) is included, as the factor |U(f )|2 is taken to be zero anyway in 
the region outside the signal band. (We do not want to optimize the response 
over a band greater than that of the signal. This solution will generally be 
suboptimal for the given signal.) Thus, if we consider first the case where G is 
a linear function of frequency, to avoid the problem of the function G(  f   ) =  
af + b being unbounded as f ® ±¥, we can take, more conveniently, G(  f   ) =  
(af + b)rect(f  /F ). In order to handle polynomial functions of this kind, we 
introduce the function ramp defined by

	 ramp(x) = 2xrect(x)	 (7.11)

and this is illustrated in Figure 7.2, with its squared and cubed forms.
Thus, ramp(x) = 2x on –1/2 < x < 1/2, and ramp(x) = 0 for x < -1/2 

and x > 1/2. For completeness, we can take ramp(±1/2) = ±1/2. As the rect 
function has the property rectr(x) = rect(x), we see that 

	 rampr(x) = (2x)rrect(x),	 (7.12)

so that we can express a polynomial in x on the interval (–1/2,1/2) as a poly-
nomial in ramp(x):

	 (a0 + a1x + a2x2 + . . .)rect(x) = a0ramp0(x) 
	       + (a1/2)ramp(x) + (a2/4)ramp2(x) + . . .	 (7.13)

To find the Fourier transform of ramp, we use rule R9b:

	 –2pixu(x) Û U ¢(y)	 (7.14)
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where u(x) Û U(y) and the prime denotes the derivative. If we define V(y) as 
U¢(y), with inverse Fourier transform v(x), then, from (7.14), v(x) = -2pixu(x) 
and also, by Rule 9b, -2pixv(x) Û V ¢(y). Substituting for v and V gives

	 (–2pix)2u(x) Û U²(y)	

and, in general, for any positive integer r,

	 (–2pix)ru(x) Û U (r)(y)	 (7.15)

Figure 7.2  ramp functions.
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where U(r) is the rth derivative of U. Now putting u(x) = rect(x) and U(y) = 
sinc(y), from Pair 3a, then substituting in (7.15), we obtain

	 (-pi)r(2x)rrect(x) Û sinc(r)(y)	 (7.16)

If we introduce the notation 

	 π
= 1

snc ( ) (sinc( ))
r

r r r
d

y y
dy 	

(7.17)

then, from (7.12), (7.16) becomes

	 rampr(x) Û i rsncr(y)	 (7.18)

(Equation (7.18) is Pair 13a in Table 2.2.) We note, from (7.12) and (7.17) 
that we can write, formally,

	 ramp0(x) = rect(x) and snc0(y) = sinc(y)	 (7.19)

From (7.17), carrying out the differentiation, we find
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(7.20)

This holds for all real values of y except for y = 0, so we define snc1(0) = 0, 
(the limiting value of snc1(y) as y ® +0 and y ® – 0) to ensure that snc1 is 
continuous and, in fact, analytic. Differentiating again we obtain

	 dy yπ π
= = - - 1

2 1 0
2snc ( )1

snc ( ) snc ( ) snc ( )
yd

y y y
	

(7.21)

with snc2(0) = –1/3, obtained by taking the first two terms in the Taylor 
expansions of the functions sinc and cos with y ® ±0, or see (7.27). These 
three functions have been plotted in Figure 7.3. We note that the even 
order snc functions are even functions and the odd ones are odd functions. 
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Figure 7.3  First three snc functions.
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The peak magnitude (positive or negative) of the functions falls as the order 
rises.

We note that unlike (7.20), (7.21) contains all the trigonometric func-
tions in snc functions only. By differentiating further, using (7.17) we can 
obtain a recursion formula, of which (7.21) is the first example, from which 
higher-order snc functions can be found:

	 π
- -

-
+ -+ = - ³1 3

2
snc ( ) ( 2)snc ( )

snc ( ) snc ( ) ( 2)n n
n n

n y n y
y y n

y 	
(7.22)

By expressing sin(px) in its Taylor series form and differentiating term 
by term for snc1 and snc2, we find, for the first three snc functions,
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(The n = 0 term is dropped in (7.24), as it is zero. The next term dropped is 
for n = 1 in snc3, which contains the factor 2n – 2.) In general we can put
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where ëpû is the highest integer in p, so ( 1)/2 ( 1)/2r r+ = +ê úë û  for r odd and 
( 1)/2 /2r r+ =ê úë û  for r even. The even-order series contain only even powers 

of y and so are even functions, and the odd series contain only odd powers 
and are odd functions. Thus, for all the odd-order snc functions, we have 
sncr(0) = 0, while from (7.26) we see that for r even, say r = 2s, when y = 0 
the only nonzero term is the first, for which n = r/2 = s, so that
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We note that cosc has been used elsewhere to mean the derivative 
d(sincy)/dy, which would equal psnc1y as defined here. It seems that the de-
rivative with the factor 1/p included, as in (7.17), is more consistent with the 
sinc function, as this derivative (and subsequent ones) can all be written as 
power series in py as in (7.23) to (7.26).

A MATLAB program for evaluating sncr functions (including snc0 
or sinc) is included in the disk provided with this book. It uses (7.22) for  
n > 2.

7.4  Example of Amplitude Equalization

It has already been remarked that the problem of delay equalization as con-
sidered here has been covered in Section 6.3 under the subject of sampled 
waveform delay, so no further illustrations are given here. However, the sub-
ject of amplitude equalization has not been illustrated before, so an example 
using the results of Section 7.3 is presented in this section, showing how ef-
fective the method is and with how little computation it is achieved if there 
is a degree of oversampling. We take the simple case of a linear amplitude 
distortion, with an unweighted squared error function over the bandwidth 
(equivalent to a rect function power spectrum). Following the program given 
at the end of Section 7.2, we note 

1.	 The response to be matched is of the form G(  f   ) = 1 + af over 
the bandwidth (taken to be unity), and the weighting function is 
|U(  f   )|2 = rect(  f   ) [or rect(  f  /F ) with F = 1]. 

2.	 Thus we have G(  f   )*|U(  f   )|2 = rect(f  ) + (a/2)ramp(  f   ) with inverse 
transform snc0(t) – i(a/2)snc1(t). Also |G(  f   )|2|U(  f   )|2 = rect(  f   )(1 + 
2af + a2f  2) = rect(f  ) + aramp(  f   ) + (a2/4)ramp2(  f   ), with transform 
snc0(t) – iasnc1(t) – (a2/4)snc2(t). Putting t values rT and (r – s)T for 
t into these expressions gives a and B.

3.	 Hence, we obtain the optimizing weights from (7.9).

We see that the Fourier transforms of G required for the components 
of a include a transform of the ramp function (i.e., a snc1 function) as well 
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as a snc0 from the rect function. As we require the transform of G 2(  f   ) to 
determine the elements of B, we also have a ramp2 function, with its trans-
form snc2. There is an important detail to notice in that they are actually in-
verse Fourier transforms that are required—see (7.6) and (7.7). In many cases 
(using symmetric functions, in particular), there is no distinction between 
forward and inverse transforms, but here we have odd functions (ramp and 
snc1). We see from (7.18) that rampr (forward) transforms to irsncr so, from 
Rule 4, we have irsncr(x) Û rampr(–y) = (– 1)rrampr(y), as ramp is an odd 
function. Multiplying by –ir, we have (Pair 13b) sncr(x) Û irrampr(y).

From this we see that the inverse transform of ramp is –isnc1 and of 
ramp2 it is –snc2. These results are also used in this sum beam equalization in 
Section 7.6 and in the difference beam equalization in Section 7.7.

For Figure 7.4 we have taken a linear amplitude distortion for G(f   ) 
of 10 dB across the band, from an amplitude of 0.48 to 1.52. Using a 

Figure 7.4  �Equalization of linear amplitude distortion. (a) m = 7, q = 1, (b) m = 7, q = 1.5, 
(c) m = 47, q = 1, and (d) m = 7, q = 1.5, delay 0.5.
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seven-element equalizing filter and a relative sampling rate of 1 (no oversam-
pling), we get a useful degree of equalization (Figure 7.4(a)), using (7.6), (7.7) 
and (7.10). The figure shows the filter response K, which should ideally be 
the reciprocal of G over the band, as well as the equalized response, KG. If we  
increase the oversampling rate to 1.5, or 50 percent oversampling, the equaliza-
tion becomes very good (Figure 7.4(b)). To get a comparable ripple performance 
at the basic sampling rate, we see that we have to increase the number of filter taps 
greatly—even at 47 taps (Figure 7.4(c)) the ripples are greater; the higher ripple 
frequency is due to the much greater time spread of the taps in this case.

Finally, for Figure 7.4(d), there was both amplitude variation and delay 
to be compensated. The same linear amplitude function was taken, with a 
delay error of 0.5 sampling interval, and the filter parameters are as for Figure 
7.4(b). In this case, the functions have some residual phase variation so the 
modulus has been plotted, and we see that this has been very well equalized 
within the band—almost identically with the case of no delay error—but var-
ies significantly (particularly on the positive frequency side) outside the band. 
The phases of K, G, and KG are also available from the program and show the 
phase has been accurately equalized (to zero) across the band. 

The results of Figure 7.4 can be reproduced using MATLAB programs 
Fig704 and Fig704d on the accompanying disk, but this also contains an extra 
program Fig704X, showing excellent equalization of a quadratic amplitude 
distortion. In this case, the components of a, depending on G, the quadratic 
distortion, require snc0 (or sinc), snc1, and snc2, but the components of B, 
dependent on G 2, also require values of snc3 and snc4, making considerable 
use of the program snc included on the disk. Again, oversampling is valuable 
in giving good performance from quite short filters.

7.5  Equalization for Broadband Array Radar 

Many antennas for use in radio, radar, or sonar systems consist of an array 
of simple elements, rather than, in some radio cases, a single element, or, for 
radar and satellite communications, a large parabolic dish or even an expo-
nential horn. For maximum signal-to-noise ratio (whether on transmission or 
reception) in a particular direction, the signals passing through the elements 
must be adjusted in phase so that they sum in phase at the frequency of op-
eration. Of course, in practice all signals occupy a finite bandwidth so that 
in principle different phase shifts are needed across this band, as it is really 
a time difference, dependent on element position, that needs compensation. 
However, many signals are narrowband, in that the fractional bandwidth, 



	 Equalization	 189

the ratio of the bandwidth to the center, or carrier, frequency is small. In this 
case the phase shift required across the band is close to that at the center fre-
quency, and, as it is much easier to apply a simple (frequency-independent) 
phase shift than a delay, this approximation can be used. Whether or not 
this approximation is acceptable in a given system depends not only on the 
fractional bandwidth, but also on the size, or aperture, of the array. Thus, 
narrowband is a relative term, and perhaps the most appropriate definition 
of a narrowband signal in this context is that it can be termed narrowband 
if ignoring its finite bandwidth leads to negligible, or practically acceptable, 
errors. Conversely, a broadband signal as defined here is one where this is not 
the case, and allowance, or compensation, must be made for the different fre-
quencies across its bandwidth to maintain the required performance. (There 
seems to be no standard definition of these terms, but this qualitative defini-
tion seems to be clearer in some ways than a quantitative one; for a very small 
array a 5 percent band may be “narrow” in this sense, while a 1 percent band 
may be “broad” in the context of a very large, and hence highly frequency-
sensitive, aperture. We will use wideband for the case where the band of inter-
est extends down to 0 Hz; this is the same as the 200 percent broadband case 
and is consistent with the use of the term in Section 5.3.)

The problem is illustrated in Figure 7.5 for a simple linear array. An ele-
ment at distance d from the center of the array receives the signal from direction 
q, relative to broadside, at time t earlier than at the reference point, given by

	 t(q) = dsinq/c	 (7.28)

where c is the velocity of light. Thus, in principle the output of this element 
should be delayed by t(q) to steer the array in direction q, but, as phase shifts 

Figure 7.5  Array steering.
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are much more easily implemented than delays, it is usual, using the narrow-
band condition, to introduce the phase shift 

	 f(q) = 2pf  0t(q) = 2p(d/l 0)sinq	 (7.29)

Here f0 is the center frequency, l0 is the corresponding wavelength 
(such that f0l0 = c), and d is the distance of the element from the reference 
point. (More generally, if the element position vector is r, and the unit vector 
in the direction of interest is e(a,e) for azimuth a and elevation e, then the 
required phase shift to steer in direction (a,e) is 2pr.e(a,e)/l0, where r.e is 
the scalar product of these vectors). This phase shift is correct at the center 
frequency but is progressively in error for signal components at frequencies 
offset from the center, and for the broadband case, where this approximation 
is not acceptable, we need better matching of the delay. 

Summing the element outputs in phase produces the peak response in the 
steered direction, and this form of response is known as the sum beam. (Strictly 
this is only the array factor; for the full response, this is multiplied by the ele-
ment response, in the case of essentially identical elements). For high angular 
accuracy in radar a technique known as monopulse measurement is used. This 
requires a difference beam, which ideally has zero gain in the look direction, 
and a linear amplitude response near this direction. The angular offset of a 
target from the look direction is found by observing the level of its echo in the 
difference beam (normalized by the sum beam response) and dividing by the 
known slope of this beam. One form of difference beam, in the case of a regular 
linear or planar array, is obtained by dividing the array into two equal parts and 
subtracting the responses of the two halves (hence the origin of the name), but 
an alternative approach, which allows a difference beam to be formed with a 
more general geometry, is to form a beam that is the angular derivative of the 
sum beam. The form that will be considered in Section 7.7 is based on this. 
(We note that as there is no unique form of sum beam, as beams with different 
sidelobe patterns may be used, for example, so there is no unique form of differ-
ence beam. Thus, in Section 7.7 we define a suitable difference beam, basically 
as the derivative of the sum beam without the extra frequency sensitivity.)

7.6  Sum Beam Equalization 

To steer a narrowband sum beam, we apply to the output of each array ele-
ment a phase shift, corresponding at the carrier frequency to the relative delay 
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that is to be compensated. To steer a broadband sum beam, we need only 
to replace this simple phase shift by the delay itself. In fact, it is not easy in 
practice to provide flexible delays at RF, as would be required for a beam to 
be steered freely in various directions, but, for arrays with digital processing, 
we can provide a very close approximation to the required delays using the 
methods discussed here, which can be implemented rapidly. In fact, as the 
processing is carried out at baseband, after down-conversion and digitiza-
tion, the delay is implemented at baseband. The phase shift on the carrier 
is still required and can be applied either at the RF stage, as for the narrow-
band application, or digitally, after down-conversion, but is independent of 
the equalization process. For the sum beam, considered here, the channel 
equalization is a simple delay, which can be approximated by the methods 
of Chapter 6 so this application of equalization requires essentially no new 
ideas. However, we show the benefit of this equalization with the example of 
a simple array, and in the next section we consider the equalization for the 

Figure 7.6  Array response with narrowband weights.
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difference beam, which is more complex and uses the results of Sections 7.2 
and 7.3. We illustrate this using the same array and signal spectrum.

The system we model is a 16-element linear array of omnidirectional el-
ements at half-wavelength spacing operating at 3000 MHz. (More generally, 
the elements need not be omnidirectional, but should be similar, should be 
orientated in parallel, and are taken to be frequency independent.) The actual 
frequency is not particularly significant; what is more important are the rela-
tive frequencies. To illustrate the problem, Figure 7.6 shows the gain (more 
precisely the array factor) at three frequencies, for the array when steered at 
50° from broadside. The steering weights are the correct phases at the center 
frequency, and this beam has its peak at the correct position. With the same 
weights, the beams at the frequencies 200 MHz above and 200 MHz below 
(at about ±6.7 percent offset) are displaced in position. (This effect is known 
as squint.) Thus for a broadband signal arriving from 50° and with the array 
steered in this direction, there will be a variation in gain, with a fall of about 
2½ dB at ±200 MHz from the center frequency in this case and hence a dis-
tortion of the received signal. 

Using the equalization method described in Section 7.2, we use (7.9) for 
the weights on the FIR filter taps, where the components of a and B are given 
in general form in (7.6) and (7.7). For this example, we take a symmetric 
trapezoidal shape for the spectral power density, U, with a flat top 80 percent 
of the full width of 500 MHz. The channel response requiring compensation, 
or equalization (G in Section 7.2) is just that due to a simple delay, differ-
ent in each element channel, in general. For this delay equalization case, the 
problem is the same as that considered in Section 6.3, and the components 
of a and B are given more specifically by (6.47a) and (6.47b). The result of 
implementing this delay equalization is shown in Figure 7.7. Responses for 
the same set of frequencies as in Figure 7.6 are shown, with those at ±200 
MHz being toward the edges of the 500-MHz band (at the corners of the 
trapezoidal spectrum, in fact). We see that the squint has been removed effec-
tively, with the main lobes of the responses at the three frequencies virtually 
coincident, though the sidelobes have risen slightly in Figure 7.7(b).

Two processing alternatives are shown; in Figure 7.7(a) only five taps 
are used for each delay, with an oversampling rate of 1.2, or 20 percent above 
the minimum rate, and in Figure 7.7(b) only three taps are used, but the sam-
pling rate increase has been raised to 50 percent. The difference is small, with 
the three-tap responses slightly poorer, but on raising the oversampling factor 
to 2, the performance with three taps is much the same as with five at 1.2. 

In fact, if we reduce the taps to two we still get good equalization with q 
raised to 5. Taking this further, if we take m = 1 (i.e., with no FIR filters), we 
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Figure 7.7  �Array response with equalization. (a) Five taps, 20% oversampling, and (b) three 
taps, 50% oversampling.
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get a useful degree of compensation by oversampling (with the least squares 
processing)—with q = 2 the main lobes are close, but the sidelobe patterns are 
considerably degraded and the gain is reduced by about ½ dB for the upper 
and lower frequencies. 

To study the response at the peak of the beam more closely, the gain in 
the steered direction has been plotted in Figure 7.8 as a function of frequency 

Figure 7.8  �Sum beam frequency response; effect of bandwidth. (a) 10% bandwidth, and 
(b) 200% bandwidth.
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normalized to the center frequency. The plots are for the case of five taps and 
a 20 percent oversampling rate, as in Figure 7.7(a), and it can be seen that 
there is only a slight variation with frequency—a rise of less than 0.2 dB and 
a fall in gain at the very edges of the trapezoidal band taken, where the signal 
power density is falling and the matching is not required to be so good. In 
Figure 7.8(a), the vertical lines mark the edge of the 10 percent band over 
which equalization is required, and the dotted curve shows the response in the 
absence of equalization. In Figure 7.8(b) the parameters of the equalization 
filters are the same, but the receiver bandwidth is now 200 percent, extend-
ing from zero to twice the center frequency. Again the dotted line shows the 
frequency response without any equalization, and the dashed response is that 
for the case of only integer delay compensation (in units of the sampling in-
terval). (In Figure 7.8(a) there is no dashed curve, as all the delays are within 
±0.5 sampling intervals, so no integer compensation is feasible.) We note 
that, with the same set of parameters, the response is essentially independent 
of the fractional bandwidth—the shapes of the responses are virtually identi-
cal. In the second case, the sampling rate is much higher, of course; in this 
case, as the bandwidth is 2f0, where f0 is the center frequency, the sampling 
rate is 2.4f0. To sample at this rate may be impracticable at radar frequen-
cies but may well be feasible for sonar, where broadband (or even wideband) 
operation is much more commonly required and the actual signal frequencies 
are much lower. We also note that the response with integer delay compensa-
tion in the wideband case is the same, in proportion to the bandwidth, as the 
uncompensated curve in the narrower band case. This is because, in the latter 
case, as all the matching delays required are less than one sampling interval, 
the integer compensated case is the same as the uncompensated case.

The fact that these responses are very similar is not a coincidence, but 
illustrates that the response is essentially independent of the fractional band-
width and depends only on how well the delays are matched. This depends, 
for a given set of equalization filter parameters (m and q) on how close the 
required delays are to integer multiples of the sampling period. This will 
vary, in general, from one element to another and will depend on the beam 
steered direction and the element separation. In particular cases, the delays 
required may all be integral, in sampling periods, in which case the match-
ing will be exact, in principle, and the response will be completely flat. At 
the other extreme, the delays required may all be half-integral, which is the 
worst case for matching. In general, however, there will be spread of delays, 
and the performance will be intermediate. This is illustrated in Figure 7.9, 
which shows the gain in the look direction as a function of frequency. Here, 
the frequency axis is the frequency offset from the center, normalized to the 
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bandwidth, so the range shown is just the band over which equalization is 
required. For this figure, the parameters were chosen in order to include the 
two extreme cases described earlier. The delay required for an element at 
distance d from the array center is given in (7.28), and putting c = f0l0, and 
dividing by the sampling period 1/qF, the required delay in units of sampling 
periods is given by

	 b = (d/l0)qsinq(F/f0)	 (7.30)

The element separation was increased to one wavelength, so that the 
element positions are given as (2n + 1)/2 wavelengths (n an integer from –8 
to +7 for the 16 element array). The steer direction remained at 50°, but q 
was increased to 1.3054 so that qsin50° = 1. The delay required (in sampling 
intervals) for element n is then given, from (7.30), by (2n + 1)(F/2f0). If we 
choose F = f0, the 100 percent bandwidth case, we see that all the delays are 
half integral (the worst case), while if F = 2f0, the 200 percent case, the delays 
are integral and we have the flat response shown. The other curves are for 
the cases of 10 percent, 20 percent . . . 90 percent bandwidths (not giving a 

Figure 7.9  Sum beam response with frequency offset, for various bandwidths.
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Figure 7.10  �Sum beam frequency response; variation with equalization parameters. 	
(a) Variation with m, and (b) variation with q.
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monotonic sequence of peak ripple levels, with some curves overlying others), 
and because the fractional delays are distributed over the full range the results 
for these cases are much the same and intermediate between the extreme 
cases. These are also the same results as for bandwidths of 110 percent to 190 
percent because it can be seen that for this case (where qsinq = 1) the results 
for a fractional bandwidth F/f0 of r and 2 – r will give the same result. 

The effect of varying the equalization parameters is shown in Figure 
7.10, for the 50 percent bandwidth case, and for the array separation of 0.5 
wavelengths. In Figure 7.10(a), we fix the sampling rate at 1.2 or 20 percent 
above the minimum and vary the number of taps m in the equalizing filters. 
We note that even with three tap filters, the ripple in the center of the band 
is quite small (less than 0.25 dB above the fully equalized level), but there is 
a rather rapid fall in gain at the edges of the trapezoidal band, starting well 
within the flat top region (from –0.4 to +0.4 bandwidths offset). As m in-
creases the response improves, and at m = 9 the gain falls off rather sharply 
only outside the flat top of the signal spectrum. With m = 15 the equalization 

Figure 7.11  Effect of increasing oversampling rate.
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is excellent, with a gain ripple of only a few hundredths of a decibel. The filter 
length has been kept at nine in Figure 7.10(b) and the relative sampling rate q 
varied. With no oversampling (q = 1), the nine tap filters do achieve a consid-
erable degree of equalization, but there is a large ripple near the edges of the 
band. This is rapidly reduced with oversampling, and at q = 2 the response is 
almost perfect. (It should be remarked that these are nominal gain plots and 
give an ideal figure of 12.04 dB for an array of 16 elements. They should be 
corrected slightly if directivity is required, but any correction will generally 
be small, particularly for larger arrays not steered too close to a grating lobe 
condition.)

Finally Figure 7.11 shows clearly the benefit of oversampling. At the 
minimum sampling rate, a very long filter is needed for effective equaliza-
tion—in this example, 101 elements are required (continuous curve) to give 
low ripples in the response. If the sampling rate is increased to just 1.1, com-
parable ripples result at a filter length of only 21 (dashed curve), a reduction 
of nearly five times in the computation required. Oversampling at 50 percent 
(dotted curve) allows an improvement by a further factor of three to only 
seven elements. For planar arrays with a large number of elements, typically 
required for many radars, it could be important and valuable to keep the 
complexity of equalization down to a modest level in each channel; in some 
applications, with a moderate degree of oversampling, filters of length as low 
as three or four may be adequate.

7.7  Difference Beam Equalization

We take the difference beam pattern to be given essentially by the derivative 
with respect to angle of the sum beam pattern. We will use the “sine-angle” 
coordinate u, where u = sinq, as this simplifies the following expressions, 
particularly for the difference beam slope, but otherwise does not affect the 
principles being illustrated. (In this form, the beam shape, plotted against 
u, remains unchanged in shape as the beam is scanned.) Thus, in this sec-
tion we replace sinq with u, where q is the look direction measured from 
broadside, in particular in equations that use (7.28). If wk(u0) is the weight 
applied to the output of element k to steer in direction q0, where u0 = sinq0, 
then the sum beam gain (array factor) is given, as a function of frequency 
and angle, by 
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( , ; ) ( )exp2 ( )k kg u f u w u if uπ τ= å0 0

k 	
(7.31)

For narrowband steering, we take wk(u0) = exp(–2pidkf0u0/c) so that the 
signals add in phase in the look direction q0 at the center frequency, f 0. The  
sum is over all elements and the signal delay tk relative to the center of  
the array is given by dku/c (from (7.28)), where the element is at distance dk 
from the array centroid, the mean element position, such that the sum of the 
element positions measured from this point is zero. 

We now want to define a difference beam pattern whose response in 
angle is a derivative of the sum beam. The differential of this beam with re-
spect to u, is given, from (7.31), by

	
'( , ; ) ( )(2 / )exp(2 / )k k kg u f u w u ifd c ifd u cπ π= å0 0

k 	
(7.32)

In fact to define a difference beam, we do not need the factor f  ; we require 
only the frequency-sensitive element delay compensation factors wk(u0) =  
exp(–2pifdku0/c), which allow the signals to sum in phase across the frequency 
band. The element distances dk, are weighting factors that result in zero gain 
in the look direction with these weights applied. This set of weights {wk} is 
the same as those required for the sum beam, so the same frequency com-
pensation is required on each element. Thus, excluding the factor f in (7.32) 
and other factors independent of frequency, we define the required difference 
beam response, within a scaling factor, by

	
π= å0 0( , ; ) ( ) exp2 / .k k k

k

h u f u w u id ifd u c
	

(7.33)

However, for an ideal difference beam, we require its slope, with respect 
to angle, at the beam pointing position q0 to be constant across the band, and 
this is the derivative of h with respect to angle:

	
π π= −∑0 0( , ; )' ( ) 2 ( / )exp2 /k k k k

k

h u f u w u d f d c ifd u c
	

In this case we cannot remove the variable f from the expression because this 
is not a definition of the slope but is a derivation from the pattern as defined 
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in (7.33). Omitting the constant 2p/c we have for the difference beam slope, 
within a scaling factor,

	

2
0 0( , ; ) ( ) exp2 /k k k

k

s u f u w u d f ifd u cπ= -å
	

(7.34)

In (7.34) f is a frequency within the RF band (i.e., f0 – F/2 < f < f0 + F/2), 
but if we now want to represent the gain pattern in terms of the baseband 
frequency, we replace f with f0 + f , where now we have –F/2 < f < F/2. With 
this change, the response at baseband frequency f, after down-conversion  
(which removes f0 from the exponential factor), is given by

	
π= - +å 2

0 0 0 0( , ; , ) ( )( ) exp2 /k k k
k

s f u f u w u f f d ifd u c
	

Rescaling by f0, we redefine s as

	
π= - +å 2

0 0 0 0( , ; , ) ( )(1 / ) exp2 /k k k
k
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(7.35)

This response varies with angle and frequency, but we require it to be 
independent of frequency at the direction of interest, q0. Thus, excluding 
constants with respect to frequency, we see that the frequency variation to be 
compensated is now of the form

	 ( ) (1 / )exp2 ( )S f f F if uφ π τ= + 0k 	 (7.36)

where the delay tk varies with the element position, and we have expressed 
the function S in terms of f, the fractional bandwidth, F/f0. 

Before putting this expression for S into (7.6) and (7.7) we note, as 
before, that for the band-limited signal we effectively have a factor rect(  f /F ) 
in |U(  f   )|2, so multiplying S(  f   ) by this rect function will make no difference 
to the integrals in (7.6) and (7.7). Thus, we can replace S with

	
( )rect rect ramp exp(2 )S f if

φ π τæ öæ ö æ ö æ ö= +ç ÷ ç ÷ç ÷è ø è ø è øè ø2
f f f
F F F 	

(7.37)

Putting this into (7.6) and (7.7) in place of G gives
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and
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Now let ra, rb, and rc be the inverse Fourier transforms of |U(  f   )|2, 
ramp(  f  /F )|U(  f   )|2 and ramp2(  f  /F )|U(  f   )|2, respectively, and also let us put  
t = (k + b )T, where –0.5 < b £ 0.5 and k is integral. As before, we assume that 
the delays are compensated to the nearest integer multiple k of the sampling 
period by taking the appropriate sampled pulse train (e.g., from a shift register) 
and that we only have to equalize the fractional parts using the filter. Introduc-
ing these, with bT for t, we see that (7.38) and (7.39) can be written

	 ( ) ( )( ) ( /2) ( )r a ba r T r Tρ β φ ρ β= - + - 	 (7.40)

and

	 ( ) ( ) ( )2( ) ( ) ( / 4) ( )rs a b cb r s T r s T r s Tρ φρ φ ρ= - + - + - 	 (7.41)

Now, for the trapezoidal spectrum we have (as in Section 6.3.2, equa-
tion (6.45))

	

2
2

2 24
( ) rect rect

(1 ) (1 )(1 )(1 )

f f
U f

a F a Fa a F

æ ö æ ö= Äç ÷ ç ÷è ø è ø- ++ - 	
(7.42)

Although the function rect(  f  /F ) does not appear in this expression, the 
spectral function would be unchanged on multiplying by this rect func-
tion, as the convolution of the rect functions in (7.42) has a base width of  
(1 – a)F/2 + (1 + a)F/2 = F, the same as rect(  f  /F ). The rect function is unity 
within the region where the trapezoidal function is nonzero and zero where 
the trapezoidal function is zero. This justifies the statement (7.37) that this 
rect function can be included in the integral and hence also with S.
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The Fourier transform of the power spectrum in (7.42) is (as in (6.45)):

	 ( ) ( )( ) sinc (1 ) /2 sinc (1 ) /2a t a Ft a Ftρ = - + 	 (7.43)

To find rb, the transform of ramp(  f  /F )|U(  f   )|2, we see from (7.42) that 
we require the product of the ramp function with a convolution of two rect 
functions. Now, in general it is not the case that u(vÄw) = (uv)Äw, but in the 
particular case where w is a d-function at the origin, then, as d(x)Äy(x) = y(x), 
this relation is true (i.e., u(vÄd ) = uv = (uv)Äd ). In this case, where a is near 
to unity, the smaller rect function (with the factor 2/(1–a)F, to make its inte-
gral unity) is near to a d-function, and we will make the small approximation 
of rearranging the product with the convolution in the form
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(7.44)
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Figure 7.12  Effect of approximation of product spectrum on falling edge of trapezoid.
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Figure 7.12 shows the scale of the approximation. The lowest trace 
(dotted) is the straight line of the falling edge of the trapezoid, which results 
if we take a d-function instead of the factor ( ) ( )2/(1 ) rect 2 /(1 )a F f a F- - . 
The highest trace (continuous) is a shallow quadratic given by the product of 
the trapezoid edge with the ramp function over this interval and is the correct 
shape. The middle trace (dashed), an even shallower quadratic, corresponds 
to (7.44), the result of convolving the narrow rect function with the product 
of the ramp function with the wider rect function, which is illustrated in 
Figure 7.13. (It can be shown that the middle trace is in fact halfway between 
the other two.) The differences are seen to be very small. With different spec-
tral shapes, without convolutions, such as the raised cosine or Gaussian, this 
problem does not arise.

We now consider just the product of the ramp function with the wider 
rect function. As the rect function is narrower than the ramp function, the 
product is smaller than the unit ramp function, which reaches values of +1 
and –1 at its edges. The result, as illustrated in Figure 7.13, is a scaled ramp 
function; the scaling factor is the relative width of the rect function, which is 
(1 + a)/2. The spectrum to be transformed is thus 

	

2
2

(1 ) 2 24
ramp ( ) ramp rect

2 (1 ) (1 )(1 )(1 )

f a f f
U f

F a F a Fa a F

+ æ ö æ öæ ö = Äç ÷ ç ÷ ç ÷è ø è ø è ø+ -+ - 	
(7.45)

and its inverse transform is, using P13b (and P3b, R5):

Figure 7.13  Product of ramp and rect functions.
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(7.46)

Finally, for rc the function to be transformed is ramp2(  f  /F )|U(  f   )|2, 
and (again making the small approximation by rearranging the expression) 
we can see that the product of ramp2(  f  /F ) with rect(2f  /(1 + a)) is ((1 + a)/ 
2)2ramp2(2f  /(1 + a)), and, again using P13b, the transform is given by
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( ) snc sinc
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a a Ft a Ft
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(7.47)

Using (7.43), (7.46), and (7.47) to substitute for ra, rb, and rc in (7.40) 
and (7.41) and also putting FT = 1/q, as the sampling interval is the recipro-
cal of the (oversampled) sampling rate qF, we obtain
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and
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where
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Using these expressions for the components of a and B, we compute the 
weights of the equalization filters for each element and then plot the difference 
beam patterns, in Figure 7.14, corresponding to the sum beam patterns of Fig-
ures 7.6 and 7.7(a). In this case, however, we plot the linear response with angle 
(rather than the logarithmic power response) in order to show the response pass-
ing through zero at the required angular position. The parameters for the equal-
izing processing are the same, using five tap equalizing filters with oversampling 
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Figure 7.14  �Difference beam responses with (a) narrowband weights, (b) equalization, 	
(c) center region of scan (a), and (d) center region of scan (b).
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Figure 7.14  (Continued)
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Figure 7.15  �Difference beam gain response against frequency offset: (a) linear response, 
(b) logarithmic response, (c) expanded equalized response, and (d) response 
with more processing.
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Figure 7.15  (Continued)
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Figure 7.16  �Difference beam slope: (a) small filter response, (b) larger filter response, 	
(c) expanded small filter response, and (d) expanded larger filter response.
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Figure 7.16  (Continued)



212	 Fourier Transforms in Radar and Signal Processing

by 20 percent, except that the trapezoidal signal spectrum now has a flat top of 
90 percent of the bandwidth. (This makes the approximation of the convolving 
narrow rect function nearer to a d-function, in fact.) We have also taken a rela-
tive bandwidth of 100 percent (i.e., equal to the center frequency), though Fig-
ure 7.8 shows that the relative bandwidth has very little effect. Again, we see that 
equalizing has been highly effective. We note that although a and B, used in 
the process (with components given in (7.48) and (7.49)) are complex, the gain 
is real to a high degree of accuracy; this is because the response to be matched 
is real. Figures 7.14(a) and (b) are the difference beams equivalent to the sum 
beams of Figures 7.6 and 7.7(a). Figures 7.14(c) and (d) show the regions round 
the look direction (50°) in more detail, and we see that the difference beam 
gains (of zero) and slopes at this point have been matched accurately.

As before, we look at the response in the steered direction as a function 
of frequency; in this case, we require the gain in this direction to be zero and 
the slope to be constant. The variation of gain over the normalized bandwidth 
at baseband is shown in Figure 7.15, for the same parameters as for Figure 
7.14. We first show the gain in linear form in Figure 7.15(a). The unequal-
ized response in the look direction, as a function of frequency, is rather simi-
lar to the response as a function of direction, at the center frequency, shown 
in Figure 7.14. The fully equalized response is excellent, rising slightly just 
at the edges of the band. Integral equalization only (the dotted curve) gives 
a considerable improvement on the unequalized response but is still much 
poorer than the fully equalized case. Figure 6.15(b), showing the power re-
sponse in decibels, also illustrates these points. 

Neither Figure 7.15(a) nor (b) shows clearly how well the gain has been 
kept near to zero in the look direction across the band. Changing the scale, 
in Figure 7.15(d), shows that the gain ripples are more than 55 dB below the 
peaks of the difference beam response, and this is with only five tap filters and 
oversampling at 20 percent. Increasing either of these will reduce the ripple 
level to lower values, as shown in Figure 7.15(d), where there are seven taps 
and 50 percent oversampling, giving ripples about 10 dB lower in the band 
center. We note that the ripple pattern is not symmetrical about the look di-
rection. In fact it would be so if we had performed optimum equalization of 
the difference beam, which requires only delay compensation, rather than its 
slope. In this case, we have equalized the pattern slope, which requires com-
pensation for both delay and the amplitude variation with frequency seen in 
(7.35), and as this amplitude rises with frequency the compensation factor 
(like K in Figure 7.4) falls, and we see that the ripples on the higher frequency 
side in Figure 7.15(c) and (d) are indeed smaller than the corresponding ones 
at lower frequency.
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Finally we show, in Figure 7.16, the equalized slope for the two sets of 
filter parameters used in Figure 7.15. Figures 7.16(a) and (b) show the dif-
ference between the unequalized and equalized responses. We see that the 
equalization has been remarkably effective. The equalization using only inte-
gral delays gives a considerable improvement, but is still far from adequate. It 
is slightly better with the higher sampling rate used in Figures 7.16(b). The 
nearly flat equalized responses are shown amplified in Figures 7.16(c) and 
(d). In the first case, the total variation is just under a decibel, but with the 
slightly longer filter and greater sampling rate, it is only about 0.15dB (except 
at the band edges, where the signal power is falling rapidly).

It should be emphasized that Figures 7.15 and 7.16 are for the case 
of 100 percent bandwidth—the bandwidth is equal to the center frequency 
(e.g., 100 to 300 MHz). As pointed out following Figure 7.9, the fractional 
bandwidth is not very significant, except that, of course, as the actual band-
width increases the sampling rate rises correspondingly, so that while it may 
be possible to achieve equalization over remarkable fractional bandwidths in 
principle, in practice there may be difficulty sampling fast enough (and over

Figure 7.17  Difference beam slope, 20 percent bandwidth.
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sampling, while highly desirable, will increase this difficulty). If we consider 
different bandwidths, we see that the initial equalization problem is differ-
ent. Figure 7.17 shows the difference beam slope in the case of 20 percent 
bandwidth (e.g., 180 to 220 MHz). We see that there is less sensitivity (fewer 
lobes) in the unequalized response, but the equalized result is comparable. If 
the fractional bandwidth is small enough, (e.g., 1 percent) the unequalized 
response may be flat enough for equalization not to be necessary, of course, 
and this is when the narrowband solution is adequate.

7.8  Summary 

In this chapter, we have looked at equalization of both linear phase varia-
tion (due to delay error) and polynomial amplitude error across the band 
of interest. In the latter case, we saw that the amplitude response requiring 
equalization could be expressed as a sum of ramp functions. The equalizing 
weights that minimize the weighted mean square error across the signal band 
are found as the solution of a matrix equation, the components of which 

Figure 7.18  Sum beam gain with frequency sensitive elements.
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are values of the Fourier transforms of the distorted responses. Thus, for the 
amplitude distortions, we require the transforms of the ramp functions, and 
these are found to be derivatives of the sinc function. Including the rampr –  
sncr pairs in the set of transform pairs we now have the tools for carrying 
out effective equalization for a range of problems without having to perform 
explicitly any integration whatever. 

After showing that the method is successful in a single channel, includ-
ing compensating for both amplitude distortion and delay mismatch, the case 
of forming sum and difference beams using an array was taken. Very effective 
equalization indeed was found to be possible, and, as shown in the interpola-
tion study of Chapter 5, quite short equalization filters are adequate for high 
performance, if there is some degree of oversampling. This does not mean 
sampling at several times the minimum rate but typically at only 20 percent, 
or 50 percent higher. Only a simple array, of 16 elements in a regular linear 
configuration, was taken, but the method is general and is also applicable to 
much larger arrays and arrays of different configurations, such as regular or 
irregular, planar or volume arrays. Each complex digital channel (whether fed 
by a single element or a subarray) has a delay and amplitude response that 
requires equalization, and the process is the same however the elements are 
distributed. 

In the example, the elements were taken to be frequency independent, 
so the sum beam equalization required only delay compensation. However, 
for the difference beam slope, it was found that linear amplitude compensa-
tion is required as well. If the elements were frequency-sensitive, then the 
equalization could be made to include this effect as well. We illustrate the 
case of element amplitude sensitivity (taken to be proportional to frequency 
at RF) on the sum beam in Figure 7.18. We note higher lobes in the unequal-
ized response at the higher frequencies due to the element responses (and 
also the similarly asymmetric partially equalized response), but the equalized 
response is flat to a high degree of accuracy, with only five taps for the delay 
filters and oversampling at 20 percent.

Finally, we noted that the effectiveness of the equalization is largely in-
dependent of actual fractional signal bandwidth (the ratio of the bandwidth 
to the center frequency), and bandwidths up to 200 percent (from zero to 
twice the carrier frequency) can be handled, though of course wider signal 
bandwidths require proportionally higher sampling rates (further raised by 
oversampling).
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8
Array Beamforming

8.1  Introduction

In this chapter, we consider how the rules-and-pairs technique can be applied 
to relate aperture distributions to antenna beam patterns, particularly for an-
tennas made up of linear arrays of similar elements. Beamforming suggests 
forming an antenna pattern with a dominant main beam, steered in a direc-
tion of interest, and this is indeed an important application. This is achieved 
by weighting the received (or transmitted) signals so that they sum in phase 
in the given direction. The weights here are complex phase factors, but am-
plitude factors can also be used to adjust the pattern, in particular to give 
low principal sidelobes. The principle of applying complex weights to the 
array elements can be extended to form other gain patterns, such as a beam 
covering a wide sector, as shown later. One problem arising with a regular 
array is that of grating lobes. These (named by close analogy of the antenna 
array with diffraction gratings) are highly undesirable in several respects. On 
reception they make the array vulnerable to interference from sources in the 
lobe direction and cause ambiguity as to the direction of a received signal. On 
transmission they are a cause of wasted power, reducing the power emitted in 
the wanted direction and causing interference in other directions. 

We start by showing there is a Fourier transform relationship between 
linear aperture distributions and beam patterns. This relationship holds in 
general, including for continuous distributions, but we subsequently restrict 
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our study here to multielement arrays, which are in effect discretely sampled 
apertures. In the case of uniform, or regular (evenly spaced) linear arrays, 
the aperture distribution is of the form of a comb function, which has a rep 
function as its transform. For this kind of array, the rules-and-pairs method 
works well and is easy to apply to suitable problems. Two sets of examples are 
given. In one case, a simple beam is required (with further study of variations 
with low sidelobe patterns), and in the other case a beam covering a sector at 
a uniform gain level is generated. 

If the array elements are not uniformly distributed, then the conve-
nience of the comb/rep transform is not applicable and a more general least 
squares error solution is required. As the Fourier transform is a least squares 
error solution also, this general approach, if applied in the uniform array case, 
would result in the same solution, if not quite so directly achieved. The gen-
eral approach still requires Fourier transforms and is presented in Section 8.4. 
Although we cannot use the Fourier transform of the aperture in the general 
array case, the transform is still required in determining the components of 
the matrix and vector used to obtain the weights. The Fourier transform is 
also useful for general results on the relationship between the weights and the 
patterns, as shown in Sections 8.2 and 8.3. 

In this chapter we consider only the narrowband case, where the band-
width is small enough for the effect of delay across the aperture to be ad-
equately approximated as a phase shift at the center frequency of operation. 
This condition holds for a very wide range of radio and radar problems, but 
when it does not the equalization methods of Chapter 7 can be applied. We 
also consider only the case of the linear aperture as, again, this is very widely 
encountered, and in the form of the uniform linear array (ULA) is particularly 
suitable for analysis by the rules-and-pairs method. Furthermore, the linear 
solution is also applicable to regular rectangular planar arrays, for which the 
two-dimensional beam pattern (e.g., in direction cosine coordinates u and 
v) is simply the product of the two patterns given by the orthogonal linear 
apertures. 

8.2  Basic Principles

Given a linear aperture, the far field signal strength is proportional to the 
sum across the aperture of the current at each point, which may be weighted 
by a factor that depends on the position in the aperture and the direction for 
which the response is to be calculated (Figure 8.1(a)). We consider the signal 
received in the far field in the direction q, measured from broadside to the 



	 Array Beamforming	 219

linear array (initially unweighted). We consider that a signal, phase f(t), is 
applied to the elements of the array, along the line OX. A point in direction 
q in the far field sees points on the line OP as equidistant, so in effect the far 
field response in this direction is given by the sum of signal phases along this 
line (or any parallel line). The signal at X, with phase f(t), is equivalent to a 
source of phase f(t + t) at P, as the phase at X is that at P at time t earlier, 
where t is the time taken to travel along PX. We note that t = xsinq/c, where 
c is the speed of light and x is the distance of the element X, from the origin. 
The phase at P for a signal at frequency f0 is 2πf0(t + t) = f(t) + 2πf0t = f(t) + 
2πxsinq/l0, where l0 is the wavelength at this frequency (so f0l0 = c). Thus, 
the effective contribution from element X differs from that at O by the com-
plex factor exp(2πixsinq/l0).

If the signal is weighted across the array by a (complex) amplitude fac-
tor a(x), then we see that, summing the contributions along the array, the 
gain within a scaling factor is 

	
( ) ( )exp(2 sin / )g a x ix dxθ π θ λ

¥

-¥
= ò 0

	
(8.1)

The same considerations apply on reception. In this case, a plane wavefront 
is received from a distant source, Figure 8.1(b). If the phase at O is f(t), 
the phase of the wavefront at X is given by f(t + t) as this front reaches O 
at time t later. This gives the same phase shift as given earlier, and, with 
the weighting factor a(x), we have the same expression (8.1) for the gain on 
reception.

Figure 8.1  Aperture phase shift: (a) on transmission, and (b) on reception.
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In general a is complex, and in the form of the phase factor exp(-2πixsinq/
l0) it provides the correct compensation to steer the beam in direction q (for 
both transmission and reception). This compensates for the delay at a sin-
gle frequency. For wideband steering, we need to compensate for the delay, 
rather than just phase—that is, we need to delay by t the signal applied at X 
(or received at X) relative to that at the array origin. In the form of amplitude 
tapering, with smaller weights toward the edges of the array, it can give lower 
sidelobes, as shown later in this chapter. 

The integral in (8.1) is over the whole domain of x, though with a finite 
aperture a(x) will be zero outside this finite region. It is convenient to define 
the array in units of the wavelength of operation, l0, so with this convention 
we replace x/l0 with x subsequently in this chapter. If we also define u = sinq, 
as in Section 7.7, then (8.1) becomes (within a scaling factor, which now 
includes l0)

	
π

¥

-¥
= ò( ) ( )exp(2 )g u a x ixu dx

	
(8.2)

and we see that g is formally the inverse Fourier transform of the aperture dis-
tribution a, and correspondingly the distribution a is the Fourier transform 
of the pattern g. However, we must treat this with some caution, because, 
although (8.2) defines values for g(u) when |u| > 1, these u values do not 
correspond to real directions. If we wanted to determine the aperture distri-
bution for a given pattern, and the pattern is defined only for the real angles 
-p/2 £ q £ p/2, then we only have the information for the integration over 
this finite interval for u (-1 £ u £ 1). However, if g can be defined as the re-
quired function in this range of u, even though the function extends outside 
this range, then we can integrate over the whole u domain, knowing that the 
resultant aperture distribution a will give the required pattern over the basic 
interval. An example is the case of a uniform aperture distribution a(x) = 
rect(x/X), where the aperture is given by -X/2 £ x £ X/2 and the distribution 
is uniform over this interval. This has the transform g(u) = XsincXu, a sinc 
function response, with first zeros at ±1/X. This response is curtailed, for the 
pattern over real angles, at ±p/2 radians (i.e., for u = ±1). However, if we were 
given that the required pattern over the real angles (-1 £ u £ 1) is sincXu, by 
integrating sincXu over the whole range of u (-¥ < u < ¥), we obtain the rect 
function for the aperture distribution, which gives the wanted pattern in the 
real angle region.
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We should still treat this with caution, however, because we could use 
the function rect(u/2)sinc(Xu), which gives the correct response in the real 
angle region, but transforms to sinc(2x)Ärect(x/X), which is not the same 
weight distribution. Nevertheless, these weights will give the correct pattern 
in the real angle region.

In the case of an array of identical elements, with their patterns (if not 
omnidirectional) oriented similarly, we can separate the array response into 
an array factor, which would be given by using omnidirectional elements, 
and the element factor, which multiplies the array factor at each angle. The 
array factor is obtained by summing the contributions from each element 
with the appropriate phase factor, as in (8.1). For an array of elements, we 
have a sampled aperture; we can still use the Fourier transform but the aper-
ture distribution is now described by a set of delta-functions. If the array is 
taken to be a regular linear array, we note that a regular set of delta-functions 
corresponds to the transform of a periodic function, so we expect the array 
factor to be periodic in this case. If we do not want the pattern to be periodic 
in the real angle region, we could make the period such that it has just one 
cycle in this interval, requiring it to repeat at a period of 2 in u. This will cor-
respond to the element separations being ½ (i.e., half a wavelength), a well-
known result for a pattern free from grating lobes, for all steered directions. 
(It could also have a greater repetition period than 2, but this would require 
an element separation closer than a half wavelength; however, this is undesir-
able, increasing mutual coupling and causing driving impedance problems 
on transmission.) If the main lobe is narrow and is fixed at broadside to the 
array (at q = 0), then a repetition period in u of just over 1 could be allowed, 
corresponding to an element separation of just under one wavelength. (With 
a period of unity in u, repetitions of the main beam (i.e., grating lobes) will 
occur at u = ±1, which lie along the line of the array, and also at higher inte-
gral values for u, of course, which are not in real angle space.)

Finally we note that, as sin(p - q) = sinq = u, if we consider the array 
factor pattern from -p to p radians, or –180° to +180°, we see that  the pat-
tern from 90° to 180° is the reflection, about 90°, of the pattern from 90° to 
0° and similarly on the other side—in other words, the pattern has reflection 
symmetry about the line of the array. Thus, if a main lobe is produced at 
angle q0°, then there will be an identical lobe at 180°-q0° and, in particular, 
if there is a broadside main beam (at 0°) there will be a lobe of equal size at 
180°. Later in this chapter, we take the case of reflector-backed elements, 
which have a 2sin[(p/2)cosq] pattern for -p/2 £ q £ p/2 and a response of 
zero for p/2 £ |q| £ p, and this removes the unwanted response in the back 
direction.
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8.3  Uniform Linear Arrays

8.3.1  Directional Beams

Initially we consider a uniform weighting over the aperture of width X. If the 
element separation is d wavelengths, then the aperture distribution function 
is given by

	 a(x) = combd [rect(x/X)]	 (8.3)

and the beam pattern is (from P3b, R5, and R8b)

	 g(u) = (X/d)rep1/d[sinc(Xu)]	 (8.4)

If we want the beam to be steered in some direction u1, then we require 
the pattern shape to be of the form sinc(X(u - u1)) instead of sinc(Xu); this 
will place the peak of the sinc function at u1 rather than at zero. Transform-
ing back to the aperture domain (using R6a), we see that this requires the 
distribution to be

	 a(x) = combd[rect(x/X)exp(–2piu1x)]	 (8.5)

We see we need to put an appropriate phase slope across the aperture to steer 
the beam (i.e., to offset it in the angle domain). If, on the other hand, we off-
set the array in the aperture domain, so that the distribution is given by a(x) =  
combd(rect((x - x1)/X)), then (by R6b) the pattern is

	 g(u) = (X/d)rep1/d[sinc(Xu)exp(2piux1)]	 (8.6)

and there is a phase slope with angle across the pattern. This will have little 
significance in practice, as there is normally no reason to combine or compare 
signals received at different points in the far field. This result can be used to 
help equalize the power levels across the elements of a transmitting array, as 
outlined at the end of Section 8.3.3.

The distinction between the patterns in the u domain and in the real 
angle domain is illustrated in Figure 8.2. An array of 16 elements was taken 
with an element spacing of 2/3 wavelengths, which gives a repetition period 
for the pattern of 1.5 in u. This is shown (in decibel form) in Figure 8.2(a), and 
this pattern is described by (8.4), repeating as expected, even though values 
of u outside the interval [–1,1] do not correspond to real angles. The vertical  
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Figure 8.2  �Beam patterns for a uniform linear array. (a) Broadside beam, u-space, 	
(b) broadside beam, angle space, (c) beam at 60 degrees, u-space, and 	
(d) beam at 60 degrees, angle space.
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Figure 8.2  Continued
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lines show the segment of the u pattern that corresponds to real angles. In 
Figure 8.2(c), the beam has been steered to 60° (u = 0.866), and we see that 
the pattern has moved along so that a second beam, a grating lobe, lies within 
this interval. Figures 8.2(b) and (d) show the corresponding real beams plot-
ted over the full 360° interval. These show two significant differences—the 
stretching of the pattern toward the ±90° directions with the lobes becoming 
wider, and the reflection of the pattern about these directions. If the patterns 
in u-space and angle space are gu and gq, then the gain in direction q is given 
by gq(q) = gu(sinq).

In plotting this curve, (8.4) was not used, as that would require sum-
ming a large number of sinc functions—in principle, an infinite number. We 
can describe the aperture distribution given in (8.3) alternatively by 
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where n is the number of elements in the aperture X (and is such that (n - 1)d 
£ X < nd). This has the inverse transform, from P1a and R6b,
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and this finite sum is much easier to evaluate. However, the form given in 
(8.4) is still useful, making much more explicit the periodic form of the pat-
tern in the u domain.

8.3.2  Low Sidelobe Patterns

In Sections 3.2, 3.3, and 3.6, the spectrum of a pulse was shown to improve, 
in the sense of producing lower sidelobes and concentrating the spectral  
energy in the main lobe, by reducing the discontinuities (in amplitude and 
slope) at the edges of the pulse. The same principle is applicable for improv-
ing antenna patterns, by shaping (or weighting, tapering, or shading) the ap-
erture distribution in the same way—in fact, if the aperture distributions are 
given by the pulse shapes of Chapter 3, the beam patterns (in u-space) will be 
the same as the pulse spectra, as the same Fourier relationship holds. (Strictly 
speaking, for the pulse spectra the forward Fourier transform is required, 
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Figure 8.3  �Beam patterns for uniform linear array with raised cosine shading. (a) u-space, 
and (b) angle space.
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while for the beam patterns on reception it is the inverse transform. How-
ever, for the frequently encountered case of symmetric distribution functions, 
there is no distinction.) This is actually the case for continuous apertures, but 
in the case of a regular linear array, corresponding to a sampled aperture, the 
pattern is repetitive and is given (over the fundamental interval -1 £ u £ 1) 
by the sum of repeated versions of the continuous aperture pattern (as in 
(8.4) and (8.6), for the rectangular distribution). For a reasonably narrow 
beam, particularly one with low sidelobes, the effects of the overlaps will be 
very small, and often negligible. Figure 8.3 shows array patterns for a regular 
linear array, again of 16 elements, for both the unweighted case (rectangular 
aperture weighting, dotted line) and with raised cosine weighting (solid line). 
The effect of overlap of the low sidelobe waveforms is clearly negligible in 
this case. Thus, in this section, we ignore the repetitive response given by 
a discrete aperture (an array) and explore the possibilities of obtaining low 
sidelobe patterns as if from a continuous aperture.

In the raised cosine case, the aperture distribution is given by rect(x/
X)(1+cos2px/X) with transform (as in Section 3.6, with X = 1/U replacing 
2T  = 1/f0 and omitting the scaling factor) sinc(u/U) + ½sinc [(u–U)/U] + 
½sinc[(u+U)/U]. The figure shows both the response in u-space and with 
angle, as in Figure 8.2, but in this case the element spacing is 0.5 wavelengths, 
so the repetition interval in u is 2, as seen in Figure 8.3(a), and the beam 
direction is –30°. The weighting has been very effective in reducing the side
lobe levels, though at the cost of broadening the main lobe.

Clearly we could apply different weighting functions, obtaining the cor-
responding beam patterns, given by their Fourier transforms, but this would be 
simply going over the ground of Chapter 3, where pulses of various shapes and 
their spectra were studied. Instead, we look at two other possibilities for improv-
ing the pattern, not necessarily for practical application but as illustrations of 
approaches to problems of this kind that could be of interest. First, we note that 
the main lobe in Figure 8.3 consists of the sum of the main sinc function with 
two half amplitude sinc functions, offset on each side by one natural beamwidth 
(the reciprocal aperture; this is actually the beamwidth at 4 dB below the peak). 
This suggests continuing to use sinc functions to obtain further improvement. 
We could reduce the largest sidelobes, near ±2.5 beamwidth intervals by placing 
sinc functions of opposite sign at these positions. This will have to be done quite 
accurately because these sidelobes are already at about –31 dB below the peak, or 
at a relative amplitude of 0.028 so an amplitude error of 1 percent, for example, 
would not give much improvement. To find the position of these peaks, we 
can use Newton’s method for obtaining the zeros of a function. In this case, the 
function is the slope of the pattern, as we want the position of the peak of a lobe 
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rather than a null. In this discussion, we neglect the overlapping of the repeated 
functions on the basis that, for an aperture of moderate size (such as that of this 
16-element array, which is effectively eight wavelengths), the effect of overlap is 
small, especially in the low sidelobe case—in fact, by dropping the rep function 
we are studying the pattern of the continuous aperture. In addition, we plot the 
pattern in units of the beamwidth U, as this simply acts as a scaling factor (in 
u-space).

Differentiating the previous expression for the beam shape g(u) to ob-
tain its slope g¢(u) we have

	 g ¢(u) = (p/U )(snc1(u/U) + ½snc1[(u - U)/U] + ½snc1[(u + U)/U])	 (8.9)

where psnc1 is the derivative of the sinc function, as defined in Section 7.3 
(see (7.17)). Using Newton’s approximation method to find the peak of a 
lobe (a point of zero slope) we have

	 ur+1 = ur - g ¢(ur)/g²(ur)	 (8.10)

and if we put v = u/U, to give the pattern in terms of natural beam widths, 
then this becomes

	 vr+1 = vr - (1/U)g ¢(Uvr)/g² (Uvr).	 (8.11)

Here ur and vr are the approximations after r iterations. Putting in g¢ 
from (8.9) and g¢¢ from another differentiation of (8.9), we obtain
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Starting with v0 = 2.5, this converges rapidly (v4 is equal to v3 to 4 decimal 
places) to give a value of -0.0267 at v = 2.3619. Adding sinc functions to 
cancel the lobes near ±2.5 the pattern in v is now

	 g(v) = sinc(v) + ½[sinc(v - 1) + sinc(v + 1)] + 0.0267[sinc(v - 2.362) 
+ sinc(v + 2.362)]	 (8.13)

This pattern is shown in Figure 8.4, with the raised cosine shaded pat-
tern for comparison (dotted curve). We see that the original first sidelobes 
have been removed and the new largest sidelobes are at almost -40 dB, an 
improvement of nearly 10 dB. To find the weighting function that gives this 
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pattern, we require the Fourier transform of (8.13). This can be seen almost 
by inspection, following, in reverse direction, the route that gave the raised 
cosine transform. More formally, we have

	 g(v) = sinc(v)Ä{d(v) + ½[d(v - 1) + d(v + 1)] + 0.0267[d(v - 2.362) 	
+ d(v + 2.362)]},	 (8.14)

giving, on Fourier transforming,

	 a(y) = rect( y){1 + ½[exp(2piy) + exp(-2piy)] + 0.0267[exp(2pi2.362y) 
+ exp(-2pi2.362y)] = rect(  y){1 + cos(2py) + 0.0534cos(4.724py)}	

(8.15)

As we started with the normalized variable v = u/U, this distribution is in 
terms of the normalized aperture y = x/X.

Clearly this could be generalized, so that if we put for the pattern
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Figure 8.4  Beam pattern for ULA with additional shading.
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then the weights are given by
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For the second example, we produce a pattern with the closest sidelobes 
to the main beam (and the largest) all at almost the same level, similar to 
the pattern given by Taylor weighting. In this case we take the pattern to be 
given by a sum of sinc functions at 0, ±1, ±2, . . . ±m natural beamwidths 
(reciprocal aperture units) from the center. In this case, we do not take the 
amplitudes of the sinc functions at ±1 to be 0.5. Thus, we have, again using 
a normalized u-space variable, 

	 g(v) = sinc(v) + a1[sinc(v - 1) + sinc(v + 1)] 

	 + a2[sinc(v - 2) + sinc(v + 2)] + . . .

	 + am[sinc(v - m) + sinc(v + m)]	 (8.16)

The m coefficients are determined by setting the gain to particular val-
ues at m points, in the form g(vr) = gr. The values we choose are the constant 
level A, or –A, at the sidelobe peaks, where 20log10(A) is the required peak 
level in decibels. We do not know exactly where these peaks are, but we 
should be near the peak positions if we choose the points to be midway be-
tween the nulls in the sinc patterns; thus, we have

	 g(r + 1.5) = (-1)r +1A.              (r = 1 to m)	 (8.17)

(The factor (–1)r+1 is required as the amplitudes of the sidelobe peak mag-
nitudes alternate in sign.) The set of m equations given by putting the 
conditions of (8.17) into (8.16) leads to the vector equation Ba = b, with  
solution

	 a = B-1b	 (8.18)

where a contains the required coefficients, the components of b are given by

	 bj = (-1) j+1A - sinc(  j + 1.5)	 (8.19)

and the components of B by

	 Bjk = sinc(  j - k + 1.5) + sinc(  j + k + 1.5)	 (8.20)



	 Array Beamforming	 231

Figure 8.5  �Constant level sidelobe patterns. (a) m = 3, levels-50 db, and (b) m = 5, levels 
–55 db.
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We note that the first points, at ±2.5, are on the edge of the main 
lobe, rather than the peak of a separate sidelobe, and the value is positive, 
with subsequent points on (or near) sidelobe peaks and alternating in sign. 
Two patterns given by (8.16), with coefficients from (8.18), are shown in  
Figure 8.5, again with the raised cosine pattern for comparison. In Figure 
8.5(a) we took m = 3 and the required level to be –50 dB. The two nearest-in 
lobes on each side are seen to be very close to this level—the pattern levels 
at ±2.5, ±3.5, and ±4.5 are precisely –50 dB, by construction, but the peaks 
of the lobes will not be at exactly these points, so the actual peaks will rise 
slightly above the required value. (In fact the third lobe is also very close to 
the set level, although not included in the constraint.) However, the range of 
levels for which this works well is limited, and Figure 8.5(b) shows it starting 
to fail. In this case, m = 5 and the nominal level is –55 dB. This is seen to be 
attained very closely for the lobes at ±4.5, ±5.5, and ±6.5, but the pattern 
has bulged between ±2.5 and ±3.5, giving a lobe appreciably above the speci-
fied level. Nevertheless these are good sidelobe levels and have been obtained 
quite easily. The pattern is well-behaved when designed for –50-dB sidelobes, 
but the first sidelobe, near ±2.5, starts to rise when the specified level is about 
-48 dB or higher. In general, for these patterns the coefficient a1 is near 0.5, 
and the other coefficients fall rapidly in magnitude. To find the correspond-
ing weighting function we transform the pattern to obtain

	 a(  y) = rect(  y){1 + 2a1cos(2py) + 2a2cos(4py) +  . . . + 2amcos(2mpy)}	
(8.21)

This is evaluated at the normalized points y = x/X, where x = kd and X = nd, 
so y  =  k/n, k = –(n – 1)/2 to (n - 1)/2 for the array of n elements.

8.3.3  Sector Beams 

We now consider a quite different problem—that of providing a flat, or con-
stant gain, beam for reception or transmission over a sector, generally wide 
compared with the natural beamwidth. In this case, as we want the sector 
gain to be constant over an interval (for simplicity we take the amplitude to 
be unity), it will be of the form rect(u/u0), where the width of the sector is u0 
centered on broadside initially. For a uniform linear array, we want a regu-
larly sampled aperture distribution, rather than a continuous one, so we take 
the required pattern to be repetitive in the u domain and to be given by

	 g(u) = repU(rect(u/u0))	 (8.22)
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so the element weights across the aperture are given by

	 a(x) = (u0/U)comb1/Usinc(u0x)	 (8.23)

This is a sinc function envelope, with width proportional to 1/u0 and 
sampled at intervals 1/U wavelengths, where U is the repetition interval in 
the u domain. If we take the beam to have an angular width q0, then the edges 
of the beam are at ±q0/2, and the corresponding u0 value is given by

	 u0 = 2sin(q0/2)	 (8.24)

(It is important not to put u0 = sin(q0), because of the nonlinear relationship 
between these variables. For example, if we chose q0 = 90° then the first, cor-
rect, expression makes u0 = Ö2, while the second makes u0 = 1; this would 
actually give a 60° beam, rather than 90°.) 

Figure 8.6(a) shows an example of a sector beam generated this way, 
with the weights applied to the elements shown in Figure 8.6(b). The aper-
ture distribution is a sampled sinc function and, for perfect patterns, extends 
in principle over the whole x-axis. In practice it is limited to n elements so is 
effectively gated by a rect function, rect(x/nd), where d = 1/U is the separation 
between elements and nd is the effective aperture. In this case U = 2 and d is a 
half wavelength. The transform of this rect function is a relatively narrow sinc 
function; this is convolved with the ideal rectangular pattern given by an infi-
nite array to produce the ripple seen in the figures. The figure is for a nominal 
50° sector beam (from –25° to 25°) given by an array of 21 elements.

The sidelobe ripples indicate the width of the natural beam from this 
aperture—the main lobe width, between the first zeros, would be the width of 
two of these sidelobes. With an even number of elements, the distribution is 
rather different in appearance, with two equal values in the center but a very 
similar beam pattern. There is no simple relation between the sidelobe levels 
and the number of elements (or whether this number is odd or even)—the 
levels vary with both the number of elements and the beamwidth. Because of 
the repetitive form of the response in the u domain, these lobes are the result 
of summing the convolution ripples of mainly two basic patterns, as given by 
the continuous aperture, at a separation of U = 1/d, and these may sometimes 
reinforce and sometimes tend to cancel (e.g., the lobe at 90° is essentially the 
sum of contributions from the pattern in u-space centered at 0 and the next 
repetition of the pattern at 2). The fluctuations with parameter variation of 
these lobes will tend to be greater as the sector width increases and the edges 
of the beam and its repetition become closer.
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Figure 8.6  �Fifty degree sector beam from an array of 12 elements. (a) m = 3, levels-50 db, 
and (b) m = 5, levels –55 db.
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We also note the appearance of the back lobe in Figure 8.6(a). In 
many applications, this is undesirable, whether on transmission, when only 
half the power goes into the forward lobe, or on reception, when interfer-
ence or external field noise will enter through this lobe. This lobe can be 
removed by mounting a reflecting plane at a quarter wavelength behind the ele-
ment (Figure 8.7). Combining the direct signal with the reflected one, effec-
tively arriving at a point a quarter wavelength behind the reflecting plane, and 
including the phase change of p on reflection at a denser medium, the element 
response becomes 2sin((π /2)cosθ)  for a signal at angle q to broadside. That 
is, ( ) ( ) ( )exp ( /2)cos exp ( /2)cos 2 sin ( /2)cosi i iπ θ π θ π θ- - = ; i gives an overall 
phase shift, not affecting the amplitude response. We have used the fact that a 
signal path of a quarter wavelength leads to a phase shift of π/2 radians. This is in 
the forward half azimuth plane, with no response in the back half plane (for an 
infinite reflecting plane). This is a pattern with a single broad lobe (Figure 8.7), 
falling to 3 dB below the peak at ±60°, and increases the directivity of the ele-
ments by 6 dB; part of this gain (3 dB) is due to limiting the power to one side of 
the array and part due to reducing the beam from a 180° semicircle to this 120° 
lobe. Because this response is so flat, it will make very little difference to the shape 
of sector beams centered at, or near, broadside, though it will more noticeably 
distort beams steered toward the edges of the forward sector. 

If we want to steer the beam so that its center is at q1 and its width is 
still q0, then its edges are at qa = q1 - q0/2 and qb = q1 + q0/2, and the corre-
sponding u values are ua = sinqa and ub = sinqb. In this case, the center of the 
beam in u space is at u1 = (ub + ua)/2 and its width is u0 = ub - ua. With these 
definitions of u0 and u1, the required sector beam pattern is, from (8.22), 

	 g(u) = repU[rect((u - u1)/u0]	 (8.25)

Figure 8.7  Element response with reflector.
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This has the (forward) transform (using R6a)

	 a(x) = (u0/U)comb1/U[sinc(u0x)exp(-2pixu1)]	 (8.26)

and we see that this requires putting a linear phase slope across the array 
elements; this corresponds to the effect of the delay across the aperture for 
a waveform received from (or transmitted to) this direction, causing a phase 
shift at the carrier frequency, f0. This requires an infinite aperture (to give a 
perfectly rectangular pattern); with a finite aperture, of width between nd 
and (n + 1)d, we include a rect function within the comb argument in (8.26). 
Putting (8.26) in the alternative form of a sum of d-functions, as in (8.7) (but 
weighted by (u0/U)sinc(u0kd)exp(-2pikdu1) in this case, with d = 1/U), and 
carrying out the inverse transform gives 
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as the alternative to (8.25) for practical evaluation. 
Figure 8.8 illustrates a steered sector beam, with a reflector-backed  

array. In this case the beam is formed from a uniform linear array of 12 ele-
ments, at half-wavelength spacing, and is 90° wide, centered at 20°. The re-
sponse with omnidirectional elements is shown (dotted line) for comparison 
(except that it would be 6 dB lower, not having the gain of the reflector ele-
ments). The reflector removes the back lobe and also distorts the sector beam 
slightly. The weights are complex, as indicated in (8.26), and, as the pattern 
is specified to be real, the weight distribution, as the transform of the pattern, 
has conjugate symmetry, with the real part symmetric and the imaginary part 
antisymmetric (see Section 2.3).

The sector beams defined so far have the same phase across the sector, 
so that, when used for transmission, the signal received in the far field will 
have the same phase at points in all directions at the same distance from the 
center of the array. If we put a phase slope across the pattern, this will not 
change the power transmitted in a given direction but will change the weights 
required. In this case, let the slope be such as to produce a phase difference of 
r cycles across a unit range of u, where the phase variation is linear in u space. 
The required pattern, from (8.25), is now

	 g(u) = repU[rect((u - u1)/u0)exp(2piru)]	 (8.28)
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Figure 8.8  �Steered sector beam with 12 reflector-backed elements. (a) Beam patterns, 
and (b) element weights.
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and the weight function, given by the Fourier transform of (8.28), is

	 a(x) = (u0/U)comb1/U[sinc(u0x)exp(-2pixu1)Äd(x - r)]

= (u0/U)comb1/U[sinc(u0(x - r))exp(-2pi(x - r)u1)]	 (8.29)

We see that the envelope of the set of d-functions from the comb func-
tion, which defines the weights on the elements, is shifted by r wavelengths 
with this linear phase slope.

Figure 8.9(a) shows the array factor for a 60° sector beam from an array of 
20 elements at half-wavelength spacing, steered to broadside. The beam also has 
a phase slope of one cycle per unit of u (i.e., r = 1), and this requires the sampled 
sinc function distribution for the weights to be displaced one wavelength from 
the center of the array, as seen in Figure 8.9(b). As u = ±½ at ±30°, the phase 
variation should be 360° across this interval, and this is seen in Figure 8.9(c), 
which shows the phase relative to that at the center of the beam. The slope varies 

Figure 8.9  �Sector beam with phase variation across beam. (a) Beam pattern, (b) element 
weights, and (c) relative phase.
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slightly (because of the finite aperture effect, which causes the amplitude ripples, 
and the stretching of the pattern in angle space, at higher angle values, compared 
with u space), but is close to the set value.

By splitting the sector into two or more subsectors with linear phase 
slopes, and so with offset peak amplitude values, as in Figure 8.9(b), it is pos-
sible to generate beams with more uniform weight magnitudes, which is de-
sirable for transmitting arrays, with similar power amplifiers on each element. 
The subsectors are given different phase slopes so that the peak weights for 
these sectors are at different points on the array. Even for a beam centered at 
broadside (normally with real weights), there will be phase variation between 
elements, as the centers of the sectors will be steered off broadside in general, 
requiring phase shifts. However, there may be some beam shape degradation 
and difficulty in balancing flatness of the weight magnitudes and the quality 
of the sector beam. 

8.4  Nonuniform Linear Arrays

8.4.1  Prescribed Patterns from Nonuniform Linear Arrays

We have seen in (8.2) that the beam pattern, in u space, is the inverse Fourier 
transform of the aperture distribution, and we can use the rules-and-pairs 
technique for a useful range of distributions for continuous apertures and, 
as demonstrated in Section 8.3, for regularly sampled apertures correspond-
ing to uniform linear arrays. In this case, the regularly sampled aperture is 
represented as a comb function, for which the transform is known (Rule 8b). 
However for nonuniform sampling, no general rule is available and a differ-
ent approach is required. In this case, given a desired beam shape and a set of 
element positions, the problem tackled is to find the weights to be applied to 
each element to match the desired pattern in a least squared error sense. This 
problem is very similar to those of Sections 6.3 and 7.2. By pattern, we mean 
here the array factor, taking the case of similar gain elements, oriented in par-
allel, so the actual array pattern is the product in each direction of the array 
factor and the element response. For omnidirectional elements, of course, the 
array factor gives the overall pattern (within a scaling factor).

For a linear array, the aperture distribution is of the form 
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where the n elements are at positions xr, with weights ar. The gain pattern (in 
u space) is given by the transform of this:

	 1

( ) exp(2 i )
n

r r
r

g u a x uπ
=

= å
	

(8.30)

Now let g(u) be a desired beam pattern, not necessarily exactly realiz-
able by any linear combination of the n complex exponentials in (8.30). We 
now want to find the set of n coefficients ar, which gives a least squared error 
fit to g(u). Let the error at point u be e(u), and defining fr(u) = exp(-2pixru), 
we have
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= =

= - = - = -å å f a
	

(8.31)

where a and f are n-vectors with components ar and fr (and the suffix H indi-
cates complex conjugate transpose). The square modulus of e is

	 |e(u)|2 = |g(u)|2 - f(u) Hag(u)* - g(u)aHf(u) + aHf(u)f(u) Ha	 (8.32)

We have used H H( )* *k kk
f a= =åf a a f . The total squared error as a function 

of the weights e(a) is given by the integral of |e(u)|2 over the interval I in u over 
which we want the specified response. In some cases, this will be the whole real 
angle region, from u = -1 to u = +1, but this need not necessarily be the case. The 
integrated error, as a function of the vector a is thus e(a), given by

	 ε = = - - +ò 2 H H H
I

( ) | ( ) |e u du pa b a a b a Ba	 (8.33)

where = ò 2
I
| ( ) | ,p g u du  and the components of b and B are given by

	
( )

π

π

= = -

= = - -

ò ò

ò ò
I I

I I

( ) ( ) exp( 2 ) ( )

( ) ( )* exp 2 ( ) .

r r r

rs r s r s

b f u g u du ix u g u du

B f u f u du i x x u du
	

(8.34)



	 Array Beamforming	 241

The value of a that minimizes e (or more generally gives a stationary 
point of e) a0 is given by ¶e/¶a* = 0 or, from (8.33), -b + Ba0 = 0, so that

	 a0 = B-1b	 (8.35)

This gives the set of weights for the functions {fr}, which gives the 
best fit in a least squares sense to the required pattern function g, over the 
interval I, where the components of b and B are given in (8.34). We see 
that these components are of the form of (forward) Fourier transforms: if g 
is within the interval I then the components of b are given by the Fourier 
transform of g, evaluated at xr. If I is put in the form of a rect function, then 
the components of B are given by the corresponding sinc function, evalu-
ated at (xr – xs).

8.4.2  Sector Beams from a Nonuniform Linear Array

Taking first the case of forming a sector beam from a regular array, let the element 
separation be d and so 1/d is the pattern repetition interval, U, in the u domain. 
Then it seems a natural choice of I to take the interval [–U/2,U/2] (i.e., one rep-
etition period), centered at u = 0 (broadside), which is equivalent to including the 
factor rect(u/U) in the integrands in (8.34). In this case Brs is the Fourier trans-
form of rect(u/U) evaluated at (xr - xs) (i.e., Usinc((xr – xs)U)). However, as xr – xs 
is an integer times d and dU = 1, then the sinc factor is zero except when xr =  
xs so that Brs = Udrs and B = UI. For the sector beam, width u0, centered at u1, 
g(u) = rect((u - u1)/u0), and as this is taken to be within rect(u/U), the product is 
still g(u). Then br is the Fourier transform of g(u) evaluated at xr, and we find that 
the weights ar given by (8.34) and (8.35) in this case are exactly the same as given 
by (8.26), rather more directly, confirming the point that the Fourier transform 
solution is also the least squared error solution. 

The solution given by (8.34) and (8.35) is more general than that of 
(8.23), which is for the regular array, so that a solution can be found for the 
weights of an irregular linear array giving a close approximation to a given 
required pattern. Figure 8.10 shows a sector pattern obtained from an irregu-
lar array. For this plot, the array elements were displaced from their regular 
positions, with separation d wavelengths, by a pseudo-random step chosen 
within an interval of width d - 0.5, which ensures that the elements are at 
least half a wavelength apart. Figure 8.10(a) shows the response in u space for 
an array of 21 elements at an average spacing d of 2/3. A sector beam of width 
40° centered at broadside was specified. A regular array would have a pattern 
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strictly repetitive at an interval of 1.5 in u (equal to 1/d), and this is shown 
by the dotted response. The irregular array “repetitions” are seen to degrade 
rapidly, but the pattern that matters is that lying in the interval [–1,1] in u. 
This part of the response leads to the actual pattern in real space, shown in 
Figure 8.10(b). We note that the sidelobes are up to about –13 dB, much 
poorer than for the patterns from regular arrays shown in Figures 8.6, 8.8, 
and 8.9, though this level varies considerably with the actual set of element 
positions chosen. The integration interval I was chosen to be [–1,1], to give 
the least squared error solution over the full angle range (from –90° to +90° 
and its reflection about the line of the array). This is equivalent to including 
rect(u/2) in the integrands in (8.34). This, again, makes no difference to the 
components of b (as g(u) is within this rect function), but for the components 
of B it gives values Brs = 2sinc2(xr – xs)). This compares with the case of taking 
one period of u, where the rect function is of width U so we include rect(u/U) 
and obtain Brs = UsincU(xr – xs).

A second example is given in Figure 8.11 for an array of 51 elements but 
illustrating the effect of steering. In this figure, the 40° sector beam is steered 
to 10°, and again we see the rapid deterioration of the approximate repeti-
tions in u space of the beam and a nonsymmetric sidelobe pattern, though 
the levels are roughly comparable with those of the first array. The average 
separation is 0.625 wavelengths, giving a repetition interval of 1.6 in u. If we 
steer the beam to 30° (Figure 8.12, using the same array), there is a marked 
deterioration in the beam quality. This is because part of one of the repeti-
tions falls within the interval I over which the pattern error is minimized, 
so the part of this beam (centered near u = -1) that should be zero in the 
required pattern is reduced. At the same time, the corresponding part of the 
wanted beam (centered at u = ½, for the steering direction of 30°) should be 
unity, so the solution tries to hold this level up. We note that the levels end 
up close to –6 dB, which corresponds to an amplitude of 0.5, showing that 
the error has been equalized between these two requirements. We note, from 
the dotted responses, that the result would be much the same using a regular 
array (where the repetitions are identical). 

In fact this problem would be avoided by choosing I to be of width 
1.6 (the repetition interval) instead of 2, preserving the quality of the sector 
beam. Also, if we center I at u1, the center of the sector, then we ensure that 
the full sector is within the interval I. Thus, we include a factor rect((u - u1)/
U) in the integrals, with U = 1/d = 1.6 in this case. Again the integral for the 
components br is unaffected, but the components Brs will now be given by the 
transform of this rect function, Usinc(x/U)exp(-2πiu1x) evaluated at (xr – xs).  
The result is shown in Figure 8.13 (for the same array), showing that the 
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Figure 8.11  �Sector pattern from an irregular linear array, beam at 10°. (a) Response in 	
u-space, and (b) beam pattern.
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Figure 8.12  �Sector pattern from a steered irregular linear array, beam at 30°. (a) Response 
in u-space, and (b) beam pattern.
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Figure 8.13  �Sector pattern from an irregular linear array, beam at 30°, optimization over 
one period in u. (a) Response in u-space, and (b) beam pattern.
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Figure 8.14  �Sector pattern from an irregular linear array, beam at 30°, optimization over 
two periods less the sector width. (a) Response in u-space, beam at 30°, and 
(b) beam pattern, beam at 30°.
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required sector beam is now preserved, but in this case there is a large lobe 
around -90°, nearly the full height of 0 dB. This is derived from the edge of 
the approximate grating lobe near u = –1, within the real angle region (–1 £ 
u £ 1). The large lobe at 150° is the reflection about 90° of the wanted lobe, 
at 30°. This lobe could be removed by using reflector-backed elements, as 
discussed earlier, but some of the large lobe (in the region –50° to –90°) will 
not be removed. Furthermore, there are quite high sidelobes in the region 
–20° to –50°, which are derived from parts of the u response that were not 
within the pattern optimizing region chosen for I.

We see from the discussion of Figures 8.11 through 8.13 how the choice 
of I affects the pattern. Finally, we choose I to be the whole region between 
the first two approximate grating lobes, so it is of width 2U – u0, where u0 is 
the width of the required sector, and we center I at the sector center, u1, as 
before. Thus, using rect((u – u1)/(2U – u0)) in (8.34), so that 

	 0 0 1(2 )sinc((2 )( ))exp( 2 ( ) )rs r s r sB U u U u x x i x x uπ= - - - - -

we obtain Figure 8.14 (for the same array as in Figures 8.11 through 8.13). 
We still have the large lobe around –90°, caused by the approximate grating 
lobe near u = –1, but the sidelobes between the main lobes are now rather 
smaller, as the regions of the u response that they originate from are now 
included in the least squared error solution.

Thus, although a solution can be found for the irregular array, its use-
fulness is limited for two reasons; the set of nonorthogonal exponential func-
tions (from the irregular array positions) used to form the required pattern is 
not as good as the set used in the regular case, and, if the element separation 
is to be 0.5 wavelengths as a minimum, an irregular array must have a mean 
separation of more than 0.5 wavelengths, leading to grating (or approximate 
grating) effects.

8.5  Summary

As there is a Fourier transform relationship between the current excitation 
across a linear aperture and the resultant beam pattern (in terms of u, a direc-
tion cosine coordinate), there is the opportunity to apply the rules-and-pairs 
method for suitable problems in beam-pattern design. This has the now-
familiar advantage of providing clarity in the relationship between aperture 
distribution and beam patterns, where both are expressed in terms of combi-
nations of relatively simple functions. 
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However, there is the complication to be taken into account that the 
“angle” coordinate in this case is not the physical angle but the direction co-
sine, along the line of the aperture. In the text, we have taken the angle q to 
be measured from broadside to the aperture and defined the corresponding 
Fourier transform variable u as sinq, so that u = cos(p/2 - q), the cosine of 
the angle measured from the line along the aperture. In this u domain beam 
shapes remain constant as beams are steered, while in real (or angle) space 
they become stretched out when steered toward the axis of the aperture. Fur-
thermore, the transform of the aperture distribution produces a function that 
can be evaluated for all real values of u, but only the values of u lying in the 
range -1 to 1 correspond to real directions.

Both continuous apertures and discrete apertures can be analyzed, the 
latter corresponding to ideal antenna arrays with point, omnidirectional ele-
ments. In this chapter, we have concentrated on the discrete, or array, case. 
The regular linear array, which is very commonly encountered, is particularly 
amenable to the rules-and-pairs form of analysis. In this case, the regular 
distribution (a comb function) produces a periodic pattern in u space (a rep 
function). In the case of a directional beam, the repetitions of this beam are 
potential grating lobes, which are generally undesirable, but if the repetition 
interval is adequate (large enough), there will be no repetitions within the 
basic interval in u corresponding to real space and hence no grating lobes. 
The condition for this (that the elements be no more than half a wavelength 
apart) is very easily found by this approach. Two variations on the directional 
beam for producing different low sidelobe patterns were studied in Section 
8.3.2. These exercises, whether or not leading to useful solutions for practical 
application, are intended to illustrate how the rules-and-pairs method can 
be applied to achieve solutions to relatively challenging problems with quite 
modest effort. It was seen in Section 8.3.3 that very good beams covering a 
sector at constant gain can be produced, again very easily using the rules-and-
pairs method.

The case of irregular linear arrays can also be tackled by these methods. 
However, the rules-and-pairs technique is not appropriate for directly find-
ing the discrete aperture distribution that will give a specified pattern when 
the elements are irregularly placed. Instead, the problem is formulated as a 
least squared error match between the pattern generated by the array and the 
required one. In this case, the discrete aperture distribution is found to be the 
solution of a set of linear equations, conveniently expressed in vector-matrix 
form. The elements of both the vector and the matrix are obtained as Fourier 
transform functions evaluated at points defined by the array element posi-
tions. Again, the sector pattern problem was taken, and it was shown that 
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this approach gives the same solution as that given directly by the Fourier 
transform in the case of the regular array, confirming that the direct Fourier 
transform solution is indeed the least squared error solution. For the irregu-
lar array, we obtain sector patterns as required, though with perhaps higher 
sidelobe levels and with some limitations on the array (which should not be 
too irregular or have too wide an aperture for the number of elements) and 
on the angle to which the beam can be steered away from broadside. These 
limitations are not weaknesses of the method but a consequence of the ir-
regular array structure, which makes achieving a given result more difficult. 
If the array elements are not to be too close (so are preferably at least a half 
wavelength apart), the elements of the irregular array will have a mean separa-
tion of over a half wavelength, leading to some grating effects, which seem to 
be unavoidable (even if directional elements are used to remove the back half 
of the pattern) except by keeping the average element separation down and 
not steering too far from broadside.
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Final Remarks

The illustrations of the use of the rules-and-pairs technique in Chapters 3 
through 8 show a wide range of application and how some quite complex 
problems can be tackled, using a surprisingly small set of Fourier transform 
pairs. The method seems to be very successful, but on closer inspection we 
note that the functions handled are primarily amplitude functions—the 
only phase function is the linear phase function due to delay. Topics such as 
the spectra of chirp (linear frequency modulated) pulses or nonlinear phase 
equalization have not been treated, as the method, at least as formulated at 
present, does not handle these. There may be an opportunity here to develop 
a similar calculus for these cases.

A considerable amount of work, in Chapters 6 and 7, is directed at 
showing the benefits of oversampling (by only a relatively small factor, in 
some cases) in reducing the amount of computation needed in the signal pro-
cessing under consideration. As computing speed is increasing all the time, it 
is sometimes felt that little effort should go into reducing computational re-
quirements. However, apart from the satisfaction of achieving a more elegant 
solution to a problem, there may be good practical reasons. Rather analogously 
to C. Northcote Parkinson’s law, “Work expands to fill the time available for 
its completion,” there seems to be a technological equivalent: “User demands 
rise to meet (or exceed) the capabilities of equipment.” While at any time an 
advance in speed of computation may enable current problems to be han-
dled comfortably, allowing the use of inefficient implementations, require-
ments will soon rise to take advantage of the increased performance—higher 
bandwidth systems, more real-time processing, more comprehensive simula-
tions, and so on. Cost could also be a significant factor, particular for real-
time signal processing—it may well be much more economical to put some  
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theoretical effort into finding an efficient implementation on lower perfor-
mance equipment than require expensive equipment for a more direct so-
lution, or alternatively to enable the processing to be carried out with less 
hardware.

Finally, while it is tempting to use simulations to investigate the perfor-
mance of systems, there will always be a need for theoretical analysis to give 
a sound basis to the procedures used and to clarify the dependence of the 
system performance on various parameters. In particular, analysis will define 
the limits of performance and, if practical equipment is achieving results close 
to the limit, it is clear that little improvement is possible and need not be 
sought; on the other hand, if the results are well short of the limit, then it is 
clear that substantial improvements may be possible. The Fourier transform 
(now incorporating Fourier series) is a valuable tool for such analysis, and as 
far as Woodward’s rules-and-pairs method makes this operation easier and its 
results more transparent, it is a welcome form of this tool.
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Index
A
Amplitude distortions, 215
Amplitude equalization
 example, 186–88
 illustrated, 187
Amplitude variation, 188
Analog to digital converter (ADC), 129
Analytic signals, use of, 7
Aperture distribution
 beam patterns relationship, 248
 nonuniform linear array, 248
 shaping, 225
 uniform linear array, 248
Apertures
 continuous, 249
 discrete, 249
 linear, 218
 phase shift, 219
Array beamforming, 217–50
 basic principles, 218–22
 introduction to, 217–18
 phase factor, 220, 221
 summary, 248–50
 uniform linear arrays (ULA), 222–48
Array elements
 complex weights, 217
 nonuniform distribution, 218
 uniform distribution, 218
Arrays
 centroid, 220
 of identical elements, 221
 reflector-backed, 236, 237

 signal weighting across, 219
 steering, 189
Asymmetric trapezoidal pulse, 46–48
 defined, 48–49
 illustrated, 47, 49
 spectra, 47
 spectrum, 50
 waveform, 46
Asymmetric triangular waves, 85, 87
Autocorrelation function, 160

B
Beams
 directional, 222–25
 sector (nonuniform linear array), 

241–48
 sector (uniform linear array), 232–39
Broadband signals, 189

C
Capacitance, 55
Carrier gated by regular pulse train, 64–65
Coefficients
 conjugate relation between, 103
 FIR filter, 169
 Fourier series, 78–80
Comb function
 defined, 18
 expanding, 96
 illustrated, 18
 impulse responses, 113
 sampling interval, 109
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Complex waveforms
 representation of, 7
 in signal processing, 6–8
Computational load, reducing, 105
Continuous apertures, 249
Convolution
 Dirac delta-function, 153
 with FFT, 104–6
 nonsymmetric functions, 21
 Ramp functions, 59
 rect functions, 20
 sinc, 32
 symmetrical functions, 19
 two finite energy waveforms, 104

D
Delays
 amplitude equalization, 188
 interpolation and, 141
 weights, 145
Difference beam
 defined, 190
 defining, 200
 gain response against frequency offset, 

208–9
 ideal, 200
 pattern, 200
 responses, 206
 slope, 210–11, 213
Difference beam equalization, 199–214
 illustrated, 206–7
 integral, 212
 narrowband steering, 200
 ramp and rect functions, 204
 response, 212, 213
 ripple pattern, 212
 trapezoidal spectrum, 202
Dirac delta-function, 6, 15–17
 convolutions, performing, 153
 evenly spaced, 26–27
 power in, 72–74
 scaled, 16–17
 series approximating, 15
Directional beams, 222–25
 patterns, 222, 223–25
 steering, 222, 225
Discrete apertures, 249
Discrete Fourier transform (DFT)
 defined, 71

 examples, 99–101
 fast algorithms, 98
 general, 91–94
 introduction to, 71
 low-order, 99
 of regular time series, 94–95
 of sampled periodic spectrum, 95–98
 summary, 106–7
 See also Fourier transforms
Discrete functions, 93

E
Equalization, 175–215
 amplitude, 186–88
 array response with, 193
 basic approach, 177–81
 basis, 175–76
 for broadband array radar, 188–90
 in communications channel, 177
 difference beam, 199–214
 effectiveness, 215
 introduction to, 175–76
 method summarization, 180
 parameters, varying, 198
 sum beam, 190–99
 summary, 214–15
 weights, 214
Equalizing filters, 178
Error power
 contour plot, 164, 165
 defined, 159
 levels, 164–66
 minimized, 178
Exponential rounding, 57

F
Fast Fourier transform (FFT), 71, 98–102
 efficient convolution using, 104–6
 examples, 99–101
 inverse (IFFT), 105
 MATLAB function, 98
 orders, arranging, 105
 orders, increasing, 101
 triangular pulse and spectrum, 100, 102
Finite impulse response (FIR) filters
 coefficients, 169
 Gaussian, 168, 170
 for interpolation, 138–39, 159
 weights for interpolation, 142, 146
 weights with oversampling, 149, 152, 

155
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Fourier series
 coefficients, 78–80
 concept, 4
 periodic waveforms, 69
 of real functions, 78–91
 of rectified sinewaves, 88–91
 relationship, 70
 of sawtooth waves, 83–85
 of square wave, 80–83
 summary, 106
 of triangular waves, 85–87
Fourier transforms
 of constant functions, 5
 discrete (DFT), 71
 fast (FFT), 71, 98–102
 generalized functions and, 4–6
 inverse, 12–13, 66
 as limiting case of Fourier series, 5
 notation, 12–13
 pairs, 23
 rules-and-pairs approach, 1–4
 rules for, 22
 as valuable technique, 1
Fractional bandwidths, 120
Full-wave rectified sinewaves, 88, 90, 91

G
Gates
 optimum, for oversampled time series, 

144
 raised cosine rounded, 151–54
 rectangular, performance, 158
 spectral, 147–54
 trapezoidal, 147–48
 trapezoidal rounded, 148–51
Gaussian clutter
 direct generation of, 167–70
 simulated, generation of, 166–71
 waveform generation with interpola-

tion, 170–71
Gaussian FIR filter, 170
Gaussian functions, 6
Gaussian spectrum, 162–63
 standard deviation, 169
 trapezoidal spectrum, 163–64
Gaussian waveform generation
 FIR filter for, 168
 with interpolation, 170

General sampling rate
 quadrature sampling, 124–28
 uniform sampling, 117–20

H
Half-wave rectified sinewaves, 88, 90
High IF sampling, 131–33
 spectrum, 132
 summary, 134
 time, 131
Hilbert sampling, 120–22
 phase shift, 120
 rate, 122
 summary, 133–34
 theorem, 111, 121
Hilbert transform, 134–36
 finding, 135
 phase shift correspondence, 136

I
I (in phase), 7–8
Interpolating functions, 114
 sampled waveform with, 115
 trapezoidal gate, 147
 trapezoidal rounded gate, 151
 in uniform sampling, 124
Interpolation
 for delayed waveform time series, 

137–73
 delays and, 141
 factor, 141
 FIR filter for, 139, 159
 FIR filter weights for, 142
 function, 143, 144
 Gaussian waveform generation with, 

170
 introduction to, 137–38
 least squared error, 158–66
 resampling and, 171–72
 spectrum independent, 138–58
 summary, 172–73
Inverse fast Fourier transform (IFFT), 105
Inverse Fourier transform
 aperture illumination function, 66
 notation, 12–13

L
Least squared error interpolation, 158–66
 error power levels, 164–66
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Least squared error interpolation (continued)
 Gaussian spectrum, 162–63
 minimum residual error power method, 

158–61
 power spectra and autocorrelation func-

tions, 161–64
 raised cosine spectrum, 162
 rectangular spectrum, 161
 trapezoidal spectrum, 163–64
 triangular spectrum, 162
 See also Interpolation
Linear amplitude distortion, 187
Local oscillators (LO) waveform, 130
Low IF analytic signal sampling, 128
 spectra, 129
 summary, 134
Low sidelobe patterns, 225–32
 constant level sidelobe patterns, 231
 pattern with additional shading, 229
 raised cosine shading, 226
 See also Uniform linear arrays (ULA)

M
MATLAB programs
 defined, 10
 snc functions evaluation, 186
Maximum sampling rate, 118
Minimum residual error power method, 

158–61
Minimum sampling rate, 116–17
Mismatch power, 165, 166
Modified quadrature sampling, 127–28
 defined, 127
 relative sampling rates, 128
Monopulse measurement, 190

N
Narrowband waveforms, 24, 189
Newton’s approximation method, 228
Nonsymmetric functions, convolving, 21
Nonuniform linear arrays, 239–48
 aperture distribution, 239–40
 gain pattern, 240
 prescribed patterns from, 239–41
 sector beams, 241–48
 summary, 249–50
 weights, 241

O
Organization, this book, 8–10
Oversampling

 benefit, 156
 factors, 145, 164
 filter weights with, 149, 152, 155
 FIR interpolation weights with, 146
 rates, 157, 158
 rates, increasing, 198
 sum beam equalization and, 198, 199

P
Pairs, deviations of, 37–39
Parseval’s theorem, 24–26, 72
Periodic function
 general, 74–77
 regularly sampled, 78
 repetition interval, 74
 spectra, 74
 waveforms, 74
Periodic waveforms
 dimensions, 78
 energy and power, 72
 Fourier series coefficients for, 80
 Fourier series representation, 69
 general periodic function, 74–77
 introduction to, 69
 power in the Dirac delta-function, 

72–74
 power relations for, 72–78
 regularly sampled function, 77
 summary, 106
Phase factors, 221
Planar arrays, 218
Power
 defined, 72
 in Dirac delta-function, 72–74
 mismatch, 165, 166
 negligible, 112
 total, 162
 in waveforms, 76
Power spectra
 exponential impulse response, 56
 rect impulse response, 56
Pulse Doppler radar
 Doppler shift, 65, 66
 spectrum, 66
 target return, 65–67
 weighting function, 67
Pulse repetition frequency (PRF), 63, 167
Pulses
 asymmetric trapezoidal, 46–48
 asymmetric triangular, 48–50
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 identical RF, regular train of, 62–64
 raised cosine, 50–53
 rectangular, 42, 53
 rounded, 53–58
 rounded trapezoidal, 58–62
 symmetrical trapezoidal, 42–43
 symmetrical triangular, 43–46
Pulse spectra, 41–67
 asymmetric trapezoidal, 48
 asymmetric triangular, 50
 raised cosine, 53
 reasons for studying, 41
 regularly gated carrier, 65
 regular pulse train, 63
 summary, 67
 trapezoidal, 48
 triangular pulse, 45

Q
Q (quadrature), 7–8
Quadrature sampling, 122–28
 allowed sampling rates, 127
 basic analysis, 122–24
 general sampling rate, 124–28
 illustrated, 123
 modified, 127–28
 relating condition, 124
 relative sampling rates, 125
 theorem, 128

R
Raised cosine pulse, 50–53
 defined, 50
 Gaussian function, 54
 illustrated, 52
 shapes, 51
 spectrum, 53
 transform, 51–53, 54
 unit amplitude, 50–51
Raised cosine rounded gate, 151–54
 defined, 151–53
 filter weights with oversampling and, 

155
 illustrated, 153
 See also Gates
Raised cosine spectrum, 162
 mismatch power for, 165
 of unit area, 162
Ramp functions
 convolving, 59
 defined, 59

 four, 60–61
 illustrated, 59, 182
 product of, 204
Rectangular pulses, 42
 convolving trapezoidal pulse with, 54
 rounding, 57
 step continuity, 53
 with trapezoidal pulse, 54
Rectangular spectrum
 expanded range of taps, 164, 166
 mismatch power for, 165, 166
Rect functions, 13–15
 alternative forms, 27
 convolving, 20
 Fourier transform of, 13
 product of, 31, 204
Rectified sinewaves
 Fourier series of, 88–91
 full-wave, 88, 90, 91
 half-time, 88
 half-wave, 88, 90
 illustrated, 88
Regularly sampled function, 77
Regular pulse train, 62–64
 carrier gated by, 64–65
 duty ratio, 82
 illustrated, 62
 spectrum, 63
Regular time series
 periodic spectrum of, 95
 spectrum of, 94
 transform of, 94–95
Relative sampling rates
 lines of, 127
 maximum, 126
 minimum, 126
 modified quadrature sampling, 128
 quadrature sampling, 125–28
 uniform sampling, 119
Repetition period, 108–9
Repetition rate, 125
Rep operator, 17–18
 defined, 17
 illustrated, 18
 period of, 109
Resampling, 171–72
 economical, 172
 illustrated, 171
 interpolation and, 171–72
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Resistance, product of, 55
Rounded pulses, 51–53
 effect on trapezoidal pulse spectrum, 57
 general trapezoidal, 58–62
 rising edge, 61
 stray capacitance, 55
Rules, deviations of, 37–39
Rules and pairs, 11–29
 brief deviations of, 33–39
 Fourier series of real functions with, 

78–80
 introduction to, 11–12
 notation, 12–20
 Woodward, 2–3
Rules-and-pairs method, 1–4
 origin of, 2–3
 outline of, 3–4

S
Sampled periodic spectrum
 sampling interval, 95
 transform of, 95–98
Sampling, 117–20
 basic technique, 112–13
 with finite window width, 130–31
 high IF, 131–33
 Hilbert, 120–22
 Hilbert theorem, 111
 interval, 179
 low IF analytic signal, 128
 quadrature, 122–28
 summary, 133–34
 theory, 111–34
 uniform, 116–20
 wideband, 113–15
 wideband theorem, 111
Sampling rates
 general, 117–20, 124–28
 Hilbert, 122
 maximum, 118
 minimum, 116–17, 161
 relative, 119, 125
Sawtooth waves
 Fourier series of, 83–85
 synthesis, 84
 waveform, 83
Scaling factor, 42
Sector beams (nonuniform linear array), 

241–48

 forming, 241
 grating lobe, 248
 repetitions, 243
 sector pattern, 242, 244, 245, 246, 247
 sidelobes, 248
Sector beams (uniform linear array), 232–39
 aperture distribution, 232
 back lobe, 235
 element responses with reflector, 235
 fifty degree, 234
 phase, 236
 phase variation across beam, 238
 with reflector-backed array, 236, 237
 sidelobe ripples, 233
 slope, 238–39
 steered, 236, 237
 subsectors, 239
 weighting function, 238
 See also Uniform linear arrays (ULA)
Shifted sinc functions, 26–29
Signal processing
 analytic signal, 7
 complex waveforms in, 6–8
 spectra in, 6–8
Sinc functions, 3, 14–15
 convolution, contour for integral in, 32
 envelope, 233
 product of, 43
 properties of, 29–33
 shifted, sum of, 26–29
Snc functions
 defined, 185
 illustrated, 184
 MATLAB program for evaluating, 186
 Spectral shifts, 117
 Spectrum independent interpolation, 

138–58
 minimum sampling rate solution, 

138–42
 oversampling and spectral gating condi-

tion, 142–47
 raised cosine rounded gate, 151–54
 results and comparison, 154–58
 spectrum of time series, 143
 trapezoidal gate, 147–48
 trapezoidal rounded gate, 148–51
Square waves
 approximations to, 82
 Fourier series of, 80–83
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 representation of, 80
 spectrum, 83
 synthesis, 82
 transform, 81–82
 waveform, 81
Step functions, 15–17
 scaled and shifted step, 17
 unit, 17
Stray capacitance, 54
Sum beam
 broadband, steering, 191
 defined, 190
 element separation and, 196
 equalization, 190–99
 frequency response, effect of band-

width, 194
 frequency response, variation with 

equalization parameters, 197
 gain with frequency sensitive elements, 

214
 narrowband, steering, 190–91
 oversampling and, 198, 199
 response with frequency offset, 196
 sampling rate and, 195
Symmetrical functions, convolving, 19
Symmetrical trapezoidal pulse, 42–43
 analysis, 42
 illustrated, 42
 length, 43
 spectrum, 44
Symmetrical triangular pulse
 defined, 43–45
 illustrated, 45
 limiting version, 43
 spectrum, 45
Symmetric triangular waves, 85, 87

T
Time-limited waveforms
 defined, 107
 identity, 107
 spectrum of, 107–8
Time series
 oversampled, 144
 spectrum of, 143
Trapezoidal gate, 147–48
 defined, 147
 filter weights with oversampling and, 

149
 illustrated, 147
 interpolation at time, 148
 See also Gates
Trapezoidal pulses
 asymmetric, 46–48
 convolving with rectangular pulse, 54
 symmetrical, 42–43, 44
Trapezoidal rounded gate, 148–51
 defined, 148
 filter weights with oversampling and, 

152
 illustrated, 150
 interpolating function, 149
 See also Gates
Triangular function, 30
Triangular pulses
 asymmetric, 48–50
 symmetrical, 43–46
Triangular spectrum, 162
Triangular waves
 asymmetric, 85, 87
 coefficients, 87
 Fourier series of, 85–87
 symmetric, 85, 87
Tri function, 46

U
Uniform linear arrays (ULA), 218, 222–39
 beam patterns, 223–24
 beam patterns, with additional shading, 

229
 beam shape, 228
 constant level sidelobe patterns, 231
 directional beams, 222–25
 low sidelobe patterns, 225–32
 with raised cosine shading, 226
 sector beams, 232–39
 summary, 249
Uniform sampling, 116–20
 general sampling rate, 117–20
 interpolating functions, 124
 with low IF, 128–31, 134
 maximum sampling rate, 118
 minimum sampling rate, 116–17
 relative sampling rate, 119
 summary, 133
 theorem, 120
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W
Waveforms
 baseband, 7
 description, choosing, 4
 discrete, 96
 flat oversampled, 145
 gated repeated, 114
 Gaussian, 168
 general finite discrete time series, 93
 local oscillator, 130
 narrowband, 24
 periodic, 69–70, 72, 74
 power, 76
 pulse Doppler radar, 66
 repetitive, 77
 shifted, 17
Weighted squared error match, 178
Weighting functions, 227, 228–29, 238
Weights
 array element, 217

 delay, 144
 equalization, 214
 filter, with oversampling, 149, 152, 155
 filter tap, 156, 157
 FIR interpolation, 142, 146
 narrowband, 191
 nonuniform linear arrays, 241
Wideband sampling, 113–15
 interpolating functions, 115
 theorem, 115
 waveforms, 113–15
Wideband signals, 189
Wiener-Khinchine relation, 26
Wiener-Khinchine theorem, 160
Woodward, P.M., 2–3

Z
Zeros of a function, 227
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