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Preface

The principal change, in revising this book, has been the addition of a new
chapter, primarily on periodic waveforms. The subject of Fourier series has
been presented using the rules-and-pairs method, in particular for the com-
mon case of real periodic functions. The topic of Fourier transforms of dis-
crete waveforms is also included, leading to a discussion of periodic discrete
waveforms in particular, with reference to the fast Fourier transform.

Errors in the original text, mainly typographical, have been corrected,
and at a number of points in the text, the mathematics, and the figures have
been revised for greater clarity. Some further small additions and illustrations
have been included, particularly in Chapters 2 and 3.

Assignificant further addition is the provision of a disk containing MAT-
LAB programs, including those for all the principal graphical figures. Readers
can run these programs with the same parameters to reproduce the figures
and vary these parameters for their particular interests or requirements.

Again grateful acknowledgment is due to the publisher’s reviewer,
remaining anonymous, for encouragement and for useful and perceptive
comments.

DHB 2011
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Preface to the First Edition

The basic material for this book has been accumulated over the author’s
working lifetime of about forty years. The rules-and-pairs approach to Fou-
rier transforms has been employed with good effect in a wide variety of prob-
lems, from pulse Doppler radar spectra to delay compensation, from antenna
array patterns to efficient clutter simulation. It has been found to be generally
easy and effective, quickly yielding useful results and allowing the user to
see clearly the relationships between functions and transforms, waveforms,
and spectra, rather than losing sight of these in the complexities of integra-
tion. It seemed, however, that the benefits of this approach should be better
known, and the initial intention was to produce a technical note for use by
the author’s colleagues and successors. However, the interest shown and en-
couragement given by Artech House have been gratefully received and the
opportunity to publicize the technique more widely has been taken.

The support of Roke Manor Research in providing the facilities and
freedom to write this book is gratefully acknowledged, as are also the backing
of C. J. Tarran and the reviewing of S. H. W. Simpson. The final acknowl-
edgment is to the publisher’s reviewer, remaining anonymous, who provided
encouragement and useful comments.

DHB 2002
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Introduction

1.1 Aim of the Work

The Fourier transform is a valuable theoretical technique, used widely in
fields such as applied mathematics, statistics, physics, and engineering. How-
ever, the relationship between a function and its transform is given by an
integral, and a certain amount of tedious integration may be required to ob-
tain the transform in a given application. In general, the user of this math-
ematical tool is interested in the functions and their transforms and not in
the process of obtaining one from the other, which, even if not difficult, may
be complicated and require care to avoid any small slip leading to an error in
the result. If the transform function could be obtained without integration,
this would be welcomed by most users. In fact, anyone performing many
transforms in a particular field, such as radar, where the spectra correspond-
ing to various, perhaps rather similar, waveforms are required, would notice
that certain waveforms have certain transforms and that certain relationships
between waveforms lead to corresponding relationships between spectra. By
knowing a relatively small number of waveform-transform pairs and the rules
for combining and scaling transforms, a very substantial amount of Fourier
transform analysis can be carried out without any explicit integration at all—
the integrations are prepackaged within the set of rules and pairs.

The aim of this book is to present again the rules-and-pairs approach
to Fourier transforms, first defined systematically by Woodward [1], and to
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illustrate its use. The rules and pairs, and notation, are given in Chapter 2,
and the remaining chapters employ the technique in a number of areas of
application. These are mainly in the field of signal or waveform processing
(though not Chapter 8), but the technique is general, of course, and this
choice should certainly not imply that other users of the Fourier transform
should not also find the technique of interest and value.

The aim is not to provide a handbook of solutions to particular prob-
lems in the areas covered, though some results may be found particularly
interesting and useful. More specifically, it is to show how such problems
might be tackled and how the technique can be used with ingenuity in a va-
riety of ways. These produce results that would be more difficult and tedious
to obtain by integration and may not be so easy to interpret and understand.
In fact an important advantage of the method, aided by the notation used, is
the greater clarity regarding the nature of the transforms, obtained by keep-
ing attention on the functions rather than on the mechanics of integration.
While the illustrations given may not include a reader’s particular problem,
some examples may well be close enough to suggest how the problem could
be tackled by the rules-and-pairs method and perhaps solved more easily than
otherwise. Once the user has become familiar with the method, many results
can be obtained remarkably easily and concisely, and the complexity of prob-
lems to which this method can be applied is surprising.

1.2  Origin of the Rules-and-Pairs Method for Fourier Transforms

With the arrival of the technology of electronics, early in the last century,
the possibilities for handling information—sending, receiving, and process-
ing it—expanded immensely over that possible with the mechanical technol-
ogy, however ingenious, of the nineteenth century. The need to understand
the limits of performance, whatever the technology available, and the depen-
dence of performance on various parameters, such as bandwidth and signal-
to-noise ratio, led to the rise of the subject of information theory. Under the
stimulus of war, a new application of electronics, radar, developed rapidly in
the 1930s and 1940s and again theoretical analysis followed. In 1953, P. M.
Woodward’s monograph, Probability and Information Theory with Applica-
tions to Radar [1] appeared. The topics of radar detection, accuracy, resolu-
tion, and ambiguity, in the later chapters are generally the reasons for the
references to this book in modern radar textbooks, but, leading up to his con-
clusions, Woodward needed results in the field of waveform analysis, and this
is the subject of his Chapter 2, in which his rules and pairs are introduced.
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Waveforms and spectra are connected, of course, by a Fourier transform re-
lationship, and this technique is the principal tool of the time-and-frequency
analysis that Woodward implies is the basis of much of the mathematical
study of information theory, radio, and radar.

It is not claimed that Woodward’s rules and pairs in themselves are par-
ticularly original. The pairs are well known and, as Woodward says, the rules
are “known by heart by most circuit mathematicians.” What is perhaps new is
the careful specification of the set of rules and the committed and consistent
use of them to obtain transforms very directly and concisely. In addition to the
results required for the mathematical study of radar, Woodward derives very
neatly important general results (again, already known) such as Parseval’s theo-
rem, sampling theorems, and Poisson’s formula, using this approach. What is
more clearly new and valuable is Woodward’s contribution to notation, in-
cluding the rect and sinc functions, the comb function, and the rep operator.
The term sinc function has since become more widely accepted and used, al-
though, regrettably, there is ambiguity, with some writers using sincx to mean
sinx/x instead of, as here, sinmx/7mmx. (We follow Woodward’s definition here;
in this form sinc is a more natural and more elegant function, with expressions
less cluttered with factors of 7, particularly in the Fourier transform applica-
tion.) The comb function and the rep operator are used for describing sampled
or repetitive waveforms and their spectra, and hence enable the whole field of
Fourier series to be incorporated, in principle, into the field of Fourier trans-
forms, as shown in Chapter 4. Thus, Fourier series can now be seen as particu-
lar forms of the Fourier transform, rather than the Fourier transform seen just
as a limiting case of the Fourier series. For suitable waveforms, this enables the
Fourier series coefficients to be obtained without explicit integration.

1.3 Qutline of the Rules-and-Pairs Method

To use the method, the function to be transformed must first be expressed
carefully in the notation in which the rules and pairs are expressed (i.e., in
terms of the basic functions included in the table of Fourier transform pairs).
This table gives the transforms of these functions, and the table of rules
provides the relationships between these transforms (sums, products, convo-
lutions, and appropriate scaling factors, for example) as determined by the
relationships between the input basic functions.

The notation is specific and specialized, but is reasonably natural and
quickly absorbed, and is given in Chapter 2 with the tables of the rules and
pairs. Having obtained the transform using the rules and pairs, the resulting
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expression requires interpretation and may benefit from rearranging and sim-
plifying. Sketches of the functions can be useful to bring to life a mathemati-
cal expression, and illustrations of functions and their transforms have been
provided fairly generously in Chapters 2, 3, and 4, particularly.

A feature of the notation is that a given function (or waveform) can
sometimes be correctly described in more than one way, leading to more than
one expression for its transform (or spectrum), though of course these expres-
sions must be equivalent. One of these expressions will be more appropriate
and convenient for the particular case under study than another, so there is
an art, based on experience and imagination (such as required for solving cer-
tain differential equations or some problems in integration) in choosing the
description of the waveform that will yield the spectrum represented in the
required form. This alternative description approach is particularly effective
in producing general results or theorems, as Woodward shows. A good ex-
ample is in Woodward’s proof of the sampling theorem in the time domain,
given in Chapter 5, where, by expressing the spectrum of a waveform in two
different ways, the equivalence of a continuous waveform and its sampled
form is established.

1.4 The Fourier Transform and Generalized Functions

The concept of the Fourier series seems intuitively very reasonable—that any
periodic function can be represented by a sum of elementary periodic func-
tions, either sine and cosine functions, or, equivalently, complex exponentials.
The frequencies of the elementary functions are integer multiples (including
zero, giving a constant function) of the repetition frequency of the periodic
function. The sum may turn out to be infinite, but users of this mathematical
tool are generally content to let mathematicians justify such a sum, determin-
ing the conditions under which it converges; however, for problems arising
in practice, in physics or engineering, for example, it is obvious that such a
sum does converge. Thus we can put, for fa real or complex function of a real
variable x, with period X,

fx)= i a, cos(2mnx/ X )+ ibn sin(2mnx/X) = i cpexp(2minx/X) (1.1)

7n=0 n=1 n=—oco

(By expressing the trigonometric functions as complex exponentials we can
relate ¢, to a, and b,. From now on, we restrict our attention exclusively to
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the complex exponential series, other than in Chapter 4.) The coefficients of
the series are found by integration over one cycle of the function, so that, for
example,

xo+X /2 )
-[xo—X/z f(x)exp(—2min x| X)dx (1.2)

1

Cn %

The Fourier transform can be obtained as the limiting case of the Fou-

rier series when the period is increased toward infinity and the fundamen-

tal frequency falls to zero. In this case, as X — oo we put n/X—y, 1/X—dy,

¢,—g(y)dy, where g is a continuous function replacing the discrete series c,,

and the summations in (1.1) become integrals. Thus (1.1) and (1.2) become,
respectively,

=" gyexprivy)dy (1.3)

and
g =" Fl)exp(-2miny)ds (1.4)

Here g(y) is the Fourier transform of f{x). Even the practical user,
not concerned about problems of convergence, knowing that he has a well-
behaved continuous function with no poles, for example, and believing that
there is a well-behaved solution for his problem, will find there is a difficulty
here. Whereas it is clear that the integral in (1.2) converges (has a finite value)
because it is over a finite interval, the same does not necessarily hold for the
integral in (1.4), which is over an infinite interval. (The former is absolutely
integrable for such a function—that is, the integral of the modulus of the
integrand is finite—and the latter is not necessarily so.) The simplest func-
tion for which this difficulty arises is the constant function, and it is clear that
the value of this mathematical tool would be severely limited if it could not
handle even this case.

An approach to finding the Fourier transform of a constant function,
say f(x) = 1, for all real x, is to find a sequence of functions that do have trans-
forms as given by (1.4) and that approach f'in the limit of some parameter.
For example, we could choose f,(x) to be the function exp(-7x*/n?*). Putting
this into (1.4), we find that its transform is g,(y) = nexp(-7n*y?). We see that
in the limit as 7 — oo, f,(x) = f(x) = 1, in that however small we choose the
positive number &, for any x we can find a value of 7z such that £,(x) > 1 — &
Also g,(y) — ¢(y), where g,(0) — oo, and g,(y) — 0; otherwise, as, for any
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nonzero y and positive & however small, we can always find a value of 7 such
that g,(y) < & The limiting function g is the Dirac é-function, which plays
an important part in this theory. It is not strictly a function in the ordinary
sense, but is a generalized function in Lighthill’s terminology [2].

The fact that there is some difficulty in using (1.4) where f(x) is a con-
stant function (and also if it is periodic) does not mean that such functions
do not have Fourier transforms. This problem has been tackled formally, and
the subject of Fourier transforms put on a rigorous basis by Laurent Schwarz.
However, to do this it was necessary to generalize the idea of a function to
include the é-function, and indeed the term generalized function has been
introduced by Temple and presented clearly and accessibly by Lighthill [2]. It
is shown in this text that, in general, ordinary functions satisfy the definition
of generalized functions (as a limiting sequence of suitable functions). This
means, in practice, that we can confidently accept and include &-functions
(and rows of delta-functions, in the case of a line spectrum) with ordinary
functions for the purpose of Fourier transform operations and analysis.

The &-function has been obtained as the limit of a series of Gaussian
functions (as also in Woodward [1], on pp. 15 and 28), of a series of trian-
gular functions and also in Figure 2.3 of Chapter 2, of a series of rectangular
functions and of sinc functions. The fact that different sequences can be used
is included in Lighthill’s definition, though his functions should be differen-
tiable everywhere, which actually rules out the series of triangular and rect-
angular functions.

There is no reference to generalized function theory by Woodward;
Schwarz’s work was published in 195051, only shortly before Woodward’s
book (1953), and the further spreading of these ideas by Temple (1955) and
Lighthill (1958) followed later. The Dirac delta-function is an example of
the not uncommon case where physics and engineering have required a new
mathematical tool. This has been devised and given a very reasonable justi-
fication (e.g., as the limit of a series of triangular functions), only later to be
given a more rigorous mathematical definition.

1.5 Complex Waveforms and Spectra in Signal Processing

The method uses the complex Fourier transform, by which a waveform, real
or complex, is expressed as a sum or integral of complex exponentials (see
Equation (1.3)), which are elementary complex waveforms. The idea of a
complex waveform should not be seen as only a mathematical convenience,
with the real-world waveform taken to be just the real part. The elementary
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complex waveform exp27iff can be represented as the pair of real waveforms
cos27ft and sin27ff in two channels, which must be handled appropriately
(i.e., according to the rules of complex arithmetic). We recall that a complex
number can be represented as an ordered pair of real numbers (i.e., z = x +
7y can be written as (x,y), satisfying the rules (x;,y;) + (x3,95) = (x;+ x,91+ 32)
and (x1,y1) X (x2,05) = (%1%, — y195, X172+ x,91)). This avoids the explicit use of
the imaginary constant 7, if this worries the practical user, but we need only
consider that 7 acts as a form of switch that moves a waveform from channel 1
“real”) to channel 2 (“imaginary”), or from channel 2 to channel 1, with a
sign change in this case. We note that by using complex waveforms, meaning
is given to the idea of negative frequency. Compared with the positive fre-
quency form, this corresponds to an inversion of the waveform in the second
channel (i.e., the pair (cos27ft,-sin27f?)).

In signal processing, it is convenient to use the analytic signal, which
is the complex waveform corresponding to the real waveform that is pres-
ent, as received, for example, from a radio or radar antenna or sonar sensor.
Thus, if the waveform is expressed as a(z)cos(27fyr + @(2)), that is, a carrier
at intermediate frequency (IF) or radio frequency (RF) f;, modulated (time
varying) in both amplitude and phase, in the general case, then we form the
complex form a(t)expi(2mfyr + ¢(2)), which is the pair {a(r)cos(2nfyr + ¢(2)),
a()sin(2xfor + ¢(2))}. The second member of this pair is obtained from the
first by a Hilbert transform, which in effect performs a wideband —90° phase
shift. (Thus all cosine components in the signal, whatever their frequencies,
become sines, and sines become —cosines.) In practice this can be achieved
with a high degree of fidelity (for moderate fractional bandwidths) by a 3-dB
hybrid directional coupler. The two (real) outputs of this coupler can be con-
sidered the required (complex) waveform pair. The advantage of using the
analytic signal is that (at least when on a carrier) the spectrum is “one-sided,”
with only positive frequency components, in contrast to the two-sided spec-
trum of the real waveform. If the complex waveform is then mixed down to
complex baseband, using the complex local oscillator (LO) exp(-27ifyz), we
obtain the complex waveform a(z)exp(i¢(#)), which is the part of the waveform
(the modulation) containing the information of interest. At baseband, the
spectrum will contain both positive and negative frequencies from the com-
ponents of the incoming signal with frequencies above and below the LO fre-
quency, respectively. The spectrum is not necessarily symmetrical, in general.

If the two real baseband waveforms are sampled (simultaneously) and
digitized, the pairs of samples are available as complex numbers for any pro-
cessing computation required. The two signal channels are commonly re-
ferred to as I and Q, for in phase and in (phase) quadrature, with respect to
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the IF or RF form. This is rather clumsy, as the I refers to the real channel,
rather than the imaginary. A more elegant terminology would be P and Q for
in phase and in guadrature.

1.6 Outline of the Contents

The rules and pairs themselves are presented in Chapter 2, but, before they
are given, the notation in which they are expressed is defined and illustrated.
Four examples using the technique are then taken, which provide an intro-
duction to the method and show how easily some useful and important re-
sults can be obtained. Two appendices, of material effectively in parenthesis,
are added; one gives an outline of the derivations of the rules and pairs, and
the other obtains the properties of the extremely useful sinc function, the
transform of the rectangular pulse, using the rules.

The remaining chapters provide examples and illustrations of the use of
the technique. It will be seen that the results have all been obtained without
any (explicit) integration whatsoever, and indeed, except for some expres-
sions that are used to define the problem in terms of Fourier transforms,
there are few symbols of integration to be seen. The first of these, Chapter 3,
on pulse spectra, covers one of the most natural applications of the tech-
nique. For readers new to the method, Chapters 2 and 3 should provide a
relatively straightforward introduction to its use. Of the following chapters,
while Chapters 4 and 5 may be of more interest theoretically than practically,
Chapters 6 through 8 show the method applied in practical areas, giving
some impressive results relatively easily.

In Chapter 4 the application of the method to periodic waveforms, as
an alternative to the usual Fourier series approach using integration is shown.
In particular, the common case of the analysis of real waveforms is taken,
with a number of illustrations. The application to discrete waveforms is in-
cluded here. Although the discrete Fourier transform (DFT) is not necessarily
periodic, the very valuable fast Fourier transform (FFT) method is (generally
implicitly), and the method shows clearly the forms of these waveforms and
spectra.

Sampling, particularly relevant for digital signal processing, is studied
in Chapter 5. The basic sampling theorems are given (following Woodward’s
examples), which give the minimum sampling rate necessary to retain all the
information in a waveform of finite bandwidth. Some further forms of sam-
pling are also analyzed, which again may be of more theoretical than practical
interest. These results are certainly obtained more easily than in the earlier
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papers on these sampling methods, which did not use Woodward’s method
and notation.

The question of deriving a series of samples offset in time from the orig-
inal series is considered in Chapter 6. These interpolated samples correspond
to the samples that would have been obtained by sampling the waveform with
the time offset. The ability to do this, when the waveform is no longer avail-
able, is important, as it provides a sampled form of the delayed waveform. If
the waveform is sampled at the minimum rate to retain all the waveform in-
formation, accurate interpolation requires combining a substantial number of
input samples for each output value. It is shown that oversampling—sampling
at a higher rate than actually necessary—can reduce this number very consid-
erably, to quite a low value. The user can compare the disadvantage, if any,
of sampling slightly faster with the saving on the amount of computation
needed for the interpolation. One example (from a simulation of clutter in a
radar MTT system) is given where the reduction in computation can be very
great indeed.

The problem of compensating for spectral distortion is considered in
Chapter 7. Compensation for delay (a phase error linear in frequency) is
achieved by a similar technique to interpolation, but amplitude compensa-
tion is interesting in that it requires a new set of transform pairs, including
functions derived by differentiation of the sinc function and defined here.
The compensation is seen to be very effective for the problems chosen, and
again oversampling can greatly reduce the complexity of the implementation.
The problem of equalizing the response of a wideband antenna array used
for a radar application is used as an illustration, showing the technique to be
remarkably effective.

Finally in Chapter 8 we take advantage of the fact that there is a Fou-
rier transform relationship between the illumination of a linear aperture and
its beam pattern. In fact, rather than a continuous aperture, we concentrate
mostly on the regular linear array, which is a sampled aperture, and math-
ematically has a correspondence with the sampled waveforms considered in
earlier chapters. Two forms of the problem are considered—the low sidelobe
directional beam and a much wider sector beam, covering an angular sec-
tor with uniform gain. Similar results could be achieved, in principle, for
the continuous aperture, but it would be difficult in practice to apply the
required aperture weighting (or tapering). The question of generating a re-
quired pattern from an irregular linear array is also considered, in particular
for a sector beam.

We note that some of Chapter 3 and much of Chapters 5 through 8

analyze periodic waveforms (with line spectra) or sampled waveforms (with



10 Fourier Transforms in Radar and Signal Processing

periodic spectra), implying a requirement for Fourier series analysis rather
than the nonperiodic Fourier transform. However, it would not make the
problems any easier to turn to conventional Fourier series analysis. As re-
marked earlier, the classical Fourier series theory is now, as Lighthill states on
p. 66 of [2], included in the more general Fourier transform approach. Us-
ing Woodward’s notation, the ease with which the method applies (without
requiring integration) to nonperiodic functions applies also to periodic ones,
and no distinction, except in notation, is needed.

Finally, the included disk of MATLAB programs should be of interest
and use to the reader. This contains the programs for all the main figures,
giving results and illustrations in the form of graphical plots. The program
names are those of the figures (with, for example, Fig608 or Fig614, be-
ing the files of the program for Figure 6.8 or 6.14). The preambles include
definitions of all the parameters required as well as at least one example
MATLAB statement for running the program. A statement can be pasted
into the MATLAB command window and run to reproduce the figure. The
user can then change parameters to obtain other results, according to his or
her interest or requirements. Some of the programs require the sinc derivative
functions, which are defined in Chapter 7 and called snc, for the rth deriva-
tive. A program snc(r,x) is included on the disk, which returns values for ar-
guments x and order 7 (with 7 set to zero for the sinc function itself).
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2.1 Introduction

In this chapter we present the basic tools and techniques for carrying out
Fourier transforms of suitable functions without using integration. In the
rest of the book, the definitions and results given here will be used to obtain
useful results relatively quickly and easily. Some of these results are well estab-
lished, but these derivations will serve as valuable illustrations of the method,
indicating how similar or related problems may be tackled.

The method has already been outlined in Chapter 1. First, the function
to be transformed is described formally in a suitable and precise notation.
This defines the function in terms of some very basic, or elementary, func-
tions, such as rectangular pulses or é-functions, which are combined in vari-
ous ways, such as by addition, multiplication, or convolution. Each of these
elementary functions has a Fourier transform, the function and its transform
forming a transform pair. Next, the transform is carried out by using the
known set of pairs to replace each elementary waveform by its transform and
by using a set of established rules that relate how the transforms are com-
bined to the way the input functions were combined. For example, addition,
multiplication, and convolution of functions transform to addition, convolu-
tion, and multiplication of transforms, respectively. Finally, the transform
expression needs interpretation, possibly after rearrangement. Diagrams of
the functions and transforms can be helpful and are widely used here.

"
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We begin by defining the notation used. Some of these terms, such as
rect and sinc, have been adopted more widely to some extent, but rep and
comb are less well known. We include a short discussion on convolution, as
this operation is important in this work. It is the operation in the transform
domain corresponding to multiplication in the original domain (and vice
versa). This is followed by the rules relating to Fourier transforms and a set of
Fourier transform pairs. We then include four illustrations as examples before
the main applications in the following chapters.

2.2 Notation

221 Fourier Transform and Inverse Fourier Transform
Let # and U be two (generalized) functions related by
u(x)= [~ U™ dy @.1)

and

UG =" ulxe™™ d (2.2)

U is the Fourier transform of #, and « is the inverse Fourier transform of U.
We have used a general pair of variables, x and y, for the two transform do-
mains, but in the very widespread application of these transforms in spectral
analysis of time dependent waveforms, we choose #and f; associated with time
and frequency. We take the transforms in this form, with 277 in the exponen-
tial (so that in spectral analysis, for example, we use the frequency f, rather
than the angular frequency @ = 27f) in order to maintain a high degree of
symmetry between the definitions; otherwise, we need to introduce a factor
of 1/27 in one of the expressions for the transform or 1/N27in both. We find
it convenient to keep generally to a convention of using lowercase letters for
the waveforms, or primary domain functions, and uppercase for their trans-
forms, or spectra. We indicate a Fourier transform pair of this kind by

ue U (2.3)
with = implying the forward transform and <= the inverse.

We note that there remains a small asymmetry between the expressions;
the forward transform (deriving U from #) has a negative exponent and the
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inverse has a positive exponent. Many functions used are symmetric, and for
these the forward and inverse transform operations are identical. However,
when this is not the case, it may be important to note just which transform is
needed in a given application.

2.2.2 rectand sinc

The rect function is defined by

1 for —12<x<+1/2 R )
rectx =
o 0 for x<—-1/2and x>+1/2 (xeR) (2.4)

(and rect(+¥2) = V3). This is a very commonly encountered gating func-
tion. This pulse is of unit width, unit height and is centered at zero (Figure
2.1(a)). A pulse of width 7, amplitude A and centered at time 7 is given by
Arect((£— 1)/ T), shown in Figure 2.1(b). In the frequency domain, a rectan-
gular frequency band of width B, centered at f, is defined by rect((f— £))/B).
A pulse, or a filter, with this characteristic is not strictly realistic (or realizable)
but may be sufficiently close for many investigations.
The Fourier transform of the rect function is the sinc function, given
by
sin(mx)/wx forx=0 (xeR) 2.5)
1 forx=0

sincx =

This is illustrated in Figure 2.2(a) and a shifted, scaled form is shown in
Figure 2.2(b). This follows Woodward’s definition [1] and is a neater func-
tion than sinx/x, which is sometimes (confusingly) called sincx (or the un-
scaled sinc function). It has the properties:

-12 0 12 to— T2t tp+T)2
(a) (b)

Figure 2.1 rectfunctions. (a) rect(x), and (b) Arect[t— t/T].
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fi— F fy+ F

—\4\,—3/}2 T 01 zf\ﬂfx \\//\\ f //\\//f
ViRV, \J

(a) (b)

Figure 2.2 sinc functions. (a) sinc(x), and (b) Asinc((f— f)/F.

1. sincz = 0, for 7 a non-zero integer;
2. J. sinc xdx =1;
© 5 ~
3. sinc” xdx =1;
4, J sinc(x —m)sinc(x — n)dx = 8,,,, where m and » are integers and

0,,,is the Kronecker-6 (8,,= 1 if m=n, 8,,,=0 if m # n);

5. sincax ®sinchx = (1/a)sincbx (2,6 e R, a>b>0), where ® indi-
cates convolution, defined in Section 2.2.5.

For the function sinx/x the results are more untidy, with 7 or 7> appearing.
Property 4 can be stated in the following form: the set of shifted sinc functions
{sinc(x—n):n€Z,x € R} is an orthonormal set on the real line. These re-
sults are easily obtained by the methods presented here, and are derived in Ap-
pendix 2A. In proving properties 3 and 4, we used the useful general result

[~ ux)de=U10) (2.6)

which follows from the definition of the inverse Fourier transform in (1.4) on
putting y = 0. Thus, if a function # can be expressed in terms of the functions
given in the list of pairs (Table 2.2), we can obtain the definite integral of
(over the range —oo to o) without actually doing any integration, but just set-
ting the value of the variable in the transform of « to zero.

Despite the 1/x factor, this function is analytic on the real line. The
only point where this property may be in question is at x = 0. However, as

lim sincx= lim sincx=1,
x—>+0 x—>—0
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by defining sinc(0) = 1 we ensure that the function is continuous and differen-
tiable at this point. Useful facts about the sinc function are that its 4-dB beam
width (i.e., the width of the beam at 4 dB below the peak) is almost exactly equal
to half the width at the first zeros (at £1 in the basic function and at F in the
scaled version of Figure 2.2(b)), the 3-dB width is 0.886 and the first sidelobe
peak is at the rather high level of —13.3 dB relative to the peak of the main lobe.

223 O-function and Step Function

The &-function is not a proper function but can be defined as the limit of a

sequence of functions that have integral unity, the sequence converging point-

wise to zero everywhere on the real line except at zero. Suitable sequences of

functions £, such that lim f,(x)=0(x) are nrectnx, nexp(—mn’x?), ntrinx
n—>00

(see (3.6)), and nsincnx, illustrated in Figure 2.3. This function consequently
has the properties

41— 4rectdx 4

4exp(-167x?)
2rect2x
T2
2exp(—4nx?)
rectx
1 17
X
=172 0 1/2 -1 0 1

4sincdx

2sinc2x

sincx

Figure 2.3 Four series approximating é-functions.
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O - xp)u(x)

O (x)= {oo for x=0 (xeR) (2.7) and
0 for x#0
J‘:o O(x)dx =1 (2.8)

In fact the generalized function defined by Lighthill [2] requires the members
of the sequence to be differentiable everywhere; this actually rules out the rect
and tri function sequences. From (2.7) we note that we can put

0 (x— x0)u(x)= 6 (x— xp)u(x0) (2.9)

(assuming # is bounded) as the product on the left is zero everywhere except
at x,. In particular, we note 6(x)u(x) = 8(x)u(0). From (2.8) and (2.9) we
deduce the useful property

j[ 8(x — x0)u(x)dx = ulxp) (2.10)

where / is any interval containing xy. Thus the convolution (defined in Sec-
tion 2.2.5) of a function # with a é-function at x; is given by

w(x)® 6(x—xp) = J:ou(x —x")0(x" — x0)dx" =u(x—x9) (2.11)

(i.e., the waveform is shifted so that its previous origin becomes the point x,
the position of the d-function). The function # itself could be a d-function;
for example,

O(x—x1)®0(x—x) = J_Z5(x—x' —x1)0(x” — x2)dx” = 0(x — (x1 + x72))
(2.12)

Thus, convolving o-functions displaced by x; and x, from the origin gives a
O-function at (x; + x,).

The J-function in the time domain represents a unit impulse occurring
at the time when the argument of the é-function is zero (i.e., 8(¢ — #y)), which
represents a unit impulse at time %, In the frequency domain, it represents a
spectral line of unit power (see Section 4.2.1). A scaled d-function, such as
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Ad(x — x), is described as being of strength A. In diagrams, such as Figure
2.6, this is represented by a vertical line of height 4 at position x;.
The unit step function /(x), shown in Figure 2.4(a), is here defined by

/a(x)={1 for x>0 (xeR) (2.13)
0 for x<0

(and A(0) = ¥2). It can also be defined as the integral of the é-function:

o= 8 EWE (2.14)

and the o-function is the derivative of the step function.
The step function with the step at x; is given by A(x — x;) (Figure 2.4(b)).

224 repand comb

The rep operator produces a new function by repeating a function at regular
intervals specified by its suffix. For example, if p(#) is a description of a pulse,
an infinite sequence of pulses at the repetition interval 7 is given by u(2),
shown in Figure 2.5, where

u(t)=repr p(t)= Y. plt—nT) (2.15)

pn=—c0

The shifted waveforms p(# — n7) may be overlapping. This will be the
case if the duration of p is greater than the repetition interval 7. Any repetitive
waveform can be expressed as a rep function—any section of the waveform
one period long can be taken as the basic function and this is then repeated
(without overlapping) at intervals of the period.

0 0
0 hix t, Aht—t,)
(a) (b)

Figure 2.4 Step functions. (a) Unit step, and (b) scaled and shifted step.
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1) _
‘;z() plt—T)

AN AN N N
vV oV Vo TV V- 7V Vo
rep,[p(1)]

Figure 25 The rep operator.

The comb function derived from a continuous function replaces the
function by O-functions at regular intervals, specified by the suffix, with
strengths given by the function values at those points; that is,

comby u(t) = z w(nT)O(t—nT) (2.16)
S—
In the time domain, this represents an ideal sampling operation. In the fre-
quency domain, the comb version of a continuous spectrum is the line spec-
trum corresponding to the repetitive form of the waveform, which gave the
continuous spectrum.

The function comb;#(#) is illustrated in Figure 2.6, where u(#) is the
underlying continuous function, shown dotted, and the comb function is the
set of &-functions.

225 Convolution

We denote the linear convolution of two functions # and » by ®, so that
W)@ o(x) = ulx—x o)’ = [ ulx Wl — 2N’ (2.17)

One reason for requiring such a function is to find the response of a linear,

time-invariant system to an input #(z) when the system’s response to a unit
impulse (at time zero) is »(#). The response at time # to an impulse at time

d-function elements
“(t)\ _____ of comb function
I I R L,

comb,{u(1)]

aT ;
e v 21 T 0 T N Y RN

Figure 26 The comb function.
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7 is thus v(z — 7). We divide # into an infinite sum of impulses u(#)d¢ and
integrate, so that the output at time 7 is

[~ e wie =)’ = ule) ® o) (2.18)

The reason for the reversal of the response v (as a function of #) is because
the later the impulse u(¢)d? arrives, the earlier in the impulse response is its
contribution to the total response at time 7.

It is clear, from the linear property of integration, that convolution is
distributive and linear so that we have

u® (av+bw)=au® v+ bu @ w (2.19)

where 2 and & are constants. It is also the case that convolution is commuta-
tive (so # ® v = v ® u) and associative, so that

u® v®w)=(u®v) w, (2.20)

and we can write these simply as # ® v ® w without ambiguity. Thus we are
free to rearrange combinations of convolutions within these rules and evalu-
ate multiple convolutions in different sequences, as shown in (2.20).

It is useful to have a feel for the meaning of the convolution of two
functions. The convolution is obtained by sliding one of the functions (re-
versed) past the other and integrating the point-by-point product of the func-
tions over the whole real line. Figure 2.7(a) shows the result of convolving
two rect functions, rect(#/ 7}) and rect(#/ 75), with 77 < 7, and Figure 2.7(b)
shows that the value of the convolution at the point —, is given by the area
of overlap of the functions, when the “sliding” function, rect(#/7}), shown
dashed, is centered at —%. We note that overlap begins when # = —(77 +
7,)/2 and increases linearly until the smaller pulse is within the larger, at
(T, — T,)/2. The magnitude of the flat top is just 77, the area of the smaller
pulse, for these unit height pulses. This is equal to the area of overlap when
the narrower pulse is entirely within the wider one. For pulses of magnitudes
A; and A, the level would be A,4,7, and for pulses centered at #; and #, the
convolved response would be centered at #, + 7,.

In many cases we will be convolving symmetrical functions such as
rect or sinc, but if we have a nonsymmetric one it is important to note
from (2.17) that u(x — x’), considered as a function of x’, is not only
shifted by x (the sliding parameter) but is reversed with respect to #(x’). In
Figure 2.8(a) we show the result of convolving an asymmetric triangular
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T |
, e ,——>
H _7'1_
? ) L
TR 0 T2 -T2 0 7,12 AT+ TR 0 (T,+ T2
(a)
—
-
| [
I [4] _
|
|
~t, 0 —t, 0

(b)

Figure 2.7 Convolution of two rect functions. (a) Full convolution, and (b) value at a single
point.

pulse with a rect function, and in Figure 2.8(b) we show, on the left, that
the reversed triangular pulse is used when it is the sliding function; on
the right, we show that, because of the commutativity of convolution, we
could equally well use the rect function as the moving one, which, being
symmetric, is unchanged when reversed, of course.

2.3 Rules and Pairs

The rules and pairs, which are at the heart of this technique of Fourier analy-
sis, are given in Table 2.1. The rules are relationships that apply generally to
all functions (# and v in the table) and their transforms (U and V'). The pairs
are certain specific Fourier transform pairs. All these results are proved or
derived in outline in Appendix 2.2.

In this table, the rules labelled b are derivable from those labelled a
using other rules, but it is convenient for the user to have both a and b ver-
sions. We see that there is a great deal of symmetry between the a and b ver-
sions, with differences of sign in some cases.

To illustrate such a derivation, we derive Rule 6b from Rule 6a. Let U
be a function of x with transform V, then from Rule 6a

Ulx — xo) © V(p)exp(=27ixyy)
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: allle
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152N
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Figure 2.8 Convolution with a nonsymmetric function. (a) Full convolution, and (b) value
at a single point.

From Rule 4, if u(x) & U(y), then Ulx) & u(—y), so in this case we
have

Ulx) & V(y) = u(—y)

and so
Ulx = x;) & u(—y)exp(=2Tix,y) (2.21)

Now we use Rule 4 again, in reverse (i.e., if Z(x) & z(—y), then z(x) & Z(y)),
so that (2.21) becomes

u(x)exp(2miyyx) < Uly = yp)

on renaming the constant x; as ,, and this is Rule 6b. However, in this case,
the result is easily obtained from the definition of the Fourier transform in
(2.2), as shown in Appendix 2B.

In Table 2.2, not only are pairs 1b, 2b, and 3b derivable from the cor-
responding a form, but the pairs 7 through 11 are all derivable from other
pairs using the rules, and these are indicated by the P and R notation, which
will be used subsequently. Although they are not fundamental, these results
are included for convenience, as they occur frequently.
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Table 2.1
Rules for Fourier Transforms
Rule Function Transform Notes
_ u(x) Uly) See (2.1),(2.2)
1 au+ bv al+ bV a, beonstants (a, b e, —C in general)
2 ul-x) Ul-y)
3 u*(x) UA(-y) * indicates complex conjugate
4 Ulx) ul-y)
5 ulx/X) IXUXY) X € R, Xconstant
Ba  ulx—x) Uly)expl-2ixyy) Xg € R, x; constant
Bb  ulXlexpl27mixy,) Uly-yw) Yo €R, y constant
7a uv UV (2.17)
7b uU® v uv
8a combyu [Y|repyU (2.16), (2.15), Y=1/X constant
8b  repy | Y|combyU
9a sy 2miyUly) Prime indicates differentiation
9b —27ixu(x) Uly)
« 2 2miy
100 u(0)S(x)  ulx) y
Sl Ulnldan
2 2mix L’"

An important point follows from Rule 3. For a real waveform we have

u(t) = u()*
so, from R3,
U(f)=U-f) (2.22)
or
Ur(f) + iULf) = Ur=f) = iU (), (2.23)

where Uy and U are the real and imaginary parts of U.
We see from (2.22) that for a real waveform, the negative frequency part
of the spectrum is simply the complex conjugate of the positive frequency



Rules and Pairs

23

Table 2.2

Fourier Transform Pairs

Pair

1a
1b
2a

2b

2c

3a
3b

6
7a
7b
8a
8b
9a
9b
10
1
12
13a
13b

Function

1
(X
h(x)

o(x) 1

2 2mix

sgn(x)

rect(x)
sinc(x)
tri(x)
exp(—x)

expl—mx?)
Slx—x)
expl27iyyX)
COS2TTyoX
Sin2ypx
u(Xlcos2myx
u(Xlsin2yex
exp(-ax)
exp(-x/20?)
comby(1)
ramp’x

SNc,X

Transform

oy
1

sy,

2 2miy
hy)

1

iy
sinc(y)
rect(y)
sinc?y

1
1+ 27y

expl-7y?)

exp(-27ixyy)

oly—yl

(8(y = yo + Sly+ yll/2
(8ly—yo) - Sly+ yli/2i
(Uly=yol + Uly+ noll/2
(Uly=yo) = Uly+wll/2i
1/la+ 2miy)
ox/ﬁexp(—z 71’20'2}/2)
|Y|comby(1)

i'snc,y

framp’y

Notes

(2.7)

(2.13)

(2.4),(2.5)

(3.6)

(x=0) Laplace transform

P1b, R6a
P1a, R6b
P7b, P1a
P7b, P1a
R6b

R6b

(a>0, x=0))P5,R5
PB, R5
Y=1/X
(7.11),(7.17)
P13a, R4

a, % ¥o. X, Y, oall real constants and also x,y e R

part and contains no extra information. It follows (see (2.23)) that the real
part of the spectrum of a real function is always an even function of frequency
and the imaginary part is an odd function. (Often spectra of simple wave-
forms are either purely real or imaginary—see P8a and P8b, for example).
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Thus, for real waveforms we need only consider the positive frequency part
of the spectrum, remembering that the power at a given frequency is twice
the power given by this part because there is an equal contribution from
the negative frequency component. (A short discussion and interpretation of
negative frequencies is given in Section 1.5.)

2.4 Four lllustrations

241 Narrowband Waveforms

The case of waveforms modulated on a carrier is described by P9a or P9b
(which could be considered rules as much as pairs). Although these relations
apply generally, we consider the frequently encountered narrowband case,
where the modulating or gating waveform # has a bandwidth that is small
compared with the carrier frequency, f;. We see that the spectrum, in this case,
consists of two essentially distinct parts—the spectral function U, centered at
Jo and at —f;. Again, for a real waveform, the negative frequency part of the
waveform contains no extra information and can safely be neglected (apart
from the factor of two when evaluating powers). However, strictly speaking,
the function U centered at —f; may have a tail that stretches into the positive
frequency region, and in particular it may stretch to the region around fj if
the waveform is not sufficiently narrowband. In that case, the contribution of
U(f+ fy) in the positive frequency range must not be neglected.

Figure 2.9 shows how the spectrum U(f) of the baseband waveform
u(#) is centered at frequencies +f; and —f; when modulating (or multiplying,
in the mathematical representation) a carrier. When applied to the carrier
2cos2mfyt we see, from P8a, that we just have U shifted to these frequencies.
When applied to 2sin27fyr we obtain, from P8b, —iU centered at f; and iU
at —f;. We have chosen a real baseband waveform u(#), so that its spectrum
is shown with a symmetric, or even, real part and an antisymmetric, or odd,
imaginary part, as shown earlier for real waveforms. We see that this property
holds for the spectra of the real waveforms u(z)cos2mfyr and u(#)sin27fyz.

2.4.2 Parseval's Theorem

Another result, Parseval’s theorem, follows easily from the rules. Writing out
Rule 8a using the definitions of Fourier transform, on the left side, and con-
volution on the right, ((2.1) and (2.17)), gives
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Spectrum of (real)
baseband waveform u(f)

0

iU+ 1,) R Vauy
Spectrum of waveform 2u(f)sin2zfyt ’

Figure 2.9 Spectra of modulated carrier, (real) narrowband waveforms.

J_o; u(x)w(x)e 2™ dy = _EOU(II/)V(}/ -v)dy (2.24)

Putting y = 0 in this equation and then replacing the variable of integration
v by y gives

|~ aowtode =~ UGW(-pdy (2.25)
Replacing » by »* and using R3, gives Parseval’s theorem:

| " o)y ae=[" UGV () dy (2.26)
Taking the particular case of v = u then gives

- 2 - 2
[7 Juo) de= [~ () dy (2:27)
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This simply states that the total energy in a waveform is equal to the
total energy in its spectrum. For a real waveform we have

oo o 2
I-m w(x)2d = 2f0 U(y)| dy (2.28)

using U(y) = U(—y)* for the spectrum of a real waveform.

2.4.3 The Wiener-Khinchine Relation

This states that the autocorrelation function of a waveform is given by the
(inverse) Fourier transform of its power spectrum. For a waveform # with
(amplitude) spectrum U, the power spectrum is |U]* and, from R2 and R3
we see that U( f') is the transform of #*(~#), so we have

w(®u (=) & Uf) x U(f) = |UF)P (2.29)

Writing out the convolution we have

W) ®u (=t)= [ ult =W (=)’ = [ alshu* (s—£)ds = r(e)
(2.30)

where s = r — # and 7(2) is the autocorrelation function for a delay of . The
delay, or time shift between the correlating waveforms, is generally given the
symbol 7, rather than 7, used for the usual time variable. Thus we have, from

(2.29) and (2.30),
r () e |UN% (2.31)

which is the Wiener-Khinchine relation, obtained very concisely by this method.

Note the difference between (2.30)—correlation—and (2.17)—convo-
lution. In (2.30) the sliding function is not time reversed, and also (if com-
plex) its conjugate is required.

2.4.4 Sum of Shifted sinc Functions

In this section, we derive two interesting results using the rules-and-pairs
technique. First we find an expression for the spectrum of a finite train of
evenly spaced 6-functions (or equivalently an expression for the sum of a set
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of regularly spaced complex exponentials). Let the N é-functions be spaced
about the time origin at intervals 7; then, we have a waveform # given by

1 (N-1)/2
ut)=— Y S@+kT) (2.32)
N k=—(N-1)/2
and so, from P1b and Ro6a, its spectrum is
1 (N=1)/2
U(f)= N Y, expmikfT) (2.33)
k=—(N-1)/2
Now we take the identity
¢ ¢ (N-1)/2 ¢
rect—— =rect— ® 2 O+ kT)=Nrect—Qu(t) (2.34)
NT r k=—(N-1)/2 r

where the rect pulse of length N7 has been divided into /N contiguous pulses
of length 7; as shown in Figure 2.10. Taking the Fourier transforms we have,

using R5, R7b, P3a

NT sinc NfT = NT sinc(fT).U(f)

so that
U(f)= simefT _ sin{VﬂfT
sinc fI° NsinmfT
This neat result can also be obtained, with little more effort, by noting
that the set of complex exponentials in (2.33) forms a finite geometric series,
with ratio between the terms of exp(27if 7). However, the following result,
expressing the sum of an infinite series of shifted sinc functions in closed
form, would be more difficult to obtain by an alternative method.

(2.35)

rect(t/NT) rect(t/T) ult)

-NT/2 NT2 _(N_1/“) - /\ C (N-1)T12

/ T 0T
=172 172
Neven N odd

Figure 2.10 Alternative forms of rect function.
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We can also put # in (2.32) in the form (for NV odd)

u(t) = % combr (rect #) (2.36)

with transform

U(f)= ﬁrepp (NT sinc NFT) = kgmsincN( F—kE)T

= i sine N(fT - k), (2.37)
h=—oco

where F=1/T.

If we plot these expressions for U we find that (2.37) gives a series of
main lobes with value +1, while (2.35) gives the identical series when NV
is odd, but when N is even the lobes alternate in sign. (To evaluate (2.35)
at integer multiples of F we need L’Hoépital’s Rule, as the denominator is
zero at these points. Taking the differentials, and using F7° = 1, we ob-
tain U(kLF) = coskNT/coskn = (—l)k(N_l), for / an integer. For N odd (and
hence (N — 1) and £(N — 1) even) we have U(kF) = 1 for all £, which is also
the result given by (2.37). However, for N even (and N — 1 odd), the parity
of £(IN — 1) will be that of 4, so we have alternations in sign.)

The discrepancy is because the derivation of (2.37) is only valid for odd
N. For even N we do not have a line in # at 0, but at £772, . . . (as shown in
Figure 2.10), so to use the comb function, which has lines at 0, £7; . . . , we
need to shift the rect function by 772, before applying the comb operation,
and then we need to shift the result back by —772. Thus, for /V even we have

u(r) = %5@ +7/2)® comby (rect =172 ) (2.38)
with transform, using P1b, P3a, R5, R6a, R7b, R8a,
U(f)= %e”ﬁ (repr(NTe ™7 sinc NFT))
(2.39)

T z ¢ T —RET sinc N(f — kF)T
f=—c0

= i e sine N(f —kF)T = i (—l)k sinc N(f7T — k) (N even)
fe=—c0 fe=—c0
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From (2.35) and combining (2.37) and (2.39) we have (for all V, % integral)

_sinNwfT - CNN-DE B
U= anafT T k:z_m( DY sine N(fT=k)  (2.40)
References

[1]  Woodward, P. M., Probability and Information Theory, with Applications to Radar, Nor-
wood, MA: Artech House, 1980.

[2] Lighthill, M. J., Fourier Analysis and Generalised Functions, Cambridge, UK: Cam-
bridge University Press, 1960.

Appendix 2A: Properties of the sinc Function

1. sinc =0 (7 a non-zero integer).

When 7 # 0, as sin 77t = 0, we have sinc 7» = sin n7t/n = 0. Also,
for x small,

sinfrx 1— (mx)?
Tx 3!

sincx =

s0, as x — 0, sincx — 1.

2. sincxdx = 1.
—o0
We can write

J- sinc xdx = .[ sincxe?™dy| = recty|,_, = 1

Jy=0

Here we have converted the integral into an inverse Fourier transform
(though the variable in the transform domain here has the value zero), and
used P3.
o ., B
3. sinc” xdx = 1.

—oo
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We have, using R7 and P3,

J‘—Z sinc? xdx = I:o sincx X sincx 2™ dx - = rect y @ rect }"},:o =1
recty® recty is a triangular function, with peak value 1 at y = 0. (This
convolution is shown in Figure 3.4 in Chapter 3, with A=1and 7'=1
in this case.)

4. _Eo sinc(x — m)sinc(x — n)dx = O,

If m = n the integral is

j_m sinc?(x — n)dx = jm sinc? xdx =1

using the result for property 3.
If m # n then

J sinc(x —m)sinc(x — n)dx = j sinc(x — m)sinc(x — n)e> ™ dx
oo . .

= o 2mimy rect(y)@e_zmny rect(y)‘
y=0

on using R7a, R6a, and P3b. Forming the convolution integral this
becomes

J‘jo e—zn’imy’ I'CCt(_y,)é’_Z”in(y_y,) rect(}/ _ _)/,)d}/,

=0

= J.jo 2min=m)y’ rect(y”)rect(—y")dy’

= J_oo 2y’ rect(y")dy’ = sinc(n—m)=0,
on using rect(—y’) = rect(y’), rect’(y’) = rect(y’), P3a and Property 1.
5. sincax ®sinchx = (1/a)sincbx (2,6 €R, a26>0)

We give two proofs of this, as a further example of the benefit of using
the integration-free rules-and-pairs technique. The first is via the Fourier
transform, using this method, and the second requires contour integra-
tion. The first is very simple and concise, while the second requires con-
siderably more effort.
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(i) Proof using the Fourier transform

The Fourier transform of sincax ® sincéx is given, from P3b, R5

and R7b, by

sincax ® sincbx = (1/ab)rect(yla) rect(y/ b)

The product of the rect functions, centered on zero, and of differ-
ent width gives a rect function of width equal to the narrower one, as
illustrated in Figure 2A.1. In this case, with 2 > 4,

(Vab)rect(yla)rect(ylb) = (Vab)rect( ylb)

Taking the inverse transform, using P3b and R5 again, we have

(Va)sinchx < (Vab)rect(ylb)

(ii) Proof using contour integration.

Writing out the convolution, and then expressing the sines in ex-
ponential form, we have

. ) o sinTa(x —x’") sinmbx’ ,, 1
smcax@smcbxzj sina(x ,x)'sm ,x de’=...=—5—U*+])
o Ta(x—x") Thx (2mi)” ab
where
b inlarb)e
I e—iﬂaxjoo ezn'(a )x _gzﬂ:(a+ )x L

x(x—x")
We now consider the integral K of e*/z(u—z) = ¢**P/z(u-z) (k> 0,
z = x + 7y) round the rectangular contour C shown in Figure 2A.2. On the

vertical sides we have x = teo, y > 0, so, as ¢ is bounded, the denominator
dominates and the integrand is zero for all values of y. On the top side y = oo

I I
<[] = ]}
0 L L y
rect(y/a) rect(y/b) rect(y/b)

Figure 2A.1 Product of rect functions.
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%) <t C

y" A
Poles

0 ” 0 u X oo

Figure 2A.2 Contour for integral in sinc convolution.

so again the integrand is zero (with £ > 0) for all values of x. Thus, the only
side along which it is not zero is along the real axis where y = 0 and z = x, so
that we have

ikx ikx
e

—e
u_x)dx— Eoidx (k> 0)

x(x—u)

gikz
K= IC dz =
z(u—z) > x(
We now use the contour integral result
J.C [ (2)dz = 2mi(residues within the contour C)

+ 1 (residues on the contour C).

where f(z) has simple singularities. (The residue for a singularity at p, for ex-
ample, if f(2) is put in the form f{2) = g(2)/(z — p), is g(p).) The singularities

in this case are at 0 and #, on the contour, so with this result we have

en 2=
u u

Using this result in 7 (with " for x, x for  and 7(a — b) or n(a + b) for
k) we obtain

. —iTT .o iTh. —iTh
= T ity gritaebyxy L T =TT
X X
_ 27i* sinmwhx _

X

and putting this into the sinc convolution above we have

sincax ® sinchx =

> = —sinchx
Q2ri)* ab x abnx  a

1 (47‘61’2 sinﬂ:bx] _sinmhx 1
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(The point where we used the condition 2 > 4 is when we required 4 to be
nonnegative in the contour integration. This is required to make the inte-
grand zero on the y = oo part of the contour.)

Appendix 2B: Brief Derivations of the Rules and Pairs

2B.1 Rules

R1: This follows from the linearity of integration.

R2: Eo u(—x)exp(—2mixy)dx = fmu(z)exp (—2717 iz(— )/)) dz
=U(-y) (z=x)
R3: J‘_o; u* (x)exp(—2mixy)dx = U_o; u(x)exp(2mix(y))dz )*

= U i; u(x)exp (—27rix(—y))dz)* =U*(-y)
R4: J_i U(x)exp(—2mixy)dx = J_o; U(x)exp2mix(—y)dx
=u(—y)

(using the inverse transform, as in (2.1)).

R5(a): X> 0, 2= x/X = x/| X|
f u(x/ X ) exp(—2mixy)dx = X f u(z)exp(—2miz Xy)dz

= XU(Xy) = |X|U(Xy)
R5(b): X< 0, z=x/X=—x/|X]|

J‘:O u(xI X)) exp(=2mixy)dx = —‘XU‘:O u(z)exp(2miz ‘X‘y)dz
= X[ ulz)exp(-2miz(~|X| y))de =|X|U(~|X|y) = X|U (Xp)

R6a: Jj; u(x — xo ) exp(—2mixy)dx = j_o; u(z)exp(—2mi(z + x0) y)dz

=U(y)exp(—2mixgy) (z2=x— xp)
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« R6b: [ ulx)exp(2rinyo)exp(—27ixy)dx
= |7 ulx)exp(-2mix(y - yo)dx
=U(y— )
. R7a: | #(x)o(x)exp(—2mixy)dx
=" |7 U@)expamixa)o(x)exp(—2mixy )z
=" | Ulewlx)exp(-2mix(y — 2))dvdz
= [T UV -2dz=U()®V(y)
« R7b: The transform of #(x)®u(x) is, using x — 2= 1,
[ I eyt = 2)exp(=2miny )z

= [ |7 wt@wte)expt-2ri(e + 0)y)dsds

= J.:o ,[:o u(z) exp(—27izy)v(t) exp(—27ity)dtdz

= U(}/)J._o; u(t)exp(=27ity)dt

=U(y)V(y)

e R8a: Let v(x) = combx u(x)= 2 u(nX)8(x — nX), then the trans-

=—00

form is (from P1b and R6a)

oo

V(y)= z u(nX)exp(—2minXy)

n=—00
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This is in the form of a Fourier series, with period 1/X =Y, and
the coefficients are given by integration of V' (weighted with a complex
exponential) over one period:

w(nX)= %JOY V(y)exprinylY )dy

Also, from the Fourier transform,

=3 > (m+1)Y
u(nX)=J_ U(z)exp(2rinXz)dz = Z J , U(z)exp(2minzlY )dz,

m=—00

on dividing the range of integration into units of length Y. Putting y =
z — mY for each value of m,

w(nX)= Jj i U(y+mY)exp(27tin(y+mY) /Y))dy

m=—0c0

=K Z U(y+mY )exp(2riny Y )dy

m=—oc0

Comparing the two expressions for #(7X) we see that

V(=Y Y Uly+mY)=Yrepy U(y)
m=—00
(This is in line with Woodward’s comment [1], following his list of rules
and pairs, that the transform relationship between comb and rep “can
be justified by resorting to a Fourier series representation.” NB: The rule
actually uses | Y| rather than ¥; however, from the definitions it is clear
that rep_ .z = repy# and comb_# = combyz, so |¥]| can replace Y.)
» R8b: Let v(x) =repx u(x) = Z u(x —mX), which is periodic, with

mM=—00

period X, so we can put v as a Fourier series:

v(x)= z a, exp(2minx/X)

n=—00

with the coefficients given by

— 1 X 4
a, = ?J.o v(x)exp(=2inx/ X )dx
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Substituting for v in rep form, the coefficients are given by

X oo
a, = %J.O z u(x —mX)exp(—2minx/ X )dx

m=—oco

and then putting z = x + m.X, we have

1 & m+1) X .
a, = ?m;w [ e exp (-2mints - mX)1 X0) de

= % 2 J:;H)X u(z)exp (—Zninz/X )dz

as exp(2minm) = 1. This gives
ap = %J‘:O u(z)exp (—27rz'nz /X)dz = %U(ﬂ 1X)
Then, substituting for the , in v,

v(x)=§ i UnlX)exp(2minx/ X)

n=—00

and, taking the Fourier transform,

V(y)= % S UlX)8(y—nlX) = %combl KU

n=—o0

=Y comby U(y)
(from the definition of the comb function) where Y= 1/X.

« ROa: u(x)= J-_o; U(y)exp(2mixy)dy

u'(x)= jj;ZmyU(y)exp(Zﬂixy)dy

so #’(x) is the inverse Fourier transform of 27iyU(y) where #” is the
derivative of .

e R9b: U(y)= I:o u(x) exp(=27ixy)dx

U'(y)= J:o —2mixu(x)exp(—=27Tixy)dx
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so U’(y) is the Fourier transform of —21ixu(x) where U’ is the deriva-
tive of U.

« Ri0a: [ w&dE= [ ul&hlx—EdE =ulx)® h(x)

Taking the transform (using R7b and P2a) gives

~ 6(y), 1 ) _UWO(y) Uy
qu(é)dé:_w(y)( 2 +277:z'yJ_ > oy

where we have also used (2.9).

« R10b: [” Umdn=[" Umh(y-mdn=U()® h(y)

Taking the inverse transform gives

O(x) 1 y
u(x)(z - 27‘L’zx) = J‘_w Umd n

where we have used R7a and P2b.

2B.2 Pairs

+ Pla: A derivation, using P6 (and R5), is given in Section 1.4.
 P1b: This follows from Pla, with R4 and using 6(—y) = (7).
+ DP2aand P2c: Defining the signum function by

sen(x) = 1 for x>0 (xeR)
-1 for x<0

(and sgn(0) = 0) the unit step function % can be written as
2h(x) =1 + sgn(x)

We now require the transform of sgn which can be given by expressing the
sighum function as the limit of an antisymmetric decaying exponential function,
with the form —exp(Ax) for x < 0 and exp(-Ax) for x> 0 (and 4 > 0):

lim UO —exp(Ax)exp(—27mixy)dx + Jm exp(—Ax)exp(-2 ﬂixy)dx)
A—0\7— 0
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J:o exp(—x)exp(—=27ixy)dx = —

i | - exp(Ax — 27‘L’z'xy)‘0 _exp(=Ax— 27rz'x}/)‘m
A—0

A —2miy ‘_w A+ 2miy ‘0

= lim| — b - = lim __TAmy
im0\ A=2miy  A+2miy ) o0 A2 —4 it y?

With this result the Fourier transform of /(x) is now found to be, using P1a,

1 1
h — 6(y)+—
(X):>2( ) m’y)
P2b: From P2a and R4 the transform ofi(5(x)+1.) is h(—y),
Tix
then we use R2, with 8(—x) = d(x).

(e} /
P3a: J_ rect(x)exp(—27mixy)dx = Ef/z exp(—2wixy)dx

12
_exp(=27mixy)

—2miy 1

exp(—7iy) —exp(miy)  —2isin(7y)
=27y =27y

=sinc(y)

P3b: From P3a and R4, with rect(—y) = rect(y).
P4: See (3.7) and (3.8), using P3a and R7b.
P5: The transform of exp(—x)/(x) (or exp(—x) for x 2 0) is

exp(—(l + 277:1')/)96) ‘w . 1
1+2my | 1427

* Po: J._oo exp(—mx?) exp(—27wixy)dx = J._oo exp (—n’(x +i)? —my? )dx

=exp(—m yz )J._o:iy,), exp(—ﬂ?z2 Vdz
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where z = x + 7. We perform a contour integration round the contour
shown in Figure 2B.1; as there are no poles within the contour the
contour integral is zero, and as the contributions at z = teo + i1 (0 <
1 <) are zero, we have

_[ww exp(—mz?)dz + J‘oo exp(—7z%)dz = 0,
—ootiy —o0

so the required integral is equal to the real integral J. exp(—mx?)dx,

which has the value 1. -

e P7-P11: These are all found using the earlier pairs and the rules, as
indicated.

e P12: From the definitions, ((2.15) and (2.16)) we can express the
comb function for a constant as a rep function:

comby (1) = i O(x —nX)=repx O(x)

n=—00

and then, by P1b and R8b, the transform is |¥'|comby(1) where Y= 1/X.

A more rigorous approach is taken in Lighthill [2], particularly for
the derivations of the transform of the &-function, P1b, the transform
of the signum function, used in obtaining P2a, and the comb and rep
transforms.

¢ P13a: See Section 7.3 in Chapter 7.
¢ P13b: From P13a and R4 we have

i" snc, x & ramp’ (—y) = (1) ramp’ (y)
On multiplying by (—7)” we have

snc, x < i’ ramp’ (y)

y < A
n
0 Y >

—00 X o

Figure 2B.1 Contour for integral required for P5.






Pulse Spectra

3.1 Introduction

In this chapter we consider the spectra of pulses and pulse trains. Signals used
in radar, sonar, and radio and telephone communications often turn out to
be combinations of certain quite simple basic waveforms or of variations on
them. For example, the rectangular pulse is an almost universal feature of ra-
dar waveforms, and although the perfect pulse is a mathematical idealization,
it is often closely realized in practice, and the approximation is good enough
for an analysis based on the idealization to give very useful results very simply
in some cases.

One reason for studying the spectrum of a pulse, or pulse train, can
be to investigate the interference that the pulse transmission will generate
outside the frequency band allocated. The sharp-edged rectangular pulse is
particularly poor in this respect, producing quite high interference levels at
frequencies several times the radar bandwidth away from the radar operating
frequency. The interference levels can be lowered quite considerably by re-
ducing the sharp, vertical edges in various ways. Giving the edges a constant
finite slope, so that the pulse becomes trapezoidal, produces a considerable
improvement, as shown later in Section 3.2. The triangular pulse (Section 3.3)
is a limiting case of the trapezoidal, with the flat top reduced to zero. The
asymmetric trapezoidal and triangular pulses (with sides of different magni-
tude slope) are considered in Section 3.4 and Section 3.5. While the practical

4
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use of such pulses is not obvious, these are interesting exercises in the use of
the rules-and-pairs method, showing that this gives solutions for the spectrum
quite easily and concisely, once a suitable approach has been found. Another
form of pulse, smoother than the rectangular pulse, is the raised cosine, and
this is shown to have considerably improved spectral sidelobes (Section 3.6).
The trapezoidal pulse still has sharp corners, and rounding these is the subject
of Section 3.7 and Section 3.8. Finally the spectra of pulse trains, as might be
used in radar, are studied in the next three sections.

3.2 Symmetrical Trapezoidal Pulse

The rectangular pulse, with zero rise and fall times, may be a reasonable ap-
proximation in many cases but for short pulses the rise and fall times may not
be negligible compared with the pulse width and may need to be taken into
account. The symmetrical trapezoidal pulse is particularly easily analyzed by
the methods used here. We noted in Chapter 2 (Figure 2.7) that such a pulse
of width 7 between the half amplitude points and with rise and fall times of
T can be expressed as the convolution of rect functions (illustrated in Figure

3.1):
u(t) = (1/7)rect(t/ 1) ® Arect(t/T) (3.1)

The scaling factor 1/7 keeps the peak height the same, as the narrow pulse
now has unit area, though often we are not interested in the scaling factors as
much as the shapes and relative levels of the waveforms and spectra. The rise
and fall times of the edges is 7 and the pulse is of width T at the half ampli-
tude points. The spectrum (from R7b, P3a and R5) is

U(f)= AT sinc(f7)sinc(£T) (3.2)
l{t
A
= ®
—ET/2 0 T/2 A -T2 0 72

Figure 3.1 Symmetrical trapezoidal pulse.
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AR
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sinc(ft)sinc(fT) sinc(ft) sinc(f7)
Figure 3.2 Product of sinc functions.

Thus, the spectrum is that of the pulse of length 7" multiplied by the broader
sin¢fT function, the transform of the shorter pulse. This will narrow slightly
the width of the main lobe of the spectrum and also reduce the sidelobe lev-
els, as shown in Figure 3.2, where 7= 0.47in this example.

An application of this result would be to answer (approximately) the
question of what rise time, relative to the half-amplitude width, will mini-
mize the first sidelobes of the spectrum. We note that the function sincf7 has
its first zeros at +1/7 and +2/7 and the first sidelobes peak at about £3/27.
Clearly, we will be very close to minimizing the first sidelobes if we make the
first zeros of the sincf7 function occur at these points. Thus, we require

1/t=3/2T,0r t=2T/3 (3.3)

This is not of course the precisely optimized solution, but this approximate
result is close to optimum and is very easily solved by these methods. In fact,
the peak spectral sidelobes are 28.8 dB below the peak in this case, compared
with only 13.3 dB for the rectangular pulse. If we chose 7= 0.69927, cor-
responding to placing the first null of the wide sinc more precisely at the
position of the first peak of the narrow sinc (at £1.4303/7), then we improve
the sidelobe discrimination slightly to 30.7 dB. This spectrum is illustrated in
Figure 3.3, with the spectrum of the rectangular pulse shown by dotted lines,
for comparison. (The frequency axis is in units of 1/77)

3.3 Symmetrical Triangular Pulse

A pulse of this shape may arise in practice as a result of convolving rectangu-
lar pulses of equal width in the process of demodulating a spread spectrum
waveform (e.g., Figure 3.4). It is the limiting version of the trapezoidal pulse
and is given (with 7= 7)) by

w(t)=UT)rect(HT)® Arect(/T) (3.4)
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Figure 3.3 Spectrum of low sidelobe trapezoidal pulse. (a) Linear form, and (b) logarithmic
form.
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) 0 m ) 0 72 ) 0 72

Figure 3.4 Symmetrical triangular pulse.

with spectrum, from (3.2)
U(f)= AT sinc*(fT) (3.5)

This is the amplitude spectrum. The power spectrum is a sinc* function and
is shown in logarithmic form in Figure 3.5, with the rect pulse spectrum for
comparison shown dotted. The frequency is in units of 1/7 as before. This
spectrum has its 3-dB points at £0.32/7; its value at £1/27 is nearly 8 dB
below the peak value, and the maximum sidelobes are 26.5 dB below the

peak.

Power/dB
=

>

T R

Normalized frequency

Figure 3.5 Spectrum of triangular pulse.
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In a case where triangular pulses are used frequently, it could be useful
to define a triangular function tri such that

1+x for —1<x<0
tri(x) =9 1-x for 0<x<1 (3.6)
0  otherwise

and then we have
tri(x) = rect(x) ® rect(x) (3.7)

and the transform pair

tri(x) < sinc’( ) (3.8)

We note that tri(x/X) extends from —X to X, with half-amplitude width X.

3.4 Asymmetric Trapezoidal Pulse

A linear rising edge of duration 7 is given by the convolution of a step func-
tion and a pulse of duration 7 (Figure 3.6).

If the height of the edge is to remain at the same level as the step func-
tion, then the convolving pulse must have a height of 1/7. With these results
we can define the asymmetric trapezoidal pulse of unit height, centered (at
its half amplitude points) at the origin, with width 7 at this level, and with
rise and fall times of 7, and 7,, by the difference of two such modified step
functions (Figure 3.7). These have rising and falling edges of the required
durations and are centered at —772 and +772. The waveform is given by

1 ¢ T 1 ¢ T
u(t)= Tlrect[ﬁ] ®/7[t+ 2) —ﬁrect(j] ®h(r—2) (3.9)

1

Figure 3.6 Rising edge of width .
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Figure 3.7 Asymmetrical trapezoidal pulse.

The Fourier transform of this waveform is given, using P2a, R6a in addition
to the now more familiar P3a and R5, by

U(f)_smc(f'fl)[a(f) 21fj smc(f’cz)L (2f) 21'clfj nif T
(3.10)

As the Ofunction is zero except at 0, we can put
sinc(f”L'l)3(f)emﬁ = sinc(O)S(f)eO =8(f); as in (2.9), and similarly for the

sinc( f7,)0( f) term so that the d-function terms cancel and we have
sinc(f1 )eme —sinc(f12 )e_me
2mif

We note that the spectrum for the unit height symmetrical pulse, given by
putting 7; = T, = Tin this expression, is

U(f)= (3.11)

sinc(fT)(eme - e_me) _sinc(f7)sin(zfT)
2mif - rf

which is the result given in (3.2) (with A = 1 in this case). Equation (3.11) is
a neat and compact expression for the spectrum of this asymmetric function
and is very easily found by these methods.

Two examples of the spectrum of an asymmetric pulse are given in
Figure 3.8. Only the positive frequency side is given, as these power spectra,
of real waveforms, are symmetric about zero frequency, as discussed at the
end of Section 2.3. The frequency scale is in units of 1/7, where 7 is the
half amplitude pulse width. For comparison, the spectra of the symmetric
pulses, with rise and fall times equal to the mean of those of the asymmetric
pulses, are shown by dotted curves. This mean width in the second example,
shown in Figure 3.8(b), is 0.7 7. This is very close to the value found in Sec-
tion 3.2, which places the null due to the slope at the peak of the first sid-
elobe of the underlying rectangular pulse spectrum, with the result given in

Uuf)= =T'sinc(f7)sinc(f7T)
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Figure 3.8 Asymmetric trapezoidal pulse spectra. (a) Edges 0.2T and 0.37, and (b) edges
0.67and 0.8T.

Figure 3.3(b). We see, in Figure 3.8(b), that the asymmetry has raised the low
first sidelobe about 4 dB, while with the sharper edges and higher sidelobes

of Figure 3.8(a) the effect of asymmetry is not seen until considerably further
out in the pattern.

3.5 Asymmetric Triangular Pulse

We can consider the asymmetrical triangular pulse as a limiting case of
the trapezoidal pulse. We note that the flat top of the trapezoidal pulse
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(Figure 3.7) is of length 7"— (7, + 7,)/2, so if we set 7= (7, + 7,)/2,we have
a flat top of zero width, and we have a triangular pulse with rising edge of
length 7, and falling edge of length 7, (Figure 3.9(a)).

Its spectrum is given by (3.11) with 7, the half-amplitude width, re-
placed by (7, +7,)/2. However, this pulse has the time origin at the midpoint
between the half-amplitude points and the peak at A- = (7, — 7,)/4, while it
may be preferred to have the origin at the peak position of the pulse. Thus,
if u(2) is the pulse in Figure 3.9(a), then v(#) = u(z + A7) is the required pulse,
shown in Figure 3.9(b) with the peak at 0. From R6a, this time shift multi-
plies the spectrum by 27ifAt. Applying this to (3.11), and substituting for 7°
and AT gives

sinc(f1 )emfﬁ —sinc(f'1T2 )e_mﬁ2
2mif

V(f)= (3.12)

as the spectrum of the triangular pulse with its peak at #= 0. This result is also
obtainable, alternatively, by centering the edges at —7,/2 and 7,/2, instead of
+772, and by placing the steps of the step functions of Figure 3.7 at these
points. Then (3.9) is replaced by

v(t) = lrect(tj ® h(t + Tl) - lrect(tj ® h[t - sz (3.13)
T Tl 2 (% (P 2

and this leads to (3.12) in the same way that (3.9) leads to (3.11).

//
«— 1,/2 >
€« 7,2 >
—{7+ 7o)/4 0 At (r+ 7,)/4
(a)
«— (11+79)/2 >
-7, -1,/2 0 7,/2 7,

(b)

Figure 3.9 Asymmetric triangular pulse. (a) Half-amplitude points centered about time ori-
gin, and (b) peak at time origin.
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Figure 3.10 Asymmetric triangular pulse spectrum, ratio of rise and fall times 2/3.

We note that, as the pulse width at the half-amplitude points is 7" =
(7, + T,)/2, the rise and fall times relative to 7"are 27,/(7, + T,) and 27,/(7; +
7,), which sum to 2. Unlike the trapezoidal pulse, only one parameter is
needed to define the shape of this pulse; we could choose 77, the relative rise
time, in which case the relative fall time is 7, = 2 — T3, or the ratio of the two
edge times, 7 = 7,/7,, in which case 77 =27/(r + 1) and 7, =2/(r + 1).

An example of the spectrum of an asymmetric triangular pulse is given
in Figure 3.10. The normalized frequency is again 1/7, where 7'is now (7; +
7,)/2. The ratio » was 2/3, giving rise and fall times relative to the half-ampli-
tude width of 0.8 and 1.2. The symmetric pulse, with »= 1, is shown dotted,
for comparison.

3.6 Raised Cosine Pulse

We define this pulse as being of width 7 at the half amplitude points, which is
consistent with the definitions of the earlier triangular and trapezoidal pulses.
Then a unit amplitude pulse is part of the waveform (1 + cos27fy2)/2, where
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Jo=1/2T (i.e., 2T is the duration of a cycle of the cosine). This waveform is
gated for a time 27 so the pulse is given by

u(t) = rect(#27)(1 + cos2mfyr)/2 (3.14)

The unit amplitude pulse is shown in Figure 3.11(a), with the time axis in
units of 7.
The spectrum is thus, using P3a, Pla, P8a, and R5

U(f)=2Tsinc2 fT® (3(f)+ [8(f - fo)+ 8(f + f0)])/2
=T (sinc(f1fo) + Ylsinc(flfo — 1) +sinc(fIfo + D]),  (3.15)

as convolution with a d-function corresponds to a shift in the position of the
O-function.

This spectrum is seen to consist of three closely overlapping sinc func-
tions. These are shown as dotted lines in Figure 3.11(b), with the pulse spec-
trum as the solid line. The frequency axis is in units of fj or 1/27. These sum
to give a spectral shape with first zeros at +2f; or +1/7 (and zeros in general
at /27 for n integral, 7| = 2) with quite low spectral sidelobes. These are
shown more clearly in logarithmic form in Figure 3.12, with the spectrum
of the gating pulse for comparison. The highest spectral sidelobes are 31 dB
below the peak. These lower sidelobes could be expected from the much
smoother shape of this pulse, compared with the rectangular or triangular
pulses, the highest sidelobes of which are 13 dB and 27 dB below the peak,
respectively. We note that the cost of lower sidelobes is a broadening of the
main lobe, relative to the spectrum of the gating pulse of width 27 The
broadening is by a factor of 1.65 at the 4-dB points.

As an aside, it is interesting to note how similar the two shapes in Figure
3.11 are. In fact they are both close to the Gaussian shape, the function that
is the same shape as its transform (P6). These three shapes are illustrated in
Figure 3.13.

Pulse shapes of the form (1 — 2 — b) + acosmsl T+ beos2mtl T (gated from
—T'to T) are easily transformed by the method used here. These include the
Hamming window and the Blackman window as well as the Hann window
(the raised cosine function considered here) with 2 = ¥, b = 0.

The transform of this more general form is easily seen to be an exten-

sion of (3.15):

T (200 - 2= b)sinc(fIfy) + a(sinc( f/fy — 1)+ sinc(fIfy + 1))
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Raised cosine pulse. (a) Normalized waveform, and (b) normalized spectrum.
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Normalized frequency

Figure 3.12 Raised cosine pulse spectrum, log scale.

+b(sinc(f/f0 —2)+sinc(f1fo +2)) (fo=1/27)

If a base of width 7is preferred, we replace 7'by 772.

3.7 Rounded Pulses

The step discontinuity of rectangular pulses is the cause of the poor spectrum
with high sidelobes. This discontinuity in level is removed by generating ris-
ing and falling edges of finite slope. In the case of the symmetric trapezoidal
pulse, this is achieved by the convolution of the rectangular pulse with an-
other, shorter rectangular pulse, as shown in Section 3.2. This reduction in
discontinuity improves the sidelobe levels. There are still discontinuities in
slope for these pulses, and these can be removed by another convolution, with
a further reduction in sidelobe levels. The convolution need not, in principle,
be with a rectangular pulse, but this is perhaps the simplest and is the example
taken here.
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Figure 3.13 Comparison of raised cosine function, its transform, and the Gaussian function.

Figure 3.14 illustrates the effect of convolution with a rectangular pulse
on one of the corners of the trapezoidal pulse. The pulse is of length 7 and
over the region =772 to + 772 relative to the position of the corner the wave-
form rises as #, returning to a constant slope (rising as #) after this interval.

Convolving the trapezoidal pulse with this rectangular pulse will round
all four corners in a similar manner. If f(#) describes the trapezoidal pulse
waveform and F(f') is its spectrum, then for the rounded waveform we have

(from R7b, P3a and R5)

f@)®Q1/T)rect(t/T) < F(f)sinc f T, (3.16)
1(7’
® =
0 <« T>

Figure 3.14 Rounded corner of width T.
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that is, the spectrum is multiplied by the spectrum of the short pulse, which
lowers the sidelobes further.

In practice, a pulse is likely to be rounded by stray capacitance, which
could be modeled by the circuit shown in Figure 3.15. In electrical engineer-
ing notation the frequency response of this network is given by

/R, + joC)™! 1
Alw) = /R, ]’)_1: .
R+QA/R+ ]COC) 1+ R/Ry + _]COCR1

(3.17)

where j? = —1 and @ s the angular frequency 27f. In the notation we use here
this becomes

A(f) = ! . (3.18)
1+ R/Ry + 277:z'fCR1 R+E 1+ 27'CZfT
where T= CR R, (3.19)
R+£R

The product of capacitance and resistance has the dimension of time, so
T represents a time constant for the circuit, and the factor R,/(R; + R))
is the limiting attenuation to low frequency signals (approaching DC or
f=0).

The impulse response a(#) of this circuit is the (inverse) Fourier trans-
form of the frequency response, and from P5 and R5, we have (apart from
the scaling factor Ry)/[R, + R,])

a(t)= %e‘” (t>0) or at) = %e_t/rh(t) (3.20)

where 4 is the step function. The response of the circuit to a pulse is given
by the convolution of the pulse and the impulse response. We look first at

Figure 3.15 Model for stray capacitance.
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Figure 3.16 Power spectra for rect and exponential impulse responses. (a) Linear form,
and (b) logarithmic form.

the effect on the rising edge of the trapezoidal pulse, given by g(¢) = kz - h(¢)
(i.e., g(#) = kr tor £>0). This is

0@ g=[ " L=t = [

*f,é’_(t_t )/Tdf,
0t

- k(t—T(l —e‘f”)) (t>0) (3.21)

For large #7 the exponential term becomes small and we see that the re-
sponse approaches #(z — 7), instead of kz, corresponding to a delay of 7. With
a similar effect on the falling edge, we see that this delay applies to the pulse
as a whole (in addition to the rounding distortion), assuming 7 is small
compared with the pulse duration. We note that if we move the rectangular
rounding pulse of Figure 3.14 so that it starts, like the exponential impulse
response, at time zero, rather than at — 772, then this rectangular “impulse
response” causes a delay of 772, so this pulse with length 7= 27 will give the
same delay as the exponential impulse and will be approximately equivalent.
Figure 3.16 shows the spectral power factors (in both linear and logarith-
mic form) multiplying the original pulse spectrum in the two cases, sinc?2fT
for the rectangular pulse and 1/(1 + (27f7)?) for the stray capacitance. The
power spectrum of the smoothed pulse is that of the spectrum of the original
pulse multiplied by one of these spectra. Assuming the smoothing impulse
response is fairly short compared with the pulse length, the spectrum of the
pulse will be mainly within the main lobe of the impulse response spectrum.
We see that the sidelobe pattern of the pulse will be considerably reduced
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by the smoothing (e.g., by about 10 dB at £0.4/7 from center frequency).
We also see that the rect pulse of width 27 gives a response fairly close to the
stray capacitance filter with time constant 7, as expected by the earlier argu-
ment considering delay.

We show the effect of these forms of rounding on the spectrum of the
asymmetric trapezoidal pulse used for Figure 3.8, with the time constant 7=
0.37. In Figure 3.17(a), we see the effect of rounding by the exponential im-
pulse response of (3.20), due to capacitance, as in Figure 3.15. The sidelobes
are lowered considerably, as should be expected. The response with rectangu-
lar rounding, with a pulse width of 27, in Figure 3.17(b) is very similar, excepr
near the frequency 3/27 (normalized frequency 1.5), which corresponds to
the position of the first null of the rect spectrum.

3.8 General Rounded Trapezoidal Pulse

Here we consider the problem of rounding the four corners of a trapezoidal
pulse independently (i.e., over different time intervals, with rect pulses or
even with different rounding functions). This may not be a particularly likely
problem to arise in practice in connection with radar, but the solution to
this awkward case is interesting and illuminating, and may be of use in some
other application.

The problem of the asymmetrical trapezoidal pulse was solved in Sec-
tion 3.4 by forming the pulse from the difference of two step-functions, each
of which was convolved with a rectangular pulse to form a rising edge. By

Figure 3.18 Rising edge as the difference of two Ramp functions.
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Figure 3.19 Ramp function.
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using different width rectangular pulses, we were able to obtain different
slopes for the front and back edges of the pulse.

In this case, we extend this principle by expressing the convolving rect
pulses themselves as the difference of two step functions. The (finite) rising
edge can then be seen to be the difference of two infinite rising edges, as
shown in Figure 3.18. Each of these, which we call Ramp functions, is pro-
duced by the convolution of two unit step functions, as shown in Figure 3.19
and defined in (3.22).

We define the Ramp function, illustrated in Figure 3.19, by

Ramp(z — 7)) = h()®h(t - T), (3.22)
so that
R B 0 for t<0 R 5
amp(t) = , for 150 (reR) (3.23)

(A different, finite, ramp function is required in Chapter 7; this is called
ramp.) Having now separated the four corners of the trapezoidal pulse
into the corners of four Ramp functions, they can all be rounded sepa-
rately by convolving the Ramp functions with different width rect func-
tions (or other rounding functions, if required) as in Figure 3.14, before
combining to form the smoothed pulse. Before obtaining the Fourier
transform of the rounded pulse, we obtain the transform of the trapezoi-
dal pulse in the form of the four Ramp functions (two for each of the
rising and falling edges).

In mathematical notation, the rising edge of Figure 3.18 can be ex-
pressed in the two ways

t;?} bO)® (Wt —T0) — he —T))

h(t)® rect(

= Ramp(r —71) —Ramp(t — 73) (3.24)
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(T, is the midpoint of the rect function, at (7, + 77)/2, and AT =T, - T} is
its width.) The Fourier transform of the left side is, from P2a, P3a, R7b, R5,
and Ro6a,

(6(2][) + 27211_1_][)ATsincfATexp(—27rif76)

(3.25)

A T(a( f) sinc fATexp(—zm'fTo)}
2 2mif

where we have used 8(f— f)u(f) = 6(f— fo)u(fy) in general (see (2.9)), so
O f)sincfATexp(—2mif Ty) = 6(f). The transform of the difference of the
Ramp functions on the right side is, using (3.22), P2a, R7b, and R6a,

(5(f)+ 1‘ )[(5(2f) 21f)(exp( 2mif 1) — exp(— 277:1fT2)):| (3.26)

2 2mf

Using 7= (7} + 75)/2 and AT'= T, — T}, as in Figure 3.18, the difference of
the exponential terms becomes exp(—27if’ To)(exp(n'ifAT) - exp(—m’fAT))
or 2#sin(7fAT )exp(—2mif Ty) so, again using (2.9), (3.26) becomes

5 6 i ;
[ (2f) " 2;;f)|:( (2f) + 2;}(]2ism(7‘cfAT) exp(—szTO)}

:(5( £, 1 Jsin(ﬂ?fAT) exp(—27if Tp)
2 2mif nf (3.27)

1)
:((Zf) zlf]ATsmc(fAT)exp( 2mif Tp)

AT 5(f) sinc(fAT)exp(=2mif 7o) ,
- 2mif

which is the same as (3.25), as expected.

We are now in a position to find the spectrum of the trapezoidal pulse
shown in Figure 3.20, with different roundings of each corner. This pulse
is separated, as shown, into four Ramp functions and has rising and falling
edges of width A7, and AT, centered at 7, and 7, respectively. The edges,

formed from pairs of Ramp functions, are normalized to unity by dividing by
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Figure 3.20 Unit height trapezoidal pulse.

the width, AT, or AT.. (They certainly have to be scaled to the same height if
the initial and final levels are to be the same.) Thus, this pulse is given by

IT (Ramp(# = 77) — Ramp(z — 73)) — AlT

7 s

(Ramp(# —73) — Ramp(z — 7%))

(3.28)

To round a corner we replace Ramp(z — 7}) with 7,(f) ®Ramp(z — 7}), where
7(2) is a rounding function of unit integral (such as the rect pulse in Figure
3.14). For a function with this property, it follows (see (2.6)) that R(0) = 1,
where R is the Fourier transform of 7.

The rounded rising edge, given by e,(#)= (rl(t) ® Ramp(r —17)—
72(¢) ® Ramp(zr — 7> )) / AT,, can be written, from the definition of Ramp in
(3.22),

()= h(O)®(n(t)® h(t =T —n()®h(t ~T2)) /AT, (3.29)

with transform

b= (40 1)

AT\ 2 2mif
[(5(2][) + 2%11'](](131 (f)exp(=2mif T) — R (f)eXP(—zm'fB)):|

:(5(f)+ 1 )[(Rl(f)exp(m‘fAn>—R2<f>exp(—nzy”An))

—2mif T,
2 2mf 2mif AT, :|exp( #1)

0 Ri(f)exp(mif AT,) — Ry (f)exp(=mif AT;) .
4 (3.30)

following the approach of the nonrounded case of (3.25) to (3.27). (The last two
lines again use the result & /)g(f) = 6 (f)g(0), from (2.9). We note that the
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term in square brackets at /=0 in the second line becomes sinc(0) = 1.) Combin-
ing the two edges, the 6-functions disappear, as in forming the spectrum of the
asymmetric trapezoidal pulse in Section 3.4 (equations (3.10) and (3.11)), to give
the final result for the spectrum of the generally rounded trapezoidal pulse:

(R = Ry(fre )

E—27rz'fT,
Qrf AT,

+(R3(f)€m'fA7} _R4(f)€—ﬂ'lfATs) o
QrfYAT, ‘

As a check, we note that if we used a single rounding function, 7, with trans-
form R, the expression in (3.31) reduces to

(3.31)

(f)[sm;:;?Tr “27ifT, szcj;?ﬁ e—szTf], (3.32)

which (with 7, = =772, T, = 712, AT, = 7, and AT, = 1,) is seen from (3.11)
to be exactly the result of smoothing the asymmetrical trapezoidal pulse with
the function 7.

3.9 Regular Train of Identical RF Pulses

This waveform could represent, for example, an approximation to the output
of a radar transmitter using a magnetron triggered at regular intervals. The
waveform is defined by

u(t) = repr {rect(t/’L') cos2 n'fot} (3.33)

where the pulses of length 7 of a carrier at frequency f; are repeated at the
pulse repetition interval 7"and shown in Figure 3.21.

«— T —> Frequency f,

---------- i

«— T —»

Figure 3.21 Regular train of identical RF pulses.
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We note that the rep operator in (3.33) applies to a product of two
functions, so the transform will be (by R8b and R7a) a comb version of a
convolution of the transforms of these functions. We could express the cosine
as a sum of exponentials, but more conveniently we use P9a in which this and
the convolution have already been done. Thus (from P3a, P9a, R8b, and R5)

we obtain

U(f)=(t/2T )combyr {sinc(f—fo)f+sinc(f+f0)T} (3.34)

This spectrum is illustrated (in the positive frequency region) in Figure
3.22.

Thus, we see that the spectrum consists of lines (which follows from
the repetitive nature of the waveform) at intervals 1/7, with strengths given
by two sinc function envelopes centered at frequencies f; and — f;. As dis-
cussed in Chapter 2, the negative frequency part of the spectrum is just
the complex conjugate of the real part, for a real waveform, and provides
no extra information. (In this case the spectrum is real, so the negative fre-
quency part is just a mirror image of the real part.) However, as explained
in Section 2.4.1, the contribution of the part of the spectrum centered at
—/o in the positive frequency region can only be ignored if the waveform is
sufficiently narrowband (i.e., if fj >> 1/7), the approximate bandwidth of
the two spectral branches.

An important point about this spectrum, which is very easily made
evident by this analysis, is that, although the envelope of the spectrum is
centered at f;, there is, in general, no spectral line at f;. This is because the
lines are at multiples of the pulse repetition frequency (PRF) (1/7) and
only if f; is an exact multiple of the PRF will there be a line at f;. Return-
ing to the time domain, we would not really expect power at f; unless the
carrier of one pulse was exactly in phase with the carrier of the next pulse.

sinc(f—fy)r
envelope \ Lines at n/T
P I ,]‘ l l E ! “".‘ [1 - o

U.(f)

Figure 3.22 Spectrum of regular RF pulse train.
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For there to be power at f;, there should be a precisely integral number
of wavelengths of the carrier in the repetition interval 7" (i.e., the carrier
frequency should be an exact multiple of the PRF). This is the case in the
next example.

3.10 Carrier Gated by a Regular Pulse Train

This waveform would be used, for example, by a pulse Doppler radar. A
continuous stable frequency source is gated to produce the required pulse
train (Figure 3.23). Again we take 7 for the pulse repetition interval 7 for
the pulse length and f; for the carrier frequency. The waveform is given by

u(#) = (rep y(rect #/ 7)) cos2 mfyr (3.35)

and its transform, shown in Figure 3.24, (using R7a, R8b, P3a, and P8a) is

U(f) = (/2T )comb,, 7(sinc /1) ® (6(f— 1) + (6(f+ fp))  (3.36)

Denoting the positive frequency part of the spectrum by U, and assuming the
waveform is narrowband enough to give negligible overlap of the two parts
of the spectrum, we have

U(f) = (t/12T)combs, (sincf?) ® 8(f- £) (3.37)

The function comb,,7sincfT is centered at zero and has lines at multiples of
1/7, including zero. Convolution with &(f— f;) simply moves the center of
this whole spectrum up to f;. Thus, there are lines at f; + 7/ 7T (n integral, —eo
to o), including one at f;. In general there is not a line at /= 0; this is only
the case if f; is an exact multiple of 1/7. Unlike the previous case, we would
expect the waveform to have power at f; as the pulses all consist of samples of
the same continuous carrier at this frequency.

Frequency fy

«— 71 —

A
VTR

-«—

Figure 3.23 Carrier gated by a regular pulse train.
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Figure 3.24 Spectrum of regularly gated carrier.

3.11 Pulse Doppler Radar Target Return

In this case we take the model for the target echo received by a pulse Doppler
radar to be a number of coherent pulses with their amplitudes modulated by
the beam shape of the radar as it sweeps past the target. (The echo is actually
modulated twice, on transmission and on reception, so the beam shape is
applied squared.) Here, for simplicity, we approximate this modulation first
by a rectangular function of width 0 (i.e., 6 is the time on target). A more
general case will be taken later. The pulse train is given by # in (3.35) so the
waveform received from a stationary point target is given, apart from an am-
plitude scaling factor, but with the modulation imposed by the beam, by

x(2) = rect (t/0)u(?) (3.38)
(as rect? = rect). The spectrum (from R7a, P3a, and R5) is
X(#) = 6sincfO® U(f) (3.39)

where U's given in (3.36). The convolution effectively replaces each o-func-
tion in the spectrum U by a sinc function. This is of width 1/6 (at the 4-dB
points), which is normally very small compared with the envelope sinc func-
tion of the spectrum, which has width 1/7, and also is small compared with
the line spacing 1/7°if 6 >> 7 (i.e., many pulses are transmitted in the time on
target). In fact, there will also be a Doppler shift on the echoes, if the target is
moving relative to the radar. If it has a relative approaching radial velocity v,
then the frequencies in the received waveform should be scaled by the factor
(¢ + v)/(c— v), where ¢ is the speed of light. This gives an approximate overall
spectral shift of +2uf,/c (assuming v << ¢, and the spectrum is narrowband, so
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Figure 3.25 Spectrum of pulse Doppler radar waveform.

that all significant spectral energy is close to f; or — f;). Figure 3.25 illustrates
the form of the spectrum of the received signal. Stationary objects (or “clut-
ter”) produce echoes at frequency fj and at intervals /7 about f;, all within
an envelope defined by the pulse spectrum (as in Figure 3.25). The smaller,
moving target echoes produce lines offset from the clutter lines, so that such
targets can be seen, as a consequence of their relative movement, in the pres-
ence of otherwise overwhelming clutter.

Figure 3.25 is diagrammatic; the filter bank may be at baseband (f; = 0)
or a low IF and may be realized digitally. By suitable filtering, not only can
the targets be seen, but an estimate is obtained of the Doppler shift, and
hence of the target radial velocity.

As indicated by (3.39), all the lines are broadened by the spectrum of
the beam modulation response (squared) but a rectangular beam, as taken
earlier, is not realistic, except as a very rough approximation. In Chapter 8
we see that, for a linear aperture, the beam shape is essentially the inverse
Fourier transform of the aperture illumination function, and with a constant
angular rotation rate this becomes the (one-way) beam modulation. (We re-
quire the small angle approximation sin@ = 6, which is generally applicable
in the radar case, near broadside.) If the aperture function is rect(x/X), where
X is the width of the aperture in wavelengths, then the beam shape is of the
form sinc(otX), where o is the azimuth angle (in radians). If the beam scans
at constant speed say o = kz, then the received pulse train is modulated by a
function of the form (sinckX#)? and the target echo spectrum is the transform

of this (i.e., it is the triangular function, tri(f7£X), from P4,R4,R5). The
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width of this function (given by fj = £X at the half-amplitude, or 6 dB points)
determines the width of the filters and hence the velocity resolution.

To put in some reasonable values, let X = 30 wavelengths, for a 3m
aperture at S-band (3 GHz), and if the rotation period is 3 seconds, then
k = 27/3 rad/sec and £X = 607/3, or approximately 60 Hz. At this carrier
frequency, a target with a radial velocity of 1m/s will give a Doppler shift of
20 Hz so the line broadening is only equivalent to about 3 m/s wide.

If we put the welghtlng function in the form a(x)rect(x/X), the beam
shape is (A(a) ® smc(OtX)) and the two- ~Way response is (A(0)®sinc(0X))>.
The echo modulation is (A(kt) ® smc(/eXt)) and the line shape, broadened by
this modulation, is a(f7k)rect(f1£X)®a( flk)rect(f1£X)). Because of the
mixture of convolution and multiplication, this expression is not easily sim-
plified for typical functions , though it may be possible to obtain estimates of
the line shape and its width by making approximations. In general, weighting
functions that give desirable low-sidelobe responses produce broader main
lobes, reducing the resolution by a factor of up to two.

312 Summary

The spectra of a number of pulses and of pulse trains have been obtained
in this chapter using the rules-and-pairs method. As remarked earlier, the
aim is not so much to provide a set of solutions on this topic as to illustrate
the use of the method so that users can become familiar with it and then
solve their own problems using it. Thus, whether all the examples correspond
demonstrably to real problems (e.g., finding the spectra of the asymmetric
trapezoidal pulse and, particularly, this pulse with different roundings of each
corner) is not the question—the variety of possible user problems cannot
be anticipated, after all—but rather the examples are meant to demonstrate
various ways of applying the method to yield solutions neatly and concisely
without any explicit integration.






Periodic Waveforms, Fourier Series,
and Discrete Fourier Transforms

41 Introduction

In this section, we consider some aspects of periodic waveforms, using the
rules-and-pairs method. First we note that these waveforms do not have finite
energy, so that the result following Parseval’s Theorem (2.27), equating the
waveform energy with an equivalent form based on the spectrum, cannot be
applied. Instead, it is shown in Section 4.2 that the relevant quantity in this
case is power, rather than energy, and expressions for the powers of the wave-
forms and spectra are derived using the rules and pairs.

Periodic waveforms can be represented as Fourier series, of course. A
periodic waveform has a line spectrum, given in the rules-and-pairs approach
by a set of d-functions whose strengths give the coefficients of the series ob-
tained by the standard method, using integration. If we express a periodic
function #, with repetition interval 7, in the form

u(t)= 2 ¢p exp 2TinFt (4.1)

f=—00

69
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as in (1.1), then by P1la and R6b the spectrum is given by

oo

U(f)=, ead(f —nF), (4.2)

n=—c0

where F = 1/T is the fundamental frequency of the waveform. The coef-
ficients are found, using the orthogonality of the complex exponential func-
tions over one period. That is,

[ exp(=2mimtIT)expQmine I T)dr = T8,
T

where /; is an interval of length 7, and 9,,, is the Kronecker-6. Thus, we
have

c, =1/ TLT u(t) exp(=27inFr)dt (4.3)

Equations (4.1) and (4.3) would normally define a Fourier series relation-
ship. Equation (4.2) gives the spectrum formally as a function of frequency,
but usually only the coefficients ¢, are needed. Equivalent equations can be
obtained for the expressions in trigonometric form, using sine and cosine
series, using the orthogonality of the sine and cosine functions over one
period.

In the case of a regular train of pulses of finite duration, the spectrum is
simply a sampled form of the continuous spectrum of a single pulse. This is
shown very simply by the rules-and-pairs method—if s(#) is the pulse wave-
form, repeated with period 7 then the pulse train is represented by rep7s(#),
which has transform FecombzS( /), where F'=1/7 and § is the spectrum of
the pulse, the transform of 5. We see that we replace the continuous function
S by a discrete function, consisting of é-functions (or spectral lines) at mul-
tiples of F and of strength FS(nF), F times the value of S at these frequency
points. Thus, if we have a train of pulses of one of the forms already analyzed
in Chapter 3 (Section 3.2 through Section 3.8) we obtain the spectrum of
the pulse train immediately by sampling the pulse spectrum at the points 72F
(and multiplying by F).

However, the Fourier transform obtained here, by the rules-and-pairs
method, expresses the waveform in terms of complex exponential functions
of frequency (cisoids)—as an integral over a frequency continuum in the non-
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periodic case, or as a sum over discrete frequencies in the periodic case. (So,
for example, ¢, is the coefficient of exp27minFt, the component at frequency
nF, in the Fourier series of (4.1)) This expansion in terms of complex expo-
nentials may not be the most convenient for the user. Fourier series analysis
can be applied, of course, to real-valued or complex-valued functions,
expressing them in terms of either real functions (possibly with complex coef-
ficients) or complex functions. However, generally the main area of applica-
tion is to real functions, expressed more naturally as a sum of real functions
(sines and cosines) rather than as a sum of complex exponentials. In Section
4.3, we show how to obtain the Fourier series coefficients for this case, using
the rules-and-pairs approach, without having to perform any of the usual
integration. To illustrate the method, we take as examples a rectangular pulse
train, a sawtooth waveform, periodic triangular waveforms (symmetric and
asymmetric), and rectified sinewaves (half-wave and full-wave.)

The discrete Fourier transform (DFT) differs from the other Fourier
transforms in this book. For these other transforms, the input waveforms
are mathematical functions, which may describe, with varying degrees of ac-
curacy, actual physical quantities. For the DFT, considered in Section 4.4,
the input of the transform is a set of data samples, without necessarily any
explicit mathematical description. Thus, the waveform is discrete, rather than
continuous, though it may be considered to be a sampled form of an implicit
underlying continuous function. The case of general discrete waveforms is
taken initially. If the data is considered to be from a regularly sampled wave-
form (described by a comb function), its spectrum, from the comb-rep pair,
is a repetitive, or periodic, function of frequency. This has the advantage
that only a single period is needed to define the spectrum. However, in gen-
eral this spectrum is continuous, and the question arises of how to sample it
suitably in order to describe it in finite terms. If we sample it regularly (and
take the condition that the sampling interval is an integer submultiple of
the repetition interval), then we find that this spectrum is both periodic and
regularly sampled, and its inverse transform is a waveform that is also both
periodic and regularly sampled. The number of samples in one period of the
spectrum is found to be equal to the number of input samples, the number
in one period of the supposed periodic waveform. This is the basis for the fast
Fourier transform (FFT), which is an efficient implementation of this DFT.
We show how the DFT is implemented—in particular, we derive the coef-
ficients relating the spectral components to the input data samples, using the
rules-and-pairs technique, and give an example, using the MATLAB FFT as
an illustration of the principles.
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4.2 Power Relations for Periodic Waveforms

421 Energy and Power

If u(2) represents the voltage at an instant £ across a resistor with resistance R,

2 . . . . .
then [s(2)| / R is the rate of conversion of electrical energy into heat at time 7
and the integral of this over some time interval gives the heat energy gener-
ated during this interval. In general, ignoring R, as a fixed scaling factor we

consider J.‘u(t)‘z dt to be the energy in the waveform in appropriate units. It
may be convenient to keep to this terminology even when # does not repre-
sent a physical quantity, such as voltage or the amplitude of a wave, and we
simply mean the integrated square modulus of the function.

In the discussion of Parseval’s theorem in Section 2.4.2 we have as-
sumed that the waveform # in (2.27) is a finite energy waveform (i.e., that
the infinite integral on the left side of this equation [and consequently also
that on the right] converges). For this to be the case, we must have u(z) — 0
as t —> oo, (This is a necessary but not sufficient condition. For example, as
|| is monotonic, at large values of # its value must also fall faster than #71.)
For the repetitive waveforms considered in this chapter, this condition is not
met, and (2.27) is not applicable. Instead we can consider the mean energy
per unit time, or power, and this is the appropriate measure, rather than en-
ergy, for these waveforms. The mean power in a waveform # over an interval

. 1 2 . . . .
of length T'is given by ?J‘T‘u(t)‘ dr (where -[T indicates integration over this

interval) and for a (statistically stationary) random waveform we could esti-
mate the power level by taking the limit as 7" — co. However, for a periodic
function, there is a natural time interval to choose, which is its period of rep-
etition. This approach is used to obtain results equivalent to (2.27) for both
the case of a periodic waveform, which has a spectrum of discrete lines, and
a sampled waveform, which has a periodic spectrum. The equivalent result
for a waveform that is both sampled and repetitive, as used for the DFT, is
given in Section 4.4.

42.2 Power inthe 6-Function

We know that the integral of the d-function is unity, but what is the value
of J.5( F£)2df? In order to tackle this question, we return to the definition of
the 6-function (given in Section 2.2.3) as the limit of a suitable sequence of
functions of unit integral, such that the limiting function is nonzero only
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at a single point. In this case, we take the sinc function as the basis for our
sequence.
Consider first the waveform

u,(t) = rectt/n,

a rectangular pulse of length 7, with spectrum
U,(f)=mnsincnf

The energy in the waveform is given by
E,= j_oo | 2, (2) |Zdt = J_w rect® (t/ n)dt = Jjo rect(t/n)dt =n, (4.4)

as rect? = rect. The spectral energy is

Ji;| U.(f) |2df = Ji; n? sincz(nf)df = j_o; nsinc’ (nf)d(nf)=n. (4.5)

using property 3 of the sinc function (Section 2.2.2). The equality of the
waveform and spectral energies is in agreement with Parseval’s Theorem (see

(2.27)). Now we consider the limit of the sequences of the functions #, and
U,. We have

lim #,(¢) = lim (rectt/n) =1
n—yo0 n—yo0

and
lim U,(f)= lim (nsincnf)=6(f),

using the definition of the é-function given in Section 2.2.3. We now see

from (4.4) and (4.5) that the energy in these functions lim (£,) is infinite.
n—>00
(This answers the question at the start of this section.) However, the power

in each waveform #, is given by dividing by the pulse length 7, so is given by
pn=E,/n=1. As this is independent of 7, it is clear that this is also the power
of the limiting waveform, the constant function #(#) = 1, which has transform
O(f) (i.e., the power represented by a 6-function of unit strength is unity,
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and the power in a 6-function of strength 4 is thus |4|?). It seems reasonable
to suppose that a more complex function, with a spectrum of many lines, will
have power given by the sum of the powers in the spectral lines, and this is
proved in the next section (see (4.14)). This is also true of shifted é-functions,

as U(f) = 8( f— f;) has transform u(z) = exp2mifyt and |u(z)|* = 1.

423 General Periodic Function
A periodic waveform is not one of finite energy, but if we take one period of
it then we have a finite energy waveform, for which the energy equation of
(2.27) holds, following directly from Parseval’s Theorem. Let the periodic
function be # with repetition interval 7 and let » be a single period of #, ob-
tained by gating (see Figure 4.1). Then we have

v(t) = rect(¢/T )u(t) and also u(z) = repr v(z) (4.6)
Their spectra are given by

V(f)=Tsinc(fT)QU(f) and U(f)= FcombpV(f). (F=1/T) (4.7)

Writing out the comb function we can put U in the form

U(f)=FY, V@F)(f —nF)=3, Usd(f =nF), (4.8)

where U, = FV(nF) is the strength of the é-function at frequency #F in the
spectrum of U.
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Figure 41 Waveforms and spectra for a periodic function.
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From the two spectral expressions in (4.7) we have

V(f)=sinc(fT)® combrV (f) (4.9)

=sinc [T ® Y, V(nF)8(f —nF)=7 V(nF)sinc((f —nF)T)

= ZnV(nF) sinc(£T —n) (4.10)

2, here means summation over all 7, from —oo to co. This shows that the spec-
trum V can be represented by its samples at intervals /= 1/7, interpolated
using sinc functions. This result holds for any spectrum V'as long as the cor-
responding waveform v is within the interval [-772,772]. It is the converse
of the waveform interpolation result given in (5.2). These waveforms and
spectra are illustrated diagrammatically in Figure 4.1.

As v is now a finite energy waveform, we can use the result (2.27) from
Parseval’s Theorem. In this case, the energy in » and hence in one period of
u is E,, given by

E, = J:Jv(t)‘z dt = JT\u(t)\z dt (4.11)

Strictly, from the definition of », JT should mean integration over the interval

—T172 to 772, the range over which the rect function has value unity, but in
fact it could be over any interval of length 7, which would contain one whole
period of u.

Using (4.10) we have

[Tl dr =" VaF)sine(fT-n)y, V(mF)*sinc(fT —mdf
=YT[" Y > VuF)W(uF)*sinc(fT = n)sinc(fT = m}d(fT)

=FY 3 V@EW(nF)*8,m=Fy. [VuF), (4.12)

where we have used property 4 of the sinc function (see Section 2.2.2), the
orthonormal property of the set of shifted sinc functions. Here §,,, is the
Kronecker-9, unity if 7 = 7 and zero if m # n.
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Equation (4.12) is an interesting result in itself: for a spectrum V;, where
the waveform v is within the interval [-772,+77/2], the integral of the con-
tinuous function |V|? is F times the sum of samples of |V]* taken at intervals
F=1/T.

The power in waveform # is thus given by p, where

E, 1= 1 e
pu= = oty dr=?J_w\V(f | df =F*Y, VuF)  (4.13)

using (2.27) and (4.12). From (4.8) we have U, = FV(nF'), and so, from
(4.11) and (4.13), we have finally, for the power in #,

1
= [ u?de=Y, U.f (4.14)

This confirms that the power in the periodic waveform # is equal to the sum
of the square moduli of the d-function strengths in its line spectrum (i.e., the
powers of the frequency components) as proposed in Section 4.2.2.

If u is the repeated form of a known pulse waveform s, then from
u(t) = rep7s(z) we have

[ lrepr s de = FY, |SGF)? (4.15)

(NB: In general one period of repzs() is not necessarily equal to s(z) because
of the overlapping of repeated versions when the duration of s is greater than
7. Only if s is time limited, with value zero outside the interval —772 to +772,
can we replace repys(z) by s(7) in (4.15).)

We can present this result in a form rather closer to the Parseval result
for finite energy waveforms (2.27) by integrating the sampled form of the
power spectrum:

[~ combs|S(f) df =" [SuF) 8(f —nF)df =Y, |S(uF)

as the integrals of the é-functions are unity. Thus (4.15) becomes

J‘T‘repT s(t)‘zdt = FJi; combp‘S(f)‘2 df (4.16)
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This result shows that the energy in one period of a repetitive waveform
is given by the integral of the sampled power spectrum times the sampling
interval (in the frequency domain).

424 Regularly Sampled Function

If u is sampled regularly at intervals 7, then its spectrum is repetitive at in-
tervals ¢ = 1/7. In this case, we take the same approach as in Section 4.2.3,
except that we gate out one period of the spectrum instead of one period of

the waveform. Defining V() = rect(f/@)U(f), we obtain results such as
Jvtdr=[ oo 4
and

v(t)= z , v(nT)sinc(@r — n),

leading to
2

[loe) de =7y, [o(n7)

corresponding to (4.11), (4.10), and (4.12) respectively, and to u, = TV(n1).
Using these results in (2.27) gives:

1 2 2
Xl = [ U df
to obtain (as ¢ 7= 1) the equivalent of (4.14):

3 = o 4 @17)

If u is the sampled form of a pulse waveform s, so that #(z) = comb, s(z) and

U(f)=¢repy S(f), we have, corresponding to (4.15),

Y [sur)’ = j¢\rep¢ S(F) df (4.18)
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425 Note on Dimensions

In this section we justify the energy and power expressions in dimensional
terms, as it is not always evident what forms the expressions represent. The
notation here is that [#] represents the dimension of a waveform, [U] that of
a spectrum, and [7'] and [F] are the dimensions of time and frequency. We
also use the symbol - to mean “has the same dimension as.” Thus, we have
[F] - [TT". We will also take, as a convention, [#?] to have the dimension of
power so that [#*][7'] ~ energy (as in Section 4.2.1).

From the definitions (1.3) and (1.4), we see that [#] - [U][F]and [U] -
[#][T], then in (2.27) the left side has dimension [#%][7'], or energy, and the
right side has dimension [U?][F] ~ [#*][#]*[F] ~ [#*][T], again an energy
expression. Thus, this equation does equate the waveform and spectral energy
for a finite energy waveform.

It is important to notice that for sampled waveforms and spectra,
the samples, as d-function strengths, do not have the same dimension as
the sampled function. In (4.8), for example, we note that integrating over

a frequency interval 7, including only the line at frequency nF, we have
L U(f)df =U, so that U, has the dimension [U][F] (not [U]). (In fact

[U,] - [«].) Similarly, for a sampled waveform, we find that the samples
u, have dimension [«][T], or [U]. We see that the left side of (4.14) has
dimension [#°], or power, and so has the right side, given that [U,] ~ [#], as
required. The left side of (4.17) has dimension [U]%/[T], and the right side
has dimension [U]?[F], and these are both energy expressions, so this equa-
tion matches the energy in one period of the spectrum with the sum of the
square magnitudes of the waveform samples divided by the sample interval.
Finally, for the regularly sampled periodic function of Section 4.4.3, we see
that the two sides of (4.59) have the dimension of energy, so this effectively
equates the energy in one period of the waveform with that in one period of
the spectrum.

4.3 Fourier Series of Real Functions Using Rules and Pairs

4.3.1 Fourier Series Coefficients

The rules-and-pairs method, as used here, is a fully complex method, giving
the complex spectra of both real and complex waveforms. Thus, even for a
real waveform, the waveform is expressed as a sum, or integral, of complex
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exponential functions of the form exp27ifi. In general (though not necessar-
ily), Fourier series analysis is applied to periodic real waveforms, which are ex-
pressed as sums of real functions (sines and cosines) with real coefficients. In
this section, we show how these coefficients are obtained from the spectrum
given by the rules-and-pairs method, in the case of periodic real waveforms,
and in the following three sections examples are given for square, sawtooth,
triangular, and rectified sinewave waveforms.

Given that # is periodic, with repetition interval 7, the spectrum U'is a
comb function and so can be put in the form

oo

U(f)=Y, cxd(f —nF) (4.19)

n=—o00

where F=1/T. The waveform can be expressed, from the inverse transform,
as

u(t) = 2 Cn exp 2TinFe, (4.20)

n=—00

and we see that the coefficients ¢, weight both the &-functions in the spec-
trum and also the complex exponentials in the expansion of the waveform.
We now want to express # as a Fourier series in the form

u(t)=ap+ z (a, cos2mnFt + b, sin 21tnkt) (4.21)

n=1

as in (1.1), and now we need the coefficients 4, «,, and 4,. From (4.20) we
have

u(t) = Z c et = 2 ¢, (cos2mnFt + isin2 wnkt)

n=—0o° N=—00

=¢o+ Z ¢, (cos2mnkt + isin 2tnkFt) + 2 c_,(cos2mnFt —isin 2wnkt)

n=1 n=1

=co+ z (¢ +c_p)cos2mnFt+i(c, —c_,)sin2nkt

n=1
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Now for real waveforms we have U(—f)=U(f)* for any frequency f
(see (4.2.1)), so, in (4.19), c_, = ¢,* and

chte_,=c,+c,*=2Rec,

and

Cp—Cp=cp—c,*=2iImc,

so finally we have

u(t)=co+ z (2Rec, cos2mnFt —21Imc, sin 2wnkFt) (4.22)

n=1
where ¢ is also real. Comparing (4.21) and (4.22) we have
ag = cy,a, =2Rec, and b, = -2Imc, (4.23)
Thus, to find the Fourier series coefficients for a real periodic wave-
form, we obtain the spectrum U by the rules-and-pairs method, which gives

the coefficients ¢, then use (4.23). This method is illustrated in the following
sections.

4.3.2 Fourier Series of Square Wave

A square wave of period 7'is given by a regular train of rectangular pulses of
length 772, so can be represented in the form

u(t) = repr (rect ?f] (4.24)

with transform

T . T 1 ) T
U(f)= Fcombp(2 smcf2) = 2c:ombp(smc f2)

- % i sinc ”Z L s £ —nF) (4.25)

n=—o0



Periodic Waveforms, Fourier Series, and Discrete Fourier Transforms 81

where F=1/7. Now we note that

cp= lsinc kT = lsincﬁ (neq) (4.26)
2 2 2 2

_sinml2) oz L oqa)
nr nit

when 7 is odd, and is zero when 7 is even (n # 0). (c, is defined as in Sec-

tion 4.3.1, such that U(f)= 2 cnO(f —nF)). As ¢, is real, we have, from

n=—o00

Section 4.3.1, a,, = 2¢,, = (—1)(”_1)/22/71727 (7 odd) or 0 (7 even), and 4, = 0,
for 7 =1 to oo, and we see also from (4.26) that 4, = ¢, = 1/2, as expected, as
this is the mean level of the waveform. Thus, the Fourier series for the square
wave # 1s

w o \(n-1)/2
u(t)= 1 + 2 2 Lcos 2nnkFt, (4.27)
2 I 1 n

agreeing with the result given by conventional Fourier analysis and obtained
without using any integration.

This is for the case illustrated in Figure 4.2(a), where the pulse train is
centered on zero, giving an even function, which would be expected to give
an expansion in terms of even functions (i.e., cosines) only. It is interesting
to take the case shown in Figure 4.2(b), where the function (apart from the
mean level) is an odd function and should give a sine series only.

In this case, the pulses are offset by 774, so the waveform is given by

(t—T/4J 4.28)

t)=
v(t) = repr (rect T

and its transform, using Ro6a, is

V(f)=Fcombr (Zsinc];T CXPT) = %combp (sinc sz exp _ﬂ;fT)

=— ) sinc MZT exp —nz;FT 5(f—nF)=% z sincgexp

n=—00 n=—0c0

—inT
2

O(f'—nF)
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(a)
| |
-T -T4 0 T4 T
(b)
-T -T2 0 T2 T
(c)
-T 0 T
(d)
n\l VA n\l VA n’d VA
-T 0 T

Figure 4.2 Square wave synthesis from Fourier series. Square wave with (a) pulse cen-
tered at time zero, (b) pulse starting at time zero; waveform formed using (c)
four terms of even series, and (d) seven term of odd series.

—inw 1 sinnn’/2( .. nn’) —i
=— —isin— |=—for

2 2 nr/2 nw
n odd, and ¢, =0 for 7z even (n > 0). In this case the Fourier series coefficients
areagp =co=1/2,a, =2Rec, =0 (n>0), and b, = —2Imc, = 2/nn(n odd).

Thus, the Fourier series for this square wave is

1.
Thuswehave ¢, = 5 sinc g exp

W)=+ 2 Y sin2maFt (nodd (4.29)

n=1

The approximations to the square waves, taking the constant term plus
the first Vsinusoidal terms using these series for # and v, are given in Figure
4.2(c) for N=4,orn=1to7) and (d) (N=7).

For a regular pulse train (centered on zero in this case) with a duty ratio
7 (r< 1), the pulses are of length 77 and the waveform is given by
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u(t) = repr (rect r;J (4.30)

The spectrum is

U(f)= Fcombr(rT sinc fr1") = rcombp (sincfrT)

=r i sinc(nFT)O(f —nF)=r i sinc(rm)o(f —nF)  (4.31)

n=—00 n=—c0

sin 7t 2sinrnmw
Thus, a9 =co =7, ¢, = ,a, =2Rec, = ,and 6,=0. We note
nwo nf .
the value of the constant term is 7, the mean level, as expected. Putting » =

1/2 giVCS the squarc wave casc.

4.3.3 Fourier Series of Sawtooth

A sawtooth waveform of period 7, of amplitude 2, mean level zero, and cen-
tered at the time origin is shown in Figure 4.3(a). This is an odd function, so
its Fourier series will be given by a sum of sinewaves only. This waveform can
be represented in the form

u(t) = repr (ramp(;)] (4.32)

where we define ramp(x) = 2xrect(x), as in Section 7.3 in Chapter 7, where
this function is discussed further, and is illustrated in Figure 7.2. The trans-
form, using the pair given in (7.18) is given by

U(f)= Fcombp(iT snc; fT)=1i i snci(nFT)O(f —nF)

n=—c0

where F=1/T and sncy x = d(sincx)/mdx (see (7.17)). As snc,0 = 0 we have
ay= ¢y =0, and as ¢, is imaginary we have 2, = 0, and

1yt
b, =-2Imc, =—2sncin= 20" (n>0) (4.33)
niw
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(a) /‘

(c)

IRV

e

Figure 4.3 Sawtooth wave synthesis from Fourier series. Sawtooth (a) centered at time
zero, (b) with ramp starting at time zero; waveform formed using (c) five terms,
and (d) ten terms.

(From (7.20) we have snc,n = (cosmtn — sincn)/nm = (=1)*/nm (n > 0).) The
Fourier series for the sawtooth # is thus

u(r) =23 -1y S 2(smzm— sindrfy | sin6nfr )
n

n=1 T 3
(4.34)
The sawtooth shown in Figure 4.3(b) is given by
v(t):%+%repT (ramp(t_;/z)) (4.35)

and after Fourier transforming as before we have

¢y, =isncynexp(—inm)/2=1i(-1)"snc;n/2=i/2nm
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(using sncyz from earlier). Thus, 49 =¢)=1/2, a, =2Rec, =0, and
by =—21Imc, =—1/nm. In this case, the sawtooth is given by

1 2 sin 2mnkFt (4.36)

1
=)

n=1 n

The approximate sawtooth waveforms obtained by taking terms up to
n =15 in (4.34) and »=10 in (4.36) are shown in Figure 4.3(c) and (d),

respectively.

434 Fourier Series of Triangular Waves

The symmetrical triangular wave shown in Figure 4.4(a), with period 7, can
be written

u(t) = repr tri(Tt/z] (4.37)

where the function tri(x) is defined in (3.6). From R5 and P4 the transform
is

(a)
-2 0 72 T 312
(b) L | L | L |
-T, 0 T, T T+T,
(C) L | L | L |
-T, 0 T, T T+T,

Figure 4.4 Triangular waves. (a) Symmetric, (b) asymmetric, and (c) asymmetric wave
synthesized using four terms.
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U(f)=Fc0me(§sinc2g)=; i sinc2§5(f—nF) (4.38)

=—00

. 2 2
1 1 /2 2
Thus, ¢, = ~sinc? ﬁ, soay =—, a,=2Rec, = M , or () for n
2 2 2 nml/2 ni

odd and 0 for 7 even, and 4, = 0 for all 7. In this case the Fourier series coef-
ficients are found very directly, without integration, by the rules-and-pairs
method.

For the asymmetrical triangular wave, shown in Figure 4.4(b), we can
use the asymmetric triangular pulse of Section 3.5 (with peak at #=0) formed
as the differences of two step functions convolved with different width rect
pulses. Taking this pulse, the triangular wave is given by

u(t) = repr (v(t))

where v(2) is given in (3.13), and this has the transform given in (3.12), so
that the spectrum of the triangular wave of Figure 4.4(b) is given by

U(f) = FCOme (Sinc(fj—i )eﬂlfTI _ SiIlC(sz )e—ﬂz'f’l,'z j

2wif

e, sincnFTie™™ ™ —sincnFhe ™™
=—i O(f —nkF)
nzz_w 27tn f
> sinc nﬁemml —sinc nrze_ﬂinrz
=—; z A f —nF) (4.39)

27tn

n=—o0

where r,= T}/ T=FT,(sor,+r,=1las T+ T,=T).
To first order, as # — 0 (for 7 real), we have

—i tn(n +
co = lim( ! A+ mwinn +...— (1 — mwinr, +...))=limn(ﬁ;’2)=1
n—0\ 27tn n—=0  27n 2

s0 ay = co =1/2, as expected. Also,

sinczry sin Tnry + sinc #ry sin Tnr;
a,=2Rec, = (4.40)
nit
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=n sinc? nrn +ry sinc? nry

and

sinczr cosTnry — sinc nry CosTnry
b, =—-2Imc, = (4.41)
ni

Except for certain particular values of 7, and r,, these expressions do not sim-
plify further. Using these coefficients up to 7 =4 with », = 0.3 and , = 0.7
gives the waveform shown in Figure 4.4(c).

If we put 7, = , = 0.5 (giving the symmetrical case) then we find

n 1. 2n .oon
—+ —sinc” — =sinc” —
2 2

2 2

.2
a, = —sinc
2

and b, = 0, which are the coefficients for the symmetric triangular wave found
earlier. Also, if we put 7, = 1 and », = 0, we have sincnr; = 0, so that 2z, =0
(n>0), and sincnr, = 1, so that b, =—1/nm, as found in Section 4.3.3 for the
sawtooth waveform of Figure 4.3(b).

We could, alternatively, form the asymmetric triangular pulse as the
difference of two ramp functions. In this case, we define the wave shown in

Figure 4.4(b) by

u(t) = %(1 o)

t+17/2 t+15/2
v(t) = repr | ramp —ramp| ————
n I3

(We note that v(#) ranges from —1 to +1 so #(z) ranges from 0 to 1, as required.)
Following through the analysis, using the pair ramp x < 7snc; y, gives

where

a, = 2Rec, = —(ry sncy nry sin Tnry + ry sncy nry sin Tnry)
b, =—21Imc, = r) sncy nry cos Tnry — 1y SNCy 127y COS TN

Putting sncy x = (cos Tx — sinc x)/ 7wx, and using 7 + 7, = 1, we can show that
these expressions for 4, and &, reduce to those in (4.40) and (4.41).
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4.3.5 Fourier Series of Rectified Sinewaves

We consider first the half-wave rectified waveform, shown in Figure 4.5(a).
This can be represented as a repetitive form of the first half-cycle of the sine-
wave, obtained by gating. Thus, for a sinewave of frequency F and period
T'= 1/F this waveform is given by

u%(t) =repr {sin2n’Ft rect(t — T4 )} (4.42)

T2

with transform

S(f=F)=8(f+F) g Tsinche_szm) (4.43)
2i 2 2

U%(f)chome(

rect(ﬂ)

sin2z Ft 772

2,

(a)

(b)

(c)

Figure 45 Rectified sinewaves. (a) Half-wave rectified sinewave, (b) half-time rectified
sinewave synthesized using four cosine terms, and (c) full-wave rectified sine-
wave synthesized using seven cosine terms.
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(We have used P8b, P3a, R8b, R7a, R5, and R6a.) Performing the convolu-
tions with the S-functions, we obtain

U% (f) = _Zicome (sinc(f_:f)Te—Zﬂi(f—F)TM

(f+F)T -2 f+F)T/4)
2

—sinc

Writing out the comb function (defined in (2.19)) we obtain (using
FT=1)

A i (n—1) _ i(n-1)2 . (n+1) _ i(n+1)/2
U%(f)—4z_m(smcze ™ —schf e O(f —nF)

Thus, the coefficients ¢, (putting exp(7i/2) = 7) are given by

(—5)” ( . (=1 . (n+ 1))
Cp = sinc + sinc
4 2 2

Then,

o= o= Lsine L= Sn@2) _ 1 (4.44)
279 T 2mi2)  x

We note ¢, is real for 7 even and imaginary for 7 odd, so, putting 7 = 2,

=D"( sin@m—-1)r/2 sin2m+1)7/2
Dm = 2Re Com =
2 Qm-1r/2 Qm+1)m/2

Noting sin(2m — 1)7/2 = (-1)"* " and sin(2m + 1)7/2 = (-1)", we obtain

1( -1 | )
m= + = 4.4
“ ﬂ(2m—l 2m+1) nl4m® —1) (4.45)

For 7 odd we see that (z — 1)/2 and (z + 1)/2 are integers so that (by sinc
property 1) sinc(z — 1)/2 = sinc(n +1)/2 = 0, except for 7 = 1, so we have
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b =-2Ime =1/2and 6,=0 (nodd, n> 1) (4.46)

We can now write the Fourier series of the half-wave rectified sinewave using

(4.44), (4.45), and (4.40), as

1 1. 2
u%(t)=;+551n27rFt—;2

w cos4mmFt

=1 i 1) (4.47)

The half-wave rectified waveform of (4.42), generated using only four
cosine terms is shown in Figure 4.5(b), with slight rounding of the corners at
the edges of the half-cycles, and a little residual ripple. If we had begun with
a cosine waveform, and gated a half-cycle centered on 7= 0, the expressions
would have been simpler (with no exponential factors) and, being a sym-
metrical function, there would be only cosine contributions, as the reader
might confirm.

The full-wave rectified waveform is based on the same gated half-cycle
as the half-wave, but repeated at intervals 772, so is given by

t—T/4
t)= in2mFt 4.48
u (t) = reprp (sm rect[ Th J] ( )

and its spectrum is

Ul(f)z2Fcomb2F(6(f_F)2_.5(f+F)®€sincge_2”ﬁ/4J (4.49)
‘

which leads to
Ui(f)= ;Z:(Sim(z”z_l)e—m@n—l)/z _ Sinc(znz"'l)e—m(zﬁn/z)

O(f —2nF),

and we see that the spectrum contains frequencies that are only multiples of
2F. Putting exp(m7/2) = i and exp(mi) = -1, the coefficients of the complex
spectrum are

= L (sinc (2n=1) + sinc(2n+1)) (4.50)
2 2 2



Periodic Waveforms, Fourier Series, and Discrete Fourier Transforms 9

Thus,
o1 51n(71'/2) 2
I § d 4.51
ap = ¢p = sinc 2 (72?/2) T ( )
and
)" (sin@a=Dz/2 sin@n+ D72 _ (=1 (-1y"*! GV
7| @u=Dri2 | @a+D)m2 | 22-1 2241
_ _72 (4 52)
(4n* =1) '

As the coefficients ¢, are real, b,, = 0 for all 7, and the Fourier series
for this waveform is

4TenF
ul(t)—f—fzn IC‘;S ””1t (4.53)
2

The full-wave rectified waveform of (4.53) using seven cosine terms is
shown in Figure 4.5(c). The sharp corners between successive half-cycles are
slightly rounded, in this approximation.

4.4 Discrete Fourier Transforms

441 General Discrete Waveform

In Section 4.4, we see how we can use the rules-and-pairs technique to un-
derstand the spectra of discrete time waveforms, leading in particular to the
DFT and realized in practice in the FFT. The waveforms are finite data sets
of values taken at specific instants—discrete points in time—and may be
samples from a known function or may be a set of experimental values, for
which the underlying, or implicit, function is not known.

As usual, we need first to express the data as a function of time. As this
function has nonzero values only at discrete points in the time domain, it is
represented by O-functions at these points. (Thus, the function is in fact a
generalized function, as discussed in Section 1.4 in Chapter 1.) Initially we
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take the most general case where we have /V data values s, taken at /V instants
t,, and we write the waveform function as

N
()= 5,60t — 1) (4.54)

n=1

The spectrum is given (from P1b, R6a) by

N
S(f)="Y snexp(=27ift,) (4.55)
n=1

Given the data set {(s,,2,): 7 =1 to N}, we can evaluate (4.55) for any
frequency. If the times #, are irregular (in particular, if the intervals are not
rationally related), then there is no definite structure to S, which is an infinite
spectrum (i.e., there are no frequency values, positive or negative, beyond
which the spectrum is zero). In general any finite waveform has an infinite
spectrum, as shown in Appendix 4A. Furthermore, the spectrum does not
die away as f— *oo, but maintains the same general level, averaged over a
sufficient interval. Figures 4.6(a) and (b) show an example of a finite discrete
waveform and its spectrum. (The modulus of the complex spectrum is plot-
ted.) We note that the waveform, consisting of d-functions, has infinite en-
ergy and so also has the spectrum. However, the infinite spectrum would only
be needed to reconstitute the waveform s perfectly. If we limited the spectrum
to the frequency range —F/2 to F/2, we see, by taking S”(f) = S(f)rect f/F ,
that this gives the waveform s’(¢) = s(#) ® Fsinct/T" (putting 7'= 1/F), shown
in Figure 4.6(c). The o-functions are replaced by sinc functions, which could
be an acceptable approximation if these were narrow enough (i.e., if 7, which
defines their width, were small compared with the separation of the closest
samples). In this example, F is 15 times the reciprocal of the mean separa-
tion, which is one time unit, so 7is one fifteenth the mean separation of the
samples. If the samples were uniformly spaced this would give a spectrum
repeating at intervals of one frequency unit. Clearly, the approximation will
become better as the amount of spectral energy within the gate increases. In
this case, both the spectrum and the waveform have finite energy. If we took
a triangular spectral window, with a sinc? transform, the sidelobe levels would
be lower. This can be seen by running the program Fig406. We note that the
power spectrum (or the modulus of the amplitude, as plotted here) will be
essentially the same wherever the gate is placed; the effect of shifting the gate
from the frequency origin is to apply a progressive phase factor (by R6b),
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0 | | l
-1 0 1 2 JB 4 5 6 7 8
Time
(a)
ol 1 1 1 1 1 ]
0 1 2 3 4 5 6
Frequency
(b)

(c)

Figure 46 Spectrum and waveforms of general finite discrete time series. (a) Finite ir-
regular time series, (b) infinite spectrum, and (c) waveform of gated spectrum.

which will have no substantial effect on the peaks, though the sidelobe details
will change with the sidelobe patterns from the peaks interfering differently.

Another example of a transform of a discrete function of this kind is
given in Chapter 8, applied to the case of an irregular linear array of antennas.
The samples, in this case taken in space rather than in time, are of a finite, or
gated, sinc function, giving a (nearly) rectangular response in the transform
domain, near the origin (Figure 8.10(a)). However we see that the response
is not strictly periodic, because of the irregular spacing of the samples, which
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are roughly regularly spaced in this example (i.e., the elements are slightly dis-
placed randomly form regular positions), with “repetitions” becoming more
degraded on moving further away from the origin.

4.42 Transform of Regular Time Series

In this case we take the data to be from N samples spaced in time at equal
intervals 7, so, taking the time relative to the first sample, the waveform is
given by

N-1
()= 5.68(¢ —n7) (4.56)
n=0
The spectrum is given by
N-1
S(f)= Z sn exp(—27inf'T) (4.57)
n=0

We see that the exponentials in (4.57) are unchanged on replacing f by
[+ ¢, where ¢ = 1/7, so that S(f) = S(f+ ¢) (i.e., S is periodic in the frequency
domain) at intervals ¢. It follows, from the orthogonality of the complex exponen-

tial functions over one period, (i.e., L exp2rinf| ) exp(—2nimf | 9)df = S m,
0

where 8,,,is the Kronecker-0), that
5=~ S(PrexpminfoIdf (4.58)
¢lo

where / is an interval of length ¢, the repetition period. By comparing (4.57)
and (4.58) with the Fourier series expressions (using complex exponentials) in
(4.1) through (4.3), we see that these equations represent what may be called
an inverse Fourier series (finite, in this case). In the case of the Fourier series
(4.1), we expand a periodic waveform as a series of complex exponentials, the
spectrum being a set of 6-functions whose strengths are the coefficients of the
series (which may be finite or infinite). In the case of the discrete time series,
we find that this series gives the coefficients of the expansion of the periodic
spectrum as a series of complex (negative) exponentials. In the first case, the
exponentials are functions of time, and in the second case (equation (4.57))
they are functions of frequency. These two cases are illustrated diagrammati-
cally in Figure 4.7.
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Figure 4.7 (a) Fourier series and (b) “inverse” Fourier series (transform of discrete
waveform).

If we were given a periodic spectrum S (one cycle being sufficient to
define it) and wanted to find out what time series this spectrum represented,
our procedure would depend on how S is presented. If it has the form of a
repeated known function, expressible in terms of functions in the table of
Fourier transform pairs, then we could use the rules-and-pairs method as
in Section 4.2 (using the inverse transform). If it were given only as a set of
values, then one approach would be to carry out the integral in (4.58) nu-
merically, over any interval of one period 7, However, a more satisfactory
alternative is given in the next section.

443 Transform of Sampled Periodic Spectrum

In the last section the question arose of how to define a continuous spectrum,
such as § in (4.58), which is not described by a known function. The only
obvious solution is to specify it by a set of values taken across the spectrum,
and most suitably by equally spaced samples. This gives an approximation
but could, in principle, be made as accurate as required by sampling finely
enough. If we choose the spectral sampling interval F so that there is an in-
tegral number /V of these intervals in one spectral period ¢, then the samples
will occur at the same relative points in each period, as illustrated in Figure
4.8. (See Appendix 4B. It is also shown there that, with this condition, rep
and comb are commutative.) In this case, we only need these NV values to
represent the spectrum in sampled form.
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Figure 48 Discrete waveforms and spectra.

Let §”be the sampled form of S, then we have
S’(f)=combr S(f) (4.59)
with inverse transform
s'(£) =T repr s(¢) (4.60)

where 7'= 1/F. We see that the regularly sampled form of § is actually the
spectrum of a repeated form of the regular time series s, Figure 4.8(c). We
also see that the original finite series waveform s(z) is obtained correctly as one
period of §'(#)/T.

Putting ¢ = NF, with /V an integer, we also find, taking reciprocals, that
7= TIN, so that there are /V time sample intervals in the repetition period 7.
Then, expanding the comb function, (4.59) gives

S(F)="Y, SnF)S(f —mF)= Y Su8(f —mF)

m=—oc0 m=—0c0

where §,, = S(mF) are the strengths of the é-functions in the comb (or sam-

pled) form of S. From (4.57) we have

N-1
S,y =8S(mF) = z sp exp(=2minmFT)
n=0
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Using Ft= FT/N = 1/N we have

N-1
S, = Z sy exp(=2mwinm/N) (m=0to N —1) (4.61)
n=0

As remarked earlier, we only need the /Vvalues of §,, within one period
of S, as these will be the same in other periods. (We see from (4.61) that
S, s av=S3,, for all integers k, using exp(27ikn) = 1, with & and » integer.) In
principle we could take any /V successive values of 7 to define a period of S,
but it seems most satisfactory to begin at zero frequency, with 7 = 0.

The inverse transform is given by

N-1
> Sy exp(2mimnIN) (4.62)

m=0

1
N

Sp =

This can be shown by a similar approach or quite easily by the matrix repre-
sentation of Section 4.4.6 in (4.67).

Two comments may be made on (4.61) and (4.62). First, if we prefer to
number the time and frequency samples as 1 to IV, rather than 0 to N — 1, but
make the first sample correspond to the zero time or zero frequency sample, re-
spectively, then the 727 product in the exponentials is replaced by (72— 1)(n — 1).
Second, if the number of time samples 7, in the given data set is less than 2V, the
desired number of samples in one spectral period, then we add NV — 7, zero values
to make up the number. This is not an arbitrary choice but follows from the
inverse transform. If the continuous spectrum of the single discrete waveform
s(#), of length 7, samples, is sampled at rate #= @/N, the inverse transform of
this sampled spectrum gives a repeated waveform, with repetitions at intervals
of N samples, and hence there must be V- 7, zero values in between.

The derivation of (4.62), other than from the matrix form of the trans-
form and its inverse, is similar to that of (4.61) but a little more complex. We
provide it here for interest. As the sampled form S’ of the spectrum S is also
periodic, we can put, from (4.58),

’ 1 ’ .
Sy = EJ.]‘P S'(f)exp2minf T)df

where /; is a frequency interval of length ¢. We now substitute for §” us-
ing (4.59), putting S,, for S(mF), taking the interval to include m = 0
to m = N — 1, and, using the &-function property given in (2.10),
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Iexp(2n’imf 71)0(f —nF)df = exp(2mimnFt) (where the range of integra-
tion includes the &-function, as here) to obtain

1 N-1
Sp=— Z S exp(LrimnFT)

m=0

Then, from (4.60), we have, using ¢7'= NFT'= N and Ft= FIIN = 1/N

again,

1 N-1 1 N-1
sp=splT = ¢7 2 Sm exprimnFT) = I 2 Sm expmimn/N)

m=0 m=0

and this is (4.62).

4.4.4 Fast Fourier Transform

At first sight it appears in (4.61) that many coefficients (approaching N?/2)
are required to give all the S, from the data values s,. In fact, as exp27i = 1,
we could take integer multiples of NV from the product 77 and replace mn by
mn mod N. This leaves only NV distinct values for the coefficients. However,
there are still N2 products of data samples with coefficients in (4.61), which
may be very large for a DFT of large order (given by V). Fast DFT algorithms
(FFTs) take advantage of any available factorization of N to order the mul-
tiplications efficiently to reduce the number required. (In the limit, when V
is a power of 2 only, say 2%, this is reduced to V&, a reduction by a factor of
over 100 when £ is 10.)

The MATLAB function ff# for the transform of order /V gives the values
of S,,, for m from 0 to IV — 1, which shows a whole period beginning at zero
frequency (the constant, or DC component). However, if it is preferred to
show the spectrum centered near zero frequency, the program ffshift shifts
the solution given by ff by half a period of the periodic spectrum to give a
solution equivalent to a single period centered on zero frequency. Thus the
first half is moved forward half a period and the second half moved back, to
give the solution centered on zero. This is illustrated in Figure 4.9. When
N is even (Figure 4.9(a)) the values of 72 =0 to N/2 — 1 are moved ahead of
the values /V/2 to N — 1. These last values, because of the periodicity of the
spectrum (over V frequency intervals) are the same as the values from — N/2
to — 1, so we now have values for one period from — NV/2 to N/2 -1, as il-
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Figure 4.9 Use of fftshiftto center spectrum near zero. (A) N even, and (b) N odd.

lustrated. When V is odd (Figure 4.9(b)) the first element is for the 7 value
(N + 1)/2, which is equivalent, on subtracting N, to — (N —1)/2.

445 Examples lllustrating the FFT and DFT

To illustrate these ideas and expressions, in this section we take the case of
a symmetric triangular pulse with a low-order DFT. The pulse is shown, as
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the real time series [0 12321 0 0 0], in Figure 4.10(a), with its spectrum in
Figure 4.10 (b). The FFT order is 9, and this is the length of the vectors of
the time series and the spectral coefficients. First we note that the spectrum
has the symmetric real part and antisymmetric imaginary part given by a real

waveform. Also, from (4.61), the FFT gives Sp = ZN !

s,, which is seen to

be 9 in this case.
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Figure 410 Triangular pulse and spectrum (FFT order 9).
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If we take the triangular pulse to be centered at time zero, then it would
extend from 7 = -3 to +3, as shown in part (c), but the FFT requires one
period starting at zero, so the time series is [32 100 0 0 1 2], as shown in
(e). This shows half the pulse centered at zero and half the next repetition of
the pulse, centered at time sample 9. This real symmetric waveform gives a
real symmetric spectrum, as expected from R2 and R3. If #(#) = u(—7) then
U(f) = Uf), and if u(#) = u*(—2) then U(f) = U f). The time and fre-
quency sequences plotted in (c) and (d) are given from those of (e) and (f)
by the ffishift function or the #fféshift function (so for (c) itis (0123210
0 0]).

We could obtain the waveform in (e) from that in (a) by shifting back
three time samples, given by convolving the waveform with &(# + 37). From
P1b and R6a, this multiplies the spectrum by exp(67ifT). Putting f'= mF,
and mFT = m/N = ml/9, in this case, we find that if we multiply the spectrum
samples in (b) by exp2mmi/3(m = 0 to 8), we correctly obtain the spectrum
values shown in (f).

In Figure 4.10(d) and (f), we show the transform of the triangular pulse
shown in () or (e) (not in repeated form and not sampled) as the continuous
curve. As the pulse is given by 3tri(#/37), its spectrum is 97sinc*(3/7) (from
P4, R5), and this is what is plotted as the continuous curve. (The first zero
of the sinc function is at f= 1/37= ¢/3 = NF/3=3F,as N=9 (i.e., at m = 3,
as seen in the figure). Figure 4.10(d) shows that the FFT (dashed curve)
does not give exactly the spectrum of the waveform that has been sampled
(i.e., as the sampled waveform is an approximation, the spectrum is also an
approximation). The inaccuracy is seen mainly in the tails of the spectrum (in
the middle of (f) and at the sides of (d)) and is due to the overlapping of the
repeated forms of the spectrum of the single pulse.

The tails of the spectrum are not improved by increasing the order of
the FFT, as shown in Figure 4.11, where the order is 20. The waveform rep-
etition interval is now 20 samples, with the basic waveform unchanged but
with more zeros between repetitions, as shown in part (a). (We have chosen
a sampling interval of 1/2 ms in this case, as a specific example.) The benefit
of the higher order is only to increase the sampling density of the spectrum.
In order to improve the approximation of the tails of the FFT spectrum to
that of a single sampled pulse, we need to increase the pulse sampling rate.
This represents the pulse more accurately, and in Fourier transform terms
it increases the spectral repetition period. This is shown in Figure 4.11(b),
where the sampling time is now % ms, and the match up to the midpoint of
2 kHz is much better.
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Figure 411 Triangular pulse and spectrum (FFT order 20).

446 Matrix Representation of DFT

We can express the DFT in a vector-matrix representation, writing (4.61) in
the form

S=Ts (4.63)
where s=[s0 si ... sy_1]' is an N-vector containing the input data
and S=[Sy S ... Sy_1]T contains the output data, the DFT spec-

trum sample values. (The raised suffix T  indicates transposition.) The N x NV
matrix T represents the transform operation, and has components given,

from (4.61), by
tn = exp(=2mimnIN) (mn=0to N —1) (4.64)
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As noted in Section 4.4.3, if we prefer to label the components of s and S from
1 to N, then we put #,,, = exp(—27i(m —1)(n—1)/N) with m,n=1 to N.

Now we note that component 77 of the product THT (H indicating
complex conjugate transpose) is given by

N-1 N-1

(ThT),,, = z tom X top = z exp 27i
k=0 k=0

(m—n)k

(4.65)

If n = m we have (THT),,,, = NV, but if n # m we put o = exp 2mi(m—n)IN
and then

(T ) = 2 of

after summing the geometric series and noting that alV = exp2mi(m—n)=1,as
m — n is integral. Thus,

THT = NI (4.66)

where I is the VX /V identity matrix. As T is symmetric (¢, = #,,) we have
TH = T* (with * representing complex conjugate), so from (4.66) we have

NT-'=TH="T* and so the inverse DFT is given, from (4.63) by

=T !'S=T*S/N (4.67)
or, in the form given in (4.62),
N-1
NZS exp(2mimn/N) (n=0to N—1)
m=0

The conjugate relation between the coefficients in the forward and inverse
DFT parallels that of the Fourier transform definitions in (1.4) and (1.3).

From the vector-matrix representation, we can obtain directly the power
relation for repetitive, sampled waveforms. From (4.63) we have
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N1 N-1
Y IS, =t =TT Ts = Nsts = v Y s, (4.68)
n=0 m=0

This result, apparently asymmetric between time and frequency components,

can easily be confirmed for the MATLAB implementation. We also note

that, if ‘sm‘ is the power in a line defined by a é-function of strength s, (see
N-1

Section 4.2.2), then z ‘sm‘z represents the power in the waveform. Tak-

—-—
ing the power in the spectrum § to be the mean square value, this is given by

averaging over one period, I ‘S f )‘ df / 0. Equatmg the powers of the wave-

form and spectrum, and using (4 68), we have
or, as = NF,

N-1
[ S dr=F3 s
n=0

(where 1, is an interval of one period, as before). This is very similar to the
result in (4.12); under appropriate conditions, the integral of a continuous
function can be replaced by a sum of regular samples of the function multi-
plied by the sampling interval.

447 Efficient Convolution Using the FFT

We can perform the convolution of two finite energy waveforms numeri-
cally by sampling these waveforms at suitable resolution and carrying out the
procedure described in Section 2.2 (i.e., slide one waveform in time-reversed
form past the other, multiply the two waveforms point by point, and sum the
result. This is an approximation in the same way as numerical integration is
an approximation, but the error can be made as low as desired by fine enough
sampling. As a simple example, we take two waveforms with samples [1 3 2]
and [1 3 5 6 4 2]. These arrays give the nonzero samples; the waveforms are
implicitly infinite, with all the other samples having value zero. Taking the
smaller sequence as the sliding waveform, and reversing it to become [2 3 1],
we see that the first convolved value is given by 1 X 1 =1, the second by 3 x 1 +
1 X 3 =06, and so on, to give [1 6 16 27 32 26 14 4]. If there are 7, values in
the first sequence and 7, in the second, the length of the result of the convolu-
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tion is 7; + 7, — 1 and the total number of (nonzero) multiplications required
is 7;7,. (This is seen most easily by noting that each value in one sequence
multiplies each of the values in the other sequence at some point.) While
the computational load is trivial in this example, if we have two substantial
sequences, of length 10000, for example, the number of multiplications be-
comes 108, which is more significant.

To reduce the computational work required we use rule 7b, the fact that
the convolution of two waveforms, # and », has a spectrum that is the prod-
uct of the spectra of the waveforms. Thus, we transform the two waveforms,
using the efficient FFT, multiply their spectra, U and V, point by point, and
inverse transform the result UV to obtain the result #®v». However, we must
consider the orders of the FFT and its inverse (IFFT) required. First, the
waveforms used must be of the same length, so that the results of their FFT's
are the same length and can be multiplied together. Second, we note that the
length, 7,, = n; + n, — 1, of the convolved sequence w = #®uv is greater than
that of % or ». Thus, the spectrum of w must be of length at least 7;, to avoid
overlapping, or aliasing, as we know from Section 4.4.3 that the discrete
spectrum of length /V transforms to a waveform periodic over /N samples. In
the earlier example, where 7, = 3 and 7, = 6, we need transforms of length
at least 8, so we choose sequences s, =[13200000] ands,=[13564
2 0 0]. Using the following MATLAB statements, S1 = fft(s1); S2 = fft(s2);
S$12 = S1.*S2; s12 = ifft(S12), we obtain the result [1.0000 6.0000 16.0000
27.0000 32.0000 26.0000 14.0000 4.0000], agreeing with the previous re-
sult obtained directly. If we use FFT's of order 9, by adding another sample
of zero to each of 5; and s,, we have the same result, except for another zero
in the result sequence, and some added values of +0.00007, indicating the
existence of very small errors due to finite word lengths in the arithmetic.

In order to obtain maximum benefit from this approach, it is probably
best to arrange the FFT orders to be a power of 2. Thus, we expand the se-
quences (by adding samples of zero) from lengths 7, and 7, to length N =27,
where 7 is the lowest power of 2 such that N = (#; + 7, — 1). We now have
to carry out three transforms each of 7/N multiplications, plus a product of
the N-point spectra, requiring /V multiplications. Overall we have N(3m + 1)
multiplications, compared with 7,7,, performing the convolution directly. If
we had 7, = n, = 2! — that is, the lengths of the sequences for convolution
are equal, and a power of 2, then 7, + 7, = 2" = N, so the condition for NV is
satisfied, and the direct convolution requires 7,7, = 2°”* = N*/4 multiplica-
tions. Using the three Fourier transforms, the saving, in this aspect of the
computation, is by a factor of N/4(3m+1), or 2772/(3m+1). If we take input
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sequences of length 8192, so that 7 = 14, then this factor is over 95. For
sequences 8 times longer, with 7 = 17, the factor is 630.

If we carry out the same procedure using discrete transforms of the
same length as the given series (with one augmented with zeros, if necessary)
we obtain the circular (or periodic) convolution of the series. Thus if we take
5;=[132000]ands,=[135642], form S}, S, and then §;, and s,,,
we obtain the result [15.0000 10.0000 16.0000 27.0000 32.0000 26.0000].
This is what would be given if we shortened the full convolution given by the
8-point transform by taking the last two terms (14 and 4) and adding them
to the first two (1 and 6). This is because the 6-point sampling of the product
spectrum gives a waveform repetitive at six time intervals, so the result of
the linear convolution of the two series will overlap itself. This result is also
obtainable directly in the time domain, by convolving the series [1 3 2] with
a repetitive form of s, and taking one period of the result.

45 Summary

We have looked at three aspects of periodic waveforms in this chapter using
the rules-and-pairs technique. In Section 4.2, having noted that power, rather
than energy, is the appropriate measure for these waveforms, we derived ex-
pressions for the power of periodic waveforms corresponding to the energy
expression for finite energy waveforms given by Parseval’s Theorem. We also
obtained a corresponding result for a sampled finite energy waveform. The
result for sampled, periodic functions, as used for the FFT, is obtained after
finding the relation between the DFT spectrum to the input data.

Next we considered performing Fourier series analysis on periodic
waveforms using the rules-and-pairs method. In its basic form this is quite
straightforward, but it gives the function as a sum of complex exponential
functions, which may not be the most convenient form. Fourier series are
very often required for the case of real functions, expressing these as sums
of real functions, sines, and cosines, rather than complex exponentials. In
Section 4.3, we showed how to obtain the Fourier series coefficients of real
periodic functions for this case, without explicit integration, and illustrated
the method by analyzing square waves, sawtooth waveforms, triangular wave-
forms, and rectified sinewaves.

The third topic covered was that of the discrete Fourier transform, the
Fourier transform of discrete waveforms. In the general case the transform is
a continuous function, and in the case of a regularly sampled waveform it is
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periodic. If we require a sampled spectrum, this is seen to be the transform
of a periodic waveform, and this is the case for the FFT. The DFT theory
is given, using the rules and pairs, and the relation between the spectrum
sample values and the input data samples, is derived. Some results used in the
theory are justified in an appendix. The use of the rules and pairs, by keeping
attention on the waveforms, aided by figures for illustration, may help clarify
the ideas used.

Appendix 4A: Spectrum of Time-Limited Waveform

We define a time-limited waveform p(#) as one that has no energy outside
some finite time interval. Thus, for this waveform there is some 7 such that p
is zero outside the interval [-772,772]. For such a waveform, there is no over-
lapping when the waveform is repeated at intervals 7" (or greater). It would
be desirable if the spectrum were similarly limited (in frequency, in this case)
because if the spectrum P( f') is required but only rep,( f) is available, then
one period of rep,( ) contains P(f) precisely if there is no overlapping,
but not otherwise. Unfortunately a time-limited waveform does not have a
frequency-limited spectrum—there is no ¢ such that the spectrum has no en-
ergy outside [—¢/2, ¢/2]. We can show this by writing the waveform identity

p&)=rect(¢/T) p(2)

which transforms to the spectral identity
P(f)=Tsinc(fT)® P(f)= j:osinc (F=Fr)P(fHdf (4A.1)

From the right-hand side of this equation we see that spectral com-
ponent P(f”)df at frequency f” is spread over the whole frequency range,
contributing 2 f")dfsinc( f— f7) T to the total convolution integral. Although
the sinc function decreases in magnitude as f'— oo, there is no frequency
beyond which there is no energy, and, although there may be single points
at which the value of P is zero, there cannot be an interval over which P (on
the left of (4A.1)) is zero without P (on the right) being zero everywhere. We
conclude that a time-limited waveform has a frequency-unlimited spectrum
which, when repeated, will always have some degree of overlap (or aliasing).
However, as the spectrum always dies away at large enough frequency values
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(positive and negative) there will be frequencies ¢ such that there can be neg-
ligible energy outside +¢/2, and negligible overlap, for practical purposes.

Appendix 4B: Constraint on Repetition Period

Let the given time series, with sampling interval 7, be given by comb,p(#)
where p is the continuous function that has been sampled. (In the case of
experimental data, p is an unknown, implicit function.) Then we define
u as the waveform obtained by repeating this series at intervals 7, so that
u(t) = repr (coran p(t)). The waveform, where 7= (m + o)1, with m an
integer and 0 < & < 1, is illustrated in Figure 4B.1(a). We see that # is not
a regularly sampled form of rep,{p) in this case. The spectrum of u is given
by U(f)=F¢combr (rep¢ P(f)) (where F=1/T and ¢ = 1/7), illustrated
in Figure 4B.1(b). In this case we see that, though rep,P is periodic, U is not
periodic as the lines within the successive repetitions of P occur at differ-
ent points in the waveform. (Strictly speaking, if & were a rational fraction,
then U would be periodic, though not at intervals £.) We note, taking the
reciprocal of the relation between 7 and 7, that ¢ = (m + @)F. If we want
the spectrum to be really periodic, so that all intervals of length ¢ contain the
same set of 6 - functions, then we must have & = 0 (i.e., the period of the
spectrum must be an integer times the line spacing). Similarly, the period of

——— T =(m+at———>, plt—T)
; N — B S ..-~./
Regular sampling intervals
(a)
«— ¢ =(m+a)f ———>
y ‘ s _—Plf-g)
-1 ‘ l I Y S — l | I I i f

Regular sampling intervals
(b)

Figure 4B.1 Effect of nonintegral ratio of period to sample interval. (a) rep;(comby p(#) not
a comb function, and (b) comb,, (repF(p(f)) not a rep function.
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the waveform must be (the same) integer times the sampling interval so that
the samples in each repetition lie on a single comb sequence.

If the period of the rep operator is an integer multiple of the sampling
interval of the time series combp(#) then we obtain the same result whether
we repeat the sampled waveform or sample the repeated waveform. (This is
the case whether or not the repeated waveforms overlap.) Thus we have

repr (combz p(#)) = comb(repr p(z))

This is 7ot the case if 7/7 is not integral, as shown in Figure 4B.1(a). On
expanding the comb and rep functions, we see that the coefficient of 8(z — 47)
(the line at # = 47) on each side of the equation is given (within a constant)

by

oot p((k+m)T)+ p(kT) + p((k —m)T)+ p((k—2m)7)

+ ...,o0r ij_wp((k+nm)”€)

where 7= mT.

Thus, if (and only if) the rep operator repeats at an interval that is an
integer times the sampling interval of a comb function, then rep and comb
are commutative.






Sampling Theory

5.1 Introduction

In this chapter, we use the rules-and-pairs notation and technique to derive
several sampling theorem results, very concisely in some cases. In fact, the
wideband (or baseband) sampling theorem and the Hilbert sampling theorem
for narrowband (or RF and IF) waveforms are obtained here following the
derivations of Woodward [1]. Two other narrowband sampling techniques,
uniform sampling and quadrature sampling, have been analyzed by Brown [2],
but these results have been obtained here much more easily using Woodward’s
approach and have been extended to show what sampling rates are acceptable,
rather than just giving the minimum sampling rates presented by Brown.
Woodward’s technique is to express the spectrum U of the given wave-
form  in a repetitive form, then gate it to obtain the spectrum again. The
Fourier transform of the resulting identity shows that the waveform can be
expressed as a set of impulses of strength equal to samples of the waveform,
suitable interpolated. This is the converse of repeating a waveform to obtain a
line spectrum: if a waveform is repeated at intervals 7, a spectrum is obtained
consisting of lines (8-functions in the frequency domain) at intervals F=1/7,
with envelope U, the spectrum of #. Conversely if a spectrum U is repeated
at intervals F, we obtain a waveform of impulses (6-functions in the time do-
main) at intervals 7'= 1/F with envelope #, the (inverse) transform of U. The
problem in this case is to express the spectrum precisely as a gated repetitive

m
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form of itself. In general, this can only be done by specifying that U should
have no power outside a certain frequency interval, and that there should
be no overlapping when U is repeated. (In one case, quadrature sampling
overlapping is allowed, provided a condition is met, but this is for the case
of a strictly band-limited spectrum.) This finite bandwidth condition is not
a completely realizable one—it corresponds with an infinite waveform (see
Appendix 4A)—but can be interpreted as the condition that U should have
negligible power (rather than zo power) outside the given band. The values
that are considered negligible will depend on the system and are not analyzed
here. However, the approach used here can be used to determine, or at least
to estimate, the effect of spectral overlap, which is in fact aliasing.

Brown’s approach is to express the waveform # as an expansion in terms
of orthogonal time functions. In fact these orthogonal functions are just the
set of displaced interpolating functions of the Woodward approach, the in-
terpolating function being the Fourier transform of the spectral gating func-
tion. It is necessary to show that this set of functions, which varies with the
sampling technique used, is complete. This method is rather complicated
compared with Woodward’s, which can use the standard results for Fourier
series using sets of complex exponential, or trigonometrical, functions. Fur-
thermore, the Woodward approach seems generally easier to understand and
so to modify or apply to other possible sampling methods.

5.2 Basic Technique

First, we present the basic technique that is used in subsequent sections to
derive the sampling theory results. Because a regularly sampled waveform,
which is the ultimate target, has a repetitive spectrum, we repeat the spec-
trum U of the given waveform # at frequency intervals 7, then gate (or filter)
this spectrum to obtain U again. This identity is then Fourier transformed
to produce an identity between the waveform and an interpolated sampled
form of itself. Because this is an identity, it means that all the information in
the original waveform # is contained in the sampled form. (The definition of
the interpolating function is also needed if it is required to reconstitute the
analogue waveform #.) In symbols, we write

U(f)=(repr U(F))G(f) (5.1)

u(t) = (1/F)comby/r u(t) ® g(¢) (5.2)
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where G(f) is the spectral gating function and g(2) is its transform (i.e., the
impulse response of a filter with frequency response G).

The comb function consists of a set of impulse responses (O-functions)
at intervals 7'= 1/F of strength equal to the value of the function # at the
instant of the impulse:

combu() = Zu(nT)0(t — nT) (5.3)

The convolution of a function g with a -function simply transfers the origin
of g to the position of the é-function. Thus, equations (5.2) and (5.3) give,
with 7= 1/F,

u(t) = Tcomb;u()®g(2) = TZu(nT )6t — nT)® g(2)

=TZunT)g(t—nT) (5.4)

This makes clear the identity between # and its sampled form, when correctly
interpolated by the function g with the scaling factor 7.

In the following sections of this chapter, the starting point is equa-
tion (5.1), choosing the appropriate sampling frequency F and spectral gat-
ing function G, in the different cases. The basic problem is to express U in
terms of a gated repetitive form of itself, where the repetition frequency Fis
chosen so that no spectral overlapping occurs. We are primarily concerned
with determining F, which is the required sampling rate (to retain all the
information and reconstitute the signal if required), and are less concerned
with the gating function G. Nevertheless G must be accurately defined to es-
tablish the identity (5.1). The transform of G, the interpolating function g, is
obtained on transforming the waveform expressed in its gated form and could
be used to reconstitute the waveform from its sampled form, in principle, but
this is not usually required. In Sections 5.3 and 5.4 (wideband and uniform
sampling), we simply repeat the spectrum of #. In Section 5.5 (Hilbert sam-
pling), we also include the spectrum of %, the Hilbert transform of #, and, in
Section 5.6 (quadrature sampling), we include a quarter wave delayed form
of . The sampling techniques of Sections 5.4 and 5.6 are for narrowband
waveforms—signals on a carrier.

5.3 Wideband Sampling

By a wideband waveform #, we mean here a waveform containing energy
at all frequencies from zero up to some maximum W beyond which there
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Figure 5.1 Gated repeated waveform.

is no spectral energy. A real waveform has a complex spectrum U that is
conjugate symmetric about zero, so real waveforms of interest have spectra
within the interval [-W, W] (Figure 5.1). However, the analysis is not limited
to real waveforms. If the waveform is complex, we still take the spectrum to
have no energy outside this interval (i.e., Wis the largest positive or negative
frequency). If we repeat this spectrum at intervals 2W it will not overlap, as
there is no spectral energy outside this interval, so we can write the identity

U(f) = repoyU(f)rect(F12W) (5.5)

where we have equated the spectrum to a gated portion of the repeated form
of the spectrum itself (Figure 5.1) Taking the Fourier transform we obtain

u(?) = comb, , yu(2)®sinc2 Wr (5.6)

This is the particular form of (5.2) for this sampling case. This equation states
that # is equal to itself sampled at a rate of 2W (i.e., at intervals 1/2W') and
correctly interpolated; the interpolating function in this case is sinc2 W#. The
equivalent form of (5.4) is

w(t) = Zu(nT)sinc(t — nT) (5.7)

and the equivalence of the waveform to its interpolated sampled form is il-
lustrated in Figure 5.2.

It is clear (from Figure 5.1, for example) that if we repeat the spectrum
at intervals 2W’, where W’ > W, we still obtain the spectrum U on gating
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Figure 52 Sampled waveform with interpolating functions.

with either 2W or 2W”bandwidth. Thus, any sampling rate greater than 2W
is also adequate.
Thus, we have the wideband sampling theorem:

If a real waveform has no spectral energy above a maximum frequency
W, then all the information in the waveform is retained by sampling it
at a rate 2W (or higher).

In principle, reconstituting the waveform in this case is achieved by
driving a rectangular bandwidth low pass filter with impulses of strength
proportional to the sample values and at the sample times. In practice, an
approximation to # could be formed easily as a boxcar waveform from the
sample values (simply holding the value #(n7) constant over the interval
[(nT,(n+ 1) T). Smoothing this with a low pass filter would give a better ap-
proximation to #.

One reason for specifying real waveforms in the statement of the theo-
rem is that complex waveforms do not have symmetric spectra and may have
different maximum values of positive and negative frequencies. We could
omit “real” and replace W by |W]| if required. However, of particular interest
is the case of the one-sided spectrum of positive frequencies only. This is the
Hilbert sampling case, discussed in Section 4.5.
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5.4 Uniform Sampling

5.4.1 Minimum Sampling Rate

We define a real narrowband (or IF) waveform as one that has negligible
power outside a frequency band W centered on a carrier frequency f, where
Wi2 < f;. The complex spectrum of a real IF waveform consists of two bands
centered at ;. We label these U, and U_ for convenience, as shown in Figure
5.3. For such a waveform, we find that it is not necessary to sample at twice
the maximum frequency (i.e., at 2f; + W here) as in the case of a wideband
waveform, but at approximately twice the bandwidth.

We initially restrict W so that the upper edge of the signal band £, is
an integer muldple of W (i.e., f, = fo + W/2 = kW for k integral). The lower
edge of the band is then at (# — 1) W. The spectrum can now be repeated at
intervals 2Wwithout overlap as 2f) = (2k— 1) W, so a displacement of 24W or
2(k— 1) W moves the spectral band U, centered at —f;, adjacent to the band
U, at f; without overlapping it (Figure 5.4). Thus we can write

U(f)=repaw U(f ){rect((f‘;ﬁ))) + rect(“;’/%))} (5.8)

again representing U as a gated repeated form of itself. The transform of this
equation is

u(t) = ﬁ comby/ow #(t) ® W sinc Wt (eszot + e_ZE%t) (5.9)

Thus, # is equal to itself sampled at a rate 2W and interpolated by the func-
tion sinc Wrcos(27ft), which is the impulse response of an ideal rectangular
bandpass filter of bandwidth W centered at frequency f;.

We now remove the condition relating f; and W. We note that a spec-

trum within a band (f;, — W, ;) is also within the band (f, = W7, f,) it W'> W.

+—W—>
o | N
\/_Ifo e 0 ~ ;0 g

Figure 5.3 Narrowband spectrum.
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Figure 54 Allowed spectral shifts.

Thus, if Wdoes not satisfy the condition f, = #W (k integral), we choose the
smallest W”> W that does satisfy it. More specifically, if f, = (¢ + o) W, where
0 < o< 1, we choose W’ so that f, = #W”, and we can write # = [f,/ W], where
[x] means the largest integer contained in x. Then repeating the spectrum at
intervals 2W” again produces a nonoverlapping spectrum (Figure 5.5), but
this time with some gaps (of size 2(W’— W)) due to the difference between
W and W.

It is clear that to regain U from the repeated form of the spectrum
shown in Figure 5.5 it is only necessary to gate with the same gating func-
tion as before (given in (5.8)—gates of width W centered at +f; and —f;)
leading to the same interpolating function, sincWrcos(27fyt). Brown [2] in
effect uses the more complicated interpolating function sinc(2 W) cos27f; 2,
where f;"= f; — (W= W)/2. This corresponds to using the gating function
rect((f—£,")/ W), which will also gate out U as required (Figure 5.6) but is

more complicated than necessary.

5.4.2 General Sampling Rate

The minimum sampling rate 2f,/k, found in the previous section, is such that
the band U_ shifted by 24£W”is just above U, when the repetitive spectrum is
formed (Figure 5.5). If W”is increased above this value, this band will move
up in frequency, and so will the band U_, shifted by 2(# — 1) W, which will

oo 2w’ .,
W=tk P e
v lu |ilulu v [ u |
fooaw’ \ f, —fe2auw  feaw /)
—f+ 2k—1)W’ —fo+ 2(k+ )W’

Figure 5.5 rep,, Ulf) near +f.
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Figure 5.6 Selecting U(f).

eventually start to overlap U,. This will define a (local) maximum allowed
sampling rate, and this occurs when 2(£ — 1) W= 2f;, where f;is the frequency
at the lower edge of the signal band (Figure 5.7). Thus, the allowed sampling
rate 2W” ranges from a minimum value 2£;/4 to a maximum 2f/(k — 1). As &
is defined here by f, = (k+ @) W, we also have f; = f, - W= (k- 1 + ) W, and

we see that the range of allowed sampling rates 2W”is given by
26 lk=2(k+ O)Wlk<2W <2(k— 1+ ) WI(k—1)=2f/(k—1) (5.10)

It is convenient to define a relative sampling rate 7 as the actual rate divided
by the minimum value possible (to retain all the signal data) 2W, so that the
allowed relative rate 2 W72 W becomes

(B+o)k<r<(b—1+a)/(k-1) (5.11)
or
1+oalk<r<1+4+ol(k-1) (5.12)

If the sampling rate is increased above the “maximum” 2/f/(k — 1), we
see from Figure 5.7 that U_ will overlap U, until the rate rises to 2f,/(k — 1)
when we reach a new local minimum value for the allowed sampling rate.
The rate can now be increased to a new local maximum 2f/(k —2) before

+2kW’

I
e |
[u] | fulu] Tutul

—T 0 f-w f fyt2W”

Figure 5.7 Maximum sampling rate.



Sampling Theory 119

overlap starts again. In general, we see that allowed relative sampling rates
are given by

(k+a)n<r<(k=1+)/(n—=1) (n=k k-1,...,1) (5.13)

In the 7 =1 case, we only have a minimum rate; the maximum rate in this
case is unbounded. Putting 7 = £ gives the absolute minimum rate, 1 + o/k.
The allowed relative sampling rates are given in the shaded regions of Figure
5.8 as a (multivalued) function of the center frequency normalized to the
bandwidth. (We note fy =7, — W/2 = (k+ ot— V2) W, so its minimum normal-
ized value is V2, when #=1 and ¢ =0.)

We note from Figure 5.8 that the lowest range of allowed rates becomes
very narrow at high values of fi/W. This indicates that the sampling rate
should be carefully chosen in this case, and perhaps should be synchronized
to some frequency in the signal band. The minimum rate is in fact defined by
/.» but there is no actual signal power here (from the definition of W) so it
would be more convenient to use f;. The allowed band of relative rates, from
(5.12),isbetween 1+ o/kand 1+ o/ (£ —1),so 1 + o/ (£ —%2) would be near the
mean of these. The actual rate, with this choice, is thus 2W{k + o —V5)/(k — V) =
2fy/(k —Y2). This rate is indicated by the dashed lines and is very close to the
minimum rate for higher values of /W (e.g., above 3V2).

Relative sampling rate

Figure 5.8 Relative sampling rates (uniform sampling).
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We note that if fyW =12 we have effectively a wideband waveform of
positive frequency bandwidth W (see Figure 5.3), and with positive frequen-
cies extending from 0 to W. The minimum uniform sampling rate in this
case is 2W (see Figure 5.8), which agrees with the result in Section 5.3 for a
wideband waveform. We also note that the minimum rate is substantially dif-
ferent from 2W (when = 1) only for large fractional bandwidths (W/f; large
and so f/ W small). For small fractional bandwidths of, for example, a few
percent, which is often the case for radio and radar signals, whether at high
frequency (HF), very high frequency (VHF), ultra-high frequency (UHF), or
microwave frequency, the correct rate will be very close to 2W, and setting it
actually at 2 W will generally give negligible degradation.

Finally, we state a simplified form of the uniform sampling theorem for
narrowband waveforms, which is not as neatly defined as for the wideband
case:

If a real waveform has no spectral energy outside a frequency band of
width W centered on a carrier of frequency f, then all the information
in the waveform is retained by sampling it at a rate 27W; where 7 is given
in (5.13). (kand o in (5.13) are given by £+ o = fo/ W+ Y%, £ integral
and 0 < < 1; ks the largest integer in fi/ W+ 15).

We note that for small fractional bandwidths, we can sample at rate
2fo/(k —Y52), synchronizing to the center frequency, and this is very close to
optimum.

5.5 Hilbert Sampling

Given a real waveform #, the complex waveform » = % + 77 has a spectrum
consisting of positive frequency components only, where # is the Hilbert
transform of %, defined in Appendix 5A. (In effect, the Hilbert transform ap-
plies a wideband 90° phase shift, as shown in this appendix.) For narrowband
waveforms, a 3-dB coupled line directional coupler is a very good approxima-
tion to a Hilbert transformer, which generates % from ». The two outputs of
such a coupler are a Hilbert transform pair and may be considered to form
a complex waveform, if the rules for complex arithmetic are observed when
processing this two-channel waveform.

If Wis the width of the bands, centered on —f; and f;, outside which
U has negligible power, then we can see that V'is within a band of width W,
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centered on +f; only, and so can be repeated at intervals W without overlap-
ping (Figure 5.9).

Thus, we can write the identity
V(f)=repw (V(f))rect((f = fo)/W) (5.14)

Performing the inverse Fourier transform using P3b, R8a, R6b, and R5, we
obtain

u() = (1/W)comby yw v() ® (W sinc Wr exp 2mifor) (5.15)
Now # is the real part of , so taking the real part of both sides we obtain

u(r) = comby w u(#) ® (sinc Wr cos 27 for)

(5.16)
— comby jy #(#) ® (sinc Wesin 27 for)

We see that # is equal to a combination of samples of # and % ap-
propriately interpolated, the samples being taken at intervals 1/W (i.e., at
a rate W). We also note that by taking the imaginary part of » from (5.15)
we obrtain the sampled form of 7. If we repeat the spectrum at intervals W’>
W, corresponding to sampling at the rate W, we still have a nonoverlapping
spectrum. This could be gated with a rectangular window of any width from
W to W to obtain V again. Thus, we obtain the Hilbert sampling theorem,
which is more simply stated than the uniform sampling theorem, for the
same type of waveform:

If a real waveform # has no spectral energy outside a frequency band of
width W centered on a carrier of frequency fj, then all the information
in the waveform is retained by sampling it and its Hilbert transform 7
at a rate W (or higher). (The complex samples, with real and imaginary
parts the samples of # and 4, respectively, are of the analytic waveform
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corresponding to #. This has a spectrum of positive frequencies only, the
positive side of the spectrum of #.)

We note that the sampling rate is independent of f;, unlike the case for
uniform sampling or quadrature sampling (an approximation to Hilbert sam-
pling, described in Section 5.6). As pointed out by Woodward, a real waveform
of duration 7 and bandwidth W requires (as a minimum) 2W7 real values
to specify it completely. Either we take real samples at a rate 2W (as given by
wideband sampling, or as the minimum rate for uniform or quadrature sam-
pling) or complex samples at the rate W (each containing two real values, in
the real and imaginary parts) in the case of Hilbert sampling. The waveform
can be said to require 2W7 degrees of freedom for its specification.

5.6 Quadrature Sampling

5.6.1 Basic Analysis

If it is not convenient or practical to use a quadrature coupler, or any other
method, to produce the Hilbert transform of a narrowband waveform, an
approximation to the transformed waveform can be obtained by delaying
the signal by a quarter cycle of its carrier frequency. This follows from the
fact that the Hilbert transform is equivalent to a delay of 71/2 radians (for all
frequency components, as shown in Appendix 5.1) so the quarter cycle delay
will be correct at the center frequency and nearly so for frequencies close to it.
The smaller the fractional bandwidth, the better this approximation becomes.
As this is an approximation to the Hilbert transform, it follows that sampling
at the rate W (the Hilbert sampling rate) will not, in general, sample the
waveform adequately to retain all the information contained in it. However,
we will see that the method will in fact sample correctly, by compensating for
the phase variation, but at the cost, compared with Hilbert sampling, of re-
quiring an increased sampling rate, which depends on the ratio of bandwidth
to center frequency (similarly to the case of uniform sampling).

If u(2) is the basic waveform, with spectrum U(f), then a delayed ver-
sion #(z — 7) has spectrum U(f)exp(—27if7). If we repeat the spectrum of  at
intervals W, corresponding to sampling at the rate W, we will obtain an over-
lapping spectrum which, when gated, is not equal to U in general. However,
a suitable combination of the repeated spectra of # and its delayed version will
give U after gating. We start by imposing the condition 2 = #W, where £ is
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Figure 5.10 Basic quadrature sampling.

an integer, so that there is complete overlap of the two parts of the spectrum
of u and also of the two parts of the spectrum of its delayed version, when
repeated (Figure 5.10).

The appropriate identity for U'is

U(f) =YValrepyU( f) + expRrift)repy [U( f)exp(—2mif 7)1}
x{rect( f— fo)/W + rect( f+ fo)/ W} (5.17)

if Tis correctly chosen. (We note that if the delay is % cycle at the center fre-
quency, T= 1/4f;, then U( f)exp(—=2mify7) is the 90° shifted, or Hilbert trans-
form, component.) To check the identity in (5.17), we consider the output
of the positive frequency spectral gate—for frequencies in the range f;— W72 <
f<fo+ W/2. In this interval we have, as there is overlap of the negative fre-
quency part of the spectrum, moved up by 2f;, or 2£W, for some integer 4,

WIU(F) + U(f = 2fy) + expQrif ©)[U( f )exp(=2mif T) + U( f=2f;)
Xexp(=27i( f=2/) )]} = U(f) + LU(f = 2f){1 + exp(4rify7)}
(fo— W2 <f<fo+W2) (5.18)

This is simply U( f'), as required, if we choose 7 such that 4/,7=1, or,
more generally, if 4/,7=2m + 1, where m is an integer. The same condition
results if we consider the output of the negative frequency gate—we simply
replace f; by —f; throughout. Thus, the required delay is seen to be an odd
number of quarter wavelengths of the carrier, or center frequency, f; (i.e., one
quarter cycle in the simplest case). Taking the (inverse) Fourier transform of
the identity for U( f') in (5.17) we have

1(?) = Va{(1/ W)combs, (@) + & + DO(1/ W )comb, it — }®2 W(2)

= comby;yu()®P(¢) + combyyyu(t — )@P(z + 1) (5.19)
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where @ is the interpolating function. This is obtained from the (inverse)
Fourier transform of the spectral gating function @, defined by

QWD £) = rect[( f — )/ W] + rect[( f + )/ W] (5.20)

Thus,

2We(z) = Wsinc(Wr) [exp(2mifyr) + exp(—2ify1)]
or
@(2) = sinc(Wr)cos(27fy2) (5.21)

This interpolating function also appears in the uniform sampling case
(see (5.9)) and the Hilbert sampling case (see (5.16)). Equation (5.19) states
that the real waveform # is equal to the sum of the waveform obtained by
sampling # at intervals 1/W (i.e., at rate W) and interpolating with the func-
tion ¢ and the waveform obtained by sampling a quarter-wave delayed ver-
sion of # and interpolating with a quarter-wave advanced version of ¢.

To remove the condition relating W and fj, we choose W' = W such
that 2f) = #W”, where £ = [2f;/ W], the largest integer in 2/5/W. We then re-
peat the spectrum at intervals W, which corresponds to sampling at the rate
W, but we can keep the same spectral gating function and hence the same
interpolating function. The minimum required sampling rate, relative to the
minimum possible rate, equal to the bandwidth W, is r= W/ W= 1+ a/k if
2fo/ W=k + o.. This minimum rate is plotted in Figure 5.11, and this is the
rate given by Brown [2].

If Wis increased to higher values such that 2y = nW” for 7 integral,
n < k, we again obtain sampling rates which will retain the waveform infor-
mation. These are shown by the dashed lines in Figure 5.11. The required
sampling frequency could be obtained in practice by synchronizing W’ to a
submultiple of 2fj (ideally the kth, for the minimum rate).

5.6.2 General Sampling Rate

Unlike the uniform sampling case, the required sampling rates determined so
far are precise (Figure 5.11) instead of within bands (as in Figure 5.8). This
is because the delay has been chosen to be a quarter cycle of f; (or an odd
number of quarter cycles). In fact, on replacing 2f; by #W”in (5.18), where
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Figure 5.11 Relative sampling rates (basic quadrature sampling).

kW is the frequency shift that takes U_, centered at —f;, onto U,, centered at
+/;, we see that the condition to be satisfied is 2W7T=2m + 1 (m an integer).
If we relate the delay 7 to the sampling rate W instead of directly to fj, then
we have more freedom of choice of W”. In Figure 5.12(a) we see part of the
function repyU_, the signal band at —f; repeated at intervals W, in the region
of +f; where 2f; is not an integer multiple of W. If we consider the part of
this spectrum that overlaps the band of width W, centered at +f;, we see that
there is a mixture of parts of U_ shifted by #Wand by (£ + 1) W. If the delay is
correct to make U_ disappear when shifted by #W, then it is not quite correct
when shifted by (£ + 1) W, and a small amount of spectral overlap occurs.

The minimum repetition rate to avoid this is shown in Figure 5.12(b),
where W’ (>W) is such that (£+ 1) W moves U_ just beyond the gated region
(between fjand f,). Because W’> W, gaps of width W~ Wnow occur between
the repeated versions of U_. The minimum required value of W”is given by
(k+ 1)W’ = 2f,. (In fact, other local minimum rates are given by W’ such
that (n + 1) W’ = 2f,, for » integral » < k.) We note, in Figure 5.12(b) that
part of the signal band occupied by U, (between f;and f;) has no overlap, in
which case there is no problem, and part has an overlap of U- shifted by £#W".
As stated earlier, putting #W” into (5.18) instead of 2f;, shows that the delay
must satisfy 2£W7 = 1. Thus, with the condition on W, we find that {44f,-/
(#+ 1) =1}7 (i.e., the delay should be (1 + 1/£) times a quarter cycle of the
upper edge of the signal band, f;, or an odd multiple of this).

If we increase the sampling rate further, we reach the condition shown

in Figure 5.12(c), where the band U_ shifted by (£— 1) W”has just reached the
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Figure 5.12  Shifted positions of U_. (a) 2f,= (k + )W (0 < a <1), (b) 2f, = (k + 1)W’, and
2f, = (k= 1)W".

lower edge of the gated band. This is when (£ — 1) W’ = 2f; (or, again, more
generally when (7 — 1) W= 2f] for n an integer and 7 < #). The delay required
is (1 — 1/k) times a quarter cycle of the lower edge of the signal band, f; (or
an odd multiple of this).

To summarize, the minimum and maximum relative sampling rates W’/
Ware given in general, (with < k) by 7,,= 2f/W(n+ 1) and r,= 2f; W(n—1),
where f,=f;+ W/2 and fj= f; — W/2; a central rate (very close to the mean
of these two) is .= 2fy/nW. However, although these rates are valid, we are
generally interested in keeping the sampling rate as low as conveniently possi-
ble, and this corresponds to taking the highest value of 7 (i.e., ). In fact n < 4
corresponds to the continuations of lines from lower £ values, as illustrated in
Figure 5.13. Thus, taking the case giving the lowest sampling rates, we have

2fu ’ 2ﬁ ’ 2,f6
<w’< L nqwr =200 22
p+1 pond k (5.22)

with corresponding delay values
k-1 < k+1 1

——<t<——and T=— 2
4f T 44, and T it (5.23)
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Figure 5.13 Lines of relative sampling rates.

The relative sampling rates, 7= W7/ W, are given, from (5.22) with 2=
(k+ 0) W, and putting 2f; + W= (k+ o + 1) Wtor 2f, and 2f,

1+ % <, <14 @ andrzl+% (5.24)

We note that if o = 0 (i.e., 2f/ W is integral), then » = 1, and quadra-
ture sampling is as good as Hilbert sampling in this case.

The allowed sampling rates relative to the bandwidth W are given in
the shaded areas in Figure 5.14. The maximum and minimum rates 7;; and
7,, define the boundaries, and the central value 7, is shown as dashed lines in
Figure 5.14. We note from Figure 5.14 that there are no unallowed sampling
rates above 2W. This is because when the interval between repetitions of U_
becomes 2W, it is not possible to have parts of more than one repetition of
U_ in the gating interval (see Figure 5.12(b) or (c) with W= 2W), so if the
delay is correctly chosen the U_ contribution in this interval can always be
removed. (By putting x = f/ W= (k£ + @)/2 and equating r,, at 4 and 7, at
k+ 1, with ot=2x — k, we find these lines meet at x = £ + %2 and the common
value of 7 is 2, as shown in Figure 5.14).

Because the required delay for the actual minimum sampling rate
((k+ 1)/44f,) is no longer exactly a quarter cycle (or an odd number of quar-
ter cycles) of the carrier, this sampling has been termed modified quadrature
sampling in the title of Figure 5.14. However, the general rates given in Figure
5.14 may not be very convenient in practice, as they require the delay to be
proportional to a quarter of a cycle of £;, which may not be as easy as choosing
it to be 1/4f;, as assumed in Figure 5.11. In fact the central rate 2f;/k (shown
by the dashed lines in Figure 5.14) does require this more convenient delay,
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Figure 5.14 Relative sampling rates (modified quadrature sampling).

and for low fractional bandwidths (higher fi/ Wvalues) we see that this is close
to the minimum rate.
Thus we can now state a quadrature sampling theorem:

If a real waveform # has no spectral energy outside a frequency band of
width W centered on a carrier of frequency f, then all the information
in the waveform is retained by sampling it, and a delayed version of it, is
at a rate given by »W, where 7 is given in (5.24), and the delay (which is
close to a quarter cycle of f(), is given in (5.23). Complex samples, where
the real parts are the samples of # and the imaginary parts are the samples
of the delayed form, correspond to samples of the analytic waveform
derived from #, equivalent to Hilbert sampling.

5.7 Low IF Analytic Signal Sampling

Assignal u(#), on a carrier at frequency f;, can be written () = a(¢) cos (271;f01 +

¢(t)) and, at least in principle, we can derive its Hilbert transform,
i(t) = a(t)sin (271'f0t + q)(t)) and hence the complex form u(z)+iu(z) = a(z)
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expi (27‘6 f()t+¢(t)). The information in this signal is contained in the am-
plitude and phase functions 4(#) and ¢(7), and what is required for digital
signal processing is a digital form of the analytic signal a(#)expi¢(z). This is
what is given by Hilbert sampling and quadrature sampling, discussed earlier, in
particular from the point of view of finding the minimum sampling rate needed
to preserve all the signal information. An alternative method of obtaining the
sampled analytic, or complex baseband, signal is given in this section. This is
simpler to implement in practice—not requiring the Hilbert transform or an
accurate quarter cycle delay, and sampling in only a single channel, rather than
in two—at the cost of requiring a higher sampling rate. At the minimum, this
single sampling device, or analogue to digital converter (ADC), operates at just
twice the rate of the two ADCs needed for the alternative methods.

The method requires bringing the signal carrier frequency down from
the normally relatively high radio frequency (RF) to a low intermediate fre-
quency (IF). To avoid the two parts of the spectrum overlapping, we see that
we must have fj = W/2. The samples we require are those corresponding to
the complex baseband waveform V( f), given by

V(f)=2U(f+ fo) (5.25)

which is the positive frequency part of the spectrum (the spectrum of the equiv-
alent complex waveform) centered at zero frequency (baseband) rather than
at the IF carrier, f;. We see that, given U, we can obtain V by first shifting U
by —;, then gating it with 2rect( f/W) (Figure 5.15). In order to obtain the
repetitive element in the spectrum, to give the é-functions in the time domain
corresponding to the sample values, we note that we can repeat this shifted U
spectrum, without overlapping, at intervals 7> 2f; + W, so that we have

V(f)=repr[2U(f + fo)]rectvj; (5.26)

Taking the (inverse) transform, using P3b, R8a, R6b, R5, and R7b we

have

f,> W/Z(W) - U - ¢2fﬂ+W|» F>2f,+ W

Lullu [o][u] [oelfu]lv][u]l[ue][u

~f, 0 f -2f; 0 -F -2 0 F-2f, F
ulf Ulf+1,) repU(f+ 1)

Figure 5.15 Low IF sampling spectra.
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v(t) = % comby [u(t) exp(—27tz'f0t)] ® sinc Wt (5.27)

Thus, the analytic, complex baseband waveform is given by sampling the real
IF waveform # multiplied by the complex exponential exp(—27if;r)—that is,
after mixing down to baseband using a complex local oscillator (LO) at the
signal’s center frequency, f;. (Again, in principle, to form this waveform we
interpolate the samples obtained at intervals 1/F, where the sampling rate F
is 2y + Wor higher, with sinc functions.) In fact, we do not have to provide
this LO waveform in continuous form, as we note that

combyz [u(t)exp(ZT[iﬁ)t)] = i u(nlF)exp(=2minfo/F)® 6(t — n/F)

(5.28)

and we see that we multiply the samples of # by the sampled form of the com-
plex exponential waveform. In the case where the IF carrier is fj = W/2 and the
sampling rate F is the minimum 2W, we see that F is just 4f; and the sampled
complex LO values are given by exp(—in/2) or (—)” (i.e., we just multiply the
real samples of # by 1, —, —1, and 7 in turn, a particularly simple form of down-
conversion). This gives a train of complex samples at rate 4f;, which are actually
either real with imaginary part zero or imaginary with real part zero.

If the IF is greater than W/2 (up to 3W/2) then we can repeat the
spectrum at the smaller interval of 2fj+ W, rather than 4f;, but in this
case the complex down-conversion factors are not so simple, being given
by exp (—m’n/ (1+w/2 fo)), leading to complex samples with both real and
imaginary parts nonzero, in general. If the carrier frequency is not too high,
then the 4f) sampling rate may be preferred for its simplicity, even when it is
not the very minimum rate.

If the IF is considerably higher than the bandwidth, then lower sam-
pling rates that avoid overlapping can be used, such as uniform sampling,
as discussed in Section 5.4, of which this method is an example. Using the
notation of Section 5.4, the lowest IF case corresponds to f, = Wand &= 1.
For higher IF values, we have f, = fj + W/2 = kW', where W is the lowest
value above (or equal to) Wsuch that £,/ W is an integer, 4. Then the mini-
mum required sampling rate is 2W’= (2fy+ W)/k, and the complex down-
conversion factors are exp(—27ifynT), where 7'= 1/2W’leading to the factors
exp (—n’i/m/ (1+W/2 fo)). Again this is an awkward form to apply, but if we
chose the slightly higher sampling rate of 2f)/(£ — V%), as suggested in Sec-
tion 5.4, then the down-conversion factors become simply exp(-7in(k — V2))
or =" for k odd and 7” for £ even. However, sampling with a finite window
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width on a high IF may require care, as discussed in the next section, and
keeping the IF low would generally be preferable.

5.8 High IF Sampling

If we sample at a relatively high IF, the time taken to obtain a sample of the
waveform may become significant compared with the period of the carrier.
We take for our model a device that integrates the waveform over a short
interval 7, the sample value recorded being the mean waveform value over
this interval, the integral divided by 7. We see that this value is the same as
would be given by a device that sampled instantaneously the waveform given
by sliding a (1/7)rect(#/7) function across the waveform and integrating (i.e.,
forming the convolution of the waveform with the rect function). Thus, if
u is the waveform, the samples actually correspond to the waveform v given

by

() = u(®(1/7)rect(t/7) (5.29)
The spectrum of this is

V(f) = U( f)sinc( f2) (5.30)

Figure 5.16(a) shows the spectrum of V' compared with that of U, shown
as a rectangular band (in the positive frequency region only). With a low car-
rier frequency fj, compared with 1/7 (i.e., with Ta small fraction of the period
of the carrier), in position “a,” there is relatively modest distortion across the
signal band. At a higher center frequency, position “b” (shown with a larger
bandwidth), the distortion is more serious. At position “c,” where the window
is one cycle of fj (fy7=1), the distortion is severe and totally unacceptable.
However in position “d,” where the sinc function is near a stationary value,
the distortion is very low. This is at ;7= 1.434, so the window 7 should be
about 1.4 cycles of the carrier for a low-distortion result.

Although this may be interesting, it is probably not very practical. This
is partly as the timing of 1.4 cycles may not in practice be accurate, moving
the response to a more distorted part of the spectrum, but also the accuracy
of the rect function may not be good, modifying the spectrum to a form that
may have considerable slope at this point.

If we explore what window for integration would be ideal, we note that
if we put w(#) for the window shape, instead of the rect function in (5.29),
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Figure 5.16 Spectrum of IF waveform sampled over a nontrivial interval. (a) Rectangular
window, and (b) sinc window.

the signal spectrum would be multiplied by its transform WA f), replacing the
sinc function in (5.30). Ideally, we would like this to be flat over the band U,
and this requires a rect function in the frequency domain and a sinc function
window in the time domain. If we choose w(z) = (1/7)sinc#/T then W( f) =
rect/T. This has value 1 out to 1/27, which must be greater than f; + Af/2,
where Afis the bandwidth, in order to cover the signal band, as shown in
Figure 5.16(b).

Thus, we require 7 < 1/(2f; + Af), or rather less than half a cycle of
the carrier. However the window, to give a reasonable approximation to the
sinc function, would have to be many times 7 in width or extend over several
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cycles of the carrier. This would be a good distortionless way of sampling, but
it is difficult to see how this could be implemented in practice.

5.9 Summary

In this chapter we have shown how the rules-and-pairs method can be used
to obtain some sampling results very neatly and concisely. The main aim
was to determine the minimum sampling rates that would retain the signal
information, but in some cases the method was used to find what other rates
would be acceptable (not necessarily all rates above the minimum). This was
first applied to sampling wideband signals, with significant spectral power
from some maximum W down to zero frequency. The information in a real
waveform is all retained by sampling it at the rate 2W (or any higher rate).
The second example, uniform sampling, applies to a narrowband signal, a
signal on a carrier with a spectrum limited to a band of frequencies around
the carrier. In this case, the rates acceptable are dependent on the ratio of
the bandwidth W to the center frequency, fj, being at least 2W and generally
higher. This form of sampling is an example of the case where some higher
sampling rates are not allowed if distortion is to be avoided.

A different approach is to convert the real waveform into the complex
waveform that has the given waveform as its real part. This requires deriving
the imaginary part from the real part by means of a Hilbert transform. In
principle this is applicable to both wideband and narrowband waveforms,
though it is more likely to be applied to the latter in practice (after down-
conversion to complex baseband). Given the complex waveform we find, very
quickly, that we only have to sample (in the two channels, real and imagi-
nary) at the rate W (or any higher rate) to obtain complex samples represent-
ing the waveform. It is this complex form that is normally required for digital
signal processing.

Hilbert sampling seems a very satisfactory approach, but it does de-
pend on the provision of a good Hilbert transform, which is equivalent to a
wideband (all frequency) phase shift of 90°. A close approximation to Hil-
bert sampling, for narrowband waveforms, is quadrature sampling, where the
Hilbert transform is replaced by a delay, essentially equal to a quarter of the
carrier period. This provides the 90° shift of the carrier and close to 90° for
frequencies close to the carrier. However, it is not exact—the signal envelope
is delayed in the imaginary channel, which is a form of distortion, but in
principle the waveform could be reconstituted by correct interpolation, with
compensation for this delay. Nevertheless the analysis shows that all the data
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in the signal can be retained by sampling at the correct rate and with the cor-
rect delay, but generally this rate is higher than for Hilbert sampling and, as
with uniform sampling, depends on the ratio of W to f;. Also, like the uni-
form sampling case, not all rates above the minimum are allowed.

The last method we consider is uniform sampling on a low IF, with
down-conversion effectively achieved with the sampling. This includes the
case of sampling at four times the carrier (IF) frequency and gives a par-
ticularly simple way of providing the complex baseband samples without the
need for a Hilbert transformer or a quarter wave delay, so it is an attractive
method to implement. The required sampling rate in a single channel is, at
the minimum, twice that needed in the two channels for the other methods.

Finally, we consider the effect of trying to sample on too high an IF.
If the sampling gate duration becomes a significant fraction of the carrier
period, then there will be some spectral distortion. This is very easily shown
using a simple model for the sampling analog-to-digital converter (ADC).
However, it is also shown that the spectral distortion can be made low by
careful choice of the ratio of the high IF period to the sampling gate width,
using a rectangular window or by using, perhaps impractically, a window of
near sinc function shape.
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Appendix 5A: The Hilbert Transform

A real waveform # has a spectrum U of positive and negative frequencies, with
all the information about it contained in one half of the spectrum. (We have
already seen, in Section 2.3, that the negative frequency components are just
the complex conjugate of those of the corresponding positive frequencies.)
We can define a complex function v = # + 7 that has a positive frequency
spectrum only, if we can form #, with spectrum U, such that ;U is equal to U
for positive frequencies and to —U for negative frequencies. Thus, given

() = u(t) + i), (5A.1)
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with spectrum

V(f) = Uf) +iUf), (5A.2)

if we choose

U for £>0
zU(f)—{_U(f) for £<0 (5A.3)
and U(0) = 0) the spectrum of v is given by
B 2U(f) for />0
Vif)= { 0 for <0 GA4)

and V(0) = U(0)). This is a spectrum of positive frequencies only, as required.
To find #, we note from (5A.4) that V( f) can be written as 2U( f)h( f), so

taking the inverse transform, using P2b, we have

v(t) = 2u(t) ® (5(” _ 1) = )+ i) ® (1)
2 21t Tt

and so

. 1 1 oo w(T)

() u(t)®(n_t) ”J_Wt_fdf (5A.5)
(We can also put, from (5A.3), iU(f) =U(f)sgn(f), so that, from P2c and
R4 we have in(t) = u(t) ® (—1/mit), leading directly to (5A.5)).

The Hilbert transform of #(z) = cos2nft is 4(z) = sin27fy5; this can be
found using (5A.5) (treating 7 as a complex variable and using contour in-
tegration) or, more simply, by choosing the function for # that converts the
two-line spectrum (at —f; and +f;) of # into the single line spectrum of » (at
+/, only) (i.e., that makes v a single complex exponential). In this case v(z) is
given by

u(2) = cos2mfyr + isin2 7fyr = exp2 wifyr
and so V() = &( f'— f;), which is a single line at +f;. The spectra of # and
i are Va(O(f — fo)+O6(f + fv)) and Ya(8(f — fo)—6(f + fo)), respectively,

which satisfy the form of (5A.3). Similarly, the Hilbert transform of sin27f;#
is —cos27fyt, so that in this case

v(2) = sin2mfyt — icos2mfyr = —iexp2 Twifyt
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Both these Hilbert transforms correspond to a phase shift of —77/2 ra-
dians, as cos(2mfyr — m/2) = sin2nfyr and sin(27fyr — m/2) = —cos2mfyr. This
is the case for all frequency components of a real waveform, so we see that
the Hilbert transform is equivalent to a wideband (all-frequency) phase shift
of —m/2.



Interpolation for Delayed Waveform
Time Series

6.1 Introduction

Here we consider the question, given a time series obtained by regular sam-
pling of some waveform, how do we form the time series of a delayed ver-
sion of the waveform? Clearly there is no real problem for a delay that is a
multiple of the sampling period—instead of the current sample from the
undelayed waveform, we just take the correctly delayed sample. The required
series could be obtained from a shift register clocked at the sampling rate.
Thus, we are left with the problem of generating series corresponding to de-
lays of less than a sampling period. We consider only sampled analytic signals
(complex time series), and we show that considerable benefits, in terms of
reduced computation, are given if the waveform is sampled at a rate above
the minimum required to retain all its information (see Chapter 5)—the case
of oversampling.

We first investigate, in Section 6.2, the weights on the taps of a trans-
versal filter required to give the series for the delayed waveform, derived with-
out reference to the waveform. This filter is thus suitable for the general case,
where any waveform (subject to it being within a given bandwidth) may be
taken and where its power spectrum is not necessarily known. We start with
the case of the minimum sampling rate and then explore the gains possible

137
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with an oversampled waveform. In Section 6.3, we find the weights that give
the optimum series in the sense of the least mean square error (or error in
power) between the interpolated series and the true series for the delayed
waveform. The error arises because to achieve perfect interpolation in prin-
ciple, ignoring practical problems of finite word lengths and sampling quan-
tization, an infinitely long filter would be required, in general.

Two applications of interpolation are given in Sections 6.4 and 6.5.
The first shows a remarkable reduction in computational load in generating
simulated radar clutter, which is sampled at the pulse repetition frequency
(PREF), typically a few kilohertz, and a much higher rate than the bandwidth
of the clutter waveform (a few tens of hertz). The second shows how interpo-
lation can be used for resampling—generating the sequence of samples that
would have been obtained by sampling a signal at a rate different from that
actually used.

6.2 Spectrum Independent Interpolation

In this section, we show how a finite impulse response (FIR) filter can be
designed to achieve the required interpolation, with the coefficients easily
obtained using the rules-and-pairs method. Generally, this requires quite a
long filter if the interpolation is to be achieved with high fidelity when sam-
pling at the minimum rate necessary to preserve the full information. More
interestingly, we then consider the case where the waveform is sampled at a
rate above this minimum—the oversampled case—and find that, by taking
advantage of this higher rate, very considerable gains in terms of reducing the
filter length, and so the required computation, can be achieved for compa-
rable performance.

6.2.1 Minimum Sampling Rate Solution

Given a time series of samples of a continuous waveform, sample values of
that waveform at other times can be calculated by taking a weighted combi-
nation of the given samples. A suitable set of weights will produce a time se-
ries corresponding to samples taken at a certain interval, or delay, after those
of the input. This produces a time series corresponding to a delayed version
of the waveform. The series itself is not delayed, except perhaps by a whole
number of sample periods; it is otherwise synchronous with the input series.
Figure 6.1 illustrates the structure, which is in fact a transversal, or finite
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Input time series

Output time series

Figure 6.1 FIR filter for interpolation.

impulse response (FIR), filter. The delay 7 between taps is identical with the
sampling period, and we note that the output of the center tap, with weight
wy, can be considered to be the undelayed waveform, if an overall delay of
nT can be accepted. In this case, it is possible to obtain (relatively) negative
delays as well as positive ones (e.g., if all the weights were zero except the first,
w_,, then the relative delay of the output series would be —27"). We take the
time series to be that of a complex baseband waveform of finite bandwidth
with spectrum in the band —F/2 to + F/2, corresponding to an RF or IF wave-
form of bandwidth F. The minimum sampling rate to retain the information
in the waveform is £, and initially we take this to be the sampling rate for
the time series, but subsequently we investigate the benefit, from the point of
view of more efficient interpolation, of sampling at a higher rate. If the signal
waveform is #(#) and the spectrum is U(f), then we can write the identity

U(f) = rect( fIF)repr U(f) 6.1)

This states that U is equal to a suitably gated portion of a repetitive form of
itself (Figure 6.2).

rect(fiF)
0 -2F -F 0 F 2F 3F
uif repeUIA

Figure 6.2 Equivalent forms of U(f).
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The inverse Fourier transform of this (from P3b, R5, R7b, and R8a) is
u(t) = Fsinc(Ft)® %combl/p u(t) =sinc(t/T)® combr u(t) (6.2)

where 7'is the sampling period and 7'= 1/F. The function comb;u(z) is a set
of &-functions at intervals 7 of strengths given by the waveform values at the
sampling point (as defined in (2.16)). Putting the comb function in this form
we have, using (2.11) for the convolution with a é-function,

t—r1T

u(t)=sinc(t/T)® i w(rT)o(t —rT) = Zru(rT)sinc(

y=—o00

) (6.3)

where we use X, to imply summation over all integer 7. This shows how to cal-
culate #(#) at any time # from the given set of samples at times 0, £7, +27, . ..
(i.e., {u(rT): r=—oo to +oo}). We place a sinc function, scaled by the sample
value, at each sample position and sum these waveforms (Figure 6.3). In par-
ticular, if #= #7; where £ is an integer, then sinc((¢ —7)/T) = sinc(k — ) =
O as sinc(x) = 0 for x a nonzero integer and sinc(0) = 1, and we have

WkT)=Y, ulrT)Sp = u(kT)

as required. (0, is the Kronecker-6; 8, = 0 for £ # 7, 9y, =1 for all £.)

0
u(t)

Figure 6.3 Equivalent forms of u(1).

sinc(t/ TY®comby; u(t)
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To determine the function value at time 7 (where we only need to con-

sider | 7| £ 7/2) we have, from (6.3)

w(T)= Zru(rT)sinc( t _TVT)

= u(O)sinc(;) + u(T)sinc( T

‘T)+. .

)+. . =wou0)+ wiu(T)+ wu(QT)+. . .

+ u(—T)sinc( T

+w_u(-T)+w_ou(-2T)+. . .
(6.4)

In practice we cannot obtain #(7) exactly, as this requires an infinite
number of terms, but the weights applied generally fall (though not necessar-
ily monotonically) for samples further away from the interpolated sample
time (within £772 of the center), so we curtail the series when the weights
become small. We note that the weights, given by w, =sinc((t—7»7)T),
are dependent on the delay required, 7. In fact, we consider them to be
functions of p= /T, the delay in units of the sampling interval, 7" Thus, we have
w, (p) = sinc(p—r) = sinc(r — p) (as the sinc function is symmetric). We assume
that the delay has been matched as far as possible by shifts of a whole number of
sampling intervals, so that the fractional interval p is between —1/2 and +1/2.

The worst case for interpolation is for delays of 772, at the maximum dis-
tance from a sample. The interpolation factor, or weight, applied to the output of
tap 7 (i.e., to samples at time 77 relative to the center tap output) in this case is

w, (¥5) = sinc(r —5) = sin(7(r = 15))/m(r = Vo) = (=1) " m(r=14)  (6.5)

The tap weights are given in decibel form as the discrete points on the
curve in Figure 6.4 for three delay values. For the case of a delay of 0.17 (with
symbol +), the weight is close to unity for the zero delay tap and falls quite
rapidly for the other weights. At a delay of 0.57; the weights (given by a dot
symbol) are equal for the first two closest taps (numbers 0 and 1) and then
fall away rather slowly. For a delay of 0.257;, the weight pattern (symbol X) is
intermediate, but closer to the 0.57 case, falling away only slightly faster. If
we take —30 dB as the weight level below which we will neglect the contribu-
tions, then we see that we need only about 7 taps for the 0.17 delay, but 14
at 0.257'and 20 at 0.57.
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Figure 6.4 FIR filter weights for interpolation, at minimum sampling rate.

6.2.2 Oversampling and the Spectral Gating Condition

For a (complex) waveform of bandwidth F, the minimum sampling rate at
which the waveform can be sampled without losing information is £. (This
is the case using Hilbert sampling; see Chapter 5. With other forms of sam-
pling, we may need slightly higher rates.) If we sample at a lower rate, then
the repeating spectra will overlap, and the resulting set of samples would cor-
respond to the result of sampling a slightly different waveform (a distorted
form of the waveform) at this lower rate. This effect is known as aliasing.
However if we sample at any rate higher than £, no spectral overlapping
occurs; we retain all the waveform information and could reconstruct the
waveform with correct interpolation. This is less efficient than sampling at
the minimum rate in the sense that more work is done than is necessary, but
we will see that it enables us to achieve much more efficient interpolation.
Let the sample rate be /= gF, where g > 1, so that the interval between
samples is now 77=1/F’= T/q. In this case, the spectrum of the sampled
waveform repeats at the interval /7, which is greater than the width of the
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basic spectrum, so there are gaps in the spectrum of the sampled waveform
as shown in Figure 6.5. We see that we can put the identity for the wave-
form spectrum, corresponding to (6.1) for the minimum sampling rate, in

the modified form

U(f) = G(f)reprU(f) (6.6)

where an example of the gating function G'is shown in the figure. For (6.6) to
be true, we see that there are two conditions that G must satisfy:

G(f)=1for|f|<F2 and G(f)=0for|f|>F —F2=(q-")F.
(6.7)

The first of these conditions is to ensure that there is no spectral dis-
tortion, and the second ensures that there is no aliasing (i.e., no energy is
included from repeated parts of the spectrum). G is not defined in the regions
(g —Y2)F, =FI2 ] and [F/2, (g — ¥2)F] (except that it must remain finite) as
there is no spectral power in these regions. Thus, we are free to choose G to be
of any form as long as it satisfies the conditions (6.7). In the case of sampling
at the minimum rate, F, we have g =1, so the regions of free choice are of zero
width and we are forced to make G the rect function, as in (6.1). We could
note, as a more general form for the second condition in (6.7), that G should
be zero only on all the intervals | f— nF"| < F/2 (n = —oo to +o0, n# 0) (i.e., for
all bands of width F centered on all frequencies 7F except 7 = 0). However,
this will not generally be a useful relaxation of the condition.

From (6.6), taking the inverse Fourier transforms, we have

u(r) = (1/F") g(r) ® combr” u(t) = ¢(r) ® combr~ u(r) (6.8)

where the interpolating function is

o) =Q/F")g(t)=T'g(z) (6.9)
Undefined
section of G / <« F—
Py R o A2 3F
repF,U(f)

Figure 6.5 Spectrum of time series of usampled at rate F'.



144 Fourier Transforms in Radar and Signal Processing

and g is the inverse Fourier transform of G. Expanding the comb function,
we have

W) =9()® Y, 8(—rT")u(rT)
=D —rT T =Y, w1 T)u(T”)

Thus, the weights are given, for a delay 7= p7”, by

w:(p)=¢((p—r)1") (6.10)

The samples in this case are at intervals 7”7 so the worst-case delay is
7712, smaller than the value at the minimum sampling rate, 772, so there is
some easing of the interpolation problem, but this is small compared with
that obtainable from good choices of the gating function. Before consider-
ing these, we take the case of the simplest form of the gating function that
takes advantage of oversampling (Figure 6.6). This is G(f) = rect[f/(2F~=F)],
or rect[f/(2g—1)F], and the interpolating function is given, from (6.9) (and
P3b, R5), by

29-1)F .
o) = (qu)smc ((Zq — 1)Ft) =

(29-1) sinc((2g-1D¢/T) (6.11)
q

The characteristic width of this function, 7/(2g — 1), is narrower than the
sample separation, 774, so we should be able to use fewer taps for a given
lower limit to the tap weight magnitudes. The weights for a delay 7= p7”=
pTlq (with —0.5< p<0.5) are, from (6.10) and (6.11),

w,(p) = 2q_1sinc((zq_l)(r_p))z(2q_l)sinc(x+y) (6.12)
q q q

rect(f(2F’— F)

I A F
rep. Ul

Figure 6.6 Optimum rectangular gate for oversampled time series.
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where x = (7= p) and y = (g — 1)x/q. (The variables x and y will be used in the
weights required for the three further gating functions considered in Section
6.2.3.) We note from (6.12) that if p, and hence 7, is zero w,(0) is nonzero for
all values of 7, unlike the minimum sampling case illustrated in Figure 6.3,
where w, (0) = 0 except for wy(0), which is 1, so it is not immediately obvious
how this sampling method produces the correct values at the sampling points,
let alone between them. In particular wy(0) = (24 — 1)/g, which approaches
the value 2 for large 4. Figure 6.7 illustrates the case where a flat part of the
waveform, with constant value unity, has been sampled at an oversampling
rate of ¢ = 3. We see that at the sample points, the weight value is 5/3, but
the contributions from the interpolating sinc functions from nearby sample
points are negative, bringing the value down to the correct level of unity.

The weights given by (6.12) for oversampling factors of 2 and 3 are
shown in Figure 6.8, for comparison with the values for the minimum sam-
pling rate (g =1) plotted in Figure 6.4. The same set of delays has been taken.
These plots show that the weight for the tap nearest to the interpolation
point (taken to be the center tap here) can be greater than unity, that the
weight magnitudes do not necessarily fall monotonically as we move away
from this point, and that much the same number of taps is required, above
a given weight level, such as =30 dB. At first this last point might seem
unexpected—there is no significant benefit from using the wider spectral gate
that is possible with oversampling. However, the relatively slow falling off of
the tap weight values is a result of the relatively slowly decaying interpolating
sinc function, and this in turn is the result of using the rectangular gate, with
its sharp, discontinuous edges. This is the case whether or not we have over-
sampling. The solution, if fewer taps are to be required, is to use a smoother
spectral gating function, and this is the subject of the next section.

53 .r

067"

Figure 6.7 Flat waveform oversampled.
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6.2.3 Three Spectral Gates

Trapezoidal Gate

The first example of a spectral gate without the sharp step discontinuity of the
rect function is given by a trapezoidal function (Figure 6.9). As illustrated, in
this figure and also in Section 3.1, this symmetrical trapezoidal shape is given
by the convolution of two rectangular functions with a suitable scaling factor.
The widths of these rect functions has been chosen so that G, as in Figure
6.5, has the minimum flat top width necessary and slope of maximum length,
extending to the edges of the repetitions of the spectrum centered at +¢F and
—qF. The convolution of unscaled rect functions has a peak (plateau) level of
(q — 1)F, the area of the smaller rect function, so we define G by

vl ec f
l)FreCt(qFJ®r t((q—l)F] (6.13)

Thus, on taking the transform, we have g(r) = ¢F sinc(qFt)sinc ((q - l)Ft), and
the interpolating function is given, from (6.9) with 77 = 1/gF, by

(f)—

@(2) = sinc(qFr) sinc(g — 1)Fr (6.14)
From (6.8) we have
u(#) = sinc(qFr)sinc(q — 1) Fr ® comb,pu(z) (6.15)

The interpolating function ¢ is now a product of sinc functions, and this
has much lower sidelobes than the simple sinc function (e.g., see Figure 3.2).

G - " «— (¢-1)F —>

—(g-12F —gF2 -F2 0 A2 gH2  (g-1/2)F

< qf +—— (¢-)F—>

1/(g-1)F

1
:J rect(f/gh t ® J rect(f(g—1)F) L

Figure 6.9 Trapezoidal spectral gate.
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To interpolate at time 7= p7”, where 0.5 < p < 0.5 (i.e., Tis a fraction of a
tap interval), we consider the contribution from time sample 7, giving

w/(p) = ¢((t — p)T") = sinc(r — p) sinc[(r— p)(g— 1)/q]. ~ (6.16)
Now let x=7r— pand y= (g — 1)x/q (as in (6.12)), then
w,( p) = sincx sincy = sinXsinY/ XY (6.17)

where X = mx and Y = my. If we take the case of p = 1/2, the worst case, as
in Section 6.2.1, we have sinX = sinz(r — ¥2) = (=1)"", and if we take g =2
(sampling at twice the minimum rate), then y = x/2 and sin¥ = +1/\2, for r
integral, and so the magnitudes of the tap weights are

0, (3) = (= )T")| = V2 /72 (r = 15)? (6.18)

Comparing this with (6.5), we see that the weight values now fall very much
faster, and this is illustrated in Figure 6.10, for comparison with Figures 6.4
and 6.8. We see that the number of taps above any given level has been re-
duced dramatically—above —30 dB, for example, from 20, 15, and 7 for the
three delays chosen, at ¢ = 1, to 4, 3, and 3 at ¢ =2 and as few as 2, 3, and 2
at ¢ = 3. Above the —40-dB level, the number of taps needed at 0.57 is found
to be 65 at the minimum sampling rate, but only 8 for =2 and ¢ = 3.

Trapezoidal Rounded Gate

The trapezoidal function of Figure 6.9 still has slope discontinuities, though
not the step discontinuities that the rect function has. The corners of the trap-
ezoid can be rounded by another rect convolution, to make three convolved
rect functions in total. Equivalently, we can consider that the combination
of the two narrower rect functions, one removing the steps and the other
removing the abrupt slope changes, together form a trapezoidal pulse (see
Figure 6.11), and this then rounds the largest rectangular pulse. As before,
the main rect function is of width ¢F (as in Figure 6.9) and the overall round-
ing pulse is of base length (g — 1), as this is the space available for the round-
ing on each side. Let the two shorter rectangular pulses be of length of(g — 1)
Fand (1 — 0)(q — 1)F where 0 < o < 0.5. Then their convolution will be of
the required length (g — 1)F, as shown in the upper part of Figure 6.11. If
these pulses are of unit height, then the trapezoidal pulse will be of height
0lq — 1)F, the area of the smaller pulse, so we need to divide by this factor to
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form a trapezoidal pulse of unit height. The area A of the (unit height) trap-
ezoidal pulse is the same as that of the wider rectangle, (1 — @)(g — 1)F, so we
also have to divide by this factor when we perform the second convolution in
order to make the height of G unity, as required. Thus, we have

rect(f1qF) @ rect(f/a(q—1)F) @ rect(f/(1— ) (g —1)F)
o(l— o) (g —1)* F?

G(f)= (6.19)

The interpolating function ¢ is given by
$(¢) = (1/gF)g(¢) = sinc qFt sinc(ou(q — 1) F)sinc((1— &) (g =D Fr)  (6.20)

Let t= (r— p) T”as before (with —0.5 < p < 0.5), and also x=gFt=r—p
and y = (g — 1)x/q, as before, then

w,(p)=¢((r — p)T") =sincxsinc(ay)sinc((1 —or) y)
= sincx sincy, sincy, (6.21)

where y; = oy and y, = (1 — @)y. If we want the weights in terms of the sine
function then

sin XsinY;sinY,
xny,

Wy (P) =

where X=7x, Y1 = anmyand ¥, = (1 — a)my.

If &= 0.5 we have a triangular pulse for the rounding convolution, but this
may make the edge too sharp. As we reduce ¢, we go through the trapezoidal
rounding toward the rectangular case considered in Section 6.2.3. The weights
for the same three delays as before are plotted in Figure 6.12 for oversampling
factors of 2 and 3, and for a value for o of 1/3. Again, we see that very few taps are
needed, compared with the rectangular case, and the weight values are seen to be
falling away more rapidly than for the simple trapezoidal case, as expected.

Raised Cosine Rounded Gate

Here we use a raised cosine pulse for rounding instead of the trapezoidal
pulse. This pulse is of the form 1 + cos(af), so it has a minimum value of zero
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and is gated to one cycle width, which is the required value (¢ — 1)F. If 24
is its peak value, then the pulse shape (in the frequency domain) is given by
Arect (f/(q - l)F){l + cos (27rf/(q - l)F)} (see Figure 6.13). This has inte-
gral A(g — 1)F, due to the raised offset only, as the integral of the single cycle
of the cosine function within the rect gate is zero. In order to make the area
unity, we take A= 1/(g — 1)F. Applying this to the main spectral gating rect
function to give the smoothed form we have

G(f)zrecti(@ rect f 1+cos2rf1(q—1)F) (6.22)
7 (g-DF (g-DF '

and

g)= qFSincht{sinc(q ~1DE® (5(t) RCIGEY) sz O(e+ At))}

where Az = 1/(g — 1)F. On performing the o-function convolutions, the in-
terpolating function is

1
¢(2) = q—Fg(t)

= sincht{sinc(q —DFr+ %sinc ((q -1 Fr— 1) +%sinc ((q -1)Ft +1)}
(6.23)

The term in brackets (i.e., {}) has much lower sidelobes, though a wider
main lobe, than the basic sinc function, as should be expected from the form

<« F—>
<+ (g-1)F—> <« (¢ 1)F—>

G(f)
T e L

<t (2g-1)F <+“— g —>» <+ (g-1)F—>

Figure 6.13 Raised cosine rounding.
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of the gating, or windowing, function G (Hann weighting). With the same
notation as used earlier, we have for the delay 7= p77,

w,(p)=¢((r—pT")=g((r— PT”)/qF

=sincx {sincy + %sinc()/ -+ %sinc()/ + 1)} (6.24)

where x and y are as before (in (6.17) and (6.21)).
We can simplify this slightly on putting

sint(y£1) —sinzmy _ ysincy

i )=
SncEN=" 080 TG T 1ty
so that
. . ¥ ¥ __sincxsincy
w,(p) = smcxsmcy(l + 2-y) - i }/)J = ~ 5 (6.25)

In terms of sine functions, this is

_ sin X sinY
XY (1-y%)

with X and Yas in (6.17)).

Compared with the case of the trapezoidal gate in equation (6.17), there
is an extra factor in the denominator of 1 — y?, which is effective in reducing
the magnitudes of w, when 7 is large (and hence so are x and y). Figure 6.14
shows the weights for the same delays and oversampling factors as before, and
we see that the weight values fall even faster than with trapezoidal rounding,
as a result of the very smooth form of this rounding.

6.2.4 Results and Comparisons

In this section, we give the tap weights (in decibels) for the case p=1/2 (i.e.,
for the worst-case interpolation, half-way between two taps). For smaller p
the weight values will fall faster with 7. For small delays (very much less than
772), oversampling may hardly be needed to keep down the number of taps
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while maintaining good signal fidelity, but in many applications a delay may
be required, and here we evaluate the tap weights for the worst case.

Results for four different interpolation expressions are obtained, follow-
ing the different spectral gating functions given earlier. These are, with p the
required delay as a fraction of the sampling interval and ¢ the factor by which
the data is oversampled,

1. Maximum width rectangular gating (6.12)

w,(p) = (2qq_1Jsinc(x+y) (x=r—p,y=(q—1Dxlq)

2. Trapezoidal spectral gating (6.17)
w,(p) = sincx sincy
3. Rectangular gate with trapezoidal rounding (6.21)
w,(p) = sincx sinc(l — @)y sincoy (0 < ox<1)
4. Rectangular gate with raised cosine rounding (6.25)

sincx sinc
wy(p)= 72)}
l1-y

Figure 6.15 shows, in contour plot form, how the filter tap weights vary
with oversampling rate, for the worst-case delay of 0.57. The tap weights are
given in decibel form with tap number along the X axis and oversampling
rate along the Y axis. The contours are at 10-dB intervals. Only integer values
for the tap numbers are meaningful, of course, but these expressions are not
restricted to integer values of 7 and so contour plots can be drawn.

The plots give a general impression of the benefit of oversampling and
allow some comparison of gating functions. In general, the faster the weights
fall with tap number, the better, so that when the values are below some low
enough value, the taps are not required, and the filter length is limited. In
these plots the lowest contour level is =70 dB, and we see there are consider-
able areas below this level in the cases of the trapezoidal rounded gate and the
raised cosine rounded gate.
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These occur at quite modest oversampling rates and for reasonably
short filter lengths (15 taps, for example, from » = —7 to +7, and g=1.5). On
the other hand, for the rectangular gate there are tap values at only —30 dB for
the highest parameter values plotted, near » =10 and g = 2, with only a very
slow improvement as these increase.

We see how the weight values fall only slowly at ¢ = 1 for all methods,
but only a small increase to 1.2, for example, reduces the levels rapidly, except
for the rectangular gate. The poor performance of the rectangular gate in rate
of fall of coefficient strength with increasing sampling factor is consistent
with the discussion of Figure 6.8 in Section 6.2.2.

6.3 Least Squared Error Interpolation

6.3.1 Method of Minimum Residual Error Power

In Section 6.2 we saw how to approximate the time series for the sampled
delayed waveform, given the time series of a sampled waveform. The ap-
proximation is not exact because only a finite set of FIR filter taps can be
used in practice. The error in curtailing the filter is not evaluated because
this will depend on the actual waveform, and the approach of that section is
independent of the waveform, given that it is of finite bandwidth. In this sec-
tion a different approach is taken; the question tackled is: given a finite length
filter, what is the set of tap weights that minimizes the error (in power) in the
delayed waveform series? T'o answer this question, we do not need the actual
waveform, but only its power spectrum, and some example spectral shapes are
taken in Section 6.3.2 to illustrate the theory.

Figure 6.16 shows the FIR filter model, similar to Figure 6.1, with the
waveforms x added. We do not distinguish between the continuous wave-
forms and the sampled forms, as we know that, correctly interpolated, the
sampled series form will give the continuous one exactly for a band-limited
signal. Let the required output waveform be delayed by p7 relative to the
waveform x(#) at the center tap, so it is given by x(z — p7'). T'is the sampling
period, and p (where —0.5 < p < 0.5) is the delay offset as a fraction of this in-
terval. Although x(# — pT') is indicated as the actual filter output in the figure,
this could only be achieved with an infinite set of taps, correctly weighted;
the actual output, with the tap weights derived next, is a least squared error
approximation to this. The error waveform, the difference between the de-
sired output and that given by the FIR filter, is e(#), given by
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x(t+nT) x(t+T) x(1) x(t=T) x(t=nT)

Figure 6.16  FIR filter for interpolation.

e(t)=x(t—pT)— z”: x(t — kT )wy (6.26)
k:_

n

Taking the Fourier transform of this equation we have

E(f)=X(fexp(=2mif pT)— Y, X(f)exp(=27mifkT)wp =X (£)G(f)

k=—n
(6.27)

where

n

G(f) = exp(=27if pT) = Y, exp(=27ifkT w; (6.28)
k=—n

The error power p, considered to be a function of the set of weights, is

given by

p=[[EOPd = [ X6 df (6.29)
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(Here the limits of the second integral could be —£/2 and F/2 as x is taken to
be band limited, with no spectral power outside this interval.) We suppose

oo

that the waveform is of unit power so that I ‘X (f )‘zdf =1. From (6.28) we

—oo

have

|G(f) |2=1—2Re{ Z exp2rif (k- p)T w, }
k=—n
(6.30)

+ i i exp(2rif (k= h)T wy * wy,

k=—nh=—n

Inserting this into (6.29) we can express the error power in a vector-
matrix form by

p(w) =1 —2Re{w''a} + w'Bw (6.31)

where we define

— T
W= [w—n W—p+1 - - - wn]

> (6.32)

and the elements of the vector a and the matrix B, of sizes 2z+1 and
(2n+1) X (2n+1), respectively, are given by

ar=r((k=p)T) and by =r((k—h)T) (6.33)
where
(0= [ [x(f) eprif df (6.34)

(The upper suffices T and H indicate matrix transpose and complex con-
jugate (Hermitian) transpose, respectively). We see that the components 4,
and b, are values of the autocorrelation function of the waveform x, as 7 is
the inverse Fourier transform of the power spectrum of x, and this gives the
autocorrelation function, by the Wiener-Khintchine theorem (see Section

2.4.3).
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By differentiating p(w) with respect to w* and setting the differential to
zero (e.g., see Brandwood [1]) we find that p is a minimum when the weight
vector is wy given by

Wy = B_la (6'35)
and the minimum error power is p, given by
po=1-2a""B'a (6.36)

To calculate wy, and p, we only require a and B, the components of
which are all obtained from the autocorrelation function of the waveform.
We do not need to postulate particular waveforms for x in order to calculate
the optimum weight and the minimum residue, which will depend on the
number of taps, the sampling interval, and the delay—only its spectral power
function. Choosing some simple functions, which approximate likely spectra
of real signals, it is possible to obtain values for the weights and the residues
quite easily. In the next section, we use the rules-and-pairs technique to find
the autocorrelation function for five spectral shapes, and in Section 6.3.3 we
show some results.

6.3.2 Power Spectra and Autocorrelation Functions

Rectangular Spectrum

In this case, we take the power spectrum |X( £)|? to be given by (1/F )rect( f/F ),
the factor 1/F being required to normalize the total power to unity. The
inverse Fourier transform of this is 7(7) = sinc(F7), so we have, for the com-
ponents of a and B,

ap = sinc((/e —p)FT) and by = sinc((k - h)FT) (6.37)

The minimum sampling rate is equal to the bandwidth F so the sam-
pling period is 7'= 1/F, but more generally if the sampling rate is ¢/ then we
have 7'=1/gF, or FT = 1/g so that (6.37) becomes

a, = sinc ((k -p) /q) and by, = sinc((/e - h)/q) (6.38)
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Triangular Spectrum

A triangular shape of base width F can be formed as the convolution of two
rectangular functions of width £/2, as in Section 3.3. This has a peak value of
F/2, and so, with base width F, an area of F2/4. In order to have a total area of
unity, representing the total power in the power spectrum, we divide by this
factor, so the spectrum and the autocorrelation function are given by

X(P) = 4IF)rect 2 fIF) ®rect@ fIF)  and (1) = sincX(F1/2)
(6.39)

The required coefficients are thus
ap =sinc” (k—p)/2q) and by, =sinc* ((k—h)12q)  (6.40)

Raised Cosine Spectrum

The raised cosine power spectrum of unit area is given by (1/F)(1 + cos(27f/
F))rect(f1F).

The transform of the raised cosine, as in Section 3.6, gives the autocor-
relation function sinc(#7) + 1/2(sinc(#T— 1) + sinc(F7+ 1)) and hence

ap zsinc(k_p]+lsinc[k_p—lj+lsinc(k_ p+1] (6.41a)
q 2 q 2 q

. (k—h) 1. (k—h ) 1. (/e—
by, = sinc +—sinc —1 |+ —sinc
q 2 q 2

Gaussian Spectrum

and

h +1J (6.41b)

The region of the domain over which the Gaussian, or normal, distribution
function is nonzero (its support) is unbounded, so there is, strictly, no mini-
mum sampling (or Nyquist) frequency F corresponding to sampling that will
represent this function exactly. However, we can approximate the spectrum,
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for practical purposes, by taking F to be the bandwidth at which the spectral
power density has fallen to some low level, A decibels below the spectral
peak, such that sampling at frequency F produces an acceptable low level of
aliasing. This defines the variance of the spectrum as 0 = F?/1.84A. The
normalized spectrum is

X(f) = le?; exp(— F1267) (6.42)

and its transform, from P6 with R5, is

r(7) = exp(—2m°0?7?) (6.43)

Expressing the variance in terms of the spectral limit level, A, we obtain (with

FT=1lq)

ap = exp(—2m° (k- p)*/1.84A¢%) and by, = exp(—21* (k—h)* /1.84 Ag*)
(6.44)

Trapezoidal Spectrum

As in Section 3.2, we form a symmetrical trapezium with a base of width F
and a top of width 2F (0 < 2 < 1) by the convolution of two rect functions of
width (1 — 2)F/2 and (1 + @)F/2. These are the widths of the sloping edges
and the half-height width, respectively (as in Figure 3.1). Using unit rect
functions this gives a peak height of (1 — 2)F/2, which would give an area of
(1 —a)(1 + @)F?/4 so we have to divide by this factor to give the normalized
spectrum:

X(F)F = 410+ 2)(1 - &) FFrect(2 f1(1- 2)F) @ rect2fI(1 + a)F)  (6.45)
The transform is

r(T)= sinc((l—a)F‘L’/Z)sinc((1+¢z)FT/2) (6.46)
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as shown in Figure 3.2, with 2= 3/7. We note that taking 2= 1 or 2 = 0 gives
the result for the rectangular or triangular spectral case, respectively, as limit-
ing cases of the trapezoidal form. Finally, we have

ap =sinc((1—a)(k - p)/2q)sinc(1+a) (k= p)/2q)  (6.47a)

and

by = sinc((1— a)(k— h)12q) sinc((1+a)(k —h)/2q)  (6.47b)

6.3.3 Error Power Levels

The error power, given in (6.36) is shown, in contour plot form, in Fig-
ure 6.17, for two of these spectral shapes, the rectangular, using (6.38), and
the raised cosine, using (6.41). The errors are for the worst case, a delay of
half a sample period (¢t = 0.5). These give the powers as a function of both
the number of taps used and the oversampling factor. Although the contour
lines, which are at 5-dB intervals, are continuous, only the values at integral
tap numbers are meaningful, of course, and the error powers are only calcu-
lated at these abscissa values. These plots show that even modest oversam-
pling rates are effective in reducing the number of taps for a given required
mismatch level or alternatively greatly reducing the mismatch power for a
fixed number of taps. For example, with nine taps, the mismatch power for
the rectangular spectrum is reduced from above —15 dB to about =53 dB on
increasing the rate from 1 to 1.5 (oversampling by 50 percent). The general
patterns for these two spectra are quite similar, though the more compact
raised cosine spectrum has lower mismatch power than the rectangular spec-
trum at the same parameter values, as might be expected. (For this spectrum
and nine taps, the power falls from —30 dB with no oversampling to nearly
—60 dB with 40 percent oversampling.) The results for the other spectral
shapes are similar and generally between these two.

Figure 6.18 presents results for the rectangular spectrum with an ex-
panded range of taps and a reduced range of oversampling factors. We see
that even with 60 taps, the mismatch power when sampling at the mini-
mum rate is about —22 dB, while with 10 percent oversampling this level
is achieved using only eight taps, and at 25 percent only five taps are re-
quired. We also see that using 20 taps, the mismatch power at the minimum
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Figure 6.18 Mismatch power for rectangular spectrum.

sampling rate is about —17 dB but this falls to =50 dB at an oversampling
rate of only 1.15. These figures show that even with quite low oversampling
rates, considerable reductions in computation for a given performance level
or considerable improvement in performance for a given computational
effort is achievable.

6.4 Application to Generation of Simulated Gaussian Clutter

Here we take a particular example to show that that taking advantage of
oversampling can give a very substantial saving in computation. The prob-
lem considered is to generate simulated clutter, as seen in a given range gate,
for modeling radar performance. In this case, the clutter is taken to have a
complex amplitude distribution that is normal (or Gaussian) and also has a
Gaussian power spectrum. We show first, in Section 6.4.1, that the required
waveform can be generated by an FIR filter fed with a sequence of pseudoran-
dom samples from a normal distribution at the required sample rate, which
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is the radar pulse repetition frequency (PRF). As the bandwidth of the clut-
ter waveform is very much lower than the radar PRF, the clutter waveform
is greatly oversampled, and the cost in computation is high. (Despite high
speeds of computation, the large, complex simulations that require clutter
in many range gates in this radar example can take significant times to carry
out, and efficient computation is of value.) In Section 6.4.2, we show that
the clutter waveform can be generated at a much lower sampling rate, though
still oversampled, and then efficient interpolation is used to give the samples
at the PRF, as required. This is shown to reduce the overall computation
requirement by a very large factor. The parameters we use for this example
are 10 kHz for the PRF and 10 Hz standard deviation for the spectrum of
the clutter waveform.

6.4.1 Direct Generation of Gaussian Clutter Waveform

Any linear combination of independent normally distributed sequences will
also be normally distributed (see Mardia et al. [2], for example). An FIR filter
of length L fed with a sequence of samples from a normal distribution forms
a linear combination of L samples and will produce output samples at inter-
vals L, which are independent and normally distributed. The output samples
that are at less than L sample intervals apart are not independent, as they are
linear combinations of partially overlapping sets of samples, and the choice
of FIR filter weights will determine the degree of dependence between suc-
cessive samples (i.e., the rate of change of the values, or, equivalently, the fre-
quency spectrum of the output sequence). If |H(f)|* is the power spectrum
required, then the square root of this gives (within an arbitrary phase factor)
the required amplitude spectrum and the inverse Fourier transform of this
gives the required filter impulse response. In the case of an FIR filter, the
filter weights, or tap coefficients, are set to the sampled values of the required
impulse response (Figure 6.19). (It is clear that an impulse at the input will
emerge at the output as a series of impulses scaled by the coefficients, and this
is the filter impulse response.) If @ is the bandwidth of the spectrum, then we
know, from Section 6.4, that the sampling rate must be ¢ or greater, and so
the delay between taps in the FIR filter must be 1/¢ or less. The intervals at
which the Gaussian impulses are generated and fed into the filter to give the
output Gaussian sequence must match this delay, of course. (In this case, the
sampling rate is the PRF F, which is very much greater than the bandwidth
of the spectrum.)
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In the case of a Gaussian power spectrum of standard deviation 0 and

3dB bandwidth 2.360 we have
H(f)*~exp(-f?/20?) (6.48)

where we write ~ to indicate we are not concerned here with the particular
scaling factor. As in Section 6.3.2, we have an infinite frequency region over
which the spectral power density is finite, so we approximate the spectrum
as being finite over the bandwidth 270 such that the density at £ 70 is small
enough to allow us to neglect the spectral tails and hence the aliasing power.
At these points, we have H(£70)? = exp(~7*/2), and this has fallen to —35 dB,
as a suitable low level below the peak, at = V(7In10) = 4. In this case the
total bandwidth, outside which there is considered to be negligible spectral
power, is 80. In this example this is 80 Hz, which is very low compared with
the PRF of 10 kHz, and we see that the required clutter waveform is over-
sampled by a factor of 125.

From (6.47) we have H(f) ~ exp(—f2/462) = exp(—ﬂ(f/ZO'\/E)z)

and so, using P6 and R5, we obtain, for the required filter impulse response,
() ~ exp(-(20Tt)?) = exp(—4m’c?t?) (6.49)

The FIR filter coefhicients from the sampled impulse response are given by

by = b(rT) = exp(—4n*c*r*T?) (6.50)

where 7= 1/F is the sampling interval. If we take coefficients to the —40 dB
level, then we have 8120%727? = 4In10, or

"m

Jin10/2
=n7£=0.342§ 6.51)

T (o2

where £7,, are the indices of the first and last coefficients.

We can now estimate the amount of computation required to pro-
duce the simulated clutter directly. With 7= 104 Hz and ¢ = 10 Hz, we
see that 7,, = 342, so there are 685 taps, and this is the number of complex
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multiplications needed for each output sample (in addition to generating the
inputs from a normal distribution).

6.4.2 Efficient Clutter Waveform Generation, Using Interpolation

In this case we generate Gaussian clutter with the required bandwidth but at
a much lower sampling rate, £, and then interpolate to obtain the samples
at the required rate F (Figure 6.20). Thus, we will need F/f, times as many
interpolations as samples. From Section 6.2, we know that with moderate
oversampling rates, we can achieve good interpolation with very few taps. Let
the number of taps in the interpolation filter be 72, and the number in the
Gaussian FIR filter is, from (6.51), 0.684 f/o (+1, which we neglect) so that

the average number of complex multiplications per output sample is

v=m+(0.684 £;/G)/(FIf;)=m+0.684 f;* | GF (6.52)

We have taken the effective bandwidth of the Gaussian spectrum (the width
at the —35dB points) to be 80, and with an oversampling factor of g we have

/=809, giving

v=m+43.704*IF (6.53)
Delays
Waveform envelope  Samples at rate f, Samples at rate F
—1/21,
7 R
Genergtor_ of Gaussian FIR °
Gaussian impulses .
filter
atrate f; .
Sampled Gaussian
¢ waveform with required
spectral shape
Set of small FIR
interpolation filters +1/21

Figure 6.20 Gaussian waveform generation with interpolation.
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In Figure 6.12 we see that with an oversampling factor of 3 we need
only four taps, weighted above the —40-dB level, to interpolate up to the
maximum time shift of half the sampling interval. Using these figures (i.c.,
m=4,q=3,F= 104 Hz, and =10 Hz), in (6.53) we obtain v=4.4, a factor
of over 150 lower than in the direct sampling case. There will have to be F/2f;
sets of four weights (or 21 sets in this example, as f = 240 Hz) to interpolate
from —1/2f to +1/2f (for a symmetrical bank of F/f, filters).

6.5 Resampling

An application of interpolation is to obtain a resampled time series. In this
case, data has been obtained by sampling some waveform at one frequency,
F, but the series that would have been obtained by sampling this waveform
at a different frequency, £, is now required. We consider first the case where
Fy/F, is rational and so can be expressed in the form 7,/n, with 7, and n,
mutually prime (with no common factor). Figure 6.21 illustrates the method,
where we have take 7, = 4 and n, = 7, and F,/F, = 4/7. Over a time interval
T'=n T, =n,T,, the pattern repeats, where 7; = 1/F, and 7, = 1/F,, and if
the output sequence is timed so that some samples are at zero shift relative
to the input, then there will be further time shifts of . . . -2,-1,0, 1, 2, . ..
in units of AT = 7/nn,. The input sample period is 77 = 7/n; = n,AT, so
n, delays are required, from 0 to 7, — 1 in units of A7. Allowing negative
relative delays, we require delays from —(72,—1)/2 to +(n,~1)/2 for n, odd, or
—n,/2+1 to +n,/2 for n, even, keeping the delay magnitudes to within half a
period of F. In Figure 6.21, the required time shifts for the different pulses
are shown, in units of AT, with F}/F, = 4/7, and we see the delays required
are from —=3AT to +3AT. Over a period of four input pulse intervals, there are
seven output pulses, with seven different delays, one of which is zero. We also
see that if the frequency ratio were inverted in this figure, so that the input

Input samples utput samples
Waveform envelope Outp P

T=4T, =7T,=28AT

(O)i

(+3)
: - T1 N i i =

Figure 6.21 Resampling.
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samples are shown by the dashed lines and the outputs by the continuous
lines, then four time shifts, of =1, +2, +1 and zero only, relative to the nearest
input sample, are required.

If the input sequence is oversampled, we can use the results of Sec-
tion 6.3.2 to reduce the size of the sampling FIR filters and so achieve quite
economical resampling, requiring only a few multiplications for each out-
put sample. Only 7, —1 time shifts are needed, and the number of distinct
vectors defining the FIR filter coefficients is only (7, — 1)/2 (n, odd) or
m,/2 (n, even) (as the set coefficients are the same for positive and negative
shifts, applied in reverse order, with a shift of the input sequence), and
these can be precomputed and stored. The processing need not be in real
time, of course—with the input and output pulses arriving and departing
at the actual intervals specified. If the input data were stored, after sam-
pling in real time, of course, the output sequence could then be generated
at leisure, as these samples are the values that would have been obtained by
real-time sampling at the new frequency. However, if real-time resampling
is required (e.g., on continuous data), then economical computation could
be particularly useful.

If the frequency ratio is not rational, some modifications are necessary.
In the case of a block of stored data, it may be acceptable to find a good
rational approximation to this ratio. As this is an approximation, the output
frequency will not be exactly the specified frequency, and if the waveform is
regenerated as if the samples were at this frequency (e.g., by a standard sound
card, in the case of audio data), then there will be a slight frequency scaling
of the whole signal. In the case of continuous, real-time data, this would re-
quire dropping, or inserting, a sample from time to time, generally causing an
unacceptable distortion of the sound. An alternative would be to accurately
calculate the required delay for each pulse and then the FIR filter tap weights,
using equations from Section 6.2. Further, the calculated delay could be ap-
proximated to the nearest of a suitably fine set of values over the half output
sample period (positive or negative) and the precalculated set of weights for
this delay would be applied. (The topic of resampling is well covered in the
literature, but the emphasis here is on the implementation and benefit of
oversampling.)

6.6 Summary

In this chapter, we have shown how the rules-and-pairs method can be used
to obtain results in the field of interpolation for a sampled time series, simply
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and with insight into the underlying principles. The first main application
was to find the FIR filter weights that would provide interpolation for any
band-limited signal. In principle, this filter will be infinitely long for perfect
interpolation, so in practice a finite filter will always give only an approxi-
mation to the correct interpolated waveform. However, a filter of suitable
length will give as good an approximation as may be required. For waveforms
sampled at the minimum rate, this could be quite long (perhaps one hundred
or more taps, for good fidelity), but if the sampling is at a higher rate (i.e., the
waveform is oversampled), the filter length for a given performance is found
to fall quite dramatically. This saving in computation could be valuable in
large simulations, or in providing real-time delayed waveforms in wide band-
width systems, for example.

This first approach does not give a definite estimate of the accuracy of
the interpolated waveform, which could be measured, for example, by com-
paring this waveform from the FIR filter with the exact delayed waveform.
This will depend on the spectrum of the waveform, and no particular spec-
trum, within the specified finite bandwidth, is assumed. This is the subject
of the second approach, which is to define the filter that will minimize the
power in the error signal (i.e., the difference between the interpolated series
and the exact series) for a given power spectrum. In this case, a few simple
spectral shapes were taken to illustrate the technique. In practice, the actual
signal spectrum could perhaps be considered a good approximation to one of
these. In fact, the actual shape does not make a great deal of difference, given
a reasonable degree of oversampling, with the rectangular spectrum being
rather the poorest, but also not a likely form, in practice. Again, oversampling
can be used to reduce greatly the filter length and the number of multiplica-
tions for each output sample.

Two applications of interpolation were studied. The first was for the
case of generating a greatly oversampled Gaussian waveform. It was shown
that generating the Gaussian waveform at a much lower oversampled rate and
then interpolating could give a great reduction (two orders of magnitude)
in the amount of computation needed. The second example was the case of
resampling, where a sample sequence is required corresponding to having
sampled a waveform at a different rate from that actually used. (The previ-
ous example is a special case of resampling, where the output frequency is a
simple multiple of the input.) Again, this process could be made considerably
more economical if the input sequence is oversampled. These examples may
not solve any reader’s actual problem, but they may provide indications of
how to do so, in particular with the simplification and clarity given by the
rules-and-pairs approach.
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Equalization

7.1 Introduction

In this chapter, we consider the problem of compensating for some known
frequency distortion over a given band. One source of distortion is an un-
wanted delay and the resulting distortion is a phase variation, that is linear
with frequency. This particular case, of delay mismatch, was the subject of
Chapter 6 and the method of correction, or equalization, used in Section 7.5
here is basically the same as in Section 6.3. However we are also concerned
with other forms of frequency distortion, so in this chapter the approach is
more general and amplitude variation over the band is also included. In order
to do this, a new Fourier transform pair is introduced in Section 7.3, the
ramp function, which is a linear slope across the band, and its transform, the
snc; function, which is a scaled first derivative of the sinc function. In fact,
a set of transform pairs is defined. These are the integer powers of the linear
variation across the band (ramp’) and the scaled derivatives of correspond-
ing order of the sinc function (snc,). The sinc and rect functions are seen to
be the first (or zeroth-order) members of these sets. With these results, any
amplitude variation, expressed as a polynomial function of frequency across
the band of interest, has a Fourier transform that is a sum of snc, functions. A
simple example of amplitude equalization is given in Section 7.4.

The method of equalization outlined in Section 7.2 is based on mini-
mizing a weighted mean squared error across the band. The error at each

175
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frequency is the (complex) amplitude mismatch between the equalized re-
sult (normally imperfect) and the ideal, or perfectly equalized, response. The
weighting, as in Section 6.3, is given by the spectral power density function
of the signal. This has the advantage that the equalization will tend to be best
where there is most signal power and hence the effect of mismatch would be
the most serious. If no weighting is required (e.g., if the signal spectrum is to-
tally unknown and uniform emphasis across the band is considered most ap-
propriate), then we simply replace the spectral function by the rect function.
It is not likely that the spectrum needs to be accurately known and specified
in practice, as a reasonable approximation to the spectral shape will give a
result close to that given by an exact form and considerably better than the
rather unrealistic unweighted (or constant) shape defined by the rect func-
tion, which gives full weight up to the very edges of the band, where normally
the signal power will have fallen to a negligible level. Thus, as in Section 6.3,
simplifying the spectrum to one of a few tractable forms should be satisfac-
tory. Suitable forms to choose from include the normal (or Gaussian) shape,
the raised cosine, or the (symmetric) trapezoidal shape.

In Sections 7.6 and 7.7, we apply the theory given in Sections 7.2 and
7.3 to a specific problem, that of forming broadband sum and difference
beams as required for radars using monopulse. We take the simple example of
a 16-element regular linear array to illustrate the application. It would not be
difficult to extend the problem to larger, perhaps planar (two-dimensional)
arrays—this would increase the number of channels to be equalized, each
with its own compensation requirement, but the actual form of the equaliza-
tion calculation is essentially the same in each case, with different parameters.
Thus, although this simple array may not be particularly likely to be used in
practice, it is quite adequate to illustrate the benefit of equalization in this ap-
plication, showing a striking improvement obtained with quite modest com-
putational requirements, given a moderate degree of oversampling.

The radar sum beam (i.e., its normal search beam, giving maximum
signal to noise ratio) requires only delay compensation, and this could be
provided for each element by the results of Section 6.3. However, Section 7.6
includes results for the full array response with equalization, not considered
in Chapter 6, and also provides an introduction to Section 7.7, where the dif-
ference beam is considered. This beam, one form of which can be defined as
a derivative (with respect to angle) of the sum beam, is used for fine angular
position measurement. The required form should have a zero response in the
radar look direction, for which the sum beam response is a maximum. For
this example, we carry out equalization in each channel in amplitude as well
as phase, and the results of Section 7.3 are now required.
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1.2 Basic Approach

The problem to be tackled is that of compensating for a given frequency-
dependent distortion in a communications channel, as illustrated in Figure
7.1. A waveform » with baseband spectrum U is received with some chan-
nel distortion G, such that at (baseband) frequency f the spectral compo-
nent received is G(f)U( f') instead of just U(f). The signal is then passed
through a filter with frequency response K( ) such that the output spectrum,
K(f)G(f)U(f), is close to the undistorted signal spectrum, U(f'). Clearly
the ideal required filter response at frequency fis simply K( /) = 1/G(f'), but
in practice this filter may not be exactly realizable (e.g., if it is a finite impulse
response digital filter, except in the unlikely case that K consists of a set of
O-functions corresponding to a number of delays at multiples of the sampling
interval). In this case, we design the filter to give a best fit, in some sense, of
K(f)G(f)U(f) to U(f) over the signal bandwidth. In fact the fit we choose
is the least squared error solution, a natural and widely used criterion that has
the advantage of yielding a tractable solution, at least in principle, and this is
found to require the application of Fourier transforms. In order to compen-
sate for G, we need to know the form of this function. This may be known
from the nature of the system, as in the application in Sections 7.6 and 7.7,
or a reasonable estimate may be available from channel measurements. In
Figure 7.1 we show the incoming signal on a carrier, at frequency f;, which is
generally the case for radio and radar waveforms. This is down-converted to
complex baseband (often in more than one mixing process) and, we assume,
digitized for processing, including equalization and detection.

The amplitude error between the filter output and the desired response
in an infinitesimal band &f at frequency f'is given by (K(f)G(f)U(f) —
U(f))6f; so the total squared error is

[~ [k(rcen -1 o) 4 (7.1)

G(f)U(f)

Channel
distortion

G(f

Equalization KA G(AUH

U(ﬂesz“t .
filter K(f) — U

Figure 7.1 Equalization in a communications channel.
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We note that as the signal spectrum U is included in the error expres-
sion, we will actually perform a weighted squared error match of KG to unity
at all frequencies (the “equalized” solution), where the weighting function
is the spectral power density function of the signal. This means that more
emphasis is placed on compensating for distortion in regions where there is
more signal power, which is generally preferable to compensating with uni-
form emphasis over the whole band, including parts where there may be little
or no signal power.

The equalizing filter is of the form shown in Figure 6.1 or Figure 6.16,
and if the filter coefficients are given by v, for delay 77, where 7 is the sam-
pling period, then the impulse response of the filter, of length 27 + 1 taps, is

n

ko)=Y v,8(—rT) (7.2)

r=—n

and its frequency response is the Fourier transform of this, which is (from

P1b and R6a)

K(f)=" vy exp(=2mirfT) (7.3)

r=—n

Thus, we can put

K(HG(F)-17 =( > v, *expinf T)G*( f)—l]

r=—n

x[ i v exp(2misf TYG(f) — IJ

s=—n

(7.4)

= i i U,*v;ezm(r_s)fT ‘G(f)‘z —2Re 2" vr*ezmrfTG(f)* +1

r=—ns=-n r=—n

The error power that is to be minimized, as a function of the weight
vector v (where v=[v_,v ;. ...v,]"), is given from (7.1), on substituting

for KG -1 from (7.4) by
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2= [T IKOGH -1 df =33 0 vl 2R Y 0, 0, + ¢

where the summations are from —# to n. In vector-matrix form, this
becomes

p(v) =vIBv - 2Re(v!!a) + ¢ (7.5)

where the components of a and B are given by

o= GH U ) 2T 4f (7.6)

and

b= [ |GOP OGP 27T g, 7.7)

and c is [|U(f)]2df We can normalize the error power relative to the signal
power by dividing by ¢ or, equivalently, by normalizing U so that ¢ = 1; we
will take this to be the case. We note that (7.6) and (7.7) are in the form of
inverse Fourier transforms. If p(#) and G(f)*|U(f')|* are a Fourier pair, and
so are P,(2) and |G(F)|*|U(f)|? then from (7.6) and (7.7) we have

a,=p1(rT) and b, =p, ((r —:)T) (7.8)

Here 7 is the sampling interval, so if there is oversampling by a factor ¢

we have 7= 1/¢F. As in Section 6.3 we differentiate p in (7.5) with respect to
v to find that the mismatch error is minimized at v, given by

vo=B"a (7.9)

and the minimum (normalized) squared error is

p(vp) =1-a"Bla=1-ally, (7.10)
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We note that a”'B'a is real as, from (7.7), B is Hermitian (i.e., &, =
b,*). Thus, in order to find the tap weights for the equalization filter that
are optimum (in the sense of giving least squared error), we need only |U}?,
the power spectrum of the signal and G, the complex channel response, and
then we perform the Fourier transforms defined in (7.6) and (7.7) to give
the components of a and B, followed by some simple matrix processing. The
derivation of a and B in the case of a simple delay mismatch has been given
earlier in Section 6.3, but the cases of frequency-dependent amplitude mis-
matches as well are considered in Sections 7.4 and 7.7. The delay mismatch
is a linear phase dependence on frequency, but we do not go on to cover the
case of nonlinear phase correction, as the Fourier methods illustrated here are
less convenient for handling phase functions rather than amplitude functions
(which are normally, but not necessarily, real).

To summarize the method for equalization:

1. We need an expression for the distortion as a function of frequency,
G(f), and an expression for the spectral weighting across the band,

|U(£)]?, which is taken to be zero outside the signal band.

2. We obtain the functions of time p;(#) and p,(?) as the inverse
Fourier transforms of G(f)"|U(f)|* and |G(£)|*| U(f)|? to obtain
the components of a and B as in (7.8), where 7 is the sampling
interval and filter tap spacing.

3. The optimum weight vector for the FIR filter is vy, given by (7.9).

A number of comments may be made on the rather concise summary
here:

(a) If the distortion is given by (or approximated as) a polynomial func-
tion, often, but not necessarily, of low order (linear or quadratic),
then the ramp and snc functions introduced later (and given as P13a
and P13b in the pairs table) are generally necessary for the solution.

(b) In the simplest case, we take |U(f)|* to be rect( f/F). This corre-
sponds to no weighting across the band and will give a useful degree
of equalization.

(c) For some functions G and |U[? the products G'|U|? and |GJ*|U}?
may not be easy to transform. If their separate transforms are obtain-
able, then the convolution of these will give the required transforms
of the products, by R7b. If |U]* can be approximated as a raised

cosine function, then, as its transform includes three J-functions
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(see Section 3.6), this should give a solution in terms of the trans-
form of G. If it is approximated as a trapezoidal (or triangular)
shape, then the approach will be to split the transform into three
(or two) intervals in the frequency domain.

7.3 ramp and snc, Functions

Although the function G, describing the channel frequency response that is
to be compensated, may be defined over the whole frequency domain, we are
interested only in its form in the frequency interval containing significant sig-
nal energy. If, as we have generally assumed, the signal is limited (after down-
conversion to complex baseband) to the band (—£/2,F/2), then it will make
no difference in the Fourier transform integrals of (7.6) and (7.7) if the func-
tion rect(f/F) is included, as the factor |U(f)|* is taken to be zero anyway in
the region outside the signal band. (We do not want to optimize the response
over a band greater than that of the signal. This solution will generally be
suboptimal for the given signal.) Thus, if we consider first the case where G'is
a linear function of frequency, to avoid the problem of the function G(f) =
af'+ b being unbounded as f— Feo, we can take, more conveniently, G(f) =
(af + b)rect(f/F). In order to handle polynomial functions of this kind, we
introduce the function ramp defined by

ramp(x) = 2xrect(x) (7.11)

and this is illustrated in Figure 7.2, with its squared and cubed forms.

Thus, ramp(x) = 2x on —1/2 < x < 1/2, and ramp(x) = 0 for x < —1/2
and x > 1/2. For completeness, we can take ramp(£1/2) = £1/2. As the rect
function has the property rect’(x) = rect(x), we see that

ramp’(x) = (2x)'rect(x), (7.12)

so that we can express a polynomial in x on the interval (-1/2,1/2) as a poly-
nomial in ramp(x):

(ag+ ayx + ax*> + . . Jrect(x) = gyramp®(x)
+ (a,/2)ramp(x) + (a,/4)ramp?(x) + . . . (7.13)

To find the Fourier transform of ramp, we use rule R9b:

—2mixu(x) < U'(y) (7.14)
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_

Figure 7.2 ramp functions.

where u(x) & Ul(y) and the prime denotes the derivative. If we define V{y) as

Uy), with inverse Fourier transform »(x), then, from (7.14), v(x) = —2mixu(x)

and also, by Rule 9b, —2mixv(x) < V’(y). Substituting for v and V gives
(2mix)*u(x) & U(y)

and, in general, for any positive integer 7,

(=27wix) u(x) < UV () (7.15)
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where U is the rth derivative of U. Now putting #(x) = rect(x) and U(y) =
sinc(y), from Pair 3a, then substituting in (7.15), we obtain

(—70)"(2x) rect(x) < sinc”)(y) (7.16)
If we introduce the notation

7

snc,(y) = —— (sinc(y)) (7.17)
'’ dy
then, from (7.12), (7.16) becomes
ramp’(x) < 7’snc,(y) (7.18)

(Equation (7.18) is Pair 13a in Table 2.2.) We note, from (7.12) and (7.17)
that we can write, formally,

ramp’(x) = rect(x) and sncy(y) = sinc(y) (7.19)

From (7.17), carrying out the differentiation, we find

cos(1y) —snco(y)
Ty

sncy(y) = (7.20)

This holds for all real values of y except for y = 0, so we define snc,(0) = 0,
(the limiting value of snc(y) as y — +0 and y — — 0) to ensure that snc, is
continuous and, in fact, analytic. Differentiating again we obtain

2sncy(y)
771_ (7.21)

snca(y) = :C&ZISHCI()/) =—snco(y) —

with snc,(0) = —1/3, obtained by taking the first two terms in the Taylor
expansions of the functions sinc and cos with y — +0, or see (7.27). These
three functions have been plotted in Figure 7.3. We note that the even
order snc functions are even functions and the odd ones are odd functions.
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The peak magnitude (positive or negative) of the functions falls as the order
rises.

We note that unlike (7.20), (7.21) contains all the trigonometric func-
tions in snc functions only. By differentiating further, using (7.17) we can
obtain a recursion formula, of which (7.21) is the first example, from which
higher-order snc functions can be found:

_ msnc,1(y)+ (= 2)snc,—3(y) (n>2) (7.22)

snc,(y)+snc,—2(y) = -

By expressing sin(7x) in its Taylor series form and differentiating term
by term for snc; and snc,, we find, for the first three snc functions,

_ o D=y
Ne ey (y) = ;W’ (723)

oo n 2n—1 oo n 2n—1
snci(y) = 2(_1) 2u(my)™ " D" 2n(m) (7.24)

=0 (2n+1)' n=1 (2ﬂ+1)'
snes(y)= 3 CY 228 =Dy 725
Y n=1 2n+1)! .

(The 7= 0 term is dropped in (7.24), as it is zero. The next term dropped is
for n =1 in snc;, which contains the factor 27 — 2.) In general we can put

oo (—1)” 27[!(7[}/)2”_7 .
”=L(rz+‘;)/2j Q2n=7)!2n+1)! (7.26)

sne, () =

where | p] is the highest integer in p, so | (#+1)/2 | = (r+1)/2 for 7 odd and
| (¥ +1)/2]=7/2 for r even. The even-order series contain only even powers
of y and so are even functions, and the odd series contain only odd powers
and are odd functions. Thus, for all the odd-order snc functions, we have
snc,(0) = 0, while from (7.26) we see that for » even, say » = 2s, when y =0
the only nonzero term is the first, for which 7 =7/2 =, so that
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(-1)°2s!  (~1y
0!(2s+1)! 25+1

sncy,(0) = (7.27)

We note that cosc has been used elsewhere to mean the derivative
d(sincy)/dy, which would equal 7snc,y as defined here. It seems that the de-
rivative with the factor 1/ included, as in (7.17), is more consistent with the
sinc function, as this derivative (and subsequent ones) can all be written as
power series in 7ty as in (7.23) to (7.26).

A MATLAB program for evaluating snc, functions (including snc,
or sinc) is included in the disk provided with this book. It uses (7.22) for
n>2.

1.4 Example of Amplitude Equalization

It has already been remarked that the problem of delay equalization as con-
sidered here has been covered in Section 6.3 under the subject of sampled
waveform delay, so no further illustrations are given here. However, the sub-
ject of amplitude equalization has not been illustrated before, so an example
using the results of Section 7.3 is presented in this section, showing how ef-
fective the method is and with how little computation it is achieved if there
is a degree of oversampling. We take the simple case of a linear amplitude
distortion, with an unweighted squared error function over the bandwidth
(equivalent to a rect function power spectrum). Following the program given
at the end of Section 7.2, we note

1. The response to be matched is of the form G(f) =1 + af over
the bandwidth (taken to be unity), and the weighting function is
|U(f)]* = rect(f) [or rect( f/F) with F=1].

2. Thuswe have G(f)'|U(f)|* = rect(f) + (a/2)ramp( f) with inverse
transform sncy(2) — i(a/2)snc, (). Also |G(f) 2| U(f)|* = rect(f)(1 +
2af+ a*f?) =rect(f) + aramp( f) + (a*/4)ramp*( f), with transform
sncy(#) — zasnc,(¢) — (a*/4)sncy(?). Putting ¢ values 77and (r —s) 7 for
¢ into these expressions gives a and B.

3. Hence, we obtain the optimizing weights from (7.9).

We see that the Fourier transforms of G required for the components
of a include a transform of the ramp function (i.e., a snc; function) as well
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as a sn¢, from the rect function. As we require the transform of G*(f) to
determine the elements of B, we also have a ramp? function, with its trans-
form snc,. There is an important detail to notice in that they are actually 77-
verse Fourier transforms that are required—see (7.6) and (7.7). In many cases
(using symmetric functions, in particular), there is no distinction between
forward and inverse transforms, but here we have odd functions (ramp and
snc;). We see from (7.18) that ramp” (forward) transforms to #’snc, so, from
Rule 4, we have 7’snc,(x) < ramp’(—y) = (- 1)’ramp’(y), as ramp is an odd
function. Multiplying by —#’, we have (Pair 13b) snc,(x) < #ramp’(y).

From this we see that the inverse transform of ramp is —isnc; and of
ramp? it is —snc,. These results are also used in this sum beam equalization in
Section 7.6 and in the difference beam equalization in Section 7.7.

For Figure 7.4 we have taken a linear amplitude distortion for G(f")
of 10 dB across the band, from an amplitude of 0.48 to 1.52. Using a
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Figure 7.4 Equalization of linear amplitude distortion. (a) m=7, g=1,(b) m=17, g=1.5,
(c) m=47,g=1,and (d) m=7, g=1.5, delay 0.5.
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seven-element equalizing filter and a relative sampling rate of 1 (no oversam-
pling), we get a useful degree of equalization (Figure 7.4(a)), using (7.6), (7.7)
and (7.10). The figure shows the filter response K, which should ideally be
the reciprocal of G over the band, as well as the equalized response, KG. If we
increase the oversampling rate to 1.5, or 50 percent oversampling, the equaliza-
tion becomes very good (Figure 7.4(b)). To get a comparable ripple performance
at the basic sampling rate, we see that we have to increase the number of filter taps
greatly—even at 47 taps (Figure 7.4(c)) the ripples are greater; the higher ripple
frequency is due to the much greater time spread of the taps in this case.

Finally, for Figure 7.4(d), there was both amplitude variation and delay
to be compensated. The same linear amplitude function was taken, with a
delay error of 0.5 sampling interval, and the filter parameters are as for Figure
7.4(b). In this case, the functions have some residual phase variation so the
modulus has been plotted, and we see that this has been very well equalized
within the band—almost identically with the case of no delay error—but var-
ies significantly (particularly on the positive frequency side) outside the band.
The phases of K, G, and KG are also available from the program and show the
phase has been accurately equalized (to zero) across the band.

The results of Figure 7.4 can be reproduced using MATLAB programs
Fig704 and Fig704d on the accompanying disk, but this also contains an extra
program Fig704X, showing excellent equalization of a quadratic amplitude
distortion. In this case, the components of a, depending on G, the quadratic
distortion, require snc, (or sinc), snc;, and snc,, but the components of B,
dependent on G2, also require values of snc; and sncy, making considerable
use of the program snc included on the disk. Again, oversampling is valuable
in giving good performance from quite short filters.

1.5 Equalization for Broadband Array Radar

Many antennas for use in radio, radar, or sonar systems consist of an array
of simple elements, rather than, in some radio cases, a single element, or, for
radar and satellite communications, a large parabolic dish or even an expo-
nential horn. For maximum signal-to-noise ratio (whether on transmission or
reception) in a particular direction, the signals passing through the elements
must be adjusted in phase so that they sum in phase at the frequency of op-
eration. Of course, in practice all signals occupy a finite bandwidth so that
in principle different phase shifts are needed across this band, as it is really
a time difference, dependent on element position, that needs compensation.
However, many signals are narrowband, in that the fractional bandwidth,
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the ratio of the bandwidth to the center, or carrier, frequency is small. In this
case the phase shift required across the band is close to that at the center fre-
quency, and, as it is much easier to apply a simple (frequency-independent)
phase shift than a delay, this approximation can be used. Whether or not
this approximation is acceptable in a given system depends not only on the
fractional bandwidth, but also on the size, or aperture, of the array. Thus,
narrowband is a relative term, and perhaps the most appropriate definition
of a narrowband signal in this context is that it can be termed narrowband
if ignoring its finite bandwidth leads to negligible, or practically acceptable,
errors. Conversely, a broadband signal as defined here is one where this is not
the case, and allowance, or compensation, must be made for the different fre-
quencies across its bandwidth to maintain the required performance. (There
seems to be no standard definition of these terms, but this qualitative defini-
tion seems to be clearer in some ways than a quantitative one; for a very small
array a 5 percent band may be “narrow” in this sense, while a 1 percent band
may be “broad” in the context of a very large, and hence highly frequency-
sensitive, aperture. We will use wideband for the case where the band of inter-
est extends down to 0 Hz; this is the same as the 200 percent broadband case
and is consistent with the use of the term in Section 5.3.)

The problem is illustrated in Figure 7.5 for a simple linear array. An ele-
ment at distance  from the center of the array receives the signal from direction
0, relative to broadside, at time 7 earlier than at the reference point, given by

7(6) = dsinb/ ¢ (7.28)

where ¢ is the velocity of light. Thus, in principle the output of this element
should be delayed by 7(6) to steer the array in direction 6, but, as phase shifts

Reference point d element

9(6)

Figure 7.5 Array steering.
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are much more easily implemented than delays, it is usual, using the narrow-
band condition, to introduce the phase shift

#(0) =2nf,7(6) = 27(d/ A()sinO (7.29)

Here f; is the center frequency, A, is the corresponding wavelength
(such that fjA; = ¢), and 4 is the distance of the element from the reference
point. (More generally, if the element position vector is r, and the unit vector
in the direction of interest is e(0,€) for azimuth ¢ and elevation €, then the
required phase shift to steer in direction (o) is 27r.e(,€)/ Ay, where r.e is
the scalar product of these vectors). This phase shift is correct at the center
frequency but is progressively in error for signal components at frequencies
offset from the center, and for the broadband case, where this approximation
is not acceptable, we need better matching of the delay.

Summing the element outputs in phase produces the peak response in the
steered direction, and this form of response is known as the sum beam. (Strictly
this is only the array factor; for the full response, this is multiplied by the ele-
ment response, in the case of essentially identical elements). For high angular
accuracy in radar a technique known as monopulse measurement is used. This
requires a difference beam, which ideally has zero gain in the look direction,
and a linear amplitude response near this direction. The angular offset of a
target from the look direction is found by observing the level of its echo in the
difference beam (normalized by the sum beam response) and dividing by the
known slope of this beam. One form of difference beam, in the case of a regular
linear or planar array, is obtained by dividing the array into two equal parts and
subtracting the responses of the two halves (hence the origin of the name), but
an alternative approach, which allows a difference beam to be formed with a
more general geometry, is to form a beam that is the angular derivative of the
sum beam. The form that will be considered in Section 7.7 is based on this.
(We note that as there is no unique form of sum beam, as beams with different
sidelobe patterns may be used, for example, so there is no unique form of differ-
ence beam. Thus, in Section 7.7 we define a suitable difference beam, basically
as the derivative of the sum beam without the extra frequency sensitivity.)

7.6 Sum Beam Equalization

To steer a narrowband sum beam, we apply to the output of each array ele-
ment a phase shift, corresponding at the carrier frequency to the relative delay
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that is to be compensated. To steer a broadband sum beam, we need only
to replace this simple phase shift by the delay itself. In fact, it is not easy in
practice to provide flexible delays at RF, as would be required for a beam to
be steered freely in various directions, but, for arrays with digital processing,
we can provide a very close approximation to the required delays using the
methods discussed here, which can be implemented rapidly. In fact, as the
processing is carried out at baseband, after down-conversion and digitiza-
tion, the delay is implemented at baseband. The phase shift on the carrier
is still required and can be applied either at the RF stage, as for the narrow-
band application, or digitally, after down-conversion, but is independent of
the equalization process. For the sum beam, considered here, the channel

equalization is a simple delay, which can be approximated by the methods

of Chapter 6 so this application of equalization requires essentially no new
ideas. However, we show the benefit of this equalization with the example of
a simple array, and in the next section we consider the equalization for the
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Figure 7.6  Array response with narrowband weights.
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difference beam, which is more complex and uses the results of Sections 7.2
and 7.3. We illustrate this using the same array and signal spectrum.

The system we model is a 16-element linear array of omnidirectional el-
ements at half-wavelength spacing operating at 3000 MHz. (More generally,
the elements need not be omnidirectional, but should be similar, should be
orientated in parallel, and are taken to be frequency independent.) The actual
frequency is not particularly significant; what is more important are the rela-
tive frequencies. To illustrate the problem, Figure 7.6 shows the gain (more
precisely the array factor) at three frequencies, for the array when steered at
50° from broadside. The steering weights are the correct phases at the center
frequency, and this beam has its peak at the correct position. With the same
weights, the beams at the frequencies 200 MHz above and 200 MHz below
(at about £6.7 percent offset) are displaced in position. (This effect is known
as squint.) Thus for a broadband signal arriving from 50° and with the array
steered in this direction, there will be a variation in gain, with a fall of about
2Y2 dB at +200 MHz from the center frequency in this case and hence a dis-
tortion of the received signal.

Using the equalization method described in Section 7.2, we use (7.9) for
the weights on the FIR filter taps, where the components of a and B are given
in general form in (7.6) and (7.7). For this example, we take a symmetric
trapezoidal shape for the spectral power density, U, with a flat top 80 percent
of the full width of 500 MHz. The channel response requiring compensation,
or equalization (G in Section 7.2) is just that due to a simple delay, differ-
ent in each element channel, in general. For this delay equalization case, the
problem is the same as that considered in Section 6.3, and the components
of a and B are given more specifically by (6.47a) and (6.47b). The result of
implementing this delay equalization is shown in Figure 7.7. Responses for
the same set of frequencies as in Figure 7.6 are shown, with those at £200
MHz being toward the edges of the 500-MHz band (at the corners of the
trapezoidal spectrum, in fact). We see that the squint has been removed effec-
tively, with the main lobes of the responses at the three frequencies virtually
coincident, though the sidelobes have risen slightly in Figure 7.7(b).

Two processing alternatives are shown; in Figure 7.7(a) only five taps
are used for each delay, with an oversampling rate of 1.2, or 20 percent above
the minimum rate, and in Figure 7.7(b) only three taps are used, but the sam-
pling rate increase has been raised to 50 percent. The difference is small, with
the three-tap responses slightly poorer, but on raising the oversampling factor
to 2, the performance with three taps is much the same as with five at 1.2.

In fact, if we reduce the taps to two we still get good equalization with g4
raised to 5. Taking this further, if we take 72 =1 (i.e., with no FIR filters), we
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get a useful degree of compensation by oversampling (with the least squares
processing)—with ¢ =2 the main lobes are close, but the sidelobe patterns are
considerably degraded and the gain is reduced by about %2 dB for the upper
and lower frequencies.

To study the response at the peak of the beam more closely, the gain in
the steered direction has been plotted in Figure 7.8 as a function of frequency



Equalization 195

normalized to the center frequency. The plots are for the case of five taps and
a 20 percent oversampling rate, as in Figure 7.7(a), and it can be seen that
there is only a slight variation with frequency—a rise of less than 0.2 dB and
a fall in gain at the very edges of the trapezoidal band taken, where the signal
power density is falling and the matching is not required to be so good. In
Figure 7.8(a), the vertical lines mark the edge of the 10 percent band over
which equalization is required, and the dotted curve shows the response in the
absence of equalization. In Figure 7.8(b) the parameters of the equalization
filters are the same, but the receiver bandwidth is now 200 percent, extend-
ing from zero to twice the center frequency. Again the dotted line shows the
frequency response without any equalization, and the dashed response is that
for the case of only integer delay compensation (in units of the sampling in-
terval). (In Figure 7.8(a) there is no dashed curve, as all the delays are within
+0.5 sampling intervals, so no integer compensation is feasible.) We note
that, with the same set of parameters, the response is essentially independent
of the fractional bandwidth—the shapes of the responses are virtually identi-
cal. In the second case, the sampling rate is much higher, of course; in this
case, as the bandwidth is 2f;, where f; is the center frequency, the sampling
rate is 2.4f;. To sample at this rate may be impracticable at radar frequen-
cies but may well be feasible for sonar, where broadband (or even wideband)
operation is much more commonly required and the actual signal frequencies
are much lower. We also note that the response with integer delay compensa-
tion in the wideband case is the same, in proportion to the bandwidth, as the
uncompensated curve in the narrower band case. This is because, in the latter
case, as all the matching delays required are less than one sampling interval,
the integer compensated case is the same as the uncompensated case.

The fact that these responses are very similar is not a coincidence, but
illustrates that the response is essentially independent of the fractional band-
width and depends only on how well the delays are matched. This depends,
for a given set of equalization filter parameters (7 and ¢) on how close the
required delays are to integer multiples of the sampling period. This will
vary, in general, from one element to another and will depend on the beam
steered direction and the element separation. In particular cases, the delays
required may all be integral, in sampling periods, in which case the match-
ing will be exact, in principle, and the response will be completely flat. At
the other extreme, the delays required may all be half-integral, which is the
worst case for matching. In general, however, there will be spread of delays,
and the performance will be intermediate. This is illustrated in Figure 7.9,
which shows the gain in the look direction as a function of frequency. Here,
the frequency axis is the frequency offset from the center, normalized to the
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bandwidth, so the range shown is just the band over which equalization is
required. For this figure, the parameters were chosen in order to include the
two extreme cases described earlier. The delay required for an element at
distance d from the array center is given in (7.28), and putting ¢ = fjA,, and
dividing by the sampling period 1/¢F, the required delay in units of sampling
periods is given by

B = (dl Ay)gsinO(FIfy) (7.30)

The element separation was increased to one wavelength, so that the
element positions are given as (27 + 1)/2 wavelengths (7 an integer from —8
to +7 for the 16 element array). The steer direction remained at 50°, but ¢
was increased to 1.3054 so that ¢sin50° = 1. The delay required (in sampling
intervals) for element 7 is then given, from (7.30), by (27 + 1)(F/2f;). If we
choose F'=f;, the 100 percent bandwidth case, we see that all the delays are
half integral (the worst case), while if 7= 2f], the 200 percent case, the delays
are integral and we have the flat response shown. The other curves are for
the cases of 10 percent, 20 percent . . . 90 percent bandwidths (707 giving a
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monotonic sequence of peak ripple levels, with some curves overlying others),
and because the fractional delays are distributed over the full range the results
for these cases are much the same and intermediate between the extreme
cases. These are also the same results as for bandwidths of 110 percent to 190
percent because it can be seen that for this case (where gsinf = 1) the results
for a fractional bandwidth F/f; of  and 2 — 7 will give the same result.

The effect of varying the equalization parameters is shown in Figure
7.10, for the 50 percent bandwidth case, and for the array separation of 0.5
wavelengths. In Figure 7.10(a), we fix the sampling rate at 1.2 or 20 percent
above the minimum and vary the number of taps 7 in the equalizing filters.
We note that even with three tap filters, the ripple in the center of the band
is quite small (less than 0.25 dB above the fully equalized level), but there is
a rather rapid fall in gain at the edges of the trapezoidal band, starting well
within the flat top region (from —0.4 to +0.4 bandwidths offset). As m in-
creases the response improves, and at 7 = 9 the gain falls off rather sharply
only outside the flat top of the signal spectrum. With 72 = 15 the equalization
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Figure 7.11  Effect of increasing oversampling rate.
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is excellent, with a gain ripple of only a few hundredths of a decibel. The filter
length has been kept at nine in Figure 7.10(b) and the relative sampling rate ¢
varied. With no oversampling (9= 1), the nine tap filters do achieve a consid-
erable degree of equalization, but there is a large ripple near the edges of the
band. This is rapidly reduced with oversampling, and at g = 2 the response is
almost perfect. (It should be remarked that these are nominal gain plots and
give an ideal figure of 12.04 dB for an array of 16 elements. They should be
corrected slightly if directivity is required, but any correction will generally
be small, particularly for larger arrays not steered too close to a grating lobe
condition.)

Finally Figure 7.11 shows clearly the benefit of oversampling. At the
minimum sampling rate, a very long filter is needed for effective equaliza-
tion—in this example, 101 elements are required (continuous curve) to give
low ripples in the response. If the sampling rate is increased to just 1.1, com-
parable ripples result at a filter length of only 21 (dashed curve), a reduction
of nearly five times in the computation required. Oversampling at 50 percent
(dotted curve) allows an improvement by a further factor of three to only
seven elements. For planar arrays with a large number of elements, typically
required for many radars, it could be important and valuable to keep the
complexity of equalization down to a modest level in each channel; in some
applications, with a moderate degree of oversampling, filters of length as low
as three or four may be adequate.

1.1 Difference Beam Equalization

We take the difference beam pattern to be given essentially by the derivative
with respect to angle of the sum beam pattern. We will use the “sine-angle”
coordinate #, where # = sin6, as this simplifies the following expressions,
particularly for the difference beam slope, but otherwise does not affect the
principles being illustrated. (In this form, the beam shape, plotted against
u, remains unchanged in shape as the beam is scanned.) Thus, in this sec-
tion we replace sin@ with #, where 0 is the look direction measured from
broadside, in particular in equations that use (7.28). If w(x) is the weight
applied to the output of element £ to steer in direction 6,, where #, = sin6,,
then the sum beam gain (array factor) is given, as a function of frequency
and angle, by
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gl ) = Y wp (o) exp27mif o4 (u) (7.31)
k

For narrowband steering, we take w(u) = exp(-2midfyuy/c) so that the
signals add in phase in the look direction 6, at the center frequency, f;. The
sum is over all elements and the signal delay 7, relative to the center of
the array is given by dju/c (from (7.28)), where the element is at distance 4,
from the array centroid, the mean element position, such that the sum of the
element positions measured from this point is zero.

We now want to define a difference beam pattern whose response in
angle is a derivative of the sum beam. The differential of this beam with re-
spect to #, is given, from (7.31), by

g(u, fiu9) = 2wk(uo)(Zm'fd/e/c)eprﬂifd/e ulc) (7.32)
k

In fact to define a difference beam, we do not need the factor f; we require
only the frequency-sensitive element delay compensation factors wy(u,) =
exp(—27ifdyuyl c), which allow the signals to sum in phase across the frequency
band. The element distances 4}, are weighting factors that result in zero gain
in the look direction with these weights applied. This set of weights {w;} is
the same as those required for the sum beam, so the same frequency com-
pensation is required on each element. Thus, excluding the factor fin (7.32)
and other factors independent of frequency, we define the required difference
beam response, within a scaling factor, by

h(u, fsuy) = Zw/e(uo )idy, exp2mifdy, ulc. (7.33)
k

However, for an ideal difference beam, we require its slope, with respect
to angle, at the beam pointing position 6, to be constant across the band, and
this is the derivative of / with respect to angle:

h(u, fiuy) = —Z wy (uo )y 270 f (dyplc) exp2rmifdulc
k

In this case we cannot remove the variable ffrom the expression because this
is not a definition of the slope but is a derivation from the pattern as defined
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in (7.33). Omitting the constant 27t/c we have for the difference beam slope,
within a scaling factor,

s(u, fup) = —Z wk(uo)d/ezf exp27ifdyulc (7.34)
k

In (7.34) fis a frequency within the RF band (i.e., f — FI12 <f<f, + FI2),
but if we now want to represent the gain pattern in terms of the baseband
frequency, we replace fwith f + f, where now we have —F/2 < f< F/2. With
this change, the response at baseband frequency f, after down-conversion
(which removes f; from the exponential factor), is given by

s(fous fo,m) = —Zwk(uo)(fo +f)a’/@2 exp2mifdy ulc
k

Rescaling by f;, we redefine s as

s(frus fo,m) = —Zwk(uo)(l + f/f())az’/e2 exp 27ifdy, ule (7.35)
k

This response varies with angle and frequency, but we require it to be
independent of frequency at the direction of interest, 6. Thus, excluding
constants with respect to frequency, we see that the frequency variation to be
compensated is now of the form

S(F) = (1+ ¢ FIF)exp 27if T(uo) (7.36)

where the delay 7, varies with the element position, and we have expressed
the function S in terms of @, the fractional bandwidth, F/f;.

Before putting this expression for S into (7.6) and (7.7) we note, as
before, that for the band-limited signal we effectively have a factor rect( f/F)
in |U(f)[% so multiplying S(f) by this rect function will make no difference
to the integrals in (7.6) and (7.7). Thus, we can replace S with

S L) (e £} Smn{ om0

Putting this into (7.6) and (7.7) in place of G gives
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o= J‘:(l + ﬁramp(];))U(f)z exp2mif (r T —7)df (7.38)

and

- 2
by = J_ (1 +9 ramp(g) + %rampz (J;]JU(f)z exp (27tz'f(r - S)T)df

(7.39)

Now let p,, p;, and p, be the inverse Fourier transforms of |U(f)[%
ramp( f/F)|U(f)|* and ramp?( f/F)|U(f)|?, respectively, and also let us put
7= (k+ )7, where —0.5 < $<0.5 and £ is integral. As before, we assume that
the delays are compensated to the nearest integer multiple 4 of the sampling
period by taking the appropriate sampled pulse train (e.g., from a shift register)

and that we only have to equalize the fractional parts using the filter. Introduc-
ing these, with B7 for 7, we see that (7.38) and (7.39) can be written

a, = pa((r=PB)T)+(¢/2)ps ((r=B)T) (7.40)

and

b = Pa((r=5)T )+ 9py ((r =T+ (9 1 D)p ((r=9T)  (7.41)

Now, for the trapezoidal spectrum we have (as in Section 6.3.2, equa-

tion (6.45))

‘U(f)‘zz 4 ( 2f )@rect( 2f ) (7.42)

1+a)1-af2 N\ a-aF 1+ a)F

Although the function rect( f/F) does not appear in this expression, the
spectral function would be unchanged on multiplying by this rect func-
tion, as the convolution of the rect functions in (7.42) has a base width of
(1-a)FI2+ (1 +a)F/2 = F, the same as rect( f/F). The rect function is unity
within the region where the trapezoidal function is nonzero and zero where
the trapezoidal function is zero. This justifies the statement (7.37) that this
rect function can be included in the integral and hence also with S.
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The Fourier transform of the power spectrum in (7.42) is (as in (6.45)):
Pa(t) =sinc((1— a)F¢/2)sinc ((1+ a) Frl2) (7.43)
To find p,, the transform of ramp( f/F)|U(f)|*, we see from (7.42) that

we require the product of the ramp function with a convolution of two rect
functions. Now, in general it is not the case that #(v®w) = (#v)®w, but in the
particular case where w is a 0-function at the origin, then, as d(x)®y(x) = y(x),
this relation is true (i.e., #(v®98) = uv = (uv)®J). In this case, where « is near
to unity, the smaller rect function (with the factor 2/(1—a)F, to make its inte-
gral unity) is near to a &-function, and we will make the small approximation
of rearranging the product with the convolution in the form

f 2 _ 4 2f
ramp(F)U(f ) 1+ a)(1-a)F? recr((l—a)F]

®ramp(f )m( C2f ) (7.44)
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204 Fourier Transforms in Radar and Signal Processing

1 1 1 4

(1:a)2
X = /

_/:'/2 0 f2 —(1+alF 0 (1+a)F §—1+3F (1+a)F

ramp(f/F) rect(2f(1+a)A ((1+a)/2)ramp(2£/(1+a) F)

Figure 7.13  Product of ramp and rect functions.

Figure 7.12 shows the scale of the approximation. The lowest trace
(dotted) is the straight line of the falling edge of the trapezoid, which results
if we take a &-function instead of the factor (2/(1 —a)F)rect(Zf/(l —ﬂ)F).
The highest trace (continuous) is a shallow quadratic given by the product of
the trapezoid edge with the ramp function over this interval and is the correct
shape. The middle trace (dashed), an even shallower quadratic, corresponds
to (7.44), the result of convolving the narrow rect function with the product
of the ramp function with the wider rect function, which is illustrated in
Figure 7.13. (It can be shown that the middle trace is in fact halfway between
the other two.) The differences are seen to be very small. With different spec-
tral shapes, without convolutions, such as the raised cosine or Gaussian, this
problem does not arise.

We now consider just the product of the ramp function with the wider
rect function. As the rect function is narrower than the ramp function, the
product is smaller than the unit ramp function, which reaches values of +1
and —1 at its edges. The result, as illustrated in Figure 7.13, is a scaled ramp
function; the scaling factor is the relative width of the rect function, which is
(1 + a)/2. The spectrum to be transformed is thus

f 2 4 (1+a) 2f 2f
ramp(F)U(f) T Q+a)(-aF 2 ramp((l+a)F)®reCt((l—a)F]

(7.45)

and its inverse transform is, using P13b (and P3b, R5):
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py(t)=— ( ! -|2— 4 ) sncy ( a +§)Ft ) sinc( a _;)FtJ (7.46)

Finally, for p. the function to be transformed is ramp?( f/F)|U(f)|*,

and (again making the small approximation by rearranging the expression)
we can see that the product of ramp?( f/F) with rect(2f/(1 + a)) is (1 + a)/
2)*ramp*(2f/(1 + a)), and, again using P13b, the transform is given by

2
p.(t)= —(1—54) sncy ((1 +;)Ft ) sinc( a _;)th (7.47)

Using (7.43), (7.46), and (7.47) to substitute for p,, p;, and p, in (7.40)
and (7.41) and also putting F7'= 1/g, as the sampling interval is the recipro-
cal of the (oversampled) sampling rate gF, we obtain

a, = snco(al)(snco((xz) —i a +4a)¢) sncl((xz)) (7.48)
and
by = SnCO(ﬂl)[SnCo(ﬂz) LTS +1‘2 ? nc (ﬂz)]
(7.49)
where
oy (=00=B) , _(+00=p) g (=0)r=)
29 29 29
A+ a2)(r—s)

dp,=
and f3, 2

Using these expressions for the components of a and B, we compute the
weights of the equalization filters for each element and then plot the difference
beam patterns, in Figure 7.14, corresponding to the sum beam patterns of Fig-
ures 7.6 and 7.7(a). In this case, however, we plot the linear response with angle
(rather than the logarithmic power response) in order to show the response pass-
ing through zero at the required angular position. The parameters for the equal-
izing processing are the same, using five tap equalizing filters with oversampling
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by 20 percent, except that the trapezoidal signal spectrum now has a flat top of
90 percent of the bandwidth. (This makes the approximation of the convolving
narrow rect function nearer to a 6-function, in fact.) We have also taken a rela-
tive bandwidth of 100 percent (i.e., equal to the center frequency), though Fig-
ure 7.8 shows that the relative bandwidth has very little effect. Again, we see that
equalizing has been highly effective. We note that although a and B, used in
the process (with components given in (7.48) and (7.49)) are complex, the gain
is real to a high degree of accuracy; this is because the response to be matched
is real. Figures 7.14(a) and (b) are the difference beams equivalent to the sum
beams of Figures 7.6 and 7.7(a). Figures 7.14(c) and (d) show the regions round
the look direction (50°) in more detail, and we see that the difference beam
gains (of zero) and slopes at this point have been matched accurately.

As before, we look at the response in the steered direction as a function
of frequency; in this case, we require the gain in this direction to be zero and
the slope to be constant. The variation of gain over the normalized bandwidth
at baseband is shown in Figure 7.15, for the same parameters as for Figure
7.14. We first show the gain in linear form in Figure 7.15(a). The unequal-
ized response in the look direction, as a function of frequency, is rather simi-
lar to the response as a function of direction, at the center frequency, shown
in Figure 7.14. The fully equalized response is excellent, rising slightly just
at the edges of the band. Integral equalization only (the dotted curve) gives
a considerable improvement on the unequalized response but is still much
poorer than the fully equalized case. Figure 6.15(b), showing the power re-
sponse in decibels, also illustrates these points.

Neither Figure 7.15(a) nor (b) shows clearly how well the gain has been
kept near to zero in the look direction across the band. Changing the scale,
in Figure 7.15(d), shows that the gain ripples are more than 55 dB below the
peaks of the difference beam response, and this is with only five tap filters and
oversampling at 20 percent. Increasing either of these will reduce the ripple
level to lower values, as shown in Figure 7.15(d), where there are seven taps
and 50 percent oversampling, giving ripples about 10 dB lower in the band
center. We note that the ripple pattern is not symmetrical about the look di-
rection. In fact it would be so if we had performed optimum equalization of
the difference beam, which requires only delay compensation, rather than its
slope. In this case, we have equalized the pattern slope, which requires com-
pensation for both delay and the amplitude variation with frequency seen in
(7.35), and as this amplitude rises with frequency the compensation factor
(like K'in Figure 7.4) falls, and we see that the ripples on the higher frequency
side in Figure 7.15(c) and (d) are indeed smaller than the corresponding ones
at lower frequency.
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Figure 7.17 Difference beam slope, 20 percent bandwidth.

Finally we show, in Figure 7.16, the equalized slope for the two sets of
filter parameters used in Figure 7.15. Figures 7.16(a) and (b) show the dif-
ference between the unequalized and equalized responses. We see that the
equalization has been remarkably effective. The equalization using only inte-
gral delays gives a considerable improvement, but is still far from adequate. It
is slightly better with the higher sampling rate used in Figures 7.16(b). The
nearly flat equalized responses are shown amplified in Figures 7.16(c) and
(d). In the first case, the total variation is just under a decibel, but with the
slightly longer filter and greater sampling rate, it is only about 0.15dB (except
at the band edges, where the signal power is falling rapidly).

It should be emphasized that Figures 7.15 and 7.16 are for the case
of 100 percent bandwidth—the bandwidth is equal to the center frequency
(e.g., 100 to 300 MHz). As pointed out following Figure 7.9, the fractional
bandwidth is not very significant, except that, of course, as the actual band-
width increases the sampling rate rises correspondingly, so that while it may
be possible to achieve equalization over remarkable fractional bandwidths in
principle, in practice there may be difficulty sampling fast enough (and over-
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sampling, while highly desirable, will increase this difficulty). If we consider
different bandwidths, we see that the initial equalization problem is differ-
ent. Figure 7.17 shows the difference beam slope in the case of 20 percent
bandwidth (e.g., 180 to 220 MHz). We see that there is less sensitivity (fewer
lobes) in the unequalized response, but the equalized result is comparable. If
the fractional bandwidth is small enough, (e.g., 1 percent) the unequalized
response may be flat enough for equalization not to be necessary, of course,
and this is when the narrowband solution is adequate.

7.8 Summary

In this chapter, we have looked at equalization of both linear phase varia-
tion (due to delay error) and polynomial amplitude error across the band
of interest. In the latter case, we saw that the amplitude response requiring
equalization could be expressed as a sum of ramp functions. The equalizing
weights that minimize the weighted mean square error across the signal band
are found as the solution of a matrix equation, the components of which
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Figure 7.18 Sum beam gain with frequency sensitive elements.
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are values of the Fourier transforms of the distorted responses. Thus, for the
amplitude distortions, we require the transforms of the ramp functions, and
these are found to be derivatives of the sinc function. Including the ramp” —
snc, pairs in the set of transform pairs we now have the tools for carrying
out effective equalization for a range of problems without having to perform
explicitly any integration whatever.

After showing that the method is successful in a single channel, includ-
ing compensating for both amplitude distortion and delay mismatch, the case
of forming sum and difference beams using an array was taken. Very effective
equalization indeed was found to be possible, and, as shown in the interpola-
tion study of Chapter 5, quite short equalization filters are adequate for high
performance, if there is some degree of oversampling. This does not mean
sampling at several times the minimum rate but typically at only 20 percent,
or 50 percent higher. Only a simple array, of 16 elements in a regular linear
configuration, was taken, but the method is general and is also applicable to
much larger arrays and arrays of different configurations, such as regular or
irregular, planar or volume arrays. Each complex digital channel (whether fed
by a single element or a subarray) has a delay and amplitude response that
requires equalization, and the process is the same however the elements are
distributed.

In the example, the elements were taken to be frequency independent,
so the sum beam equalization required only delay compensation. However,
for the difference beam slope, it was found that linear amplitude compensa-
tion is required as well. If the elements were frequency-sensitive, then the
equalization could be made to include this effect as well. We illustrate the
case of element amplitude sensitivity (taken to be proportional to frequency
at RF) on the sum beam in Figure 7.18. We note higher lobes in the unequal-
ized response at the higher frequencies due to the element responses (and
also the similarly asymmetric partially equalized response), but the equalized
response is flat to a high degree of accuracy, with only five taps for the delay
filters and oversampling at 20 percent.

Finally, we noted that the effectiveness of the equalization is largely in-
dependent of actual fractional signal bandwidth (the ratio of the bandwidth
to the center frequency), and bandwidths up to 200 percent (from zero to
twice the carrier frequency) can be handled, though of course wider signal
bandwidths require proportionally higher sampling rates (further raised by
oversampling).






Array Beamforming

8.1 Introduction

In this chapter, we consider how the rules-and-pairs technique can be applied
to relate aperture distributions to antenna beam patterns, particularly for an-
tennas made up of linear arrays of similar elements. Beamforming suggests
forming an antenna pattern with a dominant main beam, steered in a direc-
tion of interest, and this is indeed an important application. This is achieved
by weighting the received (or transmitted) signals so that they sum in phase
in the given direction. The weights here are complex phase factors, but am-
plitude factors can also be used to adjust the pattern, in particular to give
low principal sidelobes. The principle of applying complex weights to the
array elements can be extended to form other gain patterns, such as a beam
covering a wide sector, as shown later. One problem arising with a regular
array is that of grating lobes. These (named by close analogy of the antenna
array with diffraction gratings) are highly undesirable in several respects. On
reception they make the array vulnerable to interference from sources in the
lobe direction and cause ambiguity as to the direction of a received signal. On
transmission they are a cause of wasted power, reducing the power emitted in
the wanted direction and causing interference in other directions.

We start by showing there is a Fourier transform relationship between
linear aperture distributions and beam patterns. This relationship holds in
general, including for continuous distributions, but we subsequently restrict
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our study here to multielement arrays, which are in effect discretely sampled
apertures. In the case of uniform, or regular (evenly spaced) linear arrays,
the aperture distribution is of the form of a comb function, which has a rep
function as its transform. For this kind of array, the rules-and-pairs method
works well and is easy to apply to suitable problems. Two sets of examples are
given. In one case, a simple beam is required (with further study of variations
with low sidelobe patterns), and in the other case a beam covering a sector at
a uniform gain level is generated.

If the array elements are not uniformly distributed, then the conve-
nience of the comb/rep transform is not applicable and a more general least
squares error solution is required. As the Fourier transform is a least squares
error solution also, this general approach, if applied in the uniform array case,
would result in the same solution, if not quite so directly achieved. The gen-
eral approach still requires Fourier transforms and is presented in Section 8.4.
Although we cannot use the Fourier transform of the aperture in the general
array case, the transform is still required in determining the components of
the matrix and vector used to obtain the weights. The Fourier transform is
also useful for general results on the relationship between the weights and the
patterns, as shown in Sections 8.2 and 8.3.

In this chapter we consider only the narrowband case, where the band-
width is small enough for the effect of delay across the aperture to be ad-
equately approximated as a phase shift at the center frequency of operation.
This condition holds for a very wide range of radio and radar problems, but
when it does not the equalization methods of Chapter 7 can be applied. We
also consider only the case of the linear aperture as, again, this is very widely
encountered, and in the form of the uniform linear array (ULA) is particularly
suitable for analysis by the rules-and-pairs method. Furthermore, the linear
solution is also applicable to regular rectangular planar arrays, for which the
two-dimensional beam pattern (e.g., in direction cosine coordinates # and
v) is simply the product of the two patterns given by the orthogonal linear
apertures.

8.2 Basic Principles

Given a linear aperture, the far field signal strength is proportional to the
sum across the aperture of the current at each point, which may be weighted
by a factor that depends on the position in the aperture and the direction for
which the response is to be calculated (Figure 8.1(a)). We consider the signal
received in the far field in the direction 6, measured from broadside to the
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Figure 8.1 Aperture phase shift: (a) on transmission, and (b) on reception.

linear array (initially unweighted). We consider that a signal, phase ¢(2), is
applied to the elements of the array, along the line OX. A point in direction
0 in the far field sees points on the line OP as equidistant, so in effect the far
field response in this direction is given by the sum of signal phases along this
line (or any parallel line). The signal at X, with phase ¢(t), is equivalent to a
source of phase ¢(# + 7) at P, as the phase at X is that at P at time 7 earlier,
where 7 is the time taken to travel along PX. We note that 7= xsin6/c, where
¢ is the speed of light and x is the distance of the element X, from the origin.
The phase at P for a signal at frequency f; is 27/ (¢ + 1) = ¢(2) + 27f;T= ¢(2) +
27mxsin@/ Ay, where A is the wavelength at this frequency (so fjAo = ¢). Thus,
the effective contribution from element X differs from that at O by the com-
plex factor exp(2mixsin6/ ).

If the signal is weighted across the array by a (complex) amplitude fac-
tor a(x), then we see that, summing the contributions along the array, the
gain within a scaling factor is

20)= [ a(x)exp(2mixsin 614 )dx (8.1)

The same considerations apply on reception. In this case, a plane wavefront
is received from a distant source, Figure 8.1(b). If the phase at O is @(2),
the phase of the wavefront at X is given by @(z+ 7) as this front reaches O
at time 7 later. This gives the same phase shift as given earlier, and, with
the weighting factor 4(x), we have the same expression (8.1) for the gain on
reception.
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In general  is complex, and in the form of the phase factor exp(—2ixsin6/
Ag) it provides the correct compensation to steer the beam in direction 6 (for
both transmission and reception). This compensates for the delay at a sin-
gle frequency. For wideband steering, we need to compensate for the delay,
rather than just phase—that is, we need to delay by 7 the signal applied at X
(or received at X) relative to that at the array origin. In the form of amplitude
tapering, with smaller weights toward the edges of the array, it can give lower
sidelobes, as shown later in this chapter.

The integral in (8.1) is over the whole domain of x, though with a finite
aperture a(x) will be zero outside this finite region. It is convenient to define
the array in units of the wavelength of operation, A, so with this convention
we replace x/ A, with x subsequently in this chapter. If we also define # = sin6,
as in Section 7.7, then (8.1) becomes (within a scaling factor, which now

includes A)

g(u)= f:o a(x)exp(2mixu)dx (8.2)

and we see that g is formally the inverse Fourier transform of the aperture dis-
tribution 4, and correspondingly the distribution # is the Fourier transform
of the pattern g. However, we must treat this with some caution, because,
although (8.2) defines values for g() when || > 1, these # values do not
correspond to real directions. If we wanted to determine the aperture distri-
bution for a given pattern, and the pattern is defined only for the real angles
—m/2 < 0 < 7/2, then we only have the information for the integration over
this finite interval for # (=1 < » < 1). However, if ¢ can be defined as the re-
quired function in this range of %, even though the function extends outside
this range, then we can integrate over the whole # domain, knowing that the
resultant aperture distribution # will give the required pattern over the basic
interval. An example is the case of a uniform aperture distribution a(x) =
rect(x/X), where the aperture is given by —X/2 < x < X/2 and the distribution
is uniform over this interval. This has the transform g(#) = XsincXu, a sinc
function response, with first zeros at £1/X. This response is curtailed, for the
pattern over real angles, at £77/2 radians (i.e., for # =*1). However, if we were
given that the required pattern over the real angles (=1 < % < 1) is sincXu, by
integrating sincXu over the whole range of # (—oo < % < ), we obtain the rect
function for the aperture distribution, which gives the wanted pattern in the
real angle region.
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We should still treat this with caution, however, because we could use
the function rect(#/2)sinc(Xu), which gives the correct response in the real
angle region, but transforms to sinc(2x)®rect(x/X), which is not the same
weight distribution. Nevertheless, these weights will give the correct pattern
in the real angle region.

In the case of an array of identical elements, with their patterns (if not
omnidirectional) oriented similarly, we can separate the array response into
an array factor, which would be given by using omnidirectional elements,
and the element factor, which multiplies the array factor at each angle. The
array factor is obtained by summing the contributions from each element
with the appropriate phase factor, as in (8.1). For an array of elements, we
have a sampled aperture; we can still use the Fourier transform but the aper-
ture distribution is now described by a set of delta-functions. If the array is
taken to be a regular linear array, we note that a regular set of delta-functions
corresponds to the transform of a periodic function, so we expect the array
factor to be periodic in this case. If we do not want the pattern to be periodic
in the real angle region, we could make the period such that it has just one
cycle in this interval, requiring it to repeat at a period of 2 in #. This will cor-
respond to the element separations being ¥ (i.e., half a wavelength), a well-
known result for a pattern free from grating lobes, for all steered directions.
(It could also have a greater repetition period than 2, but this would require
an element separation closer than a half wavelength; however, this is undesir-
able, increasing mutual coupling and causing driving impedance problems
on transmission.) If the main lobe is narrow and is fixed at broadside to the
array (at 6= 0), then a repetition period in # of just over 1 could be allowed,
corresponding to an element separation of just under one wavelength. (With
a period of unity in #, repetitions of the main beam (i.e., grating lobes) will
occur at # = 1, which lie along the line of the array, and also at higher inte-
gral values for #, of course, which are not in real angle space.)

Finally we note that, as sin(w — 6) = sin@ = #, if we consider the array
factor pattern from —7 to 7 radians, or —180° to +180°, we see that the pat-
tern from 90° to 180° is the reflection, about 90°, of the pattern from 90° to
0° and similarly on the other side—in other words, the pattern has reflection
symmetry about the line of the array. Thus, if a main lobe is produced at
angle 6,°, then there will be an identical lobe at 180°~6,° and, in particular,
if there is a broadside main beam (at 0°) there will be a lobe of equal size at
180°. Later in this chapter, we take the case of reflector-backed elements,
which have a 2sin[(71/2)cos6)] pattern for —7/2 < 6 < /2 and a response of
zero for /2 < |6 < 7, and this removes the unwanted response in the back
direction.
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8.3 Uniform Linear Arrays

8.3.1 Directional Beams

Initially we consider a uniform weighting over the aperture of width X. If the
element separation is & wavelengths, then the aperture distribution function
is given by

a(x) = comb, [rect(x/X)] (8.3)
and the beam pattern is (from P3b, R5, and R8b)

g(u) = (Xld)rep,, [sinc(Xu)] (8.4)

If we want the beam to be steered in some direction #,, then we require
the pattern shape to be of the form sinc(X(# — u,)) instead of sinc(X#); this
will place the peak of the sinc function at #; rather than at zero. Transform-
ing back to the aperture domain (using R6a), we see that this requires the
distribution to be

a(x) = comb [rect(x/X)exp (=27, x)] (8.5)

We see we need to put an appropriate phase slope across the aperture to steer
the beam (i.e., to offset it in the angle domain). If, on the other hand, we off-
set the array in the aperture domain, so that the distribution is given by a(x) =

comb (rect((x — x;)/X)), then (by R6b) the pattern is
() = (Xld)repy, [sinc(Xu)exp (2 miux,)] (8.6)

and there is a phase slope with angle across the pattern. This will have little
significance in practice, as there is normally no reason to combine or compare
signals received at different points in the far field. This result can be used to
help equalize the power levels across the elements of a transmitting array, as
outlined at the end of Section 8.3.3.

The distinction between the patterns in the # domain and in the real
angle domain is illustrated in Figure 8.2. An array of 16 elements was taken
with an element spacing of 2/3 wavelengths, which gives a repetition period
for the pattern of 1.5 in #. This is shown (in decibel form) in Figure 8.2(a), and
this pattern is described by (8.4), repeating as expected, even though values
of u outside the interval [-1,1] do not correspond to real angles. The vertical
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lines show the segment of the # pattern that corresponds to real angles. In
Figure 8.2(c), the beam has been steered to 60° (# = 0.866), and we see that
the pattern has moved along so that a second beam, a grating lobe, lies within
this interval. Figures 8.2(b) and (d) show the corresponding real beams plot-
ted over the full 360° interval. These show two significant differences—the
stretching of the pattern toward the £90° directions with the lobes becoming
wider, and the reflection of the pattern about these directions. If the patterns
in #-space and angle space are g, and gy, then the gain in direction 8 is given
by £6(6) = g,(sin6).

In plotting this curve, (8.4) was not used, as that would require sum-
ming a large number of sinc functions—in principle, an infinite number. We
can describe the aperture distribution given in (8.3) alternatively by

(n=1)/2
a(x)= Y, 8(x—kd) (8.7)

k=—(n-1/2)

where 7 is the number of elements in the aperture X (and is such that (z — 1)d
< X < nd). This has the inverse transform, from Pla and R6b,

(n—-1)/2
gwy= Y expQ2rikdu) (8.8)
k=—(n—1/2)

and this finite sum is much easier to evaluate. However, the form given in
(8.4) is still useful, making much more explicit the periodic form of the pat-
tern in the # domain.

8.3.2 Low Sidelobe Patterns

In Sections 3.2, 3.3, and 3.6, the spectrum of a pulse was shown to improve,
in the sense of producing lower sidelobes and concentrating the spectral
energy in the main lobe, by reducing the discontinuities (in amplitude and
slope) at the edges of the pulse. The same principle is applicable for improv-
ing antenna patterns, by shaping (or weighting, tapering, or shading) the ap-
erture distribution in the same way—in fact, if the aperture distributions are
given by the pulse shapes of Chapter 3, the beam patterns (in #-space) will be
the same as the pulse spectra, as the same Fourier relationship holds. (Strictly
speaking, for the pulse spectra the forward Fourier transform is required,
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while for the beam patterns on reception it is the inverse transform. How-
ever, for the frequently encountered case of symmetric distribution functions,
there is no distinction.) This is actually the case for continuous apertures, but
in the case of a regular linear array, corresponding to a sampled aperture, the
pattern is repetitive and is given (over the fundamental interval -1 <% <1)
by the sum of repeated versions of the continuous aperture pattern (as in
(8.4) and (8.6), for the rectangular distribution). For a reasonably narrow
beam, particularly one with low sidelobes, the effects of the overlaps will be
very small, and often negligible. Figure 8.3 shows array patterns for a regular
linear array, again of 16 elements, for both the unweighted case (rectangular
aperture weighting, dotted line) and with raised cosine weighting (solid line).
The effect of overlap of the low sidelobe waveforms is clearly negligible in
this case. Thus, in this section, we ignore the repetitive response given by
a discrete aperture (an array) and explore the possibilities of obtaining low
sidelobe patterns as if from a continuous aperture.

In the raised cosine case, the aperture distribution is given by rect(x/
X)(1+cos2mx/X) with transform (as in Section 3.6, with X = 1/U replacing
2T = 1/f; and omitting the scaling factor) sinc(u/U) + Vasine [(u—U)/ U] +
Vasinc[(u+U)/ U]. The figure shows both the response in #-space and with
angle, as in Figure 8.2, but in this case the element spacing is 0.5 wavelengths,
so the repetition interval in # is 2, as seen in Figure 8.3(a), and the beam
direction is —30°. The weighting has been very effective in reducing the side-
lobe levels, though at the cost of broadening the main lobe.

Clearly we could apply different weighting functions, obtaining the cor-
responding beam patterns, given by their Fourier transforms, but this would be
simply going over the ground of Chapter 3, where pulses of various shapes and
their spectra were studied. Instead, we look at two other possibilities for improv-
ing the pattern, not necessarily for practical application but as illustrations of
approaches to problems of this kind that could be of interest. First, we note that
the main lobe in Figure 8.3 consists of the sum of the main sinc function with
two half amplitude sinc functions, offset on each side by one natural beamwidth
(the reciprocal aperture; this is actually the beamwidth at 4 dB below the peak).
This suggests continuing to use sinc functions to obtain further improvement.
We could reduce the largest sidelobes, near 2.5 beamwidth intervals by placing
sinc functions of opposite sign at these positions. This will have to be done quite
accurately because these sidelobes are already at about—31 dB below the peak, or
at a relative amplitude of 0.028 so an amplitude error of 1 percent, for example,
would not give much improvement. To find the position of these peaks, we
can use Newton’s method for obtaining the zeros of a function. In this case, the
function is the slope of the pattern, as we want the position of the peak of a lobe
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rather than a null. In this discussion, we neglect the overlapping of the repeated
functions on the basis that, for an aperture of moderate size (such as that of this
16-element array, which is effectively eight wavelengths), the effect of overlap is
small, especially in the low sidelobe case—in fact, by dropping the rep function
we are studying the pattern of the continuous aperture. In addition, we plot the
pattern in units of the beamwidth U, as this simply acts as a scaling factor (in
u-space).

Differentiating the previous expression for the beam shape ¢(x) to ob-
tain its slope g’(#) we have

g’ (u) = (! U)(snc,(u/ U) + Yasnc, [(u — U)/ U] + Vasne,[(u+ U)/U]) (8.9)

where 7snc; is the derivative of the sinc function, as defined in Section 7.3
(see (7.17)). Using Newton’s approximation method to find the peak of a
lobe (a point of zero slope) we have

oy = 1, — g ()" (1) (8.10)

and if we put v = #/ U, to give the pattern in terms of natural beam widths,
then this becomes

v =v,— (10 g (Uv)lg” (Uv,). (8.11)

Here #, and v, are the approximations after 7 iterations. Putting in ¢
from (8.9) and ¢’ from another differentiation of (8.9), we obtain

_ 2sng (v,)+snci(v, —1)+sncy (v, +1)
m(2sncy(v,)+sncy (v, —1)+sncy (v, +1))

(8.12)

Ur+1 = Uy

Starting with v, = 2.5, this converges rapidly (v, is equal to v; to 4 decimal
places) to give a value of —0.0267 at v = 2.3619. Adding sinc functions to
cancel the lobes near £2.5 the pattern in v is now

2(v) = sinc(v) + Y2[sinc(v — 1) + sinc(v + 1)] + 0.0267[sinc(v — 2.362)
+ sinc(v + 2.362)] (8.13)

This pattern is shown in Figure 8.4, with the raised cosine shaded pat-
tern for comparison (dotted curve). We see that the original first sidelobes
have been removed and the new largest sidelobes are at almost —40 dB, an
improvement of nearly 10 dB. To find the weighting function that gives this
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pattern, we require the Fourier transform of (8.13). This can be seen almost

by inspection, following, in reverse direction, the route that gave the raised
y g &

cosine transform. More formally, we have

2(v) = sinc(v)®{0(v) + 2[0(v — 1) + 8(v + 1)] + 0.0267[5(v — 2.362)
+ o(v + 2.362)1}, (8.14)

giving, on Fourier transforming,

a(y) = rect(y){1 + Y2[exp(27miy) + exp(=2miy)] + 0.0267 [exp(27i2.362y)
+ exp(—272.362y)] = rect( y){1 + cos(2my) + 0.0534cos(4.724my)}
(8.15)

As we started with the normalized variable v = /U, this distribution is in

terms of the normalized aperture y = x/X.
Clearly this could be generalized, so that if we put for the pattern

)= sincv®{5(v)+z (8w —PBr)+ 8w+ ﬁ/e))}
k
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then the weights are given by
a(y) = recty[l + 2; o cos(ZEﬂky)J

For the second example, we produce a pattern with the closest sidelobes
to the main beam (and the largest) all at almost the same level, similar to
the pattern given by Taylor weighting. In this case we take the pattern to be
given by a sum of sinc functions at 0, £1, +2, . . . * natural beamwidths
(reciprocal aperture units) from the center. In this case, we do not take the
amplitudes of the sinc functions at 1 to be 0.5. Thus, we have, again using
a normalized #-space variable,

¢(v) = sinc(v) + a[sinc(v — 1) + sinc(v + 1)]
+ a,[sinc(v — 2) +sinc(v +2)] +. ..
+ a,,[sinc(v — m) + sinc(v + m)] (8.16)
The m coefficients are determined by setting the gain to particular val-
ues at 7 points, in the form g(v,) = g,. The values we choose are the constant
level A, or —A, at the sidelobe peaks, where 20log;(A) is the required peak
level in decibels. We do not know exactly where these peaks are, but we

should be near the peak positions if we choose the points to be midway be-
tween the nulls in the sinc patterns; thus, we have

glr+1.5)=(-1)""'A. (r=1to m) (8.17)

(The factor (=1)™*" is required as the amplitudes of the sidelobe peak mag-
nitudes alternate in sign.) The set of m equations given by putting the
conditions of (8.17) into (8.16) leads to the vector equation Ba = b, with
solution

a=B"b (8.18)
where a contains the required coefficients, the components of b are given by
b; = (=1)7"'A = sinc(j + 1.5) (8.19)

and the components of B by

By =sinc(j—k+1.5) +sinc(j+ k+ 1.5) (8.20)
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We note that the first points, at 2.5, are on the edge of the main
lobe, rather than the peak of a separate sidelobe, and the value is positive,
with subsequent points on (or near) sidelobe peaks and alternating in sign.
Two patterns given by (8.16), with coefficients from (8.18), are shown in
Figure 8.5, again with the raised cosine pattern for comparison. In Figure
8.5(a) we took 72 = 3 and the required level to be —=50 dB. The two nearest-in
lobes on each side are seen to be very close to this level—the pattern levels
at £2.5, £3.5, and 4.5 are precisely —50 dB, by construction, but the peaks
of the lobes will not be at exactly these points, so the actual peaks will rise
slightly above the required value. (In fact the third lobe is also very close to
the set level, although not included in the constraint.) However, the range of
levels for which this works well is limited, and Figure 8.5(b) shows it starting
to fail. In this case, 7 = 5 and the nominal level is =55 dB. This is seen to be
attained very closely for the lobes at £4.5, 5.5, and +6.5, but the pattern
has bulged between +2.5 and £3.5, giving a lobe appreciably above the speci-
fied level. Nevertheless these are good sidelobe levels and have been obtained
quite easily. The pattern is well-behaved when designed for —50-dB sidelobes,
but the first sidelobe, near 2.5, starts to rise when the specified level is about
—48 dB or higher. In general, for these patterns the coefficient #, is near 0.5,
and the other coefficients fall rapidly in magnitude. To find the correspond-
ing weighting function we transform the pattern to obtain

a( y) = rect( P){1 + 2a,cos(2my) + 2a,cos(4my) + . . . + 2a,,cos(2mmy)}
(8.21)

This is evaluated at the normalized points y = x/X, where x = kd and X = nd,
soy = kin, k=—(n—1)/2 to (n— 1)/2 for the array of 7 elements.

8.3.3 Sector Beams

We now consider a quite different problem—that of providing a flat, or con-
stant gain, beam for reception or transmission over a sector, generally wide
compared with the natural beamwidth. In this case, as we want the sector
gain to be constant over an interval (for simplicity we take the amplitude to
be unity), it will be of the form rect(#/u,), where the width of the sector is %,
centered on broadside initially. For a uniform linear array, we want a regu-
larly sampled aperture distribution, rather than a continuous one, so we take
the required pattern to be repetitive in the # domain and to be given by

() = repArect(ulu,)) (8.22)
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so the element weights across the aperture are given by

a(x) = (uy/ U)combyysinc(uyx) (8.23)

This is a sinc function envelope, with width proportional to 1/#, and
sampled at intervals 1/U wavelengths, where U is the repetition interval in
the # domain. If we take the beam to have an angular width 6, then the edges
of the beam are at £6,/2, and the corresponding #, value is given by

o = 2sin(6,/2) (8.24)

(It is important not to put #, = sin(6,), because of the nonlinear relationship
between these variables. For example, if we chose 6 = 90° then the first, cor-
rect, expression makes #, = \/2, while the second makes #, = 1; this would
actually give a 60° beam, rather than 90°.)

Figure 8.6(a) shows an example of a sector beam generated this way,
with the weights applied to the elements shown in Figure 8.6(b). The aper-
ture distribution is a sampled sinc function and, for perfect patterns, extends
in principle over the whole x-axis. In practice it is limited to 7 elements so is
effectively gated by a rect function, rect(x/nd), where d=1/U is the separation
between elements and 7d is the effective aperture. In this case U=2 and disa
half wavelength. The transform of this rect function is a relatively narrow sinc
function; this is convolved with the ideal rectangular pattern given by an infi-
nite array to produce the ripple seen in the figures. The figure is for a nominal
50° sector beam (from —25° to 25°) given by an array of 21 elements.

The sidelobe ripples indicate the width of the natural beam from this
aperture—the main lobe width, between the first zeros, would be the width of
two of these sidelobes. With an even number of elements, the distribution is
rather different in appearance, with two equal values in the center but a very
similar beam pattern. There is no simple relation between the sidelobe levels
and the number of elements (or whether this number is odd or even)—the
levels vary with both the number of elements and the beamwidth. Because of
the repetitive form of the response in the # domain, these lobes are the result
of summing the convolution ripples of mainly two basic patterns, as given by
the continuous aperture, at a separation of U= 1/d, and these may sometimes
reinforce and sometimes tend to cancel (e.g., the lobe at 90° is essentially the
sum of contributions from the pattern in #-space centered at 0 and the next
repetition of the pattern at 2). The fluctuations with parameter variation of
these lobes will tend to be greater as the sector width increases and the edges
of the beam and its repetition become closer.
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We also note the appearance of the back lobe in Figure 8.6(a). In
many applications, this is undesirable, whether on transmission, when only
half the power goes into the forward lobe, or on reception, when interfer-
ence or external field noise will enter through this lobe. This lobe can be
removed by mounting a reflecting plane at a quarter wavelength behind the ele-
ment (Figure 8.7). Combining the direct signal with the reflected one, effec-
tively arriving at a point a quarter wavelength behind the reflecting plane, and
including the phase change of 7 on reflection at a denser medium, the element
response becomes 2sin((r/2)cosB) for a signal at angle 6 to broadside. That
is, exp (z' (7/2) cos 9) —exp (—z’(n’/Z) cos 9) = 2isin ((71'/2) cos 9); i gives an overall
phase shift, not affecting the amplitude response. We have used the fact that a
signal path of a quarter wavelength leads to a phase shift of 71/2 radians. This is in
the forward half azimuth plane, with no response in the back half plane (for an
infinite reflecting plane). This is a pattern with a single broad lobe (Figure 8.7),
falling to 3 dB below the peak at £60°, and increases the directivity of the ele-
ments by 6 dB; part of this gain (3 dB) is due to limiting the power to one side of
the array and part due to reducing the beam from a 180° semicircle to this 120°
lobe. Because this response is so flat, it will make very little difference to the shape
of sector beams centered at, or near, broadside, though it will more noticeably
distort beams steered toward the edges of the forward sector.

If we want to steer the beam so that its center is at 8, and its width is
still By, then its edges are at 8, = 6, — 6)/2 and 6, = 6, + 6,/2, and the corre-
sponding # values are #, = sin6, and #, = sin6,. In this case, the center of the
beam in % space is at #; = (#;, + u,)/2 and its width is %y = u, — u,. With these
definitions of #, and #,, the required sector beam pattern is, from (8.22),

() = repylrect((s — u,)/ 1] (8.25)
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This has the (forward) transform (using R6a)
a(x) = (uy/ U)comb, [sinc(uyx)exp (=2 mwixu,)] (8.26)

and we see that this requires putting a linear phase slope across the array
elements; this corresponds to the effect of the delay across the aperture for
a waveform received from (or transmitted to) this direction, causing a phase
shift at the carrier frequency, f;. This requires an infinite aperture (to give a
perfectly rectangular pattern); with a finite aperture, of width between nd
and (7 + 1)d, we include a rect function within the comb argument in (8.26).
Putting (8.26) in the alternative form of a sum of d-functions, as in (8.7) (but
weighted by (uy/ U)sinc(uykd)exp(—2mikdu,) in this case, with 4 = 1/U), and

carrying out the inverse transform gives

(n-1)/2
g(u)= ) 2 sinc(ugkd ) exp (27i(u—u )ked ) (8.27)
U k=—(n—1)/2

as the alternative to (8.25) for practical evaluation.

Figure 8.8 illustrates a steered sector beam, with a reflector-backed
array. In this case the beam is formed from a uniform linear array of 12 ele-
ments, at half-wavelength spacing, and is 90° wide, centered at 20°. The re-
sponse with omnidirectional elements is shown (dotted line) for comparison
(except that it would be 6 dB lower, not having the gain of the reflector ele-
ments). The reflector removes the back lobe and also distorts the sector beam
slightly. The weights are complex, as indicated in (8.26), and, as the pattern
is specified to be real, the weight distribution, as the transform of the pattern,
has conjugate symmetry, with the real part symmetric and the imaginary part
antisymmetric (see Section 2.3).

The sector beams defined so far have the same phase across the sector,
so that, when used for transmission, the signal received in the far field will
have the same phase at points in all directions at the same distance from the
center of the array. If we put a phase slope across the pattern, this will not
change the power transmitted in a given direction but will change the weights
required. In this case, let the slope be such as to produce a phase difference of
r cycles across a unit range of #, where the phase variation is linear in % space.
The required pattern, from (8.25), is now

g(u) = repylrect((u — uy)/uy)exp(27iru) ] (8.28)
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and the weight function, given by the Fourier transform of (8.28), is

a(x) = (uy/ U)comby [sinc(ugx) exp(—2 mwixu,) @ S(x — 7)]
= (uy/ U)comby jy[sinc(uy(x — 7))exp(—27mi(x — nuy)]  (8.29)

We see that the envelope of the set of é-functions from the comb func-
tion, which defines the weights on the elements, is shifted by » wavelengths
with this linear phase slope.

Figure 8.9(a) shows the array factor for a 60° sector beam from an array of
20 elements at half-wavelength spacing, steered to broadside. The beam also has
a phase slope of one cycle per unit of # (i.e., 7= 1), and this requires the sampled
sinc function distribution for the weights to be displaced one wavelength from
the center of the array, as seen in Figure 8.9(b). As # =1V5 at £30°, the phase
variation should be 360° across this interval, and this is seen in Figure 8.9(c),
which shows the phase relative to that at the center of the beam. The slope varies

0 T T T T\ | :,\ 0.6
P 05
—5-- e

1) ; : 204

2 -10}-- : o 2

= N 203

o —15f- A — © H H H ' H

£ | Lo}t N

® | ; L D A : 5 [ : :

S I R A P & 01 % \ -
- f\ T oS N
_gpl— : : : ; : : —01 L : : |

~150 —100 50 0 50 100 150 5 4 3 2 1 0 1 2 3 4 5
Azimuth angle/deg Element position/wavelengths
(e} (b)
150 ;
100
o=
3
@ 50
1Z]
©
=
=
[ 0 77777777
=
RN (R S N A |
2 507+ H b3
00
L P e A T 1
-30 -20 -10 0 10 20 30
Azimuth angle/deg
(c)
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slightly (because of the finite aperture effect, which causes the amplitude ripples,
and the stretching of the pattern in angle space, at higher angle values, compared
with # space), but is close to the set value.

By splitting the sector into two or more subsectors with linear phase
slopes, and so with offset peak amplitude values, as in Figure 8.9(b), it is pos-
sible to generate beams with more uniform weight magnitudes, which is de-
sirable for transmitting arrays, with similar power amplifiers on each element.
The subsectors are given different phase slopes so that the peak weights for
these sectors are at different points on the array. Even for a beam centered at
broadside (normally with real weights), there will be phase variation between
elements, as the centers of the sectors will be steered off broadside in general,
requiring phase shifts. However, there may be some beam shape degradation
and difficulty in balancing flatness of the weight magnitudes and the quality
of the sector beam.

8.4 Nonuniform Linear Arrays

8.41 Prescribed Patterns from Nonuniform Linear Arrays

We have seen in (8.2) that the beam pattern, in # space, is the inverse Fourier
transform of the aperture distribution, and we can use the rules-and-pairs
technique for a useful range of distributions for continuous apertures and,
as demonstrated in Section 8.3, for regularly sampled apertures correspond-
ing to uniform linear arrays. In this case, the regularly sampled aperture is
represented as a comb function, for which the transform is known (Rule 8b).
However for nonuniform sampling, no general rule is available and a differ-
ent approach is required. In this case, given a desired beam shape and a set of
element positions, the problem tackled is to find the weights to be applied to
each element to match the desired pattern in a least squared error sense. This
problem is very similar to those of Sections 6.3 and 7.2. By pattern, we mean
here the array factor, taking the case of similar gain elements, oriented in par-
allel, so the actual array pattern is the product in each direction of the array
factor and the element response. For omnidirectional elements, of course, the
array factor gives the overall pattern (within a scaling factor).
For a linear array, the aperture distribution is of the form

a(x)= iarﬁ(x - x)

r=1
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where the 7 elements are at positions x,, with weights «,. The gain pattern (in
u space) is given by the transform of this:

g(u)= Zar exp(27ix,u) (8.30)

r=1
Now let g(#) be a desired beam pattern, not necessarily exactly realiz-
able by any linear combination of the 7 complex exponentials in (8.30). We
now want to find the set of 7 coefficients 4,, which gives a least squared error

fit to g(#). Let the error at point u be e(x), and defining f(#) = exp(=27ix,u),

we have

e(u)= g(u)— z ay, exp(27ix,u) = g(u)— Za,f, *(u)= g(u)— f(u)a
r=1 r=1
(8.31)

where a and f are #-vectors with components @, and f; (and the suffix H indi-
cates complex conjugate transpose). The square modulus of e is

le(w)|? = |g(u) |* — £(u) Hag(u)* — g(u)af(u) + a"f(u)f(u) Ha  (8.32)

We have used (fHa)* = 2 ' fear* = a''f. The total squared error as a function
of the weights &(a) is given by the integral of |e(x)|* over the interval I in « over
which we want the specified response. In some cases, this will be the whole real
angle region, from #=—1 to #=+1, but this need not necessarily be the case. The
integrated error, as a function of the vector a is thus &(a), given by

gla)= L| e(u)|* du= p—bTa—ab+a""Ba (8.33)
where p = L| g()|* du, and the components of b and B are given by

by = || f(0) gl =[ exp(=2nix,u) g ()l

B, = J}ﬁ(u)ﬁ(u) *du :-[I exp (—27£z'(x, — X )u)a’u (8.34)
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The value of a that minimizes € (or more generally gives a stationary
point of €) a, is given by d€/da* = 0 or, from (8.33), —b + Ba, = 0, so that

a,=Bb (8.35)

This gives the set of weights for the functions {f}, which gives the
best fit in a least squares sense to the required pattern function g, over the
interval I, where the components of b and B are given in (8.34). We see
that these components are of the form of (forward) Fourier transforms: if g
is within the interval I then the components of b are given by the Fourier
transform of g, evaluated at x,. If I is put in the form of a rect function, then
the components of B are given by the corresponding sinc function, evalu-
ated at (x, — x,).

8.4.2 Sector Beams from a Nonuniform Linear Array

Taking first the case of forming a sector beam from a regular array, let the element
separation be & and so 1/d is the pattern repetition interval, U, in the # domain.
Then it seems a natural choice of I to take the interval [-U/2,U/2] (i.e., one rep-
etition period), centered at # =0 (broadside), which is equivalent to including the
factor rect(u/U) in the integrands in (8.34). In this case B,, is the Fourier trans-
form of rect(x/ U) evaluated at (x,— x,) (i.e., Usinc((x,— x,) U)). However, as x, — x,
is an integer times 4 and 4U = 1, then the sinc factor is zero except when x, =
x, so that B, = UJ,, and B = UL For the sector beam, width #,, centered at «,
2(u) = rect((s — u1)/ 1), and as this is taken to be within rect(x/U), the product is
still g(x). Then &, is the Fourier transform of g(x) evaluated at x,, and we find that
the weights 4, given by (8.34) and (8.35) in this case are exactly the same as given
by (8.26), rather more directly, confirming the point that the Fourier transform
solution is also the least squared error solution.

The solution given by (8.34) and (8.35) is more general than that of
(8.23), which is for the regular array, so that a solution can be found for the
weights of an irregular linear array giving a close approximation to a given
required pattern. Figure 8.10 shows a sector pattern obtained from an irregu-
lar array. For this plot, the array elements were displaced from their regular
positions, with separation & wavelengths, by a pseudo-random step chosen
within an interval of width & — 0.5, which ensures that the elements are at
least half a wavelength apart. Figure 8.10(a) shows the response in # space for
an array of 21 elements at an average spacing & of 2/3. A sector beam of width
40° centered at broadside was specified. A regular array would have a pattern
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strictly repetitive at an interval of 1.5 in # (equal to 1/d), and this is shown
by the dotted response. The irregular array “repetitions” are seen to degrade
rapidly, but the pattern that matters is that lying in the interval [-1,1] in z.
This part of the response leads to the actual pattern in real space, shown in
Figure 8.10(b). We note that the sidelobes are up to about —13 dB, much
poorer than for the patterns from regular arrays shown in Figures 8.6, 8.8,
and 8.9, though this level varies considerably with the actual set of element
positions chosen. The integration interval I was chosen to be [-1,1], to give
the least squared error solution over the full angle range (from —90° to +90°
and its reflection about the line of the array). This is equivalent to including
rect(#/2) in the integrands in (8.34). This, again, makes no difference to the
components of b (as g(#) is within this rect function), but for the components
of B it gives values B, = 2sinc2(x, — x,)). This compares with the case of taking
one period of %, where the rect function is of width U'so we include rect(x/ U)
and obtain B, = UsincU(x, — x,).

A second example is given in Figure 8.11 for an array of 51 elements but
illustrating the effect of steering. In this figure, the 40° sector beam is steered
to 10°, and again we see the rapid deterioration of the approximate repeti-
tions in # space of the beam and a nonsymmetric sidelobe pattern, though
the levels are roughly comparable with those of the first array. The average
separation is 0.625 wavelengths, giving a repetition interval of 1.6 in «. If we
steer the beam to 30° (Figure 8.12, using the same array), there is a marked
deterioration in the beam quality. This is because part of one of the repeti-
tions falls within the interval I over which the pattern error is minimized,
so the part of this beam (centered near # = —1) that should be zero in the
required pattern is reduced. At the same time, the corresponding part of the
wanted beam (centered at # = V2, for the steering direction of 30°) should be
unity, so the solution tries to hold this level up. We note that the levels end
up close to —6 dB, which corresponds to an amplitude of 0.5, showing that
the error has been equalized between these two requirements. We note, from
the dotted responses, that the result would be much the same using a regular
array (where the repetitions are identical).

In fact this problem would be avoided by choosing I to be of width
1.6 (the repetition interval) instead of 2, preserving the quality of the sector
beam. Also, if we center I at #,, the center of the sector, then we ensure that
the full sector is within the interval I. Thus, we include a factor rect((z — u,)/
U) in the integrals, with U= 1/d = 1.6 in this case. Again the integral for the
components &, is unaffected, but the components B, will now be given by the
transform of this rect function, Usinc(x/ U)exp(—27miu,x) evaluated at (x, —x,).
The result is shown in Figure 8.13 (for the same array), showing that the



244 Fourier Transforms in Radar and Signal Processing

5 rfv\ ML
0 w V
=2
=
© "
e .
2 m .
s -0 Wt
> ]
: \V b/
-15 fr In : :
20 L : : :
-2 -1 0 1 2 3 4
Sine angle
(a)
0 f o :
\} | V\/\I\M
-5
om
=2
£
©
(=2}
(<5}
=
T -10
()
[a'=
15 | M An p A
V ) \
n=51 d=5/8
-20
-150 -100 -50 0 50 100 150
Angle/deg
(b)

Figure 8.11 Sector pattern from an irregular linear array, beam at 10°. (a) Response in
u-space, and (b) beam pattern.



Array Beamforming 245

0 Pos 1o
o N
o
AT
) ) (\’

-
—_—

-20 ' 5 ' : '
-2 -1 0 1 2 3 4
Sine angle
(a)
0 Uiy
5 Tax

-10

Relative gain/dB

-15
n =51
d-58 /\
_20 [\/\
-150 -100 -50 0 50 100 150
Angle/deg
(b)

Figure 8.12 Sector pattern from a steered irregular linear array, beam at 30°. (a) Response
in u-space, and (b) beam pattern.



246 Fourier Transforms in Radar and Signal Processing

0 Vh ~ hv"" 4| r'\' :
“M Mﬂ’
5
[aa]
3z
£
S
[«5]
N R
@
VE A U :“
2 -1 0 1 — 3 s
Sine angle
(a)
-5
o
3z
£
S
(3]
2 10 !
< k
n=51: .
d =58 :
R -100 -50 0 50 100 150
Angle/deg
(b)

Figure 8.13 Sector pattern from an irregular linear array, beam at 30°, optimization over
one period in u. (a) Response in u-space, and (b) beam pattern.



Array Beamforming 247

Relative gain/dB
3
o
=

-20 5 M h
2

-1 0 1 2 3 4

Sine angle
(a)
0 i
-5
[aa]
=
£
©
[=2]
2
& -10
<
15 {u !
n= 51 {
. d=58 : /\
-20 . .N\
-150 -100 -50 0 50 100 150
Angle/deg

(b)

Figure 8.14 Sector pattern from an irregular linear array, beam at 30°, optimization over
two periods less the sector width. (a) Response in u-space, beam at 30°, and
(b) beam pattern, beam at 30°.



248 Fourier Transforms in Radar and Signal Processing

required sector beam is now preserved, but in this case there is a large lobe
around —90°, nearly the full height of 0 dB. This is derived from the edge of
the approximate grating lobe near » = —1, within the real angle region (-1 <
# < 1). The large lobe at 150° is the reflection about 90° of the wanted lobe,
at 30°. This lobe could be removed by using reflector-backed elements, as
discussed earlier, but some of the large lobe (in the region —50° to —90°) will
not be removed. Furthermore, there are quite high sidelobes in the region
—20° to —50°, which are derived from parts of the u response that were not
within the pattern optimizing region chosen for I.

We see from the discussion of Figures 8.11 through 8.13 how the choice
of I affects the pattern. Finally, we choose I to be the whole region between
the first two approximate grating lobes, so it is of width 2U — #, where #, is
the width of the required sector, and we center I at the sector center, #;, as
before. Thus, using rect((# — u,)/(2U — u,)) in (8.34), so that

By; = (2U = up)sinc((U —up ) (x, — x;)) exp(=27i(x, — x;)m)

we obtain Figure 8.14 (for the same array as in Figures 8.11 through 8.13).
We still have the large lobe around —90°, caused by the approximate grating
lobe near # = —1, but the sidelobes between the main lobes are now rather
smaller, as the regions of the # response that they originate from are now
included in the least squared error solution.

Thus, although a solution can be found for the irregular array, its use-
fulness is limited for two reasons; the set of nonorthogonal exponential func-
tions (from the irregular array positions) used to form the required pattern is
not as good as the set used in the regular case, and, if the element separation
is to be 0.5 wavelengths as a minimum, an irregular array must have a mean
separation of more than 0.5 wavelengths, leading to grating (or approximate
grating) effects.

8.5 Summary

As there is a Fourier transform relationship between the current excitation
across a linear aperture and the resultant beam pattern (in terms of #, a direc-
tion cosine coordinate), there is the opportunity to apply the rules-and-pairs
method for suitable problems in beam-pattern design. This has the now-
familiar advantage of providing clarity in the relationship between aperture
distribution and beam patterns, where both are expressed in terms of combi-
nations of relatively simple functions.
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However, there is the complication to be taken into account that the
“angle” coordinate in this case is not the physical angle but the direction co-
sine, along the line of the aperture. In the text, we have taken the angle 6 to
be measured from broadside to the aperture and defined the corresponding
Fourier transform variable # as sin6, so that # = cos(7/2 — 0), the cosine of
the angle measured from the line along the aperture. In this # domain beam
shapes remain constant as beams are steered, while in real (or angle) space
they become stretched out when steered toward the axis of the aperture. Fur-
thermore, the transform of the aperture distribution produces a function that
can be evaluated for all real values of %, but only the values of # lying in the
range —1 to 1 correspond to real directions.

Both continuous apertures and discrete apertures can be analyzed, the
latter corresponding to ideal antenna arrays with point, omnidirectional ele-
ments. In this chapter, we have concentrated on the discrete, or array, case.
The regular linear array, which is very commonly encountered, is particularly
amenable to the rules-and-pairs form of analysis. In this case, the regular
distribution (a comb function) produces a periodic pattern in # space (a rep
function). In the case of a directional beam, the repetitions of this beam are
potential grating lobes, which are generally undesirable, but if the repetition
interval is adequate (large enough), there will be no repetitions within the
basic interval in # corresponding to real space and hence no grating lobes.
The condition for this (that the elements be no more than half a wavelength
apart) is very easily found by this approach. Two variations on the directional
beam for producing different low sidelobe patterns were studied in Section
8.3.2. These exercises, whether or not leading to useful solutions for practical
application, are intended to illustrate how the rules-and-pairs method can
be applied to achieve solutions to relatively challenging problems with quite
modest effort. It was seen in Section 8.3.3 that very good beams covering a
sector at constant gain can be produced, again very easily using the rules-and-
pairs method.

The case of irregular linear arrays can also be tackled by these methods.
However, the rules-and-pairs technique is not appropriate for directly find-
ing the discrete aperture distribution that will give a specified pattern when
the elements are irregularly placed. Instead, the problem is formulated as a
least squared error match between the pattern generated by the array and the
required one. In this case, the discrete aperture distribution is found to be the
solution of a set of linear equations, conveniently expressed in vector-matrix
form. The elements of both the vector and the matrix are obtained as Fourier
transform functions evaluated at points defined by the array element posi-
tions. Again, the sector pattern problem was taken, and it was shown that
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this approach gives the same solution as that given directly by the Fourier
transform in the case of the regular array, confirming that the direct Fourier
transform solution is indeed the least squared error solution. For the irregu-
lar array, we obtain sector patterns as required, though with perhaps higher
sidelobe levels and with some limitations on the array (which should not be
too irregular or have too wide an aperture for the number of elements) and
on the angle to which the beam can be steered away from broadside. These
limitations are not weaknesses of the method but a consequence of the ir-
regular array structure, which makes achieving a given result more difficult.
If the array elements are not to be too close (so are preferably at least a half
wavelength apart), the elements of the irregular array will have a mean separa-
tion of over a half wavelength, leading to some grating effects, which seem to
be unavoidable (even if directional elements are used to remove the back half
of the pattern) except by keeping the average element separation down and
not steering too far from broadside.



Final Remarks

The illustrations of the use of the rules-and-pairs technique in Chapters 3
through 8 show a wide range of application and how some quite complex
problems can be tackled, using a surprisingly small set of Fourier transform
pairs. The method seems to be very successful, but on closer inspection we
note that the functions handled are primarily amplitude functions—the
only phase function is the linear phase function due to delay. Topics such as
the spectra of chirp (linear frequency modulated) pulses or nonlinear phase
equalization have not been treated, as the method, at least as formulated at
present, does not handle these. There may be an opportunity here to develop
a similar calculus for these cases.

A considerable amount of work, in Chapters 6 and 7, is directed at
showing the benefits of oversampling (by only a relatively small factor, in
some cases) in reducing the amount of computation needed in the signal pro-
cessing under consideration. As computing speed is increasing all the time, it
is sometimes felt that little effort should go into reducing computational re-
quirements. However, apart from the satisfaction of achieving a more elegant
solution to a problem, there may be good practical reasons. Rather analogously
to C. Northcote Parkinson’s law, “Work expands to fill the time available for
its completion,” there seems to be a technological equivalent: “User demands
rise to meet (or exceed) the capabilities of equipment.” While at any time an
advance in speed of computation may enable current problems to be han-
dled comfortably, allowing the use of inefficient implementations, require-
ments will soon rise to take advantage of the increased performance—higher
bandwidth systems, more real-time processing, more comprehensive simula-
tions, and so on. Cost could also be a significant factor, particular for real-
time signal processing—it may well be much more economical to put some
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theoretical effort into finding an efficient implementation on lower perfor-
mance equipment than require expensive equipment for a more direct so-
lution, or alternatively to enable the processing to be carried out with less
hardware.

Finally, while it is tempting to use simulations to investigate the perfor-
mance of systems, there will always be a need for theoretical analysis to give
a sound basis to the procedures used and to clarify the dependence of the
system performance on various parameters. In particular, analysis will define
the limits of performance and, if practical equipment is achieving results close
to the limit, it is clear that little improvement is possible and need not be
sought; on the other hand, if the results are well short of the limit, then it is
clear that substantial improvements may be possible. The Fourier transform
(now incorporating Fourier series) is a valuable tool for such analysis, and as
far as Woodward’s rules-and-pairs method makes this operation easier and its
results more transparent, it is a welcome form of this tool.
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two finite energy waveforms, 104

D
Delays
amplitude equalization, 188
interpolation and, 141
weights, 145
Difference beam
defined, 190
defining, 200
gain response against frequency offset,
208-9
ideal, 200
pattern, 200
responses, 206
slope, 210-11, 213
Difference beam equalization, 199-214
illustrated, 206—7
integral, 212
narrowband steering, 200
ramp and rect functions, 204
response, 212, 213
ripple pattern, 212
trapezoidal spectrum, 202
Dirac delta-function, 6, 15-17
convolutions, performing, 153
evenly spaced, 26-27
power in, 72-74
scaled, 16-17
series approximating, 15
Directional beams, 222-25
patterns, 222, 223-25
steering, 222, 225
Discrete apertures, 249
Discrete Fourier transform (DFT)
defined, 71

examples, 99-101
fast algorithms, 98
general, 91-94
introduction to, 71
low-order, 99
of regular time series, 94-95
of sampled periodic spectrum, 95-98
summary, 106-7
See also Fourier transforms
Discrete functions, 93

E

Equalization, 175-215
amplitude, 186-88
array response with, 193
basic approach, 177-81
basis, 175-76
for broadband array radar, 188-90
in communications channel, 177
difference beam, 199-214
effectiveness, 215
introduction to, 175-76
method summarization, 180
parameters, varying, 198
sum beam, 190-99
summary, 214-15
weights, 214

Equalizing filters, 178

Error power
contour plot, 164, 165
defined, 159
levels, 164—-66
minimized, 178

Exponential rounding, 57

F
Fast Fourier transform (FFT), 71, 98—-102
efficient convolution using, 104-6
examples, 99-101
inverse IFFT), 105
MATLAB function, 98
orders, arranging, 105
orders, increasing, 101
triangular pulse and spectrum, 100, 102
Finite impulse response (FIR) filters
coefficients, 169
Gaussian, 168, 170
for interpolation, 138-39, 159
weights for interpolation, 142, 146
weights with oversampling, 149, 152,
155
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Fourier series

coefficients, 78—80

concept, 4

periodic waveforms, 69

of real functions, 78-91

of rectified sinewaves, 88-91

relationship, 70

of sawtooth waves, 83-85

of square wave, 80-83

summary, 106

of triangular waves, 85-87
Fourier transforms

of constant functions, 5

discrete (DFT), 71

fast (FFT), 71, 98-102

generalized functions and, 4-6

inverse, 12—13, 66

as limiting case of Fourier series, 5

notation, 12—13

pairs, 23

rules-and-pairs approach, 1-4

rules for, 22

as valuable technique, 1
Fractional bandwidths, 120
Full-wave rectified sinewaves, 88, 90, 91

G
Gates
optimum, for oversampled time series,
144
raised cosine rounded, 151-54
rectangular, performance, 158
spectral, 147-54
trapezoidal, 147-48
trapezoidal rounded, 148-51
Gaussian clutter
direct generation of, 167-70
simulated, generation of, 166-71
waveform generation with interpola-
tion, 170-71
Gaussian FIR filter, 170
Gaussian functions, 6
Gaussian spectrum, 162-63
standard deviation, 169
trapezoidal spectrum, 163-64
Gaussian waveform generation
FIR filter for, 168
with interpolation, 170

General sampling rate
quadrature sampling, 124-28
uniform sampling, 117-20

H
Half-wave rectified sinewaves, 88, 90
High IF sampling, 131-33
spectrum, 132
summary, 134
time, 131
Hilbert sampling, 120-22
phase shift, 120
rate, 122
summary, 133-34
theorem, 111, 121
Hilbert transform, 134-36
finding, 135
phase shift correspondence, 136

1
I (in phase), 7-8
Interpolating functions, 114
sampled waveform with, 115
trapezoidal gate, 147
trapezoidal rounded gate, 151
in uniform sampling, 124
Interpolation
for delayed waveform time series,
137-73
delays and, 141
factor, 141
FIR filter for, 139, 159
FIR filter weights for, 142
function, 143, 144
Gaussian waveform generation with,
170
introduction to, 137-38
least squared error, 158-66
resampling and, 171-72
spectrum independent, 138-58
summary, 172-73
Inverse fast Fourier transform (IFFT), 105
Inverse Fourier transform
aperture illumination function, 66
notation, 12—13

L
Least squared error interpolation, 158-66
error power levels, 164-66
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Least squared error interpolation (continued)

Gaussian spectrum, 162-63

minimum residual error power method,

158-61

power spectra and autocorrelation func-

tions, 161-64
raised cosine spectrum, 162
rectangular spectrum, 161
trapezoidal spectrum, 163-64
triangular spectrum, 162
See also Interpolation
Linear amplitude distortion, 187
Local oscillators (LO) waveform, 130
Low IF analytic signal sampling, 128
spectra, 129
summary, 134
Low sidelobe patterns, 225-32
constant level sidelobe patterns, 231

pattern with additional shading, 229

raised cosine shading, 226

See also Uniform linear arrays (ULA)

M
MATLAB programs
defined, 10
snc functions evaluation, 186
Maximum sampling rate, 118
Minimum residual error power method,
158-61
Minimum sampling rate, 116-17
Mismatch power, 165, 166
Modified quadrature sampling, 127-28
defined, 127
relative sampling rates, 128
Monopulse measurement, 190

N
Narrowband waveforms, 24, 189
Newton’s approximation method, 228
Nonsymmetric functions, convolving, 21
Nonuniform linear arrays, 239-48
aperture distribution, 239-40
gain pattern, 240
prescribed patterns from, 239-41
sector beams, 241-48
summary, 249-50
weights, 241

O
Organization, this book, 8-10
Oversampling

benefit, 156

factors, 145, 164

filter weights with, 149, 152, 155
FIR interpolation weights with, 146
rates, 157, 158

rates, increasing, 198

sum beam equalization and, 198, 199

P
Pairs, deviations of, 37-39
Parseval’s theorem, 24-26, 72
Periodic function
general, 74-77
regularly sampled, 78
repetition interval, 74
spectra, 74
waveforms, 74
Periodic waveforms
dimensions, 78
energy and power, 72
Fourier series coefficients for, 80
Fourier series representation, 69
general periodic function, 74-77
introduction to, 69
power in the Dirac delta-function,
72-74
power relations for, 72-78
regularly sampled function, 77
summary, 106
Phase factors, 221
Planar arrays, 218
Power
defined, 72
in Dirac delta-function, 72-74
mismatch, 165, 166
negligible, 112
total, 162
in waveforms, 76
Power spectra
exponential impulse response, 56
rect impulse response, 56
Pulse Doppler radar
Doppler shift, 65, 66
spectrum, 66
target return, 65-67
weighting function, 67
Pulse repetition frequency (PRF), 63, 167
Pulses
asymmetric trapezoidal, 46-48
asymmetric triangular, 48-50
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identical RE regular train of, 62-64 four, 60-61
raised cosine, 50-53 illustrated, 59, 182
rectangular, 42, 53 product of, 204
rounded, 53-58 Rectangular pulses, 42
rounded trapezoidal, 58-62 convolving trapezoidal pulse with, 54
symmetrical trapezoidal, 4243 rounding, 57
symmetrical triangular, 43—46 step continuity, 53
DPulse spectra, 41-67 with trapezoidal pulse, 54
asymmetric trapezoidal, 48 Rectangular spectrum
asymmetric triangular, 50 expanded range of taps, 164, 166
raised cosine, 53 mismatch power for, 165, 166
reasons for studying, 41 Rect functions, 13—-15
regularly gated carrier, 65 alternative forms, 27
regular pulse train, 63 convolving, 20
summary, 67 Fourier transform of, 13
trapezoidal, 48 product of, 31, 204
triangular pulse, 45 Rectified sinewaves
Fourier series of, 88-91
Q full-wave, 88, 90, 91
Q (quadrature), 7-8 half-time, 88
Quadrature sampling, 122-28 half-wave, 88, 90
allowed sampling rates, 127 illustrated, 88

basic analysis, 122-24
general sampling rate, 124-28

illust.rated, 123 carrier gated by, 64-65
modified, 127-28 duty ratio, 82

relating condition, 124 illustrated, 62

Regularly sampled function, 77
Regular pulse train, 62-64

relative sampling rates, 125

spectrum, 63
theorem, 128 P

Regular time series

R periodic spectrum of, 95
Raised cosine pulse, 50-53 spectrum of, 94
defined, 50 transform of, 94-95

Gaussian function, 54 Relative sampling rates

illustrated, 52 lines of, 127
shapes, 51 maximum, 126
spectrum, 53 minimum, 126
transform, 51=53, 54 modified quadrature sampling, 128
unit amplitude, 50-51 quadrature sampling, 125-28
Raised cosine rounded gate, 151-54 uniform sampling, 119
defined, 151-53 Repetition period, 108-9
filter weights with oversampling and, Repetition rate, 125
155 Rep operator, 17-18
illustrated, 153 defined, 17
See also Gates illustrated, 18

period of, 109

mismatch power for, 165 Resampling, 171-72

of unit area, 162 economical, 172
illustrated, 171
interpolation and, 171-72

Raised cosine spectrum, 162

Ramp functions
convolving, 59

defined, 59



260 Fourier Transforms in Radar and Signal Processing

Resistance, product of, 55
Rounded pulses, 51-53
effect on trapezoidal pulse spectrum, 57
general trapezoidal, 58-62
rising edge, 61
stray capacitance, 55
Rules, deviations of, 37—-39
Rules and pairs, 11-29
brief deviations of, 33—-39
Fourier series of real functions with,
78-80
introduction to, 11-12
notation, 12-20
Woodward, 2-3
Rules-and-pairs method, 1-4
origin of, 2-3
outline of, 3—-4

S
Sampled periodic spectrum
sampling interval, 95
transform of, 95-98
Sampling, 117-20
basic technique, 112-13
with finite window width, 130-31
high IE 131-33
Hilbert, 120-22
Hilbert theorem, 111
interval, 179
low IF analytic signal, 128
quadrature, 122-28
summary, 133-34
theory, 111-34
uniform, 116-20
wideband, 113-15
wideband theorem, 111
Sampling rates
general, 117-20, 124-28
Hilbert, 122
maximum, 118
minimum, 116-17, 161
relative, 119, 125
Sawtooth waves
Fourier series of, 83—-85
synthesis, 84
waveform, 83
Scaling factor, 42
Sector beams (nonuniform linear array),

241-48

forming, 241
grating lobe, 248
repetitions, 243
sector pattern, 242, 244, 245, 246, 247
sidelobes, 248
Sector beams (uniform linear array), 232-39
aperture distribution, 232
back lobe, 235
element responses with reflector, 235
fifty degree, 234
phase, 236
phase variation across beam, 238
with reflector-backed array, 236, 237
sidelobe ripples, 233
slope, 238-39
steered, 236, 237
subsectors, 239
weighting function, 238
See also Uniform linear arrays (ULA)
Shifted sinc functions, 26-29
Signal processing
analytic signal, 7
complex waveforms in, 6-8
spectra in, 6-8
Sinc functions, 3, 14-15
convolution, contour for integral in, 32
envelope, 233
product of, 43
properties of, 29-33
shifted, sum of, 26-29
Snc functions
defined, 185
illustrated, 184
MATLAB program for evaluating, 186
Spectral shifts, 117
Spectrum independent interpolation,
138-58
minimum sampling rate solution,
138-42
oversampling and spectral gating condi-
tion, 142-47
raised cosine rounded gate, 151-54
results and comparison, 154-58
spectrum of time series, 143
trapezoidal gate, 14748
trapezoidal rounded gate, 148-51
Square waves
approximations to, 82
Fourier series of, 80—-83
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representation of, 80
spectrum, 83
synthesis, 82
transform, 81-82
waveform, 81
Step functions, 15-17
scaled and shifted step, 17
unit, 17
Stray capacitance, 54
Sum beam
broadband, steering, 191
defined, 190
element separation and, 196
equalization, 190-99
frequency response, effect of band-
width, 194
frequency response, variation with
equalization parameters, 197
gain with frequency sensitive elements,
214
narrowband, steering, 190-91
oversampling and, 198, 199
response with frequency offset, 196
sampling rate and, 195
Symmetrical functions, convolving, 19
Symmetrical trapezoidal pulse, 4243
analysis, 42
illustrated, 42
length, 43
spectrum, 44
Symmetrical triangular pulse
defined, 43-45
illustrated, 45
limiting version, 43
spectrum, 45
Symmetric triangular waves, 85, 87

T

Time-limited waveforms
defined, 107
identity, 107
spectrum of, 107-8

Time series
oversampled, 144
spectrum of, 143

Trapezoidal gate, 147-48
defined, 147

filter weights with oversampling and,

149
illustrated, 147
interpolation at time, 148
See also Gates
Trapezoidal pulses
asymmetric, 4648
convolving with rectangular pulse, 54
symmetrical, 42-43, 44
Trapezoidal rounded gate, 148-51
defined, 148
filter weights with oversampling and,
152
illustrated, 150
interpolating function, 149
See also Gates
Triangular function, 30
Triangular pulses
asymmetric, 48-50
symmetrical, 43—46
Triangular spectrum, 162
Triangular waves
asymmetric, 85, 87
coefficients, 87
Fourier series of, 85-87
symmetric, 85, 87
Tri function, 46

U

Uniform linear arrays (ULA), 218, 222-39
beam patterns, 223-24
beam patterns, with additional shading,

229

beam shape, 228
constant level sidelobe patterns, 231
directional beams, 222-25
low sidelobe patterns, 225-32
with raised cosine shading, 226
sector beams, 232—39
summary, 249

Uniform sampling, 116-20
general sampling rate, 117-20
interpolating functions, 124
with low IE 128-31, 134
maximum sampling rate, 118
minimum sampling rate, 116-17
relative sampling rate, 119
summary, 133
theorem, 120
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W delay, 144

Waveforms equalization, 214
baseband, 7 filter, with oversampling, 149, 152, 155
description, choosing, 4 filter tap, 156, 157
discrete, 96 FIR interpolation, 142, 146
flat oversampled, 145 narrowband, 191
gated repeated, 114 nonuniform linear arrays, 241
Gaussian, 168 Wideband sampling, 113-15
general finite discrete time series, 93 interpolating functions, 115
local oscillator, 130 theorem, 115
narrowband, 24 waveforms, 11315
periodic, 69-70, 72, 74 Wideband signals, 189
power, 76 Wiener-Khinchine relation, 26
pulse Doppler radar, 66 Wiener-Khinchine theorem, 160
repetitive, 77 Woodward, PM., 2-3
shifted, 17

Weighted squared error match, 178 Z )

Weighting functions, 227, 228-29, 238 Zeros of a function, 227

Weights

array element, 217
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