
This is a special edition of an established title widely used by colleges and 
universities throughout the world. Pearson published this exclusive edition 
for the benefit of students outside the United States and Canada. If you 
purchased this book within the United States or Canada, you should be aware 
that it has been imported without the approval of the Publisher or Author.

Introductory Circuit Analysis has remained one of  the most acclaimed texts in the 
field of  electrical engineering for over 50 years. With a special emphasis on practical 
applications, this text presents diverse subject matter clearly—from an introduction to 
the units of  measurement to the addition and subtraction of  nonsinusoidal waveforms.

For this fourteenth edition, topics requiring an understanding of  fundamental 
concepts like power factors, lead concepts, and lag concepts have been significantly 
enhanced throughout the text. Robert Boylestad has joined hands with Brian Olivari, 
an academic with over 15 years of  experience, to best address recent trends in the 
field. The new edition has also been redesigned, with a more modern, accessible layout 
and an improved art program; for instance, the contrast has been enhanced in several 
figures to ensure easy distinction between a cell’s anode and cathode, and between the 
capacitance values of  an electrolytic capacitor, among others. 

Key Features

• Chapter-ending problems progress from simple to more complex, reinforcing 
students’ understanding of  major concepts and bolstering their confidence.

• Accompanying examples, lab experiments, and equations aid students in 
navigating complex topics such as a Fourier series, transient R-C networks, and 
oscilloscopes.

• Boxes on the contributions of eminent scientists like André Marie Ampère, 
Michael Faraday, and Nikola Tesla work with the surrounding text to contextualize 
concepts.

• Over 2,000 images reflect the latest industry practices and help students visualize 
what they are learning.
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ac
Sinusoidal Alternating Waveforms
Sine wave υ α α ω π= = = = =V t ft f Tsin , 2 , 1/ , 1 radian 57.3°,m  

π ( )( )= ×radians /180° degrees , π( ) ( )= ×degrees 180°/ radians
Identities t t t tsin 90° cos , sin cos /2 ,ω ω ω ω π( ) ( )( )+ = = −
sin sin , cos cosα α α α( ) ( )− = − − =
Average value =G algebraic sum of areas / length of curve
Effective (rms) value I I I I0.707 , 2 ,m mrms rms= =

I i t Tarea /rms
2( )[ ]=

V V

V V

V v t T

0.707

2

area /

m

m

rms

rms

rms
2( )[ ]

=

=

=

The Basic Elements and Phasors
R LI V R X L i: :/ , in phase , leads by 90°m m L L Lω υ= =
C X C i: 1/ , leads by 90°C C Cω υ=  Power P V I /2  cosm m θ( )= =

RV I P V I I R V R:cos /rms rms rms rms
2

rms
2

rmsθ = = =
Power factor θ= =F P V Icos /p rms rms  Rectangular form   = ±A jBC

Polar form θ= ∠C C  Conversions C A B ,2 2 θ= + =
B A A C B Ctan / , cos , sin1 θ θ( ) = =−  Operations j 1,= −

j j j A A j B BC C1, 1/ , ,2
1 2 1 2 1 2( ) ( )= − = − ± = ± ± + ± ±

C C C CC C C C, / /1 2 1 2 1 2 1 2 1 2 1 2⋅ θ θ θ θ( )( ) ( )= ∠ + = ∠ −

Series and Parallel ac Circuits
Elements ∠ ∠ ∠−R X X0°, 90°, 90°L C
Series = + + + + = =F R ZZ Z Z Z Z I E Z. . . , / , /T N s T p T1 2 3

Voltage divider rule x xV Z E Z/ T=  Parallel Y Y Y
T 1 2

= + +

Y Y Z Z Z Z Z. . . , / ,
N T3 1 2 1 2( )+ + = +  G B0°, 90°,L∠ ∠−

B F G Y90°, cos /C P T Tθ∠ = =  Current divider rule I1 =

Z I Z Z I Z I Z Z/( ), /T T2 1 1 22 1 2 ( )+ = +
Equivalent circuits R R X X R X R X X R/ , / ,s p p p p s p p p p

2 2 2 2 2 2( ) ( )= + = +
R R X R/ ,p s s s

2 2( )= +  ( )= +X R X X/p s s s
2 2

Series-Parallel ac Networks
Employ block impedances and obtain general solution for reduced network. Then 
substitute numerical values. General approach similar to that for dc networks.

Methods of Analysis and Selected Topics (ac)
Source conversion = = =p s p sE IZ Z Z I E Z, , /
Bridge networks =Z Z Z Z/ /1 3 2 4

∆ ∆Y Y- , -  conversions See dc coverage, replacing R by Z.

Network Theorems (ac)
Review dc content on other side.
Thévenin’s theorems   (dependent sources) E E Z E I, / ,OC Th Th OC SC= =
Z E I/Th g g=  Norton’s theorems (dependent sources) I I ,SC N=
Z E I Z E I/ , /N OC SC N g g= =  Maximum power transfer theorem 

θ θ= = − =Z Z P E R, , /4L Th L Th Th Thmax
2

Z

Power (ac)
R P VI V I I R V R: /2 /m m

2 2= = = =  Apparent power S VI ,=
θ θ= = =P S F P Scos , cos /p  Reactive power Q VI sin θ=

L Q VI I X V X C Q VI I X V X: / , : / ,L L L C C C
2 2 2 2= = = = = =  

S P Q F P S, /T T T p T T
2 2= + =

Resonances
Series X X f LC Z R Q X R Q X R, 1/(2 ), , / , /L C S TS l L l S Lπ= = = = = =

R L C(1/ ) / ,  V Q E V Q E P P, , 1/2 ,L S Cs S HPF max( )= = =
π ( ]( ) ( )= − + + −f R L R L LC f R L1/2 [ /2 (1/2) / ) 4/ , use /2 ,1

2
2

π= − = =BW f f R L f Q/2 /S S2 1  Parallel X X X,Lp C Lp= =

R X X f LC R C L Z R R/ , 1/ 2 1 / , ,l L L p l TP s p
2 2 2π( )[ ]( ) ( )+ = − = �

R R X R/ ,p l L l
2 2( )= +  = = − =�Q R R X BW f f f Q( )/ , /p s p Lp p p2 1

Q Z R Q R X X X X f LC10: , , , 1/(2 ),Tp s l Lp L L C p
2� π≥ ≅ ≅ = ≅

Q Q I I QI BW f Q R L, , / /2p l L C T p p l π= = ≅ = =

Decibels, Filters, and Bode Plots
Logarithms N b x N x x ab, log , log 2.3 log , logx

b e 10 10= = = =
a blog log ,10 10+ a b a b a n alog / log log , log log ,n

10 10 10 10 10= − =
P P V VdB 10log / , dB 20log /10 2 1 10 2 1= =υ

R-C filters f RChigh-pass 1/ 2 ,c π( ) ( )=

 π( )

( )

( )

= + ∠

=

−R R X X R

f RC

V V/ tan /

low-pass 1/ 2 ,
o i C C

c

2 2 1

= + ∠− −X R X R
X

V V/ / tano i C C
C

2 2 1

Octave 2 : 1, 6 dB/octave  Decade 10 : 1, 20 dB/decade
Transformers
Mutual inductance =M k L Lp s   Iron-core = ΦE fN4.44 ,p p m

 = Φ = = =E fN E E N N a N N I I N N4.44 , / / , / , / / ,S S m p S p S p S p S S p  

a E I E I P PZ Z , , idealp L p p S S i O
2 ( )= = =

Air-core ω= + +MZ Z Z Z( ) /( )i p S L
2

Polyphase Systems
Y-Y system = = = =φ φ φ φ φI I I V E E V, , 3g L L L  Y-Δ system 

= =φ φV E I I, 3L L      Δ-Δ system V E E I I, 3L L= = =φ φ φ

Δ-Y system E V I I E E3 , ,L L L= = =φ φ φ Power P P3 ,T = φ

Q Q S S E I F P S3 , 3 3 , /T T L L p T T= = = =φ φ

Pulse Waveforms and the R-C Response
% tilt ( )[ ] ( )= − × = +V V V V V V/ 100%  with /21 2 1 2

Pulse repetition frequency ( ) = Tprf 1/
Duty cycle ( )= ×t T/ 100%p

( )( )( ) ( )= + − ×V Vduty cycle peak value 1 duty cycle bav

R-C circuits V V V e1C i f i
t RC/v ( )( )= + − − −

Compensated attenuator =R C R Cp p s s

Nonsinusoidal Circuits
Fourier series f A A t A tsin sin  20 1 2α ω ω( ) = + + + +�
A n t B t B t B n tsin cos cos 2 . . . cosn n1 2ω ω ω ω+ + + +
Even function α α( ) ( )= −f f B,  no termsn  Odd function f α( ) =

f A,  no terms,nα( )− −  no odd harmonics if f t f T t( /2) ,[ ]( ) = +  no 
even harmonics if ( ) ( )( )= − +f t f T t/2
Effective (rms) value

V V V V V V( )/2m m m mrms 0
2 2 2 2 2

n n1 1
� �= + + + ′ + ′ + + ′( )

Power θ θ= + + … + = =P V I V I V I I R V Rcos cos /T n n n0 0 1 1 rms
2

rms
2

Standard Resistor Values
Ohms

Ω( )

Kilohms

kΩ( )

Megohms

MΩ( )

0.10 1.0 10 100 1000 10 100 1.0 10.0
0.11 1.1 11 110 1100 11 110 1.1 11.0
0.12 1.2 12 120 1200 12 120 1.2 12.0
0.13 1.3 13 130 1300 13 130 1.3 13.0
0.15 1.5 15 150 1500 15 150 1.5 15.0
0.16 1.6 16 160 1600 16 160 1.6 16.0
0.18 1.8 18 180 1800 18 180 1.8 18.0
0.20 2.0 20 200 2000 20 200 2.0 20.0
0.22 2.2 22 220 2200 22 220 2.2 22.0
0.24 2.4 24 240 2400 24 240 2.4
0.27 2.7 27 270 2700 27 270 2.7
0.30 3.0 30 300 3000 30 300 3.0
0.33 3.3 33 330 3300 33 330 3.3
0.36 3.6 36 360 3600 36 360 3.6
0.39 3.9 39 390 3900 39 390 3.9
0.43 4.3 43 430 4300 43 430 4.3
0.47 4.7 47 470 4700 47 470 4.7
0.51 5.1 51 510 5100 51 510 5.1
0.56 5.6 56 560 5600 56 560 5.6
0.62 6.2 62 620 6200 62 620 6.2
0.68 6.8 68 680 6800 68 680 6.8
0.75 7.5 75 750 7500 75 750 7.5
0.82 8.2 82 820 8200 82 820 8.2
0.91 9.1 91 910 9100 91 910 9.1

Summary of Equations to Accompany  
INTRODUCTORY CIRCUIT ANALYSIS, Fourteenth Edition, Global Edition 

by Robert L. Boylestad / Brian A. Olivari
© Copyright 2024 by Pearson Education, Ltd. All Rights Reserved.

dc
Introduction
Conversions 1 meter 100 cm 39.37 in., 1 in. 2.54 cm,= = =
1yd 0.914 m 3 ft,1 mile 5280 ft ,= = =  ° °F 9/5 C 32,= +
° ° °C 5/9( F 32), K 273.15 C= − = +  Scientific notation 1012 =
tera T, 10 giga G, 10 mega M, 10 kilo k, 109 6 3 3= = = = = = = =−

milli m, 10 micro6= =−  , 10 nano n, 10 pico p9 12µ= = = = =− −  
Powers of ten 1/10 10 , 1/10 10 ,n n n n= =− −

10 10 10 , 10 /10 10 , (10 ) 10n m n m n m n m n m nm( )( ) = = =+ −

Voltage and Current
Coulomb’s law F kQ Q r k/ , 9 10 N m /C ,1 2

2 9 2 2⋅= = ×
Q rcoulombs (C), meters (m)= =  Current I Q t/ amperes ,( )=
t Qseconds s , 1.6 10 Ce

19( )= = × −   Voltage V W Q/ volts ,( )=  
W joules J( )=

Resistance
Circular wire R l A/ ohms ,ρ ( )=  ρ = resistivity,  =l feet,   

ρ( )= =A d( ) , Cu 10.37CM mils
2  Metric units l Acm, cm ,2= =

Cu 1.724 10 ohm-cm6ρ( ) = × −  Temperature T T R( )/i 1 1+ = 
T T R R R T( )/ , [1 ( 20º C)], (Cu) 0.00393i 2 2 1 20 20 1 20α α+ = + − =  

Color code Bands − =1 3: 0  black, =1  brown, =2  red, =3   
orange, =4  yellow, =5  green, =6  blue, =7  violet, =8  gray, =9  
white, Band 3: 0.1 = gold, =0.01  silver, Band 4: 5% =  gold, =10%   
silver, =20%  no band, Band 5: 1% =  brown, =0.1%  red, =0.01%
orange, =0.001% yellow Conductance =G R1/  siemens (S)

Ohm’s Law, Power, and Energy
Ohm’s law = = =I E R E IR R E I/ , , /  Power P W t/= =
VI I R V R/ watts ,2 2 ( )= =  =1hp 746 W
Efficiency P P T% / 100%,i n1 2 3⋅ ⋅η η η η η η( )= × = ⋅ ⋅ ⋅ ⋅ ⋅Ο  
Energy W Pt W P t, (kWh) [ (W) (h)]/1000⋅= =

Series dc Circuits
R R R R R R NR I E R V IR, , / ,T N T T1 2 3= + + + ⋅ ⋅ ⋅ + = = =  
Kirchhoff’s voltage law � � �V V V0, rises dropsΣ = Σ = Σ
Voltage divider rule =V R E R/x x T

Parallel dc Circuits
R R R R R R R N R1/ 1/ 1/ 1/ 1/ , / ,T N T T1 2 3( )= + + + ⋅ ⋅ ⋅ + = =
R R R R I EG E R/ , /T T1 2 1 2( )+ = =
Kirchhoff’s current law I Ientering leavingΣ = Σ
Current divider rule ( )=I R R I/ ,x T x  (Two parallel elements): 
I R I R R I R I R R/ , /1 2 1 2 2 1 1 2( ) ( )= + = +

Series-Parallel Circuits
Potentiometer loading >>R RL T

Ammeter R R I I I/m CS CSshunt max( )= −
Voltmeter R V V I/VS CSseries max( )= −
Ohmmeter R E I R/ zero-adjust/2s CS m( )= − −

Methods of Analysis and Selected Topics (dc)
Source conversions = = =E IR R R I E R, , /p S p S

Determinants = = −D
a b

a b
a b a b1 1

2 2
1 2 2 1

Bridge networks =R R R R/ /1 3 2 4  Δ-Y conversions 
R' R R R R R R R', R R R R' R R R R', / / /A B A B A BC 3 2 C 1 C= + + = = , = ,
R R /3Y = ∆  Y-Δ conversions R'' R R R R R R R,1 2 1 3 2 3 C= + + =
R'' R R R'' R R R'' R R R/ , / , / , 3B A Y3 2 1= = =∆

Network Theorems
Superposition Voltage sources (short-circuit equivalent), current sources 
(open-circuit equivalent)
Thévenin’s Theorem R :Th  (all sources to zero), E :Th  (open-circuit terminal  
voltage)
Maximum power transfer theorem R R R P,L Th N max= = =
E R I R/4 /4Th Th N N

2 2=

Capacitors
Capacitance C Q V A d A d/ / 8.85 10 / farads (F),r

12= = = × −ε ε
C Cr 0= ε  Electric field strength = =V d Q A/ /ε%  (volts/meter)  
Transients     (charging) = τi E R e( / ) ,C

t– /  τ υ= = τRC E e, (1 – ),C
t– /   

(discharge) υ = τEe ,C
t– /  = −i E R e( / )C

t RC/  = ∆ ∆i i C t( / )C C Cav
y   

Series Q Q Q Q C C C, 1/ (1/ ) (1/ )T T1 2 3 1 2= = = = + +
C C C C C C C(1/ ) (1/ ), /( )N T3 1 2 1 2+ ⋅ ⋅ ⋅ + = +  Parallel Q QT 1= +

Q Q C C C C, T2 3 1 2 3+ = + +  Energy =W CV(1/2)C
2 

Inductors
Self-inductance µ=L N A l/2  (henries), L Lr 0µ=
Induced voltage ( )= ∆ ∆e L i t/L av  Transients (storage) 

= τi I e(1  – ),L m
t– /  τ υ= = = τI E R L R Ee/ , / ,m L

t– /  (decay), 
τ ( )= + ′ = + =τ τ′ ′R R Ee L R R i I e[1 ( / )] ,   / , ,L

t
L m

t
2 1

– /
1 2

– /y  
=I E R/m 1 Series = + + + ⋅ ⋅ ⋅ +L L L L LT N1 2 3   Parallel 

L L L L L L1/ 1/ 1/ 1/ 1/ ,T N T1 2 3 ( )( ) ( ) ( )= + + + ⋅ ⋅ ⋅ + =
L L L L/1 2 1 2( )+  Energy =W LI1/2( )L

2

Magnetic Circuits
Flux density ΑΦ=B / (webers/m )2  Permeability r 0µ µ µ=
Wb/A m⋅( ) Reluctance µ= l A/ (rels)5  Ohm’s law Φ ^ 5/=  

(webers) Magnetomotive force ^ NI=  (ampere-turns) Magnetizing 
force ^H l NI l/ /= =  Ampère’s circuital law 0†^∑ =  
Flux entering leavingΦ Φ∑ = ∑  Air gap = ×H B7.96 10g g

5

Greek Alphabet

Letter Capital Lowercase Letter Capital Lowercase

Alpha Α α Nu Ρ υ
Beta Β β Xi Ξ ξ
Gamma Γ γ Omicron Ο ο
Delta ∆ δ Pi Π π
Epsilon Ε Rho Ρ ρ
Zeta Ζ ζ Sigma Σ σ
Eta Η η Tau Τ τ
Theta Θ θ Upsilon γ υ
Iota Ι ι Phi Φ φ
Kappa Κ κ Chi Χ χ
Lambda Λ λ Psi Ψ ψ
Mu Μ µ Omega Ω ω

Prefixes

Multiplication  
Factors

SI  
Prefix

SI  
Symbol

1 000 000 000 000 000 000 10              18= exa E

1 000 000 000 000 000 10            15= peta P

1 000 000 000 000 10          12= tera T

1 000 000 000 10        9= giga G

1 000 000 10      6= mega M

1 000 10    3= kilo k

0 001 10. 3= − milli m

0 000 001 10.   6= − micro µ
0 000 000 001 10.     9= − nano n

0 000 000 000 001 10.       12= − pico p

0 000 000 000 000 001 10.         15= − femto f

0 000 000 000 000 000 001 10.           18= − atto a
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without having to refer to the calculator manual provided. 
In some cases, short-cut methods are introduced that are 
helpful in what they can perform in the shortest of time. In 
every respect we feel the TI-89 will serve the student well 
in their current studies and those to follow.

The feedback we have received from users of the thir-
teenth edition has been very helpful in defining areas that 
needed additional explanation and coverage. We always 
consider the effort to share feedback to be extraordinary 
since the instructor has so many other obligations in today’s 
teaching environment. The comments we have received 
directly from users regarding potential errors in the solu-
tions were taken seriously; and we reviewed their com-
ments carefully to ensure that the content is correct and 
clarified. However, if you have questions about any of the 
content or solutions, we welcome your comments and will 
respond to any inquiry as soon as possible.

We realize there is always room for improvement, and 
while not as obvious as it was in earlier editions, there is 
always something you can do to take the text one step 
higher.

Robert L. Boylestad
Brian A. Olivari

Welcome to the fourteenth edition. Over the fifty plus years 
since the first edition in 1968, the revisions have typically 
involved adding additional content based on the changes in 
curriculum. This new fourteenth edition is more about 
refining and updating content to provide a revision that 
ensures that the most current and relevant content is 
 provided.

We are also excited about the ways students can pur-
chase this textbook to ensure that they have the most effec-
tive and affordable options.

Students can choose from the print book or eText 
options. With the Pearson eText, students can search the 
text, use the study tools such as flashcards, make notes 
online, print out reading assignments that incorporate the 
notes they take during lectures, and bookmark important 
passages for later review.

The most notable changes include the following:

• The over 2000 images are as current as possible with 
many new or modified for this edition.

• The overall design of the text has been updated and 
enhanced for a more modern, accessible layout.

• The Multisim and PSpice computer material has been 
removed based on the vast majority of reviewers stating 
it was not covered. This valuable feedback indicated the 
importance of covering fundamental theories clearly 
rather than focusing on the mechanics of applying com-
puter methods.

• Topics requiring a solid understanding of power factor, 
lead, and lag concepts have been significantly enhanced 
throughout the text.

• Laboratory experiments and summary of equations to 
accompany the text have been carefully reviewed for 
accuracy and changes made where required.

• Problems were carefully reviewed to ensure that they 
progressed from the simple to the more complex in each 
section.

• All solutions were checked carefully to ensure accuracy.

The TI 89 Titanium calculator continues to be the choice 
for this text, and we have provided sufficient detail in the 
text to perform all the mathematical techniques required 

Preface

SUPPLEMENTS
To enhance the learning process, a full supplements pack-
age accompanies this text and is available to instructors 
using the text for a course.

Instructor Resources
Instructor Resources can be downloaded at www. 
pearsonglobaleditions.com. If you don’t already have a 
username and password for access, you can request access 
at www.pearsonglobaleditions.com.

• Instructor’s Resource Manual, containing text solutions.
• PowerPoint Lecture Notes.
• TestGen, a computerized test bank.
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1  Introduction

 1.1 THE ELECTRICAL /ELECTRONICS INDUSTRY
Over the past few decades, technology has been changing at an ever-increasing rate. The 
pressure to develop new products, improve the performance and reliability of existing sys-
tems, and create new markets will only accelerate that rate. This pressure, however, is also 
what makes this field so exciting. New ways of storing and manipulating information, manu-
facturing integrated circuits, and developing software-embedded hardware systems that can 
“think” on their own based on input data are only a few possibilities.

Change has always been part of the human experience, but in the past, it was gradual. In 
recent years, however, the rate at which change in the electrical/electronics industry has been 
taking place is mind-boggling. Just think, for example, it was only a few years ago that 
“flatscreen” TVs, with wide, flat screens were introduced. Already, these have been eclipsed 
by much wider 4K ultra high definition (UHD) and 3D models.

Miniaturization has resulted in huge advances in electronic systems. For example, 
advancement in this technology has allowed cell phones that originally were the size of note-
books to now be smaller than a deck of playing cards. These so-called smartphones (devices), 
such as an iPhone 12 (2020), provide a multitude of extremely desirable features, in addition 
to being able to make simple telephone calls. Such features include a multi-touch glass capac-
itive screen, mp3 music player (iPod capability), web browser, email, text messaging, calen-
dar and contacts, mobile game player, facial recognition (for security purposes), 4K HD 
video recording, high-resolution camera, video conferencing (FaceTime), GPS, Bluetooth, 
Wi-Fi, and the ability to run over 2  million software applications “Apps,” to name a few. 
Remarkably, this iPhone can also simultaneously store in its 256 GB memory: 6000 songs, 
30,000 photos, as well as 18 hours of 4K video recorded at 30 fps. The Apple Watch, and 
other “smartwatches,” provide smartphone users with the ability to extend some of their 
devices’ capabilities to their wrists. Of course, laptop computers, iPads, and the like, have 
become ubiquitous in our society, primarily due to rapid technological advances in electronic 
systems. Nearly invisible and more powerful hearing aids with background noise cancellation 
features are now available for the hearing impaired. The list of new or improved products 

•  Become aware of the rapid growth of the electrical/
electronics industry over the past century.

• Understand the importance of applying a unit of 
measurement to a result or measurement and to 
ensure that the numerical values substituted into 
an equation are consistent with the unit of 
measurement of the various quantities.

• Become familiar with the International System of 
Units (SI) also referred to as the metric system.

• Understand the importance of powers of ten and 
how to work with them in any numerical 
calculation.

• Be able to convert any quantity, in any system of 
units, to another system with confidence.

 Objectives
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continues to expand because significantly smaller electronic systems 
have been developed.

Most of us would agree that the computer has revolutionized our 
daily lives, in ways never imagined not that long ago—and it continues 
to do so in an accelerated fashion. When we compare the Guidance 
Computer aboard the Apollo 11 spacecraft, which landed on the moon 
back in 1969, with a commonly used cell phone in use today (the 
iPhone), we discover Apollo’s computer weighed 70 pounds and 
offered 2.3 MHz of processing power. Whereas, the performance data 
for even a much older generation iPhone 6 (2014) is staggering. At 3.36 
billion instructions per second, the iPhone 6’s clock is 32,600 times 
faster than the best on board computers of the Apollo era and could 
perform instructions 120,000,000 times faster. You wouldn’t be wrong 
in saying an iPhone could be used to guide 120,000,000 Apollo-era 
spacecrafts to the moon, all at the same time. And . . . the iPhone weighs 
a mere 4.6 ounces!

Spurred on by the continuing process of miniaturization is a serious 
and growing interest in artificial intelligence, a term first used in 1955, 
as a drive to replicate the brain’s function with a packaged electronic 
equivalent. Although only about 3 pounds in weight, a size equivalent to 
about 2.5 pints of liquid with a power drain of about 20 watts (half that 
of a 40-watt light bulb), the brain contains over 100 billion neurons that 
have the ability to “fire” 200 times a second. Imagine the number of 
decisions made per second if all are firing at the same time! This num-
ber, however, is undaunting to researchers who feel that an electronic 
package capable of emulating the human brain is a genuine possibility 
in the next 10 to 15 years. Of course, including emotional qualities will 
be the biggest challenge, but otherwise researchers feel the advances of 
recent years are clear evidence that it is a real possibility. Consider how 
much of our daily lives is already decided for us with automatic brake 
control, programmed parallel parking, GPS, Web searching, and so on. 
The move is obviously strong and on its way. Also, when you consider 
how far we have come since the development of the first transistor some 
67 years ago, who knows what might develop in the next decade or two?

This reduction in size of electronic systems is due primarily to an 
important innovation introduced in 1958—the integrated circuit (IC). 
An integrated circuit can now contain features less than 50 nanometers 
across. The fact that measurements are now being made in nanometers 
has resulted in the terminology nanotechnology to refer to the production 
of integrated circuits called nanochips. To better appreciate the impact of 
nanometer measurements, consider drawing 100 lines within the boundar-
ies of 1 inch. Then attempt drawing 1000 lines within the same length. 
Cutting 50-nanometer features would require drawing over 500,000 lines 
in 1 inch. The integrated circuit shown in Fig. 1.1 is an intel® CoreTM i7 
6-core processor that has around 3 billion transistors—a number hard to 
comprehend.

However, before a decision is made on such dramatic reductions in 
size, the system must be designed and tested to determine if it is worth 
constructing as an integrated circuit. That design process requires engi-
neers who know the characteristics of each device used in the system, 
including undesirable characteristics that are part of any electronic 
 element. In other words, there are no ideal (perfect) elements in an elec-
tronic design. Considering the limitations of each component is necessary 

M01_BOYL0302_14_GE_C01.indd   22M01_BOYL0302_14_GE_C01.indd   22 01/03/23   4:40 PM01/03/23   4:40 PM



A BtEF HSnrtY | | | 23S
S

   I

to ensure a reliable response under all conditions of temperature, vibra-
tion, and effects of the surrounding environment. To develop this aware-
ness requires time and must begin with understanding the basic 
characteristics of the device, as covered in this text. One of the objectives 
of this text is to explain how ideal components work and their function in 
a network. Another is to explain conditions in which components may not 
be ideal.

One of the very positive aspects of the learning process associated 
with electric and electronic circuits is that once a concept or procedure 
is clearly and correctly understood, it will be useful throughout the 
career of the individual at any level in the industry. Once a law or equa-
tion is understood, it will not be replaced by another equation as the 
material becomes more advanced and complicated. For instance, one of 
the first laws to be introduced is Ohm’s law. This law provides a rela-
tionship between forces and components that will always be true, no 
matter how complicated the system becomes. In fact, it is an equation 
that will be applied in various forms throughout the design of the entire 
system. The use of the basic laws may change, but the laws will not 
change and will always be applicable.

It is vitally important to understand that the learning process for cir-
cuit analysis is sequential. That is, the first few chapters establish the 
foundation for the remaining chapters. Failure to properly understand 
the opening chapters will only lead to difficulties understanding the 
material in the chapters to follow. This first chapter provides a brief his-
tory of the field followed by a review of mathematical concepts neces-
sary to understand the rest of the material.

1.2 A BRIEF HISTORY
In the sciences, once a hypothesis is proven and accepted, it becomes 
one of the building blocks of that area of study, permitting additional 
investigation and development. Naturally, the more pieces of a puzzle 
available, the more obvious is the avenue toward a possible solution. In 
fact, history demonstrates that a single development may provide the 
key that will result in a mushrooming effect that brings the science to a 
new plateau of understanding and impact.

If the opportunity presents itself, read one of the many publications 
reviewing the history of this field. Space requirements are such that only 
a brief review can be provided here. There are many more contributors 

FIG. 1.1
Intel® Core™ i7 6-core processer.

Postage
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than could be listed, and their efforts have often provided important keys 
to the solution of some very important concepts.

Throughout history, some periods were characterized by what appeared 
to be an explosion of interest and development in particular areas. As you 
will see from the discussion of the late 1700s and the early 1800s, inven-
tions, discoveries, and theories came fast and furiously. Each new concept 
broadens the possible areas of application until it becomes almost impos-
sible to trace developments without picking a particular area of interest 
and following it through. In the review, as you read about the development 
of radio, television, and computers, keep in mind that similar progressive 
steps were occurring in the areas of the telegraph, the telephone, power 
generation, the phonograph, appliances, and so on.

There is a tendency when reading about the great scientists, inventors, 
and innovators to believe that their contribution was a totally individual 
effort. In many instances, this was not the case. In fact, many of the great 
contributors had friends or associates who provided support and encour-
agement in their efforts to investigate various theories. At the very least, 
they were aware of one another’s efforts to the degree possible in the days 
when a letter was often the best form of communication. In particular, 
note the closeness of the dates during periods of rapid development. One 
contributor seemed to spur on the efforts of the others or possibly pro-
vided the key needed to continue with the area of interest.

In the early stages, the contributors were not electrical, electronic, or 
computer engineers as we know them today. In most cases, they were 
physicists, chemists, mathematicians, or even philosophers. In addition, 
they were not from one or two communities of the Old World. The home 
country of many of the major contributors introduced in the paragraphs 
to follow is provided to show that almost every established community 
had some impact on the development of the fundamental laws of electri-
cal circuits.

As you proceed through the remaining chapters of the text, you will 
find that a number of the units of measurement bear the name of major 
contributors in those areas—volt after Count Alessandro Volta, ampere 
after André Ampère, ohm after Georg Ohm, and so forth—fitting recogni-
tion for their important contributions to the birth of a major field of study.

Time charts indicating a limited number of major developments are 
provided in Fig. 1.2, primarily to identify specific periods of rapid devel-
opment and to reveal how far we have come in the last 40 years. In 
essence, the current state of the art is a result of efforts that began in 
earnest some 250 years ago, with progress in the last 100 years being 
almost exponential.

As you read through the following brief review, try to sense the grow-
ing interest in the field and the enthusiasm and excitement that must 
have accompanied each new revelation. Although you may find some of 
the terms used in the review new and essentially meaningless, the 
remaining chapters will explain them thoroughly.

The Beginning

The phenomenon of static electricity has intrigued scholars throughout 
history. The Greeks called the fossil resin substance so often used to 
demonstrate the effects of static electricity elektron, but no extensive 
study was made of the subject until William Gilbert researched the phe-
nomenon in 1600. In the years to follow, there was a continuing investi-
gation of electrostatic charge by many individuals, such as Otto von 
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Guericke, who developed the first machine to generate large amounts of 
charge, and Stephen Gray, who was able to transmit electrical charge 
over long distances on silk threads. Charles DuFay demonstrated that 
charges either attract or repel each other, leading him to believe that 
there were two types of charge—a theory we subscribe to today with our 
defined positive and negative charges.

There are many who believe that the true beginnings of the electrical 
era lie with the efforts of Pieter van Musschenbroek and Benjamin 
Franklin. In 1745, van Musschenbroek introduced the Leyden jar for 
the storage of electrical charge (the first capacitor) and demonstrated 
electrical shock (and therefore the power of this new form of energy). 
Franklin used the Leyden jar some 7 years later to establish that light-
ning is simply an electrical discharge, and he expanded on a number of 
other important theories, including the definition of the two types of 
charge as positive and negative. From this point on, new discoveries and 
theories seemed to occur at an increasing rate as the number of individu-
als performing research in the area grew.

In 1784, Charles Coulomb demonstrated in Paris that the force 
between charges is inversely related to the square of the distance 
between the charges. In 1791, Luigi Galvani, professor of anatomy at 
the University of Bologna, Italy, performed experiments on the effects 
of electricity on animal nerves and muscles. The first voltaic cell, with 
its ability to produce electricity through the chemical action of a metal 
dissolving in an acid, was developed by another Italian, Alessandro 
Volta, in 1799.

The fever pitch continued into the early 1800s, with Hans Christian 
Oersted, a Danish professor of physics, announcing in 1820 a relationship 
between magnetism and electricity that serves as the foundation for the 
theory of electromagnetism as we know it today. In the same year, a 
French physicist, André Ampère, demonstrated that there are magnetic 
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effects around every current-carrying conductor and that  current-carrying 
conductors can attract and repel each other just like magnets. In the period 
1826 to 1827, a German physicist, Georg Ohm, introduced an important 
relationship between potential, current, and resistance that we now refer to 
as Ohm’s law. In 1831, an English physicist, Michael Faraday, demon-
strated his theory of electromagnetic induction, whereby a changing cur-
rent in one coil can induce a changing current in another coil, even though 
the two coils are not directly connected. Faraday also did extensive work 
on a storage device he called the condenser, which we refer to today as a 
capacitor. He introduced the idea of adding a dielectric between the plates 
of a capacitor to increase the storage capacity (Chapter 10). James Clerk 
Maxwell, a Scottish professor of natural philosophy, performed extensive 
mathematical analyses to develop what are currently called Maxwell’s 
equations, which support the efforts of Faraday linking electric and mag-
netic effects. Maxwell also developed the electromagnetic theory of light 
in 1862, which, among other things, revealed that electromagnetic waves 
travel through air at the velocity of light (186,000 miles per second or 

×3 108 meters per second). In 1888, a German physicist, Heinrich 
Rudolph Hertz, through experimentation with lower-frequency electro-
magnetic waves (microwaves), substantiated Maxwell’s predictions and 
equations. In the mid-1800s, Gustav Robert Kirchhoff introduced a series 
of laws of voltages and currents that find application at every level and 
area of this field (Chapters 5 and 6). In 1895, another German physicist, 
Wilhelm Röntgen, discovered electromagnetic waves of high frequency, 
commonly called X-rays today.

By the end of the 1800s, a significant number of the fundamental 
equations, laws, and relationships had been established, and various 
fields of study, including electricity, electronics, power generation and 
distribution, and communication systems, started to develop in earnest.

The Age of Electronics

Radio The true beginning of the electronics era is open to debate and 
is sometimes attributed to efforts by early scientists in applying poten-
tials across evacuated glass envelopes. However, many trace the begin-
ning to Thomas Edison, who added a metallic electrode to the vacuum of 
the tube and discovered that a current was established between the metal 
electrode and the filament when a positive voltage was applied to the 
metal electrode. The phenomenon, demonstrated in 1883, was  referred 
to as the Edison effect. In the period to follow, the transmission of radio 
waves and the development of the radio received widespread attention. 
In 1887, Heinrich Hertz, in his efforts to verify Maxwell’s equations, 
transmitted radio waves for the first time in his laboratory. In 1896, 
an Italian scientist, Guglielmo Marconi (often called the father of the 
radio), demonstrated that telegraph signals could be sent through the air 
over long distances (2.5 kilometers) using a grounded antenna. In the 
same year, Aleksandr Popov sent what might have been the first radio 
message some 300 yards. The message was the name “Heinrich Hertz” 
in respect for Hertz’s earlier contributions. In 1901, Marconi established 
radio communication across the Atlantic.

In 1904, John Ambrose Fleming expanded on the efforts of Edison to 
develop the first diode, commonly called Fleming’s valve—actually the 
first of the electronic devices. The device had a profound impact on the 
design of detectors in the receiving section of radios. In 1906, Lee De 
Forest added a third element to the vacuum structure and created the 
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first amplifier, the triode. Shortly thereafter, in 1912, Edwin Armstrong 
built the first regenerative circuit to improve receiver capabilities and 
then used the same contribution to develop the first nonmechanical 
oscillator. By 1915, radio signals were being transmitted across the 
United States, and in 1918 Armstrong applied for a patent for the super-
heterodyne circuit employed in virtually every television and radio to 
permit amplification at one frequency rather than at the full range of 
incoming signals. The major components of the modern-day radio were 
now in place, and sales in radios grew from a few million dollars in the 
early 1920s to over $1 billion by the 1930s. The 1930s were truly the 
golden years of radio, with a wide range of productions for the listening 
audience.

Television (TV) The 1930s were also the true beginnings of the 
television era, although development on the picture tube began in ear-
lier years with Paul Nipkow and his electrical telescope in 1884 and 
John Baird and his long list of successes, including the transmission of 
television pictures over telephone lines in 1927 and over radio waves in 
1928, and simultaneous transmission of pictures and sound in 1930. In 
1932, NBC installed the first commercial television antenna on top of 
the Empire State Building in New York City, and RCA began regular 
broadcasting in 1939. World War II slowed development and sales, but 
in the mid-1940s the number of TV sets grew from a few thousand to a 
few million. Color television became popular in the early 1960s.

 Computers The earliest computer system can be traced back to 
Blaise Pascal in 1642 with his mechanical machine for adding and 
subtracting numbers. In 1673, Gottfried Wilhelm von Leibniz used the 
Leibniz wheel to add multiplication and division to the range of opera-
tions, and in 1823 Charles Babbage developed the difference engine to 
add the mathematical operations of sine, cosine, logarithms, and several 
others. In the years to follow, improvements were made, but the system 
remained primarily mechanical until the 1930s when electromechanical 
systems using components such as relays were introduced. It was not 
until the 1940s that totally electronic systems became the new wave. It 
is interesting to note that, even though IBM was formed in 1924, it did 
not enter the computer industry until 1937. An entirely electronic system 
known as ENIAC was dedicated at the University of Pennsylvania in 
1946. It contained 18,000 tubes and weighed 30 tons but was several 
times faster than most electromechanical systems. Although other vac-
uum tube systems were built, it was not until the birth of the solid-state 
era that computer systems experienced a major change in size, speed, 
and capability.

The Solid-State Era

In 1947, physicists William Shockley, John Bardeen, and Walter H. 
Brattain of Bell Telephone Laboratories demonstrated the point-contact 
transistor (Fig. 1.3), an amplifier constructed entirely of solid-state 
materials with no requirement for a vacuum, glass envelope, or heater 
voltage for the filament. Although reluctant at first due to the vast 
amount of material available on the design, analysis, and synthesis of 
tube networks, the industry eventually accepted this new technology as 
the wave of the future. In 1958, the first integrated circuit (IC) chip 
was developed at Texas Instruments, and in 1961 the first commercial SSPL/Getty Images

FIG. 1.3
The first transistor.
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integrated circuit was manufactured by the Fairchild Corporation. Today 
some one trillion integrated circuits are manufactured each year.

It is impossible to review properly the entire history of the electrical/ 
electronics field in a few pages. The effort here, both through the discus-
sion and the time graphs in Fig. 1.2, was to reveal the amazing progress 
of this field in the last 50 years. The growth appears to be truly exponen-
tial since the early 1900s, raising the interesting question, Where do we 
go from here? The time chart suggests that the next few decades will 
probably contain many important innovative contributions that may 
cause an even faster growth curve than we are now experiencing.

1.3 UNITS OF MEASUREMENT
One of the most important rules to remember and apply when working 
in any field of technology is to use the correct units when substituting 
numbers into an equation. Too often we are so intent on obtaining a 
numerical solution that we overlook checking the units associated with 
the numbers being substituted into an equation. Results obtained, there-
fore, are often meaningless. Consider, for example, the following very 
fundamental physics equation:

velocity=v  

 d
t

=v  d distance=  (1.1)
=t time

Assume, for the moment, that the following data are obtained for a mov-
ing object:

=
=

d
t

4000 ft
1 min

and v  is desired in miles per hour. Often, without a second thought or 
consideration, the numerical values are simply substituted into the equa-
tion, with the result here that

= = =d
t

4000 ft

1 min
4000 mphv

As indicated above, the solution is totally incorrect. If the result is 
desired in miles per hour, the unit of measurement for distance must be 
miles, and that for time, hours. In a moment, when the problem is ana-
lyzed properly, the extent of the error will demonstrate the importance 
of ensuring that

the numerical value substituted into an equation must have 
the unit of measurement specified by the equation.

The next question is normally, How do I convert the distance and 
time to the proper unit of measurement? A method is presented in 
 Section 1.9 of this chapter, but for now it is given that

=1 mi 5280 ft

4000 ft 0.76 mi=
= =1 min h 0.017 h1

60

Substituting into Eq. (1.1), we have

= = =v d
t

44 71 mph0.76 mi
0.017 h

.  

which is significantly different from the result obtained before.
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To complicate the matter further, suppose the distance is given in 
kilometers, as is now the case on many road signs. First, we must real-
ize that the prefix kilo stands for a multiplier of 1000 (to be introduced 
in Section 1.5), and then we must find the conversion factor between 
kilometers and miles. If this conversion factor is not readily available, 
we must be able to make the conversion between units using the con-
version factors between meters and feet or inches, as described in 
Section 1.9.

Before substituting numerical values into an equation, try to mentally 
establish a reasonable range of solutions for comparison purposes. For 
instance, if a car travels 4000 ft in 1 min, does it seem reasonable that 
the speed would be 4000 mph? Obviously not! This self-checking pro-
cedure is particularly important in this day of the handheld calculator, 
when ridiculous results may be accepted simply because they appear on 
the digital display of the instrument.

Finally,

if a unit of measurement is applicable to a result or piece of 
data, then it should be applied to the numerical value.

To state that = 44.71v  without including the unit of measurement mph 
is meaningless.

Eq. (1.1) is not a difficult one. A simple algebraic manipulation will 
result in the solution for any one of the three variables. However, in light 
of the number of questions arising from this equation, the reader may 
wonder if the difficulty associated with an equation will increase at the 
same rate as the number of terms in the equation. In the broad sense, this 
will not be the case. There is, of course, more room for a mathematical 
error with a more complex equation, but once the proper system of units 
is chosen and each term properly found in that system, there should be 
very little added difficulty associated with an equation requiring an 
increased number of mathematical calculations.

In review, before substituting numerical values into an equation, be 
absolutely sure of the following:

1. Each quantity has the proper unit of measurement as 
defined by the equation.

2. The proper magnitude of each quantity as determined by 
the defining equation is substituted.

3. Each quantity is in the same system of units (or as defined 
by the equation).

4. The magnitude of the result is of a reasonable nature when 
compared to the level of the substituted quantities.

5. The proper unit of measurement is applied to the result.

1.4 SYSTEMS OF UNITS
In the past, the systems of units most commonly used were the English 
and metric, as outlined in Table 1.1. Note that while the English sys-
tem is based on a single standard, the metric is subdivided into two 
interrelated standards: the MKS and the CGS. Fundamental quantities 
of these systems are compared in Table 1.1 along with their abbrevia-
tions. The MKS and CGS systems draw their names from the units of 
measurement used with each system; the MKS system uses Meters, 
Kilograms, and Seconds, while the CGS system uses Centimeters, 
Grams, and Seconds.
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Understandably, the use of more than one system of units in a world 
that finds itself continually shrinking in size, due to advanced technical 
developments in communications and transportation, would introduce 
unnecessary complications to the basic understanding of any technical 
data. The need for a standard set of units to be adopted by all nations has 
become increasingly obvious. The International Bureau of Weights and 
Measures located at Sèvres, France, has been the host for the General 
Conference of Weights and Measures, attended by representatives from 
all nations of the world. In 1960, the General Conference adopted a sys-
tem called Le Système International d’Unités (International System of 
Units), which has the international abbreviation SI. It was adopted by 
the Institute of Electrical and Electronic Engineers (IEEE) in 1965 and 
by the United States of America Standards Institute (USASI) in 1967 as 
a standard for all scientific and engineering literature.

For comparison, the SI units of measurement and their abbreviations 
appear in Table  1.1. These abbreviations are those usually applied to 
each unit of measurement, and they were carefully chosen to be the most 
effective. Therefore, it is important that they be used whenever applica-
ble to ensure universal understanding. Note the similarities of the SI sys-
tem to the MKS system. This text uses, whenever possible and practical, 
all of the major units and abbreviations of the SI system in an effort to 
support the need for a universal system. Those readers requiring addi-
tional information on the SI system should contact the information 
office of the American Society for Engineering Education (ASEE).*

Fig. 1.4 should help you develop some feeling for the relative magnitudes 
of the units of measurement of each system of units. Note in the figure the rela-
tively small magnitude of the units of measurement for the CGS system.

TABLE 1.1
Comparison of the English and metric systems of units.

ENGLISH METRIC SI

MKS CGS
Length:

Yard (yd)
(0.914 m)

Meter (m)
(39.37 in.)
(100 cm)

Centimeter (cm)
(2.54 cm = 1 in.)

Meter (m)

Mass:
Slug
(14.6 kg)

Kilogram (kg)
(1000 g)

Gram (g) Kilogram (kg)

Force:
Pound (lb)
(4.45 N)

Newton (N)
(100,000 dynes)

Dyne Newton (N)

Temperature:
Fahrenheit °( F)

( )= ° +9
5

C 32

Celsius or
Centigrade °( C)

( )( )= ° −5
9

F 32

Centigrade °( C) Kelvin (K)

= + °K 273.15 C

Energy:
Foot-pound (ft-lb)
(1.356 joules)

Newton-meter ( )N • m
or joule (J)
(0.7376 ft-lb)

Dyne-centimeter or erg
( )=1 joule 10  ergs7

Joule (J)

Time:
Second (s) Second (s) Second (s) Second (s)

*American Society for Engineering Education (ASEE), 1818 N Street N.W., Suite 600, 
Washington, D.C. 20036-2479; (202) 331-3500; http://www.asee.org/.
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A standard exists for each unit of measurement of each system. The 
standards of some units are quite interesting.

The meter was originally defined in 1790 to be 1/10,000,000 the dis-
tance between the equator and either pole at sea level, a length preserved 
on a platinum–iridium bar at the International Bureau of Weights and 
Measures at Sèvres, France.

The meter is now defined with reference to the speed of 
light in a vacuum, which is 299,792,458 m/s.

The kilogram is defined as a mass equal to 1000 times the 
mass of 1 cubic centimeter of pure water at 4°C.

This standard is preserved in the form of a platinum–iridium cylinder in 
Sèvres.

The second was originally defined as 1/86,400 of the mean solar day. 
However, since Earth’s rotation is slowing down by almost 1   second 
every 10 years,

1 slug
English 1 kg

SI and
MKS

1 g
CGS

1 yd

1 m

1 ftEnglish

English

SI
and MKS

1 yard (yd)  =  0.914 meter (m)  =  3 feet (ft)

Length:

Mass:

1 slug  =  14.6 kilograms

Temperature:

English
(Boiling)

(Freezing)

(Absolute zero)

Fahrenheit Celsius or
Centigrade

Kelvin

– 459.7˚F –273.15˚C 0 K

0˚F

32˚F

212˚F

0˚C

100˚C

273.15 K

373.15 K

SI

MKS
and
CGS

K  =  273.15  +  ˚C

(˚F  –  32˚)˚C  = 5
9
_

˚F  = 9
5 ˚C  +  32˚_

English
1 ft-lb SI and

MKS
1 joule (J)

1 erg (CGS)

1 dyne (CGS)

SI and
MKS
1 newton (N)

1 ft-lb  =  1.356 joules
1 joule  =  107 ergs

1 pound (lb)  =  4.45 newtons (N)
1 newton  =  100,000 dynes (dyn)

1 m  =  100 cm  =  39.37 in.
2.54 cm  =  1 in.

English

CGS 1 cm

1 in.
Actual
lengths

English
1 pound (lb)

Force:

Energy:

1 kilogram  =  1000 g

FIG. 1.4
Comparison of units of the various systems of units.
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the second was redefined in 1967 as 9,192,631,770 periods 
of the electromagnetic radiation emitted by a particular 
transition of the cesium atom.

1.5 SIGNIFICANT FIGURES, ACCURACY, 
AND ROUNDING OFF
This section emphasizes the importance of knowing the source of a 
piece of data, how a number appears, and how it should be treated. Too 
often we write numbers in various forms with little concern for the for-
mat used, the number of digits that should be included, and the unit of 
measurement to be applied.

For instance, measurements of 22.1 in. and 22.10 in. imply different 
levels of accuracy. The first suggests that the measurement was made by 
an instrument accurate only to the tenths place; the latter was obtained 
with instrumentation capable of reading to the hundredths place. The 
use of zeros in a number, therefore, must be treated with care, and the 
implications must be understood.

In general, there are two types of numbers: exact and approximate. 
Exact numbers are precise to the exact number of digits presented, just 
as we know that there are 12 apples in a dozen and not 12.1. Through-
out the text, the numbers that appear in the descriptions, diagrams, and 
examples are considered exact, so that a battery of 100 V can be writ-
ten as 100.0 V, 100.00 V, and so on, since it is 100 V at any level of 
precision. The additional zeros were not included for purposes of clar-
ity. However, in the laboratory environment, where measurements are 
continually being taken and the level of accuracy can vary from one 
instrument to another, it is important to understand how to work with 
the results. Any reading obtained in the laboratory should be consid-
ered approximate. The analog scales with their pointers may be diffi-
cult to read, and even though the digital meter provides only specific 
digits on its display, it is limited to the number of digits it can provide, 
leaving us to wonder about the less significant digits not appearing on 
the display.

The precision of a reading can be determined by the number of signif-
icant figures (digits) present. Significant digits are those integers (0 to 9)  
that can be assumed to be accurate for the measurement being made. 
The result is that all nonzero numbers are considered significant, with 
zeros being significant in only some cases. For instance, the zeros in 
1005 are considered significant because they define the size of the num-
ber and are surrounded by nonzero digits. For the number 0.4020, the 
zero to the left of the decimal point is not significant but clearly defines 
the location of the decimal point. The other two zeros define the magni-
tude of the number and the fourth-place accuracy of the reading.

When adding approximate numbers, it is important to be sure that the 
accuracy of the readings is consistent throughout. To add a quantity 
accurate only to the tenths place to a number accurate to the thousandths 
place will result in a total having accuracy only to the tenths place. One 
cannot expect the reading with the higher level of accuracy to improve 
the reading with only tenths-place accuracy.

 In the addition or subtraction of approximate numbers, the 
entry with the lowest level of accuracy determines the level 
of accuracy of the solution.
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For the multiplication and division of approximate numbers, 
the result has the same number of significant figures as the 
number with the least number of significant figures.

For approximate numbers (and exact numbers, for that matter), there 
is often a need to round off the result; that is, you must decide on the 
appropriate level of accuracy and alter the result accordingly. The 
accepted procedure is simply to note the digit following the last to 
appear in the rounded-off form, add a 1 to the last digit if it is greater 
than or equal to 5, and leave it alone if it is less than 5. For example, 

≅ ≅3.186 3.19 3.2,  depending on the level of precision desired. The 
symbol ≅ means approximately equal to.

EXAMPLE 1.1 Perform the indicated operations with the following 
approximate numbers and round off to the appropriate level of accuracy.

a. + + = ≅ 536 7532.6 4.02 0.036 536.656 .  (as determined by 
532.6)

b. + + = ≅ 0 050.04 0.003 0.0064 0.0494 .  (as determined by 
0.04)

EXAMPLE 1.2 Round off the following numbers to the hundredths 
place.

a. = 32 4232.419 .
b. = 0 050.05328 .

EXAMPLE 1.3 Round off the result 5.8764 to

a. tenths-place accuracy.
b. hundredths-place accuracy.
c. thousandths-place accuracy.

Solution:

a. 5.9
b. 5.88
c. 5.876

For this text the level of accuracy to be carried through a series of 
calculations will be hundredths place. That is, at each stage of a devel-
opment, exercise, or problem, the level of accuracy will be set using 
hundredths-place accuracy. Over a series of calculations this will natu-
rally affect the accuracy of the final result but a limit has to be set or 
solutions will be carried to unwieldy levels.

For instance, let us examine the following product:

9.64 0.4896 4.68504( )( ) =

Clearly, we don’t want to carry this level of accuracy through any fur-
ther calculations in a particular example. Rather, using  hundredths-place 
accuracy, we will write it as 4.69.

The next calculation may be

4.69 1.096 5.14024( )( ) =
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which to hundredths-place accuracy is 5.14. However, if we had carried 
the original product to its full accuracy, we would have obtained

4.68504 1.096 5.1348( )( ) =  

or, to hundredths-place accuracy, 5.13.
Obviously, 5.13 is the more accurate solution, so there is a loss of 

accuracy using rounded-off results. However, as indicated above, this 
text will round off the final and intermediate results to hundredths place 
for clarity and ease of comparison.

1.6 POWERS OF TEN
It should be apparent from the relative magnitude of the various units of 
measurement that very large and very small numbers are frequently 
encountered in the sciences. To ease the difficulty of mathematical oper-
ations with numbers of such varying size, powers of ten are usually 
employed. This notation takes full advantage of the mathematical prop-
erties of powers of ten. The notation used to represent numbers that are 
integer powers of ten is as follows:

= = =

= = =

= = =

= = =

−

−

−

−

 1 10 1 10 0.1 10

 10 10   1 100 0.01 10

 100 10 1 1000 0.001 10

1000 10 1 10, 000 0.0001 10

0 1

1 2

2 3

3 4

In particular, note that =10 10 , and, in fact, any quantity to the zero 
power is 1 ( = =x 1,  1000 1,0 0  and so on). Numbers in the list greater 
than 1 are associated with positive powers of ten, and numbers in the list 
less than 1 are associated with negative powers of ten.

A quick method of determining the proper power of ten is to place a 
caret mark to the right of the numeral 1 wherever it may occur; then 
count from this point to the number of places to the right or left before 
arriving at the decimal point. Moving to the right indicates a positive 
power of ten, whereas moving to the left indicates a negative power. For 
example,

10,000.0 5 1 0 , 0 0 0 . 5 1014

0.00001 5 0 . 0 0 0 0 1 5 1025

1 2 3 4

123445

Some important mathematical equations and relationships pertaining 
to powers of ten are listed below, along with a few examples. In each 
case, n and m can be any positive or negative real number.

 = =−
−

1
10

10 1
10

10
n

n
n

n  (1.2)

Eq. (1.2) clearly reveals that shifting a power of ten from the denom-
inator to the numerator, or the reverse, requires simply changing the sign 
of the power.
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EXAMPLE 1.4

a. 101
1000

1
10

3
3

= = −
+

b. 101
0.00001

1
10

5
5

= = +
−

The product of powers of ten:

 10 10 10n m n m( )( ) ( )= ( )+  (1.3)

EXAMPLE 1.5

a. 101000 10,000 10 10 10 73 4 3 4( )( )( )( ) = = =( )+

b. 100.00001 100 10 10 10 35 2 5 2( )( )( )( ) = = = −( )− − +

The division of powers of ten:

 10
10

10
n

m
n m= ( )−  (1.4)

 EXAMPLE 1.6

a. 10100,000
100

10
10

10 3
5

2
5 2= = =( )−

b. 101000
0.0001

10
10

10 10 7
3

4
3 4 3 4= = = =( )( ) ( )

−
− − +

Note the use of parentheses in part (b) to ensure that the proper sign is 
established between operators.

The power of powers of ten:

 10 10n m nm( ) =  (1.5)

EXAMPLE 1.7

a. 10100 10 10 84 2 4 2 4( )( ) = = =( )( )

b. 101000 10 10 62 3 2 3 2( )( ) = = =( )( )− − − −

c. 100.01 10 10 63 2 3 2 3( )( ) = = =( )( )− − − − −

For those of you with the interest, there is a YouTube video, “Powers 
of Ten,” produced in 1977 that is quite well done. The video presents the 
subject through the lens of the world we live in. A recommended 
viewing.

Basic Arithmetic Operations

Let us now examine the use of powers of ten to perform some basic 
arithmetic operations using numbers that are not just powers of ten. The 
number 5000 can be written as × = ×5 1000 5 10 ,3  and the number 
0.0004 can be written as × = × −4 0.0001 4 10 4. Of course, 10 5 can 
also be written as ×1 10 5 if it clarifies the operation to be performed.
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Addition and Subtraction To perform addition or subtraction 
using powers of ten, the power of ten must be the same for each term; 
that is,

 A B A B10 10 10n n n( )× ± × = ± ×  (1.6)

Eq. (1.6) covers all possibilities, but students often prefer to remember a 
verbal description of how to perform the operation.

Eq. (1.6) states

when adding or subtracting numbers in a power-of-ten 
format, be sure that the power of ten is the same for each 
number. Then separate the multipliers, perform the required 
operation, and apply the same power of ten to the result.

EXAMPLE 1.8

a. ( ) ( )( ) ( )+ = +6300 75,000 6.3 1000 75 1000

= × + ×6.3 10 75 103 3

( )= + ×6.3 75 10 3

81 3 10. 3= ×

b. ( ) ( )( ) ( )− = −0.00096 0.000086 96 0.00001 8.6 0.00001
= × − ×− −96 10 8.6 105 5

( )= − × −96 8.6 10 5

87 4 10. 5= × −

Multiplication In general,

 A B A B10 10 10n m n m( )( ) ( )( )× × = × +  (1.7)

revealing that the operations with the power of ten can be separated 
from the operation with the multipliers.

Eq. (1.7) states

when multiplying numbers in the power-of-ten format, 
first find the product of the multipliers and then determine 
the power of ten for the result by adding the power-of-ten 
exponents.

EXAMPLE 1.9

a. ( )( ) ( )( )[ ] ( )( )[ ]=0.0002 0.000007 2 0.0001 7 0.000001

( )( )= × ×− −2 10 7 104 6

( )( )( )( )= × − −2 7 10 104 6

14 10 10= × −

b. ( )( )( )( ) = × × −340,000 0.00061 3.4 10 61 105 5

( )( )( )( )= × −3.4 61 10 105 5

= ×207.4 10 0

= 207 4.
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Division In general,

 
×
×

= × −A
B

A
B

10
10

10
n

m
n m  (1.8)

revealing again that the operations with the power of ten can be sepa-
rated from the same operation with the multipliers.

Eq. (1.8) states

when dividing numbers in the power-of-ten format, first find 
the result of dividing the multipliers. Then determine the 
associated power for the result by subtracting the power 
of ten of the denominator from the power of ten of the 
numerator.

EXAMPLE 1.10

a. ( )( )= ×
×

= × = ×
−

−

−

−
−0.00047

0.002
47 10
2 10

47
2

10
10

23.5 10
5

3

5

3
2

b. ( )( )= ×
×

= × = ×
− −

690,000
0.00000013

69 10
13 10

69
13

10
10

5.31 10
4

8

4

8
12

Powers In general,

 A A10 10n m m nm( )× = ×  (1.9)

which again permits the separation of the operation with the power of 
ten from the multiplier.

Eq. (1.9) states

when finding the power of a number in the power-of-ten 
format, first separate the multiplier from the power of ten 
and determine each separately. Determine the power-of-ten 
component by multiplying the power of ten by the power to 
be determined.

 EXAMPLE 1.11

a. ( ) ( )( ) ( )= × = ×− −0.00003 3 10 3 103 5 3 3 5 3

27 10 15= × −

b. ( ) ( )( ) ( )= × = ×90,800,000 9.08 10 9.08 102 7 2 2 7 2

82 45 10. 14= ×

In particular, remember that the following operations are not the 
same. One is the product of two numbers in the power-of-ten format, 
while the other is a number in the power-of-ten format taken to a power. 
As noted below, the results of each are quite different:

≠( )( ) ( )10 10 103 3 3 3

( )( ) = =10 10 10 1,000,0003 3 6

( ) ( )( )( )= = =10 10 10 10 10 1,000,000,0003 3 3 3 3 9
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1.7 FIXED-POINT, FLOATING-POINT, 
SCIENTIFIC, AND ENGINEERING NOTATION
When you are using a computer or a calculator, numbers generally 
appear in one of four ways. If powers of ten are not employed, numbers 
are written in the fixed-point or floating-point notation.

The fixed-point format requires that the decimal point 
appear in the same place each time. In the floating-point 
format, the decimal point appears in a location defined by 
the number to be displayed.

Most computers and calculators permit a choice of fixed- or 
 floating-point notation. In the fixed format, the user can choose the level 
of accuracy for the output as tenths place, hundredths place, thousandths 
place, and so on. Every output will then fix the decimal point to one 
location, such as the following examples using thousandths-place 
accuracy:

= = =0 333 0 063 1150 0001
3

. 1
16

. 2300
2

.

If left in the floating-point format, the results will appear as follows 
for the above operations:

= = =0 333333333333 0 0625 11501
3

. 1
16

. 2300
2

Powers of ten will creep into the fixed- or floating-point notation if the 
number is too small or too large to be displayed properly.

Scientific (also called standard) notation and engineering notation 
make use of powers of ten, with restrictions on the mantissa (multiplier) 
or scale factor (power of ten).

Scientific notation requires that the decimal point appear 
directly after the first digit greater than or equal to 1 but 
less than 10.

A power of ten will then appear with the number (usually following 
the power notation E), even if it has to be to the zero power. A few 
examples:

3 33333333333E 1 6 25E 2 1 15E31
3

. 1
16

. 2300
2

.= − = − =

Within scientific notation, the fixed- or floating-point format can be 
chosen. In the above examples, floating was employed. If fixed is cho-
sen and set at the hundredths-point accuracy, the following will result 
for the above operations:

3 33E 1 6 25E 2 1 15E31
3

. 1
16

. 2300
2

.= − = − =

Engineering notation specifies that

all powers of ten must be 0 or multiples of 3, and the mantissa 
must be greater than or equal to 1 but less than 1000.

This restriction on the powers of ten is because specific powers of ten 
have been assigned prefixes that are introduced in the next few paragraphs. 
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Using scientific notation in the floating-point mode results in the following 
for the above operations:

333 333333333E 3 62 5E 3 1 15E31
3

. 1
16

. 2300
2

.= − = − =

Using engineering notation with two-place accuracy will result in the 
following:

333 33E 3 62 50E 3 1 15E31
3

. 1
16

. 2300
2

.= − = − =

Prefixes

Specific powers of ten in engineering notation have been assigned pre-
fixes and symbols, as appearing in Table 1.2. They permit easy recogni-
tion of the power of ten and an improved channel of communication 
between technologists.

TABLE 1.2

Multiplication Factors SI Prefix SI Symbol

1000 000 000 000 000 000 10          18= exa E

1 000 000 000 000 000 10          15= peta P

1 000 000 000 000 10        12= tera T

1 000 000 000 10      9= giga G

1 000 000 10    6= mega M

1 000 10  3= kilo k

0 001 10. 3= − milli m

0 000 001 10. 6= − micro µ

0 000 000 001 10.     9= − nano n

0 000 000 000 001 10.       12= − pico p

0 000 000 000 000 001 10.         15= − femto f

0 000 000 000 000 000 001 10.           18= − atto a

EXAMPLE 1.12

a. = ×

= =1 megohm 1 MΩ

1,000,000 ohms 1 10 ohms

 

6

b. 

100 kilometers 100 km

100,000 meters 100 10  meters

   

3= ×

= =
c. 

0 1 millisecond 0 1 ms

0.0001 second 0.1 10  second

. .  

3= ×

= =

−

d. 

µ
= ×

= =

−

1 microfarad 1 F

0.000001 farad 1 10  farad

   

6

Here are a few examples with numbers that are not strictly powers  
of ten.
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EXAMPLE 1.13

a. 41,200 m is equivalent to 41.2 10 m 41.2 kilometers3× = =   41.2 km.

b. 0.00956 J is equivalent to 9.56 10  J 9.56 millijoules3× = =−   
9.56 mJ.

c. 0.000768 s is equivalent to 768 10  s 768 microseconds6× = =−   
768 µs.

d. ( )( )= ×
×

= ×
− −

8400 m
0.06

8.4 10  m
6 10

8.4
6

10
10

 m
3

2

3

2

140 km

1.4 10  m 140 10  m

140 kilometers  

5 3= × = ×

= =

e. ( )( ) = × = ×− −0.0003  s 3 10  s 81 10  s4 4 4 16

0 0081 ps

0.0081 10  s 0.0081 picosecond

.  

12= × =

=

−

1.8 CONVERSION BETWEEN LEVELS  
OF POWERS OF TEN
It is often necessary to convert from one power of ten to another. For 
instance, if a meter measures kilohertz (kHz—a unit of measurement for the 
frequency of an ac waveform), it may be necessary to find the correspond-
ing level in megahertz (MHz). If time is measured in milliseconds (ms),  
it may be necessary to find the corresponding time in microseconds 
µ( )s  for a graphical plot. The process is not difficult if we simply keep 

in mind that an increase or a decrease in the power of ten must be asso-
ciated with the opposite effect on the multiplying factor. The procedure 
is best described by the following steps:

1. Replace the prefix by its corresponding power of ten.

2. Rewrite the expression, and set it equal to an unknown 
multiplier and the new power of ten.

3. Note the change in power of ten from the original to the 
new format. If it is an increase, move the decimal point of 
the original multiplier to the left (smaller value) by the 
same number. If it is a decrease, move the decimal point 
of the original multiplier to the right (larger value) by the 
same number.

EXAMPLE 1.14 Convert 20 kHz to megahertz.

Solution: In the power-of-ten format:

= ×20 kHz 20 10  Hz3

The conversion requires that we find the multiplying factor to appear 
in the space below:

20 3 103 Hz 3 106 Hz

Increase by 3

Decrease by 3
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Since the power of ten will be increased by a factor of three, the mul-
tiplying factor must be decreased by moving the decimal point three 
places to the left, as shown below:

0.002 3 103 m 3 1023 m

Decrease by 6

Increase by 6

0.002000  5 2000
6

020. 5 0.02
3

0.01 3 1023 s 3 1026 s

Decrease by 3

Increase by 3

0.010  5 10
3

and  × = × = 0 02 MHz20 10  Hz 0.02 10  Hz .  3 6

EXAMPLE 1.15 Convert 0.01 ms to microseconds.

Solution: In the power-of-ten format:

= × −0.01 ms 0.01 10  s3

and

Since the power of ten will be reduced by a factor of three, the multi-
plying factor must be increased by moving the decimal point three 
places to the right, as follows:

and  10 s0.01 10  s 10 10  s  3 6 µ× = × =− −

There is a tendency when comparing −3 to −6 to think that the power 
of ten has increased, but keep in mind when making your judgment 
about increasing or decreasing the magnitude of the multiplier that −10 6  
is a great deal smaller than −10 3 .

EXAMPLE 1.16 Convert 0.002 km to millimeters.

Solution: 

In this example we have to be very careful because the difference 
between +3 and −3 is a factor of 6, requiring that the multiplying factor 
be modified as follows:

and  × = × =− 2000 mm0.002 10  m 2000 10  m  3 3
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1.9 CONVERSION WITHIN AND BETWEEN 
SYSTEMS OF UNITS
The conversion within and between systems of units is a process that 
cannot be avoided in the study of any technical field. It is an operation, 
however, that is performed incorrectly so often that this section was 
included to provide one approach that, if applied properly, will lead to 
the correct result.

There is more than one method of performing the conversion pro-
cess. In fact, some people prefer to determine mentally whether the con-
version factor is multiplied or divided. This approach is acceptable for 
some elementary conversions, but it is risky with more complex 
operations.

The procedure to be described here is best introduced by examining a 
relatively simple problem such as converting inches to meters. Specifi-
cally, let us convert 48 in. (4 ft) to meters.

If we multiply the 48 in. by a factor of 1, the magnitude of the quan-
tity remains the same:

 148 in. 48 in.( )=  (1.10)

Let us now look at the conversion factor for this example:

=1 m 39.37 in.

Dividing both sides of the conversion factor by 39.37 in. results in the 
following format:

= 11 m
39.37 in.

( )

Note that the end result is that the ratio 1 m/39.37 in. equals 1, as it 
should since they are equal quantities. If we now substitute this factor 
(1) into Eq. (1.10), we obtain

=






148 in.( ) 48 in . 1 m

39.37  in .

which results in the cancellation of inches as a unit of measure and 
leaves meters as the unit of measure. In addition, since the 39.37 is in 
the denominator, it must be divided into the 48 to complete the 
operation:

= 1 219 m48
39.37

m .  

Let us now review the method:

1. Set up the conversion factor to form a numerical value of 
(1) with the unit of measurement to be removed from the 
original quantity in the denominator.

2. Perform the required mathematics to obtain the proper 
magnitude for the remaining unit of measurement.

EXAMPLE 1.17 Convert 6.8 min to seconds.

Solution: The conversion factor is

=1 min 60 s

Since the minute is to be removed as the unit of measurement, it must 
appear in the denominator of the (1) factor, as follows:
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Step 1:        ( ) = 160 s
1  min

( )

Step 2: 16.8 min( ) 6.8  min 60 s
1  min

6.8 60  s( )( )=






 =

= 408 s 

EXAMPLE 1.18 Convert 0.24 m to centimeters.

Solution: The conversion factor is

1 m 100 cm=

Since the meter is to be removed as the unit of measurement, it must 
appear in the denominator of the (1) factor as follows:

Step 1:           ( ) = 1100 cm
1 m

Step 2: ( ) ( )( )=






 =1 0.24 m 0.24 m

100 cm

1 m
0.24 100 cm

24 cm =

The products (1)(1) and (1)(1)(1) are still 1. Using this fact, we can 
perform a series of conversions in the same operation.

EXAMPLE 1.19 Determine the number of minutes in half a day.

 Solution: Working our way through from days to hours to minutes, 
always ensuring that the unit of measurement to be removed is in the 
denominator, results in the following sequence:

 0.5 day
24 h

1 day

60 min

1 h
0.5 24 60 min( ) ( )( )


















 =

720 min =

EXAMPLE 1.20 Convert 2.2 yards to meters.

Solution: Working our way through from yards to feet to inches to 
meters results in the following:

2 012 m

2.2  yards
3  ft

1  yard
12  in.

1  ft
1 m

39.37  in.
2.2 3 12

39.37
m

  .  

( )( )( )





















 =

=

The following examples are variations of the above in practical 
situations.

EXAMPLE 1.21 In Europe, Canada, and many other countries, the 
speed limit is posted in kilometers per hour. How fast in miles per hour is  
100 km/h?
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Solution:

( )( )( )( )( )1 1 1 1100 km
h

62.14

 
100 km

h

1000 m

1 km

39.37 in.

1 m

1 ft

12 in.

1 mi

5280 ft

100 1000 39.37
12 5280

 mi
h

mph
( )

( )( )( )

( )

=














































=

=

Many travelers use 0.6 as a conversion factor to simplify the math 
involved; that is,

and   
( )( )

( )( )

≅

≅

100 km/h 0.6 60 mph

60 km/h 0.6 36 mph

EXAMPLE 1.22 Determine the speed in miles per hour of a compet-
itor who can run an amazing 4-min mile.

Solution: Inverting the factor 4 min/1 mi to 1 mi/4 min, we can pro-
ceed as follows:














 = = 15 mph1 mi

4  min
60  min

4
60
4

mi h  

1.10 SYMBOLS
Throughout the text, various symbols will be employed that you may 
not have had occasion to use. Some are defined in Table 1.3, and others 
will be defined in the text as the need arises.

1.11 CONVERSION TABLES
Conversion tables such as those appearing in Appendix A can be very 
useful when time does not permit the application of methods described 
in this chapter. However, even though such tables appear easy to use, 
frequent errors occur because the operations appearing at the head of the 
table are not performed properly. In any case, when using such tables, 
try to establish mentally some order of magnitude for the quantity to be 
determined compared to the magnitude of the quantity in its original set 
of units. This simple operation should prevent several impossible results 
that may occur if the conversion operation is improperly applied.

For example, consider the following from such a conversion table:

×
To convert from

Miles
To

Meters
Multiply by
1.609 103

A conversion of 2.5 mi to meters would require that we multiply 2.5 by 
the conversion factor; that is,

4 02 10 m2.5 mi(1.609 10 ) .  3 3× = ×

A conversion from 4000 m to miles would require a division process:

×
= × =− 2 49 mi4000 m

1.609 10
2486.02 10 .  

3
3

TABLE 1.3

Symbol Meaning

≠ Not equal to  ≠6.12 6.13
> Greater than  >4.78 4.20

>> Much greater than  840 16>>
< Less than  <430 540

<< Much less than  0.002 46<<
≥ Greater than or equal to  ≥x y  

is satisfied for =y 3 and >x 3 
or =x 3

≤ Less than or equal to  ≤x y  is 
satisfied for =y 3 and <x 3 
or =x 3

≅ Appoximately equal to 
≅3.14159 3.14

∑ Sum of  ∑ ( )+ + =4 6 8 18

|| Absolute magnitude of  =a 4,  
where a 4 or 4= − +

∴ Therefore  = ∴ = ±x x4   2

≡ By definition 
Establishes a relationship 
between two or more quantities

a:b Ratio defined by a
b

a b c d: := Proportion defined by =a
b

c
d
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In each of the above, there should have been little difficulty realizing 
that 2.5 mi would convert to a few thousand meters and 4000 m would 
be only a few miles. As indicated above, this kind of anticipatory think-
ing will eliminate the possibility of ridiculous conversion results.

1.12 CALCULATORS
In most texts, the calculator is not discussed in detail. Instead, students 
are left with the general exercise of choosing an appropriate calculator 
and learning to use it properly on their own. However, some discussion 
about the use of the calculator is needed to eliminate some of the impos-
sible results obtained (and often strongly defended by the user—because 
the calculator says so) through a correct understanding of the process by 
which a calculator performs the various tasks. Time and space do not 
permit a detailed explanation of all the possible operations, but the fol-
lowing discussion explains why it is important to understand how a cal-
culator proceeds with a calculation and that the unit cannot accept data 
in any form and still generate the correct answer.

TI-89 Calculator

Although the calculator chosen for this text is one of the more expen-
sive, a great deal of thought went into its choice. The TI-89 Titanium 
model calculator (Fig. 1.5) was used in the previous edition and, 
before preparing the manuscript for this 13th edition, a study was 
made of the calculators available today. In all honesty, some of the 
cheapest calculators on the market can perform the necessary func-
tions required in this text. However, the time it will take to perform 
some of the basic operations required in the ac section of this text may 
result in a high level of frustration because it takes so long to do a sim-
ple analysis. The TI-89 has the ability to significantly reduce the time 
required and number of operations needed to complete the same analy-
sis and, therefore, was chosen for this edition also. However, it is cer-
tainly possible that your instructor is recommending a different 
calculator for the course or your chosen field. In such situations there 
is no doubt your professor has balanced the needs of the course with 
the financial obligations you face and has suggested a calculator that 
will perform very well.

For those using the TI-89 calculator, there will be times when it 
seems to require more steps than you expected to perform a simple task. 
However, be assured that as you work through the content of this text 
you will be very pleased with the performance of the calculator. Bear in 
mind that the TI-89 has capabilities that could be very helpful in other 
areas of study such as mathematics and physics. In addition, it is tool 
that will serve you well not only in your college years but in your future 
career as well.

When using any calculator for the first time, the unit must be set up 
to provide the answers in a desired format. Following are the steps 
needed to set up the TI-89 calculator correctly.

Initial Settings In the following sequences, the arrows within the 
square indicate the direction of the scrolling required to reach the  desired 
location. The scrolling may continue for a number of levels but eventu-
ally the desired heading will appear on the screen.

(Don Johnson Photo)

FIG. 1.5 
Texas Instruments 

Titanium TI-89 calculator.
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Notation The first sequence sets the engineering notation 
(Section 1.7) as the choice for all answers. It is particularly important 
to take note that you must select the ENTER key twice to ensure the 
process is set in memory.

    Exponential Format  

ENGINEERING  

Accuracy Level Next, the accuracy level can be set to two places 
as follows:

  Display Digits   3:FIX 2  

Approximate Mode For all solutions, the solution should be in 
decimal form to second-place accuracy. If this is not set, some answers 
will appear in fractional form to ensure the answer is EXACT (another  
option). This selection is made with the following sequence:

   Exact/Approx   3: APPROXIMATE  

Clear Screen To clear the screen of all entries and results, use the 
following sequence:

  8: Clear Home 

Clear Current Entries To delete the sequence of current entries at 
the bottom of the screen, select the CLEAR key.

Turn Off To turn off the calculator, apply the following sequence:

 

Calculator Fundamentals

Order of Operations Although setting the correct format and accu-
rate input is important, improper results occur primarily because users 
fail to realize that no matter how simple or complex an equation, the 
calculator performs the required operations in a specific order.

This is a fact that is true for any calculator you may use. The content 
below is for the majority of commercially available calculators.

Consider the operation

+
8

3 1

which is often entered as 

   +    = + = + = 3 678
3

1 2.67 1 .

This is incorrect (2 is the answer).
The calculator will not perform the addition first and then the divi-

sion. In fact, addition and subtraction are the last operations to be per-
formed in any equation. It is therefore very important that you carefully 
study and thoroughly understand the next few paragraphs in order to use 
the calculator properly.

1. The first operations to be performed by a calculator can be 
set using parentheses (). It does not matter which opera-
tions are within the parentheses. The parentheses simply 
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dictate that this part of the equation is to be determined 
first. There is no limit to the number of parentheses in each 
equation—all operations within parentheses will be per-
formed first. For instance, for the example above, if paren-
theses are added as shown below, the addition will be 
performed first and the correct answer obtained:

+
=8

3 1( )
     +      

      = 2 00.

2. Next, powers and roots are performed, such as x2, x , 
and so on.

3. Negation (applying a negative sign to a quantity) and  
single-key operations such as sin, tan−1, and so on, are 
performed.

4.  Multiplication and division are then performed.

5. Addition and subtraction are performed last.

It may take a few moments and some repetition to remember the 
order, but at least you are now aware that there is an order to the opera-
tions and that ignoring them can result in meaningless results.

EXAMPLE 1.23 Determine

9
3

Solution:

          = 1 73.

In this case, the left bracket is automatically entered after the square 
root sign. The right bracket must then be entered before performing the 
calculation.

For all calculator operations, the number of right brackets must 
always equal the number of left brackets.

EXAMPLE 1.24 Find
+3 9
4

Solution: If the problem is entered as it appears, the incorrect answer 
of 5.25 will result.

 +      = + =3 9
4

5.25

Using brackets to ensure that the addition takes place before the divi-
sion will result in the correct answer as shown below:

  +      

( )
= + = = 3 003 9

4
12
4

.

EXAMPLE 1.25 Determine

+ +1
4

1
6

2
3

M01_BOYL0302_14_GE_C01.indd   47M01_BOYL0302_14_GE_C01.indd   47 01/03/23   4:41 PM01/03/23   4:41 PM



48 | | | IntrodunrI S
S

   I

Solution: Since the division will occur first, the correct result will be 
obtained by simply performing the operations as indicated. That is,

   +     +    

  = + + = 1 081
4

1
6

2
3

.

Powers of Ten The  key is used to set the power of ten of a 
number. Setting up the number = ×2200 2.2 10 3 requires the follow-
ing keypad selections:

      = 2 20E3.

Setting up the number × −8.2 10 6  requires the negative sign (–) from 
the numerical keypad. Do not use the negative sign from the mathemati-
cal listing of ÷, ×, –, and +. That is,

       8 20E 6.= −

EXAMPLE 1.26 Perform the addition × + ×6.3 10 75 103 3  and 
compare your answer with the longhand solution of Example 1.8(a).

Solution: 

     +      

  = 81 30E3.

which confirms the results of Example 1.8(a).

 EXAMPLE 1.27 Perform the division ( ) ( )× × −69 10 13 104 8  and 
compare your answer with the longhand solution of Example 1.10(b).

Solution: 

          

  = 5 31E12.

which confirms the results of Example 1.10(b).

EXAMPLE 1.28 Using the provided format of each number, per-
form the following calculation in one series of keypad entries:

( )

( )

( ) ×
×

=
−

−

0.004 6 10
2 10

?
4

3 2

Solution: 

          

          

    600 00E 3 0 6. .= − =

Brackets were used to ensure that the calculations were performed in the 
correct order. Note also that the number of left brackets equals the num-
ber of right brackets.
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1.13 COMPUTER ANALYSIS
There is no question that a basic knowledge of computer methods is 
something that the graduating student must learn in an educational pro-
gram. Industry now requires students to be proficient in the use of a 
computer.

Two general directions can be taken to develop the necessary com-
puter skills: the study of computer languages or the use of software 
packages.

Languages

There are several languages that provide a direct line of communication 
with the computer and the operations it can perform. A language is a set 
of symbols, letters, words, or statements that the user can enter into the 
computer. The computer system will “understand” these entries and will 
perform them in the order established by a series of commands called a 
program. The program tells the computer what to do on a sequential, 
line-by-line basis in the same order a student would perform the calcula-
tions in longhand. The computer can respond only to the commands 
entered by the user. This requires that the programmer understand fully 
the sequence of operations and calculations required to obtain a particu-
lar solution. A lengthy analysis can result in a program having hundreds 
or thousands of lines. Once written, the program must be checked care-
fully to ensure that the results have meaning and are valid for an 
expected range of input variables. Some of the popular languages 
applied in the electrical/electronics field today include C++, QBASIC, 
Java, and FORTRAN. Each has its own set of commands and statements 
to communicate with the computer, but each can be used to perform the 
same type of analysis.

 Software Packages

The second approach to computer analysis—software packages—
avoids the need to know a particular language; in fact, the user may not 
be aware of which language was used to write the programs within the 
package. All that is required is a knowledge of how to input the network 
parameters, define the operations to be performed, and extract the 
results; the package will do the rest. However, there is a problem with 
using packaged programs without understanding the basic steps the pro-
gram uses. You can obtain a solution without the faintest idea of either 
how the solution was obtained or whether the results are valid or way off 
base. It is imperative that you realize that the computer should be used 
as a tool to assist the user—it must not be allowed to control the scope 
and potential of the user!

Each software package has a menu, which defines the range of appli-
cation of the package. Once the software is entered into the computer, 
the system will perform all the functions appearing in the menu, as it 
was preprogrammed to do. Be aware, however, that if a particular type 
of analysis is requested that is not on the menu, the software package 
cannot provide the desired results. The package is limited solely to those 
maneuvers developed by the team of programmers who developed the 
software package. In such situations the user must turn to another soft-
ware package or write a program using one of the languages listed 
above.
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In broad terms, if a software package is available to perform a partic-
ular analysis, then that package should be used rather than developing 
new routines. Most popular software packages are the result of many 
hours of effort by teams of programmers with years of experience. How-
ever, if the results are not in the desired format, or if the software pack-
age does not provide all the desired results, then the user’s innovative 
talents should be put to use to develop a software package. As noted 
above, any program the user writes that passes the tests of range and 
accuracy can be considered a software package of his or her authorship 
for future use.

PROBLEMS
Note: More difficult problems are denoted by an asterisk 
(*) throughout the text.

SECTION 1.2  A Brief History

 1.  Visit your local library (at school or home) and describe the 
extent to which it provides literature and computer support 
for the technologies—in particular, electricity, electronics, 
electromagnetics, and computers.

 2.  Choose an area of particular interest in this field and write a 
very brief report on the history of the subject.

 3.  Choose an individual of particular importance in this field 
and write a very brief review of his or her life and important 
contributions.

SECTION 1.3  Units of Measurement

 4. a. In a recent Tour de France time trial, a participant trav-
eled 60.5 mi in a time trial in 2 h, 15 min. What was his 
average speed in mph?

b. What is the speed in km/h?

  5.  In most countries outside the United States speed is mea-
sured in kilometers per hour (km/h) rather than miles per 
hour (mph). Although the exact conversion from km/h to 
mph is 0.57, a conversion factor of 0.6 is generally used 
because it is easier to remember. For the reverse conversion 
a factor of 1.7 is normally used. Perform the following con-
versions using the approximate conversion factors.
a. What is the speed in mph of an automobile on the Ger-

man Autobahn traveling at 160 km/h?
b. What is the speed in km/h of a motorcycle traveling at 

70 mph in the United States?

 6.  How long in seconds will it take a car traveling at 80 mph to 
travel the length of a football field (100 yd)?

 *7.  A pitcher has the ability to throw a baseball at 95 mph.
a. How fast is the speed in ft/s?
b. How long does the hitter have to make a decision about 

swinging at the ball if the plate and the mound are sepa-
rated by 60 ft?

c. If the batter wanted a full second to make a decision, 
what would the speed in mph have to be?

SECTION 1.4  Systems of Units

 8.  Are there any relative advantages associated with the metric 
system compared to the English system with respect to 
length, mass, force, and temperature? If so, explain.

 9.  Which of the four systems of units appearing in Table 1.1 
has the smallest units for length, mass, and force? When 
would this system be used most effectively?

 *10.  Which system of Table 1.1 is closest in definition to the SI 
system? How are the two systems different? Why do you 
think the units of measurement for the SI system were cho-
sen as listed in Table 1.1? Give the best reasons you can 
without referencing additional literature.

 11.  What is room temperature (23°C) in the English and SI  
systems?

 12.  How many foot-pounds of energy are associated with 4000 J?

 13.  In Europe the height of a man or woman is measured in 
centimeters and his or her weight in kilograms.
a. What is the weight in pounds (lb) of a man who weighs 

70.8 kg?
b. What is the weight in kg of a woman who weighs 145 lb?
c. What is the height of a man in cm who is 6 ft tall?
d. In Norway, the average height of a man is 179.9 cm. 

What is his height in feet and inches?

 14.  Throughout the world, the majority of countries use the 
centigrade scale rather than the Fahrenheit scale. This can 
cause problems for travelers not familiar with what to 
expect at certain temperature levels. To alleviate this prob-
lem, the following approximate conversion is typically 
used:

( )° = ° + °F 2 C 30

  Comparing to the exact formula of ° = ° + °F 9
5

C 32 , we 

find the ratio 9/5 is approximated to equal 2, and the tem-
perature of 32° is changed to 30° simply to make the num-
bers easier to work with and slightly compensate for the fact 
that 2(°C) is more than 9/5(°C).
a. The temperature of 20°C is commonly accepted as nor-

mal room temperature. Using the approximate formula, 
determine (in your head) the equivalent Fahrenheit  
temperature.
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 24.  Perform the following operations to hundredths-place  
accuracy:

a. 4000
0.00008

b. 
×

0.006
6 10 6

c. 0.000440
0.00005

d. ×
× −

88 10
8 10

18

8

 25. Perform the following operations:

a. (100)3 b. (0.0001)1/2

c. (10,000)8 d. (0.00000010)9

 26.  Perform the following operations to hundredths-place  
accuracy:

a. ( )400 2

b. ( )× −6 10 4 4

c. ( )( ) × −0.005 3 10 4 2

d. 2 10 0.8 10 0.0005 104 5 6 3( )( )[ ]( )× × ×−

 27.  Perform the following operations to hundredths-place  
accuracy:

a. 
( ) ( )

×
300 100

3 10

2

4
b. [ ][ ]( ) ( )−40, 000 202 3

c. 
( )

( )

60, 000
0.02

2

2 d. 
( )0.000027

200, 000

1 3

e. 
4000 300

2 10

2

4

[ ][ ]( )

× −

f. 0.000016 100, 000 0.021 2 5[ ][ ][ ]( ) ( )

 *g. 
0.003 0.00007 160

200 0.0008
a challenge

3 2 2

1 2

[ ][ ][ ]

[ ]
( )

( )( )

( )( )

−

−

SECTION 1.7  Fixed-Point, Floating-Point, Scientific, 
and Engineering Notation

 28.  Write the following numbers in scientific and engineering 
notation to hundredths place:
a. 20.46 b. 50,420
c. 0.000674 d. 000.0460

 29.  Write the following numbers in scientific and engineering 
notation to tenths place:

a. × −5 10 2

b. × +0.45 10 2

c. 1 32

d. π
 30.  Perform the following operations and leave the answer in 

engineering notation:

a. ( )( )× × =−8 10 4 103 5

b. ( )( )× × =70 10 0.04 106 3

c. ( )( ) ( )× × × =0.002 10 600 10 5 107 5 4

d. ( ) ( ) ( )× × × =−6.2 10 82 10 4.02 104 2 3 3

b. Use the exact formula and determine the equivalent 
Fahrenheit temperature for 20°C.

c. How do the results of parts (a) and (b) compare? Is the 
approximation valid as a first estimate of the Fahrenheit 
temperature?

d. Repeat parts (a) and (b) for a high temperature of 30°C 
and a low temperature of 5°C.

 SECTION 1.5  Significant Figures, Accuracy,  
and Rounding Off

 15.  Write the following numbers to tenths-place accuracy.
a. 14.6026 b. 056.0420
c. 1,046.06 d. 1/16
e. π

 16.  Repeat Problem 15 using hundredths-place accuracy.

 17.  Repeat Problem 15 using thousandths-place accuracy.

SECTION 1.6  Powers of Ten

 18.  Express the following numbers as powers of ten to  
hundredths-place accuracy:
a. 10,000 b. 1,000,000
c. 1000 d. 0.001
e. 1 f. 0.1

 19.  Using only those powers of ten listed in Table 1.2, express 
the following numbers in what seems to you the most logi-
cal form for future calculations:
a. 15,000 b. 0.005
c. 2,400,000 d. 60,000
e. 0.00040200 f. 0.0000000002

 20.  Perform the following operations to hundredths-place  
accuracy:

a. +4300 47, 000

b. × + ×8 10 4.6 104 5

c. × − ×− −0.6 10 6  103 6

d. × + × −−2.6 10 60, 000 10 5003 3

 21.  Perform the following operations:
a. (1000)(10000) b. (0.001)(100)
c. (102)(107) d. (100)(0.000001)
e. (10−8)(10,000,000) f. (10,000)(10–10) (1026)

 22.  Perform the following operations to hundredths-place  
accuracy:

a. ( )( )20, 000 0.003

b. ×8150 0.001

c. ( )( ) ×0.000059 2.2 10 5

d. ( ) ( )( )× ×−21 10 0.03 5 104 7

 23.  Perform the following operations:

a. 100
10, 000

b. 0.010
1000

c. 10, 000
0.001

d. 0.0000001
100

e. 10
0.000100

38
f. 

( )100
0.01

1 2
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 *41. Find the distance in meters that a mass traveling at 800 cm/s 
will cover in 0.048 h.

 *42. Each spring there is a race up 86 floors of the 102-story 
Empire State Building in New York City. If you were able to 
climb two steps/second, how long would it take in minutes 
to reach the 86th floor if each floor is 14 ft high and each 
step is about 9 in.?

 *43  The record for the race in Problem 42 is 10.22 min. What 
was the racer’s speed in min/mi for the race?

 *44. If the race of Problem 42 were a horizontal distance, how 
long would it take a runner who can run 5-min miles to cover 
the distance? Compare this with the record speed of Problem 
43. Did gravity have a significant effect on the overall time?

SECTION 1.11  Conversion Tables

 45.  Using Appendix A, determine the number of
a. Btu in 5 J of energy.
b. cubic meters in 24 oz of a liquid.
c. seconds in 1.4 days.
d. pints in 1 m3 of a liquid.

SECTION 1.12  Calculators

Perform the following operations using a single sequence of 
calculator keys:

  46.  ( )× + =6 4 2 8

 47.  
+

=
42

3

6
5

 48.  ( )+ =5 2
3

2
2

 49.  ° =cos 21.87

*50. =−tan 3
4

1

*51. 
+

=400
62 10

5

*52. ( )
×

×
=

−8.2 10
0.04 10

  in engineering notation
3

3

*53. 
( )( )

( )
( )

× × =0.06 10 20 10
0.01

  in engineering notation
5 3

2

 *54. ×
× + ×

+
×− − −

4 10
2 10 400 10

1
2 10

4

3 5 6
 

  ( ) =in engineering notation

SECTION 1.13  Computer Analysis

 55.  Investigate the availability of computer courses and com-
puter time in your curriculum. Which languages are com-
monly used, and which software packages are popular?

 56.  Develop a list of three popular computer languages, including a 
few characteristics of each. Why do you think some languages 
are better for the analysis of electric circuits than others?

SECTION 1.8  Conversion between Levels of Powers 
of Ten

 31.  Fill in the blanks of the following conversions:

a. 6 10 104 6× = ×

b. × = ×− −0.4 10  103 6

c. × = × = ×50 10 10 105 3 6

10 9= ×

d. 12 10 10 107 3 6× = × = ×− − −

10 9= × −

 32.  Perform the following conversions:
a. 0.06 s to milliseconds
b. 4000 µs to milliseconds
c. 0.08 ms to microseconds
d. 6400 ps to microseconds
e. ×100 10 4  mm to kilometers

SECTION 1.9  Conversion within and between 
Systems of Units

 33.  Perform the following conversions to tenths-place accuracy:
a. 1.5 min to seconds
b. × −2 10 2 h to seconds
c. 0.05 s to microseconds
d. 0.16 m to millimeters
e. 0.00000012 s to nanoseconds
f. ×4 108  s to days

 34.  Perform the following metric conversions to tenths-place 
accuracy:
a. 88 mm to centimeters
b. 60 cm to kilometres
c. × −12 10 3 m to micrometers
d. 60 sq cm (cm2) to square meters (m2)

 35.  Perform the following conversions between systems to  
hundredths-place accuracy:
a. 100 in. to meters
b. 4 ft to meters
c. 6 lb to newtons
d. 60,000 dyn to pounds
e. 150,000 cm to feet
f. 0.002 mi to meters (5280 ft = 1 mi)

 36.  What is a mile in feet, yards, meters, and kilometers?

 37.  Convert 60 mph to meters per second.

 38.  How long would it take a runner to complete a 15-km race 
if a pace of 8.5 min/mi were maintained?

 39.  Quarters are about 1 in. in diameter. How many would be 
required to stretch from one end of a football field to the 
other (100 yd)?

 40.  Compare the total time required to drive a long, tiring day 
of 500 mi at an average speed of 60 mph versus an average 
speed of 70 mph. Is the time saved for such a long trip worth 
the added risk of the higher speed?
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Language A communication link between user and computer to 
define the operations to be performed and the results to be 
displayed or printed.

Leyden jar One of the first charge-storage devices.
 Menu A computer-generated list of choices for the user to deter-

mine the next operation to be performed.
Meter (m) A unit of measure for length in the SI and MKS sys-

tems. Equal to 1.094 yards in the English system and 100 cen-
timeters in the CGS system.

MKS system The system of units employing the Meter, 
Kilogram, and Second as its fundamental units of measure.

Nanotechnology The production of integrated circuits in which 
the nanometer is the typical unit of measurement.

Newton (N) A unit of measurement for force in the SI and MKS 
systems. Equal to 100,000 dynes in the CGS system.

Pound (lb) A unit of measurement for force in the English sys-
tem. Equal to 4.45 newtons in the SI or MKS system.

Program A sequential list of commands, instructions, and so on, 
to perform a specified task using a computer.

Scientific notation A method for describing very large and very 
small numbers through the use of powers of ten, which re-
quires that the multiplier be a number between 1 and 10.

Second (s) A unit of measurement for time in the SI, MKS, 
English, and CGS systems.

SI system The system of units adopted by the IEEE in 1965 
and the USASI in 1967 as the International System of Units 
(Système International d’Unités).

Slug A unit of measure for mass in the English system. Equal to 
14.6 kilograms in the SI or MKS system.

Software package A computer program designed to perform 
specific analysis and design operations or generate results in 
a particular format.

Static electricity Stationary charge in a state of equilibrium.
Transistor The first semiconductor amplifier.
Voltaic cell A storage device that converts chemical to electrical 

energy.

GLOSSARY

Artificial intelligence A broad term for any technological effort 
to replicate the brain’s functions.

Cathode-ray tube (CRT) A glass enclosure with a relatively 
flat face (screen) and a vacuum inside that will display the 
light generated from the bombardment of the screen by 
electrons.

CGS system The system of units employing the Centimeter, 
Gram, and Second as its fundamental units of measure.

Difference engine One of the first mechanical calculators.
Edison effect Establishing a flow of charge between two ele-

ments in an evacuated tube.
Electromagnetism The relationship between magnetic and elec-

trical effects.
Engineering notation A method of notation that specifies 

that all powers of ten used to define a number be multiples 
of 3 with a mantissa greater than or equal to 1 but less than 
1000.

ENIAC The first totally electronic computer.
Fixed-point notation Notation using a decimal point in a partic-

ular location to define the magnitude of a number.
Fleming’s valve The first of the electronic devices, the diode.
Floating-point notation Notation that allows the magnitude 

of a number to define where the decimal point should be 
placed.

Integrated circuit (IC) A subminiature structure containing a 
vast number of electronic devices designed to perform a par-
ticular set of functions.

Joule (J) A unit of measurement for energy in the SI or MKS 
system. Equal to 0.7378 foot-pound in the English system and 
107 ergs in the CGS system.

Kelvin (K) A unit of measurement for temperature in the SI sys-
tem. Equal to + °273.15 C in the MKS and CGS systems.

Kilogram (kg) A unit of measure for mass in the SI and MKS 
systems. Equal to 1000 grams in the CGS system.
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Voltage and Current

 2.1 INTRODUCTION
Now that the foundation for the study of electricity/electronics has been established, the concepts 
of voltage and current can be investigated. The term voltage is encountered practically every day. 
We have all replaced batteries in our flashlights, answering machines, calculators, automobiles, 
and so on, that had specific voltage ratings. We are aware that most outlets in our homes are 120 
volts ac. Although current may be a less familiar term, we know what happens when we place too 
many appliances on the same outlet—the circuit breaker opens due to the excessive current that 
results. It is fairly common knowledge that current is something that moves through the wires and 
causes sparks and possibly fire if there is a “short circuit.” Current heats up the coils of an electric 
heater or the burners of an electric stove; it generates light when passing through the filament of a 
bulb; it causes twists and kinks in the wire of an electric iron over time due to the heat generated; 
and so on. All in all, the terms voltage and current are part of the vocabulary of most individuals.

In this chapter, the basic impact of current and voltage and the properties of each are intro-
duced and discussed in some detail. Hopefully, any mysteries surrounding the general charac-
teristics of each will be eliminated, and you will gain a clear understanding of the impact of 
each on an electric/electronics circuit.

2.2 ATOMS AND THEIR STRUCTURE
A basic understanding of the fundamental concepts of current and voltage requires a degree 
of familiarity with the atom and its structure. The simplest of all atoms is the hydrogen atom, 
made up of two basic particles, the proton and the electron, in the relative positions shown 
in Fig. 2.1(a). The nucleus of the hydrogen atom is the proton, a positively charged particle.

The orbiting electron carries a negative charge equal in magnitude to the 
positive charge of the proton.

•  Become aware of the basic atomic structure of 
conductors such as copper and aluminum and 
understand why they are used so extensively in  
the field.

• Understand how the terminal voltage of a battery 
or any dc supply is established and how it creates 
a flow of charge in the system.

• Become aware of the various sources of dc power.

• Understand how current is established in a circuit 
and how its magnitude is affected by the elements 
it encounters.

• Become familiar with the factors that affect the 
terminal voltage of a battery and how long a 
battery will remain effective.

• Be able to apply a voltmeter and ammeter correctly 
to measure the voltage and current at any point in 
the network.

 Objectives

2
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In all other elements, the nucleus also contains neutrons, which are 
slightly heavier than protons and have no electrical charge. The helium 
atom, for example, has two neutrons in addition to two electrons and two 
protons, as shown in Fig. 2.1(b). In general,

the atomic structure of any stable atom has an equal 
number of electrons and protons.

Different atoms have various numbers of electrons in concentric 
orbits called shells around the nucleus. The first shell, which is closest 
to the nucleus, can contain only two electrons. If an atom has three elec-
trons, the extra electron must be placed in the next shell. The number 
of electrons in each succeeding shell is determined by n2 ,2  where n is 
the shell number. Each shell is then broken down into subshells where 
the number of electrons is limited to 2, 6, 10, and 14 in that order as you 
move away from the nucleus.

Copper is the most commonly used metal in the electrical/electronics 
industry. An examination of its atomic structure will reveal why it has 
such widespread application. As shown in Fig. 2.2, it has 29 electrons in 
orbits around the nucleus, with the 29th electron appearing all by itself in 
the 4th shell. Note that the number of electrons in each shell and subshell 

+

Electron

Nucleus

Proton

–

(a) Hydrogen atom

+
+

–

–

Protons

Electron
Nucleus

Neutrons

Electron

(b) Helium atom

 FIG. 2.1
Hydrogen and helium atoms.

–
–
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–

–
–

–
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–

–
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–
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–

–

3rd shell
18 electrons

4th shell
(Maximum = 32 electrons)

29th electron

1st shell
2 electrons

2nd shell
8 electrons

Nucleus
29 protons
29 neutrons

+

FIG. 2.2
The atomic structure of copper.
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is as defined above. There are two important things to note in   Fig.    2. 2  . 
First, the 4th shell, which can have a total of   = =n2 2(4) 322 2

electrons, has only one electron. The outermost shell is incomplete and, 
in fact, is far from complete because it has only one electron. Atoms 
with complete shells (that is, a number of electrons equal to   n2 2      ) are 
usually quite stable. Those atoms with a small percentage of the defined 
number for the outermost shell are normally considered somewhat unsta-
ble and volatile. Second, the 29th electron is the farthest electron from 
the nucleus. Opposite charges are attracted to each other, but the far-
ther apart they are, the less the attraction. In fact, the force of attraction 
between the nucleus and the 29th electron of copper can be determined 
by  Coulomb’s law  developed by Charles Augustin Coulomb (    Fig.    2. 3  ) 
in the late 18th century: 

     F k
Q Q

r
newtons,  N1 2

2
( )=   ( 2. 1)  

 where  F  is in newtons (N),   = = ×k a constant 9.0 10  Nm /C ,9 2 2

Q1      and   Q2       are the charges in coulombs (a unit of measure discussed in 
the next section), and  r  is the distance between the two charges in meters.    

  At this point, the most important thing to note is that the distance 
between the charges appears as a squared term in the denominator. First, 
the fact that this term is in the denominator clearly reveals that as it 
increases, the force will decrease. However, since it is a squared term, 
the force will drop dramatically with distance. This relationship where 
a parameter of interest has a squared term in the denominator occurs 
frequently in this and related fields, so we will take a closer look at its 
impact. Defining   ′ =k kQ Q ,1 2        Eq.   ( 2. 1  ) will become the following: 

= = ′F
kQ Q

r
k
r

1 2
2 2

 For very small distances between charges, the force of attraction or 
repulsion will be very high. 
 Consider   =r 0.3 m.      The resulting force is 

( )
= ′ = ′ ≅ ′F k

r
k k

0.3
11.1 

2 2

 For   =r 1 m     : 

( )
= ′ = ′ = ′F k

r
k k
12 2

 For   =r 2 m:

( )
= ′ = ′ = ′ = ′F k

r
k k k
2 4

0.25
2 2

 and for   =r 10 m     : 

( )
= ′ = ′ = ′ = ′F k

r
k k k

10 100
0.01

2 2

 A plot of force versus distance is provided as     Fig.     2. 4  . Clearly the 
squared term in the denominator has a dramatic effect on the level of 
attraction or repulsion between two charges. The result, therefore, is 
that the force of attraction between the 29th electron and the nucleus 
is significantly less than that between an electron in the first shell and 

     F k
Q Q

r
1 2Q Q1 2Q Q

2
F k=F k          

 r (m)

11.1

1021

1.0

0
0.25

0.3

F
 kQ1Q2 

 =  k9
 r2  r2 

F(k9)

 k9
100

=

        FIG.    2. 4 
 Demonstrating the impact of a squared term 

in the denominator of an expression.    

 INTERFOTO/Personalities/
Alamy Stock Photo 

        FIG.    2. 3 
 Charles Augustin Coulomb.   

French  (Angoulème, Paris)  
(1736–1806) Scientist and Inventor 

Military Engineer,  West Indies   

 Attended the engineering school at Mézières, the 
first such school of its kind. Formulated  Coulomb’s 
law,  which defines the force between two electrical 
charges and is, in fact, one of the principal forces in 
atomic reactions. Performed extensive research on the 
friction encountered in machinery and windmills and 
the elasticity of metal and silk fibers. 
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the nucleus. The result is that the 29th electron is loosely bound to the 
atomic structure and with a little bit of pressure from outside sources 
could be encouraged to leave the parent atom.

If this 29th electron gains sufficient energy from the surrounding 
medium to leave the parent atom, it is called a free electron. In 1 cubic in. 
of copper at room temperature, there are approximately ×1.4 10 24 free 
electrons. Expanded, that is 1,400,000,000,000,000,000,000,000 free elec-
trons in a 1–in. square cube. The point is that we are dealing with enormous 
numbers of electrons when we talk about the number of free electrons in 
a copper wire—not just a few that you could leisurely count. Further, the 
numbers involved are clear evidence of the need to become proficient in the 
use of powers of ten to represent numbers and use them in mathematical 
calculations.

Other metals that exhibit the same properties as copper, but to a dif-
ferent degree, are silver, gold, and aluminum, and some rarer metals 
such as tungsten. Additional comments on the characteristics of conduc-
tors are in the following sections.

 2.3 VOLTAGE
If we separate the 29th electron in Fig. 2.2 from the rest of the atomic 
structure of copper by a dashed line as shown in Fig.  2.5(a), we cre-
ate regions that have a net positive and negative charge as shown in 
Fig. 2.5(b) and (c). For the region inside the dashed boundary, the num-
ber of protons in the nucleus exceeds the number of orbiting electrons 
by 1, so the net charge is positive as shown in both figures. This posi-
tive region created by separating the free electron from the basic atomic 
structure is called a positive ion. If the free electron then leaves the 
vicinity of the parent atom as shown in Fig. 2.5(d), regions of positive 
and negative charge have been established.

This separation of charge to establish regions of positive and nega-
tive charge is the action that occurs in every battery. Through chemical 
action, a heavy concentration of positive charge (positive ions) is estab-
lished at the positive terminal, with an equally heavy concentration of 
negative charge (electrons) at the negative terminal.

In general,

every source of voltage is established by simply creating a 
separation of positive and negative charges.

It is that simple: If you want to create a voltage level of any magni-
tude, simply establish regions of positive and negative charge. The more 
the required voltage, the greater is the quantity of positive and negative 
charge.

In Fig. 2.6(a), for example, a region of positive charge has been estab-
lished by a packaged number of positive ions, and a region of negative 
charge by a similar number of electrons, separated by a distance r. Since 
it would be inconsequential to talk about the voltage established by the 
separation of a single electron, a package of electrons called a coulomb 
(C) of charge was defined as follows:

One coulomb of charge is the total charge associated with 
×6.242 1018  electrons.

Conversely, the negative charge associated with a single electron is

=
×

= × −Q 1
6.242 10

C 0.1602 10  Ce 18
18

(b)

+ –

(c)

+ –

(d)

Positive ion Free electron

–

–

–

– –

–
– –

–

–
–

– –

– – – –
–

–

––
–

–

–
– – –

–

–

–

(a)

+

+

Positive region equal
in charge to the
isolated electron

FIG. 2.5
Defining the positive ion.
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 so that 

   = × −Q 1.602   10 Ce
19         ( 2. 2)  

(a)

r

–

–

(b) (c)

b

a1 V

1 coulomb
of charge

1 joule
of energy

–

–
1 coulomb of charge

2 joules of energy

2 V

(d)

–

–

4.8 V

1 coulomb of charge

4.8 joules of energy

+

–

+

–

+

–

+

–

        FIG.    2. 6 
 Defining the voltage between two points.    

= ×Q 1.602 = ×1.602 = ×  10 C−0 C−
e

190 C190 C

 In   Fig.    2. 6(b)  , if we take a coulomb of negative charge near the sur-
face of the positive charge and move it toward the negative charge, we 
must expend energy to overcome the repulsive forces of the larger nega-
tive charge and the attractive forces of the positive charge. In the process 
of moving the charge from point  a  to point  b  in   Fig.    2. 6(b)  , 

  if a total of 1 joule (J) of energy is used to move the negative 
charge of 1 coulomb (C), there is a difference of 1 volt (V) 
between the two points.  

 The defining equation is 

   V W
Q

V

W

Q

volts  V

joules  J

  coulombs  C

( )

( )

( )

=

=

=

=

         ( 2. 3)  

 Take particular note that the charge is measured in coulombs, the 
energy in joules, and the voltage in volts. The unit of measurement, 
volt , was chosen to honor the efforts of Alessandro Volta, who first 
demonstrated that a voltage could be established through chemical 
action (    Fig.    2. 7  ). 

  If the charge is now moved all the way to the surface of the larger 
negative charge as shown in   Fig.    2. 6(c)  , using 2 J of energy for the whole 
trip, there are 2 V between the two charged bodies. If the package of pos-
itive and negative charge is larger, as shown in   Fig.    2. 6(d)  , more energy 
will have to be expended to overcome the larger repulsive forces of the 
large negative charge and attractive forces of the large positive charge. 
As shown in   Fig.    2. 6(d)  , 4.8 J of energy were expended, resulting in a 
voltage of 4.8 V between the two points. We can therefore conclude that 
it would take 12 J of energy to move 1 C of negative charge from the 
positive terminal to the negative terminal of a 12 V car battery.    

  Through algebraic manipulations, we can define an equation to deter-
mine the energy required to move charge through a difference in voltage: 

   W QV (joules, J) =         ( 2. 4)  

   V W
Q

=      

   W QVW Q=W Q      

 Bilwissedition Ltd. & Co. 
KG/Alamy Stock Photo 

        FIG.    2. 7 
 Count Alessandro Volta.   

Italian  (Como, Pavia)  
(1745–1827) Physicist 

Professor of Physics,
Pavia, Italy   

 Began electrical experiments at the age of 18 working 
with other European investigators. Major contribution 
was the development of an electrical energy source 
from chemical action in 1800. For the first time, elec-
trical energy was available on a continuous basis and 
could be used for practical purposes. Developed the first 
condenser,  known today as the  capacitor.  Was invited to 
Paris to demonstrate the  voltaic cell  to Napoleon. The 
International Electrical Congress meeting in Paris in 
1881 honored his efforts by choosing the  volt  as the unit 
of measure for electromotive force. 
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 Finally, if we want to know how much charge was involved, we use 

   Q W
V

(coulombs, C) =   ( 2. 5)  

    EXAMPLE   2. 1  Find the voltage between two points if 60 J of energy 
are required to move a charge of 20 C between the two points. 

   Solution:        Eq.   ( 2. 3  ):   = = =V W
Q

3 V60 J
20 C

 

    EXAMPLE   2. 2  Determine the energy expended moving a charge of 
µ50  C       between two points if the voltage between the points is 6 V. 

   Solution:        Eq.   ( 2. 4  ): 

µ( )( )= = × = × =− −W QV 300 J50 10  C 6 V 300 10  J  6 6

 There are a variety of ways to separate charge to establish the desired 
voltage. The most common is the chemical action used in car batteries, 
flashlight batteries, and, in fact, all portable batteries. Other sources use 
mechanical methods such as car generators and steam power plants or 
alternative sources such as solar cells and windmills. In total, however, 
the sole purpose of the system is to create a separation of charge. In the 
future, therefore, when you see a positive and a negative terminal on any 
type of battery, you can think of it as a point where a large concentration 
of charge has gathered to create a voltage between the two points. More 
important is to recognize that a voltage exists between two points—for 
a battery between the positive and negative terminals. Hooking up just 
the positive or the negative terminal of a battery and not the other would 
be meaningless. 

  Both terminals must be connected to define the applied 
voltage.  

 As we moved the 1 C of charge in   Fig.    2. 6(b)  , the energy expended 
would depend on where we were in the crossing. The  position  of the 
charge is therefore a factor in determining the voltage level at each point 
in the crossing. Since the  potential energy  associated with a body is 
defined by its position, the term  potential  is often applied to define volt-
age levels. For example, the difference in potential is 4 V between the 
two points, or the  potential difference  between a point and ground is 
12 V, and so on. 

  The electron volt  

 A unit of energy sometimes applied in a number of physics oriented 
investigations is the  electron volt . 

 It is the level of energy required to move an electron through a poten-
tial difference of 1 volt. 

 Applying the basic energy equation, 

W QV

W

1.602 10  C 1 volt

1.602 10  J

19

19

( )( )

=
= ×
= ×

−

−

   Q W
V

=      
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 and 

   1 eV 1.602 10  J19= × −         ( 2. 6)  

 Conversely, 

=
× −

1 J 1
1.602 10  eV19

 and 

   1 J 2.24 10  eV18= ×         ( 2. 7)   

2. 4     CURRENT   
 The question, “Which came first—the chicken or the egg?” can be 
applied here also because the layperson has a tendency to use the terms 
current  and  voltage  interchangeably as if both were sources of energy. It 
is time to set things straight: 

  The applied voltage is the starting mechanism—the current 
is a reaction to the applied voltage.  

 In     Fig.    2. 8(a)  , a copper wire sits isolated on a laboratory bench. If we 
cut the wire with an imaginary perpendicular plane, producing the circu-
lar cross section shown in   Fig.    2. 8(b)  , we would be amazed to find that 
there are free electrons crossing the surface in both directions. Those 
free electrons generated at room temperature are in constant motion in 
random directions. However, at any instant of time, the number of elec-
trons crossing the imaginary plane in one direction is exactly equal to 
that crossing in the opposite direction, so the  net flow in any one direc-
tion is zero.  Even though the wire seems dead to the world sitting by 
itself on the bench, internally, it is quite active. The same would be true 
for any other good conductor. 

   1 eV 1.602 10  J19= ×1.602= ×1.602 −      

   1 J 2.24 10  eV18= ×2.24= ×2.24         (            (            ( 

e–
e–e–

e–e
–e–

(b)

Imaginary plane

Perpendicular
surface cut by
plane

(a)

Isolated copper wire

Perpendicular plane
for Fig. 2.8(b)

        FIG.    2. 8 
 There is motion of free carriers in an isolated piece of copper wire, but 

the flow of charge fails to have a particular direction.    

  Now, to make this electron flow do work for us, we need to give it 
a direction and be able to control its magnitude. This is accomplished 
by simply applying a voltage across the wire to force the electrons to 
move toward the positive terminal of the battery, as shown in     Fig.    2. 9  . 
The instant the wire is placed across the terminals, the free electrons in 
the wire drift toward the positive terminal. The positive ions in the cop-
per wire simply oscillate in a mean fixed position. As the electrons pass 
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through the wire, the negative terminal of the battery acts as a supply of 
additional electrons to keep the process moving. The electrons arriving 
at the positive terminal are absorbed, and through the chemical action of 
the battery, additional electrons are deposited at the negative terminal to 
make up for those that left.

To take the process a step further, consider the configuration in 
Fig. 2.10, where a copper wire has been used to connect a light bulb to 
a battery to create the simplest of electric circuits. The instant the final 
connection is made, the free electrons of negative charge drift toward the 
positive terminal, while the positive ions left behind in the copper wire 
simply oscillate in a mean fixed position. The flow of charge (the elec-
trons) through the bulb heats up the filament of the bulb through friction 
to the point that it glows red-hot and emits the desired light.

e–e–

e–

Copper wire

Battery terminals

Chemical
action

V
e–

e–
e–

e–

FIG. 2.9
Motion of negatively charged electrons in a copper wire when placed 

across battery terminals with a difference in potential of volts (V).

Ielectron

Copper wire

Iconventional

e

e

e

e

Chemical
activity

Battery

e

Imaginary plane

eee

e

e

ee
e

e

e

FIG. 2.10
Basic electric circuit.

In total, therefore, the applied voltage has established a flow of elec-
trons in a particular direction. In fact, by definition,

if ×6.242 1018  electrons (1 coulomb) pass through the 
imaginary plane in Fig. 2.10 in 1 second, the flow of charge, 
or current, is said to be 1 ampere (A).
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 The unit of current measurement,  ampere , was chosen to honor the 
 efforts of André Ampère in the study of electricity in motion (    Fig.    2. 11  ). 

  Using the coulomb as the unit of charge, we can determine the cur-
rent in amperes from the following equation: 

   I
Q
t

I

Q

t

   amperes  A

coulombs  C

time  s

( )

( )

( )

=
=
=

=

        ( 2. 8)  

 The capital letter  I  was chosen from the French word for current, 
intensité.  The SI abbreviation for each quantity in   Eq.   ( 2. 8  ) is provided 
to the right of the equation. The equation clearly reveals that for equal 
time intervals, the more charge that flows through the wire, the larger is 
the resulting current. 

 Through algebraic manipulations, the other two quantities can be 
determined as follows: 

   Q It (coulombs, C)=         ( 2. 9)  

 and    

   t
Q
l

(seconds, s)=         ( 2. 10)  

    EXAMPLE   2. 3  The charge flowing through the imaginary surface in 
  Fig.    2. 10   is 0.16 C every 64 ms. Determine the current in amperes. 

   Solution:        Eq.   ( 2. 8  ): 

= =
×

= ×
×

=
−

−

−
I

Q
t

2 50 A0.16 C
64 10 s

160 10  C
64 10  s

.  
3

3

3

    EXAMPLE   2. 4  Determine how long it will take   ×4 1016      electrons 
to pass through the imaginary surface in   Fig.    2. 10   if the current is 5 mA. 

   Solution:      Determine the charge in coulombs: 

×
×







 = × −4 10   electrons 1 C

6.242 10   electrons
0.641 10 C16

18
2

= 6.41 mC

   Eq.   ( 2. 10  ):  t
Q
I

1 28 s6.41 10 C
5 10 A

.  
3

3
= = ×

×
=

−

−

 In summary, therefore, 

  the applied voltage (or potential difference) in an electrical/
electronics system is the “pressure” to set the system in 
motion, and the current is the reaction to that pressure.  

 A mechanical analogy often used to explain this is the simple garden 
hose. In the absence of any pressure, the water sits quietly in the hose 
with no general direction, just as electrons do not have a net direction in 
the absence of an applied voltage. However, release the spigot, and the 
applied pressure forces the water to flow through the hose. Similarly, 
apply a voltage to the circuit, and a flow of charge or current results. 

   I
Q
t

=      

   Q ItQ ItQ IQ I=Q I      

   t
Q
l

=      

 Nickolae/Fotolia 

        FIG.    2. 11 
 André Marie Ampère.   

French  (Lyon, Paris) 
(1775–1836) 
Mathematician and Physicist 
Professor of Mathematics,
École Polytechnique, Paris  

 On September 18, 1820, introduced a new field of study, 
electrodynamics, devoted to the effect of  electricity in 
motion, including the interaction between currents in 
adjoining conductors and the interplay of the  surrounding 
magnetic fields. Constructed the first  solenoid  and 
 demonstrated how it could behave like a magnet (the 
first  electromagnet ). Suggested the name  galvanometer
for an instrument designed to measure current levels. 

M02_BOYL0302_14_GE_C02.indd   63M02_BOYL0302_14_GE_C02.indd   63 28/02/23   11:44 AM28/02/23   11:44 AM



64 | | | Voltage and Current
e

I

V

A second glance at Fig.  2.10 reveals that two directions of charge 
flow have been indicated. One is called conventional flow, and the other 
is called electron flow. This text discusses only conventional flow for 
a variety of reasons; namely, it is the most widely used at educational 
institutions and in industry, it defines the direction of the arrow in the 
design of all electronic device symbols, and it is the popular choice for all 
major computer software packages. The flow controversy is a result of an 
assumption made at the time electricity was discovered that the positive 
charge was the moving particle in metallic conductors. Be assured that 
the choice of conventional flow will not create great difficulty and con-
fusion in the chapters to follow. Once the direction of I is established, the 
issue is dropped and the analysis can continue without confusion.

 Safety Considerations
It is important to realize that even small levels of current through the 
human body can cause serious, dangerous side effects. Experimental 
results reveal that the human body begins to react to currents of only 
a few milliamperes. Although most individuals can withstand currents 
up to perhaps 10 mA for very short periods of time without serious side 
effects, any current over 10 mA should be considered dangerous. In fact, 
currents of 50 mA can cause severe shock, and currents of over 100 mA 
can be fatal. In most cases, the skin resistance of the body when dry is 
sufficiently high to limit the current through the body to relatively safe 
levels for voltage levels typically found in the home. However, if the 
skin is wet due to perspiration, bathing, and so on, or if the skin barrier 
is broken due to an injury, the skin resistance drops dramatically, and 
current levels could rise to dangerous levels for the same voltage shock. 
In general, therefore, simply remember that water and electricity don’t 
mix. Granted, there are safety devices in the home today [such as the 
ground fault circuit interrupt (GFCI) receptacle and breakers, discussed 
in Chapter 4] that are designed specifically for use in wet areas such as 
the bathroom and kitchen, but accidents happen. Treat electricity with 
respect—not fear.

2.5 VOLTAGE SOURCES
The term dc, used throughout this text, is an abbreviation for direct 
current, which encompasses all systems where there is a unidirectional 
(one direction) flow of charge. This section reviews dc voltage supplies 
that apply a fixed voltage to electrical/electronics systems.

The graphic symbol for all dc voltage sources is shown in Fig. 2.12. 
Note that the relative length of the bars at each end define the polarity 
of the supply. The long bar represents the positive side; the short bar, the 
negative. Note also the use of the letter E to denote voltage source. It 
comes from the fact that

an electromotive force (emf) is a force that establishes the 
flow of charge (or current) in a system due to the application 
of a difference in potential.

In general, dc voltage sources can be divided into three basic types: 
(1) batteries (chemical action or solar energy), (2) generators (electro-
mechanical), and (3) power supplies (rectification—a conversion pro-
cess to be described in your electronics courses).

E 12 V

FIG. 2.12
Standard symbol for a dc voltage source.
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Batteries
General Information For the layperson, the battery is the most 
common of the dc sources. By definition, a battery (derived from the 
expression “battery of cells”) consists of a combination of two or more 
similar cells, a cell being the fundamental source of electrical energy 
developed through the conversion of chemical or solar energy. All cells 
can be divided into the primary or secondary types. The secondary is 
rechargeable, whereas the primary is not. That is, the chemical reaction 
of the secondary cell can be reversed to restore its capacity. The two 
most common rechargeable batteries are the lead-acid unit (used primar-
ily in automobiles) and the nickel–metal hydride (NiMH) battery (used 
in calculators, tools, photoflash units, shavers, and so on). The obvious 
advantages of rechargeable units are the savings in time and money of 
not continually replacing discharged primary cells.

All the cells discussed in this chapter (except the solar cell, which 
absorbs energy from incident light in the form of photons) establish a 
potential difference at the expense of chemical energy. In addition, each 
has a positive and a negative electrode and an electrolyte to complete the 
circuit between electrodes within the battery. The electrolyte is the con-
tact element and the source of ions for conduction between the terminals.

Primary Cells (Nonrechargeable) The popular alkaline  primary 
battery uses a powdered zinc anode ( )+ ; a potassium (alkali metal) 
hydroxide electrolyte; and a manganese dioxide/carbon cathode 
( )−  as shown in Fig. 2.13(a). In Fig. 2.13(b), note that for the cylin-
drical types (AAA, AA, C, and D), the voltage is the same for each, 
but the  ampere-hour (Ah) rating increases significantly with size. The 
 ampere-hour rating is an indication of the level of current that the battery 
can provide for a specified period of time (to be discussed in detail in 
Section 2.6). In particular, note that for the large, lantern-type battery, 
the voltage is only 4 times that of the AAA battery, but the ampere-hour 
rating of 52 Ah is almost 42 times that of the AAA battery.

Metal spur

Positive cover:
plated steel

Electrolyte:
potassium
hydroxide/water

Cathode:
manganese
dioxide and
carbon

Separator:
nonwoven
fabric

Metal washer

Current collector:
brass pin

Can: steel

Metalized plastic
film label

Anode:
powdered zinc

Seal: nylon

Inner cell cover:
steel

Negative cover:
plated steel

(a)

[(b) photo by Robert Boylestad]

FIG. 2.13

Alkaline primary cells: (a) cutaway of cylindrical cell; (b) various types of primary cells.

Lantern 6 V
battery

1.5 V
D cell
18 Ah

1.5 V
C cell

8350 mAh

AA cell
1.5 V

2850 mAh

9 V
625 mAh

AAA cell
1.5 V

1250 mAh

AAAA cell
1.5 V

600 mAh

(b)
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Another type of popular primary cell is the lithium battery, shown in 
Fig. 2.14. Again, note that the voltage is the same for each, but the size 
increases substantially with the ampere-hour rating and the rated drain 
current. It is particularly useful when low temperature is encountered.

In general, therefore,

for batteries of the same type, the size is dictated primarily 
by the standard drain current or ampere-hour rating, not by 
the terminal voltage rating.

Secondary Cells (Rechargeable)

Lead–Acid: The 12 V of Fig. 2.15, typically used in automobiles, 
has an electrolyte of sulfuric acid and electrodes of spongy lead (Pb) 
and lead peroxide ( )PbO 2 . When a load is applied to the battery termi-
nals, there is a transfer of electrons from the spongy lead electrode to 
the lead peroxide electrode through the load. This transfer of electrons 

3 V
165 mAh

Standard drain:
30 mA

3 V
1000 mAh

Standard drain:
200 mA

3 V
1200 mAh

Standard drain:
2.5 mA

3 V
5000 mAh

Standard drain:
150 mA

FIG. 2.14
Lithium primary batteries.

Cells (each 2.1 V)

Extrusion-fusion
intercell connection

Positive terminal

Separator
envelope

Electrolyte
reservoir

Negative terminal

Wrought
lead–calcium grid

Heat-sealed cover

(Clive Streeter/DK Images)

FIG. 2.15
Maintenance-free 12 V (actually 12.6 V) lead-acid battery.
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will continue until the battery is completely discharged. The discharge 
time is determined by how diluted the acid has become and how heavy 
the coating of lead sulfate is on each plate. The state of discharge of a 
lead storage cell can be determined by measuring the specific gravity of 
the electrolyte with a hydrometer. The specific gravity of a substance is 
defined to be the ratio of the weight of a given volume of the substance 
to the weight of an equal volume of water at °4 C. For fully charged 
batteries, the specific gravity should be somewhere between 1.28 and 
1.30. When the specific gravity drops to about 1.1, the battery should be 
recharged.

Since the lead storage cell is a secondary cell, it can be recharged at 
any point during the discharge phase simply by applying an external dc 
current source across the cell that passes current through the cell in a 
direction opposite to that in which the cell supplied current to the load. 
This removes the lead sulfate from the plates and restores the concentra-
tion of sulfuric acid.

The output of a lead storage cell over most of the discharge phase is 
about 2.1 V. In the commercial lead storage batteries used in automo-
biles, 12.6 V can be produced by six cells in series, as shown in Fig. 2.15. 
In general, lead-acid storage batteries are used in situations where a high 
current is required for relatively short periods of time. At one time, all 
lead-acid batteries were vented. Gases created during the discharge cycle 
could escape, and the vent plugs provided access to replace the water or 
electrolyte and to check the acid level with a hydrometer. The use of a 
grid made from a wrought lead–calcium alloy strip, rather than the lead–
antimony cast grid commonly used, has resulted in maintenance-free 
batteries, shown in Fig. 2.15. The lead–antimony structure was suscep-
tible to corrosion, overcharge, gasing, water usage, and self-discharge. 
Improved design with the lead–calcium grid has either eliminated or 
substantially reduced most of these problems.

It would seem that with so many advances in technology, the size 
and weight of the lead–acid battery would have decreased significantly 
in recent years, but even today it is used more than any other battery in 
automobiles and all forms of machinery. However, things are beginning 
to change with interest in nickel–metal hydride and lithium-ion batteries, 
which both pack more power per unit size than the lead–acid variety. 
Both will be described in the sections to follow.

Nickel–Metal Hydride (NiMH): The nickel–metal hydride re- 
charge                   able battery has been receiving enormous interest and develop-
ment in recent years. The Toyota Prius and two other hybrids would 
use NiMH batteries rather than the lead–acid variety. For applications 
such as flashlights, shavers, portable televisions, power drills, and so on, 
rechargeable batteries such as the nickel–metal hydride (NiMH) batter-
ies shown in Fig. 2.16 are often the secondary batteries of choice. These 
batteries are so well made that they can survive over 1000 charge/dis-
charge cycles over a period of time and can last for years.

It is important to recognize that if an appliance calls for a recharge-
able battery such as a NiMH battery, a primary cell should not be used. 
The appliance may have an internal charging network that would be dys-
functional with a primary cell. In addition, note that NiMH batteries are 
about 1.2 V per cell, whereas the common primary cells are typically 1.5 V  
per cell.

There is some ambiguity about how often a secondary cell should be 
recharged. Generally, the battery can be used until there is some indication 
that the energy level is low, such as a dimming light from a flashlight, less 
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power from a drill, or a signal from low-battery indicator. Keep in mind 
that secondary cells do have some “memory.” If they are recharged contin-
uously after being used for a short period of time, they may begin to believe 
they are short-term units and actually fail to hold the charge for the rated 
period of time. In any event, always try to avoid a “hard” discharge, which 
results when every bit of energy is drained from a cell. Too many hard- 
discharge cycles will reduce the cycle life of the battery. Finally, be aware 
that the charging mechanism for nickel–cadmium cells is quite different 
from that for lead–acid batteries. The nickel–cadmium battery is charged 
by a constant–current source, with the terminal voltage staying fairly steady 
through the entire charging cycle. The lead–acid battery is charged by a 
constant voltage source, permitting the current to vary as determined by 
the state of the battery. The capacity of the NiMH battery increases almost 
linearly throughout most of the charging cycle. Nickel–cadmium batteries 
become relatively warm when charging. The lower the capacity level of 
the  battery when charging, the higher is the temperature of the cell. As the 
battery approaches rated capacity, the temperature of the cell approaches 
room temperature.

Lithium-ion (Li-ion): The battery receiving the most research and 
development in recent years is the lithium-ion battery. It carries more 
energy in a smaller space than either the lead–acid or NiMH  rechargeable 
batteries. Its range of applications includes computers, a host of con-
sumer products, power tools, and recently the sleek Tesla roadster with 
its battery pack composed of more than 6800 3.7 V Li-ion cells the size 
of a typical AA battery. It can travel some 265 miles but the battery pack 
costs between $10,000 and $15,000. Another problem is shelf life. Once 
manufactured, these batteries begin to slowly die even though they may 
go through normal charge/discharge cycles, which makes them similar 
to a normal primary cell, so lifetime is a major concern.

The very popular iPhone 4S appearing in Fig. 2.17 has a 3.7 V, 5.45 
Wh lithium-ion polymer battery as its power source. Note that it takes 
about 40% by volume of the internal structure and contributes a great 
deal to its weight.

Industry is aware of the numerous positive characteristics of this 
power source and is pouring research money in at a very high rate. Recent 

D cell
1.2 V

2500 mAh
@ 500 mA

C cell
1.2 V

2500 mAh
@ 500 mA

AA cell
1.2 V

2300 mAh
@ 460 mA

AAA cell
1.2 V

700 mAh
@ 140 mA

(photo by Robert Boylestad)

FIG. 2.16
Nickel–metal hydride (NiMH) rechargeable batteries.

((a) STANCA SANDA/Alamy Stock Photo  
(b) Brent Lewin/Bloomberg/Getty Images)

FIG. 2.17
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use of nanotechnology and microstructures along with improved design 
has alleviated many of the concerns regarding safety and longevity.

Solar Cell
The use of solar cells as part of the effort to generate “clean” energy 
has grown exponentially in the last few years. At one time the cost 
and the low conversion efficiencies were the main stumbling blocks to 
widespread use of the solar cell. However, the company Nanosolar has 
significantly reduced the cost of solar panels by using a printing pro-
cess that uses a great deal less of the expensive silicon material in the 
manufacturing process. Whereas the cost of generating solar electricity 
is about 4 to 10¢/kWh, compared to an average of 22 ¢/kWh using 
a local coal/oil utililty, this new printing process has had a significant 
impact on reducing the cost level. Another factor that will reduce costs 
is the improving level of efficiency being obtained by manufacturers. At 
one time the accepted efficiency level of conversion was between 10% 
and 14%. Recently, however, the company Semprius, Inc., set a new 
record for commercially available solar panels with a 35.5% efficiency 
level—almost twice the typical commercial level. The Fraunhofer 
Institute for Solar Energy Systems in Germany reached a laboratory 
level of 44.7% conversion efficiency. The two factors that affect the cost 
the most are the cost of the materials and the efficiency level. Silicon 
is the most frequently used material but it is expensive. Recent trends 
have been to find improved materials and to try innovative maneuvers 
like stacking the cells or imbedding lenses to focus the incident light. In 
general, it appears that there is a strong thrust to make solar cells a very 
important option for generating clean energy in the near future. Given 
that the  maximum available wattage on an average bright, sunlit day 
is 100 mW/cm ,2  the efficiency is an important element in any future 
plans for the expansion of solar power. At 10% to 14% efficiency the 
maximum available power from a 1-m 2 panel (approximately ′ × ′3 3 )  
would be 100 to 140 W. However, if the efficiency could be raised to 
30%, the return could exceed 300 W per panel. When we consider the 
wide range of appliances that can be run on 300 W or less, this is a sig-
nificant improvement.

Even though the efficiency may not be as high as desired, the import-
ant thing to remember when it comes to solar energy is that there is no 
cost associated with providing the energy in the first place. It is ready to 
be used and, hopefully, will never end. In cold climates with snow cover 
and long cloudy days, one might wonder about the feasibility or logic in 
installing solar panels. However, take a look at the fishing/hunting lodge 
in Fig. 2.18(a) located in northern Maine with twelve 265 W solar pan-
els that provide a total of 3.18 kW under optimum conditions. Consider 
how many appliances, required in a camp of this kind, can operate with 
a power source of this magnitude. Keep in mind that the bank of 16 bat-
teries will store unused energy on the sunny days for times when there 
is cloud cover or the panels are covered with snow. The system includes 
a solar charger and a 6 kW inverter to convert the dc to ac for use with 
appliances requiring 120V ac. During a recent visit, the owners revealed 
that the system works so well that they only turn on the generator about 
once a month for 3–5 hours, which usually occurs when a few rainy days 
coincide with a large group that uses the lodge late into the evening. They 
figure that they save about $3500 a year on diesel and maintenance costs. 
Most importantly the solar system permits the use of the kitchen, laundry, 
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and lights later in the evening, whereas with the generator as their sole 
source of power the supply of electricity normally ended at 10 p.m.

The basic system operates as shown in Fig. 2.18(b). The solar panels 
(1) convert sunlight into dc electric power. An inverter (2) converts the dc 
power into the standard ac power for use in the home (6). The batteries 
(3) can store energy from the sun for use if there is insufficient sunlight 
or a power failure. At night or on dark days when the demand exceeds 
the solar panel and battery supply, the generators (4) can provide power 
to the appliances (6) through a special hookup in the electrical panel (5).

(a)

[(a) Courtesy of Red River Camps]

FIG. 2.18
Red River Camps in Portage, Maine: (a) twelve 265 W panels on roof;  

(b) system operations.

(b)
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There is no question that the use of solar panels is growing by leaps 
and bounds in recent years as manufacturers provide panels that meet 
the physical requirements of a wide range of applications. Consider the 
RV vehicle pictured in Fig. 2.19 designed to permit travel to all points of 
the globe. It has three panels of 240 W each to provide a total of 720 W 
of power that can be stored in a battery system with a 510 Ah capacity. 
The panels are obviously of a durability and strength to permit traveling 
in some of the harshest conditions.

Generators
The dc generator is quite different from the battery, both in construction 
(Fig. 2.20) and in mode of operation. When the shaft of the generator is 
rotating at the nameplate speed due to the applied torque of some external 
source of mechanical power, a voltage of rated value appears across the 
external terminals. The terminal voltage and power-handling capabilities 
of the dc generator are typically higher than those of most batteries, and 
its lifetime is determined only by its construction. Commercially used dc 
generators typically have an output voltage of 120 V or 240 V. For the pur-
poses of this text, the same symbols are used for a battery and a generator.

Power Supplies
The dc supply encountered most frequently in the laboratory uses the 
rectification and filtering processes as its means toward obtaining a 
steady dc voltage. Both processes will be covered in detail in your basic 
electronics courses. In total, a time-varying voltage (such as ac voltage 
available from a home outlet) is converted to one of a fixed magnitude. 
A dc laboratory supply of this type is shown in Fig. 2.21.

Most dc laboratory supplies have a regulated, adjustable volt-
age output with three available terminals, as indicated horizontally at 
the bottom of Fig 2.21 and vertically in Fig 2.22(a). The symbol for 
ground or zero potential (the reference) is also shown in Fig. 2.22(a). 

(Virrage Images/Shutterstock)

FIG. 2.19
EarthRoamer XV-LT.

“Output”
voltage

Applied
torque

“Input”

120 V

FIG. 2.20
dc generator.

(Courtesy of B+K Precision.)

FIG. 2.21
A 0 V to 60 V, 0 to 1.5 A digital display  

dc power supply.
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If 10 V above ground potential are required, the connections are made 
as shown in Fig. 2.22(b). If 15 V below ground potential are required, 
the connections are made as shown in Fig. 2.22(c). If connections are 
as shown in Fig. 2.22(d), we say we have a “floating” voltage of 5 V 
since the reference level is not included. Seldom is the configuration 
in Fig. 2.22(d) used since it fails to protect the operator by providing a 
direct  low-resistance path to ground and to establish a common ground 
for the system. In any case, the positive and negative terminals must be 
part of any circuit configuration.

Fuel Cells
One of the most exciting developments in recent years has been the 
steadily rising interest in fuel cells as an alternative energy source. Fuel 
cells are now being used in small stationary power plants, transportation 
(buses), and a wide variety of applications where portability is a major 
factor, such as the space shuttle. A great deal of money is now being 
spent in an effort to design affordable fuel-cell vehicles.

Fuel cells have the distinct advantage of operating at efficiencies of 
70% to 80% rather than the typical 20% to 25% efficiency of current 
internal combustion engine of today’s automobiles. They also have few 
moving parts, produce little or no pollution, generate very little noise, 
and use fuels such as hydrogen and oxygen that are readily available. 
Fuel cells are considered primary cells (of the continuous-feed variety) 
because they cannot be recharged. They hold their characteristics as long 
as the fuel (hydrogen) and oxygen are supplied to the cell. The only 
by-products of the conversion process are small amounts of heat (which 
is often used elsewhere in the system design), water (which may also be 
reused), and negligible levels of some oxides, depending on the com-
ponents of the process. Overall, fuel cells are environmentally friendly.

The operation of the fuel cell is essentially opposite to that of the 
chemical process of electrolysis. Electrolysis is the process whereby 
electric current is passed through an electrolyte to break it down into its 
fundamental components. An electrolyte is any solution that will permit 
conduction through the movement of ions between adjoining electrodes. 
For instance, passing current through water results in a hydrogen gas by 
the cathode (negative terminal) and oxygen gas at the anode (positive 

(–15 V)

Gnd (0 V)

Jumper

15 V
15 V

Jumper

10 V

5 V

10 V

5 V

(+10 V)

(“Floating”)

(a)

(c)

(b)

(d)

FIG. 2.22
dc laboratory supply: (a) available terminals; (b) positive voltage with respect 

to (w.r.t.) ground; (c) negative voltage w.r.t. ground; (d) floating supply.

M02_BOYL0302_14_GE_C02.indd   72M02_BOYL0302_14_GE_C02.indd   72 28/02/23   11:44 AM28/02/23   11:44 AM



Voltage SourCeS | | | 73
e

I

V

terminal). In 1839, Sir William Grove believed this process could be  
reversed and demonstrated that the proper application of the hydrogen 
gas and oxygen results in a current through an applied load connected 
to the electrodes of the system. The first commercial unit was used in a 
tractor in 1959, followed by an energy pack in the 1965 Gemini Space 
program. In 1996, the first small power plant was designed, and today it 
is an important component of the shuttle program.

The basic components of a fuel cell are depicted in Fig. 2.23(a) with 
details of the construction in Fig.  2.23(b). Hydrogen gas (the fuel) is 
supplied to the system at a rate proportional to the current required by 
the load. At the opposite end of the cell, oxygen is supplied as needed. 
The net result is a flow of electrons through the load and a discharge of 
water with a release of some heat developed in the process. The amount 
of heat is minimal, although it can also be used as a component in the 
design to improve the efficiency of the cell. The water (very clean) can 
simply be discharged or used for other applications such as cooling in 
the overall application. If the source of hydrogen or oxygen is removed, 
the system breaks down. The flow diagram of the system is relatively 
simple, as shown in Fig. 2.23(a). In an actual cell, shown in Fig. 2.23(b), 
the hydrogen gas is applied to a porous electrode called the anode that 
is coated with a platinum catalyst. The catalyst on the anode serves to 
speed up the process of breaking down the hydrogen atom into positive 
hydrogen ions and free electrons. The electrolyte between the electrodes 
is a solution or membrane that permits the passage of positive hydro-
gen ions but not electrons. Facing this wall, the electrons choose to pass 
through the load and light up the bulb, while the positive hydrogen ions 
migrate toward the cathode. At the porous cathode (also coated with the 
catalyst), the incoming oxygen atoms combine with the arriving hydro-
gen ions and the electrons from the circuit to create water (H2O) and 
heat. The circuit is, therefore, complete. The electrons are generated and 
then absorbed. If the hydrogen supply is cut off, the source of electrons 
is shut down, and the system is no longer an operating fuel cell.

In some fuel cells, either a liquid or molten electrolyte membrane 
is used. Depending on which the system uses, the chemical reactions 
will change slightly but not dramatically from that described above. 

Anode

H2
(Hydrogen)

Electrolyte

Cathode

Water (H2O)
heat

O2 (Oxygen)

e–

e–

e–

H+

e–

H+

e–

H+

e–

H+

H+

e–

e–

e–

e–

O2

O2

O2

O2H+

e–

+–

(a) (b)

dc power

Hydrogen FUEL
CELL Oxygen

Water
and
heat

FIG. 2.23
Fuel cell (a) functional block diagram; (b) basic construction.
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The phosphoric acid fuel cell is a popular cell using a liquid electrolyte, 
while the PEM uses a polymer electrolyte membrane. The liquid or mol-
ten type is typically used in stationary power plants, while the membrane 
type is favored for vehicular use.

The output from a single fuel cell is a low-voltage, high-current dc 
output. Stacking the cells in series or parallel increases the output volt-
age or current level.

For a number of years buses, trucks, motorcycles, forklifts, and many 
other vehicles have been running on fuel-cell technology. However, it 
was not until the summer of 2008 that Honda offered the FCX Clarity 
automobile, the first to be available for consumer use. The basic com-
ponents of the vehicle are pointed out in Fig.  2.24. Basically, it is an 
electric car because there is no combustion and the source of power is 
the lithium batteries that are charged by the fuel cells. As long as oxygen 
and hydrogen are fed to the fuel cells, a dc voltage will be generated by 
the fuel cell to charge or maintain the voltage. This voltage is fed to an 
inverter, which in turn will provide the ac power for the drivetrain. Note 
in Fig. 2.24 that the vehicle also has the unique ability to capture braking 
energy and turn it into energy stored by a high-output battery for supple-
mental use. The fuel-cell car currently has a range of about 300 miles on 
a full hydrogen tank with fueling times as low as 3 minutes to match that 
of a typical gasoline tank. Of course, the most pleasing characteristic of 
the vehicle is that the only discharge is some residual water that can be 
used for cooling. In addition, sealed batteries will eventually deteriorate 
but fuel cells have a longer life because the “chemicals” (oxygen and 
hydrogen) are continually being replaced.

Hydrogen Storage Tank

Stores hydrogen gas 
compressed at extremely
high pressure to increase
driving rangePower Control Unit

Governs the flow of
electricity 

Electric Motor

Propels the vehicle much more
quietly, smoothly, and
efficiently than an internal
combustion engine and
requires less maintenance 

Fuel-Cell Stack 

Converts hydrogen gas
and oxygen into 
electricity to power the
electric motor 

High-Output Battery

Stores energy generated
from regenerative braking
and provides supplemental
power to the electric motor

(Courtesy of American Honda Motor Co. Inc.)

FIG. 2.24
Honda FCX Clarity fuel-cell automobile.

2.6 AMPERE-HOUR RATING
The most important piece of data for any battery (other than its voltage 
rating) is its ampere-hour (Ah) rating. You have probably noted in the 
photographs of batteries in this chapter that both the voltage and the 
 ampere-hour rating have been provided for each battery.
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   The ampere-hour (Ah) rating provides an indication of 
how long a battery of fixed voltage will be able to supply a 
particular current.  

 A battery with an ampere-hour rating of 100 will theoretically pro-
vide a current of 1 A for 100 hours, 10 A for 10 hours, or 100 A for 1 
hour. Quite obviously, the greater the current, the shorter is the time. An 
equation for determining the length of time a battery will supply a par-
ticular current is the following: 

   Life hours
ampere-hour  Ah  rating

amperes drawn  A
( )

( )

( )
=         ( 2. 11)  

    EXAMPLE   2. 5  How long will a 9 V transistor battery with an 
ampere-hour rating of 520 mAh provide a current of 20 mA? 

   Solution:        Eq.   ( 2. 11  ):  = = = 26 hLife 520 mAh
20 mA

520
20

h  

    EXAMPLE   2. 6  How long can a 1.5 V flashlight battery provide a 
current of 250 mA to light the bulb if the ampere-hour rating is 16 Ah? 

   Solution:        Eq.   ( 2. 11  ):  = =
×

=
−

64 hLife 16 Ah
250 mA

16
250 10

h  
3

2. 7     BATTERY LIFE FACTORS   
 The previous section made it clear that the life of a battery is directly related 
to the magnitude of the current drawn from the supply. However, there are 
factors that affect the given ampere-hour rating of a battery, so we may find 
that a battery with an ampere-hour rating of 100 can supply a current of 10 A 
for 10 hours but can supply a current of 100 A for only 20 minutes rather 
than the full 1 hour calculated using   Eq.   ( 2. 11  ). In other words, 

  the capacity of a battery (in ampere-hours) will change with 
change in current demand.  

 This is not to say that   Eq.   ( 2. 11  ) is totally invalid. It can always be used 
to gain some insight into how long a battery can supply a particular cur-
rent. However, be aware that there are factors that affect the  ampere-hour 
rating. Just as with most systems, including the human body, the more 
we demand, the shorter is the time that the output level can be main-
tained. This is clearly verified by the curves in     Fig.    2. 25   for the Eveready 
Energizer D cell. As the constant-current drain increased, the ampere-hour 
rating decreased from about 18 Ah at 25 mA to around 12 Ah at 300 mA. 

  Another factor that affects the ampere-hour rating is the temperature 
of the unit and the surrounding medium. In     Fig.    2. 26  , the capacity of the 
same battery plotted in   Fig.    2. 25   shows a peak value near the common 
room temperature of 68°F. At very cold temperatures and very warm 
temperatures, the capacity drops. Clearly, the ampere-hour rating will be 
provided at or near room temperature to give it a maximum value, but be 
aware that it will drop off with an increase or decrease in temperature. 
Most of us have noted that the battery in a car, radio, two-way radio, 
cellphone, flashlight, and so on seems to have less power in really cold 
weather. It would seem, then, that the battery capacity would increase 

   Life hour
ampere-hour  Ah  rating

amperes drawn  A
( )hour( )hours( )s

( )  A( )  Ah  ( )h  
( )  A( )  A

=         (            (            ( 
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with higher temperatures—which, however, is not always the case. In 
general, therefore,

the ampere-hour rating of a battery will decrease from 
the room-temperature level with very cold and very warm 
temperatures.

Another interesting factor that affects the performance of a battery is 
how long it is asked to supply a particular voltage at a continuous drain 
current. Note the curves in Fig. 2.27, where the terminal voltage dropped 
at each level of drain current as the time period increased. The lower the 
current drain, the longer it could supply the desired current. At 100 mA, 
it was limited to about 100 hours near the rated voltage, but at 25 mA, 
it did not drop below 1.2 V until about 500 hours had passed. That is an 
increase in time of 5:1, which is significant. The result is that

the terminal voltage of a battery will eventually drop (at 
any level of current drain) if the time period of continuous 
discharge is too long.

0 mA

10

20

Ah

25 100 200 300 400

Ampere-hour
rating

I (constant current drain)

18@25 mA
17@100 mA

15@200 mA

12@300 mA

9.5@400 mA

FIG. 2.25
Ampere-hour rating (capacity) versus drain current for an Energizer® D cell.

8F

10

20

Ah

0 10 20 30 40

15.5@328F

18@688F

50 60 70 80 90 130120110100

Freezing

Room
temperature
(688F)

–10

FIG. 2.26
Ampere-hour rating (capacity) versus temperature for an Energizer® D cell.
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FIG. 2.27
Terminal voltage versus discharge time for specific drain currents for an 

Energizer® D cell.

2.8 CONDUCTORS AND INSULATORS
Different wires placed across the same two battery terminals allow dif-
ferent amounts of charge to flow between the terminals. Many factors, 
such as the density, mobility, and stability characteristics of a material, 
account for these variations in charge flow. In general, however,

conductors are those materials that permit a generous flow 
of electrons with very little external force (voltage) applied.

In addition,

good conductors such as copper typically have only one 
electron in the valence (most distant from the nucleus) ring.

Since copper is used most frequently, it serves as the standard of 
comparison for the relative conductivity in Table 2.1. Note that alumi-
num, which has seen some commercial use, has only 61% of the conduc-
tivity level of copper. The choice of material must be weighed against 
the cost and weight factors, however.

Insulators are those materials that have very few free 
electrons and require a large applied potential (voltage) to 
establish a measurable current level.

A common use of insulating material is for covering current- 
carrying wire, which, if uninsulated, could cause dangerous side 
effects. Power line workers wear rubber gloves and stand on rubber 
mats as safety measures when working on high-voltage transmission 
lines. A few  different types of insulators and their applications appear 
in Fig. 2.28.

Be aware, however, that even the best insulator will break down (per-
mit charge to flow through it) if a sufficiently large potential (voltage) 
is applied across it. The breakdown strengths of some common insula-
tors are listed in Table 2.2. According to this table, for insulators with 
the same geometric shape, it would require =270/30 9 times as much 
potential to pass current through rubber as through air and approximately 
67 times as much voltage to pass current through mica as through air.

TABLE 2.1 
Relative conductivity of various materials.

Metal Relative Conductivity (%)

Silver 105
Copper 100
Gold 70.5
Aluminum 61
Tungsten 31.2
Nickel 22.1
Iron 14
Constantan 3.52
Nichrome 1.73
Calorite 1.44

TABLE 2.2 
Breakdown strength of some common 

insulators.

Material
Average Breakdown 
Strength (kV/cm)

Air 30
Porcelain 70
Oils 140
Bakelite® 150
Rubber 270
Paper (paraffin-coated) 500
Teflon® 600
Glass 900
Mica 2000
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2.9 SEMICONDUCTORS
Semiconductors are a specific group of elements that 
exhibit characteristics between those of insulators and 
those of conductors.

The prefix semi, included in the terminology, has the dictionary defini-
tion of half, partial, or between, as defined by its use. The entire electron-
ics industry is dependent on this class of materials since the electronic 
devices and integrated circuits (ICs) are constructed of semiconductor 
materials. Although silicon (Si) is the most extensively employed mate-
rial, germanium (Ge) and gallium arsenide (GaAs) are also used in many 
important high-speed electronic switching devices.

Semiconductor materials typically have four electrons in the 
outermost valence ring.

Semiconductors are further characterized as being photoconductive 
and having a negative temperature coefficient. Photoconductivity is a 
phenomenon in which the photons (small packages of energy) from inci-
dent light can increase the carrier density in the material and thereby 
the charge flow level. A negative temperature coefficient indicates that 
the resistance (a characteristic to be described in detail in the next chap-
ter) decreases with an increase in temperature (opposite to that of most 
conductors). A great deal more will be said about semiconductors in the 
chapters to follow and in your basic electronics courses.

2.10 AMMETERS AND VOLTMETERS
It is important to be able to measure the current and voltage levels of an 
operating electrical system to check its operation, isolate malfunctions, 
and investigate effects impossible to predict on paper. As the names 
imply, ammeters are used to measure current levels; voltmeters, the 
potential difference between two points. If the current levels are usually 
of the order of milliamperes, the instrument will typically be referred to 
as a milliammeter, and if the current levels are in the microampere range, 
as a microammeter. Similar statements can be made for voltage levels. 
Throughout the industry, voltage levels are measured more frequently 
than current levels, primarily because measurement of the later does not 
require that the network connections be disturbed.

(b) (c)(a)

FIG. 2.28
Various types of insulators and their applications. (a) Fi-Shock 
extender insulator; (b) Fi-Shock corner insulator; (c) Fi-Shock 

screw-in post insulator.
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The potential difference between two points can be measured by sim-
ply connecting the leads of the meter across the two points, as indicated 
in Fig. 2.29. An up-scale reading is obtained by placing the positive lead 
of the meter to the point of higher potential of the network and the com-
mon or negative lead to the point of lower potential. The reverse connec-
tion results in a negative reading or a below-zero indication.

Ammeters are connected as shown in Fig. 2.30. Since ammeters mea-
sure the rate of flow of charge, the meter must be placed in the network 
such that the charge flows through the meter. The only way this can be 
accomplished is to open the path in which the current is to be measured 
and place the meter between the two resulting terminals. For the config-
uration in Fig. 2.30, the voltage source lead ( )+  must be disconnected 
from the system and the ammeter inserted as shown. An up-scale read-
ing will be obtained if the polarities on the terminals of the ammeter are 
such that the current of the system enters the positive terminal.

The introduction of any meter into an electrical/electronics system 
raises a concern about whether the meter will affect the behavior of 
the system. This question and others will be examined in Chapters 5 
and 6 after additional terms and concepts have been introduced. For 
the moment, let it be said that since voltmeters and ammeters do have 
internal components, they will affect the network when introduced for 
measurement purposes. The design of each, however, is such that the 
impact is minimized.

There are instruments designed to measure just current or just volt-
age levels. However, the most common laboratory meters include the 
volt-ohm-milliammeter (VOM) and the digital multimeter (DMM), shown 
in Figs. 2.31 and 2.32, respectively. Both instruments measure voltage and 
current and a third quantity, resistance (introduced in the next chapter). 
The VOM uses an analog scale, which requires interpreting the position 
of a pointer on a continuous scale, while the DMM provides a display of 
numbers with decimal-point accuracy determined by the chosen scale.

The use of an analog continuous scale can take some practice, but 
 analog scales still appear so frequently that one must become adept at 
reading the scale correctly. The laboratory experience is probably the best 
opportunity to practice the reading of such a scale, but for the moment 

12 VE

V
+

FIG. 2.29
Voltmeter connection for an up-scale ( )+  

reading.

A
+

40 VE System

I

FIG. 2.30
Ammeter connection for an up-scale ( )+  

reading.

(Andrew Scheck/Fotolia)

FIG. 2.31
Volt-ohm-milliammeter 

(VOM) analog meter. (Courtesy of Fluke 
Corporation)

FIG. 2.32
Digital multimeter (DMM).
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let us try to interpret the reading of the VOM shown in Fig. 2.33. First, 
you will note that the pointer passes over a number of scales. If reading 
the resistance (Chapter 3) of a resistive element, the top scale is used. 
If the meter is set on ×R 1, the resistance should be read as indicated. 
If the meter is set on ×R 10,  the result must be increased by a factor 
of ten. Assuming ×R 1 for our current discussion, we must first notice 
that the resistance scale increases from the right to the left. The pointer 
appears to be right over the heavy bar between 2 and 5. Since there are 
three distinct regions between the numbers 2 and 5, the first bar to the 
left of 2 must signify 3 and the next bar 4 to complete the sequence from 
2 to 5. The needle is right over the bar representing 4 so the reading is 
obviously 4 ohms.

If the meter were set to read dc voltages, the band below the top resis-
tance scale must be used. Now this scale increases from left to right with 
250 V being the maximum voltage if the meter is set on ×V 1. For this 
scale the pointer is between 150 and 200 V. If we count the divisions 
between the two numbers, we find there are 10 divisions. If we divide the 
difference in voltage by the number of divisions, we obtain 50 V/10 div. 
or 5 V per division. Counting from 150 V up, we find the pointer is 
7.5 divisions above the 150 V level. The result is that the reading is at 

( )( )+ = + =150V 7.5 div. 5 V/div. 150 V 37.5 V 187.5 V. It is a 
bit of struggle to make a simple reading but this is the process one should 
be able to perform with a high degree of confidence. If ac (Chapter 13) 
voltages were being measured on the ×V 1 scale, then the red ac scale 
below the dc scale must be used. Again, the scale increases from left 
to right with the pointer between the 6- and 8-volt levels. Because the 
heavy bar between them must represent 7 V, the five divisions between 
7 and 8 V must have divisions of =1 V/5 div. 0.2 V/div. The pointer 
is very close to 2.5 divisions above 7 V, so the reading is approximately 

( )( )+ = + =7 V 2.5 div. 0.2 V/div. 7 V 0.5 V 7.5 V. Now in this 
case the pointer is really just to the left of the halfway point between the 
two bars, so the reading is closer to 7.45 V.

With all the extra effort required to read analog scales, why do we use 
them at all if we have digital meters that can read to hundredths-place 
accuracy? We do so because there are times when analog meters have 
characteristics that make them more efficient and safer to use. Consider 
the airline pilot and the huge dashboard in the cockpit with a range of 
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FIG. 2.33
Reading an analog scale.
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meters to monitor. The majority of the meters are analog and not digital. 
The reason for this choice is over time the mind can scan a range of 
meters and establish the correct position of each pointer in memory and, 
if one seems out of whack, it can be quickly identified. This task is not 
so easy if facing you are 20 digital meters with all kinds of numbers. In 
addition a swinging or bouncing pointer can quickly be identified. The 
pointer also quickly shows whether the undesirable movement is up or 
down—again not so easy when you have to remember the numbers asso-
ciated with a stable condition.

As indicated above, the laboratory experience will provide practice in 
the use of both types of instruments.

2.11 APPLICATIONS
Throughout the text, Applications sections such as this one have 
been included to permit a further investigation of terms, quantities, 
or systems introduced in the chapter. The primary purpose of these 
Applications is to establish a link between the theoretical concepts of 
the text and the real, practical world. Although the majority of com-
ponents that appear in a system may not have been introduced (and, 
in fact, some components will not be examined until more advanced 
studies), the topics were chosen very carefully and should be quite 
interesting to a new student of the subject matter. Sufficient comment 
is included to provide a surface understanding of the role of each part 
of the system, with the understanding that the details will come at a 
later date. Since exercises on the subject matter of the Applications do 
not appear at the end of the chapter, the content is designed not to chal-
lenge the student but rather to stimulate his or her interest and answer 
some basic questions such as how the system looks inside, what role 
specific elements play in the system, and, of course, how the system 
works. In essence, therefore, each Applications section provides an 
opportunity to begin to establish a practical background beyond simply 
the content of the chapter. Do not be concerned if you do not under-
stand every detail of each application. Understanding will come with 
time and experience. For now, take what you can from the examples 
and then proceed with the material.

Flashlight
Although the flashlight uses one of the simplest of electrical circuits, 
a few fundamentals about its operation do carry over to more sophisti-
cated systems. First, and quite obviously, it is a dc system with a lifetime 
totally dependent on the state of the batteries and bulb. Unless it is the 
rechargeable type, each time you use it, you take some of the life out of 
it. For many hours, the brightness will not diminish noticeably. Then, 
however, as it reaches the end of its ampere-hour capacity, the light 
becomes dimmer at an increasingly rapid rate (almost exponentially). 
The standard two-battery flashlight is shown in Fig. 2.34(a) with its elec-
trical schematic in Fig. 2.34(b). Each 1.5 V battery has an ampere-hour 
rating of about 18 as indicated in Fig. 2.13. The single-contact miniature 
flange-base bulb is rated at 2.5 V and 300 mA with good brightness 
and a lifetime of about 30 hours. Thirty hours may not seem like a long 
lifetime, but you have to consider how long you usually use a flashlight 
on each occasion. If we assume a 300 mA drain from the battery for the 
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bulb when in use, the lifetime of the battery, by Eq. (2.11), is about 60 
hours. Comparing the 60-hour lifetime of the battery to the 30-hour life 
expectancy of the bulb suggests that we normally have to replace bulbs 
more frequently than batteries.

However, most of us have experienced the opposite effect. We can 
change batteries two or three times before we need to replace the bulb. 
This is simply one example of the fact that one cannot be guided solely 
by the specifications of each component of an electrical design. The 
operating conditions, terminal characteristics, and details about the 
actual response of the system for short and long periods of time must 
be considered. As mentioned earlier, the battery loses some of its power 
each time it is used. Although the terminal voltage may not change much 
at first, its ability to provide the same level of current drops with each 
usage. Further, batteries slowly discharge due to “leakage currents” even 
if the switch is not on. The air surrounding the battery is not “clean” 
in the sense that moisture and other elements in the air can provide a 
conduction path for leakage currents through the air through the surface 
of the battery itself, or through other nearby surfaces, and the battery 
eventually discharges. How often have we left a flashlight with new bat-
teries in a car for a long period of time only to find the light very dim or 
the batteries dead when we need the flashlight the most? An additional 
problem is acid leaks that appear as brown stains or corrosion on the cas-
ing of the battery. These leaks also affect the life of the battery. Further, 
when the flashlight is turned on, there is an initial surge in current that 
drains the battery more than continuous use for a period of time. In other 
words, continually turning the flashlight on and off has a very detrimen-
tal effect on its life. We must also realize that the 30 hour rating of the 
bulb is for continuous use, that is, 300 mA flowing through the bulb for 
a continuous 30 hours. Certainly, the filament in the bulb and the bulb 
itself will get hotter with time, and this heat has a detrimental effect on 
the filament wire. When the flashlight is turned on and off, it gives the 
bulb a chance to cool down and regain its normal characteristics, thereby 
avoiding any real damage. Therefore, with normal use we can expect the 
bulb to last longer than the 30 hours specified for continuous use.

Even though the bulb is rated for 2.5 V operation, it would appear 
that the two batteries would result in an applied voltage of 3 V, which 
suggests poor operating conditions. However, a bulb rated at 2.5 V can 

(b)

3 V

Bulb

Switch

Ibulb

Bulb

Reflector

Metal
support

1.5 V
D battery

1.5 V
D battery

Spring

Sliding
switch

Contact

1.5 V

1.5 V

(a)

FIG. 2.34
(a) Eveready® D cell flashlight; (b) electrical schematic of flashlight of part (a).
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easily handle 2.5 V to 3 V. In addition, as was pointed out in this chapter, 
the terminal voltage drops with the current demand and usage. Under 
normal operating conditions, a 1.5 V battery is considered to be in good 
condition if the loaded terminal voltage is 1.3 V to 1.5 V. When it drops 
to the range from 1 V to 1.1 V, it is weak, and when it drops to the range 
from 0.8 V to 0.9 V, it has lost its effectiveness.

Be aware that the total supplied voltage of 3 V will be obtained only if 
the batteries are connected as shown in Fig. 2.34(b). Accidentally plac-
ing the two positive terminals together will result in a total voltage of  
0 V, and the bulb will not light at all. For the vast majority of systems with 
more than one battery, the positive terminal of one battery will  always 
be connected to the negative terminal of another. For all low-voltage 
batteries, the end with the nipple is the positive terminal, and the end 
with the flat end is the negative terminal. In addition, the flat or nega-
tive end of a battery is always connected to the battery casing with the 
helical coil to keep the batteries in place. The positive end of the battery 
is always connected to a flat terminal connection or the element to be 
operated. If you look carefully at the bulb, you will find that the nipple 
connected to the positive end of the battery is insulated from the jacket 
around the base of the bulb. The jacket is the second terminal of the bat-
tery used to complete the circuit through the on/off switch.

If a flashlight fails to operate properly, the first thing to check is the 
state of the batteries. It is best to replace both batteries at once. A sys-
tem with one good battery and one nearing the end of its life will result 
in pressure on the good battery to supply the current demand, and, in 
fact, the bad battery will actually be a drain on the good battery. Next, 
check the condition of the bulb by checking the filament to see whether 
it has opened at some point because a long-term, continuous current 
level occurred or because the flashlight was dropped. If the battery and 
bulb seem to be in good shape, the next area of concern is the contacts 
between the positive terminal and the bulb and the switch. Cleaning both 
with emery cloth often eliminates this problem.

12 V Car Battery Charger
Battery chargers are a common household piece of equipment used to 
charge everything from small flashlight batteries to heavy-duty, marine, 
lead–acid batteries. Since all are plugged into a 120 V ac outlet such 
as found in the home, the basic construction of each is quite similar. 
In every charging system, a transformer (Chapter 23) must be included 
to reduce the ac voltage to a level appropriate for the charging dc level 
to be established. A diode (also called rectifier) arrangement must be 
included to convert the ac voltage, which varies with time, to an average 
dc level such as described in this chapter. Diodes and/or rectifiers will be 
discussed in detail in your first electronics course. Some dc chargers also 
include a regulator to provide an improved dc level (one that varies less 
with time or load). The car battery charger, one of the most common, is 
described here.

The outside appearance and the internal construction of a DieHard 
2 A/10 A AMP Manual Battery Charger are provided in Fig. 2.35. Note in  
Fig. 2.35(b) that the transformer (as in most chargers) takes up most of 
the internal space. The additional air space and the holes in the casing 
are there to ensure an outlet for the heat that will develop due to the 
resulting current levels.
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The schematic in Fig. 2.36 includes all the basic components of the 
charger. Note first that the 120 V ac from the outlet are applied directly 
across the primary of the transformer. The charging rate of 2 A or 10 A is 
determined by the switch, which simply controls how many turns of the 
primary will be in the circuit for the chosen charging rate. If the battery 
is charging at the 2 A level, the full primary will be in the circuit, and the 
ratio of the turns in the primary to the turns in the secondary will be a 
maximum. If it is charging at the 10 A level, fewer turns of the primary 
are in the circuit, and the ratio drops. When you study transformers, you 
will find that the voltage at the primary and secondary is directly related 
to the turns ratio. If the ratio from primary to secondary drops, the volt-
age drops also. The reverse effect occurs if the turns on the secondary 
exceed those on the primary.

The general appearance of the waveforms appears in Fig.  2.36 for 
the 10 A charging level. Note that so far, the ac voltage has the same 
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with diode 
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FIG. 2.36
Electrical schematic for the battery charger of Fig. 2.35.

(a)

(Don Johnson Photo)

FIG. 2.35

Battery charger: (a) external appearance; (b) internal construction.
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wave shape across the primary and secondary. The only difference is in 
the peak value of the waveforms. Now the diodes take over and convert 
the ac waveform, which has zero average value (the waveform above 
equals the waveform below), to one that has an average value (all above 
the axis) as shown in the same figure. For the moment simply recog-
nize that diodes are semiconductor electronic devices that permit only 
conventional current to flow through them in the direction indicated by 
the arrow in the symbol. Even though the waveform resulting from the 
diode action has a pulsing appearance with a peak value of about 18 V, it 
charges the 12 V battery whenever its voltage is greater than that of the 
battery, as shown by the shaded area. Below the 12 V level, the battery 
cannot discharge back into the charging network because the diodes per-
mit current flow in only one direction.

In particular, note in Fig. 2.35(b) the large plate that carries the cur-
rent from the rectifier (diode) configuration to the positive terminal of 
the battery. Its primary purpose is to provide a heat sink (a place for the 
heat to be distributed to the surrounding air, such as a piece of aluminum 
with fins screwed to the diode) for the diode configuration. Otherwise, 
the diodes could eventually melt down and self-destruct due to the result-
ing high current levels. Each component of Fig. 2.36 has been carefully 
labeled in Fig. 2.35(b) for reference.

When current is first applied to a battery at the 10 A charge rate, the 
current demand as indicated by the meter on the face of the instrument 
may rise to 11 A or almost 12 A. However, the level of current decreases 
as the battery charges until it drops to a level of 2 A or 3 A. For units such 
as this that do not have an automatic shutoff, it is important to disconnect 
the charger when the current drops to the fully charged level; otherwise, 
the battery becomes overcharged and may be damaged. A battery that is 
at its 50% level can take as long as 10 hours to charge, so don’t expect it 
to be a 10-minute operation. In addition, if a battery is in very bad shape 
with a lower-than-normal voltage, the initial charging current may be too 
high for the design. To protect against such situations, the circuit breaker 
opens and stops the charging process. Because of the high current levels, 
it is important that the directions provided with the charger be carefully 
read and applied.

The 50 A option on the face of the charger is for starting situations. 
This option can be used for limited periods of time if the battery voltage 
is too low. It can only be used for 10-second periods spaced by 3-minute 
periods for cooldown of the charger and battery.

Answering Machines/Phones dc Supply
A wide variety of systems in the home and office receive their dc 
 operating voltage from an ac/dc conversion system plugged right into a 
120 V ac outlet. Laptop computers, answering machines/phones, radios, 
clocks, cellular phones, CD players, and so on, all receive their dc power 
from a packaged system such as shown in Fig.  2.37. The conversion 
from ac to dc occurs within the unit, which is plugged directly into the 
outlet. The dc voltage is available at the end of the long wire, which is 
designed to be plugged into the operating unit. As small as the unit may 
be, it contains basically the same components as in the battery charger 
in Fig. 2.35.

In Fig. 2.38, you can see the transformer used to cut the voltage down 
to appropriate levels (again the largest component of the system). Note 
that two diodes establish a dc level, and a capacitive filter (Chapter 10) 
is added to smooth out the dc voltage as shown. The system can be 

FIG. 2.37
Answering machine/phone  

9 V dc supply.
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relatively small because the operating current levels are quite small, 
 permitting the use of thin wires to construct the transformer and limit its 
size. The lower currents also reduce the concerns about heating effects, 
permitting a small housing structure. The unit in Fig. 2.38, rated at 9 V 
at 200 mA, is commonly used to provide power to answering machines/
phones. Further smoothing of the dc voltage is accomplished by a reg-
ulator built into the receiving unit. Its placement in the receiving unit 
reduces the possibility of picking up noise and oscillations along the 
long wire from the conversion unit to the operating unit, and it ensures 
that the full rated voltage is available at the unit itself, not a lesser value 
due to losses along the line.

Transformer

Capacitor

Diodes (2)

120 V ac plug

9 V dc output

FIG. 2.38
Internal construction of the 9 V dc 

supply in Fig. 2.37.

1 C 2 C

Q1 Q2r

FIG. 2.39
Problem 2.

8   C 40   C

Q1 Q2r

mm

FIG. 2.40
Problem 3.

PROBLEMS

SECTION 2.2 Atoms and Their Structure

 1. a. The numbers of orbiting electrons in aluminum and sil-
ver are 13 and 47, respectively. Draw the electronic con-
figuration for each, and discuss briefly why each is a 
good conductor.

b. Using the Internet, find the atomic structure of gold and 
explain why it is an excellent conductor of electricity.

 2. Find the force of attraction in newtons between the charges 
Q1  and Q2  in Fig. 2.39 when
a. =r 1 m
b. =r 3 m
c. =r 10 m
d. Did the force drop off quickly with an increase in  

distance?

 *4. a. Plot the force of attraction (in newtons) versus separa-
tion (in inches) between two unlike charges of µ2  C. 
Use a range of 1 in. to 10 in. in 1 in. increments. Com-
ment on the shape of the curve. Is it linear or  nonlinear? 
What does it tell you about plotting a function whose 
magnitude is affected by a squared term in the denomi-
nator of the equation?

b. Using the plot of part (a), find the force of attraction at a 
2.5 in. separation.

c. Calculate the force of attraction with a 2.5 in. separation 
and compare with the result of part (b).

 *5. For two similar charges the force F1 exists for a separation 
of r meters. If the distance is increased to 2r, find the new 
level of force F2 in terms of the original force and the  
distance involved.

 *6. Determine the distance between two charges of µ30  C  if 
the force between the two charges is ×4.5 10  N4 .

 *7. Two charged bodies Q1  and Q ,2 when separated by a dis-
tance of 2 m, experience a force of repulsion equal to 1.8 N.
a. What will the force of repulsion be when they are 10 m 

apart?
b. If the ratio =Q Q/ 1/21 2 , find Q1  and Q2  ( =r 10 m ).

 *3. Find the force of repulsion in newtons between Q1  and Q2  
in Fig. 2.40 when
a. =r 1 ft
b. =r 10 ft
c. =r 100 yd
d. Comment on the change in magnitude of the force as the 

distance between the charges was dramatically increased.
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SECTION 2.6 Ampere-Hour Rating

 26. What current will a battery with an Ah rating of  
120 theoretically provide for 10 h?

 27. What is the Ah rating of a battery that can provide 0.64 A 
for 80 h?

 28. For how many hours will a battery with an Ah rating of  
72 theoretically provide a current of 1.80 A?

 29. A standard 12 V car battery has an ampere-hour rating of  
45 Ah, whereas a heavy-duty battery has a rating of 75 Ah. 
How would you compare the energy levels of each and the 
available current for starting purposes?

 30. At what current drain does the ampere-hour rating of the 
Energizer D Cell of Fig. 2.25 drop to 75% of its value at 25 
mA?

 31. What is the percentage loss in ampere-hour rating from 
room temperature to freezing for the Energizer D Cell of 
Fig. 2.26?

 32. Using the graph of Fig. 2.27, how much longer can you 
maintain 1.2 V at a discharge rate of 25 mA compared to 
discharging at 100 mA?

 *33. A portable television using a 12 V, 4 Ah rechargeable  
battery can operate for a period of about 8 h. What is the 
average current drawn during this period? What is the 
energy expended by the battery in joules?

SECTION 2.8 Conductors and Insulators

 34. Discuss two properties of the atomic structure of copper 
that make it a good conductor.

 35. Explain the terms insulator and breakdown strength.

 36. List three uses of insulators not mentioned in Section 2.8.

 37. a. Using Table 2.2, determine the level of applied voltage 
necessary to establish conduction through 1/2 in. of air.

b. Repeat part (a) for 1/2 in. of rubber.
c. Compare the results of parts (a) and (b).

SECTION 2.9 Semiconductors

 38. What is a semiconductor? How does it compare with a con-
ductor and an insulator?

 39. Consult a semiconductor electronics text and note the 
extensive use of germanium and silicon semiconductor 
materials. Review the characteristics of each material.

SECTION 2.10 Ammeters and Voltmeters

 40. What are the significant differences in the way ammeters 
and voltmeters are connected?

 41. Compare analog and digital scales:
a. Which are you more comfortable with? Why?
b. Which can usually provide a higher degree of accuracy?
c.  Can you think of any advantages of the analog scale 

over a digital scale? Be aware that the majority of scales 
in a plane’s cockpit or in the control room of major 
power plants are analog.

d. Do you believe it is necessary to become proficient in 
reading analog scales? Why?

SECTION 2.3 Voltage

 8. What is the voltage between two points if 3.4 J of energy are 
required to move 12 μC between the two points?

 9. If the potential difference between two points is 50 V, how 
much energy is expended to bring 4 mC from one point to 
the other?

  10. Find the charge in coulombs that requires µ400  J  of energy 
to be moved through a potential difference of 40 mV.

 11. How much charge passes through a radio battery of 9 V if 
the energy expended is 620 mJ?

 *12. a. How much energy in electron volts is required to move 
1 trillion (1 million million) electrons through a poten-
tial difference of 40 V?

b. How many joules of energy does the result of part (a) 
represent?

c. Compare results (a) and (b). What can you say about the 
use of joules and electron volts as a unit of measure. 
Under what conditions should they be applied?

SECTION 2.4 Current

   13. Find the current in amperes if 96 mC of charge pass through 
a wire in 8.4 s.

   14. If 600 C of charge pass through a wire in 4 min, find the 
current in amperes.

   15. If a current of 40 mA exists for 1.2 min, how many cou-
lombs of charge have passed through the wire?

   16. How many coulombs of charge pass through a lamp in 1.2 
min if the current is constant at 250 mA?

   17. If the current in a conductor is constant at 2 mA, how much 
time is required for 6 mC to pass through the conductor?

   18. If × +21.847 10 18 electrons pass through a wire in 12 s, 
find the current.

   19. How many electrons pass through a conductor in 5 min and 
30 s if the current is 4 mA?

   20. Will a fuse rated at 1 A “blow” if 86 C pass through it in  
1.2 min?

 *21. If × +0.92 10 16  electrons pass through a wire in 50 ms, 
find the current.

 *22. Which would you prefer?
a. A penny for every electron that passes through a wire in 

µ0.01  s  at a current of 2 mA, or
b. A dollar for every electron that passes through a wire in 

1.5 ns if the current is µ100  A .

  *23. If a conductor with a current of 300 mA passing through it 
converts 60 J of electrical energy into heat in 40 s, what is 
the potential drop across the conductor?

 *24. Charge is flowing through a conductor at the rate of 420 C/
min. If 742 J of electrical energy are converted to heat in  
30 s, what is the potential drop across the conductor?

 *25. The potential difference between two points in an electric 
circuit is 24 V. If 0.8 J of energy were dissipated in a 
period of 6 ms, what would the current be between the two 
points?
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Free electron An electron unassociated with any particular 
atom, relatively free to move through a crystal lattice structure 
under the influence of external forces.

Fuel cell A nonpolluting source of energy that can establish cur-
rent through a load by simply applying the correct levels of 
hydrogen and oxygen.

Insulators Materials in which a very high voltage must be 
applied to produce any measurable current flow.

Neutron The particle having no electrical charge found in the 
nucleus of the atom.

Nucleus The structural center of an atom that contains both pro-
tons and neutrons.

Positive ion An atom having a net positive charge due to the loss 
of one of its negatively charged electrons.

Potential difference The algebraic difference in potential (or 
voltage) between two points in an electrical system.

Potential energy The energy that a mass possesses by virtue of 
its position.

 Primary cell Sources of voltage that cannot be recharged.
Proton The particle of positive polarity found in the nucleus of 

an atom.
Rectification The process by which an ac signal is converted to 

one that has an average dc level.
Secondary cell Sources of voltage that can be recharged.
Semiconductor A material having a conductance value between 

that of an insulator and that of a conductor. Of significant 
importance in the manufacture of electronic devices.

Solar cell Sources of voltage available through the conversion of 
light energy (photons) into electrical energy.

Specific gravity The ratio of the weight of a given volume of a 
substance to the weight of an equal volume of water at 4°C.

Volt (V) The unit of measurement applied to the difference in 
potential between two points. If 1 joule of energy is required 
to move 1 coulomb of charge between two points, the differ-
ence in potential is said to be 1 volt.

Voltage The term applied to the difference in potential between 
two points as established by a separation of opposite charges.

Voltmeter An instrument designed to read the voltage across an 
element or between any two points in a network.

GLOSSARY

Ammeter An instrument designed to read the current through 
elements in series with the meter.

Ampere (A) The SI unit of measurement applied to the flow of 
charge through a conductor.

Ampere-hour (Ah) rating The rating applied to a source of 
energy that will reveal how long a particular level of current 
can be drawn from that source.

Cell A fundamental source of electrical energy developed 
through the conversion of chemical or solar energy.

Conductors Materials that permit a generous flow of electrons 
with very little voltage applied.

Conventional flow The movement of charge through a conduc-
tor defined by the positive charge.

Copper A material possessing physical properties that make it 
particularly useful as a conductor of electricity.

Coulomb (C) The fundamental SI unit of measure for charge. It 
is equal to the charge carried by 6.242 × 1018 electrons.

Coulomb’s law An equation defining the force of attraction or 
repulsion between two charges.

Current The flow of charge resulting from the application of a dif-
ference in potential between two points in an electrical system.

dc current source A source that will provide a fixed current 
level even though the load to which it is applied may cause its 
terminal voltage to change.

dc generator A source of dc voltage available through the turn-
ing of the shaft of the device by some external means.

Direct current (dc) Current having a single direction (unidirec-
tional) and a fixed magnitude over time.

Electrolysis The process of passing a current through an electro-
lyte to break it down into its fundamental components.

Electrolytes The contact element and the source of ions between 
the electrodes of the battery.

Electron The particle with negative polarity that orbits the 
nucleus of an atom.

Electron flow The movement of charge through a conductor 
defined by the negative charge.

Electron volt A unit of energy defined by the movement of an 
electron through a potential difference of one volt.
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 Resistance

 3.1 INTRODUCTION
In the previous chapter, we found that placing a voltage across the simplest of circuits results 
in a flow of charge through the circuit. The question remains, however, What determines the 
level of current that results when a particular voltage is applied? Why is the current heavier 
in some circuits than in others? The answers lie in the fact that there is an opposition to the 
flow of charge in the system that depends on the components of the circuit. This opposition 
to the flow of charge through an electrical circuit, called resistance, has the units of ohms 
and uses the Greek letter omega ( )Ω  as its symbol. The graphic symbol for resistance, which 
resembles the cutting edge of a saw, is provided in Fig. 3.1.

•  Become familiar with the parameters that 
determine the resistance of an element and be able 
to calculate the resistance from the given 
dimensions and material characteristics.

• Understand the effects of temperature on the 
resistance of a material and how to calculate the 
change in resistance with temperature.

• Develop some understanding of superconductors 
and how they can affect future development in the 
industry.

• Become familiar with the broad range of 
commercially available resistors and how to read 
the value of each from the color code or labeling.

• Become aware of a variety of elements such as 
thermistors, photoconductive cells, and varistors 
and how their terminal resistance is controlled.

 Objectives

3 

R

G

R

FIG. 3.1 
Resistance symbol and notation.

This opposition, due primarily to collisions and friction between the free electrons and 
other electrons, ions, and atoms in the path of motion, converts the supplied electrical 
energy into heat that raises the temperature of the electrical component and surrounding 
medium. The heat you feel from an electrical heater is simply due to current passing 
through a  high-resistance material.

Each material with its unique atomic structure reacts differently to pressures to establish 
current through its core. Conductors that permit a generous flow of charge with little external 
pressure have low resistance levels, while insulators have high resistance characteristics.
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3.2 RESISTANCE: CIRCULAR WIRES
The resistance of any material is due primarily to four factors:

1. Material
2.  Length
3. Cross-sectional area
4. Temperature of the material

As noted in Section  3.1, the atomic structure determines how eas-
ily a free electron will pass through a material. The longer the path 
through which the free electron must pass, the greater is the resistance 
factor. Free electrons pass more easily through conductors with larger 
cross-sectional areas. In addition, the higher the temperature of the con-
ductive materials, the greater is the internal vibration and motion of the 
components that make up the atomic structure of the wire, and the more 
difficult it is for the free electrons to find a path through the material.

The first three elements are related by the following basic equation 
for resistance:

TCM- ft at 20 Cρ = Ω = °

 ρ=R l
A

 =l feet  (3.1)

( )=A area in circular mils CM

with each component of the equation defined by Fig. 3.2.
The material is identified by a factor called the resistivity, which uses 

the Greek letter rho ρ( ) as its symbol and is measured in ΩCM- ft. Its 
value at a temperature of °20 C room temperature 68 F( )= °  is pro-
vided in Table 3.1 for a variety of common materials. Since the larger 
the resistivity, the greater is the resistance to setting up a flow of charge, 
it appears as a multiplying factor in Eq. (3.1); that is, it appears in the 
numerator of the equation. The effect of higher and lower temperatures 
is considered in Section 3.4.

It is important to realize at this point that since the 
resistivity is provided at room temperature, Eq. (3.1) is 
applicable only at that temperature.

Since the resistivity is in the numerator of Eq. (3.1),

 the higher the resistivity, the greater is the resistance of a 
conductor

as shown for two conductors of the same length in Fig. 3.3(a).
Further,

T (8C)
A

Material ( )

l

r

FIG. 3.2 
Factors affecting the resistance of a conductor.

TABLE 3.1 
Resistivity ρ( ) of various materials.

Material CM- ft 20 C@ρ Ω °( )

Silver 9.9
Copper 10.37
Gold 14.7
Aluminum 17.0
Tungsten 33.0
Nickel 47.0
Iron 74.0
Constantan 295.0
Nichrome 600.0
Calorite 720.0
Carbon 21,000.0

R 1 Copper

R 2 Iron

R 1 Copper

R 2 Copper

R 1 Copper

R 2 Copper

(b)

R2 > R1

l1>

R2 > R1

(c)(a)

R2 > R1

12 >l2 A2>A1r r

FIG. 3.3 
Cases in which R R .2 1>  For each case, all remaining parameters that control the 

resistance level are the same.
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the longer the conductor, the greater is the resistance

since the length also appears in the numerator of Eq. (3.1). Note 
Fig. 3.3(b).

Finally,

the greater the area of a conductor, the less is the resistance

because the area appears in the denominator of Eq. (3.1). Note Fig. 3.3(c).

Circular Mils (CM)

In Eq. (3.1), the area is measured in a quantity called circular mils 
(CM). It is the quantity used in most commercial wire tables, and thus 
it needs to be carefully defined. The mil is a unit of measurement for 
length and is related to the inch by

1 mil 1
1000

in.=

or   1000 mils 1 in.=

In general, therefore, the mil is a very small unit of measurement for 
length. There are 1000 mils in an inch, or 1 mil is only 1/1000 of an inch. 
It is a length that is not visible with the naked eye, although it can be 
measured with special instrumentation. The phrase milling used in steel 
factories is derived from the fact that a few mils of material are often 
removed by heavy machinery such as a lathe, and the thickness of steel 
is usually measured in mils.

By definition,

a wire with a diameter of 1 mil has an area of 1 CM

as shown in Fig. 3.4.
An interesting result of such a definition is that the area of a circular 

wire in circular mils can be defined by the following equation:

 ( )=A dCM mils
2  (3.2)

Verification of this equation appears in Fig. 3.5, which shows that a wire 
with a diameter of 2 mils has a total area of 4 CM, and a wire with a 
diameter of 3 mils has a total area of 9 CM.

Remember, to compute the area of a wire in circular mils when the 
diameter is given in inches, first convert the diameter to mils by simply 
writing the diameter in decimal form and moving the decimal point three 
places to the right. For example,

= =1
8

in. 0.125 in. 125 mils
3 places

Then the area is determined by

( )( )= = =A d 15 625 CM125 mils ,CM mils
2 2

Sometimes when you are working with conductors that are not circu-
lar, you will need to convert square mils to circular mils, and vice versa. 
Applying the basic equation for the area of a circle and substituting a 
diameter of 1 mil results in 

                 by definition
π π π( )= = = ≡A d

4 4
1 mil

4
sq mils 1 CM

2 2

from which we can conclude the following:

1 mil

1 circular mil (CM)1 square mil

FIG. 3.4 
Defining the circular mil (CM).

A = (2 mils)2 = 4 CM

1 2
3

4
3

A = (3 mils)2 = 9 CM

21

4

5

7 8

6 9

d = 2 mils d = 3 mils

FIG. 3.5 
Verification of Eq. (3.2): milsA dCM

2( )=
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 π=1 CM
4

sq mils  (3.3)

or

 
π

=1 sq mil 4 CM  (3.4)

EXAMPLE 3.1 What is the resistance of a 100 ft length of copper 
wire with a diameter of 0.020 in. at °20 C?

Solution:

ρ = Ω =10.37 CM-
ft

and 0.020 in. 20 mils

( )( )= = =A d 20 mils 400 CMCM mils
2 2

ρ
( )( )

= =
Ω

R l
A

10.37 CM- ft 100 ft
400 CM

=R 2 59 Ω.

EXAMPLE 3.2 An undetermined number of feet of wire have been 
used from the ′500  spool of wire in Fig. 3.6. Find the length of the remain-
ing copper wire if the diameter is 1/16 in. and the resistance is Ω0.8 .

Solution:

A d

R l
A

l RA

l 301 35 ft

10.37 CM- ft and 1
16

in. 0.0625 in. 62.5 mils

62.5 mils 3906.25 CM

0.8 3906.25 CM

10.37 CM-
ft

3125
10.37

.

CM mils
2 2

ρ

ρ
ρ

( )

( )( )

( )

= Ω = =

= = =

= ⇒ = =
Ω

Ω
=

=

EXAMPLE 3.3 What is the resistance of a copper bus-bar, as used in 
the power distribution panel of a high-rise office building, with the 
dimensions indicated in Fig. 3.7?

Solution:

π

( )( )

=

=

= = ×

= ×










= ×











A A

A

5.0 in. 5000 mils

1
2

in. 500 mils

5000 mils 500 mils 2.5 10 sq mils

2.5 10 sq mils
4 CM

1 sq mil

3.183 10 CM

CM
6

6

6

ρ
( )( )

= =
Ω

×
=

×
R l

A
10.37 CM- ft 3 ft

3.183 10 CM
31.11

3.183 106 6

= × −R 9 774 10 6 Ω.

( )Ω ≅ Ωquite small, 0.000009774 0

+

RT

(Don Johnson Photo)

FIG. 3.6 
Example 3.2.

3 ft

5 in.

1/2 in.

FIG. 3.7 
Example 3.3.
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You will learn in the following chapters that the lower the resistance 
of a conductor, the lower are the losses in conduction from the source 
to the load. Similarly, since resistivity is a major factor in determining 
the resistance of a conductor, the lower the resistivity, the lower is the 
resistance for the same-size conductor. It would appear from Table 3.1 
that silver, copper, gold, and aluminum would be the best conductors 
and the most common. In general, there are other factors, however, such 
as malleability (ability of a material to be shaped), ductility (ability of 
a material to be drawn into long, thin wires), temperature sensitivity, 
resistance to abuse, and, of course, cost, that must all be weighed when 
choosing a conductor for a particular application.

In general, copper is the most widely used material because it is quite 
malleable, ductile, and available; has good thermal characteristics; and 
is less expensive than silver or gold. It is certainly not cheap, however. 
Contractors always ensure that the copper wiring has been removed be-
fore leveling a building because of its salvage value. Aluminum was once 
used for general wiring because it is cheaper than copper, but its thermal 
characteristics created some difficulties. The heating due to current flow 
and the cooling that occurred when the circuit was turned off resulted 
in expansion and contraction of the aluminum wire to the point where 
connections eventually loosened, resulting in dangerous side effects. 
Aluminum is still used today, however, in areas such as integrated circuit 
manufacturing and in situations where the connections can be made se-
cure. Silver and gold are, of course, much more expensive than copper or 
aluminum, but the cost is justified for certain applications. Silver has ex-
cellent plating characteristics for surface preparations, and gold is used 
quite extensively in integrated circuits. Tungsten has a resistivity three 
times that of copper, but there are occasions when its physical character-
istics (durability, hardness) are the overriding considerations.

3.3 WIRE TABLES
The wire table was designed primarily to standardize the size of wire 
produced by manufacturers. As a result, the manufacturer has a larger 
market, and the consumer knows that standard wire sizes will always be 
available. The table was designed to assist the user in every way possi-
ble; it usually includes data such as the cross-sectional area in circular 
mils, diameter in mils, ohms per 1000 feet at °20 C, and weight per 
1000 feet.

The American Wire Gage (AWG) sizes are given in Table 3.2 for solid, 
round copper wire. A column indicating the maximum allowable current 
in amperes, as determined by the National Fire Protection Association, has 
also been included. The most commonly used appear in boldface.

The chosen sizes have an interesting relationship:

The area is doubled for every drop in 3 gage numbers 
and increased by a factor of 10 for every drop of 10 gage 
numbers.

Examining Eq. (3.1), we note also that doubling the area cuts the 
resistance in half, and increasing the area by a factor of 10 decreases the 
resistance of 1/10 the original, everything else kept constant.

The actual sizes of some of the gage wires listed in Table  3.2 are 
shown in Fig. 3.8 with a few of their areas of application. A few exam-
ples using Table 3.2 follow.
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TABLE 3.2 
American Wire Gage (AWG) sizes.

AWG # Area (CM)
Ω 1000 ft  

°at 20 C

Maximum  
Allowable  

Current for RHW 
Insulation (A)*

(4/0) 0000 211,600 0.0490 230
(3/0) 000 167,810 0.0618 200
(2/0) 00 133,080 0.0780 175
(1/0) 0 105,530 0.0983 150

1 83,694 0.1240 130
2 66,373 0.1563 115
3 52,634 0.1970 100
4 41,742 0.2485 85
5 33,102 0.3133 —
6 26,250 0.3951 65
7 20,816 0.4982 —
8 16,509 0.6282 50
9 13,094 0.7921 —

10 10,381 0.9989 30
11 8,234.0 1.260 —
12 6,529.9 1.588 20
13 5,178.4 2.003 —
14 4,106.8 2.525 15
15 3,256.7 3.184
16 2,582.9 4.016
17 2,048.2 5.064
18 1,624.3 6.385
19 1,288.1 8.051
20 1,021.5 10.15
21 810.10 12.80
22 642.40 16.14
23 509.45 20.36
24 404.01 25.67
25 320.40 32.37
26 254.10 40.81
27 201.50 51.47
28 159.79 64.90
29 126.72 81.83
30 100.50 103.2
31 79.70 130.1
32 63.21 164.1
33 50.13 206.9
34 39.75 260.9
35 31.52 329.0
36 25.00 414.8
37 19.83 523.1
38 15.72 659.6
39 12.47 831.8
40 9.89 1049.0

{

{











*Not more than three conductors in raceway, cable, or direct burial.

Businesses, Large homes

Most new homes

Some electrical appliances

Most house wiring

Electronic projects

As AWG
incresses 

resistance  
incresses

As AWG
incresses 

area drops
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EXAMPLE 3.4 Find the resistance of 650 ft of #8 copper wire 
= °T( 20 C).

Solution: For #8 copper wire (solid), Ω/1000 ft  at ° = Ω20 C 0.6282 , 
and

Ω





 = 0 41 Ω650 ft

0.6282

1000 ft
.

EXAMPLE 3.5 What is the diameter, in inches, of a #12 copper 
wire?

Solution: For #12 copper wire (solid), =A 6529.9 CM, and

= = ≅d A 6529.9 CM 80.81 milsmils CM

( )≅d 0 08 in.. or close to1 12 in.

EXAMPLE 3.6 For the system in Fig. 3.9, the total resistance of 
each power line cannot exceed Ω0.025 , and the maximum current to be 
drawn by the load is 95 A. What gage wire should be used?

Solution:

ρ ρ
( )( )

= ⇒ = =
Ω

Ω
=R l

A
A l

R
41 480 CM

10.37 CM- ft 100 ft

0.025
,

Using the wire table, we choose the wire with the next largest area, 
which is #4, to satisfy the resistance requirement. We note, however, 
that 95 A must flow through the line. This specification requires that 
#3 wire be used since the #4 wire can carry a maximum current of 
only 85 A.

D = 0.365 in. ù 1/3 in.

00 (AWG)

Power distribution

Stranded
for increased
flexibility

D = 0.0808 in. ù 1/12 in. D = 0.064 in. ù 1/16 in.

12 (AWG) 14 (AWG)

Lighting, outlets,
general home use

D = 0.013 in. ù 1/75 in.

28 (AWG)

Telephone, instruments

D = 0.032 in. ù 1/32 in. D = 0.025 in. 5 1/40 in.

20 (AWG) 22 (AWG)

Radio, television

 FIG. 3.8 
Popular AWG sizes and some of their areas of application.

Solid round copper wire

Input

100 ft

Load

FIG. 3.9 
Example 3.6.
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3.4 TEMPERATURE EFFECTS
Temperature has a significant effect on the resistance of conductors, 
semiconductors, and insulators.

Conductors

Conductors have a generous number of free electrons, and any introduc-
tion of thermal energy will have little impact on the total number of free 
carriers. In fact, the thermal energy only increases the intensity of the 
random motion of the particles within the material and makes it increas-
ingly difficult for a general drift of electrons in any one direction to be 
established. The result is that

for good conductors, an increase in temperature results in 
an increase in the resistance level. Consequently, conductors 
have a positive temperature coefficient.

The plot in Fig. 3.10(a) has a positive temperature coefficient.

Semiconductors

In semiconductors, an increase in temperature imparts a measure of ther-
mal energy to the system that results in an increase in the number of free 
carriers in the material for conduction. The result is that

for semiconductor materials, an increase in temperature 
results in a decrease in the resistance level. Consequently, 
semiconductors have negative temperature coefficients.

The thermistor and photoconductive cell discussed in Sections 3.12 
and 3.13, respectively, are excellent examples of semiconductor devices 
with negative temperature coefficients. The plot in Fig.  3.10(b) has a 
negative temperature coefficient.

Insulators

As with semiconductors, an increase in temperature results 
in a decrease in the resistance of an insulator. The result is a 
negative temperature coefficient.

3.5 CONDUCTORS AND THE INFERRED 
ABSOLUTE TEMPERATURE ( )Ti

Fig. 3.11 reveals that for copper (and most other metallic conductors), 
the resistance increases almost linearly (in a straight-line relationship) 
with an increase in temperature. Since temperature can have such a 
pronounced effect on the resistance of a conductor, it is important that 
we have some method of determining the resistance at any temperature 
within operating limits. An equation for this purpose can be obtained 
by approximating the curve in Fig. 3.11 by the straight dashed line that 
intersects the temperature scale at − °234.5 C. Although the actual curve 
extends to absolute zero ( )− °273.15 C,or 0 K , the straight-line approx-
imation is quite accurate for the normal operating temperature range. 
At two temperatures T1  and T ,2  the resistance of copper is R1 and R ,2  

(a)

Temperature

R

0

Temperature
coefficient

(b)

Temperature

R

0

Temperature
coefficient

 FIG. 3.10 
Demonstrating the effect of a positive 
and a negative temperature coefficient 

on the resistance of a conductor.
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respectively, as indicated on the curve. Using a property of similar tri-
angles, we may develop a mathematical relationship between these val-
ues of resistance at different temperatures. Let x equal the distance from 
− °234.5 C to T1  and y the distance from − °234.5 C to T ,2  as shown in 
Fig. 3.11. From similar triangles,

=x
R

y
R1 2

or       
T

R
T

R
234.5 234.51

1

2

2

+
=

+
 (3.5)

The temperature of − °234.5 C is called the inferred absolute tempera-
ture (Ti) of copper. For different conducting materials, the intersection 
of the straight-line approximation occurs at different temperatures. A 
few typical values are listed in Table 3.3.

The minus sign does not appear with the inferred absolute tempera-
ture on either side of Eq. (3.5) because x and y are the distances from 
− °234.5 C to T1  and T ,2  respectively, and therefore are simply magni-
tudes. For T1  and T2 less than zero, x and y are less than − °234.5 C, and 
the distances are the differences between the inferred absolute tempera-
ture and the temperature of interest.

Eq. (3.5) can easily be adapted to any material by inserting the proper 
inferred absolute temperature. It may therefore be written as follows:

 
+

=
+T T

R
T T

R
i i1

1

2

2

 (3.6)

where Ti  indicates that the inferred absolute temperature of the mate-
rial involved is inserted as a positive value in the equation. In general, 
therefore, associate the sign only with T1  and T .2

EXAMPLE 3.7 If the resistance of a copper wire is Ω50  at °20 C, 
what is its resistance at °100 C (boiling point of water)?

Solution: Eq. (3.5):

° + °
Ω

= ° + °
R

234.5 C 20 C
50

234.5 C 100 C

2

                Ω
( )( )

=
Ω °

°
=R 65 72

50 334.5 C
254.5 C

.2

R1

T1 T2 8C08C–234.58C–273.158C

Absolute zero x

Inferred absolute zero

R2
R

y

FIG. 3.11 
Effect of temperature on the resistance of copper.

TABLE 3.3 
Inferred absolute temperatures ( )T .i

Material °C

Silver −243
Copper −234 5.
Gold −274
Aluminum −236
Tungsten −204
Nickel −147
Iron −162
Nichrome −2,250
Constantan −125,000

M03_BOYL0302_14_GE_C03.indd   97M03_BOYL0302_14_GE_C03.indd   97 28/02/23   11:49 AM28/02/23   11:49 AM



98 | | | ResestanR

R

G

EXAMPLE 3.8 If the resistance of a copper wire at freezing ( °0 C) is 
Ω30 , what is its resistance at − °40 C?

Solution: Eq. (3.5):
° +

Ω
= ° − °

R
234.5 C 0

30
234.5 C 40 C

2

R 24 88
30 194.5 C

234.5 C
.2 Ω

( )( )
=

Ω °
°

=

EXAMPLE 3.9 If the resistance of an aluminum wire at room tem-
perature ( °20 C) is Ω100 m  (measured by a milliohmmeter), at what 
temperature will its resistance increase to Ω120 m ?

Solution: Eq. (3.5):
° + °

Ω
=

° +
Ω

T236 C 20 C
100 m

236 C
120 m

2

and

= Ω °
Ω







 − °T 120 m 256 C

100 m
236 C2

= °T 71 2. C2

3.6 TEMPERATURE COEFFICIENT OF 
RESISTANCE
There is a second popular equation for calculating the resistance of a 
conductor at different temperatures. Defining

 α ( )=
+ °

Ω ° Ω
T

1
20 C

C
i

20  (3.7)

as the temperature coefficient of resistance at a temperature of °20 C 
and R20  as the resistance of the sample at °20 C, we determine the resis-
tance R1 at a temperature T1  by

 α ( )[ ]= + − °R R T1 20 C1 20 20 1  (3.8)

The values of α20  for different materials have been evaluated, and a few 
are listed in Table 3.4. Eq. (3.8) can be derived by applying the roles for 
similar triangles to the plot of Fig. 3.11.

Eq. (3.8) can be written in the following form:

 α =

−
− °









=

∆
∆

R R
T

R

R
T

R
20 C

20

1 20

1

20 20

 (3.9)

from which the units of Ω ° ΩC  for α20  are defined.
Since ∆ ∆R T  is the slope of the curve in Fig. 3.11, we can conclude that

the higher the temperature coefficient of resistance for 
a material, the more sensitive is the resistance level to 
changes in temperature.

Referring to Table  3.4, we find that copper is more sensitive to 
temperature variations than is silver, gold, or aluminum, although the 

TABLE 3.4 
Temperature coefficient of resistance for various 

conductors at °20 C .

Material Temperature  
Coefficient 20α( )

Silver 0.0038
Copper 0.00393
Gold 0.0034
Aluminum 0.00391
Tungsten 0.005
Nickel 0.006
Iron 0.0055
Constantan 0.000008
Nichrome 0.00044
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differences are quite small. The slope defined by α20  for constantan is so 
small that the curve is almost horizontal.

Since R20  of Eq. (3.8) is the resistance of the conductor at °20 C and 
− °T 20 C1  is the change in temperature from °20 C, Eq. (3.8) can be 

written in the following form:

 R l
A

Tl 20ρ α[ ]= + ∆  (3.10)

providing an equation for resistance in terms of all the controlling 
parameters.

 3.7 PPM/°C
For resistors, as for conductors, resistance changes with a change in 
temperature. The specification is normally provided in parts per million 
per degree Celsius (PPM C° ), providing an immediate indication of the 
sensitivity level of the resistor to temperature. For resistors, a 5000 PPM 
level is considered high, whereas 20 PPM is quite low. A 1000 °PPM C 
characteristic reveals that a °1  change in temperature results in a change 
in resistance equal to 1000 PPM, or =1000 1,000,000 1 1000 of 
its nameplate value—not a significant change for most applications. 
However, a °10  change results in a change equal to 1/100 (1%) of its 
nameplate value, which is becoming significant. The concern, therefore, 
lies not only with the PPM level but also with the range of expected 
temperature variation.

In equation form, the change in resistance is given by

 R
R

T
10

PPMnominal
6

( )( )∆ = ∆  (3.11)

where Rnominal  is the nameplate value of the resistor at room temperature 
and ∆T  is the change in temperature from the reference level of °20 C.

EXAMPLE 3.10 For a 1 Ωk  carbon composition resistor with a 
PPM of 2500, determine the resistance at °60 C.

Solution:

( )( )∆ =
Ω

° − °R
1000

10
2500 60 C 20 C

6

       = Ω100  

and                = + ∆ = Ω + ΩR R R 1000 100nominal

= 1100 Ω

3.8 TYPES OF RESISTORS

Fixed Resistors

Resistors are made in many forms, but all belong in either of two groups: 
fixed or variable. The most common of the low-wattage, fixed-type re-
sistors is the film resistor shown in Fig. 3.12. It is constructed by depos-
iting a thin layer of resistive material (typically  carbon, metal, or metal 
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oxide) on a ceramic rod. The  desired resistance is then obtained by cut-
ting away some of the resistive  material in a helical manner to establish 
a long, continuous band of high-resistance material from one end of the 
resistor to the other. In general, carbon-film resistors have a beige body 
and a lower wattage rating. The metal-film resistor is typically a stron-
ger color, such as brick red or dark green, with higher wattage ratings. 
The  metal-oxide resistor is usually a softer pastel color, such as rating 
powder blue shown in Fig. 3.12(b), and has the highest  wattage rating of 
the three.

When you search through most electronics catalogs or visit a local 
electronics dealer to purchase resistors, you will find that the most 
common resistor is the film resistor. In years past, the carbon com-
position resistor in Fig.  3.13 was the most common, but fewer and 
fewer companies are manufacturing this variety, with its range of ap-
plications reduced to applications in which very high temperatures 
and inductive effects (Chapter  11) can be a problem. Its resistance 
is determined by the carbon composition material molded directly to 
each end of the resistor. The high-resistivity characteristics of carbon 
ρ( )= Ω21,000 CM- /ft  provide a high-resistance path for the current 

through the element.

For a particular style and manufacturer, the size of a resistor 
increases with the power or wattage rating.

The concept of power is covered in detail in Chapter 4, but for the 
moment recognize that increased power ratings are normally associated 
with the ability to handle higher current and temperature levels. Fig. 3.14 
depicts the actual size of thin-film, metal-oxide resistors in the 1/4 W to 
5 W rating range. All the resistors in Fig. 3.14 are 1 ΩM , revealing that

the size of a resistor does not define its resistance level.

A variety of other fixed resistors are depicted in Fig.  3.15. The wire-
wound resistors of Fig.  3.15(a) are formed by winding a high-resistance 
wire around a ceramic core. The entire structure is then baked in a ceramic 
cement to provide a protective covering. Wire-wound resistors are typically 
used for larger power applications, although they are also available with 
very small wattage ratings and very high accuracy.

Fig.  3.15(c) and (g) are special types of wire-wound resis-
tors with a low percent tolerance. Note, in particular, the high 
power ratings for the wire-wound resistors for their relatively 
small size. Figs.  3.15(b), (d), and (f) are power film resistors that 
use a thicker layer of film material than used in the variety shown 

(a)

Wire lead
connected
to continuous
thin-film
path of resistive
material Spiral trimmed

grooves

End cap

Molded
insulating
casing

Ceramic core
Thin film of

high-resistance metal

FIG. 3.12 
Film resistors: (a) construction; (b) types.

(b)

Carbon-film (1/2 W)

Metal-film (2 W)

Metal-oxide film (2 W)

Leads

Color bands
Insulation
material

Resistance material
(Carbon composition)

(a)

FIG. 3.13 
Fixed-composition resistors: (a) construction; 

(b) appearance.

(b)

ACTUAL SIZE

5 W

3 W

1 W

1 2 W/

1 4 W/

FIG. 3.14 
Fixed metal-oxide resistors of different 

wattage ratings.
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100 MV, 0.75 W
Precision power film resistor

(d)

25 kV, 5 W
Silicon-coated, wire-wound resistor

(g)

1 kV bussed (all connected
on one side) single

in-line resistor network
(e)

Resistive
material

Terminals

Bakelite (insulator)
coating

1 kV, 25 W

Aluminum-housed, chassis-mount
resistor–precision wire-mount

(c)

470 V, 35 W
Thick-film power resistor

(b)

Tinned
alloy
terminals

Vitreous
enamel
coating

Even
uniform
winding

High-strength
welded terminal

Resilient
mounting
brackets

Strong
ceramic
core

Welded resistance
wire junction

Wire-wound resistors

(a)

2 kV, 8 W

100 Ω, 25 W

22 kV, 1 W
Surface mount thick-film chip

resistors with gold
electrodes

(f)

Electrodes (Terminals)

Ceramic base

Resistive
material

FIG. 3.15 
Various types of fixed resistors.

in Fig.  3.12. The chip resistors in Fig.  3.15(f) are used where 
space is a priority, such as on the surface of circuit board. Units 
of this type can be less than 1/16 in. in length or width, with 
thickness as small as 1/30 in., yet they can still handle 0.5 W  
of power with resistance levels as high as Ω1000 M —clear  evidence 
that size does not determine the resistance level. The fixed resistor in 
Fig. 3.15(e) has terminals applied to a layer of resistor material, with 
the resistance between the terminals a function of the dimensions of 
the resistive material and the placement of the terminal pads.
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Maximum Voltage Rating

In addition to a wattage rating, every resistor has a maximum voltage 
rating. Both must be considered with the use of any resistor in any 
 application. In some cases, the maximum voltage rating may seem so 
high from typical operating voltages that the power rating is the only 
one of any consequence. Consider, however, a commercially available 
carbon composition resistor rated for 1 W, a 10% tolerance, and a max-
imum voltage rating of 500 V available in resistor values from Ω2.2  to 

Ω1 M . Keep in mind that the complete line of resistors with this 1 W 
power rating and maximum voltage rating all have the same size and 
construction. Internally, of course, the resistive material is altered to 
provide the desired resistance, but the external appearance is the same. 
Within this series of resistors, a 10 Ω resistor would need only 3.16 V 
applied across it to reach the 1 W rating. The calculations surrounding 
this conclusion will be discussed in Chapter 4. Certainly, the 3.16 V is 
magnitudes smaller than the rated voltage of 500 V and it may never be 
necessary to worry about this rating. However, we would also find that if 
we were using a Ω250 k  resistor from the package of resistors, it would 
require 500 V to reach the 1 W power dissipation level. In fact any resis-
tor between Ω250 k  and Ω1 M  would require more than the rated 500 V 
to dissipate a power level of 1 W. For the Ω1 M  resistor, the power dis-
sipated at 500 V is only 14 W. The result, therefore, is that the applied 
voltage is a very important factor because it is related to the maximum 
power dissipation capabilities of the resistor. Furthermore, if the applied 
voltage exceeds the maximum rated value, the resistive qualities of the 
resistor may deteriorate, high surface currents may develop, arcing may 
occur, or the resistor itself may open or cause a short circuit.

Variable Resistors

Variable resistors, as the name implies, have a terminal resistance that can 
be varied by turning a dial, knob, screw, or whatever seems appropriate for 
the application. They can have two or three terminals, but most have three 
 terminals. If the two- or three-terminal device is used as a variable resistor, 
it is usually referred to as a rheostat. If the three-terminal device is used 
for controlling potential levels, it is then commonly called a potentiometer.  
Even though a three-terminal device can be used as a rheostat or a 
 potentiometer (depending on how it is connected), it is typically called a 
potentiometer when listed in trade magazines or requested for a particular 
application.

The symbol for a three-terminal potentiometer appears in Fig. 3.16(a). 
When used as a variable resistor (or rheostat), it can be hooked up in one of 
two ways, as shown in Figs. 3.16(b) and (c). In Fig. 3.16(b), points a and 

(d)

R

(c)

a
R

Rab

b, c

(b)

R
a c

b
Rab

(a)

R b

a

c

FIG. 3.16 
Potentiometer: (a) symbol; (b) and (c) rheostat connections;  

(d) rheostat symbol.
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a
b

c

Rotating
shaft

(a)

(Don Johnson Photo)

FIG. 3.17 
Potentiometer: (a) external, (b) internal,  

(c) circuit equivalent.

a b

(b) (c)

c a b c

 

b are hooked up to the circuit, and the remaining terminal is left  hanging. 
The resistance introduced is determined by that portion of the resistive 
element between points a and b. In Fig. 3.16(c), the resistance is again 
between points a and b, but now the remaining resistance is “ shorted-out” 
(effect removed) by the connection from b to c. The universally accepted 
symbol for a rheostat appears in Fig. 3.16(d).

Most potentiometers have three terminals in the relative positions 
shown in Fig. 3.17. The knob, dial, or screw in the center of the hous-
ing controls the motion of a contact that can move along the resistive 
element connected between the outer two terminals. The contact is con-
nected to the center terminal, establishing a resistance from movable 
contact to each outer terminal.

The internal construction of the potentiometer is provided in 
Fig. 3.17(b). The resistive element is typically carbon or wire-wound. 
The center leg (b) is connected to the moveable arm (in blue) through the 
Philips screw without making contact with the moveable arm. Terminal 
c is connected directly to the bottom right of the resistive material with-
out making contact with the moveable arm. The resistance between 
 terminals c and b is then the major part of the resistive material as shown 
in Figs. 3.17(b) and (c). Contact is made at the point indicated by the dot 
in the moveable arm. The resistance between terminals b and a is then 
the smaller portion of the resistive material as shown in both  figures. The 
contact point has the full range of the resistive material to control the 
level of resistance between the three points of the potentiometer.

The resistance between the outside terminals a and c 
in Fig. 3.17 is always fixed at the full rated value of the 
potentiometer, regardless of the position of the wiper arm b.

In other words, the resistance between terminals a and c in Fig. 3.18(a) 
for a Ω1 M  potentiometer will always be Ω1 M , no matter how we turn 
the control element and move the contact. In Fig. 3.18(a), the center con-
tact is not part of the network configuration.

The resistance between the wiper arm and either outside 
terminal can be varied from a minimum of Ω0  to a maximum 
value equal to the full rated value of the potentiometer.

(b)

+

+

1 MV

b

a

c

(a)

1 MV b

a

c

+

FIG. 3.18 
Resistance components of a potentiometer: (a) between outside 

terminals; (b) between wiper arm and each outside terminal.
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In Fig. 3.18(b), the wiper arm has been placed 1/4 of the way down 
from point a to point c. The resulting resistance between points a and b 
will therefore be 1/4 of the total, or Ω250 k  (for a Ω1 M  potentiometer), 
and the resistance between b and c will be 3/4 of the total, or Ω750 k .

The sum of the resistances between the wiper arm and 
each outside terminal equals the full rated resistance of the 
potentiometer.

This is demonstrated in Fig. 3.18(b), where Ω + Ω = Ω250 k 750 k 1 M . 
Specifically,

 R R Rac ab bc= +  (3.12)

Therefore, as the resistance from the wiper arm to one outside contact 
increases, the resistance between the wiper arm and the other outside 
terminal must decrease accordingly. For example, if Rab  of a Ω1 k  po-
tentiometer is Ω200 , then the resistance Rbc must be Ω800 . If Rab  is 
further decreased to Ω50 , then Rbc must increase to Ω950 , and so on.

The molded carbon composition potentiometer is typically applied in 
networks with smaller power demands, and it ranges in size from Ω20  
to Ω22 M  (maximum values). A miniature trimmer (less than 1/4 in. in 
diameter) appears in Fig. 3.19(a), and a variety of potentiometers that 
use a cermet resistive material appear in Fig. 3.19(b). The contact point 
of the three-point wire-wound resistor in Fig. 3.19(c) can be moved to 
set the resistance between the three terminals.

(a)

FIG. 3.19 
Variable resistors: (a) 4 mm in.( )≈ 5 32  trimmer; (b) conductive plastic and cermet elements; 

(c) three-point wire-wound resistor. 
((a) vlabo/ Shutterstock)

(b) (c)

a

Vab

c
Vbc

R b

FIG. 3.20 
Potentiometer control of voltage levels.

When the device is used as a potentiometer, the connections are as 
shown in Fig. 3.20. It can be used to control the level of V V, ,ab bc  or both, 
depending on the application. Additional discussion of the potentiometer 
in a loaded situation can be found in later chapters.

3.9 COLOR CODING AND STANDARD 
RESISTOR VALUES
A wide variety of resistors, fixed or variable, are large enough to have 
their resistance in ohms printed on the casing. Some, however, are too 
small to have numbers printed on them, so a system of color coding is 
used. For the thin-film resistor, four, five, or six bands may be used. The 
four-band scheme is described. Later in this section, the purpose of the 
fifth and sixth bands will be described.
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1 2 3 4

FIG. 3.21 
Color coding for fixed resistors.

For the four-band scheme, the bands are always read from the end 
that has a band closest to it, as shown in Fig. 3.21. The bands are num-
bered as shown for reference in the discussion to follow.

The first two bands represent the first and second digits, 
respectively.

They are the actual first two numbers that define the numerical value of 
the resistor.

The third band determines the power-of-ten multiplier for 
the first two digits (actually the number of zeros that follow 
the second digit for resistors greater than 10 Ω).

The fourth band is the manufacturer’s tolerance, which is an 
indication of the precision by which the resistor was made.

If the fourth band is omitted, the tolerance is assumed to be ±20%.
The number corresponding to each color is defined in Fig.  3.22. The 

fourth band will be either ±5% or ±10% as defined by gold and silver, 
respectively. To remember which color goes with which percent, simply re-
member that ±5% resistors cost more and gold is more valuable than silver.

Remembering which color goes with each digit takes a bit of practice. 
In general, the colors start with the very dark shades and move toward 
the lighter shades. The best way to memorize is to simply repeat over and 
over that red is 2, yellow is 4, and so on. Simply practice with a friend 
or a fellow student, and you will learn most of the colors in short order.

EXAMPLE 3.11 Find the value of the resistor in Fig. 3.23.

Solution: Reading from the band closest to the left edge, we find that 
the first two colors of brown and red represent the numbers 1 and 2, 
respectively. The third band is orange, representing the number 3 for the 
power of the multiplier as follows:

× Ω12 10 3

resulting in a value of Ω12 k . As indicated above, if Ω12 k  is written as 
Ω12,000 , the third band reveals the number of zeros that follow the first 

two digits.

Now for the fourth band of gold, representing a tolerance of 5%:±   
To find the range into which the manufacturer has guaranteed the re-
sistor will fall, first convert the 5% to a decimal number by moving the 
decimal point two places to the left:

⇒5% 0.05

Then multiply the resistor value by this decimal number:

( )Ω = Ω0.05 12 k 600

Finally, add the resulting number to the resistor value to determine the 
maximum value, and subtract the number to find the minimum value. 
That is,

= Ω + Ω = ΩMaximum 12,000 600 12.6 k

= Ω − Ω = ΩMinimum 12,000 600 11.4 k

= 11 4 Ω to 12 6 kΩRange . k .

0

1

2

3

4

5

6

7

8

9

610%
(0.01 multiplier

if 3rd band)

Black

Brown

Red

Orange

Yellow

Green

Blue

Violet

Gray

White

Gold

Silver

Number Color

65%
(0.1 multiplier

if 3rd band)

FIG. 3.22 
Color coding.

 FIG. 3.23 
Example 3.11.
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The result is that the manufacturer has guaranteed with the 5% gold 
band that the resistor will fall in the range just determined. In other 
words, the manufacturer does not guarantee that the resistor will be ex-
actly Ω12 k , but rather that it will fall in a range as defined above.

Using the above procedure, the smallest resistor that can be labeled 
with the color code is Ω10 . However,

the range can be extended to include resistors from 0.1Ω to 
10 Ω by simply using gold as a multiplier color (third band) 
to represent 0.1 and using silver to represent 0.01.

This is demonstrated in the next example.

EXAMPLE 3.12 Find the value of the resistor in Fig. 3.24.

Solution: The first two colors are gray and red, representing the 
 numbers 8 and 2, respectively. The third color is gold, representing a 
multiplier of 0.1. Using the multiplier, we obtain a resistance of

( )( ) Ω = Ω0.1 82 8.2

The fourth band is silver, representing a tolerance of 10%.±  
Converting to a decimal number and multiplying through yields

( )( )= Ω = Ω10% 0.10 and 0.1 8.2 0.82

= Ω + Ω = ΩMaximum 8.2 0.82 9.02

= Ω − Ω = ΩMinimum 8.2 0.82 7.38

so that        Ω Ω= 7 38 to 9 02Range . .

Although it will take some time to learn the numbers associated with 
each color, it is certainly encouraging to become aware that

the same color scheme to represent numbers is used for all 
the important elements of electrical circuits.

Later on, you will find that the numerical value associated with each 
color is the same for capacitors and inductors. Therefore, once learned, 
the scheme has repeated areas of application.

Some manufacturers prefer to use a five-band color code. In such 
cases, as shown in the top portion of Fig. 3.25, three digits are provided 
before the multiplier. The fifth band remains the tolerance indicator. If 
the manufacturer decides to include the temperature coefficient, a sixth 
band will appear as shown in the lower portion of Fig. 3.25, with the 
color indicating the PPM level.

For four, five, or six bands, if the tolerance is less than 5%, the fol-
lowing colors are used to reflect the % tolerances:

brown 1%, red 2%, green 0.5%, blue 0.25%,= ± = ± = ± = ±  
and violet 0.1%.

brown 1%,red 2%, green 0.5%,blue 0.25%,

= ±
= ± = ± = ± = ±You might expect that resistors would be available for a full range of 

values such as Ω Ω Ω Ω Ω10 ,20 ,30 ,40 ,50 , and so on. However, this is 
not the case, with some typical commercial values as 27 , 56 ,Ω Ω  and 

Ω68 . There is a reason for the chosen values, which is best demon-
strated by examining the list of standard values of commercially avail-
able resistors in Table 3.5. The values in boldface are the most common 
and typically available with 5%, 10%, and 20% tolerances.

FIG. 3.24 
Example 3.12.

Temperature coefficient
Brown = 100 PPM
Red = 50 PPM
Orange = 15 PPM
Yellow = 25 PPM

1s
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275 V
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t
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FIG. 3.25 
Five-band color coding for fixed 

resistors.
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Examining the impact of the tolerance level will help explain the 
choice of numbers for the commercial values. Take the sequence 

Ω − Ω − Ω47 68 100 , which are all available with 20% tolerances. In 
Fig. 3.26(a), the tolerance band for each has been determined and plotted 
on a single axis. Note that with this tolerance (which is all that the manu-
facturer will guarantee), the full range of resistor values is available from 

TABLE 3.5 
Standard values of commercially available resistors.

Ohms  
Ω( )

Kilohms  
kΩ( )

Megohms  
MΩ( )

0.10 1.0 10 100 1000 10 100 1.0 10.0
0.11 1.1 11 110 1100 11 110 1.1 11.0
0.12 1.2 12 120 1200 12 120 1.2 12.0
0.13 1.3 13 130 1300 13 130 1.3 13.0
0.15 1.5 15 150 1500 15 150 1.5 15.0
0.16 1.6 16 160 1600 16 160 1.6 16.0
0.18 1.8 18 180 1800 18 180 1.8 18.0
0.20 2.0 20 200 2000 20 200 2.0 20.0
0.22 2.2 22 220 2200 22 220 2.2 22.0
0.24 2.4 24 240 2400 24 240 2.4
0.27 2.7 27 270 2700 27 270 2.7
0.30 3.0 30 300 3000 30 300 3.0
0.33 3.3 33 330 3300 33 330 3.3
0.36 3.6 36 360 3600 36 360 3.6
0.39 3.9 39 390 3900 39 390 3.9
0.43 4.3 43 430 4300 43 430 4.3
0.47 4.7 47 470 4700 47 470 4.7
0.51 5.1 51 510 5100 51 510 5.1
0.56 5.6 56 560 5600 56 560 5.6
0.62 6.2 62 620 6200 62 620 6.2
0.68 6.8 68 680 6800 68 680 6.8
0.75 7.5 75 750 7500 75 750 7.5
0.82 8.2 82 820 8200 82 820 8.2
0.91 9.1 91 910 9100 91 910 9.1

37.6 V 56.4 V 80 V 120 V

47 V 68 V 100 V

54.4 V 81.6 V

(a)

50.4 V 61.6 V

90 V 110 V

47 V 68 V 100 V

90.2 V73.8 V

(b)

6 10%100 V6 10%47 V

42.3 V 51.7 V

56 V 82 V

61.2 V 74.8 V

6 10%82 V

6 10%56 V

6 20%68 V

6 20%100 V6 20%47 V

6 20%68 V

FIG. 3.26 
Guaranteeing the full range of resistor values for the given tolerance: (a) 20%; (b) 10%.
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Ω37.6  to Ω120 . In other words, the manufacturer is guaranteeing the 
full range, using the tolerances to fill in the gaps. Dropping to the 10% 
level introduces the Ω56  and Ω82  resistors to fill in the gaps, as shown 
in Fig. 3.26(b). Dropping to the 5% level would require additional resis-
tor values to fill in the gaps. In total, therefore, the resistor values were 
chosen to ensure that the full range was covered, as determined by the 
tolerances employed. Of course, if a specific value is desired but is not 
one of the standard values, combinations of standard values often result 
in a total resistance very close to the desired level. If this approach is still 
not satisfactory, a potentiometer can be set to the exact value and then 
inserted in the network.

Throughout the text, you will find that many of the resistor values 
are not standard values. This was done to reduce the mathematical com-
plexity, which might interfere with the learning process. In the problem 
sections, however, standard values are frequently used to ensure that you 
start to become familiar with the commercial values available.

3.10 SURFACE MOUNT RESISTORS
In general, surface mount resistors, such as appearing in Fig. 3.15(f), are 
marked in three ways: color coding, three symbols, and two symbols.

The color coding is the same as just described earlier in this section 
for through-hole resistors.

The three-symbol approach uses three digits. The first two define the 
first two digits of the value; the last digit defines the power of the power-
of-ten multiplier.

For instance:

× Ω = Ω82820 is 82 10 0

× Ω = Ω = Ω2 2222 is 22 10 2200 . k2

× Ω = Ω1010 is 1 10 0

The two-symbol marking uses a letter followed by a number. The 
letter defines the value as in the following list. Note that all the numbers 
of the commercially available list of Table 3.5 are included.

A 1.0=     B 1.1=      C 1.2=     D 1.3=
E 1.5=      F 1.6=      G 1.8=      H 2=   

J 2.2=      K 2.4=     L 2.7=      M 3=
N 3.3=     P 3.6=     Q 3.9=      R 4.3=  

S 4.7=     T 5.1=     U 5.6=     V 6.2=

W 6.8=      X 7.5=      Y 8.2=     Z 9.1=

The second symbol is the power of the power-of-ten multiplier.
For example,

= × Ω = 1 2 kΩC3 1.2 10 .3

= × Ω = 5 1 ΩT0 5.1 10 .0

= × Ω = 91 ΩZ1 9.1 101

Additional symbols may precede or follow the codes and may differ 
depending on the manufacturer. These may provide information on the 
internal resistance structure, power rating, surface material, tapping, and 
tolerance.
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3.11 CONDUCTANCE
By finding the reciprocal of the resistance of a material, we have a mea-
sure of how well the material conducts electricity. The quantity is called 
conductance, has the symbol G, and is measured in siemens (S) (note 
Fig. 3.27). In equation form, conductance is

 ( )=G
R
1 siemens, S  (3.13)

A resistance of Ω1 M  is equivalent to a conductance of −10 S,6  and a 
resistance of Ω10  is equivalent to a conductance of −10 S.1  The larger 
the conductance, therefore, the less is the resistance and the greater is the 
conductivity.

In equation form, the conductance is determined by

 G A
l

S
ρ

( )=  (3.14)

indicating that increasing the area or decreasing either the length or the 
resistivity increases the conductance.

EXAMPLE 3.13

a. Determine the conductance of a Ω1 , a Ω50 k , and a Ω10 M  resistor.
b. How does the conductance level change with increase in resistance?

Solution: Eq. (3.13):

a. Ω = =
Ω

=G
R

1 S1 : 1 1
1

Ω = =
Ω

=
× Ω

= × =−G
R

0 02 mS50 k : 1 1
50 k

1
50 10

0.02 10 S .
3

3

µΩ = =
Ω

=
× Ω

= × =−G
R

0 1 S10 M : 1 1
10 M

1
10 10

0.1 10 S .
6

6

b. The conductance level decreases rapidly with significant increase in 
resistance levels.

EXAMPLE 3.14 What is the relative increase or decrease in conduc-
tivity of a conductor if the area is reduced by 30% and the length is 
increased by 40%? The resistivity is fixed.

Solution: Eq. (3.14):

G
R l

A

A
l

1 1
i

i i i

i

i

i iρ ρ
= = =

with the subscript i for the initial value. Using the subscript n for the new 
value, we obtain

ρ ρ ρ( )
= = = =G

A
l

A
l

A
l

G
0.70

1.4
0.70
1.4

0.70
1.4n

n

n n

i

i i

i

i i
i

and   G 0.5G in =
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FIG. 3.27 
Werner von Siemens.

German (Lenthe, Berlin) 
(1816–92)
Electrical Engineer  
Telegraph Manufacturer,

Siemens & Halske AG

Developed an electroplating process during a brief 
stay in prison for acting as a second in a duel be-
tween fellow officers of the Prussian army. Inspired 
by the electronic telegraph invented by Sir Charles 
Wheatstone in 1817, he improved on the design and 
with the help of his brother Carl proceeded to lay 
cable across the Mediterranean and from Europe to 
India. His inventions included the first self-excited 
generator, which depended on the residual magnet-
ism of its electromagnet rather than an inefficient 
permanent magnet. In 1888 he was raised to the rank 
of nobility with the addition of von to his name. The 
current firm of Siemens AG has manufacturing out-
lets in some 35 countries and sales offices in some 
125 countries.

M03_BOYL0302_14_GE_C03.indd   109M03_BOYL0302_14_GE_C03.indd   109 28/02/23   11:49 AM28/02/23   11:49 AM



110 | | | ResestanR

R

G

3.12 OHMMETERS
The ohmmeter is an instrument used to perform the following tasks and 
several other useful functions:

1. Measure the resistance of individual or combined elements.

2. Detect open-circuit (high-resistance) and short-circuit 
(low-resistance) situations.

3. Check the continuity of network connections and identify 
wires of a multilead cable.

4. Test some semiconductor (electronic) devices.

For most applications, the ohmmeters used most frequently are the 
ohmmeter section of a VOM or DMM. The details of the internal circuitry 
and the method of using the meter will be left primarily for a laboratory 
exercise. In general, however, the resistance of a resistor can be measured 
by simply connecting the two leads of the meter across the resistor, as 
shown in Fig. 3.28. There is no need to be concerned about which lead 
goes on which end; the result is the same in either case since resistors offer 
the same resistance to the flow of charge (current) in either direction. If 
the VOM is used, a switch must be set to the proper resistance range, and 
a nonlinear scale (usually the top scale of the meter) must be properly 
read to obtain the resistance value. The DMM also requires choosing the 
best scale setting for the resistance to be measured, but the result appears 
as a numerical display, with the proper placement of the decimal point 
determined by the chosen scale. When measuring the resistance of a single 
resistor, it is usually best to remove the resistor from the network before 
making the measurement. If this is difficult or impossible, at least one end 
of the resistor must not be connected to the network, otherwise the reading 
may include the effects of the other elements of the system.

If the two leads of the meter are touching in the ohmmeter mode, the 
resulting resistance is zero. A connection can be checked as shown in 
Fig. 3.29 by simply hooking up the meter to either side of the connection. 
If the resistance is zero, the connection is secure. If it is other than zero, 
the connection could be weak; if it is infinite, there is no connection at all.

If one wire of a harness or ribbon cable is known, a second can be 
found as shown in Fig. 3.30. Simply connect the end of the known lead 
to the end of any other lead. When the ohmmeter indicates zero ohms 
(or very low resistance), the second lead has been identified. The above 
procedure can also be used to determine the first known lead by simply 
connecting the meter to any wire at one end and then touching all the 
leads at the other end until a zero ohm indication is obtained. Ribbon 
cables are typically used to electrically interconnect multiple printed cir-
cuit board (PCB) functions.

V

 FIG. 3.28 
Measuring the resistance of a single element.

V

FIG. 3.29 
Checking the continuity of a connection.

V

FIG. 3.30 
Identifying the leads of a multilead ribbon cable.

Preliminary measurements of the condition of some electronic  devices 
such as the diode and the transistor can be made using the ohmmeter. 
The meter can also be used to identify the terminals of such devices.
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One important note about the use of any ohmmeter:

Never hook up an ohmmeter to a live circuit!

The reading will be meaningless, and you may damage the instru-
ment. The ohmmeter section of any meter is designed to pass a small 
sensing current through the resistance to be measured. A large external 
current could damage the movement and would certainly throw off the 
calibration of the instrument. In addition:

Never store a VOM or a DMM in the resistance mode.

If the two leads of the meter touch, the small sensing current could 
drain the internal battery. VOMs should be stored with the selector 
switch on the highest voltage range, and the selector switch of DMMs 
should be in the off position.

3.13 RESISTANCE: METRIC UNITS
The design of resistive elements for various areas of application, includ-
ing thin-film resistors and integrated circuits, uses metric units for the 
quantities of Eq. (3.1) introduced in Section 3.2. In SI units, the resistiv-
ity would be measured in ohm-meters, the area in square meters, and the 
length in meters. However, the meter is generally too large a unit of mea-
sure for most applications, and so the centimeter is usually employed. 
The resulting dimensions for Eq. (3.1) are therefore

ρ
l

A

: ohm-centimeters
: centimeters
: square centimeters

The units for ρ  can be derived from

RA
l

-cm
cm

-cm
2

ρ = = Ω = Ω

The resistivity of a material is actually the resistance of a sample such 
as that appearing in Fig. 3.31. Table 3.6 provides a list of values of ρ  in 
ohm-centimeters. Note that the area now is expressed in square centi-
meters, which can be determined using the basic equation π=A d 4,2  
eliminating the need to work with circular mils, the special unit of mea-
sure associated with circular wires.

EXAMPLE 3.15 Determine the resistance of 100 ft of #28 copper 
telephone wire if the diameter is 0.0126 in.

Solution: Unit conversions:

=













 =l 100 ft

12 in.

1 ft

2.54 cm

1 in.
3048 cm

=






 =d 0.0126 in.

2.54 cm
1 in.

0.032 cm

Therefore,

A d
4

3.1416 0.032 cm

4
8.04 10 cm

2 2
4 2π ( )( )

= = = × −

ρ
( )( )

= =
× Ω

×
≅

−

−
R l

A
6 5 Ω

1.723 10 -cm 3048 cm
8.04 10 cm

.
6

4 2

A  =  1 cm2

l =  1 cm

FIG. 3.31 
Defining ρ  in ohm-centimeters.

TABLE 3.6 
Resistivity (r) of various materials.

Material -cmΩ

Silver
Copper
Gold
Aluminum
Tungsten
Nickel
Iron
Tantalum
Nichrome
Tin oxide
Carbon

× −1.645 10 6

1 723 10 6. × −

× −2.443 10 6

× −2.825 10 6

× −5.485 10 6

× −7.811 10 6

× −12.299 10 6

× −15.54 10 6

× −99.72 10 6

× −250 10 6

× −3500 10 6
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Using the units for circular wires and Table 3.2 for the area of a #28 
wire, we find

ρ
( )( )

= =
Ω

≅R l
A

6 5 Ω
10.37 CM- /ft 100 ft

159.79 CM
.

EXAMPLE 3.16 Determine the resistance of the thin-film resistor in 
Fig. 3.32 if the sheet resistance Rs  (defined by ρ=R ds ) is Ω100 .

Solution: For deposited materials of the same thickness, the sheet 
resistance factor is usually employed in the design of thin-film resistors.

Eq. (3.1) can be written

ρ ρ ρ( )( )= = = =R l
A

l
dw d

l
w

R l
ws

where l is the length of the sample and w is the width. Substituting into 
the above equation yields

 
( )( )

= =
Ω

=R R l
w

200 Ω
100 0.6 cm

0.3 cms

as one might expect since =l w2 .

The conversion factor between resistivity in circular mil-ohms per 
foot and ohm-centimeters is the following:

ρ ( )( )( )Ω = × × Ω−-cm 1.662 10 value in CM- /ft7

For example, for copper, ρ = Ω10.37 CM- /ft :

ρ ( )( )Ω = × Ω−-cm 1.662 10 10.37 CM- /ft7

= × Ω−1.723 10 -cm6

as indicated in Table 3.6.
The resistivity in an integrated circuit design is typically in ohm- 

centimeter units, although tables often provide ρ  in ohm-meters or 
 microhm-centimeters. Using the conversion technique of Chapter  1, 
we find that the conversion factor between ohm-centimeters and ohm- 
meters is the following:

[ ]× Ω












= × Ω− −1.723 10 - cm
1 m

100 cm
1

100
1.723 10 -m6 6

or the value in ohm-meters is 1/100 the value in ohm-centimeters, and

 ρ ( ) ( )( )Ω = × Ω-m 1
100

value in -cm  (3.15)

Similarly,

 ρ µ ( )( )( )Ω = × Ω-cm 10 value in -cm6  (3.16)

For comparison purposes, typical values of ρ  in ohm-centimeters for 
conductors, semiconductors, and insulators are provided in Table 3.7.

In particular, note the power-of-ten difference between conductors 
and insulators( )10 21 —a difference of huge proportions. There is a sig-
nificant difference in levels of ρ  for the list of semiconductors, but the 
power-of-ten difference between the conductor and insulator levels is at 
least 10 6  for each of the semiconductors listed.

r
0.3 cm

0.6 cm

d

FIG. 3.32 
Thin-film resistor. Example 3.16.
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3.14 THE FOURTH ELEMENT—THE 
MEMRISTOR
In May 2008, researchers at Hewlett Packard Laboratories led by Dr. Stanley 
Williams had an amazing announcement—the discovery of the “missing” 
link in basic electronic circuit theory called a memristor (memory resis-
tor), shown in Fig. 3.33. Up to this point the basic passive elements of 
circuit theory were the resistor, the capacitor, and the inductor, with the last 
two to be introduced later in this text. The presence of this fourth element 
was postulated in a seminal 1971 paper in the IEEE Transactions on Circuit 
Theory by Leon Chua of the University of California at Berkeley. However, 
it was not until this announcement that the device was actually constructed 
and found to function as predicted. Many attempts were made to build a 
memristor through the years, but it was not until work was done at the 
nanometer scale that success was obtained. It turns out that the smaller 
the structure, the more prominent is the memristance response. The level 
of memristance at the nanometer scale is a million times stronger than at 
the micrometer scale and is almost undetectable at the millimeter scale. 
However, this property can work to the advantage of current integrated cir-
cuit (IC) designs that are already in the nanometer range.

The four basic circuit quantities of charge, current, voltage, and 
magnetic flux can be related in six ways. Three relations derive from 
the basic elements of the resistor, the capacitor, and the inductor. The 
resistor provides a direct relationship between current and voltage, the 
capacitor provides a relationship between charge and voltage, and the 
inductor provides a relationship between current and magnetic flux. 
That leaves the relationship between the magnetic flux and the charge 
moving through an element. Chua sought a device that would define the 
relationship between magnetic flux and charge similar to that between 
the voltage and current of a resistor.

In general, Chua was looking for a device whose resistance would 
be a function of how much charge has passed through it. In Chapter 11 
the relationship between the movement of charge and the surrounding 
magnetic field will be described in keeping with the need to find a device 
relating charge flow and the surrounding magnetic field.

The memristor is a device whose resistance increases with in-
crease in the flow of charge in one direction and decreases as the 
flow of charge decreases in the reverse direction. Furthermore, and 
vastly important, it maintains its new resistance level when the exci-
tation has been removed.

This behavior in the nanometer range was discovered using the semi-
conductor titanium dioxide ( )TiO ,2  which is a highly resistive material 
but can be doped with other materials to make it very conductive. In  
this material, the dopants move in response to an applied electric field 
and drift in the direction of the resulting current. Starting out with a 
memristor with dopants only one side and pure TiO2 on the other, one 
can apply a biasing voltage to establish a current in the memristor. The 

TABLE 3.7 
Comparing levels of ρ  in Ω-cm.

Conductor -cm( )Ω Semiconductor -cm( )Ω Insulator -cm( )Ω

× −Copper1.723 10 6 Ge 50 In general :1015

Si ×200 10 3

GaAs ×70 10 6

(a)

[(a) Copyright © 2014 Hewlett-Packard Development 
Company, L.P. Reproduced with Permission.]

FIG. 3.33 
(a) An image of a circuit with 17 memristors 

captured by an atomic force microscope. 
Each memristor is composed of two layers of 
titanium dioxide sandwiched between a lower 

common wire and its own upper wire. As a 
voltage is applied across a memristor, the 

small signal resistance of one of the titanium 
dioxide layers is changed, which in turn is 

used as a method to register data. (b) Symbol.

(b)
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resulting current will cause the dopants to move to the pure side and 
reduce the resistance of the element. The greater the flow of charge, the 
lower is the resulting resistance. In other words, as mentioned, TiO2 
has a high resistance, and on moving the dopants into the pure TiO ,2  
the resistance drops. The entire process of moving the dopants is due 
to the applied voltage and resulting motion of charge. Reversing the 
biasing voltage reverses the direction of current flow and brings the 
dopants back to the other side, thereby letting the TiO2 return to its  
high-resistance state; on the surface this seems rather simple and direct.

An analog often applied to describe the action of a memristor is the 
flow of water (analogous to charge) through a pipe. In general, the resis-
tance of a pipe to the flow of water is directly related to the diameter of 
the pipe: the smaller the pipe, the greater is the resistance, and the larger 
the diameter, the lower is the resistance. For the analogy to be appropri-
ate in describing the action of a memristor, the diameter of the pipe must 
also be a function of the speed of the water and its direction. Water flow-
ing in one direction will cause the pipe to expand and reduce the resis-
tance. The faster the flow, the greater is the diameter. For water flowing 
in the opposite direction, the faster the flow, the smaller is the diameter 
and the greater is the resistance. The instant the flow of water is stopped 
in either direction, the pipe keeps its new diameter and resistance.

There are 17 memristors in Fig. 3.33 lined up in a row, each with a 
width of about 50 nm. Each has a bottom wire connected to one side 
of the device and a top wire connected to the opposite side through a 
network of wires. Each will then exhibit a resistance depending on the 
direction and magnitude of the charge through each one. The current 
choice for the electronic symbol is also provided in Fig. 3.33. It is sim-
ilar in design to the resistor symbol but also markedly different. Recent 
advances in the field have resulted in 3 nm memristors.

Thus, we have a memory device that will have a resistance dependent 
on the direction and level of charge flowing through it. Remove the flow 
of charge, and it maintains its new resistance level. The impact of such a 
device is enormous—computers would remember the last operation and 
display when they were turned off. Come back in a few hours or days 
and the display would be exactly as you left it. The same would be true 
for any system working through a range of activities and applications—
instant startup exactly where you left off.

Current research efforts involving memristors include their use in 
nonvolatile random-access memories (NVRAM) resulting in oper-
ating speeds close to 1/10 that of dynamic random-access memories 
(DRAMs). Also, due to the memory characteristics, there are efforts to 
mimic the neural activities of the brain, which could also lead to ad-
vances in robot design. Recent efforts to replicate the thinking process of 
a cat’s brain have resulted in a growing interest in memristors acting as 
synapses that control the decision-making process based on past actions. 
Memristors are also used in the design of cross-latch transistors, which 
have higher switching speeds, use less energy, and are smaller in size.

3.15 SUPERCONDUCTORS
What are superconductors? Why is their development so important? In 
a nutshell,

superconductors are conductors of electric charge that, for 
all practical purposes, have zero resistance.
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In a conventional conductor, electrons travel at average speeds of 
about 1000 mi/s (they can cross the United States in about 3 seconds), 
even though Einstein’s theory of relativity suggests that the maximum 
speed of information transmission is the speed of light, or 186,000 mi/s. 
The relatively slow speed of conventional conduction is due to colli-
sions with atoms in the material, repulsive forces between electrons (like 
charges repel), thermal agitation that results in indirect paths due to the 
increased motion of the neighboring atoms, impurities in the conductor, 
and so on. In the superconductive state, there is a pairing of electrons, 
denoted the Cooper effect, in which electrons travel in pairs and help 
each other maintain a significantly higher velocity through the medium. 
In some ways this is like “drafting” by competitive cyclists or runners. 
There is an oscillation of energy between partners or even “new” part-
ners (as the need arises) to ensure passage through the conductor at the 
highest possible velocity with the least total expenditure of energy.

Even though the concept of superconductivity first surfaced in 1911, 
it was not until 1986 that the possibility of superconductivity at room 
temperature became a renewed goal of the research community. For over 
70 years, superconductivity could be established only at temperatures 
colder than 23 K. (Kelvin temperature is universally accepted as the unit 
of measurement for temperature for superconductive effects. Recall that 

= ° + °K 273.15 C,  so a temperature of 23 K is − °250 C,  or − °418 F.)  
In 1986, however, physicists Alex Muller and George Bednorz of the IBM 
Zurich Research Center found a ceramic material—lanthanum barium  
copper oxide—that exhibited superconductivity at 30 K. This discovery  
introduced a new direction to the research effort and spurred others 
to improve on the new standard. (In 1987, both scientists received the 
Nobel prize for their contribution to an important area of development.)

In just a few short months, Professors Paul Chu of the University 
of Houston and Man Kven Wu of the University of Alabama raised the 
temperature to 95 K using a superconductor of yttrium barium copper 
oxide. The result was a level of excitement in the scientific community 
that brought research in the area to a new level of effort and investment. 
The major impact of this discovery was that liquid nitrogen (boiling 
point of 77 K) rather than liquid helium (boiling point of 4 K) could 
now be used to bring the material down to the required temperature. 
The result is a tremendous saving in the cooling expense since liquid 
nitrogen is at least ten times less expensive than liquid helium. Pursuing 
the same direction, some success has been achieved at 125 K and 162 K 
using a thallium compound (unfortunately, however, thallium is a very 
poisonous substance).

Fig.  3.34 illustrates how the discovery in 1986 of using a ceramic 
material in superconductors led to rapid developments in the field. In 
2008 a tin–copper oxide superconductor with a small amount of indium 
reached a new peak of 212 K—an enormous increase in temperature.

The temperature at which a superconductor reverts back to the char-
acteristics of a conventional conductor is called the critical tempera-
ture, denoted by T .c  Note in Fig. 3.35 that the resistivity level changes 
abruptly at T .c  The sharpness of the transition region is a function of the 
purity of the sample. Long listings of critical temperatures for a variety 
of tested compounds can be found in reference materials providing ta-
bles of a wide variety to support research in physics, chemistry, geology, 
and related fields. Two such publications include the CRC (Chemical 
Rubber Co.) Handbook of Tables for Applied Engineering Science and 
the CRC Handbook of Chemistry and Physics.
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For years the ultimate goal in the superconductor research com-
munity was to find that composition that would display supercon-
ductor characteristics at room temperature. All the recent and cur-
rent applications of superconductors involve significant cooling 
systems that require careful design and are expensive. Finally, in 
December 2011, Superconductors.org introduced a pellet composed 
of Tl Pb Ba Mg Cu O5 2 2 2 9 18( ) +  that satisfied all the tests associated 
with defining a true superconductor at a temperature of °84 F . Based 
on this composition the next evolutionary steps seemed better defined 
and eventually a temperature of °170 F  was attained using a copper 
oxide ceramic. As with a number of laboratory successes, however, the 
next challenge is to find a way to use this newly developed compound 
commercially in a financially efficient manner. Currently, the primary 
applications for superconductors remain in the areas of power trans-
mission, MRI imaging equipment, Maglev trains, high-speed comput-
ers, electromagnetic magnets, and generators and motors. Now that 
room-temperature compounds are available, removing the need for 
extensive cooling systems, the range of applications should grow quite 
rapidly in the near future.

3.16 THERMISTORS
The thermistor is a two-terminal semiconductor device whose resis-
tance, as the name suggests, is temperature sensitive. A representative 
characteristic appears in Fig. 3.36 with the graphic symbol for the de-
vice. Note the nonlinearity of the curve and the drop in resistance from 
about Ω5000 -cm to Ω100 -cm  for an increase in temperature from 

°20 C to °100 C. The decrease in resistance with an increase in tempera-
ture indicates a negative temperature coefficient.

The temperature of the device can be changed internally or externally. 
An increase in current through the device raises its temperature, caus-
ing a drop in its terminal resistance. Any externally applied heat source 
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r

FIG. 3.35 
Defining the critical temperature T .c
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FIG. 3.36 
Thermistor: (a) characteristics; (b) symbol.
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FIG. 3.34 
Rising temperatures of superconductors.
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results in an increase in its body temperature and a drop in resistance. 
This type of action (internal or external) lends itself well to control 
mechanisms. Many different types of thermistors are shown in Fig. 3.37. 
Materials used in the manufacture of thermistors include oxides of cobalt,  
nickel, strontium, and manganese.

Note the use of a log scale (to be discussed in Chapter 21) in Fig. 3.36 
for the vertical axis. The log scale permits the display of a wider range 
of specific resistance levels than a linear scale such as the horizontal 
axis. Note that it extends from Ω0.0001 -cm to Ω100,000,000 -cm over 
a very short distance. The log scale is used for both the vertical and the 
horizontal axis in Fig. 3.38.

 3.17 PHOTOCONDUCTIVE CELL
The photoconductive cell is a two-terminal semiconductor device 
whose terminal resistance is determined by the intensity of the incident 
light on its exposed surface. As the applied illumination increases in in-
tensity, the energy state of the surface electrons and atoms increases, 
with a resultant increase in the number of “free carriers” and a corre-
sponding drop in resistance. A typical set of characteristics and the 
 photoconductive cell’s graphic symbol appear in Fig. 3.38. Note the neg-
ative illumination coefficient. Several cadmium sulfide photoconductive  
cells appear in Fig. 3.39.

3.18 VARISTORS
Varistors are voltage-dependent, nonlinear resistors used to suppress 
high-voltage transients; that is, their characteristics enable them to limit 
the voltage that can appear across the terminals of a sensitive electronic 
device or system. A typical set of characteristics appears in Fig. 3.40(a), 
along with a linear resistance characteristic for comparison purposes. 
Note that at a particular “firing voltage,” the current rises rapidly, but 
the voltage is limited to a level just above this firing potential. In other 
words, the magnitude of the voltage that can appear across this device 
cannot exceed that level defined by its characteristics. Through proper 
design techniques, this device can therefore limit the voltage appearing 

FIG. 3.37 
NTC (negative temperature coefficient) and PTC (positive 

temperature coefficient) thermistors.
(Library Book Collection/Alamy Stock Photo)
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FIG. 3.38 
Photoconductive cell: (a) characteristics.  

(b) symbol.

FIG. 3.39 
Photoconductive cells.
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across sensitive regions of a network. The current is simply limited by 
the network to which it is connected. A photograph of a number of com-
mercial units appears in Fig. 3.40(b).

3.19 APPLICATIONS
The following are examples of how resistance can be used to perform a 
variety of tasks, from heating to measuring the stress or strain on a sup-
porting member of a structure. In general, resistance is a component of 
every electrical or electronic application.

Electric Baseboard Heating Element

One of the most common applications of resistance is in household fix-
tures such as toasters and baseboard heating where the heat generated 
by current passing through a resistive element is employed to perform a 
useful function.

Recently, as we remodeled our house, the local electrician informed 
us that we were limited to 16 ft of electric baseboard on a single cir-
cuit. That naturally had me wondering about the wattage per foot, the 
resulting current level, and whether the 16-ft limitation was a national 
standard. Reading the label on the 2-ft section appearing in Fig. 3.41(a), 
I found VOLTS ac 240/208, WATTS 750/575 (the power rating is de-
scribed in Chapter 4), AMPS 3.2/2.8. Since my breaker panel is rated 
240 V (as are those in most residential homes), the wattage rating per 
foot is =750 W 2ft 375 W ft at a current of 3.2 A. The total wattage 
for the 16 ft is therefore ×16 375 W, or 6 kW.

In Chapter 4, you will find that the power to a resistive load is related 
to the current and applied voltage by the equation =P VI .  The total 
resulting current can then be determined using this equation in the fol-
lowing manner: = = =I P V 6000 W 240 V 25 A. The result was 
that we needed a circuit breaker larger than 25 A; otherwise, the circuit 
breaker would trip every time we turned the heat on. In my case, the 

(b)(a)

0 50 100 150 200 250

1

2

3

4

5
I (mA)

V

Fixed
resistor
R = 40 V

Varistor

[(b) Courtesy of Vishay Intertechnology]

FIG. 3.40 
Varistors available with maximum dc voltage ratings between 14 V and 895 V.
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electrician used a 32 A breaker to meet the National Fire Code require-
ment that does not permit exceeding 80% of the rated current for a con-
ductor or breaker. In most panels, a 30 A breaker takes two slots of the 
panel, whereas the more common 20 A breaker takes only one slot. If you 
have a moment, take a look in your own panel and note the rating of the 
breakers used for various circuits of your home.

Going back to Table 3.2, we find that the #12 wire commonly used 
for most circuits in the home has a maximum rating of 20 A and would 
not be suitable for the electric baseboard. Since #11 is usually not com-
mercially available, a #10 wire with a maximum rating of 30 A was used. 
You might wonder why the current drawn from the supply is 19.17 A 
while that required for one unit was only 2.8 A. This difference is due to 
the parallel combination of sections of the heating elements, a configura-
tion that will be described in Chapter 6. It is now clear why the require-
ment specifies a 16-ft limitation on a single circuit. Additional elements 
would raise the current to a level that would exceed the code level for 
#10 wire and would approach the maximum rating of the circuit breaker.

(b)

"Return" wire Protective thermal element
Oil-filled copper tubing

"Feed" wire

Heating fins

(c)

Special
connection

Metal jacket
and fins for
heat transfer

Nichrome
core

Ceramic
insulator

Feed wire

(d)

InsulatorNichrome coil

Metal jacket

(a)

FIG. 3.41 
Electric baseboard: (a) 2-ft section; (b) interior; (c) heating element; 

(d) nichrome coil.
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Fig. 3.41(b) shows a photo of the interior construction of the heating 
element. The red feed wire on the right is connected to the core of the 
heating element, and the black wire at the other end passes through a 
protective heater element and back to the terminal box of the unit (the 
place where the exterior wires are brought in and connected). If you look 
carefully at the end of the heating unit as shown in Fig. 3.41(c), you will 
find that the heating wire that runs through the core of the heater is not 
connected directly to the round jacket holding the fins in place. A ceramic 
material (insulator) separates the heating wire from the fins to remove 
any possibility of conduction between the current passing through the 
bare heating element and the outer fin structure. Ceramic materials are 
used because they are excellent conductors of heat. They also have a high 
retentivity for heat, so the surrounding area remains heated for a period of 
time even after the current has been turned off. As shown in Fig. 3.41(d), 
the heating wire that runs through the metal jacket is normally a nichrome 
composite (because pure nichrome is quite brittle) wound in the shape 
of a coil to compensate for expansion and contraction with heating and 
also to permit a longer heating element in standard-length baseboard. On 
opening the core, we found that the nichrome wire in the core of a 2-ft 
baseboard was actually 7 ft long, or a 3.5 : 1 ratio. The thinness of the 
wire was particularly noteworthy, measuring out at about 8 mils in diam-
eter, not much thicker than a hair. Recall from this chapter that the longer 
the conductor and the thinner the wire, the greater is the resistance. We 
took a section of the nichrome wire and tried to heat it with a reason      -
able level of current and the application of a hair dryer. The change in 
resistance was almost unnoticeable. In other words, all our efforts to in-
crease the resistance with the basic elements available to us in the lab were 
fruitless. This was an excellent demonstration of the meaning of the tem-
perature coefficient of resistance in Table 3.4. Since the coefficient is so 
small for nichrome, the resistance does not measurably change unless the 
change in temperature is truly significant. The curve in Fig. 3.11 would 
therefore be close to horizontal for nichrome. For baseboard heaters, this 
is an excellent characteristic because the heat developed, and the power 
dissipated, will not vary with time as the conductor heats up with time. 
The flow of heat from the unit will remain fairly constant.

The feed and return cannot be soldered to the nichrome heater wire for 
two reasons. First, you cannot solder nichrome wires to each other or to 
other types of wire. Second, if you could, there might be a problem because 
the heat of the unit could rise above °880 F at the point where the wires 
are connected, the solder could melt, and the connection could be broken. 
Nichrome must be spot welded or crimped onto the copper wires of the 
unit. Using Eq. (3.1) and the 8-mil measured diameter, and assuming pure 
nichrome for the moment, we find that the resistance of the 7-ft length is

ρ=R
l

A

( )( )

( )
=

Ω600 CM·
ft

7 ft

8 mils 2

(600)(7)
8

CM·
(mils)

4200
642 2

= Ω = Ω

=R 65 6 Ω.

In Chapter  4, a power equation will be introduced in detail relat-
ing power, current, and resistance in the following manner: =P I R.2  
Using the above data and solving for the resistance, we obtain
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=R P
I 2

( )
=

750 W

3.2 A 2

=R 73 24 Ω.

which is very close to the value calculated above from the geometric 
shape since we cannot be absolutely sure about the resistivity value for 
the composite.

During normal operation, the wire heats up and passes that heat on to 
the fins, which in turn heat the room via the air flowing through them. 
The flow of air through the unit is enhanced by the fact that hot air rises, 
so when the heated air leaves the top of the unit, it draws cold air from 
the bottom to contribute to the convection effect. Closing off the top 
or bottom of the unit would effectively eliminate the convection effect, 
and the room would not heat up. A condition could occur in which the 
inside of the heater became too hot, causing the metal casing also to get 
too hot. This concern is the primary reason for the thermal protective 
element introduced above and appearing in Fig. 3.41(b). The long, thin 
copper tubing in Fig. 3.41 is actually filled with an oil-type fluid that 
expands when heated. If it is too hot, it expands, depresses a switch in 
the housing, and turns off the heater by cutting off the current to the 
heater wire.

 Strain Gauges

Any change in the shape of a structure can be detected using strain 
gauges whose resistance changes with applied stress or flex. An example 
of a strain gauge is shown in Fig. 3.42. Metallic strain gauges are con-
structed of a fine wire or thin metallic foil in a grid pattern. The terminal 
resistance of the strain gauge will change when exposed to compression 
or extension. One simple example of the use of resistive strain gauges 
is to monitor earthquake activity. When the gauge is placed across an 
area of suspected earthquake activity, the slightest separation in the 
earth changes the terminal resistance, and the processor displays a re-
sult sensitive to the amount of separation. Another example is in alarm 
systems where the slightest change in the shape of a supporting beam 
when someone walks overhead results in a change in terminal resistance, 
and an alarm sounds. Other examples include placing strain gauges on 
bridges to monitor their rigidity and on very large generators to check 

(b) The strain gauge is bonded to the surface to be measured along the line
of force. When the surface lengthens, the strain gauge stretches.

Force

(a) Typical strain gauge configuration.

Terminals Resistive material

FIG. 3.42 
Resistive strain gauge.
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whether various moving components are beginning to separate because 
of a wearing of the bearings or spacers. The touch pad control within a 
computer keyboard can be a series of strain gauges that reveal the direc-
tion of compression or extension applied to the controlling interface on 
the keyboard. Movement in one direction can extend or compress a re-
sistance gauge, which can monitor and control the motion of the mouse 
on the screen.

– 408C to +1058C
5 lb/1000 ft

3.14 V

Diameter        in.1/32

FIG. 3.43 
Problem 9.

3 in.

1/2 in.
4 ft

FIG. 3.44 
Problem 11.

PROBLEMS

SECTION 3.2  Resistance: Circular Wires

 1. Convert the following to mils:
         a. 0.4 in.   b. 1/32 in.
         c. 1/5 in.   d. 20 mm
         e. 0.02 ft    f. 3 cm

 2. Calculate the area in circular mils (CM) of wires having the 
following diameter:

         a. 30 mils   b. 0.08 in.
         c. 1/16 in.   d. 2 cm
         e. 0.02 ft    f. 4 mm

 3. The area in circular mils is
          a. 1800 CM   b. 840 CM
          c. 42,000 CM  d. 2000 CM
          e. 8 .25 CM    f. ×6 10 CM3

What is the diameter of each wire in inches?

 4. What is the resistance of a copper wire 400 ft long and 
″0.032  in diameter ( )= °T 20 C ?

 5. a. What is the area in circular mils of an aluminum con-
ductor that is 80 ft long with a resistance of Ω2.5 ?

b. What is its diameter in inches?

 6. A Ω4.4  resistor is to be made of nichrome wire. If the avail-
able wire is 1/16 in. in diameter, how much wire is required?

 7. a. What is the diameter in inches of a copper wire that has 
a resistance of Ω3.3  and is as long as a football field 

T100 yd 20 C ?( )( )= °
b. Without working out the numerical solution, determine 

whether the area of an aluminum wire will be smaller or 
larger than that of the copper wire. Explain.

c. Repeat (b) for a silver wire.

 8. A wire 1200 ft long has a resistance of Ω0.6 k  and an area 
of 148 CM. Of what material is the wire made ( )= °T 20 C ?

 9. a. A contractor is concerned about the length of copper 
hookup wire still on the reel of Fig. 3.43. He measured 
the resistance and found it to be Ω3.14 . A tape measure 
indicated that the thickness of the stranded wire was 
about 1/32 in. What is the approximate length in feet?

b. What is the weight of the wire on the reel?
c. It is typical to see temperature ranges for materials listed 

in centigrade rather than Fahrenheit degrees. What is the 
range in Fahrenheit degrees? What is unique about the 
relationship between degrees Fahrenheit and degrees 
centigrade at − °40 C?

10. a. What is the cross-sectional area in circular mils of a 
rectangular copper bus bar if the dimensions are 5/8 in. 
by 5.8 in.?

b. If the area of the wire commonly used in house wiring 
has a diameter close to 1/10 in., how many wires would 
have to be combined to have the same area?

11. a. What is the resistance of a copper bus-bar for a high-rise 
building with the dimensions shown ( )= °T 20 C  in 
Fig. 3.44?

b. Repeat (a) for aluminum and compare the results.
c. Is the resistance of the bar of any concern whatsoever? 

Explain.

 12. Determine the increase in resistance of a copper conductor 
if the area is reduced by a factor of 4 and the length is dou-
bled. The original resistance was Ω0.2 . The temperature 
remains fixed.

 *13. What is the new resistance level of a copper wire if the 
length is changed from 400 ft to 200 yd, the area is changed 
from 50,000 CM to 0.06 in. ,2  and the original resistance 
was Ω900 m ?

SECTION 3.3  Wire Tables

 14. a. In construction the two most common wires employed 
in general house wiring are #12 and #14, although #12 
wire is the most common because it is rated at 20 A. 
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b. What is the resistance if it drops an additional °10  to 
°50 F?

c. Noting the results of parts (a) and (b), what is the drop for 
each part in milliohms? Is the drop in resistance linear or 
nonlinear? Can you forecast the new resistance if it drops 
to °40 F , without using the basic temperature equation?

 d. If the temperature drops to − °30 F  in northern Maine, 
find the change in resistance from the room temperature 
level of part (a). Is the change significant?

 e. If the temperature increases to °120 F  in Cairns, Austra-
lia, find the change in resistance from the room tempera-
ture of part (a). Is the change significant?

 23. a. The resistance of a copper wire is Ω2  at °20 C (room 
temperature). At what temperature ( )°C  will it be Ω2.2 ?

b. At what temperature will it be Ω0.2 ?

 24. a.  If the resistance of 1000 ft of wire is about Ω1  at room 
temperature( )°68 F , at what temperature will it double 
in value?

b. What gage wire was used?
c. What is the approximate diameter in inches, using the 

closest fractional form?

SECTION 3.6  Temperature Coefficient of Resistance

 25. a. Verify the value of α20  for copper in Table 3.4 by substi-
tuting the inferred absolute temperature into Eq. (3.7).

b. Using Eq. (3.8), find the temperature at which the resis-
tance of a copper conductor will increase to Ω1  from a 
level of Ω0.8  at °20 C.

 26. Using Eq. (3.8), find the resistance of a copper wire at °16 C  
if its resistance at °20 C is Ω0.4 .

 *27. Using Eq. (3.8), determine the resistance of a 1000-ft coil of 
#12 copper wire sitting in the desert at a temperature of 

°170 F .

SECTION 3.7  PPM/°C

 28. A Ω22  wire-wound resistor is rated at +200 PPM for a 
temperature range of − °10 C  to + °75 C. Determine its 
resistance at °65 C.

 29. A Ω100  wire-wound resistor is rated at +100 PPM for a 
temperature range of °0 C to + °100 C. Determine its resis-
tance at °50 C.

SECTION 3.8  Types of Resistors

 30. a. What is the approximate increase in size from a 1 W to 
a 2 W carbon resistor?

b. What is the approximate increase in size from a 1/2 W 
to a 2 W carbon resistor?

c. In general, can we conclude that for the same type of resis-
tor, an increase in wattage rating requires an increase in 
size (volume)? Is it almost a linear relationship? That is, 
does twice the wattage require an increase in size of 2:1?

 31. If the resistance between the outside terminals of a linear 
potentiometer is Ω20 k , what is its resistance between the 
wiper (movable) arm and an outside terminal if the resis-
tance between the wiper arm and the other outside terminal 
is Ω6.5 k ?

How much larger in area (by percent) is the #12 wire 
compared to the #14 wire?

b. The maximum rated current for #14 wire is 15 A. How 
does the ratio of maximum current levels compare to the 
ratio of the areas of the two wires?

 15. a. Compare the area of a #12 wire with the area of a #9 
wire. Did the change in area substantiate the general 
rule that a drop of three gage numbers results in a dou-
bling of the area?

b. Compare the area of a #12 wire with that of a #0 wire. 
How many times larger in area is the #0 wire compared 
to the #12 wire? Is the result significant? Compare it to 
the change in maximum current rating for each.

16. a. Compare the area of a #30 hookup wire to a #20 house 
romax wire. Did the change in area substantiate the gen-
eral rule that a drop of 10 gage numbers results in a ten-
fold increase in the area of the wire?

b. Compare the area of a #30 wire with that of a #40 wire. 
How many times larger in area is the #30 wire than the 
#40 wire? Did the result support the rule of part (a)?

17. a. For the system in Fig. 3.45, the resistance of each line 
cannot exceed Ω6 m , and the maximum current drawn 
by the load is 110 A. What minimum size gage wire 
should be used?

b. Repeat (a) for a maximum resistance of Ω =d3 m , 30 ft, 
and a maximum current of 110 A.

E Load

d  =  30 ft

Solid round copper wire

+

–

FIG. 3.45 
Problem 17.

*18. a. From Table 3.2, determine the maximum permissible 
current density (A/CM) for an AWG #000 wire.

b. Convert the result of (a) to A in.2

c. Using the result of (b), determine the cross-sectional 
area required to carry a current of 6000 A.

SECTIONS 3.4–3.5  Temperature Effects/Conductors 
and the Inferred Absolute Temperature Ti( )

 19. The resistance of a copper wire is Ω4  at room temperature 
( °20 C). What is its resistance at the freezing point of water 
( °0 C )?

 20. The resistance of a gold bus-bar is Ω0.01  at °0 C. What is 
its resistance at °80 C?

 21. The resistance of a copper wire is Ω2.6  at room tempera-
ture ( )°68 F . What is its resistance at a freezing temperature 
of °32 F?

 22. The resistance of a copper wire is Ω25 m  at a temperature 
of °70 F .
a. What is the resistance if the temperature drops °10  to 

°60 F?
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c. Is the relationship between the change in resistance and 
change in associated conductance an inverse linear rela-
tionship or an inverse nonlinear relationship?

 *43. The conductance of a wire is 400 S. If the area of the wire is 
increased by two-thirds and the length is reduced by the 
same amount, find the new conductance of the wire if the 
temperature remains fixed.

SECTION 3.12  Ohmmeters

 44. Why do you never apply an ohmmeter to a live network?

 45. How would you check the status of a fuse with an ohmmeter?

 46. How would you determine the on and off states of a switch 
using an ohmmeter?

 47. How would you use an ohmmeter to check the status of a 
light bulb?

SECTION 3.13  Resistance: Metric Units

  48. Using metric units, determine the length of a copper wire 
that has a resistance of Ω0.2  and a diameter of 1/12 in.

 49. Repeat Problem 11 using metric units; that is, convert the 
given dimensions to metric units before determining the 
resistance.

 50. If the sheet resistance of a tin oxide sample is Ω200 , what 
is the thickness of the oxide layer?

 51. Determine the width of a carbon resistor having a sheet 
resistance of Ω225  if the length is 1/2 in. and the resistance 
is Ω600 .

 *52. Derive the conversion factor between ρ( )ΩCM- ft  and 
ρ( )Ω-cm  by
a. Solving for ρ  for the wire in Fig. 3.46 in ΩCM- ft .
b. Solving for ρ  for the same wire in Fig. 3.46 in Ω-cm by 

making the necessary conversions.
e. Use the equation ρ ρ= k2 1 to determine the conversion 

factor k if ρ1 is the solution of part (a) and ρ2 the solu-
tion of part (b).

 32. If the wiper arm of a linear potentiometer is one-fourth the 
way around the contact surface, what is the resistance 
between the wiper arm and each terminal if the total resis-
tance is Ω2.5 k ?

 *33. Show the connections required to establish Ω4 k  between 
the wiper arm and one outside terminal of a Ω10 k  potenti-
ometer while having only zero ohms between the other out-
side terminal and the wiper arm.

SECTION 3.9  Color Coding and Standard  
Resistor Values

 34. Find the range in which a resistor having the following color 
bands must exist to satisfy the manufacturer’s tolerance:

1st band 2nd band 3rd band 4th band

a. gray red brown gold
b. red red brown silver
c. white brown orange —
d. white brown red gold
e. orange white green —

 35. Find the color code for the following 10% resistors:
          a.  Ω78    b. Ω0.66
          c. Ω44 k    d. Ω6.7 M

 36. a. Is there an overlap in coverage between 20% resistors? 
That is, determine the tolerance range for a Ω10 20% 
resistor and a Ω15 20% resistor, and note whether their 
tolerance ranges overlap.

b. Repeat part (a) for 10% resistors of the same value.

 37. Given a resistor coded green, blue, red, gold that measures 
Ω5.2 k , is it within tolerance? What is the tolerance 

range?

 38. a. How would Fig.  3.26(a) change if the resistors of 
Ω Ω47 , 68 , and Ω100  were changed to Ω Ω4.7 k , 6.8 k , 

and Ω10 k , respectively, if the tolerance remains the 
same.

b. How would Fig. 3.26(a) change if the resistors of Ω47 ,
Ω68 , and Ω100  were changed to Ω Ω4.7 M ,6.8 M , and 

Ω10 M , respectively, and the tolerance remained the 
same.

SECTION 3.10  Surface Mount Resistors

 39. Find the value of the following surface mount resistors:
          a. 721   b. 222
          c. Q4   d. C5

SECTION 3.11  Conductance

 40. Find the conductance of each of the following resistances:
          a. Ω220    b. Ω6 k
          c. Ω1.1 M    d.  Compare the three 

results.

 41. Find the conductance of 1000 ft of #12 AWG wire made of
a. copper b. aluminum

 42. a. Find the conductance of a Ω Ω10 ,20 , and 100 Ω resis-
tor in millisiemens.

b. How do you compare the rate of change in resistance to 
the rate of change in conductance?

R
1 in.

= 1 mV

1000 ft

FIG. 3.46 
Problem 52.

SECTION 3.15  Superconductors

 53. In your own words, review what you have learned about 
superconductors. Do you feel it is an option that will have 
significant impact on the future of the electronics industry, or 
will its use be very limited? Explain why you feel the way 
you do. What could happen that would change your opinion?

 54. Visit your local library and find a table listing the critical tempera-
tures for a variety of materials. List at least five materials with 
critical temperatures that are not mentioned in this text. Choose a 
few materials that have relatively high critical temperatures.

 55. Find at least one article on the application of superconducti-
vity in the commercial sector, and write a short summary, 
including all interesting facts and figures.

124 | | | ResestanR
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Color coding A technique using bands of color to indicate the 
resistance levels and tolerance of resistors.

Conductance (G) An indication of the relative ease with which cur-
rent can be established in a material. It is measured in siemens (S).

Cooper effect The “pairing” of electrons as they travel through 
a medium.

Ductility The property of a material that allows it to be drawn 
into long, thin wires.

Inferred absolute temperature The temperature through which 
a straight-line approximation for the actual resistance-versus- 
temperature curve intersects the temperature axis.

Malleability The property of a material that allows it to be 
worked into many different shapes.

Memristor Resistor whose resistance is a function of the cur-
rent through it; capable of remembering and retaining its last 
resistance value.

Negative temperature coefficient of resistance The value re-
vealing that the resistance of a material will decrease with an 
increase in temperature.

Ohm Ω( ) The unit of measurement applied to resistance.
Ohmmeter An instrument for measuring resistance levels.
Photoconductive cell A two-terminal semiconductor device 

whose terminal resistance is determined by the intensity of the 
incident light on its exposed surface.

Positive temperature coefficient of resistance The value re-
vealing that the resistance of a material will increase with an 
increase in temperature.

Potentiometer A three-terminal device through which potential 
levels can be varied in a linear or nonlinear manner.

PPM C°  Temperature sensitivity of a resistor in parts per million  
per degree Celsius.

Resistance A measure of the opposition to the flow of charge 
through a material.

Resistivity ρ( ) A constant of proportionality between the resis-
tance of a material and its physical dimensions.

Rheostat An element whose terminal resistance can be varied in 
a linear or nonlinear manner.

Sheet resistance Defined by ρ d  for thin-film and integrated 
circuit design.

Superconductor Conductors of electric charge that have for all 
practical purposes zero ohms.

Temperature coefficient of resistance A constant related to 
the inferred absolute temperature of a material that reveals 
how quickly the resistance of a conductor will change with 
temperature.

Thermistor A two-terminal semiconductor device whose resis-
tance is temperature sensitive.

Varistor A voltage-dependent, nonlinear resistor used to sup-
press high-voltage transients.

 *56. Using the required 1MA cm 2  density level for integrated 
circuit manufacturing, determine what the resulting current 
would be through a #12 house wire. Compare the result 
obtained with the allowable limit of Table 3.2.

 *57. Research the SQUID magnetic field detector and review its 
basic mode of operation and an application or two.

SECTION 3.16  Thermistors

 *58. a. Find the resistance of the thermistor having the charac-
teristics of Fig. 3.36 at − ° °50 C,50 C,  and °200 C. Note 
that it is a log scale. If necessary, consult a reference 
with an expanded log scale.

b. Does the thermistor have a positive or a negative tem-
perature coefficient?

c. Is the coefficient a fixed value for the range − °100 C  to 
°400 C? Why?

f. What is the approximate rate of change of ρ  with tem-
perature at °100 C?

SECTION 3.17  Photoconductive Cell

 59. a. Using the characteristics of Fig.  3.38, determine the 
resistance of the photoconductive cell at 10 and 100 
foot-candles of illumination. As in Problem 58, note that 
it is a log scale.

b. Does the cell have a positive or a negative illumination 
coefficient?

c. Is the coefficient a fixed value for the range 0.1 to 1000 
foot-candles? Why?

d. What is the approximate rate of change of R with illumi-
nation at 10 foot-candles?

 SECTION 3.18  Varistors

 60. a. Referring to Fig. 3.40(a), find the terminal voltage of 
the device at 0.5 mA, 1 mA, 3 mA, and 5 mA.

b. What is the total change in voltage for the indicated 
range of current levels?

c. Compare the ratio of maximum to minimum current 
levels above to the corresponding ratio of voltage  
levels.

GLOSSARY

Absolute zero The temperature at which all molecular motion 
ceases; − °273.15 C.

Circular mil (CM) The cross-sectional area of a wire having a 
diameter of 1 mil.
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  Ohm’s Law, Power,  
and Energy

 4.1 INTRODUCTION
Now that the three important quantities of an electric circuit have been introduced, this chap-
ter reveals how they are interrelated. The most important equation in the study of electric cir-
cuits is introduced, and various other equations that allow us to find power and energy levels 
are discussed in detail. It is the first chapter where we tie things together and develop a feeling 
for the way an electric circuit behaves and what affects its response. For the first time, the data 
provided on the labels of household appliances and the manner in which your electric bill is 
calculated will have some meaning. It is indeed a chapter that should open your eyes to a wide 
array of past experiences with electrical systems.

4.2 OHM’S LAW
As mentioned above, the first equation to be described is without question one of the most 
important to be learned in this field. It is referred as Ohm’s law (Fig. 4.1) to honor his efforts 
in the early 1800s to introduce and defend his conclusions about the relationship between the 
three most important elements of an electrical system. The relationship is so profound that it 
can be applied to any electrical system no matter how large or small—no boundaries at all—
from the largest power plant to the smallest micro chip network. It is almost shocking to read 
about how he suffered when he introduced his findings with loss of his professorship and was 
essentially banned from the educational community for some 22 years. Finally, his work was 
recognized as a significant contribution, and he was properly honored.

This law is not particularly difficult mathematically, but it is very powerful because it can 
be applied to any network in any time frame. That is, it is applicable to dc circuits, ac circuits, 
digital and microwave circuits, and, in fact, any type of applied signal. In addition, it can be 

•  Understand the importance of Ohm’s law and how 
to apply it to a variety of situations.

• Be able to plot Ohm’s law and understand how to 
“read” a graphical plot of voltage versus current.

• Become aware of the differences between power 
and energy levels and how to solve for each.

• Understand the power and energy flow of a 
system, including how the flow affects the 
efficiency of operation.

• Become aware of the operation of a variety of 
fuses and circuit breakers and where each is 
employed.

 Objectives

4 

V
I R
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applied over a period of time or for instantaneous responses. The equation 
can be derived directly from the following basic equation for all physical 
systems:

 =Effect cause
opposition

 (4.1)

Every conversion of energy from one form to another can be related 
to this equation. In electric circuits, the effect we are trying to establish 
is the flow of charge, or current. The potential difference, or voltage, 
between two points is the cause (“pressure”), and the opposition is the 
resistance encountered.

It is important at this point to reemphasize that it is the 
separation of charge to establish the emf or source voltage 
that creates the resulting current. The applied voltage is the 
starting point to establish the current in the system. The 
resulting current is the reaction to the application of voltage 
and not the “engine” that gets the system going. The current 
is a reaction, not the cause!!

An excellent analogy for the simplest of electrical circuits is the water 
in a hose connected to a pressure valve, as discussed in Chapter 2. Think 
of the electrons in the copper wire as the water in the hose, the pressure 
valve as the applied voltage, and the size of the hose as the factor that 
determines the resistance. If the pressure valve is closed, the water sim-
ply sits in the hose without a general direction, much like the oscillating 
electrons in a conductor without an applied voltage. When we open the 
pressure valve, water will flow through the hose much like the electrons 
in a copper wire when the voltage is applied. In other words, the absence 
of the “pressure” in one case and the voltage in the other simply results 
in a system without direction or reaction. The rate at which the water 
will flow in the hose is a function of the size of the hose. A hose with a 
very small diameter will limit the rate at which water can flow through 
the hose, just as a copper wire with a small diameter will have a high 
resistance and will limit the current.

In summary, therefore, the absence of an applied “pressure” such as 
voltage in an electric circuit will result in no reaction in the system and 
no current in the electric circuit. Current is a reaction to the applied volt-
age and not the factor that gets the system in motion. To continue with 
the analogy, the greater the pressure at the spigot, the greater is the rate 
of water flow through the hose, just as applying a higher voltage to the 
same circuit results in a higher current.

Substituting the terms introduced above into Eq. (4.1) results in

Current
potential difference

resistance
=

and ( )=I E
R

    amperes, A  (4.2)

Eq. (4.2) is known as Ohm’s law in honor of Georg Simon Ohm 
(Fig. 4.1). The law states that for a fixed resistance, the greater the volt-
age (or pressure) across a resistor, the greater is the current; and the 
greater the resistance for the same voltage, the lower is the current. In 
other words, the current is proportional to the applied voltage and in-
versely proportional to the resistance.

German (Erlangen, Cologne) (1789–1854)
Physicist and Mathematician
Professor of Physics, University of Cologne

In 1827, developed one of the most important laws 
of electric circuits: Ohm’s law. When the law was 
first introduced, the supporting documentation was 
considered lacking and foolish, causing him to lose 
his teaching position and search for a living doing 
odd jobs and some tutoring. It took some 22 years 
for his work to be recognized as a major contribu-
tion to the field. He was then awarded a chair at 
the University of Munich and received the Copley 
Medal of the Royal Society in 1841. His research 
also extended into the areas of molecular physics, 
acoustics, and telegraphic communication.

Science and Society/Superstock

FIG. 4.1 
Georg Simon Ohm.
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By simple mathematical manipulations, the voltage and resistance 
can be found in terms of the other two quantities:

 ( )=E IR    volts, V  (4.3)

and R E
I

    ohms, Ω( )=  (4.4)

All the quantities of Eq. (4.2) appear in the simple electrical circuit in 
Fig. 4.2. A resistor has been connected directly across a battery to estab-
lish a current through the resistor and supply. Note that

the symbol E is applied to sources of voltage

and

the symbol V is applied to voltage drops across components 
of the network.

Both are measured in volts and can be applied interchangeably in Eqs. (4.2)  
through (4.4).

Since the battery in Fig. 4.2 is connected directly across the resistor, 
the voltage VR  across the resistor must be equal to that of the supply. 
Applying Ohm’s law, we obtain

I
V
R

E
R

R= =

Note in Fig. 4.2 that the voltage source “pressures” current (conventional 
current) in a direction that leaves the positive terminal of the supply and 
returns to the negative terminal of the battery. In Fig. 4.2 a clockwise  
direction is shown. If you reverse the battery, the current will have a coun-
terclockwise direction. This will always be the case for single-source 
networks. (The effect of more than one source in the same network is 
investigated in a later chapter.) Note also that the current enters the pos-
itive terminal and leaves the negative terminal for the load resistor R.

For any resistor, in any network, the direction of current 
through a resistor will define the polarity of the voltage drop 
across the resistor

always from the high (+) potential to the low potential (−) as shown in 
Fig. 4.3 for two directions of current. Polarities as established by current 
direction become increasingly important in the analyses to follow.

EXAMPLE 4.1 Determine the current resulting from the application 
of a 9 V battery across a network with a resistance of 2.2 Ω.

Solution: Eq. (4.2):

I
V
R

E
R

V 4 09 A9 
2.2 Ω

.  R= = = =

EXAMPLE 4.2 Calculate the current through the 2 kΩ resistor in 
Fig. 4.4 if the voltage drop across it is 16 V.

Solution:

I V
R

8 mA16 V
2 10 Ω

 
3

= =
×

=

R

I

VE
+

–

+

–

FIG. 4.2 
Basic circuit.

V

RI

(a)

V

R I

(b)

FIG. 4.3 
Defining polarities.

16 V

2 kVI

FIG. 4.4 
Example 4.2.
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4.3 PLOTTING OHM’S LAW
Graphs, characteristics, plots, and the like play an important role in every 
technical field as modes through which the broad picture of the behavior 
or response of a system can be conveniently displayed. It is therefore 
critical to develop the skills necessary both to read data and to plot them 
in such a manner that they can be interpreted easily.

Any attempt to plot the characteristics of a device is totally dependent 
on first establishing a defined polarity and current for the device as 
shown at the top of Fig. 4.5. Without a defined set, it would be impossi-
ble to know where the plot point should be applied. In Fig. 4.6 the cur-
rent is the vertical axis and the voltage the horizontal axis with positive 
levels of current above the horizontal axis and negative levels below the 
horizontal axis. For the voltage, positive levels are to the right of the ver-
tical axis and negative levels are to the left of the vertical axis.

0

4

1 V I (mA)+–

V –+

8

–8

–4

5–10 –5

8 V

1 mA

+–

3 mA 4 mA

2 mA

I

2 V _+

6 V

10

_+

Defined polarity 
and direction

The Reference

V(volts)

III

III IV

FIG. 4.5 
Demonstrating the impact of defined voltage and current on a 

plot point.

Negative currents (currents with a direction opposite to the defined 
direction) would be relegated to plot points below the axis. Similarly, 
voltages with the same polarity as the defined polarity would have plot 
points to the right of the vertical axis while negative voltages would be 
relegated to the region to the left of the vertical axis.

If it turns out that the applied voltage across the device of Fig. 4.5 
has the same polarity as the defined polarity and the resulting current 
the same direction as the defined current, then the plot point is in the 
first quadrant (upper right). However, for the same applied voltage if the  
current has the opposite direction, then a negative sign must be associ-
ated with the current and the plot point would be in the fourth quadrant 
(lower right). If the polarity of the voltage applied across the device is 
opposite to the defined polarity and the resulting current is also opposite 
to the defined direction, then both the voltage and current must have 
a negative sign associated with each and the plot point is in the third 
quadrant (bottom left). If the applied voltage has the opposite direction 
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to the defined voltage but the resulting current has the same direction 
as the defined current, then the plot point must be placed in the second 
quadrant (top left).

In time the importance of taking note of the defined polarity and di-
rection when utilizing a device will become fairly obvious. Not only 
does it tell you how to properly hook up a device but also the various 
quadrants of the characteristics will reveal what to expect if the defined 
polarities or directions are ignored.

For most sets of characteristics of electronic devices, the current 
is represented by the vertical axis (ordinate) and the voltage by the 
 horizontal axis (abscissa), as shown in Figs. 4.5 and 4.6. First note that 
the vertical axis is in amperes and the horizontal axis is in volts. For 
some plots, I may be in milliamperes (mA), microamperes µ( )A , or 
whatever is appropriate for the range of interest. The same is true for the 
levels of voltage on the horizontal axis. Note also that the chosen param-
eters require that the spacing between numerical values of the vertical 
axis be different from that of the horizontal axis.

The linear (straight-line) graph reveals that the resistance 
is not changing with current or voltage level; rather, it is a 
fixed quantity throughout.

The current direction and the voltage polarity appearing at the top of 
Fig. 4.6 are the defined direction and polarity for the provided plot. For 
the standard fixed resistor, the first quadrant, or region, of Fig. 4.6 is the 
only region of interest. However, you will encounter many devices in 
your electronics courses that use the other quadrants of a graph.

Once a graph such as Fig.  4.6 is developed, the current or voltage 
at any level can be found from the other quantity by simply using the 
resulting plot. For instance, at V 25 V,=  if a vertical line is drawn 
on Fig. 4.6 to the curve as shown, the resulting current can be found by 
drawing a horizontal line over to the current axis, where a result of 5 A 
is obtained. Similarly, at V 10 V,=  drawing a vertical line to the plot 
and a horizontal line to the current axis results in a current of 2 A, as 
determined by Ohm’s law.

If the resistance of a plot is unknown, it can be determined at any 
point on the plot since a straight line indicates a fixed resistance. At any 
point on the plot, find the resulting current and voltage, and simply sub-
stitute into the following equation:

 =R V
Idc  (4.5)

To test Eq. (4.5), consider a point on the plot of Fig.  4.6 where  
=V 20 V and =I 4 A. The resulting resistance is R I20 Vdc = =  

20 V 4 A 5  .= Ω  For comparison purposes, a 1 Ω  and a 10 Ω resistor 
were plotted on the graph in Fig. 4.7. Note that the lower the resistance, 
the steeper is the slope (closer to the vertical axis) of the curve.

If we write Ohm’s law in the following manner and relate it to the 
basic straight-line equation:

= ⋅ +

↓ ↓ ↓ ↓

= ⋅ +

I
R

E

y m x b

1 0

       

V

RI
Defining direction

Defining polarity

I (amperes)

V
(volts)

302520151050

1

2

3

4

5

6

R = 5 V

FIG. 4.6 
Plotting Ohm’s law.

I (amperes)

V
(volts)

302520151050

1

2

3

4

5

6
R = 1 V

7

R = 10 V

FIG. 4.7 
Demonstrating on an I-V plot that the 

lower the resistance, the steeper is the 
slope.

M04_BOYL0302_14_GE_C04.indd   131M04_BOYL0302_14_GE_C04.indd   131 28/02/23   11:53 AM28/02/23   11:53 AM



132 | | | Ohm’s  Law,  awew, Land wawergy
V

I R

we find that the slope is equal to 1 divided by the resistance value, as 
indicated by the following:

 = = ∆
∆

= ∆
∆

=m
y
x

I
V R

slope 1  (4.6)

where ∆ signifies a small, finite change in the variable.
Eq. (4.6) reveals that the greater the resistance, the lower is the slope (on 

a current vertical voltage horizontal plot). If written in the following form, 
Eq. (4.6) can be used to determine the resistance from the linear curve:

 ( )= ∆
∆

R V
I

    ohms  (4.7)

The equation states that by choosing a particular ∆V  (or ∆I ), 
you can obtain the corresponding ∆I  (or ∆V , respectively) from the 
graph, as shown in Fig. 4.8, and then determine the resistance. If the 
plot is a straight line, Eq. (4.7) will provide the same result no matter 
where the equation is applied. However, if the plot curves at all, the 
resistance will change.

0

1

2

3

4

5

I (amperes)

V (volts)5 10 15 20 25

Resulting DI = 4 A – 3 A
= 1 A

Chosen DV  =  20 V – 15 V  =  5 V

30

6

DV
DI

5 V
1 A

=  5 VR  = =

FIG. 4.8 
Applying Eq. (4.7).

0

1

2

3

4

5

I (mA)

V (V)2 4 6 8 10

DI   =  1 mA

DV  =  2 V

FIG. 4.9 
Example 4.3.

EXAMPLE 4.3 Determine the resistance associated with the curve in 
Fig. 4.9 using Eqs. (4.5) and (4.7), and compare results.

Solution: At V I6 V,   3 mA,= =  and

R V
I

2 k6 V
3 mA

  Ωdc = = =

For the interval between 6 V and 8 V,

= ∆
∆

= =R V
I

2 k2 V
1 mA

  Ω

The results are equivalent.

Before leaving the subject, let us first investigate the characteristics of 
a very important semiconductor device called the diode, which will be 
examined in detail in basic electronics courses. This device ideally acts 
as a low-resistance path to current in one direction and a  high-resistance 
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path to current in the reverse direction, much like a switch that passes 
current in only one direction. A typical set of characteristics appears 
in Fig.  4.10. Without any mathematical calculations, the closeness of 
the characteristic to the voltage axis for negative values of applied volt-
age indicates that this is the low-conductance (high resistance, switch 
opened) region. Note that this region extends to approximately 0.7 V 
positive. However, for values of applied voltage greater than 0.7 V, the 
vertical rise in the characteristics indicates a high-conductivity (low 
 resistance, switch closed) region. Application of Ohm’s law will now 
verify the above conclusions.

At V 1 V,D = +

R
V
I

1 V
50 mA

1 V
50 10 A

20 ΩD

D
diode 3

= = =
×

=
−

 

( )a relatively low value for most applications

At V 1 V,D = −

µ
= = =R

V
I

1 V
1  A

1 MΩD

D
diode

( )∞which is often represented by an open-circuit ( Ω) equivalent

4.4 POWER
In general,

the term power is applied to provide an indication of how 
much work (energy conversion) can be accomplished in a 
specified amount of time; that is, power is a rate of doing 
work.

For instance, a large motor has more power than a smaller motor be-
cause it has the ability to convert more electrical energy into mechanical 
energy in the same period of time. Since energy is measured in joules (J) 
and time in seconds (s), power is measured in joules/second (J/s). The 
electrical unit of measurement for power is the watt (W), defined by

 1 watt  W 1 joule/second  J/s( ) ( )=  (4.8)

In equation form, power is determined by

 P W
t

   (watts, W, or joule/second, J/s)=  (4.9)

with the energy (W) measured in joules and the time t in seconds.
The unit of measurement—the watt—is derived from the surname of 

James Watt (Fig. 4.11), who was instrumental in establishing the stan-
dards for power measurements. He introduced the horsepower (hp) as a 
measure of the average power of a strong dray horse over a full working 
day. It is approximately 50% more than can be expected from the aver-
age horse. The horsepower and watt are related in the following manner:

≅1 horsepower 746 watts

0

ID (mA)

Low R

–1 0.7 1.0 2.0

60

50

40

30

20

10
VD

Very high R 

ID = –1 Am

FIG. 4.10 
Semiconductor diode 

characteristics.

Scottish (Greenock, Birmingham) (1736–1819)
Instrument Maker and Inventor
Elected Fellow of the Royal Society of  
London in 1785

In 1757, at the age of 21, used his innovative talents 
to design mathematical instruments such as the 
quadrant, compass, and various scales. In 1765, in-
troduced the use of a separate condenser to increase 
the efficiency of steam engines. In the following 
years, he received a number of important patents on 
improved engine design, including a rotary motion 
for the steam engine (versus the reciprocating 
action) and a double-action engine, in which the 
piston pulled as well as pushed in its cyclic motion. 
Introduced the term horsepower as the average 
power of a strong dray (small cart) horse over a full 
working day.

PRISMA ARCHIVO/Alamy Stock Photo

FIG. 4.11 
James Watt.
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The power delivered to, or absorbed by, an electrical device or system 
can be found in terms of the current and voltage by first substituting Eq. 
(2.4) into Eq. (4.9):

P W
t

QV
t

V Q
t

= = =

But

I Q
t

=

so that  ( )=P VI     watts, W  (4.10)

By direct substitution of Ohm’s law, the equation for power can be 
obtained in two other forms:

P VI V V
R( )= =

and ( )=P V
R

    watts, W
2

 (4.11)

or P VI IR I( )= =

and ( )=P I R    watts, W2  (4.12)

The result is that the power absorbed by the resistor in Fig.  4.12 
can be found directly, depending on the information available. In other 
words, if the current and resistance are known, it pays to use Eq. (4.12) 
directly, and if V and I are known, use of Eq. (4.10) is appropriate. It 
saves having to apply Ohm’s law before determining the power.

The power supplied by a battery can be determined by simply insert-
ing the supply voltage into Eq. (4.10) to produce

 ( )=P EI     watts, W  (4.13)

The importance of Eq. (4.13) cannot be overstated. It clearly states 
the following:

The power associated with any supply is not simply a function 
of the supply voltage. It is determined by the product of the 
supply voltage and its maximum current rating.

The simplest example is the car battery—a battery that is large, dif-
ficult to handle, and relatively heavy. It is only 12 V, a voltage level that 
could be supplied by a battery slightly larger than the small 9 V portable 
radio battery. However, to provide the power necessary to start a car, 
the battery must be able to supply the high surge current required at 
starting—a component that requires size and mass. In total, therefore, it 
is not the voltage or current rating of a supply that determines its power 
capabilities; it is the product of the two.

Throughout the text, the abbreviation for energy (W) can be distin-
guished from that for the watt (W) because the one for energy is in italics 
while the one for watt is in roman. In fact, all variables in the dc section 
appear in italics, while the units appear in roman.

EXAMPLE 4.4 Find the power delivered to the dc motor of Fig. 4.13.

Solution:

P EI 0 6 kW120 V 5 A 600 W .  ( )( )= = = =  

V

R

I

P

FIG. 4.12 
Defining the power to a 

resistive element.

5 A

120 V

Mechanical
horsepower
developed

Electrical
power
applied

FIG. 4.13 
Example 4.4.

M04_BOYL0302_14_GE_C04.indd   134M04_BOYL0302_14_GE_C04.indd   134 28/02/23   11:53 AM28/02/23   11:53 AM



wawergy | | | 135
V

I R

EXAMPLE 4.5 What is the power dissipated by a 5 Ω resistor if the 
current is 4 A?

Solutions:

P I R 80 W4 A 5 Ω  2 2 ( )( )= = =

EXAMPLE 4.6 The I V-  characteristics of a light bulb are provided 
in Fig. 4.14. Note the nonlinearity of the curve, indicating a wide range in 
resistance of the bulb with applied voltage. If the rated voltage is 120 V,  
find the wattage rating of the bulb. Also calculate the resistance of the 
bulb under rated conditions.

Solution: At 120 V,

I 0.625 A=

and P VI 75 W120 V)(0.625 A  ( )= = =

At 120 V,

R V
I

192120 V
0.625 A

 Ω= = =

Sometimes the power is given and the current or voltage must be de-
termined. Through algebraic manipulations, an equation for each vari-
able is derived as follows:

P I R I P
R

2 2= ⇒ =

and ( )=I P
R

    amperes, A  (4.14)

P V
R

V PR
2

2= ⇒ =

and V PR     volts, V( )=  (4.15)

EXAMPLE 4.7 Determine the current through a 5 kΩ resistor when 
the power dissipated by the element is 20 mW.

Solution: Eq. (4.14):

I P
R

20 10 W
5 10  Ω

4 10 2 10 A
3

3
6 3= = ×

×
= × = ×

−
− −

2 mA =

4.5 ENERGY
For power, which is the rate of doing work, to produce an energy con-
version of any form, it must be used over a period of time. For example, 
a motor may have the horsepower to run a heavy load, but unless the 
motor is used over a period of time, there will be no energy conversion. 
In addition, the longer the motor is used to drive the load, the greater will 
be the energy expended.

625

0 120 V (V)

higher R

I (mA)

lower R

FIG. 4.14 
The nonlinear I-V characteristics of a 

75 W light bulb (Example 4.6).

M04_BOYL0302_14_GE_C04.indd   135M04_BOYL0302_14_GE_C04.indd   135 28/02/23   11:53 AM28/02/23   11:53 AM



136 | | | Ohm’s  Law,  awew, Land wawergy
V

I R

The energy (W) lost or gained by any system is therefore determined by

 ( )=W Pt     wattseconds, Ws, or joules  (4.16)

Since power is measured in watts (or joules per second) and time in 
seconds, the unit of energy is the wattsecond or joule (note Fig. 4.15). 
The wattsecond, however, is too small a quantity for most practical pur-
poses, so the watthour (Wh) and the kilowatthour (kWh) are defined, as 
follows:

 ( ) ( )( )= ×Energy  Wh power W time  h  (4.17)

 ( )
( )( )

= ×
Energy  kWh

power  W time  h
1000

 (4.18)

Note that the energy in kilowatthours is simply the energy in watthours 
divided by 1000. To develop some sense for the kilowatthour energy level, 
consider that 1 kWh is the energy dissipated by a 100 W bulb in 10 h.

The kilowatthour meter is an instrument for measuring the energy 
supplied to the residential or commercial user of electricity. It is nor-
mally connected directly to the lines at a point just prior to entering the 
power distribution panel of the building. A typical set of dials is shown 
in Fig. 4.16, along with a photograph of an analog kilowatthour meter. 
As indicated, each power of ten below a dial is in kilowatthours. The 
more rapidly the aluminum disc rotates, the greater is the energy de-
mand. The dials are connected through a set of gears to the rotation of 
this disc. A solid-state digital meter with an extended range of capabili-
ties also appears in Fig. 4.16.

Science and Society/Superstock

FIG. 4.15 
James Prescott Joule.

[(a) Larry Roberg/Fotolia; (b) Pi-Lens/Shutterstock]

FIG. 4.16 

Kilowatthour meters: (a) analog; (b) digital.

(b)

British (Salford, Manchester) (1818–89)
Physicist
Honorary Doctorates from the Universities of 
Dublin and Oxford

Contributed to the important fundamental law of 
conservation of energy by establishing that various 
forms of energy, whether electrical, mechanical, or 
heat, are in the same family and can be exchanged 
from one form to another. In 1841 introduced 
Joule’s law, which stated that the heat developed 
by electric current in a wire is proportional to the 
product of the current squared and the resistance of 
the wire I R  .2( )  He further determined that the heat 
emitted was equivalent to the power absorbed, and 
therefore heat is a form of energy.

In recent years there has been growing interest in the smart meter 
of Fig.  4.17 that permits the real-time transfer of information to the 
power company on an individual’s power usage. The information can 
be transferred as often as every 15 minutes to permit adjustments in the 
distribution of power to various districts by the supplier. Because it is 
a wireless transfer of information, it eliminates the need for reading a 
meter on location each month, although the fact that it operates similarly 
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to a cell phone raises some privacy and health concerns. As with cell 
phones, however, there is ongoing research as to whether there are any 
real health issues to be concerned about. Smart meters are widely used 
in Europe with more than 40 million now in place. By 2020 there will be 
more than 100 million online.

Utility companies are supporting the product because it does provide 
real-time data on the demand and the location of that demand facilitat-
ing adjustments to power distribution in the community. Smart meters 
eliminate the need for estimated bills and individual homeowners can 
get a better grasp on their personal use so they can make adjustments 
if the power company offers discounts in certain periods of the day due 
to lower demand. Because of health concerns, legislation has been de-
veloped in some states where individuals have the right to determine 
whether they will have a smart meter or not. Only time will tell whether 
the benefits of the meter outweigh the privacy and health concerns.

EXAMPLE 4.8 For the dial positions in Fig. 4.16(a), calculate the 
electricity bill if the previous reading was 4650 kWh and the average 
cost in your area is 13¢ per kilowatthour.

Solution:

5360 kWh 4650 kWh 710 kWh used− =

92 30710  kWh 13¢
kWh

$ .( ) =

EXAMPLE 4.9 How much energy (in kilowatthours) is required to 
light a 60 W bulb continuously for 1 year (365 days)?

Solution:

( )( )( )
= = =W Pt

1000

60 W 24 h/day 365 days

1000
525,600 Wh

1000
525 60 kWh.  =

EXAMPLE 4.10 How long can a 340 W plasma TV be on before it 
uses more than 4 kWh of energy?

Solution:

( )
( )( )( ) ( )

= = = =W Pt in t hours W
P

11 76 h
1000

 results    1000 4 kWh 1000
340 W

.  

EXAMPLE 4.11 What is the cost of using a 5 hp motor for 2 h if the 
rate is 13¢ per kilowatthour?

Solution:

W Ptkilowatthours
1000

5 hp 746 W/hp 2 h
1000

7.46 kWh
( )

( )
( )

= =
×

=

96 98Cost 7.46 kWh 13¢/kWh . ¢( )( )= =

(Courtesy of Itron, Inc.)

FIG. 4.17 
Smart meter.
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EXAMPLE 4.12 What is the total cost of using all of the following 
at 13¢ per kilowatthour?

A 1200 W toaster for 30 min
Six 50 W bulbs for 4 h
A 500 W washing machine for 45 min
A 4300 W electric clothes dryer for 20 min
An 80 W PC for 6 h

Solution:

RESIDENTIAL SERVICE
Total electric utility industry
(including Alaska and Hawaii since 1960)
Average use per customer
and average revenue per kWh

1

2

3

4

5

6

7

8

Cents/kWh

1926 1930 1935 1940 1945 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995

kWh per customer

2000

Average revenue,
cents per kWh9

10

11

12

13

14

2005

10,000

11,000

1000

4000

5000

6000

7000

8000

9000

3000

2000

0
2010 2015 2020 2025

Average yearly use,
kWh per customer

FIG. 4.18 
Cost per kWh and average kWh per customer versus time.

W
1200 W 1

2
 h 6 50 W 4 h 500 W 3

4
h 4300 W 1

3
h 80 W 6 h

1000

( ) ( ) ( )( )( )( ) ( ) ( )( ) ( ) ( )

=
+ + + +

600 Wh 1200 Wh 375 Wh 1433 Wh 480 Wh
1000

4088 Wh
1000

= + + + + =

W 4.09 kWh=

53 2Cost 4.09 kWh 13¢/kWh . ¢( )( )= ≅

The chart in Fig. 4.18 shows the national average cost per kilowat-
thour compared to the kilowatthours used per customer. Note that the 
cost today is just above the level of 1926, but the average customer uses 
more than 20 times as much electrical energy in a year. Keep in mind 
that the chart in Fig. 4.18 is the average cost across the nation. Some 
states have average rates closer to 7¢  per kilowatthour, whereas others 
approach 20¢  per kilowatthour.

Table 4.1 lists some common household appliances with their typi-
cal wattage ratings. You might find it interesting to calculate the cost of 
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operating some of these appliances over a period of time, using the chart 
in Fig. 4.18 to find the cost per kilowatthour.

4.6 EFFICIENCY
A flowchart for the energy levels associated with any system that con-
verts energy from one form to another is provided in Fig. 4.19. Note that 
the output energy level must always be less than the applied energy due 
to losses and storage within the system. The best one can hope for is that 
Wout  and Win are relatively close in magnitude.

Conservation of energy requires that

Energy input =  energy output + energy used, lost, or stored by 
the system

Dividing both sides of the relationship by t gives

= +
W

t
W

t

W

t
in out used, lost, or stored by the system

TABLE 4.1  Typical wattage ratings of some common household items.

Appliance Wattage Rating

Air conditioner (room) 1400
Blow dryer 1300
Cellular phone:
 Standby 35 mW≅
 Talk 4.3 W≅
Clock 2
Clothes dryer (electric) 4300
Coffeemaker 900
Dishwasher 1200
Fan:
 Portable 90
 Window 200
Heater 1500
Heating equipment:
 Furnace fan 320
 Oil-burner motor 230
Iron, dry or steam 1000
Laptop computer:
Sleep 1< (typically 0.3 to 0.5)
Average use 80

Appliance Wattage Rating

Microwave oven 1200
Nintendo Wii 19
Radio 70
Range (self-cleaning) 12,200
Refrigerator (automatic defrost) 1800
Shaver 15
Sun lamp 280
Toaster 1200
Trash compactor 400
TV (50 in.):
 Plasma 340
 LCD 220
 LED 200
VCR/DVD 25
Washing machine 500
Water heater 4500
Xbox 360 187

Energy input
Win

Energy output
Wout

System

Energy
stored

Energy
used or lost

Wused, lost or stored

FIG. 4.19 
Energy flow through a system.
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Since =P W t/ ,  we have the following:

 = +P P P  (W)i o used, lost or stored  (4.19)

as depicted in Fig. 4.20.

System

stored

used or lost

Power input

Pi

Power

Power output

Po

Power

FIG. 4.20 
Power flow through a system.

The efficiency (η ) of the system is then determined by the following 
equation:

Efficiency
power output
power input

=

 η ( )=
P
P

  decimal numbero

i

 (4.20)

where η  (the lowercase Greek letter eta) is a decimal number. 
Expressed as a percentage,

 η ( )= ×
P
P

% 100%   percento

i

 (4.21)

The maximum possible efficiency is 100%, which occurs when 
P P ,o i=  or when the power used, lost or stored in the system is zero. 
Obviously, the greater the internal losses of the system in generating the 
necessary output power or energy, the lower is the net efficiency.

EXAMPLE 4.13 A 2 hp motor operates at an efficiency of 75%. 
What is the power input in watts? If the applied voltage is 220 V, what is 
the input current?

Solution:

P
P

% 100%o

i

η = ×

( )( )
=

P
 0.75

2 hp 746 W/hp

i

and P 1989 33 W1492 W
0.75

.  i = =

P EI I
P
E

9 04 Aor 1989.33 W
220 V

.  i
i= = = =

M04_BOYL0302_14_GE_C04.indd   140M04_BOYL0302_14_GE_C04.indd   140 28/02/23   11:53 AM28/02/23   11:53 AM



wFFICIwaCgy | | | 141
V

I R

EXAMPLE 4.14 What is the output in horsepower of a motor with 
an efficiency of 80% and an input current of 8 A at 120 V?

Solution:
P
P

% 100%o

i

η = ×

( )( )
=

P
A

0.80
120 V 8 

o

and P 0.80 120 V)(8 A 768 Wo ( )( )= =

with 1 03 hp768  W
1 hp

746  W
.  ( ) =

EXAMPLE 4.15 If 0.85,η =  determine the output power level if 
the applied power is 50 W.

Solution:

η η ( )( )= = = =
P
P

P P 42 5 Wso that  0.85 50 W .  o

i
o i

The very basic components of a generating (voltage) system are de-
picted in Fig. 4.21. The prime mover is a structure such as a paddlewheel 
that is turned by water rushing over the dam. The gear train ensures that 
the rotating member of the generator is turning at rated speed. The out-
put voltage must then be fed through a transmission system to the load. 
For each component of the system, an input and output power have been 
indicated. The efficiency of each system is given by

P

P

P

P

P

P
       o

i

o

i

o

i
1 2 3

1

1

2

2

3

3

η η η= = =

Generator

Prime mover

Load
Transmission system

Po2
Pi3

Po3

Pi2
Po1

Pi1

Gear train

3

1
2

RL

h
h

h

FIG. 4.21 
Basic components of a generating system.

If we form the product of these three efficiencies,

P

P

P

P

P

P

P

P
o

i

o

i

o

i

o

i
1 2 3

1

1

2

2

3

3

3

1

η η η⋅ ⋅ = ⋅ ⋅ =
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and substitute the fact that P Pi o2 1
=  and P P ,i o3 2

=  we find that the 
quantities indicated above will cancel, resulting in P P/ ,o i3 1

 which is a 
measure of the efficiency of the entire system.

In general, for the representative cascaded system in Fig. 4.22,

 η η η η η= ⋅ ⋅  ...  ntotal 1 2 3  (4.22)

n321h h h h

FIG. 4.22 
Cascaded system.

 EXAMPLE 4.16 Find the overall efficiency of the system in 
Fig. 4.21 if 90%,   85%,1 2η η= =  and 95%.3η =

Solution:

72 70.90 0.85 0.95 0.727,  or  . %T 1 2 3η η η η ( )( )( )= ⋅ ⋅ = =

EXAMPLE 4.17 If the efficiency 1η  drops to 40%, find the new 
overall efficiency and compare the result with that obtained in Example 
4.16.

Solution:

32 30.40 0.85 0.95 0.323,  or  . %T 1 2 3η η η η ( )( )( )= ⋅ ⋅ = =

Certainly 32.3% is noticeably less than 72.7%.

The total efficiency of a cascaded system is therefore deter-
mined primarily by the lowest efficiency (weakest link) and is 
less than the least efficient link of the system.

4.7 CIRCUIT BREAKERS, GFCIS, AND 
FUSES
The incoming power to any large industrial plant, heavy equipment, sim-
ple circuit in the home, or meters used in the laboratory must be limited 
to ensure that the current through the lines is not above the rated value. 
Otherwise, the conductors or the electrical or electronic equipment may 
be damaged, and dangerous side effects such as fire or smoke may result.

To limit the current level, fuses or circuit breakers are installed 
where the power enters the installation, such as in the panel in the base-
ment of most homes at the point where the outside feeder lines enter 
the dwelling. The fuses in Fig. 4.23 have an internal metallic conductor 
through which the current passes; a fuse begins to melt if the current 
through the system exceeds the rated value printed on the casing. Of 
course, if the fuse melts through, the current path is broken and the load 
in its path is protected.

In homes built in recent years, fuses have been replaced by circuit 
breakers such as those appearing in Fig. 4.24. When the current exceeds 
rated conditions, an electromagnet in the device will have sufficient 
strength to draw the connecting metallic link in the breaker out of the 
circuit and open the current path. When conditions have been corrected, 
the breaker can be reset and used again.
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The most recent National Electrical Code requires that outlets in the 
bathroom and other sensitive areas be of the ground fault circuit inter-
rupt (GFCI) variety; GFCIs (often abbreviated GFI) are designed to trip 
more quickly than the standard circuit breaker. The commercial unit in 
Fig. 4.25 trips in 5 ms. It has been determined that 6 mA is the maxi-
mum level that most individuals can be exposed to for a short period 
of time without the risk of serious injury. A current higher than 11 mA 
can cause involuntary muscle contractions that could prevent a person 
from letting go of the conductor and possibly cause him or her to enter a 
state of shock. Higher currents lasting more than a second can cause the 
heart to go into fibrillation and possibly cause death in a few minutes. 
The GFCI is able to react as quickly as it does by sensing the difference 
between the input and output currents to the outlet; the currents should 
be the same if everything is working properly. An errant path, such as 
through an individual, establishes a difference in the two current levels 
and causes the breaker to trip and disconnect the power source.

4.8 APPLICATIONS
Fluorescent versus CFL and LED Bulbs

Just a few short years ago the general consensus regarding light bulbs was 
that the compact fluorescent bulb (CFL) was clearly the direction to go 
due primarily to the reduced energy requirement as compared to the in-
candescent bulb. A host of benefits associated with the crossover left little 
doubt that this was the direction of the future. Countries such as Japan 
had already moved forward with the transition and were at an 80% level 
with 100% the goal in a few years. The European Union was also moving 
forward with this new direction by setting dates for 100% usage over the 
next decade. The United States agreed with the plan, set dates for the dis-
continuance of various types of incandescent lamps, and prepared to make 
the move to 100% CFLs at the earliest opportunity. All seemed to be set 
in a singular direction—incandescents out, CFLs in! Then the unexpected 
quietly surfaced. Although light-emitting diodes (LEDs) have been around 
since 1961, they were not considered a viable option until recently because 
of their cost, light-producing qualities, and the unavailability of a variety 
of wattage ratings. However, through exhaustive research and design, the 
cost has dropped to the point where it is now a close match with CFLs but 
with a number of enhanced characteristics. Recent production data reveals 
that demand for CFLs is dropping off precipitously while that of LEDs 

FIG. 4.23 
Fuses: (a) CC-TRON® (0–10 A); (b) Semitron (0–600 A);  

(c) subminiature surface-mount chip fuses.

(a) (b) (c)

(Robert Asento/Shutterstock)

FIG. 4.24 
Circuit breakers.

(The Toidi/Shutterstock)

FIG. 4.25 
Ground fault circuit 

interrupter (GFCI): 125 V ac, 
60 Hz, 15 A outlet.

Reset

Test
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is growing very quickly. This suggests that the production of CFLs may 
eventually end altogether. One always must be flexible to changing envi-
ronments and be willing to accept errors in judgement. However, CFLs 
are a big savings in energy compared to incandescents and in general may 
remain a bit cheaper than LEDs. However, if a choice must be made and 
the type and wattage are available, then in the long run it might be best to 
strongly consider using an LED as a light source.

Saving energy is still a primary goal as we try to cut back on the energy 
required to produce the light-emission requirements of our daily lives.

A comparison of the light (in lumens) emitted by incandescent and 
LED bulbs is provided in Table  4.2. The lumen is a measure of the 
amount of light visible to the naked eye in a specific area: the brighter the 
light, the higher the number of lumens. In particular, note that the 60 W 
incandescent bulb has less lumens than an 8 W LED. That is almost 1/7 
the wattage requirement but with an increased number of lumens—good 
reason to concur with this switch to LEDs to cut our light-emitting energy 
drain. It is amazing to see how much energy can be saved using the LED. 
Fortunately, the energy savings appears to continue throughout Table 4.2. 
A 5 W LED provides about the same lumens as a 40 W incandescent bulb 
(1/8 ratio) and a 16 W LED is the same as a 100 W incandescent bulb 
(1/6 ratio). Be aware that the data in Table 4.2 are approximate for com-
paring the three types of bulbs. Depending on the manufacturer and the 
usage of the bulb, there will be some variation from the levels appearing 
in Table 4.2. Be assured, however, that they do reflect the general levels 
of wattage required by each type of bulb for the same output in lumens.

With any light source there are certainly other factors to consider 
when purchasing light bulbs for the home or business. One of the most 
important factors is the quality of the light source: Is it easy on the eyes? 
Does it match the daylight frequency spectrum? The general consensus 
of those who spend many hours working under artificial light appears 
to be that incandescent light is still the best with its warmth, dispersion, 
soft textures, and close correspondence to natural light. Many have 
made it a point to stockpile incandescents to be sure they have a pleas-
ant working environment. At first, the light associated with LEDs was 
often described as harsh, too bright, and cold. However, vendors such 
as Philips have accepted this criticism and introduced inventive ways to 
bring a warm glow to the light by introducing phosphor inside the globe 
and clustering a number of LEDs in the base of a bulb to improve the 
dispersion of light inside the bulb. Diffuser lenses were also added along 
with dimpled lenses to spread out the light from the bulb. In any event, 
it appears the manufacturers are working on developing a functional 
“cool” white light for task lighting and a softer warm light for mood and 
general lighting that will be welcome by artisans and the general public 
and avoid the need to stockpile energy-hungry incandescents.

The cost factor is always an important element in the decision-making 
process. For LEDs, the cost has dropped considerably in recent years. LEDs 
that once cost up to $20 for an 8 W (60 W incandescent equivalent) bulb have 
now dropped to less than $2 in some cases. Of course, the quality, available 
lumens, and lifetime will definitely vary with the price and manufacturer.

Incandescents certainly suffer competitively when it comes to life-
times averaging only 1200 hours. LEDs have lifetimes that typically vary 
from 25,000 to 50,000 hours. Combining the cost per unit with the life-
time clearly shows that LEDs are the cheapest in the long run if the units 
truly meet their specified lifetimes. At this point, LEDs have not been in 
use long enough to develop any conclusive comments on their average 

0
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Incandescent Lumens LED

1500
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15 W

25 W

40 W

60 W

75 W

100 W

20 W

5 W

6 W

8 W

9 W

13 W

16 W

TABLE 4.2 Comparing the power 
drain levels of incandescent and LED 

bulbs for similar lumen levels
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lifetimes but the provided lifetime does give some indication of how long 
each is expected to function. Recent data suggests that the failure rate is 
a definite function of the quality of the construction of the electronic 
control element in LEDs. For LEDs, it is not the LEDs themselves but 
the surrounding electronic components that introduce problems.

Another important advantage of LED lighting is the fact that LEDs 
operate at a lower temperature than incandescents. The heat emitted by 
an incandescent is about 85 Btu/hour, and an LED about 3.4 Btu/hour. 
This can be an important factor in a home or business with an extensive 
number of bulbs in that it can affect air-conditioning costs. The construc-
tion clearly shows that the LED casing is stronger than the incandescent 
bulb, LEDs do contain trace amounts of arsenic, but it is used in the 
construction of the p-n junction and not in a gaseous form inside the en-
velope of the bulb. The presence of arsenic does require careful disposal 
of broken bulbs or those not operating properly. Additional advantages 
of LEDs include the fact that they can be built in a variety of sizes from 
the very small to the very large and many are dimmable.

One of the interesting results of this growing list of options is that 
the Federal Trade Commission (FTC) has now determined that the first 
criteria in choosing a bulb should not be, as it was for years, simply 
choosing the wattage rating but to first look at the lumen output level 
for the bulb. As indicated earlier, the higher the lumen rating of a bulb, 
the higher the intensity of the light. If you find there are two LED bulbs 
listed as equivalent to a 60 W incandescent bulb, then the one with the 
highest lumen level of perhaps 950 lumens at 9 W should be chosen if 
a high-intensity light is needed for some task usage. If lighting is more 
for atmosphere, then perhaps the 750 lumens at 7 W should be chosen. 
In total, therefore, the average customer when shopping for bulbs has 
to be aware of the desired lumens rating rather than the wattage. If you 
want a very bright bulb for an area that needs full light, you may need 
a bulb with a 1600 lumens output. Then find the bulb that has a lumens 
rating closest to 1600 lumens and let the wattage rating fall where it 
may. The result may be a 16 W LED, which has a lumens level just less 
than that of a 100 W incandescent bulb. Art museums are now looking 
very seriously at the use of LED lighting since the softness issue has 
been addressed because they don’t radiate the heat (as do incandescent 
bulbs) that can damage paintings or the ultraviolet light rays of fluores-
cent lights that can also damage artwork.

The LED bulb has the basic appearance and construction provided in 
Fig. 4.26. Note again the size of the electronic control element of the bulb, 
which obviously affects its manufacturing cost. Clearly the transformer and 
electrolytic capacitor are the largest components. In this case, however, the 
circuitry is not acting as a firing mechanism but is controlling the current 
through the LED electronic components that appear in a cluster on the 
printed circuit board at the far right of the picture to ensure the best avail-
able light emission. The details of LED construction will be left for an elec-
tronics course, but let it be said here that two materials of different compo-
sition, when energized, give off light at the junction of the two materials.

Microwave Oven

It is probably safe to say that most homes today have a microwave 
oven (see Fig.  4.27). Most users are not concerned with its operating 
efficiency. However, it is interesting to learn how the units operate and 
apply some of the theory presented in this chapter.

FIG. 4.26 

LED bulb.
(Don Johnson Photo)

8 W LED (60 W incandescent equivalent)

Control elements

Transformer

Phosphor- 
coated 
globe 

Cluster of 
LEDs

Base

Electrolytic 
capacitor
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First, some general comments. Most microwaves are rated at 500 W 
to 1200 W at a frequency of 2.45 GHz (almost 2.5 billion cycles per 
second, compared to the 60 cycles per second for the ac voltage at the 
typical home outlet—details in Chapter 13). The heating occurs because 
the water molecules in the food are vibrated at such a high frequency 
that the friction with neighboring molecules causes the heating effect. 
Since it is the high frequency of vibration that heats the food, there is 
no need for the material to be a conductor of electricity. However, any 
metal placed in the microwave can act as an antenna (especially if it has 
any points or sharp edges) that will attract the microwave energy and 
reach very high temperatures. In fact, a browning skillet is now made 
for microwaves that has some metal embedded in the bottom and sides 
to attract the microwave energy and raise the temperature at the surface 
between the food and skillet to give the food a brown color and a crisp 
texture. Even if the metal did not act as an antenna, it is a good conductor 
of heat and could get quite hot as it draws heat from the food.

Any container with low moisture content can be used to heat foods 
in a microwave. Because of this requirement, manufacturers have devel-
oped a whole line of microwave cookware that is very low in moisture 
content. Theoretically, glass and plastic have very little moisture content, 
but even so, when heated in the oven for a minute or so, they do get 
warm. It could be the moisture in the air that clings to the surface of each 
or perhaps the lead used in good crystal. In any case, microwaves should 
be used only to prepare food. They were not designed to be dryers or 
evaporators.

The instructions with every microwave specify that the oven should 
not be turned on when empty. Even though the oven may be empty, mi-
crowave energy will be generated and will make every effort to find a 
channel for absorption. If the oven is empty, the energy might be at-
tracted to the oven itself and could do some damage. To demonstrate that 
a dry empty glass or plastic container will not attract a significant amount 
of microwave energy, place two glasses in an oven, one with water and 
the other empty. After 1 min, you will find the glass with the water quite 
warm due to the heating effect of the hot water while the other is close 
to its original temperature. In other words, the water created a heat sink 
for the majority of the microwave energy, leaving the empty glass as a 
less attractive path for heat conduction. Dry paper towels and plastic 
wrap can be used in the oven to cover dishes since they initially have low 
water molecule content, and paper and plastic are not good conductors 
of heat. However, it would be very unsafe to place a paper towel in an 

FIG. 4.27 
Microwave oven.
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oven alone because, as said above, the microwave energy will seek an 
absorbing medium and could set the paper on fire.

The cooking of food by a conventional oven is from the outside in. 
The same is true for microwave ovens, but they have the additional ad-
vantage of being able to penetrate the outside few centimeters of the 
food, reducing the cooking time substantially. The cooking time with a 
microwave oven is related to the amount of food in the oven. Two cups 
of water will take longer to heat than one cup, although it is not a lin-
ear relationship, so it will not take twice as long—perhaps 75% to 90% 
longer. Eventually, if you place enough food in the microwave oven and 
compare the longer cooking time to that with a conventional oven, you 
will reach a crossover point at which it would be just as wise to use a 
conventional oven and get the texture in the food you might prefer.

The basic construction of the microwave oven is depicted in Fig. 4.27. 
It uses a 120 V ac supply, which is then converted through a high-voltage 
transformer to one having peak values approaching 5000 V (at substan-
tial current levels)—sufficient warning to leave microwave repair to the 
local service location. Through the rectifying process briefly described 
in Chapter  2, a high dc voltage of a few thousand volts is generated 
that appears across a magnetron. The magnetron, through its very spe-
cial design (currently the same design as in World War II, when it was 
invented by the British for use in high-power radar units), generates the 
required 2.45 GHz signal for the oven. It should be pointed out also that 
the magnetron has a specific power level of operation that cannot be 
controlled—once it’s on, it’s on at a set power level. One may then won-
der how the cooking temperature and duration can be controlled. This is 
accomplished through a controlling network that determines the amount 
of off and on time during the input cycle of the 120 V supply. Higher 
temperatures are achieved by setting a high ratio of on to off time, while 
low temperatures are set by the reverse action.

For the magnetron, there is a Duty/Cycle time that specifies the length 
of time the magnetron is on divided by the time base. A typical time base 
for a residential microwave oven is 10 seconds or longer. A 50% duty 
cycle for residential microwave means the magnetron is on 5 seconds 
and off 5 seconds. If a 10% duty cycle the microwave would only be on 
1 second for a 10 second time base.

One unfortunate characteristic of the magnetron is that in the conver-
sion process, it generates a great deal of heat that does not go toward the 
heating of the food and that must be absorbed by heat sinks or dispersed 
by a cooling fan. Typical conversion efficiencies are between 55% and 
75%. Considering other losses inherent in any operating system, it is 
reasonable to assume that most microwaves are between 50% and 60% 
efficient. However, the conventional oven with its continually operating 
exhaust fan and heating of the oven, cookware, surrounding air, and so 
on also has significant losses, even if it is less sensitive to the amount of 
food to be cooked. All in all, convenience is probably the other factor 
that weighs the heaviest in this discussion. It also leaves the question of 
how our time is figured into the efficiency equation.

For specific numbers, let us consider the energy associated with bak-
ing a 5-oz potato in a 1200 W microwave oven for 5 min if the conver-
sion efficiency is an average value of 55%. First, it is important to realize 
that when a unit is rated as 1200 W, that is the rated power drawn from 
the line during the cooking process. If the microwave is plugged into a 
120 V outlet, the current drawn is

I P V 1200 W 120 V 10.0 A= / = / =
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which is a significant level of current. Next, we can determine the 
amount of power dedicated solely to the cooking process by using the 
efficiency level. That is,

P
P

o

i

η =

So that P P 0.55 1200 W 660 Wo iη ( )( )= = =

The energy transferred to the potato over a period of 5 min can then be 
determined from

W Pt 660 W 5 min 60 s 1 min 198 kJ( )( )( )= = / =

which is about half of the energy (nutritional value) derived from eating 
a 5-oz potato. The number of kilowatthours drawn by the unit is deter-
mined from

W Pt 1000 1200 W 5 60 h 1000 0.1 kWh( )( )= / = / / =

At a rate of 10¢/kWh we find that we can cook the potato for 1 penny—
relatively speaking, pretty cheap. A typical 1550 W toaster oven would 
take an hour to heat the same potato, using 1.55 kWh and costing 15.5 
cents—a significant increase in cost.

Household Wiring

A number of facets of household wiring can be discussed without exam-
ining the manner in which they are physically connected. In the following 
chapters, additional coverage is provided to ensure that you develop a solid 
fundamental understanding of the overall household wiring system. At the 
very least you will establish a background that will permit you to answer 
questions that you should be able to answer as a student of this field.

The one specification that defines the overall system is the maximum 
current that can be drawn from the power lines since the voltage is fixed 
at 120 V or 240 V (occasionally 208 V). For most older homes with a 
heating system other than electric, a 100 A service is the norm. Today, 
with all the electronic systems becoming commonplace in the home, 
many people are opting for the 200 A service even if they do not have 
electric heat. A 100 A service specifies that the maximum current that 
can be drawn through the power lines into your home is 100 A. Using the 
line-to-line rated voltage and the full-service current (and assuming all 
resistive-type loads), we can determine the maximum power that can be 
delivered using the basic power equation:

P EI (240 V)(100 A) 24,000 W 24 kW= = = =

This rating reveals that the total rating of all the units turned on in the 
home cannot exceed 24 kW at any one time. If it did, we could expect the 
main breaker at the top of the power panel to open. Initially, 24 kW may 
seem like quite a large rating, but when you consider that a self-cleaning 
electric oven may draw 12.2 kW, a dryer 4.8 kW, a water heater 4.5 kW, 
and a dishwasher 1.2 kW, we are already at 22.7 kW (if all the units are 
operating at peak demand), and we have not turned the lights or TV on 
yet. Obviously, the use of an electric oven alone may strongly suggest 
considering a 200 A service. However, seldom are all the burners of a 
stove used at once, and the oven incorporates a thermostat to control the 
temperature so that it is not on all the time. The same is true for the water 
heater and dishwasher, so the chances of all the units in a home demand-
ing full service at the same time is very slim. Certainly, a typical home 
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with electric heat that may draw 16 kW just for heating in cold weather 
must consider a 200 A service. You must also understand that there is 
some leeway in maximum ratings for safety purposes. In other words, 
a system designed for a maximum load of 100 A can accept a slightly 
higher current for short periods of time without significant damage. For 
the long term, however, the limit should not be exceeded.

Changing the service to 200 A is not simply a matter of changing 
the panel in the basement—a new, heavier line must be run from the 
road to the house. In some areas, feeder cables are aluminum because of 
the reduced cost and weight. In other areas, aluminum is not permitted 
because of its temperature sensitivity (expansion and contraction), and 
copper must be used. In any event, when aluminum is used, the contrac-
tor must be absolutely sure that the connections at both ends are very 
secure. The National Electric Code specifies that 100 A service must 
use a #4 AWG copper conductor or #2 aluminum conductor. For 200 A 
service, a 2/0 copper wire or a 4/0 aluminum conductor must be used, 
as shown in Fig. 4.28(a). A 100 A or 200 A service must have two lines 
and a service neutral as shown in Fig. 4.28(b). Note in Fig. 4.28(b) that 
the conductors are coated and insulated from each other, and the ser-
vice neutral is spread around the inside of the wire coating. At the ter-
minal point, all the strands of the service neutral are gathered together 
and securely attached to the panel. It is fairly obvious that the cables of 
Fig. 4.28(a) are stranded for added flexibility.

Within the system, the incoming power is broken down into a number 
of circuits with lower current ratings utilizing 15 A, 20 A, 30 A, and 40 A  
protective breakers. Since the load on each breaker should not exceed 80% 
of its rating, in a 15 A breaker the maximum current should be limited to 
80% of 15 A, or 12 A, with 16 A for a 20 A breaker, 24 A for a 30 A breaker, 
and 32 A for a 40 A breaker. The result is that a home with 200 A service 
can theoretically have a maximum of 12 circuits 200 A/16 A 12.5( )=  
utilizing the 16 A maximum current ratings associated with 20 A breakers. 
However, if they are aware of the loads on each circuit, electricians can 
install as many circuits as they feel appropriate. The code further specifies 
that a #14 wire should not carry a current in excess of 15 A, a #12 in excess 
of 20 A, and a #10 in excess of 30 A. Thus, #12 wire is now the most com-
mon for general home wiring to ensure that it can handle any excursions 
beyond 15 A on the 20 A breaker (the most common breaker size). The 
#14 wire is often used in conjunction with the #12 wire in areas where it is 
known that the current levels are limited. The #10 wire is typically used for 
high-demand appliances such as dryers and ovens.

FIG. 4.28 
200 A service conductors: (a) 4/0 aluminum and 2/0 copper; (b) three-wire 4/0 

aluminum service.
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The circuits themselves are usually broken down into those that 
provide lighting, outlets, and so on. Some circuits (such as ovens and  
dryers) require a higher voltage of 240 V, obtained by using two power 
lines and the neutral. The higher voltage reduces the current require-
ment for the same power rating, with the net result that the appliance can 
usually be smaller. For example, the size of an air conditioner with the 
same cooling ability is measurably smaller when designed for a 240 V 
line than when designed for 120 V. Most 240 V lines, however, demand 
a current level that requires 30 A or 40 A breakers and special outlets to 
ensure that appliances rated at 120 V are not connected to the same out-
let. Check the panel in your home and note the number of circuits—in 
particular, the rating of each breaker and the number of 240 V lines in-
dicated by breakers requiring two slots of the panel. Determine the total 
of the current ratings of all the breakers in your panel, and explain, using 
the above information, why the total exceeds your feed level.

For safety sake, grounding is a very important part of the electrical 
system in your home. The National Electric Code requires that the neu-
tral wire of a system be grounded to an earth-driven rod, a metallic water 
piping system of 10 ft or more, or a buried metal plate. That ground is 
then passed on through the electrical circuits of the home for further pro-
tection. In a later chapter, the details of the connections and grounding 
methods are discussed.

PROBLEMS

 SECTION 4.2  Ohm’s Law

 1. What is the voltage across a 220 Ω  resistor if the current 
through it is 5.6 mA?

 2.  What is the current through a 2.2 kΩ  resistor if the voltage 
drop across it is 24 V?

 3.  How much resistance is required to limit the current to 1.5 
mA if the potential drop across the resistor is 24 V?

 4. At starting, what is the current drain on a 12 V car battery if 
the resistance of the starting motor is 40 mΩ?

 5.  If the current through a 200 kΩ resistor is µ5.0  A,  what is 
the voltage drop across the resistor?

 6.  If a voltmeter has an internal resistance of 50 kΩ,  find the 
current through the meter when it reads 120 V.

 7. If a refrigerator draws 2.2 A at 120 V, what is its resistance?

 8. If a clock has an internal resistance of 7 kΩ, find the current 
through the clock if it is plugged into a 110 V outlet.

 9.  A washing machine is rated at 4.6 A at 150 V. What is its 
internal resistance?

 10.  A CD player draws 80 mA when 4.5 V is applied. What is 
the internal resistance?

 11.  The input current to a transistor is µ30  A. If the applied 
(input) voltage is 36 mV, determine the input resistance of 
the transistor.

 12.  The internal resistance of a dc generator is 0.8 Ω. Deter-
mine the loss in terminal voltage across this internal resis-
tance if the current is 14 A.

 *13.  a. If an electric heater draws 9.5 A when connected to a 
120 V supply, what is the internal resistance of the 
heater?

b. Using the basic relationships of Chapter 2, determine 
how much energy in joules (J) is converted if the heater 
is used for 2 h during the day.

 14.  In a TV camera, a current of 8.4 μA passes through a resis-
tor of 4.2 MΩ. What is the voltage drop across the resistor?

SECTION 4.3  Plotting Ohm’s Law

 15. a. Plot the curve of I (vertical axis) versus V (horizontal 
axis) for a 120 Ω  resistor. Use a horizontal scale of 0 to 
100 V and a vertical scale of 0 to 1 A.

b. Using the graph of part (a), find the current at a voltage 
of 20 V.

 16. a. Plot the I-V curve for a 5 Ω  and a 20 Ω  resistor on the 
same graph. Use a horizontal scale of 0 to 40 V and a 
vertical scale of 0 to 2 A.

b. Which is the steeper curve? Can you offer any general 
conclusions based on results?

c. If the horizontal and vertical scales were interchanged, 
which would be the steeper curve?

 17. a. Plot the I-V characteristics of a 1 Ω,  100 Ω, and 1000 Ω  
resistor on the same graph. Use a horizontal axis of 0 to 
100 V and a vertical axis of 0 to 100 A.

b. Comment on the steepness of a curve with increasing 
levels of resistance.

 *18.  Sketch the internal resistance characteristics of a device that 
has an internal resistance of 20 Ω  from 0 to 10 V, an inter-
nal resistance of 4 Ω  from 10 V to 15 V, and an internal 
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SECTION 4.5  Energy

 37. A 12 Ω  resistor is connected across a 12 V battery.
a. How many joules of energy will it dissipate in 2 min?
b.  If the resistor is left connected for 4 min instead of  

2 min, will the energy used double? Will the power dis-
sipation level increase?

 38.  How much energy in kilowatthours is required to keep a 
140 W oil-burner motor running 8 h a week for 2 months? 
Use 4 weeks 1 month.( )=

 39.  How long can a 1500 W heater be on before using more 
than 12 kWh of energy?

 40. A 60 W bulb is on for 10 h.
a. What is the energy used in wattseconds?
b. What is the energy dissipated in joules?
c. What is the energy transferred in watthours?
d. How many kilowatthours of energy were dissipated?
e. At 13¢/kWh, what was the total cost?

 41. a. In 12 h, an electrical system converts 1500 kWh of elec-
trical energy into heat. What is the power level of the 
system?

b. If the applied voltage is 230 V, what is the current drawn 
from the supply?

c. If the efficiency of the system is 79%, how much energy 
is lost or stored in 12 h?

 42.  At 14¢/kWh, how long can you play a 260 W color televi-
sion for $1?

 43. The electric bill for a family for a month is $120.
a. Assuming 30 days in the month, what is the cost per 

day?
b. Based on 15-h days, what is the cost per hour?
c. How many kilowatthours are used per hour if the cost  

is 13¢/kWh?
d. How many 60 W lightbulbs (approximate number) 

could you have on to use up that much energy per hour?
e. Do you believe the cost of electricity is excessive?

 44.  How long can you use an Xbox 360 for $1 if it uses 198 W 
and the cost is 11¢/kWh?

 45. The average plasma screen TV draws 400 W of power, 
whereas the average LCD TV draws 213 W. If each set was 
used 6 h/day for 365 days, what would be the cost savings 
for the LCD unit over the year if the cost is 12¢/kWh?

 46. The average PC draws 78 W. What is the cost of using the PC 
for 4 h/day for a month of 31 days if the cost is 13¢/kWh?

 *47.  a. If a house is supplied with 110 V, 100 A service, find the 
maximum power capability.

b. Can the homeowner safely operate the following loads 
at the same time?
2–240 W TVs
2500 W clothes dryer
10–100 W bulbs
2000 W electric range
1.5 kW air conditioner
1500 W steam iron

c. If all the appliances are used for 3 hours, how much 
energy is converted in kWh?

resistance of 1 Ω for any voltage greater than 15 V. Use a 
horizontal scale that extends from 0 to 20 V and a vertical 
scale that permits plotting the current for all values of volt-
age from 0 to 20 V.

 *19.  a. Plot the I-V characteristics of a k k1  Ω,  10  Ω,  and a 
1 MΩ  resistor on the same graph. Use a horizontal axis 
of 0 to 20 V and a vertical axis of 0 to 10 mA.

b. Comment on the steepness of the curve with decreasing 
levels of resistance.

c. Are the curves linear or nonlinear? Why?

SECTION 4.4  Power

 20.  If 480 J of energy are absorbed by a resistor in 2.5 min, 
what is the power delivered to the resistor in watts?

 21.  The power to a device is 60 joules per second (J/s). How 
long will it take to deliver 840 J?

 22. a. How many kilojoules of energy does a 3 W nightlight 
dissipate in 12 h?

b. How many kilowatthours does it dissipate?

 23.  How long must a steady current of 1.4 A exist in a resistor 
that has 3 V across it to dissipate 12 J of energy?

 24.  What is the power delivered by a 12 V battery if the current 
drain is 40 A?

 25.  The current through a 4 kΩ  resistor is 7.2 mA. What is the 
power delivered to the resistor?

 26.  The power consumed by a 2.2 kΩ  resistor is 240 mW. 
What is the current level through the resistor?

 27.  What is the maximum permissible current in a 69 Ω,  2 W 
resistor? What is the maximum voltage that can be applied 
across the resistor?

 28.  The voltage drop across a transistor network is 22 V. If the 
total resistance is k16.8  Ω, what is the current level? What is 
the power delivered? How much energy is dissipated in 1 h?

 29.  If the power applied to a system is 10 kW, what is the volt-
age across the line if the current is 48 A?

 30.  A 1.5 W resistor has a resistance of 5.0 MΩ. What is the 
maximum current level for the resistor? If the wattage rat-
ing is increased to 3.0 W, will the current rating double?

 31.  A 2.2 kΩ  resistor in a stereo system dissipates 42 mW of 
power. What is the voltage across the resistor?

 32.  What are the “hot” resistance level and current rating of a  
240 V, 100 W bulb?

 33.  What are the internal resistance and voltage rating of a 450 
W automatic washer that draws 3.75 A?

 34.  A calculator with an internal 4.5 V battery draws 0.5 mW 
when fully functional.
a. What is the current demand from the supply?
b. If the calculator is rated to operate 550 h on the same 

battery, what is the ampere-hour rating of the battery?

 35.  A 20 kΩ  resistor has a rating of 100 W. What are the maxi-
mum current and the maximum voltage that can be applied 
to the resistor?

 36.  What is the total horsepower rating of a series of commer-
cial ceiling fans that draw 40 A at 240 V?
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 *48. What is the total cost of using the following at 13¢/kWh?
a. 1600 W air conditioner for 8 h
b. 1200 W hair dryer for 20 min
c. 4800 W clothes dryer for 1 h
d. 900 W coffee maker for 15 min
e. 200 W Play Station 3 for 1.2 h
f. 50 W stereo for 3.5 h

 *49.  What is the total cost of using the following at 13¢/kWh?
a. 200 W fan for 4 h
b.  Six 60 W bulbs for 6 h
c. 1200 W dryer for ½ h
d. 175 W desktop computer for 3.5 h
e. 250 W color television set for 4 h 20 min
f. 30 W satellite dish for 8 h

SECTION 4.6  Efficiency

 50.  What is the efficiency of a motor that has an output of 0.5 
hp with an input of 410 W?

 51.  The motor of a power saw is rated 75% efficient. If 1.5 hp 
are required to cut a particular piece of lumber, what is the 
current drawn from a 120 V supply?

 52.  What is the efficiency of a dryer motor that delivers 0.88 hp 
when the input current and voltage are 4.5 A and 220 V, 
respectively?

 53. A stereo system draws 1.8 A at 120 V. The audio output 
power is 50 W.
a. How much power is lost in the form of heat in the sys-

tem?
b. What is the efficiency of the system?

 54.  If an electric motor having an efficiency of 80% and operat-
ing off a 230 V line delivers 4.6 hp, what input current does 
the motor draw?

 55. A motor is rated to deliver 2 hp.
a. If it runs on 120 V and is 90% efficient, how many watts 

does it draw from the power line?
b. What is the input current?
c. What is the input current if the motor is only 70% efficient?

 56.  An electric motor used in an elevator system has an effi-
ciency of 88%. If the input voltage is 240 V, what is the 
input current when the motor is delivering 16 hp?

 57.  The motor used on a conveyor belt is 85% efficient. If the 
overall efficiency is 75%, what is the efficiency of the con-
veyor belt assembly?

 58.  A 2 hp motor drives a sanding belt. If the efficiency of the 
motor is 86% and that of the sanding belt is 76% due to 
slippage, what is the overall efficiency of the system?

 59.  The overall efficiency of two systems in cascade is 82%. If 
the efficiency of one is 0.9, what is the efficiency, in per-
cent, of the other?

60. a. What is the total efficiency of three systems in cascade 
with respective efficiencies of 93%, 87%, and 21%?

b. If the system with the least efficiency (21%) were 
removed and replaced by one with an efficiency of 80%, 
what would be the percentage increase in total effi-
ciency?

 *61.  If the total input and output power of two systems in cas-
cade are 400 W and 72 W, respectively, what is the effi-
ciency of each system if one has twice the efficiency of the 
other?

GLOSSARY

Circuit breaker A two-terminal device designed to ensure that 
current levels do not exceed safe levels. If “tripped,” it can be 
reset with a switch or a reset button.

Diode A semiconductor device whose behavior is much like that 
of a simple switch; that is, it will pass current ideally in only 
one direction when operating within specified limits.

Efficiency η( ) A ratio of output to input power that provides im-
mediate information about the energy-converting characteris-
tics of a system.

 Energy (W) A quantity whose change in state is determined by 
the product of the rate of conversion (P) and the period in-
volved (t). It is measured in joules (J) or wattseconds (Ws).

Fuse A two-terminal device whose sole purpose is to ensure that 
current levels in a circuit do not exceed safe levels.

Horsepower (hp) Equivalent to 746 watts in the electrical 
system.

Kilowatthour meter An instrument for measuring kilowat-
thours of energy supplied to a residential or commercial user 
of electricity.

Ohm’s law An equation that establishes a relationship among 
the current, voltage, and resistance of an electrical system.

Power An indication of how much work can be done in a spec-
ified amount of time; a rate of doing work. It is measured in 
joules/second (J/s) or watts (W).
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5  Series dc Circuits

 5.1 INTRODUCTION
Two types of current are readily available to the consumer today. One is direct current (dc), in 
which ideally the flow of charge (current) does not change in magnitude (or direction) with 
time. The other is sinusoidal alternating current (ac), in which the flow of charge is continu-
ally changing in magnitude (and direction) with time. The next few chapters are an introduc-
tion to circuit analysis purely from a dc approach. The methods and concepts are discussed in 
detail for direct current; when possible, a short discussion suffices to cover any variations we 
may encounter when we consider ac in the later chapters.

The battery in Fig. 5.1, by virtue of the potential difference between its terminals, has the 
ability to cause (or “pressure”) charge to flow through the simple circuit. The positive ter-
minal attracts the electrons through the wire at the same rate at which electrons are supplied 
by the negative terminal. As long as the battery is connected in the circuit and maintains its 
terminal characteristics, the current (dc) through the circuit will not change in magnitude or 
direction.

If we consider the wire to be an ideal conductor (that is, having no opposition to flow), 
the potential difference V across the resistor equals the applied voltage of the battery: 
V Evolts volts .( ) ( )=

•  Become familiar with the characteristics of a series 
circuit and how to solve for the voltage, current, 
and power to each of the elements.

• Develop a clear understanding of Kirchhoff’s 
voltage law (KVL) and how important it is to the 
analysis of electric circuits.

• Become aware of how an applied voltage will 
divide among series components and how to 
properly apply the voltage divider rule (VDR).

• Understand the use of single- and double-subscript 
notation to define the voltage levels of a network.

• Become familiar with the use of a voltmeter, 
ammeter, and ohmmeter to measure the important 
quantities of a network.

 Objectives

Battery

E (volts)

Iconventional

Ielectron

I  = V
R

E
R

= —

R V

—

FIG. 5.1 
Introducing the basic components of an 

electric circuit.
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The current is limited only by the resistor R. The higher the resistance, 
the less is the current, and conversely, as determined by Ohm’s law.

By convention (as discussed in Chapter 2), the direction of conven-
tional current flow ( )I conventional  as shown in Figs. 5.1 and 5.2 is oppo-
site to that of electron flow ( )I .electron  Also, the uniform flow of charge 
dictates that the direct current I be the same everywhere in the circuit. 
By following the direction of conventional flow, we notice that there is 
a rise in potential across the battery ( )− + to   and a drop in potential 
across the resistor ( )+ − to   as shown in Fig. 5.3.

The circuit in Fig. 5.1 is the simplest possible configuration. This 
chapter and the following chapters add elements to the system in a very 
specific manner to introduce a range of concepts that will form a major 
part of the foundation required to analyze the most complex system. Be 
aware that the laws, rules, and so on introduced here and in Chapter 6 
will be used throughout your studies of electrical, electronic, or com-
puter systems. They are not replaced by a more advanced set as you 
progress to more sophisticated material. It is therefore critical that you 
understand the concepts thoroughly and are able to apply the various 
procedures and methods with confidence.

5.2 SERIES RESISTORS

Identifying Series Elements

Before the series connection is described, first recognize that every fixed 
resistor has only two terminals to connect in a configuration—it is there-
fore referred to as a two-terminal device. In Fig. 5.4, one terminal of 
resistor R2 is connected to resistor R1 on one side, and the remaining 
terminal is connected to resistor R3  on the other side, resulting in one, 
and only one, connection between adjoining resistors. When connected 
in this manner, the resistors have established a series connection. If three 
elements were connected to the same point, as shown in Fig. 5.5, there 
would not be a series connection between resistors R1 and R2.

With practice, the identification of series elements will become 
increasingly easier. Simply keep in the forefront the fact that the series 
elements can only have one point in common that is not connected to 
another branch.

In Fig. 5.6, the voltage source E1 and the resistor R1 are in the 
series because they only have point a in common and there are no 
other elements connected to point a. The resistors R1 and R4  only 
have point b in common but they are not in series because the resistor 
R3  is also connected to point b. The resistor R4  is in series with the 
voltage source E2 because they only have point c in common and 
no other elements are connected to point c. Looking back we find 
the resistor R2  is in series with the voltage source E1 because they 
only have point e in common and no other elements are connected 
to point e. In fact, E R R,   ,  and 1 1 2 compose a series combination of 
three elements.

In Fig. 5.7, the resistors R1 and R2 have only point a in common but a 
third branch containing E is also connected to point a so the two  resistors 
are not in series. The resistors R1 and R4 have only b in  common but the 
resistor R3  is also connected to point b so R1 and R4 are not in series. 
The resistors R2 and R3  have only point c in common and nothing else 
connected to that point so they are in series. The resistor R4 and the 
 voltage source E are in series because they have point d in common and 
no other elements connected to point d.

I

V

R
For any combination of voltage
sources in the same dc circuit

FIG. 5.3 
Defining the polarity resulting from a 

conventional current I through a resistive 
element.

a

b

R1

10 V

R2

30 V

R3

100 V

RT

FIG. 5.4 
Series connection of resistors.

R1

10 V

R2

30 V

R4 220 V

FIG. 5.5 
Configuration in which none of the resistors 

are in series.

E1

+

–
E2

+

–

R1

e
d

b ca
R4

R2 R5

R3

 FIG. 5.6

R1

R

a

b c

d

4

R2

R3

E
+

–

FIG. 5.7

For all one-voltage-
source dc circuits

E

I

FIG. 5.2 
Defining the direction of conventional flow 

for single-source dc circuits.
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Finding the Total Resistance

For resistors in series,

the total resistance of a series configuration is the sum of 
the resistance levels.

In equation form for any number (N) of resistors,

 = + + + + +�R R R R R RT N1 2 3 4  (5.1)

A result of Eq. (5.1) is that

the more resistors we add in series, the greater is the 
resistance, no matter what their value.

Further,

the largest resistor in a series combination will have the 
most impact on the total resistance.

For the configuration in Fig. 5.4, the total resistance is

= + +R R R RT 1 2 3

= + +10 Ω 30 Ω 100 Ω

and R 140 Ω   T =

EXAMPLE 5.1 Determine the total resistance of the series connec-
tion in Fig. 5.8. Note that all the resistors appearing in this network are 
standard values.

Solution: Note in Fig. 5.8 that even though resistor R3  is on the verti-
cal and resistor R4 returns at the bottom to terminal b, all the resistors 
are in series since there are only two resistor leads at each connection 
point.

Applying Eq. (5.1) gives

= + + +

= + + +

R R R R R

R 20 Ω 220 Ω 1.2 kΩ 5.6 kΩ
T

T

1 2 3 4

and R 7 04 kΩ7040 Ω .  T = =

For the special case where resistors are the same value, Eq. (5.1) can 
be modified as follows:

    =R NRT  (5.2)

where N is the number of resistors in series of value R.

EXAMPLE 5.2 Find the total resistance of the series resistors in 
Fig. 5.9. Again, recognize 3.3 kΩ as a standard value.

Solution: Again, don’t be concerned about the change in configura-
tion. Neighboring resistors are connected only at one point, satisfying 
the definition of series elements.

Eq. (5.2): =R NR  T

13 2 kΩ4 3.3 kΩ .  ( )( )= =

a

b

20 V 220 V

1.2 kV

5.6 kV

RT

R1 R2

R3

R4

FIG. 5.8 
Series connection of resistors for Example 5.1.

a

b

R1

3.3 kV

R4

3.3 kV

R2 3.3 kV

R3 3.3 kV

RT

FIG. 5.9 
Series connection of four resistors of the 

same value (Example 5.2).
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EXAMPLE 5.3 Determine the total resistance for the series resistors 
(standard values) in Fig. 5.11.

Solution: First, the order of the resistors is changed as shown in 
Fig. 5.12 to permit the use of Eq. (5.2). The total resistance is then

= + +R R R NR  T 1 3 2

9 9 kΩ4.7 kΩ 2.2 kΩ 3 1 kΩ .  ( )( )= + + =

Analogies

Throughout the text, analogies are used to help explain some of the 
important fundamental relationships in electrical circuits. An analogy is 
simply a combination of elements of a different type that are helpful in 
explaining a particular concept, relationship, or equation.

One analogy that works well for the series combination of elements 
is connecting different lengths of rope together to make the rope longer. 
Adjoining pieces of rope are connected at only one point, satisfying the 
definition of series elements. Connecting a third rope to the common 
point would mean that the sections of rope are no longer in a series.

Another analogy is connecting hoses together to form a longer hose. 
Again, there is still only one connection point between adjoining sec-
tions, resulting in a series connection.

 Instrumentation

The total resistance of any configuration can be measured by simply con-
necting an ohmmeter across the access terminals as shown in Fig. 5.13 for 
the circuit in Fig. 5.4. Since there is no polarity associated with resistance, 
either lead can be connected to point a, with the other lead connected to 
point b. Choose a scale that will exceed the total resistance of the circuit, 
and remember when you read the response on the meter, if a kilohm scale 
was selected, the result will be in kilohms. For Fig. 5.13, the 200 Ω scale 

RT

a

b

R1

30 V

R2

82 V

R3 10 V

(a)

a

b

R3

10 V

R1

30 V

R2 82 V

(b)

RT

FIG. 5.10 
Two series combinations of the same elements with the same total resistance.

a

b

R1

4.7 kV

R3

2.2 kV

R2

1 kV

R5

1 kV

R4 1 kV
RT

FIG. 5.11 
Series combination of resistors for  

Example 5.3.

RT

a

b

R1

4.7 kV

R2

1 kV

R3

2.2 kV

R5

1 kV

R4 1 kV

FIG. 5.12 
Series circuit of Fig. 5.11 redrawn to permit 

the use of Eq. (5.2): =R NR.T

It is important to realize that since the parameters of Eq. (5.1) can be 
put in any order,

the total resistance of resistors in series is unaffected by the 
order in which they are connected.

The result is that the total resistance in Fig. 5.10(a) is the same as in 
Fig. 5.10(b). Again, note that all the resistors are standard values.
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of our chosen multimeter was used because the total resistance is 140 Ω. 
If the 2 kΩ scale of our meter were selected, the digital display would 
read 0.140, and you must recognize that the result is in kilohms.

In the next section, another method for determining the total resis-
tance of a circuit is introduced using Ohm’s law.

5.3 SERIES CIRCUITS
If we now take an 8.4 V dc supply and connect it in series with the series 
resistors in Fig. 5.4, we have the series circuit in Fig. 5.14.

RT

R1 R2 R3

10 V 30 V 100 V

+

FIG. 5.13 
Using an ohmmeter to measure the total resistance of a series circuit.

E 8.4 V

Is

RT

Is

10 V

V1

R1

100 V

V3

R3

30 V

V2

R2Is Is

Is

Is

FIG. 5.14 
Schematic representation for a dc series circuit.

A circuit is any combination of elements that will result 
in a continuous flow of charge, or current, through the 
configuration.

First, recognize that the dc supply is also a two-terminal device with 
two points to be connected. If we simply ensure that there is only one 
connection made at each end of the supply to the series combination of 
resistors, we can be sure that we have established a series circuit.

The manner in which the supply is connected determines the direc-
tion of the resulting conventional current. For series dc circuits:

the direction of conventional current in a series dc circuit 
with one source is such that it leaves the positive terminal 
of the supply and returns to the negative terminal, as shown 
in Fig. 5.14.

One of the most important concepts to remember when analyzing 
series circuits and defining elements that are in series is:

The current is the same at every point in a series circuit.

For the circuit in Fig. 5.14, the above statement dictates that the current 
is the same through the three resistors and the voltage source. In addition, 
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if you are ever concerned about whether two elements are in series, simply 
check whether the current is the same through each element.

In any configuration, if two elements are in series, the 
current must be the same. However, if the current is the 
same for two adjoining elements, the elements may or may 
not be in series.

The need for this constraint in the last sentence will be demonstrated in 
the chapters to follow.

Now that we have a complete circuit and current has been established, 
the level of current and the voltage across each resistor should be deter-
mined. To do this, return to Ohm’s law and replace the resistance in the 
equation by the total resistance of the circuit.

That is,
R R R R

10 Ω 30 Ω 100 Ω

140 Ω

T 1 2 3= + +

= + +

=
and

 =I E
Rs

T

 (5.3)

with the subscript s used to indicate source current.
It is important to realize that when a dc supply is connected, it does 

not “see” the individual connection of elements but simply the total 
resistance “seen” at the connection terminals, as shown in Fig. 5.15(a). 
In other words, it reduces the entire configuration to one such as in 
Fig. 5.15(b) to which Ohm’s law can easily be applied.

140 VRT

a

b

R1

10 V

R2

30 V

R3 100 V

(a)

RT

a

b

(b)

FIG. 5.15 
Resistance “seen” at the terminals of a series circuit.

For the configuration in Fig. 5.14, with the total resistance calculated 
in the last section, the resulting current is

= = = =I E
R

60 mA8.4 V
140  Ω

0.06 A  s
T

Note in Fig. 5.14 that the current I s  at every point or corner of the net-
work is the same. Furthermore, note that the current is also indicated on 
the current display of the power supply.

Now that we have the current level, we can calculate the voltage 
across each resistor. First recognize that

the polarity of the voltage across a resistor is determined by 
the direction of the current.
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Current entering a resistor creates a drop in voltage with the polarity 
indicated in Fig. 5.16(a). Reverse the direction of the current, and the 
polarity will reverse as shown in Fig. 5.16(b). Change the orientation of 
the resistor, and the same rules apply as shown in Fig. 5.16(c). Applying 
the above to the circuit in Fig. 5.14 will result in the polarities appearing 
in that figure.

The magnitude of the voltage drop across each resistor can then be 
found by applying Ohm’s law using only the resistance of each resistor. 
That is,

 

=
=
=

V I R

V I R

V I R

1 1 1

2 2 2

3 3 3
 

(5.4)

which for Fig. 5.14 results in

( )= = = =V I R I R 0 6 V  60 mA)(10 Ω .  s1 1 1 1

( )= = = =V I R I R 1 8 V  60 mA)(30 Ω .  s2 2 2 2

( )= = = =V I R I R 6 0 V  60 mA)(100 Ω .  s3 3 3 3

Note that in all the numerical calculations appearing in the text thus 
far, a unit of measurement has been applied to each calculated quantity. 
Always remember that a quantity without a unit of measurement is often 
meaningless.

EXAMPLE 5.4 For the series circuit in Fig. 5.17:

a. Find the total resistance RT.
b. Calculate the resulting source current I s.
c. Determine the voltage across each resistor.

Solutions:

a. = + +R R R RT 1 2 3

= + +2 Ω 1 Ω 5 Ω
=R 8   ΩT

b. = = =I E
R

2 5 A20 V
8 Ω

.  s
T

c. ( )( )= = = =V I R I R 5 V2.5 A 2 Ω  s1 1 1 1  
( )( )= = = =V I R I R 2 5 V2.5 A 1 Ω .  s2 2 2 2
( )( )= = = =V I R I R 12 5 V2.5 A 5 Ω .  s3 3 3 3

10 VI

V

(a)

10 V I

V

(b)

10 V

I

V

(c)

FIG. 5.16 
Inserting the polarities across a resistor as 
determined by the direction of the current.

20 V R2 1 V

R1 = 2 V

V1

V2

R3 = 5 V

V3

E

Is

RT

Is

FIG. 5.17 
Series circuit to be investigated in  

Example 5.4.
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EXAMPLE 5.5 For the series circuit in Fig. 5.18:

a. Find the total resistance R .T

b. Determine the source current I s  and indicate its direction on the 
circuit.

c. Find the voltage across resistor R2 and indicate its polarity on the 
circuit.

Solutions:

a. The elements of the circuit are rearranged as shown in Fig. 5.19.

R R NR

R 25 Ω

 

4 Ω 3 7 Ω

4 Ω 21 Ω

   

T

T

2

( )( )

= +

= +

= +

=

Note the polarity of the source and resulting current direction.

= = =I E
R

2 A50 V
25 Ω

 s
T

V2

E = 50 V RT

Is

R2

4 V

R1

7 V

R3

7 V

R4

7 V

Is Is

Is

FIG. 5.19 
Circuit in Fig. 5.18 redrawn to permit the use of Eq. (5.2).

R3 6 kV

R2

E

RT = 12 kV

R1

4 kV

I3 = 6 mA 

FIG. 5.20 
Series circuit to be analyzed in Example 5.6.

R1 = 7 VIs

RT

Is

R2 = 4 V

V2

Is
R4

7 V

R3 7 V50 VE

FIG. 5.18 
Series circuit to be analyzed in Example 5.5.

b. The direction of the current will define the polarity for V2  appearing 
in Fig. 5.19:

= = = =V I R I R 8 V(2 A)(4 Ω)  s2 2 2 2

Examples 5.4 and 5.5 are straightforward, substitution-type problems 
that are relatively easy to solve with some practice. Example 5.6, how-
ever, is another type of problem that requires both a firm grasp of the 
fundamental laws and equations and an ability to identify which quantity 
should be determined first. The best preparation for this type of exercise 
is to work through as many problems of this kind as possible.

 EXAMPLE 5.6 Given RT  and I ,3  calculate R1 and E for the circuit 
in Fig. 5.20.

Solution: Since we are given the total resistance, it seems natural to 
first write the equation for the total resistance and then insert what we 
know:

= + +R R R RT 1 2 3

We find that there is only one unknown, and it can be determined with 
some simple mathematical manipulations. That is,

= + + = +R R 12 kΩ 4 kΩ 6 kΩ 10 kΩ1 1
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and  − = R 12 kΩ 10 kΩ 1

so that                      R 2 kΩ   1 =

The dc voltage can be determined directly from Ohm’s law:

( )= = = =E I R I R 72 V6 mA)(12 kΩ  s T T3

Analogies

The analogies used earlier to define the series connection are also 
excellent for the current of a series circuit. For instance, for the  
series-connected rope analogy, the stress on each rope is the same as 
they try to hold the heavy weight. For the water analogy, the flow of 
water is the same through each section of hose as the water is carried to 
its destination.

Instrumentation

Another important concept to remember is:

The insertion of any meter in a circuit will affect the circuit.

You must use meters that minimize the impact on the response of the 
circuit. The loading effects of meters are discussed in detail in a later 
section of this chapter. For now, we will assume that the meters are ideal 
and do not affect the networks to which they are applied so that we can 
concentrate on their proper usage.

Furthermore, it is particularly helpful in the laboratory to realize that

the voltages of a circuit can be measured without disturbing 
(breaking the connections) in the circuit.

In Fig. 5.21, all the voltages of the circuit in Fig. 5.14 are being mea-
sured by voltmeters that were connected without disturbing the original 
configuration. Note that all the voltmeters are placed across the resistive 
elements. In addition, note that the positive (normally red) lead of the volt-
meter is connected to the point of higher potential (positive sign), with the 

10 V 30 V 100 V

R3R2

V
+

+

R1

V
+

Is

V
+

V2+ – V3+ –V1+ –

FIG. 5.21 
Using voltmeters to measure the voltages across the resistors in Fig. 5.14.
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negative (normally black) lead of the voltmeter connected to the point of 
lower potential (negative sign) for V1 and V .2  The result is a positive read-
ing on the display. If the leads were reversed, the magnitude would remain 
the same, but a negative sign would appear as shown for V3 .

Take special note that the 20 V scale of our meter was used to mea-
sure the −6 V level, while the 2 V scale of our meter was used to mea-
sure the 0.6 V and 1.8 V levels. The maximum value of the chosen scale 
must always exceed the maximum value to be measured. In general,

when using a voltmeter, start with a scale that will ensure 
that the reading is less than the maximum value of the 
scale. Then work your way down in scales until the reading 
with the highest level of precision is obtained.

Turning our attention to the current of the circuit, we find that

using an ammeter to measure the current of a circuit 
requires that the circuit be broken at some point and the 
meter inserted in series with the circuit in which the current 
is to be determined.

For instance, to measure the current leaving the positive terminal of 
the supply, the connection to the positive terminal must be removed to 
create an open circuit between the supply and resistor R .1  The amme-
ter is then inserted between these two points to form a bridge between 
the supply and the first resistor, as shown in Fig. 5.22. The ammeter 
is now in series with the supply and the other elements of the circuit. 
If each meter is to provide a positive reading, the connection must be 
made such that conventional current enters the positive terminal of the 
meter and leaves the negative terminal. This was done for three of the 
ammeters, with the ammeter to the right of R3  connected in the reverse 
manner. The result is a negative sign for the current. However, also note 
that the current has the correct magnitude. Since the current is 60 mA, 
the 200 mA scale of our meter was used for each meter.

As expected, the current at each point in the series circuit is the same 
using our ideal ammeters.

+

mA
+

R1 R2 R3

Is

+ + +

Is Is Is Is

Is

10 V 30 V 100 V

mA mA mA

FIG. 5.22 
Measuring the current throughout the series circuit in Fig. 5.14.
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5.4 POWER DISTRIBUTION IN A SERIES 
CIRCUIT
In any electrical system, the power applied will equal the power dissi-
pated or absorbed. For any series circuit, such as that in Fig. 5.23,

the power applied by the dc supply must equal that 
dissipated by the resistive elements.

E

R1 R2 R3

PE

PR1

PR2 PR3

Is

FIG. 5.23 
Power distribution in a series circuit.

R3 2 kV

R2

PR1

E

RT

R1

36 V

3 kV

Is

1 kV

V1 V2

V3

PE

PR2

PR3

FIG. 5.24 
Series circuit to be investigated in Example 5.7.

In equation form,

 = + +P P P PE R R R1 2 3
 (5.5)

The power delivered by the supply can be determined using

 P EI     watts, WE s ( )=  (5.6)

The power dissipated by the resistive elements can be determined by 
any of the following forms (shown for resistor R1 only):

 ( )= = =P V I I R
V
R

    watts, W1 1 1 1
2

1
 1
2

1

  (5.7)

Since the current is the same through series elements, you will find in 
the following examples that

in a series configuration, maximum power is delivered to the 
largest resistor.

EXAMPLE 5.7 For the series circuit in Fig. 5.24 (all standard 
 values):

a. Determine the total resistance RT .
b. Calculate the current I s.
c. Determine the voltage across each resistor.
d. Find the power supplied by the battery.
e. Determine the power dissipated by each resistor.
f. Comment on whether the total power supplied equals the total 

power dissipated.
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Solutions:

( )( )

( )( )

( )( )

( )( )

( )( )

( ) ( )

( )

( )

= + +

= + +

=

= = =

= = = =

= = = =

= = = =

= = =

= = =

= = =

= = =

= + +

= + + =

R R R R

R

I E
R

V I R I R

V I R I R

V I R I R

P EI

P V I V

P I R

P
V
R

V

P P P P

6 kΩ

6 mA

6 V

18 V

12 V

216 mW

36 mW

108 mW

72 mW

216 mW

 a.

1 kΩ 3 kΩ 2 kΩ

 

b. 36 V
6 kΩ

c. 6 mA 1 kΩ  

6 mA 3 kΩ  

6 mA 2 kΩ  

d. 36 V 6 mA

e. 6  6 mA

6 mA 3 kΩ  

 
12 
2 kΩ

 

f.

216 mW 36 mW 108 mW 72 mW   checks

T

T

s
T

s

s

s

E s

E R R R

1 2 3

1 1 1 1

2 2 2 2

3 3 3 3

1 1 1

2 2
2

2
2

3
3
2

3

2

1 2 3

5.5 VOLTAGE SOURCES IN SERIES
Voltage sources can be connected in series, as shown in Fig. 5.25, to 
increase or decrease the total voltage applied to a system. The net volt-
age is determined by summing the sources with the same polarity and 
subtracting the total of the sources with the opposite polarity. The net 
polarity is the polarity of the larger sum.

In Fig. 5.25(a), for example, the sources are all “pressuring” current 
to follow a clockwise path, so the net voltage is

= + + = + + =E E E E 18 V10 V 6 V 2 V  T 1 2 3

as shown in the figure. In Fig. 5.25(b), however, the 4 V source is “pres-
suring” current in the clockwise direction while the other two are trying 
to establish current in the counterclockwise direction. In this case, the 
applied voltage for a counterclockwise direction is greater than that for 
the clockwise direction. The result is the counterclockwise direction for 
the current as shown in Fig. 5.25(b). The net effect can be determined 
by finding the difference in applied voltage between those supplies 

E1 10 V

E2 6 V

E3 2 V

Is

ET

Is

18 V

(a)

E1 9 V

E2 3 V

E3 4 V

Is

ET

Is

8 V

(b)

FIG. 5.25 
Reducing series dc voltage sources to a single source.
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“pressuring” current in one direction and the total in the other direction. 
In this case,

= + − = + − =E E E E 8 V9 V 3 V 4 V  T 1 2 3

with the polarity shown in the figure.

Instrumentation

The connection of batteries in series to obtain a higher voltage is com-
mon in much of today’s portable electronic equipment. For example, in 
Fig. 5.26(a), four 1.5 V AAA batteries have been connected in series to 
obtain a source voltage of 6 V. Although the voltage has increased, keep 
in mind that the maximum current for each AAA battery and for the 6 V 
supply is still the same. However, the power available has increased by 
a factor of 4 due to the increase in terminal voltage. Note also, as men-
tioned in Chapter 2, that the negative end of each battery is connected 
to the spring and the positive end to the solid contact. In addition, note 
how the connection is made between batteries using the horizontal con-
necting tabs.

60 V

+

+
a

b

a

b

20 V

40 V

E2

E1

60 V

(c)

20 V

40 V

20 V?

E2

E1

0 V

0 V

a

b

Short across supply E1

(b)

+

+

a

b

60 V?

(a)

Incorrect Correct

1.5 V

1.5 V

1.5 V

1.5 V

6 V

E2

E1

FIG. 5.26 
Series connection of dc supplies: (a) four 1.5 V batteries in series to establish a terminal voltage of 6 V; 

(b) incorrect connections for two series dc supplies; (c) correct connection of two series supplies to 
establish 60 V at the output terminals.
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In general, supplies with only two terminals  and( )+ −  can be con-
nected as shown for the batteries. A problem arises, however, if the sup-
ply has an optional or fixed internal ground connection. In Fig. 5.26(b), 
two laboratory supplies have been connected in series with both grounds 
connected. The result is a shorting out of the lower source E1 (which 
may damage the supply if the protective fuse does not activate quickly 
enough) because both grounds are at zero potential. In such cases, the 
supply E2 must be left ungrounded (floating), as shown in Fig. 5.26(c), 
to provide the 60 V terminal voltage. If the laboratory supplies have an 
internal connection from the negative terminal to ground as a protective 
feature for the users, a series connection of supplies cannot be made. Be 
aware of this fact, because some educational institutions add an internal 
ground to the supplies as a protective feature even though the panel still 
displays the ground connection as an optional feature.

5.6 KIRCHHOFF’S VOLTAGE LAW
The law to be described in this section is one of the most important in 
this field. It has application not only to dc circuits but also to any type of 
signal—whether it be ac, digital, and so on. This law is far-reaching and 
can be very helpful in working out solutions to networks that sometimes 
leave us lost for a direction of investigation.

The law, called Kirchhoff’s voltage law (KVL), was developed by 
Gustav Kirchhoff (Fig. 5.27) in the mid-1800s. It is a cornerstone of the 
entire field and, in fact, will never be outdated or replaced.

The application of the law requires that we define a closed path of inves-
tigation, permitting us to start at one point in the network, travel through 
the network, and find our way back to the original starting point. The path 
does not have to be circular, square, or any other defined shape; it must 
simply provide a way to leave a point and get back to it without leaving the 
network. In Fig. 5.28, if we leave point a and follow the current, we will 
end up at point b. Continuing, we can pass through points c and d and even-
tually return through the voltage source to point a, our starting point. The 
path abcda is therefore a closed path, or closed loop. The law specifies that

the algebraic sum of the potential rises and drops around a 
closed path (or closed loop) is zero.

In symbolic form it can be written as

  V 0   

Kirchoff’s voltage law in symbolic form

 

 

�

( )

Σ =  (5.8)

where Σ  represents summation, � the closed loop, and V the potential 
drops and rises. The term algebraic simply means paying attention to the 
signs that result in the equations as we add and subtract terms.

The first question that often arises is, Which way should I go around 
the closed path? Should I always follow the direction of the current? 
To simplify matters, this text will always try to move in a clockwise 
direction. By selecting a direction, you eliminate the need to think about 
which way would be more appropriate. Any direction will work as long 
as you get back to the starting point.

Another question is, How do I apply a sign to the various voltages 
as I proceed in a clockwise direction? For a particular voltage, we will 

R2

R1

V1

V2E

a   b

cd

I          I

I

KVL

FIG. 5.28 
Applying Kirchhoff’s voltage law to a series 

dc circuit.

Library of Congress 
Prints and Photographs 

Division

FIG. 5.27 
Gustav Robert Kirchhoff.

German (Königsberg, Berlin)
(1824–87),
 Physicist
Professor of Physics, University of Heidelberg

Although a contributor to a number of areas in the 
physics domain, he is best known for his work in the 
electrical area with his definition of the relationships 
between the currents and voltages of a network in 1847. 
Did extensive research with German chemist Robert 
Bunsen (developed the Bunsen burner), resulting in 
the discovery of the important elements of cesium and 
rubidium.
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assign a positive sign when proceeding from the negative to positive  
potential—a positive experience such as moving from a negative check-
ing balance to a positive one. The opposite change in potential level 
results in a negative sign. In Fig. 5.28, as we proceed from point d to 
point a across the voltage source, we move from a negative potential (the 
negative sign) to a positive potential (the positive sign), so a positive sign 
is given to the source voltage E. As we proceed from point a to point b, 
we encounter a positive sign followed by a negative sign, so a drop in 
potential has occurred, and a negative sign is applied. Continuing from b 
to c, we encounter another drop in potential, so another negative sign is 
applied. We then arrive back at the starting point d, and the resulting sum 
is set equal to zero as defined by Eq. (5.8).

Writing out the sequence with the voltages and the signs results in the 
following:

+ − − =E V V 01 2  

which can be rewritten as = +E V V1 2

The result is particularly interesting because it tells us that

the applied voltage of a series dc circuit will equal the sum 
of the voltage drops of the circuit.

Kirchhoff’s voltage law can also be written in the following form:

 V Vrises drops� �Σ = Σ  (5.9)

revealing that

the sum of the voltage rises around a closed path will 
always equal the sum of the voltage drops.

To demonstrate that the direction that you take around the loop has no 
effect on the results, let’s take the counterclockwise path and compare 
results. The resulting sequence appears as

− + + =E V V 02 1

yielding the same result of = +E V V1 2

EXAMPLE 5.8 Use Kirchhoff’s voltage law to determine the 
unknown voltage for the circuit in Fig. 5.29.

Solution: When applying Kirchhoff’s voltage law, be sure to concen-
trate on the polarities of the voltage rise or drop rather than on the type 
of element. In other words, do not treat a voltage drop across a resistive 
element differently from a voltage rise (or drop) across a source. If the 
polarity dictates that a drop has occurred, that is the important fact, not 
whether it is a resistive element or source.

Application of Kirchhoff’s voltage law to the circuit in Fig. 5.29 in 
the clockwise direction results in

+ − − − =E V V E 01 1 2 2

and          = − −V E V E  1 1 2 2  

16 V 4.2 V 9 V= − −

so           =V 2 8 V  .  1

R1

E1

V1
R2

4.2 V

9 VE216 V KVL

FIG. 5.29 
Series circuit to be examined in Example 5.8.
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The result clearly indicates that you do not need to know the values of the 
resistors or the current to determine the unknown voltage. Sufficient infor-
mation was carried by the other voltage levels to determine the unknown.

EXAMPLE 5.9 Determine the unknown voltage for the circuit in 
Fig. 5.30.

Solution: In this case, the unknown voltage is not across a single 
resistive element but between two arbitrary points in the circuit. Simply 
apply Kirchhoff’s voltage law around a path, including the source or 
resistor R .3  For the clockwise path, including the source, the resulting 
equation is the following:

+ − − =E V V 0x1

and     = − = − =V E V V 20 V32  12 V  x 1

For the clockwise path, including resistor R ,3  the following results:

+ − − =V V V 0x 2 3

and = +V V V  x 2 3

6 V 14 V= +

with =V 20 V   x

providing exactly the same solution.

There is no requirement that the followed path have charge flow or cur-
rent. In Example 5.10, the current is zero everywhere, but Kirchhoff’s volt-
age law can still be applied to determine the voltage between the points of 
interest. Also, there will be situations where the actual polarity will not be 
provided. In such cases, simply assume a polarity. If the answer is negative, 
the magnitude of the result is correct, but the polarity should be reversed.

EXAMPLE 5.10 Using Kirchhoff’s voltage law, determine voltages 
V1 and V2  for the network in Fig. 5.31.

Solution: For path 1, starting at point a in a clockwise direction,

+ − + =V V V25  15  01

and  =V 40 V 1

For path 2, starting at point a in a clockwise direction,

V 20 V 02− − =

and  = −V 20 V 2

The minus sign in the solution simply indicates that the actual polari-
ties are different from those assumed.

The next example demonstrates that you do not need to know what 
elements are inside a container (often referred to as “black box”) when 
applying Kirchhoff’s voltage law. They could all be voltage sources or a 
mix of sources and resistors. It doesn’t matter—simply pay strict atten-
tion to the polarities encountered.

Try to find the unknown quantities in the next examples without look-
ing at the solutions. It will help define where you may be having trouble.

25 V 15 V

20 V

2

1

a

V2

V1

FIG. 5.31 
Combination of voltage sources to be 

examined in Example 5.10.

32 V

R1

E

12 V

R3 14 V

R2

6 V

Vx

FIG. 5.30 
Series dc circuit to be analyzed in  

Example 5.9.
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Example 5.11 emphasizes the fact that when you are applying 
Kirchhoff’s voltage law, the polarities of the voltage rise or drop are the 
important parameters, not the type of element involved.

EXAMPLE 5.11 Using Kirchhoff’s voltage law, determine the 
unknown voltage for the circuit in Fig. 5.32.

 Solution: Note that in this circuit, there are various polarities across 
the unknown elements since they can contain any mixture of compo-
nents. Applying Kirchhoff’s voltage law in the clockwise direction 
results in

V60 V 40 V 30 V 0x+ − − + =

and       V  60 V 30 V 40 V 90 V 40 Vx = + − = −

with       =V 50 V   x

EXAMPLE 5.12 Determine the voltage Vx  for the circuit in 
Fig. 5.33. Note that the polarity of Vx  was not provided.

Solution: For cases where the polarity is not included, simply make 
an assumption about the polarity, and apply Kirchhoff’s voltage law as 
before. If the result has a positive sign, the assumed polarity was correct. 
If the result has a minus sign, the assumed magnitude is correct, but the 
assumed polarity must be reversed. In this case, if we assume point a to 
be positive and point b to be negative, an application of Kirchhoff’s volt-
age law in the clockwise direction results in

V6 V 14 V 2 V 0x− − − + =

and V 20 V 2 Vx = − +

so that = −V 18 V x

Since the result is negative, we know that point a should be negative and 
point b should be positive, but the magnitude of 18 V is correct.

EXAMPLE 5.13 For the series circuit in Fig. 5.34:

a. Determine V2  using Kirchhoff’s voltage law.
b. Determine current I 2.
c. Find R1 and R3 .

Solutions:

a. Applying Kirchhoff’s voltage law in the clockwise direction start-
ing at the negative terminal of the supply results in

− + + + =E V V V 03 2 1

and ( )= + +E V V V as expected1 2 3

so that V E V V 54 V 18 V 15 V2 1 3= − − = − −

and =V 21 V 2

b. = =I
V
R

21 V
7 Ω2

2

2

=I 3 A 2

40 V

60 V Vx

30 V

FIG. 5.32 
Series configuration to be examined in 

Example 5.11.

6 V

2 V

14 V

Vx

a

b

FIG. 5.33 
Applying Kirchhoff’s voltage law to a circuit 

in which the polarities have not been 
provided for one of the voltages (Example 

5.12).

I2

54 VE R2 7 V V2

R1

V1 = 18 V

V3 = 15 V

R3

FIG. 5.34 
Series configuration to be examined in 

Example 5.13.
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c. R
V
I

618 V
3 A

  1
1

1

Ω= = =

with R
V
I

515 V
3 A

 3
3

3

Ω= = =

 EXAMPLE 5.14 Using Kirchhoff’s voltage law and Fig. 5.14, verify 
Eq. (5.1).

Solution: Applying Kirchhoff’s voltage law around the closed path:

= + +E V V V1 2 3

Substituting Ohm’s law:

= + +I R I R I R I R  s T 1 1 2 2 3 3

but = = =I I I I  s 1 2 3

so that ( )= + +I R I R R R  s T s 1 2 3

and = + +R R R R  1 2 3T

which is Eq. (5.1).

5.7 VOLTAGE DIVISION IN A SERIES 
CIRCUIT
The previous section demonstrated that the sum of the voltages across 
the resistors of a series circuit will always equal the applied voltage. It 
cannot be more or less than that value. The next question is, How will 
a resistor’s value affect the voltage across the resistor? It turns out that

in a series circuit, the larger the resistance the larger the 
voltage across the resistance.

In fact, there is a ratio rule that states that the ratio of the voltages across 
series resistors is in direct proportion to the ratio of their resistive values.

Ratio Rule:

 =
V
V

R
R

1

2

1

2
 (5.10)

EXAMPLE 5.15 Using the information provided in Fig. 5.35, find

a. The voltage V1 using the ratio rule.
b. The voltage V3  using the ratio rule.
c. The applied voltage E using Kirchhoff’s voltage law.

Solutions:

a. Applying the ratio rule:

=
V
V

R
R

  1

2

1

2

=
V

 
6 V

6 Ω
3 Ω

1

( )= =V 12 V  2 6 V  1

b. Applying the ratio rule:

=
V
V

R
R

  2

3

2

3

1 VR3

3 VR2 6 V

6 VR1

E

V1

V2

V3

FIG. 5.35 
Example 5.15.
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=
V

  6 V 3 Ω
1 Ω3

( )= =V 2 V  1
3

  6 V  3

c. Applying Kirchhoff’s voltage law:

E V V V  12 V 6 V 2 V1 2 3= + + = + +  

= 20 V 

Note that if the resistance levels of all the resistors in Example 5.15 
are increased by the same amount, as shown in Fig. 5.36, the voltage lev-
els all remain the same. In other words, even though the resistance lev-
els were increased by a factor of 1 million, the voltage ratios remained 
the same. Clearly, therefore, it is the ratio of resistor values that counts 
when it comes to voltage division, not the magnitude of the resistors. 
The current level of the network will be severely affected by this change 
in resistance level, but the voltage levels remain unaffected.

Based on the above, it should now be clear that when you first 
encounter a circuit such as that in Fig. 5.37, you will expect that the 
voltage across the 1 MΩ resistor will be much greater than that across 
the 1 kΩ or the 100 Ω resistor. In addition, based on a statement above, 
the voltage across the 1 kΩ resistor will be 10 times as great as that 
across the 100 Ω resistor since the resistance level is 10 times as much. 
Certainly, you would expect that very little voltage will be left for the 
100 Ω resistor. Note that the current was never mentioned in the above 
analysis. The distribution of the applied voltage is determined solely by 
the ratio of the resistance levels. Of course, the magnitude of the resis-
tors will determine the resulting current level.

To continue with the above, since 1 MΩ is 1000 times larger than 
1 kΩ, voltage V1 will be 1000 times larger than V .2  In addition, voltage 
V2  will be 10 times larger than V .3  Finally, the voltage across the largest 
resistor of 1 MΩ will be ( )( ) =10 1000 10,000 times larger than V3 .

Now for some details. The total resistance is

= + +R R R R  T 1 2 3

= + +1 MΩ 1 kΩ 100 Ω

R 1 001 100  , ,  T Ω=

The current

µ µ( )= = ≅I E
R

V100 
1,001,100 Ω

99.89  A about 100  As
T

with

µ( )( ) ( )= = = =V I R I R 99 89 V99.89  A 1 MΩ .   almost the full 100 Vs1 1 1 1

µ( )( ) ( )= = = =V I R I R 99 89 mV99.89  A 1 kΩ .   about  100 mVs2 2 2 2

µ( )( ) ( )= = = Ω =V I R I R 9 989 mV99.89  A 100  .   about 10 mVs3 3 3 3

As illustrated above, the major part of the applied voltage is across the 
1 MΩ resistor. The current is in the microampere range due primarily to 
the large 1 MΩ resistor. Voltage V2  is about 0.1 V, compared to almost 
100 V for V1. The voltage across R3  is only about 10 mV, or 0.010 V.

Before making any detailed, lengthy calculations, you should first 
examine the resistance levels of the series resistors to develop some idea 
of how the applied voltage will be divided through the circuit. It will 

20 V 3 MV 6 VE R2

6 MV 12 VR1

1 MV 2 VR3

FIG. 5.36 
The ratio of the resistive values determines 

the voltage division of a series dc circuit.

100 V 1 kV V2E R2

1 MV V1R1

V3R3

>> V2 or V3

= 10V3

 R1 >> R2 or R3

100 V

FIG. 5.37 
The largest of the series resistive elements 
will capture the major share of the applied 

voltage.
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reveal, with a minumum amount of effort, what you should expect when 
performing the calculations (a checking mechanism). It also allows you 
to speak intelligently about the response of the circuit without having to 
resort to any calculations.

Voltage Divider Rule (VDR)

The voltage divider rule (VDR) permits the determination of the 
 voltage across a series resistor without first having to determine 
the  current of the circuit. The rule itself can be derived by analyzing  
the simple series circuit in Fig. 5.38.

First, determine the total resistance as follows:

= +R R RT 1 2

Then = = =I I I E
Rs

T
1 2

Apply Ohm’s law to each resistor:

= =






 =V I R E

R
R R E

RT T
1 1 1 1 1

= =






 =V I R E

R
R R E

RT T
2 2 2 2 2

The resulting format for V1 and V2  is

 V R E
R

VDR    Voltage divider rule ( )x x
T

=  (5.11)

where Vx  is the voltage across the resistor R ,x  E is the impressed voltage 
across the series elements, and RT  is the total resistance of the series 
circuit.

The voltage divider rule states that

the voltage across a resistor in a series circuit is equal to the 
value of that resistor times the total applied voltage divided 
by the total resistance of the series configuration.

Although Eq. (5.11) was derived using a series circuit of only two 
elements, it can be used for series circuits with any number of series 
resistors.

EXAMPLE 5.16 For the series circuit in Fig. 5.39:

a. Without making any calculations, how much larger would you 
expect the voltage across R2 to be compared to that across R ?1

b. Find the voltage V1 using only the voltage divider rule.
c. Using the conclusion of part (a), determine the voltage across R2.
d. Use the voltage divider rule to determine the voltage across R ,2  and 

compare your answer to your conclusion in part (c).
e. How does the sum of V1 and V2  compare to the applied voltage?

Solutions:

a. Since resistor R2 is three times R ,1  it is expected that =V V3 .2 1

b. V R E
R

16 V20 Ω 64  V
20 Ω 60 Ω

20 Ω 64  V
80 Ω

 
T

1 1 ( ) ( )= =
+

= =

c. ( )= = =V V 48 V3 3 16 V  2 1

64 V

R2

60 V

R1

20 V

E

V1 V2

FIG. 5.39 
Series circuit to be examined using the 

voltage divider rule in Example 5.16.

V2

E

R2

V1R1

I

RT

FIG. 5.38 
Developing the voltage divider rule.
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d. V R E
R

V 48 V60  Ω 64 
80 Ω

 
T

2 2 ( )( )= = =

The results are an exact match.

e. = +E V V1 2

V64 V 16 V 48 V 64     checks( )= + =

EXAMPLE 5.17 Using the voltage divider rule, determine voltages 
V1 and V3  for the series circuit in Fig. 5.40.

Solution:
= + +R R R R  T 1 2 3

= + +2 kΩ 5 kΩ 8 kΩ

=R  15 kΩT

V R E
R

6 V  2 kΩ 45 V
15 kΩ

 
T

1 1 ( )= = =

and 
V R E

R
24 V  8 kΩ 45 V

15 Ω
 

T
3 3 ( )= = =

The voltage divider rule can be extended to the voltage across two 
or more series elements if the resistance in the numerator of Eq. (5.11) 
is expanded to include the total resistance of the series resistors across 
which the voltage is to be found ( )′R . That is,

   ′ = ′V R E
RT

 (5.12)

EXAMPLE 5.18 Determine the voltage (denoted ′V ) across the 
series combination of resistors R1 and R2 in Fig. 5.40.

Solution: Since the voltage desired is across both R1 and R ,2  the sum 
of R1 and R2 will be substituted as ′R  in Eq. (5.12). The result is

′ = + = + =R R R  2 kΩ 5 kΩ 7 kΩ1 2

and V R E
R

V 21 V  7 kΩ 45 
15 kΩ

 
T

( )′ = ′ = =

In the next example you are presented with a problem of the other 
kind: Given the voltage division, you must determine the required 
resistor values. In most cases, problems of this kind simply require 
that you are able to use the basic equations introduced thus far in 
the text.

EXAMPLE 5.19 Given the voltmeter reading in Fig. 5.41, find volt-
age V3 .

Solution: Even though the rest of the network is not shown and the 
current level has not been determined, the voltage divider rule can be 

45 V 5 kVE R2

2 kV V1R1

8 kV V3R3

V'

FIG. 5.40 
Series circuit to be investigated in Examples 

5.17 and 5.18.

V
+

R1 4.7 kV

R2 1.2 kV

R3 3 kV V3

R4 10 kV

FIG. 5.41 
Voltage divider action for Example 5.19.
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174 | | |  SERIES dc CIRCUITS S

applied by using the voltmeter reading as the full voltage across the 
series combination of resistors. That is,

V R
V

R R
    3 kΩ 5.6 V

3 kΩ 1.2 kΩ3 3
meter

3 2

( ) ( )=
+

=
+

=V 4 V     3

EXAMPLE 5.20 Design the voltage divider circuit in Fig. 5.42 such 
that the voltage across R1 will be four times the voltage across R2; that 
is, =V V4R R1 2

.

Solution: The total resistance is defined by

= +R R RT 1 2

However, if =V V4 R R1 2

then =R R  41 2

so that = + = + =R R R R R R  4 5T 1 2 2 2 2

Applying Ohm’s law, we can determine the total resistance of the 
circuit:

= = =R E
I

20 V
4  mA

5 kΩT
s

so = =R R5 5 kΩT 2

and = =R 1 kΩ5  kΩ
5

 2

Then ( )= = =R R 4 kΩ4 4 1 kΩ  1 2

5.8 INTERCHANGING SERIES ELEMENTS
The elements of a series circuit can be interchanged without affect-
ing the total resistance, current, or power to each element. For 
instance, the network in Fig. 5.43 can be redrawn as shown in 
Fig. 5.44 without affecting I or V .2  The total resistance RT  is 
35 Ω in both cases, and I 70 V/35 Ω 2 A.= =  The voltage 

( )( )= = =V IR 2 A 5 Ω 10 V2 2  for both configurations.

20 VE

R2

VR1
R1

VR2

4 mA

FIG. 5.42 
Designing a voltage divider circuit  

(Example 5.20).

70 V

R1

10 V

R2

5 V

E

I

V2

R3 20 V

FIG. 5.43 
Series dc circuit with elements to be 

interchanged.

70 VE R2 5 V V2

R1 R3

10 V 20 V

I

FIG. 5.44 
Circuit in Fig. 5.43 with R2 and R3 

interchanged.
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EXAMPLE 5.21 Determine I and the voltage across the 7 Ω resistor 
for the network in Fig. 5.45.

Solution: The network is redrawn in Fig. 5.46(a) and (b).

( )( )= + =R  2 4 Ω 7 Ω 15 ΩT

= = =I E
R

V 2 5 A  37.5 
15 Ω

.  
T

( )= = =V IR 17 5 V  2.5 A)(7 Ω .  7Ω

50 

(a) (b)

V

4 V 4 V

I

7 V

12.5 V
37.5 V

4 V 4 V

I

7 VV V

FIG. 5.46 
Redrawing the circuit in Fig. 5.45.

0 V

FIG. 5.47 
Ground potential.

(a)

R1

R2E

a

(c)

R2

E

R1

b

(b)

R2

E

R1

FIG. 5.48 
Three ways to sketch the same series dc circuit.

50 V

4 V

I

V
7 V

4 V

12.5 V

FIG. 5.45 
Example 5.21.

5.9 NOTATION
Notation plays an increasingly important role in the analysis to follow. 
It is important, therefore, that we begin to examine the notation used 
throughout the industry.

Voltage Sources and Ground

Except for a few special cases, electrical and electronic systems are 
grounded for reference and safety purposes. The symbol for the ground 
connection appears in Fig. 5.47 with its defined potential level—
zero volts. A grounded circuit may appear as shown in Fig. 5.48(c), 
(b), or (c). In any case, it is understood that the negative terminal of 
the  battery and the bottom of the resistor R2 are at ground potential. 
Although Fig. 5.48(c) shows no connection between the two grounds, 
it is  recognized that such a connection exists for the continuous flow 
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176 | | |  SERIES dc CIRCUITS S

of charge. If =E 12 V, then point a is 12 V positive with respect to 
ground potential, and 12 V exist across the series combination of resis-
tors R1 and R .2  If a voltmeter placed from point b to ground reads 4 V, 
then the voltage across R2 is 4 V, with the higher potential at point b.

On large schematics where space is at a premium and clarity is 
important, voltage sources may be indicated as shown in Figs. 5.49(a) 
and 5.50(a) rather than as illustrated in Figs. 5.49(b) and 5.50(b). In 
addition, potential levels may be indicated as in Fig. 5.51, to permit a 
rapid check of the potential levels at various points in a network with 
respect to ground to ensure that the system is operating properly.

R1

R2

R3

25 V

FIG. 5.51 
The expected voltage level at a particular 

point in a network if the system is 
functioning properly.

+

a

Vab

(Vab  =  +)
R

–

b

(a)

I

+

a

Vab

( )Vab  =  – Vba  =  +or
R

–

b

(b)

I

FIG. 5.52 
Defining the sign for double-subscript notation.

–5 V

R2 R2

R1

5 V

(a) (b)

R1

FIG. 5.50 
Replacing the notation for a negative dc supply with the standard 

notation.

12 V

R2

R1

R2

R1

12 V

(a) (b)

FIG. 5.49 
Replacing the special notation for a dc 

voltage source with the standard symbol.

Double-Subscript Notation

The fact that voltage is an across variable and exists between two points 
has resulted in a double-subscript notation that defines the first subscript 
as the higher potential. In Fig. 5.52(a), the two points that define the 
voltage across the resistor R are denoted by a and b. Since a is the first 
subscript for V ,ab  point a must have a higher potential than point b if Vab  
is to have a positive value. If, in fact, point b is at a higher potential than 
point a, Vab will have a negative value, as indicated in Fig. 5.52(b).

In summary:

 The double-subscript notation Vab specifies point a as the 
higher potential. If this is not the case, a negative sign must 
be associated with the magnitude of Vab.

In other words,

the voltage Vab  is the voltage at point a with respect to (wrt) 
point b.

Single-Subscript Notation

If point b of the notation Vab  is specified as ground potential (zero volts), 
then a single-subscript notation can be used that provides the voltage at 
a point with respect to ground.
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In Fig. 5.53, Va is the voltage from point a to ground. In this case, it is 
obviously 10 V since it is right across the source voltage E. The voltage 
Vb  is the voltage from point b to ground. Because it is directly across the 
4 Ω resistor, =V 4 V.b

In summary:

The single-subscript notation Va specifies the voltage at 
point a with respect to ground (zero volts). If the voltage is 
less than zero volts, a negative sign must be associated with 
the magnitude of Va.

General Comments

A particularly useful relationship can now be established that has 
 extensive applications in the analysis of electronic circuits. For the above 
notational standards, the following relationship exists:

 = −V V Vab a b
 (5.13)

In other words, if the voltage at points a and b is known with respect 
to ground, then the voltage Vab  can be determined using Eq. (5.13). In 
Fig. 5.53, for example,

V V V  10 V 4 Vab a b= − = −
=V  6 Vab

EXAMPLE 5.22 Find the voltage Vab  for the conditions in Fig. 5.54.

Solution: Applying Eq. (5.13) gives

V V V  16 V 20 Vab a b= − = −
= −V 4 V   ab

Note the negative sign to reflect the fact that point b is at a higher 
potential than point a.

 EXAMPLE 5.23 Find the voltage Va  for the configuration in 
Fig. 5.55.

Solution: Applying Eq. (5.13) gives

= −V V Vab a b

and V V V  5 V 4 Va ab b= + = +
=V 9 V   a

EXAMPLE 5.24 Find the voltage Vab for the configuration in 
Fig. 5.56.

Solution: Applying Eq. (5.13) gives

V V V  20 V 15 V 20 V 15 Vab a b ( )= − = − − = +
=V 35 V   ab

Va

4 V10 V 4 VE =  10 V

6 V+ +

––

Vb

ba

FIG. 5.53 
Defining the use of single-subscript notation 

for voltage levels.

a bR

Va  =  +16 V Vb  =  +20 V

FIG. 5.54 
Example 5.22.

Va

a bR

Vab  =  +5 V Vb  =  4 V

FIG. 5.55 
Example 5.23.

R Vab10 kV

+

–

Va  =  +20 V

Vb  =  –15 V

FIG. 5.56 
Example 5.24.
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Note in Example 5.24 you must be careful with the signs when apply-
ing the equation. The voltage is dropping from a high level of +20 V  
to a negative voltage of −15 V. As shown in Fig. 5.57, this represents 
a drop in voltage of 35 V. In some ways it’s like going from a positive 
checking balance of $20 to owing $15; the total expenditure is $35.

EXAMPLE 5.25 Find the voltages V ,b  V ,c  and Vac  for the network 
in Fig. 5.58.

Solution: Starting at ground potential (zero volts), we proceed 
through a rise of 10 V to reach point a and then pass through a drop in 
potential of 4 V to point b. The result is that the meter reads

V 6 V10 V 4 V  b = + − =

as clearly demonstrated by Fig. 5.59.

If we then proceed to point c, there is an additional drop of 20 V, 
resulting in

V V V 14 V20  6 V 20 V  c b= − = − = −

as shown in Fig. 5.60.

V

–4 V

+10 V

Gnd (0 V)

a

b

–20 V

c

Vac  =   +24 V

Vc  =   –14 V

FIG. 5.60 
Review of the potential levels for the circuit in Fig. 5.58.

Vab25 V

+

–

E2 = +35 V

R2

–

+

a

b

Vcb R1 20 V

E1 = –19 V

c

FIG. 5.61 
Example 5.26.

V

4 V
6 V

10 V

Gnd (0 V)

FIG. 5.59 
Determining Vbusing the defined voltage 

levels.

V
+

E2
a

b
+ –

20 V
c

4 V

E1  =  10 V

FIG. 5.58 
Example 5.25.

V

Gnd (0 V)

Va  =  20 V

Vb  =  –15 V

Vab  =  35 V

FIG. 5.57 
The impact of positive and negative voltages 

on the total voltage drop.

The voltage Vac  can be obtainted using Eq. (5.13) or by simply 
 referring to Fig. 5.60:

V V V  10 V 14 Vac a c ( )= − = − −  

= 24 V 

EXAMPLE 5.26 Determine V ,ab  V ,cb  and Vc  for the network in 
Fig. 5.61.

Solution: There are two ways to approach this problem. The first is to 
sketch the diagram in Fig. 5.62 and note that there is a 54 V drop across 
the series resistors R1 and R .2  The current can then be determined using 
Ohm’s law and the voltage levels as follows:

= =I V54  
45  Ω

1.2 A

V IR 30 V  1.2 A)(25 Ω  ab 2 ( )= = =
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V IR 24 V  1.2 A)(20 Ω  cb 1 ( )= − = − = −
V E 19 V   c 1= = −

The other approach is to redraw the network as shown in Fig. 5.63 to 
clearly establish the aiding effect of E1 and E2 and then solve the result-
ing series circuit:

I
E E

R
19 V 35 V

45 Ω
54 V
45 Ω

1.2 A
T

1 2=
+

= + = =

and =V 30 V ab  = −V 24 V cb  = −V 19 V c

EXAMPLE 5.27 Using the voltage divider rule, determine the volt-
ages V1 and V2  of Fig. 5.64.

Solution: Redrawing the network with the standard battery symbol 
results in the network in Fig. 5.65. Applying the voltage divider rule 
gives

V
R E

R R
16 V4 Ω 24 V

4 Ω 2 Ω
 1

1

1 2

( )( )
=

+
=

+
=

V
R E

R R
8 V2 Ω 24  V

4 Ω 2 Ω
 2

2

1 2

( )( )
=

+
=

+
=

EXAMPLE 5.28 For the network in Fig. 5.66.

a. Calculate Vab .
b. Determine Vb .
c.  Calculate Vc .

Solutions:

a. Voltage divider rule:

V
R E
R

2 V2 Ω 10 V
2 Ω 3 Ω 5 Ω

 ab
T

1 ( )( )
= =

+ +
= +

b. Voltage divider rule:

V V V
R R E

R
8 V3 Ω 5 Ω 10 V

10 Ω
 b R R

T

2 3
2 3

( ) ( )( )
= + =

+
= + =

or V V V E V 8 V10 V 2 V  b a ab ab= − = − = − =

c. = =V 0 Vground potential  c

+35 V

54 V

–19 V

Gnd (0 V)

V

FIG. 5.62 
Determining the total voltage drop across the 

resistive elements in Fig. 5.61.

a

b

c

25 VR2

R1 20 V

–

+

E1 19 V

I

–

+

+

–

E2 35 V
+

–

FIG. 5.63 
Redrawing the circuit in Fig. 5.61 using 
standard dc voltage supply symbols.

V2

4 VR1V1

R2 2 V

+

–
V2

+

–

E  =  +24 V

FIG. 5.64 
Example 5.27.

R1 4 V V1

+

–

R2 2 V V2

+

–

24 VE
–

+

FIG. 5.65 
Circuit of Fig. 5.64 redrawn.

3 V

5 VE 10 V

Vab

R1 R2

Vb R3

a b

c

+ –

2 V +

–

+

–

FIG. 5.66 
Example 5.28.
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5.10 GROUND CONNECTION AWARENESS
For the majority of the circuits analyzed thus far the ground connection 
appeared at the bottom edge of the schematic usually tied directly to the source. 
There are times, however, for various reasons when it is more convenient and 
appropriate for the ground connection to be placed in another part of the circuit.

In general,

the placement of the ground connection will not affect the 
magnitude or polarity of the voltage across an element but 
it may have a significant impact on the voltage from any 
point in the network to ground.

The above will be clearly demonstrated in the next few examples.

EXAMPLE 5.29 For the series network of Fig. 5.67, determine

a. The voltage Va .
b. The voltage Vb .
c. The voltage Vab .

Solutions:

a. The voltage from point a to ground is directly across the 16 V volt-
age source and therefore:

= =V E 16 V a 1

b. The voltage at point b with respect to ground can be determined by 
examining potential rises and drops as we proceed from the ground 
point to the desired point on the network. Starting at ground level, we 
first encounter a 9 V rise in potential due to the voltage source E2 
followed by a rise in potential due to the source E .3  The result is that

V E E 16 V9 V 7 V  b 2 3= + + = + + =

However, note also that point a is connected to point b so

= =V V 16 V b a

c. The voltage Vab  can be determined directly from

V V V 0 V16 V 16 V  ab a b= − = − =
or applying Kirchhoff’s voltage law around the closed loop we have

+ − + + =V E E E 0ab 1 2 3

and V E E E 0 V16 V 7 V 9 V  ab 1 3 2= − − = − − =

EXAMPLE 5.30 For the series network of Fig. 5.68, determine

a. The voltage Va .
b. The voltages Vb  and Vc .
c. The voltage Vab .

Solutions:

a. Let us first determine the current:

=
+ +

=
+ +

= =I E
R R R

72 V
6 Ω 8 Ω 4 Ω

72 V
18 Ω

4 A
1 2 3

The voltage Va  is then

( )( )= = = =V V IR 24 V4 A 6 Ω  a 1 1

E1 16 V

E2 9 V

E3 7 V

a

b

FIG. 5.67 
Example 5.29.

4 V

8 V

6 V

72 V

a

E

1R

2R

3R

c

b

I

V1

V2

V3

FIG. 5.68 
Example 5.30.
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b. The voltage Vb  is equal to

= −V Vb 2

with ( )( )= = =V IR 4 A 8 Ω 32 V2 2

so that = −V 32 V b

V V V I R  32 Vc 2 3 3( )( )= − − = − −
32 V 4 A 4 Ω( )( )= − −
32 V 16 V= − −

= −48 V 
c. The voltage Vab  is

V V V 56 V24 V 32 V  ab a b ( )= − = − − =

EXAMPLE 5.31

a. For the series circuit of Fig. 5.69 find the voltages V ,a  V ,b  and Vc .
b. Determine the voltage Vad .

Solutions:

a. Clearly,
V 0 Va =

The current:

=
−

+ +
= −

+ +
= =I

E E
R R R

240 V 60 V
10 Ω 40 Ω 50 Ω

180 V
100 Ω

1.8 A1 2

1 2 3

so that ( )( )= = =V IR 1.8 A 40 Ω 72 V2 2

( )( )= = =V IR 1.8 A 50 Ω 90 V3 3

and V V V 162 V72 V 90 V  b 2 3= − − = − − = −

V V 72 V72 V  c 2 ( )= − = − = −
b. Applying Kirchhoff’s voltage law:

+ − =V V E 0ad 1 1

so that = −V E V  ad 1 1

with ( ) ( )( )= = =V I R  1.8 A 10 Ω 18 V1 1

and finally V E V 222 V  240 V 18 V  ad 1 1= − = − =

5.11 VOLTAGE REGULATION AND THE 
INTERNAL RESISTANCE OF VOLTAGE 
SOURCES
When you use a dc source such as the dc generator, dc battery, or dc sup-
ply in Fig. 5.70(a), you initially assume that it will provide the desired 
voltage for any resistive load you may hook up to the supply. In other 
words, if the battery is labeled 1.5 V or the supply is set at 20 V, you 
assume that they will provide that voltage no matter what load you may 
apply. Unfortunately, this is not always the case. For instance, if we 
apply a 1 kΩ resistor to a dc laboratory supply, it is fairly easy to set 
the voltage across the resistor to 20 V. However, if we remove the 1 kΩ 
resistor and replace it with a 100 Ω resistor and don’t touch the controls 
on the supply at all, we may find that the voltage has dropped to 19.14 
V. Change the load to a 68 Ω resistor, and the terminal voltage drops to 

10 V

50 V

40 V

E1

V1 V2

V3

E2

R1 R2

R3

60 V

240 V

a c

bd

I

FIG. 5.69 
Example 5.31.
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18.72 V. We discover that the load applied affects the terminal voltage of 
the supply. In fact, this example points out that

a network should always be connected to a supply before 
the level of supply voltage is set.

The reason the terminal voltage drops with changes in load (current 
demand) is that

every practical (real-world) supply has an internal resistance 
in series with the idealized voltage source

as shown in Fig. 5.70(b). The resistance level depends on the type of 
supply, but it is always present. Every year new supplies come out that are 
less sensitive to the load applied, but even so, some sensitivity still remains.

The supply in Fig. 5.71 helps explain the action that occurred above 
as we changed the load resistor. Due to the internal resistance of the 
supply, the ideal internal supply must be set to 20.1 V in Fig. 5.71(a) 
if 20 V are to appear across the 1 kΩ resistor. The internal resistance 
will capture 0.1 V of the applied voltage. The current in the circuit is 
determined by simply looking at the load and using Ohm’s law; that 
is, I V R 20 V 1 kΩ 20 mA,L L L= / = / =  which is a relatively low 
current.

In Fig. 5.71(b), all the settings of the supply are left untouched, but 
the 1 kΩ load is replaced by a 100 Ω resistor. The resulting current is 
now I E R 20.1 V 105 Ω 191.43 mA,L T= / = / =  and the output 
voltage is ( )( )= = =V I R 191.43 mA 100 Ω 19.14 V,L L  a drop of 
0.86 V. In Fig. 5.71(c), a 68 Ω load is applied, and the current increases 
substantially to 275.34 mA with a terminal voltage of only 18.72 V. This 
is a drop of 1.28 V from the expected level. Quite obviously, therefore, 

20.1 V

5 V

1.28 V
Rint

RL = 68 V VL = 18.72 V

(c)

20.1 V

5 V

0.1 V
Rint

RL = 1 kV

(a)

20.1 V

5 V

0.86 V
Rint

RL = 100 V VL = 19.14 V

(b)

IL = 20 mA IL = 191.43 mA IL = 275.34 mA

VL = 20 VE EE

FIG. 5.71 
Demonstrating the effect of changing a load on the terminal voltage of a supply.

(a) (b)

Rint

E

E
E

E

+

FIG. 5.70 
(a) Sources of dc voltage; (b) equivalent circuit.
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as the current drawn from the supply increases, the terminal voltage con-
tinues to drop.

If we plot the terminal voltage versus current demand from 0 A to 275.34 
mA, we obtain the plot in Fig. 5.72. Interestingly enough, it turns out to be a 
straight line that continues to drop with an increase in current demand. Note, 
in particular, that the curve begins at a current level of 0 A. Under no-load 
conditions, where the output terminals of the supply are not connected to 
any load, the current will be 0 A due to the absence of a complete circuit. 
The output voltage will be the internal ideal supply level of 20.1 V.

The slope of the line is defined by the internal resistance of the sup-
ply. That is,

 R
V
I

    ohms,  ΩL

L
int ( )=

∆
∆

 (5.14)

which for the plot in Fig. 5.72 results in

R
V
I

520.1 V 18.72  V
275.34 mA 0 mA

1.38 V
275.34 mA

 L

L
int Ω=

∆
∆

= −
−

= =

For supplies of any kind, the plot of particular importance is the output 
voltage versus current drawn from the supply, as shown in Fig. 5.73(a). 
Note that the maximum value is achieved under no-load (NL) conditions 
as defined by Fig. 5.73(b) and the description above. Full-load (FL) 

DVL

VL

VNL = E

VFL

0
INL IFL

IL

∆IL

(a) (b)

Rint

E

Is = 0 A

VNL = E

(c)

Rint

E

IFL

RL VFL

IFL = Imax

+

–

+

–

+ –

+

–

+

–

FIG. 5.73 
Defining the properties of importance for a power supply.

DIL

0 20 mA 191.43 mA 275.34 mA IL

VL

19.14 V
18.72 V

20.1 V

DVL

FIG. 5.72 
Plotting VL versus I L for the supply in Fig. 5.71.
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conditions are defined by the maximum current the supply can provide 
on a continuous basis, as shown in Fig. 5.73(c).

As a basis for comparison, an ideal power supply and its response 
curve are provided in Fig. 5.74. Note the absence of the internal resistance 
and the fact that the plot is a horizontal line (no variation at all with load 
demand)—an impossible response curve. When we compare the curve 
in Fig. 5.74 with that in Fig. 5.73(a), however, we now realize that the 
steeper the slope, the more sensitive is the supply to the change in load and 
therefore the less desirable it is for many laboratory procedures. In fact,

the larger the internal resistance, the steeper is the drop in 
voltage with an increase in load demand (current).

To help us anticipate the expected response of a supply, a defining 
quantity called voltage regulation (abbreviated VR; often called load 
regulation on specification sheets) was established. The basic equation 
in terms of the quantities in Fig. 5.73(a) is the following:

 =
−

×VR
V V

V
100% Voltage Regulation (in %)NL FL

FL
 (5.15)

The examples to follow demonstrate that

the smaller the voltage or load regulation of a supply, the 
less will the terminal voltage change with increasing levels 
of current demand.

For the supply above with a no-load voltage of 20.1 V and a full-load 
voltage of 18.72 V, at 275.34 mA the voltage regulation is

VR
V V

V
7 37100% 20.1 V 18.72 V

18.72 V
100% . %NL FL

FL

=
−

× = − × ≅  

which is quite high, revealing that we have a very sensitive supply. Most 
modern commercial supplies have regulation factors less than 1%, with 
0.01% being very typical.

EXAMPLE 5.32

a. Given the characteristics in Fig. 5.75, determine the voltage regula-
tion of the supply.

b. Determine the internal resistance of the supply.
c. Sketch the equivalent circuit for the supply.

0 INL IFL IL

E
VNL = E

VFL = E

VL

E RL VL = E
+

–

+

–

FIG. 5.74 
Ideal supply and its terminal characteristics.
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0 IL

VL

(VNL) 120 V
118 V (VFL)

10 A (IFL)

FIG. 5.75 
Terminal characteristics for the supply of Example 5.32.

E

0.2 V

120 V

Rint

+

–

FIG. 5.76 
dc supply with the terminal characteristics of 

Fig. 5.75.

Solutions:

a. =
−

×VR
V V

V
  100%NL FL

FL

120 V 118 V
118 V

100% 2
118

100%= − × = ×

≅VR 1 7  . %

b. R
V
I

0 2120 V 118 V
10 A 0 A

2 V
10 A

.   L

L
int Ω=

∆
∆

= −
−

= =

c. See Fig. 5.76.

EXAMPLE 5.33 Given a 60 V supply with a voltage regulation of 2%:

a. Determine the terminal voltage of the supply under full-load condi-
tions.

b. If the half-load current is 5 A, determine the internal resistance of 
the supply.

c. Sketch the curve of the terminal voltage versus load demand and the 
equivalent circuit for the supply.

Solutions:

a.  =
−

×VR
V V

V
  100%NL FL

FL

=
−

×
V

V
 2%

60 V
100%FL

FL

=
− V

V
  2%
100%

60 V FL

FL

V V 0.02 60 VFL FL= −
=V 1.02 60 VFL

V 58 82 V  60 V
1.02

.  FL = =

b. =I 10 AFL

R
V
I

0 12  60 V 58.82 V
10 A 0 A

1.18 V
10 A

.  L

L
int Ω=

∆
∆

= −
−

= ≅

c. See Fig. 5.77.
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5.12 LOADING EFFECTS OF INSTRUMENTS
In the previous section, we learned that power supplies are not the ideal 
instruments we may have thought they were. The applied load can have 
an effect on the terminal voltage. Fortunately, since today’s supplies 
have such small load regulation factors, the change in terminal voltage 
with load can usually be ignored for most applications. If we now turn 
our attention to the various meters we use in the lab, we again find that 
they are not totally ideal:

 Whenever you apply a meter to a circuit, you change 
the circuit and the response of the system. Fortunately, 
however, for most applications, considering the meters to be 
ideal is a valid approximation as long as certain factors are 
considered.

For instance,

any ammeter connected in a series circuit will introduce 
resistance to the series combination that will affect the 
current and voltages of the configuration.

The resistance between the terminals of an ammeter is determined by 
the chosen scale of the ammeter. In general,

for ammeters, the higher the maximum value of the current 
for a particular scale, the smaller the internal resistance.

For example, it is not uncommon for the resistance between the ter-
minals of an ammeter to be 250 Ω for a 2 mA scale but only 1.5 Ω for 
the 2 A scale, as shown in Fig. 5.78(a) and (b). If you are analyzing 
a circuit in detail, you can include the internal resistance as shown in 
Fig. 5.78 as a resistor between the two terminals of the meter.

At first reading, such resistance levels at low currents give the impres-
sion that ammeters are far from ideal, and that they should be used only 
to obtain a general idea of the current and should not be expected to 
provide a true reading. Fortunately, however, when you are reading 
currents below the 2 mA range, the resistors in series with the amme-
ter are typically in the kilohm range. For example, in Fig. 5.79(a), for 
an ideal ammeter, the current displayed is 0.6 mA as determined from 
I E R/ 12 V/20 kΩ 0.6 mA.s T= = =  If we now insert a meter with 
an internal resistance of 250 Ω as shown in Fig. 5.79(b), the additional 
resistance in the circuit will drop the current to 0.593 mA as determined 

E

0.12 V

60 V

Rint

0

VL

INL = 0 A IFL = 10 A IL

VNL = 60 V VFL = 58.82 V

+

–

FIG. 5.77 
Characteristics and equivalent circuit for the supply of Example 5.33.

2mA
mA

COM+
250 V

(a)

2A

A
COM+

1.5 V

(b)

FIG. 5.78 
Including the effects of the internal 

resistance of an ammeter: (a) 2 mA scale; (b) 
2 A scale.
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from I E R/ 12 V/20.25 kΩ 0.593 mA.s T= = =  Now, certainly the 
current has dropped from the ideal level, but the difference in results 
is only about 1%—nothing major, and the measurement can be used 
for most purposes. If the series resistors were in the same range as the 
250 Ω resistors, we would have a different problem, and we would have 
to look at the results very carefully.

Let us go back to Fig. 5.22 and determine the actual current if 
each meter on the 2 A scale has an internal resistance of 1.5 Ω.  The 
fact that there are four meters will result in an additional resis-
tance of ( )( ) =4 1.5 Ω 6 Ω in the circuit, and the current will be 
I E R/ 8.4 V/146 Ω 58 mA,s T= = ≅  rather than the 60 mA under 
ideal conditions. This value is still close enough to be considered a help-
ful reading. However, keep in mind that if we were measuring the current 
in the circuit, we would use only one ammeter, and the current would 
be I E R/ 8.4 V/141.5 Ω 59 mA,s T= = ≅  which can certainly be 
approximated as 60 mA.

In general, therefore, be aware that this internal resistance must be 
factored in, but for the reasons just described, most readings can be used 
as an excellent first approximation to the actual current.

It should be added that because of this insertion problem with amme-
ters, and because of the very important fact that the circuit must be 
disturbed to measure a current, ammeters are not used as much as you 
might initially expect. Rather than break a circuit to insert a meter, the 
voltage across a resistor is often measured and the current then calcu-
lated using Ohm’s law. This eliminates the need to worry about the level 
of the meter resistance and having to disturb the circuit. Another option 
is to use the clamp-type ammeters introduced in Chapter 2, removing the 
concerns about insertion loss and disturbing the circuit. Of course, for 
many practical applications (such as on power supplies), it is convenient 
to have an ammeter permanently installed so that the current can quickly 
be read from the display. In such cases, however, the design is such as to 
compensate for the insertion loss.

(a)

2mA
mA

COM+ COM+

2mA
mA

250 V

2 kV

18 kV12 V RT

Rm ≅ OV
Ideal

Rm = 250V

Practical

 = 2 kV + 18 kV = 20 kV

Is
Is

(b)

2 kV

18 kV12 V RT = 250 V + 2 kV + 18 kV

     = 20.25 kV

Is

+

–

+

–

FIG. 5.79 
Applying an ammeter set on the 2 mA scale to a circuit with resistors in the kilohm range: (a) ideal; (b) practical.
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In summary, therefore, keep in mind that the insertion of an ammeter 
will add resistance to the branch and will affect the current and voltage 
levels. However, in most cases the effect is minimal, and the reading will 
provide a good first approximation to the actual level.

The loading effect of voltmeters is discussed in detail in the next 
chapter because loading is not a series effect. In general, however, the 
results will be similar in many ways to those of the ammeter, but the 
major difference is that the circuit does not have to be disturbed to apply 
the meter.

5.13 PROTOBOARDS (BREADBOARDS)
At some point in the design of any electrical/electronic system, a pro-
totype must be built and tested. One of the most effective ways to build 
a model for testing is to use the protoboard (in the past most com-
monly called a breadboard) in Fig. 5.80. It permits a direct connection 
of the power supply and provides a convenient method for holding and 
connecting the components. There isn’t a great deal to learn about the 
protoboard, but it is important to point out some of its characteristics, 
including the way the elements are typically connected.

The red terminal Va  is connected directly to the positive terminal of 
an external dc power supply, with the black lead Vb  connected to the neg-
ative terminal of the supply and the green terminal used for the ground 
connection. Under the hole pattern, there are continuous horizontal cop-
per strips under the top and bottom rows, as shown by the copper bands in 
Fig. 5.80. In the center region, the conductive strips are vertical but do not 
extend beyond the deep non-conductive notch “ditch” running the hori-
zontal length of the board. At the top and bottom of the board (in the hor-
izontal position as shown in the photo), there are continuous red and blue 
lines. The red line has a plus (+) sign at the end to indicate that it is the 
line to which the positive side of the applied dc voltage supply should be 
connected. Since it is a continuous band (strip) of copper conductor, the 
connection can be made at any point in the adjoining receptors. The blue 
line has a minus (−) sign at each end to indicate where the lower potential 
of the applied voltage should be connected. Again, the connection can be 

Horizontal

Conductivity Vertical

Conductivity

Deep Notch ‶ditch″

FIG. 5.80 
Protoboard with areas of conductivity defined using two different 

approaches.
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made anywhere along the blue line in the adjoining wire receptors. That’s 
all there is to it, although it will take some practice to make the most 
effective use of the conductive patterns.

As examples, the network in Fig. 5.14 is connected on the proto-
board in the photo in Fig. 5.81 using two different approaches, one to 
the left side of the figure and the other to the right side. After the dc 
power supply has been hooked up, a lead is brought down from the  
positive red terminal to the top conductive strip marked (+). Keep  
in mind that now the entire strip is connected to the positive  terminal 
of the supply. The negative terminal is connected to the bottom 
 conductive strip marked with a minus sign ( )− , so that 8.4 V can be 
read at any point between the top positive strip and the  bottom nega-
tive strip. A ground connection to the negative terminal of the battery 
was made at the site of the three terminals. For the user’s convenience, 
kits are available in a variety of lengths and colors are  provided. 
Otherwise, a spool of 24 gage wire is cut to length and the ends are 
stripped. In general, feel free to use the extra length— everything 
doesn’t have to be at right angles. For most protoboards, 1/4 through  
1 W resistors will insert nicely in the board. For clarity, 1/2 W resistors 
are used in Fig. 5.81. Note in the left configuration that the resistors 
were connected in series by simply putting one of each series resistor 
in the same small vertical conductive band. In the right configura-
tion, a short lead was used to connect the two resistors at one point. 
Note that for each configuration the positive terminal of the supply 
is connected to the same horizontal (+) strip at the top of the board. 
The same is true for the green ground (−) connection for the lower 
potential of each configuration. Finally, note that the large green ter-
minal at the top of the board is connected to the large black GND 
terminal to establish a common ground for both configurations. The 

Source connections

Meter connections

one approach

Meter
connections

another approach

FIG. 5.81 
Two setups for the network in Fig. 5.14 on a protoboard with yellow leads added to each configuration to measure 

voltage V3 with a voltmeter.

+

–
8.4 V

30 V10 V 100 V
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voltage across any component can be easily read by inserting addi-
tional leads as shown in the figure (yellow leads) for the voltage V3  of 
each configuration (the yellow wires) and attaching the meter. For any 
network, the components can be wired in a variety of ways. Note in 
the configuration on the right that the horizontal crosses through the 
center of the board was used to isolate the two terminals of each resis-
tor. It is extremely common for the deep notch to be used to isolate 
IC chip pins associated with a Dual Inline Package chip (DIP). Even 
though there are no set standards, it is important that the arrangement 
can easily be understood by someone else.

Additional setups using the protoboard are in the chapters to follow 
so that you can become accustomed to the manner in which it is used 
most effectively. You will probably see the protoboard quite frequently 
in your laboratory sessions or in an industrial setting.

5.14 APPLICATIONS
Before looking at a few applications, we need to consider a few general 
characteristics of the series configuration that you should always keep in 
mind when designing a system. First, and probably the most important, 
is that

if one element of a series combination of elements should 
fail, it will disrupt the response of all the series elements. 
If an open circuit occurs, the current will be zero. If a short 
circuit results, the voltage will increase across the other 
elements, and the current will increase in magnitude.

Second, and a thought you should always keep in mind, is that

for the same source voltage, the more elements you place 
in series, the less is the current and the less is the voltage 
across all the elements of the series combination.

Last, and a result discussed in detail in this chapter, is that

the current is the same for each element of a series 
combination, but the voltage across each element is a 
function of its terminal resistance.

There are other characteristics of importance that you will learn as you 
investigate possible areas of application, but the above are the most 
important.

Series Control

One common use of the series configuration is in setting up a system 
that ensures that everything is in place before full power is applied. In 
Fig. 5.82, various sensing mechanisms can be tied to series switches, 
preventing power to the load until all the switches are in the closed or on 
position. For instance, as shown in Fig. 5.82, one component may test 
the environment for dangers such as gases, high temperatures, and so on. 
The next component may be sensitive to the properties of the system to 
be energized to be sure all components are working. Security is another 
factor in the series sequence, and finally a timing mechanism may be 
present to ensure limited hours of operation or to restrict operating peri-
ods. The list is endless, but the fact remains that “all systems must be go” 
before power reaches the operating system.
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Holiday Lights

In recent years, the small blinking holiday lights with 50 to 100 bulbs 
on a string have become very popular [see Fig. 5.83(a)]. Although 
holiday lights can be connected in series or parallel (to be described 
in the next chapter), the smaller blinking light sets are normally con-
nected in series. It is relatively easy to determine if the lights are 
connected in series. If one wire enters and leaves the bulb casing, 
they are in series. If two wires enter and leave, they are probably in 
parallel. Normally, when bulbs are connected in series, if one burns 
out (the filament breaks and the circuit opens), all the bulbs go out 
since the current path has been interrupted. However, the bulbs in 
Fig. 5.83(a) are specially designed, as shown in Fig. 5.83(b), to per-
mit current to continue to f low to the other bulbs when the filament 
burns out. At the base of each bulb, there is a fuse link wrapped 
around the two posts holding the filament. The fuse link of a soft 
conducting metal appears to be touching the two vertical posts, but 
in fact a coating on the posts or fuse link prevents conduction from 
one to the other under normal operating conditions. If a filament 
should burn out and create an open circuit between the posts, the 

(a)

FIG. 5.83 
Holiday lights: (a) 50-unit set; (b) bulb construction.

(b)
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 FIG. 5.82 
Series control over an operating system.
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current through the bulb and other bulbs would be interrupted if it 
were not for the fuse link. At the instant a bulb opens up, current 
through the circuit is zero, and the full 120 V from the outlet appears 
across the bad bulb. This high voltage from post to post of a single 
bulb is of sufficient potential difference to establish current through 
the insulating coatings and spot-weld the fuse link to the two posts. 
The circuit is again complete, and all the bulbs light except the one 
with the activated fuse link. Keep in mind, however, that each time 
a bulb burns out, there is more voltage across the other bulbs of the 
circuit, making them burn brighter. Eventually, if too many bulbs 
burn out, the voltage reaches a point where the other bulbs burn out 
in rapid succession. To prevent this, you must replace burned-out 
bulbs at the earliest opportunity.

The bulbs in Fig. 5.83(b) are rated 2.5 V at 0.2 A or 200 mA. Since 
there are 50 bulbs in series, the total voltage across the bulbs will be 

×50 2.5 V or 125 V, which matches the voltage available at the typ-
ical home outlet. Since the bulbs are in series, the current through 
each bulb will be 200 mA. The power rating of each bulb is therefore 

( )= = =P VI 2.5 V (0.2 A)  0.5 W  with a total wattage demand of 
50 0.5 W 25 W.× =

A schematic representation for the set of Fig. 5.83(a) is provided in 
Fig. 5.84(a). Note that only one flasher unit is required. Since the bulbs 
are in series, when the flasher unit interrupts the current flow, it turns off 
all the bulbs. As shown in Fig. 5.83(b), the flasher unit incorporates a 
bimetal thermal switch that opens when heated by the current to a preset 
level. As soon as it opens, it begins to cool down and closes again so 
that current can return to the bulbs. It then heats up again, opens up, and 
repeats the entire process. The result is an on-and-off action that creates 
the flashing pattern we are so familiar with. Naturally, in a colder cli-
mate (for example, outside in the snow and ice), it initially takes longer 
to heat up, so the flashing pattern is slow at first, but as the bulbs warm 
up, the frequency increases.

The manufacturer specifies that no more than six sets should be 
connected together. How can you connect the sets together, end 
to end, without reducing the voltage across each bulb and making 
all the lights dimmer? If you look closely at the wiring, you will 
find that since the bulbs are connected in series, there is one wire 
to each bulb with additional wires from plug to plug. Why would 
they need two additional wires if the bulbs are connected in series? 
Because when each set is connected together, they are actually in 
a parallel arrangement (to be discussed in the next chapter). This 
unique wiring arrangement is shown in Fig. 5.84(b) and redrawn in 
Fig. 5.84(c). Note that the top line is the hot line to all the connected 
sets, and the bottom line is the return, neutral, or ground line for all 
the sets. Inside the plug in Fig. 5.84(d), the hot line and return are 
connected to each set, with the connections to the metal spades of the 
plug as shown in Fig. 5.84(b). We will find in the next chapter that 
the current drawn from the wall outlet for parallel loads is the sum 
of the current to each branch. The result, as shown in Fig. 5.84(c), 
is that the current drawn from the supply is × =6 200 mA 1.2 A, 
and the total wattage for all six sets is the product of the applied 
voltage and the source current or ( )( ) =120 V 1.2 A 144 W  with 
(144 W)/6 24 W=  per set.
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Microwave Oven

Series circuits can be very effective in the design of safety equipment. 
Although we all recognize the usefulness of the microwave oven, it can be 
quite dangerous if the door is not closed or sealed properly. It is not enough 
to test the closure at only one point around the door because the door may 
be bent or distorted from continual use, and leakage can result at some 
point distant from the test point. One common safety arrangement appears 
in Fig. 5.85. Note that magnetic switches are located all around the door, 
with the magnet in the door itself and the magnetic door switch in the main 
frame. Magnetic switches are simply switches where the magnet draws a 
magnetic conducting bar between two contacts to complete the circuit—
somewhat revealed by the symbol for the device in the circuit diagram in 
Fig. 5.85. Since the magnetic switches are all in series, they must all be 
closed to complete the circuit and turn on the power unit. If the door is suf-
ficiently out of shape to prevent a single magnet from getting close enough 
to the switching mechanism, the circuit will not be complete, and the power 
cannot be turned on. Within the control unit of the power supply, either the 
series circuit completes a circuit for operation or a sensing current is estab-
lished and monitored that controls the system operation.

+2.5V–

125 V ac

Flasher

200 mA

50 bulbs

+2.5V– +2.5V– +2.5V– +2.5V– +2.5V–

“    ”

I = 200 mA

200 mA

(a)

125 V ac

Plug

a

b

c

Three wires

Bulbs in series
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b

c

Establish parallel
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50-bulb strings

(b)
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Isupply = 1.2 A 1 A 0.8 A 3(0.2 A) = 0.6 A

a a a a

b b b

c c c c

+

–

0.2 A 0.2 A 0.2 A

6 sets

(c)

Isupply

FIG. 5.84 
(a) Single-set wiring diagram; (b) special wiring arrangement; (c) redrawn schematic; (d) special plug and flasher 

unit.

(d)
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Series Alarm Circuit

The circuit in Fig. 5.86 is a simple alarm circuit. Note that every element 
of the design is in a series configuration. The power supply is a 5 V dc 
supply that can be provided through a design similar to that in Fig. 2.36, 
a dc battery, or a combination of an ac and a dc supply that ensures that 
the battery will always be at full charge. If all the sensors are closed, a 
current of 5 mA results because of the terminal load of the relay of about 
1 kΩ. That current energizes the relay and maintains an off position for 
the alarm. However, if any of the sensors is opened, the current will be 
interrupted, the relay will let go, and the alarm circuit will be energized. 
With relatively short wires and a few sensors, the system should work 
well since the voltage drop across each is minimal. However, since the 
alarm wire is usually relatively thin, resulting in a measurable resistance 
level, if the wire to the sensors is too long, a sufficient voltage drop could 
occur across the line, reducing the voltage across the relay to a point 
where the alarm fails to operate properly. Thus, wire length is a factor 
that must be considered if a series configuration is used. Proper sen-
sitivity to the length of the line should remove any concerns about its 
operation. An improved design is described in Chapter 8.

Magnets

Magnetic
door
switches

Microwave
power
unit

Magnets

Series safety switches

FIG. 5.85 
Series safety switches in a microwave oven.
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FIG. 5.86 
Series alarm circuit.
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PROBLEMS

SECTION 5.2 Series Resistors

 1.  For each configuration in Fig. 5.87, find the individual (not 
combinations of) elements (voltage sources and/or resis-
tors) that are in series.

(a)

R3

R1

E R2

+

–

R3E

R1

(b)

R2

+

–

(c)

R3

R2

+

–

R1

E1
+

–
E2

R2

E

R1

(d)

R3

R4

R5

+

–

FIG. 5.87 
Problem 1.

R3

R1

E2

(a)

R4

R2
E1

+

–

+ –

R1

(c)

R2

R3

E

+–

(b)

E1

+

–

R1 R3 R5

R2 R4 R6

R2

R4

R3

R5

R6

R1

(d)

E1

+

–

FIG. 5.88 
Problem 2.

 2. For each configuration in Fig. 5.88, find the individual (not 
combinations of) elements (voltage sources and/or resis-
tors) that are in series.
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 3. Find the total resistance RT  for each configuration in 
Fig. 5.89. Note that only standard resistor values were used.

8.2 kV

R1

2.7 kV

R5

10 kVR2 R3 9.1 kV
R4 1.8 kV

(a)

RT

(b)

82 V

R2

47 V

R1

R3 820 VRT

91 V

R5

51 V

R6

1.2 kV

R4

3.3 kV

2.2 kV 10 kV

6.8 kVRT

(c)

FIG. 5.90 
Problem 4.

 4. Find the total resistance RT  for each configuration in 
Fig. 5.90. Note that only standard resistor values were used.

(a)

RT

6.8 kV 

R4

0.1 kV

R1

0.39 kV

R2

1.2 kV

R3

RT

1.2 V

R1

(b)
8.2 V

R4

2.7 V

R2

3.3 V

R3

2.2  V

1.2  V

3.3 V 4.7  V 1 V
RT

(c)

FIG. 5.89 
Problem 3.

(b)

1

2

(a)

1

2

FIG. 5.91 
Problem 5.

 5. For each circuit board in Fig. 5.91, find the total resistance 
between connection tabs 1 and 2.
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 6. For the circuit in Fig. 5.92, composed of standard values:
a. Which resistor will have the most impact on the total 

resistance?
b. On an approximate basis, which resistors can be ignored 

when determining the total resistance?
c. Find the total resistance, and comment on your results 

for parts (a) and (b).

 7. For each configuration in Fig. 5.93, determine the ohmme-
ter reading.

(a) 

V

146 kV

R 47 kV

33 kV

10 kV 100 kV

(b)

V

139 kV

87 kV R1

22 kV

R2 = 2R1

+–+–

FIG. 5.94 
Problem 8.

R3 2 MV

R4

400 kV

200 V

R1

2 kV

R2

RT

FIG. 5.92 
Problem 6.

(a)

V
10 V

20 V 68 V

33 V

56 V

+–

47 V

(b)

V
2.2 kV 0.82 kV

3.3 kV 2.7 kV

1.2 kV

+–

FIG. 5.93 
Problem 7.

(a)

1 kV

1.2 kV

2.2 kV

V

V

(b)

1.2 kV

10 kV

9.1 kV

V

(c)

12 V

22 V

16 V

20 V

+–

+–+–

FIG. 5.95 
Problem 9.

 8. Find the resistance R, given the ohmmeter reading for each 
configuration of Fig. 5.94.

 9. What is the ohmmeter reading for each configuration in 
Fig. 5.95?
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 SECTION 5.3 Series Circuits

 10. For the series configuration in Fig. 5.96, constructed of 
standard values:
a. Find the total resistance.
b. Calculate the current.
c. Find the voltage across each resistive element.
d. Calculate the power delivered by the source.
e. Find the power delivered to the 20 Ω resistor.

R3 20 V V3
E 76 V

RT 12 V

R1

V1

14 V

R2

V2

Is

+ – + –

+

–

+

–

FIG. 5.96 
Problem 10.

R3 84 kV V3
E 60 V

RT

Is

2.2 kV

V1

R1

6.8 kV

V2

R2

+ – + –

+

–

+

–

FIG. 5.97 
Problem 11.

1.3 V

4.7 V

R

E
RT = 9 V

(I)

2.2 kV

(II)

E

R

3.3 kV

I

5.2 V

I

6.6 V

9 V

+–

+

–

+–

+

–

+

–

FIG. 5.99 
Problem 13.

6 kV

12 kV

E 10 VE

I = 4 mA

4 kV 12 V 22 V 82 V

(a) (b)

I = 500 mA

+

–+

–

FIG. 5.98 
Problem 12.

11. For the series configuration in Fig. 5.97, constructed using 
standard value resistors:
a. Without making a single calculation, which resistive 

element will have the most voltage across it? Which will 
have the least?

b. Which resistor will have the most impact on the total 
resistance and the resulting current? Find the total resis-
tance and the current.

c. Find the voltage across each element and review your 
response to part (a).

 12. Find the applied voltage necessary to develop the current 
specified in each circuit in Fig. 5.98.

 13. For each network in Fig. 5.99, constructed of standard val-
ues, determine:
a. The current I.
b. The source voltage E.
c. The unknown resistance.
d. The voltage across each element.
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(a)

2.2 kV

A

V
+–

+ –

2.2 kVE 36 V
–

+

(c)

12 V

A V
+–+ –

A
+–

V

(b)

2.4 kV

E 22.5 V

1 kV

+–

+

–

+–

5.6 kV 
1.2 kV 

3.3 kV

FIG. 5.100 
Problem 14.

+ –

40    V
20    V

10    V

100     V

V

80 V

I

10  V

30    V20     V

10 V

I
V

E
+

–

(b)(a)

FIG. 5.101 
Problem 15.

 14. For each configuration in Fig. 5.100, what are the readings 
of the ammeter and the voltmeter?

 *15. For each configuration of Fig. 5.101, find the current I and 
the voltage V.

SECTION 5.4 Power Distribution in a Series Circuit

 16. For the circuit in Fig. 5.102, constructed of standard value 
resistors:
a. Find the total resistance, current, and voltage across 

each element.
b. Find the power delivered to each resistor.
c. Calculate the total power delivered to all the resistors.
d. Find the power delivered by the source.

E 120 V

2 kV

R3

1 kV

R2

3 kV

R1

+

–

FIG. 5.102 
Problem 16.

R V3

2 A
P = 28 W

+

–
E

+

–

3 V

V1+ –

2 V

V2+ –

FIG. 5.103 
Problem 17.

e. How does the power delivered by the source compare to 
that delivered to all the resistors?

f. Which resistor received the most power? Why?
g. What happened to all the power delivered to the resistors?
h. If the resistors are available with wattage ratings of 1/2 

W, 1 W, 2 W, and 5 W, what minimum wattage rating 
can be used for each resistor?

 17. Find the unknown quantities for the circuit of Fig. 5.103 
using the information provided.
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 18. Find the unknown quantities for the circuit in Fig. 5.104 
using the information provided.

2 V
RT = 36 V

I R1 R2

P = 20 W

P = 12 W

E
+

–

FIG. 5.104 
Problem 18.

 FIG. 5.105 
Problem 19.

 19. Eight holiday lights are connected in series as shown in 
Fig. 5.105.
a. If the set is connected to a 220 V source, what is the 

current through the bulbs if each bulb has an internal 
resistance of 22 Ω?

b. Determine the power delivered to each bulb.
c. Calculate the voltage drop across each bulb.
d. If one bulb burns out (that is, the filament opens), what 

is the effect on the remaining bulbs? Why?

 *20.  For the conditions specified in Fig. 5.106, determine the 
unknown resistance.

(a) (b) (c)

a b
4 9 V V 12 V

6 V

b

12 V V5 V8 

a

12 V

b

a

4 V

+ 4 V –

8 V

+– +– + –

+ –

– 8 V + 

+–

+– + – +–

+

–+

–

FIG. 5.107 
Problem 21.

RE 40 V

40 W

R2

6 V4 V

R1

+

–

FIG. 5.106 
Problem 20.

SECTION 5.5 Voltage Sources in Series

 21. Combine the series voltage sources in Fig. 5.107 into a sin-
gle voltage source between points a and b.

 22. Determine the current I and its direction for each network in 
Fig. 5.108. Before solving for I, redraw each network with a 
single voltage source.

4.7 V 5.6 V

8 V

(a)

4.7 V

10 V

5.6 V

4 V

(b)

12 V

1.2 V

+–

+–32 V+ –

I

I

+

–
20 V

+

–

+

–

FIG. 5.108 
Problem 22.
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 23. Find the unknown voltage source and resistor for the net-
works in Fig. 5.109. First combine the series voltage sources 
into a single source. Indicate the direction of the resulting 
current.

(b)

30 V8V

(a)

4 V

V

6 V 12  V

R

V +–
+–

+

–+

–

+– 7 V+ –

+

–

+

–

(c)

12 V

22 V

14 V 12 V
+

–

–

+

+

–

+ – + –

+ –

V2

V1

FIG. 5.110 
Problem 24.

SECTION 5.6 Kirchhoff’s Voltage Law

 24. Using Kirchhoff’s voltage law, find the unknown voltages 
for the circuits in Fig. 5.110.

(b)

R

12 V10 V

4 V2 kV16 V

E

(a)

R

20 V

2 mA

3 kV

P = 8 mW

E

+ –

+–

+–

+ –

+

–

+–

+

–

FIG. 5.109 
Problem 23.

 25. a. Find the current I for the network of Fig. 5.111.
b. Find the voltage V2 .
c. Find the voltage V1 using Kirchhoff’s voltage law.

4 V  

6 V  

V2

V1

50 V

10 V + –

+

–

+ –

+

–

I

FIG. 5.111 
Problem 25.

M05_BOYL0302_14_GE_C05.indd   201M05_BOYL0302_14_GE_C05.indd   201 28/02/23   12:30 PM28/02/23   12:30 PM



202 | | |  SERIES dc CIRCUITS S

 26. Using Kirchhoff’s voltage law, determine the unknown 
voltages for the series circuits in Fig. 5.112.

+

–

(b)

6 V

10 V
V2

V1

E 24 V

10 V 8 V

V2

1 kV

1 MV 

(a)

+ –

+

–

+

–

+

–

+ –

V1

+

–

+

–

+

–

FIG. 5.112 
Problem 26.

 27. Using Kirchhoff’s voltage law, find the unknown voltages 
for the configurations in Fig. 5.113.

V1

3 V

10 V  2 V V2

(b)

24 V 10 V 

3 A 

(a)

6 V

+

–

+–

+–

+

–

+

–

+ –V1+ –

V2 +–

+

–

+

–

2.7 V

1.8 V

R1 R1

R2

FIG. 5.113 
Problem 27.

E

R3

200 V

R2

100 V

R1 = 4 V

2 V + –+ –+ –

+

–

FIG. 5.114 
Problem 28.

E

10 kV

R3

1 kV

R2

100 V

R1

60 V

V3V2V1

V9

+

–
+ –

+ –+ –+ –

FIG. 5.115 
Problem 29.

SECTION 5.7 Voltage Division in a Series Circuit

 28. Determine the values of the unknown resistors in Fig. 5.114 
using only the provided voltage levels. Do not calculate the 
current!

 29. For the configuration in Fig. 5.115, with standard resistor 
values:
a. By inspection, which resistor will receive the largest 

share of the applied voltage? Why?

b. How much larger will voltage V3  be compared to V2  and 
V ?1

c. Find the voltage across the largest resistor using the 
voltage divider rule.

d.  Find the voltage across the series combination of resis-
tors R2 and R3 .

 30. Using the voltage divider rule, find the indicated voltages in 
Fig. 5.116.
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 32. Using the voltage divider rule or Kirchhoff’s voltage law, 
determine the unknown voltages for the configurations in 
Fig. 5.118. Do not calculate the current!

0.6 V

2.5 V

0.72 V

1.5 V

0.5 V 0.9 V

(c)

2 kV

4 kV

40 V

1 kV

3 kV

(b)

40 V

20 V

30 V

(a)

+

–
+

–

+

–

+

–

+

–

+

– V
VV

FIG. 5.116 
Problem 30.

V3R3120 V

R1

V1

R2

10 V

(b)

80 VV2E

1.2 V 

6.8 V 

V1

2 V

20 V

(a)

+

–

+ – + –

+

–

+

–

+

–

+ – + –

+

–

+

–

FIG. 5.117 
Problem 31.

E

(a)

V12 V

V268 V 

1000 V100 V

(b)

+

–

+

–

+

–
+

–

E1

Vx

+

–

+

–

V2

+

–

3.3 kV 

6.8 kV 

4.7 kV 

10 kV 

50 V

E2

+

–
30 V

V1+ –

FIG. 5.118 
Problem 32.

R3

4 kV

R2

3 kV

R1

V23 V

I

R4 4 kV V4
E

18 V

+

–

+ – + –+ –

+

–

FIG. 5.119 
Problem 33.

 31. Using the voltage divider rule or Kirchhoff’s voltage law, 
determine the unknown voltages for the configurations in 
Fig. 5.117. Do not calculate the current!

 33. Using the information provided, find the unknown quanti-
ties of Fig. 5.119.

 *34.  Using the voltage divider rule, find the unknown resistance 
for the configurations in Fig. 5.120.

 35. a.  Design a voltage divider circuit that will permit the use 
of an 8 V, 50 mA bulb in an automobile with a 12 V 
electrical system.

b. What is the minimum wattage rating of the chosen resis-
tor if 1/4 W, 1/2 W, and 1 W resistors are available?
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 *38. a.   Design the circuit in Fig. 5.123 such that  
=VR2

 V V V3  and  4 .R R R1 3 2
=

b. If the current is reduced to µ10  A, what are the new 
values of R ,1  R ,2  and R ?3  How do they compare to the 
results of part (a)?R 4 V

2.2 kV 1.8 kV

20 V

6 MV 

3 MV 

140 V

R

110 V

(b)

(a)

+

–

+

–

+

–

+

–

FIG. 5.120 
Problem 34.

R2R1

92 V

5 mA

+ –

FIG. 5.121 
Problem 36.

 *36. Design the voltage divider in Fig. 5.121 such that 
=V V(1/5) .R R1 2  That is, find R1 and R2.

 *37. Find the voltage across each resistor in Fig. 5.122 if 
=R R21 3 and =R R7 .2 3

E 80 V

R3 V3

R2 V2

R1 V1

+

–

+

–
+

–

+

–

FIG. 5.122 
Problem 37.

R3E 64 V

10 mA

R2R1

+

–

FIG. 5.123 
Problem 38.

SECTION 5.9 Notation

 39. Determine the voltages V ,a  V ,b  and Vab  for the networks in 
Fig. 5.124.

(a)

VbVa

12 V 16 V+ – +–

5 V
+

–

(b)

10 V 
10 MΩ

6 V Vb

Va

+–

R

+

–
6 V

–

+

(c)

3 V Unknown
Va

+– + –
8 V 

Vb

+

–

8 V–

FIG. 5.124 
Problem 39.

 40.  a. Determine the current I (with direction) and the voltage V 
(with polarity) for the networks in Fig. 5.125.

b. Find the voltage Va .
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 41. For the network in Fig. 5.126 determine the voltages:

a. V ,a  V ,b  V ,c  V ,d  Ve

b. V ,ab  V ,dc  Vcb

c. V ,ac  Vdb

(a) (b)

60 V

–60 V 

–100 V –20 V 

18 V

2 kV 

2 kV V 2 kV 2 kV V82 V

a

a

I

I

FIG. 5.125 
Problem 40.

3 kV

b
54 V1 kV

27 V

a
2 kV

c d

e

+

–

+ –

FIG. 5.126 
Problem 41.

 *42. Given the information appearing in Fig. 5.127, find the 
level of resistance for R1 and R3.

R1

+18 V

R2 10 V

R3

+6 V

–6 V

–12 V

FIG. 5.127 
Problem 42.

  43. Determine the values of R ,1  R ,2  R ,3  and R4 for the voltage 
divider of Fig. 5.128 if the source current is 16 mA.

 44. For the network in Fig. 5.129, determine the voltages:
a. V ,a  V ,b  V ,c  Vd

b. V V V,   ,  ab cb cd

c. V V,  ad ca

 *45.  For the integrated circuit in Fig. 5.130, determine V V,   ,0 4  
V V V V V V,   ,   ,   ,   ,   ,7 10 23 30 67 56  and  I  (magnitude and direction).

R1
R2

+48 V

R3

R4

+12 V

–20 V

16 mA

100 VE
+

–

FIG. 5.128 
Problem 43.

b

a

d

c

6 V 

8 V 

14 V 

10 V

10 V

–

+

+

–
+

–

FIG. 5.129 
Problem 44.

6 mA

2  kV

4 V

–8 V

+4 V

+12 V 

1
2

4
3 65

7
0

+3 V

4 V

I

FIG. 5.130 
Problem 45.
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GLOSSARY

Circuit A combination of a number of elements joined at termi-
nal points providing at least one closed path through which 
charge can flow.

Closed loop Any continuous connection of branches that allows 
tracing of a path that leaves a point in one direction and re-
turns to that same point from another direction without leav-
ing the circuit.

Internal resistance The inherent resistance found internal to 
any source of energy.

Kirchhoff’s voltage law (KVL) The algebraic sum of the po-
tential rises and drops around a closed loop (or path) is zero.

Protoboard (breadboard) A flat board with a set pattern of 
conductively-connected holes designed to accept 24-gage 
wire and components with leads of about the same diameter.

Series circuit A circuit configuration in which the elements have 
only one point in common and each terminal is not connected 
to a third, current-carrying element.

Two-terminal device Any element or component with two ex-
ternal terminals for connection to a network configuration.

Voltage divider rule (VDR) A method by which a voltage in a 
series circuit can be determined without first calculating the 
current in the circuit.

Voltage regulation (VR) A value, given as a percent, that 
 provides an indication of the change in terminal voltage of a 
supply with a change in load demand.

VL 3.3 V

+

–

Rint  =  43 mV 

E  =  12 V

+

–

FIG. 5.132 
Problem 48.

E 30 V 6.8 kV

2.2 kV

I
+

–

FIG. 5.133 
Problem 49.

3.3 kV
E

3 mA

3

21

0

20 V

Ii

4 mA

10 mA

+

–

FIG. 5.131 
Problem 46.

SECTION 5.11 Voltage Regulation and the Internal 
Resistance of Voltage Sources

47. a. Find the internal resistance of a battery that has a 
no-load output of 122 V and that supplies a full-load 
current of 3.5 A to a load of 32 Ω.

b. Find the voltage regulation of the supply.

48. a. Find the voltage to the load (full-load conditions) for the 
supply in Fig. 5.132.

b. Find the voltage regulation of the supply.
c. How much power is supplied by the source and lost to 

the internal resistance under full-load conditions?

SECTION 5.12 Loading Effects of Instruments

49. a. Determine the current through the circuit in Fig. 5.133.
b. If an ammeter with an internal resistance of 450 Ω  is 

inserted into the circuit in Fig. 5.133, what effect will it 
have on the current level?

c. Is the difference in current level a major concern for 
most applications?

SECTION 5.10 Ground Connection Awareness

 *46. For the integrated circuit in Fig. 5.131, determine V V,   ,0 03  
V V V,   ,   ,2 23 12  and I .i
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6 Parallel dc Circuits

 6.1 INTRODUCTION
Two network configurations, series and parallel, form the framework for some of the most 
complex network structures. A clear understanding of each will pay enormous dividends as 
more complex methods and networks are examined. The series connection was discussed in 
detail in the last chapter. We will now examine the parallel circuit and all the methods and 
laws associated with this important configuration.

6.2 PARALLEL RESISTORS
The term parallel is used so often to describe a physical arrangement between two or more 
elements, branches, or networks.

In general,

two elements, branches, or networks are in parallel if they have two points in 
common.

For instance, in Fig. 6.1(a), the two resistors are in parallel because they are connected at 
points a and b. If both ends were not connected as shown, the resistors would not be in par-
allel. In Fig. 6.1(b), resistors R1 and R2 are in parallel because they again have points a and 
b in common. R1 is not in parallel with R3 because they are connected at only one point (b). 
Further, R1 and R3 are not in series because a third connection appears at point b. The same 
can be said for resistors R2 and R3. In Fig. 6.1(c), resistors R1 and R2 are in series because 
they have only one point in common that is not connected elsewhere in the network. Resistors 
R1 and R3 are not in parallel because they have only point a in common. In addition, they are 
not in series because of the third connection to point a. The same can be said for resistors R2 
and R3. In a broader context, it can be said that the series combination of resistors R1 and R2 
is in parallel with resistor R3 (more will be said about this option in Chapter 7). Furthermore, 
even though the discussion above was only for resistors, it can be applied to any two-terminal 
elements such as voltage sources and meters.

•  Become familiar with the characteristics of a 
parallel network and how to solve for the voltage, 
current, and power to each element.

• Develop a clear understanding of Kirchhoff’s 
current law (KCL) and its importance to the 
analysis of electric circuits.

• Become aware of how the current will split 
between parallel elements and how to properly 
apply the current divider rule (CDR).

• Clearly understand the impact of open and short 
circuits on the behavior of a network.

• Learn how to use an ohmmeter, voltmeter, and 
ammeter to measure the important parameters of 
a parallel network.

 Objectives
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On schematics, the parallel combination can appear in a number of 
ways, as shown in Fig. 6.2. In each case, the three resistors are in paral-
lel. They all have points a and b in common.

(b)

R3

R1

R2

a b

(a)

a

b

R1 R2

(c)

R3

R1

R2

a

b

c

FIG. 6.1 
(a) Parallel resistors; (b) R1 and R2 are in parallel; (c) R3 is in parallel with the 

series combination of R1 and R .2

R3R2R1

a

b

(a)

R3R2R1

a

b

(b)

R3R2R1

a

b
(c)

FIG. 6.2 
Schematic representations of three parallel resistors.

RNR2R1 R3RT

FIG. 6.3 
Parallel combination of resistors.

Total Resistance

For resistors in parallel as shown in Fig. 6.3, the total resistance is deter-
mined from the following equation:

 R R R R R
1 1 1 1 1

T N1 2 3

�= + + + +  (6.1)

Since G = I/R, the equation can also be written in terms of conductance 
levels as follows:

 G G G G G          siemens, ST N1 2 3 � ( )= + + + +  (6.2)
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which is an exact match in format with the equation for the total resis-
tance of resistors in series: = + + + +R R R R R .T N1 2 3 �  The 
result of this duality is that you can go from one equation to the other 
simply by interchanging R and G.

In general, however, when the total resistance is desired, the follow-
ing format is applied:

 R

R R R R

1
1 1 1 1T

N1 2 3

�
=

+ + + +
 (6.3)

Quite obviously, Eq. (6.3) is not as “clean” as the equation for the total 
resistance of series resistors. You must be careful when dealing with all 
the divisions into 1. The great feature about the equation, however, is 
that it can be applied to any number of resistors in parallel.

EXAMPLE 6.1

a. Find the total conductance of the parallel network in Fig. 6.4.
b. Find the total resistance of the same network using the results of 

part (a) and using Eq. (6.3).

Solutions:

a. G
R

G
R

1 1
3 Ω

0.333 S,      1 1
6 Ω

0.167 S1
1

2
2

= = = = = =π  

and = + = + =G G G 0.333 S 0.167 ST 1 2 0.5 S

b. R
G

2 Ω1 1
0.5 ST

T

= = =

Applying Eq. (6.3) gives

R

R R

R 2 Ω

1
1 1

1
1

3 Ω
1

6 Ω

1
0.333 S 0.167 S

1
0.5 S

T

T

1 2

=
+

=
+

=
+

= =

EXAMPLE 6.2

a. By inspection, which parallel element in Fig. 6.5 has the least con-
ductance? Determine the total conductance of the network and note 
whether your conclusion was verified.

R2R1RT

3 V 6 V

FIG. 6.4 
Parallel resistors for Example 6.1.

R3 1 kVR2 200 VR1 2 V
RT

FIG. 6.5 
Parallel resistors for Example 6.2.
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b. Determine the total resistance from the results of part (a) and by 
applying Eq. (6.3).

Solutions:

a. Since the 1 kΩ resistor has the largest resistance and therefore the 
largest opposition to the flow of charge (level of conductivity), it 
will have the lowest level of conductance:

= = = = = = =

= = = = =

= + + = + +

=

G
R

G
R

G
R

G G G G

G 506 mS

1 1
2 Ω

0.5 S, 1 1
200 Ω

0.005 S 5 mS

1 1
1 kΩ

1
1000 Ω

0.001 S 1 mS

0.5 S 5 mS 1 mST

T

1
1

2
2

3
3

1 2 3

Note the difference in conductance level between the 2 Ω (500 mS) 
and the 1 kΩ (1 mS) resistor.

b. R
G

1 976 Ω1 1
506 mS

.T
T

= = =

Applying Eq. (6.3) gives

R

R R R

R 1 98 Ω

1
1 1 1

1
1

2 Ω
1

200 Ω
1

1 kΩ

1
0.5 S 0.005 S 0.001 S

1
0.506 S

.

T

T

1 2 3

=
+ +

=
+ +

=
+ +

= =

EXAMPLE 6.3 Find the total resistance of the configuration in 
Fig. 6.6.

R3

5 V

R2 4 V
RT

R1

1 V

FIG. 6.6 
Network to be investigated in Example 6.3.

Solution: First the network is redrawn as shown in Fig. 6.7 to clearly 
demonstrate that all the resistors are in parallel.

Applying Eq. (6.3) gives

R

R R R

1
1 1 1

1
1

1 Ω
1

4 Ω
1

5 Ω

1
1 S 0.25 S 0.2 S

1
1.45 S

T

1 2 3

=
+ +

=
+ +

=
+ +

= ≅ 0.69 Ω
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If you review the examples above, you will find that the total resis-
tance is less than the smallest parallel resistor. That is, in Example 
6.1, 2 Ω is less than 3 Ω or 6 Ω. In Example 6.2, 1.976 Ω is less than 
2 , 100Ω Ω, or 1 kΩ and in Example 6.3, 0.69 Ω is less than 1 Ω, 4 Ω, 
or 5 Ω. In general, therefore,

the total resistance of parallel resistors is always less than 
the smallest resistor.

This is particularly important when you want a quick estimate of the 
total resistance of a parallel combination. Simply find the smallest 
value, and you know that the total resistance will be less than that 
value. It is also a great check on your calculations. In addition, you 
will find that

 if the smallest resistance of a parallel combination is much 
smaller than that of the other parallel resistors, the total 
resistance will be very close to the smallest resistance value.

This fact is obvious in Example 6.2, where the total resistance of 1.976 Ω 
is very close to the smallest resistance of 2 Ω.

Another interesting characteristic of parallel resistors is demonstrated 
in Example 6.4.

EXAMPLE 6.4

a. What is the effect of adding another resistor of 100 Ω in parallel 
with the parallel resistors of Example 6.1 as shown in Fig. 6.8?

b. What is the effect of adding a parallel 1 Ω resistor to the configura-
tion in Fig. 6.8?

R3 100 VR2 6 VR1 3 V
RT

FIG. 6.8 
Adding a parallel 100 Ω resistor to the network in Fig. 6.4.

R3 5 VR2 4 VR1 1 V
RT

FIG. 6.7 
Network in Fig. 6.6 redrawn.
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Solutions:

a. Applying Eq. (6.3) gives

=
+ +

=
+ +

=
+ +

= =

R

R R R

R Ω

1
1 1 1

1
1

3 Ω
1

6 Ω
1

100 Ω

1
0.333 S 0.167 S 0.010 S

1
0.510 S

T

T

1 2 3

1.96

The parallel combination of the 3 Ω and 6 Ω resistors  resulted 
in a total resistance of 2 Ω in Example 6.1. The effect of adding a 
resistor in parallel of 100 Ω had little effect on the total resistance 
because its resistance level is significantly higher (and conductance 
level significantly less) than that of the other two resistors. The 
total change in resistance was less than 2%. However, note that the 
total resistance dropped with the addition of the 100 Ω resistor.

b. Applying Eq. (6.3) gives

R

R R R R

R Ω

1
1 1 1 1

1
1

3 Ω
1

6 Ω
1

100 Ω
1

1 Ω

1
0.333 S 0.167 S 0.010 S 1 S

1
0.51 S

T

T

1 2 3 4

=
+ + +

=
+ + +

=
+ + +

= = 0.66

The introduction of the 1 Ω resistor reduced the total resistance 
from 2 Ω to only 0.66 Ω—a decrease of almost 67%. The fact that 
the added resistor has a resistance less than that of the other parallel 
elements and one-third that of the smallest contributed to the signif-
icant drop in resistance level.

In part (a) of Example 6.4, the total resistance dropped from 2 Ω to 
1.96 Ω. In part (b), it dropped to 0.66 Ω. The results clearly reveal that

the total resistance of parallel resistors will always drop as 
new resistors are added in parallel, irrespective of their value.

Recall that this is the opposite of what occurs for series resistors, where 
additional resistors of any value increase the total resistance.

Special Case: Equal Parallel Resistors

For equal resistors in parallel, the equation for the total resistance 
becomes significantly easier to apply. For N equal resistors in parallel, 
Eq. (6.3) becomes

( )

=
+ + + +

= =

R

R R R R

N
R

N
R

1
1 1 1 . . . 1

1
1

1

T

N

and R R
NT =   (6.4)
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In other words,

the total resistance of N parallel resistors of equal value is 
the resistance of one resistor divided by the number (N) of 
parallel resistors.

EXAMPLE 6.5 Find the total resistance of the parallel resistors in 
Fig. 6.9.

12 V12 V12 V
RT

R1 R2 R3

FIG. 6.9 
Three equal parallel resistors to be investigated in Example 6.5.

Solution: Applying Eq. (6.4) gives

R R
N

4 Ω12 Ω
3T = = =

EXAMPLE 6.6 Find the total resistance for the configuration in Fig. 6.10.

R2 2 V R3 2 V

R4

2 V

RT

R1 2 V

FIG. 6.10 
Parallel configuration for Example 6.6.

R4 2 V
RT

R3 2 VR2 2 VR1 2 V

FIG. 6.11 
Network in Fig. 6.10 redrawn.

Solution: Redrawing the network results in the parallel network in 
Fig. 6.11.

Applying Eq. (6.4) gives

= = =R R
N

0.5 Ω2 Ω
4T

Special Case: Two Parallel Resistors

In the vast majority of cases, only two or three parallel resistors will have to 
be combined. With this in mind, an equation has been derived for two paral-
lel resistors that is easy to apply and removes the need to continually worry 
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about dividing into 1 and possibly misplacing a decimal point. For three 
parallel resistors, the equation to be derived here can be applied twice, or 
Eq. (6.3) can be used.

For two parallel resistors, the total resistance is determined by Eq. (6.1):

= +
R R R
1 1 1

T 1 2

Multiplying the top and bottom of each term of the right side of the 
equation by the other resistance results in

R
R
R R

R
R R

R
R R

R
R R

R
R R

R R

1 1 1

1
T

T

2

2 1

1

1 2

2

1 2

1

1 2

2 1

1 2

=






 +







 = +

=
+

and R
R R

R RT
1 2

1 2

=
+

 (6.5)

In words, the equation states that

the total resistance of two parallel resistors is simply the 
product over the sum.

 EXAMPLE 6.7 Repeat Example 6.1 using Eq. (6.5).

Solution: Eq. (6.5) gives

( )( )=
+

=
+

= =R
R R

R R
2 Ω3 Ω 6 Ω

3 Ω 6 Ω
18
9

ΩT
1 2

1 2

which matches the earlier solution.

EXAMPLE 6.8 Determine the total resistance for the parallel combi-
nation in Fig. 6.7 using two applications of Eq. (6.5).

Solution: First the 1 Ω and 4 Ω resistors are combined using Eq. (6.5), 
resulting in the reduced network in Fig. 6.12:

Eq. (6.4): R
R R

R R
1 Ω 4 Ω

1 Ω 4 Ω
4
5

Ω 0.8 ΩT
1 2

1 2

( )( )′ =
+

=
+

= =

Then Eq. (6.5) is applied again using the equivalent value:

( )( )=
′

′ +
=

+
= =R

R R
R R

0.69 Ω0.8 Ω 5 Ω
0.8 Ω 5 Ω

4
5.8

ΩT
T

T

3

3

The result matches that obtained in Example 6.3.

Recall that series elements can be interchanged without affecting the 
magnitude of the total resistance. In parallel networks,

parallel resistors can be interchanged without affecting the 
total resistance.

The next example demonstrates this and reveals how redrawing a net-
work can often define which operations or equations should be applied.

R3 5 V0.8 VR9TRT

FIG. 6.12 
Reduced equivalent in Fig. 6.7.
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EXAMPLE 6.9 Determine the total resistance of the parallel elements 
in Fig. 6.13.

R1 6 V R2 9 V R3 6 V R4 72 V R5 6 V

RT

FIG. 6.13 
Parallel network for Example 6.9.

R1 6 V R3 6 V R5 6 V R2 9 V R4 72 VRT

R9T R0T

FIG. 6.14 
Redrawn network in Fig. 6.13 (Example 6.9).

Solution: The network is redrawn in Fig. 6.14.

Eq. (6.4):  ′ = = =R R
N

6 Ω
3

2 ΩT

Eq. (6.5):  
( )( )′′ =

+
=

+
= =R

R R
R R

9 Ω 72 Ω
9 Ω 72 Ω

648
81

Ω 8 ΩT
2 4

2 4

Eq. (6.5):    
( )( )=

′ ″
′ + ″

=
+

= =R
R R

R R
1 6 Ω2 Ω 8 Ω

2 Ω 8 Ω
16
10

Ω .T
T T

T T

The preceding examples involve direct substitution; that is, once 
the proper equation has been defined, it is only a matter of plugging in 
the numbers and performing the required algebraic manipulations. The 
next two examples have a design orientation, in which specific network 
parameters are defined and the circuit elements must be determined.

EXAMPLE 6.10 Determine the value of R2 in Fig. 6.15 to establish 
a total resistance of 9 kΩ.

Solution:

R
R R

R R

R R R R R

R R R R R R

R R R R R R

R R R R R

T

T

T T

T T

T T

1 2

1 2

1 2 1 2

1 2 1 2

1 1 2 2

1 1 2

( )

( )

=
+

+ =

+ =
= −

= −

and =
−

R
R R

R R
T

T
2

1

1

Substituting values gives

( )( )=
−

= =R 36 kΩ9 kΩ 12 kΩ
12 kΩ 9 kΩ

108
3

kΩ2

R1 12 kV R2RT = 9 kV

 FIG. 6.15 
Parallel network for Example 6.10.
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EXAMPLE 6.11 Determine the values of R R, ,1 2  and R3  in Fig. 6.16 
if R R R R2 , 2 ,2 1 3 2= =  and the total resistance is 16 kΩ.

Solution: Eq. (6.1) states

= + +
R R R R
1 1 1 1

T 1 2 3

However, =R R22 1 and ( )= = =R R R R2 2 2 43 2 1 1

so that = + +
R R R

1
16 kΩ

1 1
2

1
41 1 1

and 
R R R

1
16 kΩ

1 1
2

1 1
4

1

1 1 1

= +






 +









or 
R

1
16 kΩ

1.75 1

1

=








resulting in ( )= =R 28 kΩ1.75 16 kΩ1

so that ( )= = =R R 56 kΩ2 2 28 kΩ2 1

and ( )= = =R R 112 kΩ2 2 56 kΩ3 2

Analogies

Analogies were effectively used to introduce the concept of series 
 elements. They can also be used to help define a parallel configuration. 
On a ladder, the rungs of the ladder form a parallel configuration. When 
ropes are tied between a grappling hook and a load, they effectively 
absorb the stress in a parallel configuration. The cables of a suspended 
roadway form a parallel configuration. There are numerous other anal-
ogies that demonstrate how connections between the same two points 
permit a distribution of stress between the parallel elements.

 Instrumentation

As shown in Fig. 6.17, the total resistance of a parallel combination of 
resistive elements can be found by simply applying an ohmmeter. There 
is no polarity to resistance, so either lead of the ohmmeter can be con-
nected to either side of the network. Although there are no supplies in 
Fig. 6.17, always keep in mind that ohmmeters can never be applied to 
a “live” circuit. It is not enough to set the supply to 0 V or to turn it off. 
It may still load down (change the network configuration of) the circuit 

R3R2R1RT = 16 kV

FIG. 6.16 
Parallel network for Example 6.11.

R1 R2 R31 kV 2.2 kV 1.2 kV

437.1

+ RT = 437.1 V

FIG. 6.17 
Using an ohmmeter to measure the total resistance of a parallel 

network.
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and change the reading. It is best to remove the supply and apply the 
ohmmeter to the two resulting terminals. Since all the resistors are in the 
kilohm range, the 20 kΩ scale was chosen first. We then moved down 
to the 2 kΩ scale for increased precision. Moving down to the 200 Ω 
scale resulted in an “OL” indication since we were below the measured 
resistance value.

6.3 PARALLEL CIRCUITS
A parallel circuit can now be established by connecting a supply across 
a set of parallel resistors as shown in Fig. 6.18. The positive terminal 
of the supply is directly connected to the top of each resistor, while the 
negative terminal is connected to the bottom of each resistor. Therefore, 
it should be quite clear that the applied voltage is the same across each 
resistor. In general,

the voltage is always the same across parallel elements.

Therefore, remember that

if two elements are in parallel, the voltage across them must 
be the same. However, if the voltage across two neighboring 
elements is the same, the two elements may or may not be 
in parallel.

The reason for this qualifying comment in the above statement is dis-
cussed in detail in Chapter 7.

For the voltages of the circuit in Fig. 6.18, the result is that

 V V E1 2= =  (6.6)

For Fig. 6.18

V V 12 V1 2= =

Once the supply has been connected, a source current is established 
through the supply that passes through the parallel resistors. The  current 
that results is a direct function of the total resistance of the parallel 
circuit. The smaller the total resistance, the greater is the current, as 
occurred for series circuits also.

Recall from series circuits that the source does not “see” the paral-
lel combination of elements. It reacts only to the total resistance of the 
 circuit, as shown in Fig. 6.19. The source current can then be determined 
using Ohm’s law:

 I E
Rs

T

=  (6.7)

For Fig. 6.18

=

=

=

I E
R

16 mA

12 V
0.75 kΩ

 

s
T

E 12 V RT

Is

Is

=
(1 kV)(3 kV)
1 kV + 3 kV

= 0.75 kV

Equivalent resistance

 FIG. 6.19 
Replacing the parallel resistors in Fig. 6.18 

with the equivalent total resistance.

R1 = 1 kVE 12 V R2 = 3 kVV1 V2

a

I1 I2

Is

+

–

+

–

+

–

FIG. 6.18 
Parallel network.
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Since the voltage is the same across parallel elements, the current 
through each resistor can also be determined using Ohm’s law. That is,

 = = = =I
V
R

E
R

I
V
R

E
R

and1
1

1 1
2

2

2 2

 (6.8)

I
V
R

E
R

12 mA
12 V

1 kΩ1
1

1 1

= = = =

and

I
V
R

E
R

4 mA
12 V

3 kΩ2
2

2 2

= = = =

The direction for the currents is dictated by the polarity of the voltage 
across the resistors. Recall that for a resistor, current enters the positive 
side of a potential drop and leaves the negative side. The result, as shown 
in Fig. 6.18, is that the source current enters point a, and currents I1 and 
I 2 leave the same point. An excellent analogy for describing the flow of 
charge through the network of Fig. 6.18 is the flow of water through the 
parallel pipes of Fig. 6.20. The larger pipe, with less “resistance” to the 
flow of water, will have a larger flow of water, through it. The thinner 
pipe, with its increased “resistance” level, will have less water flowing 
through it. In any case, the total water entering the pipes at the top QT  
must equal that leaving at the bottom, with Q Q Q .T 1 2= +

The relationship between the source current and the parallel resistor 
currents can be derived by simply taking the equation for the total resis-
tance in Eq. (6.1):

= +
R R R
1 1 1

T 1 2

Multiplying both sides by the applied voltage gives

E
R

E
R R

1 1 1

T 1 2







 = +









resulting in

= +E
R

E
R

E
RT 1 2

Then note that =E R I/ 1 1  and =E R I/ 2 2 to obtain

 I I Is 1 2= +  (6.9)

For Fig. 6.18

= + = +

=

I I I

16 mA

12 mA 4 mA

     
s 1 2

as obtained earlier.
The result reveals a very important property of parallel circuits:

For single-source parallel networks, the source current I s( ) is 
always equal to the sum of the individual branch currents.

QT

QT

Q1 Q2

FIG. 6.20 
Mechanical analogy for Fig. 6.18.

M06_BOYL0302_14_GE_C06.indd   218M06_BOYL0302_14_GE_C06.indd   218 28/02/23   12:05 PM28/02/23   12:05 PM



PARALLEL CIRCUITS | | | 219P
 Duality

The duality that exists between series and parallel circuits continues to 
surface as we proceed through the basic equations for electric circuits. 
This is fortunate because it provides a way of remembering the charac-
teristics of one using the results of another. For instance, in Fig. 6.21(a), 
we have a parallel circuit where it is clear that I I I .T 1 2= +  By  simply 
replacing the currents of the equation in Fig. 6.21(a) by a vo ltage level, 
as shown in Fig. 6.21(b), we have Kirchhoff’s voltage law for a series 
circuit: E V V .1 2= +  In other words,

for a parallel circuit, the source current equals the sum of 
the branch currents, while for a series circuit, the applied 
voltage equals the sum of the voltage drops.

Duality

R2R1

I1 I2

IT

R1

V1

R2

V2

E = V1 + V2
(a) (b)

E
+

–

+ –+ –

IT = I1 + I2

FIG. 6.21 
Demonstrating the duality that exists between series and parallel 

circuits.

R1 V1E R2

I2I1

RT

Is

–

 +

9 V V218 V

–

 +

27 V
+

–

FIG. 6.22 
Parallel network for Example 6.12.

EXAMPLE 6.12 For the parallel network in Fig. 6.22:

a. Find the total resistance.
b. Calculate the source current.
c. Determine the current through each parallel branch.
d. Show that Eq. (6.9) is satisfied.

Solutions:

a. Using Eq. (6.5) gives

( )( )=
+

=
+

= =R
R R

R R
6 Ω9 Ω 18 Ω

9 Ω 18 Ω
162
27

ΩT
1 2

1 2

b. Applying Ohm’s law gives

= = =I E
R

4.5 A27 V
6 Ωs

T

c. Applying Ohm’s law gives

= = = =I
V
R

E
R

3 A27 V
9 Ω1

1

1 1

= = = =I
V
R

E
R

1.5 A27 V
18 Ω2

2

2 2

d. Substituting values from parts (b) and (c) gives

= = + = + =I I I4.5 A 4.5 A3 A 1.5 A (checks)s 1 2
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EXAMPLE 6.13 For the parallel network in Fig. 6.23:

a. Find the total resistance.
b. Calculate the source current.
c. Determine the current through each branch.

Solutions:

a. Applying Eq. (6.3) gives

=
+ +

=
+ +

=
× + × + ×

=
×

=

− − − −

R

R R R

R 9.49 Ω

1
1 1 1

1
1

10 Ω
1

220 Ω
1

1.2 kΩ
1

100 10 4.545 10 0.833 10
1

105.38 10

T

T

1 2 3

3 3 3 3  

Note that the total resistance is less than that of the smallest parallel 
resistor, and its magnitude is very close to the resistance of the 
smallest resistor because the other resistors are larger by a factor 
greater than 10:1.

b. Using Ohm’s law gives

= = =I E
R

2.53 A24 V
9.49 Ωs

T

c. Applying Ohm’s law gives

= = = =I
V

R
E
R

2.4 A24 V
10 Ω1

1

1 1

= = = =I
V

R
E
R

0.11 A24 V
220 Ω2

2

2 2

= = = =I
V

R
E
R

0.02 A24 V
1.2 kΩ3

3

3 3

A careful examination of the results of Example 6.13 reveals that the 
larger the parallel resistor, the lower is the branch current. In general, 
therefore,

for parallel resistors, the greatest current will exist in the 
branch with the least resistance.

A more powerful statement is that

current always seeks the path of least resistance.

EXAMPLE 6.14 Given the information provided in Fig. 6.24:

a. Determine R .3

b. Find the applied voltage E.
c. Find the source current I .s

d. Find I .2

I2

R3R1 R210 V 20 VE

Is

+

–

RT = 4 V I1 = 4 A

FIG. 6.24 
Parallel network for Example 6.14.

R3 1.2 kVR2 220 VR1 10 V

RT

E 24 V

Is

I1 I2 I3

FIG. 6.23 
Parallel network for Example 6.13.
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Solutions:

a. Applying Eq. (6.1) gives

= + +
R R R R
1 1 1 1

T 1 2 3

Substituting gives = + +
R

1
4 Ω

1
10 Ω

1
20 Ω

1

3

so that = + +
R

0.25 S 0.1 S 0.05 S 1

3

and = +
R

0.25 S 0.15 S 1

3

with =
R
1 0.1 S

3

and = =R 10 Ω1
0.1 S3

b. Using Ohm’s law gives

( )( )= = = =E V I R 40 V4 A 10 Ω1 1 1

c.  = = =I E
R

10 A40 V
4 Ωs

T

d. Applying Ohm’s law gives

= = = =I
V
R

E
R

2 A40 V
20 Ω2

2

2 2

Instrumentation

In Fig. 6.25, voltmeters have been connected to verify that the voltage 
across parallel elements is the same. Note that the positive or red lead 
of each voltmeter is connected to the high (positive) side of the voltage 
across each resistor to obtain a positive reading. The 20 V scale was used 
because the applied voltage exceeded the range of the 2 V scale.

R1 R21 kV 3 kVV1 V2

+

–

+

–

1 2 . 0

1 6 . 0

+

12.00

V
+

12.00

V
+

FIG. 6.25 
Measuring the voltages of a parallel dc network.
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In Fig. 6.26, an ammeter has been hooked up to measure the source 
current. First, the connection to the supply had to be broken at the positive 
terminal and the meter inserted as shown. Be sure to use ammeter termi-
nals on your meter for such measurements. The red or positive lead of the 
meter is connected so that the source current enters that lead and leaves the 
negative or black lead to ensure a positive reading. The 200 mA scale was 
used because the source current exceeded the maximum value of the 2 mA 
scale. For the moment, we assume that the internal resistance of the meter 
can be ignored. Since the internal resistance of an ammeter on the 200 mA 
scale is typically only a few ohms, compared to the parallel resistors in the 
kilohm range, it is an excellent assumption.

12.00

mA
+

1 2 . 0

1 6 . 0

+

(a) (b)

R2 3 kV

R1 1 kV

I1

R1 1 kV

(Break path
of I1)

Open!

FIG. 6.27 
Measuring the current through resistor R .1

16.00

mA
+

Is

1 2 . 0

1 6 . 0

+
R1 R21 kV 3 kV

FIG. 6.26 
Measuring the source current of a parallel network.

A more difficult measurement is for the current through resistor R .1  
This measurement often gives trouble in the laboratory session. First, 
as shown in Fig.  6.27(a), resistor R1 must be disconnected from the 
upper connection point to establish an open circuit. The ammeter is then 
 inserted between the resulting terminals so that the current enters the 
positive or red terminal, as shown in Fig.  6.27(b). Always remember: 
When using an ammeter, first establish an open circuit in the branch in 
which the current is to be measured, and then insert the meter.
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The easiest measurement is for the current through resistor R .2  Break the 

connection to R2 above or below the resistor, and insert the ammeter with 
the current entering the positive or red lead to obtain a positive reading.

6.4 POWER DISTRIBUTION IN A PARALLEL 
CIRCUIT
Recall from the discussion of series circuits that the power applied to a 
series resistive circuit equals the power dissipated by the resistive ele-
ments. The same is true for parallel resistive networks. In fact,

for any network composed of resistive elements, the power 
applied by the source will equal that dissipated by the 
resistive elements.

For the parallel circuit in Fig. 6.28:

 P P P PE R R R1 2 3
= + +  (6.10)

which is exactly the same as obtained for the series combination.

E R1

I1Is

V1 R2V2 R3V3

I2 I3

Power fl
ow

+

–

+

–

+

–

+

–

 FIG. 6.28 
Power flow in a dc parallel network.

The power delivered by the source in the same:

  P EI (watts, W)E s=  (6.11)

as is the equation for the power to each resistor (shown for R1 only):

 P V I I R
V
R

(watts, W)1 1 1 1
2

1
1
2

1

= = =  (6.12)

In the equation =P V R/ ,2  the voltage across each resistor in a parallel 
circuit will be the same. The only factor that changes is the resistance in the 
denominator of the equation. The result is that

in a parallel resistive network, the larger the resistor, the less 
the power absorbed.
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EXAMPLE 6.15 For the parallel network in Fig. 6.29 (all standard 
values):

a. Determine the total resistance R .T

b. Find the source current and the current through each resistor.
c. Calculate the power delivered by the source.
d. Determine the power absorbed by each parallel resistor.
e. Verify Eq. (6.10).

E 28 V R1 1.6 kV R2 20 kV R3 56 kV

Is

RT

I1 I2 I3

PE

FIG. 6.29 
Parallel network for Example 6.15.

Solutions:

a. Without making a single calculation, it should now be apparent 
from previous examples that the total resistance is less than 1.6 kΩ 
and very close to this value because of the magnitude of the other 
resistance levels:

R

R R R

1
1 1 1

1
1

1.6 kΩ
1

20 kΩ
1

56 kΩ
1

625 10 50 10 17.867 10
1

692.867 10

T

1 2 3

6 6 6 6

=
+ +

=
+ +

=
× + × + ×

=
×− − − −

and  =R 1.44 kΩT

b. Applying Ohm’s law gives

= = =I E
R

19.44 mA28 V
1.44 kΩs

T

Recalling that current always seeks the path of least resistance imme-
diately tells us that the current through the 1.6 kΩ resistor will be the 
largest and the current through the 56 kΩ resistor the smallest.

Applying Ohm’s law again gives

= = = =I
V
R

E
R

28 V
1.6 kΩ1

1

1 1

17.5 mA

= = = =I
V
R

E
R

1.4 mA28 V
20 kΩ2

2

2 2

= = = =I
V
R

E
R

0.5 mA28 V
56 kΩ3

3

3 3

c. Applying Eq. (6.11) gives

= = =P EI 543.2 mW(28 V)(19.4 mA)E s  
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d. Applying each form of the power equation gives

( )( )= = = =P V I EI 490 mW28 V 17.5 mA1 1 1 1

( )( )= = =P I R 39.2 mW1.4 mA 20 kΩ2 2
2

2
2

( )
= = = =P

V
R

E
R

14 mW28 V
56 kΩ3

3
2

3

2

3

2

A review of the results clearly substantiates the fact that the larger 
the resistor, the less is the power absorbed.

e.  = + +P P P PE R R R1 2 3

( )= + + =543.2 mW 543.2 mW490 mW 39.2 mW 14 mW checks

6.5 KIRCHHOFF’S CURRENT LAW
In the previous chapter, Kirchhoff’s voltage law was introduced, provid-
ing a very important relationship among the voltages of a closed path. 
Kirchhoff is also credited with developing the following equally import-
ant relationship between the currents of a network, called Kirchhoff’s 
current law (KCL):

The algebraic sum of the currents entering and leaving a 
junction (or region) of a network is zero.

The law can also be stated in the following way:

The sum of the currents entering a junction (or region) of 
a network must equal the sum of the currents leaving the 
same junction (or region).

In equation form, the above statement can be written as follows:

 I Ii oΣ = Σ  (6.13)

with I i  representing the current entering, or “in,” and I o  representing the 
current leaving, or “out.”

In Fig. 6.30, for example, the shaded area can enclose an entire sys-
tem or a complex network, or it can simply provide a connection point 
(junction) for the displayed currents. In each case, the current entering 
must equal that leaving, as required by Eq. (6.13):

I I

I I I I

12 A 12 A
4 A 8 A 2 A 10 A

checks

i o

1 4 2 3

( )

Σ = Σ

+ = +

+ = +
=

The most common application of the law will be at a junction of two 
or more current paths, as shown in Fig.  6.31(a). Some students have 
difficulty initially determining whether a current is entering or leaving 
a junction. One approach that may help is to use the water analog in 
Fig. 6.31(b), where the junction in Fig. 6.31(a) is the small bridge across 
the stream. Simply relate the current of I1 to the fluid flow of Q ,1  the 
smaller branch current I 2 to the water flow Q ,2  and the larger branch 
current I 3  to the flow Q .3  The water arriving at the bridge must equal 
the sum of that leaving the bridge, so that = +Q Q Q .1 2 3  Since the 
current I1 is pointing at the junction and the fluid flow Q1  is toward the 

System,
complex
network,
junction

I2 = 2 A

I3 = 10 A

I4 = 8 A

I1 = 4 A

FIG. 6.30 
Introducing Kirchhoff’s current law.
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person on the bridge, both quantities are seen as approaching the junc-
tion, and can be considered entering the junction. The currents I 2 and I 3  
are both leaving the junction, just as Q2  and Q3 are leaving the fork in 
the river. The quantities I I Q, , ,2 3 2  and Q3 are therefore all leaving the 
junction.

In the next few examples, unknown currents can be determined by 
applying Kirchhoff’s current law. Remember to place all current levels 
entering the junction to the left of the equals sign and the sum of all cur-
rents leaving the junction to the right of the equals sign.

In technology, the term node is commonly used to refer to a junction 
of two or more branches. Therefore, this term is used frequently in the 
analyses to follow.

EXAMPLE 6.16 Determine currents I 3  and I 4  in Fig. 6.32 using 
Kirchhoff’s current law.

Solution: There are two junctions or nodes in Fig. 6.32. Node a has 
only one unknown, while node b has two unknowns. Since a single 
equation can be used to solve for only one unknown, we must apply 
Kirchhoff’s current law to node a first.

At node a

I I

I I I

I 5 A2 A 3 A

i o

1 2 3

3

Σ = Σ

+ =

+ = =

At node b, using the result just obtained,

I I

I I I

I 6 A5 A 1 A

i o

3 5 4

4

Σ = Σ

+ =

+ = =

Note that in Fig. 6.32, the width of the blue-shaded regions matches 
the magnitude of the current in that region.

EXAMPLE 6.17 Determine currents I I I, , ,1 3 4  and I 5  for the 
 network in Fig. 6.33.

(a) (b)

I1 = 6 A

I3 = 4 A

I2 = 2 AJunction Q1

Q2

Q3

FIG. 6.31 
(a) Demonstrating Kirchhoff’s current law; (b) the water analogy for the junction in (a).

I5 = 1 A

b

I1 = 2 A

I2 = 3 A

a
I3

I4

FIG. 6.32 
Two-node configuration for Example 6.16.
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Solution: In this configuration, four nodes are defined. Nodes a and c 
have only one unknown current at the junction, so Kirchhoff’s current 
law can be applied at either junction.

At node a

I I

I I I

I5 A 4 A

i o

1 2

1

Σ = Σ

= +

= +

and I 1 A5 A 4 A1 = − =

At node c
I I

I I
i o

2 4

Σ = Σ

=

and I I 4 A4 2= =

Using the above results at the other junctions results in the following.

At node b
I I

I I
i o

1 3

Σ = Σ

=

and I I 1 A3 1= =

At node d

I I

I I I

I 5 A1 A 4 A

i o

3 4 5

5

Σ = Σ

+ =

+ = =

If we enclose the entire network, we find that the current entering the 
far left is I 5 A,=  while the current leaving the far right is I 5 A.5 =  
The two must be equal since the net current entering any system must 
equal the net current leaving.

EXAMPLE 6.18 Determine currents I 3  and I 5 in Fig. 6.34 through 
applications of Kirchhoff’s current law.

Solution: Note first that since node b has two unknown quantities  
(I 3  and I 5), and node a has only one, Kirchhoff’s current law must first 
be applied to node a. The result is then applied to node b.

R1 R3

R2 R4
R5

I2 = 4 A

I = 5 A
I5

a

I1 I3

I4

b

d

c

FIG. 6.33 
Four-node configuration for Example 6.17.

b

I2 = 3 A

I4 = 1 A

I5

a

I1 = 4 A

I3

FIG. 6.34 
Network for Example 6.18.
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At node a
I I

I I I

I 7 A4 A 3 A

i o

1 2 3

3

Σ = Σ

+ =

+ = =

At node b

I I

I I I

I7 A 1 A

i o

3 4 5

5

Σ = Σ

= +
= +

and I 6 A7 A 1 A5 = − =

EXAMPLE 6.19 For the parallel dc network in Fig. 6.35:

a. Determine the source current I .s

b. Find the source voltage E.
c. Determine R .3

d. Calculate R .T

E R32 kV

Is

R2R1

RT

8 mA 10 mA 2 mA

a

FIG. 6.35 
Parallel network for Example 6.19.

Solutions:

a. First apply Eq. (6.13) at node a. Although node a in Fig. 6.35 may 
not initially appear as a single junction, it can be redrawn as shown 
in Fig. 6.36, where it is clearly a common point for all the branches.

The result is

I I

I I I I
i o

s 1 2 3

Σ = Σ

= + +

Substituting values: = + + =I 20 mA8 mA 10 mA 2 mAs

Note in this solution that you do not need to know the resistor 
values or the voltage applied. The solution is determined solely by 
the current levels.

b. Applying Ohm’s law gives

( )( )= = = =E V I R 16 V8 mA 2 kΩ1 1 1

c. Applying Ohm’s law in a different form gives

= = = =R
V

I
E
I

8 kΩ16 V
2 mA3

3

3 3

E R1 R2 R3

I1 I2 I3

a
Is

RT

FIG. 6.36 
Redrawn network in Fig. 6.35.
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d. Applying Ohm’s law again gives

= = =R E
I

0.8 kΩ16 V
20 mAT

s

The application of Kirchhoff’s current law is not limited to networks 
where all the internal connections are known or visible. For instance, all 
the currents of the integrated circuit (IC) in Fig. 6.37 are known  except 
I .1  By treating the entire system (which could contain over a million 
 elements) as a single node, we can apply Kirchhoff’s current law as 
shown in Example 6.20.

Before looking at Example 6.20 in detail, note that the direction of 
the unknown current I1 is not provided in Fig. 6.37. On many occasions, 
this will be true. With so many currents entering or leaving the system, 
it is difficult to know by inspection which direction should be assigned 
to I .1  In such cases, simply make an assumption about the direction and 
then check out the result. If the result is negative, the wrong direction 
was assumed. If the result is positive, the correct direction was assumed. 
In either case, the magnitude of the current will be correct.

EXAMPLE 6.20 Determine I1 for the integrated circuit in Fig. 6.37.

Solution: Assuming that the current I1 entering the IC chip results in 
the following when Kirchhoff’s current law is applied, we find

I I

I

I

I 5 mA

10 mA 4 mA 8 mA 5 mA 4 mA 2 mA 6 mA

22 mA 17 mA

17 mA 22 mA

i o

1

1

1

Σ = Σ

+ + + = + + +
+ =

= − = −

We find that the direction for I1 is leaving the IC, although the magni-
tude of 5 mA is correct.

As we leave this important section, be aware that Kirchhoff’s cur-
rent law will be applied in one form or another throughout the text. 
Kirchhoff’s laws are unquestionably two of the most important in this 
field because they are applicable to the most complex configurations in 
existence today. They will not be replaced by a more important law or 
dropped for a more sophisticated approach.

6.6 CURRENT DIVIDER RULE
For series circuits we have the powerful voltage divider rule for finding 
the voltage across a resistor in a series circuit. We now introduce the 
equally powerful current divider rule (CDR) for finding the current 
through a resistor in a parallel circuit.

In Section 6.4, it was pointed out that current will always seek the 
path of least resistance. In Fig. 6.38, for example, the current of 9 A is 
faced with splitting between the three parallel resistors. Based on the 
previous sections, it should now be clear without a single calculation 
that the majority of the current will pass through the smallest resistor of 
10 Ω, and the least current will pass through the 1 kΩ resistor. In fact, the 
current through the 100 Ω  resistor will also exceed that through the 1 kΩ  

IC

5 mA 10 mA

I1

6 mA 4 mA

4 mA

8 mA
2 mA

FIG. 6.37 
Integrated circuit (IC) for Example 6.20.

10 V

100 V

1 kV

I1

I2

I3

I = 9 A

FIG. 6.38 
Discussing the manner in which the current 
will split between three parallel branches of 

different resistive value.
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resistor. We can take it one step further by recognizing that the resistance 
of the 100 Ω resistor is 10 times that of the 10 Ω resistor. The result is 
a current through the 10 Ω resistor that is 10 times that of the 100 Ω 
resistor. Similarly, the current through the 100 Ω resistor is 10 times that 
through the 1 kΩ resistor.

In general,

For two or more parallel elements of equal value, the current 
will divide equally.

For parallel elements with different values, the smaller the 
resistance, the greater is the share of input current.

For parallel elements of different values, the current will split 
with a ratio equal to the inverse of their resistance values.

Ratio Rule Each of the boldface statements above is supported by the 
ratio rule, which states that for parallel resistors the current will divide as 
the inverse of their resistor values.

In equation form:

 =
I
I

R
R

1

2

2

1

 (6.14)

The next example will demonstrate how quickly currents can be 
determined using this important relationship.

EXAMPLE 6.21

a. Determine the current I1 for the network of Fig. 6.39 using the ratio 
rule.

b. Determine the current I 3  for the network of Fig. 6.39 using the ratio 
rule.

c. Determine the current I s  using Kirchhoff’s current law.

Solutions:

a. Applying the ratio rule:

I
I

R
R

I

I 1 mA

2 mA
3 Ω
6 Ω
1
2

2 mA

1

2

2

1

1

1 ( )

=

=

= =

b. Applying the ratio rule:

I
I

R
R

I

I 6 mA

2 mA 1 Ω
3 Ω

3 2 mA

2

3

3

2

3

3 ( )

=

=

= =

R36 V R2R1

Is I2 = 2 mAI1 I3

3 V 1 V

Single node

FIG. 6.39 
Parallel network for Example 6.21.
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c. Applying Kirchhoff’s current law:

I I

I I I I

I 9 mA

1 mA 2 mA 6 mA

i o

s

s

1 2 3

Σ = Σ

= + +

= + +

=

The above examples allowed us to determine the magnitude of a 
 current based on the current level of another parallel branch and the 
 parallel resistive values. However, if the known entity is the total current 
to parallel branches, another approach must be used to find the current of 
each parallel branch. In Fig. 6.40(a), the current IT  (using the subscript 
T to indicate the total entering current) splits between the N parallel 
resistors and then gathers itself together again at the bottom of the con-
figuration. In Fig. 6.40(b), the parallel combination of resistors has been 
replaced by a single resistor equal to the total resistance of the parallel 
combination as determined in the previous sections.

(a) (b)

V

IT

RT
RT

V R1 R2 R3 RN

I1 I2 I3 IN

IT

FIG. 6.40 
Deriving the current divider rule: (a) parallel network of N parallel resistors;  

(b) reduced equivalent of part (a).

The current IT  can then be determined using Ohm’s law:

=I V
RT

T

Since the voltage V is the same across parallel elements, the following is 
true:

= = = = =V I R I R I R I Rx x1 1 2 2 3 3 �

where the product I Rx x  refers to any combination in the series.
Substituting for V in the above equation for I ,T  we have

=I
I R
RT
x x

T

Solving for I ,x  the final result is the current divider rule:

 =I
R
R

Ix
T

x
T

 (6.15)

which states that
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the current through any branch of a parallel resistive 
network is equal to the total resistance of the parallel 
network divided by the resistance of the resistor of interest 
and multiplied by the total current entering the parallel 
configuration.

Since RT  and IT  are constants, for a particular configuration the 
larger the value of Rx  (in the denominator), the smaller is the value of I x  
for that branch, confirming the fact that current always seeks the path of 
least resistance.

EXAMPLE 6.22 For the parallel network in Fig. 6.41, determine 
current I1 using Eq. (6.15).

1 kV

R1

IT = 12 mA

I1

12 mA

10 kV

R2

22 kV

R3

FIG. 6.41 
Using the current divider rule to calculate current I1 in  

Example 6.22.

Solution: Eq. (6.3):

=
+ +

=
+ +

=
× + × + ×

=
×

=

− − −

−

R

R R R

873.01 Ω

1
1 1 1

1
1

1 kΩ
1

10 kΩ
1

22 kΩ
1

1 10 100 10 45.46 10
1

1.145 10

T

1 2 3

3 6 6

3

Eq. (6.15):

( )
( ) ( )( )

=

= = =

I
R
R

I

I 10.48 mA873.01 Ω
1 kΩ

12 mA 0.873 12 mA

T
T1

1

1

with the smallest parallel resistor receiving the majority of the current.
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Note also that

for a parallel network, the current through the smallest 
resistor will be very close to the total entering current if the 
other parallel elements of the configuration are much larger 
in magnitude.

In Example 6.22, the current through R1 is very close to the total current 
because R1 is 10 times less than the next smallest resistance.

Special Case: Two Parallel Resistors

For the case of two parallel resistors as shown in Fig.  6.42, the total 
resistance is determined by

=
+

R
R R

R RT
1 2

1 2

Substituting RT  into Eq. (6.15) for current I1 results in

I
R
R

I

R R

R R
R

IT
T T1

1

1 2

1 2

1

= =
+









and =
+







I

R
R R

IT1
2

1 2

 (6.16a)

Similarly, for I ,2

 =
+







I

R
R R

IT2
1

1 2

 (6.16b)

Eq. (6.16) states that

for two parallel resistors, the current through one is equal to 
the resistance of the other times the total entering current 
divided by the sum of the two resistances.

Since the combination of two parallel resistors is probably the 
most common parallel configuration, the simplicity of the format for  
Eq. (6.16) suggests that it is worth memorizing. Take particular note, 
however, that the denominator of the equations is simply the sum, not 
the total resistance, of the combination.

EXAMPLE 6.23 Determine current I 2 for the network in Fig. 6.43 
using the current divider rule.

Solution: Using Eq. (6.16b) gives

( ) ( )( )

=
+









=
+

= =

I
R

R R
I

2 A4 kΩ
4 kΩ 8 kΩ

6 A 0.333 6 A

T2
1

1 2

R1

I2

4 kV R2 8 kV

Is = 6 A

Is = 6 A

FIG. 6.43 
Using the current divider rule to determine 

current I2  in Example 6.23.

IT

I1 I2

RT
R1 R2

FIG. 6.42 
Deriving the current divider rule for the 

special case of only two parallel resistors.
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Using Eq. (6.15) gives

=I
R
R

IT
T2

2

with 
( )( )= =

+
=R 4 kΩ || 8 kΩ 4 kΩ 8 kΩ

4 kΩ 8 kΩ
2.667 kΩT

and ( ) ( )( )= = =I 2 A2.667 kΩ
8 kΩ

6 A 0.333 6 A2

matching the above solution.

It would appear that the solution with Eq. (6.16b) is more direct in 
Example 6.23. However, keep in mind that Eq. (6.15) is applicable to 
any parallel configuration, removing the necessity to remember two 
equations.

Now we present a design-type problem.

EXAMPLE 6.24 Determine resistor R1 in Fig. 6.44 to implement the 
division of current shown.

Solution: There are essentially two approaches to this type of 
 problem. One involves the direct substitution of known values into the 
current divider rule equation followed by a mathematical analysis. The 
other is the sequential application of the basic laws of electric circuits. 
First we will use the latter approach.

Applying Kirchhoff’s current law gives

I I

I I I

I27 mA 21 mA

i o

1 2

2

Σ = Σ

= +

= +

and = − =I 27 mA 21 mA 6 mA2

The voltage V :2  ( )( )= = =V I R 6 mA 7 Ω 42 mV2 2 2

so that = =V V 42 mV1 2

Finally, = = =R
V
I

2 Ω42 mV
21 mA1

1

1

Now for the other approach using the current divider rule:

( ) ( )( ) ( )

( )

( )

=
+









=
+









+ =

+ =
= − =

I
R

R R
I

R

R

R

R

21 mA 7 Ω
7 Ω

27 mA

7 Ω 21 mA 7 Ω 27 mA

21 mA 147 mV 189 mV

21 mA 189 mV 147 mV 42 mV

T1
2

1 2

1

1

1

1

and = =R 2 Ω42 mV
21 mA1

In summary, therefore, remember that current always seeks the path of 
least resistance, and the ratio of the resistance values is the inverse of the 

7 V

R1

R2
I = 27 mA

I1 = 21 mA

FIG. 6.44 
A design-type problem for two parallel 

resistors (Example 6.24).
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I1

4 V 4 V

IT

I2 I1

1 V 2 V

I2 I1

2 V 6 V

I2 I1

1 V 3 V

I2

6 V

I3

IT IT IT

IT IT IT IT

I1 = I2 =
IT

2
I1 = 2I2 I1 = I2 = 3I2

6
2( ) I1 = 6I3

I1 = 3I2

I2 = I3 = 2I3
6
3( )

FIG. 6.45 
Demonstrating how current divides through equal and unequal parallel resistors.

resulting current levels, as shown in Fig 6.45. The thickness of the blue bands 
in Fig. 6.45 reflects the relative magnitude of the current in each branch.

6.7 VOLTAGE SOURCES IN PARALLEL
Because the voltage is the same across parallel elements,

voltage sources can be placed in parallel only if they have the 
same voltage.

The primary reason for placing two or more batteries or supplies in parallel 
is to increase the current rating above that of a single supply. For example, 
in Fig. 6.46, two ideal batteries of 12 V have been placed in parallel. The 
total source current using Kirchhoff’s current law is now the sum of the rated 
currents of each supply. The resulting power available will be twice that of a 
single supply if the rated supply current of each is the same. That is,

with = =I I I1 2

then P E I I E I I E I EI P2 2 2T 1 2 of one supply( ) ( ) ( ) ( )= + = + = = = ( )

If for some reason two batteries of different voltages are placed in par-
allel, both will become ineffective or damaged because the battery with the 
larger voltage will rapidly discharge through the battery with the smaller 
terminal voltage. For example, consider two lead–acid batteries of different 

E1

I1

12 V E2 12 V

I2
Is

E 12 V

Is = I1 + I2

FIG. 6.46 
Demonstrating the effect of placing two ideal supplies of 

the same voltage in parallel.
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terminal voltages placed in parallel as shown in Fig 6.47. It makes no 
sense to talk about placing an ideal 12 V battery in parallel with a 6 V 
battery because Kirchhoff’s voltage law would be violated. However, 
we can examine the effects if we include the internal resistance levels as 
shown in Fig. 6.47.

The only current-limiting resistors in the network are the internal resis-
tances, resulting in a very high discharge current for the battery with the 
larger supply voltage. The resulting current for the case in Fig. 6.47 would 
be

=
−
+

= −
+

= =I
E E

R R
12 V 6 V

0.03 Ω 0.02 Ω
6 V

0.05 Ω
120 A1 2

int int1 2

This value far exceeds the rated drain current of the 12 V battery, resulting 
in rapid discharge of E1 and a destructive impact on the smaller supply 
due to the excessive currents. This type of situation did arise on occasion 
when some cars still had 6 V batteries. Some people thought, “If I have a 
6 V battery, a 12 V battery will work twice as well”—not true!

In general,

it is always recommended that when you are replacing 
batteries in series or parallel, replace all the batteries.

A fresh battery placed in parallel with an older battery probably has a 
higher terminal voltage and immediately starts discharging through the 
older battery. In addition, the available current is less for the older bat-
tery, resulting in a higher-than-rated current drain from the newer battery 
when a load is applied.

6.8 OPEN AND SHORT CIRCUITS
Open circuits and short circuits can often cause more confusion and dif-
ficulty in the analysis of a system than standard series or parallel config-
urations. This will become more obvious in the chapters to follow when 
we apply some of the methods and theorems.

An open circuit is two isolated terminals not connected by an ele-
ment of any kind, as shown in Fig. 6.48(a). Since a path for conduction 
does not exist, the current associated with an open circuit must always 
be zero. The voltage across the open circuit, however, can be any value, 
as determined by the system it is connected to. In summary, therefore,

an open circuit can have a potential difference (voltage) 
across its terminals, but the current is always zero amperes.

In Fig. 6.48(b), an open circuit exists between terminals a and b. The 
voltage across the open-circuit terminals is the supply voltage, but the 
current is zero due to the absence of a complete circuit.

Some practical examples of open circuits and their impact are pro-
vided in Fig. 6.49. In Fig. 6.49(a), the excessive current demanded by 
the system caused a fuse to fail, creating an open circuit that reduced 
the current to zero amperes. However, it is important to note that the full 
applied voltage is now across the open circuit, so you must be careful 
when changing the fuse. If there is a main breaker ahead of the fuse, 
throw it first to remove the possibility of getting a shock. This situation 
clearly reveals the benefit of circuit breakers: You can reset the breaker 
without having to get near the hot wires.

I

E1 12 V

Rint1
Rint2

0.03 V 0.02 V

E2 6 V

FIG. 6.47 
Examining the impact of placing two lead–
acid batteries of different terminal voltages 

in parallel.

(a)

(b)

System V

I = 0 A
Open circuit

+

–

E

a

b

Vopen circuit = E volts

I = 0 A

+

–

+

–

FIG. 6.48 
Defining an open circuit.
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In Fig. 6.49(b), the pressure plate at the bottom of the bulb cavity in 
a flashlight was bent when the flashlight was dropped. An open circuit 
now exists between the contact point of the bulb and the plate connected 
to the batteries. The current has dropped to zero amperes, but the 3 V 
provided by the series batteries appears across the open circuit. The situ-
ation can be corrected by placing a flat-edge screwdriver under the plate 
and bending it toward the bulb.

Finally, in Fig. 6.49(c), the filament in a bulb in a series connection 
has opened due to excessive current or old age, creating an open circuit 
that knocks out all the bulbs in the series configuration. Again, the cur-
rent has dropped to zero amperes, but the full 120 V will appear across 
the contact points of the bad bulb. For situations such as this, you should 
remove the plug from the wall before changing the bulb.

A short circuit is a very low resistance, direct connection between 
two terminals of a network, as shown in Fig. 6.50. The current through 
the short circuit can be any value, as determined by the system it is con-
nected to, but the voltage across the short circuit is always zero volts 
because the resistance of the short circuit is assumed to be essentially 
zero ohms and ( )= = =V IR I 0 Ω 0 V.

In summary, therefore,

a short circuit can carry a current of a level determined by 
the external circuit, but the potential difference (voltage) 
across its terminals is always zero volts.

(a)

(b)

(c)

System
120 V

120 V I = 0 A

V = 0 V

Open circuit

Fuse

3 V

I =
0 A

Contact

Open circuit

Reflector

Battery

120 V

120 V

Filament in bulb

Open circuit

Internal connection
in system

I = 0A

+ –

+
–

+

–

+
–

+ –

+

–

FIG. 6.49 
Examples of open circuits.

System V = 0 V

I

Short circuit

+

–

FIG. 6.50 
Defining a short circuit.
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In Fig. 6.51(a), the current through the 2 Ω resistor is 5 A. If a short 
circuit should develop across the 2 Ω resistor, the total resistance of the 
parallel combination of the 2 Ω resistor and the short (of essentially zero 
ohms) will be

( )( )=
+

=2 Ω || 0 Ω 2 Ω 0 Ω
2 Ω 0 Ω

0 Ω  

Will open due to
excessive current

I  =  5 A

E 2 VR10 V

10 A fuse

E R10 V

RT
IR  =  0 A

I

Vshort circuit  =  0 V

–

“Shorted out” Short circuit

(a) (b)

++

–

+

–

FIG. 6.51 
Demonstrating the effect of a short circuit on current levels.

as indicated in Fig. 6.51(b), and the current will rise to very high levels, 
as determined by Ohm’s law:

= = → ∞I E
R

10 V
0 Ω

A

The effect of the 2 Ω resistor has effectively been “shorted out” by 
the low-resistance connection. The maximum current is now limited 
only by the circuit breaker or fuse in series with the source.

Some practical examples of short circuits and their impact are pro-
vided in Fig. 6.52. In Fig. 6.52(a), a hot (the feed) wire wrapped around a 
screw became loose and is touching the return connection. A  short-circuit 
connection between the two terminals has been established that could 
result in a very heavy current and a possible fire hazard. One hopes that 
the breaker will “pop,” and the circuit will be deactivated. Problems such 
as this are among the reasons aluminum wires (cheaper and lighter than 
copper) are not permitted in residential or industrial wiring. Aluminum 
is more sensitive to temperature than copper and will expand and con-
tract due to the heat developed by the current passing through the wire. 
Eventually, this expansion and contraction can loosen the screw, and 
a wire under some torsional stress from the installation can move and 
make contact as shown in Fig. 6.52(a). Aluminum is still used in large 
panels as a bus-bar connection, but it is bolted down.

In Fig. 6.52(b), the wires of an iron have started to twist and crack due 
to excessive currents or long-term use of the iron. Once the insulation 
breaks down, the twisting can cause the two wires to touch and establish 
a short circuit. One can hope that a circuit breaker or fuse will quickly 
disconnect the circuit. Often, it is not the wire of the iron that causes the 
problem, but a cheap extension cord with the wrong gage wire. Be aware 
that you cannot tell the capacity of an extension cord by its outside jacket. 
It may have a thick orange covering but have a very thin wire inside. 
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Check the gage on the wire the next time you buy an extension cord, and 
be sure that it is at least #14 gage, with #12 being the better choice for 
high-current appliances such as irons, troaster ovens, etc.

Finally, in Fig. 6.52(c), the windings in a transformer or motor for 
residential or industrial use are illustrated. The windings are wound so 
tightly together with such a very thin coating of insulation that it is pos-
sible with age and use for the insulation to break down and short out 
the windings. In many cases, shorts can develop, but a short will simply 
reduce the number of effective windings in the unit. The tool or appli-
ance may still work but with less strength or rotational speed. If you 
notice such a change in the response, you should check the windings 
because a short can lead to a dangerous situation. In many cases, the 
state of the windings can be checked with a simple ohmmeter reading. If 
a short has occurred, the length of usable wire in the winding has been 
reduced, and the resistance drops. If you know what the resistance nor-
mally is, you can compare and make a judgment.

For the layperson, the terminology short circuit or open circuit is usu-
ally associated with dire situations such as power loss, smoke, or fire. 
However, in network analysis, both can play an integral role in determin-
ing specific parameters of a system. Most often, however, if a short-circuit 
condition is to be established, it is accomplished with a jumper—a lead 
of negligible resistance to be connected between the points of interest. 
Establishing an open circuit just requires making sure that the terminals 
of interest are isolated from each other.

6.9 VOLTMETER LOADING EFFECTS
In previous chapters, we learned that ammeters are not ideal instruments. 
When you insert an ammeter, you actually introduce an additional resis-
tance in series with the branch in which you are measuring the current. 
Generally, this is not a serious problem, but it can have a troubling effect 
on your readings, so it is important to be aware of it.

Voltmeters also have an internal resistance that appears between the 
two terminals of interest when a measurement is being made. While 
an ammeter places an additional resistance in series with the branch of 
interest, a voltmeter places an additional resistance across the element, 
as shown in Fig. 6.53. Since it appears in parallel with the element of 
interest, the ideal level for the internal resistance of a voltmeter would 
be infinite ohms, just as zero ohms would be ideal for an ammeter. 

(b)

120 V

Twisted wire

Contact—short circuit

(c)

120 V

Ferromagnetic core

Tight
winding

Short circuit

(a)

Short
circuit

120 V I (high)
+

–

+

–

+

–

FIG. 6.52 
Examples of short circuits.

I

+ –

11 MV

DMM

10 kV

FIG. 6.53 
Voltmeter loading.
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Unfortunately, the internal resistance of any voltmeter is not infinite and 
changes from one type of meter to another.

Most digital meters have a fixed internal resistance level in the meg-
ohm range that remains the same for all its scales. For example, the 
meter in Fig. 6.53 has the typical level of 11 MΩ for its internal resis-
tance, no matter which voltage scale is used. When the meter is placed 
across the 10 kΩ resistor, the total resistance of the combination is

R 10 kΩ || 11 MΩ 10 10 Ω 11 10 Ω
10 10 Ω 11 10 Ω

9.99 kΩT

3 6

3 6

( )
( )

( )
( )

= = × ×
× + ×

=

and the behavior of the network is not seriously affected. The result, 
therefore, is that

most digital voltmeters can be used in circuits with 
resistances up to the high-kilohm range without concern for 
the effect of the internal resistance on the reading.

However, if the resistances are in the megohm range, you should 
investigate the effect of the internal resistance.

An analog VOM is a different matter, however, because the internal 
resistance levels are much lower and the internal resistance levels are 
a function of the scale used. If a VOM on the 2.5 V scale were placed 
across the 10 kΩ resistor in Fig. 6.53, the internal resistance might be 
50 kΩ, resulting in a combined resistance of

R 10 kΩ || 50 kΩ 10 10 Ω 50 10 Ω
10 10 Ω 50 10 Ω

8.33 kΩT

3 3

3 3

( )( )
( ) ( )

= = × ×
× + ×

=

and the behavior of the network would be affected because the 10 kΩ 
resistor would appear as an 8.33 kΩ resistor.

To determine the resistance Rm  of any scale of a VOM, simply mul-
tiply the maximum voltage of the chosen scale by the ohm/volt Ω V( / ) 
rating normally appearing at the bottom of the face of the meter. That is,

( )( )( ) =R VOM scale Ω/V ratingm

For a typical Ω/V rating of 20,000, the 2.5 V scale would have an inter-
nal resistance of

( )( ) = 50 kΩ2.5 V 20,000 Ω/V  

whereas for the 100 V scale, the internal resistance of the VOM 
would be

( )( ) = 2 MΩ100 V 20,000 Ω/V

and for the 250 V scale,

( )( ) = 5 MΩ250 V 20,000 Ω/V

EXAMPLE 6.25 For the relatively simple circuit in Fig. 6.54(a):

a. What is the open-circuit voltage V ?ab

b. What will a DMM indicate if it has an internal resistance of 11 MΩ?  
Compare your answer to that of part (a).

c. Repeat part (b) for a VOM with an Ω/V rating of 20,000 on the  
100 V scale.

Vab

+

–

R

1 MV

E 20 V

a

b

20 V

+

–

Vab 11 MV V

R

1 MV

E

a

b

+

–

+

–

(a)

(b)

FIG. 6.54 
(a) Measuring an open-circuit voltage with a 
voltmeter; (b) determining the effect of using 
a digital voltmeter with an internal resistance 

of 11 MΩ on measuring an open-circuit 
voltage (Example 6.25).
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Solutions:

a. Due to the open circuit, the current is zero, and the voltage drop 
across the 1 MΩ resistor is zero volts. The result is that the entire 
source voltage appears between points a and b, and

=V 20 Vab

b. When the meter is connected as shown in Fig. 6.54(b), a complete 
circuit has been established, and current can pass through the cir-
cuit. The voltmeter reading can be determined using the voltage 
divider rule as follows:

( )

( )

( )
=

+
=V 18.33 V11 MΩ 20 V

11 MΩ 1 MΩab

and the reading is affected somewhat.

c. For the VOM, the internal resistance of the meter is

( )( )= =R 100 V 20,000 Ω/V 2 MΩm

and 
( )

( )

( )
=

+
=V 13.33 V2 MΩ 20 V

2 MΩ 1 MΩab

which is considerably below the desired level of 20 V.

6.10 SUMMARY TABLE
Now that the series and parallel configurations have been covered in  detail, 
we will review the salient equations and characteristics of each. The equa-
tions for the two configurations have a number of  similarities. In fact, the 
equations for one can often be obtained directly from the other by simply 
applying the duality principle. Duality between  equations means that the 
format for an equation can be applied to two different  situations by just 
changing the variable of interest. For instance, the equation for the total 
resistance of a series circuit is the sum of the  resistances. By changing the 
resistance parameters to  conductance  parameters, you can obtain the equa-
tion for the total conductance of a parallel network—an easy way to remem-
ber the two equations. Similarly, by starting with the total conductance 
equation, you can  easily write the total resistance equation for series circuits 
by replacing the conductance parameters by resistance parameters. Series 
and parallel networks share two important dual relationships: (1) between  
 resistance of series circuits and  conductance of parallel circuits and  
(2) between the  voltage or current of a series circuit and the current or volt-
age, respectively, of a parallel circuit. Table 6.1 summarizes this duality.

The format for the total resistance for a series circuit has the same for-
mat as the total conductance of a parallel network, as shown in Table 6.1. 
All that is required to move back and forth between the series and par-
allel headings is to interchange the letters R and G. For the special case 
of two elements, the equations have the same format, but the equation 
applied for the total resistance of the parallel configuration has changed. 
In the series configuration, the total resistance increases with each added 
resistor. For parallel networks, the total conductance increases with each 
additional conductance. The result is that the total conductance of a 
series circuit drops with added resistive elements, while the total resis-
tance of parallel networks decreases with added elements.

In a series circuit, the current is the same everywhere. In a parallel 
network, the voltage is the same across each element. The result is a 
duality between voltage and current for the two configurations. What is 
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true for one in one configuration is true for the other in the other con-
figuration. In a series circuit, the applied voltage divides between the 
series elements. In a parallel network, the current divides between par-
allel elements. For series circuits, the largest resistor captures the largest 
share of the applied voltage. For parallel networks, the branch with the 
highest conductance captures the greater share of the incoming current. 
In addition, for series circuits, the applied voltage equals the sum of the 
voltage drops across the series elements of the circuit, while the source 
current for parallel branches equals the sum of the currents through all 
the parallel branches.

The total power delivered to a series or parallel network is determined 
by the product of the applied voltage and resulting source current. The 
power delivered to each element is also the same for each configuration. 
Duality can be applied again, but the equation =P EI  results in the 
same result as =P IE. Also, =P I R2  can be replaced by =P V G2  
for parallel elements, but essentially each can be used for each configu-
ration. The duality principle can be very helpful in the learning process. 
Remember this as you progress through the next few chapters. You will 
find in the later chapters that this duality can also be applied between 
two important elements—inductors and capacitors.

6.11 TROUBLESHOOTING TECHNIQUES
The art of troubleshooting is not limited solely to electrical or electronic 
systems. In the broad sense,

troubleshooting is a process by which acquired knowledge 
and experience are used to localize a problem and offer or 
implement a solution.

There are many reasons why the simplest electrical circuit might 
not be operating correctly. A connection may be open; the measuring 

TABLE 6.1
Summary table.

Series and Parallel Circuits

Series Duality Parallel

= + + + +R R R R RT N1 2 3 � �R G = + + + +G G G G G. . .
T N1 2 3

RT  increases (GT  decreases) if additional 
 resistors are added in series

�R G
GT  increases (RT  decreases) if additional 
 resistors are added in parallel

Special case: two elements = +R R RT 1 2 �R G = +G G GT 1 2

I the same through series elements �I V V the same across parallel elements

= + +E V V V1 2 3 �E V I, = + +I I I IT 1 2 3

Largest V across largest R �V I  and �R G Greatest I through largest G (smallest R)

=V
R E
Rx
x

T

�E V I,  and �R G =I
G I

Gx
x T

T

=P EIT �E I  and �I E =P I ET

=P I R2 �I V  and �R G =P V G2

=P V R/2 �V I  and �R G =P I G/2
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instruments may need calibration; the power supply may not be on or 
may have been connected incorrectly to the circuit; an element may not 
be performing correctly due to earlier damage or poor manufacturing; a 
fuse may have blown; and so on. Unfortunately, a defined sequence of 
steps does not exist for identifying the wide range of problems that can 
surface in an electrical system. It is only through experience and a clear 
understanding of the basic laws of electric circuits that you can become 
proficient at quickly locating the cause of an erroneous output.

It should be fairly obvious, however, that the first step in checking a 
network or identifying a problem area is to have some idea of the expected 
voltage and current levels. For instance, the circuit in Fig.  6.55 should 
have a current in the low milliampere range, with the majority of the sup-
ply voltage across the 8 kΩ resistor. However, as indicated in Fig. 6.55, 
V V V0 V and 20 V.R R a1 2

= = =  Since V IR,=  the results immedi-
ately suggest that I 0=  A and an open circuit exists in the circuit. The fact 
that V 20 Va =  immediately tells us that the connections are true from 
the ground of the supply to point a. The open circuit must therefore exist 
between R1 and R2 or at the ground connection of R .2  An open circuit at 
either point results in I 0=  A and the readings obtained previously. Keep 
in mind that, even though I 0=  A, R1 does form a connection between 
the supply and point a. That is, if ( )= = = =I V IR R0 A, 0 0 V,R 2 21

 as 
obtained for a short circuit.

In Fig.  6.55, if V 20 VR1
≅  and VR2

 is quite small ( )≅ 0.08 V , 
it first suggests that the circuit is complete, a current does exist, and 
a problem surrounds the resistor R R.2 2 is not shorted out since such 
a condition would result in V 0V.R2

=  A careful check of the inserted 
resistor reveals that an 8 Ω resistor was used rather than the 8 kΩ resis-
tor specified—an incorrect reading of the color code. To avoid this, an 
ohmmeter should be used to check a resistor to validate the color-code 
reading or to ensure that its value is still in the prescribed range set by 
the color code.

Occasionally, the problem may be difficult to diagnose. You’ve 
checked all the elements, and all the connections appear tight. The sup-
ply is on and set at the proper level; the meters appear to be functioning 
correctly. In situations such as this, experience becomes a key factor. 
Perhaps you can recall when a recent check of a resistor revealed that the 
internal connection (not externally visible) was a “make or break” situa-
tion or that the resistor was damaged earlier by excessive current levels, 
so its actual resistance was much lower than called for by the color code. 
Recheck the supply! Perhaps the terminal voltage was set correctly, but 
the current control knob was left in the zero or minimum position. Is the 
ground connection stable? The questions that arise may seem endless. 
However, as you gain experience, you will be able to localize problems 
more rapidly. Of course, the more complicated the system, the longer is 
the list of possibilities, but it is often possible to identify a particular area 
of the system that is behaving improperly before checking individual 
elements.

6.12 PROTOBOARDS (BREADBOARDS)
In Section  5.13, the protoboard was introduced with the connections 
for a simple series circuit. To continue the development, the network 
in Fig. 6.17 was set up on the board in Fig. 6.56(a) using two different 

+

–
E 20 V

R1

2 kV

R2

8 kV

–

+

Va  =  20 V

+   =  0 V  –

a

+    =  0 V  –

I

FIG. 6.55 
A malfunctioning network.
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techniques. The possibilities are endless, but these two solutions use a 
fairly straightforward approach.

First, note that the supply lines and ground are established across the 
length of the board using the horizontal conduction zones at the top and 
bottom of the board through the connections to the terminals. The net-
work to the left on the board was used to set up the circuit in much 
the same manner as it appears in the schematic of Fig.  6.56(b). This 
approach required that the resistors be connected between two vertical 
conducting strips. If placed perfectly vertical in a single conducting 
strip, the resistors would have shorted out. Often, setting the network 
up in a manner that best copies the original can make it easier to check 
and make measurements. The network to the right in part (a) used the 
vertical conducting strips to connect the resistors together at each end. 
Since there wasn’t enough room for all three, a connection had to be 
added from the upper vertical set to the lower set. The resistors are in 
order R R, ,1 2  and R3  from the top down. For both configurations, the 
ohmmeter can be connected to the positive lead of the supply terminal 
and the negative or ground terminal.

Take a moment to review the connections and think of other possibili-
ties. Improvements can often be made, and it can be satisfying to find the 
most effective setup with the least number of connecting wires.

6.13 APPLICATIONS
One of the most important advantages of the parallel configuration 
is that

 if one branch of the configuration should fail (open circuit), 
the remaining branches will still have full operating power.

In a home, the parallel connection is used throughout to ensure that if 
one circuit has a problem and trips the circuit breaker, the remaining cir-
cuits still have the full 120 V. The same is true in automobiles, computer 
systems, industrial plants, and wherever it would be disastrous for one 

(a)

Meter connections

One approach

A second approach

FIG. 6.56 
Using a protoboard to set up the circuit in Fig. 6.17.

(b)

R1 1 kV R3 1.2 kVR2 2.2 kV

0.437

+
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circuit to control the total power distribution. Therefore, critical systems 
are designed with redundancy in mind.

Another important advantage is that

branches can be added at any time without affecting the 
behavior of those already in place.

In other words, unlike the series connection, where an additional compo-
nent reduces the current level and perhaps affects the response of some 
of the existing components, an additional parallel branch will not affect 
the current level in the other branches. Of course, the current demand 
from the supply increases as determined by Kirchhoff’s current law, so 
you must be aware of the limitations of the supply.

The following are some of the most common applications of the par-
allel configuration.

Car System

As you begin to examine the electrical system of an automobile, the 
most important thing to understand is that the entire electrical system of 
a car is run as a dc system. Although the generator/alternator produces 
a varying ac signal, rectification converts it to one having an average 
dc level for charging the battery. In particular, note the use of a filter 
capacitor in the alternator branch in Fig. 6.57 to smooth out the rectified 
ac waveform and to provide an improved dc supply. The charged battery 
must therefore provide the required direct current for the entire elec-
trical system of the car. Thus, the power demand on the battery at any 
instant is the product of the terminal voltage and the current drain of the 
total load of every operating system of the car. This certainly places an 
enormous burden on the battery and its internal chemical reaction and 
warrants all the battery care we can provide.

Since the electrical system of a car is essentially a parallel system, the 
total current drain on the battery is the sum of the currents to all the par-
allel branches of the car connected directly to the battery. In Fig. 6.57, 
a few branches of the wiring diagram for a car have been sketched to 

M W P

12 gage
fuse link

Filter
capacitor

Icharging

Alternator
Sensor
connection

12 V

Ibattery

Battery

Starter
motor

Istarting

Ignition
switch

Headlights Parking lights,
tail lights

Stop
lights

30 A 15 A 15 A

Ilights
60 A

Fuse links

Other parallel branches

+12 V

15 A 15 A

30 A

Air
conditioner

Panel lights,
radio, cassette
player, etc.

20 A 30 A

etc.

Windshield
wiper blades

Power
locks

A/C

+

–

FIG. 6.57 
Expanded view of an automobile’s electrical system.
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provide some background information on basic wiring, current levels, 
and fuse configurations. Every automobile has fuse links and fuses, and 
some also have circuit breakers, to protect the various components of 
the car and to ensure that a dangerous fire situation does not develop. 
Except for a few branches that may have series elements, the operating 
voltage for most components of a car is the terminal voltage of the bat-
tery, which we will designate as 12 V even though it will typically vary 
between 12 V and the charging level of 14.6 V. In other words, each 
component is connected to the battery at one end and to the ground or 
chassis of the car at the other end.

Referring to Fig. 6.57, note that the alternator or charging branch of 
the system is connected directly across the battery to provide the charging 
current as indicated. Once the car is started, the rotor of the alternator 
turns, generating an ac varying voltage that then passes through a recti-
fier network and filter to provide the dc charging voltage for the battery. 
Charging occurs only when the sensor connected directly to the battery 
signals that the terminal voltage of the battery is too low. Just to the right 
of the battery the starter branch was included to demonstrate that there is 
no fusing action between the battery and starter when the ignition switch 
is activated. The lack of fusing action is provided because enormous 
starting currents (hundreds of amperes) flow through the starter to start 
a car that has not been used for days and/or has been sitting in a cold  
climate—and high friction occurs between components until the oil starts 
flowing. The starting level can vary so much that it would be difficult to 
find the right fuse level, and frequent high currents may damage the fuse 
link and cause a failure at expected levels of current. When the ignition 
switch is activated, the starting relay completes the circuit between the 
battery and starter, and, it is hoped, the car starts. If a car fails to start, the 
first thing to check is the connections at the battery, starting relay, and 
starter to be sure that they are not providing an unexpected open circuit 
due to vibration, corrosion, or moisture.

Once the car has started, the starting relay opens, and the battery 
 begins to activate the operating components of the car. Although the 
 diagram in Fig.  6.57 does not display the switching mechanism, the 
entire electrical network of the car, except for the important external 
lights, is usually disengaged so that the full strength of the battery can 
be  dedicated to the starting process. The lights are included for situa-
tions where turning the lights off, even for short periods of time, could 
create a dangerous situation. If the car is in a safe environment, it is best 
to leave the lights off when starting, to save the battery an additional  
30 A of drain. If the lights are on, they dim because of the starter drain, 
which may exceed 500 A. Today, batteries are typically rated in crank-
ing ( starting) current rather than ampere-hours. Batteries rated with cold 
cranking ampere ratings between 700 A and 1000 A are typical today.

Separating the alternator from the battery and the battery from 
the numerous networks of the car are fuse links such as shown in 
Fig. 6.58(a). Fuse links are actually wires of a specific gage designed to 
open at fairly high current levels of 100 A or more. They are included 
to protect against those situations where there is an unexpected current 
drawn from the many circuits to which they are connected. That heavy 
drain can, of course, be from a short circuit in one of the branches, but 
in such cases the fuse in that branch will probably release. The fuse link 
is an additional protection for the line if the total current drawn by the 
 parallel-connected branches begins to exceed safe levels. The fuses fol-
lowing the fuse link have the appearance shown in Fig. 6.58(b), where 
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a gap between the legs of the fuse indicates a blown fuse. As shown 
in Fig. 6.57, the 60 A fuse (often called a power distribution fuse) for 
the lights is a second-tier fuse sensitive to the total drain from the three 
light circuits. Finally, the third fuse level is for the individual units of 
a car such as the lights, air conditioner, and power locks. In each case, 
the fuse rating exceeds the normal load (current level) of the operating 
component, but the level of each fuse does give some indication of the 
demand to be expected under normal operating conditions. For instance, 
headlights typically draw more than 10 A, tail lights more than 5 A, air 
conditioner about 10 A (when the clutch engages), and power windows 
10 A to 20 A, depending on how many are operated at once.

Some details for only one section of the total car network are pro-
vided in Fig.  6.57. In the same figure, additional parallel paths with 
their respective fuses have been provided to further reveal the parallel 
arrangement of all the circuits.

In most vehicles the return path to the battery through the ground 
connection is through the chassis of the car. That is, there is only one 
wire to each electrical load, with the other end simply grounded to the 
chassis. The return to the battery (chassis to negative terminal) is there-
fore a heavy-gage wire matching that connected to the positive terminal. 
In some cars constructed of a mixture of materials such as metal, plastic, 
and rubber, the return path through the metallic chassis may be lost, and 
two wires must be connected to each electrical load of the car.

House Wiring

In Chapter 4, the basic power levels of importance were discussed for 
various services to the home. We are now ready to take the next step and 
examine the actual connection of elements in the home.

First, it is important to realize that except for some very special cir-
cumstances, the basic wiring is done in a parallel configuration. Each 
parallel branch, however, can have a combination of parallel and series 
elements. Every full branch of the circuit receives the full 120 V or 240 V,  
with the current determined by the applied load. Fig.  6.59(a) provides 
the detailed wiring of a single circuit having a light bulb and two outlets. 
Fig. 6.59(b) shows the schematic representation. Note that although each 
load is in parallel with the supply, switches are always connected in series 
with the load. The power is transmitted to the lamp only when the switch 
is closed and the full 120 V appears across the bulb. The connection point 
for the two outlets is in the ceiling box holding the light bulb. Since a 
switch is not present, both outlets are always “hot” unless the circuit 

(a) (b)

15 A fuse Open

gap

 FIG. 6.58 
Car fuses: (a) fuse link; (b) plug-in.
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RESIDENTIAL SERVICE

Neutral
Line 1 Line 2

20 A breaker
Neutral bar

Grounding bar

MAIN PANEL

Grounding
electrode
(8 ft copper bar
in ground)

Box
grounded 3-wire

romex cable

Bare Black

Wire
nut

Junction
box

Bare

Bare

Black

Green

White WhiteWhite

Black

Light
switch Box and switch

grounded
Light bulb

Black (HOT-FEED)
White (NEUTRAL-
RETURN)
Bare or green (GROUND)Box

grounded

Outlet box

Bare or green

Black

White

Outlet box

Box
grounded

Copper bus bar

(a)

L

Feed

120 V

Neutral
ground

Circuit breaker
Single pole switch

Ceiling
lamp

Duplex
convenience
receptacles(Using standard

blueprint electrical
symbols)

+ 20 A

(b)

S

Bare

FIG. 6.59 
Single phase of house wiring: (a) physical details; (b) schematic representation.

breaker in the main panel is opened. This is important to understand in 
case you are tempted to change the light fixture by simply turning off the 
wall switch. True, if you’re very careful, you can work with one line at a 
time (being sure that you don’t touch the other line at any time), but it is 
much safer to throw the circuit breaker on the panel whenever working 
on a circuit. Note in Fig. 6.59(a) that the feed wire (black) into the fixture 
from the panel is connected to the switch and both outlets at one point. It 
is not connected directly to the light fixture because the lamp would be 
on all the time. Power to the light fixture is made available through the 
switch. The continuous connection to the outlets from the panel ensures 
that the outlets are “hot” whenever the circuit breaker in the panel is on. 
Note also how the return wire (white) is connected directly to the light 
switch and outlets to provide a return for each component. There is no 
need for the white wire to go through the switch since an applied voltage 
is a two-point connection and the black wire is controlled by the switch.
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Proper grounding of the system in total and of the individual loads is 

one of the most important facets in the installation of any system. There 
is a tendency at times to be satisfied that the system is working and to 
pay less attention to proper grounding technique. Always keep in mind 
that a properly grounded system has a direct path to ground if an unde-
sirable situation should develop. The absence of a direct ground causes 
the system to determine its own path to ground, and you could be that 
path if you happened to touch the wrong wire, metal box, metal pipe, 
and so on. In Fig.  6.59(a), the connections for the ground wires have 
been included. For the romex (plastic-coated wire) used in Fig. 6.59(a), 
the ground wire is provided as a bare copper wire. Note that it is con-
nected to the panel, which in turn is directly connected to the grounded 
8 ft copper rod. In addition, note that the ground connection is carried 
through the entire circuit, including the switch, light fixture, and outlets. 
It is one continuous connection. If the outlet box, switch box, and hous-
ing for the light fixture are made of a conductive material such as metal, 
the ground will be connected to each. If each is plastic, there is no need 
for the ground connection. However, the switch, both outlets, and the 
fixture itself are connected to ground. For the switch and outlets, there 
is usually a green screw for the ground wire, which is connected to the 
entire framework of the switch or outlet as shown in Fig. 6.60, including 
the ground connection of the outlet. For both the switch and the out-
let, even the screw or screws used to hold the outside plate in place are 
grounded since they are screwed into the metal housing of the switch or 
outlet. When screwed into a metal box, the ground connection can be 
made by the screws that hold the switch or outlet in the box as shown in 
Fig. 6.60. Always pay strict attention to the grounding process whenever 
installing any electrical equipment.

On the practical side, whenever hooking up a wire to a screw-type 
terminal, always wrap the wire around the screw in the clockwise man-
ner so that when you tighten the screw, it grabs the wire and turns it in 
the same direction. An expanded view of a typical house-wiring arrange-
ment appears in Chapter 15.

Continuous-ground bar

Ground-wire
connection

Connected to ground

Hot-wire
connections

Connected to ground

Terminal connection
for ground of plug

Terminal connection
for ground of plug

FIG. 6.60 
Continuous ground connection in a duplex outlet.
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PROBLEMS

SECTION 6.2 Parallel Resistors

 1.  For each configuration in Fig. 6.61, find the voltage sources 
and/or resistors elements (individual elements, not combi-
nations of elements) that are in parallel.

R3
E2R2

R4R1
R1

R2

E

R3

(d)

E

(c)

R2

R3

R1

(b)(a)

R3

R1

R4

R2E
+

–

+

–
E

+

– +

–
R4

FIG. 6.61 
Problem 1.

 2.  For each configuration of Fig. 6.62, find the voltage sources 
and/or resistive elements (individual elements, not combi-
nations of elements) that are in parallel.

R4R3

(a) (b)

R2E
+

–

R2

R3

R1E
+

–

R1

R1

(c)

R2

R3

E

+–

R2

R4

R3

R5

R6

R1

(d)

E1

+

–

FIG. 6.62 
Problem 2.

 3.  For the network in Fig. 6.63:

a. Find the elements (individual voltage sources and/or 
resistors) that are in parallel.

b.  Find the elements (voltage sources and/or resistors) that 
are in series.

R1

R5R2

R3

R4
E

R6

R7

+

–

FIG. 6.63 
Problem 3.
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 4.  Find the total resistance for each configuration in Fig. 6.64. 

Note that only standard value resistors were used.

(a)

R6 V3 VRT = 1.61    V

(b)

6 kV6 kV6 kV R

RT = 1.8 kV

(c)

R20 kV

RT = 5.07 kV

FIG. 6.67 
Problem 7.

1.1 kV 110 V 11 V

R3R2R1

2 kV 4 kV 25 kV

R3R2R1R2R1

40 V 20 V

RTRTRT

(c)(b)(a)

FIG. 6.64 
Problem 4.

 5.  Find the total resistance for each configuration of Fig. 6.65. 
Note that only standard resistor values are included.

2 V 2 kV 2 MV

R3R2R1

20 V 10 V 20 V 10 V 20 V 20 V

R6R5R4R3R2R1

RTRT

(c)(b)

12 kV 12 kV 12 kV 4 kV

R4R3R2R1

RT

(a)

FIG. 6.65 
Problem 5.

 6.  For each circuit board in Fig. 6.66, find the total resistance 
between connection tabs 1 and 2.

1

2

(b)(a)

1

2

FIG. 6.66 
Problem 6.

 7.  The total resistance of each of the configurations in 
Fig. 6.67 is specified. Find the unknown standard resistance 
value.
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 8.  The total resistance for each configuration of Fig. 6.68 is 

specified. Find the unknown resistance level. All unknowns 
are standard values.

(a)

R2.4 kV

RT = 1.02 kV

6.8 kV

R

(b)

R1R1R1

T = 6 kV

R1

(c)

8.2 kV

10 kV

RT = 1.11 kV

R

2 kV

FIG. 6.68 
Problem 8.

 9.  For the parallel network in Fig. 6.69, composed of standard 
values:

a. Which resistor has the most impact on the total resis-
tance?

b. Without making a single calculation, what is an approx-
imate value for the total resistance?

c. Calculate the total resistance, and comment on your 
response to part (b).

d. On an approximate basis, which resistors can be ignored 
when determining the total resistance?

e. If we add another parallel resistor of any value to the  
network, what is the impact on the total resistance?

RT

2.2 kVR1 33 kVR2 330 kVR3 3.3 MVR4

FIG. 6.69 
Problem 9.

 10.  What is the ohmmeter reading for each configuration in 
Fig. 6.70?

V V
+ – + –

10 V2 V3 V

(a) (b)

100 V10 V

V
+–

(c)

7 V3 V

FIG. 6.70 
Problem 10.
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 *11.  Determine R1 for the network in Fig. 6.71.

R1

24 V

24 V

24 V

RT  =  10 V 120 V

24 V

FIG. 6.71 
Problem 11.

SECTION 6.3 Parallel Circuits

 12. For the parallel network in Fig. 6.72:
a. Find the total resistance.
b. What is the voltage across each branch?
c. Determine the source current and the current through 

each branch.
d. Verify that the source current equals the sum of the 

branch currents.

RT

Is

I3I1 I2

+

–
E 20 V R3 48 VR1 4 V R2 12 V

FIG. 6.73 
Problem 13.

E 12 V

RT

Is

R3 1.8 kV

I3

R1 20 kV

I1

R2 2.2 kV

I2

+

–

FIG. 6.74 
Problem 14.

E 36 V

RT

Is

R1 8 V

I1

R2 24 V

I2

+

–

FIG. 6.72 
Problem 12.

  13. For the network of Fig. 6.73:
a. Find the current through each branch.
b. Find the total resistance.
c. Calculate Is  using the result of part (b).
d. Find the source current using the result of part (a).
e. Compare the results of parts (c) and (d).

 14. For the network of Fig. 6.74:
a. Find the current through each branch.
b. Find the total resistance.
c. Calculate Is using the result of part (b).
d. Find the source current using the result of part (a).
e. Compare the results of parts (c) and (d).

 15. For the parallel network in Fig. 6.75:
a. Without making a single calculation, make a guess on 

the total resistance.
b. Calculate the total resistance, and compare it to your 

guess in part (a).
c. Without making a single calculation, which branch will 

have the most current? Which will have the least?
d. Calculate the current through each branch, and compare 

your results to the assumptions of part (c).
e. Find the source current and test whether it equals the 

sum of the branch currents.
f. How does the magnitude of the source current compare 

to that of the branch currents?

E 60 V

RT

Is

R4 91 kV

I4

R1 20 kV

I1

R2 10 kV

I2

R3 1 kV

I3

+

–

FIG. 6.75 
Problem 15.

 16. Given the information provided in Fig. 6.76, find:
a. The resistance R .2

b. The supply voltage E.

R2R1E
+

–

= 8 V P = 64 W  RT

20 V

FIG. 6.76 
Problem 16.
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 17. Use the information in Fig. 6.77 to calculate:

a. The source voltage E.
b. The resistance R .2

c. The current I .1

d. The source current I .s

e. The power supplied by the source.
f. The power supplied to the resistors R1 and R .2

g. Compare the power calculated in part (e) to the sum of 
the power delivered to all the resistors.

R2

I1

s

E
+

–
R1 R

3 A

3 6 V12 V

P = 120 W  

I

FIG. 6.77 
Problem 17.

 18. Given the information provided in Fig.  6.78, find the 
unknown quantities: E R, ,1  and I .3

13 A

R3 12 V

I3

R1 R2 3 V

10 A

+

–
E

FIG. 6.78 
Problem 18.

 19. For the network of Fig. 6.79, find:
a. The voltage V.
b. The current I .2

c. The current I .s

d. The power to the 12 kΩ  resistor.

18 kV48 V

3 kV 

I2

VsI + –

12 kV 

FIG. 6.79 
Problem 19.

 20. Using the information provided in Fig. 6.80, find:
a. The resistance R .2

b. The resistance R .3

c. The current I .s

R3R2

Is

R1

–15 V 4 A

5 V

1 A

 FIG. 6.80 
Problem 20.

 21. For the network in Fig. 6.74:

a. Redraw the network and insert ammeters to mea-
sure the source current and the current through 
each branch.

b. Connect a voltmeter to measure the source voltage 
and the voltage across resistor R .3  Is there any dif-
ference in the connections? Why?

SECTION 6.4 Power Distribution in a Parallel Circuit

 22. For the configuration in Fig. 6.81:
a. Find the total resistance and the current through each 

branch.
b. Find the power delivered to each resistor.
c. Calculate the power delivered by the source.
d. Compare the power delivered by the source to the sum 

of the powers delivered to the resistors.
e. Which resistor received the most power? Why?

E 60 V 

RT

Is

R1 2 kV

I1

R2 4.4 kV

I2

R3 8 kV

I3

+

–

FIG. 6.81 
Problem 22.

 23. Eight holiday lights are connected in parallel as shown in 
Fig. 6.82.
a. If the set is connected to a 120 V source, what is the 

current through each bulb if each bulb has an internal 
resistance of 1.8 kΩ?

b. Determine the total resistance of the network.
c. Find the current drain from the supply.
d. What is the power delivered to each bulb?
e. Using the results of part (d), find the power delivered by 

the source.
f. If one bulb burns out (that is, the filament opens up), 

what is the effect on the remaining bulbs? What is the 
effect on the source current? Why?
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 24. Determine the power delivered by the dc battery in 
Fig. 6.83.

 25. A portion of a residential service to a home is depicted in 
Fig. 6.84.
a. Determine the current through each parallel branch of 

the system.
b. Calculate the current drawn from the 120 V source. Will 

the 20 A breaker trip?
c. What is the total resistance of the network?
d. Determine the power delivered by the source. How does 

it compare to the sum of the wattage ratings appearing 
in Fig. 6.84?

FIG. 6.82 
Problem 23.

5 V

20 V

12 V

2 V

60 V
+

–

FIG. 6.83 
Problem 24.

TV
320 W 

Five 60 W 
bulbs in parallel

breaker

Circuit
(20 A)

120 V

Microwave
1200 W   

DVD
25 W 

FIG. 6.84 
Problem 25.

*26. For the network in Fig. 6.85:
a. Find the current I .1

b. Calculate the power dissipated by the 4 Ω resistor.
c. Find the current I .2

SECTION 6.5 Kirchhoff’s Current Law

  27. Using Kirchhoff’s current law, determine the unknown cur-
rents for the parallel network in Fig. 6.86.

I1

6 V

10 V

24 V

4 V

I2

P4V

–4 V

FIG. 6.85 
Problem 26.

R3E R1 R2

5 mA

4 mA

10 mA

Is

I2

+

–

FIG. 6.86 
Problem 27.
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 28. Using Kirchoff’s current law, find the unknown currents for 

the complex configurations in Fig. 6.87.

7 A

I = ?

9 A

12 V

(a)

5 A

3 A

FIG. 6.87 
Problem 28.

9 mA

10 mA8 mA

2 mA
I3

I2

I1

(b)

 29. Using Kirchhoff’s current law, determine the unknown cur-
rents for the networks in Fig. 6.88.

(a) (b)

E
+–

Is

R1 R2

R3 R4

I3

I4I5

20 mA

36 mA

4 mA
I2

R1 R2

R3

R4

I4

I3

8 A

3 A

Is

FIG. 6.88 
Problem 29.

 30. Using the information provided in Fig. 6.89, find the branch 
resistances R1 and R ,3  the total resistance R ,T  and the volt-
age source E.

 31. Find the unknown quantities for the networks in Fig. 6.90 
using the information provided.

E R1 R35 kV

9 mA

R2

5 mA 2 mA

RT+

–

FIG. 6.89 
Problem 30.

R110 V R2

I  =  3 A 2 A

(a)

6 VE

RT

I

(b)

I32 A I2

9 V

P  =  12 W

+

–

+

–
R1 R2 R3

FIG. 6.90 
Problem 31.
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 32. Find the unknown quantities for the networks of Fig. 6.91 

using the information provided.

1 kV64 V R

Is  =  100 mA I1

(a)

4 kV

I3

30 VE R2

P  =  30 W I1

(b)

R3  =  R2

I3

2 A

+

– +

–

I2

FIG. 6.91 
Problem 32.

SECTION 6.6 Current Divider Rule

 33. Based solely on the resistor values, determine all the cur-
rents for the configuration in Fig. 6.92. Do not use Ohm’s 
law.

3 V

I1 = 9 A

I2 15 V

2 V

20 V

I3

I4

ITIT

FIG. 6.92 
Problem 33.

 34. a. Determine one of the unknown currents of Fig. 6.93 
using the current divider rule.

b. Determine the other current using Kirchhoff’s current 
law.

I1 1 k�

2.4 k� 

2.5 A 

IT

(b)

(a)

I1 I2

20 mA

2 k� 8 k�

FIG. 6.93 
Problem 34.

 35. For each network of Fig.  6.94, determine the unknown 
 currents.

8 A
I1 I2

I3

I420 V

4 V
1.2 V

4 V

8 V

(b)

6 A 

4 V

8 V 

12 V

10 V

I1

I2

I3

I4

(a)

E
+–

FIG. 6.94 
Problem 35.

 36. Parts (a) through (e) of this problem should be done by 
inspection—that is, mentally. The intent is to obtain an 
approximate solution without a lengthy series of calcula-
tions. For the network in Fig. 6.95:
a. What is the approximate value of I ,1  considering the 

magnitude of the parallel elements?
b. What is the ratio I I/ ?1 2  Based on the result of part (a), 

what is an approximate value of I ?2

c. What is the ratio I I/ ?1 3  Based on the result, what is an 
approximate value of I ?3

d.  What is the ratio I I/ ?1 4  Based on the result, what is an 
approximate value of I ?4

e. What is the effect of the parallel 100 kΩ  resistor on the 
above calculations? How much smaller will the current 
I 4 be than the current I ?1
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f. Calculate the current through the 1 kΩ resistor using the 

current divider rule. How does it compare to the result 
of part (a)?

g. Calculate the current through the 10 Ω resistor. How 
does it compare to the result of part (b)?

h. Calculate the current through the 1 kΩ resistor. How 
does it compare to the result of part (c)?

i. Calculate the current through the 100 kΩ  resistor. How 
does it compare to the solutions to part (e)?

100 kV

1 kV
I  =  10 A

I4

10 V

1 V

I3

I2

I1

FIG. 6.95 
Problem 36.

 37. Find the unknown quantities for the networks in Fig. 6.96 
using the information provided.

36 V

3 V

I

I1

I21 A

(a)

12 kV 

I3

4 kV 

RI1

I2

(b)

    

 4 mA

I = 24 mA

FIG. 6.96 
Problem 37.

 38. a. Find resistance R for the network in Fig. 6.97 that will 
ensure that =I I3 .1 2

b. Find I1 and I .2

R

3 kV

I1

I2

30 mA

FIG. 6.97 
Problem 38.

 39. Design the network in Fig. 6.98 such that =I I22 1 and 
=I I2 .3 2

R1 R2 R3E 28 V

I1 I2 I3

91 mA

+

–

FIG. 6.98 
Problem 39.

RL

IL

I1

12 V 12 V

I2 PL = 72 W

+

–

+

–

FIG. 6.99 
Problem 40.

I1

6 V 42 V21 V21 V

I2

I3

+

–

+

–

FIG. 6.100 
Problem 41.

SECTION 6.7 Voltage Source in Parallel

 40. Assuming identical supplies in Fig. 6.99:
a. Find the indicated currents.
b. Find the power delivered by each source.
c. Find the total power delivered by both sources, and 

compare it to the power delivered to the load R .L

d. If only one source were available, what would the cur-
rent drain be to supply the same power to the load? How 
does the current level compare to the calculated level of 
part (a)?

 41. Assuming identical supplies, determine currents I I, ,1 2  and 
I 3 for the configuration in Fig. 6.100.
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 42. Assuming identical supplies, determine the current I and 

resistance R for the parallel network in Fig. 6.101.

8 VR 16 V16 V

I
5 A

5 A

+

–

+

–

FIG. 6.101 
Problem 42.

SECTION 6.9 Voltmeter Loading Effects

 43. For the simple series configuration in Fig. 6.102:
a. Determine voltage V .2

b. Determine the reading of a DMM having an internal 
resistance of 11 MΩ when used to measure V .2

c. Repeat part (b) with a VOM having an Ω/V  rating of 
20,000 using the 20 V scale. Compare the results of 
parts (b) and (c). Explain any differences.

d. Repeat parts (a) through (c) with =R 100 kΩ1  and 
=R 200 kΩ.2

e. Based on the above, what general conclusions can you 
make about the use of a DMM or a VOM in the voltme-
ter mode?

R2 22 kV V2
E 20 V

4.7 kV

R1

+

–

+

–

FIG. 6.102 
Problem 43.

a

E 40 V

2 MV

R

b

+

–

FIG. 6.103 
Problem 44.

3 kV 4 kV6 V 6 kVE

I

V 6 V

3.5 mA

+

–

FIG. 6.104 
Problem 45.

E 12 V V

8.8 V

1 kV 4 kV

E 4 V

a

b

Vab

+

–

+

– +–

FIG. 6.105 
Problem 46.

3 kV

4 kV

+20 V

1 kV

–4 V

a Va  =  –1 V

E1

E2

FIG. 6.106 
Problem 47.

 44. Given the configuration in Fig. 6.103:
a. What is the voltage between points a and b?
b. What will the reading of a DMM be when placed across 

terminals a and b if the internal resistance of the meter is 
22 MΩ?

c. Repeat part (b) if a VOM having an Ω/V  rating of 
22,000 using the 400 V scale is used. What is the read-
ing using the 40 V scale? Is there a difference? Why?

 SECTION 6.10  Troubleshooting Techniques

 45. Based on the measurements of Fig.  6.104, determine 
whether the network is operating correctly. If not,  determine 
why.

 46. Referring to Fig. 6.105, find the voltage Vab  without the 
meter in place. When the meter is applied to the active net-
work, it reads 8.8 V. If the measured value does not equal 
the theoretical value, which element or elements may have 
been connected incorrectly?

 47. a. The voltage Va  for the network in Fig. 6.106 is −1 V. If 
it suddenly jumped to 20 V, what could have happened 
to the circuit structure? Localize the problem area.

b. If the voltage Va  is 6 V rather than −1 V, explain what 
is wrong about the network construction.
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GLOSSARY

Current divider rule (CDR) A method by which the current 
through parallel elements can be determined without first 
finding the voltage across those parallel elements.

Kirchhoff’s current law (KCL) The algebraic sum of the cur-
rents entering and leaving a node is zero.

Node A junction of two or more branches.
Ohm/volt (Ω / V) rating A rating used to determine both the 

current sensitivity of the movement and the internal resistance 
of the meter.

Open circuit The absence of a direct connection between two 
points in a network.

Parallel circuit A circuit configuration in which the elements 
have two points in common.

Short circuit A direct connection of low resistive value that can 
significantly alter the behavior of an element or system.
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7Series-Parallel Circuits

7.1 INTRODUCTION
Chapters 5 and 6 were dedicated to the fundamentals of series and parallel circuits. In some 
ways, these chapters may prove to be very important because they form a foundation for all 
the material to follow in this text. The network configurations to follow cannot be defined by a 
similar set of strict conditions because there is an infinite variety possible. However, they can 
all be defined as either series-parallel or complex.

A series-parallel configuration is one that is formed by a combination of series 
and parallel elements.

In some cases the elements are not in series or parallel. This is defined as a complex 
network.

We will now examine series-parallel combinations using the basic laws introduced for  
series and parallel circuits. There are no new rules to master—simply an approach that per-
mits the analysis of such configurations.

As noted earlier the possibilities for series-parallel configurations are infinite. Therefore, 
we need to examine each network as a separate entity and define the approach that provides 
the best path to determining the unknown quantities.

In time, you will find similarities between configurations that make it easier to define the 
best route to a solution, but this occurs only with exposure, practice, and patience. The best 
preparation for the analysis of series-parallel networks is to have a firm understanding of the 
concepts introduced for series and parallel networks. All the rules and laws to be applied in 
this chapter have already been introduced in the previous two chapters.

• Develop an approach to analyze networks 
constructed of both series and parallel elements.

• Learn how to reduce complex networks to a 
simpler form by combining series and parallel 
resistive elements.

• Become familiar with the ladder configuration and 
how to find the desired unknowns.

• Understand how the loading of a dc supply in a 
voltage divider configuration determines the 
available voltage levels.

• Become familiar with the use of the potentiometer 
(described in chapter 3) to create a desired voltage 
across a load.

• Understand how short circuits and open circuits 
affect the current and voltage levels of a network.

• Develop a surface understanding of the design of 
ammeters, voltmeters, and ohmmeters.

Objectives

M07_BOYL0302_14_GE_C07.indd   261M07_BOYL0302_14_GE_C07.indd   261 28/02/23   12:15 PM28/02/23   12:15 PM



262 | | | SerieS-Parallel CirCuitS
S    P    P

S

7.2 SERIES-PARALLEL NETWORKS
The network in Fig. 7.1 is a series-parallel network. At first, you must be very 
careful to determine which elements are in series and which are in parallel. 
For instance, resistors R1 and R2 are not in series due to resistor R3 being 
connected to the common point b between R1 and R .2  Resistors R2 and R4 
are not in parallel because they are not connected at both ends. They are sep-
arated at one end by resistor R .3  The need to be absolutely sure of your defi-
nitions from the last two chapters now becomes obvious. In fact, it may be a 
good idea to refer to those rules as we progress through this chapter.

If we look carefully enough at Fig. 7.1, we do find that the two resistors 
R3 and R4 are in series because they share only point c, and no other element 
is connected to that point. Further, the voltage source E and resistor R1 are 
in series because they share point a, with no other elements connected to the 
same point. In the entire configuration, there are no two elements in parallel.

How do we analyze such configurations? The approach is one that 
requires us to first identify elements that can be combined. Since there 
are no parallel elements, we must turn to the possibilities with series 
elements. The voltage source and the series resistor cannot be combined 
because they are different types of elements. However, resistors R3  and 
R4 can be combined to form a single resistor. The total resistance of the 
two is their sum as defined by series circuits. The resulting resistance 
is then in parallel with resistor R ,2  and they can be combined using the 
laws for parallel elements. The process has begun: We are slowly reduc-
ing the network to one that will be represented by a single resistor equal 
to the total resistance “seen” by the source.

The source current can now be determined using Ohm’s law, and we can 
work back through the network to find all the other currents and voltages. 
The ability to define the first step in the analysis can sometimes be difficult. 
However, combinations can be made only by using the rules for series or 
parallel elements, so naturally the first step may simply be to define which 
elements are in series or parallel. You must then define how to find such 
things as the total resistance and the source current and proceed with the 
analysis. In general, the following steps will provide some guidance for the 
wide variety of possible combinations that you might encounter.

General Approach:

1. Take a moment to study the problem “in total” and make 
a brief mental sketch of the overall approach you plan to 
use. The result may be time- and energy-saving shortcuts.

2. Examine each region of the network independently before 
tying them together in series-parallel combinations. This 
usually simplifies the network and possibly reveals a direct 
approach toward obtaining one or more desired unknowns. 
It also eliminates many of the errors that may result due to 
the lack of a systematic approach.

3. Redraw the network as often as possible with the reduced 
branches and undisturbed unknown quantities to main-
tain clarity and provide the reduced networks for the trip 
back to unknown quantities from the source.

4. When you have a solution, check that it is reasonable by 
considering the magnitudes of the energy source and the 
elements in the network. If it does not seem reasonable, 
either solve the circuit using another approach or review 
your calculations.

a

R3R1

R2 R4

b c

1

2
E

FIG. 7.1 
Series-parallel dc network.
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7.3 REDUCE AND RETURN APPROACH
The network of Fig. 7.1 is redrawn as Fig. 7.2(a). For this discussion, 
let us assume that voltage V4  is desired. As described in Section 7.2, 
first combine the series resistors R3  and R4 to form an equivalent resis-
tor R′  as shown in Fig. 7.2(b). Resistors R2 and R′  are then in parallel 
and can be combined to establish an equivalent resistor RT′  as shown in 
Fig. 7.2(c). Resistors R1 and RT′  are then in series and can be combined 
to establish the total resistance of the network as shown in Fig. 7.2(d). 
The reduction phase of the analysis is now complete. The network can-
not be put in a simpler form.

We can now proceed with the return phase whereby we work our 
way back to the desired voltage V .4  Due to the resulting series configura-
tion, the source current is also the current through R1 and RT′ . The voltage 
across RT′  (and therefore across R2) can be determined using Ohm’s law 
as shown in Fig. 7.2(e). Finally, the desired voltage V4  can be determined 
by an application of the voltage divider rule as shown in Fig. 7.2(f).

The reduce and return approach has now been introduced. This pro-
cess enables you to reduce the network to its simplest form across the 
source and then determine the source current. In the return phase, you 
use the resulting source current to work back to the desired unknown. 
For most single-source series-parallel networks, the above approach pro-
vides a viable option toward the solution. In some cases, shortcuts can be 
applied that save some time and energy. Now for a few examples.

EXAMPLE 7.1 Find current I 3  for the series-parallel network in 
Fig. 7.3.

Solution: Checking for series and parallel elements, we find that 
resistors R2 and R3  are in parallel. Their total resistance is

R R R
R R

R R
12 k 6 k

12 k 6 k
4 k2 3

2 3

2 3

( )( )′ = =
+

= Ω Ω
Ω + Ω

= Ω

Replacing the parallel combination with a single equivalent resistance 
results in the configuration in Fig. 7.4. Resistors R1 and R′  are then in 
series, resulting in a total resistance of

R R R 2 k 4 k 6 kT 1= + ′ = Ω + Ω = Ω

The source current is then determined using Ohm’s law:

I E
R

54 V
6 k

9 mAs
T

= =
Ω

=

In Fig. 7.4, since R1 and R′  are in series, they have the same current I .s  
The result is

I I 9 mAs1 = =

1

2

(a)

R4

R1 R3
R2E

Is V4

(b)

R9 = R3 1R4

R1
E

Is

(f)

R4

R1 R3

R2E
Is

V

RETURN

REDUCE

4 =

(e)

R1
E

Is

R9T

(d)

RT = R1 1R9TE
Is =

E
RT

V2 = IsR9T

V2

(c)

R9T = R2 i R9
R1

E
Is

R2

1

2

1

2

1

2

R4V2
R41 R3

FIG. 7.2 
Introducing the reduce and return approach.

E 54 V R3 6 kVR2 12 kV

I3
1

2

2 kV

R1

FIG. 7.3 
Series-parallel network for Example 7.1.

E 54 V R9 4 kV

2 kV

R1

Is
RT

I1 I1

1

2

FIG. 7.4 
Substituting the parallel equivalent 

resistance for resistors R2 and R3  in Fig. 7.3.
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Returning to Fig. 7.3, we find that I1 is the total current entering the par-
allel combination of R2 and R .3  Applying the current divider rule results 
in the desired current:

( )=
+







 = Ω

Ω + Ω
=I

R
R R

I 6 mA12 k
12 k 6 k

9 mA3
2

2 3
1

Note in the solution for Example 7.1 that all of the equations used 
were introduced in the last two chapters—nothing new was introduced 
except how to approach the problem and use the equations properly.

EXAMPLE 7.2 For the network in Fig. 7.5:

a. Determine currents I 4 and I s  and voltage V .2

b. Insert the meters to measure current I 4 and voltage V .2

Solutions:

a. Checking out the network, we find that there are no two resistors in 
series, and the only parallel combination is resistors R2  and R .3  
Combining the two parallel resistors results in a total resistance of

R R R
R R

R R
18 k 2 k

18 k 2 k
1.8 k2 3

2 3

2 3

( )( )′ = =
+

= Ω Ω
Ω + Ω

= Ω

Redrawing the network with resistance R′  inserted results in the 
configuration in Fig. 7.6.

You may now be tempted to combine the series resistors R1 and R′  
and redraw the network. However, a careful examination of Fig. 7.6 
reveals that since the two resistive branches are in parallel, the volt-
age is the same across each branch. That is, the voltage across the 
series combination of R1 and R′  is 12 V and that across resistor R4 
is 12 V. The result is that I 4 can be determined directly using Ohm’s 
law as follows:

I
V
R

E
R k

1 46 mA12 V
8.2

.4
4

4 4

= = =
Ω

=

In fact, for the same reason, I 4 could have been determined directly 
from Fig. 7.5. Because the total voltage across the series combina-
tion of R1 and R T′  is 12 V, the voltage divider rule can be applied to 
determine voltage V2  as follows:

( )= ′
′ +







 = Ω

Ω + Ω
=V R

R R
E 2 51 V1.8 k

1.8 k 6.8 k
12 V .2

1

The current I s  can be found in one of two ways. Find the total resis-
tance and use Ohm’s law, or find the current through the other paral-
lel branch and apply Kirchhoff’s current law. Since we already have 
the current I ,4  the latter approach will be applied:

I E
R R

12 V
6.8 k 1.8 k

1.40 mA1
1

=
+ ′

=
Ω + Ω

=

and I I I 2 86 mA1.40 mA 1.46 mA .s 1 4= + = + =

b. The meters have been properly inserted in Fig. 7.7. Note that the 
voltmeter is across both resistors since the voltage across parallel 
elements is the same. In addition, note that the ammeter is in series 

R1 6.8 kV I4

E 12 V
V2

+

–

R3 2 kVR2 18 kV
R4 8.2 kV

Is

+

–

FIG. 7.5 
Series-parallel network for Example 7.2.

12 V

R1

I4

E

6.8 kV

R4 8.2 kV 12 V

R9= 1.8 kV V2

1

2

1

2

1

2

Is

FIG. 7.6 
Schematic representation of the network in 

Fig. 7.5 after substituting the equivalent 
resistance R′ for the parallel combination of 

R2 and R .3
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with resistor R ,4  forcing the current through the meter to be the 
same as that through the series resistor. The power supply is dis-
playing the source current.

Clearly, Example 7.2 revealed how a careful study of a network can 
eliminate unnecessary steps toward the desired solution. It is often worth 
the extra time to sit back and carefully examine a network before trying 
every equation that seems appropriate.

1

V2

I4

V
1

mA
1

R1

R2 R3

R4

2

Is

1 2 . 0

2 . 8 6

02.51 1.46

1

FIG. 7.7 
Inserting an ammeter and a voltmeter to measure I 4 and V ,2  

respectively.

A

C

a b

c

E B
1

2

FIG. 7.8 
Introducing the block diagram approach.

When analyzing any electrical network always keep the following 
points in mind:

1. There is only one current in any branch of the network.
2. There is only one potential (voltage) from any point in the net-

work to ground.

7.4 BLOCK DIAGRAM APPROACH
In the previous example, we used the reduce and return approach to find 
the desired unknowns. The direction seemed fairly obvious and the solu-
tion relatively easy to understand. However, occasionally the approach 
is not as obvious, and you may need to look at groups of elements rather 
than the individual components. Once the grouping of elements reveals 
the most direct approach, you can examine the impact of the individual 
components in each group. This grouping of elements is called the block 
diagram approach and is used in the following examples.

In Fig. 7.8, blocks B and C are in parallel (points b and c in common), 
and the voltage source E is in series with block A (point a in common). 
The parallel combination of B and C is also in series with A and the volt-
age source E due to the common points b and c, respectively.

To ensure that the analysis to follow is as clear and uncluttered as pos-
sible, the following notation is used for series and parallel combinations 

M07_BOYL0302_14_GE_C07.indd   265M07_BOYL0302_14_GE_C07.indd   265 28/02/23   12:15 PM28/02/23   12:15 PM



266 | | | SerieS-Parallel CirCuitS
S    P    P

S

of elements. For series resistors R1 and R ,2  a comma is inserted between 
their subscript notations, as shown here:

R R R1,2 1 2= +

For parallel resistors R1 and R ,2  the parallel symbol is inserted  
between their subscripted notations, as follows:

R R R
R R

R R1 2 1 2
1 2

1 2

= =
+

If each block in Fig. 7.8 were a single resistive element, the network 
in Fig. 7.9 would result. Note that it is an exact replica of Fig. 7.3 in 
Example 7.1. Blocks B and C are in parallel, and their combination is in 
series with block A.

However, as shown in the next example, the same block configuration 
can result in a totally different network.

EXAMPLE 7.3 Determine all the currents and voltages of the net-
work in Fig. 7.10.

A

B C

b

c

2 kV
RT

54 V

a

Is

12 kV 6 kV

I3

1

2

FIG. 7.9 
Block diagram format of Fig. 7.3.

E R2 4 V4 V R3

B

R1

4 V

A

C

0.5 VR4

1.5 VR5

10 V

RT

Is

a
IA

IB IC

b

c

1

2

FIG. 7.10 
Example 7.3.

Solution: Blocks A, B, and C have the same relative position, but the 
internal components are different. Note that blocks B and C are still in par-
allel, and block A is in series with the parallel combination. First, reduce 
each block into a single element and proceed as described for Example 7.1.

In this case:

A R: 4A = Ω

B R R R R R
N

: 4
2

2B 2 3 2 3= = = = Ω = Ω

C R R R R: 0.5 1.5 2C 4 5 4,5= + = = Ω + Ω = Ω

Blocks B and C are still in parallel, and

R R
N

12
2B C Ω= = Ω =

with

R R RT A B C= +

Ω= Ω + Ω = 54 1

and I E
R

2 A10 V
5s

T

= =
Ω

=

(Note the similarity between this equa-
tion and that obtained for Example 7.1.)
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We can find the currents I ,A  I ,B  and IC  using the reduction of the 
network in Fig. 7.10 (recall Step 3) as found in Fig. 7.11. Note that I ,A  
I ,B  and IC  are the same in Figs. 7.10 and 7.11 and therefore also appear 
in Fig. 7.11. In other words, the currents I ,A  I ,B  and IC  in Fig. 7.11 have 
the same magnitude as the same currents in Fig. 7.10. We have

I I 2 AA s= =

and I I
I I

1 A
2 2

2 A
2B C

A s= = = = =

Returning to the network in Fig. 7.10, we have

= = =I I
I

0 5 A
2

.R R
B

2 3

The voltages V ,A  V ,B  and VC  from either figure are

( )= = Ω =V I R 8 V2 A)(4A A A

( )= = Ω =V I R 2 V1 A)(2B B B

V V 2 VC B= =

Applying Kirchhoff’s voltage law for the loop indicated in Fig. 7.11, 
we obtain

Σ = − − =†V E V V 0A B

E E V 8 V 2 VA B= + = +

or =10 V 10 V (checks)

EXAMPLE 7.4 Another possible variation of Fig. 7.8 appears in 
Fig. 7.12. Determine all the currents and voltages.

VBRB  =  2 V

1  VA  2

RA  =  4 V

10 V
1

2
VC

1

2
2 VRC

IB IC

IA

1

2

Is

FIG. 7.11 
Reduced equivalent of Fig. 7.10.

R1

9 V
R2

6 V I2

I1

A

R4 6 V R5 3 V

R3 4 V

B

R6 3 V

C

IA

E 16.8 V

a

IB IC

b

c

1

2

FIG. 7.12 
Example 7.4.
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Solution:

( )( )= = Ω Ω
Ω + Ω

= Ω = ΩR R 9 6
9 6

54
15

3.6A 1 2

( )( )= + = Ω + Ω Ω
Ω + Ω

= Ω + Ω = ΩR R R 4 6 3
6 3

4 2 6B 3 4 5

= ΩR 3C

The network in Fig. 7.12 can then be redrawn in reduced form, as shown 
in Fig. 7.13. Note the similarities between this circuit and the circuits in 
Figs. 7.9 and 7.11. We have

( )( )= + = Ω + Ω Ω
Ω + Ω

R R R 3.6 6 3
6 3T A B C

5 6 Ω3.6 2 .= Ω + Ω =

I E
R

3 A16.8 V
5.6s

T

= =
Ω

=

I I 3 AA s= =

Applying the current divider rule yields

I
R I

R R
1 A3 3 A

3 6
9 A

9B
C A

C B

( )( )
=

+
= Ω

Ω + Ω
= =

By Kirchhoff’s current law,

I I I 2 A3 A 1 AC A B= − = − =

By Ohm’s law,

( )= = Ω =V I R 10 8 V3 A)(3.6 .A A A

( )= = = = Ω =V I R V I R 6 V2 A)(3B B B C C C

Returning to the original network (Fig. 7.12) and applying the current 
divider rule gives

I
R I

R R
1 2 A6 3 A

6 9
18 A

15
.A

1
2

2 1

( )( )
=

+
= Ω

Ω + Ω
= =

By Kirchhoff’s current law,

= − = − =I I I 1 8 A3 A 1.2 A .A2 1

Figs. 7.9, 7.10, and 7.12 are only a few of the infinite variety of con-
figurations that the network can assume starting with the basic arrange-
ment in Fig. 7.8. They were included in our discussion to emphasize 
the importance of considering each region of the network independently 
before finding the solution for the network as a whole.

The blocks in Fig. 7.8 can be arranged in a variety of ways. In 
fact, there is no limit on the number of series-parallel configura-
tions that can appear within a given network. In reverse, the block 
diagram approach can be used effectively to reduce the apparent 
complexity of a system by identifying the major series and parallel 
components of the network. This approach is demonstrated in the 
next few examples.

RB 6 V

RA

3.6 V

RC 3 VE 16.8 V
RT

1  VA  2

Is

IA

IB

VB

1

2

IC

VC

1

2

1

2

FIG. 7.13 
Reduced equivalent of Fig. 7.12.
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7.5 DESCRIPTIVE EXAMPLES

EXAMPLE 7.5 Find the current I 4  and the voltage V2  for the net-
work in Fig. 7.14 using the block diagram approach.

Solution: Note the similarities with the network in Fig. 7.5. In this 
case, particular unknowns are requested instead of a complete solution. 
It would, therefore, be a waste of time to find all the currents and volt-
ages of the network. The method used should concentrate on obtaining 
only the unknowns requested. With the block diagram approach, the net-
work has the basic structure in Fig. 7.15, clearly indicating that the three 
branches are in parallel and the voltage across A and B is the supply 
voltage. The current I 4 is now immediately obvious as simply the supply 
voltage divided by the resultant resistance for B. If desired, block A can 
be broken down further, as shown in Fig. 7.16, to identify C and D as 
series elements, with the voltage V2  capable of being determined using 
the voltage divider rule once the resistance of C and D is reduced to a 
single value. This is an example of how making a mental sketch of the 
approach before applying laws, rules, and so on can help avoid dead 
ends and frustration.

Applying Ohm’s law, we have

I E
R

E
R

1 5 A12 V
8

.
B

4
4

= = =
Ω

=

Combining the resistors R2 and R3  in Fig. 7.14 results in

( )( )= = Ω Ω = Ω Ω
Ω + Ω

= Ω = ΩR R R 3 6 3 6
3 6

18
9

2D 2 3

and, applying the voltage divider rule, we find

( )( )
=

+
= Ω

Ω + Ω
= =V

R E
R R

4 V2 12 V
2 4

24 V
6

D

D C
2

EXAMPLE 7.6 Find the indicated currents and voltages for the net-
work in Fig. 7.17.

R1 4 V I4

R3 6 VR2 3 V
E 12 V

V2

1

2

1

2
R4 8 V

FIG. 7.14 
Example 7.5.

A BE

I4

1

2

FIG. 7.15 
Block diagram of Fig. 7.14.

2

E

1

2

V2

1

C

D

FIG. 7.16 
Alternative block diagram for the first 

parallel branch in Fig. 7.14.

R1

6 V

R3

2 V

+  V1  –

R4 8 V R5 12 V V5

1

2

I4

R2

6 V

I2

RT

Is

E 24 V
1

2

FIG. 7.17 
Example 7.6.
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Solution: Again, only specific unknowns are requested. When the 
network is redrawn, be sure to note which unknowns are preserved 
and which have to be determined using the original configuration. The 
block diagram of the network may appear as shown in Fig. 7.18, 
clearly revealing that A and B are in series. Note in this form the num-
ber of unknowns that have been preserved. The voltage V1 is the  
same across the three parallel branches in Fig. 7.17, and V5  is the same 
across R4  and R .5  The unknown currents I 2  and I 4  are lost since they 
represent the currents through only one of the parallel branches. How-
ever, once V1 and V5  are known, you can find the required currents 
using Ohm’s law.

= = Ω = ΩR R
N

6
2

31 2

( )( )= = Ω Ω
Ω + Ω

= Ω = ΩR R 3 2
3 2

6
5

1.2A 1 2 3

( )
= = Ω Ω

Ω + Ω
= Ω = ΩR R

8 (12 )
8 12

96
20

4.8B 4 5

The reduced form of Fig. 7.17 then appears as shown in Fig. 7.19, and

R R R 6 Ω1.2 4.8T 1 2 3 4 5= + = Ω + Ω =

I E
R

4 A24 V
6s

T

= =
Ω

=

with

( )= = Ω =V I R 4 8 V4 A)(1.2 .s1 1 2 3

V I R 19 2 V4 A 4.8 .s5 4 5 ( )( )= = Ω =

Applying Ohm’s law gives

I
V
R

2 4 A19.2 V
8

.4
5

4

= =
Ω

=

= = =
Ω

=I
V
R

V
R

0 8 A4.8 V
6

.2
2

2

1

2

The next example demonstrates that unknown voltages do not have to 
be across elements but can exist between any two points in a network. 
In addition, the importance of redrawing the network in a more familiar 
form is clearly revealed by the analysis to follow.

EXAMPLE 7.7

a. Find the voltages V ,1  V ,3  and Vab  for the network in Fig. 7.20.
b. Calculate the source current I .s

Solutions: This is one of those situations where it may be best to 
redraw the network before beginning the analysis. Since combining both 
sources will not affect the unknowns, the network is redrawn as shown 
in Fig. 7.21, establishing a parallel network with the total source voltage 

1 2V1

Is

RTE V5

Is

1

2

A

B
1

2

FIG. 7.18 
Block diagram for Fig. 7.17.

1 2V1

Is

RT

E V5

1

2

4.8 V

1.2 V

R1i2i3

R4i524 V
1

–

FIG. 7.19 
Reduced form of Fig. 7.17.
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across each parallel branch. The net source voltage is the difference 
between the two with the polarity of the larger.

a. Note the similarities with Fig. 7.16, permitting the use of the voltage 
divider rule to determine V1 and V3:

( )( )
=

+
= Ω

Ω + Ω
= =V

R E
R R

7 5 V5 12 V
5 3

60 V
8

.1
1

1 2

( )( )
=

+
= Ω

Ω + Ω
= =V

R E
R R

9 V6 12 V
6 2

72 V

83
3

3 4

The open-circuit voltage Vab is determined by applying Kirchhoff’s 
voltage law around the indicated loop in Fig. 7.21 in the clockwise 
direction starting at terminal a. We have

+ − − =V V V 0ab1 3

and    V V V 1 5 V7.5 V 9 V .ab 1 3= − = − = −

b. By Ohm’s law,

= =
Ω

=I
V
R

7.5 V
5

1.5 A1
1

1

= =
Ω

=I
V
R

9 V
6

1.5 A3
3

3

Applying Kirchhoff’s current law gives

I I I 3 A1.5 A 1.5 As 1 3= + = + =

EXAMPLE 7.8 For the network in Fig. 7.22, determine the voltages 
V1 and V2  and the current I.

Solution: It would indeed be difficult to analyze the network in the 
form in Fig. 7.22 with the symbolic notation for the sources and the ref-
erence or ground connection in the upper left corner of the diagram. 
However, when the network is redrawn as shown in Fig. 7.23, the 
unknowns and the relationship between branches become significantly 
clearer. Note the common connection of the grounds and the replacing of 
the terminal notation by actual supplies.

Is

E1

1

2

a6 V

6 V

R3

E218 V

2 V

R4

5 V

R1

3 V

R2b

V31 2

V11 2

Vab

1

2

1

2

FIG. 7.20 
Example 7.7.

b

R3 6 V

R4 2 V

R1 5 V

R2 3 V

12 VE

V1

1

2

Is

V3

1

2

I1 I3

a
Vab2 1

1

2

FIG. 7.21 
Network in Fig. 7.20 redrawn.

2
V1

+

2
V2

+

R1 6 V

R4 6 V

R3

7 V
R2 5 V

a E1  =   2 6 V 

E2 1 18 V 

I

FIG. 7.22 
Example 7.8.
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a

V1
1

2

I2

R1 6 V

R4 6 V

R3 7 V

6 VE1

18 VE2
I

R2 5 V

I3

1

I12

V2
1

2
1

2

FIG. 7.23 
Network in Fig. 7.22 redrawn.

It is now obvious that

V E 6 V2 1= − = −

The minus sign simply indicates that the chosen polarity for V2  in  
Fig. 7.22 is opposite to that of the actual voltage. Applying Kirchhoff’s 
voltage law to the loop indicated, we obtain

E V E 01 1 2− + − =

and   V E E 24 V18 V 6 V1 2 1= + = + =

Applying Kirchhoff’s current law to node a yields

= + +

= + +
+

=
Ω

+
Ω

+
Ω

= + +

=

I I I I

V
R

E
R

E
R R

I 5 5 A

 

 

 
24  V

6 

6  V

6 

6  V

12 

  4 A 1 A 0.5 A

   

1 2 3

1

1

1

4

1

2 3

..

The next example is clear evidence that techniques learned in the cur-
rent chapters will have far-reaching applications and will not be dropped 
for improved methods. Even though we have not studied the transistor 
yet, the dc levels of a transistor network can be examined using the basic 
rules and laws introduced in earlier chapters.

EXAMPLE 7.9 For the transistor configuration in Fig. 7.24, in which 
VB  and VBE  have been provided:

a. Determine the voltage VE  and the current I .E

b. Calculate V .1

c. Determine VBC  using the fact that the approximation I IC E=  is 
often applied to transistor networks.

d. Calculate VCE  using the information obtained in parts (a) through (c).

Solutions:

a. From Fig. 7.24, we find

V V 2 VB2 = =

Writing Kirchhoff’s voltage law around the lower loop yields

V V V 0BE E2 − − =

RE 1 kV

B

1

IE

E

C

VBE 5 0.7 V 2

VCC  5  22 V 

2

VCE

2

1

IC

RC 10 kV
R1 40 kV

R2 4 kVV2

2

1

V1

2

1

VBC

1

VB 5 2 V

VE

FIG. 7.24 
Example 7.9.
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Or   V V V 1 3 V2 V 0.7 V .E BE2= − = − =

And   I
V
R

1 3 mA1.3 V
1 k

.E
E

E

= =
Ω

=

b. Applying Kirchhoff’s voltage law to the input side (left region of 
the network) results in

V V V 0CC2 1+ − =

and  V V VCC1 2= −

but  V VB2 =

and  V V V 20 V22 V 2 VCC1 2= − = − =

c. Redrawing the section of the network of immediate interest results 
in Fig. 7.25, where Kirchhoff’s voltage law yields

+ − =V V V 0C R CCC

and  V V V V I RC CC R CC C CC
= − = −

but I IC E=

and  ( )( )= − = − ΩV V I R 22 V 1.3 mA 10 kC CC E C

9 V=
Then  V V VBC B C= −

2 V 9 V= −

7 V  −=

d.  V V VCE C E= −

9 V 1.3 V= −

= 7 7 V.

EXAMPLE 7.10 Calculate the indicated currents and voltage in Fig. 7.26.

R2 8 kV

R1

4 kV
1

R4 24 kV

R3

12 kV

R5

12 kV

I5

Is

a
R6

12 kV
R7

9 kV

R8

3 kV
R9

6 kV

2
V7

b

72 VE
1

2

FIG. 7.26 
Example 7.10.

RC 10 kV

VC

1

2

C

VRC

1

2

IC

VCC  5  22 V

FIG. 7.25 
Determining VC  for the network in Fig. 7.24.

Solution: Redrawing the network after combining series elements 
yields Fig. 7.27, and

I E
R R

3 mA72 V
12 k 12 k

72 V
24 k5

1,2,3 4 5

=
+

=
Ω + Ω

=
Ω

=
( )

with

( )( )
=

+
= Ω

Ω + Ω
= =

( )

( )

V
R E

R R
19 6 V4.5 k 72 V

4.5 k 12 k
324 V
16.5

.7
7 8,9

7 8,9 6

M07_BOYL0302_14_GE_C07.indd   273M07_BOYL0302_14_GE_C07.indd   273 28/02/23   12:16 PM28/02/23   12:16 PM



274 | | | SerieS-Parallel CirCuitS
S    P    P

S

I
V

R
4 35 mA19.6 V

4.5 k
.6

7

7 8,9

= =
Ω

=
( )

and  I I I 7.35 mA3 mA 4.35 mAs 5 6= + = + =

Since the potential difference between points a and b in Fig. 7.26 is 
fixed at E volts, the circuit to the right or left is unaffected if the network 
is reconstructed as shown in Fig. 7.28.

Is

1

2

I6I5

R1,2,3 24 kV R4 24 kV

V7 9 kV

R7 R8,9 9 kV

R6 12 kV

72 VE

R5 12 kV

I6I5

1

2

FIG. 7.27 
Network in Fig. 7.26 redrawn.

R2 8 kV

R1

4 kV

1
R4 24 kV

R3

12 kV

R5

12 kV

I6

R6

12 kV

R7

9 kV R8

3 kV

R9

6 kV

2
V7

72 VE

I6I5

I5

72 VE
1

2

1

2

FIG. 7.28 
An alternative approach to Example 7.10.

EXAMPLE 7.11 For the network in Fig. 7.29:

a. Determine voltages V ,a  V ,b  and V .c

b. Find voltages Vac  and V .bc

c. Find current I .2

d. Find the source current I .s3

e. Insert voltmeters to measure voltages Va  and Vbc  and current I .s3

Solutions:

a. The network is redrawn in Fig. 7.30 to clearly indicate the arrange-
ment between elements.

First, note that voltage Va  is directly across voltage source E .1  
Therefore,

V E 20 Va 1= =

The same is true for voltage V ,c  which is directly across the voltage 
source E .3  Therefore,

V E 8 Vc 3= =

20 VE1

Va

I2

Is

1

2

VcVb

R15 V

E2

R3

10 V

1E3

8 V
2

R2

4 V

5 V

1

2

FIG. 7.29 
Example 7.11.

We can find each quantity required, except I ,s  by analyzing each cir-
cuit independently. To find I ,s  we must find the source current for each 
circuit and add it as in the above solution; that is, I I I .s 5 6= +
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To find voltage V ,b  which is actually the voltage across R ,3  we must 
apply Kirchhoff’s voltage law around loop 1 as follows:

                E E V 01 2 3+ − − =

and  = − = − =V E E 20 V 5 V 15 V3 1 2

and     V V 15 Vb 3= =

b. Voltage V ,ac  which is actually the voltage across resistor R ,1  can 
then be determined as follows:

V V V 12 V20 V 8 Vac a c= − = − =

Similarly, voltage V ,bc  which is actually the voltage across resistor 
R ,2  can then be determined as follows:

V V V 7 V15 V 8 Vbc b c= − = − =

c. Current I 2 can be determined using Ohm’s law:

I
V
R

V
R

1 75 A7 V
4

.bc
2

2

2 2

= = =
Ω

=

d. The source current I s3
 can be determined using Kirchhoff’s current 

law at node c:

Σ = ΣI Ii o

I I I 0s1 2 3
+ + =

and  I I I
V
R

Is 1 2
1

1
23

= − − = − −

with            V V V V 20 V 8 V 12 Va c1 ac= = − = − =
so that

I 2.95 A12 V
10

1.75 A 1.2 A 1.75 As3
= −

Ω
− = − − = −

revealing that current is actually being forced through source E3 in 
a direction opposite to that shown in Fig. 7.29.

e. Both voltmeters have a positive reading, as shown in Fig. 7.31, 
while the ammeter has a negative reading.

R1 10 V

V3 R3 5 V

R2

4 V
20 V

8 V

5 V

E1

E2

E3

Va

Vb Vc
I2

Is3

I1

1

2

1

2

1

2
1

2

FIG. 7.30 
Network in Fig. 7.29 redrawn to better 

define a path toward the desired 
unknowns.

V
+

R1

E1 20 V
I2

Va

Vb

R3

R2

E2

E3

8 V

5 V

Vc

Is3

V
+

A
+

1

2

1

2

1

2

20.00

2.95

7.00

FIG. 7.31 
Complex network for Example 7.11.
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EXAMPLE 7.12 For the network in Fig. 7.32:

a. Find the voltage VC.
b. Determine the voltage VA.
c. Find the voltage VB.
d. Calculate the current I3.

Solutions:

a. Network redrawn (Fig. 7.33) and again in Fig. 7.34.

VC connected directly to ground

∴ =VC 0 V

R4

R3

R2

R1

R5

R6

I 3

1 V

1 V

1 V

1 V

1 V

1 V

VC

VA

VB

E 40 V
1

2

FIG. 7.32 
Star network for Example 7.12.

1 V

R1R2R3

1 V1 V

1 V 1 V

1 V

R6R5
R4

AV

CV

BV

40 V
1

2
E

I3

FIG. 7.33 
Network of Fig. 7.32 redrawn for clarity.

R5 1 V

R4 1 V

R3 1 V

R2 1 V

R1 1 V

E

R6 1 V

40 V

I3

VC

VB

VA

1

2

FIG. 7.34 
Network of Fig. 7.33 redrawn.

b. Voltage divider rule:

=
+

+ + +
V

R R E
R R R R

( )
A

3 4

1 2 3 4

(1 1 )40 V

1 1 1 1
(2 )(40 V)

4
20 V

=
Ω + Ω

Ω + Ω + Ω + Ω

= Ω
Ω

=

c. Voltage divider rule:

V
R E

R R R R
( )

(1 )(40 V)
4

B
4

1 2 3 4

10 V

=
+ + +

= Ω
Ω

=
d. Ohm’s law:

I
V
R

10 V
1

B
B

4

10 A

=

=
Ω

=
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7.6 LADDER NETWORKS
A three-section ladder network appears in Fig. 7.35. The reason for the 
terminology is quite obvious for the repetitive structure. Basically two 
approaches are used to solve networks of this type.

V6

1

2

RT

I6

R6 2 V240 VE R4 6 VR2 6 V

R1

5 V

R3

4 V

R5

1 V

Is

1

2

FIG. 7.35 
Ladder network.

R2 6 V

R1

5 V

RT
R4 6 V

R3

4 V

3 V
( 5  1 V 1  2 V)

(3 V)(6 V)

3 V 1  6 V
5  2 V

R2 6 V

R1

5 V

RT
6 V ( 5  4 V 1  2 V)

6 V

2
5  3 V

FIG. 7.36 
Working back to the source to determine RT  for the network in Fig. 7.35.

3 V
RT

Is R1

5 V

FIG. 7.37 
Calculating RT  and I .s

E

I1

6 V6 V

R1

5 V

R2

Is I3

240 V
1

2

FIG. 7.38 
Working back toward I .6

Method 1 

Calculate the total resistance and resulting source current, and then work 
back through the ladder until the desired current or voltage is obtained. 
This method is now employed to determine V6  in Fig. 7.35.

Combining parallel and series elements as shown in Fig. 7.36 results 
in the reduced network in Fig. 7.37, and

R

I E
R

5 3 8

240 V

8
30 A

T

s
T

= Ω + Ω = Ω

= =
Ω

=

Working our way back to I 6  (Fig. 7.38), we find that

I I s1 =
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and  I
I
2

30 A
2

15 As
3 = = =

and, finally (Fig. 7.39),

I1

6 VR2

Is R3

4 V

R1

5 V

E 240 V 3 V

I3 I4 I6

6 VR4 R5,6V4

1

2

1

2

FIG. 7.39 
Calculating I .6

R1

5 V

V11 2
I1

V2  R2 6 V
1

2

I2 I3

R3

4 V

V31 2

R4 6 V
1

2

I4 I5

R5

1 V

V51 2

V4240 V

Is

R6 2 V

I6

1

2
V6E

1

2

FIG. 7.40 
An alternative approach for ladder networks.

I
I6

6 3
6
9

15 A 10 A6
3( )

( )=
Ω

Ω + Ω
= =

and  V I R 20 V10 A 26 6 6 ( )( )= = Ω =

Method 2 

Assign a letter symbol to the last branch current and work back through 
the network to the source, maintaining this assigned current or other 
current of interest. The desired current can then be found directly. This 
method can best be described through the analysis of the same network 
considered in Fig. 7.35, redrawn in Fig. 7.40.

The assigned notation for the current through the final branch is I 6 :

I
V

R R
V V

1 2 36
4

5 6

4 4=
+

=
Ω + Ω

=
Ω

or  V I34 6( )= Ω

so that  I
V
R

I
I

3
6

0.54
4

4

6
6

( )
= =

Ω
Ω

=

and        I I I I I I0.5 1.53 4 6 6 6 6= + = + =

                 V I R I I1.5 4 63 3 3 6 6( )( ) ( )= = Ω = Ω

Also,         V V V I I I6 3 92 3 4 6 6 6( ) ( ) ( )= + = Ω + Ω = Ω

so that  I
V
R

I
I

9
6

1.52
2

2

6
6

( )
= =

Ω
Ω

=
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and  I I I I I I1.5 1.5 3S 2 3 6 6 6= + = + =

with  V I R I R I5s s1 1 1 1 ( )= = = Ω

so that  E V V I I5 9s1 2 6( ) ( )= + = Ω + Ω

I I I5 3 9 246 6 6( )( ) ( ) ( )= Ω + Ω = Ω

and  I E
24

240 V
24

10 A6 =
Ω

=
Ω

=

with  V I R 2010 A 2 V6 6 6 ( )( )= = Ω =

as was obtained using method 1.

In general, method 1 is the most direct route. Method 2 requires that one 
be very careful in the sequential choice of variables to be determined.

7.7 VOLTAGE DIVIDER SUPPLY  
(UNLOADED AND LOADED)
When the term loaded is used to describe voltage divider supply, it 
 refers to the application of an element, network, or system to a supply 
that draws current from the supply. In other words,

the loading down of a system is the process of introducing 
elements that will draw current from the supply. The heavier 
the current, the greater is the loading effect.

Recall from Section 5.11 that the application of a load can affect the 
terminal voltage of a supply due to the internal resistance.

No-Load Conditions

Through a voltage divider network such as that in Fig. 7.41, a number of 
different terminal voltages can be made available from a single supply. 
Instead of having a single supply of 120 V, we now have terminal voltages 
of 100 V and 60 V available—a wonderful result for such a simple network. 
However, there can be disadvantages. One is that the applied resistive loads 
can have values too close to those making up the voltage divider network.

In general,

for a voltage divider supply to be effective, the applied 
resistive loads should be significantly larger than the 
resistors appearing in the voltage divider network.

To demonstrate the validity of the above statement, let us now exam-
ine the effect of applying resistors with values very close to those of the 
voltage divider network.

Loaded Conditions

In Fig. 7.42, resistors of 20 Ω have been connected to each of the ter-
minal voltages. Note that this value is equal to one of the resistors in the 
voltage divider network and very close to the other two.

Voltage Va  is unaffected by the load RL1
 since the load is in parallel 

with the supply voltage E. The result is V 120 V,a =  which is the same 
as the no-load level. To determine V ,b  we must first note that R3  and RL3

 
are in parallel and R R R 30 20 12 .L3 3 3

′ = = Ω Ω = Ω  The paral-
lel combination gives

E 20 V

30 V

10 V

a

b

c

0 V

60 V

100 V

120 V Voltage divider
network

120 V

1

2

FIG. 7.41 
Voltage divider supply.
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R R R R 20 12 20L2 2 3 2
( ) ( )′ = + ′ = Ω + Ω Ω

32 20 12.31= Ω Ω = Ω

Applying the voltage divider rule gives

V 66.21 V12.31 120 V
12.31 10b

( )( )
= Ω

Ω + Ω
=

versus 100 V under no-load conditions.
Voltage Vc  is

V 24 83 V
12 66.21 V

12 20
.c

( )( )
=

Ω
Ω + Ω

=

versus 60 V under no-load conditions.
The effect of load resistors close in value to the resistor employed in 

the voltage divider network is, therefore, to decrease significantly some 
of the terminal voltages.

If the load resistors are changed to the 1 kΩ level, the terminal volt-
ages will all be relatively close to the no-load values. The analysis is 
similar to the above, with the following results:

= = =V V V120 V 98.88 V 58 V     a b c .63

If we compare current drains established by the applied loads, we find 
for the network in Fig. 7.42 that

= =
Ω

=I
V

R
 

66.21 V

20
3.31 AL

L

L
2

2

2
and for the 1 kΩ level,

I 98.88 V
1 k

98.88 mA 0.1 AL2
=

Ω
= <

As demonstrated above, the greater the current drain, the greater is the 
change in terminal voltage with the application of the load. This is certainly 
verified by the fact that I L2

 is about 33.5 times larger with the 20 Ω loads.

R2 20 V

R1 10 V

E 120 V

R3 30 V RL3
20 V

RL2
20 V

RL1
20 V

Vc

Vb

Va  =  120 V

0 V

Voltage divider supply

1

2

FIG. 7.42 
Voltage divider supply with loads equal to the average value of the 

resistive elements that make up the supply.
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EXAMPLE 7.13 Determine R ,1  R ,2  and R3  for the voltage divider 
supply in Fig. 7.43. Can 2 W resistors be used in the design?

R2

212 V

R1

b

R3

a

RL2
E 72 V

20 mA

10 mA

20 V

RL1
60 V

1

2
1

2

1

2

Is  5  50 mA

FIG. 7.43 
Voltage divider supply for Example 7.13.

Solution: R3 :

R
V

I

V

I
240 Ω12 V

50 mA
R

R

R

s
3

3

3

3= = = =

P I R 50 mA 240 0.6 W 2 WR R
2

3
2

3 3
( ) ( )= = Ω = <

R1: Applying Kirchhoff’s current law to node a, we have

I I I 0s R L1 1
− − =

and  I I I 50 mA 20 mA 30 mAR s L1 1
= − = − =

   Ω= =
−

= − = =R
V

I

V V

I
1.33 k 

   

 
60 V   20 V

30 mA

40 V

30 mA
R

R

L L

R
1

1

1

1 2

1

  ( ) ( )= = Ω = <P I R  30 mA  1.33 k 1.197 W 2 WR R
2

1
2

1 1

R2: Applying Kirchhoff’s current law at node b, we have

I I I 0R R L1 2 2
− − =

and     I I I 30 mA 10 mA 20 mAR R L2 1 2
= − = − =

= = =R
V

I
1 kΩ20 V

20 mA
R

R
2

2

2

P I R 20 mA 1 kΩ 0.4 W 2 WR R
2

2
2

2 2
( ) ( )= = = <

Since P ,R1
 P ,R2

 and PR3
 are less than 2 W, 2 W resistors can be used for 

the design.

The next example is a design exercise. The voltage and current rat-
ings of each load are provided, along with the terminal ratings of the 
supply. The required voltage divider resistors must be found.
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7.8 POTENTIOMETER LOADING
Potentiometers were introduced in chapter 3 for the unloaded potentiom-
eter in Fig. 7.44, the output voltage is determined by the voltage divider 
rule, with RT  in the figure representing the total resistance of the poten-
tiometer. Too often it is assumed that the voltage across a load connected 
to the wiper arm is determined solely by the potentiometer and the effect 
of the load can be ignored. This is definitely not the case, as is demon-
strated here.

When a load is applied as shown in Fig. 7.45, the output voltage VL  
is now a function of the magnitude of the load applied since R1 is not as 
shown in Fig. 7.44 but is instead the parallel combination of R1 and R .L

The output voltage is now

 = ′
′ +

′ =V R E
R R

R R RwithL L
2

1  (7.1)

RL

R9  =  R1 i RL

VL

RT

R1

E

R2

a

b

c
RL

R9  =  R1 i RL

VL

RT

R1

E

R2

a

b

c

+

a

b

c

RL

Potentiometer

E

Is
1

2

1

2 1

2

1

2

FIG. 7.45 
Loaded potentiometer.

VL

1

2

1 MV Pot.

900 kV

100 kV

100 V

E 10 V
1

2

FIG. 7.46 
Loaded potentiometer with R R .L T<<

R1

E

R2

RT

VL

1

2

=
R1E

R1  1  R2

1

2

FIG. 7.44 
Unloaded potentiometer.

If you want to have good control of the output voltage VL  through 
the controlling dial, knob, screw, or whatever, you must choose a load or 
potentiometer that satisfies the following relationship:

 >>R RL T  (7.2)

In general,

when hooking up a load to a potentiometer, be sure that the 
load resistance far exceeds the maximum terminal 
resistance of the potentiometer if good control of the output 
voltage is desired.

For example, let’s disregard Eq. (7.2) and choose a 1 MΩ potentio-
meter with a 100 Ω load and set the wiper arm to 1/10 the total resis-
tance, as shown in Fig. 7.46. Then

R 100 k 100 99.9′ = Ω Ω = Ω

and  V 99.9 10 V
99.9 900 k

0.001 V 1 mVL
( )

= Ω
Ω + Ω

≅ =
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which is extremely small compared to the expected level of 1 V.
In fact, if we move the wiper arm to the midpoint,

R 500 k 100 99.98′ = Ω Ω = Ω

and  V 99.98 10 V
99.98 500 k

0.002 V 2 mVL
( )( )

= Ω
Ω + Ω

≅ =

which is negligible compared to the expected level of 5 V. Even at 
R 900 k ,1 = Ω  VL  is only 0.01 V, or 1/1000 of the available voltage.

Using the reverse situation of R 100T = Ω  and R 1 ML = Ω  and 
the wiper arm at the 1/10 position, as in Fig. 7.47, we find

R 10  1 M 10 ′ = Ω Ω ≅ Ω

and  V 10 10 V
10 90

1 VL
( )

= Ω
Ω + Ω

=

as desired.
For the lower limit (worst-case design) of R R 100 ,L T= = Ω  as 

defined by Eq. (7.2) and the halfway position of Fig. 7.45,

R 50 100 33.33′ = Ω Ω = Ω

and        V
33.33 10 V

33.33 50
4 VL

( )
=

Ω
Ω + Ω

≅

It may not be the ideal level of 5 V, but at least 40% of the voltage E 
has been achieved at the halfway position rather than the 0.02% obtained 
with R 100L = Ω and R 1 M .T = Ω

In general, therefore, try to establish a situation for potentiometer 
control in which Eq. (7.2) is satisfied to the highest degree possible.

Someone might suggest that we make RT  as small as possible to 
bring the percent result as close to the ideal as possible. Keep in mind, 
however, that the potentiometer has a power rating, and for networks 
such as Fig. 7.47, P E R 10 V 100 1 W.max T

2 2( )≅ = Ω =  If RT  
is reduced to 10 ,Ω  P (10 V) 10 10 W,max

2= Ω =  which would re-
quire a much larger unit.

EXAMPLE 7.14 Find voltages V1 and V2  for the loaded potentiome-
ter of Fig. 7.48.

Solution: Ideal (no load):

V 48 V4 k 120 V
10 k1

( )
= Ω

Ω
=

V 72 V6 k 120 V
10 k2

( )
= Ω

Ω
=

Loaded:

R 4 k 12 k 3 k′ = Ω Ω = Ω

R 6 k 30 k 5 k″ = Ω Ω = Ω

V 45 V3 k 120 V
8 k1
( )

= Ω
Ω

=

V 75 V
5 k 120 V

8 k2

( )
=

Ω
Ω

=

The ideal and loaded voltage levels are so close that the design can 
be considered a good one for the applied loads. A slight variation in the 
position of the wiper arm will establish the ideal voltage levels across 
the two loads.

E

VL

1

2

10 V

100 V Pot.

90 V

10 V

1 MV

1

2

FIG. 7.47 
Loaded potentiometer with 

R R .L T>>

E

V1

1

2

120 V

10 kV Pot.

6 kV

4 kV

12 kV

V2

1

2

30 kV

1

2

FIG. 7.48 
Example 7.14.
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7.9 IMPACT OF SHORTS AND OPEN 
CIRCUITS
The concept of shorts and open circuits was introduced in Section 6.8  
with a few simple examples. This section will demonstrate that both 
conditions can wreak havoc on the response of a system. Both are fre-
quently blamed for serious problems in network behavior and often very 
difficult to find. However, trained technicians and engineers develop a 
sense for finding the root of a problem through the application of com-
mon sense developed over the years. For both conditions keep in mind 
the general characteristics of each.

A short circuit introduces a low-resistance unwanted path 
between two points in a network that can result in 
unwanted high levels of current although the potential at 
both ends of the connection is the same. That is, the voltage 
drop across a short is zero volts although the current can be 
any level as determined by the altered network.

Similarly:

An open circuit introduces a high-resistance unwanted path 
between two points in a network that can result in very high 
levels of voltage across its terminals although the current 
between its two points must be zero ampere. That is, the 
current associated with an open-circuit is zero ampere but the 
voltage can be any level as determined by the altered network.

The next few examples will demonstrate how drastic the effects can 
be due to a single short circuit or open circuit.

EXAMPLE 7.15 This example will demonstrate the impact of an 
unwanted short circuit on the network of Example 7.7. Find the new 
levels of V ,1  V ,3  V ,ab  and the source current I s  and compare to the levels 
obtained in Example 7.7. The short circuit created a direct path to ground 
between two of the resistors of the network as shown in Fig. 7.49.

Is
Isc

E1

2

16 V

6 V

R3

E218 V

2 V

R4

5 V

R1

3 V

R2

a

b

V3

V11 2

1 2
Vab

1

2

1

2

FIG. 7.49 
Network of Example 7.7 with a short circuit.

Solution: The network is redrawn as shown in Fig. 7.50. Redrawing 
the network is often the best first step in examining the impact of a short 
or open circuit.
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V E E 18 V 6 V 12 Vx 2 1= − = − =

and then the voltage divider rule:

V
V6

6 2
6 12 V

8
9 Vx

3

( ) ( )
=

Ω
Ω + Ω

= Ω
Ω

=

Applying Kirchhoff’s voltage law once again:

E V V

V E V

15 V

  0

  6 V 9 V

   

1 3

1 3

ab

ab

−

− − − =

= − − = − −

=

Then  I I
V V

6 2 8
12 V
8

1.5 Ax x
2 6= =

Ω + Ω
=

Ω
=

Ω
=Ω Ω

and        I
E

3
18 V
3

6 A3
2=

Ω
=

Ω
=Ω

and finally Kirchhoff’s current law:

= +

= +

=

Ω ΩI I I

7

 

  1.5 A 6 A

 

s 2  3 

.5 A
The results for the altered network are now listed next to the results of 

Example 7.7. The only quantity to remain the same was the voltage V .3

5 VR1

Is

R4R3

6 V 2 V

6 V 3 VR21V
1

2
E1

–

1

1 2

Vx

Vab

Is

V31 2

2
b

1
a

E218 V
1

2

FIG. 7.50 
Network of Fig. 7.49 redrawn.

Clearly,

V 6 V1 = −

Applying Kirchhoff’s voltage law:

E V E 0x1 2− − + =

Example 7.7 Example 7.15

V1 = 7.5 V
V3 = 9 V

Vab = –1.5 V
Is = 3 A

V1 = –6 V
V3 = 9 V

Vab = –15 V
Is = 7.5 A

EXAMPLE 7.16 This example will demonstrate the impact of an 
unwanted open circuit on the network of Example 7.7. Find the new 
levels of V ,1  V ,3  V ,ab  and the source current I s  and compare to the levels 
obtained in Example 7.7. The open circuit is a result of the less than 
solid connection between the resistors R1 and R2 as shown in Fig. 7.51.
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Solution: The network is redrawn in Fig. 7.52.

The resistors R1 and R2 are now only connected at one point and there-
fore will not affect the desired voltages or currents of the configuration.

The result is that
V 0 V1 =

Applying the voltage divider rule:

V 
6  18 V 6 V

6  2 

6  12 V

8 3

9 V

( ) ( )
=

Ω −
Ω + Ω

=
Ω

Ω
=

The voltage Vab  is equal in magnitude to V3  but with the opposite polarity:

V 9 Vab = −

The source current is determined by a simple application of Ohm’s law:

I 1.5 A18 V 6 V
6 2

12 V
8s = −

Ω + Ω
=

Ω
=

The results are now compared to those of Example 7.7. Again, the only 
quantity unchanged is the voltage V .3

Is

E1

1

2

a
6 V

6 V

R3

E218 V

2 V

R4

5 V

R1

3 V

R2b

V3

V1

Vab

1

2

1

2

1

1

2

2

FIG. 7.51 
Network of Example 7.7 with an open circuit.

Is

2 V

R3 R4

Vab

6 V
V3

E218 V
1

2
E1 6 V

V =1 0 V

1

2
1

12
2

FIG. 7.52 
Network of Fig. 7.51 redrawn.

Example 7.7 Example 7.16

V1 = 7.5 V
V3 = 9 V

Vab = –1.5 V
Is = 3 A

V1 = 0 V
V3 = 9 V

Vab = –9 V
Is = 1.5 A

If the network were not performing properly and the voltage V3  were 
the only voltage measured, it would be the same for a short or open circuit 
and one would assume everything is fine. However, a second measurement 
would probably confirm that there is a problem somewhere in the system.

EXAMPLE 7.17 Find the short-circuit current for the network in  
Fig. 7.49 and the open-circuit voltage for Fig. 7.50.

Solution: For Fig. 7.49, applying Kirchhoff’s current law:

Σ = Σ
= +

=
Ω

+
Ω

= +

=

Ω Ω

7.2 A

I I

I I I

 

 

  18 V
3 

6 V
5 

  6 A 1.2 A

 

i o

sc 5  3 
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For Fig. 7.50, applying Kirchhoff’s voltage law:

= −

= −

=

V E E 

  18 V 6 V

 

oc 2 1

12 V

7.10 AMMETER, VOLTMETER,  
AND OHMMETER DESIGN
Internal to every meter is a movement that will reveal through deflection 
of a pointer or a digital display the important parameters of a network 
such as voltage, current, and power.

The most popular of the analog meter movements employs the fact 
that similar magnetic poles will repel each other. In a fixed iron-vane 
movement a permanent magnet is set close to a moveable coil such that 
any magnetic pole generated by current through the coil will cause a 
separation between the fixed and moveable poles. The higher the current 
through the movable coil the greater the difference in the strength of the 
resulting magnetic poles and the greater the rotation of the pointer con-
nected to the moveable coil. The rotation indicated by the pointer is then 
calibrated to indicate the current through the moveable coil.

The iron-vane movement of Fig. 7.53 has a fixed circular vane within 
a moveable circular coil. The result is, there is no permanent magnet em-
ployed but rather two magnetic poles are created within the same coil. 
The difference in strengths of the two poles is determined by the con-
struction. Again the higher the current through the surrounding coil the 
greater the difference in strengths of the poles and the greater the rota-
tion of the pointer. Both meters described above can be used to measure 
dc or ac voltages and current.

Movement
terminals

Pointer

Spring

Fixed vane

Moving vane

SIDE VIEW

Coil

For up-scale reading
(printed on casing)

I

Pointer

Spring

TOP VIEW

Moving
vane

Fixed
vane

FIG. 7.53 
Iron-vane movement.

When a current is applied to the coil wrapped around the two vanes, 
a magnetic field is established within the coil, magnetizing the fixed 
and moveable vanes. Since both vanes will be magnetized in the same 
manner, they will have the same polarity, and a force of repulsion will 
develop between the two vanes. The stronger the applied current, the 
stronger are the magnetic field and the force of repulsion between the 
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vanes. The fixed vane will remain in position, but the moveable vane 
will rotate and provide a measure of the strength of the applied current.

An iron-vane movement manufactured by the Simpson Company  
appears in Fig. 7.54(a). Movements of this type are usually rated in terms 
of current and resistance. The current sensitivity (CS) is the current that 
will result in a full-scale deflection. The resistance Rm( ) is the inter-
nal resistance of the movement. The graphic symbol for a movement  
appears in Fig. 7.54(b) with the current sensitivity and internal resis-
tance for the unit of Fig. 7.54(a).

Movements are usually rated by current and resistance. The specifica-
tions of a typical movement may be 1 mA, 50 .Ω  The 1 mA is the current 
sensitivity (CS) of the movement, which is the current required for a full-
scale deflection. It is denoted by the symbol I .CS  The 50 Ω represents the 
internal resistance Rm( ) of the movement. A common notation for the 
movement and its specifications is provided in Fig. 7.54(b).

(a)

FIG. 7.54 
Iron-vane movement; (a) photo, (b) symbol 

and ratings.

External terminalExternal terminal

Rotary switch

Imax  =  1 A I

Imax  =  10 A

Imax  =  100 A

I + –

1 mA, 43 V

4.3 mV

43 mV

0.43 mV

FIG. 7.56 
Multirange ammeter.

The Ammeter

The maximum current that the iron-vane movement can read inde-
pendently is equal to the current sensitivity of the movement. However, 
higher currents can be measured if additional circuitry is introduced. 
This additional circuitry, as shown in Fig. 7.55, results in the basic con-
struction of an ammeter.

The resistance Rshunt  is chosen for the ammeter in Fig. 7.56 to allow 
1 mA to flow through the movement when a maximum current of  
1 A enters the ammeter. If less than 1 A flows through the ammeter, the 
movement will have less than 1 mA flowing through it and will indicate 
less than full-scale deflection.

Rshunt

1 mA, 43 V

b

d

a

c
Imax  = 1 A

Is

Im

Ammeter

FIG. 7.55 
Basic ammeter.

Since the voltage across parallel elements must be the same, the  
potential drop across a-b in Fig. 7.55 must equal that across c-d; that is,

R I1 mA)(43 sshunt( )Ω =

1 mA, 43 �

(b)
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Also, I s  must equal 1 A 1 mA 999 mA− =  if the current is to 
be limited to 1 mA through the movement (Kirchhoff’s current law). 
Therefore,

R

R

  1 mA)(43  999 mA

 
1 mA)(43 

999 mA
  43 m   a standard value

shunt

shunt

( )

( )

( )

( )Ω =

= Ω

≅ Ω

In general,

 R
R I

I I
m CS

CS
shunt

max

=
−  (7.3)

One method of constructing a multirange ammeter is shown in  
Fig. 7.57, where the rotary switch determines the Rshunt  to be used for 
the maximum current indicated on the face of the meter. Most meters  
use the same scale for various values of maximum current. If you read 
375 on the 0–5 mA scale with the switch on the 5 setting, the current is 
3.75 mA; on the 50 setting, the current is 37.5 mA; and so on.

The Voltmeter

A variation in the additional circuitry permits the use of the iron-vane 
movement in the design of a voltmeter. The 1 mA, 43 Ω movement 
can also be rated as a 43 mV 1 mA 43 , 43( )× Ω Ω movement, indi-
cating that the maximum voltage that the movement can measure inde-
pendently is 43 mV. The millivolt rating is sometimes referred to as the 
voltage sensitivity (VS). The basic construction of the voltmeter is shown 
in Fig. 7.57.

The Rseries is adjusted to limit the current through the movement to  
1 mA when the maximum voltage is applied across the voltmeter. A lower  
voltage simply reduces the current in the circuit and thereby the deflec-
tion of the movement.

Applying Kirchhoff’s voltage law around the closed loop of  
Fig. 7.57, we obtain

R10 V 1 mA)( 43 mV 0series( )[ ]− − =

or  R
10 V (43 mV)

1 mA
9957 10 kseries = − = Ω ≅ Ω

In general,

 R
V V

I
VS

CS
series

max=
−

 (7.4)

One method of constructing a multirange voltmeter is shown in  
Fig. 7.58. If the rotary switch is at R10 V, 10 k ;series = Ω  at R50 V, series = 
40 k 10 k 50 k ;Ω + Ω = Ω  and at R100 V, 50 k 40 kseries = Ω + Ω +
10 k 100 k .Ω = Ω

V  =  10  V (maximum)

Im  =  1 mA

Rseries

43 mV

1 2

1 mA, 43 V

1 2

FIG. 7.57 
Basic voltmeter.

40 kV

50 kV

External terminals

100 V

50 V

10 V
Rotary
switch

Im  =  1 mA

1 mA, 43 V

21

10 kV

FIG. 7.58 
Multirange voltmeter.
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The Ohmmeter

In general, ohmmeters are designed to measure resistance in the low, 
middle, or high range. The most common is the series ohmmeter,  
designed to read resistance levels in the midrange. It uses the series 
configuration in Fig. 7.59. The design is quite different from that of the  
ammeter or voltmeter because it shows a full-scale deflection for zero 
ohms and no deflection for infinite resistance.

1 mA, 43 V

Rs

Zero-adjust

Im

E

Runknown

1

2

FIG. 7.59 
Series ohmmeter.

To determine the series resistance R ,s  the external terminals are 
shorted (a direct connection of zero ohms between the two) to simulate 
zero ohms, and the zero-adjust is set to half its maximum value. The 
resistance Rs  is then adjusted to allow a current equal to the current sen-
sitivity of the movement (1 mA) to flow in the circuit. The zero-adjust is 
set to half its value so that any variation in the components of the meter 
that may produce a current more or less than the current sensitivity can 
be compensated for. The current I m  is

 I I E

R R
(full scale)

zero-adjust
2

m CS

s m

= =
+ +

 (7.5)

and       R E
I

R
zero-adjust

2s m
CS

= − −  (7.6)

If an unknown resistance is then placed between the external termi-
nals, the current is reduced, causing a deflection less than full scale. 
If the terminals are left open, simulating infinite resistance, the pointer 
does not deflect since the current through the circuit is zero.

In addition to the use of electromagnetic effects there are movements 
totally constructed using semiconductor networks such as analog/digital 
converters, buffers, integrating networks, comparators, and low-pass filters. 
A range of networks examined in advanced electronics courses. The obvi-
ous difference from those described above is the absence of moving parts.

The DVM of Fig. 7.60 can read voltages, currents, resistance, and 
capacitance levels. In order to measure resistance it incorporates an  
internal battery to generate a current through the unknown resistance. 
The resulting voltage and current of the unknown resistance then results 
in the resistance level. For the capacitance level there is an internal oscil-
lator network that generates a frequency that can be used along with the 
voltage and current level to determine the capacitance.

FIG. 7.60 
Elenco DVM.
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An instrument designed to read very low values of resistance and 
voltage appears in Fig. 7.61. It is capable of reading resistance levels  
between 10 m 0.01( )Ω Ω  and 100 m 0.1( )Ω Ω  and voltages between 
10 mV and 100 V. Because of its low-range capability, the network  
design must be a great deal more sophisticated than described above. It 
uses electronic components that eliminate the inaccuracies introduced 
by lead and contact resistances. It is similar to the above system in the 
sense that it is completely portable and does require a dc battery to  
establish measurement conditions. Special leads are used to limit any 
introduced resistance levels.

The megohmmeter (often called a megger) is an instrument for mea-
suring very high resistance values. Its primary function is to test the 
insulation found in power transmission systems, electrical machinery, 
transformers, and so on. To measure the high-resistance values, a high dc 
voltage is established by a hand-driven generator. If the shaft is rotated 
above some set value, the output of the generator is fixed at one select-
able voltage, typically 250 V, 500 V, or 1000 V—good reason to be care-
ful in its use. A photograph of a commercially available tester is shown 
in Fig. 7.62. For this instrument, the range is 0 to 5000 M .Ω

7.11 APPLICATIONS
Boosting a Car Battery

Although boosting a car battery may initially appear to be a simple appli-
cation of parallel networks, it is really a series-parallel operation that is 
worthy of some investigation. As indicated in Chapter 2, every  dc supply 
has some internal resistance. For the typical 12 V lead-acid car battery, the 
resistance is quite small—in the milliohm range. In most cases, the low 
internal resistance ensures that most of the voltage (or power) is delivered 
to the load and not lost on the internal resistance. In Fig. 7.63, battery #2 
has discharged because the lights were left on for 3 hours during a movie. 
Fortunately, a friend who made sure his own lights were off has a fully 
charged battery #1 and a good set of 16-ft cables with #6 gage stranded 
wire and well-designed clips. The investment in a good set of cables with 
sufficient length and heavy wire is a wise one, particularly if you live in a 
cold climate. Flexibility, as provided by stranded wire, is also a very desir-
able characteristic under some conditions. Be sure to check the gage of the 
wire and not just the thickness of the insulating jacket. You get what you 
pay for, and the copper is the most expensive part of the cables. Too often 
the label says “heavy-duty,” but the gage number of the wire is too high.

FIG. 7.61 
Nanovoltmeter.

(Courtesy of Keithley Instruments)

FIG. 7.62 
Megohmmeter.

(Courtesy of AEMC Instruments)

12 V

20 mV 10 mV

Booster battery
(#1)

Down battery
(#2)

11.7 V

Booster cable

Icharging

Battery terminals

1

2

1

2

1

2

1

2

FIG. 7.63 
Boosting a car battery.
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The proper sequence of events in boosting a car is often a function 
of to whom you speak or what information you read. For safety’s sake, 
some people recommend that the car with the good battery be turned off 
when making the connections. This, however, can create an immediate 
problem if the “dead” battery is in such a bad state that when it is hooked 
up to the good battery, it immediately drains the good battery to the point 
that neither car will start. With this in mind, it does make some sense to 
leave the car running to ensure that the charging process continues until 
the starting of the disabled car is initiated. Because accidents do happen, 
it is strongly recommended that the person making the connections wear 
the proper type of protective eye equipment. Take sufficient time to be 
sure that you know which are the positive and negative terminals for 
both cars. If it’s not immediately obvious, keep in mind that the negative 
or ground side is usually connected to the chassis of the car with a rela-
tively short, heavy wire.

When you are sure which are the positive and negative terminals, first 
connect one of the red wire clamps of the booster cables to the pos-
itive terminal of the discharged battery—all the while being sure that 
the other red clamp is not touching the battery or car. Then connect the 
other end of the red wire to the positive terminal of the fully charged 
battery. Next, connect one end of the black cable of the booster cables to 
the negative terminal of the booster battery, and finally connect the other 
end of the black cable to the engine block of the stalled vehicle (not the 
negative post of the dead battery) away from the carburetor, fuel lines, or 
moving parts of the car. Lastly, have someone maintain a constant idle 
speed in the car with the good battery as you start the car with the bad 
battery. After the vehicle starts, remove the cables in the reverse order 
starting with the cable connected to the engine block. Always be careful 
to ensure that clamps don’t touch the battery or chassis of the car or get 
near any moving parts.

Some people feel that the car with the good battery should charge 
the bad battery for 5 to 10 minutes before starting the disabled car so 
the disabled car will be essentially using its own battery in the starting 
process. Keep in mind that the instant the booster cables are connected, 
the booster car is making a concerted effort to charge both its own bat-
tery and the drained battery. At starting, the good battery is asked to 
supply a heavy current to start the other car. It’s a pretty heavy load to 
put on a single battery. For the situation in Fig. 7.63, the voltage of bat-
tery #2 is less than that of battery #1, and the charging current will flow 
as shown. The resistance in series with the boosting battery is greater 
because of the long length of the booster cable to the other car. The 
current is limited only by the series milliohm resistors of the batteries, 
but the voltage difference is so small that the starting current will be in 
safe range for the cables involved. The initial charging current will be 
I 12 V 11.7 V 20 m 10 m 0.3 V 30 m 10 A.( ) ( )= − Ω + Ω = Ω =  At  
starting, the current levels will be as shown in Fig. 7.64 for the resistance  
levels and battery voltages assumed. At starting, an internal resistance 
for the starting circuit of 0.1 100 mΩ = Ω is assumed. Note that 
the battery of the disabled car has now charged up to 11.8 V with an  
associated increase in its power level. The presence of two batteries  
requires that the analysis wait for the methods to be introduced in the 
next chapter.

Note also that the current drawn from the starting circuit for the disabled 
car is over 100 A and that the majority of the starting current is provided by 
the battery being charged. In essence, therefore, the majority of the starting 
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current is coming from the disabled car. The good battery has provided 
an initial charge to the bad battery and has provided the additional current  
necessary to start the car. In total, however, it is the battery of the disabled 
car that is the primary source of the starting current. For this very reason, 
the charging action should continue for 5 or 10 minutes before starting the 
car. If the disabled car is in really bad shape with a voltage level of only 
11 V, the resulting levels of current will reverse, with the good battery pro-
viding 68.75 A and the bad battery only 37.5 A. Quite obviously, therefore, 
the worse the condition of the dead battery, the heavier is the drain on the 
good battery. A point can also be reached where the bad battery is in such 
bad shape that it cannot accept a good charge or provide its share of the 
starting current. The result can be continuous cranking of the disabled car 
without starting and possible damage to the battery of the running car due 
to the enormous current drain. Once the car is started and the booster cables 
are removed, the car with the discharged battery will continue to run be-
cause the alternator will carry the load (charging the battery and providing 
the necessary dc voltage) after ignition.

The above discussion was all rather straightforward, but let’s  
investigate what may happen if it is a dark and rainy night, you are 
rushed, and you hook up the cables incorrectly as shown in Fig. 7.65. 
The result is two series-aiding batteries and a very low resistance 
path. The resulting current can then theoretically be extremely high 
I 12 V 11.7 V 30 m 23.7 V 30 m 790 A ,( )[ ]= + Ω = Ω =  perhaps 

permanently damaging the electrical system of both cars and, worst of 
all, causing an explosion that may seriously injure someone. It is there-
fore very important that you treat the process of boosting a car with great 
care. Find that flashlight, double-check the connections, and be sure that 
everyone is clear when you start that car.

12 V

S

I1 = 43.75 A I2 = 67.5 A

Istarter = I1 1 I2 = 111.25 A

100 mV
starter
motor

11.8 V

20 mV 10 mV
1

2

1

–

1

2

FIG. 7.64 
Current levels at starting.

12 V

20 mV

10 mV

11.7 V

Booster cable

Idamage = 790 A 1

21

2

+

2

FIG. 7.65 
Current levels if the booster battery is improperly connected.
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Before leaving the subject, we should point out that getting a boost 
from a tow truck results in a somewhat different situation: The connec-
tions to the battery in the truck are very secure; the cable from the truck 
is a heavy wire with thick insulation; the clamps are also quite large 
and make an excellent connection with your battery; and the battery 
is heavy-duty for this type of expected load. The result is less internal  
resistance on the supply side and a heavier current from the truck battery.  
In this case, the truck is really starting the disabled car, which simply 
reacts to the provided surge of power.

Electronic Circuits

The operation of most electronic systems requires a distribution of dc 
voltages throughout the design. Although a full explanation of why the 
dc level is required (since it is an ac signal to be amplified) will have to 
wait for the introductory courses in electronic circuits, the dc analysis 
will proceed in much the same manner as described in this chapter. In 
other words, this chapter and the preceding chapters are  sufficient back-
ground to perform the dc analysis of the majority of electronic networks 
you will encounter if given the dc terminal characteristics of the elec-
tronic elements. For example, the network in Fig. 7.66 using a transistor 
will be covered in detail in any introductory electronics course. The dc 
voltage between the base (B) of the transistor and the emitter (E) is about 
0.7 V under normal operating conditions, and the collector (C) is related 
to the base current by I I I50C B Bβ= =  (β  varies from transistor 
to transistor). Using these facts will enable us to determine all the dc  
currents and voltages of the network using the laws introduced in this 
chapter. In general, therefore, be encouraged that you will use the con-
tent of this chapter in numerous applications in the courses to follow.

b = 50
VR
RC

2 kΩ

1 2

220 kΩ

1 2
VR
RB

12 VVBB 12 VVCC

IC

IB VBE

1

2

1
VCE
2

C

B

E 1

2

1

2

FIG. 7.66 
The dc bias levels of a transistor amplifier.

For the network in Fig. 7.66, we begin our analysis by applying 
Kirchhoff’s voltage law to the base circuit (the left loop):

V V V V V V0 orBB R BE BB R BEB B
+ − − = = +

and V V V 12 V 0.7 V 11.3 VR BB BEB
= − = − =

so that V I R 11.3 VR B BB
= =

and      I
V

R
51.4 A11.3 V

220 kB
R

B

B µ= =
Ω

=

Then  I I I 2.57 mA50 50 51.4 AC B Bβ µ( )= = = =

For the output circuit (the right loop)

+ + − = = +V V V V V V    0  or  CE R CC CC R CEC C
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with ( )( )= − = − = − ΩV V V V I R 12 V 2.57 mA 2 kCE CC R CC C CC
 

6.86 V12 V 5.14 V= − =

For a typical dc analysis of a transistor, all the currents and voltages 
of interest are now known: I V I, , ,B BE C  and V .CE  All the remaining 
voltage, current, and power levels for the other elements of the network 
can now be found using the basic laws applied in this chapter.

The previous example is typical of the type of exercise you will be 
asked to perform in your first electronics course. For now you only need 
to be exposed to the device and to understand the reason for the relation-
ships between the various currents and voltages of the device.

PROBLEMS

SECTIONS 7.2–7.5  Series-Parallel Networks

 1.  Which elements (individual elements, not combinations of 
elements) of the networks in Fig. 7.67 are in series? Which 
are in parallel? As a check on your assumptions, be sure that 
the elements in series have the same current and that the 
elements in parallel have the same voltage. Restrict your 
decisions to single elements, not combinations of elements.

1

2

R1

R2

R4

R3 R5 R3
E

(a) (b)

R

E

4

R3R2

R1

1

2

R1 R4

E

(c)

R5

R2

FIG. 7.67 
Problem 1.

 2.  Repeat Problem 1 for the networks of Fig. 7.68.

(a) (b)

R1

R2

R4

R3

1

2
E

(c)

1

2
E

R4

R1

R5

R6

R2

R3

R2

R4

R3 R5

R1

+ E1

1 E2

FIG. 7.68 
Problem 2.
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 3.  Determine RT  for the networks in Fig. 7.69.

(a) (b)

10 V

10 V

RT

10 V

10 V

4 V

RT

4 V

4 V

4 V R

(c)

10 V
T

1.2      V

8.2      V

6.8      V

FIG. 7.69 
Problem 3.

 4.  Determine RT  for the networks of Fig. 7.70.

(a)

10 V

4 V

RT

4 V

RT

V

(b)

10 V 4 V 4 

4 V

(c)

RT

2 V V4 
12 V8 V

6 V

FIG. 7.70 
Problem 4.

 *5. Find the total resistance for the configuration of Fig. 7.71.

15 kV

15 kV

3.3 kV

RT

3.3 kV

FIG. 7.71 
Problem 5.

 *6. The total resistance RT  for the network of Fig. 7.72 is  
9.6 k .Ω  Find the resistance R .1

R1R1R1

R1

RT  = 9.6 kV

FIG. 7.72 
Problem 6.

 7.  For the network in Fig. 7.73:
a. Does I I I ?s 5 6= =  Explain.
b. If I 10 As =  and I 4 A,1 =  find I .2

c. Does I I I I ?1 2 3 4+ = +  Explain.
d. If V 8 V2 =  and E 14 V,=  find V .3

e. If R R R4 , 2 , 4 ,1 2 3= Ω = Ω = Ω  and R 6 ,4 = Ω  
what is R ?T

f. If all the resistors of the configuration are 20 ,Ω  what is 
the source current if the applied voltage is 20 V?

g. Using the values of part (f), find the power delivered by 
the battery and the power absorbed by the total resis-
tance R .T

R1

R2

I1

I2
1  V2  2

R3

R4

I3

I4

1  V3  2

I5Is

RT

E

1

2

I6

FIG. 7.73 
Problem 7.
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 8.  For the network in Fig. 7.74:
a. Determine R .T

b. Find I I, ,s 1  and I .2

c. Find voltage V .a

R1 24 V R2 60 VE
30 V

Is
I1 I2

R3 5 V

R4 10 V

Va

RT

1

2

FIG. 7.74 
Problem 8.

 9.  For the network of Fig. 7.75:
a. Find the currents Is and I .4

b. Calculate the voltages V1 and V .3

I4

R1

1 V1 2

11 V
R3 = 27 V

R2 27V

Is

E V80
1

2

R4

27 V

V3

1

2

FIG. 7.75 
Problem 9.

I1

32 V

72 V

24 V 8 V

b

18 V

12 V

Isa

FIG. 7.76 
Problem 10.

 10.  For the network in Fig. 7.76:
a. Find the voltages Va  and V .b

b. Find the currents I1 and I .s

 11.  For the network in Fig. 7.77:
a. Find the voltages V V, ,a b  and V .c

b. Find the currents I1 and I .2

I1
I21

2
24 V

1

2
30 V6 kV

a

7 kV

3 kV2 kV b c

FIG. 7.77 
Problem 11.

1 kV 2.4 kV

1.2 kV

2 kV

3.3 kV

6.8 kV

Is

RT

V

48 V

1

2

1 2

FIG. 7.78 
Problem 12.

2R

R

R

2R

12 A

120 V
1

2

FIG. 7.79 
Problem 13.

 12.  For the circuit board in Fig. 7.78:
a. Find the total resistance RT  of the configuration.
b. Find the current drawn from the supply if the applied 

voltage is 48 V.
c. Find the reading of the applied voltmeter.

 13.  Find the value of each resistor for the network in Fig. 7.79.
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 *18.  For the network in Fig. 7.84:
a. Determine the currents I I I, , ,s 1 3  and I .4

b. Calculate Va  and V .bc

*14. Find the resistance RT  for the network in Fig. 7.80. Hint! If 
it was infinite in length, how would the resistance looking 
into the next vertical 1 Ω resistor compare to the desired 
resistance R ?T

1 V

1 V

1 V 1 V

1 V1 V

1 V

RT

1 V 1 V

1 V

∞

FIG. 7.80 
Problem 14.

*15. For the network in Fig. 7.81:
a. Find currents I I, ,s 2  and I .6

b. Find voltages V1 and V .5

c. Find the power delivered to the 3 kΩ resistor.

R1
12 kV

R4

9 kV

R2
12 kV

R3 3 kVV1

R5

6 kV

  V5  
R6 10.4 kVE  =  28 V

Is
I6I2

1

2

1

2

1 2

FIG. 7.81 
Problem 15.

 16.  a.  Find the magnitude and direction of the currents 
I I I, , ,1 2  and I 3 for the network in Fig. 7.82.

 b. Indicate their direction on Fig. 7.82.

R2 2 V

R3 10 V

R1 4 V

24 V

I

I2

I3

I1

8 V

1

1

FIG. 7.82 
Problem 16.

 17.  Determine the currents I1 and I 2  for the network in  
Fig. 7.83, constructed of standard values.

I1

 30 V

I2

47 V

160 V

270 V

221 V1

FIG. 7.83 
Problem 17.

R1 10 V R3 5 V

6 V

20 V

R4

14 V

Va

c b

I4 R5

I3

I1 Is

20 V

R2
1

2

FIG. 7.84 
Problem 18.

 19.  For the network in Fig. 7.85:
a. Determine the current I .1

b. Calculate the currents I 2 and I .3

c. Determine the voltage level V .a
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V

8 V
I

3 V 6 V

18 V

20 V1

1

1

2

2

2

FIG. 7.90 
Problem 24.

R3 6 VR5 6 V

R4 4 V

R2 4 V

R1

E1 = 20 V

= 15 VE2

4 V

I1

I2

I3
Va

FIG. 7.85 
Problem 19.

5 V6 V

20 V3 V

2 V
a b

I

+

–

1

2

FIG. 7.89 
Problem 23.

R1

16 V

R2

8 V

R4

32 V

R5

16 V

R3

4 V

32 V

E
RT

Is

I3

  V4  

  V1  

1 2

1 2

1 2

FIG. 7.88 
Problem 22.

R1 8 V

R2 4 V

R3

V1

E1  =  144 V

18 V

I2
I1

E2  =  144 V

1

2

FIG. 7.87 
Problem 21.

RE 1 kV

RC 2.2 kVRB 220 kV

IE

IC

IB

VCC  = 8 V 

C VC

E  VE  =  2 V

BVB

VBE

VBC

VCE

1

1

1

2
2

2

FIG. 7.86 
Problem 20.

*20. Determine the dc levels for the transistor network in Fig. 7.86 
using the fact that V V0.7 V, 2 V,BE E= =  and I I .C E=  
That is:
a. Determine I E  and I .C

b. Calculate I .B

c. Determine VB  and V .C

d. Find VCE  and V .BC

 21.  For the network in Fig. 7.87:
a. Determine the current I .2

b. Find V .1

c. Calculate I .1

*22. For the network in Fig. 7.88:
a. Determine RT  by combining resistive elements.
b. Find V1 and V .4

c. Calculate I 3 (with direction).
d. Determine I s  by finding the current through each ele-

ment and then applying Kirchhoff’s current law. Then 
calculate RT  from R E I ,T s=  and compare the answer 
with the solution of part (a).

*23. For the network in Fig. 7.89:
a. Find the voltages Va  and V .b

b. Calculate the current I.
c. Determine the voltage V .ab

*24. For the network in Fig. 7.90:
a. Determine the current I.
b. Calculate the open-circuit voltage V.
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 28.  For the ladder network in Fig. 7.94:
a. Determine R .T

b. Calculate I.
c. Find the power delivered to R .7

*25. For the network in Fig. 7.91, find the resistance R3  if the 
current through it is 4 A.

R3 4 V

R4

2 V

R5 6 V R7 2 VV7V5V3

R6

1 V

R1

3 V

R2

8 V

240 V

I

I7

1

2

1

2

1

2

1

2

FIG. 7.93 
Problem 27.

RT

FIG. 7.92 
Problem 26.

R2 20 V R3

4 A

R1 12 V

120 V
1

2

FIG. 7.91 
Problem 25.

R2

48 V

1.6 kV

R1

R3 RL3

RL2

RL1

E

Is = 80 mA

32 V
8 mA

12 mA

48 mA

FIG. 7.95 
Problem 29.

P

R2 2 V

R3

R5

4 V

1 V

R4 2 V R7 2 V

R6

4 V

R1

4 VRT

I

R8

1 V

40 V
1

2

FIG. 7.94 
Problem 28.

*26. If all the resistors of the cube in Fig. 7.92 are 10 ,Ω  what is 
the total resistance? (Hint: Make some basic assumptions 
about current division through the cube.)

SECTION 7.6  Ladder Networks

 27.  For the ladder network in Fig. 7.93:
a. Find the current I.
b. Find the current I .7

c. Determine the voltages V ,3  V ,5  and V .7

d. Calculate the power delivered to R ,7  and compare it to 
the power delivered by the 240 V supply.

SECTION 7.7  Voltage Divider Supply  
(Unloaded and Loaded)

 29.  Given the voltage divider supply in Fig. 7.95:
a. Determine the supply voltage E.
b. Find the load resistors RL2

 and R .L3

c. Determine the voltage divider resistors R ,1  R ,2  and R .3
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*31. A studio lamp requires 40 V at 50 mA to burn brightly. 
Design a voltage divider arrangement that will work prop-
erly off a 120 V source supplying a current of 200 mA. Use 
resistors as close as possible to standard values, and specify 
the minimum wattage rating of each.

SECTION 7.8  Potentiometer Loading

*32. For the system in Fig. 7.97:
a. At first exposure, does the design appear to be a good 

one?
b. In the absence of the 10 kΩ load, what are the values of 

R1 and R2 to establish 3 V across R2?
c. Determine the values of R1 and R2  to establish 

V 3 VRL
=  when the load is applied, and compare 

them to the results of part (b).

10 kV

R1
E

R2

RL

12 V

1 kV  Pot.

3 V

1

2 1

2

FIG. 7.97 
Problem 32.

10 kV

E

Vab

40 V

100 V  Pot.

1 kV

Vbc

b

c

a

20 V

1

2

1

2

1

2

FIG. 7.98 
Problem 33.

I

12 V

18 V

10 kV 2 kV

ba10 kV

1

2

12

FIG. 7.99 
Problem 34.

E 36 kV

12 kV

6 kV

6 kV

45 V V
27 V

1

2

FIG. 7.100 
Problem 35.

R3180 V

20 mA

R2

R1

R4

R5

RL3
36 V

RL2
40 V

RL1
100 V

10 mA

+120 V

4 mA

–60 V

40 mA

1

21

2

1

2

FIG. 7.96 
Problem 30.

*30. Determine the voltage divider supply resistors for the con-
figuration in Fig. 7.96. Also determine the required wattage 
rating for each resistor, and compare their levels.

*33. For the potentiometer in Fig. 7.98:
a. What are the voltages Vab  and Vbc  with no load applied 

(R RL L1 2
= = ∞ Ω)?

b. What are the voltages Vab  and Vbc  with the indicated 
loads applied?

c. What is the power dissipated by the potentiometer under 
the loaded conditions in Fig. 7.98?

d. What is the power dissipated by the potentiometer with 
no loads applied? Compare it to the results of part (c).

SECTION 7.9  Impact of Shorts and Open Circuits

 34. Determine the voltage Vab  and the current I for the network 
in Fig. 7.99. Recall the discussion of short and open circuits 
in Section 6.8.

*35. Given the voltmeter reading V 27 V=  in Fig. 7.100:
a. Is the network operating properly?
b. If not, what could be the cause of the incorrect reading?
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*36. Determine the power delivered to the 6 Ω load in Fig. 7.101.

4 V

12 V 12 V

E

7 V

24 V

2 V

24 V
P

6 V

1

2

FIG. 7.101 
Problem 36.

R9 12 V

R8

12 V

R7

3 V I

R2 6 V

R4 10 V

R6 4 V

R5  =  6 V

R

R

3  =  1 V

R1 3 V

12 V
E

I4

I6

R10

1 V
R11 2 V

R12 2 V
I10

1

2

FIG. 7.102 
Problem 37.

 37.  For the multiple ladder configuration in Fig. 7.102:
a. Determine I.
b. Calculate I .4

c. Find I .6

d. Find I .10

SECTION 7.10  Ammeter, Voltmeter,  
and Ohmmeter Design

 38.  An iron-vane movement is rated 1.5 mA, 200 .Ω
a. What is the current sensitivity?
b. Design a 30 A ammeter using the above movement. 

Show the circuit and component values.

 39.  Using a 100 A, 1500µ Ω  movement, design a multirange 
milliammeter having scales of 150 mA, 300 mA, and  
600 mA. Show the circuit and component values.

 40.  An iron-vane movement is rated 50 A, 1000 .µ Ω
a. Design a 20 V dc voltmeter. Show the circuit and com-

ponent values.
b. What is the ohm/volt rating of the voltmeter?

 41.  Using a 1 mA, 1000 Ω movement, design a multirange 
voltmeter having scales of 2 V, 20 V, and 200 V. Show the 
circuit and component values.

 42.  A digital meter has an internal resistance of 15 MΩ  on its 
0.5 V range. If you had to build a voltmeter with an iron-
vane movement, what current sensitivity would you need if 
the meter were to have the same internal resistance on the 
same voltage scale?

*43. a. Design a series ohmmeter using a 200 A, 1000µ Ω 
movement, a zero-adjust with a maximum value of 
2 k ,Ω  a battery of 5 V, and a series resistor whose value 
is to be determined.

b. Find the resistance required for full-scale, 3/4-scale, 
1/2-scale, and 1/4-scale deflection.

c. Using the results of part (b), draw the scale to be used 
with the ohmmeter.

 44.  Describe the basic construction and operation of the meg-
ohmmeter.

 *45.  Determine the reading of the ohmmeter for each configura-
tion of Fig. 7.103.

FIG. 7.103 
Problem 45.

(a)

6.2 kV 6.2 kV 3.3 kV 3.3 kV

1.2 kV

1.2 kV

V

R1

18 V

V

R2

18 V

R3

18 V

(b)
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GLOSSARY

Complex configuration A network in which none of the ele-
ments are in series or parallel.

Iron-vane A movement operating on the principle that there 
is repulsion between like magnetic poles. The two poles are 
vanes inside of a fixed coil. One vane is fixed and the other 
movable with an attached pointer. The higher the applied cur-
rent, the greater is the deflection of the movable vane and the 
greater is the deflection of the pointer.

Ladder network A network that consists of a cascaded set of  
series-parallel combinations and has the appearance of a 
ladder.

Megohmmeter An instrument for measuring very high resis-
tance levels, such as in the megohm range.

Series ohmmeter A resistance-measuring instrument in which 
the movement is placed in series with the unknown resistance.

Series-parallel network A network consisting of a combination 
of both series and parallel branches.

Transistor A three-terminal semiconductor electronic device 
that can be used for amplification and switching purposes.

Voltage divider supply A series network that can provide a 
range of voltage levels for an application.
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8 Methods of Analysis and 
Selected Topics (dc)

8.1 INTRODUCTION
The circuits and networks examined in the previous chapters permitted the combination of 
 series and parallel elements in the search for specific unknowns. Situations will arise, how-
ever, where sources, elements, or branches are not in series or parallel and such reduction 
techniques cannot be applied. The result is the need to develop an approach using the basic 
laws of electric circuits that will work for any configuration. The approach chosen is deter-
mined by whether our primary interest is in the currents of the network or the voltages from 
a specific point to ground.

The methods of analysis introduced in this chapter include branch-current analysis and 
mesh analysis if the currents are desired and nodal analysis if the voltages are to be found. 
All three methods can be applied to any network with any number of sources although the 
 desired unknowns will determine which is applied. It will take a measure of effort to apply 
each method for the first time. However, in time, with practice, you will find that each method 
can be applied very quickly and accurately without an enormous concern about errors creep-
ing in the process. In fact, you will almost be amazed as to how powerful the methods of 
analysis can be. They can solve the most complex network with any combination of elements 
in any arrangement in very short order.

Before examining one of the methods, the concept of a current source must first be intro-
duced. In previous chapters only voltage sources such as a battery or supply were encountered. 
The current source is very common in the analysis of electronic circuits because it appears in 
the models (network equivalent) of some of the most common electronic devices such as the 
transistor. There are commercially available current sources, as introduced in Chapter 2, but 
in actuality they are voltage sources that have been designed to act as current sources for a 
specific application.

• Become familiar with the terminal characteristics 
of a current source and how to solve for the 
voltages and currents of a network using current 
sources and/or current sources and voltage 
sources.

• Be able to apply branch-current analysis and mesh 
analysis to find the currents of network with one or 
more independent paths.

• Be able to apply nodal analysis to find all the 
terminal voltages of any series-parallel network 
with one or more independent sources.

• Become familiar with bridge network 
configurations and how to perform ∆ −Y  or − ∆Y  
conversions.

• Become familiar with determinants and matrices to 
solve for the unknown quantities.

Objectives
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8.2 CURRENT SOURCES
Introduction

As shown in Fig. 8.1(a), an ideal voltage source provides a fixed voltage 
to the network no matter the level of current drawn from the supply. Take 
note in Fig. 8.1(a) that at every level of current drawn from the supply 
the terminal voltage of the battery is still E volts. The current source of  
Fig.  8.1(b) will establish a fixed level of current that will define 
the  resulting terminal voltage of the attached network as shown in 
Fig. 8.1(b). Note that the symbol for a current source includes an arrow 
to show the direction in which it is supplying the current. Take special 
note of the fact that the current supplied by the source is fixed no matter 
what the resulting voltage is across the network. A voltage source and 
current source are often said to have a dual relationship. The term dual 
reveals that what was true for the voltage of one is true for the current of 
the other and vice versa.

Network

Voltage

(a)

0 Current

Inetwork 

E

+

–
E

Inetwork 

FIG. 8.1
Terminal characteristics of an (a) ideal voltage 

source and (b) ideal current source.

Network

Voltage

Current

(b)

+

–
Vnetwork 

Vnetwork 

Is

Is

0

Is

Vs

I IR = I

R+–
+ VR –

FIG. 8.2
Defining the current in a branch in which a 

current source is located.

Because the current source is not a typical piece of laboratory equip-
ment and has not been employed in the analysis thus far, it will take 
some time before you are confident in understanding its characteristics 
and the impact it will have on the network to which it is attached. For 
the moment, simply keep in mind that a voltage source sets the volt-
age  between two points in a network and the other parameters have to  
respond to the applied level. A current source sets the current in the 
branch in which it is located and the other parameters, such as volt-
ages and currents in other branches, have to be in tune with this set 
level of current. For instance, in Fig.  8.2 the current source is dictat-
ing the direction of the current through the series-resistive element. The  
result is the voltage across the resistor will have the polarity shown.  
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For single-source networks the voltage across the current source will 
always be as shown in Fig. 8.1(b) or Fig. 8.2.

In general, therefore,

 a current source determines the direction and magnitude of 
the current in the branch where it is located.

Furthermore,

the magnitude and the polarity of the voltage across a 
current source are each a function of the network to which 
the voltage is applied.

A few examples will demonstrate the similarities between solving for 
the source current of a voltage source and the terminal voltage of a cur-
rent source. All the rules and laws developed in the previous chapter still 
apply, so we just have to remember what we are looking for and properly 
understand the characteristics of each source.

The simplest possible configuration with a current source appears in 
Example 8.1.

EXAMPLE 8.1 Find the source voltage, the voltage V ,1  and current 
I1 for the circuit in Fig. 8.3.

Solution: Since the current source establishes the current in the 
branch in which it is located, the current I1 must equal I, and

= =I I 10 mA 1

The voltage across R1 is then determined by Ohm’s law:

( )( )= = Ω =V I R 200 V10 mA 20 k1 1 1

Since resistor R1 and the current source are in parallel, the voltage across 
each must be the same, and

= =V V 200 Vs 1

with the polarity shown.

EXAMPLE 8.2 Find the voltage Vs  and currents I1 and I 2  for the 
network in Fig. 8.4.

Solution: This is an interesting problem because it has both a current 
source and a voltage source. For each source, the dependent (a function 
of something else) variable will be determined. That is, for the current 
source, Vs must be determined, and for the voltage source, I s  must be 
determined.

Since the current source and voltage source are in parallel,

= =V E 12 Vs

Further, since the voltage source and resistor R are in parallel,

= =V E 12 VR

and  = =
Ω

=I
V
R

3 A12 V
4 

 R
2

–

+
V1R1 20 kV

I1

I = 10 mA
+

–
Vs

FIG. 8.3
Circuit for Example 8.1.

E R12 V 4 V

I1

Vs 7 A

+

–
I

I2

+

–

FIG. 8.4
Network for Example 8.2.
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The current I1 of the voltage source can then be determined by apply-
ing Kirchhoff’s current law at the top of the network as follows:

I Ii oΣ = Σ
= +I I I1 2

and = − = − =I I I 4 A7 A 3 A1 2

EXAMPLE 8.3 Determine the current I1 and the voltage Vs for the 
network in Fig. 8.5.

Solution: First note that the current in the branch with the current 
source must be 6 A, no matter what the magnitude of the voltage source 
to the right. In other words, the currents of the network are defined by 
I R,   ,1  and R .2  However, the voltage across the current source is directly 
affected by the magnitude and polarity of the applied source.

Using the current divider rule gives

( )( )
( )=

+
= Ω

Ω + Ω
= =I

R I
R R

2 A1  6 A
1  2 

1
3

6 A  1
2

2 1

The voltage V1 is given by

( )( )= = Ω =V I R 2 A 2  4 V1 1 1

Applying Kirchhoff’s voltage rule to determine Vs gives

+ − − =V V  20 V 0s 1

and  = + = + =V V 24 V20 V 4 V 20 V  s 1

In particular, note the polarity of the voltage Vs as determined by the 
network.

Source Conversions

The current source appearing in the previous section is called an ideal 
source due to the absence of any internal resistance. In reality, all 
sources—whether they are voltage sources or current sources—have 
some internal resistance in the relative positions shown in Fig. 8.6. For 
the voltage source, if = ΩR 0  ,s  or if it is so small compared to any 
series resistors that it can be ignored, then we have an “ideal” voltage 
source for all practical purposes. For the current source, since the resis-
tor RP  is in parallel, if = ∞ ΩR   ,P  or if it is large enough compared to 
any parallel resistive elements that it can be ignored, then we have an 
“ideal” current source.

Unfortunately, however, ideal sources cannot be converted from one 
type to another. That is, a voltage source cannot be converted to a cur-
rent source, and vice versa—the internal resistance must be present. 
If the voltage source in Fig. 8.6(a) is to be equivalent to the source in 
Fig. 8.6(b), any load connected to the sources such as RL  should receive 
the same current, voltage, and power from each configuration. In other 
words, if the source were enclosed in a container, the load RL  would not 
know which source it was connected to.

This type of equivalence is established using the equations appearing in 
Fig. 8.7. First note that the resistance is the same in each configuration—a 
nice advantage. For the voltage source equivalent, the voltage is determined  
by a simple application of Ohm’s law to the current source: =E IR .p  For 
the current source equivalent, the current is again determined by applying 

+ 20 V
2 Ω

R1

6 A

–

+

Vs

R2

1 Ω

+ V1 –

I

I1

FIG. 8.5
Example 8.3.

(b)

E

(a)

+

–

Rs

RL

IL IL

I RL
Rp

FIG. 8.6
Practical sources: (a) voltage; (b) current.
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Ohm’s law to the voltage source: =I E R .s  At first glance, it all seems 
too simple, but Example 8.4 verifies the results.

It is important to realize, however, that

the equivalence between a current source and a voltage 
source exists only at their external terminals.

The internal characteristics of each are quite different.
And, finally, one must always be aware of the direction of “pressure” 

established by a voltage source when considering a conversion to a cur-
rent source. In Fig. 8.7 the pressure by the voltage source to establish a 
current through the network is up through the branch (from terminal b 
to terminal a) and, therefore, the arrow in the equivalent current source 
must have that same direction of pressure. The same consideration must 
be applied when converting from a current source to a voltage source.

EXAMPLE 8.4 For the circuit in Fig. 8.8:

a. Determine the current I .L

b. Convert the voltage source to a current source.
c. Using the resulting current source of part (b), calculate the current 

through the load resistor, and compare your answer to the result of 
part (a).

Solutions:

a. Applying Ohm’s law gives

=
+

=
Ω + Ω

=
Ω

=I E
R R

1 A6 V
2  4 

6 V
6 

 L
s L

b. Using Ohm’s law again gives

= =
Ω

=I E
R

3 A6 V
2 

 
s

and the equivalent source appears in Fig. 8.9 with the load reap-
plied.

c. Using the current divider rule gives

( )( )
( )=

+
= Ω

Ω + Ω
= =I

R I

R R
1 A2  3 A

2 4 
1
3

3 A  L
p

p L

We find that the current I L  is the same for the voltage source as it was 
for the equivalent current source—the sources are therefore equivalent.

a

b

a

b

E  =  IRp

Rp  =  Rs

Rs  =  Rp

+

–

I  = E
Rs

FIG. 8.7
Source conversion.

b

a

IL
2 VRs

6 VE
+

–

4 VRL

FIG. 8.8
Practical voltage source and load for 

Example 8.4.

a

b

I = = 3 A

3 A

E
Rs

RL 4 VRp 2 V

IL

FIG. 8.9
Equivalent current source and load for the 

voltage source in Fig. 8.8.
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As demonstrated in Fig. 8.6 and in Example 8.4, note that

a source and its equivalent will establish current in the same 
direction through the applied load.

In Example 8.4, note that both sources pressure or establish current up 
through the circuit to establish the same direction for the load current I L  
and the same polarity for the voltage V .L

EXAMPLE 8.5 Determine current I 2 for the network in Fig. 8.10.

Solution: Although it may appear that the network cannot be solved 
using methods introduced thus far, one source conversion, as shown in 
Fig. 8.11, results in a simple series circuit. It does not make sense to 
convert the voltage source to a current source because you would lose 
the current I 2 in the redrawn network. Note the polarity for the equiva-
lent voltage source as determined by the current source.

For the source conversion

( )( )= = Ω =E I R 4 A 3  12 V1 1 1

and =
+
+

= +
Ω + Ω

=
Ω

=I
E E
R R

3 4 A12 V 5 V
3  2 

17 V
5 

.  2
1 2

1 2

EXAMPLE 8.6 Determine the voltage across the Ω7  resistor in the 
network of Fig. 8.12 by converting the current source to a voltage source.

Solution: Converting the current source to a voltage source will result 
in the configuration of Fig. 8.13.

Take special note of the direction of pressure for the 9 V source.
The current

= −
Ω + Ω + Ω

=
Ω

=I 24 V 9 V
2  3  7 

15 V
12 

1.25 A

and the voltage across the Ω7  resistor:

( )( )= = Ω =ΩV IR 8 75 V1.25 A 7  .  4

Current Sources in Parallel

We found that voltage sources of different terminal voltages cannot be 
placed in parallel because of a violation of Kirchhoff’s voltage law. 
Similarly,

current sources of different values cannot be placed in series 
due to a violation of Kirchhoff’s current law.

However, current sources can be placed in parallel just as voltage sources 
can be placed in series. In general,

two or more current sources in parallel can be replaced by a 
single current source having a magnitude determined by the 
difference of the sum of the currents in one direction and 
the sum in the opposite direction. The new parallel internal 
resistance is the total resistance of the resulting parallel 
resistive elements.

Consider the following examples.

R2 2 VI1 4 A

5 V

E2

R1 3 V

a

b

I2

+ –

FIG. 8.10
Two-source network for Example 8.5.

R2 2 V

5 V

E2

I2

R1

E1

3 V

12 V

a

b

+

–

+ –

FIG. 8.11
Network in Fig. 8.10 following the conversion 

of the current source to a voltage source.

3 V

7 V V
+

–

R2

R3

2 V

R1

24 V

+–
E

I = 3 A 

FIG. 8.12
Example 8.6.

7 V

2 V 3 V

R1

24 V

+– R2+ –

+

–
V

E

9 V

R3
I

FIG. 8.13
Network of Fig. 8.12 with converted voltage 

source.
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EXAMPLE 8.7 Reduce the parallel current sources in Fig. 8.14 to a 
single current source.

6 A 3 V 10 A 6 VR1 R2

FIG. 8.14
Parallel current sources for Example 8.7.

Solution: The net source current is

= − =I 4 A10 A 6 A  

with the direction being that of the larger source.
The net internal resistance is the parallel combination of resistances, 

R1 and R :2

Ω= Ω Ω =R 23 p

The reduced equivalent appears in Fig. 8.15.

EXAMPLE 8.8 Reduce the parallel current sources in Fig. 8.16 to a 
single current source.

Solution: The net current is

= + − =I 8 A7 A 4 A 3 A  

with the direction shown in Fig. 8.17. The net internal resistance remains 
the same.

 EXAMPLE 8.9 Reduce the network in Fig. 8.18 to a single current 
source, and calculate the current through R .L

Solution: In this example, the voltage source will first be converted to 
a current source as shown in Fig. 8.19. Combining current sources gives

= + = + =I I I 10 A4 A 6 A  s 1 2

and Ω= = Ω Ω =R R R 68  24 s 1 2

4 AIs 2 VRp

FIG. 8.15
Reduced equivalent for the configuration 

of Fig. 8.14.

R13 A 4 V7 A 4 A

FIG. 8.16
Parallel current sources for Example 8.8.

8 AIs 4 VRp

FIG. 8.17
Reduced equivalent for Fig. 8.16.

R1

6 A 24 V 14 V

8 V

32 V

I2 R2

E1

RL
+

–

IL

FIG. 8.18
Example 8.9.

4 A

= = 4 A

R1 6 A 24 V 14 V8 V I2 R2 RL

IL

I1

I1 =
E1
R1

32 V
8 V

FIG. 8.19
Network in Fig. 8.18 following the conversion of the 

voltage source to a current source.
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Applying the current divider rule to the resulting network in Fig. 8.20 
gives

( )( )
=

+
= Ω

Ω + Ω
= =I

R I

R R
3 A6  10 A

6  14 
60 A

20
 L

p s

p L

Current Sources in Series

The current through any branch of a network can be only single-valued. 
For the situation indicated at point a in Fig. 8.21, we find by application 
of Kirchhoff’s current law that the current leaving that point is greater 
than that entering—an impossible situation. Therefore,

current sources of different current ratings are not 
connected in series,

just as voltage sources of different voltage ratings are not connected in 
parallel.

8.3 BRANCH-CURRENT ANALYSIS
Before examining the details of the first important method of analysis, 
let us examine the network in Fig. 8.22 to be sure that you understand 
the need for these special methods.

Initially, it may appear that we can use the reduce and return approach 
to work our way back to the source E1 and calculate the source current 
I s1

. Unfortunately, however, the series elements R3  and E2 cannot be 
combined because they are different types of elements. A further exam-
ination of the network reveals that there are no two like elements that are 
in series or parallel. No combination of elements can be performed, and 
it is clear that another approach must be defined.

It should be noted that the network of Fig. 8.22 can be solved if we 
convert each voltage source to a current source and then combine par-
allel current sources. However, if a specific quantity of the original net-
work is required, it would require working back using the information 
determined from the source conversion. Further, there will be complex 
networks for which source conversions will not permit a solution, so it 
is important to understand the methods to be described in this chapter.

The first approach to be introduced is called branch-current anal-
ysis because we will define and solve for the currents of each branch of 
the network.

At this point it is important that we are able to identify the branch 
currents of the network. In general,

a branch is a series connection of elements in the network 
that has the same current.

In Fig. 8.22 the source E1 and the resistor R1 are in series and have 
the same current, so the two elements define a branch of the network. It 
is the same for the series combination of the source E2 and resistor R .3  
The branch with the resistor R2 has a current different from the other 
two and, therefore, defines a third branch. The result is three distinct 
branch currents in the network of Fig. 8.22 that need to be determined.

Experience shows that the best way to introduce the branch-current 
method is to take the series of steps listed here. Each step is carefully 
demonstrated in the examples to follow.

10 A 6 V 14 VRp RL

IL

Is

Is

FIG. 8.20
Network in Fig. 8.19 reduced to its simplest 

form.

a6 A 7 A

No!

FIG. 8.21
Invalid situation.

R3R1

R2E1 E2

+

–

+

–

FIG. 8.22
Demonstrating the need for an approach 

such as branch-current analysis.
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Branch-Current Analysis Procedure

1. Assign a distinct current of arbitrary direction to each 
branch of the network.

2. Indicate the polarities for each resistor as determined by 
the assumed current direction.

3. Apply Kirchhoff’s voltage law around each closed, inde-
pendent loop of the network.

The best way to determine how many times Kirchhoff’s voltage law 
has to be applied is to determine the number of “windows” in the net-
work. The network in Example 8.10 that follows has a definite similarity 
to the two-window configuration in Fig. 8.23(a). The result is a need to 
apply Kirchhoff’s voltage law twice. For networks with three windows, 
as shown in Fig. 8.23(b), three applications of Kirchhoff’s voltage law 
are required, and so on.

(b)

1 2 3 1 2

3 1 2

3

(a)

1 2

FIG. 8.23
Determining the number of independent closed loops.

(4 nodes)

2

3

4

1
4 – 1  =  3 eq.

(4 nodes)

2 3 4

1
4 – 1  =  3 eq.

(2 nodes)
2

1
2 – 1  =  1 eq.

(2 nodes)
2

1
2 – 1  =  1 eq.

FIG. 8.24
Determining the number of applications of Kirchhoff’s current law required.

4. Apply Kirchhoff’s current law at the minimum number of 
nodes that will include all the branch currents of the 
network.

The minimum number is one less than the number of independent 
nodes of the network. For the purposes of this analysis, a node is a junc-
tion of two or more branches, where a branch is any combination of  
series elements. Fig.  8.24 defines the number of applications of 
Kirchhoff’s current law for each configuration in Fig. 8.23.

5.  Solve the resulting simultaneous linear equations for 
assumed branch currents.

The methods to be employed in this text include the matrix solutions 
of determinants and rref. Some detail will be provided initially to give 
some feeling for each approach and which is more comfortable. There 
will also be some detail on the use of the calculator for each method. In 
time you will be pleased to see how effective each method is in finding 
the desired solution. Some additional detail is provided in Appendix C.
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EXAMPLE 8.10 Apply the branch-current method to the network in 
Fig. 8.25.

Solution 1:
Step 1: Since there are three distinct branches (cda, cba, ca), three cur-
rents of arbitrary directions ( )I I I,   ,  1 2 3  are chosen, as indicated in 
Fig. 8.25. The current directions for I1 and I 2 were chosen to match the 
“pressure” applied by sources E1 and E ,2  respectively. Since both I1 and 
I 2 enter node a I,   3 is leaving.

Step 2: Polarities for each resistor are drawn to agree with assumed cur-
rent directions, as indicated in Fig. 8.26.

4 V

6 V

I1

E2

1 V

2 VE1

I2

I3

bd

a

c

R2

R3

+

–

+

–

2 VR1

FIG. 8.25
Example 8.10.

I2

4 V
–

a

+

21

I1

I3

Defined by I3

R3

Defined
by I1

–

+2 V R1

–

+1 V

Defined
by I2

R2

2 VE1

Fixed
polarity +

–
6 VE2

Fixed
polarity+

–

FIG. 8.26
Inserting the polarities across the resistive elements as 

defined by the chosen branch currents.

Step 3: Kirchhoff’s voltage law is applied around each closed loop  
(1 and 2) in the clockwise direction:

loop 1:  V 5 1E1 2 VR1 2 VR3 5 0

Rise in potential

Drop in potential

loop 2:  V 5 1VR3 1 VR2 
2 E2  5 0

Rise in potential

Drop in potential

loop 2:  V 5 (4 V)I3 1 (1 V)I2 2 6 V 5 0 

Battery
potential

Voltage drop
across 2 V

resistor

Voltage drop
across 4 V

resistor

S

S

S

loop 1:  V 5 12 V 2 (2 V)I1 2 (4 V)I3 5 0 S

and

Step 4: Applying Kirchhoff’s current law at node a (in a two-node net-
work, the law is applied at only one node) gives

+ =I I I1 2 3
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Step 5: 

Determinants

There are three equations and three unknowns (units removed for clarity):

− − = + + =I I I I2 2 4 0 Rewritten : 2 0 4 21 3 1 3

+ − =I I4 1 6 03 2  + + =I I0 4 62 3

+ =I I I1 2 3 + − =I I I 01 2 3

Using third-order determinants (Appendix B), we have

2        0        4       
6        1        4       

2        0        4       
0        1        4       

0        1                   21

1        1                   21

2        2              4
0        6              4

2        0              2
0        1              6
1        1              0

1        0     21

I1 5

I2 5

I3 5

D 5

5 21 A

5 2 A

5 1 A

D

D

A negative sign in front of a
branch current indicates only
that the actual current is
in the direction opposite to
that assumed.

Solution 2:
Instead of using third-order determinants as in Solution 1, we can reduce 
the three equations to two by substituting the third equation in the first 
and second equations:

2 2 2I1 2 4(I1 1 I2) 5 0 2 2 2I1 2 4I1 2 4I2 5 0

4(I1 1 I2) 1 I2 2 6 5 0 4I1 1 4I2 1 I2 2 6 5 0  

I3

I3

or − − = −I I6 4 21 2

 + + = +I I 4 5 61 2

Multiplying through by −1 in the top equation yields

+ = +I I6 4 21 2

+ = +I I4 5 61 2

and using determinants gives

= = −
−

= − = −I 1 A

2 4
6 5

6 4
4 5

10 24
30 16

14
14

 1

I2 can then be determined by substitution into either equation.

TI-89

The procedure for determining the determinant in Example 8.10 re-
quires some scrolling to obtain the desired math functions, but in time 
that procedure can be performed quite rapidly. As with any computer or 

M08_BOYL0302_14_GE_C08.indd   315M08_BOYL0302_14_GE_C08.indd   315 28/02/23   12:35 PM28/02/23   12:35 PM



316 | | | METHODS OF ANALYSIS AND SELECTED TOPICS (dc) NA

After you select the last ENTER key, the screen shown in Fig. 8.27(b) 
appears with solution for  I1.

rref:
As was just presented, the TI-89 has the capability of solving systems 
using determinants. It turns out the TI-89 also has the capability of using 
the “reduced row echelon form” or (rref) built-in capability. By using 
rref to solve a system, you alleviate the need of having to develop and 
rearrange multiple matrices as is required when using the “determinant” 
(det) calculator function. The rref matrix solution only requires that the 
coefficient of each term of the system to be entered as a single matrix. 
Some prefer the rref method because it is viewed as a more “stream 
lined” approach to solving systems.

For the network of Fig. 8.25 the following equations resulted.

+ =

+ =

I I

I I

6  4 2

4 5 6
1 2

1 2

Using rref, the key strokes appear in Fig. 8.28 to enter the two equations.

(a)

FIG. 8.27
TI-89 solution for the current I1 of Fig. 8.25.

det

det

= –1.00E0

4
5

2
6

4
5

6
4

(b)

CLEAR MATRIX rrefHOME

FIG. 8.28
Key strokes to enter above equations.

1.00E0

0.00E0 1.00E0

0.00E0 –1.00E0

2.00E0

rref
4 2

65

6

4

I1 = –1A  
I2 = 2A  

FIG. 8.29
Results for the above equations matching the solutions of the  

earlier methods.

calculator system, it is paramount that you enter all parameters correctly. 
One error in the sequence negates the entire process. For the TI-89, the 
entries are shown in Fig. 8.27(a).

The solution will appear as shown in Fig. 8.29 revealing that

M08_BOYL0302_14_GE_C08.indd   316M08_BOYL0302_14_GE_C08.indd   316 28/02/23   12:35 PM28/02/23   12:35 PM



BRANCH-CURRENT ANALYSIS | | | 317
NA

4 V
–

+

I1  =  1 A

R3

I2  =  2 A

I3  =  1 A

6 VE2

+

–
2 VE1

+

–

–

+1 VR2

–

+

2 VR1

FIG. 8.30
Reviewing the results of the analysis of the 

network in Fig. 8.25.

The top line of the solutions in Fig. 8.29 provides the value of I1 and the 
second line the value of I2. The same vertical order as the original equations.

Simplified Key Entry

In time, confidence will develop and you will be able to input the same 
information using the simplified key entries below:

CLEARHOME

set up to get rref( [

; ] ) solution

or, more briefly as
I 2

I1

 Home Clear 2 5 4 4 2 , 6, 4, 2 2 9 4, 5, 6 2 ) Enter
I Iset up

nd

to get rref(

nd

[

nd

;

nd

] ) solution
21

÷

Shorthand Form

And finally the shorthand form

rref ([6, 4, 2; 4, 5, 6]) Enter

I3 is then determined by:

= + = − + =I I I 1 A1 2  3 1 2

It is now important that the impact of the results obtained be under-
stood. The currents I I,   ,1 2  and I 3  are the actual currents in the branches 
in which they were defined. A negative sign in the solution means that 
the actual current has the opposite direction than initially defined—the 
magnitude is correct. Once the actual current directions and their mag-
nitudes are inserted in the original network, the various voltages and 
power levels can be determined. For this example, the actual current 
 directions and their magnitudes have been entered on the original net-
work in Fig. 8.30. Note that the current through the series elements R1 
and E1 is 1 A; the current through R ,3  is 1 A; and the current through the 
series elements R2 and E2 is 2 A. Due to the minus sign in the solution, 
the direction of I1 is opposite to that shown in Fig. 8.25. The voltage 
across any resistor can now be found using Ohm’s law, and the power 
delivered by either source or to any one of the three resistors can be 
found using the appropriate power equation.

Applying Kirchhoff’s voltage law around the loop indicated in 
Fig. 8.30 gives

( ) ( )∑ = + Ω + Ω − =V I I4 1 6 V 03 2�

or ( ) ( )Ω + Ω =I I4  1  6 V3 2

and ( ) ( )( ) ( )Ω + Ω =4  1 A 1  2 A 6 V

+ =4 V 2 V 6 V
6 V 6 V checks( )=
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EXAMPLE 8.11 Apply branch-current analysis to the network in 
Fig. 8.31.

Solution: Again, the current directions were chosen to match the 
“pressure” of each battery. The polarities are then added, and  Kirchhoff’s 
voltage law is applied around each closed loop in the clockwise direc-
tion. The result is as follows:

( ) ( )+ − Ω + Ω − =I Iloop 1: 15 V 4  10  20 V 01 3

( ) ( )+ − Ω − Ω + =I Iloop 2 : 20 V 10  5  40 V 03 2

Applying Kirchhoff’s current law at node a gives

+ =I I I1 3 2

Substituting the third equation into the other two yields (with units  
removed for clarity)

( )

− + − =

− − + + =







I I

I I I

15 4 10 20 0

20 10 5 40 0
ISubstituting for (since it occurs

only once in the two equations)
1 3

3 1 3

2

or 
− + =

− − = −

I I

I I

4 10 5

5 15 60
1 3

1 3

Multiplying the lower equation by −1, we have

I I

I I

4 10 5

5 15 60
1 3

1 3

− + =

+ =

=
−

= −
− −

= −
−

=I 4 77 A

5 10
60 15

4 10
5 15

75 600
60 50

525
110

.  1

=

−

−
= − −

−
= −

−
=I 2 41 A

4 5
5 60
110

240 25
110

265
110

.  3

= + = + =I I I 7 18 A4.77 A 2.41 A .  2 1 3

revealing that the assumed directions were the actual directions, with I 2 
equal to the sum of I1 and I .3

As indicated in an earlier discussion, there are occasions where a 
simple source conversion will provide the desired results. This will 
now be demonstrated by repeating Example 8.10 using source conver-
sions. This approach will work very well in this example but be aware 
that it is not always possible to make the source conversions and we 
must return to the general steps of applying the branch-current method.

EXAMPLE 8.12 Find the current through the resistor R3  for the net-
work of Fig. 8.25 using source conversions.

Solution: The network of Fig.  8.32 will result after both voltage 
sources of Fig. 8.25 are converted to current sources and placed back in 
the original configuration of Fig. 8.25.

I1

I2

I3

a

21

5 VR2

+

–
R1

+

–
4 V R3 10 V

–

+

40 VE2
+

–
20 VE3

+

–
15 VE1

+

–

FIG. 8.31
Example 8.11.
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The parallel current sources and two parallel source resistors can then 
be combined resulting in the configuration of Fig. 8.33.

The parallel combination of the Ω2  and Ω1  resistors is then

( )( )′ = Ω Ω
Ω + Ω

= ΩR 2  1 
2  1 

2
3

and = + =I 1 A 6 A 7 AT

Applying the current divider rule, we find

( )( )

=
Ω

Ω + Ω
=I 1 A

2
3

7 A

2
3

4 
 

which matches the result of Example 8.10.

8.4 MESH ANALYSIS (GENERAL  
APPROACH)
The next method to be described—mesh analysis—is actually an exten-
sion of the branch-current analysis approach just introduced. By defin-
ing a unique array of currents to the network, the information provided 
by the application of Kirchhoff’s current law is already included when 
we apply Kirchhoff’s voltage law. In other words, there is no need to 
apply step 4 of the branch-current method.

The currents to be defined are called mesh or loop currents. The 
two terms are used interchangeably. In Fig. 8.34(a), a network with two 
“windows” has had two mesh currents defined. Note that each forms a 
closed “loop” around the inside of each window; these loops are similar 
to the loops defined in the wire mesh fence in Fig. 8.34(b)—hence the 
use of the term mesh for the loop currents. We will find that

the number of mesh currents required to analyze a network 
will equal the number of “windows” of the configuration.

The defined mesh currents can initially be a little confusing because it 
appears that two currents have been defined for resistor R .3  There is no 
problem with E1 and R ,1  which have only current I ,1  or with E2 and R ,2  
which have only current I .2  However, defining the current through R3  
may seem a little troublesome. Actually, it is quite straightforward. The 
current through R3  is simply the difference between I1 and I ,2  with the 
direction being that of the larger. This is demonstrated in the examples 
to follow.

6 A1 A 2 V 4 V 1 VR3R1 R2

I

FIG. 8.32
Network of Fig. 8.25 redrawn with equivalent 

current sources.

I

7 A 2 V 4 V1 V

FIG. 8.33
Reduced form for the network of Fig. 8.32.

I1 I2

E1

R1

E2

R3

R2

(a)

(b)

+

–

+

–

FIG. 8.34
Defining the mesh (loop) current: (a) “two-

window” network; (b) wire mesh fence 
analogy.
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Because mesh currents can result in more than one current through 
an element, branch-current analysis was introduced first. Branch-current 
analysis is the straightforward application of the basic laws of electric 
circuits. Mesh analysis employs a maneuver (“trick,” if you prefer) that 
removes the need to apply Kirchhoff’s current law.

Mesh Analysis Procedure

1. Assign a distinct current in the clockwise direction to 
each independent, closed loop of the network. It is not 
absolutely necessary to choose the clockwise direction 
for each loop current. In fact, any direction can be chosen 
for each loop current with no loss in accuracy, as long as 
the remaining steps are followed properly. However, by 
choosing the clockwise direction as a standard, we can 
develop a shorthand method (Section 8.5) for writing the 
required equations that will save time and possibly pre-
vent some common errors.

This first step is accomplished most effectively by placing a loop 
current within each “window” of the network, as demonstrated in the 
previous section, to ensure that they are all independent. A variety of 
other loop currents can be assigned. In each case, however, be sure that 
the information carried by any one loop equation is not included in a 
combination of the other network equations. This is the crux of the ter-
minology independent. No matter how you choose your loop currents, 
the number of loop currents required is always equal to the number of 
windows of a planar (no-crossovers) network. On occasion, a network 
may appear to be nonplanar. However, a redrawing of the network may 
reveal that it is, in fact, planar. This may be true for one or two problems 
at the end of the chapter.

Before continuing to the next step, let us ensure that the concept of a 
loop current is clear. For the network in Fig. 8.35, the loop current I1 is 
the branch current of the branch containing the Ω2  resistor and 2 V bat-
tery. The current through the Ω4  resistor is not I ,1  however, since there 
is also a loop current I 2 through it. Since they have opposite directions, 

ΩI 4  equals the difference between the two, −I I1 2  or −I I ,2 1  depend-
ing on which you choose to be the defining direction. In other words, 
a loop current is a branch current only when it is the only loop current 
assigned to that branch.

2. Indicate the polarities within each loop for each resistor 
as determined by the assumed direction of loop current 
for that loop. Note the requirement that the polarities be 
placed within each loop. This requires, as shown in 
Fig. 8.35, that the Ω 4  resistor have two sets of polarities 
across it.

3. Apply Kirchhoff’s voltage law around each closed loop in 
the clockwise direction. Again, the clockwise direction 
was chosen to establish uniformity and prepare us for the 
method to be introduced in the next section.

21 R3 4 V

+

–

–

+

b

I1

I3

I2

a

R1

+

–
2 V 1 VR2

+

–

2 VE1

+

–
6 V E2

+

–

FIG. 8.35
Defining the mesh currents for a  

“two-window” network.
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a. If a resistor has two or more assumed currents 
through it, the total current through the resistor is 
the assumed current of the loop in which Kirchhoff’s 
voltage law is being applied, plus the assumed cur-
rents of the other loops passing through in the same 
direction, minus the assumed currents through in the 
opposite direction.

b. The polarity of a voltage source is unaffected by the 
direction of the assigned loop currents.

4. Solve the resulting simultaneous linear equations for the 
assumed loop currents.

EXAMPLE 8.13 Consider the same basic network as in  
Example 8.10, now appearing as Fig. 8.35.

Solution:
Step 1: Two loop currents ( )I I and 1 2  are assigned in the clockwise  
direction in the windows of the network. A third loop ( )I 3  could have 
been included around the entire network, but the information carried by 
this loop is already included in the other two.

Step 2: Polarities are drawn within each window to agree with assumed 
current directions. Note that for this case, the polarities across the Ω4  
resistor are the opposite for each loop current.

Step 3: Kirchhoff’s voltage law is applied around each loop in the clock-
wise direction. Keep in mind as this step is performed that the law is 
concerned only with the magnitude and polarity of the voltages around 
the closed loop and not with whether a voltage rise or drop is due to a 
battery or a resistive element. The voltage across each resistor is deter-
mined by =V IR.  For a resistor with more than one current through it, 
the current is the loop current of the loop being examined plus or minus 
the other loop currents as determined by their directions. If clockwise 
applications of Kirchhoff’s voltage law are always chosen, the other 
loop currents are always subtracted from the loop current of the loop 
being analyzed.

E V V aloop 1: 0 clockwise starting at point 1 1 3 ( )+ − − =

V V E bloop 2: 0 clockwise starting at point 3 2 2 ( )− − − =

( )( ) ( )− Ω − − Ω − =I I I4  1  6 V 02 1 2

Step 4: The equations are then rewritten as follows (without units for 
clarity):

+ − − + =

− + − − =

I I I

I I I

loop 1: 2 2 4 4 0

loop 2: 4 4 1 6 0
1 1 2

2 1 2

12 V 2 (2 V)I1 2 (4 V)(I1 2 I2) 5 0 

Total current
through

4 V resistor

Voltage drop across
4 V resistor

Subtracted since I
2
 is

opposite in direction to I
1
.
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and + − + =I Iloop 1: 2 6 4 01 2

− + − =I Iloop 2 : 5 4 6 02 1

or − + = −I Iloop 1: 6 4 21 2

+ − = +I Iloop 2 : 4 5 61 2

Applying determinants results in

I I1 A 2 A  and  1 2= − = −

The minus signs indicate that the currents have a direction opposite to 
that indicated by the assumed loop current.

The actual current through the 2 V source and Ω2  resistor is there-
fore 1 A in the other direction, and the current through the 6 V source 
and Ω1  resistor is 2 A in the opposite direction indicated on the cir-
cuit. The current through the Ω4  resistor is determined by the following 
equation from the original network:

( )= − = − − − = − +ΩI I Iloop 1: 1 A 2 A 1 A 2 A4 1 2

( )= I1 A  in the direction of  1

The outer loop ( )I 3  and one inner loop ( )I Ieither   or 1 2  would also 
have produced the correct results. This approach, however, often leads to 
errors since the loop equations may be more difficult to write. The best 
method of picking the loop currents is the window approach.

EXAMPLE 8.14 Find the current through each branch of the net-
work in Fig. 8.36.

Solution:
Steps 1 and 2: These are as indicated in the circuit. Note that the polari-
ties of the Ω6  resistor are different for each loop current.

Step 3: Kirchhoff’s voltage law is applied around each closed loop in the 
clockwise direction:

 E V V E aloop 1: 0 clockwise starting at point 1 1 2 2 ( )+ − − − =
I I I5 V (1  ) (6  ) 10 V 01 1 2( )+ − Ω − Ω − − =

I
I

flows through the 6 resistor
in the direction opposite to .

2

1

↑
Ω

E V V bloop 2: 0 clockwise starting at point 2 2 3 ( )− − =

I I I10 V 6  2  02 1 2( )( ) ( )+ − Ω − − Ω =

The equations are rewritten as

I I I

I I I

I I

I I

5 6 6 10 0

 10 6 6 2 0
 

7 6 5

6 8 10
1 1 2

2 1 2

1 2

1 2

− − + − =

− + − =








− + =

+ − = −

Step 4: 

I 1 A

5 6
10 8

7 6

6 8

40 60
56 36

20
20

 1 =
− −

−
−

= − +
−

= =

I 2 A

7 5
6 10
20

70 30
20

40
202 =

−
−

= − = =

21

a

I2
b

I1

R2 6 V

+

–

–

+
R1

+

–
1 V

5 VE1

+

–
10 VE2

+

–

2 V

+

–
R3

FIG. 8.36
Example 8.14.
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Since I1 and I 2 are positive and flow in opposite directions through 
the Ω6  resistor and 10 V source, the total current in this branch is equal 
to the difference of the two currents in the direction of the larger:

I I 2 A 1 A2 1 ( )> >
Therefore,

= − = − =I I I I1 A2 A 1 A   in the direction of R 2 1 22

It is sometimes impractical to draw all the branches of a circuit at 
right angles to one another. The next example demonstrates how a por-
tion of a network may appear due to various constraints. The method of 
analysis is no different with this change in configuration.

EXAMPLE 8.15 Find the branch currents of the networks in 
Fig. 8.37.

Solution:
Steps 1 and 2: These are as indicated in the circuit.

Step 3: Kirchhoff’s voltage law is applied around each closed loop:

E I R E V aloop 1: 0 clockwise from point 1 1 1 2 2 ( )− − − − =
I I I6 V 2  4 V 4  01 1 2( )( ) ( )− − Ω − − Ω − =

V E V E bloop 2: 0 clockwise from point 2 2 3 3 ( )− + − − =

I I I4  4 V 6  3 V 02 1 2( ) ( )( ) ( )− Ω − + − Ω − =

which are rewritten as

I I I

I I I

I I

I I

10 4 2 4 0

1 4 4 6 0

6 4 10

4 10 1
1 1 2

1 2 2

1 2

1 2

− − − + =

+ + + − =







− + = +
+ − = −

or, by multiplying the top equation by −1, we obtain

I I

I I

  6 4 10

4 10 1
1 2

1 2

− = −

− = −

Step 4: I 2 18 A

10 4
1 10

6 4
4 10

100 4
60 16

96
44

.  1 =

− −
− −

−
−

= −
− +

=
−

= −

I 0 77 A

6 10
4 1

44
6 40

44
34
44

.  2 =

−
−

−
= − +

−
=

−
= −

The current in the Ω4  resistor and 4 V source for loop 1 is

 

I I

1 41 A

2.18 A 0.77 A

2.18 A 0.77 A
.  

1 2 ( )− = − − −
= − +
= −

revealing that it is 1.41 A in a direction opposite (due to the minus sign) 
to I1 in loop 1.

+

–E2 4 V

R2

+

–

–

+
4 V

I1 I2

1 2 +

–
E3 = 3 VE1 = 6 V

+

–

b
a

R1 = 2 V
+

–
R3 = 6 V
–

+

FIG. 8.37
Example 8.15.
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Supermesh Currents

Occasionally, you will find current sources in a network without a par-
allel resistance. This removes the possibility of converting the source to 
a voltage source as required by the given procedure. In such cases, you 
have a choice of two approaches.

The simplest and most direct approach is to place a resistor in parallel 
with the current source that has a much higher value than the other resis-
tors of the network. For instance, if most of the resistors of the network 
are in the 1 to Ω10  range, choosing a resistor of Ω100  or higher would 
provide one level of accuracy for the answer. However, choosing a resis-
tor of Ω1000  or higher would increase the accuracy of the answer. You 
will never get the exact answer because the network has been modified 
by this introduced element. However for most applications, the answer 
will be sufficiently accurate.

The other choice is to use the supermesh approach described in the 
following steps. Although this approach will provide the exact solution, 
it does require some practice to become proficient in its use. The proce-
dure is as follows.

Start as before, and assign a mesh current to each independent loop, 
including the current sources, as if they were resistors or voltage sources. 
Then mentally (redraw the network if necessary) remove the current 
sources (replace with open-circuit equivalents), and apply Kirchhoff’s 
voltage law to all the remaining independent paths of the network using 
the mesh currents just defined. Any resulting path, including two or 
more mesh currents, is said to be the path of a supermesh current. Then 
relate the chosen mesh currents of the network to the independent cur-
rent sources of the network, and solve for the mesh currents. The next 
example clarifies the definition of supermesh current and the procedure.

EXAMPLE 8.16 Using mesh analysis, determine the currents of the 
network in Fig. 8.38.

Solution: First, the mesh currents for the network are defined, as 
shown in Fig. 8.39. Then the current source is mentally removed, as 
shown in Fig. 8.40, and Kirchhoff’s voltage law is applied to the result-
ing network. The single path now including the effects of two mesh cur-
rents is referred to as the path of a supermesh current.

R1 6 V

E1 20 V

E2 12 V4 AI

R2

4 V

R3

2 V

+

–

+

–

FIG. 8.38
Example 8.16.

R1 6 V

E1 20 V

E2 12 V4 AI

R2

4 V

R3

2 V

I1 I2

a

+

–

+

–

FIG. 8.39
Defining the mesh currents for the network 

in Fig. 8.38.

E1 20 V

E2 12 VI1 I2

+ – + –

+

–

R2

4 V

R3

2 V
R1 6 V

Supermesh
current

+

–

+

–

FIG. 8.40
Defining the supermesh current.

Applying Kirchhoff’s law gives

I I I20 V 6  4  2  12 V 01 1 2( ) ( ) ( )− Ω − Ω − Ω + =

or + =I I10 2 321 2
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Node a is then used to relate the mesh currents and the current source 
using Kirchhoff’s current law:

= +I I I1 2

The result is two equations and two unknowns:

I I

I I

10 2 32

4
1 2

1 2

+ =
− =

Applying determinants gives

( )( ) ( )( )

( )( ) ( )( )
=

−

−

= − −
− −

= =I 3 33 A

32 2
4 1

10 2
1 1

32 1 2 4
10 1 2 1

40
12

.  1

and = − = − = −I I I 0 67 A3.33 A 4 A .  2 1

In the above analysis, it may appear that when the current source was 
removed, =I I .1 2  However, the supermesh approach requires that we 
stick with the original definition of each mesh current and not alter those 
definitions when current sources are removed.

EXAMPLE 8.17 Using mesh analysis, determine the currents for the 
network in Fig. 8.41.

2 V 8 V

6 V

6 A 8 A

FIG. 8.41
Example 8.17.

Solution: The mesh currents are defined in Fig. 8.42. The current 
sources are removed, and the single supermesh path is defined in Fig. 8.43.

I1 I3I22 V 8 V

6 V

6 A 8 A

FIG. 8.42
Defining the mesh currents for the network in 

Fig. 8.41.

Supermesh
current

I1 I3I22 V 8 V

6 V
+ –

+

–

–

+

FIG. 8.43
Defining the supermesh current for the 

network in Fig. 8.41.

Applying Kirchhoff’s voltage law around the supermesh path gives

V V V 02 6 8− − − =Ω Ω Ω

I I I I I2  6  8  02 1 2 2 3( ) ( )( )− − Ω − Ω − − Ω =

M08_BOYL0302_14_GE_C08.indd   325M08_BOYL0302_14_GE_C08.indd   325 28/02/23   12:36 PM28/02/23   12:36 PM



326 | | | METHODS OF ANALYSIS AND SELECTED TOPICS (dc) NA

− + − − + =I I I I I2 2 6 8 8 02 1 2 2 3

− + =I I I2 16 8 01 2 3

Introducing the relationship between the mesh currents and the cur-
rent sources

=I 6 A1

=I 8 A3

results in the following solutions:

− + =I I I2 16 8 01 2 3

( ) ( )− + =I2 6 A 16 8 8 A 02

and  = =I 4 75 A76 A
16

.  2

Then I I I 1 25 A6 A 4.75 A .  2 1 2↓ = − = − =Ω

and I I I 3 25 A8 A 4.75 A .  8 3 2↑ = − = − =Ω

Again, note that you must stick with your original definitions of the 
various mesh currents when applying Kirchhoff’s voltage law around 
the resulting supermesh paths.

8.5 MESH ANALYSIS (FORMAT APPROACH)
Now that the basis for the mesh-analysis approach has been established, 
we now examine a technique for writing the mesh equations more rap-
idly and usually with fewer errors. As an aid in introducing the pro-
cedure, the network in Example 8.14 (Fig. 8.36) has been redrawn in 
Fig. 8.44 with the assigned loop currents. (Note that each loop current 
has a clockwise direction.)

The equations obtained are

− + =

− = −

I I

I I

  7 6 5

6 8 10
1 2

1 2

which can also be written as

− = −

− =

I I

I I

 7 6 5

 8 6 10
1 2

2 1

and expanded as

Col 1 Col 2 Col 3. . .

( ) ( )+ − = −I I1 6 6 5 101 2

( )+ − =I I2 6 6 102 1

Note in the above equations that column 1 is composed of a loop 
current times the sum of the resistors through which that loop current 
passes. Column 2 is the product of the resistors common to another loop 
current times that other loop current. Note that in each equation, this 
column is subtracted from column 1. Column 3 is the algebraic sum of 
the voltage sources through which the loop current of interest passes. 
A source is assigned a positive sign if the loop current passes from the 
negative to the positive terminal, and a negative value is assigned if 
the polarities are reversed. The comments above are correct only for a 

21 2 VR3

+

–

–
R1

+
1 V R2 6 V

+

–

–

+

5 VE1 10 VE2

I1 I2

+

–

+

–

FIG. 8.44
Network in Fig. 8.36 redrawn with 

assigned loop currents.

M08_BOYL0302_14_GE_C08.indd   326M08_BOYL0302_14_GE_C08.indd   326 28/02/23   12:36 PM28/02/23   12:36 PM



MESH ANALYSIS (FORMAT APPROACH) | | | 327
NA

standard direction of loop current in each window, the one chosen being 
the clockwise direction.

The above statements can be extended to develop the following for-
mat approach to mesh analysis.

Mesh Analysis Procedure

1. Assign a loop current to each independent, closed loop 
(as in the previous section) in a clockwise direction.

2.  The number of required equations is equal to the number 
of chosen independent, closed loops. Column 1 of each 
equation is formed by summing the resistance values of 
those resistors through which the loop current of interest 
passes and multiplying the result by that loop current.

3. We must now consider the mutual terms, which, as noted 
in the examples above, are always subtracted from the 
first column. A mutual term is simply any resistive ele-
ment having an additional loop current passing through 
it. It is possible to have more than one mutual term if the 
loop current of interest has an element in common with 
more than one other loop current. This will be demon-
strated in an example to follow. Each term is the product 
of the mutual resistor and the other loop current passing 
through the same element.

4. The column to the right of the equality sign is the  
algebraic sum of the voltage sources through which the 
loop current of interest passes. Positive signs are 
assigned to those sources of voltage having a polarity 
such that the loop current passes from the negative to 
the positive terminal. A negative sign is assigned to those 
potentials for which the reverse is true.

5. Solve the resulting simultaneous equations for the 
desired loop currents.

Before considering a few examples, be aware that since the column 
to the right of the equals sign is the algebraic sum of the voltage sources 
in that loop, the format approach can be applied only to networks in 
which all current sources have been converted to their equivalent volt-
age source.

EXAMPLE 8.18 Write the mesh equations for the network in 
Fig. 8.45, and find the current through the Ω7  resistor.

Solution:
Step 1: As indicated in Fig. 8.45, each assigned loop current has a clock-
wise direction.

Steps 2 to 4: 

I I I

I I I

: 8  6  2  (2  ) 4 V

: 7  2  (2  ) 9 V
1 1 2

2 2 1

( )

( )

Ω + Ω + Ω − Ω =

Ω + Ω − Ω = −

and − =
− = −

I I

I I

 16 2 4

9 2 9
1 2

2 1

21

4 V

6 V

–+

–

+
8 V 7 V

+

–
2 V

+

–

–

+

9 V

I1 I2

+ – +–

FIG. 8.45
Example 8.18.
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which, for determinants, are

− =
− + = −

I I

I I

 16 2 4

2 9 9
1 2

1 2

and I I

16 4
2 9

16 2
2 9

144 8
144 4

136
1402 7= =

− −

−
−

= − +
−

= −Ω

= −0 97 A.  

EXAMPLE 8.19 Write the mesh equations for the network in 
Fig. 8.46.

I1 I2

21

1 V

+

–

–

+

4 V
–

+

+

–
2 V

+

–
1 V 2 V

–

+
4 V

3 V 3

2 V+ –

I3

+

–+

–

+

–

FIG. 8.46
Example 8.19.

Solution: Each window is assigned a loop current in the clockwise 
direction:

Summing terms yields

I I

I I I

I I

2 0 2

6 3 4

7 3 0 2

1 2

2 1 3

3 2

− + = −

− − =

− + =

which are rewritten for determinants as

(1 V 1 1 V)I1 2 (1 V)I2 1 0 5 2 V 2 4 V 

(3 V 1 4 V)I3 2 (3 V)I2 1 0 5 2 V
(1 V 1 2 V 1 3 V)I2 2 (1 V)I1 2 (3 V)I3 5 4 V    

I1 :
I2 :
I3 :

I
1
 does not pass through an element

mutual with I
3
.

I
3
 does not pass through an element

mutual with I
1
.

   2I1         2I2     1   0       5 22

       0            23I2       17I3     5 2

     2I1          16I2       23I3    5 4

c b a

b

a
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Note that the coefficients of the a and b diagonals are equal. This 
symmetry about the c-diagonal will always be true for equations written 
using the format approach. It is a check on whether the equations were 
obtained correctly.

We now consider a network with only one source of voltage to point 
out that mesh analysis can be used to it’s advantage in other than multi-
source networks.

EXAMPLE 8.20 Find the current through the Ω10  resistor of the 
network in Fig. 8.47.

21 2 V

+

–
3 V

+

–

–

+

–+
+–

15 V

–+
+–

10 V

–+

3

I10V = I3

8 V 5 V

+

–

I3

I2I1

FIG. 8.47
Example 8.20.

Solution:

I I I I

I I I I

I I I I

: (8  3  ) (8  ) (3  ) 15 V

: (3 5 2 ) (3 ) (5 ) 0

: (8 10 5 ) (8 ) (5 ) 0

1 1 3 2

2 2 1 3

3 3 1 2

Ω + Ω − Ω − Ω =

Ω + Ω + Ω − Ω − Ω =

Ω + Ω + Ω − Ω − Ω =

I I I

I I I

I I I

11 8 3 15 V

10 3 5 0

23 8 5 0

1 3 2

2 1 3

3 1 2

− − =

− − =

− − =

or I I I

I I I

I I I

11 3 8 15 V

3 10 5 0

8 5 23 0

1 2 3

1 2 3

1 2 3

− − =

− + − =

− − + =

and I I 1 22 A

11 3 15
3 10 0
8 5 0

11 3 8
3 10 5
8 5 23

.  3 10 = =

−
−
− −

− −
− −
− −

=Ω

TI-89 Determinant Mode

When the TI-89 calculator is used in the determinant mode, the sequence 
in Fig. 8.48(a) results, which in shorthand form appears as in Fig. 8.48(b). 
The intermediary 2ND and scrolling steps were not included. This se-
quence certainly requires some care in entering the data in the required 
format, but it is still a rather neat, compact format.
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The resulting display in Fig. 8.49 confirms our solution.

rref Mode

Using the rref matrix mode the sequence of key entries is the following:

(a)

FIG. 8.48
Using the TI-89 calculator in the determinant mode to solve for the current I .3  (a) Key entries;  

(b) shorthand form.

det([11,23,15;23,10,0;28,25,0])/det([11,23,28;23,10,25;28,25,23]) ENTER 1.22

(b)

det

det

1.22E0

–3
10
–5

15
0
0

11
–3
–8

–3
10
–5

–8
–5
23

11
–3
–8

FIG. 8.49
The resulting display after 
properly entering the data 

for the current I .3

CLEAR Matrix rrefHOME

I3 = 1.22 A

FIG. 8.50
TI-89 solution (using rref) to calculate the current I3 of Fig. 8.47.

rref ( [ 11 , −3 , −8 , 15 ; −3 , 10 ; −5 , 0 ; −8 , −5 , 23 , 0 ] ) ENTER 1.22

FIG. 8.51
The shorthand form of the key entries of Fig. 8.51

Shorthand Form

8.6 NODAL ANALYSIS (GENERAL 
APPROACH)
The methods introduced thus far have all been to find the currents of the 
network. We now turn our attention to nodal analysis—a method that 
provides the nodal voltages of a network, that is, the voltage from the 
various nodes (junction points) of the network to ground. The method is 
developed through the use of Kirchhoff’s current law in much the same 
manner as Kirchhoff’s voltage law was used to develop the mesh analy-
sis approach.
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Although it is not a requirement, we make it a policy to make ground 
our reference node and assign it a potential level of zero volts. All the 
other voltage levels are then found with respect to this reference level. For 
a network of N nodes, by assigning one as our reference node, we have 
( )−N 1  nodes for which the voltage must be determined. In other words,

the number of nodes for which the voltage must be 
determined using nodal analysis is 1 less than the total 
number of nodes.

The result of the above is ( )−N 1  nodal voltages that need to be 
determined, requiring that ( )−N 1  independent equations be written to 
find the nodal voltages. In other words,

the number of equations required to solve for all the nodal 
voltages of a network is 1 less than the total number of 
independent nodes.

Since each equation is the result of an application of Kirchhoff’s 
current law, Kirchhoff’s current law must be applied ( )−N 1  times for 
each network.

Nodal analysis, like mesh analysis, can be applied by a series of care-
fully defined steps. The examples to follow explain each step in detail.

Nodal Analysis Procedure

1. Determine the number of nodes within the network.

2. Pick a reference node, and label each remaining node 
with a subscripted value of voltage: V , V ,1 2  and so on.

3. Apply Kirchhoff’s current law at each node except the ref-
erence. Assume that all unknown currents leave the node 
for each application of Kirchhoff’s current law. In other 
words, for each node, don’t be influenced by the direction 
that an unknown current for another node may have had. 
Each node is to be treated as a separate entity, indepen-
dent of the application of Kirchhoff’s current law to the 
other nodes.

4. Solve the resulting equations for the nodal voltages.

A few examples clarify the procedure defined by step 3. It initially 
takes some practice writing the equations for Kirchhoff’s current law 
correctly, but in time the advantage of assuming that all the currents 
leave a node rather than identifying a specific direction for each branch 
becomes obvious. (The same type of advantage is associated with  
assuming that all the mesh currents are clockwise when applying mesh 
analysis.)

As with mesh and branch-current analysis, a number of networks to 
be encountered in this section can be solved using a simple source con-
version. In Example 8.21, for instance, the network of Fig. 8.52 can be 
easily solved by converting the voltage source to a current source and 
combining the parallel current sources. However, as noted for mesh and 
branch-current analysis, this method can also be applied to more com-
plex networks where a source conversion is not possible.

I 1 A12 VR2

R1 6 V

E 24 V
+

–

FIG. 8.52
Example 8.21.
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EXAMPLE 8.21 Apply nodal analysis to the network in Fig. 8.52.

Solution:
Steps 1 and 2: The network has two nodes, as shown in Fig. 8.53. The 
lower node is defined as the reference node at ground potential (zero 
volts), and the other node as V ,1  the voltage from node 1 to ground.

Step 3: I1 and I 2 are defined as leaving the node in Fig. 8.54, and Kirch-
hoff’s current law is applied as follows:

= +I I I1 2

The current I 2 is related to the nodal voltage V1 by Ohm’s law:

= =I
V

R
V
R

R
2

2

1

2

2

The current I1 is also determined by Ohm’s law as follows:

=I
V

R
R

1
1

1

with = −V V ER 11

Substituting into the Kirchhoff’s current law equation

=
−

+I
V E

R
V
R

1

1

1

2

and rearranging, we have

I
V
R

E
R

V
R

V
R R

E
R

1 11

1 1

1

2
1

1 2 1

= − + = +






 −

or V
R R

E
R

1 1 11
1 2 1

+






 = +

Substituting numerical values, we obtain

 ( )Ω
+

Ω
=

Ω
+ = +V 1

6 
1

12 
24 V
6 

1 A 4 A 1 A1

( )Ω
=V 1

4 
5 A1

=V 20 V 1

The currents I1 and I 2 can then be determined by using the preceding 
equations:

=
−

= −
Ω

= −
Ω

I
V E

R
20 V 24 V

6 
4 V

6 1
1

1

= −0 67 A.  

The minus sign indicates that the current I1 has a direction opposite to 
that appearing in Fig. 8.54. In addition,

= =
Ω

=I
V
R

1 67 A20 V
12 

.  2
1

2

EXAMPLE 8.22 Apply nodal analysis to the network in Fig. 8.55.

Solution:
Steps 1 and 2: The network has three nodes, as defined in Fig. 8.56, with 
the bottom node again defined as the reference node (at ground potential, 
or zero volts), and the other nodes as V1 and V .2

I 1 A12 VR2

V1

(0 V)

E 24 V
+

–

R1 6 V

FIG. 8.53
Network in Fig. 8.52 with assigned nodes.

+

–
I 1 A12 VR2

R1 6 V

E 24 V

V1

(0 V)

I1

–

+

I2

+

–

FIG. 8.54
Applying Kirchhoff’s current law to the  

node V .1

R2

R1

4 V

R3

E 64 V

8 V
2 A

I

10 V
+

–

FIG. 8.55
Example 8.22.

R2

R1

4 V

R3

E 64 V

8 V
2 A

I

10 V

+

–

V2V1

+

–

FIG. 8.56
Defining the nodes for the network in 

Fig. 8.55.
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Step 3: For node V ,1  the currents are defined as shown in Fig. 8.57, and 
Kirchhoff’s current law is applied:

= + +I I I0 1 2

with =
−

I
V E

R1
1

1

and = =
−

I
V

R
V V

R
R

2
2

1 2

2

2

so that 
−

+
−

+ =
V E

R
V V

R
I 01

1

1 2

2

or − + − + =
V
R

E
R

V
R

V
R

I 01

1 1

1

2

2

2

and V
R R

V
R

I E
R

1 1 1
1

1 2
2

2 1

+






 −







 = − +

Substituting values gives

( ) ( )Ω
+

Ω
−

Ω
= − +

Ω
=V V1

8 
1

4 
1

4 
2 A 64 V

8 
6 A1 2

For node V ,2  the currents are defined as shown in Fig.  8.58, and 
Kirchhoff’s current law is applied:

 = +I I I2 3

with =
−

+I
V V

R
V
R

2 1

2

2

3

or = − +I
V
R

V
R

V
R

2

2

1

2

2

3

and V
R R

V
R

I1 1 1
2

2 3
1

2

+






 −







 =

Substituting values gives

( ) ( )Ω
+

Ω
−

Ω
=V V1

4 
1

10 
1

4 
2 A2 1

Step 4: The result is two equations and two unknowns:

( ) ( )
( ) ( )

Ω
+

Ω
−

Ω
=

−
Ω

+
Ω

+
Ω

=

V V

V V

1
8 

1
4 

1
4 

6 A

1
4 

1
4 

1
10 

2 A

1 2

1 2

which become

− =

− + =

V V

V V

0.375 0.25 6

0.25 0.35 2
1 2

1 2

Using determinants, we obtain

=V 37 82 V.  1

=V 32 73 V.  2

Since E is greater than V ,1  the current I1 flows from ground to V1 and is 
equal to

=
−

= −
Ω

=I
E V

R
3 27 A64 V 37.82 V

8 
.  R

1

1
1

R2

R1

4 V

R3

E 64 V

8 V
2 A

I

10 V

+ –

+

–

V2V1

I1

I2

+

–

FIG. 8.57
Applying Kirchhoff’s current law to 

node V .1

R2

R1

4 V

R3

E 64 V

8 V
2 A

I

10 V

+–

+

–

V2V1

I3

I2

+

–

FIG. 8.58
Applying Kirchhoff’s current law to 

node V .2

M08_BOYL0302_14_GE_C08.indd   333M08_BOYL0302_14_GE_C08.indd   333 28/02/23   12:36 PM28/02/23   12:36 PM



334 | | | METHODS OF ANALYSIS AND SELECTED TOPICS (dc) NA

The positive value for V2  results in a current I R3
 from node V2  to ground 

equal to

= = =
Ω

=I
V

R
V
R

3 27 A32.73 V
10 

.  R
R

3

2

3
3

3

Since V1 is greater than V ,2  the current I R2
 flows from V1 to V2  and is 

equal to

=
−

= −
Ω

=I
V V

R
1 27 A37.82 V 32.73 V

4 
.  R

1 2

2
2

The results of V 37.82 V1 =  and V 32.73 V2 =  confirm the theo-
retical solution.

EXAMPLE 8.23 Determine the nodal voltages for the network in 
Fig. 8.59.

4 A 2 VR1 R2 6 V

R3

2 A

12 V

FIG. 8.59
Example 8.23.

4 A
R1 2 A

2 V

I3

Reference

V1 V2

R2 6 V

R3  =  12 V

I1

FIG. 8.60
Defining the nodes and applying Kirchhoff’s current 

law to the node V .1

Solution:
Steps 1 and 2: As indicated in Fig. 8.60:

Step 3: Included in Fig. 8.60 for the node V .1  Applying Kirchhoff’s cur-
rent law gives

= +I I4 A 1 3

and  = +
−

=
Ω

+
−

Ω
V
R

V V
R

V V V
4 A

2  12 
1

1

1 2

3

1 1 2

Expanding and rearranging gives

( ) ( )Ω
+

Ω
−

Ω
=V V1

2 
1

12 
1

12 
4 A1 2

For node V ,2  the currents are defined as shown in Fig. 8.61.
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Applying Kirchhoff’s current law gives

= + +I I0 2 A3 2

and V V
R

V
R

V V V
2 A 0

12  6 
2 A 02 1

3

2

2

2 1 2�
−

+ + =
−

Ω
+

Ω
+ =

Expanding and rearranging gives

( ) ( )Ω
+

Ω
−

Ω
= −V V1

12 
1

6 
1

12 
2 A2 1

resulting in the following two equations and two unknowns:

 V V

V V

1
2 

1
12 

1
12 

4 A

1
12 

1
6 

1
12 

2 A

1 2

2 1

( ) ( )

( ) ( )
Ω

+
Ω

−
Ω

= +

Ω
+

Ω
−

Ω
= −











 
(8.1)

producing

V V

V V

V V

V V

7
12

1
12

4

1
12

3
12

2

7 48

1 3 24

1 2

1 2

1 2

1 2

− = +

− + = −











− =

− + = −

and V 6 V

48 1
24 3

7 1
1 3

120
20

 1 =

−
−

−
−

= = +

V 6 V

7 48
1 24

20
120
20

 2 =
− −

= − = −

Since V1 is greater than V ,2  the current through R3  passes from V1 to V .2  
Its value is

( )=
−

= − −
Ω

=
Ω

=I
V V

R
1 A6 V 6 V

12 
12 V
12 

 R
1 2

3
3

The fact that V1 is positive results in a current I R1
 from V1 to ground 

equal to

= = =
Ω

=I
V

R
V
R

3 A6 V
2 

 R
R

1

1

1
1

1

Finally, since V2  is negative, the current I R2
 flows from ground to V2  

and is equal to

= = = −
Ω

= −I
V

R
V
R

1 A6 V
6 

 R
R

2

2

2
2

2

4 A R1 2 A2 V

I3

Reference

V1 V2

R2
6 V

R3  =  12 V

I2

FIG. 8.61
Applying Kirchhoff’s current law to the node V .2
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Supernode

Occasionally, you may encounter voltage sources in a network that do 
not have a series internal resistance that would permit a conversion to a 
current source. In such cases, you have two options.

The simpler and more direct approach is to place a resistor in series 
with the source of a very small value compared to the other resistive 
elements of the network. For instance, if most of the resistors are 10 Ω 
or larger, placing a Ω1  resistor in series with a voltage source provides 
one level of accuracy for your answer. However, choosing a resistor 
of Ω0.1  or less increases the accuracy of your answer. You will never 
get an exact answer because the network has been modified by the 
introduced element. However, for most applications, the accuracy will 
be sufficiently high.

The other approach is to use the supernode approach described 
below. This approach provides an exact solution but requires some prac-
tice to become proficient.

Start as usual and assign a nodal voltage to each independent node 
of the network, including each independent voltage source as if it were 
a resistor or current source. Then mentally replace the independent volt-
age sources with short-circuit equivalents, and apply Kirchhoff’s current 
law to the defined nodes of the network. Any node including the effect 
of elements tied only to other nodes is referred to as a supernode (since 
it has an additional number of terms). Finally, relate the defined nodes to 
the independent voltage sources of the network, and solve for the nodal 
voltages. The next example clarifies the definition of supernode.

EXAMPLE 8.24 Determine the nodal voltages V1 and V2  in Fig. 8.62 
using the concept of a supernode.

Solution: Replacing the independent voltage source of 12 V with a 
short-circuit equivalent results in the network in Fig. 8.63. Even though 
the mental application of a short-circuit equivalent is discussed above, it 
would be wise in the early stage of development to redraw the network 
as shown in Fig. 8.63. The result is a single supernode for which Kirch-
hoff’s current law must be applied. Be sure to leave the other defined 
nodes in place, and use them to define the currents from that region of 
the network. In particular, note that the current I 3  leaves the supernode 
at V1 and then enters the same supernode at V .2  It must therefore appear 
twice when applying Kirchhoff’s current law, as shown below:

I Ii oΣ = Σ

+ = + + +I I I I6 A 4 A3 1 2 3

or  + = − =I I 6 A 4 A 2 A1 2

Then + =
V
R

V
R

2 A1

1

2

2

and 
Ω

+
Ω

=
V V

4  2 
2 A1 2

Relating the defined nodal voltages to the independent voltage source, 
we have

− = =V V E 12 V1 2

R1 4 V

R3

10 V
E

12 V

R2 2 V6 A            4 A

V2V1 + –

FIG. 8.62
Example 8.24.

R1 4 V

R3

10 V

R2 2 V6 A            4 A

V2V1

I1 I2

I3 I3 Supernode

FIG. 8.63
Defining the supernode for the network in 

Fig. 8.62.
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which results in two equations and two unknowns:

+ =
− =

V V

V V

0.25 0.5 2

1 12
1 2

1 2

Substituting gives

= +V V 121 2

( )+ + =V V0.25 12 0.5 22 2

and = − = −V0.75 2 3 12

so that = − = −V 1 33 V1
0.75

.  2

and V V 10 67 V12 V 1.33 V 12 V .  1 2= + = − + =

The current of the network can then be determined as follows:

I
V
R

2 67 A10.67 V
4 

.  1
1

1

↓= =
Ω

=

I
V
R

0 67 A1.33 V
2 

.  2
2

2

↑= =
Ω

=

( )
=

−
Ω

= − −
Ω

= Ω
Ω

=���I
V V

1 2 A
10 

10.67 V 1.33 V
10 

12 
10 

.  3
1 2

A careful examination of the network at the beginning of the analysis 
would have revealed that the voltage across the resistor R3  must be 12 V 
and I 3  must be equal to 1.2 A.

As part of the introduction to branch-current and mesh analysis, 
another approach that involved source conversions was introduced to 
demonstrate an alternative approach to solving networks with more than 
one source that are not in series or parallel. It was also pointed out the 
source conversion approach is not always an alternative but it did offer 
another way to approach such problems. The same is true for nodal anal-
ysis and will be demonstrated in the next example.

EXAMPLE 8.25 Find the nodal voltages for the network of Fig. 8.59 
using a source conversion approach and compare to the solutions of 
Example 8.23.

Solution: Converting the two current sources of Fig. 8.59 to voltage 
sources will result in the network of Fig. 8.64.

2 V 6 V12 V

R1 R3V1 V2
R2

+

– +

–

8 V 12 VI

FIG. 8.64
Network of Fig. 8.59 redrawn with equivalent voltage sources.
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The result is a continuous series circuit in which the current can be 
determined by:

I 8 V 12 V
2 12 6

20 V
20 

1 A= +
Ω + Ω + Ω

=
Ω

=

The nodal voltages are then

V I 6 V8 V 2  8 V 1 A 2  8 V 2 V  1 ( ) ( )( )= − Ω = − Ω = − =

V V I 6 V12  6 V 1 A 12  6 V 12 V  2 1 ( ) ( )( )= − Ω = − Ω = − = −

which match the results of Example 8.23.

8.7 NODAL ANALYSIS (FORMAT APPROACH)
A close examination of Eq. (8.1) appearing in Example 8.23 reveals that 
the subscripted voltage at the node in which Kirchhoff’s current law is 
applied is multiplied by the sum of the conductances attached to that 
node. Note also that the other nodal voltages within the same equation 
are multiplied by the negative of the conductance between the two nodes. 
The current sources are represented to the right of the equals sign with a 
positive sign if they supply current to the node and with a negative sign 
if they draw current from the node.

These conclusions can be expanded to include networks with any 
number of nodes. This allows us to write nodal equations rapidly 
and in a form that is convenient for the use of determinants. A major  
requirement, however, is that all voltage sources must first be converted 
to current sources before the procedure is applied. Note the parallelism 
between the following four steps of application and those required for 
mesh analysis in Section 8.5.

Nodal Analysis Procedure

1. Choose a reference node, and assign a subscripted volt-
age label to the −(N 1) remaining nodes of the network.

2. The number of equations required for a complete solution 
is equal to the number of subscripted voltages −(N 1). 
Column 1 of each equation is formed by summing the 
conductances tied to the node of interest and multiplying 
the result by that subscripted nodal voltage.

3. We must now consider the mutual terms, which, as noted 
in the preceding example, are always subtracted from the 
first column. It is possible to have more than one mutual 
term if the nodal voltage of current interest has an ele-
ment in common with more than one other nodal volt-
age. This is demonstrated in an example to follow. Each 
mutual term is the product of the mutual conductance 
and the other nodal voltage, tied to that conductance.

4. The column to the right of the equality sign is the alge-
braic sum of the current sources tied to the node of inter-
est. A current source is assigned a positive sign if it 
supplies current to a node and a negative sign if it draws 
current from the node.

5. Solve the resulting simultaneous equations for the 
desired voltages.
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Let us now consider a few examples.

EXAMPLE 8.26 Write the nodal equations for the network in Fig. 8.65.

2 A 6 VR1 R2 4 V

R3

3 A

3 V

I2I1

FIG. 8.65
Example 8.26.

Reference

R1 6 V

R3

3 V

I2 3 A R2 4 VI1 2 A

V1 V2

FIG. 8.66
Defining the nodes for the network in Fig. 8.65.

Solution:
Step 1: Redraw the figure with assigned subscripted voltages in Fig. 8.66.

 Steps 2 to 4: 

and − = −V V1
2

1
3

21 2

V V1
3

7
12

31 2− + =

V2: V2 V1
1

4 V
1

3 V
1

3 V
1 2 5 13 A

Supplying current
to node 2

Sum of
conductances

connected
to node 2

Mutual
conductance

V1: V1 V2
1

6 V
1

3 V
1

3 V
1 2 5 22 A

Drawing current
from node 1

Sum of
conductances

connected
to node 1

Mutual
conductance
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EXAMPLE 8.27 Find the voltage across the Ω3  resistor in 
Fig. 8.67 by nodal analysis.

V3V2 V

V1

4 A

–

+
4 V 3 V

10 V
0.1 A

V2

Reference

6 V

FIG. 8.68
Defining the nodes for the network in Fig. 8.67.

2 V

V3V8 V

6 V 10 V

4 V 3 V 1 V–

++

– +

–

FIG. 8.67
Example 8.27.

Solution: Converting sources and choosing nodes (Fig. 8.68), we 
have

V V

V V

1
2 

1
4 

1
6 

1
6 

4 A

1
10 

1
3 

1
6 

1
6 

0.1 A

1 2

2 1

( ) ( )
( ) ( )

Ω
+

Ω
+

Ω
−

Ω
= +

Ω
+

Ω
+

Ω
−

Ω
= −











V V

V V

11
12

1
6

4

1
6

3
5

0.1

1 2

1 2

− =

− + = −

resulting in

V V

V V

11 2 48

5 18 3
1 2

1 2

− = +

− + = −

and

= =
− −

−
−

= − +
−

= =ΩV V 1 10 V

11 48
5 3

11 2
5 18

33 240
198 10

207
188

.  2 3 

As demonstrated for mesh analysis, nodal analysis can also be a very 
useful technique for solving networks with only one source.
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EXAMPLE 8.28 Using nodal analysis, determine the potential 
across the Ω4  resistor in Fig. 8.69.

Solution: The reference and four subscripted voltage levels were 
chosen as shown in Fig.  8.70. Remember that for any difference in 
potential between V1 and V ,3  the current through and the potential drop 
across each Ω5  resistor are the same. Therefore, V4  is simply a  
mid-voltage level between V1 and V3  and is known if V1 and V3  are avail-
able. We will therefore not include it in a nodal voltage and will redraw 
the network as shown in Fig. 8.71. Understand, however, that V4  can be 
included if desired, although four nodal voltages will result rather than 
three as in the solution of this problem. We have

V V V V

V V V V

V V V V

:   1
2

1
2

1
10

1
2

1
10

0

:    1
2

1
2

1
2

1
2

3A

:   1
10

1
2

1
4

1
2

1
10

0

1 1 2 3

2 2 1 3

3 3 2 1

Ω
+

Ω
+

Ω






 −

Ω






 −

Ω






 =

Ω
+

Ω






 −

Ω






 −

Ω






 =

Ω
+

Ω
+

Ω






 −

Ω






 −

Ω






 =

which are rewritten as

− − =

− − =

− − =

V V V

V V V

V V V

1.1 0.5 0.1 0

0.5 0.5 3

0.85 0.5 0.1 0

1 2 3

2 1 3

3 2 1

For determinants, we have

2 V

3 A

2 V

4 V2 V

5 V 5 V

FIG. 8.69
Example 8.28.

2 V

3 A

2 V

4 V2 V

5 V 5 V

V1

V4

V3V2

(0 V)

FIG. 8.70
Defining the nodes for the network 

in Fig. 8.69.

2 V

3 A

2 V

4 V2 V

V1

10 V

(0 V)

V2 V3

FIG. 8.71
Reducing the number of nodes for the 
network in Fig. 8.69 by combining the 

two Ω5    resistors.

Before continuing, note the symmetry about the major diagonal c in 
the equation above. Recall a similar result for mesh analysis. Examples 
8.26 and 8.27 also exhibit this property in the resulting equations. Keep 
this in mind as a check on future applications of nodal analysis. We have

V V 4 65 V

1.1 0.5 0

0.5 1 3

0.1 0.5 0

 1.1 0.5 0.1

0.5 1 0.5

0.1 0.5 0.85

.  3 4= =

−

− +

− −

− −

− + −

− − +

=Ω

The next example has only one source applied to a ladder network.

1.1V1 2 0.5V2 2 0.1V3 5 0

20.1V1 2 0.5V2 1 0.85V3 5 0

20.5V1 1 1V2 2 0.5V3 5 3

c b a

b

a
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Solution: The nodal voltages are chosen as shown in Fig. 8.73. We 
have

Ω
+

Ω
+

Ω






 −

Ω






 + =

Ω
+

Ω
+

Ω






 −

Ω






 −

Ω






 =

Ω
+

Ω






 −

Ω






 + =

V V V

V V V V

V V V

: 1
12

1
6

1
4

1
4

0 20 A

: 1
4

1
6

1
1

1
4

1
1

0

: 1
1

1
2

1
1

0 0

1 1 2

2 2 1 3

3 3 2

and          V V0.5 0.25 0 201 2− + =

V V V0.25 17
12

1  01 2 3− + − =

V V0 1  1.5 02 3− + =

3 V 4 V 1 V

9 V

240 V 6 V 6 V 2 V
+

–

FIG. 8.72
Example 8.29.

12 V

V1

2 V20 A 6 V 6 V

(0 V)

1 V4 V

V2 V3

FIG. 8.73
Converting the voltage source to a current source and defining the 

nodes for the network in Fig. 8.72.

Note the symmetry present about the major axis. Application of  
determinants reveals that

V V 10 67 V.  3 2 = =Ω

8.8 BRIDGE NETWORKS
This section introduces the bridge network, a configuration that has a 
multitude of applications. In the following chapters, this type of network 
is used in both dc and ac meters. Electronics courses introduce these in the 
discussion of rectifying circuits used in converting a varying signal to one 
of a steady nature (such as dc). A number of other areas of application also 
require some knowledge of ac networks; these areas are discussed later.

The bridge network may appear in one of the three forms as indicated 
in Fig. 8.74. The network in Fig. 8.74(c) is also called a symmetrical 

EXAMPLE 8.29 Write the nodal equations and find the voltage 
across the Ω2  resistor for the network in Fig. 8.72.
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Mesh analysis (Fig. 8.76) yields

I I I

I I I

I I I

3 4 2 4 2 20 V

4 5 2 4 5 0

2 5 1 2 5 0

1 2 3

2 1 3

3 1 2

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

Ω + Ω + Ω − Ω − Ω =

Ω + Ω + Ω − Ω − Ω =

Ω + Ω + Ω − Ω − Ω =

and I I I

I I I

I I I

9 4 2 20

4 11 5 0

2 5 8 0

1 2 3

1 2 3

1 2 3

− − =

− + − =

− − + =

with the result that
I

I

I

4 A

2 67 A

2 67 A

 

.

.  

1

2

3

=

=

=

The net current through the Ω5  resistor is

I I I 2.67 A 2.67 A 0 A5  2 3= − = − =Ω

Nodal analysis (Fig. 8.77) yields

Ω
+

Ω
+

Ω






 −

Ω






 −

Ω






 =

Ω
+

Ω
+

Ω






 −

Ω






 −

Ω






 =

Ω
+

Ω
+

Ω






 −

Ω






 −

Ω






 =

V V V

V V V

V V V

  1
3

1
4

1
2

1
4

1
2

20
3

 A

  1
4

1
2

1
5

1
4

1
5

0

  1
5

1
2

1
1

1
2

1
5

0

1 2 3

2 1 3

3 1 2

and

Ω
+

Ω
+

Ω






 −

Ω






 −

Ω






 =

−
Ω







 +

Ω
+

Ω
+

Ω






 −

Ω






 =

−
Ω







 −

Ω






 +

Ω
+

Ω
+

Ω






 =

V V V

V V V

V V V

1
3

1
4

1
2

1
4

1
2

6.67 A

1
4

1
4

1
2

1
5

1
5

0

1
2

1
5

1
5

1
2

1
1

0

1 2 3

1  2 3

1 2 3

Note the symmetry of the solution.

lattice network if =R R2 3 and =R R .1 4  Fig. 8.74(c) is an excellent 
example of how a planar network can be made to appear nonplanar. For 
the purposes of investigation, let us examine the network in Fig. 8.75 
using mesh and nodal analysis.

(b)

R2R1

R3 R4

R5

R1 R2

R5

R3 R4

(a) (c)

R2

R1

R3

R4

R5

FIG. 8.74
Various formats for a bridge network.

Rs 3 V R2

2 V

R3

2 V
5 V

R5

1 V

R4

4 V

R1

E 20 V
+

–

FIG. 8.75
Standard bridge configuration.

Rs 3 V R2
2 V

R3
1 V

R1

E 20 V

I1

4 V
R5 I2

I35 V
2 V R4

+

–

FIG. 8.76
Assigning the mesh currents to the network 

in Fig. 8.75.

R1

R2R5

R3

R4

2 V

3 VI Rs

V2

V1

V3

4 V

5 V
2 V

1 V

20
3 A

(0 V)

FIG. 8.77
Defining the nodal voltages for the network 

in Fig. 8.75.
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TI-89 Calculator Solution

With the TI-89 calculator, the top part of the determinant is determined by 
the sequence in Fig. 8.78 (take note of the calculations within parentheses):

det([6.67,21/4,21/2;0,(1/411/211/5),21/5;0,21/5,(1/511/211/1)]) ENTER 10.51E0

FIG. 8.78
TI-89 solution for the numerator of the solution for V .1

det([(1/311/411/2),21/4,21/2;21/4,(1/411/211/5),21/5;21/2,21/5,(1/511/211/1)]) ENTER 1.31E0

FIG. 8.79
TI-89 solution for the denominator of the equation for V .1

10.51/1.31 8.02ENTER

FIG. 8.80
TI-89 solution for V .1

R1

R2

R3

R4

2 V

E

4 V

2 V

1 V

V  =  0

Rs 3 V

20 V

–

+
V1 V

+

–

FIG. 8.81
Substituting the short-circuit equivalent for 

the balance arm of a balanced bridge.

R1 2 V

–

+

4 V R2

R3 1 V2 V R4

Rs 3 V

E 20 V V1 V

+

–

FIG. 8.82
Redrawing the network in Fig. 8.81.

with the bottom of the determinant determined by the sequence in Fig. 8.79.

Finally, the simple division in Fig. 8.80 provides the desired result.

and =V 8 02 V.  1

Similarly, = =V V2 67 V 2 67 V.   and .  2 3

and the voltage across the Ω5   resistor is

= − = − =ΩV V V 0 V2.67 A 2.67 A  5 2 3

Since V 0 V,5  =Ω  we can insert a short in place of the 
bridge arm without affecting the network behavior. (Certainly 
V IR I (0) 0 V.= = ⋅ = ) In Fig. 8.81, a short circuit has replaced the 
resistor R ,5  and the voltage across R4 is to be determined. The network 
is redrawn in Fig. 8.82, and

V

2.67 V

2 1 20 V

2 1 4 2 3
  voltage divider rule

2
3

20 V

2
3

8
6

3

2
3

20 V

2
3

4
3

9
3

2 20 V

2 4 9

40 V

15

1

( )
( ) ( )

( ) ( )

( )

( )=
Ω Ω

Ω Ω + Ω Ω + Ω

=
+ +

=
+ +

=
+ +

= =

Ω

as obtained earlier.
We found through mesh analysis that I 0 A,5  =Ω  which has as 

its equivalent an open circuit as shown in Fig.  8.83(a). (Certainly 
( )= = ∞ Ω =I V R 0   0 A.) The voltage across the resistor R4 is 

again determined and compared with the result above.
The network is redrawn after combining series elements as shown in 

Fig. 8.83(b), and

( )( ) ( )
=

Ω Ω
Ω Ω + Ω

= Ω
Ω + Ω

=ΩV
6  3  20 V

6  3  3 
2  20 V
2  3 

8 V3 
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and V 2 67 V1  8 V
1  2 

8 V
3

.  1 
( )

= Ω
Ω + Ω

= =Ω

as above.
The condition V 0 V5  =Ω  or I 0 A5  =Ω  exists only for a particu-

lar relationship between the resistors of the network. Let us now derive 
this relationship using the network in Fig. 8.84, in which it is indicated 
that =I 0 A and =V 0 V. Note that resistor Rs  of the network in 
Fig. 8.83 does not appear in the following analysis.

The bridge network is said to be balanced when the condition of 
=I 0 A or =V 0 V exists.
If =V 0 V (short circuit between a and b), then

=V V1 2

and =I R I R1 1 2 2

or =I
I R
R1
2 2

1

In addition, when =V 0 V,

=V V3 4

and =I R I R3 3 4 4

If we set =I 0 A, then =I I3 1 and =I I ,4 2  with the result that 
the above equation becomes

=I R I R1 3 2 4

Substituting for I1 from above yields

 






 =

I R
R

R I R2 2

1
3 2 4

or, rearranging, we have

 =
R
R

R
R

1

3

2

4
 (8.2)

This conclusion states that if the ratio of R1 to R3  is equal to that of 
R2 to R ,4  the bridge is balanced, and =I 0 A or =V 0 V. A method 
of memorizing this form is indicated in Fig. 8.85.

R1

R2

R3

R4

2 V

E

4 V

2 V

1 V

Rs 3 V

20 V
–

+

I  =  0

(a)

V1 V

6 V

3 VRs

3 V

E 20 V

(b)

+

–

+

–

FIG. 8.83
Substituting the open-circuit equivalent for the balance arm of a 

balanced bridge.

R1

R3E

V  =  0
Rs

–

+
I  =  0

R4
V4

I4

I1V1–
+ I2

V2
–

+
R2

V3 –

+

I3

–+

+

–

FIG. 8.84
Establishing the balance criteria for a bridge 

network.

R1

R3

R2

R4

R1

R3

R2

R4
=

FIG. 8.85
A visual approach to remembering the 

balance condition.
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The purpose of this section is to develop the equations for converting 
from ∆ to Y, or vice versa. This type of conversion normally leads to a 
network that can be solved using techniques such as those described in 
Chapter 7. In other words, in Fig. 8.87, with terminals a, b, and c held 
fast, if the wye (Y) configuration were desired instead of the inverted 
delta ( )∆  configuration, all that would be necessary is a direct applica-
tion of the equations to be derived. The phrase instead of is emphasized 
to ensure that it is understood that only one of these configurations is to 
appear at one time between the indicated terminals.

It is our purpose (referring to Fig. 8.87) to find some expression for 
R ,1  R ,2  and R3  in terms of R ,A  R ,B  and R ,C  and vice versa, that will  
ensure that the resistance between any two terminals of the Y configuration  
will be the same with the ∆ configuration inserted in place of the Y con-
figuration (and vice versa). If the two circuits are to be equivalent, the 
total resistance between any two terminals must be the same. Consider 
terminals a-c in the ∆-Y configurations in Fig. 8.88.

For the example above, = Ω = Ω = Ω = ΩR R R R4  ,   2  ,   2  ,   1  ,1 2 3 4

and

= → Ω
Ω

= Ω
Ω

=
R
R

R
R

4 
2 

2 
1 

21

3

2

4

The emphasis in this section has been on the balanced situation. 
Understand that if the ratio is not satisfied, there will be a potential 
drop across the balance arm and a current through it. The methods just  
described (mesh and nodal analysis) will yield any and all potentials or 
currents desired, just as they did for the balanced situation.

8.9  Y-∆ (T-π) AND ∆-Y (π-T) CONVERSIONS
Circuit configurations are often encountered in which the resistors do 
not appear to be in series or parallel. Under these conditions, it may be 
necessary to convert the circuit from one form to another to solve for any 
unknown quantities if mesh or nodal analysis is not applied. Two circuit 
configurations that often account for these difficulties are the wye (Y)  
and delta ( )∆  configurations depicted in Fig. 8.86(a). They are also 
referred to as the tee (T) and pi ,π( )  respectively, as indicated in 
Fig. 8.86(b). Note that the pi is similar to an inverted delta.

RB

RC

RA

“ ”

R1
R2

R3

“ ”

RB RA

RC

“ ”

(a) (b)

R1 R2

R3

“ ”

FIG. 8.86
The Y (T) and π( )∆  configurations.

a

RARB
R3

R2R1

RC
b

c

“ ”

FIG. 8.87
Introducing the concept of ∆ Y-  or ∆Y -  

conversions.
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Let us first assume that we want to convert the ∆ (R ,A R ,B RC) to the 
Y (R ,1  R ,2  R3). This requires that we have a relationship for R ,1  R ,2  and 
R3  in terms of R ,A  R ,B  and R .C  If the resistance is to be the same bet-
ween terminals a-c for both the ∆ and the Y, the following must be true:

R RYa c a c- - ( )( ) = ∆

so that 
( )

( )
= + =

+
+ +

R R R
R R R

R R Ra c
B A C

B A C
- 1 3  (8.3a)

Using the same approach for a-b and b-c, we obtain the following 
relationships:

 
( )

( )
= + =

+
+ +

R R R
R R R

R R Ra b
C A B

C A B
- 1 2  (8.3b)

and 
( )

( )
= + =

+
+ +

R R R
R R R

R R Rb c
A B C

A B C
- 2 3  (8.3c)

Subtracting Eq. (8.3a) from Eq. (8.3b), we have

R R R R
R R R R
R R R

R R R R
R R R

C B C A

A B C

B A B C

A B C
1 2 1 3( ) ( )+ − + =

+
+ +







 −

+
+ +









so that − =
−

+ +
R R

R R R R
R R R

A C B A

A B C
2 3  (8.4)

Subtracting Eq. (8.4) from Eq. (8.3c) yields

so that   =
+ +

R
R R

R R R
2

2 B A

A B C
3

resulting in the following expression for R3  in terms of R ,A  R ,B  and RC :

 R
R R

R R R
A B

A B C
3 =

+ +
 (8.5a)

R R R R
R R R R
R R R

R R R R
R R R

A B A C

A B C

A C B A

A B C
2 3 2 3( ) ( )+ − − =

+
+ +







 −

−
+ +









R1 R2

R3

a b

c

Ra-c RB RA

RC

a b

c

Ra-c

RB RA

RC

a

b

c

Ra-c

External to path
of measurement

FIG. 8.88
Finding the resistance Ra c-  for the Y and ∆ configurations.
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Following the same procedure for R1 and R ,2  we have

 R
R R

R R R
B C

A B C
1 =

+ +
 (8.5b)

and R
R R

R R R
A C

A B C
2 =

+ +
 (8.5c)

Note that each resistor of the Y is equal to the product of the 
resistors in the two closest branches of the ∆ divided by the 
sum of the resistors in the ∆.

To obtain the relationships necessary to convert from a Y to a ∆, first 
divide Eq. (8.5a) by Eq. (8.5b):

( )

( ) ( )

( )
=

+ +
+ +

=
R
R

R R R R R

R R R R R
R
R

A B A B C

B C A B C

A

C

3

1

or =R
R R

RA
C 3

1

Then divide Eq. (8.5a) by Eq. (8.5c):

( )

( ) ( )

( )
=

+ +
+ +

=
R
R

R R R R R

R R R R R
R
R

A B A B C

A C A B C

B

C

3

2

or  =R
R R

RB
C3

2

Substituting for RA and RB  in Eq. (8.5c) yields

R
R R R R

R R R R R R R

R R R

R R R R 1

C C

C C C

C

2
3 1

3 1 3 2

3 1

3 2 3 1

( )
( ) ( )

( )
( ) ( )

=
+ +

=
+ +

Placing these over a common denominator, we obtain

( )
( ) ( )

=
+ +

=
+ +

R
R R R

R R R R R R R R

R R R
R R R R R R

C

C

2
3 1

1 2 1 3 2 3 1 2

2 3

1 2 1 3 2 3

and R
R R R R R R

RC
1 2 1 3 2 3

3

=
+ +

 (8.6a)

We follow the same procedure for RB  and RA:

 R
R R R R R R

RA
1 2 1 3 2 3

1

=
+ +

 (8.6b)

and R
R R R R R R

RB
1 2 1 3 2 3

2

=
+ +

 (8.6c)
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Note that the value of each resistor of the ∆ is equal to the 
sum of the possible product combinations of the resistances 
of the Y divided by the resistance of the Y farthest from the 
resistor to be determined.

Let us consider what would occur if all the values of a ∆ or Y were 
the same. If = =R R R ,A B C  Eq. (8.5a) would become (using RA 
only) the following:

=
+ +

=
+ +

= =R
R R

R R R
R R

R R R
R
R

R
3 3

A B

A B C

A A

A A A

A

A

A
3

2

and, following the same procedure,

R
R

R
R

3 3
A A

1 2= =

In general, therefore,

 R
R
3Y = ∆  (8.7)

or R R3 Y=∆  (8.8)

which indicates that for a Y of three equal resistors, the value of each  
resistor of the ∆ is equal to three times the value of any resistor of the Y.  
If only two elements of a Y or a ∆ are the same, the corresponding ∆ 
or Y of each will also have two equal elements. The converting of equa-
tions is left as an exercise for you.

The Y and the ∆ often appear as shown in Fig. 8.89. They are then 
referred to as a tee (T) and a pi π( ) network, respectively. The equations 
used to convert from one form to the other are exactly the same as those 
developed for the Y and ∆ transformation.

(a)

1

2

3

4

R3

“ ” “ ” “ ”

1

2

3

4

“ ”

(b)

R2R1 RC

RARB

FIG. 8.89
The relationship between the Y and   T configurations and the ∆ and 

π  configurations.

EXAMPLE 8.30 Convert the ∆ in Fig. 8.90 to a Y.

 Solution:

R
R R

R R R
3 Ω20  10 

30  20  10 
200 

60
 B C

A B C

1
31

( )( )=
+ +

= Ω Ω
Ω + Ω + Ω

= Ω =

R
R R

R R R
5 Ω30  10 

60 
300 

60
 A C

A B C
2

( )( )=
+ +

= Ω Ω
Ω

= Ω =

RB

RA

RCa
b

c

a

b

c

20 V
30 V

10 V

FIG. 8.90
Example 8.30.
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R
R R

R R R
10 Ω20  30 

60 
600 

60
 A B

A B C
3

( )( )=
+ +

= Ω Ω
Ω

= Ω =

The equivalent network is shown in Fig. 8.91.

R3 10 V

R1

31/3 V R2

5 V

a
ba

b

c
c

FIG. 8.91
The Y equivalent for the ∆ in 

Fig. 8.90.

R3 60 V

R1

60 V R2

60 V

a
ba

b

c
c

FIG. 8.92
Example 8.31.

RC

RB

180 V RA

a
ba

b

c
c

180 V

180 V

FIG. 8.93
The ∆ equivalent for the Y in 

Fig. 8.92.

RB
3 V

RA

3 V

ba

c

4 V 2 V

6 V “    ”RT

RC

FIG. 8.94
Example 8.32.

EXAMPLE 8.31 Convert the Y in Fig. 8.92 to a ∆.

Solution:

R
R R R R R R

R

R 180

60  60  60  60  60  60 
60 

3600  3600  3600 
60

10,800 
60

 

A

A

1 2 1 3 2 3

1

Ω

( )( ) ( )( ) ( )( )

=
+ +

= Ω Ω + Ω Ω + Ω Ω
Ω

= Ω + Ω + Ω = Ω

=

However, the three resistors for the Y are equal, permitting the use of Eq. 
(8.8) and yielding

R R3 3 60  180 Y ( )= = Ω = Ω∆

and = =R R 180 Ω B C

The equivalent network is shown in Fig. 8.93.

EXAMPLE 8.32 Find the total resistance of the network in Fig. 8.94, 
where R R3  ,   3  ,A B= Ω = Ω  and R 6  .C = Ω

Solution:

Ω

Ω

( )( )

( )( )

=
+ +

=
Ω Ω

Ω + Ω + Ω
=

Ω
=

=
+ +

=
Ω Ω

Ω
=

Ω
=

R
R R

R R R

R
R R

R R R

1.5

1.5

3 6

3 3 6

18

12

3 6

12

18

12

B C

A B C

A C

A B C

1

2

( )( )
=

+ +
= Ω Ω

Ω
= Ω =R

R R
R R R

0 75 Ω3  3 
12 

9 
12

.  A B

A B C
3

Two resistors of the ∆ were equal; 
therefore, two resistors of the Y will 
be equal.
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Replacing the ∆  by the Y, as shown in Fig. 8.95, yields

R

R 2 89 Ω

0.75  4  1.5  2  1.5 
4  1.5  2  1.5 

0.75  5.5  3.5 
5.5  3.5 

0.75  2.139 
.  

T

T

( )( )

( ) ( )

( )( )

= Ω + Ω + Ω Ω + Ω
Ω + Ω + Ω + Ω

= Ω + Ω Ω
Ω + Ω

= Ω + Ω
=

EXAMPLE 8.33 Find the total resistance of the network in Fig. 8.96.

 Solutions: Since all the resistors of the ∆ or Y are the same,  
Eqs. (8.7) and (8.8) can be used to convert either form to the other.

a. Converting the ∆ to a Y: Note: When this is done, the resulting ′d  
of the new Y will be the same as the point d shown in the original 
figure, only because both systems are “balanced.” That is, the resis-
tance in each branch of each system has the same value:

(Fig. 8.97): R
R
3

6 
3

2 Y = = Ω = Ω∆

RT

0.75 V

R1

ba

c

4 V 2 V

1.5 V 1.5 V

R3

R2

FIG. 8.95
Substituting the Y equivalent for 

the bottom ∆ in Fig. 8.94.

RT

6 V

a

bc

9 V
6 V

9 V 9 V

6 V

d

FIG. 8.96
Example 8.33.d 9

2 

2 2 

a

bc

6 

a

bc

6 

6 

FIG. 8.97
Converting the ∆ configuration of Fig. 8.96 to a  

Y configuration.

The network then appears as shown in Fig. 8.98. We have

R 3 27 Ω2 2  9 
2  9 

.  T
( )( )= Ω Ω

Ω + Ω






=

b. Converting the Y to a ∆:

(Fig. 8.99): R R3 3 9  27 Y ( )( )= = Ω = Ω∆

R 6  27 
6  27 

162 
33

4.91 T
( )( )′ = Ω Ω

Ω + Ω
= Ω = Ω

R
R R R

R R R
R R

R
R2

3
2

3T
T T T

T T T

T T

T

T( )

( )
=

′ ′ + ′
′ + ′ + ′

=
′ ′

′
=

′

3 27 Ω2 4.91 
3

.  
( )= Ω =

which checks with the previous solution.

8.10 APPLICATIONS
This section discusses the constant-current characteristic in the design 
of security systems, the bridge circuit in a common residential smoke 
detector, and the nodal voltages of a digital logic probe.

RT

9 

a

2 

d, d9

c b

9 9 

2 2 

FIG. 8.98
Substituting the Y configuration for the 

converted ∆ into the network in Fig. 8.96.

RT
6 V

a

bc

27 V
6 V

6 V

27 V
27 V

FIG. 8.99
Substituting the converted Y 

configuration into the network in 
Fig. 8.96.
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Constant-Current Alarm Systems

The basic components of an alarm system using a constant-current supply 
are provided in Fig. 8.100. This design is improved over that provided in 
Chapter 5 in the sense that it is less sensitive to changes in resistance in 
the circuit due to heating, humidity, changes in the length of the line to the 
sensors, and so on. The Ω1.5 k  rheostat (total resistance between points 
a and b) is adjusted to ensure a current of 5 mA through the single-series 
security circuit. The adjustable rheostat is necessary to compensate for 
variations in the total resistance of the circuit introduced by the resistance 
of the wire, sensors, sensing relay, and milliammeter. The milliammeter is 
included to set the rheostat and ensure a current of 5 mA.

Magnetic
switch

Window
foil

Door
switch

Sensing relay

1 kV

5 mA

E 10 V

Rheostat
0     1.5 kV

10 mA
movement

N/C

N/O 5 V @ 5 mA

To bell circuit

1 kV

a

b +

–

≅ 

FIG. 8.100
Constant-current alarm system.

If any of the sensors opens the current through the entire circuit drops 
to zero, the coil of the relay releases the plunger, and contact is made 
with the N/C position of the relay. This action completes the circuit for 
the bell circuit, and the alarm sounds. For the future, keep in mind that 
switch positions for a relay are always shown with no power to the net-
work, resulting in the N/C position in Fig. 8.100. When power is applied, 
the switch will have the position indicated by the dashed line. That is, 
various factors, such as a change in resistance of any of the elements 
due to heating, humidity, and so on, cause the applied voltage to redis-
tribute itself and create a sensitive situation. With an adjusted 5 mA, 
the loading can change, but the current will always be 5 mA and the 
chance of tripping reduced. Note that the relay is rated as 5 V at 5 mA, 
indicating that in the on state the voltage across the relay is 5 V and 
the current through the relay is 5 mA. Its internal resistance is therefore  

= Ω5  V 5 mA 1 k  in this state.
A more advanced alarm system using a constant current is illustrated 

in Fig. 8.101. In this case, an electronic system using a single transistor, 
biasing resistors, and a dc battery are establishing a current of 4 mA 
through the series sensor circuit connected to the positive side of an oper-
ational amplifier (op-amp). Transistors and op-amp devices may be new 
to you (these are discussed in detail in electronics courses), but for now 
you just need to know that the transistor in this application is being used 
not as an amplifier but as part of a design to establish a constant current 
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through the circuit. The op-amp is a very useful component of numerous 
electronic systems, and it has important terminal characteristics estab-
lished by a variety of components internal to its design. The LM2900 
operational amplifier in Fig.  8.101 is one of four found in the dual- 
in-line integrated circuit package appearing in Fig. 8.102(a). Pins 2, 3, 4, 
7, and 14 were used for the design in Fig. 8.101. Note in Fig. 8.102(b) 
the number of elements required to establish the desired terminal  
characteristics—the details of which will be investigated in your elec-
tronics courses.

In Fig.  8.101, the designed 15 V dc supply, biasing resistors, and 
transistor in the upper right corner of the schematic establish a constant  
4 mA current through the circuit. It is referred to as a constant-current 
source because the current remains fairly constant at 4 mA even though 
there may be moderate variations in the total resistance of the series sen-
sor circuit connected to the transistor. Following the 4 mA through the 
circuit, we find that it enters terminal 2 (positive side of the input) of 
the op-amp. A second current of 2 mA, called the reference current, is 
established by the 15 V source and resistance R and enters terminal 3 
(negative side of the input) of the op-amp. The reference current of 2 mA 
is necessary to establish a current for the 4 mA current of the network 
to be compared against. As long as the 4 mA current exists, the opera-
tional amplifier provides a “high” output voltage that exceeds 13.5 V, 
with a typical level of 14.2 V (according to the specification sheet for the  
op-amp). However, if the sensor current drops from 4 mA to a level 
below the reference level of 2 mA, the op-amp responds with a “low” 
output voltage that is typically about 0.1 V. The output of the operational 
amplifier then signals the alarm circuit about the disturbance. Note from 
the above that it is not necessary for the sensor current to drop to 0 mA 
to signal the alarm circuit—just a variation around the reference level 
that appears unusual.

One very important characteristic of this particular op-amp is that 
the input impedance to the op-amp is relatively low. This feature is  
important because you don’t want alarm circuits reacting to every volt-
age spike or turbulence that comes down the line because of external 
switching action or outside forces such as lightning. In Fig. 8.102(c), 
for instance, if a high voltage should appear at the input to the series 
configuration, most of the voltage would be absorbed by the series 

Magnetic
switch

Window
foil

Door
switch

2 mA

4 mA

+15 V

Rref

3

2

+15 V

+

–

LM2900

14

7
4

Output

Constant-
current
source

To alarm
bell circuit

+15 V

4 mA
RE

R2

R1

Op-Amp

FIG. 8.101
Constant-current alarm system with electronic components.

(a)

V+

14

200 mA

4
Output

–Input

+Input

3

2

7

(b)

+ Vhigh –

+

–

Rseries
V

+

–
0

Vlow
Rlow Op-Amp

(c)

7

INPUT 3+

On package
to identify
pin numbers

Dual-in-line package

V+ INPUT 4+ INPUT 4– OUTPUT 4 OUTPUT 3 INPUT 3–

14 13 12 11 10 9 8

4
–

+

2
–

+

–

+

–

+

3

1

1 2 3 4 5 6 7

INPUT 1+ INPUT 2+ INPUT 2– OUTPUT 2 GNDOUTPUT 1 INPUT 1–

TOP VIEW

FIG. 8.102
LM2900 operational amplifier: (a) dual-
in-line package (DIP); (b) components;  

(c) impact of low-input impedance.
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resistance of the sensor circuit rather than travel across the input termi-
nals of the operational amplifier—thus preventing a false output and an 
activation of the alarm.

Wheatstone Bridge Smoke Detector

The Wheatstone bridge is a popular network configuration whenever  
detection of small changes in a quantity is required. In Fig. 8.103(a), the 
dc bridge configuration uses a photoelectric device to detect the pres-
ence of smoke and to sound the alarm. A photograph of a photoelectric 
smoke detector appears in Fig. 8.103(b), and the internal construction of 
the unit is shown in Fig. 8.103(c). First, note that air vents are provided 

(a)

Balance
adjust

Rbalance

Reference

Sensitive
relay

Vbalance+ –

Smoke
detector

R

Lamp

N/C

N/O

To alarm
circuit

+

–

dc
power

a      b

FIG. 8.103
Wheatstone bridge smoke detector: (a) dc bridge configuration; (b) outside appearance; (c) internal construction.

Screen

LED
(light-emitting
diode)Test module socket

Recessed
test switch

(b)

Ceiling Reflector

Reference cell

Sealed chamber

Solid barrier

Light
source

Clear
plastic

Reflector

Vents for the
passage of air or smoke

Room

Smoke
detector

Photoconductive
cells

(Resistance a function
of applied light)

(c)
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to permit the smoke to enter the chamber below the clear plastic. The 
clear plastic prevents the smoke from entering the upper chamber but 
permits the light from the bulb in the upper chamber to bounce off the 
lower reflector to the semiconductor light sensor (a cadmium photocell) 
at the left side of the chamber. The clear plastic separation ensures that 
the light hitting the light sensor in the upper chamber is not affected  
by the entering smoke. It establishes a reference level to compare against 
the chamber with the entering smoke. If no smoke is present, the differ-
ence in response between the sensor cells will be registered as the nor-
mal situation. Of course, if both cells were exactly identical, and if the 
clear plastic did not cut down on the light, both sensors would establish 
the same reference level, and their difference would be zero. However, 
this is seldom the case, so a reference difference is recognized as the sign 
that smoke is not present. However, once smoke is present, there will be 
a sharp difference in the sensor reaction from the norm, and the alarm 
should sound.

In Fig. 8.103(a), we find that the two sensors are located on opposite 
arms of the bridge. With no smoke present, the balance-adjust rheostat is 
used to ensure that the voltage V between points a and b is zero volts and 
the resulting current through the primary of the sensitive relay is zero 
amperes. Taking a look at the relay, we find that the absence of a voltage 
from a to b leaves the relay coil unenergized and the switch in the N/O 
position (recall that the position of a relay switch is always drawn in the 
unenergized state). An unbalanced situation results in a voltage across 
the coil and activation of the relay, and the switch moves to the N/C po-
sition to complete the alarm circuit and activate the alarm. Relays with 
two contacts and one movable arm are called single-pole–double-throw 
(SPDT) relays. The dc power is required to set up the balanced situation, 
energize the parallel bulb so we know that the system is on, and provide 
the voltage from a to b if an unbalanced situation should develop.

Why do you suppose that only one sensor isn’t used, since its resis-
tance would be sensitive to the presence of smoke? The answer is that 
the smoke detector may generate a false readout if the supply voltage 
or output light intensity of the bulb should vary. Smoke detectors of the 
type just described must be used in gas stations, kitchens, dentist offices, 
and so on, where the range of gas fumes present may set off an ionizing- 
type smoke detector.

Schematic with Nodal Voltages

When an investigator is presented with a system that is down or not oper-
ating properly, one of the first options is to check the system’s specified 
voltages on the schematic. These specified voltage levels are actually 
the nodal voltages determined in this chapter. Nodal voltage is simply 
a special term for a voltage measured from that point to ground. The 
technician attaches the negative or lower-potential lead to the ground of 
the network (often the chassis) and then places the positive or higher- 
potential lead on the specified points of the network to check the nodal 
voltages. If they match, it means that section of the system is operating 
properly. If one or more fail to match the given values, the problem area 
can usually be identified. Be aware that a reading of −15.87 V  is sig-
nificantly different from an expected reading of +16 V if the leads have 
been properly attached. Although the actual numbers seem close, the dif-
ference is actually more than 30 V. You must expect some deviation from 
the given value as shown, but always be very sensitive to the resulting 
sign of the reading.

M08_BOYL0302_14_GE_C08.indd   355M08_BOYL0302_14_GE_C08.indd   355 28/02/23   12:38 PM28/02/23   12:38 PM



356 | | | METHODS OF ANALYSIS AND SELECTED TOPICS (dc) NA

The schematic in Fig. 8.104(a) includes the nodal voltages for a logic 
probe used to measure the input and output states of integrated circuit 
logic chips. In other words, the probe determines whether the measured 
voltage is one of two states: high or low (often referred to as “on” or 
“off” or 1 or 0). If the LOGIC IN terminal of the probe is placed on a 
chip at a location where the voltage is between 0 V and 1.2 V, the volt-
age is considered to be a low level, and the green LED lights (LEDs 
are light-emitting semiconductor diodes that emit light when current 
is passed through them). If the measured voltage is between 1.8 V and 
5 V, the reading is considered high, and the red LED lights. Any voltage  
between 1.2 V and 1.8 V is considered a “floating level” and is an indi-
cation that the system being measured is not operating correctly. Note 
that the reference levels mentioned above are established by the volt-
age divider network to the left of the schematic. The op-amps used are 
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1
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FIG. 8.104
Logic probe: (a) schematic with nodal voltages; (b) network with global connections; (c) photograph of 

commercially available unit.
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of such high input impedance that their loading on the voltage divider 
network can be ignored and the voltage divider network considered a 
network unto itself. Even though three 5.5 V dc supply voltages are  
indicated on the diagram, be aware that all three points are connected to 
the same supply. The other voltages provided (the nodal voltages) are 
the voltage levels that should be present from that point to ground if the 
system is working properly.

The op-amps are used to sense the difference between the reference 
at points 3 and 6 and the voltage picked up in LOGIC IN. Any difference 
results in an output that lights either the green or the red LED. Be aware, 
because of the direct connection, that the voltage at point 3 is the same 
as shown by the nodal voltage to the left, or 1.8 V. Likewise, the voltage 
at point 6 is 1.2 V for comparison with the voltages at points 5 and 2, 
which reflect the measured voltage. If the input voltage happened to be 
1.0 V, the difference between the voltages at points 5 and 6 would be  
0.2 V, which ideally would appear at point 7. This low potential at point 
7 would result in a current flowing from the much higher 5.5 V dc sup-
ply through the green LED, causing it to light and indicating a low con-
dition. By the way, LEDs, like diodes, permit current through them only 
in the direction of the arrow in the symbol. Also note that the voltage at 
point 6 must be higher than that at point 5 for the output to turn on the 
LED. The same is true for point 2 over point 3, which reveals why the 
red LED does not light when the 1.0 V level is measured.

Often it is impractical to draw the full network as shown in 
Fig. 8.104(b) because there are space limitations or because the same 
voltage divider network is used to supply other parts of the system. In 
such cases, you should recognize that points having the same shape are 
connected, and the number in the figure reveals how many connections 
are made to that point.

A photograph of the outside and inside of a commercially available 
logic probe is shown in Fig. 8.104(c). Note the increased complexity of the 
system is because of the variety of functions that the probe can perform.

PROBLEMS

SECTION 8.2 Current Sources

 1. For the network of Fig. 8.105:
a. Find the currents I1 and I .2

b. Determine the voltage V .s

 2. For the network of Fig. 8.106:
a. Determine the currents I1 and I .2

b. Calculate the voltages V2  and V .s

8 A2 V 8 VR2R1

I2I1

Vs

+

–

FIG. 8.105
Problem 1.

2.2 kV

3.3 kV

R1

R2

Vs

+

–

V2

+

–

25 mA

I1

I2

FIG. 8.106
Problem 2.
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R1

E I

3.0 kV

12 V
+

–
8 mA Vs

FIG. 8.107
Problem 3.

R2 3 V

1 V

R1

I 24 V

I2

Vs 2 A E

Is+

–

+

–

FIG. 8.108
Problem 4.

R1 10 V

0.8 A

I

16 V V3

+

–
R3

I2

R2 24 V

8 VR4

FIG. 8.109
Problem 5.

R1 2 V

6 V

4 A

I 2 V V3

+

–

R2

R3E 24 VVs

+

–

I1 Is

+

–

FIG. 8.110
Problem 6.

E 22 V

(a)

Rs

5.2 V

E 12 V

(b)

R2

R1

3.2 kV

1.2 kV
+

– +

–

 FIG. 8.111
Problem 7.

(a)

I 6 A
Rp

15 V

(b)

R2R1

18 mAI
3.0 kV 9.0 kV

FIG. 8.112
Problem 8.

 3. Find voltage Vs  (with polarity) across the ideal current 
source in Fig. 8.107.

 4. For the network in Fig. 8.108:
a. Find voltage V .s

b. Calculate current I .2

c. Find the source current I .s

 5. Find the voltage V3  and the current I 2 for the network in 
Fig. 8.109.

 6. For the network in Fig. 8.110:
a. Find the currents I1 and I .s

b. Find the voltages Vs  and V .3

 7. Convert the voltage sources in Fig. 8.111 to current sources.

 8. Convert the current sources in Fig. 8.112 to voltage sources.

 9. For the network in Fig. 8.113:
a. Find the current IL  through the 15 Ω  resistor.
b. Convert the current source to a voltage source, and 

recalculate the current through the 15 Ω  resistor. Did 
you obtain the same result?

Rp 95V

12 mA

RL 15 V

IL

Is

FIG. 8.113
Problem 9.

 10. For the configuration of Fig. 8.114:
a. Convert the current source to a voltage source.
b. Combine the two series voltage sources into one source.
c. Calculate the current through the 95 Ω  resistor.
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R1

12 V

R2

6 V

R3 95 VE 18 V

I3

I  =  2 A+

–

FIG. 8.114
Problem 10.

Vs 6.2 A 1.2 A
0.6 A

+

–

R 8 V

FIG. 8.115
Problem 11.

9 A

I1

R1 4 V R2 6 V 6 A

+

–
Vs

FIG. 8.116
Problem 12.

R1 3 V

E1 9 V

R2 2 V

E2 20 V

R3 6 V

I3

b

a

Vab

+

–+

–

FIG. 8.117
Problems 13 and 37.

 11. For the network in Fig. 8.115:
a. Replace all the current sources by a single current 

source.
b. Find the source voltage V .s

 12. Find the voltage Vs  and the current I1 for the network in 
Fig. 8.116.

 13. Convert the voltage sources in Fig. 8.117 to current sources.
a. Find the resultant current source.
b. Find the voltage Vab  and the polarity of points a and b.
c. Find the magnitude and direction of the current I .3

 14. For the network in Fig. 8.118, reduce the network to a sin-
gle current source, and determine the voltage V .1

+

–
V1 R1

R2

R3

1 kV

4.7 kV

4 mA

2 mA

8 mA

3.3 kV 

FIG. 8.118
Problem 14.

SECTION 8.3 Branch-Current Analysis

 15. a. Using branch-current analysis, find the magnitude and 
direction of the current through each resistor for the net-
work of Fig. 8.119.

b. Find the voltage V .a

R3 8 V 6 V

R

a

2

2 V

E2

R1

4 V

4 V E1

+

–

+

–

FIG. 8.119
Problems 15, 20, and 32.

 16. For the network of Fig. 8.120:
a. Determine the current through the Ω12   resistor using 

branch-current analysis.
b. Convert the two voltage sources to current sources, and 

then determine the current through the Ω12   resistor.
c. Compare the results of parts (a) and (b).

R2 3 V

12 VE1

R1 4 V

15 VE2

R3 12 V

+

– +

–

FIG. 8.120
Problems 16, 21, and 33.
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R1 5.6 kV

40 V

R2

3.3 kV

E2

15 VE1 25 VE3

R3 2.2 kV

+

–

+

–

+

–

FIG. 8.121
Problems 17, 22, and 34.

9 V

E1

6 V

E2

R2

8.2 kV

R

a

3 9.1 kV

R4

1.1 kV

R1

1.2 kV

+ –

+–

FIG. 8.122
Problems 18 and 23.

E2 12 VE1 15 V R4 5 VR2 1 V

R1

2 V

R3

4 V

R5

3 V
+

–

+

–

FIG. 8.123
Problems 19, 24, and 35.

R2 6.8 kV

E2 4 V

R5 1 kV

E1 12 V

R1 3.3 kV

2.2 kV

R4

R3 4.7 kV

+

–

+

–

FIG. 8.124
Problems 25 and 36.

R5

4 V

R4

4 V

4 V

R1

7 V
R6

3 V

R2

R3

E1

15 V

10 V

+
–

FIG. 8.125
Problem 26.

 *17. Using branch-current analysis, find the current through 
each resistor for the network of Fig. 8.121. The resistors are 
all standard values.

*18. a. Using branch-current analysis, find the current through 
the Ω9.1 k  resistor in Fig. 8.122. Note that all the resis-
tors are standard values.

b. Using the results of part (a), determine the voltage V .a

*19. For the network in Fig. 8.123:
a. Write the equations necessary to solve for the branch 

currents.
b. By substitution of Kirchhoff’s current law, reduce the 

set to three equations.
c. Rewrite the equations in a format that can be solved 

using third-order determinants.
d. Solve for the branch current through the resistor R .3

SECTION 8.4 Mesh Analysis (General Approach)

 20. a. Using the general approach to mesh analysis, determine 
the current through each resistor of Fig. 8.119.

b. Using the results of part (a), find the voltage V .a

 21. a. Using the general approach to mesh analysis, determine 
the current through each voltage source in Fig. 8.120.

b. Using the results of part (a), find the power delivered by 
the source E2 and to the resistor R .3

 22. a. Using the general approach to mesh analysis, determine 
the current through each resistor of Fig. 8.121.

b. Using the results of part (a), determine the voltage 
across the Ω3.3 k  resistor.

 23. a. Using the general approach to mesh analysis, determine 
the current through each resistor of Fig. 8.122.

b. Using the results of part (a), find the voltage V .a

*24. a. Determine the mesh currents for the network of 
Fig. 8.123 using the general approach.

b. Through the proper use of Kirchhoff’s current law, 
reduce the resulting set of equations to three.

c. Use determinants to find the three mesh currents.
d. Determine the current through each source, using the 

results of part (c).

*25. a. Write the mesh equations for the network of Fig. 8.124 
using the general approach.

b. Using determinants, calculate the mesh currents.
c. Using the results of part (b), find the current through 

each source.

*26. a.  Write the mesh equations for the network of Fig. 8.125 
using the general approach.

b. Using determinants, calculate the mesh currents.
c. Using the results of part (b), calculate the current 

through the resistor R .5
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9 V

6.8 kV

4.7 kV

6 V

1.1 kV

22 kV

8.2 kV2.2 kV

1.2 kV

+

–

+

–

FIG. 8.126
Problems 27 and 38.

*27. a. Write the mesh currents for the network of Fig. 8.126 
using the general approach.

b. Using determinants, calculate the mesh currents.
c. Using the results of part (b), find the power delivered by 

the 6 V source.

*28. a. Redraw the network of Fig. 8.127 in a manner that will 
remove the crossover.

b. Write the mesh equations for the network using the gen-
eral approach.

c. Calculate the mesh currents for the network.
d. Find the total power delivered by the two sources.

R1

2 V

1 V

R3

8 V

6 V

E2

R4

4 V

6 V

E1

R2

+–

+–

FIG. 8.127
Problem 28.

*29. For the transistor configuration in Fig. 8.128:
a. Solve for the currents I ,B  I ,C  and I ,E  using the fact that 

=V 0.7 VBE  and =V 8 V.CE

b. Find the voltages V ,B  V ,C  and VE  with respect to 
ground.

c. What is the ratio of output current IC  to input current I B?  
[Note: In transistor analysis, this ratio is referred to as 
the dc beta of the transistor β( ).dc ]

IE

VCC 20 V

RB

270 kV

RC

2.2 kV

RE 510 V

IC

8 V

E

C

0.7 V

B

+ –

–

VCC 20 V

+

IB +

–+

–

FIG. 8.128
Problem 29.

*30. Using the supermesh approach, find the current through 
each element of the network of Fig. 8.129.

4 V

24 V

6 V

10 V

6 A
12 V
+

–

+

–

FIG. 8.129
Problem 30.

1 V

6 V

20 V

3 A
4 V

8 V

8 A

+

–

FIG. 8.130
Problem 31.

*31. Using the supermesh approach, find the current through 
each element of the network of Fig. 8.130.

SECTION 8.5 Mesh Analysis (Format Approach)

 32. a. Using the format approach to mesh analysis, write the 
mesh equations for the network of Fig. 8.119.

b. Solve for the current through the Ω8   resistor.

 33. a. Using the format approach to mesh analysis, write the 
mesh equations for the network of Fig. 8.120.

b. Solve for the current through the Ω3   resistor.
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 34. a. Using the format approach to mesh analysis, write the 
mesh equations for the network of Fig. 8.121 with three 
independent sources.

b. Find the current through each source of the network.

*35. a.  Write the mesh equations for the network of Fig. 8.123 
using the format approach to mesh analysis.

b. Solve for the three mesh currents, using determinants.
c. Determine the current through the Ω1   resistor.

*36. a. Write the mesh equations for the network of Fig. 8.124 
using the format approach to mesh analysis.

b. Solve for the three mesh currents, using determinants.
c. Find the current through each source of the network.

 37. a. Write the mesh equations for the network of Fig. 8.117 
using the format approach.

b. Find the voltage Vab  using the result of part (a).

*38. a. Write the mesh equations for the network of Fig. 8.126 
using the format approach to mesh analysis.

b. Solve for the four mesh currents using determinants.
c. Find the voltage at the common connection at the center 

of the diagram.

*39. a. Write the mesh equations for the network of Fig. 8.131 
using the format approach to mesh analysis.

b. Use determinants to determine the mesh currents.
c. Find the voltages Va  and V .b

d. Determine the voltage V .ab

R1 1 V

10 V

R3

8 V
R4

2 V

R2

E1

E2

12 V
20 V

a b

+

–

+–

FIG. 8.131
Problems 39 and 57.

2 V 5 A 4 V3 A

8 V

R3

R2I2I1R1

FIG. 8.132
Problems 41 and 52.

 40. a. Write the mesh equations for the network of Fig. 8.127 
using the format approach.

b. Use determinants to calculate the mesh current through 
the resistor R .1

c. Find the voltage across the 1 Ω resistor.

SECTION 8.6 Nodal Analysis (General Approach)

 41. a. Write the nodal equations using the general approach 
for the network of Fig. 8.132.

b. Find the nodal voltages using determinants.
c. Use the results of part (b) to find the voltage across the 

Ω8   resistor.
d. Use the results of part (b) to find the current through the 

Ω2   and Ω4   resistors.

 42. a. Write the nodal equations using the general approach 
for the network of Fig. 8.133.

b. Find the nodal voltages using determinants.
c. Using the results of part (b), calculate the current 

through the Ω20   resistor.

8 V 10 A 5 V

6 V

R2

R420 VR3I1R1

54 V
+ –

FIG. 8.133
Problems 42 and 53.

R4
5 V

I2

R3
20 VR1 2 V

4 A
I1

R2

4 V

2 A

FIG. 8.134
Problem 43.

 43. 

*44. a. Write the nodal equations for the network of Fig. 8.135 
using the general approach.

b. Using determinants, solve for the nodal voltages.
c. Determine the magnitude and polarity of the voltage 

across each resistor.

a. Write the nodal equations using the general approach 
for the network of Fig. 8.134.

b.  Find the nodal voltages using determinants.
c. What is the total power supplied by the current sources?
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R2
4 V

I26 AI1

R4

2 V

R1 5 V 7 A

R3

3 V

R5 8 V

FIG. 8.135
Problem 44.

*45. a. Write the nodal equations for the network of Fig. 8.136 
using the general approach.

b. Solve for the nodal voltages using determinants.
c. Find the current through the Ω6   resistor.

R28 V

R3

4 V

4 A I2
R4 6 VR13 V

5 A I1

E

12 V

+–

FIG. 8.136
Problem 45.

I1
15 V 3 AE1

R1 3 V

R24 V

R3
6 V

R4

5 V

+

–

FIG. 8.137
Problems 46 and 58.

2 A

I1

R1 9 V

R5

20 V

R4

20 V

R24 V

E116 V
+

–

R3 18 V

FIG. 8.138
Problems 47 and 54.

2 V
5 A

9 V

2 V

2 V 4 V

2 V

7 V

FIG. 8.139
Problems 48 and 55.*46. a. Write the nodal equations for the network of Fig. 8.137 

using the general approach.
b. Solve for the nodal voltages using determinants.
c. Find the voltage across the Ω5   resistor.

*47. a. Write the nodal equations for the network of Fig. 8.138 
using the general approach.

b. Solve for the nodal voltages using determinants.
c. Find the voltage across the resistor R .4

*48. a.  Write the nodal equations for the network of Fig. 8.139 
using the general approach.

 b. Find the nodal voltages using determinants.
 c. Determine the current through the Ω9   resistor.

*49. Write the nodal equations for the network of Fig. 8.140 
using the general approach and find the nodal voltages. 
Then calculate the current through the Ω4   resistor.

4 V6 V

2 A

5 A

2 V

5 V

FIG. 8.140
Problems 49 and 56.

*50. Using the supernode approach, determine the nodal volt-
ages for the network of Fig. 8.141.
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10 V

6 V2 A 12 V4 V

24 V
+ –

FIG. 8.141
Problem 50.

40 V3 A

16 V

4 A20 V

+–

FIG. 8.142
Problem 51.

Rs 6 V
R5

5 V

R1

2 V

10 V

R3

R4

R2

2 V

20 V
18 VE

+

–

FIG. 8.143
Problems 59 and 60.

*51. Using the supernode approach, determine the nodal volt-
ages for the network of Fig. 8.142.

 58. For the network of Fig. 8.137:
a. Convert the voltage source to a current source.
b. Determine the nodal voltages of the network.
c. Calculate the current through the Ω5   resistor.

SECTION 8.8 Bridge Networks

 59. For the bridge network in Fig. 8.143:
a. Write the mesh equations using the format approach.
b. Determine the current through R .5

c. Is the bridge balanced?
d. Is Eq. (8.2) satisfied?

SECTION 8.7 Nodal Analysis (Format Approach)

  52. a. Determine the nodal voltages of Fig. 8.132 using the 
format approach to nodal analysis.

b. Then find the voltage across each current source.

 53. a. Convert the voltage source of Fig. 8.133 to a current 
source, and then find the nodal voltages using the for-
mat approach to nodal analysis.

b. Use the results of part (a) to find the voltage across the 
Ω6   resistor of Fig. 8.133.

*54. a. Convert the voltage source of Fig. 8.138 to a current 
source, and then apply the format approach to nodal 
analysis to find the nodal voltages.

b. Use the results of part (a) to find the current through the 
Ω4   resistor.

*55. a. Apply the format approach of nodal analysis to the net-
work of Fig. 8.139 to find the nodal voltages.

b. Use the results of part (a) to find the current through the 
Ω9   resistor.

*56. a. Using the format approach, find the nodal voltages of 
Fig. 8.140 using nodal analysis.

b. Using the results of part (a), find the current through the 
Ω2   resistor.

*57. a. Convert the voltage sources of Fig.  8.131 to current 
sources, and then find the nodal voltages of the resulting 
network using the format approach to nodal analysis.

b. Using the results of part (a), find the voltage between 
points a and b.

 60. For the network in Fig. 8.143:
a. Write the nodal equations using the format approach.
b. Determine the voltage across R .5

c. Is the bridge balanced?
d. Is Eq. (8.2) satisfied?

 61. For the bridge in Fig. 8.144:
a. Write the mesh equations using the format approach.
b. Determine the current through R .5

c. Is the bridge balanced?
d. Is Eq. (8.2) satisfied?

Rs 2 kV

R5

36 kV

R1

33 kV

R4

R2

56 kV

5.6 kV

R3

3.3 kV

I
20 mA

FIG. 8.144
Problems 61 and 62.

 62. For the bridge network in Fig. 8.144:
a. Write the nodal equations using the format approach.
b. Determine the current across R .5

c. Is the bridge balanced?
d. Is Eq. (8.2) satisfied?
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 *63. Determine the current through the source resistor Rs  in 
Fig. 8.145 using either mesh or nodal analysis. Explain why 
you chose one method over the other.

R1 2 kV

E

Rs 1 kV 2 kV R2

15 V R3 2 kV 2 kVR4

R5

2 kV+

–

Is

FIG. 8.145
Problem 63.

20 V
10 V

R2

R5
4 A

Rs
R4

20 V
R1

R3

20 V

10 V
10 VI

Is

FIG. 8.146
Problem 64.

20 V

I
2 V

4 V

1 V

2 V

3 V

+

–

FIG. 8.147
Problem 65.

8 V

I

4.7 kV

6.8 kV

1.1 kV

6.8 kV 6.8 kV

+

–

FIG. 8.148
Problem 66.

*64. Repeat Problem 63 for the network of Fig. 8.146.

SECTION 8.9 Y-∆ (T-π ) and ∆-Y (π-T) Conversions

 65. Using a ∆-Y or ∆Y-  conversion, find the current I for the 
network of Fig. 8.147.

 66. Convert the ∆ of Ω6.8 k  resistors in Fig. 8.148 to a T con-
figuration and find the current I.

80 V

I

4 kV

4 kV

6 kV

4 kV
+

–

FIG. 8.149
Problem 67.

I

18 V

6 V 6 V

6 V
18 V18 V60 V

+

–

FIG. 8.150
Problem 68.

E1 10 V E2 5 VR3 6 kV

R2

6 kV

R1

6 kV+

–

+

–

FIG. 8.151
Problem 69.

 67. For the network of Fig. 8.149, find the current I without 
using ∆Y-  conversion.

 68. a. Using a ∆Y-  conversion, find the current I in the  
network of Fig. 8.150.

b. What other method could be used to find the current I?

 69. The network of Fig. 8.151 is very similar to the two-source 
networks solved using mesh or nodal analysis. We will now 
use a ∆Y-  conversion to solve the same network. Find the 
source current I s1

 using a ∆Y-  conversion.
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GLOSSARY

Branch-current analysis A technique for determining the branch  
currents of a multiloop network.

Bridge network A network configuration typically having a  
diamond appearance in which no two elements are in series 
or parallel.

 Current sources Sources that supply a fixed current to a net-
work and have a terminal voltage dependent on the network to 
which they are applied.

Delta ,( )∆  pi π( ) configuration A network structure that con-
sists of three branches and has the appearance of the Greek 
letter delta ( )∆  or pi π( ).

Determinants method A mathematical technique for finding 
the unknown variables of two or more simultaneous linear 
equations.

Mesh analysis A technique for determining the mesh (loop) cur-
rents of a network that results in a reduced set of equations 
compared to the branch-current method.

Mesh (loop) current A labeled current assigned to each distinct 
closed loop of a network that can, individually or in combina-
tion with other mesh currents, define all of the branch currents 
of a network.

Nodal analysis A technique for determining the nodal voltages 
of a network.

Node A junction of two or more branches in a network.
Reduced row echelon form (rref) A mathematical technique 

for finding the unknown variables of two or more simulta-
neous linear equations. A corresponding matrix solution is 
often found by utilizing the built-in rref capability of the TI-89 
Texas Instruments calculator.

Supermesh current A current defined in a network with ideal 
current sources that permits the use of mesh analysis.

Supernode A node defined in a network with ideal voltage 
sources that permits the use of nodal analysis.

Wye (Y), tee (T) configuration A network structure that con-
sists of three branches and has the appearance of the capital 
letter Y or T.

E 20 V
R5

Rs 1 kV

Is

R4 3 kV

R3

3 kV

R1 2 kV R2 2 kV

3 kV

+

–

FIG. 8.152
Problem 70.

 70. a. Replace the π  configuration in Fig. 8.152 (composed of 
Ω3 k  resistors) with a T configuration.

b. Solve for the source current I .s

*71. Using ∆Y-  or ∆-Y conversion, determine the total resis-
tance of the network in Fig. 8.153.

RT

9 V 9 V

9 V

9 V
9 V

9 V9 V

9 V

a b

c
d

h g

fe

FIG. 8.153
Problem 71.
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9  Network Theorems

9.1 INTRODUCTION
This chapter introduces a number of theorems that have application throughout the field of 
electricity and electronics. Not only can they be used to solve networks such as encountered 
in the previous chapter, but they also provide an opportunity to determine the impact of a par-
ticular source or element on the response of the entire system. In most cases, the network to be 
analyzed and the mathematics required to find the solution are simplified. All of the theorems 
appear again in the analysis of ac networks. In fact, the application of each theorem to ac net-
works is very similar in content to that found in this chapter.

The first theorem to be introduced is the superposition theorem, followed by Thévenin’s 
theorem, Norton’s theorem, and the maximum power transfer theorem. The chapter concludes 
with a brief introduction to Millman’s theorem and the substitution and reciprocity theorems.

9.2 SUPERPOSITION THEOREM
Introduction

The superposition theorem is unquestionably one of the most powerful in this field. It has 
such widespread application that people often apply it without recognizing that their maneu-
vers are valid only because of this theorem.

In general, the theorem can be used to do the following:

• Analyze networks such as introduced in the last chapter that have two or 
more sources that are not in series or parallel.

• Reveal the effect of each source on a particular quantity of interest.

•  Become familiar with the superposition theorem 
and its unique ability to separate the impact of 
each source on the quantity of interest.

• Be able to apply Thévenin’s theorem to reduce any 
two-terminal, series-parallel network with any 
number of sources to an equivalent circuit consisting 
of a single voltage source and a series resistor.

• Become familiar with Norton’s theorem and how it 
can be used to reduce any two-terminal, series-
parallel network with any number of sources to an 
equivalent circuit consisting of a single current 
source and a parallel resistor.

• Understand how to apply the maximum power 
transfer theorem to determine the maximum 
power to a load and to choose a load that will 
receive maximum power.

• Become aware of the reduction powers of 
Millman’s theorem and the powerful implications 
of the substitution and reciprocity theorems.

 Objectives
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• For sources of different types (such as dc and ac, which 
affect the parameters of the network in a different manner) 
and apply a separate analysis for each type, with the total 
result simply the algebraic sum of the results.

The first two areas of application are described in detail in this section. 
The last are covered in the discussion of the superposition theorem in the 
ac portion of the text.

Determining Impact of Each Source

The superposition theorem states the following:

The current through, or voltage across, any element of a 
network is equal to the algebraic sum of the currents or 
voltages produced independently by each source.

This theorem, therefore, allows us to find a solution for a current or volt-
age using only one source at a time. Once we have the solution for each 
source, we can combine the results to obtain the total solution. The term 
algebraic appears in the above theorem statement because the currents 
resulting from the sources of the network can have different directions, 
just as the resulting voltages can have opposite polarities.

Removing Impact of Voltage Sources

If we are to consider the effects of each source, the other sources obviously 
must be removed. Setting a voltage source to zero volts is like placing a 
short circuit across its terminals as shown in Fig. 9.1(a).

In total, therefore, when removing a voltage source from a 
network schematic, replace it with a direct connection (short 
circuit) of zero ohms. Any internal resistance associated with 
the source must remain in the network.

Removing Impact of Current Sources

Setting a current source to zero amperes is like replacing it with an open 
circuit as shown in Fig. 9.1(b).

In total, therefore, when removing a current source from a 
network schematic, replace it by an open circuit of infinite 
ohms. Any internal resistance associated with the source 
must remain in the network.

Rint

E

Rint

(a)

I Rint Rint

(b)

FIG. 9.1 
Removing a voltage source and a current source to permit the 

application of the superposition theorem.

Finding the Total Solution

Since the effect of each source will be determined 
independently, the number of networks to be analyzed will 
equal the number of sources.
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If a particular current of a network is to be determined, the contribution 
to that current must be determined for each source. When the effect of 
each source has been determined, those currents in the same direction 
are added, and those having the opposite direction are subtracted; the 
algebraic sum is being determined. The total result is the direction of the 
larger sum and the magnitude of the difference.

Similarly, if a particular voltage of a network is to be determined, the 
contribution to that voltage must be determined for each source. When 
the effect of each source has been determined, those voltages with the 
same polarity are added, and those with the opposite polarity are sub-
tracted; the algebraic sum is being determined. The total result has the 
polarity of the larger sum and the magnitude of the difference.

Superposition cannot be applied to power effects because the power 
is related to the square of the voltage across a resistor or the current 
through a resistor. The squared term results in a nonlinear (a curve, not a 
straight line) relationship between the power and the determining current 
or voltage. For example, doubling the current through a resistor does not 
double the power to the resistor (as defined by a linear relationship) but, 
in fact, increases it by a factor of 4 (due to the squared term). Tripling the 
current increases the power level by a factor of 9. Example 9.1 demon-
strates the differences between a linear and a nonlinear relationship.

A few examples clarify how sources are removed and total solutions 
obtained.

EXAMPLE 9.1

a. Using the superposition theorem, determine the current through 
resistor R2 for the network in Fig. 9.2.

b. Demonstrate that the superposition theorem is not applicable to 
power levels.

Solutions:

a. In order to determine the effect of the 36 V voltage source, the cur-
rent source must be replaced by an open-circuit equivalent as shown 
in Fig. 9.3. The result is a simple series circuit with a current equal to

′ = =
+

=
Ω + Ω

=
Ω

=I E
R

E
R R

36 V
12  6 

36 V
18 

2 A
T

2
1 2

Examining the effect of the 9 A current source requires replacing 
the 36 V voltage source by a short-circuit equivalent as shown in 
Fig. 9.4. The result is a parallel combination of resistors R1 and R2. 
Applying the current divider rule results in

( )( ) ( )
′′ =

+
= Ω

Ω + Ω
=I

R I
R R

12  9 A
12 6 

6 A2
1

1 2

Since the contribution to current I 2  has the same direction for 
each source, as shown in Fig. 9.5, the total solution for current I 2 is 
the sum of the currents established by the two sources. That is,

I I I 8 A2 A 6 A  2 2 2= ′ + ′′ = + =

b. Using Fig. 9.3 and the results obtained, we find the power delivered 
to the 6 Ω resistor

( ) ( ) ( )( )= ′ = Ω =P I R 24 W2 A 6   1 2
2

2
2

R2 6 V

R1

12 V

I

I2

9 AE 36 V

FIG. 9.2 
Network to be analyzed in 

Example 9.1 using the 
superposition theorem.

Current source
replaced by open circuit

R1

12 V

R2 6 VE 36 V
I92

FIG. 9.3 
Replacing the 9 A current source 
in Fig. 9.2 by an open circuit to 
determine the effect of the 36 V 

voltage source on current I2 .

R2 6 V

R1

12 V

I = 9 A

I992

I

FIG. 9.4 
Replacing the 36 V voltage 
source by a short-circuit 

equivalent to determine the 
effect of the 9 A current source 

on current I2 .

R2 6 V

I2 = 8 A

R2 6 V

I92 = 2 A

I992 = 6 A

FIG. 9.5 
Using the results of Figs. 9.3 
and 9.4 to determine current 
I2  for the network in Fig. 9.2.
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Using Fig. 9.4 and the results obtained, we find the power delivered 
to the 6 Ω resistor

( ) ( ) ( ) ( )= ′′ = Ω =P I R 216 W6 A 6   2 2
2

2
2

Using the total results of Fig. 9.5, we obtain the power delivered to 
the 6 Ω resistor

( )( )= = Ω =P I R 384 W8 A 6   T 2
2

2
2

It is now quite clear that the power delivered to the Ω6   resistor 
using the actual current of 8 A is not equal to the sum of the power 
levels due to each source independently. That is,

The power delivered by the voltage source of 24 W plus the power 
delivered by the current source of 216 W is not equal to the power 
delivered by the actual current of 384 W. 

The superposition theorem is not applicable to power levels!!

To expand on the above conclusion and further demonstrate what is 
meant by a nonlinear relationship, the power to the Ω6   resistor 
versus current through the Ω6   resistor is plotted in Fig. 9.6. Note 
that the curve is not a straight line but one whose rise gets steeper 
with increase in current level.

400

384
300

200

100

x

0 1 2 3 4 5 6 7 8 I6 V (A
( (

)
))

P (W)

y

z

216

24

{
Nonlinear curve

(I 92 I 02 IT)

FIG. 9.6 
Plotting power delivered to the Ω 6  resistor versus current through 

the resistor.

Recall from Fig. 9.3 that the power level was 24 W for a current 
of 2 A developed by the 36 V voltage source, shown in Fig. 9.6. 
From Fig. 9.4, we found that the current level was 6 A for a power 
level of 216 W, shown in Fig. 9.6. Using the total current of 8 A, we 
find that the power level in 384 W, shown in Fig. 9.6. Quite clearly, 
the sum of power levels due to the 2 A and 6 A current levels does 
not equal that due to the 8 A level. That is,

x y z+ ≠

Now, the relationship between the voltage across a resistor and the 
current through a resistor is a linear (straight line) one, as shown in 
Fig. 9.7, with

c a b= +

Fig. 9.7 clearly shows if we add the 12 V generated by the 36 V source 
to the 36 V generated by the 9 A current source, we have the  correct 
total of 48 V generated by the actual current of 8 A. As noted above 
this is only because the voltage and current have a linear relationship.
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EXAMPLE 9.2 Using the superposition theorem, determine the cur-
rent through the Ω12   resistor in Fig. 9.8. Note that this is a two-source 
network of the type examined in the previous chapter when we applied 
branch-current analysis and mesh analysis.

Solution: Considering the effects of the 54 V source requires replac-
ing the 48 V source by a short-circuit equivalent as shown in Fig. 9.9. 
The result is that the Ω12   and Ω4   resistors are in parallel.

The total resistance seen by the source is therefore

= +  = Ω + Ω  Ω = Ω + Ω = ΩR R R R 24  12  4  24  3  27 T 1 2 3

and the source current is

= =
Ω

=I
E
R

54 V
27

2 As
T

1

4

3
2

1

0
12 24 36 48 V6 V (V)

I (A)

a

c

Linear curveb

8

7

6

5

9
10

FIG. 9.7 
Plotting I versus V for the 6 Ω  resistor.

R1

24 V

R3

4 V

E1 54 V

I2 = ?

R2 12 V E2 48 V

FIG. 9.8 
Using the superposition theorem to 

determine the current through the 12 Ω  
resistor (Example 9.2).

48 V battery
replaced by short

circuit

3 V

RT

IsR1

24 V

R3

4 V

E1 54 V E1 54 V

R1

24 V

R2 12 V R2 12 V R3 4 V

I29 I29

FIG. 9.9 
Using the superposition theorem to determine the effect of the 54 V voltage source on current 

I2  in Fig. 9.8.

Using the current divider rule results in the contribution to I 2 due to the 
54 V source:

( )( )
′ =

+
= Ω

Ω + Ω
=I

R I
R R

4  2 A
4  12 

0.5 As
2

3

3 2

If we now replace the 54 V source by a short-circuit equivalent, the 
network in Fig. 9.10 results. The result is a parallel connection for the 

Ω12   and Ω24   resistors.

Therefore, the total resistance seen by the 48 V source is

= +  = Ω + Ω  Ω = Ω + Ω = ΩR R R R 4  12  24  4  8  12 T 3 2 1
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and the source current is

= =
Ω

=I
E
R

48 V
12 

4 As
T

2

Applying the current divider rule results in

( ) ( )( )
′′ =

+
= Ω

Ω + Ω
=I

R I
R R

24  4 A
24 12 

2.67 As
2

1

1 2

It is now important to realize that current I 2 due to each source has a 
different direction, as shown in Fig. 9.11. The net current therefore is the 
difference of the two and in the direction of the larger as follows:

I I I 2 17 A2.67 A 0.5 A .  2 2 2= ′′ − ′ = − =

Using Figs. 9.9 and 9.10 in Example 9.2, we can determine the other 
currents of the network with little added effort. That is, we can deter-
mine all the branch currents of the network, matching an application 
of the branch-current analysis or mesh analysis approach. In general, 
therefore, not only can the superposition theorem provide a complete 
solution for the network, but it also reveals the effect of each source on 
the desired quantity.

EXAMPLE 9.3 Using the superposition theorem, determine current 
I1 for the network in Fig. 9.12.

Solution: Since two sources are present, there are two networks to be 
analyzed. First let us determine the effects of the voltage source by set-
ting the current source to zero amperes as shown in Fig. 9.13. Note that 
the resulting current is defined as I1′ because it is the current through 
resistor R1 due to the voltage source only.

Due to the open circuit, resistor R1 is in series (and, in fact, in par-
allel) with the voltage source E. The voltage across the resistor is the 
applied voltage, and current I1′ is determined by

I
V
R

E
R

30 V
6 Ω

5 A1
1

1 1

′ = = = =

Now for the contribution due to the current source. Setting the voltage 
source to zero volts results in the network in Fig. 9.14, which presents us 
with an interesting situation. The current source has been replaced with 
a short-circuit equivalent that is directly across the current source and 

48 V

8 V

RT

E2

R1

24 V

R2 12 V

I299 I299

R3

4 V

E2 R2 12 VR1 24 V48 V

R3

4 V

54 V battery replaced
by short circuit

FIG. 9.10 
Using the superposition theorem to determine the effect of the 48 V voltage source on current 

I2  in Fig. 9.8.

R2 12 V

I2 9 = 0.5 A

I2 99 = 2.67 A

R2 12 V

I2 = 2.17 A

FIG. 9.11 
Using the results of Figs. 9.9 and 9.10 

to determine current I2  for the network 
in Fig. 9.8.

I 3 A

I1

E 30 V R1 6 V

FIG. 9.12 
Two-source network to be 

analyzed using the 
superposition theorem in 

Example 9.3.

I19

E 30 V R1 6 V

FIG. 9.13 
Determining the effect of the 

30 V supply on the current I1 in 
Fig. 9.12.
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resistor R1. Since the source current takes the path of least resistance, it 
chooses the zero ohm path of the inserted short-circuit equivalent, and 
the current through R1 is zero amperes. This is clearly demonstrated by 
an application of the current divider rule as follows:

( )′′ =
+

=
+

=I
R I

R R
I0 Ω

0 Ω 6 Ω
0 Asc

sc
1

1

Since I1′ and I1′′  have the same defined direction in Figs.  9.13 and 
9.14, the total current is defined by

I I I 5 A5 A 0 A  1 1 1= ′ + ′′ = + =

Although this has been an excellent introduction to the application of 
the superposition theorem, it should be immediately clear in Fig. 9.12 
that the voltage source is in parallel with the current source and load 
resistor R1, so the voltage across each must be 30 V. The result is that I1 
must be determined simply by

= = = =I
V

R
E
R

5 A30 V
6 Ω

 1
1

1 1

EXAMPLE 9.4 Using the principle of superposition, find the current 
I 2 through the 12 kΩ resistor in Fig. 9.15.

Solution: Consider the effect of the 6 mA current source (Fig. 9.16).

R1 6 
I

I

I

3 A

I1

FIG. 9.14 
Determining the effect of the 3 
A current source on the current 

I1 in Fig. 9.12.

R1 6 kV

R3
14 kV

R4 = 35 kV

R2 = 12 kV

6 mAI

I2

9 V

E
+ –

FIG. 9.15 
 Example 9.4.

R1 6 kV

R3 14 kV

R2 12 kV

R4 35 kV

6 mAI

I 92

6 mA

6 mA

I 92

I

R4 35 kVR3 14 kV

R2 12 kVR1 6 kV

6 mA

FIG. 9.16 
The effect of the current source I on the current I2 .

The current divider rule gives

( )( )′ =
+

= Ω
Ω + Ω

=I
R I

R R
6 k 6 mA

6 k 12 k
2 mA2

1

1 2

Considering the effect of the 9 V voltage source (Fig. 9.17) gives

′′ =
+

=
Ω + Ω

=I E
R R

9 V
6 k 12 k

0.5 mA2
1 2

Since I 2′  and I 2′′  have the same direction through R2, the desired current 
is the sum of the two:

= ′ + ′′
= +
=

I I I

2 5 mA
2 mA 0.5 mA

.  

2 2 2
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EXAMPLE 9.5 Find the current through the 2 Ω resistor of the net-
work in Fig. 9.18. The presence of three sources results in three different 
networks to be analyzed.

Solution: Consider the effect of the 12 V source (Fig. 9.19):

R1

6 kV

R2

12 kV

R3

14 kV

R4

35 kV

9 V

E

R1 6 kV

R3 14 kV

R2 12 kV

R4 35 kV

+ –9 V

+ –9 V

9 V

E

I20

I20

+ –+ –

FIG. 9.17 
The effect of the voltage source E on the currents I2 .

E1

R24 V

R1 2 V

I1

I 3 A

6 V12 V
+ –

+

–
E2

FIG. 9.18 
Example 9.5.

R24 V

R12 V

E1

12 V

I91I91

I91+ –

FIG. 9.19 
The effect of E1  on the current I.

R24 V
R12 V

6 V E2
I10 I10

I1  0

+

–

FIG. 9.20 
The effect of E 2 on the current I1.

R24 V
R12 V 3 AI

I1-

FIG. 9.21 
The effect of I on the current I1.

′ =
+

=
Ω + Ω

=
Ω

=I
E

R R
12 V

2  4 
12 V
6 

2 A1
1

1 2

Consider the effect of the 6 V source (Fig. 9.20):

′′ =
+

=
Ω + Ω

=
Ω

=I
E

R R
6 V

2  4 
6 V
6 

1 A1
2

1 2

Consider the effect of the 3 A source (Fig. 9.21): Applying the current 
divider rule gives

( )( )
′′′ =

+
= Ω

Ω + Ω
= =I

R I
R R

4  3 A
2  4 

12 A
6

2 A 1
2

1 2

The total current through the Ω2   resistor appears in Fig. 9.22, and

R1 2 V R1 2 VI19  =  2  A I10  =  1  A I1-  =  2  A I1  =  1  A

I1

FIG. 9.22 
The resultant current I1.
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9.3 THÉVENIN’S THEOREM
The next theorem to be introduced, Thévenin’s theorem, is probably 
one of the most interesting in that it permits the reduction of complex 
networks to a simpler form for analysis and design.

In general, the theorem can be used to do the following:

• Analyze networks with sources that are not in series or parallel.

•  Reduce the number of components required to establish 
the same characteristics at the output terminals.

• Investigate the effect of changing a particular component 
on the behavior of a network without having to analyze 
the entire network after each change.

All three areas of application are demonstrated in the examples to follow.
Thévenin’s theorem states the following:

Any two-terminal dc network can be replaced by an 
equivalent circuit consisting solely of a voltage source and a 
series resistor as shown in Fig. 9.23.

The theorem was developed by Commandant Leon-Charles Thévenin in 
1883 as described in Fig. 9.24.

To demonstrate the power of the theorem, consider the fairly complex 
network of Fig. 9.25(a) with its two sources and series-parallel connec-
tions. The theorem states that the entire network inside the blue shaded 
area can be replaced by one voltage source and one resistor as shown in 
Fig. 9.25(b). If the replacement is done properly, the voltage across, and 
the current through, the resistor RL will be the same for each network. 
The value of RL can be changed to any value, and the voltage, current, or 
power to the load resistor is the same for each configuration. Now, this is 
a very powerful statement—one that is verified in the examples to follow.

The question then is, How can you determine the proper value of 
Thévenin voltage and resistance? In general, finding the Thévenin resis-
tance value is quite straightforward. Finding the Thévenin voltage can 
be more of a challenge and, in fact, may require using the superposition 
theorem or one of the methods described in Chapter 8.

Fortunately, there is a series of steps that will lead to the proper value 
of each parameter. Although a few of the steps may seem trivial at first, 
they can become quite important when the network becomes complex.

 Thévenin’s Theorem Procedure

Preliminary:

1. Remove that portion of the network where the Thévenin 
equivalent circuit is found. In Fig. 9.25(a), this requires that the 
load resistor RL be temporarily removed from the network.

2. Mark the terminals of the remaining two-terminal net-
work. (The importance of this step will become obvious as 
we progress through some complex networks.)

RTh:

3. Calculate RTh by first setting all sources to zero (voltage 
sources are replaced by short circuits and current sources by 
open circuits) and then finding the resultant resistance 
between the two marked terminals. (If the internal resistance 
of the voltage and/or current sources is included in the origi-
nal network, it must remain when the sources are set to zero.)

ETh

+

–

a

b

RTh

FIG. 9.23 
Thévenin equivalent 

circuit.

French (Meaux, Paris)
(1857–1927)
Telegraph Engineer, Commandant and Educator  

École Polytechnique and École Supérieure de 
Télégraphie

Although active in the study and design of telegraphic 
systems (including underground transmission), cylin-
drical condensers (capacitors), and electromagnetism, 
he is best known for a theorem first presented in the 
French Journal of Physics—Theory and Applications 
in 1883. It appeared under the heading of “Sur un nou-
veau théorème d’électricité dynamique” (“On a new 
theorem of dynamic electricity”) and was originally 
referred to as the equivalent generator theorem. There 
is some evidence that a similar theorem was intro-
duced by Hermann von Helmholtz in 1853. However, 
Professor Helmholtz applied the theorem to animal 
physiology and not to communication or generator 
systems, and therefore he has not received the credit 
in this field that he might deserve. In the early 1920s, 
AT&T did some pioneering work using the equivalent 
circuit and may have initiated the reference to the theo-
rem as simply Thévenin’s theorem. In fact, Edward L. 
Norton, an engineer at AT&T at the time, introduced 
a current source equivalent of the Thévenin equivalent 
currently referred to as the Norton equivalent circuit. 
As an aside, Commandant Thévenin was an avid skier 
and in fact was commissioner of an international ski 
competition in Chamonix, France, in 1912.

FIG. 9.24 
Leon-Charles 

Thévenin.
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EXAMPLE 9.6 Find the Thévenin equivalent circuit for the network 
in the shaded area of the network in Fig. 9.26. Then find the current 
through RL  for values of Ω2  , Ω10  , and Ω100  .

Solution:
Steps 1 and 2: These produce the network in Fig. 9.27. Note that the load 
resistor RL has been removed and the two “holding” terminals have been 
defined as a and b.

Step 3: Replacing the voltage source E1 with a short-circuit equivalent 
yields the network in Fig. 9.28(a), where

R R R 23  6 
3  6 

 Th 1 2 Ω( )( )=  = Ω Ω
Ω + Ω

=

ETh:

4. Calculate ETh by first returning all sources to their original 
position and finding the open-circuit voltage between the 
marked terminals. (This step is invariably the one that 
causes most confusion and errors. In all cases, keep in 
mind that it is the open-circuit potential between the two 
terminals marked in step 2.)

Final step:

5. Draw the Thévenin equivalent circuit with the portion of 
the circuit previously removed replaced between the ter-
minals of the equivalent circuit. This step is indicated by 
the placement of the resistor RL between the terminals of 
the Thévenin equivalent circuit as shown in Fig. 9.25(b).

R3

a

b

(a) (b)

E

a

IL

ETh

RTh

b

RLRL

IL

R1

R2

I

FIG. 9.25 
Substituting the Thévenin equivalent circuit for a complex network.

R1

3 V

R2 6 V

b

E1 9 V RL

a

+

–

FIG. 9.26 
Example 9.6.

R2 6 V

R1

3 V

E1 9 V

a

b

+

–

FIG. 9.27 
Identifying the terminals of 
particular importance when 

applying Thévenin’s theorem.

+ –
V

R2 6 V

(a) (b)

R1

3 V

RTh
R2

b b

a a

IV

R1

FIG. 9.28 
Determining RTh  for the network in Fig. 9.27.

The importance of the two marked terminals now begins to surface. 
They are the two terminals across which the Thévenin resistance is meas-
ured. It is no longer the total resistance as seen by the source, as determined 
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in the majority of problems of Chapter 7. If some difficulty develops when 
determining RTh with regard to whether the resistive elements are in series 
or parallel, consider recalling that the ohmmeter sends out a trickle current 
into a resistive combination and senses the level of the resulting voltage to 
establish the measured resistance level. In Fig. 9.28(b), the trickle current 
of the ohmmeter approaches the network through terminal a, and when 
it reaches the junction of R1 and R2, it splits as shown. The fact that the 
trickle current splits and then recombines at the lower node reveals that 
the resistors are in parallel as far as the ohmmeter reading is concerned. 
In essence, the path of the sensing current of the ohmmeter has revealed 
how the resistors are connected to the two terminals of interest and how 
the Thévenin resistance should be determined. Remember this as you work 
through the various examples in this section.

Step 4: Replace the voltage source (Fig. 9.29). For this case, the open- 
circuit voltage ETh is the same as the voltage drop across the Ω6   resistor. 
Applying the voltage divider rule gives

( )( )
=

+
= Ω

Ω + Ω
= =E

R E
R R

6 V6  9 V
6  3 

54 V
9

 Th
2 1

2 1

It is particularly important to recognize that ETh is the open-circuit 
potential between points a and b. Remember that an open circuit can have 
any voltage across it, but the current must be zero. In fact, the current 
through any element in series with the open circuit must be zero also. 
The use of a voltmeter to measure ETh appears in Fig. 9.30. Note that it 
is placed directly across the resistor R2 since ETh and VR2

 are in parallel.

Step 5: (Fig. 9.31):

I
E

R R

R I

R I

R I

1 5 A

0 5 A

0 06 A

2  : 6 V
2  2 

.  

10  : 6 V
2  10 

.  

100  : 6 V
2  100 

.  

L
Th

Th L

L L

L L

L L

=
+

= Ω =
Ω + Ω

=

= Ω =
Ω + Ω

=

= Ω =
Ω + Ω

=

If Thévenin’s theorem were unavailable, each change in RL would 
require that the entire network in Fig. 9.26 be reexamined to find the new 
value of RL.

EXAMPLE 9.7 Find the Thévenin equivalent circuit for the network 
in the shaded area of the network in Fig. 9.32.

Solution:

Step 1 and 2: See Fig. 9.33.

 Step 3: See Fig. 9.34. The current source has been replaced with an open- 
circuit equivalent and the resistance determined between terminals a and b.

In this case, an ohmmeter connected between terminals a and b sends 
out a sensing current that flows directly through R1 and R2 (at the same 
level). The result is that R1 and R2 are in series and the Thévenin resist-
ance is the sum of the two,

R R R 64  2   Th 1 2 Ω= + = Ω + Ω =

R2 6 V9 VE1 ETh

+

–

a

b

R1

3 V

+

–

+

–

FIG. 9.29 
Determining ETh  for the 

network in Fig. 9.27.

+ –
ETh

E1 R2 6 V

R1

3 V

9 V

+

–

+

–

FIG. 9.30 
Measuring ETh  for the network in 

Fig. 9.27.

RL

a
RTh  =  2 V

ETh  =  6 V

b

IL

+

–

FIG. 9.31 
Substituting the Thévenin equivalent circuit 
for the network external to RL  in Fig. 9.26.

R3 7 V

R2

2 V

R1 4 V

a

b

12 A
I  =

FIG. 9.32 
Example 9.7.

R2

2 V

R1 4 VI12 A

a

b

FIG. 9.33 
Establishing the terminals of particular 

interest for the network in Fig. 9.32.
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Step 4: See Fig. 9.35. In this case, since an open circuit exists between 
the two marked terminals, the current is zero between these terminals 
and through the 2 Ω resistor. The voltage drop across R2 is, therefore,

V I R R0 0 V2 2 2 2( )= = =

and E V I R IR 48 V12 A(4 Ω)  Th 1 1 1 1= = = = =

Step 5: See Fig. 9.36.

EXAMPLE 9.8 Find the Thévenin equivalent circuit for the network 
in the shaded area of the network in Fig. 9.37. Note in this example that 
there is no need for the section of the network to be preserved to be at the 
“end” of the configuration.

R1 4 V

a

b

RTh

R2

2 V

FIG. 9.34 
Determining RTh  for the 

network in Fig. 9.33.

R1 4 V

R2  =  2 VI

I  =  12 A

+

–

I  =  0 +

–

+ V2  =  0 V  – a

b

ETh

FIG. 9.35 
Determining ETh  for the network in 

Fig. 9.33.

R3 7 V

a

b

RTh  =  6 V

ETh  =  48 V
+

–

FIG. 9.36 
Substituting the Thévenin 

equivalent circuit in the network 
external to the resistor R3  in 

Fig. 9.32.

8 VE1R4 3 VR1 6 V

R2

4 Va

b

+

–
R3 2 V

FIG. 9.37 
Example 9.8.

R1 6 V

R2

4 V

R3 2 VE1 8 V

a

b

–

+

FIG. 9.38 
Identifying the terminals of particular interest for the 

network in Fig. 9.37.

Solution:

Steps 1 and 2: See Fig. 9.38.
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Step 3: See Fig. 9.39. Steps 1 and 2 are relatively easy to apply, but now 
we must be careful to “hold” onto the terminals a and b as the Thévenin 
resistance and voltage are determined. In Fig.  9.39, all the remaining 
elements turn out to be in parallel, and the network can be redrawn as 
shown. We have

R R R 2 46  4 
6  4 

24 
10

.  Th 1 2 Ω( )( )=  = Ω Ω
Ω + Ω

= Ω =

R2

4 V

R1 6 V R2 4 VR1 6 V

a

b

RTh

“Short circuited”

R3 2 V

Circuit redrawn:

RTh

a

b

RT  =  0 V i 2 V  =  0 V

FIG. 9.39 
Determining RTh  for the network in Fig. 9.38.

ETh  R1 6 V

R2

4 V

R3 2 VETh E1 8 V
–

+

–

+

a

b +

–

FIG. 9.40 
Determining ETh  for the network in Fig. 9.38.

R2 4 V

ETh  R1 6 V

R3 2 V–

+

–

+
E1 8 V

FIG. 9.41 
Network of Fig. 9.40 redrawn.

R4 3 V

RTh  =  2.4 V
a

b

ETh  =  4.8 V
–

+

FIG. 9.42 
Substituting the Thévenin 

equivalent circuit for the network 
external to the resistor R4  in 

Fig. 9.37.

R1

6 V 12 V

4 V

R2

RLR3 R4

3 V

b aE 72 V
+

–

FIG. 9.43 
Example 9.9.

Step 4: See Fig. 9.40. In this case, the network can be redrawn as shown 
in Fig. 9.41. Since the voltage is the same across parallel elements, the 
voltage across the series resistors R1 and R2 is E1, or 8 V. Applying the 
voltage divider rule gives

E
R E

R R
4 8 V6  8 V

6  4 
48 V
10

.  Th
1 1

1 2

( )( )
=

+
= Ω

Ω + Ω
= =

Step 5: See Fig. 9.42.

The importance of marking the terminals should be obvious from 
Example 9.8. Note that there is no requirement that the Thévenin voltage 
have the same polarity as the equivalent circuit originally introduced.

EXAMPLE 9.9 Find the Thévenin equivalent circuit for the network 
in the shaded area of the bridge network in Fig. 9.43.
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Solution:
Steps 1 and 2: See Fig. 9.44.

Step 3: See Fig.  9.45. In this case, the short-circuit replacement of 
the voltage source E provides a direct connection between c and c′ in 
Fig. 9.45(a), permitting a “folding” of the network around the horizontal 
line of a-b to produce the configuration in Fig. 9.45(b).

� �

� �

R R R R R R

5

6  3  4    12 

2  3   

Th a b 1 3 2 4

Ω

= = +

= Ω Ω + Ω Ω

= Ω + Ω =

−

R1

6 V

R2

12 V

4 V

R4R3

3 V

b a72 VE

+

–

FIG. 9.44 
Identifying the terminals of particular interest 

for the network in Fig. 9.43.

R1

3 VR1

6 V

R2

R3 R4

12 V

3 V 4 V

R2

R4

4 V

RTh

b a

R3

12 V6 V

(b)(a)

ab
RTh

c9

c

c,c9

FIG. 9.45 
Solving for RTh  for the network in Fig. 9.44.

Step 4: The circuit is redrawn in Fig. 9.46. The absence of a direct connec-
tion between a and b results in a network with three parallel branches. The 
voltages V1 and V2 can therefore be determined using the voltage divider  
rule:

V
R E

R R
6  72 V
6  3 

432 V
9

48 V1
1

1 3

( )( )
=

+
= Ω

Ω + Ω
= =

V
R E

R R
12  72 V
12  4 

864 V
16

54 V2
2

2 4

( )( )
=

+
= Ω

Ω + Ω
= =

V1 R1 6 V

R3 3 V

R2 12 V

R4 4 V

KVL
+

–
72 V

+

– +
V2

b a

ETh
–

+

E E
–

+

–

FIG. 9.46 
Determining ETh  for the network in Fig. 9.44.

Assuming the polarity shown for ETh and applying Kirchhoff’s 
 voltage law to the top loop in the clockwise direction results in

V E V V    0Th 1 2Σ = + + − =†

and E V V V 6 V54 V 48Th 2 1= − = − =

Step 5: See Fig. 9.47.

RL

RTh  =  5 V

ETh  =  6 V

a

b

+

–

FIG. 9.47 
Substituting the Thévenin equivalent circuit 
for the network external to the resistor RL in 

Fig. 9.43.
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Thévenin’s theorem is not restricted to a single passive element, as 
shown in the preceding examples, but can be applied across sources, 
whole branches, portions of networks, or any circuit configuration, as 
shown in the following example. It is also possible that you may have to 
use one of the methods previously described, such as mesh analysis or 
superposition, to find the Thévenin equivalent circuit.

 EXAMPLE 9.10 (Two sources) Find the Thévenin circuit for the 
network within the shaded area of Fig. 9.48.

Solution:
Steps 1 and 2: See Fig. 9.49. The network is redrawn.

Step 3: See Fig. 9.50.

R R R R R

R 2 k

1.4 k 0.8 k 4 k 6 k

1.4 k 0.8 k 2.4 k

1.4 k 0.6 k
 

Th

Th

4 1 2 3

Ω

= +

= Ω + Ω Ω Ω

= Ω + Ω Ω

= Ω + Ω
=

� �

� �

�

Step 4: Applying superposition, we will consider the effects of the 
voltage source E1 first. Note Fig.  9.51. The open circuit requires that 
V I R R(0) 0 V,4 4 4 4= = =  and

E V

R R R 4 k 6 k 2.4 k  
Th

T

3

2 3� �

′ =

′ = = Ω Ω = Ω

Applying the voltage divider rule gives

V
R E

R R

E V

2.4 kΩ 6 V
2.4 kΩ 0.8 kΩ

14.4 V
3.2

4.5 V

4.5 V

T

T

Th

3
1

1

3

( )( )=
′

′ +
=

+
= =

′ = =

For the source E2, the network in Fig. 9.52 results. Again, V I4 4=  
R R0 0 V4 4( )= = , and

E V

R R R 0.8 k 6 k 0.706 k  
Th

T

3

1 3� �

′′ =

′′ = = Ω Ω = Ω

and V
R E

R R

E V

0.706 k 10 V

0.706 k 4 k

7.06 V

4.706
1.5 V

1.5 V

T

T

Th

3
2

2

3

( )( )
=

′′
′′ +

=
Ω

Ω + Ω
= =

′′ = =

R4

1.4 kV

R3 6 kV RLR1 0.8 kV

R2 4 kV

E2 + 10 V

E1 – 6 V

FIG. 9.48 
Example 9.10.

R1 0.8 kV

R4

1.4 kVR2 4 kV

R3 6 kV

E1 6 V E2 10 V
+

–

–

+

a

b

FIG. 9.49 
Identifying the terminals of particular 
interest for the network in Fig. 9.48.

2.4 kV

R2 4 kV

R3 6 kV

R1 0.8 kV

RTh

a

b

R4

1.4 kV

FIG. 9.50 
Determining RTh  for the network in 

Fig. 9.49.

R3 6 kV

V4

1.4 kV

E1

0.8 kV
R2 4 kVR1

R4

6 V

I4  =  0

–

+

– +

V3

+

–
ETh9

+

–

FIG. 9.51 
Determining the contribution to ETh from 
the source E1 for the network in Fig. 9.49.

R2 4 kV

R3 6 kV

E2 10 V

I4  =  0

ETh0V3

R4

1.4 kV

V4+ –

+

–

+

–

R1 0.8 kV
+

–

FIG. 9.52 
Determining the contribution to ETh from 
the source E2 for the network in Fig. 9.49.
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Since ETh′  and ETh′′  have opposite polarities,

E E E

E

4.5 V 1.5 V

(polarity of )

Th Th Th

Th

= ′ − ′′

= −

= ′3 V

Step 5: See Fig. 9.53.

In the next example there is both a current source and voltage source 
in the configuration to be converted into a Thévenin equivalent circuit. 
In such cases it may be necessary to use the superposition theorem or 
a method of analysis to find the Thévenin voltage. Note also that the 
network outside the chosen area is more complex than a single element. 
In other words, portions of a more complex network can be replaced by 
their Thévenin equivalent circuit to further reduce the complexity of the 
original network.

EXAMPLE 9.11 For the network of Fig. 9.54:

a.  Find the Thévenin equivalent circuit for the portion of the network 
in the shaded area.

b. Reconstruct the network of Fig. 9.54 with the Thévenin equivalent 
network in place.

c. Using the resulting network of part (b) find the voltage V .a

RTh

2 kV

RL3 VETh

+

–

FIG. 9.53 
Substituting the Thévenin equivalent circuit 
for the network external to the resistor RL in 

Fig. 9.48.

4 V

6 V

8 V12 V

E1

I

18  V

E2

16 V  

a

 2 A

FIG. 9.54 
Example 9.11.

ETh?

RTh?

4 V

6 V

12 V

E1

I

18  V

2 A

FIG. 9.55 
Establishing the terminals of interest for the 

network of Fig. 9.54.

Solutions:

a. Steps 1 and 2: See Fig. 9.55.

Step 3: See Fig. 9.56.

R 5 4512  4  6  12  10  .  Th � � Ω( )= Ω Ω + Ω = Ω Ω =

Step 4: Applying the superposition theorem, we will first find the 
effect of the voltage source on the Thévenin voltage using the net-
work of Fig. 9.57. Applying the voltage divider rule:

E 12    18 V
6  4  12 

216
22

V 9.82 VTh
( )

′ = Ω
Ω + Ω + Ω

= =
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The contribution due to the current source is determined using the 
network of Fig. 9.58(a) redrawn as shown in Fig. 9.58(b). Applying 
the current divider rule:

I  4    2 A
4  18 

8
22

A 0.364 A
( )

′ = Ω
Ω + Ω

= =

and E I  12 0.364 A 12 4.37VTh ( ) ( )( )′′ = − ′ Ω = − Ω = −

so that E E E 5 45 V  9.82 V 4.37 V .Th Th Th= ′ + ′′ = − =

b. The reconstructed network is shown in Fig. 9.59.
c. Using the voltage divider rule:

V 12 76 V8  5.45 V 16 V
5.45  8 

8 21.45
13.45

V 171.6
13.45

V .  a
( ) ( )= Ω +

Ω + Ω
= = =

Instead of using the superposition theorem, the current source could first 
have been converted to a voltage source and the series elements com-
bined to determine the Thévenin voltage. In any event both approaches 
would have yielded the same results.

Experimental Procedures

Now that the analytical procedure has been described in detail and a 
sense for the Thévenin resistance and voltage established, it is time to 

4 V

6 V

12 V RTh

FIG. 9.56 
Determining R .Th

4 V

6 V

12 V

18  VE1

–

+

ETh9

FIG. 9.57 
Determining the contribution of E1 to E .Th

4 V

I

 2 A

I9 V18 

(b)(a)

6 V

I9

12 V ETh0

+

–

4 V

I

2 A

FIG. 9.58 
Determining the contribution of I to E .Th

8 V 

5.45 V  

E2

16 V  

5.45 V  ETh

RTh
Va

Thévenin equivalent

FIG. 9.59 
Applying the Thévenin equivalent 

network to the network of Fig. 9.54.
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investigate how both quantities can be determined using an experimental 
procedure.

Even though the Thévenin resistance is usually the easiest to deter-
mine analytically, the Thévenin voltage is often the easiest to determine 
experimentally, and therefore it will be examined first.

Measuring ETh The network of Fig.  9.60(a) has the equivalent 
Thévenin circuit appearing in Fig.  9.60(b). The open-circuit Thévenin 
voltage can be determined by simply placing a voltmeter on the output ter-
minals in Fig. 9.60(a) as shown. This is due to the fact that the open circuit 
in Fig. 9.60(b) dictates that the current through and the voltage across the 
Thévenin resistance must be zero. The result for Fig. 9.60(b) is that

V E 4 5 V.  oc Th= =

In general, therefore,

the Thévenin voltage is determined by connecting a voltmeter 
to the output terminals of the network. Be sure the internal 
resistance of the voltmeter is significantly more than the 
expected level of RTh.

4.500

20V

V
+ COM

4.500

20V

V
+ COM

4 VI 8 A R1

12 V

R3 3 V

E

R2

1 V

Voc = ETh = 4.5 V

1.875 V

Voc = ETh = 4.5 V

V = 0 V
RTh

4.5 VETh

I = 0 A

(a) (b)

FIG. 9.60 
Measuring the Thévenin voltage with a voltmeter: (a) actual network; (b) Thévenin equivalent.

Measuring RTh

Using an Ohmmeter In Fig. 9.61, the sources in Fig. 9.60(a) have 
been set to zero, and an ohmmeter has been applied to measure the 
Thévenin resistance. In Fig. 9.60(b), it is clear that if the Thévenin volt-
age is set to zero volts, the ohmmeter will read the Thévenin resistance 
directly.

In general, therefore,

the Thévenin resistance can be measured by setting all the 
sources to zero and measuring the resistance at the output 
terminals.

It is important to remember, however, that ohmmeters cannot be used 
on live circuits, and you cannot set a voltage source by putting a short 
circuit across it—it causes instant damage. The source must either be 
set to zero or removed entirely and then replaced by a direct connection. 
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For the current source, the open-circuit condition must be clearly estab-
lished; otherwise, the measured resistance will be incorrect. For most 
situations, it is usually best to remove the sources and replace them by 
the appropriate equivalent.

Using a Potentiometer If we use a potentiometer to measure the 
Thévenin resistance, the sources can be left as is. For this reason alone, 
this approach is one of the more popular. In Fig. 9.62(a), a potentiometer 
has been connected across the output terminals of the network to estab-
lish the condition appearing in Fig. 9.62(b) for the Thévenin equivalent. 
If the resistance of the potentiometer is now adjusted so that the voltage 
across the potentiometer is one-half the measured Thévenin voltage, the 
Thévenin resistance must match that of the potentiometer. Recall that for 
a series circuit, the applied voltage will divide equally across two equal 
series resistors.

If the potentiometer is then disconnected and the resistance measured 
with an ohmmeter as shown in Fig. 9.62(c), the ohmmeter displays the 
Thévenin resistance of the network. In general, therefore,

the Thévenin resistance can be measured by applying a 
potentiometer to the output terminals and varying the 
resistance until the output voltage is one-half the measured 
Thévenin voltage. The resistance of the potentiometer is the 
Thévenin resistance for the network.

Using the Short-Circuit Current The Thévenin resistance can 
also be determined by placing a short circuit across the output termi-
nals and finding the current through the short circuit. Since ammeters 
ideally have zero internal ohms between their terminals, hooking up an 
ammeter as shown in Fig. 9.63(a) has the effect of both hooking up a 
short circuit across the terminals and measuring the resulting current. 
The same ammeter was connected across the Thévenin equivalent circuit 
in Fig. 9.63(b).

On a practical level, it is assumed, of course, that the internal resistance 
of the ammeter is approximately zero ohms in comparison to the other  
resistors of the network. It is also important to be sure that the resulting 
current does not exceed the maximum current for the chosen ammeter scale.

1.875

200W

COM+

1.875

200W

COM+

(a) (b)

1.875 V

R = RTh = 1.875 V

RTh

ETh = 0 V4 VR1

R3 3 V

R2

1 V

R = RTh = 1.875 V

FIG. 9.61 
Measuring RTh with an ohmmeter: (a) actual network; (b) Thévenin equivalent.
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2.250

20V

V
+ COM

2.250

20V

V
+ COM

(a) (b)

1.875 V

= RTh = 1.875 V

RTh

4.5 VETh RL
= 2.25 V

ETh
24 VI 8 A R1

12 V

R3 3 V

E

R2

1 V

ETh
2

1.875

200V

COM+

(c)

FIG. 9.62 
Using a potentiometer to determine RTh: (a) actual network; (b) Thévenin equivalent; (c) measuring RTh.

2.400

20A

A
COM+

2.400

20A

A
COM+

4 VI 8 A R1

12 V

R3 3 V

E

R2

1 V

Isc

1.875 V

RTh

4.5 V

(a) (b)

ETh Isc =        = 2.4 A
ETh
RTh

FIG. 9.63 
Determining RTh using the short-circuit current: (a) actual network; (b) Thévenin equivalent.
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In Fig. 9.63(b), since the short-circuit current is

I
E
Rsc

Th

Th

=

the Thévenin resistance can be determined by

R
E
ITh

Th

sc

=

In general, therefore,

the Thévenin resistance can be determined by hooking up an 
ammeter across the output terminals to measure the short-
circuit current and then using the open-circuit voltage to 
calculate the Thévenin resistance in the following manner:

 R
V
ITh

oc

sc

=  (9.1)

As a result, we have three ways to measure the Thévenin resistance of a 
configuration. Because of the concern about setting the sources to zero 
in the first procedure and the concern about current levels in the last, the 
second method is often chosen.

9.4 NORTON’S THEOREM
In Section 8.2, we learned that every voltage source with a series internal 
resistance has a current source equivalent. The current source equiva-
lent can be determined by Norton’s theorem (Fig. 9.64). It can also be 
found through the conversions of Section 8.2.

The theorem states the following:

Any two-terminal linear bilateral dc network can be replaced 
by an equivalent circuit consisting of a current source and a 
parallel resistor, as shown in Fig. 9.65.

RNIN

a

b

FIG. 9.65 
Norton equivalent circuit.

The discussion of Thévenin’s theorem with respect to the equivalent 
circuit can also be applied to the Norton equivalent circuit. The steps 
leading to the proper values of IN and RN  are now listed.

Norton’s Theorem Procedure

Preliminary:

1. Remove that portion of the network across which the 
Norton equivalent circuit is found.

2. Mark the terminals of the remaining two-terminal network.

American (Rockland, Maine; Summit, New Jersey)
1898–1983
 Electrical Engineer, Scientist, Inventor
Department Head: Bell Laboratories
Fellow: Acoustical Society and Institute of Radio 
Engineers

Although interested primarily in communications 
circuit theory and the transmission of data at high 
speeds over telephone lines, Edward L. Norton is 
best remembered for development of the dual of 
Thévenin equivalent circuit, currently referred to as 
Norton’s equivalent circuit. In fact, Norton and his 
associates at AT&T in the early 1920s are recognized 
as being among the first to perform work  applying 
Thévenin’s equivalent circuit and referring to this 
concept simply as Thévenin’s theorem. In 1926, 
he proposed the equivalent circuit using a current 
source and parallel resistor to assist in the design of 
recording instrumentation that was primarily current 
driven. He began his telephone career in 1922 
with the Western Electric Company’s Engineering 
Department, which later became Bell Laboratories. 
His areas of active research included network theory, 
acoustical systems, electromagnetic apparatus, and 
data transmission. A graduate of MIT and Columbia 
University, he held nineteen patents on his work.

Wikimedia commons

FIG. 9.64 
Edward L. Norton.
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:RN

3. Calculate RN  by first setting all sources to zero (voltage 
sources are replaced with short circuits and current 
sources with open circuits) and then finding the resultant 
resistance between the two marked terminals. (If the inter-
nal resistance of the voltage and/or current sources is 
included in the original network, it must remain when the 
sources are set to zero.) Since R RN Th= , the procedure 
and value obtained using the approach described for 
Thévenin’s theorem will determine the proper value of RN.
:I N

4. Calculate I N by first returning all sources to their original posi-
tion and then finding the short-circuit current between the 
marked terminals. It is the same current that would be mea-
sured by an ammeter placed between the marked terminals.

Conclusion:
5. Draw the Norton equivalent circuit with the portion of the 

circuit previously removed replaced between the terminals 
of the equivalent circuit.

The Norton and Thévenin equivalent circuits can also be found from 
each other by using the source transformation discussed earlier in this 
chapter and reproduced in Fig. 9.66.

RTh  =  RN

ETh

RTh
RN  =  RTh

ETh  =  IN RN

+

–
IN

FIG. 9.66 
Converting between Thévenin and Norton equivalent circuits.

R2 6 V

R1

3 V

RL9 VE
+

–

a

b

FIG. 9.67 
Example 9.12.

R1

3 V

R2 6 V9 V
+

–

a

b

E

FIG. 9.68 
Identifying the terminals of particular interest 

for the network in Fig. 9.67.

R2 6 V

R1

3 V

RN

a

b

FIG. 9.69 
Determining RN for the network in Fig. 9.68.

EXAMPLE 9.12 Find the Norton equivalent circuit for the network 
in the shaded area in Fig. 9.67.

Solution:
Steps 1 and 2: See Fig. 9.68.

Step 3: See Fig. 9.69, and

R R R 23  6  3  6 
3  6 

18 
9

 N 1 2� � Ω( )( )= = Ω Ω = Ω Ω
Ω + Ω

= Ω =

Step 4: See Fig. 9.70, which clearly indicates that the short-circuit con-
nection between terminals a and b is in parallel with R2 and eliminates its 
effect. I N is therefore the same as through R1, and the full battery voltage 
appears across R1 since

V I R 0 6  0 V2 2 2 ( )= = Ω =
Therefore,

I E
R

3 A9 V
3 

 N
1

= =
Ω

=

Step 5: See Fig. 9.71. This circuit is the same as the first one considered 
in the development of Thévenin’s theorem. A simple conversion indi-
cates that the Thévenin circuits are, in fact, the same (Fig. 9.72).

V2 R2 6 V

R1

3 V

Short circuited

E 9 V

Short

+

–

+

–

a

b

I1 IN IN

IN

I2  =  0

FIG. 9.70 
Determining IN  for the network in Fig. 9.68.
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EXAMPLE 9.13 Find the Norton equivalent circuit for the network 
external to the 9 Ω resistor in Fig. 9.73.

Solution:
Steps 1 and 2: See Fig. 9.74.

RLRN  =  2 VIN =  3 A

a

b

FIG. 9.71 
Substituting the Norton equivalent circuit for the 

network external to the resistor RL in Fig. 9.67.

RTh  =  RN  =  2 V

IN RN  =  2 V

3 A

a

b

ETh  =  IN RN  =  (3 A)(2 V)  =  6 V

a

b

+

–

FIG. 9.72 
Converting the Norton equivalent circuit in Fig. 9.71 to a 

Thévenin equivalent circuit.

R2 4 V

R1

5 V

10 A

a

b

I

FIG. 9.74 
Identifying the terminals of 
particular interest for the 

network in Fig. 9.73.

R1

5 V

10 A

a

b

RL 9 VR2 4 V

I

FIG. 9.73 
Example 9.13.

 Step 3: See Fig. 9.75, and

R R R 95  4   N 1 2 Ω= + = Ω + Ω =

 Step 4: As shown in Fig.  9.76, the Norton current is the same as the 
cur rent through the 4 Ω resistor. Applying the current divider rule gives

I
R I

R R
5 56 A5  10 A

5  4 
50 A

9
.  N

1

1 2

( )( )
=

+
= Ω

Ω + Ω
= =

 Step 5: See Fig. 9.77.

10 A
R2 4 V

R1

5 V
a

b

IN
R1 5 V

b a

IR2 4 V

I

IN

10 A

FIG. 9.76 
Determining IN  for the network in Fig. 9.74.

R2 4 V

R1

5 V
a

b

RN

FIG. 9.75 
Determining RN  for the network in Fig. 9.74.

9 V RL 9 VIN 5.56 A

a

b

RN

FIG. 9.77 
Substituting the Norton equivalent circuit for 

the network external to the resistor RL in 
Fig. 9.73.
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EXAMPLE 9.14 (Two sources) Find the Norton equivalent circuit 
for the portion of the network to the left of a-b in Fig. 9.78.

R3 9 V
R4 10 VR2 6 V

R1 4 V

E1 7 V

I 8 A

E2 12 V

b

a

+

– +

–

FIG. 9.78 
Example 9.14.

R1 4 V
R2 6 V

E1 7 V

I 8 A

a

b

+

–

FIG. 9.79 
Identifying the terminals of particular interest 

for the network in Fig. 9.78.

R1 4 V

R2 6 V

a

b

RN

FIG. 9.80 
Determining RN  for the network in Fig. 9.79.

R2 6 V
R1 4 V

Short circuited

E1 7 V

a

b

IN9

+

–

IN9

IN9

FIG. 9.81 
Determining the contribution to IN  from the 

voltage source E1.

R1 4 V

R2 6 VI 8 A

a

b

IN0

IN0

IN0
IN0

Short circuited

FIG. 9.82 
Determining the contribution to IN  from the 

current source I.

IN 6.25 A
R3 9 V

RN  =  2.4 V

E2 12 V

R4 10 V

a

b

+

–

FIG. 9.83 
Substituting the Norton equivalent circuit for the network to the left 

of terminals a b-  in Fig. 9.78.

Solution:
Steps 1 and 2: See Fig. 9.79.

Step 3: See Fig. 9.80, and

R R R 2 44  6  4  6 
4  6 

24 
10

.  N 1 2� � Ω( )( )= = Ω Ω = Ω Ω
Ω + Ω

= Ω =

Step 4: (Using superposition) For the 7 V battery (Fig. 9.81),

I
E
R

7 V
4 

1.75 AN
1

1

′ = =
Ω

=

For the 8 A source (Fig. 9.82), we find that both R1  and R2  have been 
“short circuited” by the direct connection between a and b, and

I I 8 AN′′ = =
The result is

I I I 6 25 A8 A 1.75 A .  N N N= ′′ − ′ = − =

Step 5: See Fig. 9.83.

 Experimental Procedure

The Norton current is measured in the same way as described for the 
short-circuit current (I sc) for the Thévenin network. Since the Norton 
and Thévenin resistances are the same, the same procedures can be fol-
lowed as described for the Thévenin network.
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9.5 MAXIMUM POWER TRANSFER 
THEOREM
When designing a circuit, it is often important to be able to answer one 
of the following questions:

What load should be applied to a system to ensure that the 
load is receiving maximum power from the system?

Conversely:

For a particular load, what conditions should be imposed on 
the source to ensure that it will deliver the maximum power 
available?

Even if a load cannot be set at the value that would result in maxi-
mum power transfer, it is often helpful to have some idea of the value 
that will draw maximum power so that you can compare it to the load 
at hand. For instance, if a design calls for a load of 100 Ω, to ensure 
that the load receives maximum power, using a resistor of 1 Ω or 1 kΩ 
results in a power transfer that is much less than the maximum possible. 
However, using a load of 82 Ω or 120 Ω probably results in a fairly good 
level of power transfer.

Fortunately, the process of finding the load that will receive maxi-
mum power from a particular system is quite straightforward due to the 
maximum power transfer theorem, which states the following:

A load will receive maximum power from a network when 
its resistance is equal to the Thévenin resistance of the 
network applied to the load. That is,

 R RL Th=  (9.2)

In other words, for the Thévenin equivalent circuit in Fig. 9.84, when the 
load is set equal to the Thévenin resistance, the load will receive maxi-
mum power from the network.

Using Fig.  9.84 with R RL Th= , we can determine the maximum 
power delivered to the load by first finding the current:

I
E

R R
E

R R
E
R2L

Th

Th L

Th

Th Th

Th

Th

=
+

=
+

=

Then we substitute into the power equation:

P I R
E
R

R
E R

R2 4L L L
Th

Th
Th

Th Th

Th

2
2 2

2
( )= =







 =

and P
E
R4L

Th

Th

2

max
=  (9.3)

To demonstrate that maximum power is indeed transferred to the load 
under the conditions defined above, consider the Thévenin equivalent 
circuit in Fig. 9.85.

Before getting into detail, however, if you were to guess what value of 
RL  would result in maximum power transfer to RL , you might think that 
the smaller the value of RL , the better it is because the current reaches a 
maximum when it is squared in the power equation. The problem is, how-
ever, that in the equation P I R ,L L L

2=  the load resistance is a multiplier. 
As it gets smaller, it forms a smaller product. Then again, you might sug-
gest larger values of RL because the output voltage increases, and power 

RL = RTh

IRTh

ETh

+

–

FIG. 9.84 
Defining the conditions for maximum power 

to a load using the Thévenin equivalent 
circuit.

RL

IL

RTh

ETh

+

–

9 V

60 V VL

PL

+

–

 FIG. 9.85 
Thévenin equivalent network to be used to 

validate the maximum power transfer 
theorem.
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is determined by P V R .L L L
2=  This time, however, the load resistance 

is in the denominator of the equation and causes the resulting power to 
decrease. A balance must obviously be made between the load resistance 
and the resulting current or voltage. The following discussion shows that

maximum power transfer occurs when the load voltage and 
current are one-half their maximum possible values.

For the circuit in Fig. 9.85, the current through the load is determined by

I
E

R R R
60 V

9 ΩL
Th

Th L L

=
+

=
+

The voltage is determined by

V
R E

R R
R
R R

60 V
L

L Th

L Th

L

L Th

( )
=

+
=

+

and the power by

P I R
R

R
R
R

60 V
9

3600
9 L L L

L
L

L

L

2

2

2( )
( )

= =
Ω +







 =

Ω +

If we tabulate the three quantities versus a range of values for RL  
from 0.1 Ω  to 30 Ω, we obtain the results appearing in Table 9.1. Note 
in particular that when RL  is equal to the Thévenin resistance of 9 Ω, the 

( )RL Ω ( )P WL ( )I AL ( )V VL

0.1  4.35 6.60  0.66
0.2  8.51 6.52  1.30
0.5 19.94 6.32  3.16
1 36.00 6.00  6.00
2 59.50 5.46 10.91
3 75.00 5.00 15.00
4 85.21  Increase 4.62  Decrease 18.46  Increase
5 91.84 4.29 21.43
6 96.00 4.00 24.00
7 98.44 3.75 26.25
8 99.65 3.53 28.23

RTh9 ( ) 100.00 (Maximum) I max3 33 2.  ( ) ETh30 00 2.  ( )
10 99.72 3.16 31.58
11 99.00 3.00 33.00
12 97.96 2.86 34.29
13 96.69 2.73 35.46
14 95.27 2.61 36.52
15 93.75 2.50 37.50
16 92.16  Decrease 2.40  Decrease 38.40  Increase
17 90.53 2.31 39.23
18 88.89 2.22 40.00
19 87.24 2.14 40.71
20 85.61 2.07 41.38
25 77.86 1.77 44.12
30 71.00 1.54 46.15
40 59.98 1.22 48.98

100 30.30 0.55 55.05
500  6.95 0.12 58.94

1000  3.54 0.06 59.47

TABLE 9.1
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power has a maximum value of 100 W, the current is 3.33 A, or one-half 
its maximum value of 6.67 A (as would result with a short circuit across 
the output terminals), and the voltage across the load is 30 V, or one-half 
its maximum value of 60 V (as would result with an open circuit across 
its output terminals). As you can see, there is no question that maximum 
power is transferred to the load when the load equals the Thévenin value.

The power to the load versus the range of resistor values is provided 
in Fig. 9.86. Note in particular that for values of load resistance less than 
the Thévenin value, the change is dramatic as it approaches the peak 
value. However, for values greater than the Thévenin value, the drop 
is a great deal more gradual. This is important because it tells us the 
following:

If the load applied is less than the Thévenin resistance, the 
power to the load will drop off rapidly as it gets smaller. 
However, if the applied load is greater than the Thévenin 
resistance, the power to the load will not drop off as rapidly 
as it increases.

For instance, the power to the load is at least 90 W for the range of 
about 4.5 Ω to 9 Ω below the peak value, but it is at least the same level 
for a range of about 9 Ω to 18 Ω above the peak value. The range below 
the peak is 4.5 Ω, while the range above the peak is almost twice as much 
at 9 Ω. As mentioned above, if maximum transfer conditions cannot be 
established, at least we now know from Fig. 9.86 that any resistance rel-
atively close to the Thévenin value results in a strong transfer of power. 
More distant values such as 1 Ω  or 100 Ω result in much lower levels.

It is particularly interesting to plot the power to the load versus load 
resistance using a log scale, as shown in Fig. 9.87. Logarithms will be 

PL

PL (W)

0 5 9 10 15 20 25 30 RL (V)

10

20

30

40

50

60

70

80

90

RL  =  RTh  =  9 V

PLmax
  =  100

RTh

FIG. 9.86 
PL versus RL for the network in Fig. 9.85.
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discussed in detail in Chapter 22, but for now notice that the spacing 
between values of RL  is not linear, but the distance, between powers 
of ten (such as 0.1 and 1, 1 and 10, and 10 and 100) are all equal. The 
advantage of the log scale is that a wide resistance range can be plotted 
on a relatively small graph.

Note in Fig. 9.87 that a smooth, bell-shaped curve results that is sym-
metrical about the Thévenin resistance of 9 Ω. At 0.1 Ω , the power has 
dropped to about the same level as that at 1000 Ω , and at 1 Ω  and 100 Ω,  
the power has dropped to the neighborhood of 30 W.

Although all of the above discussion centers on the power to the load, 
it is important to remember the following:

The total power delivered by a supply such as ETh is 
absorbed by both the Thévenin equivalent resistance and 
the load resistance. Any power delivered by the source that 
does not get to the load is lost to the Thévenin resistance.

Under maximum power conditions, only half the power delivered by the 
source gets to the load. Now, that sounds disastrous, but remember that 
we are starting out with a fixed Thévenin voltage and resistance, and the 
above simply tells us that we must make the two resistance levels equal 
if we want maximum power to the load. On an efficiency basis, we are 
working at only a 50% level, but we are content because we are getting 
maximum power out of our system.

The dc operating efficiency is defined as the ratio of the power deliv-
ered to the load ( PL ) to the power delivered by the source ( Ps). That is,

 
P
P

% 100%L

s

η = ×  (9.4)

For a network where R RL Th= ,

I R
I R

R
R

R
R R

  % 100% 100% 100%L L

L T

L

T

Th

Th Th

2

2
η = × = × =

+
×

R
R

50
2

100% 1
2

100%Th

Th

= × = × = %

Log scale

P (W)

100
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60

50

40

30

20

10

0.1 0.5 1 2 3 4 5678 10 20 30 40 100 1000 RL (V)

RL = RTh = 9 V

0.2

PL

PLmax

Linear
scale

FIG. 9.87 
PL versus RL for the network in Fig. 9.85.
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For the circuit in Fig. 9.85, if we plot the efficiency of operation ver-
sus load resistance, we obtain the plot in Fig. 9.88, which clearly shows 
that the efficiency continues to rise to a 100% level as RL  gets larger. 
Note in particular that the efficiency is 50% when R RL Th= .

To ensure that you completely understand the effect of the maximum 
power transfer theorem and the efficiency criteria, consider the circuit in 
Fig. 9.89, where the load resistance is set at 100 Ω and the power to the 
Thévenin resistance and to the load are calculated as follows:

I
E

R R
60 V

9  100 
60 V

109 
550.5 mAL

Th

Th L

=
+

=
Ω + Ω

=
Ω

=

with P I R 2 73W  550.5mA 9 .R L Th
2 2

Th
( ) ( )= = Ω ≅  

and P I R 30 3W550.5mA 100 .L L L
2 2( ) ( )= = Ω ≅

The results clearly show that most of the power supplied by the bat-
tery is getting to the load—a desirable attribute on an efficiency basis. 
However, the power getting to the load is only 30.3 W compared to the 
100 W obtained under maximum power conditions. In general, there-
fore, the following guidelines apply:

If efficiency is the overriding factor, then the load should 
be much larger than the internal resistance of the supply. If 
maximum power transfer is desired and efficiency less of 
a concern, then the conditions dictated by the maximum 
power transfer theorem should be applied.

A relatively low efficiency of 50% can be tolerated in situations where 
power levels are relatively low, such as in a wide variety of electronic sys-
tems, where maximum power transfer for the given system is usually more 
important. However, when large power levels are involved, such as at 
generating plants, efficiencies of 50% cannot be tolerated. In fact, a great 
deal of expense and research is dedicated to raising power generating and 
transmission efficiencies a few percentage points. Raising an efficiency 
level of a 10 MkW power plant from 94% to 95% (a 1% increase) can save 
0.1 MkW, or 100 million watts, of power—an enormous saving.

100

75

50

25

0 20 40 60 80 100 RL (V)

RL  =  RTh

%

10

5 kRL  3  100%%

Approaches 100%

'

FIG. 9.88 
Efficiency of operation versus increasing values of RL.

PE

PTh

PL

RL 100 V
ETh 60 V

RTh = 9 V

Power flow

FIG. 9.89 
Examining a circuit with high efficiency but a 

relatively low level of power to the load.
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In all of the above discussions, the effect of changing the load was 
discussed for a fixed Thévenin resistance. Looking at the situation from 
a different viewpoint, we can say

if the load resistance is fixed and does not match the 
applied Thévenin equivalent resistance, then some effort 
should be made (if possible) to redesign the system so that 
the Thévenin equivalent resistance is closer to the fixed 
applied load.

In other words, if a designer faces a situation where the load resistance 
is fixed, he or she should investigate whether the supply section should 
be replaced or redesigned to create a closer match of resistance levels to 
produce higher levels of power to the load.

For the Norton equivalent circuit in Fig. 9.90, maximum power will 
be delivered to the load when

 R RL N=  (9.5)

This result [Eq. (9.5)] will be used to its fullest advantage in the analysis 
of transistor networks, where the most frequently applied transistor cir-
cuit model uses a current source rather than a voltage source.

For the Norton circuit in Fig. 9.90,

 P
I R

4
  WL

N N
2

max
( )=  (9.6)

EXAMPLE 9.15 A dc generator, battery, and laboratory supply are 
connected to a corresponding resistive load RL  in Fig. 9.91.

a. For each, determine the value of RL  for maximum power transfer to 
R .L

b. Under maximum power conditions, what are the current level and 
the power to the load for each configuration?

c. What is the efficiency of operation for each supply in part (b)?
d. If a load of 1 kΩ were applied to the laboratory supply, what would 

the power delivered to the load be? Compare your answer to the 
level of part (b). What is the level of efficiency?

e. For each supply, determine the value of RL  for 75% efficiency.

RL  =  RN

I

RNIN

FIG. 9.90 
Defining the conditions for maximum power 
to a load using the Norton equivalent circuit.

RL

2.5 VRint

–

+
E

RL

0.05 Rint

E

RL

Rint

E

(a)  dc generator (b)  Battery (c)  Laboratory supply

+

–

+

–

120 V

20 V

12 V 0–40 V

V

FIG. 9.91 
Example 9.15.

Solutions:

a. For the dc generator,

R R R 2 5.  L Th int Ω= = =
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For the 12 V car battery,

R R R 0 05.  L Th int Ω= = =

For the dc laboratory supply,

R R R 20 L Th int Ω= = =

b. For the dc generator,

P
E
R

E
R

1 44 kW
4 4

120 V
4 2.5 Ω

.  L
Th

Th

2 2

int

2

max ( )

( )
= = = =

For the 12 V car battery,

P
E
R

E
R

720 W
4 4

12 V
4 0.05 Ω

 L
Th

Th

2 2

int

2

max ( )

( )
= = = =

For the dc laboratory supply,

P
E
R

E
R

20 W
4 4

40 V
4 20 Ω

 L
Th

Th

2 2

int

2

max ( )

( )
= = = =

c. They are all operating at 50% efficiency level because R R .L Th=
d. The power to the load is determined as follows:

I E
R R

40 V
20  1000 

40 V
1020 

39.22 mAL
Lint

=
+

=
Ω + Ω

=
Ω

=

and P I R 1 54 W39.22 mA 1000  .L L L
2 2( )( )= = Ω =

The power level is significantly less than the 20 W achieved in part (b). 
The efficiency level is

P
P EI

  % 100% 1.54 W 100% 1.54 W
40 V 39.22 mA

100%L

s s

η
( )( )

= × = × = ×

98 091.54 W
1.57 W

100% .= × = %

which is markedly higher than achieved under maximum power 
conditions—albeit at the expense of the power level.

e. For the dc generator,

P
P

R
R R

   in decimal formo

s

L

Th L

η η( )= =
+

and 
R

R R
  L

Th L

η =
+

R R R  Th L Lη( )+ =

R R R  Th L Lη η+ =

R R1L Thη η( )− =

and R
R

1L
Thη
η

=
−

 (9.7)

R 7 50.75 2.5 
1 0.75

.  L Ω( )= Ω
−

=

For the battery,

R 0 150.75 0.05 
1 0.75

.  L Ω( )= Ω
−

=
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For the laboratory supply,

Ω( )= Ω
−

=R 600.75 20 
1 0.75

 L

EXAMPLE 9.16 The analysis of a transistor network resulted in the 
reduced equivalent in Fig. 9.92.

a.  Find the load resistance that will result in maximum power transfer 
to the load, and find the maximum power delivered.

b. If the load were changed to Ω68 k , would you expect a fairly high 
level of power transfer to the load based on the results of part (a)? 
What would the new power level be? Is your initial assumption 
verified?

d. If the load were changed to Ω8.2 k , would you expect a fairly high 
level of power transfer to the load based on the results of part (a)? 
What would the new power level be? Is your initial assumption 
verified?

Solutions:

a. Replacing the current source by an open-circuit equivalent results in

= = ΩR R 40 kTh s

Restoring the current source and finding the open-circuit voltage at 
the output terminals results in

( )( )= = = Ω =E V IR 10 mA 40 k 400 VTh oc s

For maximum power transfer to the load,

R R 40 k L Th Ω= =

with a maximum power level of

( )

( )
= =

Ω
=P

E
R

1 W
4

400 V
4 40 k

 L
Th

Th

2 2

max

b. Yes, because the Ω68 k  load is greater (note Fig. 9.86) than the 
Ω40 k  load, but relatively close in magnitude.

=
+

=
Ω + Ω

=
Ω

≅I
E

R R
  400 V

40 k 68 k
400

108 k
3.7 mAL

Th

Th L

( )( )= = Ω ≅P I R 0 93 W3.7 mA 68 k .  L L L
2 2

Yes, the power level of 0.93 W compared to the 1 W level of part (a) 
verifies the assumption.

e. No, Ω8.2 k is quite a bit less (note Fig. 9.86) than the Ω40 k  value.

=
+

=
Ω + Ω

=
Ω

≅I
E

R R
  400 V

40 k 8.2 k
400 V

48.2 k
8.3 mAL

Th

Th L

( )( )= = Ω ≅P I R 0 57 W8.3 mA 8.2 k .  L L L
2 2

Yes, the power level of 0.57 W compared to the 1 W level of part (a) 
verifies the assumption.

EXAMPLE 9.17 In Fig. 9.93, a fixed load of Ω16   is applied to a  
48 V supply with an internal resistance of Ω36  .

I 10 mA Rs 40 kV RL

FIG. 9.92 
Example 9.16.

dc supply

RL 16 V48 V

36 V

Rs

E

FIG. 9.93 
dc supply with a fixed  16 Ω  load (Example 

9.17).
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a. For the conditions in Fig. 9.93, what is the power delivered to the 
load and lost to the internal resistance of the supply?

b. If the designer has some control over the internal resistance level of 
the supply, what value should he or she make it for maximum power 
to the load? What is the maximum power to the load? How does it 
compare to the level obtained in part (a)?

c. Without making a single calculation, find the value that would result 
in more power to the load if the designer could change the internal 
resistance to Ω22   or Ω8.2  . Verify your conclusion by calculating 
the power to the load for each value.

 Solutions:

a. =
+

=
Ω + Ω

=
Ω

=I E
R R

48 V
36  16 

48 V
52 

923.1 mAL
s L

( )( )= = Ω =P I R 30 68 W923.1 mA 36  .  R L s
2 2

s

( )( )= = Ω =P I R 13 63 W923.1 mA 16  .  L L L
2 2

b. Be careful here. The quick response is to make the source resistance 
Rs  equal to the load resistance to satisfy the criteria of the maxi-
mum power transfer theorem. However, this is a totally different 
type of problem from what was examined earlier in this section. If 
the load is fixed, the smaller the source resistance Rs , the more 
applied voltage will reach the load and the less will be lost in the 
internal series resistor. In fact, the source resistance should be made 
as small as possible. If zero ohms were possible for Rs , the voltage 
across the load would be the full supply voltage, and the power 
delivered to the load would equal

( )
= =

Ω
=P

V
R

144 W48 V
16 

 L
L

L

2 2

which is more than 10 times the value with a source resistance of 
Ω36  .

c. Again, forget the impact in Fig. 9.86: The smaller the source resis-
tance, the greater is the power to the fixed Ω16   load. Therefore, the 

Ω8.2   resistance level results in a higher power transfer to the load 
than the Ω22   resistor.

For = ΩR 8.2 s

=
+

=
Ω + Ω

=
Ω

=I E
R R

48 V
8.2  16 

48 V
24.2 

1.983 AL
s L

and P I R A 62 92 W1.983 16  .L L L
2 2( ) ( )= = Ω ≅

For = ΩR 22 s

=
+

=
Ω + Ω

=
Ω

=I E
R R

  48 V
22  16 

48 V
38 

1.263 AL
s L

and P I R 25 52 W1.263A 16 .L L L
2 2( ) ( )= = Ω ≅

EXAMPLE 9.18 Given the network in Fig. 9.94, find the value of 
RL  for maximum power to the load, and find the maximum power to 
the load.

Solution: The Thévenin resistance is determined from Fig. 9.95:

= + + = Ω + Ω + Ω = ΩR R R R 3  10  2  15 Th 1 2 3

R2 10 V

R1

3 V

R3

2 V

RTh

FIG. 9.95 
Determining RTh  for the network external to 

resistor RL in Fig. 9.94.

R2 10 V

R1

3 V

6 AI RL

E1

68 V

R3

2 V

+ –

FIG. 9.94 
Example 9.18.
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so that R R 15L Th Ω= =

The Thévenin voltage is determined using Fig. 9.96, where

( )( )= = = = = Ω =V V V I R IR0 V and 6 A 10  60 V1 3 2 2 2 2

Applying Kirchhoff’s voltage law gives

V E E 0Th2− − + =

and E V E 128 V60 V 68VTh 2= + = + =

with the maximum power equal to

( )

( )
= =

Ω
=P

E
R

273 07 W
4

128 V
4 15 

.  L
Th

Th

2 2

max

9.6 MILLMAN’S THEOREM
Through the application of Millman’s theorem, any number of parallel 
voltage sources can be reduced to one. In Fig.  9.97, for example, the 
three voltage sources can be reduced to one. This permits finding the 
current through or voltage across RL  without having to apply a method 
such as mesh analysis, nodal analysis, superposition, and so on. The the-
orem can best be described by applying it to the network in Fig. 9.97. 
Basically, three steps are included in its application.

V2 R2  =  10 V

E1

68 V
R1  =  3 V

I  =  0

I  =  6 A
I  =  0

R3  =  2 V
+  V3  =  0 V  –

ETh

–

+

–  V1  =  0 V  +

–

+
6 A

I  =

6 A

+ –

FIG. 9.96 
Determining ETh  for the network external to 

resistor RL in Fig. 9.94.

R1

E1

R2

E2

R3

E3

RL

Req

Eeq

RL

+

–

+

–

+

–

+

–

FIG. 9.97 
Demonstrating the effect of applying Millman’s theorem.

I1 E1G1 G1 I2 E2G2 I3G2 E3G3 G3 RL

( )E3
R3

( )E2
R2

( )E1
R1

FIG. 9.98 
Converting all the sources in Fig. 9.97 to current sources.

Step 1: Convert all voltage sources to current sources as outlined in 
 Section 8.2. This is performed in Fig. 9.98 for the network in Fig. 9.97.
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Step 2: Combine parallel current sources as described in Section 8.2. The 
resulting network is shown in Fig. 9.99, where

= + + = + +I I I I G G G GandT T1 2 3 1 2 3

Step 3: Convert the resulting current source to a voltage source, and the 
desired single-source network is obtained, as shown in Fig. 9.100.

In general, Millman’s theorem states that for any number of parallel 
voltage sources,

E
I
G

I I I I
G G G G

         
      

T

T

N

N
eq

1 2 3

1 2 3

= =
± ± ± ± ±

+ + + +
�
�

or =
± ± ± ± ±

+ + + +
�

�
E

E G E G E G E G
G G G G

       
      

N N

N
eq

1 1 2 2 3 3

1 2 3

 (9.8)

The plus-and-minus signs appear in Eq. (9.8) to include those cases 
where the sources may not be supplying energy in the same direction. 
(Note Example 9.19.)

The equivalent resistance is

 = =
+ + + +�

R
G G G G G
1 1

     T N
eq

1 2 3

 (9.9)

In terms of the resistance values,

 =
± ± ± ± ±

+ + + +

�

�
E

E
R

E
R

E
R

E
R

R R R R

       

1 1 1       1

N

N

N

eq

1

1

2

2

3

3

1 2 3

 (9.10)

and =
+ + + +�

R

R R R R

1
1 1 1   1

N

eq

1 2 3

 (9.11)

Because of the relatively few direct steps required, you may find 
it easier to apply each step rather than memorizing and employing 
Eqs. (9.8) through (9.11).

EXAMPLE 9.19 Using Millman’s theorem, find the current through 
and voltage across the resistor RL  in Fig. 9.101.

Solution: By Eq. (9.10),

=
+ − +

+ +
E

E
R

E
R

E
R

R R R
1 1 1eq

1

1

2

2

3

3

1 2 3

The minus sign is used for E R2 2  because that supply has the opposite 
polarity of the other two. The chosen reference direction is therefore that 
of E1 and E3. The total conductance is unaffected by the direction, and

GTIT RL

FIG. 9.99 
Reducing all the current sources in Fig. 9.98 

to a single current source.

Req
1

GT

Eeq
IT
GT

+

–

RL

FIG. 9.100 
Converting the current source in Fig. 9.99 to 

a voltage source.

R1 5 V R2 4 V R3 2 V

E1
10 V

E2
16 V

E3
8 V

RL 3 V

IL

VL

+

–
+

–

+

–+

–

FIG. 9.101 
Example 9.19.
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=
+

Ω
−

Ω
+

Ω

Ω
+

Ω
+

Ω

= − +
+ +

E

10 V
5 

16 V
4 

8 V
2 

1
5 

1
4 

1
2 

2 A 4 A 4 A
0.2 S 0.25 S 0.5 Seq

2 11 V2 A
0.95 S

.  = =

with Ω=

Ω
+

Ω
+

Ω

= =R 1 051
1

5 
1

4 
1

2 

1
0.95 S

.  eq

The resultant source is shown in Fig. 9.102, and

=
Ω + Ω

=
Ω

=I 0 52 A2.11 V
1.05  3 

2.11 V
4.05 

.  L

with V I R 1 56 V0.52 A 3 .L L L ( )( )= = Ω =

EXAMPLE 9.20 Let us now consider the type of problem encoun-
tered in the introduction to mesh and nodal analysis in Chapter 8. Mesh 
analysis was applied to the network of Fig. 9.103 (Example 8.14). Let us 
now use Millman’s theorem to find the current through the 2 Ω resistor 
and compare the results.

Solutions:

a. Let us first apply each step and, in the (b) solution, Eq. (9.10). Con-
verting sources yields Fig. 9.104. Combining sources and parallel 
conductance branches (Fig. 9.105) yields

I I I  5 A 5
3

 A 15
3

 A 5
3

 A 20
3

 AT 1 2= + = + = + =

G G G  1 S 1
6 

 S 6
6 

 S 1
6 

 S 7
6

 ST 1 2= + = + = + =

R3 2 V

6
7

Req V

Eeq
40
7 V

+

–

FIG. 9.106 
Converting the current source in Fig. 9.105 to 

a voltage source.

Req 1.05 V

Eeq

RL 3 V VL
–

+

2.11 V

IL

+

–

FIG. 9.102 
The result of applying Millman’s theorem to 

the network in Fig. 9.101.

R1 1 V R2 6 V

E1 5 V E2 10 V

R3 2 V
+

–

+

–

FIG. 9.103 
Example 9.20.

I1

R1

5 A

1 V R2 6 V

I2
5
3

R3 2 V

A

FIG. 9.104 
Converting the sources in Fig. 9.103 to 

current sources.

IT
20
3

7
6

R3 2 VSA GT

FIG. 9.105 
Reducing the current sources in 

Fig. 9.104 to a single source.

Converting the current source to a voltage source (Fig. 9.106), we 
obtain

E
I
G

5.71 V

20
3

 A

7
6

 S

6 20
3 7

 V  T

T
eq

( )( )

( )( )
= = = =

and R
G

0.861 1
7
6

ST
eq Ω= = =
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so that

I
E

R R
2 A

40
7

 V

6
7

  2 

40
7

 V

6
7

  14
7

 

40 V
20 

 2
eq

eq 3

=
+

=
Ω + Ω

=
Ω + Ω

=
Ω

=Ω

which agrees with the result obtained in Example 8.14.
b. Let us now simply apply the proper equation, Eq. (9.10):

E 5 71 V

5 V
1 

10 V
6 

1
1 

1
6 

30 V
6 

10 V
6 

6
6 

1
6 

.  eq =
+

Ω
+

Ω

Ω
+

Ω

= Ω
+

Ω

Ω
+

Ω

=

and

Ω=

Ω
+

Ω

=

Ω
+

Ω

= =R 0 861
1

1 
1

6 

1
6

6 
1

6 

1
7
6

 S
.  eq

which are the same values obtained above.

The dual of Millman’s theorem (Fig. 9.97) appears in Fig. 9.107. It 
can be shown that I eq and Req, as in Fig. 9.107, are given by

 =
± ± ±

+ +
I

I R I R I R
R R R

 
eq

1 1 2 2 3 3

1 2 3

 (9.12)

and = + +R R R Req 1 2 3  (9.13)

The derivation appears as a problem at the end of the chapter.

R1

I2

R2

I3

R3

I1

Req

Ieq

RL RL

FIG. 9.107 
The dual effect of Millman’s theorem.

R2 4 V

R1

6 V

a

b

3 A

E 30  V
+

–
12 V

+

–

FIG. 9.108 
Demonstrating the effect of the substitution 

theorem.

9.7 SUBSTITUTION THEOREM
The substitution theorem states the following:

If the voltage across and the current through any branch of a 
dc bilateral network are known, this branch can be replaced 
by any combination of elements that will maintain the same 
voltage across and current through the chosen branch.

More simply, the theorem states that for branch equivalence, the 
terminal voltage and current must be the same. Consider the circuit in 
Fig. 9.108, in which the voltage across and current through the branch 
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a b-  are determined. Through the use of the substitution theorem, a num-
ber of equivalent a a- ′ branches are shown in Fig. 9.109.

Note that for each equivalent, the terminal voltage and current are 
the same. Also consider that the response of the remainder of the cir-
cuit in Fig.  9.108 is unchanged by substituting any one of the equiv-
alent branches. As demonstrated by the single-source equivalents in 
Fig. 9.109, a known potential difference and current in a network can 
be replaced by an ideal voltage source and current source, respectively.

Understand that this theorem cannot be used to solve networks with 
two or more sources that are not in series or parallel. For it to be applied, 
a potential difference or current value must be known or found using 
one of the techniques discussed earlier. One application of the theorem 
is shown in Fig. 9.110. Note that in the figure the known potential dif-
ference V was replaced by a voltage source, permitting the isolation of 
the portion of the network including R3 , R4, and R5. Recall that this was 
basically the approach used in the analysis of the ladder network as we 
worked our way back toward the terminal resistance R5.

2 A 12 V 12 V

b

3 A
a

–

+

a

b
–

+

2 V

 6 V

3 A

12 V

a

b
–

+

3 A 12 V

a

b

12 V

–

+
3 A

+

–
+

–

FIG. 9.109 
Equivalent branches for the branch a-b in Fig. 9.108.

R2

R3a

b

E V

–

+

R1

R4 R5

R3

b

E9  =  V R5R4

a

+

–

+

–

FIG. 9.110 
Demonstrating the effect of knowing a voltage at some point in a complex 

network.

The current source equivalence of the above is shown in Fig. 9.111, 
where a known current is replaced by an ideal current source, permitting 
the isolation of R4 and R5.

R2 R4

R3

R5

ba

I

R5

a

I

b

R1

E
+

–

R4

FIG. 9.111 
Demonstrating the effect of knowing a current at some point in a 

complex network.
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Recall from the discussion of bridge networks that V 0=  and I 0=  
were replaced by a short circuit and an open circuit, respectively. This 
substitution is a very specific application of the substitution theorem.

9.8 RECIPROCITY THEOREM
The reciprocity theorem is applicable only to single-source networks. 
It is, therefore, not a theorem used in the analysis of multisource net-
works described thus far. The theorem states the following:

The current I in any branch of a network due to a single 
voltage source E anywhere else in the network will equal 
the current through the branch in which the source was 
originally located if the source is placed in the branch in 
which the current I was originally measured.

In other words, the location of the voltage source and the resulting 
current may be interchanged without a change in current. The theorem 
requires that the polarity of the voltage source have the same correspon-
dence with the direction of the branch current in each position.

I

E

a

b

c

d

I

E

a

b

c

d

(a) (b)

+

–

+

–

FIG. 9.112 
Demonstrating the impact of the reciprocity theorem.

In the representative network in Fig. 9.112(a), the current I due to the 
voltage source E was determined. If the position of each is interchanged 
as shown in Fig. 9.112(b), the current I will be the same value as in-
dicated. To demonstrate the validity of this statement and the theorem, 
consider the network in Fig. 9.113, in which values for the elements of 
Fig. 9.112(a) have been assigned.

The total resistance is

( ) ( )= + + = Ω + Ω Ω + Ω� �R R R R R 12  6    2  4 T 1 2 3 4

= Ω + Ω Ω = Ω + Ω = Ω�12  6  6  12  3  15 

and I E
R

45 V
15 

3 As
T

= =
Ω

=

with I 1 5 A
3A

2
.= =

For the network in Fig. 9.114, which corresponds to that in Fig. 9.112(b), 
we find

= + + �R R R R RT 4 3 1 2

= Ω + Ω + Ω Ω = Ω�4  2  12    6  10 

and = =
Ω

=I E
R

45V

10
4.5As

T

E 45 V

I

+

–

R3

2 V

R1

12 V

R2 6 V R4 4 V

Is

FIG. 9.113 
Finding the current I due to a source E.

R1

12 V

R3

2 V

R2 6 V
R4 4 V

E 45 V

I RT

Is

+

–

FIG. 9.114 
Interchanging the location of E and I of 

Fig. 9.113 to demonstrate the validity of the 
reciprocity theorem.
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so that 
( )( )

=
Ω
Ω + Ω

= =I 1 5 A
6 4.5A

12 6

4.5A

3
.

which agrees with the above.
The uniqueness and power of this theorem can best be demonstrated 

by considering a complex, single-source network such as the one shown 
in Fig. 9.115.

c

d

a

b

I
c

d

a

b

I

E

E
+

–

+

–

FIG. 9.115 
Demonstrating the power and uniqueness of the reciprocity 

theorem.

PROBLEMS

SECTION 9.2  Superposition Theorem

 1. a. Using the superposition theorem, determine the current 
through the 15 Ω resistor of Fig. 9.116.

b. Convert both voltage sources to current sources and 
recalculate the current to the 15 Ω resistor.

c. How do the results of parts (a) and (b) compare?

 3. Using the superposition theorem, determine the current 
through the 60 Ω  resistor of Fig. 9.118.

R2

R3

I

10 VE2

R1

16 VE1

4 V 2 V

15 V

+

–+

–

FIG. 9.116 
Problem 1.

4.7 V

R2

3.3 V 12 V

E

2.4 VR1 R33 A
I

V

+–

+

–

FIG. 9.117 
Problem 2.

24 V10 A

 24 V 12 V 60 VI

FIG. 9.118 
Problem 3.

 2. a. Using the superposition theorem, determine the voltage 
across the Ω4.7   resistor of Fig. 9.117.

b. Find the power delivered to the Ω4.7   resistor due solely 
to the current source.

c. Find the power delivered to the Ω4.7   resistor due solely 
to the voltage source.

d. Find the power delivered to the Ω4.7   resistor using the 
voltage found in part (a).

e. How do the results of part (d) compare with the sum of 
the results to parts (b) and (c)? Can the superposition 
theorem be applied to power levels?
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 5. Using superposition, find the voltage VR3
 for the network of 

Fig. 9.120.

R1 12 kV

I 10 mA

40 VE

V2

+

–
R2 6.8 kV

 FIG. 9.121 
Problem 6.

R2

6.8 kV

R1 2.2 kV

5 mA

2 mAI R4

R3

4.7 kV

1.2 kV

8 V

I1

+

–

FIG. 9.122 
Problem 7.

I = 6 A

R4 12 V

E2E1
R2R1

4 + 8 V 12 V V6 V

R5

4 V
Vs+ –

–

FIG. 9.123 
Problem 8.

R1

6 V

R2 9 VE R18 V

R3

4 V

+

–

FIG. 9.124 
Problem 9.

R1 18 V

R2 9 V R3 15 V R4 10 V

30 V

E2

E1  =  + 48 V

+– I

FIG. 9.119 
Problem 4.

10 kV 18 kVR1 R24 mA

18 V
+–

R4

R3

4.7 kV

3.3 kV

VR
3
–+

FIG. 9.120 
Problem 5.

 4. Using superposition, find the current I through the 30 V 
source in Fig. 9.119.

 6. Using superposition, find the voltage V2  for the network in 
Fig. 9.121.

 *7. Using superposition, find the current through R1 for the net-
work in Fig. 9.122.

 *8.  Using superposition, find the voltage across the 6 A source 
in Fig. 9.123.

SECTION 9.3  Thévenin’s Theorem

 9.  a. Find the Thévenin equivalent circuit for the network 
external to the resistor R in Fig. 9.124.

b. Find the current through R when R is 5  ,  40  ,Ω Ω  and 
120  .Ω

10. a. Find the Thévenin equivalent circuit for the network 
external to the resistor R for the network in Fig. 9.125.

b. Find the power delivered to R when R is 5 kΩ  and 
50 k .Ω
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 *17.  a. Determine the Thévenin equivalent circuit for the net-
work external to the resistor R in Fig. 9.132.

b. Find the polarity and magnitude of the voltage across 
the resistor R if its value is Ω1.2 k .

11. a. Find the Thévenin equivalent circuit for the network 
external to the resistor R for the network in Fig. 9.126.

b. Find the power delivered to R when R is 4 Ω and 90  .Ω

R5 kV

4.7 kV

15 mA

20 kV

FIG. 9.125 
Problem 10.

6 V

E 20 V

R2 R

6 VR1
6 V

R3

+

–

FIG. 9.126 
Problem 11.

R

18 VE1

8 V
3 V

12 VE2

R2

10 V 
R3

R1

+

–
+

–

FIG. 9.127 
Problem 12.

12. Find the Thévenin equivalent circuit for the network external 
to the resistor R for the network in Fig. 9.127.

13. Find the Thévenin equivalent circuit for the network external 
to the resistor R for the network in Fig . 9.128.

8 V

3 V

2 V

R

4 V

4 A

FIG. 9.129 
Problem 14.

 *14.  Find the Thévenin equivalent circuit for the network exter-
nal to the resistor R in Fig. 9.129.

R

8 mA

5.6 kV

2.2 kV

+ 16 V

FIG. 9.128 
Problem 13.

15. a. Find the Thévenin equivalent circuit for the portions of 
the network of Fig. 9.130 external to points a and b.

b. Redraw the network with the Thévenin circuit in place 
and find the current through the Ω10 k  resistor.

8 mA

4 kV 

20 V 

4 kV 

4 kV 

10 kV 4 kV

+

– a b

FIG. 9.130 
Problem 15.

20 V 5 V R

20 V

R2E

R1

16 VR4

12 V

R3

2 V

R5

+

–

FIG. 9.131 
Problem 16.

 *16.  a. Determine the Thevénin equivalent circuit for the net-
work external to the resistor R in Fig. 9.131.

b. Find the current through the resistor R if its value is 
Ω20  , Ω50  , and Ω100  .

c. Without having the Thévenin equivalent circuit, what 
would you have to do to find the current through the 
resistor R for all the values of part (b)?
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VNetwork = 20 V

VNetwork = 60 mV

VNetwork = 16 V

INetwork = 1.6 mA

Network = 2.72 kV

Network R = 2.2 kV

(a)

(b)

(c)

8 V

E = 0 V

+

–

FIG. 9.135 
Problem 20.

3.3 kV

RL

+ 22 V

5.6 kV

– 12 V

2.2 kV

1.2 kV

5 mA

FIG. 9.133 
Problem 18.

1.1 kV

2.2 kVR2

– 4 V

R1

1.2 kVR

E2

E1  =  +12 V

3.3 kV

R3

FIG. 9.132 
Problem 17.

R1 51 kV

R2 10 kV

RC 2.2 kV

RE 0.5 kV

IE

IC

20 V20 V

B

C

E

VCE  =  8 V

+

–

VC

IB

FIG. 9.134 
Problem 19.

 *18.  For the network in Fig. 9.133, find the Thévenin equivalent 
circuit for the network external to the load resistor RL .

 *19.  For the transistor network in Fig. 9.134:
a. Find the Thévenin equivalent circuit for that portion of 

the network to the left of the base (B) terminal.
b. Using the fact that I IC E=  and V 8 V,CE =  deter-

mine the magnitude of I .E

c. Using the results of parts (a) and (b), calculate the base 
current I B  if V 0.7 V.BE =

d. What is the voltage V ?C

20.  For each vertical set of two measurements appearing in 
Fig. 9.135, determine the Thévenin equivalent circuit.
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SECTION 9.5  Maximum Power Transfer Theorem

31. a. Find the value of R for maximum power transfer to R for 
the network of Fig. 9.124.

b. Determine the maximum power of R.

32. a. Find the value of R for maximum power transfer to R for 
the network of Fig. 9.127.

b. Determine the maximum power of R.

33. a. Find the value of R for maximum power transfer to R for 
the network of Fig. 9.129.

b. Determine the maximum power to R.

 *21.  For the network of Fig. 9.136, find the Thévenin equivalent 
circuit for the network external to the 250 Ω  resistor.

10 V

2 V

4 V

4 V

a

4 V

250 V

b
4 V

+

–

+

–

FIG. 9.136 
Problem 21.

80 V 

20 V 

100 V 

4 A

16 V

40 V 

8 V

+

–

a

b

FIG. 9.137 
Problem 30.

20 V

5 A RR2

R1

E

I
+

–

2.4 V

24 V

FIG. 9.138 
Problem 35.

100 V 50 VR4

R1

50 VR2

50 V

R3

+

–

FIG. 9.139 
Problem 36.

SECTION 9.4  Norton’s Theorem

  22. a. Find the Norton equivalent circuit for the network exter-
nal to the resistor R in Fig. 9.124.

b. Convert the Norton equivalent circuit to the Thévenin 
form.

c. Find the Thévenin equivalent circuit using the Thévenin 
approach and compare results with part (b).

  23. a. Find the Norton equivalent circuit for the network exter-
nal to the resistor R in Fig. 9.125.

b. Convert the Norton equivalent circuit to the Thévenin 
form.

c. Find the Thévenin equivalent circuit using the Thévenin 
approach and compare results with part (b).

  24.   Find the Norton equivalent circuit for the network external 
to the resistor R in Fig. 9.127.

  25.   Find the Norton equivalent circuit for the network external 
to the resistor R in Fig. 9.128.

  *26.  Find the Norton equivalent circuit for the network external 
to the resistor R in Fig. 9.129.

 *27.  Find the Norton equivalent circuit for the network external 
to the resistor R in Fig. 9.131.

 *28.  Find the Norton equivalent circuit for the network external 
to the resistor RL  in Fig. 9.133.

 *29.  Find the Norton equivalent circuit for the network external 
to the 250 Ω  resistor in Fig. 9.136.

 *30.  a. Find the Norton equivalent circuit external to points a 
and b in Fig. 9.137.

b. Find the magnitude and polarity of the voltage across 
the 100 Ω  resistor using the results of part (a).

 *36.  Find the resistance R1 in Fig. 9.139 such that the resistor R4 
will receive maximum power. Think!

 *37.  a. For the network in Fig. 9.140, determine the value of R2 
for maximum power to R .4

b. Is there a general statement that can be made about situ-
ations such as those presented here and in Problem 36?

 *34.  a. Find the value of RL  in Fig. 9.133 for maximum power 
transfer to R .L

b. Find the maximum power to R .L

35. a. For the network of Fig. 9.138, determine the value of R 
for maximum power to R.

b. Determine the maximum power to R.
c. Plot a curve of power to R versus R for R ranging from 

1/4 to 2 times the value determined in part (a) using an 
increment of 1/4 the value of R. Does the curve verify 
the fact that the chosen value of R in part (a) will ensure 
maximum power transfer?
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  *38.  For the network in Fig. 9.141, determine the level of R that 
will ensure maximum power to the Ω100   resistor. Find the 
maximum power to RL .

16 V

RL

500 V  Pot.

R

100 V

+

–

FIG. 9.141 
Problem 38.

40 V

6 VR2

E1

RL 3 V

42 VE2

10 VR1

+

–

+

–

FIG. 9.142 
Problem 39.

4 V 4.7 kVR2E1

RL 2 kV

12 VE2

+

–
5.8 kVR1

+

–

FIG. 9.143 
Problem 40.

+

–

400 V 80 VR2E1

20 VE2

+

–
80 VR1

RL 300 V 10 VE3

+

–

R3

50 V

FIG. 9.144 
Problem 41.

R1

4.7 V RL 2.7 V

I1  =  4 A

R2

3.3 V

I2  =  1.6 A

FIG. 9.145 
Problem 42.

R2

4.7 V

8 mA

I2

I1

10 mA

R1 2 kV I3

4 mA

R3 8.2 kV

6.8 kV

RL

FIG. 9.146 
Problem 43.

7 kV15 kV80 VE

8 kV4.5 kV a

b

+

–

FIG. 9.147 
Problem 44.

120 V R4R2

24 V

R3

24 V

R1

E
+

–

FIG. 9.140 
Problem 37.

SECTION 9.6  Millman’s Theorem

39.  Using Millman’s theorem, find the current through and volt-
age across the resistor RL  in Fig. 9.142.

40. Repeat Problem 39 for the network in Fig. 9.143.

42.  Using the dual of Millman’s theorem, find the current through 
and voltage across the resistor RL  in Fig. 9.145.

41.  Using Millman’s theorem, find the current through and volt-
age across the resistor RL  in Fig. 9.144.

43.  Using the dual of Millman’s theorem, find the current through 
and voltage across the resistor RL  in Fig. 9.146.

SECTION 9.7  Substitution Theorem

44.  Using the substitution theorem, draw three equivalent 
branches for the branch a-b of the network in Fig. 9.147.
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  45.    Using the substitution theorem, draw three equivalent 
branches for the branch a-b of the network in Fig. 9.148.

32 VE

4 kV8 kV

24 kV
20 kV

24 kV

I

(a)

+

–

32 V

E

4 kV8 kV

24 kV

24 kV

I

(b)

+

–

20 kV

FIG. 9.150 
Problem 47.

+–

+

–

4 kV 4 kV

4 kV 8 kV

E

10 V

I
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Problem 48.
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Problem 49.
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Problem 45.
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FIG. 9.149 
Problem 46.

 *46.  Using the substitution theorem, draw three equivalent 
branches for the branch a-b of the network of Fig. 9.149.

SECTION 9.8  Reciprocity Theorem

47. a. For the network in Fig. 9.150(a), determine the current I.
b. Repeat part (a) for the network in Fig. 9.150(b).
c. Is the reciprocity theorem satisfied?

48. a. For the network of Fig. 9.151(a), determine the current I.
b.  Repeat part (a) for the network in Fig. 9.151(b).
c. Is the reciprocity theorem satisfied?

49. a. Determine the voltage V for the network in Fig. 9.152(a).
b. Repeat part (a) for the network in Fig. 9.152(b).
c. Is the dual of the reciprocity theorem satisfied?
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if the source is placed in the branch in which the current was 
originally measured.

Substitution theorem A theorem that states that if the voltage 
across and current through any branch of a dc bilateral net-
work are known, the branch can be replaced by any combi-
nation of elements that will maintain the same voltage across 
and current through the chosen branch.

Superposition theorem A network theorem that permits consid-
ering the effects of each source independently. The resulting 
current and/or voltage is the algebraic sum of the currents and/
or voltages developed by each source independently.

Thévenin’s theorem A theorem that permits the reduction of 
any two-terminal, linear dc network to one having a single 
voltage source and series resistor.

GLOSSARY

Maximum power transfer theorem A theorem used to deter-
mine the load resistance necessary to ensure maximum power 
transfer to the load.

Millman’s theorem A method using source conversions that 
will permit the determination of unknown variables in a mul-
tiloop network.

Norton’s theorem A theorem that permits the reduction of any 
two-terminal linear dc network to one having a single current 
source and parallel resistor.

Reciprocity theorem A theorem that states that for  single-source 
networks, the current in any branch of a network due to a 
single voltage source in the network will equal the current 
through the branch in which the source was originally located 
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10 Capacitors

10.1 INTRODUCTION
The analysis thus far has been limited solely to dc resistive networks where the relationship 
between the current and voltage remains fixed and insensitive to time. This chapter will now 
introduce the capacitor that has a relationship between the current and voltage that is not lin-
ear like with a resistor but one that is very sensitive to how the voltage or current changes with 
time. In addition, we now know that all the energy supplied to a resistor is dissipated as heat. 
For a pure capacitor, there is no dissipation (ideally) but the energy delivered to the capacitor 
is stored in a form that can be returned to the network when called for by the network design.

Although the basic construction of capacitors is actually quite simple, it is a component 
that opens the door to all types of practical applications, extending from laptop touch pads, 
cell phone screens (iphone) and sophisticated control systems. A few applications are intro-
duced and discussed in detail later in this chapter.

 10.2 THE ELECTRIC FIELD
Recall from Chapter 2 that a force of attraction or repulsion exists between two charged bodies. 
We now examine this phenomenon in greater detail by considering the electric field that exists 
in the region around any charged body. This electric field is represented by electric flux lines, 
which are drawn to indicate the strength of the electric field at any point around the charged body. 
The denser the lines of flux, the stronger is the electric field. In Fig. 10.1, for example, the electric 
field strength is stronger in region a than region b because the flux lines are denser in region a 
than in b. That is, the same number of flux lines pass through each region, but the area A1 is much 
smaller than area A .2  The symbol for electric flux is the Greek letter ψ  (psi). The flux per unit 
area (flux density) is represented by the capital letter D and is determined by

                                            D
A

flux/unit area
ψ ( )=  (10.1)

• Become familiar with the basic construction of a 
capacitor and the factors that determine how much 
charge will be deposited on the plates.

•  Understand how charge is deposited on the plates 
of a capacitor and how the insertion of an insulator 
(of a particular type) will affect the amount of 
charge deposited on the plates.

• Become familiar with the wide variety of capacitors 
available, their basic construction and a few areas 
of application.

• Be able to determine the transient (time-varying) 
response of a capacitive network due to the 
application of a dc voltage.

• Understand the impact of combining capacitors in 
series or parallel and how it affects the transient 
behavior of the network.

Objectives
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The larger the charge Q in coulombs, the greater is the number of flux 
lines extending or terminating per unit area, independent of the sur-
rounding medium. Twice the charge produces twice the flux per unit 
area. The two can therefore be equated:

 Q coulombs, Cψ ( )=  (10.2)

By definition, the electric field strength (designated by the capital 
script letter e) at a point is the force acting on a unit positive charge at 
that point; that is,

 F
Q

newtons/coulomb, N/Ce ( )=  (10.3)

In Fig. 10.2, the force exerted on a unit (1 coulomb) positive charge 
by a charge Q, r meters away, can be determined using Coulomb’s law 
(Eq. 2.1) as follows:

F k
Q Q

r
k

Q

r
kQ
r

k
(1 C)

9 10 Nm C1 2
2 2 2

9 2 2( )= = = = ×

Substituting the result into Eq. (10.3) for a unit positive charge results in

F
Q

kQ r

1 C

2

= =e

and  
kQ
r

(newtons/coulomb, N/C)
2

=e  (10.4)

The result clearly reveals that the electric field strength is directly  
related to the size of the charge Q. The greater the charge Q, the greater 
is the electric field intensity on a unit charge at any point in the neigh-
borhood. However, the distance is a squared term in the denominator. 
The result is that the greater the distance from the charge Q, the less is 
the electric field strength, and dramatically so because of the squared 
term. In Fig. 10.1, the electric field strength at region A2 is therefore 
significantly less than at region A .1

For two charges of similar and opposite polarities, the flux distribu-
tion appears as shown in Fig. 10.3. In general,

electric flux lines always extend from a positively charged 
body to a negatively charged body, always extend or terminate 
perpendicular to the charged surfaces, and never intersect.

+
a

b

Positive charge Q
Electric
flux lines

Flux lines radiate
outward for positive
charges and inward
for negative charges.

A2

A1
Higher density

Lower density

FIG. 10.1 
Flux distribution from an isolated positive charge.

+
r

1 C

FQ
+

FIG. 10.2 
Determining the force on a unit charge r 

meters from a charge Q of similar polarity.
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Note in Fig.  10.3(a) that the electric flux lines establish the most 
direct pattern possible from the positive to negative charge. They are 
evenly distributed and have the shortest distance on the horizontal  
between the two charges. This pattern is a direct result of the fact that 
electric flux lines strive to establish the shortest path from one charged 
body to another. The result is a natural tendency to be as close as possi-
ble. If two bodies of the same polarity are in the same vicinity, as shown 
in Fig. 10.3(b), the result is the direct opposite. The flux lines tend to es-
tablish a buffer action between the two with a repulsive action that grows 
as the two charges are brought closer to one another.

10.3 CAPACITANCE
Thus far, we have examined only isolated positive and negative spherical 
charges, but the description can be extended to charged surfaces of any 
shape and size. In Fig. 10.4, for example, two parallel plates of a mate-
rial such as aluminum (the most commonly used metal in the construc-
tion of capacitors) have been connected through a switch and a resistor 
to a battery. If the parallel plates are initially uncharged and the switch 
is left open, no net positive or negative charge exists on either plate. 
The instant the switch is closed, however, electrons are drawn from the 
upper plate through the resistor to the positive terminal of the battery. 
There will be a surge of current at first, limited in magnitude by the  
resistance present. The level of flow then declines, as will be demon-
strated in the sections to follow. This action creates a net positive charge 
on the top plate. Electrons are being repelled by the negative terminal 
through the lower conductor to the bottom plate at the same rate they are 
being drawn to the positive terminal. This transfer of electrons continues 
until the potential difference across the parallel plates is exactly equal 
to the battery voltage. The final result is a net positive charge on the top 

(b)

+ +

(a)

+ –

FIG. 10.3 
Electric flux distributions: (a) opposite charges; (b) like charges.

E

R

Air
gap

Plates of a
conducting material

e

e
e

e

V = E

+

– +

–

+

–

+

–

+

–

+

–

+

–

FIG. 10.4 
Fundamental charging circuit.
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plate and a negative charge on the bottom plate, very similar in many 
respects to the two isolated charges in Fig. 10.3(a).

Before continuing, it is important to note that the entire flow of charge 
is through the battery and resistor—not through the region between the 
plates. In every sense of the definition, there is an open circuit between 
the plates of the capacitor.

This element, constructed simply of two conducting surfaces sepa-
rated by the air gap, is called a capacitor.

Capacitance is a measure of a capacitor’s ability to store 
charge on its plates—in other words, its storage capacity.

In addition,

the higher the capacitance of a capacitor, the greater is the 
amount of charge stored on the plates for the same applied 
voltage.

The unit of measure applied to capacitors is the farad (F), named after 
an English scientist, Michael Faraday, who did extensive research in the 
field (Fig. 10.5). In particular,

a capacitor has a capacitance of 1 F if 1 C of charge 
(6 242 1018. ×  electrons) is deposited on the plates by a 
potential difference of 1 V across its plates.

The farad, however, is generally too large a measure of capacitance 
for most practical applications, so the microfarad ( −10 6 ) or picofarad 
( −10 12) are more commonly encountered.

The relationship connecting the applied voltage, the charge on the 
plates, and the capacitance level is defined by the following equation:

 C
Q
V

C
Q
V

farads F
coulombs C
volts V

( )

( )

( )

=
=
=
=

 (10.5)

Eq. (10.5) reveals that for the same voltage (V), the greater the charge 
(Q) on the plates (in the numerator of the equation), the higher is the 
capacitance level (C).

If we write the equation in the form

 Q CV coulombs, C( )=  (10.6)

it becomes obvious through the product relationship that the higher the 
capacitance (C) or applied voltage (V), the greater is the charge on the 
plates.

EXAMPLE 10.1

a. If ×82.4 1014 electrons are deposited on the negative plate of a 
capacitor by an applied voltage of 60 V, find the capacitance of the 
capacitor.

b. If 40 V are applied across a µ470 F  capacitor, find the charge on the 
plates.

Solutions:

a. First find the number of coulombs of charge as follows:

( )×
×

=82.4 10 electrons 1 C
6.242 10 electrons

1.32 mC14
18

English (London)  
(1791–1867)
Chemist and Electrical Experimenter
Honorary Doctorate, Oxford University, 1832

An experimenter with no formal education, he 
began his research career at the Royal Institute in 
London as a laboratory assistant. Intrigued by the 
interaction between electrical and magnetic effects, 
he discovered electromagnetic induction, demon-
strating that electrical effects can be generated 
from a magnetic field (the birth of the generator as 
we know it today). He also discovered self-induced 
currents and introduced the concept of lines and 
fields of magnetic force. Having received over one 
hundred academic and scientific honors, he became 
a Fellow of the Royal Society in 1824 at the young 
age of 32.

Oxford Science Archive/Heritage Images/The Print 
Collector/Alamy Stock Photo

FIG. 10.5 
Michael Faraday.
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and then

C
Q
V

22 F1.32 mC
60 V

a standard valueµ ( )= = =

b. Applying Eq. (10.6) gives

µ( )= = =Q CV 18 8 mC470 F)(40 V .

A cross-sectional view of the parallel plates in Fig. 10.4 is provided in 
Fig. 10.6(a). Note the fringing that occurs at the edges as the flux lines 
originating from the points farthest away from the negative plate strive 
to complete the connection. This fringing, which has the effect of reduc-
ing the net capacitance somewhat, can be ignored for most applications. 
Ideally, and the way we will assume the distribution to be in this text, the 
electric flux distribution appears as shown in Fig. 10.6(b), where all the 
flux lines are equally distributed and “fringing” does not occur.

The electric field strength between the plates is determined by the 
voltage across the plates and the distance between the plates as follows:

 ee
e

V
d

V
d

volts m V m
volts (V)
meters (m)

( )
=

= / /
=
=

 (10.7)

Note that the distance between the plates is measured in meters, not cen-
timeters or inches.

The equation for the electric field strength is determined by two fac-
tors only: the applied voltage and the distance between the plates. The 
charge on the plates does not appear in the equation, nor does the size of 
the capacitor or the plate material.

Many values of capacitance can be obtained for the same set of par-
allel plates by the addition of certain insulating materials between the 
plates. In Fig. 10.7, an insulating material has been placed between a set 
of parallel plates having a potential difference of V volts across them.

%

Fringing

(a)

+ + + + + + + + +

– – – – – – – – –

%

(b)

+ + + + + + + + +

– – – – – – – – –

FIG. 10.6 
Electric flux distribution between the plates 

of a capacitor: (a) including fringing; (b) ideal.
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FIG. 10.7 
Effect of a dielectric on the field distribution between the plates of  

a capacitor: (a) alignment of dipoles in the dielectric; (b) electric field 
components between the plates of a capacitor with a dielectric present.

Since the material is an insulator, the electrons within the insulator 
are unable to leave the parent atom and travel to the positive plate. The 
positive components (protons) and negative components (electrons) of 
each atom do shift, however [as shown in Fig. 10.7(a)], to form dipoles.

When the dipoles align themselves as shown in Fig.  10.7(a), the  
material is polarized. A close examination within this polarized material 
reveals that the positive and negative components of adjoining dipoles are 
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neutralizing the effects of each other [note the oval area in Fig. 10.7(a)]. 
The layer of positive charge on one surface and the negative charge on 
the other are not neutralized, however, resulting in the establishment of 
an electric field within the insulator [ dielectrice ; Fig. 10.7(b)].

In Fig. 10.8(a), two plates are separated by an air gap and have layers 
of charge on the plates as established by the applied voltage and the dis-
tance between the plates. The electric field strength is 1e  as defined by 
Eq. (10.7). In Fig. 10.8(b), a slice of mica is introduced, which, through 
an alignment of cells within the dielectric, establishes an electric field 

2e  that will oppose electric field .1e  The effect is to try to reduce the 
electric field strength between the plates. However, Eq. (10.7) states that 
the electric field strength must be the value established by the applied 
voltage and the distance between the plates. This condition is maintained 
by placing more charge on the plates, thereby increasing the electric 
field strength between the plates to a level that cancels out the opposing 
electric field introduced by the mica sheet. The net result is an increase 
in charge on the plates and an increase in the capacitance level as estab-
lished by Eq. (10.5).
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FIG. 10.8 
Demonstrating the effect of inserting a dielectric between the plates of a capacitor:  

(a) air capacitor; (b) dielectric being inserted.

Different materials placed between the plates establish different 
amounts of additional charge on the plates. All, however, must be insula-
tors and must have the ability to set up an electric field within the struc-
ture. A list of common materials appears in Table 10.1 using air as the  
reference level of 1.* All of these materials are referred to as dielectrics, the  
“di” for opposing, and the “electric” from electric field. The symbol rε  
in Table 10.1 is called the relative permittivity (or dielectric  constant). 
The term permittivity is applied as a measure of how easily a material 
“permits” the establishment of an electric field in the material. The rela-
tive permittivity compares the permittivity of a material to that of air. For 
instance, Table 10.1 reveals that mica, with a relative permittivity of 5, 
“permits” the establishment of an opposing electric field in the material 
five times better than in air. Note the ceramic material at the bottom of 
the chart with a relative permittivity of 7500—a relative permittivity that 
makes it a very special dielectric in the manufacture of capacitors.

*Although there is a difference in dielectric characteristics between air and a vacuum, the 
difference is so small that air is commonly used as the reference level.
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Defining oε  as the permittivity of air, we define the relative permittiv-
ity of a material with a permittivity ε by

  (dimensionless)r
o

ε ε
ε

=  (10.8)

Note that ,rε  which (as mentioned previously) is often called the dielec-
tric constant, is a dimensionless quantity because it is a ratio of simi-
lar quantities. However, permittivity does have the units of farads/meter 
(F/m) and is 8.85 10 12× −  F/m for air. Although the relative permittivity 
for the air we breathe is listed as 1.006, a value of 1 is normally used for 
the relative permittivity of air.

For every dielectric there is a potential that, if applied across the  
dielectric, will break down the bonds within it and cause current to flow 
through it. The voltage required per unit length is an indication of its 
dielectric strength and is called the breakdown voltage. When break-
down occurs, the capacitor has characteristics very similar to those of 
a conductor. A typical example of dielectric breakdown is lightning, 
which occurs when the potential between the clouds and the earth is so 
high that charge can pass from one to the other through the atmosphere 
(the dielectric). The average dielectric strengths for various dielectrics 
are tabulated in volts/mil in Table 10.2 ( =1 mil 1 1000 inch).

One of the important parameters of a capacitor is the maximum 
working voltage. It defines the maximum voltage that can be placed 
across the capacitor on a continuous basis without damaging it or chang-
ing its characteristics. For most capacitors, it is the dielectric strength 
that defines the maximum working voltage.

10.4 CAPACITORS
Capacitor Construction

We are now aware of the basic components of a capacitor: conductive 
plates, separation, and dielectric. However, the question remains, How 
do all these factors interact to determine the capacitance of a capacitor? 

TABLE 10.1
Relative permittivity (dielectric constant) rε  of various dielectrics.

Dielectric
rε  (Average Values)

Vacuum 1.0
Air 1.0006
Teflon® 2.0
Paper, paraffined 2.5
Rubber 3.0
Polystyrene 3.0
Oil 4.0
Mica 5.0
Porcelain 6.0
Bakelite® 7.0
Aluminum oxide 7
Glass 7.5
Tantalum oxide 30
Ceramics 20–7500
Barium-strontium titanite (ceramic) 7500.0

TABLE 10.2
Dielectric strength of some dielectric materials.

Dielectric

Dielectric 
Strength 
(Average 

Value)  
in Volts/Mil

Air 75
Barium-strontium  

titanite (ceramic)
75

Ceramics 75–1000
Porcelain 200
Oil 400
Bakelite® 400
Rubber 700
Paper paraffined 1300
Teflon® 1500
Glass 3000
Mica 5000
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Larger plates permit an increased area for the storage of charge, so the 
area of the plates should be in the numerator of the defining equation. 
The smaller the distance between the plates, the larger is the capacitance, 
so this factor should appear in the denominator of the equation. Finally, 
since higher levels of permittivity result in higher levels of capacitance, 
the factor ε should appear in the numerator of the defining equation.

The result is the following general equation for capacitance:

 C A
d

C

A
d

 

farads F
permittivity (F/m)
m
m

2ε
ε

( )

=

=
=
=
=

 (10.9)

If we substitute Eq. (10.8) for the permittivity of the material, we obtain 
the following equation for the capacitance:

 C A
d

  farads, Fo rε ε ( )=  (10.10)

or if we substitute the known value for the permittivity of air, we obtain 
the following useful equation:

 C A
d

8.85 10   farads, Fr
12ε ( )= × −  (10.11)

It is important to note in Eq. (10.11) that the area of the plates (actu-
ally the area of only one plate) is in meters squared m ;2( )  the distance  
between the plates is measured in meters; and the numerical value of rε  
is simply taken from Table 10.1.

You should also be aware that most capacitors are in the F,µ  nF, or 
pF range, not the 1 F or greater range. A 1 F capacitor can be as large 
as a typical flashlight, requiring that the housing for the system be quite 
large. Most capacitors in electronic systems are the size of a thumbnail 
or smaller.

If we form the ratio of the equation for the capacitance of a capacitor 
with a specific dielectric to that of the same capacitor with air as the 
dielectric, the following results:

ε

ε

ε
ε

ε
=

=
⇒ = =

C A
d

C A
d

C
C

o o o o
r

and      C Cr oε=  (10.12)

The result is that

the capacitance of a capacitor with a dielectric having a 
relative permittivity of εr is εr  times the capacitance using 
air as the dielectric.

The next few examples review the concepts and equations just presented.

EXAMPLE 10.2 In Fig. 10.9, if each air capacitor in the left column 
is changed to the type appearing in the right column, find the new capac-
itance level. For each change, the other factors remain the same.
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Solutions:

a. In Fig. 10.9(a), the area has increased by a factor of three, providing 
more space for the storage of charge on each plate. Since the area 
appears in the numerator of the capacitance equation, the capaci-
tance increases by a factor of three. That is,

µµ( )( )= = =C C 15 F3 3 5 Fo

b.  In Fig. 10.9(b), the area stayed the same, but the distance between 
the plates was increased by a factor of two. Increasing the distance 
reduces the capacitance level, so the resulting capacitance is 
 one-half of what it was before. That is,

µµ( )= =C F 0 05 F1
2

0.1 .

c. In Fig. 10.9(c), the area and the distance between the plates were 
maintained, but a dielectric of paraffined (waxed) paper was added 
between the plates. Since the permittivity appears in the numerator 
of the capacitance equation, the capacitance increases by a factor 
determined by the relative permittivity. That is,

µε µ( )= = =C C 50 F2.5 20 Fr o

d. In Fig. 10.9(d), a multitude of changes are happening at the same 
time. However, solving the problem is simply a matter of determin-
ing whether the change increases or decreases the capacitance and 
then placing the multiplying factor in the numerator or denominator 
of the equation. The increase in area by a factor of four produces a 
multiplier of four in the numerator, as shown in the equation below. 
Reducing the distance by a factor of 1/8 will increase the capaci-
tance by its inverse, or a factor of eight. Inserting the mica dielectric 
increases the capacitance by a factor of five. The result is

µ
( )

( ) ( )( )= = =C C 0 16 F5 4
1 8

160 1000 pF .o

C = 20   F C = ?

er = 2.5
(paraffined
paper)

eo

(c)

same A, d
1
8 d

C = 1000 pF C = ?

A

d

(d)

eo

4A

er = 5 (mica)

All parameters
changed

d

C = 5   F

d

3A

C = ?

(a)

A

Same d, er

C = 0.1   F

2dd

C = ?

(b)
Same A, er

FIG. 10.9
Example 10.2.
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In the next example, the dimensions of an air capacitor are provided 
and the capacitance is to be determined. The example emphasizes the 
importance of knowing the units of each factor of the equation. Failing 
to make a conversion to the proper set of units will probably produce a 
meaningless result, even if the proper equation were used and the math-
ematics properly executed.

EXAMPLE 10.3 For the capacitor in Fig. 10.10:

a. Find the capacitance.
b. Find the strength of the electric field between the plates if 48 V are 

applied across the plates.
c. Find the charge on each plate.

Solutions:

a. First, the area and the distance between the plates must be converted 
to the SI system as required by Eq. (10.11):

=






 =d 1

32
in . 1 m

39.37 in .
0.794 mm

and  A (2 in .)(2 in .) 1 m
39.37 in .

1 m
39.37 in .

2.581 10 m3 2=

















 = × −

Eq. (10.11):

eo

20
1

32

Q (+)

Q (–)

29

0

FIG. 10.10 
Air capacitor for Example 10.3.

ε
( )

= × = ×
×

=− −
−

C A
d

28 8 pF8.85 10 8.85 10 (1)
2.581 10 m

0.794 mm
.r

12 12
3 2

b. The electric field between the plates is determined by Eq. (10.7):

V
d

60 5 kV m
48V

0.794 mm
.= = =e

c. The charge on the plates is determined by Eq. (10.6):

( )= = =Q CV 1 38 nC28.8 pF)(48 V .

In the next example, we will insert a ceramic dielectric between the 
plates of the air capacitor in Fig. 10.10 and see how it affects the capaci-
tance level, electric field, and charge on the plates.

EXAMPLE 10.4

a. Insert a ceramic dielectric with an εr  of 250 between the plates of 
the capacitor in Fig. 10.10. Then determine the new level of capaci-
tance. Compare your results to the solution in Example 10.3.

b. Find the resulting electric field strength between the plates, and 
compare your answer to the result in Example 10.3.

c. Determine the charge on each of the plates, and compare your 
answer to the result in Example 10.3.

Solutions:

a. From Eq. (10.12), the new capacitance level is

µε ( )( )= = = = =C C 7200 pF 7 2 nF 0 0072 F250 28.8 pF . .r o

which is significantly higher than the level in Example 10.3.
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b. V
d

60 5 kV m48 V
0.794 mm

.= = =e

Since the applied voltage and the distance between the plates did 
not change, the electric field between the plates remains the same.

c. µ= = = =Q CV 345 6 nC 0 35 C(7200 pF)(48 V) . .

We now know that the insertion of a dielectric between the plates 
increases the amount of charge stored on the plates. In Example 10.4, 
since the relative permittivity increased by a factor of 250, the charge on 
the plates increased by the same amount.

EXAMPLE 10.5 Find the maximum voltage that can be applied 
across the capacitor in Example 10.4 if the dielectric strength is 80 V/mil.

Solution:

d 1
32

in . 1000 mils
1 in .

31.25 mils=






 =

and     V 2 5 kV31.25 mils 80 V
mil

.max ( )= =

although the provided working voltage may be only 2 kV to provide a 
margin of safety.

 Types of Capacitors

Capacitors, like resistors, can be listed under two general headings: 
fixed and variable. The symbol for the fixed capacitor appears in 
Fig. 10.11(a). Note that the curved side is normally connected to ground 
or to the point of lower dc potential. The symbol for variable capacitors 
appears in Fig. 10.11(b).

Fixed Capacitors Fixed-type capacitors come in all shapes and 
sizes. However,

in general, for the same type of construction and dielectric, 
the higher the capacitance, the larger the physical size of 
the capacitor.

In Fig.  10.12(a), the 10,000 Fµ  electrolytic capacitor is significantly 
larger than the 1 Fµ  capacitor. However, it is certainly not 10,000 
times larger. For the polyester-film type of Fig.  10.12(b), the 2.2 Fµ  
capacitor is significantly larger than the 0.01 Fµ  capacitor, but again it 
is not 220 times larger. The 22 Fµ  tantalum capacitor of Fig. 10.12(c) 
is about 6 times larger than the 1.5 Fµ  capacitor, even though the  
capacitance level is about 15 times higher. It is particularly interesting to 
note that due to the difference in dielectric and construction, the 22 Fµ  
tantalum capacitor is significantly smaller than the 2.2 Fµ  polyester- 
film capacitor and much smaller than 1/5 the size of the 100 Fµ   
electrolytic capacitor. The relatively large 10,000 Fµ  electrolytic capac-
itor is normally used for high-power applications, such as in power sup-
plies and high-output speaker systems. All the others may appear in any 
commercial electronic system.

(a) (b)

FIG. 10.11 
Symbols for the capacitor: (a) fixed; (b) variable.
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The increase in size is due primarily to the effect of area and thickness 
of the dielectric on the capacitance level. There are a number of ways to 
increase the area without making the capacitor too large. One is to lay out 
the plates and the dielectric in long, narrow strips and then roll them all 
together, as shown in Fig. 10.13(a). The dielectric (remember that it has 
the characteristics of an insulator) between the conducting strips ensures 
the strips never touch. Of course, the dielectric must be the type that can be 
rolled without breaking up. Depending on how the materials are wrapped, 
the capacitor can be either a cylindrical or a rectangular, box-type shape.

1 mF 100 mF
(a)

10,000 mF = 0.01 F = 1/100 F

2.2 mF0.22 mF
(b)

0.01 mF

1.5 mF 22 mF
(c)

FIG. 10.12 
Demonstrating that, in general, for each type of construction, the 

size of a capacitor increases with the capacitance value: (a) 
electrolytic; (b) polyester-film; (c) tantalum.

(b)

Foil
Mica

Foil
Mica

Foil
Mica

Foil

(a)

Connected to
one foil

Connected to
the other foil

Kraft paper
Aluminum foil
Polyester (plastic) film
Aluminum foil
Kraft paper

(c)

Tantalum

+

–

FIG. 10.13 
Three ways to increase the area of a capacitor: (a) rolling; (b) stacking; (c) insertion.

A second popular method is to stack the plates and the dielectrics, 
as shown in Fig. 10.14(b). The area is now a multiple of the number of  
dielectric layers. This construction is very popular for smaller capacitors. 

M10_BOYL0302_14_GE_C10.indd   426M10_BOYL0302_14_GE_C10.indd   426 28/02/23   12:57 PM28/02/23   12:57 PM



CapaCitors | | | 427

A third method is to use the dielectric to establish the body shape [a cyl-
inder in Fig. 10.13(c)]. Then simply insert a rod for the positive plate, 
and coat the surface of the cylinder with tantalum pentoxide to form the 
negative plate, as shown in Fig. 10.13(c). Although the resulting “plates” 
are not the same in construction or surface area, the effect is to provide 
a large surface area for storage (the density of electric field lines will be 
different on the two “plates”), although the resulting distance factor may 
be larger than desired. Using a dielectric with a high ,rε  however, com-
pensates for the increased distance between the plates.

There are other variations of the above to increase the area factor, but 
the three depicted in Fig. 10.13 are the most popular.

The next controllable factor is the distance between the plates. This 
factor, however, is very sensitive to how thin the dielectric can be made, 
with natural concerns because the working voltage (the breakdown volt-
age) drops as the gap decreases. Some of the thinnest dielectrics are just 
oxide coatings on one of the conducting surfaces (plates). A very thin 
polyester material, such as Mylar®, Teflon®, or even paper with a paraffin 
coating, provides a thin sheet of material than can easily be wrapped for 
increased areas. Materials such as mica and some ceramic materials can 
be made only so thin before crumbling or breaking down under stress.

The last factor is the dielectric, for which there is a wide range of 
possibilities. However, the following factors greatly influence which  
dielectric is used:

The level of capacitance desired
The resulting size
The possibilities for rolling, stacking, and so on
Temperature sensitivity
Working voltage

The range of relative permittivities is enormous, as shown in 
Table  10.2, but all the factors listed above must be considered in the 
construction process.

In general, the most common fixed capacitors are the electrolytic, 
film, polyester, foil, ceramic, mica, dipped, and oil types.

The electrolytic capacitors in Fig. 10.14 are usually easy to identify 
by their shape and the fact that they usually have a polarity marking on 
the body (although special-application electrolytics are available that are 
not polarized). Few capacitors have a polarity marking, but those that do 
must be connected with the negative terminal connected to ground or to 
a point of lower potential then the positive terminal. The markings often 
used to denote the positive terminal or plate include , ,n+  and .∆  In 

(b)

WBR

20 –350

20 MFD

350 VDC

TAIWAN

WBR

20 –350

20 MFD

350 VDC

TAIWAN

(c) (d)(a) (e)

FIG. 10.14 
Various types of electrolytic capacitors: (a) miniature radial leads; (b) axial leads; (c) flatpack;  

(d) surface-mount; (e) screw-in terminals.
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general, electrolytic capacitors offer some of the highest capacitance val-
ues available, although their working voltage levels are limited. Typical 
values range from 0.1 Fµ  to 15,000 F,µ  with working voltages from 5 V 
to 450 V. The basic construction uses the rolling process in Fig. 10.13(a) 
in which a roll of aluminum foil is coated on one side with aluminum 
oxide—the aluminum being the positive plate and the oxide the dielec-
tric. A layer of paper or gauze saturated with an electrolyte (a solution or 
paste that forms the conducting medium between the electrodes of the 
capacitor) is placed over the aluminum oxide coating of the positive plate. 
Another layer of aluminum without the oxide coating is then placed over 
this layer to assume the role of the negative plate. In most cases, the neg-
ative plate is connected directly to the aluminum container, which then 
serves as the negative terminal for external connections. Because of the 
size of the roll of aluminum foil, the overall size of the electrolytic capac-
itor is greater than most.

Film, polyester, foil, polypropylene, or Teflon® capacitors use 
a rolling or stacking process to increase the surface area, as shown in 
Fig. 10.15. The resulting shape can be either round or rectangular, with 
radial or axial leads. The typical range for such capacitors is 100 pF to 
µ10 F, with units available up to 100 F.µ  The name of the unit defines 

the type of dielectric employed. Working voltages can extend from a few 
volts to 2000 V, depending on the type of unit.

(a) (b) (c) (d)

MKP
1841-M

0016
ER

Q

OMT 2P18K
18MFD210%

200VOC CDET

FIG. 10.15 
(a) Film/foil polyester radial lead; (b) metalized polyester-film axial lead; (c) surface-mount 

polyester-film; (d) polypropylene-film, radial lead.

Solder

Ceramic dielectric

Lead wire soldered
to silver electrode

Dipped phenolic coating

Silver electrodes deposited on
top and bottom of ceramic disc

(a)

10

(b)

FIG. 10.16 
Ceramic (disc) capacitor: (a) construction; (b) appearance.

Ceramic capacitors (often called disc capacitors) use a ceramic  
dielectric, as shown in Fig. 10.16(a), to utilize the excellent rε  values and 
high working voltages associated with a number of ceramic materials. 
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Stacking can also be applied to increase the surface area. An example of 
the disc variety appears in Fig. 10.16(b). Ceramic capacitors  typically 
range in value from 10 pF to µ0.047 F, with high working voltages that 
can reach as high as 10 kV.

Mica capacitors use a mica dielectric that can be monolithic (sin-
gle chip) or stacked. The relatively small size of monolithic mica chip  
capacitors is demonstrated in Fig. 10.17(a), with their placement shown 
in Fig. 10.17(b). A variety of high-voltage mica paper capacitors are dis-
played in Fig. 10.17(c). Mica capacitors typically range in value from  
2 pF to several microfarads, with working voltages up to 20 kV.

Dipped capacitors are made by dipping the dielectric (tantalum or 
mica) into a conductor in a molten state to form a thin, conductive sheet 
on the dielectric. Due to the presence of an electrolyte in the manufac-
turing process, dipped tantalum capacitors require a polarity marking 
to ensure that the positive plate is always at a higher potential than the 
negative plate, as shown in Fig. 10.18(a). A series of small positive signs 
is typically applied to the casing near the positive lead. A group of non-
polarized, mica dipped capacitors are shown in Fig. 10.18(b). They typ-
ically range in value from µ0.1 F to µ680 F, but with lower working 
voltages ranging from 6 V to 50 V.

Most oil capacitors such as appearing in Fig.  10.19 are used for 
industrial applications such as welding, high-voltage power supplies, 
surge protection, and power-factor correction (Chapter  20). They can 
provide capacitance levels extending from µ0.001 F all the way up to 
10,000 F,µ  with working voltages up to 150 kV. Internally, there are 
a number of parallel plates sitting in a bath of oil or  oil-impregnated  
material (the dielectric).

Variable Capacitors All the parameters in Eq. (10.11) can be 
changed to some degree to create a variable capacitor. For example, 
in Fig. 10.20(a), the capacitance of the variable air capacitor is changed 
by turning the shaft at the end of the unit. By turning the shaft, you 
control the amount of common area between the plates: The less com-
mon area there is, the lower is the capacitance. In Fig.  10.20(b), we 
have a much smaller air trimmer capacitor. It works under the same 

(a)

[(a) and (b) Courtesy of Vishay Intertechnology, Inc.; (c) Courtesy of Custom Electronics, Inc.]

FIG. 10.17 

Mica capacitors: (a) and (b) surface-mount monolithic chips; (c) high-voltage/temperature mica paper capacitors.

Monolithic
chips

(b) (c)

(b)

(a)

+

35+

33 5%

6A
N

G

33 5%6A
N

G

33 5%

6A
N

G

33 5%6A
N

G

FIG. 10.18 
Dipped capacitors: (a) polarized tantalum;  

(b) nonpolarized mica.

 FIG. 10.19 
Oil-filled, metallic oval case snubber 

capacitor (the snubber removes unwanted 
voltage spikes).
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 principle, but the rotating blades are totally hidden inside the structure. 
In Fig. 10.20(c), the ceramic trimmer capacitor permits varying the 
capacitance by changing the common area as above or by applying pres-
sure to the ceramic plate to reduce the distance between the plates.

Varactor (Varicap) Capacitor The Varactor (Varicap) capacitor as 
it is often called is a capacitor whose capacitance value can be controlled 
by the application of a dc voltage of the correct polarity. Fig. 10.21 re-
veals how much the capacitance can change with applied voltage—quite 
significant. The details of its construction, operation and use will be in-
troduced in a basic electronics course.

Some of the symbols for the capacitor are provided in Fig. 10.22(a) 
with the actual appearance in Fig. 10.22(b).

(a)

FIG. 10.20 
Variable capacitors: (a) air; (b) air trimmer; (c) ceramic dielectric compression trimmer.

(b) (c)

–14–12–10–8–6–4–20

40

60

80

C (pF)

C (0)

V (V)

20

FIG. 10.21 
Varactor (Varicap) characteristics.

(b)(a)

FIG. 10.22 
Varactor (Varicap) capacitor (a) symbols (b) appearance.

Leakage Current and ESR

Although we would like to think of capacitors as ideal elements, unfor-
tunately, this is not the case. There is a dc resistance appearing as Rs  in 
the equivalent model of Fig. 10.23 due to the resistance introduced by 
the contacts, the leads, or the plate or foil materials. In addition, up to 
this point, we have assumed that the insulating characteristics of dielec-
trics prevent any flow of charge between the plates unless the breakdown 
voltage is exceeded. In reality, however, dielectrics are not perfect insu-
lators, and they do carry a few free electrons in their atomic structure.

When a voltage is applied across a capacitor, a leakage current is 
established between the plates. This current is usually so small that it 
can be ignored for the application under investigation. The availabil-
ity of free electrons to support current flow is represented by a large 
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parallel resistor Rp  in the equivalent circuit for a capacitor as shown 
in Fig. 10.23(a). If we apply 10 V across a capacitor with an internal  
resistance of 1000 M ,Ω  the current will be 0.01 Aµ —a level that can  
be ignored for most applications.

The real problem associated with leakage currents is not evident 
until you ask the capacitors to sit in a charged state for long periods 
of time. As shown in Fig. 10.23(b), the voltage V Q C( )=  across a 
charged capacitor also appears across the parallel leakage resistance and 
establishes a discharge current through the resistor. In time, the capac-
itor is totally discharged. Capacitors such as the electrolytic that have 
high leakage currents (a leakage resistance of 0.5 MΩ is typical) usu-
ally have a limited shelf life due to this internal discharge characteristic. 
Ceramic, tantalum, and mica capacitors typically have unlimited shelf 
life due to leakage resistances in excess of 1000 M .Ω  Thin-film capaci-
tors have lower levels of leakage resistances that result in some concern 
about shelf life.

There is another quantity of importance when defining the complete 
capacitive equivalent: the equivalent series resistance (ESR). It is a 
quantity of such importance to the design of switching and linear power 
supplies that it holds equal weight with the actual capacitance level. It is 
a frequency-sensitive characteristic that will be examined in Chapter 14 
after the concept of frequency response has been introduced in detail. As 
the name implied, it is included in the equivalent model for the capacitor 
as a series resistor that includes all the dissipative factors in an actual 
capacitor that go beyond just the dc resistance. The picture of an ESR 
meter is provided as Fig. 14.25.

Temperature Effects: ppm

Every capacitor is temperature sensitive, with the nameplate capacitance 
level specified at room temperature. Depending on the type of dielec-
tric, increasing or decreasing temperatures can cause either a drop or a 
rise in capacitance. If temperature is a concern for a particular applica-
tion, the manufacturer will provide a temperature plot, such as shown in 
Fig. 10.24, or a ppm C°  (parts per million per degree Celsius) rating 
for the capacitor. Note in Fig. 10.20 the 0% variation from the nomi-
nal (nameplate) value at 25 C°  (room temperature). At 0 C°  (freezing), 
it has dropped 20%, while at 100 C°  (the boiling point of water), it has 
dropped 70%—a factor to consider for some applications.

(a) (b)

V

I

I

C

+

–

+

–

Rs

C Rp

Rs

C

V Rp

FIG. 10.23 
Leakage current: (a) including the dc and leakage resistance in the 

equivalent model for a capacitor; (b) internal discharge of a 
capacitor due to the leakage current.
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Z5U Ceramic typical values
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FIG. 10.24 
Variation of capacitor value with 

temperature.
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As an example of using the ppm level, consider a 100 Fµ  capacitor 
with a temperature coefficient or ppm of 150 ppm C.− °  It is import-
ant to note the negative sign in front of the ppm value because it reveals 
that the capacitance will drop with increase in temperature. It takes a 
moment to fully appreciate a term such as parts per million. In equation 
form, a negative 150 parts per million can be written as

150
1,000,000

− ×

If we then multiply this term by the capacitor value, we can obtain the 
change in capacitance for each 1 C°  change in temperature. That is,

µµ( )− ° = − ° = − °0 015 F C 15 000 pF C150
1,000,000

100 F C . ,

If the temperature should rise by 25 C,°  the capacitance would decrease by

µ( )−
°

° = −
C

C 0 38 F
15,000 pF

25 .

changing the capacitance level to

µµ µ− =F 99 62 F100 0.38 F .

Capacitor Labeling

Due to the small size of some capacitors, various marking schemes have 
been adopted to provide the capacitance level, tolerance, and, if possible, 
working voltage. In general, however, as pointed out above, the size of 
the capacitor is the first indicator of its value. In fact, most marking 
schemes do not indicate whether it is in Fµ  or pF. It is assumed that 
you can make that judgment purely from the size. The smaller units are 
typically in pF and the larger units in F.µ  Unless indicated by an n or 
N, most units are not provided in nF. On larger Fµ  units, the value can 
often be printed on the jacket with the tolerance and working voltage. 
However, smaller units need to use some form of abbreviation as shown 
in Fig. 10.25. For very small units such as those in Fig. 10.25(a) with 
only two numbers, the value is recognized immediately as being in pF 
with the K an indicator of a 10%±  tolerance level. Too often the K is 
read as a multiplier of 10 ,3  and the capacitance is read as 20,000 pF or 
20 nF rather than the actual 20 pF.

(d)(c)(b)(a)

20
K

200n
J 223F 339M

FIG. 10.25 
Various marking schemes for small capacitors.

For the unit in Fig.  10.25(b), there was room for a lowercase n to 
represent a multiplier of 10 ,9−  resulting in a value of 200 nF. To avoid 
unnecessary confusion, the letters used for tolerance do not include N, 
U, or P, so the presence of any of these letters in upper- or lowercase 
normally refers to the multiplier level. The J appearing on the unit in 
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Fig.  10.25(b) represents a 5%±  tolerance level. For the capacitor in 
Fig. 10.25(c), the first two numbers are the numerical value of the capac-
itor, while the third number is the power of the multiplier (or number of 
zeros to be added to the first two numbers). The question then remains 
whether the units are Fµ  or pF. With the 223 representing a number of 
22,000, the units are certainly not Fµ  because the unit is too small for 
such a large capacitance. It is a 22,000 pF 22 nF=  capacitor. The F 
represents a 1%±  tolerance level. Multipliers of 0.01 use an 8 for the 
third digit, while multipliers of 0.1 use a 9. The capacitor in Fig. 10.25(d) 
is a 33 0.1 3.3 Fµ× =  capacitor with a tolerance of 20%±  as defined 
by the capital letter M. The capacitance is not 3.3 pF because the unit is 
too large; again, the factor of size is very helpful in making a judgment 
about the capacitance level. It should also be noted that MFD is some-
times used to signify microfarads.

Measurement and Testing of Capacitors

The capacitance of a capacitor can be read directly using a meter such 
as the Universal LCR Meter in Fig. 10.26. If you set the meter on C for 
capacitance, it will automatically choose the most appropriate unit of 
measurement for the element, that is, F, F,µ  nF, or pF. Note the polarity 
markings on the meter for capacitors that have a specified polarity.

The best check is to use a meter such as the one in Fig. 10.26. However, 
if it is unavailable, an ohmmeter can be used to determine whether the 
dielectric is still in good working order or whether it has deteriorated 
due to age or use (especially for paper and electrolytics). As the dielec-
tric breaks down, the insulating qualities of the material decrease to the 
point where the resistance between the plates drops to a relatively low 
level. To use an ohmmeter, be sure that the capacitor is fully discharged 
by placing a lead directly across its terminals. Then hook up the meter 
(paying attention to the polarities if the unit is polarized) as shown in 
Fig. 10.27, and note whether the resistance has dropped to a relatively 
low value (0 to a few kilohms). If so, the capacitor should be discarded. 
You may find that the reading changes when the meter is first connected. 
This change is due to the charging of the capacitor by the internal supply 
of the ohmmeter. In time the capacitor becomes stable, and the correct 
reading can be observed. Typically, it should pin at the highest level on 
the megohm scales or indicate OL on a digital meter.

The above ohmmeter test is not all-inclusive because some capac-
itors exhibit the breakdown characteristics only when a large voltage 
is applied. The test, however, does help isolate capacitors in which the 
 dielectric has deteriorated.

Standard Capacitor Values

The most common capacitors use the same numerical 
multipliers encountered for resistors.

The vast majority are available with 5%, 10%, or 20% tolerances.  
There are capacitors available, however, with tolerances of 1%, 
2%, or 3%, if you are willing to pay the price. Typical values  
include µ µ0.1 F, 0.15 F, µ µ µ µ0.22 F, 0.33 F, 0.47 F, 0.68 F; and 
µ µ µ µ1 F, 1.5 F, 2.2 F, 3.3 F, µ µ4.7 F, 6.8 F; and 10 pF, 22 pF, 33 pF, 

100 pF; and so on.

(Courtesy of B K+  Precision)

FIG. 10.26 
Digital reading capacitance meter.

O.L.

COM+

20MV

FIG. 10.27 
Checking the dielectric of an electrolytic 

capacitor.

M10_BOYL0302_14_GE_C10.indd   433M10_BOYL0302_14_GE_C10.indd   433 28/02/23   12:58 PM28/02/23   12:58 PM



434 | | | CapaCitors

10.5 TRANSIENTS IN CAPACITIVE NETWORKS:  
THE CHARGING PHASE
The placement of charge on the plates of a capacitor does not occur  
instantaneously. Instead, it occurs over a period of time determined by the  
components of the network. The charging phase—that period of time 
during which charge is deposited on the plates—can be described by 
reviewing the response of the simple series circuit in Fig. 10.4. The cir-
cuit has been redrawn in Fig. 10.28 with the symbol for a fixed capacitor. 
With the switch of Fig. 10.28 open, the source voltage E is not part of 
the circuit. The voltage across the capacitor will be zero volts, as shown 
in Fig.  10.29 below t 0=  s, and the current through the circuit will 
be zero ampere. However, the instant the switch is closed, electrons are 
drawn from the top plate and deposited on the bottom plate by the bat-
tery, resulting in a net positive charge on the top plate and a negative 
charge on the bottom plate. The transfer of electrons is

very rapid at first, slowing down as the potential across the 
plates approaches the applied voltage

of the battery. Eventually, when the voltage across the capacitor equals 
the applied voltage, the transfer of electrons ceases, and the plates have a 
net charge determined by Q C CE.Cυ= =  This period of time during 
which charge is being deposited on the plates is called the  transient 
period—a period of time where the voltage or current changes from one 
steady-state level to another.

Since the voltage across the plates is directly related to the charge on 
the plates by V Q C,=  a plot of the voltage across the capacitor will 
have the same shape as a plot of the charge on the plates over time. As 
shown in Fig. 10.29, the voltage across the capacitor is zero volts when 
the switch is closed t 0 s .( )=  It then builds up very quickly at first 
since charge is being deposited at a very high rate of speed. As time 
passes, the charge is deposited at a slower rate, and the change in volt-
age drops off. The voltage continues to grow, but at a much slower rate. 
Eventually, as the voltage across the plates approaches the applied volt-
age, the charging rate is very slow, until finally the voltage across the 
plates is equal to the applied voltage—the transient phase has passed.

Fortunately, the waveform in Fig. 10.29 from beginning to end can be 
described using the mathematical function e .x−  It is an exponential func-
tion that decreases with time, as shown in Fig. 10.30. If we substitute zero 
for x, we obtain e ,0−  which by definition is 1, as shown in Table 10.3 and 
on the plot in Fig. 10.30. Table 10.3 reveals that as x increases, the func-
tion e x−  decreases in magnitude until it is very close to zero after x 5.=  
As noted in Table 10.3, the exponential factor e e 2.71828.1 = =

A plot of e1 x− −  is also provided in Fig. 10.30 since it is a compo-
nent of the voltage Cυ  in Fig. 10.29. When e x−  is e1, 1 x− −  is zero, as 
shown in Fig. 10.30, and when e x−  decreases in magnitude, e1 x− −

approaches 1, as shown in the same figure.
You may wonder how this mathematical function can help us if it 

decreases with time and the curve for the voltage across the capacitor 
increases with time. We simply place the exponential in the proper math-
ematical form as follows:

 E e1 volts, VC
t /

charging
υ ( ) ( )= − τ−  (10.13)

First note in Eq. (10.13) that

the voltage Cυ  is written in lowercase (not capital) italic to 
point out that it is a function that will change with time—it 
is not a constant.

C

iCR

+ –

+

–

+

–
E vC

vR

FIG. 10.28 
Basic R-C charging network.

Small increase in vC

E
vC

0 t

Rapid increase

Switch closed

FIG. 10.29
Cυ  during the charging phase.

TABLE 10.3
Selected values of e .x−

x 0= e e
e
1 1

1
1x 0

0
= = = =− −

x 1= e
e
1 1

2.71828. . .
0.36791 = = =−

x 2= e
e
1 0.13532

2
= =−

x 5= e
e
1 0.006745

5
= =−

x 10= e
e
1 0.000045410
10

= =−

x 100= e
e

1 3.72 10100
100

44= = ×− −
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The exponent of the exponential function is no longer just x, but now 
is time (t) divided by a constant ,τ  the Greek letter tau. The quantity τ  
is defined by

 RC time, sτ ( )=  (10.14)

The factor ,τ  called the time constant of the network, has the units 
of time, as shown below using some of the basic equations introduced 
earlier in this text:

RC V
I

Q
V

V
Q t

Q

V
t secondsτ ( )( ) ( )= = =


















 =

A plot of Eq. (10.13) results in the curve in Fig. 10.31, whose shape is an 
exact match with that in Fig. 10.29.

0 1t 2t 3t 4t 5t 6t

1.0

y

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

1t

y = e –x 

y = 1 – e – x

0.368 (close to     )1 3

0.632 (close to     )2 3

t

FIG. 10.30 
Universal time constant chart.

0.632E

0.865E
(86.5%)

0.95E
(95%)

0.982E
(98.2%)

0.993E
(99.3%)

99.3%

E

t

C

0

63.2%

Switch closed
1t 2t 3t 4t 5t 6t

FIG. 10.31 
Plotting the equation υ ( )= − τ−E 1 eC

t /  versus time (t).
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In Eq. (10.13), if we substitute t 0 s,=  we find that

e e e
e
1 1

1
1t 0 0

0
= = = = =τ τ− − −

and  E e E 0 V1 1 1C
tυ ( ) ( )= − = − =τ−

as appearing in the plot in Fig. 10.31.
It is important to realize at this point that the plot in Fig. 10.31 is not 

against simply time but against ,τ  the time constant of the network. If 
we want to know the voltage across the plates after one time constant, 
we simply plug t 1τ=  into Eq. (10.13). The result is

e e e 0.368t 1= = ≅τ τ τ− − −

It is important to note that the ratio τt  results in a constant 
since they both have units of time.

and  EE e E 0.6321 1 0.368C
tυ ( ) ( )= − = − =τ−

as shown in Fig. 10.31.
At t 2τ=

e e e 0.135t / 2 / 2= = ≅τ τ τ− − −

and  EE e E 0.8651 1 0.135C
tυ ( ) ( )= − = − ≅τ−

as shown in Fig. 10.31.
As the number of time constants increases, the voltage across the ca-

pacitor does indeed approach the applied voltage.
At t 5τ=

e e e 0.007t / 5 / 5= = ≅τ τ τ− − −

and 0.993 E Eυ ( ) ( )= − = − = ≅τ−E e E1 1 0.007C
t

In fact, we can conclude from the results just obtained that

the voltage across a capacitor in a dc network is essentially 
equal to the applied voltage after five time constants of the 
charging phase have passed.

Or, in more general terms,

the transient or charging phase of a capacitor has 
essentially ended after five time constants.

It is indeed fortunate that the same exponential function can be used 
to plot the current of the capacitor versus time. When the switch is first 

t

iC

0

36.8%

E
R

0.368     (36.8%)E
R

6t5t4t3t2t1t

0.135     (13.5%)E
R

0.05     (5%)E
R

0.018     (1.8%)E
R

0.0067     (0.67%)E
R

FIG. 10.32 

Plotting the equation i E
R

eC
t= τ−  versus time (t).
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closed, the flow of charge or current jumps very quickly to a value 
limited by the applied voltage and the circuit resistance, as shown in 
Fig.  10.32. The rate of deposit, and hence the current, then decreases 
quite rapidly, until eventually charge is not being deposited on the plates 
and the current drops to zero amperes.

The equation for the current is

 i E
R

e amperes, AC
t

charging
( )= τ−  (10.15)

In Fig. 10.28, the current (conventional flow) has the direction shown 
since electrons flow in the opposite direction.

At =t 0 s
e e 1t 0= =τ− −

and
i E

R
e E

R
1C

t ( )= = =τ− E
R

At t 1τ=
e e e 0.368t / / 1= = ≅τ τ τ− − −

and

i E
R

e E
R

0 3680.368 .C
t / ( )= = =τ− E

R

In general, Fig. 10.32 clearly reveals that

the current of a capacitive dc network is essentially zero 
amperes after five time constants of the charging phase 
have passed.

It is also important to recognize that

during the charging phase, the major change in voltage and 
current occurs during the first time constant.

The voltage across the capacitor reaches about 63.2% (about 2/3) of 
its final value, whereas the current drops to 36.8% (about 1/3) of its peak 
value. During the next time constant, the voltage increases only about 
23.3%, whereas the current drops to 13.5%. The first time constant is 
therefore a very dramatic time for the changing parameters. Between the 
fourth and fifth time constants, the voltage increases only about 1.2%, 
whereas the current drops to less than 1% of its peak value.

Returning to Figs. 10.31 and 10.32, note that when the voltage across 
the capacitor reaches the applied voltage E, the current drops to zero 
amperes, as reviewed in Fig. 10.33. These conditions match those of an 
open circuit, permitting the following conclusion:

A capacitor can be replaced by an open-circuit equivalent 
once the charging phase in a dc network has passed.

+ –vR = 0 V

vC = E voltsE

iC = 0 A

Open circuit

R

+

–

+

–

FIG. 10.33 
Demonstrating that a capacitor has the characteristics of an open 

circuit after the charging phase has passed.
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This conclusion will be particularly useful when analyzing dc networks 
that have been on for a long period of time or have passed the transient 
phase that normally occurs when a system is first turned on.

A similar conclusion can be reached if we consider the instant the 
switch is closed in the circuit in Fig. 10.28. Referring to Figs. 10.31 and 
10.32 again, we find that the current is a peak value at t 0 s,=  whereas 
the voltage across the capacitor is 0 V, as shown in the equivalent circuit 
in Fig. 10.34. The result is that

a capacitor has the characteristics of a short-circuit 
equivalent at the instant the switch is closed in an 
uncharged series R-C circuit.

vR = E

E

iR = iC =

Short circuit

R

E
R

vC = 0 V

+ –

+

–

+

–

FIG. 10.34 
Revealing the short-circuit equivalent for the capacitor that occurs 

when the switch is first closed.

In Eq. (10.13), the time constant τ  will always have some value  
because some resistance is always present in a capacitive network. In 
some cases, the value of τ  may be very small, but five times that value of 

,τ  no matter how small, must therefore always exist; it cannot be zero. 
The result is the following very important conclusion:

The voltage across a capacitor cannot change instantaneously.

In fact, we can take this statement a step further by saying that the  
capacitance of a network is a measure of how much it will oppose a 
change in voltage in a network. The larger the capacitance, the larger is 
the time constant, and the longer it will take the voltage across the capaci-
tor to reach the applied value. This can prove very helpful when lightning  
arresters and surge suppressors are designed to protect equipment from 
unexpected high surges in voltage.

Since the resistor and the capacitor in Fig. 10.28 are in series, the cur-
rent through the resistor is the same as that associated with the capacitor. 
The voltage across the resistor can be determined by using Ohm’s law in 
the following manner:

i R i RR R Cυ = =

so that                    E
R

e RR
t /υ ( )= τ−

and    Ee volts, VR
t /

charging
υ ( )= τ−  (10.16)

A plot of the voltage as shown in Fig. 10.35 has the same shape as 
that for the current because they are related by the constant R. Note, 
however, that the voltage across the resistor starts at a level of E volts 
because the voltage across the capacitor is zero volts and Kirchhoff’s 
voltage law must always be satisfied. When the capacitor has reached 
the applied voltage, the voltage across the resistor must drop to zero 
volts for the same reason. Always remember that
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Kirchhoff’s voltage law is applicable at any instant of time 
for any type of voltage in any type of network.

t0

E

0.368E

654321

0.135E
0.05E 0.018E 0.0067E

R

R

FIG. 10.35 
Plotting the equation EeR

t /υ = τ−  versus time (t).

The Concept of t 0( )−  and ( )+t 0

Network equivalents such as Fig. 10.34 suggest that there is an instanta-
neous change in the state of the capacitor when the switch is closed. The 
word “instantaneous” is one that needs to be examined because it implies 
that there is no time element required to switch from one state to another. 
It implies that the current can jump from 0 A to a level E R/  in absolutely 
no time at all. Not milliseconds or microseconds—simply instantaneous. 
Now, for all practical purposes, the current does appear to change to the 
much higher level the instant the switch is closed but in reality there has 
to be a time element to change from one state to another—physics, iner-
tia, mechanics, and so on do not permit such changes in state. The time 
element can be exceedingly small but it does exist—instantaneous is not 
possible. If you look forward at Eq. (10.26), which relates the current of 
a capacitor to the change of voltage across the capacitor, it would require 
an instantaneous change in voltage to create an instantaneous change 
in current—an impossible requirement. One of the popular methods to 
handle situations that appear to be instantaneous is to use parameters 
such as t(0 )−  and t(0 ).+  The term t(0 )−  defines the instant just before a 
switch or action occurs. The time t(0 )+  is just after the change in state 
occurs. They define a period of time that you can consider as small as 
necessary to avoid dealing with the concept of instantaneous change. 
For the capacitor, when the switch is closed the current will jump to 
the value E R/  at time t(0 ).+  We can consider t(0 )+  to be measured in 
picoseconds (10 seconds)12−  so the plot of Fig. 10.32 is absolutely cor-
rect. We simply recognize that the current will reach that level in a very 
short period of time that would simply not show up on the plot for the 
timescale chosen. Graphically, the situation for a capacitor appears as 
shown in Fig. 10.36 for changes in state for the voltage and current. For 
the voltage, since we know it cannot change instantaneously, the value 
of (0 ) (0 )C Cυ υ=− +  as shown in Fig. 10.36(a). For the current, where 
it is recognized that it can change “almost” instantaneously, the result is 
the plot of Fig. 10.36(b) where i i(0 ) (0 ).C C>>+ −  The time interval 
defined by t(0 )+  permits the change in current to the new level in a time 
interval that would “appear” to be instantaneous.
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The introduction of time elements such as t(0 )−  and t(0 )+  is not 
meant to complicate the introduction of this important basic material 
surrounding capacitors. The intent is simply to introduce an approach 
that is used extensively in mathematics and engineering  applications to 
cover such situations. It will not be applied in the analysis to follow. 
However, in all likelihood you will encounter the use of such notation a 
number of times in your career.

Using the Calculator to Solve  
Exponential Functions

Before looking at an example, we will first discuss the use of the TI-89 
calculator with exponential functions. The process is actually quite simple 
for a number such as e .1.2−  Just select the 2nd function (diamond) key, 
followed by the function e .x  Then insert the ( )−  sig n from the numeri-
cal keyboard (not the mathematical functions), and  insert the number 1.2 
followed by ENTER to obtain the result of 0.301, as shown in Fig. 10.37.

tt

0 V

0 0

iC

0 +( E
R iC ) =

0 A0 –( iC ) =
vC 0 V0 –(  ) 0 +( )= =

t 0 –( ) t 0 +( )

vC

vC

(a) (b)

FIG. 10.36 
Defining t 0( )−  and t 0( )+  for a capacitive element.

301.2E-3ex( ) ENTER1(–) 2.

FIG. 10.37 
Calculator key strokes to determine e .1 2.−

4    FC

iCR

40 V

8 kV

+

–

+ –

+

–

E vC

vR

FIG. 10.38 
Transient network for Example 10.6.

EXAMPLE 10.6 For the circuit in Fig. 10.38:

a. Find the mathematical expression for the transient behavior of ,Cυ  
i ,C  and Rυ  if the switch is closed at t 0 s.=

b. Plot the waveform of Cυ  versus the time constant of the network.
c. Plot the waveform of Cυ  versus time.
d. Plot the waveforms of iC  and Rυ  versus the time constant of the 

network.
e. What is the value of Cυ  at t 20 ms?=
f. On a practical basis, how much time must pass before we can 

assume that the charging phase has passed?
g. When the charging phase has passed, how much charge is sitting on 

the plates?

M10_BOYL0302_14_GE_C10.indd   440M10_BOYL0302_14_GE_C10.indd   440 28/02/23   12:58 PM28/02/23   12:58 PM



transients in CapaCitive networks: the Charging phase  | | | 441

h. If the capacitor has a leakage resistance of 10,000 M ,Ω  what is the 
initial leakage current? Once the capacitor is separated from the cir-
cuit, how long will it take to totally discharge, assuming a linear 
(unchanging) discharge rate?

Solutions:

a. The time constant of the network is

RC 8 k 4 F 32 msτ µ( )( )= = Ω =

resulting in the following mathematical equations:

E e

i E
R

e

Ee

40 V(1 )

5 mA

40 V

1

40 V
8 k

C
t

C
t

R
t

/ 32 ms

/ 32 ms / 32 ms

/ 32 ms

/

/

/

e

e e

e

t

t t

t

υ

υ

−( )= − =

= =
Ω

=

= =

τ

τ

τ

−

− −

−

−

−

−

40

t

vC  (V)

0 V

39.3 V 39.7 V38 V
34.6 V

25.28 V

30

20

10

1t 2t 3t 4t 5t 6t

FIG. 10.39 
Cυ  versus time for the charging network in Fig. 10.38.

40

t (ms)

vC  (V)

0

30
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20015010050

1t

2t

3t 5t

18.6 V
@ t = 20 ms

4t

(32 ms)

(64 ms)

(160 ms)

(128 ms)

(96 ms)

FIG. 10.40 
Plotting the waveform in Fig. 10.39 versus time (t).

iC (mA)

t0
(a)

1t 2t 3t 4t 5t

1

2

3

4

5

1.84 mA

0.68 mA
0.25 mA

0.09 mA

0.034 mA

vR (V)

t0
(b)

1t 2t 3t 4t 5t

14.7 V
10

20

30

40

5.4 V 2.0 V 0.73 V 0.27 V

FIG. 10.41 
iC and Rυ  for the charging network in Fig. 10.39.

b. The resulting plot appears in Fig. 10.39.
c. The horizontal scale will now be against time rather than time con-

stants, as shown in Fig. 10.40. The plot points in Fig. 10.40 were 
taken from Fig. 10.39.

d. Both plots appear in Fig. 10.41.
e. Substituting the time t 20 ms=  results in the following for the 

exponential part of the equation:

( )= = =τ − −e e e 0.535 using a calculatort / 20 ms/32 ms 0.625

so that   υ

( )

( )= − = −

= =

τe

18 6 V

40 V(1 ) 40 V 1 0.535

(40 V)(0.465) . as verified by Fig. 10.40
C

32 ms

f. Assuming a full charge in five time constants results in

160 ms 0 16 s5 5(32 ms) .τ = = =
g. Using Eq. (10.6) gives

Q CV 160(4 F)(40 V) Cµµ= = =

M10_BOYL0302_14_GE_C10.indd   441M10_BOYL0302_14_GE_C10.indd   441 28/02/23   12:59 PM28/02/23   12:59 PM



442 | | | CapaCitors

h. Using Ohm’s law gives

I 40 V
10,000 M

4 nAleakage =
Ω

=

Finally, the basic equation I Q t=  results in

t
Q
I

11 11 h
160 C

4 nA
40,000 s 1 min

60 s
1 h

60 min
.

µ ( )= = =













 =

10.6 TRANSIENTS IN CAPACITIVE 
NETWORKS: THE DISCHARGING PHASE
We now investigate how to discharge a capacitor while exerting some 
control on how long the discharge time will be. You can, of course, place 
a lead directly across a capacitor to discharge it very quickly—and pos-
sibly cause a visible spark. For larger capacitors such those in TV sets, 
this procedure should not be attempted because of the high voltages 
 involved—unless, of course, you are trained in the maneuver.

In Fig. 10.42(a), a second contact for the switch was added to the cir-
cuit in Fig. 10.28 to permit a controlled discharge of the capacitor. With 
the switch in position 1, we have the charging network described in the 
last section. Following the full charging phase, if we move the switch to 
position 1, the capacitor can be discharged through the resulting circuit in 
Fig. 10.42(b). In Fig. 10.42(b), the voltage across the capacitor appears 
directly across the resistor to establish a discharge current. Initially, the 
current jumps to a relatively high value; then it begins to drop. It drops 
with time because charge is leaving the plates of the capacitor, which 
in turn reduces the voltage across the capacitor and thereby the voltage 
across the resistor and the resulting current.

Before looking at the wave shapes for each quantity of interest, note that 
current iC  has now reversed direction as shown in Fig. 10.42(b). As shown 
in parts (a) and (b) in Fig.  10.42, the voltage across the capacitor does 

(a) (b)

C

iC

2

R

vR

iC = iR

+

–

+–

vC = EC

iC

vC

1

2
E

R

vR

+

–

+ –

+

–

FIG. 10.42 
(a) Charging network; (b) discharging configuration.

not reverse polarity, but the current reverses direction. We will show the 
 reversals on the resulting plots by sketching the waveforms in the negative 
regions of the graph. In all the waveforms, note that all the mathematical 
expressions use the same e x−  factor appearing during the charging phase.

For the voltage across the capacitor that is decreasing with time, the 
mathematical expression is

 EeC
t /

discharging
υ = τ−  (10.17)

For this circuit, the time constant τ  is defined by the same equation as 
used for the charging phase. That is,

 RC
discharging

τ =  (10.18)
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Since the current decreases with time, it will have a similar format:

 i E
R

eC
t /

discharging
= τ−  (10.19)

For the configuration in Fig. 10.42(b), since R Cυ υ=  (in parallel), the 
equation for the voltage Rυ  has the same format:

 EeR
t /

discharging
υ = τ−  (10.20)

The complete discharge will occur, for all practical purposes, in five 
time constants. If the switch is moved between terminals 1 and 2 every 
five time constants, the wave shapes in Fig. 10.43 will result for i, ,C Cυ  
and .Rυ  For each curve, the current directions and voltage polarities 
are as defined by the configurations in Fig. 10.42. Note, as pointed out 
above, that the current reverses direction during the discharge phase.

The discharge rate does not have to equal the charging rate if a dif-
ferent switching arrangement is used. In fact, Example 10.8 will demon-
strate how to change the discharge rate.

vR

t0

E

15T14T13T12T11T10T9T8T7T6T5T4T3T2T1T

–E

t0

E

15T14T13T12T11T10T9T8T7T6T5T4T3T2T1T

Switch in
position 1

Position 2 Position 1 Position 2

iC

t0

E

15T14T13T12T11T10T9T8T7T6T5T4T3T2T1T

R

E
R

vC

FIG. 10.43 
,Cυ i ,C  and Rυ  for 5τ  switching between contacts in Fig. 10.42(a).

EXAMPLE 10.7 Using the values in Example 10.6, plot the wave-
forms for Cυ  and iC  resulting from switching between contacts 1 and 2 
in Fig. 10.42 every five time constants.

Solution: 

The time constant is the same for the charging and discharging phases. 
That is,

RC 8 k 4 F 32 msτ µ( )( )= = Ω =

For the discharge phase, the equations are

Ee 40 V t
C

t 32 mseυ = =τ− −

e t= − = −
Ω

= −τ −− −i E
R

e e 5 mA40 V
8 kC

t t / 32 ms/ /32 ms

40 V t
R C

32 ms/eυ υ= = −
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A continuous plot for the charging and discharging phases appears in 
Fig. 10.44.

t

5 mA

40 ms

10T

= 8 ms

120 ms 200 ms 280 ms 440 ms

20T 30T

–5 mA

iC

t0

5 mA
= 32 ms

–5 mA

160 ms

320 ms

480 ms

vC

t0

40 V

= 32 ms

160 ms 320 ms
(10T)(5T) (15T)

480 ms

40 V

vC

t0 480 ms40 ms
(5T)

80 ms
(10T)

320 ms
(20T)

= 8 ms

160 ms

(a)

(b)

iC

T T

TT

FIG. 10.45 
Plotting Cυ  and iC versus time in ms: (a) 32 ms;τ =  (b) 8 ms.τ =

vC

t0

40 V

15T10T5T
Switch in
position 1

Position 2 Position 1 Position 2

iC

t0

+5 mA

15T10T5T

= 32 ms

= 32 ms 

–5 mA

T

T

FIG. 10.44 
Cυ  and iC  for the network in Fig. 10.42(a) with the values in Example 10.6.

The Effect of ττ  on the Response

In Example 10.7, if the value of τ  were changed by changing the resis-
tance, the capacitor, or both, the resulting waveforms would appear the 
same because they were plotted against the time constant of the network. 
If they were plotted against time, there could be a dramatic change in the 
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appearance of the resulting plots. In fact, on an oscilloscope, an instru-
ment designed to display such waveforms, the plots are against time, and 
the change will be immediately apparent. In Fig. 10.45(a), the waveforms 
in Fig. 10.44 for Cυ  and iC  were plotted against time. In Fig. 10.45(b), 
the capacitance was decreased to 1 F,µ  which reduces the time constant 
to 8 ms. Note the dramatic effect on the appearance of the waveform.

For a fixed-resistance network, the effect of increasing the capaci-
tance is clearly demonstrated in Fig. 10.46. The larger the capacitance, 
and hence the time constant, the longer it takes the capacitor to charge 
up—there is more charge to be stored. The same effect can be created by 
holding the capacitance constant and increasing the resistance, but now 
the longer time is due to the lower currents that are a result of the higher 
resistance.

EXAMPLE 10.8 For the circuit in Fig. 10.47:

a. Find the mathematical expressions for the transient behavior of the 
voltage Cυ  and the current iC  if the capacitor was initially uncharged 
and the switch is thrown into position 1 at t 0 s.=

b. Find the mathematical expressions for the voltage Cυ  and the cur-
rent iC  if the switch is moved to position 2 at t 10 ms.=  (Assume 
that the leakage resistance of the capacitor is infinite ohms; that is, 
there is no leakage current.)

c. Find the mathematical expressions for the voltage Cυ  and the cur-
rent iC  if the switch is thrown into position 3 at t 20 ms.=

d. Plot the waveforms obtained in parts (a)–(c) on the same time axis 
using the defined polarities in Fig. 10.47.

E

vC

0 t

C1
C2

C3 C3 > C2 > C1
R fixed

FIG. 10.46 
Effect of increasing values of C (with R 
constant) on the charging curve for .Cυ

C

iC

0.05 mF vC

3

1

2

E 12 V

R1

20 kV

R2 10 kV

+

–

+

–

FIG. 10.47 
Network to be analyzed in Example 10.8.

Solutions:

a.  Charging phase:

R C 20 k 0.05 F 1 ms1τ µ( )( )= = Ω =

e(1υ −( )= − =τ −−E e 12 V )1 t
C

t 1 ms/ /

i E
R

e e 0 6 mA12 V
20 k

. t
C

t t 1 ms

1

/ /1 ms /= =
Ω

=τ −− − e

b. Storage phase: At 10 ms, a period of time equal to 10τ  has passed, 
permitting the assumption that the capacitor is fully charged. Since 
R ,leakage = ∞ Ω  the capacitor will hold its charge indefinitely. The 
result is that both Cυ  and iC  will remain at a fixed value:

i

12 V

0 A
C

C

υ =

=
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c. Discharge phase (using 20 ms as the new t 0 s=  for the equa-
tions): The new time constant is

e

e

RC R R C

Ee

i E
R

e E
R R

e

i e

12 V

0.4 mA

  20 k 10 k 0.05  F 1.5 ms

   

       

  12 V
20 k 10 k

 

t

t

C
t

C
t t

C
t

/ 1.5 ms

/ 1.5 ms

1 2

/

/

1 2

/

/1.5 ms

τ µ

υ

( ) ( )( )′ = = + = Ω + Ω =

= =

= − = −
+

= −
Ω + Ω

= −

τ

τ τ

− ′ −

− ′ − ′

− −

d. See Fig. 10.48.

12 V

vC

0 t5T

(15 ms)

5T
 = 1.5T

0.6 mA

iC

t

10

(22.5 ms)(10 ms)(5 ms)

0 5 10

(15 ms) (22.5 ms)(10 ms)(5 ms)

– 0.4 mA

T

T

FIG. 10.48 
Cυ  and iC  for the network in Fig. 10.47.

R2 1 kV

4 mA

I C

2

1 iC

vC

+

–
R1 5 kV

R3

3 kV

10    F

FIG. 10.49 
Network to be analyzed in Example 10.9.

EXAMPLE 10.9 For the network in Fig. 10.49:

a. Find the mathematical expression for the transient behavior of the 
voltage across the capacitor if the switch is thrown into position 1 at 
t 0 s.=

b. Find the mathematical expression for the transient behavior of the 
voltage across the capacitor if the switch is moved to position 2 at 
t 1 .τ=
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c. Plot the resulting waveform for the voltage Cυ  as determined by 
parts (a) and (b).

d. Repeat parts (a)–(c) for the current i .C

Solutions:

a. Converting the current source to a voltage source results in the con-
figuration in Fig. 10.50 for the charging phase.

vC (V)

0 t (ms)80 160 240 320 400

12.64 V

20 V

5tt

FIG. 10.52 
Cυ for the network in Fig. 10.50.

R2 1 kV
20 VE C

2

1 iC

vC

+

–

R1

5 kV

R3

3 kV

10 mF
+

–

FIG. 10.50 
The charging phase for the network in Fig. 10.49.

10 m   F

3 kV

+

–

iC

CvC

+

–

R3

1 kVR2

2

12.64 V

FIG. 10.51 
Network in Fig. 10.50 when the switch is 

moved to position 2 at τ=t 1 .1

For the source conversion

E IR 4 mA)(5 k 20 V( )= = Ω =

and             R R 5 ks p= = Ω

RC R R C 5 k 3 k 10 F 80 ms1 3τ µ( ) ( )( )= = + = Ω + Ω =

(1E e 20 V )1 t
C

t 80 ms/ /eυ −( )= − =τ− −

b. With the switch in position 2, the network appears as shown in Fig. 10.51. 
The voltage at 1 τ can be found by using the fact that the voltage is 63.2% 
of its final value of 20 V, so that 0.632 20 V 12.64 V.( ) =  Alterna-
tively, you can substitute into the derived equation as follows:

e e e 0.368t / / 1= = =τ τ τ− − −

and υ = − = −

= =

−e20 V(1 ) 20 V(1 0.368)

(20 V)(0.632) 12.64 V
C

t /80 ms

Using this voltage as the starting point and substituting into the dis-
charge equation results in

RC R R C

Ee 12 64 V

1 k 3 k 10 F 40 ms

. t
C

t 40 ms

2 3

/ /e

τ µ

υ

( ) ( )( )′ = = + = Ω + Ω =

= =τ− ′ −

c. See Fig. 10.52.
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d. The charging equation for the current is

ei E
R

e E
R R

e e 2 5 mA20 V
8 k

. t
C

t t t 80 ms/

1 3

/ /80 ms /= =
+

=
Ω

=τ τ− − − −

which, at t 80 ms,=  results in

( )= = = =− −i e e2.5 mA 2.5 mA 2.5 mA)(0.368 0.92 mAC
80 ms/80 ms 1

When the switch is moved to position 2, the 12.64 V across the 
capacitor appears across the resistor to establish a current of 
12.64 V/4 k 3.16 mA.Ω =  Substituting into the discharge equa-
tion with V 12.64 Vi =  and 40 msτ′ =  yields

e

i
V

R R
e e

e 3 16 mA

12.64 V
1 k 3 k

12.64 V
4 k

. t

C
i t t

t 40 ms

2 3

/ /40 ms

/40 ms /

= −
+

= −
Ω + Ω

= −
Ω

= −

τ− ′ −

− −

The equation has a minus sign because the direction of the dis-
charge current is opposite to that defined for the current in 
Fig. 10.51. The resulting plot appears in Fig. 10.53.

iC (mA)

0 t (ms)320 400

5tt

0.92

2.5

240

–3.16

16080

FIG. 10.53 
i c for the network in Fig. 10.50.

10.7 INITIAL CONDITIONS
In all the examples in the previous sections, the capacitor was uncharged 
before the switch was thrown. We now examine the effect of a charge, 
and therefore a voltage V Q C/ ,( )=  on the plates at the instant the 
switching action takes place. The voltage across the capacitor at this  
instant is called the initial value, as shown for the general waveform in 
Fig. 10.54.

Once the switch is thrown, the transient phase commences until a 
leveling off occurs after five time constants. This region of relatively 
fixed value that follows the transient response is called the steady-state 
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region, and the resulting value is called the steady-state or final 
value. The steady-state value is found by substituting the open-circuit 
 equivalent for the capacitor and finding the voltage across the plates. 
Using the transient equation developed in the previous section, we 
can write an equation for the voltage Cυ  for the entire time interval in 
Fig.  10.54. That is, for the transient period, the voltage rises from Vi  
(previously 0 V) to a final value of V .f  Therefore,

υ = − = − −τ τ− −E e V V e(1 ) ( ) (1 )C
t

f i
t/ /

Adding the starting value of Vi  to the equation results in

υ = + − − τ−V V V e( ) (1 )C i f i
t /

However, by multiplying through and rearranging terms, we obtain

υ = + − − +

= − +

τ τ

τ τ

− −

− −

V V V e V V e

V V e V e

C i f f
t

i i
t

f f
t

i
t

/ /

/ /

We find

 υ ( )= + − τ−V V V eC f i f
t /  (10.21)

Now that the equation has been developed, it is important to recog-
nize that

Eq. (10.21) is a universal equation for the transient response 
of a capacitor.

That is, it can be used whether or not the capacitor has an initial value. 
If the initial value is 0 V as it was in all the previous examples, simply 
set Vi  equal to zero in the equation, and the desired equation results. 
The final value is the voltage across the capacitor when the open-circuit 
equivalent is substituted.

EXAMPLE 10.10 The capacitor in Fig. 10.55 has an initial voltage 
of 4 V.

a. Find the mathematical expression for the voltage across the capaci-
tor once the switch is closed.

b. Find the mathematical expression for the current during the tran-
sient period.

c. Sketch the waveform for each from initial value to final value.

Initial
conditions

Vi

Vf

Transient
response

Steady-state
region

0 t

vC

FIG. 10.54 
Defining the regions associated with a transient response.
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Solutions:

a. Substituting the open-circuit equivalent for the capacitor results in a 
final or steady-state voltage Cυ  of 24 V.

The time constant is determined by

τ
µ

( )

( )( )

= +

= Ω + Ω =

R R C

2.2 k 1.2 k 3.3 F 11.22 ms
1 2

with 5 56.1 msτ =

Applying Eq. (10.21) gives

υ ( )= + − = + −τ− −V V V e e24 V (4 V 24 V)C f i f
t t/ /11.22 ms

and 24 V 20 V t
C

11 22 ms/ .υ = − −e

b. Since the voltage across the capacitor is constant at 4 V prior to the 
closing of the switch, the current (whose level is sensitive only to 
changes in voltage across the capacitor) must have an initial value 
of 0 mA. At the instant the switch is closed, the voltage across the 
capacitor cannot change instantaneously, so the voltage across the 
resistive elements at this instant is the applied voltage less the initial 
voltage across the capacitor. The resulting peak current is

I
E V
R R

24 V 4 V
2.2 k 1.2 k

20 V
3.4 k

5.88 mAm
C

1 2

=
−
+

=
−

Ω + Ω
=

Ω
=

The current then decays (with the same time constant as the volt-
age Cυ ) to zero because the capacitor is approaching its  open-circuit 
equivalence.

The equation for iC  is therefore

i 5 88 mA.C
t 11 22 ms/ .= −e

c. See Fig.  10.56. The initial and final values of the voltage were 
drawn first, and then the transient response was included between 
these levels. For the current, the waveform begins and ends at zero, 
with the peak value having a sign sensitive to the defined direction 
of iC  in Fig. 10.55.

Let us now test the validity of the equation for Cυ  by substituting 
t 0 s=  to reflect the instant the switch is closed. We have

e e 1t / 0= =τ− −

iC

R2

1.2 kV

R1

2.2 kV

E C24 V 3.3    F
+

–
4 VvC

+

–

+

–

FIG. 10.55 
Example 10.10.

4 V

24 V

vC

0
iC
5.88 mA

56.1 ms

56.1 ms

t

t0

5t

FIG. 10.56 
Cυ  and iC  for the network in Fig. 10.55.
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and e24 V 20 V 24 V 20 V 4 VC
t /υ = − = − =τ−

When t 5 ,τ>

e 0t / ≅τ−

and e24 V 20 V 24 V 0 V 24 VC
t /υ = − = − =τ

Eq. (10.21) can also be applied to the discharge phase by 
applying the correct levels of Vi  and V .f

For the discharge pattern in Fig. 10.57, V 0 V,f = and Eq. (10.21) 
becomes

V V V e V e0 V ( 0 V)C f i f
t

i
t/ /υ ( )= + − = + −τ τ− −

and V eC i
t /

discharging
υ = τ−  (10.22)

Substituting V Ei =  volts results in Eq. (10.17).

10.8 INSTANTANEOUS VALUES
Finding the Voltage or Current at a Particular Instant of Time

Occasionally, you may need to determine the voltage or current at a par-
ticular instant of time that is not an integral multiple of ,τ  as in the pre-
vious sections. For example, if

e20 V 1C
t /2 msυ ( )= − ( )−

the voltage Cυ  may be required at t 5 ms,=  which does not correspond to 
a particular value of .τ  Fig. 10.30 reveals that e1 t /( )− τ  is approximately 
0.93 at t 5 ms 2.5 ,τ= =  resulting in 20 0.93 18.6 V.Cυ ( )− −  
Additional accuracy can be obtained by substituting 5 msυ =  into 
the equation and solving for Cυ  using a calculator or table to determine 
e .2.5−  Thus,

υ ( ) ( )

( )

= − = − = −

= =

− −e e

18 36 V

20 V(1 ) 20 V)(1 20 V)(1 0.082

20 V)(0.918 .
C

5 ms/2 ms 2.5

The TI-89 calculator key strokes appear in Fig. 10.58.

vC

Vi = E

t0
Vf = 0 V

1t 2t 3t 4t 5t

FIG. 10.57 
Defining the parameters in Eq. (10.21) for the 

discharge phase.

2 ×0 ( 1 – EE(–) (–)5ex(

3 2÷ EE 3 ((–) ENTER( 18.358EO

FIG. 10.58 
Key strokes to determine 20 V 1 e 5 ms 2 ms/( )− −  using the TI-89 

calculator.

The results are close, but accuracy beyond the tenths place is suspect 
using Fig. 10.30. The above procedure can also be applied to any other 
equation introduced in this chapter for currents or other voltages.

Find the Time to Reach a Particular Level of Voltage or Current

Occasionally, you may need to determine the time required to reach a 
particular voltage or current. The procedure is complicated somewhat by 
the use of natural logs (log ,e or ln), but today’s calculators are equipped 
to handle the operation with ease.

M10_BOYL0302_14_GE_C10.indd   451M10_BOYL0302_14_GE_C10.indd   451 28/02/23   12:59 PM28/02/23   12:59 PM



452 | | | CapaCitors

For example, solving for t in the equation

V V V eC f i f
t /υ ( )= + − τ−

results in

  (10.23)

noting than

log lne =

For example, suppose that

e20 V(1 )C
t /2 msυ = − −

and the time t to reach 10 V is desired. Since V 0 V,i =  and V 20 V,f =  
we have

t
V V

V

1.386 ms

  ln   2 ms ln  
0 V  20 V

10 V  20 V

2 ms ln   20 V
  10 V

2 ms ln 2 2 ms)(0.693

i f

C f

τ
υ

( )

( )
( )

( )
( )

( ) ( )

( ) ( )

( )

( ) ( )

=
−
−

=
−
−

= −
−







= =

=

The TI-89 calculator key strokes appear in Fig. 10.59.

2 (–)EE 3 × 2ND ENTERIn( 1.39E-3)2

FIG. 10.59 
Key strokes to determine 2 ms ln 2( )( )  using the TI-89 calculator.

For the discharge equation,

Ee V e V( )with 0 VC
t

i
t

f
/ /υ = = =τ τ− −

Using Eq. (10.23) gives

t
V V

V
V

ln ln
0 V
0 V

i f

C f

i

C

τ
υ

τ
υ

( )
( )

( )
( )

( ) ( )=
−
−

=
−
−

and τ
υ

=t
V

ln i

C

 (10.24)

For the current equation,

= = =τ−i E
R

e I E
R

I 0 AC
t

i f
/

and =t
I
i

ln i

C

 (10.25)

10.9 THÉVENIN EQUIVALENT: R CTHτ =
You may encounter instances in which the network does not have the 
simple series form in Fig.  10.28. You then need to find the Thévenin 
equivalent circuit for the network external to the capacitive element. RTh
will be the source voltage E in Eqs. (10.13) through (10.25), and RTh  
will be the resistance R. The time constant is then R C.Thτ =

τ
υ

τ
υ

( )
( )

( )
( )

( ) ( )=
−
−

=
−
−

t
V V

V

V V

V
log lne

i f

C f

i f

C f
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EXAMPLE 10.11 For the network in Fig. 10.60:

a. Find the mathematical expression for the transient behavior of the 
voltage Cυ  and the current iC  following the closing of the switch 
(position 1 at =t 0 s).

b. Find the mathematical expression for the voltage υC  and the current 
iC  as a function of time if the switch is thrown into position 2 at 

=t 9 ms.
c. Draw the resultant waveforms of parts (a) and (b) on the same time 

axis.

R230 kV

R1

60 kV

E 21 V

R3

10 kV

vC

+

–

iC1 2

R4 10 kV

+

–
C = 0.2 mF    

FIG. 10.60 
Example 10.11.

ETh:

R1

60 kV

R3

10 kV

R2 30 kV EThE 21 V

RTh

RTh:

R1

60 kV

R3

10 kV

R2 30 kV

+

–

FIG. 10.61 
Applying Thévenin’s theorem to the network 

in Fig. 10.60.

vC

RTh  =  30 kV

ETh  =  7 V

iC

+

–
C = 0.2 mF

+

–

FIG. 10.62 
Substituting the Thévenin equivalent for the 

network in Fig. 10.60.

 Solutions:

a. Applying Thévenin’s theorem to the µ0.2 F capacitor, we obtain 
Fig. 10.61. We have

( )( )

( )
( )

= + = Ω Ω
Ω

+ Ω

= Ω + Ω = Ω

=
+

= Ω
Ω + Ω

= =

R R R R

E
R E

R R

60 k 30 k
90 k

10 k

20 k 10 k 30 k
30 k (21 V)

30 k 60 k
1
3

21 V 7 V

Th

Th

1 2 3

2

2 1

The resultant Thévenin equivalent circuit with the capacitor 
replaced is shown in Fig. 10.62.

Using Eq. (10.21) with =V Ef Th and =V 0 V,t  we find that

υ = + − τ−V V V e( )C f i f
t /

becomes υ = + − τ−E V E e(0 )C Th Th
t /

or υ = − τ−E e(1 )C Th
t /

with τ µ( )= = Ω =RC (30 k ) 0.2 F 6 ms

Therefore, 7 V(1 )t
C

6 ms/eυ = − −

For the current i :C

e

i
E
R

e e

0 23 mA

7 V
30 k

. t

C
Th t RC t

6 ms

/ /6 ms

/

= =
Ω

=

− −

−

b. At =t 9 ms,

υ

( )

( )

( )

( )

= − = −

= − = −
= =

τ− −

−

E e e

e

1 7 V(1 )

7 V)(1 7 V)(1 0.223

7 V)(0.777 5.44 V

C Th
t / (9 ms/6 ms)

1.5

and i
E
R

e e0.23 mA

0.23 10 0.233 0.052 10 0.05 mA

C
Th t / 1.5

3 3( )( )

= =

= × = × =

τ− −

− −
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454 | | | CapaCitors

Using Eq. (10.21) with =V 0 Vf  and =V 5.44 V,i  we find that

υ ( )= + − τ− ′V V V eC f i f
t /

becomes υ = + −

=

τ

τ

− ′

− ′

e

e

0 V (5.44 V 0 V)

5.44 V
C

t

t

/

/

with τ µ( )′ = = Ω =R C (10 k ) 0.2 F 2 ms4

and e5 44 V. t
C

2 ms/υ = −

By Eq. (10.19),

=
Ω

=I 5.44 V
10 k

0.54 mAi

and ei I e 0 54 mA. t
C i

t 2 ms/ /= =τ −−

c. See Fig. 10.63.

t (ms)

0.23

vC (V)

ETh = 7

Vi = 5.44 V

iC (mA)

0 t (ms)25 30 3520

10

5

0.05

–0.54

15

5t'

5t

5t

5t'

0 15 25 30 3520105

FIG. 10.63 
The resulting waveforms for the network in Fig. 10.60.

EXAMPLE 10.12 The capacitor in Fig. 10.64 is initially charged to 
40 V. Find the mathematical expression for υC  after the closing of the 
switch. Plot the waveform for υC .

Solution: The network is redrawn in Fig. 10.65.

E :Th

( )( )
=

+ +
= Ω

Ω + Ω + Ω
=E

R E

R R R
18 k 120 V

18 k 7 k 2 k
80 VTh

3

3 1 4

RTh :

( ) ( )

= + +

= Ω + Ω Ω + Ω

= Ω + Ω = Ω

R R R R R

R

( )

5 k 18 k 7 k 2 k

5 k 6 k 11 k

Th

Th

2 3 1 4

R1 7 kV

R4 2 kV

C

40   F
+  40 V  –

+  vC  –

R2

5 kV R3

18 kV

E 120 V
+

–

FIG. 10.64 
Example 10.12.

40 V

+

–

Thévenin

C

R2

5 kV

R1

7 kV

R3 18 kV E 120 V
+

–
40 mF 

R4

2 kV

FIG. 10.65 
Network in Fig. 10.64 redrawn.
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Therefore, V V40 V and 80 Vi f= =

and τ µ( )= = Ω =R C (11 k ) 40 F 0.44 sTh

Eq. (10.21): υ = + −

= + −

τ−

−

V V V e

e

( )

80 V (40 V 80 V)

C f i f
t

t

/

/0.44 s

and     υ = − −e80 40 VVC
t 0 44 s/ .

The waveform appears as in Fig. 10.66.

EXAMPLE 10.13 For the network in Fig. 10.67, find the mathematical 
expression for the voltage υC  after the closing of the switch (at =t 0).

Solution:

= + = Ω + Ω = ΩR R R 6 10 16Th 1 2

= + = +

= × Ω = × =− −

E V V IR 0

(20 10 A)(6 ) 120 10 V 0.12 V
Th 1 2 1

3 3

and τ = = Ω × =−R C (16 )(500 10 F) 8 msTh
6

so that e0 12 V 1. t
C

/ 8 msυ −( )= −

10.10 THE CURRENT iC

There is a very special relationship between the current of a capacitor 
and the voltage across it. For the resistor, it is defined by Ohm’s law: 
i R.R Rυ= /  The current through and the voltage across the resistor are 
related by a constant R—a very simple direct linear relationship. For the 
capacitor, it is the more complex relationship defined by

 
υ

=i C
d
dtC

C  (10.26)

The factor C reveals that the higher the capacitance, the greater is 
the resulting current. Intuitively, this relationship makes sense because 
higher capacitance levels result in increased levels of stored charge, pro-
viding a source for increased current levels. The second term, υ /d dt,C  
is sensitive to the rate of change of Cυ  with time. The function υ /d dtC  
is called the derivative (calculus) of the voltage Cυ  with respect to time 
t. The faster the voltage Cυ  changes with time, the larger will be the 
factor υ /d dtC  and the larger will be the resulting current iC . That is why 
the current jumps to its maximum of E R/  in a charging circuit where 
the switch is closed. In that region, if you look at the charging curve for 

Cυ , the voltage is changing at its greatest rate. As it approaches its final 
value, the rate of change decreases, and, as confirmed by Eq. (10.26), the 
level of current decreases.

Take special note of the following:

The capacitive current is directly related to the rate of 
change of the voltage across the capacitor, not the levels of 
voltage involved.

For example, the current of a capacitor will be greater when the volt-
age changes from 1 V to 10 V in 1 ms than when it changes from 10 V to 
100 V in 1 s; in fact, it will be 100 times more.

40 V

80 V

vC

0 t

= 0.44 s

1t 2t 3t 4t 5t

t

FIG. 10.66 
υC for the network in Fig. 10.64.

I R1  =  6 V

R2

10 V

20 mA
C vC

+

–
500   F

 FIG. 10.67 
Example 10.13.
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 If the voltage fails to change over time, then 

d
dt

0Cυ =

 and  i C
d
dt

C 0 0 AC
Cυ ( )= = =

 In an effort to develop a clearer understanding of   Eq.   ( 10. 26  ), let us 
calculate the  average current  associated with a capacitor for various 
voltages impressed across the capacitor. The average current is defined 
by the equation 

   i C
tC
C

av

υ
=

∆
∆

        ( 10. 27)  

 where   ∆       indicates a finite (measurable) change in voltage or time. 
 In the following example, the change in voltage   Cυ∆       will be con-

sidered for each slope of the voltage waveform. If the voltage increases 
with time, the average current is the change in voltage divided by the 
change in time, with a positive sign. If the voltage decreases with time, 
the average current is again the change in voltage divided by the change 
in time, but with a negative sign. 

    EXAMPLE   10. 14  Find the waveform for the average current if the 
voltage across a   2 Fµ       capacitor is as shown in     Fig.    10. 68  . 

vC (V)

0
t (ms)

9 10 11 12
t1

4

5 6 7 81 2 3 4t3t2

Dt

v3
v2

Dv

        FIG.    10. 68
Cυ       for   Example    10. 14  .    

   Solutions:  

a.    From 0 ms to 2 ms, the voltage increases linearly from 0 V to 4 V; 
the change in voltage   4 V 0 4 Vυ∆ = − =       (with a positive sign 
since the voltage increases with time). The change in time 

t∆ =         2 ms 0 2 ms,− =       and 

i C
t

4 mA

2 10 F 4 V
2 10 s

4 10 A

C
C 6

3

3

av

υ ( )( )=
∆
∆

= ×
×

= × =

−
−

−

b.   From 2 ms to 5 ms, the voltage remains constant at 4 V; the change 
in voltage   0.υ∆ =       The change in time   t 3 ms,∆ =       and 

i C
t

C
t

0 mA0
C

C
av

υ
=

∆
∆

=
∆

=

   i C
tCi CCi C C

av

υ
i C=i C

∆
∆

        (            (            ( 
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c. From 5 ms to 11 ms, the voltage decreases from 4 V to 0 V. The 
change in voltage υ∆  is, therefore, 4 V 0 4 V− =  (with a nega-
tive sign since the voltage is decreasing with time). The change in 
time t 11 ms 5 ms 6 ms,∆ = − =  and

i C
t

i 1 33 mA

2 10 F 4 V
6 10 s

1.33 10 A .

C
C

C

6
3

3

av

av

υ ( )( )=
∆
∆

= − ×
×

= − × = −

−
−

−

d. From 11 ms on, the voltage remains constant at 0 and 0,υ∆ =  so 
i 0 mA.Cav

=  The waveform for the average current for the 
impressed voltage is as shown in Fig. 10.69.

iC (mA)

0

4

–1.33

t (ms)9 10 11 125 6 7 81 2 3 4

FIG. 10.69 
The resulting current iC  for the applied voltage in Fig. 10.68.

Note in Example 10.14 that, in general, the steeper the slope, the 
greater is the current, and when the voltage fails to change, the current is 
zero. In addition, the average value is the same as the instantaneous value 
at any point along the slope over which the average value was found. For 
example, if the interval t∆  is reduced from t0 1→  to t t ,2 3−  as noted 
in Fig. 10.68, tυ∆ ∆  is still the same. In fact, no matter how small the 
interval t,∆  the slope will be the same, and therefore the current iCav

 will 
be the same. If we consider the limit as t∆ →0, the slope will still remain 
the same, and therefore iCav

=  iC inst
 at any instant of time between 0 and 

t .1  The same can be said about any portion of the voltage waveform that 
has a constant slope.

An important point to be gained from this discussion is that it is not 
the magnitude of the voltage across a capacitor that determines the cur-
rent but rather how quickly the voltage changes across the capacitor. An 
applied steady dc voltage of 10,000 V would (ideally) not create any 
flow of charge (current), but a change in voltage of 1 V in a very brief 
period of time could create a significant current.

The method described above is only for waveforms with straight-line 
(linear) segments. For nonlinear (curved) waveforms, a method of calcu-
lus (differentiation) must be used. However, as mentioned earlier when 
the derivative of a function first appeared, there is no need to become 
versed in the mathematical process of finding the derivative of a function 
to continue with the analysis of capacitive networks. It is only intro-
duced for completeness and exposure.

10.11 CAPACITORS IN SERIES  
AND IN PARALLEL
Capacitors, like resistors, can be placed in series and in parallel. 
Increasing levels of capacitance can be obtained by placing capacitors in 
parallel, while decreasing levels can be obtained by placing capacitors in 
series. The exact opposite to the combining of resistive elements.
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 For capacitors in series, the charge is the same on each capacitor 
(    Fig.    10. 70  ): 
    Q Q Q QT 1 2 3= = =         ( 10. 28)  

 Applying Kirchhoff’s voltage law around the closed loop gives 

E V V V1 2 3= + +

 However,  V Q
C

=

 so that               
Q
C

Q
C

Q
C

Q
C

T

T

1

1

2

2

3

3

= + +

 Using   Eq.   ( 10. 28  ) and dividing both sides by  Q  yields 

   
C C C C
1 1 1 1

T 1 2 3

= + +         ( 10. 29)  

 which is similar to the manner in which we found the total resistance 
of a parallel resistive circuit. The total capacitance of two capacitors in 
series is 

   C
C C

C CT
1 2

1 2

=
+         ( 10. 30)  

 The voltage across each capacitor in   Fig.     10. 70   can be found by first 
recognizing that 

Q QT 1=

 or     C E C VT 1 1=

 Solving for   V1      gives    V
C E
C
T

1
1

=

 and substituting for   CT       gives 

   V
C

C C C
E

1/
1/ 1/ 1/1

1

1 2 3

=
+ +







         ( 10. 31)  

 A similar equation results for each capacitor of the network. 
 For capacitors in parallel, as shown in     Fig.    10. 71  , the voltage is the 

same across each capacitor, and the total charge is the sum of that on 
each capacitor: 

    
Q Q Q QT 1 2 3= + +

        ( 10. 32)  

 However,  Q CV=

 Therefore,  C E C V C V C VT 1 1 2 2 3 3= = =

 but  E V V V1 2 3= = =

 Thus,  C C C CT 1 2 3= + +         ( 10. 33)  

 which is similar to the manner in which the total resistance of a series 
circuit is found. 

E

QT

V1

Q1+

–
V2

Q2+

–
V3

Q3+

–

+

–

        FIG.    10. 71  
 Parallel capacitors.    

V2

E
QT

V3V1

+ – + – + –
Q2 Q3Q1

+

–

        FIG.    10. 70  
 Series capacitors.    

    Q Q Q QTQ QTQ Q1 2Q Q1 2Q Q3= =Q Q= =Q Q1 2= =1 2Q Q=Q Q         (             (             ( 

   
C C C C
1 1 1 1

TC CTC C1 2C C1 2C C3

= += +
C C

= +
C C
1 1= +1 1 +

C C
+

C C
1 1+1 1

        (            (            ( 

   C
C C

C CT
1 2C C1 2C C

1 2C C1 2C C
=

C C+C C1 2+1 2C C1 2C C+C C1 2C C         (            (            ( 

   V
C

C C C
E

1/
1/ 1/C C1/C C 1/1V1V 1

1 2C C1 2C C 3

=
+ +C C+ +C CC C1/C C+ +C C1/C C1 2+ +1 2C C1 2C C+ +C C1 2C CC C1/C C1 2C C1/C C+ +C C1/C C1 2C C1/C C







         (            (            ( 

    Q Q Q QTQ QTQ Q1 2Q Q1 2Q Q3= +Q Q= +Q Q1 2= +1 2Q Q+Q Q         (             (             ( 

C C C CTC CTC C1 2C C1 2C C3= +C C= +C C1 2= +1 2 +C C+C C         (         (         ( 
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EXAMPLE 10.15 For the circuit in Fig. 10.72:

a. Find the total capacitance.
b. Determine the charge on each plate.
c. Find the voltage across each capacitor.

Solutions:

a. 
C C C C
1 1 1 1

1
200 10 F

1
50 10 F

1
10 10 F

0.005 10 0.02 10 0.1 10

0.125 10

T 1 2 3

6 6 6

6 6 6

6

= + +

=
×

+
×

+
×

= × + × + ×

= ×

− − −

and µ=
×

=C 8 F1
0.125 10T 6

b. 
µ( )

= = =

= = × =−

Q Q Q Q

C E 480 C(8 10 F) 60 V
T

T

1 2 3

6

c. V
Q
C

2 4 V480 10 C
200 10 F

.1
1

1

6

6
= = ×

×
=

−

−

V
Q
C

9 6 V480 10 C
50 10 F

.2
2

2

6

6
= = ×

×
=

−

−

V
Q
C

48 0 V480 10 C
10 10 F

.3
3

3

6

6
= = ×

×
=

−

−

and E V V V 60 V2.4 V 9.6 V 48 V checks1 2 3 ( )= + + = + + =

 EXAMPLE 10.16 For the network in Fig. 10.73:

a. Find the total capacitance.
b. Determine the charge on each plate.
c. Find the total charge.

Solutions:

a. C C C C 2060 F800 F 60 F 1200 FT 1 2 3 µµ µ µ= + + = + + =

b.  Q C E 38 4 mC(800 10 F)(48 V) .1 1
6= = × =−

 Q C E 2 88 mC(60 10 F)(48 V) .2 2
6= = × =−

Q C E 57 6 mC(1200 10 F)(48 V) .3 3
6= = × =−

c. Q Q Q Q 98 88 mC38.4 mC 2.88 mC 57.6 mC .T 1 2 3= + + = + + =

EXAMPLE 10.17 Find the voltage across and the charge on each 
capacitor for the network in Fig. 10.74.

Solution:

µ

µ µ µ

µ µ
µ µ

µ

( )

′ = + = + =

=
′

+ ′
=

+
=

= = × =−

C C C

C
C C

C C

Q C E 240 C

4 F 2 F 6 F

(3 F)(6 F)
3 F 6 F

2 F

2 10 F)(120 V

T

T
T

T

T T

2 3

1

1

6

E

CT

C2 C3C1

60 V
+

–

200   mF 50   mF 10   mF

FIG. 10.72 
Example 10.15.

800   mF
E

CT
C1 C2 C3

QT

48 V 60   mF 1200   mF

+

–

Q1 Q2 Q3

FIG. 10.73 
Example 10.16.

2   F
E = 120 V

C1

C2 C3
+

– 4   F

3   F

Q2 Q3

Q1

+ –V1

+

–
V2

+

–
V3

CT

FIG. 10.74 
Example 10.17.
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An equivalent circuit (Fig. 10.75) has

Q Q QT T1= = ′

and, therefore, Q 240 C1 µ=

and V
Q
C

Q

80 V240 10 C
3 10 F

240 CT

1
1

1

6

6

µ

= = ×
×

=

′ =

−

−

Therefore, V
Q
C

40 V240 10 C
6 10 FT

T

T

6

6
′ =

′
′

= ×
×

=
−

−

and µ( )= ′ = × =−Q C V 160 C4 10 F)(40 VT2 2
6

µ( )= ′ = × =−Q C V 80 C2 10 F)(40 VT3 3
6

 EXAMPLE 10.18 Find the voltage across and the charge on capaci-
tor C1 in Fig. 10.76 after it has charged up to its final value.

Solution: As previously discussed, the capacitor is effectively an 
open circuit for dc after charging up to its final value (Fig. 10.77).

Therefore,

V 16 V8 24 V
4 8C

( )( )
= Ω

Ω + Ω
=

Q C V 320 C20 10 F)(16 VC1 1
6 µ( )= = × =−

EXAMPLE 10.19 Find the voltage across and the charge on each 
capacitor of the network in Fig. 10.78(a) after each has charged up to its 
final value.

Solution: See Fig. 10.78(b). We have

V 56 V7 72 V
7 2C2

( )( )
= Ω

Ω + Ω
=

V 16 V2 72 V
2 7C1

( )( )
= Ω

Ω + Ω
=

µ( )= = × =−Q C V 32 C2 10 F)(16 VC1 1
6

1

µ( )= = × =−Q C V 168 C3 10 F)(56 VC2 2
6

2

E  =  120 V

C1

C'T

Q1+ –V1

V'

+

–Q'T

Q3
V'

+

–C3

Q2

C2

+

–

3   mF

6   mF
 T

 T

FIG. 10.75 
Reduced equivalent for the network in 

Fig. 10.74.

R1

4 V

E = 24 V C1 = 20 mF
Q1

R2 8 V
+

–
VC

+

–

FIG. 10.76 
Example 10.18.

4 V

E = 24 V 8 V VC

+

–

+

–

FIG. 10.77 
Determining the final (steady-state) value  

for .Cυ

C1 = 2   F

R1

2 V

C2 = 3   F

+

–

+  V1  –

+  V2  –Q1

Q2

E = 72 V R2 7 V R3 8 V

R1

2 V

+  VC1  
–

+  VC2  
–

I  =  0
+

–
R2 7 V R3 8 VE = 72 V

(b)(a)

FIG. 10.78 
Example 10.19.
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10. 12     ENERGY STORED BY A CAPACITOR   
 An ideal capacitor does not dissipate any of the energy supplied to it. It 
stores the energy in the form of an electric field between the conduct-
ing surfaces. A plot of the voltage, current, and power to a capacitor 
during the charging phase is shown in     Fig.    10. 79  . The power curve can 
be obtained by finding the product of the voltage and current at selected 
instants of time and connecting the points obtained.  The energy stored is 
represented by the shaded area under the power curve.  Using calculus, 
we can determine the area under the curve: 

W CE1
2C

2=

 In general,   W CV1
2

JC
2 ( )=         (10. 34)  

 where  V  is the steady-state voltage across the capacitor. In terms of  Q
and  C,

W C Q
C

1
2C

2

( )=

 or   W
Q

C2
JC

2
( )= (10. 35)  

     EXAMPLE   10. 20  For the network in   Fig.    10. 78(a)  , determine the 
energy stored by each capacitor. 

      Solution:   For  C :1

µ( )( )

=

= × = × =− −

W CV

256 J

1
2
1
2

(2 10 F)(16 V) 1 10 256

C
2

6 2 6

 For  C :2

W CV

4704 J

1
2
1
2

(3 10 F)(56 V) 1.5 10 3136

C
2

6 2 6 µ( )( )

=

= × = × =− −

 Due to the squared term, the energy stored increases rapidly with 
increasing voltages.    

10. 13     STRAY CAPACITANCES   
 In addition to the capacitors discussed so far in this chapter, there are 
stray capacitances  that exist not through design but simply because two 
conducting surfaces are relatively close to each other. Two conducting 
wires in the same network have a capacitive effect between them, as 
shown in     Fig.     10. 80(a)  . In electronic circuits, capacitance levels exist 
between conducting surfaces of the transistor, as shown in   Fig.    10. 80(b)  . 

0 t

E

R
E

v, i, p

vC

p = vC iC

iC

        FIG.    10. 79  
 Plotting the power to a capacitive element 

during the transient phase.    

(a)

P P
E C

B Cce

N

(b)

Cbe Cbc

(c)

Conductors

        FIG.    10. 80  
 Examples of stray capacitance.    

 In general,   W CW CV1W C1W C
2CW CCW C 2W C=W C In general,    In general,   

 or   W
Q

C2CWCW
2

= or    or   
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In Chapter  11, we will discuss another element, called the inductor,  
which has capacitive effects between the windings [Fig. 10.80(c)]. Stray 
cap acitances can often lead to serious errors in system design if they are 
not considered carefully.

10.14 APPLICATIONS
This section includes a description of the operation of touch pads and 
line conditioners (surge protectors) that are used in many homes and 
throughout the business world. Additional examples of the use of capac-
itors appear in Chapter 11.

Touch Pad

The touch pad on the computer of Fig. 10.81 is used to control the posi-
tion of the pointer on the computer screen by providing a link between 
the position of a finger on the pad to a position on the screen. There are 
two general approaches to providing this linkage: capacitance sensing 
and conductance sensing. Capacitance sensing depends on the charge 
carried by the human body, while conductance sensing only requires 
that pressure be applied to a particular position on the pad via finger or  
stylus. In other words, the wearing of gloves or using a pencil will not 
work with capacitance sensing but is effective with conductance sensing.

 Matrix Approach

There are two methods commonly employed for capacitance testing. 
One is referred to as the matrix approach, and the other is called the 
capacitive shunt approach. The basic construction of each includes a 
top plate of glass with a conductive coating. There is then a second glass 
sheet with capacitive elements embedded that is glued to the top plate of 
glass. This way if the top plate of glass is broken for some reason, the 
unit will continue to operate properly. Glass is used because it is easy to 
clean, permits being precise and does not hold on to elements that could 
affect the capacitance level at a particular point. The matrix approach 
requires two sets of parallel conductors separated by a dielectric and 
perpendicular to each other as shown in Fig. 10.82. Two sets of perpen-
dicular wires are required to permit the determination of the location of 
the point on the two-dimensional plane—one for the horizontal displace-
ment and the other for the vertical displacement. The result when look-
ing down at the pad is a two-dimensional grid with intersecting points or 
nodes. Its operation requires the application of a high-frequency signal 
that will permit the monitoring of the capacitance between each set of 
wires at each intersection as shown in Fig. 10.82 using integrated cir-
cuits (ICs) connected to each set of wires. When a finger approaches 
a particular intersection the charge on the finger will change the field 
distribution at that point by drawing some of the field lines away from 
the intersection. Some like to think of the finger as applying a virtual 
ground to the point as shown in the figure. Recall from the discussion 
in Section  10.3 that any change in electric field strength for a fixed  
capacitor (such as the insertion of a dielectric between the plates of a  
capacitor) will change the charge on the plates and the level of capacitance  
determined by C Q V/ .=  The change in capacitance at the intersection 
will be noted by the ICs. That change in capacitance can then be trans-
lated by a capacitance to digital converter (CDC) and used to define 

Laptop
touch pad

FIG. 10.81 
Laptop touch pad.
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the location on the screen. Recent experiments have found that this type 
of sensing is most effective with a soft, delicate touch on the pad rather 
than hard, firm pressure.

Capacitive Shunt Approach

The capacitive shunt approach takes a totally different approach. Rather 
than establish a grid, a sensor is used to detect changes in capacitive 
levels. The basic construction for an analog device appears in Fig. 10.83. 
The sensor has a transmitter and a receiver, both of which are formed on 
separate printed circuit board (PCB) platforms. When the excitation sig-
nal of 250 kHz is applied to the transmitter platform, an electric field is 
established between the transmitter and receiver, with a strong fringing 
effect on the surface of the sensor. If a finger with its negative charge 
is brought close to the transmitter surface, it will distort the fringing 

Conductors under
dielectric

Dielectric

High-frequency signal
sequentially applied to
conductors on top of
dielectric

%

Conductors
above dielectric

C

As each grid wire on the top is energized, an IC 
sensor scans all the perpendicular wires in the bottom 
of the structure to determine the location of the 
change in capacitance.

FIG. 10.82 
Matrix approach to capacitive sensing in a touch pad.
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Change in capacitance

level

Change charge at
point of contact

Fringing
effect

CIN

%

FIG. 10.83 
Capacitive shunt approach.
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effect by attracting some of the electric field as shown in the figure. The 
resulting change in total field strength will affect the charge level on the 
plates of the sensor and therefore the capacitance between the transmit-
ter and receiver. This will be detected by the sensor and provide either 
the horizontal or vertical position of the contact. The resultant change in 
capacitance is only in the order of femtofarads (10 )15− , as compared to 
the picofarads for the sensor, but is still sufficient to be detected by the 
sensor. The change in capacitance is picked up by a 16-bit ∑ ∆-  capac-
itor to digital convertor (CDC) and the results fed into the controller for 
the system to which the sensor is connected. The term shunt comes from 
the fact that some of the electric field is “shunted” away from the sensor. 
The sensors themselves can be made of many different shapes and sizes. 
For applications such as the circular button for an elevator, the circular 
pattern of Fig. 10.84(a) may be applied, while for a slide control, it may 
appear as shown in Fig. 10.84(b). In each case the excitation is applied 
to the red lines and regions and the capacitance level measured by the 
C IN blue lines and regions. In other words, a field is established between 
the red and blue lines throughout the pattern, and touching the pads in 
any area will reveal a change in capacitance. For a  computer touch pad 
the number of C IN inputs required is one per row and one per column to 
provide the location in a two-dimensional space.

Source

Region of
Fig. 10.79

Source

(b)(a)

CIN

CIN

CIN CIN CIN CIN CIN CIN CIN

FIG. 10.84 
Capacitive shunt sensors: (a) bottom, (b) slice.

Conductance Sensing

The last method to be described is the conductance-sensing approach. 
Basically, it employs two thin metallic conducting surfaces separated by 
a very thin space. The top surface is usually flexible, while the bottom 
is fixed and coated with a layer of small conductive nipples. When the 
top surface is touched, it drops down and touches a nipple, causing the 
conductance between the two surfaces to increase dramatically in that 
one location. This change in conductance is then picked up by the ICs 
on each side of the grid and the location determined for use in setting the 
position on the screen of the computer. This type of mouse pad permits 
the use of a pen, pencil, or other nonconductive instrument to set the 
location on the screen, which is useful in situations in which one may 
have to wear gloves continually or need to use nonconductive pointing 
devices because of environmental concerns.

Surge Protector (Line Conditioner or Power Strip)

In recent years we have all become familiar with the surge protector as 
a safety measure for our computers, TVs, DVD players, and other sensi-
tive instrumentation. In addition to protecting equipment from unexpected 
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surges in voltage and current, most quality units also filter out (remove) 
electromagnetic interference (EMI) and radio-frequency interference 
(RFI). EMI encompasses any unwanted disturbances down the power line 
established by any combination of electromagnetic effects such as those 
generated by motors on the line, power equipment in the area emitting 
signals picked up by the power line acting as an antenna, and so on. RFI 
includes all signals in the air in the audio range and beyond that may also 
be picked up by power lines inside or outside the house.

The unit in Fig. 10.85 has all the design features expected in a good 
line conditioner. Figure 10.85 reveals that it can handle the power drawn  
by six outlets and that it is set up for FAX/MODEM protection. Also 
note that it has both LED (light-emitting diode) displays, which  
reveal whether there is fault on the line or whether the line is OK, and an  
external circuit breaker to reset the system. In addition, when the surge 
protector is on, a red light is visible at the power switch.

The schematic in Fig.  10.86 does not include all the details of the 
design, but it does include the major components that appear in most 
good line conditioners. First note in the photograph in Fig. 10.87 that the 
outlets are all connected in parallel, with a ground bar used to establish 
a ground connection for each outlet. The circuit board had to be flipped 
over to show the components, so it will take some adjustment to relate 
the position of the elements on the board to the casing. The feed line or 
hot lead wire (black in the actual unit) is connected directly from the line 
to the circuit breaker. The other end of the circuit breaker is connected 
to the other side of the circuit board. All the large discs that you see  

FIG. 10.85 
Surge protector: general appearance.
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FIG. 10.86 
Electrical schematic.
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are 2 nF capacitors [not all have been included in Fig 10.87 for clarity].  
There are quite a few capacitors to handle all the possibilities. For  
instance, there are capacitors from line to return (black wire to white wire),  
from line to ground (black to green), and from return to ground (white to 
ground). Each has two functions. The first and most obvious function is 
to prevent any spikes in voltage that may come down the line because of 
external effects such as lightning from reaching the equipment plugged 
into the unit. Recall from this chapter that the voltage across capacitors 
cannot change instantaneously and, in fact, acts to squelch any rapid 
change in voltage across its terminals. The capacitor, therefore, prevents 
the line to neutral voltage from changing too quickly, and any spike that 
tries to come down the line has to find another point in the feed circuit to 
fall across. In this way, the appliances plugged into the surge protector 
are well protected.

The second function requires some knowledge of the reaction of  
capacitors to different frequencies and is discussed in more detail in later 
chapters. For the moment, let it suffice to say that the capacitor has a dif-
ferent impedance to different frequencies, thereby preventing undesired 
frequencies, such as those associated with EMI and RFI disturbances, 
from affecting the operation of units connected to the line conditioner. 
The rectangular-shaped capacitor of 1 Fµ  near the center of the board is 
connected directly across the line to take the brunt of a strong voltage 
spike down the line. Its larger size is clear evidence that it is designed 
to absorb a fairly high energy level that may be established by a large 
voltage—significant current over a period of time that may exceed a few 
milliseconds.

The large, toroidal-shaped structure in the center of the circuit board 
in Fig. 10.87 has two coils (Chapter 11) of 228 Hµ  that appear in the 
line and neutral in Fig.  10.86. Their purpose, like that of the capaci-
tors, is twofold: to block spikes in current from coming down the line 
and to block unwanted EMI and RFI frequencies from getting to the 

“Feed”

2 nF
capacitors

Reset
button

Parallel connection of
outlets

Circuit breaker

MOV

1 mF capacitor

LEDs

228 mH coils

Ground bar

Ground

“Return”

FIG. 10.87 
Internal construction of surge protector.
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connected systems. In the next chapter you will find that coils act as 
“chokes” to quick changes in current; that is, the current through a coil 
cannot change instantaneously. For increasing frequencies, such as 
those associated with EMI and RFI disturbances, the reactance of a coil  
increases and absorbs the undesired signal rather than let it pass down 
the line. Using a choke in both the line and the neutral makes the condi-
tioner network balanced to ground. In total, capacitors in a line condi-
tioner have the effect of bypassing the disturbances, whereas inductors 
block the disturbance.

The smaller disc (blue) between two capacitors and near the circuit 
breaker is an MOV (metal-oxide varistor), which is the heart of most 
line conditioners. It is an electronic device whose terminal characteris-
tics change with the voltage applied across its terminals. For the normal 
range of voltages down the line, its terminal resistance is sufficiently 
large to be considered an open circuit, and its presence can be ignored. 
However, if the voltage is too large, its terminal characteristics change 
from a very large resistance to a very small resistance that can essen-
tially be considered a short circuit. This variation in resistance with  
applied voltage is the reason for the name varistor. For MOVs in North 
America, where the line voltage is 120 V, the MOVs are 180 V or more. 
The reason for the 60 V difference is that the 120 V rating is an effective 
value related to dc voltage levels, whereas the waveform for the voltage 
at any 120 V outlet has a peak value of about 170 V. A great deal more 
will be said about this topic in Chapter 13.

Taking a look at the symbol for an MOV in Fig. 10.87, note that it 
has an arrow in each direction, revealing that the MOV is bidirectional 
and blocks voltages with either polarity. In general, therefore, for normal 
operating conditions, the presence of the MOV can be ignored, but if a 
large spike should appear down the line, exceeding the MOV rating, it 
acts as a short across the line to protect the connected circuitry. It is a 
significant improvement to simply putting a fuse in the line because it 
is voltage sensitive, can react much quicker than a fuse, and displays 
its low-resistance characteristics for only a short period of time. When 
the spike has passed, it returns to its normal open-circuit characteristic. 
If you’re wondering where the spike goes if the load is protected by a 
short circuit, remember that all sources of disturbance, such as lightning, 
generators, inductive motors (such as in air conditioners, dishwashers, 
power saws, and so on), have their own “source resistance,” and there is 
always some resistance down the line to absorb the disturbance.

Most line conditioners, as part of their advertising, mention their energy 
absorption level. The rating of the unit in Fig. 10.85 is 1200 J, which is actually 
higher than most. Remembering that W Pt EIt= =  from the earlier dis-
cussion of cameras, we now realize that if a 5000 V spike occurred, we would 
be left with the product = = =It W E/ 1200 J/5000 V 240 mAs. 
Assuming a linear relationship between all quantities, the rated  
energy level reveals that a current of 100 A could be sustained for 
t 240 mAs/100 A 2.4 ms,= =  a current of 1000 A for 240 s,µ  and a 
current of 10,000 A for 24 s.µ  Obviously, the higher the power product of E 
and I, the less is the time element.

The technical specifications of the unit in Fig.  10.85 include an  
instantaneous response time in the order of picoseconds, with a phone 
line protection of 5 ns. The unit is rated to dissipate surges up to 6000 V 
and current spikes up to 96,000 A. It has a very high noise suppression 
ratio (80 dB; see Chapter 22) at frequencies from 50 kHz to 1000 MHz, 
and (a credit to the company) it has a lifetime warranty.
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d. A dielectric is inserted with a relative permittivity of 4, 
and the area is reduced to 1/3 and the distance to 1/4 of 
their original dimensions.

 *13. Find the maximum voltage that can be applied across a par-
allel plate capacitor of 8700 pF if the area of one plate is 
0.03 m 2 and the dielectric is mica. Assume a linear rela-
tionship between the dielectric strength and the thickness of 
the dielectric.

  *14. Find the distance in micrometers between the plates of a 
parallel plate mica capacitor if the maximum voltage that 
can be applied across the capacitor is 1200 V. Assume a lin-
ear relationship between the breakdown strength and the 
thickness of the dielectric.

 15. A 22 Fµ  capacitor has 200 ppm/ C− °  at room temperature 
of 20 C.°  What is the capacitance if the temperature 
increases to 100 C,°  the boiling point of water?

 16. What is the capacitance of a small teardrop capacitor 
labeled 60 J? What is the range of expected values as estab-
lished by the tolerance?

 17. A large, flat, mica capacitor is labeled 671F. What are the 
capacitance and the expected range of values guaranteed by 
the manufacturer?

 18. A small, flat, disc ceramic capacitor is labeled 282K. What 
are the capacitance level and the expected range of values?

SECTION 10.5  Transients in Capacitive Networks: 
The Charging Phase

 19. For the circuit in Fig. 10.88, composed of standard values:
a. Determine the time constant of the circuit.
b. Write the mathematical equation for the voltage Cυ  fol-

lowing the closing of the switch.
c. Determine the voltage Cυ  after one, three, and five time 

constants.
d. Write the equations for the current iC  and the voltage .Rυ
e. Sketch the waveforms for Cυ  and i .C

 PROBLEMS

SECTION 10.2  The Electric Field

1. a. Find the electric field strength at a point 1 m from a 
charge of µ4 C.

b. Find the electric field strength at a point 1 mm [1/1000 
the distance of part (a)] from the same charge as part (a) 
and compare results.

 2. The electric field strength is 96 newtons/coulomb (N/C) at a 
point r meters from a charge of 3 C.µ  Find the distance r.

SECTIONS 10.3 AND 10.4  Capacitance and Capacitors

 3. Find the capacitance of a parallel plate capacitor if 1700 Cµ  
of charge are deposited on its plates when 34 V are applied 
across the plates.

 4. How much charge is deposited on the plates of a 0.25 Fµ  
capacitor if 220 V are applied across the capacitor?

5. a. Find the electric field strength between the plates of a 
parallel plate capacitor if 500 mV are applied across the 
plates and the plates are 1 inch apart.

b. Repeat part (a) if the distance between the plates is 
1/100 inch.

c. Compare the results of parts (a) and (b). Is the difference 
in field strength significant?

 6. A 9.8 Fµ  parallel plate capacitor has 180 Cµ  of charge on 
its plates. If the plates are 3 mm apart, find the electric field 
strength between the plates.

 7. Find the capacitance of a parallel plate capacitor if the area 
of each plate is 0.2 m 2 and the distance between the plates 
is 0.2 inch. The dielectric is air.

 8. Repeat Problem 7 if the dielectric is paraffin-coated paper.

 9. Find the distance in mils between the plates of a 2.5 Fµ  
capacitor if the area of each plate is 0.18 m 2 and the dielec-
tric is transformer oil.

 10. The capacitance of a capacitor with a dielectric of air is 
1460 pF. When a dielectric is inserted between the plates, 
the capacitance increases to 7.3 nF. Of what material is the 
dielectric made?

 11. The plates of a parallel plate capacitor with a dielectric of 
Porcelain are 0.8 mm apart and have an area of 0.04 m ,2  
and 70 V are applied across the plates.
a. Determine the capacitance.
b. Find the electric field intensity between the plates.
c. Find the charge on each plate.

 12. A parallel plate air capacitor has a capacitance of µ4.7 F. 
Find the new capacitance if:
a. The distance between the plates is doubled (everything 

else remains the same).
b. The area of the plates is doubled (everything else 

remains the same as for the 4.7 Fµ  level).
c. A dielectric with a relative permittivity of 20 is inserted 

between the plates (everything else remains the same as 
for the 4.7 Fµ  level).

10 mF 

R

10 kV

E 20 V C

iC

vC

+ –vR +

–

+

–

FIG. 10.88 
Problems 19 and 20.

 20. Repeat Problem 19 for R 100 k ,= Ω  and compare the 
results.

 21. For the circuit in Fig. 10.89, composed of standard values:
a. Determine the time constant of the circuit.
b. Write the mathematical equation for the voltage Cυ  fol-

lowing the closing of the switch.
c. Determine Cυ  after one, three, and five time constants.
d. Write the equations for the current iC  and the voltage .R2

υ
e. Sketch the waveforms for Cυ  and i .C
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d. Determine the mathematical expression for the voltage 

Cυ  and the current iC  for the discharge phase.
e. Plot the waveforms of Cυ  and iC  for a period of time 

extending from 0 to 2 s from when the switch was 
thrown into position 1.

 *22. For the circuit in Fig. 10.90, composed of standard values:
a. Determine the time constant of the circuit.
b. Write the mathematical equation for the voltage Cυ  fol-

lowing the closing of the switch.
c. Write the mathematical expression for the current iC  

following the closing of the switch.
d. Sketch the waveforms of Cυ  and i .C

R2

3.3 kV

E 100 V C

iC

vC

+– vR2

+

–

R1

2.2 kV

1   F
+

–

FIG. 10.89 
Problem 21.

68 kV 22 kV

(t = 0 s)
80 V 30 V

+ vC –

18 mFiC

FIG. 10.90 
Problem 22.

 23. Given the voltage e20 V(1 ):C
t / 200 sυ = − µ−

a. What is the time constant?
b. What is the voltage at t 100 s?µ=
c. What is the voltage at t 2 ms?=

 24. The voltage across a 10 Fµ  capacitor in a series R-C circuit 
is e40 mV(1 ).C

t / 20 msυ = − −

a. On a practical basis, how much time must pass before 
the charging phase has passed?

b. What is the resistance of the circuit?
c. What is the voltage at t 20 ms?=
d. What is the voltage at 10 time constants?
e.  Under steady-state conditions, how much charge is on 

the plates?
f. If the leakage resistance is 1000 M ,Ω  how long will it 

take (in hours) for the capacitor to discharge if we 
assume that the discharge rate is constant throughout the 
discharge period?

SECTION 10.6  Transients in Capacitive Networks: 
The Discharging Phase

 25. For the R-C circuit in Fig. 10.91, composed of standard values:
a. Determine the time constant of the circuit when the 

switch is thrown into position 1.
b. Find the mathematical expression for the voltage across 

the capacitor and the current after the switch is thrown 
into position 1.

c. Determine the magnitude of the voltage Cυ  and the cur-
rent iC  the instant the switch is thrown into position 2 at 
t 1 s.=

R vRE 22 V

1

2

iC

C
vC

+

–

+

–

+ –

4.7 kV

56 mF

FIG. 10.91 
Problem 25.

2 mF

R2 2 kV

C

iC

R1

3 kV 1

2 3

+ vC –

+

–
30 V

FIG. 10.92 
Problem 26.

 26. For the network in Fig. 10.92, composed of standard values:
a. Write the mathematical expressions for the voltages Cυ , 

and R1
υ  and the current iC  after the switch is thrown 

into position 1.
b. Find the values of Cυ , R1

υ , and iC  when the switch is 
moved to position 2 at t 100 ms.=

c. Write the mathematical expressions for the voltages Cυ  
and R2
υ  and the current iC  if the switch is moved to 

position 3 at t 200 ms.=
d. Plot the waveforms of Cυ , υ ,R2

 and iC  for the time 
period extending from 0 to 300 ms.

 *27. For the network in Fig. 10.93, composed of standard values:
a. Find the mathematical expressions for the voltage Cυ  

and the current iC  when the switch is thrown into posi-
tion 1.

b. Find the mathematical expressions for the voltage Cυ  
and the current iC  if the switch is thrown into position 2 
at a time equal to five time constants of the charging 
circuit.

c. Plot the waveforms of Cυ  and iC  for a period of time 
extending from 0 to 100 s.µ
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 28. The 2000 Fµ  capacitor in Fig. 10.94 is charged to 18 V in an 
automobile. To discharge the capacitor before further use, a 
wire with a resistance of 2 mΩ is placed across the capacitor.
a. How long will it take to discharge the capacitor?
b. What is the peak value of the current?
c. Based on the answer to part (b), is a spark expected 

when contact is made with both ends of the capacitor?

40 V 1 2

47 pF

iC

vC

+

–

270 kV120 kV

FIG. 10.93 
Problem 27.

18 V
+ –

C = 2000 mF   

FIG. 10.94 
Problem 28.

iC

R1

4.7 kV

vC

+

–
E 40 V

+

–
C 6 V

+

–
4.7 mF

 FIG. 10.95 
Problem 29.

iC R1 R2

1 kV 2.2 kV

+ –vC

+– vR2

+  20 V  –

180 mFC = 

FIG. 10.96 
Problem 32.

R

820 V 3300 pF

–20 V

10 V

CiC

+ –

– +

vC

FIG. 10.97 
Problem 33.

–20 V
R1

10 kV

40 V
R2

8.2 kV

C

8 V– +

vC+ –

iC

6.8 F

FIG. 10.98 
Problem 34.

20 mF 47 mF 56 kV

+
  vC
–

+–
18 V

FIG. 10.99 
Problem 35.

SECTION 10.7  Initial Conditions

 29. The capacitor in Fig. 10.95 is initially charged to 6 V with 
the polarity shown.
a. Write the expression for the voltage Cυ  after the switch 

is closed.
b. Write the expression for the current iC  after the switch 

is closed.
c. Plot the results of parts (a) and (b).

*30. Repeat Problem 29 if the initial charge is 40 V.−

*31. Repeat Problem 29 if the initial charge is 40 V.+

 32. The capacitor in Fig.  10.96 is initially charged to 20 V 
before the switch is closed. Write the expressions for the 
voltages Cυ  and R2

υ  and the current iC  following the clos-
ing of the switch. Plot the resulting waveforms.

*33. The capacitor in Fig. 10.97 is initially charged to 10 V with 
the polarity shown. Write the expressions for the voltage Cυ  
and the current iC  following the closing of the switch. Plot 
the resulting waveforms.

*34. The capacitor in Fig. 10.98 is initially charged to 8 V with 
the polarity shown.
a. Find the mathematical expressions for the voltage Cυ  

and the current iC  when the switch is closed.
b. Sketch the waveforms of Cυ  and i .C

 35. The capacitors of Fig. 10.99 are initially uncharged.
a. Sketch the waveform for Cυ  after the switch is closed.
b. Find the voltage Cυ  when t 10 s.=
c. At t 5 ,τ=  find the charge on each capacitor.

 36. Repeat Problem 35 if a 10 kΩ  resistor is placed in parallel 
with the capacitors.
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SECTION 10.8  Instantaneous Values

 37. Given the expression e120 mV(1 )C
t / 4 msυ = − −

a. Determine Cυ  at t 2 ms.=
b. Determine Cυ  at t 14 ms.=
c. Find the time t for Cυ  to reach 90 mV.
d. Find the time t for Cυ  to reach 118 mV.

 38. For the automobile circuit of Fig. 10.100, VL must be 10 V 
before the system is activated. If the switch is closed at 
t 0 s,=  how long will it take for the system to be acti-
vated?

20 VE

(t  =  0 s)

C
System

R  =  ` V

VL  =  15 V to turn on
+

–

R

800 mF   

FIG. 10.101 
Problem 39.

R2

12 k�

R1

iC

E 60 V C vC

+

–

+

–

8.2 kV

6.8 mF

FIG. 10.102 
Problem 40.

+

C

E 60 V

iC

DMM

V

+ –

+

–

vC

0.2    mF

FIG. 10.103 
Problem 41.

R2 24 kV

R1

8 kV

R3 4 kV20 VE

C
+  vC  –

 iC

–

+

15 mF

FIG. 10.104 
Problem 42.

iC

R2

1.5 kV

+

–
CvC

+

–
10 VR1 6.8 kVI = 4 mA 2.2    mF

FIG. 10.105 
Problem 43.

R 44 kV

15 VE

(t  =  0 s)

C
System

R  = ` V VL

+

–

+

–
30 mF

FIG. 10.100 
Problem 38.

*39. Design the network in Fig. 10.101 such that the system 
turns on 12 s after the switch is closed.

 40. For the circuit in Fig. 10.102:
a. Find the time required for Cυ  to reach 48 V following 

the closing of the switch.
b.  Calculate the current iC  at the instant 48 V.Cυ =
c. Determine the power delivered by the source at the 

instant t 2 .τ=

 41. For the system in Fig. 10.103, using a DMM with a 10 MΩ 
internal resistance in the voltmeter mode:
a. Determine the voltmeter reading one time constant after 

the switch is closed.
b. Find the current iC  two time constants after the switch is 

closed.
c. Calculate the time that must pass after the closing of the 

switch for the voltage Cυ  to be 50 V.

SECTION 10.9  Thévenin Equivalent: R CThτ =

 42. For the circuit in Fig. 10.104:
a. Find the mathematical expressions for the transient 

behavior of the voltage Cυ  and the current iC  following 
the closing of the switch.

b. Sketch the waveforms of Cυ  and i .C

 43. The capacitor in Fig. 10.105 is initially charged to 10 V 
with the polarity shown.
a. Write the mathematical expressions for the voltage Cυ  

and the current iC  when the switch is closed.
b. Sketch the waveforms of Cυ  and i .C
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472 | | | CapaCitors

 44. The capacitors in Fig. 10.106 are initially charged to 12 V 
with the polarity shown.
a. Write the mathematical expressions for the voltage Cυ  

and the current iC  when the switch is closed.
b. Sketch the waveforms of Cυ  and i .C

iCR2

3.9 kV

CvC

+

–

+

–
12 VR1 1.8 kV

E 36 V
+

–

12    mF 6    mF

FIG. 10.106 
Problem 44.

R1

0.56 kV

R2

3.9 kV

R3

6.8 kV

iC
C

vC

+

–

+ 4 V

5 mA

20 mF

FIG. 10.107 
Problem 45.

+20 V2 kV 6.8 kV C

8 V– +

vC+ –

iC 39 mF

–4 V

FIG. 10.108 
Problem 46.

3 MV

CE 24 V

iC

R

+
V

+

–
1 mF

FIG. 10.109 
Problem 47.

vC  (V)

20

10

1 2 3 4 5 6 7 8 9 10 11 12 t  (ms)0

FIG. 10.110 
Problem 48.

–5

10 20 30 40 50 80 90 100 t (ms)0

+5

vC  (V)

60 70

FIG. 10.111 
Problem 49.

iC

0 4 t  (ms)

–40 mA

–80 mA

+40 mA

16 20 256

FIG. 10.112 
Problem 50.

 45. For the circuit in Fig. 10.107:
a. Find the mathematical expressions for the transient 

behavior of the voltage Cυ  and the current iC  following 
the closing of the switch.

b. Sketch the waveforms of Cυ  and i .C

*46. The capacitor in Fig. 10.108 is initially charged to 8 V with 
the polarity shown.
a. Write the mathematical expressions for the voltage Cυ  

and the current iC  when the switch is closed.
b. Sketch the waveforms of Cυ  and i .C

*47. For the system in Fig. 10.109, using a DMM with a 12 MΩ 
internal resistance in the voltmeter mode:
a. Determine the voltmeter reading four time constants 

after the switch is closed.
b. Find the time that must pass before iC  drops to 4 A.µ
c.  Find the time that must pass after the closing of the 

switch for the voltage across the meter to reach 15 V.

SECTION 10.10  The Current iC

 48. Find the waveform for the average current if the voltage 
across the 2 Fµ  capacitor is as shown in Fig. 10.110.

 49. Find the waveform for the average current if the voltage 
across the 4.7 Fµ  capacitor is as shown in Fig. 10.111.

 50. Given the waveform in Fig.  10.112 for the current of a 
20 Fµ  capacitor, sketch the waveform of the voltage Cυ  
across the capacitor if 0 VCυ =  at t 0 s.=

M10_BOYL0302_14_GE_C10.indd   472M10_BOYL0302_14_GE_C10.indd   472 28/02/23   1:02 PM28/02/23   1:02 PM



proBleMs | | | 473

SECTION 10.11  Capacitors in Series and in Parallel

 51. Find the total capacitance CT  for the network in Fig. 10.113.

C1

C3

C2

470 mF

200 mF360 mF

–50 V

+20 V

FIG. 10.116 
Problem 54.

330 mF

100 mF

220

30 V

mF

10 kV
C1

C3

C2

FIG. 10.117 
Problem 55.

48 V

2 kV

C2C1 4 kV
+

– 0.04 mF 0.08 mF

FIG. 10.118 
Problem 56.

200 mF

mF

–12 V 2.2 kV

1.2 kV
100

3.3 kV

FIG. 10.119 
Problem 59.

CT

6  mF

5    mF
15   mF8    mF

FIG. 10.113 
Problem 51.

CT

8 mF

8 mF

8 mF

12 mF 12 mF

FIG. 10.114 
Problem 52.

2 kV

20 V+

10 V–

100 mF

20 mF 10 mF

FIG. 10.115 
Problem 53.

 52. Find the total capacitance CT  for the network in Fig. 10.114.

 53. Find the steady-state voltage across and the charge on each 
capacitor for the circuit in Fig. 10.115.

 54. Find the steady-state voltage across and the charge on each 
capacitor for the circuit in Fig. 10.116.

 55. For the configuration in Fig. 10.117, determine the steady-
state voltage across each capacitor and the charge on each 
capacitor under steady-state conditions.

 56. For the configuration in Fig. 10.118, determine the steady-
state voltage across each capacitor and the charge on each 
capacitor.

SECTION 10.12  Energy Stored by a Capacitor

 57. Find the energy stored by a 140 pF capacitor with 20 V 
across its plates.

 58. If the energy stored by an 8 Fµ  capacitor is 1500 J, find the 
charge Q on each plate of the capacitor.

*59. For the network in Fig. 10.119, determine the energy stored 
by each capacitor under steady-state conditions.

*60. An electronic flashgun has a 1500 Fµ  capacitor that is 
charged to 120 V.
a. How much energy is stored by the capacitor?
b. What is the charge on the capacitor?
c. When the photographer takes a picture, the flash fires 

for 1/2500 s. What is the average current through the 
flashtube?

d. Find the average power delivered to the flashtube.
e. After a picture is taken, the capacitor has to be recharged 

by a power supply that delivers a maximum current of 
12 mA. How long will it take to charge the capacitor?
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Initial value The steady-state voltage across a capacitor before a 
transient period begins.

Leakage current The current that results in the total discharge of 
a capacitor if the capacitor is disconnected from the charging 
network for a sufficient length of time.

Maximum working voltage That voltage level at which a  
capacitor can perform its function without concern about 
breakdown or change in characteristics.

Permittivity A measure of how well a dielectric permits the  
establishment of flux lines within the dielectric.

Relative permittivity The permittivity of a material compared 
to that of air.

Steady-state region A period of time defined by the fact that 
the voltage across a capacitor has reached a level that, for all 
practical purposes, remains constant.

Stray capacitance Capacitances that exist not through design 
but simply because two conducting surfaces are relatively 
close to each other.

Temperature coefficient (ppm) An indication of how much the 
capacitance value of a capacitor will change with change in 
temperature.

Time constant A period of time defined by the parameters of the 
network that defines how long the transient behavior of the 
voltage or current of a capacitor will last.

Transient period That period of time where the voltage across a 
capacitor or the current of a capacitor will change in value at a 
rate determined by the time constant of the network.

 GLOSSARY

Average current The current defined by a linear (straight-line) 
change in voltage across a capacitor for a specific period of time.

Breakdown voltage Another term for dielectric strength, listed 
below.

Capacitance A measure of a capacitor’s ability to store charge; 
measured in farads (F).

Capacitor A fundamental electrical element having two con-
ducting surfaces separated by an insulating material and hav-
ing the capacity to store charge on its plates.

Coulomb’s law An equation relating the force between two like 
or unlike charges.

Derivative The instantaneous change in a quantity at a particular 
instant in time.

Dielectric The insulating material between the plates of a capac-
itor that can have a pronounced effect on the charge stored on 
the plates of a capacitor.

Dielectric constant Another term for relative permittivity, listed 
below.

Dielectric strength An indication of the voltage required for 
unit length to establish conduction in a dielectric.

Electric field strength The force acting on a unit positive charge 
in the region of interest.

Electric flux lines Lines drawn to indicate the strength and  
direction of an electric field in a particular region.

Fringing An effect established by flux lines that do not pass  
directly from one conducting surface to another.
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11  Inductors

 11.1 INTRODUCTION
Three basic components appear in the majority of electrical/electronic systems in use today. 
They include the resistor and the capacitor, and the inductor, to be examined in detail in this 
chapter. In many ways, the inductor is the dual of the capacitor; that is, the voltage of one is 
applicable to the current of the other, and vice versa. In fact, some sections in this chapter 
parallel those in Chapter 10 on the capacitor. Like the capacitor,

the inductor exhibits its true characteristics only when a change in voltage or 
current is made in the network

Recall from Chapter 10 that a capacitor can be replaced by an open-circuit equivalent 
under steady-state conditions. You will see in this chapter that an inductor can be replaced by a 
short-circuit equivalent under steady-state conditions. Finally, you will learn that while resistors 
dissipate the power delivered to them in the form of heat, ideal capacitors store the energy deliv-
ered to them in the form of an electric field. Inductors, in the ideal sense, are like capacitors in 
that they also store the energy delivered to them—but in the form of a magnetic field.

11.2 MAGNETIC FIELD
Magnetism plays an integral part in almost every electrical device used today in industry, 
research, or the home. Generators, motors, relays, transformers, circuit breakers, televisions, 
computers, tape recorders, and telephones all employ magnetic effects to perform a variety of 
important tasks.

The compass, used by Chinese sailors as early as the second century a.d., relies on a 
 permanent magnet for indicating direction. A permanent magnet is made of a material, such 
as steel or iron, that remains magnetized for long periods of time without the need for an 
 external source of energy.

In 1820, the Danish physicist Hans Christian Oersted discovered that the needle of a com-
pass deflects if brought near a current-carrying conductor. This was the first demonstration that 
electricity and magnetism were related. In the same year, the French physicist André-Marie 

•  Become familiar with the basic construction of a 
variety of inductors and the factors that affect the 
inductance level.

• Become aware of the magnetic flux pattern for a 
variety of electrical devices employing magnetism.

• Be able to read the labeling on inductive elements 
and measure the inductance using a Universal LCR 
meter.

• Be able to determine the transient (time varying) 
response of an inductive network to an applied dc 
level and plot the resulting voltages and currents.

• Learn how to connect inductors in series and 
parallel and how to determine the total inductance.

 Objectives
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Ampère performed experiments in this area and developed what is 
presently known as Ampère’s circuital law. In subsequent years, oth-
ers, such as Michael Faraday, Karl Friedrich Gauss, and James Clerk 
Maxwell, continued to  experiment in this area and developed many of 
the basic concepts of  electromagnetism— magnetic effects induced by 
the flow of charge, or current.

A magnetic field exists in the region surrounding a permanent mag-
net, which can be represented by magnetic flux lines similar to electric 
field lines. Magnetic flux lines, however, do not have origins or termi-
nating points as do electric field lines but exist in continuous loops, as 
shown in Fig. 11.1.

The magnetic flux lines always travel from the north pole to the south pole, 
returning to the north pole through the metallic bar. Note the equal  spacing 
between the flux lines within the core and the symmetric distribution out-
side the magnetic material. These are additional properties of magnetic flux 
lines in homogeneous materials (that is, materials having uniform structure 
or composition throughout). It is also important to realize that the continuous 
magnetic flux line will strive to occupy as small an area as possible. This 
results in magnetic flux lines of minimum length between the unlike poles, 
as shown in Fig. 11.2. The strength of a magnetic field in a particular region 
is directly related to the density of flux lines in that region. In Fig. 11.1, for 
example, the magnetic field strength at point a is twice that at point b since 
twice as many magnetic flux lines are associated with the perpendicular 
plane at point a than at point b. Recall from childhood experiments that the 
strength of permanent magnets is always stronger near the poles.

If unlike poles of two permanent magnets are brought together, the 
magnets attract, and the flux distribution is as shown in Fig. 11.2. If like 
poles are brought together, the magnets repel, and the flux distribution is 
as shown in Fig. 11.3.

If a nonmagnetic material, such as glass or copper, is placed in the 
flux paths surrounding a permanent magnet, an almost unnoticeable 
change occurs in the flux distribution (Fig. 11.4). However, if a mag-
netic material, such as soft iron, is placed in the flux path, the flux lines 
pass through the soft iron rather than the surrounding air because flux 
lines pass with greater ease through magnetic materials than through 
air. This principle is used in shielding sensitive electrical elements and  
instruments that can be affected by stray magnetic fields (Fig. 11.5).

Same area b

a S N

Flux lines

F

FIG. 11.1 
Flux distribution for a permanent magnet.

N S N S

FIG. 11.2 
Flux distribution for two adjacent, opposite 

poles.

S N N S

FIG. 11.3 
Flux distribution for two adjacent, like poles.

N

Soft iron

S

Flux lines

Glass

 FIG. 11.4 
Effect of a ferromagnetic sample on the flux 

distribution of a permanent magnet.

Sensitive
instrument

Soft iron

FIG. 11.5 
Effect of a magnetic shield 

on the flux distribution.

Conductor
Magnetic flux lines

I

FIG. 11.6 
Magnetic flux lines around a 
current-carrying conductor.

A magnetic field (represented by concentric magnetic flux lines, as in 
Fig. 11.6) is present around every wire that carries an electric current. The 
direction of the magnetic flux lines can be found simply by placing the 
thumb of the right hand in the direction of conventional current flow and 
noting the direction of the fingers. (This method is commonly called the 
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right-hand rule.) If the conductor is wound in a single-turn coil (Fig. 11.7), 
the resulting flux flows in a common direction through the center of the 
coil. A coil of more than one turn produces a magnetic field that exists in a 
continuous path through and around the coil (Fig. 11.8).

The flux distribution of the coil is quite similar to that of the permanent 
magnet. The flux lines leaving the coil from the left and entering to the right 
simulate a north and a south pole, respectively. The principal difference be-
tween the two flux distributions is that the flux lines are more concentrated 
for the permanent magnet than for the coil. Also, since the strength of a mag-
netic field is determined by the density of the flux lines, the coil has a weaker 
field strength. The field strength of the coil can be effectively increased by 
placing certain materials, such as iron, steel, or cobalt, within the coil to 
increase the flux density within the coil similar to the effect of inserting a 
dielectric between the plates of a capacitor. By increasing the field strength 
with the addition of the core, we have devised an electromagnet (Fig. 11.9) 
that not only has all the properties of a permanent magnet but also has a field 
strength that can be varied by changing one of the component values (cur-
rent, turns, and so on). Of course, current must pass through the coil of the 
electromagnet for magnetic flux to be developed, whereas there is no need 
for the coil or current in the permanent magnet. The direction of flux lines 
can be determined for the electromagnet (or in any core with a wrapping of 
turns) by placing the fingers of your right hand in the direction of current 
flow around the core. Your thumb then points in the direction of the north 
pole of the induced magnetic flux, as demonstrated in Fig. 11.10(a). A cross 
section of the same electromagnet is in Fig. 11.10(b) to introduce the con-
vention for directions perpendicular to the page. The cross and the dot refer 
to the tail and the head of the arrow, respectively.

In the SI system of units, magnetic flux is measured in webers (Wb) 
as derived from the surname of Wilhelm Eduard Weber (Fig. 11.11). The 
applied symbol is the capital Greek letter phi, .φ  The number of flux 

I I

I

FIG. 11.7 
Flux distribution of a 

single-turn coil.

N S

II

FIG. 11.8 
Flux distribution of a current- 

carrying coil.

Steel

N

I I

S

FIG. 11.9 
Electromagnet.

N SF

(b)

N S

I

I

(a)

F

FIG. 11.10 
Determining the direction of flux for an electromagnet: (a) method; (b) notation.

FIG. 11.11 
Wilhelm Eduard Weber. 

Rudolf Hoffmann/Library of 
Congress

German (Wittenberg, Göttingen)  
(1804–91)
Physicist  
Professor of Physics, University of  Göttingen

An important contributor to the establishment of a system 
of absolute units for the electrical sciences, which was 
beginning to become a very active area of research and 
development. Established a definition of electric current 
in an electromagnetic system based on the magnetic field 
produced by the current. He was politically active and, in 
fact, was dismissed from the faculty of the University of 
Göttingen for protesting the suppression of the constitution 
by the King of Hanover in 1837. However, he found oth-
er faculty positions and eventually returned to Göttingen 
as director of the astronomical observatory. He received 
honors from England, France, and Germany, including the 
 Copley Medal of the Royal Society of London.

M11_BOYL0302_14_GE_C11.indd   477M11_BOYL0302_14_GE_C11.indd   477 28/02/23   1:14 PM28/02/23   1:14 PM



478 | | | Inductor

lines per unit area, called the flux density, is denoted by the capital letter 
B and is measured in teslas (T) to honor the efforts of Nikola Tesla, a 
scientist of the late 1800s (Fig. 11.12).

In equation form,

 
( )

( )

= Φ
= =

Φ =
=

B
A

B

A

Wb m teslas  T
webers Wb
m

2

2  (11.1)

where Φ  is the number of flux lines passing through area A in Fig. 11.13. 
The flux density at point a in Fig. 11.1 is twice that at point b because 
twice as many flux lines pass through the same area.

In Eq. (11.1), the equivalence is given by

 1 tesla 1 T 1 Wb m 2= ≈  (11.2)

which states in words that if 1 weber of magnetic flux passes through an 
area of 1 square meter, the flux density is 1 tesla.

For the CGS system, magnetic flux is measured in maxwells and the 
flux density in gauss. For the English system, magnetic flux is measured 
in lines and the flux density in lines per square inch. The relationship 
between such systems is defined in Appendix D.

The flux density of an electromagnet is directly related to the number 
of turns of, and current through, the coil. The product of the two, called the 
magnetomotive force, is measured in ampere-turns (At) as defined by

 f ( )= NI ampere-turns, At  (11.3)

In other words, if you increase the number of turns around a core and/
or increase the current through the coil, the magnetic field strength also  
increases. In many ways, the magnetomotive force for magnetic circuits 
is similar to the applied voltage in an electric circuit. Increasing either 
one results in an increase in the desired effect: magnetic flux for mag-
netic circuits and current for electric circuits.

For the CGS system, the magnetomotive force is measured in gil-
berts, while for the English system, it is measured in ampere-turns.

Another factor that affects the magnetic field strength is the type of 
core used. Materials in which magnetic flux lines can readily be set up 
are said to be magnetic and to have a high permeability. Again, note 
the similarity with the word “permit” used to describe permittivity for 
the dielectrics of capacitors. Similarly, the permeability (represented 
by the Greek letter mu, µ) of a material is a measure of the ease with 
which magnetic flux lines can be established in the material.

Just as there is a specific value for the permittivity of air, there is a 
specific number associated with the permeability of air:

 µ π= × −4 10 Wb Amo
7  (11.4)

Practically speaking, the permeability of all nonmagnetic materials, 
such as copper, aluminum, wood, glass, and air, is the same as that for 
free space. Materials that have permeabilities slightly less than that of 
free space are said to be diamagnetic, and those with permeabilities 
slightly greater than that of free space are said to be paramagnetic. 
Magnetic materials, such as iron, nickel, steel, cobalt, and alloys of these 
metals, have permeabilities hundreds and even thousands of times that 
of free space. Materials with these very high permeabilities are referred 
to as ferromagnetic.

Bain News Service/George Grantham 
Bain Collection/Library of Congress

FIG. 11.12 
Nikola Tesla.

Croatian-American (Smiljan, Paris,  
Colorado Springs, New York City)

(1856–1943)
 Electrical Engineer and Inventor Recipient of the 

Edison Medal in 1917

Often regarded as one of the most innovative and 
inventive individuals in the history of the sciences. 
He was the first to introduce the alternating-current 
machine, removing the need for commutator bars of 
dc machines. After emigrating to the United States in 
1884, he sold a number of his patents on ac machines, 
transformers, and induction coils (including the Tesla 
coil as we know it today) to the Westinghouse Electric 
Company. Some say that his most important discov-
ery was made at his laboratory in Colorado Springs, 
where in 1900 he discovered terrestrial stationary 
waves. The range of his discoveries and inventions 
is too extensive to list here but extends from light-
ing systems to polyphase power systems to a wireless 
world broadcasting system.

F

A

FIG. 11.13 
Defining the flux density B.
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(Courtesy of AlphaLab, Inc.)

FIG. 11.14 
Milligaussmeter.
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FIG. 11.15 
Some areas of application of magnetic effects.

The ratio of the permeability of a material to that of free space is 
called its relative permeability; that is,

 r
0

µ µ
µ

=  (11.5)

In general, for ferromagnetic materials, 100,rµ ≥  and for nonmagnetic 
materials, 1.rµ =

A table of values for µ to match the provided table for permittiv-
ity levels of specific dielectrics would be helpful. Unfortunately, such 
a table cannot be provided because relative permeability is a function 
of the operating conditions. If you change the magnetomotive force  
applied, the level of µ can vary between extreme limits. At one level of 
magnetomotive force, the permeability of a material can be 10 times that 
at another level.

An instrument designed to measure flux density in milligauss (CGS 
system) appears in Fig. 11.14. The meter has two sensitivities, 0.5 to 100 
milligauss at 60 Hz and 0.2 to 3 milligauss at 60 Hz. It can be used to 
measure the electric field strength discussed in Chapter 10 on  switching 
to the ELECTRIC setting. The top scale will then provide a reading 
in kilovolts/meter. (As an aside, the meter of Fig. 11.14 has appeared 
in TV programs as a device for detecting a “paranormal” response.)  
Appendix D reveals that 1 T 10 4=  gauss. The magnitude of the  reading 
of 20  milligauss would be equivalent to

20 milligauss
1 T

10 gauss
2 T

4
µ







 =

Although our emphasis in this chapter is to introduce the parameters 
that affect the nameplate data of an inductor, the use of magnetics has 
widespread application in the electrical/electronics industry, as shown 
by a few areas of application in Fig. 11.15.
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11.3 INDUCTANCE
In the previous section, we learned that sending a current through a coil 
of wire, with or without a core, establishes a magnetic field through and 
surrounding the unit. This component, of rather simple construction (see 
Fig. 11.16), is called an inductor (often referred to as a coil). Its induc-
tance level determines the strength of the magnetic field around the coil 
due to an applied current. The higher the inductance level, the greater is 
the strength of the magnetic field. In total, therefore,

inductors are designed to set up a strong magnetic field 
linking the unit, whereas capacitors are designed to set up a 
strong electric field between the plates.

Inductance is measured in henries (H), after the American physi-
cist Joseph Henry (Fig. 11.17). However, just as the farad is too large a 
unit for most applications, most inductors are of the millihenry (mH) or  
microhenry ( Hµ ) range.

In Chapter 10, 1 farad was defined as a capacitance level that would 
result in 1 coulomb of charge on the plates due to the application of  
1 volt across the plates. For inductors,

1 henry is the inductance level that will establish a voltage 
of 1 volt across the coil due to a change in current of 1 A/s 
through the coil.

Inductor Construction

In Chapter 10, we found that capacitance is sensitive to the area of the 
plates, the distance between the plates, and the dielectric employed. 
The level of inductance has similar construction sensitivities in that it is  
dependent on the area within the coil, the length of the unit, and the per-
meability of the core material. It is also sensitive to the number of turns 
of wire in the coil as dictated by the following equation and defined in 
Fig. 11.16 for two of the most popular shapes:

 µ

µ ( )
( )

( )

=

=
=
=
=
=

L
N A
l

N
A
l
L

permeability  Wb/Am
number of turns  t
m
m
henries  H

2
2  (11.6)

First note that since the turns are squared in the equation, the num-
ber of turns is a big factor. However, also keep in mind that the more 
turns, the bigger is the unit. If the wire is made too thin to get more 
windings on the core, the rated current of the inductor is limited. Since 
higher levels of permeability result in higher levels of magnetic flux, 
permeability should, and does, appear in the numerator of the equa-
tion. Increasing the area of the core or decreasing the length also in-
creases the inductance level.

Substituting r oµ µ µ=  for the permeability results in the following 
equation, which is very similar to the equation for the capacitance of a 
capacitor:

L
N A
l

with 4 10 Wb/Amr o
o

2
7µ µ

µ π= = × −

and π
µ

( )= × −L
N A
l

4 10 henries, Hr7
2

 (11.7)

A

N turns

(a)

A

Iron or
ferrite core

Magnetic
flux

(m r)

N turns

l

l

(b)

Magnetic
flux

FIG. 11.16 
Defining the parameters for Eq. (11.6).

Brady-Handy Photograph Collection/
Library of Congress

FIG. 11.17 
Joseph Henry.

American (Albany, NY; Princeton, NJ)
(1797–1878)
Physicist and Mathematician
Professor of Natural Philosophy, 

Princeton University

In the early 1800s the title Professor of Natural Phi-
losophy was applied to educators in the sciences. As 
a student and teacher at the Albany Academy, Henry 
performed extensive research in the area of electro-
magnetism. He improved the design of electromag-
nets by insulating the coil wire to permit a tighter 
wrap on the core. One of his earlier designs was capa-
ble of lifting 3600 pounds. In 1832 he discovered and 
delivered a paper on self-induction. This was followed 
by the construction of an effective electric telegraph 
transmitter and receiver and extensive research on the 
oscillatory nature of lightning and discharges from a 
Leyden jar. In 1845 he was appointed the first Secre-
tary of the Smithsonian.
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If we break out the relative permeability as

µ
µ( )=L

N A
lr

o
2

we obtain the following useful equation:

 L Lorµ=  (11.8)

which is very similar to the equation C C .r oε=  Eq. (11.8) states the 
following:

The inductance of an inductor with a ferromagnetic core is 
rµ  times the inductance obtained with an air core.

Although Eq. (11.6) is approximate at best, the equations for the  
inductance of a wide variety of coils can be found in reference hand-
books. Most of the equations are mathematically more complex than 
Eq. (11.6), but the impact of each factor is the same in each equation.

EXAMPLE 11.1 For the air-core coil in Fig. 11.18:

a. Find the inductance.
b. Find the inductance if a metallic core with 2000rµ =  is inserted 

in the coil.

Solutions:

a. 

µ

π π µ

π
µ

π µ( )

( )

( )( )

=






 =

= = =

=






 =

= ×

= × =

−

−

d

A d

l

L
N A
l

15 68 H

  1
4

  in. 1 m
39.37  in.

6.35 mm

 
4

6.35 mm
4

31.67  m

  1  in. 1 m
39.37  in.

25.4 mm

  4 10

  4 10
1 100 t 31.7  m

25.4 mm
.

r

2 2
2

7
2

7
2 2

b. Eq. (11.8): µ µ( )( )= = =L L 31 36 mH2000 15.68 H .r o

EXAMPLE 11.2 In Fig. 11.19, if each inductor in the left column 
is changed to the type appearing in the right column, find the new 
inductance level. For each change, assume that the other factors 
remain the same.

Solutions:

a. The only change was the number of turns, but it is a squared factor, 
resulting in

µµ( ) ( )( )= = =L L 80 H2 4 20 Ho
2

b. In this case, the area is three times the original size, and the number 
of turns is 1 2. Since the area is in the numerator, it increases the 

100 turns

10

d = 10
4

Air core (m o)

FIG. 11.18 
Air-core coil for Example 11.1.
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inductance by a factor of three. The drop in the number of turns 
reduces the inductance by a factor of 1 2 1 4.2( ) =  Therefore,

µµ( )( ) ( )= = =L L 12 H3 1
4

3
4

16 Ho

c. Both µ and the number of turns have increased, although the 
increase in the number of turns is squared. The increased length 
reduces the inductance. Therefore,

L L 43 2 mH3 1200
2.5

4.32 10 10 H .o

2
3 µ( )( )

( ) ( )
= = × =

Types of Inductors

Inductors, like capacitors and resistors, can be categorized under the 
general headings fixed or variable. The symbol for a fixed air-core  
inductor is provided in Fig. 11.20(a), for an inductor with a ferromag-
netic core in Fig. 11.20(b), for a tapped coil in Fig. 11.20(c), and for a 
variable inductor in Fig. 11.20(d).

Fixed Fixed-type inductors come in all shapes and sizes. However,

in general, the size of an inductor is determined primarily by 
the type of construction, the core used, and the current rating.

In Fig. 11.21(a), the 10 Hµ  and 1 mH coils are about the same size 
because a thinner wire was used for the 1 mH coil to permit more turns 
in the same space. The result, however, is a drop in rated current from  
10 A to only 1.3 A. If the wire of the 10 Hµ  coil had been used to make 
the 1 mH coil, the resulting coil would have been many times the size 
of the 10 Hµ  coil. The impact of the wire thickness is clearly revealed 

(a)

Core, m   r = 1200
A2 = A1

 L = ?

N2 = 2N1
, l2 = l1

N1 turns

o, lm om

om

om

1

(b)

N1 turns

(c)

N1 turns
, l1

 L = ?
A2 = 3A1

, l2 = l1

N2 =    N1
1
2

l2 = 2.5l1
N2 = 3N1

 L = ?

A1

A1

A1

A2 = A1

Lo =16 mH 

Lo =10 mH

Lo =20 mH 

 FIG. 11.19 
Inductors for Example 11.2.

Air-core

(a)

Ferromagnetic
core

(b)

Variable
(permeability-tuned)

(d)

Tapped

(c)

FIG. 11.20 
Inductor (coil) symbols.
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by the 1 mH coil at the far right in Fig. 11.21(a), where a thicker wire 
was used to raise the rated current level from 1.3 A to 2.4 A. Even 
though the inductance level is the same, the size of the toroid is four to 
five greater.

The phenolic inductor (using a nonferromagnetic core of resin or 
plastic) in Fig. 11.21(b) is quite small for its level of inductance. We 
must assume that it has a high number of turns of very thin wire. Note, 
however, that the use of a very thin wire has resulted in a relatively low 
current rating of only 350 mA (0.35 A). The use of a ferrite (ferromag-
netic) core in the inductor in Fig. 11.21(c) has resulted in an amazingly 
high level of inductance for its size. However, the wire is so thin that the 
current rating is only =11 mA 0.011 A. Note that for all the inductors, 
the dc resistance of the inductor increases with a decrease in the thick-
ness of the wire. The 10 Hµ  toroid has a dc resistance of only 6 mΩ, 
whereas the dc resistance of the 100 mH ferrite inductor is 700 Ω—a 
price to be paid for the smaller size and high inductance level.

Different types of fixed inductive elements are displayed in Fig. 11.22, 
including their typical range of values and common areas of application. 
Based on the earlier discussion of inductor construction, it is fairly easy 
to identify an inductive element. The shape of a molded film resistor is 
similar to that of an inductor. However, careful examination of the typ-
ical shapes of each reveals some differences, such as the ridges at each 
end of a resistor that do not appear on most inductors.

Variable A number of variable inductors are depicted in Fig. 11.23. 
In each case, the inductance is changed by turning the slot at the end of 
the core to move it in and out of the unit. The farther in the core is, the 
more the ferromagnetic material is part of the magnetic circuit, and the 
higher is the magnetic field strength and the inductance level.

Thick wire: few turns Thin wire: more turns

Thicker wire: longer l

(a)

(b) (c)

10 mH 
10 A, Rdc = 6 mV 

1000  mH = 1 mH
1.3 A, Rdc = 0.4 V

1000  mH = 1 mH
2.4 A, Rdc = 0.3 V

100,000  mH = 100 mH
11 mA, Rdc = 0.7 kV

  1 mH
350 mA, Rdc = 6 V 

FIG. 11.21 
Relative sizes of different types of inductors: (a) toroid, high-current;  

(b) phenolic (resin or plastic core); (c) ferrite core.
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Practical Equivalent Inductors

Inductors, like capacitors, are not ideal. Associated with every inductor 
is an internal resistance determined by the resistance of the turns of wire 
(the thinner the wire, the greater is the resistance for the same material) 
and by the core losses (radiation and skin effect, eddy current and hys-
teresis losses—all discussed in more advanced texts). There is also some 
stray capacitance due to the capacitance between the current-carrying 
turns of wire of the coil. Recall that capacitance appears whenever there 
are two conducting surfaces separated by an insulator, such as air, and 
when those wrappings are fairly tight and are parallel. Both elements 
are included in the equivalent circuit in Fig. 11.24. For most applica-
tions in this text, the capacitance can be ignored, resulting in the equiv-
alent model in Fig. 11.25. The resistance Rl  plays an important part in 
some areas (such as resonance, discussed in Chapter 20) because the 

Type: Air-core inductors (1–32 turns)
Typical values: 2.5 nH–1 mH 
Applications: High-frequency applications

Type: Toroid coil
Typical values: 10 mH–30 mH
Applications: Used as a choke in ac
power line circuits to filter transient
and reduce EMI interference. This
coil is found in many electronic
appliances.

Type: Hash choke coil
Typical values: 3 mH–1 mH
Applications: Used in ac supply
lines that deliver high currents.

Fiber
insulator

Coil Inner
core

Plastic tubeType: Delay line coil
Typical values: 10 mH–50 mH
Applications: Used in color
televisions to correct for timing
differences between the color
signal and the black-and-white signal.

Type: Molded coils
Typical values: 0.1 mH–100 mH
Applications: Used in a wide variety
of circuits such as oscillators, filters,
pass-band filters, and others.

Type: RF chokes
Typical values: 10 mH–470 mH
Applications: Used in radio,
television, and communication
circuits. Found in AM, FM, and
UHF circuits.

Type: Common-mode choke coil
Typical values: 0.6 mH–50 mH
Applications: Used in ac line filters,
switching power supplies, battery
chargers, and other electronic equipment.

Type: Surface-mount inductors
Typical values: 0.01 mH–250 mH
Applications: Found in many
electronic circuits that require
miniature components on
multilayered PCBs (printed
circuit boards).

30

FIG. 11.22 
Typical areas of application for inductive elements.

FIG. 11.23 
Variable inductors with a typical range of 

values from µH1  to µH ;100  commonly used 
in oscillators and various RF circuits such as 

CB transceivers, televisions, and radios.

Stray capacitanceC

Resistance of the
turns of wire

Inductance of
coil

Rl L

FIG. 11.24 
Complete equivalent model for an inductor.

Rl LL

FIG. 11.25 
Practical equivalent model for an inductor.

M11_BOYL0302_14_GE_C11.indd   484M11_BOYL0302_14_GE_C11.indd   484 28/02/23   1:15 PM28/02/23   1:15 PM



InducAIuE | | | 485

resistance can extend from a few ohms to a few hundred ohms, depend-
ing on the construction. For this chapter, the inductor is considered an 
ideal element, and the series resistance is dropped from Fig. 11.25.

Inductor Labeling

Because some inductors are larger in size, their nameplate value can 
often be printed on the body of the element. However, on smaller 
units, there may not be enough room to print the actual value, so an 
 abbreviation is used that is fairly easy to understand. First, realize that 
the  microhenry ( Hµ ) is the fundamental unit of measurement for this 
marking. Most manuals list the inductance value in Hµ  even if the value 
must be reported as 470,000 Hµ  rather than as 470 mH. If the label 
reads 223K, the third number (3) is the power to be applied to the first 
two. The K is not from kilo, representing a power of three, but is used to 
denote a tolerance of ±10% as described for capacitors. The resulting 
number of 22,000 is, therefore, in H,µ  so the 223K unit is a 22,000 Hµ  
or 22 mH inductor. The letters J and M indicate a tolerance of 5%±  and 

20%,±  respectively.
For molded inductors, a color-coding system very similar to that used 

for resistors is used. The major difference is that the resulting value is 
always in µH, and a wide band at the beginning of the labeling is an MIL 
(“meets military standards”) indicator. Always read the colors in  sequence, 
starting with the band closest to one end as shown in Fig. 11.26.

The standard values for inductors employ the same numerical 
 values and multipliers used with resistors and capacitors. In general, 

Second significant figure
Decimal point
First significant figure
MIL identifier

Tolerance

Multiplier
Second significant figure
First significant figure
MIL identifier

Tolerance

Black
Brown
Red
Orange
Yellow
Green
Blue
Violet
Gray
White
None2

Silver
Gold

0
1
2
3
4
5
6
7
8
9

1
10

100
1000

620
610
65

Color Code Table
Significant

Figure Multiplier2Color1
Inductance

Tolerance (%)

Decimal
point

1 Indicates body color.
2 The multiplier is the factor by which the two significant figures

are multiplied to yield the nominal inductance value.

Cylindrical molded choke coils are marked with five colored bands. A wide silver
band, located at one end of the coil, identifies military radio-frequency coils. The next
three bands indicate the inductance in microhenries, and the fourth band is the
tolerance.

Color coding is in accordance with the color code table, shown on the left. If the
first or second band is gold, it represents the decimal point for inductance values less
than 10. Then the following two bands are significant figures. For inductance values
of 10 or more, the first two bands represent significant figures, and the third is the
multiplier.

L values less than 10 H

6.8 mH 6 10%

270 mH 6 5%

L values 10 mH or greater

FIG. 11.26 
Molded inductor color coding.
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therefore, expect to find inductors with the following values: 1 H,µ  
1.5 H,µ  2.2 H,µ  3.3 H,µ  4.7 H,µ  6.8 H,µ  10 H,µ  and so on.

Measurement and Testing of Inductors

The inductance of an inductor can be read directly using a meter such 
as the Universal LCR Meter (Fig. 11.27), also discussed in Chapter 10 
on capacitors. Set the meter to L for inductance, and the meter automati-
cally chooses the most appropriate unit of measurement for the element, 
that is, H, mH, H,µ  or pH.

An inductance meter is the best choice, but an ohmmeter can also be 
used to check whether a short has developed between the windings or 
whether an open circuit has developed. The open-circuit possibility is 
easy to check because a reading of infinite ohms or very high resistance 
results. The short-circuit condition is harder to check because the resis-
tance of many good inductors is relatively small, and the shorting of a 
few windings may not adversely affect the total resistance. Of course, if 
you are aware of the typical resistance of the coil, you can compare it 
to the measured value. A short between the windings and the core can 
be checked by simply placing one lead of the ohmmeter on one wire 
(perhaps a terminal) and the other on the core itself. A reading of zero 
ohms reveals a short between the two that may be due to a breakdown in 
the insulation jacket around the wire resulting from excessive currents, 
environmental conditions, or simply old age and cracking.

11.4 INDUCED VOLTAGE υL

Before analyzing the response of inductive elements to an applied dc 
voltage, we must introduce a number of laws and equations that affect 
the transient response.

The first, referred to as Faraday’s law of electromagnetic induc-
tion, is one of the most important in this field because it enables us to 
establish ac and dc voltages with a generator. If we move a conductor 
(any material with conductor characteristics as defined in Chapter 2) 
through a magnetic field so that it cuts magnetic lines of flux as shown 
in Fig. 11.28, a voltage is induced across the conductor that can be mea-
sured with a sensitive voltmeter. That’s all it takes, and, in fact, the faster 
you move the conductor through the magnetic flux, the greater is the 
induced voltage. The same effect can be produced if you hold the con-
ductor still and move the magnetic field across the conductor. Note that 
the direction in which you move the conductor through the field deter-
mines the polarity of the induced voltage. Also, if you move the conduc-
tor through the field at right angles to the magnetic flux, you generate 
the maximum induced voltage. Moving the conductor parallel with the 
magnetic flux lines results in an induced voltage of zero volts since mag-
netic lines of flux are not crossed.

If we now go a step further and move a coil of N turns through the 
magnetic field as shown in Fig. 11.29, a voltage will be induced across 
the coil as determined by Faraday’s law:

 
φ ( )=e N

d
dt

volts,V  (11.9)

The greater the number of turns or the faster the coil is moved through the 
magnetic flux pattern, the greater is the induced voltage. The term φd dt  

(Courtesy of +B K Precision)

FIG. 11.27 
Digital reading inductance meter.

N S

eind

Motion

F

V

Conductor

+

–

FIG. 11.28 
Generating an induced voltage by moving a 

conductor through a magnetic field.

N S

N turns

Motion

F

e

FIG. 11.29 
Demonstrating Faraday’s law.
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is the differential change in magnetic flux through the coil at a particular  
instant in time. If the magnetic flux passing through a coil remains constant—
no matter how strong the magnetic field—the term will be zero, and the  
induced voltage zero volts. It doesn’t matter whether the changing flux is 
due to moving the magnetic field or moving the coil in the vicinity of a mag-
netic field: The only requirement is that the flux linking (passing through) the 
coil changes with time. Before the coil passes through the magnetic poles, 
the induced voltage is zero because there are no magnetic flux lines passing 
through the coil. As the coil enters the flux pattern, the number of flux lines 
cut per instant of time increases until it peaks at the center of the poles. The 
induced voltage then decreases with time as it leaves the magnetic field.

This important phenomenon can now be applied to the inductor in 
Fig. 11.30, which is simply an extended version of the coil in Fig. 11.29. 
In Section 11.2, we found that the magnetic flux linking the coil of  
N turns with a current I has the distribution shown in Fig. 11.30. If the 
current through the coil increases in magnitude, the flux linking the coil 
also increases. We just learned through Faraday’s law, however, that 
a coil in the vicinity of a changing magnetic flux will have a voltage  
induced across it. The result is that a voltage is induced across the coil in 
Fig. 11.30 due to the change in current through the coil.

It is very important to note in Fig. 11.30 that the polarity of the  
induced voltage across the coil is such that it opposes the increasing level 
of current in the coil. In other words, the changing current through the 
coil induces a voltage across the coil that is opposing the applied voltage 
that establishes the increase in current in the first place. The quicker the 
change in current through the coil, the greater is the opposing induced 
voltage to squelch the attempt of the current to increase in magnitude. 
The “choking” action of the coil is the reason inductors or coils are often 
referred to as chokes. This effect is a result of an important law referred 
to as Lenz’s law, which states that

an induced effect is always such as to oppose the cause that 
produced it.

The inductance of a coil is also a measure of the change in flux linking 
the coil due to a change in current through the coil. That is,

 L N
d
di

henries,H
L

φ ( )=  (11.10)

The equation reveals that the greater the number of turns or the greater 
the change in flux linking the coil due to a particular change in current, 
the greater is the level of inductance. In other words, coils with smaller 
levels of inductance generate smaller changes in flux linking the coil for 
the same change in current through the coil. If the inductance level is 
very small, there will be almost no change in flux linking the coil, and 
the induced voltage across the coil will be very small. In fact, if we now 
write Eq. (11.9) in the form

φ φ ( )= =






e N

d
dt

N
d
di

di
dtL

L

and substitute Eq. (11.10), we obtain

 ( )=e L
di
dt

volts,VL
L

 (11.11)

eind I

I

+
–

FIG. 11.30 
Demonstrating the effect of 

Lenz’s law.
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which relates the voltage across a coil to the number of turns of the 
coil and the change in current through the coil.

When induced effects are used in the generation of voltages such as 
those from dc or ac generators, the symbol e is applied to the induced 
voltage. However, in network analysis, the voltage induced across an  
inductor will always have a polarity that opposes the applied voltage 
(like the voltage across a resistor). Therefore, the following notation is 
used for the induced voltage across an inductor:

 υ ( )= L
di
dt

volts,VL
L  (11.12)

The equation clearly states that

the larger the inductance and/or the more rapid the change 
in current through a coil, the larger will be the induced 
voltage across the coil.

If the current through the coil fails to change with time, the induced 
voltage across the coil will be zero. We will find in the next section that 
for dc applications, when the transient phase has passed, di dt 0,L =
and the induced voltage across the coil is

υ ( )= = =L
di
dt

L 0 0 VL
L

The duality that exists between inductive and capacitive elements is 
now abundantly clear. Simply interchange the voltages and currents of 
Eq. (11.12), and interchange the inductance and capacitance. The fol-
lowing equation for the current of a capacitor results:

υ

υ

=

=

L
di
dt

i C
d
dt

L
L

C
C

We are now at a point where we have all the background relationships 
necessary to investigate the transient behavior of inductive elements.

 11.5 R-L TRANSIENTS: THE STORAGE PHASE
A great number of similarities exist between the analyses of induc-
tive and capacitive networks. That is, what is true for the voltage of a  
capacitor is also true for the current of an inductor, and what is true for 
the current of a capacitor can be matched in many ways by the voltage 
of an inductor. The storage waveforms have the same shape, and time 
constants are defined for each configuration. Because these concepts are 
so similar (refer to Section 10.5 on the charging of a capacitor), you have 
an opportunity to reinforce concepts introduced earlier and still learn 
more about the behavior of inductive elements.

The circuit in Fig. 11.31 is used to describe the storage phase. Note that 
it is the same circuit used to describe the charging phase of capacitors, with 
a simple replacement of the capacitor by an ideal inductor. Throughout the 
analysis, it is important to remember that energy is stored in the form of an 
electric field between the plates of a capacitor. For inductors, on the other 
hand, energy is stored in the form of a magnetic field linking the coil.

–

E

+

iL
–+ vR

vLL

R

+

–

FIG. 11.31 
Basic R-L transient network.
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At the instant the switch is closed, the choking action of the coil 
prevents an instantaneous change in current through the coil, resulting 
in i 0 A,L =  as shown in Fig. 11.32(a). Recalling the discussion of 
Section 10.5 for capacitive networks, we can now conclude for induc-
tive networks that i i0 0L L( ) ( )=− +  using a notation introduced in  
 Chapter 10 (capacitors). The absence of a current through the coil and 
circuit at the instant the switch is closed results in zero volts across the 
resistor as determined by υ ( )= = = =i R i R R0 A 0 V,R R L  as 
shown in Fig. 11.32(c). Applying Kirchhoff’s voltage law around the 
closed loop results in E volts across the coil at the instant the switch 
is closed, as shown in Fig. 11.32(b). Again, recalling the discussion 
of Section 10.5, we find for the inductive network of Fig. 11.31 that 
υ ( ) =−0 0 VL  and υ ( ) =+ E0L  volts.

Initially, the current increases very rapidly, as shown in Fig. 11.32(a) 
and then at a much slower rate as it approaches its steady-state value 
 determined by the parameters of the network (E R). The voltage across 
the resistor rises at the same rate because υ = =i R i R.R R L  Since 
the voltage across the coil is sensitive to the rate of change of current 
through the coil, the voltage will be at or near its maximum value early 

(a)

(b)

(c)

0 1t 2t 3t 4t 5t t

iL

0.632Im

0.865Im

0.951Im
0.981Im 0.993Im

Im = E
R

(1 – e–t/(L/R))iL = E
R

0

vL

E

1t 2t 3t 4t 5t 6t t

0.368

Quick jump to supply voltage

E

0.135E
0.049E 0.019E 0.007E

vL = Ee– t/t

0
Switch closed

t

vR

E

1t 2t 3t 4t 5t

Switch closed

Switch closed

High rate
of change

Slow rate
of change

0.632E

0.865E
0.951E 0.981E 0.99E

vR = E(1– e– t/t)

FIG. 11.32 
,i L ,Lυ  and Rυ  for the circuit in Fig. 11.31 following the closing of  

the switch.
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490 | | | Inductor

in the storage phase. Finally, when the current reaches its steady-state 
value of E R  amperes, the current through the coil ceases to change, and 
the voltage across the coil drops to zero volts. At any instant of time, the 
voltage across the coil can be determined using Kirchhoff’s voltage law 
in the following manner: υ υ= −E .L R

Because the waveforms for the inductor have the same shape as ob-
tained for capacitive networks, we are familiar with the mathematical 
format and can feel comfortable calculating the quantities of interest 
using a calculator or computer.

The equation for the transient response of the current through an 
 inductor is

 ( )( )= − τ−i E
R

e1 amperes, AL
t   (11.13)

with the time constant now defined by

 τ ( )= L
R

seconds,  s  (11.14)

Note that Eq. (11.14) is a ratio of parameters rather than a product as used 
for capacitive networks, yet the units used are still seconds (for time).

Our experience with the factor ( − τ−e1 t ) verifies the level of 63.2% 
for the inductor current after one time constant, 86.5% after two time 
constants, and so on. If we keep R constant and increase L, the ratio 
L R increases, and the rise time of τ5  increases as shown in Fig. 11.33 
for increasing levels of L. The change in transient response is expected 
because the higher the inductance level, the greater is the choking  
action on the changing current level, and the longer it will take to reach 
 steady-state conditions.

The equation for the voltage across the coil is

 υ ( )= τ−Ee volts,  VL
t /  (11.15)

and the equation for the voltage across the resistor is

 υ ( ) ( )= − τ−E e1 volts,  VR
t /  (11.16)

As mentioned earlier, the shape of the response curve for the voltage across 
the resistor must match that of the current iL since υ = =i R i R.R R L

Since the waveforms are similar to those obtained for capacitive net-
works, we will assume that

the storage phase has passed and steady-state conditions 
have been established once a period of time equal to five 
time constants has occurred (as shown for L2 in Fig. 11.33).

In addition, since τ = /L R  will always have some numerical value, 
even though it may be very small at times, the transient period of τ5  will 
always have some numerical value. Therefore,

the current cannot change instantaneously in an inductive 
network.

If we examine the conditions that exist at the instant the switch is closed, 
we find that the voltage across the coil is E volts, although the current is 
zero amperes as shown in Fig. 11.34. In essence, therefore,

the inductor takes on the characteristics of an open circuit at 
the instant the switch is closed.

iL
E
R L1 L2 L3

L3>L2>L1
(R fixed)

t (s)

5t for L2

FIG. 11.33 
Effect of L on the shape of the iL storage 

waveform.

iL=0 A
i = 0

vL=E voltsE

R

vR= iR=(0)R=0 V

+

–

+

–

FIG. 11.34 
Circuit in Figure 11.31 the instant the switch 

is closed.
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However, if we consider the conditions that exist when steady-state 
conditions have been established, we find that the voltage across the coil 
is zero volts and the current is a maximum value of E R  amperes, as 
shown in Fig. 11.35. In essence, therefore,

 the inductor takes on the characteristics of a short circuit 
when steady-state conditions have been established.

EXAMPLE 11.3 Find the mathematical expressions for the transient 
behavior of iL  and υL  for the circuit in Fig. 11.36 if the switch is closed 
at =t 0 s.. Sketch the resulting curves.

Solution: First, we determine the time constant:

τ = =
Ω

=L
R

4 H
2 k

2 ms
1

Then the maximum or steady-state current is

I E
R

50 V

2 kΩ
25 10 A 25 mAm

1

3= = = × =−

Substituting into Eq. (11.13) gives

= − −i 25 mA 1( )L
2 mse t

Using Eq. (11.15) gives

υ = −50 VL
2 mse t

The resulting waveforms appear in Fig. 11.37.

R
iL=

i

vL=0 V

vR= iR=    .R=E volts

E
R

E
R

+

–
E

+

–

FIG. 11.35 
Circuit in Fig. 11.31 under steady-state 

conditions.

–
E

+

iL

R1

vLL 4 H50 V

2 kV
+

–

FIG. 11.36 
Series R-L circuit for Example 11.3.

0 t

50 V

vL
iL

25 mA

0 t1t 2t 3t 4t 5t

t  =  2 ms t  =  2 ms

1t 2t 3t 4t 5t

FIG. 11.37 
i L and Lυ  for the network in Fig. 11.36.

11.6 INITIAL CONDITIONS
This section parallels Section 10.7 on the effect of initial values on the 
transient phase. Since the current through a coil cannot change instanta-
neously, the current through a coil begins the transient phase at the ini-
tial value established by the network (note Fig. 11.38) before the switch 
was closed. It then passes through the transient phase until it reaches 
the steady-state (or final) level after about five time constants. The 
steady-state level of the inductor current can be found by substituting its 
short-circuit equivalent (or Rl  for the practical equivalent) and finding 
the resulting current through the element.

Transient
response

Ii

iL

If

0 t

Initial
conditions

Steady-state
region

(If  – Ii)

FIG. 11.38 
Defining the three phases of a transient 

waveform.
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Using the transient equation developed in the previous section, we 
can write an equation for the current iL for the entire time interval in 
Fig. 11.38; that is,

i I I I e1L i f i
t /( )( )= + − − τ−

with (I If i− ) representing the total change during the transient phase. 
However, by multiplying through and rearranging terms as

i I I I e I I e

I I e I e

 

 

L i f f
t

i i
t

f f
t

i
t

= + − − +

= − +

τ τ

τ τ

− −

− −

we find

 i I I I eL f i f
t( )= + − τ−

 (11.17)

If you are required to draw the waveform for the current iL  from 
initial value to final value, start by drawing a line at the initial value 
and steady-state levels, and then add the transient response (sensitive to 
the time constant) between the two levels. The following example will 
clarify the procedure.

EXAMPLE 11.4 The inductor in Fig. 11.39 has an initial current 
level of 4 mA in the direction shown. (Specific methods to establish the 
initial current are presented in the sections and problems to follow.)

a. Find the mathematical expression for the current through the coil 
once the switch is closed.

b. Find the mathematical expression for the voltage across the coil 
during the same transient period.

c. Sketch the waveform for each from initial value to final value.

Solutions:

a. Substituting the short-circuit equivalent for the inductor results in a 
final or steady-state current determined by Ohm’s law:

I E
R R

16 V
2.2 kΩ 6.8 kΩ

16 V
9 kΩ

1.78 mAf
1 2

=
+

=
+

= =

The time constant is determined by

L
R

100 mH
2.2 k 6.8 k

100 mH
9 k

11.11  s
T

τ µ= =
Ω + Ω

=
Ω

=

Applying Eq. (11.17) gives

e1.78 mA 2.22 mA t 11.11 s

i I I I e e  1.78 mA (4 mA 1.78 mA)

 

L f i f
 t t 11.11 s

= +

( )= + − = + −
− µ

τ µ− −

b. Since the current through the inductor is constant at 4 mA prior to 
the closing of the switch, the voltage (whose level is sensitive only 
to changes in current through the coil) must have an initial value of 
0 V. At the instant the switch is closed, the current through the coil 
cannot change instantaneously, so the current through the resistive 
elements is 4 mA. The resulting peak voltage at t 0 s=  can then be 
found using Kirchhoff’s voltage law as follows:

V E V V 16V 4 mA)(2.2 kΩ 4 mA)(6.8 kΩ

16V 8.8V 27.2V 16V 36V 20 V

m R R1 2
( ) ( )= − − = − −

= − − = − = −

–

+

4 mA

vL

iL

R2

6.8 kV

R1

2.2 kV

E 16 V L = 100 mH
+

–

FIG. 11.39 
Example 11.4.
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Note the minus sign to indicate that the polarity of the voltage υL is 
opposite to the defined polarity of Fig. 11.39.

The voltage then decays (with the same time constant as the cur-
rent iL) to zero because the inductor is approaching its short-circuit 
equivalence.

The equation for υL is therefore

V se20  t
L

/ 11 11.  υ = − µ−

c. See Fig. 11.40. The initial and final values of the current were drawn 
first, and then the transient response was included between these 
levels. For the voltage, the waveform begins and ends at zero, with 
the peak value having a sign sensitive to the defined polarity of Lυ  in 
Fig. 11.39.

0

1.78 mA

iL (mA)

4 mA
vL (volts)

0 V

–20 V

0 V 0
3

2

1

54321 t ( s)

T = 11.11 Ms
T = 11.11 Ms

54321

FIG. 11.40
i L  and Lυ  for the network in Fig. 11.39.

E L vL

–

+

vR = iRR = (0 A)R = 0 V

Rvcontact = vL + E
+ –vcontact

iL
0 A

+

–

FIG. 11.41 
Demonstrating the effect of opening a switch 
in series with an inductor with a steady-state 

current.

Let us now test the validity of the equation for iL by substituting 
=t 0 s to reflect the instant the switch is closed. We have

= =τ− −e e 1t / 0

and 
= + = + =τ−i e1.78 mA 2.22 mA 1.78 mA 2.22 mA 4 mAL

t /

When τ>t 5 , ≅τ−e 0t /

and = + =τ−i e1.78 mA 2.22 mA 1.78 mAL
t /

11.7 R-L TRANSIENTS: THE RELEASE PHASE
In the analysis of R-C circuits, we found that the capacitor could hold 
its charge and store energy in the form of an electric field for a period 
of time determined by the leakage factors. In R-L circuits, the energy is 
stored in the form of a magnetic field established by the current through 
the coil. Unlike the capacitor, however, an isolated inductor cannot con-
tinue to store energy because the absence of a closed path causes the cur-
rent to drop to zero, releasing the energy stored in the form of a magnetic 
field. If the series R-L circuit in Fig. 11.41 reaches steady-state condi-
tions and the switch is quickly opened, a spark will occur across the con-
tacts due to the rapid change in current from a maximum of E/R to zero 
amperes. The change in current di/dt of the equation υ ( )= L di dtL  
establishes a high voltage υL across the coil that, in conjunction with 
the applied voltage E, appears across the points of the switch. This is the 
same mechanism used in the ignition system of a car to ignite the fuel 
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494 | | | Inductor

in the cylinder. Some 25,000 V are generated by the rapid decrease in 
ignition coil current that occurs when the switch in the system is opened. 
(In older systems, the “points” in the distributor served as the switch.) 
This inductive reaction is significant when you consider that the only 
independent source in a car is a 12 V battery.

If opening the switch to move it to another position causes such a 
rapid discharge in stored energy, how can the decay phase of an R-L 
circuit be analyzed in much the same manner as for the R-C circuit? The 
solution is to use a network like that in Fig. 11.42(a). When the switch 
is closed, the voltage across resistor R2 is E volts, and the R-L branch 
responds in the same manner as described above, with the same wave-
forms and levels. A Thévenin network of E in parallel with R2 results 
in the source as shown in Fig. 11.42(b) since R2 will be shorted out by 
the short-circuit replacement of the voltage source E when the Thévenin 
resistance is determined.

–

+

iL
–+

vLLvR2
R2

vR1

–

+

iL

iL

(same
direction)

(reversed
polarity)

(same polarity)

R1

FIG. 11.43 
Network in Fig. 11.42 the instant the 

switch is opened.

(a)

R2E

R1 +

–

iL

+

–
vR2

Th

vR1
+ –

L

(b)

E

R1 +

–

iL
vR1

+ –

L vLvL

+

–

+

–

FIG. 11.42 
Initiating the storage phase for an inductor by closing the switch.

After the storage phase has passed and steady-state conditions are  
established, the switch can be opened without the sparking effect or rapid 
discharge due to resistor R ,2  which provides a complete path for the cur-
rent i .L  In fact, for clarity the discharge path is isolated in Fig. 11.43. 
The voltage Lυ  across the inductor reverses polarity and has a magnitude 
determined by

 L R R1 2
υ υ υ( )= − +  (11.18)

Recall that the voltage across an inductor can change instantaneously 
but the current cannot. The result is that the current iL  must maintain the 
same direction and magnitude, as shown in Fig. 11.43. Therefore, the 
instant after the switch is opened, iLis still I E R ,m 1=  and

υ υ υ( ) ( )

( ) ( )

= − + = − +

= − + = − + = − +








i R i R

i R R E
R

R R
R
R

R
R

E

L R R

L

1 1 2 2

1 2
1

1 2
1

1

2

1

1 2

and 
R
R

E1 switch openedL
2

1

υ ( )= − +






  (11.19)

which is bigger than E volts by the ratio R R .2 1  In other words, when 
the switch is opened, the voltage across the inductor reverses polarity 
and drops instantaneously from 0 to R R E1 2 1( )[ ]− +  volts.
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As an inductor releases its stored energy, the voltage across the coil 
decays to zero in the following manner:

 V eL i
t /υ = − τ− ′  (11.20)

with V
R
R

E1i
2

1

= +








and L
R

L
R RT 1 2

τ′ = =
+

The current decays from a maximum of I E Rm 1=  to zero.
Using Eq. (11.17) gives

I E
R

Iand 0 Ai f
1

= =

so that i I I I e E
R

e0 A 0 AL f i f
t t/

1

/( )= + − = + −








τ τ− ′ − ′

and i E
R

eL
t

1

/= τ− ′  (11.21)

with L
R R1 2

τ′ =
+

The mathematical expression for the voltage across either resistor can 
then be determined using Ohm’s law:

υ = = = τ− ′i R i R E
R

R eR R L
t

1 1
1

1
/

1 1

and EeR
t /

1
υ = τ− ′  (11.22)

The voltage R1
υ  has the same polarity as during the storage phase since 

the current iL  has the same direction. The voltage R2
υ  is expressed as 

follows using the defined polarity of Fig. 11.42:

υ = − = − = − τ− ′i R i R E
R

R eR R L
t

2 2
1

2
/

2 2

and 
R
R

Ee R
t2

1

/
2

υ = − τ− ′  (11.23)

EXAMPLE 11.5 Resistor R2 was added to the network in Fig. 11.36 
as shown in Fig. 11.44.

a. Find the mathematical expressions for i ,L  ,Lυ  ,R1
υ  and R2

υ  for five 
time constants of the storage phase.

b. Find the mathematical expressions for i ,L  ,Lυ  ,R1
υ  and R2

υ  if the 
switch is opened after five time constants of the storage phase.

c.  Sketch the waveforms for each voltage and current for both phases 
covered by this example. Use the defined polarities in Fig. 11.44.
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Solutions:

a. From Example 11.3:

mA 2 ms( )= − −i 25 1L e t

V 2 msυ = −50L e t

υ

( )

( )

= =

= −












= −

τ

τ

−

−

i R i R

E
R

e R

E e

 

    1

  1

R R L

t

t

1 1

1

/
1

/

1 1

and V 1 2 msυ = − −50    ( )R1
e t

Vυ = =E 50   R2

b. 
L

R R
  4 H

2 k 3 k
4 H

5 10

  0.8 10  s 0.8 ms
1 2

3 

3

τ′ =
+

=
Ω + Ω

=
× Ω

= × =−

By Eqs. (11.19) and (11.20):

V
R
R

E1 1
3kΩ

2 kΩ
50 V 125Vi

2

1

( )= +






 = +







 =

and mseV e 125 V  t
L i

t 0 8/ / .  υ = − = −τ− ′ −

By Eq. (11.21):

= = =I E
R

50 V

2 kΩ
25 mAm

1

and e ti I e 25 mA L m
t 0 8 ms/ / .  = =τ− ′ −

By Eq. (11.22):

eEe 50 V t
R

t 0 8 ms/ / .  
1
υ = =τ− ′ −

By Eq. (11.23):

e
R
R

Ee e 75  3 k
2 k

 (50 V)  V t
R

t t 0 8 ms2

1

/ / / .  
2

υ = − = − Ω
Ω

= −τ τ− ′ − ′ −

c. See Fig. 11.45.

3 kVE = 50 V

R1 iL

vR1
+ –

L 4 H
+

–

2 kV

R2

+

–
vR2

vL

+

–

FIG. 11.44 
Defined polarities for υ ,R1

 υ ,R2
 υ ,L  and current 

direction for iL for Example 11.5.
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In the preceding analysis, it was assumed that steady-state condi-
tions were established during the charging phase and I E R ,m 1=  with 

0 V.Lυ =  However, if the switch in Fig. 11.42 is opened before iL 
reaches its maximum value, the equation for the decaying current of 
Fig. 11.42 must change to

 i I eL i
t /= τ− ′  (11.24)

where I i is the starting or initial current. The voltage across the coil is 
defined by the following:

 V eL i
t /υ = − τ− ′  (11.25)

with V I R Ri i 1 2( )= +

0

R1

vR1

50 VE

vL:

vL

+

–

Defined
polarity

Switch
closed

5t
5(2 ms)
=  10 ms

5t9 = 5(0.8 ms) = 4 ms

Switch opened

–125
Instantaneous
change

t

0

iL:

Defined
direction

5t
t

iL (mA)

25

5t9

No instantaneous
change

0

Defined
polarity

5t
t

volts

50

5t9

Same shape
as iL since
vR1

  = iL R1

+ –

R2vR2

0
Defined
polarity 5t

t

volts

50

5t9

+

–

vR2
:

75

vR1
:

FIG. 11.45 
The various voltages and the current for the network in Fig. 11.44.
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11.8 THÉVENIN EQUIVALENT: L RThτ =
In Chapter 10 on capacitors, we found that a circuit does not always have 
the basic form in Fig. 11.31. The solution is to find the Thévenin equiv-
alent circuit before proceeding in the manner described in this chapter. 
Consider the following example.

EXAMPLE 11.6 For the network in Fig. 11.46:

a. Find the mathematical expression for the transient behavior of the 
current iL  and the voltage Lυ  after the closing of the switch 
( I 0 mAi = ).

b. Draw the resultant waveform for each.

Solutions:

a. Applying Thévenin’s theorem to the 80 mH inductor (Fig. 11.47) 
yields

R R
N

20 kΩ

2
10 kΩTh = = =

R1

20 kV

RTh

R2

4 kV

R3 16 kV

RTh:

R1 20 kVRTh

R2 + R3 =

4 kV +  16 kV
=  20 kV

FIG. 11.47 
Determining RTh for the network in Fig. 11.46.

–

E
+

iL

L  =  80 mH

R1

vL

20 kV

R2

4 kV

R3 16 kV12 V
+

–

 FIG. 11.46 
Example 11.6.

20 kV

R1

4 kV

R2

E 12 V ETh

ETh:

R3 16 kV

+

–

+

–

FIG. 11.48 
Determining ETh for the network in Fig. 11.46.

Applying the voltage divider rule (Fig. 11.48), we obtain

E
R R E

R R R

4 kΩ 16 kΩ 12 V
20 kΩ 4 kΩ 16 kΩ

20 kΩ 12 V
40 kΩ

6 V

Th
2 3

1 2 3

( )

( ) ( )( ) ( )

=
+

+ +

= +
+ +

= =
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The Thévenin equivalent circuit is shown in Fig. 11.49. Using  
Eq. (11.13) gives

i
E
R

e

L
R

I
E
R

  1

  80 10  H
10 10  

8 10  s 8 s

  6 V
10 10  

0.6 10  A 0.6 mA

L
Th t

Th

m
Th

Th

3

3
6

3
3

τ µ

( )= −

= = ×
× Ω

= × =

= =
× Ω

= × =

τ−

−
−

−

and 8 si 0.6 mA(1  )t
L e−= µ−

Using Eq. (11.15) gives

υ = τ−E eL Th
t

so that 8 se6 V L
t

υ = µ−

b. See Fig. 11.50.

ETh

+

iL

–
vL6 V

RTh

10 kV

80 mH

Thévenin equivalent circuit:

+

–

FIG. 11.49 
The resulting Thévenin equivalent circuit for 

the network in Fig. 11.46.

5 10 15 20 25 30 35 40 45 50

vL

=  0.6 mA

Im  =
ETh
R

ETh  =  6 V

vL, iL

iL

5t

t (   s)

FIG. 11.50 
The resulting waveforms for iL and Lυ  for the network in Fig. 11.46.

iL

R1 = 2.2 kV

1 kV

R3

8.2 kV

R2

I 12 mA

S1
(t = 0 s)

S2
(t = 0 s)

6 VE680 mHL
+

–

FIG. 11.51 
Example 11.7.

EXAMPLE 11.7 Switch S1 in Fig. 11.51 has been closed for a long 
time. At =t 0 s, S1 is opened at the same instant that S2  is closed to 
avoid an interruption in current through the coil.

a. Find the initial current through the coil. Pay particular attention to 
its direction.

M11_BOYL0302_14_GE_C11.indd   499M11_BOYL0302_14_GE_C11.indd   499 28/02/23   1:15 PM28/02/23   1:15 PM



500 | | | Inductor

b. Find the mathematical expression for the current iL following the 
closing of switch S .2

c. Sketch the waveform for i .L

Solutions:

a. Using Ohm’s law, we find the initial current through the coil:

= − = − = −I E
R

6 V

1 kΩ
6 mAi

3

b. Applying Thévenin’s theorem gives

( )

= + = + =

= = =

R R R

E IR

2.2 kΩ 8.2 kΩ 10.4 kΩ

12 mA)(2.2 kΩ 26.4 V
Th

Th

1 2

1

 

The Thévenin equivalent network appears in Fig. 11.52.
The steady-state current can then be determined by substituting 

the short-circuit equivalent for the inductor:

I E
R

26.4 V
10.4 kΩ

2.54 mAf
Th

= = =

The time constant is

τ µ= =
Ω

=L
R

680 mH
10.4 k

65.39 s
Th

Applying Eq. (11.17) gives

e t

i I I I e

e

2.54 mA 8.54 mA

 

  2.54 mA 6 mA 2.54 mA

 

L f i f
t

t

/ 65.39  s

/

/ 65.39  s

−

( )
( )

= + −

= + − −

= µ

τ

µ

−

−

−

c. Note Fig. 11.53.

iL10.4 kV

RTh

680 mHL26.4 VETh

6 mA

+

–

FIG. 11.52 
Thévenin equivalent circuit for the network 

in Fig. 11.51 for 0t s.≥

t

iL (mA)

1t

2t 3t 4t 5t

3

2

1

0
–1

–2

–3

–4

–5

–7

–6 mA

2.54 mA

T = 65.39 Ms

FIG. 11.53 
The current iL for the network in Fig. 11.51.

11.9 INSTANTANEOUS VALUES
The development presented in Section 10.8 for capacitive networks can 
also be applied to R-L networks to determine instantaneous voltages, 
currents, and time. The instantaneous values of any voltage or current 
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can be determined by simply inserting t into the equation and using a 
calculator or table to determine the magnitude of the exponential term.

The similarity between the equations

υ ( )= + + τ−V V V eC f i f
t /

and i I I I eL f i f
t /( )= + − τ−

results in a derivation of the following for t that is identical to that used 
to obtain Eq. (10.23):

 t
I I

i I
 log seconds, se

i f

L f

τ
( )
( )

( )=
−
−

 (11.26)

For the other form, the equation EeC
t /υ = τ−  is a close match with 

υ = =τ τ− −Ee V e ,L
t

i
t/ /  permitting a derivation similar to that employed 

for Eq. (10.23):

 t
V

 log seconds, se
i

L

τ
υ

( )=  (11.27)

For the voltage υ ,R  =V 0 Vi  and V EVf =  since υ ( )= − τ−E e1 .R
t /  

Solving for t yields

t E
E

 log
   e

R

τ
υ

=
−









or t
V

V
 log seconds, se

f

f R

τ
υ

( )=
−









  (11.28)

11.10 AVERAGE INDUCED VOLTAGE: Lav
υ

In an effort to develop some feeling for the impact of the derivative in an 
equation, the average value was defined for capacitors in Section 10.10, 
and a number of plots for the current were developed for an applied 
voltage. For inductors, a similar relationship exists between the induced 
voltage across a coil and the current through the coil. For inductors, the 
average induced voltage is defined by

 L
i
t

volts,  VL
L

av
υ ( )=

∆
∆  (11.29)

where ∆ indicates a finite (measurable) change in current or time.  
Eq. (11.12) for the instantaneous voltage across a coil can be derived 
from Eq. (11.29) by letting VL become vanishingly small. That is,

L
i
t

L
di
dt

limL
t

L L

0inst
υ =

∆
∆

=
∆ →

In the following example, the change in current iL∆  is considered for 
each slope of the current waveform. If the current increases with time, the 
average current is the change in current divided by the change in time, 
with a positive sign. If the current decreases with time, a negative sign 
is applied. Note in the example that the faster the current changes with 
time, the greater is the induced voltage across the coil. When making the 
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necessary calculations, do not forget to multiply by the inductance of the 
coil. Larger inductances result in increased levels of induced voltage for 
the same change in current through the coil.

EXAMPLE 11.8 Find the waveform for the average voltage across 
the coil if the current through a 4 mH coil is as shown in Fig. 11.54.

t (ms)

iL (mA)

10

5

0 10987654321

FIG. 11.54 
Current iL to be applied to a 4 mH coil in Example 11.8.

t (ms)

vL (mV)

20

10

0 1098765

+20 mV

–8 mV

0 V 0 V

4321

–10

FIG. 11.55 
Voltage across a 4 mH coil due to the current in Fig. 11.54.

Solutions:

a. 0 to 2 ms: Since there is no change in current through the coil, there 
is no voltage induced across the coil. That is,

υ =
∆
∆

=
∆

=L
i
t

L
t

0 V0
L

L

b. 2 ms to 4 ms:

υ ( )=
∆
∆

= ×
×
×







 = × =−

−

−
−L

i
t

20 mV4 10 H
10 10 A

2 10 s
20 10 VL

L 3
3

3
3

c. 4 ms to 9 ms:

υ =
∆
∆

= − ×
×
×









−
−

−
L

i
t

( 4 10 H)
10 10 A

5 10 sL
L 3

3

3
−= − × =− 8 mV8 10 V3

d. 9 ms to :∞

υ =
∆
∆

=
∆

=L
i
t

L
t

0 V0
L

L

The waveform for the average voltage across the coil is shown in 
Fig. 11.55. Note from the curve that
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the voltage across the coil is not determined solely by the 
magnitude of the change in current through the coil (∆i L), but 
by the rate of change of current through the coil (∆ ∆/i tL ).

A similar statement was made for the current of a capacitor due to 
change in voltage across the capacitor.

A careful examination of Fig. 11.55 also reveals that the area under 
the positive pulse from 2 ms to 4 ms equals the area under the negative 
pulse from 4 ms to 9 ms. In Section 11.13, we will find that the area under  
the curves represents the energy stored or released by the inductor. From 
2 ms to 4 ms, the inductor is storing energy, whereas from 4 ms to 9 ms, the  
inductor is releasing the energy stored. For the full period from 0 ms to 
10 ms, energy has been stored and released; there has been no dissipation  
as experienced for the resistive elements. Over a full cycle, both the ideal 
capacitor and inductor do not consume energy but store and release it in 
their respective forms.

11.11 INDUCTORS IN SERIES AND IN 
PARALLEL
Inductors, like resistors and capacitors, can be placed in series or in 
parallel. Increasing levels of inductance can be obtained by placing  
inductors in series, while decreasing levels can be obtained by placing 
 inductors in parallel.

For inductors in series, the total inductance is found in the same man-
ner as the total resistance of resistors in series (Fig. 11.56):

 L L L L L. . .
T N1 2 3= + + + +  (11.30)

L1 L2 L3 LN
LT

FIG. 11.56 
Inductors in series.

L1 L2 L3 LN
LT

FIG. 11.57 
Inductors in parallel.

For inductors in parallel, the total inductance is found in the same 
manner as the total resistance of resistors in parallel (Fig. 11.57):

 
L L L L L
1 1 1 1 . . . 1

T N1 2 3

= + + + +  (11.31)

For two inductors in parallel,

 L
L L

L LT
1 2

1 2

=
+

 (11.32)
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EXAMPLE 11.9 Reduce the network in Fig. 11.58 to its simplest form.

Solution: Inductors L2  and L3 are equal in value and they are in 
parallel, resulting in an equivalent parallel value of

′ = = =L L
N

1.2 H

2
0.6 HT

The resulting 0.6 H is then in parallel with the 1.8 H inductor, and

( )( )( )( )
″ =

′
′ +

=
+

=
−

L
L L

L L

0.6 H 1.8 H

0.6 H 1.8 H
0.45 HT

T

T

4

4

Inductor L1 is then in series with the equivalent parallel value, and

= + ″ = + =L L L 1.01 H0.56 H 0.45 HT T1

The reduced equivalent network appears in Fig. 11.59.

11.12 STEADY-STATE CONDITIONS
We found in Section 11.5 that, for all practical purposes, an ideal (ignor-
ing internal resistance and stray capacitances) inductor can be replaced 
by a short-circuit equivalent once steady-state conditions have been  
established. Recall that the term steady state implies that the voltage and 
current levels have reached their final resting value and will no longer 
change unless a change is made in the applied voltage or circuit config-
uration. For all practical purposes, our assumption is that steady-state 
conditions have been established after five time constants of the storage 
or release phase have passed.

For the circuit in Fig. 11.60(a), for example, if we assume that 
 steady-state conditions have been established, the inductor can be removed 
and replaced by a short-circuit equivalent as shown in Fig. 11.60(b). The 
short-circuit equivalent shorts out the 3Ω  resistor, and current I1 is deter-
mined by

= = =I E
R

5 A
10 V

2 Ω1
1

R1

10 VE

2 V

–

+
L  =  2 H R2 3 V

I1

R1

10 VE

2 V

–

+
R2 3 V

I1

FIG. 11.60 
Substituting the short-circuit equivalent for the inductor for > τt .5

For the circuit in Fig. 11.61(a), the steady-state equivalent is as shown 
in Fig. 11.61(b). This time, resistor R1 is shorted out, and resistors R2 
and R3 now appear in parallel. The result is

= = =I E
R R

10.5 A
||

21 V

2 Ω2 3

R

1.2 kV

L2

1.2 H

L1

0.56 H

L4

1.8 H
L3 = 1.2 H

FIG. 11.58 
Example 11.9.

R

1.2 kV

LT 1.01 H

FIG. 11.59 
Terminal equivalent of the network in 

Fig. 11.58.
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Applying the current divider rule yields

I
R I

R R
7 A

6 Ω (10.5 A)
6 Ω 3 Ω

63
9

A1
3

3 2

( )
=

+
=

+
= =

In the examples to follow, it is assumed that steady-state conditions 
have been established.

EXAMPLE 11.10 Find the current IL  and the voltage VC  for the 
network in Fig. 11.62.

R1

21 VE

5 V
6 mH

R3 6 V

I1

R1

21 VE

5 V

R3 6 V

I1

R2 3 V

10 mHI I

R2 3 V

2 V

I

+

–

+

–

FIG. 11.61 
Establishing the equivalent network for > τ.t 5

E 10 V

–+

L1
C

VC

IL

E 10 V R3
4 V

IL

V  =  0
–

+

I  =  0

+

–

+

–

+ VC –

R2 3 V

R1

2 V

R1

2 V

R3 4 V

R2 3 V

FIG. 11.62 
Example 11.10.

Solution:

=
+

= =I E
R R

2 A
10 V

5 ΩL
1 2

( )( )
=

+
=

+
=V

R E
R R

6 V
3 Ω 10 V

3 Ω 2 ΩC
2

2 1

EXAMPLE 11.11 Find currents I1 and I 2 and voltages V1 and V2 for 
the network in Fig. 11.63.

R1

2 V

I1

R2 5 V
R4 4 V

R3

1 V

I2

L1 L2

R5 7 V

C1 V1

+

–
V2

+

–
C2

E 50 V
+

–

FIG. 11.63 
Example 11.11.
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Solution: Note Fig. 11.64.

( )

=

=
+ +

=
+ +

= =

= = =

I I

E
R R R

V I R

5 A

35 V

50 V

2 Ω 1 Ω 7 Ω

50 V

10 Ω

5 A)(7 Ω

1 2

1 3 5

2 2 5

Applying the voltage divider rule yields

( )( ) ( )( )( )
=

+
+ +

=
+
+ +

= =V
R R E

R R R
40 V

1 Ω 7 Ω 50 V

2 Ω 1 Ω 7 Ω

8 Ω 50 V

10 Ω1
3 5

1 3 5

11.13 ENERGY STORED BY AN INDUCTOR
The ideal inductor, like the ideal capacitor, does not dissipate the electri-
cal energy supplied to it. It stores the energy in the form of a magnetic 
field. A plot of the voltage, current, and power to an inductor is shown 
in Fig. 11.65 during the buildup of the magnetic field surrounding the 
inductor. The energy stored is represented by the shaded area under the 
power curve. Using calculus, we can show that the evaluation of the area 
under the curve yields

 W LI1
2

joules, jmstored
2 ( )=  (11.33)

R1

2 V

I1 R3

1 V

I2

R5 7 V

V1

+

–
V2

+

–

E 50 V
+

–

R4 4 VR2 5 V

FIG. 11.64 
Substituting the short-circuit equivalents for the inductors and the 

open-circuit equivalents for the capacitor for > τt .5

E

Im

iL

vL

pL  =  vLiL

t

Energy stored

FIG. 11.65 
The power curve for an inductive element under transient 

conditions.

EXAMPLE 11.12 Find the energy stored by the inductor in the cir-
cuit in Fig. 11.66 when the current through it has reached its final value.
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Solution:

=
+

=
+

= =

= = × = × =− −

I E
R R

W LI 27 mJ

15 V

3 Ω 2 Ω

15 V

5 Ω
3 A

1
2

1
2

(6 10 H)(3 A) 54
2

10 J

m

m

1 2

stored
2 3 2 3

11.14 APPLICATIONS
Household Dimmer Switch

Inductors can be found in a wide variety of common electronic circuits 
in the home. The typical household dimmer uses an inductor to  protect 
the other components and the applied load from “rush” currents— 
currents that increase at very high rates and often to excessively high 
levels. This feature is particularly important for dimmers since they are 
most commonly used to control the light intensity of an incandescent 
lamp. When a lamp is turned on, the resistance is typically very low, 
and relatively high currents may flow for short periods of time until the 
filament of the bulb heats up. The inductor is also effective in blocking 
high-frequency noise (RFI—radio frequency interference) generated by 
the switching action of the triac in the dimmer. A capacitor is also nor-
mally included from line to neutral to prevent any voltage spikes from 
affecting the  operation of the dimmer and the applied load (lamp, etc.) 
and to assist with the suppression of RFI disturbances.

A photograph of one of the most common dimmers is provided in 
Fig. 11.67(a), with an internal view shown in Fig. 11.67(b). The basic 

R1

3 V

R2

2 V

L 6 mH15 VE

R1

3 V

R2

2 V

15 VE Im

+

–

+

–

FIG. 11.66 
Example 11.12.

(a)

FIG. 11.67 
Dimmer control: (a) external appearance.
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components of most commercially available dimmers appear in the 
schematic in Fig. 11.67(c). In this design, a µ14.5 H inductor is used 
in the choking capacity described above, with a µ0.068 F capacitor 
for the “bypass” operation. Note the size of the inductor with its heavy 
wire and large ferromagnetic core and the relatively large size of the 
two µ0.068 F capacitors. Both suggest that they are designed to absorb 
high-energy disturbances.

The general operation of a dimmer is shown in Fig. 11.68. The con-
trolling network is in series with the lamp and essentially acts as an 
impedance (like resistance—to be introduced in Chapter 15) that can 
vary between very low and very high levels. Very low impedance lev-
els resemble a short circuit, so that the majority of the applied volt-
age appears across the lamp [Fig. 11.68(a)], and very high impedances 
approach an open circuit where very little voltage appears across the 

(b)

Rheostat
housing

Triac

Heat sink
for triac

Diac

47 k
resistor

0.068 mF
capacitors

14.5 mH inductor

V

 FIG. 11.67 
Dimmer control: (b) internal construction; (c) schematic.

Feed

+

–

120 V ac

Dimmer
switch
on/off

Return

Lamp
under control

DIMMER

G
K

A
TRIAC

DIAC

0.068 mF14.5 mH

330 kV
rheostat

47 kV

(c)

0.068    F
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DIMMER
+

–

ZcontrolZchange

Vlamp

Vline

+

–

Vline

Vlamp t

(c)

A

K

Change state
at 1/4 cycle

DIMMER
+

–

A

K

ZcontrolZlow

Vlamp

Vline

+

–

Vline

Vlamp

t

(a)

DIMMER
+

–

A

K

ZcontrolZhigh

Vlamp

Vline

+

–

Vline

Vlamp

t

(b)

(high)

FIG. 11.68 
Basic operation of the dimmer in Fig. 11.67: (a) full voltage to the lamp; 
(b) approaching the cutoff point for the bulb; (c) reduced illumination of 

the lamp.

lamp [Fig. 11.68(b)]. Intermediate levels of impedance control the ter-
minal voltage of the bulb accordingly. For instance, if the controlling 
network has a very high impedance (open-circuit equivalent) through 
half the cycle, as shown in Fig. 11.68(c), the brightness of the bulb will 
be less than full voltage but not 50% due to the nonlinear relationship 
between the brightness of a bulb and the applied voltage. A lagging 
effect is also present in the actual operation of the dimmer, which we 
will learn about when leading and lagging networks are examined in 
the ac chapters.

The controlling knob, slide, or whatever other method is used on the 
face of the switch to control the light intensity is connected directly to 
the rheostat in the branch parallel to the triac. Its setting determines 
when the voltage across the capacitor reaches a sufficiently high level 
to turn on the diac (a bidirectional diode) and establish a voltage at the 
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gate (G) of the triac to turn it on. When it does, it establishes a very 
low resistance path from the anode (A) to the cathode (K), and the  
applied voltage appears directly across the lamp. When the SCR is off, 
its terminal resistance between anode and cathode is very high and can 
be approximated by an open circuit. During this period, the applied 
voltage does not reach the load (lamp). At this time, the impedance of 
the parallel branch containing the rheostat, fixed resistor, and capacitor 
is sufficiently high compared to the load that it can also be ignored, 
completing the open-circuit equivalent in series with the load. Note the 
placement of the elements in the photograph in Fig. 11.67(b) and that 
the metal plate to which the triac is connected is actually a heat sink 
for the device. The on/off switch is in the same housing as the rheostat. 
The total design is certainly well planned to maintain a relatively small 
size for the dimmer.

Since the effort here is to control the amount of power getting to 
the load, the question is often asked, Why don’t we just use a rheostat 
in series with the lamp? The question is best answered by examining 
Fig. 11.69, which shows a rather simple network with a rheostat in  
series with the lamp. At full wattage, a 60 W bulb on a 120 V line the-
oretically has an internal resistance of =R V P2  (from the equation 

( )= = =P V R) 120 V 60 W 240 Ω.2 2  Although the resistance is 
sensitive to the applied voltage, we will assume this level for the follow-
ing calculations.

If we consider the case where the rheostat is set for the same 
level as the bulb, as shown in Fig. 11.69, there will be 60 V across 
the rheostat and the bulb. The power to each element is then 

( )= = =P V R 60 V 240 Ω 15 W.2 2  The bulb is certainly quite dim, 
but the rheostat inside the dimmer switch is dissipating 15 W of power 
on a continuous basis. When you consider the size of a 2 W potentiometer 
in your laboratory, you can imagine the size rheostat you would need for  
15 W, not to mention the purchase cost, although the biggest concern 
would probably be all the heat developed in the walls of the house. You 
would be paying for electric power that was not performing a useful func-
tion. Also, if you had four dimmers set at the same level, you would actu-
ally be wasting sufficient power to fully light another 60 W bulb.

On occasion, especially when the lights are set very low by the dim-
mer, a faint “singing” can sometimes be heard from the light bulb. This 
effect sometimes occurs when the conduction period of the dimmer is 
very small. The short, repetitive voltage pulse applied to the bulb sets 
the bulb into a condition similar to a resonance state (Chapter 20). The 
short pulses are just enough to heat up the filament and its supporting 
structures, and then the pulses are removed to allow the filament to 
cool down again for a longer period of time. This repetitive heating 
and cooling cycle can set the filament in motion, and the “singing” can 
be heard in a quiet environment. Incidentally, the longer the filament, 
the louder is the “singing.” A further condition for this effect is that the 
filament must be in the shape of a coil and not a straight wire so that 
the “slinky” effect can develop. Although all incandescent bulbs are 
dimmable (as just described) only some LED lights can be dimmed. If 
dimming is an important consideration, be sure to purchase dimmable 
LED fixtures.

1 kV

240 V

240 V
60 V

+

–

Rheostat
dimmer
in wall

+

–

60 V
+

–Vline = 120 V

FIG. 11.69 
Direct rheostat control of the 

brightness of a 60 W bulb.
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 6.  What are the inductance and the range of expected values 
for an inductor with the following label?
a. 392K
b. blue gray black J
c. 47K
d. brown green red K

SECTION 11.4  Induced Voltage υL

 7.  If the flux linking a coil of 60 turns changes at a rate of  
140 mWb/s, what is the induced voltage across the coil?

 8.  Determine the rate of change of flux linking a coil if 25 V 
are induced across a coil of 400 turns.

 9.  How many turns does a coil have if 50 mV are induced 
across the coil by a change in flux of 5 mWb/s?

 10.  Find the voltage induced across a coil of 33 mH if the rate 
of change of current through the coil is:
a. 2 A/s
b. 14 mA/ms
c. µ5 mA/200 s

SECTION 11.5  R-L Transients: The Storage Phase

 11.  For the circuit of Fig. 11.73 composed of standard values:
a. Determine the time constant.
b. Write the mathematical expression for the current iL 

after the switch is closed.
c. Repeat part (b) for Lυ  and .Rυ
d. Determine iL and Lυ  at one, three, and five time con-

stants.
e. Sketch the waveforms of i ,L  ,Lυ  and .Rυ

PROBLEMS

SECTION 11.2  Magnetic Field

 1.  For the electromagnet in Fig. 11.70:
a. Find the flux density in Wb/m .2

b. What is the flux density in teslas?
c. What is the applied magnetomotive force?
d. What would the reading of the meter in Fig. 11.14 read 

in gauss?

A = 0.02 m2

F = 4 3 10–4 Wb

50 turnsI = 2.2 A

Steel core

FIG. 11.70 
Problem 1.

l  =  1 in.

d  =  0.15 in.

250  turns

Air core

FIG. 11.71 
Problems 2 and 3.

A  =  1.5 ×  10–4 m2

200 turns

l  =  0.20 m

r = 1000m

FIG. 11.72 
Problem 4.

SECTION 11.3  Inductance

 2.  For the inductor in Fig. 11.71, find the inductance L in henries.

 3. a. Repeat Problem 2 with a ferromagnetic core with 
600.rµ =

b. How is the new inductance related to the old one? How 
does it relate to the value of rµ ?

 4.  For the inductor in Fig. 11.72, find the approximate induc-
tance L in henries.

 5.  An air-core inductor has a total inductance of 4.7 mH.
a.  What is the inductance if the only change is to increase 

the number of turns by a factor of three?
b. What is the inductance if the only change is to increase 

the length by a factor of three?
c. What is the inductance if the area is doubled, the length 

cut in half, and the number of turns doubled?
d. What is the inductance if the area, length, and number of 

turns are cut in half and a ferromagnetic core with a rµ  
of 1500 is inserted?

–
E

+

iL

R

vLL 470 mH40 V

20 kV

–+ vR

+

–

FIG. 11.73 
Problem 11.

 12.  For the circuit in Fig. 11.74 composed of standard values:
a. Determine .τ
b. Write the mathematical expression for the current iL 

after the switch is closed at =t 0 s.
c. Write the mathematical expression for Lυ  and Rυ  after 

the switch is closed at =t 0 s.
d. Determine iL and Lυ  at t 1 ,τ=  3 ,τ  and 5 .τ
e. Sketch the waveforms of i ,L  ,Lυ  and υR for the storage 

phase.
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512 | | | Inductor

 13.  For the network of Fig. 11.75:
a. Write the expression for the voltage Lυ  after the switch 

is closed.
b. Sketch the waveform for the source current after the 

switch is closed.
c. How long after the switch is closed can we assume the 

inductor is acting like a short circuit?

12 

12 mH 

V
+

–
28 V

+

–

20 kV

is

+ vL –

E1 E2

FIG. 11.75 
Problem 13.

0

40 mA

t5t  = 20 ms 

iL

FIG. 11.76 
Problem 14.

iL
vL+ –

36 VE

8 mA

3.9 kVR

120 mH

L

+

–

FIG. 11.77 
Problems 15 and 51.

R

2.2 kV

L

4.7 mH

iL

+ vR – + vL –

+12 V

FIG. 11.74 
Problem 12.

  14.  Given a supply of 24 V, use standard values to design a cir-
cuit to have the response of Fig. 11.76.

SECTION 11.6  Initial Conditions

 15.  For the circuit in Fig. 11.77:
a. Write the mathematical expressions for the current iL  

and the voltage Lυ  following the closing of the switch. 
Note the magnitude and the direction of the initial cur-
rent.

b. Sketch the waveform of iL  and Lυ  for the entire period 
from initial value to steady-state level.

 16.  In this problem, the effect of reversing the initial current is 
investigated. The circuit in Fig. 11.78 is the same as that 
appearing in Fig. 11.77, with the only change being the 
direction of the initial current.
a. Write the mathematical expressions for the current iL  

and the voltage Lυ  following the closing of the switch. 
Take careful note of the defined polarity for Lυ  and the 
direction for i .L

b. Sketch the waveform of iL and Lυ  for the entire period 
from initial value to steady-state level.

c. Compare the results with those of Problem 15.

iL
vL+ –

36 VE

8 mA

3.9 kVR

120 mH

L

+

–

FIG. 11.78 
Problem 16.

1.2 kVR1 2.2 kVR2

20 V

E
+ –

L

100 mH
iL

–
vR2
+

FIG. 11.79 
Problem 17.

 17.  For the network of Fig. 11.79:
a. Find the expression for the voltage across the resistor 

R2 after the switch is closed.
b. Write the expression for the current through the inductor.
c. Sketch both waveforms.
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 18.  For the network in Fig. 11.80:
a. Write the mathematical expressions for the current iL 

and the voltage Lυ  following the closing of the switch. 
Note the magnitude and the direction of the initial cur-
rent.

b. Sketch the waveform of iL and Lυ  for the entire period 
from initial value to steady-state level.

iL

R1 = 1.2 kV

2.2 kV

R2

I 5 mA 2 HL vL

+

–
4 mA

FIG. 11.80 
Problem 18.

iL

vL+ –

12 V

6 mA

L = 200 mH

I 4 mA R1 = 2.2 kV

R2

8.2 kV

–

+

FIG. 11.81 
Problem 19.

–

+
R2 L 10 mH

R1 iL

vL8 V 
+

–

36 kV

12 kV

FIG. 11.82 
Problem 20.

*19. For the network in Fig. 11.81:
a. Write the mathematical expressions for the current iL 

and the voltage Lυ  following the closing of the switch. 
Note the magnitude and direction of the initial current.

b. Sketch the waveform of iL and Lυ  for the entire period 
from initial value to steady-state level.

SECTION 11.7  R-L Transients: The Release Phase

 20.  For the network in Fig. 11.82:
a.  Determine the mathematical expressions for the current 

iL  and the voltage Lυ  when the switch is closed.
b. Repeat part (a) if the switch is opened after a period of 

five time constants has passed.
c. Sketch the waveforms of parts (a) and (b) on the same 

set of axes.

*21. For the network in Fig. 11.83:
a. Determine the mathematical expressions for the current 

iL and the voltage Lυ  following the closing of the switch.
b. Repeat part (a) if the switch is opened at µ=t 1 s.
c. Sketch the waveforms of parts (a) and (b) on the same 

set of axes.

–

+
R2 10 kV L 4.7 mH

R1

2 kV

iL

vLE 12 V
+

–

FIG. 11.83 
Problem 21.

E –6 V 

–

+

R2 8.2 kV

R1 6.8 kV

L 5 mH vL

–

+
vR2

iL

iL

FIG. 11.84 
Problem 22.

*22. For the network in Fig. 11.84:
a. Write the mathematical expression for the current iL 

and the voltage Lυ  following the closing of the switch.
b. Determine the mathematical expressions for iL  and Lυ  if 

the switch is opened after a period of five time constants 
has passed.

c. Sketch the waveforms of iL  and Lυ  for the time periods 
defined by parts (a) and (b).

d. Sketch the waveform for the voltage across R2 for the 
same period of time encompassed by iL and .Lυ  Take 
careful note of the defined polarities and directions in 
Fig. 11.84.

SECTION 11.8  Thévenin Equivalent: τ = L R/ Th

 23.  For Fig. 11.85:
a. Determine the mathematical expressions for iL and Lυ  

following the closing of the switch.
b. Determine iL and Lυ  after one time constant.
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 24.  For Fig. 11.86:
a. Determine the mathematical expressions for iL and Lυ  

following the closing of the switch.
b. Determine iL and Lυ  at =t 100 ns.

L 47 mH

3 kV

E 12 V

iL

2 kV

vL

+

–

+

–
6.2 kV

2.2 kV

FIG. 11.85 
Problems 23 and 52.

–

+
12 kV L 2 mH

R2

24 kV
iL

vL

I =
4 mA R1

E

20 V
+–

FIG. 11.86 
Problem 24.

 *25.  For Fig. 11.87:
a. Determine the mathematical expressions for iL and Lυ  

following the closing of the switch. Note the defined 
direction for iL and polarity for .Lυ

b. Calculate iL and Lυ  at µ=t 10 s.
c. Write the mathematical expressions for the current iL 

and the voltage Lυ  if the switch is opened at µ=t 10 s.
d. Sketch the waveforms of iL and Lυ  for parts (a) and (c).

–

+
R2 4.7 kV L 10 mH vL

iL

R1 2.2 kV

E  =  –10 V

FIG. 11.87 
Problem 25.

iL

36             V L
10 mH

R3

2.7 kV

R1

8.2 kV

R2 2.2 kV R4   1 kV  E vL

+

–

+

–

FIG. 11.88 
Problem 26.

iL4.7 kV

R1

16 VE

1 kVR3

2 HL

3.3 kV

R2

vL

+

–
(t = 0 s)

+

–

FIG. 11.89 
Problem 27.

R2 4 kV R4 1.5 kV

L 3 mHR3 3 kV

R1

12 kV

+20 V

iL

vL
–

+

–8 V 

FIG. 11.90 
Problem 28.

 *26.  For the network in Fig. 11.88, the switch is closed at 
=t 0 s.

a. Determine Lυ  at µ=t 25 s.
b. Find Lυ  at µ=t 1 s.
c. Calculate R1

υ  at t 1 .τ=
d. Find the time required for the current iL to reach 1 mA.

 *27. The switch in Fig. 11.89 has been open for a long time. It is 
then closed at t 0 s.=
a. Write the mathematical expression for the current iL and 

the voltage Lυ  after the switch is closed.
b. Sketch the waveform of iL and Lυ  from the initial value 

to the steady-state level.

*28. a. Determine the mathematical expressions for iL and Lυ  
following the closing of the switch in Fig. 11.90. The 
steady-state values of iL and Lυ  are established before 
the switch is closed.

b. Determine iL and Lυ  after two time constants of the 
storage phase.

c. Write the mathematical expressions for the current iL 
and the voltage Lυ  if the switch is opened at the instant 
defined by part (b).

d. Sketch the waveforms of iL and Lυ  for parts (a) and (c).
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*29. The switch for the network in Fig. 11.91 has been closed for 
about 1 h. It is then opened at the time defined as =t 0 s.
a. Determine the time required for the current iL to drop to 

µ10 A.
b. Find the voltage Lυ  at µ=t 10 s.
c. Calculate Lυ  at t 5 .τ=

–

+
L 5 H

iL

vL

24 V

2 MV

E

200V

V
+ COM

+

–
Rmeter = 10 MV

(t = 0 s)

FIG. 11.91 
Problem 29.

iL2.2 

–24 V 

kV

1.2 kV

R1
vL+ –

1.2 H

(t = 0 s)

4.7 kV

R2

FIG. 11.92 
Problem 30.

16 V E

200V

V
+ COM

L 5 H

iL

vL

2 MV

+

–
+

–
Rmeter = 10 MV

FIG. 11.93 
Problem 33.

0 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

30

15

t (ms)

iL (mA)

1 2 3 4 5 6 7 8 9

FIG. 11.94 
Problem 34.

*30. The switch in Fig. 11.92 has been closed for a long time. It 
is then opened at t 0 s.=
a. Write the mathematical expression for the current iL and 

the voltage Lυ  after the switch is opened.
b. Sketch the waveform of iL and Lυ  from initial value to 

the steady-state level.

SECTION 11.9  Instantaneous Values

 31.  Given ( )= − −i e150 mA 1 :L
t /15 ms

a. Determine iL at =t 1.5 ms.
b. Determine iL at =t 150 ms.
c. Find the time t when iL will equal 75 mA.
d. Find the time t when iL will equal 149 mA.

32. a. If the measured current for an inductor during the stor-
age phase is µ126.4 A at after a period of one time con-
stant has passed, what is the maximum level of current 
to be achieved?

b. When the current of part (a) reaches µ160 A, µ64.4 s 
have passed. Find the time constant of the network.

c. If the circuit’s resistance is 500 Ω, what is the value of 
the series inductor to establish the current of part (a)? Is 
the resulting inductance a standard value?

d. What is the required supply voltage?

 33.  The network in Fig. 11.93 employs a DMM with an internal 
resistance of 10 MΩ in the voltmeter mode. The switch is 
closed at =t 0 s.
a. Find the voltage across the coil the instant after the 

switch is closed.
b.  What is the final value of the current iL?
c. How much time must pass before iL reaches µ10 A?
d. What is the voltmeter reading at µ=t s12 ?

SECTION 11.10  Average Induced Voltage: Lυ av

 34.  Find the waveform for the voltage induced across a 200 mH 
coil if the current through the coil is as shown in Fig. 11.94.
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 35.  Find the waveform for the voltage induced across a 5 mH 
coil if the current through the coil is as shown in Fig. 11.95.

1918

iL (mA)

0 t (ms)1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
–5

–10

–15

–20

20

15

10

5

FIG. 11.95 
Problem 35.

vL 

–10 V

–25 V

t (m  s)

20 V

0 5 10 12 16 24

FIG. 11.96 
Problem 36.

3.3 mH
2.4 mH

10 mH 3.4 mH

= 5.6 mHL4

= 4 mHL3

L2

L1
L6 L5

LT

FIG. 11.97 
Problem 37.

*36. Find the waveform for the current of a 10 mH coil if the 
voltage across the coil follows the pattern in Fig. 11.96. The 
current iL is 4 mA at = −t 0 s.

SECTION 11.11  Inductors in Series and in Parallel

 37.  Find the total inductance of the circuit of Fig. 11.97.

 38.  Find the total inductance for the network of Fig. 11.98.

9.1 kV

1 kV

4.7 kV

E 20 V  
+

–

6.8 mH 3.3 mH

1.8 mH4.7 mH

FIG. 11.99 
Problem 39.

L3

LT
L5

L2 L4

55 mH

22 mH

18 mH

60 mH
20 mH

L1

FIG. 11.98 
Problem 38.

 39.  Reduce the network in Fig. 11.99 to the fewest number of 
components.
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 40.  Reduce the network in Fig. 11.100 to the fewest elements.

10 mF 

36 mH 91 mF 9.1 mF 

24 mH

12 mH
6.2 mH

3.3 mF

FIG. 11.100 
Problem 40.

5 mH

12 mF  

42 mF 

20 mH

7 mF  

2.2 kV

FIG. 11.101 
Problem 41.

iL2 kV

vR

E 36 V vL

+

–

+ –

+

–
8.2 kV 3 mH 2 mH

FIG. 11.102 
Problem 42.

10 mH

iL

2 kV

2 kV

20 mH

8 mA 8.2 kV

–

+
vL

FIG. 11.103 
Problem 43.

–

+

R1

R2 20 kV

iL

L2 10 HL3 vL3

–

+

vL

20 V L1

3 H10 kV

4.7 H

FIG. 11.104 
Problem 44.

R3 4 V

10 V

R2
I1

I2

R1 4 V

1 H

L

C

1

2 H

L2

E 25 V
+

–

10 mF 

FIG. 11.105 
Problem 45.

 41.  Reduce the network of Fig. 11.101 to the fewest elements.

*42. For the network in Fig. 11.102:
a. Write the mathematical expressions for the voltages Lυ  

and Rυ  and the current iL  if the switch is closed at 
=t 0 s.

b. Sketch the waveforms of ,Lυ  ,Rυ  and i .L

*43. For the network in Fig. 11.103:
a. Write the mathematical expressions for the voltage Lυ  

and the current iL if the switch is closed at =t 0 s. Take 
special note of the required .Lυ

b. Sketch the waveforms of Lυ  and i .L

*44. For the network in Fig. 11.104:
a.  Find the mathematical expressions for the voltage Lυ  

and the current iL following the closing of the switch.
b. Sketch the waveforms of Lυ  and iL obtained in part (a).
c. Determine the mathematical expression for the voltage 

L3
υ  following the closing of the switch, and sketch the 
waveform.

SECTION 11.12  Steady-State Conditions

 45.  Find the steady-state currents I1 and I 2 for the network in 
Fig. 11.105.
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I2

E 100 V

2 V 4 H 12 V 

V1 2 mF V2 2 mF 

I1
+

–

+

–

+

–

FIG. 11.106 
Problem 46.

 46.  Find the steady-state currents and voltages for the network 
in Fig. 11.106.

 47.  Find the steady-state currents and voltages for the network 
in Fig. 11.107 after the switch is closed.

2 H

4 VV1

I1

I2

8 V V2

100 mF 

12 V

+

–+

–

–8 V

FIG. 11.107 
Problem 47.

6 V

V1

20 V

–

+

4 V

I2

5 V

75 V 

I1
6 mF 4 H

0.5 H

100 mF 
+

–
V2

–

+

FIG. 11.108 
Problem 48.

GLOSSARY

Ampère’s circuital law A law establishing the fact that the alge-
braic sum of the rises and drops of the magnetomotive force 
(mmf) around a closed loop of a magnetic circuit is equal to 
zero.

Choke A term often applied to an inductor, due to the ability of 
an inductor to resist a change in current through it.

Diamagnetic materials Materials that have permeabilities 
slightly less than that of free space.

Electromagnetism Magnetic effects introduced by the flow of 
charge, or current.

Faraday’s law A law stating the relationship between the volt-
age induced across a coil and the number of turns in the coil 
and the rate at which the flux linking the coil is changing.

Ferromagnetic materials Materials having permeabilities hun-
dreds and thousands of times greater than that of free space.

Flux density (B) A measure of the flux per unit area perpendic-
ular to a magnetic flux path. It is measured in teslas (T) or 
webers per square meter Wb/m .2( )

Inductance (L) A measure of the ability of a coil to oppose any 
change in current through the coil and to store energy in the 
form of a magnetic field in the region surrounding the coil.

Inductor (coil) A fundamental element of electrical systems 
constructed of numerous turns of wire around a ferromagnetic 
core or an air core.

Lenz’s law A law stating that an induced effect is always such as 
to oppose the cause that produced it.

Magnetic flux lines Lines of a continuous nature that reveal the 
strength and direction of a magnetic field.

Magnetomotive force (mmf) (f) The “pressure” required 
to establish magnetic flux in a ferromagnetic material. It is 
 measured in ampere-turns (At).

Paramagnetic materials Materials that have permeabilities 
slightly greater than that of free space.

Permanent magnet A material such as steel or iron that will 
 remain magnetized for long periods of time without the aid 
of external means.

 Permeability µ( )  A measure of the ease with which  magnetic 
flux can be established in a material. It is measured in 
Wb/A m.⋅

Relative permeability r( )µ  The ratio of the permeability of a 
material to that of free space.

 48.  Find the indicated steady-state currents and voltages for the 
network in Fig. 11.108.
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12Magnetic Circuits

12.1 INTRODUCTION
Magnetic and electromagnetic effects play an important role in the design of a wide variety of 
electrical/electronic systems in use today. Motors, generators, transformers, loudspeakers, relays, 
medical equipment and movements of all kinds depend on magnetic effects to function properly. 
The response and characteristics of each have an impact on the current and voltage levels of the 
system, the efficiency of the design, the resulting size, and many other important considerations.

Fortunately, there is some similarity between the analyses of electric circuits and magnetic 
circuits. The magnetic flux of magnetic circuits has properties very similar to the current of 
electric circuits. As shown in Fig. 11.15, it has a direction and a closed path. The magnitude 
of the established flux is a direct function of the applied magnetomotive force, resulting in a 
duality with electric circuits, where the resulting current is a function of the magnitude of the 
applied voltage. The flux established is also inversely related to the structural opposition of the 
magnetic path in the same way the current in a network is inversely related to the resistance of 
the network. All of these similarities are used throughout the analysis to clarify the approach.

One of the difficulties associated with studying magnetic circuits is that three different systems 
of units are commonly used in the industry. The manufacturer, application, and type of compo-
nent all have an impact on which system is used. To the extent practical, the SI system is applied 
throughout the chapter. References to the CGS and English systems require the use of Appendix D.

12.2 MAGNETIC FIELD
The magnetic field distribution around a permanent magnet or electromagnet was covered in 
detail in Chapter 11. Recall that flux lines strive to be as short as possible and take the path 
with the highest permeability. The flux density is defined as follows [Eq. (11.1) repeated here 
for convenience]:

B

A

B
A

 

Wb/m teslas T

webers Wb          

m                        

2

2

( )

( )= =

Φ =

=

= Φ  (12.1)

• Become aware of the similarities and differences 
between the analysis of magnetic and electric circuits.

• Become familiar with the important parameters of a 
magnetic circuit and how they relate to each other.

• Learn how to work with parameters not related in a 
linear manner as occurred for electric circuits.

•  Develop a familiarity with the important 
characteristic charts that relate the magnetic 
parameters to each other.

• Begin to appreciate why a clear understanding of 
how the characteristics of a magnetic material play 
an important part in the design of electrical/
electronic systems.

Objectives
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The “pressure” on the system to establish magnetic lines of force is 
determined by the applied magnetomotive force, which is directly related 
to the number of turns and current of the magnetizing coil as appearing 
in the following equation [Eq. (11.3) repeated here for convenience]:

 

f

f NI N

I

 

ampere-turns  At

turns  t               

ampere-turns  At

( )

( )

( )

=
= =

=
 (12.2)

In many ways, the magnetomotive force NI in a magnetic circuit has 
the same impact as a voltage source in an electric circuit. They both 
establish the resulting level of excitation; in electric circuits the current 
and in a magnetic circuit the flux. The greater the number of turns or 
current applied to the energizing coil, the greater the resulting flux in the 
magnetic circuit. In many designs, to keep the current at relatively low 
levels, the number of turns can be quite high.

The level of magnetic flux established in a ferromagnetic core is directly 
related to the permeability of the material. Ferromagnetic materials have 
a very high level of permeability, while nonmagnetic materials such as air 
and wood have very low levels. The ratio of the permeability of the material 
to that of air is called the relative permeability and is defined by the fol-
lowing equation [Eq. (11.5) repeated here for convenience]:

     4 10  Wb/Amr
o

o
7µ µ

µ
µ π= = × −

 (12.3)

As mentioned in Chapter 11, the values of µr  are not provided in a 
table format because the value is determined by the other quantities of 
the magnetic circuit. Change the magnetomotive force, and the relative 
permeability changes.

12.3 RELUCTANCE
The resistance of a material to the flow of charge (current) is determined 
for electric circuits by the equation

R l
A

ohms,  Ωρ ( )=

The reluctance of a material to the setting up of magnetic flux lines 
in the material is determined by the following equation:

  l
A

rels,  or At/Wb5
µ

( )=   (12.4)

where 5 is the reluctance, l is the length of the magnetic path, and A is 
the cross-sectional area. The t in the units At/Wb is the number of turns 
of the applied winding. More is said about ampere-turns (At) in the next  
section. Note that the resistance and reluctance are inversely propor-
tional to the area, indicating that an increase in area results in a reduction 
in each and an increase in the desired result: current and flux. For an  
increase in length, the opposite is true, and the desired effect is reduced. 
The reluctance, however, is inversely proportional to the permeability, 
while the resistance is directly proportional to the resistivity. The larger 
the µ  or the smaller the ρ, the smaller are the reluctance and resistance, 
respectively. Obviously, therefore, materials with high permeability, 
such as the ferromagnetics, have very small reluctances and result in an  
increased measure of flux through the core. There is no widely accepted 
unit for reluctance, although the rel and the At/Wb are usually applied.
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12.4 OHM’S LAW FOR MAGNETIC CIRCUITS
Recall the equation

=Effect cause
opposition

appearing in Chapter 4 to introduce Ohm’s law for electric circuits. For 
magnetic circuits, the effect desired is the flux Φ.  The cause is the mag-
netomotive force (mmf) ,f  which is the external force (or “pressure”) 
required to set up the magnetic flux lines within the magnetic material. 
The opposition to the setting up of the flux Φ is the reluctance 5.

Substituting, we have

 f
5

Φ =  (12.5)

Since f NI ,=  Eq. (12.5) clearly reveals that an increase in the number 
of turns or the current through the wire in Fig. 12.1 results in an increased 
“pressure” on the system to establish the flux lines through the core. 

Although there is a great deal of similarity between electric and mag-
netic circuits, you must understand that the flux Φ  is not a “flow” vari-
able such as current in an electric circuit. Magnetic flux is established 
in the core through the alteration of the atomic structure of the core due 
to external pressure and is not a measure of the flow of some charged 
particles through the core.

12.5 MAGNETIZING FORCE
The magnetomotive force per unit length is called the magnetizing 
force (H). In equation form,

 
fH
l

    At/m( )=  (12.6)

Substituting for the magnetomotive force results in

 H Nl
l

    At/m( )=  (12.7)

For the magnetic circuit in Fig. 12.2, if =NI 40 At  and =l 0.2 m, 
then

H NI
l

40 At
0.2 m

200 At/m= = =  

In words, the result indicates that there are 200 At of “pressure” per 
meter to establish flux in the core.

Note in Fig. 12.2 that the direction of the flux Φ can be determined by 
placing the fingers of your right hand in the direction of current around the 
core and noting the direction of the thumb. It is interesting to realize that 
the magnetizing force is independent of the type of core material, it is deter-
mined solely by the number of turns, the current, and the length of the core.

The applied magnetizing force has a pronounced effect on the resulting 
permeability of a magnetic material. As the magnetizing force increases, 
the permeability rises to a maximum and then drops to a minimum, as 
shown in Fig. 12.3 for three commonly employed magnetic materials.

The flux density and the magnetizing force are related by the follow-
ing equation:

 B Hµ=  (12.8)

I

I

F

N turns

FIG. 12.1 
Defining the components of a 

magnetomotive force.

Mean length l  =  0.2 m

I

I
N turns

F

FIG. 12.2 
Defining the magnetizing force of a magnetic 

circuit.
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This equation indicates that for a particular magnetizing force, the 
greater the permeability, the greater is the induced flux density.

Since henries (H) and the magnetizing force (H) use the same capital 
letter, it must be pointed out that all units of measurement in the text, 
such as henries, use roman letters, such as H, whereas variables such as 
the magnetizing force use italic letters, such as H.

12.6 HYSTERESIS
A curve of the flux density B versus the magnetizing force H of a material 
is of particular importance to the engineer. Curves of this type can usually 
be found in manuals, descriptive pamphlets, and brochures published by 
manufacturers of magnetic materials. A typical B-H curve for a ferromag-
netic material such as steel can be derived using the setup in Fig. 12.4.

The core is initially unmagnetized, and the current =I 0. If the cur-
rent I is increased to some value above zero, the magnetizing force H 
increases to a value determined by

H
NI

l
↑ =

↑

The flux Φ and the flux density B B A( )= Φ  also increase with the 
current I (or H). If the material has no residual magnetism, and the mag-
netizing force H is increased from zero to some value H ,a  the B-H curve 
follows the path shown in Fig. 12.5 between o and a. If the magnetizing 
force H is increased until saturation H s( ) occurs, the curve continues as 
shown in the figure to point b. When saturation occurs, the flux density 
has, for all practical purposes, reached its maximum value. Any further 
increase in current through the coil increasing H NI l=  results in a 
very small increase in flux density B.

If the magnetizing force is reduced to zero by letting I decrease to 
zero, the curve follows the path of the curve between b and c. The flux 
density B ,R  which remains when the magnetizing force is zero, is called 

10

9

8

7

6

5

4

3

2

1

0

m (permeability)  3 10–3

300 600 900 1200 1500 1800 2100 2400 2700 3000 3300 3600 3900 4200 4500 H (At/m)

Cast steel

Cast iron
Sheet steel

FIG. 12.3 
Variation of µ with the magnetizing force.

I

I
N turns

Steel

AF

FIG. 12.4 
Series magnetic circuit used to 

define the hysteresis curve.
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the residual flux density. It is this residual flux density that makes it 
possible to create permanent magnets. If the coil is now removed from 
the core in Fig. 12.4, the core will still have the magnetic properties 
determined by the residual flux density, a measure of its “retentivity.” If 
the current I is reversed, developing a magnetizing force, −H, the flux 
density B decreases with an increase in I. Eventually, the flux density 
will be zero when −H d  is reached. The magnetizing force −H d  required 
to “coerce” the flux density to reduce its level to zero is called the coer-
cive force, a measure of the coercivity of the magnetic sample. As the 
negative magentizing force is increased until saturation again occurs and 
is then reversed and brought back to zero, the path def results. If the 
magnetizing force is increased in the positive direction ( )+H ,  the curve 
traces the path shown from f to b. The entire curve represented by bcdefb 
is called the hysteresis curve for the ferromagnetic material, from the 
Greek hysterein, meaning “to lag behind.” The flux density B lagged 
behind the magnetizing force H during the entire plotting of the curve. 
When H was zero at c, B was not zero but had only begun to decline. 
Long after H had passed through zero and had become equal to −H d  did 
the flux density B finally become equal to zero.

If the entire cycle is repeated, the curve obtained for the same core 
will be determined by the maximum H applied. Three hysteresis loops 
for the same material for maximum values of H less than the saturation 
value are shown in Fig. 12.6. In addition, the saturation curve is repeated 
for comparison purposes.

Saturationb
B (T)

BR
c

d– Hs

Saturation

– Bmax
– BR

f

Ha Hs

e

– Hd
H (NI/l)

Bmax

a

o

FIG. 12.5 
Hysteresis curve.

HS

H (At/m)
H3

Hx

B (T)

H1 H2

FIG. 12.6 
Defining the normal magnetization curve.
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Note from the various curves that for a particular value of H, say, 
H ,x  the value of B can vary widely, as determined by the history of the 
core. In an effort to assign a particular value of B to each value of H, we 
compromise by connecting the tips of the hysteresis loops. The resulting 
curve, shown by the heavy, solid line in Fig. 12.6 and for various materi-
als in Fig. 12.7, is called the normal magnetization curve. An expanded 
view of one region appears in Fig. 12.8.

A comparison of Figs. 12.3 and 12.7 shows that for the same value of 
H, the value of B is higher in Fig. 12.7 for the materials with the higher 
µ  in Fig. 12.3. This is particularly obvious for low values of H. This 
correspondence between the two figures must exist since µ=B H.  In 
fact, if in Fig. 12.7 we find µ  for each value of H using the equation 

B H ,µ =  we obtain the curves in Fig. 12.3.
It is interesting to note that the hysteresis curves in Fig. 12.6 have a point 

symmetry about the origin; that is, the inverted pattern to the left of the verti-
cal axis is the same as that appearing to the right of the vertical axis. In addi-
tion, you will find that a further application of the same magnetizing forces 
to the sample results in the same plot. For a current I in H NI l=  that 
moves between positive and negative maximums at a fixed rate, the same 
B-H curve results during each cycle. Such will be the case when we examine 
ac (sinusoidal) networks in the later chapters. The reversal of the field ( )Φ  
due to the changing current direction results in a loss of energy that can best 
be described by first introducing the domain theory of magnetism.

Within each atom, the orbiting electrons (described in Chapter 2) 
are also spinning as they revolve around the nucleus. The atom, 
due to its spinning electrons, has a magnetic field associated with it.  

0 300 600 900 1200 1500 1800 2100 2400 2700 3000 3300 3600 3900 4200 4500

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

B (T)

H(At/m)

Cast steel

Sheet steel

Cast iron

FIG. 12.7 
Normal magnetization curve for three ferromagnetic materials.
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FIG. 12.8 
Expanded view of Fig. 12.7 for the low magnetizing force region.
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(a) (b)

S N

FIG. 12.9 
Demonstrating the domain theory of magnetism.

In nonmagnetic materials, the net magnetic field is effectively zero since 
the magnetic fields due to the atoms of the material oppose each other. In 
magnetic materials such as iron and steel, however, the magnetic fields 
of groups of atoms numbering in the order of 1012  are aligned, form-
ing very small bar magnets. This group of magnetically aligned atoms is 
called a domain. Each domain is a separate entity; that is, each domain 
is independent of the surrounding domains. For an unmagnetized sample 
of magnetic material, these domains appear in a random manner, such as 
shown in Fig. 12.9(a). The net magnetic field in any one direction is zero.

When an external magnetizing force is applied, the domains that 
are nearly aligned with the applied field grow at the expense of the less  
favorably oriented domains, such as shown in Fig. 12.9(b). Eventually, 
if a sufficiently strong field is applied, all of the domains have the ori-
entation of the applied magnetizing force, and any further increase in 
external field will not increase the strength of the magnetic flux through 
the core, a condition referred to as saturation. The elasticity of the above 
is evidenced by the fact that when the magnetizing force is removed, the 
alignment is lost to some measure, and the flux density drops to B .R  In 
other words, the removal of the magnetizing force results in the return of 
a number of misaligned domains within the core. The continued align-
ment of a number of the domains, however, accounts for our ability to 
create permanent magnets.

At a point just before saturation, the opposing unaligned domains 
are reduced to small cylinders of various shapes referred to as bubbles. 
These bubbles can be moved within the magnetic sample through the 
application of a controlling magnetic field. These magnetic bubbles form 
the basis of the recently designed bubble memory system for computers.

12.7 AMPÈRE’S CIRCUITAL LAW
As mentioned in the introduction to this chapter, there is a broad sim-
ilarity between the analyses of electric and magnetic circuits. This has  
already been demonstrated to some extent for the quantities in Table 12.1.

If we apply the “cause” analogy to Kirchhoff’s voltage law 

�( )∑ =V 0  we obtain the following:

 f 0    (for magnetic circuits)�∑ =   (12.9)

which, in words, states that the algebraic sum of the rises and drops of 
the mmf around a closed loop of a magnetic circuit is equal to zero; 
that is, the sum of the rises in mmf equals the sum of the drops in mmf 
around a closed loop.

Eq. (12.9) is referred to as Ampère’s circuital law. When it is  
applied to magnetic circuits, sources of mmf are expressed by the equation

 f NI     At( )=  (12.10)

TABLE 12.1

Electric 
Circuits

Magnetic 
Circuits

Cause E f
Effect I Φ
Opposition R 5
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The equation for the mmf drop across a portion of a magnetic circuit can 
be found by applying the relationships listed in Table 12.1; that is, for 
electric circuits,

=V IR

resulting in the following for magnetic circuits:

 f     At5 ( )= Φ  (12.11)

where φ  is the flux passing through a section of the magnetic circuit and 
R is the reluctance of that section. The reluctance, however, is seldom 
calculated in the analysis of magnetic circuits. A more practical equation 
for the mmf drop is

 f Hl     At( )=  (12.12)

as derived from Eq. (12.6), where H is the magnetizing force on a sec-
tion of a magnetic circuit and l is the length of the section.

As an example of Eq. (12.9), consider the magnetic circuit appearing 
in Fig. 12.10 constructed of three different ferromagnetic materials.

Applying Ampère’s circuital law, we have

All the terms of the equation are known except the magnetizing force for 
each portion of the magnetic circuit, which can be found by using the 
B-H curve if the flux density B is known.

12.8 FLUX Φ
If we continue to apply the relationships described in the previous sec-
tion to Kirchhoff’s current law, we find that the sum of the fluxes enter-
ing a junction is equal to the sum of the fluxes leaving a junction; that is, 
for the circuit in Fig. 12.11,

( )Φ = Φ + Φ aat junction a cb

or   ( )Φ + Φ = Φ bat junction b c a

which are equivalent.

 12.9 SERIES MAGNETIC CIRCUITS: 
DETERMINING NI
We are now in a position to solve a few magnetic circuit problems, which 
are basically of two types. In one type, Φ is given, and the impressed 
mmf NI must be computed. This is the type of problem encountered in 
the design of motors, generators, and transformers. In the other type, NI 
is given, and the flux Φ of the magnetic circuit must be found. This type 
of problem is encountered primarily in the design of magnetic amplifiers 
and is more difficult since the approach is “hit or miss.”

IronF
a

c

b

Steel

CobaltI

I

N turns

FIG. 12.10 
Series magnetic circuit of three 

different materials.

 0
NI Hablab Hbclbc Hcalca 0

NI    Hablab Hbclbc Hcalca 

Drop

mmf dropsImpressed
mmf

Rise Drop Drop

Fa

a

I

I

N

b

Fc

Fa Fc

Fb

FIG. 12.11 
Flux distribution of a series-parallel 

magnetic network.
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TABLE 12.2

Section Φ (Wb) A ( )m2
  B (T) H (At/m) l (m) Hl (At)

One continuous section × −4 10 4 × −2 10 3 0.16

Cast-steel coreN  =  400 turns

I

I

A  =  2  3  10–3 m2

l  =  0.16 m
(mean length)

F

FIG. 12.12 
Example 12.1.

F

� �

I

RE

(a)

(b)

1

2

 FIG. 12.13 
(a) Magnetic circuit 

equivalent and (b) electric 
circuit analogy.

As indicated in earlier discussions, the value of µ  varies from point 
to point along the magnetization curve. This eliminates the possibility of 
finding the reluctance of each “branch” or the “total reluctance” of a net-
work, as was done for electric circuits, where ρ  had a fixed value for any 
applied current or voltage. If the total reluctance can be determined, Φ  can 
then be determined using the Ohm’s law analogy for magnetic circuits.

For magnetic circuits, the level of B or H is determined from the other 
using the B-H curve, and µ  is seldom calculated unless asked for.

An approach frequently used in the analysis of magnetic circuits is 
the table method. Before a problem is analyzed in detail, a table is pre-
pared listing in the far left column the various sections of the magnetic 
circuit (see Table 12.2). The columns on the right are reserved for the 
quantities to be found for each section. In this way, when you are solving 
a problem, you can keep track of what the next step should be and what 
is required to complete the problem. After a few examples, the useful-
ness of this method should become clear.

This section considers only series magnetic circuits in which the flux 
Φ is the same throughout. In each example, the magnitude of the magne-
tomotive force is to be determined.

EXAMPLE 12.1 For the series magnetic circuit in Fig. 12.12:

a. Find the value of I required to develop a magnetic f lux of 
Φ = ×4 −10  Wb.4

b. Determine µ  and µr  for the material under these conditions.

Solutions: The magnetic circuit can be represented by the system 
shown in Fig. 12.13(a). The electric circuit analogy is shown in 
Fig. 12.13(b). Analogies of this type can be very helpful in the solution of 
magnetic circuits. Table 12.2 is for part (a) of this problem. The table is 
fairly trivial for this example, but it does define the quantities to be found.

a. The flux density B is

= Φ = ×
×

= × =
−

−
−B

A
4 10  Wb
2 10  m

2 10 T 0.2 T
4

3 2
1

Using the B-H curves in Fig. 12.8, we can determine the magnetiz-
ing force H:

( ) =H cast steel 170 At/m

Applying Ampère’s circuital law yields

=NI Hl

and   ( )( )
= = =I Hl

N
68 mA

170 At/m 0.16 m

400 t
 

(Recall that t represents turns.)
b. The permeability of the material can be found using Eq. (12.8):

µ = = = × −B
H

1 18 10 Wb Am0.2 T
170 At/m

. /3  
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N  =  50 turns
Sheet steel

Cast iron

f

e

d

a

b

c

lab  =  lcd  =  lef  =  lfa  =  4 in.

lbc  =  lde  =  0.5 in.

Area (throughout)  =  1 in.2

F  =  3.5 3 10–4 Wb  

I I

F

FIG. 12.14 
Electromagnet for Example 12.2.

TABLE 12.3

Section (Wb)Φ m2( )A B (T) H (At/m) l (m) Hl (At)

efab × −3.5 10 4 × −6.45 10 4 × −304.8 10 3

bcde × −3.5 10 4 × −6.45 10 4 × −127 10 3

The flux density for each section is

= Φ = ×
×

=
−

−
B

A
3.5 10  Wb
6.45 10  m

0.54 T
4

4 2

and the magnetizing force is

( ) ≅H sheet steel, Fig. 12.8 70 At /m

( ) ≅H cast iron, Fig. 12.7 1600 At /m

Note the extreme difference in magnetizing force for each material for 
the required flux density. In fact, when we apply Ampère’s circuital law, 
we find that the sheet steel section can be ignored with a minimal error 
in the solution.

Determining Hl for each section yields

( )= × =−H l  70 At /m (304.8 10 m) 21.34 Atefab efab
3

( )( )= × =−H l  1600 At/m 127 10 m 203.2 Atbcde bcde
3

and the relative permeability is

µ µ
µ π

= = ×
×

=
−

−
939 011.18 10

4 10
.r

o

3

7

EXAMPLE 12.2 The electromagnet in Fig. 12.14 has picked up a 
section of cast iron. Determine the current I required to establish the 
indicated flux in the core.

Solution: To be able to use Figs. 12.7 and 12.8, we must first convert 
to the metric system. However, since the area is the same throughout, we 
can determine the length for each material rather than work with the 
individual sections:

= + + =l  4 in. 4 in. 4 in. 12 in.efab

= + + =l  0.5 in. 4 in. 0.5 in. 5 in.bcde







 = × − 12  in . 1 m

39.37  in .
304.8 10  m3







 = × − 5  in . 1 m

39.37  in .
127 10  m3


















 = × − 1   in . 1 m

39.37 in .
1 m

39.37 in .
6.45 10  m2 4 2

The information available from the efab and bcde specifications of 
the problem has been inserted in Table 12.3. When the problem has been 
completed, each space will contain some information. Sufficient data to 
complete the problem can be found if we fill in each column from left 
to right. As the various quantities are calculated, they will be placed in a 
similar table found at the end of the example.
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The magnetic circuit equivalent and the electric circuit analogy for 
the system in Fig. 12.14 appear in Fig. 12.15.

Applying Ampère’s circuital law, we obtain

= +NI H l H lefab efab bcde bcde

    = + =21.34 At 203.2 At 224.54 At

and     ( ) =I50 t 224.54 At

so that     = =I 4 49 A224.54 At
50 t

.

EXAMPLE 12.3 Determine the secondary current I 2 for the trans-
former in Fig. 12.16 if the resultant clockwise flux in the core is 

× −1.5 10  Wb.5

Solution: This is the first example with two magnetizing forces to 
consider. In the analogies in Fig. 12.17, note that the resulting flux of 
each is opposing, just as the two sources of voltage are opposing in the 
electric circuit analogy.

TABLE 12.4

Section Φ (Wb) m2A ( ) B (T) H (At/m) l (m) Hl (At)

efab × −3.5 10 4 × −6.45 10 4 0.54 70 × −304.8 10 3 21.34

bcde × −3.5 10 4 × −6.45 10 4 0.54 1600 × −127 10 3 203.2

�

�efab

E

(a)

(b)

�bcde

Rbcde

Refab

12

FIG. 12.15 
(a) Magnetic circuit equivalent and  
(b) electric circuit analogy for the 

electromagnet in Fig. 12.14. Area (throughout)  =  0.15  ×  10–3 m2

labcda  =  0.16 m

F
I1 (2 A)

N1  =  60 turns

I1

a

d

b

c

Sheet steelF
I2

N2  =  30 turns

I2

FIG. 12.16 
Transformer for Example 12.3.

�abcda

F

�1 �2

Rabcda

I

E1 E2

(b)(a)

1

2

1

2

FIG. 12.17 
(a) Magnetic circuit equivalent and (b) electric circuit analogy for 

the transformer in Fig. 12.16.

Inserting the above data in Table 12.3 results in Table 12.4.
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The flux density throughout is

= Φ = ×
×

= × =
−

−
−B

A
T1.5 10  Wb

0.15 10  m
10 10 0.10 T

5

3 2
2

and

( )≅ =H (from Fig. 12.8) 1
5

  100 At /m 20 At /m

Applying Ampère’s circuital law, we obtain

− =N I N I H labcda abcda1 1 2 2

( )( )( ) ( )( ) ( )− =I60 t 2 A 30 t 20 At /m 0.16 m2

( )− =I120 At 30 t 3.2 At2

and    ( ) = −I30 t 120 At 3.2 At2

or    = =I 3 89 A116.8 At
30 t

.2

For the analysis of most transformer systems, the equation 
=N I N I1 1 2 2  is used. This results in 4 A versus 3.89 A above. This dif-

ference is normally ignored, however, and the equation =N I N I1 1 2 2  
considered exact.

Because of the nonlinearity of the B-H curve, it is not possible to 
apply superposition to magnetic circuits; that is, in Example 12.3, we 
cannot consider the effects of each source independently and then find 
the total effects by using superposition.

12.10 AIR GAPS
Before continuing with the illustrative examples, let us consider the  
effects that an air gap has on a magnetic circuit. Note the presence of air 
gaps in the magnetic circuits of the motor and meter in Fig. 11.15. The 
spreading of the flux lines outside the common area of the core for the 
air gap in Fig. 12.18(a) is known as fringing. For our purposes, we shall  
ignore this effect and assume the flux distribution to be as in Fig. 12.18(b).

The flux density of the air gap in Fig. 12.18(b) is given by

 B
Ag

g

g

=
Φ

 (12.13)

where, for our purposes,

Φ = Φ  g core

and     =A A  g core

TABLE 12.5

Section Φ (Wb) m2A ( ) B (T) H (At/m) l (m) Hl (At)

abcda × −1.5 10 5 × −0.15 10 3 0.16

Fc

Fc

Fc

Fc

Fc

Fc

Fc

Fc

Fc

Fc

Fc

(a)

Fc

Fc

(b)

Fc

Air gap

fringing

FIG. 12.18 
Air gaps: (a) with fringing; (b) ideal.

The abcda structural data appear in Table 12.5.
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For most practical applications, the permeability of air is taken to be 
equal to that of free space. The magnetizing force of the air gap is then 
determined by

 H
B

g
g

oµ
=  (12.14)

and the mmf drop across the air gap is equal to H l .g g  An equation for 
H g  is as follows:

µ π
= =

× −
H

B B

4 10g
g

o

g

7

and H B7.96 10 At /mg g
5 ( )( )= ×  (12.15)

EXAMPLE 12.4 Find the value of I required to establish a magnetic 
f lux of Φ = × −0.75 10  Wb4  in the series magnetic circuit in 
Fig. 12.19.

Solution: An equivalent magnetic circuit and its electric circuit anal-
ogy are shown in Fig. 12.20.

The flux density for each section is

= Φ = ×
×

=
−

−
B

A
0.75 10  Wb
1.5 10  m

0.5 T
4

4 2

From the B-H curves in Fig. 12.8,

( ) ≅H   cast steel 280 At /m

Applying Eq. (12.15),

( ) ( )( )= × = × = ×H B7.96 10 7.96 10 0.5 T 3.98 10 At /mg g
5 5 5

The mmf drops are

( )( )= × =−H l  280 At/m 100 10 m 28 Atcore core
3

( )( )= × × =−H l  3.98 10  At/m 2 10 m 796 Atg g
5 3

F

�

I

E

(a)

�core

Rbc

Rcdefab

�gap

(b)

+

–

FIG. 12.20 
(a) Magnetic circuit equivalent and (b) 
electric circuit analogy for the relay in 

Fig. 12.19.

N = 200 turns

All cast steel

Air gap

Area (throughout)

=  1.5 3 10 –4 m2

a
b
c

de

f

I

I

lcdefab  =  100 3 10–3 m

lbc  =  2 3 10–3 m

F  =  0.75 3 10 –4 Wb

F

F

F

FIG. 12.19 
Relay for Example 12.4.

M12_BOYL0302_14_GE_C12.indd   532M12_BOYL0302_14_GE_C12.indd   532 28/02/23   1:19 PM28/02/23   1:19 PM



SERIES-PARALLEL MAGNETIC CIRCUITS | | | 533

Applying Ampère’s circuital law, we obtain

= +NI H l H lcore core g g

= +28 At 796 At

( ) =I  200 t 824 At

=I 4 12 A.

Note from the above that the air gap requires the biggest share (by 
far) of the impressed NI because air is nonmagnetic.

12.11 SERIES-PARALLEL MAGNETIC 
CIRCUITS
As one might expect, the close analogies between electric and magnetic 
circuits eventually lead to series-parallel magnetic circuits similar in 
many respects to those encountered in Chapter 7. In fact, the electric 
circuit analogy will prove helpful in defining the procedure to follow 
toward a solution.

 EXAMPLE 12.5 Determine the current I required to establish a flux 
of × −1.5 10  Wb4  in the section of the core indicated in Fig. 12.21.

Solution: The equivalent magnetic circuit and the electric circuit 
analogy appear in Fig. 12.22. We have

=
Φ

= ×
×

=
−

−
B

A
1.5 10  Wb
6 10  m

0.25 T2
2

4

4 2

From Fig. 12.8,

≅H 40 At /mbcde

Applying Ampère’s circuital law around loop 2 in Figs. 12.21 and 12.22,

      ∑ = 0�f

  − =H l H l  0be be bcde bcde

( )( ) ( )− =H  0.05 m 40 At /m 0.2 m 0be

     = =H  8 At
0.05 m

160 At /mbe

From Fig. 12.8,

≅B 0.97 T1

Sheet steel

FF22  =  1.5   =  1.5   33  10  10–4–4  WbWb
I

I

a b c

f e d

1 2N  =  50 turns

F1
FT

lbcde  =  lefab  =  0.2 m
lbe  =  0.05 m
Cross-sectional area  =  6  3  10–4 m2 throughout

F2  =  1.5  3  10–4 Wb

FIG. 12.21 
Example 12.5.

�efab

FT

� �be �bcde

F1 �2

1 2

(a)

Refab

IT I1

1 2Rbe Rbcde

I2

E

(b)

1

2

FIG. 12.22 
(a) Magnetic circuit equivalent and (b) 
electric circuit analogy for the series-

parallel system in Fig. 12.21.
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and

( )( )Φ = = × = ×− −B A 0.97 T 6 10  m 5.82 10  Wb1 1
4 2 4

The results for bcde, be, and efab are entered in Table 12.6.

Table 12.6 reveals that we must now turn our attention to section efab:

Φ = Φ + Φ = × + ×− −  5.82 10  Wb 1.5 10  WbT 1 2
4 4

= ×

=
Φ

= ×
×

−

−

−
B

A

   7.32 10  Wb
7.32 10  Wb

6 10  m
T

4

4

4 2

= 1.22 T

From Fig. 12.7,

≅H 400 Atefab

Applying Ampère’s circuital law, we find

+ − − =NI H l H l 0efab efab be be

( ) ( )= +NI 400 At/m)(0.2 m 160 At/m)(0.05 m

( ) = +I  50 t 80 At 8 At

= =I 1 76 A88 At
50 t

.

To demonstrate that µ  is sensitive to the magnetizing force H, the 
permeability of each section is determined as follows. For section bcde,

µ = = = × −B
H

0.25 T
40 At /m

6.25 10 3

and     µ µ
µ

= = ×
×

=
−

−
4972 2  6.25 10

12.57 10
.r

o

3

7

For section be,

     µ = = = × −B
H

0.97 T
160 At /m

6.06 10 3

and    µ µ
µ

= = ×
×

=
−

−
4821  6.06 10

12.57 10r
o

3

7

For section efab,

µ = = = × −B
H

1.22 T
400 At /m

3.05 10 3

and     µ µ
µ

= = ×
×

=
−

−
2426 41  3.05 10

12.57 10
.r

o

3

7

TABLE 12.6

Section Φ (Wb) A m2( ) B (T) H (At/m) l (m) Hl (At)

bcde × −1.5 10 4 × −6 10 4 0.25 40 0.2 8

be × −5.82 10 4 × −6 10 4 0.97 160 0.05 8

efab × −6 10 4 0.2
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12.12 DETERMINING Φ
The examples of this section are of the second type, where NI is given 
and the flux Φ  must be found. This is a relatively straightforward prob-

lem if only one magnetic section is involved. That is, =H NI
l

 which 
defines B from B-H curve

and finally,   Φ = BA

For magnetic circuits with more than one section, there is no set 
order of steps that lead to an exact solution for every problem on the first  
attempt. In general, however, we proceed as follows. We must find the 
impressed mmf for a calculated guess of the flux Φ and then compare 
this with the specified value of mmf. We can then make adjustments to 
our guess to bring it closer to the actual value. For most applications, a 
value within ±5% of the actual Φ or specified NI is acceptable.

We can make a reasonable guess at the value of Φ  if we realize that the 
maximum mmf drop appears across the material with the smallest perme-
ability if the length and area of each material are the same. As shown in 
Example 12.4, if there is an air gap in the magnetic circuit, there will be a 
considerable drop in mmf across the gap. As a starting point for problems 
of this type, therefore, we shall assume that the total mmf (NI) is across 
the section with the lowest µ  or greatest 5 (if the other physical dimen-
sions are relatively similar). This assumption gives a value of Φ that will 
produce a calculated NI greater than the specified value. Then, after con-
sidering the results of our original assumption very carefully, we shall cut 
Φ  and NI by introducing the effects (reluctance) of the other portions of 
the magnetic circuit and try the new solution. For obvious reasons, this 
approach is frequently called the cut and try method.

EXAMPLE 12.6 Calculate the magnetic flux Φ for the magnetic cir-
cuit in Fig. 12.23.

 Solution: By Ampère’s circuital law,

=NI H labcda abcda

or      
( )( )= =H NI

l
  60 t 5 A

0.3 mabcda
abcda

  = =300 At
0.3 m

1000 At /m

and   ≅B  (from Fig. 12.7) 0.39 Tabcda

Since = ΦB A/ , we have

  ( )( )Φ = = × = ×− −BA 0 78 10 Wb0.39 T 2 10  m .  44 2

EXAMPLE 12.7 Find the magnetic flux Φ  for the series magnetic 
circuit in Fig. 12.24 for the specified impressed mmf.

Solution: Assuming that the total impressed mmf NI is across the air 
gap, we obtain

=NI H I  g g

or        = = = ×H NI
l

  400 At
0.001 m

4 10  At /mg
g

5

A (throughout)  =  2 3  10–4 m2

a b

d c

Cast ironlabcda  =  0.3 m

I

I  =  5 A

N  =  60 turns

F

FIG. 12.23 
Example 12.6.

Cast iron

Air gap
1 mm

Area  =  0.003 m2I  =  4 A

N  =  100 turns lcore  =  0.16 m

F

FIG. 12.24 
Example 12.7.
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and   B H  4 10 4 10  At /mg o g
7 5µ π ( )( )= = × ×−

= 0.50 T

The flux is given by
Φ = Φ = B A  g gcore

( )( )= 0.50 T 0.003 m 2

Φ = × −  1.5 10 Wbcore
3

Using this value of Φ, we can find NI. The core and gap data are  
inserted in Table 12.7.

( )( )= =H l 1500 At/m 0.16 m 240 Atcore core

Applying Ampère’s circuital law results in

= +NI H l H lcore core g g

= +240 At 400 At

≠ 400 At 640 At

Since we neglected the reluctance of all the magnetic paths but the air gap, 
the calculated value is greater than the specified value. We must therefore 
reduce this value by including the effect of these reluctances. Since approx-
imately 640 At 400 At /640 At 240 At /640 At 37.5%( )− = ≅  of 
our calculated value is above the desired value, let us reduce Φ by 30% 
and see how close we come to the impressed mmf of 400 At:

( )( )Φ = − × −1 0.3 1.5 10 Wb3

= × −1.05 10 Wb3

See Table 12.8. We have

= Φ = × ≅
−

B
A

1.05 10  Wb
0.003 m

0.35 T
3

3

( )= ×H l B l  7.96 10g g g g
5

( )( )( )= ×7.96 10 0.35 T 0.001 m5

≅  278.6 At

From the B-H curves,

H  850 At /mcore ≅

H l  850 At /m 0.16 m 136 Atcore core ( )( )= =

TABLE 12.8

Section Φ (Wb) ( )A  m2 B (T) H (At/m) l (m) Hl (At)

Core × −1.05 10 3 0.003 0.16

Gap × −1.05 10 3 0.003 0.001

TABLE 12.7

Section (Wb)Φ ( )A  m2 B (T) H (At/m) l (m) Hl (At)

Core × −1.51 10 3 0.003 0.50 1500 (B-H curve) 0.16

Gap × −1.51 10 3 0.003 0.50 ×4 10 5 0.001 400
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Applying Ampère’s circuital law yields

= +NI H l H lcore core g g

= +136 At 278.6 At

414 6 At 400 At .  ≅   (but within ±5% and therefore acceptable)

The solution is, therefore,

Φ ≅ × −1 06 10 Wb. 3

12.13 APPLICATIONS
Speakers and Microphones

Electromagnetic effects are the moving force in the design of speakers 
such as the one shown in Fig. 12.25. The shape of the pulsating wave-
form of the input current is determined by the sound to be reproduced by 
the speaker at a high audio level. As the current peaks and returns to the 
valleys of the sound pattern, the strength of the electromagnet varies in ex-
actly the same manner. This causes the cone of the speaker to vibrate at a 
frequency directly proportional to the pulsating input. The higher the pitch 
of the sound pattern, the higher is the oscillating frequency between the 
peaks and valleys and the higher is the frequency of vibration of the cone.

A second design used more frequently in more expensive speaker sys-
tems appears in Fig. 12.26. In this case, the permanent magnet is fixed, 
and the input is applied to a movable core within the magnet, as shown in 
the figure. High peaking currents at the input produce a strong flux pattern 
in the voice coil, causing it to be drawn well into the flux pattern of the 
permanent magnet. As occurred for the speaker in Fig. 12.25, the core then 
vibrates at a rate determined by the input and provides the audible sound.

Sound

i

i

i

Magnetic sample
(free to move)

Electromagnet

Flexible cone

FIG. 12.25 
Speaker.

i i

Magnetized
ferromagnetic
material

(b) (c)

Magnetic gap

Magnet

Voice coil

Terminal Connections

Magnet

Cone

(a)

FIG. 12.26 
Coaxial high-fidelity loudspeaker: (a) construction: (b) basic operation; (c) cross section of actual unit.

(Linearts of Coaxial Loudspeakers from Electro-Voice. Courtesy of Electro-Voice Inc.)

Microphones also employ electromagnetic effects. The incoming sound 
causes the core and attached moving coil to move within the magnetic 
field of the permanent magnet. Through Faraday’s law e N d dt  / ,φ( )=  a 
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voltage is induced across the movable coil proportional to the speed with 
which it is moving through the magnetic field. The resulting induced volt-
age pattern can then be amplified and reproduced at a much higher audio 
level through the use of speakers, as described earlier. Microphones of 
this type are the most frequently employed, although other types that use 
capacitive, carbon granular, and piezoelectric* effects are available. This 
particular design is commercially referred to as a dynamic microphone.

Hall Effect Sensor

The Hall effect sensor is a semiconductor device that generates an out-
put voltage when exposed to a magnetic field. The basic construction 
consists of a slab of semiconductor material through which a current is 
passed, as shown in Fig. 12.27(a). If a magnetic field is applied, as shown 
in the figure, perpendicular to the direction of the current, a voltage VH  
is generated between the two terminals, as indicated in Fig. 12.27(a). 
The difference in potential is due to the separation of charge established 
by the Lorentz force first studied by Professor Hendrick Lorentz in the 
late 1800s. He found that electrons in a magnetic field are subjected to 
a force proportional to the velocity of the electrons through the field 
and the strength of the magnetic field. The direction of the force is  
determined by the left-hand rule. Simply place the index finger of your 
left hand in the direction of the magnetic field, with the second finger 
at right angles to the index finger in the direction of conventional cur-
rent through the semiconductor material, as shown in Fig. 12.27(b). 
The thumb, if placed at right angles to the index finger, will indicate the  
direction of the force on the electrons. In Fig. 12.27(b), the force causes 
the electrons to accumulate in the bottom region of the semiconductor 
(connected to the negative terminal of the voltage VH ), leaving a net pos-
itive charge in the upper region of the material (connected to the positive 
terminal of VH ). The stronger the current or strength of the magnetic 
field, the greater is the induced voltage V .H

In essence, therefore, the Hall effect sensor can reveal the strength 
of a magnetic field or the level of current through a device if the other  
determining factor is held fixed. Two applications of the sensor are there-
fore apparent, to measure the strength of a magnetic field in the vicinity 
of a sensor (for an applied fixed current) and to measure the level of 
current through a sensor (with knowledge of the strength of the magnetic 
field linking the sensor). The gaussmeter in Fig. 11.14 uses a Hall effect 
sensor. Internal to the meter, a fixed current is passed through the sensor 
with the voltage VH  indicating the relative strength of the field. Through 
amplification, calibration, and proper scaling, the meter can display the 
relative strength in gauss.

The Hall effect sensor has a broad range of applications that are often 
quite interesting and innovative. The most widespread is as a trigger 
for an alarm system in large department stores, where theft is often a 
difficult problem. A magnetic strip attached to the merchandise sounds 
an alarm when a customer passes through the exit gates without paying 
for the product. The sensor, control current, and monitoring system are 
housed in the exit fence and react to the presence of the magnetic field 
as the product leaves the store. When the product is paid for, the cashier 

(a)

(b)

(conventional
flow)

I

1

2

VH

B

1

2

VH

1111111111111111

22222222222222

I

e– e– e– e–

Magnetic field
into page

I

FIG. 12.27 
Hall effect sensor: (a) orientation of 
controlling parameters; (b) effect on 

electron flow.

*Piezoelectricity is the generation of a small voltage by exerting pressure across 
certain crystals.
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removes the strip or demagnetizes the strip by applying a magnetizing 
force that reduces the residual magnetism in the strip to essentially zero.

The Hall effect sensor is also used to indicate the speed of a bicycle 
on a digital display conveniently mounted on the handlebars. As shown 
in Fig. 12.28(a), the sensor is mounted on the frame of the bike, and 
a small permanent magnet is mounted on a spoke of the front wheel. 
The magnet must be carefully mounted to be sure that it passes over 
the proper region of the sensor. When the magnet passes over the sen-
sor, the flux pattern in Fig. 12.28(b) results, and a voltage with a sharp 
peak is developed by the sensor. For a bicycle with a 26-in.-diameter 
wheel, the circumference will be about 82 in. Over 1 mi, the number 
of rotations is

( )


 ≅5280  ft   12  in .

1  ft
1 rotation

82 in .
773 rotations

If the bicycle is traveling at 20 mph, an output pulse occurs at a rate 
of 4.29 per second. It is interesting to note that at a speed of 20 mph, 
the wheel is rotating at more than 4 revolutions per second, and the total 
number of rotations over 20 mi is 15,460.

Magnetic Reed Switch

One of the most frequently employed switches in alarm systems is the 
magnetic reed switch shown in Fig. 12.29. As shown by the figure, there 
are two components of the reed switch, a permanent magnet embedded 
in one unit that is normally connected to the movable element (door, 
window, and so on) and a reed switch in the other unit that is connected 
to the electrical control circuit. The reed switch is constructed of two 
iron-alloy (ferromagnetic) reeds in a hermetically sealed capsule. The 
cantilevered ends of the two reeds do not touch but are in very close 

(a)

I (from battery)

Hall effect sensor
Permanent
magnet

I

1
2

1

2

VH

(b)

Hall
effect
sensor

B

VH

Spoke

Motion
N
S

Time
for one
rotation

I I

FIG. 12.28 
Obtaining a speed indication for a bicycle using a Hall effect sensor: (a) 

mounting the components; (b) Hall effect response.

Reeds

Sealed
capsule

Embedded
permanent
magnet

Plastic
housing

S

N

FIG. 12.29 
Magnetic reed switch.
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proximity to one another. In the absence of a magnetic field, the reeds 
remain separated. However, if a magnetic field is introduced, the reeds 
are drawn to each other because flux lines seek the path of least reluc-
tance and, if possible, exercise every alternative to establish the path of 
least reluctance. It is similar to placing a ferromagnetic bar close to the 
ends of a U-shaped magnet. The bar is drawn to the poles of the magnet, 
establishing a magnetic flux path without air gaps and with minimum 
reluctance. In the open-circuit state, the resistance between reeds is in 
excess of 100 MΩ, while in the on state it drops to less than 1 Ω.

In Fig. 12.30 a reed switch has been placed on the fixed frame of a 
window and a magnet on the movable window unit. When the window 
is closed as shown in Fig. 12.30, the magnet and reed switch are suf-
ficiently close to establish contact between the reeds, and a current is 
established through the reed switch to the control panel. In the armed 
state, the alarm system accepts the resulting current flow as a normal 
secure response. If the window is opened, the magnet leaves the vicinity 
of the reed switch, and the switch opens. The current through the switch 
is interrupted, and the alarm reacts appropriately.

One of the distinct advantages of the magnetic reed switch is that 
the proper operation of any switch can be checked with a portable 
magnetic element. Simply bring the magnet to the switch and note the 
output response. There is no need to continually open and close win-
dows and doors. In addition, the reed switch is hermetically enclosed 
so that oxidation and foreign objects cannot damage it, and the result is 
a unit that can last indefinitely. Magnetic reed switches are also avail-
able in other shapes and sizes, allowing them to be concealed from 
obvious view. One is a circular variety that can be set into the edge of 
a door and door jam, resulting in only two small visible disks when the 
door is open.

Magnetic Resonance Imaging

Magnetic resonance imaging (MRI) provides quality cross-sectional  
images of the body for medical diagnosis and treatment. MRI does not 
expose the patient to potentially hazardous X-rays or injected contrast 
materials such as those used to obtain computerized axial tomography 
(CAT) scans.

The three major components of an MRI system are a strong magnet, 
a table for transporting the patient into the circular hole in the magnet, 
and a control center, as shown in Fig. 12.31. The image is obtained 
by placing the patient in the tube to a precise depth depending on the 
cross section to be obtained and applying a strong magnetic field that 
causes the nuclei of certain atoms in the body to line up. Radio waves 
of different frequencies are then applied to the patient in the region of 
interest, and if the frequency of the wave matches the natural frequency 
of the atom, the nuclei is set into a state of resonance and absorbs  
energy from the applied signal. When the signal is removed, the nuclei 
release the acquired energy in the form of weak but detectable signals. 
The strength and duration of the energy emission vary from one tissue 
of the body to another. The weak signals are then amplified, digitized, 
and translated to provide a cross-sectional image such as the one shown 
in Fig. 12.32. For some patients the claustrophobic feeling they experi-
ence while in the circular tube is difficult to contend with. A more open  (Horsemen/Shutterstock)

FIG. 12.31 
Magnetic resonance imaging equipment.

Permanent
magnet

Reed switch

Control

FIG. 12.30 
Using a magnetic reed switch to monitor 

the state of a window.
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PROBLEMS

SECTION 12.2  Magnetic Field

 1. Using Appendix E, fill in the blanks in the following table. 
Indicate the units for each quantity.

Φ B
SI × −5 10  Wb4 × −8 10 T4

CGS ––––––––––– ––––––––––
English ––––––––––– ––––––––––

 2.  Repeat Problem 1 for the following table if area 2 in. :2=

Φ B
SI ––––––––– –––––––––
CGS 60,000 maxwells –––––––––
English ––––––––– –––––––––

 3.  For the electromagnet in Fig. 12.34:
a. Find the flux density in the core.
b. Sketch the magnetic f lux lines and indicate their  

direction.
c. Indicate the north and south poles of the magnet.

SECTION 12.3  Reluctance

 4. Which section of Fig. 12.35—(a), (b), or (c)—has the larg-
est reluctance to the setting up of flux lines through its lon-
gest dimension?

unit has been developed, as shown in Fig. 12.33, that has removed most 
of this discomfort.

Patients who have metallic implants or pacemakers or those who have 
worked in industrial environments where minute ferromagnetic parti-
cles may have become lodged in open, sensitive areas such as the eyes, 
nose, and so on, may have to use a CAT scan system because it does not  
employ magnetic effects. The attending physician is well trained in such 
areas of concern and will remove any unfounded fears or suggest alter-
native methods.

F  =  4  3  1024 Wb

A  =  0.01 m2

N turnsI I

FIG. 12.34 
Problem 3.

(SARYMSAKOV ANDREY/Shutterstock)

FIG. 12.33 
Magnetic resonance imaging equipment (open variety).

(Mark Herreid/Shutterstock)

FIG. 12.32 
Magnetic resonance image.
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542 | | | MAGNETIC CIRCUITS

SECTION 12.4 Ohm’s Law for Magnetic Circuits

 5. Find the reluctance of a magnetic circuit if a magnetic flux 
Φ = × −8.2 10  Wb4  is established by an impressed mmf 
of 500 At.

 6. Repeat Problem 5 for Φ = 66, 000 maxwells and an 
impressed mmf of 150 gilberts.

SECTION 12.5 Magnetizing Force

  7. Find the magnetizing force H for Problem 5 in SI units if 
the magnetic circuit is 9 in. long.

 8. If a magnetizing force H of 300 At/m is applied to a mag-
netic circuit, a flux density B of × −4800 10  Wb /m4 2 is 
established. Find the permeability µ of a material that will 
produce twice the original flux density for the same magne-
tizing force.

SECTIONS 12.6–12.9 Hysteresis through Series 
Magnetic Circuits

 9. For the series magnetic circuit in Fig. 12.36, determine the 
current I necessary to establish the indicated flux.

10. Find the current necessary to establish a f lux of 
Φ = × −3 10  Wb4  in the square core series magnetic 
 circuit in Fig. 12.37.

11. a. Find the number of turns N1  required to establish a flux 
Φ = × −12 10  Wb4  in the magnetic circuit in 
Fig. 12.38.

b. Find the permeability µ of the material.

12. a. Find the mmf (NI) required to establish a f lux 
Φ = 80, 000 lines in the magnetic circuit in Fig. 12.39.

b. Find the permeability of each material.

I  =  3 A

N2  =  40 turns

Area  =  0.0012 m2

lm (mean length)  =  0.2 m

lm
N1

I  =
2 A

Cast steel

F

FIG. 12.38 
Problem 11.

lcast steel  =  5.5 in.
lsheet steel  =  0.5 in.

Cast steel

Sheet steel

Uniform area
(throughout)
=  1 in.2

NI

FIG. 12.39 
Problem 12.

(b)

Iron

3 in.

in.1
2

(a)

6 cm
Iron

2 cm

1 cm

(c)

0.01 m

0.01 m

0.1 m

Iron

FIG. 12.35 
Problem 4.

Cast iron

N

Sheet steel

liron core  =  lsteel core  =  0.3 m
Area (throughout)  =  5  3  10–4 m2

N  =  200 turns

I

FIG. 12.37 
Problem 10.

Area (throughout)
=  3 3  1023 m2

Cast iron

F  =  10 3  10–4 Wb
Mean length  =  0.2 m

N  =  75 turns

I

I

F

F

FIG. 12.36 
Problem 9.
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 *13.  For the series magnetic circuit in Fig. 12.40 with two 
impressed sources of magnetic “pressure,” determine the 
current I. Each applied mmf establishes a flux pattern in the 
clockwise direction.

SECTION 12.10 Air Gaps

14. a. Find the current I required to establish a flux Φ =
× −2.4 10  Wb4  in the magnetic circuit in Fig. 12.41.

b. Compare the mmf drop across the air gap to that across 
the rest of the magnetic circuit. Discuss your results 
using the value of µ for each material.

 *15.  The force carried by the plunger of the door chime in 
Fig. 12.42 is determined by

φ
( )=f NI

d
dx

1
2

  newtons

where d dx/φ  is the rate of change of flux linking the coil 
as the core is drawn into the coil. The greatest rate of 
change of flux occurs when the core is 1 4 to 3 4 the way 
through. In this region, if Φ  changes from × −1.2 10  Wb4  
to × −9 10  Wb,4  what is the force carried by the plunger?

  16. Determine the current I1 required to establish a flux of 
Φ = × −2 10  Wb4  in the magnetic circuit in Fig. 12.43.

 *17.  a.  A flux of × −0.2 10  Wb4  will establish sufficient 
attractive force for the armature of the relay in Fig. 12.44 
to close the contacts. Determine the required current to 
establish this flux level if we assume that the total mmf 
drop is across the air gap.

b. The force exerted on the armature is determined by the 
equation

µ
( ) = ⋅F

B A
newtons 1

2
g

o

2

where Bg  is the flux density within the air gap and A is 
the common area of the air gap. Find the force in newtons  
exerted when the flux Φ specified in part (a) is established.

Cast steel

I

I
Cast iron

Area (throughout)  =  0.25 in.

lcast steel  =  5.5 in.
lcast iron  =  2.5 in.

F  =  0.8 3

2

Wb

I

N1  =  20 turns N2  =  30 turns 10–4

FIG. 12.40 
Problem 13.

0.003 m

Sheet steel

Area (throughout)  =  2  3  1024 m2

lab  =  lef  =  0.05 m
laf  =  lbe  =  0.02 m

lbc  =  lde

N  =
100
turns

I

I
e

d

c

ba

f

FFF

FIG. 12.41 
Problem 14.

I  =  600 mA
N  =  55 turns

2 cm

f

Plunger

Chime

I

FIG. 12.42 
Door chime for Problem 15.

0.002 m
Sheet steel

0.4 m

I2  =  0.3 A
N2  =  50 turns

N1  =  250 turns

I1

I1

F

Area (throughout)  =  1.3  3  1024 m2

FIG. 12.43 
Problem 16.

Spring
Armature Air gap  =  0.2 cm

Contacts

Coil
N  =  200 turns
Diameter of core  =  0.01 m

Solenoid
I

FIG. 12.44 
Relay for Problem 17.
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SECTION 12.11 Series-Parallel Magnetic Circuits

 *18.  For the series-parallel magnetic circuit in Fig. 12.45, find 
the value of I required to establish a flux in the gap of 
Φ = × −2 10  Wb.g

4

SECTION 12.12 Determining Φ

  19. Find the magnetic flux Φ  established in the series magnetic 
circuit in Fig. 12.46.

 *20.  Determine the magnetic flux Φ  established in the series 
magnetic circuit in Fig. 12.47.

 *21.  Note how closely the B-H curve of cast steel in Fig. 12.7 
matches the curve for the voltage across a capacitor as it 
charges from zero volts to its final value.
a. Using the equation for the charging voltage as a guide, 

write an equation for B as a function of H [ ]( )=B f H   
for cast steel.

b. Test the resulting equation at H 900 At /m,=  1800 
At/m, and 2700 At/m.

c. Using the equation of part (a), derive an equation for H 
in terms of B [ ]( )=H f B .

d. Test the resulting equation at =B 1 T  and =B 1.4 T.
e. Using the result of part (c), perform the analysis of 

Example 12.1, and compare the results for the current I.

GLOSSARY

Ampère’s circuital law A law establishing the fact that the  
algebraic sum of the rises and drops of the mmf around a 
closed loop of a magnetic circuit is equal to zero.

Domain A group of magnetically aligned atoms.
Electromagnetism Magnetic effects introduced by the flow of 

charge or current.
 Ferromagnetic materials Materials having permeabilities hun-

dreds and thousands of times greater than that of free space.
Flux density (B) A measure of the flux per unit area perpendic-

ular to a magnetic flux path. It is measured in teslas (T) or 
webers per square meter Wb /m .2( )

Hysteresis The lagging effect between the flux density of a  
material and the magnetizing force applied.

Magnetic flux lines Lines of a continuous nature that reveal the 
strength and direction of a magnetic field.

Magnetizing force (H) A measure of the magnetomotive force 
per unit length of a magnetic circuit.

Magnetomotive force (mmf) f( ) The “pressure” required 
to establish magnetic flux in a ferromagnetic material. It is  
measured in ampere-turns (At).

Permanent magnet A material such as steel or iron that will  
remain magnetized for long periods of time without the aid of 
external means.

Permeability µ( ) A measure of the ease with which mag-
netic flux can be established in a material. It is measured in  
Wb/Am.

Relative permeability µ r( ) The ratio of the permeability of a 
material to that of free space.

Reluctance 55( )  A quantity determined by the physical charac-
teristics of a material that will provide an indication of the 
“reluctance” of that material to the setting up of magnetic flux 
lines in the material. It is measured in rels or At/Wb.

Sheet steel throughout

N  =
200 turns

a

h g f

e

d

cbFT

I

F1

Area for sections other than bg  =  5 3  1024 m2

lab  =  lbg  =  lgh  =  lha  =  0.2 m
lbc  =  lfg  =  0.1 m, lcd  =  lef  =  0.099 m

  Area  =
2  3  1024 m2

1 2

0.002 m

F2

FIG. 12.45 
Problem 18.

Cast steel

Area  =
0.012 m2

0.08 m

N  =  100 turns

I  =  2 A

F

FIG. 12.46 
Problem 19.

a

f e

d

c

b

Cast steel

FFF

N  = 150 turns

I  = 2 A

lcd  =  8 3  1024 m
lab  =  lbe  =  lef  =  lfa  =  0.2 m
Area (throughout)  =  2  3  1024 m2

lbc  =  lde

FIG. 12.47 
Problem 20.
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 13 Sinusoidal Alternating 
Waveforms

13.1 INTRODUCTION
The analysis thus far has been limited to dc networks—networks in which the currents or 
voltages are fixed in magnitude except for transient effects. We now turn our attention to the 
analysis of networks in which the magnitude of the source varies in a set manner. Of partic-
ular interest is the time-varying voltage that is commercially available in large quantities and 
is commonly called the ac voltage. (The letters ac are an abbreviation for alternating cur-
rent.) To be absolutely rigorous, the terminology ac voltage or ac current is not sufficient to  
describe the type of signal we will be analyzing. Each waveform in Fig. 13.1 is an alternating 
waveform available from commercial suppliers. The term alternating indicates only that the 
waveform alternates between two prescribed levels in a set time sequence. To be absolutely 
correct, the term sinusoidal, square-wave, or triangular must also be applied.

The pattern of particular interest is the sinusoidal ac voltage in Fig. 13.1. Since this type 
of signal is encountered in the vast majority of instances, the abbreviated phrases ac voltage 
and ac current are commonly applied without confusion. For the other patterns in Fig. 13.1 , 
the descriptive term is always present, but frequently the ac  abbreviation is dropped, resulting 
in the designation square-wave or tria ngular waveforms.

One of the important reasons for concentrating on the sinusoidal ac voltage is that it is 
the voltage generated by utilities throughout the world. Other reasons include its applica-
tion throughout electrical, electronic, communication, and industrial systems. In addition, the 
chapters to follow will reveal that the waveform itself has a number of characteristics that 
result in a unique response when it is applied to basic electrical elements. The wide range of 
theorems and methods introduced for dc networks will also be applied to sinusoidal ac sys-
tems. Although the application of sinusoidal signals raises the required math level, once the 

• Become familiar with the characteristics of a 
sinusoidal waveform, including its general format, 
peak value, peak-to-peak value, period, and 
frequency.

• Be able to determine the phase relationship 
between two sinusoidal waveforms of the same 
frequency and which one leads or lags.

• Understand how to calculate the average and 
effective values of any waveform.

• Become familiar with the use of instruments 
designed to measure ac quantities.

Objectives

0 t

v

Triangular wave

0 t

v

Square wave

0 t

v

Sinusoidal

 FIG. 13.1 
Alternating waveforms.
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546 | | | SinuSoidal alternating WaveformS

notation given in Chapter 14 is understood, most of the concepts intro-
duced in the dc chapters can be applied to ac networks with a minimum 
of added difficulty.

13.2 SINUSOIDAL ac VOLTAGE 
CHARACTERISTICS AND DEFINITIONS
Generation

Sinusoidal ac voltages are available from a variety of sources. The most 
common source is the typical home outlet, which provides an ac voltage 
that originates at a power plant. Most power plants are fueled by water 
power, oil, gas, or nuclear fission. In each case, an ac generator (also 
called an alternator), as shown in Fig. 13.2(a), is the primary component 
in the energy-conversion process. The power to the shaft developed by 
one of the energy sources listed turns a rotor (constructed of alternating 
magnetic poles) inside a set of windings housed in the stator (the sta-
tionary part of the dynamo) and induces a voltage across the windings of 
the stator, as defined by Faraday’s law:

e N
d
dt
φ=

Through proper design of the generator, a sinusoidal ac voltage is 
 developed that can be transformed to higher levels for distribution 
through the power lines to the consumer. For isolated locations where 
power lines have not been installed, portable ac generators [Fig. 13.2(b)] 
are available that run on gasoline. As in the larger power plants, however, 
an ac generator is an integral part of the design.

In an effort to conserve our natural resources and reduce pollution, 
wind power, solar energy, and fuel cells are receiving increasing inter-
est from various districts of the world that have such energy sources 
available in level and duration that make the conversion process viable. 
The turning propellers of the wind-power station [Fig. 13.2(c)] are con-
nected directly to the shaft of an ac generator to provide the ac voltage 
described above. Through light energy absorbed in the form of photons, 
solar cells [Fig. 13.2(d)] can generate dc voltages. Through an electronic 

(e)(d)(c)(b)(a)

Inverter

FIG. 13.2 
Various sources of ac power: (a) generating plant; (b) portable ac generator; (c) wind-power station; (d) solar 

panel; (e) function generator.
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package called an inverter, the dc voltage can be converted to one of a 
sinusoidal nature. Boats, recreational vehicles (RVs), and so on, make 
frequent use of the inversion process in isolated areas.

Convertor converts ac to dc. Invertor converts dc to ac

Sinusoidal ac voltages with characteristics that can be controlled 
by the user are available from function generators, such as the one in 
Fig. 13.2(e). By setting the various switches and controlling the posi-
tion of the knobs on the face of the instrument, you can make available  
sinusoidal voltages of different peak values and different repetition rates. 
The function generator plays an integral role in the investigation of the 
variety of theorems, methods of analysis, and topics to be introduced in 
the chapters that follow.

Definitions

The sinusoidal waveform in Fig. 13.3 with its additional notation will 
now be used as a model in defining a few basic terms. These terms, 
however, can be applied to any alternating waveform. It is important to  
remember, as you proceed through the various definitions, that the vertical 
scaling is in volts or amperes and the horizontal scaling is in units of time.

Max

e

0 t1

e1

T3

Ep -pt

T2T1

Em t2

Em

Max

e2

FIG. 13.3 
Important parameters for a sinusoidal voltage.

Waveform: The path traced by a quantity, such as the voltage in 
Fig. 13.3, plotted as a function of some variable, such as time (as above), 
position, degrees, radians, temperature, and so on.
Instantaneous value: The magnitude of a waveform at any instant of 
time; denoted by lowercase letters (e e,1 2  in Fig. 13.3).
Peak amplitude: The maximum value of a waveform as measured from 
its average, or mean, value, denoted by uppercase letters [such as Em  
(Fig. 13.3) for sources of voltage and Vm for the voltage drop across a 
load]. For the waveform in Fig. 13.3, the average value is zero volts, and 
Em  is as defined by the figure.
Peak value: The maximum instantaneous value of a function as mea-
sured from the zero volt level. For the waveform in Fig. 13.3, the peak 
amplitude and peak value are the same since the average value of the 
function is zero volts.
Peak-to-peak value: Denoted by E p p-  or Vp p-  (as shown in Fig. 13.3), 
the full voltage between positive and negative peaks of the waveform, 
that is, the sum of the magnitude of the positive and negative peaks.
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Periodic waveform : A waveform that continually repeats itself after the 
same time interval. The waveform in   Fig.    13. 3   is a periodic waveform.  
Period (T) : The time of a periodic waveform.  
Cycle : The portion of a waveform contained in one period of time. 
The cycles within   T T, ,1 2       and   T3      in   Fig.    13. 3   may appear differently in 
    Fig.    13. 4  , but they are all bounded by one period of time and therefore 
satisfy the definition of a cycle. 

1 cycle

T3

1 cycle

T2

1 cycle

T1

         FIG.    13. 4  
 Defining the cycle and period of a sinusoidal waveform.    

T=0.4 s

1 s

(b)

T=1 s

(a)

Low
Frequency

High
Frequency

Medium
FrequencyT=0.5 s

1 s

(c)

        FIG.    13. 5  
 Demonstrating the effect of a changing frequency on the period of 

a sinusoidal waveform.    

Frequency ( f ): The number of cycles that occur in 1 s. The frequency of 
the waveform in     Fig.    13. 5  (a) is 1 cycle per second, and for   Fig.    13. 5  (b), 
2 1

2      cycles per second. If a waveform of similar shape had a period of 0.5 s 
[  Fig.    13. 5  (c)], the frequency would be 2 cycles per second. 

    The unit of measure for frequency is the  hertz  (Hz), where 

   1 hertz Hz 1 cycle per second cps( )( ) =         ( 13. 1)  

 The unit hertz is derived from the surname of Heinrich Rudolph Hertz 
(    Fig.    13. 6  ), who did original research in the area of alternating currents 
and voltages and their effect on the basic  R, L , and  C  elements. The 
frequency standard for North America is 60 Hz, whereas for Europe it is 
predominantly 50 Hz.    

   As with all standards, any variation from the norm will cause  difficulties. 
In 1993, Berlin, Germany, received all its power from plants  generating 
ac voltages whose output frequency was varying between 50.03 Hz and 
51 Hz. The result was that clocks were gaining as much as 4 minutes a 
day. Alarms went off too soon, VCRs clicked off before the end of the 
 program, and so on, requiring that clocks be continually reset. In 1994, 
however, when power was linked with the rest of Europe, the precise stan-
dard of 50 Hz was reestablished and everyone was on time again. 

 Scherl/Sueddeutsche Zeitung Photo/
Alamy Stock Photo 

        FIG.    13. 6  
 Heinrich Rudolph Hertz.   

German  (Hamburg, Berlin, Karlsruhe) 
(1857–94)
   Physicist   
Professor of Physics,  Karlsruhe Polytechnic and 

University of Bonn   

 Spurred on by the earlier predictions of the English 
physicist James Clerk Maxwell, Heinrich Hertz pro-
duced  electromagnetic waves  in his laboratory at the 
Karlsruhe Polytechnic while in his early 30s. The ru-
dimentary  transmitter  and  receiver  were in essence 
the first to broadcast and receive radio waves. He was 
able to measure the  wavelength  of the electromagnetic 
waves and confirmed that the  velocity of propagation
is in the same order of magnitude as that of light. In 
addition, he demonstrated that the  reflective  and  refrac-
tive  properties of electromagnetic waves are the same 
as those for heat and light waves. It was indeed unfor-
tunate that such an ingenious, industrious individual 
should pass away at the very early age of 37 due to a 
bone disease. 

   1 hertz Hz 1 cycle per second cp( )cp( )cps( )s( )Hz( )Hz =           (    
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EXAMPLE 13.1 For the sinusoidal waveform in Fig. 13.7:

a. What is the peak value?
b. What is the instantaneous value at 0.3 s and 0.6 s?
c. What is the peak-to-peak value of the waveform?
d. What is the period of the waveform?
e. How many cycles are shown?
f. What is the frequency of the waveform?

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

8 V

–8 V

v

t (s)

FIG. 13.7 
Example 13.1.

Solutions:

a.  8 V.
b. At −8 V0.3 s, ;  at 0.6 s, 0 V.
c. 16 V.
d. 0.4 s.
e. 3.5 cycles.
f. 2.5 cps, or 2.5 Hz.

13.3 FREQUENCY SPECTRUM
Using a log scale (described in detail in Chapter 21), we can examine a 
frequency spectrum from 1 Hz to 1000 GHz on the same axis, as shown 
in Fig. 13.8. A number of terms in the various portions of the spectrum 
are probably familiar to you from everyday experiences. Note that the 
audio range (human ear) extends from only 15 Hz to 20 kHz, but the 
transmission of radio signals can occur between 3 kHz and 300 GHz. 
The uniform process of defining the intervals of the radio-frequency 
spectrum from VLF to EHF is quite evident from the length of the bars in 
the figure (although keep in mind that it is a log scale, so the frequencies 
encompassed within each segment are quite different). Other frequencies 
of particular interest (TV, CB, Wi-Fi, cell phone, FM radio,  microwave, 
and so on) are also included for reference purposes. Although it is  
numerically easy to talk about frequencies in the megahertz and giga-
hertz range, keep in mind that a frequency of 100 MHz, for instance, 
represents a sinusoidal waveform that passes through 100,000,000  
cycles in only 1 s—an incredible number when we compare it to the  
60 Hz of our conventional power sources.

Due to the wide variety of demands for specific frequency bands for 
applications such as cell phones, Wi-Fi, GPS, Bluetooth, ham radio, 
satellite TV, garage door openers, and so on, regulations must be set 
by the government to control the use of the frequency spectrum that 
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is available for telecommunications. In fact, there is an International 
Telecommunications Union (UTC) whose primary function is to coor-
dinate the use of specific frequencies on an international basis. In 2014, 
the search for Malaysia Airlines’ flight 370 involved listening for pings 
(short high-pitched ringing sound) at 37.5 kHz—an international stan-
dard for the black box carried in commercial airlines. The aircraft emer-
gency frequency reserved solely for planes in distress is 121.5 MHz for 
commercial airlines and 243.0 MHz for military aircraft. For marine 

Microwave

Microwave
oven

LF

VLF

3 kHz–30 kHz (Very Low Freq.)

30 kHz–300 kHz (Low Freq.)

300 kHz–3 MHz (Medium Freq.)

3 MHz–30 MHz (High Freq.)

30 MHz–300 MHz (Very High Freq.)

300 MHz–3 GHz (Ultrahigh Freq.)

3 GHz–30 GHz (Super-High Freq.)

30 GHz–300 GHz
(Extremely High Freq.)

MF

HF

VHF

UHF

SHF

EHF

RADIO FREQUENCIES (SPECTRUM)

Infrared3 kHz–300 GHz

15 Hz–20 kHz

AUDIO FREQUENCIES

1 Hz 10 Hz 100 Hz 1 kHz 10 kHz 100 kHz 1 MHz 10 MHz 100 MHz 1 GHz 10 GHz 1000 GHz f(log scale)

FM

TV

88 MHz–108 MHz

54 MHz–88 MHz

TV channels (7–13)

174 MHz–216 MHz

TV channels (14–83)

470 MHz–890 MHz

2.45 GHz microwave oven

Shortwave

1.5 MHz–30 MHz

Cell phone
824–894 MHz, 1850–1990 MHz

TV  channels (2–6)

AM
0.53 MHz–1.71 MHz

Wi-Fi 2.4 GHz–5.96 GHz

GPS 1.57 GHz carrier

100 GHz

ELF

30 Hz–3 kHz (Extremely Low Freq.)

FIG. 13.8 
Areas of application for specific frequency bands.
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purposes the VHF radio channel 16 at 156.8 MHz is employed. By sim-
ply tuning into these frequencies an aircraft or vessel can quickly send 
out a distress signal. Any inappropriate use of such frequencies would 
carry a severe penalty for obvious reasons. Bands of frequencies set up 
solely for mobile communications include 806–960 MHz, 710–2025 
MHz, 2110–2200 MHz, and 2500–2690 MHz, although the most com-
mon are the bands of 824–896 MHz and 1850–1990 MHz, often referred 
to as the 850 MHz and the 1.9 GHz bands. Both bands are commonly 
used by AT&T and Verizon to provide cell phone service. Table 13.1 is a 
brief review of prominent frequencies.

Since the frequency is inversely related to the period—that is, as 
one increases, the other decreases by an equal amount—the two can be  
related by the following equation:

 f
T

f

T
1  

  Hz

seconds s( )
=

=

=
 (13.2)

or      T
f
1=  (13.3)

EXAMPLE 13.2 Find the period of periodic waveform with a fre-
quency of

a. 60 Hz.
b. 1000 Hz.

Solutions:

a. T
f

16 67 ms1 1
60 Hz

0.01667 s or .= = ≅

(a recurring value since 60 Hz is so prevalent)

b. T
f

1 ms1 1
1000 Hz

10 s3= = = =−

TABLE 13.1  

Prominent Frequencies

15 Hz–20 kHz Audio range (human ear)
50 Hz Power distribution frequency in Europe, Asia, 

Australia, and so on, and clock construction
60 Hz Power distribution frequency in North America and 

South America
32,768 Hz Crystal oscillator for clock construction
37.5 kHz Black box ping frequency for airlines
0.53–1.71 MHz AM radio
54–890 MHz TV
88–108 MHz FM radio
121.5 MHz Aircraft distress frequency
130.167 MHz Space station
156.8 MHz Marine distress frequency
243.0 MHz Military aircraft distress frequency
850 MHz, 1.9 GHz Prominent mobile communications frequencies
1.57 GHz GPS
2.4, 3.6, 4.16, 5, 5.96 GHz Wi-Fi frequencies
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EXAMPLE 13.3 Determine the frequency of the waveform in 
Fig. 13.9.

Solution: From the figure, ( )= −T 25 ms 5 ms  or − =(35 ms 15 ms) 20 ms, 
− =(35 ms 15 ms) 20 ms, and

= =
×

=
−

f
T

50 Hz1 1
20 10 s3

In Fig. 13.10, the seismogram resulting from a seismometer near an 
earthquake is displayed. Prior to the disturbance, the waveform has a rela-
tively steady level, but as the event is about to occur, the frequency begins 
to increase along with the amplitude. Finally, the earthquake occurs, and 
the frequency and the amplitude increase dramatically. In other words, 
the relative frequencies can be determined simply by looking at the tight-
ness of the waveform and the associated period. The change in amplitude 
is immediately obvious from the resulting waveform. The fact that the 
earthquake lasts for only a few minutes is clear from the horizontal scale.

0 t (ms)

10 V
e

5 15 25 35

FIG. 13.9 
Example 13.3.

Relatively low frequency, low amplitude

Relatively high frequency,
high amplitude

Relatively high frequency, low amplitude

East–West
BNY
OCT23(296),2002
10:41 GMT

Time (minutes) from 10:41:00.000 GMT

–2

–1

0

1

2

X
 1

0+
3

50 55 60 65 70 75 80 85 90

FIG. 13.10 
Seismogram from station BNY (Binghamton University) in New York due to magnitude 6.7 earthquake in Central 

Alaska that occurred at ° °N W. , . ,63 62 148 04  with a depth of 10 km, on Wednesday, October 23, 2002.

Defined Polarities and Direction

You may be wondering how a polarity for a voltage or a direction for a 
current can be established if the waveform moves back and forth from 
the positive to the negative region. For a period of time, a voltage has 
one polarity, while for the next equal period it reverses. To take care of 
this problem, a positive sign is applied if the voltage is above the axis, 
as shown in Fig. 13.11(a). For a current source, the direction in the sym-
bol corresponds with the positive region of the waveform, as shown in 
Fig. 13.11(b).

For any quantity that will not change with time, an uppercase letter 
such as V or I is used. For expressions that are time dependent or that rep-
resent a particular instant of time, a lowercase letter such as e or i is used.

The need for defining polarities and current direction becomes quite 
obvious when we consider multisource ac networks. Note in the last 
sentence the absence of the term sinusoidal before the phrase ac net-
works. This phrase will be used to an increasing degree as we progress; 
 sinusoidal is to be understood unless otherwise indicated.

(a)

e

e

t
+

–

i

(b)

i

t

FIG. 13.11 
(a) Sinusoidal ac voltage sources; (b) 

sinusoidal current sources.
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13.4 THE SINUSOIDAL WAVEFORM
The terms defined in the previous section can be applied to any type 
of periodic waveform, whether smooth or discontinuous. The sinusoi-
dal waveform is of particular importance, however, since it lends itself 
readily to the mathematics and the physical phenomena associated with 
electric circuits. Consider the power of the following statement:

The sinusoidal waveform is the only alternating waveform 
whose shape is unaffected by the response characteristics of 
R, L, and C elements.

In other words, if the voltage across (or current through) a resistor, in-
ductor, or capacitor is sinusoidal in nature, the resulting current (or volt-
age, respectively) for each will also have sinusoidal characteristics, as 
shown in Fig. 13.12. If any other alternating waveform such as a square 
wave or a triangular wave were applied, such would not be the case.

The unit of measurement for the horizontal axis can be time (as  
appearing in the figures thus far), degrees, or radians. The term radian 
can be defined as follows: If we mark off a portion of the  circumference 
of a circle by a length equal to the radius of the circle, as shown in 
Fig. 13.13, the angle resulting is called 1 radian. The result is

 1 rad 57.296 57.3= ° ≅ °  (13.4)

where °57.3  is the usual approximation applied.
One full circle has 2π  radians, as shown in Fig. 13.14. That is,

 2 rad 360π = °  (13.5)

so that    2 2 3.142 6.28π ( )= =
and  2 57.3 6.28 57.3 359.84 360π( ) ( )° = ° = ° ≅ °

A number of electrical formulas contain a multiplier of .π  For this 
reason, it is sometimes preferable to measure angles in radians rather 
than in degrees.

The quantity π  is the ratio of the circumference of a circle to 
its diameter.

π  has been determined to an extended number of places, primarily in 
an attempt to see if a repetitive sequence of numbers appears. It does not. 
A sampling of the effort appears below:

π = 3.14159 26535 89793 23846 26433 ...

Although the approximation 3.14π ≅  is often applied, all the cal-
culations in the text use the π  function as provided on all scientific 
calculators.

The units of measurement Degrees and Radians, are related as 
shown in Fig. 13.14. The conversions equations between the two are the 
following:

 Radians
180

degreesπ( ) ( )=
°

×  (13.6)

 Degrees 180 radians
π( ) ( )= ° ×  (13.7)

+

–

i

t
vR, L, or C

t

FIG. 13.12 
The sine wave is the only alternating 
waveform whose shape is not altered 
by the response characteristics of a 
pure resistor, inductor, or capacitor.

r

r

57.2968

1 radian

FIG. 13.13 
Defining the radian.

M13_BOYL0302_14_GE_C13.indd   553M13_BOYL0302_14_GE_C13.indd   553 01/03/23   5:58 PM01/03/23   5:58 PM



554 | | | SinuSoidal alternating WaveformS

Applying these equations, we find

: ππ° ( )=
°

° =90
2

radRadians
180

90

ππ° ( )=
°

° =30 :
6

radRadians
180

30

π
π
π( )= ° = °

3
rad: 60Degrees 180

3

π
π

π( )= ° = °3
2

rad: 270Degrees 180 3
2

For comparison purposes, two sinusoidal voltages are plotted in 
Fig. 13.15 using degrees and radians as the units of measurement for the 
horizontal axis.

It is of particular interest that the sinusoidal waveform can be  
derived from the length of the vertical projection of a radius vector rotat-
ing in a uniform circular motion about a fixed point. Starting as shown in 
Fig. 13.16(a) and plotting the amplitude (above and below zero) on the 
coordinates drawn to the right [Figs. 13.16(b) through (i)], we will trace 
a complete sinusoidal waveform after the radius vector has completed a 
360° rotation about the center.

The velocity with which the radius vector rotates about the center, 
called the angular velocity, can be determined from the following 
equation:

 
( )

=Angular velocity
distance (degree or radians)

time seconds
 (13.8)

Substituting into Eq. (13.8) and assigning the lowercase Greek letter 
omega ω( ) to the angular velocity, we have

 
t

ω α=  (13.9)

and tα ω=  (13.10)

Since ω  is typically provided in radians per second, the angle α  
obtained using Eq. (13.10) is usually in radians. If α is required in  
degrees, Eq. (13.7) must be applied. The importance of remembering the 
above will become obvious in the examples to follow.

2
3

4
5 6 0.28

(6.28 radians)
2p radians

p radians
(3.14 radians) 1 radian

FIG. 13.14 
There are π2  radians in one full circle of °.360

(a)

v, i,  etc.

0 458 1358 (degrees)908

2258 31582708 3608

1808

(b)

v, i,  etc.

0
4 2 4

3
4
5

2
3

4
7

2p

a    (radians)

a

a

p
p p p p

p p p

FIG. 13.15 
Plotting a sine wave versus (a) degrees 

and (b) radians.
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08 458 908 1358 1808

2258 2708 3158 3608

T (period)

Sine wave

(i)
a

a  =  3608

08

3158
(h)

a

a  =  3158

08
(g)

a

a  =  2708
2708

08
(f)

a

a  =  2258
2258

08

(e)

a

a  =  1808

1808

08

(d)

a

a  =  1358

458 908 1358

08
(c)

a

a  =  908

908

08
(b)

a

a  =  458

458

Note equality

08
(a)

aa  =  08

FIG. 13.16 
Generating a sinusoidal waveform through the 

vertical projection of a rotating vector.
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In Fig. 13.16, the time required to complete one revolution is equal to 
the period (T) of the sinusoidal waveform in Fig. 13.16(i). The radians 
subtended in this time interval are 2 .π  Substituting, we have

 
T
2 (rad/s)ω π=  (13.11)

In words, this equation states that the smaller the period of the sinu-
soidal waveform of Fig. 13.16(i), or the smaller the time interval before 
one complete cycle is generated, the greater must be the angular velocity 
of the rotating radius vector. Certainly this statement agrees with what 
we have learned thus far. We can now go one step further and apply the 
fact that the frequency of the generated waveform is inversely related to 
the period of the waveform; that is, f T1/ .=  Thus,

 f2 (rad/s)ω π=  (13.12)

This equation states that the higher the frequency of the generated 
 sinusoidal waveform, the higher must be the angular velocity. Eqs. 
(13.11) and (13.12) are verified somewhat by Fig. 13.17, where for the 
same radius vector, 100 rad/sω =  and 500 rad/s.

 EXAMPLE 13.4 Determine the angular velocity of a sine wave 
 having a frequency of 60 Hz.

Solution:

 ω π π( )( )= = ≅f 377 rad/s2 2 60 Hz

(A recurring value due to 60 Hz predominance in the United States.)

EXAMPLE 13.5 Determine the frequency and period of the sine 
wave in Fig. 13.17(b).

Solution: Since T2 / ,ω π=

T 12 57 ms2 2 rad
500 rad/s

2 rad
500 rad/s

.π
ω

π π= = = =

and  = =
×

=
−

f
T

79 58 Hz1 1
12.57 10 s

.
3

EXAMPLE 13.6 Given 200 rad/s,ω =  determine how long it will 
take the sinusoidal waveform to pass through an angle of 90 .°

Solution: Eq. (13.10): t,α ω=  and

t α
ω

=

However, α must be substituted as π ( )= °/2 90  since ω  is in radians 
per second:

t 7 85 ms/2 rad
200 rad/s 400

s .α
ω

π π= = = =

(a)

(b)

T

T

Decreased w, increased T,
decreased f

Increased w, decreased T,
increased f

w  =  500 rad/s

w  =  100 rad/s

a

v

v

v

v

a

FIG. 13.17 
Demonstrating the effect of ω  on the 

frequency and period.
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EXAMPLE 13.7 Find the angle through which a sinusoidal wave-
form of 60 Hz will pass in a period of 5 ms.

Solution: Eq. (13.11): t,α ω=  or

α π π ( )( )= = × =−ft 1 89 rad2 2 60 Hz)(5 10 s .3

If not careful, you might be tempted to interpret the answer as 1.885 .°  
However,

108 3180
rad

1.89 rad .α
π

( )( )° = ° = °

13.5 GENERAL FORMAT FOR THE 
SINUSOIDAL VOLTAGE OR CURRENT
The basic mathematical format for the sinusoidal waveform is

 αA sinm  (13.13)

where Am  is the peak value of the waveform and α is the unit of measure 
for the horizontal axis, as shown in Fig. 13.18.

The equation tα ω=  states that the angle α through which the rotat-
ing vector in Fig. 13.16 will pass is determined by the angular velocity 
of the rotating vector and the length of time the vector rotates. For exam-
ple, for a particular angular velocity (fixed ω ), the longer the radius vec-
tor is permitted to rotate (that is, the greater the value of t), the greater 
is the number of degrees or radians through which the vector will pass. 
Relating this statement to the sinusoidal waveform, we have that, for a 
particular angular velocity, the longer the time, the greater is the num-
ber of cycles shown. For a fixed time interval, the greater is the angular  
velocity, the greater is the number of cycles generated.

Due to Eq. (13.10), the general format of a sine wave can also be 
written

 ωA tsinm  (13.14)

with tω  as the horizontal unit of measure.
For electrical quantities such as current and voltage, the general  

format is

ω α= =i I t Isin sinm m

ω α= =e E t Esin sinm m

where the capital letters with the subscript m represent the amplitude, and 
the lowercase letters i and e represent the instantaneous value of current and 
voltage, respectively, at any time t. This format is particularly important 
because it presents the sinusoidal voltage or current as a function of time, 
which is the horizontal scale for the oscilloscope. Recall that the horizontal 
sensitivity of a scope is in time per division, not degrees per centimeter.

EXAMPLE 13.8 Given e 5 sin ,α=  determine e at 40α = °  and 
0.8 .α π=

Solution: For 40 ,α = °

e 3 21 V5 sin 40 5 0.6428 .( )= ° = =

0

,  1808 2 ,  3608

a (8 or rad)

Am

Am

p p

 FIG. 13.18 
Basic sinusoidal function.
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For 0.8 ,α π=

α
π

π( ) ( )° = ° = °180 0.8 144

and e 2 94 V5 sin144 5 0.5878 .( )= ° = =

The angle at which a particular voltage level is attained can be deter-
mined by rearranging the equation

e E sinm α=

in the following manner:
e

E
sin

m

α =

which can be written

   α = − e
E

sin
m

1  (13.15)

Similarly, for a particular current level,

   α = − i
I

sin
m

1  (13.16)

EXAMPLE 13.9

a. Determine the angle at which the magnitude of the sinusoidal func-
tion t10 sin 377υ =  is 4 V.

b. Determine the time at which the magnitude is attained.

Solutions:

a. Eq. (13.15):

E
23 58sin sin 4 V

10 V
sin 0.4 .

m
1

1 1 1α υ= = = = °− − −

However, Fig. 13.19 reveals that the magnitude of 4 V (positive) 
will be attained at two points between 0° and 180 .°  The second 
intersection is determined by

156 42180 23.578 .2α = ° − ° = °

In general, therefore, keep in mind that Eqs. (13.15) and (13.16) 
will provide an angle with a magnitude between 0° and 90 .°

b. Eq. (13.10): t,α ω=  and so t / .α ω=  However, α must be in radi-
ans. Thus,

α π ( )=
°

° =(rad)
180

23.578 0.412 rad

and    t 1 09 ms0.412 rad
377 rad/s

.1
α
ω

= = =

For the second intersection,

α π ( )=
°

° =(rad)
180

156.422 2.73 rad

t 7 24 ms2.73 rad
377 rad/s

.2
α
ω

= = =

v (V)

4

1 908

10

0
t1

2

t2

1808a a a

FIG. 13.19 
Example 13.9.
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Calculator Operations

Both sin and sin 1−  are available on all scientific calculators. You can also 
use them to work with the angle in degrees or radians without having to 
convert from one form to the other. That is, if the angle is in radians and 
the mode setting is for radians, you can enter the radian measure directly.

To set the DEGREE mode, proceed as outlined in Fig. 13.20(a) using 
the TI-89 calculator. The magnitude of the voltage e at 40° can then be 
found using the sequence in Fig. 13.20(b).

(a)
Angle DEGREEENTER ENTERHOME MODE ENTER

(b)
3.215 0 )× sin( 4 ENTER2ND

FIG. 13.20 
(a) Setting the DEGREE mode; (b) evaluating °sin .5 40

sin( 2.94) ENTER0 8 2ND5 2ND×

FIG. 13.21 
Finding π=e sin .5 0 8  using the calculator in the RADIAN mode.

ENTER 23.60r 4 )0sin–1( 14

FIG. 13.22 
Finding α = −sin /1 (4 10)1  using the calculator in the DEGREE mode.

ENTER 0.41r 4 )0sin–1( 14

FIG. 13.23 
Finding α = −sin /1 (4 10)1  using the calculator in the RADIAN mode.

After establishing the RADIAN mode, the sequence in Fig. 13.21  
determines the voltage at 0.8 .π

Finally, the angle in degrees for 1α  in part (a) of Example 13.9 can be 
determined by the sequence in Fig. 13.22 with the mode set in degrees, 
whereas the angle in radians for part (a) of Example 13.9 can be deter-
mined by the sequence in Fig. 13.23 with the mode set in radians.

The sinusoidal waveform can also be plotted against time on the 
horizontal axis. The time period for each interval can be determined 
from t / ,α ω=  but the most direct route is simply to find the period 
T from T f1/=  and break it up into the required intervals. This latter 
technique is demonstrated in Example 13.10.

Before reviewing the example, take special note of the relative simplicity 
of the mathematical equation that can represent a sinusoidal waveform. Any 
alternating waveform whose characteristics differ from those of the sine 
wave cannot be represented by a single term, but may require two, four, six, 
or perhaps an infinite number of terms to be represented accurately.

EXAMPLE 13.10 Sketch e t10 sin 314=  with the abscissa

a. angle α( ) in degrees.
b. angle α( ) in radians.
c. time t( ) in seconds.
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Solutions:

a. See Fig. 13.24. (Note that no calculations are required.)
b. See Fig. 13.25. (Once the relationship between degrees and radians 

is understood, no calculations are required.)
c. See Fig. 13.26.

T360 : 2 2
314

20 msπ
ω

π° = = =

T180 :
2

20 ms
2

10 ms° = =

T90 :
4

20 ms
4

5 ms° = =

T30 :
12

20 ms
12

1.67 ms° = =

10

08 308 908

1808 2708 3608

a (8)

e

10

FIG. 13.24 
Example 13.10, horizontal axis in 

degrees.

0 a (rad)
2
—

6
—

3
2

—
2

10

e

10

p p

p p

p

FIG. 13.25 
Example 13.10, horizontal axis in radians.

0 1.67

10 15 20

10

T  =  20 ms

t (ms)5

10

FIG. 13.26 
Example 13.10, horizontal axis in milliseconds.

( – )

Am

(2 – )

Am sin
p u

p u

a
u

u

FIG. 13.27 
Defining the phase shift for a 

sinusoidal function that crosses the 
horizontal axis with a positive slope 

before °.0

EXAMPLE 13.11 Given i t6 10 sin 1000 ,3= × −  determine i at 
t = 2 ms.

 Solution:

α ω ( )= = = × =−t t1000 1000 rad/s)(2 10 s 2 rad3

α
π

( )( )° = ° = °180
rad

2 rad 114.59

i 5 46 mA6 10 sin 114.59 6 mA)(0.9093 .3 ( )( ) ( )= × ° = =−

13.6 PHASE RELATIONS
Thus far, we have considered only sine waves that have maxima at π/2 
and π/3 2, with a zero value at 0, ,π  and 2 ,π  as shown in Fig. 13.25. If 
the waveform is shifted to the right or left of 0 ,°  the expression becomes

 A tsinm ω θ( )±  (13.17)

where θ  is the angle in degrees or radians that the waveform has been 
shifted.

If the waveform passes through the horizontal axis with a 
 positive-going (increasing with time) slope before 0 ,°  as shown in 
Fig. 13.27, the expression is

 A tsinm ω θ( )+  (13.18)
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At t 0 ,ω α= = °  the magnitude is determined by A sin .m θ  If the 
waveform passes through the horizontal axis with a  positive-going slope 
after 0 ,°  as shown in Fig. 13.28, the expression is

 A tsinm ω θ( )−  (13.19)

Finally, at t 0 ,ω α= = °  the magnitude is A sin ( ),m θ−  which, by a 
trigonometric identity, is A sin .m θ−

If the waveform crosses the horizontal axis with a positive-going 
slope π( )° /90 2  sooner, as shown in Fig. 13.29, it is called a cosine 
wave; that is,

 ω ω π ω( )( )+ ° = + =t t tsin 90 sin
2

cos  (13.20)

or     t t tsin cos 90 cos
2

ω ω ω π( )( )= − ° = −  (13.21)

The terms leading and lagging are used to indicate the 
relationship between two sinusoidal waveforms of the same 
frequency plotted on the same set of axes.

In Fig. 13.29, the cosine curve is said to lead the sine curve by 90 ,°  
and the sine curve is said to lag the cosine curve by 90 .°  The 90° is 
referred to as the phase angle between the two waveforms. In language 
commonly applied, the waveforms are out of phase by 90 .°  Note that the 
phase angle between the two waveforms is measured between those two 
points on the horizontal axis through which each passes with the same 
slope. If both waveforms cross the axis at the same point with the same 
slope, they are in phase.

The geometric relationship between various forms of the sine and 
cosine functions can be derived from Fig. 13.30. For instance, start-
ing at the sin α+  position, we find that cos α+  is an additional 90° 
in the counterclockwise direction. Therefore, cos sin( 90 ).α α= + °
For sin α−  we must travel 180° in the counterclockwise (or clockwise) 
direction so that sin sin( 180 ),α α− = ± °  and so on, as listed below:

 

cos sin 90

sin cos 90

sin sin 180

cos sin 270 sin 90

etc.

α α

α α

α α

α α α

( )

( )

( )

( ) ( )

= + °

= − °

− = ± °

− = + ° = − °

 (13.22)

In addition, note that

 sin sin

cos cos

α α

α α

( )

( )

− = −

− =
 (13.23)

In all the shifting described in the preceding paragraphs take 
note that the amplitude is not a factor in the shifting

If a sinusoidal expression appears as

e E tsinm ω= −

u (p + u)

Am

(2p + u)

a– Am sin u

FIG. 13.28 
Defining the phase shift for a sinusoidal 

function that crosses the horizontal axis with 
a positive slope after °.0

0

Am

908

cos a
sin a

p 2p
a

p
2

– p
2

p3
2

FIG. 13.29 
Phase relationship between a sine wave and 

a cosine wave.

+cos a

–cos a

+sin a–sin a
sin(a  +908)

cos(a  –908)

FIG. 13.30 
Graphic tool for finding the relationship 

between specific sine and cosine functions.
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the negative sign is associated with the sine portion of the  expression, not 
the peak value E .m  In other words, the expression, if not for  convenience, 
would be written

e E tsinm ω( )= −

Since    ω ω( )− = ± °t tsin sin 180

the expression can also be written

ω( )= ± °e E tsin 180m

revealing that a negative sign can be replaced by a 180° change in phase 
angle or ;( )+ −  that is,

ω ω ω( ) ( )= − = + ° = − °e E t E t E tsin sin 180 sin 180m m m

A plot of each will clearly show their equivalence. There are, 
 therefore, two correct mathematical representations for the functions.

The phase relationship between two waveforms indicates which one 
leads or lags the other and by how many degrees or radians.

EXAMPLE 13.12 What is the phase relationship between the 
 sinusoidal waveforms of each of the following sets?

a. t10 sin 30υ ω( )= + °
i t5 sin 70ω( )= + °

b. i t15 sin 60ω( )= + °
t10 sin 20υ ω( )= − °

c. i t2 cos 10ω( )= + °
t3 sin 10υ ω( )= − °

d. i tsin 30ω( )= − + °
t2 sin 10υ ω( )= + °

e. i t2 cos 60ω( )= − − °
t3 sin 150υ ω( )= − °

Solutions:

a. See Fig. 13.31.

i leads υ by 40 ,°  or υ lags i by 40 .°

v

308408

5
10

i

0
2

3
2

2

708

p
p

pp vt

FIG. 13.31 
Example 13.12(a): i leads υ  by °.40

b. See Fig. 13.32.

i leads υ by 80 ,°  or υ lags i by 80 .°
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c. See Fig. 13.33.

ω ω( ) ( )= + ° = + ° + °i t t2 cos 10 2 sin 10 90

ω( )= + °t2 sin 100

i leads υ by 110 ,°  or υ lags i by 110 .°

10 15

i

v

2
–

2
3
2

2

208

808

608

0
p p p

p
p vt

FIG. 13.32 
Example 13.12(b): i leads υ  by °.80

i

v2
3

108

1108

2
0 3

2
2

1008

2
––p p p p

p
vt

FIG. 13.33 
Example 13.12(c): i leads υ  by °.110

2

1

2
– 3

2

2
2

5
2 3

108
1608

2008
3608

0

i

v

1508

p
p p

p

p
p

p
vt

FIG. 13.34 
Example 13.12(d): υ  leads i by °.160

2
– 3

22

2 5
2

30

i

v

1508

2

p p p p
p p

vt
p

3

FIG. 13.35 
Example 13.12(e): υ  and i are in phase.

d. See Fig. 13.34.

ω ω
ω

( ) ( )

( )

− + ° = + ° − °

= − °

↙
t t

t

sin 30 sin 30 180

sin 150

Note

υ leads i by 160 ,°  or i lags υ by 160 .°

e. See Fig. 13.35.

ω ω

ω

( ) ( )

( )

= − − ° = − ° − °

= − °

↙
i t t

t

  2 cos 60 2 cos 60 180

  2 cos 240

By choice
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However, cos sin 90α α( )= + °

so that ω ω( ) ( )− ° = − ° + °t t2 cos 240 2 sin 240 90

ω( )= − °t2 sin 150

υ and i are in phase.

Function Generators

Function generators are an important component of the typical labora-
tory setting. The generator of Fig. 13.36 can generate six different out-
puts; sine, triangular, and square wave, ramp, pulse,+  and pulse,−  with 
frequencies extending from 0.5 Hz to 4 MHz. However, as shown in the 
output listing, it has a maximum amplitude of 20 V .p-p  A number of 
other characteristics are included to demonstrate how the text will cover 
each in some detail.

(Courtesy of B+ K Precision)

FIG. 13.37 
Two-channel digital storage oscilloscope.

MAIN OUTPUT
Frequency range ................................................ 0.5 Hz to 4 MHz in six ranges
Waveforms ........................................................ Six waveforms (sine, square, triangle,
          ramp, 1pulse, 2pulse)
Amplitude .......................................................... 20 Vp-p into an open (10 Vp-p in to 50 V)
Attenuator .......................................................... 0 dB, 220 dB (12%)—Chapter 21
Output impedance .............................................. 50 V (12%)—Chapter 26
Distortion ........................................................... <1%, 1 Hz to 100 kHz
Rise/fall time ..................................................... <60 ns—(Chapter 25)

SYNC OUTPUT
Rise time ............................................................ <40 ns—(Chapter 25)
Waveforms ........................................................ Square, pulse—(Chapter 25)
SWEEP
Mode .................................................................. Linear/log sweep—(Chapter 22)
Rate .................................................................... From 10 ms to 5 s continuously variable
Sweep output ..................................................... 10 Vp-p (open)
Output impedance ............................................. 1 kV 12%—Chapter 26

(Courtesy of B+ K Precision)

FIG. 13.36 
Function generator.

The Oscilloscope

The oscilloscope of Fig. 13.37 is an instrument that will display the  
sinusoidal alternating waveform in a way that will permit the reviewing 
of all of the waveform’s characteristics. In some ways, the screen and the 
dials give an oscilloscope the appearance of a small TV, but remember 
that it can display only what you feed into it. You can’t turn it on and 
ask for a sine wave, a square wave, and so on; it must be connected to a 
source or an active circuit to display the desired waveform.

The screen has a standard appearance, with 10 horizontal divisions and 
8 vertical divisions. The distance between divisions is 1 cm on the vertical 
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and horizontal scales, providing you with an excellent opportunity to be-
come aware of the length of 1 cm. The vertical scale is set to display volt-
age levels, whereas the horizontal scale is always in units of time. The 
 vertical sensitivity control sets the voltage level for each division, whereas 
the  horizontal sensitivity control sets the time associated with each division. 
In other words, if the vertical sensitivity is set at 1 V/div., each division dis-
plays a 1 V swing, so that a total vertical swing of 8 divisions represents  
8 V peak-to-peak. If the horizontal control is set on 10 s/div.,µ  4 divisions 
equal a time period of 40 s.µ  Remember, the oscilloscope display  presents 
a sinusoidal voltage versus time, not degrees or radians. Further, the  vertical 
scale is always a voltage sensitivity, never units of amperes.

The oscilloscope of Fig. 13.37 is a digital storage scope, where 
 storage indicates that it can store waveform in digital form. The digi-
tal storage scope (DSO) is the standard for most laboratories today. At 
the input to the scope, an analog-to-digital converter (ADC) will convert 
the analog signal into digital at the rate of 250 MSa/s, or 250,000,000 
samples per second—an enormous number—capable of picking up any 
distortion in the waveform.

EXAMPLE 13.13 Find the period, frequency, and peak value of the 
sinusoidal waveform appearing on the screen of the oscilloscope in 
Fig. 13.38. Note the sensitivities provided in the figure.

Solution: One cycle spans 4 divisions. Therefore, the period is

sµµ=






 =T 2004 div .

50 s
div.

and the frequency is

f
T

5 kHz1 1
200 10 s6

= =
×

=
−

The vertical height above the horizontal axis encompasses 2 divisions. 
Therefore,

V 0 2 V2 div. 0.1 V
div.

.m ( )= =

An oscilloscope can also be used to make phase measurements  
between two sinusoidal waveforms. Virtually all laboratory oscillo-
scopes today have the dual-trace option, that is, the ability to show two 
waveforms at the same time. It is important to remember, however, that 
both waveforms will and must have the same frequency. The hookup 
procedure for using an oscilloscope to measure phase angles is covered 
in detail in Section 15.13. However, the equation for determining the 
phase angle can be introduced using Fig. 13.39.

First, note that each sinusoidal function has the same frequency, per-
mitting the use of either waveform to determine the period. For the wave-
form chosen in Fig. 13.39, the period encompasses 5 divisions at 0.2 ms/
div. The phase shift between the waveforms (irrespective of which is 
leading or lagging) is 2 divisions. Since the full period represents a cycle 
of 360 ,°  the following ratio [from which Eq. (13.24) can be derived] can 
be formed:

θ
( ) ( )

° =
T

360
no. of div. phase shift no. of div.

Vertical sensitivity  = 0.1 V/div. 
Horizontal sensitivity  = 50 ms/div. 

FIG. 13.38 
 Example 13.13.

Vertical sensitivity = 2 V/div.
Horizontal sensitivity = 0.2 ms/div.

T

e
i

u

FIG. 13.39 
Finding the phase angle between waveforms 

using a dual-trace oscilloscope.
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and   θ
( )

( )
= × °

T

phase shift no. of div.

no. of div.
360  (13.24)

Substituting into Eq. (13.24) results in

θ ( )

( )
= × ° = °1442 div.

5 div.
360

and e leads i by144°.

13.7 AVERAGE VALUE
Even though the concept of the average value is an important one 
in most technical fields, its true meaning is often misunderstood. 
In Fig. 13.40(a), for example, the average height of the sand may be  
required to determine the volume of sand available. The average height of 
the sand is that height obtained if the distance from one end to the other 
is maintained while the sand is leveled off, as shown in Fig. 13.40(b). 
The area under the mound in Fig. 13.40(a) then equals the area under 
the rectangular shape in Fig. 13.40(b) as determined by A b h.= ×  
Of course, the depth (into the page) of the sand must be the same for 
Fig. 13.40(a) and (b) for the preceding conclusions to have any meaning.

In Fig. 13.40, the distance was measured from one end of the pile 
to the other. In Fig. 13.41(a), the distance extends beyond the end of 
the original pile of Fig. 13.40. The situation could be one where a 
landscaper wants to know the average height of the sand if it is spread 
out over a distance such as defined in Fig. 13.41(a). The result of an  
increased distance is shown in Fig. 13.41(b). The average height has  
decreased compared to Fig. 13.40. Quite obviously, therefore, the longer 
the distance, the lower is the average value.

If the distance parameter includes a depression, as shown in 
Fig. 13.42(a), some of the sand will be used to fill the depression, 

Height

Distance

(a)

Height

Average height

Sand

Same
distance

(b)

Sand

Ground level

FIG. 13.42 
Effect of depressions (negative excursions) 

on average value.

Height

Distance

Sand

(a)

Height

Average height

Sand

Same
distance

(b)

FIG. 13.40 
Defining average value.

Height

Distance

Sand

(a)

Height

Average height

Same
distance

(b)

Sand

FIG. 13.41 
Effect of distance (length) on average value.

M13_BOYL0302_14_GE_C13.indd   566M13_BOYL0302_14_GE_C13.indd   566 01/03/23   5:59 PM01/03/23   5:59 PM



average value | | | 567

resulting in an even lower average value for the landscaper, as shown in 
Fig. 13.42(b). For a sinusoidal waveform, the depression would have the 
same shape as the mound of sand (over one full cycle), resulting in an 
average value at ground level (or zero volts for a sinusoidal voltage over 
one full period).

After traveling a considerable distance by car, some drivers like to 
calculate their average speed for the entire trip. This is usually done 
by dividing the miles traveled by the hours required to drive that dis-
tance. For example, if a person traveled 225 mi in 5 h, the average 
speed was 225 mi/5 h, or 45 mi/h. This same distance may have been 
traveled at various speeds for various intervals of time, as shown in 
Fig. 13.43.

10
20
30
40
50
60
70

Speed (mi/h)

A1 A2

0 1 2 3 4 5 6 t (h)
Lunch break

Average speed

FIG. 13.43 
Plotting speed versus time for an automobile excursion.

By finding the total area under the curve for the 5 h and then dividing 
the area by 5 h (the total time for the trip), we obtain the same result of 
45 mi/h; that is,

 Average speed area under curve
length of curve

=  (13.25)

A A
Average speed

5 h
60 mi/h)(2 h (50 mi/h)(2.5 h)

5 h
1 2 ( )=

+
= +

= = 45 mi h225
5

mi/h /

Eq. (13.25) can be extended to include any variable quantity, such as 
current or voltage, if we let G denote the average value, as follows:

 ( ) =G average value
algebraic sum of areas

length of curve
 (13.26)

The algebraic sum of the areas must be determined since some 
area contributions are from below the horizontal axis. Areas above the 
axis are assigned a positive sign and those below it a negative sign. A 
positive average value is then above the axis, and a negative value is 
below it.

The average value of any current or voltage is the value indicated on a 
dc meter. In other words, over a complete cycle, the average value is the 
equivalent dc value. In the analysis of electronic circuits to be consid-
ered in a later course, both dc and ac sources of voltage will be applied 
to the same network. You will then need to know or determine the dc (or 
average value) and ac components of the voltage or current in various 
parts of the system.
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EXAMPLE 13.14 Determine the average value of the waveforms in 
Fig. 13.44.

0

10 V

1 2 3 4 t (ms)

–10 V

(a)

0

14 V

1 2 3 4 t (ms)

–6  V

(b)

v1
v2

(Square wave)

FIG. 13.44 
Example 13.14.

14 V

4 V
0

–6 V
1 2 3 4 t (ms)

FIG. 13.45 
Defining the average value for the waveform 

in Fig. 13.44(b).

3

v (V)

0

–1

4 8
t (ms)

1 cycle

FIG. 13.46 
Example 13.15(a).

1 cycle

2 4
6 8

10 t (ms)

i (A)

4

0

–2

–10

FIG. 13.47 
Example 13.15(b).

Solutions:

a. By inspection, the area above the axis equals the area below over 
one cycle, resulting in an average value of zero volts. Using  
Eq. (13.26) gives

G 0 V10 V)(1 ms (10 V)(1 ms)
2 ms

0
2 ms

( )= − = =

b. Using Eq. (13.26) gives

G 4 V14 V)(1 ms (6 V)(1 ms)
2 ms

14 V 6 V
2

8 V
2

( )
= − = − = =

as shown in Fig. 13.45.

In reality, the waveform in Fig. 13.44(b) is simply the square 
wave in Fig. 13.44(b) with a dc shift of 4 V; that is,

4 V2 1υ υ= +

EXAMPLE 13.15 Find the average values of the following wave-
forms over one full cycle:

a. Fig. 13.46.
b. Fig. 13.47.

Solutions:

a. G 1 V3 V)(4 ms (1 V)(4 ms)
8 ms

12 V 4 V
8

( )= + − = − =
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Note Fig. 13.48.

b. 
( ) ( )

= − + −G 10 V)(2 ms 4 V)(2 ms (2 V)(2 ms)
10 ms

1 6 V20 V 8 V 4 V
10

16 V
10

.= − + − = − = −

Note Fig. 13.49.

We found the areas under the curves in Example 13.15 by using a simple 
geometric formula. If we encounter a sine wave or any other  unusual shape, 
however, we must find the area by some other means. We can obtain a good 
approximation of the area by attempting to  reproduce the original wave shape 
using a number of small rectangles or other  familiar shapes, the area of which 
we already know through simple geometric formulas. For example,

the area of the positive (or negative) pulse of a sine wave is 2A .m

Approximating this waveform by two triangles (Fig. 13.50), we  obtain 
(using area 1/2=  base × height for the area of a triangle) a rough idea 
of the actual area:

bh A A AArea shaded 2 1
2

2 1
2 2 2

1.58

b h

m m m
π π( ) ( )( )( )= = 





= ≅

� ���� �����

A closer approximation may be a rectangle with two similar triangles 
(Fig. 13.51):

A bh A A A AArea
3

2 1
2 3 3

2
3

2.094m m m m m
π π π π( )= + = + = =

which is certainly close to the actual area. If an infinite number of forms 
is used, an exact answer of A2 m  can be obtained. For irregular wave-
forms, this method can be especially useful if data such as the average 
value are desired.

The procedure of calculus that gives the exact solution A2 m is known as 
integration. Integration is presented here only to make the method recogniz-
able to you; it is not necessary to be proficient in its use to continue with this 
text. It is a useful mathematical tool, however, and should be learned. Finding 
the area under the positive pulse of a sine wave using integration, we have

∫ α α=
π

A dArea sinm

0

where ∫  is the sign of integration, 0 and π  are the limits of integration, 

αA sinm is the function to be integrated, and dα  indicates that we are 
integrating with respect to .α

Integrating, (for demonstrating only) we obtain

AArea [ cos ]m 0α= − π

A cos cos0m π( )= − − °

A A1 1 2m m( )[ ] ( )= − − − + = − −

        AArea 2 m=  (13.27)

1

vav (V)

8 t (ms)

1V0

dc voltmeter (between 0 and 8 ms)

FIG. 13.48 
The response of a dc meter to the 

waveform in Fig. 13.46.

0
–1.6

iav (A)

t (ms)

dc ammeter (between 0 and 10 ms)

– +–1.6
10

 FIG. 13.49 
The response of a dc meter to the 

waveform in Fig. 13.47.

0
2
—

Am

pp

FIG. 13.50 
Approximating the shape of the positive 
pulse of a sinusoidal waveform with two 

right triangles.

0
2
—

Am

3
— 2

3
— pppp

FIG. 13.51 
A better approximation for the shape of the 

positive pulse of a sinusoidal waveform.

0

Am

p
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Since we know the area under the positive (or negative) pulse, we can 
easily determine the average value of the positive (or negative) region of 
a sine wave pulse by applying Eq. (13.26):

G
A2 m

π
=

and G
A

A
2

0.637m
mπ

= =  (13.28)

For the waveform in Fig. 13.52,

π π
( )

( )= =G
A A2 /2

/2
2

The average is the same as for a full pulse.m m

EXAMPLE 13.16 Determine the average value of the sinusoidal 
waveform in Fig. 13.53.

Solution: By inspection it is fairly obvious that

the average value of a pure sinusoidal waveform over one 
full cycle is zero.

Eq. (13.26):

G
A A

0 V
2 2

2
m m

π
=

+ −
=

EXAMPLE 13.17 Determine the average value of the waveform in 
Fig. 13.54.

Solution: The peak-to-peak value of the sinusoidal function is 
16 mV 2 mV 18 mV.+ =  The peak amplitude of the sinusoidal 
waveform is, therefore, 18 mV/2 9 mV.=  Counting down 9 mV from 
2 mV (or 9 mV up from −16 mV) results in an average or dc level of 

7 mV,−  as noted by the dashed line in Fig. 13.54.

EXAMPLE 13.18 Determine the average value of the waveform in 
Fig. 13.55.

Solution:

G
A

3 18 V
2 0

2
2(10 V)

2
.m

π π
=

+
= ≅

 EXAMPLE 13.19 For the waveform in Fig. 13.56, determine 
whether the average value is positive or negative, and determine its 
approximate value.

Solution: From the appearance of the waveform, the average value is 
positive and in the vicinity of 2 mV. Occasionally, judgments of this type 
will have to be made.

Instrumentation

The dc level or average value of any waveform can be found using a 
digital multimeter (DMM) or an oscilloscope. For purely dc circuits, set 

v (mV)

10 mV

0
t

FIG. 13.56 
Example 13.19.

0

Am
G

p

0

Am

2
—p p a

FIG. 13.52 
Finding the average value of one-half the 
positive pulse of a sinusoidal waveform.

0

1 cycle

Am

Am

2pp a

FIG. 13.53 
Example 13.16.

+2 mV

v

0
t

– 16 mV

– 7 mV

FIG. 13.54 
Example 13.17.

a

1 cycle

2pp

v (V)

10

3.18
0

Sine wave

FIG. 13.55 
Example 13.18.
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the DMM on dc, and read the voltage or current levels. Oscilloscopes are 
limited to voltage levels using the sequence of steps listed below:

1. First choose GND from the DC-GND-AC option list associated 
with each vertical channel. The GND option blocks any signal to 
which the oscilloscope probe may be connected from entering the 
oscilloscope and responds with just a horizontal line. Set the 
resulting line in the middle of the vertical axis on the horizontal 
axis, as shown in Fig. 13.57(a).

2. Apply the oscilloscope probe to the voltage to be measured (if not 
already connected), and switch to the DC option. If a dc voltage is 
present, the horizontal line shifts up or down, as demonstrated in 
Fig. 13.57(b). Multiplying the shift by the vertical sensitivity results in 
the dc voltage. An upward shift is a positive voltage (higher potential at 
the red or positive lead of the oscilloscope), while a downward shift is 
a negative voltage (lower potential at the red or positive lead of the 
oscilloscope).

(b)

Vertical sensitivity = 50 mV/div.

Shift = 2.5 div.

(a)

GND option

FIG. 13.57 
Using the oscilloscope to measure dc voltages; (a) setting the GND condition;  
(b) the vertical shift resulting from a dc voltage when shifted to the DC option.

In general,

V vertical shift in div. vertical sensitivity in V/div.dc ( )( )= ×  (13.29)

For the waveform in Fig. 13.57(b),

V 125 mV2.5 div. 50 mV/div.dc ( )( )= =

The oscilloscope can also be used to measure the dc or average level 
of any waveform using the following sequence:

1. Using the GND option, reset the horizontal line to the middle of 
the screen.

2. Switch to AC (all dc components of the signal to which the probe 
is connected will be blocked from entering the oscilloscope—
only the alternating, or changing, components are displayed). 
Note the location of some definitive point on the waveform, such 
as the bottom of the half-wave rectified waveform of Fig. 13.58(a); 
that is, note its position on the vertical scale. For the future, 
whenever you use the AC option, keep in mind that the computer 
will distribute the waveform above and below the horizontal axis 
such that the average value is zero; that is, the area above the axis 
will equal the area below.
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3. Then switch to DC (to permit both the dc and the ac components 
of the waveform to enter the oscilloscope), and note the shift in the 
chosen level of part 2, as shown in Fig. 13.58(b). Eq. (13.29) can 
then be used to determine the dc or average value of the waveform. 
For the waveform in Fig. 13.58(b), the average value is about

V V 4 5 V0.9 div. 5 V/div. .av dc ( )( )= = =

The procedure outlined above can be applied to any alternating wave-
form such as the one in Fig. 13.56. In some cases the average value 
may require moving the starting position of the waveform under the AC  
option to a different region of the screen or choosing a higher voltage 
scale. By choosing the appropriate scale, you can enable DMMs to read 
the average or dc level of any waveform.

13.8 EFFECTIVE (rms) VALUES
This section begins to relate dc and ac quantities with respect to the 
power delivered to a load. It will help us determine the amplitude of 
a sinusoidal ac current required to deliver the same power as a partic-
ular dc current. The question frequently arises, How is it possible for 
a sinusoidal ac quantity to deliver a net power if, over a full cycle, the 
net current in any one direction is zero (average value 0= )? It would 
almost appear that the power delivered during the positive portion of 
the sinusoidal waveform is withdrawn during the negative portion, and 
since the two are equal in magnitude, the net power delivered is zero. 
However, understand that regardless of direction, current of any mag-
nitude through a resistor delivers power to that resistor. In other words, 
during the positive or negative portions of a sinusoidal ac current, power 
is being delivered at each instant of time to the resistor. The power  
delivered at each instant, of course, varies with the magnitude of the  
sinusoidal ac current, but there will be a net flow during either the pos-
itive or the negative pulses with a net flow over the full cycle. The net 
power flow equals twice that delivered by either the positive or the  
negative regions of sinusoidal quantity.

A fixed relationship between ac and dc voltages and currents can be 
derived from the experimental setup shown in Fig. 13.59. A resistor in a 
water bath is connected by switches to a dc and an ac supply. If switch 
1 is closed, a dc current I, determined by the resistance R and battery 

Shift = 0.9 div.

(a)

Reference

level

(b)

FIG. 13.58 
Determining the average value of a nonsinusoidal waveform using the oscilloscope: (a) 

vertical channel on the ac mode; (b) vertical channel on the dc mode.
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voltage E is established through the resistor R. The temperature reached 
by the water is determined by the dc power dissipated in the form of heat 
by the resistor.

If switch 2 is closed and switch 1 left open, the ac current through the 
resistor has a peak value of I .m  The temperature reached by the water 
is now determined by the ac power dissipated in the form of heat by 
the resistor. The ac input is varied until the temperature is the same as 
that reached with the dc input. When this is accomplished, the average 
electrical power delivered to the resistor R by the ac source is the same 
as that delivered by the dc source.

The power delivered by the ac supply at any instant of time is

ω ω( ) ( )( )= = =P i R I t R I t Rsin sinm mac ac
2 2 2 2

However,

t tsin 1
2

1 cos 2 trigonometric identity2ω ω( ) ( )= −

Therefore,

P I t R1
2

1 cos 2mac
2 ω( )= −





and   P
I R I R

t
2 2

cos 2m m
ac

2 2

ω= −  (13.30)

The average power delivered by the ac source is just the first term, 
since the average value of a cosine wave is zero even though the wave 
may have twice the frequency of the original input current waveform. 
Equating the average power delivered by the ac generator to that deliv-
ered by the dc source,

P Pacav dc=( )

I R
I R

2
m
2

dc
2=

and I
I

I
2

0.707m
mdc = =

which, in words, states that

the equivalent dc value of a sinusoidal current or voltage is 
1/ 2  or 0.707 of its peak value.
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Switch 2

iac

ac generatore

Switch 1

dc source
E

R

Idc+

–

+

–

FIG. 13.59 
An experimental setup to establish a relationship 

between dc and ac quantities.
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The equivalent dc value is called the rms or effective value of the sinu-
soidal quantity.

As a simple numerical example, it requires an ac current with a peak 
value of 2 10 14.14 A( ) =  to deliver the same power to the resistor 
in Fig. 13.59 as a dc current of 10 A. The effective value of any quantity 
plotted as a function of time can be found by using the following equa-
tion derived from the experiment just described:

Calculus format:  I
i t dt

T

T

rms

2

0∫ ( )

=  (13.31)

which means  
( )

=I
i t

T

area ( )
rms

2

 (13.32)

In words, Eqs. (13.31) and (13.32) state that to find the rms value, the 
function i(t) must first be squared. After i(t) is squared, the area under 
the curve is found by integration. It is then divided by T, the length of 
the cycle or the period of the waveform, to obtain the average or mean 
value of the squared waveform. The final step is to take the square root 
of the mean value. This procedure is the source for the other designation 
for the effective value, the root-mean-square (rms) value. In fact, since 
rms is the most commonly used term in the educational and industrial 
communities, it is used throughout this text.

The relationship between the peak value and the rms value is the 
same for voltages, resulting in the following set of relationships for the 
examples and text material to follow:

 

I I I

E E E

1
2

0.707

1
2

0.707

m m

m m

rms

rms

= =

= =
 (13.33)

Similarly,

 
I I I

E E E

2 1.414

2 1.414

m

m

rms rms

rms rms

= =

= =
 (13.34)

EXAMPLE 13.20 Find the rms values of the sinusoidal waveform 
in each part in Fig. 13.60.

12

i (mA)

0
t

12

i (mA)

0
t

1 s 2 s
t

v

169.7 V

(c)(b)(a)

1 s

FIG. 13.60 
Example 13.20.
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Solution: 

a. I 8 48 mA0.707 12 10 A . .rms
3( )= × =−  

b. = mI 8 48 A. .rms  
Note that frequency did not change the effective value. 

c. Vrms =  120 V0.707 169.73 V( ) ≅  the same as available from a 
home outlet.

EXAMPLE 13.21 The 120 V dc source in Fig. 13.61(a) delivers 3.6 W  
to the load. Determine the peak value of the applied voltage Em( ) and 
the current I m( ) if the ac source [Fig. 13.61(b)] is to deliver the same 
power to the load.

iac

P=3.6 W
Load

Idc

E 120 V P=3.6 W
Load

(b)(a)

Em
e

Im

E

Idc

t

t

0

0

iac

+

–

+

–

FIG. 13.61 
Example 13.21.

1 cycle

t (s)
840

3

–1

v (V)

FIG. 13.62 
Example 13.22.

9

v2 (V2)

1

0 4 8 t (s)

(– 1)2  =  1

FIG. 13.63 
The squared waveform of Fig. 13.62.

Solution:

=P V Idc dc dc

and       I
P
V

3.6 W
120 V

30 mAdc
dc

dc

= = =

I I 42 42 mA2 1.414 30 mA .m dc ( )( )= = =

E E 169 68 V2 1.414 120 V .m dc ( )( )= = =

EXAMPLE 13.22 Find the rms value of the waveform in Fig. 13.62.

Solution: 2υ  (Fig. 13.63):

V 2 24 V9 4 1 4
8

40
8

.rms
( )( ) ( )( )

= + = =
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EXAMPLE 13.23 Calculate the rms value of the voltage in Fig. 13.64.

100

2 4 6 8 10

16
4

0 t (s)

v2  (V2)

FIG. 13.65 
The squared waveform of Fig. 13.64.

40

0

–40

10 20 t (ms)

v (V)

1 cycle

FIG. 13.66 
Example 13.24.

20100

v2 (V)

1600

t (ms)

FIG. 13.67 
The squared waveform of Fig. 13.66.

1 cycle

4

v (V)

0
–2

–10

4 6 8 10 t (s)

FIG. 13.64 
Example 13.23.

Solution: 2υ  (Fig. 13.65):

( )( )
= + +

=
+ +

= =

=

V

4 9 V

(100 V )(2 s) 16 V s (4 V )(2 s)
10 s

200 V s 32 V s 8 V s

10 s
240
10

V 24 V

.

rms

2 2 2

2 2 2

2 2

EXAMPLE 13.24 Determine the average and rms values of the 
square wave in Fig. 13.66.

Solution: By inspection, the average value is zero.

2υ  (Fig. 13.67):

V 1600 10 10 1600 10 10
20 10rms

3 3

3

( ) ( )( ) ( )= × + ×
×

− −

−

40 V32,000 10
20 10

1600
3

3

( )= ×
×

= =
−

−

(the maximum value of the waveform in Fig. 13.66).

The waveforms appearing in these examples are the same as those 
used in the examples on the average value. It may prove interesting to 
compare the rms and average values of these waveforms.

The rms values of sinusoidal quantities such as voltage or current are 
represented by E and I. These symbols are the same as those used for 
dc voltages and currents. To avoid confusion, the peak value of a wave-
form always has a subscript m associated with it: ωI sinm t. Caution: 
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When finding the rms value of the positive pulse of a sine wave, note 
that the squared area is not simply ( ) =A A2 4 ;m m

2 2  it must be found by 
a  completely new integration. This is always true for any waveform that 
is not rectangular.

dc ac+
A unique situation arises if a waveform has both a dc and an ac com-
ponent that may be due to a source, such as the one in Fig. 13.68. The 
combination appears frequently in the analysis of electronic networks 
where both dc and ac levels are present in the same system.

1.5 sin vt

+

–

6 V

vT

+

–

vT

7.5 V

6 V

4.5 V

0 t

+

–

FIG. 13.68 
Generation and display of a waveform having a dc and an ac component.

The question arises, What is the rms value of the voltage ?Tυ  You may 
be tempted to assume that it is the sum of the rms values of each compo-
nent of the waveform; that is, ( )= + =V 0.707 1.5 V 6 V 1.06 VTrms

+ =6 V 7.06 V.  However, the rms value is actually determined by

 = +V V Vrms dc
2

ac(rms)
2  (13.35)

which for the waveform in Fig. 13.68 is

V 6 1 V6 V 1.06 V 37.124 V .rms
2 2 2( ) ( )= + = ≅

This result is noticeably less than the solution of 7.06 V.

True rms Meters

Throughout this section, the rms value of a variety of waveforms was 
determined to help ensure that the concept is correctly understood. 
However, to use a meter to measure the rms value of the same wave-
forms would require a specially designed meter. Too often, the face of a 
meter will read True rms Multimeter or such. However, in most cases 
the meter is only designed to read the rms value of periodic signals with 
no dc level and have a symmetry about the zero axis. Most multimeters 
are ac coupled (the dc component of the signal is blocked by a capacitor 
at the input terminals), so only the ac portion is measured. For such cases 
one may be able to first determine the rms value of the ac portion of the 
waveform and then use the dc section of the meter to measure the dc 
level. Then Eq. (13.35) can be used to determine the correct rms value.

The problem, however, is that many waveforms are not symmetric 
about the zero axis—How is an rms reading obtained? In general, the 
rms value of any waveform is a measure of the “heating” potential of the 
applied waveform, as discussed earlier in this section. A direct result is 
the development of meters that use a thermal converter calibrated to dis-
play the proper rms value. A drawback of this approach, however, is that 
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the meter will draw power from the circuit during the heating process, 
and the results have a low precision standard. A better approach that is 
commonly used uses an analog-to-digital converter (ADC) mentioned 
earlier to digitize the signal, so that the rms value then can be determined 
to a high degree of accuracy. One such meter appears in Fig. 13.69, 
which samples the input signal at 1.4 MHz, or 1,400,000 samples per 
second—certainly sufficient for a wide variety of signals. This meter 
will run the sampling rate at all times, even when making dc measure-
ments, so both the dc and ac content of a waveform can be displayed at 
the same time.

(Courtesy of Keysight Technologies, Inc.)

FIG. 13.69 
True rms multimeter.

13.9 CONVERTERS AND INVERTERS
The two most common supplies are either dc or ac. Unfortunately, there 
are times when we have one but need the other for a variety of reasons. 
Solar panels generate a dc voltage that must be converted to ac if the 
power is to be distributed over a power line network. In an RV or boat 
we need ac for some applications but the only source is often just the 
dc batteries. The dc batteries in our cell phones need charging from a 
dc source but the only option we have is to plug them into an ac outlet. 
Obviously, there is an important need for an electronic package that 
will convert from one type of source to the other with the highest effi-
ciency possible. There is little value in a conversion if it operates at an 
efficiency of 10%.

Fortunately, since this need is not a new one, a host of conversion 
options have been developed. If you need to convert ac to dc, the piece 
of equipment used is called a converter. In Fig. 13.70 the converter will 
convert a 120 V ac supply to a 12 V dc supply so you can run all your  
12 V appliances, such as a GPS that you may have in a car or RV. On 
the output side it is rated at 12 V at a current of 5.8 A or a power level  
of 69.6 W. The input side has a voltage of 120 V and a current rating of 
1.8 A or a maximum power rating of 216 W. Although the input and out-
put ratings are not the same, the voltage levels of 12 V and 120 V are fixed 
and are the operating levels. The current levels are maximum values for 
the input or output side. Note also that the dc output power is a great deal 
less than the maximum input power level. This is most likely an indica-
tor of the efficiency of the system. This unit is relatively inexpensive and 
does do the job—it is simply not the most efficient. The fact that the out-
put power rating is 69.6 W reveals that any load applied to the dc supply 
cannot draw a current of more than 5.8 A or power of 69.6 W. The actual 
electronic package required to perform the above operation is relatively 
simple in design as shown in Fig. 13.71. A transformer (Chapter 23) will 
reduce the applied 120 V ac source (peak value approximately 170 V) 

(Don Johnson Photo)

FIG. 13.70 
120 V ac to 12 V dc converter.
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to about a 14 V peak. The diode (basic electronics course) and resistor 
form a half-wave rectifier that will cut off the bottom of the sinusoidal 
signal. Finally, a capacitor will smooth out the waveform as shown in 
Fig. 13.71, which will have an average or dc level of approximately 12 V.  
Have you ever noticed that the voltage on your car gauge is normally 
at about 14 V rather than the 12 V of your battery? In order to maintain 
the 12 V level, the charging voltage has to be more than the required 
12 V or the terminal voltage may drop below 12 V. If you see it drop to 
12 V on your dashboard, the charging system needs to be checked. The 
generation network of Fig. 13.71 is the simplest design available today 
for the desired conversion. There is certainly a great deal of distortion 
compared to a pure dc supply. However, there are supplies with less than 
0.01% distortion available today, but it always goes back to you get what 
you pay for.

An inverter is an electronic package, such as shown in Fig. 13.72, 
that will convert a dc supply into an ac source. This is an especially 
important function in an RV or boat where so many appliances run off 
ac rather than the dc available from the stored batteries. The unit shown 
has clips that can be attached to a 12 V battery to provide a continuous 
output of 115 V ac at a current of 6.67 A. The output rating of 800 W 
is enough to run a number of appliances such as a TV, fan, and small  
refrigerator. For short periods of time it can provide a peak output of 
1600 W. The golf ball was included simply to provide some idea of the 
size of the unit. In a conversion of this type the important elements are 
the frequency of the generated waveform (60 Hz), the voltage (120 V),  
and the shape of the alternating function. For this unit the response 
as shown in Fig. 13.73 is called a “a modified sine wave.” It has the 
proper frequency and is close to the proper amplitude but has the square 
edges rather than the smooth curve. The result is a waveform with a 
harmonic distortion (Chapter 26) of about 35%. For many applica-
tions such a waveform will be satisfactory. However, if the appliances 
being connected are sensitive to the additional harmonics (Chapter 26) 
being presented by a signal of this type, then the response will not be as  
desired. For this unit it clearly states that it should not be used for a 
microwave oven or battery chargers that do not use a transformer. The 
requirement of a transformer in the chargers is probably due to the fact 

+

–

+

–

+

–

+

–

vt0

vi

vi vs

vs

vr

vr

vo

vo

170 V

12 V

12 V
14 V14 V14 V

–14 V

R C > 

FIG. 13.71 
Establishing a 12 V dc level.

(Don Johnson Photo)

FIG. 13.72 
12 V dc to 120 V ac inverter.
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that the inductive nature of a transformer will actually make the “modi-
fied sine wave” closer in appearance to a pure sine wave.

There are numerous ways to perform the conversion from dc to  
sinusoidal ac. The simplest is provided in Fig. 13.73. Through switching 
action and clipping (basic electronic courses) networks, the steady-state 
dc level of Fig. 13.73 can be converted to the modified form shown in 
the same figure. This is accomplished by using a three-way switch that 
can perform the actions of letting the signal pass through, shutting off 
the input and reversing the polarity of the output. All three regions are 
defined in Fig. 13.73. By carefully controlling the timing of the switch-
ing mechanism, the modified sine wave can closely match that of the 60 
cycles per second sinusoidal waveform also shown in the figure. Now 
that the generated voltage changes with time, a transformer can raise the 
level to one approaching the desired 170 V peak of a 115 V ac source. 
In fact, as mentioned above, the inductive nature of the transformer  
action will probably improve the appearance of the sinusoidal output. 
The appearance of the waveform can further be improved by passing the 
resulting waveform through a series of filters (inductive and capacitive 
elements, Chapter 22) to remove unwanted harmonics (Chapter 26). A 
second approach involves connecting the dc input to the center tap of 
the primary of a transformer and switching between both ends of the 
primary. This action will reverse the direction of the current through the 
primary each half-cycle, which will reverse the polarity of the output of 
the secondary. This action of switching the battery polarity is all that the 
transformer needs to perform its function because a transformer can only 
react to changes in voltage at the primary.

Another approach of a more sophisticated direction involves the use 
of oscillators (sinusoidal ac waveform generators) that utilize the dc 
power to generate an ac waveform through the use of tuned networks 
having inductive and/or capacitive elements. One such oscillator is 
called the Wien bridge oscillator, which can include a number of ICs, 
 capacitive elements, transistors, and a transformer. Such units have a 
wide range of control with very low distortion rates but are a great deal 
more expensive.
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FIG. 13.73 
Basic components of an inverter.
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One other important concern when converting dc power to ac power 
in an RV or boat is how long that fully charged battery will provide the 
necessary ac power. This all goes back to the ampere-hour rating cov-
ered in Chapter 2. If the batteries are rated at 100 AH at a current drain 
of 15 ampere, that battery will provide the necessary voltage and current 
for 100 AH/15 A 6.67 hours.=  This is an important consideration 
when in an isolated location with only batteries available. This is one 
reason to have a number of batteries in parallel in an RV or boat so that 
you can double or triple the time period that the current can be drained. 
Two batteries of the above rating would provide the required current of 
15 A for a period of time closer to 12 hours. Of course, a lower demand 
will also increase the time period before depleting the source.

13.10 ac METERS AND INSTRUMENTS
Iron-Vane or d’Arsonval Movement

If an average reading movement such as the iron-vane movement used 
in the VOM of Fig. 2.29 is used to measure an ac current or voltage, the 
level indicated by the movement must be multiplied by a calibration 
factor. In other words, if the movement of any voltmeter or ammeter 
is reading the average value, that level must be multiplied by a specific 
constant, or calibration factor, to indicate the rms level. For ac wave-
forms, the signal must first be converted to one having an average value 
over the time period. Recall that it is zero over a full period for a sinu-
soidal waveform. This is usually accomplished for sinusoidal waveforms 
using a bridge rectifier such as in Fig. 13.74. The conversion process, 
involving four diodes in a bridge configuration, is well documented in 
most electronic texts.

Fundamentally, conduction is permitted through the diodes in such a 
manner as to convert the sinusoidal input of Fig. 13.75(a) to one having 
the appearance of Fig. 13.75(b). The negative portion of the input has 
been effectively “flipped over” by the bridge configuration. The result-
ing waveform in Fig. 13.75(b) is called a full-wave rectified waveform.

The zero average value in Fig. 13.75(a) has been replaced by a pattern 
having an average value determined by

π π π
=

+
= = =G

V V V V
V

2 2
2

4
2

2
0.637m m m m

m

The movement of the pointer is therefore directly related to the peak 
value of the signal by the factor 0.637.

Forming the ratio between the rms and dc levels results in

= ≅
V
V

V
V

0.707
0.637

1.11m

m

rms

dc

revealing that the scale indication is 1.11 times the dc level measured by 
the movement; that is,

Meter indication 1.11 dc or average value full-wave( )=  (13.36)

Some ac meters use a half-wave rectifier arrangement that results 
in the waveform in Fig. 13.76, which has half the average value in 
Fig. 13.75(b) over one full cycle. The result is

Meter indication 2.22 dc or average value half-wave( )=  (13.37)

vmovement

vi

+

–

+–

FIG. 13.74 
Full-wave bridge rectifier.

vi

Vm

–Vm

0 2

(a)

vmovement

Vm

0 2

(b)

Vdc  =  0.637Vm

p

p p a

p a

FIG. 13.75 
(a) Sinusoidal input; (b) full-wave 

rectified signal.

Vm

vmovement

Vdc  =  0.318Vm

2p p

FIG. 13.76 
Half-wave rectified signal.
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Electrodynamometer Movement

The electrodynamometer movement is a movement that has the dis-
tinct advantage of being able to read the turn rms value of any current, 
voltage, or power measurement without additional circuitry. The basic 
construction appears in Fig. 13.77, which shows two fixed coils and a 
rotating coil. The two fixed coils establish a field similar to that estab-
lished by the permanent magnet in an iron-vane movement. However, 
in this case, the same current that establishes the field in the fixed coils 
will also establish the field in the movable coil. The result is oppos-
ing polarities between the rotating and fixed coils that will establish a 
torque on the movable coil and cause it to rotate and provide a reading 
using the attached pointer. Removing the excitation force will allow the  
attached spring to bring the pointer back to the rest position. Although 
the electrodynamometer movement would be very effective in reading 
the rms value of any voltage or current, it is used almost exclusively in 
dc/ac wattmeters for any shape of input. It can also be used for phase 
shift measurements, harmonic analysis, and frequency measurements, 
although improving digital electronic technology is the new direction for 
these areas of application.

Fixed coil

Meter terminals

N
S

N N S

Moving coil

S

I
I

Fixed  coil

FF F

FIG. 13.77 
Electrodynamometer movement.

EXAMPLE 13.25 Determine the reading of each meter for each sit-
uation in Fig. 13.78(a) and (b).

Solution: For Fig. 13.78(a), situation (1): By Eq. (13.36),

22 2 VMeter indication 1.11 20 V .( )= =

For Fig. 13.78(a), situation (2):

V V 14 14 V0.707 0.707 20 V .mrms ( )( )= = =

For Fig. 13.78(b), situation (1):

V V 25 Vrms dc= =

For Fig. 13.78(b), situation (2):

V V 10 6 V0.707 0.707 15 V .mrms ( )= = ≅
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Frequency Counter

For frequency measurements, the frequency counter in Fig. 13.79 pro-
vides a digital readout of sine, square, and triangular waves from 0.1 Hz 
to 2.4 GHz. The temperature-compensated, crystal-controlled time base 
is stable to 1±  part per million per year.

(Courtesy of AEMC Instruments)

FIG. 13.80 
Clamp-on ammeter and voltmeter.

(1)

20 V

+
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dc

(2)

Vm  =  20 V

+

–

ac

(a)

Iron-vane
movement

rms scale

(full-wave
rectifier)

Voltmeter

(1)

dc

(2)

+

–

(b)

Electrodynamometer
movement

rms scale

Voltmeter

25 V e  =  15 sin 200t
+

–

FIG. 13.78 
Example 13.25.

(Courtesy of +B K Precision)

FIG. 13.79 
Frequency counter, 3.5 GHz multifunctional 

instrument.

Clamp-on Meters

The AEMC® Clamp Meter in Fig. 13.80 is an instrument that can mea-
sure alternating current in the ampere range without having to open the 
circuit. The loop is opened by squeezing the “trigger,” then it is placed 
around the current-carrying conductor. Through transformer action, the 
level of current in rms units appears on the appropriate scale. The Model 
501 is auto-ranging (that is, each scale changes automatically) and can 
measure dc or ac currents up to 400 mA. Through the use of additional 
leads, it can also be used as a voltmeter (up to 400 V, dc or ac) and an 
ohmmeter (from zero to 400 Ω).
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Impedance Measurements

Before we leave the subject of ac meters and instrumentation, you should 
understand that

an ohmmeter cannot be used to measure the ac reactance 
or impedance of an element or system even though 
reactance and impedance are measured in ohms.

Recall that ohmmeters cannot be used on energized networks—the 
power must be shut off or disconnected. For an inductor, if the ac power 
is removed, the reactance of the coil is simply the dc resistance of the 
windings because the applicable frequency will be 0 Hz. For a capacitor, 
if the ac power is removed, the reactance of the capacitor is simply the 
leakage resistance of the capacitor. In general, therefore, always keep in 
mind that ohmmeters can read only the dc resistance of an element or 
network, and only after the applied power has been removed.

13.11 APPLICATIONS
(120 V at 60 Hz) versus (220 V at 50 Hz)

In North and South America, the most common available ac supply 
is 120 V at 60 Hz; in Western and Central Europe, Africa; Asia, and 
Australia, 220 V at 50 Hz is the most common. Japan is unique in that 
the eastern part of the country uses 100 V at 50 Hz, whereas most of 
the western part uses 100 V at 60 Hz or 220 V at 50 Hz. The choices 
of rms value and frequency were obviously made carefully because 
they have such an important impact on the design and operation of so  
many systems.

The fact that the frequency difference is only 10 Hz reveals that there 
was agreement on the general frequency range that should be used for 
power generation and distribution. History suggests that the question 
of frequency selection originally focused on the frequency that would 
not exhibit flicker in the incandescent lamps available in those days. 
Technically, however, there really wouldn’t be a noticeable difference 
between 50 and 60 cycles per second based on this criterion. Another 
important factor in the early design stages was the effect of frequency 
on the size of transformers, which play a major role in power generation 
and distribution. Working through the fundamental equations for trans-
former design, you will find that the size of a transformer is inversely 
proportional to frequency. The result is that transformers operating at 
50 Hz must be larger (on a purely mathematical basis about 17% larger) 
than those operating at 60 Hz. You will therefore find that transformers 
designed for the international market, where they can operate on 50 Hz 
or 60 Hz, are designed around the 50 Hz frequency. On the other side of 
the coin, however, higher frequencies result in increased concerns about 
arcing, increased losses in the transformer core due to eddy current and 
hysteresis losses, and skin effect phenomena. Somewhere in the discus-
sion we may wonder about the fact that 60 Hz is an exact multiple of 
60 seconds in a minute and 60 minutes in an hour. On the other side 
of the coin, however, a 60 Hz signal has a period of 16.67 ms (an awk-
ward number), but the period of a 50 Hz signal is exactly 20 ms. Since 
accurate timing is such a critical part of our technological design, was 
this a significant motive in the final choice? There is also the question 
about whether the 50 Hz is a result of the close affinity of this value to 
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the metric system. Keep in mind that powers of ten are all-powerful in 
the metric system, with 100 cm in a meter, 100 C°  the boiling point of 
water, and so on. Note that 50 Hz is exactly half of this special number. 
All in all, it would seem that both sides have an argument that is worth 
defending. However, in the final analysis, we must also wonder whether 
the difference is simply political in nature.

The difference in voltage between the Americas and Europe is a dif-
ferent matter entirely, in the sense that the difference is close to 100%. 
Again, however, there are valid arguments for both sides. There is no 
question that larger voltages such as 220 V raise safety issues beyond 
those raised by voltages of 120 V. However, when higher voltages are 
supplied, there is less current in the wire for the same power demand, 
permitting the use of smaller conductors—a real money saver. In addi-
tion, motors and some appliances can be smaller in size. Higher voltages, 
however, also bring back the concern about arcing effects, insulation 
 requirements, and, due to real safety concerns, higher installation costs. 
In general, however, international travelers are prepared for most situa-
tions if they have a transformer that can convert from their home level 
to that of the country they plan to visit. Most equipment (not clocks, of 
course) can run quite well on 50 Hz or 60 Hz for most travel periods. For 
any unit not operating at its design frequency, it simply has to “work a 
little harder” to perform the given task. The major problem for the trav-
eler is not the transformer itself but the wide variety of plugs used from 
one country to another. Each country has its own design for the “female” 
plug in the wall. For a three-week tour, this could mean as many as 6 to 
10 different plugs of the type shown in Fig. 13.81. For a 120 V, 60 Hz 
supply, the plug is quite standard in appearance with its two spade leads 
(and possible ground connection).

In any event, both the 120 V at 60 Hz and the 220 V at 50 Hz are obvi-
ously meeting the needs of the consumer. It is a debate that could go on 
at length without an ultimate victor.

Safety Concerns (High Voltages and dc versus ac)

Be aware that any “live” network should be treated with a calculated 
level of respect. Electricity in its various forms is not to be feared but 
used with some awareness of its potentially dangerous side effects. It 
is common knowledge that electricity and water do not mix (never use 
extension cords or plug in TVs or radios in the bathroom) because a 
full 120 V in a layer of water of any height (from a shallow puddle to a 
full bath) can be lethal. However, other effects of dc and ac voltages are 
less known. In general, as the voltage and current increase, your con-
cern about safety should increase exponentially. For instance, under dry 
conditions, most human beings can survive a 120 V ac shock such as 
obtained when changing a light bulb, turning on a switch, and so on. 
Most electricians have experienced such a jolt many times in their ca-
reers. However, ask an electrician to relate how it feels to hit 220 V, 
and the response (if he or she has been unfortunate to have had such 
an experience) will be totally different. How often have you heard of a 
back-hoe operator hitting a 220 V line and having a fatal heart attack? 
Remember, the operator is sitting in a metal container on a damp ground, 
which provides an excellent path for the resulting current to flow from 
the line to ground. If only for a short period of time, with the best  
environment (rubber-sole shoes, and so on), in a situation where you 
can quickly escape the situation, most human beings can also survive a  

FIG. 13.81 
Variety of plugs for a 220 V, 50 Hz connection.
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220 V shock. However, as mentioned above, it is one you will not quickly 
forget. For voltages beyond 220 V rms, the chances of survival go down 
exponentially with increase in voltage. It takes only about 10 mA of 
steady current through the heart to put it in defibrillation. In general, 
therefore, always be sure that the power is disconnected when working 
on the repair of electrical equipment. Don’t assume that throwing a wall 
switch will disconnect the power. Throw the main circuit breaker and 
test the lines with a voltmeter before working on the system. Since volt-
age is a two-point phenomenon, be sure to work with only one line at a 
time—accidents happen!

You should also be aware that the reaction to dc voltages is quite 
different from that to ac voltages. You have probably seen in movies or 
comic strips that people are often unable to let go of a hot wire. This is 
evidence of the most important difference between the two types of volt-
ages. As mentioned above, if you happen to touch a “hot” 120 V ac line, 
you will probably get a good sting, but you can let go. If it happens to be 
a “hot” 120 V dc line, you will probably not be able to let go, and you 
could die. Time plays an important role when this happens, because the 
longer you are subjected to the dc voltage, the more the resistance in the 
body decreases, until a fatal current can be established. The reason that 
we can let go of an ac line is best demonstrated by carefully examining 
the 120 V rms, 60 Hz voltage in Fig. 13.82. Since the voltage is oscillat-
ing, there is a period when the voltage is near zero or less than, say, 20 V, 
and is reversing in direction. Although this time interval is very short, it 
appears every 8.3 ms and provides a window for you to let go.

Now that we are aware of the additional dangers of dc voltages, it 
is important to mention that under the wrong conditions, dc voltages 
as low as 12 V, such as from a car battery, can be quite dangerous. If 
you happen to be working on a car under wet conditions, or if you are 
sweating badly for some reason or, worse yet, wearing a wedding ring 
that may have moisture and body salt underneath, touching the positive 
terminal may initiate the process whereby the body resistance begins to 
drop, and serious injury could take place. It is one of the reasons you 
seldom see a professional electrician wearing any rings or jewelry—it is 
just not worth the risk.

Before leaving this topic of safety concerns, you should also be aware 
of the dangers of high-frequency supplies. We are all aware of what  
2.45 GHz at 120 V can do to a meat product in a microwave oven, and 
it is therefore very important that the seal around the oven be as tight as 
possible. However, don’t ever assume that anything is absolutely per-
fect in design—so don’t make it a habit to view the cooking process in 
the microwave 6 in. from the door on a continuing basis. Find some-
thing else to do, and check the food only when the cooking process is 
complete. If you ever visit the Empire State Building, you will notice 
that you are unable to get close to the antenna on the dome due to the 
high-frequency signals being emitted with a great deal of power. Also 
note the large KEEP OUT signs near radio transmission towers for local 
radio stations. Standing within 10 ft of an AM transmitter working at 
540 kHz would bring on disaster. Simply holding (do not try!) a fluores-
cent bulb near the tower could make it light up due to the excitation of 
the molecules inside the bulb.

In total, therefore, treat any situation with high ac voltages or cur-
rents, high-energy dc levels, and high frequencies with added care.

V (volts)

tf

120 V rms
ac voltage

t

169.7

20
0

–20

FIG. 13.82 
Interval of time when sinusoidal 

voltage is near zero volts.
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PROBLEMS

SECTION 13.2 Sinusoidal ac Voltage Characteristics 
and Definitions

 1. For the sinusoidal waveform in Fig. 13.83:
a. What is the peak value?
b. What is the instantaneous value at 15 ms and at 20 ms?
c. What is the peak-to-peak value of the waveform?
d. What is the period of the waveform?
e. How many cycles are shown?

v (V)

0

–10

–5

5

10

302010 t (ms)40

FIG. 13.83 
Problem 1.

0 2 10864 t  (ms)

i (mA)

200

–200

FIG. 13.84 
Problem 2.

0 3 4 5 6 7

–40

40

1 2

v (mV)

t  (ms)

FIG. 13.85 
Problem 3.

0

–8

t  (ms)

v (mV)

–16

16

8

2015105 25

FIG. 13.86 
Problem 4.

 2. For the sinusoidal signal in Fig. 13.84:
a. What is the peak value?
b. What is the instantaneous value at µ1 s and at µ7 s.
c. What is the peak-to-peak value of the waveform?
d. What is the period of the waveform?
e. How many cycles are shown?

  3. For the periodic square-wave waveform in Fig. 13.85:
a. What is the peak value?
b. What is the instantaneous value at 1.5 ms and at 5.1 ms?
c. What is the peak-to-peak value of the waveform?
d. What is the period of the waveform?
e. How many cycles are shown?

 4. For the waveform of Fig. 13.86:
a. Does this appear to be a high- or low-frequency wave-

form? Why?
b. How many full cycles are shown?
c. What is the period of the waveform?
d. What is the frequency of the waveform?
e. What is the peak value of the waveform?
f. What is the peak-to-peak value of the waveform?

SECTION 13.3 Frequency Spectrum

 5. Find the period of a periodic waveform whose frequency is
a. 250 Hz. b. 50 MHz.
c. 28 kHz. d. 2 Hz.

 6. Find the frequency of a repeating waveform whose period is

a. 1 s. b. 1
36

s.

c. 75 ms. d. µ40 s.

 7. If a periodic waveform has a frequency of 2 kHz, how long 
(in seconds) will it take to complete five cycles? 

 8. Find the period of a sinusoidal waveform that completes 
100 cycles in 25 ms.

 9. What is the frequency of a periodic waveform that com-
pletes 72 cycles in 8 s?
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 10. For the oscilloscope pattern of Fig. 13.87:
a. Determine the peak amplitude.
b. Find the period.
c. Calculate the frequency.
Redraw the oscilloscope pattern if a 20 mV+  dc level were 
added to the input waveform.

Vertical sensitivity = 50 mV/div.
Horizontal sensitivity = 10 ms/div.

FIG. 13.87 
Problem 10.

 11. For the waveform of Fig. 13.88:
a. What is the peak value of the waveform?
b. What is the peak-to-peak value of the waveform?
c. What is the period of the waveform?
d. What is the frequency of the waveform?
e. How many full cycles are shown?
f. What is the shift (in time) of the cosine wave from the 

vertical axis at t 0 s?=

Vertical sensitivity = 10 mV/div.
Horizontal sensitivity = 5 ms/div.

FIG. 13.88 
Problem 11.

SECTION 13.4 The Sinusoidal Waveform

 12. Convert the following degrees to radians:
a. °45 b. °90
c. °117 d. °198

 13. Convert the following radians to degrees:
a. /3π b. 1.2π

c. 1
10
π d. 0.6π

 14. Find the angular velocity of a waveform with a period of
a. 1.6 s. b. 0.5 ms.
c. µ7 s. d. × −3 10 s6 .

 15. Find the angular velocity of a waveform with a frequency of
a. 150 Hz. b. 0.50 kHz.
c. 4 kHz. d. 0.008 MHz.

 16. Find the frequency and period of sine waves having an 
angular velocity of
a. 654 rad/s. b. 18 rad/s.
c. 6600 rad/s. d. 0.19 rad/s.

*17. Given f 60 Hz= , determine how long it will take the sinu-
soidal waveform to pass through an angle of °120 .

*18. If a sinusoidal waveform passes through an angle of °45  in 
9 ms, determine the angular velocity of the waveform.

SECTION 13.5 General Format for the Sinusoidal 
Voltage or Current

 19. Find the amplitude and frequency of the following waves:
a. 20 sin 377t
b. 12 sin 2π120t
c. 10 6 sin 10,000t
d. 8−  sin 10,058t

 20. Sketch 6 sin 754t with the abscissa
a. angle in degrees.
b. angle in radians.
c. time in seconds.

 *21. Sketch 8−  sin t2 80π  with the abscissa
a. angle in degrees.
b. angle in radians.
c. time in seconds.

*22. If =e 500 sin 176t, how long (in seconds) does it take this 
waveform to complete 1/2 cycle?

 *23. Given α=i 0.3 sin , determine i at α = °60 .

 *24. Given υ α= 25 sin , determine υ  at α π= 1.4 .

 *25. Given υ α= × −40 10 sin3 , determine the angles at which 
υ  will be 8 mV.

 *26. If υ = 60 V at 30α = ° and =t 1.5 ms, determine the 
mathematical expression for the sinusoidal voltage.

SECTION 13.6 Phase Relations

 *27.  Sketch tsin 377 60( )+ °  with the abscissa
a. angle in degrees.
b.  angle in radians.
c. time in seconds.

*28.  Sketch the following waveforms:
a. t50 sin 0ω( )+ °
b. t5 sin 120ω( )+ °
c. t2 cos 10ω( )+ °
d. t2 sin 10ω( )− + °
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 30. Write the analytical expression for the waveform of 
Fig. 13.90 with the phase angle in degrees.

vt0

308

6 f = 2 kHz

(a)

v (mV)

FIG. 13.89 
Problem 29.

vt

i (mA)

0

�20

f = 60 Hz

2
3

(b)

p

0

120 f = 1000 Hz

808
vt

(mV)v

FIG. 13.90 
Problem 30.

0

12

f = 2 kHz

3
4

vt

p

v (mV)

FIG. 13.91 
Problem 31.

vt

308

8

f = 500 Hz

v (mV)

FIG. 13.92 
Problem 32.

160

t1– 0 2 tppp

608

t1

v

FIG. 13.93 
Problem 37.

 31. Write the analytical expression for the waveform of 
Fig. 13.91 with the phase angle in degrees.

 32. Write the analytical expression for the waveform of 
Fig. 13.92 with the phase angle in radians.

 33. Find the phase relationship between the following wave-
forms:

t25 sin 80υ ω( )= + °
ω( )= − °i t4 sin 10

 34. Find the phase relationship between the following wave-
forms:

υ ω( )= − °t0.3 sin 65

ω( )= − °i t0.2 sin 30

 *35. Find the phase relationship between the following wave-
forms:

υ ω( )= − °t5 cos 30

ω( )= + °i t8 sin 50

 *36. Find the phase relationship between the following wave-
forms:

υ ω( )= − + °t5 cos 90

ω( )= − + °i t3 sin 20

 *37. The sinusoidal voltage t160 sin 2 1000 60υ π( )= + °  is 
plotted in Fig. 13.93. Determine the time t1 when the wave-
form crosses the axis.

 *38.  The sinusoidal current i t20 10 sin 50,000 403 ( )= × − °−  
is plotted in Fig. 13.94. Determine the time t1 when the 
waveform crosses the axis.

 29. Write the analytical expression for the waveforms of 
Fig. 13.89 with the phase angle in degrees.
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 39. For the waveform of Fig. 13.93, find the time when the 
waveform has its peak value.

 40. For the oscilloscope display in Fig. 13.95:
a. Determine the period of the waveforms.
b. Determine the frequency of each waveform.
c. Find the rms value of each waveform.
d.  Determine the phase shift between the two waveforms 

and determine which leads and which lags.

t1– 0 t (ms)2ppp

408

i

20 mA

–20 mA

FIG. 13.94 
Problem 38.

Vertical sensitivity  =  0.5 V/div.
Horizontal sensitivity  =  1 ms/div.

e i

FIG. 13.95 
Problem 40.

SECTION 13.7 Average Value

 41. Find the average value of the periodic waveform in Fig. 13.96.

105

1 cycle

0 20 30 35 t (ms)

v (V)

–3

3

6

FIG. 13.96 
Problem 41.

 42. Find the average value of the periodic waveforms in 
Fig. 13.97 over one full cycle.

0 t  (ms)

v (mV)
10

5

1 cycle

30 402010

FIG. 13.97 
Problem 42.

 43. Find the average value of the periodic waveform of 
Fig. 13.98 over one full cycle.

0 5 t  (ms)

1 cycle

8
10

2
4
6

–2
–4
–6
–8

15

v (mV)

10

FIG. 13.98 
Problem 43.

 44. Find the average value of the periodic waveform of 
Fig. 13.99 over one full cycle.

0 2 31 4 5 6 t  (ms)

–20

+30

8 9

i (mA)

1 cycle

7

FIG. 13.99 
Problem 44.

 45. Find the average value of the periodic function of Fig. 13.100:
a. By inspection.
b. Through calculations.
c. Compare the results of parts (a) and (b).
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 46. Find the average value of the periodic waveform in 
Fig. 13.101.

Vertical sensitivity = 10 mV/div.
Horizontal sensitivity = 10 ms/div.

FIG. 13.103 
Problem 48.
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FIG. 13.104 
Problem 51.
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FIG. 13.105 
Problem 52.
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FIG. 13.100 
Problem 45.
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2pp u

Circular

FIG. 13.101 
Problem 46.

 47. For the waveform in Fig. 13.102:
a. Determine the period.
b. Find the frequency.
c. Determine the average value.
d. Sketch the resulting oscilloscope display if the vertical 

channel is switched from dc to ac.

Vertical sensitivity  =  10 mV/div.
Horizontal sensitivity  =  0.2 ms/div.

FIG. 13.102 
Problem 47.

 *48. For the waveform in Fig. 13.103:
a. Determine the period.
b. Find the frequency.
c. Determine the average value.
d. Sketch the resulting oscilloscope display if the vertical 

channel is switched from dc to ac.

SECTION 13.8 Effective (rms) Values

 49. Find the rms values of the following sinusoidal waveforms:
a. υ ( )= + °t60 sin 377 60
b. π( )= × −i t5 10 sin 2 10003

c. υ π( )= × + °− t7 10 sin 2 5000 306

 50. Write the sinusoidal expressions for voltages and currents 
having the following rms values at a frequency of 60 Hz 
with zero phase shift:
a.  6.8 V
b. 60 mA
c. 5 kV

 51. Find the rms value of the periodic waveform in Fig. 13.104 
over one full cycle.

 52. Find the rms value of the periodic waveform in Fig. 13.105 
over one full cycle.
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 53. What are the average and rms values of the square wave in 
Fig. 13.106?

0 5 10

–8

8

v (V)

1 cycle

t (ms)

FIG. 13.106 
Problem 53.

 *54. For each waveform in Fig. 13.107, determine the period, 
frequency, average value, and rms value.

Vertical sensitivity  =  0.2 V/div.
Horizontal sensitivity  =  50 ms/div.

Vertical sensitivity  =  20 mV/div.
Horizontal sensitivity  =  10 ms/div.

(b)

(a)

FIG. 13.107 
Problem 54.

 *55. For the waveform of Fig. 13.108:
a. Carefully sketch the squared waveform. Note that the 

equation for the sloping line must first be determined.
b. Using some basic area equations and the approximate 

approach, find the approximate area under the squared 
curve.

c. Determine the rms value of the original waveform.
d. Find the average value of the original waveform.
e. How does the average value of the waveform compare 

to the rms value?

0 2 31 4

1 cycle

5 6 9 11 127 8 10 t (s) 

8

–2

v

FIG. 13.108 
Problem 55.

SECTION 13.10 ac Meters and Instruments

 *56. Determine the reading of the meter for each situation in 
Fig. 13.109.

Iron–vane movement

2 kV

rms scale
(half-wave
rectifier)

Voltmeter

(a)

+

–

Idc  =  4 mA

FIG. 13.109 
Problem 56.

v  =  16 sin(377t  +  208)

+

–

ac

(b)
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GLOSSARY

Alternating waveform A waveform that oscillates above and 
below a defined reference level.

Angular velocity The velocity with which a radius vector pro-
jecting a sinusoidal function rotates about its center.

Average value The level of a waveform defined by the condi-
tion that the area enclosed by the curve above this level is 
exactly equal to the area enclosed by the curve below this 
level.

Calibration factor A multiplying factor used to convert from 
one meter indication to another.

Clamp Meter® A clamp-type instrument that will permit non-
invasive current measurements and that can be used as a con-
ventional voltmeter or ohmmeter.

Converter Converts ac to dc.
Cycle A portion of a waveform contained in one period of time.
Effective value The equivalent dc value of any alternating volt-

age or current.
Electrodynamometer meters Instruments that can mea-

sure both ac and dc quantities without a change in internal 
circuitry.

Frequency (f) The number of cycles of a periodic waveform that 
occur in 1 s.

 Frequency counter An instrument that will provide a digital 
display of the frequency or period of a periodic time-varying 
signal.

Instantaneous value The magnitude of a waveform at any  
instant of time, denoted by lowercase letters.

Inverter Converts dc to ac.
Lagging waveform A waveform that crosses the time axis 

at a point in time later than another waveform of the same 
frequency.

Leading waveform A waveform that crosses the time axis 
at a point in time ahead of another waveform of the same 
frequency.

Oscilloscope An instrument that will display, through the use 
of a cathode-ray tube, the characteristics of a time-varying 
signal.

Peak amplitude The maximum value of a waveform as mea-
sured from its average, or mean, value, denoted by uppercase 
letters.

Peak-to-peak value The magnitude of the total swing of a sig-
nal from positive to negative peaks. The sum of the absolute 
values of the positive and negative peak values.

Peak value The maximum value of a waveform, denoted by  
uppercase letters.

Period (T) The time interval necessary for one cycle of a peri-
odic waveform.

Periodic waveform A waveform that continually repeats itself 
after a defined time interval.

Phase relationship An indication of which of two waveforms 
leads or lags the other, and by how many degrees or radians.

Radian (rad) A unit of measure used to define a particular 
segment of a circle. One radian is approximately equal to 
57.3 ; 2π°  rad are equal to 360°.

Root-mean-square (rms) value The root-mean-square or effec-
tive value of a waveform.

Sinusoidal ac waveform An alternating waveform of unique 
characteristics that oscillates with equal amplitude above and 
below a given axis.

VOM A multimeter with the capability to measure resistance 
and both ac and dc levels of current and voltage.

Waveform The path traced by a quantity, plotted as a function 
of some variable such as position, time, degrees, temperature, 
and so on.
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14  The Basic Elements  
and Phasors

 14.1 INTRODUCTION
The previous chapter was a detailed introduction to the sinusoidal ac voltage and its important 
characteristics. In this chapter we will begin to analyze how resistive, inductive, and capac-
itive elements will respond to this time-varying source. The fact that the magnitude of the 
source varies with time at rates directly related to its frequency will require that we carefully 
look at the relationship between the current through a device and the voltage across it. In an 
ideal world, the voltage across a resistor is related to the current through the resistor by a fixed 
quantity called resistance—a parameter that is not affected by how fast the applied signal var-
ies or the magnitude of the applied signal—totally fixed (ideally) in value. However, for both 
the inductor and capacitor the relationship between the voltage and current is very sensitive 
to the time-varying characteristics of the applied signal. Recall the discussion of capacitors in 
Section 10.10 where the equation

i C
d
dtC

Cυ=

was introduced. In words, the above equation states that the current of a capacitor is equal 
to the product of the magnitude of the capacitance (determined by its construction) times 
the derivative of the voltage across the capacitor with respect to time. Since the concept of  
the derivative plays a very important part in the reaction of a capacitor to a time-varying quan-
tity, it is absolutely necessary that we develop some familiarity with what it means to take the 
derivative of any function. For the moment, since the sinusoidal waveform is the waveform of 
interest, let us examine what the derivative of such a waveform might look like.

Keep in mind that the derivative of a function is the rate of change of that quantity with 
respect to time. In other words, if it fails to change at a particular instant, d 0Cυ =  and the 
derivative is zero. If it changes at a very high rate, the derivative is very high. Now what does 
this mean to the basic sinusoidal waveform? Looking at the sinusoidal waveform of Fig. 14.1, 
it is clear that at the instant the curve passes through the origin at t 0 s=  the curve is ris-
ing (changing) very quickly with time. The result is that the derivative of the voltage at that  

•  Become familiar with the response of a resistor, an 
inductor, and a capacitor to the application of a 
sinusoidal voltage or current.

• Learn how to apply the phasor format to add and 
subtract sinusoidal waveforms.

• Understand how to calculate the real power to 
resistive elements and the reactive power to 
inductive and capacitive elements.

• Become aware of the differences between the 
frequency response of ideal and practical elements.

• Become proficient in the use of a calculator to work 
with complex numbers.

 Objectives
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instant is a maximum and, since this is the voltage across a capacitor, the 
current would be a maximum as determined by the equation above. At 
the positive and negative peaks of the waveform, the waveform is chang-
ing from a positive-going to negative-going waveform and at that instant 
there is no change in voltage. The result is an instant where the voltage is 
not changing, d 0,Cυ =  and the derivative must be zero for that instant. 
The resulting current at that instant is zero.

If we plot the waveform for υd dtC  due to the applied voltage of 
Fig. 14.1, we will obtain the waveform of Fig. 14.2. Note the peak val-
ues at the same instants that the voltage of Fig. 14.1 passed through the 
origin. Notice also that when the voltage increases with a positive slope 
d dtCυ  is positive, and when it decreases with a negative slope it is neg-
ative. Also note that d dtCυ  is zero when the applied voltage reaches a 
positive or negative peak. In total, the derivative of the applied voltage 
results in a cosine wave with a peak value that will be a function of the 
capacitance and how quickly the applied voltage changes with time.

Cosine wave

t0

0
0

max

max

max

t2 t3t1 t4

dyC

dt dt
dt

dyC
dyC =

=

FIG. 14.2 
Derivative of the sine wave of Fig. 14.1.

Sine wave

0

  =  0

t2 t3t1 t4

  = max

 =  0yC

t

dt

dt

dyC

dyC

dyC

dt

FIG. 14.1 
Defining those points in a sinusoidal waveform that 

have maximum and minimum derivatives.

In general,

the derivative of a sine wave is a cosine wave.

In Fig. 14.3 two waveforms of different frequencies are shown above 
their derivative. Clearly, the higher the frequency the steeper the slope 
(and, hence, the quicker the change in voltage with time) when the volt-
age crosses the axis and the higher the peak value of the derivative. Of 
additional importance is the fact that

the current through and voltage across the capacitor have 
the same frequency and period.
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In general,

the derivative of a sine wave has the same period and 
frequency as the original sinusoidal waveform.

For the inductor the voltage and current will interchange roles result-
ing in a voltage that is directly related to the inductance of an inductor 
(due to construction) and the rate in which the current through the coil 
changes. No change in current through the coil and the terminal voltage 
is zero no matter how high the inductance. In addition, higher frequen-
cies for the same inductance will result in higher voltages across the coil.

The introduction to material such as the derivative and the integral 
is included solely on an introductory level. Be aware that it will not be 
necessary to mathematically perform derivative calculations (a form of 
calculus) to continue with the material presented in this text. There are 
no examples that require you to calculate the derivative or integrate any 
function. Their appearance is only to fill in the gaps so that you have 
some understanding of how the final conclusions were derived.

For those students with some calculus background, finding the deriv-
ative of the sinusoidal function of Fig. 14.1 would proceed as follows (a 
process referred to as differentiation):

υ ω θ( )( ) = ±t E tsinC m

and  
υ ω ω θ

π ω θ

( )

( )

( ) = ±

= ±

d
dt

t E t

fE t

cos

2 cos

C m

m

 (14.1)

The peak value of the derivative of a sinusoidal function is 
2πf times the peak value of the original function provided 
the phase angle associated with the original function and 
the derivative is the same.

FIG. 14.3 
Effect of frequency on the peak value of the derivative with f2 > f1.

Higher
peak

Steeper slope

derivative

Negative peak

Lower peak

Less slope

Smaller negative
peak

yC1 yC2

dt
1

dyC

2
dyC

dt

High frequency ( f2) Lower frequency ( f1)

derivative
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14.2 RESPONSE OF BASIC R, L, AND C 
ELEMENTS TO A SINUSOIDAL VOLTAGE OR 
CURRENT
Now that we are familiar with the characteristics of the derivative of 
a  sinusoidal function, we can investigate the response of the basic ele-
ments R, L, and C to a sinusoidal voltage or current.

Resistor

For power-line frequencies and frequencies up to a few hundred kilo-
hertz, resistance is, for all practical purposes, unaffected by the frequency 
of the applied sinusoidal voltage or current. For this frequency region, the 
resistor R in Fig. 14.4 can be treated as a constant, and Ohm’s law can be 
applied as follows. For Vmυ =  sin t,ω

i
R

V t
R

V
R

t I t
sin 

sin  sinm m
m

υ ω
ω ω= = = =

where   =I
V
Rm
m  (14.2)

In addition, for a given i,

υ ω ω ω= = = =iR I t R I R t V t( sin ) sin sinm m m

where   V I Rm m=   (14.3)

A plot of υ and i in Fig. 14.5 reveals that

For a purely resistive element, the voltage across and the 
current through the element are in phase, with their peak 
values related by Ohm’s law.

Inductor

We found in Chapter 11 that the voltage across the inductor of Fig. 14.6 
is directly related to the inductance of the coil and the rate of change 
of current through the coil. A relationship defined by the following 
equation:

 υ = L
di
dtL

L

Consequently, the higher the frequency, the greater is the rate of 
change of current through the coil, and the greater is the magnitude of 
the voltage. In addition, we found in the same chapter that the inductance 
of a coil determines the rate of change of the flux linking a coil for a 
particular change in current through the coil. The higher the inductance, 
the greater is the rate of change of the flux linkages, and the greater is  
the resulting voltage across the coil.

For a sinusoidal current defined by

ω=i I tsinL m

we can calculate the voltage across the coil by differentiating the current 
through the coil and substituting into the basic equation above. That is,

υ ω ω

ω ω

( )( )

( )

= = =

=

L
di
dt

L d
dt

I t LI d
dt

t

LI t

  sin sin

cos

L
L

m m

m

vt0 p 2p

iR

yR

Vm
Im

FIG. 14.5 
The voltage and current of a resistive 

element are in phase.

iL  =  Im sin vt

yL

+

–
L

FIG. 14.6 
Investigating the sinusoidal response of an 

inductive element.

y

+

–

i

R

FIG. 14.4 
Determining the sinusoidal response for a 

resistive element.
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with the final solution of

LI tsin 90L mυ ω ω( )= + °

The peak value of the voltage across a coil is directly related 
to the applied frequency ( 2 f),ω π=  the inductance of the 
coil L, and the peak value of the applied current .mI  A plot of 

Lυ  and Li  in Fig. 14.7 reveals that for an inductor, Lυ  leads Li  
by 90 ,°  or Li  lags Lυ  by 90 .°

The opposition to an applied voltage (similar to the opposition estab-
lished by the resistance of a resistor in any network) can be determined 
by simply substituting the peak values for Vm and Im as follows:

V
I

LI
I

LOpposition cause
effect

m

m

m

m

ω
ω= = = =

revealing that the opposition established by an inductor in an ac sinu-
soidal network is directly related to the product of the angular velocity 

f2ω π( )=  and the inductance.
The quantity L,ω  called the reactance (from the word reaction) of an 

inductor, is symbolically represented by X L  and is measured in ohms; 
that is,

 ω ( )=X L ohms,  ΩL  (14.4)

In an Ohm’s law format, its magnitude can be determined from

 ( )=X
V
I

ohms,  ΩL
m

m

 (14.5)

Inductive reactance is the opposition to the flow of current, which 
results in the continual interchange of energy between the source and 
the magnetic field of the inductor. In other words, inductive reactance, 
unlike resistance (which dissipates energy in the form of heat), does not 
dissipate electrical energy (ignoring the effects of the internal resistance 
of the inductor.)

Once the reactance is known, the peak value of the voltage or current 
can be found from the other by simply applying Ohm’s law as follows:

 =I
V
Xm

m

L

 (14.6)

and     =V I Xm m L  (14.7)

Capacitor

Let us now examine the capacitive configuration of Fig. 14.8. For the ca-
pacitor, we will determine i for a particular voltage across the element rather 
than the voltage as was determined for the inductive element. When this 
approach reaches its conclusion, we will know the relationship between the 
voltage and current and the opposition level to sinusoidally applied emfs.

Our investigation of the inductor revealed that the inductive voltage 
across a coil opposes the instantaneous change in current through the coil. 
For capacitive networks, the voltage across the capacitor is limited by the 
rate at which charge can be deposited on, or released by, the plates of the 
capacitor during the charging and discharging phases, respectively. In other 
words, an instantaneous change in voltage across a capacitor is opposed 

vt0 p 2p

iL

yL
Vm

Im

p
2

3
2 
p

– p
90°

L: yL leads iL by 90°

2

FIG. 14.7 
For a pure inductor, the voltage across the 

coil leads the current through the coil by °90 .

iC  =  ?

 yC  =  Vm sin vt
+

–
C

FIG. 14.8 
Investigating the sinusoidal response of a 

capacitive element.
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by the fact that there is an element of time required to deposit charge on 
(or release charge from) the plates of a capacitor, and = /V Q C.

Since capacitance is a measure of the rate at which a capacitor will 
store charge on its plates,

for a particular change in voltage across the capacitor, the 
greater the value of capacitance, the greater is the resulting 
capacitive current.

In addition, the fundamental equation relating the voltage across a 
capacitor to the current of a capacitor υ( )[ ]= /i C d dtC  indicates that

for a particular capacitance, the greater the rate of change of 
voltage across the capacitor, the greater is the capacitive current.

Certainly, an increase in frequency corresponds to an increase in the rate of  
change of voltage across the capacitor and to an increase in the current 
of the capacitor.

For the capacitor of Fig. 14.8, we recall from Chapter 10 that

υ
=i C

d
dtC

C

Substituting

υ ω= V tsinC m

and, applying differentiation, we obtain

υ
ω ω ω( )= = =i C

d
dt

C d
dt

V t CV tsin cosC
C

m m

so that

ω ω( )= + °i CV tsin 90C m

The peak value for the current of a capacitor is directly 
related to the applied frequency (ω = 2πf), the capacitance 
of the capacitor (C), and the peak value of the applied 
voltage Vm. The plot of Fig. 14.9 reveals that for a capacitor, 
Ci  leads ,Cυ  or Cυ  lags Ci  by 90°.

Applying

Opposition cause
effect

=

and substituting values, we obtain

V
I

V
CV C

Opposition 1m

m

m

mω ω
= = =

The quantity C1 ,ω  called the reactance of a capacitor, is symboli-
cally represented by XC  and is measured in ohms; that is,

 
ω

( )=X
C
1 ohms,  ΩC  (14.8)

In an Ohm’s law format, its magnitude can be determined from

 ( )=X
V
I

ohms,  ΩC
m

m

 (14.9)

vt0 p 2p

iC yC

Vm

Im

–
90°

C:  iC leads yC by 90°

3
2
p

p
2

p
2

FIG. 14.9 
The current of a purely capacitive element 

leads the voltage across the element by °90 .

*A mnemonic phrase sometimes used to remember the phase relationship between the voltage 
and current of a coil and capacitor is “ELI the ICE man.” Note that the L (inductor) has the E 
before the I (e leads i by 90°), and the C (capacitor) has the I before the E (i leads e by 90°).
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Capacitive reactance is the opposition to the flow of charge, which 
results in the continual interchange of energy between the source and 
the electric field of the capacitor. Like the inductor, the capacitor does 
not dissipate energy in any form (ignoring the effects of the leakage 
resistance).

Once the reactance is known, the peak value of the voltage or current 
can be found from the other by simply applying Ohm’s law as follows:

 =I
V
Xm

m

C

 (14.10)

and      =V I Xm m C   (14.11)

In the circuits just considered, the current was given in the inductive 
circuit and the voltage in the capacitive circuit. This was done to avoid 
the use of integration (not required to continue with the material) in find-
ing the unknown quantities. 
In the inductive circuit,

       L
di
dtL

Lυ =  (14.12a)

and through integration: 

   ∫ υ=i
L

dt1
L L  (14.12b)

In the capacitive circuit,

      i C
d
dt

 C
Cυ=  (14.13a)

and through integration:

   
C

i dt1
C C∫υ =  (14.13b)

Soon, we shall consider a method of analyzing ac circuits that will per-
mit us to solve for an unknown quantity with sinusoidal input without 
having to use direct integration or differentiation.

It is possible to determine whether a network with one or more ele-
ments is predominantly capacitive or inductive by noting the phase rela-
tionship between the input voltage and current.

If the source current leads the applied voltage, the network 
is predominantly capacitive, and if the applied voltage leads 
the source current, it is predominantly inductive.

Since we now have an equation for the reactance of an inductor or 
capacitor, we do not need to use derivatives or integration in the examples 
to be considered. Simply applying Ohm’s law, ( )=I E X Xor  ,m m L C  
and keeping in mind the phase relationship between the voltage and cur-
rent for each element will be sufficient to complete the examples.

 EXAMPLE 14.1 The voltage across a resistor is provided below. Find 
the sinusoidal expression for the current if the resistor is 10 Ω. Sketch  
the curves for υ and i.

a. t100 sin 377υ =
b. t25 sin 377 60υ ( )= + °
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Solutions:

a. Eq. (14.2): I
V
R

100 V
10 Ω

10 Am
m= = =

(υ and i are in phase), resulting in

=i t10 sin 377   

The curves are sketched in Fig. 14.10.

b. Eq. (14.2): I
V
R

25 V
10 Ω

2.5 Am
m= = =

(υ and i are in phase), resulting in

+ °( )=i t2 5 sin 377 60.

The curves are sketched in Fig. 14.11.

EXAMPLE 14.2 The current through a 5 Ω resistor is = +i t40 sin(377  
30 ).°  Find the sinusoidal expression for the voltage across the resistor.

Solution: Eq. (14.3): V I R 40 A)(5 Ω 200 Vm m ( )= = =

(υ and i are in phase), resulting in

υ + °( )= t200 sin 377 30

EXAMPLE 14.3 The current through a 0.1 H coil is provided. Find the 
sinusoidal expression for the voltage across the coil. Sketch the υ and i  
curves.

a. i t10 sin 377=
b. ( )= − °i t7sin 377 70

Solutions:

a. Eq. (14.4): X L 377 rad/s 0.1 H 37.7 ΩL ω ( )( )= = =
Eq. (14.7):  V I X 10 A 37.7 Ω 377 Vm m L ( )( )= = =

and we know that for a coil υ leads i by 90 .°  Therefore,

ssiinn t377 377 90υ +( )= °  

The curves are sketched in Fig. 14.12.

a0 p 2piR

yR
Vm  =  100 V

Im  =  10 A

In phase

FIG. 14.10 
Example 14.1(a).

– p2
a0

p

2pp
260°

3
2 
p

iR

yRVm  =  25 V

Im  =  2.5 A

In phase

FIG. 14.11 
Example 14.1(b).

a0 p 2p

90° iL

yL Vm  =  377 V

Im  =  10 Ay leads i by 90°

3
2
p

p
2

– p
2

FIG. 14.12 
Example 14.3(a).
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b.  X L  remains at 37.7 Ω.

V I X 7 A)(37.7 Ω 263.9 Vm m L ( )= = =

and we know that for a coil υ leads i by 90 .°  Therefore,

υ = − ° + °t263.9 sin(377 70 90 )

and

υ = + °t263 9 sin 377 20.   ( )

The curves are sketched in Fig. 14.13.

EXAMPLE 14.4 The voltage across a 0.5 H coil is provided below. 
What is the sinusoidal expression for the current?

υ = t100 sin 20

Solutions:

ω ( )= = =X L  20  rad s)(0.5 H 10 ΩL

I
V
X

  100 V
10 Ω

10 Am
m

L

= = =

and we know the i lags υ by 90 .°  Therefore,

( )= − °i t10sin 20 90

EXAMPLE 14.5 The voltage across a µ1  F capacitor is provided 
below. What is the sinusoidal expression for the current? Sketch the υ 
and i curves.

υ = t30 sin 400

Solutions: 

Eq. (14.8): 
ω ( )

= =
×

= =
−

X
C
1 1

400 rad/s (1 10 F)
10 Ω
400

2500 ΩC 6

6

Eq. (14.10): = = = =I
V
X

30 V
2500 Ω

0.0120 A 12 mAm
m

C

and we know that for a capacitor i leads υ by 90 .°  Therefore,

= × + °−i t12 10 sin 400 90( )3

The curves are sketched in Fig. 14.14.

a

0
p 2p

iL
yL

Vm  =  263.9 V

Im  =  7 A

90°

p
2

70°

y leads i by 90°.

3
2 
p20°

FIG. 14.13 
Example 14.3(b).

0
90°

iC

yC

Vm  =  30 V

Im  =  12 mA

i leads by 90°.

– 2 2
3
2

2p p p
p p a

y

FIG. 14.14 
Example 14.5.
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EXAMPLE 14.6 The current through a µ100  F capacitor is given. 
Find the sinusoidal expression for the voltage across the capacitor.

= + °i t40 sin(500 60 )

Solutions:

ω
= =

×
=

×
= =

−
X

C
  1 1

(500 rad/s)(100 10 F)
10  Ω
5 10

10  Ω
5

20 ΩC 6

6

4

2

V I X  40 A)(20 Ω 800 Vm m C ( )= = =

and we know that for a capacitor, υ lags i by 90 .°  Therefore,

υ = + ° − °t800 sin(500 60 90 )

and   υ −( )= °t800 sin 500 30 

EXAMPLE 14.7 For the following pairs of voltages and currents, 
determine whether the element involved is a capacitor, an inductor, or a 
resistor. Determine the value of C, L, or R if sufficient data are provided 
(Fig. 14.15):

a. υ ω( )= + °t100 sin 40

ω( )= + °i t20 sin 40

b. υ ( )= + °t1000 sin 377 10

( )= − °i t5 sin 377 80

c. υ ( )= + °t500 sin 157 30

( )= + °i t1 sin 157 120

d. υ ω( )= + °t50 cos 20

ω( )= + °i t5 sin 110

Solutions:

a. Since υ and i are in phase, the element is a resistor, and

R
V
I

5100 V
20 A

 Ωm

m

= = =

b. Since υ leads i by 90 ,°  the element is an inductor, and

X
V
I

1000 V
5 A

200 ΩL
m

m

= = =

so that X L 200 ΩL ω= =  or

ω
= = =L 0 53 H200 Ω 200 Ω

377 rad s
.  

c. Since i leads υ by 90 ,°  the element is a capacitor, and

X
V
I

500 V
1 A

500 ΩC
m

m

= = =

so that X
C
1 500 ΩC ω

= =  or

µ
ω ( )

= = =C 12 74 F1
500 Ω

1
157 rad/s)(500 Ω

.  

d. t t50  cos 20 50  sin 20 90υ ω ω( ) ( )= + ° = + ° + °

t50  sin 110ω( )= + °

y ?
+

–

i

FIG. 14.15 
Example 14.7.
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Since υ and i are in phase, the element is a resistor, and

R
V
I

1050 V
5 A

 Ωm

m

= = =

14.3 FREQUENCY RESPONSE OF THE 
BASIC ELEMENTS
Thus far, each description has been for a set frequency, resulting in 
a fixed level of impedance for each of the basic elements. We must 
now investigate how a change in frequency affects the impedance level 
of the basic elements. It is an important consideration because most 
signals other than those provided by a power plant contain a variety 
of frequency levels. The last section made it quite clear that the reac-
tance of an inductor or a capacitor is sensitive to the applied frequency. 
However, the question is, How will these reactance levels change if we 
steadily increase the frequency from a very low level to a much higher 
level?

Although we would like to think of every element as ideal, it is 
important to realize that every commercial element available today will 
not respond in an ideal fashion for the full range of possible frequencies. 
That is, each element is such that for a particular range of frequencies, 
it performs in an essentially ideal manner. However, there is always a 
range of frequencies in which the performance varies from the ideal. 
Fortunately, the designer is aware of these limitations and will take them 
into account in the design.

The discussion begins with a look at the response of the ideal 
 elements—a response that will be assumed for the remaining chapters 
of this text and one that can be assumed for any initial investigation of a 
network. This discussion is followed by a look at the factors that cause 
an element to deviate from an ideal response as frequency levels become 
too low or high.

Ideal Response

Resistor R For an ideal resistor, you can assume that frequency 
will have absolutely no effect on the impedance level, as shown by the 
 response in Fig. 14.16. Note that at 5 kHz or 20 kHz, the resistance of 
the resistor remains at 22 Ω; there is no change whatsoever. For the rest 
of the analyses in this text, the resistance level remains as the nameplate 
value, no matter what frequency is applied. This is not true for com-
mercially available resistors with some more sensitive to the applied  
frequency than others, but for this text we will assume the resistors  
are frequency independent.

Inductor L For the ideal inductor, the equation for the reactance can 
be written as follows to isolate the frequency term in the equation. The 
result is a constant times the frequency variable that changes as we move 
down the horizontal axis of a plot:

ω π π π( )= = = = =X L fL L f kf k L2 2 with  2L

The resulting equation can be compared directly with the equation for a 
straight line:

y mx b kf kf0= + = + =

0 5 10 15 20 f (kHz)

R

22 V

(ideal)

FIG. 14.16 
R versus f for the range of interest.
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where b 0=  and the slope is k or L X2 .  Lπ  is the y variable, and f is the 
x variable, as shown in Fig. 14.17. Since the inductance determines the 
slope of the curve, the higher the inductance, the steeper is the straight-
line plot, as shown in Fig. 14.17 for two levels of inductance.

In particular, note that at f 0 Hz,=  the reactance of each plot is 
zero ohms, as determined by substituting f 0 Hz=  into the basic 
equation for the reactance of an inductor:

X fL L2 2 (0 Hz) 0 ΩL π π= = =

Since a reactance of zero ohms corresponds with the characteristics of a 
short circuit, we can conclude that

at a frequency of 0 Hz, an inductor takes on the 
characteristics of a short circuit, as shown in Fig. 14.18.

f = very high frequenciesf = 0 HzL

FIG. 14.18 
Effect of low and high frequencies on the circuit model of an inductor.

XC (kV)

0 5 10 15 20 f (kHz)

Increasing C

1

2

3

4

5

C  =  0.01 mF

C  =  0.03 mF

FIG. 14.19 
 XC  versus frequency.

XL (kV)

0 5 10 15 20 f (kHz)

XL  =  0 V at f  =  0 Hz

Increasing L
L  =  20 mH

L  =  100 mH

1

2

3

4

5

FIG. 14.17 
 X L versus frequency.

As shown in Fig. 14.18, as the frequency increases, the reactance 
increases, until it reaches an extremely high level at very high frequen-
cies. The result is that

at very high frequencies, the characteristics of an inductor 
approach those of an open circuit, as shown in Fig. 14.18.

The inductor, therefore, is capable of handling impedance levels that 
cover the entire range, from zero ohms to infinite ohms, changing at a 
steady rate determined by the inductance level. The higher the induc-
tance, the faster it approaches the open-circuit equivalent.

Capacitor C For the capacitor, the equation for the reactance

X
fC

1
2C π

=

can be written as

π
( )= =X f

C
k1

2
a constantC

which matches the basic format for a hyperbola:

yx k=

where XC  is the y variable, f the x variable, and k a constant equal to 
C1 2 .π( )

Hyperbolas have the shape appearing in Fig. 14.19 for two levels of 
capacitance. Note that the higher the capacitance, the closer the curve 
approaches the vertical and horizontal axes at low and high frequencies.

At or near 0 Hz, the reactance of any capacitor is extremely high, as 
determined by the basic equation for capacitance:

X
fC C

1
2

1
2 (0 Hz)

  ΩC π π
= = ⇒ ∞
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The result is that

at or near 0 Hz, the characteristics of a capacitor approach 
those of an open circuit, as shown in Fig. 14.20.

f = very high frequenciesf = 0 Hz

C

FIG. 14.20 
Effect of low and high frequencies on the circuit model of a capacitor.

As the frequency increases, the reactance approaches a value of zero 
ohms. The result is that

at very high frequencies, a capacitor takes on the 
characteristics of a short circuit, as shown in Fig. 14.20.

It is important to note in Fig. 14.19 that the reactance drops very rap-
idly as the frequency increases. It is not a gradual drop as encountered 
for the rise in inductive reactance. In addition, the reactance sits at a 
fairly low level for a broad range of frequencies. In general, therefore, 
recognize that for capacitive elements, the change in reactance level can 
be dramatic with a relatively small change in frequency level.

Finally, recognize the following:

As frequency increases, the reactance of an inductive 
element increases, while that of a capacitor decreases, with 
one approaching an open-circuit equivalent as the other 
approaches a short-circuit equivalent.

Practical Response

Resistor R In the manufacturing process, every resistive element  
inherits some stray capacitance levels and lead inductances. For most app-
lications, the levels are so low that their effects can be ignored. However, 
as the frequency extends beyond a few megahertz, it may be necessary 
to be aware of their effects. For instance, a number of carbon compo-
sition resistors have the frequency response appearing in Fig. 14.21.  

f (log scale)

R
(% of

nameplate
value)

1 MHz

100

90

60

80

70

50

40

30

20

10 MHz 100 MHz 1000 MHz

100 V

2 kV

10 kV

100 kV

Ideal response

FIG. 14.21 
Typical resistance-versus-frequency curves for carbon 

composition resistors.
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The 100 Ω resistor is essentially stable up to about 300 MHz, whereas 
the 100 kΩ  resistor starts to drop off at about 15 MHz. In general, there-
fore, this type of carbon composition resistor has the ideal characteris-
tics of Fig. 14.16 for frequencies up to about 15 MHz. For frequencies of 
100 Hz, 1 kHz, 150 kHz, and so on, the resistor can be considered ideal.

The horizontal scale of Fig. 14.21 is a log scale that starts at 1 MHz 
rather than zero as applied to the vertical scale. Logarithms are discussed 
in detail in Chapter 22, which describes why the scale cannot start at 
zero and the fact that the major intervals are separated by powers of 10. 
For now, simply note that log scales permit the display of a range of fre-
quencies not possible with a linear scale such as was used for the vertical 
scale of Fig. 14.21. Imagine trying to draw a linear scale from 1 MHz to 
1000 MHz using a linear scale. It would be an impossible task unless the 
horizontal length of the plot was enormous. As indicated above, a great 
deal more will be said about log scales in Chapter 22.

Inductor L In reality, inductance can be affected by frequency, 
temperature, and current. A true equivalent for an inductor appears in 
Fig. 14.22. The series resistance Rs  represents the copper losses (resis-
tance of the many turns of thin copper wire); the eddy current losses 
(losses due to small circular currents in the core when an ac voltage is 
applied); and the hysteresis losses (losses due to core losses created by 
the rapidly reversing field in the core). The capacitance Cp is the stray 
capacitance that exists between the windings of the inductor.

For most inductors, the construction is usually such that the larger the 
inductance, the lower is the frequency at which the parasitic elements 
become important. That is, for inductors in the millihenry range (which 
is very typical), frequencies approaching 100 kHz can have an effect on 
the ideal characteristics of the element. For inductors in the microhenry 
range, a frequency of 1 MHz may introduce negative effects. This is 
not to suggest that the inductors lose their effect at these frequencies 
but rather that they can no longer be considered ideal (purely inductive 
elements).

Fig. 14.23 is a plot of the magnitude of the reactance X L  of Fig. 14.22 
versus frequency. Note that up to about 2 MHz, the impedance increases 
almost linearly with frequency, clearly suggesting that the µ100  H 
inductor is essentially ideal. However, above 2 MHz, all the factors con-
tributing to Rs  start to increase, while the reactance due to the capacitive 
element Cp is more pronounced. The dropping level of capacitive reac-
tance begins to have a shorting effect across the windings of the induc-
tor and reduces the overall inductive effect. Eventually, if the frequency 

ZL

Rs

Cp

L

FIG. 14.22 
Practical equivalent for an inductor.

MHz 21 MHz 4MHz 6MHz 10MHz f (log scale)

Due to Cp

10 mH

100 mH

Due to Cp

XL (V)

ZL ≅ 2   fL

XL ≅   fL2

m

m

p

p

FIG. 14.23 
 X L versus frequency for the practical inductor equivalent of Fig. 14.22.
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continues to increase, the capacitive effects overcome the inductive 
effects, and the element actually begins to behave in a capacitive fash-
ion. Note the similarities of this region with the curves in Fig. 14.19. 
Also, note that decreasing levels of inductance (available with fewer 
turns and therefore lower levels of Cp) do not demonstrate the degrading 
effect until higher frequencies are applied.

In general, therefore, the frequency of application for a coil becomes 
important at increasing frequencies. Inductors lose their ideal charac-
teristics and, in fact, begin to act as capacitive elements with increasing 
losses at very high frequencies.

Capacitor C The capacitor, like the inductor, is not ideal for the full 
frequency range. In fact, a transition point exists where the characteris-
tics of a capacitor actually take on those of an inductor. The equivalent 
model for an inductor appearing in Fig. 14.24(a) is an expanded ver-
sion of that appearing in Fig. 10.21. An inductor Ls was added to reflect 
the inductance present due to the capacitor leads and any inductance 
introduced by the design of the capacitor. The inductance of the leads 
is typically about µ0.05  H  per centimeter, which is about µ0.2  H for a 
capacitor with 2 cm leads at each end—a level of inductance that can be 
important at very high frequencies.

C Rp
Rd

Ls

Rs
C

(a)

FIG. 14.24 
Practical equivalent for a capacitor: (a) network; (b) response.

Inductive characteristics
due to Ls

1 f (MHz–
log scale)

2 3 4 5 6 7 8 9 10 20

0.01 F

20

10

XC ≅ 1
2 fC

(b)

XC (V)

m

p

The resistance Rd  reflects the energy lost due to molecular friction 
within the dielectric as the atoms continually realign themselves in the 
dielectric due to the applied alternating ac voltage. Of interest, how-
ever, the relative permittivity decreases with increasing frequencies but 
eventually undergoes a complete turnaround and begins to increase at 
very high frequencies. Notice the capacitor included in series with Rd  
to reflect the fact that this loss is not present under dc conditions. The 
capacitor assumes its open-circuit state for dc applications.

The resistance R ,p  as introduced earlier, is defined by the resistivity 
of the dielectric (typically 10  Ω12  or greater) and the case resistance and 
will determine the level of leakage current if the capacitor is left to dis-
charge. Depending on the capacitor, the discharge time can extend from 
a few seconds for some electrolytics to hours (paper) or days (polysty-
rene), revealing that electrolytics typically have much lower levels of Rp  
than most other capacitors.
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The effect of all the elements on the actual response of a µ0.01  F met-
allized film capacitor with 2 cm leads is provided in Fig. 14.24(b), where 
the response is almost ideal for the low and mid-frequency range but then 
at about 3.7 MHz begins to show an inductive response due to L .s

In general, therefore, the frequency of application is important for 
capacitive elements because when the frequency increases to a certain 
level, the element takes on inductive characteristics. Also, the frequency 
of application defines the type of capacitor (or inductor) that is applied: 
Electrolytics are limited to frequencies to perhaps 10 kHz, while ceramic 
or mica can handle frequencies higher than 10 MHz.

The expected temperature range of operation can have an import-
ant impact on the type of capacitor chosen for a particular application. 
Electrolytics, tantalum, and some high-k ceramic capacitors are very 
sensitive to colder temperatures. In fact, most electrolytics lose 20% of 
their room-temperature capacitance at 0 C°  (freezing). Higher tempera-
tures (up to 100 C°  or 212 F° ) seem to have less impact in general than 
colder temperatures, but high-k ceramics can lose up to 30% of their 
capacitance level at 100 C°  compared to room temperature. With experi-
ence, you will learn the type of capacitor to use for each application and 
only be concerned when you encounter very high frequencies, extreme 
temperatures, or very high currents or voltages.

ESR The term equivalent series resistance (ESR) was introduced in 
Chapter 10, where it was noted that the topic would surface again after 
the concept of frequency response was introduced. In the simplest of 
terms, the ESR as appearing in the simplistic model of Fig. 14.25(a) is 
the actual dissipative factor one can expect when using a capacitor at 
various frequencies. For dc conditions it is essentially the dc resistance 
of the capacitor appearing as Rs  in Fig. 14.24(a). However, for any ac 
application the level of dissipation will be a function of the levels of Rp  
and Rd  and the frequency applied.

Although space does not permit a detailed derivation here, the ESR 
for a capacitor is defined by the following equation:

R
C R C R

ESR 1 1
s

p d
2 2 2ω ω

= + +

Note that the first term is simply the dc resistance and is not a function 
of frequency. However, the next two terms are a function of frequency 
in the denominator, revealing that they will increase very quickly as the 
frequency drops. The result is the valid concern about levels of ESR at 
low frequencies. At high frequencies, the second two terms will die off 
quickly, leaving only the dc resistance. In general, therefore, keep in 
mind that

the level of ESR or equivalent series resistance is frequency 
sensitive and considerably greater at low frequencies 
than just the dc resistance. At very high frequencies, it 
approaches the dc level.

It is such as important factor in some designs that instruments have 
been developed primarily to measure this quantity. One such instrument 
appears in Fig. 14.25(b).

There are some general rules about the level of ESR associated with 
various capacitors. For all applications, the lower the ESR, the better. 
Electrolytic capacitors typically have much higher levels of ESR than 
film, ceramic, or paper capacitors. A standard electrolytic µ22  F capaci-
tor may have an ESR between 5 and 30 Ω, while a standard ceramic may 

ESR = Rs + Rp(f) + Rd(f)

C

(a)

[(b) Courtesy of Peak Electronics Design Limited]

FIG. 14.25 
ESR. (a) Impact on equivalent model;  

(b) measuring instrument.

(b)
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have only 10 to 100 mΩ,  a significant difference. Electrolytics, however, 
because of their other characteristics, are still very popular in power sup-
ply design—it is simply a matter of balancing the ESR level with other 
important factors.

EXAMPLE 14.8 At what frequency will the reactance of a 200 mH 
inductor match the resistance level of a 5 kΩ resistor?

Solution: The resistance remains constant at 5 kΩ for the frequency 
range of the inductor. Therefore,

R X fL Lf5000 Ω 2 2L π π= = = =

f f2 (200 10 H) 1.2573π= × =−

and      f 3 98 kHz5000 Hz
1.257

.  = ≅

EXAMPLE 14.9 At what frequency will an inductor of 5 mH have 
the same reactance as a capacitor of µ0.1  F?

Solutions:

π
π

π

=

=

=

X X

fL
fC

f
LC

 

 2 1
2

  1
4

L C

2
2

and

π π

π π ( )( )

= =
× ×

=
×

=
×

= ≅

− −

− −

f
LC

7 12 kHz

   1
2

1
2 (5 10 H)(0.1 10  F)

1
2 5 10

1
2 2.236 10

10  Hz
14.05

.  

3 6

10 5

5

14.4 AVERAGE POWER AND POWER FACTOR
A common question is, How can a sinusoidal voltage or current deliver 
power to a load if it seems to be delivering power during one part of its 
cycle and taking it back during the negative part of the sinusoidal cycle? 
The equal oscillations above and below the axis seem to suggest that 
over one full cycle there is no net transfer of power or energy. However, 
as mentioned in the last chapter, there is a net transfer of power over one 
full cycle because power is delivered to the load at each instant of the 
applied voltage or current (except when either is crossing the axis) no 
matter what the direction is of the current or polarity of the voltage.

To demonstrate this, consider the relatively simple configuration in 
Fig. 14.26, where an 8 V peak sinusoidal voltage is applied across a 2 Ω 
resistor. When the voltage is at its positive peak, the power delivered at 
that instant is 32 W, as shown in the figure. At the midpoint of 4 V, the 
instantaneous power delivered drops to 8 W; when the voltage crosses 
the axis, it drops to 0 W. Note, however, that when the applied voltage is 
at its negative peak, the current may reverse, but at that instant, 32 W is 
still being delivered to the resistor.

In total, therefore,
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even though the current through and the voltage across 
reverse direction and polarity, respectively, power is 
delivered to the resistive load at each instant of time.

If we plot the power delivered over a full cycle, we obtain the curve 
in Fig. 14.27. Note that the applied voltage and resulting current are in 
phase and have twice the frequency of the power curve. For one full 
cycle of the applied voltage having a period T, the power level peaks for 
each pulse of the sinusoidal waveform.

The fact that the power curve is always above the horizontal 
axis reveals that power is being delivered to the load at each 
instant of time of the applied sinusoidal voltage.

Any portion of the power curve below the axis reveals that power 
is being returned to the source. The average value of the power curve 
occurs at a level equal to V I 2,m m  as shown in Fig. 14.27. This power 

R 2 V

iR

yR

+

–

0

8 V

–8 V

yR

2
3
2

2 t

R 2 V

iR = 2 A+

–

4 V

= 32 

+

–

R 2 V

iR = 4 A

P = iR
2R

W

8 V

8 V

iR = 4 A

R 2 V

iR = 0 A

P = 0 W

R 2 V

+

–

0 V

= 8
P = i2R

W

= 32 
P = i2R

W

+

–p p
p p

FIG. 14.26 
Demonstrating that power is delivered at every instant of a sinusoidal 

voltage waveform υ( )=except 0 V    .R

(Average)

VI

VI

t

T1

y

i0

PR
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4 A

32

16

Power
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source by

element

Power
delivered to
element by

source

P(W)

FIG. 14.27 
Power versus time for a purely resistive load.
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level is called the average or real power level. It establishes a particular 
level of power transfer for the full cycle, so that we do not have to deter-
mine the level of power to apply to a quantity that varies in a sinusoidal 
nature.

If we substitute the equation for the peak value in terms of the rms 
value as

( )( )
= = =P

V I V I V I

2

2  2 

2

2 

2
m m

av
rms rms rms rms

we find that the average or real power delivered to a resistor takes on the 
following very convenient form:

 =P V Iav rms rms  (14.14)

Note that the power equation is exactly the same when applied to dc 
networks as long as we work with rms values.

The above analysis was for a purely resistive load. If the sinusoi-
dal voltage is applied to a network with a combination of R, L, and C 
components, the instantaneous equation for the power levels is more  
complex. However, if we are careful in developing the general equation 
and examine the results, we find some general conclusions that will be 
very helpful in the analysis to follow.

In Fig. 14.28, a voltage with an initial phase angle is applied to a net-
work with any combination of elements that results in a current with the 
indicated phase angle.

The power delivered at each instant of time is then defined by

p i V t I tsin sinm m iυ ω θ ω θ( ) ( )= = + +υ

V I t tsin sinm m iω θ ω θ( ) ( )= + +υ

where θυ  is simply the phase angle associated with the applied voltage 
and iθ  is the phase angle associated with the resulting current.

Using the trigonometric identity

= − − +
A B

A B A B
sin  sin 

cos( ) cos( )
2

we see that the function t tsin sin iω θ ω θ( ) ( )+ +υ  becomes

t tsin sin iω θ ω θ( ) ( )+ +υ

ω θ ω θ ω θ ω θ( ) ( )[ ] ( ) ( )[ ]
=

+ − + − + + +υ υt t t tcos cos

2
i i

θ θ ω θ θ( )
=

− − + +υ υtcos cos(2 )
2

i i

so that

� ���������� ���������� � ������������� �������������

� ��������������� ���������������

θ θ ω θ θ( ) ( )= −





− + −



↑ ↑

υ υ

ω

p
V I V I

t
2

cos
2

cos 2m m
i

m m
i

tFixed value Time-varying (due to   in equation)

simply the difference in phase angles

A plot of i,   ,υ  and ρ on the same set of axes is shown in Fig. 14.29.
Note that the second factor in the preceding equation is a cosine wave 

with an amplitude of V I 2m m  and with a frequency twice that of the 
voltage or current. The average value of this term is zero over one cycle, 
producing no net transfer of energy in any one direction.

The first term in the preceding equation, however, has a constant mag-
nitude (no time dependence) and therefore provides some net transfer of 

Load

+

–

i = Im sin (  vt +   i)

y = Vm sin (   +   y)

P

vt

FIG. 14.28 
Determining the power 

delivered in a sinusoidal ac 
network.
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energy. This term is referred to as the average power or real power as 
introduced earlier. The angle iθ θ( )−υ  is the phase angle between υ 
and i. Since cos cos  ,α α( )− =

the magnitude of average power delivered is independent of 
whether υ leads i or i leads υ.

Defining θ  as equal to ,iθ θ−υ  where � indicates that only the magni-
tude is important and the sign is immaterial, we have

 θ ( )=P
V I

2
 cos  watts,  Wm m  (14.15)

where P is the average power in watts. This equation can also be 
written

P
V I

2 2
cosm m θ( )( )=

or, since      = =V
V

I
I

2
and

2
m m

eff eff

Eq. (14.15) becomes

 P V I cosrms rms θ=  (14.16)

Let us now apply Eqs. (14.15) and (14.16) to the basic R, L, and C 
elements.

 Resistor

In a purely resistive circuit, since υ and i are in phase, θ θ θ− = = °υ 0 ,i  
θ = ° =and  cos cos0 1, so that

 ( )= =P
V I

V I
2

Wm m
rms rms  (14.17)

or, since            I
V

Rrms
rms=

then      ( )= =P
V

R
I R Wrms

2

rms
2  (14.18)

0

p

y

i

Pav

i

  y

   t

Vm Im
2
     cos( y    i)

Vm Im
2

v

u

u

u

u –

FIG. 14.29 
Defining the average power for a sinusoidal ac network.
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Inductor

In a purely inductive circuit, since υ leads i by 90 ,   iθ θ θ° − = =υ  
90 90 .− ° = °  Therefore,

( )= ° = =P
V I V I

0 W
2

 cos 90
2

  0  m m m m

The average power or power dissipated by the ideal 
inductor (no associated resistance) is zero watts.

Capacitor

In a purely capacitive circuit, since i leads υ by 90 ,   iθ θ θ° − = =υ  
90 90 .− ° = °  Therefore,

P
V I V I

0 W
2

 cos(90 )
2

  0  m m m m ( )= ° = =

The average power or power dissipated by the ideal 
capacitor (no associated resistance) is zero watts.

EXAMPLE 14.10 Find the average power dissipated in a network 
whose input current and voltage are the following:

ω( )= + °i t5 sin 40

υ ω( )= + °t10 sin 40

Solution: Since υ and i are in phase, the circuit appears to be purely 
resistive at the input terminals. Therefore,

P
V I

R
V
I

P
V

R
R I R

25 W

25 W

25 W

2
(10 V)(5 A)

2
 

or 10 V
5 A

2 Ω

and 0.707 10 V
2

 

or 0.707 5 A 2  

m m

m

m

rms
2 2

rms
2 2( )[ ]

( )( )[ ]

( ) ( )

= = =

= = =

= = =

= = =

For the following example, the circuit consists of a combination of 
resistances and reactances producing phase angles between the input 
current and voltage different from 0° or 90 .°

EXAMPLE 14.11 Determine the average power delivered to net-
works having the following input voltage and current:

a. υ ω( )= + °t100 sin 40

ω( )= + °i t20 sin 70
b. υ ω( )= − °t150 sin 70

ω( )= − °i t3 sin 50

Solutions:

a.  θ= = °υV  100, 40m

θ= = °I  20 A, 70m i

40 70 30 30iθ θ θ= − = ° − ° = − ° = °υ
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and

θ ( )= = ° =

=

P
V I

866 W
2

cos
(100 V)(20 A)

2
cos(30 ) 1000 W)(0.866

 

m m

b. θ

θ

θ θ θ ( )

= = − °

= = − °

= − = − ° − − °

= − ° + ° = − ° = °

υ

υ

V

I

  150 V,   70

3 A,   50

70 50

70 50 20 20       

m

m i

i

and

θ ( )= = ° =

=

P
V I

211 43 W
2

 cos 
(150 V)(3 A)

2
 cos(20 ) 225 W)(0.9397

.  

m m

Power Factor

In the equation θ( )=P V I 2 cos ,m m  the factor that has significant con-
trol over the delivered power level is the cos  .θ  No matter how large the 
voltage or current, if cos  0,θ =  the power is zero; if cos  1,θ =  the 
power delivered is a maximum. Since it has such control, the expression 
was given the name power factor and is defined by

 θ= =FPower factor cosp  (14.19)

For a purely resistive load such as the one shown in Fig. 14.30, the phase 
angle between υ and i is 0° and θ= = ° =F cos cos 0 1.p  The power deli-
vered is a maximum of θ( ) ( )( )( )( )= =V I 2 cos 100 V 5 A 2 1 250 W.m m

For a purely reactive load (inductive or capacitive) such as the 
one shown in Fig. 14.31, the phase angle between υ and i is 90°  and 

θ= = ° =F cos cos 90 0.p  The power delivered is then the minimum 
value of zero watts, even though the current has the same peak value as 
that encountered in Fig. 14.30.

For situations where the load is a combination of resistive and reac-
tive elements, the power factor varies between 0 and 1. The more resis-
tive the total impedance, the closer is the power factor to 1; the more 
reactive the total impedance, the closer is the power factor to 0.

In terms of the average power and the terminal voltage and current,

 θ= =F P
V I

cos p
rms rms

 (14.20)

The terms leading and lagging are often written in conjunction 
with the power factor. They are defined by the current through 
the load. If the current leads the voltage across a load, the 
load has a leading power factor. If the current lags the voltage 
across the load, the load has a lagging power factor. In other 
words, capacitive networks have leading power factors, and 
inductive networks have lagging power factors.

The importance of the power factor to power distribution systems 
is examined in Chapter 20. In fact, an entire section is devoted to 
 power-factor correction.

Im = 5 A

R 20 V100 VEm

+

–

Fp = 1

Pmax = 250 W

FIG. 14.30 
Purely resistive load with =F 1.p

100 VEm

+

–

Fp = 0

P = 0 W

XL 20 V

Im = 5 A

FIG. 14.31 
Purely inductive load with =F 0.p
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 EXAMPLE 14.12 Determine the power factors of the following 
loads, and indicate whether they are leading or lagging:

a. Fig. 14.32
b. Fig. 14.33
c. Fig. 14.34

Solutions:

a. F 0 5 leadingcos cos cos 20 40 cos60 .  p iθ θ θ= = − = − ° − ° = ° =υ

b. F 0 64 laggingcos = cos 80 30 cos 50 .  p iθ θ= − ° − ° = ° =υ

c. θ= = = = =F P
V I

1cos 100 W
(20 V)(5 A)

100 W
100 Wp

eff eff

The load is resistive, and Fp  is neither leading nor lagging.

14.5 COMPLEX NUMBERS
In our analysis of dc networks, we found it necessary to determine the 
algebraic sum of voltages and currents. Since the same will also be true 
for ac networks, the question arises, How do we determine the alge-
braic (addition or subtraction) sum of two or more sinusoidal voltages 
(or currents) that are continually changing? Although one solution 
would be to find the algebraic sum on a point-to-point basis (as shown in 
Chapter 14), this would be a long and tedious process in which accuracy 
would be directly related to the scale used.

It is the purpose of this chapter to introduce a system of complex num-
bers that, when related to the sinusoidal ac waveform, results in a technique 
for finding the algebraic sum of sinusoidal waveforms that is quick, direct, 
and accurate. In the following chapters, the technique is extended to per-
mit the analysis of sinusoidal ac networks in a manner very similar to that 
applied to dc networks. The methods and theorems as described for dc net-
works can then be applied to sinusoidal ac networks with little difficulty.

A complex number represents a point in a two-dimensional plane 
located with reference to two distinct axes. This point can also determine 
a radius vector drawn from the origin to the point. The horizontal axis is 
called the real axis, while the vertical axis is called the imaginary axis. 
Both are labeled in Fig. 14.35. Every number from zero to ±∞ can be 
represented by some point along the real axis. Prior to the development of 
this system of complex numbers, it was believed that any number not on 
the real axis did not exist—hence the term imaginary for the vertical axis.

In the complex plane, the horizontal or real axis represents all 
positive numbers to the right of the imaginary axis and all negative 
numbers to the left of the imaginary axis. All positive imaginary  
numbers are represented above the real axis, and all negative imag-
inary numbers below the real axis. The symbol j (or sometimes i) is 
used to denote the imaginary component.

Two forms are used to represent a complex number: rectangular and 
polar. Each can represent a point in the plane or a radius vector drawn 
from the origin to that point.

14.6 RECTANGULAR FORM
The format for the rectangular form is

 C = +X jY  (14.21)

i = 2 sin(    + 40°)

Fp = ? Load

+

–

y = 50 sin(    – 20°)vt

vt

FIG. 14.32 
Example 14.12(a).

+

–
y

i

y  =  120 sin(   t  +  80°)
i  =  5 sin(   t  +  30°)v

v

FIG. 14.33 
Example 14.12(b).

LOAD

Ieff = 5 A

Fp = ? Veff = 20 V

P = 100 W

+

–

FIG. 14.34 
Example 14.12(c).

Imaginary axis ( j )

+

–

Real axis

–

+

FIG. 14.35 
Defining the real and imaginary axes of a 

complex plane.
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as shown in Fig. 14.36. The letter C was chosen from the word “com-
plex.” The boldface notation is for any number with magnitude and 
direction. The italic is for magnitude only.

EXAMPLE 14.13 Sketch the following complex numbers in the 
complex plane:

a. jC 3 4= + b. jC 0 6= − c. jC 10 20= − −

Solutions:

a. See Fig. 14.37.
b. See Fig. 14.38.
c. See Fig. 14.39.

C = X + jY

j

X

Y

–j

– +

FIG. 14.36 
Defining the rectangular form.

1 +– 0 2 3

1
2
3
4

–j

j
C = 3 + j4

+3

+4

FIG. 14.37 
Example 14.13(a).

–1 +–

–j

j

C = 0 – j6
–2
–3
–4
–5
–6

0

–6

FIG. 14.38 
Example 14.13(b).

+–

–j

j

C = –10 – j20

0

–20

–10

–20

–10

FIG. 14.39 
Example 14.13(c).

+–

–j

j

Z C

u

FIG. 14.40 
Defining the polar form.

+–

–j

j

– C

C

u

p

p

 FIG. 14.41 
Demonstrating the effect of a negative 

sign on the polar form.

14.7 POLAR FORM
The format for the polar form is

 θ= ∠ZC  (14.22)

with the letter Z chosen from the sequence X, Y, Z.
Z indicates magnitude only, and θ  is always measured counterclock-

wise (CCW) from the positive real axis, as shown in Fig. 14.40. Angles 
measured in the clockwise direction from the positive real axis must 
have a negative sign associated with them.

A negative sign in front of the polar form has the effect shown in 
Fig. 14.41. Note that it results in a complex number directly opposite the 
complex number with a positive sign.
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 θ θ− = − ∠ = ∠ ± °Z ZC 180  (14.23)

EXAMPLE 14.14 Sketch the following complex numbers in the 
complex plane:

a. = ∠ °C 5 30
b. = ∠− °C 7 120
c. = − ∠ °C 4.2 60

Solutions:

a. See Fig. 14.42.
b. See Fig. 14.43.
c. See Fig. 14.44.

+–

–j

j

C = 5 / 30°

+30°
5

FIG. 14.42 
Example 14.14(a).

+–

–j

j

7
–120°

C = 7/–120°

FIG. 14.43 
Example 14.14(b).

+–

–j

j

C = 4.2 / 240°

4.2

+240°

–120°

C = – 4.2 / 60° = 4.2 / 60° + 180°
= 4.2 / + 240°

FIG. 14.44 
Example 14.14(c).

14.8 CONVERSION BETWEEN FORMS
The two forms are related by the following equations, as illustrated in 
Fig. 14.45.

Rectangular to Polar

 = +Z X Y2 2  (14.24)

 θ = − Y
X

tan 1  (14.25)

Polar to Rectangular

 θ=X Z cos  (14.26)

 θ=Y Z sin  (14.27)

+–

–j

j

X

Y

C = Z /    = X + jY

Z

u

u

FIG. 14.45 
Conversion between forms.
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EXAMPLE 14.15 Convert the following from rectangular to polar 
form:

= + jC 3 4  (Fig. 14.46)

Solutions:

 Z 3 4 25 52 2( ) ( )= + = =

  tan 4
3

53.131θ ( )= = °−

and          = ∠ °C 5 53 13  .

EXAMPLE 14.16 Convert the following from polar to rectangular 
form:

= ∠ °C 10 45   (Fig. 14.47)

Solution:

X

Y

10 cos 45 10 0.707 7.07

10 sin 45 10 0.707 7.07

( )( )

( )( )

= ° = =
= ° = =

and         jC 7 07 7 07. .= +

If the complex number should appear in the second, third, or fourth 
quadrant, simply convert it in that quadrant, and carefully determine the 
proper angle to be associated with the magnitude of the vector.

EXAMPLE 14.17 Convert the following from rectangular to polar 
form:

= − + jC 6 3  (Fig. 14.48)

Solution:

        Z 6 3 45 6.712 2( ) ( )= − + = =

tan 3
6

26.571β ( )= = °−

            180 26.57 153.43θ = ° − ° = °

and          = ∠ °C 6 71 153 43. .

EXAMPLE 14.18 Convert the following from polar to rectangular 
form:

= ∠ °C 10 230   (Fig. 14.49)

Solution:

      

X Z

Y Z

cos 10 cos(230 180 ) 10 cos 50

10 0.6428 6.428

sin 10 sin 50 10 0.7660 7.66

β

β
( )

( )

( )

( )

= = ° − ° = °

= =
= = ° = =

and    = − − jC 6 43 7 66. .

+–

–j

j C = 3 + j4

Z

+3

+4

u

FIG. 14.46 
 Example 14.15.

+–

–j

j

C  =  10 / 45°

45°
10

FIG. 14.47 
Example 14.16.

–j

+

3
b

C  =  – 6  +  j3 j

–

u

Z

6

FIG. 14.48 
Example 14.17.

j

+

Y

u  =  230°

C  =  10 – 230°

–j

–

Z = 10

X

b

 FIG. 14.49 
Example 14.18.
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14.9 MATHEMATICAL OPERATIONS WITH 
COMPLEX NUMBERS
Complex numbers lend themselves readily to the basic mathematical 
operations of addition, subtraction, multiplication, and division. A few 
basic rules and definitions must be understood before considering these 
operations.

Let us first examine the symbol j associated with imaginary numbers. 
By definition,

 j 1= −  (14.28)

Thus,        = −j 12  (14.29)

and  j j j j j  13 2= = − = −

with  j j j  1 1 14 2 2 ( )( )= = − − = +

  j j  5 =

and so on. Further,

( )=






 =














 = =

−j j
j
j j

j
j

j1 1 1 1
12

and       = −
j

j1  (14.30)

Complex Conjugate

The conjugate or complex conjugate of a complex number can be 
found by simply changing the sign of the imaginary part in the rectan-
gular form or by using the negative of the angle of the polar form. For 
example, the conjugate of

= + jC 2 3

is            − j2 3

as shown in Fig. 14.50. The conjugate of

 C 2 30= ∠ °

is         ∠− °2 30

as shown in Fig. 14.51.

Reciprocal

The reciprocal of a complex number is 1 divided by the complex num-
ber. For example, the reciprocal of

X jYC = +

is           
X jY

1
+

and that of Z  θ∠  is

Z
1
θ∠

–j

j C = 2 + j3

2

3

–3

Complex conjugate of C
C = 2 – j3

+

FIG. 14.50 
Defining the complex conjugate of a 

complex number in rectangular form.

–j

j

C

Complex conjugate of C

+

308

–308

2

2

FIG. 14.51 
Defining the complex conjugate of a 

complex number in polar form.
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We are now prepared to consider the four basic operations of addi-
tion, subtraction, multiplication, and division with complex numbers.

Addition

To add two or more complex numbers, add the real and imaginary parts 
separately. For example, if

= ± ± = ± ±X jY X jYC Cand1 1 1 2 2 2

then       ( ) ( )+ = ± ± + ± ±X X j Y YC C1 2 1 2 1 2  (14.31)

There is really no need to memorize the equation. Simply set one above 
the other and consider the real and imaginary parts separately, as shown 
in Example 14.19.

EXAMPLE 14.19

a. Add = + jC 2 41    and   = + jC 3 1.2

b. Add = + jC 3 61    and   = − + jC  6 3.2

Solutions:

a. By Eq. (14.31),

( ) ( )+ = + + + = + jjC C 5 52 3 4 11 2

Note Fig. 14.52. An alternative method is

+

+

↓ ↓

+ j

j

j

5 5

2 4

3 1

   

b. By Eq. (14.31),

 jjC C 3 93 6 6 31 2 +( ) ( )+ = − + + = −

Note Fig. 14.53. An alternative method is

− +

− +

↓ ↓

− + j

j

j

3 9

3 6

6 3

     

Subtraction

In subtraction, the real and imaginary parts are again considered sepa-
rately. For example, if

= ± ± = ± ±X jY X jYC Cand1 1 1 2 2 2

then ( )[ ] ( )[ ]− = ± − ± + ± − ±X X j Y YC C1 2 1 2 1 2  (14.32)

–j

j

+

C1

C1 + C2

C2

6

4

2

0 2 4 6

FIG. 14.52 
Example 14.19(a).

–j

j

+

C1

C1 + C2

C2

6

4

0 2 4 6–2–4–6–8

8

10

2

FIG. 14.53 
Example 14.19(b).
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Again, there is no need to memorize the equation if the alternative 
method of Example 14.20 is used.

EXAMPLE 14.20

a. Subtract jC 1 42 = +  from jC 4 6.1 = +
b. Subtract jC 2 52 = − +  from jC 3 3.1 = + +

Solutions:

a. By Eq. (14.32),

jjC C 3 24 1 6 41 2 +( )( )− = − + − =

Note Fig. 14.54. An alternative method is

+

( )

+

− +

↓ ↓

j

j

j

3 2

   4 6

1 4

     

b. By Eq. (14.32),

jjC C 5 23 2 3 51 2 −( )( )[ ]− = − − + − =

Note Fig. 14.55. An alternative method is

−

( )

+

− − +

↓ ↓

j

j

j

5 2

3 3

2 5

 

Addition or subtraction cannot be performed in polar form 
unless the complex numbers have the same angle θ or 
unless they differ only by multiples of .180°

EXAMPLE 14.21

a. ∠ ° + ∠ ° = ∠ °2 45 3 45 5 45 . Note Fig. 14.56.

b.  ( )∠ ° − ∠ ° = ∠ ° − − ∠ ° = ∠ °2 0 4 180 2 0 4 0 6 0 . Note Fig. 14.57.

–j

j

+

C1

C1 – C2

C2

6

4

2

0
2 4 6–2–

–C2

FIG. 14.54 
Example 14.20(a).

–j

j

+

C1

C1 – C2

C2

6

4

2

0 2 4 6–2–
–2

–4

–6

–4

–C2

FIG. 14.55 
Example 14.20(b).

+–

–j

j

6

2

–4 / 180°

4 180°/

FIG. 14.57 
Example 14.21(b).

2

+–

–j

j

3 5

458

FIG. 14.56 
Example 14.21(a).
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Multiplication

To multiply two complex numbers in rectangular form, multiply the real 
and imaginary parts of one in turn by the real and imaginary parts of the 
other. For example, if

X jY X jYC Cand1 1 1 2 2 2= + = +

then   CC CC

( ) ( )

+
+

+

+ +

+ + + −

X jY

X jY

X X jY X

jX Y j Y Y

X X j Y X X Y Y Y

·

 

1

1 2: 1 1

2 2

1 2 1 2

1 2
2

1 2

1 2 1 2 1 2 1 2

and   ⋅ ( ) ( )= − + +X X Y Y j Y X X YC C1 2 1 2 1 2 1 2 1 2  (14.33)

In Example 14.22(b), we obtain a solution without resorting to mem-
orizing Eq. (14.33). Simply carry along the j factor when multiplying 
each part of one vector with the real and imaginary parts of the other.

EXAMPLE 14.22

a. Find C · C1 2 if

j jC C2 3 and 5 101 2= + = +

b. Find C · C1 2 if

j jC C2 3 and 4 61 2= − − = + −

Solutions:

a. Using the format above, we have

− +

( )[ ] ( )[ ]( ) ( )( ) ( ) ( )( )= − + +

= j

jC · C

20 35

  2 5 3 10 3 5 2 101 2

b. Without using the format, we obtain

( )

− −

+ −

− −

+ +

− + − + −

j

j

j

j j

j

2 3

4 6

8 12

12 18

8 12 12 18

2

and    C · C 26 26 1801 2 = − = ∠ °

In polar form, the magnitudes are multiplied and the angles added 
algebraically. For example, for

Z ZC Cand1 1 1 2 2 2θ θ= ∠ = ∠

we write      Z ZC · C    1 2 1 2 1 2∠θ θ= +  (14.34)
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EXAMPLE 14.23

a. Find C · C1 2  if

= ∠ ° = ∠ °C C5 20 and 10 301 2

b. Find C · C1 2  if

 = ∠− ° = ∠ + °C C2 40 and 7 1201 2

Solutions:

a. ∠ ∠( )( ) ( )( )= ∠ ° ∠ ° = ° + ° = °C · C 50 505 20 10 30 5 10 20 301 2

b. ∠
∠

( )( ) ( )( )= ∠− ° ∠+ ° = − ° + °

= °

C · C

14 80

  2 40 7 120 2 7 40 1201 2

To multiply a complex number in rectangular form by a real number 
requires that both the real part and the imaginary part be multiplied by 
the real number. For example,

+( )( ) + = jj 20 3010 2 3

and           ∠( )∠ ° + = = °j j 300 9050 0 0 6 300

Division

To divide two complex numbers in rectangular form, multiply the 
 numerator and denominator by the conjugate of the denominator and the 
resulting real and imaginary parts collected. That is, if

X jY X jYC Cand1 1 1 2 2 2= + = +

then          X jY X jY
X jY X jY

X X Y Y j X Y X Y
X Y

C
C

  1

2

1 1 2 2

2 2 2 2

1 2 1 2 2 1 1 2

2
2

2
2

( )( )

( )( )

( ) ( )

=
+ −
+ −

=
+ + −

+

and          X X Y Y
X Y

j
X Y X Y

X Y
C
C

 1

2

1 2 1 2

2
2

2
2

2 1 1 2

2
2

2
2

=
+
+

+
−
+

 (14.35)

The equation does not have to be memorized if the steps above used to 
obtain it are employed. That is, first multiply the numerator by the complex 
conjugate of the denominator and separate the real and imaginary terms. 
Then divide each term by the sum of each term of the denominator squared.

EXAMPLE 14.24

a. Find C C1 2  if jC 1 41 = +    and   jC 4 5.2 = +
b. Find C C1 2  if jC 4 81 = − −    and   jC 6 1.2 = + −

Solutions:

a. By Eq. (14.35),

j

j

j

C
C

0 59 0 27

  1 4 4 5
4 5

4 4 1 5
4 5

24
41

11

41
. .

1

2
2 2 2 2

+

( ) ( )( )( ) ( ) ( )( ) ( )
= +

+
+ −

+

= + ≅
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b. Using an alternative method, we obtain

− −

+ +

− −

− −

− − + = − −

+ −

+ +

+
− −

+ + =

j

j

j

j j

j j

j

j

j
j j

  4 8

  6 1

  24 48

  4 8

  24 52 8 16 52

  6 1

  6 1

  36 6
  6 1

  36 0 1 37

2

2

and              − −= − − = j
jC

C
0 43 1 4116

37
52

37
. .1

2

To divide a complex number in rectangular form by a real number, 
both the real part and the imaginary part must be divided by the real 
number. For example,

+
+

= j
j

4 5
8 10

2

and  
j

j 3 4 0
6.8 0

2
3.4 0 .

−
= − = ∠ °

In polar form, division is accomplished by dividing the magnitude of 
the numerator by the magnitude of the denominator and subtracting the 
angle of the denominator from that of the numerator. That is, for

Z ZC Cand1 1 1 2 2 2θ θ= ∠ = ∠

we write  ∠θ θ= −Z
Z

C
C

 1

2

1

2

1 2  (14.36)

EXAMPLE 14.25

a. Find C C1 2  if C 15  101 = ∠ °   and   C 2  7 .2 = ∠ °
b. Find C C1 2  if C 8  1201 = ∠ °   and   C 16  50 .2 = ∠ − °

Solutions:

a. C
C

7 5 3
15 10

2 7
15
2

  10 7 .1

2

=
∠ °
∠ °

= ∠ ° − ° = ∠ °

b. C
C

0 5 170
8 120

16 50
8

16
   120 50 .1

2

( )=
∠ °
∠− °

= ∠ ° − − ° = ∠ °

We obtain the reciprocal in the rectangular form by multiply-
ing the numerator and denominator by the complex conjugate of the 
denominator:

+
=

+








−
−







 = −

+X jY X jY
X jY
X jY

X jY
X Y

1 1
2 2
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and  +
=

+
−

+X jY
X

X Y
j Y

X Y
1

2 2 2 2  (14.37)

In polar form, the reciprocal is

 
Z Z

1 1
θ

θ
∠

= ∠−  (14.38)

A concluding example using the four basic operations follows.

EXAMPLE 14.26 Perform the following operations, leaving the 
answer in polar or rectangular form:

a. 

−

( )

( )

( )

( ) ( )

( )

( )( )

( )

( )[ ] ( )[ ]

( )

( ) ( )

( ) ( )( ) ( )( ) ( )

+ + +
+ − −

= + + +
− + +

=
+ −
+ −

= + + −
+

=
−

= j

j j
j j

j
j

j j
j j

j

j
0 98 0 21

 
2 3 4 6
7 7 3 3

2 4 3 6
7 3 7 3

 
6 9 4 10
4 10 4 10

 
6 4 9 10 4 9 6 10

4 10

 
114 24

116
. .

2 2

b. 
j

35.35 95

 
50 30 5 5

10 20
50 30 7.07 45

10 20
353.5 75
10 20

35.35 75 20∠ ∠ °

( )( ) ( )( )

( )

∠ ° +
∠− °

=
∠ ° ∠ °

∠− °
=

∠ °
∠− °

= ° − − ° =

c. 

∠ ∠

( )( ) ( )( )( )

( )( )

∠ ° +
−

= ∠ ° ∠ ° ∠ °
∠− °

= ∠ ° ∠ °
∠− °

= ∠ °
∠− °

= ° − − ° = °

j

j

2 0 130

 
2  20 3 4

8 6
2  20 2  20 5  53.13

10  36.87

 
4  40 5  53.13

10  36.87
20  93.13

10  36.87

  2  93.13 ( 36.87 ) .

2

d. 

j

j j

j

1 92 5 22

3 27 6 40 2.673 1.362 4.596 3.857

2.673 4.596 1.362 3.857

. .− +

( ) ( )
( ) ( )

∠ ° − ∠− ° = + − −

= − + +
=

14.10 CALCULATOR METHODS WITH 
COMPLEX NUMBERS
The process of converting from one form to another or working through 
lengthy operations with complex numbers can be time-consuming and 
often frustrating if one lost minus sign or decimal point invalidates the 
solution. Fortunately, technologists of today have calculators and com-
puter methods that make the process measurably easier with higher 
 degrees of reliability and accuracy.

 Calculators

The TI-89 calculator in Fig. 14.58 is only one of numerous calculators 
that can convert from one form to another and perform lengthy calcula-
tions with complex numbers in a concise, neat form. The basic operations 
with the TI-89 are included primarily to demonstrate the ease with which 
the conversions can be made and the format for more complex operations. (Don Johnson Photo)

FIG. 14.58 
TI-89 scientific calculator.
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There are different routes to perform the conversions and operations 
below, but these instructions give you one approach that is fairly direct 
and straightforward. Since most operations are in the DEGREE rather 
than RADIAN mode, the sequence in Fig. 14.59 shows how to set the 
DEGREE mode for the operations to follow. A similar sequence sets 
the RADIAN mode if required. The arrows show the direction to scroll.  
Be aware that it can be a short scroll or a fairly lengthy one. In most 
cases it is not a single step.

FIG. 14.59 
Setting the DEGREE mode on the TI-89 

calculator.

FIG. 14.60 
Converting 3 j5+  to the polar form using the TI-89 calculator.

FIG. 14.61 
Converting ∠ °5 53.1  to the rectangular form using the TI-89 

calculator.

Rectangular to Polar Conversion The sequence in Fig. 14.60 pro-
vides a detailed listing of the steps needed to convert from rectangular to 
polar form. In the examples to follow, the scrolling steps are not listed to 
simplify the sequence.

In the sequence in Fig. 14.60, an up scroll is chosen after Matrix 
because that is a more direct path to Vector ops. A down scroll gener-
ates the same result, but it requires going through the whole listing. The 
sequence seems quite long for such a simple conversion, but with prac-
tice you will be able to perform the scrolling steps quite rapidly. Always 
be sure the input data are entered correctly, such as including the i after 
the y component. Any incorrect entry will result in an error listing.

Polar to Rectangular Conversion The sequence in Fig. 14.61 is a 
detailed listing of the steps needed to convert from polar to rectangular 
form. Note in the format that the brackets must surround the polar form. 
Also, the degree sign must be included with the angle to perform the cal-
culation. The answer is displayed in the engineering notation selected.

Mathematical Operations Mathematical operations are performed 
in the natural order of operations, but you must remember to select the 
format for the solution. For instance, if the sequence in Fig. 14.62 did 
not include the polar designation, the answer would be in rectangular 
form even though both quantities in the calculation are in polar form. In 
the rest of the examples, the scrolling required to obtain mathematical 
functions is not included to minimize the length of the sequence.
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For the product of mixed complex numbers, the sequence of 
Fig. 14.63 results. Again, the polar form was selected for the solution.

FIG. 14.62 
Performing the operation 10 50 2 20 .( )( )∠ ° ∠ °

FIG. 14.63 
Performing the operation 5 53.1 2 j 2 .( )( )∠ ° +

FIG. 14.64 
Verifying the results of Example 14.26(c).

y

y1
a

b

0 t

y2

yT = y1 + y2c = a + b

FIG. 14.65 
Adding two sinusoidal waveforms on a point-by-point basis.

Finally, Example 14.26(c) is entered as shown by the sequence in 
Fig. 14.64. Note that the results exactly match those obtained earlier.

14.11 PHASORS
As noted earlier in this chapter, the addition of sinusoidal voltages and 
currents is frequently required in the analysis of ac circuits. One lengthy 
but valid method of performing this operation is to place both sinusoi-
dal waveforms on the same set of axes and add algebraically the magni-
tudes of each at every point along the abscissa, as shown for = +c a b in  
Fig. 14.65. This, however, can be a long and tedious process with limited 

accuracy. A shorter method uses the rotating radius vector first appearing in 
Fig. 13.16. This radius vector, having a constant magnitude (length) with one 
end fixed at the origin, is called a phasor when applied to electric ac circuits.
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Because of the importance of the discussion to follow and the benefits 
it will provide in your future analysis, it is strongly suggested that you 
return to Section 13.4 and carefully review how the rotating vector of fixed 
magnitude can generate a sinusoidal waveform at a frequency determined 
by the speed of rotation in Rad/Sec of the vector. If the two sinusoidal volt-
ages to be added are in phase, as shown in Fig. 14.66(a), the radius vectors 
representing each appear on the positive axis at zero degrees because the 
vertical projection of each at that instant is zero, as shown in Fig. 14.66(b). 
Note also that the length of each phasor representation is the same as the 
peak value in Fig. 14.66(a). It should be clear from Fig. 14.66(a) that when 
the sinusoidal voltages are in phase, the sum is simply the sum of the peak 
values of each as verified in Fig. 14.66(b). In general, therefore,

the addition (or subtraction) of two sinusoidal voltages 
of the same frequency and phase angle is simply the sum 
(or difference) of the peak values of each with the sum (or 
difference) having the same phase angle.

vt0 p
2

p 2p

y(V)

3
2 
p

2
3

5

3p5
2 
p

yT

y2

y1

(t = 0 s)

y1 =  2 sin   t
YT =  5 sin   t

y2 =  3 sin   t

0

V1 = 2 V/0° V2 = 3 V/0°

VT = 5 V/0°

j

5 V

3 V

2 V

(a) (b)

v
v

v

FIG. 14.66 
Finding the sum of two sinusoidal waveforms with the same frequency and phase angle.

If the waveforms do not have the same phase angle, a summation 
of waveforms can be performed as indicated in Fig. 14.65 or using the 
approach to be described in this section.

Consider the addition of the two sinusoidal voltages of Fig. 14.67(a) 
out of phase by 90 .°  The peak value of one is 2 V and the other is 4 V, as 
shown in Fig. 14.67(a) and in the phasor representation of Fig. 14.67(b). 
At t 0 s=  0θ( )= °  the rotating vector of one is passing through the 
horizontal axis at zero degrees while the other is at its peak value due to the 
90°  phase shift. If we add the two waveforms of Fig. 14.67(a) on a point-
to-point basis, the dashed blue sinusoidal waveform shown in the same 
figure would result. Note at t0 0 sθ ( )= ° =  that 4 VT 1υ υ= =  
since 0 V1υ =  and at 2θ π=  that 2VT 1υ υ= =  since 0 V.2υ =  
The peak value will turn out to be close to 4.1 V at a phase angle of 
about 76 .°  It is difficult when adding waveforms to obtain a high level 
of accuracy unless the graphs are quite large and very carefully drawn. 
Now, if we look at the phasor diagram and simply find the hypotenuse  
of the triangle formed by the two vectors, we find that the magnitude of the 
projection is also 4.12 V—wonderful. A solution has been found for finding 
the sum of two sinusoidal waveforms that are not in phase. Simply draw a 
snapshot of the rotating vectors at t0 0 sθ ( )= ° =  and find the sum of 
the two vectors. A closer examination of Fig. 14.67(b) also reveals that the 
phase angle associated with the resultant waveform leads the voltage by 
63.43 .°  In other words, using the phasor diagram we can calculate both 
the magnitude and phase angle of the sinusoidal waveform representing 
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the sum of the two waveforms. In addition, note the high level of accuracy 
obtained with a vector addition compared to the artistic approach.

If we now return to Fig. 14.67(b), the phasors representing each sinu-
soidal waveform can be written as

= ∠ ° = ∠ °V V2V 0 and 4 V 901 2

Their vector sum then becomes the following using the vector algebra 
introduced in the previous section. That is,

= + = ∠ ° + ∠ °
= +

= ∠ °

j

V V V  2V 0 4V 90

2V 4V

4.47 V 63.43

T 1 2

The result can then be written in the sinusoidal time domain format:

t4.47  sin 63.43Tυ ω( )= + °

If the sinusoidal voltages to be added have different peaks and phase 
angles, the required calculations are a bit more complex but not exten-
sively so. The next few examples will demonstrate the power of the con-
clusions just introduced.

Preforming the addition of the two phasors using the TI-89 calculator 
is shown below:

y(V)

≅ 63°

y1

y2

4V

2V

p 2p 3pp
2

y2 =  4 sin (  t

y1 =  2 sin  t

 + 90°)

YT ≅  4.5 sin (  t  + 63°)

(a)

2 V

63.43°

V2 = 4 V /90°

4 V

V1 = 2 V /0°

4.
47

 V

(b)

90°

≅ 4.5 V
= 4.47 V /63.43°VT

t  + 63.43°)YT ≅   4.47 sin (  v

j

v

v

v

FIG. 14.67 
Finding the sum of two sinusoidal waveforms that are out of phase.

Math

4.47E0      63.4E0

8

8

EXAMPLE 14.27 Find the sum of the following sinusoidal functions

i t5  sin 301 ω( )= + °

i t6  sin 602 ω( )= + °

a. Using a phasor approach
b. Using a graphical approach
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Solutions:

a. The two waveforms and the resultant sum appear in Fig. 14.68. It 
was obviously a tedious process to add the two waveforms with this 
approach. Take note that the position of each vector generating the 
waveforms shown is a snapshot of their position at t0 0 s .θ ( )= ° =  
The sum of the two waveforms is obviously a vector addition of the 
two waveforms as shown to the left of Fig. 14.68.

b. In phasor form:

ω

ω

( ) ( )

( )

( )

= + ° ⇒ ∠ °

= + ° ⇒ ∠ °

= +

= ∠ ° + ∠ °

= + + +
= +

= ∠ °

i t

i t

j j

j

I I I

  5  sin 30 5 A 30

  6  sin 60 6 A 60

 

  5 A 30 6 A 60

  4.33 A 2.5 A 3 A 5.2 A

  7.33 A 7.7 A

  10.63 A 46.41

T

1

2

1 2

and   ti 10 63 sin 46 41  .   ( . )  as obtained graphically.T ω + °=

6 A 5 A

ImT

0°
(t = 0 s)

i

5 A

6 A

10.63 A

(a) (b)

iT = i1 + i2 = 10.63 sin(vt + 46.41°)

i1 = 5 sin(vt + 30°)

vt

i2 = 6 sin(vt + 60°)

u1 = 30°

uT

u2 = 60°

u2 = 60°

u1 = 30°

uT = 46.41°

FIG. 14.68 
Example 14.27.

Since the rms, rather than the peak, values are used almost exclu-
sively in the analysis of ac circuits, the phasor will now be redefined for 
the purposes of practicality and uniformity as having a magnitude equal 
to the rms value of the sine wave it represents. The angle associated with 
the phasor will remain as previously described—the phase angle.

In general, for all of the analyses to follow, the phasor form of a sinu-
soidal voltage or current will be

θ θ= ∠ = ∠V IV Iand

where V and I are rms values and θ  is the phase angle. It should be 
pointed out that in phasor notation, the sine wave is always the refer-
ence, and the frequency is not represented.
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Phasor algebra for sinusoidal quantities is applicable only 
for waveforms having the same frequency.

The use of phasor notation in the analysis of ac networks was first 
introduced by Charles Proteus Steinmetz in 1897 (Fig. 14.69).

Bain News Service/George 
Grantham Bain Collection/Library 

of Congress

FIG. 14.69 
Charles Proteus Steinmetz.

Although the holder of some 200 patents and rec-
ognized worldwide for his contributions to the study 
of hysteresis losses and electrical transients, Charles 
Proteus Steinmetz is best recognized for his contri-
bution to the study of ac networks. His “Symbolic 
Method of Alternating-current Calculations” pro-
vided an approach to the analysis of ac networks that 
removed a great deal of the confusion and frustration 
experienced by engineers of that day as they made 
the transition from dc to ac systems. His approach 
(on which the phasor notation of this text is pre-
mised) permitted a direct analysis of ac systems 
using many of the theorems and methods of analy-
sis developed for dc systems. In 1897, he authored 
the epic work Theory and Calculation of Alternating 
Current Phenomena, which became the authorita-
tive guide for practicing engineers. Dr. Steinmetz 
was fondly referred to as “The Doctor” at General 
Electric Company where he worked for some 30 
years in a number of important capacities. His rec-
ognition as a multigifted genius is supported by the 
fact that he maintained active friendships with such 
individuals as Albert Einstein, Guglielmo Marconi, 
and Thomas A. Edison, to name just a few. He was 
President of the American Institute of Electrical 
Engineers (AIEE) and the National Association of 
Corporation Schools and actively supported his local 
community (Schenectady) as president of the Board 
of Education and the Commission on Parks and City 
Planning.

German-American (Breslau, Germany; Yonkers 
and Schenectady, NY, USA)

(1865–1923)
Mathematician, Scientist, Engineer, Inventor, 

Professor of Electrical Engineering and  
Electrophysics, Union College

Department Head, General Electric Co.

 EXAMPLE 14.28 Convert the following from the time to the phasor 
domain:

Time Domain Phasor Domain

a. t2 50 sin ω( ) 50 0∠ °

b. t69.6  sin 72ω( )+ ° ( )( ) ∠ ° = ∠ °49 21 720.707 69.6 72 .

c. t45 cos ω ( )( ) ∠ ° = ∠ °31 82 900.707 45 90 .

EXAMPLE 14.29 Write the sinusoidal expression for the following 
phasors if the frequency is 60 Hz:

Phasor Domain Time Domain

a. I 10 30= ∠ ° i t2 10  sin(2 60 30 )π( )= + °  
and ti 14 14 sin 377 30.   + °( )=

b. V 115 70= ∠− ° t2 115  sin(377 70 )υ ( )= − °  
and t162 6 sin 377 70.   ( )υ − °=

EXAMPLE 14.30 Find the input voltage of the circuit in Fig. 14.70 if

t

t
f

50 sin(377 30 )

30 sin(377 60 )
60 Hz

a

b

υ

υ

= + °

= + °








=

+

–

+

–

+ –

ein

ya

yb

FIG. 14.70 
Example 14.30.

Solution: Applying Kirchhoff’s voltage law, we have

e a bin υ υ= +

Converting from the time to the phasor domain yields

υ = + ° ⇒ = ∠ °t V  50 sin(377 30 ) 35.35 V 30a a

υ = + ° ⇒ = ∠ °t V  30 sin(377 60 ) 21.21 V 60b b

Converting from polar to rectangular form for addition yields

= ∠ ° = + jV  35.35 V 30 30.61 V 17.68 Va

= ∠ ° = + jV  21.21 V 60 10.61 V 18.37 Vb
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Then

j j

j

E V V  30.61 V 17.68 V 10.61 V 18.37 V

41.22 V 36.05 V
a bin ( ) ( )= + = + + +

= +

Converting from rectangular to polar form, we have

= + = ∠ °jE 41.22 V 36.05 V 54.76 V 41.17in

Converting form the phasor form to the time domain, we obtain

( )= ∠ ° ⇒ = + °eE 54.76 V  41.17 2 54.76 sin (377t   41.17 )in in

and  te 77 43 sin 377 41 17.   ( . )in += °

A plot of the three waveforms is shown in Fig. 14.71. Note that at 
each instant of time, the sum of the two waveforms does in fact add up 
to e .in  At t t0 0 ,ω( )= =  e in is the sum of the two positive values, 
while at a value of t,ω  almost midway between 2π  and ,π  the sum of 
the positive value of aυ  and the negative value of bυ  results in e 0.in =

ein  =  ya  +  yb

60°

41.17°

30°

30 50

77.43

ya

yb

0

– 2 2
3
2

2 p   vtpppp

FIG. 14.71 
Solution to Example 14.30.

iT  =  120  3  10–3 sin (vt  +  60°)

i1  =  80  3  10–3 sin vt

i2  =  ?

FIG. 14.72 
Example 14.31.

EXAMPLE 14.31 Determine the current i2 for the network in Fig. 14.72.
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Solution: Applying Kirchhoff’s current law, we obtain

i i i i i iorT T1 2 2 1= + = −

Converting from the time to the phasor domain yields

ω( )= × + ° ⇒ ∠ °−i t  120 10 sin 60 84.84 mA 60T
3 

ω= × ⇒ ∠ °−i t  80 10 sin  56.56 mA 01
3 

Converting from polar to rectangular form for subtraction yields

= ∠ ° = + jI  84.84 mA  60 42.42 mA 73.47 mAT

= ∠ ° = + jI  56.56 mA  0 56.56 mA 01

Then

j j

I I I 

42.42 mA 73.47 mA 56.56 mA 0
T2 1

( ) ( )

= −

= + − +

and      = − + jI 14.14 mA 73.47 mA2

Converting from rectangular to polar form, we have

= ∠ °I 74.82 mA 100.892

Converting from the phasor to the time domain, we have

= ∠ ° ⇒I 74.82 mA 100.892

and i t2(74.82 10 )sin( 100.89 )2
3 ω= × + °−

ω× +( )= °− ti 105 8 10 sin 100 89  . .3
2

A plot of the three waveforms appears in Fig. 14.73. The waveforms 
clearly indicate that i i i .T 1 2= +

i2

60°100.89°

0°

80
105.8

120
i1

iT

i (mA)
i2  =  iT  –  i1

– 2

2
3
2 2

pp
p

p

pp

FIG. 14.73 
Solution to Example 14.31.
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PROBLEMS

SECTION 14.1  Introduction

 1.    Plot the following waveform versus time showing one clear, 
complete cycle. Then determine the derivative of the wave-
form using Eq. (14.1), and sketch one complete cycle of the 
derivative directly under the original waveform. Compare 
the magnitude of the derivative at various points versus the 
slope of the original sinusoidal function.

 t4 sin 62.8υ =

 2.    Repeat Problem 1 for the following sinusoidal function, and 
compare results. In particular, determine the frequency of 
the waveforms of Problems 1 and 2, and compare the mag-
nitude of the derivative

t10 sin 377υ =

 3.    What is the derivative of each of the following sinusoidal 
expressions?
a. t10 sin 377 b. t20  sin 400 60( )+ °
c. t2 20 sin(157 20 )− ° d. t200  sin 180( )− + °

SECTION 14.2  Response of Basic R, L, and C 
Elements to a Sinusoidal Voltage or Current

 4.    The voltage across a 20Ω resistor is as indicated. Find the 
sinusoidal expression for the current. In addition, sketch the 
υ  and i sinusoidal waveforms on the same axis.
a. 160 sin 100t
b. t60  sin 2000 45( )+ °
c. t6  cos 10ω( )+ °
d. t12  sin 40ω( )− + °

 5.    The current through a 7.8 kΩ  resistor is as indicated. Find 
the sinusoidal expression for the voltage. In addition, sketch 
the υ  and i sinusoidal waveforms on the same axis.
a. 0.2 sin 500t
b. ( )× − °− t5 10 sin 600 1203

 6.  Determine the inductive reactance (in ohms) of a 3 mH coil 
for
a. dc
and for the following frequencies:
b. 60 Hz
c. 8 kHz
d. 1.4 MHz

 7.    Determine the closest standard value inductance that has a 
reactance of
a. =f2.5 kΩ at   12.47 kHz.
b. =f45 kΩ at   5.8 kHz.

 8.    Determine the frequency at which a 62 mH inductance has 
the following inductive reactances:
a. 40 Ω
b. 2 kΩ
c. 30 kΩ

 9.    The current through a 20 Ω  inductive reactance is given. 
What is the sinusoidal expression for the voltage? Sketch 
the υ  and i sinusoidal waveforms on the same axis.
a. i t25 10 sin 2003= × −

b. i t40 10 sin 603 ω( )= × + °−

c. i t6  sin 30ω( )= − − °

 10.    The current through a 0.15 H coil is given. What is the sinu-
soidal expression for the voltage?
a. 15 sin 150t
b. ( )× + °− t6 10   sin 400 206

 11.  The voltage across a 40 Ω  inductive reactance is given. 
What is the sinusoidal expression for the current? Sketch 
the υ  and i sinusoidal waveforms on the same set of axes.
a. t120 sin ω
b. t30  sin 20ω( )+ °

 12.  The voltage across a 0.25 H coil is given. What is the sinu-
soidal expression for the current?
a. 2.5 sin 90t
b.  ( )× + °− t16 10 sin 20 53

 13.  Determine the capacitive reactance (in ohms) of a µ0.4 F  
capacitor for
a. dc
and for the following frequencies:
b. 80 Hz
c. 2.5 kHz
d. 2.5 MHz

 14.  Determine the closest standard value capacitance that has a 
reactance of
a. =f75 Ω at  250 Hz.
b. 2.2 kΩ at 36 kHz.

 15.  Determine the frequency at which a 3.9 Fµ  capacitor has 
the following capacitive reactances:
a. 10 Ω b. 60 kΩ
c. 0.1 Ω d. 2000 Ω

 16.  The voltage across a 2.5 Ω  capacitive reactance is given. 
What is the sinusoidal expression for the current? Sketch 
the υ  and i sinusoidal waveforms on the same set of axes.
a. t120 sin ω
b. t4 10 sin 403 ω( )× + °−

 17.  The voltage across a 1 Fµ  capacitor is given. What is the 
sinusoidal expression for the current?
a. 30 sin 250t
b. × − t90 10 sin 3773

 18.  The current through a 2 kΩ  capacitive reactance is given. 
Write the sinusoidal expression for the voltage. Sketch the 
υ  and i sinusoidal waveforms on the same set of axes.
a. ω= × −i t50 10 sin 3

b. i t2 10   sin 606 ω( )= × + °−

 19.  The current through a µ0.50  F  capacitor is given. What is 
the sinusoidal expression for the voltage?
a. 0.20 sin 500t
b. ( )× − °− t5 10 sin 377 453

 *20.  For the following pairs of voltages and currents, indicate 
whether the element involved is a capacitor, an inductor, or 
a resistor, and find the value of C, L, or R if sufficient data 
are given:
a. t550  sin 377 50υ ( )= + °

i t11  sin 377 40( )= − °
b. t36  sin 754 80υ ( )= − °

i t4  sin 754 170( )= − °
c. t10.5  sin 13υ ω( )= − °

i t1.5  sin 13ω( )= − °
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a. What is the sinusoidal expression for the current?
b. Find the power loss in the circuit.
c. How long (in seconds) does it take the current to com-

plete six cycles?

 33.  In Fig. 14.75, ( )= + °e t240  sin 1500 45 .
a. Find the sinusoidal expression for i.
b. Find the average power loss by the inductor.

 *21.  Repeat Problem 20 for the following pairs of voltages and 
currents with 157  rad s.ω =
a. t2000 sin υ ω=

i t5 cos ω=
b. t80  sin 157 150υ ( )= + °

i t2  sin 157 60( )= + °
c. t35  sin 20υ ω( )= − °

i t7  cos 110ω( )= − °

SECTION 14.3  Frequency Response of the  
Basic Elements

 22. Plot X L  versus frequency for a 3 mH coil using a frequency 
range of zero to 100 kHz on a linear scale.

 23. Plot XC  versus frequency for a 1  Fµ  capacitor using a fre-
quency range of zero to 10 kHz on a linear scale.

  24. At what frequency will the reactance of a µ1.5  F  capacitor 
equal the resistance of a 2 kΩ  resistor?

 25.  The reactance of a coil equals the resistance of a 2 kΩ resistor 
at a frequency of 200 kHz. Determine the inductance of the coil.

 26.  Determine the frequency at which a µ2  F capacitor and an  
80 mH inductor will have the same reactance.

 27.  Determine the capacitance required to establish a capacitive 
reactance that will match that of a 2 mH coil at a frequency 
of 60 kHz.

SECTION 14.4  Average Power and Power Factor

 *28.  Find the average power loss and power factor for each of 
the circuits whose input current and voltage are as follows:
a. t60  sin 30υ ω( )= + °

i t15  sin 60ω( )= + °
b. t50  sin 20υ ω( )= − − °

i t2  sin 20ω( )= − − °
c. t50  sin 80υ ω( )= + °

i t3  cos 20ω( )= − °
d. t75  sin 5υ ω( )= − °

i t0.08  sin 35ω( )= + °

 29.  If the current through and voltage across an element are 
i t8  sin 40ω( )= + °  and υ ω( )= + °t56  sin 40 , respec-
tively, compute the power by θ( )I R V I,   2 cos  ,m m

2  and 
VI cos ,θ  and compare answers.

 30.  A circuit dissipates 150 W (average power) at 200 V (effec-
tive input voltage) and 2.5 A (effective input current). What 
is the power factor? Repeat if the power is 0 W; 500 W.

 *31.  The power factor of a circuit is 0.5 lagging. The power 
delivered in watts is 600. If the input voltage is ω +t60  sin(  

°20 ), find the sinusoidal expression for the input current.

   32.  In Fig. 14.74, e t120  sin 2 60 20 .π( )= + °

e

+

–

R = 6.8 kV

i

FIG. 14.74 
Problem 32.

i

e

+

–

 L = 3 mH 

FIG. 14.75 
Problem 33.

e

i

+

–

C = 900 pF

FIG. 14.76 
Problem 34.

e

is

+

–

e  =  120 sin (104t  +  60°)

C2 10 mFC1 2 mF

i1 i2

FIG. 14.77 
Problem 35.

 34. In Fig. 14.76, π( )= × − °−i t20 10 sin 2 600 30 .3

a. Find the sinusoidal expression for e.
b. Find the average power loss in the capacitor.

 *35.  For the network in Fig. 14.77 and the applied signal:
a. Determine the sinusoidal expressions for i1 and i .2

b. Find the sinusoidal expression for is  by combining the 
two parallel capacitors.

 *36.  For the network in Fig. 14.78 and the applied source:
a.  Determine the sinusoidal expression for the source volt-

age .sυ
b. Find the sinusoidal expression for the currents i1 and i .2
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SECTION 14.8  Conversion between Forms

   37.  Convert the following from rectangular to polar form:
a. + j4 6 b. + j3 3
c. + j5 15 d. + j500 50
e. − + j1000 2000 f. − + j0.2 0.4

 *38.  Convert the following from rectangular to polar form:
a. j8 16− −
b. j8 4+ −
c. j0.02 0.003−
d. j6 10 6 103 3− × − ×− −

e. j200 0.02+
f. j1000 20− +

   39.  Convert the following from polar to rectangular form:

a. ∠ °6 40 b. ∠ °12 120

c. ∠− °2000 90

   45.  Perform the following multiplications in polar form:
a. 2 60 4 40( )( )∠ ° ∠− °
b. 6.9 8 7.2 72( )( )∠ ° ∠− °
c. 0.002 120 0.5 200 40 80( )( )( )∠ ° ∠ ° ∠+ °

   46.  Perform the following divisions in polar form:
a. ( ) ( )∠ ° ∠ °42 10 7 60
b. ( ) ( )∠ ° ∠+ °0.006 120 30 60
c. 4360 20 40 210( ) ( )∠− ° ∠− °

   47.    Perform the following divisions, and leave the answer in 
rectangular form:
a. ( ) ( )+ +j j8 8 2 2
b. ( ) ( )+ − −j j8 42 6 4
c. ( ) ( )− − −j j4.5 6 0.1 0.8

 *48.  Perform the following operations, and express your answer 
in rectangular form:

a. ( ) ( )
( ) ( )

+ + −
+ − +

j j

j j

4 3 6 8

3 3 2 3

b. 
( ) ( )

∠ °
∠ ° + + j

8 60

2 0 100 400

c. 
( )( )( )∠ ° ∠− ° +

∠− °
j6 20 120 40 3 8

2 30
 *49.  Perform the following operations, and express your answer 

in polar form:

a. 
( ) ( )∠ ° ∠ °

+ j

0.4 60 300 40

3 9

2

b. 

( )∠ °
















 −







j j

1
0.02 10

2 1
6 9002

3

2

 *50.  a. Determine a solution for x and y if

( ) ( )+ + + − = < °x j x j y j5 3 6 16 0

b. Determine x if

( )( )< ° <− ° = −x j18 20 60 30.64 25.72

 *51.  a. Determine a solution for x and y if

( )( )+ − = −x j j y j5 10 2 90 70

b. Determine θ  if

θ
∠ °
∠

= − j
80 0
20

3.464 2

SECTION 14.11  Phasors

   52.  Express the following in phasor form:
a. ω( )( ) + °t2 180 sin 40
b. ( )( )× − °− t2 25 10 sin 157 603

c. ω( )− °t300  sin 120

 *53.  Express the following in phasor form:
a. ( )− °t30  sin 377 180
b. t6 10  cos 6 ω× −

c. ( )× − °− t5.6 10   cos 754 406

   54.  Express the following phasor currents and voltages as sine 
waves if the frequency is 60 Hz:
a. = ∠ °I 40 A  20
b. V 120 V  10= ∠ °
c. = × ∠ − °−I 8 10 A  1103

d. = ∠ − °V 6000
2

 V  180

ys

+

–

L2 120 mHL1

i1 i2

is 60 mH

is  =  80 sin (103t  +  30°)

FIG. 14.78 
Problem 36.

d. ∠+ °0.0064 200

e. ∠ °48 2 f. ∠× − °−5 10 204 

   40.  Convert the following from polar to rectangular form:
a. ∠ °42  0.15
b. ∠− °2002 60

c. ∠− °0.006  120

d. 8 10 2203∠× − °−

e. 15 180∠+ °

f. 1.2 89.9∠− °

SECTION 14.9  Mathematical Operations with 
Complex Numbers

   41.  Perform the following additions in rectangular form:
a. ( ) ( )+ + +j j4.2 6.8 7.6 0.2
b. ( ) ( ) ( )+ + + + +j j j142 7 9.8 42 0.1 0.9
c. ( ) ( )× + + × −− −j j4 10 76 7.2 10 56 7

   42.  Perform the following subtractions in rectangular form:
a. ( ) ( )+ − +j j8.8 6.2 5.6 5.6
b. ( ) ( )+ − − −j j197 243 42.3 58
c. ( ) ( ) ( )− + − − − + −j j j36.0 70 5 6 10.5 72

   43.  Perform the following operations with polar numbers, and 
leave the answer in polar form:
a. ∠ ° + ∠ °6 20 8 80
b. ∠ ° + ∠ ° − ∠ °42 45 62 60 70 120
c. ∠ ∠ ∠ ∠− ° − − ° + − ° + + °20  120 10  150 8  210 8  240

   44.  Perform the following multiplications in rectangular form:
a. ( )( )+ +j j2 3 6 8
b. ( )( )( )+ + +j j j7.8 1 4 2 7 6
c. ( )( )( )− − − − +j j j400 200 0.01 0.5 1 3
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 *58.  Find the sinusoidal expression for the current i1 for the sys-
tem in Fig. 14.82 if

i t

i t

i i

18 10 sin 377 180

8 10 sin 377 90

2

s
3

2
3

3 2

( )

( )

= × + °

= × + °
=

−

−

 55.  For the system in Fig. 14.79, find the sinusoidal expression 
for the unknown voltage aυ  if

e t60  sin 377 90in ( )= + °

t20  sin 377 45bυ ( )= − °

+

–

+ –ya

yb

+

–
ein

FIG. 14.79 
Problem 55.

is i1 i2

FIG. 14.80 
Problem 56.

 56.  For the system in Fig. 14.80, find the sinusoidal expression 
for the unknown current i1 if

10is t30 sin 806 ( )ω= × + °−

ω( )= × − °−i t4 10 sin 302
6

+

–

+ –ya

yb

+

–

ein

– +yc

FIG. 14.81 
Problem 57.

is i1 i3

i2

FIG. 14.82 
Problem 58.

 57.  Find the sinusoidal expression for the voltage aυ  for the  
system in Fig. 14.81 if

  e t  120  sin 30in ω( )= + °

  t  30  sin 60bυ ω( )= + °

  t  40  sin 90cυ ω( )= − °

GLOSSARY

Average or real power The power delivered to and dissipated 
by the load over a full cycle.

Complex conjugate A complex number defined by simply 
changing the sign of an imaginary component of a complex 
number in the rectangular form.

Complex number A number that represents a point in a two-  
dimensional plane located with reference to two distinct axes. 
It defines a vector drawn from the origin to that point.

Derivative The instantaneous rate of change of a function with 
respect to time or another variable.

Leading and lagging power factors An indication of whether a 
network is primarily capacitive or inductive in nature. Leading 
power factors are associated with capacitive networks and lag-
ging power factors with inductive networks.

Phasor A radius vector that has a constant magnitude at a fixed 
angle from the positive real axis and that represents a sinusoi-
dal voltage or current in the vector domain.

Phasor diagram A “snapshot” of the phasors that represent a 
number of sinusoidal waveforms at t 0.=

Polar form A method of defining a point in a complex plane that 
includes a single magnitude to represent the distance from the 
origin and an angle to reflect the counterclockwise distance 
from the positive real axis.

Power factor ( Fp ) An indication of how reactive or resistive an 
electrical system is. The higher the power factor, the greater is 
the resistive component.

Reactance The opposition of an inductor or a capacitor to the 
flow of charge that results in the continual exchange of energy 
between the circuit and magnetic field of an inductor or the 
electric field of a capacitor.

Reciprocal A format defined by 1 divided by the complex 
number.

Rectangular form A method of defining a point in a complex 
plane that includes the magnitude of the real component and 
the magnitude of the imaginary component, the latter compo-
nent being defined by an associated letter j.
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15  Series ac Circuits

15.1 INTRODUCTION
In this chapter, phasor algebra is used to develop a quick, direct method for solving series ac 
circuits. The close relationship that exists between this method for solving for unknown quan-
tities and the approach used for dc circuits will become apparent after a few simple examples 
are considered. Once this association is established, many of the rules such as the voltage 
divider rule for dc circuits can be readily applied to ac circuits.

A series circuit of any combination of elements, devices, or systems has the basic appear-
ance provided in Fig. 15.1(a). Each component is tied to its neighboring component by only 
one connection and the current is the same through each element whether it be resistors, 
capacitors, inductors, motors, generators, or complete packaged systems. All the rules for  
determining series elements for dc networks are applicable for ac networks also. The simplest of  
series ac networks with a resistor, inductor, and capacitor is provided as shown in Fig. 15.1(b). 
You will recall for resistive circuits that the total resistance was simply the sum of the resis-
tance values of the series elements. The question now is, How do we find the total opposition 
of a series network that has resistors, inductors, and capacitors? Certainly, we cannot simply 
add the resistance value of Fig. 15.1(b) to the inductance and capacitance values. Doing so 
would suggest that the applied frequency would have no impact on the total opposition of the 
circuit, but we know from Chapter 14 that the applied frequency has a very important impact 
on the behavior of an inductive or capacitive element. Since each component of Fig. 15.1(b) 

• Become familiar with the characteristics of a series 
ac circuit and be able to find current, voltage, and 
power levels for each element.

• Be able to find the total impedance of any series ac 
circuit and sketch the impedance diagram.

• Develop confidence in applying Kirchhoff’s voltage 
law to any series configuration.

•  Be able to apply the voltage divider rule to any 
series ac network.

• Become adept at finding the frequency response of 
a series combination of elements.

Objectives

(a)

+

–
e

i

(b)

+

–

R L C

e
i

FIG. 15.1 
(a) Series elements; (b) series R-L-C circuit.
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will react differently to an applied ac source, it is best that we examine 
each element in detail and then tie the three together. Since the resistor is 
the simplest to describe, it will be considered first.

15.2 RESISTIVE ELEMENTS
In Chapter 14, we found for a purely resistive element, as shown in 
Fig. 15.2, that υR and iR are in phase and the magnitude of the peak  
values was determined by Ohm’s law.

If we now write both the voltage and current in phasor form, we 
find that the phase angle associated with the voltage and current is zero  
degrees. That is,

υ ω= ⇒ = ∠ °VV t V  sin  0R m R R

Iω= ⇒ = ∠ °i I t I  sin  0R m R R

where VR and I R are the effective values in the phasor format.
If we apply phasor algebra as follows,

=I
V
RR

R

we find that the format is such that we need to assign an angle to the resistive 
component in order to apply phasor algebra. For the moment let us  assign the 
angle Rθ  to the resistive component so we end up with the following:

I ∠
θ

θ= =
∠ °

∠
= ° −V

R
V
R

V
R

0
  0

R
R R

R

R R

Now since we know the angle associated with the current must also 
be zero degrees, the angle Rθ  must be zero degrees. Now if we apply 
phasor algebra we obtain the following:

I = =
∠ °
∠ °

= ∠ °
V
R

V
R

V
R

  0
  0

  0R
R R R

so that in the time domain

i
V
R

t2  sin R
R ω( )=

which agrees with the development of Chapter 14.
For the future, therefore, whenever we encounter a resistor in the ac 

domain, we will assign an angle of zero degrees to form a complex num-
ber notation. The standard format will therefore be

 = ∠ °Z R 0R  (15.1)

with the boldface roman notation specifying that the quantity has both 
magnitude and angle. Called the impedance of the resistive element and 
measured in ohms, it is a measure of how much the element will “im-
pede” the flow of charge through the circuit.

The above format will prove to be a useful “tool” when the networks 
become more complex and phase relationships become less obvious.

It is important to realize, however, that Z R is not a phasor,  
even though the format ∠R 0° is very similar to the phasor 
notation for sinusoidal currents and voltages. The term  
phasor is reserved for quantities that vary with time, and R and 
its associated angle of 0° are fixed, nonvarying quantities.

R vR = Vm sin vt

+

–

iR = Im sin vt

FIG. 15.2 
Resistive ac circuit.
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EXAMPLE 15.1 Using complex algebra,

a. Find the current iR for the circuit in Fig. 15.3.
b. Sketch the waveforms of iR and υ .R

Solution:

a. 

ω

υ ω

θ

ω( )

= ⇒ = ∠ °

= =
∠

∠ °
=

∠ °
∠ °

= ∠ °

= = t

t

V

R

i t

V

I
V
Z

20

  100 sin  phasor form  70.71 V 0

 
 

0

70.71 V 0

5 Ω  0
14.14 A 0

and   2 14.14  sin   sin 

R R

R
R

R

R

R

b. Note Fig. 15.4.

EXAMPLE 15.2 Using complex algebra,

a. Find the voltage Rυ  for the circuit in Fig. 15.5.
b. Sketch the waveforms of Rυ  and i .R

Solution:

a.          ω( )= + ° ⇒ = ∠ °i t I  4 sin 30 phasor form  2.828 A 30R R

θ ( ) ( )( )= = ∠ ∠ ° = ∠ ° ∠ °I RV I Z ( ) 0 2.828 A 30 2 Ω 0R R R

= ∠ °5.656 V 30

and t 8 0 sin 30  2 5.656 sin 30 .   ( )R tωυ ω( )( )= + ° = + °
b. Note Fig. 15.6.

5 V   = 100 sin vt

+

–

i

υR

FIG. 15.3 
Example 15.1.

100 V

0

20 A

2

2
3

2
vt

vR

iR
p

p
p

p

FIG. 15.4 
Waveforms for Example 15.1.

+

–
2 V

  = 4 sin(vt + 308)iR

vR

FIG. 15.5 
Example 15.2.

8 V

0

4 A

308
2

2
3

2

Rv

iR

ppp

p

vt

FIG. 15.6 
Waveforms for Example 15.2.

It is often helpful in the analysis of networks to have a phasor 
 diagram, which shows at a glance the magnitudes and phase relations 
among the various quantities within the network. For example, the pha-
sor diagrams of the circuits considered in the two preceding examples 
would be as shown in Fig. 15.7. In both cases, it is immediately obvious 
that Rυ  and iR are in phase since they both have the same phase angle.

15.3 INDUCTIVE ELEMENTS
We learned in Chapter 14 that for the pure inductor in Fig. 15.8, the 
voltage leads the current by 90° and that the reactance of the coil XL is 
determined by L.ω  We have

υ ω= ⇒ = ∠ °V t VVsin phasor form  0L m  

(a)

+

j

14.14 A

I V

(b)

+

j

I

V
5.565 V

2.828 A

308

R R

R

R

70.71 V 

FIG. 15.7 
Phasor diagrams for (a) Example 15.1 and  

(b) Example 15.2.
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Applying Ohm’s law and following a similar path to that applied to the 
resistive element, we find that

I ∠
θ

θ= =
∠ °
∠

= ° −V

X
V
X

V
X

0 0
L

L

L

L

L L

L

L

L

where VL and I L are the effective values in the phasor format.
Since Lυ  leads iL by 90 ,° iL must have an angle of 90− ° associated with it. To  
satisfy this condition, θL must equal 90 .+ °  Substituting θ = °90 ,L  we obtain

∠=
∠ °
∠ °

= ° − ° = ∠− °0
V

X
V
X

V
X

I
0
90

90 90L
L

L

L

L

L

L

so that in the time domain,

i
V
X

t2  sin 90L
L

L

ω( )=






 − °

We use the fact that 90Lθ = °  in the following polar format for  
inductive reactance to ensure the proper phase relationship between the 
voltage and current of an inductor:

 = ∠ °XZ 90L L  (15.2)

The boldface roman quantity Z ,L  having both magnitude and an  
associated angle, is referred to as the impedance of an inductive element. 
It is measured in ohms and is a measure of how much the inductive  
element “controls or impedes” the level of current through the network 
(always keep in mind that inductive elements are storage devices and do 
not dissipate power and energy like resistors). The format, of Eq. (15.2) 
like that defined for the resistive element, will prove to be a useful tool in 
the analysis of ac networks. Again, keep in mind that Z L is not a phasor 
quantity, for the same reasons indicated for a resistive element.

EXAMPLE 15.3 Using complex algebra,

a. Find the current iL  for the circuit in Fig. 15.9.
b. Sketch the Lυ  and iL  curves.

Solution:

a.   t V  24 sin  phasor form  16.968 V 0L Lυ ω= ⇒ = ∠ °
θ

= =
∠

∠ °
=

∠ °
∠ °

= ∠− °
V

X
I

V
Z 90

16.968 V 0

3 Ω  90
5.656 A  90L

L

L

L

L

and  ωω( )( )= − ° = − °ti t 8 0 sin 90  2 5.656 sin 90 .   ( )L

b. Note Fig. 15.10.

EXAMPLE 15.4 Using complex algebra,

a. Find the voltage Lυ  for the circuit in Fig. 15.11.
b. Sketch the Lυ  and iL  curves.

Solution:

a. i t I  5 sin 30 phasor form  3.535 A 30L Lω( )= + ° ⇒ = ∠ °

θ( )( ) ( )( )= = ∠ ∠ ° = ∠ ° ∠+ °I XV I Z  90 3.535 A 30 4 Ω 90L L L L L

= ∠ °14.140 V 120

and ωυ ω( )( )= + ° = + °tt 20 sin 120  2 14.140 sin 120   ( )L

b. Note Fig. 15.12.

XL  = vL   = Vm sin vt

+

–

Li

vL

FIG. 15.8 
Inductive ac circuit.

XL  =  3 V

Li
+

–
vL  =  24 sin vt

FIG. 15.9 
Example 15.3.

908

24 V

8 A

0
2 2

3
2
52

Li

vL

p p p p p vt

FIG. 15.10 
Waveforms for Example 15.3.

+

–

 =  5 sin(vt +  308)

XL  =  4 V

iL

vL

FIG. 15.11 
Example 15.4.

20 V

908

308

5 A

0
2

–
2

3
2

2

iL

L

pp p
pp vt

FIG. 15.12 
Waveforms for Example 15.4.
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The phasor diagrams for the two circuits of the two preceding exam-
ples are shown in Fig. 15.13. Both indicate quite clearly that the voltage 
leads the current by 90 .°

+

j

I

5.656 A

16.968 A

Leading

VL +

j

I

V

3.535 A
14.140 V

308

Leading

L

L

L

FIG. 15.13 
Phasor diagrams for (a) Example 15.3 and (b) Example 15.4.

15.4 CAPACITIVE ELEMENTS
We learned in Chapter 14 that for the pure capacitor in Fig. 15.14, the 
current leads the voltage by 90° and that the reactance of the capacitor 
XC  is determined by C1 .ω  We have

υ ω= ⇒ = ∠ °V t VVsin phasor form  0C m C C

Applying Ohm’s law and continuing as before, we find

∠
θ

θ= =
∠ °
∠

= ° −V
X

V
X

I
V
X

0
  0

C
C

C

C

C C

C

C

C

 

where VC  and IC  are effective values in the phasor notation.
Since iC  leads Cυ  by i90 ,   C°  must have an angle of 90+ ° associated 
with it. To satisfy this condition, Cθ  must equal 90 .− °  Substituting 

90Cθ = − ° yields

∠= =
∠ °

∠− °
= ° − − ° = ∠ °0V

X
V
X

V
X

I
V
X

0
90

( 90 ) 90C
C

C

C

C

C

C

C

C

 

so, in the time domain,

i
V
X

t2  sin ( 90 )C
C

C

ω=






 + °

We use the fact that 90Cθ = − ° in the following polar format for 
capacitive reactance to ensure the proper phase relationship between the 
voltage and current of a capacitor:

 XZ 90C C= ∠− °  (15.3)

The boldface roman quantity Z ,C  having both magnitude and an  
associated angle, is referred to as the impedance of a capacitive element. 
It is measured in ohms and is a measure of how much the capacitive 
element “controls or impedes” the level of current through the network 
(always keep in mind that capacitive elements are storage devices and do 
not dissipate like resistors). The format, of Eq. 15.3, like that defined for 
the resistive and inductive elements, will prove a very useful tool in the 
analysis of ac networks. Again, be aware that ZC  is not a phasor quan-
tity, for the same reasons indicated for a resistive element.

  = Vm sin vt

+

–

i

XC  =  1/vC vC

C

FIG. 15.14 
Capacitive ac circuit.
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EXAMPLE 15.5 Using complex algebra,

a. Find the current iC  for the circuit in Fig. 15.15.
b. Sketch the υC and iC  curves.

Solution:

a.  υ ω= ⇒ = ∠ °t V15 sin  phasor notation  10.605 V 0C

θ
= =

∠
∠− °

=
∠ °

∠− °
= ∠ °

V
X

I
V
Z 90

10.605 V 0
2 Ω  90

5.303 A 90C
C

C

C

C

 

 

and ti t 7 5 sin 90  2 5.303  sin 90 .   ( )C ωω °( )( )= + ° = +

b. Note Fig. 15.16.

  = 15 sin vt

+

–
XC  =  2 V

iiC

vC

 FIG. 15.15 
Example 15.5.

15 V

0

7.5 A

2
3 2

908
2

–
2

vC

iC

p p p p p vt

FIG. 15.16 
Waveforms for Example 15.5.

+

–
XC  =  0.5 V

   =  6 sin (vt  –  608)iC

v C

FIG. 15.17 
Example 15.6.

3 V

0

6 A

908

608

35
2

2
2

3
2

iC

vC

vtppp ppp

FIG. 15.18 
Waveforms for Example 15.6.

EXAMPLE 15.6 Using complex algebra,

a. Find the voltage Cυ  for the circuit in Fig. 15.17.
b. Sketch the Cυ  and iC  curves.

Solution:

a. i t  6 sin( 60 ) phasor notation  4.242 A 60C Cω= − ° ⇒ = ∠− °I

θ( )( ) ( )

( )

= = ∠ ∠− ° = ∠− °

∠− °

I XV I  90 4.242 A 60

0.5 Ω  90
C C C C CZ

2.121 V 150= ∠− °

and tt 3 0 sin ( 150 )2 2.121  sin ( 150 )    C . ωυ ω °( )= − ° = −

b. Note Fig. 15.18.
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The phasor diagrams for the two circuits of the two preceding exam-
ples are shown in Fig. 15.19. Both indicate quite clearly that the current 
i leads the voltage υ by 90 .°

+ 908

j

– 908

XL /908

XC /908

R /08 +

FIG. 15.20 
Impedance diagram.

(a)

+

j

10.605 V

Leading
5.303 A

IC

VC

(b)

+

j

Leading

6082.121 V

4.242 A
VC

IC

FIG. 15.19 
Phasor diagrams for (a) Example 15.5 and (b) Example 15.6.

15.5 IMPEDANCE DIAGRAM
Now that an angle is associated with resistance, inductive reactance, and 
capacitive reactance, each can be placed on a complex plane diagram, as 
shown in Fig. 15.20. For any network, the resistance will always appear 
on the positive real axis, the inductive reactance on the positive imagi-
nary axis, and the capacitive reactance on the negative imaginary axis. 
The result is an impedance diagram that can reflect the individual and 
total impedance levels of an ac network.

We will find in the rest of this text that networks combining different 
types of elements will have total impedances that extend from 90− °  to 

90 ,+ °  including the vertical axis and the region to the right of the vertical 
axis as shown by the shaded region in Fig. 15.20. If the total impedance 
has an angle of 0 ,°  it is said to be resistive in nature. If it is closer to 90 ,°  
it is inductive in nature. If it is closer to 90 ,− °  it is capacitive in nature.

Of course, for single-element networks, the angle associated with the 
impedance will be the same as that of the resistive or reactive element, as 
revealed by Eqs. (15.1) through (15.3). It is important to remember that 
impedance, like resistance or reactance, is not a phasor quantity repre-
senting a time-varying function with a particular phase shift. It is simply 
an operating tool that is extremely useful in determining the magnitude 
and angle of quantities in a sinusoidal ac network.

Once the total impedance of a network is determined, its magnitude 
will define the resulting current level (through Ohm’s law), whereas its 
angle will reveal whether the network is primarily inductive or capaci-
tive or simply resistive.

For any configuration (series, parallel, series-parallel, and so 
on), the angle associated with the total impedance is the 
phase angle by which the applied voltage leads the source 
current. For inductive networks, Tθ  will be positive, whereas 
for capacitive networks, Tθ  will be negative.

EXAMPLE 15.7 Sketch the impedance diagram for a 22 ohm resistor.

Solution: Note Fig. 15.21.

R = 22 V /08
+ 22 V 

+j

_

FIG. 15.21 
The impedance diagram for a  Ω22  resistor.

M15_BOYL0302_14_GE_C15.indd   647M15_BOYL0302_14_GE_C15.indd   647 28/02/23   1:34 PM28/02/23   1:34 PM



648 | | | SERIES ac CIRCUITS
a c

EXAMPLE 15.8 Sketch the impedance diagram of a 1.2 kΩ induc-
tive reactance and 2 kΩ capacitive reactance.

Solution: Note Fig. 15.22.

+

+j

_

2 kV 

0

1.2 kV 

XC = 2 kV /–908

XL = 1.2 kV /+908

FIG. 15.22 
The impedance diagram for a   Ω1.2 k  inductive reactance and a 

  Ω2 k  capacitive reactance.

ZT

ZNZ3Z2Z1

I I I

I

I

FIG. 15.23 
Series impedances.

R  =  4 V XL  =  8 V

ZT

FIG. 15.24 
Example 15.9.

XL  =  8 V

j

Z T

+R  =  4 V

uT

FIG. 15.25 
Impedance diagram for Example 15.9.

It is important to be aware that if the total impedance of a 
network has a positive angle associated with it, the network 
is inductive in nature and has a lagging power factor and the 
applied voltage will lead the current drawn by the network. 
If the total impedance of a network has a negative angle 
associated with it, the network is capacitive in nature and 
has a leading power factor and the applied voltage will lag 
the current drawn by the network.

15.6 SERIES CONFIGURATION
The overall properties of series ac circuits (Fig. 15.23) are the same as 
those for dc circuits. For instance, the total impedance of a system is the 
sum of the individual impedances and the current I is the same through 
each impedance.

 = + + + +Z Z Z Z Z. . .  T N1 2 3  (15.4)

 EXAMPLE 15.9 Draw the impedance diagram for the circuit in 
Fig. 15.24, and find the total impedance.

Solution: As indicated by Fig. 15.25, the input impedance can be 
found graphically from the impedance diagram by properly scaling the 
real and imaginary axes and finding the length of the resultant vector ZT  
and angle Tθ . Or, by using vector algebra, we obtain
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∠ °

= +

= ∠ ° + ∠ °

= + = +

=

R X

R jX j

Z Z Z

Z 8 94 Ω 63 43

0 90

4 Ω 8 Ω

  .     .

T

L

L

T

1 2

EXAMPLE 15.10 Determine the input impedance to the series net-
work in Fig. 15.26. Draw the impedance diagram.

Solution:

∠

( ) ( )

= + +

= ∠ ° + ∠ ° + ∠− °

= + −

= + − = + − = −

= − °

R X X

R jX jX

R j X X j j

Z Z Z Z

Z 6 32 Ω 18 43

 

0 90 90

6 Ω 10 Ω 12 Ω 6 Ω 2 Ω

  .     .

T

L C

L C

L C

T

1 2 3

The impedance diagram appears in Fig. 15.27. Note that in this exam-
ple, series inductive and capacitive reactances are in direct opposition. 
For the circuit in Fig. 15.26, if the inductive reactance were equal to the 
capacitive reactance, the input impedance would be purely resistive. We 
will have more to say about this particular condition in a later chapter.

For the representative series ac configuration in Fig. 15.28 having 
two impedances, the current is the same through each element (as it was 
for the series dc circuits) and is determined by Ohm’s law:

Z Z ZT 1 2= +

and        I E
ZT

=  (15.5)

The voltage across each element can then be found by another applica-
tion of Ohm’s law:

      V IZ1 1=  (15.6a)

      V IZ2 2=  (15.6b)

Kirchhoff’s voltage law can then be applied in the same manner as it 
is employed for dc circuits. However, keep in mind that we are now deal-
ing with the algebraic manipulation of quantities that have both magni-
tude and direction. We have

E V V 01 2− − =

or    E V V1 2= +  (15.7)

The power to the circuit can be determined by

       P EI  cos  Tθ=   (15.8)

where Tθ  is the phase angle between E and I.
Now that a general approach has been introduced, the simplest of 

series configurations will be investigated in detail to further emphasize 
the similarities in the analysis of dc circuits. In many of the circuits to be 

ZT

Z1

R  =  6 V

Z2

XL  =  10 V

Z3

XC  =  12 V

FIG. 15.26
Example 15.10.

+
u

j

T
XC – XL = 2 V

XC = 12 V

R = 6 V

XL = 10 V

ZT

FIG. 15.27 
Impedance diagram for Example 15.10.

I

E

+

ZT–

Z1

V1 –+

Z2

+

V2

–

FIG. 15.28 
Series ac circuit.
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considered, + = ∠ °j3 4 5 53.13  and + = ∠ °j4 3 5 36.87  are used 
quite frequently to ensure that the approach is as clear as possible and 
not lost in mathematical complexity. Of course, the problems at the end 
of the chapter will provide plenty of experience with random values.

R-L
Refer to Fig. 15.29.

Phasor Notation

ω= ⇒ = ∠ °e t E141.4 sin  100 V 0

Note Fig. 15.30.

TZ :

= + = ∠ ° + ∠ ° = + jZ Z Z  3 Ω 0 4 Ω 90 3 Ω    4 ΩT 1 2

and   ∠= °ΩZ 5 53 13    .T

Impedance diagram: See Fig. 15.31.

I:

∠−= =
∠ °

∠ °
= °I E

Z
20 A 53 13

100 V 0
5 Ω 53.13

  .
T

VR , V :L  
Ohm’s law:

∠−

( )

( )

( )

( )

= = ∠− ° ∠ °

= °

= = ∠− ° ∠ °

= ∠ °

V IZ

60 V 53 13

V IZ

80 V 36 87

  20 A 53.13 3 Ω  0

  .

  20 A 53.13 4 Ω  90

  .

R R

L L

Kirchhoff’s voltage law:

V E V V 0R LUΣ = − − =

or          E V V  R L= +

In rectangular form,

jV 60 V 53.13 36 V 48 VR = ∠− ° = −

jV 80 V 36.87 64 V 48 VL = ∠+ ° = +
and

R  =  3 V XL  =  4 V

vL –+vR –+

–

+

e =  141.4 sin vt i

FIG. 15.29 
Series R-L circuit.

+

–

I

R = 3 V XL = 4 V

VR+ – VL+ –

E =  100 V /08

ZT

FIG. 15.30 
Applying phasor notation to the network in 

Fig. 15.29.

+

j

R = 3 

u

V

XL = 4 V

Z 
= 

5 
V

T
= 53.138

FIG. 15.31 
Impedance diagram for the series R-L  

circuit in Fig. 15.29.

+

j

80 V

60 V

VR

I
53.138 E

VL

36.878
100 V

FIG. 15.32 
Phasor diagram for the series R-L circuit  

in Fig. 15.29.

( ) ( )= + = − + + = +

= ∠ °

j j jE V V 36 V 48 V 64 V 48 V 100 V 0

100 V 0
R L

as applied.
 Phasor diagram: Note that for the phasor diagram in Fig. 15.32, I is 

in phase with the voltage across the resistor and lags the voltage across 
the inductor by 90 .°

Power: The total power in watts delivered to the circuit is

θ=

= ° =
=

P EI

1200 W

   cos

(100 V)(20 A)  cos  53.13 (2000 W)(0.6)

 

T T
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where E and I are effective values and Tθ  is the phase angle between E 
and I, or

=

= =
=

P I R

1200 W

 

(20 A) (3 Ω) (400)(3)

 

T
2

2

where I is the effective value, or, finally,

P P P V I V I

1200 W

   cos   cos

(60 V)(20 A) cos  0 (80 V)(20 A) cos 90

1200 W 0

 

T R L R R L Lθ θ= + = +

= ° + °

= +

=
where Rθ  is the phase angle between VR  and I, and Lθ  is the phase angle 
between VL  and I.

Power factor: The power factor Fp  of the circuit is 0 6cos  53.13 .° =  
lagging, where 53.13° is the phase angle between E and I.

If we write the basic power equation P EI  cos θ=  as

P
EI

cos θ =

where E and I are the input quantities and P is the power delivered to 
the network, and then perform the following substitutions from the basic 
series ac circuit as

P
EI

I R
EI

IR
E

R
E I

R
Z

cos
T

2
θ = = = = =

we find  F R
Z

cosp T
T

θ= =  (15.9)

Reference to Fig. 15.31 also indicates that θ  is the impedance angle 

Tθ  as written in Eq. (15.9), further supporting the fact that the imped-
ance angle Tθ  is also the phase angle between the input voltage and cur-
rent for a series ac circuit. To determine the power factor, it is necessary 
only to form the ratio of the total resistance to the magnitude of the input 
impedance. For the case at hand,

F R
Z

0 6 laggingcos  3 Ω
5 Ω

.  p
T

θ= = = =

as found above.

R-C
Refer to Fig. 15.33.

Phasor Notation

ω= + ° ⇒ = ∠ °i t I7.07 sin ( 53.13 ) 5 A 53.13

Note Fig. 15.34.

TZ

= + = ∠ ° + ∠− ° = − jZ Z Z 6 Ω 0 8 Ω 90 6 Ω 8 ΩT 1 2

and    ∠−= °Z 10 Ω 53 13  .T

Impedance diagram: As shown in Fig. 15.35.

R  =  6 V XC  =  8 V

vC –+vR –+

i =  7.07 sin(vt +  53.138)

FIG. 15.33 
Series R-C ac circuit.

R = 6 V

VR+ –

XC = 8 V

VC+ –I = 5 /53.138
+

–

ZT

I E

FIG. 15.34 
Applying phasor notation to the circuit 

in Fig. 15.33.

+

j

T = 53.138

R = 6 V

Z
T =

10
VXC = 8 V

u

FIG. 15.35 
Impedance diagram for the series 

R-C circuit in Fig. 15.33.
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E:
= = ∠ ° ∠− ° = ∠ °E IZ 50 V 0(5 A 53.13 )(10 Ω 53.13 )  T

VR , CV :

θ

θ

∠ °

∠−

= = ∠ ∠ ° = ∠ ° ∠ °

=

= = ∠ ∠− ° = ∠ ° ∠− °

= °

I R

I X

V IZ

30 V 53 13

V IZ

40 V 36 87

  ( )( 0 ) (5 A 53.13 )(6 Ω 0 )

  .

  ( )( 90 ) (5 A 53.13 )(8 Ω 90 )

  .

R R

C C C

Kirchhoff’s voltage law:

UV E V V 0R CΣ = − − =

or                  E V VR C= +
which can be verified by vector algebra as demonstrated for the R-L 
circuit.

Phasor diagram: Note on the phasor diagram in Fig. 15.36 that the 
current I is in phase with the voltage across the resistor and leads the 
voltage across the capacitor by 90°.

Time domain: In the time domain,

t

t

t

e t

t

t

70 70 sin

42 42 sin 53 13

56 56 sin 36 87

  2(50) sin  .    

  2(30) sin ( 53.13 ) .    ( . )

  2(40) sin  36.87 .    ( . )

R

C

ω

ω

ω

ω

υ ω

υ ω

+

−( )

= =

= + ° = °

= − ° = °

A plot of all of the voltages and the current of the circuit appears in 
Fig. 15.37. Note again that i and Rυ  are in phase and that Cυ  lags i by 90 .°

+

30
 V

VR

E

VC

53.138
36.878

I 50 V

j

40 V

FIG. 15.36 
Phasor diagram for the series R-C 

circuit in Fig. 15.33.

70.70 V

56.56 V

42.42 V
vR

e

vC

36.878

908

i
0

2
–

2
3

2

2pp

ppp
vt

FIG. 15.37 
Waveforms for the series R-C circuit in Fig. 15.33.

Power: The total power in watts delivered to the circuit is

θ= = °

= =

P EI

150 W

   cos (50 V)(5A)cos  53.13

(250)(0.6)  
T T

or   P I R

150 W

  (5A) (6 Ω) (25)(6)

 
T

2 2= = =

=
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or, finally,

θ θ= + = +

= ° + °
= +

=

P P P V I V I

150 W

  cos  cos 

                   (30 V)(5 A) cos  0 (40 V)(5 A) cos  90

                   150 W 0

                    

T R C R R C C

Power factor: The power factor of the circuit is

θ= = ° =F 0 6 leadingcos  cos  53.13 .  p

Using Eq. (15.9), we obtain

θ= = =

=

F R
Z

0 6 leading

cos  6 Ω
10 Ω

.  

p
T

as determined above.

R-L-C
Refer to Fig. 15.38.

R   =  3 V XC  =  3 V

vC –+vR –+

e =  70.7 sin vt

vL –+

XL  =  7 V

–

+

i

FIG. 15.38 
Series R-L-C ac circuit.

R  =  3 V XC  =  3 V

VC –+VR –+

E =  50 V / 08

VL –+

XL  =  7 V

–

+

I

FIG. 15.39 
Applying phasor notation to the circuit in Fig. 15.38.

+

j

XL = 7 V

XL – XC = 4 V

XC = 3 V

R = 3 V

Z T
=

5
V

T  = 53.138u

FIG. 15.40 
Impedance diagram for the series 

R-L-C circuit in Fig. 15.38.

 Phasor Notation As shown in Fig. 15.39.

ZT

= + + = ∠ ° + ∠ ° + ∠− °

= + − = +

R X X

j j j

Z Z Z Z

Ω Ω Ω Ω Ω

  0 90 90

                           3  7  3  3  4 
T L C1 2 3

and        Z 5 Ω 53 13      .T = ∠ °
Impedance diagram: As shown in Fig. 15.40.

I

I E
Z

10 A 53 13
50 V 0

5 Ω  53.13
    .

T

∠−= =
∠ °

∠ °
= °
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R LV , V , and CV :

θ

θ

θ

= = ∠ ∠ ° = ∠− ° ∠ °

= ∠− °

= = ∠ ∠ ° = ∠− ° ∠ °

= ∠ °

= = ∠ ∠ − ° = ∠− ° ∠− °

= ∠− °

I R

I X

I X

V IZ

30 V 53 13

V IZ

70 V 36 87

V IZ

30 V 143 13

( )( 0 ) (10 A 53.13 )(3 Ω 0 )

  .

( )( 90 ) (10 A 53.13 )(7 Ω 90 )

  .

( )( 90 ) (10 A 53.13 )(3 Ω 90 )

  .

R R

L L L

C C C

Kirchhoff’s voltage law:

UV E V V V 0R L CΣ = − − − =

or              E V V VR L C= + +
which can also be verified through vector algebra.

Phasor diagram: The phasor diagram in Fig. 15.41 indicates that the 
current I is in phase with the voltage across the resistor, lags the voltage 
across the inductor by 90 ,°  leads the voltage across the capacitor by 90° 
and lags the applied voltage by 53.13 .°

Time domain:

t

t

t

t

ω

ω

ω

ω

ω

υ ω

υ ω

υ ω

−

−

+

−

= − ° = °

= − ° = °

= + ° = °

= − ° = °

i t

t

t

t

14 14 sin 53 13

42 42 sin 53 13

98 98 sin 36 87

42 42 sin 143 13

  2(10) sin ( 53.13 ) .   ( . )

  2(30)  sin ( 53.13 ) .   ( . )

  2(70)  sin ( 36.87 ) .   ( . )

  2(30)  sin ( 143.13 ) .   ( . )

R

L

C

A plot of all the voltages and the current of the circuit appears in 
Fig. 15.42.

V L
 – V C

VC

VL

E

36.878

53.138
I

j

+

VR

FIG. 15.41 
Phasor diagram for the series R-L-C 

circuit in Fig. 15.38.

98.98 V

70.70 V

42.42 V

vL

vC

53.138

908

0

36.878

e

vR

i

3
2
52

2
3

22
– ppp

pppp
vt

FIG. 15.42 
Waveforms for the series R-L-C circuit in Fig. 15.38.

Power: The total power in watts delivered to the circuit is

P EI 300 W   cos  (50 V)(10 A) cos 53.13 (500)(0.6)T Tθ= = ° = =

or P I R 300 W  (10 A) (3 Ω) (100)(3)  T
2 2= = = =
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or

θ θ θ
= + +

= + +

= ° + ° + °

= + + =

P P P P

V I V I V I

300 W

 cos   cos   cos 

(30 V)(10 A) cos 0 (70 V)(10 A) cos 90 (30 V)(10 A) cos 90

(30 V)(10 A) 0 0  

T R L C

R R L L C C

Power factor: The power factor of the circuit is

F 0 6 laggingcos  cos 53.13 .  p Tθ= = ° =

Using Eq. (15.9), we obtain

F R
Z

0 6 laggingcos  3 Ω
5 Ω

.  p
T

θ= = = =

15.7 VOLTAGE DIVIDER RULE
The basic format for the voltage divider rule in ac circuits is exactly the 
same as that for dc circuits:

 =V
Z E
Zx

x

T

 (15.10)

where Vx  is the voltage across one or more elements in a series that have 
total impedance Z E,  x  is the total voltage appearing across the series 
circuit, and ZT  is the total impedance of the series circuit.

EXAMPLE 15.11 Using the voltage divider rule, find the voltage 
across each element of the circuit in Fig. 15.43.

Solution:

∠−

∠+

( )( )

( )( )

=
+

=
∠− ° ∠ °
∠− ° + ∠ °

=
∠− °

−

=
∠− °

∠− °
= °

=
+

=
∠ ° ∠ °

∠− °
=

∠ °
∠− °

= °

j
V

Z E
Z Z

80 V 36 87

V
Z E

Z Z

60 V 53 13

 
4 Ω 90 100 V 0
4 Ω  90 3 Ω 0

400 V 90
3 4

400 V 90
5 53.13

  .

3 Ω  0 100 V 0
5 Ω 53.13

300 V 0
5 53.13

  .

C
C

C R

R
R

C R

EXAMPLE 15.12 Using the voltage divider rule, find the unknown 
voltages V V V,   ,   ,R L C  and V1 for the circuit in Fig. 15.44.

R  =  6 V XC = 17 V

VC –+VR –+

–

+
V1

XL = 9 V

VL –+

E = 50 V / –308

FIG. 15.44 
Example 15.12.

R  =  3 V XC  =  4 V

VC –+VR –+

E = 100 V / 08

–

+

FIG. 15.43 
Example 15.11.
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Solution:

=
+ +

=
∠ ° ∠ °

∠ ° + ∠ ° + ∠− °

=
∠ °

+ −
=

∠ °
−

=
∠ °

∠− °
= ∠ °

j j j

V
Z E

Z Z Z

30 V 83 13

(6 Ω 0 )(50 V 30 )
6 Ω 0 9 Ω 90 17 Ω 90

300 V 30
6 9 17

300 V 30
6 8

300 V 30
10 53.13

  .

R
R

R L C

Calculator The above calculation provides an excellent opportunity to 
demonstrate the power of today’s calculators. For the TI-89 calculator, the 
 sequence of steps to calculate VR  are shown in Fig. 15.45.

R1 = 6 V L2 = 0.05 H

yC
–+–+

e  = Ï2(20) sin 377t
–

+ yL
–+

L1 = 0.05 H

yR

R2 = 4 V

C1

200 mF

C2

200 mF

i

FIG. 15.46 
Example 15.13.

6( / 0 8 ) ( 05

9(6 / 0 8 ) / 0 8 )9 ( 1

Polar 30.00E0 / 83.13E0))(–) 0 897 /

8 ) ( (/ 033

+

4

+

ENTERENTER

FIG. 15.45 
Using the TI-89 calculator to determine VR  in Example 15.12.

∠

∠−

∠−

( )( )

( )( )

( ) ( )( )

( )( )

= =
∠ ° ∠ °

∠− °
=

∠ °
∠− °

= °

= =
∠− ° ∠ °

∠− °
=

∠− °
∠− °

= °

=
+

=
∠ ° + ∠− ° ∠ °

∠− °

=
∠− ° ∠ °

∠− °

=
∠− °

∠− °
= °

V
Z E
Z

45 V 173 13

V
Z E
Z

85 V 6 87

V
Z Z E

Z

40 V 6 87

            
9 Ω 90 50 V 30

10 Ω 53.13

450  V 120

10 53.13

                            .

            
17 Ω 90 50 V 30

10 Ω 53.13

850 V 60

10 53

                             .

 
9 Ω 90 17 Ω 90 50 V 30

10 Ω  53.13

                           
8 90 50 V 30

10 53.13

                           
400 V 60

10 53.13
  .

L
L

T

C
C

T

L C

T
1

EXAMPLE 15.13 For the circuit in Fig. 15.46,

a. Calculate I V V,   ,   ,R L  and VC  in phasor form.
b. Calculate the total power factor.
c. Calculate the average power delivered to the circuit.
d. Draw the phasor diagram.
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e. Obtain the phasor sum of V V,   ,R L  and V ,C  and show that it equals 
the input voltage E.

f. Find VR  and VC  using the voltage divider rule.

Solutions:

a. Combining common elements and finding the reactance of the 
inductor and capacitor, we obtain

R  6 Ω 4 Ω 10 ΩT = + =

L 0.05 H 0.05 H 0.1 HT = + =

C 
200  F

2
100  FT

µ µ= =

X L  (377  rad s)(0.1 H) 37.70 ΩL ω= = =

X
C

  1 1
(377  rad s)(100 10  F)

10  Ω
37,700

26.53 ΩC 6

6

ω
= =

×
= =

−

Redrawing the circuit using phasor notation results in Fig. 15.47.

R = 10 V XC = 26.53 V

VC –+VR –+

E  =  20 V / 08

–

+

I

XL = 37.70 V

VL –+

FIG. 15.47 
Applying phasor notation to the circuit in Fig. 15.46.

For the circuit in Fig. 15.47,

∠

= ∠ ° + ∠ ° + ∠− °

= + −

= + = °

R X X

j j

j

Z

15 48 16

  0 90 90

10 Ω 37.70 Ω 26.53 Ω

10 Ω 11.17 Ω  Ω .

T L C

The current I is

= =
∠ °

∠ °
= ∠− °I E

Z
1 33 A 48 16

20 V 0
15 Ω 48.16

.   .
T

The voltage across the resistor, inductor, and capacitor can be found 
using Ohm’s law:

θ

θ

θ

∠−

∠

∠−

( )( ) ( )( )

( )( ) ( )( )

( )( ) ( )( )

= = ∠ ∠ ° = ∠− ° ∠ °

= °

= = ∠ ∠ ° = ∠− ° ∠ °

= °

= = ∠ ∠− ° = ∠− ° ∠− °

= °

I R

I X

I X

V IZ

13 30 V 48 16

V IZ

50 14 V 41 84

V IZ

35 28 V 138 16

         0 1.33 A 48.16 10 Ω 0

                                              .   .

     90 1.33 A  48.16 37.70 Ω 90

                                               .    .

  90 1.33 A 48.16 26.53 Ω 90

                                                .   .

R R

L L L

C C C

b. The total power factor, determined by the angle between the applied 
voltage E and the resulting current I, is °48.16 :

θ= = ° =F 0 667 lagging  cos  cos 48.16 .  p

or     θ= = = =F R
Z

0 667 lagging  cos  10 Ω
15 Ω

.  p
T
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c. The total power in watts delivered to the circuit is

θ= = =P EI 17 74 Wcos (20 V)(1.33 A)(0.667) .  T

d. The phasor diagram appears in Fig. 15.48.
e. The phasor sum of V V,   ,R L  and VC is

= + +

= ∠− ° + ∠ ° + ∠− °

= ∠− ° + ∠ °

E V V V

E

13.30 V 48.16 50.14 V 41.84 35.28 V 138.16

13.30 V 48.16 14.86 V 41.84

R L C

Therefore,

E 20 V(13.30 V)  (14.86 V)  2 2= + =
and     0   (from phasor diagram)Eθ = °

and = ∠ °E 20 V 0

f. 

∠−

∠−

( )( )

( )( )

= =
∠ ° ∠ °

∠ °
=

∠ °
∠ °

= °

= =
∠− ° ∠ °

∠ °
=

∠− °
∠ °

= °

V
Z E
Z

13 3 V 48 16

V
Z E
Z

35 37 V 138 16

 
10 Ω 0 20 V 0

15 Ω 48.16
200 V 0
15 48.16

.   .

 
26.5 Ω 90 20 V 0

15 Ω  48.16
530.6 V 90

15 48.16

.   .

R
R

T

C
C

T

15.8 FREQUENCY RESPONSE FOR SERIES 
ac CIRCUITS
Thus far, the analysis has been for a fixed frequency, resulting in a fixed 
value for the reactance of an inductor or a capacitor. We now examine 
how the response of a series circuit changes as the frequency changes. 
We assume ideal elements throughout the discussion, so that the  response  
of each element will be as shown in Fig. 15.49. Each response in 
Fig. 15.49 was discussed in detail in Chapter 14.

VC

VL

E

41.848

48.168
I

j

+

VR

VL
 – V C

FIG. 15.48 
Phasor diagram for the circuit in 

Fig. 15.46.

ZT XL /908

+

+j

+

+j

XC /–908

R /08

+

+j

E

0 f

R

0 f 0 f

XL = 2pfL

XC = 
2pfC

1

R L C

+

–

FIG. 15.49 
Reviewing the frequency response of the basic elements.
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When considering elements in series, remember that the total imped-
ance is the sum of the individual elements and that the reactance of an 
inductor is in direct opposition to that of a capacitor. For Fig. 15.49, we 
are first aware that the resistance will remain fixed for the full range of 
frequencies: It will always be there, but, more important, its magnitude 
will not change. The inductor, however, will provide increasing levels of 
impedance as the frequency increases, while the capacitor will provide 
lower levels of impedance.

We are also aware from Chapter 14 that the inductor has a  short-circuit 
equivalence at =f 0 Hz or very low frequencies, while the capacitor  
is nearly an open circuit for the same frequency range. For very high 
frequencies, the capacitor approaches the short-circuit equivalence, and 
the inductor approaches the open-circuit equivalence.

In general, therefore, if we encounter a series R-L-C circuit at very 
low frequencies, we can assume that the capacitor, with its very large 
impedance, will be the predominant factor. If the circuit is just an R-L 
 series circuit, the impedance may be determined primarily by the re-
sistive element since the reactance of the inductor is so small. As the 
 frequency increases, the reactance of the coil increases to the point 
where it totally outshadows the impedance of the resistor. For an R-L-C 
combination, as the frequency increases, the reactance of the capacitor 
begins to approach a short-circuit equivalence, and the total impedance 
will be determined primarily by the inductive element. At very high 
frequencies, for an R-C series circuit, the total impedance eventually 
approaches that of the resistor since the impedance of the capacitor is 
dropping off so quickly.

In total, therefore,

when encountering a series ac circuit of any combination 
of elements, always use the idealized response of each 
element to establish some feeling for how the circuit will 
respond as the frequency changes.

Once you have a logical, overall sense for what the response will be, you 
can concentrate on working out the details.

Series R-C ac Circuit

As an example of establishing the frequency response of a circuit, con-
sider the series R-C circuit in Fig. 15.50. As noted next to the source, the 
frequency range of interest is from 0 to 20 kHz. A great deal of detail is 
provided for this particular combination, so that obtaining the response 
of a series R-L or R-L-C combination should be quite straightforward.

5 kV

ZTE = 10 V/ 08

–

+

R

C 0.01 mF

–

+
VC

f : 0 to 20 kHz

FIG. 15.50 
Determining the frequency response of a series  

R-C circuit.
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The Total Impedance TZ
For the circuit of Fig. 15.50 the total impedance will be the sum of the 
impedances for each element at any frequency of interest. At very low 
frequencies the impedance of the capacitor will be much larger than 
that of the resistive element, as shown by the plots of Fig. 15.51. The 
 capacitive component will therefore be the primary contributor to the 
sum of the impedances at low frequencies. Recall from Chapter 14 that 
at 0 Hz the capacitive unit acts essentially like an open circuit (an ele-
ment of infinite impedance). As the frequency increases, the impedance 
of the capacitor will decrease, as shown in Fig. 15.51, and approach that 
of the resistive element. Eventually they will be equal and any further 
increase in frequency will result in the resistive element having more 
impedance than the capacitive element, as shown in the rough sketch 
for the total impedance in Fig. 15.52. With the capacitive impedance 
approaching zero ohms, the total impedance will approach that of the 
resistor or 5 kΩ.

The frequency at which the reactance of the capacitor drops to that of 
the resistor can be determined by setting the reactance of the capacitor 
equal to that of the resistor as follows:

π
= =X

f C
R1

2C
1

Solving for the frequency yields

 f
RC
1

21 π
=  (15.11)

This significant point appears in the frequency plots in Fig. 15.51. 
Substituting values, we find that it occurs at

f
RC
1

2
1

2 (5 kΩ)(0.01  F)
3.18 kHz1 π π µ

= = ≅

We now know that for frequencies greater than >f R X,  C1  and that for 
frequencies less than f X R,   ,C1 >  as shown in Fig. 15.51.

0

R = 5 kV

ZT XC = 1
2 fC

f

5 kV

R

XC

5 kV

R < XC R > XC

0 ff1

FIG. 15.51 
The frequency response for the individual elements of a series R-C circuit.

Z T

f

5 kV

0

FIG. 15.52 
 ZT  versus frequency for the 

circuit of Fig. 15.50.
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Now for the details. The total impedance is determined by the follow-
ing equation:

= −R jXZT C

and θ= ∠ = + ∠− −Z R X
X
R

Z tanT T T C
C

 
2 2 1  (15.12)

The magnitude and angle of the total impedance can now be found at 
any frequency of interest by simply substituting into Eq. (15.12). First, 
let us include f1, the frequency at which X R,C =  in Fig. 15.53.

50 101 15 20 f (kHz)

Circuit resistive

Circuit capacitive

5

10

15

20
ZT (kV)

R  =  5 kV

ZT ( f )

XC = R 

f1

FIG. 15.53 
The magnitude of the input impedance versus frequency for the 

circuit in Fig. 15.50.

Then, starting at a low frequency, find the impedance and angle of the 
total impedance up to a frequency of 20 kHz as follows:

f 100 Hz =

X
fC

1
2

1
2 (100 Hz)(0.01  F)

159.16 kΩC π π µ
= = =

and  R XZ (5 kΩ) (159.16 kΩ) 159.24 kΩT C
2 2 2 2= + = + =

with 
X
R

  tan tan 159.16 kΩ
5 kΩ

tan 31.83T
C1 1 1θ = − = − = −− − −

 88.2= − °

and . ∠−= °Z 159 24 88 2 kΩ .T

which compares very closely with = ∠− °Z 159.16 kΩ 90C  if the cir-
cuit were purely capacitive R( 0 Ω).=  Our assumption that the circuit is 
primarily capacitive at low frequencies is therefore confirmed.
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f 1 kHz =

π π µ
= = =X

fC
1

2
1

2 (1 kHz)(0.01  F)
15.92 kΩC

and      R XZ (5 kΩ)  (15.92 kΩ) 16.69 kΩT C
2 2 2 2= + = + =

with θ = − = −− −X
R

  tan tan 15.92 kΩ
5 kΩT

C1 1

tan 3.18 72.541 = − = − °−

and  kΩ .∠−= °Z 16 69 72 54.  T

A noticeable drop in the magnitude has occurred, and the impedance 
angle has dropped almost 17° from the purely capacitive level.

Continuing, we obtain

Z . .

Z . .

Z . .

Z . .

∠−

∠−

∠−

∠−

= = °

= = °

= = °

= = °

f

f

f

f

5 93 kΩ 32 48

5 25 kΩ 17 66

5 11 kΩ 11 98

5 06 kΩ 9 04

  5 kHz:  

10 kHz:  

15 kHz:  

20 kHz:  

T

T

T

T

Note how close the magnitude of ZT  at f 20 kHz=  is to the resistance 
level of 5 kΩ.  In addition, note how the phase angle is approaching that 
associated with a pure resistive network (0 ).°

A plot of ZT  versus frequency in Fig. 15.53 completely supports our 
assumption based on the curves of Figs. 15.51 and 15.52. The plot of Tθ  
versus frequency in Fig. 15.54 further suggests that the total impedance 
made a transition from one of a capacitive nature ( 90 )Tθ = − °  to one 
with resistive characteristics ( 0 ).Tθ = °

5

08

101 15 20 f (kHz)

Circuit capacitive

–458

–308

–608

–908

Circuit resistive

T

T ( f )

u

u

FIG. 15.54 
The phase angle of the input impedance versus frequency for the 

circuit in Fig. 15.50.
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The Voltage CV
Applying the voltage divider rule to determine the voltage across the 
capacitor in phasor form yields

∠

=
+

=
∠− ° ∠ °

−
=

∠− °
−

=
∠− °

+ − −

X E
R j

X E
R j

X E

R X X R

V
Z E

Z Z
 

( 90 )( 0 )
X

90
X

90
tan

C
C

R C

C

C

C

C

C

C C

 

2 2 1

or ∠θ= ∠ =
+

− ° + −V
X E

R X
X RV   90 tan ( )C C C

C

C
C2 2

1

The magnitude of VC  is therefore determined by

 V
X E

R X
C

C

C
2 2

=
+

 (15.13)

and the phase angle Cθ  by which VC  leads E is given by

 θ = − ° + = −− −X
R

R
X

90 tan tanC
C

C

1 1  (15.14)

To determine the frequency response, XC  must be calculated for each 
frequency of interest and inserted into Eqs. (15.13) and (15.14).

To begin our analysis, we should consider the case of f 0 Hz=  (dc 
conditions).

f 0 Hz =

X
C

1
2 (0)

1
0

very large valueC π
= = ⇒

Applying the open-circuit equivalent for the capacitor based on the 
above calculation results in the following:

= = ∠ °V E 10 V 0C

f 1 kHz =  Applying Eq. (15.13) gives

π π
= =

× ×
≅

−
.X

fC
15 92 kΩ1

2
1

(2 )(1 10  Hz)(0.01 10 F)
 C 3 6

R X (5 kΩ) (15.92 kΩ) 16.69 kΩC
2 2 2 2+ = + ≅

and =
+

= =V
X E

R X
9 54 V(15.92 kΩ)(10)

16.69 kΩ
 C

C

C
2 2

.

Applying Eq. (15.14) gives

R
X

17 46

  tan   tan   5 kΩ
15.9 kΩ

tan 0.314

C
C

1 1

1

θ = − = −

= − = − °

− −

− .

and V 9 83 V 17 46   C = ∠− °. .

As expected, the high reactance of the capacitor at low frequencies has  
resulted in the major part of the applied voltage appearing across the capacitor.
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If we plot the phasor diagrams for =f 0 Hz and =f 1 kHz, as shown 
in Fig. 15.55, we find that VC  is beginning a clockwise rotation with an 
increase in frequency that will increase the angle Cθ  and decrease the phase 
angle between I and E. Recall that for a purely capacitive network, I leads 
E by 90 .°  As the frequency increases, therefore, the capacitive reactance 
is decreasing, and eventually R XC>>  with 90 ,Cθ = − °  and the angle 
between I and E will approach 0 .°  Keep in mind as we proceed through the 
other frequencies that Cθ  is the phase angle between VC  and E and that the 
magnitude of the angle by which I leads E is determined by

 θ θ= ° −90I C  (15.15)

I  =  0 A

f  = 0 Hz

E
VC

E

I

VR

f  = 1 kHz

–17.468

VC

C

I

C  =  08
I  =  908u

u

u

u

FIG. 15.55 
The phasor diagram for the circuit in Fig. 15.50 for f Hz = 0  

and 1 kHz.

 f 5 kHz=  Applying Eq. (15.13) gives

π π
= =

× ×
≅

−
.X

fC
3 18 kΩ1

2
1

(2 )(5 10  Hz)(0.01 10  F)
 C 3 6

Note the dramatic drop in XC  from 1 kHz to 5 kHz. In fact, XC  is now 
less than the resistance R of the network, and the phase angle determined 
by − X Rtan ( )C

1  must be less than 45 .°  Here,

=
+

=
+

=V
X E

R X
5 37 V(3.18 kΩ)(10 V)

(5 kΩ) (3.18 kΩ)
.  C

C

C
2 2 2 2

with R
X

  tan tan 5 kΩ
3.2 kΩC

C

1 1θ = − = −− −

57 38tan 1.56 .1 −= − = °−

f 10 kHz =

θ≅ = = − °kΩ . .X V1 59 3 03 V 72 34.    C C C

f 15 kHz =

θ≅ = = − °kΩ . .X V1 06 2 07 V 78 02.    C C C

f 20 kHz =

θ≅ = = − °Ω . .X V795 78 1 57 V 80 96.    C C C

The phasor diagrams for f 5 kHz=  and f 20 kHz=  appear in 
Fig. 15.56 to show the continuing rotation of the VC  vector.

Note also from Figs. 15.55 and 15.56 that the vector VR and the cur-
rent I have grown in magnitude with the reduction in the capacitive reac-
tance. Eventually, at very high frequencies, XC  will approach zero ohms 
and the short-circuit equivalent can be applied, resulting in ≅V 0 VC  

IVR

f  = 20 kHz

E

VC

C  =  –80.968

IVR

E

VC

f  = 5 kHz

C  =  –57.388u

u

FIG. 15.56 
The phasor diagram for the circuit in 
Fig. 15.50 for f  = 5 kHz and 20 kHz.
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and 90Cθ ≅ − ° and producing the phasor diagram in Fig. 15.57. The 
network is then resistive, the phase angle between I and E is essentially 
zero degrees, and VR  and I are their maximum values.

A plot of VC  versus frequency appears in Fig. 15.58. At low frequen-
cies, >>X R,C  and VC  is very close to E in magnitude. As the applied 
frequency increases, XC  decreases in magnitude along with VC  as VR  
captures more of the applied voltage. A plot of Cθ  versus frequency is 
provided in Fig. 15.59. At low frequencies, the phase angle between VC  
and E is very small since ≅ .V EC  Recall that if two phasors are equal, 
they must have the same angle. As the applied frequency increases, 

VC > 0 V E
VR uI > 08

uC >  –908

f  =  very high frequencies

FIG. 15.57 
The phasor diagram for the circuit in 
Fig. 15.50 at very high frequencies.

50 101 15 20 f (kHz)

Network resistive

Network capacitive

4

9

10

VC

VC ( f )

8

7

6

5

3

2

1

FIG. 15.58 
The magnitude of the voltage VC  versus frequency for the circuit  

in Fig. 15.50.

50 10 15 20 f (kHz)

Network capacitive–308

–608

–908

Network resistive

1

( f )

 (phase angle between E and VC)uC

uC

FIG. 15.59 
The phase angle between E and VC  versus frequency for the 

circuit in Fig. 15.50.
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the network becomes more resistive, and the phase angle between VC  
and E approaches 90 .°  Keep in mind that, at high frequencies, I and E 
are approaching an in-phase situation, and the angle between VC  and 
E will approach that between VC and I, which we know must be 90° 
I V(  leading  ).C C

A plot of VR  versus frequency approaches E volts from zero volts 
with an increase in frequency, but remember that ≠ −V E VR C  due to 
the vector relationship. The phase angle between I and E could be plot-
ted directly from Fig. 15.59 using Eq. (15.15).

In Chapter 22, the analysis of this section is extended to a much wider 
frequency range using a log axis for frequency. It will be demonstrated 
that an R-C circuit such as that in Fig. 15.50 can be used as a filter to 
determine which frequencies will have the greatest impact on the stage 
to follow. From our current analysis, it is obvious that any network con-
nected across the capacitor will receive the greatest potential level at low 
frequencies and be effectively “shorted out” at very high frequencies.

Series R-L ac Circuit

The Total Impedance Z For a series R-L ac circuit the frequency 
response of the resistor will remain as it was for the R-C circuit but the 
inductor will have a totally different response than that of the capacitive 
element, as shown in Fig. 15.60. At very low frequencies the impedance 
of the inductor will be so small that the resistive element will be the 
predominant factor in determining the total impedance. As the frequency 
increases, however, there will come a point where the impedance of the 
inductor will match that of the resistor.

The frequency at which this occurs is determined as follows:

X fL R  2L π= =

 f R
L2

 1 π
=  (15.16)

Substituting:

f R
L2

1 kΩ
2 (20 mH)

7.96 kHz1 π π
= = =

0 f

1 kV

R

R = 1 kV

E

–

+ ZT

 20 mHL

0 f

1 kV

XL

XL = 2pfL

f1R > XL XL > R 

FIG. 15.60 
The frequency response for the individual elements of a series  

R-L circuit.
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As the applied frequency increases beyond this level, the inductor 
will outweigh the impact of the resistor and the total impedance will 
approach that of just the inductor, as shown in Fig. 15.61.

The phase angle of the total impedance will approach 90 ,°  as shown 
in Fig. 15.62, because the network begins to appear totally inductive. At 
low frequencies it approaches 0° because the resistor is the overpower-
ing factor.

0 ff1 2f1 3f1 4f1

= R = 1 kVZ T

Z T

= 1.414 kV 
ÏR2 2XL+=Z T

>Z T XL

FIG. 15.61 
The total impedance versus frequency for 

the circuit of Fig. 15.60.

08

458

908

ff1 2f1 3f1 4f1 5f1

Approaching 
totally inductive
circuit

Totally 
resistive
circuit

uT  ( angle by which E leads I)

FIG. 15.62 
The phase angle for the total impedance of the circuit of Fig. 15.60.

08 ff1 2f1 3f1 4f1 5f1

E

VL

VL  = 0.7071  
(XL  = R) 

Approaching E volts

VL = 0 V, XL = 0 V

E

FIG. 15.63 
VL  versus frequency for the R-L circuit of Fig. 15.60.

The Voltage LV  At very low frequencies the impedance of the 
 inductive element is so small that the application of the voltage divider 
rule will result in a very low voltage across the inductor, as shown in 
Fig. 15.63. However, as the inductive reactance increases, the voltage 
VL will increase accordingly until it captures all the applied voltage as 
shown in the same figure.
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EXAMPLE 15.14 For the series R-L circuit in Fig. 15.64.

a. Determine the frequency at which =X R.L

b. Develop a mental image of the change in total impedance with fre-
quency without doing any calculations.

c. Find the total impedance at =f 100 Hz and 40 kHz, and compare 
your answer with the assumptions of part (b).

d. Plot the curve of VL  versus frequency.
e. Find the phase angle of the total impedance at =f 40 kHz. Can the 

circuit be considered inductive at this frequency? Why?

L 40 mHE = 20 V/08

f: 0 to 40 kHz

+

–

+

–

R

2 kVZT

VL

FIG. 15.64 
Circuit for Example 15.14.

Solutions:

a. X f L R2L 1π= =

and  f R
L

7957 7 Hz
2

2 kΩ
2 (40 mH)

.  1 π π
= = =

b. At low frequencies, >R X L and the impedance will be very close to 
that of the resistor, or 2 kΩ. As the frequency increases, X L increases 
to a point where it is the predominant factor. The result is that the 
curve starts almost horizontal at 2 kΩ and then increases linearly to 
very high levels.

c. θ= + = ∠ = + ∠ −Z R j Z R X
X
R

X tanT L T T L
L

 
2 2 1

At f 100 Hz:=

X fL2 2 (100 Hz)(40 mH) 25.13 ΩL π π= = =

and     = + = +Z R X  (2 kΩ)  (25.13 Ω)T L
2 2 2 2

= ≅ =R2,000.16 Ω    2 kΩ

At f 40 kHz:=

π π= = ≅X fL2 2 (40 kHz)(40 mH) 10.05 kΩL

and      = + = +Z R X (2 kΩ)  (10.05 kΩ)T L
2 2 2 2

= ≅ X10.25 kΩ L

Both calculations support the conclusions of part (b).

d.  Applying the voltage divider rule gives

=V
Z E
ZL

L

T

From part (c), we know that at ≅Z R100 Hz,   ,T  so that V 20 VR ≅  
and ≅V 0 V.L  Part (c) revealed that at ≅Z X40 kHz,   ,T L  so that 

≅V 20 VL  and ≅V 0 V.R  The result is two plot points for the 
curve in Fig. 15.65.
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At 1 kHz             π= ≅X fL2 0.25 kΩL

and   
j

V 2 48 V 82 87
(0.25 kΩ 90 )(20 V 0 )

2 kΩ 0.25 kΩ
.   .L ∠=

∠ ° ∠ °
+

= °

At 5 kHz             X fL2 1.26 kΩL π= ≅

and   
j

V 10 68 V 57 79
(1.26 kΩ 90 )(20 V 0 )

2 kΩ 1.26 kΩ
.   .L ∠=

∠ ° ∠ °
+

= °

At 10 kHz             π= ≅X fL2 2.5 kΩL

and    
j

V 15 63 V 38 66
(2.5 kΩ 90 )(20 V 0 )

2.5 kΩ 2.5 kΩ
.   .L ∠=

∠ ° ∠ °
+

= °

The complete plot appears in Fig. 15.65.

e. θ = = = °− −X
R

78 75tan tan 10.05 kΩ
2 kΩ

.T
L1 1

The angle Tθ  is closing in on the 90° of a purely inductive network. 
Therefore, the network can be considered quite inductive at a fre-
quency of 40 kHz.

Series R-L-C Circuit

The Total Impedance TZ  The frequency responses for each ele-
ment of the series R-L-C circuit of Fig. 15.66(a) have been superimposed 
on each other in Fig. 15.66(b) to better define the regions of maximum 
impact for each.

For the full frequency range the ideal resistor stays fixed at the same 
value of 100 ohms. The 0.1  Fµ  capacitor has its maximum impedance at 

0 kHz1 5 10 20 30 40

20 V

10 V VL

VL

FIG. 15.65 
Plotting VL versus f for the series R-L circuit in Fig. 15.64.

+

–

R XL

100 V 

0.1 µF 

5 mH 

XCE
ZT

I

R
100 

223.68

0

XL = 2 fL
XC = 1

2 fC

ZT (V)

f1

(a) (b)

f

FIG. 15.66 
Impedance versus frequency for a series R-L-C circuit.
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very low frequencies while the 5 mH inductor has its greatest impact at 
the higher frequencies. Looking at Fig. 15.66(b), it is clear that there is a 
frequency where the capacitive reactance will equal that of the inductive 
reactance. Its value can be determined as follows:

π
π

π

=

=

=

X X

fL
fC

f
LC

 

 2 1
2

  1
4

L C

2
2

 
π

=f
LC

1
21  (15.17)

which for the circuit of Fig. 15.66(a) is

f
LC

1
2

1
2 (0.1  F)(5 mH)

7.12 kHz1 π π µ
= = =

At the frequency f1  the impedance diagram of the circuit will appear 
as shown in Fig. 15.67. Note that the reactance of the capacitor and 
 inductor is in opposition and the total reactive impedance is zero ohms. 
The impedance at f1  is therefore simply that of the resistor R. It is, in 
fact, the smallest possible level of impedance for the circuit. The actual 
reactance of both the capacitor and inductor at this frequency is

π π= = = =X X fL2 2 (7.12 kHz)(5 mH) 223.68 ΩC L

Note that the reactance of each is twice that of the resistor at f1  but 
since they cancel the total impedance is still just that of the resistor, 
or 100 Ω. A plot of the total impedance of the network will therefore 
have the general shape appearing in Fig. 15.68 with the element of most 
 impact labeled on the curve.

j

+R  = 100 V = ZT  

XC = 223.68 V 

XL = 223.68 V 

FIG. 15.67 
Impedance diagram for the circuit of 

Fig. 15.66 (a) of the frequency f .1

0

ZT (V)

f1 f

ZT  = R = 100

C R L

FIG. 15.68 
Impedance curve for the circuit of Fig. 15.66 (a).

The Current I The fact that the impedance will be a minimum value 
at f1  will result in the current through the circuit being a maximum value 
at this frequency. The shape of the frequency plot for the current will  
actually be a flipped version of Fig. 15.68, as shown in Fig. 15.69.  
A great deal more will be said about this circuit in Chapter 21 when we 
consider resonant and tuned networks.
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15.9 SUMMARY: SERIES ac CIRCUITS
The following is a review of important conclusions that can be derived 
from the discussion and examples of the previous sections. The list is not 
all-inclusive, but it does emphasize some of the conclusions that should 
be carried forward in the future analysis of ac systems.

For series ac circuits with reactive elements:

1. The total impedance will be frequency dependent.
2. The impedance of any one element can be greater than 

the total impedance of the network.
3. The inductive and capacitive reactances are always in 

direct opposition on an impedance diagram.
4. Depending on the frequency applied, the same circuit can be 

either predominantly inductive or predominantly capacitive.
5. At lower frequencies, the capacitive elements will usually 

have the most impact on the total impedance, while at 
high frequencies, the inductive elements will usually have 
the most impact.

6. The magnitude of the voltage across any one element can 
be greater than the applied voltage.

7. The magnitude of the voltage across an element com-
pared to the other elements of the circuit is directly 
related to the magnitude of its impedance; that is, the 
larger the impedance of an element, the larger is the mag-
nitude of the voltage across the element.

8. The voltages across a coil or capacitor are always in direct 
opposition on a phasor diagram.

9.  The current is always in phase with the voltage across the 
resistive elements, lags the voltage across all the induc-
tive elements by 90 ,°  and leads the voltage across all the 
capacitive elements by 90 .°

10.   The larger the resistive element of a circuit compared to the 
net reactive impedance, the closer is the power factor to unity.

15.10 PHASE MEASUREMENTS
Measuring the phase angle between quantities is one of the most import-
ant functions that an oscilloscope can perform. It is an operation that must 
be performed carefully, however, or you may obtain the incorrect result 
or damage the equipment. Whenever you are using the dual-trace capabil-
ity of an oscilloscope, the most important thing to remember is that

both channels of a dual-trace oscilloscope must be 
connected to the same ground.

Measuring ZT and Tθ
For ac networks restricted to resistive loads, the total impedance can be 
found in the same manner as described for dc circuits: Simply remove the 
source and place an ohmmeter across the network terminals. However,

for ac networks with reactive elements, the total impedance 
cannot be measured with an ohmmeter.

0

I

f1 f

C R L

R
E

FIG. 15.69 
The current I versus frequency for the  

series R-L-C circuit of Fig. 15.66 (a).
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An experimental procedure must be defined that permits determining the 
magnitude and the angle of the terminal impedance.

The phase angle between the applied voltage and the resulting source 
current is one of the most important because (a) it is also the phase angle 
associated with the total impedance; (b) it provides an instant indication 
of whether a network is resistive or reactive; (c) it reveals whether a net-
work is inductive or capacitive; and (d) it can be used to find the power 
delivered to the network.

In Fig. 15.70, a resistor has been added to the configuration between 
the source and the network to permit measuring the current and finding 
the phase angle between the applied voltage and the source current.

Channel 2

Channel 1 Network
E

Is

Vx

Sensing resistor

+

–

+

–

Is

ZT

IsVRs +–

FIG. 15.70 
Using an oscilloscope to measure ZT  and .Tθ

1.7 div.

e

vRs Channel 2
10 mV/div.

Channel 1
2 V/div.

FIG. 15.71 
e and RS

υ  for the configuration in Fig. 15.70.

At the frequency of interest, the applied voltage establishes a volt-
age across the sensing resistor that can be displayed by one channel of 
the dual-trace oscilloscope. In Fig. 15.70, channel 1 is displaying the 
applied voltage and channel 2 the voltage across the sensing resistor. 
Sensitivities for each channel are chosen to establish the waveforms 
appearing on the screen in Fig. 15.71. As emphasized above, note that 
both channels have the same ground connection. In fact, the need for a 
common ground connection is the only reason that the sensing resistor 
was not connected to the positive side of the supply. Since oscilloscopes 
display only voltages versus time, the peak value of the source current 
must be found using Ohm’s law. Since the voltage across a resistor and 
the current through the resistor are in phase, the phase angle between 
the two voltages will be the same as that between the applied voltage 
and the resulting source current.

M15_BOYL0302_14_GE_C15.indd   672M15_BOYL0302_14_GE_C15.indd   672 28/02/23   1:35 PM28/02/23   1:35 PM



PHASE MEASUREMENTS | | | 673
a c

Using the sensitivities, we find that the peak value of the applied volt-
age is

E (4 div.)(2 V/div.) 8 Vm = =

while the peak value of the voltage across the sensing resistor is

V (2 div.)(10 mV/div.) 20 mVR (peak)s
= =

Using Ohm’s law, we find that the peak value of the current is

= = =I
V

R
20 mV
10 Ω

2 mAs
R

s
(peak)

(peak)s

The sensing resistor is chosen small enough so that the voltage 
across the sensing resistor is small enough to permit the approximation 

Rs
V E V E.x = − ≅   The magnitude of the input impedance is then

Z
V
I

E
I

4 kΩ8 V
2 mA

 T
x

s s

= ≅ = =

For the chosen horizontal sensitivity, each waveform in Fig. 15.71 
has a period T defined by ten horizontal divisions, and the phase angle 
between the two waveforms is 1.7 divisions. Using the fact that each 
period of a sinusoidal waveform encompasses 360 ,°  we can set up the 
following ratios to determine the phase angle θ :

10 div.
360

1.7 div.
θ°

=

and          61 21.7
10

360 .θ ( )= ° = °

In general,

 θ θ= × °
T

(div. for  )
(div. for  )

360  (15.18)

Therefore, the total impedance is

= ∠ = +° = +jkΩ R jZ 4 kΩ 61 2 1 93 3 51 kΩ  . .   .   XT L

which is equivalent to the series combination of a 1.93 kΩ resistor and an 
inductor with a reactance of 3.51 kΩ (at the frequency of interest).

Measuring the Phase Angle  
between Various Voltages

In Fig. 15.72, an oscilloscope is being used to find the phase relationship 
between the applied voltage and the voltage across the inductor. Note 
again that each channel shares the same ground connection. The result-
ing pattern appears in Fig. 15.73 with the chosen sensitivities. This time, 
both channels have the same sensitivity, resulting in the following peak 
values for the voltages:

E

V

6 V

3 2 V

  (3 div.)(2 V/div.)  

  (1.6 div.)(2 V/div.)  
m

L(peak) .

= =

= =

The phase angle is determined using Eq. (15.18):

45

 
(1 div.)
(8 div.)

360

 

θ

θ

= × °

= °
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If the phase relationship between e and Rυ  is desired, the oscilloscope 
cannot be connected as shown in Fig. 15.74. The grounds of each chan-
nel are internally connected in the oscilloscope, forcing point b to have 
the same potential as point a. The result would be a direct connection 
between points a and b that would short out the inductive element. If the 
inductive element is the predominant factor in controlling the level of 
the current, the current in the circuit could rise to dangerous levels and 
damage the oscilloscope or supply. The easiest way to find the phase 
relationship between e and Rυ  would be to simply interchange the posi-
tions of the resistor and the inductor and proceed as before.

15.11 APPLICATIONS
Speaker Systems

The best reproduction of sound is obtained by using different speakers 
for the low-, mid-, and high-frequency regions. Although the typical 
audio range for the human ear is from about 100 Hz to 20 kHz, speakers 
are available from 20 Hz to 40 kHz. For the low-frequency range usually 

Oscilloscope

Channel
1

Channel
2

R

Le vL

+

–

+

–

FIG. 15.72 
Determining the phase relationship between e and .Lυ

vL

1 division

1 division

e

T = 8 div.

Channel 1
2 V/div.

Channel 2
2 V/div.

FIG. 15.73 
Determining the phase angle between e and Lυ  for the 

configuration in Fig. 15.72.

R

Le

21

vR

Oscilloscope

a

b
+ –

+

–

FIG. 15.74 
An improper phase-measurement 

connection.
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extending from about 20 Hz to 300 Hz, a speaker referred to as a woofer 
is used. Of the three speakers, it is normally the largest. The mid-range 
speaker is typically smaller in size and covers the range from about  
100 Hz to 5 kHz. The tweeter, as it is normally called, is usually the 
smallest of the three speakers and typically covers the range from about 
2 kHz to 25 kHz. There is an overlap of frequencies to ensure that fre-
quencies aren’t lost in those regions where the response of one drops 
off and the other takes over. A great deal more about the range of each 
speaker and their dB response (a term you may have heard when dis-
cussing speaker response) is covered in detail in Chapter 22.

One popular method for hooking up the three speakers is the 
 cross-over configuration in Fig. 15.75. Note that it is nothing more than 
a parallel network with a speaker in each branch and full applied volt-
age across each branch. The added elements (inductors and capacitors) 
were carefully chosen to set the range of response for each speaker. 
Note that each speaker is labeled with an impedance level and associ-
ated frequency. This type of information is typical when purchasing a 
quality speaker. It immediately identifies the type of speaker and reveals 
at which frequency it will have its maximum response. A detailed anal-
ysis of the same network will be included in Chapter 22. For now, how-
ever, it should prove interesting to determine the total impedance of each 
branch at specific frequencies to see if indeed the response of one will 
far outweigh the response of the other two. Since an amplifier with an 
output impedance of 8 Ω  is to be used, maximum transfer of power (see 
Section 19.5 for ac networks) to the speaker results when the impedance 
of the branch is equal to or very close to 8 Ω.

Let us begin by examining the response of the frequencies to be car-
ried primarily by the mid-range speaker since it represents the greatest 
portion of the human hearing range. Since the mid-range speaker branch 
is rated at 8 Ω  at 1.4 kHz, let us test the effect of applying 1.4 kHz to all 
branches of the crossover network.

For the mid-range speaker:

X
fC

  1
2

1
2 (1.4 kHz)(47 F)

2.42 ΩC π π µ
= = =

X fL2 2 (1.4 kHz)(270 H) 2.78 ΩL π π µ= = =

R 8 Ω=

and       = + − = + −

= +

= ∠− ° ≅ ∠ ° =

Z R j X X j

j

R

  ( ) 8 Ω (2.78 Ω 2.42 Ω)

8 Ω 0.36 Ω

8.008 Ω  2.58 8 Ω  0

L Cmidrange

In Fig. 15.76(a), the amplifier with the output impedance of 8Ω has 
been applied across the mid-range speaker at a frequency of 1.4 kHz. 
Since the total reactance offered by the two series reactive elements is so 
small compared to the 8 Ω  resistance of the speaker, we can essentially 
replace the series combination of the coil and capacitor by a short circuit 
of 0 Ω.  We are then left with a situation where the load impedance is 
an exact match with the output impedance of the amplifier, and maxi-
mum power will be delivered to the speaker. Because of the equal series 
 impedances, each will capture half the applied voltage or 6 V. The power 
to the speaker is then RP V (6V) 8Ω 4.5 W.2 2= / = =

At a frequency of 1.4 kHz, we would expect the woofer and tweeter 
to have minimum impact on the generated sound. We will now test the 

8 V
Llow = 3.3 mH

Vi

+

–

8 V

8 V

Cmid = 47   F Lmid = 270   H

Chigh = 3.9   F

Woofer

Tweeter

Midrange

FIG. 15.75 
Crossover speaker system.
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validity of this statement by determining the impedance of each branch 
at 1.4 kHz.

For the woofer,

X fL  2 2 (1.4 kHz)(3.3 mH) 29.03 ΩL π π= = =

and = + = +

= ∠ °

Z R j j  X 8 Ω 29.03 Ω

30.11 Ω  74.59
Lwoofer

which is a poor match with the output impedance of the amplifier. The 
resulting network is shown in Fig. 15.76(b).

The total load on the source of 12 V is

= + + = +

= ∠ °

Z j j  8 Ω 8 Ω 29.03 Ω 16 Ω 29.03 Ω

33.15 Ω  61.14
T

and the current is

= =
∠ °
∠ °

= ∠− °

I E
Z

 
12 V 0

33.15 Ω 61.14

362 mA  61.14
T

8 V

8 V
2.42 V 2.38 V

Midrange

XL

+

–

Vspeaker
= 6 V

Amplifier

+

–

12 V

(a)

(–jXC + jXL = –j 0.04 V)

XC

8 V

8 V 29.03 V

Woofer

XL

Ispeaker
= 362 mA

Amplifier

+

–

12 V

(b)

8 V

8 V
29.15 V

Tweeter

Amplifier

+

–

12 V

(c)

XC

Zwoofer

Ztweeter

Ispeaker
= 397 mA

ZT

Zmidrange

ZT

ZT

FIG. 15.76 
Crossover network: (a) mid-range speaker at 1.4 kHz; (b) woofer 

at 1.4 kHz; (c) tweeter.
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The power to the 8 Ω  speaker is then

P I R 1 05 W(362 mA) (8 Ω)  woofer
2 2 .= = =

or about 1 W.
Consequently, the sound generated by the mid-range speaker far out-

weighs the response of the woofer as it should be for voice singing and 
acoustical guitar.

For the tweeter in Fig. 15.76,

π π µ
= = =X

fC
1

2
1

2 (1.4 kHz)(3.9 F)
29.15 ΩC

and = − = −Z R jX j  8 Ω 29.15 ΩCtweeter

30.33 Ω  74.65= ∠− °  

which, as for the woofer, is a poor match with the output impedance of 
the amplifier. The current is given as

= =
∠ °

∠− °

= ∠ °

I E
Z

 
12 V 0

30.33 Ω  74.65

397 mA  74.65
T

The power to the 8 Ω  speaker is then

P I R 1 26 W(397 mA) (8 Ω) .  tweeter
2 2= = =

or about 1.3 W.
Consequently, the sound generated by the mid-range speaker far out-

weighs the response of the tweeter also.
All in all, the mid-range speaker predominates at a frequency of  

1.4 kHz for the crossover network in Fig. 15.75.
Let us now determine the impedance of the tweeter at 20 kHz and the 

impact of the woofer at this frequency.
For the tweeter,

  
π π µ

= = =X
fC

1
2

1
2 (20 kHz)(3.9 F)

2.04 ΩC

with            = − = ∠− °Z j8 Ω 2.04 Ω 8.26 Ω  14.31tweeter

Even though the magnitude of the impedance of the branch is not 
exactly 8 Ω, it is very close, and the speaker will receive a high level of 
power (actually 4.43 W).

For the woofer,

X fL2 2 (20 kHz)(3.3 mH) 414.69 ΩL π π= = =

with = + = ∠ °Z j8 Ω 414.69 Ω 414.77 Ω 88.9woofer

which is not a good match with the output impedance of the ampli-
fier. Therefore, the speaker will receive a very low level of power 
(6.69 mW 0.007 W)≅ .

For all the calculations, note that the capacitive elements predominate 
at low frequencies and the inductive elements at high frequencies. For 
the low frequencies, the reactance of the coil is quite small, permitting 
a full transfer of power to the speaker. For the high-frequency tweeter, 
the reactance of the capacitor is quite small, providing a direct path for 
power flow to the speaker.
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PROBLEMS

SECTION 15.2 Resistive Elements

 1. For the resistive element in Fig. 15.77:
a. Write the current in phasor form.
b. Calculate the voltage across the resistor in phasor form.
c. Sketch the phasor diagram of the voltage and current.
d. Write the voltage in the sinusoidal format.
e. Sketch the waveform of the voltage and current.

R 3 kV 

   = 5   10 –3 sin(100t + 608)  3iR

vR

+

_

FIG. 15.77 
Problem 1.

R 6.8 V 

iR

vR

+

_
 = 24 sin(300t + 208)

FIG. 15.78 
Problem 2.

2 kV 

  = 10  10–3 sin(250t + 408)3iL

vL

+

_
XL

FIG. 15.79 
Problem 3.

40 mH 

iL

+

_
L   = 200 3  10–6  sin(750t + 908)vL

FIG. 15.80 
Problem 4.

iL = 6 3 10–3 sin(1200t + 208)

L
+

_
vL = 16 sin(1200t + 1108)

FIG. 15.81 
Problem 5.

 2. For the resistive element in Fig. 15.78:
a. Write the voltage in phasor form.
b. Calculate the current through the resistor in phasor 

form.
c.  Sketch the phasor diagram of the voltage and current.
d. Write the current in the sinusoidal format.
e. Sketch the waveform of the voltage and current.

SECTION 15.3 Inductive Elements

 3. For the inductive element of Fig. 15.79:
a. Write the current in phasor form.
b. Calculate the voltage across the inductor in phasor 

form.
c. Sketch the phasor diagram of the voltage and current.
d. Write the voltage in the sinusoidal format.
e. Sketch the waveform of the voltage and current.

 4. For the inductive element of Fig. 15.80:
a. Calculate the reactance of the inductor.
b. Write the voltage in phasor form.
c. Calculate the current through the inductor in phasor form.
d. Sketch the phasor diagram of the voltage and current.
e. Write the current in the sinusoidal format.
f. Sketch the waveform of the voltage and current.

 5. For the inductive element of Fig. 15.81:
a. Write the voltage and current in phasor form.
b. Calculate the impedance of the inductor.
c. Find the inductance of the coil.
d. Sketch the phasor diagram of the voltage and current.
e. Sketch the waveform of the voltage and current.

iC

40 V XC  

+

_
  = 60 sin(400t + 608)vC

FIG. 15.82 
Problem 6.

SECTION 15.4 Capacitive Elements

 6. For the capacitive element of Fig. 15.82:
a. Write the voltage in phasor form.
b. Calculate the current of the capacitor in phasor form.
c. Sketch the phasor diagram of the voltage and current.
d. Write the current in the sinusoidal format.
e. Sketch the waveform of the voltage and current.
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 8. For the capacitive element of Fig. 15.84:
a. Write the voltage and current in phasor form.
b. Calculate the impedance of the capacitor.
c. Find the capacitance of the capacitor.
d.  Sketch the phasor diagram of the voltage and current.
e. Sketch the waveform of the voltage and current.

iC = 5 3 10–6 sin(20,000t – 808)

C
+

_
  vC0.01 mF

FIG. 15.83 
Problem 7.

iC = 60 3 10–6 sin(2000t + 808)

C
+

_
vC = 24 3 10–3 sin(2000t – 108)

FIG. 15.84 
Problem 8.

XL2
  =  6.8 kV  

5.6 kV 

R1  =  3 kV

R2

(c)

XL1  =  3.2 kV 

ZT

R  =  7.8 V

XL 8.2 V

(a)

ZT
20 V

R1  =  2 V

R2

(b)

XC  =  8 V

ZT

FIG. 15.85 
Problem 12.

L2  =  200 mH

C = 0.1 mF 

R  =  500 V

(c)

L1  =  47 mH

ZT

R  =  3 V

XL 5 V

(a)

ZT
6 kV

R  =  1 kV

XL2

(b)

ZT

XC  =  5 V XC  =  4 kV

XL1
  =  8 kV

f  =  1 kHz

FIG. 15.86 
Problem 13.

 7. For the capacitive element of Fig. 15.83:
a. Calculate the reactance of the capacitor.
b. Write the current in phasor form.
c. Calculate the voltage across the capacitor in phasor form.
d. Sketch the phasor diagram of the voltage and current.
e. Write the voltage in the sinusoidal format.
f. Sketch the waveform of the voltage and current.

SECTION 15.5 Impedance Diagram

 9. Sketch the impedance diagram of a 120 kΩ  resistor.

  10.  Sketch the impedance diagram of a 5 mH coil responding to 
a source having a frequency of 1.2 kHz.

 11.  Sketch the impedance diagram of a 0.02 Fµ  capacitor 
responding to a source having a frequency of 100 kHz.

SECTION 15.6 Series Configuration

 12.  Calculate the total impedance of the circuits in Fig. 15.85. 
Express your answer in rectangular and polar forms and 
draw the impedance diagram.

 13.  Calculate the total impedance of the circuits in Fig. 15.86. 
Express your answer in rectangular and polar forms, and 
draw the impedance diagram.
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 14.  Find the type and impedance in ohms of the series circuit 
elements that must be in the closed container in Fig. 15.87 
for the indicated voltages and currents to exist at the input 
terminals. (Find the simplest series circuit that will satisfy 
the indicated conditions.)

E  =  100 V / 08 

R  =  8 V

VR
+ – VL

+ –

XL  =  6 V

I

+

–
ZT

FIG. 15.88 
Problem 15.

E  =  120 V / 208 

R  = 18 V 

VR
+ –

VC
+ –

C  = 91 mF 

f  =  60 Hz 

I

+

–
ZT

FIG. 15.89 
Problem 16.

+

–
ZT

vL+ –

XC  =  10 V

vR+ –

R  =  4 V

e  =  70.7 sin 377t

vC
+ –

XL  =  6 V

i

FIG. 15.90 
Problem 17.

+

–
ZT

vL+ –

C = 8200 pF 

vR+ –

R = 1.2 kV

e  =  6 sin(20,000t + 608)

vC
+ –

L = 0.1 H 

i

FIG. 15.91 
Problem 18.

E = 100 V / 08 ?

(a)

+

–

I = 25 mA / 108

E = 60 V / 1008 ?

(b)

+

–

E = 5 kV / 08 ?

(c)

+

–

I = 8 A / 608 I = 10 A /  –458

FIG. 15.87 
Problem 14.

 15. For the circuit in Fig. 15.88:
a. Find the total impedance ZT  in polar form.
b. Draw the impedance diagram.
c. Find the current I and the voltages VR  and VL in phasor 

form.
d. Draw the phasor diagram of the voltages E, V ,R and V ,L  

and the current I.
e. Verify Kirchhoff’s voltage law around the closed loop.
f. Find the average power delivered to the circuit.
g. Find the power factor of the circuit, and indicate whether 

it is leading or lagging.
h. Find the sinusoidal expressions for the voltages and cur-

rent if the frequency is 60 Hz.
i. Plot the waveforms for the voltages and current on the 

same set of axes.

 17. For the circuit in Fig. 15.90:
a. Find the total impedance ZT  in polar form.
b. Draw the impedance diagram.
c. Find the value of C in microfarads and L in henries.
d. Find the current I and the voltages V ,R  V ,L  and VC in 

phasor form.
e. Draw the phasor diagram of the voltages E, V ,R  V ,L  

and VC and the current I.
f. Verify Kirchhoff’s voltage law around the closed loop.
g.  Find the average power delivered to the circuit.
h. Find the power factor of the circuit, and indicate whether 

it is leading or lagging.
i. Find the sinusoidal expressions for the voltages and  

current.
j. Plot the waveforms for the voltages and current on the 

same set of axes.

 16.  Repeat Problem 15 for the circuit in Fig. 15.89, replacing 
VL  with VC in parts (c) and (d).  18.  Repeat Problem 17 for the circuit in Fig. 15.91 except for  

part (c).
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 19. For the circuit of Fig. 15.92:
a. Find the total impedance Z .T

b. Calculate the current I .S

c. Find the voltage V .R

d. Find the power factor of the circuit. Is it leading or  
lagging?

+

–

8 V

XL1

XL2

XC1

XC2

ZT  12 V 

 40 V 

 60 V 

 30 V R

Is

E = 40 V / 608 VR

+

–

FIG. 15.92 
Problem 19.

 20. For the circuit of Fig. 15.93:
a. Find the current I .L

b. Find the voltage V .C

R

14 V 

XC

20 V 

8 V 
16 V 

XL2

XL1

VC+ – +

–

+–

E2  = 32 V / 458 

IL  

E1 = 48 V / 08

FIG. 15.93 
Problem 20.

R1

4 kV 

XC

2 kV 

R2

5 kV 

4 kV 

XL2

8 kV XL1

VR1
+ –

+

–
I  = 8 mA /308

IL1
  

Vs

FIG. 15.94 
Problem 21.

E = 24 V(rms) 22 V Scope = 43.20 V(p -p) 

+

–

R+

–

FIG. 15.95 
Problem 22.

Scope = 22.8 V(p -p) 

+

–

R+

–

2.4 mA(rms)

L

I

E = 26 V(rms)
 = 1000 rad/sv

FIG. 15.96 
Problem 23.

 21. For the circuit of Fig. 15.94:
a. Find the current I .L1

b. Find the voltage V .s

c. Calculate the voltage V .R1

 22.  Using the oscilloscope reading in Fig. 15.95, determine the 
resistance R (closest standard value).

 *23.  Using the DMM current reading and the oscilloscope mea-
surement in Fig. 15.96:
a. Determine the inductance L.
b. Find the resistance R.
c. Find the closest standard value for the inductance found 

in part (a).

E = 15 V(rms)

Scope = 10.37 V( p -p)
+

+

–

C

R

10 kV

–

f = 40 kHz

FIG. 15.97 
Problem 24.

 *24.  Using the oscilloscope reading in Fig. 15.97:
a. Find the rms value of the current in the series circuit.
b. Determine the capacitance C.

 25.  An electrical load has a power factor of 0.9 lagging. It dissi-
pates 9 kW at a voltage of 200 V. Calculate the impedance 
of this load in rectangular coordinates.
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 *26.  Find the series element or elements that must be in the 
enclosed container in Fig. 15.98 to satisfy the following 
conditions:
a. Average power to circuit = 400 W.
b. Circuit has a lagging power factor.

+

–

4 V

E = 240 V/ 08

I  =  3 A / u 

?

FIG. 15.98 
Problem 26.

+

–

V1
+ –

6.8 V

E = 110 V/ 58

V2
+ –

40 V

(b)

+

–

V2
+ –

6 kV

E = 200 V/ 608 

8 kV

(a)

V1
+ –

V22

FIG. 15.99 
Problem 27.

SECTION 15.7 Voltage Divider Rule

  27.  Calculate the voltages V1  and V2  for the circuits in 
Fig. 15.99 in phasor form using the voltage divider rule.

 28.  Calculate the voltages V1  and V2  for the circuits in 
Fig. 15.100 in phasor form using the voltage divider rule.

(b)

+

–
V1

3.3 kV4.7 kV

E = 150 V/ 08

30 kV

V2 10 kV

(a)

+

–

V2
+ –

20 V

E = 30 V/ 608

20 V

V1
+ –

40 V

FIG. 15.100 
Problem 28.

 *29.  For the circuit in Fig. 15.101:
a. Determine I, V ,R  and VC  in phasor form.
b. Calculate the total power factor, and indicate whether it 

is leading or lagging.
c. Calculate the average power delivered to the circuit.
d. Draw the impedance diagram.
e. Draw the phasor diagram of the voltages E, V ,R  and V ,C  

and the current I.
f. Find the voltages VR and VC  using the voltage divider 

rule, and compare them with the results of part (a).
g. Draw the equivalent series circuit of the above as far as 

the total impedance and the current i are concerned.

vC+ –

+

–

30 V

e  =  Ï2(20) sin(1000t + 408) i
C  = 39 mF L  = 20 mH 

vR+ –

FIG. 15.101 
Problem 29.
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L 20 mH VL

–

+
ZT

1 kV

R
VR –+

+

–

e = 7.07 sin vt
E = 5 V / 08

FIG. 15.102 
Problem 30.

SECTION 15.8 Frequency Response for  
Series ac Circuits

 *30.  For the circuit in Fig. 15.102:
a. Plot ZT  and Tθ  versus frequency for a frequency range 

of zero to 20 kHz.
b. Plot VL  versus frequency for the frequency range of  

part (a).
c. Plot Lθ  versus frequency for the frequency range of  

part (a).
d. Plot VR  versus frequency for the frequency range of  

part (a).

C 0.47mF VC

–

+
ZT

100 V

R
VR –+

+

–
e  = Ï2(10) sin vt

FIG. 15.103 
Problem 31.

 *31.  For the circuit in Fig. 15.103:
a. Plot ZT  and Tθ  versus frequency for a frequency range 

of zero to 10 kHz.
b. Plot VC  versus frequency for the frequency range of  

part (a).
c. Plot Cθ  versus frequency for the frequency range of  

part (a).
d. Plot VR  versus frequency for the frequency range of  

part (a).

ZT C

R

E = 120 V / 08 VC

+

–

L

8200 pF

1 kV 20 mH

I

FIG. 15.104 
Problem 32.

 *32.  For the series R-L-C circuit in Fig. 15.104:
a. Plot ZT  and Tθ  versus frequency for a frequency range 

of zero to 20 kHz in increments of 1 kHz.
b. Plot VC  (magnitude only) versus frequency for the same 

frequency range of part (a).
c. Plot I (magnitude only) versus frequency for the same 

frequency range of part (a).

ZT

C VC

+

–
0.47 F

+

–

R

220 V

E = 40 V /08

f: 0 to 40 kHz
m

FIG. 15.105 
Problem 33.

 33. For the series R-C circuit in Fig. 15.105:
a. Determine the frequency at which =X R.C

b.  Develop a mental image of the change in total imped-
ance with frequency without resorting to a single calcu-
lation.

c. Find the total impedance at 100 Hz and 10 kHz, and 
compare your answer with the assumptions of part (b).

d. Plot the curve of VC  versus frequency.
e. Find the phase angle of the total impedance at 

f 40 kHz.=  Is the network resistive or capacitive at 
this frequency?
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is

C

R

e vC

+

–

L

vR –+

+

–

vL –+

FIG. 15.106 
Problem 34.

SECTION 15.10 Phase Measurements

 34.  For the circuit in Fig. 15.106, determine the phase relation-
ship between the following using a dual-trace oscilloscope. 
The circuit can be reconstructed differently for each part, 
but do not use sensing resistors. Show all connections on a 
redrawn diagram.
a. e and Cυ
b. e and is

c. e and Lυ

Vertical sensitivity = 0.5 V/div.
Horizontal sensitivity = 0.2 ms/div.

v1

v2

Vertical sensitivity = 2 V/div.
Horizontal sensitivity = 10 m s/div.

v1

v2

(II)

(I)

FIG. 15.107 
Problem 35.

 35. For the oscilloscope traces in Fig. 15.107:
a. Determine the phase relationship between the wave-

forms, and indicate which one leads or lags.
b. Determine the peak-to-peak and rms values of each 

waveform.
c. Find the frequency of each waveform.

GLOSSARY

Impedance diagram A vector display that clearly depicts the 
magnitude of the impedance of the resistive, reactive, and 
capacitive components of a network and the magnitude and 
angle of the total impedance of the system.

Phasor diagram A vector display that provides at a glance the 
magnitude and phase relationships among the various volt-
ages and currents of a network.

Series ac configuration A connection of elements in an ac net-
work in which no two impedances have more than one ter-
minal in common and the current is the same through each 
element.

Voltage divider rule A method through which the voltage 
across one element of a series of elements in an ac network 
can be determined without first having to find the current 
through the elements.
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16 Parallel ac Circuits

 16.1 INTRODUCTION
The analysis of parallel ac networks will follow the same development applied to dc parallel 
networks. The rules and laws introduced for dc circuits will also be applicable to parallel ac 
networks with the primary difference being simply the use of phasors and complex number 
algebra rather than simply numerical values. The resulting mathematics may be a bit more 
cumbersome but the strong similarities in application should make the material fairly easy to 
comprehend.

16.2 TOTAL IMPEDANCE
The basic structure of a parallel ac network is provided in Fig. 16.1(a). As with dc circuits 
the voltage is the same across each parallel element and the source current is the sum of the  
currents through each branch. The simplest of parallel networks with all three elements  
appears in Fig. 16.1(b). We must now find a way to determine the total impedance of such a 
combination so that other elements such as the source current can be determined.

•  Become familiar with the characteristics of parallel 
ac networks and be able to find current, voltage, 
and power levels for each element.

• Be able to find the total impedance and admittance 
of any parallel ac network and sketch the 
impedance and admittance diagram of each.

• Develop confidence in applying Kirchhoff’s current 
law (KCL) to any parallel configuration.

• Be able to apply the current divider rule (CDR) to 
any parallel ac network.

• Become adept at finding the frequency response of 
a parallel combination of elements.

 Objectives

Z1 Z2 Z3

ZT

Is

YT

I1 I2 I3

E

–

+

Is

ZT

YT

IR IC IL

E

–

+

R LC

(a) (b)

FIG. 16.1
Parallel ac network.
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For the network of Fig. 16.2 with any number of parallel elements the 
total impedance has the same format as encountered for dc networks:

 
Z Z Z Z Z
1 1 1 1 . . . 1

T N1 2 3

= + + + +  (16.1)

which can be written in the following form:

 Z

Z Z Z Z

1
1 1 1 . . . 1T

N1 2 3

=
+ + + +

 
(16.2)

For two impedances in parallel

Z Z Z
1 1 1

T 1 2

= +

which will become the following after a few mathematical manipulations:

 Z
Z Z

Z ZT
1 2

1 2

=
+

 (16.3)

For three impedances in parallel the resulting equation is the following:

 Z
Z Z Z

Z Z Z Z Z ZT
1 2 3

1 2 2 3 1 3

=
+ +

 (16.4)

And for any number of impedances in parallel of the same value, the 
following equation can be applied:

 
N

Z
Z

T
1=  (16.5)

Recall from the previous chapter that if the total impedance 
has a positive angle associated with it, the network is inductive 
resulting in the applied voltage leading the current of the 
network. In total, it therefore has a lagging power factor (FP). If 
the total impedance has a negative angle associated with it, the 
network is capacitive resulting in the current leading the applied 
voltage. In total, the network has a leading power factor (FP).

A few examples will clearly reveal that based on our previous  
experience with parallel dc circuits there is a direct path toward finding 
the desired unknowns.

EXAMPLE 16.1 For the network in Fig. 16.3:

a. Determine the input impedance.
b. Draw the impedance diagram.

Z1 Z2 Z3 ZNZT

FIG. 16.2
Parallel impedances.

LX 10 VZT R 20 V

FIG. 16.3
Example 16.1.
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Solutions:

a. Z
Z Z

Z Z

Z 8.93 63.43° 4.00 7.95Ω∠ Ω + Ω

( )( )
=

+
=

Ω ∠ ° Ω ∠ °
Ω + Ω

=
Ω ∠ °
∠ °

= = + =

20  0 10  90
20  10 

200  90
22.361 26.57

 

j

R jX

T
R L

R L

T T L j

b. The impedance diagram appears in Fig. 16.4.

EXAMPLE 16.2 For the network of Fig. 16.5:

a. Determine the total impedance using Eqs. (16.2) and (16.4).
b.  Sketch the impedance diagram.

Solutions:

a. Eq. (16.2): 

4.68 20.56°

j

Z

Z Z Z

 

  1
1 1 1

  1
1

5  0
1

8  90
1

20  90

  1
0.2 S 0 0.125 S 90 0.05 S 90

  1
0.2 S 0.075 S

1
0.2136 S 20.56

 

T

R L C

Ω∠

=
+ +

=

Ω ∠ °
+

Ω ∠ °
+

Ω ∠− °

=
∠ ° + ∠− ° + ∠ °

=
−

=
∠− °

=

Eq. (16.4)

TZ 4.68 j

j j j

Z
Z Z Z

Z Z Z Z Z Z

 Ω 20.56° 4.38 Ω 1.64 Ω

 
5  0 8  90 20  90

5  0 8  90 8  90 20  90

  5  0 20  90

 
800  0

40 90 160 0 100 90

  800 
160 40 100

800 
160 60

  800 
170.88 20.56

     

T
R L C

R L L C R C

∠ = +

( )( )( )
( )( ) ( )( )

( )( )

=
+ +

=
Ω ∠ ° Ω ∠ ° Ω ∠− °

Ω ∠ ° Ω ∠ ° + Ω ∠ ° Ω ∠− °

+ Ω ∠ ° Ω ∠− °

=
Ω ∠ °

∠ ° + ∠ ° + ∠− °

= Ω
+ −

= Ω
−

= Ω
∠− °

=

b. The impedance diagram appears in Fig. 16.6.

16.3 TOTAL ADMITTANCE
In the discussion of parallel dc networks the concept of conductance 
was introduced as a quantity that is defined by G R1 .=  The higher the 
resistance, the lower the conductance and vice versa. Clearly, the chosen 
name is appropriate because when we have higher resistance levels we 

 j ZT

63.43°

ZL  =  7.95 V / 90°

+ZR  =  4.00 V / 0°

8.93 V

FIG. 16.4
Impedance diagram for the network in Fig. 16.3.

VZT R 5 V XL 8 V XC 20 

FIG. 16.5
Example 16.2.

 j

20.56° ZL  =  1.64 V/ 90°

+ZR  =  4.38 V / 0°

4.68 V

FIG. 16.6
Impedance diagram for the network in Fig. 16.5.
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expect the conductive state of the network to be less. For ac parallel 
circuits the terminology applied is admittance, which has the symbol Y 
and is measured in siemens (S).

Resistive Elements: For resistors the admittance is defined by

 ( )= =
∠ °

= ∠ ° = ∠ °
R R

GY
Z
1 1

0
1 0 0 siemens, SR

R

 (16.6)

Inductive Elements: For inductive elements the admittance is  
defined by

 ( )= =
∠ °

= ∠− °
X X

Y
Z
1 1

90
1 90 siemens, SL

L L L

 (16.7)

The ratio X1 L  is called the susceptance of the inductive element, is 
given the symbol LB , and is measured in siemens (S). Therefore,

 ( )=B
X
1 siemens, SL

L

 (16.8)

and

 ( )= ∠− °BY 90 siemens, SL L  (16.9)

Capacitive Elements: For capacitive elements the admittance is 
defined by

 
X X

Y
Z
1 1

90
1 90 siemens, SC

C C C

( )= =
∠− °

= ∠ °  (16.10)

The ratio X1 C  is also called the susceptance of the capacitive element, 
is given the symbol B ,C  and is measured in siemens (S). Therefore,

 ( )=B
X
1 siemens, SC

C

 (16.11)

and

 ( )= ∠ °BY 90 siemens, SC C  (16.12)

For dc circuits with simply resistive elements we found that the total 
conductance of parallel resistive elements was simply the sum of the 
conductance values as shown below.

 ( )= + + + +G G G G G. . . siemens, ST N1 2 3  (16.13)

For ac parallel networks, the total admittance is simply the sum of the 
admittance levels of all the parallel branches of Fig. 16.7. That is,

 Y Y Y Y Y. . . siemens, ST N1 2 3 ( )= + + + +  (16.14)

In any case, whether the total impedance or admittance is first found, 
the other can be found using the simple equation:

 ( )=Y
Z
1 siemens, ST

T

 (16.15)
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For parallel ac circuits, the admittance diagram is used with the 
three admittances, represented as shown in Fig. 16.8.

The total admittance will always lie on the vertical axis or in the 
region to the right of the vertical axis (in light blue shading).

Note in Fig. 16.8 that the conductance (like resistance) is on the posi-
tive real axis, whereas inductive and capacitive susceptances are in direct 
opposition on the imaginary axis.

For any configuration (series, parallel, series-parallel, and so 
on), the angle associated with the total admittance is the 
angle by which the source current leads the applied voltage.

For parallel ac networks, the components of the configuration and the 
desired quantities determine whether to use an impedance or admittance 
approach. If the total impedance is requested, the most direct route may 
be to use impedance parameters. However, sometimes using admittance 
parameters can also be very efficient, as demonstrated in some of the 
examples in the rest of the text. In general, use the approach with which 
you are more comfortable. Naturally, if the format of the desired quan-
tity is spelled out, it is usually best to work with those parameters.

EXAMPLE 16.3 For the parallel R-L network of Fig. 16.3, repeated 
as Fig. 16.9(a)

a. Find the admittance of each parallel element.
b. Calculate the total admittance of the network.
c. Sketch the admittance diagram.
d. Calculate the total impedance using Eq. (16.15) and compare with 

the solution of Example 16.1.

Solutions:

a. 0.05 S 0°

j

G
R

Y

0.05 S 0

0 1 0 1
20 

0R ∠

+

= ∠ ° = ∠ ° =
Ω

∠ ° =

=

∠− = −

= ∠− ° = ∠− ° =
Ω

∠− °

= j

B
X

Y

0.1 S 90° 0 0.1 S

90 1 90 1
10 

90L L
L

 

b. 

− = ∠− °

( ) ( )= + = + + −

= − =j

j j

G j B

Y Y Y

0.05 S 0 1 S 0 112 S 63.43

0.05 S 0 0 0.1 S

  .   .
T R L

L

c. The admittance diagram appears in Fig. 16.9.

d. 

Ω∠ °

= =
∠− °

=

Z
Y

8.93 63.43

1 1
0.112 S 63.43

  — a perfect match

T
T

Y1 Y2 Y3 YNYT

FIG. 16.7
Finding the total admittance of N parallel branches.

 j

BC / 90°

BL / –90°

G / 0°
+

FIG. 16.8
Admittance diagram.

(a)

LX 10 VZT R 20 V

FIG. 16.9
Admittance diagram for the network in 

Fig. 16.3, repeated as Fig. 16.9(a).

(b)

 j

YT

+

YL  =  0.1 S/ – 90°

0.112 S

–63.43°

YR  =  0.05 S / 0°
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EXAMPLE 16.4 For the parallel R-L-C network of Fig. 16.5:

a. Find the admittance for each parallel branch.
b. Calculate the total admittance of the network.
c. Sketch the admittance diagram.
d. Calculate the total impedance using Eq. (16.15) and compare with 

the solution of Example 16.2.

Solutions:

a. 

0.125 S 0.125 S

0.05 S 0.05 S

∠ ° = +

∠− ° = −

∠ = +

= ∠ ° = ∠ ° =
Ω

∠ °

=

= ∠− ° = ∠− ° =
Ω

∠− °

=

= ∠ ° = ∠ ° =
Ω

∠ °

= °

j

j

j

G
R

B
X

B
X

Y

0.2 S 0 0.2 S 0

Y

90 0

Y

90 0

0 1 0 1
5 

0

90 1 90 1
8 

90

90 1 90 1
20 

90

 

R

L L
L

C C
C

 

 

b. 

0.214 S 20.56∠− °

( ) ( ) ( )

= + +

= + + − + +

= − =

j j j

j

Y Y Y Y

0.2 S 0 0 0.125 S 0 0.05 S

0.2 S 0.075 S

T R L C

c. The admittance diagram appears in Fig. 16.10.

d. 

4.68 Ω ∠ °

= =
∠− °

=

Z
Y

20.56

1 1
0.214 S 20.56

— a perfect match

T
T

On many occasions, the inverse relationship Y 1 ZT T=  or Z 1 YT T=  
will require that we divide the number 1 by a complex number having a real 
and an imaginary part. This division, if not performed in the polar form, 
requires that we multiply the numerator and denominator by the conjugate 
of the denominator, as follows:

Y
Z

( )
( )

= =
Ω + Ω







 =

Ω + Ω








Ω − Ω
Ω − Ω









=
−
+

j j

j

j

j

1 1
4  6 

(1) 1
4  6 

4  6 

4  6 

4 6

4 6

T
T

2 2

and YY jS S4
52

  6
52T = −  

To avoid this laborious task each time we want to find the reciprocal 
of a complex number in rectangular form, a format can be developed 
using the following complex number, which is symbolic of any imped-
ance or admittance in the first or fourth quadrant:

a j b a j b
a j b
a j b

a j b
a b

1 1

1 1 1 1

1 1

1 1

1 1

1
2

1
2

∓
∓

∓
±

=
±














 =

+

or 
a j b

a
a b

j
b

a b
1

1 1

1

1
2

1
2

1

1
2

1
2

∓
±

=
+ +

 (16.16)

20.56°

YR

YC

YL  –  YC

YT

0.214 S

+

YL

 j

FIG. 16.10
Admittance diagram for the network 

in Fig. 16.5.
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Note that the denominator is simply the sum of the squares of each term. 
The sign is inverted between the real and imaginary parts. A few exam-
ples will develop some familiarity with the use of this equation.

EXAMPLE 16.5 Find the admittance of each set of series elements 
in Fig. 16.11.

(a) (b)

R 6 V

XC 8 V

Y

R 10 V

XC 0.1 V

Y XL 4 V

FIG. 16.11
Example 16.5.

I

Z2E
ZT,

 
YT

Z1

I1 I2

–

+

FIG. 16.12
Parallel ac network.

Solutions:

a. = − = Ω − ΩR jX jZ 6  8 C

Eq. (16.16):

+

( ) ( ) ( ) ( )
=

Ω − Ω
= Ω

Ω + Ω
+ Ω

Ω + Ω

=

Y

j

j
j

6
100

S 8
100

S

1
6  8 

6 
6  8 

  8 
6  8 2 2 2 2

b. = Ω + Ω − Ω = Ω + Ωj j jZ 10  4  0.1  10  3.9 

Eq. (16.16):

 
−

= =
Ω + Ω

=
Ω + Ω

−
Ω + Ω

= − = j

j
j

j

Y
Z

0.087 S 0.034 S

1 1
10 3.9

10
(10 ) (3.9 )

3.9
(10 ) (3.9 )

10
115.21

S 3.9
115.21

S

2 2 2 2

16.4 PARALLEL ac NETWORKS
For the representative parallel ac network in Fig. 16.12, the total imped-
ance or admittance is determined as described in the previous section, 
and the source current is determined by Ohm’s law as follows:

 I E
Z

EY
T

T= =  (16.17)

Since the voltage is the same across parallel elements, the current 
through each branch can then be found through another application of 
Ohm’s law:

 I E
Z

EY1
1

1= =  (16.18)
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 I E
Z

EY2
2

2= =  (16.19)

Kirchhoff’s current law can then be applied in the same manner as 
used for dc networks. However, keep in mind that we are now dealing 
with the algebraic manipulation of quantities that have both magnitude 
and direction. We have

I I I 01 2− − =

or      I I I1 2= +  (16.20)

The power to the network can be determined by

 θ=P EI cos T  (16.21)

where Tθ  is the phase angle between E and I.
A few examples:

R-L
Refer to Fig. 16.13.

R 3.33 V

a

ILIR

2.5 VXL

I  =  10 A / 0°

E  =  20 V / 53.13°
+

–

YT

ZT

FIG. 16.14
Applying phasor notation to the network in Fig. 16.13.

R 3.33 V

a

iLiR

2.5 VXL

i

e  = √2(20) sin(vt +  53.13°)

+

–

FIG. 16.13
Parallel R-L network.

Phasor Notation As shown in Fig. 16.14.

Ω °

( )( )
=

+
=

Ω ∠ ° Ω ∠ °
Ω + Ω

=
Ω ∠ °

∠ °

= ∠

j
Z

Z Z
Z Z

2 53.13

3.33  0 2.5  90
3.33  2.5 

8.33  90
4.16 36.87

T
R L

R L

and         Y
Z

− °= =
Ω ∠ °

= 0.5 S 53.131 1
2  53.13T

T

∠∠
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or

∠− °

= +

= ∠ ° + ∠− ° =
Ω

∠ ° +
Ω

∠− °

= ∠ ° + ∠− ° = −

= 0.5 S 53.13

G B

j

Y Y Y

0 90 1
3.33 

0 1
2.5 

90

0.3 S 0 0.4 S 90 0.3 S 0.4 S

 

T R L

L

Admittance diagram: As shown in Fig. 16.15.

EY ∠ °( )( )= = = ∠ ° ∠− ° =I E
Z

10 A 020 V 53.13 0.5 S 53.13
T

T

= =
∠ °
Ω ∠ °

= ∠ °I E
R

6 A 53.13
20 V 53.13

3.33  0R

= =
∠ °
Ω ∠ °

= ∠− °I E
X

8 A 36.87
20 V 53.13

2.5  90L
L

Kirchhoff’s current law: At node a,

I I I 0R L− − =

or       I I IR L= +

∠ ° = ∠ ° + ∠− °10 A 0 6 A 53.13 8 A 36.87

( ) ( )∠ ° = + + − = +j j j10 A 0 3.60 A 4.80 A 6.40 A 4.80 A 10 A 0

and ∠ ∠ ( )° = °10 A 0 10 A 0    checks  

Phasor diagram: The phasor diagram in Fig. 16.16 indicates that the 
applied voltage E is in phase with the current I R and leads the current 
I L  by 90 .°

Power: The total power in watts delivered to the circuit is

P EI

120 W

 cos

20 V)(10 A cos53.13 200 W)(0.6
T Tθ

( )( )

=

= ° =

=

or P I R
V
R

V G 120 W  20 V 0.3 S  T
R

R
2

2
2 2( ) ( )= = = = =  

or, finally,

θ θ
( ) ( )( )

= + = +

= ° + ° = +

=

P P P EI EI

120 W

cos cos

20 V 6 A cos 0 20 V)(8 A cos 90 120 W 0

 

T R L R R L L

Power factor: The power factor of the circuit is

F 0 6 laggingcos cos53.13 .p Tθ= = ° =  (an inductive network 
as evidenced by a positive angle associated with total impedance)

or, through an analysis similar to that used for a series ac circuit,

θ = = = = =P
EI

E R

EI
EG
I

G
I V

G
Y

cos T
T

2

and F G
Y

cosp T
T

θ= =  (16.22)

where G and YT  are the magnitudes of the total conductance and admit-
tance of the parallel network. For this case,

θ= = =F 0 6 laggingcos 0.3 S
0.5 S

.p T

53.13° +

j

YT  =  0.5 S / –53.13°

G / 0°  =  0.3 S / 0°

BL / –90°  =  0.4 S / –90°

 FIG. 16.15
Admittance diagram for the parallel R-L 

network in Fig. 16.13.

36.87° +

j

I

53.13°

IL

IR

E

FIG. 16.16
Phasor diagram for the parallel 

R-L network in Fig. 16.13.

M16_BOYL0302_14_GE_C16.indd   693M16_BOYL0302_14_GE_C16.indd   693 28/02/23   1:09 PM28/02/23   1:09 PM



694 | | | PARALLEL ac CIRCUITS
a c

Impedance approach: The current I can also be found by first finding 
the total impedance of the network:

∠

( )( )
=

+
=

Ω ∠ ° Ω ∠ °
Ω ∠ ° + Ω ∠ °

=
∠ °

∠ °
= °

Z
Z Z

Z Z

2 Ω 53.13

3.33  0 2.5  90

3.33  0 2.5  90

8.325 90

4.164 36.87
 

T
R L

R L

Then, using Ohm’s law, we obtain

I E
Z

10 A 0
20 V 53.13

2 53.13T

∠= =
∠ °

Ω ∠ °
= °

R-C
Refer to Fig. 16.17.

R 1.67 V

a

iCiR

1.25 VXC
i  =  14.14 sin vt

+

–

e

YT

ZT

 FIG. 16.17
Parallel R-C network.

R 1.67 V

a

ICIR

1.25 VXC
I  =  10 A / 0°

+

–

E

FIG. 16.18
Applying phasor notation to the network in 

Fig. 16.17.

53.13°

+

j

G / 0°  =  0.6 S / 0°

BC / 90°  =  0.8 S / 90°
YT  =  1 S / 53.13°

FIG. 16.19
Admittance diagram for the parallel R-C 

network in Fig. 16.17.

Phasor Notation As shown in Fig. 16.18.

G B

j

Y Y Y

1.0 S 53.13

Z
Y

1 53.13

0 90 1
1.67 

0 1
1.25 

90

0.6 S 0 0.8 S 90 0.6 S 0.8 S

1 1
1.0 S 53.13

 

T R C C

T
T

 

∠

Ω∠− °

= + = ∠ ° + ∠ ° =
Ω

∠ ° +
Ω

∠ °

= ∠ ° + ∠ ° = + = °

= =
∠ °

=

Admittance diagram: As shown in Fig. 16.19.

∠−= = =
∠ °

∠ °
= °E IZ I

Y
10 V 53 13

10 A 0
1 S 53.13

.T
T

∠−= =
∠− °

Ω ∠ °
= °I E

R
6 A 53 13

10 V 53.13
1.67   0

.R

∠= =
∠− °
Ω ∠− °

= °I E
X

8 A 36 87
10 V 53.13
1.25 90

.C
C
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Kirchhoff’s current law: At node a,

I I I 0R C− − =

or       I I IR C= +

which can also be verified (as for the R-L network) through vector 
algebra.

Phasor diagram: The phasor diagram in Fig. 16.20 indicates that E is 
in phase with the current through the resistor I R and lags the capacitive 
current IC  by 90 .°

Time domain:

te t 14 14 sin 53 132 10 sin 53.13 . ( . )ωω( )( )= − ° = − °

ti t 8 48 sin 53 132 6 sin 53.13 . ( . )R ωω( )( )= − ° = − °

ti t 11 31 sin 36 872 8 sin 36.87 . ( . )C ωω( )( )= + ° = + °

A plot of all of the currents and the voltage appears in Fig. 16.21. 
Note that e and iR are in phase and e lags iC  by 90 .°

90°

36.87°

53.13°

iR

0

e

2
–

2 2
3

iC

i
14.14 A

11.31 A

8.48 A

t2p vp p
p p

FIG. 16.21
Waveforms for the parallel R-C network in Fig. 16.17.

IC

I

36.87°

53.13°

j

+

IR

E

FIG. 16.20
Phasor diagram for the parallel R-C network 

in Fig. 16.19.

Power:

P EI

60 W

 cos 10 V)(10 A cos 53.13 10 0.6

 
T

2θ ( ) ( )( )= = ° =

=

or        P E G 60 W10 V 0.6 ST
2 2 ( )( )= = =

or, finally,

θ θ

( ) ( )

= + = +

= ° + °

=

P P P EI EI

60 W

cos cos

10 V)(6 A cos 0 10 V)(8 A cos 90

 

T R C R R C C

Power factor: The power factor of the circuit is

F 0 6 leadingcos53.13 .p = ° =  (a capacitive network as defined 
by negative angle associated with total impedance)

Using Eq. (16.22), we have

θ= = = =F G
Y

0 6 leadingcos 0.6 S
1.0 S

.p T
T
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Impedance approach: The voltage E can also be found by first find-
ing the total impedance of the circuit:

 

Ω∠−

( )( )
=

+
=

Ω ∠ ° Ω ∠− °
Ω ∠ ° + Ω ∠− °

=
∠− °

∠− °
= °

Z
Z Z

Z Z

1 53.19

1.67  0 1.25  90
1.67  0 1.25  90

2.09 90
2.09 36.81

 

T
R C

R C

and then, using Ohm’s law, we find

V∠( )( )= = ∠ ° Ω ∠− ° = − °E IZ 10 53 1910 A 0 1 53.19 .T

R-L-C
Refer to Fig. 16.22.

53.13°

BC
 / 90°  =  0.3 S / 90°

+

 j

G / 0°  =  0.3 S / 0°

BL
 / –90°  =  0.7 S / –90°

YT  =  0.5 S / –53.13°

BL  –  BC

FIG. 16.24
Admittance diagram for the parallel 

R-L-C network in Fig. 16.22.

R 3.33 V

a

iLiR

1.43 VXL

i

e  =  √2(100) sin(vt  +  53.13°)

+

–

iC

3.33 VXC

FIG. 16.22
Parallel R-L-C ac network.

R 3.33 V

a

ILIR

1.43 VXL

I

E  =  100 V / 53.13°
+

–

IC

3.33 VXC

TZ

YT

FIG. 16.23
Applying phasor notation to the network in Fig. 16.22.

Phasor notation: As shown in Fig. 16.23.

∠−

Ω∠

= + + = ∠ ° + ∠− ° + ∠ °

=
Ω

∠ ° +
Ω

∠− ° +
Ω

∠ °

= ∠ ° + ∠− ° + ∠ °
= − +

= − = °

= =
∠− °

= °

G B B

j j

j

Y Y Y Y

Y 0.5 S 53.13

Z
Y

2 53.13

0 90 90

1
3.33 

0 1
1.43 

90 1
3.33 

90

0.3 S 0 0.7 S 90 0.3 S 90

0.3 S 0.7 S 0.3 S

0.3 S 0.4 S

1 1
0.5 S 53.13

 

T R L C L C

T

T
T

Admittance diagram: As shown in Fig. 16.24.

E G

E B

E B

I E
Z

EY 50 A 0

I
30 A 53.13

I
70 A 36.87

I
30 A 143.13

100 V 53.13 0.5 S 53.13  

0
100 V 53.13 0.3 S 0

90
100 V 53.13 0.7 S 90

90
100 V 53.13 0.3 S 90

T
T

R

L L

C C

θ

θ

θ

∠

∠

∠−

∠

( )( )

( )( )
( )( )
( )( )
( )( )
( )( )
( )( )

= = = ∠ ° ∠− ° = °

= ∠ ∠ °
= ∠ ° ∠ ° = °
= ∠ ∠− °
= ∠ ° ∠− ° = °
= ∠ ∠ °
= ∠ ° ∠+ ° = °
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Kirchhoff’s current law: At node a,

I I I I 0R L C− − − =

or   I I I IR L C= + +

Phasor diagram: The phasor diagram in Fig. 16.25 indicates that the 
impressed voltage E is in phase with the current I R through the resistor, 
leads the current I L  through the inductor by 90 ,°  and E lags the current 
IC  of the capacitor by 90 .°

Time domain:

ωω( )= = ti t 70 70 sin2 50 sin .

ωω +( )( )= + ° = °ti t 42 42 sin 53 132 30 sin 53.13 . ( . )R

ωω −( )( )= − ° = °ti t 98 98 sin 36 872 70 sin 36.87 . ( . )L

ωω +( )( )= + ° = °ti t 42 42 sin 143 132 30 sin 143.13 . ( . )C

A plot of all of the currents and the impressed voltage appears in 
Fig. 16.26.

Power: The total power in watts delivered to the circuit is

θ ( ) ( )( )= = ° =

=

P EI

3000 W

cos 100 V)(50 A cos 53.13 5000 0.6

 
T

36.87°

53.13 °

j

IC

I

IR

E

IL   –  IC

IL

+

FIG. 16.25
Phasor diagram for the parallel R-L-C network 

in Fig. 16.22.

90°

36.87°

iL

0

e

2
–

2

i

53.13°

90°

iR

–

iC

  t2
2
3p v

p p p
p p

FIG. 16.26
Waveforms for the parallel R-L-C network in Fig. 16.22.

or     P E G 3000 W100 V 0.3 ST
2 2( ) ( )= = =

or, finally,

θ θ θ

( ) ( )

( )

= + +

= + +

= ° + °

+ °
= + +

=

P P P P

EI EI EI

3000 W

cos cos cos

100 V)(30 A cos 0 100 V)(70 A cos 90

100 V)(30 A cos 90

3000 W 0 0

 

T R L C

R R L L C C

Power factor: The power factor of the circuit is

 θ= = ° =F 0 6 laggingcos cos 53.13 .p T  (ZT has a positive angle)
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Using Eq. (16.22), we obtain

θ= = = =F G
Y

0 6 laggingcos 0.3 S
0.5 S

.p T
T

Impedance approach: The input current I can also be determined by 
first finding the total impedance in the following manner:

∠=
+ +

= °Z
Z Z Z

Z Z Z Z Z Z
2 Ω 53.13 T

R L C

R L L C R C

and, applying Ohm’s law, we obtain

∠= =
∠ °

Ω ∠ °
= °I E

Z
50 A 0

100 V 53.13
2 53.13T

16.5 CURRENT DIVIDER RULE (CDR)
The basic format for the current divider rule in ac circuits is exactly 
the same as that for dc circuits; that is, for two parallel branches with 
impedances Z1 and Z2  as shown in Fig. 16.27.

 =
+

=
+

I
Z I

Z Z
I

Z I
Z Z

  or  T T
1

2

1 2
2

1

1 2

 (16.23)

EXAMPLE 16.6 Using the current divider rule, find the current 
through each impedance in Fig. 16.28.

Solution:

I
Z I

Z Z
16 A 36.87

I
Z I

Z Z
12 A 53.13

4  90 20 A 0
3  0 4  90

80 A 90
5 53.13

 
3  0 20 A 0

5  53.13
60 A 0
5 53.13

 

R
L T

R L

L
R T

R L

∠

∠−

( )( )

( )( )

=
+

=
Ω ∠ ° ∠ °
Ω ∠ ° + Ω ∠ °

=
∠ °

∠ °
= °

=
+

=
Ω ∠ ° ∠ °

Ω ∠ °
=

∠ °
∠ °

= °

EXAMPLE 16.7 Using the current divider rule, find the current 
through each parallel branch in Fig. 16.29.

Solution:

∠−

∠

( )( )

( )( )

( )( )

=
+

=
Ω ∠− ° ∠ °

− Ω + Ω + Ω
=

∠− °
+

=
∠− °
∠ °

≅ °

=
+

=
Ω + Ω ∠ °

Ω ∠ °

=
∠ ° ∠ °

∠ °
=

∠ °
∠ °

= °

−
−

−

−

j j j

j

I
Z I

Z Z

1 64 A 140.54

I
Z I

Z Z

6.63 A  32.33

2  90 5 A 30
2  1  8 

10 A 60
1 6

10 A 60
6.083 80.54

.

1  8  5 A 30
6.08  80.54

8.06 82.87 5 A 30
6.08 80.54

40.30 A 112.87
6.083 80.54

R L
C T

C R L

C
R L T

R L C

16.6 FREQUENCY RESPONSE OF PARALLEL 
ELEMENTS
Recall that for elements in series, the total impedance is the direct sum 
of the impedances of each element, and the largest real or imaginary 
component has the most impact on the total impedance. For parallel ele-
ments, it is important to remember that the smallest parallel impedance 
will have the most impact on the total impedance.

IT

Z1

Z2

IT

I1

I2

FIG. 16.27
Applying the current divider rule.

XL 4 V

I  =  20 A 0°
IL

R 3 V

IR
/

FIG. 16.28
Example 16.6.

IT  =  5 A 30°

R

1 V

XL

8 V

XC

2 V

/

FIG. 16.29
Example 16.7.
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In Fig.  16.30, the frequency response has been included for each 
element of a parallel R-L-C combination. At very low frequencies, the 
impedance of the coil will be less than that of the resistor or capacitor, 
resulting in an inductive network in which the reactance of the induc-
tor will have the most impact on the total impedance. As the frequency 
increases, the impedance of the inductor will increase, while the imped-
ance of the capacitor will decrease. Eventually, the impedance of the 
capacitive element will be the smallest of the three parallel elements and 
the network will be capacitive in nature, as shown in Fig. 16.31. Note 
in Fig. 16.31 that the impedance is a maximum near the peak frequency 
rather than a minimum as it was for the series R-L-C circuit. That means 
for the applied voltage source the current will be a minimum at the peak 
frequency rather than a maximum as it was for the series configuration. 
For the ideal elements of Fig. 16.30 the peak frequency can be found by 
first finding the total admittance as follows:

= + + =
∠ °

+
∠ °

+
∠− °

= + +
−

= − +

= + −








R X X R X X

R jX jX R
j

X
j

X

R
j

X X

Y 1 1 1 1
0

1
90

1
90

1 1 1 1 1 1

Y 1   1 1

T
L C L C

L C L C

T
C L

f

XC

f

XL

f

R

E

ZT

R L

–

+

C

FIG. 16.30
Frequency response for parallel R-L-C elements.

0 f 

YT 

fp

C R L

1/R

FIG. 16.31
Impedance versus frequency for the network of Fig. 16.30.
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R 220 V L 4 mH

Is

ZT

E

–

+0°/E  =  20 V 

f : 0 to 20 kHz

FIG. 16.32
Determining the frequency response of a parallel R-L network.

The Impedance ZT

Before getting into specifics, let us first develop a “sense” for the impact of 
frequency on the network in Fig. 16.32 by noting the impedance-versus- 
frequency curves of the individual elements, as shown in Fig. 16.33. The 
fact that the elements are now in parallel requires that we consider their 
characteristics in a different manner than occurred for the series R-C cir-
cuit in Section 15.8. Recall that for parallel elements, the element with 
the smallest impedance will have the greatest impact on the total imped-
ance at that frequency. In Fig. 16.33, for example, X L is very small at low 
frequencies compared to R, establishing X L  as the predominant factor 
in this frequency range as shown in the rough sketch of Fig. 16.34. In 
other words, at low frequencies the network will be primarily inductive, 
and the angle associated with the total impedance will be close to 90 ,°   

When =X XL C the total admittance will simply be

 Y
R
1

T

fat p

=  (16.24)

and the total impedance:

 Z RT f at   p
=  (16.25)

The peak frequency can be found in the same manner as for the series 
R-L-C circuit:

 

π
π

π

π

=

=

=

=

X X

fL
fC

f
LC

f
LC

2 1
2

1
4

1
2

L C

p

2
2

 (16.26)

A similar network will be examined in detail in Chapter 21 when we exam-
ine parallel resonant networks. That analysis will incorporate a current 
source, however, so the parallel output voltage will be a maximum at the 
peak frequency because the impedance is a maximum at that frequency.

Parallel R-L ac Network

Let us now note the impact of frequency on the total impedance and  
inductive current for the parallel R-L network in Fig.  16.32 for a fre-
quency range of zero through 40 kHz.
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as with a pure inductor. As the frequency increases, X L  increases until 
it equals the impedance of the resistor (220 Ω). The frequency at which 
this situation occurs can be determined in the following manner:

X f L R2L 1π= =

and 
π

=f R
L21  (16.27)

which for the network in Fig. 16.32 is

f R
L

8.75 kHz
2

220 
2 (4 10 H)1 3π π

= = Ω
×

≅

−

which falls within the frequency range of interest.
For frequencies less than f ,1  X R,L <  and for frequencies greater 

than f ,1  X R,L >  as shown in Figs. 16.33 and 16.34. A general equa-
tion for the total impedance in vector form can be developed in the fol-
lowing manner:

R X

R jX

RX

R X X R

 Z
Z Z

Z Z

 
0 90 90

tan

T
R L

R L

L

L

L

L L
2 2 1

( )( )

=
+

=
∠ ° ∠ °

+
=

∠ °

+ ∠ −

R 220 V L
L  =  4 mH

ZT

R

220 V

0 f

XL

0 ff1

220 V

XL < R XL > R

XL  =  2   fLp

FIG. 16.33
The frequency response of the individual elements of a parallel R-L network.

0 f (kHz)10 20 30 40

R = 220

R = 220 V

ZT (V)

ZT  = 155.5 V @XL = R

(XL 0 V)

f  = 8.75 kHz1

L  R

FIG. 16.34
Impedance versus frequency for the parallel ac network of Fig. 16.32.
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and  =
+

° − /−RX

R X
X RZ 90 tan  

T
L

L

L
2 2

1

so that    =
+

Z
RX

R X
T

L

L
2 2

 (16.28)

and θ = ° − =− −X
R

R
X

90 tan tanT
L

L

1 1
 (16.29)

The magnitude and angle of the total impedance can now be found at any 
frequency of interest simply by substituting into Eqs. (16.28) and (16.29).

= 1 kHzf

X fL2 2 (1 kHz)(4 10 H) 25.12L
3π π= = × = Ω−

and

Ω( )( )

( ) ( )
=

+
= Ω Ω

Ω + Ω
= 24.96Z

RX

R X
220  25.12 

220  25.12 
 T

L

L
2 2 2 2

with  R
X

  tan tan 220 
25.12 

  tan 8.76 83.49

T
L

1 1

1

θ = = Ω
Ω

= = °

− −

−

and         ∠= °Z 24 96 Ω 83 49. .T

This value compares very closely with = Ω ∠ °X 25.12 90 ,L  which it 
would be if the network were purely inductive (R = ∞ Ω). Our assump- 
tion that the network is primarily inductive at low frequencies is there-
fore confirmed.

Continuing, we obtain

∠= = °f Z 109 1 Ω 60 2315 kHz: . .T

∠= = °f Z 165 5 Ω 41 2110 kHz: . .T

∠= = °f Z 189 99 Ω 30 2815 kHz: . .T

∠= = °f Z 201 53 Ω 23 6520 kHz: . .T

∠= = °f Z 211 19 Ω 16 2730 kHz: . .T

∠= = °f Z 214 91 Ω 12 3540 kHz: . .T

At f 40 kHz,=  note how closely the magnitude of ZT  has 
approached the resistance level of 220 Ω and how the associated angle 
with the total impedance is approaching zero degrees. The result is a 
network with terminal characteristics that are becoming more and more 
resistive as the frequency increases, which further confirms the earlier 
conclusions developed by the curves in Figs. 16.33 and 16.34.

Plots of ZT  versus frequency in Fig. 16.35 and Tθ  in Fig. 16.36 clearly 
reveal the transition from an inductive network to one that has resistive 
characteristics. Note that the transition frequency of 8.75 kHz occurs 
right in the middle of the “knee” of the curves for both ZT  and .Tθ

A review of Figs.  16.33 and 16.35 reveals that a series R-C and a 
parallel R-L network will have an impedance level that approaches the 
resistance of the network at high frequencies. The capacitive circuit 
approaches the level from above, whereas the inductive network does 
the same from below. For the series R-L circuit and the parallel R-C 
network, the total impedance will begin at the resistance level and then 
display the characteristics of the reactive elements at high frequencies.
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The Source Current Is

The current I ,s  as mentioned earlier, will have a minimum value at the 
peak of the impedance curve. Additional plot points can be obtained by 
simply applying Ohm’s law at each frequency of interest. At f 0 Hz=  
the reactance of the inductor is zero ohms, essentially placing a short cir-
cuit across the parallel branches. The resulting current is very high and off 
the charts, as shown in Fig. 16.37. At f 8.75 kHz,=  when X R,L =  
the current will be

∠−= =
∠ °

Ω ∠ °
= °I E

Z
128 5 mA 45

20 V 0
155.5 90

.s
T

ZT (u)

100

200
R  =  220 V

ZT (V)

0 1 5 10 20 30 40 f (kHz)

XL > R (ZT  ≅  R)

Network resistive

XL  =  R

8.75

XL < R (ZT  ≅ XL)

Network inductive

ZT  = 155.5 V @XL  =  R

FIG. 16.35
The magnitude of the input impedance versus frequency for the 

network in Fig. 16.32.

5 f (kHz)1 10 20 30 40

0°

30°

45°

60°

90°

Inductive (XL < R)

Resistive (XL > R)

  T

  T ( f )u

u

FIG. 16.36
The phase angle of the input impedance versus frequency for the 

network in Fig. 16.32.
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Additional plot points can then be obtained using the calculated 
impedance levels used earlier to plot the impedance curve. That is,

 At 1 kHz:   ∠−= =
∠ °

Ω ∠ °
= °I E

Z
801 mA 83 49

20 V 0
24.96 83.49

.s
T

At 5 kHz:   ∠−= °I 183 mA 60 23.s

At 10 kHz: ∠−= °I 121 mA 41 21.s

At 20 kHz: ∠−= °I 99 mA 23 65.s

At 30 kHz: ∠−= °I 95 mA 16 27.s

At 40 kHz: ∠−= °I 93 mA 12 35.s

The resulting plot appears as Fig. 16.37. Note, as predicted, the cur-
rent is a minimum when the impedance is a maximum and the current is 
a maximum when the impedance of the inductor is very small.

The phase angle plot of Fig. 16.38 clearly reveals that the network 
is very inductive at low frequencies. The applied voltage leads the 

0 f (kHz)10 20 30 40

Is (mA)

100 
128.5 

200 

300 

400 

500 

600 

700 

800 

f11 5

L R

FIG. 16.37
I s  versus frequency for the parallel R-L network of Fig. 16.33.

0

f (kHz)

u

f1

–90°

–45°

R L

FIG. 16.38
Phase angle of Is  versus frequency for the parallel 

R-L network of Fig. 16.33.
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source current by 90°  and is almost purely resistive as we approach 40 
kHz, where the total impedance becomes essentially equal to the parallel 
resistance of 220 ohms.

At f 1 kHz,=  the phasor diagram of the network appears as shown 
in Fig. 16.39. First note that the magnitude and the phase angle of I L  
are very close to those of I s  The current I R is in phase with the applied 
voltage E. At this frequency >R X L and the current I R is relatively 
small in magnitude.

At f 40  kHz,=  the phasor diagram changes to that appearing in 
Fig. 16.40. Note that now I R and I s  are close in magnitude and phase 
because >X RL . The magnitude of I L  has dropped to very low lev-
els, and the phase angle associated with I L  is 90 .− °  The network is 
now more “resistive” compared to its “inductive” characteristics at low 
frequencies.

Parallel R-C ac Network

Total Impedance TZ  The frequency response of the R-C parallel 
network of Fig. 16.41 will now be examined following the same path  
applied to the parallel R-L network. At very low frequencies the imped-
ance of the capacitor is very large compared to the fixed resistor value 
and can be assumed to be close in behavior to an open circuit. The total 
impedance at low frequencies will therefore be very close to that of the 
resistor as shown in Fig. 16.42. At very high frequencies the impedance 
of the capacitor will become very small in comparison to that of the 
resistor and start to act like a short circuit across the parallel branches. 
The result is that the total impedance will begin to approach zero ohms 
at very high frequencies, as shown in Fig.  16.40. At some point the  
impedance of the capacitor will drop to that of the resistor as the fre-
quency increases. That frequency can be determined as follows:

R XC=

 or R
fC

1
2π

=

 and 
π

=f
RC
1

21  (16.30)

IsIL

83.49°

IR E

FIG. 16.39
The phasor diagram for the parallel R-L 

network in Fig. 16.32 at f = 1 kHz.

Is

IL 12.35°
IR E

FIG. 16.40
The phasor diagram for the parallel R-L 

network in Fig. 16.32 at f = 40 kHz.

4.7 mFC

+

–
R 2 kVE = 10 V /0°

f : 0         50 kHz

2 kV

0

R

0 f

XC

Is

FIG. 16.41
Parallel R-C network to be analyzed.

M16_BOYL0302_14_GE_C16.indd   705M16_BOYL0302_14_GE_C16.indd   705 28/02/23   1:10 PM28/02/23   1:10 PM



706 | | | PARALLEL ac CIRCUITS
a c

which for the network of Fig. 16.41 is

π π µ( )( )
= =

Ω
=f

RC
1

2
1

2 2 k 4.7 F
16.93 kHz1

In order to plot the total impedance of the network versus frequency 
we need to develop a general equation for the magnitude and phase angle 
of the total impedance as follows:

( )( )
=

+
=

∠ ° ∠− °
−

=
∠− °

+ −

=
+ − ° + =

+
−

−

− −

Z
RX

R X
R X

R jX
RX

R X
X
R

RX

R X

X
R

RX

R X
R

X

0 90 90

tan

  90 tan   tan

T
C

C

C

C

C

C
C

C

C

C C

C C

2 2 1

2 2
1

2 2
1

so that   Z
RX

R X
T

C

C
2 2

=
+

and   R
X

tanT
C

1θ = − −

At =f f :1        X R 2 kC = = Ω

and Ω( )( )

( ) ( )
=

+
= Ω Ω

Ω + Ω
= 1.41 kZ

RX

R X

2 k 2 k

2 k 2 k
T

C

C
2 2 2 2

with θ − °= − = − Ω
Ω

= − =− − − 45R
X

tan tan 2 k
2 k

tan 1T
C

1 1 1

At =f 1 kHz:

π π
Ω

( )( )
= = = 33.86 kX

fC
1

2
1

2 16.93 kHz 4.7 nFC

and Ω( )( )

( ) ( )
=

+
= Ω Ω

Ω + Ω
= 1.99 kZ

RX

R X
2 k 33.86  k

2 k 33.86 k
 T

C

C
2 2 2 2

with     θ − °= − = − Ω
Ω

= − =− − − 3.3R
X

tan tan 2 k
33.86 k

tan 0.059T
C

1 1 1

0 1 5 10 20 30

2

1

f (kHz)40 50

ZT  (kV)

(XC = R) 1.41

f1

R C

 FIG. 16.42
TZ  versus frequency for the parallel R-C network of Fig. 16.39.
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At =f 5 kHz:     θ= Ω = − °ZT T1.91 k , 16.46
At =f 10 kHz:   θ= Ω = − °ZT T1.72 k , 30.61
At =f 20 kHz:  θ= Ω = − °ZT T1.29 k , 49.8
At =f 30 kHz:  θ= Ω = − °ZT T0.98 k , 60.53
At =f 40 kHz:  θ= Ω = − °ZT T0.78 k , 66.93
At =f 50 kHz:  θ= Ω = − °ZT T0.677 k , 71.3

resulting in the plot of Fig. 16.42.
The plot of the phase angle will yield the curve of Fig. 16.43. The 

fact that the angle is negative throughout reveals that the current leads 
the applied voltage for the full frequency range—typical for a capacitive 
network.

0

1 5 10 20 30 f (kHz)40 50

uT 

f1

–908

–458

FIG. 16.43
Phase plot for the total impedance of the network of Fig. 16.39.

 The Source Current sI
As the applied frequency increases for the network of Fig.  16.41, the 
parallel capacitor will establish an increasingly lower impedance across 
the parallel branches. The result is a decrease in total impedance (as 
shown in Fig. 16.42) and an increase in the level of current provided by 
the source. Now that we know what to expect let us now apply Ohm’s 
law as was done for the parallel R-L network to find the current at vari-
ous frequencies.

At =f 1 kHz:  
T

∠= =
∠ °

Ω ∠− °
= °I E

Z
5 03 mA 3 3

10 V 0
1.99 k 3.3

. .s

using the total impedance determined for the impedance plot of 
Fig. 16.40. Continuing, we have

kHz:1f fAt =

=f 16.93 kHz1  
T

∠= =
∠ °

Ω ∠− °
= °I E

Z
7 09 mA 45

10 V 0
1.41 k 45

.s

At =f 5 kHz:       
T

∠= =
∠ °

Ω ∠− °
= °I E

Z
5 24 mA 16 46

10 V 0
1.91 k 16.46

. .s

At =f 10 kHz:     
T

∠= =
∠ °

Ω ∠− °
= °I E

Z
5 81 mA 30 61

10 V 0
1.72 k 30.61

. .s

At =f 20 kHz:    
T

∠= =
∠ °

Ω ∠− °
= °I E

Z
7 75 mA 49 8

10 V 0
1.29 k 49.8

. .s
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At =f 30 kHz:  ∠= =
∠ °

Ω ∠− °
= °I E

Z
11 11 mA 60 53

10 V 0
0.98 k 60.53

. .s
T

At =f 40 kHz: ∠= =
∠ °

Ω ∠− °
= °I E

Z
12 82 mA 66 93

10 V 0
0.78 k 66.93

. .s
T

At =f 50 kHz: ∠= =
∠ °

Ω ∠− °
= °I E

Z
14 99 mA 71 3

10 V 0
0.66 k 71.3

. .s
T

resulting in the plot of Fig. 16.44.

0 1 5 10 20 30

10

5
7.09

f (kHz)40 50

Is (mA)

f1

R C

15

20

FIG. 16.44
Is versus frequency for the parallel R-C network of Fig. 16.39.

The calculations above reveal that the phase angle approaches 90°  
as the frequency increases, corresponding with the fact that the network 
is becoming increasingly capacitive. Recall that for a pure capacitor the 
current leads the voltage across the capacitor by 90 .°

Parallel R-L-C Network

The response of a parallel R-L-C network to increasing frequencies was 
described in some detail at the beginning of Section  16.6. Since the  
impedance will peak when the X X ,L C=  the current will be a min-
imum value at the frequency in which this relationship is satisfied. In 
total, the curve for the source current will be a flipped version of that for 
the impedance with the minimum value of current equal to I E R .min =

Since the impedance is highly inductive at low frequencies and highly 
capacitive at high frequencies, the phase angle associated with the total 
impedance will traverse from 90°  ( Lv  leads iL  by 90°  for a pure induc-
tor) to 90− °  (iC  leads Cv  by 90°  for a pure capacitor) with an angle of 
0° at the frequency when the total impedance is resistive.

 16.7 SUMMARY: PARALLEL ac NETWORKS
The following is a review of important conclusions that can be derived 
from the discussion and examples of the previous sections. The list is not 
all-inclusive, but it does emphasize some of the conclusions that should 
be carried forward in the future analysis of ac systems.

For parallel ac networks with reactive elements:

1. The total admittance or impedance will be frequency 
dependent.
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2. Depending on the frequency applied, the same network 
can be either predominantly inductive or predominantly 
capacitive.

3. The magnitude of the current through any one branch 
can be greater than the source current.

4. The inductive and capacitive susceptances are in direct 
opposition on an admittance diagram.

5. At lower frequencies, the inductive elements will usually 
have the most impact on the total impedance, while at 
high frequencies, the capacitive elements will usually 
have the most impact.

6. The impedance of any one element can be less than the 
total impedance (recall that for dc circuits, the total 
resistance must always be less than the smallest parallel 
resistor).

7. The magnitude of the current through an element, 
compared to the other elements of the network, is 
directly related to the magnitude of its impedance; that 
is, the smaller the impedance of an element, the larger is 
the magnitude of the current through the element.

8. The current through a coil is always in direct opposition 
with the current through a capacitor on a phasor diagram.

9. The applied voltage is always in phase with the current 
through the resistive elements, leads the current across 
all the inductive elements by 90°, and lags the current 
through all capacitive elements by 90°.

10.  The smaller the resistive element of a network 
compared to the net reactive susceptance, the closer is 
the power factor to unity.

16.8 EQUIVALENT CIRCUITS
In a series ac circuit, the total impedance of two or more elements in  
series is often equivalent to an impedance that can be achieved with 
fewer elements of different values, the elements and their values being 
determined by the frequency applied. This is also true for parallel cir-
cuits. For the circuit in Fig. 16.45(a),

Ω∠− °

( )( )
=

+
=

Ω ∠− ° Ω ∠ °
Ω ∠− ° + Ω ∠ °

=
∠ °

∠ °

= 10 90

Z
Z Z

Z Z
5  90 10  90

5  90 10  90
50 0
5 90

   

T
C L

C L

The total impedance at the frequency applied is equivalent to a capac-
itor with a reactance of Ω10 , as shown in Fig. 16.45(b). Always keep 
in mind that this equivalence is true only at the applied frequency. If 
the frequency changes, the reactance of each element changes, and the 
equivalent circuit changes—perhaps from capacitive to inductive in the 
above example.

Another interesting development appears if the impedance of a paral-
lel circuit, such as the one in Fig. 16.46(a), is found in rectangular form. 
In this case,

5 VXC
ZT 10 VXL

(a)

10 VXC
ZT

(b)

FIG. 16.45
Defining the equivalence between two 

networks at a specific frequency.

4 V R 3 VXL

I

ZT

E

+

–

(a)

XL  =  1.44 VI

ZT

E

+

–

(b)

R  =  1.92 V

FIG. 16.46
Finding the series equivalent circuit for a 

parallel R-L network.
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( )( )
=

+
=

Ω ∠ ° Ω ∠ °
Ω ∠ ° + Ω ∠ °

=
∠ °

∠ °
= Ω ∠ °

= Ω + Ωj

Z
Z Z

Z Z
4  90 3  0
4  90 3  0

12 90
5 53.13

2.40  36.87

1.92  1.44 

T
L R

L R

which is the impedance of a series circuit with a resistor of 1.92 Ω  and 
an inductive reactance of Ω1.44 , as shown in Fig. 16.46(b).

The current I will be the same in each circuit in Fig.  16.45 or 
Fig. 16.46 if the same input voltage E (including frequency) is applied. 
For a parallel circuit of one resistive element and one reactive element, 
the series circuit with the same input impedance will always be com-
posed of one resistive and one reactive element. The impedance of each 
element of the series circuit will be different from that of the parallel 
circuit, but the reactive elements will always be of the same type; that is, 
an R-L circuit and an R-C parallel circuit will have an equivalent R-L and 
R-C series circuit, respectively. The same is true when converting from a 
series to a parallel circuit. In the discussion to follow, keep in mind that

the term equivalent refers only to the fact that for the same 
applied potential, the same impedance and input current 
will result.

To formulate the equivalence between the series and parallel circuits, 
the equivalent series circuit for a resistor and reactance in parallel can be 
found by determining the total impedance of the circuit in rectangular 
form; that is, for the circuit in Fig. 16.47(a),

R jX R
j

X
Y 1 1 1 1

p
p p p p

= +
±

= ∓

and

∓( ) ( )

( ) ( ) ( ) ( )

= =

=
+

±
+

R j X

R

R X
j

X

R X

Z
Y
1 1

1 1

1

1 1
   

1

1 1

p
p p p

p

p p

p

p p
2 2 2 2

Multiplying the numerator and denominator of each term by R Xp p
2 2 

results in

[ ]( )

=
+

±
+

= ±

Z
R X

X R
j

R X

X R

R Xj Fig. 16.47 b

p
p p

p p

p p

p p

s s

2

2 2

2

2 2

and =
+

R
R X

X Rs
p p

p p

2

2 2
 (16.31)

with =
+

X
R X

X Rs
p p

p p

2

2 2  (16.32)

For the network in Fig. 16.46(a),

( )( )

( ) ( )
=

+
= Ω Ω

Ω + Ω
= Ω =R

R X

X R
1 92 Ω3 4

4 3
48

25
.s

p p

p p

2

2 2

2

2 2

(b)

(a)

Rs

Zs = Zp

Ys = Yp

Xs

Rp
Zp

Yp

XP

FIG. 16.47
Defining the parameters of equivalent series 

and parallel networks.
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and

( ) ( )

( ) ( )
=

+
= Ω Ω

Ω + Ω
= Ω =X

R X

X R
1 44 Ω3 4

4 3
36

25
.s

p p

p p

2

2 2

2

2 2

which agrees with the previous result.
The equivalent parallel circuit for a circuit with a resistor and reac-

tance in series can be found by finding the total admittance of the system 
in rectangular form; that is, for the circuit in Fig. 16.47(b),

[ ]( )

= ±

= =
±

=
+ +

= =

R jX

R jX
R

R X
j

X
R X

G jB
R

j
X

Z

Y
Z
1 1

1 1 Fig. 16.47 a

s s s

s
s s s

s

s s

s

s s

p p
p p

 
2 2 2 2

∓

∓ ∓

or =
+

R
R X

Rp
s s

s

2 2

 (16.33)

with =
+

X
R X

Xp
s s

s

2 2

 (16.34)

For the network of Fig. 16.47(a):

Ω( ) ( )=
+

= Ω + Ω
Ω

= Ω =R
R X

R
3 01.92 1.44

1.92
5.76
1.92

.p
s s

s

2 2 2 2

and =
+

= Ω =X
R X

X
4 0 Ω5.76

1.44
.p

s s

s

2 2

as shown in Fig. 16.46(a).

EXAMPLE 16.8 Determine the series equivalent circuit for the net-
work in Fig. 16.48.

Solution:
R

X X X

8 k

resultant 9 k 4 k

5 k

p

p L C( )

= Ω

= − = Ω − Ω

= Ω

and

R
R X

X R
2 25 kΩ8 k 5 k

5 k 8 k
200 k

89
.s

p p

p p

2

2 2

2

2 2
( )( )

( ) ( )
=

+
= Ω Ω

Ω + Ω
= Ω =

with

( )

( ) ( )

( ) ( )
=

+
= Ω Ω

Ω + Ω
= Ω

=

X
R X

X R

3.60 kΩ inductive

  8 k 5 k
5 k 8 k

320 k
89s

p p

p p

2

2 2

2

2 2

The equivalent series circuit appears in Fig. 16.49.

4 kV

R 8 kV

XC

9 kVXL

Rp

Xp

FIG. 16.48
Example 16.8.

3.60 kV2.25 kV

XsRs

FIG. 16.49
The equivalent series circuit for 

the parallel network in Fig. 16.48.
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EXAMPLE 16.9 For the network in Fig. 16.50.

a. Determine YT  and Z .T

b. Sketch the admittance diagram.
c. Find E and I .L

d. Compute the power factor of the network and the power delivered to 
the network.

e.  Determine the equivalent series circuit as far as the terminal charac-
teristics of the network are concerned.

f. Using the equivalent circuit developed in part (e), calculate E, and 
compare it with the result of part (c).

g. Determine the power delivered to the network, and compare it with 
the solution of part (d).

h. Determine the equivalent parallel network from the equivalent 
series circuit, and calculate the total admittance YT . Compare the 
result with the solution of part (a).

R1 10 V R2 40 V L1 6 mH L2 12 mH
C1

80 mF 
C2

20 mF 

iL

i  =  2 (12) sin 1000t

+

YT

ei
–

ZT

√

FIG. 16.50
Example 16.9.

R 8 V 4 VXL XC 10 V

YT
IL

+

–

EI  =  12 A / 08

ZT

FIG. 16.51
Applying phasor notation to the network in Fig. 16.50.

Solutions:

a. Combining common elements and finding the reactance of the 
inductor and capacitor, we obtain

R 10 40 8T = Ω Ω = Ω

L 6 mH 12 mH 4 mHT = =

C F F80 20 100 FT µ µ µ= + =

X L 1000 rad s)(4 mH 4L ω ( )= = = Ω

X
C
1 1

(1000 rad s)(100 F)
10C ω µ

= = = Ω
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The network is redrawn in Fig. 16.51 with phasor notation. The total 
admittance is

∠−

Ω ∠

= + +

= ∠ ° + ∠− ° + ∠+ °

=
Ω

∠ ° +
Ω

∠− ° +
Ω

∠+ °

= ∠ ° + ∠− ° + ∠+ °

= − +

= − = °

= =
∠− °

= °

G B B

j j

j

S

Y Y Y Y

0.195 S 50.194

Z
Y

5.13  50.19

  0 90 90

1
8 

0 1
4 

90 1
10 

90

0.125 S 0 0.25 S 90 0.1 S 90

0.125 S 0.25 S 0.1 S

0.125 S 0.15 S

1 1
0.195  50.194

 

T R L C

L C

T
T

b. See Fig. 16.52.

c. .

.

E IZ I
Y

61 54 V 50 19

I
V
Z

E
Z

15 39 A 39 81

12 A 0
0.195 S 50.194

.

61.538 V 50.194
4 90

.

T
T

L
L

L L

∠

∠−

= = =
∠ °

∠− °
= °

= = = ∠ °
Ω ∠ °

= °

d. F G
Y

P EI

0 641 lagging  E leads I

472.75 W

cos 0.125 S
0.195 S

.

cos 61.538 V)(12 A cos 50.194

 

p
T

θ

θ

( )

( )

= = = =

= = °

=

e. 

j

j

R X

Z
Y
1 1

0.195 S 50.194
5.128 50.194

3.28 3.94

T
T

L

= =
∠− °

= Ω ∠ °

= Ω + Ω

= +

.

X L

L 3 94 mH

3.94

3.94 3.94
1000 rad/s

L ω

ω

= Ω =

= Ω = Ω =

The series equivalent circuit appears in Fig. 16.53.

G / 08

–50.1948

0.195 S

YT

BL / –908

BL – BC

BC  / 908

j

+–

FIG. 16.52
Admittance diagram for the parallel R-L-C 

network in Fig. 16.50.

L 3.94 mHE

+

–

I  =  12 A / 08

R

3.28 V

FIG. 16.53
Series equivalent circuit for the parallel R-L-C network in Fig. 16.50 

with 1000 rad s/ .ω =

f. 

V∠
( )( )

( )

= = ∠ ° Ω ∠ °

= °

E IZ

61.54 50.194

12 A 0 5.128  50.194

  as above
T

g. ( )( )= = Ω =P I R 472 32 W12 A 3.28 .2 2  (as above)

h. R
R X

R
83.28 3.94

3.28p
s s

s

2 2 2 2

Ω( ) ( )=
+

= Ω + Ω
Ω

=

X
R X

X
6 673.28 3.94

3.94
.p

s s

s

2 2 2 2

Ω( ) ( )=
+

= Ω + Ω
Ω

=
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The parallel equivalent circuit appears in Fig. 16.54.

G B

j

Y

Y 0.195 S 50.194

0 90 1
8 

0 1
6.675 

90

0.125 S 0 0.15 S 90

  0.125 S 0.15 S (as above)

T L

T ∠−

= ∠ ° + ∠− ° =
Ω

∠ ° +
Ω

∠− °

= ∠ ° + ∠− °

= − = °

16.9 APPLICATIONS
Home Wiring

An expanded view of house wiring is provided in Fig. 16.55 to permit a 
discussion of the entire system. The house panel has been included with 
the “feed” and the important grounding mechanism. In addition, a num-
ber of typical circuits found in the home have been included to provide a 
sense for the manner in which the total power is distributed.

First note how the copper bars in the panel are laid out to provide both 
120 V and 240 V. Between any one bar and ground is the single-phase 120 V 
supply. However, the bars have been arranged so that 240 V can be obtained 
between two vertical adjacent bars using a double-gang circuit breaker. 
When time permits, examine your own panel (but do not remove the cover), 
and note the dual circuit breaker arrangement for the 240 V supply.

Neutral Line 1 Line 2

Main
breaker
200 A Copper bus-bars

Lighting Series switches20 A

40 A

40 A

30 A

30 A

15 A

15 A

30 A

30 A

30 A

30 A

#14

#14

#10
#10

#10
#10

Parallel
lamps

120 V

+

–

120 V
+
–

Washing
machine

400 W

Electric dryer

4.8 kW
240 V

+
–

240 V
+
–

Thermostat

29 section 49 section 89 section

2300 W

Parallel electric
baseboard heaters

Neutral bus-bar

Ground bus-bar

MAIN PANEL

#12

#8

#8

#10

#10

Switched outlets Parallel outlets

‶Feed″ ac power from
utility pole

12.2 kW
electric range

Air conditioner

860 W

240 V
+
–

240 V
+
–

+

–
60 W 40 W 60 W60 W

575 W 1150 W

120 V

FIG. 16.55
Home wiring diagram.

L 6.67 VI  =  12 A / 08

YT

R 8 V

FIG. 16.54
Parallel equivalent of the circuit in 

Fig. 16.53.
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For appliances such as fixtures and heaters that have a metal casing, 
the ground wire is connected to the metal casing to provide a direct 
path to ground path for a “shorting” of errant currents as described in 
Section 6.8. For outlets that do not have a conductive casing, the ground 
lead is connected to a point on the outlet that distributes to all important 
points of the outlet.

Note the series arrangement between the thermostat and the heater 
but the parallel arrangement between heaters on the same circuit. In 
addition, note the series connection of switches to lights in the upper-
right corner but the parallel connection of lights and outlets. Due to high 
current demand, the air conditioner, heaters, and electric stove have  
30 A breakers. Keep in mind that the total current does not equal the sum 
of the two (or 60 A) since each breaker is in a line and the same current 
will flow through each breaker.

In general, you now have a surface understanding of the general wiring in 
your home. You may not be a qualified, licensed electrician, but at least you 
should now be able to converse with some intelligence about the system.

Phase-Shift Power Control

In Chapter 11, the internal structure of a light dimmer was examined and 
its basic operation described. We can now turn our attention to how the 
power flow to the bulb is controlled.

If the dimmer were composed of simply resistive elements, all the 
voltages of the network would be in phase, as shown in Fig. 16.56(a). 
If we assume that 20 V are required to turn on the triac in Fig. 11.67, 
the power will be distributed to the bulb for the period highlighted by 
the blue area of Fig. 16.56(a). For this situation, the bulb is close to full 
brightness since the applied voltage is available to the bulb for almost 
the entire cycle. To reduce the power to the bulb (and therefore reduce 
its brightness), the controlling voltage would need a lower peak voltage, 
as shown in Fig. 16.56(b). In fact, the waveform in Fig. 16.56(b) is such 
that the turn-on voltage is not reached until the peak value occurs. In 
this case, power is delivered to the bulb for only half the cycle, and the 
brightness of the bulb is reduced. The problem with using only resistive 
elements in a dimmer now becomes apparent: The bulb can be made no 
dimmer than the situation depicted by Fig. 16.56(b). Any further reduc-
tion in the controlling voltage would reduce its peak value below the 
trigger level, and the bulb would never turn on.

This dilemma can be resolved by using a series combination of ele-
ments such as shown in Fig. 16.57(a) from the dimmer in Fig. 11.67. 
Note that the controlling voltage is the voltage across the capacitor, 
while the full line voltage of 120 V rms, 170 V peak, is across the entire 
branch. To describe the behavior of the network, let us examine the case 
defined by setting the potentiometer (used as a rheostat) to 1/10 its maxi-
mum value, or 33 k .Ω  Combining the 33 kΩ with the fixed resistance of 
47 kΩ results in a total resistance of 80 kΩ and the equivalent network 
in Fig. 16.57(b).

At 60 Hz, the reactance of the capacitor is

π π µ
= = = ΩX

fC
1

2
1

2 (60 Hz)(62 F)
42.78 kC

170

20

0

V (volts)

t

Applied
voltage

Lamp voltage

(b)

Controlling
voltage

(a)

170

20

0

V (volts)

t

Applied
voltage (dashed line)

Turn on voltage

Lamp
voltage
(solid line)

Vcontrol 

FIG. 16.56
Light dimmer: (a) with purely resistive 

elements; (b) half-cycle power distribution.
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Applying the voltage divider rule gives

( )( )

=
+

=
Ω ∠− ° ∠ °
Ω − Ω

=
Ω ∠− °
Ω ∠− °

= ∠− °

V
j

V

V

V
Z V

Z Z

42.78 k 90 0
80 k 42.78 k

42.78 k   90
90.72 k 28.14

0.472  61.86

C s

R C

s s

s

control

Using a peak value of 170 V gives

( )= ∠− °

= ∠− °

V 0.472 170 V 61.86

80.24 V 61.86
control

producing the waveform in Fig. 16.58(a). The result is a waveform with 
a phase shift of 61.86°(lagging the applied line voltage) and a relatively 
high peak value. The high peak value results in a quick transition to the 
20 V turn-on level, and power is distributed to the bulb for the major 
portion of the applied signal. Recall from the discussion in Chapter 11 

170

80.24

20

08 908 3608
61.868

V (volts)

Vlamp

Vcontrol

Vapplied

(a)

1808

170

29.07
20

08 908 3608

80.28

V (volts)

Vlamp

Vcontrol

Vapplied

(b)

1808u u

FIG. 16.58
Light dimmer in Fig. 11.67; (a) rheostat set at 33 Ωk ; (b) rheostat set at 200 Ωk .

+

–

G

K

A

TRIACDIAC

0.068 mF Vcontrol

330 kV
rheostat

47 kV

+

–

  Vline = Vs = 170 V /0°
(peak)

(a)

+

–

Vs = 170 V /0°

0.068 mF  C

(b)

Vcontrol

+

–

80 kΩVR

FIG. 16.57
Light dimmer: (a) from Fig. 11.67; (b) with rheostat set at 33 Ωk .
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that the response in the negative region is a replica of that achieved in 
the positive region. If we reduced the potentiometer resistance further, 
the phase angle would be reduced, and the bulb would burn brighter. 
The situation is now very similar to that described for the response in 
Fig. 16.56(a). In other words, nothing has been gained thus far by using 
the capacitive element in the control network. However, let us now 
increase the potentiometer resistance to 200 kΩ and note the effect on 
the controlling voltage.

That is,

R 200 k 47 k 247 kT = Ω + Ω = Ω

( )( )

=
+

=
Ω ∠− ° ∠ °
Ω − Ω

=
Ω ∠− °

Ω ∠− °

= ∠− °

V
j

V

V

V
Z V

Z Z

42.78 k 90 0
247 k 42.78 k

42.78 k   90
250.78 k 9.8

0.171  80.2

C s

R C

s s

s

control

and using a peak value of 170 V, we have

( )= ∠− °

= ∠− °

V 0.171 170 V 80.2

29.07 V 80.2
control

The peak value has been substantially reduced to only 29.07 V, and 
the phase-shift angle has increased to 80.2°. The result, as depicted by 
Fig. 16.58(b), is that the firing potential of 20 V is not reached until near 
the end of the positive region of the applied voltage. Power is deliv-
ered to the bulb for only a very short period of time, causing the bulb to 
be quite dim, significantly dimmer than obtained from the response in 
Fig. 16.58(b).

A conduction angle less than 90°  is therefore possible due only to the 
phase shift introduced by the series R-C combination. Thus, it is possible 
to construct a network of some significance with a rather simple pair of 
elements.

ZT ZT ZTR RXL XCXL LL C

f  = 10 kHz

20 mH

40 mH

4 nF

15 kV

10 kV
2 kV 6 kV 6 kV

(a) (b) (c)

FIG. 16.59
Problem 1.

PROBLEMS

SECTION 16.2 Total Impedance

 1. Find the total impedance of the parallel networks of 
Fig. 16.59 in rectangular and polar form.
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ZTZT

XCXL
XC10 V 2 V

8 V

R

R
6 kV

7 kV
XL  = 11 kV

XC = 4 kV

R1

ZT

XC

XL 4.8 kV 

3.2 kV 
R2 1 kV 2.8 kV 

FIG. 16.60
Problem 2.

YT

I

R  =  8.8 V YT

II

XL  =  300 V YT

III

XC  =  3 kV 

FIG. 16.61
Problem 3.

YT

I

15 V 60 V

YT

II

22 V 8 V 9 kV

YT

III

4 kV 6 kV2.2 V

FIG. 16.62
Problem 4.

 2. Find the total impedance of the parallel configurations of 
Fig. 16.60 in rectangular and polar form.

SECTION 16.3 Total Admittance

 3. For the configurations of Fig. 16.61:
a. Find the admittance in rectangular and polar form.
b. Sketch the admittance diagram.

 4. For each configuration of Fig. 16.62:
a. Find the total impedance in polar form.
b. Calculate the total admittance using the results of part (a).

c. Identify the total conductance and susceptance parts of 
the total admittance.

d. Sketch the admittance diagram.
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YT

2 kV

1 kVR1 R2

2 kV 2 kV 1 kVXC1

XC3

XC2

I

8 kV

XL2

4 kV

XL1

YT R2 20 kV10 kV

II

R 1

FIG. 16.64
Problem 6.

R

YT
L 470 mH

4.7 kV 

f  =  2 kHZ

FIG. 16.65
Problem 7.

0.6 kV

III

0.5 kVR =   4 V

XL  =  8 V

I

20 V

II

60 V

YT YT

4 kV

YT

33 V

FIG. 16.63
Problem 5.

     5. For each configuration of Fig. 16.63:
a. Find the total impedance in polar form.
b. Calculate the total admittance using the results of part (a).

   *6. For each network of Fig. 16.64:
a. Find the total admittance in rectangular form.

c. Identify the total conductance and susceptance parts of 
the total admittance.

d. Sketch the admittance diagram.

b. Using the results of part (a) build an equivalent parallel 
network for that of Fig. 16.64.

   *7. For the circuit of Fig. 16.65:
a.  Find the total admittance in rectangular form.
b. Construct a parallel network from the components 

found in part (a).
c. Determine the value of the resistive and inductive com-

ponents.
d. How do the components of part (c) compare with the 

original components of Fig. 16.69?

?y

+

–

sin

y  =  32 sin 20,000t – 308))

20,000t + 508))i  =  5 3 10–3

FIG. 16.66
Problem 8.

SECTION 16.4 Parallel ac Networks

 9. For the network in Fig. 16.67:
a. Find the total admittance YT  in polar form.
b. Draw the admittance diagram.
c. Find the voltage E and the currents I R  and I L  in phasor 

form.
d. Draw the phasor diagram of the currents I ,s  I ,R  and  

I ,L  and the voltage E.
e. Verify Kirchhoff’s current law at one node.

  *8. Given the voltage and current shown in Fig. 16.66, find the 
parallel network internal to the container. That is, find the 
actual value of each component using the provided frequency.
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f. Find the average power delivered to the circuit.
g. Find the power factor of the circuit, and indicate whether 

it is leading or lagging.
h. Find the sinusoidal expressions for the currents and volt-

age if the frequency is 60 Hz.
i. Plot the waveforms for the currents and voltage on the 

same set of axes.

E 0.13 mFC
+

–

R

f = 60 Hz

10 kV

IR

Is  =  2 mA / 208

IC

FIG. 16.68
Problem 10.

is  =  3 sin(377t + 608) R 1.2 V 2 VXL XC 5 V

+

–

iR iL iC

e

FIG. 16.70
Problem 12.

XL XC40 V 60 V220 V 120 VE

+

–
IC

Is
R2

R1 12 V /08 

FIG. 16.69
Problem 11.

E XL

+

–

YT
R

IR

Is  =  2 A / 08

IL

20 V10 V

FIG. 16.67
Problem 9.

 10. Repeat Problem 9 for the network in Fig. 16.68, replacing 
I L  with IC  in parts (c) and (d).

 11. For the network of Fig. 16.69:
a. Find the total impedance “seen” by the source.
b. Using the results of part (a), find the total admittance.
c. Sketch the admittance diagram for the parallel network.
d. Determine the source current I .S

e. Calculate the current through the capacitive element I .C

 12. For the network in Fig. 16.70:
a. Find the total admittance and impedance in polar form.
b. Draw the admittance and impedance diagrams.
c. Find the value of C in microfarads and L in henries.
d. Find the voltage E and currents I ,R  I ,L  and IC  in  

phasor form.
e. Draw the phasor diagram of the currents I ,s  I ,R  I ,L   

and I ,C  and the voltage E.

f. Write the sinusoidal expressions for the applied voltage 
and source current.

g. What is the power factor of the network? Is it leading or 
lagging? Is this considered a capacitive or inductive 
configuration?

f. Verify Kirchhoff’s current law at one node.
g. Find the average power delivered to the circuit.
h. Find the power factor of the circuit, and indicate whether 

it is leading or lagging.
i.  Find the sinusoidal expressions for the currents and 

voltage.
j. Plot the waveforms for the currents and voltage on the 

same set of axes.
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I  =  30 A / 40°

R 22 V 60 V
XL

I1 I2
I  =  8 A / 45°

I1

R

12 V

XL

4 V

I2
XC

6 V

(b)

I  =  5 A / 0°

I1
XL1

20 V

XL2

40 V
I2

XC

10 V

3 kV

(c)(a)

R

FIG. 16.72
Problem 14.

VC2C

+

–

R 40 V

IR

ZT

I  =  50 mA /08 mF

FIG. 16.73
Problems 15 and 17.

200 mHL

+

–

R 5 kV

IR

ZT

E  =  40 V /0°

IL

FIG. 16.74
Problems 16 and 18.

is  =  5 3 10–3 sin(1000t – 208) R 3 kV 3.9 HL C 0.12 mF

+

–

iR iL iC

e

FIG. 16.71
Problem 13.

   13. Repeat Problem 12 for the circuit in Fig. 16.71 except for 
part (c).

SECTION 16.5 Current Divider Rule

   14. Calculate the currents I1  and I 2  in Fig. 16.72 in phasor 
form using the current divider rule.

SECTION 16.6 Frequency Response of Parallel 
Elements

*15. For the parallel R-C network in Fig. 16.73:
a. Plot ZT  and Tθ  versus frequency for a frequency range 

of zero to 20 kHz.
b. Plot VC  versus frequency for the frequency range of  

part (a).
c. Plot I R  versus frequency for the frequency range of  

part (a).

*16. For the parallel R-L network in Fig. 16.74:
a. Plot ZT  and Tθ  versus frequency for a frequency range 

of zero to 10 kHz.
b. Plot I L  versus frequency for the frequency range of part (a).
c. Plot I R versus frequency for the frequency range of part (a).

   17. Plot YT  and Tθ  (of YYT T Tθ= ∠ ) for a frequency range of 
zero to 20 kHz for the network in Fig. 16.73.

   18. Plot YT  and Tθ  (of YYT T Tθ= ∠ ) for a frequency range of 
zero to 10 kHz for the network in Fig. 16.74.
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 19. For the parallel R-L-C network in Fig. 16.75.
a. Plot YT  and Tθ  (of YYT T Tθ= ∠ ) for a frequency range 

of zero to 20 kHz.
b. Repeat part (a) for ZT  and Tθ  (of ZZT T Tθ= ∠ ).

20 V

(a)

70 V

ZT

2 kV

(b)

14 kV 

ZT

8 kV

FIG. 16.76
Problem 20.

8.2 kV

R 20 kVXC
ZT

(a)

60 V
68 VRZT

(b)

XL

20 VXC

FIG. 16.77
Problem 21.

e R

220 V

1 mFC C 1 mF

+

–

iR iL

is  =  √2 sin 2p 1000t

L  =  10 mH

FIG. 16.78
Problem 22.

E  =  120 V / 0° ?20 V

I  =  80 A / u

–

+

FIG. 16.79
Problem 23.

I  =  10 mA /0° R 1 kV
100 mH

L C 3,000 pF

ZT

IL

VC

+

–
YT

FIG. 16.75
Problem 19.

SECTION 16.8 Equivalent Circuits

 20. For the series circuits in Fig. 16.76, find a parallel circuit 
that will have the same total impedance (ZT ).

*22. For the network in Fig. 16.78:
a.  Calculate E, I ,R  and I L  in phasor form.
b. Calculate the total power factor, and indicate whether it 

is leading or lagging.
c. Calculate the average power delivered to the circuit.
d. Draw the admittance diagram.

 23. Find the element or elements that must be in the closed con-
tainer in Fig.  16.79 to satisfy the following conditions. 
(Find the simplest parallel circuit that will satisfy the indi-
cated conditions.)
a. Average power to the circuit = 8000  W.
b. Circuit has a lagging power factor.

c. Plot VC  versus frequency for the frequency range of  
part (a).

d. Plot I L  versus frequency for the frequency range of  
part (a).

 21. For the parallel circuits in Fig. 16.77, find a series circuit 
that will have the same total impedance.

e. Draw the phasor diagram of the currents I ,s  I ,R  and  
I ,L  and the voltage E.

f. Find the current IC  for each capacitor using only Kirch-
hoff’s current law.

g. Find the series circuit of one resistive and reactive ele-
ment that will have the same impedance as the original 
circuit.
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GLOSSARY

Admittance A measure of how easily a network will “admit” the 
passage of current through that system. It is measured in siemens, 
abbreviated S, and is represented by the capital letter Y.

Admittance diagram A vector display that clearly depicts the 
magnitude of the admittance of the conductance, capacitive 
susceptance, and inductive susceptance and the magnitude 
and angle of the total admittance of the system.

Current divider rule A method by which the current through 
either of two parallel branches can be determined in an ac 
network without first finding the voltage across the parallel 
branches.

Equivalent circuits For every series ac network, there is a par-
allel ac network (and vice versa) that will be “equivalent” in 
the sense that the input current and impedance are the same.

Parallel ac circuits A connection of elements in an ac network 
in which all the elements have two points in common. The 
voltage is the same across each element.

Phasor diagram A vector display that provides at a glance the 
magnitude and phase relationships among the various volt-
ages and currents of a network.

Susceptance A measure of how “susceptible” an element is to 
the passage of current through it. It is measured in siemens, 
abbreviated S, and is represented by the capital letter B.
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17 Series-Parallel ac Networks

 17.1 INTRODUCTION
In this chapter, we shall use the fundamental concepts of the previous chapter to develop 
a technique for solving series-parallel ac networks. A brief review of Chapter 7 may be 
helpful before considering these networks since the approach here is quite similar to that un-
dertaken earlier. The circuits to be discussed have only one source of energy, either potential 
or current. Networks with two or more sources are considered in Chapters 18 and 19, using 
methods previously described for dc circuits.

In general, when working with series-parallel ac networks, consider the following 
approach:

1. Redraw the network, using block impedances to combine series and paral-
lel elements.

2. Study the problem and make a brief mental sketch of the overall approach 
you plan to use. Doing this may result in time and energy saving shortcuts.

3. Find a solution for the desired quantities in terms of the block impedances.

4. When you have your solution, check to see that it is reasonable by consider-
ing the magnitudes of the energy source and the components of the net-
work. If unsure, either solve the network using another approach or check 
over your work very carefully.

17.2 ILLUSTRATIVE EXAMPLES
A Simple Series-Parallel Combination
EXAMPLE 17.1 For the network in Fig. 17.1:

a. Calculate Z .T

b. Determine I .s

c. Calculate VR  and V .C

d.  Find I .C

e. Compute the power delivered.
f. Find FP  of the network.

•  Become more aware of the impact of particular 
elements on the overall behavior of a network.

• Develop confidence in being able to reduce a 
complex network to one of fewer components by 
combining series and parallel elements.

• Establish an ability to recognize the most direct 
path toward a solution.

• Become proficient in the use of the TI 89 calculator 
with complex impedances.

• Fully understand the importance of the ground 
connection in any network.

 Objectives
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Solutions:

a. As suggested in the introduction, the network has been redrawn 
with block impedances, as shown in Fig. 17.2. The impedance Z1 is 
simply the resistor R of 1 Ω, and Z2  is the parallel combination of 
XC  and X .L  The network now clearly reveals that it is fundamen-
tally a series circuit, suggesting a direct path toward the total imped-
ance and the source current. For many such problems, you must 
work back to the source to find first the total impedance and then the 
source current. When the unknown quantities are found in terms of 
these subscripted impedances, the numerical values can then be 
substituted to find the magnitude and phase angle of the unknown. 
In other words, try to find the desired solution solely in terms of the 
subscripted impedances before substituting numbers. This approach 
will usually enhance the clarity of the chosen path toward a solution 
while saving time and preventing careless calculation errors. Note 
also in Fig. 17.2 that all the unknown quantities except IC  have 
been preserved, meaning that we can use Fig. 17.2 to determine 
these quantities rather than having to return to the more complex 
network in Fig. 17.1.

The total impedance is defined by

= +Z Z ZT 1 2

with

= ∠ ° = ∠ °RZ  0 1 Ω 01

�
( )( ) ( )( )

= =
∠− ° ∠ °
− +

=
∠− ° ∠ °
− +

X X
jX jX j j

Z Z Z 
90 90 2 Ω 90 3 Ω 90

2 Ω 3 ΩC L
C L

C L
2

=
∠ °

=
∠ °

∠ °
= ∠− °

j
 6Ω 0

1
6 Ω 0
1 90

6 Ω 90

and

= + = − = ∠− °jZ Z Z 6 08 80 541 Ω 6 Ω .  Ω .T 1 2

b. = =
∠ °

∠− °
= ∠ °I E

Z
19 74 A 80 54

120 V 0
6.08 Ω 80.54

.   .s
T

1

2

Is

ZT

Z1 Z2

E  5  120 V/0°

FIG. 17.2
Network in Fig. 17.1 after assigning the 

block impedances.

R

1 V
1

2

VR1 2

VC1 2

XC

XL

Is

ZT

IC 2 V

3 VE  5  120 V/0° 

FIG. 17.1
Example 17.1.
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c. Referring to Fig. 17.2, we find that VR  and VC  can be found by a 
direct application of Ohm’s law:

( )( )= = ∠ ° ∠ ° = ∠ °V I Z 19 74 V 80 5419.74 A 80.54 1 Ω 0 .   .R s 1

( )( )= = ∠ ° ∠− °V I Z  19.74 A 80.54 6 Ω 90C s 2

= ∠− °118 44 V 9 46.   .

d. Now that VC  is known, the current IC  can also be found using 
Ohm’s law:

= =
∠− °

∠− °
= ∠ °I

V
Z

59 22 A 80 54
118.44 V 9.46

2 Ω 90
.   .C

C

C

e. ( )( )= = =P I R 389 67 W19.74 A 1 Ω .  sdel
2 2

f. θ= = ° =F 0 164 leadingcos  cos  80.54 .  p

The fact that the total impedance has a negative phase angle (reveal-
ing that I s  leads E) is a clear indication that the network is capacitive 
in nature and therefore has a leading power factor. The fact that the 
network is capacitive can be determined from the original network by 
first realizing that, for the parallel L-C elements, the smaller impedance 
predominates and results in an R-C network.

Parallel Network with a Current Source
EXAMPLE 17.2 For the network in Fig. 17.3:

a. If I is ∠ °50 A 30 ,  calculate I1 using the current divider rule.
b. Repeat part (a) for I 2

c. Verify Kirchhoff’s current law at one node.

Solutions:

a. Redrawing the circuit as in Fig. 17.4, we have

= + = + = ∠ °R jX jZ  3 Ω 4 Ω 5 Ω  53.13L1

= − = − = ∠− °jX jZ  8 Ω 8 Ω 90C2

Using the current divider rule yields

( )( )
( ) ( )

=
+

=
∠− ° ∠ °

− + +
=

∠− °
−j j j

I
Z I

Z Z
 

8 Ω 90 50 A 30
8 Ω 3 Ω 4 Ω

400 A 60
3 41

2

2 1

=
∠− °

∠− °
= ∠− °80 A 6 87

400 A 60
5 53.13

  .

b. 
( )( )

=
+

=
∠ ° ∠ °

∠− °
=

∠ °
∠− °

I
Z I

Z Z
 

5 Ω 53.13 50 A 30
5 Ω 53.13

250 A 83.13
5 53.132

1

2 1

= ∠ °50 A 136 26  .

c.  = +I I I  1 2

∠ ° = ∠− ° + ∠ ° 50 A 30 80 A 6.87 50 A 136.26

( ) ( )= − + − +j j79.43 9.57 36.12 34.57

= + j43.31 25.0

( )∠ ° = ∠ ° 50 A 30 50 A 30    checks

R 3 V

XL

XC 8 V
4 V

I

I1 I2

FIG. 17.3
Example 17.2.

I

I1 I2

Z2Z1

FIG. 17.4
Network in Fig. 17.3 after 

assigning the block 
impedances.
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Parallel Network with Voltage Source
EXAMPLE 17.3 For the network in Fig. 17.5:

a. Calculate the voltage VC  using the voltage divider rule.
b. Calculate the current I .s

Solutions:

a. The network is redrawn as shown in Fig. 17.6, with

= = ∠ °Z  5 Ω 5 Ω 01

= − = ∠− °jZ  12 Ω 12 Ω 902

= + = ∠ °jZ  8 Ω 8 Ω 903

Since VC  is desired, we will not combine R and XC  into a single 
block impedance. Note also how Fig. 17.6 clearly reveals that E is 
the total voltage across the series combination of Z1 and Z ,2  per-
mitting the use of the voltage divider rule to calculate V .C  In addi-
tion, note that all the currents necessary to determine I s  have been 
preserved in Fig. 17.6, revealing that there is no need to ever return 
to the network of Fig. 17.5—everything is defined by Fig. 17.6.

( )( )
=

+
=

∠− ° ∠ °
−

=
∠− °

∠− °j
V

Z E
Z Z

 
12 Ω 90 20 V 20

5 Ω 12 Ω
240 V 70
13 67.38C

2

1 2

= ∠− °18 46 V 2 62.   .

b. = =
∠ °

∠ °
= ∠− °I E

Z
20 V 20
8 Ω 90

2.5 A 701
3

=
+

=
∠ °

∠− °
= ∠ °I E

Z Z
20 V 20

13 Ω 67.38
1.54 A 87.382

1 2

and

= +I I I  s 1 2

= ∠− ° + ∠ °2.5 A 70 1.54 A 87.38

( ) ( )= − + +j j0.86 2.35 0.07 1.54
= − = ∠− °jI 1 23 A 41 05  0.93 0.81 .   .s

Parallel Network and a Voltage Defined 
Between Parallel Branches
EXAMPLE 17.4 For Fig. 17.7:

a. Calculate the current I .s

b. Find the voltage V .ab

Solutions:

a. Redrawing the circuit as in Fig. 17.8, we obtain

= + = + = ∠ °R jX jZ  3 Ω 4 Ω 5 Ω 53.13L1 1

= − = − = ∠− °R jX jZ  8 Ω 6 Ω 10 Ω 36.87C2 2

In this case the voltage Vab  is lost in the redrawn network, but the 
currents I1 and I 2 remain defined for future calculations necessary 
to determine V .ab  Fig. 17.8 clearly reveals that the total impedance 
can be found using the equation for two parallel impedances:

( )( )
( ) ( )

=
+

=
∠ ° ∠− °
+ + −j j

Z
Z Z

Z Z
 

5 Ω 53.13 10 Ω 36.87
3 Ω 4 Ω 8 Ω 6 ΩT

1 2

1 2

R1 3 V

XL
XC 6 V4 V

I1 I2

Vaba b

R2 8 V

Is

1

2

E  =  100 V / 08

FIG. 17.7
Example 17.4.

I1 I2

Z2Z1

I

YT

1

2

E  =  100 V / 08

FIG. 17.8
Network in Fig. 17.7 after assigning the 

block impedances.

R

5 V
1

2

20 V  208

1

2
XC

XL

Is

12 V8 V VCE /

FIG. 17.5
Example 17.3.

E

I1 I2

Z1

Z3

Z2

Is

1

2

VC

1

2

FIG. 17.6
 Network in Fig. 17.5 after 

assigning the block impedances.
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=
∠ °
−

=
∠ °

∠− °j
50 Ω 16.26

11 2
50 Ω 16.26

11.18 10.30
= ∠ °4 47 26 56.  Ω .

and

= =
∠ °

∠ °
= ∠− °I E

Z
22 36 A 26 56

100 V 0
4.47 Ω 26.56

.   .s
T

b. By Ohm’s law,

= =
∠ °

∠ °
= ∠− °I E

Z
20 A 53 13 

100 V 0
5 Ω 53.13

  .1
1

= =
∠ °

∠− °
= ∠ °I E

Z
10 A 36 87 

100 V 0
10 Ω 36.87

  .2
2

Returning to Fig. 17.7, we have

( )( )= = ∠− ° ∠ ° = ∠− °V I Z 60 V 53 13  20 A 53.13 3 Ω 0   .R R11 1

( )( )= = ∠ + ° ∠ ° = ∠+ °V I Z 80 V 36 87  10 A 36.87 8 Ω 0   .R R12 2

Instead of using the two steps just shown, we could have determined 
VR1

 or VR2
 in one step using the voltage divider rule:

( )( )
=

∠ ° ∠ °
∠ ° + ∠ °

=
∠ °

∠ °
= ∠− °V 60 V 53 13

3 Ω 0 100 V 0
3 Ω 0 4 Ω 90

300 V 0
5  53.13

  .R1

To find V ,ab  Kirchhoff’s voltage law must be applied around the 
loop (Fig. 17.9) consisting of the 3 Ω  and 8 Ω  resistors. By Kirch-
hoff’s voltage law,

+ − =V V V 0ab R R1 2

( ) ( )

= −

= ∠ ° − ∠− °

= + − −

= +

= ∠ °

j j

j

V V V

V 100 V 73 74

or       

80 V 36.87 60 V 53.13

64 48 36 48

28 96

  .

ab R R

ab

2 1

Transistor Common Emitter Configuration
EXAMPLE 17.5 The network in Fig. 17.10 is frequently encoun-
tered in the analysis of transistor networks. The transistor equivalent cir-
cuit includes a current source I and an output impedance R .o  The resistor 
RC  is a biasing resistor to establish specific dc conditions, and the resis-

3 V

Vaba b

VR2
8 V

1

2
VR1

1

2

1 2

FIG. 17.9
Determining the voltage Vab  for 

the network in Fig. 17.7.

10 µF

RC 3.3 kV

Next stage
Coupling
capacitor

Ri 1 kV VL

1

2

Transistor equivalent
network

Biasing
network

I 4 mA /08
Ro

50 kV

FIG. 17.10
Basic transistor amplifier.
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tor Ri  represents the loading of the next stage. The coupling capacitor is 
designed to be an open circuit for dc and to have as low an impedance as 
possible for the frequencies of interest to ensure that VL  is a maximum 
value. The frequency range of the example includes the entire audio 
(hearing) spectrum from 100 Hz to 20 kHz. The purpose of the example 
is to demonstrate that, for the full audio range, the effect of the capacitor 
can be ignored. It performs its function as a dc blocking agent but per-
mits the ac to pass through with little disturbance.

a. Determine VL  for the network in Fig. 17.10 at a frequency of 100 Hz.
b. Repeat part (a) at a frequency of 20 kHz.
c. Compare the results of parts (a) and (b).

Solutions:

a. The network is redrawn with subscripted impedances in Fig. 17.11:

�= ∠ ° ∠ ° = ∠ °

= −R jX

Z

Z

  50 kΩ 0 3.3 kΩ 0 3.096 kΩ 0

  i C

1

2

At =f 100 Hz, X
fC

1
2

1
2 (100 Hz)(10  F)

159.16 ΩC π π µ
= = =

and = − jZ 1 kΩ 159.16 Ω2

Using the current divider rule gives

Z2Z1

IL

VL

1

2

I 4 mA / 08

FIG. 17.11
 Network in Fig. 17.10 following the 

assignment of the block impedances.
( )( )

=
−

+
=

− ∠ ° ∠ °
+ −

=
− ∠ °

−
=

− ∠ °
∠− °

= − ∠ ° = ∠ ° + ° = ∠ °

j

j

I
Z I

Z Z
3.096 kΩ 0 4 mA 0

3.096 kΩ 1 kΩ 159.16 Ω

12.384 A 0
4096 159.16

12.384 A 0
4099 2.225

3.02 mA 2.23 3.02 mA 2.23 180 3.02 mA 182.23

L
1

1 2

V I Z

3 02 V 182 23

and

3.02 mA 182.23 1 kΩ 0

.   .

L L R

( )( )

=

= ∠ ° ∠ °

= ∠ °

b. At =f 20 kHz, X
fC

1
2

1
2 (20 kHz)(10  F)

0.796 ΩC π π µ
= = =

Note the dramatic change in XC  with frequency. Obviously, the 
higher the frequency, the better is the short-circuit approximation 
for XC  for ac conditions. We have

= − jZ 1 kΩ 0.796 Ω2

Using the current divider rule gives

( )( )
=

−
+

=
− ∠ ° ∠ °

+ − j
I

Z I
Z Z

 
3.096 kΩ 0 4 mA 0

3.096 kΩ 1 kΩ 0.796 ΩL
1

1 2

=
− ∠ °

−
=

− ∠ °
∠− °j

12.384 A 0
4096 0.796 Ω

12.384 A 0
4096 0.011

= − ∠ ° = ∠ ° + ° = ∠ °3.02 mA 0.01 3.02 mA 0.01 180 3.02 mA 180.01

and =V I Z  L L R

( )( )= ∠ ° ∠ °3.02 mA 180.01 1 kΩ 0

= ∠ °3 02 V 180 01.   .
c. The results clearly indicate that the capacitor had little effect on the 

frequencies of interest. In addition, note that most of the supply cur-
rent reached the load for the typical parameters employed.
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Parallel Network with Parallel Current Sources
EXAMPLE 17.6 For the network in Fig. 17.12:

a. Determine the current I.
b. Find the voltage V.

Solutions:

a. The rules for parallel current sources are the same for dc and ac 
networks. That is, the equivalent current source is their sum or dif-
ference (as phasors). Therefore,

I ( )= ∠ ° − ∠ °

= + −

= +

= ∠ °

j

j

I6 mA 20 4 mA 0   in the direction of 

5.638 mA 2.052 mA 4 mA

1.638 mA 2.052 mA

2.626 mA 51.402

T 1

Redrawing the network using block impedances results in the net-
work in Fig. 17.13, where

  = ∠ ° ∠ ° = ∠ °Z  2 kΩ 0 6.8 kΩ 0 1.545 kΩ 01

and    = − = ∠− °jZ  10 kΩ 20 kΩ 22.361 kΩ 63.4352

Note that I and V are still defined in Fig. 17.13.

Using the current divider rule gives

( )( )
=

+
=

∠ ° ∠ °
+ − j

I
Z I

Z Z
 

1.545 kΩ 0 2.626 mA 51.402
1.545 kΩ 10 kΩ 20 kΩ

T1

1 2

=
∠ °

× − ×
=

∠ °
× ∠− °j

4.057 A 51.402
11.545 10 20 10

4.057 A 51.402
23.093 10 60.0043 3 3

= ∠ °0 18 mA 111 41.    .
b. =V IZ  2

( )( )= ∠ ° ∠− °0.176 mA 111.406 22.36 kΩ 63.435

= ∠ °3 94 V 47 97.   .

Parallel Network with a Number of Series 
Elements
EXAMPLE 17.7 For the network in Fig. 17.14:

a. Compute I.
b. Find I ,1  I ,2  and I .3

c. Verify Kirchhoff’s current law by showing that

= + +I I I I1 2 3

d. Find the total impedance of the circuit.

I

I1

6 mA / 208
1

2

I2

4 mA / 08

R1 2 kV R3 6.8 kV
R2 10 kV

20 kVXC

V

FIG. 17.12
Example 17.6.

Z2Z1

I

IT 2.626 mA / 51.4028

1

2

V

FIG. 17.13
Network in Fig. 17.12 following the 

assignment of the subscripted 
impedances.
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Solutions:

a. Redrawing the circuit as in Fig. 17.15 reveals a strictly parallel net-
work where

= = ∠ °RZ 10 Ω 01 1

= + = +R jX jZ 3 Ω 4 ΩL2 2 1

= + − = + − = −R jX jX j j jZ 8 Ω 3 Ω 9 Ω 8 Ω 6 ΩL C3 3 2

The total admittance is

= + +Y Y Y Y  T 1 2 3

= + + = +
+

+
−j jZ Z Z

1 1 1 1
10 Ω

1
3 Ω 4 Ω

1
8 Ω 6 Ω1 2 3

= +
∠ °

+
∠− °

0.1 S 1
5 Ω 53.13

1
10 Ω 36.87

= + ∠− ° + ∠ °0.1 S 0.2 S 53.13 0.1 S 36.87

= + − + +j j0.1 S 0.12 S 0.16 S 0.08 S 0.06 S

= − = ∠− °j0.3 S 0.1 S 0.316 S 18.435

Calculator The above mathematical exercise presents an excellent 
opportunity to demonstrate the power of some of today’s calcula-
tors. For the TI-89, the above operation is as shown in Fig. 17.16.

I1 I2

Z1

I

1

2

E  =  200 V / 08 Z2

I3

Z3

FIG. 17.15
Network in Fig. 17.14 following the assignment of the 

subscripted impedances.

1 1 0 1 ( 3 i4 ) 1

( 8 i6 ) ENTER 300.0E–3–100.0E–3i––

+ ++

44

44 44

FIG. 17.16
Finding the total admittance for the network in Fig. 17.14 using the TI-89 calculator.

R2 3 V

XL1

XC 9 V

4 V

I1 I2

R1 10 V

ZT

1

2

E  =  200 V / 08

I3

YT

R3  5  8 V XL2
  5  3 VI

FIG. 17.14
Example 17.7.
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Be sure to use the negative sign for the complex number from the 
subtraction option and not the sign selection ( )− . The sign selection 
is used for negative angles in the polar form.

Converting to polar form requires the sequence shown in Fig. 17.17.

Convert to polar form:

The current I is given by

( )( )= = ∠ ° ∠− °I EY  200 V 0 0.326 S 18.435T

= ∠− °63 2 A 18 44.   .
b. Since the voltage is the same across parallel branches,

= =
∠ °

∠ °
= ∠ °I E

Z
20 A 0 

200 V 0
10 Ω 0

 1
1

= =
∠ °

∠ °
= ∠− °I E

Z
40 53 13 

200 V 0
5 Ω 53.13

 A .2
2

= =
∠ °

∠− °
= ∠ + °I E

Z
20 A 36 87 

200 V 0
10 Ω 36.87

  .3
3

c. = + +I I I I  1 2 3

− = ∠ ° + ∠− ° + ∠ + °j 60 20 20 0 40 53.13 20 36.87

( ) ( ) ( )= + + − + +j j j20 0 24 32 16 12

( )− = −j j 60 20 60 20 checks

d. = =
∠− °

Z
Y

  1 1
0.316 S 18.435T

T

= ∠ °3 17 18 44.  Ω .

Series-Parallel Network
EXAMPLE 17.8 For the network in Fig. 17.18:

a. Calculate the total impedance Z .T

b. Compute I.
c. Find the total power factor.
d. Calculate I1 and I .2

e. Find the average power delivered to the circuit.

( 3 i1 ) Polar ENTER 316.2E–3 // –18.43E0– ENTER

FIG. 17.17
Converting the rectangular form in Fig. 17.16 to polar form.

I1I

ZT

1

2

E  =  100 V / 08

R2 9 V

R1

4 V

XC 7 V

I2

R3 8 V

XL  =  6 V

FIG. 17.18
Example 17.8.
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Solutions:

a. Redrawing the circuit as in Fig. 17.19, we have

= = ∠ °RZ 4 Ω 01 1

= − = − = ∠− °R jX jZ 9 Ω 7 Ω 11.40 Ω 37.87C2 2

= + = + = ∠+ °R jX jZ 8 Ω 6 Ω 10 Ω 36.87L3 3

Notice that all the desired quantities were conserved in the redrawn 
network. The total impedance is

= +Z Z Z  T T1 1

= +
+

Z
Z Z

Z Z1
2 3

2 3

( )( )
( ) ( )

= +
∠− ° ∠ °

− + +j j
4 Ω

11.4 Ω 37.87 10 Ω 36.87
9 Ω 7 Ω 8 Ω 6 Ω

= +
∠− °
∠− °

= + ∠ °4 Ω
114 Ω 1.00
17.03 3.37

4 Ω 6.69 Ω 2.37

= + + = +j j4 Ω 6.68 Ω 0.28 Ω 10.68 Ω 0.28 Ω

= ∠ °Z 10 68 1 5.  Ω .T

Calculator Another opportunity to demonstrate the versatility of the 
calculator! For the above operation, however, you must be aware of 
the priority of the mathematical operations, as demonstrated in the 
calculator display in Fig. 17.20. In most cases, the operations are per-
formed in the same order they would be if you wrote them longhand.

b. = =
∠ °
∠ °

= ∠− °I E
Z

9 36 A 1 5
100 V 0

10.684 Ω 1.5
.   .

T

c. θ= = = ≅F R
Z

1cos  10.68 Ω
10.684 Ωp T

T

(essentially resistive, which is interesting, considering the complex-
ity of the network)

I1

Z1
I

ZT

1

2

E  =  100 V / 08 Z2

I2

Z3ZT1

FIG. 17.19
Network in Fig. 17.18 following the assignment of the 

subscripted impedances.

)i

/ 8 71 0( 3 6 8 7 ) ( ( 9

41 3(–) 7/ 8 7 8 )4 1( 31

44 –

i Polar ENTER 10.69E0 / 1.48E0))( 8 6++ ENTER

FIG. 17.20
Finding the total impedance for the network in Fig. 17.18 using the TI-89 calculator.
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d. Using the current divider rule gives

( )( )
( ) ( )

=
+

=
∠− ° ∠− °

− + +j j
I

Z I
Z Z

 
11.40 Ω 37.87 9.36 A 1.5

9 Ω 7 Ω 8 Ω 6 Ω2
2

2 3

=
∠− °
−

=
∠− °

∠− °j
106.7 A 39.37

17 1
106.7 A 39.37

17.03 3.37
= ∠− °I 6 27 A 36  .  2

Applying Kirchhoff’s current law (rather than another application 
of the current divider rule) yields

= −I I I1 2

or     = −I I I1 2

    ( ) ( )= ∠− ° − ∠− °9.36 A 1.5 6.27 A 36

     ( ) ( )= − − −j j9.36 A 0.25 A 5.07 A 3.69 A

= + = ∠ °jI 5 5 A 38 72  4.29 A 3.44 A .   .1

e. θ=P EI   cos T T

( )= °100 V)(9.36 A  cos 1.5

( )( )= 936 0.99966

=P 935 68 W  .  T

17.3 LADDER NETWORKS
Ladder networks were discussed in some detail in Chapter 7. This sec-
tion will simply apply the first method described in Section 7.6 to the gen-
eral sinusoidal ac ladder network in Fig. 17.21. The current I 6  is desired.

Impedances Z ,T  ′ ″Z Z,  and T T  and currents I1 and I 3 are defined in 
Fig. 17.22. We have

″ = +Z Z ZT 5 6

and     Z Z Z ZT T3 4 �′ = + ″

with       �= + ′Z Z Z ZT T1 2

Then      =I E
ZT

and      =
+ ′

I
Z I

Z Z T
3

2

2

with       =
+ ′′

I
Z I

Z ZT
6

4 3

4

Z2

1

2

E  =  120 V / 08 Z4

I6

Z6

Z1 Z3 Z5

FIG. 17.21
Ladder network.
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17.4 GROUNDING
Although usually treated too lightly in most introductory electrical or 
electronics texts, the impact of the ground connection and how it can 
provide a measure of safety to a design are very important topics. 
Ground potential is zero volts at every point in a network that has a 
ground symbol. Since all points are at the same potential, they can all be 
connected together, but for purposes of clarity, most are left isolated on a 
large schematic. On a schematic, the voltage levels provided are always 
with respect to ground. A system can therefore be checked quite rapidly 
by simply connecting the black lead of the voltmeter to the ground con-
nection and placing the red lead at the various points where the typical 
operating voltage is provided. A close match normally implies that that 
portion of the system is operating properly.

There are various types of grounds, whose use depends on the appli-
cation. An earth ground is one that is connected directly to the earth by a 
low-impedance connection. Under typical environmental conditions, local 
ground potentials are fairly uniform and can be defined as equal to zero 
volts. This local uniformity is due to sufficient conductive agents in the 
soil such as water and electrolytes to ensure that any difference in voltage 
on the surface is equalized by a flow of charge between the two points. 
However, between long distances on the earth’s surface there can be sig-
nificant changes in potential level. Every home has an earth ground, usu-
ally established by a long conductive rod driven into the ground and con-
nected to the power panel. The electrical code requires a direct connection 
from earth ground to the cold-water pipes of a home for safety reasons. A 
“hot” wire touching a cold-water pipe draws sufficient current because of 
the low-impedance ground connection to throw the breaker. Otherwise, 
people in the bathroom could pick up the voltage when they touched the 
cold-water faucet, thereby risking bodily harm. Because water is a con-
ductive agent, any area of the home with water, such as a bathroom or the 
kitchen, is of particular concern. Most electrical systems are connected to 
earth ground primarily for safety reasons. All the power lines in a labora-
tory, at industrial locations, or in the home are connected to earth ground.

A second type is referred to as a chassis ground, which may be floating 
or connected directly to an earth ground. A chassis ground simply stipu-
lates that the chassis has a reference potential for all points of the network. 
If the chassis is not connected to earth potential (0 V), it is said to be float-
ing and can have any other reference voltage for the other voltages to be 
compared to. For instance, if the chassis is sitting at 120 V, all measured 
voltages of the network will be referenced to this level. A reading of 32 V 
between a point in the network and the chassis ground will therefore actu-
ally be at 152 V with respect to earth potential. Most high-voltage systems 

Z2

1

2

E  =  120 V / 08 Z4

I6

Z6

Z1 Z3 Z5

I

Z0TZ9TZT

I3

FIG. 17.22
Defining an approach to the analysis of ladder networks.
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are not left floating, however, because of loss of the safety factor. For  
instance, if someone should touch the chassis and be standing on a suitable 
ground, the full 120 V would fall across that individual.

Grounding can be particularly important when working with numer-
ous pieces of measuring equipment in the laboratory. For instance, the 
supply and oscilloscope in Fig. 17.23(a) are each connected directly to an 
earth ground through the negative terminal of each. If the oscilloscope is 
connected as shown in Fig. 17.23(a) to measure the voltage V ,R1  a dan-
gerous situation will develop. The grounds of each piece of equipment are 
connected together through the earth ground, and they effectively short 
out the resistor. Since the resistor is the primary current-controlling ele-
ment in the network, the current will rise to a very high level and possibly 
damage the instruments or cause dangerous side effects. In this case, the 
supply or scope should be used in the floating mode or the resistors inter-
changed as shown in Fig. 17.23(b). In Fig. 17.23(b), the grounds have a 
common point and do not affect the structure of the network.

The National Electrical Code requires that the “hot” (or feeder) line 
that carries current to a load be black and the line (called the neutral) that 
carries the current back to the supply be white. Three-wire conductors 
have a ground wire that must be green or bare, which ensures a common 
ground but which is not designed to carry current. The components of a 
three-prong extension cord and wall outlet are shown in Fig. 17.24. Note 

Black

Ground
(green)

White

(b)

White

Ground (green or bare)

Black

Black

White

Ground (green)
(a)

FIG. 17.24
Three-wire conductors: (a) extension cord; (b) home outlet.

Oscilloscope

Short introduced by
ground connection

R2 100 V

VR1

1 V

120 V

1 2
R1

(a) (b)

100 V

120 V

R2

R1 1 V

Oscilloscope

1

2

1

2

FIG. 17.23
Demonstrating the effect of the oscilloscope ground on the measurement of the voltage 
across resistor R .1
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that on both fixtures, the connection to the hot lead is smaller than the 
return leg and that the ground connection is partially circular.

The complete wiring diagram for a household outlet is shown in 
Fig.  17.25. Note that the current through the ground wire is zero and 
that both the return wire and the ground wire are connected to an earth 
ground. The full current to the loads flows through the feeder and return 
lines.

The importance of the ground wire in a three-wire system can be 
demonstrated by the toaster in Fig. 17.26, rated 1200 W at 120 V. From 
the power equation =P EI ,  the current drawn under normal operat-
ing conditions is = = =I P E/ 1200 W/120 V 10 A. If a two-wire 
line were used as shown in Fig.  17.26(a), the 20 A breaker would be 

Breaker

20 A

120 V

10 A

10 A

Black

White

(a)

Breaker

20 A

120 V

10 A

10 A

Black

White

(b)

120 V

“Contact” “Hot”

I > 20 A

20 A
Breaker open

120 V
Black

White

(c)

I = 0 A

I > 20 A
Ground

“Contact”

R
Toaster Short

RT ù 0 V

I > 20 A

1

2

1

2

1

2

1

2

FIG. 17.26
Demonstrating the importance of a properly grounded appliance: (a) ungrounded; (b) ungrounded and 

undesirable contact; (c) grounded appliance with undesirable contact.

10 V
Load

Green or bare

Load
housingI 5 12 A

I 5 12 A

I 5 0 A

White

Black

“Feed”

“Return”

Ground

I 5 12 A

I 5 12 A

I 5 0 A

120 V

Breaker

20 A

1

2

FIG. 17.25
Complete wiring diagram for a household outlet with a 10 Ω  load.
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quite comfortable with the 10 A current, and the system would perform 
normally. However, if abuse to the feeder caused it to become frayed 
and to touch the metal housing of the toaster, the situation depicted in 
Fig.  17.26(b) would result. The housing would become “hot,” yet the 
breaker would not trip because the current would still be the rated 10 A. 
A dangerous condition would exist because anyone touching the toaster 
would feel the full 120 V to ground. If the ground wire were attached 
to the chassis as shown in Fig.  17.26(c), a low-resistance path would 
be created between the short-circuit point and ground, and the current 
would jump to very high levels. The breaker would trip, and the user 
would be warned that a problem exists.

Although the above discussion does not cover all possible areas of 
concern with proper grounding or introduce all the nuances associated 
with the effect of grounds on a system’s performance, you should under-
stand the importance of the impact of grounds.

17.5 APPLICATIONS
The vast majority of the applications appearing throughout the text have 
been of the series-parallel variety. The following are series-parallel com-
binations of elements and systems used to perform important everyday 
tasks. The ground fault circuit interrupter outlet employs series protec-
tive switches and sensing coils and a parallel control system, while the 
ideal equivalent circuit for the coax cable employs a series-parallel com-
bination of inductors and capacitors.

GFCI (Ground Fault Circuit Interrupter)
The National Electric Code, the “bible” for all electrical contractors, now 
requires that ground fault circuit interrupter (GFCI) outlets be used in 
any area where water and dampness could result in serious injury, such 
as in bathrooms, pools, marinas, and so on. The outlet looks like any 
other except that it has a reset button and a test button in the center of the 
unit as shown in Fig. 17.27(a). The primary difference between it and an 
ordinary outlet is that it will shut the power off much more quickly than 
the breaker all the way down in the basement could. You may still feel 
a shock with a GFCI outlet, but the current cuts off so quickly (in a few 
milliseconds) that a person in normal health should not receive a serious 
electrical injury. Whenever in doubt about its use, remember that its cost 
(relatively inexpensive) is well worth the increased measure of safety.

The basic operation is best described by the network in Fig. 17.27(b). 
The protection circuit separates the power source from the outlet itself. 
Note in Fig.  17.27(b) the importance of grounding the protection cir-
cuit to the central ground of the establishment (a water pipe, ground 
bar, and so on, connected to the main panel). In general, the outlet will 
be grounded to the same connection. Basically, the network shown in 
Fig. 17.27(b) senses both the current entering ( )I i  and the current leav-
ing ( )I o  and provides a direct connection to the outlet when they are 
equal. If a fault should develop such as that caused by someone touching 
the hot leg while standing on a wet floor, the return current will be less 
than the feed current (just a few milliamperes is enough). The protection 
circuitry senses this difference, establishes an open circuit in the line, 
and cuts off the power to the outlet.
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Fig.  17.28(a) shows the feed and return lines passing through the 
sensing coils. The two sensing coils are separately connected to the 
printed circuit board. There are two pulse control switches in the line and  
a return to establish an open circuit under errant conditions. The two 
contacts in Fig.  17.28(a) are the contacts that provide conduction  
to the outlet. When a fault develops, another set of similar contacts in the 
housing slides away, providing the desired open-circuit condition. The 
separation is created by the solenoid appearing in Fig. 17.28(b). When 
the solenoid is energized due to a fault condition, it pulls the plunger 
toward the solenoid, compressing the spring. At the same time, the slots 
in the lower plastic piece (connected directly to the plunger) shift down, 
causing a disconnect by moving the structure inserted in the slots. The 
test button is connected to the brass bar across the unit in Fig. 17.28(c) 
below the reset button. When pressed, it places a large resistor between 
the line and ground to “unbalance” the line and cause a fault condition. 
When the button is released, the resistor is separated from the line, and 
the unbalance condition is removed. The resistor is actually connected 
directly to one end of the bar and moves down with pressure on the bar 
as shown in Fig. 17.28(d). Note in Fig. 17.28(c) how the metal ground 
connection passes right through the entire unit and how it is connected 
to the ground terminal of an applied plug. Also note how it is separated 
from the rest of the network with the plastic housing. Although this unit 
appears simple on the outside and is relatively small in size, it is beau-
tifully designed and contains a great deal of technology and innovation.

120 V

Ii

1

2
Io

Sensing
coils

Op-Amp

Op-Amp

Pulse solenoid switch Mechanical
reset

Test
button

Outlet

(c)

GFCI
logic
Chip

(a)

FIG. 17.27
GFCI outlet: (a) wall-mounted appearance; (b) basic operation;  

(c) schematic.

GFCI

GFCI
protection
network

L1 (hot, feed)

GND

L2 (return, neutral)

Ii

Io

(b)
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Before leaving the subject, note the logic chip in the center of 
Fig. 17.28(a) and the various sizes of capacitors and resistors. Note also 
the four diodes in the upper left region of the circuit board used as a 
bridge rectifier for the ac-to-dc conversion process. The transistor is the 
black element with the half-circle appearance. It is part of the driver cir-
cuit for the controlling solenoid. Because of the size of the unit, there 
wasn’t a lot of room to provide the power to quickly open the circuit. The 
result is the use of a pulse circuit to control the motion of the controlling 
solenoid. In other words, the solenoid is pulsed for a short period of time 
to cause the required release. If the design used a system that would hold 
the circuit open on a continuing basis, the power requirement would be 
greater and the size of the coil larger. A small coil can handle the required 
power pulse for a short period of time without any long-term damage.

As mentioned earlier, if unsure, install a GFCI. It provides a measure 
of safety—at a very reasonable cost—that should not be ignored.

(a)

MOV

Capacitor Transistor

Resistor

Capacitors
Special
function
GFCI logic
chip

Contact
points

Sensing
coils

ReturnFeed

Four diodes:
ac    dc
conversion

(b)

One continuous
plastic piece

Slots that
will move
down
under fault
conditions

Connection
point

Connection points
for plug

Connection
point

Solenoid
(winding

inside)

Plunger

(c)

Test bar

Reset
button

Plug
connections

Ground
connection
for plugs

Test
button

Grounded
surface

Ground
connection

(d)

Test button

FIG. 17.28
GFCI construction: (a) sensing coils; (b) solenoid control (bottom view);  

(c) grounding (top view); (d) test bar.
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PROBLEMS

 SECTION 17.2 Illustrative Examples

 1. For the series-parallel network in Fig. 17.29:
a. Calculate Z .T

b. Determine I .s

c. Determine I .1
d. Find I .2

e. Find V .L

R2

8 V1 2

E  =  30 V / 08 8 V

ZT

VL

XCIs

IC

1

2

XL  5  8 V

R1

8 V

FIG. 17.30
Problems 2 and 15.

Is

1

2

E  =  50 V / 08 XL 5 12 V

R2 8 V

XC  5  12 VVC

1

2

ZT

I2

FIG. 17.31
Problem 3.

R
1

2

E

XC

Is

I2

I1

ZT

8 V

16 V 20 V / 08

6 V 

VL1 2

XL

FIG. 17.29
Problem 1.

1  V2  2

R2  5  12 kV

R3  5  12 kV

4 kV 

ZT

XC

IL

1

2

 6 kV 

R1

XL2
  5  8 kV 

XL1

E  =  240 V / 608

5 kV

FIG. 17.32
Problem 4.

 2. For the network in Fig. 17.30:
a. Find the total impedance Z .T

b. Determine the current I .s

c. Calculate IC  using the current divider rule.
d. Calculate VL  using the voltage divider rule.

 3. For the network in Fig. 17.31:
a. Find the total impedance Z .T

b. Find the current I .s

c. Calculate I 2  using the current divider rule.
d. Calculate VC  using the voltage divider rule.
e. Calculate the average power delivered to the network.

 4. For the network in Fig. 17.32:
a. Find the total impedance Z .T

b. Calculate the voltage V2  and the current I .L

c. Find the power factor of the network.
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1

2

E  5 150 V / 08 
1

2

XL

I

200 V VC

R2 100 V

XC2
  5 300 VXC1

  5  300 V

XC3
100 V

FIG. 17.33
Problem 5.

R1 5 V

XL1
4 V

I1

Vaba b

XC 16 V
1

2
XL2

7 V

VC

1

2

I = 2 A / 308

FIG. 17.34
Problem 6.

V1

XC

60 V

XL  =  80 V

I1

I2

20 V+

–

E = 40 V / 08 

+

–

R1 R2

10 V

FIG. 17.35
Problems 7 and 16.

+ –

R1

R2

L1

L2

E

C
6.8 kΩ

1 kΩ

68 mH

100 mH

 f = 5 kHz

IL2

Is
10 V /08

3 nF

+

–
V C

FIG. 17.36
Problem 8.

 5. For the network in Fig. 17.33:
a. Find the current I.
b. Find the voltage V .C

c. Find the average power delivered to the network.

 *6. For the network in Fig. 17.34:
a. Find the current I .1

b. Calculate the voltageVC .
c. Find the voltage V .ab

 *7. For the network in Fig. 17.35:
a. Find the current I1and current I 2 .
b. Find the voltage V .1

c. Calculate the average power delivered to the network.

 8. For the network in Fig. 17.36:
a. Find the source current I .s

b. Find the voltage across the capacitor V .C

c.  Find the current through the inductor I .L2
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 10. For the network in Fig. 17.38:
a. Find the total impedance ZT  and the admittance Y .T

b. Find the currents I ,1  I ,2  and I .3

c. Verify Kirchhoff’s current law by showing that 
= + +I I I I .s 1 2 3

d. Find the power factor of the network, and indicate 
whether it is leading or lagging.

 f 5 20 kHz

I  5  6 mA / 08

1

2

V s 

1 kV

1.2 kV75 mH

1 2V C 12V L 

0.02 mF

R2

R1

CL

FIG. 17.37
Problem 9.

I1Is

ZT
1

2

E  =  120 V / 08 

1 V

XC 7 V

I2

R2 4 V

XL1

YT

R3 16 V

R1 5 V

15 V

XL2

I3

FIG. 17.38
Problem 10.

 9. For the network of Fig. 17.37:
a. Find the voltage across the source current V .s

b. Find the voltage across the capacitor.
c. Find the voltage across the inductor.

 *11. For the network in Fig. 17.39:
a. Find the total impedance Z .T

b. Find the source current Is  in phasor form.
c. Find the currents I1  and I 2  in phasor form.
d. Find the voltages V1  and Vab  in phasor form.
e. Find the average power delivered to the network.
f. Find the power factor of the network, and indicate 

whether it is leading or lagging.

is

ZT
+

–

e  =  Ï2(50) sin 2p 1000t

L1  5  0.4 H

i1R1

400 V
a

b

yab

i2

C 1 mF y1

1

2
L2  5  0.8 H

FIG. 17.39
Problem 11.
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R

V11 2

2

R1

XCI1

1.2 kV

1.8 kV 3.6 kV

1.2 kV

I  =  30 mA / 08   

1

2

1

2

X X V2
Vs L2

L1
5  3.6 kV

ZT

FIG. 17.40
Problem 12.

XC1

9 V

XL

R3 10 V

1

2

E  =  60 V / 08

R1

2 V

6 V

XC2

2 V

R2

3 VIs

I1

ZT
V1

+

–

FIG. 17.41
Problems 13 and 20.

I5

E  =  220 V / 08 XC 20 VR2 20 V R4 20 V

R1

15 V

R3

15 V

R5

15 V

1

2

FIG. 17.42
Problem 14.

 *12. For the network of Fig. 17.40:
a. Find the total impedance Z .T

b. Find the voltage V1  in phasor form.
c. Find the current I1  in phasor form.
d. Find the voltage V2  in phasor form.
e. Find the source voltage Vs  in phasor form.

 13. For the network of Fig. 17.41:
a. Find the total impedance Z .T

b. Find the voltage V1  across the 2 Ω  resistor using the 
voltage divider rule.

c. Find the current I1  using Ohm’s law.
d. Find the current I .s

SECTION 17.3 Ladder Networks

 14. Find the current I 5 for the network in Fig. 17.42. Note the 
effect of one reactive element on the resulting calculations.

 15. Find the average power delivered to R5 in Fig. 17.43.

R2 40 kV  R3 R53 kV 4.3 kV 

10 kV

E  5 120 V / 08 

10 kV 2.7 kV

R1
XC R4

1

2

FIG. 17.43
Problem 15.
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GLOSSARY

Ladder network A repetitive combination of series and parallel 
branches that has the appearance of a ladder.

Series-parallel ac network A combination of series and parallel 
branches in the same network configuration. Each branch may 
contain any number of elements, whose impedance is depen-
dent on the applied frequency.

R1 2.2 kV  R2 R3I  5  4 mA / 08 2.2 kV 2.2 kV 

1.8 nF 1.8 nF 1.8 nFZT

VR3

2

1

f  5 40 kHz

C2 C3C1

FIG. 17.44
Problem 16.

I  5  0.5 A / 08 XC1
2 V

8 V

R1 1 VXC2
2 V

XL2

8 V

XL1

I1

FIG. 17.45
Problems 17 and 21.

 16. For the ladder network of Fig. 17.44:
a.  Find the total impedance Z .T

b. Find the voltage across the resistor R .3

 17. Find the current I1  for the network in Fig. 17.45.
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18Methods of Analysis and 
Selected Topics (ac)

18.1 INTRODUCTION
For networks with two or more sources that are not in series or parallel, the methods described  
in the last two chapters cannot be applied. Rather, methods such as mesh analysis or nodal 
analysis must be used. Since these methods were discussed in detail for dc circuits in 
Chapter 8, this chapter considers the variations required to apply these methods to ac circuits. 
Dependent sources are also introduced for both mesh and nodal analysis.

The branch-current method is not discussed again because it falls within the framework of 
mesh analysis. In addition to the methods mentioned above, the bridge network and Δ-Y, Y-Δ 
conversions are also discussed for ac circuits.

Before we examine these topics, however, we must consider the subject of independent 
and controlled sources.

18.2 INDEPENDENT VERSUS DEPENDENT (CONTROLLED) 
SOURCES
In the previous chapters, each source appearing in the analysis of dc or ac networks was an 
independent source, such as E and I (or E and I) in Fig. 18.1.

The term independent specifies that the magnitude of the source is 
independent of the network to which it is applied and that the source displays 
its terminal characteristics even if completely isolated.

•  Understand the differences between independent 
and dependent sources and how the magnitude 
and angle of a controlled source is determined by 
the dependent variable.

• Be able to convert between voltage and current 
sources and vice versa in the ac domain.

• Become proficient in the application of mesh and 
nodal analysis to ac networks with independent 
and controlled sources.

• Be able to define the relationship between the 
elements of an ac bridge network that will establish 
a balance condition.

 Objectives

+

–
E IIE

+

–

FIG. 18.1
Independent sources.

 A dependent or controlled source is one whose magnitude is determined (or 
controlled) by a current or voltage of the system in which it appears.
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Currently two symbols are used for controlled sources. One simply 
uses the independent symbol with an indication of the controlling ele-
ment, as shown in Fig. 18.2. In Fig. 18.2(a), the magnitude and phase 
of the voltage are controlled by a voltage V elsewhere in the system, 
with the magnitude further controlled by the constant k .1  In Fig. 18.2(b), 
the magnitude and phase of the current source are controlled by a cur-
rent I elsewhere in the system, with the magnitude further controlled by 
the constant k .2  To distinguish between the dependent and independent 
sources, the notation in Fig. 18.3 was introduced. In recent years, many 
respected publications on circuit analysis have accepted the notation 
in Fig. 18.3, although a number of excellent publications in the area of 
electronics continue to use the symbol in Fig.  18.2, especially in the 
circuit modeling for a variety of electronic devices such as the transistor 
and FET. This text uses the symbols in Fig. 18.3.

Possible combinations for controlled sources are indicated in 
Fig. 18.4. Note that the magnitude of current sources or voltage sources 
can be controlled by a voltage and a current, respectively. Unlike with 
the independent source, isolation such that V or I 0=  in Fig. 18.4(a) 
results in the short-circuit or open-circuit equivalent as indicated in 
Fig. 18.4(b). Note that the type of representation under these conditions 
is controlled by whether it is a current source or a voltage source, not by 
the controlling agent (V or I).

k1V

+

–

(a)

Voltage
Controlled

Current
Controlled

V+ –

I

k2I

(b)

FIG. 18.2
Controlled or dependent sources.

I

k2I

(b)

k1V

+

–

(a)

Voltage
Controlled

Current
Controlled

V+ –

FIG. 18.3
Special notation for 

controlled or dependent 
sources.

V

+

–

k1V +–

k2V

I

k3I +–

k4I

(a) (b)

FIG. 18.4
Conditions of = V V 0  and = A I 0  for a controlled 

source.

+

–

Voltage source

a

E  =  IZ

a9

I  =  E
Z

Z

Z

a

a9

Current source

FIG. 18.5
Source Conversion.

18.3 SOURCE CONVERSIONS
When applying the methods to be discussed, it may be necessary to con-
vert a current source to a voltage source or a voltage source to a current 
source. This source conversion can be accomplished in much the same 
manner as for dc circuits, except that now we shall be dealing with pha-
sors and impedances instead of just real numbers and resistors.

Independent Sources

In general, the format for converting one type of independent source to 
another is as shown in Fig. 18.5.
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EXAMPLE 18.1 Convert the voltage source in Fig. 18.6(a) to a  
current source.

 Solution:

I E
Z

20 A 53 13

100 V 0
5 Ω 53.13

  .

= =
∠ °

∠ °

= ∠− ° [Fig. 18.6(b)]

EXAMPLE 18.2 Convert the current source in Fig. 18.7(a) to a volt-
age source.

I  =  20 A  � –53.13°

E  =  100 V  � 0°

+

–

(a)

a

R 3 V

a9

XL 4 V

a

a9

XL 4 V

R 3 V

Z

Z

Source conversion

(b)

FIG. 18.6
Example 18.1.

XL 4 VI  =  10 A �  60°

a9

a

(a)

6 V

Z

E  =  120 V  �  –30°

a9

a

(b)

XC  =  12 V

Z

+

–

XC

FIG. 18.7
Example 18.2.
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Solution:

∠−

∠−

( )( )

( )( )

( )( )

=
+

=
∠− ° ∠ °
− +

=
∠− ° ∠ °
− +

=
∠ °

∠ °

= °

= = ∠ ° ∠− °

= °

X X
jX jX

j j

Z
Z Z

Z Z

12 90

E IZ

120 V 30

90 90

4 Ω 90 6 Ω 90
4 Ω 6 Ω

24 Ω 0
2 90

  Ω

  10 A 60 12 Ω 90

   

C L

C L

C L

C L

[Fig. 18.7(b)]

Dependent Sources

For dependent sources, the direct conversion in Fig.  18.5 can be  
applied if the controlling variable (V or I in Fig. 18.4) is not determined 
by a portion of the network to which the conversion is to be applied. For 
example, in Figs. 18.8 and 18.9, V and I, respectively, are controlled by 
an external portion of the network. Conversions of the other kind, where 
V and I are controlled by a portion of the network to be converted, are 
considered in Sections 19.3 and 19.4.

EXAMPLE 18.3 Convert the voltage source in Fig. 18.8(a) to a  
current source.

Solution:

I E
Z

V

0 48 A 0

  20 
5 kΩ 0

20(120 V 0 )
5 kΩ 0

2.4 kV 0
5 kΩ 0

. ∠

= =
∠ °

=
∠ °

∠ °
=

∠ °
∠ °

= ° [Fig. 18.8(b)]

EXAMPLE 18.4 Convert the current source in Fig. 18.9(a) to a volt-
age source.

20 V

+

–
V  =  V120   ∠0° V  =  V120   ∠0°   

+

–

(a)

Z  =  5 kV
+

–

(b)

 

+

–
Z 5 kV0.48 A ∠0° 

FIG. 18.8
Source conversion with a voltage-controlled voltage source.

(a)

+

–

(b)

40 V

40 V

 �  =  80 mA ∠ 0°

100�

 �  =  80 mA ∠ 0°

V  ∠  0°320Z

Z

FIG. 18.9
Source conversion with a current-controlled current source.
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Solution:

E IZ I

320 V 0

(100  )(40 Ω 0 )

(100(80 mA 0 ))(40 Ω 0 )

(8 A 0 )(40 Ω 0 )

  ∠

= = ∠ °

= ∠ ° ∠ °

= ∠ ° ∠ °

= °

18.4 MESH ANALYSIS
General Approach

Independent Voltage Sources Before examining the application 
of the method to ac networks, the student should first review the appro-
priate sections on mesh analysis in Chapter 8 since the content of this 
section will be limited to the general conclusions of Chapter 8.

The general approach to mesh analysis for independent sources 
includes the same sequence of steps appearing in Chapter  8. In fact, 
throughout this section the only change from the dc coverage is to  
substitute impedance for resistance and admittance for conductance in 
the general procedure.

1. Assign a distinct current in the clockwise direction to 
each independent closed loop of the network. It is not 
absolutely necessary to choose the clockwise direction 
for each loop current. However, it eliminates the need to 
have to choose a direction for each application. Any direc-
tion can be chosen for each loop current with no loss in 
accuracy as long as the remaining steps are followed 
properly.

2. Indicate the polarities within each loop for each imped-
ance as determined by the assumed direction of loop  
current for that loop.

3. Apply Kirchhoff’s voltage law around each closed loop in 
the clockwise direction. Again, the clockwise direction 
was chosen to establish uniformity and to prepare us for 
the format approach to follow.
a. If an impedance has two or more assumed currents 

through it, the total current through the impedance is 
the assumed current of the loop in which Kirchhoff’s 
voltage law is being applied, plus the assumed currents 
of the other loops passing through in the same  
direction, minus the assumed currents passing through 
in the opposite direction.

b. The polarity of a voltage source is unaffected by the 
direction of the assigned loop currents.

4. Solve the resulting simultaneous linear equations for the 
assumed loop currents.

The technique is applied as above for all networks with independent 
sources or for networks with dependent sources where the controlling 
variable is not a part of the network under investigation. If the con-
trolling variable is part of the network being examined, a method to be 
described shortly must be applied.
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EXAMPLE 18.5 Using the general approach to mesh analysis, find 
the current I1 in Fig. 18.10.

 Solution: When applying these methods to ac circuits, it is good 
practice to represent the resistors and reactances (or combinations 
thereof) by subscripted impedances. When the total solution is found in 
terms of these subscripted impedances, the numerical values can be  
substituted to find the unknown quantities.

The network is redrawn in Fig. 18.11 with subscripted impedances:

jX j

R

jX j

Z E

Z E

Z

2 Ω 2 V 0

4 Ω          6 V 0

1 Ω

L

C

1 1

2 2

3

= + = + = ∠ °

= = = ∠ °

= − = −

Steps 1 and 2 are as indicated in Fig. 18.11.

Step 3:

E I Z Z I I 01 1 1 2 1 2( )+ − − − =
Z I I I Z E 02 2 1 2 3 2( )− − − − =

or          E I Z I Z I Z  01 1 1 1 2 2 2− − + =
I Z I Z I Z E 02 2 1 2 2 3 2− + − − =

so that     I Z Z I Z E  1 1 2 2 2 1( )+ − =
I Z Z I Z E  2 2 3 1 2 2( )+ − = −

which are rewritten as

I Z Z – I Z E

I Z I (Z Z ) E
1 1 2 2 2 1

1 2 2 2 3 2

( )+ =
− + + = −

Step 4:

Determinants

=

−
− +

− + −
− +

=
+ −

+ + −

=
− +
+ +

 I

E Z

E Z Z

Z Z Z

Z Z Z

E (Z Z ) E (Z )
(Z Z )(Z Z ) (Z )

(E E ) E Z
Z Z Z Z Z Z

1

1 2

2 2 3

1 2 2

2 2 3

1 2 3 2 2

1 2 2 3 2
2

1 2 1 3

1 2 1 3 2 3

=

−
− +

− + −
− +

=
+ −

+ + −

=
− +
+ +

 I

E Z

E Z Z

Z Z Z

Z Z Z

E (Z Z ) E (Z )
(Z Z )(Z Z ) (Z )

(E E )Z E Z
Z Z Z Z Z Z

1

1 2

2 2 3

1 2 2

2 2 3

1 2 3 2 2

1 2 2 3 2
2

1 2 2 1 3

1 2 1 3 2 3

I1 R  =  4 V

XL  =  2 V

E1  =  2 V  � 0°
+

–

XC  =  1 V

+

–
E2  =  6 V  �  0°

FIG. 18.10
Example 18.5.

Z1

E1

+

–

+

–
E2

+

–

I1

Z2

+

–

–

+

I2

Z3

–

+

FIG. 18.11
Assigning the mesh currents and 
subscripted impedances for the 

network in Fig. 18.10.
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Substituting numerical values yields

j
j j j j

j
j j j

j
j

I

3 61 A 236 30 3 61 A 123 70

2 V 6 V)(4 Ω 2 V 1 Ω
2 Ω 4 Ω 2 Ω 2 Ω 4 Ω 2 Ω

16 2
8 2 4

16 2
2 4

16.12 A 172.87
4.47 63.43

.   . or .   .

1

2

∠− ∠

( )
( ) ( )( ) ( )

( )

( ) ( )

( )
=

− + −
+ + + − + −

=
− −
− −

=
− −

+
=

∠− °
∠ °

= ° °

rref

For the equations developed above and repeated below

I Z  Z I Z   E

I Z I (Z Z ) E
1 1 2 2 2 1

1 2 2 2 3 2

( )+ − =
− + + = −

if we insert impedance values we obtain
�

�

j

j

I I

I I

(4 2)        4 2 0

    4 (4 1) 6 0
1 2

1 2

+ − = ∠

− + − = − ∠

Applying rref will result in the sequence of Fig. 18.12.

CLEAR Matrix rref(

¡

¡

HOME

MODE Complex Format Polar

--

FIG. 18.12
TI-89 (using rref() for current  I1 and I2  of Fig. 18.10.

After you select the ENTER key, followed by the arrow sequence, the 
following screen appears.

1   0
0   1

3.61 123.69

4.47 153.44

∠ °

∠ °

where
I 3.61A 123.69

I 4.47A 153.44
1

2

∠ °

∠ °

=

=

Important: If the information on your screen appears to be corrupt, 
the following instructions should clean things up:

MODE Pretty Print On

Shorthand Form

i i irref (4 2 ), 4 , 2 0 ; 4,  (4 ), 6 0+ ∠ − − − ∠
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Dependent Voltage Sources For dependent voltage sources, the 
procedure is modified as follows:

1. Steps 1 and 2 are the same as those applied for indepen-
dent voltage sources.

2. Step 3 is modified as follows: Treat each dependent 
source like an independent source when Kirchhoff’s  
voltage law is applied to each independent loop. 
However, once the equation is written, substitute the 
equation for the controlling quantity to ensure that the 
unknowns are limited solely to the chosen mesh currents.

3. Step 4 is as before.

EXAMPLE 18.6 Write the mesh currents for the network in 
Fig. 18.13 having a dependent voltage source.

Solution: 
Steps 1 and 2 are defined in Fig. 18.13.

Step 3:
    

R R

R Rµ

( )

( )

− − − =

− + − =

E I I I

I I V I

0

0x

1 1 1 2 1 2

2 2 1 2 3

Then substitute RV I I .x 1 2 2( )= −
The result is two equations and two unknowns:

R R

R R Rµ

( )

( ) ( )

− − − =

− + − − =

E I I I

I I I I I

0

0
1 1 1 2 2

2 2 1 2 1 2 2 3

Independent Current Sources For independent current sources, 
the procedure is modified as follows:

1. Steps 1 and 2 are the same as those applied for indepen-
dent sources.

2. Step 3 is modified as follows: Treat each current source as 
an open circuit (recall the supermesh designation in 
Chapter 8), and write the mesh equations for each 
remaining independent path. Then relate the chosen 
mesh currents to the dependent sources to ensure that 
the unknowns of the final equations are limited to the 
mesh currents.

3. Step 4 is as before.

 EXAMPLE 18.7 Write the mesh currents for the network in 
Fig. 18.14 having an independent current source.

Solution: 
Steps 1 and 2 are defined in Fig. 18.14.

Step 3: E I Z E I Z 01 1 1 2 2 2− + − =      (only remaining independent 
path)

with I I I1 2+ =  

The result is two equations and two unknowns.

R1

R3
R2

mVx

+

–

+–

E1 Vx

+

–
I1 I2

FIG. 18.13
Applying mesh analysis to a network 

with a voltage-controlled voltage 
source.

E2 +–

E1

+

–

I1 I2
Z2

Z1

I

FIG. 18.14
Applying mesh analysis to a network 
with an independent current source.
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Dependent Current Sources For dependent current sources, the 
procedure is modified as follows:

1. Steps 1 and 2 are the same as those applied for  
independent sources.

2. Step 3 is modified as follows: The procedure is essentially the 
same as that applied for independent current sources, except 
now the dependent sources have to be defined in terms of 
the chosen mesh currents to ensure that the final equations 
have only mesh currents as the unknown quantities.

3. Step 4 is as before.

EXAMPLE 18.8 Write the mesh currents for the network in 
Fig. 18.15 having a dependent current source.

Solution: 

Steps 1 and 2 are defined in Fig. 18.15.

Step 3: E I Z I Z E 01 1 1 2 2 2− − + =  

and kI I I1 2= −  

Now I I1=  so that  kI I I1 1 2= −   or  kI I 12 1( )= −

The result is two equations and two unknowns.

Format Approach

The format approach was introduced in Section 8.5. The steps for apply-
ing this method are repeated here with changes for its use in ac circuits:

1. Assign a loop current to each independent closed loop (as 
in the previous section) in a clockwise direction.

2.  The number of required equations is equal to the number 
of chosen independent closed loops. Column 1 of each 
equation is formed by summing the impedance values of 
those impedances through which the loop current of inter-
est passes and multiplying the result by that loop current.

3. We must now consider the mutual terms that are always 
subtracted from the terms in the first column. It is possi-
ble to have more than one mutual term if the loop current 
of interest has an element in common with more than 
one other loop current. Each mutual term is the product 
of the mutual impedance and the other loop current pass-
ing through the same element.

4. The column to the right of the equality sign is the alge-
braic sum of the voltage sources through which the loop 
current of interest passes. Positive signs are assigned to 
those sources of voltage having a polarity such that the 
loop current passes from the negative to the positive ter-
minal. Negative signs are assigned to those potentials for 
which the reverse is true.

5. Solve the resulting simultaneous equations for the 
desired loop currents.

E2

+

E1

+

–
I1 I2

Z1

kI

–

Z2

I

FIG. 18.15
Applying mesh analysis to a network 

with a current-controlled current 
source.
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The technique is applied as above for all networks with independent 
sources or for networks with dependent sources where the controlling 
variable is not a part of the network under investigation. If the con-
trolling variable is part of the network being examined, additional care 
must be taken when applying the above steps.

EXAMPLE 18.9 Using the format approach to mesh analysis, repeat 
Example 18.5. The block impedance diagram is repeated as Fig. 18.16 
for convenience.

Solution: 

Step 1 is as indicated in Fig. 18.16.

Steps 2 through 4 result in the following:

I Z Z I Z E

I Z Z I Z E

 

 
1 1 2 2 2 1

2 2 3 1 2 2

( )

( )

+ − =

+ − = −

which can be rewritten as

I Z Z I Z E

I Z I Z Z E

  1 1 2 2 2 1

1 2 2 2 3 2

( )

( )

+ − =

− + + = −

and we have the same set of equations as in Example 18.5 resulting in 
the same solution of

∠= − °I 3 61 A 236 30. .1

EXAMPLE 18.10 Using the format approach to mesh analysis, find 
the current I 2 in Fig. 18.17.

 Solution: The network is redrawn in Fig. 18.18:

Z1

E1

+

–

+

–
E2

+

–

I1

Z2

+

–

–

+

I2

Z3

–

+

FIG. 18.16
Assigning the mesh currents and 
subscripted impedances for the 
network in Fig. 18.10 (repeated).

E1  =  8 V  � 20°

I2

4 V

+

–

8 V

–

+
E2  =  10 V  �0°

R2

XC

XL1
  =  2 V

1 VR1

XL2
6 V

FIG. 18.17
Example 18.10.

Z1

E1

+

–

–

+
E2

+

–

I1

Z2

+

–

–

+

I2

Z3

–

+

FIG. 18.18
Assigning the mesh currents and 
subscripted impedances for the 

network in Fig. 18.17.

R jX j

R jX j

jX j

Z E

Z E

Z

  1 Ω 2 Ω  8 V 20

  4 Ω 8 Ω  10 V 0

  6 Ω

L

C

L

1 1 1

2 2 2

3

1

2

= + = + = ∠ °

= − = − = ∠ °

= + = +
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Note the reduction in complexity of the problem with the substitution of 
the subscripted impedances.

Step 1 is as indicated in Fig. 18.18.

Steps 2 to 4:

( )

( )

+ − = +

+ − = −

I Z Z I Z E E

I Z Z I Z E
1 1 2 2 2 1 2

2 2 3 1 2 2

which are rewritten as

( )

( )

+ − = +

− + + = −

I Z Z I Z E E

I Z I Z Z E
1 1 2 2 2 1 2

1 2 2 2 3 2

Step 5: Using determinants, we have

I

Z Z E E

Z E

Z Z Z

Z Z Z

Z Z E Z E E
Z Z Z Z Z

Z E Z E
Z Z Z Z Z Z

 

 

2

1 2 1 2

2 2

1 2 2

2 2 3

1 2 2 2 1 2

1 2 2 3 2
2

2 1 1 2

1 2 1 3 2 3

( ) ( )

( )( )

=

+ +

− −

+ −

− +

=
− + + +

+ + −

=
−

+ +

Substituting numerical values yields

1.27 A 86.92

j j
j j j j j j

j j j
j j

j j
j

j
j

I  
4  8  8 V 20 1  2  10 V 0

1  2  4  8  1  2  6  4  8  6 

 
4 8 7.52 2.74 10 20

20 6 12 24 48

 
52.0 49.20 10 20

56 30
42.0 69.20

56 30
80.95 A 58.74

63.53 28.18

2

∠− °

( )( ) ( )( )
( )( ) ( )( ) ( )( )

( )( ) ( )
( ) ( )

( ) ( )

=
Ω − Ω ∠ ° − Ω + Ω ∠ °

Ω + Ω Ω − Ω + Ω + Ω + Ω + Ω − Ω + Ω

=
− + − +

+ − + +

=
− − +

+
=

−
+

=
∠− °
∠ °

=

Calculator Solution: The TI-89 calculator can be an effective tool 
in performing the long, laborious calculations involved with the final 
equation appearing above. However, you must be very careful to use 
brackets to define the order of the arithmetic operations (remember that 
each open bracket must be followed by a close bracket). With the TI-89 
calculator, the sequence in Fig. 18.19(a) provides the solution for the 
numerator.

For the denominator, the sequence appears in Fig. 18.19(b).
The solution is then determined in Fig. 18.19(c).

(a)

8

8

FIG. 18.19 (a)
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EXAMPLE 18.11 Write the mesh equations for the network in 
Fig. 18.20. Do not solve.

Solution: The network is redrawn in Fig.  18.21. Again note the 
reduced complexity and increased clarity provided by the use of sub-
scripted impedances:

R jX R jX

R jX R

jX

Z Z

Z Z

Z

L C

L

C

1 1 4 3

2 2 5 4

3

1 2

2

1

= + = −

= + =

=

E1

+

–

–

+
E2

R2

R1

XL2

XL1

XC1

R3

XC2

R4

FIG. 18.20
Example 18.11.

Z2

+

–

–

+

Z1

E1

+

–

–

+
E2

+ –

I1 I2

Z4

+

–

–

+

Z3
+ –

Z5
+ –

I3

FIG. 18.21
Assigning the mesh currents and subscripted impedances for the 

network in Fig. 18.20.

(b)

8

(c)

88

8

FIG. 18.19 (b & c)
Determining 2I  for the network of Fig. 18.17.
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and ( )

( )

( )

+ − =

+ + − + =

+ − =

I Z Z I Z E

I Z Z Z I Z I Z

I Z Z I Z E

0
1 1 2 2 2 1

2 2 3 4 1 2 3 4

3 4 5 2 4 2

or  ( ) ( )

( ) ( )

( ) ( )

+ − + =

− + + − =

− − + =

I Z Z I Z E

I Z I Z Z Z I Z

I Z I Z Z E

   0

  0

0

1 1 2 2 2 1

1 2 2 2 3 4 3 4

2 4 3 4 5 2

EXAMPLE 18.12 Using the format approach, write the mesh equa-
tions for the network in Fig. 18.23.

Solution: The network is redrawn as shown in Fig. 18.23, where

R jX jX

R jX

Z Z

Z Z
L L

L

1 1 3

2 2 4

1 2

3

= + =

= =

and I Z Z I Z I Z E

I Z Z Z I Z I Z

I Z Z I Z I Z E

 

 

0 
1 2 4 2 2 3 4 1

2 1 2 3 1 2 3 3

3 3 4 2 3 1 4 2

( )

( )

( )

+ − − =

+ + − − =

+ − − =

or ( )

( )

( )

+ − −

− + + + −

− − + +

=
=
=

I Z Z I Z I Z

I Z I Z Z Z I Z

I Z I Z I Z Z

E

E
0

1 2 4 2 2 3 4

1 2 2 1 2 3 3 3

1 4 2 3 3 3 4

1

2          

Note the symmetry about the diagonal axis; that is, note the location of 
Z ,2−  Z ,4−  and Z3−  off the diagonal.

18.5 NODAL ANALYSIS
General Approach

Independent Sources Before examining the application of the 
method to ac networks, a review of the appropriate sections on nodal 
analysis in Chapter 8 is suggested since the content of this section is 
limited to the general conclusions of Chapter 8.

The fundamental steps are the following:

1. Determine the number of nodes within the network.

2. Pick a reference node and label each remaining node with 
a subscripted value of voltage: V1, V2, and so on.

3.  Apply Kirchhoff’s current law at each node except the  
reference. Assume that all unknown currents leave the 
node for each application of Kirchhoff’s current law.

4. Solve the resulting equations for the nodal voltages.

E1

+

–

–

+
E2

R1

XL3

XL1

R2
XL2

FIG. 18.22
Example 18.12.

Z2

E1

+

–

–

+
E2

I1

Z4

I2

I3

Z3

Z1

FIG. 18.23
Assigning the mesh currents and 
subscripted impedances for the 

network in Fig. 18.22.
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A few examples will refresh your memory about the content of 
Chapter 8 and the general approach to a nodal-analysis solution.

EXAMPLE 18.13 Determine the voltage across the inductor for the 
network in Fig. 18.24.

Solution: 

Steps 1 and 2 are as indicated in Fig. 18.25.

Step 3: Note Fig. 18.26 for the application of Kirchhoff’s current law to 
nodeV1:

I Ii oΣ Σ=
I I I0 1 2 3= + +

01

1

1

2

1 2

3

V E
Z

V
Z

V V
Z

−
+ +

−
=

Rearranging terms gives

 V
Z Z Z

V
Z

E
Z

1 1 1 1
1

1 2 3
2

3

1

1

+ +












−












=  (18.1)

Note Fig.  18.27 for the application of Kirchhoff’s current law to  
node V .2

I I I0 3 4= + +
V V

Z
V
Z

I 02 1

3

2

4

−
+ + =

Rearranging terms gives

 V
Z Z

V
Z

I1 1 1
2

3 4
1

3

+












−












= −  (18.2)

E  =
12 V  �0°

+

–

R1

XL XC

0.5 kV

10 kV

R2

2 kV

5 kV I  =
4 mA  �0°

FIG. 18.24
Example 18.13.

Z2E

+

–

Z1Z1 Z3

Z4 I

V2V1

FIG. 18.25
Assigning the nodal voltages and subscripted 

impedances to the network in Fig. 18.24.

Z2E

+

–

Z1Z1 Z3

V2V1

I1 I3

I2

FIG. 18.26
Applying Kirchhoff’s current law to the 

node V1 in Fig. 18.25.

Z3

Z4 I

V2V1

I3

I4

FIG. 18.27
Applying Kirchhoff’s current law to 

the node 2V  in Fig. 18.25.
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Grouping equations 18.1 and 18.2 gives

V
Z Z Z

V
Z

E
Z

V
Z

V
Z Z

I

1 1 1 1

1 1 1

1
1 2 3

2
3 1

1
3

2
3 4

+ +












−












=













− +












=

j
1
Z Z Z

  1 1 1
0.5 kΩ

1
10 kΩ

1
2 kΩ

2.5 mS 2.29
1 2 3

+ + = + + = ∠ − °

jZ Z
1 1 1

2 kΩ
1
5 kΩ

0.539 mS 21.80
3 4

+ = +
−

= ∠ °

and

V V

V V

2.5 mS 2.29 0.5 mS 0 24 mA 0

0.5 mS 0 0.539 mS 21.80 4 mA 0
1 2

1 2

[ ] [ ]

[ ] [ ]

∠− ° − ∠ ° = ∠ °

∠ ° − ∠ ° = ∠ °

with

V

24 mA 0
  4 mA 0

0.5 mS 0    
0.539 mS 21.80

2.5 mS 2.29
0.5 mS 0

0.5 mS 0
0.539 mS 21.80

1 =

∠ °
∠ °

− ∠ °
− ∠ °

∠− °
∠ °

− ∠ °
− ∠ °

24 mA 0 0.539 mS 21.80 0.5 mS 0 4 mA 0
2.5 mS 2.29 0.539 mS 21.80 0.5 mS 0 0.5 mS 0

( )( ) ( )( )
( )( ) ( )( )

=
∠ ° − ∠ ° + ∠ ° ∠ °

∠− ° − ∠ ° + ∠ ° ∠ °

12.94 10 V 21.80 2 10 V 0
1.348 10 19.51 0.25 10 0

6 6

6 6
=

− × ∠ ° + × ∠ °
− × ∠ ° + × ∠ °

− −

− −

j
j

12.01 4.81 10 V 2 10 V
1.271 0.45 10 0.25 10

6 6

6 6

( )
( )

=
− + × + ×
− + × + ×

− −

− −

j
j

10.01 V 4.81 V
1.021 0.45

11.106 V 154.33
1.116 156.21

=
− −

− −
=

∠− °
∠− °

V 9 95 V 1 88. .1 ∠= °

Dependent Current Sources For dependent current sources, the 
procedure is modified as follows:

1. Steps 1 and 2 are the same as those applied for indepen-
dent sources.

2. Step 3 is modified as follows: Treat each dependent cur-
rent source like an independent source when Kirchhoff’s 
current law is applied to each defined node. However, 
once the equations are established, substitute the equa-
tion for the controlling quantity to ensure that the 
unknowns are limited solely to the chosen nodal 
voltages.

3. Step 4 is as before.
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EXAMPLE 18.14 Write the nodal equations for the network in 
Fig. 18.28 having a dependent current source.

Solution: 

Steps 1 and 2 are as defined in Fig. 18.28.

Step 3: At node V ,1

I I I1 2= +

+
−

− =
V
Z

V V
Z

I 01

1

1 2

2

and +












−












=V
Z Z

V
Z

I1 1 1
1

1 2
2

2

 

At node V ,2

kI I I  02 3+ + =

−
+ +

−











=k
V V

Z
V
Z

V V
Z

  02 1

2

2

3

1 2

2

and −











− − +












=k kV
Z

V
Z Z

  1 1 1 01
2

2
2 3

 

resulting in two equations and two unknowns.

Independent Voltage Sources between Assigned Nodes For 
independent voltage sources between assigned nodes, the procedure is 
modified as follows:

1. Steps 1 and 2 are the same as those applied for indepen-
dent sources.

2.  Step 3 is modified as follows: Treat each source between 
defined nodes as a short circuit (recall the supernode clas-
sification in Chapter 8), and write the nodal equations for 
each remaining independent node. Then relate the chosen 
nodal voltages to the independent voltage source to 
ensure that the unknowns of the final equations are lim-
ited solely to the nodal voltages.

3. Step 4 is as before.

Z1I

Z2

Z3 kI9

V2V1

I9

FIG. 18.28
Applying nodal analysis to a network with a 

current-controlled current source.
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EXAMPLE 18.15 Write the nodal equations for the network in 
Fig. 18.29 having an independent source between two assigned nodes.

Solution: 

Steps 1 and 2 are defined in Fig. 18.29.

Step 3: Replacing the independent source E1 with a short-circuit equiv-
alent results in a supernode that generates the following equation when 
Kirchhoff’s current law is applied to node V :1

I
V
Z

V
Z

I1
1

1

2

2
2= + +

with V V E2 1 1− =  

and we have two equations and two unknowns.

Dependent Voltage Sources between Defined Nodes For  
dependent voltage sources between defined nodes, the procedure is 
modified as follows:

1. Steps 1 and 2 are the same as those applied for indepen-
dent voltage sources.

2. Step 3 is modified as follows: The procedure is essentially 
the same as that applied for independent voltage sources, 
except that now the dependent sources have to be 
defined in terms of the chosen nodal voltages to ensure 
that the final equations have only nodal voltages as their 
unknown quantities.

3. Step 4 is as before.

EXAMPLE 18.16 Write the nodal equations for the network in  
Fig. 18.30 having a dependent voltage source between two defined nodes.

Solution: 

Steps 1 and 2 are defined in Fig. 18.30.

 Step 3: Replacing the dependent source µVx with a short-circuit equiv-
alent results in the following equation when Kirchhoff’s current law is 
applied at node V :1

I I I1 2= +

Z1I1 Z2 I2

V2V1
E1

+–

FIG. 18.29
Applying nodal analysis to a network with an 
independent voltage source between defined 

nodes.

I

V2V1

Vx
+ –

+

–

Z2

mVx Z3Z1

FIG. 18.30
Applying nodal analysis to a network 

with a voltage-controlled voltage 
source.
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V
Z

V V
Z

I  01

1

1 2

2

( )
+

−
− =

and V V V Vx2 1 2µ µ[ ]= = −  

or V V
12 1
µ
µ

=
+

 

resulting in two equations and two unknowns. Note that because the  
impedance Z3  is in parallel with a voltage source, it does not appear in 
the analysis. It will, however, affect the current through the dependent 
voltage source.

Format Approach

A close examination of Eqs. (18.1) and (18.2) in Example 18.13 reveals 
that they are the same equations that would have been obtained using 
the format approach introduced in Chapter 8. Recall that the approach 
required that the voltage source first be converted to a current source, but 
the writing of the equations was quite direct and minimized any chances 
of an error due to a lost sign or missing term.

The sequence of steps required to apply the format approach is the 
following:

1. Choose a reference node and assign a subscripted voltage 
label to the (N − 1) remaining independent nodes of the 
network.

2. The number of equations required for a complete solution 
is equal to the number of subscripted voltages (N − 1). 
Column 1 of each equation is formed by summing the 
admittances tied to the node of interest and multiplying 
the result by that subscripted nodal voltage.

3. The mutual terms are always subtracted from the terms 
of the first column. It is possible to have more than one 
mutual term if the nodal voltage of interest has an ele-
ment in common with more than one other nodal volt-
age. Each mutual term is the product of the mutual 
admittance and the other nodal voltage tied to that 
admittance.

4. The column to the right of the equality sign is the alge-
braic sum of the current sources tied to the node of inter-
est. A current source is assigned a positive sign if it 
supplies current to a node and a negative sign if it draws 
current from the node.

5. Solve the resulting simultaneous equations for the desired 
nodal voltages. The comments offered for mesh analysis 
regarding independent and dependent sources apply here also.

 EXAMPLE 18.17 Repeat the analysis of Example 18.14 using the 
format approach for nodal analysis. The network with its block imped-
ances has been repeated as Fig. 18.31 and Fig. 18.32.
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Solution: The voltage source E and the series resistor R1 of Fig. 18.31 
are first converted to a current source as shown in Fig. 18.32.

Applying the format approach will result in the following equations:

( )

( )

+ + − =

+ − = −

V Y Y Y V Y I

V Y Y V Y I
1 1 2 3 2 3 1

2 3 4 1 3

with I E Z .1 1=
Substituting values will result in the following equations, which 

match those obtained with the general approach.

V V

V V

(2.5 mS 2.29 ) (0.5 mS 0 ) 24 mA 0

(0.5 mS 0 ) (0.539 mS 21.80 ) 4 mA 0
1 2

1 2

∠− ° − ∠ ° = ∠ °

∠ ° − ∠ ° = ∠ °

The result of V 9 95 V 1 88.   .1 ∠= °  is then obtained.

EXAMPLE 18.18 Using the format approach to nodal analysis, find 
the voltage across the 4 Ω resistor in Fig. 18.33.

Solution: Choosing nodes (Fig. 18.34) and writing the nodal equa-
tions, we have

R jX j jX jZ Z Z4 Ω 5 Ω 2 ΩL C1 2 3= = = = = − = −

( ) ( )

( ) ( )

+ − = −

+ − = +

V Y Y V Y I

V Y Y V Y I
1 1 2 2 2 1

2 3 2 1 2 2

Z2E

+

–

Z1Z1 Z3

Z4 I

V2V1

FIG. 18.31
Network of Fig. 18.25 redrawn with block 

impedances.

I

Z3

Z4Z1 Z2

V2V1

I1

FIG. 18.32
Network of Fig. 18.31 redrawn with required 

current source I .1

I2  =  4 A  �0°I1  =  6 A  �0°  R

XL  =  5 V

XC
4 V 2 V

FIG. 18.33
Example 18.18.
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or     
( ) ( )

( ) ( )

+ − = −
− + + = +
V Y Y V Y I

V Y V Y Y I
1 1 2 2 2 1

1 2 2 3 2 2

= = =Y
Z

Y
Z

Y
Z

1 1 1
1

1
2

2
3

3

Using determinants yields

j
j

j j
j j

V

I
I

Y
Y Y

Y Y
Y

Y
Y Y

Y Y I I Y
Y Y Y Y Y

Y Y I I Y
Y Y Y Y Y Y

 

 
 

6 A 0.2 S
4 A 0.3 S

0.25 S 0.2 S 0.2 S
0.2 S 0.3 S

1

1

2

2

3 2

1 2

2

2

3 2

3 2 1 2 2

1 2 3 2 2
2

3 2 1 2 2

1 3 2 3 1 2

( )
( )( )

( )

=

−
+

−
+

+
−

−
+

=

− +
+ +

− +
+ +

=
− + +

+ + −

=
− + +

+ +

Substituting numerical values, we have

j j j
j j j j

V
1 2 Ω 1 5 Ω 6 A 0 4 A 0 1 5 Ω

1 4 Ω 1 2 Ω 1 5 Ω 1 2 Ω 1/4 Ω 1 5 Ω1

( ) ( )[ ] ( )
( )( ) ( )( ) ( )( )

=
− − + ∠ ° + ∠ °

− + − +

j j j
j j

0.5 0.2 6 0 4 0 0.2
1 8 1 10 1 20

( ) ( )
( ) ( ) ( )

=
− + − ∠ ° + ∠ ° −

− + +

j j
0.3 90 6 0 4 0 0.2 90

0.125 0.1 0.05
( )( ) ( )( )= − ∠ ° ∠ ° + ∠ ° ∠− °

+ −

j
1.8 90 0.8 90

0.1 0.075
= − ∠ ° + ∠− °

+

2.6 V 90
0.125 36.87

= ∠− °
∠ °

V 20 80 V 126 87.   .1 ∠−= °

Calculator Solution: Using the TI-89 calculator, enter the parame-
ters for the determinant form for V1 as shown by the sequence in 
Fig. 18.35. Note the different negative signs used to enter the data.

Z1

Z2

I2

V2V1

I1 Z3

Reference

FIG. 18.34
Assigning the nodal voltages and subscripted 

impedances for the network in Fig. 18.33.
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EXAMPLE 18.19 Using the format approach, write the nodal equa-
tions for the network in Fig. 18.36.

Solution: The circuit is redrawn in Fig. 18.36, where

R jX j

R jX j

jX j

R

Z E

Z I

Z

Z

7 Ω 8 Ω 20 V 0

4 Ω 5 Ω 10 A 20

10 Ω

8 Ω

L

L

C

1 1 1

2 2 1

3

4 3

1

2

= + = + = ∠ °

= + = + = ∠ °

= − = −

= =

Converting the voltage source to a current source and choosing nodes, 
we obtain Fig. 18.38. Note the “neat” appearance of the network using 
the subscripted impedances. Working directly with Fig. 18.36 would be 
more difficult and could produce errors.

FIG. 18.35
Determining V1 using the TI-89 calculator.

I1  =  10 A  �  20°E1  =  20 V  �  0°

R2

XC  =  10 V

4 V+

– XL2
5 V

XL1

8 V

R1

7 V

R3 8 V

FIG. 18.36
Example 18.19.

Z2

+

–
E1

Z1 Z3

I1

a

Z4

a9

FIG. 18.37
Assigning the subscripted impedances for the 

network in Fig. 18.36.
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Write the nodal equations:

( ) ( )

( ) ( )

+ + − = +

+ − = +

V Y Y Y V Y I

V Y Y V Y I

 

        
1 1 2 3 2 3 2

2 3 4 1 3 1

= = = =Y
Z

Y
Z

Y
Z

Y
Z

1 1 1 1
1

1
2

2
3

3
4

4

which are rewritten as

( ) ( )

( ) ( )

+ + − = +

− + + = +

V Y Y Y V Y I

V Y V Y Y I
1 1 2 3 2 3 2

1 3 2 3 4 1

EXAMPLE 18.20 Write the nodal equations for the network in 
Fig. 18.39. Do not solve.

Solution: Choose nodes (Fig. 18.40):

= = = −

= − = =

R jX R jX

jX R jX

Z Z Z

Z Z Z
L C

C L

1 1 2 3 2

4 5 3 6

1 2

1 2

and write the nodal equations:

R2
XL2

XL1

R1I1

XC2

XC1

R3

I2

FIG. 18.39
Example 18.20.

Z1

Z3

I1

V2V1

I2  =  E1
Z1

Z2

Reference

Z4

a9

a

FIG. 18.38
Converting the voltage source in Fig. 18.37 to a current 

source and defining the nodal voltages.
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( ) ( )

( ) ( ) ( )

( ) ( )

+ − = +

+ + − − = −

+ + − = +

V Y Y V Y I

V Y Y Y V Y V Y I

V Y Y Y V Y I

 

 

            

1 1 2 2 2 1

2 2 3 4 1 2 3 4 2

3 4 5 6 2 4 2

which are rewritten as

( )

( )

( ) ( )

( ) ( )

( )+

−
− +
+ + + −
− + + +

= +
= −
= +

V Y

V Y

Y V Y

V Y Y Y V Y

V Y V Y Y Y

I

I

I0

01 1

1 2

2 2 2

2 2 3 4 3 4

2 4 3 4 5 6

1

2

2

= = =
−R jX R jX

Y Y Y  1 1 1

L C
1

1
2 3

21 2

=
−

= =
jX R jX

Y Y Y  1 1 1

C L
4 5

3
6

1 2

Note the symmetry about the diagonal for this example and those pre-
ceding it in this section.

EXAMPLE 18.21 Apply nodal analysis to the network in Fig. 18.41. 
Determine the voltage V .L

Z1

Z2

V2V1

I1 Z3 Z5 Z6

Z4

V3

I2

FIG. 18.40
Assigning the nodal voltages and subscripted impedances for the 

network in Fig. 18.39.

Vi  =  Vi  �0°

+

–
2 kV VLRC

1 kV

I B

E E

C

+

–
4 kV RL 1 kV

Transistor
equivalent
network

XL

IL

100I

(bI)

FIG. 18.41
Example 18.21.
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Solution: In this case, there is no need for a source conversion. The 
network is redrawn in Fig. 18.42 with the chosen nodal voltage and sub-
scripted impedances.

Apply the format approach:

GY
Z

  1 1
4 kΩ

0.25 mS 0 01
1

1= = = ∠ ° = ∠ °

GY
Z

  1 1
1 kΩ

1 mS 0 02
2

2= = = ∠ ° = ∠ °

Y
Z

  1 1
2 kΩ 90

0.5 mS 903
3

= =
∠ °

= ∠− °

j jB0.5 mS L= − = −

( )+ + = −V Y Y Y V I:  100 1 1 2 3 1

and      V I
Y Y Y

  100 
1

1 2 3

= −
+ +

j
I100

0.25 mS  1 mS 0.5 mS
= −

+ −

j
I I100   10

1.25 0.5
100   10

1.3463 21.80

3  3 
= − ×

−
= − ×

∠− °

I74.28   10 21.803 = − × ∠ °

V
74.28   10  

1 kΩ
    21.80i3 ( )= − × ∠ °

L1V V 74 28V V 21 80  . .= = − ∠( ) °ii

18.6 BRIDGE NETWORKS (ac)
The basic bridge configuration was discussed in some detail in 
Section 8.8 for dc networks. We now continue to examine bridge net-
works by considering those that have reactive components and a sinu-
soidal ac voltage or current applied.

We first analyze various familiar forms of the bridge network using 
mesh analysis and nodal analysis (the format approach). The balance 
conditions are investigated throughout the section.

Apply mesh analysis to the network in Fig. 18.43. The network is 
redrawn in Fig. 18.44, where

= =
+

=
+

−
+G jB

G
G B

j
B

G B
Z

Y
  1 1  

C C

C

C
1

1 1

1

1
2 2

1
2 2

R R R jX RZ Z Z Z  L2 2     3 3     4 4     5 5= = = + =

Applying the format approach:

Z Z I Z I Z I E  1 3 1 1 2 3 3( ) ( ) ( )+ − − =

Z Z Z I Z I Z I  01 2 5 2 1 1 5 3( ) ( ) ( )+ + − − =

Z Z Z I Z I Z I  03 4 5 3 3 1 5 2( ) ( ) ( )+ + − − =

Y1

IL

V1

Y3 VL100I Y2

+

–

FIG. 18.42
Assigning the nodal voltage and 
subscripted impedances for the 

network in Fig. 18.41.

R1

+

–

E

C1

R2

R5

R3

R4

L4

FIG. 18.43
Maxwell bridge.

I1

–

Z5

Z1

Z4

Z2

Z3

+

–
E

I2

I3

FIG. 18.44
Assigning the mesh currents and 

subscripted impedances for the network in 
Fig. 18.43.

M18_BOYL0302_14_GE_C18.indd   770M18_BOYL0302_14_GE_C18.indd   770 28/02/23   1:25 PM28/02/23   1:25 PM



N
A BRIDGE NETWORKS (ac) | | | 771

which are rewritten as

( )

( )

(

+ − −

− + + + −

− − + +

=

=

+ =Z

I Z Z I Z I Z

I Z I Z Z Z I Z

I Z I Z I Z

E

0

Z 0

1 1 3 1 1 3 3

1 1 2 1 2 5 3 5

1 3 1 5 3 3 4 5

Note the symmetry about the diagonal of the above equations. For 
balance, I( ) 0 A,Z5

= and

= − =I I 02 35
I Z

From the above equations,

I

Z Z E Z

Z Z

Z Z Z Z

Z Z Z Z

Z Z Z Z Z

Z Z Z Z Z

E Z Z Z Z Z Z Z Z

    

0

0
2

1 3 3

1 5

3 3 4 5

1 3 1 3

1 1 2 5 5

3 5 3 4 5

1 3 1 4 1 5 3 5

( )

( )

( )

( )

=

+ −

− −

− + +

+ − −

− + + −

− − + +

=
+ + +

∆

where Δ signifies the determinant of the denominator (or coefficients). 
Similarly,

( )
=

+ + +
∆

I
E Z Z Z Z Z Z Z Z

3
1 3 3 2 1 5 3 5

and 
( )

= − =
−

∆
I I I

E Z Z Z Z
2 3

1 4 3 2
5Z  

For =I 0,
5Z  the following must be satisfied (for a finite Δ not equal to 

zero):

 = =Z Z Z Z I 01 4 3 2 5Z  (18.3)

This condition is analyzed in greater depth later in this section.
Applying nodal analysis to the network in Fig. 18.45 results in the 

configuration in Fig. 18.46, where

= =
−

= =
R jX R

Y
Z

Y
Z

1 1 1 1

C
1

1 1
2

2 2

= = = =
+

=
R R jX R

Y
Z

Y
Z

Y1 1 1 1 1

L
3

3 3
4

4 4
5

5

and

Y Y V Y V Y V I       1 2 1 1 2 2 3( ) ( ) ( )+ − − =

Y Y Y V Y V Y V  01 3 5 2 1 1 5 3( ) ( ) ( )+ + − − =

( ) ( ) ( )+ + − − =Y Y Y V Y V Y V  02 4 5 3 2 1 5 2
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which are rewritten as

( ) ( )

( ) ( )

)(

+ − −

− + + + −

− − + +

=

=

+ =

V Y Y V Y V Y

V Y V Y Y Y V Y

V Y V Y V Y Y Y

0

0

1 1 2 2 1 3 2

1 1 2 1 3 5 3 5

1 2 2 5 3 2 4 5

I

Again, note the symmetry about the diagonal axis. For balance, 
=V 0 V,

5Z  and

= − =V V V 02 35Z

From the above equations,

( )

( )

( )

( )

=

+ −

− −

− + +

+ − −

− + + −

− − + +

=
+ + +

∆

Y

Y Y I Y

Y Y

Y Y Y Y

Y Y Y Y

Y Y Y Y Y

Y Y Y Y Y

I Y Y Y Y Y Y Y Y

 

0

0
2

1 2 2

1 5

2 2 4 5

1 2 1 2

1 1 3 5 5

2 5 2 4 5

1 3 1 4 1 5 3 5

Similarly,

( )
=

+ + +
∆

V
I Y Y Y Y Y Y Y Y

3
1 3 3 2 1 5 3 5

Note the similarities between the above equations and those obtained 
for mesh analysis. Then

( )
= − =

−
∆

V V V
I Y Y Y Y

2 3
1 4 3 2

5Z

For =V 0,
5Z  the following must be satisfied for a finite Δ not equal to 

zero:

 = =Y Y Y Y V 01 4 3 2 5Z
 (18.4)

R1

I

C1
R2

R5

R3

R4

L4

FIG. 18.45
Hay bridge.

V2
–

Z5

Z1

Z4

Z2

Z3

I
V3

V1

FIG. 18.46
Assigning the nodal voltages and 
subscripted impedances for the 

network in Fig. 18.45.
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However, substituting Y Z Y Z Y Z1 ,   1 ,   1 ,1 1 2 2 3 3= = =  and 
Y4 = Z1 ,4  we have

Z Z Z Z
1 1

1 4 3 2

=

or =Z Z Z Z1 4 3 2     =V 0
5Z  

corresponding with Eq. (18.3) obtained earlier.
Let us now investigate the balance criteria in more detail by consid-

ering the network in Fig. 18.47, where it is specified that I and V 0.=
Since I 0,=

 =I I1 3  (18.5)

and =I I2 4  (18.6)

In addition, for V 0,=

 =I Z I Z1 1 2 2  (18.7)

and =I Z I Z3 3 4 4  (18.8)

Substituting the preceding current relations into Eq. (18.8), we have

I Z I Z1 3 2 4=

and I
Z
Z

I2
3

4
1=  

Substituting this relationship for I 2 into Eq. (18.7) yields

=






I Z

Z
Z

I Z1 1
3

4
1 2

and Z Z Z Z1 4 2 3=  

as obtained earlier. Rearranging, we have

 
Z
Z

Z
Z   

1

3

2

4

=  (18.9)

corresponding to Eq. (8.2) for dc resistive networks.
For the network in Fig. 18.45, which is referred to as a Hay bridge 

when Z5  is replaced by a sensitive galvanometer,

R jXZ C1 1= −

RZ2 2=

RZ3 3=

R jXZ L4 4= +

This particular network is used for measuring the resistance and 
inductance of coils in which the resistance is a small fraction of the 
reactance X .L

Substitute into Eq. (18.9) in the following form:

( )( )

=

= + −R R R jX R jX

Z Z Z Z

  L C

2 3 4 1

2 3 4 1

I1

–

Z1

Z4

Z2

Z3

+

–
E

+
I4

I2

I3 V  =  0

I  =  0

–

FIG. 18.47
Investigating the balance criteria for an 

ac bridge configuration.
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or     R R R R j R X R X X XL C C L2 3 1 4 1 4( )= + − +

so that

R R j R R X X j R X R X0 C L L C2 3 1 4 1 4( ) ( )+ = + + −

For the equations to be equal, the real and imaginary parts must be 
equal. Therefore, for a balanced Hay bridge,

 = +R R R R X XC L2 3 1 4  (18.10)

and = −R X R X0 L C1 4  (18.11)

or substituting ω
ω

= =X L X
C

and 1
L C  

we have X X
C

L L
C

1
C L ω

ω( )( )= =  

and R R R R L
C2 3 1 4= +  

with R L
R
C1
4ω
ω

=  

Solving for R4 in the last equation yields

R LCR4
2

1ω=

and substituting into the previous equation, we have

R R R LCR L
C2 3 1

2
1ω( )= +

Multiply through by C and factor:

CR R L C R 12 3
2 2

1
2ω( )= +

and ω
=

+
L

CR R
C R1

2 3
2 2

1
2  (18.12)

with 
ω
ω

=
+

R
C R R R

C R14

2 2
1 2 3

2 2
1
2  (18.13)

Eqs. (18.12) and (18.13) are the balance conditions for the Hay 
bridge. Note that each is frequency dependent. For different frequen-
cies, the resistive and capacitive elements must vary for a particular 
coil to achieve balance. For a coil placed in the Hay bridge as shown in 
Fig. 18.45, the resistance and inductance of the coil can be determined 
by Eqs. (18.12) and (18.13) when balance is achieved.

The bridge in Fig. 18.43 is referred to as a Maxwell bridge when Z5  
is replaced by a sensitive galvanometer. This setup is used for induc-
tance measurements when the resistance of the coil is large enough not 
to require a Hay bridge.

Applying Eq. (18.9) in the form

Z Z Z Z2 3 4 1=

and substituting

R X
R X

R jX
Z   0 90

0 90
C

C

C
1 1

1

1
1

1

1

( )( )
= ∠ ° ∠− ° =

∠ ° ∠− °

−
�
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R X

R jX

jR X

R jX

  90C

C

C

C

1

1

1

1

1

1

1

1

=
∠− °

−
=

−

−

RZ2 2=

RZ3 3=

and R jXZ L4 4 4
= +  

we have ( )( )( ) = +
−

−









R R R jX

jR X

R jX
  L

C

C
2 3 4

1

1
4

1

1

 

R R
jR R X R X X

R jX
  C C L

C
2 3

1 4 1

1

1 1 4

1

=
− +

−

or ( )( ) − = −R R R jX R X X jR R XC C L C2 3 1 1 1 41 1 4 1
 

and R R R jR R X R X X jR R XC C L C1 2 3 2 3 1 1 41 1 4 1
− = −  

so that for balance the real parts must be equal:

R R R R X XC L1 2 3 1 1 4
=

π
π( )=







R R

fC
fL  1

2
22 3

1
4

and =L C R R4 1 2 3  (18.14)

and the imaginary parts equal:

 =R R X R R XC C2 3 1 41 1

so that =R
R R

R4
2 3

1
 (18.15)

Note the absence of frequency in Eqs. (18.14) and (18.15).
One remaining popular bridge is the capacitance comparison bridge 

of Fig. 18.48. An unknown capacitance and its associated resistance can 
be determined using this bridge. Application of Eq. (18.9) yields the fol-
lowing results:

 =C C
R
R4 3

1

2

 (18.16)

 =R
R R

R4
2 3

1

 (18.17)

The derivation of these equations appears as a problem at the end of 
the chapter.

18.7 Δ-Y, Y-Δ CONVERSIONS
The ∆ ∆-Y, Y-  (or T-T,   -π π  as defined in Section  8.9) conversions 
for ac circuits are not derived here since the development corresponds  
exactly with that for dc circuits. Taking the ∆ Y-  configuration shown in 
Fig. 18.49, we find the general equations for the impedances of the Y in  
terms of those for the Δ:

ZC

Z3

Z1 Z2

ZB ZA

a b

c

FIG. 18.49
∆ Y-  configuration.

R1

E

C3

R2

Galvanometer

R3 R4

C4

+

–

FIG. 18.48
Capacitance comparison bridge.
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 =
+ +

Z
Z Z

Z Z Z
B C

A B C
1  (18.18)

 =
+ +

Z
Z Z

Z Z Z
A C

A B C
2  (18.19)

 =
+ +

Z
Z Z

Z Z Z
A B

A B C
3  (18.20)

For the impedances of the Δ in terms of those for the Y, the equations 
are

 =
+ +

Z
Z Z Z Z Z Z

ZB
1 2 1 3 2 3

2

 (18.21)

 =
+ +

Z
Z Z Z Z Z Z

ZA
1 2 1 3 2 3

1

 (18.22)

 =
+ +

Z
Z Z Z Z Z Z

ZC
1 2 1 3 2 3

3
 (18.23)

Note that each impedance of the Y is equal to the product 
of the impedances in the two closest branches of the Δ, 
divided by the sum of the impedances in the Δ.

Further, the value of each impedance of the Δ is equal 
to the sum of the possible product combinations of the 
impedances of the Y, divided by the impedances of the Y 
farthest from the impedance to be determined.

Drawn in different forms (Fig. 18.50), they are also referred to as the 
T and π  configurations.

In the study of dc networks, we found that if all of the resistors of 
the Δ or Y were the same, the conversion from one to the other could be 
accomplished using the equation

= =∆
∆R R R

R
3 or

3Y Y

For ac networks,

 = =∆
∆Z Z Z

Z
3 or

3Y Y  (18.24)

Z3

Z1 Z2

ZB ZA

ZC

FIG. 18.50
The T and π  configurations.
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Be careful when using this simplified form. It is not sufficient for all 
the impedances of the Δ or Y to be of the same magnitude: The angle 
associated with each must also be the same.

EXAMPLE 18.22 Find the total impedance ZT  of the network in 
Fig. 18.51.

Solution:

j j jZ Z Z4 4 3 4B A C= − = − = +

j j
j j j

Z
Z Z

Z Z Z
 

4 Ω 3 Ω 4 Ω
4 Ω 4 Ω 3 Ω 4 Ω

B C

A B C
1

( )( )
( ) ( ) ( )

=
+ +

=
− +

− + − + +

j
4 90 5 53.13

3 4
20 36.87
5 53.13

( )( )= ∠− ° ∠ °
−

= ∠− °
∠− °

j4 Ω 16.13 3.84 Ω 1.11 Ω= ∠ ° = +

j j
Z

Z Z
Z Z Z

 
4 Ω 3 Ω 4 Ω
5 Ω 53.13

A C

A B C
2

( )( )
=

+ +
=

− +
∠− °

j4 Ω 16.13 3.84 Ω 1.11 Ω= ∠ ° = +

Recall from the study of dc circuits that if two branches of the Y or Δ 
are the same, the corresponding Δ or Y, respectively, will also have two 
similar branches. In this example, Z Z .A B=  Therefore, Z Z ,1 2=  and

j j
Z

Z Z
Z Z Z

4 Ω 4 Ω
5 Ω 53.13

A B

A B C
3

( )( )
=

+ +
=

− −
∠− °

j16 Ω 180
5 53.13

3.2 Ω 126.87 1.92 Ω 2.56 Ω= ∠− °
∠− °

= ∠− ° = − −

Replace the Δ by the Y (Fig. 18.52):

j jZ Z  3.84 Ω    1.11 Ω            3.84 Ω 1.11 Ω1 2= + = +

jZ Z  1.92 Ω    2.56 Ω         2 Ω3 4= − − =

Z  3 Ω5 =

Z3

2

ZT

Z1 Z2

Z5Z4

1 3

FIG. 18.52
The network in Fig. 18.51 following 

the substitution of the Y configuration.

4 V
ZT

4 V

3 V 4 V

2 V 3 V

1 3

2

ZC1 3 1 3

2

ZB ZA

2

Z1

Z3

Z2

FIG. 18.51
Converting the upper ∆ of a bridge configuration to a Y.
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Impedances Z1 and Z4  are in series:

j jZ Z Z  3.84 Ω 1.11 Ω 2 Ω 5.84 Ω 1.11 ΩT 1 41
= + = + + = +

5.94 Ω 10.76= ∠ °

Impedances Z2  and Z5  are in series:

j jZ Z Z 3.84 Ω 1.11 Ω 3 Ω 6.84 Ω 1.11 ΩT 2 52
= + = + + = +

6.93 Ω 9.22= ∠ °

Impedances Z ZandT T1 2
 are in parallel:

 
j j

Z
Z Z

Z Z
 

5.94 Ω 10.76 6.93 Ω 9.22
5.84 Ω 1.11 Ω 6.84 Ω 1.11 ΩT

T T

T T
3

1 2

1 2

( )( )
=

+
=

∠ ° ∠ °
+ + +

j
41.16 Ω 19.98
12.68 2.22

41.16 Ω 19.98
12.87 9.93

3.198 Ω 10.05=
∠ °

+
=

∠ °
∠ °

= ∠ °

j3.15 Ω 0.56 Ω= +

Impedances Z3  and ZT3
 are in series. Therefore,

j jZ Z Z 1.92 Ω 2.56 Ω 3.15 Ω 0.56 ΩT T3 3
= + = − − + +

j 2 35 58 411.23 Ω 2.0 Ω .  Ω .= − = ∠− °

EXAMPLE 18.23 Using both the ∆-Y and ∆Y-  transformations, 
find the total impedance ZT  for the network in Fig. 18.53.

Solution: Using the Δ-Y transformation, we obtain Fig. 18.54. In this 
case, since both systems are balanced (same impedance in each branch), 
the center point d ′ of the transformed ∆ will be the same as point d of 
the original Y:

j
jZ

Z
3

3 Ω 6 Ω
3

1 Ω 2 ΩY = =
+

= +∆

and (Fig. 18.55)

j
j

Z 1 22
1 Ω 2 Ω

2
 Ω  ΩT ( )=

+
= +

6 V

ZT 3 V

2 V

2 V

3 V1

2

6 V

3 V

1 V

2 V 1 V1 V

6 V d

3

FIG. 18.53
Example 18.24.

M18_BOYL0302_14_GE_C18.indd   778M18_BOYL0302_14_GE_C18.indd   778 28/02/23   1:26 PM28/02/23   1:26 PM



Δ-Y, Y-Δ CONVERSIONS | | | 779N
A

Using the Y-Δ transformation (Fig. 18.56), we obtain

j jZ Z3 3 1 Ω 2 Ω 3 Ω 6 ΩY ( )= = + = +∆

ZT

1

2

d,d9

2 V

1 V

2 V

1 V

1 V

1 V

2 V

2 V

1 V

1 V
2 V

2 V

3

FIG. 18.55
Substituting the Y configuration in Fig. 18.54 into the 

network in Fig. 18.53.

6 V

3 V

3 V1

2

6 V

3 V

6 V

2 V

2 V

1 V

2 V

1 V1 V

d

1

2

3 3

FIG. 18.56
Converting the Y configuration in Fig. 18.53 to a Δ.

6 V

3 V

2 V

2 V

3 V1

2

6 V

3 V

1 V

2 V

1 V1 V

6 V d9

1

2

3 3

FIG. 18.54
Converting a Δ configuration to a Y configuration.
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PROBLEMS

SECTION 18.2 Independent versus Dependent 
(Controlled) Sources

 1. Discuss, in your own words, the difference between a con-
trolled and an independent source.

SECTION 18.3 Source Conversions

 2. Convert the voltage source in Fig. 18.58 to a current source.

Each resulting parallel combination in Fig. 18.57 will have the fol-
lowing impedance:

j
jZ

3 Ω 6 Ω
2

1.5 Ω 3 Ω′ =
+

= +

and Z Z Z
Z Z

Z
Z

Z    2
2

2
3

2
3T

2( ) ( )= ′ ′
′ + ′

= ′
′

= ′  

j
j

1 2
2 1.5 Ω 3 Ω

3
 Ω  Ω

( )
=

+
= +

which compares with the above result.

6 V

ZT
3 V

1

2

6 V
3 V

6 V 6 V

3 V

3 V

6 V

3 V

6 V3 V 3

FIG. 18.57
Substituting the ∆ configuration in Fig. 18.56 into the 

network in Fig. 18.53.

3 V

E  =  90 V ∠ 30° 
5 V

+

–
5 V

FIG. 18.58
Problem 2.

 3. Convert the current source in Fig. 18.59 to a voltage source.

8 V 3 A ∠ 120°10 V I

FIG. 18.59
Problem 3.

(a) (b)

R

5 kV

+

–
V
+

–
hI R 40 kVI

(h = 40)

V

(m = 16)

FIG. 18.60
Problem 4.

 4. Convert the voltage source in Fig.  18.60(a) to a current 
source and the current source in Fig. 18.60(b) to a voltage 
source.
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3 V

10 V

15 V
+

–

4 V

R1

+

–
E1  =  220 V ∠ 0° E2  =  100 V ∠ 90°

15 V

FIG. 18.65
Problems 9 and 21.

R1

6 V

E1  =  25 V ∠ 0° 

8 V

5 V 4 V

7 V

6 V 4 V

+

–

+

–

E2  =  40 V ∠ 60°

FIG. 18.66
Problem 10.

5 V

E1  =  25 V ∠ 0°

5 V

20 V

15 V+

–

R1

10 V

+

–
E2  =  75 V ∠ 20°

6 V

20 V

10 V 20 V

80 V

FIG. 18.67
Problems 11 and 22.

SECTION 18.4 Mesh Analysis

 5. Write the mesh equations for the network of Fig. 18.61. 
Determine the current through the resistor R.

+
E1  =  20 V ��0 °

–

R

8 V 10 V

5 V

+

–
E2  =  16 V ��30°

FIG. 18.61
Problem 5.

 6. Write the mesh equations for the network of Fig. 18.62.

+

–

R 50 V 40 V

+

–
E2 25 V ��0°  

60 V

E1  =  6 V � 45°

FIG. 18.62
Problem 6.

 7. Write the mesh equations for the network of Fig. 18.63. 
Determine the current through the resistor R .1

+
E1  =
40  V ∠ 60°

–

R1

10 V
2 V

E3 = 20 V ∠ 0°

10 V 5 V

E2

+

–

+

–
50 V  ∠ 70°

FIG. 18.63
Problems 7 and 21.

 *8. Write the mesh equations for the network of Fig. 18.64. 
Determine the current through the resistor R .1

+

–

4 V

+

–

R1

8 V

f = 2 kHz

f = 2 kHz
22 mF 39 mF

220 mH

110 mH

E2  =  120 V ∠ 120°

E  =  60 V ∠ 0° 

FIG. 18.64
Problem 8.

 *9. Write the mesh equations for the network of Fig. 18.65. 
Determine the current through the resistor R .1

 *10. Write the mesh equations for the network of Fig. 18.66. 
Determine the current through the resistor R .1

 11. Write the mesh equations for the network of Fig. 18.67. 
Determine the current through the resistor R1.
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 *16. Write the mesh equations for the network of Fig. 18.72, and 
determine the current through the inductive element.

 12. Using mesh analysis, determine the current I L  (in terms of 
V) for the network of Fig. 18.68.

I1  =  2 m A    ∠0° I2  =  6 m A    ∠30°

2 kV

8 kV4 kV

FIG. 18.73
Problem 17.

2 V

I2  =  4 A ∠ 80°

3 V

4 V

6 V 8 V

I1  =  0.6 A ∠ 20°

FIG. 18.74
Problem 18.

+

–

2 V

5 V

I  =  4A  ∠90°

f = 10 kHz

f = 10 kHz

0.1 mH

4.7 mF

E = 30 V ∠50°

FIG. 18.75
Problem 19.

XL 4 kV

+

–
28 V

+

–

6 kV

10 kV

rp

Rp

2 kVRL

VL

IL

+

–
V

FIG. 18.68
Problem 12.

XL 4 kV

+

–

60I 40 kV

0.2 kV

R VL

I

XC

R1 8 kV

IL

FIG. 18.69
Problem 13.

10 V∠ 0° 2 kV Vx

+

–

1 kV

6 Vx

+

–

4 kV
+

–

FIG. 18.70
Problem 14.

5 V∠ 0° 10 kV

2.2 kV

5 kV

+

–

4 mA ∠ 0°

+
20 V∠ 0°

–

FIG. 18.71
Problem 15.

6 mA ∠ 0° 6 kV

4 kV

1 kV

+

–

0.1 Vs

+
10 V ∠ 0°

–

Vs

FIG. 18.72
Problem 16.

  13. Using mesh analysis, determine the current I L  (in terms of 
I) for the network of Fig. 18.69.

 *14. Write the mesh equations for the network of Fig. 18.70, and 
determine the current through the 1 kΩ and 2 kΩ  resistors.

 *15. Write the mesh equations for the network of Fig. 18.71, and 
determine the current through the 10 kΩ  resistor.

SECTION 18.5 Nodal Analysis

 17. Determine the nodal voltages for the network of Fig. 18.73.

 18. Determine the nodal voltages for the network of Fig. 18.74.

 19. Determine the nodal voltages for the network of Fig. 18.79.
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 21. Determine the nodal voltages for the network of Fig. 18.65.

 *22. Determine the nodal voltages for the network of Fig. 18.67.

 *23. Determine the nodal voltages for the network of Fig. 18.77.

 20. Determine the nodal voltages for the network of Fig. 18.76.

4 V

+

–
E  =  50 V ∠ 120°

10 V

8 V

2 V I  =  0.8 A ∠ 70°

10 V

FIG. 18.76
Problem 20.

5 mA ∠ 0°

2 kV

1 kV

Ix

8 mA ∠ 0°4 kV

4Ix

FIG. 18.79
Problem 25.

I2

5 V

3 A ∠ 150°
4 V

1 V

8 V

4 V

I1  =  2 A ∠ 30°

FIG. 18.77
Problem 23.

 *24. Determine the nodal voltages for the network of Fig. 18.78.

6 V

I2  =  6 A ∠ 90°

4 V

5 V 4 V

4 A ∠ 0°

8 V

2 VI1

FIG. 18.78
Problem 24.

 *25. Write the nodal equations for the network in Fig. 18.79, and 
find the voltage across the 1 kΩ resistor.

12 mA ∠ 0°

2 kV

1 kV 4 mA ∠ 0°3 kV

10 V ∠ 0°
+–

FIG. 18.80
Problem 26.

 *26. Write the nodal equations for the network of Fig. 18.80, and 
find the voltage across the capacitive element.

 *27. Write the nodal equations for the network of Fig. 18.81, and 
find the voltage across the 2 kΩ  resistor.

12 mA ∠ 0°

1 kV

2 kV

2 mA ∠ 0°

+ –Vx

3.3 kV

6Vx

+

–

FIG. 18.81
Problem 27.

5 mA ∠ 0°

1 kV

2 kV

+–

I1

1 kV

2Vx

Vx

+

–
3I1

FIG. 18.82
Problem 28.

 *28. Write the nodal equations for the network of Fig. 18.82, and 
find the voltage across the 2 kΩ  resistor.
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 *29. For the network of Fig. 18.83, determine the voltage VL  in 
terms of the voltage E .i

R1 1 kV

I1

Ei

+

–
R250 kV50I1 RL 50 kV50I2

R3

1 kV

VL

+

–

I2

FIG. 18.83
Problem 29.

R1

5 kV

Es  =  10 V  ∠ 0°

+

–

XL1

2.5 kV

XL2

4 kV

5 kV

XC

Rs 1 kV
R2

8 kV

FIG. 18.84
Problem 30.

R1

4 kV

Es  =  10 V ∠ 0°

+

–

XL

4 kV 4 kV

4 kV
XC

Rs 1 kV
R2

4 kV
R3

FIG. 18.85
Problem 31.

R1

1 kV

E

+

–

Lx

0.1 kV

1 mF IG  =  0

CRs 1 kV
R2

R3

v   =  1000

Rx

0.1 kV

FIG. 18.86
Problem 32.

R1  =  2 kV

E

+

– Lx

4 kV

2 mF
IG

C1

R2

R3v  =  2000
Rx

0.5 kV

1 kV

6 H

FIG. 18.87
Problem 33.

SECTION 18.6 Bridge Networks (ac)

 30. For the bridge network in Fig. 18.84:
a. Is the bridge balanced?
b. Using mesh analysis, determine the current through the 

capacitive reactance.
c. Using nodal analysis, determine the voltage across the 

capacitive reactance.

 31. For the bridge network in Fig. 18.85:
a. Is the bridge balanced?
b. Using mesh analysis, determine the current through the 

capacitive reactance.
c. Using nodal analysis, determine the voltage across the 

capacitive reactance.

 32. The Hay bridge in Fig. 18.86 is balanced. Using Eq. (18.3), 
determine the unknown inductance Lx  and resistance R .x

 33. Determine whether the Maxwell bridge in Fig. 18.87 is bal-
anced ω =( 2000 rad/s).

 34. Derive the balance equations (18.16) and (18.17) for the 
capacitance comparison bridge.

 35. Determine the balance equations for the inductance bridge 
in Fig. 18.88.

R1

E

+

–
L3 Lx

Rs

R2

R3 Rx

FIG. 18.88
Problem 35.

M18_BOYL0302_14_GE_C18.indd   784M18_BOYL0302_14_GE_C18.indd   784 28/02/23   1:26 PM28/02/23   1:26 PM



N
A GLOSSARY | | | 785

 39. Using the ∆-Y or ∆Y-  conversion, determine the current I 
for the network of Fig. 18.92.

SECTION 18.7 ∆-Y, Y-∆  Conversions

 36. Using the ∆-Y or ∆Y-  conversion, determine the current I 
for the network of Fig. 18.89.

8 V

E  =  120 V ∠ 0°
+

–

8 V

5 V

I

4 V

6 V

FIG. 18.89
Problem 36.

 37. Using the ∆-Y or ∆Y-  conversion, determine the current I 
for the network of Fig. 18.90.

9 V

E  =  60 V ∠ 0°
+

– 9 V12 V

I

12 V

3 V 3 V

12 V

2 V

9 V

FIG. 18.90
Problem 37.

 38. Using the ∆-Y or ∆Y-  conversion, determine the current I 
for the network of Fig. 18.91.

+

–
12 V

I

16 V

3 V3 V

12 V 12 V
3 V

16 V 16 V

E  =  220 V ∠ 0°

 FIG. 18.91
Problem 38.

+

–

I

5 V

5 V

5 V

5 V 5 V

5 V

E  =  200 V ∠ 30°

FIG. 18.92
Problem 39.

GLOSSARY

Bridge network A network configuration having the appear-
ance of a diamond in which no two branches are in series or 
parallel.

Capacitance comparison bridge A bridge configuration having 
a galvanometer in the bridge arm that is used to determine an 
unknown capacitance and associated resistance.

Delta ( )∆  configuration A network configuration having the  
appearance of the capital Greek letter delta.

Dependent (controlled) source A source whose magnitude and/
or phase angle is determined (controlled) by a current or volt-
age of the system in which it appears.

Hay bridge A bridge configuration used for measuring the resis-
tance and inductance of coils in those cases where the resistance 
is a small fraction of the reactance of the coil.

Independent source A source whose magnitude is independent 
of the network to which it is applied. It displays its terminal 
characteristics even if completely isolated.

Maxwell bridge A bridge configuration used for inductance 
measurements when the resistance of the coil is large enough 
not to require a Hay bridge.

Mesh analysis A method through which the loop (or mesh) cur-
rents of a network can be determined. The branch currents of 
the network can then be determined directly from the loop 
currents.

Nodal analysis A method through which the nodal voltages of a 
network can be determined. The voltage across each element 
can then be determined through application of Kirchhoff’s 
voltage law.

Source conversion The changing of a voltage source to a current 
source, or vice versa, which will result in the same terminal 
behavior of the source. In other words, the external network is 
unaware of the change in sources.

Wye (Y) configuration A network configuration having the  
appearance of the capital letter Y.
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19 Network Theorems (ac) 

 19.1 INTRODUCTION
This chapter parallels Chapter 9, which dealt with network theorems as applied to dc net-
works. Reviewing each theorem in Chapter 9 before beginning this chapter is recommended 
because many of the comments offered there are not repeated here.

Due to the need for developing confidence in the application of the various theorems to 
networks with controlled (dependent) sources, some sections have been divided into two 
parts: independent sources and dependent sources.

Theorems to be considered in detail include the superposition theorem, Thévenin’s and 
Norton’s theorems, and the maximum power transfer theorem. The substitution and reciproc-
ity theorems and Millman’s theorem are not discussed in detail here because a review of 
Chapter 9 will enable you to apply them to sinusoidal ac networks with little difficulty.

19.2 SUPERPOSITION THEOREM
You will recall from Chapter 9 that the superposition theorem eliminated the need for solv-
ing simultaneous linear equations by considering the effects of each source independently. To 
consider the effects of each source, we had to remove the remaining sources. This was accom-
plished by setting voltage sources to zero (short-circuit representation) and current sources 
to zero (open-circuit representation). The current through, or voltage across, a portion of the 
network produced by each source was then added algebraically to find the total solution for 
the current or voltage.

The only variation in applying this method to ac networks with independent sources is that 
we are now working with impedances, phasors, and complex numbers instead of just resistors 
and real numbers.

The superposition theorem is not applicable to power effects in ac networks since we are 
still dealing with a nonlinear relationship. That is, to repeat an earlier postulate:

The sum of the powers delivered by each of two or more ac sources of 
the same frequency is not equal to the power delivered by all the sources. 
However, for a network with a dc source and an ac source the total power can 
be determined by the sum of the powers delivered by each source.

Objectives • Be able to apply the superposition theorem to ac 
networks with independent, dependent, and dc 
sources.

• Become proficient in applying Thévenin’s theorem 
to ac networks with independent, dependent, and 
dc sources.

• Be able to apply Norton’s theorem to ac networks 
with independent, dependent, and dc sources.

• Clearly understand the conditions that must be met 
for maximum power transfer to a load in an ac 
network with independent or dependent sources.
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It can be applied to networks with sources of different frequencies 
only if the total response for each frequency is found independently and 
the results are expanded in a nonsinusoidal expression, as appearing in 
Chapter 26.

One of the most frequent applications of the superposition theorem 
is to electronic systems in which the dc and ac analyses are treated 
separately and the total solution is the sum of the two. It is an import-
ant application of the theorem because the impact of the reactive ele-
ments changes dramatically in response to the two types of independent 
sources. In addition, the dc analysis of an electronic system can often 
define important parameters for the ac analysis. Example 19.4 demon-
strates the impact of the applied source on the general configuration of 
the network.

We first consider networks with only independent sources to provide 
a close association with the analysis of Chapter 9.

Independent ac Sources of the Same Frequency

The first two examples are networks with independent ac sources of the 
same frequency. If the sources had different frequencies, the impedances 
of the elements would change with each applied frequency.

EXAMPLE 19.1 Using the superposition theorem, find the current I 
through the Ω4  reactance X( )L2

 in Fig. 19.1.

XL2
4 V

–

+

XC 3 V
I

E2  =  5 V∠08  E1  =  10 V∠08 

–

+

XL1
4 V

FIG. 19.1 
Example 19.1.

–

+

I

E2E1 –

+

Z1

Z2

Z3

FIG. 19.2 
Assigning the subscripted impedances to the 

network in Fig. 19.1.

Solution: For the redrawn circuit (Fig. 19.2),

= + =jX jZ 4ΩL1 1

= + =jX jZ 4ΩL2 2

= − = −jX jZ 3ΩC3

Considering the effects of the voltage source E1 (Fig. 19.3) by replac-
ing E 2 by a short circuit, we have

�
( )( )

=
+

=
−

−
=

= − = ∠− °

j j
j j j

j

Z
Z Z

Z Z
 

  4 Ω 3 Ω
4 Ω 3 Ω

12 Ω

12 Ω 12 Ω  90

2 3
2 3

2 3

�

=
+

=
∠ °

− +
=

∠ °
∠− °

= ∠ °

j j
I

E
Z Z

 
10 V 0

12 Ω 4 Ω
10 V 0

8 Ω 90

1.25 A 90

s
1

2 3 1
1
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and

( )

( )′ =
+

=
−

−
= = ∠− °

j j
j j j

I
Z I

Z Z
  current divider rule

3 Ω (  1.25 A)
4 Ω 3 Ω

3.75 A
1

3.75 A 90

s3

2 3

1

Considering the effects of the voltage source E 2 (Fig. 19.4), we have

I9

E1

–

+

Z1

Z2

Z3

E1

–

+

Z1

Z2∥3

Is1
Is1

E2   =  0 V   

FIG. 19.3 
Determining the effect of the voltage source E1 on the current I of the 

network in Fig. 19.1 by replacing E 2 by a short circuit.

I″
E2

–

+

Z1

Z2

Z3

E2

–

+

Z3

Z1∥2

Is2
Is2

E1 = 0 V 

FIG. 19.4 
Determining the effect of the voltage source E 2 on the current I of 

the network in Fig. 19.1 by replacing E1 by a short circuit.

� ( )= = = =
N

j
jZ

Z
Z Z  

4 Ω
2

2 Ω because 1 2
1

1 2

�

=
+

=
∠ °

−
=

∠ °
∠− °

= ∠ °
j j

I
E

Z Z
5V 0

2 Ω 3 Ω
5V 0

1 Ω 90
5A 90s

2

1 2 3
2

and ″ = = ∠ °I
I

2
2.5 A 90s2

The resultant current through the 4 Ω reactance X L2
 (Fig. 19.5) is

= ′ − ″
= ∠− ° − ∠ ° = − −

= −

= ∠− °

j j

j

I I I

I 6 25 A 90

 
3.75 A 90 (2.50 A 90 ) 3.75 A 2.50 A

6.25 A

  .  

4 V I

I9

I0

XL2

FIG. 19.5 
Determining the resultant current for the 

network in Fig. 19.1.
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EXAMPLE 19.2 Using superposition, find the current I through the 
6 Ω resistor in Fig. 19.6.

XC  =  8 V

I

E1  =  20 V∠308

–

+ R  =  6 VXL  =  6 V

I1 2 A ∠ 08

FIG. 19.6 
Example 19.2.–

I

Z1 Z2

E1

+

I1

FIG. 19.7 
Assigning the subscripted impedances to the 

network in Fig. 19.6.

I′

Z1 Z2

E1  =  0 V I1

FIG. 19.8 
Determining the effect of the current source 
I1 on the current I of the network in Fig. 19.6.

I″

Z1 Z2

–

+

 =  0 AI1E1 

FIG. 19.9 
Determining the effect of the voltage source 

E1 on the current I of the network in Fig. 19.6.

I

I′

R

6 V
I″

FIG. 19.10 
Determining the resultant current I for the 

network in Fig. 19.6.

Solution: For the redrawn circuit (Fig. 19.7),

j jZ Z6 Ω 6 Ω 8 Ω1 2= = −

Consider the effects of the current source (Fig. 19.8) with the source E1 
replaced by a short circuit. Applying the current divider rule, we have

j
j j

j
j

I
Z I

Z Z
6 Ω (2 A)

6 Ω 6 Ω 8 Ω
12 A

6 2
1 1

1 2

( )
′ =

+
=

+ −
=

−

=
∠ °

∠− °
12 A 90

6.32 18.43
′ = ∠ °I 1.9 A 108.43

Consider the effects of the voltage source (Fig. 19.9) with the current 
source I1  replaced by an open circuit. Applying Ohm’s law gives us

″ = =
+

=
∠ °

∠− °
I

E
Z

E
Z Z

20 V 30
6.32 Ω 18.43T

1 1

1 2

= ∠ °3.16 A 48.43

The total current through the 6 Ω resistor (Fig. 19.10) is

I I I= ′ + ″

= ∠ ° + ∠ °1.9 A 108.43 3.16 A 48.43

j j0.60 A 1.80 A 2.10 A 2.36 A( ) ( )= − + + +

j1.50 A 4.16 A= +

∠= °I 4 42 A 70 2. .

EXAMPLE 19.3 Using superposition, find the voltage across the 
6 Ω  resistor in Fig.  19.6. Check the results againstV I 6 Ω6Ω ( )= , 
where I is the current found through the 6 Ω resistor in Example 19.2.

Solution: For the current source,

( )( ) ( )′ = ′ = ∠ ° = ∠ °V I 6 Ω 1.9 A 108.43 6 Ω 11.4 V 108.436Ω

For the voltage source,

( )( ) ( )″ = ″ = ∠ ° = ∠ °V I 6 3.16 A 48.43 6 Ω 18.96 V 48.436Ω
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The total voltage across the 6 Ω resistor (Fig. 19.11) is

V V V6Ω 6Ω 6Ω= ′ + ″

11.4 V 108.43 18.96 V 48.43= ∠ ° + ∠ °

j j3.60 V 10.82 V 12.58 V 14.18 V( ) ( )= − + + +

j8.98 V 25.0 V= +

∠= °V 26 5 V 70 2. .6Ω

Checking the result, we have

( )( ) ( )= = ∠ °V I 6 Ω 4.42 A 70.2 6 Ω6Ω

26 5 V 70 2. . checks∠ ( )= °

Independent dc and ac Sources

In the next example a dc source and ac source are present. The analysis 
with each source will be performed independently and the total result for 
the voltage or current will be the sum of the two sources. The total power 
can be determined by the sum of the power delivered by each source as 
demonstrated below:

The effective value of the resulting voltage is determined by the fol-
lowing equation as introduced in Eq. (13.35):

V V Veff dc
2

rms
2= +

The power to the load is then

P
V

R

V V

R
V
R

V
R

P Peff
2

dc
2

rms
2

2

dc
2

rms
2

dc ac

( )
= =

+
= + = +

which breaks down to the sum of the dc and ac power distributions.

EXAMPLE 19.4 For the network of Fig. 19.12:

a. Determine the sinusoidal expression for the voltage .3υ
b. Calculate the power delivered to R .3

R

6 V

V″6V+ –

V′6V+ –

V6V+ –

FIG. 19.11 
Determining the resultant voltage V6Ω  for the 

network in Fig. 19.6.

–

+

R2 1 kV

R1

0.5 kV

XL

2 kV

R3 3 kV v3XC 10 kV

–

+

E1  =  12 V

E2 = 4 V ∠08
  

FIG. 19.12 
Example 19.4.

Solutions:
a.  For the dc analysis, the capacitor can be replaced by an open-circuit 

equivalent and the inductor by a short-circuit equivalent. The result 
is the network in Fig. 19.13.

–

+

R2 1 kV

R1

0.5 kV

R3 3 kV V3

E1  =  12 V

E2 =  0 V  

FIG. 19.13 
Determining the effect of the dc voltage 

source E1 on the voltage υ3 of the network in 
Fig. 19.12 with 2E  replaced by a short circuit.
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The resistors 1R  and 3R  are then in parallel, and the voltage V3  can 
be determined using the voltage divider rule:

R R R 0.5 kΩ 3 kΩ 0.429 kΩ1 3� �′ = = =

and V
R E

R R3
1

2

=
′

′ +

0.429 kΩ (12 V)
0.429 kΩ 1 kΩ

5.148 V
1.429

( )
=

+
=

V 3 6 V.3 ≅

For the ac analysis, the dc source is set to zero and the network is 
 redrawn, as shown in Fig. 19.14.

R2  1 kV
XC  =  10 kV

–

+

R1

0.5 kV

R3  = 3 kV V3

XL

2 kV

E2  =  4 V∠08 
–

+

E1 = 0 V

FIG. 19.14 
Redrawing the network in Fig. 19.12 to determine the effect of the 
ac voltage source 2E  with the source 1E  replaced by a short circuit.

–

Is

Z1

Z2E2

+

Z3

ZT

V3

–

+

I3

 FIG. 19.15 
Assigning the subscripted impedances to the 

network in Fig. 19.14.

. EE 3 . 9 9 5 3EE

1 3 6 1 EE

33 6

3EE . 7

. 3 3 31

1

(2)

(2)

3

9 9 5

5 7

5

(

( (

(

((2ND

2ND 2ND

2ND

2ND

2ND. .

..

)

) )

)

)

)9

5

6 9 2ND.EE163

MATH  8

MATH  8

MATH  8

MATH  8

/

/

/

/

Polar ENTER 1311.60  1.558/

4

1

FIG. 19.16 
Determining the total impedance for the network of Fig. 19.12.

The block impedances are then defined as in Fig. 19.15, and series- 
parallel techniques are applied as follows:

= ∠ °Z 0.5 kΩ 01

�( )= ∠ ° ∠− °R XZ ( 0 90C2 2

( )( )
=

∠ ° ∠− °
−

=
∠− °

∠− °j
1 kΩ 0 10 kΩ 90

1 kΩ 10 kΩ
10 kΩ 90

10.05 84.29

= ∠− °0.995 kΩ 5.71

= + = + = ∠ °R jX jZ 3 kΩ 2 kΩ 3.61 kΩ 33.69L3 3

and

�= +Z Z ZT 1 2 3Z

�( ) ( )= + ∠− ° ∠ °0.5 kΩ 0.995 kΩ 5.71 3.61 kΩ 33.69

= ∠ °1.312 kΩ 1.57

Calculator Solution: Performing the above calculation for ZT  on 
the TI-89 calculator requires the sequence of steps in Fig. 19.16.
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= =
∠ °

∠ °
= ∠− °I

E
Z

4 V 0
1.312 kΩ 1.57

3.05 mA 1.57s
T

2

The current divider rule gives

( )( )
=

+
=

∠− ° ∠− °
∠− ° + ∠ °

I
Z I

Z Z
0.995 kΩ 5.71 3.05 mA 1.57
0.995 kΩ 5.71 3.61 kΩ 33.69

s
3

2

2 3

= ∠− °0.686 mA 32.74

with

I RV 03 3 3θ( )( )= ∠ ∠ °

( )( )= ∠− ° ∠ °0.686 mA 32.74 3 kΩ 0

2 06 V 32 74. .∠−= °

The total solution is

dc ac3 3 3υ υ υ( ) ( )= +

3.6 V 2.06 V 32.74= + ∠− °
ωυ − °= +3 6 2 91 sin( 32.74 ). .3 t

The result is a sinusoidal voltage having a peak value of 2.91 V riding 
on an average value of 3.6 V, as shown in Fig. 19.17.

b. The total power delivered is determined by

P
V
R

V
RT

dc
2

rms
2

= +

3.6 V
3 kΩ

(0.707)(2.91 V)
3 kΩ

2 2( ) [ ]
= +

4.32 mW 1.41 mW= +
5 73 mW.=

Dependent ac Sources

For dependent sources in which the controlling variable is not determined 
by the network to which the superposition theorem is to be applied, the 
 application of the theorem is basically the same as for  independent sources. 
The solution obtained will simply be in terms of the controlling variables.

EXAMPLE 19.5 Using the superposition theorem, determine the cur-
rent I 2 for the network in Fig. 19.18. The quantities µ  and h are constants.

6.51 V

3.6 V

0.69 V
0

v3
32.748

vt

FIG. 19.17 
The resultant voltage υ3  for the network 

in Fig. 19.12.

–+
V = 10 V∠08 

I = 20 mA ∠08 

Adjoining network

–

+ R2 6 V

XL 8 V

hI

R1

4 V
I2

mV

FIG. 19.18 
Example 19.5.
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Solution: With a portion of the system redrawn (Fig. 19.19),

R R j X jZ Z4 Ω 6 Ω 8 ΩL1 1 2 2= = = + = +

For the voltage source (Fig. 19.20) and the current source replaced by 
an open circuit,

j j
I

V
Z Z

V V
4 Ω 6 Ω 8 Ω 10 Ω 8 Ω1 2

µ µ µ′ =
+

=
+ +

=
+

µ µ=
∠ °

= ∠− °V
V

12.8 Ω 38.66
0.078 Ω 38.66

For the current source (Fig. 19.21) with the voltage source replaced by 
a short circuit,

( )
( )″ =

+
=

∠ °
= ∠− °

h h hI
Z I

Z Z
I I

( ) 4 Ω ( )
12.8 Ω 38.66

4 0.078 38.661

1 2

= ∠− °hI0.312 38.66

The current I 2 is

I I I2 = ′ + ″

µ= ∠− ° + ∠− °hV I0.078 Ω 38.66 0.312 38.66

For µ= ∠ ° = ∠ ° = =hV I10 V 0 , 20 mA 0 , 20, and 100,

( )( )= ∠ ° ∠− °I 0.078 20 10 V 0 Ω 38.662

( )( )+ ∠ ° ∠− °0.312 100 20 mA 0 38.66

= ∠− ° + ∠− °15.60 A 38.66 0.62 A 38.66

∠−= °I 16 22 A 38 66. .2

For dependent sources in which the controlling variable is deter-
mined by the network to which the theorem is to be applied, the depen-
dent source cannot be set to zero unless the controlling variable is also 
zero. For networks containing dependent sources (as in Example 19.5) 
and dependent sources of the type just introduced above, the superposi-
tion theorem is applied for each independent source and each dependent 
source not having a controlling variable in the portions of the network 
under investigation. It must be reemphasized that dependent sources are 
not sources of energy in the sense that, if all independent sources are 
removed from a system, all currents and voltages must be zero.

EXAMPLE 19.6 Determine the current IL  through the resistor RL  
in Fig. 19.22.

Solution: Note that the controlling variable V is determined by the 
network to be analyzed. From the above discussions, it is understood 
that the dependent source cannot be set to zero unless V is zero. If we set 
I to zero, the network lacks a source of voltage, and V 0=  with 

V 0.µ =  The resulting I L  under this condition is zero. Obviously, 
therefore, the network must be analyzed as it appears in Fig. 19.22, with 
the result that neither source can be eliminated, as is normally done 
using the superposition theorem.

Applying Kirchhoff’s voltage law, we have

V V V V1L µ µ( )= + = +

and

R R
I

V V1
L

L

L L

µ( )
= = +

–

Z1

mV

+

Z2

I9

hI = 0 A

FIG. 19.20 
Determining the effect of the voltage-

controlled voltage source on the current 2I  
for the network in Fig. 19.18.

Z

mV = 0 V

1

Z2

I0

hI1

FIG. 19.21 
Determining the effect of the current-

controlled current source on the current 2I  
for the network in Example 19.5.

RL VL

mV
– +

ILI1

R1 VI
–

+

FIG. 19.22 
Example 19.6.

–

Z1

+

Z2

I2

hImV

FIG. 19.19 
Assigning the subscripted impedances to the 

network in Fig. 19.18.
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The result, however, must be found in terms of I since V and Vµ  are 
only dependent variables.

Applying Kirchhoff’s current law gives us

R R
I I I V V1

L
L

1
1

µ( )
= + = + +

and 
R R

I V 1 1

L1

µ= + +







or R R
V I

1 1 / L1 µ( ) [ ]( )
=

+ +

Substituting into the above yields

R R R R
I

V I1 1
1 1L

L L L1

µ µ
µ( ) [ ]

( ) ( )

( )
= + = +

+ +








Therefore,
R

R RL

I
1 I

1L
1

1

µ
µ

( )

( )
=

+
+ +

19.3 THÉVENIN’S THEOREM
Thévenin’s theorem, as stated for sinusoidal ac circuits, is changed 
only to include the term impedance instead of resistance; that is,

Any two-terminal linear ac network can be replaced with 
an equivalent circuit consisting of a voltage source and an 
impedance in series, as shown in Fig. 19.23.

Since the reactances of a circuit are frequency dependent, the Thévenin 
circuit found for a particular network is applicable only at one frequency.

The steps required to apply this method to dc circuits are repeated 
here with changes for sinusoidal ac circuits. As before, the only change 
is the replacement of the term resistance with impedance. Again, depen-
dent and independent sources are treated separately.

Example 19.9, the last example of the independent source section, 
includes a network with dc and ac sources to establish the groundwork 
for possible use in the electronics area.

Independent ac and dc Sources

1. Remove that portion of the network across which the 
Thévenin equivalent circuit is to be found.

2. Mark (°, •, and so on) the terminals of the remaining two- 
terminal network.

3. Calculate ZTh by first setting all voltage and current 
sources to zero (short circuit and open circuit, respec-
tively) and then finding the resulting impedance between 
the two marked terminals.

4. Calculate ETh by first replacing the voltage and current 
sources and then finding the open-circuit voltage 
between the marked terminals.

5. Draw the Thévenin equivalent circuit with the portion of 
the circuit previously removed replaced between the ter-
minals of the Thévenin equivalent circuit.

–

+

ZTh

ETh

FIG. 19.23 
Thévenin equivalent circuit for ac networks.
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 EXAMPLE 19.7 Find the Thévenin equivalent circuit for the net-
work external to resistor R in Fig. 19.24.

Solution:

Steps  1  and  2 (Fig. 19.25):

jX j jX jZ Z8 Ω 2 ΩL C1 2= = = − = −

R2 V

–

+

E = 10 V/08

XL  =  8 V

XC

Thévenin

FIG. 19.24 
Example 19.7.

E = 10 V /08

–

+

Z1

Z2

Thévenin

FIG. 19.25 
Assigning the subscripted impedances to the 

network in Fig. 19.24.

Z1

Z2
ZTh

FIG. 19.26 
Determining the Thévenin 

impedance for the network in 
Fig. 19.24.

Z1

Z2 ETh

–

+

E

+

–

FIG. 19.27 
Determining the open-circuit 

Thévenin voltage for the 
network in Fig. 19.24.

–

+

ETh = 3.33 V/–1808

ZTh

R

ZTh  =  2.67 V /–908

–

+

ETh = 3.33 V/–1808 R

XC  =  2.67 V

FIG. 19.28 
The Thévenin equivalent circuit for the network in Fig. 19.24.

Step 3 (Fig. 19.26):

( )( )
=

+
=

−
−

=
−

=
∠ °

j j
j j

j
j

Z
Z Z

Z Z
8 Ω 2 Ω
8 Ω 2 Ω

16 Ω
6

16 Ω
6 90Th

1 2

1 2

2

= ∠− °2 67 90. Ω

Step 4 (Fig. 19.27):

E
Z E

Z Z
voltage divider ruleTh

2

1 2

( )=
+

∠−
( )

=
−

−
=

−
= °

j
j j

j
j

3 33 V 180
2 Ω (10 V)

8 Ω 2 Ω
20 V
6

.

Step 5: The Thévenin equivalent circuit is shown in Fig. 19.28.
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EXAMPLE 19.8 Find the Thévenin equivalent circuit for the 
 network external to branch a a- ′ in Fig. 19.29.

–

+

R3

7 V

R1

6 V

E1

XL1

8 V

R2 3 V

XL2 
=  5 V

10 V/08

XC 4 V

a

–

+

E2 30 V/158

a9 Thévenin

FIG. 19.29 
Example 19.8.

Solution:
Steps  1  and  2 (Fig. 19.30): Note the reduced complexity with sub-
scripted impedances:

R jX jZ 6 Ω 8 ΩL1 1 1
= + = +

R jX jZ 3 Ω 4 ΩC2 2= − = −

jX jZ 5 ΩL3 2
= + =

E1

–

+

Z1

Z2

Z3

10 V/08

a

a9 Thévenin

FIG. 19.30 
Assigning the subscripted impedances for the network in Fig. 19.29.

Step 3 (Fig. 19.31):

( )( )
( ) ( )

= +
+

= +
∠ ° ∠− °
+ + −

j
j j

Z Z
Z Z

Z Z
5 Ω

10 Ω 53.13 5 Ω 53.13
6 Ω 8 Ω 3 Ω 4 ΩTh 3

1 2

1 2

= +
∠ °

+
= +

∠ °
∠ °

j
j

j5
50 0
9 4

5
50 0

9.85 23.96

= + ∠− ° = + −j j j5 5.08 23.96 5 4.64 2.06

jZ 4 64 Ω 2 94 5 49 Ω 32 36. . Ω . .Th = + = ∠ °

Z1

Z2

Z3
a

a9

ZTh

FIG. 19.31 
Determining the Thévenin impedance for the network in Fig. 19.29.
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Step 4 (Fig. 19.32): Since ′a a-  is an open circuit, I 0.Z3
=  Then ETh  

is the voltage drop across Z2 :

E
Z E

Z Z
voltage divider ruleTh

2

2 1

( )=
+

( )( )
=

∠− ° ∠ °
∠ °

5 Ω 53.13 10 V 0
9.85 Ω 23.96

∠−=
∠− °
∠ °

= °E 5 08 V 77 09
50 V 53.13

9.85 23.96
. .Th

E1

–

+

Z1

Z2

Z3 a

a9

ETh

–

+
IZ3

  =  0

FIG. 19.32 
Determining the open-circuit Thévenin voltage for the network  

in Fig. 19.29.

–

+

ETh

ZTh

R3

4.64 V + j2.94 V
7 V

5.08 V/–77.098 
–

+

E2 30 V/158 
–

+

ETh

4.64 V 7 V

5.08 V/–77.098 

–

+

E2 30 V/158

2.94 V

R XLa

a'

a

a

R3

a'

FIG. 19.33 
The Thévenin equivalent circuit for the network in Fig. 19.29.

Step 5: The Thévenin equivalent circuit is shown in Fig. 19.33.

The next example demonstrates how superposition is applied to elec-
tronic circuits to permit a separation of the dc and ac analyses. The fact 
that the controlling variable in this analysis is not in the portion of the 
network connected directly to the terminals of interest permits an analy-
sis of the network in the same manner as applied above for independent 
sources.

In Fig. 19.34, the resistor RL  could be an audio speaker while E1 
could be a microphone.

EXAMPLE 19.9 Determine the Thévenin equivalent circuit for the 
transistor network external to the resistor RL  in the network in Fig. 19.34. 
Then determine VL .
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Solution: Applying superposition.

dc Conditions Substituting the open-circuit equivalent for the cou-
pling capacitor C2  will isolate the dc source and the resulting currents 
from the load resistor. The result is that for dc conditions, V 0 VL = . 
Although the output dc voltage is zero, the application of the dc voltage 
is important to the basic operation of the transistor in a number of 
important ways, one of which is to determine the parameters of the 
“equivalent circuit” to appear in the ac analysis to follow.

ac Conditions For the ac analysis, an equivalent circuit is substituted 
for the transistor, as established by the dc conditions above, that will 
behave like the actual transistor. A great deal more will be said about 
equivalent circuits and the operations performed to obtain the network in 
Fig. 19.35, but for now we limit our attention to the manner in which the 
Thévenin equivalent circuit is obtained and recognize that the analysis is 
done for a single frequency. Note in Fig. 19.35 that the equivalent circuit 
includes a resistor of 2.3 kΩ and a controlled current source whose mag-
nitude is determined by the product of a factor of 100 and the current I1 in 
another part of the network.

–

+

RB 1 MV

RC 2 kV

Rs

0.5 kV

Ei

C1

10 V

12 V

C2

10 V

Transistor

RL  =  1 kV VL

–

+

Thévenin

hfe = 100
hie = 2.3 kV

FIG. 19.34 
Example 19.9.

RB 1 MV

Rs

0.5 kV

–

+

I1

2.3 kV RC 2 kV RL 1 kV  VLEi
100I1

Transistor equivalent
circuit

–

+

Thévenin

FIG. 19.35 
The ac equivalent network for the transistor amplifier in Fig. 19.34.

Note in Fig. 19.35 the absence of the coupling capacitors for the ac 
analysis. In general, coupling capacitors are designed to be open circuits 
for dc analysis and short circuits for ac analysis. The short-circuit equiv-
alent is valid because the other impedances in series with the coupling 
capacitors are so much larger in magnitude that the effect of the cou-
pling capacitors can be ignored. Both RB  and RC  are now tied to ground 
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because the dc source was set to zero volts (superposition) and replaced 
by a short-circuit equivalent to ground.

For the analysis to follow, the effect of the resistor RB  will be ignored 
since it is so much larger than the parallel 2.3 kΩ  resistor.

ZTh: When E i  is set to zero volts, the current I1 will be zero amperes, 
and the controlled source I100 1 will be zero amperes also. The result is 
an open-circuit equivalent for the source, as appearing in Fig. 19.36.

It is fairly obvious from Fig. 19.36 that

Z 2 kΩTh =

ETh: For ETh , the current I1 in Fig. 19.35 will be

R
I

E E E
2.3 kΩ 0.5 kΩ 2.3 kΩ 2.8 kΩ

i

s

i i
1 =

+
=

+
=

and I
E E

100 100
2.8 kΩ 28 Ω

i i
1 ( )( )= =

Referring to Fig. 19.37, we find that

RE I(100 )Th C1= −

E
28 Ω

2 10 Ωi 3( )( )= − ×

E 71 42E.Th i= −

The Thévenin equivalent circuit appears in Fig.  19.38 with the 
 original load RL .

Output Voltage LV

( )( )
=

−
+

=
−

+
R

R R
V

E E1 kΩ 71.42
1 kΩ 2 kΩL

L Th

L Th

i

and V 23 81 E.L i−=  

revealing that the output voltage is 23.81 times the applied voltage with 
a phase shift of 180° due to the minus sign.

Dependent Sources

For dependent sources with a controlling variable not in the network under 
investigation, the procedure indicated above can be applied. However, for 
dependent sources of the other type, where the controlling variable is part 
of the network to which the theorem is to be applied, another approach 
must be used. The necessity for a different approach is demonstrated in 
an example to follow. The method is not limited to dependent sources of 
the latter type. It can also be applied to any dc or sinusoidal ac network. 
However, for networks of independent sources, the method of application 
used in Chapter 9 and presented in the first portion of this section is gener-
ally more direct, with the usual savings in time and errors.

The new approach to Thévenin’s theorem can best be introduced at 
this stage in the development by considering the Thévenin equivalent 
circuit in Fig. 19.39(a). As indicated in Fig. 19.39(b), the open-circuit 
terminal voltage (E oc) of the Thévenin equivalent circuit is the Thévenin 
equivalent voltage; that is,

 E Eoc Th=  (19.1)

RC 2 kV ZTh

FIG. 19.36 
Determining the Thévenin impedance for the 

network in Fig. 19.35.

–

+

RC 2 kV ETh

–

+

100I1

FIG. 19.37 
Determining the Thévenin voltage for the 

network in Fig. 19.35.

–

+

ETh RL

RTh

2 kV

1 kV VL

–

+

71.42Ei

FIG. 19.38 
The Thévenin equivalent circuit for the 

network in Fig. 19.35.
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If the external terminals are short circuited as in Fig. 19.39(c), the result-
ing short-circuit current is determined by

 I
E
Zsc

Th

Th

=  (19.2)

or, rearranged,

Z
E
ITh

Th

sc

=

and Z
E
ITh

oc

sc

=  (19.3)

Eqs. (19.1) and (19.3) indicate that for any linear bilateral dc 
or ac network with or without dependent sources of any type, if 
the open-circuit terminal voltage of a portion of a network can be 
 determined along with the short-circuit current between the same 
two terminals, the Thévenin equivalent circuit is effectively known. 
A few examples will make the method quite clear. The advantage of 
the method, which was stressed earlier in this section for indepen-
dent sources, should now be more obvious. The current I sc, which is 
 necessary to find ZTh, is in general more difficult to obtain since all of 
the sources are present.

There is a third approach to the Thévenin equivalent circuit that is 
also useful from a practical viewpoint. The Thévenin voltage is found 
as in the two previous methods. However, the Thévenin impedance is 
 obtained by applying a source of voltage to the terminals of interest 
and determining the source current as indicated in Fig. 19.40. For this 
method, the source voltage of the original network is set to zero. The 
Thévenin impedance is then determined by the following equation:

 Z
E

ITh
g

g

=  (19.4)

Note that for each technique, E ETh oc= , but the Thévenin impedance 
is found in different ways.

EXAMPLE 19.10 Using each of the three techniques described in 
this section, determine the Thévenin equivalent circuit for the network in 
Fig. 19.41.

–

+

ZTh

ETh

–

+

ZTh

ETh

–

+

ZTh

ETh

Eoc  =  ETh

–

+

Isc  =
ETh
ZTh

(a)

(b)

(c)

FIG. 19.39 
Defining an alternative approach for 

determining the Thévenin impedance.

Ig

–

+

Network Eg

ZTh

FIG. 19.40 
Determining ZTh using the approach 

Z E ITh g g= .

–

+

R1

R2

Thévenin

XC

mV

–

+

FIG. 19.41 
Example 19.10.
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Solution: Since for each approach the Thévenin voltage is found in 
exactly the same manner, it is determined first. From Fig. 19.41, where 

=I 0,XC

↓ µ µ
+

( )
= = = −

+
= −

R
R R

V E E
V V

VDue to the polarity for and
defined terminal polarities

R Th oc
22

1 2 1 2
1

R
R R

The following three methods for determining the Thévenin imped-
ance appear in the order in which they were introduced in this section.

Method 1: See Fig. 19.42.

�R R C= − jXZ ( )Th 1 2

Method 2: See Fig.  19.43. Converting the voltage source to a current 
source (Fig. 19.44), we have (current divider rule)

�

� �

R R
R

R R jX

R R
R R R
R R jX

I

V V

sc
C C

1 2
1

1 2

1 2

1 2 1

1 2

µ µ( )

( ) ( )
=

−

−
=

−
+









−

�

µ

( )
=

−
+

−

R
R R

R R jX

V

C

2

1 2

1 2

and

�
�

µ

µ

( )
( )

= =

−
+

−
+

−

=

−

R
R R

R
R R

R R jX

R R jX

Z
E
I

V

V
1
1Th

oc

sc

C

C

2

1 2

2

1 2

1 2

1 2

�R R jX( ) C1 2 −=

Method 3: See Fig. 19.45.

�( )
=

−R R jX
I

E
g

g

C1 2

and � jXCR R= = −Z
E

I
( )Th

g

g
1 2

In each case, the Thévenin impedance is the same. The resulting 
Thévenin equivalent circuit is shown in Fig. 19.46.

R1

R2 ZTh

XC

FIG. 19.42 
Determining the Thévenin impedance for the 

network in Fig. 19.41.

–

+
R2

R1

mV

XC

Isc

Isc

FIG. 19.43 
Determining the short-circuit current for the 

network in Fig. 19.41.

R1 R2 Isc

XC

mV
R1

Isc

FIG. 19.44 
Converting the voltage source in Fig. 19.43 to 

a current source.

R2

R1
XC Ig

+

–
Eg

ZTh

FIG. 19.45 
Determining the Thévenin impedance for the 

network in Fig. 19.41 using the approach 
Z E ITh g g= .

R1 + R2
ETh = Thévenin

–

+

mR2V

ZTh  = (R )1 i R2 –  jXC

–

+

 FIG. 19.46 
The Thévenin equivalent circuit for the network in Fig. 19.41.
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EXAMPLE 19.11 Repeat Example 19.10 for the network in 
Fig. 19.47.

Solution: From Fig. 19.47, ETh is

�( )= = − = −
+

h R RE E I
I

Th oc
1 2

1 2
1 2

h R R
R R

Method 1: See Fig. 19.48.

�R R jXZ CTh 1 2 −=

Note the similarity between this solution and that obtained for the pre-
vious example.

hI R1 R2

XC

E

+

–

Th

Thévenin

FIG. 19.47 
Example 19.11.

R1 R2

XC

ZTh  = (R )1 i R2 –  jXC

FIG. 19.48 
Determining the Thévenin impedance for the network in Fig. 19.47.

hI R1 R2

XC

Isc

Isc

FIG. 19.49 
Determining the short-circuit current for the 

network in Fig. 19.47.Method 2: See Fig. 19.49.
�

�
R R h

R R jX
I

I
sc

C

1 2

1 2

( )
( )

=
−

−

and R R
�

�
�

� jX
h R R

R R h
R R jX

Z
E
I

I
I CTh

oc

sc

C

1 2
1 2

1 2

1 2

−
( )

( )
( )

= =
−
−

−

=

Method 3: See Fig. 19.50.

�R R jX
I

E
g

g

C1 2( )
=

−

and R R� jXZ
E

I CTh
g

g
1 2 −= =

The following example has a dependent source that will not permit 
the use of the method described at the beginning of this section for 
 independent sources because the controlling variable is part of the same 
network as the controlled source. All three methods will be applied, 
however, so that the results can be compared.

EXAMPLE 19.12 For the network in Fig.  19.51 (introduced in 
Example 19.6), determine the Thévenin equivalent circuit between the 
indicated terminals using each method described in this section. Com-
pare your results.

Solution: First, using Kirchhoff’s voltage law, we write ETh  (which 
is the same for each method)

E V V V1th µ µ( )= + = +

R1 R2

XC

Eg

Ig

–

+

ZTh

FIG. 19.50 
Determining the Thévenin impedance using 

the approach Z E ITh g g= .

I

Dependent source

Controlling variableR1

mV

Thévenin

V
+

–

+–

FIG. 19.51 
Example 19.12.
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However, RV I 1=  

so µ( )= +E 1 ITh 1R

ZTh:

Method 1: See Fig. 19.52. Since I 0= , V and V 0µ = , and

( )= RZ incorrectTh 1

Method 2: See Fig. 19.53. Kirchhoff’s voltage law around the indicated 
loop gives us

V V 0µ+ =

and V 1 0µ( )+ =

Since µ  is a positive constant, the above equation can be satisfied 
only when V 0.=  Substitution of this result into Fig. 19.53 yields the 
configuration in Fig. 19.54, and

I Isc =

with

µ
µ( )

( )= =
+

= +
R

RZ
E
I

I
I

1
1

(correct)Th
oc

sc
1

1

Method 3: See Fig. 19.55.

E V V V1g µ µ( )= + = +

or V
E

1
g

µ
=

+

and 
µ( )

= =
+ R

I V E

1g
g

1 1R

and µ( )= = +Z
E

I
1 (correct)Th

g

g
1R

R1

mV  =  0

V  =  0
+

–

+–

ZTh

FIG. 19.52 
Determining ZTh incorrectly.

I R1

mV

V
+

–

+–

Isc

Isc

FIG. 19.53 
Determining I sc  for the network in Fig. 19.51.

I R1 V  =  0
+

–
Isc

I1  =  0 Isc

FIG. 19.54 
Substituting V 0=  into the network in 

Fig. 19.53.

–

+
R1 V Eg

Ig
mV

+–

ZTh

FIG. 19.55 
Determining ZTh using the approach Z E ITh g g= .

–

+

(1 + m)R1

RL

IL

ETh  =  (1  + m)IR1

FIG. 19.56 
The Thévenin equivalent circuit for the network in Fig. 19.51.

The Thévenin equivalent circuit appears in Fig. 19.56, and

R I
R RL

I
1

1L
1

1

µ
µ

( )

( )
=

+
+ +

which compares with the result in Example 19.6.

M19_BOYL0302_14_GE_C19.indd   804M19_BOYL0302_14_GE_C19.indd   804 28/02/23   1:35 PM28/02/23   1:35 PM



THÉVENiN’S THEOREM | | | 805Th

The network in Fig. 19.57 is the basic configuration of the transistor 
equivalent circuit applied most frequently today (although many texts in 
electronics use the circle rather than the diamond outline for the source). 
Obviously, it is necessary to know its characteristics and to be adept in 
its use. Note that there are both a controlled voltage and a controlled cur-
rent source, each controlled by variables in the configuration.

EXAMPLE 19.13 Determine the Thévenin equivalent circuit for the 
indicated terminals of the network in Fig. 19.57.

Solution: Apply the second method introduced in this section.

ETh

E Voc 2=
k

R
k

R
I

V V V Ei i oc1 2

1

1

1

=
−

=
−

and k R k R
k

R
E I

V E
oc

i oc
2 2 2 2

1

1

= − = −
−








k R
R

k k R
R

V Ei oc2 2

1

1 2 2

1

=
−

+

or 
k k R

R
k R

R
E

V
1oc

i1 2 2

1

2 2

1

−






 =

−

and 
R k k R

R
k R

R
E

V
oc

i1 1 2 2

1

2 2

1

−





 =

−

so =
−

−
=E

V
Ei

oc Th
2 2

1 1 2 2

k R
R k k R

 (19.5)

scI  For the network in Fig. 19.58, where

k
R

V V I
V

0 0 i
2 1 2

1

= = =

and k
k
R

I I
V

sc
i

2
2

1

= − =
−

so 

k R
R k k R

k
R

Z
E
I

V

VTh
oc

sc

i

i

2 2

1 1 2 2

2

1

= =

−
−
−

–

+

R2k2Ik1V2Vi

I

R1

Thévenin

–

+

V2

–

+

FIG. 19.57 
Example 19.13: Transistor equivalent network.

M19_BOYL0302_14_GE_C19.indd   805M19_BOYL0302_14_GE_C19.indd   805 28/02/23   1:35 PM28/02/23   1:35 PM



806 | | | NETWORK THEOREMS (ac) Th

and =
− k k

ZTh
1 2

1 21 2

R R
R R

 (19.6)

Frequently, the approximation k 01 ≅  is applied. Then the Thévenin 
voltage and impedance are, respectively,

 =
−

=
k R V

R
kE 0Th

i2 2

1
1

 (19.7)

 = =kZ 0Th 2 1R  (19.8)

Apply Z E ITh g g=  to the network in Fig. 19.59, where

k
R

I
V1 2

1

=
−

 

Isc

–

+

R2k2IVi

I

R1

Isc

FIG. 19.58 
Determining I sc for the network in Fig. 19.57.

ZTh

–

+
Eg

Ig

R2k2Ik1V2

I

R1

–

+

FIG. 19.59 
Determining ZTh using the procedure Z E ITh g g= .

But V E g2 =

so 
k

R
I

E g1

1

=
−

Applying Kirchhoff’s current law, we have

k
R

k
k

R R
I I

E E E
g

g g g
2

2
2

1

1 2

= + = −






 +

R
k k
R

E 1
g

2

1 2

1

= −
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and 
R k k R

R R

I

E
g

g

1 1 2 2

1 2

=
−

or = =
−

Z
E

ITh
g

g

1 2

1 1 2 2

R R
R k k R

as obtained above.

The last two methods presented in this section were applied only to 
networks in which the magnitudes of the controlled sources were depen-
dent on a variable within the network for which the Thévenin equivalent 
circuit was to be obtained. Understand that both of these methods can 
also be applied to any dc or sinusoidal ac network containing only inde-
pendent sources or dependent sources of the other kind.

19.4 NORTON’S THEOREM
The three methods described for Thévenin’s theorem will each be 
 altered to permit their use with Norton’s theorem. Since the Thévenin 
and Norton impedances are the same for a particular network, cer-
tain  portions of the discussion are quite similar to those encountered 
in the previous section. We first consider independent sources and the 
 approach developed in Chapter 9, followed by dependent sources and 
the new techniques developed for Thévenin’s theorem.

You will recall from Chapter 9 that Norton’s theorem allows us to 
replace any two-terminal linear bilateral ac network with an equivalent 
circuit consisting of a current source and an impedance, as in Fig. 19.60.

The Norton equivalent circuit, like the Thévenin equivalent circuit, is  
applicable at only one frequency since the reactances are frequency dependent.

Independent ac and dc Sources

The procedure outlined below to find the Norton equivalent of a sinusoi-
dal ac network is changed (from that in Chapter 9) in only one respect: 
the replacement of the term resistance with the term impedance.

1. Remove that portion of the network across which the 
Norton equivalent circuit is to be found.

2.  Mark (°, •, and so on) the terminals of the remaining 
two-terminal network.

3. Calculate Z N  by first setting all voltage and current sources 
to zero (short circuit and open circuit, respectively) and 
then finding the resulting impedance between the two 
marked terminals.

4. Calculate IN  by first replacing the voltage and current 
sources and then finding the short-circuit current between 
the marked terminals.

5. Draw the Norton equivalent circuit with the portion of the 
circuit previously removed replaced between the terminals 
of the Norton equivalent circuit.

The Norton and Thévenin equivalent circuits can be found from each 
other by using the source transformation shown in Fig. 19.61. The source 
transformation is applicable for any Thévenin or Norton equivalent cir-
cuit determined from a network with any combination of independent or 
dependent sources.

ZNIN

FIG. 19.60 
The Norton equivalent circuit for ac 

networks.
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EXAMPLE 19.14 Determine the Norton equivalent circuit for the 
network external to the 6 Ω resistor in Fig. 19.62.

–

+

ZTh

ETh  =  INZN
ZNIN  =

ETh
ZTh

ZN  =  ZTh

ZTh  =  ZN

FIG. 19.61 
Conversion between the Thévenin and Norton equivalent circuits.

–

+

RL 6 V

R1

3 V

E = 20 V∠08  

XL

4 V

XC 5 V

Norton

FIG. 19.62 
Example 19.14.

E
–

+

Z1

Z2

Norton

FIG. 19.63 
Assigning the subscripted impedances to the 

network in Fig. 19.62.

Z1

Z2 ZN

FIG. 19.64 
Determining the Norton impedance for the 

network in Fig. 19.62.

E
–

+

Z1

Z2

I1

IN

IN

FIG. 19.65 
Determining IN for the network in Fig. 19.62.

Solution:
Steps 1 and 2 (Fig. 19.63):

= + = + = ∠ °R jX jZ 3 Ω 4 Ω 5 Ω 53.13L1 1

jX jZ 5 ΩC2 = − = −
Step 3 (Fig. 19.64):

( )( )
=

+
=

∠ ° ∠− °
+ −

=
∠− °
−j j j

Z
Z Z

Z Z
5 Ω 53.13 5 Ω 90

3 Ω 4 Ω 5 Ω

25 Ω 36.87

3 1N
1 2

1 2

7 50 2 50
25 Ω 36.87
3.16 18.43

7.91 Ω 18.44 . Ω . Ω=
∠− °
∠− °

= ∠− ° = − j

Step 4 (Fig. 19.65):

I I E
Z

4A 53 13
20 V 0

5 Ω 53.13
.N 1

1

∠−= = =
∠ °

∠ °
= °
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Step 5: The Norton equivalent circuit is shown in Fig. 19.66.

R2

1 V
R1 2 V

XC1
4 V

I  =  3 A ∠ 08 XC2 
 =  7 V

XL

5 V

FIG. 19.67 
Example 19.15.

I  =  3 A ∠ 08
Z1

Z2

Z3

FIG. 19.68 
Assigning the subscripted impedances to the network in Fig. 19.67.

R 6 VZNIN  =  4 A ∠–53.138 RL 6 VIN =  4 A ∠–53.138

R 7.50 V

XC 2.50 V

7.50 V  –  j2.50 V

FIG. 19.66 
The Norton equivalent circuit for the network in Fig. 19.62.

 EXAMPLE 19.15 Find the Norton equivalent circuit for the net-
work external to the 7 Ω capacitive reactance in Fig. 19.67.

Solution:

Steps 1 and 2 (Fig. 19.68):

R jX jZ 2 Ω 4 ΩC1 1 1
= − = −

RZ 1 Ω2 2= =

jX jZ 5 ΩL3 = + =

Step 3 (Fig. 19.69):

Z
Z Z Z

Z Z ZN
3 1 2

3 1 2

( )

( )
=

+
+ +

j jZ Z 2 4 1 3 4 5 53.131 2 Ω Ω Ω Ω Ω Ω+ = − + = − = ∠− °
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j j j
Z

5 Ω 90 5 Ω 53.13
5 Ω 3 Ω 4 Ω

25 Ω 36.87
3 1N

( )( )
=

∠ ° ∠− °
+ −

=
∠ °
+

25 Ω 36.87
3.16 18.43

=
∠ °

∠ + °
jZ 7 50 Ω 2 50 Ω7.91 Ω 18.44 . .N = ∠ ° = +

Calculator Solution: Performing the above on the TI-89 calculator 
results in the sequence in Fig. 19.70:

Z1

Z2

Z3

ZN

Z1

Z2

Z3 ZN

FIG. 19.69 
Finding the Norton impedance for the network in Fig. 19.67.

2ND 2ND MATH  8

MATH  8

9 0 ) (( ( 2ND

(2) 5 .3

3

)) )

1 2 )4 2ND5 2ND Polar ENTER 7.91 /18.448

/ /5 5

2ND1 3

i i

4

FIG. 19.70 
Determining Z N  for the network of Fig. 19.67.

Step 4 (Fig. 19.71):

I I
Z I

Z Z
current divider ruleN 1

1

1 2

( )= =
+

j
j

j2 Ω 4 Ω (3 A)
3 Ω 4 Ω

6 A 12 A
5 53.13

13.4 A 63.43
5 53.13

( )
=

−
−

=
−

∠− °
=

∠− °
∠− °

I 2 68 A 10 3. .N ∠−= °

I  =  3 A ∠ 08
Z1

Z2

Z3

I1

IN

FIG. 19.71 
Determining I N for the network in Fig. 19.67.
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 EXAMPLE 19.16 Find the Thévenin equivalent circuit for the net-
work external to the 7 Ω capacitive reactance in Fig. 19.67.

Solution: Using the conversion between sources (Fig. 19.73), we 
obtain

jZ Z 7 50 2 50. Ω . ΩTh N= = +

E I Z 2.68 A 10.3 7.91 Ω 18.44Th N N ( )( )= = ∠− ° ∠ °

21 2 V 8 14. .∠= °

The Thévenin equivalent circuit is shown in Fig. 19.74.

Dependent ac Sources

As stated for Thévenin’s theorem, dependent sources in which the con-
trolling variable is not determined by the network for which the Norton 
equivalent circuit is to be found does not alter the procedure outlined 
above.

For dependent sources of the other kind, one of the following proce-
dures must be applied. Both of these procedures can also be applied to 
networks with any combination of independent sources and dependent 
sources not controlled by the network under investigation.

The Norton equivalent circuit appears in Fig.  19.75(a). In 
Fig. 19.75(b), we find that

ZTh  =  ZN

INZNETh

+

–

ZTh

FIG. 19.73 
Determining the Thévenin equivalent circuit 

for the Norton equivalent in Fig. 19.72.

21.2 V∠8.148 

R

7.50 V

ETh

+

–

XL

2.50 V

XC2
7 V

FIG. 19.74 
The Thévenin equivalent circuit for the 

network in Fig. 19.67.

IN

(a)

ZN IN

(b)

ZN

I  =  0

Isc IN

(c)

ZN

+

–

Eoc  =  INZN

FIG. 19.75 
Defining an alternative approach for determining ZN.

XC2
7 V

7.50 V  +  j2.50 V

ZNIN  =  2.68 A ∠–10.38 IN  =  2.68 A ∠–10.38 

R 7.50 V

XL 2.50 V

XC2
7 V

FIG. 19.72 
The Norton equivalent circuit for the network in Fig. 19.67.

Step 5: The Norton equivalent circuit is shown in Fig. 19.72.

 I Isc N=  (19.9)

and in Fig. 19.75(c) that

E I Zoc N N=

Rearranging, we have

Z
E
IN

oc

N

=
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and Z
E
IN

oc

sc

=  (19.10)

The Norton impedance can also be determined by applying a source 
of voltage E g to the terminals of interest and finding the resulting I g, as 
shown in Fig. 19.76. All independent sources and dependent sources not 
controlled by a variable in the network of interest are set to zero, and

 Z
E

IN
g

g

=  (19.11)

For this latter approach, the Norton current is still determined by the 
short-circuit current.

EXAMPLE 19.17 Using each method described for dependent 
sources, find the Norton equivalent circuit for the network in Fig. 19.77.

Solution:

I N:

For each method, I N  is determined in the same manner. From Fig. 19.78 
using Kirchhoff’s current law, we have

hI I I0 sc= + +

or hI I1sc ( )= − +

Applying Kirchhoff’s voltage law gives us

R RE I I 0sc1 2+ − =

and R RI I Esc1 2= −

or 
R

R
I

I Esc 2

1

=
−

so h h
R

R
I I

I E
1 1sc

sc 2

1

( ) ( )= − + = − +
−








or R h R hI I E1 1sc sc1 2( ) ( )= − + + +

R h R hI E1 1sc 1 2[ ]( ) ( )+ + = +

+ +( )

( )= + =I E
1

I1
sc

1 2

h
R h R N

Z N:

Method 1: E oc is determined from the network in Fig. 19.79. By Kirch-
hoff’s current law,

= + + =h hI I 10 or ( 1) 0

For h, a positive constant I must equal zero to satisfy the above. 
Therefore,

= =hI I0 and 0

and E Eoc =

with 
( )

( )

( )

( )
= = +

+ +

=
+ +

+h
R h R

Z
E
I

E
E

1
11

1

N
oc

sc

1 2

1 2

R h R
h

 

+
Network ZN

Ig

Eg

–

FIG. 19.76 
Determining the Norton impedance using 

the approach Z E IN g g= .

R2

+
hIE

–

Norton

R1

I

FIG. 19.77 
Example 19.17.

R2

+
hIE

–
Isc

R1

I + –VR2

Isc

FIG. 19.78 
Determining scI  for the network in Fig. 19.77.

+
hIE

–
Eoc

R1

I
+
V  =  0

–

+

–

FIG. 19.79 
Determining ocE  for the network in Fig. 19.77.
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Method 2: Note Fig. 19.80. By Kirchhoff’s current law,

h hI I I I Ig ( )= + = +

By Kirchhoff’s voltage law,

R RE I I 0g g 2 1− − =

or 
R

R
I

E Ig g 2

1

=
−

Substituting, we have

h h
R

R
I I

E I
1 1g

g g 2

1

( ) ( )= + = +
−








and R h h RI E I1 1g g g1 2( ) ( )= + − +

so h R h RE I1 1g g 1 2[ ]( ) ( )+ = + +

or = =
+ +

+
Z

E

I
1

1
( )

N
g

g

1 2R h R
h

which agrees with the above.

EXAMPLE 19.18 Find the Norton equivalent circuit for the net-
work configuration in Fig. 19.57.

Solution: By source conversion,

k R
R k k R

R R
R k k R

I
E
Z

V

N
Th

Th

i2 2

1 1 2 2

1 2

1 1 2 2

= =

−
−

−

and =
−

I
V

N
2

1

k
R

i  (19.12)

which is I sc  as determined in Example 19.13, and

 = =
−

Z Z
1

N Th
2

1 2 2

1

R
k k R

R

 (19.13)

For k 01 ≅ , we have

 =
−

=kI
V

0N
2

1
1

k
R

i  (19.14)

 = =kZ 0N 2 1R  (19.15)

19.5 MAXIMUM POWER TRANSFER 
THEOREM
When applied to ac circuits, the maximum power transfer theorem 
states that

maximum power will be delivered to a load when the load 
impedance is the conjugate of the Thévenin impedance across 
its terminals because the load will appear to be totally resistive.

+
hI Eg

–

R1

I +–

ZN

Ig

R2

+– VR1
VR2

FIG. 19.80 
Determining the Norton impedance using 

the approach Z E IN g g= .
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That is, for Fig. 19.81, for maximum power transfer to the load,

 θ θ= = −Z Z andL Th L ThZ

 (19.16)

or, in rectangular form,

 R R jX jXandL Th Thload= ± = ∓  (19.17)

The conditions just mentioned will make the total impedance of the 
 circuit appear purely resistive, as indicated in Fig. 19.82:

R jX R jXZT Th Th Th Th( ) ( )= ± + ∓

and RZ 2T Th=  (19.18)

ETh  =  ETh ∠ uThs

ZTh

ZL

 ZTh ∠ uThz

 =  ZL ∠ uL

 FIG. 19.81 
Defining the conditions for maximum power transfer to a load.

ZTh = RTh ± jXTh

ZLETh =

+

– ZT

= 

I

RTh  jXTh

±

ETh ∠ uThs

FIG. 19.82 
Conditions for maximum power transfer to LZ .

Since the circuit is purely resistive, the power factor of the circuit 
under maximum power conditions is 1; that is,

 F 1 maximum power transferp ( )=  (19.19)

The magnitude of the current I in Fig. 19.82 is

I
E
Z

E
R2

Th

T

Th

Th

= =

The maximum power to the load is

P I R
E
R

R
2Th

Th

Th
Thmax

2
2

= =








and P
E
R4

Th

Th
max

2

=  (19.20)
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EXAMPLE 19.19 Find the load impedance in Fig. 19.83 for maxi-
mum power to the load, and find the maximum power.

Solution: Determine ZTh [Fig. 19.84(a)]:

R jX jZ 6 Ω 8 Ω 10 Ω 53.13C1 = − = − = ∠− °

jX jZ 8 ΩL2 = + =

j j
Z

Z Z
Z Z

10 Ω 53.13 8 Ω 90
6 Ω 8 Ω 8 Ω

80 Ω 36.87
6 0Th

1 2

1 2

( )( )
=

+
=

∠− ° ∠ °
− +

=
∠ °
∠ °

j13.33 Ω 36.87 10.66 Ω 8 Ω 13.3 Ω 36.87= ∠ ° = + = ∠ °

E = 9 V∠08 

R

6 V
+

–

XC

8 V

XL 8 V ZL

FIG. 19.83 
Example 19.19.

(a)

Z2

Z1

ZTh

(b)

E

+
Z2

+

–
ETh

Z1

–

FIG. 19.84 
Determining (a) ZTh and (b) ETh for the network external to the load in 

Fig. 19.83.

and jZ 10 66 Ω 8 Ω13.3 Ω 36.87 .L = ∠− ° = −

To find the maximum power, we must first find ETh  [Fig. 19.84(b)], 
as follows:

E
Z E

Z Z
voltage divider ruleTh

2

2 1

( )=
+

j j
8 Ω 90 9 V 0
8 Ω 6 Ω 8 Ω

72 V 90
6 0

12 V 90
( )( )

=
∠ ° ∠ °

+ −
=

∠ °
∠ °

= ∠ °

Then P
E
R

3 38 W
4

12 V
4 10.66 Ω

144
42.64

.Th

Th
max

2 2

( )

( )
= = = =

EXAMPLE 19.20 Find the load impedance in Fig. 19.85 for maxi-
mum power to the load, and find the maximum power.

Solution: First we must find ZTh (Fig. 19.86).

jX j RZ Z9 Ω 8 ΩL1 2= + = = =

R

8 V
ZL

E  =
10 V ∠ 08

+

–

XL

9 V

XL

9 V
9 V

XL

FIG. 19.85 
Example 19.20.

ZTh

Z1

Z2

Z1

Z11

2

3

FIG. 19.86 
Defining the subscripted impedances for the 

network in Fig. 19.85.
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Converting from a ∆  to a Y (Fig. 19.87), we have

jZ
Z

Z
3

3 Ω 8 Ω1
1

2′ = = =

The redrawn circuit (Fig. 19.88) shows

Z Z
Z Z Z

Z Z ZTh 1
1 1 2

1 1 2

( )

( )
= ′ +

′ ′ +
′ + ′ +

j
j

j
3 Ω

3 Ω 90 3 Ω 8 Ω
6 Ω 8 Ω

( )
= +

∠ ° +
+

j 3
3 90 8.54 20.56

10 36.87
( )( )

= +
∠ ° ∠ °

∠ °

j j3
25.62 110.56

10 36.87
3 2.56 73.69= +

∠ °
∠ °

= + ∠ °

j j3 0.72 2.46= + +

jZ 0.72 Ω 5.46 ΩTh = +

and = −Z 0 72 5 46. Ω . ΩjL

For ETh, use the modified circuit in Fig. 19.89 with the voltage source 
replaced in its original position. Since I 01 = , ETh  is the voltage across 
the series impedance of Z 2′  and Z2 . Using the voltage divider rule gives 
us

j
j

E
Z Z E

Z Z Z
3 Ω 8 Ω 10 V 0

8 Ω 6 ΩTh
1 2

1 2 1

( )( )( )
=

′ +
′ + + ′

=
+ ∠ °

+

8.54 20.56 10 V 0
10 36.87

( )( )
=

∠ ° ∠ °
∠ °

E 8.54 V 16.31Th = ∠− °

and P
E
R4

8.54 V
4 0.72 Ω

72.93
2.88

WTh

Th
max

2 2( )

( )
= = =

25 32 W.=

If the load resistance is adjustable but the magnitude of the load reac-
tance is not, then the maximum power that can be delivered to the load 
will occur when the load resistance is set to the following value:

 R R X XL Th Th
2

load
2( )= + +  (19.21)

as derived in Appendix E.
In Eq. (19.21), each reactance carries a positive sign if inductive and 

a negative sign if capacitive.
The power delivered is then determined by

 P E R4Th
2

av=  (19.22)

where R
R R

2
Th L

av =
+

 (19.23)

The derivation of the above equations is given in Appendix E. The 
following example demonstrates the use of the above.

ZTh

Z2

1

2

3

Z′1

Z′1 Z′1

FIG. 19.87 
Substituting the Y equivalent for the upper ∆ 

configuration in Fig. 19.86.

ZTh
Z′1Z′1

Z2

Z′1

FIG. 19.88 
Determining ZTh for the network in 

Fig. 19.85.

ETh

Z′1Z′1

Z2

Z′1
+

–

I1  =  0

E

+

–

 FIG. 19.89 
Finding the Thévenin voltage for the network 

in Fig. 19.85.
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EXAMPLE 19.21 For the network in Fig. 19.90:

a. Determine the value of RL  for maximum power to the load if the 
load reactance is fixed at 4 Ω.

b. Find the power delivered to the load under the conditions of part (a).
c. Find the maximum power to the load if the load reactance is made 

adjustable to any value, and compare the result to part (b) above.

+

–

RTh

LOAD

ETh  =  20 V∠08

XTh

RL

4 V 7 V

XC  =  4 V

FIG. 19.90 
Example 19.21.

Solutions:

a. Eq. (19.21): R R X XL Th Th
2

load
2( )= + +

4 Ω 7 Ω 4 Ω2 2( ) ( )= + −
16 9 Ω 25 Ω= + =

R 5 ΩL =

b. Eq. (19.23): R
R R

2
4 Ω 5 Ω

2
Th L

av =
+

= +

4 5 Ω.=

Eq. (19.22): P
E
R4

Th
2

av

=

20 V
4 4.5 Ω

400
18

W
2

( )

( )
= =

22 22 W.≅

c. For jZ 4 Ω 7ΩL = − ,

P
E
R4

20 V
4 4 Ω

Th

Th
max

2 2

( )

( )
= =

25 W=

exceeding the result of part (b) by 2.78 W.

19.6 SUBSTITUTION, RECIPROCITY, AND 
MILLMAN’S THEOREMS
As indicated in the introduction to this chapter, the substitution and 
 reciprocity theorems and Millman’s theorem will not be considered 
here in detail. A careful review of Chapter 9 will enable you to apply 
these theorems to sinusoidal ac networks with little difficulty. A number 
of problems in the use of these theorems appear in the Problems section 
at the end of the chapter.
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19.7 APPLICATION
Electronic Systems

One of the blessings in the analysis of electronic systems is that the 
 superposition theorem can be applied so that the dc analysis and ac 
analysis can be performed separately. The analysis of the dc system will 
affect the ac response, but the analysis of each is a distinct, separate 
process. Even though electronic systems have not been investigated in 
this text, a number of important points can be made in the description to 
follow that support some of the theory presented in this and recent chap-
ters, so inclusion of this description is totally valid at this point. Consider 
the network in Fig. 19.91 with a transistor power amplifier and a source 
with an internal resistance of 800 Ω. Note that each component of the 
design was isolated to emphasize the fact that each component must be 
carefully weighed in any good design.

Rs

RB 47 kV

RC 100 V

+

–

Vs

Vo

1V

800 V

(p-p)

Source

CC

Amplifier

VCC = 22 V

b = 200

E

B

C
CC

0.1   

0.1   mF

mF

FIG. 19.91 
Transistor amplifier.

As mentioned above, the analysis can be separated into a dc and an 
ac component. For the dc analysis, the two capacitors can be replaced by 
an open-circuit equivalent (Chapter 10), resulting in an isolation of the 
amplifier network as shown in Fig. 19.92. Given the fact that VBE will 
be about 0.7 V dc for any operating transistor, the base current I B can be 
found as follows using Kirchhoff’s voltage law:

I
V

R
V V

R
453 2 A22 V 0.7 V

47 kΩ
.B

R

B

CC BE

B

B µ= =
−

= − =  

For transistors, the collector current IC  is related to the base current 
by I I ,C Bβ=  and

I I 90 64 mA200 453.2 A .C Bβ µ( )( )= = =

Finally, through Kirchhoff’s voltage law, the collector voltage (also 
the collector-to-emitter voltage since the emitter is grounded) can be 
 determined as follows:

V V V I R 12 94 V22 V 90.64 mA)(100 Ω .C CE CC C C ( )= = − = − =

22 V

RB 47 kV
RC 100 V

VCC

B

E

IB
+

–
VBE

VCE

VCC 22 V

C

b = 200

–

+
IC

+

–

+

–

FIG. 19.92 
dc equivalent of the transistor 

network in Fig. 19.91.
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For the dc analysis, therefore,

I I V453 2 A 90 64 mA 12 94 V. . .B C CEµ= = =

which will define a point of dc operation, Q point, for the transistor. This 
is an important aspect of electronic design since the dc operating point 
will have an effect on the ac gain of the network.

Now, using superposition, we can analyze the network from an ac 
viewpoint by setting all dc sources to zero (replaced by ground con-
nections) and replacing both capacitors by short circuits as shown in 
Fig. 19.93. Substituting the short-circuit equivalent for the capacitors is 
valid because at 10 kHz (the midrange for human hearing response), the 
reactance of the capacitor is determined by X fC1 2 15.92 Ω,C π= =  
which can be ignored when compared to the series resistors at the source 
and load. In other words, the capacitor has played the important role of 
isolating the amplifier for the dc response and completing the network 
for the ac response.

Redrawing the network as shown in Fig. 19.94 permits an ac investi-
gation of its response. The transistor has now been replaced by an equiv-
alent network that represents the behavior of the device. This process 
will be covered in detail in your basic electronics courses. This transistor 
configuration has an input impedance of 200 Ω and a current source 
whose magnitude is sensitive to the base current in the input circuit and 
to the amplifying factor for this transistor of 200. The 47 kΩ resistor in 
parallel with the 200 Ω input impedance of the transistor can be  ignored, 
so the input current I i  and base current I b are determined by

I I
V

R R
p p p p

p p
1 V( - )

800 Ω 200 Ω
1 V( - )

1 kΩ
1 mA( - )i b

s

s i

≅ =
+

=
+

= =

RC RC100 100 VV

Rs

800 V

Ii

Vs 1V(p-p)

+

–

Ri 200 VRB

B

E
47 kV

I ≅ 0 A Ib
bIb
200Ib

C

Ic

+

–

Transistor equivalent circuit

 Vo 

FIG. 19.94 
Network in Fig. 19.93 following the substitution of the transistor 

equivalent network.

Rs

800 V

RB 47 kV

RC 100 V

B

E

C

b = 200

Vs

Vo

1V(p-p)

FIG. 19.93 
ac equivalent of the transistor network in 

Fig. 19.91.

The collector current IC  is then

I I p p p p200 1 mA - 200 mA -c bβ ( )( ) ( )( )= = =

and the output voltage Vo  across the resistor RC  is

V I R p p200 mA - 100 Ωo c C ( )( )( )= − = −

p p20 V -( )= −

The gain of the system is

A
V
V

p p
p p

20 V -
1 V -

o

s

( )

( )
= = −

υ

A 20= −υ

where the minus sign indicates that there is a 180° phase shift  between 
input and output.
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PROBLEMS

SECTION 19.2  Superposition Theorem

 1.  Using superposition, determine the current through the 
inductance X L  for the network of Fig. 19.95.

R 3 V

+
E1 = 30 V∠308

 

–

IL
XC 6 V

+
E2 = 60 V∠108

–

XL 8 V

FIG. 19.95 
Problem 1.

I  =  0.3 A ∠608

IC

XC 5 V

+
E = 15 V∠08

–

XL 10 V

FIG. 19.96 
Problem 2.

IL

XC2
7 V

R

4 V

+

E  =  12 V∠908

–

XL

3 V

I  =  0.8 A ∠1208

XC1

6 V

FIG. 19.97 
Problem 3.

 2.  Using superposition, determine the current through the 
capacitance XC  in Fig. 19.96.

 *3.  Using superposition, determine the current IL  for the 
 network of Fig. 19.97.

 4.  Using superposition, determine the voltage across the 
capacitor C2 for the network of Fig. 19.98.

R1

C1

C2

R2

2 kV

6.8 nF   I  =  6 mA /1808E  =  14 V/08

f  =  20 kHz f  =  20 kHz

3.9 kV 

+

–

3.3 nF
VC –+

FIG. 19.98 
Problem 4.
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 5.  Using superposition, determine the current through the 
inductor for the network of Fig. 19.99.

–

+
E = 16 V/608

R1

R2

IL

L

2.2 kV

1 kV

C 0.01   20 mH

8 mA /308

f  =  10 kHz

I

mF

FIG. 19.99 
Problem 5.

e = 20 sin (1000t + 60)

47 V

22 V

47 mH 

5 V

L

i

+

–

e

C

4.7 mF 

+–

R2

R1

FIG. 19.100 
Problems 6, 23, and 39.

R2

3 V

1 VXC

+

–

 3 A /08I vC

R1

9 V

15 V

FIG. 19.101 
Problems 7, 24, 40, and 54.

 *6.  Using superposition, find the sinusoidal expression for the 
current i for the network of Fig. 19.100.

 7.  Using superposition, find the sinusoidal expression for the 
voltage Cυ  for the network of Fig. 19.101.

 *8.  Using superposition, find the current I for the network of 
Fig. 19.102.

R1 10 kV

5 kVXC

+–

I  =  5 mA / 08

R2 5 kV

E  =  20 V / 08

5 kVXL

I

FIG. 19.102 
Problems 8, 25, 41, and 55.
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 9.  Using superposition, determine the current ( )=hI 200L  
for the network of Fig. 19.103.

R 15 kV

+–
E  =  10 V/08

10 kVXL

IL

hI

I  =  2 mA / 08

FIG. 19.103 
Problems 9 and 28.

R2 4 kVV  =  2 V/08 I  =  2 mA / 08mV
–

+–

+

R1

5 kV

XC

1 kV

–

+

VL

FIG. 19.104 
Problems 10, 29, and 44.

 10.  Using superposition, for the network of Fig. 19.104, deter-
mine the voltage V 20L µ( )= .

  *11.  Using superposition, determine the current I L  for the net-
work of Fig. 19.105 µ( )= =h25; 150 .

V  =  10 V/08

mV
– +

–

+

R1 20 kV

R2

7 kV

7 kVXL

IL

I  =  2 mA / 08

hI

FIG. 19.105 
Problems 11, 30, and 45.

RL 2 kV

+

–

E  =  30 V/478 VLhI

+

–

I

R1  =  2 kV

FIG. 19.106 
Problems 12 and 31.

 *12.  Determine VL for the network of Fig. 19.106 ( )=h 60 .
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 *13.  Calculate the current I for the network of Fig. 19.107.

R2 5 kV

+ –

I1  =  1 mA / 08

I

20V

R1 2 kV I2  =  2 mA / 08

+

–
V

FIG. 19.107 
Problems 13, 32, and 46.

 14.  Find the voltage Vs for the network in Fig. 19.108.

I

R2 2 V

+

R1 10 VVx

–

10 V/08

–

E1

+

–

4Vx

+
5 A/08

–

Vs

+

FIG. 19.108 
Problem 14.

SECTION 19.3  Thévenin’s Theorem

 15.  Find the Thévenin equivalent circuit for the portion of the 
network of Fig. 19.109 external to the elements between 
points a and b. +

–
E  =  100 V/08 XL

2 V

R

5 V XC 2 V

a

b

FIG. 19.109 
Problems 15 and 34.

+

–
E  =  25 V/308

XL

2 kV

R

6 kV

XC 3 kV

a

b

RL

FIG. 19.110 
Problems 16 and 53.

 16.  Find the Thévenin equivalent circuit for the portion of the 
network of Fig. 19.110 external to the elements between a 
and b.
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 *17.  Find the Thévenin equivalent circuit for the portion of the 
networks of Fig. 19.111 external to the elements between 
points a and b.

I  =  0.2 A / 08

XL

20 VR1

20 V

XC 32 V

a

b

R2  =  70 V

FIG. 19.111 
Problems 17 and 35.

 18.  Find the Thévenin equivalent circuit for the portion of the 
network of Fig. 19.112 external to the load impedance Z .L

R2

120 V

470 V I  =  2 mA /–9088 V/08

–

+
E

L

12 mH

ZL

a

b
f  =  1 kHz

R1

FIG. 19.112 
Problem 18.

 19.  Find the Thévenin equivalent circuit for the portion of the 
network of Fig. 19.113 external to the load impedance Z .L

ZL

E2E1

R3

C1

I 2 kV
R1 2 kV R2 2 kV

0.047   

C2

0.047   

5 mA /0810 V/08 10 V/08

f  =  1 kHz

a

b

–

+

+

–

mFmF

FIG. 19.113 
Problem 19.

 *20.  Find the Thévenin equivalent circuit for the portion of the 
network of Fig. 19.114 external to the elements between 
points a and b.

+

–

E  =  50 V/ 08

XC2

2 V

R1

6 V

XL

4 V

a

b

XC1

8 V
R2

10 V

FIG. 19.114 
Problem 20.
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 *21.  Find the Thévenin equivalent circuit for the portion of the 
networks of Fig. 19.115 external to the elements between 
points a and b.

–

+

E1  =  120 V/08

R

10 V

XC

8 V

XL 8 V
I =
0.5 A / 608

ZL

a

b

FIG. 19.115 
Problems 21 and 26.

R2

15 V

XC

15 V
a

b

I  =  0.5 A / 908 E  =  20 V/408

–

+

R1 9 V
I2 =
0.8 / 608

FIG. 19.116 
Problem 22.

 *22.  Find the Thévenin equivalent circuit for the portion of the 
network of Fig. 19.116 external to the elements between 
points a and b.

 *23.   a.  Find the Thévenin equivalent circuit for the network 
external to the resistor R1 in Fig. 19.100.

b.  Using the results of part (a), determine the current i of 
the same figure.

 24.   a.  Find the Thévenin equivalent circuit for the network 
external to the capacitor in Fig. 19.101.

b. Using the results of part (a), determine the voltage Cυ  
for the same figure.

 *25.   a.  Find the Thévenin equivalent circuit of the network 
external to the inductor in Fig. 19.102.

b. Using the results of part (a), determine the current I of 
the same figure.

 26.  Determine the Thévenin equivalent circuit for the network 
external to the 1 kΩ inductive reactance in Fig. 19.117 (in 
terms of V).

–

+

R1 30 kV

R2 30 kV XL 1 kV

XC

2 kV

Th

2 V

FIG. 19.117 
Problems 26 and 42.

 27.  Determine the Thévenin equivalent circuit for the network 
external to the 3 kΩ inductive reactance in Fig. 19.118 (in 
terms of V).

R1 5 kV R2 40 kV

Th

XL 3 kV10 I

XC

0.5 kV

FIG. 19.118 
Problems 27 and 43.

 28.  Find the Thévenin equivalent circuit for the network exter-
nal to the 10 kΩ  inductive reactance in Fig. 19.103.

 29.  Determine the Thévenin equivalent circuit for the network 
external to the 4 kΩ  resistor in Fig. 19.104.

 *30.  Find the Thévenin equivalent circuit for the network exter-
nal to the 7 kΩ  inductive reactance in Fig. 19.105.

 *31.  Determine the Thévenin equivalent circuit for the network 
external to the 2 kΩ  resistor in Fig. 19.106.

 *32.  Find the Thévenin equivalent circuit for the network exter-
nal to the resistor R1 in Fig. 19.107.
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 *33.  Find the Thévenin equivalent circuit for the network to the 
left of terminals ′a a-  in Fig. 19.119.

R1 2 kV

+

8 V/08

5Ix R3 3.3 kV

R2

1 kV

E
–

Thévenin
Ix

a

á

FIG. 19.119 
Problem 33.

R1

6 V

b

a

XL

8 V

I2  =  0.4 A / 208ZL

XC 12 V

R2 9 V

–

+

E 20 V/08 

FIG. 19.120 
Problem 37.

SECTION 19.4  Norton’s Theorem

 34.  Find the Norton equivalent circuit for the network external 
to the elements between a and b for the network of  
Fig. 19.109.

 35.  Find the Norton equivalent circuit for the network external 
to the elements between a and b for the network of  
Fig. 19.111.

 36.  Find the Norton equivalent circuit for the network external 
to the elements between a and b for the network of 
Fig. 19.118.

 *37.  Find the Norton equivalent circuit for the portion of the 
 network of Fig. 19.120 external to the elements between 
points a and b.

XL

4 V

–

+

E1  =  120 V/308

–

+

E2  =  108 V/08

R1  =  3 V

R3 68 V

R4 40 V

a

b

R2 8 V

XC 8 V

FIG. 19.121 
Problem 38.

 *38.  Find the Norton equivalent circuit for the portion of the net-
work of Fig. 19.121 external to the elements between points 
a and b.

 *39.   a.  Find the Norton equivalent circuit for the network 
external to the resistor R1 in Fig. 19.100.

b. Using the results of part (a), determine the current i of 
the same figure.

 *40.   a.  Find the Norton equivalent circuit for the network 
external to the capacitor in Fig. 19.101.

b. Using the results of part (a), determine the voltage CV  
for the same figure.

 *41.   a.  Find the Norton equivalent circuit for the network 
external to the inductor in Fig. 19.102.

b. Using the results of part (a), determine the current I of 
the same figure.

 42.  Determine the Norton equivalent circuit for the network 
external to the 5 kΩ inductive reactance in Fig. 19.117.

 43.  Determine the Norton equivalent circuit for the network 
external to the 4 kΩ  inductive reactance in Fig. 19.118.

 44.  Find the Norton equivalent circuit for the network external 
to the 4 kΩ  resistor in Fig. 19.104.

 *45.  Find the Norton equivalent circuit for the network external 
to the 7 kΩ  inductive reactance in Fig. 19.105.

 *46.  Find the Norton equivalent circuit for the network external 
to the I1  current source in Fig. 19.107.
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  *47.  For the network in Fig. 19.122, find the Norton equivalent 
circuit for the network external to the 2 kΩ  resistor.

R1 1 kV V R2 3 kV R4 2 kVI  =  2 mA / 08

R3

4 kV

– +

–

+

(  =  20)
V

m
m

FIG. 19.122 
Problem 47.

SECTION 19.5  Maximum Power Transfer Theorem

 48.  Find the load impedance Z L  for the network of Fig. 19.123 
for maximum power to the load, and find the maximum 
power to the load.

–

+

R1

3 V

XC 6 V

XL

4 V

E  =  120 V/08 ZL

FIG. 19.123 
Problem 48.

XL

4 V

I =  3 A / 608

ZLR2 2 VR1 3 V

FIG. 19.124 
Problem 49.

–

+

R

10 V

XC1
5 V

XL

4 V

E =  60 V/608

ZL

XC2
6 V

FIG. 19.125 
Problem 50.

 49.  Find the load impedance Z L  for the network of Fig. 19.124 
for maximum power to the load, and find the maximum 
power to the load.

 *50.  Find the load impedance Z L  for the network of Fig. 19.125 
for maximum power to the load, and find the maximum 
power to the load.

 *51.  Find the load impedance Z L  for the network of Fig. 19.126 
for maximum power to the load, and find the maximum 
power to the load.

XL1

4 V

ZL
R2 12 VR1 3 V

9 V

XC 8 V
E1 =  100 V/08 E2 =  200 V/908

XL2

–

+

–

+

FIG. 19.126 
Problem 51.
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 52.  Find the load impedance RL  for the network in Fig. 19.127 
for maximum power to the load, and find the maximum 
power to the load.

–

+

R1 3 kV R2 60 kV RL

I

50I

E  =  3 V/08

FIG. 19.127 
Problem 52.

–

+

R

2 kV LOAD

RL

XL 3 kV

XC

2 kVE  =  54 V/08 

FIG. 19.128 
Problem 56.

–

+ RL

E  =  2 V/08 C 4 nF

C (1 –  10 nF)

LOAD

30 mH

L

f  =  10 kHz

R

1 kV

FIG. 19.129 
Problem 57.

 *53.   a.  Determine the load impedance to replace the resistor RL  
in Fig. 19.110 to ensure maximum power to the load.

b. Using the results of part (a), determine the maximum 
power to the load.

 *54.   a.  Determine the load impedance to replace the capacitor 
XC  in Fig. 19.101 to ensure maximum power to the load.

b. Using the results of part (a), determine the maximum 
power to the load.

 *55.   a.  Determine the load impedance to replace the inductor 
X L  in Fig. 19.102 to ensure maximum power to the load.

b. Using the results of part (a), determine the maximum 
power to the load.

56.    a.  For the network in Fig. 19.128, determine the value of 
RL  that will result in maximum power to the load.

b. Using the results of part (a), determine the maximum 
power delivered.

SECTION 19.6  Substitution, Reciprocity, and 
Millman’s Theorems

 58.  For the network in Fig. 19.130, determine two equivalent 
branches through the substitution theorem for the branch a-b.

R1 5 kV R2 11 kV

a

b

I  =  4 mA / 08

FIG. 19.130 
Problem 58.

 *57.   a.  For the network in Fig. 19.129, determine the level of 
capacitance that will ensure maximum power to the load 
if the range of capacitance is limited to 1 nF to 10 nF.

b. Using the results of part (a), determine the value of RL  
that will ensure maximum power to the load.

c. Using the results of parts (a) and (b), determine the 
maximum power to the load.
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59.    a.  For the network of Fig. 19.131(a), find the current I.
b. Repeat part (a) for the network of Fig. 19.131(b).
c.  How do the results of parts (a) and (b) compare?

–

+

R1

1 kV

R2

8 kV

R4

11 kV

R3

4 kV

R5

6 kV
E  =  20 V/08

I

R1

1 kV

R2

8 kV

R4

11 kV

R3

4 kV

R5  =  6 kV

E  =  20 V/08 

I

(a) (b)

–

+

FIG. 19.131 
Problem 59.

GLOSSARY

Millman’s theorem A method using voltage-to-current source 
conversions that will permit the determination of unknown 
variables in a multiloop network.

Norton’s theorem A theorem that permits the reduction of any 
two-terminal linear ac network to one having a single current 
source and parallel impedance. The resulting configuration 
can then be used to determine a particular current or voltage 
in the original network or to examine the effects of a specific 
portion of the network on a particular variable.

–

+

XL 4 kVR1 2 kV
IC

4 kV

E1  =  100 V/08 E2 =  50 V/3608

XC

–

+

FIG. 19.132 
Problem 60.

 60.  Using Millman’s theorem, determine the current through 
the 4 kΩ  capacitive reactance of Fig. 19.132.

Reciprocity theorem A theorem stating that for single-source 
networks, the magnitude of the current in any branch of a 
network, due to a single voltage source anywhere else in the 
network, will equal the magnitude of the current through the 
branch in which the source was originally located if the source 
is placed in the branch in which the current was originally 
measured.

Substitution theorem A theorem stating that if the voltage 
across and current through any branch of an ac bilateral net-
work are known, the branch can be replaced by any combi-
nation of elements that will maintain the same voltage across 
and current through the chosen branch.

Superposition theorem A method of network analysis that per-
mits considering the effects of each source independently. The 
resulting current and/or voltage is the phasor sum of the cur-
rents and/or voltages developed by each source independently.

Thévenin’s theorem A theorem that permits the reduction of 
any two-terminal linear ac network to one having a single 
voltage source and series impedance. The resulting configura-
tion can then be employed to determine a particular current or 
voltage in the original network or to examine the effects of a 
specific portion of the network on a particular variable.

Voltage-controlled voltage source (VCVS) A voltage source 
whose parameters are controlled by a voltage elsewhere in the 
system.
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20 Power (ac)

 20.1 INTRODUCTION
The discussion of power in Chapter 14 included only the average or real power delivered to 
an ac network. We will now introduce and examine two additional components of the power 
equation for any network that will have a significant impact on the current drain from a sup-
ply. They are referred to as the Apparent and Reactive power levels.

20.2 GENERAL EQUATION
For any system such as in Fig. 20.1, the power delivered to a load at any instant is defined by 
the product of the applied voltage and the resulting current; that is,

p iυ=

In this case, since υ and i are sinusoidal quantities, let us establish a general case where

υ ω θ

ω

( )= +

=

V t

i I t

                                                          sin

and                                                     sin
m

m

 

where θ  is the angle by which υ leads i. If i leads υ then θ  is a negative value.

The chosen υ and i include all possibilities because, if the load is purely resistive, θ = °0 .  If 
the load is purely inductive or capacitive, 90θ = ° or 90 ,θ = − °  respectively. For a network 
that is primarily inductive, θ  is positive (υ  leads i). For a network that is primarily capacitive, 
θ  is negative (i leads ).υ

•  Clearly understand the differences between the 
average (real), apparent, and reactive power levels 
of a load

• Be able to calculate the total average, apparent, 
and reactive power levels, and the power factor of 
a load

• Appreciate the impact of the reactive power level 
on a load and the current drain from the supply

• Understand how to improve the overall efficiency 
of a system using the information provided by the 
overall power–factor rating

• Become aware of the relationship between the 
power, time, and energy levels of a system

 Objectives

Load
p v

+

–

i

FIG. 20.1 
Defining the power delivered to a load.
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The following analysis may seem a bit too mathematical and over-
done, but it is included to validate the conclusions that follow. Simply 
understand that we are dealing with time varying functions so the power 
drain will vary with time. Once the introduction is included, the result-
ing equations will be fairly direct to apply.

Substituting the above equations for υ and i into the power equation 
results in

p V I t tsin sinm m ω ω θ( )= +

If we now apply a number of trigonometric identities, the following 
form for the power equation results:

 p VI t VI tcos  1 cos 2 sin  sin 2θ ω θ ω( ) ( )= − +  (20.1)

where V and I are the rms values. The conversion from peak values Vm 
and I m to rms values resulted from the operations performed using the 
trigonometric identities.

It would appear initially that nothing has been gained by putting the 
equation in this form. However, the usefulness of the form of Eq. (20.1) is 
demonstrated in the following sections. The derivation of Eq. (20.1) from  
the initial form appears as an assignment at the end of the chapter.

If Eq. (20.1) is expanded to the form

� ��� ��� � ��� ��� � ��� ���� �VI VI t VI tP cos cos cos2 sin sin2
x xAverage Peak 2 Peak 2

θ θ ω θ ω= − +

there are two obvious points that can be made. First, the average power 
still appears as an isolated term that is time independent. Second, both 
terms that follow vary at a frequency twice that of the applied voltage or 
current, with peak values having a very similar format.

In an effort to ensure completeness and order in presentation, each 
basic element (R, L, and C) is treated separately.

20.3 RESISTIVE CIRCUIT
For a purely resistive circuit (such as that in Fig. 20.2), υ and i are in 
phase, and 0 ,θ = °  as appearing in Fig. 20.3. Substituting 0θ = ° into 
Eq. (20.1), we obtain

R

+ v –i

pR

FIG. 20.2 
Determining the power delivered to a purely 

resistive load.

Energy

dissipated

Energy

dissipated
(Average)

VI

VI

t

Power
delivered to
element by

source

Power
returned to
source by

element

T1

v

it10

p1

pR

T2

FIG. 20.3 
Power versus time for a purely resistive load.
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p VI t VI t

VI t

cos  0 1 cos 2 sin  0  sin 2

1 cos 2 0
R ω ω

ω

( ) ( )( )

( )

= ° − + °

= − +

or ω= −p VI VI t cos 2R  (20.2)

where VI is the average or dc term and VI t cos 2ω−  is a negative cosine 
wave with twice the frequency of either input quantity (υ  or i) and a 
peak value of VI. The plot in Fig. 20.3 has the same characteristics as 
obtained in Fig. 14.27.

Note that

T  period of input quantities1 =

T p  period of power curve  R2 =

In addition, the power curve passes through two cycles about its aver-
age value of VI for each cycle of either υ or i T T( 21 2=  or f f2 ).2 1=

Note that the power curve is always above the time axis 
revealing that at any instant of time the resistive load is 
drawing power from the supply and is dissipating energy. 
The area under the power curve reflects the total energy 
dissipated in one cycle of the applied power.

The power dissipated by the resistor at any instant of time t1 can be 
found by simply substituting the time t1 into Eq. (20.2) to find p ,1  as 
indicated in Fig.  20.3. The average (real) power from Eq. (20.2), or 
Fig. 20.3, is VI; or, as a summary,

 ( )= = = =P VI
V I

I R V
R2

watts, Wm m 2
2

 (20.3)

as derived in Chapter 14. The term average comes from the fact that the 
real power delivered is the average value of the power curve.

The energy dissipated by the resistor WR( ) over one full cycle of the 
applied voltage is determined from

W Pt=
where P is the average value and t is the period of the applied voltage; 
that is,

 W VIT     joules, JR 1 ( )=  (20.4)

or, since |=T f1 ,1 1

 W VI
f

    ( joules, J)R
1

=  (20.5)

EXAMPLE 20.1 For the resistive circuit in Fig. 20.4,

a. Find the instantaneous power delivered to the resistor at times t1 
through t .6

b. Plot the results of part (a) for one full period of the applied voltage.
c. Find the average value of the curve of part (b) and compare the level 

to that determined by Eq. (20.3).
d. Find the energy dissipated by the resistor over one full period of the 

applied voltage.
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Solutions:
a. t p i

t i
p i

t i
p i

t p i

t i
p i

t p i

0 W
3 A

36 W

1 5 A
9 W

0 W

3 A
36 W

0 W

:  0 V and  

:  12 V and 12 V 4 Ω  
     12 V)(3 A  

:  6 V and 6 V 4 Ω .  
     6 V)(1.5 A  

:  0 V and  

:  12 V and 12 V 4 Ω  
     12 V 3 A  

:  0 V and  

R R R R

R R

R R R

R R

R R R

R R R R

R R

R R R

R R R R

1  

2

3

4  

5

6  

υ υ
υ |

υ

υ |
υ

υ υ

υ |
υ

υ υ

( )

( )

( )( )

= = =
= = =
= = =

= = =
= = =
= = =

= − = − = −
= = − − =
= = =

b. The resulting plot of ,Rυ  i ,R  and pR  appears in Fig. 20.5.
c. The average value of the curve in Fig. 20.5 is 18 W, which is an 

exact match with that obtained using Eq. (20.3). That is,

P
V I

18 W
2

(12 V)(3 A)
2

 m m= = =

d. The area under the curve is determined by Eq. (20.5):

W VI
f

V I
f

18 mJ
2 

(12 V)(3 A)
2(1 kHz)

 R
m m

1 1

= = = =

20.4 APPARENT POWER
From our analysis of dc networks (and resistive elements above), it would 
seem apparent that the power delivered to the load in Fig. 20.6 is sim-
ply determined by the product of the applied voltage and current, with 
no concern for the components of the load; that is, P VI .=  However, 
we found in Chapter 14 that the power factor θ( )cos  of the load has a  
pronounced effect on the current drawn from the supply. The applied 
voltage may be fixed, but the current drain is a function of the load  
applied, less pronounced for more reactive loads. Although the product 
of the voltage and current is not always the power delivered, it is a power 
rating of significant usefulness in the description and analysis of sinu-
soidal ac networks and in the maximum rating of a number of electrical 
components and systems. It is called the apparent power and is repre-
sented symbolically by S.* Since it is simply the product of voltage and 
current, its units are volt-amperes (VA). Its magnitude is determined by

0 t6

9 W

t4t2 t3 t

36

pR (W)

Average18

t1 iR

vR

t5

FIG. 20.5 
Power curve for Example 20.1.

I

V

+

–

Z

FIG. 20.6 
Defining the apparent power to a load.

R 4 V

iR
pR

vR = 12 sin vt
f =1 kHz

+

–

vR

0 t6t5t1

12 V
6 V

t4t2 t3 t

–12 V

FIG. 20.4 
Example 20.1.

*Prior to 1968, the symbol for apparent power was the more descriptive P .a
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 ( )=S VI     volt-amperes, VA  (20.6)

or, since  V IZ I V
Z

   and   = =

then S I Z     VA2 ( )=  (20.7)

and S V
Z

    VA
2

( )=  (20.8)

The average power to the load in Fig. 20.6 is

P VI  cos θ=

However,  S VI=

Therefore, θ ( )=P S cos      W  (20.9)

and the power factor of a system Fp  is

 F P
S

cos     (unitless)p θ= =  (20.10)

The power factor of a circuit, therefore, is the ratio of the average power 
to the apparent power. For a purely resistive circuit, we have

P VI S= =

and  θ= = =F P
S

  cos 1p

In general, power equipment is rated in volt-amperes (VA) or in 
 kilovolt-amperes (kVA) and not in watts because the VA rating can be 
more than the dissipated level. By knowing the volt-ampere rating and 
the rated voltage of a device, we can readily determine the maximum 
current rating. For example, a device rated at 10 kVA at 200 V has a 
maximum current rating of |= =I 10,000 VA 200 V 50 A when oper-
ated under rated conditions. The volt-ampere rating of a piece of equip-
ment is equal to the wattage rating only when the Fp  is 1. It is therefore a 
maximum power dissipation rating. This condition exists only when the 
total impedance of a system θ∠Z  is such that 0 .θ = °

The exact current demand of a device, when used under normal  
operating conditions, can be determined if the wattage rating and power 
factor are given instead of the volt-ampere rating. However, the power 
factor is sometimes not available, or it may vary with the load.

The reason for rating some electrical equipment in  kilovolt-amperes 
rather than in kilowatts can be described using the configuration in 
Fig. 20.7. The load has an apparent power rating of 10 kVA and a current 
rating of 50 A at the applied voltage, 200 V. As indicated, the current 
demand of 70 A is above the rated value and could damage the load 
element, yet the reading on the wattmeter is relatively low since the load 
is highly reactive. In other words, the wattmeter reading is an indication 
of the watts dissipated and may not reflect the magnitude of the cur-
rent drawn. Theoretically, if the load were purely reactive, the wattmeter 
reading would be zero even if the load was being damaged by a high 
current level.
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20.5 INDUCTIVE CIRCUIT AND REACTIVE 
POWER
For a purely inductive circuit (such as that in Fig. 20.8), υ leads i by 90 ,°  
as shown in Fig. 20.9. Therefore, in Eq. (20.1), 90 .θ = °  Substituting 

90θ = ° into Eq. (20.1) yields

ω ω

ω

( ) ( )( )( )= ° − + °

= +

p VI t VI t

VI t

 cos 90 1 cos 2  sin 90 sin  2

0 sin 2
L

or ω=p VI t sin 2L  (20.11)

[10 kVA = (200 V)(50 A)]

XL

R

(XL >> R )

Load

I = 70 A > 50 A

P = VI cos 

0 10

I

V

6

S = VI

6

200 V

+

–

Wattmeter
(kW)

FIG. 20.7 
Demonstrating the reason for rating a load in kVA rather than kW.

Energy
absorbed VI

Power
delivered to
element by

source

Power
returned to
source by

element
T1

pL

T2

Energy
absorbed

Energy
returned

Energy
returned–VI

iv

 = 908

FIG. 20.9 
The power curve for a purely inductive load.

where VI t sin 2ω  is a sine wave with twice the frequency of either input 
quantity (υ  or i) and a peak value of VI. Note the absence of an average 
or constant term in the equation revealing that the average power drawn 
over a full cycle is zero for a pure inductive load.

Plotting the waveform for pL  (Fig. 20.9), we obtain

T  period of either input quantity1 =

T p  period of   curveL2 =

Note that over one full cycle of ( )p T ,L 2  the area above the horizontal 
axis in Fig. 20.9 is exactly equal to that below the axis. This indicates 
that over a full cycle of p ,L  the power delivered by the source to the 
inductor is exactly equal to that returned to the source by the inductor.

+ y –i

pL

FIG. 20.8 
Defining the power level for a purely 
inductive load.
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The net flow of power to the pure (ideal) inductor is zero 
over a full cycle, and no energy is lost in the transaction.

The power absorbed or returned by the inductor at any instant of time t1 
can be found simply by substituting t1 into Eq. (20.11). The peak value 
of the curve VI is defined as the reactive power associated with a pure 
inductor.

In general, the reactive power associated with any circuit is defined 
to be θVI sin , a factor appearing in the second term of Eq. (20.1). Note 
that it is the peak value of that term of the total power equation that pro-
duces no net transfer of energy. The symbol for reactive power is Q, and 
its unit of measure is the volt-ampere reactive (VAR).* The Q is derived 
from the quadrature 90( )°  relationship between the various powers, to 
be discussed in detail in a later section. Therefore,

θ ( )=Q VI sin     volt-ampere reactive, VARL  (20.12)

where θ  is the phase angle between V and I.

For the inductor,

Q VI     VARL ( )=  (20.13)

or, since V IX L=  or |=I V X ,L

Q I X     VARL L
2 ( )=  (20.14)

or        Q V
X

    VARL
L

2
( )=  (20.15)

The apparent power associated with an inductor is S VI ,=  and the 
average power is P 0,=  as noted in Fig.  20.9. The power factor is 
therefore

θ= = = =F P
S VI

cos 0 0p

If the average power is zero, and the energy supplied is returned within 
one cycle, why is reactive power of any significance? The reason is not 
obvious but can be explained using the curve in Fig. 20.9. At every instant 
of time along the power curve that the curve is above the axis (positive), 
energy must be supplied to the inductor, even though it will be returned 
during the negative portion of the cycle. This power requirement during 
the positive portion of the cycle requires that the generating plant provide 
this energy during that interval. Therefore, the effect of reactive elements 
such as the inductor can be to raise the power (current level) requirement 
of the generating plant, even though the reactive power is not dissipated 
but simply “borrowed.” The increased power demand during these inter-
vals is a cost factor that must be passed on to the industrial consumer. 
In fact, most larger users of electrical energy pay for the apparent power 
demand rather than the watts dissipated since the volt-amperes used are 
sensitive to the reactive power requirement (see Section 20.7).

In other words, the closer the power factor of an industrial 
outfit is to 1, the more efficient is the plant’s operation since 
it is limiting its use of “borrowed” power.

*Prior to 1968, the symbol for reactive power was the more descriptive P .q
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The energy stored by the inductor during the positive portion of the 
cycle (Fig. 20.9) is equal to that returned during the negative portion and 
can be determined using the following equation:

W Pt=

where P is the average value for the interval and t is the associated  
interval of time.

Recall from Chapter 14 that the average value of the positive portion 
of a sinusoid equals |π( )2 peak value  and |=t T 2.2  Therefore,

W VI T2
2L
2

π ( )( )= ×

π
( )=W

VIT
and                                 JL

2
 (20.16)

or, since |=T f1 ,2 2  where f2 is the frequency of the pL  curve, we have

π
( )=W VI

f
    JL

2

 (20.17)

Since the frequency f2 of the power curve is twice that of the input 
quantity, if we substitute the frequency f1  of the input voltage or current, 
Eq. (20.17) becomes

  W VI
f

VI 
2L

1 1π ω( )
= =

However,   V IX I L  L 1ω= =

so that        W
I L I

  L
1

1

ω
ω

( )
=

and          ( )=W LI      JL
2  (20.18)

providing an equation for the energy stored or released by the inductor in 
one half-cycle of the applied voltage in terms of the inductance and rms 
value of the current squared.

EXAMPLE 20.2 For the inductive circuit in Fig. 20.10:

a. Sketch the waveforms of Lυ  and i .L

b. Find the instantaneous power level for the inductor at times t1 
through t .5

c. Plot the results of part (b) for one full period of the applied voltage.
d. Find the average value of the curve of part (c) over one full cycle of 

the applied voltage and compare the peak value of each pulse with 
the value determined by Eq. (20.13).

e. Find the energy stored or released for any one pulse of the power curve.

Solutions:

a. Both waveforms have been plotted in Fig. 20.11. Note that the volt-
age leads the current by 90°  as shown by the fact that the voltage 
passes through 0 V at 0° and the current passes through the horizon-
tal axis at 90 .°

The peak value of the current is simply determined by Ohm’s law:

I
V
X

12 V
4 Ω

3 Am
m

L

= = =

XL 4 V

iL pL

yL = 12 sin 200t

+

–

FIG. 20.10 
Example 20.2.
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t1

t2

t3 t4

t5

12 V

18 W

3 A

3 A_

12 V_

18 W_

08

458 908 1358

iL

vL

v, i, p

a 5 v t

pL

FIG. 20.11 
Power curve for Example 20.2.

+ v –
i

pC C

FIG. 20.12 
Defining the power level for a purely 

capacitive load.

b. The resulting power curve appears in Fig. 20.11 with three different 
vertical scales for the voltage, current, and power.

At t t,  1 3, and t5  either the voltage or current is zero resulting in 
υ= =P i 0 W L L L .

At t ,2  45α= °  and 
12 sin  12 sin 45 12 0.7071 8.49 VLυ α ( )= = ° = =

and α( ) ( )

( )

= − ° = ° − °

= − ° = −

i
V
X

    sin 90 12 V
4 Ω

  sin 45 90

3  sin 45 2.12 A,

L
m

L

so that P i 8.49 VL L Lυ ( )= = 18 W2.12 A   .( )− = −

The results at t ,4  or 135α = °  are a mirror image of that 
obtained at t2  so that P 18 W L =  as shown in Fig. 20.11.

Note the fact that the frequency of the power curve is clearly 
twice that of the applied voltage or current verifying the equation 
P VI t sin  .L ω=

c. The average value for the curve in Fig. 20.11 is 0 W over any full 
cycle of the applied voltage.

The peak value of the curve is 18 W, which compares directly 
with that obtained from the product

VI
V I

18 W
 
2

(12 V)(3 A)
2

 m m= = =

d. The energy stored or released during each pulse of the power curve is

W VI V I
90 mJ

 
2 

(12 V)(3 A)
2 200 rad/s

 L
m m

1 1ω ω ( )
= = = =

20.6 CAPACITIVE CIRCUIT
For a purely capacitive circuit (such as that in Fig.  20.12), i leads υ 
by 90 ,°  as shown in Fig. 20.13. Therefore, in Eq. (20.1), 90 .θ = − °  
Substituting 90θ = − °  into Eq. (20.1), we obtain
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ω ω
ω

( ) ( )( )( )= − ° − + − °

= −

p VI t VI t

VI t

 cos 90 1 cos 2  sin 90 sin 2

0 sin 2
C

or       ω= −p VI t sin 2C  (20.19)

where VI t sin 2ω−  is a negative sine wave with twice the frequency of 
either input (υ  or i) and a peak value of VI. Again, note the absence of an 
average or constant term.

Plotting the waveform for pC  (Fig. 20.13) gives us

T  period of either input quantity1 =

T p  period of   curveC2 =

Energy
absorbedVI

Power
delivered to
element by

source

Power
returned to
source by

element
T1

pC

T2

Energy
absorbed

Energy
returned

Energy
returned–VI

i v

 = –908

FIG. 20.13 
The power curve for a purely capacitive load.

Note that the same situation exists here for the pC  curve as existed for the 
pL  curve. The power delivered by the source to the capacitor is exactly 
equal to that returned to the source by the capacitor over one full cycle.

The net flow of power to the pure (ideal) capacitor is zero 
over a full cycle,

and no energy is lost in the transaction. The power absorbed or returned 
by the capacitor at any instant of time t1 can be found by substituting t1 
into Eq. (20.19).

The reactive power associated with the capacitor is equal to the peak 
value of the pC  curve, as follows:

 ( )=Q VI     VARC ( )=Q VI     VARC  (20.20)

However, since V IXC=  and |=I V X ,C  the reactive power to the 
 capacitor can also be written

 ( )=Q I X     VARC C
2 ( )=Q I X     VARC C

2  (20.21)

and          ( )=Q V
X

    VARC
C

2
( )=Q V

X
    VARC

C

2
 (20.22)

The apparent power associated with the capacitor is

 ( )=S VI     VA( )=S VI     VA  (20.23)
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and the average power is P 0,=  as noted from Eq. (20.19) or Fig. 20.13. 
The power factor is, therefore,

F P
S VI

cos  0 0p θ= = = =

The energy stored by the capacitor during the positive portion of the 
cycle (Fig. 20.13) is equal to that returned during the negative portion 
and can be determined using the equation W Pt.=

Proceeding in a manner similar to that used for the inductor, we can 
show that

 π
( )=W

VIT
    JC

2

π
( )=W

VIT
    JC

2  (20.24)

or, since |=T f1 ,2 2  where f2 is the frequency of the pC  curve,

 
π

( )=W VI
f

    JC
2π

( )=W VI
f

    JC
2

 (20.25)

In terms of the frequency f1  of the input quantities υ and i,

W VI
f

VI V V C
2C

1 1

1

1π ω
ω
ω( )

( )
= = =

and             ( )=W CV     JC
2 ( )=W CV     JC
2  (20.26)

providing an equation for the energy stored or released by the capacitor 
in one half-cycle of the applied voltage in terms of the capacitance and 
rms value of the voltage squared.

20.7 THE POWER TRIANGLE
The three quantities average power, apparent power, and reactive 
power can be related in the vector domain by

 = +S P Q  (20.27)
with

= ∠ ° = ∠ ° = ∠ − °P Q QP Q Q0     90     90L L C C

For an inductive load, the phasor power S, as it is often called, is 
defined by

P jQS L= +

as shown in Fig. 20.14.
The 90°  shift in QL from P is the source of another term for reactive 

power: quadrature power.
For a capacitive load, the phasor power S is defined by

P jQS C= −
as shown in Fig. 20.15.

If a network has both capacitive and inductive elements, the reactive 
component of the power triangle will be determined by the difference 
between the reactive power delivered to each. If Q Q ,L C>  the resultant 
power triangle will be similar to Fig. 20.14. If Q Q ,C L>  the resul    -
tant power triangle will be similar to Fig. 20.15.

S

u

P

QL

FIG. 20.14 
Power diagram for inductive loads.

S

P

QC

u

FIG. 20.15 
Power diagram for capacitive loads.
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That the total reactive power is the difference between the reactive 
powers of the inductive and capacitive elements can be demonstrated by 
considering Eqs. (20.11) and (20.19). These equations have been used to 
plot the reactive power delivered to each reactive element for a series L-C 
circuit on the same set of axes in Fig. 20.16. The reactive elements were 
chosen such that X X .L C>  Note that the power curve for each is exactly 
180° out of phase. The curve for the resultant reactive power is therefore 
determined by the algebraic resultant of the two at each instant of time. 
Since the reactive power is defined as the peak value, the reactive compo-
nent of the power triangle is as indicated in Fig. 20.16: I X X .L C

2 ( )−

+

XL

XC

XL  – XC

Z

R

j

FIG. 20.17 
Impedance diagram for a series R-L-C circuit.

Q (resultant)  =  QL  –  QC  =  I2(XL  –  XC)

j

I2XC  =  QC

I2XL  =  QL

S = I
2 Z

PR  =  I2R

FIG. 20.18 
The result of multiplying each vector in Fig. 20.17 by I 2 

for a series R-L-C circuit.

vtVC I

pC   =  –VC I sin 2vt QT

VL I

pL  =  VL I sin 2vt

QT  =  QL  –  QC  =  VL I  –  VC I  =  I(VL  –  VC)  =  I(IXL  –  IXC)

=  I 2XL  –  I 2XC  =  I 2 (XL  –  XC)

FIG. 20.16 
Demonstrating why the net reactive power is the difference between 

that delivered to inductive and capacitive elements.

An additional verification can be derived by first considering the impe-
dance diagram of a series R-L-C circuit (Fig. 20.17). If we multiply each 
radius vector by the current squared I ,2( )  we obtain the results shown in 
Fig. 20.18, which is the power triangle for a predominantly inductive circuit.

Since the reactive power and average power are always angled 90°  to 
each other, the three powers are related by the Pythagorean theorem; that is,

 = +S P Q2 2 2  (20.28)

Therefore, the third power can always be found if the other two are 
known.

In addition, consider the network of Fig. 20.19.
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I R I X

I R X

I I Z

S P

Z

  0 90

[ j ]

R L

2 2
L

2
L

2 2

Q
� �

= +

= ∠ + ∠

= +

= = ∠θ

but      ZZ V
I

= ∠θ =

so      I I
I

IS V
I

V V2
2

−= =
∠θ

= ∠ θ

and    =S VI*
 (20.29a)

where I* is the complex conjugate of I

In addition   =S V I  (20.29b)

Consider, for example, the simple R-L circuit in Fig. 20.19, where

j
I V

Z
10 V 0

3 Ω 4 Ω
10 V 0

5 Ω 53.13
2 A 53.13

T

= =
∠ °

+
=

∠ °
∠ °

= ∠− °

The real power (the term real being derived from the positive real axis of 
the complex plane) is

P I R 2 A 3 Ω 12 W2 2 ( )( )= = =

and the reactive power is

( )( ) ( )= = =Q I X L2 A 4 Ω 16 VAR L L
2 2

with P jQ j LS 12 W 16 VAR ( ) 20 VA 53.13L= + = + = ∠ °

as shown in Fig. 20.20. Applying Eq. (20.29) yields

S VI* (10 V 0 ) 2 A 53.13 20 VA 53.13( )= = ∠ ° ∠ + ° = ∠ °

as obtained above.
The angle θ  associated with S and appearing in Figs. 20.14, 20.15, 

and 20.20 is the power-factor angle of the network. Since

P VI  cos θ=

or       P S                        cos θ=

then             F P
S

cos p θ= =  (20.30)

20.8 THE TOTAL P, Q, AND S
The total number of watts, volt-amperes reactive, and volt-amperes, and 
the power factor of any system can be found using the following procedure:

1. Find the real power and reactive power for each branch of 
the circuit.

2. The total real power of the system ( )PT  is then the sum of 
the average power delivered to each branch.

3. The total reactive power ( )QT  is the difference between 
the reactive power of the inductive loads and that of the 
capacitive loads.

4. The total apparent power is = +S P Q .2 2
T T T

5. The total power factor is |P S .T T

There are two important points in the above procedure. First, the total 
apparent power must be determined from the total average and reactive 

4 VXL

+

–

R

3 V

V = 10 V 08

I

Z

FIG. 20.19 
Demonstrating the validity of Eq. (20.29).

S  =  20 VA

P  =  12 W

QL  =  16 VAR

u  =  53.138

FIG. 20.20 
The power triangle for the circuit in Fig. 20.19.
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powers and cannot be determined from the apparent powers of each 
branch. Second, and more important, it is not necessary to consider the 
series-parallel arrangement of branches. In other words, the total real, 
reactive, or apparent power is independent of whether the loads are in 
series, parallel, or series-parallel. The following examples demonstrate 
the relative ease with which all of the quantities of interest can be found.

 EXAMPLE 20.3 Find the total number of watts, volt-amperes reac-
tive, volt-amperes, and power factor Fp  of the network in Fig. 20.21. 
Draw the power triangle and find the current in phasor form. How can the 
current drain from the supply be reduced for the same delivered power?

PT  =  900 W

QT  =  300 VAR (L)
18.388 =  cos –1 0.949

ST = 948.68 VA

FIG. 20.22 
Power triangle for Example 20.3.

900 VAR (C)
200 W

1200 VAR (L)
500 W

0 VAR
200 W

E

I

–

+

Load   2 Load   3

Load   1

  =  120 V/08

FIG. 20.21 
Example 20.3.

Solution: Construct a table such as shown in Table 20.1.

TABLE 20.1

Load W VAR VA

1 200 W 0 200 VA

2 500 W 1200 VAR (L) 500 1200  1300 VA2 2( ) ( )+ =

3 200 W C900 VAR ( ) 200 900 921.95 VA2 2( ) ( )+ =

P 900 W T = LQ 300 VAR   ( )T = S 948 68 VA900 300 .  T
2 2( ) ( )= + =

Total power dissipated Resultant reactive power of network (Note that ST ≠ sum of each branch: 
948.68 200 1300 921.95 2,421.95)≠ + + =

Thus,

= = = LF
P
S

0 949 lagging
900 W

948.68 VA
.   ( )p

T

T

The power triangle is shown in Fig. 20.22.
Since = =S VI 948.68 VA,T  |= =I 948.68 VA 120 V 7.91 A; 

and since θ  of Fcos  pθ =  is the angle between the input voltage and 
current,

I 7 91 A 18 38.   .= − °

The minus sign is associated with the phase angle since the circuit is 
predominantly inductive.

The resulting power factor tells us the total network has a lagging 
 inductive nature. The overall performance could actually be improved 
by introducing an additional capacitive load. If the proper capacitive 
load were introduced the power factor could be brought closer to the 
ideal level of 1. In this example if that was done the total load would 
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remain at 900 W with an apparent power of 900 VA. The resulting cur-
rent drain on the supply would now be

= = = = 7 5 AI
S
E

900 VA

120 V

900 W

120 V
.T

which is less than that just calculated. A more efficient system.

EXAMPLE 20.4

a. Find the total number of watts, volt-amperes reactive, volt-amperes, 
and power factor FP  for the network in Fig. 20.23.

b.  Sketch a load diagram and power triangle.

R

6 V

E  =  100 V /08

–

+

XL

I 7 V

XC 15 V

FIG. 20.23 
Example 20.4.

c. Find the energy dissipated by the resistor over one full cycle of the 
input voltage if the frequency of the input quantities is 60 Hz.

d. Find the energy stored in, or returned by, the capacitor or inductor 
over one half-cycle of the power curve for each if the frequency of 
the input quantities is 60 Hz.

Solutions:

a. 
j j

I E
Z

V

V

V

 
100 V 0

6 Ω 7 Ω 15 Ω
100 V 0

10 Ω 53.13

       10 A 53.13

  10 A 53.13 6 Ω 0 60 V 53.13

  10 A 53.13 7 Ω 90 70 V 143.13

  10 A 53.13 15 Ω 90 150 V 36.87

T

R

L

C

( )( )

( )( )

( )( )

= =
∠ °

+ −
= ∠ °

∠− °

= ∠ °

= ∠ ° ∠ ° = ∠ °

= ∠ ° ∠ ° = ∠ °

= ∠ ° ∠ − ° = ∠− °

θ ( )

( )

( )

( )

= = ° =

= = =

= = =

P EI

I R

V
R

600 W

600 W

600 W

 cos  100 V)(10 A cos53.13  

      10 A 6 Ω  

      60 V
6

 

T

R

2 2

2 2

S EI

I Z

E
Z

1000 VA

1000 VA

1000 VA

  100 V)(10 A  

      10 A 10 Ω  

      100 V
10 Ω

 

T

T

T

2 2

2 2

( )

( )( )

( )

= = =

= = =

= = =

θ

( )

( )

( )( )

= = ° =

= −

= − = − =

Q EI

Q Q

I X X

800 VAR

800 VAR

 sin  100 V)(10 A sin 53.13  

     

      10 A 15 Ω 7 Ω  

T

C L

C L
2 2
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( )

( ) ( )

( )

( )

( )

= − = −

= − =

= = =

C

C

Q
V
X

V
X

C L

F
P
S

800 VAR

0 6 leading

150 V
15 Ω

70 V
7 Ω

       1500 VAR 700 VAR    

  600 W
1000 VA

.    

T
C

C

L

L

p
T

T

2 2 2 2

b. The load diagram is as shown in Fig. 20.24(a) and the power triangle 
in Fig. 20.24(b).

c. W
V I

f
10 J  60 V 10 A

60 Hz
 R

R

1

( )( )
= = =

d. W
V I

1 86 J  70 V 10 A
2 60 Hz

700 J
377

.  L
L

1ω π ( )

( )( )

( )
= = = =

W
V I

3 98 J  150 V 10 A
377 rad/s

1500 J
377

.  C
C  

1ω
( )( )

= = = =

+

–

E 100 V /08 1500 VAR (C) 
0 W

Load 1

0 VAR 
600 W

Load 2

VA
0 W

700 R (L)

(a)

Load 3

FIG. 20.24 
(a) Load diagram and (b) power triangle for Example 20.4.

ST  =  1000 VA

PT    =  600 W 

QT  =  800 VAR (C)

53.138

(b)

   

EXAMPLE 20.5 For the system in Fig. 20.25,

R 9 V

E  =  208 V /08

–

+

XC 12 V

6.4 kW 5 Hp

Heating
elements

12
60 W
bulbs

Motor
h  =  82%

Fp  =  0.72
lagging

Capacitive load

FIG. 20.25 
Example 20.5.

a. Find the average power, apparent power, reactive power, and Fp  for 
each branch.

b. Find the total number of watts, volt-amperes reactive, volt-amperes, 
and power factor of the system. Sketch the power triangle.

c. Find the source current I.
d. If the power factor improved to one what is the new drain current 

from the supply?

Solutions:

a. Bulbs:
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Total dissipation of applied power

P

Q

S P

F

720

0 VAR

720 VA

1

12 60 W  W

 

 

p

1

1

1 1

1

( )= =

=

= =

=

Heating elements:
Total dissipation of applied power

6.4 kVA

=

=

= =

=

P

Q

S P

F

6 4 kW

0 VAR

1

.  

 

p

2

2

2 2

2

Motor:

P
P

P
P

P4548 78 W 
5(746 W)

0.82
.  o

i
i

o
3η

η
= → = = = =

F 0 72 lagging  .  p =

P S S
P

6317 75 VAcos 
cos 

4548.78 W
0.72

.  3 3   3
3θ
θ

= → = = =

Also, cos  0.72 43.95 ,1θ = = °−  so that

θ ( )( )

( )

= = °

= =

Q S VA

L4384.71 VAR 

 sin  6317.75  sin 43.95

6317.75 VA)(0.694 ( )
3 3

Capacitive load:

C

j

P I R

Q I X

S P Q

F
P
S

I E
Z

1731 39 W
2308 52 VAR

2885 65 VA

0 6 leading

208 V 0
9 Ω 12 Ω

208 V 0
15 Ω 53.13

13.87 A 53.13

13.87 A (9 Ω) .  

13.87 A (12 Ω) .    

1731.39 W 2308.52 VAR

      .  
1731.39 W
2885.65 VA

.  

C

p

4
2 2

4
2 2

4 4
2

4
2 2 2

4

4

( )

( )

( )

( )

( )

= =
∠ °

−
=

∠ °
∠− °

= ∠ °

= = =
= = =

= + = +
=

= = =

b. = + + +

= + + +

=

P P P P P

13 400 17 W

       720 W 6400 W 4548.78 W 1731.39 W

       , .

T 1 2 3 4

( )( )

= ± ± ± ±

= + + −

=

Q Q Q Q Q

L C

L2076.19 VAR

       

      0 0 4384.71 VAR  2308.52 VAR 

         ( )

T 1  2  3  4

( )( )= + = +

=

S P Q

13, 560.06 VA

13,400.17 W 2076.19 VAR

       
T T T

2 2 2 2

F
P
S

0 988 lagging13.4 kW
13,560.06 VA

.  

   cos  0.988 8.89

p
T

T

1θ

= = =

= = °−

Note Fig. 20.26.

ST  =  13,560.06 VA

PT  =  13.4 kW

QT  =  2076.19 VAR (L)8.898

FIG. 20.26 
Power triangle for Example 20.5.
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c. S EI I
S
E

13,559.89 VA
208 V

65.19 AT
T= → = = =

Lagging power factor: E leads I by 8.89 ,°  and

I 65 19 A 8 89.   .= ∠ − °

d. = = =I
S
E

64 4 A13,400.17 W
208 V

.T

EXAMPLE 20.6 An electrical device is rated 5 kVA, 100 V at a 0.6 
power-factor lag. What is the impedance of the device in rectangular 
coordinates?

Solution:
= =S EI 5000 VA 

Therefore,           I  5000 VA
100 V

50 A= =

For F 0.6,P =  we have

cos  0.6 53.131θ = = °−

Since the power factor is lagging, the circuit is predominantly inductive, 
and I lags E. Or, for E 100 V 0 ,= ∠ °

I 50 A 53.13= ∠− °

However,

j
V

Z E
I

1.2 1.6
100  0

50 A 53.13
2  53.13    T Ω Ω= =

∠ °
∠− °

= Ω ∠ ° = +

which is the impedance of the circuit in Fig. 20.27.

20.9 POWER-FACTOR CORRECTION
The design of any power transmission system is very sensitive to the 
magnitude of the current in the lines as determined by the applied loads. 
Increased currents result in increased power losses (by a squared fac-
tor since P I R)2=  in the transmission lines due to the resistance of 
the lines. Heavier currents also require larger conductors, increasing 
the amount of copper needed for the system, and, quite obviously, they 
 require increased generating capacities by the utility company.

Every effort must therefore be made to keep current levels at a mini-
mum. Since the line voltage of a transmission system is fixed, the appar-
ent power is directly related to the current level. In turn, the smaller is 
the net apparent power, the smaller is the current drawn from the supply. 
Minimum current is therefore drawn from a supply when S P=  and 
Q 0.T =  Note the effect of decreasing levels of QT  on the length (and 
magnitude) of S in Fig. 20.28 for the same real power. Note also that 
the power-factor angle approaches zero degrees and FP  approaches 1, 
revealing that the network is appearing more and more resistive at the 
input terminals.

The process of introducing reactive elements to bring the power fac-
tor closer to unity is called power-factor correction. Since most loads 
are inductive, the process normally involves introducing elements with 
capacitive terminal characteristics having the sole purpose of improving 
the power factor.

ZT 1.6 VXL

R

1.2 V

FIG. 20.27 
Example 20.6.

u

QT

S

Q9T  < QTS9,S

u9,u

FIG. 20.28 
Demonstrating the impact of power-factor 

correction on the power triangle of a network.
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In Fig. 20.29(a), for instance, an inductive load is drawing a current  
I L  that has a real and an imaginary component. In Fig.  20.29(b), a  
capacitive load was added in parallel with the original load to raise the 
power factor of the total system to the unity power-factor level. Note that 

Inductive load
+

–

IL

(a)

Fp < 1

L

R

E  =  E /08

Is

Fp = 1

IC

E

+

–

(b)

ZT 
R

L

IL

C

Inductive load

FIG. 20.29 
Demonstrating the impact of a capacitive element on the power factor of a network.

by placing all the elements in parallel, the load still receives the same 
terminal voltage and draws the same current I .L  In other words, the load 
is unaware of and unconcerned about whether it is hooked up as shown 
in Fig. 20.29(a) or Fig. 20.29(b).

Solving for the source current in Fig. 20.29(b) gives

( ) ( )

( ) ( )[ ]

( )

( ) [ ]

= +

= + + = + −

= + + = + +

jI I I R jI I jI I jI

I R j I I I I I j I I

I I I 

    

    

s C L

C L e L C L L

L e L C L C L

mag mag

mag mag

If XC  is chosen such that I I ,C L=  then

I j II   0 0s L L( )= + = ∠ °

The result is a source current whose magnitude is simply equal to the 
real part of the inductive load current, which can be considerably less 
than the magnitude of the load current in Fig. 20.29(a). In addition, since 
the phase angle associated with both the applied voltage and the source 
current is the same, the system appears “resistive” at the input terminals, 
and all of the power supplied is absorbed, creating maximum efficiency 
for a generating utility.

Power generating stations are committed to providing sufficient 
power to meet the demands of their customers. There are times, how-
ever, when the system is strained and all efforts must be made to ensure 
that the system is working at the highest levels of efficiency. For an 
industrial plant to demand higher currents simply because the load is 
too inductive and needs higher levels of apparent power cannot be tol-
erated. Penalties will be applied such as those appearing in Table 20.2. 
Take note that the closer the power factor is to 1 the less the penalty. 
In fact, any power factor close to 1 does not suffer a penalty. However, 
when you approach power factors of 0.6 or more, the penalties can be 
severe. Consider a plant with a bank of machinery generating $2000 
a month in energy costs. A power factor of 0.62 will add 40% to that 
cost, or $2800 a month for the entire plant—an $800 in additional cost. 
Penalties of this level have resulted in the development of capacitor 
bank panels, such as shown in Fig.  20.30, that automatically place 

TABLE 20.2  
Penalties applied to loads based on the overall power 

factor of the load.

Fp
Penalty

1–0.9 None
0.9–0.85 3%
0.85–0.8 10%
0.8–0.75 20%
0.75–0.7 30%
0.7–0.6 40%
0.6–0.5 50%
0.5–0.3 80%
0.3–0 90%
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capacitors in parallel with the load to keep the power factor as close to 
1 as possible. As the load becomes more and more inductive, additional 
capacitors are added in parallel to maintain a power factor as close to 1 
as possible.

(Courtesy of Imsat Maritime, s.a.)

FIG. 20.30 
Power-factor correction panel.

EXAMPLE 20.7 An industrial load has the equivalent loading effect 
of Fig. 20.31.

a. Develop the equivalent load diagram and sketch the power triangle. 
Make note of the current drawn from the 208 V three-phase supply.

b. Redraw the network with an additional capacitive load that will cre-
ate a unity power factor load for the network.

c. For an applied frequency of 60 Hz, find the value of the required 
capacitor and the closest standard value.

d. Calculate the new line current with the power-factor corrective 
capacitor in place. How do they compare?

e. Sketch the network with the capacitor in place and find the total 
impedance of the network. Then calculate the line current and com-
pare to the results of part (e).

Solution:
a. j

P I R

Q I X L

S VI EI

Z

I E
Z

8 Ω 10 Ω 12.81 Ω 51.34

208 V 0
12.81 Ω 51.34

16.24 A 51.34

16.24 A 8 Ω 2109.9 W

16.24 A 10 Ω 2637.38 VAR 

208 V 16.24 A 3377.92 VA

T

L
T

L

L L L

L

2 2

2 2

( )

( )

( )

( )

( )

= + = ∠ °

= =
∠ °

∠ °
= ∠− °

= = =

= = =

= = = =

The load diagram and power triangle appear in Fig. 20.32.

+

–

IL

R

E  = /08208 V

XL

8 V

10 V

FIG. 20.31

M20_BOYL0302_14_GE_C20.indd   850M20_BOYL0302_14_GE_C20.indd   850 28/02/23   1:46 PM28/02/23   1:46 PM



POWER-FACTOR CORRECTION | | | 851P
q

s

The load draws 16.24 A from the supply.
b. The network is redrawn in Fig. 20.33 with the power-factor capaci-

tor in place.

c. X
f

C
f X

C 1 F

1
2

1
2

1
2 60 Hz 2637.38 VAR

                        1.006  F

               Use   

C
C C

µ

π π π

µ

( )( )
= ⇒ = =

=

=
d. S P VI EI I  208 V 2109.9 WL( )( )= = = = =

I 10 14 Aand  2109.9 W
208 V

.  L = =

Compared to 16.24 A above—a drop of 37%.
e. The network appears in Fig. 20.34.

j
j j

Z 
8 Ω 10 Ω 16.4 Ω 90

8 Ω 10 Ω 16.4 Ω
20.52 Ω 44.17T

( )( )
=

+ ∠− °
+ −

= ∠ °

I E
Z

208 V 0
20.52 Ω 44.17

10.14 A 44.17L
T

= =
∠ °

∠ °
= ∠ − °

as obtained above.
The value of the inserted capacitor to establish a unity power factor was 

therefore correctly determined through the use of the power equations.

EXAMPLE 20.8 A 5 hp motor with a 0.6 lagging power factor and 
an efficiency of 92% is connected to a 208 V, 60 Hz supply.

a. Establish the power triangle for the load.
b. Determine the power-factor capacitor that must be placed in parallel 

with the load to raise the power factor to unity.
c. Determine the change in supply current from the uncompensated to 

the compensated system.

Solutions:

a. Since 1 hp 746 W,=

P 5 hp 5 746 W 3730 Wo ( )= = =

and  
η

= = =P
P

(drawn from the line) 3730 W
0.92

4054.35 Wi
o

Also                      F cos  0.6p θ= =

and    θ = = °−cos 0.6 53.131

Applying    θ =
Q
P

tan L

i

we obtain  θ ( )

( )

= = °

=

Q P

L

   tan  4054.35 W (tan  53.13 )

        5405.8 VAR
L i

+

–

IL

E  = /08208 V

QL = 2,637.38 
VAR (L)

P  = 2,109.9 W 

P  = 2109.9 W 

51.348

QL  = 2637.38 VAR (L)S = 3377.92 VA 

FIG. 20.32

(a)

+

–

IL

E  =  /08208 V

P = 2,109.9 W

CQ  = 2,637.38 
VAR (C) 

LQ   = 2,637.38
VAR (L) 

FIG. 20.33

+

–

IL

R

E  =  /08208 V

XL

8 V

10 V

ZT

XC 16.4 V

FIG. 20.34
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and 

S P Q  4054.35 W 5405.8 VAR

     6757.25 VA
i L
2 2 2 2( ) ( )= + = +

=
The power triangle appears in Fig. 20.35.

b. A net unity power-factor level is established by introducing a capac-
itive reactive power level of 5405.8 VAR to balance Q .L  Since

Q V
XC

C

2
=

then  
( )

( )
= = =X V

Q C
208 V

5405.8 VAR
8 ΩC

C

2 2

and          µ
π π ( )( )

= = =C
f X

331 6 F1
2

1
2 60 Hz)(8 Ω

.  
C

c. At 0.6F ,p

S VI 6757.25 VA= =

and               I S
V

32 49 A6757.25 VA
208 V

.  = = =

At unity F ,p

S VI 4054.35 VA= =

and   I S
V

19 49 A4054.35 VA
208 V

.  = = =

producing a 40% reduction in supply current.

EXAMPLE 20.9

a. A small industrial plant has a 10 kW heating load and a 20 kVA 
inductive load due to a bank of induction motors. The heating 
 elements are considered purely resistive F 1 ,p( )=  and the 
 induction motors have a lagging power factor of 0.7. If the supply is 
1000 V at 60 Hz, determine the capacitive element required to raise 
the power factor to 0.95.

b. Compare the levels of current drawn from the supply.

Solutions:

a. For the induction motors,

S VI
P S

20 kVA
 cos  (20 10  VA)(0.7) 14 kW

cos  0.7 45.6

3

1

θ
θ

= =
= = × =

= ≅ °−

and

 Q VI L sin  20 kVA)(0.714 14.28 kVAR L θ ( ) ( )= = =

 The power triangle for the total system appears in Fig. 20.36.
 Note the addition of real powers and the resulting S :T

 S 24 kW 14.28 kVAR 27.93 kVAT
2 2( ) ( )= + =

with  I
S
E

27 93 A27.93 kVA
1000 V

.  T
T= = =

The desired power factor of 0.95 results in an angle between S and P of

cos  0.95 18.911θ = = °−

QL  =  14.28 kVAR (L)
ST

30.758 45.68

S  
=  2

0 k
VA

P  =  10 kW P  =  14 kW

Heating Induction motors

FIG. 20.36 
Initial power triangle for the load in Example 20.9.

u  =  18.198

PT  =  24 kW

Q9L  =  7.9 kVAR (L)

FIG. 20.37 
Power triangle for the load in Example 20.9 

after raising the power factor to 0.95.

S  =  6757.25 VA

P  =  4054.35 W

QL  =  5404.45 VAR (L)

u  =  53.138

FIG. 20.35 
Initial power triangle for the load in Example 20.8.
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changing the power triangle to that in Fig. 20.37:

θ θ ( )( )

( ) ( )

=
′

→ ′ = = °

= =

Q
P

Q P

L

 with    tan  tan  24 kW tan  18.19

24 kW)(0.329 7.9 kVAR

L

T
L T   

The inductive reactive power must therefore be reduced by

( ) ( ) ( )− ′ = − =Q Q L L L14.28 kVAR 7.9 kVAR 6.38 kVARL L

Therefore, Q 6.38 kVAR,C =  and using

Q E
XC

C

2
=

we obtain

( )
= = =X E

Q

10 V

6.38 kVAR
156.74 ΩC

C

2 3 2

and   µ
π π ( )( )

= = =C
f X

16 93 F1
2

1
2 60 Hz)(156.74 Ω

.
C

b. S L

I
S
E

25 27 A

24 kW 7.9 kVAR

25.27 kVA
25.27 kVA

1000 V
.  

T

T
T

2 2( ) [ ]( )= +

=

= = =

The new IT  is

I 25 27 A 27 93 A.   .     originalT ( )= <

20.10 POWER METERS
The power meter in Fig. 20.38 uses a sophisticated electronic package to 
sense the voltage and current levels and has an analog-to-digital conver-
sion unit that displays the levels in digital form. It is capable of provid-
ing a digital readout for distorted nonsinusoidal waveforms, and it can 
provide the phase power, total power, apparent power, reactive power, 
and power factor. It can also measure currents up to 500 A, voltages up 
to 600 V, and frequencies from 30 Hz to 1000 Hz.

The power quality analyzer in Fig. 20.39 can also display the real,  
reactive, and apparent power levels along with the power factor. However, 
it has a broad range of other options, including providing the harmonic 
content of up to 51 terms for the voltage, current, and power. The power 
range extends from 250 W to 2.5 MW, and the current can be read up to 
1000 A. The meter can also be used to measure resistance  levels from 
500 Ω to 30 MΩ, capacitance levels from 50 nF to 500  F,µ  and tem-
perature in both °C  and F.°

20.11 EFFECTIVE RESISTANCE
The resistance of a conductor as determined by the equation ρ |( )=R l A   
is often called the dc, ohmic, or geometric resistance. It is a constant 
quantity determined only by the material used and its physical dimen-
sions. In ac circuits, the actual resistance of a conductor (called the 
 effective resistance) differs from the dc resistance because of the varying 
currents and voltages that introduce effects not present in dc circuits.

(Courtesy of AEMC Instruments)

FIG. 20.38 
Digital single-phase and three-phase power meter.

(Courtesy of Fluke Corporation)

FIG. 20.39 
Power quality analyzer capable of displaying 
the power in watts, the current in amperes, 

and the voltage in volts.

M20_BOYL0302_14_GE_C20.indd   853M20_BOYL0302_14_GE_C20.indd   853 28/02/23   1:47 PM28/02/23   1:47 PM



854 | | | POWER (ac) P
q

s

These effects include radiation losses, skin effect, eddy currents, and 
hysteresis losses. The first two effects apply to any network, while the 
latter two are concerned with the additional losses introduced by the 
presence of ferromagnetic materials in a changing magnetic field.

Experimental Procedure

The effective resistance of an ac circuit cannot be measured by the ratio 
|V I  since this ratio is now the impedance of a circuit that may have both 

resistance and reactance. The effective resistance can be found, however, 
by using the power equation P I R,2=  where

 R P
Ieff 2

=  (20.31)

A wattmeter and an ammeter are therefore necessary for measuring the 
effective resistance of an ac circuit.

Radiation Losses

Let us now examine the various losses in greater detail. Radiation losses 
are the losses in energy in the form of electromagnetic waves during the 
transfer of energy from one element to another. This loss in energy requires 
that the input power be larger to establish the same current I, causing R 
to increase as determined by Eq. (20.31). At a frequency of 60 Hz, the 
effects of radiation losses can be completely ignored. However, at radio 
frequencies (30 Hz to 300 GHz), this is an important effect and may in fact 
become the main effect in an electromagnetic device such as an antenna.

Skin Effect

The explanation of skin effect requires the use of some basic concepts 
previously described. Remember from Chapter 12 that a magnetic field 
exists around every current-carrying conductor (Fig. 20.40). Since the 
amount of charge flowing in ac circuits changes with time, the mag-
netic field surrounding the moving charge (current) also changes. 
Recall also that a wire placed in a changing magnetic field will have 
an induced voltage across its terminals as determined by Faraday’s law, 

φ|( )= ×e N d dt . The higher the frequency of the changing flux as 
determined by an alternating current, the greater is the induced voltage.

For a conductor carrying alternating current, the changing magnetic 
field surrounding the wire links the wire itself, thus developing within 
the wire an induced voltage that opposes the original flow of charge or 
current. These effects are more pronounced at the center of the conduc-
tor than at the surface because the center is linked by the changing flux 
inside the wire as well as that outside the wire. As the frequency of the 
applied signal increases, the flux linking the wire changes at a greater 
rate. An increase in frequency therefore increases the  counter-induced 
voltage at the center of the wire to the point where the current, for all 
practical purposes, flows on the surface of the conductor. At 60 Hz, 
the skin effect is almost noticeable. However, at radio frequencies, 
the skin effect is so pronounced that conductors are frequently made 
 hollow because the center part is relatively ineffective. The skin effect, 
therefore, reduces the effective area through which the current can flow, 
and it causes the resistance of the conductor, given by the equation 

ρ |( )↑= ↓R l A , to increase.

I

F

FIG. 20.40 
Demonstrating the skin effect on the 
effective resistance of a conductor.
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Hysteresis and Eddy Current Losses

As mentioned earlier, hysteresis and eddy current losses appear when a 
ferromagnetic material is placed in the region of a changing magnetic 
field. To describe eddy current losses in greater detail, we consider the 
effects of an alternating current passing through a coil wrapped around 
a ferromagnetic core. As the alternating current passes through the coil, 
it develops a changing magnetic flux φ  linking both the coil and the 
core that develops an induced voltage within the core as determined 
by Faraday’s law. This induced voltage and the geometric resistance of 
the core ρ |( )=R l AC  cause currents to be developed within the core, 

|( )=i e R ,Ccore ind  called eddy currents. The currents flow in circular 
paths, as shown in Fig.  20.41, changing direction with the applied ac 
potential.

The eddy current losses are determined by

P i R eddy eddy
2

core=

The magnitude of these losses is determined primarily by the type of 
core used. If the core is nonferromagnetic—and has a high resistivity 
like wood or air—the eddy current losses can be neglected. In terms 
of the frequency of the applied signal and the magnetic field strength 
produced, the eddy current loss is proportional to the square of the  
frequency times the square of the magnetic field strength:

P f Beddy
2 2∝

Eddy current losses can be reduced if the core is constructed of thin, 
laminated sheets of ferromagnetic material insulated from one another 
and aligned parallel to the magnetic flux. Such construction reduces the 
magnitude of the eddy currents by placing more resistance in their path.

Hysteresis losses were described in Section 12.6. You will recall that 
in terms of the frequency of the applied signal and the magnetic field 
strength produced, the hysteresis loss is proportional to the frequency to 
the 1st power times the magnetic field strength to the nth power:

P f B n
hys

1∝

where n can vary from 1.4 to 2.6, depending on the material under 
consideration.

Hysteresis losses can be effectively reduced by the injection of small 
amounts of silicon into the magnetic core, constituting some 2% or 3% 
of the total composition of the core. This must be done carefully, how-
ever, because too much silicon makes the core brittle and difficult to 
machine into the shape desired.

EXAMPLE 20.10

a. An air-core coil is connected to a 120 V, 60 Hz source as shown in 
Fig. 20.42. The current is found to be 5 A, and a wattmeter reading 
of 75 W is observed. Find the effective resistance and the induc-
tance of the coil.

b. A brass core is then inserted in the coil. The ammeter reads 4 A, and 
the wattmeter 80 W. Calculate the effective resistance of the core. 
To what do you attribute the increase in value over that in part (a)?

c. If a solid iron core is inserted in the coil, the current is found to be  
2 A, and the wattmeter reads 52 W. Calculate the resistance and the 
inductance of the coil. Compare these values to those in part (a), and 
account for the changes.

Eddy currents

Coil

Ferromagnetic core

+
–

I

E

FIG. 20.41 
Defining the eddy current losses of a 

ferromagnetic core.

Wattmeter

I

E

+

–

120 V /08

f  =  60 Hz

CC

PC
Coil

FIG. 20.42 
The basic components required to determine the 

effective resistance and inductance of the coil.
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(Yevgeniy11/Shutterstock)

FIG. 20.43 
Single-phase portable generator.

Solutions:

a. Ω
( )

= = =R P
I

3  75 W
5 A

 
2 2

= = = ΩZ E
I

  120 V
5 A

24 T

( ) ( )= − = Ω − Ω = ΩX Z R  24  3  23.81 L T
2 2 2 2

and                             π=X f L2L

or          L
X

f
63 16 mH

2
23.81 Ω

377 rad/s
.  L

π
= = =

b. Ω
( )

= = = Ω =R P
I

580 W
4 A

80 
16

 
2 2

The brass core has less reluctance than the air core. Therefore, a 
greater magnetic f lux density B will be created in it. Since 
P f B ,eddy

2 2∝  and P f B ,n
hys

1∝  as the flux density increases, 
the core losses and the effective resistance increase.

c. Ω
( )

= = = Ω =R P
I

13  52 W
2 A

52 
4

 
2 2

= = = ΩZ E
I

  120 V
2 A

60 T

( ) ( )= − = Ω − Ω = ΩX Z R  60  13  58.57 L T
2 2 2 2

π
= = Ω =L

X
f

155 36 mH  
2

58.57 
377 rad/s

.  L

The iron core has less reluctance than the air or brass cores. Therefore, 
a greater magnetic flux density B will be developed in the core. Again, 
since P f B ,eddy

2 2∝  and P f B ,n
hys

1∝  the increased flux density 
will cause the core losses and the effective resistance to increase.

Since the inductance L is related to the change in flux by the 
equation φ|( )=L N d di , the inductance will be greater for the 
iron core because the changing flux linking the core will increase.

20.12 APPLICATIONS
Portable Power Generators

Even though it may appear that 120 V ac are just an extension cord 
away, there are times—such as in a remote cabin, on a job site, or while 
 camping—that we are reminded that not every corner of the globe is con-
nected to an electric power source. As you travel farther away from large 
urban communities, gasoline generators such as shown in Fig.  20.43 
 appear in increasing numbers in hardware stores, lumber yards, and 
other retail establishments to meet the needs of the local community. 
Since ac generators are driven by a gasoline motor, they must be prop-
erly ventilated and cannot be run indoors. Usually, because of the noise 
and fumes that result, they are placed as far away as possible and are 
connected by a long, heavy-duty, weather-resistant extension cord. Any 
connection points must be properly protected and placed to ensure that 
the connections will not sit in a puddle of water or be sensitive to heavy 
rain or snow. Although there is some effort involved in setting up genera-
tors and constantly ensuring that they have enough gas, most users think 
that they are priceless.
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The vast majority of generators are built to provide between 1750 W 
and 5000 W of power, although larger units can provide up to 20,000 W. 
At first encounter, you may assume that 5000 W are more than  adequate. 
However, keep in mind that the unit purchased should be rated at least 
20% above your expected load because of surge currents that result 
when appliances, motors, tools, and so on, are turned on. Remember 
that even a light bulb develops a large turn-on current due to the cold, 
low-resistance state of the filament. If you work too closely to the rated 
capacity, experiences such as a severe drop in lighting can result when 
an electric saw is turned on—almost to the point where it appears that 
the lights go out altogether. Generators are like any other piece of equip-
ment: If you apply a load that is too heavy, they will shut down. Most 
have protective fuses or circuit breakers to ensure that the excursions 
above rated conditions are monitored and not exceeded beyond reason. 
The 20% protective barrier drops the output power from a 5000 W unit 
to 4000 W, and already we begin to wonder about the load we can apply. 
Although 4000 W are sufficient to run a number of 60 W bulbs, a TV, 
an oil burner, and so on, troubles develop whenever a unit is hooked 
up for direct heating (such as heaters, hair dryers, and clothes dryers). 
Even microwaves at 1200 W command quite a power drain. Add a small 
electric heater at 1500 W with six 60 W bulbs (360 W), a 250 W TV, and 
a 250 W oil burner, and then turn on an electric hair dryer at 1500 W—
suddenly you are very close to your maximum of 4000 W. It doesn’t take 
long to push the limits when it comes to energy-consuming appliances.

Table  20.3 provides a list of specifications for the broad range of  
portable gasoline generators. Since the heaviest part of a generator is the 
gasoline motor, anything over 5 hp gets pretty heavy, especially when you 
add the weight of the gasoline. Most good units providing over 2400 W will 
have receptacles for 120 V and 220 V at various current levels, with an out-
let for 12 V dc. They are also built so that they tolerate outdoor conditions 
of a reasonable nature and can run continuously for long periods of time. At 
120 V, a 5000 W unit can provide a maximum current of about 42 A.

TABLE 20.3  
Specifications for portable gasoline-driven ac generators.

Continuous output power 1750–3000 W 2000–5000 W 2250–7500 W
Horsepower of gas motor 4–11 hp 5–14 hp 5–16 hp
Continuous  

output current
At 120 V: 15–25 A
At φ220 V(3 ): 8–14 A

At 120 V: 17–42 A
At φ220 V(3 ): 9–23 A

At 120 V: 19–63 A
At φ220 V(3 ): 10–34 A

Output voltage 120 V or φ3 :  120 V/220 V 120 V or φ3 : 120 V/220 V 120 V or φ3 :  120 V/220 V
Receptacles 2 2–4 2–4
Fuel tank ½ to 2 gallons gasoline ½ to 3 gallons gasoline 1 to 5 gallons gasoline

Business Sense

Because of the costs involved, every large industrial plant must continu-
ously review its electric utility bill to ensure its accuracy and to consider 
ways to conserve energy. As described in this chapter, the power factor 
associated with the plant as a whole can have a measurable effect on 
the drain current and therefore the kVA drain on the power line. Power 
companies are aware of this problem and actually add a surcharge if the 
power factor fades below about 0.9. In other words, to ensure that the 
load appears as resistive in nature as possible, the power company asks 
users to try to ensure that their power factor is between 0.9 and 1 so that 
the kW demand is very close to the kVA demand.
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Consider the following monthly bill for a fairly large industrial plant:

kWh consumption 146.5 MWh
peak kW demand 241 kW
kW demand 233 kW
kVA demand 250 kVA

The rate schedule provided by the local power authority is the following:

Energy  First 450 kWh @ 22.3¢/kWh Next 12 MWh @ 17.1¢/kWh
   Additional kWh @ 8.9¢/kWh

Power   First 240 kW @ free
   Additional kW @ $12.05/kW

Note that this rate schedule has an energy cost breakdown and a power 
breakdown. This second fee is the one sensitive to the overall power 
factor of the plant.

The electric bill for the month is then calculated as follows:

| |

|

( ) ( )

( )

= +

+ − +

= + +

= $14 056 10

Cost 450 kWh)(22.3¢ kWh 12 MWh)(17.1¢ kWh

        [146.2 MWh 12 MWh 450 kWh)](8.9¢ kWh

         $100.35 $2052.00 $11,903.75

        , .
Before examining the effect of the power fee structure, we can find 

the overall power factor of the load for the month with the following 
ratio taken from the monthly statement:

F P
P

0 932233 kW
250 kVA

.p
a

= = =

Since the power factor is larger than 0.9, the chances are that there will 
not be a surcharge or that the surcharge will be minimal.

When the power component of the bill is determined, the kVA  demand 
is multiplied by the magic number of 0.9 to determine a kW level at this 
power factor. This kW level is compared to the metered level, and the 
consumer pays for the higher level.

In this case, if we multiply the 250 kVA by 0.9, we obtain 225 kW, 
which is slightly less than the metered level of 233 kW. However, both 
levels are less than the free level of 240 kW, so there is no  additional 
charge for the power component. The total bill remains at $14,056.10.

If the kVA demand of the bill were 388 kVA with the kW demand 
staying at 233 kW, the situation would change because 0.9 times 388 kVA 
would result in 349.2 kW, which is much greater than the metered  
233 kW. The 349.2 kW would then be used to determine the bill as follows:

|( )( )

− =

= $1315 86

         349.2 kW 240 kW 109.2 kW

  109.2 kW $12.05 kW .

which is significant.
The total bill can then be determined as follows:

= +
= $15 371 96

 Cost $14.056.10 $1,315.86

           , .
Thus, the power factor of the load dropped to | =233 kW 388 kVA 0.6,  
which would put an unnecessary  additional load on the power plant. It 
is certainly time to consider the  power-factor-correction option as des-
cribed in this text. It is not uncommon to see large capacitors sitting at 
the point where power enters a large industrial plant to perform a needed 
level of power-factor correction.

All in all, therefore, it is important to fully understand the impact of a 
poor power factor on a power plant—whether you someday work for the 
supplier or for the consumer.
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PROBLEMS

 SECTIONS 20.1 THROUGH 20.8 The Total P, Q, and S

 1.  For the battery of bulbs (purely resistive) appearing in 
Fig. 20.44:
a. Determine the total power dissipation.
b. Calculate the total reactive and apparent power.
c. Find the source current Is.
d. Calculate the resistance of each bulb for the specified 

operating conditions.
e. Determine the currents I1 and I .2

45 W

+

–
E

Is

30 W

60 W

200 V

I1 I2

FIG. 20.44 
Problem 1.

3 V
+

–
E  =  50 V /08

f  =  60 Hz

5 V 9 V

R XC XL

FIG. 20.45 
Problem 2.

E  =  ∠0º120 V

L

R2

R1

200 �

80 mH

ZT

C2 �

–

+
0.02 mF

Is

f  = 2 kHz

FIG. 20.46 
Problem 3.

 2.  For the network of Fig. 20.45:
a. Find the average power delivered to each element.
b. Find the reactive power for each element.
c. Find the apparent power for each element.
d. Find the total number of watts, volt-amperes reactive, 

and volt-amperes, and the power factor Fp  of the circuit.
e. Sketch the power triangle.
f. Find the energy dissipated by the resistor over one full 

cycle of the input voltage.
g. Find the energy stored or returned by the capacitor and 

the inductor over one half-cycle of the power curve for 
each.

 3.  For the network of Fig. 20.46:
a. Determine the total real, reactive, and apparent power 

for each parallel branch.
b. Draw the power triangle.
c. Find the total impedance and power factor of the net-

work.
d. Find the source current I .s

 4.  For the system of Fig. 20.47:
a. Find the total number of watts, volt-amperes  

reactive, and volt-amperes, and the power  
factor Fp .

b. Draw the power triangle.
c. Find the current I .s

Load 1

+

–
E  =  180 V /308

Load 2

600 VAR (C)
100 W

300 VAR (L)
0 W

Load 3

0 VAR
300 W

Is

FIG. 20.47 
Problem 4.
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 5.  For the system of Fig. 20.48:
a. Find P ,T  Q ,T  and ST .
b. Determine the power factor Fp .
c. Draw the power triangle.
d. Find I .s

+

–
E  =  60 V ∠30º

Load 4

200 VAR (C)
250 W

Is
Load 3

450 VAR (C)
100 W

Load 1

50 VAR (L)
0 W

Load 2

100 VAR (L) 
50 W

FIG. 20.49 
Problem 6.

Load 1

+

–
E  =  200 V /08 Load 2

1800 VAR (C) 
400 W

1200 VAR (L)
600 W Load 3

800 VAR (L)
100 W

Is

FIG. 20.48 
Problem 5.

 6.  For the system of Fig. 20.49:
a. Find P ,T  Q ,T  and ST .
b. Find the power factor Fp .
c. Draw the power triangle.
d. Find I .s

600 VAR (C ) /082 A 

ZT

I
f = 5 kHz

+

–

+

–

Vs VC

400 VAR (L)200 W

FIG. 20.50 
Problem 7.

R 25 V

+

–
E  =  90 V /308 XL

Is

600 VAR (L)
400 W

10 V

FIG. 20.51 
Problem 8.

 7.  For the network of Fig. 20.50:
a. Find the type and value of each element in each of the 

series loads.
b. Find the total impedance of the circuit.
c. Find the voltage across the current source.
d. Find the power factor of the series load.
e. Find the voltage across the capacitive load.

 8.  For the circuit of Fig. 20.51:
a. Find the average, reactive, and apparent power for the 

25 Ω resistor.
b. Repeat part (a) for the 10 Ω  inductive reactance.
c. Find the total number of watts, volt-amperes reactive, 

volt-amperes, and power factor Fp .
d. Find the current I .s
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 *9.  For the network of Fig. 20.52:
a. Find I .s

b. Find the average power delivered to each element.
c. Find the reactive power for each element.
d. Find the apparent power for each element.
e. Find P ,T  Q ,T  S ,T  and Fp  for the system.
f. Sketch the power triangle.

2 V

+

–
XL

Is

4 VXC 5 V

R1

2 V

R2

R3

4 V

E  =  20 V /08

FIG. 20.52 
Problem 9.

+

–

E  =  50 V/608

Is
3 V 3 V

4 V 4 Vf  = 60 Hz XL XC

R1 R2

FIG. 20.53 
Problem 10.

 10.  Repeat Problem 9 for the network of Fig. 20.53.

 *11.  For the network of Fig. 20.54:
a. Find the average power delivered to each element.
b. Find the reactive power for each element.
c. Find the apparent power for each element.
d. Find the total number of watts, volt-amperes reactive, 

volt-amperes, and power factor Fp  of the network.
e. Sketch the power triangle.
f. Find the energy dissipated by the resistor over one full 

cycle of the input voltage.
g. Find the energy stored or returned by the capacitor and 

the inductor over one half-cycle of the power curve  
for each.

R 30 V

+

–
E  =  50 V /08

L

Is 0.1 H

C 100 mF

FIG. 20.54 
Problem 11.

 12.  An electrical system is rated 15 kVA, 220 V at a 0.6 leading 
power factor.
a. Determine the impedance of the system in rectangular 

coordinates.
b. Find the average power delivered to the system.

 13.  An electrical system is rated 7.5 kVA, 150 V, at a 0.9 lag-
ging power factor.
a. Determine the impedance of the system in rectangular 

coordinates.
b. Find the average power delivered to the system.

M20_BOYL0302_14_GE_C20.indd   861M20_BOYL0302_14_GE_C20.indd   861 28/02/23   1:48 PM28/02/23   1:48 PM



P
q

s862 | | | POWER (ac)

 *14.  For the system of Fig. 20.55:
a. Find the total number of watts, volt-amperes reactive, 

volt-amperes, and Fp .
b. Find the current I .s

c. Draw the power triangle.
d. Find the type of elements and their impedance in ohms 

within each electrical box. (Assume that all elements of a 
load are in series.)

e.  Verify that the result of part (b) is correct by finding the 
current I s  using only the input voltage E and the results 
of part (d). Compare the value of I s  with that obtained for 
part (b).

Load 2

+

–
E  =  100 V /08

Load 3

0 VAR
300 W

Is

500 VAR (L)
600 W

Load 1

500 VAR (C)
0 W

FIG. 20.56 
Problem 15.

Load 2

+

–
E  =  100 V /08

Load 3

30 W
40 VAR (L)

Is

100 VAR (L)
Fp  =  0

Load 1

200 W
Fp  =  1

FIG. 20.57 
Problem 16.

 *16.  For the circuit of Fig. 20.57:
a. Find the total number of watts, volt-amperes reactive, 

volt-amperes, and Fp .
b. Find the current I .s

c. Find the type of elements and their impedance in each 
box. (Assume that the elements within each box are in 
series.)

Load 1

+

–
E  =  30 V /08

Load 2

600 VAR (C)
0 W

Is

200 VAR (L)
300 W

FIG. 20.55 
Problem 14.

 *15.  Repeat Problem 14 for the system of Fig. 20.56.
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 17.  For the circuit of Fig. 20.58:
a. Find the total number of watts, volt-amperes reactive, 

volt-amperes, and Fp .
b. Find the voltage E.
c. Find the type of elements and their impedance in each 

box. (Assume that the elements within each box are in 
series.)

+

–

I  =  6 A /08

Load 2

1000 W
0.4Fp  (leading)

Load 1

200 W
0.8Fp (leading)E

FIG. 20.58 
Problem 17.

SECTION 20.9  Power-Factor Correction

 *18.  The lighting and motor loads of a small factory establish a 
10 kVA power demand at a 0.7 lagging power factor on a 
208 V, 60 Hz supply.
a. Establish the power triangle for the load.
b. Determine the power-factor capacitor that must be 

placed in parallel with the load to raise the power factor 
to unity.

c. Determine the change in supply current from the 
uncompensated to the compensated system.

d. Repeat parts (b) and (c) if the power factor is increased  
to 0.9.

 19.  The load on a 200 V, 60 Hz supply is 8 kW (resistive),  
9 kVAR (inductive), and 3 kVAR (capacitive).
a. Find the total kilovolt-amperes.
b. Determine the Fp  of the combined loads.

c. Find the current drawn from the supply.
d. Calculate the capacitance necessary to establish a unity 

power factor.
e. Find the current drawn from the supply at unity power 

factor, and compare it to the uncompensated level.

 20.  The loading of a factory on a 1000 V, 60 Hz system includes:

 20 kW heating (unity power factor)
 10 kW (Pi  ) induction motors (0.7 lagging power factor)
  5 kW lighting (0.85 lagging power factor)

a. Establish the power triangle for the total loading on the 
supply.

b. Determine the power-factor capacitor required to raise 
the power factor to unity.

c. Determine the change in supply current from the 
uncompensated to the compensated system.

SECTION 20.10  Power Meters

 21.  a. A wattmeter is connected with its current coil as shown 
in Fig. 20.59 and with the potential coil across points 
f-g. What does the wattmeter read?

b. Repeat part (a) with the potential coil (PC) across a-b, 
b-c, a-c, a-d, c-d, d-e, and f-e.

R2

3 V+

–
E  =  60 V /08 XC 12 V

f

g
R1

4 V

CC
(Current coil)

a b c

XL

3 V
d

e

R3

2 V

PC (Potential
coil)

 FIG. 20.59 
Problem 21.
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 22.  The voltage source in Fig. 20.60 delivers 600 VA at 110 V, with 
a supply current that lags the voltage by a power factor of 0.85.
a. Determine the voltmeter, ammeter, and wattmeter 

 readings.
b. Find the load impedance in rectangular form.

SECTION 20.11  Effective Resistance

 23.  a. An air-core coil is connected to a 200 V, 60 Hz source. 
The current is found to be 4 A, and a wattmeter reading of 
80 W is observed. Find the effective resistance and the 
inductance of the coil.

b. A brass core is inserted in the coil. The ammeter reads  
3 A, and the wattmeter reads 90 W. Calculate the effective 
resistance of the core. Explain the increase over the value 
in part (a).

c. If a solid iron core is inserted in the coil, the current is 
found to be 2 A, and the wattmeter reads 60 W. Calculate 
the resistance and inductance of the coil. Compare these 
values to the values in part (a), and account for the 
changes.

I

I

E

+

–
Wattmeter

CC

PC V LOAD

FIG. 20.60 
Problem 22.

 24.  a. The inductance of an air-core coil is 0.04 H, and the 
effective resistance is 2 Ω  when a 40 V, 50 Hz source is 
connected across the coil. Find the current passing 
through the coil and the reading of a wattmeter across 
the coil.

b. If a brass core is inserted in the coil, the effective resis-
tance increases to 5 Ω, and the wattmeter reads 20 W. 
Find the current passing through the coil and the induc-
tance of the coil.

c. If a solid iron core is inserted in the coil, the effective 
resistance of the coil increases to 8 Ω,  and the current 
decreases to 1.4 A. Find the wattmeter reading and the 
inductance of the coil.

GLOSSARY

Apparent power The power delivered to a load without consid-
eration of the effects of a power-factor angle of the load. It is 
determined solely by the product of the terminal voltage and 
current of the load.

Average (real) power The delivered power dissipated in the form 
of heat by a network or system.

Eddy currents Small, circular currents in a paramagnetic core 
causing an increase in the power losses and the effective resis-
tance of the material.

Effective resistance The resistance value that includes the effects 
of radiation losses, skin effect, eddy currents, and hysteresis 
losses.

Hysteresis losses Losses in a magnetic material introduced 
by changes in the direction of the magnetic flux within the 
material.

Power-factor correction The addition of reactive components 
(typically capacitive) to establish a system power factor closer 
to unity.

Radiation losses The losses of energy in the form of electromag-
netic waves during the transfer of energy from one element to 
another.

Reactive power The power associated with reactive elements 
that provides a measure of the energy associated with setting 
up the magnetic and electric fields of inductive and capacitive 
elements, respectively.

Skin effect At high frequencies, a counter-induced voltage builds 
up at the center of a conductor, resulting in an increased flow 
near the surface (skin) of the conductor and a sharp reduction 
near the center. As a result, the effective area of conduction 
decreases and the resistance increases as defined by the basic 
equation for the geometric resistance of a conductor.

M20_BOYL0302_14_GE_C20.indd   864M20_BOYL0302_14_GE_C20.indd   864 28/02/23   1:48 PM28/02/23   1:48 PM



 Resonance

 21.1 INTRODUCTION
This chapter introduces the very important resonant (or tuned) circuit, which is fundamental 
to the operation of a wide variety of electrical and electronic systems in use today. The resonant 
circuit is a combination of R, L, and C elements having a frequency response characteristic 
similar to the one appearing in Fig. 21.1. Note in the figure that the response is a maxi-
mum for the frequency f ,r  decreasing to the right and left of this frequency. In other words, 
for a particular range of frequencies, the response will be near or equal to the maximum.  

•  Fully understand the potential impact of a resonant 
state of any oscillatory system.

• Be fully aware of the conditions that must be met 
to set a system into series or parallel resonance.

• Recognize the impact that the high energy state 
defined by the resonance condition can have on 
the behavior of the network.

• Fully understand the impact of the quality factor on 
the characteristics of a resonant network.

• Be aware of the approximations that can be 
applied if the quality factor is greater than or equal 
to ten.

• Begin to appreciate the difference between 
defining parallel resonance at the frequency either 
where the input impedance is a maximum or 
where the network has a unity power factor.

 Objectives

ffr

V, I

Increasing
current or
voltage

Increasing frequency

FIG. 21.1 
Resonance curve.

21

ƒr
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The frequencies to the far left or right have very low voltage or current 
levels and, for all practical purposes, have little effect on the system’s 
response. The radio or television receiver has a response curve for each 
broadcast station of the type indicated in Fig. 21.1. When the receiver is 
set (or tuned) to a particular station, it is set on or near the frequency fr  
in Fig. 21.1. Stations transmitting at frequencies to the far right or left of 
this resonant frequency are not carried through with significant power to 
affect the program of interest. The tuning process (setting the dial to fr ) 
as described above is the reason for the terminology tuned circuit. When 
the response is at or near the maximum, the circuit is said to be in a state 
of resonance.

The concept of resonance is not limited to electrical or electronic sys-
tems. If mechanical impulses are applied to a mechanical system at the 
proper frequency, the system will enter a state of resonance in which 
sustained vibrations of very large amplitude will develop. The frequency 
at which this occurs is called the natural frequency of the system. The 
classic example of this effect was the Tacoma Narrows Bridge built 
in 1940 over Puget Sound in Washington State. Four months after the 
bridge, with its suspended span of 2800 ft, was completed, a 42 mi/h 
pulsating gale set the bridge into oscillations at its natural frequency. 
The amplitude of the oscillations increased to the point where the main 
span broke up and fell into the water below. It was replaced by the new 
Tacoma Narrows Bridge, completed in 1950.

The resonant electrical circuit must have both inductance and capac-
itance. In addition, resistance will always be present due either to the  
lack of ideal elements or to the control offered on the shape of the reso-
nance curve. When resonance occurs due to the application of the proper 
frequency ( )f ,r  the energy absorbed by one reactive element is the same as 
that released by another reactive element within the system. In other words, 
energy pulsates from one reactive element to the other. Therefore, once an 
ideal (pure C, L) system has reached a state of resonance, it requires no fur-
ther reactive power since it is self-sustaining. In a practical circuit, there is 
some resistance associated with the reactive elements that will result in the 
eventual “damping” of the oscillations between reactive elements.

There are two types of resonant circuits: series and parallel. As the 
name implies, a series resonant circuit is a combination of series elements 
that includes a resistor, inductor, and capacitor. As shown in Fig. 21.2(a), 
a voltage source of fixed magnitude over the given frequency range is 
applied to the circuit. As the applied frequency increases, there will be a 
range of frequencies where the current through the circuit will peak as 
shown in the same figure. In other words,

a series resonant circuit is one where the resonant curve of 
interest is the current through the circuit due to an applied 
voltage source.

A parallel resonant circuit has the same component list but in a paral-
lel combination of elements and the applied source is a current source of 
fixed magnitude as shown in Fig. 21.2(b). In other words,

for parallel resonance the resonant curve of interest is the 
voltage across the output terminals of the network due to 
an applied current source.

Both types of resonant circuits, therefore, have different resonant  
parameters and applied sources. We will now investigate each type of 
resonant network in some detail.
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SERIES RESONANCE

21.2 SERIES RESONANT CIRCUIT
The basic configuration for the series resonant circuit appears in 
Fig. 21.3.

Basic Operation

First take note of the fact that a series resonant circuit requires both an 
inductor and capacitor. A resistor will always be present whether it is 
there to control shape of resonant response or due to the inherent resis-
tance levels of a circuit due to coil resistance or stray resistance.

For the full range of frequencies, the resistance will essentially remain 
fixed in value. At low frequencies, the inductive reactance π( )X fL= 2L  
will be very low approaching that of an short circuit as shown in  
Fig. 21.4(a). The reactance of the capacitor, however, at low frequencies 

X fC= 1 2C π( ) will be very high approaching that of an open circuit as 
shown in Fig. 21.4(a). Due to the approximate open circuit equivalence 
of the capacitor, the current at very low frequencies is very low as shown 
in Fig. 21.2(a).

At high frequencies, the inductive reactance will be very high and 
an open circuit equivalence can be applied as shown in Fig. 21.4(b).  

Imax

0 fresonance f

Vmax

0 fresonance f

+

–

E

+

–

I

+

–

(a)

(b)

R

R

L

L

C

C

Is

Vp

Vp

Is

FIG. 21.2 
Resonance: (a) series; (b) parallel.

R L

C

–

+

Es

ZT

I

FIG. 21.3 
Series resonant circuit.
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The capacitive reactance will be very low permitting the use of an  
approximate short-circuit connection as shown in Fig. 21.4(b). The result, 
due to the approximate equivalence of the inductor as an open circuit, is 
a current level that is very low approaching zero as shown in Fig. 21.2(a).

For the mid-range of frequencies, the total impedance is defined by

 Z R jX jX R j X XT L C L C( )= + − = + −  (21.1)

For the series, resonant circuit resonance is defined by the condition 
that

 =X XL C  (21.2)

Inserting this equivalence into Eq. (21.1) will result in a total imped-
ance of simply the resistance

 =Z RTs
 (21.3)

where the subscript s denotes resonant value.
Clearly, it is the lowest possible value of the total impedance for the 

full frequency range resulting in the highest value for the current in the 
circuit as shown in Fig. 21.2(a).

Resonant Frequency The resonant frequency can be determined 
in terms of the inductance and capacitance by examining the defining 
equation for resonance Eq. (21.2):

=X XL C

Substituting yields

ω
ω

ω= =L
C LC
1    so that    12

ω =
LC

and    1
s  (21.4a)

or 
π

( )

( )

( )

=
=
=
=

f
LC

f

L
C

1
2

   

hertz  Hz

henries  H
farads  F

s  (21.4b)

Peak Resonant Current The current through the circuit at reso-
nance is

I
E
R

E
R

0
0

0max =
∠ °
∠ °

= ∠ °

R  > ` V

–

+

E

XL

 > 0 VXC

(b)

R  > 0 V

–

+

E

XL

(a)

 > ` VXC

FIG. 21.4 
(a) Very low frequencies. (b) Very high frequencies.
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which is the maximum current for the circuit in Fig. 21.3 for an applied 
voltage E since ZT  is a minimum value. Consider also that the input 
voltage and current are in phase at resonance.

 Resonant Voltage Levels Since the current is the same through the 
capacitor and inductor, the voltage across each is equal in magnitude but 

°180  out of phase at resonance:

I X IX

I X IX

V

V

0 90 90

0 90 90
180  out of phase

L L L

C C C

( )( )

( )( )

= ∠ ° ∠ ° = ∠ °

= ∠ ° ∠− ° = ∠− °








°

and, since =X X ,L C  the magnitude of VL  equals VC  at resonance;  
that is,

 =V VL Cs s
 (21.5)

Phasor Diagram at Resonance Fig. 21.5, a phasor diagram of the 
voltages and current, clearly indicates that the voltage across the resis-
tor at resonance is the input voltage, and E, I, and VR  are in phase at 
resonance.

Power Diagram at Resonance The average power to the resistor 
at resonance is equal to I R,2  and the reactive power to the capacitor and 
inductor are I XC

2  and I X ,L
2  respectively.

The power triangle at resonance (Fig. 21.6) shows that the total ap-
parent power is equal to the average power dissipated by the resistor 
since =Q Q .L C  The power factor of the circuit at resonance is

θ= =F P
S

cos p

and           =F 1ps
 (21.6)

Plotting the power curves of each element on the same set of axes 
(Fig. 21.7), we note that, even though the total reactive power at 
any instant is equal to zero (note that = ′t t ), energy is still being  
absorbed and released by the inductor and capacitor at resonance.

A closer examination reveals that the energy absorbed by the inductor 
from time 0 to t1 is the same as the energy released by the capacitor from 
0 to t .1  The reverse occurs from t1 to t ,2  and so on. Therefore, the total 
apparent power continues to be equal to the average power, even though 

I

E

VL

VC

VR

FIG. 21.5 
Phasor diagram for the 

series resonant circuit at 
resonance.

QL = I2XL

S = EI

P = I2R = EI

QC = I2XC

FIG. 21.6 
Power triangle for the series 

resonant circuit at 
resonance.

9

t
  =

0

t1 t2 t3 t4 t5

pL

pR

pC

pC pL

Power
supplied to

element

Power
returned by

element

pL

9pL9pC

t9

FIG. 21.7 
Power curves at resonance for the series resonant circuit.
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the inductor and capacitor are absorbing and releasing energy. This con-
dition occurs only at resonance. The slightest change in frequency intro-
duces a reactive component into the power triangle, which increases the 
apparent power of the system above the average power dissipation, and 
resonance no longer exists.

21.3 THE QUALITY FACTOR (Q)
The quality factor Q of a series resonant circuit is defined as the ratio of 
the reactive power of either the inductor or the capacitor to the average 
power of the resistor at resonance; that is,

 =Q
reactive power
average powers  (21.7)

The quality factor is also an indication of how much energy is placed in 
storage (continual transfer from one reactive element to the other) com-
pared to that dissipated. The lower the level of dissipation for the same 
reactive power, the larger is the Qs  factor and the more concentrated and 
intense is the region of resonance.

Both low and high Q series resonant response curves appear in Fig. 21.8.

In general, the higher the quality factor, the higher the voltage across 
the capacitor or inductor at resonance. In fact, it can be significantly high 
and perhaps of concern.

Substituting for an inductive reactance in Eq. (21.7) at resonance 
gives us

=Q
I X
I Rs

L
2

2

and 
ω

= =Q
X
R

L
Rs

L s  (21.8)

If the resistance R is just the resistance of the coil (Rl ) then

 = = = =Q Q Q
X
R

R R   s l
L

l
lcoil  (21.9)

Since the quality factor of a coil is typically the information provided by 
manufacturers of inductors, it is often given the symbol Q without an asso-
ciated subscript. It appears from Eq. (21.9) that Ql  increases linearly with 
frequency since π=X fL2 .L  That is, if the frequency doubles, then Ql  
also increases by a factor of 2. This is approximately true for the low range 
to the midrange of frequencies such as shown for the coils in Fig. 21.9. 
Unfortunately, however, as the frequency increases, the effective resistance 

I

0

Low Qs

fs f

I

0

High Qs

fs f

(a) (b)

FIG. 21.8 
Effect of Qs as shape of resonant curve.
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500

FIG. 21.9 
Q1 versus frequency for a series of 
inductors of similar construction.

M21_BOYL0302_14_GE_C21.indd   870M21_BOYL0302_14_GE_C21.indd   870 01/03/23   6:21 PM01/03/23   6:21 PM



ƒr THR QUnLITY FnnTs (Q) | | | 871

of the coil also increases, due primarily to skin effect phenomena, and the 
resulting Ql  decreases. In addition, the capacitive effects between the wind-
ings increases, further reducing the Ql  of the coil. For this reason, Ql  must 
be specified for a particular frequency or frequency range. For wide fre-
quency applications, a plot of Ql  versus frequency is often provided. The 
maximum Ql  for most commercially available coils is less than 200, with 
most having a maximum near 100. Note in Fig. 21.9 that for coils of the 
same type, Ql  drops off more quickly for higher levels of inductance.

If we substitute
ω π= f2s s

and then    
π

=f
LC

1
2s

into Eq. (21.8), we have

ω π π
π( )= = =Q

L
R

f L
R R LC

L
2 2 1

2s
s s

L
R LC

L
L

L
R LC

1( )= =








and  =Q
R

L
C

1
s  (21.10)

providing Qs  in terms of the circuit parameters.
For series resonant circuits used in communication systems, Qs  is 

usually greater than 1. By applying the voltage divider rule to the circuit 
in Fig. 21.3, we obtain

V
X E
Z

X E
R

at resonanceL
L

T

L ( )= =

and =V Q EL ss
 (21.11)

or      = =V
X E
Z

X E
R

    C
C

T

C

and  =V Q EC ss
 (21.12)

Since Qs  is usually greater than 1, the voltage across the capacitor or 
inductor of a series resonant circuit can be significantly greater than the 
input voltage. In fact, in many cases the Qs  is so high that careful design 
and handling (including adequate insulation) are mandatory with respect 
to the voltage across the capacitor and inductor.

In the circuit in Fig. 21.10, for example, which is in the state of resonance,

= = =Q
X
R

480 Ω
6 Ω

80s
L

and  ( )( )= = = =V V Q E 800 V    80 10 V  L C s

R  =  6 V

XC  =  480 V

–

+

E  =  10 V / 08

XL  =  480 V

FIG. 21.10 
High-Q series resonant circuit.
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which is certainly a potential of significant magnitude–a great deal more 
than you would suspect with a supply voltage of only 10 V.

The phrase commonly used is there is a Q rise in voltage 
across the reactive components in a series resonant circuit.

21.4 ZT  VERSUS FREQUENCY
The total impedance of the series R-L-C circuit in Fig. 21.3 at any fre-
quency is determined by

( )= + − = + −R jX jX R j X XZ Z    or   T L C T L C

The magnitude of the impedance ZT  versus frequency is determined  
by

( )= + −Z R X XT L C
2 2

The total-impedance-versus-frequency curve for the series resonant 
circuit in Fig. 21.3 can be found by applying the impedance-versus- 
frequency curve for each element of the equation just derived, written in 
the following form:

 Z f R f X f X fT L C
2 2[ ]( ) ( )[ ] ( ) ( )= + −  (21.13)

where Z fT ( )  “means” the total impedance as a function of  frequency. 
For the frequency range of interest, we assume that the  resistance R does 
not change with frequency, resulting in the plot in Fig. 21.11. The curve 
for the inductance, as determined by the reactance equation, is a straight 
line intersecting the origin with a slope sensitive to the inductance of 
the coil. The mathematical expression for any straight line in a two- 
dimensional plane is given by

y mx b= +
Thus, for the coil,

↓ ↓ ↓ ↓
π π ( )( )= + = +

= ⋅ +

X fL L f

y m x b

2 0 2 0

                                 

L

(where πL2  is the slope), producing the results shown in Fig. 21.12.
For the capacitor,

π π
= =X

fC
X f

C
1

2
   or   1

2C C

which becomes =yx k, the equation for a hyperbola, where

( ) =y Xvariable C

( ) =x fvariable

π
( ) =k

C
constant 1

2

The hyperbolic curve for ( )X fC  is plotted in Fig. 21.13. In particu-
lar, note its very large magnitude at low frequencies and its rapid dropoff 
as the frequency increases.

If we place Figs. 21.12 and 21.13 on the same set of axes, we obtain  
the curves in Fig. 21.14. The condition of resonance is now clearly 

XC  = 1
2pfC

f0

XC ( f )

FIG. 21.13 
Capacitive reactance versus frequency.

R( f )

R

0 f

FIG. 21.11 
Resistance versus frequency.

XL  =  2pfL

XL ( f )

0

Δx
Δy

2pL  = = mΔy
Δx

f

FIG. 21.12 
Inductive reactance versus frequency.
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defined by the point of intersection, where =X X .L C  For frequencies 
less than f ,s  it is also quite clear that the network is primarily capacitive 
( )>X X .C L  For frequencies above the resonant condition, >X X ,L C  
and the network is inductive.

Applying

Z f R f X f X fT L C
2 2[ ]( ) ( )[ ] ( ) ( )= + −

R f X f2 2( )[ ] ( )[ ]= +

to the curves in Fig. 21.14, where ( ) ( ) ( )= −X f X f X f ,L C  we  
obtain the curve for ( )Z fT  as shown in Fig. 21.15. The minimum  
impedance occurs at the resonant frequency and is equal to the resistance 
R. Note that the curve is not symmetrical about the resonant frequency 
(especially at higher values of ZT ).

The phase angle associated with the total impedance is

 θ
( )

=
−− X X
R

tan L C1  (21.14)

For the − xtan 1  function (resulting when >X XL C ), the larger x is, 
the larger is the angle θ  (closer to °90 ). However, for regions where 

>X X ,C L  one must also be aware that

 ( )− = −− −x xtan tan1 1  (21.15)

At low frequencies, >X X ,C L  and θ  approaches − °90  (capacitive), 
as shown in Fig. 21.16, whereas at high frequencies, >X X ,L C  and θ  
approaches °90 . In general, therefore, for a series resonant circuit:

f f

f f

f f

I E

E I

E I

: network capacitive;    leads 

: network inductive;   leads 

: network resistive;   and   are in phase

s

s

s

<

>

=

21.5 SELECTIVITY
If we now plot the magnitude of the current =I E ZT versus frequency 
for a fixed applied voltage E, we obtain the curve shown in Fig. 21.17, 
which rises from zero to a maximum value of E R (where ZT  is a min-
imum) and then drops toward zero (as ZT  increases) at a slower rate 
than it rose to its peak value. The curve is actually the inverse of the 
impedance-versus-frequency curve. Since the ZT  curve is not absolutely 
symmetrical about the resonant frequency, the curve of the current ver-
sus frequency has the same property.

XC

X

XL

XC  >  XL XL  >  XC

fs f0

FIG. 21.14 
Placing the frequency response of the 
inductive and capacitive reactance of a 
series R-L-C circuit on the same set of 

axes.

b  Þ  a

ZT ( f )

ffs

a

ZT

R

0

FIG. 21.15 
ZT versus frequency for the series 

resonant circuit.
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08
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fs f

 FIG. 21.16 
Phase plot for the series resonant circuit.
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There is a definite range of frequencies at which the current is near its 
maximum value and the impedance is at a minimum. Those frequencies  
corresponding to 0.707 of the maximum current are called the band 
frequencies, cutoff frequencies, half-power frequencies, or corner 
frequencies. They are indicated by f1  and f2 in Fig. 21.17. The range 
of frequencies between the two is referred to as the bandwidth (abbrevi-
ated BW) of the resonant circuit.

Half-power frequencies are those frequencies at which the power  
delivered is one-half that delivered at the resonant frequency; that is,

 =P P1
2HPF max  (21.16)

The above condition is derived using the fact that

=P I Rmax max
2

and     ( ) ( )( )= = = =P I R I R I R P0.707 0.5 1
2HPF

2
max

2
max
2

max

Since the resonant circuit is adjusted to “select” a band of frequen-
cies, the curve in Fig. 21.17 is called the selectivity curve. The term 
is derived from the fact that one must be selective in choosing the fre-
quency to ensure that it is in the bandwidth.

The smaller the bandwidth, the higher is the selectivity.

The shape of the curve, as shown in Fig. 21.18, depends on each element 
of the series R-L-C circuit. If the resistance is made smaller with a fixed 
inductance and capacitance, the bandwidth decreases and the selectivity 
increases. Similarly, if the ratio L C increases with fixed resistance, the 
bandwidth again decreases with an increase in selectivity.

In terms of Q ,s  if R is larger for the same X ,L  then Qs  is less, as  
determined by the equation Q L R/ .s sω=

A small Qs ,, therefore, is associated with a resonant curve 
having a large bandwidth and a low level of selectivity, 
while a large Qs indicates the opposite.

For circuits where ≥Qs 10 (indicating a tight curve around 
the resonant frequency), a widely accepted approximation 
is that the resonant frequency bisects the bandwidth and 
that the resonant curve is symmetrical about the resonant 
frequency.

These conditions are shown in Fig. 21.19, indicating that the cutoff fre-
quencies are then equidistant from the resonant frequency.

BW

I

Imax  = E
R

0.707Imax

0 f1 fs f2 f

FIG. 21.17 
I versus frequency for the series resonant circuit.

BW

BW

fs f0

I
R3 > R2 > R1 (L, C fixed)

R1(smaller)

R2

R3(larger)

fs f0

I

BW2

BW3

BW1

L3 /C3

L2/C2

L1/C1

(R  fixed)L3/C3 > L2/C2 > L1/C1

(a)

(b)

BW

FIG. 21.18 
Effect of R, L, and C on the selectivity 
curve for the series resonant circuit.
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For any Q ,s  the preceding is not true. The cutoff frequencies f1  and 
f2 can be found for the general case (any Qs ) by first using the fact that a 
drop in current to 0.707 of its resonant value corresponds to an increase 
in impedance equal to =1 0.7071 2 times the resonant value, which 
is R.

Substituting R2  into the equation for the magnitude of Z ,T  we find 
that

( )= + −Z R X XT L C
2 2

becomes      ( )= + −R R X X2 L C
2 2

or, squaring both sides, that

( )= + −R R X X2 L C
2 2 2

and     ( )= −R X XL C
2 2

Taking the square root of both sides gives us

= − − + =R X X R X X    or    0L C L C

Let us first consider the case where >X X ,L C  which relates to 
ωf  or  .2 2  Substituting ω L2  for X L  and ω C1 2  for XC  and bringing both 

quantities to the left of the equal sign, we have

ω
ω

ω ω− + = − + =R L
C

R L
C

1 0    or    1 02
2

2 2
2

which can be written as

ω ω− − =R
L LC

1 02
2

2

Solving the quadratic, we have

R L R L LC    4
22

2

ω
( ) ( )[ ] ( )[ ]

=
− − ± − − −

and  ω = + ± +R
L

R
L LC2

1
2

4
2

2

2

with     f R
L

R
L LC

1
2 2

1
2

4 Hz2

2

π ( ) ( )= + +










  (21.17)

The negative sign in front of the second factor was dropped because 

( ) ( ) +R L LC1 2 42  is always greater than R L(2 ). If it were not 
dropped, there would be a negative solution for the radian frequency ω .2

If we repeat the same procedure for >X X ,C L  which relates to 

f or 1 1ω  such that Z R X X ,T C L
2 2( )= + −  the solution f1  becomes

f R
L

R
L LC

1
2 2

1
2

4 Hz1

2

π ( ) ( )= − + +












 (21.18)

The bandwidth (BW) is

( ) ( )= − = −BW f f Eq. 21.17 Eq. 21.182 1

and        
π

= − =BW f f R
L22 1   (21.19)

Imax

0.707Imax

a

b

a = b

f1 f2fs

FIG. 21.19 
Approximate series resonance curve 

for ≥Q 10.s
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Substituting ω=R L Qs s from ω=Q L Rs s  and π ω= f1 2 s s 
from ω π= f2s s  gives us

BW R
L

R
L

f
Q2

1
2

s

s

s

sπ π ω
ω( )( )= = =
















or           =BW
f

Q
s

s

 (21.20)

which is a very convenient form since it relates the bandwidth to the Qs  
of the circuit. As mentioned earlier, Eq. (21.20) verifies that the larger 
the Q ,s  the smaller is the bandwidth, and vice versa.

Written in a slightly different form, Eq. (21.20) becomes

 
−

=
f f

f Q
1

s s

2 1  (21.21)

The ratio ( )−f f fs2 1  is sometimes called the fractional bandwidth, 
providing an indication of the width of the bandwidth compared to the 
resonant frequency.

It can also be shown through mathematical manipulations of the per-
tinent equations that the resonant frequency is related to the geometric 
mean of the band frequencies; that is,

 =f f fs 1 2  (21.22)

21.6 VR, VL, AND VC

Plotting the magnitude (effective value) of the voltages V , V ,  and VR L C  
and the current I versus frequency for the series resonant circuit on the 
same set of axes, we obtain the curves shown in Fig. 21.20. Note that 
the VR  curve has the same shape as the I curve and a peak value equal 
to the magnitude of the input voltage E. The VC  curve builds up slowly 
at first from a value equal to the input voltage since the reactance of the 

VL

VCmax
  =  VLmax

VCs
  =  VLs

  =  QE

VR
I

f
fLmax

fCmax

fs0

Imax

E

VC

FIG. 21.20 
,VR  ,VL  ,VC  and I versus frequency for a series resonant 

circuit.
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capacitor is infinite (open circuit) at zero frequency and the reactance 
of the inductor is zero (short circuit) at this frequency. As the frequency 
increases, ωC1  of the equation

ω( )( )= =V IX I
C
1

C C

becomes smaller, but I increases at a rate faster than that at which ωC1  
drops. Therefore, VC  rises and will continue to rise due to the quickly ris-
ing current until the frequency nears resonance. As it approaches the res-
onant condition, the rate of change of I decreases. When this occurs, the 
factor ωC1 , which decreased as the frequency rose, overcomes the rate 
of change of I, and VC  starts to drop. The peak value occurs at a frequency 
just before resonance. After resonance, both VC  and I drop in magnitude, 
and VC  approaches zero.

The higher the Qs  of the circuit, the closer fCmax
 will be to f ,s  and the 

closer VCmax
 will be to Q E.s  For circuits with ≥Q 10,s  ≅f f ,  andC smax

 
≅V Q E.C smax

The curve for VL  increases steadily from zero to the resonant frequency 
since both quantities ωL  and I of the equation ω( )( )= =V IX I LL L  
increase over this frequency range. At resonance, I has reached its 
maximum value, but ωL  is still rising. Therefore, VL  reaches its max-
imum value after resonance. After reaching its peak value, the voltage 
VL  drops toward E since the drop in I overcomes the rise in ωL. It  
approaches E because X L  will eventually be infinite, and XC  will be zero.

As Qs  of the circuit increases, the frequency f Lmax
 drops toward f ,s  

and VLmax
 approaches Q Es . For circuits with ≥Q 10,s  ≅f f ,L smax

 
and ≅V Q E.L smax

The VL  curve has a greater magnitude than the VC  curve for any fre-
quency above resonance, and the VC  curve has a greater magnitude than 
the VL  curve for any frequency below resonance. This again verifies that 
the series R-L-C circuit is predominantly capacitive from zero to the res-
onant frequency and predominantly inductive for any frequency above 
resonance.

For the condition ≥Q 10,s  the curves in Fig. 21.20 appear as shown 
in Fig. 21.21. Note that they each peak (on an approximate basis) at the 
resonant frequency and have a similar shape.

In review,

1. VC and VL are at their maximum values at or near reso-
nance (depending on Qs).

2. At very low frequencies, VC  is very close to the source volt-
age and VL is very close to zero volts, whereas at very high 
frequencies, VL approaches the source voltage and VC  
approaches zero volts.

3. Both VR and I peak at the resonant frequency and have the 
same shape.
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21.7 PRACTICAL CONSIDERATIONS
In the real world, the circuit of Fig. 21.22 should appear as shown in 
Fig. 21.22. The resistance R used in all the equations in this chapter up 
to this point must include the source resistance R ,s  the resistance of the 
inductor R ,l  and any resistance Rd  introduced by design to control the 
shape of the resonant curve. For the future, therefore,

 = + +R R R Rs d l  (21.23)

21.8 SUMMARY
The following is a recap of the important observations, conclusions, and 
equations related to series resonant circuits.

• The impedance is a minimum and the current a maximum 
at the resonant frequency of a series resonant circuit.

• The applied voltage and resulting current are in phase at 
resonance since the total impedance is purely resistive.

• At frequencies below resonance, a series resonant circuit 
is capacitive (I leads E) and at frequencies above reso-
nance the series resonant circuit is inductive (E leads I).

• The sharper the resonant curve the higher the quality  
factor and selectivity of a series resonant circuit.

•  The higher the resistance the less the resonant current 
and the wider the bandwidth. The larger the ratio L/C the 
sharper the curve and the higher the quality factor.

The important equations are listed in Table 21.1.

Rs Rd Rl L

CCoil

Source

–

+

Es

FIG. 21.22 
Series resonant circuit.

VCmax
  =  VLmax

  =  QsE

VC

E
VL

VR
Imax

0 f1 fs f2

I

VL

VC

f

FIG. 21.21 
,VR  ,VL  ,VC  and I for a series resonant circuit where Q 10.s ≥
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21.9 EXAMPLES (SERIES RESONANCE)
EXAMPLE 21.1

a. For the series resonant circuit in Fig. 21.23, find I, V ,R  V ,L  and VC  
at resonance.

b. What is the Qs  of the circuit?
c. If the resonant frequency is 5000 Hz, find the bandwidth.
d. What is the power dissipated in the circuit at the half-power fre-

quencies?

VR

VC

–

+

E  =  10 V /08

I

+ –

R  =  2 V XL  =  10 V

VL+ –

XC  =  10 V
+

–

FIG. 21.23 
Example 21.1.

TABLE 21.1
Important equations related to series resonant circuits.

At Resonance Additional Equations

=X XL C  

=Z RTS

π
=f

LC
1

2s  

= =V V Q EL C sS S
 

=F 1PS

= =Q
X
R R

L
C

1
s

L

=P P1
2HPF max  

π ( )= + +










f R

L
R
L LC

1
2 2

1
2

4
1

2

π ( )= − + +










f R

L
R
L LC

1
2 2

1
2

4
2

2  

π
= − =BW f f R

L22 1  

=f f fs 1 2

Solutions:

a. = =RZ 2 ΩTs

I E
Z

5 A 0
10 V 0
2 Ω 0

 
Ts

∠= =
∠ °
∠ °

= °

V E 10 0 VR ∠= = °

I XV 0 90 5 A 0 10 Ω 90L L( )( ) ( )( )= ∠ ° ∠ ° = ∠ ° ∠ °

50 V 90  ∠= °

I XV 0 90 5 A 0 10 Ω 90C C( )( ) ( )( )= ∠ ° ∠− ° = ∠ ° ∠− °

50 V 90  ∠−= °

b. = = =Q
X
R

510 Ω
2 Ωs

L

c. = − = = =BW f f
f

Q
1000 Hz5000 Hz

5
 s

s
2 1

d. ( )( ) ( )= = = =P P I R 25 W1
2

1
2

1
2

5 A 2 Ω  HPF max max
2 2

M21_BOYL0302_14_GE_C21.indd   879M21_BOYL0302_14_GE_C21.indd   879 01/03/23   6:22 PM01/03/23   6:22 PM



880 | | | ResononR ƒr

EXAMPLE 21.2 The bandwidth of a series resonant circuit is 400 Hz.

a. If the resonant frequency is 4000 Hz, what is the value of Qs ?
b. If =R 10 Ω, what is the value of X L  at resonance?
c. Find the inductance L and capacitance C of the circuit.
d. What are the probable commercial values of L and C?

Solutions:

a. = = = =BW
f

Q
Q

f
BW

10  or   4000 Hz
400 Hz

s

s
s

s  

b. ( )( )= = = =Q
X
R

X Q R 100  or   10 10 Ω  Ωs
L

L s

c. π
π π( )

= = = =X f L L
X

f
3 98 mH2   or  

2
100 Ω

2 4000 Hz
.  L s

L

s

π π π ( )( )
= = =X

f C
C

f X
1

2
  or   1

2
1

2 4000 Hz 100 ΩC
s s C

= 397 89 nF.  
d. = ≅L 3 9 mH3.98 mH .  

µ= ≅ =C 390 nF 0 39 F397.89 nF   .  

EXAMPLE 21.3 A series R-L-C circuit has a series resonant frequency 
of 12,000 Hz.

a. If =R 5 Ω, and if X L  at resonance is 300 Ω, find the bandwidth.
b. Find the cutoff frequencies.

Solutions:

a. = = =Q
X
R

300 Ω
5 Ω

60s
L

= = =BW
f

Q
200 Hz12,000 Hz

60
 s

s

b. Since ≥Q 10,s  the bandwidth is bisected by f .s  Therefore,

= + = + =f f BW 12 100 Hz
2

12,000 Hz 100 Hz ,  s2

 and    = − =f 11 900 Hz12,000 Hz 100 Hz ,  1

EXAMPLE 21.4

a. Determine the Qs  and bandwidth for the response curve in 
Fig. 21.24.

b. For C 100 nF,=  determine L and R for the series resonant circuit.

c. Determine the applied voltage.

Solutions:

a. The resonant frequency is 2800 Hz. At 0.707 times the peak value,

BW 200 Hz =

and  Q
f

BW
142800 Hz

200 Hzs
s= = =

I (mA)

200

100

0 2000 3000 4000 f (Hz)

FIG. 21.24 
Example 21.4.
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b.  
π π

= =f
LC

L
f C

1
2

    or    1
4s

s
2 2

1
4 2.8 kHz 100 nF2 2π ( ) ( )

=

32 3 mH.  =

Q
X
R

R
X
Q

   or    2 2800 Hz 32.3 mH
14s

L L

s

π( )( )
= = =

= 40 6 Ω.  

c.  = =I E
R

E I R    or    max max

   8 12 V200 mA 40.6 Ω .  ( )( )= =

EXAMPLE 21.5 A series R-L-C circuit is designed to resonate at ω = 10 rad s,s
5  

have a bandwidth of ω0.15 ,s  and draw 16 W from a 120 V source at resonance.

a. Determine the value of R.
b. Find the bandwidth in hertz.
c. Find the nameplate values of L and C.
d. Determine the Qs  of the circuit.
e. Determine the fractional bandwidth.

Solutions:

a. 
( )

= = = =P E
R

R E
P

900  and   120 V
16 W

 Ω
2 2 2

b. 
ω
π π

= = =f
2

10  rad/s
2

15,915.49 Hzs
s

5

( )= = =BW f 2387 32 Hz0.15 0.15 15,915.49 Hz .  s

c. Eq. (21.19):

π π π( )
= = = =BW R

L
L R

BW
60 mH

2
  and  

2
900 Ω

2 2387.32 Hz
 

π π
= =f

LC
C

f L
1

2
  and   1

4s
s

2 2

π ( )( )
=

× −

1
4 15,915.49 Hz 60 102 2 3

= 1 67 nF.  

d. 
π π( )( )= = = =Q

X
R

f L
R

6 67
2 2 15,915.49 Hz 60 mH

900 Ω
.s

L s

e. 
−

= = = =
f f

f
BW
f Q

0 151 1
6.67

.
s s s

2 1

PARALLEL RESONANCE

21.10 PARALLEL RESONANT CIRCUIT
The basic format of the parallel resonant network appears as shown in Fig. 21.25. 
Unfortunately, it is not simply a parallel R-L-C network to compare with the nice  
series configuration encountered for the series resonant circuit. If it did have the simple 
parallel element configuration, the equations set the conditions for resonance would be 

Rl

XL

XC

FIG. 21.25 
Practical parallel L-C 

network.
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quite easy to obtain and, in fact, would be a close match of those obtained 
for series resonance. However, since we have learned in an earlier chapter 
how to convert a series configuration to a parallel equivalent, we can fol-
low that route to obtain the clean format of Fig. 21.26. The only problem 
is when we do convert to the format of Fig. 21.26, the resistance R will not 
be totally resistive and in fact will be a function of the applied frequency. 
In addition, the inductive reactance will be a function of the resistance 
in series with the inductive element. However, making the conversion is 
worth our effort as we shall see in the upcoming development.

Let us start our investigation by first converting the series R-L branch 
of Fig. 21.25 to an equivalent parallel R-L configuration using a tech-
nique introduced in Section 15.10. The total impedance of the series R-L 
branch of Fig. 21.25 is the following:

= +Z R jXR L l L-

and      = =
+

=
+

−
+R jX

R
R X

j
X

R X
Y

Z
1 1

R L
R L l L

l

l L

L

l L
-

-
2 2 2 2

R X
R

j
R X

X
R jX

1 1 1 1

l L

l

l L

L

p L
2 2 2 2

p

=
+

+
+








= +

with   =
+

R
R X

Rp
l L

l

2 2
 (21.24)

and   =
+

X
R X

XL
l L

L

2 2

p
 (21.25)

as shown in Fig. 21.27.

Redrawing the network in Fig. 21.25 with the equivalent in Fig. 21.27 
and a practical current source having an internal resistance Rs  results in 
the network in Fig. 21.28.

C VC

+

–
R L

ZT

I

FIG. 21.26 
Ideal parallel resonant network.

Rl

XL

Rp
Rl

2 + XL
2

Rl
XLp

Rl
2 + XL

2

XL
=

FIG. 21.27 
Equivalent parallel network for a series R-L 

combination.

I Rp

+
VpXLp

–
XCRs

ZT

YT

Source

FIG. 21.28 
Substituting the equivalent parallel network for the series R-L 

combination in Fig. 21.25.
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If we define the parallel combination of Rs  and Rp  by the notation

 R R Rs p=   (21.26)

the network in Fig. 21.29 results. It has the same format as the ideal 
configuration in Fig. 21.26.

We are now at a point where we can define the resonance  conditions 
for the practical parallel resonant configuration. Recall that for  series 
resonance, the resonant frequency was the frequency at which the 
 impedance was a minimum, the current a maximum, and the input 
 impedance purely resistive and the network had a unity power factor.

For parallel networks, since the resistance R p  in our 
equivalent model is frequency dependent, the frequency at 
which maximum Vc  is obtained is not the same as required 
for the unity-power-factor characteristic.

Since both conditions are often used to define the resonant state, the 
frequency at which each occurs is designated by different subscripts.

Resonant Frequency

Unity Power Factor Conditions, fp  For the network in Fig. 21.28,

R jX jX
Y

Z Z Z
1 1 1 1 1 1

T
L C1 2 3 p

= + + = + +
−

R
j

X
j

X
1 1 1

L Cp

= −










+








and       
R

j
X X

Y 1 1 1
T

C L p

= + −










 (21.27)

For unity power factor, the reactive component must be zero as  
defined by

− =
X X
1 1 0

C L p

Therefore,    =
X X
1 1

C L p

and           X XL Cp
=  (21.28)

The result is clearly very similar to that obtained for series resonance. 
Finding the equivalent parallel network for the series R-L branch was 
obviously the way to go.

If we now substitute the conditions set by Eq. (21.28), the total admit-
tance of Eq. (21.27) becomes simply

=
R

Y 1
TP

or the total impedance is simply

= = = ∠ °

R

RZ
Y
1 1

1 0T
T

P

XCR XLp

YT

I

ZT

FIG. 21.29 
Substituting = R R Rs p for the 

network in Fig. 21.28.
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and     = = R R RZT s pp

so that the total impedance as resonance is

 R
R X

R
ZT s

l L

l

2 2

p
= 

+





  (21.29)

Substituting for X L p
 in Eq. 21.28:

 
R X

X
Xl L

L
C

2 2+
=  (21.30)

The resonant frequency, f ,p  can now be determined from Eq. (21.30) 
as follows:

ω
ω( )+ = = =R X X X

C
L L

C
1

l L C L
2 2

or                     = −X L
C

RL l
2 2

with      π = −f L L
C

R2 p l
2

and                     
π

= −f
L

L
C

R1
2p l

2

Multiplying the top and bottom of the factor within the square root 
sign by C L  produces

π π
( )

=
−

= −f
L

R C L

C L L C L

R C
L

1
2

1 1
2

1p
l l
2 2

and       f
LC

R C
L

1
2

1p
l
2

π
= −  (21.31)

or         f f
R C

L
1p s

l
2

= −   (21.32)

where f p  is the resonant frequency of a parallel resonant circuit (for 
=F 1p ) and fs  is the resonant frequency as determined by =X XL C  

for series resonance. Note that unlike a series resonant circuit, the res-
onant frequency f p  is a function of resistance (in this case Rl ). Note 
also, however, the absence of the source resistance Rs  in Eqs. (21.31) 
and (21.32). Since the factor ( )− R C L1 l

2  is less than 1, f p  is less 
than f .s  Recognize also that as the magnitude of Rl  approaches zero, f p  
rapidly approaches f .s

Maximum Impedance Conditions, fm  At =f f p the input  
impedance of a parallel resonant circuit will be near its maximum value 
but not quite its maximum value due to the frequency dependence of 
R .p  The frequency at which maximum impedance occurs is defined 
by fm  and is slightly more than f ,p  as demonstrated in Fig. 21.30. The 
frequency fm  is determined by differentiating (calculus) the general 
equation for ZT  with respect to frequency and then determining the fre-
quency at which the resulting equation is equal to zero. The algebra is 

ZT

ZTm

Rl
0 fmfp f

FIG. 21.30 
ZT  versus frequency for the 

parallel resonant circuit.
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Vp( f ) I( f ) ZT ( f )

FIG. 21.31 
Defining the shape of the ( )V fp  

curve.

quite extensive and cumbersome and is not included here. The resulting 
equation, however, is the following:

 f f
R C

L
1 1

4m s
l
2( )= −  (21.33)

Note the similarities with Eq. (21.32). Since the square root factor of 
Eq. (21.33) is always more than the similar factor of Eq. (21.32), fm  is 
always closer to fs  and more than f .p  In general,

 f f fs m p> >  (21.34)

Once fm  is determined, the network in Fig. 21.29 can be used to  
determine the magnitude and phase angle of the total impedance at the 
resonance condition simply by substituting f fm=  and performing the 
required calculations. That is,

 Z R X X T L C
f f

m p
m

=   
=

 (21.35)

21.11 SELECTIVITY CURVE FOR PARALLEL 
RESONANT CIRCUITS
The ZT-versus-frequency curve in Fig. 21.30 clearly reveals that a par-
allel resonant circuit exhibits maximum impedance at resonance ( )f ,m  
unlike the series resonant circuit, which experiences minimum resistance 
levels at resonance. Note also that ZT  is approximately Rl  at =f 0 Hz  
since =  ≅Z R R R .T s l l

Since the current I of the current source is constant for any value 
of ZT  or frequency, the voltage across the parallel circuit will have the 
same shape as the total impedance Z ,T  as shown in Fig. 21.31.

For the parallel circuit, the resonance curve of interest is that of 
the voltage VC  across the capacitor. The reason for this interest in VC   
derives from electronic considerations that often place the capacitor at 
the input to another stage of a network.

Since the voltage across parallel elements is the same,

 V V IZC p T= =  (21.36)

The resonant value of VC  is therefore determined by the value of ZTm
 

and the magnitude of the current source I.
The quality factor of the parallel resonant circuit continues to be  

determined by the ratio of the reactive power to the real power. That is,

=Q
V X

V Rp
p L

p

2

2

p

where =R R R ,s p  and Vp  is the voltage across the parallel branches. 
The result is

 Q R
X

R R

Xp
L

s p

Lp p

= =


 (21.37)

or, since =X XL Cp
 at resonance,

 Q
R R

Xp
s p

C

=


 (21.38)
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For the ideal current source R Ωs( )= ∞  or when Rs  is sufficiently 
large compared to R ,p  we can make the following approximation:

=  ≅R R R Rs p p

and       
( )

( )
=


= =

+
+ /

Q
R R

X

R

X

R X R

R X X

 
p

s p

L

p

L

l L l

l L L

2 2

2 2
p p

so that        Q
X
R

Qp
L

l

R R1
S p

= =
>>

 (21.39)

which is simply the quality factor Ql  of the coil.
In general, the bandwidth is still related to the resonant frequency and 

the quality factor by

 BW f f
f

Q
r

p
2 1= − =  (21.40)

The cutoff frequencies f1  and f2 can be determined using the equiv-
alent network in Fig. 21.29 and the unity power condition for resonance. 
The half-power frequencies are defined by the condition that the output 
voltage is 0.707 times the maximum value. However, for parallel reso-
nance with a current source driving the network, the frequency response 
for the driving point impedance is the same as that for the output voltage. 
This similarity permits defining each cutoff frequency as the frequency 
at which the input impedance is 0.707 times its maximum value. Since 
the maximum value is the equivalent resistance R in Fig. 21.29, the cut-
off frequencies are associated with an impedance equal to 0.707R or 

R1 2 .( )/
Setting the magnitude of the input impedance for the network in 

Fig. 21.29 equal to this value results in the following:

ω
ω( )

= =
+ −

= =Z Z

R
C

L

R R1

1 1
0.707

2
2

2

or    ω
ω( )+ − =

R
C

L R
1 1 2

2

2

Squaring both sides gives

ω
ω( )+ − =

R
C

L R
1 1 2

2

2

2

which results in

ω
ω( )− =C

L R
1 12

2

The resulting fourth-degree equation for ω  results in two second- degree 
equations for ω:

ω
ω

− = −C
L R

1 1

and    ω
ω

− =C
L R

1 1

Solving each for the positive result for ω  gives

ω ( )= − + +
RC RC LC
1

2
1

2
1

1

2
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and             ω ( )= + +
RC RC LC
1

2
1

2
1

2

2

so that  f
C R R

C
L

1
4

1 1 4
1 2π

= − + +












 (21.41)

 f
C R R

C
L

1
4

1 1 4
2 2π

= + +












 (21.42)

The effect of R ,l  L, and C on the shape of the parallel resonance 
curve, as shown in Fig. 21.32 for the input impedance, is quite similar 
to their effect on the series resonance curve. Whether or not Rl  is zero, 
the parallel resonant circuit frequently appears in a network schematic as 
shown in Fig. 21.32.

At resonance, an increase in Rl  or a decrease in the ratio /L C  results 
in a decrease in the resonant impedance, with a corresponding increase  
in the current. The bandwidth of the resonance curves is given by  
Eq. (21.40). For increasing Rl  or decreasing L (or L C for constant C), 
the bandwidth increases as shown in Fig. 21.32.

At low frequencies, the capacitive reactance is quite high, and the  
inductive reactance is low. Since the elements are in parallel, the total 
impedance at low frequencies is therefore inductive. At high frequencies, 
the reverse is true, and the network is capacitive. At resonance ( )f ,p  the 
network appears resistive. These facts lead to the phase plot in Fig. 21.33.  

Rl3

ffr0

Rl3
 > Rl2

 > Rl1

L/C fixed

Zp
Rl1

Rl2

Rl

ffr0

Zp
L3

C3

L2

C2

L1

C1
> >

Rl fixed L3/C3

L2/C2

L1/C1

FIG. 21.32 
Effect of ,Rl  L, and C on the parallel resonance curve.

Resonance (resistive)Circuit inductive
Lagging Fp

Circuit capacitive
Leading Fp

fp f

(Vp leads I)

908

458

08

–908

–458

FIG. 21.33 
Phase plot for the parallel resonant circuit.
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Note that it is the inverse of that appearing for the series resonant circuit 
because at low frequencies the series resonant circuit was capacitive and 
at high frequencies it was inductive.

21.12 EFFECT OF 10≥lQ
The content of the previous section may suggest that the analysis of par-
allel resonant circuits is significantly more complex than that encoun-
tered for series resonant circuits. Fortunately, however, this is not the 
case since, for the majority of parallel resonant circuits, the quality fac-
tor of the coil Ql  is sufficiently large to permit a number of approxima-
tions that simplify the required analysis.

Inductive Reactance, X LP

If we expand X L p
 as

( )

( )
=

+
= + = +X

R X
X

R X
X X

X
X
Q

XL
l L

L

l L

L L
L

L

l
L

2 2 2

2p

then, for ≥Q 10,l  / <<Q1 1,l
2  and therefore

+ = +






 ≅

X
Q

X X
Q

X1 1L

l
L L

l
L2 2

 

which results in

 X XL L Q    10p l
≅

≥
 (21.43)

and since resonance is defined by =X X ,L Cp
 the resulting condition 

for resonance is reduced to

 X XL C Q    10l
≅

≥
 (21.44)

Resonant Frequency, fp  (Unity Power Factor)

We can rewrite the factor /R C Ll
2  of Eq. (21.32) as

ω
ω

ω
ω

( )

( )

= = = =
R C

L L
R C

L
R C

L
R C

X X
R

1 1 1 1l

l l l

L C

l

2

2 2 2 2

and substitute Eq. (21.44) ( )≅X X :L C

= =X X
R

X
R

Q
1 1 1

L C

l

L

l

l
2

2

2

2

Eq. (21.32) then becomes

 f f
Q

1 1
p s

l Q
2

   10l

= −
≥

 (21.45)

clearly revealing that as Ql  increases, f p  becomes closer and closer  
to f .s
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For ≥Q 10,l

− ≅
Q

1 1 1
l
2

and       f f
LC

1
2p s

Q    10l
π

≅ =
≥

 (21.46)

Resonant Frequency, fm  (Maximum VC)

Using the equivalency / = /R C L Q1l l
2 2 derived for Eq. (21.45), we find 

that Eq. (21.33) takes on the form

 f f
Q

1 1
4

1
m s

l Q
2

   10l

≅ −








≥
 (21.47)

The fact that the negative term under the square root will always be 
less than that appearing in the equation for f p  reveals that fm  will al-
ways be closer to fs  than f .p

For ≥Q 10,l  the negative term becomes very small and can be 
dropped from consideration, leaving

 f f
LC

1
2m s

Q    10l
π

≅ =
≥

 (21.48)

In total, therefore, for ≥Q 10,l

 f f fp m s
Q    10l

≅ ≅
≥

 (21.49)

Rp

=
+

= +






 = +R

R X
R

R
X
R

R
R

R
X
R

Rp
l L

l
l

L

l

l

l
l

L

l
l

2 2 2 2

2

( )= + = +R Q R Q R1l l l l l
2 2

For ≥Q 10,l  + ≅Q Q1 ,l l
2 2  and

 R Q Rp l l Q
2

  10l
≅

≥
 (21.50)

Applying the approximations just derived to the network in Fig. 21.28 
results in the approximate equivalent network for ≥Q 10l  in Fig. 21.34, 
which is certainly a lot “cleaner” in general appearance.

Rs Rp  =  
ZTp

I XLp
  = XL XCRll

2Q

FIG. 21.34 
Approximate equivalent circuit for ≥ 10.Ql
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Substituting =Q
X
Rl

L

l

 into Eq. (21.50) gives

R Q R
X
R

R
X
R

X X
R

fL
R fC

2
2p l l

L

l
l

L

l

L C

l l

2
2 2 π

π( )
≅ =







 = = =

and            R L
R Cp

l Q    10l

≅
≥

 (21.51)

ZTp

The total impedance at resonance is now defined by

 Z R R R Q R T s p s l l Q
2

   10p l
≅  = 

≥
 (21.52)

For an ideal current source R Ω ,s( )= ∞  or if >>R R ,s p  the equa-
tion reduces to

 Z Q RT l l
Q R R

2

   10,   p
l s p

≅
≥ >>

 (21.53)

Qp

The quality factor is now defined by

 Q R
X

R Q R

Xp
L

s l l

L

2

p

= ≅
  (21.54)

Quite obviously, therefore, Rs  does have an impact on the quality 
factor of the network and the shape of the resonant curves.

If an ideal current source ( )= ∞R Ωs  is used, or if >>R R ,s p

≅
 

= =
/

=Q
R Q R

X
Q R

X
Q

X R
Q
Qp

s l l

L

l l

L

l

L l

l

l

2 2 2 2

and            Q Qp l
Q R R10,   l s p�

≅
≥

 (21.55)

BW
The bandwidth defined by f p  is

 BW f f
f

Q
p

p
2 1= − =  (21.56)

By substituting Q p from above and performing a few algebraic manipu-
lations, we can show that

 BW f f
R
L R C

1
2

1l

s
2 1 π

= − ≅ +










  (21.57)

clearly revealing the impact of Rs  on the resulting bandwidth. Of course, 
if = ∞R Ωs  (ideal current source), then

 BW f f
R

L2
l

R
2 1

   Ωs
π

= − ≅
= ∞

 (21.58)
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IL   and IC

A portion of Fig. 21.34 is reproduced in Fig. 21.35, with IT  defined as 
shown.

As indicated, ZTp
 at resonance is Q R .l l

2  The voltage across the paral-
lel network is, therefore,

= = = =V V V I Z I Q RC L R T T T l l
2

p

The magnitude of the current IC  can then be determined using Ohm’s 
law as follows:

= =I
V
X

I Q R
XC

C

C

T l l

C

2

Substituting =X XC L  when ≥Q 10l  gives

= = =I
I Q R

X
I

Q
X
R

I
Q
QC

T l l

L
T

l

L

l

T
l

l

2 2 2

and            I Q IC l T
Q    10l

≅
≥

 (21.59)

revealing that the capacitive current is Ql  times the magnitude of the 
current entering the parallel resonant circuit. For large Q ,l  the current 
IC  can be significant.

A similar derivation results in

 I Q IL l T
Q    10l

≅
≥

 (21.60)

Conclusions

The equations resulting from the application of the condition ≥Q 10l  
are obviously a great deal easier to apply than those obtained earlier. 
It is, therefore, a condition that should be checked early in an analy-
sis to determine which approach must be applied. Although the con-
dition ≥Q 10l  was applied throughout, many of the equations are 
still good approximations for <Q 10.l  For instance, if =Q 5,l   
X L p

= ( )/ + = / + =X Q X X X X25 1.04 ,L l l L L L
2  which is very 

close to X .L  In fact, for =Q 2,l  X X X X4 1.25 ,L L L Lp
( )= / + =  

which is not X ,L  but it is only 25% off. In general, be aware that 
the approximate equations can be applied with good accuracy with 

<Q 10.l  The smaller the level of Q ,l  however, the less valid is the ap-
proximation. The approximate equations are certainly valid for a range 
of values of <Q 10l  if a rough approximation to the actual response is 
desired rather than one accurate to the hundredths place.

21.13 SUMMARY TABLE
In an effort to limit any confusion resulting from the introduction of f p  
and fm  and an approximate approach dependent on Q ,l  the summary in 
Table 21.2 was developed. You can always use the equations for any Q ,l  
but a proficiency in applying the approximate equations defined by Ql  
will pay dividends in the long run.

IT

RP XL XC VC

+

–

ICIL

ZTp
  =  Rp  =  Ql

2Rl

FIG. 21.35 
Establishing the relationship between IC  

and IL and the current .IT
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For the future, the analysis of a parallel resonant network may pro-
ceed as follows:

1. Determine fs
 to obtain some idea of the resonant fre-

quency. Recall that for most situations, fs , fm , and fp will 
be relatively close to each other.

2. Calculate an approximate Ql  using fs from below, and 
compare it to the condition ≥Ql 10. If the condition is 
satisfied, the approximate approach should be the chosen 
path unless a high degree of accuracy is required.

3. If Ql  is less than 10, the approximate approach can be applied, 
but it must be understood that the smaller the level of Ql , 
the less accurate is the solution. However, considering the 
typical variations from nameplate values for many of our 
components and that a resonant  frequency to the tenths 
place is seldom required, the use of the approximate 
approach for many practical situations is usually quite valid.

21.14 EXAMPLES (PARALLEL RESONANCE)
EXAMPLE 21.6 Given the parallel network in Fig. 21.36 composed 
of “ideal” elements:

a. Determine the resonant frequency f .p

b. Find the total impedance at resonance.

TABLE 21.2 
Parallel resonant circuit | π( )( )=f LC1 2 .s

Any Ql ≥Ql 10 2Q , R Q Rl s l l10≥ >>

f p
−f

R C
L

1s
l
2 f s f s

fm
−











f
R C

L
1 1

4s
l
2 f s f s

ZTp  =
+






R R R

R X
Rs p s

l L

l

2 2 R Q Rs l l
2 Q Rl l

2

ZTm  R Z Zs R L C- R Q Rs l l
2 Q Rl l

2

Q p
=

Z

X

Z

X
T

L

T

C

p

p

p =
Z

X

Z

X
T

L

T

C

p p Ql

BW f

Q
f

Q
orp

p

m

p

=
f

Q
f

Q
p

p

s

p

=
f

Q
f

Q
p

l

s

l

I I,  L C
Network analysis = =I I Q IL C l T = =I I Q IL C l T

ZTp
10 kV 1 mH 1 mF VC

+

–

ICIL

I  =  10 mA Rs

Source “Tank circuit”

L C

FIG. 21.36 
Example 21.6.
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c. Calculate the quality factor, bandwidth, and cutoff frequencies f1  
and f2  of the system.

d. Find the voltage VC  at resonance.
e. Determine the currents I L  and IC  at resonance.

Solutions:

a. The fact that Rl  is zero ohms results in a very high ( )= /Q X R ,l L l  
permitting the use of the following equation for f :p

π π µ
= = =f f

LC
1

2
1

2 (1 mH) 1  F)p s  

= 5 03 kHz.  
b. For the parallel reactive elements,


( )( )

( )
 =

∠ ° ∠− °
+ −

X X

j X X
Z Z

90 90
L C

L C

L C

but =X XL C  at resonance, resulting in a zero in the denominator 
of the equation and a very high impedance that can be approximated 
by an open circuit. Therefore,

=   ≅ =Z R RZ Z 10 kΩ   T s L C sp

c. 
π π

= = = =Q
R

X
R
f L

316 41
2

10 kΩ
2 (5.03 kHz)(1 mH)

.p
s

L

s

pp

= = =BW
f

Q
15 90 Hz5.03 kHz

316.41
.  p

p

Eq. (21.41):

π
= − +













f
C R R

C
L

1
4

1 1 4
1 2

1
4 1  F

1
10 kΩ

1
10 kΩ

4 1  F
1 mH2π µ
µ

( )

( )

( )
= − +













= 5 025 kHz.  

Eq. (21.42):

π
= + +













f
C R R

C
L

1
4

1 1 4
2 2

= 5 041 kHz.  

d. ( )( )= = =V IZ 100 V10 mA 10 kΩ  C Tp

e. 
π π( )( )

= = = = =I
V
X

V
f L

3 16 A
2

100 V
2 5.03 kHz 1 mH

100 V
31.6 Ω

.  L
L

L

C

p

 I
V
X

Q I3 16 A100 V
31.6 Ω

.    C
C

C
p( )= = = =  

Example 21.6 demonstrates the impact of Rs  on the calculations associ-
ated with parallel resonance. The source impedance is the only factor 
limiting the input impedance and the level of V .C
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a. Determine f ,s  f ,m  and f ,p  and compare their levels.
b. Calculate the maximum impedance and the magnitude of the volt-

age VC  at f .m

c. Determine the quality factor Q .p

d. Calculate the bandwidth.
e. Compare the above results with those obtained using the equations 

associated with Q 10.l ≥

Solutions:

a. 
π π ( )( )

= = =f
LC

29 06 kHz1
2

1
2 0.3 mH 100 nF

.  s

= − 







f f
R C

L
1 1

4m s
l
2

( )
( ) ( )

= − 







29.06 kHz 1 1
4

20 Ω 100 nF
0.3 mH

2

= 25 58 kHz.  

( )
( ) ( )

= − = − 







f f
R C

L
1 29.06 kHz 1 20 Ω 100 nF

0.3 mHp s
l
2 2

= 27 06 kHz.  

Both fm  and f p  are less than f ,s  as predicted. In addition, fm  is 
closer to fs  than f ,p  as forecast. fm  is about 0.5 kHz less than f ,s  
whereas f p  is about 2 kHz less. The differences among f ,s  f ,m  and 
f p  suggest a low Q network.

b. ( )= + − =R jX jX f fZ at T l L C mm

π π( )( )= = =X f L2 2 28.58 kHz 0.3 mH 53.87 ΩL m

π π( )( )
= = =X

f C
1

2
1

2 28.58 kHz 100 nF
55.69 ΩC

m

R jX j20 Ω 53.87 Ω 57.46 Ω 69.63l L+ = + = ∠ °

j j
Z

57.46 Ω 69.63 55.69 Ω 90
20 Ω 53.87 Ω 55.69 ΩTm

( )( )
=

∠ ° ∠− °
+ −
∠−= °159 34 15 17.  Ω  .

( )( )= = =V IZ 318 68 mV2 mA 159.34 Ω .  C Tmmax

c. R  Ω;s = ∞  therefore,

=


= = =Q
R R

X

R

X
Q

X
Rp

s p

L

p

L
l

L

lp p

π( )( )
= = = 2 552 27.06 kHz 0.3 mH

20 Ω
51 Ω
20 Ω

.

Rl 20 V

XL 0.3 mH

C 100 nF VC

+

–

ZTp

I  =  2 mA

FIG. 21.37 
Example 21.7.

EXAMPLE 21.7 For the parallel resonant circuit in Fig. 21.37 with 
R Ω:s = ∞
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The low Q confirms the conclusion of part (a). The differences 
among f ,s  f ,m  and f p  are significantly less for higher Q networks.

d. = = =BW
f

Q
10 61 kHz27.06 kHz

2.55
.  p

p

e. For ≥Q 10,l  = = =f f f 29 06 kHz.  m p s

π π( )( )
= = = =Q Q

f L
R

2 74
2 2 29.06 kHz 0.3 mH

20 Ω
.p l

s

l

(versus 2.55 above)

Z Q R 150 15 Ω 02.74 20 Ω .    T l l
2 2

p
∠( )= = ⋅ = °

(versus 159.34 Ω 15.17∠− ° above)

( )( )= = =V IZ 300 3 mV2 mA 150.15 Ω .  C Tpmax

(versus 318.68 mV above)

BW
f

Q
10 61 kHz29.06 kHz

2.74
.  p

p

= = =  

(versus 10.61 kHz above)

The results reveal that, even for a relatively low Q system, the  
approximate solutions are still close compared to those obtained using the 
full equations. The primary difference is between fs  and f p (about 7%), 
with the difference between fs  and fm  at less than 2%. For the future, 
using fs  to determine Ql  will certainly provide a measure of Ql  that can 
be used to determine whether the approximate approach is appropriate.

EXAMPLE 21.8 For the network in Fig. 21.38 with f p  provided:

a. Determine Q .l

b. Determine R .p

c. Calculate Z .Tp

d. Find C at resonance.
e. Find Q .p

f. Calculate the BW and cutoff frequencies.

 Solutions:

a. 
π π( )( )

= = = =Q
X
R

f L

R
25 12

2 2 0.04 MHz 1 mH
10 Ω

.l
L

l

p

l

b. ≥Q 10.l  Therefore,

R Q R 6 31 kΩ25.12 10 Ω .  p l l
2 2( ) ( )≅ = =

c. =  =  =Z R R 5 45  40 kΩ  6.31 kΩ .  kΩT s pp

d. ≥Q 10.l  Therefore,

π
≅f

LC
1

2p

and 
π π ( ) ( )

= = =C
f L

15 83 nF1
4

1
4 0.04 MHz 1 mH

.  
2 2 2 2

e. ≥Q 10.l  Therefore,

π π( )( )
= =


= =Q

Z

X

R Q R

f L
21 68

 

2
5.45 kΩ

2 0.04 MHz 1 mH
.p

T

L

s l l

p

2
p

CRs

L

40 k�

Rl 10 V

1 mH

fp  =  0.04 MHz

I

FIG. 21.38 
Example 21.8.

M21_BOYL0302_14_GE_C21.indd   895M21_BOYL0302_14_GE_C21.indd   895 01/03/23   6:24 PM01/03/23   6:24 PM



896 | | | ResononR ƒr

IC  =  2 mA

50 kV

Rl 100 V

L 5 mH

C 50 pF

Vp

FIG. 21.39 
Example 21.9.

CRs
50 kV

L

Rl 100 V

5 mH

50 pF

Vp

2 mAI

FIG. 21.40 
Equivalent network for the transistor 

configuration in Fig. 21.39.

f. = = =BW
f

Q
1 85 kHz0.04 MHz

21.68
.  p

p

π
= − + +













f
C R R

C
L

1
4

1 1 4
l 2

1
4 15.9 nF

1
5.45 kΩ

1
5.45 kΩ

4 15.9 nF
1 mH2π( ) ( )

( )= − + +












[ ]= × − × + ×− −5.005 10 183.486 10 7.977 106 6 3

[ ]= × × −5.005 10 7.794 106 3

= 39 kHz 

π
= + +













f
C R R

C
L

1
4

1 1 4
2 2

[ ]= × × + ×− −5.005 10 183.486 10 7.977 106 6 3

[ ]= × × −5.005 10 8.160 106 3

= 40 84 kHz.  

Note that − = − =f f 40.84 kHz 39 kHz 1.84 kHz,2 1  
confirming our solution for the bandwidth above. Note also that the 
bandwidth is not  symmetrical about the resonant frequency, with  
1 kHz below and 840 Hz above.

EXAMPLE 21.9 The equivalent network for the transistor configura-
tion in Fig. 21.39 is provided in Fig. 21.40.

a. Find f .p

b. Determine Q .p

c. Calculate the BW.
d. Determine Vp  at resonance.
e. Sketch the curve of VC  versus frequency.

Solutions:

a. 
π π ( )( )

= = =f
LC

1
2

1
2 5 mH 50 pF

318.31 kHzs

π π( )( )= = =X f L2 2 318.31 kHz 5 mH 10 kΩL s

= = = >Q
X
R

10 kΩ
100 kΩ

100 10l
L

l

Therefore, f f 318 31 kHz.   .p s= =  Using Eq. (21.32) results in 

318.5 kHz.≅

b. =


Q
R R

Xp
s p

L

( )= = =R Q R 100 100 Ω 1 MΩp l l
2 2

Q 4 76
50 kΩ 1 MΩ

10 kΩ
47.62 kΩ

10 kΩ
.p =


= =

Note the drop in Q from =Q 100l  to =Q 4.76p  due to R .s

c. = = =BW
f

Q
66 87 kHz318.31 kHz

4.76
.  p

p
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On the other hand,

BW
R
L R C

1
2

1 1
2

100 Ω
5 mH

1
50 kΩ 50 pF

l

sπ π ( )( )
= +







 = +













= 66 85 kHz.  

compares very favorably with the above solution.

d. ( ) ( )( ) ( )= =  = =V IZ R R 95 24 V2 mA 2 mA 47.62 kΩ .  p T s pp

e. See Fig. 21.41.

EXAMPLE 21.10 Repeat Example 21.9, but ignore the effects of 
R ,s  and compare results.

Solutions:

a. f p  is the same, 318.31 kHz.
b. For R Ω,s = ∞

Q Q 100 versus 4.76p l ( )= =

c. BW
f

Q
3 18 kHz318.31 kHz

100
.   versus 66.87 kHzp

p

( )= = =

d. = =Z R 1 MΩT pp
 ( )versus 47.62 kΩ

V IZ 2000 V2 mA 1 MΩ   versus 95.24 Vp Tp
( ) ( )( )= = =  

The results obtained clearly reveal that the source resistance can 
have a significant impact on the response characteristics of a parallel 
resonant  circuit.

EXAMPLE 21.11 Design a parallel resonant circuit to have the 
response curve in Fig. 21.42 using a 1 mH, 10 Ω inductor and a current 
source with an internal resistance of 40 kΩ.

Solution:
BW

f

Q
p

p

=  

Vp

95.24 V

67.34 V

0

318.31 –              kHz66.87
2

318.31 +              kHz  =  351.7 kHz66.87
2

318.31 kHz=  284.9 kHz

Qp  =  4.76BW

FIG. 21.41 
Resonance curve for the network in Fig. 21.40.

BW  =  2500 Hz

fp  =  50 kHz f0

Vp

10 V

FIG. 21.42 
Example 21.11.
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Therefore,

Q
f

BW
2050,000 Hz

2500 Hzp
p= = =

X f L2 2 50 kHz 1 mH 314 ΩL pπ π( )( )= = =

and   Q
X
R

31 4314 Ω
10 Ω

.l
L

l

= = =

R Q R 9859 6 Ω31.4 10 Ω .  p l
2 2 ( )( )= = =

( )= =
 

=Q R
X

R 9859.6 Ω
314 Ω

20    from abovep
L

s

so that   R
R

9859.6
9859.6

6280s

s

( )( )

+
=

resulting in  R 17.298 kΩs =

However, the source resistance was given as 40 kΩ.  We must there-
fore add a parallel resistor R( )′  that will reduce the 40 kΩ  to approxi-
mately 17.298 kΩ;  that is,

R
R

40 kΩ
40 kΩ

17.298 kΩ
( )( ) ′

+ ′
=

Solving for R′  gives
R 30 48 kΩ.  ′ =

The closest commercial value is 30 kΩ  . At resonance, =X X ,L C  and

π
=X

f C
1

2C
p

π π( )( )
= =C

f X
1

2
1

2 50 kHz 314 Ωp C

and   µ ( )≅C 0 01 F. commercially available

= Z R Q RT s l l
2

p

= 17.298 kΩ  9859.6 Ω

= 6.28 kΩ

with   =V IZp Tp

and  = = ≅I
V

Z
1 6 mA10 V

6.28 kΩ
.  p

Tp

The network appears in Fig. 21.43.

Rs 40 kV R9 30 kV

Rl 10 V

I 1.6 mA

L 1 mH

C 0.01 mF

FIG. 21.43 
Network designed to meet the criteria in Fig. 21.42.
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21.15 APPLICATIONS
Stray Resonance

Stray resonance, like stray capacitance and inductance and unexpected 
resistance levels, can occur in totally unexpected situations and can  
severely affect the operation of a system. All that is required to produce 
stray resonance is, for example, a level of capacitance introduced by 
parallel wires or copper leads on a printed circuit board, or simply two 
parallel conductive surfaces with residual charge and inductance lev-
els associated with any conductor or components such as tape recorder 
heads, transformers, and so on, that provide the elements necessary for a 
resonance effect. In fact, this resonance effect is a very common effect in 
a cassette tape recorder. The play/record head is a coil that can act like an 
inductor and an antenna. Combine this factor with the stray capacitance 
and real capacitance in the network to form the tuning network, and the 
tape recorder with the addition of a semiconductor diode can respond 
like an AM radio. As you plot the frequency response of any transformer, 
you normally find a region where the response has a peaking effect (look 
ahead at Fig. 25.21). This peaking is due solely to the inductance of the 
coils of the transformer and the stray capacitance between the wires.

In general, any time you see an unexpected peaking in the frequency 
response of an element or a system, it is normally caused by a resonance 
condition. If the response has a detrimental effect on the overall opera-
tion of the system, a redesign may be in order, or a filter can be added 
that will block the frequencies that result in the resonance condition. Of 
course, when you add a filter composed of inductors and/or capacitors, 
you must be careful that you don’t add another unexpected resonance 
condition. It is a problem that can be properly weighed only by con-
structing the system and exposing it to the full range of tests.

Graphic and Parametric Equalizers

We have all noticed at one time or another that the music we hear in 
a concert hall doesn’t quite sound the same when we play a recording 
of it on our home entertainment center. Even after we check the spec-
ifications of the speakers and amplifiers and find that both are nearly 
perfect (and the most expensive we can afford), the sound is still not 
what it should be. In general, we are experiencing the effects of the local 
environmental characteristics on the sound waves. Some typical prob-
lems are hard walls or floors (stone, cement) that make high frequen-
cies sound louder. Curtains and rugs, on the other hand, absorb high 
frequencies. The shape of the room and the placement of the speakers 
and furniture also affect the sound that reaches our ears. Another crite-
rion is the echo or reflection of sound that occurs in the room. Concert 
halls are designed very carefully with vaulted ceilings and curved walls 
to allow a certain amount of echo. Even the temperature and humidity 
characteristics of the surrounding air affect the quality of the sound. It 
is certainly impossible, in most cases, to redesign your listening area to 
match a concert hall, but with the proper use of electronic systems you 
can develop a response that has all the qualities that you want from a 
home entertainment center.

For a quality system, a number of steps can be taken: characterization 
and digital delay (surround sound) and proper speaker and amplifier 
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selection and placement. Characterization is a process whereby a thor-
ough sound absorption check of the room is performed and the fre-
quency response determined. A graphic equalizer such as appearing in 
Fig. 21.44(a) is then used to make the response “flat” for the full range 
of frequencies. In other words, the room is made to appear as though 
all the frequencies receive equal amplification in the listening area. For 
instance, if the room is fully carpeted with full draping curtains, there 
is a considerable amount of high-frequency absorption, requiring that 
the high frequencies have additional amplification to match the sound 
levels of the mid and low frequencies. To characterize the typical  
rect  angular-shaped room, a setup such as shown in Fig. 21.44(b) may 
be used. The amplifier and speakers are placed in the center of one wall, 
with additional speakers in the corners of the room facing the reception 
area. A mike is then placed in the reception area about 10 ft from the 
amplifier and centered between the two other speakers. A pink noise is 
then sent out from a spectrum analyzer (often an integral part of the 
graphic equalizer) to the amplifier and speakers. Pink noise is actually 
a square-wave signal whose amplitude and frequency can be controlled.  
A square-wave signal was chosen because a Fourier breakdown of a 
square-wave signal results in a broad range of frequencies for the sys-
tem to check. You will find in Chapter 25 that a square wave can be 
constructed of an infinite series of sine waves of different frequencies. 
Once the proper volume of pink noise is established, the spectrum ana-
lyzer can be used to set the response of each slide band to establish the 
desired flat response. The center frequencies for the slides of the graphic 
equalizer in Fig. 21.44(a) are provided in Fig. 21.44(c), along with the 
frequency response for a number of adjoining frequencies evenly spaced 
on a logarithmic scale. Note that each center frequency is actually the 
resonant frequency for that slide. The design is such that each slide can 
control the volume associated with that frequency, but the bandwidth 
and frequency response stay fairly constant. A good spectrum analyzer 
has each slide set against a decibel (dB) scale (decibels are discussed in 
detail in Chapter 22). The decibel scale simply establishes a scale for 
the comparison of audio levels. At a normal listening level, usually a 
change of about 3 dB is necessary for the audio change to be detectable 
by the human ear. At low levels of sound, a 2 dB change may be detect-
able, but at loud sounds probably a 4 dB change would be necessary 
for the change to be noticed. These are not strict laws but guidelines 
commonly used by audio technicians. For the room in question, the mix 
of settings may be as shown in Fig. 21.44(c). Once set, the slides are not 
touched again. A flat response has been established for the room for the 
full audio range so that every sound or type of music is covered.

A parametric equalizer such as appearing in Fig. 21.45 is similar to 
a graphic equalizer, but instead of separate controls for the individual 
frequency ranges, it uses three basic controls over three or four broader 
frequency ranges. The typical controls–the gain, center frequency, and 
bandwidth–are typically available for the low-, mid-, and  high-frequency 
ranges. Each is fundamentally an independent control; that is, a change 
in one can be made without affecting the other two. For the parametric 
equalizer in Fig. 21.45, each of the six channels has a frequency con-
trol switch that, in conjunction with the f 10×  switch, gives a range 
of center frequencies from 40 Hz through 16 kHz. It has controls for 
BW (“Q”) from 3 octaves to 1/20 octave, and ±18 dB cut and boost.  
Some like to refer to the parametric equalizer as a sophisticated tone 
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Full-range
speaker

Full-range
speaker

Amplifier and speaker
(woofer or subwoofer)

Pink noise
throughout

>109

Microphone
Graphic
and/or
parametric
equalizers

(Mid-range,
low-power)

(Full-range,
low-power)

(Full-range,
low-power)

“Surround sound”
speakers

(b)

10 Hz 100 Hz 1 kHz 10 kHz 100 kHz f
(log scale)31 Hz 63 Hz 125 Hz 250 Hz 500 Hz 2 kHz 4 kHz 8 kHz 16 kHz

Volume

(c)

(a)

((a) Alexey Laputin/Shutterstock)

FIG. 21.44 
(a) Dual-channel 15-band “Constant Q” graphic equalizer; (b) setup; (c) frequency response.
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3
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3
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OUT

40 2K

4
–18 +18CLIP

9
6

3
–0+

3
6
91K

500
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250
100
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IN
OUT

40 2K

5
–18 +18CLIP

9
6

3
–0+

3
6
91K

500

FREQUENCY Q dB

250
100

60

IN
OUT

40 2K

6
–18 +18CLIP

6 CHANNEL
PARAMETRIC
EQUALIZER

9
6

3
–0+

3
6
91K

500

FREQUENCY Q dB

MULTI Q
TM

FIG. 21.45 
Six-channel parametric equalizer.
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control and actually use it to enrich the sound after the flat response 
has been established by the graphic equalizer. The effect achieved with 
a standard tone control knob is sometimes referred to as “boring” com-
pared to the effect established by a good parametric equalizer, primarily 
because the former can control only the volume and not the bandwidth 
or center frequency. In general, graphic equalizers establish the import-
ant flat response, while parametric equalizers are adjusted to provide 
the type and quality of sound you like to hear. You can “notch out” the 
frequencies that bother you and remove tape “hiss” and the “sharpness” 
often associated with CDs.

One characteristic of concert halls that is more difficult to fake is the 
fullness of sound that concert halls are able to provide. In the concert 
hall, you have the direct sound from the instruments and the reflection 
of sound off the walls and the vaulted ceilings, which were all carefully 
designed expressly for this purpose. Any reflection results in a delay in 
the sound waves reaching the ear, creating the fullness effect. Through 
digital delay, speakers can be placed to the back and side of a listener to 
establish the surround sound effect. In general, the delay speakers are 
much lower in wattage, with 20 W speakers typically used with a 100 W 
system. The echo response is one reason that people often like to play 
their stereos louder than they should for normal hearing. By playing the 
stereo louder, they create more echo and reflection off the walls, bring-
ing into play some of the fullness heard at concert halls.

It is probably safe to say that any system composed of quality com-
ponents, a graphic and parametric equalizer, and surround sound will 
have all the components necessary to have a quality reproduction of the 
concert hall effect.
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PROBLEMS

SECTIONS 21.2 THROUGH 21.7  Series Resonance

 1. Find the resonant ω s  and f s  for the series circuit with the  
following parameters:
a. =R 12 Ω, =L 1.5 H,  µ=C 10  F
b. =R 200 Ω, =L 0.81 H, µ=C 0.36  F
c. =R 25 Ω,  =L 0.35 mH, µ=C 7.0  F

 2. For the series circuit in Fig. 21.46:
a. Find the value of XC  for resonance.
b. Determine the total impedance of the circuit at  

resonance.
c. Find the magnitude of the current I.
d. Calculate the voltages V ,R  V ,L  and VC  at resonance. 

How are VL  and VC  related? How does VR  compare to 
the applied voltage E ?

e. What is the quality factor of the circuit? Is it a high or 
low Q circuit?

f. What is the power dissipated by the circuit at resonance?

 3. For the series circuit in Fig. 21.47:
a. Find the value of X L  for resonance.
b. Determine the magnitude of the current I at resonance.
c. Find the voltages V ,R  V ,L  and VC  at resonance, and 

compare their magnitudes.
d. Determine the quality factor of the circuit. Is it a high- or 

low-Q circuit?
e. If the resonant frequency is 5 kHz, determine the value 

of L and C.
f. Find the bandwidth of the response if the resonant fre-

quency is 5 kHz.
g.  What are the low and high cutoff frequencies?

VR

R  =  5 V
+

–

E 60 mV

VL+ –

+

–
XC VC

I XL  =  30 V 

+ –

FIG. 21.46 
Problem 2.

XC

VR

R XLI

+ – VL+ –

VC

+

–

+

–

E 12 V

  =  100 V

2 kV

FIG. 21.47 
Problem 3.

 4. For the circuit in Fig. 21.48:
a. Find the value of L in mH if the resonant frequency is 

1800 Hz.
b. Calculate X L  and X .C  How do they compare?
c. Find the magnitude of the current I rms at resonance.
d. Find the power dissipated by the circuit at resonance.
e. What is the apparent power delivered to the system at 

resonance?
f. What is the power factor of the circuit at resonance?
g. Calculate the Q of the circuit and the resulting band-

width.
h. Find the cutoff frequencies, and calculate the power dis-

sipated by the circuit at these frequencies.

 5. a.   Find the bandwidth of a series resonant circuit having a 
resonant frequency of 4500 Hz and a Qs  of 15.

 b. Find the cutoff frequencies.
 c. If the resistance of the circuit at resonance is 4 Ω, what 

are the values of X L  and XC  in ohms?
 d. What is the power dissipated at the half-power frequen-

cies if the maximum current flowing through the circuit 
is 0.6 A?

 6. A series circuit has a resonant frequency of 15 kHz. The resis-
tance of the circuit is 20 Ω, and XC  at resonance is 300 Ω.
a. Find the bandwidth.
b. Find the cutoff frequencies.
c. Find Q .s

d. If the input voltage is 25 V 0 ,∠ °  find the voltage across 
the coil and capacitor in phasor form.

e. Find the power dissipated at resonance.

 7.  a.   The bandwidth of a series resonant circuit is 250 Hz. If 
the resonant frequency is 2500 Hz, what is the value of 
Qs  for the circuit?

 b. If =R 5 Ω, what is the value of X L  at resonance?
 c. Find the value of L and C at resonance.
 d. Find the cutoff frequencies.

 8. The cutoff frequencies of a series resonant circuit are  
5600 Hz and 6000 Hz.
a. Find the bandwidth of the circuit.
b. If Qs  is 14.5, find the resonant frequency of the circuit.
c. If the resistance of the circuit is 2.5 Ω, find the value of 

X L  and XC  at resonance.
d. Find the value of L and C at resonance.

C

R

4.7 VI

L

+

–

e 2 mF20  3  10–3 sin vt

FIG. 21.48 
Problem 4.
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*9.   a.  Design a series resonant circuit with an input voltage of 
∠ °12 V  0  to have the following specifications:

—Peak current of 400 mA at resonance
—Bandwidth of 250 Hz
—Resonant frequency of 6000 Hz

 b. Find the value of L and C and the cutoff frequencies.

 *10.  Design a series resonant circuit to have a bandwidth of  
600 Hz using a coil with a Qs  of 20 and a resistance of 3 Ω. 
Find the values of L and C and the cutoff frequencies.

 *11.  A series resonant circuit is to resonate at 2 10 rad / ss
6ω π= ×  

and draw 20 W from a 120 V source at resonance. If the frac-
tional bandwidth is 0.16:
a. Determine the resonant frequency in hertz.
b. Calculate the bandwidth in hertz.
c. Determine the values of R, L, and C.
d.  Find the resistance of the coil if =Q 80.l

 *12.  A series resonant circuit will resonate at a frequency of  
1 MHz with a fractional bandwidth of 0.2. If the quality fac-
tor of the coil at resonance is 12.5 and its inductance is  
100 µH,  determine the following:
a. The resistance of the coil.
b. The additional resistance required to establish the indi-

cated fractional bandwidth.
c. The required value of capacitance.

SECTIONS 21.8 THROUGH 21.12  Parallel Resonance

 13. For the “ideal” parallel resonant circuit in Fig. 21.49:
a. Determine the resonant frequency ( )f .p

b. Find the voltage VC  at resonance.
c. Determine the currents I L  and IC  at resonance.
d. Find Q .p

 14. For the parallel resonant network in Fig. 21.50:
a. Calculate f .s

b. Determine Ql  using =f f .s  Can the approximate 
approach be applied?

c. Determine f p  and f .m

d. Calculate X L  and XC  using f .p  How do they compare?
e. Find the total impedance at resonance ( )f .p

f. Calculate VC  at resonance ( )f .p

g. Determine Q p  and the BW using f .p

h. Calculate I L  and IC  at f .p

L 200 mH

= 15

Vtank

+

–

C = 120 pF

1 kV 

E = 120 V/08

Rs

Ql

FIG. 21.51 
Problem 15.

LRs 4 kV 0.2 mH C  =  10 nF VC

+

–

ICIL

I 2 mA

FIG. 21.49 
Problem 13.

L 4.7 mH

I 10 mA

Rs  =  ` V

C

Rl 8 V

ZTp

0.03 mF VC

+

–

FIG. 21.50 
Problem 14.

 *15.  The network of Fig. 21.51 has a supply with an internal 
resistance of 1 kΩ, an emf of 120 V, and a wide frequency 
range. The inductance of µ200  H  has a Ql  of 15, which 
may be considered constant for the frequency range of inter-
est. The tuning capacitor is fixed at 120 pF.
a. Find the resonant frequency.
b. Find the voltage across the tank circuit at resonance.
c. Find the power delivered by the source at resonance.
d. Calculate the power lost in the tank coil due to the inter-

nal resistance, and compare that to the power delivered 
in part (c).

 16. For the network in Fig. 21.52:
a. Find the value of XC  at resonance ( )f .p

b. Find the total impedance ZTp
 at resonance ( )f .p

c. Find the currents I L  and IC  at resonance ( )f .p

d. If the resonant frequency is 25,000 Hz, find the value of 
L and C at resonance.

e. Find Q p  and the BW.

Rl

XC

IC20 �

XL 100 �

IL
ZTp

Rs 2 k�

I  =  8 mA ∠0°

FIG. 21.52 
Problem 16.

M21_BOYL0302_14_GE_C21.indd   904M21_BOYL0302_14_GE_C21.indd   904 01/03/23   6:25 PM01/03/23   6:25 PM



ƒr

  18. For the network in Fig. 21.54:
a. Find the resonant frequencies f ,s  f ,p  and f .m  What do 

the results suggest about the Q p  of the network?
b. Find the values of X L  and XC  at resonance ( )f .p  How 

do they compare?
c. Find the impedance ZTp

 at resonance ( )f .p

d. Calculate Q p  and the BW.
e. Find the magnitude of currents I L  and IC  at resonance 

( )f .p

f. Calculate the voltage VC  at resonance ( )f .p

XL

Rl 40 V

XCZT

FIG. 21.56 
Problem 20.

L

Rl

C
0.01 mF

VC

+

–

Ql  =  20

200 mH

20 kV

Rs

+

–

E = 120 V

FIG. 21.57 
Problem 21.

Rl

Ql  = 35

C

1 mH L

R

FIG. 21.53
Problem 17.

Rl

C

IC1.5 V

L 80 mH

IL

Rs

10 kV

E = 100 V 0.03 mF VC

+

–

+

–

FIG. 21.54 
Problem 18.

Rl

C

IC8 V

L 0.5 mH

IL

ZTp

Rs 0.5 kVI 40 mA 1 mF VC

+

–

FIG. 21.55 
Problem 19.

 *17.  The network shown in Fig. 21.53 is to resonate at 
z2 10 2  H6 π× /  and have a bandwidth of 100,000 2  Hz.π/  

If the coil has a Ql  of 35 (constant for the frequency range 
of interest), calculate the values of R and C. Find the nearest 
commercial values available for R and C.

 *19.  Repeat Problem 18 for the network in Fig. 21.55.

 20. It is desired that the impedance ZT  of the high Q circuit in 
Fig. 21.56 be ∠ °40 kΩ  0  at resonance ( )f .p

a. Find the value of X .L

b. Compute X .C

c. Find the resonant frequency ( )f p  if =L 18 mH.
d. Find the value of C.

 21. For the network in Fig. 21.57:
a. Find f .p

b. Calculate the magnitude of VC  at resonance ( )f .p

c. Determine the power absorbed at resonance.
d. Find the BW.

PsBLRMe | | | 905
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 *22.  For the network in Fig. 21.58:
a. Find the value of X L  for resonance.
b. Find Q .l

c. Find the resonant frequency ( )f p  if the bandwidth is  
1 kHz.

d. Find the maximum value of the voltage V .C

e. Sketch the curve of VC  versus frequency. Indicate its 
peak value, resonant frequency, and band frequencies.

C

Rl

Ql

L

Rs

FIG. 21.61 
Problem 25.

0.2 mA    08 C

L

Rl

I

Rs  =  ` V

FIG. 21.62 
Problem 26.

XL

Rl

20 kV XC 400 V VC

+

–

RsI  =  0.1 mA

8 V

FIG. 21.58 
Problem 22.

Rl 6 V

Rs

20 kV
IL

IC

C1 20 nF

C2 10 nF
VC

+

–
L 0.5 mH

E  =  80 V /08

+

–
ZTp

FIG. 21.60 
Problem 24.

XL

Rl

40 kV XC 100 V VC

+

–

RsI  =  6 mA /08

12 V

FIG. 21.59 
Problem 23.

 *23.  Repeat Problem 22 for the network in Fig. 21.59.

 *24.  For the network in Fig. 21.60:
a. Find f ,s  f ,p  and f .m

b. Determine Ql  and Q p  at f p  after a source conversion is 
performed.

c. Find the input impedance Z .Tp

d. Find the magnitude of the voltage V .C

e. Calculate the bandwidth using f .p

f. Determine the magnitude of the currents IC  and I .l

 *25.  For the network in Fig. 21.61, the following are specified:

=

=
=
=

f

BW
L

Q

25 kHz

1.84 kHz
2.5 mH
90

p

l

 

Find Rs  and C.

 *26.  Design the network in Fig. 21.62 to have the following 
 characteristics:

=BW 600 Hz
=Q 32p

=V 2.2 VCmax
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 *27.  For the parallel resonant circuit in Fig. 21.63:
a. Determine the resonant frequency.
b. Find the total impedance at resonance.
c. Find Q .p

d. Calculate the BW.
e. Repeat parts (a) through (d) for L 20  Hµ=  and C 20 nF.=
f. Repeat parts (a) through (d) for =L 0.4 mH  and =C 1 nF.
g. For the network in Fig. 21.63 and the parameters of parts (e) and (f), 

determine the ratio L C/ .
h. Do your results confirm the conclusions in Fig. 21.32 for changes in the 

L C/  ratio?

Rl 20 V

40 kV

L 200 H

C 2 nFZTp

FIG. 21.63 
Problem 27.

GLOSSARY

Band (cutoff, half-power, corner) frequencies Frequencies 
that define the points on the resonance curve that are 0.707 of 
the peak current or voltage value. In addition, they define the 
frequencies at which the power transfer to the resonant circuit 
will be half the maximum power level.

Bandwidth (BW) The range of frequencies between the band, 
cutoff, or half-power frequencies.

Quality factor (Q) A ratio that provides an immediate indication 
of the sharpness of the peak of a resonance curve. The higher 
the Q, the sharper is the peak and the more quickly it drops off 
to the right and left of the resonant frequency.

Resonance A condition established by the application of a par-
ticular frequency (the resonant frequency) to a series or par-
allel R-L-C network. The transfer of power to the system is a 
maximum, and, for frequencies above and below, the power 
transfer drops off to significantly lower levels.

Selectivity A characteristic of resonant networks directly related 
to the bandwidth of the resonant system. High selectivity is as-
sociated with small bandwidth (high Q’s), and low selectivity 
with larger bandwidths (low Q’s).
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dB

 Decibels, Filters,  
and Bode Plots

 22.1 INTRODUCTION
The unit decibel (dB), defined by a logarithmic expression, is used throughout the industry 
to define levels of audio, voltage gain, energy, field strength, and so on. It will take some 
exposure to become totally comfortable with this unit of measure, but in time its usefulness 
will become quite apparent. For one thing, it removes the need to work with extremely large 
numbers that often lose their meaning when certain levels are reached. A good example of its 
use is in audio systems, where a 3 dB gain is one that can be detected by the human ear and 
normal listening levels. At low volumes, a 2 dB gain is often detectable, but at high levels it 
may take a 6 dB gain to detect the difference. Normal conversation occurs at about 60 dB, 
while damage to the eardrum can begin at 100 dB and higher. Additional examples of the 
use of decibels will be provided throughout the chapter to ensure some understanding of the 
impact of this unit of measurement. As noted above, it is used so extensively that it is of para-
mount importance that its use be completely and correctly understood.

The use of bel (B) and more commonly decibel (dB) is in recognition of the research and 
development of electronic devices such as the telephone by Alexander Graham Bell.

The use of logarithms in industry is so extensive that a clear understanding of their 
 purpose and use is an absolute necessity. At first exposure, logarithms often appear vague 
and  mysterious due to the  mathematical operations required to find the logarithm and 
 antilogarithm using the longhand table approach that is typically taught in mathematics 
courses. However, almost all of today’s scientific calculators have the common and natural log 
functions,  eliminating the complexity of applying logarithms and allowing us to  concentrate 
on the  positive  characteristics of using the function.

• Become familiar with the logarithmic function and 
the decibel unit of measurement and why they are 
useful for a number of applications.

• Become proficient using a calculator to find the dB 
level of a power or voltage gain.

• Understand how to read a dB plot and calculate the 
intermediate dB levels between the given 
designated levels.

• Become familiar with the frequency response of 
low-pass, high-pass, band-pass, and band-stop 
filters.

• Be able to calculate the break frequencies for the 
various types of filters.

• Develop an understanding of Bode plots and how 
to plot the response for the gain and phase angle 
of the various filters.

• Become familiar with the characteristics of  
cross-over networks and their impact on the 
human-auditory response.

Objectives

22 

dB
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Logarithms

Basic Relationships Let us first examine the relationship between 
the variables of the logarithmic function. The mathematical expression

N b x( )=

states that the number N is equal to the base b taken to the power x. A 
few examples:

( )

( )

( )

=

=

= =e e

   100 10

   27 3

54.6 where 2.7183

2

3

4

To find the power x to satisfy the equation

1200 10 x( )=

you can determine the value of x using logarithms in the following manner:

x 3 079log 1200 .10 = =
revealing that

=10 12003.079

Note that the logarithm was taken to the base 10–the number to be 
taken to the power of x. There is no limitation to the numerical value of 
the base, except that tables and calculators are designed to handle either 
a base of 10 (common logarithm, loglog ) or base e 2.7183=  (natural 
logarithm, InIn ). In review, therefore,

 ( )= =N b x NIf  ,  then  logx
b  (22.1)

The base to be used is a function of the area of application. If a conversion 
from one base to the other is required, the following equation can be applied:

 x xlog 2.3 loge   10=  (22.2)

The use of the decibel is limited solely for use with common logarithms.
In this chapter, we concentrate solely on the common logarithm. However, 

a number of the conclusions are also applicable to natural logarithms.

Some Areas of Application The following are some of the most 
common applications of the logarithmic function:

1. The response of a system can be plotted for a range of values that 
may otherwise be impossible or unwieldy with a linear scale.

2. Levels of power, voltage, and the like can be compared without 
dealing with very large or very small numbers that often cloud the 
true impact of the difference in magnitudes.

3. A number of systems respond to outside stimuli in a nonlinear logarith-
mic manner. The result is a mathematical model that permits a direct 
calculation of the response of the system to a particular input signal.

4. The response of a cascaded or compound system can be rapidly 
determined using logarithms if the gain of each stage is known on 
a logarithmic basis. This characteristic is demonstrated in an 
example to follow.

Graphs Graph paper is available in semilog and log-log varieties. 
Semilog paper has only one log scale, with the other a linear scale. Both 
scales of log-log paper are log scales. A section of semilog paper appears 
in Fig. 22.1. Note the linear (even-spaced-interval) vertical scaling and 
the repeating intervals of the log scale at multiples of 10.

M22_BOYL0302_14_GE_C22.indd   910M22_BOYL0302_14_GE_C22.indd   910 01/03/23   7:48 PM01/03/23   7:48 PM



caleBUelcBa | | | 911
dB

6

5

4

3

2

1

2

Linear
scale

1 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90100

Log scalelog10 2  =  0.3010
≅  30%

log10 4  =  0.6021  ≅  60%

≅  70% ≅  95%
≅  78% ≅  90%

≅  85%

log10 3  =  0.4771  ≅  48%

% of full width

FIG. 22.1 
Semilog graph paper.

The spacing of the log scale is determined by taking the common log 
(base 10) of the number. The scaling starts with 1, since log 1 0.10   =  
The distance between 1 and 2 is determined by log 2 0.3010,10   =  or 
 approximately 30% of the full distance of a log interval, as shown on the 
graph. The distance between 1 and 3 is determined by log 3 0.4771,10   =  
or about 48% of the full width. For future reference, keep in mind that 
almost 50% of the width of one log interval is represented by a 3 rather 
than by the 5 of a linear scale. In addition, note that the number 5 is about 
70% of the full width, and 8 is about 90%. Remembering the percentage 
of full width of the lines 2, 3, 5, and 8 is particularly useful when the var-
ious lines of a log plot are left unnumbered.

Since
log 1 0

log 10 1

log 100 2

 log 1000 3

10 

10 

10 

10 

=

=

=

=

the spacing between 1 and 10, 10 and 100, 100 and 1000, and so on, is 
the same as shown in Figs. 22.1 and 22.2.

It is important to realize that

a logarithmic scale does not start at zero on semilog paper.

As shown in Fig. 22.1, it starts at 1, and each interval is marked by a power 
of 10. Any number greater than zero but less than 1 is negative; for example,

( ) = − × −log 0.999 4.35 1010
4
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Note in Figs. 22.1 and 22.2 that the log scale becomes compressed at 
the high end of each interval. With increasing frequency levels assigned 
to each interval, a single graph can provide a frequency plot extending 
from 1 Hz to 1 MHz, as shown in Fig. 22.2, with particular reference to 
the 30%, 50%, 70%, and 90% levels of each interval.

Positive Impact of Logarithmic Plots

Now that the basic characteristics of a logarithmic plot have been intro-
duced, one of its important benefits can now be demonstrated. Consider the 
logarithmic plot of Fig. 22.3(a) for a transistor amplifier. Note that the gain 
at 60 Hz is clearly visible at 80 and the gain at 2 MHz has dropped to 50.  

1 10 100 1 kHz 10 kHz 100 kHz 1 MHz2 3 5 8 20 30 50 80

20
0

30
0

50
0

80
0

2 
kH

z

30
 k

H
z

3 
kH

z
5 

kH
z

8 
kH

z

50
 k

H
z

80
 k

H
z

30
0 

kH
z

50
0 

kH
z

80
0 

kH
z f (log scale)

FIG. 22.2 
Frequency log scale.

50 

80 

50 

1 100 Hz 1 kHz 10 kHz 100 kHz 1 MHz 
2 MHz 

10 MHz 

100 

125 

f (log scale)60 Hz 

A  (gain)

(a)

v

(b)

50 

100 

125 

f (MHz)

A  (gain)

10 2 3 4 5 6 7 8 9 10

v

FIG. 22.3 
Demonstrating the positive impact of logarithmic plots: (a) log plot, (b) MHz scale, (c) low-frequency scale.
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In fact, the gain at any frequency between 1 and 10 MHz can be deter-
mined from the plot. However, now try to transfer the plot of Fig. 22.3(a) 
to a linear scale as attempted in Fig. 22.3(b) and Fig. 22.3(c). If we choose 
a scale from 0 to 10 MHz, the plot point at 2 MHz is quite readable but 
the plot point at 60 Hz is impossible to read. In fact, any reading below 
10 kHz has been lost. Now, if we take the other route and choose the scale 
of Fig. 22.3(c), we find the plot point at 60 Hz is easy to read but the fre-
quency of 2 MHz is far off the scale and would require a plot extending 
many feet to the right. Any reading above 2 kHz has been lost. Clearly, 
therefore, the use of logarithmic plots is almost mandatory for variables 
such as frequency that can extend through a large range of values.

On many log plots, the tick marks for most of the intermediate lev-
els are left off because of space constraints. The following equation 
can be used to determine the logarithmic level at a particular point  
between known levels using a ruler or simply estimating the distances. The  
parameters are defined by Fig. 22.4. We have

 Value 10 10x d d1 2= × |  (22.3)

The derivation of Eq. (22.3) is simply an extension of the details 
 regarding distance appearing in Fig. 22.1.

EXAMPLE 22.1 Determine the value of the point appearing on the 
logarithmic plot in Fig. 22.5 using the measurements made by a ruler 
(linear).

 Solution:

 |
|

=
″
″

= ″
″

=
d
d

7 16

3 4
0.438
0.750

0.5841

2

Using a calculator gives

 = =|10 10 3.837d d 0.5841 2

Applying Eq. (22.3) gives

= × = ×
=

|

383 7
Value 10 10 10 3.837

.

x d d 21 2

(c)

50 

100 

125 

f (Hz)

A  (gain)

100600 200 300 400 500 600 700 800 900 1kHz

80 

v

FIG. 22.3
(continued)

10 x

d1

d2

10 x+1

FIG. 22.4 
Finding a value on a log plot.

102

7/160

1033/40

FIG. 22.5 
Example 22.1.
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22.2 PROPERTIES OF LOGARITHMS
There are a few characteristics of logarithms that should be emphasized:

1. The common or natural logarithm of the number 1 is 0:

 log 1 010   =  (22.4)

just as 10 1x =  requires that x 0.=

2. The log of any number greater than zero but less than 1 is 
a negative number:

 log log 0.5 0.310  
1

2 10  = = −

 log log 0.1 110  
1

10 10  = = −

3. The log of the product of two numbers is the sum of the 
logs of the numbers:

 ab a blog log log10   10   10  = +  (22.5)

4. The log of the quotient of two numbers is the log of the 
numerator minus the log of the denominator:

 
a
b

a blog log log10 10   10  = −  (22.6)

5. The log of a number taken to a power is equal to the 
product of the power and the log of the number:

 a n alog  logn
10   10  =  (22.7)

Equation (22.5) is particularly important for multistage systems, such 
as in Fig. 22.6, because it reveals that the

total dB gain of a multistage system is the sum of the dB 
gains of each stage.

Calculator Functions

Using the TI-89 calculator, the common logarithm of a number is deter-
mined by first selecting the CATALOG key and then scrolling to find the 
common logarithm function. The time involved in scrolling through the 
options can be reduced by first selecting the key with the first letter of 
the desired function in the  list–in this case, L, as shown below, to 
find the common logarithm of the number 80.

   log (       1.90

For the reverse process, to find N, or the antilogarithm, use the  function  
10. In this case, the function 10 is found after the letter Z in the catalog. 

Confirming: log
10

576 = 2.76 = 0.903 1 0.778 1 1.08 (checks)

Stage 1 Stage 2 Stage 3

Gain = 12Gain = 6Gain = 8

log
10

8 = 0.903 log
10

6 = 0.778 log
10

12 = 1.08

Total gain = 8 3 6 3 12 = 576

Total dB gain = 0.903 1 0.778 1 1.08 = 2.76

FIG. 22.6 
Displaying the power of Eq. (22.5).
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It is easier if you first select A to start at the top of the listing and then 
go backwards to the power of ten function by using the upward moving 
scroll option. The antilogarithm of the number 0.6 is found as follows:

   10^ (        3.98

EXAMPLE 22.2 Evaluate each of the following logarithmic expressions:

a. log 0.00410

b. log 250,00010

c. log (0.08)(240)10

d. ×
× −log 1 10

1 1010

4

4

e. log (10)10
4

Solutions:

a. −2 40.

b. +5 40.

c. = + = − +

= 1 28

log (0.08)(240) log 0.08 log 240 1.097 2.380

.
10 10 10

d. ( )
×
×

= × − × = − −
=

−
−

8
 log 1 10

1 10
log 1 10 log 1 10 4 410

4

4 10
4

10
4

e. = = = 4log 10 4 log 10 4(1)10
4

10

22.3 DECIBELS

Power Gain

Two levels of power can be compared using a unit of measure called the 
bel, which is defined by the following equation:

 = � ��� � ���B
P
P

P
B

P
log    10

2

1

1 2  (22.8)

However, to provide a unit of measure of less magnitude, a decibel is 
defined, where

 1 bel (B) 10 decibels  dB( )=  (22.9)

The result is the following important equation, which compares 
power levels P2  and P1 in decibels:

 ( )=dB
P
P

10 log   decibels,  dB10
2

1

 (22.10)

If the power levels are equal P P ,2 1( )=  there is no change in power 
level, and dB 0.=  If there is an increase in power level >P P( ),2 1  the 
resulting decibel level is positive. If there is a decrease in power level 

<P P( ),2 1  the resulting decibel level will be negative.
For the special case of P P2 ,2 1=  the gain in decibels is

= = =dB
P
P

3 dB10 log 10 log 2  10
2

1
10
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Therefore, for a speaker system, a 3 dB increase in output requires 
that the power level be doubled. In the audio industry, it is a generally  
accepted rule that an increase in sound level is accomplished with 3 dB 
increments in the output level. In other words, a 1 dB increase is barely 
detectable, and a 2 dB increase just discernible. A 3 dB increase nor-
mally results in a readily detectable increase in sound level. An addi-
tional increase in the sound level is normally accomplished by simply 
 increasing the output level another 3 dB. If an 8 W system were in use, 
a 3 dB increase would require a 16 W output, whereas an additional  
increase of 3 dB (a total of 6 dB) would require a 32 W system, as 
demonstrated by the calculations

= = = =
P
P

3 dB dB 10 log 10 log 16
8

10 log 2  10
2

1
10 10

= = = =
P
P

6 dBdB 10 log 10 log 32
8

10 log 4  10
2

1
10 10

For  P P10 ,2 1=

( )= = = =
P
P

10 dBdB 10 log 10 log 10 10 1  10
2

1
10

resulting in the unique situation where the power gain has the same mag-
nitude as the decibel level.

For some applications, a reference level is established to permit a 
comparison of decibel levels from one situation to another. For commu-
nication systems, a commonly applied reference level is

( )=P 1 mW     across a 600 Ω loadref

Eq. (22.10) is then typically written as

 = � ����� � ���dB P dB
P

10 log
1 mW

 
1 mW  m m10

600 Ω
 (22.11)

Note the subscript m to denote that the decibel level is determined with 
a reference level of 1 mW.

In particular, for P 40  mW,=

( )= = = =dB 16 dB10 log 40 mW
1 mW

10 log 40 10 1.6  m m10 10

whereas for P 4 W,=

( )= = = =dB 36 dB10 log 4000 mW
1 mW

10 log 4000 10 3.6  m m10 10

Even though the power level has increased by a factor of 
| =4000  mW 40 mW 100, the dBm  increase is limited to 20 dB .m  In 

time, the significance of dBm  levels of 16 dBm  and 36 dBm  will gener-
ate an appreciation for the power levels involved. An increase of 20 dBm  
is also associated with a significant gain in power levels.

Voltage Gain

Decibels are also used to provide a comparison between voltage levels. 
Sub stituting the basic power equations | |= =P V R P V R and 2 2

2
2 1 1

2
1 

into Eq. (22.10) results in
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|
|

|
|

= =

= =






 −









P
P

V R

V R

V V

R R
V
V

R
R

 dB 10 log 10 log  

      10 log 10 log 10 log

10
2

1
10

2
2

2

1
2

1

10
2
2

1
2

2 1
10

2

1

2

10
2

1

and   = −
V
V

R
R

dB 20 log 10 log10
2

1
10

2

1

For the situation where R R ,2 1=  a condition normally assumed 
when comparing voltage levels on a decibel basis, the second term of the 
preceding equation drops out log 1 0 ,10( )=  and

 =υ υ
� �� � ��dB

V
V V

dB
V

20 log10
2

1 1 2

 (22.12)

Note the subscript υ to define the decibel level obtained.

EXAMPLE 22.3 Find the voltage gain in dB of a system where the 
applied signal is 2 mV and the output voltage is 1.2 V.

Solution:

= = = =υdB
V
V

55 56 dB20 log   20 log   1.2 V
2 mV

20 log 600 .o

i
10 10 10

for a voltage gain |=υA V Vo i of 600.

EXAMPLE 22.4 If a system has a voltage gain of 36 dB, find the 
applied voltage if the output voltage is 6.8 V.

Solution:
=

=

=

υ
V
V

V
V

V
V

 dB 20 log

  36 20 log

  1.8 log

o

i

o

i

o

i

10

10

10

From the antilogarithm,

V
V

63.1o

i

=

and  V
V

107 8 mV 
63.1

6.8 V
63.1

.   i
o= = =

Table 22.1 compares the magnitude of specific gains to the resulting 
decibel level. In particular, note that when voltage levels are compared, 
a doubling of the level results in a change of 6 dB rather than 3 dB as 
obtained for power levels.

In addition, note that an increase in gain from 1 to 100,000 results in 
a change in decibels that can easily be plotted on a single graph. Also 
note that doubling the gain (from 1 to 2 and 10 to 20) results in a 6 dB 
increase in the decibel level, while a change of 10 to 1 (from 1 to 10, 10 
to 100, and so on) always results in a 20 dB decrease in the decibel level.

TABLE 22.1

|V Vo i V VdB 20 log ( )10 o i|=

1 0 dB
2 6 dB

10 20 dB
20 26 dB

100 40 dB
1,000 60 dB

100,000 100 dB
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Human Auditory Response

One of the most frequent applications of the decibel scale is in the com-
munication and entertainment industries. The human ear does not respond 
in a linear fashion to changes in source power level; that is, a doubling 
of the audio power level from |1 2 W to 1 W does not result in a dou-
bling of the loudness level for the human ear. In addition, a change from  
5 W to 10 W is received by the ear as the same change in sound intensity 
as experienced from |1 2 W to 1 W. In other words, the ratio  between lev-
els is the same in each case | |( )= =1 W 0.5 W 10 W 5 W 2 , resulting 
in the same decibel or logarithmic change defined by Eq. (22.7). The ear, 
therefore, responds in a logarithmic fashion to changes in audio power 
levels.

To establish a basis for comparison between audio levels, a reference 
level of 0.0002 µmicrobar ( bar) was chosen, where µ1  bar is equal to 
the sound pressure of 1 dyne per square centimeter, or about 1 millionth 
of the normal atmospheric pressure at sea level. The µ0.0002   bar level 
is the threshold level of hearing. Using this reference level, the sound 
pressure level in decibels is defined by the following equation:

µ µ
= � ������������ � ��dB P dB

P
20 log  

0.0002  bar 0.0002  bars s10  (22.13)

where P is the sound pressure in microbars.
Meters designed to measure audio levels are calibrated to the levels 

defined by Eq. (22.13) and shown in Table 22.2.
In particular take note of the sound level for iPods and MP3 players, 

for which it is suggested, based on research, that they should not be used 
for more than 1 hour a day at 60% volume to prevent permanent hearing 
damage. Always remember that hearing damage is usually not revers-
ible, so that any loss is for the long term.

A common question regarding audio levels is how much the power 
level of an acoustical source must be increased to double the sound level 
received by the human ear. The question is not as simple as it first seems 
due to considerations such as the frequency content of the sound, the 
acoustical conditions of the surrounding area, the physical characteris-
tics of the surrounding medium, and of course the unique characteristics 
of the human ear. However, a general conclusion can be formulated that 
has practical value if we note the power levels of an acoustical source 
appearing to the left in Table 22.2. Each power level is associated with a 
particular decibel level, and a change of 10 dB in the scale corresponds 
to an increase or a decrease in power by a factor of 10. For instance, a 
change from 90 dB to 100 dB is associated with a change in wattage 
from 3 W to 30 W. Through experimentation, it has been found that on 
an average basis the loudness level doubles for every 10 dB change in 
audio level–a conclusion somewhat verified by the examples to the right 
in Table 22.2.

To double the sound level received by the human ear, the 
power rating of the acoustical source (in watts) must be 
increased by a factor of 10.

In other words, doubling the sound level available from a 1 W acoustical 
source requires moving up to a 10 W source.
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Further:

At normal hearing levels, it would take a change of about 3 dB  
(twice the power level) for the change to be noticeable to 
the human ear.

At low levels of sound, a change of 2 dB may be noticeable, 
but it may take a 6 dB (four times the power level) change 
for much higher levels of sound.

One final example of the use of dB as a unit of measurement is the 
LRAD (Long Range Acoustic Device) appearing in Fig. 22.7. It emits 
a tone between 2100 Hz and 3100 Hz at 145 dB that is effective at up to 
500 m, or around five football fields. The sound at its peak is thousands 
of times louder than a smoke alarm. It can be used to transmit criti-
cal information and instructions and is capable of strong deterrent tones 
against intruders.

Instrumentation

A number of modern VOMs and DMMs have a dB scale designed to 
provide an indication of power ratios referenced to a standard level of 
1 mW at 600 Ω. Since the reading is accurate only if the load has a 

160

200

0

150

140

130

120

110

100

90

80

70

60

50

40

30

20

10

Jet engine

Earthquake

Jackhammer

Community siren, firearm

Threshold of pain

Health club, movie theater

Live music concert, iPods and MP3 players at full volume

Chain saw
Very loud music, motorcycle

Loud music, heavy truck, subway train, lawnmower

Orchestra, highway traffic, alarm clock

Average conversation
Quiet music

Average residence, computer system

Background music

Whispering

Faint sounds, paper rustling

Quiet office, computer hard drive

Threshold of hearing

Dynamic range ≅ 120 dBs

dBs

300
100
30
10
3
1

0.3
0.1

0.03
0.01

0.003
0.001

0.0003

0.0002   bar of pressure

Output Power.
Average value

in watts.

TABLE 22.2  
Typical sound levels and their decibel levels.
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characteristic impedance of 600 Ω, the 1 mW, 600 Ω reference level 
is normally printed somewhere on the face of the meter, as shown in 
Fig. 22.8. The dB scale is usually calibrated to the lowest ac scale of 
the meter. In other words, when making the dB measurement, choose 
the lowest ac voltage scale, but read the dB scale. If a higher voltage 
scale is chosen, a correction factor must be used, which is sometimes 
printed on the face of the meter but is always available in the meter man-
ual. If the impedance is other than 600 Ω or not purely resistive, other 
correction factors must be used that are normally included in the meter 
manual. Using the basic power equation |=P V R2  reveals that 1 mW 
across a 600 Ω load is the same as applying 0.775 V rms across a 600 Ω 
load; that is, ( )= = =V PR 1 mW)(600Ω 0.775V. The result is 
that an analog display will have 0 dB [defining the reference point of  
1 mW, P PdB 10 log 10 log (1 mW 1 mW ref 0 dB)10 2 1 10| | ( )= = =
and 0.775 V rms on the same pointer projection, as shown in Fig. 22.8. 
A voltage of 2.5 V across a 600 Ω load results in a dB level of 

V VdB 20 log 20 log 2.5 V 0.775 10.17 dB,10 2 1 10| |= = =  resulting in  
2.5 V and 10.17 dB appearing along the same pointer projection. 
A voltage of less than 0.775 V, such as 0.5 V, results in a dB level  
of V V VdB 20 log 20 log 0.5 V 0.775  3.8 dB,10 2 1 10| |= = = −  also 
shown on the scale in Fig. 22.8. Although a reading of 10 dB reveals that 

(Courtesy of the LRAD Corporation.)

FIG. 22.7 
LRAD (Long Range Acoustic Device) 1000×.

1 mW, 600 æ

1.5
1

.5

0

2.0
2.5

33VAC

65432102468
12

7 8 9
10

11+DB–D
B

FIG. 22.8 
Defining the relationship between a dB scale referenced 

to 1 mW,  600 Ω and a 3 V rms voltage scale.
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the power level is 10 times the reference, don’t assume that a reading 
of 5 dB means that the output level is 5 mW. The 10 : 1 ratio is a special 
one in logarithmic use. For the 5 dB level, the power level must be found 
using the anti-logarithm (3.126), which reveals that the power level  
associated with 5 dB is about 3.1 times the reference or 3.1 mW. A con-
version table is usually provided in the manual for such conversions.

 22.4 FILTERS
Any combination of passive (R, L, and C) and/or active (transistors 
or operational amplifiers) elements designed to select or reject a band 
of frequencies is called a filter. In communication systems, filters are 
used to pass those frequencies containing the desired information and to  
reject the remaining frequencies. In stereo systems, filters can isolate 
particular bands of frequencies for increased or decreased emphasis by 
the output acoustical system (amplifier, speaker, and so on). Filters are 
used to filter out any unwanted frequencies, commonly called noise, due 
to the nonlinear characteristics of some electronic devices or signals 
picked up from the surrounding medium. In general, there are two clas-
sifications of filters:

1. Passive filters are those filters composed of series or parallel 
combinations of R, L, and C elements.

2. Active filters are filters that employ active devices such as transis-
tors and operational amplifiers in combination with R, L, and C 
elements.

Since this text is limited to passive devices, the analysis of this chap-
ter is limited to passive filters. In addition, only the most fundamental 
forms are examined in the next few sections. The subject of filters is 
a very broad one that continues to receive extensive research support 
from industry and the government as new communication systems are 
developed to meet the demands of increased volume and speed. There 
are courses and texts devoted solely to the analysis and design of filter 
systems, which can become quite complex and sophisticated. In gen-
eral, however, all filters belong to the four broad categories of low-pass, 
high-pass, band-pass, and band-stop, as depicted in Fig. 22.9. For 
each form, there are critical frequencies that define the regions of pass-
bands and stop-bands (often called reject bands). Any frequency in the 
 pass-band will pass through to the next stage with at least 70.7% of 
the maximum output voltage. Recall the use of the 0.707 level to define 
the bandwidth of a series or parallel resonant circuit (both with the gen-
eral shape of the pass-band filter).

For some band-stop filters, the band-stop is defined by conditions 
other than the 0.707 level. In fact, for many stop-band filters, the condi-
tion that V V1 1000o max |=  (corresponding to 60 dB−  in the discussion 
to follow) is used to define the stop-band region, with the pass-band 
continuing to be defined by the 0.707 V level. The resulting frequencies 
between the two regions are then called the transition frequencies and 
establish the transition region.

An instrument that will reveal the frequency content of a waveform is 
the spectrum analyzer introduced in Section 26.2.

At least one example of each filter in Fig. 22.9 is discussed in some 
detail in the sections to follow. Take particular note of the relative sim-
plicity of some of the designs.
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22.5 R-C LOW-PASS FILTER
The R-C filter, incredibly simple in design, can be used as a low-pass 
or a high-pass filter. If the output is taken off the capacitor, as shown in 
Fig. 22.10, it responds as a low-pass filter. If the positions of the resistor 
and capacitor are interchanged and the output is taken off the resistor, 
the response is that of a high-pass filter.

A glance at Fig. 22.9(a) reveals that the circuit should behave in a 
manner that results in a high-level output for low frequencies and a 
 declining level for frequencies above the critical value. Let us first  
examine the network at the frequency extremes of =f 0 Hz and very 
high frequencies to test the response of the circuit.

Band-stop filter:

Band-pass filter:

(d)

Vo

0

Vmax

0.707Vmax

Band-stopBand-pass Band-pass

f1 fo f2 f

(c)

Vo

0

Vmax

0.707Vmax

Band-stop
Band-pass

Band-stop
f1 fo f2 f

High-pass filter:

(b)

Vo

0

Vmax

0.707Vmax

Band-stop Band-pass
fc f

Low-pass filter:

(a)

Vo

0

Vmax

0.707Vmax

Band-pass Band-stop
fc f

FIG. 22.9 
Defining the four broad categories of filters.

–

+ R

C Vo

–

+

FIG. 22.10 
Low-pass filter.
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At  f 0 Hz,=

π
= = ∞X

fC
1

2
ΩC

and the open-circuit equivalent can be substituted for the capacitor, as 
shown in Fig. 22.11, resulting in V V .o i=

At very high frequencies, the reactance is

X
fC

1
2

0 ΩC π
= ≅

and the short-circuit equivalent can be substituted for the capacitor, as 
shown in Fig. 22.12, resulting in V 0 V.o =

A plot of the magnitude of Vo  versus frequency results in the curve in 
Fig. 22.13. Our next goal is now clearly defined: Find the frequency at 
which the transition takes place from a pass-band to a stop-band.

–

+ R

Vi

–

+

Vo  =  Vi

FIG. 22.11 
R-C low-pass filter at low 

frequencies.

–

+ R

Vi

–

+

Vo  =  0 V

FIG. 22.12 
R-C low-pass filter at high 

frequencies.

0

Vo

Vo  =  0.707Vi

Band-stopBand-pass f (log scale)fc

Vi

FIG. 22.13 
Vo versus frequency for a low-pass R-C filter.

Av  =

0

0.707

Band-stopBand-pass f (log scale)fc

Vo
Vi

1

FIG. 22.14 
Normalized plot of Fig. 22.13.

For filters, a normalized plot is used more often than the plot of Vo  
versus frequency in Fig. 22.13.

Normalization is a process whereby a quantity such as 
voltage, current, or impedance is divided by a quantity of 
the same unit of measure to establish a dimensionless level 
of a specific value or range.

A normalized plot in the filter domain can be obtained by dividing 
the plotted quantity such as Vo  in Fig. 22.13 with the applied voltage 
Vi  for the frequency range of interest. Since the maximum value of Vo  
for the low-pass filter in Fig. 22.10 is V ,i  each level of Vo  in Fig. 22.11 
is divided by the level of V .i  The result is the plot of A V Vo i|=υ  in 
Fig. 22.14. Note that the maximum value is 1 and the cutoff frequency is 
defined at the 0.707 level.
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At any intermediate frequency, the output voltage Vo  in Fig. 22.10 
can be determined using the voltage divider rule:

X
R jX

V
V90

o
C i

C

=
∠− °
−

or

X
R

X

R X X R
A

V
V

90
jX

90

  tan
o

i

C

C

C

C C
2 2 1 ( )

= =
∠− °
−

=
∠− °

+ −υ −

and

X

R X

X
R

A
V
V

  90 tano

i

C

C

C

2 2
1( )= =

+
∠− ° +υ

−

The magnitude of the ratio V Vo i is therefore determined by

 A
V
V

X

R X R
X

1

1

o

i

C

C

C

2 2 2
= =

+
=







 +

υ  (22.14)

and the phase angle is determined by

 
X
R

R
X

90 tan tanC

C

1 1θ = − ° + = −− −   (22.15)

For the special frequency at which X R,C =  the magnitude becomes

A
V
V R

X

1

1

1
1 1

1
2

0.707o

i

C

2
= =







 +

=
+

= =υ

which defines the critical or cutoff frequency in Fig. 22.14.
The frequency at which X RC =  is determined by

f C
R1

2 cπ
=

and f
RC
1

2c π
=  (22.16)

The impact of Eq. (22.16) extends beyond its relative simplicity. For 
any low-pass filter, the application of any frequency less than fc  results 
in an output voltage Vo  that is at least 70.7% of the maximum. For any 
frequency above f ,c  the output is less than 70.7% of the applied signal.

Solving for Vo  and substituting VV 0i i= ∠ ° gives

X

R X

X

R X
VV V    0o

C

C
i

C

C
i2 2 2 2

θ θ=
+

∠












=
+

∠












∠ °

and θ=
+

∠
X V

R X
V

 
 o

C i

C
2 2

The angle θ  is, therefore, the angle by which Vo  leads V .i  Since 
θ = − − R Xtan C

1  is always negative (except at =f 0 Hz),  it is clear 
that Vo  will always lag V ,i  leading to the label lagging network for the 
network in Fig. 22.10.
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At high frequencies, XC  is very small and R XC is quite large,  
resulting in θ = − − R Xtan C

1  approaching 90 .− °
At low frequencies, XC  is quite large and R XC is very small, result-

ing in θ = − − R Xtan C
1  approaching 0 .°

At X R,C =  or f f ,c=  − = − = − °− −R Xtan tan  1 45 .C
1 1

A plot of θ  versus frequency results in the phase plot in Fig. 22.15.

0°

–45°

–90°

u (Vo leads Vi)
Band-stopBand-pass fc

f (log scale)

FIG. 22.15 
Angle by which Vo leads Vi .

Band-stopBand-pass

0°

45°

90°

u (Vo lags Vi)

f (log scale)fc

FIG. 22.16 
Angle by which Vo lags Vi .

–

+

R Vo

–

+

Vi

L

FIG. 22.17 
Low-pass R-L filter.

The plot is of Vo  leading V ,i  but since the phase angle is always neg-
ative (due to XC), the phase plot in Fig. 22.16 Vo  lagging V )i  is more 
appropriate. Note that a change in sign requires that the vertical axis be 
changed to the angle by which Vo  lags V .i  In particular, note that the 
phase angle between Vo  and Vi  is less than 45°  in the pass-band and 
approaches 0° at lower frequencies.

In summary, for the low-pass R-C filter in Fig. 22.10:

f
RC

f f V V

f f V V

f V V

  1
2

For , 0.707

whereas for , 0.707

At  ,  lags   by 45

c

c o i

c o i

c o i

π
=

< >

> <

°

The low-pass filter response in Fig. 22.9(a) can also be obtained using 
the R-L combination in Fig. 22.17 with

 f R
L2c π

=  (22.17)

In general, however, the R-C combination is more popular due to the 
smaller size of capacitive elements and the nonlinearities associated 
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with inductive elements. The details of the analysis of the low-pass 
R-L can be an exercise for independent study.

EXAMPLE 22.5

a.  Sketch the output voltage Vo  versus frequency for the low-pass R-C 
filter in Fig. 22.18.

b. Determine the voltage Vo  at f 100  kHz =  and 1 MHz, and com-
pare the results to the results obtained from the curve in part (a).

c. Sketch the normalized gain =υA V V .o i

Solutions:

a. Eq. (22.16):

π π( )
= = =f

RC
318 31 kHz1

2
1

2 1 kΩ (500 pF)
.  c

At f ,c  = =V 0.707(20 V) 14.14 V.o  See Fig. 22.19.

–

+

Vi  =  20 V / 08

R

1 kV

C 500 pF

–

+

Vo

FIG. 22.18 
 Example 22.5.

0.707Vi

10 V

Vi  =  20 V

6.1V

10 kHz 100 kHz 1 MHz 10 MHz f (log scale)

Band-stopBand-pass

Vo (volts)

19.08 V
14.14 V

318.31 kHz

fc

FIG. 22.19 
Frequency response for the low-pass R-C network in Fig. 22.18.

b. Eq. (22.14):

V
V

R
X

1

o
i

C

2
=







 +

At =f 100 kHz,

X
fC

1
2

1
2 (100 kHz)(500 pF)

3.18 kΩC π π
= = =

and V 19 08 V20 V

1 kΩ
3.18 kΩ

1

.  o 2

( )
=

+
=

At =f 1 MHz,

X
fC

1
2

1
2 (1 MHz)(500 pF)

0.32 kΩC π π
= = =

and V 6 1 V20 V

1 kΩ
0.32 kΩ

1

.  o 2

( )
=

+
=

Both levels are verified by Fig. 22.19.
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c. Dividing every level in Fig. 22.19 by =V 20 Vi  results in the nor-
malized plot in Fig. 22.20.

0.707

0.5

1

0.305

10 kHz 100 kHz 1 MHz 10 MHz f (log scale)

318.31 kHz

fc

Av =
Vo
Vi

0.954

FIG. 22.20 
Normalized plot of Fig. 22.19.

22.6 R-C HIGH-PASS FILTER
As noted in Section 22.5, a high-pass R-C filter can be constructed by 
simply reversing the positions of the capacitor and resistor, as shown in 
Fig. 22.21.

At very high frequencies, the reactance of the capacitor is very 
small, and the short-circuit equivalent can be substituted, as shown in 
Fig. 22.22. The result is that V V .o i=

At f 0  Hz,=  the reactance of the capacitor is quite high, and the 
open-circuit equivalent can be substituted, as shown in Fig. 22.23. In this 
case, V 0  V.o =

–

+

R

C

Vi

–

+

Vo

FIG. 22.21 
High-pass filter.

–

+

RVi

–

+

Vo  = Vi

FIG. 22.22 
R-C high-pass filter at very high frequencies.

–

+

RVi

–

+

Vo  =  0 V

FIG. 22.23 
R-C high-pass filter at f Hz0  .=

Vo

Vo  =  Vi

Vo  =  0.707Vi

0

Band-stop Band-passP
f (log scale)fc

FIG. 22.24 
Vo versus frequency for a high-pass R-C filter.

A plot of the magnitude versus frequency is provided in Fig. 22.24, 
with the normalized plot in Fig. 22.25.
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At any intermediate frequency, the output voltage can be determined 
using the voltage divider rule:

R
R jX

V
V0  

o
i

C

=
∠ °
−

or

R
R jX

R

R X X R

V
V

0 0

  tan  
o

i C C C
2 2 1 ( )

=
∠ °

−
=

∠ °

+ ∠− −

and ( )=
+

∠ −R
R X

X R
V
V

   tano

i C
C2 2

1

The magnitude of the ratio V Vo i
 is therefore determined by

 A
V
V

R
R X X

R

1

1

o

i C C
2 2 2

( )
= =

+
=

+
υ  (22.18)

and the phase angle θ  by

 
X
R

tan C1θ = −  (22.19)

For the frequency at which X R,C =  the magnitude becomes

V
V X

R

1

1

1
1 1

1
2

0.707o

i C
2

( )
=

+

=
+

= =

as shown in Fig. 22.25.
The frequency at which X RC =  is determined by

X
f C

R1
2C

cπ
= =

and f
RC
1

2c π
=  (22.20)

For the high-pass R-C filter, the application of any frequency greater 
than fc  results in an output voltage Vo  that is at least 70.7%  of the mag-
nitude of the input signal. For any frequency below f ,c  the output is less 
than 70.7%  of the applied signal.

For the phase angle, high frequencies result in small values of X ,C  
and the ratio X RC  approaches zero with ( )− X Rtan C

1  approaching 
0 ,°  as shown in Fig. 22.26. At low frequencies, the ratio X RC  becomes 

0

Band-stop Band-pass
f (log scale)

0.707

1

Av  =
Vo
Vi

fc

 FIG. 22.25 
Normalized plot of Fig. 22.24.
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quite large, and ( )− X Rtan C
1  approaches 90 .°  For the case X R,C =  

= = °− −X Rtan ( ) tan 1 45 .C
1 1  Assigning a phase angle of 0° to Vi  

such that VV 0 ,i i= ∠ °  we obtain the phase angle associated with Vo  as 
θ, resulting in VVo o θ= ∠  and revealing that θ  is the angle by which Vo  
leads V .i  Since the angle θ  is the angle by which Vo  leads Vi throughout 
the frequency range in Fig. 22.26, the high-pass R-C filter is referred to as 
a leading network.

In summary, for the high-pass R-C filter:

π
=

< <

> >

°

f
RC

f f V V

f f V V

f V V

  1
2

For   ,   0.707

whereas for ,   0.707

At  ,      leads   by 45

c

c o i

c o i

c o i

The high-pass filter response in Fig. 22.25 can also be obtained 
using the same elements in Fig. 22.17 but interchanging their positions, 
as shown in Fig. 22.27.

EXAMPLE 22.6 Given =R 20 kΩ and =C 1200 pF:

a.  Sketch the normalized plot if the filter is used as both a high-pass 
and a low-pass filter.

b. Sketch the phase plot for both filters in part (a).
c. Determine the magnitude and phase of =υA V Vo i  at =f fc

1
2  

for the high-pass filter.

Solutions:

a. f
RC

6631 46 Hz

  1
2

1
2 20 kΩ (1200 pF)

       .  

c π π ( )( )
= =

=
The normalized plots appear in Fig. 22.28.

1

0.707

0

Low-pass

fc  =  6631.46 Hz f (log scale)

Av  =
Vo
Vi

1

0.707

0 fc  =  6631.46 Hz f (log scale)

Av  =
Vo
Vi

High-pass

FIG. 22.28 
Normalized plots for a low-pass and a high-pass filter using the same elements.

Band-stop Band-pass

0°

45°

90°

u (Vo leads Vi)

f (log scale)fc

FIG. 22.26 
Phase-angle response for the high-pass R-C filter.

–

+R

Vo

–

+

Vi L

FIG. 22.27 
High-pass R-L filter.
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b. The phase plots appear in Fig. 22.29.

90°

45°

0

fc  =  6631.46 Hz f (log scale)

Low-pass

 u (Vo lags Vi)

90°

45°

0

fc  =  6631.46 Hz f (log scale)

u (Vo leads Vi)

High-pass

FIG. 22.29 
Phase plots for a low-pass and a high-pass filter using the same elements.

c. ( )= = =f f1
2

1
2

6631.46 Hz 3315.73 Hzc

π π( )
= =

≅

X
fC

  1
2

1
2 (3315.73 Hz)(1200 pF)

       40 kΩ

C

( ) ( ) ( )
= =

+

=
+

=
+

= =

υA
V
V X

R

  1

1

1

1 40 kΩ
20 kΩ

1

1 2

      1
5

0.4472

o

i C
2 2 2

θ = = = = °− − −X
R

tan tan 40 kΩ
20 kΩ

tan 2 63.43C1 1 1 

and A
V
V

0 447 63 43.   .o

i

= = ∠ °υ

22.7 BAND-PASS FILTERS
The most direct way to obtain the pass-band characteristics of 
Fig. 22.9(c) is to use a series or parallel resonant circuit as described 
in Chapter 21. In each case, however, Vo  will not be equal to Vi  in the 
 pass-band, but a frequency range in which Vo  will be equal to or greater 
than V0.707  max  can be defined.

For the series resonant circuit in Fig. 22.30, =X XL C at resonance, 
and

 =
+

=

V R
R R

V o
l

i

f fs

max  (22.21)

f

Rl

Band-pass filter

Band-pass

Vi

–

+

Vi

f

L C
R Vo

–

+

Vi

0.707Vomax

0

Vo

Vi

f1 f2fs

Vomax

BW

Rl

FIG. 22.30 
Series resonant band-pass filter.
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and f
LC

1
2s π

=  (22.22)

with Q
X

R Rs
L

l

=
+

 (22.23)

and BW
f

Q
s

s

=  (22.24)

For the parallel resonant circuit in Fig. 22.31, ZTp
 is a maximum 

value at resonance, and

 =
+

=

V
Z V

Z Ro
T i

T
f f

p

p
p

max
 (22.25)

with =
≥

Z Q RT l l
Q

2

10p
l

 (22.26)

and 
π

=
≥

f
LC

1
2p

Q 10l

 (22.27)

For the parallel resonant circuit

 Q
X
Rp

L

l

=  (22.28)

and BW
f

Q
p

p

=  (22.29)

–

+

R 33 V

Rl

2 V

–

+

Vo

L C

1 mH
0.01 mF

Vi  =  20 mV / 08

FIG. 22.32 
Series resonant band-pass filter for 

Example 22.7.

ZTp

0

Vi

Vi

–

+

Rl

L
CVi Vo

–

+

Band-pass filter

Band-pass

Vi

0

0.707Vomax

Vomax

f1 f2fp

BW

Vo  
=  VC

f

R

FIG. 22.31 
Parallel resonant band-pass filter.

As a first approximation that is acceptable for most practical  
applications, it can be assumed that the resonant frequency bisects the 
bandwidth.

EXAMPLE 22.7

a. Determine the frequency response for the voltage Vo  for the series 
circuit in Fig. 22.32.

b. Plot the normalized response =υA V V .o i

c. Plot a normalized response defined by ′ =υ υ υA A A .
max
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Solutions:

a. 
π π µ( )( )

= = =f
LC

50 329 21 Hz  1
2

1
2 1mH 0.01  F

, .  s

Q
X

R R
9 04  2 50,329.21 Hz 1 mH

33 Ω 2 Ω
.s

L

l

π( )( )
=

+
=

+
=

BW
f

Q
5 57 kHz  50,329.21 Hz

9.04
.  s

s

= = =

At resonance:

V
RV

R R
V

V 
33 Ω

33 Ω 2 Ω
0.943 0.943 20 mVo

i

l

i
imax

( )
( )=

+
=

+
= =

18 86 mV.  =

At the cutoff frequencies:

V V V  0.707 0.943 0.667 0.667 20 mVo i i( )( ) ( )= = =

= 13 34 mV.  

Note Fig. 22.33.

Vo

18.86 mV

13.34 mV

fs  ≅  50.3 kHz f (log scale)

0

BW  =  5.57 kHz

FIG. 22.33 
Band-pass response for the network.

(b)

0.943

0.667

0
fs f (log scale)

Av  =
Vo
Vi

=
Vo

20 mV

(a)

BW

{

Av  = =
Av

Avmax

Av
0.943

1

0.707

0
fs f (log scale)

BW

{

FIG. 22.34 
Normalized plots for the band-pass filter in Fig. 22.32.

b. Dividing all levels in Fig. 22.32 by =V 20 mVi  results in the nor-
malized plot in Fig. 22.34(a).

c. Dividing all levels in Fig. 22.34(a) by A 0.943
max

=υ  results in the 
normalized plot in Fig. 22.34(b).

Another way to produce a band-pass filter is to use a low-pass and 
a high-pass filter in cascade, as shown in Fig. 22.35.
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The components are chosen to establish a cutoff frequency for the 
high-pass filter that is lower than the critical frequency of the low-pass 
filter, as shown in Fig. 22.36. A frequency f1  may pass through the 
 low-pass filter but have little effect on Vo  due to the reject characteristics 
of the high-pass filter. A frequency f2 may pass through the high-pass 
filter unmolested but be prohibited from reaching the high-pass filter by 
the low-pass characteristics. A frequency fo  near the center of the pass-
band passes through both filters with very little degeneration.

–

+

R1 1 kV C2 4 pF

R2

40 kV

C1

1500 pF

Vi

–

+

Vo

High-pass
filter

Low-pass
filter

FIG. 22.37 
Band-pass filter.

(High-pass) (Low-pass)

High-pass

Low-pass

BW
Vmax

0.707Vmax

Vo

0 f1 fo ff2fc fc

FIG. 22.36 
Band-pass characteristics.

–

+ High-pass
filter

Low-pass
filter

Vi

–

+

Vo

FIG. 22.35 
Band-pass filter.

The network in Example 22.8 generates the characteristics of 
Fig. 22.36. However, for a circuit such as the one shown in Fig. 22.37, 
there is a loading between stages at each frequency that affects the level 
of V .o  Through proper design, the level of Vo  may be very near the level 
of Vi  in the pass-band, but it will never equal it exactly. In addition, as 
the critical frequencies of each filter get closer and closer together to  
increase the quality factor of the response curve, the peak values within 
the pass-band continue to drop. For cases where V V ,o imax max

≠  the 
bandwidth is defined at 0.707 of the resulting Vo .max

EXAMPLE 22.8 For the band-pass filter in Fig. 22.37:

a. Determine the critical frequencies for the low- and high-pass filters.
b. Using only the critical frequencies, sketch the response characteris-

tics.
c. Determine the actual value of Vo  at the high-pass critical frequency 

calculated in part (a), and compare it to the level that defines the 
upper frequency for the pass-band.

Solutions:

a. High-pass filter:

f
R C

106 1 kHz1
2

1
2 1 kΩ (1500 pF)

.  c
1 1π π( )

= = =
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Low-pass filter:

f
R C

994 72 kHz1
2

1
2 40 kΩ (4 pF)

.  c
2 2π π( )

= = =

b. In the mid-region of the pass-band at about 500 kHz, an analysis of  
the network reveals that V V0.9 ,o i≅  as shown in Fig. 22.38. The 
bandwidth is therefore defined at a level of =V V0.707(0.9  ) 0.636  ,i i  
as also shown in Fig. 22.38.

Band-pass
0.636Vi

0.707Vi

0.9Vi

Vi

Vo

fc ≅ 106 kHz
Actual fc

fc ≅ 995 kHz Actual fc
0 f

FIG. 22.38 
Band-pass characteristics for the filter in 

Fig. 22.37.

c. At =f 994.72 kHz,

X
fC
1

2
107 ΩC

1
1 π

= ≅

and      X
fC

R1
2

40 kΩC
2

22 π
= = =

resulting in the network in Fig. 22.39.

The parallel combination ( )−R R jXC1  2 2
 is essentially 0.976 kΩ 0∠ ° 

because the ( )−R jXC2 2
 combination is so large compared to the parallel 

resistor R .1

Then

j
V

V
V

0.976 kΩ 0
0.976 kΩ 0.107 kΩ

0.994 6.26i
i

( )
′ =

∠ °
−

≅ ∠ °

with

j
V

V
 

40 kΩ 90 0.994 6.26
40 kΩ 40 kΩo

i( )( )
=

∠− ° ∠ °
−

V V  0.703 39o i≅ ∠− °

so that

V V f0.703    at    994.72 kHzo i≅ =

Since the bandwidth is defined at V0.636  i  the upper cutoff frequency 
will be higher than 994.72 kHz, as shown in Fig. 22.38.

22.8 BAND-STOP FILTERS
Since the characteristics of a band-reject filter (also called stop-band or 
notch filter) are the inverse of the pattern obtained for the band-pass 
filter, a band-stop filter can be designed by simply applying Kirchhoff’s 

–

+

R1  =  1 kV XC2
40 kV

R2

40 kV

XC1

107 V

Vi

–

+

Vo
–

+
V9

FIG. 22.39 
Network of Fig. 22.37 at 

f kHz994.72  .=
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voltage law to each circuit. That is, since the sum of the voltages around 
a closed loop must equal zero at any instant, if we take the output off the 
series resistor in a series resonant circuit and the series resistive load in a 
parallel resonant circuit, we will obtain the desired band-stop response. 
The above is demonstrated by the waveforms of Fig. 22.40.

–

+

Vi

Vi

0

Vi

–

+

Vo

Rl

Band-stop filter

R

L

C

BW

Vo

Vomax  =  Vi

0.707Vi

0

Vomin

f1 fp f2 f

FIG. 22.42 
Band-stop filter using a parallel resonant network.

Rl
Vi

–

+

Vi

0

R

C

Vi

–

+

VoL

Band-stop filter

BW

Vo

Vomax  =  Vi

0.707Vi

0

Vomin

f1 fs f2 f

FIG. 22.41 
Band-stop filter using a series resonant circuit.

=

0

Vi

Vi

0

Vi

Vo

ff fo

Band-stopBand-pass

0 ffo

+

FIG. 22.40 
Demonstrating how an applied signal of fixed magnitude can be broken down into a band-pass and  

band-stop response curve.

For the series resonant circuit in Fig. 22.41, Eqs. (22.22) through 
(22.24) still apply, but now, at resonance,

 V
R V

R Ro
l i

l
min

=
+

 (22.30)

For the parallel resonant circuit in Fig. 22.42, Eqs. (22.26) through 
(22.29) are still applicable, but now, at resonance,

 V
RV

R Zo
i

Tp
min

=
+

 (22.31)
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The maximum value of Vo  for the series resonant circuit is Vi  at the 
low end due to the open-circuit equivalent for the capacitor and Vi  at the 
high end due to the high impedance of the inductive element.

For the parallel resonant circuit, at =f 0 Hz, the inductor can be  
replaced by a short-circuit equivalent, and the capacitor can be replaced by  
its open circuit, and = +V RV R R( ).o i l  At the high-frequency end, 
the capacitor approaches a short-circuit equivalent, and Vo  increases to-
ward V .i

Band-stop filters can also be constructed using a low-pass and a 
high-pass filter. However, rather than the cascaded configuration used 
for the pass-band filter, a parallel arrangement is required, as shown in 
Fig. 22.43. A low-frequency f1  can pass through the low-pass filter, and 
a higher-frequency f2 can use the parallel path, as shown in Figs. 22.43 
and 22.44. However, a frequency such as fo  in the reject-band is higher 
than the low-pass critical frequency and lower than the high-pass critical 
frequency, and it is therefore prevented from contributing to the levels of 
Vo  above V0.707  max .

Vi

–

+

Low-pass
filter

High-pass
filter

Vo

–

+

f2 (high)

f1 (low)

fo

fo

f1 (low)

f2 (high)

FIG. 22.43 
Band-stop filter.

f1

BW

fc fo fc f2 f  (log scale)

Vo

Vomax

0.707Vomax

(Low-pass) (High-pass)

FIG. 22.44 
Band-stop characteristics.

22.9 DOUBLE-TUNED FILTER
Some network configurations display both a band-pass and a band-stop 
characteristic, such as shown in Fig. 22.45. Such networks are called 
 double-tuned filters. For the network in Fig. 22.45(a), the parallel res-
onant circuit establishes a band-stop for the range of frequencies not 
 permitted to establish a significant V .L  The greater part of the applied 
voltage  appears across the parallel resonant circuit for this frequency 
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range due to its very high impedance compared with R .L  For the 
 band-pass, the parallel resonant circuit is designed to be capacitive (in-
ductive if Ls is replaced by C )s . The inductance Ls is chosen to cancel the 
effects of the resulting net capacitive reactance at the resonant  band-pass 
frequency of the tank circuit, thereby acting as a series resonant circuit. 
The applied voltage then appears across RL  at this frequency.

For the network in Fig. 22.45(b), the series resonant circuit still  
determines the pass-band, acting as a very low impedance across the par-
allel inductor at resonance. At the desired stop-band resonant frequency, 
the series resonant circuit is capacitive. The inductance L p  is chosen 
to establish parallel resonance at the resonant stop-band frequency. The 
high impedance of the parallel resonant circuit results in a very low load 
voltage V .L

For rejected frequencies below the pass-band, the networks should  
 appear as shown in Fig. 22.45. For the reverse situation, Ls in 
Fig. 22.45(a) and L p  in Fig. 22.45(b) are replaced by capacitors.

EXAMPLE 22.9 For the network in Fig. 22.45(b), determine Ls and 
L p  for a capacitance C of 510 pF if a frequency of 200 kHz is to be 
rejected and a frequency of 600 kHz accepted. Assume Rs  and Rp  are 
zero ohms.

Solution: For series resonance, we have

f
LC

1
2s π

=

and

µ µ
π π ( )

= = =L
f C

137 9 H 150 H1
4

1
4 600 kHz (510 pF)

.   ,  use   s
s

2 2 2 2

At 200 kHz,

X L f L2 2 200 kHz 150  H 188.5 ΩL s ss
ω π π µ( )( )( )= = = =

and    X
C
1 1

2 (200 kHz)(510 pF)
1560.3 ΩC ω π( )

= = =

For the series elements,

j X X j j jX188.5 Ω 1560.3 Ω 1371.8 ΩL C Cs
( ) ( )− = − = − = − ′

(a)

+

–

+

–

Rs

RL

Ls

Rp Lp

VLVi

C

(b)

+

–

+

–

RLRp Lp VLVi

Rs Ls C

FIG. 22.45 
Double-tuned networks.
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At parallel resonance Q 10  assumed ,l( )≥

X XL Cp
= ′

and L
X

1 09 mH 1 1 mH1371.8 Ω 
2 200 kHz

.   ,  use  .  p
L p

ω π ( )( )
= = =

 22.10 OTHER FILTER CONFIGURATIONS
There are a variety of other passive configurations and a host of designs 
with active elements. All the passive designs must have reactive ele-
ments with some having a number of the same kind or a mix of inductors 
and capacitors. A number use either the T or π  configuration as shown 
in Fig. 22.46. The filters of Fig. 22.46 are both low-pass filters but by 
interchanging the positions of the inductors and capacitors they can both 
function as high-pass filters.

For filters in general,

the two most important characteristics of any filter include 
the flatness (low ripple content) in the band-pass or band-
stop sections and how quickly the response drops off or rises 
at the transition frequency.

Some designs such as the Butterworth low-pass filter of Fig. 22.47(a) 
have a very low ripple content in the pass-band but suffer from a slow 
roll-off rate. A Chebyshev filter having the same basic set of compo-
nents but of different values has a much higher level of ripple content 
in the pass-band but a much sharper drop-off as shown in Fig. 22.47(b).

L1 L2

+

–

Vi RL

+

–

Vo

L3

C1 C2 C3

(a)

0

1.0

0.707

f

Vo

fc fc

(b)

0

1.0 Ripple

0.707

f

Vo

(c)

FIG. 22.47 
(a) Butterworth filter with response. (b) Chebyshev filter response composed of same elements 

as the Butterworth filter but with different values. (c) Multistage approach.

L1 L2

C

+

–

+

–

V  oVi

(a)

L

C1 C2

+

–

+

–

VoVi

(b)

FIG. 22.46 
Low-pass filters (a) T and (b) .π
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The response of a filter can usually be improved using a multistage 
approach such as shown in Fig. 22.47(c) for the Butterworth filter. As 
the number of stages increases, the drop-off rate improves as shown in 
Fig. 22.48.

(a)

L

C1 C2

+

–

+

–

Vi RLVo

+

–

+

–

Vi

≅

≅ ≅ RL V  ≅ VLo

(b)

+

–

+

–

Vi

≅

≅ ≅ RL V  ≅ 0 Vo

Very
high

frequencies
⇒

Very
low

frequencies

FIG. 22.49 
(a) Butterworth equivalent at very low frequencies and (b) at very high frequencies.

f0

1
2

3
4

0.707

1.0

Vo

fc

FIG. 22.48 
Effect of the stage count on the Butterworth filter 

response.

There is no requirement that a band-pass or band-stop filter has both 
inductors and capacitors to perform properly. There is the requirement, 
however, that

every band-pass or band-stop filter must have at least two 
reactive elements to permit defining both the low and high 
cutoff frequencies.

The overall behavior of any filter can usually be determined by sim-
ply looking at the placement of elements and testing the behavior of the 
network at very high and low frequencies. For the Butterworth stage 
of Fig. 22.49(a), if we consider very low frequencies, the inductors are  
approaching a short-circuit state and the capacitor an open-circuit state as 
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indicated in the same figure. The result is a direct passage to the output 
through the short-circuited inductors. At very high frequencies the capac-
itor takes on the characteristics of a short circuit, preventing the applied 
signal from passing through to the output as shown in Fig. 22.49(b). At the 
same time, the reactance of the inductor L becomes so large that it behaves 
like an open circuit to further prevent the signal from passing through to 
the load. The result is a behavior matching that of a low-pass filter.

For the band-pass filter of Fig. 22.37 repeated here as Fig. 22.50(a) 
for convenience, the capacitor C1 is part of a high-pass filter and the 
capacitor C2 is part of a low-pass filter. Note in particular that C1 is 
375 times larger than C2 so its reactance will be 375 times smaller at 
any applied frequency. The result of such a difference is that the cutoff 
frequencies defined by each will be far apart.

(a)

C2

C1

+

–

+

–

Vi RLR1

R2

Vo4 pF

1500 pF 40 kΩ

1 kΩ

(b)

C2 RLVC2

+

–

+

–

V   =  VC2o

High
frequencies

(c)

R1

+ –

+

–

+

–

Vi

+

–

V′i ≅ RL V  ≅ o

C1

VC1

RL(Vi′)
RL + R2

———

R2
Low

frequencies

FIG. 22.50 
(a) Band-pass filter, (b) capacitive control at high frequencies, (c) low-frequency 

control of capacitor C .1

The first step in describing the behavior of the network of 
Fig. 22.50(a) is to note that the output is taken directly across the  
capacitor C2 as shown in Fig. 22.50(b). The result is that the reactance 
of the capacitor and the voltage across it will drop with increase in fre-
quency. In other words, the capacitor C2 and resistor R2 are defining the 
high cutoff frequency as π=f R C1 2  .c 2 22

 At the low-frequency end, 
we find that the reactance of the capacitor C1 will decrease as the fre-
quency increases, resulting in less and less of the applied voltage drop-
ping across the capacitor with more appearing across the resistor R1 as 
shown in Fig. 22.50(c). In other words, at very low frequencies most of 
the applied voltage drops across the capacitor C1 because the reactance 
of the capacitor is so high. As the frequency increases, the reactance of 
the capacitor C1 decreases and more and more voltage appears across the 
resistor R1. Most of the voltage Vi′  will then be passed on to the output 
of the filter through a voltage divider action. The low cutoff frequency is 
therefore determined by π=f R C1 2 .c 1 11
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The actual behavior of the filter can be confirmed, or in fact deter-
mined, by simply choosing a frequency such as the cutoff frequency and 
calculating the output voltage using the resulting reactance of the reac-
tive elements. If the band-pass or band-stop values of the output of any 
configuration are desired, simply apply a frequency that should be in 
those regions and calculate the output voltage.

The sole purpose for the preceding discussion is to introduce an  
approach for analyzing the behavior of a filter without an extensive 
mathematical analysis–to develop a sense for its behavior simply by not-
ing the placement of the reactive elements and their expected response 
for various frequency regions.

22.11 BODE PLOTS
There is a technique for sketching the frequency response of such factors 
as filters, amplifiers, and systems on a decibel scale that can save a great 
deal of time and effort and provide an excellent way to compare decibel 
levels at different frequencies.

The curves obtained for the magnitude and/or phase angle 
versus frequency are called Bode plots (Fig. 22.51). Through 
the use of straight-line segments called idealized Bode 
plots, the frequency response of a system can be found 
efficiently and accurately.

To ensure that the derivation of the method is correctly and clearly 
understood, the first network to be analyzed is examined in some  detail. 
The second network is treated in a shorthand manner, and finally a 
method for quickly determining the response is introduced.

High-Pass R-C Filter

Let us start by reexamining the high-pass filter in Fig. 22.52. The h igh-
pass filter was chosen as our starting point because the frequencies of 
primary interest are at the low end of the frequency spectrum.

The voltage gain of the system is given by

π

π( )

= =
−

=
−

=
−

=
−

υ
R

R jX j
X
R

j
fCR

j
RC f

A
V
V

  1

1

1

1 1
2

     1

1 1
2

1

o

i C C

If we substitute f
RC
1

2c π
=  (22.32)

which we recognize as the cutoff frequency of earlier sections, we obtain

 
j f f

A 1
1   c( )

=
−υ  (22.33)

We will find in the analysis to follow that the ability to reformat the 
gain to one having the general characteristics of Eq. (22.33) is critical 
to the application of the Bode technique. Different configurations result 
in variations of the format of Eq. (22.33), but the desired similarities 
become obvious as we progress through the material.

–

+

RVi

C

–

+

Vo

FIG. 22.52 
High-pass filter.

NASA

FIG. 22.51 
Hendrik Wade Bode.

American (Madison, WI; Summit, NJ;  
Cambridge, MA)

(1905–81)
V.P. at Bell Laboratories
Professor of Systems Engineering,  

Harvard University

In his early years at Bell Laboratories, Hendrik 
Bode was involved with electric filter and equaliz-
er design. He then transferred to the Mathematics 
Research Group, where he specialized in research 
pertaining to electrical networks theory and its ap-
plication to  long-distance communication facilities. 
In 1948 he was awarded the Presidential Certifi-
cate of Merit for his work in electronic fire control 
devices. In addition to the publication of the book 
Network Analysis and Feedback Amplifier Design in 
1945, which is considered a classic in its field, he 
was granted 25 patents in electrical engineering and 
systems design. Upon retirement, Bode was elected 
Gordon McKay Professor of Systems Engineering at 
Harvard University. He was a fellow of the IEEE and 
American Academy of Arts and Sciences.
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In magnitude and phase form,

   A
f f

f fA
V
V

1

1  
tan  o

i
c

c2
1θ

( )
( )= = ∠ =

+
∠υ υ

−  (22.34)

providing an equation for the magnitude and phase of the high-pass filter 
in terms of the frequency levels.

Using Eq. (22.12) gives

A A20 log10dB
=υ υ

and, substituting the magnitude component of Eq. (22.34) gives

( )
( )=

+
= − +υ � ��� ���A

f f
f f20  log 1

1
20 log 1 20 log 1

c

c10 2 10

0

10
2

dB

and 
f
f

A 20 log   1 c
10

2

dB
= − +







υ

Recognizing that x x xlog   log    log ,10 10
1 2 1

2 10= =  we have

( )= − +




















= − +




















υA
f
f

f
f

  1
2

  20 log 1

10 log 1

c

c

10 

2

10 

2

dB

For frequencies where f fc<<  or f f  1,c
2( ) >>

f
f

f
f

1 c c
2 2

+






 ≅









and A
f
f

10 log c
10

2

dB
= −







υ

but x xlog   2 log10
2

10 =

resulting in A
f
f

20 log c
10dB

= −υ

However, logarithms are such that

− = +b
b

log log 1
10  10

and substituting b f f ,c=  we have

 
�

= +υA
f
f

20 log
c f f

10

c

dB
 (22.35)

First note the similarities between Eq. (22.35) and the basic equation 
for gain in decibels: =G V V20 log .o idB 10  The comments regard-
ing changes in decibel levels due to changes in V Vo i can therefore be  
applied here also, except now a change in frequency by a 2 : 1 ratio results  
in a 6 dB change in gain. A change in frequency by a 10 : 1 ratio results in  
a 20 dB change in gain.

Two frequencies separated by a 2 : 1 ratio are said to be an 
octave apart.

For Bode plots, a change in frequency by one octave will 
result in a 6 dB change in gain.
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Two frequencies separated by a 10 : 1 ratio are said to be a 
decade apart.

For Bode plots, a change in frequency by one decade will 
result in a 20 dB change in gain.

One may wonder about all the mathematical development to obtain an 
equation that initially appears confusing and of limited value. As speci-
fied, Eq. (22.35) is accurate only for frequency levels much less than f .c

First, realize that the mathematical development of Eq. (22.35) does 
not have to be repeated for each configuration encountered. Second, the 
equation itself is seldom applied but simply used to define a straight line 
on a log plot that permits a sketch of the frequency response of a system 
with a minimum of effort and a high degree of accuracy.

To plot Eq. (22.35), consider the following levels of increasing 
frequency:

For = = + = −f f f f10,  0.1  and 20 log  0.1 20 dBc c 10

For = = + = −f f f f4,  0.25  and 20 log  0.25 12  dBc c 10

For = = + = −f f f f  2,  0.51  and 20 log  0.5 6  dBc c 10

For = = + =f f f f,  1    and 20 log 1 0  dBc c 10

Note from the above equations that as the frequency of interest  
approaches f ,c  the dB gain becomes less negative and approaches the final  
normalized value of 0 dB. The positive sign in front of Eq. (22.35) can 
therefore be interpreted as an indication that the dB gain will have a pos-
itive slope with an increase in frequency. A plot of these points on a log 
scale results in the straight-line segment in Fig. 22.53 to the left of f .c

–7 dB

0
f (log scale)

–3

–6

–9

–12

–15

–18

Actual frequency response

–6 dB/octave or –20 dB/decade

–21 +20 log10

 fc
10

 fc
4

 fc
2  fc 2 fc 3 fc 5 fc 10 fc

–20 log10 1  =  0 dB

Idealized Bode plotAv(dB) (linear scale)

 f
 fc

–20

–1 dB

FIG. 22.53 
Idealized Bode plot for the low-frequency region.

For the future, note that the resulting plot is a straight line intersect-
ing the 0 dB line at f .c  It increases to the right at a rate of 6 dB+  per  
octave or 20 dB+  per decade. In other words, once fc  is determined, 
find f 2,c  and a plot point exists at 6 dB−  (or find f 10,c  and a plot 
point exists at 20 dB)− .

Bode plots are straight-line segments because the dB 
change per decade or octave is constant.

The actual response approaches an asymptote (straight-line segment) 
defined by A 0 dB

dB
=υ  since at high frequencies

≅f f f fand 0c c�
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with  A
f f

20 log 1

1
20 log 1

1 0

          20 log  1 0 dB
c

10 2 10

10

dB
( )

=
+

=
+

= =

υ

The two asymptotes defined above intersect at f ,c  as shown in 
Fig. 22.53, forming an envelope for the actual frequency response.

At f f ,c=  the cutoff frequency,

A
f f

3 dB

  20 log 1

1
20 log 1

1 1
20 log 1

2

           
c

10 2 10 10dB

−
( )

=
+

=
+

=

=

υ

At f f2 ,c=

A
f
f

1 dB

  20 log   1
2

20 log   1 1
2

        20 log   1.25  

c

c
10

2

10

2

10

dB

−

( )= − +






 = − +

= − =

υ

as shown in Fig. 22.53.
At f f 2,c=

A
f

f

7 dB

  20  log   1
2

20 log   1 2

          20 log   5

           

c

c
10

2

10
2

10

dB

−

( )= − +






 = − +

= −

=

υ

separating the idealized Bode plot from the actual response by 
7 dB 6 dB 1dB,− =  as shown in Fig. 22.53.

Reviewing the above,

at  f f ,c=  the actual response curve is 3 dB down from the 
idealized Bode plot, whereas at f 2fc=  and f 2,c |  the actual 
response curve is 1 dB down from the asymptotic response.

The phase response can also be sketched using straight-line  
asymptotes by considering a few critical points in the frequency spectrum.

Eq. (22.34) specifies the phase response (the angle by which Vo leads 
Vi) by

 
f
f

tan c1θ = −  (22.36)

For frequencies well below fc f f f f f( ),  tan ( )c c c
1� θ = −  approaches 

90 ,°  and for frequencies well above f f f f f( ),  tan ( )c c c
1� θ= −  

will approach 0 ,°  as discovered in earlier sections of the chapter. At 
f f f f,  tan  ( ) tan  1 45 .c c

1 1θ= = = = °− −

Defining � |=f f f ffor  10c c  (and  less) and f f f f for 10 c c� =  
(and more), we can define

an asymptote at 90θ = ° for 10,f fc |�  an asymptote at 
0θ = ° for 10 ,f fc �  and an asymptote from 10fc |  to 10 fc 

that passes through 45θ = ° at f f .c=

The asymptotes defined above all appear in Fig. 22.54. Again, the Bode 
plot for Eq. (22.36) is a straight line because the change in phase angle 
will be 45°  for every tenfold change in frequency.

Substituting f f 10c=  into Eq. (22.36) gives

f
f

84 29tan
10

tan 10 .c

c

1 1 θ =






 = = °− −
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for a difference of 90 84.29 5.7° − ° ≅ ° from the idealized response.
Substituting f f10 c=  gives

θ =






 = ≅ °− −f

f
5 7tan

10
tan   1

10
.c

c

1 1

In summary, therefore,

at θ °= =f f , 45c ,    whereas at f f 10  and 10f ,c c|=  the 
difference between the actual phase response and the 
asymptotic plot is 5.7°.

EXAMPLE 22.10

a. Sketch A
dBυ

versus frequency for the high-pass R-C filter in 
Fig. 22.55.

b. Determine the decibel level at f 1  kHz.=
c. Sketch the phase response versus frequency on a log scale.

Solutions:

a. f
RC
1

2
1

2 1 kΩ (0.1  F)
1591.55 Hzc π π µ( )( )

= = =

The frequency fc  is identified on the log scale as shown  
in Fig. 22.56. A straight line is then drawn from fc  with a  
slope that will intersect −20  dB at f 10 159.15  Hzc =  or 

f6  dB at  2 795.77  Hz.c− =  A second asymptote is drawn 
from fc  to higher frequencies at 0 dB. The actual response curve 
can then be drawn through the −3  dB level at fc  approaching the 
two asymptotes of Fig. 22.56. Note the 1 dB difference between the 
actual response and the idealized Bode plot at =f f2 c  and f0.5 .c

Note that in the solution to part (a), there is no need to use  
Eq. (22.35) or to perform any extensive mathematical manipulations.

b. Eq. (22.33):

A
f
f

5 49 dB

  20 log   1

1

20 log   1

1 1591.55 Hz
1000

20 log   1

1 1.592
20 log  0.5318 .  

c

10 2 10 2

10 2 10

dB

−

( )

( )

=

+








=
+

=
+

= =

υ

as verified by Fig. 22.56.

Actual response

Difference  =  5.7°

45°45°

90°

=  90°
(Vo leads Vi)

10 fc

Difference  =  5.7°

100 fc f (log scale) fc fc
10

 fc
100

0°

=  0°

FIG. 22.54 
Phase response for a high-pass R-C filter.

0.1 mF

R 1 kV

C

+

–

Vi

+

–

Vo

FIG. 22.55 
Example 22.10.
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c. See Fig. 22.57. Note that f f45   at  1591.55  Hz,cθ = ° = =  
and the difference between the straight-line segment and  
the actual response is |° = =f f5.7   at  10 159.2  Hzc  and 
f f10 15,923.6  Hz.c= =

0
f (log scale)

–3

–6

–9

–12

–15

–18

Actual response curve

–21

 fc
10

–24

dB
=  159.15 Hz

10 kHz5 kHz

1 dB

2 fc2 kHz

fc  =  1591.55 Hz

1 kHz

–3 dB at  f  =  fc

200 Hz 300 Hz

 fc
2

=  795.77 Hz

100 Hz

–20 dB

1 dB

FIG. 22.56 
Frequency response for the high-pass filter in Fig. 22.55.

0° f (log scale)

 fc

θ (Vo leads Vi)

=  159.15 Hz
10 kHz1 kHz

fc  =  1591.55 Hz

100 Hz

45°

90°

10 Hz
10

100 kHz

10 fc  =  15,915.5 Hz

45°

Difference  =  5.7°

Difference  =  5.7°

FIG. 22.57 
Phase plot for the high-pass R-C filter.

Low-Pass R-C Filter

For the low-pass filter in Fig. 22.58,

π π

= =
−
−

=

−

+

=
+

=
+

=
+

υ
jX

R jX R
jX

j R
X

j R

fC

j
f

RC

A
V
V

  1 1

       1

1  

1

1   1
2

1

1   1
2

o

i

C

C

C

C

 

R

C

+

–

Vi

+

–

Vo

FIG. 22.58 
Low-pass filter.
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and ( )
=

+υ j f f
A 1

1 c
 (22.37)

with π
=f

RC
1

2c  (22.38)

as defined earlier.
Note that now the sign of the imaginary component in the denomina-

tor is positive and fc  appears in the denominator of the frequency ratio 
rather than in the numerator, as in the case of fc  for the high-pass filter.

In terms of magnitude and phase,

V
V

A
f f

f fA 1

1
tano

i
c

c2
1θ

( )
( )= = ∠ =

+
∠−υ υ

−  (22.39)

An analysis similar to that performed for the high-pass filter results in

  (22.40)

Note in particular that the equation is exact only for frequencies much 
greater than f ,c  but a plot of Eq. (22.40) does provide an asymptote that 
performs the same function as the asymptote derived for the high-pass 
filter. In addition, note that it is exactly the same as Eq. (22.35), except 
for the minus sign, which suggests that the resulting Bode plot will have 
a negative slope [recall the positive slope for Eq. (22.35)] for increasing 
frequencies beyond f .c

A plot of Eq. (22.40) appears in Fig. 22.59 for =f 1 kHz.c  Note the 
6 dB drop at f f2 c=  and the 20 dB drop at f f10 .c=

�

A
f
f

20 log  
c

f f

10

c

dB
= −υ

2 kHz (log scale)

f (log scale)
–3

–6

–9

–12

–15

–18

Actual
frequency
response

–21

–24

dB

10 kHz
2 fc

1 kHz0.1 kHz
10 fcfc

2
1  fc

1 dB difference
–6 dB

1 dB difference

–20 dB

FIG. 22.59 
 Bode plot for the high-frequency region of a low-pass R-C filter.

At �f f ,c  the phase angle θ |= − − f ftan ( )c
1  approaches 

90 ,− °  whereas at � θ |( )= − −f f f f,  tanc c
1  approaches 0 .°  At 

θ= = − = − °−f f ,  tan 1 45 ,c
1  establishing the plot in Fig. 22.60. 

Note again the 45°  change in phase angle for each tenfold increase in 
frequency.

Even though the preceding analysis has been limited solely to the R-C 
combination, the results obtained will have an impact on networks that 
are a great deal more complicated. One good example is the high- and 
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low-frequency response of a standard transistor configuration. Some  
capacitive elements in a practical transistor network affect the low- 
frequency response, and others affect the high-frequency response. In the 
absence of the capacitive elements, the frequency response of a transistor 
ideally stays level at the midband value. However, the coupling capacitors 
at low frequencies and the bypass and parasitic capacitors at high frequen-
cies define a bandwidth for numerous transistor configurations. In the low- 
frequency region, specific capacitors and resistors form an R-C combina-
tion that defines a low cutoff frequency. There are then other elements and 
capacitors forming a second R-C combination that define a high cutoff 
frequency. Once the cutoff frequencies are known, the −3 dB points are 
set, and the bandwidth of the system can be determined.

 22.12 SKETCHING THE BODE RESPONSE
In the previous section, we found that normalized functions of the form 
appearing in Fig. 22.61 had the Bode envelope and the dB response  
indicated in the same figure. In this section, we introduce additional 
functions and their responses that can be used in conjunction with those 
in Fig. 22.61 to determine the dB response of more sophisticated sys-
tems in a systematic, time-saving, and accurate manner.

f (log scale)0°

–45°

u  =  –90°

u (Vo leads Vi)

100 fcfc

 fc/10

Difference  =  5.7°

Difference  =  5.7°
–90°

10 fc

45°

u  =  0°fc/100

FIG. 22.60 
Phase plot for a low-pass R-C filter.

dB

–3 dB

fc

f

–6 dB/octave (for increasing f )

(a)

Low-pass:

dB

0 dBfc

f

+6 dB/octave (for increasing f )

(b)

High-pass:
–3 dB

1

1  +  j
f
fc

1

1  +  j
f

fc

FIG. 22.61 
dB response of (a) low-pass filter and (b) high-pass filter.
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As an avenue toward introducing an additional function that appears 
quite frequently, let us examine the high-pass filter in Fig. 22.62, which 
has a high-frequency output less than the full applied voltage.

Before developing a mathematical expression for |=υA V V ,o i  let 
us first make a rough sketch of the expected response.

At f 0 Hz,=  the capacitor assumes its open-circuit equivalence, 
and V 0 V.o =  At very high frequencies, the capacitor can assume its 
short-circuit equivalence, and

V
R

R R
V V V  4 kΩ

1 kΩ 4 kΩ
  0.8 o i i i

2

1 2

=
+

=
+

=

The resistance to be used in the equation for cutoff frequency can be 
determined by determining the Thévenin resistance “seen” by the capac-
itor. Setting V 0 Vi =  and solving for RTh  (for the capacitor C) results 
in the network in Fig. 22.63, where it is quite clear that

R R R 1 kΩ 4 kΩ 5 kΩTh 1 2= + = + =

Therefore,

f
R C
1

2
1

2 5 kΩ (1 nF)
31.83 kHzc

Thπ π( )
= = =

A sketch of Vo  versus frequency is provided in Fig. 22.64(a). A nor-
malized plot using Vi  as the normalizing quantity results in the response 
in Fig. 22.64(b). If the maximum value of Aυ  is used in the normaliza-
tion process, the response in Fig. 22.64(c) is obtained. For all the plots 
obtained in the previous section, Vi  was the maximum value, and the 
ratio |V Vo i had a maximum value of 1. For many situations, this will 
not be the case, and we must be aware of which ratio is being plotted 
versus frequency. The dB response curves for the plots in Figs. 22.64(b) 
and 22.64(c) can both be obtained quite directly using the foundation 
established by the conclusions depicted in Fig. 22.61, but we must be 
aware of what to expect and how they will differ. In Fig. 22.64(b), we 
are comparing the output level to the input voltage. In Fig. 22.64(c), we 
are plotting Aυ  versus the maximum value of A .υ  On most data sheets 
and for the majority of the investigative techniques commonly used, the 
normalized plot in Fig. 22.64(c) is used because it establishes 0 dB as 
an asymptote for the dB plot. To ensure that the impact of using either 
Fig. 22.64(b) or Fig. 22.64(c) in a frequency plot is understood, the anal-
ysis of the filter in Fig. 22.62 includes the resulting dB plot for both 
normalized curves.

(a)

ffc
0

Vo

0.566Vi

0.8Vi

Vi  =  0.8Vi

R2

R1  +  R2

(c)

ffc
0

Av   =

0.707

1
1

Av

Avmax

 =
Av
0.8

(b)

ffc
0

Av  =

0.566

0.8

R2

R1  +  R2

Vo

Vi

FIG. 22.64  
Finding the normalized plot for the gain of the high-pass filter in Fig. 22.63 with attenuated output.

R2

R1

Vi  =  0 V

RTh

FIG. 22.63  
Determining RTh for the equation for cutoff 

frequency.

1 nF

R2 4 kV

C

+

–

Vi

+

–

Vo

R1

1 kV

FIG. 22.62  
High-pass filter with attenuated output.
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For the network in Fig. 22.63,

=
+ −

=
+ −













R
R R jX

R
R R jX

V
V

V1
o

i

C C
i

2

1 2
2

1 2

Dividing the top and bottom of the equation by R R1 2+  results in

R
R R j

X
R R

V V 
1

1  o C i
2

1 2 1 2

=
+ −

+





















but  j
X

R R
j

R R C
j

f R R C

j
f
f

f
R C

R R R

    1   1
2

  with 1
2

and

C

c
c

Th
Th

1 2 1 2 1 2

1 2

ω π

π

( ) ( )
−

+
= −

+
= −

+

= − = = +

so that  
|( )

=
+ −













R
R R j f f

V V  1
1o

c
i

2

1 2

If we divide both sides by V ,i  we obtain

 
|( )

= =
+ −











υ

R
R R j f f

A
V
V

1
1

o

i c

2

1 2

 (22.41)

from which the magnitude plot in Fig. 22.64(b) can be obtained. If we 
divide both sides by R R RA ,2 1 2max

|( )= +υ  we have

 
|( )

= =
−υ

υ

υ

′
j f f

A
A

A
1

1 cmax

 (22.42)

from which the magnitude plot in Fig. 22.64(c) can be obtained.
Based on the previous section, a dB plot of the magnitude of 

A A A
max

|′ =υ υ υ  is now quite direct using Fig. 22.61(b). The plot  appears 
in Fig. 22.65.

fc  =  31.83 kHz

–3 dB
f

0

Av9
dB

  =
Av

Avmax   dB

FIG. 22.65  
dB plot for A′υ  for the high-pass filter in Fig. 22.62.

For the gain A V V ,o i|=υ  we can apply Eq. (22.5):

ab a b20  log 20  log 20  log10  10  10 = +
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where

R
R R j f f

20 log 1
1 c

10
2

1 2 |( )+ −





















R

R R f f
20 log 20 log 1

1 c

10
2

1 2
10 2|( )

=
+

+
+

The second term results in the same plot in Fig. 22.65, but the first 
term must be added to the second to obtain the total dB response.

Since R R R2 1 2|( )+  must always be less than 1, we can rewrite the 
first term as

20 log10
R2

R1 1 R2 R2

R1 1 R2

R2

1
R1 1 R2

5 20 log10 5 20 log101 2 20 log10

0

+

–1.94 dB  –3 dB  =  –4.94 dB

–1.94 dB

AvdB
 =

Vo

Vi   dB

f

0
fc  =  31.83 kHz

f

0

20 log10
1

1  +

fc  =  31.83 kHz

Ï fC
f

2
dB

f

0

20 log10
R2

R1  +  R2  dB

–20 log10 R2

R1  +  R2 =  –1.94 dB

=

FIG. 22.66  

Obtaining a dB plot of A
V
V

o

i dB
dB

=υ

For the network in Fig. 22.62, the gain |=υA V Vo i  can also be 
found in the following manner:

R
R R jX

V
V

o
i

C

2

1 2

=
+ −

|
|

ω
ω

π
π

( )

( ) ( )

( )

= =
+ −

=
+ +

=
+ +

=
+ +

=
+ +

υ
R

R R jX
jR

j R R X

jR X

j R R X
j R C

j R R C

j f R C

j f R R C

A
V
V

 

      
1

 
1  

      
 2

1  2

o

i C C

C

C

2

1 2

2

1 2

2

1 2

2

1 2

2

1 2

and  
|
|

( )
( )

= =
+υ
j f f

j f f
A

V
V 1

o

i c

1  (22.44)

and 
R

R R
R R

R
20 log 20 log10

2

1 2
10

1 2

2+
= −

+
 (22.43)

providing the drop in dB from the 0 dB level for the plot. Adding one 
log plot to the other at each frequency, as permitted by Eq. (22.5),  
results in the plot in Fig. 22.66.

M22_BOYL0302_14_GE_C22.indd   951M22_BOYL0302_14_GE_C22.indd   951 01/03/23   7:51 PM01/03/23   7:51 PM



952 | | | DeciDels,  celDels,  a iBD  eBll
dB

with f
R C

f
R R C

1
2

   and    1
2c1

2 1 2π π( )
= =

+

The denominator of Eq. (22.44) is a match of the denominator of the 
low-pass function in Fig. 22.61(a). The numerator, however, is a new 
function that defines a unique Bode asymptote that will prove useful for 
a variety of network configurations.

Applying Eq. (22.5) gives

|

|
|

( )

( )
( )

=










 +

















= +
+

V
V

f
f f f

f f
f f

 20 log 20 log 1

1

20 log 20 log 1

1

o

i c

c

10 10
1

2

10 1 10 2

Let us now consider specific frequencies for the first term.
At =f f :1

= =f
f

20 log 20 log 1 0 dB10
1

10

At =f f2 :1

= = +f
f

20 log 20 log 2 6 dB10
1

10

At =f f1
2

:1

= = −f
f

20 log 20 log 0.5 6 dB10
1

10

A dB plot of |( )f f20 log i10   is provided in Fig. 22.67. Note that the  
asymptote passes through the 0 dB line at f f1=  and has a positive 
slope of 6+  dB/octave (or 20 dB/decade) for frequencies above and 
below f1  for increasing values of f.

If we examine the original function A ,υ  we find that the phase angle 
associated with j f f f f  901 1| |= ∠ °  is fixed at 90 ,°  resulting in a phase 
angle for Aυ  of | |( ) ( )° − = +− −f f f f90 tan tan .c c

1 1

Now that we have a plot of the dB response for the magnitude of 
the function |f f ,1  we can plot the dB response of the magnitude of Aυ  
using a procedure outlined by Fig. 22.68.

Solving for f1  and fc  gives

f
R C

  1
2

1
2 4 kΩ (1 nF)

39.79 kHz1
2π π( )

= = =

with f
R R C

  1
2

1
2 5 kΩ (1 nF)

31.83 kHzc
1 2π π( ) ( )

=
+

= =

For this development, the straight-line asymptotes for each term 
 resulting from the application of Eq. (22.5) are drawn on the same fre-
quency axis to permit an examination of the impact of one line section 
on the other. For clarity, the frequency spectrum in Fig. 22.68 has been 
divided into two regions.

In region 1, we have a 0 dB asymptote and one increasing at 6 dB/- 
octave for increasing frequencies. The sum of the two as defined by  
Eq. (22.5) is simply the 6 dB/octave asymptote shown in the figure.

In region 2, one asymptote is increasing at 6 dB, and the other is decreas-
ing at |−6 dB octave for increasing frequencies. The net effect is that one 
cancels the other for the region greater than f f ,c=  leaving a horizontal 

f1 f

0 dB

20 log10
f
f1

+6 dB/octave

FIG. 22.67  
dB plot of f f .1|
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asymptote beginning at f f .c=  A careful sketch of the asymptotes on a 
log scale reveals that the horizontal asymptote is at 1.94 dB,−  as obtained 
earlier for the same function. The horizontal level can also be determined by 
simply plugging f fc=  into the Bode plot defined by |f f ;1  that is,

= =

= = −

f
f

f
f

 20  log 20 log 20 log 31.83 kHz
39.79 kHz

.

20 log 0.799 1.94 dB

c

1
10

1
10

10

 

The actual response can then be drawn using the asymptotes and the 
known differences at f f ( 3 dB)c= −  and at f f0.5 c=  or f2  1 dB .c ( )−

In summary, therefore, the same dB response for |=υA V Vo i can be 
obtained by isolating the maximum value or defining the gain in a different 
form. The latter approach permitted the introduction of a new function for 
our catalog of idealized Bode plots that will prove useful in the future.

22.13 ADDITIONAL PROPERTIES  
OF BODE PLOTS
Bode plots are not limited to filters but can be applied to any system for  
which a dB-versus-frequency plot is desired. Although the previous sections 
did not cover all the functions that lend themselves to the idealized linear  
asymptotes, many of those most commonly encountered have been introduced.

We now examine some of the special situations that can develop that 
further demonstrate the adaptability and usefulness of the linear Bode 
approach to frequency analysis.

In all the situations described in this chapter, there was only one term 
in the numerator or denominator. For situations where there is more than 
one term, there will be an interaction between functions that must be  
examined and understood. In many cases, the use of Eq. (22.5) will 
prove useful. For example, if υA  has the format

 
j f f j f f

j f f j f f
a b c

d e
A

200 1

1 1
( )( )( )

( )( )
2 1

1 2

| |
| |

( )( )
( )( )

=
−

− +
=υ  (22.45)

Actual response

1.94 dB f (log scale)

f10 fc

Av  dB

–3 dB

1 2

FIG. 22.68  
Plot of υA dB for the network in Fig. 22.62.
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we can expand the function in the following manner:

=

= + + − −

υA
a b c

d e

a b c d e

  20 log
( )( )( )

( )( )

20 log 20 log 20 log 20 log 20 log

10

10  10  10  10  10 

dB

revealing that the net or resultant dB level is equal to the algebraic sum  
of the contributions from all the terms of the original function. We can, 
therefore, add algebraically the linearized Bode plots of all the terms in each 
frequency interval to determine the idealized Bode plot for the full function.

If two terms happen to have the same format and corner frequency, 
as in the function

| |( )( )
=

− −υ j f f j f f
A 1

1   1  1 1
the function can be rewritten as

|( )
=

−υ
j f f

A 1
1   1

2

so that  
|( )( )

=
+

υA
f f

  20  log   1

1
10

1
2

2dB

|( )( )= − + f f20 log 110 1
2

for |( )� �f f f f,   1,l1
2  and

| |( )= − = −υA f f f f20 log 40 log10 1
2

10  1dB

versus the |( )− f f20 log10 1  obtained for a single term in the denom-
inator. The resulting dB asymptote will drop, therefore, at a rate of 

| |( )− −12 dB octave  40 dB decade  for decreasing frequencies rather 
than |−6 dB octave. The corner frequency is the same, and the high- 
frequency asymptote is still at 0 dB. The idealized Bode plot for the 
above function is provided in Fig. 22.69.

Note the steeper slope of the asymptote and the fact that the actual 
curve now passes 6−  dB below the corner frequency rather than 3−  dB, 
as for a single term.

AvdB

0

f1
1
2 f1 0 dB

Actual response

–6 dB

–12 dB/octave

–2 dB
–12 dB

–6 dB

–6 dB/octave

FIG. 22.69  

Plotting the linearized Bode plot of 1
1 j  f f

.
1

2− |( )( )
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Keep in mind that if the corner frequencies of the two terms in the 
numerator or denominator are close but not exactly equal, the total dB 
drop is the algebraic sum of the contributing terms of the expansion. 
For instance, consider the linearized Bode plot in Fig. 22.70 with corner 
frequencies f1  and f .2

In region 3, both asymptotes are 0 dB, resulting in an asymptote  
at 0 dB for frequencies greater than f .2  For region 2, one asymptote is at 
0 dB, whereas the other drops at |−6 dB octave for decreasing frequen-
cies. The net result for this region is an asymptote dropping at 6 dB,−  as 
shown in the same figure. At f ,1  we find two asymptotes dropping off at 

6−  dB for decreasing frequencies. The result is an asymptote dropping 
off at |−12 dB octave for this region.

If f1  and f2 are at least two octaves apart, the effect of one on the 
plotting of the actual response for the other can almost be ignored. In 
other words, for this example, if <f f  ,1

1
4 2  the actual response is down 

3−  dB at f f2=  and f .1

The above discussion can be expanded for any number of terms 
at the same frequency or in the same region. For three equal terms in 
the denominator, the asymptote will drop at |−18 dB octave, and so 
on. Eventually, the procedure will become self-evident and relatively 
straightforward to apply. In many cases, the hardest part of finding a 
solution is to put the original function in the desired form.

EXAMPLE 22.11 A transistor amplifier has the following gain:

j
f

j
f

j
f

j
f

A 100

1  50 Hz 1  200 Hz 1  
10 kHz

1  
20 kHz( )( )

=
−







 −






 + +

υ

a. Sketch the normalized response |′ =υ υ υA A A ,
max

 and determine the 
bandwidth of the amplifier.

b. Sketch the phase response, and determine a frequency where the 
phase angle is close to 0 .°

0

f1 f2 0 dB

f

–3 dB for f1  ≤
1
4 f2 (2 octaves below)

–6 dB/octave

–3 dB for f1  ≤
1
4 f2 (2 octaves below)

–12 dB/octave

Actual response

AvdB

FIG. 22.70  

Plot of A dBυ  for 
1

1 j  f f 1 j  f f1 2| |( )( ) ( )( )− −  with f f .1 2<
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Solutions:

a. ′ = =υ
υ

υ

υA
A

A
A

 
100

max

0
f1 f

0.707Avmax

Avmax

Av  =
Vo
Vi

High-pass +
0

f2 f

0.707Avmax

Avmax

Av  =
Vo
Vi

Low-pass

0
f2 f

0.707Avmax

Avmax

Av  =
Vo
Vi

BW

f1

BW  =  f2  –  f1

FIG. 22.71  
Finding the overall gain versus frequency for Example 22.11.

2 3 4 5 6 7 8 9 1 32 4 5 6 7 8 91 32 4 5 6 7 89 1 32 4 5 6 7 89 1
100
kHz

20 kHz10 kHz1 kHz200 Hz100 Hz50 Hz10 Hz

A9vdB

0

–3 dB

–6 dB

–12 dB

–20 dB

BW

FIG. 22.72  
A

dB
′υ  versus frequency for Example 22.11.

j
f

j
f

j
f

j
f

1

1  50 Hz 1  200 Hz 1  
10 kHz

1  
20 kHz( )( )

=
−







 −






 + +

a b c d a b c d
1 1 1 1 1( )( )( )( )( ) ( )( ) ( )

= =

and

′ = − − − −υA a b c d20 log 20 log 20 log 20 log10  10  10  10 dB
 

clearly substantiating the fact that the total number of decibels is equal 
to the algebraic sum of the contributing terms.

A careful examination of the original function reveals that the first 
two terms in the denominator are high-pass filter functions, whereas 
the last two are low-pass functions. Fig. 22.71 demonstrates how the 
combination of the two types of functions defines a bandwidth for 
the amplifier. The high-frequency filter functions have defined the low 
cutoff frequency, and the low-frequency filter functions have defined 
the high cutoff frequency.

Plotting all the idealized Bode plots on the same axis results in the 
plot in Fig. 22.72. Note for frequencies less than 50 Hz that the resulting 
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asymptote drops off at |−12 dB octave. In addition, since 50 Hz and 
200 Hz are separated by two octaves, the actual response will be down 
by only about 3−  dB at the corner frequencies of 50 Hz and 200 Hz.

For the high-frequency region, the corner frequencies are not sep-
arated by two octaves, and the difference between the idealized plot 
and the actual Bode response must be examined more carefully. Since  
10 kHz is one octave below 20 kHz, we can use the fact that the differ-
ence between the idealized response and the actual response for a single 
corner frequency is 1 dB. If we add an additional 1−  dB drop due to the 
20 kHz corner frequency to the 3−  dB drop at f 10 kHz,=  we can 
conclude that the drop at 10 kHz will be 4 dB,−  as shown on the plot. 
To check the conclusion, let us write the full expression for the dB level 
at 10 kHz and find the actual level for comparison purposes.

A

4 dB

  20 log   1 50 Hz
10 kHz

20 log   1 200 Hz
10 kHz

  20 log   1 10 kHz
10 kHz

20 log   1 10 kHz
20 kHz

0.00011 dB 0.0017 dB 3.01 dB 0.969 dB

3.98 dB   as before

10

2

10

2

10

2

10

2

dB ( ) ( )

( ) ( )

′ = − + − +

− + − +

= − − − −

= − ≅ −

υ

An examination of the above calculations reveals that the last two 
terms predominate in the high-frequency region and essentially elim-
inate the need to consider the first two terms in that region. For the 
low-frequency region, examining the first two terms is sufficient.

Proceeding in a similar fashion, we find a 4−  dB difference at 
f 20 kHz,=  resulting in the actual response appearing in Fig. 22.72. 
Since the bandwidth is defined at the 3−  dB level, a judgment must 
be made as to where the actual response crosses the 3−  dB level in 
the high-frequency region. A rough sketch suggests that it is near 8.5 
kHz. Plugging this frequency into the  high-frequency terms results in

( ) ( )′ = − + − +υA  20 log   1 8.5 kHz
10 kHz

20 log   1 8.5 kHz
20 kHz10

2

10

2

dB

−= − − ≅ 2 8 dB2.148 dB 0.645 dB .  

which is relatively close to the 3−  dB level, and

BW f f 8 3 kHz8.5 kHz 200 Hz .  high low= − = − =

In the midrange of the bandwidth, ′υA
dB

 approaches 0 dB. At =f
1 kHz:

≅ −

( ) ( )

( ) ( )

′ = − + − +

− + − +

= − − − −

= −

υA

0 235 dB 1
5

dB

  20 log   1 50 Hz
1 kHz

20 log   1 200 Hz
1 kHz

  20 log   1 1 kHz
10 kHz

20 log   1 1 kHz
20 kHz

0.0108 dB 0.1703 dB 0.0432 dB 0.0108 dB

.  

10

2

10

2

10

2

10

2

dB

which is certainly close to the 0 dB level, as shown on the plot.
b. The phase response can be determined by substituting a number of 

key frequencies into the following equation, derived directly from the 
original function υA :
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f f
f f

tan 50 Hz tan 200 Hz tan
10 kHz

tan
20 kHz

1 1 1 1θ = + − −− − − −

However, let us make full use of the asymptotes defined by each 
term of A υ  and sketch the response by finding the resulting phase 
angle at critical points on the frequency axis. The resulting asymptotes 
and phase plot are provided in Fig. 22.73. Note that at f 50 Hz,=  
the sum of the two angles determined by the  straight-line asymp-
totes is 45 75 120 actual 121 .( )° + ° = ° = °  At f 1 kHz,=  if 
we subtract 5.7° for one corner frequency, we obtain a net angle of 
14 5.7 8.3 actual 5.6 .( )° − ° ≅ ° = °

2 3 4 5 6 7 8 91 32 4 5 6 7 8 9 1 32 4 5 6 7 8 91 32 4 5 6 7 8 9 1
100
kHz

20 kHz10 kHz1 kHz200 Hz100 Hz50 Hz10 Hz180°

90°

0°

1

–90°

–180°

FIG. 22.73  
Phase response for Example 22.11.

At 10 kHz, the asymptotes leave us with θ ≅ − ° − ° = − °45 32 77
actual 71.56 .( )= − °  The net phase plot appears to be close to 0° at 

about 1300 Hz. To check on our assumptions and the use of the 
asymptotic approach, plug f 1300 Hz=  into the equation for θ:

θ

−

= + − −

= ° + ° − ° − °

= ° ≅ °

− − − −  tan 50 Hz
1300 Hz

tan 200 Hz
1300 Hz

tan 1300 Hz
10 kHz

tan 1300 Hz
20 kHz

2.2 8.75 7.41 3.72

0.18 0 as predicted

1 1 1 1

In total, the phase plot appears to shift from a positive angle of 
V V180    leading o i( )°  to a negative angle of 180° as the frequency 

spectrum extends from very low frequencies to high frequencies. In 
the midregion, the phase plot is close to 0° V( o  in phase with V ),i  
much like the response to a common-base transistor amplifier.

Table 22.3 consolidates some of the material introduced in this chap-
ter and provides a reference for future investigations. It includes the 
linearized dB and phase plots for the functions appearing in the first 
 column. There are many other functions, but these provide a foundation 
onto which others can be added.
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AvdB

+6 dB/octave

f1 f
0

0 dB

AvdB

–6 dB/octave

f1

f
0

0 dB

AvdB

–6 dB/octave

f1

f

0

0 dB

AvdB

+6 dB/octave

f1 f
0

0 dB

AvdB

–6 dB/octave

f1 f
0 0°f1

f
0°

45°

90°

–45°

–90°
–90°

–45°

f1/10 10f1

u (Vo leads Vi)

f1 f
0°

45°

90°

–90°

+45°

10
10f1

u (Vo leads Vi)
+90°

f1

0°

f1 f
0°

45°

90°

10
10f1

u (Vo leads Vi)
+90°

f1

f1 f
0°

45°

90°

+45°

10
10f1

u (Vo leads Vi)
+90°

f1

0°

f1/10

f
0°

45°

90°

–45°

–90°

–45°

10f1

u (Vo leads Vi)

–90°

0° f1

Av 5 1 2 j  
f1
f

Av 5 1 1 j f1
f

Av 5  j f1
f

Av 5
1

1 1 j  f1

f

Av 5
1

Function dB Plot Phase Plot

1 2 j  f
 f1

TABLE 22.3  
Idealized Bode plots for various functions.
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22.14 CROSSOVER NETWORKS
The topic of crossover networks is included primarily to present an 
excellent demonstration of filter operation without a high level of 
complexity. Crossover networks are used in audio systems to ensure 
that the proper frequencies are channeled to the appropriate speaker. 
Although less expensive audio systems have only one speaker to cover 
the full audio range from about 20 Hz to 20 kHz, better systems have at 
least three speakers to cover the low range (20 Hz to about 500 Hz), the 
midrange (500 Hz to about 5 kHz), and the high range (5 kHz and up). 
The term crossover comes from the fact that the system is designed to 
have a crossover of frequency spectrums for adjacent speakers at the 
−3 dB level, as shown in Fig. 22.74. Depending on the design, each 
filter can drop off at 6 dB, 12 dB, or 18 dB, with complexity increasing 
with the desired dB drop-off rate. The three-way crossover network in 
Fig. 22.74 is quite simple in design, with a low-pass R-L filter for the 
woofer, an R-L-C pass-band filter for the midrange, and a high-pass 
R-C filter for the tweeter. The basic equations for the components are 
provided below. Note the similarity between the equations, with the 
only difference for each type of element being the cutoff frequency. 
We have

 L R
f

L R
f2

   
2low

1
mid

2π π
= =  (22.46)

 C
f R

C
f R

1
2

    1
2mid

1
high

2π π
= =  (22.47)

For the crossover network in Fig. 22.74 with three 8 Ω  speakers, the 
resulting values are

π π
= = = →L R

f
 

2
8 Ω

2 (400 Hz)
3.183 mH 3.3 mHlow

1

 (commercial value)

π π
µ µ= = = →L R

f
 

2
8 Ω

2 (5 kHz)
254.65  H 270  Hmid

2

 (commercial value)

π π
µ µ

( )
= = = →C

f R
  1

2
1

2 400 Hz)(8 Ω
49.736  F 47  Fmid

1

 (commercial value)

π π
µ µ

( )
= = = →C

f R
  1

2
1

2 5 kHz)(8 Ω
3.979  F 3.9  Fhigh

2

 (commercial value)

as shown in Fig. 22.74.
For each filter, a rough sketch of the frequency response is included 

to show the crossover at the specific frequencies of interest. Because all 
three speakers are in parallel, the source voltage and impedance for each 
are the same. The total loading on the source is obviously a function of 
the frequency applied, but the total delivered is determined solely by the 
speakers since they are essentially resistive in nature.

8 V
Llow = 3.3 mH

Vi

+

–

–3 dB

400 Hz0 dB

–3 dB

400 Hz0 dB

Low Pass woofer

mid-range

tweeter

Band Pass

High Pass

–3 dB

5 kHz

8 V

8 V

–3 dB

5 kHz0 dB

Cmid = 47   F Lmid = 270   H

Chigh = 3.9   F

FIG. 22.74  
Three-way crossover network with 6 dB per octave.
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To test the system, let us apply a 4 V signal at a frequency of 1 kHz 
(a predominant frequency of the typical human auditory response curve) 
and see which speaker has the highest power level.

At f 1 kHz,=

π π( )= = =X f L  2   2 1 kHz)(3.3 mH 20.74 ΩL lowlow

V
Z V

jZ Ω
 

0 0 8 Ω 0 4 V 0
8 Ω 20.74 o

R i

T

( )( ) ( )( )
=

∠ ° ∠ °
=

∠ ° ∠ °
+

1.44 V 68.90= ∠− °

π π µ( )= = =X fL  2 2 1 kHz)(270  H 1.696 ΩL midmid

π π µ
= = =X

f C
  1

2
1

2 (1 kHz)(47  F)
3.386 ΩC

mid
mid

V
Z V

j jZ
 

0 0 8  0 4 V 0
8  1.696  3.386 o

R i

T

( )( ) ( )( )
=

∠ ° ∠ °
=

Ω ∠ ° ∠ °
Ω + Ω − Ω

3.94 V 11.93= ∠ °

π π µ
= = =X

fC
  1

2
1

2 (1 kHz)(3.9  F)
40.81 ΩC

high
high

V
Z V

jZ
 

0 0 8  0 4 V 0
8  40.81 o

R i

T

( )( ) ( )( )
=

∠ ° ∠ °
=

Ω ∠ ° ∠ °
Ω − Ω

0.77 V 78.91= ∠ °

Using the basic power equation |=P V R,2  we find the power to the 
woofer,

( )
= = =P V

R
0 259 W1.44V

8 Ω
.  low

2 2

to the midrange speaker,

( )
= = =P V

R
1 94 W3.94 V

8 Ω
.  mid

2 2

and to the tweeter,

( )
= = =P V

R
0 074 W0.77 V

8 Ω
.  high

2 2

resulting in a power ratio of 7.5 : 1 between the midrange and the woofer 
and 26 : 1 between the midrange and the tweeter. Obviously, the response 
of the midrange speaker totally overshadows that of the other two.

22.15 APPLICATIONS
Attenuators

Attenuators are, by definition, any device or system that can reduce the 
power or voltage level of a signal while introducing little or no distor-
tion. There are two general types: passive and active. The passive type 
uses only resistors, while the active type uses electronic devices such as 
transistors and integrated circuits. Since electronics is a subject for the 
courses to follow, only the resistive type is covered here. Attenuators are 
commonly used in audio equipment (such as the graphic and parametric 
equalizers introduced in Chapter 21), antenna systems, AM or FM sys-
tems where attenuation may be required before the signals are mixed, 
and any other application where a reduction in signal strength is required.
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The unit in Fig. 22.75 has coaxial input and output terminals and 
switches to set the level of dB reduction. It has a flat response from dc to 
about 6 GHz, which essentially means that its introduction into the net-
work will not affect the frequency response for this band of frequencies. 
The design is rather simple, with resistors connected in either a tee (T) or 
a wye (Y) configuration, as shown in Figs. 22.76 and 22.77, respectively, 
for a 50 Ω  coaxial system. In each case, the resistors are chosen to  
ensure that the input impedance and output impedance match the line. 
That is, the input and output impedances of each configuration will be 
50 Ω. For a number of dB attenuations, the resistor values for the T and 
Y are provided in Figs. 22.76 and 22.77. Note in each design that two of 
the resistors are the same, while the third is a much smaller or larger value.

Attenuation R1 R2

R1 R1

R2

1 dB

2 dB

3 dB

5 dB

10 dB

20 dB

2.9 V

5.7 V

8.5 V

14.0 V

26.0 V

41.0 V

433.3 V

215.2 V

141.9 V

82.2 V

35.0 V

10.0 V

FIG. 22.76  
Tee (T) configuration.

R2

R1 R1

Attenuation R1 R2

1 dB

2 dB

3 dB

5 dB

10 dB

20 dB

5.8 V

11.6 V

17.6 V

30.4 V

71.2 V

247.5 V

870.0 V

436.0 V

292.0 V

178.6 V

96.2 V

61.0 V

FIG. 22.77  
Wye (Y) configuration.

Ri = 50 V

R1

2.9 V

R1

2.9 V

RL 50 VR2 433.3 V

1 dB attenuator

(a)

Rs

50 V

R1

2.9 V

R1

2.9 V

Vs = 0 V R2 433.3 V Ro = 50 V

(b)

FIG. 22.78  
1 dB attenuator: (a) loaded; (b) finding R .o

FIG. 22.75  
Passive coax attenuator.

For the 1 dB attenuation, the resistor values were inserted for the 
T configuration in Fig. 22.78(a). Terminating the configuration with a 
50 Ω  load, we find through the following calculations that the input  
impedance is, in fact, 50 Ω:

( ) ( )= + + = + +

= +

=

� �R R R R R

50 04

  2.9 Ω 433.3 Ω 2.9 Ω 50 Ω

2.9 Ω 47.14 Ω

.  Ω

i L1 2 1
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Looking back from the load as shown in Fig. 22.78(b) with the source 
set to zero volts, we find through the following calculations that the out-
put impedance is also 50 Ω:

( ) ( )= + + = + +

= +
=

� �R R R R R

50 04 Ω

  2.9 Ω 433.3 Ω 2.9 Ω 50 Ω

2.9 Ω 47.14 Ω
.  

o s1 2 1

In Fig. 22.79, a 50 Ω  load has been applied, and the output voltage is 
determined as follows:

( )′ = + =�R R R R 47.14 Ω from aboveL2 1

and   =
′

′ +
=

+
=V

R V
R R

V
V

47.14 Ω
47.14 Ω 2.9 Ω

0.942R
s s

s
1

2

with    
( )

=
+

=
+

=V
R V

R R
V

V
50 Ω 0.942
50 Ω 2.9 Ω

0.890L
L R

L

s
s

1

2

+

–
Vs

R2 433.3 V

+

–
VL

R9

Rs

50 V

R1

2.9 V

R1

2.9 V

RL 50 V

FIG. 22.79  
Determining the voltage levels for the 1 dB attenuator in Fig. 22.78(a).

Calculating the drop in dB results in the following:

= =υA
V
V

V
V

  20 log 20 log
0.890L

s

s

s
10 10dB

−= = 1 01 dB20 log 0.890 .  10

substantiating the fact that there is a 1 dB attenuation.
As mentioned earlier, there are other methods for attenuation that are 

more sophisticated in design and beyond the scope of the coverage of 
this text. However, the above designs are quite effective, relatively inex-
pensive, and perform quite well.

Noise Filters

Noise is a problem that can occur in any electronic system. In general, 
the presence of any unwanted signal can affect the overall operation of 
a system. It can come from a power source (60 Hz hum), from feedback 
networks, from mechanical systems connected to electrical systems, 
from stray capacitive and inductive effects, or possibly from a local sig-
nal source that is not properly shielded—the list is endless. To solve a 
noise problem, an analyst needs a broad practical background, a sense 
for the origin for the unwanted noise, and the ability to remove it in 
the simplest, most direct way. Generally noise problems arise during the 
testing phase, not during the original design phase. Although sophisti-
cated methods may be needed, most situations are resolved simply by 
rearranging an element or two of a value sensitive to the problem.
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In Fig. 22.80, two capacitors have been strategically placed in the 
tape recording and playback sections of a tape recorder to remove the 
undesirable high-frequency noise (rushing sound) that can result from 
unexpected, randomly placed particles on a magnetic tape, noise coming 
down the line, or noise introduced from the local environment. During 
the record mode, with the switches in the positions shown (R), the 100 pF  
capacitor at the top of the schematic acts as a short circuit to the high- 
frequency noise. The capacitor C1 is included to compensate for the fact 
that recording on a tape is not a linear process versus frequency. In other 
words, certain frequencies are recorded at higher amplitudes than others.

 Fig. 22.81 is a sketch of recording level versus frequency, clearly  
indicating that the human audio range of about 40 Hz to 20 kHz is very 
poor for the tape recording process, starting to rise only after 20 kHz. 
Thus, tape recorders must include a fixed biasing frequency that, when 
added to the actual audio signal, brings the frequency range to be ampli-
fied to the region of high-amplitude recording. On some tapes, the actual 
bias frequency is provided, while on others, the phrase normal bias is 

(b)(a)

Short circuit to
high-frequency
noiseCn

C1

100 pF
Compensation control of high frequencies

R1

R2 CC
Applied
signal

Recording
head

P

R

P

R

R3

Playback
network

Record phase

Coupling
capacitor

R3

Playback
head

P

R
P

R

Rs

CC

Coupling
capacitor

Amplifier
and notch
filter

Filter to reduce
stray pickup

100 pF

Cs

Playback phase

FIG. 22.80  
Noise reduction in a tape recorder.

Recording level

0 20 kHz 30 kHz

Bias frequency

High frequency
drop-off

f

FIG. 22.81  
Noise reduction in a tape recorder.
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used. Even after you pass the bias frequency, there is a frequency range 
that follows that drops off considerably. Compensation for this drop-
off is provided by the parallel combination of the resistor R1 and the  
capacitor C1 mentioned above. At frequencies near the bias frequency, the  
capacitor is designed to act essentially like an open circuit (high reac-
tance), and the head current and voltage are limited by the resistors R1 
and R .2  At frequencies in the region where the tape gain drops off with 
frequency, the capacitor begins to take on a lower reactance level and 
reduce the net impedance across the parallel branch of R1 and C .1  The 
result is an increase in head current and voltage due to the lower net  
impedance in the line, resulting in a leveling in the tape gain following 
the bias frequency. Eventually, the capacitor begins to take on the char-
acteristics of a short circuit, effectively shorting out the resistance R ,1  
and the head current and voltage will be a maximum. During playback, 
this bias frequency is eliminated by a notch filter so that the original 
sound is not distorted by the high-frequency signal.

During playback (P), the upper circuit in Fig. 22.80 is set to ground by 
the upper switch, and the lower network comes into play. Again note the 
second 100 pF capacitor connected to the base of the transistor to short 
to ground any undesirable high-frequency noise. The resistor is there to 
absorb any power associated with the noise signal when the capacitor 
takes on its short-circuit equivalence. Keep in mind that the capacitor was 
chosen to act as a short-circuit equivalent for a particular frequency range 
and not for the audio range, where it is essentially an open circuit.

Alternators in a car are notorious for developing high-frequency noise 
down the line to the radio, as shown in Fig. 22.82(a). This problem is 
usually alleviated by placing a high-frequency filter in the line as shown. 
The inductor of 1 H offers a high impedance for the range of noise fre-
quencies, while the capacitor µ µ( )1000  F to 47,000  F  acts as a short- 
circuit equivalent to any noise that happens to get through. For the speaker 
system in Fig. 22.82(b), the push-pull power arrangement of transistors 
in the output section can often develop a short period of time between 
pulses where the strong signal voltage is zero volts often referred to as 

(b)

R

CC

Push-pull response
V

Vs ≅ 0 V

t

Push-pull
amplifier

Cb

Short-circuit path
for unwanted high-frequency
oscillation

Car
alternator

High-frequency
noise

1 H

L

C

Radio

(1000   F
to

47,000   F)

(a)

 FIG. 22.82  
Noise generation: (a) due to a car alternator; (b) from a push-pull amplifier.
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cross-over distortion. During this short period, the coil of the speaker 
rears its inductive effects, sees an unexpected path to ground like a switch 
opening, and quickly cuts off the speaker current. Through the familiar 
relationship υ |( )= L di dt ,L L  an unexpected voltage develops across 
the coil and sets a high-frequency oscillation on the line that finds its way 
back to the amplifier and causes further distortion. This effect can be sub-
dued by placing an R-C path to ground that offers a low-resistance path 
from the speaker to ground for a range of frequencies typically gener-
ated by this signal distortion. Since the capacitor assumes a short-circuit 
equivalence for the range of noise disturbance, the resistor was added to 
limit the current and absorb the energy associated with the signal noise.

In regulators, such as the 5 V regulator in Fig. 22.83(a), when a spike in 
current comes down the line for any number of reasons, there is a voltage 
drop along the line, and the input voltage to the regulator drops. The reg-
ulator, performing its primary function, senses this drop in input voltage 
and increases its amplification level through a feedback loop to maintain 
a constant output. However, the spike is of such short duration that the 
output voltage has a spike of its own because the input voltage has quickly 
returned to its normal level, and with the increased amplification the out-
put jumps to a higher level. Then the regulator senses its error and quickly 
cuts its gain. The sensitivity to changes in the input level has caused the 
output level to go through a number of quick oscillations that can be a 
real problem for the equipment to which the dc voltage is applied: A high- 
frequency noise signal has been developed. One way to subdue this 
 reaction and, in fact, slow the system response down so that very short 
interval spikes have less impact is to add a capacitor across the output as 
shown in Fig. 22.83(b). Since the regulator is providing a fixed dc level, a 
large  capacitor of µ1  F can be used to short-circuit a wide range of high- 
frequency disturbances. However, you don’t want to make the capaci-
tor too large or you’ll get too much damping, and large overshoots and 
 undershoots can develop. To maximize the input of the added capacitor, 
you must place it physically closer to the regulator to ensure that noise is 
not picked up between the regulator and capacitor and to avoid developing 
any time delay between output signal and capacitive reaction.

In general, as you examine the schematic of working systems and see 
elements that don’t appear to be part of any standard design procedure, 
you can assume that they are either protective devices or due to noise on 
the line that is affecting the operation of the system. Noting their type, 
value, and location often reveals their purpose and modus operandi.

(a)

Input

Feedback

Output
5 V

Regulator

i

i t

Vo

0 t

5 V

High-frequency
noise

(b)

Input Output
5 V

Regulator

i

i 0 t

5 V

Filter

High-frequency
noise stabilizer–
bypass to ground
(open circuit for
5 V dc level)

1   F

Vo

FIG. 22.83  
Regulator: (a) effect of spike in current on the input side; (b) noise reduction.
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PROBLEMS

SECTION 22.1  Logarithms

 1. a. Determine the frequencies (in kHz) at the points indi-
cated on the plot in Fig. 22.84(a).

b. Determine the voltages (in mV) at the points indicated 
on the plot in Fig. 22.84(b).

SECTION 22.3  Decibels

 9.  a. Determine the number of bels that relate power levels 
of =P 320 mW2  and =P 5 mW.1

b. Determine the number of decibels for the power levels 
of part (a), and compare results.

 10. A power level of 150 W is 8 dB above what power level?

 11. If an 8 W speaker is replaced by one with a 36 W output, 
what is the increase in decibel level?

 12. Determine the dBm  level for an output power of 220 mW.

 13. Find the dBυ  gain of an amplifier that raises the voltage 
level from 0.2 mV to 18.8 mV.

 14.  Find the output voltage of an amplifier if the applied voltage 
is 15 mV and a dBυ  gain of 26 dB is attained.

 15. If the sound pressure level is increased from µ0.002  bar to 
µ0.032  bar, what is the increase in dB s  level?

 16. What is the required increase in acoustical power to raise a 
sound level from that of quiet music to very loud music? 
Use Fig. 22.7.

 17. a. Using semilog paper, plot X L  versus frequency for a  
10 mH coil and a frequency range of 100 Hz to 1 MHz. 
Choose the best vertical scaling for the range of X .L

b. Repeat part (a) using log-log graph paper. Compare to 
the results of part (a). Which plot is more informative?

c. Using semilog paper, plot XC  versus frequency for a 
µ1  F capacitor and a frequency range of 10 Hz to 100 kHz.  

Again choose the best vertical scaling for the range  
of X .C

d. Repeat part (a) using log-log graph paper. Compare to 
the results of part (c). Which plot is more informative?

 18. a. For the meter of Fig. 22.8, find the power delivered to a 
load for an 8 dB reading.

b. Repeat part (a) for a 5−  dB reading.

SECTION 22.5  R-C Low-Pass Filter

  19. For the R-C low-pass filter in Fig. 22.85:
a. Sketch |=υA V Vo i versus frequency using a log scale 

for the frequency axis. Determine |=υA V Vo i at 
f f f f0.1 ,  0.5 ,   ,  2 ,c c c c  and f10 .c

b. Sketch the phase plot of θ  versus frequency, where θ  is 
the angle by which Vo leads V .i  Determine θ  at 
f f f f f0.1 ,  0.5 ,   ,  2 ,c c c c=  and f10 .c

(a)

103

?
?

104

?

( f )

?

10–1

(b)

100

?

(V)

?

FIG. 22.84  
Problem 1.

SECTION 22.2  Properties of Logarithms

 2. Determine xlog10  for each value of x.

R

2.2  kV

C 0.02 mFVi

–

+

Vo

–

+

FIG. 22.85
Problem 19.

a. 100,000 b. 0.0001
c. 108 d. 10 6−

e. 20 f. 8643.4
g. 56,000 h. 0.318

  3. Given N xlog ,10=  determine x for each value of N.
a. 3 b. 12
c. 0.2 d. 0.04
e. 10 f. 3.18
g. 1.001 h. 6.1

 4. Determine xlog e  for each value of x.
a. 10,000 b. 0.004
c. 30 d. 1256.5
Compare with the solutions to Problem 2.

 5.  Determine ( )( )=log 54 log 9 6 ,10 10  and compare to 
+log 910  log 6.10

 6. Determine |=log 0.4 log 18 45,10 10  and compare to 
log 1810 − log 45.10

 7. Verify that log 0.2510  is equal to log 1 0.2510 |− = 
log 4.10−

 8. Find ( )log 5 ,10
5  and compare with 5  log 5.10
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 24. For the network in Fig. 22.89:
a. Determine |=υA V Vo i  at f fc=  for the high-pass 

filter.
b. Determine |=υA V Vo i at two octaves above f .c  Is the 

rise in Vo  significant from the f fc=  level?
c. Determine |=υA V Vo i at two decades above f .c  Is the 

rise in Vo  significant from the f fc=  level?
d. If =V 15 mV,i  what is the power delivered to R at the 

critical frequency?

 *20. For the network in Fig. 22.86:
a. Determine Vo  at a frequency one octave above the criti-

cal frequency.
b. Determine Vo  at a frequency one decade below the criti-

cal frequency.
c. Do the levels of parts (a) and (b) verify the expected 

frequency plot of Vo  versus frequency for the filter?

R 100 kV

C

20 pF

Vi

–

+

Vo

–

+

FIG. 22.90  
Problem 26.

R

3.2 kV

C 0.2 mFVi    =   10 mV

–

+

Vo

–

+

FIG. 22.86  
Problem 20.

R

5 kV

C 450 pFVi

–

+

Vo

–

+

FIG. 22.87  
Problem 22.

R 2.2  kV

C

0.02 mF

Vi

–

+

Vo

–

+

FIG. 22.88  
Problem 23.

R 130 kV

C

52 pF

Vi

–

+

Vo

–

+

FIG. 22.89  
Problem 24.

 21. Design an R-C low-pass filter to have a cutoff frequency of  
500 Hz using a resistor of 1.2 kΩ. Then sketch the resulting mag-
nitude and phase plot for a frequency range of f0.1 c  to f10 .c

 22. For the low-pass filter in Fig. 22.87:

a. Determine f .c

b. Find |=υA V Vo i at f f0.1 ,c=  and compare to the max-
imum value of 1 for the low-frequency range.

c. Find |=υA V Vo i at f f10 ,c=  and compare to the mini-
mum value of 0 for the high-frequency range.

d. Determine the frequency at which A 0.01=υ  or 
=V V .o i

1
100

SECTION 22.6  R-C High-Pass Filter

 23. For the R-C high-pass filter in Fig. 22.88:
a. Sketch |=υA V Vo i versus frequency using a log scale for 

the frequency axis. Determine |=υA V Vo i at f ,c  one 
octave above and below f ,c  and one decade above and 
below f .c

b. Sketch the phase plot of θ  versus frequency, where θ  is the 
angle by which Vo leads Vi. Determine θ  at the same fre-
quencies noted in part (a).

 25. Design a high-pass R-C filter to have a cutoff or corner fre-
quency of 2 kHz, given a capacitor of µ0.1  F. Choose the 
closest commercial value for R, and then recalculate the 
resulting corner frequency. Sketch the normalized gain 

|=υA V Vo i for a frequency range of f0.1 c  to f10 .c

 26. For the high-pass filter in Fig. 22.90:
a. Determine f .c

b. Find |=υA V Vo i at f f0.01 ,c=  and compare to the 
minimum level of 0 for the low-frequency region.

c. Find |=υA V Vo i at f f100 ,c=  and compare to the 
maximum level of 1 for the high-frequency region.

d. Determine the frequency at which =V V .o i
1
2
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a. Determine the frequency response of |=υA V Vo i for a 
frequency range of 100 Hz to 1 MHz.

b. Find the quality factor Q p  and the BW of the response.

SECTION 22.8  Band-Stop Filters

*31.  For the band-stop filter in Fig. 22.94:
a. Determine Q .s

b. Find the bandwidth and the half-power frequencies.
c. Sketch the frequency characteristics of |=υA V V .o i

d. What is the effect on the curve of part (c) if a load of 
4 kΩ  is applied?

SECTION 22.7  Band-Pass Filters

  27. For the band-pass filter in Fig. 22.91:
a. Sketch the frequency response of |=υA V Vo i against a 

log scale extending from 10 Hz to 10 kHz.
b. What are the bandwidth and the center frequency?

R1 0.1 kV

C1

2 mF

Vi

–

+

Vo

–

+

8200 pFC2

R2

10 kV

FIG. 22.91  
Problems 27 and 28.

R 0.16 kV

C

560 pF

Vi  =  1 V j 0°

–

+

Vo

–

+

Rl

12 V

L

4.7 mH

FIG. 22.92  
Problem 29.

Vi

–

+

Vo

–

+

R

L

Rl 16 V

1 mH

0.001 mFC2

3.3 kV

FIG. 22.93  
Problem 30.

–

+

R

Rl 10 V

XL 7 kV

XC 7 kV

Vi

–

+

Vo RL 4 kV

fs =  5 kHz

0.44 kV

FIG. 22.94  
Problem 31.

*28.  Design a band-pass filter such as the one appearing in 
Fig. 22.91 to have a low cutoff frequency of 4 kHz and a 
high cutoff frequency of 80 kHz.

 29. For the band-pass filter in Fig. 22.92:
a. Determine f .s

b. Calculate Qs  and the BW for V .o

c. Sketch |=υA V Vo i for a frequency range of 1 kHz to  
1 MHz.

d. Find the magnitude of Vo  at f fs=  and the cutoff fre-
quencies.

 30. For the band-pass filter in Fig. 22.93:

*32.  For the band-pass filter in Fig. 22.95:
a. Determine Q p  R(  Ω,L = ∞  an open circuit).
b. Sketch the frequency characteristics of 

|=υA V V .o i

c. Find Q p  (loaded) for R 100 kΩ,L =  and indicate the 
effect of RL  on the characteristics of part (b).

d. Repeat part (c) for R 20 kΩ.L =

SECTION 22.9  Double-Tuned Filter

 33. a. For the network in Fig. 22.45(a), if L 400  Hp µ=
Q L( 10),   60  H,s µ> =  and C 120 pF,=  deter-

mine the rejected and accepted frequencies.
b. Sketch the response curve for part (a).

–

+

R1

1 kV

XL 5 kV

Vi

–

+

Vo

fp =  20 kHz

Rl 10 V

XC 400 V RL

FIG. 22.95  
Problem 32.
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a. In words, without any calculations, describe the network 
response to a wide range of frequencies.

b. Plot the response of the filter to a range of frequencies 
extending from 0 Hz to 1 MHz.

SECTION 22.11  Bode Plots

 38. a. Sketch the idealized Bode plot for |=υA V Vo i for the 
high-pass filter in Fig. 22.99.

b. Using the results of part (a), sketch the actual frequency 
response for the same frequency range.

c. Determine the decibel level at f f f f,     ,  2 ,     ,c c c c
1
2

1
10  and 

f10 .c

d. Determine the gain |=υA V Vo i  as =f f f,     ,c c
1
2  and 

f2 .c

e. Sketch the phase response for the same frequency range.

 34. a. For the network in Fig. 22.45(b), if the rejected fre-
quency is 30 kHz and the accepted is 100 kHz, deter-
mine the values of Ls  and L Q( 10)p >  for a capacitance 
of 200 pF.

b. Sketch the response curve for part (a).

SECTION 22.10  Other Filter Configurations

*35.  For the low-pass T filter of Fig. 22.96:
a. In words, without any calculations, describe the network 

response to a wide range of frequencies.
b. Plot the response of the filter to a range of frequencies 

extending from 0 Hz to 1 MHz.

R 0.47 kV

C

0.047 mF

Vi

–

+

Vo

–

+

FIG. 22.99  
Problem 38.

R1C

0.02 mF
Vi

–

+

Vo

–

+

R2 12 kV

6.8 kV

FIG. 22.100  
Problem 39.

220 Ω

L1 L2

0.47 mH 0.22 mH
+

–

+

–

C 5 nF RLVi = 10 V ∠0° VL 

FIG. 22.96  
Problem 35.

1.2 kΩL1 L2220 mH 100 mH

0.12 µF

+

–

+

–

RLVi = 20 V ∠0° VL 

FIG. 22.97  
Problem 36.

L1 L2

1 mH 1 mH
+

–

C 5 nF C 5 nFVi = 60 V ∠0° 1 2

+

–

VL RL = 2.2  kΩ

FIG. 22.98  
Problem 37.

*36.  For the high-pass π  filter of Fig. 22.97:
a. In words, without any calculations, describe the network 

response to a wide range of frequencies.
b.  Plot the response of the filter to a range of frequencies 

extending from 0 Hz to 1 MHz.

*37.  For the Butterworth filter of Fig. 22.98:

*39.  a. Sketch the response of the magnitude of Vo  (in terms  
of V )i  versus frequency for the high-pass filter in 
Fig. 22.100.

b. Using the results of part (a), sketch the response 
|=υA V Vo i  for the same frequency range.

c. Sketch the idealized Bode plot.
d. Sketch the actual response, indicating the dB difference 

between the idealized and the actual response at 
f f f,  0.5 ,c c=  and f2 .c

e. Determine A
dBυ

 at f f1.5 c=  from the plot of part (d), 
and then determine the corresponding magnitude of 

|=υA V V .o i

f. Sketch the phase response for the same frequency range 
(the angle by which Vo  leads V ).i
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 40. a. Sketch the idealized Bode plot for |=υA V Vo i  for the 
low-pass filter in Fig. 22.101.

b. Using the results of part (a), sketch the actual frequency 
response for the same frequency range.

c. Determine the decibel level at f f f f,     ,  2  ,     ,c c c c
1
2

1
10  

and f10  .c

d. Determine the gain |=υA V Vo i at =f f f, ,c c
1
2  and f2 .c

e. Sketch the phase response for the same frequency range.

R

12 kV

C 1000 pFVi

–

+

Vo

–

+

FIG. 22.101  
Problem 40.

Vi

–

+

Vo

–

+

R1

4.7 kV

R2 27 kV
C  =  0.039 mF

FIG. 22.102  
Problem 41.

R2 39 kV

C

0.01 mF
Vi

–

+

Vo

–

+

R3 68 kV

R1

10 kV

FIG. 22.103  
Problem 42.

*41.  a. Sketch the response of the magnitude of Vo  (in terms of V )i  
versus frequency for the low-pass filter in Fig. 22.102.

b. Using the results of part (a), sketch the response 
|=υA V Vo i for the same frequency range.

c. Sketch the idealized Bode plot.
d. Sketch the actual response indicating the dB difference 

between the idealized and the actual response at 
f f f,  0.5 ,c c=  and f2 .c

e. Determine A
dBυ

 at f f0.25 c=  from the plot of part (d), 
and then determine the corresponding magnitude of 

|=υA V V .o i

f. Sketch the phase response for the same frequency range 
(the angle by which Vo leads V ).i

SECTION 22.12  Sketching the Bode Response

 42. For the filter in Fig. 22.103:
a.  Sketch the curve of A

dBυ
 versus frequency using a log scale.

b. Sketch the curve of θ  versus frequency for the same fre-
quency range as in part (a).

*43.  For the filter in Fig. 22.104:
a. Sketch the curve of A

dBυ
 versus frequency using a log 

scale.
b. Sketch the curve of θ  versus frequency for the same fre-

quency range as in part (a).

R1

12 kV

C

0.1 mF

Vi

–

+

Vo

–

+

R2 R3

5.6 kV

8.2 kV

FIG. 22.104  
Problem 43.

SECTION 22.13  Additional Properties of Bode Plots

 44. A bipolar transistor amplifier has the following gain:

( )( )
=

−






 −






 + +

υA
j

f
j

f
j

f
j

f
160

1  100 Hz 1  130 Hz 1  
20 kHz

1  
50 kHz

a. Sketch the normalized Bode response A
dB

′ =υ  
|( )υ υA A ,

dBmax
 and determine the bandwidth of the ampli-

fier. Be sure to note the corner frequencies.
b. Sketch the phase response, and determine a frequency 

where the phase angle is relatively close to 45 .°
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 45. A JFET transistor amplifier has the following gain:

( )( )
= −

−






 −






 −






 + +

υA
j

f
j

f
j

f
j

f
j

f
5.6

1  10 Hz 1  45 Hz 1  68 Hz 1  
23 kHz

1  
50 kHz

a. Sketch the normalized Bode response A
dB

′ =υ  
|( )υ υAA | ,dBmax

 and determine the bandwidth of the 
amplifier. When you normalize, be sure that the maxi-
mum value of ′υA  is 1.+  Clearly indicate the cutoff  
frequencies on the plot.

b. Sketch the phase response, and note the regions of great-
est change in phase angle. How do the regions corre-
spond to the frequencies appearing in the function υA ?

 46.  A transistor amplifier has a midband gain of 120,−  a high 
cutoff frequency of 36 kHz, and a bandwidth of 35.8 kHz. In 
addition, the actual response is also about 15 dB−  at 
f 50 Hz.=  Write the transfer function υA  for the amplifier.

 47. Sketch the Bode plot of the following function:

|
=

−υ j f
A 0.05

0.05  100

 48. Sketch the Bode plot of the following function:

=
+υ j f

A 200
200  0.1 

 49. Sketch the Bode plot of the following function:

|
| |( )( )

=
+ +υ

jf

jf jf
A

1000

1 1000 1 10, 000

*50.  A transistor amplifier has a midband gain of −140, a high 
cutoff frequency of 38 kHz, and a bandwidth of 36 kHz. In 
addition, the actual response is also about 15 dB−  at 
f 50 Hz.=  Write the transfer function υA  for the amplifier.

*51.  Sketch the Bode plot of the following function (note the 
presence of ω  rather than f):

ω
ω ω

( )

( )( )
=

+
+υ

j
j j

A
40 1  0.001 

 0.001  1  0.0002 

SECTION 22.14  Crossover Networks

*52.  The three-way crossover network in Fig. 22.105 has a  
12 dB rolloff at the cutoff frequencies.
a.  Determine the ratio |V Vo i for the woofer and tweeter at 

the cutoff frequencies of 400 Hz and 5 kHz, respec-
tively, and compare to the desired level of 0.707.

b. Calculate the ratio |V Vo i for the woofer and tweeter at a 
frequency of 3 kHz, where the midrange speaker is 
designed to predominate.

c. Determine the ratio |V Vo i for the midrange speaker at a 
frequency of 3 kHz, and compare to the desired level of 1.

8 V

0.39 mH

Llow 4.7 mH
Vi = 1 V 0°

+

–

–3 dB

400 Hz0 dB

–3 dB

400 Hz0 dB
–3 dB

5 kHz

8 V

8 V

–3 dB

5 kHz0 dB

Lhigh

L1(mid)

8 V

L2(mid)

C1(mid) 39   F

Clow

Chigh 2.7   F

39   F

0.39 mH

4.7 mH

C2(mid) 2.7   F

∠

FIG. 22.105  
Problem 52.

GLOSSARY

Active filter A filter that uses active devices such as transistors 
or operational amplifiers in combination with R, L, and C 
 elements.

Bode plot A plot of the frequency response of a system using 
straight-line segments called asymptotes.

Decibel A unit of measurement used to compare power levels.
Double-tuned filter A network having both a pass-band and a 

stop-band region.
Filter Networks designed to either pass or reject the transfer of 

signals at certain frequencies to a load.
High-pass filter A filter designed to pass high frequencies and 

reject low frequencies.
Log-log paper Graph paper with vertical and horizontal log 

scales.
Low-pass filter A filter designed to pass low frequencies and 

reject high frequencies.
Microbar (µbar) A unit of measurement for sound pressure lev-

els that permits comparing audio levels on a dB scale.
Pass-band (band-pass) filter A network designed to pass sig-

nals within a particular frequency range.
Passive filter A filter constructed of series, parallel, or 

series-parallel R, L, and C elements.
Semilog paper Graph paper with one log scale and one linear 

scale.
Stop-band filter A network designed to reject (block) signals 

within a particular frequency range.
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23  Transformers

 23.1 INTRODUCTION
Chapter  11 introduced the self-inductance of a coil. We shall now examine the mutual 
 inductance that exists between coils of the same or different dimensions. Mutual inductance 
is a phenomenon basic to the operation of the transformer, an electrical device used today 
in almost every field of electrical engineering. This device plays an integral part in power 
distribution systems and can be found in many electronic circuits and measuring instruments. 
In this chapter, we discuss three of the basic applications of a transformer: to build up or step 
down the voltage or current, to act as an impedance matching device, and to isolate (no phys-
ical connection) one portion of a circuit from another. In addition, we will introduce the dot 
convention and will consider the transformer equivalent circuit. The chapter concludes with a 
word about writing mesh equations for a network with mutual inductance.

23.2 BASIC OPERATION
The fundamental construction of an iron-core transformer includes a ferromagnetic core, pri-
mary winding to which the source is applied and a secondary winding to which the load is 
applied as shown in Fig. 23.1. Actually, very simple in design but a very powerful, useful 
component of electrical systems.

In Fig. 23.1, the primary winding is wrapped around the core in such a way that the current 
resulting from an applied source will flow to the right around the core as shown in the figure. 
If one places the fingers of the right hand in the direction of the current through the windings, 
the thumb will point in the direction of flux established in the core. The magnitude of the flux 
established will be a function of the ferromagnetic properties of the material, the number of 
turns in the winding, and the current through the winding. The more turns or the higher the 

•  Clearly understand the operation of an iron-core or 
air-core transformer.

• Become familiar with the flux distribution of a 
transformer and how the voltage level of the 
secondary is established.

• Understand what leakage fluxes exist in a 
transformer and how they affect its operation.

• Become aware of how a transformer can be used 
for impedance matching purposes.

• Understand how to use and interpret the dot 
convention of mutually coupled coils in a network.

• Understand the basic operation of a current 
transformer and how it is different from the basic 
voltage transformer.

• Become aware of the differences between a ballast 
and a standard transformer.

 Objectives
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current in the primary winding, the stronger the flux level and the denser 
the flux lines. The product of the number of turns in the primary and the 
primary current is called the  magnetomotive force (mmf)  applied to the 
magnetic circuit. 

   ( )= N I ampere turns, Atp pf         ( 23. 1)  

 If the applied voltage is a dc source, the flux in the core and through 
the secondary winding will be the same and not change with time. In 
order to have transformer action, the flux through the secondary winding 
must change with time. 

The applied voltage must change with time for a transformer to 
function properly.

 In addition to the desired flux in the core, there will be some leakage 
flux established as shown in     Fig .   23. 2  , which lowers the efficiency of the 
device. However, in most cases, its impact is ignored and the transformer 
considered to be an ideal instrument. 

Ip

ZLOADEp

Np

Is

Ns

m

Es
Primary
voltage

Secondary
voltage

Ferromagnetic core

Magnetic flux

Primary current

Primary turns Secondary turns

Secondary current

Φ

        FIG.    23. 1  
 Basic iron-core transformer.    

Fm

Fl

Fl Fl Fl

FsFp

        FIG.    23. 2  
 Showing the leakage flux of a transformer.    

  In other words, on an ideal basis, the flux linking the primary and 
secondary windings is the same as that in core. That is, 

   φ φ φ ( )= =  ideallyp m s         ( 23. 2)     φ φ φ  iφ φ  iφ φ φ  iφ= =  i= =φ φ= =φ φ  iφ φ= =φ φp mφ φp mφ φ  ip m  iφ φ  iφ φp mφ φ  iφ φ s  is  i     i     i
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 If the applied voltage is sinusoidal in nature, the magnitude of the 
flux generated will be sinusoidal too. That changing flux through the 
secondary winding will generate a voltage across the secondary coil due 
to Lenz’s law: 

Lenz’s law states that a changing flux through a coil (or winding) 
will generate a voltage across the winding as determined by the fol-
lowing equation:

   e N
d
dt

  (volts)s s
sφ=         ( 23. 3)  

Lenz’s law also states that the current induced in the secondary 
winding of a transformer will have a direction such that it will gen-
erate a flux that will be opposite the changing flux that established 
the secondary voltage in the first place.

 In   Figs .   23. 1   and    23. 2  , the induced flux is in a direction to oppose   mφ      . 
Note the direction of the secondary current in the coil of   Fig .   23. 1  . This 
action reveals that under normal operating conditions, a transformer 
reaches a state of equilibrium between the various opposing fluxes 
generated. 

 Clearly,   Eq.   ( 23. 3  ) reveals that the higher the number of turns in the 
secondary or the more rapid the changing flux with time, the greater the 
voltage generated in the secondary. 

 Applying Faraday’s law (see   Section    11. 4  ), we know that the voltage 
generated across the primary coil is determined by 

φ
=e N

d

dtP p
p

 If we now form the ratio of 

φ

φ

=

=

e N
d

dt

e N
d
dt

p p
p

s s
s

 and then apply the ideal conditions of   Eq.   ( 23. 2  )   φ φ φ( )= = p m s

we find that 

e

e

N
d
dt

N
d
dt

e

e

N

N
p

s

p
m

s
m

p

s

p

s

φ

φ ⇒= =

 and since the relationship is for instantaneous values, we have 

   
E

E
=

N

N
p

s

p

s

        ( 23. 4)  

 A very nice compact relationship between the voltages of a transformer 
and the number of turns of each winding. 

   e N
d
dt

  (  (e N  (e N
d

  (
d
dt

  (
dts se Ns se N  (s s  (e N  (e Ns se N  (e N s  (s  (
φ

  (
φ

  (e N  (e N=e N  (e N     (     (
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   Transformation ratio  

 The ratio  N p/N s  usually represented by the lowercase letter  a  is referred 
to as the  transformation ratio : 

   =a
N

N
p

s

        ( 23. 5)  

 If  a  < 1, the transformer is called a  step-up transformer  since the 
voltage   E Es p>      , that is, and if  a  < 1,   E Es p>      . 

 If  a  > 1, the transformer is called as step-down transformer since 
<E Es p      ; that is, 

=E aEp s

 and if  a  > 1, then 

>E Ep s

   Coefficient of coupling  

 If we assume all the flux lines of the primary winding will pass through 
the secondary winding, then we say the  coefficient of coupling  is 1 as 
determined by the following equation: 

   k  (coefficient of coupling) m

p

φ
φ

=         ( 23. 6)  

 The value of  k  is limited to 0–1, since the secondary flux cannot 
be more than the primary level. If k happens to be 0.8, only 80% of the 
primary flux is passing through the secondary winding. The result is 
the voltage generated across the secondary winding using   k 0.8=       will 
only be 80% of the level determined if  k = 1. 

 Coils having a low coefficient of coupling are said to be  loosely 
coupled . 

 In equation form: 

   

φ φ

φ φ

φ

= ≅

=

=

e N
d
dt

N
d
dt

k

e kN
d

dt

substituting  

s s
s

s
m

m p

s s
p         ( 23. 7)   

   Mutual inductance  

 The  mutual inductance  that exists between two coils is a measure of the 
ability of a coil magnetically linked to another coil to induce a voltage 
across the other coil. 

 The mutual inductance between the two coils in   Fig .   23. 1   is deter-
mined by 

   M N
d
di

    henries,  Hs
m

p

φ
( )=         ( 23. 8)  

 or          M N
d
di

    henries,  Hp
m

s

φ
( )=         ( 23. 9)  

   =a
N

N
p

s

        (            (            ( 

   k  (coefficient of coupling)cient of coupling)cient of m

p

φ
φ

=         (            (            ( 

φ
e k=e k= Ne kNe k

d

dts se ks se kNs sNe kNe ks se kNe k p

   M N
d
di

   s
m

p

φ
M N=M N            

 or          M N
d
di

   p
m

s

φ
M N=M N or              or             
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 Note in the above equations that the symbol for mutual inductance 
is the capital letter  M  and that its unit of measurement, like that of 
 self-inductance, is the  henry.  In words,   Eqs.   ( 23. 8  ) and   ( 23. 9  ) state that the 

  mutual inductance between two coils is proportional to 
the instantaneous change in flux linking one coil due to an 
instantaneous change in current through the other coil.  

 In terms of the inductance of each coil and the coefficient of cou-
pling, the mutual inductance is determined by 

   M k L L     henries,  Hp s ( )=         ( 23. 10)   

 The greater the coefficient of coupling (greater flux linkages), or the 
greater the inductance of either coil, the higher is the mutual inductance 
between the coils. 

 Effect of applied frequency 

 For a sinusoidal voltage applied to the primary of a transformer, the 
resulting current will have the following format with the current Ip being 
the effective current: 

ω=i I t2 sin p p

 then     tsin m mφ ω= Φ

 The induced voltage across the primary due to a sinusoidal input can 
be determined by Faraday’s law: 

e N
d

dt
N

d
dtp p

p
p

m
φ φ

= =

 Substituting for   mφ       gives us 

e N d
dt

tsin p p m ω( )= Φ

 and differentiating, we obtain 

e N tcos p p mω ω= Φ

 or   e N tsin 90p p mω ω( )= Φ + °

 indicating that the induced voltage   e p       leads the current through the pri-
mary coil by   90 .°

 The effective value of   e p       is 

E
N fN

2

2

2p
p m p mω π

=
Φ

=
Φ

 and               = ΦE f N4.44p p m  ( 23. 11)  

 which is an equation for the rms value of the voltage across the primary 
coil in terms of the frequency of the input current or voltage, the number 
of turns of the primary, and the maximum value of the magnetic flux 
linking the primary. 

 The resulting equation reveals that the applied frequency will have a 
direct effect on the resulting primary voltage. 

 and               = ΦE f= ΦE f= Φ= ΦN= Φ= ΦE f= Φ4.44= ΦE f= Φp p= Φp p= ΦE fp pE f= ΦE f= Φp p= ΦE f= ΦNp pN= ΦN= Φp p= ΦN= ΦE f4.44E fp pE f4.44E f= ΦE f= Φ4.44= ΦE f= Φp p= ΦE f= Φ4.44= ΦE f= Φm and                and               

   M k L L    p sL Lp sL LM k=M k      
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The higher the applied frequency the higher the resulting primary 
induced voltage for the same number of turns and core flux.

An expected result since higher frequencies result in a higher rate of 
change in the flux through the primary winding.

EXAMPLE 23.1 For the iron-core transformer in Fig. 23.3:

a. Find the maximum flux .mΦ
b. Find the secondary turns N .s

c. Find Es if k reduced to 0.95.

Np = 50

ip +

Ep = 200 V

–

+ Is

–

f = 60 Hz

k = 1 Es = 2400 V

Ns

Φm

Φm

FIG. 23.3 
Example 23.1.

Solutions:

a. = ΦE N f4.44p p m

Therefore,     
( )( )( )

Φ = =
E

N f4.44 
200 V

4.44 50 t 60 Hzm
p

p

and          Φ = 15 02 mWb.  m

b. 
E

E

N

N
p

s

p

s

=

Therefore,  N
N E

E
50 t 2400 V

200 Vs
p s

p

( )( )
= =

600 turns =
c. E kEs s= ′

=

= 2, 290 V

     (0.95)(2400 V)

    

Primary and secondary currents

The induced voltage across the secondary of the transformer estab-
lishes a current is  through an applied load Z L  and the secondary wind-
ings as shown in Fig. 23.1. This current and the turns N s  develop an 
mmf N is s  that is not present under no-load conditions since i 0s =  
and N i 0.s s =  Under loaded or unloaded conditions, however, the net 
 ampere-turns on the core produced by both the primary and the second-
ary must remain unchanged for the same flux mφ  to be established in 
the core. The flux mφ  must remain the same to have the same induced 
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voltage across the primary and to balance the voltage impressed across 
the primary. To counteract the mmf of the secondary, which is tending to 
reduce   ,mφ       an additional current must flow in the primary. This current 
is called the  load component of the primary current  and is represented 
by the notation   i .p′

 For the balanced or equilibrium condition, 

N i N ip p s s′ =

 The total current in the primary under loaded conditions is 

i i ip p m
= ′ + φ

 where   i
mφ

      is the current in the primary necessary to establish the flux 
.mφ       For most practical applications,   ′ > φi i .p m

      For our analysis, we 
assume   ≅ ′i i ,p p       so 

N i N ip p s s=

 Since the instantaneous values of   i p       and   is       are related by the turns 
ratio, the phasor quantities   Ip      and   Is      are also related by the same ratio: 

=N NI Ip p s s

 or          N
N

I

I
p

s

s

p

=         ( 23. 12)  

  The primary and secondary currents of a transformer are 
therefore related by the inverse ratios of the turns.  

 Keep in mind that   Eq.   ( 23. 12  ) holds true only if we neglect the effects of 
i .

mφ
      Otherwise, the magnitudes of   I p       and   I s       are not related by the turns 

ratio, and   I p       and   I s       are not in phase. 
 For the step-up transformer,   a 1,<       and the current in the secondary, 

I aI ,s p=       is less in magnitude than that in the primary. For a step-down 
transformer, the reverse is true.   

23. 3     REFLECTED IMPEDANCE AND POWER   
 In the previous section we found that 

= = = =
N

N
a

N
N a

V

V

I

I
and 1g

L

p

s

p

s

s

p

 Dividing the first by the second, we have 

a
a

V V

I I 1
g L

p s

/
/

=
/

 or           
/
/

= =a a
V I

V I

V

I
V
I

    and    g p

L s

g

p

L

s

2 2

 However, since 

= =Z
V

I
Z

V
I

    and    p
g

p
L

L

s

 then           aZ Zp L
2=  ( 23. 13)  

 or          N
N

I

I
p

s

s

p

=          or                   or                  

 then           Z ZaZ Zap Lap LaZ Zp LZ ZaZ Zap LaZ Za 2Z Z2Z ZZ Z=Z ZZ Zp LZ Z=Z Zp LZ Z then            then           
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 That is, the impedance of the primary circuit of an ideal transformer 
is the transformation ratio squared times the impedance of the load. 
If a transformer is used, therefore, an impedance can be made to 
appear larger or smaller at the primary by placing it in the secondary of a 
 step-down   a 1( )>       or step-up   a 1( )<       transformer, respectively. Note 
that if the load is capacitive or inductive, the  reflected impedance  is 
also capacitive or inductive. 

 For the ideal iron-core transformer, 

E

E
a

I
I

p

s

s

p

= =

 or      E I E Ip p s s=         ( 23. 14)

 and     P P      Ideal conditionsin out ( )=  ( 23. 15)

    EXAMPLE   23. 2  For the iron-core transformer in     Fig.    23. 4  : 

a.     Find the magnitude of the current in the primary and the impressed 
voltage across the primary.  

b.   Find the input resistance of the transformer.   

   Solutions:  

a. 
I

I
N
N

p

s

s

p

=

I
N
N

I 12 5 mA5 t
40 t

0.1 A .  p
s

p
s ( )( )= = =

V I Z 0.1 A 2 kΩ 200 VL s L ( )( )= = =

 Also,  
V

V

N

N
g

L

p

s

=

V
N

N
V 1600 V40 t

5 t
200 V  g

p

s
L ( )( )= = =

b. Z a Zp L
2=

a
N

N
8p

s

= =

Z R 128 k8 2 kΩ   Ωp p
2 ( )( )= = =

Np = 40 t

+ Ip

Zp
Vg

–

Ns = 5 t

Is = 100 mA
Denotes iron core

R 2 kV

+

VL

–

        FIG.    23. 4  
   Example    23. 2  .    

    EXAMPLE   23. 3  For the residential supply appearing in     Fig.    23. 5  , 
determine (assuming a totally resistive load) the following: 

a.     the value of  R  to ensure a balanced load  
b.   the magnitude of   I1      and   I 2

c.   the line voltage   VL

d.   the total power delivered for a balanced three-phase load  
e.   the turns ratio   =a N Np s

 or      E I E Ip pE Ip pE I s sE Is sE I=          or               or              

 and     P P   inP PinP PoutP PoutP PP P=P P and      and     
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Solutions:

a. P 10 60 W 200 W 2000 WT ( )( )= + +  

600 W 200 W 2000 W 2800 W= + + =

P PIn out=

( )= =V I V I 2800 W  purely resistive loadp p s s

I I2400 V 2800 W and  1.17 Ap p( ) = =

= = =R
V

I
2051 28 Ω2400 V

1.17 A
.  p

p

b. P VI I600 W 120 V1 1 1( )= = =

and    I 5 A 1 =

P VI V I2000 W 240 2 2 2( )= = =

and          I 8 33 A.  2 =

c. V V 4152 V3 1.73 2400 V  L p ( )= = =

d. P P 8 4 kW3 3 2800 W .  T p ( )= = =

e. a
N

N

V

V
102400 V

240 V
p

s

p

s

= = = =

Ip

–

+

Ten 60 W bulbs

TV
200 W

Air
conditioner

2000 W

120 V

120 V

Vp = 2400 V

VL

–

+ R R

N1 N2

I1

I2

Main service
Residential service:
120/240 V,  3-wire,
single-phase

240 V

FIG. 23.5 
Single-phase residential supply.

23.4 IMPEDANCE MATCHING, ISOLATION, 
AND DISPLACEMENT
Transformers can be particularly useful when you are trying to ensure 
that a load receives maximum power from a source. Recall that maxi-
mum power is transferred to a load when its impedance is a match with 
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the internal resistance of the supply. Even if a perfect match is unattain-
able, the closer the load matches the internal resistance, the greater is the 
power to the load and the more efficient is the system. Unfortunately, 
 unless it is planned as part of the design, most loads are not a close match 
with the internal impedance of the supply. However, transformers have a 
unique relationship between their primary and secondary impedances that 
can be put to good use in the impedance matching process. Example 23.4 
demonstrates the significant difference in the power delivered to the load 
with and without an impedance matching transformer.

EXAMPLE 23.4

a. The source impedance for the supply in Fig.  23.6(a) is 500 Ω, 
which is a poor match with the 8 Ω  input impedance of the speaker. 
You can expect only that the power delivered to the speaker will be 
significantly less than the maximum possible level. Determine the 
power to the speaker under the conditions in Fig. 23.6(a).

b. In Fig.  23.6(b), a commercially available 500 Ω to 8 Ω  audio 
impedance matching transformer was introduced between the 
speaker and the source. Determine the input impedance of the trans-
former and the power delivered to the speaker.

c. Compare the power delivered to the speaker under the conditions of 
parts (a) and (b).

d. Find the approximate turns ratio for the transformer.

(a) (b)

+

Vg

–

8 V

120 V

Rs

500 V

: 500 V 8 V

Zp

+

Vg

–

8 V

120 V

Rs

500 V

FIG. 23.6 
Example 23.4.

 Solutions:

a. The source current:

I E
R

120 V
500 Ω 8 Ω

120 V
508 Ω

236.2 mAs
T

= =
+

= =

The power to the speaker:

( )= = ⋅ ≅ ≅P I R 446 3 mW 0 45 W236.2 mA 8 Ω .   .  2 2

or less than 1
2  W.

b. Since the input impedance of the transformer matches that of the 
source, maximum power transfer conditions have been established, 
and the source current is now determined by

I E
R

120 V
500 Ω 500 Ω

120 V
1000 Ω

120 mAs
T

= =
+

= =
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The power to the primary (which equals that to the secondary for 
the ideal transformer) is

( )= = ⋅ =P I R 7 2 W120 mA 500 Ω .  2 2

The result is not in milliwatts, as obtained above, and exceeds 7 W, 
which is a significant improvement.

c. Comparing levels, we see that 7.2 W 446.3 mW 16.1,/ =  or more 
than 16 times the power is delivered to the speaker using the imped-
ance matching transformer.

d. Z a Zp L
2=

a
Z

Z
8 1500 Ω

8 Ω
7.91 :p

L

= = = ≅

Another important application of the impedance matching capabili-
ties of a transformer is the matching of the 300 Ω twin line transmission 
line from a television antenna to the 75 Ω input impedance of a televi-
sion (ready-made for the 75 Ω coaxial cable), as shown in Fig. 23.7. A 
match must be made to ensure the strongest signal to the television 
receiver.

Using the equation Z a Z ,p L
2=  we find

a300 Ω 75 Ω2=

and         a 300 Ω
75 Ω

4 2= = =

with      N N: 2 : 1    a step-down transformerp s ( )=

EXAMPLE 23.5 Impedance matching transformers are also quite 
evident in public address systems, such as the one appearing in the 70.7 V  
system in Fig. 23.8. Although the system has only one set of output termi-
nals, up to four speakers can be connected to this system (the number is a 
function of the chosen system). Each 8 Ω  speaker is connected to the 
70.7 V line through a 10 W audio-matching transformer (defining the 
frequency range of linear operation).

a.  If each speaker in Fig. 23.8 can receive 10 W of power, what is the 
maximum power drain on the source?

b. For each speaker, determine the impedance seen at the input side of 
the transformer if each is operating under its full 10 W of power.

c. Determine the turns ratio of the transformers.
d. At 10 W, what are the speaker voltage and current?
e. What is the load seen by the source with one, two, three, or four 

speakers connected?

75 V

TV input

300 V:75 V

FIG. 23.7 
Television impedance matching transformer.
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Solutions:

a. Ideally, the primary power equals the power delivered to the load, 
resulting in a maximum of 40 W from the supply.

b. The power at the primary is

P V I I70.7 V 10 Wp p p p( )= = =

and    I 10 W
70.7 V

141.4 mAp = =

so that = = =Z
V

I
500 Ω70.7 V

141.4 mA
 p

p

p

c. Z a Z a
Z

Z
7 91 8 1500 Ω

8 Ω
62.5 . :p L

p

L

2= ⇒ = = = = ≅

d. V V
V

a
V8 94 9 V70.7 V

7.91
.    s L

p= = = = ≅

e. All the speakers are in parallel. Therefore,

One speaker:  =R 500 Ω T

Two speakers: = =R 250 Ω500 Ω
2

 T

Three speakers: = =R 167 Ω500 Ω
3

 T

Four speakers: = =R 125 Ω500 Ω
4

 T

Even though the load seen by the source varies with the number of 
speakers connected, the source impedance is so low (compared to 
the lowest load of 125 Ω ) that the terminal voltage of 70.7 V is 
essentially constant. This is not the case where the desired result is 
to match the load to the input impedance; rather, it was to ensure 
70.7 V at each primary, no matter how many speakers were con-
nected, and to limit the current drawn from the supply.

The transformer is frequently used to isolate one portion of an electrical 
system from another. Isolation implies the absence of any direct physical 
connection. As a first example of its use as an isolation device, consider 
the measurement of line voltages on the order of 40,000 V (Fig. 23.9).

Public address
system

Very low output impedance

70.7 V
+

–

8 V 10 W
matching audio
transformers

8 V speakers

FIG. 23.8 
Public address system.
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To apply a voltmeter across 40,000 V would obviously be a danger-
ous task due to the possibility of physical contact with the lines when 
making the necessary connections. Including a transformer in the trans-
mission system as original equipment can bring the potential down to a 
safe level for measurement purposes and can determine the line voltage 
using the turns ratio. Therefore, the transformer serves both to isolate 
and to step down the voltage.

As a second example, consider the application of the voltage xυ  to the 
vertical input of the oscilloscope (a measuring instrument) in Fig. 23.10. 
If the connections are made as shown, and if the generator and oscillo-
scope have a common ground, the impedance Z2  has been effectively 
shorted out of the circuit by the ground connection of the oscilloscope. 
The input voltage to the oscilloscope is therefore meaningless as far as 
the voltage xυ  is concerned. In addition, if Z2  is the current-limiting 
impedance in the circuit, the current in the circuit may rise to a level that 
causes severe damage to the circuit. If a transformer is used as shown 
in Fig. 23.11, this problem is eliminated, and the input voltage to the 
oscilloscope will be xυ .

The linear variable differential transformer (LVDT) is a sensor that 
can reveal displacement using transformer effects. In its simplest form, 
the LVDT has a central winding and two secondary windings, as shown 
in Fig. 23.12(a). A ferromagnetic core inside the windings is free to 
move as dictated by some external force. A constant, low-level ac volt-
age is applied to the primary, and the output voltage is the difference 
between the voltages induced in the secondaries. If the core is in the  
position shown in Fig. 23.12(b), a relatively large voltage is induced 
across the secondary winding labeled coil 1, and a relatively small 
voltage is induced across the secondary winding labeled coil 2 (es-
sentially an  air-core transformer for this position). The result is a rel-
atively large secondary output voltage. If the core is in the position 
shown in Fig. 23.12(c), the flux linking each coil is the same, and the 
output voltage (being the difference) will be quite small. In total, there-
fore, the position of the core can be related to the secondary voltage, 
and a position-versus-voltage graph can be developed as shown in 
Fig. 23.12(d). Due to the nonlinearity of the B-H curve, the curve be-
comes somewhat nonlinear if the core is moved too far out of the unit.

Lines

40,000 V

+

–

Np

Ns
=  400  =  a

Voltmeter

100 V
+

–
V

FIG. 23.9 
Isolating a high-voltage line from the point of measurement.

vx

+

–

Vertical channel

vg

+

–
+

–

Oscilloscope

Z1

Z2

FIG. 23.10 
Demonstrating the shorting effect introduced 
by the grounded side of the vertical channel 

of an oscilloscope.

Z1vx

+

– Oscilloscope

1 1:

Z2

V

FIG. 23.11 
Correcting the situation of Fig. 23.10 using 

an isolation transformer.
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23.5 EQUIVALENT CIRCUIT (IRON-CORE 
TRANSFORMER)
For the nonideal or practical iron-core transformer, the equivalent  circuit 
appears as in Fig.  23.13. As indicated, part of this equivalent circuit 
 includes an ideal transformer. The remaining elements of Fig.  23.  13  
are those elements that contribute to the nonideal characteristics of the 
device. The resistances Rp  and Rs  are simply the dc or geometric resis-
tance of the primary and secondary windings, respectively. For the pri-
mary and secondary coils of a transformer, there is a small amount of 
flux that links each coil but does not pass through the core, as shown 
in Fig. 23.14 for the primary winding. This leakage flux, representing 
a definite loss in the system, is represented by an inductance L p  in the 
primary circuit and an inductance Ls in the secondary.

Φm

Φleakage

Φm

Φleakage

FIG. 23.14 
Identifying the leakage flux of the primary.

(a)

Ferromagnetic core

Primary winding

Secondary
coil 1

Secondary
coil 2

End plate

(b)

xmax

e1max
+ –

e2min
+ –

e1 – e2 = eTmax

xmin

(e1 = e2)

+ – + –

e1 – e2 = eTmin

(c)

(d)

0

eT (induced voltage)

xmax x displacement

eTmax

e1 e2

FIG. 23.12 
LVDT transformer: (a) construction; (b) maximum displacement; (c) minimum displacement;  

(d) graph of induced voltage versus displacement.

–

+

Ep

Rp Lp

RcCp Np Ns RLCs EsLm

RsLs

–

+
ip

ifm
i9p

Cw

Ideal transformer

FIG. 23.13 
Equivalent circuit for the practical iron-core transformer.

The resistance Rc  represents the hysteresis and eddy current losses 
(core losses) within the core due to an ac flux through the core. The  
inductance Lm (magnetizing inductance) is the inductance associated with  
the magnetization of the core, that is, the establishing of the flux mφ  in the 
core. The capacitances C p  and Cs  are the lumped capacitances of the pri-
mary and secondary circuits, respectively, and Cw  represents the equiva-
lent lumped capacitances between the windings of the transformer.
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–

+

Ep

Rp Lp Np Ns

RL

RsLs

–

+

Es

Ideal transformer

a  =
Np

Ns

        FIG.    23. 15  
 Reduced equivalent circuit for the nonideal iron-core transformer.    

–

+

Ep

a2Rs Xp

Np Ns

RL  VL

–

+

Es

Ideal transformer

a2XsRp

Vg
–

+

–

+

Xe

Np Ns

RL  VL

Ideal transformer

Re

Vg

–

+

–

+

–

+

aVL

Ri  =  a2RL

(a) (b)

a  =
Np

Ns
a  =

Np

Ns

        FIG.    23. 16  
 Reflecting the secondary circuit into the primary side of the iron-core transformer.    

  If we now reflect the secondary circuit through the ideal transformer 
using   Eq.   ( 23. 13  ), as shown in     Fig.    23. 16(a)  , we will have the load and 
generator voltage in the same continuous circuit. The total resistance and 
inductive reactance of the primary circuit are determined by 

    R R R a Re p sequivalent
2= = +         ( 23. 16)  

 and      X X X a Xe p sequivalent
2= = +  ( 23. 17)  

 which result in the useful equivalent circuit of   Fig.     23. 16(b)  . The load 
voltage can be obtained directly from the circuit in   Fig.    23. 16(b)   through 
the voltage divider rule: 

a
R

R R jX
V

V
L

i g

e i e( )
=

+ +

 and     
aR

R a R jX
V

V
L

L g

e L e
2( )

=
+ +

        ( 23. 18)

 Since   i p′       is normally considerably larger than   i
mφ

      (the magnetiz-
ing current), we will ignore   i mφ       for the moment (set it equal to zero), 
resulting in the absence of   Rc       and   Lm      in the reduced equivalent circuit 
in     Fig.     23. 15  . The capacitances   C C,   ,p w       and   Cs       do not appear in the 
equivalent circuit in   Fig.    23. 15   since their reactance at typical operating 
frequencies do not appreciably affect the transfer characteristics of the 
transformer. 

    R R R a Re pR ae pR a seR ReR RquivalentR RquivalentR R 2= =R R= =R R +R a+R a         (             (             ( 

 and      X X X a Xe pX ae pX a seX XeX XquivalentX XquivalentX X 2= =X X= =X X +X a+X a and       and      

 and     
aR

R jXR jXR j
V

V
L

L gVL gV

e L e
2( )R j( )R j( )R a( )R a( )R j( )R je L( )e LR ae LR a( )R ae LR a R je LR j( )R je LR j2( )2

=
R j+ +R j( )+ +( )R a( )R a+ +R a( )R a R j( )R j+ +R j( )R je L( )e L+ +e L( )e LR ae LR a( )R ae LR a+ +R ae LR a( )R ae LR a R je LR j( )R je LR j+ +R je LR j( )R je LR j2( )2+ +2( )2

         and              and             
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The network in Fig.  23.16(b) also allows us to calculate the genera-
tor voltage necessary to establish a particular load voltage. The voltages 
across the elements in Fig. 23.16(b) have the phasor relationship indicated 
in Fig. 23.17(a). Note that the current is the reference phasor for drawing 
the phasor diagram. That is, the voltages across the resistive elements are in 
phase with the current phasor, while the voltage across the equivalent induc-
tance leads the current by 90 .°  The primary voltage, by Kirchhoff’s voltage 
law, is then the phasor sum of these voltages, as indicated in Fig. 23.17(a). 
For an inductive load, the phasor diagram appears in Fig. 23.17(b). Note 
that aVL  leads I by the power-factor angle of the load. The remainder of 
the diagram is then similar to that for a resistive load. (The phasor diagram 
for a capacitive load is left to the reader as an exercise.)

The effect of Re  and X e  on the magnitude of Vg  for a particular VL  
is obvious from Eq. (23.18) or Fig. 23.17. For increased values of Re  or 
X ,e  an increase in Vg  is required for the same load voltage. For Re  and 
X V0,  e L=  and Vg  are simply related by the turns ratio.

EXAMPLE 23.6 For a transformer having the equivalent circuit in 
Fig. 23.18:

aVLI

Vg
IXe

IXe

IRe

Vg

I

aVL

(power-factor angle of the load)

(a)

(b)

IRe

FIG. 23.17 
Phasor diagram for the iron-core transformer 

with (a) unity power-factor load (resistive) 
and (b) lagging power-factor load (inductive).

Ip  =  10 A ∠ 0°

Xp

RL

Ideal transformer

Rp

Vg
–

+
VL

–

+1 V 2 V 2 : 1

RsXs

1 V2 V

60 V

FIG. 23.18 
Example 23.6

a. Determine Re  and X .e

b. Determine the magnitude of the voltages VL  and V .g

c. Determine the magnitude of the voltage Vg  to establish the same 
load voltage in part (b) if Re  and X 0 Ω.e =  Compare with the 
result of part (b).

Solutions:

a. ( )( )= + = + =R R a R 5 Ω1 Ω 2 1 Ω  e p s
2 2

( )( )= + = + =X X a X 10 Ω2 Ω 2 2 Ω  e p s
2 2

b. The transformed equivalent circuit appears in Fig. 23.19.

aV I a R 2400 VL p L
2( )( )= =

Thus,

= = =V
a

1200 V2400 V 2400 V
2

 L

and

R a R jXV Ig p e L e
2( )= + +

j j10 A 5 Ω 240 Ω 10 Ω) 10 A(245 Ω 10 Ω( )= + + = +
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jV 2450 V 100 V 2452.04 V 2.34g = + = ∠ °

2452 04 V 2 34.   .= ∠ °

Vg

–

+

Ip  =  10 A ∠ 0° Re

5 V

Xe

10 V

aVL a2RL  =  (4)(60 V)  =  240 V
–

+

FIG. 23.19 
Transformed equivalent circuit of Fig. 23.18.

Rp

–

+

Rc a2RL aVL

a2Rs

LmVg

–

+

(a)

Rp

–

+

a2RL aVL

a2Rs

Vg

–

+

(b)

Rc

FIG. 23.20 
(a) Low-frequency reflected equivalent circuit; 

(b) mid-frequency reflected circuit.

c. For Re  and X V aV0,   2 1200 V 2400 V.e g L ( )( )= = = =
Therefore, it is necessary to increase the generator voltage by 

52.04 V (due to Re  and X e ) to obtain the same load voltage.

23.6 FREQUENCY CONSIDERATIONS
For certain frequency ranges, the effect of some parameters in the equiv-
alent circuit of the iron-core transformer in Fig.  23.13 should not be  
ignored. Since it is convenient to consider a low-, mid-, and  high-frequency  
region, the equivalent circuits for each are now introduced and briefly 
examined.

For the low-frequency region, the series reactance fL2π( ) of the 
primary and secondary leakage reactances can be ignored since they 
are small in magnitude. The magnetizing inductance must be included, 
however, since it appears in parallel with the secondary reflected cir-
cuit, and small impedances in a parallel network can have a dramatic 
impact on the terminal characteristics. The resulting equivalent net-
work for the low-frequency region is provided in Fig.  23.20(a). As 
the frequency decreases, the reactance of the magnetizing inductance 
reduces in magnitude, causing a reduction in the voltage across the 
secondary circuit. For f L0 Hz,   m=  is ideally a short circuit, and 
V 0.L =  As the frequency increases, the reactance of Lm is eventually 
sufficiently large compared with the reflected secondary impedance 
to be neglected. The mid-frequency reflected equivalent circuit then 
appears as shown in Fig. 23.20(b). Note the absence of reactive ele-
ments, resulting in an  in-phase relationship between load and genera-
tor voltages.

For higher frequencies, the capacitive elements and primary and sec-
ondary leakage reactances must be considered, as shown in Fig. 23.21. 
For discussion purposes, the effects of Cw  and Cs  appear as a lumped 
capacitor C in the reflected network in Fig.  23.21; C p  does not  
appear since the effect of C predominates. As the frequency of interest  
increases, the capacitive reactance X fC1 2C π( )=  decreases to the 
point that it will have a shorting effect across the secondary circuit of the 
transformer, causing VL  to decrease in magnitude.
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A typical iron-core transformer-frequency response curve appears in 
Fig.  23.22. For the low- and high-frequency regions, the primary ele-
ment responsible for the drop-off is indicated. The peaking that occurs in 
the high-frequency region is due to the series resonant circuit established 
by the inductive and capacitive elements of the equivalent circuit. In the 
peaking region, the series resonant circuit is in, or near, its resonant or 
tuned state.

–

+

Rc

Rp

Vg

Xp a2Xs a2Rs

a2RL aVLC

–

+

FIG. 23.21 
High-frequency reflected equivalent circuit.

VL (for fixed Vg)

(Lm)

0

(C)

100 1000 10,000 100,000 f (Hz)
(log scale)

Fairly flat
response region

(VL least sensitive to f )

FIG. 23.22 
Transformer-frequency response curve.

+ –e1 + –e2

Iron core

M  =  M12 (+)
L1 L2

(a)

L1 L2

M12 (+)

+ –e1 + –e2
i2

(b)

i1

  1   2

 FIG. 23.23 
Mutually coupled coils connected in series.

23.7 SERIES CONNECTION OF MUTUALLY 
COUPLED COILS
In Chapter 11, we found that the total inductance of series isolated coils 
was determined simply by the sum of the inductances. For two coils that 
are connected in series but also share the same flux linkages, such as 
those in Fig. 23.23(a), a mutual term is introduced that alters the total  
inductance of the series combination. The physical picture of how the 
coils are connected is indicated in Fig. 23.23(b). An iron core is included,  
although the equations to be developed are for any two mutually coupled 
coils with any value of coefficient of coupling k. When referring to the 
voltage induced across the inductance L1 (or L2) due to the change in 
flux linkages of the inductance L2  (or L1, respectively), the mutual in-
ductance is represented by M .12  This type of subscript notation is partic-
ularly important when there are two or more mutual terms.

Due to the presence of the mutual term, the induced voltage e1  
is composed of that due to the self-inductance L1 and that due to the  
mutual inductance M .12  That is,

e L
di
dt

M
di
dt1 1

1
12

2= +
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 However, since  i i i,1 2= =

e L di
dt

M di
dt1 1 12= +

 or          e L M di
dt

    volts,  V1 1 12( ) ( )= +  ( 23. 19)  

 and, similarly, 

   e L M di
dt

   volts,  V2 2 12( ) ( )= +         ( 23. 20)  

 For the series connection, the total induced voltage across the series 
coils, represented by   e ,T       is 

e e e L M di
dt

L M di
dtT 1 2 1 12 2 12( ) ( )= + = + + +

 or                e L L M M di
dtT 1 2 12 12( )= + + +

 and the total effective inductance is 

   L L L M2     henries,  HT 1 2 12 ( )= + +( )+         ( 23. 21)  

 The subscript   ( )+       was included to indicate that the mutual terms 
have a positive sign and are added to the self-inductance values to 
determine the total inductance. If the coils are wound such as shown in 
    Fig.    23. 24  , where   1φ       and   2φ       are in opposition, the induced voltages due 
to the mutual terms oppose that due to the self-inductance, and the total 
inductance is determined by 

    L L L M2      henries,  HT 1 2 12 ( )= + −( )−         ( 23. 22)  

 Through   Eqs.   ( 23. 27  ) and   ( 23. 28  ), the mutual inductance can be 
determined by 

   M L L1
4 T T12 ( )= −( ) ( )+ −         ( 23. 23)  

   Eq.   ( 23. 23  ) is very effective in determining the mutual inductance 
between two coils. It states that the mutual inductance is equal to 
 one-quarter the difference between the total inductance with a positive 
and negative mutual effect. 

 From the preceding, it should be clear that the mutual inductance 
 directly affects the magnitude of the voltage induced across a coil since 
it determines the net inductance of the coil. Additional examination 
reveals that the sign of the mutual term for each coil of a coupled pair is 
the same. For   LT( )+       they are both positive, and for   LT( )−       they are both 
negative. On a network schematic where it is inconvenient to indicate 
the windings and the flux path, a system of dots is used that determines 
whether the mutual terms are to be positive or negative. The dot conven-
tion is shown in     Fig.    23. 25   for the series coils in   Figs.    23. 23   and    23. 24  . 

  If the current through  each  of the mutually coupled coils is going 
away from (or toward) the dot as it  passes through the coil,  the mutual 
term will be positive, as shown for the case in   Fig    23. 25(a)  . If the arrow 
indicating current direction through the coil is leaving the dot for one 
coil and entering the dot for the other, the mutual term is negative. 

L1 L2
(a)

L1 L2
(b)

        FIG.    23. 25  
 Dot convention for the series coils in 

(a)   Fig.    23. 23   and (b)   Fig.    23. 24.      

M12 (–) L2L1

  1   2i1 i2

        FIG.    23. 24  
 Mutually coupled coils connected in series 

with negative mutual inductance.    

 or          e L di
dt

   1 1e L1 1e L 12( )e L( )e L M( )M1 1( )1 1 12( )12e L= +e L1 1= +1 1e L1 1e L= +e L1 1e L( )= +( )e L( )e L= +e L( )e L1 1( )1 1= +1 1( )1 1e L1 1e L( )e L1 1e L= +e L1 1e L( )e L1 1e L or              or             

   e L di
dt

  2 2e L2 2e L 12( )e L( )e L M( )M2 2( )2 2 12( )12e L= +e L2 2= +2 2e L2 2e L= +e L2 2e L( )= +( )e L( )e L= +e L( )e L2 2( )2 2= +2 2( )2 2e L2 2e L( )e L2 2e L= +e L2 2e L( )e L2 2e L      

   L L L M2L M2L M    TL LTL L1 2L M1 2L M12= +L L= +L L1 2= +1 2 +L M+L M( )L L( )L L( )+( )L L( )L L+L L( )L L            

    L L L M2  L M2  L M    TL LTL L1 2L M1 2L M122  122  = +L L= +L L1 2= +1 2L M−L M( )L L( )L L( )−( )              

   M L1M L1M L
412M L12M L( )M L( )M L L( )LT T( )T TLT TL( )LT TL( )M L( )M LT T( )T TM L= −M LM L= −M L( )= −( )M L( )M L= −M L( )M LT T( )T T= −T T( )T T( )( )( )( )T T( )T T( )T T( )T TT T( )T T= −T T( )T T( )T T( )T T= −T T( )T T( )( )( )( )+ −( )+ −( )T T( )T T+ −T T( )T TLT TL( )LT TL+ −LT TL( )LT TL( )+ −( )( )( )( )+ −( )( )( )T T( )T T( )T T( )T T+ −T T( )T T( )T T( )T T( )+ −( )( )( )( )+ −( )( )( )         (            (            ( 
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A few possibilities for mutually coupled transformer coils are indi-
cated in Fig. 23.26(a). The sign of M is indicated for each. When deter-
mining the sign, be sure to examine the current direction within the coil 
itself. In Fig.  23.26(b), one direction is indicated outside for one coil 
and through for the other. It initially may appear that the sign should be 
positive since both currents enter the dot, but the current through coil 1 
is leaving the dot; hence a negative sign is in order.

M12  =  2 H M23  =  3 H

L1 =  5 H L2  =  10 H L3  =  15 Hi

M13  =  1 H

FIG. 23.27 
Example 23.7.

(a) (b)

M (+) M (+) M (–) M (–)

FIG. 23.26 
Defining the sign of M for mutually coupled transformer coils.

The dot convention also reveals the polarity of the induced volt-
age across the mutually coupled coil. If the reference direction for the 
current in a coil leaves the dot, the polarity at the dot for the induced 
 voltage of the mutually coupled coil is positive. In the first two figures in 
Fig. 23.26(a), the polarity at the dots of the induced voltages is positive. 
In the third figure in Fig. 23.26(a), the polarity at the dot of the right coil 
is negative, while the polarity at the dot of the left coil is positive, since 
the current enters the dot (within the coil) of the right coil. The com-
ments for the third figure in Fig. 23.26(a) can also be applied to the last 
figure in Fig. 23.26(a).

EXAMPLE 23.7 Find the total inductance of the series coils in 
Fig. 23.27.

Solution: 
Current vectors leave dot.

ø
Coil 1: L M M1 12 13+ −

∆
One current vector enters dot, while one leaves.

Coil 2: L M M2 12 23+ −

Coil 3: L M M3 23 13− −

and

( ) ( ) ( )= + − + + − + − −L L M M L M M L M MT 1 12 13 2 12 23 3 23 13

L L L M M M2 2 21 2 3 12 23 13= + + + − −

Substituting values, we find

L 5 H 10 H 15 H 2 2 H 2 3 H 2 1 HT ( ) ( ) ( )= + + + − −

26 H34 H 8 H  = − =
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    EXAMPLE   23. 8  Write the mesh equations for the transformer net-
work in     Fig.    23. 28  . 

   Solution:      For each coil, the mutual term is positive, and the sign of  M
in   MX 90m ω= ∠ °      is positive, as determined by the direction of   I1

and   I .2       Thus, 

R X XE I I I90 90 0L m1 1 1 1 21
− − ∠ ° − ∠ ° =

 or        R jX XE I I 90 0L m1 1 1 21
( )− + − ∠ ° =

 For the other loop, 

     X X RI I I90 90   0L m L2 1 22
− ∠ ° − ∠ ° − =

 or          R jX XI I 90 0L L m2 12
( )+ − ∠ ° =

23. 8     AIR-CORE TRANSFORMER   
 As the name implies, the air-core transformer does not have a ferromag-
netic core to link the primary and secondary coils. Rather, the coils are 
placed sufficiently close to have a mutual inductance that establishes the 
desired transformer action. In     Fig.    23. 29  , current direction and polarities 
have been defined for the air-core transformer. Note the presence of a 
mutual inductance term  M , which is positive in this case, as determined 
by the dot convention. 

L1

–

+
L2E1 I1 I2 RL

R1
M

        FIG.    23. 28  
   Example    23. 8  .    

Rp

+

–

vg

Zi

ip +

–

ep Lp esLs

+

–

vL

is+

–

Rs

ZL

Ideal transformer

M

        FIG.    23. 29  
 Air-core transformer equivalent circuit.    

  From past analysis in this chapter, we now know that 

   e L
di

dt
M

di
dtp p

p s= +         ( 23. 24)  

 for the primary circuit. 
 We found in   Chapter     11    that for the pure inductor, with no mutual 

inductance present, the mathematical relationship 

L
di
dt1

1υ =

   e L
di

dt
M

di
dtp pe Lp pe L p s= += +e L= +e L

dt
= +

dtp p= +p pe Lp pe L= +e Lp pe L p= +p         (            (            ( 
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 resulted in the following useful form of the voltage across an inductor: 

X X LV I 90    where   L L1 1 ω= ∠ ° =

 Similarly, it can be shown, for a mutual inductance, that 

M
di
dt1

2υ =

 results in 

   X X MV I 90    wherem m1 2 ω= ∠ ° =         ( 23. 25)  

   Eq.   ( 23. 24  ) can then be written (using phasor notation) as 

   X XE I I90 90p p L s mp
= ∠ ° + ∠ °        ( 23. 26)  

 and   R X XV I I I0 90 90g p p p L s mp
= ∠ ° + ∠ ° + ∠ °

 or      R jX XV I I 90g p p L s mp( )= + + ∠ °  ( 23. 27)  

 For the secondary circuit, 

   X XE I I90 90s s L p ms
= ∠ ° + ∠ °         ( 23. 28)  

 and   R X XV I I I0 90 90L s s s L p ms
= ∠ ° + ∠ ° + ∠ °

 or             R jX XV I I 90L s L p ms
( )= + + ∠ °          ( 23. 29)  

 Substituting     V I ZL s L= −

 into   Eq.   ( 23. 29  ) results in 

R jX XI Z I0 90s s L L p ms
( )= + + + ∠ °

 Solving for   I ,s       we have 

X

R jX
I

I

Z

90
s

p m

s L Ls

=
− ∠ °
+ +

 and substituting into   Eq.   ( 23. 27  ), we obtain 

R jX
X

R jX
XV I

I

Z

90
90g p p L

p m

s L L
mp

s

( )= + +
− ∠ °
+ +











∠ °

 Thus, the input impedance is 

R jX
X

R jX
Z

V

I Z
90

i
g

p
p L

m

s L L

2

p
s

( )
= = + −

∠ °
+ +

 or, defining 

R jX R jX X j MZ Z        and       90p p L s s L mp s
ω= + = + ∠ ° = +

 we have 
ω( )

= − +
+

j M
Z Z

Z Zi p
s L

2

 and            
ω( )

= −
+
MZ Z

Z Zi p
s L

2

 ( 23. 30)   and            
( )ω( )ω= − M( )M( )

Z Z= −Z Z= −
Z Z+Z Z+i p= −i p= −Z Zi pZ Z= −Z Z= −i p= −Z Z= −

s L+s L+Z Zs LZ Z+Z Z+s L+Z Z+

2

 and             and            

   X X MV I 90X X90X XX X   wX XX XheX XX XreX Xm mX Xm mX X90m m90X X90X Xm mX X90X X   wm m   wX X   wX Xm mX X   wX Xhem mheX XheX Xm mX XheX Xrem mreX XreX Xm mX XreX X1 2V I1 2V I ω= ∠X X= ∠X XV I= ∠V I X Xm mX X= ∠X Xm mX X1 2= ∠1 2V I1 2V I= ∠V I1 2V I ° =X X° =X XX X   wX X° =X X   wX Xhe° =heX XheX X° =X XheX XX XreX X° =X XreX X         (            (            ( 

   X XE I IX XIX X90X X90X X 90p pE Ip pE I L sX XL sX XX XIX XL sX XIX X90L s90X X90X XL sX X90X X mpL spL s= ∠X X= ∠X XE I= ∠E Ip p= ∠p pE Ip pE I= ∠E Ip pE I X XL sX X= ∠X XL sX X° +X X° +X XL s° +L sX XL sX X° +X XL sX X ∠ °90∠ °90         (            (            ( 

 or      X XV I 90g pV Ig pV I s mp( )R j( )R jX X( )X XR jX XR j( )R jX XR jp L( )p LR jp LR j( )R jp LR jX Xp LX X( )X Xp LX XR jX XR jp LR jX XR j( )R jX XR jp LR jX XR j
p( )p

= +V I= +V Ig p= +g pV Ig pV I= +V Ig pV I ( )= +( )R j( )R j= +R j( )R jR jp LR j( )R jp LR j= +R jp LR j( )R jp LR j + ∠X X+ ∠X XI+ ∠IX XIX X+ ∠X XIX Xs m+ ∠s mX Xs mX X+ ∠X Xs mX X ° or       or      

   X XE I IX XIX X90X X90X X 90s sE Is sE I L pX XL pX XX XIX XL pX XIX X90L p90X X90X XL pX X90X X msL psL p= ∠X X= ∠X XE I= ∠E Is s= ∠s sE Is sE I= ∠E Is sE I X XL pX X= ∠X XL pX X° +X X° +X XL p° +L pX XL pX X° +X XL pX X ∠ °90∠ °90         (            (            ( 

 or             X XV I 90L sV IL sV I L pX XL pX X msL psL p( )R j( )R jX X( )X XR jX XR j( )R jX XR jL s( )L sR jL sR j( )R jL sR j L p( )L pX XL pX X( )X XL pX XL psL p( )L psL p= +V I= +V IL s= +L sV IL sV I= +V IL sV I( )= +( )R j( )R j= +R j( )R jL s( )L s= +L s( )L sR jL sR j( )R jL sR j= +R jL sR j( )R jL sR j + ∠X X+ ∠X XI+ ∠IX XIX X+ ∠X XIX XL p+ ∠L pX XL pX X+ ∠X XL pX XX XIX XL pX XIX X+ ∠X XIX XL pX XIX X m+ ∠m °          or                      or                     
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The term M Z Zs L
2ω ( )( ) +  is called the coupled impedance, and 

it is independent of the sign of M since it is squared in the equation. 
Consider also that since M 2ω( )  is a constant with 0° phase angle, if 
the load Z L  is resistive, the resulting coupled impedance term appears 
capacitive due to division of Z Rs L( )+  into M .2ω( )  This resulting 
capacitive reactance opposes the series primary inductance L ,p  caus-
ing a reduction in Z .i  Including the effect of the mutual term, the input  
impedance to the network appears as shown in Fig. 23.30.

EXAMPLE 23.9 Determine the input impedance to the air-core 
transformer in Fig. 23.31.

Rp

Lp  =  6 H

M  =  0.9 H

Ls  =  1 H

Rs

0.5 V3 V

v  =  400

RL 40 VZi

FIG. 23.31 
Example 23.9.

   2M2

Zs + ZL
––––––

Zi

Rp Lp

Coupled
impedance

FIG. 23.30 
Input characteristics for the air-core transformer.

 Solution:

ω( )
= +

+
MZ Z

Z Zi p
s L

2

ω( )
= + +

+ +
R jX M

R jX Rp L
s L L

2

p
s

j
j

3 Ω 2.4 kΩ 400 rad/s 0.9 H
0.5 Ω 400 Ω 40 Ω

2( )( )( )
= + +

+ +

≅ + ×
+

j
j

2.4 kΩ 129.6 10  Ω
40.5 400

3

j 2.4 kΩ 322.4 Ω 84.22
capacitive

= + ∠ − °� ��������� ���������

( )= + −j j2.4 kΩ 0.0325 kΩ 0.3208 kΩ

( )= + −j0.0325 kΩ 2.40 0.3208  kΩ  

and Z jR jX 32.5 Ω 2079 Ω 2079.25 Ω 89.10     i Li i
= = + = °+ ∠

23.9 NAMEPLATE DATA
A typical iron-core power transformer rating included in the nameplate 
data for the transformer might be the following:

5 kVA 2000 100 V 60 Hz
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The 2000 V or the 100 V can be either the primary or the secondary volt-
age; that is, if 2000 V is the primary voltage, then 100 V is the secondary 
voltage, and vice versa. The 5 kVA is the apparent power S VI( )=  rat-
ing of the transformer. If the secondary voltage is 100 V, then the maxi-
mum load current is

I S
V

5000 VA
100 V

50 AL
L

= = =

and if the secondary voltage is 2000 V, then the maximum load current is

I S
V

5000 VA
2000 V

2.5 AL
L

= = =

The transformer is rated in terms of the apparent power rather 
than the average, or real, power for the reason demonstrated by the  
circuit in Fig. 23.32. Since the current through the load is greater than 
that determined by the apparent power rating, the transformer may be 
permanently damaged. Note, however, that since the load is purely  
capacitive, the average power to the load is zero. The wattage rating is 
therefore meaningless regarding the ability of this load to damage the 
transformer.

The transformation ratio of the transformer under discussion can be either 
of two values. If the secondary voltage is 2000 V, the transformation ratio is 
a N N V V 100 V 2000 V 1 20,p s g L= / = / = / = /  and the transfor-
mer is a step-up transformer. If the secondary voltage is 100 V, the trans-
formation ratio is = / = / = / =a N N V V 2000 V 100 V 20,p s g L   
and the transformer is a step-down transformer.

The rated primary current can be determined by applying Eq. (23.12):

I
I
ap
s=

which is equal to ( )[ ]/ / =2.5 A 1 20 50 A if the secondary voltage is 
2000 V, and ( )/ =50 A 20 2.5 A if the secondary voltage is 100 V.

To explain the necessity for including the frequency in the nameplate 
data, consider Eq. (23.11):

= ΦE f N4.44p p p m

and the B-H curve for the iron core of the transformer (Fig. 23.33).

IL = –––––– = 4 A > 2.5 A (rated)2000 V
500 V

+

2000 V XC = 500 V

Iron core
–

Secondary

FIG. 23.32 
Demonstrating why transformers are rated 

in kVA rather than kW.

Knee of curve

B  =
Fm

Acore

DB  =
DFm
Acore

DH  =
N1DI1
Icore

H  =
N1I1
Icore

0

FIG. 23.33 
Demonstrating why the frequency of application is important  

for transformers.

M23_BOYL0302_14_GE_C23.indd   996M23_BOYL0302_14_GE_C23.indd   996 01/03/23   7:53 AM01/03/23   7:53 AM



ypmn fs TransfTrmTn | | | 997

The point of operation on the B-H curve for most transformers is at 
the knee of the curve. If the frequency of the applied signal drops and 
N p and E p  remain the same, then Φm  must increase in magnitude, as 
determined by Eq. (23.11):

Φ ↑ =
↓

E

f N4.44m
p

p p

The result is that B increases, as shown in Fig. 23.33, causing H to 
increase also. The resulting I∆  could cause a very high current in the 
primary, resulting in possible damage to the transformer.

23.10 TYPES OF TRANSFORMERS
Transformers are available in many different shapes and sizes. Some 
of the more common types include the power transformer, audio 
transformer, IF (intermediate frequency) transformer, and RF (radio  
frequency) transformer. Each is designed to fulfill a particular 
 requirement in a specific area of application. The symbols for some of 
the basic types of transformers are shown in Fig. 23.34.

Air-core Iron-core Variable-core

FIG. 23.34 
Transformer symbols.

Laminated sheets

Secondary Primary

Secondary

(b) Shell type(a) Core type

Primary

FIG. 23.35 
Types of ferromagnetic core construction.

(c) Amorphous metal alloy

The method of construction varies from one transformer to another. 
Two of the many different ways in which the primary and secondary coils 
can be wound around an iron core are shown in Fig. 23.35. In either case, 
the core is made of laminated sheets of ferromagnetic material separated 
by an insulator to reduce the eddy current losses. The sheets themselves 
also contain a small percentage of silicon to increase the electrical resis-
tivity of the material and further reduce the eddy current losses.
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In recent years, there has been a move toward using an amorphous 
metal alloy to form the core of the transformer. Using this alloy can  
result in a 70% to 80% drop in the no-load losses of a transformer. No-
load losses are those that occur in the absence of a load on the transformer  
to draw current through the windings. Keep in mind that a distribution 
transformer is active 24 hours a day even if a load is not applied. Under 
no-load conditions the applied sinusoidal voltages will continue to  
establish hysteresis and eddy current losses in the core. Reducing this 
loss to the levels indicated above is a benefit that cannot be ignored. In 
a standard silicon-steel core, the atoms of the core have an organized 
crystalline structure. In an amorphous alloy, a random distribution of 
atoms  results in a variety of positive electrical characteristics for the 
transformer. Most important in the fact that there is less “friction” in 
the iron core from the magnetizing and demagnetizing of the core that 
occur during each cycle of the current in the windings. The result is a 
significant reduction in hysteresis losses. In addition, the alloy is quite 
malleable and can be made in sheets as thin as 0.03 m, which is about 
1/9 the thickness of the laminated sheets of a standard transformer. The 
additional layers increase the resistance in the path of the eddy currents 
that will try to flow in the core material and contribute to the core losses.

An amorphous alloy is produced by first heating the metal to a very 
high temperature to put it in a liquid state. If it is then rapidly cooled, 
resulting in a metal with the desired random molecular structure. The 
amorphous core of Fig. 23.35(c) is constructed by tightly winding the 
very thin layers of the amorphous alloy around a rectangular block to 
create the inner shape shown in the figure.

A variation of the core-type transformer appears in Fig.  23.36. This 
transformer is designed for low-profile (the 1.1 VA size has a maximum 
height of only 1 in.) applications in power, control, and instrumentation 
applications. There are actually two transformers on the same core, with 
the primary and secondary of each wound side by side. The schematic is 
provided in Fig. 23.36 for a single 115 V, 50/60 Hz input using a series 
connection with centertap for the output. For this unit, the output voltage 
is 10 V line to centertap with a current rating of 0.11 A, satisfying the 
condition that ( )( ) =10 V 0.11 A 1.1 VA as indicated above. Note the 
dot convention and the commercial representation of the transformer coils.

The autotransformer [Fig. 23.37(b)] is a type of power transformer that, 
instead of employing the two-circuit principle (complete isolation between 
coils), has one winding common to both the input and the output circuits.  

+

–

+

–

+

–

+

–

+

–

+

–

++

–

EpVR  =  120 V Es VL  =  6 V

I2  =  1 A

—  A1
20

Vg  =  120 V Ep  =  120 V

VL  =  126 V

Es  =  6 V

I2  =  1 A

I1  =  —  A1
20 I1  =  1—  A1

20 –

(a) (b)

FIG. 23.37 
(a) Two-circuit transformer; (b) autotransformer.

1

11 5 V
50/60 Hz

2

3

4

5

6

7

8

ac
output

Series connection
with centertap

ac
output

CT

(Tamura Corporation of America)

FIG. 23.36 
Laminated power transformer.
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The induced voltages are related to the turns ratio in the same manner as 
that described for the two-circuit transformer. If the proper connection 
is used, a two-circuit power transformer can be used as an autotrans-
former. The advantage of using it as an autotransformer is that a larger 
apparent power can be transformed. This can be demonstrated by the 
two-circuit transformer of   Fig .   23. 37(a)  , shown in   Fig.     23. 37(b)   as an 
autotransformer. 

  For the two-circuit transformer, note that   ( )( )= =S A 120 V 6 VA,1
20

whereas for the autotransformer,   ( )( )= =S 1 A 120 V 126 VA,1
20       which 

is many times that of the two-circuit transformer. Note also that the current 
and voltage of each coil are the same as those for the two-circuit configura-
tion. The disadvantage of the autotransformer is obvious: loss of the isolation 
between the primary and secondary circuits. 

 A pulse transformer designed for printed-circuit applications where 
high-amplitude, long-duration pulses must be transferred without sat-
uration appears in     Fig.     23. 38  . Turns ratios are available from 1 : 1 to 
5 : 1 at maximum line voltages of 240 V rms at 60 Hz. The upper unit is 
for printed-circuit applications with isolated dual primaries, whereas the 
lower unit is the bobbin variety with a single primary winding. 

  The ultra-wideband audio transformer in     Fig.     23. 39   is designed to 
work in the frequency range of 300 Hz to 100 kHz. The unit is quite 
small, with dimensions of 0.31 in. by 0.41 in. for the area and 0.465 in. 
for the height. The ac impedance at the primary is   200 kΩ CT,      and it is 
1 kΩ CT      at secondary. The turns ratio is 14.1 CT:1 CT, with a maximum 
power rating of 10 mW. The dc resistance of the primary is   5.3 kΩ,      with 
120 Ω      at the secondary. 

23. 11     TAPPED AND MULTIPLE-LOAD 
TRANSFORMERS   
 For the  center-tapped  (primary)  transformer  in     Fig.    23. 40  , where the 
voltage from the center tap to either outside lead is defined as   E 2,p

the relationship between   E p       and   Es       is 

    N

N

E

E
p

s

p

s

=         ( 23. 31)  

 (DALE Electronics, Inc./Vishay Intertechnology, Inc.) 

        FIG.    23. 38  
 Pulse transformers.   

1

4
5
6

2
3

 (Tamura Corporation of America) 

        FIG.    23. 39  
 Ultra-wideband transformer.   
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        FIG.    23. 40  
 Ideal transformer with a center-tapped primary.    
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 with      =






( )−

N

N
Z Zi

p

s
L

2

A B

 Therefore,     Z Z1
4 i1 2 =/  ( 23. 32)

 For the  multiple-load transformer  in     Fig.     23. 41  , the following 
equations apply: 

    
N
N

N
N

N
N

E
E

E
E

E
E

       i i

2

1

2 3

1

3

2

3

2

3

= = =   ( 23. 33)  

 The total input impedance can be determined by first noting that, for 
the ideal transformer, the power delivered to the primary is equal to the 
power dissipated by the load; that is, 

P P PL L1 2 3
= +

 and for resistive loads   ( )= = =R R RZ Z Z,   ,  and  ,i i 2 2 3 3

E
R

E
R

E
R

i

i

2
2
2

2

3
2

3

= +

 or, since    = =E
N
N

E E
N
N

E    and    i2
2

1
3

3

1
1

 then   E
R

N N E

R

N N E

R
i

i

i i
2

2 1
2

2

3 1
2

3

( )[ ] ( )[ ]
=

/
+

/

 and   
E
R

E

N N R

E

N N R
i

i

i i
2 2

1 2
2

2

2

1 3
2

3( ) ( )
=

/
+

/

 Thus,     R N N R N N R
1 1 1

i 1 2
2

2 1 3
2

3( ) ( )
=

/
+

/         ( 23. 34)  

 indicating that the load resistances are reflected in parallel. 
 For the configuration in     Fig.    23. 42  , with   E2      and   E3      defined as shown, 

  Eqs.   ( 23. 33  ) and   ( 23. 34  ) are applicable. 

23. 12     NETWORKS WITH MAGNETICALLY 
COUPLED COILS   
 For multiloop networks with magnetically coupled coils, the 
 mesh-analysis approach is most frequently applied. A firm understand-
ing of the dot convention discussed earlier should make the writing of 
the equations quite direct and free of errors. Before writing the equa-
tions for any particular loop, first determine whether the mutual term is 
positive or negative, keeping in mind that it will have the same sign as 
that for the other magnetically coupled coil. For the two-loop network 
in     Fig.    23. 43  , for example, the mutual term has a positive sign since the 
current through each coil leaves the dot. For the primary loop, 

E I Z I Z I Z Z I I 0L m1 1 1 1 2 2 1 21
( )− − − − − =

 where  M  of   MZ 90m ω= ∠ °      is positive, and 

I Z Z Z I Z Z EL m1 1 2 2 2 11
( ) ( )+ + − − =

    
N
N

N
N

N
N

E
E

E
E

E
E

       i iEi iEi iNi iN

2

1i i1i i

2 3E2 3E
1

3

2

3

2

3

= = == = == = == = == = =   (       (       ( 

+

–

E2 Z2N2

+

–

E3 Z3N3

Zi
Ei N1

+

–

        FIG.    23. 41  
 Ideal transformer with multiple loads.    
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        FIG.    23. 42  
 Ideal transformer with a tapped secondary 

and multiple loads.    
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–
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M

        FIG.    23. 43  
 Applying mesh analysis to magnetically 

coupled coils.    

 Therefore,     Z ZZ Z1Z Z1Z Z
4 i1 2Z Z1 2Z ZZ Z=Z Z/Z Z/Z Z1 2/1 2Z Z1 2Z Z/Z Z1 2Z Z Therefore,      Therefore,     

   R R N N R
1 1 1

i
2

2 1R N2 1R N 2N R2N R3( )N N( )N N1 2( )1 2N N1 2N N( )N N1 2N N ( )R N( )R N N R( )N R2 1( )2 1R N2 1R N( )R N2 1R N 3( )3N R3N R( )N R3N R
=

( )/( )N N( )N N/N N( )N N1 2( )1 2/1 2( )1 2N N1 2N N( )N N1 2N N/N N1 2N N( )N N1 2N N
+

( )/( )         (            (            ( 
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Note in the above that the mutual impedance was treated as if it were 
an additional inductance in series with the inductance L1 having a sign 
determined by the dot convention and the voltage across which is deter-
mined by the current in the magnetically coupled loop.

For the secondary loop,

Z I I I Z I Z I Z 0L m2 2 1 2 1 2 32
( )− − − − − =

or      ( ) ( )+ + − − =I Z Z Z I Z Z 0L m2 2 3 1 22

For the network in Fig. 23.44, we find a mutual term between L1 and 
L2  and L1 and L ,3  labeled M12 and M ,13  respectively.

For the coils with the dots (L1 and L3), since each current through the 
coils leaves the dot, M13 is positive for the chosen direction of I1 and I .3  
However, since the current I1 leaves the dot through L ,1  and I 2 enters the  
dot through coil L M,  2 12  is negative. Consequently, for the input circuit,

( )− − − − − =E I Z I Z I Z I Z 0L m m1 1 1 1 2 31 12 13

or   ( )− + + − =E I Z Z I Z I Z 0L m m1 1 1 2 31 12 13

For loop 2,

I Z I Z I Z  0L m2 2 2 12 12
( )− − − − =

  I Z I Z Z 0m L1 2 212 2
( )− + + =

and for loop 3,

    − − − =I Z I Z I Z 0L m3 3 3 13 13  

or                    I Z I Z Z 0m L1 3 313 3
( )+ + =

In determinant form,

( )
( )

( )

+ − + =

− + + + =

+ + + =

I Z Z I Z I Z E

I Z I Z Z

I Z I Z Z

   

   0 0

 0   0

L m m

m L

m L

1 1 2 3 1

1 2 2

1 3 3

1 12 13

12 2

13 3

23.13 CURRENT TRANSFORMERS
A number of transformers called instrument transformers are designed 
to perform a specific measurement or function. The current transformer 
is designed to measure the current in a line without breaking the line to 
insert the meter in series with the conduction path. Due to the high cur-
rents and voltages encountered in a high-power distribution system, the 
use of current transformers is a welcome option from a safety viewpoint.

The basic construction is quite simple, as shown in Fig. 23.45(a). The 
line in which the current is to be measured is the primary, whereas the 
secondary is a coil of many turns as shown in the figure. The result is a pri-
mary with only one turn and a secondary built a lot like an inductive toroid 
with many turns of fine wire. A commercial unit appears in Fig. 23.45(b). 
Some models have more than one turn in the primary winding although 
the majority have only one. Most current transformers are rated by their 
maximum current ratings rather than by the number of turns in the primary 
and secondary. A 5000  :  5 current transformer has a rated maximum cur-
rent of 5 A in the secondary circuit and 5000 A in the primary. Certainly, 
5000 A in a power distribution system is a level to be concerned about 
validating the safety provided by the current transformer approach. The 
turns ratio is obviously =5000 : 5 1000 :1 and will determine the current 

I2

L2

I3 Z3

I3

+

–

Z2I2

L3

Z1

I1
L1

I1

M12

M13

E1

FIG. 23.44 
Applying mesh analysis to a network with 

two magnetically coupled coils.
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levels for all levels of current less than the maximum values. For a 200 : 1 
current transformer, the primary current is 200 times that of the secondary 
and the rated current in the secondary is 1 A with 200 A in the primary.

It is important that a load always be applied to the secondary of the 
current transformer. If left in the open-circuit state, very high voltages 
can develop across the terminals as determined by the basic transformer 
equation. If the primary voltage of the current transformer is 240 V and 
the turns ratio is 100 : 1, the voltage at the secondary could be 24 kV, 
which could cause serious damage if not loaded down.

If the line in which the current to be measured is already in place, then 
a clamp-on meter must be used as appearing in Fig. 13.80. Squeezing the 
trigger will open the clamp (split the core) and, when released, the clamp 
will form a continuous toroid around the current-carrying wire. In such 
cases the load on the secondary is internal to the meter.

 23.14 APPLICATIONS
The transformer has appeared throughout the text in a number of  
described applications, from the basic dc supply to the flyback trans-
former of a simple flash camera. Transformers were used to increase or 
decrease the voltage or current level, to act as an impedance matching 
device, or in some cases to play a dual role of transformer action and 
reactive element. They are so common in such a wide variety of systems 
that it is important to become very familiar with their general character-
istics. For most applications, transformer design can be considered 100% 
efficient. That is, the power applied is the power delivered to the load. 
In general, however, transformers are frequently the largest element of 
a design and, because of the nonlinearity of the B-H curve, can cause 
some distortion of the transformed waveform. Therefore, they are useful 
only in situations where the applied voltage is changing with time. The 
application of a dc voltage to the primary results in 0 V at the secondary, 

Isecondary

Secondary

Primary

Iprimary

Isecondary

(a)

( jps/Shutterstock)

FIG. 23.45 

Current transformer: (a) Basic construction; (b) commercial unit.

(b)
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but the application of a voltage that changes with time, no matter what 
its general appearance, results in a voltage on the secondary. Remember 
that even though it can provide isolation between the primary and sec-
ondary circuits, a transformer can transform the load impedance to the 
primary circuit at a level that can significantly affect the behavior of the 
network. Even the smallest impedance in the secondary can be made to 
appear very large in the primary when a step-down transformer is used.

Transformers, like every other component you may use, have power 
ratings. The larger the power rating, the larger is the resulting trans-
former, primarily because of the larger conductors in the windings to 
handle the current. The size of a transformer is also a function of the 
frequency involved. The lower the frequency, the larger is the required 
transformer, as is easily recognized by the size of large power trans-
formers (also affected by the current levels as mentioned above). For 
the same power level, the higher the frequency of transformation, the 
smaller the transformer can be. Because of eddy current and hysteresis 
losses in a transformer, the design of the core is quite important. A solid 
core would introduce high levels of such losses, whereas a core con-
structed of sheets of high-permeability steel with the proper insulation 
between the sheets or the use of an amorphous metal core would reduce 
the losses significantly.

Although very fundamental in their basic structure, transformers 
are among the basic building blocks of electric and electronic systems. 
There is not a publication on new components that does not include a 
new design for the variety of applications being developed every day.

Soldering gun

Soldering and welding are two operations that are best performed by the 
application of heat that is unaffected by the thermal characteristics of the 
materials involved. In other words, the heat applied should not be sensitive 
to the changing parameters of the welding materials, the metals involved, 
or the welding conditions. The arc (a heavy current) established in the 
welding process should remain fixed in magnitude to ensure an even weld. 
This is best accomplished by ensuring a fixed current through the system 
even though the load characteristics may change–that is, by ensuring a 
constant current supply of sufficient amperage to establish the required 
arc for the welding equipment or even heating of the soldering iron tip. A 
further requirement for the soldering process is that the heat developed be 
sufficient to raise the solder to its melting point of about °800 F.

The soldering gun of Fig. 23.46(a) employs a unique approach to  
establishing a fixed current through the soldering tip. The soldering tip 
is actually part of a secondary winding of transformer having only one 
turn as its secondary, as shown in Fig. 23.46(b). Because of the heavy 
currents that will be established in this single-turn secondary, it is quite 
large in size to ensure that it can handle the current and to minimize its 
resistance level. The primary of the transformer has many turns of thin-
ner wire to establish the turns ratio necessary to establish the required 
current in the secondary. The Universal® unit of Fig.  23.46 is rated  
140 W/100 W, indicating that it has two levels of power controlled by 
the trigger. As you pull the trigger, the first-setting will be at 100 W, 
and a fully depressed trigger will provide 140 W of power. The induc-
tance of the primary is 285 mH at the 140 W setting and 380 mH at the  
100 W setting, indicating that the switch controls how many windings 
of the primary will be part of the transformer action for each wattage 
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rating, as shown in Fig. 23.46(c). Since inductance is a direct function of 
the number of turns, the 140 W setting has fewer turns than the 100 W 
setting. The dc resistance of the primary was found to be about 11.2 Ω  
for the 140 W setting and 12.8 Ω  for the 100 W setting, which makes 
sense also since more turns will require a longer wire, and the resistance 
should increase accordingly.

Under rated operating conditions, the primary current for each setting 
can be determined using Ohm’s law in the following manner:

For 140 W,

= = =I P
V

1 17 A140 W
120 V

.  p
p

For 100 W,

I P
V

0 83 A100 W
120 V

.  p
p

= = =

As expected, the current demand is more for the 140 W setting than 
for the 100 W setting. Using the measured values of input inductance 

(a)

FIG. 23.46 
Soldering gun: (a) appearance; (b) internal construction; (c) turns ratio control.

(b)
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and resistance for the 140 W setting gives the equivalent circuit of 
Fig.  23.47(a). Using the applied 60 Hz to determine the reactance of 
the coil and then determining the total impedance seen by the primary 
results in the following for the source current:

X fL2 2 60 Hz 285 mH 107.44 ΩL π π( )( )= = =

and R jX jZ 11.2 Ω 107.44 Ω 108.02 Ω 84.05T L= + = + = ∠ °

so that  = = =I E
Z

1 11 A120 V
108.02 Ω

.  p
T

which is a close match with the rated level.
For the 100 W level of Fig. 23.47(b), the following analysis would 

result:

X fL2 2 60 Hz 380 mH 143.26 ΩL π π( )( )= = =

and  R jX jZ 12.8 Ω 143.26 Ω 143.83 Ω 84.89T L= + = + = ∠ °

so that  I E
Z

0 83 A120 V
143.83 Ω

.  p
T

= = =

which is a match to hundredths place with the value calculated from 
rated conditions.

Removing the tip and measuring the primary and secondary voltages 
resulted in 120 V/0.38 V for the 140 W setting and 120 V/0.31 V for 
the 100 W setting, respectively. Since the voltages of a transformer are 
directly related to the turns ratio, the ratio of the number of turns in the 
primary N( )p  to that of the secondary N( )s  can be estimated by the fol-
lowing for each setting:

For 140 W,

= ≅
N

N
316120 V

0.38 V
p

s

For 100 W,
N

N
387120 V

0.31 V
p

s

= ≅

Looking at the photograph of Fig. 23.46(b), one would certainly con-
sider that there are 300 or more turns in the primary winding.

The currents of a transformer are related by the turns ratio in the fol-
lowing manner, permitting a calculation of the secondary current for 
each setting:

For 140 W,

I
N

N
I 370 A316 1.17 A  s

p

s
p ( )= = ≅

For 100 W,

I
N

N
I 321 A387 0.83 A  s

p

s
p ( )= = ≅

Quite clearly, the secondary current is much higher for the 140 W set-
ting. Using an Amp-Clamp® showed that the current in secondary  
exceeded 300 A when the power was first applied and the soldering tip 
was cold. However, as the tip heated up because of the high current lev-
els, the current through the primary dropped to about 215 A for the 140 W  
setting and to 180 A for the 100 W setting. These high currents are part 
of the reason that the lifetime of most soldering tips on soldering guns 

Rp 12.8 V

Lp 380 mH

+

120 V
60 Hz

–

Ip

100 W
(b)

Rp 11.2 V

Lp 285 mH

+

120 V
60 Hz

–

Ip

140 W
(a)

FIG. 23.47 
Equivalent circuits for the soldering iron  

of Fig. 23.46(a): at 140-W setting;  
(b) at 100-W setting.
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is about 20 hours. Eventually, the tip will simply begin to melt. Using 
these levels of current and the given power rating, we can approximate 
the resistance of the secondary as follows:

For 140 W,

( )
= = ≅R P

I
3 m140 W

215 A
  Ω

2 2

For 100 W,

( )
= = ≅R P

I
3 m100 W

180 A
  Ω

2 2

which is low, as expected when you consider the cross-sectional area of 
the secondary and the fact that the tip is a short section of  low-resistance, 
tin-plated copper.

One of the obvious advantages of the soldering gun versus the iron 
is that the iron is off when you release the trigger, thus reducing energy 
costs and extending the life of the tip. Applying dc current rather than 
ac to develop a constant current would be impractical because the high 
current demand would require a series of large batteries in parallel.

The above investigation was particularly interesting because of the 
manner in which the constant current characteristic was established, the 
levels of current established, and the excellent manner in which some of 
the theory introduced in the text was verified.

Low-voltage compensation

At times during the year, peak demands from the power company can 
result in a reduced voltage down the line. In midsummer, for example, 
the line voltage may drop from 120 V to 100 V because of the heavy load 
often due primarily to air conditioners. However, air conditioners do not 
run as well under low-voltage conditions, so the following option using 
an autotransformer may be the solution.

In Fig. 23.48(a), an air conditioner drawing 10 A at 120 V is connected 
through an autotransformer to the available supply, which has dropped to 
100 V. Assuming 100% efficiency, the current drawn from the line would 
have to be 12 A to ensure that P P 1200 W.i o= =  Using the analysis 
introduced in Section 23.10, we find that the current in the primary wind-
ing is 2 A with 10 A in the secondary. The 12 A exist only in the line con-
necting the source to the primary. If the voltage level is increased using 

(b)

Step-up isolation
transformer

Source

100 V

12 A 10 A

+

–

–

+

(a)

100 V

+

–

Source

12 A

2 A

10 A

Autotransformer

+

–

120 V air conditioner

120 V air conditioner

FIG. 23.48 
Maintaining a 120 V supply for an air conditioner: (a) using an autotransformer;  

(b) using a traditional step-up transformer.
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the traditional step-up transformer shown in Fig. 23.48(b), the same cur-
rents result at the source and load. However, note that the current through 
the primary is now 12 A, which is 6 times that in the autotransformer. The 
result is that the winding in the autotransformer can be much thinner due 
to the significantly lower current level.

Let us now examine the turns ratio required and the number of turns 
involved for each setup (associating one turn with each volt of the pri-
mary and secondary).

For the autotransformer,

N
N

V
V

20 V
100 V

    20 t
100 t

s

p

s

p

= = ⇒

For the traditional transformer,

N
N

V
V

120 V
100 V

    120 t
100 t

s

p

s

p

= = ⇒

In total, therefore, the autotransformer has only 10 turns in the second-
ary, whereas the traditional has 120. For the autotransformer, we need 
only 10 turns of heavy wire to handle the current of 10 A, not the full 
120 required for the traditional transformer. In addition, the total number 
of turns for the autotransformer is 110, compared to 220 for the tradi-
tional transformer.

The net result of all the above is that even though the protection  
offered by the isolation feature is lost, the autotransformer can be much 
smaller in size and weight and, therefore, less costly.

 Ballast transformer

Until just recently, all fluorescent lights like those in Fig.  23.49(a) 
had a ballast transformer as shown in Fig. 23.49(b). In many cases, its 
weight alone is almost equal to that of the fixture itself. In recent years, 

(a)

(b)

Power
leads

Ballast

FIG. 23.49 
Fluorescent lamp: (a) general appearance;  

(b) internal view with ballast.
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a  solid-state equivalent transformer has been developed that in time will 
replace most of the ballast transformers.

The basic connections for a single-bulb fluorescent light are provided 
in Fig. 23.50(a). Note that the transformer is connected as an autotrans-
former with the full applied 120 V across the primary. When the switch 
is closed, the applied voltage and the voltage across the secondary will 
add and establish a current through the filaments of the fluorescent bulb. 
The starter is initially a short circuit to establish the continuous path 
through the two filaments. In older fluorescent bulbs, the starter was a 
cylinder with two contacts, as shown in Fig. 23.50(b), which had to be 
replaced on occasion. It sat right under the fluorescent bulb near one of 
the bulb connections. Now, as shown by the sketch of the inside of a 
ballast transformer in Fig. 23.50(c), the starter is now commonly built 
into the ballast and can no longer be replaced. The voltage established 
by the auto-transformer action is sufficient to heat the filaments but not 
light the fluorescent bulb. The fluorescent lamp is a long tube with a coat-
ing of fluorescent paint on the inside. It is filled with an inert gas and a 
small amount of liquid mercury. The distance between the electrodes at 
the ends of the lamp is too much for the applied autotransformer volt-
age to establish conduction. To overcome this problem, the filaments are 
first heated as described above to convert the mercury (a good conductor) 
from a liquid to a gas. Conduction can then be established by the appli-
cation of a large potential across the electrodes. This potential is estab-
lished when the starter (a thermal switch that opens when it reaches a 

Ballast

+–

120 V

Ifilament

+

–
60 Hz

On/O�
switch

Black

White

White

Filament starter

Blue

Blue

Fluorescent bulb

Filaments

Ifilament Ifilament Ifilament

(a)

(c)

Oil-impregnated,
heat-absorbing
material throughout
inside of container

Windings
Laminated core

Filament starter

FIG. 23.50 
(a) Schematic of single-bulb fluorescent lamp; (b) starter; (c) internal view  

of ballast transformer.

(b)
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particular temperature) opens and causes the inductor current to drop from  
its established level to zero amperes. This quick drop in current establishes 
a very high spike in voltage across the coils of the autotransformer as 
determined by υ ( )= L di dt .L L  This significant spike in voltage also 
appears across the bulb and establishes current between the electrodes. 
Light is then given off as the electrons hit the fluorescent surface on the 
inside of the tube. It is the persistence of the coating that helps hide the 
oscillation in conduction level due to the low-frequency (60 Hz) power 
that can result in a flickering light. The starter remains open until the next 
time the bulb is turned on. The flow of charge between electrodes is then 
maintained solely by the voltage across the autotransformer. This current 
is relatively low in magnitude because of the reactance of the secondary 
winding in the resulting series circuit. In other words, the autotrans-
former has shifted to one that is now providing a reactance to the 
secondary circuit to limit the current through the bulb. Without this 
limiting factor, the current through the bulb would be too high, and the 
bulb would quickly burn out. This action of the coils of the transformer 
generating the required voltage and then acting as a coil to limit the cur-
rent has resulted in the general terminology of swinging choke.

The fact that the light is not generated by an IR drop across a filament 
of a bulb is the reason fluorescent lights are so energy efficient. In fact, in 
an incandescent bulb, about 75% of the applied energy is lost in heat, with 
only 25% going to light emission. In a fluorescent bulb, more than 70% 
goes to light emission and 30% to heat losses. As a rule of thumb, the light-
ing from a 40 W fluorescent lamp [such as the unit in Fig. 23.49(a) with its 
two 20 W bulbs] is equivalent to that of a 100 W incandescent bulb.

One other interesting difference between incandescent and fluores-
cent bulbs is the method of determining whether they are good or bad. 
For the incandescent light, it is immediately obvious when it fails to give 
light at all. For the fluorescent bulb, however, assuming that the ballast 
is in good working order, the bulb begins to dim as its life wears on. The 
electrodes become coated and less efficient, and the coating on the inner 
surface begins to deteriorate.

Rapid-start fluorescent lamps are different in operation only in that 
the voltage generated by the transformer is sufficiently large to atomize 
the gas upon application and initiate conduction, thereby removing the 
need for a starter and eliminating the warm-up time of the filaments. In 
time, the solid-state ballast will probably be the unit of choice because of 
its quick response, higher efficiency, and lighter weight, but the transition 
will take some time. The basic operation will remain the same, however.

Because of the fluorine gas (hence the name fluorescent bulb) and 
the mercury in fluorescent lamps, they must be discarded with care. 
Ask your local disposal facility where to take bulbs. Breaking them for  
insertion in a plastic bag could be very dangerous. If you happen to break 
a bulb and get cut in the process, go immediately to a medical facility 
since you could sustain fluorine or mercury poisoning.

Recent developments

As pointed out in Chapter 4, the compact fluorescent bulb (CFL) has had 
a tremendous impact on the “green” movement, with entire countries  
determined to be fully fluorescent within the next 3 to 4 years. However, 
the design of the CFL is electronic in nature and does not use the ballast 
and starter mechanism described above, although its actual mode of oper-
ation is the same. Note in Fig. 4.26 the package of electronics crowded into 
each CFL, resulting in the higher cost compared to incandescent lighting.  
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In fact, take particular note of the small transformer in the center of the 
package that is used to help establish the required firing voltage. Further 
impact on the lighting industry is bound to come from the growing  
interest in light-emitting diodes (LEDs), which have even longer life-
times than CFLs and do not require a firing mechanism of any kind. 
As with any new source of light, however, there are both positive and 
negative aspects to each approach. Some suggest that the future holds a 
mixture of use, depending on the application, cost involved, and effect 
on the environment. On the very positive side, however, it is nice to have 
options, and those being develops seem to be full of promise.

PROBLEMS

SECTION 23.2  Basic Operation

  1. For the air-core transformer in Fig. 23.51:
a. Find the value of Ls  if the mutual inductance M is equal 

to 40 mH.
b. Find the induced voltages e p  and es  if the flux linking 

the primary coil changes at the rate of 0.08 Wb/s.
c. Find the induced voltages e p  and es  if the current i p 

changes at the rate of 0.3 A/ms.

+

–

+

–

ep es

Np = 20 Ls

k = 0.8

Lp = 50 mH Ns = 80

ip

FIG. 23.51 
Problems 1, 2, and 3.

Np = 20

Ip +

Ep = 40 V

–

+ Is

Es

–

f = 60 Hz

Ns = 120Φm

Φm

FIG. 23.52 
Problems 4, 5, and 7.

+ Ip

Vg

–

+

VL

–

IL

Np Ns

ZL

FIG. 23.53 
Problems 8 through 12.

 2. a. Repeat Problem 1 if k is changed to 1.
b. Repeat Problem 1 if k is changed to 0.2.
c. Compare the results of parts (a) and (b).

 3. Repeat Problem 1 for k N0.3,   300p= =  turns, and 
N 25 turnss = .

 4. For the iron-core transformer k 1( )=  in Fig. 23.52:

a. Find the magnitude of the induced voltage E .s

b. Find the maximum flux Φ .m

 5. Repeat Problem 4 for =N 300p  and =N 60.s

 6. Find the applied voltage of an iron-core transformer if the 
secondary voltage is 120 V, and =N 80p  with =N 160.s

 7. If the maximum flux passing through the core of Problem 4 
is 3.75 mWb, find the frequency of the input voltage.

SECTION 23.3  Reflected Impedance and Power

 8. For the iron-core transformer in Fig. 23.53:
a. Find the magnitude of the current I L  and the voltage VL  

if = / =a I1 4,   3 A,p  and =Z 3 ΩL  resistor.
b. Find the input resistance for the data specified in part (a).

 9. Find the input impedance for the iron-core transformer of 
Fig. 23.53 if = =a I3,   5 A,p  and =V 140 V.g

 10. Find the voltage Vg  and the current I p  if the input imped-
ance of the iron-core transformer in Fig. 23.53 is 5 Ω,  and 

=V 500 VL  and = /a 1 5.

 11. If = =V Z220 V,   20 ΩL L  resistor, =I 0.04 A,p and 
=N 60,s  find the number of turns in the primary circuit of 

the iron-core transformer in Fig. 23.53.

 12. a. If = =N N600,   1200,p s  and =V 120 V,g  find 
the magnitude of I p  for the iron-core transformer in 
Fig. 23.53 if = +Z j10 Ω 10 Ω.L

b. Find the magnitude of the voltage VL  and the current I L  
for the conditions of part (a).
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SECTION 23.4  Impedance Matching, Isolation, and 
Displacement

 13. a. For the circuit in Fig.  23.54, find the transformation 
ratio required to deliver maximum power to the speaker.

b. Find the maximum power delivered to the speaker.

L1  =  5 H

M12  =  1 H

i L2  =  8 H

FIG. 23.56 
Problem 18.

L1  =  300 mH

k  =  0 .9

i L2  =  600 mH

FIG. 23.57 
Problem 19.

36 V

+

–

Vg  =  20 V

Zs  =  R  =  4 V

FIG. 23.54 
Problem 13.

RL 12 V

Rp

4 V+

–

Vg  =  120 V ∠0°

Xp

12 V

Ip Rs

1 V

Xs

2 V

4 : 1

+

–

VL

Ideal transformer

 FIG. 23.55 
Problems 14 through 16 and 30.

SECTION 23.5  Equivalent Circuit (Iron-Core 
Transformer)

 14. For the transformer in Fig. 23.55, determine
a. the equivalent resistance R .e

b. the equivalent reactance X .e

c. the equivalent circuit reflected to the primary.
d. the primary current for V 50 V 0 .g = ∠ °
e. the load voltage V .L

f. the phasor diagram of the reflected primary circuit.
g. the new load voltage if we assume the transformer to be 

ideal with a 4 : 1 turns ratio. Compare the result with that 
of part (e).

 15. For the transformer in Fig. 23.55, if the resistive load is 
replaced by an inductive reactance of 20 Ω:
a. Determine the total reflected primary impedance.
b. Calculate the primary current, I .p

c. Determine the voltage across Re  and X ,e  and find the 
reflected load.

d. Draw the phasor diagram.

 16. Repeat Problem 15 for a capacitive load having a reactance 
of 20 Ω.

SECTION 23.6  Frequency Considerations

 17. Discuss in your own words the frequency characteristics of 
the transformer. Use the applicable equivalent circuit and 
frequency characteristics appearing in this chapter.

SECTION 23.7  Series Connection of Mutually 
Coupled Coils

 18. Determine the total inductance of the series coils in  
Fig. 23.56.

 19. Determine the total inductance of the series coils in  
Fig. 23.57.

 20. Determine the total inductance of the series coils in  
Fig. 23.58.

L1  =  3 H

M12  =  0.2 H

L2  =  1.5 H L3  =  6 H

k  =  1
M13  =  0.1 H

FIG. 23.58 
Problem 20.
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 21. Write the mesh equations for the network in Fig. 23.59.

VL  =  48 V

Es

+

–

Ep

+

–
Ip

Is

+

–

+

–

Vg  =  240 V

I1  =  2 A

FIG. 23.61 
Problem 24.

I2

E

Z1

+

–
I1

Z2L2

L1M12

FIG. 23.62 
Problem 28.

Z3
L2

L3

L1I1

Z4

Z2E1

+

–

Z1

I2

I3

M12

M13

FIG. 23.63 
Problem 29.

I2 RL

R1

E

M12

L1 L2

I1

+

–

FIG. 23.59 
Problem 21.

Rp

2 V

Rs

1 V

k  =  0.05

2 H8 H R  =  20 Vv  =  1000

FIG. 23.60 
Problem 22.

SECTION 23.8  Air-core Transformer

 22. Determine the input impedance to the air-core transformer 
in Fig. 23.60. Sketch the reflected primary network.

SECTION 23.9  Nameplate Data

 23. An ideal transformer is rated 12 kVA, 3600/120 V, 60 Hz.
a. Find the transformation ratio if the 120 V is the second-

ary voltage.
b. Find the current rating of the secondary if the 120 V is 

the secondary voltage.
c. Find the current rating of the primary if the 120 V is the 

secondary voltage.
d. Repeat parts (a) through (c) if the 3600 V is the second-

ary voltage.

SECTION 23.10  Types of Transformers

  24. Determine the primary and secondary voltages and currents 
for the autotransformer in Fig. 23.61.

SECTION 23.11  Tapped and Multiple-Load 
Transformers

 25. For the center-tapped transformer in Fig.  23.40, where 
N 100,p =  N Z R25,   0 5 Ω 0 ,s L= = ∠ ° = ∠ °  and 
E 100 V 0 :p = ∠ °
a. Determine the load voltage and current.
b. Find the impedance Z .i

c. Calculate the impedance /Z .1 2

 26. For the multiple-load transformer in Fig.  23.41, where  
N 90,1 =  N N15,   45,2 3= =  = ∠ ° = ∠ °RZ 0 8 Ω 0 ,2 2  
 Z R 0  5 Ω 0 ,L3 = ∠ ° = ∠ °  and E 60 V 0 :i = ∠ °
a. Determine the load voltages and currents.
b. Calculate Z .1

 27. For the multiple-load transformer in Fig. 23.42, where =N1  
= =N N120, 40,   30,2 3  RZ 0 12 Ω 0 ,2 2= ∠ ° = ∠ °  

RZ  0 10  0 ,3 3= ∠ ° = Ω ∠ °  and E 120 V 60 :1 = ∠ °
a. Determine the load voltages and currents.
b. Calculate Z .1

SECTION 23.12  Networks with Magnetically 
Coupled Coils

 28. Write the mesh equations for the network of Fig. 23.62.

 29. Write the mesh equations for the network of Fig. 23.63.

SECTION 23.13  Current Transformers

 30. A current transformer has a secondary with 250 turns and a 
current reading of 400 mA. What is the magnitude of the 
current being measured? Does the result clearly show one 
of the benefits of using current transformers?
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GLOSSARY

Autotransformer A transformer with one winding common to 
both the primary and the secondary circuits. A loss in isolation 
is balanced by the increase in its kilovolt-ampere rating.

Coefficient of coupling (k) A measure of the magnetic coupling 
of two coils that ranges from a minimum of 0 to a maximum 
of 1.

Current transformer A transformer designed to read high line 
currents without having to “break” the circuit.

Dot convention A technique for labeling the effect of the mutual 
inductance on a net inductance of a network or system.

Leakage flux The flux linking the coil that does not pass through 
the ferromagnetic path of the magnetic circuit.

Loosely coupled A term applied to two coils that have a low  
coefficient of coupling.

Multiple-load transformers Transformers having more 
than a single load connected to the secondary winding or 
windings.

 Mutual inductance The inductance that exists between magnet-
ically coupled coils of the same or different dimensions.

Nameplate data Information such as the kilovolt-ampere rating, 
voltage transformation ratio, and frequency of application that 
is of primary importance in choosing the proper transformer 
for a particular application.

Primary The coil or winding to which the source of electrical 
energy is normally applied.

Reflected impedance The impedance appearing at the primary 
of a transformer due to a load connected to the secondary. Its 
magnitude is controlled directly by the transformation ratio.

Secondary The coil or winding to which the load is normally 
applied.

Step-down transformer A transformer whose secondary volt-
age is less than its primary voltage. The transformation ratio 
a is greater than 1.

Step-up transformer A transformer whose secondary voltage is 
greater than its primary voltage. The magnitude of the trans-
formation ratio a is less than 1.

Tapped transformer A transformer having an additional connec-
tion between the terminals of the primary or secondary windings.

Transformation ratio (a) The ratio of primary to secondary 
turns of a transformer.
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 Polyphase Systems 24 
•  Become familiar with the operation of a  three-

phase generator and the magnitude and phase 
angle of the voltages generated.

• Clearly understand how the phase and line voltages 
generated are related.

• Understand the impact of the phase sequence on 
the angle associated with the generated voltages.

• Be able to calculate the voltages and currents for a 
three-phase Δ- or  Y  - connected load or generator.

• Understand how to calculate the real, reactive, and 
apparent power to all the elements of a Y  - or Δ- 
connected load.

• Become familiar with how to measure the power to 
a Y  - or Δ- connected load using two or three 
wattmeters.

• Understand the impact of an unbalanced load on 
the calculations required to calculate the various 
powers to a load.

24.1 INTRODUCTION
An ac generator designed to develop a single sinusoidal voltage for each rotation of the shaft 
(rotor) is referred to as a single-phase ac generator. If the number of coils on the rotor is 
increased in a specified manner, the result is a polyphase ac generator, which develops more 
than one ac phase voltage per rotation of the rotor. In this chapter, the three-phase system is 
discussed in detail since it is the system most frequently used for power transmission.

Advantages Associated with a Three-Phase Power Distribution 
over a Single-Phase System

1. Thinner conductors can be used to transmit the same kVA at the same  
voltage, which reduces the amount of copper required (typically about  
25% less) and in turn reduces construction and maintenance costs.

2. The lighter power lines are easier to install, and the supporting structures 
can be less massive and farther apart.

3. Three-phase equipment and motors have preferred running and starting char-
acteristics compared to single-phase systems because of a more even flow of 
power to the transducer than can be delivered with a single-phase supply.

4. In general, most larger motors are three phase because they are essentially 
self-starting and do not require a special design or additional starting circuitry.

 Objectives
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The frequency generated is determined by the number of poles on the 
rotor (the rotating part of the generator) and the speed with which the 
shaft is turned. In the United States, the line frequency is 60 Hz, whereas 
in Europe the chosen standard is 50 Hz. Both frequencies were chosen 
primarily because they can be generated by a relatively efficient and sta-
ble mechanical design that is sensitive to the size of the generating sys-
tems and the demand that must be met during peak periods. On aircraft 
and ships, the demand levels permit the use of a 400 Hz line frequency.

The three-phase system is used by almost all commercial electric 
generators. This does not mean that single-phase and two-phase gener-
ating systems are obsolete. Most small emergency generators, such as 
the gasoline type, are one-phase generating systems. The two-phase sys-
tem is commonly used in servomechanisms, which are self-correcting 
control systems capable of detecting and adjusting their own operation. 
Servomechanisms are used in ships and aircraft to keep them on course 
automatically, or, in simpler devices such as a thermostatic circuit, to 
regulate heat output. In many cases, however, where single-phase and 
two-phase inputs are required, they are supplied by one and two phases 
of a three-phase generating system rather than generated independently.

The number of phase voltages that can be produced by a polyphase 
generator is not limited to three. Any number of phases can be obtained 
by spacing the windings for each phase at the proper angular position 
around the stator. Some electrical systems operate more efficiently if 
more than three phases are used. One such system involves the process 
of rectification, which is used to convert an alternating output to one 
having an average, or dc, value. The greater the number of phases, the 
smoother is the dc output of the system.

24.2   THREE-PHASE GENERATOR
The three-phase generator in Fig. 24.1(a) has three induction coils 
placed 120°  apart on the stator, as shown symbolically by Fig. 24.1(b). 
Since the three coils have an equal number of turns, and each coil rotates 
with the same angular velocity, the voltage induced across each coil has 
the same peak value, shape, and frequency. As the shaft of the generator 
is turned by some external means, the induced voltages e e,   ,AN BN  and 
eCN  are generated simultaneously, as shown in Fig. 24.2. Note the 120° 
phase shift between waveforms and the similarities in appearance of the 
three sinusoidal functions.

A

(a)

B
C

N

1208

A

BC

1

2

eAN

N

2

N

N

1208

1208

eBN

eCN 1

1

2

(b)

FIG. 24.1 
(a) Three-phase generator; (b) induced voltages of a three-phase 

generator.
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In particular, note that

at any instant of time, the algebraic sum of the three-phase 
voltages of a three-phase generator is zero.

This is shown at ω =t 0 in Fig. 24.2, where it is also evident that when 
one induced voltage is zero, the other two are 86.6% of their positive or 
negative maximums. In addition, when any two are equal in magnitude 
and sign (at 0.5E )m , the remaining induced voltage has the  opposite 
polarity and a peak value.

0.866 Em(CN)

0

608
0.866 Em(BN)

1208 1208

p
2

p

eAN

0.5 Em(CN)

0.5 Em(CN)

eBN eCN

3
2p

2p 5
2p

3p 7
2

pp 4 vt

e

FIG. 24.2 
Phase voltages of a three-phase generator.

1208

1208

1208

ECN

EAN

EBN

FIG. 24.3 
Phasor diagram for the phase 

voltages of a three-phase 
generator.

The respective sinusoidal expressions for the induced voltages in Fig. 24.2 are

 

ω

ω

ω ω

( )

( ) ( )

=

= − °

= − ° = + °

e E t

e E t

e E t E t

sin 

sin 120 ,

sin 240 sin 120

AN m AN

BN m BN

CN m CN m CN

( )

( )

( ) ( )

 (24.1)

The phasor diagram of the induced voltages is shown in Fig. 24.3, where 
the effective value of each is determined by

E E  0.707AN m AN( )=

E E  0.707BN m BN( )=

E E  0.707CN m CN( )=

and 

E

E

E

E

E

E

  0

  120

  120

AN AN

BN BN

CN CN

= ∠ °

= ∠− °

= ∠+ °

 (24.2)

24.3    Y-CONNECTED GENERATOR
If the three terminals denoted N in Fig. 24.1(b) are connected together, the 
generator is referred to as a Y-connected three-phase generator (Fig. 24.4). 
As indicated in Fig. 24.4, the Y is inverted for ease of notation and for clarity. 
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The point at which all the terminals are connected is called the neu-
tral point. If a conductor is not attached from this point to the load, the 
system is called a Y-connected, three-phase, three-wire generator. If the 
neutral is connected, the system is a Y-connected,  three-phase, four-wire 
generator. The function of the neutral will be discussed in detail when 
we consider the load circuit.

The three conductors connected from A, B, and C to the load are called 
lines. For the Y-connected system, it should be obvious from Fig. 24.4 
that the line current equals the phase current for each phase; that is,

  (24.3)

where φ  is used to denote a phase quantity, and g is a generator 
parameter.

The voltage from one line to another is called a line voltage. On the 
phasor diagram (Fig. 24.5), it is the phasor drawn from the end of one 
phase to another in the counterclockwise direction.

Applying Kirchhoff’s voltage law around the indicated loop in 
Fig. 24.5, we obtain

E E E 0AB AN BN− + =

or E E EAB AN BN= −

Sketching EBN−  as shown in Fig. 24.6 we can then vectorially add 

E EandAN BN−  to obtain EAB  as shown in the figure.

The result is that the dimension

= ° =x E E cos 30 3
2AN AN  

= φI IL g

(phase voltage)

1
EAN

2 A

N

1

ECN

2

C

B

EBN

1
2

EBC

(line voltage)EAB

ECA

FIG. 24.5 
Line and phase voltages of the 

Y-connected three-phase generator.

Line

L
O
A
D

IL

Line

IL

Line

IL

Neutral

Ifg

1

EAN

2

A

N

Ifg

1
ECN

2 Ifg

EBN
1

2

C B

FIG. 24.4 
Y-connected generator.
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and ( )= = =E x E E2 2   3
2

3AB AN AN

with EE 3 30AB AN= ∠ °

Similarly EE  3 150CA CN= ∠ °

and EE  3 270BC BN= ∠ °

In words, the magnitude of the line voltage of a balanced Y-connected 
generator is 3 times the phase voltage:

 = φE E3L  (24.4)

with the phase angle between any line voltage and the nearest phase volt-
age at 30 .°

In sinusoidal notation,

ω( )= + °e E t  2 sin 30AB AB

ω( )= + °e E t  2 sin 150CA CA

and ω( )= + °e E t  2 sin 270BC BC

24.4  PHASE SEQUENCE  
(Y-CONNECTED GENERATOR)
The phase sequence can be determined by the order in which the pha-
sors representing the phase voltages pass through a fixed point on the 
phasor diagram if the phasors are rotated in a counterclockwise direction. 
For example, in Fig. 24.7 the phase sequence is ABC. However, since 

x

x

ECN

–EBN

EBN

EAN  (phase voltage)

308

EAB (line voltage)

FIG. 24.6 
Determining the relationship between line and 

phase voltages.

Fixed point P

EAN
A

N

ECN

C

B

EBN

Rotation

FIG. 24.7 
Determining the phase sequence 

from the phase voltages of a 
three-phase generator.
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the fixed point can be chosen anywhere on the phasor diagram, the  
sequence can also be written as BCA or CAB. The phase sequence is 
quite important in the three-phase distribution of power. In a three-phase 
motor, for example, if two-phase voltages are interchanged, the sequence 
will change, and the direction of rotation of the motor will be reversed. 
Other effects will be described when we consider the loaded three-phase 
system.

The phase sequence can also be described in terms of the line volt-
ages. Drawing the line voltages on a phasor diagram in Fig. 24.8, we are 
able to determine the phase sequence by again rotating the phasors in the 
counterclockwise direction. In this case, however, the sequence can be 
determined by noting the order of the passing first or second subscripts. 
In the system in Fig. 24.8, for example, the phase sequence of the first 
subscripts passing point P is ABC, and the phase sequence of the second 
subscripts is BCA. But we know that BCA is equivalent to ABC, so the 
sequence is the same for each. Note that the phase sequence is the same 
as that of the phase voltages described in Fig. 24.7.

If the sequence is given, the phasor diagram can be drawn by sim-
ply picking a reference voltage, placing it on the reference axis, and 
then drawing the other voltages at the proper angular position. For a 
sequence of ACB, for example, we might choose E AB  to be the reference 
Fig. 24.9(a) if we wanted the phasor diagram of the line voltages, or  
E AN  for the phase voltages Fig. 24.9(b). For the sequence indicated, the 
phasor diagrams would be as in Fig. 24.9. In phasor notation,

E

E

E

E

E

E

E

E

E

E

E

E

Line
voltages

0   reference

120

120

Phase
voltages

0   reference

120

120

AB AB

CA CA

BC BC

AN AB

CN CN

BN BN

( )

( )

= ∠ °

= ∠− °

= ∠+ °











= ∠ °

= ∠− °

= ∠+ °











P

EAB
A

ECA

C

B

EBC

Rotation

FIG. 24.8 
Determining the phase sequence 
from the line voltages of a three-

phase generator.

P

EAB

A

EBC

B

C

ECA

ACB

(a)

P

EAN

A

EBN

B

C

ECN

ACB

(b)

FIG. 24.9 
Drawing the phasor diagram from the phase sequence.
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24.5 Y-CONNECTED GENERATOR  
WITH A Y-CONNECTED LOAD
Loads connected to three-phase supplies are of two types: the Y and the 
∆. If a Y-connected load is connected to a Y-connected generator, the 
system is symbolically represented by Y-Y. The physical setup of such a 
system is shown in Fig. 24.10.

IL

IL

EL

Ifg

1

2

A

N

Ifg

1

2

C

Ifg

1

2

Ef

Ef

EL

IL
c

EL

IfL

IN

a
IfL

Ef Vf

1

2

n

IfL

b
Vf Vf

1

2

1

2

Z1

Z3 Z2

B

FIG. 24.10 
Y-connected generator with a Y-connected load.

If the load is balanced, the neutral connection can be removed with-
out affecting the circuit in any manner; that is, if

Z Z Z1 2 3= =

then I N  will be zero. (This will be demonstrated in Example 24.1.) Note 
that in order to have a balanced load, the phase angle must also be the 
same for each impedance–a condition that was unnecessary in dc cir-
cuits when we considered balanced systems.

In practice, if a factory, for example, had only balanced, three-phase 
loads, the absence of the neutral would have no effect since, ideally, the 
system would always be balanced. The cost would therefore be less since 
the number of required conductors would be reduced. However, lighting 
and most other electrical equipment use only one of the phase voltages, 
and even if the loading is designed to be balanced (as it should be), there 
is never perfect continuous balancing since lights and other electrical 
equipment are turned on and off, upsetting the balanced condition. The 
neutral is therefore necessary to carry the resulting current away from 
the load and back to the Y-connected generator. This is demonstrated 
when we consider unbalanced Y-connected systems.

We shall now examine the four-wire Y-Y-connected system. The cur-
rent passing through each phase of the generator is the same as its cor-
responding line current, which in turn for a Y-connected load is equal to 
the current in the phase of the load to which it is attached:

 = =φ φI I Ig L L  (24.5)

For a balanced or an unbalanced load, since the generator and load 
have a common neutral point, then

 =φ φV E  (24.6)
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In addition, since I V Z ,L =φ φ φ the magnitude of the current in 
each phase is equal for a balanced load and unequal for an unbalanced 
load. Recall that for the Y-connected generator, the magnitude of the line 
voltage is equal to 3 times the phase voltage. This same relationship can 
be applied to a balanced or an unbalanced four-wire Y-connected load:

 = φE V3L  (24.7)

For a voltage drop across a load element, the first subscript refers to 
that terminal through which the current enters the load element, and the 
second subscript refers to the terminal from which the current leaves. In 
other words, the first subscript is, by definition, positive with respect to the 
second for a voltage drop. Note Fig. 24.11, in which the standard double 
subscripts for a source of voltage and a voltage drop are indicated.

EXAMPLE 24.1 The phase sequence of the Y-connected generator 
in Fig. 24.11 is ABC.

a. Find the phase angles 2θ  and .3θ
b. Find the magnitude of the line voltages.
c. Find the line currents.
d. Verify that, since the load is balanced, I 0.N =

A

1

2

120 V    08EAN

120 V    3

ECN EBN
1

2

1

2
N

C B

a

1

2

3 VIan

1

2

1

2n

c b

Van

4 V

4 V Vbn

3 V

Vcn

3 V

Icn Ibn

IAa

EAB

IN

IBb

E

u
u

CA

ICc
EBC

4 V Balanced
load

120 V    2

FIG. 24.11 
Example 24.1.

Solutions:

a. For an ABC phase sequence,

120 120  and 2 3θ θ− += ° = °

b. ( )( )= = =φE E3 1.73 120 V 208 V.L  Therefore,

E E E 208 VAB BC CA= = =

c. V E .=φ φ  Therefore,

= = =V E V E V E       an AN bn BN cn CN

= = =
∠ °

+
=

∠ °
∠ °

= ∠− °

φ j
I I

V
Z

 
120 V 0

3 Ω 4 Ω
120 V 0

5 Ω 53.13

  24 A 53.13

L an
an

an
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I
V
Z

 
120 V 120

5 Ω 53.13
24 A 173.13bn

bn

bn

= =
∠− °

∠ °
= ∠− °

I
V
Z

 
120 V 120

5 Ω 53.13
24 A 66.87cn

cn

cn

= =
∠ + °
∠ °

= ∠ °

and, since I I ,L L= φ

I I 24 A 53 13    .Aa an ∠−= = °

I I 24 A 173 13    .Bb bn ∠−= = °

I I 24 A 66 87    .Cc cn ∠= = °

d. Applying Kirchhoff’s current law, we have

= + +I I I IN Aa Bb Cc

In rectangular form,

j

j

j

j

I

I

I

I I I

24 A 53.13 14.40 A 19.20 A

24 A 173.13 22.83 A 2.87 A

24 A 66.87 9.43 A 22.07 A

( ) 0 0

Aa

Bb

Cc

Aa Bb Cc∑

= ∠− ° = −

= ∠− ° = − −

= ∠ ° = +

+ + = +

and I N  is in fact equals to zero, as required for a balanced load.

24.6    Y-∆ SYSTEM
There is no neutral connection for the Y-∆ system in Fig. 24.12. Any 
variation in the impedance of a phase that produces an unbalanced sys-
tem simply varies the line and phase currents of the system.

For a balanced load,

 = =Z Z Z1 2 3  (24.8)

The voltage across each phase of the load is equal to the line voltage 
of the generator for a balanced or an unbalanced load:

 =φV E L  (24.9)

IL

IL

EL

Ifg

1

2

A

N
Ifg

1

2

C
B

Ifg

1

2

Ef

Ef

EL

IL
c

EL

IfL

a

IfL

Ef

Vf
12

b

Vf

1

2

Z2

IfL

Z3 Z1

Vf

2

1

FIG. 24.12 
Y-connected generator with a ∆-connected load.
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The relationship between the line currents and phase currents of a 
balanced ∆ load can be found using an approach very similar to that 
used in Section 24.3 to find the relationship between the line voltages 
and phase voltages of a Y-connected generator. For this case, however, 
Kirchhoff’s current law is used instead of Kirchhoff’s voltage law.

The result is

 = φI I3L  (24.10)

and the phase angle between a line current and the nearest phase current 
is 30 .°  A more detailed discussion of this relationship between the line 
and phase currents of a ∆-connected system can be found in Section 24.7.

For a balanced load, the line currents will be equal in magnitude, as 
will the phase currents.

EXAMPLE 24.2 For the three-phase system in Fig. 24.13:

a. Find the phase angles 2θ  and .3θ
b. Find the current in each phase of the load.
c. Find the magnitude of the line currents.

ECA  =  150 V ∠  u3

IAa

ICc

A

C

B

IBb
c

a

1

1

2

b

1

Ica3-phase, 3-wire,
Y-connected generator
Phase sequence:  ABC

EAB  =  150 V ∠08 

XL  =  8 V

Vbc

2

2

R  =  6 V

Iab

Ibc XL  =  8 V

R  =  6 V

R  =  6 V

Vca Vab

XL  =  8 V

EBC  =  150 V ∠ u2

FIG. 24.13 
Example 24.2.

Solutions:

a. For an ABC sequence,

θ θ− += ° = °120 120   and   2 3

b. V E .L=φ . Therefore,

V Eab AB=  =V Eca CA V Ebc BC=

The phase currents are

j
I

V
Z

15 A 53.13

I
V
Z

15 A 173.13

I
V
Z

15 A 66.87

 
150 V 0

6 Ω 8 Ω
150 V 0

10 Ω 53.13
 

 
150 V 120
10 Ω 53.13

 

 
150 V 120
10 Ω 53.13

 

ab
ab

ab

bc
bc

bc

ca
ca

ca

∠− °

∠− °

∠ °

= =
∠ °

+
=

∠ °
∠ °

=

= =
∠− °
∠ °

=

= =
∠+ °

∠ °
=
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c. ( )( )= = =φI I3 1.73 15 A 25.95 A.L  Therefore,

I I I 25 95 A.  Aa Bb Cc= = =  

24.7  ∆-CONNECTED GENERATOR
If we rearrange the coils of the generator in Fig. 24.14(a) as shown in 
Fig. 24.14(b), the system is referred to as a three-phase, three-wire,  
∆-connected ac generator. In this system, the phase and line voltages 
are equivalent and equal to the voltage induced across each coil of the 
generator; that is,

ω

ω

ω

= =

= = − °

= = + °











e E t

e E t

e E t
ABC

E E

E E

E E

  and 2 sin

 and 2 sin( 120 )

  and 2 sin( 120 )

Phase
sequence

AB AN AN AN

BC BN BN BN

CA CN CN CN

or = φE EL g  (24.11)

eAN

A

 1

2

N
N

N
1

2

1

2
eCN eBN

BC

(a)

ECA

A

1

2

 1

 1

2

2C

(b)

IAC

EAB

ECN EAN

2

BEBC ICB ICc

IBb

Load

EBN

2

 1

2

IBA IAa

 1

1

FIG. 24.14 
∆-connected generator.

Note that only one voltage (magnitude) is available instead of the two 
available in the Y-connected system.

Unlike the line current for the Y-connected generator, the line current 
for the ∆-connected system is not equal to the phase current. The rela-
tionship between the two can be found by applying Kirchhoff’s current 
law at one of the nodes and solving for the line current in terms of the 
phase currents; that is, at node A,

I I IBA Aa AC= +

or I I I I IAa BA AC BA CA= − = +

Using the same procedure to find the line current as was used to find 
the line voltage of a Y-connected generator produces the following:

I

I

I

I

I

I

3 30

3 150

3 90

Aa BA

Bb CB

Cc AC

= ∠− °
= ∠− °
= ∠ °

In general,

 = φI I3L g  (24.12)

with the phase angle between a line current and the nearest phase current 
at 30°.
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24.8 PHASE SEQUENCE (∆-CONNECTED 
GENERATOR)
Even though the line and phase voltages of a ∆-connected system are 
the same, it is standard practice to describe the phase sequence in terms 
of the line voltages. The method used is the same as that described 
for the line voltages of the Y-connected generator. For example, the  
phasor diagram of the line voltages for a phase sequence ABC is shown 
in Fig. 24.15. In drawing such a diagram, one must take care to have the 
sequence of the first and second subscripts the same. In phasor notation,

EE  0AB AB= ∠ °

EE  120BC BC= ∠− °

EE  120CA CA= ∠ °

24.9 ∆-∆, ∆-Y THREE-PHASE SYSTEMS
The basic equations necessary to analyze either of the two systems  
∆( -∆, ∆-Y) have been presented in this chapter. Following are two 

descriptive examples, one with a ∆-connected load, and one with a 
Y-connected load.

EXAMPLE 24.3 For the ∆-∆ system shown in Fig. 24.16:

a. Find the phase angles 2θ  and 3θ  for the specified phase sequence.
b. Find the current in each phase of the load.
c. Find the magnitude of the line currents.

IAa

ICc

A

C

B

EBC  =  120 V ∠ u2

IBb

c

a

12

b

1

Ica

3-phase, 3-wire
D-connected ac generator

Phase sequence:  ACB

ECA  =  120 V ∠ u3

EAB  =  120 V ∠ 08

Vbc

2

2 1
Iab

Ibc

5 V

Vca

Vab

5 V

5 V 5 V

5 V5 V

FIG. 24.16 
Example 24.3: ∆-∆ system.

P

EAB

ECA

EBC

Rotation

Phase sequence:  ABC

FIG. 24.15 
Determining the phase 

sequence for a ∆-connected, 
three-phase generator.
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Solutions:

a. For an ACB phase sequence,

θ θ= ° = − °120 120    and    2 3

b. V E .L=φ  Therefore,
V Eab AB=

  
V Eca CA=

  
V Ebc BC=

The phase currents are

j

I
V
Z

 
120 V 0

5 Ω 0 5 Ω 90
5 Ω 5 Ω

120 V 0
25 Ω 90
7.071 45

ab
ab

ab ( )( )
= =

∠ °
∠ ° ∠− °

−

=
∠ °

∠− °
∠− °

33 9 45
120 V 0

3.54 Ω 45
.=

∠ °
∠− °

= ∠ °

I
V
Z

33 9 A 165 
120 V 120

3.54 Ω 45
.  bc

bc

bc

∠= =
∠ °
∠− °

= °

I
V
Z

33 9 A 75 
120 V 120
3.54 Ω 45

.  ca
ca

ca

∠−= =
∠− °
∠− °

= °

c. II 3 1.73 34 A 58.82 A.L ( )( )= = =φ  Therefore,

I I I 58 82 A.  Aa Bb Cc= = =

EXAMPLE 24.4 For the ∆ -Y system shown in Fig. 24.17:

a. Find the voltage across each phase of the load.
b. Find the magnitude of the line voltages.

A

C

B

ICc  =  2 A ∠ 1208

c

a

1 b

Icn

ECA

EAB

Vbn

6 V

8 V

3-phase, 3-wire
D-connected generator

Phase sequence:
ABC

IAa  =  2 A ∠ 08

EBC

IBb  =
2 A ∠ 21208

1

1

2

22

IbnVcn

Ian

Van

n
6 V

8 V
6 V

8 V

FIG. 24.17 
Example 24.4: ∆ -Y system.
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Solutions:

a. I I .L L=φ  Therefore,

I I  2 A 0an Aa= = ∠ °

I I  2 A 120bn Bb= = ∠− °

I I  2 A 120cn Cc= = ∠ °

The phase voltages are

IL

IL

EL

IL

1

2

1

2

If

Vf

If

Vf

a

bc

If Vf

Z  =  R  6  jX

1

2 n

EL
EL

Z

Z Z

f

f

f

f

f f

FIG. 24.18 
Y-connected balanced load.

Average Power The average power delivered to each phase can be 
determined by

 θ ( )= = =φ φ φ φ φ
φ

φ
φP V I I R

V
R

 cos        watts, WI
V R2

2

 (24.13)

where I
Vθ
φ
φ  indicates that θ  is the phase angle between Vφ and I .φ

The total power delivered can be determined by Eq. (24.14) or  
Eq. (24.16):

 ( )= φP P3 WT  (24.14)

V I Z 20 V 53.13  2 A 0 10 Ω 53.13  an an an ∠−( )( )= = ∠ ° ∠− ° = °

V I Z 20 V 173 13  2 A 120 10 Ω 53.13   .bn bn bn ∠−( )( )= = ∠− ° ∠− ° = °

V I Z 20 V 66 87  2 A 120 10 Ω 53.13   .cn cn cn ∠( )( )= = ∠ ° ∠− ° = °

b. ( )( )= = =φE V3 1.73 20 V 34.6 V.L  Therefore,

E E E 34 6 V.  BA CB AC= = =

24.10  POWER
Y-Connected Balanced Load

Please refer to Fig. 24.18 for the following discussion.
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or, since V
E

I I
3

andL
L= =φ φ

then θ=
φ
φP

E
I3

3
  cosT

L
L I

V
 

But 3
3

1 3
3

3
3

3 3
3

3( ) ( )( ) =






 = =

Therefore,

 θ ( )= = φφ
φP E I I R3 cos 3 WT L L I

V
L
2  (24.15)

Reactive Power The reactive power of each phase (in volt-amperes 
reactive) is

 θ ( )= = =φ φ φ φ φ
φ

φ
φ
φQ V I I X

V

X
sin    VARI

V 2
2  (24.16)

The total reactive power of the load is

 ( )= φQ Q3    VART  (24.17)

or, proceeding in the same manner as above, we have

 θ ( )= = φφ
φQ E I I X3 sin 3     VART L L I

V
L
2  (24.18)

Apparent Power The apparent power of each phase is

 ( )=φ φ φS V I     VA  (24.19)

The total apparent power of the load is

 ( )= φS S3    VAT
 (24.20)

or, as before,

 ( )=S E I3    VAT L L  (24.21)

 Power Factor The power factor of the system is given by

 θ ( )= =
φ
φF

P
S

cos    leading or laggingp
T

T
I
V  (24.22)
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EXAMPLE 24.5 For the Y-connected load in Fig. 24.19:

a

1

2n

c

XL  =  4 V

R  =  3 V

XL  =  4 V

1

R  =  3 V R  =  3 V

XL  =  4 V

1

2

EL  =  173.2  V    21208

EL  =  173.2  V    11208

EL  =  173.2  V    08

b

2

I� V�

I�

V� V�

I�

f

ff

ff

f

FIG. 24.19 
Example 24.5.

a. Find the average power to each phase and the total load.
b. Determine the reactive power to each phase and the total reactive 

power.
c. Find the apparent power to each phase and the total apparent power.
d. Find the power factor of the load.

Solutions:

a. The average power is

θ ( ) ( )

( )

( )

( )

( ) ( )( )

( )( )

= = ° =

=

= = = =

= = = =

= = =

φ φ φ

φ φ φ

φ
φ

φ

φ
φP V I

P I R

P
V
R

P P

1200 W

1200 W

1200 W

3600 W

  cos 100 V)(20 A  cos 53.13 2000 0.6

     

  20 A 3 Ω 400 3  

  60 V
3 Ω

3600
3

 

  3 3 1200 W  

I
V

R

T

2 2

2 2

or

θ ( )( )= = =
φ
φP E I 3600 W3 cos 1.732 173.2 V)(20 A)(0.6  T L L I

V
 

b. The reactive power is

θ ( ) ( )( )= = ° =

=

φ φ φ φ
φQ V I

1600 VAR

  sin 100 V)(20 A  sin 53.13 2000 0.8

   

I
V

or Q I X 1600 VAR  20 A 4 Ω 400 4  2 2 ( )( ) ( )( )= = = =φ φ φ

Q Q 4800 VAR  3 3 1600 VAR  T ( )( )= = =φ

or

Q E I 4800 VAR3 sin 1.732 173.2 V)(20 A)(0.8  T L L I
V

  θ ( )( )= = =
φ
φ
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c. The apparent power is

S V I 2000 VA  100 V)(20 A  ( )= = =φ φ φ

S S 6000 VA  3 3 2000 VA  T ( )( )= = =φ

or S E I 6000 VA3 1.732 173.2 V)(20 A  T L L ( )( )= = =

d. The power factor is

F
P
S

0 6 lagging3600 W
6000 VA

.  p
T

T

= = =

∆-Connected Balanced Load

Please refer to Fig. 24.20 for the following discussion.

IL

EL

Z Z

Z

1

2

If

1

2

Vf

If

EL

IL

EL

IL

Vf2 1

Z  =  R    6  jX

If

Vf

f

f f

f

f

f

f

FIG. 24.20 
∆-connected balanced load.

Average Power

 θ ( )= = =φ φ φ φ φ
φ

φ
φP V I I R

V
R

cos WI
V R2

2
 (24.23)

 ( )= φP P3 WT
 (24.24)

Reactive Power

 θ ( )= = =φ φ φ φ φ
φ

φ
φ
φQ V I I X

V

X
sin VARI

V 2
2

 (24.25)

 ( )= φQ Q3 VART   (24.26)

Apparent Power

 ( )=φ φ φS V I VA  (24.27)

 ( )= =φS S E I3 3 VAT L L  (24.28)

Power Factor

 =F
P
Sp

T

T

 (24.29)
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Solution: Consider the ∆ and Y separately.

For the ∆:

C

Z j

I
E
Z

P I R

Q I X

S V I

7200 W

9600 VAR

12 000 VA

  6 Ω 8 Ω 10 Ω 53.13

  200 V
10 Ω

20 A

  3 3 20 A 6 Ω  

  3 3 20 A 8 Ω   ( )

  3 3 200 V)(20 A ,  

L

T

T

T

2 2

2 2

( )

( )

( )

( )( )

( )( )

( )

= − = ∠− °

= = =

= = =

= = =

= = =

φ

φ φ

φ φ

φ φ

∆

∆

∆

∆

∆

For the Y:

L

Z j

I
E

Z

P I R

Q I X

S V I

6414 41 W

4810 81 VAR

8045 76 VA

  4 Ω 3 Ω 5 Ω 36.87

 
3 200 V 3

5 Ω
116 V

5 Ω
23.12 A

  3 3 23.12 A 4 Ω .  

  3 3 23.12 A 3 Ω .    ( )

  3 3 116 V)(23.12 A .  

Y

L

Y

T

T

T

2 2

2 2

Y

Y

Y

( )

( )

( )

( )( )

( )( )

( )

= + = ∠ °

=
/

=
/

= =

= = =

= = =

= = =

φ

φ φ

φ φ

φ φ

For the total load:

( )

( )

( )

( )

= + = + =

= − = −

=

= + = +

=

= = =

∆

∆

C

P P P

Q Q Q C L

S P Q

F
P
S

13 614 41 W

4789 19 VAR

14 432 2 VA

0 943 leading

7200 W 6414.41 W , .  

9600 VAR 4810.81 VAR

     .    ( )

13,614.41 W 4789.19 VAR

     , .  

13,614.41 W
14,432.20 VA

.  

T T T

T T T

T T T

p
T

T

2 2 2 2

Y

Y

EXAMPLE 24.6 For the ∆-Y connected load in Fig. 24.21, find the 
total average, reactive, and apparent power. In addition, find the power 
factor of the load.

EL  =  200 V / 08

6 V

EL  =  200 V / 21208

EL  =  200 V / 11208

8 V

4 V 4 V

4 V
6 V

8 V 6 V

8 V

3 V

3 V3 V

FIG. 24.21 
Example 24.6.
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EXAMPLE 24.7 Each transmission line of the three-wire, 
 three-phase system in Fig. 24.22 has an impedance of j15 Ω 20 Ω.+  
The system delivers a total power of 160 kW at 12,000 V to a balanced 
 three-phase load with a lagging power factor of 0.86.

A

N

C B

15 V 20 V

15 V 20 V

15 V 20 V

Z1  =  Z2  =  Z3

a

n
12 k VEAB

c

Z2

Z1

Z3

b

FIG. 24.22 
Example 24.7.

a. Determine the magnitude of the line voltage E AB  of the generator.
b. Find the power factor of the total load applied to the generator.
c. What is the efficiency of the system?

Solutions:

a. V
V

  load
3

12,000 V
1.73

6936.42 VL( ) = = =φ

P V I  load 3  cosT θ( ) = φ φ

and

I
P

V
 

3  cos
160,000 W

3 6936.42 V)(0.86
T

θ ( )
= =φ

φ

8 94 A.  =

Since cos 0.86 30.68 ,1θ = = °−  assigning Vφ  an angle of 0°  or 
VV 0 ,= ∠ °φ φ  a lagging power factor results in

I 8.94 A 30.68= ∠− °φ  

For each phase, the system will appear as shown in Fig. 24.23, 
where

E I Z V  0AN line− − =φ φ

If  =  8.94 A ∠ 230.688
A

15 V IfIL 20 V

EAN

1

2

1

2

VfZ1

Zline

FIG. 24.23 
The loading on each phase of the system in Fig. 24.22.
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or

j

j

E I Z V

8.94 A 30.68 25 Ω 53.13 6936.42 V 0

223.5 V 22.45 6936.42 V 0

206.56 V 85.35 V 6936.42 V

7142.98 V 85.35 V

7143.5 V 0.68

AN line

( )( )

= +

= ∠− ° ∠ ° + ∠ °

= ∠ ° + ∠ °

= + +

= +

= ∠ °

φ φ

Then E E  3 1.73 7143.5 VgAB ( )( )= =φ

12 358 26 V, .  =

b. P P P

I R

 

160 kW 3

160 kW 3 8.94 A 15 Ω
160,000 W 3596.55 W
163,596.55 W

T

L

load lines

2
line

2

( )

( )

= +

= +

= +
= +
=

and P V I3  cosT L L Tθ=

or 
P
V I

cos
3

163,596.55 W
1.73 (12,358.26 V)(8.94 A)T

T

L L

θ
( )

= =

and F 0 856. 0.86 of loadP = <

c. 
P
P

P
P P

  160 kW
160 kW 3596.55 W

0.978o

i

o

o losses

η = =
+

=
+

=

97.8%=

24.11  THREE-WATTMETER METHOD

The power delivered to a balanced or an unbalanced four-wire, 
Y-connected load can be found by the three-wattmeter method, that 
is, by using three wattmeters in the manner shown in Fig. 24.24. Each  
wattmeter measures the power delivered to each phase. The potential 

+–

Z1

Line

Neutral

P3

P1

P2

+–CC1

PC1

CC2

PC2

CC3

PC3

+–

+–

+–

+–

Line

a

b
c

n

Line

Z3 Z2

FIG. 24.24 
Three-wattmeter method for a Y-connected load.
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coil of each wattmeter is connected parallel with the load, while the  
current coil is in series with the load. The total average power of the 
system can be found by summing the three wattmeter readings; that is,

 = + +P P P PT 1 2 3Y  (24.30)

For the load (balanced or unbalanced), the wattmeters are connected as 
shown in Fig. 24.25. The total power is again the sum of the three watt-
meter readings:

 = + +
∆

P P P PT 1 2 3  (24.31)

If in either of the cases just described the load is balanced, the power 
delivered to each phase will be the same. The total power is then just 
three times any one wattmeter reading.

 24.12   TWO-WATTMETER METHOD
The power delivered to a three-phase, three-wire, ∆- or Y-connected, 
balanced or unbalanced local can be found using only two wattmeters if 
the proper connection is employed and if the wattmeter readings are in-
terpreted properly. The basic connections of this two-wattmeter method 
are shown in Fig. 24.26. One end of each potential coil is connected to 
the same line. The current coils are then placed in the remaining lines.

The connection shown in Fig. 24.27 also satisfies the requirements. 
A third hookup is also possible, but this is left to the reader as an exercise.

The total power delivered to the load is the algebraic sum of the two 
wattmeter readings. For a balanced load, we now consider two methods 
of determining whether the total power is the sum or the difference of the 
two wattmeter readings. The first method to be described requires that 
we know or are able to find the power factor (leading or lagging) of any 
one phase of the load. When this information has been obtained, it can 
be applied directly to the curve in Fig. 24.28.

+–

P1

P2

+–

CC1

PC1

CC2

PC2

CC3

P3
+–

+–
+–

Line

a

b
c

Line

Line

Z2

PC3

+– Z3 Z1

FIG. 24.25 
Three-wattmeter method for a  

∆-connected load.

Line

a

D- or Y-
connected

load

Line

Line

c

b

+–

+–
+–

+–
P1 CC1

PC1

P2
CC2

PC2

FIG. 24.26 
Two-wattmeter method for a ∆- or a 

Y-connected load.

Line

a

D- or Y-
connected

load

Line

Line

c

b

+–

+–
+–

+–P1
CC1

PC1

P2
CC2

PC2

FIG. 24.27 
Alternative hookup for the two-

wattmeter method.
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The curve in Fig. 24.28 is a plot of the power factor of the load 
(phase) versus the ratio P P ,l h/  where Pl  and Ph  are the magnitudes 
of the lower- and higher-reading wattmeters, respectively. Note that 
for a power factor (leading or lagging) greater than 0.5, the ratio has a 
positive value. This indicates that both wattmeters are reading positive, 
and the total power is the sum of the two wattmeter readings; that is, 
P P P .T l h= +  For a power factor less than 0.5 (leading or lagging), the 
ratio has a negative value. This indicates that the smaller-reading watt-
meter is reading negative, and the total power is the difference of the two 
wattmeter readings; that is, P P P .T h l= −

A closer examination reveals that, when the power factor is 1 
(cos  0 1),° =  corresponding to a purely resistive load, P P 1l h/ =
or P P ,l h=  and both wattmeters have the same wattage indication. At 
a power factor equal to 0 (cos 90 0),° =  corresponding to a purely 
reactive load, P P 1l h/ = −  or P P ,l h= −  and both wattmeters again 
have the same wattage indication but with opposite signs. The transition 
from a negative to a positive ratio occurs when the power factor of the 
load is 0.5 or θ = = °−cos 0.5 60 .1  At this power factor, P P 0,l h/ =  
so that P 0,l =  while Ph  reads the total power delivered to the load.

The second method for determining whether the total power is the 
sum or difference of the two wattmeter readings involves a simple labo-
ratory test. For the test to be applied, both wattmeters must first have 
an up-scale deflection. If one of the wattmeters has a below-zero indi-
cation, an up-scale deflection can be obtained by simply reversing the 
leads of the current coil of the wattmeter. To perform the test:

1. Take notice of which line does not have a current coil 
sensing the line current.

2. For the lower-reading wattmeter, disconnect the lead of 
the poten tial coil connected to the line without the cur-
rent coil.

3. Take the disconnected lead of the lower-reading watt-
meter’s  potential coil, and touch a connection point on 
the line that has the current coil of the higher-reading 
wattmeter.

4. If the pointer deflects downward (below zero watts), the 
wattage reading of the lower-reading wattmeter should 
be subtracted from that of the higher-reading wattmeter. 
Otherwise, the readings should be added.

0.2

0–0.25–0.5–0.75–1.0 +0.25 +0.5 +0.75 +1.0

Po
w

er
 f

ac
to

r
L

ea
d 

or
 la

g

0.4

0.6

0.8

1.0

0.5

Fp

PT  =  Ph  –  Pl PT  =  Pl  +  Ph

Pl Ph/

FIG. 24.28 
Determining whether the readings obtained using the 
two-wattmeter method should be added or subtracted.
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For a balanced system, since

θ= ± =
φ
φP P P E I3 cosT h L L I

V
1  

the power factor of the load (phase) can be found from the wattmeter 
readings and the magnitude of the line voltage and current:

 θ= =
±

φ
φF

P P

E I
cos

3p I
V h l

L L

 (24.32)

EXAMPLE 24.8 For the unbalanced ∆-connected load in Fig. 24.29 
with two properly connected wattmeters:

15 V

EBC  =  208 V / –1208

EAB  =  208 V / 08

20 V

a
A

10 V

12 V
R2

R1

XL

12 V

bc

XC
Iab

Ica

R3

Ibc

IBb

IAa

ICc

+–

+–

ECA =  208 V / 1208

+–
+–

B

C

W1

W2

FIG. 24.29 
Example 24.8.

a. Determine the magnitude and angle of the phase currents.
b. Calculate the magnitude and angle of the line currents.
c. Determine the power reading of each wattmeter.
d. Calculate the total power absorbed by the load.
e. Compare the result of part (d) with the total power calculated using 

the phase currents and the resistive elements.

Solutions:

a. 
E
Z

I
V
Z

20 8 A 0 
208 V 0
10 Ω 0

.  ab
ab

ab

AB

ab

∠= = =
∠ °
∠ °

= °

j
I

V
Z

E
Z

 
208 V 120
15 Ω 20 Ω

208 V 120
25 Ω 53.13bc

bc

bc

BC

bc

= = =
∠− °

+
=

∠− °
∠ °

8 32 A 173 13.   .∠= − °

j
I

V
Z

E
Z

 
208 V 120
12 Ω 12 Ω

208 V 120
16.97 Ω 45ca

ca

ca

CA

ca

= = =
∠+ °

+
=

∠+ °
∠− °

12 26 A 165.   ∠= °

b. 

j

j j

I I I

32 79 A 5 55

 

20.8 A 0 12.26 A 165

20.8 A 11.84 A 3.17 A

20.8 A 11.84 A 3.17 A 32.64 A 3.17 A

.   .

Aa ab ca

∠

( )

= −

= ∠ ° − ∠ °

= − − +

= + − = −

= − °
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Bb ab

j

j A j

I I I

29 08 A 178 03

 

8.32 A 173.13 20.8 A 0

8.26 A 1 A 20.8 A

8.26 A 20.8 A 1 A 29.06  1 A

.   .

bc

∠

( )

= −

= ∠− ° − ∠ °

= − − −

= − − − = − −

= − °

∠

( ) ( )

( )

= −

= ∠ ° − ∠− °

= − + − − −

= − + + + = − +

= °

j j

j j

I I I

5 5 A 130 65

 

12.26 A 165 8.32 A 173.13

11.84 A 3.17 A 8.26 A 1 A

11.84 A 8.26 A 3.17 A 1 A 3.58 A 4.17 A

.   .

Cc ca bc

c. P V I V  cos  , 208 V 0ab Aa I
V

ab1 Aa
abθ= = ∠ °

I  32.79 A 5.55Aa = ∠− °

208 V)(32.79 A  cos 5.55( )= °

6788 35 W.  =

V E  208 V 120bc BC= = ∠− °

but V E  208 V 120 180cb CB= = ∠− ° + °

208 V 60= ∠ °
with I  5.5 A 130.65Cc = ∠ °

θ=P V I  coscb Cc I
V

2 Cc
cb

208 V)(5.5 A  cos 70.65( )= °
379 1 W.  =

d. P P P  6788.35 W 379.1 WT 1 2= + = +
7167 45 W.  =

e. ( ) ( ) ( )

( )( ) ( )

= + +

= + +
= + +
=

P I R I R I R

7168 43 W

 

20.8 A 10 Ω 8.32 A 15 Ω 12.26 A 12 Ω
4326.4 W 1038.34 W 1803.69 W

.  

T ab bc ca
2

1
2

2
2

3

2 2 2

 

(The slight difference is due to the level of accuracy carried through 
the calculations.)

24.13 UNBALANCED, THREE-PHASE,  
FOUR-WIRE, Y-CONNECTED LOAD
For the three-phase, four-wire, Y-connected load in Fig. 24.30, condi-
tions are such that none of the load impedances are equal–hence we  
have an unbalanced polyphase load. Since the neutral is a common 
point between the load and source, no matter what the impedance of 
each phase of the load and source, the voltage across each phase is the 
phase voltage of the generator:

 =φ φV E  (24.33)

The phase currents can therefore be determined by Ohm’s law:

 = =φ
φ φI

V

Z

E

Z
    and so on

1 1
1

1 1  (24.34)
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The current in the neutral for any unbalanced system can then be found 
by applying Kirchhoff’s current law at the common point n:

 = + + = + +φ φ φI I I I I I IN L L L1 2 3 1 2 3
 (24.35)

Because of the variety of equipment found in an industrial envi-
ronment, both three-phase power and single-phase power are usually 
provided with the single-phase obtained off the three-phase system. In 
 addition, since the load on each phase is continually changing, a four-
wire system (with a neutral) is normally used to ensure steady voltage 
levels and to provide a path for the current resulting from an unbalanced 
load. The system in Fig. 24.31 has a three-phase transformer dropping 
the line voltage from 13,800 V to 208 V. All the lower-power-demand 
loads, such as lighting, wall outlets, security, and so on, use the single- 
phase, 120 V line to neutral voltage. Higher power loads, such as air 
conditioners, electric ovens or dryers, and so on, use the single-phase, 
208 V available from line to line. For larger motors and special high- 
demand equipment, the full three-phase power can be taken directly off 
the system, as shown in Fig. 24.31. In the design and construction of 

Line

IL1

Line

Line

Neutral

IfL1

+

–

+

–

+

–

IN

IL2

Vf1 Z1

IL3

IfL2

Vf2

Z2Z3

Vf3

IfL3

EL

EL EL

FIG. 24.30 
Unbalanced  Y-connected load.

208 V –1208

208 V 1208

208 V 08

Secondary
3f transformer

120 V 208 V

120 V

208 V

1f

1f

1f1f

208 V
balanced

load

3f

/

/

/

FIG. 24.31 
φ φ/3 3 , 208 /V 120 V  industrial supply.
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a commercial establishment, the National Electric Code requires that 
every effort be made to ensure that the expected loads, whether they be 
single- or multiphase, result in a total load that is as balanced as possi-
ble between the phases, thus ensuring the highest level of transmission 
efficiency.

 24.14 UNBALANCED, THREE-PHASE,  
THREE-WIRE, Y-CONNECTED LOAD
For the system shown in Fig. 24.32, the required equations can be  
derived by first applying Kirchhoff’s voltage law around each closed 
loop to produce

E V V 0AB an bn− + =

E V V 0BC bn cn− + =

E V V 0CA cn an− + =

Z1

Z2Z3

ECA

EBC

EAB
ECA

+

–

Vcn

+

–

Van

+

–

Ian

EAB
+

–

Ibn

Icn

–

+
Vbn

EBC
+–

n

a

c b

FIG. 24.32 
Unbalanced, three-phase, three-wire, Y-connected load.

Substituting, we have

= = = ZV I Z V I Z V I       an an bn bn cn cn1 2 3

 

= −

= −

= −

E I Z I Z

E I Z I Z

E I Z I Z

AB an bn

BC bn cn

CA cn an

1 2

2 3

3 1

 (24.36)

Applying Kirchhoff’s current law at node n results in

+ + = = − −I I I I I I0   and   an bn cn bn an cn

Substituting for I bn  in Eqs. (24.37a) and (24.37b) yields

E I Z I I Z  AB an an cn1 2( )[ ]= − − +

E I I Z I Z  BC an cn cn2 3( )= − + −

which are rewritten as

E I Z Z I Z  AB an cn1 2 2( )= + +

E I Z I Z Z  BC an 2 cn 2 3( ) ( )[ ]= − + − +
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Using determinants, we have

I

E Z

E Z Z

Z Z Z

Z Z Z

Z Z E E Z
Z Z Z Z Z Z Z Z

I
Z E E Z E

Z Z Z Z Z Z

 

 

 

an

AB

BC

AB BC

an
AB BC AB

2

2 3

1 2 2

2 2 3

2 3 2

1 2 1 3 2 3 2
2

2
2

2 3

1 2 1 3 2 3

( )

( )

( )

( )

=
− +

+

− − +

=
− + −

− − − − +

=
− + −

− − −

Applying Kirchhoff’s voltage law to the line voltages gives

E E E E E E0   or  AB CA BC AB BC CA+ + = + = −

Substituting for +E E( )AB CB  in the above equation for I an gives

( )
=

− − −
− − −

I
Z E Z E
Z Z Z Z Z Z an

CA AB2 3

1 2 1 3 2 3

and =
−

+ +
I

E Z E Z
Z Z Z Z Z Zan

AB CA3 2

1 2 1 3 2 3
 (24.37)

In the same manner, it can be shown that

 =
−

+ +
I

E Z E Z
Z Z Z Z Z Zcn

CA BC2 1

1 2 1 3 2 3

 (24.38)

Substituting Eq. (24.38) for I cn in the right-hand side of Eq. (24.36b), 
we obtain

 =
−

+ +
I

E Z E Z
Z Z Z Z Z Zbn

BC AB1 3

1 2 1 3 2 3

 (24.39)

EXAMPLE 24.9 A phase-sequence indicator is an instrument such 
as shown in Fig. 24.33(a) that can display the phase sequence of a 
polyphase circuit. A network that performs this function appears in 
Fig. 24.33(b). The applied phase sequence is ABC. The bulb correspond-
ing to this phase sequence burns more brightly than the bulb indicating 
the ACB sequence because a greater current is passing through the ABC 
bulb. Calculating the phase currents demonstrates that this situation does 
in fact exist:

Z X
C
1 1

377 rad s (16 10 F)
166 ΩC1 6ω ( )

= = =
⁄ ×

=
−

By Eq. (24.38),

I
E Z E Z

Z Z Z Z Z Z
 

      
200 V 120 200 Ω 0 200 V 120 166 Ω 90

166 Ω 90 200 Ω 0 166 Ω 90 200 Ω 0 200 Ω 0 200 Ω 0

cn
CA BC2 1

1 2 1 3 2 3

( )( ) ( )( )
( )( ) ( )( ) ( )( )

=
−

+ +

=
∠ ° ∠ ° − ∠− ° ∠− °

∠− ° ∠ ° + ∠− ° ∠ ° + ∠ ° ∠ °
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I
40,000 V 120 33,200 V 30

33,200 Ω 90 33,200 Ω 90 40,000 Ω 0cn =
∠ ° + ∠− °

∠− ° + ∠− ° + ∠ °

Dividing the numerator and denominator by 1000 and converting both to 
the rectangular domain yields

j j
j

I 
20 34.64 28.75 16.60

40 66.4cn

( ) ( )
=

− + + −
−

j8.75 18.04
77.52 58.93

20.05 64.13
77.52 58.93

=
+
∠− °

=
∠ °

∠− °
123.06°I 0.259 A   cn ∠=

By Eq. (24.39),

I
E Z E Z

Z Z Z Z Z Z

I

 

      
(200 V 120 )(166 90 ) 200 V 0 200 0

77.52 10  Ω 58.93

 
33,200 V 210 40,000 V 0

77.52 10  Ω 58.93

bn
BC AB

bn

1 3

1 2 1 3 2 3

3

3

( )( )

=
−

+ +

=
∠− ° ∠− ° − ∠ ° ∠ °

× ∠− °

=
∠− ° − ∠ °

× ∠− °

Dividing by 1000 and converting to the rectangular domain yields

j j
I

0 91 A 225 36

 
28.75 16.60 40.0

77.52 58.93
68.75 16.60

77.52 58.93

70.73 166.43  
77.52 58.93

.   .

bn =
− + −

∠− °
=

− +
∠− °

=
∠ °
∠− °

= ∠ °

and I Ibn cn>  by a factor of more than 3 : 1. Therefore, the bulb indicat-
ing an ABC sequence will burn more brightly due to the greater current. 
If the phase sequence were ACB, the reverse would be true.

(a)

[(a) Courtesy of Fluke Corporation]

FIG. 24.33 

(a) Phase sequence indicator. (b) Phase sequence detector network.

EAB  =  200 V / 08

200 V

EBC  =  200 V / –1208

ECA  =  200 V / +1208

f  =  60 Hz

16 mF

ACB

a (1)

(3) c b (2)

Z1
Bulbs (150 W)
200 V internal

resistance

200 V

ABC

n
Z3 Z2

(b)
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24.15 RESIDENTIAL AND INDUSTRIAL 
SERVICE DISTRIBUTION SYSTEMS
In North America, the standard electrical distribution system for the home 
utilizes one phase of a three-phase distribution system such as shown for  
the delta configuration of Fig. 24.34. The fact that one phase is split 
by the center-tapped connection results in the terminology single spli t-
phase distribution system. The result is a three-wire source grounded at 
the center tap with 120 V available from any one leg to the neutral and 
240 V from line to line. If you look at the transformer feeding the power 
to the home from the utility pole, you will see three distinct lines to the 
residence as depicted in Fig. 24.34. The national code does not specify a 
color for the hot lines but does require that the neutral be white in color 
and the ground must be in green.

 

 

D-connected

Line

Line

Neutral

120 V

+

–
240 V

+

–

+

–

120 V

+

–

Single-phase
transformer

 system
3f-distribution

Distribution 
Voltage

7.2 kV

(b)(a)

FIG. 24.34 
Single split-phase, three-wire distribution system.

The distribution voltage of Fig. 24.34 typically ranges from 2.4 kV to 
34.5 kV with the 7.2 kV shown in the figure as a common level. Before 
reaching the distribution level, the voltage on the cross-country lines 
may be as high as 120 kV, keeping in mind that the higher the voltage 
the less the current and the smaller the required size of the transmission 
lines. Often times different levels for the 120 V standard may appear as 
110 V, 115 V, or 127 V, but basically all refer to the same level generated 
by the single split-phase scenario. On the high side, voltages such as 
220 V and 230 V may appear but again the generation is provided by 
the same split-phase process. The lower voltage of 120 V is used for 
household needs such as outlets and lighting depicted in Fig. 24.35. The 
higher voltage of 240 V is for higher-demand appliances such as clothes 
dryers, air conditioners, and cooking stoves.

Note for the outlets of Fig. 24.35 that the hot leg is connected to the 
side of the outlet with the smaller opening and the neutral to the wider 
opening, revealing why plugs are to be inserted in a particular manner. 
The ground lead is connected to the third round opening below the other 
two connections. Although it would appear that the ground and neutral 
are connected and should only require one wire, keep in mind that the 
reason for having two leads is to ensure that an appliance is grounded to 
prevent electrical shock if the hot lead touches any part of the appliance. 
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This effect is explained in detail in Section 16.4. For the high-voltage 
appliance, a special plug is used with two terminals connected to the line 
voltages and one to the neutral.

For a variety of reasons you may find that the available voltage is  
208 V rather than 240 V required by your appliance. With such labels it is 
always best to purchase equipment with the specified voltage. However, 
if a 240 V clothes dryer is connected to a 208 V source, it will probably 
function correctly but will take longer to dry the clothes. Hooking up a 
208 V dryer to a 240 V source is not recommended because it may result 
in overheating with serious consequences. The appearance of a 208 V 
source may be due to the fact that a three-phase supply was necessary 
for the operation of special equipment in the facility whether it be an 
apartment structure or commercial establishment.

In situations where a three-phase supply is required by commercial 
establishments or larger structures, a three-phase transformer in a Y con-
nection is normally employed, as shown in Fig. 24.36. For the four-wire 
system of Fig. 24.36, 120 V is available from each phase to neutral as 
described in this chapter and 208 V from line to line. Three-phase sup-
plies are required for a variety of equipment, such as motors, since the 
phase sequence determines the direction of rotation and for handling the 
heavier loads often encountered.

There are occasions when the three-phase supply is required in  
addition to the 240 V level. This can be accomplished using a step-down 

+

–

Distribution 
voltage

Neutral (white wire)

(white wire)

Neutral

Neutral bar

 Bus bars
Ground

Line

Line

Line

Line (usually black wire)

Main 
breaker

Line

240 V 
outlet

120 V 
outlets

Individual
circuit 
breaker

FIG. 24.35 
Household distribution of electrical power.

 Neutral

Phase A
Phase B

Phase C

120 V

120 V

208 V

Earth
ground

3F Y- connected

FIG. 24.36 
φ3  Y-connected, four-wire distribution 

system.
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transformer with a center tap on one of the windings as shown in 
Fig. 24.37. The connections required for each voltage level are indicated 
in the same figure. Such a system is called a high-leg delta or 240 V 
split-phase delta.

A

120  V /08

a

20 V

20 V20 V

C B c b

120  V /03

+

–
N

– 120  V /02

+

u
u

FIG. 24.38 
Problems 4, 5, 6, and 31.

120 V

240 V

120 V 208 V

High

240 V

240 V

Phase A

leg

CT

Phase B

Phase C

FIG. 24.37 
Split-phase 240  V delta distribution system.

PROBLEMS

SECTION 24.5  Y-Connected Generator  
with a Y-Connected Load

  1. A balanced Y load having a 15 Ω  resistance in each leg is 
connected to a three-phase, four-wire, Y-connected generator 
having a line voltage of 228 V. Calculate the magnitude of
a. the phase voltage of the generator.
b. the phase voltage of the load.
c. the phase current of the load.
d. the line current.

 2. Repeat Problem 1 if each phase impedance is changed to a 
14 Ω resistor in series with a 20 Ω capacitive reactance.

 3. Repeat Problem 1 if each phase impedance is changed to an 
8 Ω resistor in parallel with a 8 Ω capacitive reactance.

 4. The phase sequence for the Y-Y system in Fig. 24.38 is 
ABC.
a. Find the angles 2θ  and 3θ  for the specified phase sequence.
b. Find the voltage across each phase impedance in phasor 

form.
c. Find the current through each phase impedance in pha-

sor form.
d. Draw the phasor diagram of the currents found in part 

(c), and show that their phasor sum is zero.
e. Find the magnitude of the line currents.
f. Find the magnitude of the line voltages.

 5. Repeat Problem 4 if the phase impedances are changed to a 
9 Ω resistor in series with a 12 Ω inductive reactance.

 6. Repeat Problem 4 if the phase impedances are changed  
to a 6 Ω resistance in parallel with an 8 Ω  capacitive 
reactance.
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 7. For the system in Fig. 24.39, find the magnitude of the 
unknown voltages and currents.

a

10 V

10 V

3-phase, 3-wire
Y-connected

4-wire generator

Phase sequence: ABC

10 V

Ian

n
–
–

+

Van

IAa

A

EAB  =  220 V /08

EBC  =  220 V / +1208

N

B

C

ECA  =  220 V / –1208

IBb

ICc

Icn Ibn

bc
+

10 V

Vbn

–
Vcn

+
10 V

10 V

FIG. 24.39 
Problems 7, 32, and 44.

 *8.  Compute the magnitude of the voltage E AB for the balanced 
three-phase system in Fig. 24.40.

+

EAB3-phase, 3-wire
Y-connected generator

A

B

C

1 V

Line resistance

a

16 V

12 V

n

12 V

16 V

c b

12 V

16 V
Vf  = 50 V 

–

1 V

1 V

FIG. 24.40 
Problem 8.

 *9.  For the Y-Y system in Fig. 24.41:
a. Find the magnitude and angle associated with the volt-

ages E E,   ,AN BN  and E .CN

b. Determine the magnitude and angle associated with 
each phase current of the load: I I,   ,an bn  and I .cn

c. Find the magnitude and phase angle of each line current: 
I I,   ,Aa Bb  and I .Cc

d. Determine the magnitude and phase angle of the voltage 
across each phase of the load: V V,   ,an bn  and V .cn
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 *10.  For the Y-Y system of Fig. 24.42, the impedance of each 
line is j2 20+  ohms and the line-to-line voltage at the 
source is 14.7 kV 0 .∠ °  The balanced load draws a total 
power of 750 kW at a current of 80 ampere with a lagging 
power factor.
a. Find the total load loss of the system including the line 

loss.
b. Find the phase voltage of the supply.
c. Find the power factor of the load (including the line 

loss) on the supply.
d. Is the power factor leading or lagging?
e.  Find the magnitude and phase angle of each phase of the 

balanced load.
f. Find the power factor of the load (not including the line 

loss).

A 30 V

+
0.4 kV

N

B

C

30 V

EBC  =  22 kV /–1208

40 V

30 V 40 V

IAa

IBb

ICc

ECA  =  22 kV /+1208

EAB  =  22 kV /08

–

Van

Ian

1 kV

+

–
Vbn1 kV

0.4 kV
Ibn

bc

1 kV

+
0.4 kV

Icn
–

40 V

Vcn

a

FIG. 24.41 
Problem 9.

C

N

A
A'

N'

B'C'

ZL

ZL ZL

B

XL  =  20 V

R

80 A

R  =  2 V

2 V 20 V

2 V 20 V

XL

R XL

14.7 kV/08
FPLagging

250 kW/f

FIG. 24.42 
Problem 10.
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SECTION 24.6  ∆Y-  System

 11. A balanced ∆  load having a 20 Ω resistance in each leg is 
connected to a three-phase, three-wire, Y-connected genera-
tor having a line voltage of 208 V. Calculate the magnitude of
a. the phase voltage of the generator.
b. the phase voltage of the load.
c. the phase current of the load.
d. the line current.

 12. Repeat Problem 11 if each phase impedance is changed to a 
6.8 Ω resistor in series with a 14 Ω inductive reactance.

 13. Repeat Problem 11 if each phase impedance is changed to an 
18 Ω resistance in parallel with an 18 Ω capacitive reactance.

 14. The phase sequence for the Y-∆ system in Fig. 24.43 is ABC.
a. Find the angles 2θ  and 3θ  for the specified phase 

sequence.

b. Find the voltage across each phase impedance in phasor 
form.

c. Draw the phasor diagram of the voltages found in part 
(b), and show that their sum is zero around the closed 
loop of the ∆  load.

d. Find the current through each phase impedance in pha-
sor form.

e. Find the magnitude of the line currents.
f. Find the magnitude of the generator phase voltages.

 15. Repeat Problem 14 if the phase impedances are changed to 
a 100 Ω resistor in series with a capacitive reactance of 
100 Ω.

 16. Repeat Problem 14 if the phase impedances are changed to 
a 3 Ω resistor in parallel with an inductive reactance of 4 Ω.

 17. For the system in Fig. 24.44, find the magnitude of the 
unknown voltages and currents.

b
22 V

c

a

B

N

C

A

EBC  =  208 V /u2

ECA  =  208 V /u3

EAB  =  208 V /08

22 V 22 V

FIG. 24.43 
Problems 14, 15, 16, 35, and 47.

10 V10 V

a

10 V

3-phase, 3-wire
Y-connected

4-wire generator

Phase sequence: ABC

10 V

Ica

+

Vab

IAa

A

ECA  =  220 V / +1208

B

C

EBC  =  220 V / –1208

IBb

ICc

bc

–

–

Vca

+

10 V

EAB  =  220 V /08

10 V

Iab

Ibc

Vbc +–

FIG. 24.44 
Problems 17, 36, and 49.
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 *18.  For the ∆-connected load in Fig. 24.45:
a. Find the magnitude and angle of each phase current 

I I,   ,ab bc  and I .ca

b. Calculate the magnitude and angle of each line current 
I I,   ,Aa Bb  and I .Cc

c. Determine the magnitude and angle of the voltages 
E E,   ,AB BC  and E .CA

20 V10 V

+

–

20 V10 V

20 V10 V

1 kV

0.3 kV 1 kV

0.3 kV0.3 kV

1 kV

a

c

IAa

IBb

ICc

ECA

+

–
EAB

B

+

–
EBC

C

Ica

Iab

Ibc
b

Vab  =  16 kV /08

Vbc  =  16 kV /–1208

Vca  =  16 kV /+1208

A

FIG. 24.45 
Problem 18.

Van 24 V

A

B

C

a

n

bc

3-phase, 3-wire
D-connected generator

Phase sequence: ABC

IBb

ICc

Icn Ibn

Ian

IAa

+

–

24 V 24 V

Vbn
+

–

+

–
Vcn

EBC = 120 V /–1208

EAB = 120 V /08

ECA = 120 V /+1208

FIG. 24.46 
Problems 22, 23, 24, and 38.

SECTION 24.9  Y- ,   -∆ ∆ ∆  Three-Phase Systems

19. A balanced Y load having a 30 Ω resistance in each leg is 
connected to a three-phase, ∆-connected generator having 
a line voltage of 208 V. Calculate the magnitude of
a. the phase voltage of the generator.
b. the phase voltage of the load.
c. the phase current of the load.
d. the line current.

 20. Repeat Problem 19 if each phase impedance is changed to a 
12 Ω resistor in series with a 12 Ω inductive reactance.

 21. Repeat Problem 19 if each phase impedance is changed to a 
15 Ω resistor in parallel with a 20 Ω capacitive reactance.

  *22.  For the system in Fig. 24.46, find the magnitude of the 
unknown voltages and currents.

 23. Repeat Problem 22 if each phase impedance is changed to a 
10 Ω resistor in series with a 20 Ω inductive reactance.

 24. Repeat Problem 22 if each phase impedance is changed to a 
20 Ω resistor in parallel with a 15 Ω capacitive reactance.

 25. A balanced ∆ load having a 220 Ω resistance in each leg is 
connected to a three-phase, ∆-connected generator having 
a line voltage of 440 V. Calculate the magnitude of
a. the phase voltage of the generator.
b. the phase voltage of the load.
c. the phase current of the load.
d. the line current.
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 26. Repeat Problem 25 if each phase impedance is changed to a 
12 Ω resistor in series with a 9 Ω capacitive reactance.

 27. Repeat Problem 25 if each phase impedance is changed to a 
22 Ω resistor in parallel with a 22 Ω inductive reactance.

 28. The phase sequence for the -∆ ∆ system in Fig. 24.47 is 
ABC.
a. Find the angles 2θ  and 3θ  for the specified phase 

sequence.
b. Find the voltage across each phase impedance in phasor 

form.

c. Draw the phasor diagram of the voltages found in  
part (b), and show that their phasor sum is zero around 
the closed loop of the ∆ load.

d. Find the current through each phase impedance in pha-
sor form.

e. Find the magnitude of the line currents.

 29. Repeat Problem 28 if each phase impedance is changed to a 
12 Ω resistor in series with a 16 Ω inductive reactance.

 30. Repeat Problem 28 if each phase impedance is changed to a 
20 Ω resistor in parallel with a 20 Ω capacitive reactance.

20 V

aA

BC

20 V

20 V
c

ECA  =  100 V /u3

EAB  =  100 V /08

EBC  =  100 V /u2

b

FIG. 24.47 
Problem 28.

SECTION 24.10  Power

 31. Find the total watts, volt-amperes reactive, volt-amperes, 
and Fp  of the three-phase system in Problem 2.

 32. Find the total watts, volt-amperes reactive, volt-amperes, 
and Fp of the three-phase system in Problem 4.

 33. Find the total watts, volt-amperes reactive, volt-amperes, 
and Fp  of the three-phase system in Problem 7.

 34. Find the total watts, volt-amperes reactive, volt-amperes, 
and Fp  of the three-phase system in Problem 13.

 35. Find the total watts, volt-amperes reactive, volt-amperes, 
and Fp  of the three-phase system in Problem 15.

 36. Find the total watts, volt-amperes reactive, volt-amperes, 
and Fp  of the three-phase system in Problem 17.

 37. Find the total watts, volt-amperes reactive, volt-amperes, 
and Fp  of the three-phase system in Problem 21.

 38. Find the total watts, volt-amperes reactive, volt-amperes, 
and Fp  of the three-phase system in Problem 23.

 39. Find the total watts, volt-amperes reactive, volt-amperes, 
and Fp  of the three-phase system in Problem 27.

 40. Find the total watts, volt-amperes reactive, volt-amperes, 
and Fp

 of the three-phase system in Problem 29.

  41. A balanced, three-phase, ∆-connected load has a line volt-
age of 200 V and a total power consumption of 4800 W at a 

lagging power factor of 0.8. Find the impedance of each 
phase in rectangular coordinates.

 42. A balanced, three-phase, Y-connected load has a line volt-
age of 208 and a total power consumption of 1200 W at a 
leading power factor of 0.6. Find the impedance of each 
phase in rectangular coordinates.

 *43.  Find the total watts, volt-amperes reactive, volt-amperes, 
and Fp  of the system in Fig. 24.48.

a

20 V15 V
3 V

4 V 4 V
4 V

n 15 V

b

20 V15 V

3 V3 V

c

20 V

EBC = 125 V /–1208

ECA = 125 V /+1208

EAB = 125 V /08

FIG. 24.48 
Problem 43.
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 *44.  The Y-Y system in Fig. 24.49 has a balanced load and a line 
impedance jZ 4 Ω 20 Ω.line = +  If the line voltage at 
the generator is 16,000 V and the total power delivered to 
the load is 1200 kW at 80 A, determine each of the  
following:
a. The magnitude of each phase voltage of the generator.
b. The magnitude of the line currents.
c. The total power delivered by the source.
d. The power factor angle of the entire load “seen” by the 

source.
e. The magnitude and angle of the current I Aa  if E AN =

E 0 .AN ∠ °
f. The magnitude and angle of the phase voltage V .an

g. The impedance of the load of each phase in rectangular 
coordinates.

h. The difference between the power factor of the load and 
the power factor of the entire system (including Z )line .

i. The efficiency of the system.

Z1

Z2 Z3

A

N

C B

IAa

EAB = 16 kV

4 V 20 V

4 V 20 V

4 V 20 V

c b

n

+

–

EAN

+

–

Van

a
Ian = 80 A

Z1 = Z2 = Z3

lagging Fp

FIG. 24.49 
Problem 44.

 *45.  The three-phase Y-Y system of Fig. 24.50 has a balanced 
load that receives a total of 2400 kW at a 0.6 lagging power 
factor. The line-to-line voltage at the load is 12.4 kV 0∠ ° 
and the impedance of each line is j1 10+  ohms.
a. Find the magnitude of the phase voltage at the load.
b. Find the magnitude of the phase and line currents.
c. Find the magnitude of the phase voltage at the source.
d. Find the magnitude of the line-to-line voltage at the source.

C

N

A
A'

N'

B'C'

ZL

ZL ZL

B

XL  =  10 V

R

R  =  1 V

1 V 10 V

1 V 10 V

XL

R XL

12.4 kV/08
F  = 0.6 laggingP

800 kW/f

FIG. 24.50 
Problem 45.
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SECTION 24.11  Three-Wattmeter Method

 46.  a.  Sketch the connections required to measure the total 
watts delivered to the load in Fig. 24.39 using three watt-
meters.

 b. Determine the total wattage dissipation and the reading 
of each wattmeter.

 47. Repeat Problem 46 for the network in Fig. 24.43.

SECTION 24.12  Two-Wattmeter Method

 48.  a.  For the three-wire system in Fig. 24.51, properly con-
nect a second wattmeter so that the two measure the total 
power delivered to the load.

 b. If one wattmeter has a reading of 200 W and the other a 
reading of 85 W, what is the total dissipation in watts if 
the total power factor is 0.8 leading?

 c.  Repeat part (b) if the total power factor is 0.2 lagging 
and P 100l =  W.

 49. Sketch three different ways that two wattmeters can be con-
nected to measure the total power delivered to the load in 
Problem 17.

 *50.  For the ∆Y-  system in Fig. 24.52:
a. Determine the magnitude and angle of the phase currents.
b. Find the magnitude and angle of the line currents.
c. Determine the reading of each wattmeter.
d. Find the total power delivered to the load.

2 V

EBC = 208 V /–1208

ECA = 208 V /–2408

EAB = 208 V /08

2 V

c b

n

10 V

10 V

12 V

12 V

a

FIG. 24.53 
Problem 51.

D- or Y-
connected

load

+–
+–

Wattmeter

CC
PC

FIG. 24.51 
Problem 48.

R3 10 V

ECA  =  208 V /1208

+–
+–

A

W1

+–
+–

W2

B

C

IAa

IBb

ICc

–

+

EAB  =  208 V /08

EBC  =  208 V /–1208

–

+

–

+

10 VXC

R1

R2

10 V

10 V

Iab

a

Ibc

Ica

c

b

10 V

XL

FIG. 24.52 
Problem 50.

SECTION 24.13  Unbalanced, Three-Phase, Four-Wire, 
Y-Connected Load

*51. For the system in Fig. 24.53:
a. Calculate the magnitude of the voltage across each 

phase of the load.
b. Find the magnitude of the current through each phase of 

the load.
c. Find the total watts, volt-amperes reactive, volt-amperes, 

and Fp of the system.
d. Find the phase currents in phasor form.
e. Using the results of part (c), determine the current I .N
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SECTION 24.14  Unbalanced, Three-Phase, Three-
Wire, Y-Connected Load

 *52.  For the three-phase, three-wire system in Fig. 24.54, find the 
magnitude of the current through each phase of the load, and 
find the total watts,  volt-amperes reactive, volt-amperes, and 
Fp  of the load.

EBC = 200 V /–1208

ECA = 200 V /–2408

EAB = 200 V /08

20 V

c b

n

16 V

12 V

3 V

4 V

a

FIG. 24.54 
Problem 52.

GLOSSARY

∆-connected ac generator A three-phase generator having the 
three phases connected in the shape of the capital Greek letter 
delta ( )∆ .

Line current The current that flows from the generator to the 
load of a single-phase or polyphase system.

Line voltage The potential difference that exists between the 
lines of a single-phase or polyphase system.

Neutral connection The connection between the generator and 
the load that, under balanced conditions, will have zero cur-
rent associated with it.

Phase current The current that flows through each phase of a 
single-phase (or polyphase) generator or load.

Phase sequence The order in which the generated sinusoidal 
voltages of a polyphase generator will affect the load to which 
they are applied.

Phase voltage The voltage that appears between the line and 
neutral of a Y-connected generator and from line to line in a  
∆-connected generator.

Polyphase ac generator An electromechanical source of 
ac power that generates more than one sinusoidal voltage 
per rotation of the rotor. The frequency generated is deter-
mined by the speed of rotation and the number of poles of 
the rotor.

Single-phase ac generator An electromechanical source of ac 
power that generates a single sinusoidal voltage having a fre-
quency determined by the speed of rotation and the number of 
poles of the rotor.

 Three-wattmeter method A method for determining the total 
power delivered to a three-phase load using three wattmeters.

Two-wattmeter method A method for determining the total 
power delivered to a ∆- or Y-connected three-phase load 
using only two wattmeters and considering the power factor 
of the load.

Unbalanced polyphase load A load not having the same imped-
ance in each phase.

Y-connected three-phase generator A three-phase source of ac 
power in which the three phases are connected in the shape of 
the letter Y.
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25  Pulse Waveforms and  
the R-C Response

25.1 INTRODUCTION
Our analysis thus far has been limited to alternating waveforms that vary in a sinusoidal man-
ner. This chapter introduces the basic terminology associated with the pulse waveform and 
examines the response of an R-C circuit to a square-wave input. The importance of the pulse 
waveform to the electrical/electronics industry cannot be overstated. A vast array of instru-
mentation, communication systems, computers, radar systems, and so on, all use pulse signals 
to control operation, transmit data, and display information in a variety of formats.

The response to a pulse signal of the networks described thus far is quite different from 
that obtained for sinusoidal signals. In fact, we must refer to the dc chapter on capacitors 
(Chapter 10) for a few fundamental concepts and equations that will help us in the analysis to 
follow. This chapter is just an introduction, designed to provide the fundamentals that will be 
helpful when the pulse waveform is encountered in specific areas of application.

25.2 IDEAL VERSUS ACTUAL
The ideal pulse in Fig. 25.1 has vertical sides, sharp corners, and a flat peak characteristic; it 
starts instantaneously at t1 and ends just as abruptly at t .2

• Understand the approximations used to define a 
pulse waveform.

• Become familiar with the specific terms that define 
a pulse waveform.

• Be able to calculate various parameters such the 
pulse width, rise and fall times, and tilt.

• Understand how to calculate the pulse repetition 
rate and the duty cycle of any pulse waveform.

• Become aware of the parameters that define the 
response of an R-C network to a square wave input.

•  Understand how a compensating probe of an 
oscilloscope is used to improve the appearance of 
an output pulse waveform.

Objectives

Amplitude

tp (pulse width)
t1 t2

Falling
or
trailing
edge

Rising
or

leading
edge

0 t

Ideal
pulse

v

FIG. 25.1 
Ideal pulse waveform.
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The waveform in Fig. 25.1 is applied in the analysis in this chapter 
and probably in the initial investigation of areas of application beyond 
the scope of this text. Once the fundamental operation of a device, pack-
age, or system is clearly understood using ideal characteristics, the effect  
of an actual (or true or practical) pulse must be considered. If an  
attempt were made to introduce all the differences between an ideal and 
actual pulse in a single figure, the result would probably be complex 
and confusing. A number of waveforms are therefore used to define the 
critical parameters.

The reactive elements of a network, in their effort to prevent instan-
taneous changes in voltage (capacitor) and current (inductor), establish 
a slope to both edges of the pulse waveform, as shown in Fig. 25.2. The  
rising edge of the waveform in Fig.  25.2 is defined as the edge that  
increases from a lower to a higher level.

Falling
or
trailing
edge

Rising
or

leading
edge

v

0 ttp (pulse width)

Amplitude0.5V1

V1

FIG. 25.2 
Actual pulse waveform.

The falling edge is defined by the region or edge where the 
waveform decreases from a higher to a lower level. Since 
the rising edge is the first to be encountered, it is also called 
the leading edge. The falling edge always follows the 
leading edge and is therefore often called the trailing edge.

Both regions are defined in Figs. 25.1 and 25.2.

Amplitude

For most applications, the amplitude of a pulse waveform is defined 
as the peak-to-peak value. Of course, if the waveforms all start and 
 return to the zero-volt level, then the peak and peak-to-peak values are 
synonymous.

For the purposes of this text, the amplitude of a pulse 
waveform is the peak-to-peak value, as illustrated in 
Figs. 25.1 and 25.2.

Pulse Width

The pulse width (tp), or pulse duration, is defined by a pulse 
level equal to 50% of the peak value.

For the ideal pulse in Fig. 25.1, the pulse width is the same at any level, 
whereas t p  for the waveform in Fig. 25.2 is a very specific value.
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Base-Line Voltage

The base-line voltage (Vb) is the voltage level from which 
the pulse is initiated.

The waveforms in Figs. 25.1 and 25.2 both have a 0 V base-line voltage. 
In Fig. 25.3(a) the base-line voltage is 1 V, whereas in Fig. 25.3(b) the 
base-line voltage is 4 V.−

Amplitude  =  4 V

v

0 t

Vb  =  1 V

 5 V

(a)

Amplitude  =  – 6 V

v

0 t
Vb  =  – 4 V

(b)

–10 V

FIG. 25.3 
Defining the base-line voltage.

tp

v

0 t

Amplitude  =  10 V

– 1 V

9 V

Vb

FIG. 25.4 
Positive-going pulse.

v

0 ttr

(90%) 0.9V1

V1

(10%) 0.1V1

tf

FIG. 25.5 
Defining t r  and t .f

 Positive-Going and Negative-Going Pulses

A positive-going pulse increases positively from the  base-
line voltage, whereas a negative-going pulse increases in 
the negative direction from the base-line voltage.

The waveform in Fig.  25.3(a) is a positive-going pulse, whereas the 
waveform in Fig. 25.3(b) is a negative-going pulse.

Even though the base-line voltage in Fig. 25.4 is negative, the wave-
form is positive-going (with an amplitude of 10 V) since the voltage 
 increased in the positive direction from the base-line voltage.

Rise Time ( )tr  and Fall Time ( )tr

The time required for the pulse to shift from one level to another is of 
particular importance. The rounding (defined in Fig. 25.5) that occurs at 
the beginning and end of each transition makes it difficult to define the 
exact point at which the rise time should be initiated and terminated. For 
this reason,
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the rise time and the fall time are defined by the 10% and 
90% levels, as indicated in Fig. 25.5.

Note that there is no requirement that tr  equal t .f

Tilt

Fig.  25.6 illustrates an undesirable but common distortion normally 
 occurring due to a poor low-frequency response characteristic of the sys-
tem through which a pulse has passed. The drop in peak value is called 
tilt, droop, or sag. The percentage tilt is defined by

 =
−

×
V V

V
% tilt 100%1 2  (25.1)

where V is the average value of the peak amplitude as determined by

 =
+

V
V V

2
1 2  (25.2)

Naturally, the less the percentage tilt or sag, the more ideal is the 
pulse. Due to rounding, it may be difficult to define the values of V1 
and V .2  It is then necessary to approximate the sloping region by a 
 straight-line approximation and use the resulting values of V1 and V .2

Other distortions include the preshoot and overshoot appearing in 
Fig.  25.7, normally due to pronounced high-frequency effects of a 
system, and ringing, due to the interaction between the capacitive 
and  inductive elements of a network at their natural or resonant 
frequency.

 EXAMPLE 25.1 Determine the following for the pulse waveform in 
Fig. 25.8:

a. whether it is positive- or negative-going
b. base-line voltage
c. pulse width
d. maximum amplitude
e. tilt

“Tilt”

Base voltage

v

0 t

V

V1 V2

FIG. 25.6 
Defining tilt.

Overshoot

Ringing

Preshoot
t0

v

FIG. 25.7 
Defining preshoot, overshoot, and 

ringing.

8

t (ms)0

v (V)

7

1 2 3 4 5 6 8 9 10 11 13 14 15

– 4

127

FIG. 25.8 
Example 25.1.
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Solutions:

a. positive-going
b. −=V 4 Vb

c. t 5 ms12 7 msp ( )= − =
d. V 12 V8 V 4 Vmax = + =

e. =
+

= + = =V
V V

2
12 V 11 V

2
23 V

2
11.5 V1 2

V V
V

8.7%% tilt 100% 12 V 11 V
11.5 V

100%1 2=
−

× = − × =

(Remember, V is defined by the average value of the peak amplitude.)

EXAMPLE 25.2 Determine the following for the pulse waveform 
in Fig. 25.9:

a. whether it is positive- or negative-going
b. base-line voltage
c. tilt
d. amplitude
e. t p

f. tr  and t f

Solutions:

a. positive-going
b. V 0 Vb =
c. 0%% tilt =
d. 40 mVamplitude 4 div. 10 mV div.( )( )= =
e. t 16 s3.2 div. 5 s / div.p µµ( )( )= =
f. t 2 s0.4 div. 5 s / div.r µµ( )( )= =

µµ( )( )= =t 4 s0.8 div. 5 s / div.f

25.3 PULSE REPETITION RATE  
AND DUTY CYCLE
A series of pulses such as those appearing in Fig. 25.10 is called a pulse 
train. The varying widths and heights may contain information that can 
be decoded at the receiving end.

If the pattern repeats itself in a periodic manner as shown in 
Fig. 25.11(a) and (b), the result is called a periodic pulse train.

The period (T) of the pulse train is defined as the time differen-
tial between any two similar points on the pulse train, as shown in  
Fig. 25.11(a) and (b).

Vertical sensitivity  =  10 mV/div.

t0

v

tr

10%

90%

tf

Horizontal sensitivity  =  5 ms/div.

tp

FIG. 25.9 
Example 25.2.

0

v

t

FIG. 25.10 
Pulse train.

0

v

t

tp

T

T

(a)

2
T T

(1 ms)
2T

(2 ms)
3T

(3 ms)

0

v

t

tp

T

T

(b)

2
T T

(1 ms)
2T

(2 ms)
3T

(3 ms)
0.2T

FIG. 25.11 
Periodic pulse trains.
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The pulse repetition frequency (prf), or pulse repetition rate (prr), 
is defined by

 ( ) =
T

prf or prr 1 Hz or pulses/s  (25.3)

Applying Eq. (25.3) to each waveform in Fig.  25.11 results in the 
same pulse repetition frequency since the periods are the same. The  
result clearly reveals that

the shape of the periodic pulse does not affect the 
determination of the pulse repetition frequency.

The pulse repetition frequency is determined solely by the period of the 
repeating pulse. The factor that reveals how much of the period is en-
compassed by the pulse is called the duty cycle, defined as follows:

Duty cycle
pulse width

period
100%= ×

or  
t

T
Duty cycle 100%p= ×  (25.4)

For Fig. 25.11(a) (a square-wave pattern),

T
T

50Duty cycle 0.5 100% %= × =

and for Fig. 25.11(b),

T
T

20Duty cycle 0.2 100% %= × =

The above results clearly reveal that

the duty cycle provides a percentage indication of the portion 
of the total period encompassed by the pulse waveform.

EXAMPLE 25.3 Determine the pulse repetition frequency and the 
duty cycle for the periodic pulse waveform in Fig. 25.12.

0

v (mV)

–10

5 10 15 20 25 30

Vb  =  3 mV

t (ms)

FIG. 25.12 
Example 25.3.

Solution:

µ µ( )= − =T 15 6 s 9 s

µ
= = ≅

T
111 11 kHzprf 1 1

9 s
.
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t

T

22.22

Duty cycle 100%
8 6 s

9  s
100%

2
9

100% %

p µ
µ

( )
= × = − ×

= × ≅

EXAMPLE 25.4 Determine the pulse repetition frequency and the 
duty cycle for the oscilloscope pattern in Fig. 25.13 having the indicated 
sensitivities.

Vertical sensitivity  =  0.2 V/div.

div.
t

Horizontal sensitivity  =  1 ms/div.

v

FIG. 25.13 
Example 25.4.

Horizontal sensitivity  =  10 ms/div.
div.

t

0.5 V

V

0

v

FIG. 25.14 
Example 25.5.

Solution:

T

t

T
t

T

312.5 Hz

25%

3.2 div. 1 ms/div. 3.2 ms

0.8 div. 1 ms/div. 0.8 ms

 prf 1 1
3.2 ms

 Duty cycle 100% 0.8 ms
3.2 ms

100%

p

p

( )( )

( )( )

= =

= =

= = =

= × = × =

EXAMPLE 25.5 Determine the pulse repetition rate and duty cycle 
for the trigger waveform in Fig. 25.14.

Solution:

µ µ

µ

( )( )= =

= = =

T

T
38.46 kHz

2.6 div. 10  s/div 26  s

prf 1 1
26  s
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µ µ

µ
µ

( )( )≅ =

= × = × =

t

t

T
7.69%

0.2 div. 10  s/div. 2  s

Duty cycle 100%
2  s

26  s
100%

p

p

25.4 AVERAGE VALUE
The average value of a pulse waveform can be determined using one of 
two methods. The first is the procedure outlined in Section 13.7, which 
can be applied to any alternating waveform. The second can be applied 
only to pulse waveforms since it utilizes terms specifically related to 
pulse waveforms; that is,

 ( )( )( ) ( )= + −V Vduty cycle peak value 1 duty cycle bav  (25.5)

In Eq. (25.5), the peak value is the maximum deviation from the refer-
ence or zero-volt level, and the duty cycle is in decimal form. Eq. (25.5) 
does not include the effect of any tilt pulse waveforms with sloping sides.

EXAMPLE 25.6 Determine the average value for the periodic pulse 
waveform in Fig. 25.15.

8

T
0

v (mV)

7

5 10 20   t (ms)15

6
5
4
3
2
1

Vav

FIG. 25.15 
Example 25.6.

Solution: By the method in Section 13.7,

G
T

area under curve=

µ µ( )= − =T 12 2 s 10 s

µ µ
µ

( )
= + = × + ×

×

= ×
×

=

− −

−

−

−

G

4.4 mV

8 mV)(4  s (2 mV)(6  s)
10  s

32 10 V 22 10 V
10 10

44 10  V
10 10

9 9

6

9

6

By Eq. (25.5),

V

t

T

2 mV

Duty cycle
6 2 s

10  s
4

10
0.4 decimal form

Peak value (from 0 V reference) 8 mV

b

p µ
µ

( )
( )

= +

= = − = =

=
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V V

4.4 mV

duty cycle peak value 1 duty cycle

0.4 8 mV 1 0.4 2 mV

3.2 mV 1.2 mV

bav ( )( )( ) ( )

( )( ) ( )( )

= + −
= + −

= + =

as obtained above.

EXAMPLE 25.7 Given a periodic pulse waveform with a duty cycle 
of 28%, a peak value of 7 V, and a base-line voltage of 3 V:−

a. Determine the average value.
b. Sketch the waveform.
c. Verify the result of part (a) using the method of Section 13.7.

Solutions:

a. By Eq. (25.5),

−
( )

( )( )( ) ( )

( )( ) ( )( )

= + −

= + − − = + −

=

V V

0.2 V

duty cycle peak value 1 duty cycle

  0.28 7 V 1 0.28 3 V 1.96V 2.16V

 

bav

b. See Fig. 25.16.

c. 

−

( ) ( )
= − = −

=

G
T T

T
0.2 V

7 V)(0.28 3 V)(0.72
1.96 V 2.16 V

as obtained above.

Instrumentation

The average value (dc value) of any waveform can be easily determined 
using the oscilloscope. If the mode switch of the scope is set in the ac 
 position, the average or dc component of the applied waveform is blocked 
by an internal capacitor from reaching the screen. The pattern can be 
 adjusted to establish the display in Fig. 25.17(a). If the mode switch is then 
placed in the dc position, the vertical shift (positive or negative)  reveals 
the average or dc level of the input signal, as shown in Fig. 25.17(b).

25.5 TRANSIENT R-C NETWORKS
It would be time well spent to review those sections of Chapter 10 before 
proceeding with this description.

For the fundamental network of Fig. 25.18(a) with no initial charge 
on the capacitor the voltage across the capacitor is zero volts until t = 0 s.  

Horizontal sensitivity  =  5 ms/div.

v

div.

t
0

Vertical sensitivity  =  5 mV/div.

ac mode

(a)

(b)

Horizontal sensitivity  =  5 ms/div. 

v

div.

t
0

Vertical sensitivity  =  5 mV/div.

dc mode

Vav  =  4 mV

FIG. 25.17 
Determining the average value of a 

pulse waveform using  
an oscilloscope.

(a) (b)

R

C
–

+
vC

–

+
e

e

0 tt1

E

FIG. 25.18

0

v

7 V

t–3 V
T

0.28T

FIG. 25.16 
Solution to part (b) of Example 25.7.

M25_BOYL0302_14_GE_C25.indd   1063M25_BOYL0302_14_GE_C25.indd   1063 08/03/23   6:59 AM08/03/23   6:59 AM



1064 | | | PULSE WAVEFORMS AND THE R-C RESPONSE

When the peak value of the applied pulse waveform Fig. 25.18(b)  
appears at t = 0 s, the voltage across the capacitor will begin to increase 
toward E volts at a rate determined by the product RC known as the time 
constant of the network.

If the time constant of the network is chosen such that 5 RC (five time 
constants) is equal to the time period t1 of the applied pulse, the voltage 
across the capacitor will be very close to E as shown in Fig. 25.19.

If 5 RC is much less than the time period defined by t1, the voltage Vc 
will appear as shown in Fig. 25.20(a). If 5τ is much more than the t1, the 
charging voltage will appear as shown in Fig. 25.20(b).

0

vC

Vf

t

Vi

Vf   –  Vi

5t

FIG. 25.21 
Defining the parameters of Eq. (25.6).

0

vC

t

5 V

2.424 V

–2 V
t 5t

FIG. 25.22 
Example of the use of Eq. (25.6).

(b)(a)

0 tt1t1

E

>> 5t 

vC

vC

0 tt1

E

t1 << 5t 

vC

ee

FIG. 25.20

E

vC

0 t
5 RC
(5t)

vC

vC

e

e

e,

t1

e

FIG. 25.19

At time t1, the applied pulse will drop to zero volts again and the 
capacitor will begin to discharge as shown in Figs. 25.19 and 25.20 with 
the same time constant for the charging network.

If the capacitor has an initial charge across it when a square wave 
pulse is applied the following equation has to be applied:

 V V V eC f i f
t RCυ ( )= + − −  (25.6)

Recall that Vi  is the initial voltage across the capacitor when the 
transient phase is initiated as shown in Fig.  25.21. The voltage Vf  is 
the steady-state (resting) value of the voltage across the capacitor when 
the transient phase has ended. The transient period is approximated 
as τ5 ,  where τ  is the time constant of the network and is equal to the  
product RC.

For the situation where the initial voltage is zero volts, the equation 
reduces to the following familiar form, where Vf  is often the applied 
voltage:

 V e1C f
t RC

V 0 Vi

υ ( )= − −

=
 (25.7)

For the case in Fig. 25.22, V V2 V, 5 V,i f= − = +  and

V V V e

e

e

1

  2 V [5 V ( 2 V)](1 )

  2 V 7 V(1 )

C i f i
t RC

t RC

C
t RC

υ

υ

( )( )= + − −

= − + − − −

= − + −

−

−

−

For the case where = =τt RC,

e e

2.424 V

2 V 7 V(1 ) 2 V 7 V(1 )

2 V 7 V(1 0.368) 2 V 7 V(0.632)

 

C
t

C

1υ

υ

= − + − = − + −

= − + − = − +

=

τ− −

as verified by Fig. 25.22.
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EXAMPLE 25.8 The capacitor in Fig. 25.23 is initially charged to  
2 V before the switch is closed. The switch is then closed.

a. Determine the mathematical expression for .Cυ
b. Determine the mathematical expression for i .C

c. Sketch the waveforms of Cυ  and i .C

Solutions:

a. V 2 Vi =

V Eafter 5 8 Vf τ( ) = =

RC 100 k 1 F 100 msτ µ( )( )= = Ω =

By Eq. (25.6),

V V V e

e  8 V (2 V 8 V)

C f i f
t RC

t

υ ( )= + −

= + − τ

−

−

and e8 V 6 V t
Cυ −= τ−

b. When the switch is first closed, the voltage across the capacitor can-
not change instantaneously, and V E V 8 V 2 V 6 V.R i= − = − =  
The current therefore jumps to a level determined by Ohm’s law:

I
V
R

6 V
100 k

0.06 mAR
R

max
= =

Ω
=

The current then decays to zero amperes with the same time con-
stant calculated in part (a), and

i 0 06 mAe. t
C = τ−

c. See Fig. 25.24.

EXAMPLE 25.9 Sketch Cυ  for the step input shown in Fig. 25.25. 
Assume that the 4 mV−  has been present for a period of time in excess 
of five time constants of the network. Then determine when 0VCυ =  if 
the step changes levels at t 0 s.=

R

100 kV

C 1 mF 2 V
+

–
E 8 V

+

–

FIG. 25.23 
Example 25.8.

0

vC  (V)

t (s)0.1

8

2

0.2 0.3 0.4 0.5 0.6 0.7 0.8

5t

0

iC  (mA)

t (s)0.1

0.1

0.06

0.2 0.3 0.4 0.5 0.6 0.7 0.8

FIG. 25.24 
υC and iC for the network in Fig. 25.23.

10 mV
vi

0 t
–4 mV

R

1 kV

C 0.01 mF vC

+

–+

–
4 mVvi

+

–

FIG. 25.25 
Example 25.9.

Solution:

V V4 mV 10 mVi f= − =

µ µ( )( )= = Ω =τ RC 1 k 0.01 F 10 s

M25_BOYL0302_14_GE_C25.indd   1065M25_BOYL0302_14_GE_C25.indd   1065 08/03/23   6:59 AM08/03/23   6:59 AM



1066 | | | PULSE WAVEFORMS AND THE R-C RESPONSE

By Eq. (25.6),

υ ( )= + −

= + − − µ

−

−

V V V e

e  10 mV ( 4 mV 10 mV)

C f i f
t RC

t 10 s

and e10 mV 14 mV t
C

10 sυ −= − µ

The waveform appears in Fig. 25.26.

Substituting 0 VCυ =  into the above equation yields

e0 V 10 mV 14 mVC
t 10 sυ = = − µ−

and e10 mV
14 mV

t 10 s= µ−

or e0.714 t 10 s= µ−

but 
µ

( )= = −µ−e tlog 0.714 log
10 se e

t 10 s

and µµ µ( ) ( )( )= − = − − =t 3 37 s10 s log 0.714 10 s 0.377 .e

as indicated in Fig. 25.26.

25.6 R-C RESPONSE TO SQUARE-WAVE 
INPUTS
The square wave in Fig. 25.27 is a particular form of pulse waveform. It 
has a duty cycle of 50% and an average value of zero volts, as calculated 
as follows:

10

vC (mV)

0 t (ms)
–4

10 20 30 40 50 60 70 80

t   =  3.37 ms

5t

FIG. 25.26 
υC  for the network in Fig. 25.25.

v

0 tT T 2T 3T

V1

–V1

2

FIG. 25.27 
Periodic square wave.

t

T
T
T

V
V T V T

T T

50%

0 V

Duty cycle 100%
2

100%

 
2 2 0  

p

av
1 1( ) ( )( ) ( )

= × = × =

=
+ −

= =

The application of a dc voltage V1 in series with the square wave in 
Fig. 25.27 can raise the base-line voltage from V1−  to zero volts and the 
average value to V1 volts.

If a square wave such as developed in Fig. 25.28 is applied to an R-C 
circuit as shown in Fig. 25.29, the period of the square wave can have a 
pronounced effect on the resulting waveform for .Cυ

For the analysis to follow, we will assume that steady-state conditions 
will be established after a period of five time constants has passed. The 
types of waveforms developed across the capacitor can then be separated 
into three fundamental types: > =τ τT T2 5 , 2 5 ,  and < τT 2 5 .
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T 2 5ττ/ >

The condition > τT 2 5 ,  or > τT 10 , establishes a situation where the 
capacitor can charge to its steady-state value in advance of t T 2.=  
The resulting waveforms for Cυ  and iC  appear as shown in Fig. 25.30. 
Note how closely the voltage Cυ  shadows the applied waveform and 
how iC  is nothing more than a series of very sharp spikes. Note also 
that the change of Vi  from V to zero volts during the trailing edge re-
sults in a rapid discharge of Cυ  to zero volts. In essence, when V 0,i =  
the  capacitor and resistor are in parallel and the capacitor discharges 
through R with a time constant equal to that encountered during the 
charging phase but with a direction of charge flow (current) opposite to 
that established during the charging phase.

vi

0 tT T 2T
2

V

R

vi

+

–

vC

+

–

C

FIG. 25.29 
Applying a periodic square-wave pulse train to an 

R-C network.

vC

0 tT T 2T
2

V

T
2

>

(a)

iC

0 t

T

T 2T

2

(b)

V
R

V
R

–

5t

5t

5t

5t

5t

FIG. 25.30 

υC  and iC  for T 2 5 .> τ

v

0 tT T 2T

2V1

2
T
2–

v

V1

+

–

+

–

FIG. 25.28 
Raising the base-line voltage of a square wave to zero volts.

T 2 5ττ/ =

If the frequency of the square wave is chosen such that = τT 2 5  or 
= τT 10 ,  the voltage Cυ  reaches its final value just before beginning 

its discharge phase, as shown in Fig. 25.31. The voltage Cυ  no longer 
resembles the square-wave input and, in fact, has some of the character-
istics of a triangular waveform. The increased time constant has resulted 
in a more rounded ,Cυ  and iC  has increased substantially in width to 
reveal the longer charging period.
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T 2 5ττ/ <
If < τT 2 5  or < τT 10 , the voltage Cυ  will not reach its final value 
during the first pulse (Fig. 25.32), and the discharge cycle will not return 
to zero volts. In fact, the initial value for each succeeding pulse changes 
until steady-state conditions are reached. In most instances, it is a good 
approximation to assume that steady-state conditions have been estab-
lished in five cycles of the applied waveform.

vC

0 tT T 2T
2

V

T
2

<<

3T

5t

FIG. 25.33 

υC for τ<<2 5T  or τ<< 10 .T

vC

0 tT T 2T
2

V

T
2

=

(a)

iC

0 tT T 2T
2

(b)

V
R

V
R

–
5t

5t
5t

5t

5t

FIG. 25.31 

υC  and iC  for τ=2 5 .T

vC

0 tT 2T

V

T
2

<

(a)

3T

iC

0 tT 2T

(b)

V
R

V
R–

3TT
2

T
2

5t

5t 5t

FIG. 25.32 

υC and iC  for T 2 5 .< τ

As the frequency increases and the period decreases, there will be a 
flattening of the response for Cυ  until a pattern like that in Fig. 25.33 
results. Fig. 25.33 begins to reveal an important conclusion regarding the 
response curve for Cυ :

Under steady-state conditions, the average value of Cυ  will 
equal the average value of the applied square wave.

Note in Figs. 25.32 and 25.33 that the waveform for Cυ  approaches an 
average value of V 2.

EXAMPLE 25.10 The 1000 Hz square wave in Fig. 25.34 is applied 
to the R-C circuit of the same figure.

a. Compare the pulse width of the square wave to the time constant of 
the circuit.

b. Sketch .Cυ
c.  Sketch i .C
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Solutions:

a. T
f
1 1

1000
1 ms= = =

t T
2

0.5 msp = =

( )( )= = × Ω × =−τ RC 5 10 0.01 10 F 0.05 ms3 6

t 0.5 ms
0.05 ms

10 andp

τ
= =

t 10 T
2p τ= =

The result reveals that Cυ  charges to its final value in half the pulse 
width.

b. For the charging phase, V 0 Vi =  and V 10 mV,f =  and

V V V e

e  10 mV (0 10 mV)

C f i f
t RC

t

υ ( )= + −

= + −

−

− τ

and υ −= − τe )( t
C 10 mV 1

For the discharge phase, V 10 mVi =  and V 0 V,f =  and

V V V e

e  0 V (10 mV 0 V)

C f i f
t

t

υ ( )= + −

= + −

−

−

τ

τ

and υ = − τe10 m t
C V

The waveform for Cυ  appears in Fig. 25.35.
c. For the charging phase at t V V0 s, R= =  and I V RRmax

= = 
µΩ =10 mV 5 k 2 A and

µ −ei I e 2 A t
C

t
max= = τττ−

For the discharge phase, the current will have the same mathemati-
cal formulation but the opposite direction, as shown in Fig. 25.36.

EXAMPLE 25.11 Repeat Example 25.10 for f 10 kHz.=

Solution:

T
f
1 1

10 kHz
0.1 ms= = =

and          T
2

0.05 ms=

5 kV

vi

0 tT T
2

V  =  10 mV

R

vi

+

–

vC

+

–
C

f =  1000 Hz

0.01 mF

iC

FIG. 25.34 
Example 25.10.

vC

0 tT T
2

10 mV

5t

tp  =  10t

FIG. 25.35 

υC  for the R-C network in Fig. 25.34.

iC

0 tT T
2

2 mA

2T

–2 mA

5t

FIG. 25.36 

iC  for the R-C network in Fig. 25.34.
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with = = =τ t T
2

0.05 msp

In other words, the pulse width is exactly equal to the time constant  
of the network. The voltage Cυ  will not reach the final value before  
the first pulse of the square-wave input returns to zero volts.

For t in the range t 0=  to T V2, 0 Vi =  and V 10 mV,f =  and

e10 mV(1 )C
tυ = − τ−  

Recall from Chapter 10 that at υ= =τt , 63.2%C  of the final value. 
Substituting = τt  into the equation above yields

e(10 mV)(1 ) (10 mV)(1 0.368)

  10 mV)(0.632 6.32 mV
C

1υ
( )

= − = −

= =

−

as shown in Fig. 25.37.

vC

0 tT T
2

V  =  10 mV

(t)
(2t)

2T
(4t)(3t)

3T
(6t)(5t)

4T
(8t)(7t) (9t)

2.69 mV2.68 mV2.64 mV2.33 mV

7.31 mV7.29 mV7.18 mV6.32 mV 7.31 mV

2.69 mV

FIG. 25.37 
υC response for t Tp 2.= =τ

For the discharge phase between t T 2=  and T V, 6.32 mVi =  
and V 0 V,f =  and

υ

υ

( )= + −

= + −

=

−

−

−

τ

τ

τ

V V V e

e

e

  0 V (6.32 mV 0 V)

  6.32 mV

C f i f
t

t

C
t

with t now being measured from t T 2=  in Fig. 25.37. In other words, 
for each interval in Fig. 25.37, the beginning of the transient waveform 
is defined as t 0 s.=  The value of Cυ  at t T=  is therefore determined 
by substituting = τt  into the above equation, and not τ2  as defined by 
Fig. 25.37.

Substituting = τt  gives

e(6.32 mV)( ) 6.32 mV)(0.368

2.33 mV
C

1υ ( )= =
=

−

as shown in Fig. 25.37.
For the next interval, V 2.33 mVi =  and V 10 mV,f =  and

υ

υ

( )= + −

= + −

= −

−

−

−

τ

τ

τ

V V V e

e

e

  10 mV (2.33 mV 10 mV)

10 mV 7.67 mV

C f i f
t

t

C
t
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At = τt  (since = = τt T 2  is now t 0 s=  for this interval),

e10 mV 7.67 mV

10 mV 2.82 mV

7.18 mV

C

C

1υ

υ

= −
= −
=

−

as shown in Fig. 25.37.
For the discharge interval, V 7.18 mVi =  and V 0 V,f =  and

υ

υ

( )
( )

= + −

= + −

=

−

−

−

τ

τ

τ

V V V e

e

e

0 V 7.18 mV 0

7.18 mV

C f i f
t

t

C
t

At = τt  (measured from τ3  in Fig. 25.37),

e(7.18 mV)( ) (7.18 mV)(0.368)

2.64 mV
C

1υ = =

=

−

as shown in Fig. 25.37.
Continuing in the same manner, we generate the remaining wave-

form for Cυ  as depicted in Fig. 25.37. Note that repetition occurs after 
= τt 8 , and the waveform has essentially reached steady-state condi-

tions in a period of time less than τ10 ,  or five cycles of the applied 
square wave.

A closer look reveals that both the peak and the lower levels con-
tinued to increase until steady-state conditions were established. Since 
the exponential waveforms between t T4=  and t T5=  have the same 
time constant, the average value of Cυ  can be determined from the 
steady-state 7.31 mV and 2.69 mV levels as follows:

V 7.31 mV 2.69 mV
2

10 mV
2

5 mVav = + = =

which equals the average value of the applied signal, as stated earlier in 
this section.

We can use the results in Fig. 25.37 to plot i .C  At any instant of time,

υ υ υ υ υ υ= + = −ori R C R i C  

and i i
RR C

i Cυ υ
= =

−

At t 0 , 0 V,Cυ= =+  and

i
R

10 mV 0
5 k

2 AR
i Cυ υ

µ=
−

= −
Ω

=

as shown in Fig. 25.38.
As the charging process proceeds, the current iC  decays at a rate  

determined by

µ= − τi e2 AC
t
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At = τt ,

i e e(2  A)( ) (2  A)( ) (2  A)(0.368)

  0.736  A
C

1µ µ µ
µ

= = =

=

− −τ τ

as shown in Fig. 25.38.

For the trailing edge of the first pulse, the voltage across the capacitor 
cannot change instantaneously, resulting in the following when iυ  drops 
to zero volts:

i i
R

0 6.32 mV
5 k

1.264 AC R
i Cυ υ

µ= =
−

= −
Ω

= −

as illustrated in Fig. 25.38. The current then decays as determined by

µ= − − τi e1.264 AC
t

and at = τt  (actually = τt 2  in Fig. 25.38),

µ µ
µ µ

= − = −

= − = −

− −τi e e( 1.264  A)( ) ( 1.264  A)( )

( 1.264  A)(0.368) 0.465  A
C

t 1

as shown in Fig. 25.38.
At υ( )= = =τt T t 2 , 2.33 mV,C  and iυ  returns to 10 mV, 

 resulting in

i i
R

10 mV 2.33 mV
5 k

1.534 AC R
i Cυ υ

µ= =
−

= −
Ω

=

The equation for the decaying current is now

µ= − τi e1.534 AC
t

and at = τt  (actually = τt 3  in Fig. 25.38),

i (1.534 A)(0.368) 0.565 AC µ µ= =

The process continues until steady-state conditions are reached at the 
same time they were attained for .Cυ  Note in Fig. 25.38 that the positive 
peak current decreased toward steady-state conditions while the negative 
peak became more negative. Note that the current waveform becomes 

iC

0 tT T
2

2 mA

(t)
(2t)

2T
(4t)(3t)

3T
(6t)(5t)

4T
(8t)(7t) (9t)

0.538 mA0.539 mA0.542 mA0.565 mA

1.464 mA1.472 mA1.534 mA 1.462 mA

0.736 mA

–0.538 mA

–1.462 mA–1.462 mA–1.458 mA–1.436 mA–1.264 mA

–0.528 mA–0.465 mA –0.538 mA–0.537 mA

FIG. 25.38 
iC  response for τ= = .t Tp 2
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symmetrical about the axis when steady-state conditions are established. 
The result is that the net average current over one cycle is zero, as it 
should be in a series R-C circuit. Recall from Chapter 10 that the capac-
itor under dc steady-state conditions can be replaced by an open-circuit 
equivalent, resulting in I 0A.C =

Although both examples just provided started with an uncharged 
 capacitor, the same approach can be used effectively for initial 
 conditions. Simply substitute the initial voltage on the capacitor as Vi  in 
Eq. (25.6) and proceed as before.

25.7 OSCILLOSCOPE ATTENUATOR  
AND COMPENSATING PROBE
The ×10 attenuator probe used with oscilloscopes is designed to  
reduce the magnitude of the input voltage by a factor of 10. If the input 
impedance to a scope is 1 M ,Ω  the ×10 attenuator probe will have an 
internal resistance of 9 M ,Ω  as shown in Fig. 25.39.

0 V

200 V

–

+

Rs 1 MV

Vertical

Scope

20 V
0 V

Rp

9 MV

Probe

FIG. 25.39 
×10 attenuator probe.

Applying the voltage divider rule gives

V
V

V
1 M

1 M 9 M
1

10
i

iscope

( )( )
=

Ω
Ω + Ω

=

In addition to the input resistance, oscilloscopes have some internal 
input capacitance, and the probe adds an additional capacitance in paral-
lel with the oscilloscope capacitance, as shown in Fig. 25.40. The probe 
capacitance is typically about 10 pF for a 1 m (3.3 ft) cable, reaching 
about 15 pF for a 3 m (9.9 ft) cable. The total input capacitance is there-
fore the sum of the two capacitive elements, resulting in the equivalent 
network in Fig. 25.41.

Rs = 1 MV20 pFCs

Vscope

Scope
Cable

10 pF
(1-meter
cable)

Cc

Vi
9 MV

Rp

Probe

FIG. 25.40 
Capacitive elements present in an attenuator probe 

arrangement.

Ci = Cc + Cs = 30 pF1 MVRs

VscopeVi
9 MV

Rp

FIG. 25.41 
Equivalent network in Fig. 25.40.
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For the analysis to follow, let us determine the Thévenin equivalent 
circuit for the capacitor Ci :

E
V

V
1 M

1 M 9 M
1

10Th
i

i

( )( )
=

Ω
Ω + Ω

=

and  R 9 M ||1M 0.9 MTh = Ω Ω = Ω

The Thévenin network is shown in Fig. 25.42.
For V 200 V peak ,i ( )=

E 0.1V 20 V peakTh i ( )= =

and for V, 20 VC fυ =  and V 0 V,i =  with

µ( )( )= = × Ω × =−τ RC 0.9 10 30 10 F 27 s6 12

For an applied frequency of 5 kHz,

T
f

T1 0.2 ms and
2

0.1 ms 100 sµ= = = =

with s5 135 100 s,τ µ µ= >  as shown in Fig. 25.43, clearly  producing 
a severe rounding distortion of the square wave and a poor representa-
tion of the applied signal.

To improve matters, a variable capacitor is often added in paral-
lel with the resistance of the attenuator, resulting in a compensated 
 attenuator probe such as the one shown in Fig. 25.44. In Chapter 23, it 
was demonstrated that a square wave can be generated by a summation 
of sinusoidal signals of particular frequency and amplitude. If we there-
fore design a network such as the one shown in Fig. 25.45 that ensures 
that Vscope is V0.1 i  for any frequency, then the rounding distortion is 
removed, and Vscope has the same appearance as V .i

Applying the voltage divider rule to the network in Fig. 25.45 gives

 =
+

V
Z V

Z Z
s i

s p
scope

 (25.8)

If the parameters are chosen or adjusted such that

 =R C R Cp p s i  (25.9)

the phase angle of Z s  and Z p  will be the same, and Eq. (25.8) will  
reduce to

 =
+

R
R R

V
Vs i

s p
scope

 (25.10)

which is insensitive to frequency since the capacitive elements have 
dropped out of the relationship.

In the laboratory, simply adjust the probe capacitance using a stan-
dard or known square-wave signal until the desired sharp corners of the 
square wave are obtained. If you avoid the calibration step, you may 
make a rounded signal look square since you assumed a square wave at 
the point of measurement.

Too much capacitance results in an overshoot effect, whereas too 
 little continues to show the rounding effect.

Probe

Rs 1MV

Rp

9 MV
+

Ci Vscope

–

Zs

+

Vi

–

Zp

Cp

FIG. 25.45 
Compensated attenuator and input 

impedance to a scope, including the 
cable capacitance.

(Courtesy of Tektronix, Inc.)

FIG. 25.44 
Commercial compensated 10: 1 

attenuator probe.

–

+

RTh

0.9 MV

30 pFCiVi
–

+
vCETh 0.1

FIG. 25.42 
Thévenin equivalent for C i  in Fig. 25.41.

20 V

Vscope

Vscope = 0.1Vi

vC = vscope

0 t
127 ms

100 ms 

FIG. 25.43 
The scope pattern for the conditions in 

Fig. 25.41 with =V 200 Vi  peak.
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25.8 APPLICATION
TV remote

The TV remote works in many ways like a garage door opener or car alarm transmitter. 
There is no visible connection between the transmitter and the receiver, and each transmitter 
is linked to its receiver with a special code. The only major difference is that the TV remote 
uses an infrared frequency, while the other two use a much lower radio frequency.

The TV remote in Fig. 25.46(a) has been opened to reveal the internal construction of 
its keypad and face in Fig. 25.46(b). The three components in Fig. 25.46(b) are lined up to 
show how the holes in the cover match the actual keys in the switch membrane and where 
each button on the keypad hits on the face of the printed circuit board. Note on the printed 

(a) (b)

(c) (d)

FIG. 25.46 
TV remote: (a) external appearance; (b) internal construction; (c) carbon keypads;  

(d) enlarged view of S31 keypad.
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circuit board that there is a black pad to match each key on the mem-
brane. The back side of the switch membrane in Fig.  25.46(c) shows 
the soft carbon contacts that make contact with the carbon contacts on 
the printed board when the buttons are depressed. An enlarged view of 
one of the contacts (S31) in Fig. 25.46(c) is shown in Fig. 25.46(d) to 
illustrate the separation between circuits and the pattern used to ensure 
continuity when the solid round carbon pad at the bottom of the key is 
put in place.

All the connections established when a key is pressed are passed 
on to a relatively large switch-matrix-encoder IC chip appearing on 
the back side of the printed circuit board as shown in Fig. 25.47. For 
the pad (S31) in Fig. 25.46(d), three wires of the matrix appearing in 
Fig.  25.46(b) are connected when the corresponding key (number 
5) is pressed. The encoder then reacts to this combination and sends 
out the appropriate signal as an infrared (IR) signal from the IR LED  
appearing at the end of the remote control, as shown in Fig. 25.46(b) and 
Fig. 25.47. The second, smaller LED (red on actual unit) appearing at 
the top of Fig. 25.46(b) blinks during transmission. Once the batteries 
are inserted, the CMOS electronic circuitry that controls the operation 
of the remote is always on. This is possible only because of the very low 
power drain of CMOS circuitry. The power (PWR) button is used only to 
turn the TV on and activate the receiver.

The signal sent out by the majority of remotes is one of the two types 
appearing in Fig. 25.48. In each case, there is a key pulse to initiate the 
signal sequence and to inform the receiver that the coded signal is about 
to arrive. In Fig.  25.48(a), a 4-bit binary-coded signal is transmitted 
using pulses in specific locations to represent the “ones” and using the 
absence of a pulse to represent the “zeros.” That coded signal can then be 
interpreted by the receiver unit and the proper operation performed. In 
Fig. 25.48(b), the signal is frequency controlled. Each key has a different 
frequency associated with it. The result is that each key has a specific 
transmission frequency. Since each TV receiver responds to a different 
pulse train, a remote must be coded for the TV under control. There are 
fixed program remotes that can be used with only one TV. Then there 

Crystal
(crystal oscillator)

Switch-matrix-
encoder IC

Resistor

IR LED

Capacitor

FIG. 25.47 
Back side of  TV remote in Fig. 25.46.

V

Key pulse

(a)

V

Key pulse

1 10 0 0 0 1 0 1 10 t
ON CHANNEL 2 OFF

ON OFF
High
frequency

Low
frequency Mid-frequency

INCREASE VOLUME

(b)

FIG. 25.48 
Signal transmission: (a) pulse train; (b) variation.
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are smart remotes that are preprogrammed internally with a number of 
remote control codes. You have to set up remotes of this type according 
to the TV you have, using a three-digit coding system accessed through 
the TV setup screen. Learning remotes are those that can use the old 
remote to learn the code and then store it for future use. In this case, one 
remote is set directly in front of the other, and the information is trans-
ferred from one to the other when both are energized. Remotes are also 
available that are a combination of the last two.

The remote in Fig.  25.46 uses four AAA batteries in series for a 
total of 6 V. It has its own local crystal oscillator separate from the IC, 
as shown by the discrete elements to the top right and mid left of the 
printed circuit board in Fig. 25.46(c). The crystal itself, which is rela-
tively large compared to the other elements, appears on the other side of 
the board just above the electrolytic capacitor in Fig. 25.47. The oscil-
lator generates the pulse signal required for proper IC operation. Note 
how flush most of the discrete elements are in Fig.  25.46(b) and the 
rather large electrolytic capacitor on the back of the printed circuit board 
in Fig. 25.47. The specifications on the unit give it a range control of  
25 ft with a 30° coverage arc as shown in Fig. 25.49. The arc coverage 
of your unit can easily be tested by pointing it directly at the TV and then 
moving it in any direction until it no longer controls the TV.

308
259

TV remote

FIG. 25.49 
Range and coverage arc for TV remote 

in Fig. 25.46 (c).

(I)

0

12

2 4 6 8 10 12 14  (ms)t

v (V)

(II)

0 5 10

2

6_

v (V)

 (ms)t

FIG. 25.50 
Problems 1, 8, and 12.

(a)

0

6
8

2

4

2 31 4 5 6 7 8 9 10 11 12 13  (ms)t

v (V)

(b)

0 5 10

−6
−8

−2
−4

 (ms)t

v (V)

FIG. 25.51 
Problems 2 and 9.

PROBLEMS

SECTION 25.2  Ideal Versus Actual

 1.  Determine the following for the pulse waveforms of 
Fig. 25.50:
a. whether it is positive- or negative-going
b. base-line voltage
c. pulse width
d. amplitude
e. % tilt

 2.  Repeat Problem 1 for the pulse waveforms of Fig. 25.51.
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 3.  Repeat Problem 1 for the pulse waveform in Fig. 25.52.

v

0 t

div.

Vertical sensitivity  =  10 mV/div.
Horizontal sensitivity  =  2 ms/div.

FIG. 25.52 
Problems 3, 4, 10, and 13.

v

0 t (ms)

20 mV

2 2220 3212

FIG. 25.53 
Problems 6 and 14.

v

0 tVertical sensitivity  =  0.2 V/div.
Horizontal sensitivity  =  50 ms/div.

FIG. 25.54 
Problems 7 and 15.

v (mV)

0

t (ms)

5

–1

6 13 16 23 263

FIG. 25.55 
Problem 11.

R

8 kV

C 0.02 mF

iC

6 V
–

+–

+
vCE 26 V

+

–

FIG. 25.56 
Problem 16.

 4.  Determine the rise and fall times for the waveform in 
Fig. 25.52.

 5.  Sketch a pulse waveform that has a base-line voltage of 
5 mV,−  a pulse width of 2 s,µ  an amplitude of 15 mV, a 

10% tilt, a period of 10 s,µ and vertical sides and is  
positive-going.

 6.  For the waveform in Fig. 25.53, established by straight-line 
approximations of the original waveform:
a. Determine the rise time.
b. Find the fall time.
c. Find the pulse width.
d. Calculate the frequency.

 7.  For the waveform in Fig. 25.54:
a. Determine the period.
b. Find the frequency.
c. Find the maximum and minimum amplitudes.

SECTION 25.3  Pulse Repetition Rate and Duty Cycle

  8.  Determine the pulse repetition frequency and duty cycle for 
the waveforms of Fig. 25.50.

 9.  Determine the pulse repetition frequency and duty cycle for 
the waveforms of Fig. 25.51.

 10.  Determine the pulse repetition frequency and duty cycle for 
the waveform in Fig. 25.52.

SECTION 25.4  Average Value

 11.  For the waveform in Fig. 25.55, determine the
a. period.
b. pulse width.
c. pulse repetition frequency.
d. average value.
e. effective value.

 12.  Determine the average value of the periodic pulse wave-
form in Fig. 25.50.

 13.  To the best accuracy possible, determine the average value 
of the waveform in Fig. 25.52.

 14.  Determine the average value of the waveform in Fig. 25.53.

 15.  Determine the average value of the periodic pulse train in 
Fig. 25.54.

SECTION 25.5  Transient R-C networks

 16.  The capacitor in Fig. 25.56 is initially charged to 6 V, with 
the polarity indicated in the figure. The switch is then closed 
at t 0 s.=
a. What is the mathematical expression for the voltage Cυ ?
b. Sketch Cυ  versus t.
c. What is the mathematical expression for the current iC ?
d. Sketch iC  versus t.
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 17.  For the input voltage iυ  appearing in Fig. 25.57, sketch the 
waveform for .oυ   Assume that steady-state conditions were 
established with υ 4 V.i =

R

5 kV

C 20 mF vo

+

–
vi

+

–

vi

0 t

 

20 V

4 V

FIG. 25.57 
Problem 17.

R

1 kV

C 1000 mF

iC

–

+
vC

10 V 2 V

21

+

–

+

–

FIG. 25.58 
Problems 18 and 19.

R

5 kV

C 0.04 mF vc

+

–
vi

+

–

ic

20 V

vi

0 tT
2

T

FIG. 25.59 
Problems 20, 21, and 23

 18.  The switch in Fig. 25.58 is in position 1 until steady-state con-
ditions are established. Then the switch is moved (at t 0s)=  
to position 2. Sketch the waveform for the voltage .Cυ

 19.  Sketch the waveform for iC  for Problem 18.

SECTION 25.6  R-C response to Square-Wave Inputs

 20.  Sketch the voltage Cυ  for the network in Fig. 25.59 due to the 
square-wave input of the same figure with a frequency of
a. 100 Hz.
b. 500 Hz.
c. 5000 Hz.
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GLOSSARY

Actual (true, practical) pulse A pulse waveform having a lead-
ing edge and a trailing edge that are not vertical, along with 
other distortion effects such as tilt, ringing, or overshoot.

Amplitude of a pulse waveform The peak-to-peak value of a 
pulse waveform.

Attenuator probe A scope probe that will reduce the strength of 
the signal applied to the vertical channel of a scope.

Base-line voltage The voltage level from which a pulse is 
initiated.

Compensated attenuator probe A scope probe that can reduce 
the applied signal and balance the effects of the input capaci-
tance of a scope on the signal to be displayed.

Duty cycle Factor that reveals how much of a period is encom-
passed by the pulse waveform.

Fall time t( )f  The time required for the trailing edge of a pulse 
waveform to drop from the 90% to the 10% level.

Ideal pulse A pulse waveform characterized as having vertical 
sides, sharp corners, and a flat peak response.

Negative-going pulse A pulse that increases in the negative di-
rection from the base-line voltage.

Periodic pulse train A sequence of pulses that repeats itself 
after a specific period of time.

Positive-going pulse A pulse that increases in the positive direc-
tion from the base-line voltage.

Pulse repetition frequency (pulse repetition rate) The fre-
quency of a periodic pulse train.

Pulse train A series of pulses that may have varying heights and 
widths.

Pulse width t( )p  The pulse width defined by the 50% voltage 
level.

Rise time t( )r  The time required for the leading edge of a pulse 
waveform to travel from the 10% to the 90% level.

Square wave A periodic pulse waveform with a 50% duty cycle.
Tilt (droop, sag) The drop in peak value across the pulse width 

of a pulse waveform.

 21.  Sketch the current iC  for each frequency in Problem 20.

  22.  Sketch the response Cυ  of the network in Fig. 25.59 to the 
square-wave input in Fig. 25.60.

20 V
vi

tT
2

T

–20 V

f  =  500 Hz

FIG. 25.60 
Problem 22.

 23.  If the capacitor in Fig. 25.59 is initially charged to 20 V, 
sketch the response Cυ  to the same input signal (in 
Fig. 25.59) at a frequency of 500 Hz.

 24.  Repeat Problem 23 if the capacitor is initially charged to 
10 V.−

SECTION 25.7  Oscilloscope Attenuator and 
Compensating Probe

 25.  Given the network in Fig. 25.45 with R 9 Mp = Ω and Rs =
1 M ,Ω  find Vscope  in polar form if C C3 pF, 18 pF,p s= =  
C 9 pF,c =  and t2 100 sin 2 10, 000 .iυ π( )=  That is, 
determine Z s  and Z ,p  substitute into Eq. (25.8), and com-
pare the results obtained with Eq. (25.10). Is it verified that 
the phase angle of Z s and Z p is the same under the condition 
R C R Cp p s s= ?

 26.  Repeat Problem 25 at 10 5ω =  rad/s.
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26  Nonsinusoidal Circuits

 26.1 INTRODUCTION
Any waveform that differs from the basic description of the sinusoidal waveform is referred 
to as nonsinusoidal. The most obvious and familiar are the dc, square-wave, triangular, saw-
tooth, and rectified waveforms in Fig. 26.1.

•  Become aware that any repetitive supply can be 
represented by a series of sinusoidal waveforms of 
different amplitudes, frequencies, and phase shifts.

• Understand how the appearance and time axis plot 
of a waveform can identify which terms of a 
Fourier series will be present.

• Be able to identify and apply the information 
contained in a Frequency Spectrum plot.

• Understand that an increase in the number of 
sinusoidal functions used to represent a  non-
sinusoidal function normally results in a closer 
representation of the function.

• Be able to determine the response of a network to 
any input defined by a Fourier series expansion.

• Learn how to add two or more waveforms, 
sinusoidal or non-sinusoidal, if defined by a Fourier 
series expansion.

 Objectives

t

v

(a)

t

v

(b)

t

v

(c)

t

v

(d)

t

v

(e)

FIG. 26.1 
Common nonsinusoidal waveforms: (a) dc; (b) square-wave;  

(c) triangular; (d) sawtooth; (e) rectified.

The output of many electrical and electronic devices are nonsinusoidal, even though the 
 applied signal may be purely sinusoidal. For example, the network in Fig. 26.2 uses a diode 
to clip off the negative portion of the applied signal in a process called half-wave rectification, 
which is used in the development of dc levels from a sinusoidal input. You will find in your elec-
tronics courses that the diode is similar to a mechanical switch, but it is different because it can 
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conduct current in only one direction. The output waveform is definitely 
nonsinusoidal, but note that it has the same period as the applied signal 
and matches the input for half the period.

This chapter demonstrates how a nonsinusoidal waveform like 
the output in Fig. 26.2 can be represented by a series of terms. It also 
 explains how to determine the response of a network to such an input.

 26.2 FOURIER SERIES
Fourier series refers to a series of terms, developed in 1822 by Baron 
Jean Fourier (Fig. 26.3), that can be used to represent a nonsinusoidal 
periodic waveform. In the analysis of these waveforms, we solve for 
each term in the Fourier series:

0

R

e

T
2

T t 0

vo

T
2

T t

+ +

– –
vo

Ideal diode

e

FIG. 26.2 
Half-wave rectifier producing a nonsinusoidal waveform.
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� ������������������������������ ������������������������������

� ω ω ω ω

ω ω ω ω

= + + + + +

+ + + + +

f t A A t A t A t A n t

B t B t B t B n t

( ) sin       sin  2   sin  3   . . .   sin

cos       cos  2   cos  3   . . .   cos

n

n

0

dc or  
average value

1 2 3

sin terms

1 2 3

cosine terms

 (26.1)

Depending on the waveform, a large number of these terms may be 
required to sufficiently represent a nonsinusoidal waveform. It is still 
incredible, however, that a waveform such as the square-wave or tri-
angular wave can be represented by a dc term and series of sinusoidal 
functions having the smooth oscillating shape of a standard sinusoidal 
waveform. The manner in which the terms generate the desired shape 
will be demonstrated in Section 26.3.

As shown in Eq. (26.1), the Fourier series has three basic parts. The first 
is the dc term A ,0  which is the average value of the waveform over one 
full cycle. The second is a series of sine terms. There are no restrictions on 
the values or relative values of the amplitudes of these sine terms, but each 
will have a frequency that is an integer multiple of the frequency of the 
first sine term of the series. The third part is a series of cosine terms. There 
are again no restrictions on the values or relative values of the  amplitudes 
of these cosine terms, but each will have a frequency that is an integer 
multiple of the frequency of the first cosine term of the series. For a par-
ticular waveform, it is quite possible that all of the sine or cosine terms are 
zero. Characteristics of this type can be determined by simply examining 
the nonsinusoidal waveform and its position on the horizontal axis.

The first term of the sine and cosine series is called the fundamental  
component. It represents the minimum frequency term f( )0  required to 
represent a particular waveform, and it also has the same frequency as 
the waveform being represented. A fundamental term, therefore, must 
be present in any Fourier series representation. The other terms with 
 higher-order frequencies (integer multiples of the fundamental) are called 
the harmonic terms. A term that has a frequency equal to twice the funda-
mental is the second harmonic; three times, the third harmonic; and so on.

French (Auxerre, Grenoble, Paris)  
(1768–1830)
Mathematician, Egyptologist, and Administrator
Professor of Mathematics, École Polytechnique

Best known for an infinite mathematical series 
of sine and cosine terms called the Fourier series, 
which he used to show how the conduction of heat 
in solids can be analyzed and defined. Although 
he was primarily a mathematician, a great deal of 
Fourier’s work revolved around real-world physical 
occurrences such as heat transfer, sunspots, and the 
weather. He joined the École Polytechnique in Paris 
as a faculty member when the institute first opened.  
Napoleon requested his aid in the research of Egyp-
tian antiquities, resulting in a three-year stay in 
Egypt as Secretary of the Institut d’Égypte. Napo-
leon made him a baron in 1809, and he was elected 
to the Académie des Sciences in 1817.

Akg-images/Newscom

FIG. 26.3 
Baron Jean Fourier.
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In terms of the fundamental frequency f( ),0  Eq. (26.1) will appear as 
follows:

π π π π( ) ( ) ( )( ) = + + + + + +f t A A f t A f t A f t A n f tsin 2 sin 2 2 sin 3 2 . . . sin 2 . . .
n0 1 0 2 0 3 0 0

π π π π( ) ( ) ( )+ + + + +B f t B f t B f t B n f tcos 2 cos 2 2 cos 3 2 . . . cos 2n1 0 2 0 3 0 0

and finally:

Again, take special note of the fact that the fundamental frequency 
and multiples thereof appear in the harmonic terms of the expansion–a 
truly surprising result of immense importance.

Average Value: A0

The dc term of the Fourier series is the average value of the waveform 
over one full cycle. If the net area above the horizontal axis equals that 
below in one full period, A 0,0 =  and the dc term does not appear in the 
expansion. If the area above the axis is greater than that below over one 
full cycle, A0 is positive and will appear in the Fourier series representa-
tion. If the area below the axis is greater, A0 is negative and will appear 
with the negative sign in the expansion.

Odd Function (Point Symmetry)

If a waveform is such that its value for +t  is the negative of 
that for −t, it is called an odd function or is said to have 
point symmetry.

Fig. 26.4(a) is an example of a waveform with point symmetry. Note 
that the waveform has a peak value at t1 that matches the magnitude 
(with the opposite sign) of the peak value at t .1−  For waveforms of this 
type, all the parameters B1→∞  of Eq. (26.1) will be zero. In fact,

waveforms with point symmetry can be fully described by 
just the dc and sine terms of the Fourier series.

f (t)
Nonsinusoidal
waveform

Odd
function

Average value  =  0
(A0  =  0)

–t1

0
Point
symmetry
(about this
point)

t1 t

(a)

t

(b)

f (t)

Sine wave

Point
symmetry

Average value  =  0
(A0  =  0)

0

FIG. 26.4 
Point symmetry.

π π π π

π π π π

( ) ( ) ( )

( ) ( ) ( )

( ) = + + + + + +

+ + + + +

f t A A f t A f t A f t A nf t

B f t B f t B f t B nf t

sin 2 sin 2 2 sin 2 3 . . . sin 2 . . .

  cos 2 cos 2 2 cos 2 3 . . . cos 2

n

n

0 1 0 2 0 3 0 0

1 0 2 0 3 0 0

 (26.2)
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Note in Fig.  26.4(b) that a sine wave is an odd function with point 
symmetry.

For both waveforms in Fig.  26.4, the following mathematical rela-
tionship is true:

 ( )( ) ( )= − −f t f t     odd function  (26.3)

In words, it states that the magnitude of the function at t+  is equal to the 
negative of the magnitude at t−  [t1in Fig. 26.4(a)].

Even Function (Axis Symmetry)

If a waveform is symmetric about the vertical axis, it is 
called an even function or is said to have axis symmetry.

Fig. 26.5(a) is an example of such a waveform. Note that the value of the 
function at t1 is equal to the value at t .1−  For waveforms of this type, all 
the parameters A1→∞ will be zero. In fact,

 waveforms with axis symmetry can be fully described by 
just the dc and cosine terms of the Fourier series.

Note in Fig.  26.5(b) that a cosine wave is an even function with axis 
symmetry.

For both waveforms in Fig.  26.5, the following mathematical rela-
tionship is true:

 ( )( ) ( )= −f t f t    even function  (26.4)

In words, it states that the magnitude of the function is the same at t1+  
as at t−  [t1in Fig. 26.5(a)].

f (t)

Even function

Average
value (A0)

t1–t1 0 t

Symmetry about vertical axisNonsinusoidal waveform

(a)

f (t)

Cosine wave

Average  =  0 (A0  =  0)

t

Symmetry about vertical axis

0

(b)

FIG. 26.5 
Axis symmetry.

Mirror or Half-Wave Symmetry

If a waveform has half-wave or mirror symmetry as 
demonstrated by the waveform of Fig. 26.6, the even 
harmonics of the series of sine and cosine terms will  
be zero.
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In functional form, the waveform must satisfy the following 
relationship:

 ( )( ) = − +f t f t T
2

 (26.5)

Eq. (26.5) states that the waveform encompassed in one time interval 
/T 2 will repeat itself in the next /T 2 time interval, but in the negative 

sense t( 1 in Fig.  26.6). For example, the waveform in Fig.  26.6 from 
zero to /T 2 will repeat itself in the time interval /T 2 to T but below the 
horizontal axis.

Repetitive on the Half-Cycle

The repetitive nature of a waveform can determine whether specific har-
monics will be present in the Fourier series expansion. In particular,

if a waveform is repetitive on the half-cycle as demonstrated 
by the waveform in Fig. 26.7, the odd harmonics of the series 
of sine and cosine terms are zero.

f (t)

–T T
2

– T 3
2T t0 t1

T
2t1 +

T
2

FIG. 26.6 
Mirror symmetry.

t

f (t)

t1 t1 + T
2

TT
2

FIG. 26.7 
A waveform repetitive on the half-cycle.

In functional form, the waveform must satisfy the following 
relationship:

 ( )( ) = +f t f t T
2

 (26.6)

Eq. (26.6) states that the function repeats itself after each /T 2 time 
interval t( 1 in Fig. 26.7). The waveform, however, will also repeat itself 
after each period T. In general, therefore, for a function of this type, if 
the period T of the waveform is chosen to be twice that of the minimum 
period ( )/T 2 , the odd harmonics will all be zero.
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Mathematical Approach

The constants A A B,   ,  and n n0 1 1→ →  can be determined by using the fol-
lowing integral calculus formulas:

  (26.7)

 ∫ ω( )=A
T

f t n t dt2 sinn

T

0
  (26.8)

 ∫ ω( )=B
T

f t n t dt2 cosn

T

0
 (26.9)

These equations have been presented for recognition purposes only; 
they are not used in the following analysis.

Instrumentation

Three types of instrumentation are available that reveal the dc, funda-
mental, and harmonic content of a waveform: the spectrum analyzer, 
wave analyzer, and Fourier analyzer. The purpose of such instrumenta-
tion is not solely to determine the composition of a particular waveform, 
but also to reveal the level of distortion that may have been introduced 
by a system. For instance, an amplifier may be increasing the applied 
signal by a factor of 50, but in the process it may have distorted the 
waveform in a way that is quite unnoticeable from the oscilloscope dis-
play. The amount of distortion appears in the form of harmonics at fre-
quencies that are multiples of the applied frequency. Each of the above 
instruments reveals which frequencies are having the most impact on the 
distortion, permitting their removal with properly designed filters.

The spectrum analyzer is shown in Fig. 26.8. It has the appearance of 
an oscilloscope, but rather than display a waveform that is voltage (ver-
tical axis) versus time (horizontal axis), it generates a display scaled off 
in dB (vertical axis) versus frequency (horizontal axis). Such a display 
is said to be in the frequency domain, in contrast to the time domain of 
the standard oscilloscope. The height of the vertical line in the display 

∫ ( )=A
T

f t dt1 T

0
0

(Courtsey of Tektronix, Inc.)

FIG. 26.8 
Spectrum analyzer.
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of Fig.  26.8 reveals the impact of that frequency on the shape of the 
waveform. Spectrum analyzers are unable to provide the phase angle 
associated with each component.

EXAMPLE 26.1 Determine which components of the Fourier series 
are present in the waveforms in Fig. 26.9.

v
20 V

0

(a)

t

i

t

Sinusoidal
waveform

5 mA

0

(b)

v

t0

Vav  =  8 V

20 V

(c)

FIG. 26.10 
Example 26.2.

FIG. 26.9 
Example 26.1.

tTT
2

0

10 V

e

(a)

tTT
2

5 mA

i

–5 mA

(b)

Solutions:

a. The waveform has a net area above the horizontal axis and therefore 
will have a positive dc term A .0

The waveform has axis symmetry, resulting in only cosine terms 
in the expansion.

The waveform has half-cycle symmetry, resulting in only even 
terms in the cosine series.

b. The waveform has the same area above and below the horizontal 
axis within each period, resulting in =A 0.0  

The waveform has point symmetry, resulting in only sine terms 
in the expansion.

 EXAMPLE 26.2 Write the Fourier series expansion for the waveforms 
in Fig. 26.10.
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Solutions:

a. A 200 =     A 0n1 =→     B 0n1 =→

20υ =

b. A 00 =    A 5 101
3= × −    A 0n2 =→    B 0n1 =→

ω×= −i 5 10 sin t3

c. A 80 =     A 0n1 =→     B 121 =     B 0n2 =→

ωυ += 8 12 cos t   

EXAMPLE 26.3 Sketch the following Fourier series expansion:

2 1 cos  2 sin υ α α= + +

Solution: Note Fig. 26.11.

v

4

3

2

1

v  =  2 + 1 cos a + 2 sin a

26.578

0

2 sin a

1 cos a

a  =  vt

2.236 V

2

FIG. 26.11 
Example 26.3.

The solution could be obtained graphically by first plotting all of the 
functions and then considering a sufficient number of points on the hor-
izontal axis, or phasor algebra could be used as follows:

j 1 cos 2 sin 1 V 90 2 V 0 1 V 2 Vα α+ = ∠ ° + ∠ ° = +

j2 V 1 V 2.236 V 26.57= + = ∠ °

α( )= + °2.236 sin 26.57

and     υ α+ += °2 2 236 sin 26 57.   ( . )

which is simply the sine wave portion riding on a dc level of 2 V. That is, 
its positive maximum is 2 V 2.236 V 4.236  V,+ =  and its  minimum 
is 2 V 2.236 V 0.236  V.− = −

EXAMPLE 26.4 Sketch the following Fourier series expansion:

ω ω= +i t t1 sin  1 sin 2

Solution: See Fig. 26.12. Note that in this case the sum of the two 
sinusoidal waveforms of different frequencies is not a sine wave. Recall 
that complex algebra can be applied only to waveforms having the same 
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frequency. In this case, the solution is obtained graphically point by 
point, as shown for t t= .1

 26.3 FOURIER EXPANSION OF A  
SQUARE WAVE
Because of the sharp edges of a square wave, it is understandably diffi-
cult to believe that a series of sinusoidal terms can generate a waveform 
anywhere near the shape of a square wave. However, in this section, 
using only four terms, it will be demonstrated that the Fourier series is a 
valid representation with unique qualities.

First note that the average value of the square wave of Fig.  26.13 
is zero so there is no dc term A0 in the expansion. It is an odd func-
tion, so all the constants B n1→  equal zero; only sine terms are present 
in the series expansion. Since the waveform satisfies the criteria for 

( )( ) = − + /f t f t T 2 , the even harmonics are also zero.

i
i  =  1 sin vt + 1 sin 2vt

vt

1 sin 2vt
t1
(i  =  0)1 sin vt

FIG. 26.12 
Example 26.4.

v

0

Vm

–Vm

T
2

2p
p

vt

Odd function with
half-wave symmetry

FIG. 26.13 
Square wave.

The expression obtained after evaluating the various coefficients 
using Eq. (26.9) is

υ
π

ω ω ω ω ω( )= + + + + +V t t t t
n

n t4 sin 1
3

sin3 1
5

sin 5 1
7

sin 7 . . . 1 sinm  (26.10)
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Note that the fundamental does indeed have the same frequency as that 
of the square wave. If we add the fundamental and third harmonics, we 
obtain the results shown in Fig. 26.14.

Even with only the first two terms, a few characteristics of the square 
wave are beginning to appear. If we add the next two terms (Fig. 26.15), 
the width of the pulse increases, and the number of peaks increases.

=+
v

2Vm

0

(c)

v2

0

Vm

–Vm
vt vt

(b)

v1

0

Vm

vt

(a)

3p 3p2p 2pp p

FIG. 26.16 
Shifting a waveform vertically with the addition of a dc term.

v

Vm

Vm

0

Fundamental

Fundamental + third harmonic

Vm
3

p
p

(T) 2p vt

Third harmonic

.

3
2

T
2

p
2

4
p

4
p

FIG. 26.14 
Fundamental plus third harmonic.

v

Vm

Number of peaks  =  number of terms added

Fundamental + 3rd, 5th, 7th harmonics

Square wave

0 p 2p vtp
2 p3

2

FIG. 26.15 
Fundamental plus third, fifth, and seventh harmonics.

As we continue to add terms, the series better approximate the 
square wave. Note, however, that the amplitude of each succeeding 
term  diminishes to the point at which it is negligible compared with 
those of the first few terms. A good approximation is to assume that the 
waveform is composed of the harmonics up to and including the ninth. 
Any higher harmonics would be less than one-tenth the fundamental. If 
the waveform just described were shifted above or below the horizon-
tal axis, the Fourier series would be altered only by a change in the dc 
term. Fig. 26.16(c), for example, is the sum of Fig. 26.16(a) and (b). The 
Fourier series for the complete waveform is, therefore,

υ υ υ ( )= + = +V Eq.  26.10m1 2

π
ω ω ω ω( )= + + + + +V V t t t t4   sin 1

3
sin 3 1

5
sin 5 1

7
sin 7 . . .

m m

and υ
π

ω ω ω ω( )= + + + + +





V t t t t1 4 sin 1
3

sin 3 1
5

sin 5 1
7

sin 7 . . .
m
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26.4 FOURIER EXPANSION OF A HALF-WAVE 
RECTIFIED WAVEFORM
The Fourier expansion of the half-wave rectified waveform of Fig. 26.2 is

+
tt1 t2

4 V

0

v1 v2

(a)

tt2

0 V

t1

10 V

0

(b)

=

(c)

tt

14 V

1

4 V

t2

4 V

vT

Average level = 7.18  V

FIG. 26.17 
Creating a positive vertical shift in a nonsinusoidal waveform.

V V t V t V t0.318 0.500 sin 0.212 cos 2 0.042 cos 4 . . .
m m m m

 υ ω ω ω= + − − +  (26.11)

Note that it has an average value that is 31.8% of the peak value 
 (excellent for the generation of a dc level from a sinusoidal voltage) and 
the third harmonic is not part of the series. In addition, the peak value of 
each harmonic drops drastically after the fundamental frequency, which 
is an indication that the half-wave waveform has a shape and frequency 
very similar to a standard sinusoidal waveform.

For V 10 V,m =  the series will appear as the following:

t t t3.18 5 sin  2.12 cos 2 0.42 cos 4 υ ω ω ω= + − −

A dc level can be added to shift the half-wave waveform up or down 
on the vertical by simply proceeding as follows (for a vertical shift of 

4 V).+

υ υ υ= +  T 1 2

ω ω ω= + + − −t t t4 3.18 5 sin 2.12 cos 2 0.42 cos 4

ω ω ω= + − −t t t7.18 5 sin 2.12 cos 2 0.42 cos 4

A plot of the above numerical addition appears in Fig. 26.17.

Note in the resulting waveform that at f1  the half-wave waveform is 
at a peak and, when added to the dc shift, results in a peak value of 14 V.  
At f2 when the half-wave waveform is at a 0 V level, the applied dc level 
of 4 V results. As obtained in the above mathematical addition, the aver-
age value is now 7.18 V as shown in the resulting waveform.

If we introduce a negative dc level of 10 V (the peak value of the 
 half-wave waveform), the following numerical solution will result:

υ υ υ= +  T 1 2

ω ω ω= − + + − −t t t10 3.18 5 sin 2.12 cos 2 0.42 cos 4

ω ω ω= − + − −t t t6.82 5 sin 2.12 cos2 0.42 cos 4

The waveforms of Fig. 26.18 show the result of the above calculation. 
At t 0 s,=  the dc source is at 10 V−  and the half-wave rectified wave-
form is at 0 V, so the result is a plot point of 10 V−  in the resulting wave-
form. At f1  the dc level and peak of the half-wave waveform are an equal 
and opposite match, so the resulting waveform is at zero volts. At f2 the 
half-wave waveform is at 0 V and the dc level at 10 V,−  so the resulting 
waveform is again at 10 V.−  The average value is now 6.82 V.−
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If a nonsinusoidal waveform is shifted to the right or left, the phase 
shift would be subtracted from or added to, respectively, the sine and 
 cosine terms. The dc term would not change with a shift to the right or left.

If the half-wave rectified signal is shifted 90°  to the left, as in 
Fig. 26.19, the Fourier series becomes

(a) (b)

]10 V

+0 tt1 t2

v1

tt2

0 V
0

v2

=
t1

10 V

vT

(c)

0 V

]10 V

Average level = ]6.82 V
tt2t1

]10 V 

FIG. 26.18 
Creating a negative vertical shift in a nonsinusoidal waveform.

v

– 0 p 2p 3p a

Vm

p
2

p3
2

p5
2

p
2

FIG. 26.19 
Changing the phase angle of a waveform.

26.5 FOURIER SPECTRUM
Once the frequency components of a non-sinusoidal waveform have 
been determined the waveform can be defined by the magnitude of the 
harmonics and their associated frequencies rather than against time as 
appearing in all the previous chapters. The resulting plot is referred to as 
a Frequency Spectrum or Frequency Domain plot.

For instance, for the square wave of Fig. 26.20a plotted vs time and 
having the following Fourier expansion:

υ π π( ) = + + +t f t f t f t8 10.19 sin 2 3.40 sin 2 (3 ) 2.04 sin (5 )0 0 0

π π+ + +f t f t1.46 sin 2 (7 ) 1.13 sin 2 (9 ) . . .
0 0

the Fourier Spectrum will appear as shown in Fig. 26.20b. Note on the 
Fourier Spectrum that the value of the function is 8V at f 0 Hz=  cor-
responding with the dc level in the above series expansion. At the fun-
damental frequency f0  (first harmonic) of 5 kHz, the peak value of the 

V V V V

V V V V

V V V V

0.318 0.500 sin 90 0.212 cos2 90 0.0424 cos4 90

0.318 0.500 cos 0.212 cos 2 180 0.0424 cos 4 360

and 0.318 0.500 cos 0.212 cos2 0.0424 cos4

m m m m

m m m m

m m m m

cos

υ α α α

υ α α α
υ α α α

( ) ( ) ( )

( ) ( )

= + + ° − + ° − + ° +

= + − + ° − + ° +

= + + − +

α
� ������� ������� �

�

�
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contribution is 10.19 V. For the next harmonic at f3 0 or 15 kHz, the peak 
value is 3.40V and for the harmonic at f5 0  or 25 kHz the peak value 
is 2.04 V. At f5 0  it drops to 1.46 V and at f7 0  only 1.13 V. Note how 
quickly the terms drop with increase in frequency.

For a single dc source of 12 V, the Fourier spectrum would appear as 
shown in Fig. 26.21a and for a sine wave with a peak value of 6 V and a 
frequency of 500 kHz it would appear as shown in Fig. 26.21b.

f = 0 Hz

f f0

(a)

v

 500 kHz

f = 500 kHz

0

(b)

t

v v

6 V

6 V

12 V
+

–

12 V

FIG. 26.21 
Frequency spectrum representation of (a) dc source and (b) sinusoidal  

ac source.

0 0.1 0.3

f = 5 kHzv

0 V

16 V

(a)

Average value = 8 V

1
f 5 kHZ

1T = = 0.2 ms=

 (ms)t

 8    V

50 f (kH  )Z 

10.19 V

2.04 V 1.46 V 1.13 V

3.4 V

15 25 35 45

(b)

(3f )0 (5f )0 (7f )0 (9f )0(   )f0

v

FIG. 26.20 
(a) Time and (b) Frequency Spectrum for a 16 V square-wave 

signal.

26.6 CIRCUIT RESPONSE TO A 
NONSINUSOIDAL INPUT
The Fourier series representation of a nonsinusoidal input can be applied to a 
linear network using the principle of superposition. Recall that this theorem 
allowed us to consider the effects of each source of a circuit independently. 
If we replace the nonsinusoidal input with the terms of the Fourier series 
deemed necessary for practical considerations, we can use superposition to 
find the response of the network to each term (Fig. 26.22).
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The total response of the system is then the algebraic sum of the val-
ues obtained for each term. The major change between using this the-
orem for nonsinusoidal circuits and using it for the circuits previously 
described is that the frequency will be different for each term in the non-
sinusoidal application. Therefore, the reactances

π
π

= =X fL X
fC

2     and     1
2L C

will change for each term of the input voltage or current.
In Chapter  13, we found that the rms value of any waveform was 

given by

∫ ( )
T

f t dt1 T
2

0

If we apply this equation to the Fourier series

e  =  A0 + A1 sin a + . . . + An sin na + . . .
+ B1 cos a + . . . + Bn cos na + . . .

+

–

e Linear
network

Linear network

+

–

A1 sin a

+

–

An sin na

+

–

B1 cos a

+

–

Bn cos na

A0

+

–

FIG. 26.22 
Setting up the application of a Fourier series of terms to a linear network.

υ α α α α α( ) = + + + + ′ + + ′V V V n V V nsin . . .   sin cos . . . cosm m m m0 n n1 1

then

  = +
+ + + ′ + + ′

V V
V V V V. . . . . .

2
m m m m

rms 0
2

2 2 2 2
n n1 1  (26.12)

However, since

( )( )=













 = =

V V V
V V V

2 2 2
m m m
2

1 1 1
21 1 1

rms rms rms

then

= + + + + ′ + + ′V V V V V V. . .   . . .
n nrms 0

2
1
2 2

1
2 2

rms rms rms rms  (26.13)

Similarly, for

α α α α α= + + + + ′ + + ′i I I I n I I n( ) sin . . . sin cos . . . cosm m m m0 n n1 1
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we have

   = +
+ + + ′ + + ′

I I
I I I I. . .   . . .

2
m m m m

rms 0
2

2 2 2 2
n n1 1  (26.14)

and

 = + + + + ′ + + ′I I I I I I. . . . . .
n nrms 0

2
1
2 2

1
2 2

rms rms rms rms  (26.15)

The total power delivered is the sum of that delivered by the corre-
sponding terms of the voltage and current. In the following equations, all 
voltages and currents are rms values:

 θ θ= + + + +P V I V I V Icos . . . cos . . .
T n n n0 0 1 1  1  (26.16)

 = + + + +P I R I R I R. . . . . .
T n0

2
1
2 2  (26.17)

or      =P I RT rms
2  (26.18)

with I rms  as defined by Eq. (26.14), and, similarly,

 =P
V

RT
rms
2

 (26.19)

with Vrms  as defined by Eq. (26.12).

EXAMPLE 26.5

a. Sketch the input resulting from the combination of sources in 
Fig. 26.23.

b. Determine the rms value of the input in Fig. 26.23.

 Solutions:

a. Note Fig. 26.24.
b. Eq. (26.13):

= +V V
V

 
2
m

rms 0
2

2

( )
( )= + = + =4 V 6 V

2
16 36

2
V 34 V2

2

= 5 83 V.  

It is particularly interesting to note from Example 26.5 that the rms value 
of a waveform having both dc and ac components is not simply the sum 
of the effective values of each. In other words, there is a temptation in the 
 absence of Eq. (26.13) to state that ( )= + =V 4 V 0.707 6 V 8.24 V,rms  
which is incorrect and, in fact, exceeds the correct level by some 41%.

Instrumentation

It is important to realize that not every DMM will read the rms value of 
nonsinusoidal waveforms such as the one appearing in Fig. 26.24. Many 
are designed to read the rms value of sinusoidal waveforms only. It is 

v

+

4 V
–

+

–

6 sin vt

+

–

FIG. 26.23 
Example 26.5.

6 V

4 V

v  =  4 V + 6 sin vt

0 vt

FIG. 26.24 
Wave pattern generated by the 

source in Fig. 26.23.

M26_BOYL0302_14_GE_C26.indd   1095M26_BOYL0302_14_GE_C26.indd   1095 01/03/23   8:04 AM01/03/23   8:04 AM



1096 | | | NnsnnNsidal  si nsin

NON

important to read the manual provided with the meter to see if it is a true 
rms meter that can read the rms value of any waveform.

We learned in Chapter 13 that the rms value of a square wave is the 
peak value of the waveform. Let us test this result using the Fourier 
 expansion and Eq. (26.12).

EXAMPLE 26.6 Determine the rms value of the square wave of 
Fig.  26.13 with =V 20 Vm  using the first six terms of the Fourier 
expansion, and compare the result to the actual rms value of 20 V.

Solution:

e

vR

R  =  3 V
+

–

C  = F1
8

vC

i

FIG. 26.25 
Example 26.7.

10 sin 2t

vR

R  =  3 V

+

–

vC

i

XC  = 1
vC

1
(2 rad/s)(  F)

= 1
8

=  4 V
12 V

+

–

FIG. 26.26 
Circuit in Fig. 26.25 with the components of the Fourier series input.

υ
π

ω
π

ω
π

ω
π

ω( ) ( ) ( )( ) ( ) ( ) ( )= + + +t t t t4 20 V sin 4 1
3

20 V sin 3 4 1
5

20 V sin 5 4 1
7

20 V sin 7

π
ω

π
ω( ) ( )( ) ( )+ +t t  4 1

9
20 V sin 9 4 1

11
20 V sin 11

υ ω ω ω ω ω ω= + + + + +t t t t t t25.465 sin 8.488 sin 3 5.093 sin 5 3.638 sin 7 2.829 sin 9 2.315 sin 11  

Eq. (26.12): = +
+ + + + +

V V
V V V V V V

 
2

m m m m m m
rms 0

2
2 2 2 2 2 2
1 2 3 4 5 6

0 V
25.465 V 8.488 V 5.093 V 3.638 V 2.829 V 2.315 V

2
2

2 2 2 2 2 2

υ
( ) ( ) ( ) ( )

( )
( ) ( )

= +
+ + + + +

19 66 V.υ =

The solution differs less than 0.4 V from the correct answer of 20 V.  
However, each additional term in the Fourier series brings the result 
closer to the 20 V level. An infinite number results in an exact solution 
of 20 V.

EXAMPLE 26.7 The input to the circuit in Fig. 26.25 is

e t12 10 sin 2= +  

a. Find the current i and the voltages Rυ  and .Cυ
b. Find the rms values of i, ,Rυ and .Cυ
c. Find the power delivered to the circuit.

Solutions:

a. Redraw the original circuit as shown in Fig. 26.26. Then apply 
superposition:
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1. For the 12 V dc supply portion of the input, I 0=  since the 
 capacitor is an open circuit to dc when Cυ  has reached its final  
( steady-state) value. Therefore,

= = =V IR V0 V   and    12 VR C

2. For the ac supply,

jZ 3 Ω 4 Ω 5 Ω 53.13= − = ∠− °

and I E
Z

10
2

V 0

5 Ω 53.13
2
2

A 53.13= =
∠ °

∠− °
= ∠+ °

I RV  0 2
2  

A 53.13 3 Ω 0R θ ( )( )( ) ( )= ∠ ∠ ° = ∠+ ° ∠ °

6
2

 V 53.13= ∠+ °
and

I XV  90 2
2

 A 53.13 4 Ω 90C Cθ ( )( )( ) ( )= ∠ ∠− ° = ∠+ ° ∠− °

= ∠− °8
2

 V 36.87

In the time domain,

+ + °= ti 0 2 sin (2 53 13 )  .

Note that even though the dc term was present in the expression for 
the input voltage, the dc term for the current in this circuit is zero:

υ + + °= t0 6 sin (2 53 13 )  .R

and       t12 8 sin (2 36 87 )  .Cυ + − °=

b. Eq. (26.15): ( )
( )

= + = =I 1 414 A0 2 A
2

2 A .rms
2

2

Eq. (26.13): 
( )

( )= + = =V 4 243 V0 6 V
2

18 V .R
2

2

rms

Eq. (26.13): ( )= + = =V 13 267 V12V
(8 V)

2
176 V .C

2
2

rms

c. ( ) ( )= = =P I R 6 W2
2

A 3 Ω  rms
2

2

EXAMPLE 26.8 Find the response of the circuit in Fig. 26.27 to the 
input shown.

ω ω= + −e E E t E t0.318 0.500 sin 0.212 cos 2m m m

ω− +E t0.0424 cos  4 . . .m

Solution: For discussion purposes, only the first three terms are used 
to represent e. Converting the cosine terms to sine terms and substituting 
for Em  gives us

ω ω( )= + − + °e t t63.60 100.0 sin   42.40 sin 2 90

Using phasor notation, we see that the original circuit becomes like the 
one shown in Fig. 26.28.

e

vR

R  =  6 V
+

–

vL

i

L  =  0.1 H

v  =  377 rad/s

Em  =  200

0 p 2p 3p vt

(b)

(a)

e

FIG. 26.27 
Example 26.8.
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Applying superposition For the dc term ( )=E 63.6 V :0

( )=X  0 short for dcL

RZ  0 6 Ω 0T = ∠ ° = ∠ °

= = =I
E
R

  63.6 V
6 Ω

10.60 A0
0

= = =

=

V I R E

V

  63.60 V

  0
R

L

0 00

0

The average power is

( ) ( )= = =P I R 10.60 A 6 Ω 674.2 W0 0
2 2

For the fundamental term E 70.71 V 0 , 377 :1 ω( )= ∠ ° =

ω ( )( )= = =X L  377 rad/s 0.1 H 37.7 ΩL1

jZ  6 Ω 37.7 Ω 38.17 Ω 80.96T1
= + = ∠ °

I
E
Z

 
70.71 V 0

38.17 Ω 80.96
1.85 A 80.96

T
1

1

1

= =
∠ °

∠ °
= ∠− °

I RV  0 1.85 A 80.96 6 Ω 0R 11
θ( )( ) ( )( )= ∠ ∠ ° = ∠− ° ∠ °

11.10 V 80.96= ∠− °

I XV  90 1.85 A 80.96 37.7 Ω 90L L11 1
θ ( )( ) ( )( )= ∠ ∠ ° = ∠− ° ∠ °

69.75 V 9.04= ∠ °
The average power is

P I R 1.85 A 6 Ω 20.54 W1 1
2 2( ) ( )= = =

For the second harmonic E 29.98 V 90 ,   754 :2 ω( )= ∠− ° =  
The phase angle of E 2 was changed to 90− °  to give it the same polarity 
as the input voltages E 0 and E .1  We have

ω ( )( )= = =X L  754 rad/s 0.1 H 75.4 ΩL2

jZ  6 Ω 75.4 Ω 75.64 Ω 85.45T2
= + = ∠ °

I
E
Z

 
29.98 V 90

75.64 Ω 85.45
0.396 A 174.45

T
2

2

2

= =
∠− °
∠ °

= ∠− °

I RV  0 0.396 A 174.45 6 Ω 0R 22
θ( )( ) ( )( )= ∠ ∠ ° = ∠− ° ∠ °

2.38 V 174.45= ∠− °

I XV  90 0.396 A 174.45 75.4 Ω 90L L22 2
θ ( )( ) ( )( )= ∠ ∠ ° = ∠− ° ∠ °

= ∠− °29.9 V 84.45

VR

6 V

+ –

I1 I2

L  =  0.1 H VL

+

–

I0

E0  =  63.6 V

E1  =  70.71 V ∠ 08
+

–

E2  =  29.98 V ∠ 908
+

–

v  =  377 rad/s

2v  =  754 rad/s

ZT

+

–

FIG. 26.28 
Circuit in Fig. 26.27 with the components of the Fourier series input.
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The average power is

P I R 0.396 A 6 Ω 0.941 W2 2
2 2( ) ( )= = =

The Fourier series expansion for i is

+ − ° + − °= t ti 10 6 2(1 85) sin(377 80.96 ) 2 (0 396) sin (754 174 45 ). . . .

and

I 10 77 A10.6 A 1.85 A 0.396 A .rms
2 2 2( ) ( ) ( )= + + =

The Fourier series expansion for Rυ  is

υ + − ° + − °= t t63 6 2 (11 10) sin(377 80 96 2 (2 38) sin (754 174 45 ). . . . .R

and

V 64 61 V63.6 V 11.10 V 2.38 V .R
2 2 2

rms
( ) ( ) ( )= + + =

The Fourier series expansion for Lυ  is

υ ° + − °= + tt2 (69 75)sin(377 9 04 ) 2 (29 93)sin(754 84 45 ). . . .L

and   V 75 90 V69.75 V 29.93 V .L
2 2

rms
( ) ( )= + =

The total average power is

P I R P P P695 96 W10.77 A 6 Ω .T rms
2 2

0 1 2( )( )= = = = + +

26.7 ADDITION AND SUBTRACTION 
OF NONSINUSOIDAL WAVEFORMS
The Fourier series expression for the waveform resulting from the addition 
or subtraction of two nonsinusoidal waveforms can be found using phasor 
algebra if the terms having the same frequency are considered separately.

For example, the sum of the following two nonsinusoidal waveforms 
is found using this method:

�υ ( )= + + + + °t t  30 20 sin  20 5 sin 60 301

t t t  60 30 sin  20 20 sin  40 10  cos  602υ = + + +

1. dc terms:    

 V 30 V 60 V 90 VT0
= + =

2. ω = 20:

V 30 V 20 V 50 VT max1
= + =( )

and         t50 sin  20T1
υ =

3. ω = 40:
t20 sin  40T2

υ =

4. ω = 60:

t5 sin 60 30 0.707 5  V 30 3.54 V 30( ) ( )( )+ ° = ∠ ° = ∠ °

t t 10 cos  60 10 sin 60 90 0.707 10  V 90( ) ( )( )= + ° ⇒ ∠ °

7.07 V 90= ∠ °

V  3.54 V 30 7.07 V 90T3
= ∠ ° + ∠ °

j j j3.07 V 1.77 V 7.07 V 3.07 V 8.84 V= + + = +

V  9.36 V 70.85T3
= ∠ °
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and  υ ( )= + °t13.24 sin 60 70.85T3

with

υ υ υ + + + + °= + = t t90 50 sin 20 20 sin 40 13 24 sin(60 70 85 )        .   .T 1 2 tt

PROBLEMS

SECTION 26.2  Fourier Series

 1. Which of the following are present in the Fourier series rep-
resentation of the waveforms shown in Figure 26.29 (I-IV)?
a. dc term
b. cosine terms
c. sine terms
d. even-ordered harmonics
e. odd-ordered harmonics

 2. If the Fourier series for the waveform in Fig. 26.30(a) is

π
ω ω ω= + − + +i

I
t t t

2
(1 2

3
cos 2 2

15
cos 4 2

35
cos 6 . . .m

find the Fourier series representation for waveforms (b)  
through (d).

f (t)

–T T
2

– T
2

0 T t

Am

Am

(I)

t

f (t)

–T 0 T t

A1

(III)

A2
3
4 T

T
4

T
4

–3
4

– T

f (t)

0 t

(IV)

Am

Am

Am

T2
3 T

T
3

T
3

–

f (t)

T
2

– T
2

0 T

(II)

3
2 T

FIG. 26.29 
Problem 1.

 3. Sketch the following nonsinusoidal waveforms with 
tα ω=  as the abscissa:

a. 4 2 sinυ α= +
b. (sin   )2υ α=
c. i 2 2 cos α= −

 4. Sketch the following nonsinusoidal waveforms with α  as 
the abscissa:
a. i 3 sin  6  sin  2α α= −
b. 2 cos  2  4 sinυ α α= +

 5. Sketch the following nonsinusoidal waveforms with tω  as 
the abscissa:
a. i t t50 sin   25 sin  3ω ω= +
b. i 50 sin   25 sin  3α α= −
c. i t t t4 3 sin   2 sin  2 1 sin  3ω ω ω= + + −
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SECTION 26.5  Fourier Spectrum

 6. Sketch the Fourier spectrum for the waveforms of  
Fig. 26.10(a) and Fig. 26.10(b).

 7. Sketch the Fourier spectrum for the waveform of  
Example 26.4.

 8. Sketch the Fourier spectrum for the waveform of Fig. 26.24.

SECTION 26.6  Circuit Response to a  
Nonsinusoidal Input

 9. Find the average and effective values of the following non-
sinusoidal waves:
a. υ ω ω= + +t t100 50 sin 25 sin 2
b. i t t3 2 sin 53 0.8 sin 2 70ω ω( ) ( )= + − ° + − °

 10. Find the rms value of the following nonsinusoidal waves:
a. t t t20 sin   15 sin  2 10 sin  3υ ω ω ω= + −
b. ω ω ω( ) ( )= + ° + + ° −

+ °
i t t t6 sin 20 2 sin 2 30 1 sin(3

60 )
 11. Find the total average power to a circuit whose voltage and 

current are as indicated in the following nonsinusoidal 
waves:

t t85 52 sin   30 sin  2υ ω ω= + +

ω ω( ) ( )= + + ° + − °i t t5 4 sin 60 0.7 sin 2 45

 12. Find the total average power to a circuit whose voltage and 
current are as indicated in the following nonsinusoidal 
waves:

t t t25 sin   10 sin  2 5 sin  3υ ω ω ω= + −
ω ω

ω

( ) ( )= + ° + − °

− + °

i t t

t

5 sin 20 4 sin 2 30

2 sin(3 80 )

 13. The Fourier series representation for the input voltage to the 
circuit in Fig. 26.31 is

e t18 30 sin  400= +

(a)

(c)

0

i

Im

vt vt

vt

vt

0

Im—–
2

Im—–
2

i

(b)

(d)

0

i

Im

0

i

Im

FIG. 26.30 
Problem 2.

e

vR

R  =  12 V
+

–

vL

i

L  =  0.02 H

FIG. 26.31 
Problems 13, 14, and 15.

e

vR

R  =  15 V
+

–

vC

i

C  =  125 mF

FIG. 26.32 
Problem 16.

a. Find the nonsinusoidal expression for the current i.
b. Calculate the rms value of the current.
c. Find the expression for the voltage across the resistor.
d. Calculate the rms value of the voltage across the resistor.
e. Find the expression for the voltage across the reactive 

element.
f. Calculate the rms value of the voltage across the reac-

tive element.
g. Find the average power delivered to the resistor.

 14. Repeat Problem 13 for

e t t24 30 sin  400 10 sin  800= + +

 15. Repeat Problem 13 for the following input voltage:

e t t60 20 sin  300 10 sin  600= − + −

 16. Repeat Problem 13 for the circuit in Fig. 26.32.

M26_BOYL0302_14_GE_C26.indd   1101M26_BOYL0302_14_GE_C26.indd   1101 01/03/23   8:05 AM01/03/23   8:05 AM



1102 | | | NnsnnNsidal  si nsin

NON

 *17.  The input voltage in Fig.  26.33(a) to the circuit in 
Fig. 26.33(b) is a full-wave rectified signal having the fol-
lowing Fourier series expansion:

e t t 
2 (100 V)

  1 2
3

 cos 2 2
15

 cos 4
π

ω ω( )( )
= + −

ω( )+ +t2
53

 cos 6 . . .

where 377.ω =
a. Find the Fourier series expression for the voltage oυ  

using only the first three terms of the expression.
b. Find the rms value of .oυ
c. Find the average power delivered to the 1 kΩ resistor.

i1

is

i2

FIG. 26.35 
Problem 20.

e
+

–

v1+ –

v2

+

–

FIG. 26.36 
Problem 21.

e
100 V

0 vt

(a)

1 kV0.1 H
+
vo
–

1 mF

+
e
–

(b)

p
2

p3
2

– p
2

FIG. 26.33 
Problem 17.

 *18.  Find the Fourier series expression for the voltage oυ  in 
Fig. 26.34.

FIG. 26.34 
Problem 18.

i

(a)

0 p 2p 3p
vt

–p

v  =  377
10 mA

200 V1.2 mH
+
vo

–

200 mF

i

(b)

SECTION 26.7  Addition and Subtraction of 
Nonsinusoidal Waveforms

 19. Perform the indicated operations on the following nonsinu-
soidal waveforms:

a. ω ω ω

ω ω ω

( )

[ ]

+ + + ° + +

° + + − +

t t t

t t t

[60 70 sin  20 sin 2 90 10 sin(3

60 )] 20 30 sin   20 cos  2 5 cos  3

b. α α α

α α

( )

( ]

+ + − ° + +

° − − + − °

[20 60 sin   10 sin 2 180 5 cos(3

90 )] [5 10 sin   4 sin 3 30 )

 20. Find the nonsinusoidal expression for the current is of the 
diagram in Fig. 26.35.

i t t15 45 sin 20 0.5  sin 40 902 ( )= + − + °  

i t t25 5  sin 20 90 0.5  sin 40 301 ( ) ( )= + + ° + + °

21.  Find the nonsinusoidal expression for the voltage e of the  
diagram in Fig. 26.36.

υ = − + +t t t30 300  sin 600 100 cos 1200 75  sin 18001

υ ( ) ( )= − + + ° + + °t t20 250  sin 600 30 50  sin 1800 602

M26_BOYL0302_14_GE_C26.indd   1102M26_BOYL0302_14_GE_C26.indd   1102 01/03/23   8:05 AM01/03/23   8:05 AM



NON

GalNnndiY | | | 1103

GLOSSARY

Axis symmetry A sinusoidal or nonsinusoidal function that has 
symmetry about the vertical axis.

Even harmonics The terms of the Fourier series expansion that 
have frequencies that are even multiples of the fundamental 
component.

Fourier series A series of terms, developed in 1826 by Baron 
Jean Fourier, that can be used to represent a nonsinusoidal 
function.

Fundamental component The minimum frequency term 
 required to represent a particular waveform in the Fourier 
 series expansion.

Half-wave (mirror) symmetry A sinusoidal or nonsinusoidal 
function that satisfies the relationship 

f t f t T 
2( )( ) = − +

Harmonic terms The terms of the Fourier series expansion that 
have frequencies that are integer multiples of the fundamental 
component.

Nonsinusoidal waveform Any waveform that differs from the 
fundamental sinusoidal function.

Odd harmonics The terms of the Fourier series expansion that have 
frequencies that are odd multiples of the fundamental component.

Point symmetry A sinusoidal or nonsinusoidal function that sat-
isfies the relationship f f .α α( ) ( )= − −
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Appendix A
CONVERSION FACTORS

To Convert from To Multiply by

Btus Calorie-grams

Ergs

Foot-pounds

Hp-hours

Joules

Kilowatthours

Wattseconds

251.996

1.054 1010×
777.649

0.000393

1054,35

0.000293

1054.35

Centimeters Angstrom units

Feet

Inches

Meters

Miles (statute)

Millimeters

1 108×
0.0328

0.3937

0.01

6.214 10 6× −

10

Circular mils Square centimeters

Square inches

5.067 10 6× −

7.854 10 7× −

Cubic inches Cubic centimeters

Gallons (U.S. liquid)

16.387

0.00433

Cubic meters Cubic feet 35.315

Days Hours

Minutes

Seconds

24

1440

86,400

Dynes Gallons (U.S. liquid)

Newtons

Pounds

264.172

0.00001

2.248 10 6× −

Electronvolts Ergs 1.60209 10 12× −

Ergs Dyne-centimeters

Electronvolts

Foot-pounds

Joules

Kilowatthours

1.0

6.242 1011×
7.376 10 8× −

1 10 7× −

2.777 10 14× −

Feet Centimeters

Meters

30.48

0.3048

Foot-candles Lumens/square foot

Lumens/square meter

1.0

10.764

Foot-pounds Dyne-centimeters

Ergs

Horsepower-hours

Joules

Newton-meters

1.3558 10 7×
1.3558 10 7×
5.050 10 7× −

1.3558
1.3558

Gallons (U.S. liquid) Cubic inches

Liters

Ounces

Pints

231

3.785

128

8
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To Convert from To Multiply by

Gauss Maxwells/square centimeter

Lines/square centimeter

Lines/square inch

1.0

1.0

6.4516

Gilberts Ampere-turns 0.7958

Grams Dynes

Ounces

Pounds

980.665

0.0353

0.0022

Horsepower Btus/hour

Ergs/second

Foot-pounds/second

Joules/second

Watts

2547.16

7.46 10 9×
550.221

746

746

Hours Seconds 3600

Inches Angstrom units

Centimeters

Feet

Meters

2.54 108×
2.54

0.0833

0.0254

Joules Btus

Ergs

Foot-pounds

Horsepower-hours

Kilowatthours

Wattseconds

0.000948

1 10 7×
0.7376

3.725 10 7× −

2.777 10 7× −

1.0

Kilograms Dynes

Ounces

Pounds

980,665

35.2

2.2

Lines Maxwells 1.0

Lines/square centimeter Gauss 1.0

Lines/square inch Gauss

Webers/square inch

0.1550

1 10 8× −

Liters Cubic centimeters

Cubic inches

Gallons (U.S. liquid)

Ounces (U.S. liquid)

Quarts (U.S. liquid)

1000.028

61.025

0.2642

33.815

1.0567

Lumens Candle power (spher.) 0.0796

Lumens/square centimeter Lamberts 1.0

Lumens/square foot Foot-candles 1.0

Maxwells Lines

Webers

1.0

1 10 8× −

Meters Angstrom units

Centimeters

Feet

Inches

Miles (statute)

1 1010×
100

3.2808

39.370

0.000621
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To Convert from To Multiply by

Miles (statute) Feet

Kilometers

Meters

5280

1.609

1609.344

Miles/hour Kilometers/hour 1.609344

Newton–meters Dyne–centimeters

Kilogram-meters
1 10 7×
0.10197

Oersteds Ampere-turns/inch

Ampere-turns/meter

Gilberts/centimeter

2.0212

79.577

1.0

Quarts (U.S. liquid) Cubic centimeters

Cubic inches

Gallons (U.S. liquid)

Liters

Pints (U.S. liquid)

Ounces (U.S. liquid)

946.353

57.75

0.25

0.9463

2

32

Radians Degrees 57.2958

Slugs Kilograms

Pounds

14.5939

32.1740

Watts Btus/hour

Ergs/second

Horsepower

Joules/second

3.4144

1 10 7×
0.00134

1.0

Webers Lines

Maxwells

1 108×
1 108×

Years Days

Hours

Minutes

Seconds

365

8760

525,600

3.1536 10 7×

Z01_BOYL0302_14_GE_APP1.indd   1108Z01_BOYL0302_14_GE_APP1.indd   1108 01/03/23   5:33 PM01/03/23   5:33 PM



Appendix B
DETERMINANTS

Determinants are used to find the mathematical solutions for the 
 variables in two or more simultaneous equations. Once the procedure is 
properly understood, solutions can be obtained with a minimum of time 
and effort and usually with fewer errors than when using other 
methods.

Consider the following equations, where x and y are the unknown 
variables and a a b b c,   ,   ,   ,   ,1 2 1 2 1  and c2 are constants:

 a x b y c

a x b y c

Col.1 Col.2 Col.3

1 1 1

2 2 2

+ =

+ =

 (B.1a) 
  (B.1b)

It is certainly possible to solve for one variable in Eq. (B.1a) and sub-
stitute into Eq. (B.1b). That is, solving for x in Eq. (B.1a) gives

x
c b y

a
1 1

1

=
−

and substituting the result in Eq. (B.1b) gives

a
c b y

a
b y c2

1 1

1
2 2

−





 + =

It is now possible to solve for y since it is the only variable  remaining, 
and then substitute into either equation for x. This is acceptable for two 
equations, but it becomes a very tedious and lengthy process for three or 
more simultaneous equations.

Using determinants to solve for x and y requires that the following 
formats be established for each variable:

 

= =x

c b

c b

a b

a b

y

a c

a c

a b

a b

Col. Col.
1 2

Col. Col.
1 2

1 1

2 2

1 1

2 2

1 1

2 2

1 1

2 2

 (B.2)

First note that only constants appear within the vertical brackets, and that 
the denominator of each is the same. In fact, the denominator is simply 
the coefficients of x and y in the same arrangement as in Eqs. (B.1a) and 
(B.1b). When solving for x, replace the coefficients of x in the numerator 
by the constants to the right of the equal sign in Eqs. (B.1a) and (B.1b), 
and repeat the coefficients of the y variable. When solving for y, replace 
the y coefficients in the numerator by the constants to the right of the 
equal sign, and repeat the coefficients of x.

Each configuration in the numerator and denominator of Eq. (B.2) is 
referred to as a determinant (D), which can be evaluated numerically in 
the following manner:
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D

a b

a b
a b a b

Col.
1

Col.
2

Determinant 1 1

2 2
1 2 2 1= = = −

 (B.3)

The expanded value is obtained by first multiplying the top left ele-
ment by the bottom right and then subtracting the product of the lower 
left and upper right elements. This particular determinant is referred to as 
a second-order determinant since it contains two rows and two columns.

It is important to remember when using determinants that the col-
umns of the equations, as indicated in Eqs. (B.1a) and (B.1b), must be 
placed in the same order within the determinant configuration. That is, 
since a1 and a2  are in column 1 of Eqs. (B.1a) and (B.1b), they must be 
in column 1 of the determinant. (The same is true for b1 and b2 .)

Expanding the entire expression for x and y, we have the following:

 x

c b

c b

a b

a b

c b c b
a b a b

1 1

2 2

1 1

2 2

1 2 2 1

1 2 2 1

= =
−
−

 (B.4a)

 y

a c

a c

a b

a b

a c a c
a b a b

1 1

2 2

1 1

2 2

1 2 2 1

1 2 2 1

= =
−
−

 (B.4b)

EXAMPLE B.1 Evaluate the following determinants:

a. 22 2
3 4

2 4 3 2 8 6( )( ) ( )( )= − = − =

b. 144 1
6 2

4 2 6 1 8 6( )( ) ( )( )− = − − = + =

c. 40 2
2 4

0 4 2 2 0 4 −( )( ) ( )( )−
−

= − − − = − =

d. 00 0
3 10

0 10 3 0( )( ) ( )( )= − =

EXAMPLE B.2 Solve for x and y:

+ =
+ =

x y

x y

2 3

3 4 2
Solution:

x 2

3 1
2 4

2 1
3 4

3 4 2 1
2 4 3 1

12 2
8 3

10
5

( )( ) ( )( )

( )( ) ( )( )
= = −

−
= −

−
= =

y 1

2 3
3 2
5

2 2 3 3
5

4 9
5

5
5

−( )( ) ( )( )
= = − = − = − =
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Check:

( )

( )

( )( ) ( )

( )( ) ( )( )

+ = + −
= − =

+ = + −
= − =

x y

x y

2 2 2 1

4 1 3 checks

3 4 3 2 4 1

6 4 2 checks

EXAMPLE B.3 Solve for x and y:

− + =
− = −

x y

x y

2 3 

3 2 2

Solution: In this example, note the effect of the minus sign and the use 
of parentheses to ensure that the proper sign is obtained for each product:

( )( ) ( )( )

( )( ) ( )( )
=

− −

−
−

= − − −
− − −

= − +
−

= −
−

=

x

1
2

3 2
2 2

1 2
3 2

3 2 2 2
1 2 3 2

6 4
2 6

2
4

( )( ) ( )( )
=

−
−

−
= − − −

−

= −
−

= −
−

=

y

7
4

1 3
3 2

4
1 2 3 3

4

2 9
4

7
4

EXAMPLE B.4 Solve for x and y:

= −

= − +

x y

y x

3 4  

20 1 3

Solution: In this case, the equations must first be placed in the format 
of Eqs. (B.1a) and (B.1b):

+ =

− + = −

x y

x y

4 3

3 20 1

( )( ) ( )( )

( )( ) ( )( )
=

−

−

= − −
− −

= +
+

= =

x

2

3 4
1 20

1 4
3 20

3 20 1 4
1 20 3 4

60 4
20 12

64
32

( )( ) ( )( )
=

− −
= − − −

= − + = =

y

1
4

1 3
3 1

32
1 1 3 3

32
1 9
32

8
32
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The use of determinants is not limited to the solution of two simultane-
ous equations; determinants can be applied to any number of simultaneous 
linear equations. First we examine a shorthand method that is applicable to 
third-order determinants only since most of the problems in the text are 
limited to this level of difficulty. We then investigate the general procedure 
for solving any number of simultaneous equations.

Consider the three following simultaneous equations

a x b y c z d

a x b y c z d

a x b y c z d

Col.1 Col.2 Col.3 Col.4

1 1 1 1

2 2 2 2

3 3 3 3

+ + =

+ + =

+ + =

in which x, y, and z are the variables, and a b c,   ,   ,1, 2, 3 1, 2, 3 1, 2, 3  and d1, 2, 3 
are constants.

The determinant configuration for x, y, and z can be found in a man-
ner similar to that for two simultaneous equations. That is, to solve for x, 
find the determinant in the numerator by replacing column 1 with the 
elements to the right of the equal sign. The denominator is the determi-
nant of the coefficients of the variables (the same applies to y and z). 
Again, the denominator is the same for each variable. We have

= = =x

d b c

d b c

d b c

D
y

a d c

a d c

a d c

D
z

a b d

a b d

a b d

D
, ,

1 1 1

2 2 2

3 3 3

1 1 1

2 2 2

3 3 3

1 1 1

2 2 2

3 3 3

where D

a b c

a b c

a b c

1 1 1

2 2 2

3 3 3

=

A shorthand method for evaluating the third-order determinant con-
sists of repeating the first two columns of the determinant to the right of 
the determinant and then summing the products along specific diagonals 
as follows:

D

a b c

a b c

a b c

a

a

a

b

b

b

1 1 1

2 2 2

3 3 3

1

2

3

1

2

3

=

The products of the diagonals 1, 2, and 3 are positive and have the 
following magnitudes:

 a b c b c a c a b1 2 3 1 2 3 1 2 3+ + +

The products of the diagonals 4, 5, and 6 are negative and have the 
following magnitudes:

 a b c b c a c a b3 2 1 3 2 1 3 2 1− − −

The total solution is the sum of the diagonals 1, 2, and 3 minus the 
sum of the diagonals 4, 5, and 6:

1( )+ 2( )+ 3( )+

6( )−5( )−4( )−
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 a b c b c a c a b a b c b c c c a b1 2 3 1 2 3 1 2 3 3 2 1 3 2 1 3 2 1( ) ( )+ + + − + +   (B.5)

Warning: This method of expansion is good only for third-order 
determinants! It cannot be applied to fourth- and higher-order systems.

EXAMPLE B.5 Evaluate the following determinant:

− → − −
1 2 3
2 1 0
0 4 2

1 2 3 1 2
2 1 0 2 1
0 4 2 0 4

Solution:

−

( )( )( ) ( )( )( ) ( )( )( )[ ]

( )( )( ) ( )( )( ) ( )( )( )[ ]

( ) ( ) ( ) ( )

+ + −
− + + −

= + − − + − = − − −

= − + = 14

1 1 2 2 0 0 3 2 4
0 1 3 4 0 1 2 2 2

2 0 24 0 0 8 22 8

22 8

EXAMPLE B.6 Solve for x, y, and z:

+ − = −
+ + = +
+ + =

x y z

x y z

x y z

1 0 2 1 

0 3 1 2 

1 2 3 0

Solution:

=

− − −

−
x

1 0 2 1 0
2 3 1 2 3
0 2 3 0 2

1 0 2 1 0

0 3 1 0 3
1 2 3 1 2

−

( )

( )( )( ) ( )( )( ) ( )( )( )[ ] ( )( )( ) ( )( )( ) ( )( )( )[ ]

( )( )( ) ( )( )( ) ( )( )( )[ ] ( )( )( ) ( )( )( ) ( )( )( )[ ]

( ) ( )

( )

= − + + − − − + − +
+ + − − − + +

= − + − − − +
+ + − − + +

= − +
+

= 15
13

1 3 3 0 1 0 2 2 2 0 3 2 2 1 1 3 2 0
1 3 3 0 1 1 2 0 2 1 3 2 2 1 1 3 0 0

9 0 8 0 2 0
9 0 0 6 2 0
17 2
9 4

=

− − −

y

1 1 2 1 1
0 2 1 0 2
1 0 3 1 0

13

9
13

1 2 3 1 1 1 2 0 0 1 2 2 0 1 1 3 0 1
13

6 1 0 4 0 0
13

5 4
13

( )

( )( )( ) ( )( )( ) ( )( )( )[ ] ( )( )( ) ( )( )( ) ( )( )( )[ ]

( )

= + − + − − − + + −

= − + − − + +

= + =

( )−

( )+

( )−

( )+ ( )+

( )−
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−

( )( )( ) ( )( )( ) ( )( )( )[ ] ( )( )( ) ( )( )( ) ( )( )( )[ ]

( ) ( )

= + + − − − + +

= + + − − + +

= − =
13
1

1 3 0 0 2 1 1 0 2 1 3 1 2 2 1 0 0 0
13

0 0 0 3 4 0
13

0 1
13

or from x y z0 3 1 2,+ + = +

z y 1
13

2 3 2 3 9
13

26
13

27
13( )= − = − = − = −

z

1 0 1 1 0
0 3 2 0 3
1 2 0 1 2

13
=

−

Check:

+ − = −

+ + = +

+ + =











− + + = −

+ + − = +

− + + − =











− = − √

= + √

− + = √

x y z

x y z

x y z

1 0 2 1

0 3 1 2

1 2 3 0

15
13

0 2
13

1

0 27
13

1
13

2

15
13

18
13

3
13

0

13
13

1

26
13

2

18
13

18
13

0

The general approach to third-order or higher determinants requires 
that the determinant be expanded in the following form. There is more 
than one expansion that will generate the correct result, but this form is 
typically used when the material is first introduced.

= = +











+ −












+ +











� ���� ����
� ������� �������

� ���� ����
� ������� �������

� ���� ����
� ������� �������

D

a b c

a b c

a b c

a
b c

b c b
a c

a c c
a b

a b

1 1 1

2 2 2

3 3 3

1

2 2

3 3

Minor

Cofactor

1

2 2

3 3

Minor

Cofactor

1

2 2

3 3

Minor

Cofactor

Multiplying  
factor

Multiplying  
factor

Multiplying  
factor

This expansion was obtained by multiplying the elements of the first 
row of D by their corresponding cofactors. It is not a requirement that 
the first row be used as the multiplying factors. In fact, any row or col-
umn (not diagonals) may be used to expand a third-order determinant.

The sign of each cofactor is dictated by the position of the multiply-
ing factors a b( ,   ,1 1  and c1 in this case) as in the following standard 
format:

+
↓

→ − +

− + −
+ − +
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Note that the proper sign for each element can be obtained by assigning 
the upper left element a positive sign and then changing signs as you 
move horizontally or vertically to the neighboring position.

For the determinant D, the elements would have the following signs:

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

+ − +

− + −

+ − +

a b c

a b c

a b c

1 1 1

2 2 2

3 3 3

The minors associated with each multiplying factor are obtained by 
covering up the row and column in which the multiplying factor is 
located and writing a second-order determinant to include the remaining 
elements in the same relative positions that they have in the third-order 
determinant.

Consider the cofactors associated with a1 and b1 in the expansion of 
D. The sign is positive for a1 and negative for b1 as determined by the 
standard format. Following the procedure outlined above, we can find 
the minors of a1 and b1 as follows:

a

a b c

a b c

a b c

b c

b c1 minor

1 1 1

2 2 2

3 3 3

2 2

3 3

= =( )

= =( )b

a b c

a b c

a b c

a c

a c1 minor

1 1 1

2 2 2

3 3 3

2 2

3 3

It was pointed out that any row or column may be used to expand the 
third-order determinant, and the same result will still be obtained. Using 
the first column of D, we obtain the expansion

= = +










+ −











+ +











D

a b c

a b c

a b c

a
b c

b c
a

b c

b c
a

b c

b c

1 1 1

2 2 2

3 3 3

1
2 2

3 3
2

1 1

3 3
3

1 1

2 2

The proper choice of row or column can often effectively reduce the 
amount of work required to expand the third-order determinant. For 
example, in the following determinants, the first column and third row, 
respectively, would reduce the number of cofactors in the expansion:

−

−

( )

( )=
−

= +






 + + = −

=

= = +






 + + +









= − + − = − + −

=

D

D

4

26

2 3 2
0 4 5
0 6 7

2 4 5
6 7

0 0 2 28 30

1 4 7
2 6 8
2 0 3

2 4 7
6 8

0 3 1 4
2 6

2(32 3 6 8) 2( 10) 3( 2
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EXAMPLE B.7 Expand the following third-order determinants:

a. = = +






 + −







 + +







D

1 2 3
3 2 1
2 1 3

1 2 1
1 3

3 2 3
1 3

2 2 3
2 1

1 6 1 3 6 3 2 2 6[ ] ( )[ ] [ ]= − + − − + −

5 3 3 2 4( ) ( )= + − + −

5 9 8= − −

−= 12

b. = = + −






 + +







D

0 4 6
2 0 5
8 4 0

0 2 4 6
4 0

8 4 6
0 5

0 2 0 24 8 20 0( )[ ] ( )[ ]= + − − + −

0 2 24 8 20( ) ( )= + +

48 160= +

208=
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Appendix C 
GREEK ALPHABET

Letter Capital Lowercase Some Applications

Alpha Α α Area, angles, coefficients
Beta Β β Angles, coefficients, flux density
Gamma Γ γ Specific gravity, conductivity
Delta ∆ δ Density, variation
Epsilon Ε ε Base of natural logarithms
Zeta Ζ ζ Coefficients, coordinates, impedance
Eta Η η Efficiency, hysteresis coefficient
Theta Θ θ Phase angle, temperature
Iota Ι ι
Kappa Κ κ Dielectric constant, susceptibility
Lambda Λ λ Wavelength
Mu Μ µ Amplification factor, micro, 

permeability
Nu Ν ν Reluctivity
Xi Ξ ξ
Omicron Ο ο
Pi Π π 3.1416
Rho Ρ ρ Resistivity
Sigma Σ σ Summation
Tau Τ τ Time constant
Upsilon Y υ
Phi Φ φ Angles, magnetic flux
Chi Χ χ
Psi Ψ ψ Dielectric flux, phase difference
Omega Ω ω Ohms, angular velocity

1117
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Appendix D 
MAGNETIC PARAMETER CONVERSIONS

SI (MKS) CGS English

Φ webers (Wb)  
   1 Wb

maxwells
10  maxwells8=

lines
10  lines8=

B T gauss
maxwells cm 2( )

lines in.2

1 T 1Wb m 2= 10 gauss4= 6.452 10 lines in.4 2= ×

A 1m 2 10 cm4 2= 1550 in.2=

oµ 4 10 Wb Am7π × − 1  gauss oersted= 3.20  lines Am=

f NI (ampere-turns, At) π ( )NI0.4 gilberts NI (At)
1 At 1.257 gilberts= 1 gilbert 0.7958 At−

H NI/l (At/m) lNI0.4 oerstedsπ ( ) lNI (At in.)�

1At/m 1.26 10 oersted2= × − = × −2.54 10 At in .2

Hg B7.97 10 At mg
5 ( )× B oerstedsg ( ) B0.313 (At in.)g

1118
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Appendix E
MAXIMUM POWER TRANSFER CONDITIONS

This appendix derives the maximum power transfer conditions for the 
situation where the resistive component of the load is adjustable but the 
load reactance is set in magnitude.*

For the circuit in Fig. E.1, the power delivered to the load is deter-
mined by

P
V

R
R

L

2
L=

FIG. E.1

ZTh

ZLRL

I

ZT

RTh

ETh

+

–

IXTh

XL

Applying the voltage divider rule gives

R
R R X X

V
E

90° 90°R
L Th

L Th Th L
L

=
+ + ∠ + ∠

The magnitude of VRL
 is determined by

V
R E

R R X X( ) ( )
R

L Th

L Th Th L
2 2L

=
+ + +

and

V
R E

R R X X( ) ( )R
L Th

L Th Th L

2
2 2

2 2L
=

+ + +

with

P
V

R
R E

R R X X( ) ( )
R

L

L Th

L Th Th L

2 2

2 2
L= =

+ + +

Using differentiation (calculus), we find that maximum power will be 
transferred when dP dR 0.L =  The result of the preceding operation is 
that

R R X X( ) [Eq.(19.21)]L Th Th L
2 2= + +

The magnitude of the total impedance of the circuit is

Z R R X X( ) ( )T Th L Th L
2 2= + + +

1119

*With sincerest thanks for the input of Professor Harry J. Franz of the Beaver Campus of 
Pennsylvania State University.
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Substituting this equation for RL  and applying a few algebraic 
maneuvers results in

Z R R R2T L L Th( )= +

and the power to the load RL  as

P I R
E
Z

R
E R

R R R

E
R R

E
R

2

4
2

 

4

L
Th

T
L

Th L

L L Th

Th

L Th

Th

2
2

2

2

2

2

av

( )

( )
= = =

+

= +

=

with R
R R

2
L Th

av =
+

Z05_BOYL0302_14_GE_APP5.indd   1120Z05_BOYL0302_14_GE_APP5.indd   1120 01/03/23   5:49 PM01/03/23   5:49 PM



Appendix F
ANSWERS TO SELECTED  
ODD-NUMBERED PROBLEMS

1121

Chapter 1

 1.  —
 3.  —
 5. (a) 96 mph (b) 119 km h
 7. (a) 139.33 ft s  (b) 0.43 s

(c) 40.91 mph
 9.  —
 11.  English: 73.4 F;°   

SI: 296.15 K
 13. (a) 155.76 lb (b) 65.91 kg

(c) 182.88 cm (d) 5 10.8′ ″

 15. (a) 14.6 (b) 56.0 (c) 1046.1
(d) 0.1 (e) 3.1

 17. (a) 14.603 (b) 56.042
(c) 1046.060 (d) 0.063
(e) 3.142

 19. (a) ×15 10 3  (b) × −5 10 3

(c) ×2.4 10 6 (d) ×60 10 3

(e) 402 10 6× −  (f) × −2 10 10

 21. (a) ×1 10 7  (b) 10−1

(c) ×1 10 9  (d) × −1 10 4

(e) 1 × 10−1 (f) ×1 10 20

23.  (a) × −10 10 3 (b) × −10 10 6

(c) ×10 10 6 (d) × −1 10 9

(e) ×1 10 42  (f) ×1 10 3

25.  (a) ×1 10 6  (b) × −10 10 3

(c) ×100 10 30  (d) × −1 10 63

27.  (a) 300 (b) ×2 10 5

(c) ×9 1012  (d) × −150 10 9

(e) ×24 1012  (f) ×800 1018

(g) ×5.64 10 4

 29.  Scientific (a) × −5.0 10 2

(b) ×4.5 101

(c) × −3.125 10 2

(d) ×3.142 10 0

  Engineering (a) × −50.0 10 3

(b) ×0.045 10 3

(c) × −31.25 10 3

(d) ×3.142 10 0

 31. (a) ×0.06 10 6  (b) × −400 10 6

(c) ×0.005 10 9

(d) ×1200 10 9

33.  (a) 90 s (b) 72 s
(c) 50 10 s3 µ×  (d) 160 mm
(e) 120 ns (f) 4629.6 days

35.  (a) 2.54 m (b) 1.22 m
(c) 26.70 N (d) 0.13 lb
(e) 4921.26 ft (f) 3.22 m

 37.  26.82 m s
 39.  3600 quarters
 41.  1382.4 m
 43.  44.82 min mi

45.  (a) 4.74 10 Btu3× −

(b) 7.1 10 m4 3× −

(c) 1.21 10 s5×
(d) 2113.38 pints

 47. 14.4
 49. 0.928
 51. 3.244
 53. ×1.20 1012

Chapter 2

 1.  —
 3. (a) 30.97 N (b) 0.31 N

(c) µ345  N
(d) 345 N:30.97 N 1:90, 000µ ≅

 5.  =F
F
42

1

 7. (a) 72 mN
(b) µ µ= =Q Q20  C,   40  C1 2

 9.  0.20 J
 11.  68.89 mJ
 13.  11.43 mA
 15.  2.88 C
 17.  3 s
 19.  7.49 10 electrons18×
 21.  29.48 mA
 23.  5.0 V
 25.  5.56 A
 27.  51.2 Ah
 29.  67% more energy and 67% more 

starting current with 75 Ah
 31.  13.89%
 33.  I = 500 mA, W = 172.8 kJ
 35.  —
 37. (a) 38.1 kV (b) 342.9 kV (c) 9:1

Chapter 3

 1. (a) 400 mils (b) 31.25 mils
(c) 200 mils (d) 787.4 mils
(e) 240 mils
(f) ×1.181 10 mils3

 3. (a) × −42.43 10 in.3

(b) × −28.98 10 in.3

(c)  0.205 in.
(d) × −44.72 10 in.3

(e) × −2.872 10 in.3

(f) × −77.46 10 in.3

 5. (a) 544 CM
(b) 23.32 10 in.3× −

 7. (a) 30.70 10 in.3× −

(b) larger
(c) smaller

 9. (a) 295.7 ft (b) 1.48 lb
(c) F: 40 221− ° → °

 11. (a) µ21.71  Ω  (b) µ35.59  Ω
 13.  883.54 mΩ
15.  (a) =# 9:# 12 2:1,  yes

(b) =Area:# 0:# 12 16.16:1,  
yes; =Amperage:# 0:# 12 7.5:1

17.  (a) #2 (b) #0
 19.  5.15 Ω
 21.  2.396 Ω
 23. (a) °45.45 C  (b) − °209.05 C
 25. (a) ≅ 0.00393 (b) °83.61 C
 27.  1.942 Ω
 29.  100.30 Ω
 31.  13.5 kΩ
 33.  —
 35. (a) Violet, Gray, Black, Silver

(b) Blue, Blue, Silver, Silver
(c) Yellow, Yellow, Orange, Silver
(d) Blue, Violet, Green, Silver

 37.  5320 Ω 5880 Ω, No−
 39. (a) 0.72 kΩ  (b) 2.2 kΩ

(c) 39 Ω (d) 0.12 MΩ
 41. (a) 629.69 mS (b) 384.11 mS
 43.  2000 S
 45.  —
 47.  —
 49. (a) µ21.71  Ω (b) µ35.59  Ω
 51.  0.1875 in.
 53.  —
 55.  —
 57.  —
 59. (a) 10 fc 3 kΩ, 100 fc 0.4 kΩ⇒ ⇒

(b) negative (c) no
(d) −321.43  Ω fc

Chapter 4

 1.  1.23 V
 3.  16 kΩ
 5.  1.0 V
 7.  54.55 Ω
 9.  32.61 Ω
 11.  1.2 kΩ
 13. (a) 12.63 Ω (b) 8.21 10 J6×
 15.  —
 17.  —
 19.  —
 21.  14 s
 23.  2.86 s
 25.  207.36 mW
 27.  V 14.39 V=  and I 208.51 mA=
 29.  208.33 V
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 31.  9.61 V
 33.  32 Ω, 120 V
 35.  70.71 mA, 1.42 kV
 37.  1440 J
 39.  8 h
 41. (a) 125 kW (b) 543.48 A

(c) 315 kWh
 43. (a) $4/day (b) 26.7 ¢ h

(c) 2.05 (d) 34 bulbs
(e) no

 45.  $49.14
 47. (a) 11 kW

(b) Yes, 11 kW 8.98 kW>
(c) 26.94 kWh

 49.  71.45¢
 51.  12.43 A
 53. (a) 166 W (b) 23.15%
 55. (a) 1657.78 W (b) 13.81 A

(c) 17.76 A
 57.  88%
 59.  91.11%
 61.  30%,   60%1 2η η= =

Chapter 5

 1.  (a) E and R1 (b) R1 and R2

(c) E R,   ,1 1  and E2

(d) E and R ;1  R R,   ,3 4  and R5

 3.  (a) 8.49 kΩ  (b) 12.1 Ω
(c) 11.4 Ω

 5.  (a) 7.7 kΩ  (b) 17.5 kΩ
 7.  (a) 167 Ω  (b) 5.32 kΩ
 9.  (a) 3.4 kΩ (b) 0 Ω (c) ∞ Ω
 11.  (a) the most: R ,3  the least: R1

(b) R ,3  93 kΩ, 0.645 mA
(c) V 1.42 V,1 =  V 4.39 V,2 =  
V 54.2 V3 =

 13.  I: (a) 4 A (b) 36 V (c) 3 Ω
(d) =V 18.8 V,4.7 Ω   

= =V V5.2 V,   12 V1.3 Ω 3 Ω

  II: (a) 3 mA (b) 25.5 V
(c) 3 kΩ (d) =V 6.6 V,2.2 kΩ  

= =V V9 V,   9.9 V3 kΩ 3.3 kΩ

 15.  (a) 333.33 mA, 0 V
  (b) 0 A, 53.33 V
 17.  R V V7 Ω, 6 V, 4 V,1 2= = =  

V E14 V,  24 V3 = =
 19.  (a) 1.25 A (b) 34.375 W  

(c) 27.5 V (d) all out!
 21.  (a) −1 V (b) −8 V (c) −1 V
 23.  (a) 2 kΩ, 10 V 

(b) 1.5 kΩ, 42 V
 25.  (a) 1.67 A (b) 6.68 V (c) 33.3 V
 27.  (a) = =V V8.6 V,  1.9 V1 2

(b) = =V V11 V,  7 V1 2

 29.  (a) 10 kΩ
(b) V V V V: 10:1, : 100:13 2 3 1= =
(c) =V 54.05 V3

(d) V 59.46 V=′

 31.  (a) = =V V12 V,  68 V,1 2   
=E 100 V

(b) = =V V40 V,  70 V1 3

 33.  V V I4 V, 5 V,  1 mA,2 4= = =
R E18 kΩ, 30 V3 = =

 35.  (a) = =R R160 Ω,   80 Ωxbulb

(b) 1
4

 W
 37.  V V16 V,  56 V,1 2= =

V 8 V3 =
 39.  (a) = =V V17 V,  21 V,a b  

= −V  4 Vab

(b) = − =V V6 V,  10 V,a b  
= −V 16 Vab

(c) = − = −V V5 V,  8 V,a b  
=V 3 Vab

 41.  (a) V V27 V,  31.5 V,a b= =  
V V V40.5 V,  13.5 V,  0 Vc d e= = − =
(b) V V4.5 V,  54 V,ab dc= − = −  

=V 9 V,cb

(c) V V13.5 V,  45 Vac db= − = −
 43.  = =R R2.25 kΩ,   0.75 kΩ,2 3

= =R R1.25 kΩ,   2 kΩ4 1

 45.  = = =V V V0 V, 15 V, 4 V,0 4 7

= =V V12 V,  12 V,10 23  
= − =V V8 V,  0 V,30 67  
= − =V I1 V,  3 A56

 47.  (a) 2.86 Ω (b) 8.93%
 49.  (a) 3.33 mA

(b) 3.17 mA
(c) Not for most applications.

Chapter 6

 1.  (a) R2 and R3  (b) E and R3

(c) R2 and R3  (d) R2 and R3

 3.  (a) R3  and R4

(b) E and R R,  1 6  and R7

 5.  (a) 2 kΩ  (b) 2.5 Ω (c) 1.998 Ω
 7.  (a) 8.2 Ω  (b) 18 kΩ

(c) 6.8 kΩ
 9.  (a) 2.2 kΩ (b) about 2 kΩ

(c) 2.048 kΩ (d) 2.063 kΩ
(e) reduced

 11.  120 Ω
 13.  (a)  I I5 A,   1.667 A,1 2= =  

I 0.417 A3 =
(b) 2.83 Ω (c) 7.07 A (d) 7.07 A
(e) They match

 15.  (a) ≅ 900 Ω  (b) 862.07 Ω
(c) I 3 the most, I 4 the least
(d) I I3.0 mA, 6.0 mA,R R1 2

= =  
= =I I60.0 mA, 0.66 mA.R R3 4

(e) = =I I69.6 mA, 69.66 mA3 5  
(checks)  (f) always greater

 17. (a) 26.83 V (b) 8.943 Ω
(c) 2.236 A (d) 9.708 A
(e) 260.5 W
(f) P P59.99 W, 80.49 WR R1 2

= =
(g) P 260.5 Ws =  (checks) 

 19.  (a) 48 V (b) 2.67 mA
(c) 22.67 mA (d) 192 mW

 21.  —
 23.  (a) 66.67 mA (b) 225 Ω

(c) 0.533 A (d) 8 W (e) 64 W
(f) none, I s  drops by 66.67 mA

 25.  (a) = =I I2.5 A, 10 A,bulbs micro  
= =I I2.67 A, 208.33 mATV DVD

(b) 15.38 A, no (c) 7.8 Ω
(d) 1845.60 W, same

 27.  I I15 mA,   1 mAs 2= =
 29.  (a) = =I I5 A,   3 A,2 3  

= =I I 8 As4

(b) = =I I40 mA,   16 mA,s 3  
= =I I24 mA,   40 mA4 5

 31. (a) R I R5 Ω, 1 A, 10 Ω1 2= = =
(b) E I12 V,   1.33 A,2= =  
I R I1 A, 12 Ω, 4.33 A,3 3= = =

=R 2.77 ΩT

 33. I I1.8 A, 13.5 A,2 3= =
I I1.35 A, 25.65 AT4 = =

 35.  (a) = =I I3.27 A,   1.64 A,1 2

= =I I1.09 A,   6 A3 4

(b) I I2.67 A, 5.33 A,1 2= =
I I2.67 A, 8 A3 4= =

 37.  (a) = = =I I I13 A,   12 A2 1

(b) = = =I I I24 mA, 12 mA,3 2  
=I 8 mA1

 39.  R R2.154 kΩ,   1.077 kΩ,1 2= =
R 0.538 kΩ3 =

 41.  I I I2 A, 4 A1 2 3= = =
 43.  (a) =V 16.48 V2

(b) =V 16.47 V2   
(c) =V 16.32 V2

  (d) —
      (a) =V 13.33 V2

    (b) =V 13.25 V2

    (c) =V 11.43 V2

(e) —
 45.  6 kΩ resistor not connected at one 

or both ends
 47.  (a) open-circuit

(b) = +E 4 V2

Chapter 7

 1.  (a) R R,   ,1 2  and E in series; 
R R,   ,3 4 and R5 in parallel
(b) E and R1 in series; R R,   ,2 3 and 
R4 in parallel
(c) E and R1 in series; R2 and R4 
in parallel

 3.  (a) 12.44 Ω  (b) 15 Ω
(c) 11.65 Ω

 5.  2.782 kΩ
 7.  (a) yes (b) 6 A (c) yes

(d) 6 V (e) 3.73 Ω  (f) 1 A
(g) 20 W

 9.  (a) I I4 A,   1.333 A3 4= =
(b) V V44 V,   36 V1 3= =

 11.  (a) V V24 V,   30 V anda b= =  
V 21 Vc =
(b) I I3 mA 11 mA1 2= =

 13.  15 Ω, 30 Ω
 15.  (a) I I16 mA, 2.33 mA,s 2= =  

=I 2 mA6

(b) = =V V28 V,   7.2 V1 5

(c) 261.33 mW
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 17.  I I638.3 mA, 209.0 mA1 2= =
 19.  (a) 1.25 A

(b) 
(c) 6.426 V

 21.  (a) 2 A (b) 0 V (c) 2 A
 23.  (a) = − = −V V6 V,   20 Va b

(b) 9 A (c) 14 V
 25.  11.25 Ω
 27.  (a) 24 A (b) 8 A

(c) = =V V48 V,   24 V,3 5  
=V 16 V7

(d) = =P P128 W, 5760 Ws7

 29.  (a) 76.8 V
(b) = =R R4 kΩ,   4 kΩL L2 3

(c) R R0.9 kΩ, 0.8 kΩ,1 2= =  
R 2.67 kΩ3 =

 31.  = =

= =

R R

P P

390 Ω,   270 Ω,  

16.4 W,   5.93 W
1 2

1 2

 33.  (a) = =V V32 V,   8 Vab bc

(b) = =V V31.51 V, 8.49 Vab bc

(c) 16.02 W (d) 16 W
 35.  (a) no

(b) 6 kΩ resistor “open”
 37.  (a) 12 A (b) 0.5 A (c) 0.5 A

(d) 6 A
 39.  150 mA: R 1 Ω;shunt =   

300 mA: R 0.5 Ω;shunt =  
600 mA: R 0.25 Ωshunt =

 41.  2 V: R 1 kΩ;s =   
20 V: R 19 kΩ;s =   
200 V: R 199 kΩs =

 43.  (a) R 23 kΩs =
(b) 8.33 Ω, 25 kΩ, 75 kΩ

 45.  (a) 1 kΩ (b) 6 Ω

Chapter 8

 1.  (a) I I6.4 A,   1.6 A1 2= =
(b) 12.8 V

 3.  36 V
 5.  V I2.91 V,   0.18 A3 2= =
 7.  (a) I R4.23 A,   5.2 Ωp= =

(b) I R2.73 mA,   4.4 kΩp= =
 9.  (a) 10.36 mA (b) 10.36 mA
 11.  (a) 5.6 A (b)  44.8 V
 13.  (a) 7 A (b) −7 V  (c) 1.17 A

 15.  (a) I CW  A,R
1
71

( ) = −  

I CCW  A,R
5
72

( ) =  

I down  AR
4
73

( ) =

(b) 4.57 V
 17.  ( ) =I cw 2.02 mA,R1  

( ) =I ccw 11.01 mA,R2  
( ) =I down 13.03 mAR3

 19.  ( )= −I 382.2 mA CWR3

 21.  (a) ( )=I 4.75A CCW ,E1
 

( )=I 5.0 A upE2
(b) = =P P60 W, 750 mWE R2 3

 23.  (a) I CW 2.03 mA,R1
( ) =  

I I CW 1.23 mA,R R3 4
( )= =  

I CCW 0.8 mAR2
( ) =

(b) =V 4.65 Va

 25.  (a) —
(b) All cw: I 0.88 mA,1 =  
I 1.51 mA,2 = −  I 0.71 mA3 = −
(c) downI 2.39 mA,E1

( ) =  
upI 0.71 mAE2

( ) =
 27.  (a) —

(b) All cw: top left, 
I 0.597 mA;1 = −  top right, 
I 2.13 mA;2 = −  bottom left, 
I 2.27 mA;3 = −  bottom right, 
I 2.03 mA4 = −  (c) 9.18 W

 29.  (a) I I63.02 A, 4.42 mA,B Cµ= =  
=I 4.48 mAE

(b) = =V V2.98 V, 2.28 V,B E  
=V 10.28 VC  (c) 70.14

 31.  = =I I5.53 A,   2.47 A,4Ω 6Ω

= =I I0.53 A,   8.53 A8Ω 1Ω

 33.  (a) — (b) 4.0 A (up) 
 35.  (a) —

(b) All cw: I 4.873 A,1 =  
I 382.2 mA,2 = −  
 I 1.739 A3 = −
(c) ( )=I 5.5 A downR2

 37.  (a) — (b) −7 V
 39.  (a) —

(b) All cw: =I 3.884 A,1  
= − =I I0.174 A,   1.01 A2 3

(c) = =V V0 V,   8.08 Va b

(d) = −V 8.08 Vab

 41.  (a) — (b) = −V 10.27 V,1  
= −V 11.36 V2

(c) 1.09 V
(d) I up 5.14 A,2Ω( ) =  
I up 2.84 A4Ω( ) =

 43.  (a) —
(b) = =V V4.8 V,   6.4 V1 2

(c) 22.4 W
 45.  (a) —

(b) V V14.86 V, 12.57 V1 2= − = −
(c) I up 2.48 A6Ω( ) =

 47.  (a) —
(b) = − =V V5.43 V, 8.53 V1 2

(c) −13.96 V
 49.  3 A 

V V V6.92 V, 12 V, 2.3 V1 2 3= − = =
 51.  = =V V48 V,   64 V1 2

 53.  (a) V 20.44 V,1 = −  
V 29.78 V2 = −
(b) V 44.68 V6Ω ( )= − + −

 55.  (a) left to right: = −V 6.55 V,1  
= − = −V V3.11 V,   1.24 V2 3

(b) I up 0.728 A9Ω( ) =
 57.  (a) one node: =V 8.12 V1

(b) = − = −V V 8.12 Vab 1

 59.  (a) — (b) =I 91 mAR5

(c) no (d) no

 61.  (a) — (b) 0 mA (c) yes
(d) yes

 63.  I 5 mAs =

 65.  7.36 A
 67.  26.67 mA
 69.  0.83 mA
 71.  4.2 Ω

Chapter 9

 1.  (a) 0.082 A (up) (b) 0.082 A (up)
(c) same

 3.  1.412 A
 5.  =∓V 4.6 VR3

 7.  I down 1.836 mA1 ( ) =
 9.  (a) R E7.6 Ω,   10.8 VTh Th= =

(b) 5 Ω:857.1 mA,  
40 Ω:226.9 mA, 120 Ω:84.64 mA

 11.  (a) R E7.5 Ω,   10 VTh Th= =
(b) 4 Ω:2.367 W, 90 Ω:0.918 W

 13.  R E1.58 kΩ,   1.15 VTh Th ∓=
 15.  (a) = =R E1 kΩ,   3 VTh Th

(b) 0.273 mA
 17.  (a) = =R E4.03 kΩ,   8 VTh Th

(b) ±2.75 V
 19.  (a) R E8.36 kΩ, 3.28 VTh Th= =

(b) 4.44 mA (c) 43.06 µA
(d) 10.23 V

 21.  R E2 Ω,   2 VTh Th= =
 23.  (a) R I4.1 kΩ, 23.41 mAN N= =

(b) = =R E4.1 kΩ,   96 VTh Th

(c) same
 25.  = =R I1.58 kΩ,   0.73 mAN N

 27.  = =R I10 Ω,   200 mAN N

 29.  R I2 Ω,   1 AN N= =
 31.  (a) 7.6 Ω (b) 3.84 W
 33.  (a) 9.556 Ω (b) 22.51 W
 35.  (a) 218 Ω (b) 96.84 W (c) —
 37.  (a) open-circuit, ∞ Ω (b) —
 39.  6.12 A, 18.37 V
 41.  0.314 A, 94.14 V
 43.  2.32 mA, 15.78V
 45.  —
 47.  (a) 0.667 mA (b) 0.667 mA (c) yes
 49.  (a) 6 V (b) 6 V (c) yes

Chapter 10

 1.  (a) 36 10  N/C3×
(b) 36 10  N/C,  1 10 :19 6× ×

 3.  50  Fµ
 5.  (a) 19.69 V/m (b) 1.97 kV/m

(c) 100 : 1
 7.  348.43 pF
 9.  0.100 mils
 11.  (a) 2.66 nF (b) 87.5 kV/m

(c) 0.186  Cµ
 13.  30.04 kV

I I2.143 A,   1.071 A2 3= =
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 15.  0.35  Fµ
 17.  670  F,  663.3  F 676.7  Fµ µ µ→
 19.  (a) 100 ms

(b) ( )= − −v e20 V 1C
t 100 ms

(c) τ τ= =1 12.64 V,  3 19 V,  
τ =5 19.87 V

(d) = −i e2 mA ,C
t 100 ms  

v e20 V R
t 100 ms= −  (e) —

 21.  (a) 5.5 ms
(b) ( )= − −v e100 V 1C

t 5.5 ms

(c) 1 63.21 V, 3 95.02 V,τ τ= =  
τ =5 99.33 V

(d) = −i e18.18 mA  ,C
t 5.5 ms  

= −v e60 V R
t 5.5 ms

2

(e) —
 23.  (a) 200  sµ  (b) 7.86 V (c) 20 V
 25.  (a) 263.2 ms

(b) ( )= − −v e22 V 1 ,C
t 263.2 ms  

= −i e4.68 mA C
t 263.2 ms

(c) 21.51 V, 0.105 mA
(d) = −v e21.51 V  ,C

t 263.2 ms  
= −i e4.58 mA C

t 263.2 ms

(e) —

 27.  (a) v e40 V 1 ,C
t 5.64 s( )= − µ−  

i e333.33  A C
t 5.64  sµ= µ−

(b) v e39.73 V  ,C
t 12.69  s= µ−  

i e331  A C
t 12.69  sµ= − µ−

(c) —
 29.  (a) = − −v e40 V 34 V C

t 22.1 ms

(b) = −i e7.23 mA C
t 22.1 ms

(c) —
 31.  (a) =v 40 VC  (b) =i 0 AC

(c) —
 33.  v e20 V 10 V  ,C

t 2.71  s= − + µ−

i e12.2 mA C
t 2.71  s= − µ−

 35.  (a) ( )= − −v e18 V 1C
t 3.75 s

(b) 16.75 V
(c) Q 357.6  C,2.0  F µ=µ  
Q 840.36  C47  F µ=µ

 37.  (a) 47.22 mV (b) 116.38 mV
(c) 5.54 ms (d) 16.37 ms

 39.  R 10.82 kΩ=
 41.  (a) 22.07 V (b) 0.81  Aµ

(c) 3.58 s
 43.  (a) = − +v 27.2 VC  

−e37.2 V  ,t 18.26 ms

= − −i e4.48 mA C
t 18.26 ms

(b) —
 45.  (a) v e3.27 V(1 ),C

t 53.80 ms= − −   
  = −i e1.22 mA C

t 53.80 ms

 47.  (a) 18.85 V (b) 1.66 s
(c) 3.65 s

 49.  0 20  s: 1.18 A;  20 30  s:µ µ→ − →
4.7 A; 30 60  s: 1.57 Aµ→ − ; 
60 70  s: 0 A;  70 80  s:µ µ→ →  
4.7 A; 80 100 s: 1.175 Aµ→ −

 51.  7.44  Fµ
 53.  Q V400 C, 20 V;20  F 20  Fµ= =µ µ  

Q V181.8 C, 18.18 V;10  F 10  Fµ= =µ µ  

Q 181.8 C,100  F µ=µ  
V 1.818 V100  F =µ

 55.  Q V4.37 mC,   19.86 V;1 1= =
Q V3.35 mC,   10.14 V;2 2= =  
Q V1.01 mC,   10.14 V3 3= =

 57.  28 μJ
 59.  W 1.75 mJ,100  F =µ

W 970 mJ200  F =µ

Chapter 11

 1.  (a) 0.02 Wb/m 2  (b) 0.02 T
(c) 110 At
(d) 0.2 10 gauss3×

 3.  (a) 21.15 mH
(b) increased

 5.  (a) 42.3 mH (b) 1.57 mH
(c) 75.2 mH (d) 1.76 mH

 7.  8.4 V
 9.  10 turns
 11.  (a) 23.5  sµ

(b) i e2 mA 1L
t 23.5  s( )= − µ−

(c) v e40 V  ,L
t 23.5  s= µ−  

v e40 V 1R
t 23.5  s( )= − µ−

(d) i :1 1.264 mA,L τ =  
τ τ= =3 1.9 mA,  5 1.986 mA
:1 14.72 V,  3 1.96 V,L τ τ= =v  
τ =5 280 mV

(e) —
 13.  (a) v e16 V L

t 0.6  s= µ−

(b) i e0.8 mA  1s
t 0.6  s( )= − µ−

 15.  (a) =i 9.23 mAL  
e1.23 mA ,t 30.77  s− µ−

v e4.8 V L
t 30.77  s= µ−  (b) —

 17.  (a) v e12.94 V R
t 29.41  s

2
= µ−

(b) i e5.88 mA (1 )L
t 29.41  s= − µ−

(c) —
 19.  (a) i e2 mA 4 mA  ,L

t 19.23  s= + µ−  
v e41.6 V L

t 19.23  s= − µ−

(b) —
 21.  (a) i e6 mA  1 ,L

t 2.35  s( )= − µ−  
v e12 V L

t 2.35  s= µ−

(b) i e2.08 mA  ,L
t 392 ns= −  

v e24.96 V L
t 392 ns= − −

(c) —
 23.  (a) i e1.3 mA (1 ),L

t 7.56  s= − µ−  
v e8.09 V L

t 7.56  s= µ−

(b) 0.822 mA, 2.98 V
 25.  (a) i e4.54 mA 1 ,L

t 6.67 s( )= − − µ−  
v e6.81 V L

t 6.67  s= − µ−

(b) −3.53 mA,  1.52 V
(c) i e3.53 mA  ,L

t 2.13  s= − µ−  
v e16.59 V L

t 2.13  s= − µ−

(d) —
 27.  (a) = +i 0.68 mAL  

−e1.32 mA  ,t 0.49 ms

= − −v e5.43 V L
t 0.49 ms

(b) —
 29.  (a) 0.92  sµ  (b) 16.2 V

(c) 0.81 V

 31.  (a) 14.28 mA (b) 149.99 mA
(c) 10.397 ms (d) 69.08 ms

 33.  (a) 13.33 V (b) 7.98  Aµ
(c) 4.12  sµ  (d) 0.244 V

 35.  0 2 ms:0 V,  2 6 ms:→ →
37.5 mV, 6 10 ms:0 V,− →

10 14 ms: 25 mV→ , 
14 17 ms:→  
0 V,  17 19 ms: 12.5 mV→ −

 37.  11.72 mH
 39.  2.45 mH, 5.7 kΩ
 41.  µ18  F,  25 mH
 43. (a) i e3.56 mA 1 ,L

t 8.31  s( )= − µ−  
v = µ−e4.29 V L

t 8.31  s

(b) —
 45.  I I8.04 A,   1.79 A1 2= =
 47.  3 AI I;  0 A.1 2= =

V V12 V; 0 V1 2= =

Chapter 12

 1.  :CGS: 5 10  maxwells;4Φ ×  
×English: 5 10  lines4

B: CGS: 8 gauss;  English:  
51.62 lines/in.2

 3.  (a) 0.04 T
 5.  609.76 10 At/Wb3×
 7.  2187.23 At/m
 9.  2.13 A
 11.  (a) 15 t

(b) 13.34 10  Wb/Am4× −

 13.  2.70 A
 15.  1.287 N
 17.  (a) 2.02 A (b) 2 N
 19.  8.16 mWb
 21.  (a) B e1.5 T 1 H 700 At/m( )= − −

(b) 900 At/m:  graph 1.1 T,=  
Eq. 1.09 T; 1800 At/m: graph= =
1.38 T,  Eq. 1.39 T;  2700 At/m:=  

= =graph 1.47 T,  Eq. 1.47 T
Excellent results

(c) H 700 log 1e
B

1.5 T( )= − −

(d)  
769.03 At/m;  1.4 T: graph =
1920 At/m, Eq. 1895.64 At/m=
(e) 40.1 mA vs. 44 mA in 
Example 12.1 

Chapter 13

 1.  (a) 10 V
(b) −15 ms: 10 V,  20 ms: 0 V
(c) 20 V (d) 20 ms
(e) 2 cycles

 3.  (a) 40 mV
(b) −1.5 ms: 40 mV,  

−5.1 ms: 40 mV
(c) 80 mV (d) 2 ms
(e) 3.5 cycles

1 T: graph 750 At/m,  Eq.= =
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 5.  (a) 4 ms (b) 20 ns (c) 35.71 µs
(d) 0.5 s

 7.  2.5 ms
 9.  9 Hz
 11.  (a) 28 mV (b) 56 mV

(c) 10 µs (d) 5 cycles
 13.  (a) °60  (b) °216  (c) °18

(d) °108
 15.  (a) 942.48 rad/s

(b) 3.14 10 rad/s3×
(c)  25.13 10 rad/s3×
(d) 50.27 10 rad/s3×

 17.  5.56 ms
 19.  (a) 20, 60 Hz (b) 12, 120 Hz

(c) 10 ,  1591.55 Hz6

(d) 8, 1.6 kHz
 21.  —
 23.  0.26 A
 25.  ° °11.54  and 168.46
 27.  —
 29.  (a) = × −v 6 10 3  

π( )+ °tsin 2  2000 30
(b) 

 31.  v t12 10 sin 2  2000 1353 π( )= × + °−

 33.  v  leads i by °90
 35.  v  leads i by 10°

 37.  1
3  ms

 39.  1
12  ms

 41.  1 V
 43.  0.786 mV
 45.  (a) 0 V (b) 0 V (c) same
 47.  (a) 0.4 ms (b) 2.5 kHz

(c) −25 mV  (d) —
 49.  (a) 42.43 V (b) 3.54 mA

(c) 4.95  Vµ
 51.  1.32 V
 53.  = =VG 0 V,   8 Vrms

 55.  (a) — (b) 360 sV 2  (c) 5.48 V
(d) 3.67 V (e) ≅V 1.5 Grms

Chapter 14

 1.  —
 3. (a) 3770 cos 377t

(b) t8 10 cos 400 603 ( )× + °
(c) ( )− °t4440.63  cos 157 20
(d) 200 cos t

 5. (a) 1.56 × 103 sin 500t
(b) t39  sin 600 120( )− °

 7. (a) 31.91 mH (b) 1.23 H
 9. (a) ( )= + °v t0.5  sin 200 90

(b) ω( )= + °v t0.8  sin 150
(c) ω( )= − °v t120  sin 120

 11. (a) ω( )= − °i t3  sin 90
(b) ω( )= − °i t0.75  sin 70

 13. (a) ∞ Ω   (b) 4.973 kΩ
(c) 159.15 Ω  (d) 0.159 Ω

1 5. (a) 4.08 kHz (b) 0.68 Hz
(c) 408.1 kHz (d) 20.40 Hz

 17. (a) 
(b) 

 19. (a) 
(b) v t26.53 sin 377 135( )= − °

 21. (a) µ=C 15.92  F
(b) =L 254.78 mH
(c)  = ΩR 5 

 23.  —
 25.  1.59 mH
 27.  3.58 nF
 29.  224 W
 31.  i t40 sin 40ω( )= − °
 33. (a) i t53.33 sin 1500 45( )= − °
  (b) 0 W
 35.  ( )= + °i t2.4  sin 10 150 ,1

4

( )= + °i t12  sin 10 1502
4

 37. (a)  7.21 56.31∠ ° (b)  4.24 45∠ °
(c) 15.81 71.57∠ °
(d) 502.5 5.71∠ °
(e) ∠− °2236.07 63.43
(f) ∠− °0.45 63.43

 39. (a) j4.6 3.86+
(b) j6.0 10.39− +
(c) j 2000−
(d) j6 10 2.2 103 3− × − ×− −

(e) j47.97 1.68+
(f) j4.7 10 1.71 104 4× − ×− −

 41. (a) j11.8 7.0+
(b) j151.90 49.90+
(c) j4.72 10 716× +−

 43. (a) 12.17 54.70∠ °
(b) 98.37 13.38∠ °
(c) 28.07 115.91∠− °

 45. (a) 8.00 20∠ °
  (b) 49.68 64.0∠− °

(c) 40 10 403× ∠ °−

 47. (a) 4 (b) j4.15 4.23− −
(c) j6.69 6.46−

 49. (a) 5.06 88.44∠ °
(b) 426 109.81∠ °

 51. (a) x y x y3, 6 or 6, 3= = = =
(b) θ = °30

 53. (a) 21.21 180∠− °
(b) 4.24 10 906× ∠ °−

(c) 3.96 10 706× ∠ °−

 55.  ( )= + °e t75.48  sin 377 100.8in

 57.  ( )= + °e t115.7  sin 377 39.77in

 59.  —
 61.  —

Chapter 15

 1. (a) 14.14 mA 30∠ °
(b) 28.28 V 30∠ °  (c) —
(d) v t40 sin 1000 30R ( )= + °
(e) —

 3. (a) 7.071 mA 40∠ °
(b) 14.14 V 130∠ °  (c) —
(d) v t20 sin 250 130L ( )= + °
(e) —

 5. (a) 
(b) 2.67 k 90Ω ∠ °  (c) 2.23 H
(d) — (e) —

 7. (a) 5 k 90Ω ∠− °
(b) 3.54  A 80µ ∠− °
(c) 17.7 mV 170∠− °
(d) — (e) = × −v 25.02 10C

3

( )− °tsin 20,000 170  (f) —
 9.  —
 11.  —
 13. (a) 3  0Ω ∠

(b) 10.05 k 84.29Ω ∠ °
(c) 471.70  4.86Ω ∠− °

 15. (a) 10  36.87Ω ∠ °  (b) —
(c) I 10 A 36.87 ,= ∠− °
V 80 V 36.87 ,R = ∠− °
V 60 V 53.13L = ∠ °
(d) — (e) — (f) 800 W
(g) 0.8 lagging
(h) i t14.14  sin 36.87 ,ω( )= − °

ω( )= − °v t113.12  sin 36.87 ,R

ω( )= + °v t84.84  sin 53.13L

(i) —
 17. (a) 5.66  45Ω ∠− °  (b) —

(c) 16 mH, 265 µF
(d) I 8.83 A 45 ,= ∠ °
V 35.32 V 45 ,R = ∠ °
V 52.98 V 135 ,L = ∠ °
V 88.30 V 45C = ∠− °
(e) — (f) — (g) 311.88 W
(h) 0.707 leading
(i) ( )= + °i t12.49  sin 377 45 ,

=e t70.7 sin 377 ,
( )= + °v t49.94  sin 377 45 ,R

( )= + °v t74.91  sin 377 135 ,L

( )= − °v t124.86  sin 377 45C

 19. (a) 85.44  69.44Ω ∠ °
(b) 468.16 mA 9.44∠− °
(c) 14.04 V 9.44∠− °
(d) 0.351 lagging

 21. (a) 8 mA 30∠ °   
(b) 85.04 V 78.81∠ °
(c) 16 V 30∠ °

 23. (a) 3.36 H (b) 10.3 kΩ
(c) 6.2 H

 25.  j3.6  1.74 Ω + Ω
 27. (a) V 120 V 6.87 ,1 = ∠ °

V 160 V 96.872 = ∠ °
(b) V 89.27 V 50.75 ,1 = ∠ °
V 49.097 V 39.252 = ∠− °

 29. (a) I 655.1 mA 50.65 ,= ∠ °
V 19.65 V 50.65 ,R = ∠ °
V 16.80 V 39.35C = ∠− °
(b) 0.983 leading (c) 12.87 W
(d) — (e) —
(f) V 19.66 V 50.65 ,R = ∠ °
V 16.80 V 39.35C = ∠− °
(g) jZ 30  5.64 T = Ω − Ω

 31.  —
 33. (a) 1.54 kHz (b) —

π( )= × − °−i t20 10 sin 2  60 603

i t7.5 10 sin 250 903 ( )= × + °−

i t33.96 10 sin 377 906 ( )= × + °−

v t800  sin 500 90( )= − °

4.24 mA 20 ,  11.31 V 110∠ ° ∠ °
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(c) ≅ = ΩZ X100 Hz: 3.39 kT C

Z R10 kHz: 220 T ≅ = Ω
(d) — (e) θ = − ° ≅ − °88.51 90
(capacitive) 

 35. I: (a) °v v leads   by 721 2

(b) =
−

v 2.5 V,1p p

V rms 0.88 V,1( ) =  v 1.2 V,2p-p
=  

V rms 0.42 V2( ) =
(c) 1.25 kHz
II: (a) °v v leads   by 1321 2

(b) =
−

v 5.6 V,1p p  
V rms 1.98 V,1( ) =  
v 8 V,2p p

=
−

V rms 2.83 V2( ) =

(c) 16.67 kHz

Chapter 16

 1. (a) 1.897  18.43 ,Ω ∠ °
j1.799  0.599 Ω + Ω

(b) 5.885 k 11.32 ,Ω ∠− °
j5.77 k 1.15 kΩ − Ω

(c) j1.23 k 90 ,   1.23 kΩ ∠ ° Ω
 3. (a) 0.1136 S 0 ,  0.1136 S∠ °

(b) 
(c) 

 5. I: (a) 8.94  63.43Ω ∠ °
(b) 0.112 S 63.43∠− °
(c) G jB 50.09 mSL− = −
j100.17 mS (d) —
II: (a) 80.06  48.54Ω ∠− °
(b) 12.49 mS 48.54∠ °
(c) G jB 8.27 mSC+ = +
j 9.36 mS (d) —
III: (a) 1140.47_ 70∠− °
(b) 2.43 mS 14.03∠ °
(c) 
(d) —

 7. (a) G jBY 82.43  ST L µ= − = −
j103.67  Sµ  (b) —
(c) 
(d) Both have resistive and induc-
tive components.

 9. (a) 111.8 mS 26.57∠− ° (b) —
(c) E 17.89 V 26.57 ,= ∠ °
I 1.79 A 26.57 ,R = ∠ °
I 0.89 A 63.43L = ∠− °
(d) — (e) — (f) 32.04 W
(g) 0.894 lagging
(h) e t25.30 sin(377 26.57 ),= + °

( )= + °i t2.53  sin 577 26.57 ,R

( )= − °i t1.26  sin 377 63.43 ,L

=i t2.83 sin 377s  (i) —
 11. (a) Z 65.21  32.91T = Ω ∠ °

(b) Y 15.34 mS 32.91T = ∠− °
(c) —
(d) I 184.02 mA 32.91s = ∠− °
(e) I 200 mA 90C = ∠ °

(f) ω=e t16.97 sin  ,
i t260.2 10 sin 32.91s

3 ω( )= × − °−

(g) 0.84 lagging
 13. (a) Y 0.36 mS 22.22 ,T = ∠− °

Z 2.78 k 22.22T = Ω ∠ °
(b) —
(d) E 9.83 V 2.22 ,= ∠ °
I 3.28 mA 2.22 ,R = ∠ °
I 2.52 mA 87.78 ,L = ∠− °
I 1.18 mA 92.22C = ∠ °
(e) — (f) — (g) 32.28 mW
(h) 0.925 leading
(i) e t13.9 sin 1000 2.22 ,( )= + °

( )= × + °−i t4.64 10 sin 1000 2.22 ,R
3

( )= × − °−i t3.56 10 sin 1000 87.78 ,L
3

( )= × + °−i t1.67 10 sin 1000 92.22C
3

(j) —
 15.  —
 17.  —
 19.  —
 21.  (a) jZ 7.02 k 2.88 kT = Ω − Ω

(b) jZ 17.48  29.72 T = Ω + Ω
 23.  R XL|| 4.40  || 5.435 ′ = Ω Ω

Chapter 17

 1. (a) 3.12  8.38Ω ∠− °
(b) 3.5 A 22.65∠ °
(c) 3.5 A 22.65∠ °
(d) 2.77 A 56.30∠− °
(e) 14 V 112.65∠ °

 3. (a) 21.63  33.7Ω ∠ °
(b) 2.312 A 33.7∠− °
(c) 12.827 A 22.6∠ °
(d) 0.1539 V 67.4∠− °
(e) 96.174 W

 5. (a) 0.93 A 60.26∠− °
(b) 124.81 V 33.69∠− °
(c) 69.75 W

 7. (a) 1.42 A 18.26∠ °
(b) 26.57 V 4.76∠ °  (c) 54.07 W

 9. (a) 3.41 V 4.68∠ °
(b) 1.08 V 66.98∠− °
(c) 3.41 V 4.68∠ °

 11. (a) 537.51  56.07Ω ∠ °
(b) 93 mA 56.07∠− °
(c) I 0.0214 mA 80.34 ,1 = ∠− °
I 13.48 mA 123.932 = ∠ °
(d) V 16.93 V 213.93 ,1 = ∠ °
V 41.49 V 33.92ab = ∠ °
(e) 2.6 W (f) 0.558 lagging

 13. (a) 1.52  38.89Ω ∠− °
(b) 42.43 V 45∠ °
(c) 14.14 A 45∠ °
(d) 39.47 A 38.89∠ °

 15.  17.72 mW
 17.  158 mV 198.47∠− °

Chapter 18

 1.  —
 3.  Z 6.25  51.34 ,s = Ω ∠ °

E 18.75 V 171.34= ∠ °
 5.  2.72 A 38.05∠− °
 7.  2.32 A 82.44∠− °
 9.  48.33 A 77.57∠− °
 11.  0.68 A 162.9∠− °
 13.  I51.47  149.31∠ °
 15.  2.69 mA 174.8∠− °
 17.  V 21.12 V 174.62 ,1 = ∠− °

V 6.86 V 47.732 = ∠− °
 19.  V 17.92 V 59.25 ,1 = ∠ °

V 13.95 V 93.642 = ∠ °
 21.  V E 220 V 0 ,1 1= = ∠ °

V 96.30 V 12.32 ,2 = ∠− °
V E 100 V 903 2= = ∠ °

 23.  V 5.74 V 122.76 ,1 = ∠ °
V 4.04 V 145.03 ,2 = ∠ °
V 25.94 V 78.073 = ∠ °

 25.  V 15.13 V 1.29 ,1 = ∠ °
V 17.24 V 3.73 ,2 = ∠ °
V 10.59 V 0.113 = ∠− °

 27.  10.67 V 180∠ °
 29.  E2451.92  i−
 31. (a) no (b) 1.73 mA 71.54∠− °

(c) 7.03 V 18.46∠− °
 33.  No
 35.  R R R R L R L R,  x x2 3 1 2 3 1= =
 37.  7.02 A 20.56∠ °
 39.  63.29 A 101.57∠ °

Chapter 19

 1.  6.09 A 32.12∠− °
 3.  3.92 A 135.82∠ °
 5.  1.32 mA 158.2∠− °
 7.  v t15 V 3.17 sin 85.24C ω( )= + − °
 9.  332.225 mA 33.69∠− °
 11.  208 mA 20.32∠− °
 13.  2.94 mA 0∠ °
 15.  Z 1.86  21.80 ,Th = Ω ∠ °

E 92.85 V 21.80Th = ∠ °
 17.  Z 21.47  32.47 ,Th = Ω ∠ °

E 4.29 V 32.47Th = ∠ °
 19.  Z 1.14 k 29.92 ,Th = Ω ∠− °

E 5.68 V 89.27Th = ∠ °
 21.  Z 5.00  38.66 ,Th = Ω ∠− °

E 77.14 V 50.41Th = ∠ °
 23. (a) ZAC: 66.04  57.36 ,Th = Ω ∠ °

E 6.21 V 207.36Th = ∠ °
R EDC: 22  ,   5 VTh Th= Ω = −

(b) = − +i 72.46 mA
( )× + °− t62.36 10 sin 1000 173.423

 25. (a) Z 4.47 k 26.57 ,Th = Ω ∠− °
E 31.31 V 26.57Th = ∠− °
(b) 6.26 mA 63.44∠ °

 27.  I355.6 0.64 ,∠ °  
4.47 k 5.07Ω∠− °

j3.333 mS  90 , 3.333 mS∠− ° −
j0.333 mS  90 ,   0.333 10 S3∠ ° × −

G jB j2.36 mS 0.59 mSC+ = +

= Ω =R L12.13 k ,   767.92 mH
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 29.  Z 5.10 k 11.31 ,Th = Ω ∠− °
E 50 V 0Th = − ∠ °

 31.  Z 32.79  0 ,Th = − Ω ∠ °
E 30 V 47Th = ∠ °

 33.  Z 607.42  0 ,Th = Ω ∠ °
E 1.62 V 0Th = ∠ °

 35.  Z 21.47  32.47 ,N = Ω ∠ °
I 0.2 A 0N = ∠ °

 37.  Z 9.66  14.93 ,N = Ω ∠ °
I 2.15 A 42.87N = ∠− °

 39. (a) ZAC: 66.04 57.36 ,N = Ω ∠ °
I 94 mA 150N = ∠ °

R IDC: 22  ,   227.27 mAN N= Ω =
(b) 

( )+ °tsin 1000 173.22
 41. (a) Z 4.47 k 26.57 ,N = Ω ∠− °

I 7 mA 0N = ∠ °
(b) 6.26 mA 63.44∠ °

 43.  Z 4.44 k 0.03 ,N = Ω ∠− °
I I100  0.29N = ∠ °

 45.  Z 27 k 0 ,N = Ω ∠ °
I 222.22 mA 0N = ∠ °

 47.  Z 6.65 k 0 ,N = Ω ∠ °
I 0.79 mA 0N = ∠ °

 49.  jZ 1.51  0.39  ,L = Ω − Ω
P 3.64 Wmax =

 51.  jZ 2.48  5.15  ,L = Ω + Ω
=P 618.33 Wmax

 53.  jZ 1.38 k 5.08 k ,L = Ω − Ω
P 78.30 mWmax =

 55. (a) jZ 4 k 2 kL = Ω + Ω
(b) =P 61.27 mWmax

 57. (a) 7.31 nF (b) Ω2940.27 
(c) =P 1 mWmax

 59. (a) 0.83 mA 0∠ °
(b) 0.83 mA 0∠ °  (c) the same

Chapter 20

 1. (a) 135 W
(b) Q S0 VAR, 135 VAT T= =
(c) 0.675 A
(d) 
(e) I I0.405 A,   0.207 A1 2= =

 3. (a) R P Q: 7.2 W,   0 VAR,= =
=S 7.2 VA

C P Q C: 0 W, 3.62 VAR( ),C= =
S 3.62 VA=  
R L P- : 2.77 W,=

(b) P W

Q L

9.97  ,

10.22 VAR( ),
T

T

=

=

ST = 14.28 VA
(c) Z 1.01 k 45.72 ,T = Ω ∠ °

=F 0.698 laggingP

(d) I 118.81 mA 45.72s = ∠ − °
 5. (a)  

S 1118.03 VAT =
(b) 0.984 (c) Power Triangle  
(d) 5.59 A 10.30∠ °

 7. (a) R L50  ,   3.18 mH,= Ω =
=C 212.2 nF

(b) 70.71  45Ω ∠− °
(c) 141.42 V 45∠− °
(d) 0.7071 leading
(e) 300 V 90∠− °

 9. (a) 5.57 A 3.03∠ °
(b) 
P P P9.86 W,   0 WR x xL C3

= = =
(c) Q Q Q 0 VAR,R R R1 2 3

= = =
= =Q Q15.81 VAR,   9.86 VARC L

(d) S R 62.05 VA,  T 1( ) =
S R
S R

39.52 VA,  
9.86 VA,

T

T

2

3

( )
( )

=
=

S C
S L

15.81 VA,  
9.86 VA

T

T

( )

( )

=
=

(e) =P 111.43 W,T
( )=Q C5.95 VAR ,T

=S 111.59 VA,T

=F 0.998 leadingP

(f) —
 11. (a) P P P0 W, 38.99 WL C R= = =

(b) =Q 0 VAR,R

Q Q126.74 VAR,   46.92 VARL C= =
(c) =S 38.99 VA,R

= =S S126.74 VA,   46.92 VAL C

(d) =S 38.99 W,T
( )=Q L79.82 VAR ,T

=S 88.83 VA,T

( )=F 0.439 laggingp

(e) — (f) =W 0.31 JR

(g) W W0.32 J,   0.12 JL C= =
 13. (a) jZ 2.7  1.04 = Ω + Ω

(b) 6.75 kW
 15. (a) P Q900 W,   0 VAR,T T= =

=S 900 VAT

(b) I 9 A 0s = ∠ °  (c) —
(d)  X1: 20 C = Ω  

R2: 2.83 = Ω
R X3: 5.66  ,   4.72 L= Ω = Ω

(e) —
 17. (a) P 1200 W,T =

Q C2441.28 VAR ,T ( )=
S 2720.27 VA,T =
F 0.411 leadingP ( )=
(b) E 453.38 V 68.83= ∠− °
(c) R1: 657.80  ,= Ω

 X 493.35 C = Ω
R X2: 32.89  ,   75.36 C= Ω = Ω

 19. (a) 10 kVA
(b) 0.8 (lagging) (c) 50.0 A
(d) 397.87  Fµ  (e) 40 A

 21. (a) 199.83 W
(b) a-b: 88.74 W, b-c: 66.55 W, 
a-c: 155.29 W, a-d: 155.29 W,  
c-d: 0 W, d-e: 0 W, f-e: 44.37 W

 23. (a) R L5  ,   132.03 mH= Ω =
(b) = ΩR 10 
(c) R L15  ,   262.39 mH= Ω =

Chapter 21

 1. (a) 
(b) 1851.85 rad/s,sω =
f 294.73 Hzs =

 3. (a) Ω2 k  (b) 120 mA
(c) = =V V12 V,   240 V,R L

=V 240 VC  (d) 20
(e) L C63.7 mH, 15, 920 pF= =
(f) 250 Hz
(g) f f4.88 kHz, 5.13 kHz1 2= =

 5. (a) 300 Hz
(b) f f4.7 kHz,   4.4 kHz1 2= =
(c) X X 60 L C= = Ω
(d) 720 mW

 7. (a) 10 (b) 50 Ω
(c) 3.2 mH, 1.27  Fµ
(d) 

 9. (a) R L30  ,   19.11 mH,= Ω =
C f36.86  F,   5875 Hz,1µ= =
f 6,125 Hz2 =

 11. (a) 1 MHz (b) 160 kHz
(c) R L720  ,   0.716 mH,= Ω =

=C 35.38 pF
(d) 56.23 Ω

 13. (a) 112.540 kHz (b) 8 kV
(c) 56.57 mA (d) 28.28

 15. (a) 1.027 MHz (b) 114.1 V
(c) 13.69 W (d) 669 mW

 17.  R 91 k closest to 93.33 k ,( )= Ω Ω
( )=C 240 pF closest to 250 pF

 19. (a) f f7.12 kHz,   6.65 kHz,s p= =

=f 7.01 kHzm

(b) X X20.88  , 23.94 L C= Ω = Ω
(c) Ω55.56 
(d) Q 2.32, BW 2.87 kHzp = =
(e) 
(f) 2.22 V

 21. (a) 3558.81 Hz (b) 223.61 V
(c) 588.42 mW (d) 975.02 Hz

 23. (a) Ω98.54   (b) 8.21
(c) 8.05 kHz (d) 4.83 V
(e) f f7.55 kHz,   8.55 kHz1 2= =

 25.  R C6.29 k ,   16, 210 pFs = Ω =
 27. (a) 251.65 kHz (b) Ω4.44 k

(c) 14.05 (d) 17.91 kHz
(e) =f 251.65 kHz,s

Z Q49.94  ,   2.04,T pp
= Ω =

=BW 95.55 kHz
(f) =f 251.65 kHz,s

Z Q13.33 k ,   21.08,T pp
= Ω =

=BW 11.94 kHz

(g) Network: = ×L C 100 10 ;3

part (e): = ×L C 1 10 ;3  
part (f): = ×L C 400 10 3

(h) As the L C  ratio increased, 
BW decreased and Vp  increased.

i 72.46 mA 62.68 10 3= − + × −

R R274.34 , 411.511 2= Ω = Ω

= =Q L S13.84 VAR( ),   14.11 VAL

P Q1100 W,   200 VAR,T T= =

P P62.05 W,   39.52 W,R R1 2
= =

f258.19 rad/s,   41.09 Hzsω = =

f f2.625 kHz,   2.375 kHz1 2= =

I I92.73 mA,  99.28 mAC L= =
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Chapter 22

 1. (a) left: 1.54 kHz, right: 5.62 kHz
(b) bottom: 0.22 V, top: 0.52 V

 3. (a) 1000 (b) 1012 (c) 1.59
(d) 1.1 (e) 1010 (f) 1513.56
(g) 10.02 (h) 1,258,925.41

 5.  1.732
 7.  0.602−
 9. (a) 1.806

(b) 18.06 dB
 11.  6.53
 13.  39.46
 15.  44.08 dBs

 17.  —
 19. (a) =f 3617.16 Hz;c

f f A: 0.707;c v= =
f f A0.1 : 0.995;c v= =
f f A0.5 : 0.894;c v= =
f f A2 : 0.447;c v= =
f f A10 : 0.0995c v= =
(b) f f : 45 ;c θ= = − °
f f0.1 : 5.71 ;c θ= = − °
f f0.5 : 26.57 ;c θ= = − °
f f2 : 63.43 ;c θ= = − °
f f10 : 84.29c θ= = − °

 21.  C 0.265  Fµ=
23.  (a) =f 3.62 kHz;c

f f A: 0.707;c v= =
f f A2 : 0.894;c v= =
f f A0.5 : 0.447;c v= =
f f A10 : 0.995;c v= =
f f A: 0.995c

1
10 v= =

(b) f f f f: 45 ;   2 :c cθ= = ° =

f f26.57 ;   0.5 : 63.43 ;cθ θ= ° = = °
f f f f10 : 5.71 ;   ;c c

1
10θ= = ° =

θ = °84.29

 25.  R 795.77  ,= Ω
R 750  47  797 standard = Ω + Ω = Ω

 27. (a) low-pass section: 
=f 795.77 Hz;c1

 
high-pass section: f 1.94 kHz;c2

=
f f V V: 0.654 ;c o i1

= =
f f V V: 0.64 ;c o i2

= =

f fAt  BW
2

1.37 kHz;c1
= + =

=V V0.706 o i

(b) BW defined at V0.5 ;i  
f V V500 Hz: 0.515 ;o i= =
f V V4 kHz: 0.429 ;o i= =
from plot ≅BW 2.9 kHz with 

=f 1.93 kHzcenter

 29. (a) =f 98.1 kHzs

(b) Q 16.84,  BW 5.83 kHzs = =

(c) f f A: 0.93;s v= =
f f95.19 kHz,   101.02 kHz;1 2= =
f f V: 0.64 V;o1= =
f f V: 0.66 Vo2= =
(d) f f V: 0.93 V;s omax

= =
f V95.19 kHz,   0.66 V;o1 = =
f V101.02 kHz: 0.66 Vo2 = =

 31. (a) Q 15.56s =
(b)  

=f 5.2 kHz2

(c) f f V,   0.022 mV,s o= =
(d) f f V: 0.022 mVs o= =

 33. (a) f 726.44 kHz(band-stop);p =
( ) =f band-pass 2.01 MHz

 39. (a) =f 1.83 kHzc

(b) — (c) —
(d) f f f f: 3 dB,   0.5 : 1 dB,c c= =
f f2 : 1 dB;c=  low-frequency 
drop of −1.39 dB
(e) =vA 0.84
(f) —

 41. (a) =f 1.02 kHz;c

f V V0 Hz: 0.852  ,o i= =
f f V V: 0.602c o i= =
(b) — (c) —
(d) f f f f: 3 dB,   0.5 : 1 dB,c c= =
f f2 : 1 dBc=  (e) =vA 0.80
(f) —

 43. (a) =f 132.41 Hz;c

f V V Hz: 0.465 ,o i= ∞ =
f f V V: 0.329 ;c o i= =  high- 
frequency drop of −6.65 dB
(b) f f 10: 84.3 ,c θ= = °
f f f f: 45 ,   10 : 5.7c cθ θ= = ° = = °

 45. (a) =BW 19,910 Hz,
= =f f90 Hz,   20 kHz1 2

(b) f 100 Hz: 63.8 ,θ= = °
f 1 kHz:   0θ= ≅ °

 47.  ( )− =f 3 dB 2 kHz
 49.  ( )− =f 3 dB 1 kHz,1

( )− =f 3 dB 10 kHz2

 51.  ( )+ =f 3 dB 159.16 Hz,
( )− =f 3 dB 795.78 Hz
( ) ≅f 0 dB 300 Hz

Chapter 23

 1. (a) 50 mH
(b) = =e e1.6 V,   5.12 Vp s

(c) = =e e15 V,   12 Vp s

 3. (a) 355.56 mH
(b) = =e e24 V,   0.6 Vp s

(c) = =e e15 V,   12 Vp s

 5. (a) 8 V (b) 500.50  Wbµ
 7.  120 Hz
 9.  28 Ω

 11.  16,500 turns
 13. (a) 3 (b) 2.78 W
 15. (a) 364.55  86.86Ω ∠ °

(b) 329.17 mA 86.86∠ − °
(c) V 6.58 V 86.86 ,Re

= ∠ − °
V 14.48 V 3.14 ,Xe

= ∠ °

V 105.33 V 3.14X L
= ∠ °

 17.  —
 19.  1.64 H
 21.  EI Z Z I ZR L m1 2 11 1

( ) ( )+ + =

I Z I Z Z 0m L R1 2 L2
( )( ) + + =

 23. (a) 30 (b) 100 A (c) 3.33 A
(d) I I3.33 A,   100 As p= =

 25. (a) V 25 V 0L = ∠ °
(b) I 5 A 0L = ∠ °
(c) Z 80  0L = Ω ∠ °
(d) Z 20  01 2 = Ω ∠ °

 27. (a) E 40 V 0 ,2 = ∠ °
I 3.33 A 60 ,2 = ∠ °
E I30 V 60 ,   3 A 603 3= ∠ ° = ∠ °
(b) = ΩR 64.52 1

 29.  Z Z I Z I ZL M M1 1 21 12 13
[ ]+ − + = 

E Z I Z Z Z I

Z I

;  

0;
M L1 1 2 3 2

2 3

12 2
[ ]− + +

+ =

Z I Z IM 1 2 213
+ +

Z Z Z I 0L2 4 33
[ ]+ + =

Chapter 24

 1. (a) 131.64 V (b) 131.64 V
(c) 8.78 A (d) 8.78 A

 3. (a) 131.64 V (b) 131.64 V
(c) 23.26 A (d) 23.26 A

 5. (a) θ θ= − ° = + °120 ,   1202 3

(b) V 120 V 0 ,an = ∠ °
V
V

120 V 120 ,
120 V 120

bn

cn

= ∠ − °
= ∠ °

(c)  I 8 A 53.13 ,an = ∠ − °
I 8 A 173.13 ,bn = ∠ − °
I 8 A 66.87cn = ∠ °
(e) 8 A
(f ) 207.85 V

 7.  V 127.0 V,  I 8.98 A,= =φ φ
I 8.98 AL =

 9. (a) E 12.7 kV 30 ,AN = ∠ − °
E 12.7 kV 150 ,BN = ∠ − °
E 12.7 kV 90CN = ∠ °
(b–c) I Ian Aa= =

I I11.29 A 97.54 ,   bn Bb∠− ° = =
11.29 A 217.54 ,∠− °
I I 11.29 A 22.46cn Cc= = ∠ °

 11. (a) 120.1 V (b) 208 V
(c) 10.4 A (d) 18 A

fBW 321.34 Hz,   4.8 kHz,1= =

Z06_BOYL0302_14_GE_APP6.indd   1128Z06_BOYL0302_14_GE_APP6.indd   1128 01/03/23   9:39 AM01/03/23   9:39 AM



APPENDIX F | | | 1129

 13. (a) 120.1 V (b) 208 V
(c) 16.34 A (d) 28.30 A

 15. (a) θ θ= − ° = °120 ,   1202 3

(b) V 208 V 0 ,ab = ∠ °
V 208 V 120 ,bc = ∠− °
V 208 V 120ca = ∠ °
(c) —
(d) I 1.47 A 45 ,ab = ∠ °
I 1.47 A 75 ,bc = ∠ − °
I 1.47 A 165ca = ∠ °
(e) 2.55 A
(f) 120.1 V

 17.  = = =V V V 220 V,ab bc ca

= = =I I I 15.56 Aab bc ca

 19. (a) 208 V (b) 120.1 V
(c) 4 A (d) 4 A

 21. (a) 208 V (b) 120.1 V
(c) 10 A (d) 10 A

 23.  = = =V V V 69.28 V,an bn cn

= = =I I I 3.10 A,an bn cn

= = =I I I 3.10 AA B Ca b c

 25. (a) 440 V (b) 440 V
 27. (a) 440 V (b) 440 V

(c) 28.28 A (d) 48.98 A
 29. (a) θ θ= − ° = °120 ,   1202 3

(b) V 100 V 0 ,ab = ∠ °
V 100 V 120 ,bc = ∠ − °
V 100 V 120ca = ∠ °
(c) —
(d) I 5 A 53.13 ,ab = ∠ − °
I 5 A 173.13 ,bc = ∠ − °
I 5 A 66.87ca = ∠ °
(e) = = =I I I 8.66 AAa Bb Cc

 31.  1220.19 W, 1743.13 VAR (C),  
2127.76 VA, 0.57 (leading) 

 33.  2419.21 W, 2419.21 VAR (C), 
3421.28 VA, 0.707 (leading) 

 35.  649.15 W, 649.15 VAR (C), 
918.04 VA, 0.7071 (leading) 

 37.  2884.80 W, 2163.60 VAR (C), 
3605.97 VA, 0.8 (leading) 

 39.  26.4 kW, 26.4 kVAR (L),  
37.34 kVA, 0.7071 (lagging) 

 41.  = Ω + ΩφZ j16   12 

 43.  2999.02 W, 998.7 VAR (C),  
3161 VA, 0.949 (leading) 

 45. (a) 7,159.35 V
(b) = =φI I 186.19 AL

(c) =φE 8,810 V
(d) =E 15,259 VL

 47. (a) — (b) =P 5899.64 W,T

=P 1966.55 Wmeter

 49.  —
 51. (a) 120.1 V

(b) I I8.49 A,   7.08 A,an bn= =
=I 42.47 Acn

(c) 4.93 kW, 4.93 kVAR (L),  
6.97 kVA, 0.7071 (lagging) 
(d) I 8.49 A 75 ,an = ∠ − °
I 7.08 A 195 ,bn = ∠ − °
I 42.47 A 45cn = ∠ °
(e) 35.09 A 43.00∠ − °

Chapter 25

 1.  I: (a) positive going (b) 0 V 
(c) 2  sµ  (d) 12 V (e) 0%

  II: (a) positive going (b) −6 V
(c) 1 ms (d) 8 V (e) 28.57%

 3. (a) positive going (b) 10 mV
(c) 3.2 ms (d) 20 mV (e) 6.9%

 5.  —
 7. (a) 120 sµ  (b) 8.33 kHz

(c) max 440 mV,  min 80 mV= =
 9.  I: =prf 200 Hz,

=duty cycle 42.86%
II: =prf 142.86 kHz,

=duty cycle 50%
 11. (a) 10  sµ  (b) 3  sµ  (c) 100 kHz

(d) 0.8 mV (e) 2.86 mV
 13.  8.44 mV
 15.  117 mV
 17.  e20 V 16C

t10v = − −

 19.  = − −i e8 mA C
t

 21.  i e4 mA  ,   0.2 msC
t 0.2 ms τ= =−

(a) =T 10 ms  (b) =T 2 ms
(c) =T 0.2 ms

 23.  T e0 : 20 V;   : 20 V  ;T T t
2 2

0.2 ms→ → −

T T e: 20 V(1 );t3
2

0.2 ms→ − −

T T e2 : 20 V  t3
2

0.2 ms→ −

 25.  V 10 V 0scope ≅ ∠ °

Chapter 26

 1.  I: (a) no (b) no (c) yes
(d) no (e) yes

  II: (a) yes (b) yes (c) yes
(d) yes (e) yes

  III: (a) yes (b) yes (c) no
(d) yes (e) yes

  IV: (a) no (b) no (c) yes
(d) yes (e) yes

 3.  —

 5.  —

 7.  f

f

5 kHz: mag 1,  

10 kHz: mag 1
2

2

= = =

= = =

ω
π
ω
π

 9. (a) V

V

100 V,

107.53 V
a

eff

v =

=

(b) = =vI I3 A,   3.36 Aa eff

 11.  484.42 W

 13. (a) i t.5 2.08 sin(400 33.69 )= + − °
(b) 2.10 A

(c) 

t

18 24.96

sin 400 33.69
Rv

( )

= +

− °
(d) 25.21 V

(e) 

t

0 16.64 

sin 400 56.31
Lv

( )

= +

+ °
(f) 11.77 V (g) 52.97 W

 15. (a) i

t

5 1.49 

sin 300 26.57( )

= − +

− °
( )− − °t 0.59  sin 600 45

(b) 5.13 A
(c) 

t

60 17.88 

sin 300 26.57
Rv

( )

= − +

− °
( )− − °t7.07  sin 600 45

(d) 61.52 V
(e) t

t

8.94 sin 300 63.43

7.07  sin 600 45
L ( )

( )

= + °

− + °

v

(f) 6.8 V (g) 315.8 W
 17. (a) t2.54 sin 754 94.57ov ( )= − °

( )− − °t2.45  sin 1508 101.1
(b) 2.50 V (c) 6.25 mW

 19. (a) ω+ +t80 100 sin
ω( )+ °t14.55  sin 3 69.9

(b) 15 70 sin 

10 sin 2 180

α

α( )

+

+ − °
α( )+ + ° 8.69 sin 3 166.7

 21.  e t10 150.32  sin 600(= +
t123.74 100 sin 1200 90) ( )+ ° + + °

t 108.97  sin 1800 23.41( )+ + °
 23.  —
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A
absolute zero, 96
ac circuits

applications, 584–586
average power, 611–616
average value, 566–572
capacitance, 599–605
complex numbers (see complex numbers)
converters, 578–581
definitions, 547–548
direction, 552
frequency response, 605–611, 658–670, 698–708
frequency spectrum, 549–552
generator, 546
inductors, 598–599
instrumentation, 581–584
inverters, 578–581
overview, 545–546
parallel (see parallel ac circuits)
phase relations, 560–566
polarity, 552
power factor, 616–617
series-parallel (see series-parallel ac circuits)
sinusoidal ac voltage, 545–549, 557–560
series (see series ac circuits)

accuracy, 32–34
ac generator, 546
active filters, 921. See also filters
actual/true/practical pulse, 1056
addition, using powers of ten, 36
admittance diagram, 689

parallel R-C circuits, 694
parallel R-L-C circuits, 696
parallel R-L circuits, 692–693

admittance, parallel ac circuits, 687–691
air-core inductors, 484
air-core transformers, 993–995
air gaps, 531–533
air trimmer capacitor, 429–430
alternating waveform, 545
alternator. See ac generator
aluminum, 93
American Wire Gage (AWG) sizes, 93, 94
ammeters, 78–81. See also instrumentation

loading effects, 186
in series dc circuits, 162
series-parallel dc circuits, 288–289

ampere, 24, 63
Ampère, André Marie, 24, 25, 63, 476
ampere-hour (Ah) rating, 74–75

defined, 75
drain current vs., 76
temperature vs., 76

Ampère’s circuital law, 476, 526–527
ampere-turns (At), 478
amplitude, of pulse waveforms, 1056
analogies

parallel resistors, 216
series dc circuits, 161
series resistors, 156

analog-to-digital converter (ADC), 565
analysis methods (ac), 747–780

bridge networks, 770–775
independent vs. dependent sources, 747–748
mesh analysis (see mesh analysis (ac))
nodal analysis (see nodal analysis (ac))
source conversion, 748–751

analysis methods (dc), 305–357
applications, 351–357
branch-current analysis, 312–319
bridge networks, 342–346
current source, 305–312
mesh analysis (see mesh analysis (dc))
nodal analysis (see nodal analysis (dc))

angular velocity, 554
answering machines/phones, 85–86
apparent power, 831, 834–836, 841

capacitor, 840
defined, 834
Δ-connected balanced load, 1031
power factor, 835
total, 843–848
Y-connected balanced load, 1029

applications
ac circuits, 584–586
analysis methods, 351–357
answering machines/phones dc supply, 85–86
attenuators, 961–963
ballast transformer, 1007–1009
business sense, 857–858
capacitive shunt approach, 462–464
capacitors, 462–467
car battery, boosting, 291–295
car battery charger, 83–85
conductance-sensing approach, 464
constant-current alarm systems, 352–354
dimmer switch, 507–510
electrical system of automobile, 245–247
electric baseboard heating element, 118–121
electronic circuits, 294–295
electronic systems, 818–819
energy, 143–150
flashlight, 81–83
fluorescent vs. CFL/LED bulbs, 143–145
GFCI (ground fault circuit interrupter), 739–741
graphic and parametric equalizers, 899–902
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Hall effect sensor, 538–539
holiday lights, 191–193
household wiring, 148–150, 247–249, 714–715
inductors, 507–510
low-voltage, 1006–1007
magnetic circuits, 537–541
magnetic reed switch, 539–540
magnetic resonance imaging, 540–541
matrix approach, 462–463
microwave oven, 145–148, 193–194
noise filters, 963–966
(120 V at 60 Hz) vs. (220 V at 50 Hz), 584–585
parallel ac circuits, 714–717
parallel dc circuits, 244–249
phase-shift power control, 715–717
portable power generators, 856–857
resonance, 899–902
safety concerns (high voltages and dc vs. ac), 585–586
series ac circuits, 674–677
series control, 190–191
series dc circuits, 190–194
series-parallel ac circuits, 739–741
series-parallel dc circuits, 291–295
soldering gun, 1003–1006
speakers/microphones, 537–538, 674–677
strain gauges, 121–122
surge protector, 464–467
theorems (ac networks), 818–819
touch pad, 462
transformers, 1002–1010
TV remote, 1075–1077
Wheatstone bridge smoke detector, 354–355

applied voltage, 60, 61, 63
of series dc circuits, 167

approximate numbers, 32–33
Armstrong, Edwin, 27
artificial intelligence, 22
atoms, 55–58
attenuator probe, oscilloscopes, 1073–1074
attenuators, 961–963
automobile

electrical system, 245–247
autotransformer, 998
average current, 456
average induced voltage, 501–503
average power, 573, 611–616, 833, 841

Δ-connected balanced load, 1031
total, 843–848
Y-connected balanced load, 1028–1029

average value, 566–572
Fourier series, 1083
pulse waveforms, 1062–1063
square wave, 1068

B
Babbage, Charles, 27
Baird, John, 27
ballast transformer, 1007–1009
band frequencies, 874
band-pass filters, 921, 922, 930–934, 940. See also filters

band-stop filters, 921, 922, 934–936. See also filters
bandwidth

defined, 874
fractional, 876
parallel resonant circuits, 886, 890

Bardeen, John, 27
base-line voltage, 1057
batteries, 65–71

cells (see cells)
defined, 65
fuel cells, 72–74
lead–acid, 66–67, 235
life factors, 75–77
lithium-ion (Li-ion), 66, 68–69
nickel-metal-hydride (NiMH), 67–68
in parallel dc circuits, 235–236
primary cells, 65–66
secondary cells, 65

Bell, Alexander Graham, 909
block diagram approach

defined, 265
format, 266
series-parallel dc circuits, 265–268

Bode, Hendrik Wade, 941
Bode plots, 941–948

properties of, 953–959
boldface notation, 618
branch-current analysis, 312–319

determinants, 315
rref, 316–317
shorthand form, 317–319
simplified key entry, 317
TI-89, 315–316

Brattain, Walter H., 27
breadboards. See protoboards (breadboards)
breakdown voltage, 421
bridge networks (ac), 770–775
bridge networks (dc), 342–346

formats for, 343
mesh analysis, 343
nodal analysis, 343
symmetrical lattice, 342–343
TI-89 calculator solution, 344–346

bubbles, 526
business sense application, 857–858
Butterworth low-pass filter, 938

response of, 939

C
calculators, 45–48

fundamentals, 46–47
TI-89, 45–46

calibration factor, 581
capacitance, 417–421

equation for, 422
stray, 461–462

capacitance comparison bridge, 775
capacitance to digital converter (CDC), 462
capacitance sensing, 462
capacitive shunt approach, 462–464
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capacitors, 26, 415–467, 609–610. See also specific capacitors
ac circuits, 599–605
applications, 462–467
average power, 615
charging phase, 434–442
construction, 421–425
current ic, 455–457
defined, 418
discharging phase, 442–448
electric field, 415–417
energy storage, 461
equivalent series resistance, 431
fixed, 425–429
ideal, 605–606
initial conditions, 448–451
instantaneous values, 451–452
labeling, 432–433
leakage current, 430–431
measurement of, 433
in parallel, 457–460
peak value for current, 600
in series, 457–460
series ac circuits, 645–647
standard values, 433
temperature effects, 431–432
testing of, 433
Thévenin equivalent, 452–455
transients (see transients (capacitive networks))
varactor (varicap), 430

car battery charger, 83–85
carbon-film resistors, 100
CDC. See capacitance to digital converter (CDC)
cells. See also batteries

defined, 65
fuel, 72–74
photoconductive, 117
primary, 65–66
secondary, 65, 66–69
solar, 65, 69–71

center-tapped transformer, 999–1000
ceramic capacitors, 428–429
ceramic trimmer capacitor, 430
CGS system, 29, 30
charging phase, capacitors, 434–442
chassis ground, 736–737
Chebyshev filter, 938
chokes, 487

RF, 484
circuit analysis, 23
circuit breakers, 142–143
circular mils (CM), 91–93
circular wires, 90–93
clamp-on meters, 583
closed loop, 166
CM. See circular mils (CM)
coefficient of coupling, 976
coercive force, 523
coil resistance, 867
coils. See inductors
color coding, 104–108
common-mode choke coil, 484

compact fluorescent bulb (CFL), fluorescent vs., 143–145
compensated attenuator probes, 1074
complex circuits. See series-parallel dc circuits
complex conjugate, 621
complex network, 261
complex numbers, 617–629

addition, 622
calculator methods with, 627–629
conjugate, 621
conversion between forms, 619–620
division, 625–627
mathematical operations with, 621–627
multiplication, 624–625
polar form, 618–619
reciprocal of, 621–622
rectangular form, 617–618
subtraction, 622–623

computer analysis, 49–50
computers, 27
conductance, 109, 687
conductance sensing, 462
conductance-sensing approach, 464
conductors

defined, 77
resistance of, impact of temperature on, 96

conjugate. See complex conjugate
constant-current alarm systems, 352–354
conventional flow, 64, 154
conversion tables, 44–45
converters, 547, 578–581
Cooper effect, 115
copper, 56–57, 93

as conductor, 77
corner frequencies, 874, 957
cosine wave, 561
coulomb (C), 58, 59
Coulomb, Charles Augustin, 25, 57
Coulomb’s law, 57, 416
coupled impedance, 995
critical temperature, 115, 116
cross-over distortion, 966
crossover networks, 960–961
current, 55, 61–64

direct (see dc current)
source, 703–705

current divider rule (CDR), 229–235
defined, 229
equation, 231
parallel ac circuits, 698
two parallel resistors, 233–235

current sensitivity (CS), 288
current sources, 305–312

conversions, 308–312
dependent, 755, 761–762
ideal, 306
independent, 754
Ohm’s law and, 308
in parallel, 310–312
removal from network, 368
in series, 312

current transformers, 1001–1002
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cutoff frequencies, 874, 886
cycle, waveforms, 548

D
d’Arsonval movement. See iron-vane movement
dc circuits

methods of analysis (see analysis methods (dc))
network theorems (see theorems (dc networks))
parallel (see parallel dc circuits)
series (see series dc circuits)
series-parallel (see series-parallel dc circuits)

dc current, 153
defined, 64
voltage sources, 64–74 (see also specific sources)

dc generator, 71
decibels (dB), 915–921

defined, 916
human auditory response, 918–919
instrumentation, 919–921
levels, 919
power gain, 915–916
voltage gain, 916–917

defined polarity and current, 130
degrees, 553, 554
delay line coil, 484
delta (Δ) configuration

conversion to wye (Y) configuration, 346–351
resistance, 346

Δ-connected balanced load, 1031–1034
Δ-connected generators, 1025
Δ-Δ systems, 1026
Δ-Y systems, 1026
dependent sources

conversion, 750–751
current, 761–762
independent sources vs., 747–748
Norton’s theorem (ac circuits), 811–813
superposition theorem (ac circuits), 793–795
Thévenin’s theorem (ac circuits), 800–807
voltage, 754, 763

derivative, 595–597
defined, 595
sine wave, 596–597

derivative, of voltage, 455
determinants, 1109–1116
diamagnetic material, 478
dielectric constant, 421
dielectrics, 420

defined, 430
dielectric strength, 421
difference engine, 27
digital multimeter (DMM), 79, 110, 111

for average value, 570–571
dB scale, 919

digital storage scope (DSO), 565
dimmer switch, 507–510
diodes, 83, 132
dipped capacitors, 429
disc capacitors. See ceramic capacitors
distribution system, electrical. See electrical distribution system
division

complex numbers, 625–627
using powers of ten, 37

domain theory, magnetism, 524, 526
double-subscript notation, 176
double-tuned filters, 936–938

defined, 936
network illustration, 937

droop, 1058
duality, 241
ductility, 93
DuFay, Charles, 25
duty cycle, 147, 1060

E
earth ground, 736
eddy currents, 855–856
Edison effect, 26
Edison, Thomas, 26
effective resistance, 853–856
effective/rms value, 572–578, 977
efficiency, 139–142

energy flow, 139
power flow, 140

electrical distribution system
residential/industrial service, 1043–1045

electrical telescope, 27
electric baseboard heating element, 118–121
electric field, 415–417
electric field strength, 415, 419
electric flux lines, 415–417
electrodynamometer movement, 582–583
electrolysis, 72–73
electrolytes, 65
electrolytic capacitors, 427–428, 433
electromagnet, 519. See also  

permanent magnets
electromagnetic induction, 26
electromagnetic interference (EMI), 465, 466
electromagnetic theory of light, 26
electromagnetism, 25, 476
electromotive force (emf), 64
electron flow, 61–62, 64, 154
electronic devices, 26
electronic systems, 818–819
electrons, 55

free, 58
electron volt, 60–61
energy, 133, 135–139

applications, 143–150
capacitors, 461
flow of, 139
inductors, 506–507
potential, 60
units comparison, 31

engineering notation, 38, 46
ENIAC, 27
equivalent circuits, 709–714
equivalent series resistance (ESR), 431, 610–611
even function (axis symmetry), 1084
even harmonics, 1089
exact numbers, 32
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F
falling edge, waveform, 1056
fall time, 1057–1058
Faraday, Michael, 26, 418
Faraday’s law, 486, 546, 975, 977
ferromagnetic material, 478, 520
film capacitors, 428
film resistor, 99–100
filters, 921–941

active, 921
band-pass, 921, 922, 930–934, 940
band-stop, 921, 922, 934–936
Chebyshev, 938
configurations, 938–941
defined, 921
double-tuned, 936–938
high-pass, 921, 922, 927–930
low-pass, 921, 922–927
noise, 963–966
passive, 921
stop-band, 921

final value. See steady-state value
five-band color code, 106
fixed capacitors, 425–429. See also capacitors
fixed inductors, 482–483
fixed-point notation, 38
fixed resistors, 99–101

color coding for, 105
flashlight, 81–83
Fleming, John Ambrose, 26
Fleming’s valve, 26
floating-point notation, 38
fluorescent vs. CFL/LED bulbs, 143–145
flux, 527
flux density, 478, 519

residual, 523
foil capacitors, 428
Fourier analyzer, 1086
Fourier, Baron Jean, 1082
Fourier expansion

of half-wave rectified waveform, 1091–1092
of square wave, 1089–1090

Fourier series, 1082–1089
average value, 1083

Fourier Spectrum, 1092–1093
fractional bandwidth, 876
Franklin, Benjamin, 25
free electron, 58
frequency

band, 874
corner, 874, 957
cutoff, 874, 886
defined, 548
half-power, 874
natural, 866
quality factor vs., 870–871
resonant, 868, 888–890
response (see frequency response)
spectrum, 549–552
of square wave, 1067

total impedance vs., 872–873
transformers, 989–990

frequency counter, 583
Frequency Domain, 1092–1093
frequency response, 605–611

ideal, 605–607
parallel elements, 698–708
parallel R-L-C circuits, 699
parallel R-L circuits, 700–705
practical, 607–611
series ac circuits, 658–670

Frequency Spectrum, 1092–1093
fringing, 419, 531
fuel cells, 72–74
full-wave rectified waveform, 581
function generators, 547, 564
fundamental component, 1082
fuses, 142–143

G
Galvani, Luigi, 25
generator (dc), 71
GFCI. See ground fault circuit interrupt (GFCI)
Gilbert, William, 24
gold, 93
graphic equalizers, 899–902
Gray, Stephen, 25
ground connection, 175–176, 180–181
ground fault circuit interrupt (GFCI), 143, 739–741
grounding, 736–739. See also specific grounds

H
half-power frequencies, 874
half-wave rectified waveform,  

Fourier  expansion of, 1091–1092
half-wave rectifier, 581
half-wave symmetry, 1084–1085
Hall effect sensor, 538–539
harmonic terms, 1082
hash choke coil, 484
Hay bridge, 773
helium atom, 56
henries (H), 480
Henry, Joseph, 480
Hertz, Heinrich Rudolph, 26, 548
hertz (Hz), 548
high-pass filters, 921, 922. See also filters

R-C, 927–930, 941–946
holiday lights, 191–193
horsepower (hp), 133
household dimmer switch, 507–510
hydrogen atom, 55, 56
hysteresis, 522–526
hysteresis losses, 855

I
IC. See integrated circuit (IC)
ideal pulse, 1055
ideal resistor, 605
impedance diagrams, 647–648

series R-L-C circuits, 653–654
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impedances
coupled, 995
matching, 981–986
maximum, 884–885
measurements, 584
of network, 648
Norton’s theorem (ac circuits), 807, 808, 810
parallel R-C circuits, 696
parallel R-L-C circuits, 698
parallel R-L circuits, 694, 700–703
reflected, 979–981
resistive element, 642
series configuration, 648–655
Thévenin’s theorem (ac circuits), 797, 801
total (see total impedance)

independent sources
conversion, 748–750
current, 754
nodal analysis (ac), 759–761
Norton’s theorem (ac circuits), 807–811
superposition theorem, 788–793
voltage, 751–753, 762–763
vs. dependent sources, 747–748

induced voltage, 486–488, 978
inductance, 480–486

mutual, 976–977
inductors, 462, 475–510, 608–609. See also specific inductors

ac circuits, 598–599
applications, 507–510
average induced voltage, 501–503
average power, 615
color-coding system, 485
construction, 480–482
defined, 480
energy storage, 506–507
fixed, 482–483
ideal, 605
induced voltage, 486–488
initial conditions, 491–493
instantaneous values, 500–501
labeling, 485–486
magnetic field, 475–479
measurement of, 486
in parallel, 503–504
practical equivalent, 484–485
in series, 503–504
series ac circuits, 643–645
steady-state conditions, 504–506
symbols, 482
testing of, 486
Thévenin equivalent, 498–500
variable, 483, 484
voltage, 494, 495

industrial electrical distribution system, 1043–1045
inferred absolute temperature, 96–98
initial conditions

capacitive networks, 448–451
inductive networks, 491–493

initial value, 448

instantaneous values
capacitive networks, 451–452
defined, 547
inductive networks, 500–501

instrumentation
ac circuits, 581–584
ammeters, 78–81, 162, 186, 222, 288–289
decibels, 919–921
digital multimeter (DMM), 79, 110, 111, 570–571
loading effects, 186–188
nonsinusoidal circuits, 1086–1089, 1095–1096
ohmmeters, 110–111, 584
oscilloscopes, 564–566
parallel dc circuits, 221–223
parallel resistors, 216–217
pulse waveforms, 1063
series dc circuits, 161–162
voltmeters, 78–81, 161–162, 221–222, 289
volt-ohm-milliammeter (VOM), 79, 110, 111

instrument transformers, 1001
insulators

breakdown strength of, 77
defined, 77
resistance of, impact of temperature on, 96
types of, 78

integrated circuit (IC), 22, 27–28, 113, 462. See also ac circuits;  
dc circuits

Integration, 569
internal resistance

of voltage sources, 181–186
inverter, 547
inverters, 578–581
iron-core transformers

equivalent circuit, 986–989
nameplate data, 995–997
phasor diagram for, 988
reduced equivalent circuit, 987
reflected impedance, 979–981

iron-vane movement, 287–288, 581

J
Joule (J), 30, 59, 136
Joule, James Prescott, 136

K
kelvin (K), 30
kilogram (kg), 30, 31
kilowatthour meter, 136
Kirchhoff, Gustav Robert, 26, 166
Kirchhoff’s current law (KCL), 225–229

application of, 225–229
defined, 225
equation, 225
nodal analysis and, 331, 334–335
parallel ac network, 692
parallel R-C circuits, 695
parallel R-L-C circuits, 697
parallel R-L circuits, 693
unbalanced Y-connected loads, 1039
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Kirchhoff’s voltage law (KVL), 166–170
in branch-current analysis, 313
capacitors and, 438
closed loop, 166
defined, 166
in mesh analysis (ac), 751
in mesh analysis (dc), 320
series R-C circuits, 652
series R-L-C circuits, 654
series R-L circuits, 650
symbolic form, 166
unbalanced Y-connected loads, 1041

L
labeling

capacitors, 432–433
inductors, 485–486

ladder networks
ac, 735–736
dc, 277–279

lagging, 561
power factor, 616

lagging power factors, 616, 648, 686
languages, computer, 49
lead-acid batteries, 66–67, 235–236
leading, 561

power factor, 616
leading power factors, 616, 648, 686
leakage current, 430–431
leakage flux, 986
Leibniz wheel, 27
Lenz’s law, 487, 975
Leyden jar, 25
light-emitting diode (LED), fluorescent vs., 143–145
line conditioner. See surge protector
line current, 1018
line voltage, 1018
lithium-ion (Li-ion) batteries, 66, 68–69
load regulation. See voltage regulation
logarithmic plot, characteristics of, 912–913
logarithmic scale, 911
logarithms

applications of, 910
graphs, 910–912
natural, 914
properties of, 914–915
relationship with variables, 910–912
usage of, 909

log-log graph paper, 910
loop currents, 319
low-pass filters, 921, 922. See also filters

Butterworth, 938
R-C, 922–927, 946–948

low-voltage application, 1006–1007

M
magnetic circuits, 519–541

air gaps, 531–533
Ampére’s circuital law, 526–527
applications, 537–541
domain theory, 524, 526

flux, 527
flux density, 519
hysteresis, 522–526
magnetic field, 519–520
magnetizing force, 521–522
Ohm’s law for, 521
reluctance, 520
series, 527–531
series-parallel, 533–534

magnetic field, 475–479, 519–520
magnetic flux lines

defined, 476
magnetic circuits, 521
materials, 478

magnetic reed switch, 539–540
magnetic resonance imaging (MRI), 540–541
magnetism, domain theory of, 524, 526
magnetizing force, 521–522
magnetomotive force, 478, 519–521, 974
magnets, permanent. See permanent magnets
malleability, 93
Marconi, Guglielmo, 26
matrix approach, 462–463
maximum power transfer theorem (ac circuits), 813–817

conditions for, 814
defined, 813

maximum power transfer theorem (dc circuits), 391–400
defined, 391
efficiency, 394, 395
load resistance, 396
validation of, 391

maximum voltage rating, 102
maximum working voltage, 421
Maxwell bridge, 774
Maxwell, James Clerk, 26
Maxwell’s equations, 26
megohmmeter, 291
memristors, 113–114

action of, 114
defined, 113
illustrated, 113

menu, 49
mesh analysis (ac), 751–759

bridge network, 770
dependent current sources, 755
dependent voltage sources, 754
format approach, 755–759
independent current sources, 754
independent voltage sources, 751–753
Kirchhoff’s voltage law, 751

mesh analysis (dc), 319–330
bridge networks, 343
defined, 319
format approach, 326–330
general approach, 319–326
Kirchhoff’s voltage law and, 320
procedure, 320–323, 327
rref mode, 330
shorthand form, 330
supermesh approach/current, 324–326
TI-89 determinant mode, 329–330
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mesh/loop currents, 319
metal-film resistor, 100
meter (m), 30, 31
meters. See also specific meters

ac, 581–584
capacitance, 433
clamp-on, 583
power, 853
in series dc circuits, 161–162

methods of analysis
ac (see analysis methods (ac))
dc (see analysis methods (dc))

mica capacitors, 429
microammeter, 78
microbar (µbar), 918
microphones, 537–538
microwave oven, 145–148, 193–194
milliammeter, 78
milligaussmeter, 479
Millman’s theorem, 400–403

ac circuits, 817
application effect, 400
dual effect, 403
equivalent resistance, 401
voltage source conversion to current source, 400–401

mirror symmetry, 1084–1085
MKS system, 29, 30
molded coils, 484

color coding, 485
multiple-load transformers, 999–1000
multiplication, using powers of ten, 36
mutual inductance, 976–977
mutually coupled coils, 990–993

N
nameplate data, 995–997
nanochips, 22
nanotechnology, 22
nanovoltmeter, 291
natural frequency, 866
negative-going pulse, 1057
neutral connection, 1021
neutrons, 56
Newton (N), 30
nickel–metal-hydride (NiMH) batteries, 67–68
Nipkow, Paul, 27
nodal analysis (ac), 759–770

bridge networks, 771
dependent current sources, 761–762
dependent voltage sources, 763–764
format approach, 764–770
general approach, 759–764
independent sources, 759–761
independent voltage sources, 762–763

nodal analysis (dc), 330–342
bridge networks, 343
format approach, 338–342
general approach, 330–338
Kirchhoff’s current law and, 31, 334–335
procedure, 331, 338
supernode approach, 336–338

nodal voltage, 355–357
nodes, 226, 330
noise filters, 963–966
nonsinusoidal circuits, 1081–1100

defined, 1081
even function (axis symmetry), 1084
Fourier series, 1082–1089
Fourier Spectrum, 1092–1093
half-wave/mirror symmetry, 1084–1085
half-wave rectified waveform, Fourier expansion of, 

1091–1092
input response, 1093–1099
instrumentation, 1086–1089, 1095–1096
odd function (point symmetry), 1083–1084
repetitive on half cycle, 1085
square wave, Fourier expansion of, 1089–1090

normalization, 923
normal magnetization curve, 523, 524
Norton, Edward L., 387
Norton’s theorem (ac circuits), 807–813

defined, 807
dependent sources, 811–813
equivalent circuit, 807–808, 809
impedance, 807, 808, 810
independent sources, 807–811

Norton’s theorem (dc circuits), 387–390
defined, 387
experimental procedure, 390
procedure of, 387–388

notation
double-subscript, 176
series dc circuits, 175–179
single-subscript, 176–177

nucleus, 55, 56

O
odd function (point symmetry), 1083–1084
Oersted, Hans Christian, 25, 475
Ohm, George Simon, 24, 26, 128
ohmmeters, 110–111

in impedance measurement, 584
in parallel network resistance measurement, 216–217
series, 290
in series-parallel dc circuits, 290–291
in Thévenin resistance measurement, 384–385

ohms, 24, 89
Ohm’s law, 26, 127–133

and current source, 308
defined, 128
and equation for power, 134
for magnetic circuits, 521
parallel ac network, 691
phase currents, 1038–1039
plotting, 130–133
series ac circuits, 649
and series-parallel dc circuits, 262
and series R-L circuits, 650
in voltage drop magnitude, 158–159
and voltage source, 309

ohm/volt (Ω/V) rating, 240
oil capacitors, 429
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open circuits
capacitor and, 437
parallel dc circuits, 236–237
series-parallel dc circuits, 284–287

oscillators, 580
oscilloscopes, 564–566

attenuator probe, 1073–1074
for average value, 570–572
in dc voltage measurement, 571
defined, 564
ground, 737
input resistance, 1073
storage, 565

P
parallel ac circuits, 685–717

admittance, 687–691
analysis of, 685
applications, 714–717
current divider rule, 698
equivalent, 710–711
frequency response, 698–708
networks, 691–698
R-C, 694–696, 705–707
R-L, 692–694, 700–705
R-L-C, 696–698, 699, 708
summary, 708–709
total impedance, 685–687

parallel capacitors, 457–460
parallel current sources, 310–312
parallel dc circuits, 207–249

advantages of, 244–245
ammeter, 222
applications, 244–249
current, 217–218
current divider rule, 229–235
defined, 207
duality, 219–221
instrumentation, 221–223
Kirchhoff’s current law and, 225–229
open, 236–237
power distribution in, 223–225
protoboards (breadboards), 243–244
resistors, 207–217
short, 237–238
summary table, 241–242
troubleshooting techniques, 242–243
voltage, 217
voltage sources in, 235–236
voltmeters in, 221, 239–241

parallel inductors, 503–504
parallel resistors, 207–217

analogies, 216
combination, 208
current through, 229–235
defined, 207
equal, 212–213
instrumentation, 216–217
interchanging, 214
schematic representation, 208
total resistance, 208–213
two, 213–216, 233–235

parallel resonant circuits, 866, 881–898
bandwidth, 886, 890
cutoff frequencies, 886
examples, 892–898
maximum impedance, 884–885
quality factor, 890
selectivity curve for, 885–888
summary table, 891–892
total impedance, 890
unity power factor, 883–884

paramagnetic material, 478
parametric equalizers, 899–902
parts per million per degree Celsius (PPM/ºC), 99
Pascal, Blaise, 27
passive filters, 921. See also filters
peak amplitude, 547
peak-to-peak value, 547
peak value, 547

current of capacitor, 600
inductor of voltage, 599
sinusoidal function, 597

period (T), 548
periodic pulse train, 1059
periodic waveform, 548
permanent magnets

defined, 475, 526
flux distribution, 476
magnetic field distribution, 519

permeability
of air, 478
defined, 478
ferromagnetic materials, 520
relative, 479, 481, 520

phase angle, measurement of, 671–674
phase current, 1018
phase relations, 560–566

defined, 562
function generators, 564
lagging, 561
leading, 561
oscilloscope and, 564–566
phasor diagram, 643

phase sequence
Δ-connected generators, 1026
indicators, 1041–1042
Y-connected generator, 1019–1020

phase-shift power control, 715–717
phase voltages, 1016
phasor, 642
phasor diagrams

defined, 630
illustration, 647
for iron-core transformers, 988
magnitudes, 643
parallel R-C circuits, 695
parallel R-L-C circuits, 697
parallel R-L circuits, 693
series R-C circuits, 652
series resonant circuits, 869
series R-L-C circuits, 654
series R-L circuits, 650
Y-connected generator, 1019–1020
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phasors, 629–635, 642
defined, 629
diagrams (see phasor diagrams)

phenolic inductor, 483
photoconductive cell, 117
pi (π), 346, 553
polar form, complex numbers, 618–619

conversion to rectangular form, 619, 620
polarities, 129
polyester capacitors, 428
polyphase systems, 1015–1045

defined, 1015
Δ-connected balanced load, 1031–1034
Δ-connected generators, 1025–1026
Δ-Δ systems, 1026–1028
Δ-Y systems, 1026–1028
phase sequence, 1019–1020, 1026
phase voltages, 1016
power, 1028–1034
three-phase generator, 1016–1017
three-phase power distribution, 1015
three-wattmeter method, 1034–1035
two-wattmeter method, 1035–1038
unbalanced, 1038–1042
Y-connected three-phase generator, 1017–1019
Y-Δ system, 1023–1025

polypropylene capacitors, 428
Popov, Aleksandr, 26
portable power generators, 856–857
positive-going pulse, 1057
positive ion, 58
potential difference, 60, 63, 128
potential energy, 60
potentiometer

defined, 102
internal construction of, 103
loading, 282–283
resistance components of, 103–104
in Thévenin resistance  

measurement, 385, 386
pound (lb), 30
power (ac), 831–858

apparent, 831, 834–836
applications, 856–858
average, 573, 611–617, 833
capacitive circuit, 839–841
effective resistance, 853–856
general equation, 831–832
inductive circuit, 836–839
parallel R-L-C circuits, 697
parallel R-L circuits, 693
power-factor correction, 848–853
reactive, 831, 836–839
resistive circuit, 832–834
series R-C circuits, 652–653
series R-L-C circuits, 654–655
series R-L circuits, 650–651
vs. time, 612

power (dc), 133–135
defined, 133
distribution in parallel circuit, 223–225
electrical unit of measurement, 133

equation for, 134
superposition theorem and, 369

power factor, 616–617
Δ-connected balanced load, 1031
lagging, 616, 648, 686
leading, 616, 648, 686
parallel R-C circuits, 695
parallel R-L-C circuits, 697–698
parallel R-L circuits, 693
series R-C circuits, 653
series R-L-C circuits, 655
series R-L circuits, 651
Y-connected balanced load, 1029

power-factor correction, 848–853
power meters, 853
powers of ten, 34–37, 40–41, 48
power strip. See surge protector
power supplies, 71–72
power triangle, 841–843
PPM/ºC, 99, 431–432
practical pulse. See actual/true/practical pulse
primary cells, 65–66
primary current, 978–979
primary current, load component of, 979
program, computer, 49
protoboards (breadboards)

defined, 188
network setups, 189
parallel dc circuits, 243–244
series dc circuits, 188–190

proton, 55
pulse repetition rate, 1060
pulse train, 1059
pulse transformer, 999
pulse waveforms, 1055–1077

amplitude of, 1056
average value, 1062–1063
base-line voltage, 1057
duty cycle, 1059–1062
fall time, 1057–1058
ideal, 1055
instrumentation, 1063
negative-going, 1057
positive-going, 1057
pulse width, 1056
rise time, 1057–1058
tilt, 1058

pulse width, 1056
Pythagorean theorem, 842

Q
quadrature power. See reactive power
quality factor (Q), 870–872

coil, 870–871
defined, 870
frequency vs., 870–871
parallel resonant circuits, 890

R
radians, 553, 554
radiation loss, 854
radio, 26–27
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radio-frequency interference (RFI), 465, 466, 507
R-C circuits

parallel, 694–696, 705–707
series, 651–653, 659–660
transient, 1063–1066

R-C high-pass filter, 927–930, 941–946
R-C low-pass filters, 922–927, 946–948
R-C response

to square-wave inputs, 1066–1073
reactance

capacitive, 601, 868
inductive, 598, 867, 888

reactive power, 831, 836–839, 841
Δ-connected balanced load, 1031
total, 843–848
Y-connected balanced load, 1029

real power. See average power
reciprocal, of complex numbers, 621–622
reciprocity theorem

ac circuits, 817
dc circuits, 405–406

rectangular form, complex numbers, 617–618
conversion to polar form, 619, 620

rectification, 71
rectifier. See diodes
reduce and return approach

series-parallel dc circuits, 263–265
reduced row echelon form (rref), 316–317
relative permeability, 479, 481, 520
relative permittivity, 420–421
reluctance, 520
residential electrical distribution system, 1043–1045
residual flux density, 522–523
resistance, 89–122. See also resistors

circular wires, 90–93
coil/stray, 867
color coding, 104–108
conductance, 109
defined, 89
internal, of voltage sources, 181–186
mathematical manipulations, 129
memristors, 113–114
metric units, 111–113
photoconductive cell, 117
sheet, 112
superconductors, 114–116
temperature and, 96
thermistor, 116–117
varistors, 117–118

resistive ac circuit, 642–643
resistivity, 90, 111
resistors, 598, 607–608. See also resistance

average power, 614
fixed, 99–101
ideal, 605
maximum voltage rating, 102
parallel, 207–217
series, 154–157
series ac circuits, 642–643
standard values of, 106, 107

surface mount, 108
variable, 102–104

resonance, 865–902
applications, 899–902
parallel circuit, 866, 881–898
series circuit, 866, 867–881
stray, 899

resonant frequency, 868
RF chokes, 484
rheostats, 102
rise time, 1057–1058
rising edge, waveform, 1056
R-L-C circuits

parallel, 696–698, 708
series, 653–655, 669–670

R-L circuits
parallel, 692–694, 700–705
series, 650–651, 666–669

Röntgen, Wilhelm, 26
root-mean-square (rms) value. See effective/rms value
rounding off, 33

S
sag, 1058
saturation, 526
scientific notation, 38
second (s), 29–30
secondary cells, 65, 66–69
secondary current, 978–979
selectivity

series resonant circuits, 873–876
selectivity curve, 874

for parallel resonant circuits, 885–888
semiconductors

defined, 78
materials, 78
resistance of, impact of temperature on, 96

semilog graph paper, 910–911
series ac circuits, 641–677

applications, 674–677
capacitive elements, 645–647
components, 641
frequency response for, 658–670
inductive elements, 643–645
Ohm’s law, 649
R-C, 651–653, 659–660
resistive elements, 642–643
R-L, 650–651, 666–669
R-L-C, 653–655, 669–670
voltage divider rule, 655–658

series alarm circuit, 194
series capacitors, 457–460
series current sources, 312
series dc circuits, 153–194

ammeter, 162
analogies, 161
applications, 190–194
applied voltage of, 167
connection of supplies, 166
defined, 157
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elements of, 174–175
instrumentation, 161–162, 186–188
Kirchhoff’s voltage law, 166–170
notation, 175–179
overview, 153–154
power distribution in, 163–164
protoboards (breadboards), 188–190
resistors, 154–156
schematic representation, 157
summary table, 241–242
voltage divider rule, 172–174
voltage division in, 170–174
voltage measurement, 161–162
voltage regulation, 181–186
voltage sources in, 164–166
voltmeters, 161

series inductors, 503–504
series magnetic circuits, 527–531
series ohmmeter, 290
series-parallel ac circuits, 725–741

applications, 739–741
defined, 725
grounding, 736–739
illustrative examples, 725–735
ladder networks, 735–736
parallel network and voltage, 728–729
parallel network with current source, 727
parallel network with number of series elements, 731–733
parallel network with parallel current sources, 731
parallel network with voltage source, 728
series-parallel network, 733–735
simple series-parallel combination, 725–727
transistor common emitter  configuration, 729–730

series-parallel dc circuits, 262–295
ammeter, 288–289
applications, 291–295
block diagram approach, 265–268
defined, 262
examples of, 269–276
ladder network, 277–279
network illustration, 262
ohmmeter, 290–291
Ohm’s law and, 262
open, 284–287
potentiometer loading, 282–283
reduce and return approach, 263–265
short, 284–287
voltage divider supply, 279–281
voltmeter, 89

series-parallel magnetic circuits, 533–534
series resistors, 154–157

analogies, 156
identification of series elements, 154
instrumentation, 156–157
total resistance, 155–156

series resonant circuits, 866, 867–870
examples, 879–881
low and high frequencies, 867–868
quality factor (Q), 870–872
selectivity, 873–876

summary, 878–879
total impedance, 872–873
voltage, 876–878

sheet resistance, 112
shells, 56
Shockley, William, 27
short circuits

capacitor and, 438
current, in Thévenin resistance measurement, 385, 386–387
defined, 237
examples of, 238
inductor characteristics, 490
inductor equivalents, 492, 506
parallel dc circuits, 238–239
series-parallel dc circuits, 284–287

siemens (S), 109, 688
significant figures/digits, 32–34
silver, 93
single-phase ac generator, 1015
single-pole-double-throw (SPDT) relays, 355
single split-phase distribution system, 1043
single-subscript notation, 176–177
sinusoidal alternating current, 153
sinusoidal voltage, 545, 546–548, 557–560

element response to, 598–605
sinusoidal waveforms, 553–557. See also ac circuits

angular velocity, 554
areas of positive (negative) pulse, 569
defined, 553
derivative of, 597
function, 557
generating through vertical projection, 555
mathematical format for, 557
peak value of, 597
phase relations, 560–566

SI system, 29–30
skin effect, 854
slug, 30
smart meter, 136–137
smartphones (devices), 21
software packages, 49–50
solar cells, 65, 69–71
soldering gun, 1003–1006
solid-state era, 27–28
source current

parallel R-C circuits, 707–708
parallel R-L circuits, 703–705

speakers, 537–538, 674–677
specific gravity, 67
spectrum analyzer, 921, 1086
square wave

average value, 1068
defined, 1066
Fourier expansion of, 1089–1090
frequency of, 1067
inputs, R-C response to, 1079–1080
periodic, 1066
steady-state conditions, 1072

static electricity, 24
steady-state conditions, 504–506
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steady-state region, 448–449
steady-state value, 449
Steinmetz, Charles Proteus, 633
step-down transformer, 976
step-up transformer, 976
stop-band filters, 921. See also filters
strain gauges, 121–122
stray capacitances, 461–462
stray resonance, 899
substitution theorem

ac circuits, 817
dc circuits, 403–405

subtraction, using powers of ten, 36
superconductors, 114–116
supermesh approach/current, 324–326
supernode approach, 336
superposition theorem (ac circuits), 787–795

applications of, 788
defined, 787
dependent sources, 793–795
independent sources, 788–793
power effects and, 787

superposition theorem (dc circuits), 367–374
current source, removing, 368
defined, 367
impact of sources, 368–369
power effects, 369
total solutions, 368–369
usage of, 367
voltage source, removing, 368

surface-mount inductors, 484
surface mount resistors, 108
surge protector, 464–467
susceptance

capacitive element, 688
inductive element, 688

symbols, 44
symmetrical lattice network, 342–343
systems of units, 29–32, 42–44

CGS, 29, 31
MKS, 29, 30
SI, 29–30

T
t(0+), 439–440
t(0−), 439–440
tee (T), 346
Teflon® capacitors, 428
television, 27
temperature

ampere-hour (Ah) rating vs., 76
conductors and inferred absolute, 96–98
critical, 115, 116
effects on capacitors, 431–432
inferred absolute, 96–98
and resistance, 96–99

temperature coefficient, 432
temperature coefficient of resistance, 98–99
terminal voltage, 76, 77
Tesla, Nikola, 478

teslas (T), 478
theorems (ac networks), 787–819

applications, 818–819
maximum power transfer, 813–817
Millman’s, 817
Norton’s, 807–813
reciprocity, 817
substitution, 817
superposition, 787–795
Thévenin’s, 795–807

theorems (dc networks), 367–406
maximum power transfer, 391–400
Millman’s, 400–403
Norton’s, 387–390
reciprocity, 405–406
substitution, 403–405
superposition, 367–374
Thévenin’s, 375–387

thermistor, 116–117
Thévenin, Leon-Charles, 375
Thévenin’s theorem (ac circuits), 795–807

defined, 795
dependent sources, 800–807
equivalent circuit, 795–797, 801, 807–808
impedance, 797, 801
independent sources, 795–800
voltage, 800

Thévenin’s theorem (dc circuits), 375–387
defined, 375
ETh measurement, 384
experimental procedures, 383–387
procedure of, 375–376
RTh measurement, 384–387
and terminal identification, 376, 378
usage of, 375

three-phase generator, 1016–1017
Y-connected, 1017–1023

three-symbol approach, color coding, 108
three-wattmeter method, 1034–1035
three-wire conductors, 737–738
TI-89 calculator, 45–46

complex numbers, 627–629
logarithms, 914–915
Norton’s theorem (ac circuits), 810
sinusoidal functions, 559–560
superposition theorem (ac circuits), 810
total admittance, 732–733
total impedance, 734
voltage divider rule (ac), 656

tilt, 1058
time

power vs., 612
as unit of measurement, 553

time charts, 24–25
time constant, 435, 438

effect on response, 444–448
toroid coil, 484
total impedance

defined, 726, 868
parallel ac circuits, 685–687
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parallel R-C circuits, 705–707
parallel resonant circuits, 890
series R-C circuit, 660–662
series resonant circuits, 867, 872–873
series R-L-C circuit, 669–670
series R-L circuit, 666–667

touch pad, 462
transformation ratio, 976
transformers, 83, 973–1010

air-core, 993–995
applications, 1002–1010
applied frequency, 977–978
center-tapped, 999–1000
coefficient of coupling, 976
current, 1001–1002
Faraday’s law, 975
frequency, 989–990
impedance matching, 981–986
instrument, 1001
iron-core, 973–974
isolation, 984
leakage flux, 974
Lenz’s law, 975
multiple-load, 999–1000
mutual inductance, 976–977
mutually coupled, 990–993
nameplate data, 995–997
primary and secondary currents, 978–979
reflected impedance, 979–981
step-down, 976
step-up, 976
symbols, 997
transformation ratio, 976
types of, 997–999 (See also specific types)

transient period, 434
transients (capacitive networks), 434–448

charging phase, 434–442
discharging phase, 442–448
exponential functions, solving for, 440–442
time constant (see time constant)
t(0−)/t(0+), 439–440
universal equation for, 449

transients (inductive networks), 488–491, 493–497
Kirchhoff’s voltage law and, 490
release phase, 493–497
R-L, 488–491, 493–497
storage phase, 488–491

transistor common emitter configuration, 729–730
transistors

dc levels, 272
defined, 27

troubleshooting
defined, 242
techniques, 242–243

true pulse. See actual/true/practical pulse
True rms Multimeter, 577–578
tungsten, 93
turns ratio, 84
TV remote application, 1075–1077
12 V car battery charger, 83–85
two-symbol marking, 108

two-terminal device, 154
two-wattmeter method, 1035–1038

U
ultra high definition (UHD), 21
ultra-wideband audio transformer, 999
unbalanced systems, 1038–1042. See also polyphase systems

three-phase, four-wire, Y-connected load, 1038–1040
three-phase, three-wire, Y-connected load, 1040–1042

units of measurement, 28–29

V
van Musschenbroek, Pieter, 25
varactor (varicap) capacitor, 430
variable capacitors, 429–430

symbol, 425
variable inductors, 483, 484
variable resistors, 102–104. See also potentiometer
varistors, 117–118
virtual ground, 462
volt, 24, 59
Volta, Alessandro, 24, 25, 59
voltage, 55, 58–61

applied, 60, 61, 63, 167, 974–975
average induced, 501–503
average value, 567
base-line, 1057
breakdown, 421
defining between two points, 59
dependent sources, 754, 763
derivative of, 455
division, in series circuit, 170–174
independent sources, 751, 762–763
induced, 486–488, 978
inductor, 494, 495
line, 1018
mathematical manipulations, 129
maximum, 240
maximum rating, 102
nodal, 355–357
parallel dc circuits, 217
peak value of, 599
phase, 1016
phase angle measurement between, 673–674
polarity for, 552
resonance, 869
series R-C circuit, 663–666
series resonant circuit, 876–878
series R-L ac circuit, 666–669
sinusoidal, 545, 546–549
sources (see voltage sources)
terminal, 76, 77
Thévenin, 384, 800

voltage divider rule (VDR), 172–174, 280
ac circuits, 655–658
defined, 172

voltage divider supply, 279–281
defined, 279
illustration, 279
loaded conditions, 279–281
no-load conditions, 279
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voltage gain, 916–917
high-pass filter, 941

voltage regulation
defined, 184
series dc circuits, 181–186

voltage sources, 64–74
batteries, 65–69
and current source, 306
dependent, 793–795
and ground connection, 175–176
ideal, 306
Ohm’s law and, 309
in parallel dc circuits, 235–236
removal from network, 368
in series dc circuits, 164–166

voltaic cell, 25
volt-ampere reactive (VAR), 837
voltmeters, 78–81. See also instrumentation

loading effects, 239–240
in parallel dc circuits, 221–222
in series dc circuits, 162
series-parallel dc circuits, 289
Thévenin voltage measurement with, 384

volt-ohm-milliammeter (VOM),  
79, 110, 111, 581

analog, 240
dB scale, 919

von Guericke, Otto, 24–25
von Leibniz, Gottfried Wilhelm, 27
von Siemens, Werner, 109

W
watt (W), 133
Watt, James, 133
wattage ratings, of household items, 139
wave analyzer, 1086
waveforms

alternating, 545
cycle, 548
defined, 547
full-wave rectified, 581
nonsinusoidal (see nonsinusoidal circuits)
periodic, 548
pulse (see pulse waveforms)
sinusoidal, 553–557

Weber, Wilhelm Eduard, 477
webers (Wb), 477
Wheatstone bridge smoke detector, 354–355
Wien bridge oscillator, 580
wire tables, 93–95
wiring, household, 148–150, 247–249, 714–715
wye (Y) configuration

conversion to delta (Δ) configuration, 346–351
resistance, 346

X
X-rays, 26

Y
Y-connected load

balanced, 1028–1031
unbalanced, 1038–1042
Y-connected generators with, 1021–1023

Y-connected three-phase generator, 1017–1023
defined, 1017
line current, 1018
phase current, 1018
phase sequence, 1019–1020
phasor diagram, 1019
Y-connected load with, 1021–1023

Y-Δ conversion
ac, 775–780
dc, 346–351

Y-Δ system, 1023–1025
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ac
Sinusoidal Alternating Waveforms
Sine wave υ α α ω π= = = = =V t ft f Tsin , 2 , 1/ , 1 radian 57.3°,m  

π ( )( )= ×radians /180° degrees , π( ) ( )= ×degrees 180°/ radians
Identities t t t tsin 90° cos , sin cos /2 ,ω ω ω ω π( ) ( )( )+ = = −
sin sin , cos cosα α α α( ) ( )− = − − =
Average value =G algebraic sum of areas / length of curve
Effective (rms) value I I I I0.707 , 2 ,m mrms rms= =

I i t Tarea /rms
2( )[ ]=

V V

V V

V v t T

0.707

2

area /

m

m

rms

rms

rms
2( )[ ]

=

=

=

The Basic Elements and Phasors
R LI V R X L i: :/ , in phase , leads by 90°m m L L Lω υ= =
C X C i: 1/ , leads by 90°C C Cω υ=  Power P V I /2  cosm m θ( )= =

RV I P V I I R V R:cos /rms rms rms rms
2

rms
2

rmsθ = = =
Power factor θ= =F P V Icos /p rms rms  Rectangular form   = ±A jBC

Polar form θ= ∠C C  Conversions C A B ,2 2 θ= + =
B A A C B Ctan / , cos , sin1 θ θ( ) = =−  Operations j 1,= −

j j j A A j B BC C1, 1/ , ,2
1 2 1 2 1 2( ) ( )= − = − ± = ± ± + ± ±

C C C CC C C C, / /1 2 1 2 1 2 1 2 1 2 1 2⋅ θ θ θ θ( )( ) ( )= ∠ + = ∠ −

Series and Parallel ac Circuits
Elements ∠ ∠ ∠−R X X0°, 90°, 90°L C
Series = + + + + = =F R ZZ Z Z Z Z I E Z. . . , / , /T N s T p T1 2 3

Voltage divider rule x xV Z E Z/ T=  Parallel Y Y Y
T 1 2

= + +

Y Y Z Z Z Z Z. . . , / ,
N T3 1 2 1 2( )+ + = +  G B0°, 90°,L∠ ∠−

B F G Y90°, cos /C P T Tθ∠ = =  Current divider rule I1 =

Z I Z Z I Z I Z Z/( ), /T T2 1 1 22 1 2 ( )+ = +
Equivalent circuits R R X X R X R X X R/ , / ,s p p p p s p p p p

2 2 2 2 2 2( ) ( )= + = +
R R X R/ ,p s s s

2 2( )= +  ( )= +X R X X/p s s s
2 2

Series-Parallel ac Networks
Employ block impedances and obtain general solution for reduced network. Then 
substitute numerical values. General approach similar to that for dc networks.

Methods of Analysis and Selected Topics (ac)
Source conversion = = =p s p sE IZ Z Z I E Z, , /
Bridge networks =Z Z Z Z/ /1 3 2 4

∆ ∆Y Y- , -  conversions See dc coverage, replacing R by Z.

Network Theorems (ac)
Review dc content on other side.
Thévenin’s theorems   (dependent sources) E E Z E I, / ,OC Th Th OC SC= =
Z E I/Th g g=  Norton’s theorems (dependent sources) I I ,SC N=
Z E I Z E I/ , /N OC SC N g g= =  Maximum power transfer theorem 

θ θ= = − =Z Z P E R, , /4L Th L Th Th Thmax
2

Z

Power (ac)
R P VI V I I R V R: /2 /m m

2 2= = = =  Apparent power S VI ,=
θ θ= = =P S F P Scos , cos /p  Reactive power Q VI sin θ=

L Q VI I X V X C Q VI I X V X: / , : / ,L L L C C C
2 2 2 2= = = = = =  

S P Q F P S, /T T T p T T
2 2= + =

Resonances
Series X X f LC Z R Q X R Q X R, 1/(2 ), , / , /L C S TS l L l S Lπ= = = = = =

R L C(1/ ) / ,  V Q E V Q E P P, , 1/2 ,L S Cs S HPF max( )= = =
π ( ]( ) ( )= − + + −f R L R L LC f R L1/2 [ /2 (1/2) / ) 4/ , use /2 ,1

2
2

π= − = =BW f f R L f Q/2 /S S2 1  Parallel X X X,Lp C Lp= =

R X X f LC R C L Z R R/ , 1/ 2 1 / , ,l L L p l TP s p
2 2 2π( )[ ]( ) ( )+ = − = �

R R X R/ ,p l L l
2 2( )= +  = = − =�Q R R X BW f f f Q( )/ , /p s p Lp p p2 1

Q Z R Q R X X X X f LC10: , , , 1/(2 ),Tp s l Lp L L C p
2� π≥ ≅ ≅ = ≅

Q Q I I QI BW f Q R L, , / /2p l L C T p p l π= = ≅ = =

Decibels, Filters, and Bode Plots
Logarithms N b x N x x ab, log , log 2.3 log , logx

b e 10 10= = = =
a blog log ,10 10+ a b a b a n alog / log log , log log ,n

10 10 10 10 10= − =
P P V VdB 10log / , dB 20log /10 2 1 10 2 1= =υ

R-C filters f RChigh-pass 1/ 2 ,c π( ) ( )=

 π( )

( )

( )

= + ∠

=

−R R X X R

f RC

V V/ tan /

low-pass 1/ 2 ,
o i C C

c

2 2 1

= + ∠− −X R X R
X

V V/ / tano i C C
C

2 2 1

Octave 2 : 1, 6 dB/octave  Decade 10 : 1, 20 dB/decade
Transformers
Mutual inductance =M k L Lp s   Iron-core = ΦE fN4.44 ,p p m

 = Φ = = =E fN E E N N a N N I I N N4.44 , / / , / , / / ,S S m p S p S p S p S S p  

a E I E I P PZ Z , , idealp L p p S S i O
2 ( )= = =

Air-core ω= + +MZ Z Z Z( ) /( )i p S L
2

Polyphase Systems
Y-Y system = = = =φ φ φ φ φI I I V E E V, , 3g L L L  Y-Δ system 

= =φ φV E I I, 3L L      Δ-Δ system V E E I I, 3L L= = =φ φ φ

Δ-Y system E V I I E E3 , ,L L L= = =φ φ φ Power P P3 ,T = φ

Q Q S S E I F P S3 , 3 3 , /T T L L p T T= = = =φ φ

Pulse Waveforms and the R-C Response
% tilt ( )[ ] ( )= − × = +V V V V V V/ 100%  with /21 2 1 2

Pulse repetition frequency ( ) = Tprf 1/
Duty cycle ( )= ×t T/ 100%p

( )( )( ) ( )= + − ×V Vduty cycle peak value 1 duty cycle bav

R-C circuits V V V e1C i f i
t RC/v ( )( )= + − − −

Compensated attenuator =R C R Cp p s s

Nonsinusoidal Circuits
Fourier series f A A t A tsin sin  20 1 2α ω ω( ) = + + + +�
A n t B t B t B n tsin cos cos 2 . . . cosn n1 2ω ω ω ω+ + + +
Even function α α( ) ( )= −f f B,  no termsn  Odd function f α( ) =

f A,  no terms,nα( )− −  no odd harmonics if f t f T t( /2) ,[ ]( ) = +  no 
even harmonics if ( ) ( )( )= − +f t f T t/2
Effective (rms) value

V V V V V V( )/2m m m mrms 0
2 2 2 2 2

n n1 1
� �= + + + ′ + ′ + + ′( )

Power θ θ= + + … + = =P V I V I V I I R V Rcos cos /T n n n0 0 1 1 rms
2

rms
2

Standard Resistor Values
Ohms

Ω( )

Kilohms

kΩ( )

Megohms

MΩ( )

0.10 1.0 10 100 1000 10 100 1.0 10.0
0.11 1.1 11 110 1100 11 110 1.1 11.0
0.12 1.2 12 120 1200 12 120 1.2 12.0
0.13 1.3 13 130 1300 13 130 1.3 13.0
0.15 1.5 15 150 1500 15 150 1.5 15.0
0.16 1.6 16 160 1600 16 160 1.6 16.0
0.18 1.8 18 180 1800 18 180 1.8 18.0
0.20 2.0 20 200 2000 20 200 2.0 20.0
0.22 2.2 22 220 2200 22 220 2.2 22.0
0.24 2.4 24 240 2400 24 240 2.4
0.27 2.7 27 270 2700 27 270 2.7
0.30 3.0 30 300 3000 30 300 3.0
0.33 3.3 33 330 3300 33 330 3.3
0.36 3.6 36 360 3600 36 360 3.6
0.39 3.9 39 390 3900 39 390 3.9
0.43 4.3 43 430 4300 43 430 4.3
0.47 4.7 47 470 4700 47 470 4.7
0.51 5.1 51 510 5100 51 510 5.1
0.56 5.6 56 560 5600 56 560 5.6
0.62 6.2 62 620 6200 62 620 6.2
0.68 6.8 68 680 6800 68 680 6.8
0.75 7.5 75 750 7500 75 750 7.5
0.82 8.2 82 820 8200 82 820 8.2
0.91 9.1 91 910 9100 91 910 9.1
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dc
Introduction
Conversions 1 meter 100 cm 39.37 in., 1 in. 2.54 cm,= = =
1yd 0.914 m 3 ft,1 mile 5280 ft ,= = =  ° °F 9/5 C 32,= +
° ° °C 5/9( F 32), K 273.15 C= − = +  Scientific notation 1012 =
tera T, 10 giga G, 10 mega M, 10 kilo k, 109 6 3 3= = = = = = = =−

milli m, 10 micro6= =−  , 10 nano n, 10 pico p9 12µ= = = = =− −  
Powers of ten 1/10 10 , 1/10 10 ,n n n n= =− −

10 10 10 , 10 /10 10 , (10 ) 10n m n m n m n m n m nm( )( ) = = =+ −

Voltage and Current
Coulomb’s law F kQ Q r k/ , 9 10 N m /C ,1 2

2 9 2 2⋅= = ×
Q rcoulombs (C), meters (m)= =  Current I Q t/ amperes ,( )=
t Qseconds s , 1.6 10 Ce

19( )= = × −   Voltage V W Q/ volts ,( )=  
W joules J( )=

Resistance
Circular wire R l A/ ohms ,ρ ( )=  ρ = resistivity,  =l feet,   

ρ( )= =A d( ) , Cu 10.37CM mils
2  Metric units l Acm, cm ,2= =

Cu 1.724 10 ohm-cm6ρ( ) = × −  Temperature T T R( )/i 1 1+ = 
T T R R R T( )/ , [1 ( 20º C)], (Cu) 0.00393i 2 2 1 20 20 1 20α α+ = + − =  

Color code Bands − =1 3: 0  black, =1  brown, =2  red, =3   
orange, =4  yellow, =5  green, =6  blue, =7  violet, =8  gray, =9  
white, Band 3: 0.1 = gold, =0.01  silver, Band 4: 5% =  gold, =10%   
silver, =20%  no band, Band 5: 1% =  brown, =0.1%  red, =0.01%
orange, =0.001% yellow Conductance =G R1/  siemens (S)

Ohm’s Law, Power, and Energy
Ohm’s law = = =I E R E IR R E I/ , , /  Power P W t/= =
VI I R V R/ watts ,2 2 ( )= =  =1hp 746 W
Efficiency P P T% / 100%,i n1 2 3⋅ ⋅η η η η η η( )= × = ⋅ ⋅ ⋅ ⋅ ⋅Ο  
Energy W Pt W P t, (kWh) [ (W) (h)]/1000⋅= =

Series dc Circuits
R R R R R R NR I E R V IR, , / ,T N T T1 2 3= + + + ⋅ ⋅ ⋅ + = = =  
Kirchhoff’s voltage law � � �V V V0, rises dropsΣ = Σ = Σ
Voltage divider rule =V R E R/x x T

Parallel dc Circuits
R R R R R R R N R1/ 1/ 1/ 1/ 1/ , / ,T N T T1 2 3( )= + + + ⋅ ⋅ ⋅ + = =
R R R R I EG E R/ , /T T1 2 1 2( )+ = =
Kirchhoff’s current law I Ientering leavingΣ = Σ
Current divider rule ( )=I R R I/ ,x T x  (Two parallel elements): 
I R I R R I R I R R/ , /1 2 1 2 2 1 1 2( ) ( )= + = +

Series-Parallel Circuits
Potentiometer loading >>R RL T

Ammeter R R I I I/m CS CSshunt max( )= −
Voltmeter R V V I/VS CSseries max( )= −
Ohmmeter R E I R/ zero-adjust/2s CS m( )= − −

Methods of Analysis and Selected Topics (dc)
Source conversions = = =E IR R R I E R, , /p S p S

Determinants = = −D
a b

a b
a b a b1 1

2 2
1 2 2 1

Bridge networks =R R R R/ /1 3 2 4  Δ-Y conversions 
R' R R R R R R R', R R R R' R R R R', / / /A B A B A BC 3 2 C 1 C= + + = = , = ,
R R /3Y = ∆  Y-Δ conversions R'' R R R R R R R,1 2 1 3 2 3 C= + + =
R'' R R R'' R R R'' R R R/ , / , / , 3B A Y3 2 1= = =∆

Network Theorems
Superposition Voltage sources (short-circuit equivalent), current sources 
(open-circuit equivalent)
Thévenin’s Theorem R :Th  (all sources to zero), E :Th  (open-circuit terminal  
voltage)
Maximum power transfer theorem R R R P,L Th N max= = =
E R I R/4 /4Th Th N N

2 2=

Capacitors
Capacitance C Q V A d A d/ / 8.85 10 / farads (F),r

12= = = × −ε ε
C Cr 0= ε  Electric field strength = =V d Q A/ /ε%  (volts/meter)  
Transients     (charging) = τi E R e( / ) ,C

t– /  τ υ= = τRC E e, (1 – ),C
t– /   

(discharge) υ = τEe ,C
t– /  = −i E R e( / )C

t RC/  = ∆ ∆i i C t( / )C C Cav
y   

Series Q Q Q Q C C C, 1/ (1/ ) (1/ )T T1 2 3 1 2= = = = + +
C C C C C C C(1/ ) (1/ ), /( )N T3 1 2 1 2+ ⋅ ⋅ ⋅ + = +  Parallel Q QT 1= +

Q Q C C C C, T2 3 1 2 3+ = + +  Energy =W CV(1/2)C
2 

Inductors
Self-inductance µ=L N A l/2  (henries), L Lr 0µ=
Induced voltage ( )= ∆ ∆e L i t/L av  Transients (storage) 

= τi I e(1  – ),L m
t– /  τ υ= = = τI E R L R Ee/ , / ,m L

t– /  (decay), 
τ ( )= + ′ = + =τ τ′ ′R R Ee L R R i I e[1 ( / )] ,   / , ,L

t
L m

t
2 1

– /
1 2

– /y  
=I E R/m 1 Series = + + + ⋅ ⋅ ⋅ +L L L L LT N1 2 3   Parallel 

L L L L L L1/ 1/ 1/ 1/ 1/ ,T N T1 2 3 ( )( ) ( ) ( )= + + + ⋅ ⋅ ⋅ + =
L L L L/1 2 1 2( )+  Energy =W LI1/2( )L

2

Magnetic Circuits
Flux density ΑΦ=B / (webers/m )2  Permeability r 0µ µ µ=
Wb/A m⋅( ) Reluctance µ= l A/ (rels)5  Ohm’s law Φ ^ 5/=  

(webers) Magnetomotive force ^ NI=  (ampere-turns) Magnetizing 
force ^H l NI l/ /= =  Ampère’s circuital law 0†^∑ =  
Flux entering leavingΦ Φ∑ = ∑  Air gap = ×H B7.96 10g g

5

Greek Alphabet

Letter Capital Lowercase Letter Capital Lowercase

Alpha Α α Nu Ρ υ
Beta Β β Xi Ξ ξ
Gamma Γ γ Omicron Ο ο
Delta ∆ δ Pi Π π
Epsilon Ε Rho Ρ ρ
Zeta Ζ ζ Sigma Σ σ
Eta Η η Tau Τ τ
Theta Θ θ Upsilon γ υ
Iota Ι ι Phi Φ φ
Kappa Κ κ Chi Χ χ
Lambda Λ λ Psi Ψ ψ
Mu Μ µ Omega Ω ω

Prefixes

Multiplication  
Factors

SI  
Prefix

SI  
Symbol

1 000 000 000 000 000 000 10              18= exa E

1 000 000 000 000 000 10            15= peta P

1 000 000 000 000 10          12= tera T

1 000 000 000 10        9= giga G

1 000 000 10      6= mega M

1 000 10    3= kilo k

0 001 10. 3= − milli m

0 000 001 10.   6= − micro µ
0 000 000 001 10.     9= − nano n

0 000 000 000 001 10.       12= − pico p

0 000 000 000 000 001 10.         15= − femto f

0 000 000 000 000 000 001 10.           18= − atto a
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