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Preface 

All information technology systems are built using the physical hardware of the 
semiconductor chips found in all modern electronics, computers, communications 
networks, and critical cyber-physical systems. These chips are becoming cheaper, 
faster, and more powerful, and this has enabled the rise of the Internet of Things 
(IoT), autonomous systems, and artificial intelligence as key technologies of the 
future. As the world becomes increasingly reliant on advanced technologies for 
economic growth and national security, implicit trust in hardware becomes an 
untenable option. Moreover, trusted computing in hardware is fundamental to 
information security practices. The basis of security guarantees in digital systems 
is essentially a set of cryptographic operations executing in a hardware root of 
trust. Advanced cyber-attacks therefore deliberately target hardware devices in 
cryptosystems applications. The semiconductor chips have been targeted for reverse 
engineering, counterfeiting, piracy, malicious insertion, side-channel attacks, fault 
injection attacks, and probing attacks. These attacks, their associated vulnerabilities, 
root causes, and their countermeasures form the field of hardware security. 

Hardware security has become an important topic recently with more and 
more researchers from related research domains joining this area. However, the 
understanding of hardware security is often mixed with computer science, electron-
ics, cryptography, physics, material sciences, communication systems, and signal 
processing. It sometimes requires the construction of specialized equipment, and it 
usually takes some practice to acquire laboratory skills—especially where attacks 
involve laboratory equipment. Therefore, it is necessary to acquire laboratory skills 
to help both academia and industry investigate hardware attacks, countermeasures, 
and solutions to address hardware security problems. To address this important 
growing need, we embarked on this initiative for developing the first-ever textbook 
dedicated to hands-on hardware security training that includes different attacks 
deliberately targeting hardware devices and applying countermeasure techniques 
against them. In this book, a wide variety of topics will be covered in 16 chapters. 
Chapter 1 presents physical unclonable functions (PUFs), Chap. 2 provides a 
true random number generator (TRNG), Chap. 3 presents recycled chip detection 
using ring oscillator-based odometer, Chap. 4 provides a recycled FPGA detec-
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tion, Chap. 5 presents techniques of hardware Trojan insertion, Chap. 6 provides 
hardware Trojan detection, Chap. 7 presents security verification, Chap. 8 presents 
power analysis attack on AES, Chap. 9 presents EM-based side-channel attack on 
AES, Chap. 10 presents logic locking insertion and assessment, Chap. 11 presents 
clock glitch fault-injection attack on AES/FSM, Chap. 12 provides voltage glitch 
fault-injection attack on AES/FSM, Chap. 13 presents laser fault-injection attack, 
Chap. 14 presents optical probing attack on logic locking, Chap. 15 presents a 
universal fault sensor, and Chap. 16 presents scanning electron microscope (SEM) 
training. This book aims to provide holistic hands-on hardware security training 
to upper-level undergraduate engineering students and graduate students, security 
researchers, practitioners, and industry professionals, including design engineers, 
security engineers, system architects, and chief security officers. 

Any source code and other supplementary materials referenced by the authors in 
this book are available to readers on the hardware security lab (HSL) page at http:// 
cad4security.org/index.php/trainings/hsl/. 

Gainesville, FL, USA Mark Tehranipoor 
Singapore, Singapore N. Nalla Anandakumar 
Gainesville, FL, USA Farimah Farahmandi 
Dec, 2022 
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Chapter 1 
Physical Unclonable Functions (PUFs) 

1.1 Introduction 

The demand for computer security for electronic products has increased due to 
the rapid expansion of the electronics industry. However, there are many threats, 
vulnerabilities, and risks related to electronic products such as IC counterfeiting, 
integrated circuit (IC) overproduction, and intellectual property (IP) piracy [28]. 
Key-based cryptosystems have typically been employed for IP protection purposes. 
However, key generation and key storage make an IC vulnerable to physical attacks 
and tampering [5, 23, 27]. Researchers and engineers have been inspired by the need 
to secure secret keys to design and implement physical unclonable functions (also 
known as physical one-way functions), which are simple to perform in one direction 
but difficult in the opposite direction [22]. Moreover, these physical unclonable 
functions (PUFs) are inexpensive to fabricate, inherently random, intrinsically 
tamper-resistant, and difficult to duplicate. This makes PUF stand out as ideal 
candidate for providing a tamper-resistant design for secret key generation and 
storage [8, 26]. According to [22], PUF interacts with challenges in a complicated 
way, producing responses that are unpredictable and distinctive. The randomness of 
the PUF response comes from the device’s manufacturing process variation during 
fabrication, which is intrinsic to the device itself. Because of their unpredictable 
and unique properties, PUFs are frequently used for authentication, identification, 
detection of counterfeit ICs, and IC obfuscation to prevent IC piracy [8, 26]. Since 
the introduction of PUF in [22], it has been a field of interest that has inspired 
researchers and engineers to develop various PUF systems to increase the robustness 
and reliability of those systems and to overcome the problems associated with 
practical implementations. 

PUFs have become more prevalent recently in numerous publications on 
hardware-intensive cryptographic protocols and schemes, such as PUF-based block 
ciphers [6] and PUF-based key transfer protocols [2]. A PUF can be realized in 
electronic products by integrating a customized PUF circuit, e.g., as part of a 
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chip or field-programmable gate array (FPGA) or as a stand-alone application-
specific integrated circuit (ASIC). FPGAs are preferred for designing PUF 
primitives because of their reconfigurability, speed of turnaround, and flexibility 
and because they can easily interface with applications. Two of the top FPGA 
manufacturers, Xilinx [21] and Intel (formerly Altera) [10], have both revealed 
PUF implementations in their respective market products for security reasons. 
Applications of FPGA-based PUFs include device authentication [1, 16], IP 
protection [15], IoT security [1, 16], secure key generation [24], and IC counterfeit 
detection [32]. In this chapter, we demonstrate how to implement a ring oscillator 
(RO)-based PUF instance and analyze it on an FPGA device. In particular, this 
chapter can help a reader to better understand and will gain hands-on experiences 
on how a typical ring oscillator (RO)-based PUF primitive can be implemented 
at RTL (register-transfer level) and collect challenge-response pairs (CRPs) and 
also learn how to apply appropriate constraints to fix the specific PUF structure for 
effectiveness and calculate metrics for evaluation. 

The remaining chapters are structured as follows: Basic information on PUFs 
and FPGA is briefly discussed in Sect. 1.2. Section 1.3 briefly provides the 
important PUF quality metrics. Section 1.4 presents the specifics of the RO PUF 
implementation. The experimental investigation of the RO PUF and a discussion of 
the implementation’s outcomes are provided in Sect. 1.5. The conclusions are then 
presented in Sect. 1.6 

1.2 Background 

PUF is a security primitive that generates a device fingerprint using the uncontrol-
lable manufacturing process variances induced during chip fabrication [25, 33]. A 
PUF can be properly described mathematically as a function (.R = f (C)) that 
maps challenges/inputs .(C) to responses/outputs .(R) (i.e., .(R) is generated by the 
PUF (Fig. 1.1a)). The essential security-oriented features of PUFs are shown in 
(Fig. 1.1b–g) [17], and we will explain these features briefly below: 

Reproducible The response R generated from the same PUF should always be the 
same during multiple evaluations when using the same challenges (Fig. 1.1b). 

Unique In the same challenge, responses produced by several PUFs must always 
be specific/unique (Fig. 1.1c). 

Unclonable Given only f , it is (almost) impossible to build a g (i.e., another 
physical entity) such that .f (C) ≈ g(C) (Fig. 1.1d). 

One-Way Given R and f , it is difficult to find C such that .f (C) = R (Fig. 1.1e). 

Unpredictable Given a set of CRPs Q, where .R = f (C) and (C, R) .∈ Q, it is  
(almost) impossible to compute the response .R

′ = f (C
′
), where . C

′
is a random 

challenge and (.C
′
, R

′
) /∈ Q (Fig. 1.1f).
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Fig. 1.1 Schematic representations of important features of PUF [20] 

Tamper-Evident Physically altering of the physical copy/entity embedding f 
changes it to . f

′
implying that .f

′ �= f (Fig. 1.1g). 

In practice, two main types of silicon PUF circuits have been implemented, 
namely, delay-based PUFs and memory-based PUFs according to various sources 
of manufacturing process variations. Delay-based PUFs provide the PUF response 
by using the propagation delay between identical circuits. Examples of delay-
based PUFs are Arbiter PUF, RO PUF [24], etc. Memory-based PUFs are built 
around the instability of volatile memory cells. Examples of memory-based PUFs 
are Flip-Flop PUF [1], RS-LPUF [1], and SRAM-PUF [15]. The silicon PUF 
architectures can also be classified into two major categories according to the 
number of CRP space [3]: weak PUF and strong PUF. In general, weak PUFs 
are better suitable for applications like pseudorandom number generators (PRNG) 
and key generation since they have a relatively small number of CRPs that rise 
linearly with PUF size. Some examples of weak PUF are Flip-Flop PUF, RS-LPUF, 
SRAM-PUF, and RO PUF [3]. Alternative strong PUF architectures have a large 
set of CRPs that grow exponentially with PUF size and can be used directly for 
device authentication without the need for additional cryptographic mechanism. 
Some strong PUF examples are Bistable Ring PUF and Arbiter PUF [3].
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Fig. 1.2 Schematic diagram of RO PUF 

1.2.1 RO PUF 

Gassend et al. [11] originally proposed a concept of RO PUF based on a single 
configurable oscillator. Later, Suh and Devadas [24] in 2007 improved the RO 
PUF design which employs numerous identical ring oscillators (ROs) and takes 
into account oscillator pair relative frequencies rather than absolute values. The 
RO PUF architecture is shown in Fig. 1.2. The oscillation frequencies of any group 
of identically activated ROs, where each ring oscillator consists of an odd number 
of inverters, are used to calculate the RO PUF response. Despite having identical 
structures, each RO has slightly different oscillation frequencies because of random 
variations during the manufacturing process. The frequency is measured using 
rising edge counters. The counters count the number of edges of two oscillating 
signals over a predetermined amount of time, and the counters send their counter 
values to the comparator. Then, the two frequency counter values are compared, 
and depending on which counter has the higher value, a bit 0 or 1 is produced in 
response to this RO pair [4]. 

1.2.2 MiniZed Board Introduction 

MiniZed board is shown in Fig. 1.3. It features a Zynq single-core SoC device 
(XC7Z007S), a low-cost prototype platform, and multiple storage devices including 
Micron 8 GB eMMC, Micron 512MB DDR3L, and Micron 128Mb Quad SPI NOR 
flash. In this work, we focus on its programmable hardware part, i.e., FPGA fabric 
for our development.
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Fig. 1.3 MiniZed board 

Fig. 1.4 FPGA development procedure 

1.2.3 FPGA Development Procedure 

FPGA is an integrated circuit that is flexible and can be configured by the user 
after the manufacturing phase. The typical development flow of an FPGA device 
involves design entry, synthesis, implementation, and bitstream generation as shown 
in Fig. 1.4. 

Design entry can be done in various ways. The most intuitive method is drawing 
the schematics by connecting some predefined functional modules together. It is 
better and recommended to write your behavioral implementation in the form of 
hardware description language (HDL) like VHDL and Verilog. During the synthesis 
stage, the HDL code composed at the design entry stage will be converted into a 
circuit in the form of a netlist by the electronic design automation (EDA) tools. 
Then, this HDL code is going to be parsed to check syntax and then optimized to 
reduce redundant logic according to the specified settings. The generated netlist will 
contain the needed logic elements and the connectivity among them as described 
by the HDL code. The implementation phase will then technology map the logic 
elements in the netlist to the primitives available in the selected FPGA model so 
that the design could be implemented on your physical chip. Also, this step will 
place and route the primitives on the FPGA layout virtually per the constraints
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from designers and physical aspects to make the final design meet the power, 
performance, and area requirements. Finally, the placed and routed netlist will be 
translated to the binary configuration data, the so-called bitstream with the vendor-
specific tool, and then download to the target device to fulfill the functionality. 

1.3 PUF Performance Metrics 

To assess the performance of PUF circuits, several quality metrics, including 
reliability, uniformity, and uniqueness [1], have been presented [1]. These three 
metrics are commonly used to estimate PUFs and are also used in this work. Later, 
we also give some additional crucial metrics such as the entropy estimation and 
NIST test in Sect. 1.5: 

(1) Reliability (RE): This metric captures how efficient a PUF is in perfectly 
reproducing its response bits under noise and environmental variation. For 
the given challenge, the PUF should give the same response under varying 
operating conditions. The average intra-chip .HD is calculated using (1.1), and 
the reliability of a PUF chip is specified in (1.2): 

.HDINT RAi = 1

m

m∑

t=1

HD(Si, Si,t )

n
× 100% (1.1) 

.Reliabilityi = 100% − HDINT RAi (1.2) 

where n is the length of the PUF response’s sequence and m is the number of 
tests. . Si is taken at nominal operating conditions, and .Si,t is measured under 
various operating conditions. The ideal value for reliability is .100% (i.e., the 
ideal value of .HDINT RA is . 0%), and the average reliability of m chips can be 
estimated using the following Eq. (1.3): 

.Average Reliability = 1

m

m∑

i=1

Reliabilityi (1.3) 

(2) Uniformity (UF): It estimates how uniform the proportion of 1s and 0s is in 
the PUF response bits. Uniformity reflects the randomness of the response bit 
and is measured as a percentage of the response bit’s Hamming weight (HW) 
according to the equation in (1.4)). .50% is the best value for uniformity: 

.Uniformityi = 1

n

n∑

j=1

ui,j × 100% (1.4) 

where .ui,j is the j th bit of n-bit response of ith chip.
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(3) Uniqueness (UQ): This statistic assesses the difference of a PUF’s responses 
to the same challenge (C) when implemented on several PUF chips (k). The 
uniqueness .(HDINT ER) is calculated as the inter-chip variation of various 
responses using Eq. (1.5). .50% is the best value for uniqueness: 

.Uniqueness = 2

k(k − 1)

k−1∑

i=1

k∑

j=i+1

HD(Si, Sj )

n
× 100% (1.5) 

where . Si is n-bit responses of ith chip, . Sj is n-bit responses of j th chip, k is the 
quantity of PUF chips, and .HD(Si, Sj ) is the Hamming distance between n bit 
responses . Si and . Sj . 

PUF structure evaluation metrics may vary depending on the context of the 
application [9]. For instance, the metrics of uniformity, reliability, and uniqueness 
may have different importance in different PUF usage scenarios, such as encryption, 
authentication, or identification. For further information, see below: 

• Identification: PUF can generate an identification number through challenge-
response pairs (CRP) to identify genuine and counterfeit products. In this case, 
uniqueness is the most important factor. Furthermore, in identifying scenarios, 
reliability is not a big consideration when the bit error rate is low. 

• Encryption: The PUF instance can be used to generate a random nonce that can 
be used to select specific public-private key pairs for asymmetric encryption 
and to generate a secret key for symmetric encryption techniques. Reliability, 
randomness, and uniqueness are important in such applications. However, a large 
challenge-response pairs (CRPs) space is not important in some situations where 
only a few keys need to be generated during the lifetime of the chip. The BER 
should be zero in this case, which would necessitate error correction [3]. 

• Authentication: PUFs are also well recognized for being frequently used to safely 
identify the chip in which they are inserted. The most important criteria, in this 
case, are randomness and reliability. The PUF should also have strong uniqueness 
characteristics. A very large CRP space is necessary to further deter attackers 
from reading all the responses and making a copy. Machine learning attacks 
against SCA adversaries are likewise prevented by the large CRP space. 

1.4 Implementation Details of the RO PUF 

In this part, we will first walk through the detailed RO PUF implementation used in 
this experiment. We will then talk about how to compile the RTL design into FPGA 
bitstreams and download it into the target FPGA (MiniZed board here). The original 
implementation is from https://github.com/Crimsonninja/senior_design_puf where 
we select their serial PUF design in their repository which uses a measure of

https://github.com/Crimsonninja/senior_design_puf
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Fig. 1.5 Overall schematic of the serial RO PUF scheme 

randomness, a nonlinear scrambler to increase internal entropy in the system as 
shown in Fig. 1.5. 

An RO PUF consists of identical ROs in two multiplexers. The PUF challenge is 
given on the select lines of the multiplexer and selects which two ROs to compare. 
The multiplexer outputs are fed into a counter, each of which counts to a preset 
value. If either the upper or lower counter reaches a preset value, the arbiter outputs 
a “1” or a “0” depending on which counter ends first [4]. As shown in Fig. 1.6, the  
entire implementation consists of two parts, i.e., the RO PUF itself and the virtual 
IO (VIO) module. The VIO module here can provide the interface between the 
FPGA board and the host to apply the challenges and collect the PUF responses. 
Note that the wrapper looks very complicated, but their actual functionality is just 
simply providing a clock signal to the PUF implementation from the processor side 
since there is no available hardware clock source connected to the FPGA fabric. We 
mainly focus on the inst: top and its submodules. 

Then, we need to synthesize, implement, and generate the consequent bitstream 
for the target FPGA (Fig. 1.7). Before loading the bitstream, the FPGA board must 
be connected by following the steps in Fig. 1.8. Then, we specify the desired 
bistream file and the debug probe file (.ltx) as shown in Fig. 1.9 which is used to  
set up the virtual IO interface for transferring the challenge input and accessing the 
response output. 

After downloading the bitstream, in the Xilinx Vivado, you will see a dashboard 
called hardware vio pops up (otherwise, you might want to double click the . hwvio1
in the Hardware window). At the first time, you might have to click the . + button 
to add all available signals to the dashboard. Note that this RO PUF is designed to 
be an 8-bit challenge and response which is relatively small in the practical world 
if a large challenge-response pair space is wanted. Every time you apply a new 
challenge value in this window, the reset value should be set to be 1 and then 0 to
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Fig. 1.6 Design hierarchy of the RO PUF implementation 

Fig. 1.7 Compiling the design in Xilinx vivado
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Fig. 1.8 Connect the MiniZed board 

Fig. 1.9 Download bitstream 

enforce the PUF design to be restarted to get the response. Due to the temperature 
and voltage variance, the response might not be exactly the same as the statistics 
in Fig. 1.10 but should be consistent at our side, i.e., one single challenge will not 
produce different responses in the particular environment.
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Fig. 1.10 Inputs and outputs inside the hardware VIO dashboard 

1.5 Performance Analysis and Discussion 

In this section, we will learn about how to calculate the critical metrics for PUF 
performance evaluation. The number of SoC testbeds used in the literature to assess 
PUF performance varies widely. It has been demonstrated that good performance is 
possible for 10–50 [24, 34], for 5–10 [13, 31], and even for more than hundred [12, 
18, 30] testbeds. In this chapter, the evaluation of PUF performance in terms of 
inter-chip hamming distance, uniformity, uniqueness, and reliability for the above 
PUF design has been carried out through implementations on XC7Z007S SoCs. The 
design files and all source codes can be found at http://cad4security.org/index.php/ 
trainings/hsl/ch1_puf/. 

1.5.1 Randomness, Uniqueness, and Reliability 

An important metric of PUF is the inter-chip hamming distance to measure the 
randomness between different PUF instances. On the same FPGA, we can create 
a new PUF instance by moving the original PUF module to a new location. As the 
PUF is mapped to a new region, physically new transistors, the new module will 
procure new process variations. Inter-chip variation can be calculated by applying 
the same challenge to the two PUF designs to see how the response can be changed. 
Ideally, half of the response bits from different PUFs should be flipped. The 
formulation is below: 

.Distance_intra = (Hamming Distance(Response1, Response2))

(Number of Response Bits)
(1.6) 

To move the PUF module, we apply different pblock constraints (pblock1 and 
pblock2 in Fig. 1.11). We can click the .P+ button to create new pblocks and 
right-click the desired module (PUF here), floorplanning .− > assign to pblock. 
Regenerate the bitstreams with the PUF instance in different locations. For example, 
for the same challenge 8’h66, the responses of pblock1 and pblock2 are 8’h53

http://cad4security.org/index.php/trainings/hsl/ch1_puf/
http://cad4security.org/index.php/trainings/hsl/ch1_puf/
http://cad4security.org/index.php/trainings/hsl/ch1_puf/
http://cad4security.org/index.php/trainings/hsl/ch1_puf/
http://cad4security.org/index.php/trainings/hsl/ch1_puf/
http://cad4security.org/index.php/trainings/hsl/ch1_puf/
http://cad4security.org/index.php/trainings/hsl/ch1_puf/
http://cad4security.org/index.php/trainings/hsl/ch1_puf/
http://cad4security.org/index.php/trainings/hsl/ch1_puf/
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Fig. 1.11 pblock constraints in the device window 

.(8′b01010011) and 8’h1A .(8′b00011010) to produce a 37.5% inter-chip distance. 
Note that if we encounter the error LUTLP. −1, please add the following statements 
in our xdc constraint file to suppress it: 

set_property SEVERITY Warning 
[get_drc_checks LUTLP-1] 
set property ALLOW_COMBINATORIAL_OOPS TRUE 

Before collecting CRPs, we need to open MATLAB to adjust the setting of the 
COM port. In this experiment, we use UART to transmit challenges and receive 
responses. Thus, the settings of the COM port need to be changed on different 
laptops. After running the MATLAB script, just like Fig. 1.12, the outcome of 
randomness, uniqueness, and reliability can be seen in the command window 
afterward. 

For calculating the randomness, uniqueness, and reliability, the MATLAB script 
runs 30 times in total, and each time collects 1000 CRPs. The histogram of ran-
domness, uniqueness, and reliability is listed in Fig. 1.13. The average randomness 
is 50.20%, and 30 results are presented in Fig. 1.13a. The average reliability is 
01.60% and is presented in Fig. 1.13b. For calculating the uniqueness, we place 
aging-resilient PUF on four places of FPGA and use three FPGAs in total. Thirty 
comparisons between these PUFs are measured and the average uniqueness is 
48.80%. The uniqueness of the PUF is presented in Fig. 1.13c.



1.5 Performance Analysis and Discussion 13

Fig. 1.12 Experiment result of randomness, uniqueness, and reliability on the command window 

1.5.2 NIST Statistical Test 

In order to assess randomness, the derived PUF responses are also put to the 
test using the NIST 800-22 suite [7]. Long input bit sequences are needed for 
the majority of the NIST SP 800-22 statistical tests. Some tests, however, can be 
modified to examine a little amount of data. These tests include the following: the 
cumulative sum test, the block frequency test, the frequency test, the run test, the 
longest run test, and the approximation entropy test. In this chapter, we’ve utilized 
the six tests (taken from [19]) to verify the randomness of the RO PUFs (Fig. 1.5). A 
string must be at least 128 bits long to pass the NIST test suite’s chosen subset. This 
evaluation’s primary goal is to swiftly eliminate PUF responses that are not random. 
We combined all ten 128-bit responses to create a single 2560-bit string as the input 
sequences for these six tests. After that, the bit string is divided into ten 256-bit 
sequences that serve as the input sequences for the NIST tool (https://github.com/dj-
on-github/sp800_22_tests). The distribution of p-values and pass rates for each test 
is the output of the NIST tool. We test the distribution of p-values at a significance 
threshold of 0.1. Because we selected the number of sequences .N = 10, the tool 
determines the minimum pass rate of these tests, which in our case is 8/10. Since 
all six tests (based on p-values and pass rates) are passed by the aforementioned 
PUF implementation (Fig. 1.5), the derived PUF responses cannot be statistically 
separated from a true random source. Notably, passing these criteria does not ensure 
that the generated responses are unbiased. Instead, it serves as a sanity check, 
demonstrating that the statistical findings have no evident flaws. 

1.5.3 Entropy Estimation 

The use of entropy to evaluate the unpredictable nature of PUF responses has 
become a standard practice. The min-entropy measures the lower bound of entropy 
(i.e., worst-case scenario) so as to determine the unpredictability in the random data.

https://github.com/dj-on-github/sp800_22_tests
https://github.com/dj-on-github/sp800_22_tests
https://github.com/dj-on-github/sp800_22_tests
https://github.com/dj-on-github/sp800_22_tests
https://github.com/dj-on-github/sp800_22_tests
https://github.com/dj-on-github/sp800_22_tests
https://github.com/dj-on-github/sp800_22_tests
https://github.com/dj-on-github/sp800_22_tests
https://github.com/dj-on-github/sp800_22_tests
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Fig. 1.13 Histogram of randomness, uniqueness, and reliability
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To determine the minimum entropy of a binary source, we employ the procedure 
outlined in NIST specification 800–90 [29]. The occurrence probabilities are . p1 and 
. p0 for the values of “1” and “0,” respectively, for each bit in the n-bit responses of 
the k devices. For .pi max .= max (. p1, . p0), the expression (1.7) provides the minimum 
entropy of each bit, whereas Eq. (1.9) provides the overall minimum entropy, as 
explained in [14]: 

.Hmin,i = − log2(pi max). (1.7) 

where 

.pi max =
{

HWi

k
if HWi > k

2

1 − HWi

k
otherwise

(1.8) 

where .
HWi

k
denotes the number of ones in k devices. 

.(Hmin)average = 1

n

n∑

i=1

Hmin,i (1.9) 

By conducting experiments with ten FPGAs, we apply the expressions (1.7) 
and (1.9) to determine the minimum entropy for the designed PUFs. It is obvious 
that the PUFs in the aforementioned architecture attain an entropy close to 0.55. It 
is crucial to note that using more FPGAs will raise this entropy value, as shown by 
[14]. To determine the significant entropy value of PUF designs, a highly extensive 
investigation involving numerous boards is required. Despite the fact that the largest 
experiment ever conducted used more than 100 boards [12, 18, 30], it was not 
enough to reliably calculate the entropy. In general, how to accurately calculate 
the entropy of PUF responses is another significant open research problem. 

1.6 Conclusion 

PUFs are used in various security applications such as FPGA IP protection, device 
authentication, secret key generation, and trusted computing. The purpose of this 
chapter is to help readers (including researchers and practitioners) to learn about 
the fundamental knowledge of PUF technology, important performance metrics, 
and a typical ring oscillator-based PUF and FPGA development procedure. Also, 
readers will learn about how to apply challenges to the FPGA RO PUF and 
calculate the inter-chip distance, randomness, reliability, uniqueness, and entropy 
for performance evaluation.



16 1 Physical Unclonable Functions (PUFs)

References 

1. Anandakumar, N.N., Hashmi, M.S., Sanadhya, S.K.: Design and analysis of FPGA based PUFs 
with enhanced performance for hardware-oriented security. ACM J. Emerg. Technol. Comput. 
Syst. 18, 1–26 (2022) 

2. Anandakumar, N.N., Hashmi, M.S., Sanadhya, S.K.: Field programmable gate array based 
elliptic curve Menezes-Qu-Vanstone key agreement protocol realization using physical unclon-
able function and true random number generator primitives. IET Circuits Devices Syst. 16, 
1–17 (2022) 

3. Anandakumar, N.N., Hashmi, M.S., Tehranipoor, M.: FPGA-based physical unclonable func-
tions: a comprehensive overview of theory and architectures. Integration 81, 175–194 (2021) 

4. Anandakumar, N.N., Sanadhya, S.K., Hashmi, M.S.: Design, Implementation and analysis of 
efficient hardware-based security primitives. In: 2020 IFIP/IEEE 28th International Conference 
on Very Large Scale Integration (VLSI-SOC), pp. 198–199. IEEE, Piscataway (2020) 

5. Anderson, R.J.: Security Engineering: A Guide to Building Dependable Distributed Systems, 
2nd edn. Wiley, Hoboken (2008) 

6. Armknecht, F., Maes, R., Sadeghi, A.R., Sunar, B., Tuyls, P.: Memory leakage-resilient encryp-
tion based on physically unclonable functions. In: Advances in Cryptology – ASIACRYPT 
2009, pp. 685–702 (2009) 

7. Bassham III, L. E., et al.: SP 800-22 Rev. 1a. A Statistical Test Suite for Random and 
Pseudorandom Number Generators for Cryptographic Applications. National Institute of 
Standards & Technology, Gaithersburg (2010) 

8. Bhunia, S., Tehranipoor, M.: Hardware Security: A Hands-on Learning Approach. Morgan 
Kaufmann, Burlington (2018) 

9. Che, W., Martinez-Ramon, M., Saqib, F., Plusquellic, J.: Delay model and machine learning 
exploration of a hardware-embedded delay PUF. In: IEEE International Symposium on 
Hardware Oriented Security and Trust (HOST), pp. 153–158 (2018) 

10. Gabriel, S.: Altera Partners with Intrinsic-ID to Develop World’s Most Secure High-
End FPGA (2015). https://www.intrinsic-id.com/altera-partners-with-intrinsic-id-to-develop-
worlds-most-secure-high-end-fpga/ 

11. Gassend, B., Clarke, D.E., van Dijk, M., Devadas, S.: Silicon physical random functions. In: 
Proceedings of the 9th ACM Conference on Computer and Communications Security, CCS 
2002, pp. 148–160. ACM, New York (2002) 

12. Gu, C., Chang, C., Liu, W., Hanley, N., Miskelly, J., O’Neill, M.: A large-scale comprehensive 
evaluation of single-slice ring oscillator and PicoPUF bit cells on 28-nm Xilinx FPGAs. J. 
Cryptogr. Eng. 11(3), 227–238 (2021) 

13. Gu, C., Hanley, N., O’neill, M.: Improved reliability of FPGA-based PUF identification 
generator design. ACM Trans. Reconfig. Technol. Syst. 10(3), 20:1–20:23 (2017) 

14. Gu, C., Liu, W., Hanley, N., Hesselbarth, R., O’Neill, M.: A Theoretical model to link 
uniqueness and min-entropy for PUF evaluations. IEEE Trans. Comput. 68(2), 287–293 (2019) 

15. Guajardo, J., Kumar, S.S., Schrijen, G.J., Tuyls, P.: FPGA intrinsic PUFs and their use for IP 
protection. In: Cryptographic Hardware and Embedded Systems - CHES 2007, vol. 4727, pp. 
63–80. Springer, Berlin (2007) 

16. Liu, W., Zhang, L., Zhang, Z., Gu, C., Wang, C., O’neill, M., Lombardi, F.: XOR-based low-
cost reconfigurable PUFs for IoT security. ACM Trans. Embed. Comput. Syst. 18(3), 25:1– 
25:21 (2019) 

17. Maes, R., Verbauwhede, I.: Physically Unclonable Functions: A Study on the State of the Art 
and Future Research Directions, pp. 3–37. Springer, Berlin (2010) 

18. Maiti, A., Schaumont, P.: Improved ring oscillator PUF: an FPGA-friendly secure primitive. J. 
Cryptol. 24, 375–397 (2011) 

19. Marchand, C., Bossuet, L., Mureddu, U., Bochard, N., Cherkaoui, A., Fischer, V.: Implemen-
tation and characterization of a physical unclonable function for IoT: a case study with the 
TERO-PUF. IEEE Trans. Comput.-Aided Design Integr. Circuits Syst. 37(1), 97–109 (2018)

https://www.intrinsic-id.com/altera-partners-with-intrinsic-id-to-develop-worlds-most-secure-high-end-fpga/
https://www.intrinsic-id.com/altera-partners-with-intrinsic-id-to-develop-worlds-most-secure-high-end-fpga/
https://www.intrinsic-id.com/altera-partners-with-intrinsic-id-to-develop-worlds-most-secure-high-end-fpga/
https://www.intrinsic-id.com/altera-partners-with-intrinsic-id-to-develop-worlds-most-secure-high-end-fpga/
https://www.intrinsic-id.com/altera-partners-with-intrinsic-id-to-develop-worlds-most-secure-high-end-fpga/
https://www.intrinsic-id.com/altera-partners-with-intrinsic-id-to-develop-worlds-most-secure-high-end-fpga/
https://www.intrinsic-id.com/altera-partners-with-intrinsic-id-to-develop-worlds-most-secure-high-end-fpga/
https://www.intrinsic-id.com/altera-partners-with-intrinsic-id-to-develop-worlds-most-secure-high-end-fpga/
https://www.intrinsic-id.com/altera-partners-with-intrinsic-id-to-develop-worlds-most-secure-high-end-fpga/
https://www.intrinsic-id.com/altera-partners-with-intrinsic-id-to-develop-worlds-most-secure-high-end-fpga/
https://www.intrinsic-id.com/altera-partners-with-intrinsic-id-to-develop-worlds-most-secure-high-end-fpga/
https://www.intrinsic-id.com/altera-partners-with-intrinsic-id-to-develop-worlds-most-secure-high-end-fpga/
https://www.intrinsic-id.com/altera-partners-with-intrinsic-id-to-develop-worlds-most-secure-high-end-fpga/
https://www.intrinsic-id.com/altera-partners-with-intrinsic-id-to-develop-worlds-most-secure-high-end-fpga/
https://www.intrinsic-id.com/altera-partners-with-intrinsic-id-to-develop-worlds-most-secure-high-end-fpga/
https://www.intrinsic-id.com/altera-partners-with-intrinsic-id-to-develop-worlds-most-secure-high-end-fpga/
https://www.intrinsic-id.com/altera-partners-with-intrinsic-id-to-develop-worlds-most-secure-high-end-fpga/
https://www.intrinsic-id.com/altera-partners-with-intrinsic-id-to-develop-worlds-most-secure-high-end-fpga/


References 17

20. Noor, N., Silva, H.: Phase Change Memory for Physical Unclonable Functions, pp. 59–91. 
Springer, Singapore (2020) 

21. Prophet, G.: Xilinx to Add PUF Security to Zynq Devices (2016). https://www.eenewseurope. 
com/news/xilinx-add-puf-security-zynq-devices-0 

22. Ravikanth, P.S.: Physical one-way functions. PH.D. Thesis. Massachusetts Institute of 
Technology (2001) 

23. Ray, S., Peeters, E., Tehranipoor, M.M., Bhunia, S.: System-on-chip platform security assur-
ance: Architecture and validation. Proc. IEEE 106(1), 21–37 (2017) 

24. Suh, G.E., Devadas, S.: Physical unclonable functions for device authentication and secret key 
generation. In: Proceedings of the 44th Design Automation Conference, DAC 2007, USA, 
June 4–8, 2007, pp. 9–14. IEEE, Piscataway (2007) 

25. Tehranipoor, M.: Emerging Topics in Hardware Security. Springer, Berlin (2021) 
26. Tehranipoor, M., Forte, D., Rose, G.S., Bhunia, S.: Security Opportunities in Nano Devices 

and Emerging Technologies. CRC Press, Boca Raton (2017) 
27. Tehranipoor, M., Pundir, N., Vashistha, N., Farahmandi, F.: Hardware Security Primitives. 

Springer Nature, Berlin (2022) 
28. Tehranipoor, M., Wang, C.: Introduction to Hardware Security and Trust. Springer Science & 

Business Media, Cham (2011) 
29. Turan, M.S., Barker, E., Kelsey, J., McKay, K.A., Baish, M.L., Boyle, M.: Recommendation 

for the entropy sources used for random bit generation. NIST Special Publ. 800(90B) (2018) 
30. Wild, A., Becker, G.T., Güneysu, T.: A fair and comprehensive large-scale analysis of 

oscillation-based PUFs for FPGAs. In: 27th International Conference on Field Programmable 
Logic and Applications (FPL), pp. 1–7. IEEE, Piscataway (2017) 

31. Xu, X., Rührmair, U., Holcomb, D.E., Burleson, W.: Security evaluation and enhancement of 
bistable ring PUFs. In: Radio Frequency Identification, pp. 3–16. Springer, Berlin (2015) 

32. Yang, K., Forte, D., Tehranipoor, M.M.: CDTA: a comprehensive solution for counterfeit 
detection, traceability, and authentication in the IoT supply chain. ACM Trans. Des. Autom. 
Electron. Syst. 22(3), 42:1–42:31 (2017) 

33. Yu, L., Wang, X., Rahman, F., Tehranipoor, M.: Interconnect-based PUF with signature 
uniqueness enhancement. IEEE Trans. Very Large Scale Integr. Syst. 28(2), 339–352 (2019) 

34. Zhang, J., Tan, X., Zhang, Y., Wang, W., Qin, Z.: Frequency Offset-based ring oscillator 
physical unclonable function. IEEE Trans. Multi-Scale Comput. Syst. 4, 711–721 (2018)

https://www.eenewseurope.com/news/xilinx-add-puf-security-zynq-devices-0
https://www.eenewseurope.com/news/xilinx-add-puf-security-zynq-devices-0
https://www.eenewseurope.com/news/xilinx-add-puf-security-zynq-devices-0
https://www.eenewseurope.com/news/xilinx-add-puf-security-zynq-devices-0
https://www.eenewseurope.com/news/xilinx-add-puf-security-zynq-devices-0
https://www.eenewseurope.com/news/xilinx-add-puf-security-zynq-devices-0
https://www.eenewseurope.com/news/xilinx-add-puf-security-zynq-devices-0
https://www.eenewseurope.com/news/xilinx-add-puf-security-zynq-devices-0
https://www.eenewseurope.com/news/xilinx-add-puf-security-zynq-devices-0
https://www.eenewseurope.com/news/xilinx-add-puf-security-zynq-devices-0
https://www.eenewseurope.com/news/xilinx-add-puf-security-zynq-devices-0
https://www.eenewseurope.com/news/xilinx-add-puf-security-zynq-devices-0


Chapter 2 
True Random Number Generator 
(TRNG) 

2.1 Introduction 

TRNGs are frequently employed in cryptographic applications such as random 
padding bits, key generation, and the generation of nonces in authentication 
protocols [35]. In addition to lottery drawings, true random number generators are 
also used in gambling, probabilistic algorithms, and computer games. The TRNGs 
must be unpredictable, produce truly random numbers using a physical source that is 
nondeterministic, and adhere to tight statistical constraints [36]. Generally speaking, 
a poor random number generator frequently causes the complexity of attacking a 
system utilizing that generator to reduce. For instance, a Mifare Classic tag’s use 
of an unreliable pseudorandom number generator (PRNG) made attacks easier and 
gave attackers access to the secret key of the smart card [22]. Secure TRNGs can be 
used to generate the required random bits in cryptographic systems, which can solve 
these problems. In most cases, statistical test suites like NIST [6] and Diehard [21] 
are used to evaluate the randomness of a TRNG, and a stochastic model [31] is used  
to estimate the entropy of each bit. 

Standard TRNGs employ a single source of entropy and a single post-processing 
step. The block diagram of a typical TRNG architecture is displayed in Fig. 2.1. 
Using a sampler, randomness is first collected from the physical noise source and 
then translated into a raw random bitstream (digitization). In practice, the raw 
random bitstream frequently demonstrates poor randomization. To enhance the 
output TRNG bit stream’s quality and randomness, supplementary post-processing 
techniques like the Neumann corrector [37] or hash function [3, 17] are needed. In 
this regard, a variety of TRNG with post-processing designs have been presented 
using field-programmable gate arrays (FPGAs) [12, 15, 20, 33]. These designs draw 
entropy from the jitter of ring oscillators (RO) [2, 4, 12, 33] or the metastability 
of flip-flops [15, 20], which is brought on by setup or hold time violations of 
flip-flops (FFs). Numerous strategies for enhancing TRNG performance have been 
researched. In this chapter, we focus on true random numbers on FPGA. In 
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Fig. 2.1 An illustration of a true random number generator [4] 

particular, this chapter can help a reader to better understand and will gain hands-
on experience on how to create a technology-independent true random number 
generator (TI-TRNG) [26] step by step and get the random numbers on an FPGA 
board and also learn how to measure the quality of randomness of the generated true 
random numbers. 

The remaining chapters are structured as follows: Sect. 2.2 briefly discusses 
commonly used sources of entropy and RO-based TRNGs. In Sect. 2.3, the imple-
mentation specifics of the RO-based TRNG are described. In Sect. 2.4, the quality 
of the bitstream generated by the TRNG is discussed. Section 2.5 presents the 
conclusions. 

2.2 Background 

2.2.1 Sources of Entropy 

The entropy source that was employed in the design is a key resource for a TRNG. 
Timing jitter in circuits, thermal noise, metastability, chaotic circuits, quantum 
effects, and other factors are often employed sources of entropy. These are briefly 
discussed next: 

(1) Thermal Noise: It is sometimes referred to as Johnson-Nyquist noise [23]. This 
is the electronic noise caused by the thermal movement of charge carriers in 
an electrical conductor that is at equilibrium. Regardless of whether an external 
voltage is provided or not, this agitation occurs. This kind of entropy generator 
is typically appropriate for use in ASICs. One of the family’s well-known 
TRNGs was introduced by Intel [17]. This device uses a high-speed oscillator 
to first amplify and then digitize the Johnson thermal noise over a resistor. The 
statistical characteristics of the obtained random numbers are then improved via 
a von Neumann post-processing method. There are more recent TRNGs from 
this family in [11, 25]. 

(2) Timing Jitter: Timing jitter in electronic systems is the deviation of a signal’s 
timing from its nominal value. For both FPGA and ASIC TRNGs, the timing 
jitter of phase-locked loops (PLLs) or free-running ring oscillators (ROs) is
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frequently used as an entropy source. Fischer et al. [13] introduced PLL-based 
TRNG, while Allini et al. [1] showed the optimization of the PLL-based TRNG 
design. Fischer et al. [13]. Multiple RO-based TRNGs were first introduced 
in BSunar et al. [33] and later refined by Wold et al. in [41]. Multiple RO 
edges were used as the randomness source in the RO-based TRNG designs [44], 
which were then realized using a tetrahedral oscillator with high jitter [19]. 
Anandakumar et al. [4] incorporated the concept of programmable delay lines 
(PDL) to increase the randomness of the TRNG. 

(3) Metastability: The most popular entropy source for both FPGA and ASIC 
TRNGs is metastability. Early systems used latches’ metastable behavior as 
an entropy source [8]. In 2001, Walker et al. assessed the metastability of 
a DFF (D flip-flops) circuit for producing random numbers [39]. In [14], a 
method for generating random numbers that uses write collisions in memory 
blocks as a source of entropy was described. In [27], the noise source for ring 
oscillators is the last time they passed each other. In [20], truly random numbers 
were produced using the metastability of flip-flops. Programmable delay lines 
(PDLs), which precisely equalize the signal arrival timings to flip-flops, were 
used in [20] to accomplish the metastability. RS latches’ metastable behavior 
was used by Hata et al. [15] as an entropy source to produce real random 
numbers. Li et al. [18] presented a TRNG that makes use of cross-coupled 
NAND gates. 

(4) Chaos Circuits: A simple electronic circuit that displays typical chaotic behav-
ior is referred to as a chaotic circuit. To produce noticeably different future 
outputs, they amplify modest changes at the beginning states. Typically, this 
kind of entropy source is appropriate for ASIC implementations. Yalcin et 
al. [43] presented a TRNG that used a double-scroll attractor. Rodriguez 
et al. [28] introduced a straightforward chaotic discrete-time systems-based 
TRNG. To produce chaotic signals, the suggested TRNG uses discrete maps, 
a straightforward mathematical model. A framework for analyzing chaotic-map 
TRNG performance is presented in [7]. For chaos-based TRNG, analog-to-
digital converters (ADCs) are also employed. Callegari et al. in [10] make use of 
chaos and nonlinear signal processing to create a TRNG. Pareschi et al. in [24] 
proposed another TRNG design-based ADC that internally uses a pipeline ADC 
adapted to function as a collection of interleaved chaotic maps. 

(5) Quantum Effect: As a source of randomness, several quantum effects can be 
used. John walker et al. [38] presented a TRNG based on radioactive decay 
as a source of entropy. A popular type of quantum random number generator 
(QRNGs) is based on the detection of a single photon between two outputs 
of a beam splitter. Lasers, single-photon emitters, and light-emitting diodes are 
common sources of photons. The TRNG designs in this family come in a variety 
of forms, from those seen in academic publications [32, 34] to those found 
in commercial products [30]. Jennewein et al. [16] demonstrated a physical 
QRNG with a throughput of 1Mbps. Recently, Massari et al. [42] developed 
a QRNG that makes use of a 16 . × 16 array of detector pairs. It was decided
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which detector in the pair of two would receive a photon first by implementing 
arbitrator modules. 

2.2.2 Ring Oscillator-Based TRNG 

As was already indicated, several RO-based TRNG designs have been published in 
the literature [2, 4, 12, 33, 41]. Jitter typically builds up in free-running ROs that 
have an odd number of inverters or delay elements coupled in a ring design [9]. This 
results in a change in the oscillator’s digital output value over a period of about 2DL, 
where 2L is the number of inverters in the oscillator and D is the delay of a single 
inverter. The rising and falling edges of the generated RO clocks exhibit jitter due 
to the oscillations’ variable period, as demonstrated in Fig. 2.2. Digital circuits may 
experience these oscillations and jitter as a result of changes in the semiconductor 
noise, power supply, cross talk, propagation delays, and temperature. By sampling 
the output of a high-frequency oscillator using a D flip-flop (DFF)-based sampler, as 
shown in Fig. 2.3, these jitters can be exploited to generate a stream of truly random 
bits. 

The use of numerous free-running ROs, such as BSunar et al. [33], can enhance 
the quality of the real random bits that are created. This is accomplished by feeding 
the outputs into a multi-input XOR tree, which is then sampled by a reference clock 

Fig. 2.2 Jitter in clock 
signals 
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High-Frequency 
Oscillator 

Low-Frequency 
Oscillator 

True Random 
Numbers 

Sampler 

Fig. 2.3 Basic TRNG based on oscillators



2.3 RO-Based TRNG Implementation 23

RO 1 

Post-
Processing 

Output 

RO 2 

RO 114 Sampling frequency 

D Q  

RO 1 

Output 

RO 2 

RO 50 

Sampling frequency 

D Q  

D Q  

D Q  

D Q  

(i) Sunar-type TRNG (ii) Wold-type TRNG 

Fig. 2.4 Original TRNG block diagram (a) [33] and the modified TRNG (b) [41] 

operating at a fixed frequency using a DFF to produce the random bit stream as 
illustrated in Fig. 2.4. However, handling a large amount of switching activity from 
the free-running ROs in such designs is exceedingly difficult for the XOR tree 
and the sample DFF [12]. Due to the numerous transitions that occur throughout 
a sample period as a result of parallel ROs, there are stringent setup and hold time 
requirements. By including a sampling DFF at the output of each free-running RO, 
as shown in Fig. 2.4, this feature can be somewhat addressed in [41]. This design 
uses fewer ROs and passes the NIST statistical tests without the need for post-
processing. 

2.3 RO-Based TRNG Implementation 

This section will begin by going through the precise RO-based TRNG implemen-
tation that was used in the experiment. Then, we’ll discuss how to download the 
target FPGA with the RTL design’s FPGA bitstreams (Nexys A7-100T board here). 
In order to create and enhance the genuine random numbers on FPGA, we have used 
the basic implementation from [26] in this chapter. Technology-independent TRNG 
(TI-TRNG) design and bias detection algorithms were proposed by Rahman et al. 
[26]. The TI-TRNG utilizes a mechanism of self-calibration technique to lessen 
the biases in true random number generator (TRNG) output caused by aging and 
attacks and improves power supply noise for older technologies. Figure 2.5 shows 
how process modifications and environmental factors affect the output result of the 
SXOR, XOR tree, and bitstreams (R). 

The jitter coming from RO is XOR-ed and sampled with the help of a syn-
chronous flip-flop in an RO-based TRNG. Process variation (PV) increases the 
randomness of internal random noise. Power supply noise (PSN) increases jitter 
and subsequently randomness by acting like substrate noise. To raise the random
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Fig. 2.5 Behavior of (a) traditional RO-based TRNG, (b) decrease of frequency because of 
environmental variations, and aging (c) increase of frequency because of operating conditions. 
Overcome bias by (d) expanding jitter and (e) adjusting RO delay (tunable RO) 

PSN, we have introduced smaller ROs. The noise-augmenting ROs are these ROs 
(NAROs). The adjustable ROs are maintained near the NAROs. Two symmetric 
PSNIB-1 and PSNIB-2 modules with an equivalent combination of symmetric 
NAROs make up the random noise enhancement unit. It is vital to keep in mind that 
when similar ROs are utilized [40]. Even though RO-based TRNGs are exciting, 
they don’t have a lot of randomness. ROs with equal length built in an FPGA can 
be correlated with one another because they have the same delays. This means that 
the XOR of their outputs mostly produces zeros. So, the randomness of the design 
isn’t very good. To avoid interlocking, a tunable RO is proposed instead of the usual 
RO. Also, the mechanism of tuning can adjust the delay of the RO so that any bias 
is taken away. In this work, a self-calibration technique is used to keep a minimum 
security level when the entropy and randomness of a true random number generator 
(TRNG) are changed in bad working environments or an attack. This helps to get 
rid of or lower the costs of implementing post-processing. 

The whole bias detection and calibration procedure to eliminate bias is illustrated 
in Fig. 2.6a and b. Figure 2.6b design illustrates how to use a .NFB-bit series-to-
parallel (SiPo) register to keep .NFB successive bits from the randomized output 
of TRNG. The succeeding bits of .NFB may be unbiased, biased to “0” or “1,” 
or even both. A logic function, B01, is needed to identify the bias which depends 
on .NFB as displayed in Fig. 2.6b. As an instance, B01= . A . B . C+ABC is used to 
determine the bias of the next three bits. The following .NFB bits are biased to “0” 
or “1,” respectively, if .B0 = 1 or .B1 = 1 when .NFB = 3. The subsequent . NFB

bits are biased to either “0” or “1” when .B01 = “1.” To prevent interlocking and 
significant speed variances between two tunable ROs, the detector of bias senses
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Fig. 2.6 (a) Architecture of TRNG and (b) the tuning and bias detection technique 

the bias and modifies the path of delay between them. The tunable RO is shown in 
Fig. 2.6b, which is made up of inverters (of an odd number) with .NMUX MUXs 
in between some of them. The same .PD − LFSR that controls the NAROs  also 
controls the MUXs in the tunable RO. On the right side of Fig. 2.6b, readers can also 
see the controlling block that changes the delay of two tunable ROs to get rid of the 
bias. A simple tuning control unit is used to control the MUXs in the tunable RO. 
The controlling unit is made up of 2NMUX latches that are controlled by the bias 
detection unit’s B01 signal. Through the tuning control unit, any 2NMUX bit from 
the .PD − LFSR output is passed. Each latch uses B01 as its clock. If its clock is
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high (.B01 = “1”), a latch is transparent. If its clock is low (.B01 = “0”), it stays in 
the state it was in before. For .B01 = “1,” which means that bias has been found, the 
current state of the latches controls the MUXs, which change the delay path until 
the bias is removed. When there is no bias (.B01 = “0”), latches stay in the state 
they were in before to keep a good TRNG bit stream. For more information, folks 
can look at [26]. 

We implement the base TRNG on the same Xilinx Artix-7 (Nexys-100T) FPGAs 
(xc7a100tcsg324-1). The 28-nm technology used to manufacture this FPGA makes 
it especially suitable for embedded applications. These designs were created using 
the VerilogHDL programming language and the Xilinx Vivado 2020.2 design suite. 
To install the Xilinx Vivado software on Windows 10 laptop or PC, use the following 
URL: https://www.youtube.com/watch?v=DIOll3P65hg. The entire implementation 
consists of two parts, i.e., the RO-based TRNG itself and virtual IO (VIO) module. 
Before downloading the TI-TRNG bitstream into the FPGA, we need to implement 
the TRNG design (as shown in Fig. 2.7) using Xilinx Vivado software. At the 
first time, you might have to click the . + button (as shown in Fig. 2.7) to add all 
available signals to the dashboard. In the design source, we need to add different 
modules needed to generate the TRNG. For example, we shall need to include the 
different modules according to the TRNG architecture (as shown in Fig. 2.7) such as 
“TRNG,” “Tunable RO control logic,” “XOR,” “Flip-Flop,” “SIPO,” “Bias Detector 
Logic,” “LFSR,” “PSNIB Blocks for NAROs,” etc. The Verilog TRNG design files 
and source codes can be found at http://cad4security.org/index.php/trainings/hsl/ 
ch2_trng/. 

Since we intend to see the TRNG output by ILA probing on FPGA board, 
therefore, we have to add ILA ports in our design. To do this, click IP catalog 
under project manager as shown in Fig. 2.8. Then, type ILA in the search box and 
then select integrated logic analyzer. We assigned the design component name as 
.ila0. Next, we have selected two probing ports (see Fig. 2.8) and assigned a sample 
data depth size of 2048. Now, in the probe. _ports window, select the probe width of 

Fig. 2.7 Design hierarchy of the RO-based TRNG implementation
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Fig. 2.8 ILA probing from IP catalog 

Fig. 2.9 ILA (Integrated Logic Analyzer) 

Probe0 as 128 and the width of Probe1 as 1 (as shown in Fig. 2.9). Here, the data 
depth of Probe0 is 128. We will be observing the output of the 128-bit shift register 
which stores 128 bits from the TRNG output bit stream. 

Then, we need to synthesize, implement, and create a .bit file for the target FPGA. 
For more details, one may refer to a tutorial on the FPGA implementation of digital 
systems [29]. Before loading the bitstream, the FPGA board must be connected 
to a laptop/PC through UART. Then, we specify the desired bistream file and the 
debug probe file (.ltx) which is used to set up the virtual IO interface for transferring 
the TRNG output. Now, we need to upload this bit file into the FPGA and finally 
observe the TRNG output. Once the bitstream is generated successfully, first connect 
the FPGA board with our PC/laptop, and then we can open hardware manager. 
Next, open target and click on “auto-connect” option. This will connect our target 
FPGA board with our PC/laptop. Next, click on the “program device” option. Now, 
a window (as shown in Fig. 2.10) will appear which will show which bitstream file 
will be uploaded to our FPGA board. Then select a bitstream programming file and 
download it to our target FPGA device.
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Fig. 2.10 Program device 

Fig. 2.11 TRNG output bitstream 

After downloading the bitstream, in the Xilinx Vivado, we will see a dashboard 
called hardware vio pops up. The VIO module here can provide the interface 
between the FPGA board and then collect the TRNG output. Now, we can see TRNG 
output from ILA probing. First, we need to set the reset pin high and enable low. 
V10 switch (leftmost switch of the FPGA board) is defined as the reset pin, and V11 
switch (second from the leftmost switch of the FPGA board) is defined as enable 
pin. Now, set V10 switch option to high (reset. =high) and make the V11 switch low 
(enable. =low). Note that both reset and enable pin cannot be high together. When 
we set reset pin to high, the TRNG out will be zero. Now, to enable the TRNG, make 
reset low and enable high. (Make V11 switch position low and V10 switch position 
high). The TRNG output bitstream is shown in Fig. 2.11.
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2.4 Measures of the Quality of Randomness 

We will discover how to assess the quality of randomness in the generated TRNG 
bitstreams in this section. The entropy test is used as the objective criterion of 
randomness in accordance with accepted industry practice. The restart test is then 
performed to demonstrate that the output, prior to post-processing, is unique after 
many system restarts under the same conditions. Finally, the NIST statistical test 
suite is used to evaluate the TRNG’s bitstream quality. 

2.4.1 Entropy Estimation 

For a perfect true random number generator, the proportion of “0”s to “1”s is . 0.5; 
hence, the predicted entropy per bit is 1. In this work, the test T 8 of the procedure B 
of the AIS-31 [31], which is used to test raw random numbers, is used to determine 
the entropy rate for the generated numbers. We have downloaded the AIS31 test 
suite from the following URL: https://web.archive.org/web/20090228190713/www. 
bsi.bund.de/zertifiz/zert/interpr/ais_cc.htm. The instruction of the tool execution 
is quite clear and detailed, but the instruction is given in the German language. 
Therefore, we need to use the “Google translated” help info (obtained by clicking 
“jilfe anzeigen” on Fig. 2.12) for the English version. 

When a sequence of length N is taken into consideration, test T 8 divides the 
sequence into .Q + K disjoint L-bit words. .L = 8, .Q = 2560, and . K = 256,000
are the recommended settings for the test T 8. The recommended minimum sequence 
length for this test is 7,200,000 bits. For the test, we created 80 million random bits 

Fig. 2.12 AIS31 test suite
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Fig. 2.13 Six output bitstreams were recorded after restarting the TRNG 

using our test. The bit sequence passed the test and obtained 7.887 bits of entropy 
per byte. 

2.4.2 Restart Experiment 

For our TRNG design, a test was run to confirm the startup sequences for six restarts 
from identical beginning conditions. Similar restart techniques were employed by 
works [19, 41] and [12] to determine how much actual randomness was present in 
a pseudorandom oscillating signal. Following each restart, the first 20 sampled bits 
were observed and plotted as seen in Fig. 2.13. When the TRNG is frequently started 
from the exact same beginning conditions, the restart experiment results in graphs 
that are similar for a pseudorandom signal. However, in our situation, these were 
observed to differ each time, eliminating any chance of pseudorandomness [5]. 

2.4.3 Statistical Evaluation of the Output 

NIST has developed a set of standardized randomness tests for assessing the quality 
of randomness in bitstreams [6]. The most complete publicly accessible tool is the 
NIST statistical test suite. In essence, 15 different types of tests are routinely run to 
evaluate the performance of TRNGs. The frequency test determines the proportion 
of ones and zeros for the bit sequence, and the bit sequence must be fairly evenly 
split between 0s and 1s in order to pass the test. Similarly, the percentage of 1s 
within M-bit blocks is determined by the block frequency. While the longest run test 
examines the lengthy strings of 1s within the M-bit block, the runs test determines 
whether the sequence of consecutive 1s and 0s is as predicted in a really random 
sequence. The fast Fourier transform (FFT) test examines the repeating patterns 
in the tested sequence that would suggest a departure from the assumption of 
randomness, whereas the rank test looks for linear dependence among fixed length 
sub-strings of the bit sequence. The goal of the nonoverlapping template test is to 
count the instances of predefined target strings. The overlapping template test is
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comparable, except that when the pattern is discovered, the window only moves 
a little bit before the next search. The linear complexity test seeks to estimate the 
length of a linear feedback shift register and evaluate its complexity. The universal 
statistical test establishes the number of bits between matched patterns. The serial 
test measures the frequency of all possible overlapping m-bit patterns over the bit 
sequence. The approximate entropy test is similar to the serial test in that it examines 
overlapping blocks of two lengths. The cumulative sum test determines whether the 
1s and 0s are evenly distributed across the whole sequence or if they are distributed 
in high quantities at the beginning or end of the sequence. The random excursion 
calculates the total number of times a specific state appears in a cumulative sum 
random walk, whereas therandom excursion variant test calculates the number of 
cycles with exactly K visits. 

The parameters for each test in this chapter were determined in accordance 
with NIST recommendations. Because it represents a .99% confidence interval, the 
default value for the significance level, alpha was decided to be .0.01. Prior to and 
following post-processing, 1000 times (sequences) of .106 bits were collected in 
order to analyze the distribution of P -values (randomness measure). When the P -
value is greater than 0.01, the distribution of the sequences is roughly uniform. In 
addition, a test is deemed successful if the permissible proportions fall within the 
range of 0.98056 and 0.99943 for alpha = 0.01 and sequences = 1000, according 
to NIST recommendation [6]. The proportion of P -values should be higher than 
the 0.0.01 confidence interval. We have downloaded the NIST test suite from 
the following URL, https://github.com/dj-on-github/sp800_22_tests, and we have 
carried out 15 types of NIST tests to assess the performance of our TRNGs. Our 
TRNG implementation (Fig. 2.6) passed each of the 15 types of tests, and we were 
able to achieve the minimum pass rate (minimum proportion) for the tests of 0.982. 

2.5 Conclusion 

This chapter describes about the design, implementation, and analysis of RO-
based TRNG implemented on the Artix 7 FPGA board using the Xilinx Vivado 
design suite. This chapter has offered a step-by-step breakdown of the whole 
implementation in the hopes that researchers who want to reproduce and study these 
findings may find it useful. We were succeeded in producing true random numbers. 
It successfully completes all NIST statistical tests and obtains a satisfactory entropy 
rate. By the end of this chapter, readers will understand how true random number 
generators work in theory; then how to design, implement, and generate TRNG on 
FPGA; and how to assess the TRNG output by using statistical tests.
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Chapter 3 
Recycled Chip Detection Using RO-Based 
Odometer 

3.1 Introduction 

With the prosperity of emerging industrial segments such as the Internet of Things 
(IoT), 5G, and artificial intelligence, semiconductor devices become ubiquitous and 
connected to constitute cyberspace covering everybody in modern society [11]. The 
rate of growth of the semiconductor market is mind-boggling over the past decades 
and is projected to continue from $573.44 billion in 2022 to $1380.79 billion in 2029 
[34]. Despite the promising market forecast, counterfeit devices are compromising 
the integrity of the semiconductor supply chain [1, 2, 14, 17, 18, 38, 44]. Specifically, 
there are a variety of counterfeit types such as recycled, overproduced, and remarked 
components that are injected by adversaries, i.e., the untrusted entities in the 
convoluted supply chain [12]. Even worsen, the COVID-19 pandemic has drastically 
and negatively impacted the capacity of foundries and thus lifted the prices of most 
categories, inspiring counterfeiters to introduce more illegitimate devices [41]. The 
horizontal business model of most semiconductor companies benefits from waiving 
the prohibitively high cost of maintaining foundries but leads to trust issues in 
the supply chain. For example, original component manufacturers (OCMs), as the 
owner of IPs in their semiconductor devices, have very limited controllability during 
the lifecycle of the devices [32]. As such, untrusted distributors might intentionally 
alter the markings printed on the chip surface to falsify the device grade, e.g., 
from commercial grade to space grade even if the device itself does not have 
any resistance against the radiations. Overproduced devices are parts that rogue 
foundries illegitimately produce outside the contract [36]. Such devices typically 
did not get enough tests to rule out defective parts and might have serious reliability 
issues. Out of all counterfeit types, recycled chips are the majority occupying more 
than 80% of all illegitimate devices [9]; they are derived from improperly disposed 
printed circuit boards (PCBs) or systems and sold as new items in the supply chain 
to acquire unfair profits. Due to the previous excessive usage, recycled chips might 
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exhibit lower performance and shorter lifetime which can result in catastrophic 
aftermaths once they reside in mission-critical systems. 

Given the threats from counterfeit devices, it is imperative to have solutions to 
differentiate them from the legitimate parts [7]. However, existing electrical testing 
or high-precision inspection methodologies are either less effective or extremely 
expensive. The objective of this chapter is for readers to understand counterfeit 
threats comprehensively at first. Next, by focusing on the major counterfeit type, 
i.e., recycled devices, readers can gain hands-on experience in detecting them 
using a lightweight ring oscillator (RO) sensor. Readers can follow a step-by-step 
tutorial to implement the sensor on an FPGA board and use the on-chip debugging 
infrastructure to access the readings reflecting the aging extent of underlying 
transistors and indicating the usage time of the entire silicon. 

The rest of this chapter is organized as follows: Section 3.2 details the back-
ground of recycled device detection. Section 3.3 focuses more on how to detect 
recycled FPGA devices because it serves as our prototyping platform. Section 3.4 
briefly introduces the basic flow of FPGA development to prepare readers working 
on the configurable devices. Section 3.5 details the flow of how to utilize the RO 
sensor to measure the aging extent of the target FPGA to differentiate recycled 
devices. Section 3.6 concludes this chapter. 

3.2 Background 

3.2.1 Motivations and General Flow 

Recycled chips are devices reclaimed from discarded boards and systems and 
sold as new ones. If integrated into mission-critical infrastructure, such devices 
would pose induced reliability and performance issues due to their previous 
excessive usage [45]. Our ring oscillator (RO) odometer is a golden reference-based 
mechanism to help end users differentiate recycled devices from the entire batch 
with the assistance of original component manufacturers (OCMs). The underlying 
mechanism flow is illustrated in Fig. 3.1 where the new device is embedded with our 
RO primitive by trusted OCMs. RO is a self-oscillated circuitry typically consisting 
of odd number of inverters [39]. The frequency of RO oscillation depends on 
the speed of low-level transistors and further relies on their aging extent. More 
specifically, the more usage a transistor experiences, the slower the transistor would 
be, and the RO frequency would thus be smaller. Therefore, RO-based primitive 
can be seen as an odometer measuring the infield work time intervals. Our RO 
primitive includes multiple paths of cascaded inverters; each path can be seen as 
a new RO instance and exhibit different frequencies [37]. OCMs register a new 
device by exhaustively putting down the RO frequency of each path and storing 
them in a secure database as a reference. Then the new device would enter the 
convoluted supply chain and might become recycled items. Suppose that an end
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Fig. 3.1 Recycled IC detection using RO primitive 

user really cares about the authenticity of their purchased devices because the final 
systems are reliability-critical. They can reuse the RO-based odometer again (the 
RO odometer is either embedded into ASICs or implemented as a binary bitstream 
provided by OCMs as shown in this manual) to regenerate the signatures, i.e., RO 
frequency. The frequency is going to be sent back to OCMs and matched against its 
reference counterpart in the secure database. If the two frequencies are close enough, 
it demonstrates the target device has not been extensively used. Otherwise, this item 
is suspected to be a recycled item and should not be integrated into mission-critical 
products [7]. 

3.2.2 Counterfeit Threats 

IC counterfeiting has become a formidable challenge due to limitations in the 
existing test solutions and lack of available avoidance mechanisms [17, 30]. Over 
the past decades, a number of reports have claimed the serious counterfeiting 
issues in the worldwide microelectronic supply chain, e.g., a US Senate Armed 
Services public hearing was held dedicatedly on this issue and yielded the summary 
report clearly identifying counterfeiting as a crisis due to the significant impact on 
system reliability and security. With the ever-increasing complexity of electronic 
systems ranging from high-end data centers to compact mobile gadgets, they are 
for most fabricated and assembled in a globalized manner to minimize the time 
to market and cost. For instance, given the existing technical advancement and 
labor costs, offshore facilities typically can offer cheap and cheerful service to the 
fabless design house. Nevertheless, this opens the door to counterfeiting intrusions 
since illegitimate entities can gain unfair profits or competitive advantages by 
flooding the market with fake components where the outcome can be catastrophic 
if counterfeit ICs are integrated into mission-critical infrastructures such as defense 
and aerospace.
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Fig. 3.2 Taxonomy of counterfeit types 

There are a variety of counterfeit components as defined in [17] as follows: 

• The parts which are unauthorized copies of their legitimate counterparts 
• The parts with modified functionality and/or performance compared to the 

original specification 
• The parts produced by unauthorized foundries or contractors 
• The parts with defects or excessive previous usage 
• The parts with forged markings on their surface or documentation 

With the definitions, there are a few common instances in the real world that call 
for attention and countermeasures as depicted in Fig. 3.2: 

• Recycled: Recycled devices are the most common counterfeiting components 
which are reclaimed from obsolete or discarded systems and then falsified as 
new chips, e.g., cleaning and polishing the surface. Typically, due to the aging 
phenomena from the excessive prior usage [16], such parts would exhibit much 
shorter lifetimes and lower speeds. Moreover, the recovery procedure usually 
needs high-temperature removal, aggressive physical removal, washing, sanding, 
and repackaging which might fundamentally pose negative impacts on the 
transistors or even make them completely nonfunctional. Besides compromising 
the revenue of the OCMs, the resultant degraded reliability renders the systems 
that incorporate recycled devices vulnerable. 

• Remarked: Markings on-chip surfaces are the most direct and convenient manner 
for distributors and end users to identify the manufacturer, trademark, speed 
grade, and so on. However, the original marking can be easily chemically or 
physically removed by the adversaries. Next, the attackers can blacktop the 
surface to conceal the scratches during the marking removal and then reprint 
the new information. The motivation behind the counterfeiting threat is the 
huge profit gap between a normal device and a high-end part considering the 
similar looking except for the marking on the top. For example, a space-grade IC 
needs advanced expertise, deliberate designs, and huge investments for resilience 
against the radiations and thus always carries a high price tag. In contrast, 
its commercial grade can be much cheaper without the dedicated protection 
and redundant circuitry inside. If remarked commercial grade components are
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integrated into the space applications, they would not be able to withstand the 
disturbances and behave unexpectedly. 

• Overproduced: Globalization has pushed design houses to outsource their work 
to businesses throughout the world for fabrication and packaging, mostly to save 
production costs. When foundries and packaging corporations fabricate and sell 
components without having a contract with the design house (the owner of the 
component’s intellectual property (IP)), overproduction occurs. Overproduced 
ICs may pose major reliability hazards because they do not experience the same 
exhaustive testing as genuine parts and may not fulfill the manufacturer’s formal 
flow requirements. 

• Out-of-Spec/Defective: If a component gives mistaken results during post-
manufacturing tests, it is considered to be faulty. These components ought be 
either eliminated or demoted. However, there will be an unknown increase in the 
danger of failure if they are instead sold on the open (gray) markets, knowingly 
either by a non-trusted business or by a third party that has stolen them. 

• Cloned: Cloning is frequently utilized by a variety of competitors and coun-
terfeiters (from small businesses to huge corporations) to imitate a design and 
avoid the high development costs. Reverse engineering and fetching intellectual 
property (IP) illegally are two methods of cloning (also called IP theft). Cloning 
can also happen when someone with access to the part design transfers unlicensed 
knowledge to another individual. 

• Forged Documentation: A component’s accompanying documentation includes 
details on the specification, testing, certificates of conformance, statement of 
work, etc. A component can be misrepresented and sold even if it is noncon-
forming or defective by altering or fabricating this documentation. Since the 
OCM may not have archived records for earlier designs and older parts, it is 
frequently challenging to confirm the legitimacy of such documents. Legitimate 
documentation can also be duplicated and linked to components from a collection 
that doesn’t match it. 

• Tampered: Modifications to components can have disastrous effects on the 
systems that use them. As a silicon time bomb, altered chips, for instance, can 
suddenly “kill” their functioning at a crucial time. Additionally, tampered chips 
might have backdoors that provide adversary access to crucial system features or 
reveal private data. 

3.3 Recycled FPGA Detection 

The literature introduced a number of techniques for counterfeit detection such as 
aging detection sensors and PUF-based and hardware metering-based solutions [4]. 
We also give the different counterfeit detection techniques in Table 3.1. In this  
section, we go through how to use the RO sensor to determine how old the target 
FPGA is in order to distinguish between recycled devices. Configurable logic blocks
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Table 3.1 Counterfeit detection techniques 

Counterfeit detection types Counterfeit detection techniques 

Aging detection sensors Statistical analysis [20] 

Timing warning aging sensor [22] 

Electromigration-based sensor [19] 

Electromigration-based sensor [35] 

Ring oscillator combating die [27] 

Fused CDIR [17] 

Pass logic [33] 

IDDT signature [46] 

Tampering [28] 

Image processing [6] 

PUF Arbiter PUF [3, 5] 

PUF authentication [4] 

Hardware watermarking [29] 

PUF obfuscation [4] 

BIST PUF [21] 

Hardware metering Combinational logic encryption [24] 

Optimization of combinational logic locking [8] 

Split manufacturing [23] 

Security analysis of logic encryption [43] 

Key interdependency [25] 

IC testing [31] 

Delay locking [42] 

Reverse engineering-based anti-counterfeiting [13] 

are used by FPGAs to implement logic functions (CLBs). Lookup tables (LUTs) are 
fundamental components of an FPGA design since they serve as function generators 
in CLBs. Reconfiguring modern FPGAs enables changing the mapped function of 
LUTs. As a result, LUTs implement trillions of logic operations in total. Therefore, 
it’s critical to comprehend LUT behavior in order to research aging deterioration 
for recycled FPGA identification. An SRAM bit that stores mapped values and a 
set of multiplexers that choose the bit that drives the LUT output are the typical 
components of a LUT. In this illustration, a 16:1 multiplexer and a 4-input LUT 
with 16 SRAM cells are used. The 16:1 multiplexer was constructed from a tree 
of 2:1 multiplexers. By putting the proper values in the SRAM cells and four-level 
hierarchical selectors (I0; I1; I2; I3), any logic function with four inputs can be 
implemented (Fig. 3.3). 

The use of ring oscillators (ROs) is a popular technique for measuring delay 
variations in ICs [15]. In this endeavor, ROs will be developed to evaluate FPGA 
performance. A closed-loop chain made up of an odd number of inverting delay 
stages connected in series is known as a RO. An example is illustrated in Fig. 3.6. 
The oscillation period is equal to the sum of the propagation delays of all the loop’s
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Fig. 3.3 Recycled IC 
detection sensor diagram 

constituent parts. Using LUTs with an inverting stage implemented, ROs can be 
mapped on FPGAs. SRAM cells, selector transistors, and connection delay are 
all added together to create each stage’s propagation delay. Over its lifetime, an 
operating FPGA becomes slower. The aging mechanisms include bias temperature 
instability (BTI) [26, 40], hot carrier injection (HCI) [26, 40], time-dependent 
dielectric breakdown (TDDB) [26] and electromigration [10]. Due to their enormous 
influence on the transistor switching speed, BTI and HCI are the main topics of this 
lab. This effect can be utilized to detect recycled FPGAs since it is quantifiable. 

BTI and HCI alter the circuits’ threshold voltage, which over time reduces the 
performance of FPGAs [2]. Selector circuits of LUTs get slower as the propagation 
delay of the BTI- and HCI-induced transistors rises. PMOS transistor speed is 
slowed by NBTI threshold deterioration, and SRAM cell static noise margin is 
dramatically decreased. Wire defects are brought on by the slow flow of ions, 
and TDDB from protracted low electric field exposure also reduces performance. 
The temperature has a significant impact on all modes of deterioration, with high 
temperatures deteriorating aging. 

3.4 FPGA Development Procedure 

A field-programmable gate array (FPGA) is an integrated circuit that is flexible 
and can be configured by the user or designer after the manufacturing phase. The 
typical development flow of an FPGA device involves design entry, synthesis, 
implementation, and bitstream generation as shown in Fig. 3.4.
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Fig. 3.4 FPGA development procedure 

Design entry can be done in various ways. The most intuitive method is drawing 
the schematics by connecting some predefined functional modules together. It is 
better and recommended to write your behavioral implementation in the form of 
hardware description language (HDL) like Verilog and VHDL. During the synthesis 
stage, the HDL code composed at the design entry stage will be converted into 
a circuit in the form of netlist by the electronic design automation (EDA) tools. 
Our HDL code is going to be parsed to check syntax and then optimized to reduce 
redundant logic according to the specified settings. The generated netlist will contain 
the needed logic elements and the connectivity among them as described by the 
HDL code. The implementation phase will then technology map the logic elements 
in the netlist to the primitives available in the selected FPGA model so that the 
design could be implemented on your physical chip. Also, this step will place and 
route the primitives on the FPGA layout virtually per the constraints from designers 
and physical aspects to make the final design meet the power, performance, and area 
requirements. Finally, the placed and routed netlist will be translated to the binary 
configuration data, the so-called bitstream with the vendor-specific tool, and then 
downloaded to the target device to fulfill the functionality. 

3.5 Recycled Chip Detection Experiments 

In this section, the effectiveness of the RO-based odometer is demonstrated through 
hands-on experiments on the FPGA platform. The odometer primitive can measure 
the usage time of the target silicon based on the switching speed of the underlying 
transistors, further being used as a solution for recycled semiconductor microelec-
tronic detection. Specifically, the experimental FPGA platform is introduced at first. 
Then, the particular structure of the RO-based odometer is presented. Finally, the 
experimental flow of design mapping and recycled chip detection is illustrated step 
by step. 

3.5.1 Experimental FPGA Platform 

The experimental FPGA platform is a low-cost MiniZed board from Avnet (see 
Fig. 3.5) featuring a Zynq single-core system-on-chip (SoC) device XC7Z007S and 
multiple storage devices including Micron 512-MB DDR3L, Micron 128-Mb Quad 
SPI NOR flash, and Micron 8-GB eMMC. The device can be programmed by the 
host using a USB-to-JTAG interface. Here, the Zynq SoC is treated as a normal
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Fig. 3.5 MiniZed board 

FPGA device where only its reconfigurable fabric is utilized for our experiments 
while the embedded ARM core is reserved for future advanced applications. 

3.5.2 Experimental Flow 

Why Can RO-Based Odometer Detect Recycled Devices? As mentioned above, 
recycled devices refer to the ICs reclaimed from the discarded PCBs and/or systems 
where the previous stress has drastically degraded the reliability and performance. 
However, conventional electrical testing or inspection techniques require intensive 
expertise and costly facility, making themselves infeasible options for common 
customers or OCMs. On the other hand, as an avoidance solution, the RO-based 
odometer measuring the aging/usage time of the target silicon essentially serves as a 
good foothold to thwart counterfeit threats; supposedly, new silicon that suffers from 
serious performance degradation as detected by the odometer would be rejected 
to be integrated into mission-critical infrastructure because of the authenticity 
concerns. Be more specific on commercial FPGA cases where dedicated analog RO-
based odometers are mostly not available; before entering the convoluted supply 
chain, the new FPGA device will be configured with a RO primitive. There are 
different paths available in the RO primitive that can be selected to choose the 
desired RO path. Each RO will oscillate freely for a specified time period to measure 
the switching frequency. The frequency statistics would be collected and stored 
in the secure database as the reference characteristics of new devices (registration
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Fig. 3.6 Recycled IC detection sensor (RO-based odometer) diagram 

phase). Given the fact that the transistor in an FPGA would gradually become slower 
due to the aging effects, one can differentiate the recycled devices by measuring 
the RO (mapped to the same intra-FPGA location as the one when measuring the 
reference frequency) frequency again since the new device would produce a very 
close frequency data to the enrolled one, whereas aged ones typically produce 
perceptibly smaller values. 

What Is the Structure of RO-Based Odometer on FPGA? The detailed FPGA-
based RO odometer implementation is presented in Fig. 3.6. This main component 
is the chain of the seven consecutive LUTs which is used to measure the path delay. 
These seven LUTs will be configured in a specific way to form a seven-stage RO. 
Since the aging procedure will degrade the device performance, the aged path will 
exhibit a larger delay which can be detected by this RO. In addition, we attach 
a virtual IO module (VIO as shown in Fig. 3.6) to control the other five inputs 
of every LUT in the RO chain. VIO module provides a very convenient interface 
for online debugging the FPGA (Fig. 3.7). We can deliver our inputs and collect 
outputs to/from the target implementation easily with the module. In this way, the 
user can select the arbitrary path in the LUT to enable a comprehensive evaluation 
(see Fig. 3.3; S0 and S15 should experience different paths to reach the destination). 
The counter module comprises two counters. One is a hardcoded one to issue the 
stop signal after every 1ms to the other which receives the ring oscillator variations. 
In this manner, we can measure the frequency of the ring oscillator path by counting 
how many times it oscillates in 1ms. Note that the wrapper looks very complicated, 
but their actual functionality is just simply providing a clock signal to the RO 
implementation for recycled chip detection from the processor side since there is 
no available hardware clock source (external oscillator) connected to the FPGA 
fabric. We mainly focus on the inst:top_RO and its submodules as illustrated in 
Fig. 3.8. Inside the RO instance, in order to guarantee the structure or logic would 
not be altered during the synthesis procedure, the implementation is written in a 
primitive-based manner where each LUT is precisely constructed by specifying its 
connectivity and content as shown in Fig. 3.9.
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Fig. 3.7 Design hierarchy of the RO implementation for recycled chip detection 

Fig. 3.8 Code snippet of the top_RO implementation 

Fig. 3.9 Code snippet of a single LUT instance
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Fig. 3.10 Compiling the design in Xilinx Vivado: recycled IC detection 

How to Use the RO-Based Odometer on the MiniZed Platform Step by Step? 
The detailed experimental flow using the RO-based odometer on the MiniZed 
platform is illustrated in a step-by-step manner. The design files and source 
codes can be found at http://cad4security.org/index.php/trainings/hsl/ch3_recycled_ 
ic_odometer/. We will first introduce how to compile the RTL design into FPGA 
bitstreams and download it into the target FPGA (MiniZed board) through Xilinx 
Vivado (see Fig. 3.7). Then, the VIO interface is accessed during run-time to control 
the primitive and retrieve the readings. Finally, we will move around the sensor to 
test the aging extent at different corners of the target FPGA device: 

Step 1 We first need to synthesize, implement, and generate the consequent 
bitstream for the target FPGA (Fig. 3.10). Since the combinational loops in ring 
oscillators might be considered illegitimate designs by Vivado, we need to add the 
constraint to degrade the consequent errors to be warnings in Vivado by using the 
instruction set_property ALLOW_COMBINATORIAL_LOOPS true [get_nets 
{loop net name}] in the XDC constraint file (see Fig. 3.11). Before loading the 
bitstream, the FPGA board must be connected by following the steps in Fig. 3.12. 
Then, we specify the desired bitstream file and the debug probe file (See Fig. 3.13) 
which is used to set up the virtual IO interface for selecting the desired LUT path 
and accessing the counter value.
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Fig. 3.11 Code snippet of the XDC constraint file 

Fig. 3.12 Connect the MiniZed board 

Step 2 After downloading the bitstream, in the Xilinx Vivado, one will see a 
dashboard called hw_vios pops up (otherwise, you might want to double click 
the hw_vio_1 in the Hardware window). At the first time, you might have to click 
the + button to add the path and value signals to the dashboard. With this interface, 
you can set the path parameter to specify which LUT path should be measured in 
the current run while the value will reflect its frequency. As we set the time window 
to be 1ms, the frequency will value/1000MHz. For example, the value in Fig. 3.14 
is 235239 which means the first LUT path exhibits a 235.239MHz frequency. Every 
time you apply a new path value in this window, the reset value should be set to be 0
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Fig. 3.13 Download bitstream 

Fig. 3.14 Inputs and outputs inside the hardware VIO dashboard 

and then 1 to enforce the CDIR design to be restarted to get the response. Note that 
the statistics during the experiments might be a little different because of the impact 
of ambient temperature and power supply. 

Step 3 The experimental FPGA device has been aged so different LUT paths would 
have a distinguished frequency. To measure the aging extent of multiple portions, 
we need to apply pblock constraints to the ring oscillator primitive to move the 
sensor. You can open the implemented design and then draw pblocks using the 
button as highlighted in Fig. 3.15. There are two pblock regions we created in this 
project. The pblock1 is at the bottom while pblock2 locates at the top right corner. 
To move the odometer module, we apply different pblock constraints (pblock1 and 
pblock2 in Fig. 3.15). You can click the P+ button to create new pblocks and right-
click the desired module (RO here), floorplanning -> assign to pblock. Regenerate 
the bitstreams with the RO instance in different locations. The location of pblock1 
is typically the default mapping location of the resources so it is more aged than 
pblock2. For example, for the same LUT path (set the path parameter to be 5’h00), 
we can observe that the value parameter is around 224.9MHz and 246.3MHz in 
pblock1 and pblock2, respectively. In other words, the pblock1 is more degraded
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Fig. 3.15 Pblock constraints in the FPGA 

due to the aging extent of the transistors. Therefore, we can conclude this device is 
a recycled (aged) device by using this methodology. 

3.6 Conclusion 

In this chapter, we discussed recycled IC detection using an RO-based odometer. 
We experimentally demonstrated how to use the RO sensor to measure the aging of 
a target FPGA to distinguish recycled devices. By the end of this chapter, readers 
will learn about the features of recycled FPGA devices and a typical ring oscillator-
based recycled FPGA detection methodology and FPGA development procedure. 
Also, they will learn about how to use virtual IO interfaces to control/observe the 
infield application and detect counterfeit chips. 
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Chapter 4 
Recycled FPGA Detection 

4.1 Introduction 

FPGAs are widely used today for their relatively low engineering costs, instant 
availability, high performance, and low power consumption. Recent reports indicate 
that programmable logic is among the top five counterfeited electronic components 
with a percentage of 8.3% of reported counterfeit incidents [1, 20]. With the 
increased volume of usage, FPGAs will likely become an even better target for 
counterfeiting, and thus, their reliability becomes significant for those within both 
government and industry [17]. The recycled electronic components are recovered 
from a system and then modified to be misrepresented as a new component of an 
original component manufacturer [10]. The recycled parts may have been exposed 
to harmful conditions, such as high humidity and temperatures, but they have 
reliability issues. Due to the high volume of used components each year, the 
same component must be recycled multiple times. Today’s complex electronic 
component supply chain makes preventing the infiltration of recycled FPGAs very 
challenging [18]. 

Some works have been aimed at recycled IC detection using electrical tests and 
on-chip sensors [11, 12, 21]. Mostly, intrinsic delay [11] and path delay variations 
have been used [2, 14, 16] as sensors. But all sensor-based recycled IC detection 
methods have area and power overhead, and they need to work for the existing 
ICs already in circulation. In 2012, Zhang et al. proposed a path delay-based 
method to detect recycled IC that does not have any area overhead [21]. In 2015, 
Huang et al. proposed a statistical method to detect recycled ICs using a one-class 
classifier and degradation analysis [12]. In 2016, Bergman et al. used a power side 
channel to detect counterfeit [5]. These methods need golden or reference data and 
mainly focus on ASICs, not FPGAs. In 2014, Dogan et al. proposed a detection 
approach using the aging degradation in FPGA after accelerated aging [8]. As a 
result, this method is less effective for detecting only a few months old FPGAs 
since it considers only a portion of the circuit for degradation. The requirement 
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of golden data and accelerated aging makes this method less practical. In 2016, 
Couch et al. used ring oscillator (RO) frequencies of FPGAs and machine learning-
based classifiers to identify manufacturing lots considering lot-to-lot frequency 
variation [7]. In 2019, M. M. Alam et al. first proposed using exhaustive look-
up table (LUT) path delay characterization to identify recycled FPGAs [1]. In this 
chapter, we discussed FPGA aging to understand the nature of recycled components. 
In particular, this chapter can help a reader better understand and gain hands-on 
experience in detecting recycled FPGAwith or without access to golden or reference 
data using the exhaustive look-up-table (LUT) path delay characterization. 

The rest of the chapter is organized as follows: Sect. 4.2 briefly discusses 
basic information on the look-up table structure, RO path formation, and aging 
mechanism. Section 4.3 briefly provides the classification using supervised and 
unsupervised methods. The experimental setup for detecting recycled FPGAs is 
provided in Sect. 4.4. Capturing RO frequencies and recycled FPGA detection is 
presented in 4.5. Finally, conclusions are presented in Sect. 4.6. 

4.2 Background 

4.2.1 Look-Up Table Structure 

LUTs are the basic building block of FPGA applications. Generally, an n input 
LUT contains 2n number of SRAM cells to hold the mapped values and a set 
of multiplexers that selects the cells to drive out the cell value to output. For a 
four-input LUT, 16 SRAM cells are necessary. Partially used and fully used LUT 
architecture example for a four-input LUT is given in Fig. 4.1. Used paths are 
colored in red and unused paths are colored in black. 

For partially used LUT, in Fig. 4.1a, for a four-input LUT and 3-bit adder imple-
mentation, 1 input is unused, and half of the paths are unused. It has been found that 
for combinational circuits containing less than 2000 LUTs, approximately 50% of 
the LUTs use four inputs or fewer and 82% of the LUTs use five inputs or fewer. 
The used portions experience more aging due to switching activity, while the unused 
portions experience less aging irrespective of switching activity. For fully used LUT, 
in Fig. 4.1b, for a four-input LUT and carryout of 4-bit adder implementation, all 
four inputs and all the LUT paths have been utilized. Now, aging that each path 
will experience depends on the switching activity. ROs can be implemented using 
such LUTs where they are mapped as an inverter. The delay of such a stage is the 
combination of delay of SRAM cells, selector transistors, and interconnect delay of 
the LUT. 

The necessity of exhaustive path configurations: As the ROs are implemented 
using LUTs as an inverter and the inverter has only one input and one output, ROs 
implemented using one set of input pins do not cover all the paths of the LUTs. An 
application may have a different number of paths and their aging behavior differs. 
When a specific path is suffering from aging during normal FPGA usage, a method
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Fig. 4.1 LUT architecture: (a) partially used LUT, (b) fully used LUT 

that only characterizes the delay of one path is not comprehensive enough to give the 
complete delay characterization. Exhaustive path delay characterization is necessary 
so that path delay will represent actual aging characterization. To do that, XOR- and 
XNOR-based ROs can be implemented in place of inverter-based ROs. 

4.2.2 RO Path Formation Using XNOR and XOR Logic 

An example of RO path formation using XNOR and XOR logic is presented in 
Figs. 4.2, and 4.3 depicts the truth table of the implementation for four-input LUTs. 
In this example, 16 SRAM cells for each LUT is shown in boxes to the left of 
each LUT. If one of the LUT inputs is considered RO and all other inputs remain 
unchanged, the standard logic XOR or XNOR acts as an inverter. The design tools 
cannot optimize these standard logics. Here, I0 is considered as RO input and F is 
the RO output. F of one LUT enters as I0 in the next LUT to construct RO structure. 
For four-input LUTs, there can be total of eight paths through which ROs can be 
implemented. The input patterns for all eight paths are presented in Fig. 4.3. 

If we consider the RO frequencies of path p1 to p8 as a frequency array, the 
frequencies will vary very little in a new FPGA due to process variation. But in a 
used FPGA, aging degradation will affect each path differently and create additional 
frequency variation. 

4.2.3 Aging Mechanism 

Throughout the lifetime of an operational FPGA, degradation happens due to bias 
temperature instability (BTI), hot carrier injection (HCI), time-dependent dielectric
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Fig. 4.2 RO in four-input LUTs with eight possible paths p1 to p8 

Fig. 4.3 Formation of paths using XNOR and XOR logic functions 

breakdown (TDDB), and electromigration [1, 3, 13]. Specially BTI and HCI impact 
significantly on the switching speed of the transistors which is measurable and is 
reflected in the measured RO frequencies. 

• Bias Temperature Instability: PMOS and NMOS threshold voltages are increased 
by negative BTI (NBTI) and positive BTI (PBTI), respectively. NBTI traps 
the interface of the channel and the gate oxide of PMOS transistors during 
prolonged gate-to-source negative bias stress. There is an increase in threshold 
voltage, which leads to an increase in switching delay. When stress is removed, 
partial recovery occurs, but high temperatures and voltages aggravate the effect.
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Although NBTI dominates PBTI beyond 65-nm technology nodes, the introduc-
tion of high-k gate and metal gate transistors elevates PBTI’s influence [4, 6]. 

• Hot carrier injection: A high electric field in the drain region causes electrons 
or holes on the substrate to gain high energy and get trapped in the gate oxide 
layer [19]. A charge defect in the dielectric layer builds up an electric field over 
time, increasing the threshold voltage. Switching activity is slowed down and 
delays are introduced. As effective channel lengths decrease, HCI degradation 
becomes more prominent at lower technology nodes. 

4.3 Classification Using Supervised and Unsupervised 
Methods 

To exploit the degradation of look-up tables (LUTs), we implement a sophisti-
cated ring oscillator (RO). Using supervised and unsupervised machine learning 
algorithms, we discuss two recycled FPGA detection methods. Algorithms for 
supervised and unsupervised machine learning are briefly discussed in this section. 

4.3.1 Supervised Classification Method 

Machine learning algorithms are briefly discussed in this section. A reference or 
golden FPGA is assumed in the supervised method. This method of classification 
is illustrated in Fig. 4.4. ROs based on XNOR and XOR are placed in golden 
components, a frequency array is obtained for each RO, and a support vector 
machine (SVM) classifier is trained using the data. Class labels and features are 
included in the training set. LUT paths are the features in the training set. SVM 
creates a decision model based on the training data that predicts the test data’s label. 
The classification will be improved by adding other features, such as kurtosis and 
skewness of the frequency distribution. 

4.3.2 Unsupervised Classification Method 

It is possible to use unsupervised classification methods when golden or reference 
FPGAs are limited or when they are unavailable. Figure 4.5 shows the steps in the 
unsupervised classification process. A frequency array is created by placing XNOR-
and XOR-based ROs. For this method, K-means clustering is used [1, 15]. Using K-
means clustering, samples are divided into k clusters by minimizing the average 
squared distance between cluster members. The average silhouette value (SV) of all 
cluster sets is used to determine the cluster number. Using silhouette values, you can
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Fig. 4.4 Supervised classification flow 

Fig. 4.5 Unsupervised classification flow 

tell how well frequencies fit within their own clusters and how they differ from their 
neighbors. When the SV value is high, it indicates that the cluster is well-fitting. The 
appropriate cluster number is obtained and then compared to a threshold cluster 
number before a decision is made. It is possible to distinguish between new and 
recycled FPGAs with high accuracy and without gold samples by using a threshold 
of two or three. 

4.4 The Setup for the Experiment 

In this section, we will use Artix 7 FPGA board ensuring it is correctly set up, a 
laptop/pc, and a USB interface for the connection. For the software, we will use
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Fig. 4.6 Overview of the experimental setup with internal components 

Xilinx ISE 14.7 where we will add the VHDL/Verilog programs of all the modules 
of our design and generate the bitstream. After that, we will employ Digilent Adept 
to load the bitstream into the specific FPGA board. Finally, Tera Term will be 
utilized to see the output via UART. The design files and source codes can be found 
at http://cad4security.org/index.php/trainings/hsl/ch4_recycled_fpga/. An overview 
of the experimental setup with internal components is shown in Fig. 4.6. The module 
ROs is the instantiated 180 hard macro used as the delay element to capture the 
frequency of the ROs utilizing the LUTs of the FPGA. The rest of the circuitry is 
to assist in measuring the frequency, e.g., divide the clk and select and control the 
ROs. A brief description of submodules is given below: 

Brief description of submodules: 

• clkdiv_4to1: This submodule is to divide the 100-MHZ FPGA global clock 
to 25 MHZ. 

• rosel_v2: The purpose of this module is to select Ros one by one. 
• rocntrl_2: After selecting the ROs, this module will enable the pin of the 

selected RO, count for 100000 clock cycles, and then capture the output value. 
• uart_tx: This one is to establish a connection between the computer and the 

board. 
• baudrate: Baud rate is the rate at which information is transferred between 

laptop and board. For our experiment, we will take it as 115200 baud which 
means that the serial port is capable of transferring a maximum of 115200 bits 
per second. This is specified in this module by a simple counter. 

• arduino: In this module, a 32-bit output will be divided into 8 bits because the 
USB serial port supports 8 bits. It also sends and receives signals of data.
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Fig. 4.7 Design hierarchy of 
the recycled FPGA detection 

4.4.1 Bitstream Generation 

• At first, we have to install Xilinx ISE 14.7 software. The WEBPACK version is 
free for our target Artix-7 FPGA. 

• For this tutorial, we will provide the codes along with project files to build a 
project using the Xilinx ISE software. When we open the project file, the screen 
will be shown in Fig. 4.7. 

• If someone wants to create the project from scratch step by step, please watch the 
video provided in https://www.youtube.com/watch?v=DIOll3P65hg where step-
by-step procedure is shown in Xilinx ISE to create the bitstream. 

• In our implementation, there are two parts: (1) creating hard macro and (2) 
instantiating the hard macro in top module with other submodules. To create 
the hard macro, the following steps need to be considered: 

1. To load the project directly: Needed file name, hardmacro (type: Xilinx ISE 
Project). 

2. To create the hard macro from scratch: Needed file name, ro (type: VHDL), 
ro.UCF (type: user constraint file). 

3. After creating the hard macro, an NMC file will be created.We need to provide 
the NMC file path to the top module. 

4. If someone wants to skip the hard macro creation part and use the 
pre-created hard macro NMC file, the file will be provided named 
ro_15stages_M_XOR.nmc. Note that this hard macro will only work

https://www.youtube.com/watch?v=DIOll3P65hg
https://www.youtube.com/watch?v=DIOll3P65hg
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Fig. 4.8 RTL schematic of the design 

for Artix 7 FPGA board; in case of using other boards, hard macro creation 
step is a must as the placing and routing will vary board to board. 

• After creating the hard macro, it will be instantiated in the top module with other 
submodules. 

• To load the project directly: Needed file name: topmodule (Type: Xilinx ISE 
Project). 

• To create from scratch: Needed file name: Top module- Vend_toplevel 
(Type: Verilog); Submodule: clkdiv_4to1 (Type: Verilog), rocntrl_2 
(Type: Verilog), rosel_v2 (Type: Verilog), counter (Type: Verilog), uart_tx 
(Type: Verilog), baudrate (Type: VHDL), arduino (Type: Verilog); User 
constraint file: vend_toplevel (Type: UCF). 

• There are three steps to be performed by ISE to turn our provided VHDL/Verilog 
code into the bitstream in the form of .bit file. 

1. Synthesis: The VHDL/Verilog codes are synthesized into a gate-level repre-
sentation. In this step, an RTL schematic will be created as shown in Fig. 4.8. 
We encourage everyone to look into this carefully; this will give a clear 
overview of how every module is connected to each other as well as their 
purpose. 

2. Implementation: In this step, the synthesized logic will be placed and routed 
according to our user-defined constraint file to fit onto the device. 

3. Bitstream Generation: After the successful synthesis and implementation, it’s 
time to generate the bitstream. A .bit file will be generated which we will load 
into the Artix-7 FPGA board.
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Fig. 4.9 Overview of 
Digilent Adept software 

4.4.2 Bitstream Loading 

For this step, we will install software named Digilent Adept (see Fig. 4.9). After 
installing the software, please connect the FPGA board to the laptop with a USB. 
The software should be able to detect the FPGA board, and the user just needs to 
load the bitstream file into the FPGA. 

4.4.3 Capturing Output 

To see the output, we can use Tera Term, MATLAB, or Putty. In our case, we have 
used Tera Term. Before starting, we need to adjust the setting of COM port and baud 
rate as shown in Fig. 4.10. To set the baud rate, go to setup and then serial port. Set 
the speed to 115200. Note that it should be 115200; otherwise, we will not be able 
to capture the output successfully. 

The output will come serially in 8-bit by 8-bit as shown in Fig. 4.11.
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Fig. 4.10 Overview of Tera Term software 

Fig. 4.11 Output of the design 

4.5 Capturing RO Frequencies and Recycled FPGA 
Detection 

Once the RO frequencies are extracted, they are first converted from binary to 
decimal values and saved as .csv files. For each FPGA, RO frequencies are 
obtained after using the FPGA for 0 hours (i.e., unused), and 8, 12, and 16 h are 
saved in four subfolders named as ‘t_0h’, ‘t_8hours’, ‘t_12hours’, and 
‘t_16hours’, respectively. Each CSV file contains a 2D matrix, where each row 
represents the RO number for a particular FPGA and each column represents the
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Fig. 4.12 Histogram of frequencies of used and unused RO for a specific FPGA 

path. For the Spartan6LX9 data, there are 180 ROs and 32 paths. So, the size of 
each 2D matrix is 180X32. 

4.5.1 Visualization of RO Frequencies 

For visualization of the RO frequencies and how it changes with time, we have 
plotted histograms of the RO frequency for each FPGA and shown how it changes 
with aging. Figure 4.12 shows the histogram plot for one such FPGA. All the 
analysis and result plots shown in this document are done for FPGA ID3 of the 
SPartan6LX9 dataset. The number of bins chosen is 40. The MATLAB code for 
plotting histogram is histogram(data,‘Name’,Value). 

Also, for visualizing how the different RO values are scattered, the first two 
principal components of each of the 32-dimensional RO frequency vector is plotted 
using the TSNE algorithm and scatterplot. The MATLAB code for scatterplot is as 
follows: 

rng default % for reproducibility 

Y1 = tsne(t0,’Algorithm’,’barneshut’,’NumPCAComponents’,30); 

L1 = cell(180, 1); 

L1(:) = {’0 Hour’}; 

Y2 = tsne(t8,’Algorithm’,’barneshut’,’NumPCAComponents’,30); 

L2 = cell(180, 1); 

L2(:) = {’8 Hour’};
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Y3 = tsne(t12,’Algorithm’,’barneshut’,’NumPCAComponents’,30); 

L3 = cell(180, 1); 

L3(:) = {’12 Hour’}; 

Y4 = tsne(t16,’Algorithm’,’barneshut’,’NumPCAComponents’,30); 

L4 = cell(180, 1); 

L4(:) = {’16 Hour’}; 

Y=[Y1;Y2;Y3;Y4]; 

L=[L1;L2;L3;L4]; 

size(Y) 

size(L) 

figure, 

gscatter(Y(:,1),Y(:,2),L) 

ylabel(’Principal Component 1’,’FontWeight’, 

’bold’, ’FontSize’,15); 

% Create xlabel 

xlabel(’Principal Component 2’,’FontWeight’, 

’bold’,’FontSize’,15); 

% Create title 

title(strcat(’S.Plot Reducing Dimension:’, 

num2str(fpga_no)),...’FontWeight’,’bold’); 

box(axes1,’on’); 

hold(axes1,’off’); 

% Set the remaining axes properties 

set(axes1,’FontSize’,15,’FontWeight’,’bold’); 

The output for the same FPGA is plotted in Fig. 4.13. 

4.5.2 Analysis Using Machine Learning 

As we can see from the visualization plots, the frequency distribution of the RO 
frequencies changes in a particular pattern; we can use these frequencies directly 
or statistical measures computed from these frequencies to train a machine-learning 
model. Machine learning algorithms can be categorized into two types. They are 
supervised and unsupervised methods. Each of these methods and how they are 
used for detecting used ROs are explained in the next subsection.
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Fig. 4.13 Scatterplot for the used and unused RO for a specific FPGA 

4.5.2.1 Supervised Learning Method 

Supervised learning is the machine learning task of learning a function that maps an 
input to an output based on example input-output pairs. This type of algorithm takes 
labeled data as input and is used either for classification or for regression. There 
are an innumerable number of supervised learning algorithms. For our problem, we 
have used a support vector machine (SVM). Using this algorithm, we have trained 
an SVM model to classify used and unused RO. The feature vector used for training 
the algorithm is taken from each RO over all paths. 

The given dataset is divided into two parts in the ratio 8:2, where 80% of the 
data is used for training and the rest is used for testing. The entire train dataset is 
again divided into two classes – used and unused. The data for the unused class 
is taken from the 0-hour files, and the data for the user class is taken from the 8-
hour, 12-hour, and 16-hour files. The mean(M), skewness(S), and kurtosis(K) of the 
frequencies for all paths of a particular RO are computed for each data point (RO). 
These statistical measures are used in all combinations as features to train individual 
SVM models. Each of these models is then tested with a similar feature extracted 
from the test set. Figure 4.14a shows the receiver operator curve (ROC) for an SVM 
model trained on the mean of the frequencies of the train set ROs of each class and 
tested on the mean of the frequencies of each test set RO [1, 9]. Similarly, Fig. 4.14b 
and c shows the ROC curves for the models trained on the skewness and kurtosis of 
the RO frequencies of the train data and tested on the respective measures of the test 
set RO frequencies.
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Fig. 4.14 ROC curve obtained from SVM models trained on different types of features (a) Mean. 
(b) Skewness. (c) Kurtosis 

MATLAB Code for SVM: 
An SVM model for training dataset: Each row of RO_train contains features 

from each RO, and each row of train class contains the corresponding class of the 
RO. A sample code snippet is provided below: 

disp(’Training Started..’); 
SVM_train = fitcsvm(RO_train,trainclass,’Standardize’, 
true, ...’KernelFunction’,’rbf’,’KernelScale’,’auto’); 
disp(’Training Finised!!’); 

An SVM model for test dataset: Each row of RO_test contains features from 
each RO: 

disp(’Prediction Started..’); 
ntest=(length(theclass)-idx_limit); 
all_index=(1:length(RO_data));
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index_test=setdiff(all_index,index); 
RO_test=RO_data(index_test,:); 
[label,score] = predict(SVM_train,RO_test); 
disp(’Prediction Done!!’); 
trueclass1(1:ntest)= theclass(index_test); 

ROC curve: Each row of RO_test contains features from each RO, and their 
classes are saved in the variable true class. This true class is used only to evaluate 
the accuracy of the model and not for training. A sample code snippet is provided 
below: 

%AUC plot 

figure; 

[Xsvm1,Ysvm1,Tsvm,AUCsvm] = 

perfcurve(trueclass1’,score(:,2),1); 

%as used in original code, modified for Kmeans 

disp(AUCsvm); 

plot(Xsvm1,Ysvm1,LineWidth=3) 

% Create title 

title(strcat(’ROC Curve for features: ’,head(k)), 

’FontWeight’,...’bold’,’FontSize’,16); 

axis square; %axis tight; 

xlabel(’False positive rate’,’FontWeight’,’bold’,’FontSize’,16); 

ylabel(’True positive rate’,’FontWeight’,’bold’,’FontSize’,16); 

filename=strcat(save_path,’ROC_Features_’,head(k),’.fig’); 

filename2=strcat(save_path,’ROC_Features_’,head(k),’.png’); 

savefig(filename) 

saveas(gcf,filename2) 

hold off; 

From Fig. 4.14, we see all the combination of statistical measures is giving 
100% accuracy. That is, the SVM model can accurately classify the test set used 
and unused data. We have also tried different combinations of mean, kurtosis, and 
skewness. All these combinations also showed similar results. 

4.5.2.2 Unsupervised Learning Method 

Machine learning algorithms learn the pattern from unlabeled data and group 
them into categories known as unsupervised machine learning. Unlike supervised 
machine learning, they cannot be classified into labeled classes, but they group 
similar data into groups that can be identified later as a used or unused class. There 
are innumerable unsupervised algorithms. We have chosen the k-means algorithm 
for our problem, and the raw frequencies of each FPGA are used as features. Here, 
the hypothesis is that the frequencies of an unused FPGA under test will have less 
optimum clusters compared to used FPGAs. For the k-means algorithm, one needs 
to provide the number of clusters (k) during clustering. For these, before doing 
clustering, another pre-processing step is done to evaluate the optimum number
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of clusters present in the used/unused FPGA under test. In this step, the average 
values of the silhouette indices are evaluated for a series of k values (3–16 for our 
case), wherein every iteration the data is divided into k clusters. Then the k value for 
which the average silhouette value is maximum is chosen as the optimum number 
of clusters for the given data. 

MATLAB Code for K-Means Clustering: 

The observed K value obtained from silhouette value analysis is then used for the 
k-mean clustering algorithm: 

[cidx1,~] = kmeans(K,i,’MaxIter’,100,’Start’, C, ... 
’EmptyAction’,’drop’); 
Once the optimum number of clusters is obtained for each of the CSV files, 

a threshold can be set to classify them into used and unused data. Figure 4.15 

Fig. 4.15 Scatterplots of the clusters formed by frequencies of an FPGA used for a specific time 
(0, 8, 12, and 16 h, respectively)
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Fig. 4.16 ROC curve obtained from K-means model trained on unused and used ROs. (a) 0 Hour 
and 8 Hour. (b) 0 Hour and 12 Hour. (c) 0 Hour and 16 Hour 

shows the data distribution along with the labels obtained by optimally clustering 
the frequencies for a specific FPGA used for 0, 8, 12, and 16 h respectively. 

It is observed that for most of the scenarios, the number of predicted clusters for 
unused FPGA is less than that of the used one. Based on the predicted clusters for 
each FPGA file, the ROC curve is drawn for unused and each of the used (8, 12 and 
16 h) FPGAs. Figure 4.16 shows how the ROC curve improves as the FPGA is aged 
more. The more the age of the FPGA, the better the accuracy. This is because the 
more an FPGA is used, the frequency distributions of the used ROs shift away from 
their unused frequency distribution, as shown in Fig. 4.16. This makes it easier for 
the model to distinguish between used and unused ROs.
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4.6 Conclusion 

As discussed in this chapter, there are supervised methods (with golden data) and 
unsupervised methods (without golden data) for detecting recycled FPGAs. In this 
chapter, readers will learn how to distinguish new from used/recycled FPGAs by 
detecting partially used, fully used, and spare LUTs in FPGAs exhibiting different 
aging behaviors. 
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Chapter 5 
Hardware Trojan Insertion 

5.1 Introduction 

Integrated circuit (IC) designs are becoming increasingly complex to incorporate 
more advanced capabilities and speed, inspiring and supporting cloud infrastructure, 
machine learning applications, and ubiquitous handheld mobile devices. Besides 
the high complexity, the aggressive time-to-market pressure makes completing the 
entire system-on-chip (SoC) design in-house an infeasible and time-consuming 
option for most companies. A common practice in the industry is that the design 
house will search for available commercial third-party intellectual property (3PIP) 
cores from others to constitute the SoC implementation with their own IPs for faster 
development and short-time-to-market advantages [1, 23]. In addition to the chip 
design phase, the prohibitively high cost of maneuvering advanced nodes (e.g., 5-nm 
technology) has been motivating the horizontal business model of the semiconductor 
industry in the past 20 years or so. The fabless organizations need to hand their 
physical designs, e.g., GDSII file, to offshore contract foundries and facilities for 
silicon fabrication, packaging, and final testing [2, 18]. 

Although the IP integration and outsourcing fabrication model significantly 
saves the monetary and time cost for product provision and iterations, it inevitably 
introduces hardware attack surfaces which have drawn more and more attention 
from the community since they are extremely hazardous and rarely patchable, 
compared to their software counterparts. Out of them, malicious addition and 
modification on the original IC design, the so-called hardware Trojan, are  two of  
the most well-recognized attack vectors. For instance, the attackers might want 
to create backdoors in the chip designs to steal confidential information from the 
mission-critical applications built on the target device or hamper the reputations of 
the original component manufacturers. Besides, hardware Trojan can be inserted 
at arbitrary stages throughout the device lifetime, e.g., it can be implanted at 
pre-silicon stages such as register-transfer level (RTL) and gate-level 3PIPs by 
the untrusted IP design teams [9] or physical layout by the adversarial foundries 
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or even at post-silicon stages through advanced physical chip editing techniques 
like focused ion beam (FIB) [25]. Therefore, it is imperative for researchers 
and government employees to be mindful of the common modality and insertion 
manners of hardware Trojan. 

The learning objective of this chapter is for trainees to gain experience in the 
hardware Trojan insertion techniques. Readers will learn how a typical hardware 
Trojan-infected AES (advanced encryption standard) cryptographic design is con-
structed at RTL to leak the symmetric key in a rare scenario. Also, this chapter 
will present the flow mapping of the RTL design on the silicon, i.e., a field-
programmable gate array (FPGA) platform using the electronic design automation 
(EDA) toolchain. In-system debug logic is embedded as well so that readers can 
trigger the malicious functionality during run-time easily. Moreover, the bitstream 
tampering experiment demonstrates that the adversary can leverage the malleability 
of a binary FPGA bitstream to enable the hidden malicious circuitry with merely 
subtle bit flips, further showing the stealthiness of a Trojan. 

The rest of the chapter is organized as follows: Section 5.2 provides the 
background information on hardware Trojans including the present chip design flow 
and threat model as well as the detailed Trojan structure and taxonomy. Section 5.3 
states the provided Trojan-infected AES design and how to implement the RTL 
design on the FPGA platform and trigger the Trojan at run-time through the on-chip 
debug infrastructure. Next, Sect. 5.4 shows how to tamper the binary bitstream to 
enable the hidden Trojan stealthily. Finally, Sect. 5.5 concludes this chapter. 

5.2 Hardware Trojan Attacks 

In this section, the modern microelectronic device design flow is introduced as to 
how untrusted entities can implant Trojans. Besides, typical hardware Trojan basics 
are presented such as its typical structure and taxonomy. 

5.2.1 Modern Chip Design Flow and Threat Model 

The complexity of SoCs mandates the collaboration between SoC integrators, 
design-for-test (DFT) teams, and 3PIP vendors to meet the strict time-to-market 
constraints and procedures and the advantages of competition with peer companies. 
On the other hand, the prohibitively high cost of maintaining a foundry pushes the 
shift of semiconductor businesses from traditional integrated device manufacturers 
(IDM) who design and fabricate chips by themselves to the horizontal model, i.e., 
fabless companies are only responsible for chip designs, while foundries such as 
TSMC are focusing on fabrication for minimizing the budget. However, this shift, 
unfortunately, introduces trustworthiness issues and opens the door for hardware 
Trojan attacks [13].
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Fig. 5.1 Modern SoC design flow and threat model 

The typical modern chip design flow is illustrated in Fig. 5.1 where SoC 
integrators start with defining the target design specification, e.g., the functionality, 
performance, and power requirements. To implement the design specification, the 
functionality is divided as a couple of functional blocks called intellectual property 
(IP) cores. SoC integrators can design their own in-house IP cores, whereas a more 
common way to speed up the entire development cycle is to purchase third-party 
IP (3PIP) cores from 3PIP vendors. When all of IP cores, either designed in-
house or from 3PIP vendors, are ready, SoC integrator will use them to constitute 
the complete RTL description of SoCs. Behavioral simulation is operated by the 
verification engineers to locate and fix the functionality bugs. After that, electronic 
design automation (EDA) tools, e.g., Cadence RTL Compiler and Synopsys Design 
Compiler, will convert the RTL design to the gate-level netlist that comprises low-
level information consisting of gates and wires. At this stage, different from the 
third-party IP cores at the RTL stage, the so-called firm IP at the gate level can be 
integrated into the netlist as well to accomplish design goals at a more determined 
performance and functionality because EDA tools usually optimize the RTL design 
to distinct levels according to customized power, performance, and area constraints 
during synthesis. Then, design-for-test infrastructure is inserted in the netlist by the 
(third-party) DFT team for enabling structural testing at the post-silicon stage for 
observability, controllability, and testing coverage. Next, the DFT-inserted netlist is 
transformed into a physical layout GDSII design, i.e., transistor-level design. The 
physical design will incorporate hard 3PIP with the most fixed parameters and go 
to the outsourced offshore silicon foundry such as Samsung and TSMC for wafer 
fabrication and die package. 

As one can see in Fig. 5.1, there are several untrusted entities/stages in the light 
red boxes. The adversarial roles they might play in the supply chain for hardware 
Trojan attacks are discussed as follows: 

• 3PIP Vendors: As mentioned, SoC integrator has to rely on 3PIP vendors to 
provide a variety of RTL (soft), firm, and hard IP cores to meet the time-to-market 
requirements. Nevertheless, the reality is that such 3PIP vendors locate across 
the entire world such that SoC integrators are not able to inspect their integrity. 
Moreover, as 3PIP cores are typically presented as black boxes, e.g., by following 
the IEEE 1735 standard [12], SoC integrator cannot look into the details for 
hardware Trojan detection. Even if some of 3PIP cores are given in plaintext, the 
complexity of the IP design and the stealthiness of malicious hardware Trojan 
prevent SoC integrators from successful security closure by using conventional 
testing and verification techniques.
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• Outsourced DFT Teams: DFT infrastructure has gained tremendous importance 
over the past decade for empowering better controllability and observability for 
post-silicon debugging. This task is usually outsourced to external specialized 
DFT teams for improved efficiency and less cost. In this way, the untrusted DFT 
teams have the access to all details of gate-level designs and can insert malicious 
functionality into the original implementation. As the scan flip-flop insertion 
during DFT inevitably changes the design topology and the gate-level netlist 
contains more than millions of gates in most cases, it is extremely hard to detect 
very few gates of malicious functionality. Even worsen, as the DFT infrastructure 
can stream in and stream out information from the internals of the silicon, some 
Trojan can be directly implanted in the debug logics to access security-sensitive 
on-chip assets such as private keys and user credentials [4, 16]. 

• Offshore Foundries: Establishing and maintaining a silicon foundry come at 
billions of dollars cost that very few companies can afford. Besides, the advanced 
technology node such as 3 nm or 5 nm can merely be maneuvered by a few 
offshore foundries such as TSMC. The fabless SoC integrator will hand all of 
the design details in the GDSII physical layout to the foundry which might 
be untrusted and intend to insert malicious hardware Trojans. For example, 
the empty corners in the chip area can be used to place Trojan gates, while a 
rouge foundry can wire sensitive signals to the public interface which can be 
accessed externally. Detecting such Trojans could be extremely difficult since 
the post-silicon device is a black box from the security inspection perspective 
and hardware Trojans can be dormant most of the time so the Trojan-infected 
devices do not manifest any abnormal behaviors. 

5.2.2 Hardware Trojan Insertion 

Hardware Trojan is a malicious addition or modification of an integrated circuit 
(IC) [26]. The malicious functionality includes but is not limited to changing 
the original functionality, compromising the confidentiality of security assets, and 
causing performance degradation or even denial of service. It is challenging to detect 
and remove hardware Trojans from the infected design because golden designs are 
not available for 3PIP cores, netlist, and layout. Besides, most of the hardware 
Trojans are designed to function in a stealthy way, i.e., manifesting malicious 
functionality in very rare conditions. 

As illustrated in Fig. 5.2, the hardware Trojan structure includes two parts, 
i.e., trigger and payload [11, 22]. Trojan trigger simultaneously monitors possible 
stimulus in the circuitry or physical environment. The most common way is that 
the Trojan trigger monitors multiple internal signals simultaneously and outputs 
an asserted trigger signal to start malicious activities of the payload if a specific 
predefined signal pattern is found. In other words, without seeing the pattern 
on the trigger inputs, the hardware Trojan will remain inactive and hard to be 
detected. Although a variety of Trojans were proposed [4], they can be classified into
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Fig. 5.2 High-level Trojan diagram 

combinational Trojans and sequential Trojans according to the trigger mechanism. 
Note that digital hardware Trojan is focused on in this chapter. The analog hardware 
Trojans [28] is out of the scope. Figure 5.3a and b shows the simplified models of 
both combinational and sequential Trojans. Suppose that the trigger inputs are n-bit 
and the trigger circuitry is an n-bit AND gate. Therefore, the rare trigger condition 
is defined that only if all of the trigger inputs are 1, the payload enabled signal will 
be asserted, i.e., the probability of random Trojan triggering is . 12n . To make Trojans 
even more stealthy, sequential Trojan can use the output of the AND gate as the start 
flag of a finite state machine (FSM). For example, a straightforward counter can be 
implemented as a time bomb by activating the Trojan payload at a future moment 
[24]. As for Trojan payloads, it can be very versatile. For instance, to degrade the 
device performance and launch denial-of-service attacks, [5] proposes to place a 
design-independent ring oscillator (RO) on the same silicon as an always-on Trojan. 
Since RO consists of odd number of inverters, its logical status is in-stable and self-
oscillating. Such behaviors will continuously draw currents from the power supply 
and accelerate the chip aging. The authors of [15] present an off-chip Trojan that 
can leak the cryptographic keys through a power side channel by using an external 
capacitor. 

Below hardware Trojan taxonomy (see Fig. 5.4) is based on five aspects, i.e., (i) 
insertion phase, (ii) abstraction level, (iii) activation mechanism, (iv) payload, and 
(v) location: 

• Insertion Phase: Specification level defines crucial factors of the device includ-
ing the functionality, performance, and area. A hardware Trojan inserted at 
specification can, for example, alter the timing and functionality of the final 
design. Design level can be exploited by 3PIP vendors to implant hardware 
Trojans by injecting malicious circuitry in the IP cores. Rogue foundries can 
insert hardware Trojans during the fabrication phase since they have the access 
to all of the physical design details in the layout and thus have the ability to 
alter the final layout by modifying the mask set before wafer fabrication. In the
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Fig. 5.3 Hardware Trojan models (a) Combinational Trojan (b) Sequential Trojan 

Fig. 5.4 Hardware Trojan taxonomy
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testing phase, the adversaries might intentionally generate a set of low-coverage 
test vectors with low Trojan coverage to help the infected devices escape from 
detection. People purchase the components and integrate them with the fabricated 
microelectronic devices on the same printed circuit board (PCB) at the assembly 
phase. System-level Trojans such as BigHack [17] can be inserted at this time to 
compromise confidentiality, integrity, and availability. 

• Abstraction Level: Hardware Trojans at system level can behave as an additional 
module altering the functionality of other system modules, interconnects, and 
communication traffic. RTL, gate-level, and transistor-level hardware Trojans 
can all be incorporated in the corresponding design files, i.e., RTL code, gate-
level netlist, and physical layouts, respectively. As for the physical level hardware 
Trojans, it is implemented by modifying the design parameters. For example, the 
critical path wire length can be varied to increase the risks of timing failure. 

• Activation Mechanism: Some Trojans are made to be always on such as the 
RO Trojan in [5]. In contrast, most Trojans tend to be trigger-based in case 
the malicious behaviors can be discovered easily. Internally triggered hardware 
Trojans rely on internal events like an embedded counter activating the Trojan 
payload after 2 days since the circuit starts to work. As for externally triggered 
Trojans, they usually depend on user input patterns. For instance, a Trojan 
targeting a cryptographic module monitors the plaintext input and leaks the key 
if and only if the plaintext is set to be a specific value. 

• Payload: Trojan payload for functionality tampering can alter the benign behav-
iors of the original circuit, e.g., an activated Trojan enforces a password-checking 
circuit to accept an arbitrary string. Performance degradation can be brought 
by a power-hungry Trojan design. It consumes a significant amount of power 
and thus induce more IR drop to slower the entire device. Information leakage 
can be launched by Trojans by sending sensitive security assets and credentials 
without the approval of supervisors. In addition, denial-of-service Trojan might 
physically disable or even destroy the microelectronic chips. 

• Location: Trojans at random logic can hinder effective test stimuli generation 
for detection since understanding such random logic is difficult. Other Trojan 
locations such as processing unit, cryptographic engine, memory units, and I/O 
can make significant differences even with minor Trojan impacts because they 
either process or store sensitive information. As for Trojans in power supply and 
clock grid, they are more potent to result in timing failures like setup/hold-time 
violations by causing physical glitches. 

5.3 Trojan-Infected Implementation on FPGA 

In this section, the FPGA development flow will be introduced because our 
experiments are carried out on an FPGA. Next, the experimental setup is discussed 
including the target FPGA platform. Finally, the structure of the Trojan-infected 
implementation and detailed steps compiling the RTL designs and demonstrating 
the Trojan’s effectiveness are presented.
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Fig. 5.5 FPGA development procedure 

5.3.1 FPGA Development Flow 

Field-programmable gate array (FPGA) has become the most important and popular 
option for agile hardware prototyping. It is flexible and can be reconfigured by 
the users in the post-manufacturing phase. The typical development flow of FPGA 
device involves design entry, synthesis, implementation, and bitstream generation 
as shown in Fig. 5.5. Design entries can accept a variety of design files. The 
most intuitive method is drawing the schematics by connecting some predefined 
functional modules together, whereas a more common and recommended way 
in industry is to write the behavioral implementation in the form of hardware 
description language (HDL) like VHDL and Verilog at RTL which is the same 
as the standard application-specific integrated circuits (ASICs) development flow. 
During the synthesis stage, the HDL code composed at the design entry stage will 
be converted into a circuit in the form of netlist by vendor-specific EDA tools like 
Xilinx Vivado [6] and Intel Quartus [20]. The RTL code is going to be parsed 
automatically in the EDA environment to check syntax and then optimized to reduce 
redundant logic per the specified settings. The outcome functionally equivalent 
netlist contains the mapped logic elements and the connectivity among them as 
described in the RTL code. The implementation phase will then technology map 
the logic elements in the netlist to the primitives available in the target FPGA model 
so that the design could be built on the physical silicon. Also, this step will place and 
route the primitives on the FPGA layout virtually per the constraints from designers 
and physical aspects to pursue the closure of the power, area, and performance on 
the final design. Finally, the placed and routed netlist will be translated to the binary 
configuration data, the so-called bitstream, and then be downloaded to the target 
device via an interface like JTAG. 

5.3.2 Experimental Setup 

In our hands-on experiments, the Nexys A7 board featuring Xilinx Artix 7 FPGA 
(part number XC7A100T-1CSG324C) is used as shown in Fig. 5.6. With its large, 
high-capacity FPGA, generous external memories, and collection of USB, Ethernet, 
and other ports, the Nexys A7 can host designs ranging from introductory com-
binational circuits to powerful embedded processors. Several built-in peripherals, 
including an accelerometer, a temperature sensor, a MEM digital microphone, a 
speaker amplifier, and several I/O devices allow the Nexys A7 to be used for a 
wide range of designs without needing any other components. The Nexys A7 is
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Fig. 5.6 Digilent Nexys A7 board 

Fig. 5.7 Trojan-infected AES implementation overview 

programmed and debugged via the USB connection to the host running Xilinx 
Vivado 2019.1 and Win10 operating system. The design files and source codes can 
be found at http://cad4security.org/index.php/trainings/hsl/ch5_hw_trojan_insert/. 

5.3.3 Trojan-Infected Design 

In this chapter, a hardware Trojan-infected implementation is designed as depicted 
in Fig. 5.7. The benign implementation is an AES-128 cryptographic engine (blue 
module) that encrypts the incoming plaintext with the fixed secret key. The 
AES algorithm is mathematically strong, which means that it is computationally 
infeasible for an adversary to derive the unknown secret with the controllabil-
ity of plaintext and observability of ciphertext even if the AES algorithmic or
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Fig. 5.8 Detailed FPGA implementation diagram 

hardware accelerator design details are public. To guarantee the confidential-
ity of the secret key, it needs to be stored in a tamper-proof memory with 
strict access control and securely transferred to the hardware AES engine, i.e., 
the adversary cannot intercept it during the transmission. However, this Trojan-
infected implementation can lead to key leakage by bypassing the AES core 
in a specific rare condition. The trigger part of the inserted hardware Trojan 
continuously monitors every input plaintext to see if the predefined pattern occurs 
(128’h0011_2233_4455_6677_8899_AABB_CCDD_EEFF) here. If it is the case, 
the Trojan will be activated to enable the “1” channel of the output multiplexer 
to leak the secret key. Otherwise, the “0” channel is enabled to output ciphertext 
when the Trojan is dormant. This is a typical information leakage Trojan model in 
cryptographic implementations. 

Figure 5.8 presents the detailed implementation. To simplify the interface 
between the host and FPGA for sending and receiving data, Xilinx Virtual IO 
(VIO) is instantiated as an IP core by configuring virtual input/output probes. In 
this way, one can easily set the key and state (plaintext) for the AES-128 engine 
and observe the output of the Trojan-infected AES. The ciphertext and key signals 
are multiplexed by the TSC module. If the trigger signal is asserted, i.e., Trojan is 
activated by the predefined pattern on the state (plaintext) input port, key input will 
bypass the AES-128 core to the output which can be captured by VIO. Figure 5.9 
shows the design hierarchy of this Trojan-infected implementation in Xilinx Vivado 
where the naming of functional blocks aes_128, Trojan_Trigger, TSC, and vio_0 is 
self-explanatory by corresponding to the blocks in Fig. 5.8. The XDC file (top.xdc) 
is indispensable for a successful compilation by providing constraints on package 
pin assignment, targeted clock frequency, implementation settings, etc. 

5.3.4 Compiling Target Design and Trigger Trojan 

We present detailed step-by-step instructions on compiling and activating the 
Trojan-infected implementation in Xilinx Vivado:
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Fig. 5.9 Trojan-infected code hierarchy 

Step 1: Compile the RTL Design in Vivado Through Synthesis, Implemen-
tation, and Bitstream Generation Xilinx Vivado can compile the loaded RTL 
designs to the bitstream in an automatic manner. By clicking the Run Synthesis 
as labeled in Fig. 5.10, Xilinx Vivado will initiate a run to transform the RTL 
design to a synthesized design where a functionally equivalent circuit is generated 
consisting of generic components. Then, Run Implementation will map the generic 
components to available resources in the specified FPGA model. For example, 
an individual AND gate cannot be found in most modern FPGA devices. In the 
implementation phase, Vivado will map the AND gate to an LUT2 primitive, i.e., a 
look-up table instance storing the Boolean equation O = A1  & A2  to implement the 
AND function. Besides, the low-level routing will be mapped to the programmable 
interconnect point (PIP) configuration of the FPGA model. Bitstream Generation 
interprets the implemented design to the proprietary binary configuration file which 
can be downloaded to the FPGA silicon. 

Step 2: Downloading the Bitstream to FPGA Click the Open Target under Open 
Hardware Manager as shown in Fig. 5.11. Then, one needs to Open Target to auto-
connect the hardware server, i.e., our host, to the FPGA device instance through 
the JTAG interface. Next, program the device by right-clicking the target device 
under the local host and selecting Program Device as shown in Fig. 5.12. Then, 
the Program Device pop-up window will set the default bitstream as the newly 
generated bitstream (top.bit). Besides, the design probe file is set to be top.ltx which 
contains the debug VIO core configuration like the virtual input/output probe name 
and width.
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Fig. 5.10 Compiling design in Xilinx Vivado 

Step 3: Activating the Trojan on FPGA After downloading the bitstream to 
FPGA, the VIO debug core dashboard will appear in Vivado as illustrated in 
Fig. 5.13. Note that the reset input pin of the implementation is bonded to the 
DIP switch SW5 which needs to be down to dessert the signal. In Fig. 5.13, key  
is 128’hAAAA_AAAA_AAAA_AAAA_BBBB_BBBB_BBBB_BBBB, while the 
state (plaintext) is 128’h0000_0000_0000_0000_0000_0000_0000_FFFF. As the 
plaintext input is not the triggering pattern, the Trojan still remains dormant, and 
the AES-128 core will perform ten-round SubByte, MixColumn, ShiftRow, and 
AddRoundKey operations on the plaintext to produce the ciphertext output. In con-
trast, if the 128-bit state is set to 128’h0011_2233_4455_6677_8899_AABB_CCDD 
_EEFF as depicted in Fig. 5.14, Trojan is activated such that the encryption key is 
leaked through the output port. In this way, the effectiveness of the inserted hardware 
Trojan is demonstrated on the FPGA device at run-time.
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Fig. 5.11 Open and connect the FPGA target 

5.4 Bitstream Tampering for Trojan Triggering 

In this section, FPGA bitstream tampering attacks to enable Trojan triggers will 
be presented. First, FPGA bitstream preliminaries and tampering attacks are 
introduced. Next, experimental files and steps are detailed. 

5.4.1 FPGA Bitstream Format Preliminaries 

FPGA bitstream is crucial because it determines the FPGA behaviors at the post-
configuration phase. Figure 5.15 depicts the high-level format of Xilinx bitstream. 
It mostly starts with human-readable content such as design name and timestamp. 
However, the content will be discarded by the hardware FPGA configuration engine 
during the bitstream loading stage. The beginning of the configuration data stream 
is the sync word for the alignment of the subsequent data. The following header 
commands will read/write important registers. For example, one can write the 
WBSTAR register for multi-boot configuration [10]. Also, writing the IDCODE 
register to inform the engine the target device model of the incoming bitstream;
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Fig. 5.12 Download bitstream to FPGA 

Fig. 5.13 Ciphertext on the outport when the Trojan is dormant 

Fig. 5.14 Key leaked to the outport when the Trojan is activated
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Fig. 5.15 High-level FPGA 
bitstream format 

the device will reject the bitstream if the IDCODE does not match. The most 
crucial operations are Write FDRI which write the configuration frames to the 
on-chip SRAM determining the FPGA functionality. The address of the on-chip 
configuration memory the frames flow to is determined by the frame address register 
(FAR) which is auto-incremented by default. The footer commands include cyclic 
redundancy check (CRC) checksum and end with a couple of NOP (no operation) 
commands. 

Although bitstream format can be understood at a high level from official 
documents [27], FPGA vendors are reluctant to reveal the bitstream format docu-
menting the mapping between configuration data and FPGA primitive functionality. 
FPGA bitstream reverse engineering techniques [3] have been developed to retrieve 
such information to assist applications like hardware Trojan detection [14, 29] or  
insertion [7]. For instance, [29] proposes a high-accuracy FPGA reverse engineering 
for recovering the netlist from the binary bitstream and applies an unsupervised 
machine learning solution to detect suspicious Trojan signals. Conversely, the 
retrieved bitstream format can be used for bitstream tampering as well. Swierczyn-
ski et al.  [21] first reverse engineer the configuration bits of look-up tables (LUTs) 
and then target AES accelerator on FPGA. As the AES hardware typically relies on 
the LUTs to store the S-box content, tampering with LUT content can inject faults 
to steal keys through differential fault analysis (DFA). Even if security mechanisms 
like bitstream encryption are enabled, such bitstream tampering is still feasible since 
AES-CBC allows causing bit flips on the target block by corrupting the previous 
one. Moreover, [8] hacks the Xilinx 7-series bitstream engine and discloses the 
underlying vulnerabilities which can be exploited to decrypt the ciphertext bitstream 
by using the FPGA as an oracle [19].
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Fig. 5.16 Enabling hardware Trojan through bitstream tampering 

5.4.2 Bitstream Tampering Enabling Trojan Trigger 

In this experiment, Trojan trigger is disabled by disconnecting the trigger signal 
from the multiplexer in the original implementation as depicted in the left part of 
Fig. 5.16. As the multiplexer SEL port is fixed at the constant 0, the Trojan can never 
be activated even if the trigger part observes the predefined pattern on the plaintext 
input. However, by tampering with the design at the bitstream level, the low-level 
routing can be altered to revert the hardware Trojan functionality, i.e., the trigger 
signal will be connected to the multiplexer. 

There are supposed to be five files in the ./nexys/ folder. The details and 
observations on FPGA are introduced as follows: 

• AES_trigger_disabled.bit: This bitstream encodes the Trojan-infected AES 
implementation with the disabled Trojan trigger. To generate the bitstream, 
one can modify the driver component configuration of the trigger signal in 
the original infected design. A feasible way is to uncomment the command 
set_property INIT 4’h0 [get_cells AES_Tj/Trigger/Tj_Trig_reg_i_3] in the 
constraint file top.xdc (Sources panel . → constraints . → constrs_1 . → top.xdc) 
and rerun the flow through synthesis to bitstream generation. As a matter of fact, 
the command erases the configuration bits of the driver LUT of the trigger signal 
to be all 0s. In other words, the output of LUT is fixed to 0 to all combinations 
of inputs. This results in minimal changes in the implemented design where 
only the content of a LUT is cleared. If one changes the functionality at RTL, 
the entire design floor plan is likely to deviate which would make the bitstream 
tampering less intuitive and clear. As shown in Fig. 5.17, downloading this 
bitstream along with the same probe file top.ltx because the VIO configuration is 
identical. The VIO dashboard in Fig. 5.18 illustrates that even if the predefined 
pattern 128’h0011_2233_4455_6677_8899_AABB_CCDD_EEFF occurs on the 
plaintext input, the Trojan is still inactive as the output is not the key value but the 
AES-128 ciphertext instead, which is different from the original Trojan-infected 
behaviors. 

• AES_trigger_enabled_ref.bit: This bitstream contains the original Trojan-
infected AES implementation with an enabled trigger for reference. The 
functionality has been detailed in Sect. 5.3.3.
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Fig. 5.17 Download AES trigger-disabled bit (disabled Trojan) 

Fig. 5.18 Key cannot be leaked even if the predefined pattern occurs 

Fig. 5.19 Running Python script to tamper with the bitstream to enable Trojan 

• Tampering.bit: This binary file has the same length of other bitstreams which 
documents the critical bits in AES_trigger_disable.bit that needs to be flipped 
during the tampering procedure. 

• Tampering.py: The python script can tamper the AES_trigger_disabled.bit to 
activate the disabled Trojan trigger. Run the python script tampering.py to gener-
ate the bitstream AES_trigger_enabled.bit by XORing AES_trigger_disabled.bit 
and tampering.bit. To run the python script, just cd to the directory (e.g., ./nexys/), 
and type “python tampering.py.” The successful bitstream tampering printout is 
shown in Fig. 5.19. By examining the content of tampering.bit using HexEditor 
(see Fig. 5.20), only few configuration bits need to be flipped to enable the Trojan 
at the bitstream level. The reason is that only the driver LUT content is erased 
to fix the Trojan multiplexer to channel 0 so the bitstream tampering procedure 
essentially converts the LUT back to the functional status.
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Fig. 5.20 A portion of tampering bit file 

Fig. 5.21 Trojan can be activated in the AES trigger-enabled bit file 

• AES_trigger_enabled.bit (to be generated): One needs to run the Python script 
tampering.py to generate the bitstream. The content in this binary file should 
be equivalent to the AES_trigger_enabled_ref.bit. The bitstream contains the 
enabled Trojan trigger as a consequence of the bitstream tampering. By program-
ming the FPGA device with this bitstream, it is observed in Fig. 5.21 that Trojan 
can be activated when the specific pattern appears on the state (plaintext) input 
to leak the key input through the output port. 

5.5 Conclusion 

Hardware Trojan threats are a long-standing concern in the hardware security 
community. It is imperative to learn about its attributes and features. In this chapter, 
the horizontal chip design cycle is introduced at first to give insights into why 
Trojan insertion is feasible in the real world. Next, Trojan background including 
its structure and taxonomy is detailed. In order to give an intuitive understanding 
of Trojan insertion, a Trojan-infected AES engine is provided to be implemented 
on an FPGA platform which can be activated/deactivated at run-time to leak the 
sensitive security key or not. Also, FPGA bitstream tampering, as an advanced 
attack technique, is experimentally demonstrated on enabling the hidden Trojan 
trigger at the binary level.
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Chapter 6 
Hardware Trojan Detection 

6.1 Introduction 

Over the past decades, the advance of semiconductor technology is mind-boggling 
by following Moore’s law that the density of transistors doubles every 18 months. 
On the other hand, the more and more complicated chip designs and the pro-
hibitively high cost of maintaining a foundry inspired the industry to transform from 
the conventional integrated device manufacturing (IDM) mode, where a company 
takes care of everything of their products including design, and validation, and 
fabrication, to the horizontal business model requiring collaborations from entities 
across the globe [3, 26]. A such shift can significantly boost the capabilities of most 
fabless companies by eliminating the monetary and technical cost of maintaining a 
prohibitively expensive foundry. However, the convoluted supply chain also creates 
trust issues between involved entities including intellectual property (IP) vendors, 
system-on-chip (SoC) integrators, design-for-test (DFT) engineers, and fabrication 
facilities [4, 17]. Hardware Trojan, a concept of malicious addition or modification 
to the original chip designs, emerges as a prominent attack vector because most 
entities can have the motivations and capabilities to tamper with the pre-silicon 
designs [25]. On the other hand, the modality of a particular Trojan can be very 
versatile in terms of the detailed structure, locations, and insertion phases; how to 
thwart the malicious circuitry effectively is a long-standing research problem in both 
industry and academia [30]. 

The mainstream countermeasures against hardware Trojan threats so far can be 
divided into two categories, i.e., Trojan detection and Trojan prevention. Trojan 
detection is the most common methodology for security and trust verification, 
aiming to detect and diagnose malicious functionality from the pre-silicon or post-
silicon designs without the support of any dedicated hardware circuitry [14]. In 
contrast, Trojan prevention techniques rely on the design-for-trust infrastructure 
built inside the chip covering functional tests, run-time monitoring, and logic obfus-
cation. In this chapter, we mostly focus on Trojan detection techniques since they are 
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prevalent, straightforward, and relatively low-cost. As mentioned, Trojan detection 
can be performed at both pre-silicon and post-silicon stages, indicating a broad 
spectrum of possible solutions. For example, one can use statistical approaches to 
identify the signals with low transition probabilities in a Trojan-infected netlist by 
utilizing the fact that hardware Trojan trigger is typically designed to be stealthy, 
i.e., the trigger signal can only be activated in a very rare condition to avoid easy 
detection. However, one-size-fits-all techniques are still not available to detect all 
kinds of Trojan logic universally. Therefore, it is imperative to explore the design 
space of detection solutions to cover different inserted Trojan implementations. 

The objective of this chapter is for readers to learn about state-of-the-art 
Trojan detection techniques and gain experience in hardware Trojan detection. 
This chapter introduces the concept of hardware Trojan detection techniques and 
representatives at different phases. Moreover, this chapter presents a hands-on 
experiment for showcasing hardware Trojan detection in a cryptographic engine, 
i.e., advanced encryption standard (AES), using commercial formal verification 
tools at the register-transfer level (RTL). By creating security properties to regulate 
the behaviors of the AES implementation, the counterexample violating the security 
property will explicitly point out the trigger pattern activating the inserted Trojan. 

The rest of the chapter is organized as follows: Section 6.2 provides the 
background information on hardware Trojan detection at both pre-silicon and 
post-silicon stages including code coverage analysis, formal verification, and side-
channel-based detection. Section 6.3 provides hands-on experience in hardware 
Trojan detection, and an experiment is presented to demonstrate how to use a 
commercial EDA formal verification tool to effectively identify the Trojan trigger 
sequence of an infected AES implementation in RTL. Finally, Sect. 6.4 concludes 
this chapter. 

6.2 Hardware Trojan Detection 

The fundamentals of hardware Trojan will be introduced in this part first. Next, both 
pre-silicon and post-silicon hardware Trojan detection solutions will be discussed. 

6.2.1 Overview of Hardware Trojan 

Figure 6.1 illustrates the possible stages of hardware Trojan insertion in the 
development cycle of hardware designs. Specifically, hardware Trojans can be 
undocumented modifications in the specification phase at the very beginning. The 
adversary can be one of the members of the committee to intentionally create 
inconsistencies in descriptions, add undesired functionality, or reduce the margin of 
performance, power, and area. As such, all the subsequent effort in the development 
procedure will be unknowingly employed to hide the hardware Trojan as the design
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Fig. 6.1 Hardware Trojan insertion is possible at any stage of the ASIC/FPGA development cycle 

should follow the defined specification. Next, the RTL phase aims to map the 
abstract specification to a specific hardware description language (HDL) like VHDL 
or Verilog. The adversary in the RTL design team can stealthily implant hardware 
Trojans as well by inserting only a few lines of code as a new branch or a concurrent 
statement. Note that due to the requirement of short time to market, more and more 
complicated designs like an SoC prefer purchasing the encapsulated IP solution 
from third-party teams. Such IP cores are provisioned with low controllability 
and observability, making them a good place for Trojan insertion. After that, the 
RTL designs will be compiled into a synthesized netlist consisting of general 
logic primitives and then placed and routed to be the P&R netlist. The RTL-to-
netlist conversion is mostly taken by the commercial electronic design automation 
(EDA) tool where the adversaries can put malicious gates and routing [2]. From 
the placed and routed netlist, the development procedure will diverge to different 
steps depending on whether the final silicon platform is a field-programmable gate 
array (FPGA) or application-specific integrated circuit (ASIC). As for ASIC, the 
netlist will be packaged to be GDSII which is the package of all design details at 
the physical layout including not only the logic functionality but also the physical 
implementations like metal layers and power distribution network. However, the 
(rogue) foundry can therefore be capable of manipulating the implementation for 
Trojan implantation with maximal flexibility. When it comes to the FPGA platform 
which is a configurable device without any particular functionality until being 
programmed with the binary configuration data, the so-called bitstream, bitstream-
level tampering is a feasible method for Trojan insertion [6] and hard to be detected 
because an FPGA bitstream is generally a series of binary 0s and 1s while its 
format is architecture-specific and proprietary [33]. After ASIC tapeout or bitstream 
downloading, hardware Trojans inserted in any previous stages will be ultimately 
mapped into the post-silicon phase, which can be activated at a future moment for 
illegitimate applications like information leakage and denial of service (DoS).
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Fig. 6.2 High-level view of a trigger-based hardware Trojan 

There are generally two types of hardware Trojans regarding the activation 
mechanisms, i.e., always-on and trigger-based. The always-on Trojans are straight-
forward variants working all the time during the entire lifetime of the infected 
devices. Such Trojans can lead to severe performance degradation and/or lifetime 
reduction on the targets. The trigger-based Trojan as depicted in Fig. 6.2 is much 
more common because it continuously monitors the trigger input signals in the 
Trojan-free circuitry. Only if the trigger signals manifest a predefined pattern, 
the subsequent malicious payload can become active. Therefore, the trigger-based 
Trojans are much stealthier than their always-on counterparts. The signals affected 
by the activated hardware Trojans (tampered signals) will behave as regulated by 
the malicious functionality to inject intentional faults back into the Trojan-free part 
and/or leak the sensitive information directly. 

6.2.2 Pre-silicon Hardware Trojan Detection 

As depicted in Fig. 6.3, existing Trojan detection approaches can be performed at 
both pre-silicon and post-silicon stages. Pre-silicon hardware Trojan detection aims 
to identify the malicious functionality from the third-party IP cores, which can be 
categorized into formal verification, code coverage analysis, logic testing, structural 
analysis, and functional analysis [5, 15]. 

6.2.2.1 Code Coverage Analysis 

Code coverage refers to a metric assessing how effectively a test bench can exercise 
the target design, i.e., the percentage of code lines that have been executed. 
Generally, EDA tools like Synopsys VCS can perform code coverage analysis 
highlighting which nets in the design under test are toggled or never toggled. Given
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Fig. 6.3 Taxonomy of existing hardware Trojan detection approaches [5] 

the stealthy nature of trigger-based hardware Trojans, the adversaries tend to select 
rare conditions as the trigger point to circumvent conventional testing solutions. 
Therefore, the nets with low transition probability are their preferable choices 
which are also likely to be identified as suspicious signals using the code coverage 
analysis. However, since code coverage analysis is originally proposed for test bench 
evaluation, it might not be effective in detecting Trojan scenarios; the adversary 
can easily come up with a circuit covered by the provided test bench, whereas the 
malicious circuitry is not activated as depicted in Fig. 6.4a. If the test set comprises 
the control states (ctl signals Ctl(0) and Ctl(1)) of  00, 01, and 10, the three lines 
of HDL code in Fig. 6.4a will be covered, whereas the output is always Good 
instead of the malicious Attack input. To overcome the limitations of conventional 
code coverage analysis, unused circuit identification (UCI) technique [10] has been 
proposed to locate the suspicious lines of RTL code that does not affect the outputs 
during simulation, which are considered as a part of malicious circuitry. More 
specifically, UCI first creates a data-flow graph of the target circuit implementation, 
e.g., the data flow of the multiplexer circuit as presented in Fig. 6.4b. The data-flow 
graph contains all direct (e.g., the connectivity between X and Out) and indirect 
(e.g., the connectivity between Good and Out) dependencies. Next, based on the 
test bench, UCI will reduce the size of the data-flow dependency graph to find the
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Fig. 6.4 Unused circuit identification (UCI) approach for hardware Trojan detection and removal 
(a) Code coverage analysis failing to detect the malicious functionality in the multiplexer circuit 
(b) UCI technique: generating data-flow graph for the multiplexer circuit 

pair where the intermediate logic does not affect it. To provide readers with a more 
intuitive understanding, the UCI analysis on the multiplexer circuitry in Fig. 6.4a is  
detailed as follows [10]:

• UCI establishes the data-flow graph of the multiplexer circuit as illustrated in 
Fig. 6.4b where the set of dependency pairs is {(Good, X), (Attack, X), (Good, 
Y), (Attack, Y), (Good, Out), (Attack, Out), (X, Out), and (Y, Out)}

• By applying 00 on the signals Ctl(0) and Ctl(1), Out is Good, X is Good, and Y 
is Good. This can help remove their exclusive items, i.e., (Attack, Out), (Attack, 
X), and (Attack, Y), from the set of dependencies.

• By applying 01 on the signals Ctl(0) and Ctl(1), Out is Good, X is Good, Y is 
Attack. This removes, i.e., (Y, Out) and (Good, Y) from the set of dependencies.

• By applying 10 on the signals Ctl(0) and Ctl(1), Out is Good, X is Attack, and Y 
is Good. This removes (X, Out) and (Good, X) from the set of dependencies.

• UCI finally reduces the set to be one element (Good, Out) because it is not 
affected by the intermediate logic and input patterns.
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Therefore, the malicious logic can be removed by directly routing the Good 
signal to the Out signal using the UCI solution. Note that although UCI has been 
demonstrated to be outperforming conventional code coverage analysis, it is not 
bulletproof since advanced Trojan designs [22] can still evade its detection. 

6.2.2.2 Formal Verification 

Generally, formal verification is a methodology to mathematically check the 
behaviors of a system. It has been a prevalent solution for design verification in 
software, aerospace, and military-industrial systems. To apply the formal verifi-
cation solution for security inspection on third-party IP cores against hardware 
Trojan threats, proof-carrying code (PCC) is proposed in [9, 13] as illustrated 
in Fig. 6.5. IP consumers first create the design specifications for the desirable 
IP design covering the functionality and performance requests. Additionally, they 
send the security properties that the IP design must obey to the IP vendors along 
with the design specification. Next, IP vendors design the HDL implementation by 
following the specification and also provide the security proof corresponding to the 
received security properties. IP consumers will then verify the trustworthiness of 
the IP designs by analyzing the security proof. Proof-carrying code can attempt to 
detect malicious modifications from inserted hardware Trojans because the security 
proof might be violated. However, the predefined security properties might not 
be able to guarantee a Trojan-free IP design because one rouge IP designer can 
intentionally design and implant the malicious functionality in a way satisfying 
all known properties and place additional vulnerabilities. Besides, the hardware 
implementation has to be converted to its Coq format which lacks automation and 
cannot ensure the equivalence between the design representations. 

Rajendran et al. [18, 19] use the bounded model checking (BMC) methods 
to formally detect the hardware Trojans in the third-party IPs. Particularly, [18] 

Fig. 6.5 The high-level diagram of proof-carrying solutions for hardware Trojan detection in 
third-party IPs
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targets the Trojan corrupting the security-sensitive assets, while [19] focuses on 
the information leakage induced by the hardware Trojans. By using the designed 
security property and state-of-the-art commercial formal verification EDA tools, 
the proof can be performed automatically to find a counterexample if the security 
property is violated. The Trojan-triggering pattern can be extracted from the 
counterexample as well. The BMC methods are very effective even when it comes 
to advanced Trojans such as [32], but scalability is still a great concern since BMC 
is essentially an NP-hard problem. 

6.2.2.3 Structural Analysis 

As mentioned, trigger-based hardware Trojans always want to be only activated 
in rare conditions evading detection to the most. Therefore, the structural analysis 
aims to locate the suspicious signals in the hardware designs with low transition 
probability. At RTL, [20] presents a metric named statement hardness evaluating 
how difficult a statement can be executed. The involved signals in the lines of code 
with high statement hardness are suspicious since they can serve as a good place for 
placing Trojan logic. Similarly, hard-to-detect areas can be identified from the gate-
level netlist [21], i.e., the nets with low transition probability and low controllability 
using the conventional fault models like stuck-at or bridging faults. Note that the 
identified suspicious signals are not necessarily Trojan logic, calling for manual 
post-processing and analysis for further confirmation. 

6.2.2.4 Logic Testing 

Logic testing aims to activate the Trojan inside the pre-silicon implementation using 
specific patterns in the simulator and detect discrepancies in the outputs from the 
golden responses. The main challenges come from the fact that the adversaries 
would intentionally design the trigger condition of Trojans to be very rare to avoid 
being detected with normal testing methodology. Besides, the large implementations 
typically contain millions of gates and thus present difficulty in detecting Trojans 
effectively. 

6.2.2.5 Functional Analysis 

Instead of using specific patterns to activate Trojans in logic testing, functional 
analysis chooses random patterns to simulate the IPs and identifies the suspicious 
regions with Trojan features. Waksman et al. [29] presents the functional analysis for 
nearly unused circuit identification (FANCI) labeling the nets with weak input-to-
output dependency as suspicious candidates of hardware Trojans. Since the Trojans 
can be triggered in rare conditions, the Trojan logic, therefore, remains mostly
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Fig. 6.6 RSA T100 Trojan from TrustHub [27] 

unused or dormant during normal operations. By applying random patterns, FANCI 
can calculate the number of transitions for each signal and produce a list of Trojan 
candidates if the transitions of a function are lower than a predefined threshold. 
For example, in Fig. 6.6, the active Trojan will direct the security asset, i.e., the 
private RSA key, to the multiplexer output only when the plaintext is 32’h44444444. 
Therefore, the probability of the Trojan trigger signal transitioning from 0 to 1 is as 
low as .2−32 which can be lower than the predefined threshold and categorized as a 
suspicious net. The major limitation of functional analysis like FANCI is the large 
number of false positives, making accurate hardware Trojan detection a difficult 
objective. Also, functional analysis cannot deal with the always-on-type hardware 
Trojans because the rare condition triggering assumption does not hold. 

6.2.3 Post-silicon Hardware Trojan Detection 

After the chip tape is out, there are solutions for hardware Trojan detection at post-
silicon phases. 

6.2.4 Destructive Method 

Destructive procedures use hardware reverse-engineering techniques to depackage 
the target ICs and recover the physical layout according to images retrieved 
using advanced equipment like scanning electron microscope (SEM). An example 
solution TrojanScanner [28] is illustrated in Fig. 6.7 where the target device 
samples need to be decapsulated with acid to expose the die at first. Next, SEM 
is used to scan the entire die to capture feature details for comparison and checking 
with the golden chip layout. The SEM images are then pre-processed to be 2D shape 
descriptors where gates can be recognized using K-means and multi-class support
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Fig. 6.7 Destructive hardware Trojan detection: Trojan scanner [28] 

vector machine (SVM) algorithms. Finally, the information identified from the SEM 
images will be contrasted against the chip layout to detect any potential malicious 
modifications of hardware Trojans automatically. The reverse-engineering-based 
hardware Trojan detection can have a very high assurance and accuracy at the cost 
of expensive equipment and destructive sample preparation. 

6.2.5 Nondestructive Method 

As for nondestructive detection solutions, functional tests are very similar to logic 
testing as discussed in Sect. 6.2. The main difference is functional tests rely on the 
tester equipment and are limited by the number and capability of probes, while logic 
testing uses software simulators. 

Side-channel-based hardware Trojan detection utilizes the unintentional physical 
emissions of the running devices including timing delay [12], power consumption 
[1], and electromagnetic (EM) radiations [23]. The well-known side-channel attacks 
[34] leverage such observable properties to successfully deduce the underlying 
private assets like secret keys, demonstrating the usefulness of the physical channels 
in revealing the design behaviors. Therefore, side channels can be utilized by trusted 
entities for security or integrity verification of target devices as well. Although the 
particular physical properties are different per method, the assumption is shared that 
Trojan-free golden chips are available as the reference. For example, [1] first collects 
the power profiles of a batch of ICs from all samples as the signatures and then uses 
destructive methods to confirm that no Trojans are inside these ICs such that the 
profiled ICs serve as the Trojan-free circuits. The power profiles can thus become 
the template reflecting the benign behaviors of the original chip designs. The rest of 
the chips can be tested against the template power fingerprint in a prompt manner 
using statistical techniques for fast Trojan detection. 

To detect hardware Trojan’s circuitry during run-time, lightweight security 
monitors can be placed on-chip. As depicted in Fig. 6.8, [31] presents a network 
of ring oscillator (RO) instances that are uniformly distributed in the design under 
monitoring where hardware Trojans might have been implanted. The foundation
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Fig. 6.8 Ring oscillator (RO) network detecting hardware Trojans at post-silicon [31] 

behind this technique is that the activated hardware Trojans would cause additional 
voltage drop on the VDD rail and ground bounce on the VSS rail to be sensed by 
the RO monitor. In essence, RO is a combinational loop consisting of odd number 
of inverters; the oscillation frequency is determined by the stage of inverters and 
the delay of each inverter which is relevant to the voltage supply. Since the effects 
of Trojan and process variations on the power supply noises are localized, a single 
RO may not have enough sensitivity, e.g., it is hard for one RO in a corner of the 
device to capture the Trojan switching activities from another corner. Therefore, 
as can be seen in Fig. 6.8, there are an array of 12 five-stage (1 NAND . + 5 NOT  
gates) RO instances placed in each power grid surrounded by the power straps. In 
the functional mode, all ROs are disabled and do not have any impact on the power 
supply noises. When the authentication (hardware Trojan detection) mode is active, 
the linear feedback shift register (LFSR) will generate a set of input patterns to
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Fig. 6.9 Trojan detection results using the RO power signatures [31]. (a) Trojan-7 (b) Trojan-8  
(c) Trojan-9  

trigger at least a part of Trojan gates inside the design where the additional power 
consumption could change the voltage supply variations in the power grids. The 
multiplexers MUX1 and MUX2 are used to select a specific RO and accumulate 
its oscillation with the counter for frequency calculation. By inspecting all 12 
power regions (RO instances), a set of power signatures can be generated for the 
target implementation. To analyze the obtained RO signatures, a statistical technique 
named advanced outlier analysis is presented to identify the power droop anomalies 
induced by Trojans from the noises of process variations. The experimental results 
on detecting three different Trojan variants Trojan-7, Trojan-8, and Trojan-9 from 
24 Trojan-free FPGAs and 24 Trojan-infected FPGAs are illustrated in Fig. 6.9 
where one can observe the blue and red regions, respectively, indicating the 
signatures of Trojan-free and Trojan-infected designs can be clearly separated, i.e., 
most of Trojan variants can be detected using the proposed solution.
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6.3 Hardware Trojan Detection Experiment 

6.3.1 Experimental Setup 

The target Trojan-infected implementation in the hardware Trojan detection experi-
ment is an AES-128 cryptographic engine at RTL (see Fig. 6.10), which is compro-
mised that whenever the predefined plaintext pattern (128’h001122334455667788 
99AABBCCDDEEFF) occurs, the output of the implementation will be the 
sensitive AES key instead of the ciphertext, resulting in undesirable information 
leakage[8, 16]. The design files and source codes can be found at http://cad4security. 
org/index.php/trainings/hsl/ch6_hw_trojan_detect/. In order to detect the Trojan 
logic, a formal verification technique is utilized to perform proof on the security 
property of strict confidentiality of the AES key. In contrast to dynamic verification 
solutions like simulation, formal verification refers to a collection of static analysis 
techniques transforming the hardware implementation into a mathematical repre-
sentation. As such, a relatively high coverage could be achieved without exercising 
the target implementation with numerous test vectors because formal verification 
might not need to evaluate every possible state of the circuitry. Figure 6.11 illustrates 
the applications of hardware behavior formal verification. We highlight the four 
applications out of them, i.e., equivalence checking, model checking, SoC-level 
formal verification, and security path verification as follows [7]:

• Equivalence checking. The equivalence checking aims to prove whether two 
representations of a design are functionally equivalent or not, which can be useful 
to guarantee the design functionality is not altered after synthesis optimization 
or functional engineering change order (ECO) in the physical layout phase. 
Synopsys formality [24] is a widely used EDA tool for equivalence checking 
where the reference design, revised design, and library are specified at first, then 

Fig. 6.10 The experimental Trojan-infected AES implementation
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Fig. 6.11 Formal verification techniques 

key points of the design are mapped and compared, and finally the mapped points 
are examined to see if they are equivalent or not.

• Model checking. Model checking is proposed to check the correctness of a 
particular specification. Instead of enumerating all reachable states, the binary 
decision diagram (BDD) manipulates the Boolean function directly for boosting 
the capacity handling of the realistic hardware systems. However, BDD-based 
model checking suffers from the state space explosion problem of running out of 
memory quickly. In order to address the issues, bounded model checking (BMC) 
is presented to search for a counterexample in the executions bounded by the 
specified integer k such that the BMC problem can be reduced to a satisfiability 
one to be solved by the SAT solver.

• SoC-level formal verification. Limited by the scalability issues, it is hard to 
apply formal verification techniques on the entire SoC design of high complexity. 
A feasible direction is verifying critical coverage points using formal verification 
and focusing on the power of dynamic simulation vectors on the uncovered parts 
for time-saving.

• Security path verification. By using path sensitization technology, security path 
verification techniques can detect the potential vulnerabilities in propagating data
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from/to a defined secure region in the hardware design such that any violations 
of confidentiality and integrity of sensitive data can be examined. 

The particular formal verification environment in this experiment is Cadence 
JasperGold [11] which is an industrial formal verification platform supporting a 
wide spectrum of applications including formal property verification (FPV), security 
path verification (SPV), and X-propagation verification. In this experiment, the SPV 
application is a good fit for Trojan detection since it can exhaustively prove the 
secure data (AES key here) cannot be read or overwritten illegally. Otherwise, 
counterexamples will be reported and analyzed to showcase why and how the 
specified security property is violated. The Trojan-triggering condition can be 
extracted from the counterexample if the proof fails. Note that a white box scenario 
is assumed here to provide readers a more intuitive understanding and hands-on 
experience on Trojan detection, which is different from the black box case when it 
comes to third-party IPs. 

6.3.2 Experimental Steps 

The experimental steps on detecting the Trojans inserted in the AES engine as 
illustrated in Fig. 6.10 using Cadence JasperGold SPV application are articulated 
as follows: 

1. Access to the MEST ECE server where commercial Cadence JasperGold licenses 
are installed, using the provided credentials through VNC viewer terminals. 

2. Start JasperGold by executing the script: source start_jg.tcl. The script essen-
tially invokes the Cadence JasperGold SPV application. 

3. Jaspergold SPV application graphic user interface (GUI) and execute the script 
HW_Trojan_Detection.tcl for automatic Trojan detection. The Jaspergold SPV 
GUI is depicted in Fig. 6.12. 

4. The HW_Trojan_Detection.tcl is the core in this experiment. It first loads the 
Trojan-infected AES RTL implementations in Cadence JasperGold as illustrated 
in Fig. 6.13 where the first four files from aes_128.v to table.v belong to the 
original Trojan-free AES implementation and the last two items Trojan_Trigger.v 
and TSC.v correspond to the inserted hardware Trojan at RTL. Next, the script 
sets up the design by specifying the top module, clock port, and reset condition. 

5. The security property is written as an assertion in the HW_Trojan_Detection.tcl 
as check_spv -create -from key -to out -to_precond {key == out}. This  
assertion regulates the data taints cannot propagate from the AES key input to 
its out port. Note that the -to_precond constraint means the out value should 
not equal to key either to avoid information leakage. If the proof procedure 
(check_spv -prove -all) on this assertion fails, a counterexample will be reported 
to inform when and how the key can reach the out port.
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Fig. 6.12 Jaspergold SPV GUI 

Fig. 6.13 Screenshot of the script HW_Trojan_Detection.tcl
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Fig. 6.14 Visualize the counterexample 

6. By running the HW_Trojan_Detection.tcl script, one can see the proof fails. The 
counterexample is informative for diagnosis purposes which can be visualized 
by following the instructions in Fig. 6.14. 

7. By visualizing the counterexample, one can easily identify that the data taints 
on the key input can reach the out port (visually, both signals are labeled to 
be red in Fig. 6.15). Meanwhile, the values on key and out are the same, i.e., 
128’h7fffffffffffffffffffffffffffffff. 

8. As the security property only concerns about the key and out signals, the 
plaintext input of AES, i.e., state, is not displayed in the counterexample window 
by default. It can be added for visualization by following the instructions in 
Fig. 6.16.
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Fig. 6.15 Add signal in the counterexample window 

Fig. 6.16 Add the state signal 

Fig. 6.17 Identified Trojan trigger pattern 

9. As presented in Fig. 6.17, when Trojan is activated, the plaintext state signal 
should be assigned with the predefined pattern 128’h100112233445566778899 
AABBCCDDEEFF. In other words, Jaspergold Cadence SPV application can 
report the Trojan-triggering sequence by performing formal security verification 
without any prior knowledge.
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6.4 Conclusion 

Hardware Trojans have emerged as serious security concerns for today’s semicon-
ductor devices. How to effectively and efficiently detect hardware Trojans from 
the hardware designs present formidable challenges to researchers in industry and 
academia. In this chapter, the state-of-the-art hardware Trojan detection solutions at 
both pre-silicon and post-silicon stages including code coverage analysis, formal 
verification, and side-channel-based detection are covered. Moreover, in order 
to provide hands-on experience on hardware Trojan detection, an experiment is 
presented to showcase how to utilize the commercial EDA formal verification 
tool, i.e., Cadence JasperGold security path verification application, to effectively 
identify the Trojan-triggering sequence of an infected AES implementation at RTL. 
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Chapter 7 
Security Verification 

7.1 Introduction 

Pre-silicon verification [17] involves the use of functional properties to formally 
evaluate the expected behavior of a design and its specification. The verification 
efforts of design houses can be reduced to a great extent by defining functional 
properties and utilizing them in formal verification tools. In this way, formal 
verification tools will be able to prove or disprove whether the design behavior 
matches the specification. Apart from formal verification, functional properties can 
also be used in the case of simulation-based verification to identify design bugs [1]. 
Moreover, some of these properties can be utilized in post-silicon validation as well, 
by synthesizing and placing them in real design to monitor specific events and raise 
exceptions when needed [11]. At the pre-silicon design stages of the SoC life cycle, 
the functional properties are usually insufficient for security validation to prove the 
design’s trustworthiness. A whole supplementary set of properties aimed at ensuring 
the secure operation of a design needs to be developed since an SoC may encounter 
different security vulnerabilities throughout its life cycle [13]. 

Since vulnerabilities can be introduced at different stages of the SoC life cycle, 
security properties should be checked from the very beginning of the SoC design 
life cycle [26] to reduce cost and verification time. Security properties can also be 
checked in a variety of ways, just like functional properties. They can be verified 
formally/dynamically using model checking/simulation tools. Such verification can 
enable the designer to uncover and fix security bugs at an early stage. Moreover, 
these properties can be mapped to reconfigurable fabrics and enforced as security 
policies/rules during run-time to protect the SoC from zero-day attacks. 

We have organized this chapter as follows: Section 7.2 explains how properties 
are developed and formally represented in general. Sections 7.3.1 and 7.3.2 provide 
the concept of security assets and identify how different threat models make security 
assets vulnerable. Section 7.3.3 describes how security properties are generated 
to protect against security vulnerabilities. Section 7.4 shows some examples of 
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security properties for a design example and the experimental setup for checking 
the properties. Finally, Sect. 7.5 concludes the chapter. 

7.2 Background: Writing Properties 

The concept of a property in verification refers to a statement that can verify 
assumptions, conditions, and expected behaviors in a design. A property can be 
represented in the form of an assertion or cover statement for formal verification. 
An assertion can check if everything is working correctly in the design and notify 
if an illegal event has happened based on the specification [14]. A single bit 
associated with the assertion indicates the pass or fail status. If the assertion is 
violated, it provides a counterexample that can be helpful for finding design bugs. 
Likewise, a cover statement can check if a scenario under consideration can ever 
happen in the design. Hence, the cover statement provides a specific scenario 
if it can possibly occur during simulation if it passes. If the cover statement is 
undetermined/unreachable, it means the scenario can never occur. Assertions are 
mainly written in two ways: (i) immediate assertions and (ii) concurrent assertions. 
Immediate assertion checks if an event can happen at any time if a condition is 
passed. On the other hand, concurrent assertion checks for expected behavior over 
a period of time. The difference between immediate and concurrent assertion is that 
an immediate assertion occurs within a procedural block (an initial or always block), 
whereas a concurrent assertion can occur within a procedural block or within a 
module (e.g., assign, always, or initial block). Moreover, assume statement is used 
very often to create the verification environment and reduce the search space for 
the verification tool. The formal verification process is also referred to as assertion-
based security verification (ABV) because of the widespread use of assertions for 
verification. 

SystemVerilog Assertions (SVA) [28] and Property Specification Language 
(PSL) [16] are two popular assertion languages used for describing interesting 
features of a design. Assertions use temporal logic representations such as linear 
temporal logic (LTL) [25] and computational tree logic (CTL) [8]. Languages 
based on LTL and CTL are often described using Boolean expressions which are 
the most common way of describing properties. Logical operators, e.g., “AND” 
and “OR” can be used to evaluate Boolean expressions. Temporal sequences can 
be written using ## operators and the number of specific clock cycles needed 
for an event to happen. For example, a ##5 b assertion indicates that b will be 
valid after five clock cycles if a is valid. In addition, different operators such 
as [low : high], [*], [=] or [. →] represent bounded or unbounded repetition, the 
repetition of zero or more consecutive instances; however, [=] and [. →] denote 
one or more nonconsecutive repetitions. The sequences of different events can be 
combined using several operators, e.g., “AND,” “INTERSECT,” “OR,” “UNTIL,” 
“THROUGHOUT,” “WITHIN,” “EVENTUALLY,” etc.
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7.3 SoC Security Verification Using Property Checking 

A system on chip (SoC) may encounter different security threats in its life cycle, 
whereas an attacker’s motive is to extract/control its valuable resources that are 
worth protecting from adversaries, known as “security assets” [13]. Property-driven 
security verification, which formally describes the expected behaviors of the design 
in the context of a security threat model and associated assets, can protect well-
defined security assets that reside inside the SoC. The developed security properties 
are then fed to formal verification tools for checking (as shown in Fig. 7.1). If all 
the properties pass, it provides a designer with good confidence in having a secure 
design. Otherwise, a designer can go back and fix his design to make it more secure. 

Building on the pre-silicon framework as described in Fig. 7.1, we have devel-
oped the workflow as shown in Fig. 7.2 for security validation. In our proposed 
framework, we introduce two steps before property generation. These two steps, 
“security asset identification” and “threat model identification,” help designers to 
generate security properties which can be checked by formal tools. 

7.3.1 Security Asset Identification 

SoCs form the core of personal computing devices such as mobile phones, laptops, 
etc., which handle users’ data, such as bank details, medical history, passwords, etc., 
daily. SoC designs have become more complex to manage the various tasks required 

Fig. 7.1 Workflow of pre-silicon verification using property-driven formal analysis
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Fig. 7.2 Property-driven verification framework for security validation 

of the modern user. Current SoCs incorporate and integrate hundreds of different 
hardware blocks, each carrying out a specific function, and are named “Hardware 
Intellectual Property” (Hardware IP). Present-day SoCs are an amalgamation of 
these hardware IP blocks, capable of performing various tasks at high speeds. As 
the SoCs become bigger, incorporating a higher number of hardware IP blocks and 
the detailed protocols designed to manage communication between them, securing 
the whole SoC from adversaries has become a mammoth task. 

Securing the whole SoC against all possible threats is nearly impossible in this 
competitive market, where the time to market for SoC production shrinks with 
technological advances. Thus, a secure SoC can be defined as “One incorporating 
measures to deny an adversary any power to modify, extract or deny access to any 
of the users’ critical data or an SoC resource that protects the users’ data.” The user 
data or any SoC resource to be protected is called a “security asset” [13]. Design 
houses can ensure security by incorporating measures to shield the defined security 
assets for the SoC under design. But how do we identify security assets for an SoC? 

Security asset identification requires the designer to understand the environment 
in which the SoC will be deployed, the various functionalities of the SoC, and 
the various threats it may face during its lifetime. Design houses develop SoC 
with different specifications depending on the environment in which they will be 
deployed. Data handled by an SoC varies on its specification. For example, an SoC 
integrated into a personal computing device is designed to address critical data such 
as users’ financial and medical data, whereas SoCs developed to be incorporated 
into space or defense missions are designed to handle more complex data such as 
telemetry, etc. Hence, defining the environment in which the SoC will function can 
give the designer the type of data being addressed and that needs to be protected. 
Once the environment for the SoC has been defined, the designer needs to know 
the specific regions of the SoC that are responsible for handling this data. Various 
SoC components such as memory units (RAM and ROM), encryption units (AES, 
RSA), and system bus store, utilize, and handle various user data. Depending on the 
SoC environment and data being handled, SoC integrate various such components.
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Identifying these SoC components and the conditions under which they handle 
users’ data and ensuring they are not accessible by an adversary ensure the security 
of the SoC. These SoC components are denoted as “security assets.” The security 
assets identified can be further categorized into primary and secondary assets as 
defined in [13]. Security assets can be identified through manual efforts, such as 
inspecting the RTL code & functional specification, or automated using techniques 
such as those described in [12]. 

7.3.2 Threat Model Identification 

Identifying security assets is the primary step toward property-driven verification 
of SoC security validation. The other vital component is the identification of the 
threat model. As described in the above section, different SoCs are employed in 
various diverse environments depending on their specification. This results not 
only in a myriad of set security assets but also in the threats that they face. 
Property-driven verification requires the designer to understand the various threat 
models that apply to an SoC under consideration. A threat model is defined as 
the “operating conditions under which an adversary can gain access to an SoC 
component and extract, modify, or deny access to the component or the data held 
by it.” Acknowledging the various threat models encountered by an SoC during its 
life cycle, a designer can then introduce security measures into the SoC design to 
protect its security assets. 

Similar to security assets, the threat models faced by an SoC can be defined by 
the operating environment in which they will be operational. Threat models to an 
SoC are broadly divided as follows: 

Confidentiality [4] Confidentiality refers to the unauthorized access of users’ 
critical data by an adversary. The confidentiality threat model dictates that under 
no condition should an adversary or outside party be capable of extracting secrets 
stored in the SoC. 

Let us consider the sample SoC block shown in Fig. 7.3. As described in 
Sect. 7.3.1, the AES and RSA key is security assets that must be protected. These 
keys can be hard-coded into the encryption IP, generated using security primitives 
such as TRNGs [3], or stored in secure memory regions. During operation, the key 
value is propagated along the system bus to the encryption cores. The adversary 
can create an environment in which he can access this information directly by 
observing output ports or probing the chip [5, 29] or injecting faults [10] is a  
confidentiality threat model. Some examples of the confidentiality threat model have 
been utilized in attacks such as Spectre [20], Meltdown [21], etc., where the attacker 
takes advantage of speculative execution. Then using cache timing attacks, extracts 
secret information.
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Fig. 7.3 Sample system-on-chip block consisting of a CPU core; memory system; GPIO; 
peripherals; DMA controller; encryption IPs AES, RSA, and TRNG; and a system and peripheral 
bus for communication 

Integrity [4] Integrity refers to an adversary’s unauthorized modification of secure 
data. The integrity threat model dictates that under no condition should an adversary 
or outside party be capable of modifying data stored in the SoC. 

Referring back to the sample SoC in Fig. 7.3, user personal data, such as 
password credentials, are stored encrypted in the memory. An adversary can create 
conditions such as inducing laser faults, inducing voltage [15] and clock [24] 
glitches, etc., to modify the data itself or the control sequence of the SoC, resulting 
in modifying data. Such a threat environment is considered an integrity threat model. 
In attacks such as Rowhammer [19], the adversary creates an integrity threat model 
that results in SoC data modification. 

Threat model identification for an SoC is a critical task requiring a complete 
understanding of its operational environment and security assets and the available 
attack methods used by an adversary. Considering an SoC to be incorporated into 
a mobile computing device, the adversary can gain physical access to the SoC 
through reverse engineering and hence can utilize both physical attack methods such 
as reverse engineering, fault injection, probing, and remote attacks. Therefore, the 
design house has to incorporate security measures against both physical and remote 
attacks. Considering an SoC to be incorporated into a space mission, the adversary 
cannot have physical access; hence, attacks such as reverse engineering and probing 
are impossible. For such cases, the design house resource is better served by utilizing 
them to protect the SoC against remote attacks.
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7.3.3 Generating Security Properties 

The above two sections discussed the primary steps toward property-driven veri-
fication for security validation. This section details how to generate the security 
assertions required for security validation. Once the security assets and the threat 
models for the SoC have been identified, the designer then needs to define the secure 
behavior for the SoC. Equipped with the security assets of the design, the designer 
needs to identify the SoC functionalities in which the security asset is involved. 
Consider the sample SoC shown in Fig. 7.3. From Sect. 7.3.1, we have determined 
that the AES key, which is utilized to encrypt confidential user data, is a security 
asset that needs to be protected. The key is utilized under two functions of the 
SoC, encryption/decryption of data and the bus protocol that transports it to the 
AES core. The designer needs to identify the exact conditions under which these 
two functionalities take place, i.e., control sequences under which encryption or 
decryption takes place, bus protocols that propagate the key, etc. 

The designer then needs to consider various threat models that can affect the 
security asset under consideration and the possible attack vectors for that threat 
model. This equips the designer with the potential attack scenario to extract/modify 
the security asset. The designer can then formulate the behavior of the security asset 
that allows for proper functionality but ensures that the security asset isn’t affected 
by the threat model under consideration. 

7.4 Experimental Setup 

In our hands-on experiment, we utilized the Cadence JasperGold [18] verification 
tool for the formal analysis of the generated properties. The source codes can be 
found at http://cad4security.org/index.php/trainings/hsl/ch7_security_verification/. 
Cadence JasperGold is an electronic design automation (EDA) supplier of high-
level formal functional verification software, among other tools such as Synopsys 
VC [27] and Cyucity Radix-S [9]. It enables exhaustive and complete verification, 
provides rapid bug detection, and completes end-to-end proofs of expected design 
behavior. It gives a counterexample showcasing the exact conditions under which 
the failed property is violated, equipping the designer with the required information 
to analyze the design and make the required changes. JasperGold comprises 
multiple applications such as the formal property verification (FPV) [6] used for  
property checking, security path verification (SPV) [7] utilized for checking the 
confidentiality and integrity of the information flow within the SoC, and many such 
other applications [18].

http://cad4security.org/index.php/trainings/hsl/ch7_security_verification/
http://cad4security.org/index.php/trainings/hsl/ch7_security_verification/
http://cad4security.org/index.php/trainings/hsl/ch7_security_verification/
http://cad4security.org/index.php/trainings/hsl/ch7_security_verification/
http://cad4security.org/index.php/trainings/hsl/ch7_security_verification/
http://cad4security.org/index.php/trainings/hsl/ch7_security_verification/
http://cad4security.org/index.php/trainings/hsl/ch7_security_verification/
http://cad4security.org/index.php/trainings/hsl/ch7_security_verification/
http://cad4security.org/index.php/trainings/hsl/ch7_security_verification/
http://cad4security.org/index.php/trainings/hsl/ch7_security_verification/
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Fig. 7.4 Hardware AES block diagram showing the various suboperations in each round of 
encryption (left hand side) and decryption (right hand side). All rounds of operation consist of an 
SubBytes, ShiftRows, MixColumns, and AddRoundKey, except for the last round. (Image credits: 
https://i.stack.imgur.com/HyRg4.png) 

7.4.1 AES Design 

For the experiment, an AES implementation is utilized for which properties for 
security validation are derived and tested. A high-level block diagram of an AES 
implementation that completes one round of AES per clock cycle is shown in 
Fig. 7.4. 

AES-128 is a 128-bit symmetric key cryptographic module used for the encryp-
tion and decryption of data in an SoC. It consists of ten rounds of encryption [2]. 
The first nine rounds consist of a substitution operation, a nonlinear substitution 
step of each byte of state data according to a look-up table. This is followed by a 
ShiftRows operation where a transposition of the bytes occurs cyclically. Following 
is a mixed column operation that operates on the state columns and is XORed with 
the round key derived from the input key in the AddRoundKey. The final round is

https://i.stack.imgur.com/HyRg4.png
https://i.stack.imgur.com/HyRg4.png
https://i.stack.imgur.com/HyRg4.png
https://i.stack.imgur.com/HyRg4.png
https://i.stack.imgur.com/HyRg4.png
https://i.stack.imgur.com/HyRg4.png
https://i.stack.imgur.com/HyRg4.png
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a substitution operation, followed by a ShiftRow operation and finally XORed with 
the round key in the AddRoundKey operation. 

For this AES-128 design, we have identified the plaintext and key inputs as 
critical security assets. Both confidentiality and integrity are considered threat 
models. Any leakage or manipulation of these resources could compromise the 
whole security of the system, giving an adversary access to essential and sensitive 
information. We have also identified information leakage and access control as 
threat models that can affect this design. 

7.4.2 Security Property Development for Verification 

The designer is now equipped with the security assets (key and plaintext inputs) for 
the AES design and the corresponding threat models (confidentiality and integrity). 
For the threat model under consideration, we can define some natural language 
properties that describe the secure behavior of the security assets. 

Let us now consider the confidentiality threat model, where the adversary aims to 
extract the information regarding the security asset but causes it to leak or flow to an 
observable point accessible by the adversary. The below properties were developed 
for the AES design described in Sect. 7.4.1: 

Security Assets: Key, plaintext, intermediate results of encryption Threat Model: 
Confidentiality – leaking sensitive information of an AES design unauthorizedly 

Developed Properties 

• Property P1: Input data of the encryption module should not flow/should not be 
observable to the output port. 

• Property P2: Encryption keys/registers that store encryption keys should not 
flow/should not be observable to the output port. 

• Property 3: Registers storing plaintext should not be observable from an output 
signal. 

• Property P4: Key control registers should not be observable from the output 
signal. 

• Property P5: Plaintext control registers should not be observable from the output 
signal. 

• Property P6: The encryption key should not be shared with other modules of the 
design. 

• Property P7: Intermediate results of encryption should not flow to an output port. 

Property P1 describes the need to ensure that no direct path flows from the 
input key and plaintext ports resulting in a direct leakage of the security asset. 
Such leakage paths can be introduced unintentionally through designer negligence, 
intentionally through a malicious implant [22], or through CAD tool optimizations 
[23].
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Properties P2 and P3 are to check for any information flow path from the 
register/memory units storing the key, and plaintext data do not leak partial or 
complete information regarding them to the outside world. 

Properties P4 and P5 check for the possibility of access by an adversary to the 
control registers that control the key and plaintext data. An adversary can induce 
faults (laser, voltage, or clock glitching) to override controls to the security assets 
and then extract them. 

Property P6 checks to see if, during the key propagation, any information 
regarding the key flows to any other design modules (the key should only flow 
between its memory register and the AES IP). An adversary may tap into another 
module and extract the key information. 

Property P7 analyzes for the scenario where the intermediate results of the 
encryption leak to the output port. An adversary with access to the intermediate 
results of an AES encryption reverse engineered the key and plaintext values. 

7.4.3 Property-to-Assertion Conversion 

The security properties are in natural language, so they need to be converted into 
assertions/cover statements to make them readable for verification tools. For a 
specific design example, a user must identify appropriate signals and concatenate 
them using necessary operators based on the associated security property. Thus, 
the security property is converted into an assertion/cover statement. Multiple 
assertion/cover statements may need to be written for a single property. Moreover, 
the same property can be converted into different assertions for different design 
implementations and abstraction levels. The conversion of security properties 
(mentioned earlier) to assertions is shown in Table 7.1 for an encryption module. 

7.4.4 Compiling Target Design and Property Verification 

This section presents detailed step-by-step instructions on compiling and testing the 
properties we have defined. The developed properties are input to the JapserGold 
tool as scripts. The first four assertions are illustrated in Table 7.1 and are checked 
using the JasperGold security path verification (SPV) application, a part of the 
complete set of applications in the JasperGold tool suite. The fifth and final assertion 
is checked using the JasperGold formal property verification application. Both 
applications can be called using a script, which will be described later in the section.
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Fig. 7.5 The TCL script used for running the formal analyses to verify the defined assertions. 
The script consists of all commands required for setting up the SPV environment and proving the 
assertions 

7.4.5 Tool 1: JasperGold Security Path Verification (SPV) 

JasperGold SPV is an application in the JasperGold suite of tools, designed 
specifically for formal verification of the presence of information leakage paths. 
There is a predefined SPV template that can be utilized for formal check of 
information leakage properties. JasperGold SPV can read in a TCL file containing 
the various commands for compiling and elaborating the design, defining the clock 
and reset for the design, reading the various SPV assertions to be checked, and then 
proving the included assertions. A sample script is shown in Fig. 7.5: 

Step 1: Setting Up JasperGold Environment JasperGold SPV is capable of 
reading in the RTL design and elaborating to form the entire hierarchy. Using 
the analyze command as highlighted in box 1 of Fig. 7.5, JasperGold can read in 
and compile the hardware design indicated by the path. JasperGold is capable of 
analyzing VHDL and SystemVerilog designs along with RTL designs. By changing 
the flag described below, JasperGold examines the design written in any of the above 
hardware languages:
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• -v2k: Used for analyzing Verilog 2001 standard design files 
• -verilog: Used for analyzing Verilog 1995 standard design files 
• -vhdl: Used for analyzing VHDL design files 
• -sv: Used for analyzing SystemVerilog design files 

Once the design files have been analyzed, JasperGold elaborates on the complete 
design to unroll the design hierarchy. The command for elaborating a design using 
JasperGold SPV is highlighted in box 2 in Fig. 7.5. Once the design hierarchy 
is elaborated, the user needs to define the clock and reset signals for the input 
design. The “clock” command, highlighted in box 3, is used to specify a global 
clock configuration. Users can use this command to list all the clock configurations 
and analyze the clock tree. The analysis can properly provide the clock environment 
information for property checking. The “reset” command highlighted in box 4 of 
Fig. 7.5 commands to specify the reset condition for the design under verification. 
Users can also set an active low reset using the “-expression” flag while defining the 
reset signal and inputting an active low signal. 

Step 2: Analyzing Assertions to Be Checked and Running the Tool The above 
set of commands sets up the JasperGold SPV environment for the formal analysis. 
The next step is to input the assertions that need to be checked. This is done by 
specifying each assertion to be checked by JasperGold in the input TCL script after 
setting up the environment. As seen in box 5 in Fig. 7.5, the user defines various 
assertions that need to be checked by the JasperGold SPV. In the figure, we input 
the four assertions we intend to check using the SPV application. The user then 
conveys to the tool to prove all the assertions defined using the command shown in 
box 6 in Fig.  7.5 

The above two steps instruct the user on creating a simple TCL script that can 
set up the SPV environment for a given design and how to read the assertions to be 
checked and prove them. Users can invoke the JasperGold SPV Tool Gui, shown 
in Fig. 7.6. Once invoked, the user can instruct the tool to read the TCL script 
created, as highlighted in box 1 of Fig. 7.6. On running the “source” command, SPV 
constructs the environment, reads in the assertions, and runs its formal analysis to 
prove the input assertions. 

Once the TCL script has been processed, the user will see a screen similar to 
Fig. 7.7. Box 1 highlighted in Fig. 7.7 shows the hierarchy of the compiled design, 
as discussed in step 1. The user can identify each instantiation of a module and see 
signal values for each instantiation in a waveform. The SPV tool’s assertions that 
are analyzed and formally proven are highlighted in box 2 in Fig. 7.7. The assertions 
can have two possible results: 

• Green Tick: A green tick next to an assertion indicates that the tool has formally 
proven the assertion. This means that SPV could not find any information leakage 
path from the source (security asset) to the destination (output port). 

• Red Arrow: A red arrow next to an assertion indicates that the tool could not 
formally prove the assertion. This means that SPV was able to identify a path 
that leaks information from the source (security asset) to the destination (output 
port). The tool provides a counterexample, showing the exact leakage path.
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Fig. 7.6 JasperGold SPV GUI when invoked by the user 

The four assertions we determined for the AES design failed the formal analysis. 
This indicated that leakage paths leak the key and plaintext values from the input 
port and corresponding registers to the output port. A summary of the formal 
analysis, showing the number of assertions analyzed and the number of assertions 
passed/failed, is highlighted in box 3 in Fig. 7.7. 

7.4.6 Tool 2: JasperGold Formal Property Verification 

Similar to JasperGold SPV, the FPV application is utilized for formal analysis. 
However, it is constrained like the SPV application and can be used to verify 
properties for various threat models. Also, unlike SPV, no fixed template can be 
used. The user needs to be able to define the specific property in the form of a 
SystemVerilog assertion (SVA). FPV also can read in a TCL file containing the 
various commands for setting up the FPV environment, analyzing property and 
bind files, reading the SVA assertions to be checked, and then proving the included 
assertions:
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Fig. 7.7 JasperGold SPV GUI after formal verification. The shell shows the hierarchy of the 
design, the status of properties proven, and a summary of the complete formal analysis 

Step 1: Create Property and Bind Files FPV analysis requires all properties to be 
expressed as SystemVerilog assertions. Defining the SVA assertions needs to create 
a property file (.sva). The property file looks similar to a Verilog module file, and 
the property file for property P7 for the AES design is shown in Fig. 7.8. 

The module defined in the property file is incorporated into the design hierarchy, 
where it reads all input values read by design under consideration. The property file-
defined module also reads the output port values from the design. The property file 
module reads in all design port values, and the defined properties are then evaluated 
using these values. The property file module definition is similar to the design under 
consideration, except all the I/O ports defined for the design are input ports to the 
property module file. This is highlighted in box 1 in Fig. 7.8. Once the ports are 
restricted, the user can determine the various SVA properties to be checked, as 
highlighted in box 2 of Fig. 7.8. 

Once the property file is defined, the user must bind the property file module 
to the design under consideration. Binding is required to determine the port



130 7 Security Verification

Fig. 7.8 Sample property file module as required for the FPV analysis 

Fig. 7.9 Sample binding module required for binding the design under consideration to the 
property file module 

connections between the property file and the design under consideration. The bind 
file (.sva) for our AES example is shown in Fig. 7.9. 

Step 2: Defining the FPV Environment and Running the Tool Once the property 
and bind files have been defined, the user can set up the FPV environment. The FPV 
environment is the same as the SPV environment setup, as discussed in step 1 of 
Sect. 7.4.5, with one additional step. The FPV environment requires the compilation 
of the property and bind files to perform the formal analysis. FPV can analyze and 
compile the property and bind files utilizing the “analyze” command, as highlighted 
in box 1 in Fig. 7.10 The user can assess the general complexity of formal analysis 
by getting various design information such as the number of gates, flops, set of 
counters, any special values of the counters, the set of finite-state machines, etc. This 
can give the user a brief overview of the design complexity and, thus, formal analysis 
complexity. A user can gain this information using the “. getdesigninf ormation′′
command, as highlighted in box 2 in Fig. 7.10. The user can set various conditions 
for property verification, such as 

• set_max_trace_length: Specify the maximum length for trace limit for the proof 
depth. If one engine reaches the length limit for some property, all other engines 
will stop working on that property. 

• set_prove_per_property_time_limit: Used to specify the maximum time the tool 
spends in proving any individual assertion. 

• set_engine_mode: To select default engines for proving properties. FPV has 
multiple engines that can be chosen, each tuned for different properties. 

All the above optional commands can be seen highlighted in box 3 in Fig. 7.10. 
The above steps instruct the user on creating a simple TCL script that can set up the
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Fig. 7.10 Sample FPV script used to run FPV check for the assertions defined for the AESmodule 

FPV environment for a given design, creating the property module along with the 
binding file, and how to read the assertions to be checked and proving them. For each 
assertion given as input, FPV also generates a cover statement for the antecedent of 
the assertion. This is to ensure that the antecedent condition is covered, i.e., it occurs 
at least once in the design before proving the property. 

Users can invoke the JasperGold Tool SPV Gui, shown in Fig. 7.11. Once 
invoked, the user can instruct the tool to read the TCL script created, as highlighted 
in Fig. 7.11. On running the “source” command, FPV constructs the environment, 
reads in the assertions, and runs its formal analysis to prove the input assertions. 

Once the TCL script has been processed, the user will see a screen similar to 
Fig. 7.12. Similar to the SPV tool, the FPV tool GUI also outputs the hierarchy of
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Fig. 7.11 JasperGold FPV GUI when invoked by the user 

the design, assertions analyzed and formally proven, and the summary of the proof. 
Assertions analyzed by the FPV tool can either pass or fail. 

• Pass (Green Tick): The FPV tool formally proved the assertion. Thus, the design 
adheres to the behavior described by the assertion under all circumstances. 

• Fail (Red Cross): The FPV tool could not formally prove the assertion. This 
means the tool found a circumstance under which the behavior described by the 
tool has been violated. A counterexample waveform with the simulation for the 
failure is shown. 

For our AES design, we utilized the FPV tool to check the validity of behavior as 
defined by property P7. We observe that the cover statement is proven. Hence, the 
antecedent condition is met. However, the assertion indicates a condition in which 
the intermediate result leaks to the output port before the completion of the AES 
operation. 

7.5 Conclusion 

The purpose of this chapter is to help readers to learn about how to use property-
based verification for the security validation of designs. This chapter provides the 
framework required for generating properties for security validation. We describe in 
detail how to identify the security assets and threat models needed for formulating 
the security properties and then developing security properties for security valida-
tion. We took an example AES design and, using the defined framework, identified 
the design’s various security assets and threat models. Then we developed natural
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Fig. 7.12 JasperGold FPV GUI with results for the AES design 

language properties defining the secure behavior of the identified security assets. 
These properties were then converted into tool-understandable assertion form. The 
chapter then dives into two formal tools, JasperGold SPV and JasperGold FPV, 
explaining the different types of assertions that can be proven using these tools. 
The chapter then details a step-by-step process on how to verify the assertions that 
were generated. We hope this framework will help us understand how to develop 
security properties focusing on different threat models and protecting various assets 
and then how to convert those properties into assertions and use industry-standard 
verification tools to verify the assertions from a security perspective formally.
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Chapter 8 
Power Analysis Attacks on AES 

8.1 Introduction 

Hardware security is a domain of enterprise security that focuses on protecting 
all hardware devices including microcontrollers, FPGA, and ASICs, among other 
similar hardware. Hardware-oriented security research focuses mainly on exploring 
both attack and defensive aspects of hardware devices. Traditionally, the main 
task of cryptographic hardware is the acceleration of operations frequently used in 
cryptosystems. In applications, hardware devices are also required to store secret or 
private keys securely. Hence, a cryptographic device must prevent the extraction 
and other sensitive information [25]. Naturally, to achieve the goal of building 
defensive capabilities in hardware, one must first understand and be aware of the 
exploits it is susceptible to. One such exploit which may be applied to hardware 
security is side-channel attacks (SCA) [26]. These attacks pose a serious threat to the 
security of systems and cryptography libraries. Indeed, many side-channel analysis 
techniques have proven successful in breaking algorithmically robust cryptographic 
functions/operations (such as encryption, key exchange, and signature generation) 
and extracting the secret key. A program or its code is not directly targeted by a side-
channel attack. Instead, a side-channel attack uses measurements to extract secret 
information from a device or system by analyzing various physical parameters [1, 7]. 
Examples of such parameters include heat, sound, time, electromagnetic emission, 
and power consumption. 

Power analysis attacks have gained much interest in the cryptography community 
since they were first published in 1998. They have so far been used successfully 
in a variety of (unsecured) public-key and symmetric cryptographic algorithm 
implementations. Power analysis attacks are used to gain sensitive information by 
observing a device’s power consumption [19, 23]. The attack is noninvasive, and it 
requires physical access to the target device. Typically, this is done by incorporating 
a current path at Vdd or Gnd pin of the chip that is performing the cryptographic 
operation, to capture power dissipation for such an operation while the device is 
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undergoing an operation. The device’s power consumption captures the switching 
activity of the relevant transistors, which depends on inputs to a cryptographic 
function, such as the plaintext and the key. 

As part of the modern design flow, FPGAs are becoming increasingly important. 
This is due to the fact that they are inexpensive and have access to a variety of 
EDA tools. An FPGA implementation of a circuit can be easily ported from high-
level descriptions (such as VerilogHDL). Naturally, it is also important to test the 
developed circuits for resistance to power analysis attacks using the resulting FPGA 
implementation. In this chapter, we focus on correlation power analysis attacks 
on AES crypto hardware. In particular, this chapter can help a reader to better 
understand and will gain hands-on experience on how to obtain a secret key from 
advanced encryption standard (AES) block cipher using correlation power analysis 
on FPGA step by step. The most common and useful power analysis attack against 
cryptographic blocks is correlation power analysis (CPA). The correlation between 
the device’s power consumption and the data produced by the computation is used 
by attackers. 

The remaining chapters are structured as follows: A detailed introduction to 
power analysis attacks will be given in Sect. 8.2. An explanation of the various 
power analysis attacks will be given, so that the context of SPA, DPA, and 
CPA attacks can be better understood. Introduction to FPGA and AES algorithm 
overview will be given 8.3. The experimental setup for power capture will be given 
in Sect. 8.4. Power measurements on the AES Chip will be given in Sect. 8.5. 
Performing AES CPA attack will be described in Sect. 8.6. Section 8.7 will wrap 
up this chapter. 

8.2 Power Analysis Attacks 

Kocher et al. [14] first described the powerful side-channel attack known as the 
power analysis attack. Attackers using power analysis techniques must measure 
a device’s power consumption without actively manipulating it, i.e., by using the 
target device in its intended mode (i.e., passive mode). For instance, in the case 
of attacks against smart cards, the attacker can choose to allow the device to 
carry out an internal authenticate command. While the device is executing this 
command, the attacker monitors the power usage of the device. A power trace is 
a representation of every power signal recorded throughout the analysis. After that, 
statistical techniques enable effectively the extraction of information on the secret 
key that is contained in the power trace. 

8.2.1 Power Consumption Characteristics of CMOS 

Nowadays, CMOS (complementary metal-oxide semiconductor) technology is used 
to implement nearly all computer and mobile processors. The CMOS technology 
uses Vss and Vdd to represent the numbers 0 and 1, respectively. The power
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Fig. 8.1 Example of a CMOS inverter circuit [7] 

consumption in an integrated circuit is dynamic and dependent upon the operations 
that are taking place inside of the circuit [21]. This can be better understood when 
looking at a single gate. Figure 8.1 shows an inverter circuit with a bypass capacitor. 
The table shows the possible transitions that can occur between two clock cycles. 
Depending on the transition, power consumption can take on one of four states. 
Power is only consumed when the states change; the corresponding states are 
represented in the table by P01 and P10 and represented by green and violet arrows 
in the figure. There is obviously more than one gate in an integrated circuit, but the 
basic principle remains the same. These transitions are determined by the operations 
taking place in the device and the values that are being processed. The simultaneous 
switching of the gates on every rising edge of the clock results in a current flow that 
can be seen through both Vdd and Vss. By, for instance, connecting a tiny resistor 
between the device’s Vss or Vdd and the genuine Vdd, this current flow can be 
seen on the outside of the device. A digital oscilloscope can measure the voltage 
produced by the resistor’s current flow. 

As the predominant type of SCA, power analysis attacks have received substan-
tial investigation from academic and industrial researchers. Different power analysis 
attacks have been developed to reveal important information about the target device, 
including differential power analysis (DPA), simple power analysis (SPA), and 
correlation power analysis (CPA) [6, 15]. A set of power measurements is required 
for each side-channel analysis to be applied; these sets vary in scope and form, 
depending on the type of attack, the complexity of the design, and the accuracy 
of the data collection process. An attacker usually needs to use a large number of 
power traces in all attack modes before applying the power analysis attack. 

8.2.2 Simple Power Analysis (SPA) 

A method called simple power analysis (SPA) includes directly evaluating power 
consumption measurements that is gathered during cryptographic operations [5].
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Fig. 8.2 SPA trace showing an AES operation [24] 

By performing a side-channel attack, which entails visually inspecting graphs of the 
current consumed by a device over time, SPA can gather details about a device’s 
operation as well as secret information [4]. The device uses varied amounts of 
power depending on the operation it is performing. A CPU, for instance, will have 
varying power consumption profiles depending on the instructions it executes. For 
example, one can distinguish a multiplication function from an addition function, 
since multiplication consumes more current than addition. Also, when reading data 
from a memory, the ratio of 1s vs. 0s will be reflected in the power profile. With 
a standard oscilloscope, one can capture the resulting current signature and from 
it deduce the type of operation. For example, Fig. 8.2 reveals the ten rounds of the 
advanced encryption standard (AES) [9]. 

SPA takes use of the fact that a device’s consumption usage is based on 
the operation being carried out inside the device, while DPA exploits the data 
dependence of the device. 

8.2.3 Differential Power Analysis (DPA) 

The most common power analysis attack is a DPA attack [16, 22]. DPA attacks aim 
to discover secret cryptographic device keys by collecting a large number of power 
traces when the devices encrypt or decrypt various data blocks. DPA attacks have the
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primary benefit over SPA attacks in that in-depth understanding of the cryptographic 
device is not required [16]. Adversaries gather a collection of power traces as part of 
a conventional DPA attack and then utilize statistical techniques to determine the key 
using the observed power traces. By examining how input data affect the observed 
value, they can infer the secrets. This method computes the difference between the 
average of many traces of two sets of data. If the difference is close to zero, then 
the two sets are not correlated. If the sets are correlated, then the difference will be 
a nonzero number. Regardless of the amount of noise present in the system, even 
minute correlations can be detected with enough traces because the noise will be 
practically cancelled out during the averaging. Normally, the encryption key is a 
128-bit value. In order to test every single value, it would take .2128 attempts which 
is pretty much impossible to do. However, the 128-bit AES key can be divided 
into 16 bytes, and each byte can be solved separately. It would only take . 28 or 256 
attempts for each byte attack, which means it would only take 16 . × 256 or 4096 
attempts to be able to decipher the complete encryption key. 

To see how this can be used, take, for example, the advanced encryption standard 
(AES). The equation for the encrypted data is given by .Output = S[Xn ⊕ Kn], 
where S is a look-up table and . ⊕ is the XOR of a known input . Xn and the encryption 
key . Kn. We try a few different hypotheses in order to figure out the value of . Kn. The  
first set of traces belongs to the set where the output’s LSB is “0,” while the second 
set of traces belongs to the set when the output’s LSB is “1.” The difference between 
the two sets’ averages is then examined. Here, we have a trace showing (see Fig. 8.3) 
the results of five different . Kn values, where the correct key corresponds to the third 
trace. 

Fig. 8.3 DPA result for different key values [13]



142 8 Power Analysis Attacks on AES

8.2.4 Correlation Power Analysis (CPA) 

Correlation power analysis (CPA) is an attack that allows us to find a secret 
encryption key that is stored on a victim device. The challenge for an attacker now 
is to effectively exploit the secret information about the secret key that is kept on a 
victim device. The attacker builds a hypothetical model of the device for this reason. 
This hypothetical model describes the device’s instantaneous power consumption 
when it performs certain cryptographic encryption. It is necessary to guess at least a 
small portion of the unknown key for this purpose. Thankfully, any algorithm used in 
practice only makes use of a small portion of the secret key at once (similar to DPA 
where each byte can be solved individually). The hacker creates a straightforward 
computer program that runs the algorithm and attacks discrete pieces (subkeys) of 
the secret key. The attacker considers every possible option for the subkey. For 
each guess and each trace, use the known plaintext and the guessed subkey to 
calculate the power consumption according to our model. In the final phase of the 
attack, the attacker feeds the same input values which he used in the model to the 
real device and evaluates its power consumption. Then the attacker compares the 
model’s predictions to the actual power consumption values [2]. For every incorrect 
key guess, the predictions will not agree with the actual measurements, but for the 
right key guess, the correlation trace will show a peak. A more advanced technique 
is a CPA attack which detects the keys by analyzing the correlation between the 
hypothetical power model and the power dissipation of the device, as illustrated in 
Fig. 8.4. 

In this chapter, we implement the most widely used block cipher AES [16] on the  
ChipWhisperer CW305 FPGA board and perform correlation power analysis (CPA) 
attack and reveal the AES cryptography key. In our attack, we can be incorporated 

Fig. 8.4 Illustration of a CPA attack [20]
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into the leakage model by calculating the Hamming distance between the prior 
value in the register and the new value (i.e., the Hamming weight of the two 
values XOR’d), and we may incorporate our attack into the leaking model. The 
main concern with attacks on hardware AES on FPGA is the Hamming distance of 
registers. In contrast, microcontrollers often set their register bits to a value between 
0 and 1 before updating them because doing so will typically conserve power and 
reduce the voltage swing when changing a value [8]. 

8.3 AES Implementation on FPGA 

8.3.1 Field-Programmable Logic Arrays 

An FPGA consists of an array of configurable logic blocks (CLBs), surrounded by 
programmable I/O blocks and connected with programmable interconnections as 
shown in Fig. 13.3. The amount of logic blocks and flip-flops in a standard FPGA 
ranges from 64 to tens of thousands. A .100% connectivity between the logic blocks 
is not typically provided by FPGAs. The logic is instead placed and routed on the 
device by complex software. 

Static random-access memory (SRAM), a technology akin to microprocessors, 
is used in the construction of the highest-density FPGAs. The other widely used 

Fig. 8.5 The FPGA architecture
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process method is known as anti-fuse, which offers the advantages of a larger 
number of programmable interconnects. Even in-system reprogramming is possible 
with SRAM-based devices by nature. It is necessary to load the program data 
specifying the logic configuration in the SRAM after applying power to the 
circuit [17]. The FPGA either loads its configuration memory on its own or 
downloads it via an external CPU. Anti-fuse devices, on the other hand, allow 
for one-time programming (OTP). They cannot be changed once programmed, but 
they also keep their program even after the power is turned off. Either the end 
user, the manufacturer, or the distributor can program anti-fuse devices in a device 
programmer. 

8.3.2 AES Algorithm Overview 

AES is a symmetric-key algorithm, which means the same key is used for both 
encryption and decryption. It was chosen as the successor of the Data Encryption 
Standard (DES) and named advanced encryption standard (AES) by the National 
Institute of Standards and Technology (NIST). AES is a subset of the Rijndael block 
cipher [9]. The NIST selected three members of the Rijndael family each having a 
128-bit block size but with an optional 128-bit, 192-bit, or 256-bit key size. For a 
complete description and explanation of AES, please refer to [9]. In our case, we 
will be attacking a target that uses AES-128. This is a version of AES with a key 
length of 128 bits, which is 16 bytes. The plaintext and ciphertext length are also 
128 bits. A high-level block diagram of an AES implementation that completes one 
round of AES per clock cycle is shown in Fig. 12.3. Internally, the AES operations 
are carried out on a two-dimensional array of bytes called the state. The input to the 
algorithm is the plaintext, arranged into the 4. ×4 state matrix. The 128-bit key can 
also be arranged into a 4. ×4 matrix of bytes. AES-128 consists of ten rounds. Before 
the rounds are carried out, the plaintext and secret key are XORed and stored into 
the State Register. After the necessary rounds of AES, the ciphertext is again loaded 
into the State Register. The First nine rounds consist of four stages: SubBytes, 
ShiftRows, MixColumns, and AddRoundKey. In the tenth round, the MixColumns 
operation is not performed as can be seen in Fig. 8.6. For encryption, each round 
consists of the following four steps: 

• AddRoundKey is a function that bitwise XORs the state input with the round key. 
• ShiftRows process where the bytes in a row are transposed by a predetermined 

number of positions along the row. 
• MixColumns is a mixing operation where the four bytes in a column are merged 

by modulo multiplication with a fixed polynomial .C(x). 
• Subbyte operation is the only nonlinear function that consists of multiplicative 

inverse in .GF(28) and a linear affine transformation. Please refer to [18], for a 
thorough explanation of how S-box implementations are employed in composite 
field inverters.



8.4 Experiment Setup 145

Fig. 8.6 Hardware AES block diagram 

The output state of the State Register will not depend on a single byte of the 
key in the first transition because of the presence of MixColumns and another 
AddRoundKey, which significantly expands the attack’s search space. As an 
alternative, the Hamming distance between the final two states—ciphertext and 
InvSubBytes (InvShiftRows (AddRoundKey (ciphertext)))—should be used as the 
leaking model for this implementation. We should emphasize that this is only one 
potential AES implementation. The last round is also the most straightforward to 
attack because it lacks the MixColumns function. 

8.4 Experiment Setup 

In this section, we will use the Chipwhisperer CW305 board and ChipWhisperer-
capture devices and ensure it is correctly set up for power capture [22]. A stan-
dardized capture method for evaluating new power analysis algorithms is offered 
by the open-source ChipWhisperer project. For researching embedded hardware 
security, ChipWhisperer is a collection of numerous tools. There are ChipWhisperer 
hardware targets, ChipWhisperer target device firmware, ChipWhisperer target 
device FPGA blocks, and ChipWhisperer analysis software and libraries (which 
execute sampling of power measurements). As a standalone target, the CW305 
board enables the use of a larger FPGA target to implement the AES core.
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8.4.1 Hardware and Software 

The following hardware, software, and equipment were used for the implemented 
attacks: 

• Laptop/PC (i.e., installed Windows 10). 
• The AES design is developed using Xilinx Vivado 2020.2 and coded in Ver-

ilogHDL, whereas Python is utilized for communication between the FPGA 
board and the PC using USB interface. 

• Chipwhisperer software (v5.6.4): The ChipWhisperer software includes a Python 
API for talking to ChipWhisperer hardware (ChipWhisperer capture) and also a 
Python API for processing power traces from ChipWhisperer hardware (Chip-
Whisperer Analyzer). 

• ChipWhisperer CW305 FPGA board: This is a target board in which we can 
implement crypto algorithms, and the board uses the Artix-7 FPGA. 

• ChipWhisperer-Lite/Pro Capture board: This is a capture device that has gotten a 
new firmware update that gives it a USB-CDC serial port for talking over UART. 
The 10-bit analog-to-digital converter (ADC) on the NewAE ChipWhisperer-Pro 
and Lite capture boards has a sampling rate of 105 MS/s, while the buffer sizes 
are 98,119 and 24,573 samples, respectively. To interact with the workstation 
depicted in Figure [7], both can be linked via an SMA connector on the target 
board and a USB port. 

8.4.2 Firmware Setup 

All ChipWhisperer scopes and FPGA targets have a ROM base bootloader, meaning 
it is effectively impossible to brick the ChipWhisperer by updating or erasing its 
firmware. The firmware is small-footprint software usually found in embedded 
devices, for instance, the microcode of the hard drive. The bootloader is part of 
the firmware that usually ran during the boot sequence which allows loading new 
firmware to update it from SPI and USB. Three separate pieces of firmware are used 
on the ChipWhisperer hardware: 

1. The capture board has a USB controller (in C). 
2. An FPGA for high-speed captures (in Verilog) with open-source firmware. 
3. The target device has its own firmware. 

The above firmware is not automatically updated, but it tends to change 
less frequently. Many firmware examples for different targets are available in 
the repository: https://github.com/newaetech/chipwhisperer. First download the 
ChipWhisperer software from the following link, https://github.com/newaetech/ 
chipwhisperer/releases, and install it on the control computer (PC). The Chip-
Whisperer Python library can be used for communication with both the NewAE 
Capture and target boards. Once installed the ChipWhisperer software, we may need

https://github.com/newaetech/chipwhisperer
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to update the ChipWhisperer firmware. For details to update the ChipWhisperer 
firmware, please refer to the following links: 

1. https://chipwhisperer.readthedocs.io/en/latest/scope-api.html#api-scope-update 
2. https://wiki.newae.com/Manual_SAM3U_Firmware_Update. 

8.4.3 Hardware Setup 

In this chapter, we’ll make sure the CW305 target board [12] is configured properly 
for power capture by using it. The ChipWhisperer hardware consists of a target 
board and a capture board to record power traces. The setup for the experiment is 
shown in Fig. 8.7. 

The CW305 FPGA board features a USB interface to talk to the FPGA, an 
external PLL for clocking the FPGA, and a programming VCC-INT supply. The 
Algorithm Under Test is the algorithm we want to test. The goal of performing 
side-channel power analysis on this method is supported by the remaining circuitry. 
We may easily load input, keys, output, or trigger operations by using the Register 

Fig. 8.7 CW305 board setup for power capture
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Interface to match our Python code on the control computer. Physically, the CW305 
acts as an address/data bus between the FPGA and the microcontroller for the USB 
interface. This address/data bus enables you to establish a conventional address/data 
bus on the FPGA instead and write any data into the FPGA. 

8.4.3.1 CW305 Default Setup 

The CW305 is a standalone FPGA target board as shown in Fig. 8.7. It features a 
USB interface for talking to the FPGA, an external PLL for clocking the FPGA, 
and a programming VCC-INT supply. The CW305 board is available in a number 
of configurations. It requires an external device for side-channel power analysis or 
fault injection and features the standard ChipWhisperer 20-pin/SMA interface. The 
CW305 consists of five configuration switches (see Fig. 8.8) such as the following: 
(1) DIP S1 switch (bottom-side, lower-left corner) is used to configure the FPGA 
bitstream mode. (2) DIP S2 switch (top-side, lower-right corner) is used to configure 
if the clock comes from the on-board PLL or from an external clock. (3) The small 
surface mount switch is used to configure the FPGA POWER. (4) The SPDT1 
switch is used to select the VCC-INT power source. (5) Another SPDT2 switch 
is used to select the input power source. It decides whether to use the DC power 
jack or the USB-A connector to power the board. The readers are curious about how 
jumper and switch configurations work; for more information, view the complete 
documentation on https://rtfm.newae.com/Targets/CW305%20Artix%20FPGA/. 

Fig. 8.8 The CW305 configuration switches

https://rtfm.newae.com/Targets/CW305%20Artix%20FPGA/
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https://rtfm.newae.com/Targets/CW305%20Artix%20FPGA/
https://rtfm.newae.com/Targets/CW305%20Artix%20FPGA/
https://rtfm.newae.com/Targets/CW305%20Artix%20FPGA/
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Fig. 8.9 The CW305 interconnected to the ChipWhisperer-Lite capture board [7] 

8.4.3.2 Connect a CW305 board to a ChipWhisperer-Lite/Pro board 

Simply attach a ChipWhisperer-Lite/Pro Capture board [10, 11] to the CW305 board 
as indicated in Fig. 8.9 once the CW305 board has been configured to the default 
settings above. In this situation, we only need to take the following actions: 

• Turn off the CW305 board. 
• Connect JP1 on the CW305 with the 20-pin “target connector” from the 

ChipWhisperer capture board. 
• SMA cable should be connected from the “measure” SMA on the ChipWhisperer 

capture to the CW305’s X4 (amplified shunt output). 
• Utilize a Mini-USB to connect the ChipWhisperer-Lite or ChipWhisperer-Pro to 

a computer. 
• Turn on the CW305 board (or plugin if not plugged in yet). 

8.5 Power Measurements on the AES Chip 

To get started, we need to make three connections to the CW305 target: 

1. We will control the Artix-7 directly from the computer via USB. This is done 
through the USB-B port on the left side of the board. (On the target, the
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Atmel SAM3U chip converts these USB packets into signals that the FPGA can 
understand.) 

2. We will get control information for our power measurements through the 20-pin 
connector at the bottom of the board. This needs to be connected to the capture 
hardware (a ChipWhisperer Lite). 

3. Our power measurements will be done through an SMA cable. 

Bit file configuration, arming CWlite capture boards, and tracing from the CWlite 
board are also handled by our Python script. Then, the code triggers the encryption 
of a secret key and plaintext on the targeted hardware. At the end of the encryption, 
the program stops the capture and collects the power trace out of the ChipWhisperer-
Lite. 

8.5.1 AES Bitstream Generation 

• The first thing we will need is the Xilinx Vivado tool for AES bitstream 
generation. In this connection, the fully featured versions of the Xilinx Vivado 
software with a license are required. However, the WEBPACK version is free for 
our target Artix-7 FPGA. To download and install Xilinx Vivado design suite, 
refer to the link https://www.youtube.com/watch?v=DIOll3P65hg: 

• Design entry can be done in various ways. The most intuitive method is drawing 
the schematics by connecting some predefined functional modules together. It is 
better and recommended to write our behavioral implementation in the form of 
hardware description languages (HDL) like Verilog and VHDL. For this tutorial, 
we will provide a preexisting AES-128 encryption example with a couple of 
project files to build a project using the Xilinx Vivado software. When we open 
the project file, we should be greeted with a screen as shown in Fig. 8.10. There 
are three steps that Vivado takes to turn our Verilog into a bitstream code. 

Fig. 8.10 Build a project using the Xilinx Vivado software

https://www.youtube.com/watch?v=DIOll3P65hg
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1. Synthesis: The Verilog code is synthesized into a gate-level representation. 
During the synthesis stage, the HDL code composed at the design entry stage 
will be converted into a circuit in the form of a netlist by the electronic 
design automation (EDA) tools. Our HDL code is going to be parsed to check 
syntax and then optimized to reduce redundant logic according to the specified 
settings. The generated netlist will contain the needed logic elements and the 
connectivity among them as described by the HDL code. 

2. Implementation: The synthesized logic is routed to fit onto the device. The 
implementation phase will then technology map the logic elements in the 
netlist to the primitives available in the selected FPGA model so that the 
design could be implemented on our physical chip. Also, this step will place 
and route the primitives on the FPGA layout virtually per the constraints 
from designers and physical aspects to make the final design meet the power, 
performance, and area requirements. 

3. Bitstream Generation: Finally, the placed and routed netlist will be translated 
to the binary configuration data, the so-called bitstream with the vendor-
specific tool. The bitstream is stored in the desktop directory. For example: 

D:AES_CPA\AES_cw305_top.bit 

4. Then download it to the target device to fulfill the functionality. Bitstreams are 
to be stored in the FPGA, but they will be volatile meaning that once lost the 
FPGA loses power. Persistent storage is available on the CW305 in the form 
of an SPI flash chip. 

8.5.2 Capture a Power Trace 

With our FPGA bitstream in hand, we are now ready to capture a power trace. 
A valid key should be loaded on the target, and a key text pair object should 
be obtained using ChipWhisperer before capture. Using the Xilinx Impact tool, 
the device is configured once the programmable bit file for the target FPGA is 
generated. Plaintexts are generated in the host system and supplied via the capture 
board CWlite board from the PC (Python) to the target FPGA. The corresponding 
power trace is recorded across the resistor R2 that is put in the core VDD line on the 
cw305 during encryption. In order to reduce trace misalignment during the power 
trace acquisition phase, a status signal produced from the target FPGA is employed 
as a trigger for the capture board. Just prior to the first round of AES, the trigger 
signal is set. Ten thousand distinct plaintexts are used in the measurements, and the 
associated 10,000 power traces are recorded. Usually, a basic capture loop consists 
of the following steps: 

1. First, open Python 3.3.7. shell from the taskbar. 
2. Click the “file” and click the open in the above Python 3.3.7. shell.
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3. Then open the Testcapture_Aes_CWlite.py file using the above Python 3.3.7. 
shell from the source directory. For example: 

D:AES_CPA\PythonScripts 

4. Immediately prior to the first round of AES, the trigger signal is set. 
5. Run the python script (Testcapture_Aes_CWlite) as shown below. We have given 

the comments inside the python script (i.e., how to bit file program into FPGA 
and how to assign a number of traces). Ktp.next() is to generate the same key and 
different plaintext for every capture. The Verilog design files and all sources can 
be found at http://cad4security.org/index.php/trainings/hsl/ch8_psc_on_aes/: 

# Breaking Hardware AES on CW305 FPGA. 

# In[1]: 

import chipwhisperer as cw 
scope = cw.scope() 
scope.gain.db = 25 
scope.adc.samples = 129 
scope.adc.offset = 0 
scope.adc.basic_mode = "rising_edge" 
scope.clock.clkgen_freq = 7370000 
scope.clock.adc_src = "extclk_x4" 
scope.trigger.triggers = "tio4" 
scope.io.tio1 = "serial_rx" 
scope.io.tio2 = "serial_tx" 
scope.io.hs2 = "disabled" 

# After that, we’ll join the CW305 board. 
# We must provide the bitstream file to load here. 

# Pick the correct bitfile for our CW305 board. 
# To set ‘force=True‘ if you have generated a 
new bitfile otherwise to set ‘force=False’ 

# In[2]: 

bitstream = r"D:AES_CPA\AES_cw305_top.bit" 

target = cw.target(scope, cw.targets.CW305, 
bsfile=bitstream, force=True) 

# In[3]: 

project = cw.create_project(r’D:AES_CPA\ 
Tutorial_CW305.cwp’, overwrite=True) 

# Next we set all the PLLs. We enable CW305’s PLL1; 
# this clock will feed both the target and the CW ADC. 
# make sure the DIP switches on the CW305 board are 
set as follows: 
# - J16 = 0 
# - K16 = 1


 6376 -307 a 6376 -307 a
 

 9351 6355 a 9351 6355
a
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# In[4]: 

target.vccint_set(1.0) 
# we only need PLL1: 
target.pll.pll_enable_set(True) 
target.pll.pll_outenable_set(False, 0) 
target.pll.pll_outenable_set(True, 1) 
target.pll.pll_outenable_set(False, 2) 

# target.pll.pll_outsource_set("PLL0", 0) 

# run at 10 MHz: 
target.pll.pll_outfreq_set(10E6, 1) 

# 1ms is plenty of idling time 
target.clkusbautooff = True 
target.clksleeptime = 1 

# In[5]: 
# ensure ADC is locked: 

tries = 100 
for i in range(tries): 

scope.clock.reset_adc() 
if scope.clock.adc_locked: 

break 
if not scope.clock.adc_locked: 

print("Couldn’t lock") 

# In[6]: 

# ## Trace Capture 
# The capture loop is shown below. # In the main portion 
of the loop, new plaintext is loaded, the scope is 
armed, the key and plaintext are sent, and finally, our 
new trace is recorded and added to the list of "traces[]". 

from tqdm import tnrange 
from tqdm.notebook import trange 
import numpy as np 
import time 
from Crypto.Cipher import AES 

ktp = cw.ktp.Basic() 

traces = [] 
textin = [] 
keys = [] 

# Because we’re capturing 5000 traces 

N = 10000 # Number of traces 

# initialize cipher to verify DUT result: 
key, text = ktp.next() 
cipher = AES.new(bytes(key), AES.MODE_ECB) 

for i in tnrange(N, desc=’Capturing traces’):
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key, text = ktp.next() 
# manual creation of a key, text pair can be substituted here 

textin.append(text) 
keys.append(key) 

ret = cw.capture_trace(scope, target, text, key) 
if not ret: 

print("Failed capture") 
continue 

traces.append(ret.wave) 
project.traces.append(ret) 

# After that, the capture traces must be 
saved so that the attack can be repeated 
in the future without having to go 
through the trace acquisition process again. 

# In[7]: 

project.save() 
# This shows how a captured trace can be plotted: 

# In[8]: 

import matplotlib.pyplot as plt 
plt.figure() 
for i in range(N): 

plt.plot(traces[i]) 
plt.show() 

# Finally disconnect the scope and target. 

# In[9]: 
scope.dis() 
target.dis() 

6. The screen will appear during the capture as shown in Fig. 8.11. 

Fig. 8.11 Capturing screen
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Fig. 8.12 Captured power trace 

7. The measurements are repeated over 10,000 different plaintexts, and the corre-
sponding 10,000 power traces are captured. In Fig. 8.12, captured power trace of 
encryption can be seen. 

8.6 Performing AES CPA Attack 

Assuming we actually read Sect. 8.2.4, it should be apparent that there are a few 
things we need to accomplish: 

• Reading the data, which consists of the analog waveform (see Fig. 8.12) and input 
text sent to the encryption core 

• Making the power leakage model, where it takes a known input text along with 
a guess of the key byte implementing the correlation equation 8.3 and then loops 
through all the traces. 

• Ranking the output of the correlation equation to determine the most likely key. 

8.6.1 CPA Attack Steps 

The CPA attack flow is shown in Fig. 8.13. For this hardware AES implementation, 
we use a hamming distance leakage model. Keep in mind that CPA is used for the 
final round of AES encryption. The final round of AES encryption is subjected to
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Fig. 8.13 CPA attack flow 

Table 8.1 Attack keys Secret key Final round attack key 

2B 7E 15 16 28 AE D2 A6 D0 14 F9 A8 C9 EE 25 89 

AB F7 15 88 09 CF 4F 3C E1 3F 0C C8 B6 63 0C A6 

CPA. In order to obtain the tenth round key bytes at a time using CPA, ciphertext 
is assumed to be a known input, and the tenth round key is assumed to be an 
unknown input. One advantage of attacking the final round in AES is that the 
MixColumns step is bypassed in this round, which speeds up calculation for the 
attack. Performing the inverse ShiftRows and the inverse SubBytes operations on 
the selected byte and guessing a byte of the key, one receives 256 possible values, 
which were in the State Register in the previous round. Computing the Hamming 
distance between the value that was in the register after the last round (the cipher 
text) and the guessed 256 values from the previous round, we obtain the expected 
power consumption model based on the transitions made on the State Register. The 
round key computing process is reversible; therefore, the round key can be used to 
compute the original key. Table 8.1 lists the first secret keys and their equivalent 
final round attack keys. 

• The first step of CPA is to compute a hypothetical intermediate value, which 
is hypothetical ninth round output. Equation 8.1 illustrates the operation 
to be followed in order to calculate the hypothetical ninth round output 
(.9throundOutputhyp): 

.9throundOutputhyp = Sbox−1(Shif trows−1(ciphertext ⊕ Kguess)) (8.1) 

• The second step is to translate the hypothetical output of the ninth round 
to the hypothetical power consumption, as indicated in Eq. 8.2. Hypothetical 
power consumption is computed by taking the hamming distance between the 
.9throundOutput_hyp with the corresponding ciphertext byte:
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.X = HD(ciphertext; 9throundOutput_hyp) (8.2) 

• The final stage in determining the proper tenth round key is to compare these 
hypothetical power consumption statistics to actual power traces [3]. The corre-
lation between the estimated power consumption values (X) and the measured 
power traces (Y ) is calculated using Eq. (8.3). In this equation, E stands for 
expectation; . μX and . μY are the mean values of X and Y , respectively; and . σX

and . σY are the standard deviations of X and Y , respectively: 

.Correlation − coefficient (X,Y) = E[(Y − μY )(X − μX)]
σY ∗ σX

(8.3) 

Once we have our capture data, the analysis is straightforward: a standard CPA 
attack is easy to do with another python script, AES_Attack.py, from the directory 
D:AES_CPA: 

# We now open our previously saved project again and 
specify the attack parameters for the CPA assault. We 
employ a different leaking model and attack for this 
hardware AES implementation than we do for software AES 
implementations. 

# Only the ciphertext is needed for this attack; the 
plaintext is not necessary. 

# In[1]: 

import chipwhisperer as cw 
import chipwhisperer.analyzer as cwa 
import numpy as np 
from tqdm.notebook import trange 
import matplotlib.pyplot as plt 

project_file = r’D:AES_CPA\Tutorial_CW305.cwp’ 
project = cw.open_project(project_file) 

attack = cwa.cpa(project, 
cwa.leakage_models.last_round_state_diff) 

# In[2]: 

# This runs the attack: 

attack_results = attack.run() 

# Without having to repeat the attack, the attack results 
can be saved for subsequent inspection or processing: 

# In[3]:


 19164 18709 a 19164 18709 a
 

 -2016 20043 a -2016 20043 a
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#import pickle 
#pickle_file = project_file + ".results.pickle" 
#pickle.dump(attack_results, open(pickle_file, "wb")) 

# In[4]: 
# key_guess 

attack_results.key_guess() 

#print(bytearray(project[0].keys[0])) 
print(attack_results.find_maximums()[4][0][2]) 
print(attack_results) 

# In[5]: 

plot_data = cwa.analyzer_plots(attack_results) 

#plt.figure() 
#plt.plot(plot_data) 
#plt.show() 
# The correlation between the best guess and the next 
best guess now shows a significant difference. In fact, 
we were able to extract the key from the previous AES 
cycle. To obtain the true AES key, we must utilize CW 
analyzer: 

from chipwhisperer.analyzer.attacks.models.aes.key_schedule 
import key_schedule_rounds 
recv_lastroundkey = [kguess[0][0] for kguess in 
attack_results.find_maximums()] 
print(recv_lastroundkey) 
recv_key = key_schedule_rounds(recv_lastroundkey, 10, 0) 
print(recv_key) 
for subkey in recv_key: 

print(hex(subkey)) 

# ## Tests 
#Verify that the key that was used is the key that was 
obtained during the attack. In order to compare it to the 
key we provided, we must roll it back because this attack 
targets the last round key. 

ktp = cw.ktp.Basic() 
key, text = ktp.next() 

key = list(key) 
assert (key == recv_key), "Failed to recover encryption 
key\nGot: {}\nExpected: {}".format(recv_key, key)
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Fig. 8.14 Correlation values and all bytes of the last round key of AES-128 

Fig. 8.15 Results of 1-byte attack on AES-128 using CPA 

As shown in Fig. 8.14, the correlation values successfully recovered all bytes 
of the last round key of AES-128 by mounting a CPA attack using 10,000 traces. 
Figure 8.15 on the left shows the correlation of all .K = 256 subkey permutations to 
the measurement results of another key pair as a function of the number of measured 
samples. On the right, the correlation of all .K = 256 subkey permutations is given 
for 10,000 traces. 

8.7 Conclusion 

This chapter aimed to perform attacks on the AES-128 algorithm using correlation 
power analysis techniques. The theoretical operation of power analysis attacks has 
been illustrated in this chapter, and subsequently it has been applied to an FPGA
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version of an AES core. By executing a CPA attack with 10,000 traces, we were able 
to successfully extract every byte of the final round key of AES-128. We hope the 
methodology demonstrated in this article provides a meaningful stepping stone in 
achieving such attacks, while results presented in CPA prove useful for researchers 
who wished to learn more about the theory and practical aspects of power analysis 
attacks. 
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Chapter 9 
EM Side-Channel Attack on AES 

9.1 Introduction 

Side-channel information describes quantifiable physical manifestations connected 
to multiple ICs (integrated circuits) or unrelated computer system processes. 
Researchers have employed a variety of side-channel parameters, such as temporal 
variation and power consumption, leakage current, electromagnetic (EM) radiation, 
temperature, sound, light, and infrared radiation. Since its inception several side-
channel analysis (SCA) attacks have been indicated such as power monitoring 
attacks, timing, cache attacks, audio-based attacks, electromagnetic (EM) emission 
attacks, data remanence, etc [2, 5–7]. These attacks exploit vulnerabilities in the ICs 
of the Internet of Things (IoT) devices, smart cards, mobile devices, and computers 
to infer sensitive information. Compared to other side-channel attacks, EM-based 
side-channel attack has significant advantages, including non-contact measurement, 
location awareness, and high-frequency information. EM radiation can generally 
be divided into two types: direct radiation and modulated radiation [18]. Direct 
radiation is directly caused by current flow with sharp rising/falling edges, while 
modulated radiation occurs when a signal carrier modulates the signals, creating 
outwardly propagating EM radiation. EM radiation includes, but is not limited to, 
radio and microwaves, visible light, infrared, X-rays, ultraviolet, and gamma rays. 
In ICs, currents and charges emit near-field EM radiation, which is described by 
Maxwell’s equations. Currents generate magnetic fields, fluctuating currents gener-
ate electric fields, and the combined magnetic and electric fields produce near-field 
electromagnetic radiation (EM radiation). When executing logic operations, ICs 
produce electromagnetic (EM) radiation, which reflects the operational conditions 
of the ICs and can be used for side-channel analysis (SCA) attacks [22, 23]. 

The electromagnetic analysis (EMA) attacks, which are side-channel attacks that 
take advantage of a device’s electromagnetic radiation, were reported by Grandolfi 
et al. in 2001 [13]. Similar to correlation power analysis (CPA) attacks (see chapter 
reference Chap. 8), correlation electromagnetic analysis (CEMA) attacks determine 
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correlation coefficients between electromagnetic traces and intermediate values (i.e., 
a hypothetical model). The leaked model of these attacks is divided into two primary 
models [19]. One is the Hamming weight (HW) model against the current state of 
the circuit (target), which is the input/output values for the nonlinear logic gate such 
as the OR/AND [20]. The other is the Hamming distance (HD) model against the 
number of bit transitions between the circuit’s present state (target) and its previous 
state. Typically, there are two stages to an EM attack. The attacker gathers the 
EM emanations during the first stage of the attack using an EM probe that may 
be coupled to a low-noise amplifier (LNA) positioned close to the target device. The 
target device’s secret key is extracted in the second phase using simple or differential 
EM analysis [10]. In this chapter, we focus on correlation EM analysis (CEMA) 
attacks on advanced encryption standard (AES) crypto hardware using the best 
suitable EM probe. In particular, this chapter can help a reader to better understand 
measurement equipment, the attacked design, and the capturing EM traces and will 
gain hand experience on how to extract secret keys from AES block cipher using 
CEMA attacks on FPGA step by step. 

The remaining chapters are structured as follows. Section 9.2 summarizes 
the fundamentals of electromagnetic radiation in terms of side-channel analysis. 
Section 9.3 presents the implementation details of investigated AES design. Sec-
tion 9.4 presents the device under attack, and the measurement setup, including all 
investigated probes followed by the EM measurements on the FPGA-based AES 
design in Sect. 9.5. Section 9.6 shows the correlation EM analysis (CEMA) attack 
on AES. The chapter finishes with short conclusions in Sect. 9.7. 

9.2 Background 

9.2.1 Measuring EM Radiation 

The creation of ICs frequently utilizes CMOS technologies. In the present, semicon-
ductor foundries accept numerous metal layers to create circuits, use interconnects 
to create electrical connections, and use vias to connect various layers. ICs receive 
electricity from an external source through their power pins. Each transistor will 
then get electricity from the on-chip power grid. For an integrated CMOS-based 
circuit, no static current flows through the circuit at a steady state. However, based 
on Gauss’s law (.∇ · �E = ρ

ε
), electric fields (. �E) are generated due to the existence 

of stationary charges in the circuit. As the output of logic gates changes its state, 
moving charges (leakage and dynamic currents) cause changing electric fields, 

which in turn produce changing magnetic fields .∇ × �H = �J + ε ∂ �E
∂t

(known as 
modified Ampere’s law). On the other hand, according to Faraday’s law and the 

magnetic permeability definition .
(
μ0 = �B/ �H

)
, changing currents produce time-

changing magnetic flux, thereby inducing an electric field .(∇ × �E = −μ∂ �H
∂t

) [14].
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Note that . �H represents the strength of the magnetic field, . �E is the electric field, 
J is the current density of electricity, . �B is the density of magnetic flux, mu is the 
permeability of the magnetic field, rho is the density of electricity, and is epsilon 
the permittivity of electricity. 

SCA attacks basically assume that the current through a cryptographic chip 
depends on the processed inputs and on the user’s secret key. Thus, the changes 
in the current through a wire cause changes in its magnetic field. The magnetic field 
of the current also depends on the processed inputs and secret key and therefore 
the attacker can pick up the radiated side channel (EM emissions) and extract the 
secret key from the cryptographic chip using an electromagnetic analysis attack. 
The rate of magnetic field changes will be measured using probes. State-of-the-
art near-field probes are used for measurements of both magnetic (H) and electric 
(E) fields in IC assemblies and devices [14, 24]. Electric field probes are used to 
collect electric-field radiation on individual IC pins, interconnect buses, distribution 
areas, and clock lines connecting the electric field with their surfaces. On the 
other hand, conducting loops are used in H-field probes to measure magnetic fields 
produced by changing currents flowing in conductors, power supplies, capacitors, 
and clock/control signals. The tester must first decide whether the signal is an H-
field or an E-field in order to select the appropriate probe. Because the H-field probe 
design typically allows for the suppression of E-field effects and vice versa, H-
field probes do not perform well in detecting the H-field signal for practical EM 
radiation collection. The power and frequency range of the test signal must be 
determined by the tester. The collected signal may optionally be amplified using 
pre-amplifiers [14, 24]. 

9.2.2 Typical EM Side-Channel Attacks 

EM analysis can be used to obtain secret information by analyzing the electric 
and/or magnetic fields emitted from a cryptographic device, which include simple 
EMA (SEMA) and differential EMA (DEMA). As one of the powerful methods 
of side-channel attacks (SCAs), since Quisquater and Samyde [21] introduced it in 
2001, a lot of work has been done, and much literature reports successful attacks in 
implementing symmetric and asymmetric encryption schemes [1, 8, 13, 16, 17, 24]. 
SEMA targets information from the sensitive computation that can be recovered 
from a single or a few traces. DEMA removes noise with an attack statistics 
technique and is therefore more powerful than SEMA. A standard DEMA attack 
typically has two phases: signal capture and analysis. Similar to differential power 
analysis (DPA), sufficient time-domain samples must be obtained during the signal 
capturing phase, and during the signal analysis phase, confidential information is 
retrieved using different statistical methods, two of which are the most popular 
methods: difference and Pearson correlation coefficient [3]. DEMA with correlation 
coefficient method is also known as CEMA. Compared to a different method using
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a binary model (i.e., strong EM signals are modeled as 1 and weak EM signals as 
0), CEMA exploits the linear relationship between EM signals and processed data. 
The nonbinary model used in CEMA is more accurate for modeling EM signals 
and less computationally complex, making it more widely used than DEMA. Until 
now, almost all correlation analysis attacks have focused on time-domain signals. 
A necessary condition of time domain CEMA is that the signals must be precisely 
aligned. 

9.3 Implementation Details of Investigated AES Design 

AES is a symmetric block cipher with key sizes of 128, 192, and 256 bits that 
is defined for 128-bit blocks. The number of rounds is varied to 10, 12, or 14 
depending on the key size. We choose the AES-128 algorithm for our experiments 
here. The AES-128 algorithm is an iterative algorithm composed of ten rounds. 
After the initial secret key addition, the first nine rounds are identical, but the 
final round is different [11, 25]. Each of the first nine rounds consists of four 
state operations: AddRoundKey, SubBytes, ShiftRows, and MixColumns. The final 
round excludes the Mix-Columns operation. The SubBytes transformation is a 
nonlinear byte substitution that operates independently on each byte of the state 
using a substitution table (S-box). The ShiftRows perform a cyclic rotation on each 
row of the state. The MixColumns linearly combines the elements in each column. 
It can be represented as a multiplication of each column with a constant matrix. 
AddRoundKey ties the result to the key by XORing each element with an element 
from the current round key. The AES design consists of an AES controller, two 
128-bit registers, and AES encryption module. The two registers store the data 
and key values. This AES encryption module performs the encryption operation 
on 128 bit of data using the AES algorithm that takes 10 clock cycles. The iterative 
architecture of AES encryption is shown in Fig. 9.1. The AES design is developed 
using Xilinx Vivado 2020.2 and coded in Verilog HDL, whereas Python is utilized 
for communication between the FPGA board and the PC using the USB interface. 
We have used the Xilinx Vivado software for AES bitstream generation. How to 
download and install the Xilinx Vivado Design Suite is discussed in Chap. 8. For  
this tutorial, we will provide pre-existing AES-128 encryption. There are three steps 
that Vivado takes to turn the Verilog code into a bitstream file: (1) synthesis in which 
the Verilog code is synthesized into a gate-level representation, (2) implementation 
in which the synthesized logic is routed to fit onto the device, and (3) finally, we 
generate the bitstream. Once the bitstream is generated, we need to identify its path. 
It is usually stored in the project file folder.
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Fig. 9.1 Iterative architecture of AES encryption 

9.4 Measurement Setup 

In this chapter, we have used the device under attack which is the CW305 target 
board [15] that has a Xilinx Spartan-6 FPGA and ensure it is correctly set up for 
EM trace capture. We captured the EM traces using a Tektronix MSO 70404C 
Mixed Signal Oscilloscope with a sampling rate of 3.13GS/s and a time scale of 
160 ns/div. This results in 313 measurement points per clock cycle at 10MHz clock 
frequency. The distance between the EM probe and the surface of the design under 
test (DUT) is as small as possible for the commercial probes. Generally, a power 
SCA attack typically requires the insertion of a small resistor .(∼0.5−10Ω) in series
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Fig. 9.2 Measurement setup: FPGA, EM probe, oscilloscope, power supply 

with the power supply of the measurement device that measures the voltage drop 
across it. On the other hand, EM SCA attacks are noninvasive and do not require 
any modification of the device under attack. With the improvement in sensitivity of 
commercially available EM probes, EM attacks are becoming more powerful [9]. 
We decided to use a near-filed Langer RF-K7-4 probe with an extra amplifier [12]. 
Electromagnetic traces were measured by a horizontal magnetic field probe placed 
on the chip surface. The whole measurement setup is shown in Fig. 9.2. We use  
AES-128 as our encryption algorithm and the chip runs AES encryption periodically 
with a fixed 128-bit key and random plaintexts. The AES design is developed using 
Xilinx Vivado 2020.2 and coded in Verilog HDL, whereas Python is utilized for 
communication between the Artix-7 FPGA board and the personal computer using 
the USB interface. The ChipWhisperer software includes a Python API for talking 
to ChipWhisperer hardware and also a Python API for processing EM traces from 
ChipWhisperer hardware. We can define the oscilloscope setup using the following 
Python script: 

def instrument_setup(dutAddr, start, end): 
try: 
rm = visa.ResourceManager() 
scope = rm.open_resource(dutAddr) 

# Change to exact instrument ID 
print(scope.query("*IDN?")) 
except Exception as e: 
print("Error creating instance: {0}".format(e)) 
sys.exit() 
# Horizontal Setup 
scope.write(’HORizontal:DELay:MODe OFF’) 
scope.write(’HORizontal:POSistion 10’)
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scope.write(’HORizontal:SCAle 400e-9’) 
scope.write(’HORizontal:RECOrdlength 10e3’) 
# Trigger Setup 
scope.write(’TRIGer:A:EDGE:COUPling DC’) 
scope.write(’TRIGer:A:EDGE:SLOpe rise’) 
scope.write(’TRIGer:A:EDGE:SOUrce CH2’) 
scope.write(’TRIGer:A:LEVel:CH2 1.5’) 
scope.write(’TRIGger:A:HOLDoff:TIMe 1.00E-03’) 
#Vertical Setup 
scope.write(’CH1:BANDWIDTH 250E6’) 
scope.write(’CH2:BANDWIDTH 250E6’) 
scope.write(’CH1:COUPling AC’) 
scope.write(’CH2:COUPling DC’) 
scope.write(’CH1:INVert OFF’) 
scope.write(’CH2:INVert OFF’) 
scope.write(’CH2:SCALE 1’) 
scope.write(’CH1:SCALE 5E-03’) 
scope.write(’:DATa:SOUrce CH1’) 
scope.write(":DATa:START " + start) 
scope.write(":DATa:STOP " + end) 
scope.write(’:DATa:ENCdg ASCIi’) 
scope.write(’:DATa:WIDth 1’) 
nr_pt = int(scope.query(’:WFMOutpre:NR_Pt?’)) 
#yunit = scope.query(’:WFMOutpre:YUNit?’) 
yoff = float(scope.query(’:WFMOutpre:YOFF?’)) 
yzero = float(scope.query(’:WFMOutpre:YZERO?’)) 
ymult = float(scope.query(’:WFMOutpre:YMUlt?’)) 
xincr = float(scope.query(’:WFMOutpre:XINcr?’)) 
xdely = float(scope.query(’:HORizontal:POSition?’)) 
print(’----- Instrument Connected! -----’) 
print(’Number of Points: %d’ % nr_pt) 
print(’Y zero: %f’ % yzero) 
print(’Y off: %f’ % yoff) 
print(’Y mult: %f’ % ymult) 
print(’X incr: %f’ % xincr) 
print(’X delay: %f’ % xdely) 
scope.timeout = 10000 
scope.chunk_size = 20480 
#scope.write(’*CLS’) 
scope.write(’TRIGger:A:HOLDoff:TIMe?’) 
print(scope.read()) 
return scope, yoff, ymult, yzero, xincr, nr_pt 

We’ll then establish a connection with the CW305 board. Here, we must specify 
the bitstream file that we want to load.
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9.5 EM Measurements on the AES Chip 

9.5.1 Tool Setup 

To get started, we need to install Anaconda, Spyder, and ChipWhisperer tools (see 
Fig. 9.3) based on the following steps: 

1. First download and install the Anaconda 2.1.2 tool from the following URL: 

https://docs.anaconda.com/anaconda/install/windows/ 

2. After a successful Anaconda installation, please create a new environment using 
Anaconda Navigator. 

3. Then, install and launch the Spyder from the Anaconda navigator. 
4. Next, to install the ChipWhisperer tool, we need to type and enter the command 

on the console window of the Anaconda navigator. 

pip install chipwhisperer 

5. After installing the ChipWhisperer tool, we need to install PyVISA and mat-
plotlib packages using the following commands: 

pip install -U pyvisa 
pip install matplotlib 

Fig. 9.3 Anaconda and Spyder tool setup
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9.5.2 Capture an EM Trace 

To get started, we need to make three connections to the CW305 target: 

1. We’ll control the Artix-7 directly from the computer via USB. This is done 
through the USB-B port on the left side of the board. (On the target, the 
Atmel SAM3U chip converts these USB packets into signals that the FPGA can 
understand.) 

2. We’ll get control information for our EM measurements through the USB at the 
oscilloscope. 

3. Our EM measurements will be done through an EM probe. 

• The Python program responsible for collecting the traces, which runs on a 
normal PC, starts the capture process on the chip. 

• The code triggers the encryption of a chosen/random key and plaintext on the 
targeted hardware. 

• At the end of the encryption, the program stops the capture and collects the 
EM traces. The trace and its label (the key and plaintext used) are added to the 
attack dataset. 

With our FPGA bitstream in hand (see Sect. 9.3), we are now ready to capture 
an EM trace. Once the programmable bit file is generated for the target FPGA, 
the device is configured using the Xilinx Impact tool. Before capture, we ensure a 
bitstream is loaded on the FPGA target. In the host system, plaintexts are generated 
and fed from the PC (Python) to target FPGA via the USB interface. During the 
encryption, the corresponding EM trace is captured using the near-filed Langer 
RF-K7-4 probe and optionally connected to a low-noise amplifier (LNA) and is 
recorded in an oscilloscope. During the EM trace acquisition period, a status signal 
output from the target FPGA is used as a trigger for the target board that minimizes 
trace misalignment. The trigger signal is set just before the initial round of AES. 
The measurements are repeated over 10,000 different plaintexts for the same secret 
key, and the corresponding 10,000 EM traces are captured. Our Python script is 
responsible for configuring the bit file, arming boards, and capturing and storing the 
EM traces (T). The project folders and files are shown in Fig. 9.4. At the end of 
the encryption, the program stops the capture and collects the EM trace out of the 
oscilloscope and stores it in the PC using the ethernet cable. 

Typically, a basic capture loop consists of the following steps: 

1. Set Environments (name as) .EM_SCA in Anaconda navigator. 
2. Click the .EM_SCA and then open Spyder in the Anaconda navigator. 
3. Open the Python script GetTraces.py and set some variables (dutAddr, key, 

.N_traces, and .plt_on) to any values in GetTraces.py as shown in Fig. 9.5. 
4. We also provide the Python code for the design as given below. Run the 

GetTraces.py script. Moreover, all Verilog design files and all python sources 
can be found at http://cad4security.org/index.php/trainings/hsl/ch9_em_sca/.

http://cad4security.org/index.php/trainings/hsl/ch9_em_sca/
http://cad4security.org/index.php/trainings/hsl/ch9_em_sca/
http://cad4security.org/index.php/trainings/hsl/ch9_em_sca/
http://cad4security.org/index.php/trainings/hsl/ch9_em_sca/
http://cad4security.org/index.php/trainings/hsl/ch9_em_sca/
http://cad4security.org/index.php/trainings/hsl/ch9_em_sca/
http://cad4security.org/index.php/trainings/hsl/ch9_em_sca/
http://cad4security.org/index.php/trainings/hsl/ch9_em_sca/
http://cad4security.org/index.php/trainings/hsl/ch9_em_sca/
http://cad4security.org/index.php/trainings/hsl/ch9_em_sca/
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Fig. 9.4 EM SCA folders and files 

Fig. 9.5 Set . N_traces

import pyvisa as visa 
import AES128 as aes 
import time 
import matplotlib.pyplot as plt 
import numpy as np 
from random import seed 
from random import randint 
import os 
import sys 
import chipwhisperer as cw 

#N_traces = int(sys.argv[1]) # Number of traces
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N_traces = 10000 
plt_on = 1 

print("---- Collecting Power Traces ----") 
j = 0  
trace = [] 
pt = []  
ct_i = [] 
pt_i = np.zeros(16, dtype=int) 
ct = np.zeros(16, dtype=int) 
seed() 

start = time.time() 
while j < (N_traces): 
pt = [randint(0,255), randint(0,255), randint(0,255), 

randint(0,255), randint(0,255), randint(0,255), 
randint(0,255), randint(0,255), randint(0,255), 
randint(0,255), randint(0,255), randint(0,255), 
randint(0,255), randint(0,255), randint(0,255), 
randint(0,255)] 

pt_i = pt[::-1] 
print("Plaintext : ", end=’’) 

for i in range(16): 
print("%02x " % pt[i], end=’’) 

print(’’) 

ct_i = aes.AES128().enc_128(key_i, pt_i) 
ct = ct_i[::-1] 

print("Ciphertext : ", end=’’) 
for i in range(16): 
print("%02x " % ct[i], end=’’) 

print(’’) 

try: 
values = np.array(scope.query_ascii_values(’CURVe?’)) 
except: 
pass 
scope.clear() 

if j == 0:  
traces = values 
pts = pt 
cts = ct 
else: 
traces = np.concatenate((traces, values)) 
pts = np.concatenate((pts, pt)) 
cts = np.concatenate((cts, ct))



174 9 EM Side-Channel Attack on AES

if (plt_on): 
Volts = (values - yoff) * ymult + yzero 
#Time = np.arange(0, xincr * len(Volts), xincr) 
plt.plot(range(len(Volts)), Volts) 
plt.pause(0.01) 
if j != N_traces-1: 
plt.clf() 

j += 1  
print("Trace %d" % j) 

tr_arry = traces.reshape(N_traces, nr_pt) 
pt_arry = pts.reshape(N_traces, 16) 
ct_arry = cts.reshape(N_traces, 16) 
pt_arry = np.array(pt_arry, dtype = np.uint8) 
ct_arry = np.array(ct_arry, dtype = np.uint8) 

isExist = os.path.exists(’./Data’) 

if not isExist: 
os.makedirs(’./Data’) 

end = time.time() 
print("Elasped time: %d seconds" % (end - start)) 
print("Done!") 
np.savetxt(’./Data/EM/traces.csv’, tr_arry, delimiter = ’,’) 
np.savetxt(’./Data/EM/pts.csv’, pt_arry, delimiter = ’,’) 
np.savetxt(’./Data/EM/cts.csv’, ct_arry, delimiter = ’,’) 

# Create a project file and Store data 
key = np.array(key) 
if os.path.exists(’aes128_EM1.cwp’): 
os.remove(’aes128_EM1.cwp’) 

proj = cw.create_project("aes128_EM1") 
for i in range(N_traces): 
trace = cw.Trace(tr_arry[i,:], pt_arry[i,:], 

ct_arry[i,:], key) 
proj.traces.append(trace) 
proj.save() 
scope.close() 

5. The measurements are repeated 10,000 times with 10,000 distinct plaintexts, and 
10,000 EM traces are recorded for each measurement. A captured EM trace of 
encryption is visible in Fig. 9.6. 

6. Finally, .aes128_EM2.cwp file is generated.
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Fig. 9.6 EM traces capturing screen 

9.6 Performing Correlation Electromagnetic Analysis 
(CEMA) Attack 

The CEMA is carried out in this section to confirm the efficiency of EMA on 
our FPGA-based implementation of AES-128. The CEMA attack flow is shown 
in Fig. 9.7. As stated in Sect. 9.2, EM emissions directly contribute to the CMOS 
device’s energy consumption, and there is a correlation between the peaks of EM 
signals and the data that the device processes. In order to build an EM leakage model 
that includes the anticipated EM leakage of a device performing a specific operation 
during encryption (like the S-box operation in the AES), over the provided plaintexts 
with all possible key bytes, we can take into account electromagnetic radiation (EM 
radiation) and use hamming distance. For each byte of the secret key, this reduces 
the key search space of the AES 128 to .28 = 256 possibilities. The correct tenth-
round key is then found by computing the correlation coefficient between the EM 
hypothesis (H ) and the obtained traces (T ) over time. For more details, please refer 
to [16] for correlation analysis and its measurement costs. Equation (9.1) [4] is used  
to compute the correlation between the hypothetical EM emission values (H ) and 
actual EM emission (T ). In this equation, E is the expectation, .μH and . μT are the 
mean values of H and T , and . σH and . σT are the standard deviations of H and T , 
respectively. 

.Correlation − coefficient (H,T) = E[(T − μT )(H − μH )]
σT ∗ σH

(9.1)
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Fig. 9.7 CEMA attack flow [8] 

In order to test the effectiveness of an EM-based side-channel attack, we also 
applied CEMA to the final subkey of the AES key along with the EM traces that 
were captured. The identical set of plaintexts and tenth key (AF 6F 83 AE B2 D6 
A2 82 0A E2 95 FD 85 05 64 5D) were utilized in the EM traces gathered for the 
CEMA attack. Therefore, the ciphertext is taken as a known input and the unknown 
input is the tenth round key, which is to be retrieved byte by byte using CEMA. Due 
to the reversible nature of the round key computation algorithm, the original key 
(3B D9 9B 8E 8A 21 76 B8 FA A8 16 43 9B 5B AB 84) can be computed from 
the round key. The EM-based side-channel attack is more threatening because it is 
a non-contact attack compared with EM analysis attacks. 

The following distinctions separate the CEMA attack from the CPA attack: 

• The CEMA attack makes use of a specialized EM probe as opposed to the passive 
probe utilized in the CPA attack. 

• The amplification factor in EM capture is larger than in power collection since 
the technique is non-contact and the EM radiation is more vulnerable to external 
noise. 

• The fact that CEMA does not require accurate information about the time 
instance at which the targeted operation occurs is a key advantage. 

Once we have our capture data, the analysis is straightforward: a standard CEMA 
like a CPA attack (see Chap. 8) is easy to do with another Python script: CEMA.py 
from the directory D:EM_SCA. The CEMA attack are shown in Fig. 9.8. 

• Open CEMA.py 
• Set project name, leakage model, and the range of points to suitable values in 

CEMA.py. 
• Run CEMA.py 
• Get some results (Guess keys)


 30264 48495 a 30264
48495 a
 

 6315 49829 a 6315 49829
a
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Fig. 9.8 CEMA attack steps 

# Reopening our previously saved project, we now 
specify the attack parameters for the CEMA attack. 
Our HD leaking model and attack are used for this 
hardware AES implementation. 

# Only the ciphertext is needed for this attack; 
the plaintext is not. 

import chipwhisperer as cw 
import chipwhisperer.analyzer as cwa 
from chipwhisperer.analyzer import aes_funcs 
import time 

proj = cw.open_project("aes128_EM2") 

# Attack model 
# Hamming distance between round 9 and round 10 
attack = cwa.cpa(proj, 
cwa.leakage_models.last_round_state_diff) 
attack.point_range = [2700,3000] 

key = proj.keys[0] 
correct_round_key = aes_funcs.key_schedule_rounds(key, 
0, 10) 

# This runs the attack: 
start = time.time() 
print("CEMA Attacking ....") 
attack_results = attack.run() 
end = time.time() 
print("Elapsed time: ", end=’’) 
print("%d second" % (end-start))
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print("10th round key : ") 
for i in range(16): 

print("%02x " % correct_round_key[i], end=’’) 
print(’’) 

print("10th round guess key : ") 
key_guess_10th = attack_results.key_guess() 
success = 1 
for i in range(16): 

print("%02x " % key_guess_10th[i], end=’’) 
if key_guess_10th[i] == correct_round_key[i]: 

print (" Correct!") 
else: 

print (" Wrong!") 
success = 0 

print("Key guess : ") 
key_guess = aes_funcs.key_schedule_rounds(key_guess_10th, 
10, 0) 
for i in range(16): 

print("%02x " % key_guess[i], end=’’) 
print(’’) 

if success == 1: 
print ("Successful CEMA Attack!") 

else: 
print ("CEMA Attack Failed!") 

As shown in Fig. 9.9, successfully recovered all bytes of the last round key of 
AES-128 by mounting a CEMA attack using 10,000 traces and the secret key of the 
AES-128. CEMA on unprotected AES using Hamming distance EM model shows 
the first extracted key byte to be 10k traces (see Fig. 9.10). The correlation ratio 
(CR) which is defined as the ratio between the peak correlation coefficient of a 
correct key guess and the next highest correlation of an incorrect key guess was 
measured as .1.9×, indicating a successful attack. All the 16 key bytes were extracted 
by mounting a CEMA attack using 10,000 traces. 

9.7 Conclusion 

Electromagnetic emission from cryptographic ICs, a typical side-channel attack 
method, can be used to obtain the secret key without getting physical access 
to the device. This work has been done with the CW305 FPGA board with an 
oscilloscope and PC to perform the CEMA attack on AES implementation. This 
configuration can be applied to EM SCA on a variety of various targets, such as the 
usage of additional hardware cores (ECC, SHA, etc.). By the end of the course, 
students will have a theoretical understanding of electromagnetic (EM) attacks
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Fig. 9.9 Extracted all bytes of the last round key of AES-128 and secret key 

Fig. 9.10 Results of 15-byte 
attack on AES-128 using 
CEMA 

and electromagnetic analysis attacks, as well as know how to use electromagnetic 
analysis to recover secret keys from an FPGA version of an AES core. 
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Chapter 10 
Logic-Locking Insertion and Assessment 

10.1 Introduction 

A shift in the integrated circuit (IC) design flow has resulted from the ever-
increasing cost of maintaining a cutting-edge semiconductor fabrication facility, 
resulting in the creation of fabless semiconductor companies, third-party design 
firms, and contract foundries [8]. As a result of this trend, innovation has accel-
erated, costs have been lowered, and time-to-market has been shortened. Original 
intellectual property (IP) owners, however, are unable to monitor the entire process 
due to the fact that so many entities are involved in design, manufacturing, 
integration, and distribution throughout the world. Consequently, they are now 
facing threats such as IP theft/piracy, tampering, counterfeiting, reverse engineering, 
and IC overproduction [40]. Considering the vastly divergent nature of IP protection 
laws (and how they are enforced) across countries, IP protection must no longer rely 
merely on passive measures such as patents, copyrights, IC meters, and watermarks 
to deter these threats [5]. As a consequence, it is essential to develop proactive 
approaches that prevent such threats from ever occurring. 

Several design-for-trust techniques have been proposed to address these con-
cerns, such as IP encryption [19], logic locking [10, 34], state-space obfusca-
tion [11], IC camouflaging [29], split manufacturing [20], and split testing [27]. 
A standard developed for protecting IP (IEEE-P1735) has been widely adopted in 
the semiconductor IP industry [19]. However, Chhotaray et al. [12] showed critical 
weaknesses in the standard that led to the extraction of the entire register-transfer-
level (RTL) plaintext without the knowledge of the secret key. It is impossible 
for encryption alone to solve IC supply chain problems like overproduction and 
tampering, even if IEEE-P1735 limitations are overcome. To physically obfuscate 
the design, IC camouflaging has been introduced to implement logic gates with 
different functionalities, dummy vias, filler cells, etc. [29] that appear identical 
to prevent post-manufacturing reverse engineering. However, camouflaging does 
not also eliminate the threat of IC overproduction performed by the foundry after 
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fabrication. In addition, a foundry can extract the logical netlist since it has access 
to all the masking layers. In split manufacturing [20], threats introduced by an 
untrusted foundry are eliminated by manufacturing only the front-end of line 
(FEOL) layers in the high-end untrusted foundry, and back end of line (BEOL) 
layers in design house’s trusted low-end foundry, thus hiding BEOL connections 
from the untrusted foundry. However, researchers proposed several attacks based 
on physical layout design heuristics [31], network-flow model [42], and placement 
and routing proximity [23] to extract missing back end of line connections. Logic 
locking involves adding additional logic gates to the design or increasing the 
state space in order to hide the functionality of the chip. Through the IC supply 
chain, logic locking can provide proactive hardware for trust protection against all 
previously mentioned threats if implemented meticulously [21]. In this chapter, we 
demonstrate different logic-locking techniques graphically in a sample circuit. In 
particular, this chapter can help a reader to better understand the concept of logic 
locking, different logic-locking techniques, and experimental implementation of 
different logic-locking techniques and perform security analysis using satisfiability-
based attack and verification of the logic-locked circuit with the original circuit. 

The rest of the chapter is organized as follows. Section 10.2 provides background 
on IP protection and logic locking. Section 10.3 discusses the existing logic-
locking solutions. Section 10.4 outlines the experimental setup and details of the 
experimental steps. Finally, Sect. 10.5 concludes the chapter. 

10.2 Background 

10.2.1 Logic Locking 

Logic locking or logic obfuscation hides original functionality from reverse engi-
neering, piracy, overproduction, and tampering by inserting additional gates con-
trolled by a key into a design. Figure 10.1 illustrates the proper operation of the 
design once the unlocking key inputs are provided from a tamper-proof memory 
along with the original functional inputs for [34]. Ideally, the locking key gates and 
the key itself should be chosen in a way that makes it physically impossible for 
an adversary to guess them (or extract them using other techniques). Researchers 
proposed several key-insertion techniques in search of an unbreakable logic obfus-
cation technique [21, 28, 30, 34]. Threats of logic obfuscation and tampering [32] 
have propelled government agencies like the Defense Advanced Research Project 
Agency (DARPA) to call for programs like “Automatic Implementation of Secure 
Silicon” (AISS) [14] under “Electronics Resurgence Initiative” [15] to automatically 
include logic locking in chip designs for IP protection. 

The purpose of logic locking and obfuscation is to protect underlying hardware 
IPs from reverse engineering and overproduction by locking or obscuring them 
to some extent [41]. Through the different phases of the IC supply chain, the
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Fig. 10.1 Conceptual overview of logic locking. (a) an original circuit without key gates and key 
inputs, and (b) an encrypted circuit with key gates and key inputs 

design remains locked. It is impossible to retrieve the correct functionality without 
knowing the correct locking (secret) key. A trusted facility activates locked ICs 
by burning a key into a tamper-proof memory after fabricated and packaged ICs 
are delivered. When the chip is powered on, the tamper-proof memory drives 
the correct key inputs. Researchers have developed various key gate insertion 
algorithms for developing a secure logic-locking technique, including random logic 
locking (RLL) [34], reconfigurable logic barriers [7], interference-based strong 
logic locking (SLL) [7], and fault-analysis based logic locking (FLL) [2, 28]. There 
is only one key to unlock the chip in all of these logic obfuscation schemes. The 
unlocking key remains static throughout the life cycle of the chip. In this instance, 
the logic is obfuscated using static obfuscation [13]. 

10.2.2 The Threat Model for Logic Locking 

Based on a target technology library, we assume the design house performs logic 
design, verification, and synthesis as shown in Fig. 10.2. To perform logic locking, 
it inserts additional gates into the synthesized design. In order to improve testability, 
DFT structures are integrated once the obfuscated design has been re-synthesized. 
To fabricate the obfuscated GDSII, the design house sends the obfuscated GDSII to 
an offshore foundry (untrusted). The die is then sorted, diced, and packaged after 
fabrication. In a trusted facility, the dies are activated using unlocking keys. As soon 
as the functional ICs are ready, they can be delivered to the market. It is assumed 
that the attacker has access to the following: 

• The attacker can either be a foundry or an end user. In the former case, the 
foundry can derive the gate-level netlist from the GDSII in its possession if 
the key gate is inserted. The latter assumes the netlist is generated from a de-
processed chip’s layout images. 

• Unlocked IC: A single unlocked IC (i.e., Oracle) can return correct outputs for 
any input pattern. A rogue insider in a trusted supply chain, or on-field systems, 
can obtain such an IC from the open market.
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Fig. 10.2 Supply chain for a logic-locked design 

• Scan chain: Since the basic SAT attack can only run on combinational circuits, 
scan chain access is required to partition a sequential circuit. 

10.3 Review of Existing Logic-Locking Solutions 

Logic-locking solutions available in the research community can be categorized into 
the following different groups. 

10.3.1 Combinational Locking 

10.3.1.1 Elementary Logic-Locking Solutions 

This group refers to the very early inventions in logic-locking research. In this 
category, researchers used XOR gates to perform the locking as shown in Figs. 10.3 
and 10.4. The approach for locking gate insertion was random [34], structural 
analysis-based [29], or fault analysis-based [30]. 

10.3.1.2 LUT and Routing Obfuscation 

In this category, researchers performed logic-locking for programmable blocks, e.g., 
FPGA. The locking could be in the form of configuring the LUTs in the FPGAs for 
XOR operation [24] or hiding the connectivity using programmable crossbars [37].
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Fig. 10.3 In this study, logic barriers (LBs) have been found to block the information for (a) the  
correct key and (b) the incorrect key [24] 

Fig. 10.4 The output is 
restored only for the correct 
key input. Otherwise, an 
incorrect functionality is 
observed at the output [44] 

10.3.1.3 Point Function-Based Logic Locking 

In this category, researchers performed logic-locking for programmable blocks, e.g., 
FPGA. The locking could be in the form of configuring the LUTs in the FPGAs for 
XOR operation [24] or hiding the connectivity using programmable crossbars [37]. 

10.3.1.4 Combinational Cyclic Obfuscation 

SAT attack [38] requires the design circuit to represent a directed cyclic graph 
(DAG). Therefore, to resist SAT attack, a new category of the logic-locking solution 
has been invented that proposed inclusion of cyclic nature in the design [33, 36] by  
including feedback cycles under keys as shown in Fig. 10.5. 

Performing SAT attack on this category of logic locking with an exit with an 
incorrect key significantly increases the pre-processing imperative to perform SAT 
attack. Nevertheless, a new variant of the SAT attack has been proposed, which
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Fig. 10.5 Example of cyclic logic locking ensuring the removability of edges [36] 

Fig. 10.6 Modification of the state-transition scheme for functional and structural obfusca-
tion [11] 

shows that feedback cycles pose extra challenges for attackers, but they can still be 
overcome using SAT-based approaches. 

10.3.1.5 Sequential Obfuscation 

The category of logic obfuscation restricts access to parts of FSM [3, 11, 16, 17]; 
they can alter the behavior of FSM transition if provided with an incorrect sequence 
of key inputs or deflect the state dynamically for gate-level logic obfuscation [17] 
(see Fig. 10.6).
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Fig. 10.7 Dynamic obfuscation of scan chain to protect against SAT attack [26] 

10.3.1.6 Scan Obfuscation 

SAT attack requires access to scan infrastructure when attacking sequential designs. 
Therefore, restricting any unauthorized party from having access to scan/debug 
ports will cripple the attacker from performing SAT attack. From this point of 
view, researchers proposed scan obfuscation of the sequential circuits along with 
logic obfuscation [4, 26]. This category of locking requires a functional locking 
method to protect the IP from reverse engineering [18]. The test patterns also need 
to be transformed based on the scan obfuscation technique, to finally perform the 
testability of the fabricated chips. The obfuscation in the scan circuitry gives the 
designer flexibility to utilize static [22] or dynamic locking keys [26] against oracle-
guided attacks (see Fig. 10.7). 

10.3.1.7 Parametric Logic Locking 

While all the logic-locking categories, discussed so far, obfuscate either function-
ality or scan contents, parametric logic locking obfuscates the parametric features 
of the design, e.g., timing delay [39, 43], data flow, performance, etc. The rationale 
behind locking these attributes of design is to make sure that the attacker cannot 
model the locking features and perform the attack. However, timing-based SAT 
attack [9] has been proposed to deter the security of this category of locking. 
Like SAT attack, a satisfiability modulo theorem (SMT)-based attack [6] has been 
proposed that can break parametric logic-locking techniques.
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10.3.1.8 Locking at Higher Level of Abstraction 

Locking at the higher level of abstraction provides multiple advantages compared 
to gate-level abstraction. For instance, the designer knows more about the design’s 
critical assets, operations, and states. As a result, it becomes easier for the designer 
to choose the locking options and candidates. Additionally, when synthesized to 
the gate level, the locked RTL design undergoes transformations and optimizations, 
providing resilience against structural and machine learning attacks. Most of the 
IP designs are done at the RTL level. So, it becomes imperative that the design is 
secured at a higher level to avoid security vulnerabilities in the next steps of the 
design flow. With this in mind, several techniques have been proposed to lock IP 
cores at RTL or even software level (at C program, before performing high-level 
synthesis) [25]. 

10.4 Experimental Demonstration 

10.4.1 Experimental Setup 

To run this experimental demonstration, we will require the following tools and 
software. Moreover, the experimental files source codes can be found at http:// 
cad4security.org/index.php/trainings/hsl/ch10_logic_locking/. 

1. Linux platform (with Python version 3.6 or later) 
2. Yosys synthesis tool (https://github.com/YosysHQ/yosys) 
3. SAT attack tool (https://github.com/descyphy/Modified_SAT_Attack_on_ 

Logic_Locking) 
4. ABC synthesis tool (https://github.com/berkeley-abc/abc) 
5. Any dependencies required by the above software 

At the very beginning of the demonstration, we will insert locking gates into 
a sample benchmark (c17 from ISCAS’85 benchmark circuits) and graphically 
visualize how the insertion of locking gates changes the logic circuitry. The overall 
laboratory demonstration is divided into the following sub-tasks: 

1. Locking gate insertion and graphical visualization 
2. Check logic equivalency for correct unlocking key 
3. Security evaluation by performing SAT attack 

Now let us demonstrate each of the above sub-tasks in further detail.
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10.4.2 Locking Gate Insertion 

The original SAT attack tool [35] can perform some additional tasks along with 
performing SAT attack – basic combinational logic-locking gate insertion and 
logical equivalency checking. To generate a .dot graph of the locked circuit and 
visualize it graphically, we will utilize the open-source Yosys tool [45]. Logic gate 
insertion, logical equivalency checking, and SAT attack will be performed on a 
.bench format of the sample benchmark which is a library-independent and open-
source netlist format. The general structure of the locking gate insertion command 
is as follows: 

./sat_attack/bin/sle /* tool binary
-locking_type /* random/fault/gate type
-switches_specific_to_locking_type 
/* fraction/graph etc.
-key-size or franction /* number of key gates 
name_of_the_benchmark /* input .bench format 

Now let’s get started into the different locking gate insertion methods. 

10.4.3 Random Locking Gate Insertion 

Please type the following command to change directory to the root directory of this 
module. 

cd ~/m5_logic_locking_lab 

Next, type the following command to insert random key gates in the c17 
benchmark. The attribute value ‘2’ of switch ‘k’ represents those two key gates that 
will be inserted. This command will generate a locked circuit with two key gates 
named ‘c17_r2.bench’ using random logic locking [34]. 

./sat_attack/bin/sle -r 1 -k 2 c17.bench > c17_r2.bench 

To graphically visualize the locked circuit, we need to first convert this locked 
.bench to its equivalent structural Verilog format (.v) using ABC Synthesis tool [1]. 
Now, type the following command to invoke the ABC tool. 

abc 

Once the ABC tool is started, source the script ‘bench2verilog.tcl’ provided with 
this module to generate the associated Verilog format. 

abc 
UC Berkeley, ABC 1.01 (compiled Jul 10 2019 15:43:48) 
abc 01> source ./bench2verilog.tcl
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Entered genlib library with 28 gates 
from file "cadence_new.genlib". 

This action should generate a ‘c17_r2.v’ file in the current directory. Now type 
the following command which will load the Yosys synthesis tool and run the script 
‘yosys_show.tcl’ provided with this module to visualize a network graph of the 
locked netlist. 

yosys -s yosys_show.tcl 

Network graphs are directed graphs of gates as vertices and interconnect among 
them as edges. Figure 10.8 shows the network graph of the original c17 benchmark, 
and Fig. 10.9 shows the graph of the same benchmark after two key gate insertions. 
The key inputs are highlighted in red in Fig. 10.9. 

10.4.3.1 Fault Analysis-Based Key Gate Insertion 

Key gate insertion methods have been proposed that maximize the hamming 
distance between correct and incorrect outputs [30]. To insert key gates using 
methods that model key gate insertion locations as faults, we need to type in 
the following command from the root directory ( /m5_logic_locking_lab) of this 
module: 

./sat_attack/bin/sle -t -f 0.2 -o c17_toc13xor_enc20.bench 

./c17.bench 

Fig. 10.8 Network graph of the original c17 circuit 

Fig. 10.9 Network graph of the c17_r2 circuit after 2-bit random locking gate insertion. Key 
inputs are highlighted in red
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Fig. 10.10 Network graph of the c17_toc13xor_enc20 circuit. Key inputs are highlighted red 

Fig. 10.11 Network graph of c432 by locking with method described in [30]. Key gates are 
highlighted red 

In the above command, the value ‘0.2’ of the switch ‘-f’ represents 
the target hamming distance. After we invoke the above command, locked 
c17_toc13xor_enc20.bench will be generated in the current directory. Now to 
visualize the graph after fault-based key gate insertion, please run the following 
command to generate the associated Verilog file first: 

abc 01> source ./bench2verilog.tcl 

The above command will generate c17_toc13xor_enc20.v in the current direc-
tory. Once finished, please run the ‘yosys_show.tcl’ script using the following 
command to view the graph: 

yosys -s yosys_show.tcl 

In Fig. 10.10, the graph of c17 after fault analysis-based locking is shown. Please 
note the change in key gate location in comparison to Fig. 10.9. 

The following graph (see Fig. 10.11) shows the graph of c432 after locking with 
a structural analysis-based corruptibility-guided approach [30].
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10.4.3.2 Security Evaluation 

Now let us perform the security analysis on the logic locking that we implemented 
in Sect. 10.4. We are going to perform SAT attack between the locked and unlocked 
.bench netlist to evaluate their resiliency. To perform SAT attack between the 
original circuit and the 2-bit random key gate inserted circuit, please type in the 
following command and hit enter: 

attack/bin/sld c17_r4.bench c17.bench 
inputs=5 keys=4 outputs=2 gates=11 
iteration: 1; vars: 76; clauses: 22; decisions: 7 
iteration: 2; vars: 94; clauses: 38; decisions: 9 
finished solver loop. fail_count = 0 
key=0010 
iteration=2; backbones_count=0; 
cube_count=166; cpu_time=0.010749; 

Please note from the above output that SAT attack was able to extract the correct 
key input “0010” within just “0.010749” seconds in two iterations. It is noteworthy 
that satisfiability solvers run based on a heuristic and not a deterministic algorithm. 
Therefore, this attack time could be different in different trials. Next, we perform a 
16-bit random logic locking and apply SAT attack to show that attack time increases 
with an increase in key size. 

./sat_attack/bin/sld c17_r16.bench c17.bench 
inputs=5 keys=11 outputs=2 gates=20 
iteration: 1; vars: 144; clauses: 204; decisions: 27 
iteration: 2; vars: 180; clauses: 312; decisions: 54 
iteration: 3; vars: 216; clauses: 280; decisions: 72 
iteration: 4; vars: 252; clauses: 388; decisions: 99 
iteration: 5; vars: 288; clauses: 496; decisions: 164 
finished solver loop. fail_count = 0 
key=00100110011 
iteration=5; backbones_count=0; cube_count=684; 
cpu_time=0.015238; maxrss=4.5 

From the above attack results, it is noticeable that the attack time increased with 
increasing key size. 

10.4.4 Equivalency Checking 

Using the SAT attack tool, we can also check if the extracted key is indeed the 
correct key by applying the key inputs to the locked circuit and performing a logical 
equivalency check between the locked circuit and the original circuit. Please type
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in the following command to perform an equivalency check. We can notice that the 
logical comparison tool returned “equivalent” as the results. 

./sat_attack/bin/lcmp c17.bench c17_r16.bench 
key=00100110011 equivalent 
If we apply a different key in the command above, 
the outcome will be different. 
./sat_attack/bin/lcmp c17.bench c17_r16.bench 
key=00100110010 different; #cnt: 32 

10.5 Conclusion 

System-on-chip (SoC) logic locking protects the IPs embedded in modern SoCs 
from a wide range of hardware security threats at the IC manufacturing supply 
chain. IP piracy, reverse engineering, and overproduction are the main reasons to 
rely on logic locking. In this chapter, practitioners will learn how to apply logic 
locking in a target design, perform security analysis for logic locking, and verify 
that the locked design is correct. In this chapter, practitioners will learn about the 
fundamental concepts of logic locking as well as different logic locking techniques. 
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Chapter 11 
Clock Glitch Fault Attack on FSM in 
AES Controller 

11.1 Introduction 

Devices that include cryptographic algorithms are susceptible to a variety of 
physical attacks in hostile environments, including side-channel analysis (SCA) and 
fault injection attacks (FIA). The security features incorporated into these devices 
can be successfully bypassed by these attacks, putting systems at danger. Among 
physical attacks, false injection attacks are a serious threat to secure devices because 
they are powerful and can be performed with very cheap equipment and minimal 
effort [5]. A device’s operation is intercepted during a fault injection attack, a type of 
active side-channel attack that allows attackers to access sensitive data. The attacker 
alters the clock, temperature, and power supply connections, uses a high-powered 
laser, performs EM injection, or injects a fault into the system. The output bits can 
be corrupted by these flaws, and if they are placed carefully, they can also leak 
private information [7, 20]. 

Initially, Boneh et al. [9] suggested that computational errors that happened 
during the execution of a cryptographic algorithm can help to break it and uncover 
the secret key. They were given the idea, and it was successful in revealing the 
implementation’s secret key. This concept, which had been proven to be effective in 
locating an RSA implementation’s secret key, was presented to the audience. The 
differential fault attack (DFA) concept [16], which was developed with AES, was 
subsequently applied to symmetric block cipher implementations by the authors 
of [11]. DFAs are powerful and applicable against cryptographic hardware and 
compromise the security of a system-on-chip (SoC). During fault attacks, an attacker 
injects one or more faults during the process of SoC to produce erroneous results and 
then analyzes these results to extract secret information from a system and achieve 
illegal authentication [6]. On numerous security-critical applications, academic and 
professional researchers have effectively proven various fault injection attack types. 
This includes error correction codes (ECC) [15]; virtual machines [13]; radio-
frequency tagging (RFID) [14]; microcontrollers [18]; encryption algorithms such 
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as DES, AES, and RSA [6, 22]; and analog sensors [17]. Nearly all platforms, 
including smart cards, FPGA-based embedded systems, system-on-chips (SoCs), 
and Internet of Things (IoT) devices, are susceptible to fault injection attacks, 
confirming the importance of this attack vector [4]. 

Over the past decade, most of the research on fault attacks are concentrated on 
analyzing the fault effects and developing countermeasures for fault injection on 
data paths. The control path’s finite state machines (FSMs) are also vulnerable to 
fault injection attacks. As a result, if the FSMs in charge of the SoC are effectively 
attacked, the security of the SoC as a whole could be jeopardized. For instance, it 
has been demonstrated that when the FSM implementation of the AES algorithm is 
attacked using fault injection, the secret key of the AES encryption technique can be 
found [1, 19]. Thus, it is also extremely important to understand how fault injection 
attack works in an FSM and develop proper countermeasures to protect against fault 
attacks. Although there are many types of fault injection attacks, clock glitch fault 
injection is one of the most commonly used fault injection methods because they 
are low cost, easy to control the injection condition, and require little professional 
knowledge. 

In this chapter, we demonstrate how to perform a clock glitch in an AES block 
implemented on an FPGA using a ChipWhisperer CW305 target board and show 
how to fail an AES execution by applying clock glitches that cause it which could 
produce inaccurate results during the AES encryption procedure. The remaining 
portions of the chapter are arranged as follows. Section 11.2 briefly discusses basic 
information on clock glitching, FSM, and AES. Section 11.3 briefly provides the 
experimental setup to perform fault attack using clock glitch. A performing clock 
glitch attack steps and glitch explorer and results are given in Sect. 11.4. Finally, 
conclusions are presented in Sect. 11.5. 

11.2 Background 

11.2.1 Fault Models 

A fault model is a description of the type, reliability, effectiveness, and practicability 
of the introduced faults. The impact on the target device (such as bits or a nib-
ble/byte/word) and the accuracy of location that targets one specific bit can both be 
used to define the nature of a problem. Repeatability refers to the attacker’s capacity 
to reproduce the same error in either the temporal or geographic domain [10]. 
Efficiency describes the attacker’s ability to select the fault value with accuracy. 
The practical characteristics (cost, equipment, time, and knowledge needed) of the 
fault attack are referred to as its feasibility. In general, it is acknowledged that a 
more exact/restrictive model is more challenging/unrealistic in a real-world setting. 

Precise Bit Flip Fault attack proponents want to make as few assumptions as 
possible in order to demonstrate the effectiveness of their attacks. The most effective
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DFA model involves flipping a specific bit (the round of the cipher as well as the 
location of the bit is chosen by the attacker). When performing the AND operation, 
.y = x0 ⊕ x1, consider the impact of modifying one input bit. Eve can get x1 if she  
can accurately lip, say, x0, by determining whether or not the output changes (an 
unchanged output means .x1 = 0, whereas a changed output means .x1 = 1). This 
makes it possible to attack any AND gate. 

Single-/Multiple-Fault Adversary A single-fault adversary model is assumed in the 
majority of published research on fault attacks. According to this concept, the 
attacker Eve can inject faults into the cipher only once during a single execution, 
which could have an impact in several places. Injecting two sets of faults, for 
example, at the first and last rounds of encryption, will be regarded as a violation of 
the model. 

Random/Deterministic Fault Model The random fault model is the one that appears 
most frequently in published works, e.g., [21]. Here, the attacker has some control 
over which round the faults can be introduced, but not over the value that is altered. 
Basically, the injected fault here causes one or more targeted bits of the operand 
value to be flipped. Attackers typically have control over the duration, position, 
and intensity of the external disturbance but not its precision. The target for fault 
injection can be a word (byte/nibble) or a string of bits, depending on the specific 
attack. Different models can be used instead of bit flipping, where certain bits are 
set to 1 or reset to 0 [8]. It is most frequently believed that random byte faults occur 
in byte-oriented ciphers like AES. 

11.2.2 Clock Glitching 

Digital hardware devices almost always expect some form of reliable clock. We can 
manipulate the clock being presented to the device to cause unintended behavior. 
The clock signal can be tampered with to produce setup or hold time violations, 
which is a very inexpensive and nonintrusive method of injecting faults [23]. A 
clock glitch is the alteration of an ideal clock signal by adding a small pulse within 
the larger rising clock edge, as shown in Fig. 11.1a. Figure 11.1b shows a typical 
sequential logic path. 

In order to ensure that the sequential element receives the correct/stable value 
during normal operation, the clock cycle (TCLK) should be longer than the combi-
national logic’s maximum path delay (. τ ). Register B may capture the incorrect data 
when a clock glitch occurs because . Tg is smaller than tau, which will introduce 
a fault and cause it to spread throughout the circuit. Such a processing error may 
cause an instruction to be skipped or incorrect data to be stored in the memory 
modules [23]. Additionally, a clock error might cause flip-flops or registers to latch 
the incorrect data. For instance, it has been demonstrated that if the key register 
in a crypto engine fails to latch one bit of the key correctly, this key bit can be 
determined by contrasting the incorrect and correct output of the crypto engine.
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Fig. 11.1 (a) Clock signal glitch, (b) a common sequential logic path [23] 

Fig. 11.2 Generation of glitches using Digital Clock Manager (DCM) 

Such faults are temporary, allowing for their injection without leaving any evidence 
of manipulation [23]. In our experiment, we use the ChipWhisperer glitch system 
that uses the same synchronous methodology. A system clock is used to generate 
the glitches. These glitches are then inserted back into the clock. The generation 
of glitches is done with two variable phase shift modules configured as shown in 
Fig. 11.2: the FPGA’s Digital Clock Manager (DCM) blocks are used by the phase 
shift blocks. For more details, please refer to the link: https://wiki.newae.com/Main_ 
Page. 

The enable line is used to determine when glitches are inserted. Glitches can be 
inserted continuously or triggered by some event. Figure 11.3 shows how the glitch 
can be muxd to output to the device under test (DUT).

https://wiki.newae.com/Main_Page
https://wiki.newae.com/Main_Page
https://wiki.newae.com/Main_Page
https://wiki.newae.com/Main_Page
https://wiki.newae.com/Main_Page
https://wiki.newae.com/Main_Page
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Fig. 11.3 XORing the glitch with input clock 

11.2.3 Brief Description of AES 

The AES algorithm is a symmetric block cipher that uses the same key to both 
encrypt and decrypt data. 

The AES algorithm is a symmetric block cipher that can encrypt and decrypt 
information using the same key. The AES is defined for 128-bit blocks and key sizes 
of 128, 192, and 256 bits. The 128-bit plaintext is viewed as a .4 × 4 byte matrix, 
called a state byte. The AES operates on the states by iterating transformation 
rounds as shown in Fig. 11.4. The initial round consists of the AddRoundKey 
operation, the next rounds consist of applying successively the transformations 
SubBytes, ShiftRows, MixColumns, and AddRoundKey, but the last round omits 
the MixColumns transformation [2]. The state operations are defined briefly:

• SubBytes is the substitution step where a nonlinear function is applied on the 
input byte. This SubBytes is the composition of two transformations: an inversion 
in .F28 and an affine transformation.

• ShiftRows performs a cyclic rotation on each row of the state.
• MixColumns linearly combines the elements in each column. It can be repre-

sented as a multiplication of each column with a constant matrix.
• AddRoundKey ties the result to the key by XORing each element with an element 

from the current round key. 

Depending on the key size, the number of rounds is altered to 10, 12, or 14. In this 
chapter, we deal with the 128-bit AES due to its widespread usage. For a complete 
description and explanation of AES, please refer to [12].
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Fig. 11.4 AES encryption 
process 

11.2.4 Clock Glitch Attack on FSM in AES Controller 

In the case of AES, this glitch could be used to cause its FSM (finite state machine) 
to skip states and either provide an incorrect ciphertext or give an adversary access 
to the secret encryption key. When focusing on attacking an FSM, we must look 
at how that FSM is encoded to see what kind of vulnerabilities it may have. For 
instance, let’s say an FSM for AES has the states WAIT KEY, WAIT for DATA, 
INITIAL ROUND, DO ROUND, and FINAL ROUND and is binary encoding those 
states using the bit configurations of 001, 010, 011, 100, and 000, respectively (see 
Fig. 11.5). When the FSM is moving from state WAIT KEY to WAIT DATA, or 001 
to 010, both the middle bit and least significant bit are flipping from 0 to 1 or 1 to 
0. Because the flip flops for these bits may have different delays, if a clock glitch 
occurs and the state is set too early within the flip flops, the user could get the state 
000 instead of the expected 010. This would mean the FSM was transferring directly 
from WAIT KEY to FINAL ROUND, theoretically giving the secret key as an 
output rather than encrypted ciphertext. Therefore, the encoding of FSM states for 
encryption algorithms is critical in performing attacks on the FSM. In this chapter, 
we demonstrate how to perform a fault attack using a clock glitch and exploit the



11.2 Background 205

Fig. 11.5 AES finite state machine (FSM) with binary encoding 

FSM vulnerabilities. This tutorial’s objective is to demonstrate how to utilize clock 
glitches to make the AES execution fail. We may be able to corrupt some of the FSM 
states’ bits by causing a brief clock glitch to occur immediately before a clock edge. 
If we’re successful, the ciphertext that is produced will be completely different. 
Remember that diffusion is one of the main objectives of cryptographic algorithms: 
if we change just one bit of the input, the round function will cause that one bit to 
affect all 128 bits of the output. 

This specific vulnerability is illustrated in Figs. 11.6 and 11.7. Figure 11.6 shows 
the vulnerability in terms of the intended state and captured state. Figure 11.7 
illustrates the example in terms of the speed at which the individual flip-flop bits 
change as they are captured early by a glitched clock versus an ideal clock. When 
changing from state 001 to state 010, if the middle bit’s delay was greater than the
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Fig. 11.6 Example attack 
state change using AES 
binary encoding 

Fig. 11.7 State capturing with an ideal versus glitched clock 

most and least significant bits, clock glitching could allow the register to capture a 
state at the wrong time, 000. 

11.2.5 ChipWhisperer CW305 Board 

For the study of embedded hardware security, ChipWhisperer provides a collection 
of several helpful tools. There are ChipWhisperer hardware targets, ChipWhisperer 
target device firmware, target device FPGA blocks, ChipWhisperer analysis soft-
ware and libraries, as well as ChipWhisperer-Capture devices (which sample power 
measurements). As a standalone target, the CW305 board enables the use of a larger 
FPGA target to implement cores like AES and ECC [3].
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11.3 Experimental Setup 

In this part, we’ll demonstrate a clock glitch fault attack using the ChipWhisperer-
lite and ChipWhisperer CW305 boards. Figure 11.8 depicts the experiment’s setup. 

The CW305 FPGA board features a USB interface to talk to the FPGA, an exter-
nal PLL for clocking the FPGA, a programming VCC-INT supply. The Algorithm 
Under Test is the algorithm we want to test. The goal of performing side-channel 
power analysis on this method is supported by the remaining circuitry. We may 
easily load input, keys, output, or trigger operations by using the Register Interface 
to match our Python code on the control computer. Physically, the CW305 acts as an 
Address/Data Bus between the FPGA and the microcontroller for the USB interface. 
This address/data bus enables you to establish a conventional address/data bus on 
the FPGA instead and write any data into the FPGA. Through ChipWhisperer-Lite, 
the PC (personal computer) downloads the design to the ChipWhisperer CW305 
board, sends the plaintext and key to the CW305 board, and deals with the data 
received from the CW305 board. Please refer to Chap. 8 for firmware setup and 
ChipWhisperer boards configuration and how to connect a ChipWhisperer-Lite to 
the CW305 board. Additionally, we want to exploit the clock produced by our 
capture devices to inject glitches into this clock. Switch J16 must be set to 1 in 
order to accomplish this. By flipping this switch, the FPGA will be forced to use the 
ChipWhisperer’s input clock rather than the PLL. To stop the output of the return 
clock, we can also set K16 to 0. The Switch (S2) of CW305 board should now look 
like the image as shown in Fig. 11.9. 

Fig. 11.8 The CW305 interconnected to the ChipWhisperer-Lite Capture board
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Fig. 11.9 Switch (S2) of 
CW305 board configuration 

11.4 Performing Clock Glitch Attacks 

First, we need to download the ChipWhisperer software V4.0.1 from the following 
link: https://github.com/newaetech/chipwhisperer/releases and install it on the con-
trol computer (PC). The ChipWhisperer Python library can be used to communicate 
with the NewAE Capture and target boards. Once the ChipWhisperer software is 
installed, we’ll need the Xilinx Vivado software for AES bitstream generation. 
In this connection, the fully featured versions of the Xilinx Vivado software with 
license are required. However, the WEBPACK version is free for our target Artix-7 
FPGA. How to download and Install the Xilinx Vivado Design Suite is discussed 
in Chap. 8. For this tutorial, we will provide a pre-existing AES-128 encryption 
example with a couple of project files to build a project using the Xilinx Vivado 
software. There are three steps that Vivado takes to turn our Verilog into a bitstream 
code: (1) synthesis in which the Verilog code is synthesized into a gate-level 
representation, (2) implementation in which the synthesized logic is routed to fit 
onto the device, and (3) generate the bitstream. Once the bitstream is generated, 
we need to identify its path. It is usually stored in the project file folder. We 
need its directory to insert it in the code. The CW305 Artix FPGA target and 
ChipWhisperer-Lite were used to load the AES algorithm and inject clock glitches 
reliably. Moreover, all Verilog design files and all python sources can be found at 
http://cad4security.org/index.php/trainings/hsl/ch11_clock_glitch_fia/. 

11.4.1 Performing Clock Glitch Attack 

1. First, open the ChipWhisperer capture software from the toolbar below and 
choose the Python console as shown in Fig. 11.10. In the middle window, you can 
see the files in chipwhisperer/software/chipwhisperer/capture/scripts directory.

https://github.com/newaetech/chipwhisperer/releases
https://github.com/newaetech/chipwhisperer/releases
https://github.com/newaetech/chipwhisperer/releases
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http://cad4security.org/index.php/trainings/hsl/ch11_clock_glitch_fia/
http://cad4security.org/index.php/trainings/hsl/ch11_clock_glitch_fia/
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http://cad4security.org/index.php/trainings/hsl/ch11_clock_glitch_fia/
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http://cad4security.org/index.php/trainings/hsl/ch11_clock_glitch_fia/
http://cad4security.org/index.php/trainings/hsl/ch11_clock_glitch_fia/
http://cad4security.org/index.php/trainings/hsl/ch11_clock_glitch_fia/
chipwhisperer/software/chipwhisperer/capture/scripts
chipwhisperer/software/chipwhisperer/capture/scripts
chipwhisperer/software/chipwhisperer/capture/scripts
chipwhisperer/software/chipwhisperer/capture/scripts
chipwhisperer/software/chipwhisperer/capture/scripts
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Fig. 11.10 ChipWhisperer GUI: Python console 

2. Then select the file called aaSetup_cwlite_cw305_clock_glitch.py (or it might be 
called aaSetup_cwlite_cw305). Afterward, we are able to see the script preview 
in the left window. Click on the Run button and then we could see in the 
Python console if it ran correctly or not. In Fig. 11.11, we should see there is 
no problem with the Python code running. Then we can also check the log to see 
if ChipWhisperer and FPGA board are connected and if FPGA is programmed. 

3. Next, we must click on the Mater Button as shown in Fig. 11.12. All three buttons 
should turn green at this point. 

4. Then we want to do glitch setup using aaSetup_clock_glitch.py script. First, 
open the file and check the bitstream path. If it doesn’t match the one that was 
generated previously, modify it. Then, select it from the middle window and run 
the script: aaSetup_clock_glitch.py. Now go to Scope setting and change the 
glitch trigger from continuous to Ext Trigger: Single-Shot as shown in Fig. 11.13


 10693 40903 a 10693
40903 a
 

 2263 42236 a 2263 42236
a
 

 17959 51570 a 17959 51570
a
 

 4310 55570 a 4310 55570 a
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Fig. 11.11 Setup ChipWhisperer-Lite with cw305 FPGA board 

Fig. 11.12 Setup ChipWhisperer-Lite with cw305 FPGA board
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Fig. 11.13 Glitch trigger setup 

5. Then, from the toolbar above, the ChipWhisperer GUI select Tools/Glitch 
Explorer. In the window that is open, edit the normal and successful response 
as shown in Fig. 11.14. In the example, if we receive the correct value, that is 
considered a normal response; otherwise, it means the fault attack was successful. 
Moreover, click on the Plot Widget button to plot the data vs. samples. 

6. Next, click on Run button of the M glitches in the toolbar as shown in Fig. 11.15. 
7. Now we should be able to see the power trace view and glitch map. If we don’t 

see any glitches in this step, we can still do the glitch exploration part and there 
is a good chance to see glitches there if we change the value glitch and offset. 

8. Finally, modify the Target HS IO-Out under CW Extra Settings so that it uses the 
output from the Glitch Module. Obtain a trace and confirm that we can see glitch 
in the power trace (see Fig. 11.16). Here is an example of a trace from samples 
30–35 that clearly has a glitch. (We may need to adjust the offset and width of 
the glitch; this screenshot was taken with 30% and 10%.)
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Fig. 11.14 Edit the normal and successful response 

Fig. 11.15 Click on run 
button of the M glitches 

Fig. 11.16 Glitch in the AES-128 power trace
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Fig. 11.17 Set up the glitch 
explorer 

11.4.2 Glitch Explorer 

The goal is to identify a set of clock glitch parameters that lead to the encryption 
process failing once we have successfully implemented clock faults. Let’s set up the 
glitch explorer to look for glitches so that we can do this automatically (Fig. 11.17). 

Our FPGA must first be configured to use a fixed plaintext and key. It will be 
harder to determine when a glitch was successful if we alter the inputs for every 
capture. Although we can use any key and plaintext, the remainder of this lesson will 
use the fixed key 2B 7E 15 16 28 AE D2 A6 AB F7 15 88 09 CF 4F 3C and the fixed  
plaintext 5C 69 2F 91 03 B2 30 29 14 D7 E5 55 E4 DC EE 49. We can configure 
the glitch explorer to know when we’ve successfully glitched the FPGA using our 
fixed key and plaintext. To view the output format, open the glitch explorer and 
click Capture 1. The received output is “06f36a65e8a99ff8907b2e5ddd77de” for 
the aforementioned plaintext and key. Set this string to be checked for in the glitch 
explorer’s normal/successful responses. The width and offset of the glitch module 
should then be swept using two tuning settings. When everything is configured, 
our glitch explorer should like Fig. 11.18. Important note: If our version of the 
ChipWhisperer GUI does not show tuning parameters, we must use the given Python 
code to sweep the glitch width and offset www.aaSweep_width_offset_clock_glitch. 
py and run it. This will be visible in the GUI under the Python coding examples and 
can be edited as needed to fit the described parameters. If you need help with what 
parameters to edit, this link is useful for the syntax to use to change parts of the 
GUI to fit our needs in Python: https://chipwhisperer.readthedocs.io/en/latest/api.

www.aaSweep_width_offset_clock_glitch.py
www.aaSweep_width_offset_clock_glitch.py
www.aaSweep_width_offset_clock_glitch.py
www.aaSweep_width_offset_clock_glitch.py
www.aaSweep_width_offset_clock_glitch.py
www.aaSweep_width_offset_clock_glitch.py
www.aaSweep_width_offset_clock_glitch.py
https://chipwhisperer.readthedocs.io/en/latest/api.html
https://chipwhisperer.readthedocs.io/en/latest/api.html
https://chipwhisperer.readthedocs.io/en/latest/api.html
https://chipwhisperer.readthedocs.io/en/latest/api.html
https://chipwhisperer.readthedocs.io/en/latest/api.html
https://chipwhisperer.readthedocs.io/en/latest/api.html
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Fig. 11.18 Generic settings 

html. Once everything is set up, either tuning parameters on the GUI or the relevant 
sweeping code have been run, we can now start capturing. 

11.4.3 Results 

There are two locations where the outcomes can be checked after our capture 
is complete. The glitch map first identifies the widths and offsets of successful 
glitches (see Fig. 11.19). The combinations of tuning parameters that led to the 
encryption failing are indicated by the green spots on this map. Our glitch map 
should, hopefully, like the one below (note that it might change every time we run 
it). 

This map only provides a hint as to where to go in the glitch explorer; it doesn’t 
reveal what the actual ciphertext was with any of these settings. The output of the 
glitch explorer is another thing we may examine. Looking at the glitched ciphertexts 
reveals a wide range of different outputs with various glitch settings (see Fig. 11.20). 
We have experimentally demonstrated the AES execution by applying clock glitches 
that cause it to produce erroneous results during the AES encryption process. Note: 
we must clarify in the glitch terminal what is deemed as “Normal” and a “Success.” 
In our case, “Normal” can be equal to the expected ciphertext and “Success” can be 
anything not equal to that value.

https://chipwhisperer.readthedocs.io/en/latest/api.html
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Fig. 11.19 Glitch widths and offsets caused successful glitches 

Fig. 11.20 Glitches are changing the output
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11.5 Conclusion 

In this chapter, we performed the clock glitch fault injection attack on AES in FPGA. 
We injected the clock glitch in the FSM states of AES encryption. It gives concrete 
evidence to support the vulnerabilities of binary encoding schemes using AES. This 
configuration is applicable to a number of other targets, such as the implementation 
of additional hardware cores (ECC, SHA, SoC, etc.). It also supports the idea 
that a clock glitch is an easy-to-understand and implement adversarial device that 
can increase the vulnerability of any digital system that employs an FSM that 
has not been vetted for security. By end of this chapter, readers will understand 
how to perform practical fault attacks using clock glitches and exploit the FSM 
vulnerabilities. 
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Chapter 12 
Voltage Glitch Attack on an FPGA AES 
Implementation 

12.1 Introduction 

Side-channel attacks (SCAs) are considered among the most powerful physical 
attacks against embedded hardware devices like smartcards, FPGAs, and ASICs. 
There exist two classes of side-channel attacks, namely, active and passive [31]. Pas-
sive attacks exploit information that is spontaneously leaked by the device such as 
timing information [22], electromagnetic emissions [18], power consumption [13], 
or even acoustic emanations [5]. Active attacks, such as false injection attacks 
(FIAs), instead infect the system with an external or internal trigger. FIA has proven 
to be a powerful technique for uncovering confidential data with a limited number 
of experiments [25, 28]. A number of goals can be achieved by intruders using 
FIAs. There are two primary goals among these: (1) causing false outputs and in 
some cases, disrupting normal behavior by avoiding specific activities [34] and (2) 
extracting confidential information using faulty outputs [25]. 

Fault injection attacks can be further divided into three categories: noninvasive, 
invasive, and semi-invasive [9]. An integrated circuit (IC) is de-packaged during 
invasive attacks, and its physical characteristics are changed to enable specific 
examinations. Invasive attacks, such as laser, microprobing, and optical fault 
injection, are particularly effective at precisely positioning themselves in space time 
and can provide attackers access to a lot of sensitive information stored inside 
the device [1, 10]. These kinds of attacks are expensive and require sophisticated 
equipment and knowledgeable attackers. Noninvasive attacks are usually low cost 
and involve observations of the device’s operation or manipulations of external 
signals. They require only moderately sophisticated equipment and knowledge to 
implement [33]. They do not physically harm the chip and often leave no trace. 
Altering the device clock signal and/or supply voltage, also known as clock and 
voltage glitch attacks [14, 20], is one of the most basic noninvasive fault attacks. 
For embedded devices in particular, noninvasive attacks pose a greater threat than 
invasive ones. This is due to three key factors: (1) the owner of the targeted 
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device might not be aware of the attack and continue to rely on its functionality 
and information security because this type of attack does not require any physical 
tampering, (2) even in a small laboratory, they can be updated and replicated using 
existing, affordable equipment [21, 24], and (3) they have demonstrated that a high 
success rate can be attained quickly [24]. According to Guillen, a sort of FIA that 
falls between invasive and noninvasive attacks is the semi-invasive attack. Between 
invasive and noninvasive attacks, the semi-invasive attack (FIA) occupies a middle 
position [19]. In this type of attack, the chip still needs to be de-packaged, but the 
internal structure remains intact. Although these attacks often leave traces, in most 
cases the chip remains fully operational. 

Over the past decade, most of the research on fault attacks has concentrated on 
analyzing the fault effects and developing countermeasures. By inserting faults at 
precise points in the algorithms, the fault injection technique has shown how to 
defeat cryptographic algorithms including AES [7, 16], DES [11], and RSA [6, 30]. 
Among these, a practical demonstration of the fault injection technique is also 
given in [6, 7, 30]. All of these demos are carried out on a special board created 
to introduce faults into the integrated computer running the encryption algorithm. 
For a more comprehensive overview of attacks on AES and RSA, the reader is 
directed to [8]. We concentrate on voltage glitches in this chapter since they don’t 
require package modification, are inexpensive, and are accurate in delivering the 
desired outcomes. Using a ChipWhisperer CW305 target board, we specifically 
show how to perform a voltage glitch in an AES block implemented on an FPGA 
and show how to fail an AES execution by applying voltage glitches that cause 
it to produce erroneous results during the AES encryption process. The remaining 
chapters are structured as follows. Section 12.2 briefly discusses basic information 
on voltage glitching, finite state machine (FSM), and AES. Section 12.3 briefly 
provides the experimental setup to perform fault attack using voltage glitch. A 
performing voltage glitch attack steps and glitch explorer and results are given in 
Sect. 12.4 discusses the. Finally, conclusions are presented in Sect. 12.5. 

12.2 Background 

12.2.1 Voltage Glitches 

A cheap form of fault injection is to tamper with a device’s power supply. A 
possible way to provoke faulty behavior is the underpowering of the device. 
Since there is no precise timing, the faults provoked by such a method tend to 
occur uniformly throughout the computations, and the attacker must be able to 
successfully discard the erroneous results caused by undesired faults. Another 
method to affect computations performed in the device is the induction of precise 
high variations in a power supply. Power spikes can cause a processor to skip 
or misinterpret an instruction and also induce memory faults. For instance, if a 
processor reads a memory location at the time of a voltage spike, the wrong data



12.2 Background 221

Fig. 12.1 Example of a voltage glitch implementation 

may be gathered from the memory bus. Further, this fault injection technique is 
commonly exploited by attackers who aim to tamper with a program counter or a 
loop bound [4]. Both listed fault injection techniques are easy to implement and 
require an attacker to be able to access the power supply line of the device. 

The idea behind a voltage glitch is to create a short disturbance in the power input 
of a certain device to affect it functionality. There are several ways to implement a 
voltage glitch, and the simplest and most common implementation is to connect a 
transistor between the positive power input (VCC) of the device and the ground pin 
(GND), as shown in Fig. 12.1. 

The idea behind it is to decrease the voltage in the VCC line by withdrawing a 
considerable amount of current out of the pin. This current is going to decrease the 
charge present in the line for a small period of time causing a drop in the voltage. 
The reason why it works is that the power supplies that feed the FPGA tend to 
have a limited amount of current that they can provide to the power node. This 
power disturbance has to be short because most electronic systems have some sort of 
protection against voltage drops since they generally lead to unexpected outputs. If 
the drop in voltage is greater than a certain threshold of millivolts for a certain time, 
the device will trigger a reset and you will not be able to obtain information from 
it. These thresholds vary per device and per application. Another issue that can be 
encountered is disconnection, and a very low voltage can trigger a shutdown of the 
device too.When the voltage is lower than the usual operation range, the information 
will travel slower across the logic, therefore limiting the maximum frequency that 
the device can be operated, as shown in Fig. 12.2. At regular operation, the device 
will be in the “Safe Operating Area.” With a quick drop in voltage, for a short period 
of time, our device could be operating outside that area, therefore being susceptible 
to faults. With the voltage glitch, we will attempt to recreate a similar type of fault
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Fig. 12.2 Frequency vs. voltage safe operation area 

to the one done with the clock glitch attack as discussed in Chap. 11. Ideally, we  
will be able to observe that some of the circuits compiled with the FSM one-hot 
encoding scheme will be more susceptible to faults than others. If a voltage glitch is 
effective, the output of the voltage glitch will be affected but will not be reset it. 

12.2.2 Fault Models 

Generally, the following categories of fault models are used in the analysis methods 
in the literature: 

• Bit flip is the flipping of a bit, with the attacker having exact control over which 
bit is chosen. This category includes multiple-bit flips as long as the attacker 
chooses all of the target bits. For instance, the majority of fault attacks on neural 
networks make use of this concept [29]. 

• Bit set/reset is the process of changing a bit’s value from ‘0’ (reset) to ‘1’ (set). 
This fault model can be used, for instance, in blind fault attacks and is quite 
strong. Once more, it is assumed that the attacker has the ability to choose which 
bit will be set or reset. This fault model is quite effective and can be used, for 
instance, in blind fault attacks [23]. 

• Random byte is a less accurate fault model in which the value of a specific byte 
changes to a random value. This is said to be the fault model that allows for the 
most successful DFA attack [26]. 

• Instruction skip ignores the currently being processed instruction’s execution 
practically. Using this fault model, powerful attacks can be launched [12]. 

• Execution faults occur in FPGAs where the values being processed are impacted 
by setup violations [32]. 

• Stuck-at faults permanently transform the value of the stored data into another 
one. This fault model supports SIFA [15].
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Fig. 12.3 AES encryption 
process 

12.2.3 Brief Description of AES 

AES is a standard established by the NIST [17] for symmetric key cryptogra-
phy. It is a substitution and permutation network based on four transformations 
(i.e., SubBytes, ShiftRows, MixColumns, AddRoundKey) used iteratively in rounds 
as depicted in Fig. 12.3. The AES is defined for 128-bit blocks and key sizes of 128, 
192, and 256 bits. It processes data blocks of 128 bits (usually represented as a . 4×4
bytes matrix, called the AES state) in ten rounds (after round 0). The round keys 
(K1 to K10) used during every round are calculated on-the-fly by a key expansion 
module. Hence, full encryption is completed in 11 clock periods. In this chapter, we 
deal with the 128-bit AES due to its widespread usage. For a complete description 
and explanation of AES, please refer to [2, 17].
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Fig. 12.4 AES finite state machine (FSM) with one-hot encoding 

12.2.4 Voltage Glitch Attack on FSM in AES Controller 

In the case of AES, this glitch could be used to cause its FSM to skip states and either 
provide an incorrect ciphertext or give an adversary access to the secret encryption 
key [27, 35]. When focusing on attacking an FSM, we must look at how that FSM 
is encoded to see what kind of vulnerabilities it may have. In our work, FSM for 
AES has the states WAIT KEY, WAIT DATA, INITIAL ROUND, DO ROUND, and 
FINAL ROUND and is one-hot encoding those states using the bit configurations 
of 00001, 00010, 00100, 01000, and 10000, respectively (see Fig. 12.4). When the 
FSM is moving from state WAIT KEY to WAIT DATA, or 00001 to 00010, both 
the most bit and least significant bit are flipping from 0 to 1 or 1 to 0. Because the 
flip flops for these bits may have different delays, if a voltage glitch occurs and the 
state is set too early within the flip flops, the user could get the state 10000 instead
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of the expected 00100. This would mean the FSM was transferring directly from 
WAIT KEY to FINAL ROUND, theoretically giving the secret key as an output 
rather than the encrypted ciphertext. Therefore, the encoding of FSM states for 
encryption algorithms is critical in performing attacks on the FSM. In this chapter, 
we demonstrate how to perform fault attacks using voltage glitches and exploit the 
FSM vulnerabilities. In this chapter, we’ll employ voltage glitches to try to break 
the AES execution. It is used to briefly short-circuit Vcc to ground. Then, the glitch 
is triggered by a field programmable gate array (FPGA) managing the attack timing 
which might be able to corrupt some of the bits of the FSM states and affect all 128 
bits of the output. 

12.2.5 ChipWhisperer CW305 Board 

For the study of embedded hardware security, ChipWhisperer provides a collection 
of several helpful tools. There are ChipWhisperer hardware targets, ChipWhisperer 
target device firmware, target device FPGA blocks, ChipWhisperer analysis soft-
ware and libraries, as well as ChipWhisperer-Capture devices (which sample power 
measurements). As a standalone target, the CW305 board enables the use of a larger 
FPGA target to implement cores like AES and ECC [3]. 

12.3 Experimental Setup 

12.3.1 Hardware Setup 

In this section, we will use the ChipWhisperer-Lite and ChipWhisperer CW305 
board to perform fault attacks using voltage glitches. The setup for the experiment 
is shown in Fig. 12.5. To set up the hardware for voltage glitching, only one extra 
connection is required compared to the setup for a clock glitch attack (see Chap. 11). 
Note that the original SMA cable (connected to the ChipWhisperer’s measure input) 
is not required for voltage glitching—if we only have one cable, we can just move 
it over. However, it is helpful to have power traces to see what effects the voltage 
glitches are having on the power rails, so if we can connect both of them. 

To perform a voltage glitch attack, we need to have access to the pin that provides 
power to the FPGA. Luckily, the CW305 has an exposed connection on the top of 
the board where we can connect the SMA from the glitch port of the ChipWhisperer-
Lite; that SMA port is identified with X3. To observe the effect of our glitch, we need 
to connect the SMA cable that comes from the MEASURE port to the port called 
X4 in the CW305 FPGA. That port will amplify the difference of voltage across a 
resistance that the power comes through. That difference in voltage, combined with 
the known value of the resistance, will allow us to observe the current that is going to 
the device. For the J16, K16, K15, and L14 switches, the configuration is 0, 1, 1, and
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Fig. 12.5 The CW305 interconnected to the CW-Lite board (voltage glitch setup) 

1, respectively. That will allow the FPGA to use the generated clock instead of the 
one that could be provided from the CLKIN (clock-in) port. The 20-pin connection 
from the ChipWhisperer Lite to the FPGA will be used as an interface to transmit the 
data between the AES implementation and the computer. The rest of the circuitry 
supports the objective of performing fault attacks on any target algorithm. Please 
refer to Chap. 8 for firmware setup and ChipWhisperer board configuration and how 
to connect a ChipWhisperer-Lite to the CW305 board. 

12.3.2 Software Setup 

First, we need to download the ChipWhisperer software V4.0.1 from the following 
link: https://github.com/newaetech/chipwhisperer/releases and install it on the con-
trol computer (PC). The ChipWhisperer Python library can be used to communicate 
with the NewAE Capture and target boards. Once the ChipWhisperer software 
is installed, we need to install the Xilinx Vivado software for AES bitstream 
generation. How to download and install the Xilinx Vivado Design Suite is discussed 
in Chap. 8. For this tutorial, we will provide a pre-existing AES-128 encryption 
example with a couple of project files to build a project using the Xilinx Vivado 
software. There are three steps that Vivado takes to turn our Verilog into a bitstream 
code: (1) synthesis in which the Verilog code is synthesized into a gate-level

https://github.com/newaetech/chipwhisperer/releases
https://github.com/newaetech/chipwhisperer/releases
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representation, (2) implementation in which the synthesized logic is routed to fit 
onto the device, and (3) generate the bitstream. Once the bitstream is generated, 
we need to identify its path. It is usually stored in the project file folder. We 
need its directory to insert it in the code. The CW305 Artix FPGA target and 
ChipWhisperer-Lite were used to load the AES algorithm and inject clock glitches 
reliably. Moreover, all Verilog design files and all Python sources can be found at 
http://cad4security.org/index.php/trainings/hsl/ch12_voltage_glitch_fia/. 

12.4 Performing Voltage Glitch Attacks 

12.4.1 Steps in Performing Voltage Glitch Attacks 

1. First, open the ChipWhisperer capture software from the toolbar below and 
choose the Python console. In the middle window, we can see the files in 
chipwhisperer/software/chipwhisperer/capture/scripts directory. 

2. This implementation is quite similar to the clock glitch (see Chap. 8). First, 
we run aaVFI_Setup.py. Next, we must click on the mater button as shown in 
Fig. 12.6. All three buttons should turn green at this point. 

3. Then, we run the aaVFI_Setup2.py and use the glitch explorer tool to see the 
outputs and plot them. Finally, we run aaVFI_Sweep_offset.py for the glitch 
exploration and run it for traces. If in the debug logging we receive a message 
that “FPGA Bitstream not configured or “not a file,” browse the device to upload 
the bitstream file under FPGA bitstream and configure it by manually clicking 
on the program FPGA button as shown in Fig. 12.7. We should see there is no 

Fig. 12.6 Set up ChipWhisperer-Lite with cw305 FPGA board
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Fig. 12.7 FPGA bitstream configuration 

problem with the Python code running. Then we can also check the log to see if 
ChipWhisperer and FPGA board are connected and if FPGA is programmed. 

4. Once everything is set up, we will be able to observe a power waveform similar to 
Fig. 12.8. In it, we will find a series of peaks, each one related to one operation of 
the encryption process. Knowing the meaning of each peak will help us position 
our glitch in the correct area to extract information. In Fig. 12.8, the L is when 
the information is getting loaded to the FPGA, K is when the key start to arrive at 
the encryption, D is when the data arrives to the encryption, I is the initial round, 
2–9 are the middle rounds, F the final, and E is the part where the data is exported 
out. Moreover, each peak only lasts one clock cycle. 

5. Using that information, we can move the Ext. Offset parameter and target any of 
the rounds, depending on the attack that we want to execute. Other parameters 
that can be adjusted to make our glitch more effective are the glitch width, offset, 
and the number of repeats as shown in Fig. 12.9.
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Fig. 12.8 Power waveform for AES encryption process 

Fig. 12.9 Set up the glitch module 

6. The width will adjust the duration of our glitch, it can be adjusted up to 50% of a 
clock cycle, and there’s also a fine adjustment in case it is needed. There are two 
kinds of offset, the Glitch Offset and the Ext Trigger Offset as shown in Fig. 12.9. 
The first one moves our glitch across one clock cycle and the latter moves our 
glitch across different clock cycles. The number of repeats changes the number 
of times the glitch gets activated after it is triggered, meaning that for the next 
number of cycles, a glitch is going to show up in the waveform. 

7. Other parameters that can be adjusted are the ones that define the point of 
operation of the FPGA. These are FPGA frequency and FPGA voltage. They are 
marked in Fig. 12.10 with a red dot, and they can be found in the target settings 
tab.
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Fig. 12.10 Target settings tab 

8. Using the provided script: aaVFI_Sweep_offset.py, we will be able to sweep 
two of the parameters to obtain results from different parameters to evaluate our 
results. While sweeping the parameters, we will see the result showing up in the 
Glitch Map module as shown in Fig. 12.9. 

12.4.2 Starting the Voltage Glitch Attack 

The goal is to identify a set of voltage glitch parameters that result in the encryption 
process failing once we get voltage glitches operating. Let’s configure the glitch 
explorer to automatically look for glitches so that we may accomplish this. Getting 
our FPGA to use a set plaintext and key is the first thing we must do. It will 
be more challenging to determine when a glitch was successful if we modify the 
inputs on every capture. The fixed key 2B 7E 15 16 28 AE D2 A6 AB F7 15 
88 09 CF 4F 3C and fixed plaintext 5C 69 2F 91 03 B2 30 29 14 D7 E5 55 
E4 DC EE 49 will be used for this tutorial; however, we can use any key and 
plaintext. Because of the alterations to our AES implementation outputting the states 
rather than the encrypted output, the ideal output for the binary AES encoding is 
“1234056789abcdef0000000000000000”. The portion of this output that is relevant 
is the first five bits: 12340. Set the normal/successful answers in the glitch explorer 
to look for this string. Then, as illustrated in Fig. 12.9, set up two tuning parameters 
to sweep the width and offset of the glitch module. Important note: If our version
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Fig. 12.11 Generic settings 

of the ChipWhisperer GUI does not show tuning parameters, we must use the given 
Python code to sweep the glitch width and offset aaVFI_Sweep_offset.py and run it. 
This will be visible in the GUI under the Python coding examples and can be edited 
as needed to fit the described parameters. If you need help with what parameters 
to edit, this link is useful for the syntax to use to change parts of the GUI to fit 
our needs in Python: https://chipwhisperer.readthedocs.io/en/latest/api.html. Once 
everything is set up, either tuning parameters on the GUI or the relevant sweeping 
code has been run, we can now start capturing. Note that we need to set the number 
of traces to 2000 before capturing as shown in Fig. 12.11. 

12.4.3 Results 

Once our capture is complete, we can verify the output of the glitch explorer: 
examining the glitched ciphertexts reveals a wide range of various outputs with 
various glitch settings (see Fig. 12.12). We have experimentally demonstrated that 
the AES execution by applying voltage glitches caused it to produce erroneous 
results during the AES encryption process. Note: we must clarify in the glitch 
terminal what is deemed as “Normal” and a “Success”. In our case, “Normal” can 
be equal to the expected ciphertext and “Success” can be anything not equal to that 
value. We have done our goal which was to set up voltage glitching the CW305 and 
determine exactly what effect our glitches had on this AES setup.


 19465
29370 a 19465 29370 a
 
https://chipwhisperer.readthedocs.io/en/latest/api.html
https://chipwhisperer.readthedocs.io/en/latest/api.html
https://chipwhisperer.readthedocs.io/en/latest/api.html
https://chipwhisperer.readthedocs.io/en/latest/api.html
https://chipwhisperer.readthedocs.io/en/latest/api.html
https://chipwhisperer.readthedocs.io/en/latest/api.html
https://chipwhisperer.readthedocs.io/en/latest/api.html
https://chipwhisperer.readthedocs.io/en/latest/api.html


232 12 Voltage Glitch Attack on an FPGA AES Implementation

Fig. 12.12 Glitches are changing the output 

12.5 Conclusion 

In this chapter, we performed the voltage glitch fault injection attack on AES in 
FPGA. We injected the voltage glitch in the FSM states of AES encryption. It gives 
concrete evidence to support the vulnerabilities of a one-hot encoding scheme on 
AES. By the end of this chapter, readers will understand how to set up voltage 
glitching the CW305 and determine exactly what effect our glitches had on AES 
and exploit the FSM vulnerabilities. 
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Chapter 13 
Laser Fault Injection Attack (FIA) 

13.1 Introduction 

Fault injection attacks (FIA) and respective countermeasures are one of the main 
research arenas in the hardware security domain. Fault injections are a set of active 
physical attacks that can be used by an adversary to make a target device not 
function correctly, have unauthorized access, leak assets, and sometimes, decipher 
the architecture of the whole device [1]. There are different types of fault injection 
attacks prevalent among attackers and the research community. Laser fault injection 
(LFI) is one of the types. Fault injection by laser has certain advantages over the 
other counterparts like timing and voltage fault injections. Timing fault injection 
and voltage fault injection usually affect the device globally. So, an attacker cannot 
achieve spatial precision with these attacks. On the other hand, a laser enables an 
attacker to inject faults into a very specific point of interest in the target device 
with very high precision. But such a laser setup is very costly and has a very 
exhaustive search space in the experiments. This chapter basically deals with a 
detailed experimental setup for laser fault injections from a practical perspective. 

A system reacts uniquely to different fault injections. Fault propagation creates 
an individual response to a system. The reaction of a system is analyzed in the 
corresponding literature in detail [5, 16, 17, 28]. Fault injection works described 
in the literature deal with diverse faults, their effects, detailed injection techniques, 
and countermeasures. Timing, voltage, optical, and electromagnetic are some of the 
faults frequent among attackers and the research community [6, 22]. Fault injections 
in a device can create catastrophic consequences. These consequences range from 
denial of service (DOS) attacks to instruction skipping, authentication bypass, and 
breaking cryptographic algorithms [10, 23]. Countermeasures to these fault injec-
tions also have been described in corresponding literature including various security 
property-driven [18, 20, 26] and optical probing-based countermeasures [21, 25]. 

Fault injection attack requires test pattern generation. Test patterns can be 
generated electrically or externally. External stimuli can be generated by photons of 
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a laser beam or by electromagnetic stress. Laser beams or electromagnetic stress are 
applied on a device under test (DUT). As DUT, a rudimentary circuit implemented 
on a flip-chip FPGA is used. FPGAs are gaining vast popularity among designers, 
attackers, and researchers due to fast development, reasonable computing resource 
at a competitive price, fair controllability, and observability of these resources. In 
this book chapter, a laser beam is shot into an FPGA, and corresponding effects are 
observed. 

The rest of the chapter is organized as follows: Sect. 13.2 provides background 
on fault injection, especially laser fault injection in detail. The complete setup 
is described in Sect. 13.3. Section 13.4 deals with data collection and the result 
analysis. Finally, Sect. 13.5 concludes this chapter. 

13.2 Laser Fault Injection Attacks 

This section deals with the theoretical background of laser fault injection and 
attack scenarios. Fault can be induced by invasive, noninvasive, and semi-invasive 
manners. Laser fault injection is a type of optical fault injection attack that falls 
under the semi-invasive or noninvasive categories. In a semi-invasive attack, we 
need to do sample preparation like decapsulation, circumvention of shielding, and 
passivation layer removal. If the target IC has a bare die packaging, then no sample 
preparation is required and, in that case, the attack is noninvasive. 

13.2.1 Analysis of Laser Beams on MOSFETs 

When a MOSFET is irradiated by a laser beam with sufficient energy, electron-hole 
pair is generated. These electron-hole pairs will recombine if there is no external 
force. When the MOSFET is biased with proper voltages on the gates, there will 
be a strong electric field in the MOSFET [19]. The electric field will prevent the 
electron-hole pair recombination and keep them moving. So transient current will 
start to flow [9], as shown in Fig. 13.1. 

When the generated electron-hole pair propagates to the depletion region, 
the electron-hole pairs are rapidly collected by the electric field and create a 
current/voltage transient at that node. This collection is followed by the diffusion 
process [8], where additional charges are gathered by diffusion, as shown in 
Fig. 13.1c. The current induced by such carrier propagation mechanism is called 
“photocurrent” [15, 27], which is depicted in Fig. 13.1d. 

As per our discussion, we see that a strong electric field is needed for maintaining 
electron-hole pair segregation [13]. The strongest electric field is created in case of a 
reverse bias. So areas with reverse bias are the most laser-sensitive part of a CMOS. 
For the nMOS transistor, the drain is reverse biased with .Psubstrate. This area is
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Fig. 13.1 Generation of transient photocurrent by laser beam [24]. (a) Generation of electron-
hole pair, (b) propagation of generated carriers, (c) carrier diffusion, (d) transient photocurrent in 
different layers 

the most vulnerable to laser attacks. The drain is also the most vulnerable part for 
laser attack for pMOS by the same reasoning. 

The transient voltage, caused by the carrier propagation, can create a bit flip. 
Errors introduced by such a mechanism are called soft errors. Soft errors can be 
of two types: single-event upset (SEU) and single-event upset (SET). Single-event 
upset is created by a laser beam hitting on the sequential element, whereas single-
event transient (SET) is created by a laser beam hitting on combinational circuits. 
As we can see in Fig. 13.2, the transient voltage can move through the circuit to a 
sequential element, and the wrong logical value can be captured by the sequential 
element. 

13.2.2 Exploitation of Laser Attacks 

Creating faults by the laser beam can have different effects in terms of security 
breaches. This section of the book chapter will feature a few of them. Password 
bypassing is one of them. When an attacker attacks authentication results by 
checking resources with a laser beam, the resource value can flip resulting in more 
privileged access. The adversary can have access to secured data and, sometimes,
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Fig. 13.2 Different types of soft errors and error propagation [7] 

the architecture of the whole device. Memory dump is another kind of attack that is 
performed by the adversary. The adversary shoots the laser beam at the target device 
during data transmission. Because of this attack, data can be transmitted from the 
wrong location. Sometimes redundant data can be dumped. In the utmost case, the 
whole memory can be dumped. 

Differential fault analysis (DFA) is used by the attacker for breaking the 
cryptographic algorithm. The objective of these attacks is to extract the key. The 
attacker attacks with a laser beam, and after a successful bit flip, they extract the 
wrong cipher text. The wrong cipher text then can be used to extract the key with 
mathematical reasoning [11]. Sometimes, the attackers use fault injection to bolster 
side-channel attacks by disabling the countermeasures [2]. If the countermeasure is 
configurable, it is possible for an attacker to disable them. 

13.3 Device Under Test (DUT) Circuit on FPGA 

This section describes the fundamentals of FPGAs and the type of FPGA which is 
usually used for laser fault injection. This section also characterizes the circuit that 
is used as the design under test (DUT) for this laser fault injection. 

13.3.1 Field Programmable Logic Arrays 

Application-specific integrated circuits (ASICs) are fixed hardware circuits and are 
very costly as well. FPGAs provide reconfigurability with decent performance. An 
FPGA fabric is composed of an array of configurable logic blocks, connected by 
programmable interconnections [3]. CLBs are the basic building blocks that can 
implement both combinational and sequential logic. The connection box and switch 
box are the hardware components that provide reconfigurable connections between 
fixed routing wires of the CLBs. For implementing memory elements, dedicated 
RAM components are used. Xilinx, one major vendor of FPGA, refer to these RAMs



13.3 Device Under Test (DUT) Circuit on FPGA 239

Fig. 13.3 FPGA fabric with two-dimensional arrays of CLBs, DSPs, block RAMs, and pro-
grammable interconnects 

as block RAMs (BRAMs), whereas Intel, another major vendor of FPGAs, calls 
them memory blocks. Modern FPGAs also provide DSP slices that can implement 
multiplication, MAC circuits, Barrel shifter, FIR filters, etc. more efficiently. A 
typical modern FPGA contains thousands of CLBs, DSPs, BRAMs, and hundreds 
of I/O ports. A two-dimensional FPGA fabric is illustrated in Fig. 13.3. 

Mostly, two types of packaging are available for FPGAs: wire bond packaging 
and flip chip packaging. In wire bond packaging, bonded wires are used to connect 
the metal layers of the IC with the PCB board, whereas in the flip chip, the IC 
is flipped and the metal layers are directly connected to the PCB. For laser fault 
injection attacks, flip-chip FPGAs are preferred. Because in modern technology 
nodes, there are as high as ten metal layers and these metal layers prohibit laser 
beams. In flip chip packaging, as the IC is flipped, silicon bulk is exposed and laser 
beams with certain wavelengths (1054 nm) can penetrate the bulk silicon and flip the 
bit value. For this experiment, the Artix-7 AC701 development board from Xilinx 
is used. This development board has a 7 series Artix FPGA with 28 nm technology 
node. This specific board is used for this experiment because the Artix-7 FPGA is a 
bare-die flip chip. So, no pre-processing like decapsulation is needed. 

13.3.2 Device Under Test (DUT) 

A very rudimentary circuit was designed to be used as the device under test (DUT). 
It is a simple finite state machine, as shown in Fig. 13.4. One thousand registers are 
set to zero value. In the Check state, the laser is fired until there is a non-zero value 
for the register. A non-zero value will imply that Once there is a non-zero value. 
Once the register has a non-zero value, the finite state machine will go into the done 
state, where this change in the register value will be observed.
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Fig. 13.4 Device under test for laser fault injection 

13.4 Experimental Setup 

In this section, we will discuss the hardware setup for laser fault injection. We will 
use 1064 nm diode laser in this experiment. 

13.4.1 Hardware and Software 

The following hardware and software setup was used for the implemented attack: 

• Laptop/PC (i.e., installed Windows 10) 
• Xilinx Vivado software: The design under test (DUT) device is developed using 

Xilinx Vivado 2021.2 
• Laser: A 1064 nm diode laser is used for laser shooting. Laser power, pulse 

duration, and time between consecutive triggering can be controlled by a user 
application. 

• XYZ precision stage: A XYZ precision stage is used to hold and place the target 
FPGA for precision laser shooting. 

• Inspector software: The Inspector software includes a GUI interface for param-
eter tuning and Java scripts are run here to control the diode laser station, XYZ 
precision placement station, NIR camera. 

• Artix-7 FPGA: The DUT is implemented in the AC-701 Artix-7 Xilinx FPGA 
with a 28 nm technology node which has flip-chip packaging. 

• Oscilloscope: An oscilloscope is used to observe the bit flip caused by laser fault 
injections.
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Fig. 13.5 Setup for laser fault injection [14] 

13.4.2 Hardware Setup 

We used Riscure laser station for housing the diode laser, NIR camera, and XYZ 
precision stage. A side-channel analysis workbench, Spider, is used for generating 
glitches and receiving trigger and reset signals from the embedded DUT. XYZ 
precision stage can be controlled by either the Inspector GUI or the attached wired 
controller. An oscilloscope will be used for observing the faults. The setup for the 
experiment is shown in Fig. 13.5. 

The following subsections will briefly describe the main equipment for laser fault 
injection attack. 

13.4.2.1 Diode Laser 

For this experiment, a Riscure 1064 nm multimode laser diode [14] is used for fault 
injection. 1064 nm laser is used because we are using a flip chip as the target FPGA 
and 1064 nm laser can penetrate through bulk silicon and cause a bit flip. The laser 
can produce a maximum power of 30W. In practice, up to 40–50% power is used 
so that it does not do any permanent damage. The laser diode is shown in Fig. 13.6.
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Fig. 13.6 Riscure 1064nm diode laser [14] 

Fig. 13.7 Riscure Spider tool [14] 

13.4.2.2 Spider Tool 

Spider tool [14], as shown in Fig. 13.7 from Riscure, is used for side-channel 
analysis and fault injections. It is used for the proper timing of the glitch generations. 
It also receives trigger signals from the target board. The spider tool can be 
controlled by inspector GUI. 

13.4.2.3 AC701 Artix-7 Evaluation Board 

The AC701 evaluation board [12] has flip-chip packaging of the Artix-7 FPGA, as 
shown in Fig. 13.8. Artix-7 is a 7 series Xilinx FPGA with 28 nm technology [4]. To 
configure correctly the switch, SW1 (marked with red box in Fig. 13.8) should have 
a value of 1, 0, 1.
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Fig. 13.8 Target AC701 Artix-7 FPGA board with flip-chip packaging 

Fig. 13.9 Building the project using the Xilinx Vivado software 

13.4.3 DUT Bitstream Generation 

We will need Xilinx Vivado tool for DUT bitstream generation from the HDL 
description of the device. Moreover, all Verilog design files and sources can 
be found at http://cad4security.org/index.php/trainings/hsl/ch13_laser_fia/. In this  
experiment, we used Vivado 2021.2 version. We have to open a new project, as 
shown in Fig. 13.9. After that, bitstream generation is done by following the step-
by-step process mentioned here. 

1. Synthesis: the Verilog code is synthesized into a gate-level representation. During 
the synthesis stage, the HDL code composed at the design entry stage will be 
converted into a circuit in the form of netlist by the electronic design automation 
(EDA) tools. Our HDL code is going to be parsed to check syntax and then

http://cad4security.org/index.php/trainings/hsl/ch13_laser_fia/
http://cad4security.org/index.php/trainings/hsl/ch13_laser_fia/
http://cad4security.org/index.php/trainings/hsl/ch13_laser_fia/
http://cad4security.org/index.php/trainings/hsl/ch13_laser_fia/
http://cad4security.org/index.php/trainings/hsl/ch13_laser_fia/
http://cad4security.org/index.php/trainings/hsl/ch13_laser_fia/
http://cad4security.org/index.php/trainings/hsl/ch13_laser_fia/
http://cad4security.org/index.php/trainings/hsl/ch13_laser_fia/
http://cad4security.org/index.php/trainings/hsl/ch13_laser_fia/
http://cad4security.org/index.php/trainings/hsl/ch13_laser_fia/


244 13 Laser Fault Injection Attack (FIA)

optimized to reduce redundant logic according to the specified settings. The 
generated netlist will contain the needed logic elements and the connectivity 
among them as described by the HDL code. 

2. Implementation: The synthesized logic is routed to fit onto the device. The 
implementation phase will then technology map the logic elements in the netlist 
to the primitives available in the selected FPGA model so that the design could 
be implemented on our physical chip. In addition, this step will place and route 
the primitives on the FPGA layout virtually per the constraints from designers 
and physical aspects to make the final design meet the power, performance, and 
area requirements. 

3. Bitstream generation: Finally, the placed and routed netlist will be translated to 
the binary configuration data, called bitstream with the vendor-specific tool. The 
bitstream is stored in the Desktop directory. 

4. Then, download it to the target device to fulfill the functionality. Bitstreams to be 
stored in the FPGA, but they will be volatile meaning that lost once the FPGA 
loses power. Persistent storage is available on the Artix-7 in the form of an SPI 
flash chip. 

For this experiment, the pre-generated bit file “Laser_FSM.bit” can be used. 

13.4.4 Hardware Connection 

Now we have to make sure all the electrical wires are properly connected, as shown 
in Fig. 13.10. Once all the connections of the diode laser, spider, NIR camera, and 
joystick controller for the XYZ board are thoroughly checked, and then we will 
power the laser station. Spider, target FPGA board, camera, and joystick controller 
for XYZ stage will have their separate COM ports in the connected PC. Then we 
have to connect an oscilloscope to the output pin of the FPGA to observe the bitflip, 
as shown in Fig. 13.11. In this case, the output pin is T22 of the AC701 evaluation 
board. 

13.4.5 Placement of the FPGA 

The Artix-7 FPGA will be placed on the XYZ precision board, as shown in 
Fig. 13.12. To perfectly place the FPGA right under the laser, we will use the camera. 
In our setup, we have three objective lenses with magnifications of . 5×, .20×, and 
.50×, respectively. We will take picture of the IC to find our area of interest, as shown 
in Fig. 13.13.
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Fig. 13.10 Mounting of 
diode laser, camera, objective 
lenses, and XYZ stage 

Fig. 13.11 Output T22 pin of AC701 for oscilloscope connection
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Fig. 13.12 Placement of the Artix-7 FPGA under objective lenses 

Fig. 13.13 Target IC with different magnifications 

13.4.6 Fault Injection Attack 

We can carry out fault injection attacks in Inspector software. In this subsection, we 
will describe how we can use Inspector software. The inspector tool is developed by 
Riscure [14]. 

13.4.6.1 Fault Injection by Inspector 

After opening inspector Gui [14], we will open the optical perturbation sequence 
from the project list. The following Python code will be executed. 

import random 

import os 

import serial
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from time import time, sleep 

from pathlib import Path 

from fipy.parameters import * 
from fipy.scriptutils import ResultColor, fipy_script 

from spidersdk.chronology import Chronology 

from spidersdk.spider import Spider 

from fipy.transformutil import TransformUtil 

tu = TransformUtil() 

PARAMETERS = Parameters( 

(’scans’, AttemptsParameter(’Scans’)), 

(’xyz_scanner’, MaskedXYZScanParameter(’XYZ scanner’, 

transformutil=tu)), 

(’z_offset’, IntParameter(’Z Offset’, unit=’um’)), 

(’pulse_power’, IntParameter(’Pulse Power’, unit=’%’)), 

(’pulse_length’, IntParameter(’Pulse Length’, unit=’ns’)), 

(’pulse_delay’, IntParameter(’Pulse Delay’, unit=’ns’)), 

(’spider_com_port’, SerialPortParameter(’Spider COM’)), 

(’serial_com_port’, SerialPortParameter(’Pinata COM’)), 

(’serial_baudrate’, IntParameter(’Pinata Baudrate’)), 

(’serial_timeout’, FloatParameter(’Pinata read timeout’)), 

(’normal_voltage’, FloatParameter(’Pinata normal voltage’, 

unit=’V’)),) 

TRIGGER_IN = 0 

RESET_OUT = 2 

TRIGGER_OUT = 8 

TARGET_POWER = Spider.GLITCH_OUT1 

TRIGGER_EDGE = Spider.RISING_EDGE 

DLS_PULSE_AMPLITUDE = Spider.VOLTAGE_OUT1 

DLS_DIGITAL_GLITCH = Spider.GLITCH_OUT2 

DLS_GLITCH_VOLTAGE = 3.3 

@fipy_script 

def execute_script(util): 

util.set_termination_timeout(5) 

util.parameter_init(PARAMETERS) 

script_name = Path(__file__).stem 

db = util.create_database_table(’logs/{}.sqlite’. 

format(script_name), script_name)
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util.add_to_cleanup(util.close_database) 

xyz_interface = util.get_xyz() 

tu.add_system(’table’, 

xyz_interface.get_reference_points()) 

# # Hardware initialization (Spider) 

spider_com_port = serial.Serial() 

spider_com_port.port = str(PARAMETERS[’spider_com_port’]) 

spider_com_port.open() 

spider_core1 = Spider(Spider.CORE1, spider_com_port) 

spider_core1.reset_settings() 

util.add_to_cleanup(spider_com_port.close) 

# Hardware initialization (Pinata) 

serial_target = serial.Serial() 

serial_target.baudrate = 

int(PARAMETERS[’serial_baudrate’]) 

serial_target.timeout = 

float(PARAMETERS[’serial_timeout’]) 

serial_target.port = 

str(PARAMETERS[’serial_com_port’]) 

serial_target.open() 

serial_target.reset_input_buffer() 

serial_target.reset_output_buffer() 

util.add_to_cleanup(serial_target.close) 

try: 

glitcher = Chronology(spider_core1) 

except IndexError as e: 

raise Exception(str(e) + 

"\n\nDid you select the right COM port for 

Spider? 

Is it powered on?") 

glitcher.forget_events() # Forget any previous 

added events 

normal_vcc = float(PARAMETERS[’normal_voltage’]) 

counter = 0 

do_reset = True 

expected_response = bytes.fromhex(’6986’) 

success_response = bytes.fromhex(’9000’)
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# Initialize target VCC 

glitcher.set_vcc_now(TARGET_POWER, 0) 

# Initialize the digital glitch output 

glitcher.set_vcc_now(DLS_DIGITAL_GLITCH, 0) 

# Initialize the pulse amplitude output 

glitcher.set_power_now(DLS_PULSE_AMPLITUDE, 0) 

# Transform to chip coordinates using the warping 

tool. 

# This tools will use chip warping when it is 

enabled in the project settings, 

# and otherwise perform regular transformations 

between table and chip coordinates 

transform = util.get_warping_tool() 

for p in PARAMETERS: 

t = time() 

if not util.process_commands(): 

break 

glitcher.set_power_now(DLS_PULSE_AMPLITUDE, 

p[’pulse_power’]) 

chip_pos = p[’xyz_scanner’] 

table_pos = transform.from_chip(chip_pos) 

# By default, tango controls are reversed, 

meaning 

that adding positive 

# numbers to the z position will move the 

mounted lens up, increasing 

# the distance between the lens and the table 

platform. 

z = table_pos.z + p[’z_offset’] 

xyz_interface.move_abs(table_pos.x, table_pos.y, z) 

glitcher.forget_events() 

if do_reset: 

# Sleeps might require manual tuning, based 

on device 

glitcher.set_vcc_now(TARGET_POWER, 0) 

glitcher.set_gpio_now(RESET_OUT, 0) 

sleep(1e-3) 

glitcher.set_vcc_now(TARGET_POWER, normal_vcc)
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glitcher.set_gpio_now(RESET_OUT, 1) 

sleep(100e-3) 

do_reset = False 

glitcher.set_gpio(TRIGGER_OUT, 1) 

glitcher.wait_trigger(TRIGGER_IN, TRIGGER_EDGE, 

count=1) 

glitcher.set_gpio(TRIGGER_OUT, 0) 

glitcher.glitch( 

DLS_DIGITAL_GLITCH, 

DLS_GLITCH_VOLTAGE, 

p[’pulse_delay’] / 1e9, 

p[’pulse_length’] / 1e9) 

glitcher.start() 

pin_guess = os.urandom(4) 

serial_target.write(b’\xA2’ + pin_guess) 

pin_response = serial_target.read(2) 

spider_timeout = glitcher.wait_until_finish(1000) 

if spider_timeout: 

color = ResultColor.PINK # no trigger, 

check setup 

elif pin_response == expected_response: 

color = ResultColor.GREEN 

else: 

# Check if there are more bytes 

pin_response += serial_target.read(1024) 

if pin_response == expected_response: 

color = ResultColor.GREEN 

elif pin_response == success_response: 

color = ResultColor.RED 

elif len(pin_response) == 0: 

color = ResultColor.YELLOW 

else: 

color = ResultColor.ORANGE # some error 

if color != ResultColor.GREEN: 

# Force TRIGGER_OUT to 0 in case there was 

a problem 

glitcher.set_gpio_now(TRIGGER_OUT, 0) 

do_reset = True
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result = Parameters( 

("id", counter), 

("timestamp", int(t)), 

("iter_t (ms)", int((time() - t) * 1000)), 

("scan", p[’scans’]), 

("x", chip_pos.x), 

("y", chip_pos.y), 

("z", p[’z_offset’]), 

("pulse_power", p[’pulse_power’]), 

("pulse_delay", p[’pulse_delay’]), 

("pulse_length", p[’pulse_length’]), 

("normal_voltage", p[’normal_voltage’]), 

("spider_timeout", spider_timeout), 

("pin_guess", pin_guess), 

("do_reset", do_reset), 

("Data", pin_response), 

("Color", int(color)) 

) 

util.monitor(result) 

counter += 1 

db.add(result) 

In Inspector GUI, a dialogue box will open. In the General tab, we will select 
“accepts measurements with error,” as shown in Fig. 13.14. 

In the camera tab, we will select NIR camera, and open the live feed. By 
observing the live feed, we will adjust the brightness, contrast, and sharpness values. 
This picture is depicted in Fig. 13.15. In the XYZ device tab, the coordination of the 
IC will be given input by adjusting the XYZ board using the joystick controller. 

In the perturbation tab, we will use 2k for number of measurements, 40% as 
laser pulse power, 20 ns for pulse delay, and 20 ns as laser pulse duration, as shown 
in Fig. 13.16. 

In the target tab, we will use Spider laser Fi as sequence, 115,200 as target baud 
rate, voltage out1 as pulse amplitude port, and Glitch out1 as digital glitch port. We 
will also select 1064 nm wavelength as laser, as depicted in Fig. 13.17. Now, we will 
now run the script and the laser will be shot to the predefined area of the IC.
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Fig. 13.14 General tab setting in Inspector GUI 

13.4.7 Bitflip Observation 

In this section, we will describe the way by which we can observe the bit flip and 
analyze the results. We are continually observing the value of the output pin, as 
shown in Fig. 13.18. As per our finite state machine, all the register values are 
initialized to zero values. The FSM will only go to Done state only after any of 
the registers have at least one non-zero value. At Done state, the output will be one. 
So if we observe a level shift in the oscilloscope, we will know that there has been at 
least one bit flip. In Fig. 13.18, if the output is zero, then no fault has been injected. 
If we observe the output level as one in the oscilloscope, it means the FSM is in 
Done state and at least one fault has been injected
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Fig. 13.15 Camera tab setting in Inspector GUI 

13.5 Conclusion 

In this chapter, the practical aspects of laser fault injections are described in detail. 
In this experiment, we injected faults in a very basic circuit and tried to observe the 
faults. However, there are several limitations with this experiment which reduce the 
probability of bit flips. The spatial and temporal search space is huge for perfectly 
injecting and observing faults. As of now for a single-bit flip observation, millions 
of laser injections would be necessary.
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Fig. 13.16 Perturbation setup tab setting in Inspector GUI
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Fig. 13.17 Target tab setting in Inspector GUI 

Fig. 13.18 Observation of level shift in the oscilloscope. (a) When output is zero, (b) when the 
output is one
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Chapter 14 
Optical Probing Attack on Logic Locking 

14.1 Introduction 

The increasing use of digital devices in the modern world calls for an extra layer 
of protection schemes against hardware attacks. Hardware attacks range from 
extracting sensitive information such as secret keys from FPGAs or ASICs and/or 
changing and manipulating memory contents from these devices [4, 8]. Several 
incidents, such as the big hack [15, 23], have shown the possibility of a global-
scale attack on integrated circuits facilitated by large entities or countries. The rising 
concerns about this scenario have increased the necessity of a detailed study of 
possible attack strategies and countermeasures in this domain. The study would be 
helpful in staying ahead of any possible attack scenario and increasing the security 
depth of any electronic device [19, 27]. 

The attack approaches had been designed as a means of stealing intellectual 
property and sensitive data by exposing security protocols. This was accomplished 
by exposing the protocols. Side-channel attacks are a method for getting around the 
cryptographic security protocols of a software program. These procedures are based 
on mathematical problems that are thought to be too difficult for anyone who does 
not possess the key to be able to solve them. Instead of trying to crack them, the 
attacker examines how the hardware performs, such as its power consumption or 
the amount of calculation time it takes when these algorithms are being executed, in 
an effort to discover what their secrets are [21]. Differential fault analysis is the 
other important category, and it is the one that blocks the computer system by 
intentionally causing it to overheat or by inducing faults within the hardware [3]. 
This can be done, for example, by causing the system to overheat. It is more common 
for the goal in either scenario to be the recovery of information rather than the 
destruction of a device. These attacks were first aimed to steal the banking data 
on chip cards [12, 14]. These methods are currently being used on mobile phones, 
which have circuits that are not well protected. The situation is considerably more 
precarious for the Internet of Things, which is characterized by pervasive gadgets 
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that have inadequate or no security at all. Optical probing has enabled failure 
analysis by measuring the optical activity within registers of ASIC or FPGA. These 
techniques can well be used for extracting cryptographic keys. An adversary can 
easily rent an optical FA tool with an estimate of $300/h rate for this purpose and 
might be able to locate and extract key bits [20]. Cyber-attacks, whether they are 
directed at hardware or software, take use of vulnerabilities. Researchers in the field 
of cybersecurity work to patch these holes in order to prevent malicious actors from 
finding and using them. 

The logic-locking technique is a popular method deployed in ASICs and FPGAs 
for hiding and encrypting IP [24, 29]. The method requires the insertion of additional 
inputs known as “key bit inputs” into a circuit. The key bit inputs are either XORed 
or XNORed with the original inputs to the IP. Without knowing the key bits, it is not 
possible to get the desired output from the logic-locked circuit. The logic-locking 
technique serves as a good security measure against exposing the true netlist. This 
is why logic-locking schemes have become a prime target for attackers. Finding a 
way to unlock the logic-locked circuit without knowing the key would risk exposing 
the true nature and functionalities of an IP [22, 30]. 

Optical probing techniques such as electro-optical probing (EOP) and electro-
optical frequency mapping (EOFM) are intended to be used for gathering informa-
tion about circuit-level activities and failure analysis [26]. These techniques can be 
used for exposing sensitive information such as the position of memory registers, 
flip flops (FF), or look-up tables (LUT) in an FPGA and their contents either in the 
time or frequency domain [5]. This may as well be used for key-value extraction 
for a logic-locked circuit. Several studies have shown well-developed pipelines for 
using optical probing to localize and identify key bits in a logic-locked IP. This 
shows how vulnerable and outdated logic locking is, and it requires additional 
prevention measures [6, 9, 10, 22]. 

However, developing prevention measures requires a well-understanding of the 
attack schemes in the first place. This book chapter is devoted to explaining possible 
attack scenarios against logic locking in the optical probing domain. A device under 
test (DUT) requires sample preparation for optical probing to work. The next phase 
requires localizing the region where key bits are securely stored. This requires 
a thorough understanding of the device architecture. Later, optical inspection is 
required to localize the key bit position. After that, electro-optical probing is 
performed to find out the state of the key bit registers [17, 20]. An elaborate pipeline 
of this method is well demonstrated in this chapter with proper background, visuals, 
and examples. It is expected that the reader will have a fine understanding of the 
concepts described in this chapter after studying them, and this will give them 
insight into how to use the dedicated devices for this sort of experimentation, such as 
the PHEMOS installed in the FICS lab [1]. Once the problem is well understood, it 
will be easier for a researcher to spot the vulnerabilities and the parameters that play 
a crucial role in various attack scenarios such as the dimension of the DUT, laser 
resolution and spot size, spacing between gates, and how a system can be developed 
from hardware perspective [18] or at the simulation end. In addition, it will help 
them develop prevention schemes for logic locking against optical attacks.
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In this chapter, we focus on the optical probing attack on logic locking. In 
particular, we demonstrate how to extract security-critical information, like a 
locking key, from hardware systems that incorporate logic locking circuitry [2]. 
We use electro-optical probing (EOP) for time-domain analysis and electro-optical 
frequency mapping (EOFM) for frequency-domain analysis, both of which can be 
used on the PHEMOS-1000 machine [1]. The rest of the chapter is organized as 
follows: Sect. 14.2 discusses on optical probing techniques. Section 14.3 briefly 
provides the experimental setup to perform an optical probing attack. Results of the 
performed optical probing attack steps are given in Sect. 14.4. Finally, conclusions 
are presented in Sect. 14.5. 

14.2 Background 

14.2.1 Optical Probing Overview 

Two recent trends in microelectronics fabrication serve as the foundation of the 
attack discussed in this module. The first trend is the rise of new failure analysis 
(FA) techniques to localize chip defects in a rapid, semi-invasive manner. Optical 
methods like photon emission analysis (PEA), electro-optical probing (EOP), and 
optical beam-induced resistance change (OBIRCH), to name a few, take advantage 
of the transparency of silicon to near-infrared (NIR) photons to gather information 
about the activity of circuit elements in the IC. The second trend is the rise of 
flip-chip packaging. Due to increasingly compact designs and higher pin counts, 
it has become common to insert the die into its package upside-down as shown 
in Fig. 14.1. This leaves the substrate of the chip exposed as a target platform for 
attackers to launch a probing attack, with the aforementioned FA tools [28]. 

It is necessary to understand two optical probing techniques, in particular, to 
execute this module successfully. The first technique is electro-optical probing 
(EOP). EOP is based on the probing of transistor signals with an incoherent light 
source. This laser stimulus passes through the silicon substrate and gets reflected and 
modulated from different device features (like the active region or metal region on a 
MOSFET). The reflected laser gets converted into an electrical signal and analyzed 
on the FA machine side, creating a time-dependent waveform that correlates roughly 
to the voltage of the target region. This is useful for time-domain analysis on how a 
specific transistor element switches over time as shown in Fig. 14.2. 

The other important optical probing technique is electro-optical frequency map-
ping (EOFM) as shown in Fig. 14.3. EOFM can be thought of as the complement 
to EOP since it is used for analysis in the frequency domain instead of the time 
domain. In EOFM, a larger region of interest (RoI) is scanned with the laser, and 
the modulated reflection is continuously assessed by a preconfigured frequency 
filter [25]. Once the RoI has been fully swept by the laser, a complete 2D image is 
shown by the associated software, representing the spatial activity of every node in
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Fig. 14.1 Silicon backside and optical probing path in CMOS [16] 

Fig. 14.2 Example optical probing results in the time domain, with values [13] 

the region as it pertains to the configured frequency. This is vital in many frequency-
dependent applications, like honing in on where a clock signal connects to by 
observing which registers light up with activity at the clock frequency. 

Clearly, EOP and EOFM together form a coherent suite of tools for semi-
invasively analyzing circuit activity in both the time and frequency domains. 
Regarding the FICS lab, these techniques are performed with the PHEMOS-1000 
machine as shown in Fig. 14.4. The electronics, power, communication, etc. have 
been set up in advance, and a set of computers with the appropriate software have 
been placed adjacent to the machine to serve as the user interface.
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Fig. 14.3 Sample EOFM results from PHEMOS-1000 machine 

Fig. 14.4 Hamamatsu photonics PHEMOS-1000 machine [7] 

14.2.2 Logic Locking 

Logic locking is a defensive scheme that obfuscates the functionality and imple-
mentation of a design at the gate level. In theory, a logic-locked circuit prevents 
attackers from reverse engineering attempts. In practice, this module will challenge 
this assumption. There are two forms of logic locking: combinational logic locking
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Fig. 14.5 Combinational logic locking circuitry [11] 

Fig. 14.6 State space of sequential logic locking schemes: (a) HARPOON type, (b) interlocking 
type, (c) entangled type [11] 

and sequential logic locking. In combinational logic locking, the IP is obscured 
by inserting additional logic gates called “key gates” as shown in Fig. 14.5. The  
key gates each receive an additional input that collectively comes from a “locking 
key.” The locking key is responsible for de-obfuscating/unlocking the design, so 
it gets placed in secure nonvolatile memory (NVM) after fabrication. The key’s 
vulnerability comes from the fact that it propagates from NVM through additional, 
probing-susceptible registers before reaching the key gates. These registers, known 
as “key registers,” will be a major focus in the optical attack. 

On the other hand, sequential logic locking obfuscates IP on a more abstract 
level, by creating additional states for the finite state machine (FSM) in the design 
as shown in Fig. 14.6. For this reason, it is often referred to as FSM locking or state-
space obfuscation. FSM locking can come in a wide variety of implementations. The 
main ones to acknowledge are HARPOON type, interlocking type, and entangled 
type. In HARPOON type, pre-initialization states are added such that the original 
FSM states can only be accessed after a proper, key-based traversal through a 
specific sequence of states in pre-initialization. Interlocking type also inserts a 
pre-initialization space, but even if the wrong key is used, the FSM eventually 
reaches its original state. However, proper key/traversal is required to preemptively 
unlock the correct FSM functionality for later on in the original state space. 
Finally, entangled-type locking chooses to keep one main state space region without 
adding a pre-initialization space. However, additional obfuscation states are directly 
scattered throughout the FSM’s original state space.
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Ultimately, the goal of an optical attack on logic locking is to extract the 
key, whether it be for combinational or sequential locking. Combinational locking 
attacks have been verified experimentally with optical probing, mainly by taking 
advantage of the key registers. Sequential locking attacks have presented a tougher 
challenge, as the algorithms developed to iteratively extract the key bits have proven 
to be ineffective. Still, current research aims to continue tear apart the overly 
confident security assumptions of sequential locking. 

14.3 Experiment Setup 

Once the device under test is selected, the sample needs to be prepared for optical 
probing, and the equipment needs to be properly set up. The following steps are to 
be followed. 

14.3.1 Programming the Sample 

At this stage, we will program the FPGA to implement a logic-locked circuit as a 
proof of concept (PoC). 

The XOR/XNOR gates connected to . K1 and . K2 inputs in this implementation 
obfuscated the circuit (see Fig. 14.7). When .K1 = 1 and .K2 = 0, the proper 
input combination, the circuit generates the proper output Y. The circuit’s inputs 
are denoted here by the letters a, b, and c. Four of the logic-locked circuits are 

Fig. 14.7 Example of a possible PoC circuit [20]
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also implemented in a bigger circuit block as shown in Fig. 14.7. Each logic-locked 
circuit will be coupled to three parallel input registers that correspond to the a, b, 
and c ports. Our design uses a key that is 8 bits long for each logic-locked circuit. In 
order to input the key to key gates, 8-bit parallel registers will also be used. A reset 
signal is used in the design to replicate the chip’s reset procedure. Connecting a PC 
to the board will allow you to program the FPGA once the HDL code is available. 
Moreover, design files and source codes can be found at http://cad4security.org/ 
index.php/trainings/hsl/ch14_probing_on_logic_locking/. The FTDI chip on USB 
is responsible for handling the FPGA’s programming. The given development board 
supply should be used to power the board. Don’t make any additional electrical 
adjustments to the board. 

14.3.2 Sample Preparation 

The attack surface, our target site for probing, is the backside of the FPGA chip die. 
X-ray imaging is used to localize the die under the heat sink if not spotted by visual 
inspection. The sample preparation method depends on whether the chip is packaged 
as a flip chip or a non-flip chip. Like most modern chips, the sample selected for this 
module has a flip-chip ball grid array (BGA) package. Use a hotplate and lab knife 
to remove the heat sink over the chip. This exposes the backside of the chip. Further 
selective polishing can be performed to increase the resolution of the laser-scanning 
image. 

14.3.3 Measurement Setup 

A Hamamatsu PHEMOS-1000 FA microscope provides the optical contactless 
probing setup, as seen in Fig. 14.8. The equipment comprises of an optical probing 
preamplifier (Hamamatsu C12323) and a suitable probing light source (Hamamatsu 
C13193). Connect the FPGA board to the PHEMOS platform, and then turn it on. 

14.4 Performing the Attack 

14.4.1 Attack on Combinational Logic Locking 

The methodology to extract the key from combinational locking scheme is as shown 
in Fig. 14.9. In order to eventually locate the key registers, the first step is to 
determine the primary clock frequency of the chip. This can be done in several ways,
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Fig. 14.8 Measurement setup 

Fig. 14.9 Overview of methodology to extract key from combinational locking scheme [20] 

but the most straightforward approach is simply to read the chip’s documentation, 
which commonly includes the clock specifications. 

Using the determined clock frequency as the target frequency, launch an EOFM 
session and analyze which regions on the die are active. These are the sequential 
elements of the design. Additionally, consider which areas are active specifically 
during the bootup process of the chip. By forcing a repeating reset loop of the 
chip and stimulating different inputs to the chip, EOFM analysis during bootup 
will show the functionally critical sequential logic elements that are consistently
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Fig. 14.10 Example of EOFM results for a logic-locked design. (a) Target frequency . = clock 
frequency. The activity shows which elements are sequential. The spots in the blue rectangles are 
slightly dimmer which means there is only one flip flop. The brighter spots, therefore, have two flip 
flops. This can be confirmed by analyzing the structure of the chip. (b) Target frequency . = reset 
frequency. The image shows critical sequential and combinational logic that undergoes activity 
every time the chip restarts. (c) The subtracted image of (a) and  (b). The orange boxes are likely 
the key registers, since they are both active as sequential/clocked elements and also every time the 
chip starts up [20] 

active. This sequential logic should correlate to the key registers. To confirm this, 
consider performing additional partial-reverse engineering, like by analyzing the 
documentation and differentiating the various logic regions as shown in Fig. 14.10. 

Once the key registers’ locations are known, the value of the key can be extracted 
from them. This is done with a new EOFM analysis on the key registers, this time at 
a different target frequency. The new frequency should be set to a target value that is 
slower than the clock frequency and is equal to the frequency at which the chip will 
be continuously reset (decide what this value will be and ensure it matches the reset 
stimulus frequency to the chip). After performing the EOFM sweep, the resulting 
image will show which key bits undergo switching activity from their reset value 
every time the chip restarts—these are bits representing a logical 1—and which key 
bits simply remain inactive at their reset value: these are bits representing a logical 0. 

Depending on the architecture of the chip, it can be a bit tricky to resolve the 
logical values of flip flops that are adjacent to each other, like with the dual-FF 
scheme in some FPGAs. Distinguishing the values can be done by looking at the 
overall shape of the activity of the dual-FFs. For instance, if only one FF is active, 
the combined spot may be less bright and tilted toward the active FF as shown in 
Fig. 14.11. 

After analyzing the activity in each of the key registers, you should now have 
a complete bit vector. Congratulations! You have successfully extracted the value 
of the “secure” key that controls the logic locking. This is a powerful move 
in dismantling a widely used and respected defense scheme. For more detailed 
information on this attack, please refer to [20].
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Fig. 14.11 EOFM analysis and results for c1355-CS320 benchmark [20] 

14.4.2 Attack on Sequential Logic Locking 

Extending the work done against combinational locking to sequential locking has 
proven to be a formidable task. A comprehensive attack against an established 
sequential locking benchmark is yet to be done successfully, but current research 
aims to continue diving deeper into the optical probing technique of extracting a 
sequential locking key. The challenge in sequential logic locking comes from the 
fact that the key, which guides the FSM through the proper sequence to unlock 
the obfuscated circuit, is loaded sequentially in portions depending on the current 
FSM state. While it still propagates through key registers in a similar manner, the 
additional time element makes an exclusive EOFM analysis tricky. A tool called 
SWAG (state-space-obfuscation waveform attack generator) was developed in FICS 
in 2020, to automatically generate a reset stimulus for the chip. The reset signal 
would allow the chip to boot up for longer and longer each time in order to 
observe new frequencies of the sequential key portions passing through the registers. 
With the EOP approach, the key registers should first be localized in the same 
EOFM-based manner as done for combinational logic locking. Once these targets 
are located, EOP should be performed on every register to get the time-domain 
information of the key bit value. Since the key is loaded sequentially in portions, 
this will provide information on multiple-bit values (one-bit value for each key 
portion loaded). After doing this for every register, observe each portion in time 
across all key bits, then move on to the next time portion, and repeat until the bit 
vector for every key portion is noted. Again, the successful application of optical 
attacks on sequential locking is still a frontier area of current research, so do not 
worry if certain aspects of the attack appear difficult or yield poor results. Valuable, 
hands-on attack experience can be gained by attempting these procedures.
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14.5 Conclusion 

In this chapter, we showed that the key being stored on the same chip makes the 
entire obfuscation open to attack by attackers with a variety of skills, regardless of 
how secure the locking techniques may be. Unfortunately, up until now, researchers 
have concentrated on adding additional gates to the IP, sacrificing space and power 
overhead, in the mistaken belief that the key is safe beneath the cover of tamper-
/read-proof memories. This chapter demonstrates that even if a chip has secure or 
tamper-proof memories, there is still a vulnerability created by the key movement 
between the memory and key gates of the locked circuit during chip bootup 
that can be used by an attacker to obtain the key. We draw the conclusion that 
there is no definite, all-encompassing approach for defending chip assets against 
optical backside attacks, given the variety of responses researchers have suggested. 
Consequently, it is essential to create an attack vs. countermeasure matrix to help 
IC designers include more strong IC security measures without affecting the price, 
applicability, and dependability of the device. 
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Chapter 15 
Universal Fault Sensor 

15.1 Introduction 

The modern Internet of Things (IoT) era has seen the evolution of applications not 
only for general mass involving smart home security, tracking goods, connected 
appliances, and autonomous vehicles but also for government organizations working 
with space equipment, healthcare, and financial systems [23]. The emerging security 
threats against these applications are based on the embedded devices, especially the 
field-programmable gate array (FPGA) [3, 20] and microprocessors. These devices 
have been increasingly susceptible to hardware-based attacks [2, 6]. One such attack 
is the fault injection attack (FIA) which has become one of the leading hardware 
attacks in recent times. This form of attack is a lucrative option for adversaries 
for several reasons. They are accessing secret information [9], causing a denial of 
service [14], and violating data integrity [24]. 

FIAs can be carried out in different ways, i.e., voltage/clock glitch [6, 9], 
electromagnetic emanation [8], optical fault injection (OFI) [26], and laser fault 
injection (LFI) [21]. Figure 15.1 shows an overview of these FIAs. The voltage 
glitch and electromagnetic fault injection (EMFI) impact the victim device’s power 
line, which in turn creates delay variation through the interconnects. A clock glitch 
interrupts the original clock signal instantaneously by changing its frequency for a 
specific cycle causing data corruption through the setup and hold-time violations. 
Lastly, OFI/LFI impacts systems in a localized way by changing the transistor 
states. This change causes current flow variation through the transistors and induces 
voltage variation. To ensure a system’s security, it is essential to recognize the traits 
of FIAs once they are carried out. However, their covert and momentary nature 
makes it very hard to effectively detect them instantaneously [5, 7, 23]. 

The research community has proposed different on-chip solutions to address 
emerging FIAs. However, the solutions were mostly directed toward a specific fault 
attack. For instance, RC circuit-based detection techniques have been presented in 
[15, 16] to detect voltage glitch attacks. Similarly, techniques such as monitoring 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 
M. Tehranipoor et al., Hardware Security Training, Hands-on!, 
https://doi.org/10.1007/978-3-031-31034-8_15

273

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-31034-8protect T1	extunderscore 15&domain=pdf
https://doi.org/10.1007/978-3-031-31034-8_15
https://doi.org/10.1007/978-3-031-31034-8_15
https://doi.org/10.1007/978-3-031-31034-8_15
https://doi.org/10.1007/978-3-031-31034-8_15
https://doi.org/10.1007/978-3-031-31034-8_15
https://doi.org/10.1007/978-3-031-31034-8_15
https://doi.org/10.1007/978-3-031-31034-8_15
https://doi.org/10.1007/978-3-031-31034-8_15
https://doi.org/10.1007/978-3-031-31034-8_15
https://doi.org/10.1007/978-3-031-31034-8_15
https://doi.org/10.1007/978-3-031-31034-8_15


274 15 Universal Fault Sensor

Fault Injection Attacks 
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Fig. 15.1 Fault injection attack (FIA) overview [10] 

system clocks and phase-frequency detection circuitry have been presented as the 
solution to detect clock glitch attacks in [13, 18]. Other techniques are proposed 
for detecting EMFI in [12, 19] and detecting optical fault detection in [11, 17]. 
For addressing different FIAs, one can think of combining multiple techniques 
into a device under test (DUT). However, this is not a feasible solution due to 
the area/power overheads from multiple techniques and affecting their detection 
capabilities in the presence of other detection hardware in close proximity. In this 
regard, there is a need for a lightweight, universal solution that can efficiently detect 
different FIAs. 

The rest of the chapter is organized as follows: Sect. 15.2 provides the back-
ground of the FIAs with the proposed solution, Sect. 15.3 presents sensor archi-
tecture and how it works, Sect. 15.4 discusses the implementation process of the 
sensor in the FPGA platform, and Sect. 15.5 provides the results from the sensor 
under different FIAs. Finally, Sect. 15.6 concludes the paper. 

15.2 Background 

For developing a universal solution to detect different FIAs, it is imperative to 
understand the impact of each FIA on the DUTs. In this section, we discuss the 
prominent FIAs and their impact. 

• Voltage glitch: Voltage glitch attacks can arise from voltage overshoots or 
undershoots. Both of them can cause timing faults in the design. For instance, 
considering voltage undershoot, the timing constraint equation can be defined as 
below [27]: 

.tck > dclk2q + dpMax + tstp − tskew (15.1)
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where . tck , .dck2q , .dpMax , . tstp, .tskew define the clock period, register (clock-to-q) 
delay, data propagation delay, setup time, and clock skew delay, respectively. If 
the source voltage gets lowered, that will increase the .dpMax and create timing 
faults. 

• Clock glitch: Clock glitch attack impacts the design clock tree by corrupting 
one or more cycle(s) of the clock. This change causes setup/hold-time violations 
while latching the data. This, in turn, leads to incorrect data acquisition by the 
capturing registers. 

• EM Fault Injection: During the EM injection attack, an additional magnetic 
field perturbs the magnetic field generated during running the victim device. The 
injected EM wave causes eddy current flow in the internal closed wire loop. This 
eddy current flow creates a potential difference, resulting in delay variation. Thus, 
the circuit timing is impacted. 

• Optical fault injection: Light/laser can be used as a medium to emit high-
intensity waves to the DUT cells (transistors) in a focused way. This high-
intensity emission creates electron-hole (e/h) pairs at the transistor drain, result-
ing in a current pulse [4]. Finally, a potential difference is built in the presence of 
load capacitance which can affect the delays of nearby transistors/components, 
thus impacting the overall timing of the circuit. 

We can see from the above discussion that the considered FIA mostly affects 
the timing of the circuits. If a sensor can be developed that converts and quantifies 
the FIA impact into timing changes, it will effectively detect multiple FIAs with 
the same structure. This will solve the problem regarding incurred overheads and 
performance impacts from implementing multiple hardware for detecting different 
FIAs. Such a unified sensor named fault-to-time converter (FTC) is presented in the 
next section. 

15.3 FTC Sensor 

Figure 15.2 shows the building blocks of the proposed FTC sensor [10]. At 
the top left of the figure, the system clock signal goes into the sampling clock 
generator block to be scaled to a specific frequency the system will run in. The 
resultant sampled clock signal drives the FTC block to perceive the delay variations. 
The major difference between this opposed FTC structure and the time-to-digital 
converter (TDC) [22] is the use of HVT and LVT cells for creating the buffer delay 
lines. Using two separate delay lines with two types of . Vt cells increases the sensor’s 
effective range, as the LVT and HVT lines are more sensitive to voltage and delay 
variations. Inside FTC, the sampled clock feeds into the HVT and LVT delay lines 
and to the clock (enable) ports of the latches. The buffer outputs are XORed to detect 
the mismatch of transmitted values and stored using the latches when the enable 
pins are de-asserted. As the routing paths for these signals probably be uneven due 
to constrained hardware resources, the stored values may show irregular 1s and 0s.
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HVT        1111 1111  0000 0000 0000 

XORed   0000 0000 1111  1111 0000 
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Fig. 15.2 The FTC sensor block diagram [10] 

The bubble-proof encoder filters out the unexpected 0s (bubbles) and encodes the 
information of occurring XORed 1s into the decimal values. The output of the XOR 
stage in a properly calibrated sensor will be an array of 1s surrounded by 0s on 
either side. The length of the observable buffer and the initial buffer delay lines 
can be adjusted to calibrate the sensor. To properly represent this in decimal form, 
the encoding stage provides two outputs – the bit locations of the least and most 
significant 1s from the flip-flop stage. 

We provide two examples to illustrate the efficacy of the HVT/LVT delay line for 
generating high-resolution outputs. Suppose there are 20 buffers in both delay lines 
for the observable delay part. In normal condition (without FIAs), the LVT/HVT 
buffer values and subsequent XORed latched outputs are marked as Ref. in Fig. 15.2). 
For this case, the encoded output will be the location of the start and end position 
of 1s from the flip-flop stage. In example 1, let us consider a delay increase by a 
fault injection attack due to voltage undershoot. Here, as the HVT cell transistors
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require a high threshold voltage to be turned “ON,” they will be the most impacted 
due to the delay increase. As a result, a certain number of 0s will be introduced 
in the HVT line compared to the LVT. Here, the total number of 1s introduced at 
the XORed output is 11. In example 2, we consider a decrease in delay due to the 
voltage overshoot attack. In this case, as the threshold voltage requirement is less 
for the LVT cell, they will propagate a higher number of 1s compared to HVT cells. 
Again, the number of 1s introduced at the XOR is 11. When comparing these XORed 
outputs to the reference case, we can find a 3-bit flip in the later cases. 

We can see a considerable improvement in detectable resolution change when 
comparing the 1s appearing in Ref. LVT to FIA case 1 LVT and in Ref. HVT to 
FIA case 2 HVT (only a 1 introduced). These test cases also signify that only a 
single delay line (LVT/HVT) usage may perform better than XORed results under 
one FIA condition (i.e., Ref. HVT to case 1 HVT . ⇒ 4 1s introduced). However, 
the resolution difference will be minimal for longer delay lines meaning that the 
XOR configuration will perform very close to the best-case scenario for either 
FIA condition. When we consider the standard threshold voltage cells (SVT), 
the resolution expected from these cells will be minor compared to the best-case 
scenarios of either HVT/LVT configurations due to the . Vt condition . LV T <

SV T < HV T . 

15.4 Hardware Implementation Setup 

This section presents the setup and overview of implementing the FTC sensor 
design in an FPGA environment. The design can also be implemented effortlessly 
in an application-specific integrated circuit (ASIC) environment. From the design 
perspective, in FPGA platforms, cells with varying . Vt are not readily accessible. 
Rather FPGAs are composed of SRAM cells with standard . Vt . For hardware 
prototyping purposes in the FPGAs, some adjustments must be made to imitate the 
behavior of varying . Vt cells. 

The initial and observable delay lines for (LVT and HVT) can be built using 
available transparent lookup tables (LUTs) for the specific FPGA model. For 
modeling the LVT and HVT cells, the number of LUTs can be varied for these two 
types of cells, for example, 2-LUTs for modeling an LVT buffer vs. 5- LUTs for an 
HVT buffer. This change in LUT number creates unequal inter-cell delays and more 
delay in the HVT path compared to LVT. The accumulated delay difference will 
increase as the signal traverses through more buffers, similar to actual LVT/HVT 
cells. For detecting FIAs, the sensor is first run under nominal conditions to capture 
the golden traces. These traces then need to be averaged to minimize measurement 
noise. Later, different FIAs can be implemented, and the sensor response traces will 
be recorded. Finally, the FIA instances can be differentiated from nominal cases by 
comparing the two sets of traces. The sensor sensitivity will depend on calibrating 
the delays and the spatial location of the sensor instance.
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15.4.1 Hardware and Software 

For the hardware implementation, we have used Zybo Z7 board with Zynq 7010 
FPGA, ensuring it is correctly set up, a p/laptop, and a USB interface for the 
connection. For the software, we use Xilinx Vivado, where VHDL/Verilog codes of 
the design modules can be added, simulated, and synthesized, and later the bitstream 
can be generated. Moreover, all Verilog design files and source codes can be found at 
http://cad4security.org/index.php/trainings/hsl/ch15_universal_fault_sensor/. After  
that, the “.bit” file (contains bitstream) is loaded into the user-specified FPGA 
board. Finally, the integrated logic analyzer (ILA) is used to observe the data 
from the FPGA run. The sensor consists of five modules, namely, .buff er_LV T , 
.buff er_HV T (single buffer cell), .buff er_chain_LV T , . buff er_chain_HV T

(buffer chain by cascading cells), and encoder (to encode latched output) and the 
top module, that is, top  module. Additionally, there can be other program modules, 
i.e., the AES encryption module, in the design source section. The design hierarchy 
can be found in Fig. 15.8. 

The code snippet for module .buff er_LV T is provided in Fig. 15.3. The HVT 
cells can be designed similarly by changing the “size” parameter in Fig. 15.3. The  
code snippet for module .buff er_chain_LV T is provided in Fig. 15.4. The HVT 
chain code can be written in a similar way. 

We also provide the code snippet for the encoder design and top module design 
in Figs. 15.5, 15.6, and 15.7. 

Fig. 15.3 Code snippet for LVT cell
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Fig. 15.4 Code snippet for LVT cell chain 

Fig. 15.5 Code snippet for encoder design
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Fig. 15.6 Code snippet for top module design (part 1) 

15.4.2 Bitstream Generation 

The main steps for generating bitstream are as follows: 

• Firstly, the Xilinx Vivado software version (20.1 or newer) needs to be down-
loaded and installed. The WEBPACK version is free for our target Zybo Z7 
FPGA. 

• Then, for creating new projects, the “new project” option should be selected. 
After that, the Vivado GUI will ask for the project name, board name (where it 
would run), the relevant source, testbench, and constraint files. Assuming that all 
the relevant files are created beforehand, the project window will look similar to 
Fig. 15.8. 

• In addition to user-created design files, Vivado provides an option to use custom 
IPs from its “IP catalog.” For instance, in this project, we use the multi-mode 
clock manager (MMCM) to configure a fast PLL clock to observe the system 
clock (slower) transitions and the dependent buffer output values. Figure 15.11 
shows such an interface.
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Fig. 15.7 Code snippet for top module design (part 2) 

• Finally, for observing the data after the FPGA run, we use the ILA block that can 
also be found in the “IP catalog” and configured as per design requirements. 

• There are three steps to transform the VHDL/Verilog code into the bitstream in 
the form of a “.bit” file. They are: 

1. Synthesis: The VHDL/Verilog codes are synthesized into a gate-level repre-
sentation. In this step, an RTL schematic is created. The user can view the 
schematic by accessing the “Open Synthesized Design” in the Vivado “Flow 
Navigator” and then clicking the “Schematic” option. An example schematic 
view of the FTC sensor design can be seen in Fig. 15.9.
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Fig. 15.8 Design hierarchy of the FTC sensor implementation 

2. Implementation: In this step, the synthesized logic will be placed and routed 
according to our user-defined constraint file to fit onto the device. 

3. Bitstream generation: After the successful synthesis and implementation, the 
bitstream is generated. A “.bit” file will be generated, which we will load into 
the Zybo 7 FPGA board. 

• After generating the “.bit” file, the FPGA is required to be attached to a laptop/pc 
via a USB port. The “.bit” file is loaded into the FPGA by opening “Hardware 
Manager” and clicking the “program device” option. Then by selecting the 
generated “.bit” file in the “impl_1” folder under the project directory and 
clicking the “program” option, the FPGA board can be programmed as shown 
in Fig. 15.10. 

15.4.3 Capturing Output 

To observe the output, we have used the ILA IP from the Vivado “IP catalog” 
(see Fig. 15.12). It can be configured based on the user’s requirement with sufficient
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Fig. 15.9 Schematic view for the FTC sensor design 

trigger conditions to efficiently debug and calibrate the design. Later, the data file 
can be post-processed in MATLAB to compare results under nominal and attack 
conditions. 

15.5 Results and Analysis 

We have used the FPGA platform Zybo Z7 board having Zynq 7010 FPGA to 
illustrate the hardware acquired results. We used 128 (N) buffers for the observable 
delay length for this specific implementation. The encoder output range is from 0 to 
127 for the specific implementation. Here, the encoded output 127 signifies that the 
0 . → 1 transition pulse from the source has reached the final buffer (most significant 
bit (MSB)) of the observable delay line. We elaborate on three separate setups to 
facilitate three FIA experiments. These are EMFI, voltage glitch, and clock glitch 
attacks. For the EMFI attack, we use E1 Immunity Development System [1] from 
the EMV-Langer to produce a wide span of intensity and waveform options for 
the generated EM signal. For the voltage glitch, we apply a brief short circuit at
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Fig. 15.10 Program device GUI to upload generated bitstream 

Fig. 15.11 Clocking wizard configuration interface in Vivado
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Fig. 15.12 Integrated logic analyzer configuration interface in Vivado 

a selected capacitor (part of the reconfigurable unit) from the Zynq 7010 FPGA. 
Finally, we use the Xilinx multi-mode clock manager (MMCM) that enables us to 
create a high-frequency clock pulse from the system clock to implement a clock 
glitch. The sensor was put at close proximity [25] to a running program, i.e., AES 
encryption as the target of the potential fault injection attacks to diligently observe 
the change in delays under these FIAs after post-processing the sensor outputs for 
nominal/attack cases. 

15.5.1 EM Attack Analysis 

The EM generator specification includes an input voltage range of 500–1500V, 
pulse duration (flat/steep), and pulse frequency range of 125–200MHz. Fig-
ure 15.13 shows a setup for the EMFI attack experiment and monitoring process. 
Figure 15.14 illustrates the sensor outputs with the AES running in normal and 
EMFI attack conditions on the victim device (FPGA). The solid lines define the 
traversal of XORed 1s (from LVT and HVT cells) ranging from observable buffer 
elements 45–46 to 77–78 under nominal conditions. With the sinusoidal nature of 
the EM pulse having a varying frequency, the impact is likely to be both a voltage 
overshoot and undershoot on the delay line. As explained in Sect. 15.3, the HVT
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Fig. 15.13 Experimental setup for EMFI attack 

Fig. 15.14 Sensor results for EMFI attack [10]



15.5 Results and Analysis 287

cells will be impacted more in case of voltage undershoot and introduce XORed 1s 
in the initial part of the delay line. This impact can be found in Fig. 15.14 where we 
can see the decreased dotted line lower limit. However, the upper dotted line jumps 
to higher values than the solid blue line, indicating that the buffers at the farthest 
distance from the input signal have received 1s (impact of a voltage overshoot). The 
dashed area shows the updated range for XORed 1s introduced under EMFI attack. 

15.5.2 Voltage Glitch Attack Analysis 

To implement this attack, we first reviewed the FPGA power connection schematic 
to identify the C108 100 . μF capacitor (reconfigurable unit) for performing short 
circuit. The drop in voltage between the two terminals was 1.5V under normal 
conditions. Figure 15.15 illustrates the encoded results for the voltage glitch attack 
and the normal run. The short circuit caused a voltage decrease for a short time 
which essentially is an undervoltage attack. During this attack, the HVT cells are 
impacted more than LVT cells due to the increased delay through interconnects. 
Therefore, more HVT cells get 0s, flipping the initial XOR outputs to 1s. This effect 
is seen as the XORed 1s start from earlier buffers (dotted line under the solid red 
line) at the attack trigger point. Additionally, we find a minimal decrease at the 
dotted line near the upper limit due to the lesser impact of delay increase on LVT 
cells. As a result, a small number of XOR bits close to the MSB are flipped. Here, 
the dashed area shows the updated range for XORed 1s added under this attack. 

Fig. 15.15 Sensor results for voltage undershoot attack [10]
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15.5.3 Clock Glitch Attack Analysis 

To implement this attack, a 400MHz glitch pulse is applied to the AES encryption 
program running at a slower 100MHz frequency. An external switch acts as the 
trigger condition having a counter to implement the glitch and restrict its span to 
one clock period. Figure 15.16 illustrates the result comparisons for clock glitch 
(triggered at 400th sample) and the nominal response. We can find the clock glitch 
impact at the trigger point with it only staying around the clock cycle of the trigger 
point. As the attack ends and the original clock takes over, the sensor response 
follows very closely to the nominal trace. The clock glitch attack may not directly 
impact the delay through the interconnects, but it affects the sampling time of 
the storage cells after the XOR stage. As we have used a high-speed ILA with 
an 800MHz sampling frequency clock, anomalies during storing/sampling data 
based on clock variation could be easily detected in this case. From this analysis, 
we can assume that clock glitch attacks may not have a consistent pattern based 
on the impact on delay lines. However, if any anomaly impacts the design during 
sampling/storing values, the sensor output will deviate from the nominal response 
to alert the user about the attack condition. While setting a threshold for the sensor 
through calibration for detecting EMFI and voltage glitch attacks, the same value 
can be applied to detect this attack. 

Fig. 15.16 Sensor output for clock glitch attack [10]
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15.5.4 Proximity Analysis 

The sensor output was also analyzed by varying the position in the FPGA floorplan. 
The analysis found that the sensor output changes from changing the sensor’s 
location. Additionally, the sensor’s sensitivity is impacted by changing from the 
prior location for which sensor parameters were calculated. This observation calls 
for further calibration of initial and observable delays for the new location. In 
Fig. 15.17, the FTC sensor block is placed far away from the AES block, and 
Fig. 15.18 illustrates the sensor results with no calibration for the later location. 
As can be seen, the starting and end point differences of XORed 1s are low. This 
suggests fewer discrepancies between the stored values of the HVT and LVT cells. 
This response can be explained as the sensor being distant from the AES block; 
with the prior choice of initial/observable delays, the variation in delay observed by 
the sensor becomes less evident. For this reason, some initial (close to LSB) and 
later (close to MSB) XOR 1s are overturned to 0s, causing a reduced dashed area. 
Lastly, with the new calibration of the delay parameters for the updated location, 
in Fig. 15.19, a change in XORed 1s can be seen with improved sensitivity (more 
XORed 1s at the starting and ending buffers). 

Fig. 15.17 FPGA floor plan showing AES encryption and FTC blocks far away [10]
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Fig. 15.18 FTC sensor output with no calibration [10] 

Fig. 15.19 FTC sensor output with calibration [10]
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15.6 Conclusion 

This chapter aims to help readers learn about a unique, unified, on-chip solution 
against FIAs. Moreover, the chapter provides a direction toward implementing 
the sensor design at the hardware level with the help of reconfigurable FPGA 
platforms. To emphasize the quality of the solution, we have added some hardware-
generated results collected from the sensor implementation under three different 
FIAs. Additionally, the overhead incurred due to the additional cells will be minimal 
due to the very simple structure and usage of small logic cells. In addition, the 
sensor can be further calibrated and utilized to detect other FIAs that affect the 
timing parameter of a design. As a result, the proposed solution can go a long way 
in providing an effective, lightweight on-chip solution for detecting the prominent 
FIAs. 
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Chapter 16 
Scanning Electron Microscope Training 

16.1 Introduction 

The scanning electron microscope (SEM) is a microscope that uses electrons instead 
of light to form an image. The electronic console and the electron column are the 
two primary components of the SEM instrument. The electronic console has control 
knobs and switches that let you change the instrument’s focus, magnification, 
brightness, contrast, and filament current. The electronic console, which houses 
the control knobs, CRTs, and an image capturing device, is not essential with the 
state-of-the-art electron microscope because it works in tandem with a computer 
system. The computer system’s mouse and keyboard are used to access all of the 
main controls. Instead of the traditional control knobs and switches seen on older-
style scanning electron microscopes, the operator simply has to be familiar with 
the graphical user interface (GUI) or software that operates the instrument. The 
SEM picture is typically displayed on CRTs positioned on the electronic console. 
Captured images can be saved in digital format or printed right away. Compared 
to conventional microscopes, the scanning electron microscope has many benefits. 
The SEM’s broad depth of field makes it possible to focus on more of a specimen at 
once. Closely spaced specimens can be enlarged at much greater levels, thanks to the 
SEM’s significantly superior resolution. The SEM gives the researcher much greater 
control over the level of magnification because it doesn’t use lenses but rather 
electromagnets. The scanning electron microscope is one of the most valuable tools 
in research today owing to all of these benefits and the images’ genuine remarkable 
clarity. 

The learning objective of this chapter is for readers to learn the fundamentals 
of scanning electron microscopy and understand how to operate SEM and then 
how to gain hand experience in IC-level hardware Trojan detection by using nano-
image analysis and artificial intelligence. Readers will learn step by step how to 
use physical inspection methods such as scanning electron microscopy (SEM) to 
detect any malicious changes from the backside of an IC. Integrated circuits (ICs) 
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can have malicious modifications made to their design at several points during the 
design and production processes. These are commonly known as hardware Trojans. 
By assigning a distinct descriptor for each type of logic cells or gates, sophisticated 
computer vision algorithms are utilized in conjunction with neural network models 
to categorize authentic and malicious cells from an integrated circuit (IC) under 
authentication. To identify any slight changes in the active region that would reveal 
the presence of a potential hardware Trojan, these descriptors are compared to a 
gold standard. 

The rest of the chapter is organized as follows: Sect. 16.2 briefly provides 
generalized construction of SEM and specimen preparation. Section 16.3 discusses 
the steps of setting up the experiment for image acquisition with the SEM. 
Section 16.4 discusses in detail how to detect malicious modifications by untrusted 
foundry inside an IC using Xilinx FPGA. Finally, conclusions are presented in 
Sect. 16.5. 

16.2 Background 

16.2.1 Scanning Electron Microscopy 

Scanning electron microscopy is a nondestructive method used for multiple appli-
cations such as composition analysis, surface morphology, crystallography, etc. For 
this chapter first, we will discuss the SEM in relation to the failure analysis of 
semiconductor structures. The scanning electron microscope (SEM) itself is a pow-
erful tool that uses the mechanisms of different types of electrons (backscattering, 
secondary, etc.), all of which help create images with nano-scale resolutions. The 
way that an SEM can do so is by first utilizing an electron source that provides 
electrons for the beam. This beam of energetic electrons is then directed with an 
anode and focused by an electromagnetic lens(es) that allow probing of a surface. 

From this process, as shown in Fig. 16.1, signals are generated from the 
interaction of excited electrons and the sample. These signals are then collected 
through detectors, which are consequently digitized by having the image pixel value 
synchronized with intensity proportional to the collected signal. There can also be 
changes in magnification by altering the ratio of the length of the line on the display 
device to the length scanned on the real sample. Overall, when trying to acquire the 
best image, it is important to know about the four main probe beam parameters that 
are used: probe diameter, probe current, probe convergence angle, and accelerating 
voltage (kV). As the operator, it is also important to keep in mind resolution, depth 
of focus, image quality (S/N ratio), and analytical performance. As most have heard, 
the process of getting an image is more of an art than science, but knowing these 
details will be helpful in setting the foundation in our experimentation.
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Fig. 16.1 Generalized construction of SEM 

16.2.2 Beam Interaction 

When a primary electron, or small electron beam, enters a specimen surface, signal 
detection takes place. After entering the specimen, the primary electron will likely 
travel a fair distance into the surface. The primary electron will transmit some of 
its momentum upon impact with another electron, a nucleus, etc. before continuing 
on a new trajectory. The term “scattering” refers to this inelastic collision. These 
scattering events are the most intriguing since it is possible to identify the scattering 
event’s components (not all events contain electrons). There are different events 
which occur inside the SEM chamber as shown in Fig. 16.2 once the electron beam 
enters the specimen. Some of the most important ones we will focus on include:
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Fig. 16.2 Types of electrons produced and electron physical traits 

Fig. 16.3 (a) Secondary electron image. (b) Backscattered electron image (compositional)

• Backscattering electrons (BSE): Some of the electrons from the primary beam 
may scatter in such a way that they are reflected back off the specimen but do 
not pass through it. Backscattered electrons are a popular term used to describe 
them. Since these electrons are from the initial beam, their energy level is close 
to that of the gun voltage. When displaying information regarding an object’s 
topographical structure and relative atomic density, backscattered imaging mode 
operation can be helpful as shown in Fig. 16.3.
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Fig. 16.4 EDS full spectrum imaging of a flash IC

• Secondary electrons (SE): The secondary electron imaging mode may be the 
most often employed imaging mode. When a primary electron from the electron 
beam strikes the material and knocks an electron from its surface, secondary 
electrons are produced. These electrons are formed by secondary electrons as 
well and have a low energy level of just a few electron volts. They are therefore 
only detectable when they are displaced near the specimen surface. The sample 
absorbs back secondary electrons that are produced but are unable to escape. 
Getting topographical information and high-resolution images are two of the 
main benefits of using this imaging mode. One great benefit of using this imaging 
mode is that the images have contrast and soft shadows that seem to be similar 
to those of a specimen that has been illuminated by light. As a result, the images 
seem more familiar and are simpler to analyze (Fig. 16.4).

• X-Rays: X-rays are emitted from a specimen when electrons are dislodged from 
particular atomic orbits. An electron from an atom’s K, L, M, or N shell gets 
ejected by a scattering event. To fill the empty space, an electron from an outer 
shell falls. This energy difference causes the release of an auger electron or an 
X-ray with a specific energy and wavelength. When X-rays collide with other 
particles, their energy is lost, changing their wavelength, which causes problems. 
The necessary amount of energy is lost as the amount of hits increases. As a 
result, it is impossible to classify these X-rays, and their discovery will be consid-
ered as a background noise. X-ray spectrometer detectors measure energy level 
(energy dispersive spectrometer, EDS) or wavelength (wavelength dispersive 
spectrometer, WDS). For more information, please read the supplement material, 
Whitepaper on the Working Principles of Scanning Electron Microscopy by 
Thermo Fisher [1].
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16.2.3 Display and Record System 

A micrograph’s quality is mostly determined by its contrast, brightness, resolution, 
magnification, noise, depth of field, and composition, which ultimately determine 
the quality of an image displayed on a screen.

• Brightness. Brightness is a term used to describe the value of each individual 
pixel that contributes up the image. The brightness of the image increases with 
higher pixel overall values.

• Contrast. The difference between the two pixels is what is referred to as contrast. 
The difference between the highest and lowest pixel values can be used to 
calculate the overall contrast.

• Resolution. Resolution is the capability to distinguish between two points. The 
size of the electron beam’s spot is the most important factor in determining 
resolution. Working distance (WD), aperture size, voltage, beam current, and 
beam shape are additional variables. Poorly defined edge boundaries that cause 
out-of-focus in a micrograph make it easy to identify those with low resolution.

• Magnification. The size of the viewing area and the magnification depend on 
each other (CRT or Film). The raster coils and the distance from the primary 
beam’s focal point to the final lens are the two elements that govern and modify 
the magnification. Notably, the sample can be raised or lowered into the primary 
beam’s focal point by adjusting the working distance. When concentrating on a 
sample for an accurate magnification, this is required. Using an excessively high 
magnification when taking a micrograph is a common error. Like other forms of 
photography, SEM microphotography allows for the creation of micrographs at 
magnifications higher than the resolution limit. The term “empty amplification” 
describes this. Enlarging an image without including any additional information 
is known as empty magnification.

• Depth of field. The depth of field is the acceptable sharpness region in front of and 
behind the point of focus. The sample’s distance from the final lens determines 
the depth of field. The working distance can be changed to increase resolution 
and decrease depth of field by moving the sample closer to the final lens. The 
farther the specimen is from the final lens, the greater the depth of field and the 
lower the resolution. The SEM’s excellent depth of field makes it simple to create 
stereo micrographs.

• Noise. Any amount of brightness, whether white or black, that is shown in a 
micrograph but is not due to the intended interaction between the beam and the 
object is referred to as noise. An illustration of electronic noise is the snow that 
can be seen on a television tuned to a weak signal. When the signal-to-noise 
ratio deteriorates, noise becomes more apparent. This occurs when a sizable 
amount of the signal resulting from the interaction between the beam and the 
sample comes from the system’s electrical noise. The signal-to-noise ratio can be 
improved in two ways: (1) by boosting the sample signal and (2) by reducing 
electronic noise. There are many techniques to increase the signal, including 
expanding the aperture, raising the bias voltage, etc. Increased scan time is a
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different approach that hasn’t yet been mentioned. The raster rate slows down as 
the scan time lengthens. This will improve the signal-to-noise ratio and therefore 
will reduce considerable noise in the micrograph or on the CRT being viewed. 
The results are as fast as the scan rate when the aforementioned perimeters are 
adjusted. Therefore, no adjustment is required if the image seems clearly defined 
on the CRT, although the brightness or contrast may need to be adjusted for the 
image to be transferred to film or a computer. 

16.2.4 Specimen Preparation 

The main principle of sample preparation is to touch the sample as minimally as 
possible while making sure it is the right size, electrically conductive, and stable 
with the vacuum and has properties close to those of its natural condition. The 
majority of metallic samples meet these requirements with little to no preparation. 
Many other materials, such as ceramic, polymers, and minerals, only need to be 
coated with a conducting metal. It is necessary to coat most nonmetallic specimens 
with metal to make them conductive. Sputter coating and vacuum deposition are 
the two most often utilized techniques for coating samples. The coating tool 
of preference is the sputter coater. From start to finish, coating a sample takes 
approximately 30 minutes. Metal molecules from various atoms make up the 
sputtered coating. These molecules have the ability to splatter like paint when they 
hit the sample. As a result, a structure’s underside can have a thin coating applied to 
it. 

16.3 Setting Up the Experiment for Image Acquisition with 
the SEM 

In this section, we will discuss the steps of setting up the experiment for image 
acquisition with the SEM. The first step includes specimen preparation, and the 
second step includes the loading of the samples inside the SEM chamber. We will be 
performing the image acquisition on our TESCAN FERA3 and LYRA3 dual-beam 
systems. The image acquisition will be performed on the mechanically polished and 
further FIB-delayered IC samples of different node technologies. The IC samples 
used in this module include Xilinx FPGA (28 nm) and AMD Opteron (65 nm) as 
shown in Figs. 16.5 and 16.6. These ICs will already be de-capsulated and will be 
thinned down by mechanical polishing and FIB delayering to make them ready for 
the experiment.
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Fig. 16.5 AMD Opteron 
(65 nm) 

Fig. 16.6 Xilinx FPGA 
(28 nm) 

16.3.1 Sample Preparation 

The first step in the process involves sample preparation of the ICs to make them 
ready for the experiment. This process involves:

• When handling anything that will go into or come into contact with the SEM, 
always use gloves.

• The specimen should be conductively fixed or glued to a specimen stub (12.5 mm 
specimen pin-stubs). Carbon tape or copper tape can be used for this process 
depending on the sample.

• Nonconductive samples need to be coated by a conductive layer using either a 
carbon coater or sputter coater. 

16.3.2 Sample Loading Inside the SEM 

Once the sample is fixed over the specimen stub, the next step involves loading the 
sample inside the SEM chamber.

• To open the microscope’s exhaust valve, click VENT. Wait until the venting is 
complete.

• Once finished, to open the chamber, simply pull the corners in your direction.
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Fig. 16.7 Sample fixed on 
the stub 

Fig. 16.8 Sample loaded in 
the SEM chamber

• If necessary, rotate the stage to reach the screw port. Clamp on the specimen stub 
using the provided tweezers, and then use an air gun to blow an airstream over 
the entire specimen stub.

• The specimen stub should be gently inserted into the specimen stage after 
loosening the screw, and the screw holding should then be tightened.

• Close the door of the chamber carefully by pushing it inward, and then press the 
pump and wait for the bar graph to turn green or to display “VACUUM Ready.” 

The setup is ready to perform the SEM imaging as shown in Figs. 16.7 and 16.8. 

16.3.3 SEM Image Acquisition 

To get started, we need to follow the following steps to get the best-resolution SEM 
images of the samples. 

16.3.3.1 Turning on the Electron Beam 

1. Click on BEAM ON as shown in Fig. 16.9 from the electron beam panel to turn 
on the electron beam.
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Fig. 16.9 BEAM ON from 
the electron beam panel 

Fig. 16.10 Select HV in pad drop down 

Fig. 16.11 Choose desired scanning mode 

2. In the Info panel, select HV, or, as illustrated in Fig. 16.10, choose HV from the 
Pad Drop Down. In the Pad panel, set a specific high voltage (set 5 kV as starting 
voltage). 

3. The Auto Gun Heating option must be used after clicking Adjustment >>> if a 
black screen appears after turning on HV. 

16.3.3.2 Imaging Mode 

1. Click MODE and make sure that Continual Wide Field option is checked. 
2. After that, choose desired scanning mode (default = Resolution) as shown in 

Fig. 16.11.
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Fig. 16.12 Stage control 

16.3.3.3 Beam Intensity, Brightness, and Contrast 

1. Using the stage control, center the SEM window on the desired sample, as shown 
in Fig. 16.12. 

2. Now use BI button to adjust the beam intensity using the << and >> as shown 
in Fig. 16.13. 

3. Recommended BI of value 15 to start at low magnification. 
4. To automatically correct the contrast and brightness if it is excessively bright or 

dark, click Auto. 
5. To manually adjust the contrast and brightness, click Brightness as shown in 

Fig. 16.14. 
6. Additionally, be sure to click the IR camera button to reveal the chamber’s view 

as shown in Fig. 16.15. 

16.3.3.4 Magnification, Focus, and Scan Speed 

1. To alter the magnification, click MAG. 
2. Change the sensitivity if necessary by moving the trackball from left to right or 

by simply entering a value in the Pad panel. 
3. Click WD to change the focus distance after that. Focus can be changed by 

sliding the Trackball from left to right. A focused image with a WD value 
displays the actual working distance. 

4. In the SEM scanning window, double-left click to create a Focus Window.
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Fig. 16.13 Beam intensity 

Fig. 16.14 Brightness and contrast adjustment 

5. Click SPEED to adjust scan speed. 
6. To determine how SPEED and BI will affect the quality of your images, use the 

Focus Window. It is recommended that the initial focusing BI setting’s SPEED 
of 1–4 corresponds to the MAG value. 

7. Higher values of SPEED seem more attractive but take longer to focus. When 
you’re ready to save images, use higher SPEED values of 5–8. 

16.3.3.5 Working Distance 

1. To achieve the best focus possible, combine focusing and MAG. 
2. Ensure that mode is depth or resolution (if not, keep increasing the MAG).
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Fig. 16.15 IR camera button 

Fig. 16.16 Focus window 

3. Identify current WD by focusing on samples at different locations over the 
specimen depending on the desired location. 

4. Always makes sure to keep a safe working distance to avoid any damage to the 
sample or the SEM column (note: approximately 9 mm for SE and 7 mm for 
BSE). Note: Imaging at MAG ≥ 10 kX requires further optimization steps. As 
we are going to take the SEM Images at a much higher magnification, column 
centering and stigmation correction are also required before proceeding to the 
image acquisition directly. 

16.3.3.6 Column Centering (Wobbler Effect) 

1. Around a feature of interest, create a focus window. Bring the feature into focus 
as indicated by clicking WD as shown in Fig. 16.16. 

2. When you focus, if the image moves or shifts, you must finish column centering. 
If the image does not move or shift, proceed on to stigmatization correction. 

3. Select Manual Column Centering from the menu. Click Next when the Manual 
Centering Wizard appears. 

4. Now, the focus of your image will “wobble” back and forth. It must be removed 
if the image wobbles in either the X or Y direction. 

5. By adjusting the OBJ Centering with the trackball, you may minimize image 
movement.
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Fig. 16.17 Stigmator component window 

6. No X / Y translations should be included; instead, the image should only move 
in and out of focus. Click Finish. 

16.3.3.7 Stigmatism Correction 

1. Create a focus window on a feature of interest. 
2. To check for streaking on irregular features, click WD and bring the feature in 

and out of focus (both sides). 
3. Any streaks show that stigmatization correction is required. A focused image 

will become substantially sharper when stigmation is removed, as shown in 
Fig. 16.17. 

4. To make the STG an active function, click it. The trackball should be slowed 
down for precision close to the “sweet spot” with STG Sensitivity set to 6. Adjust 
the stigmators one at a time for a sharper image (X and Y). 

5. Each stigmator component (X and Y) should be adjusted carefully and slowly 
until the “perfect” or set with the sharpest image can be identified. 

16.3.3.8 Image Acquisition 

1. Create focus window and achieve the BEST focus (recommend sensitivity = 2). 
2. Reset the desired magnification by clicking MAG and entering values such as 

“desired mag = 10 kX.” 
3. The focus window should be activated then over the desired feature (a smaller 

window means a quicker refresh). 
4. Choose the speed that corresponds to your image’s maximum acquisition time, 

like for 2 minutes, by typing SPEED = 7. 
5. To automatically adjust the brightness and contrast as you modify the BI, select 

auto.
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Fig. 16.18 IC level hardware Trojan 

6. Increase the image acquisition time (e.g., SPEED = 7 − > 8) if high resolution 
is desired but there is excessive graininess. 

7. Click Acquire to capture image and save it. 
8. After image acquisition is done, don’t forget to turn off the electron beam. 

In the next section, we will discuss in detail how to detect hardware Trojans in 
ICs using SEM Images. 

16.4 Hardware Trojan (HT) Detection in ICs Using SEM 
Images 

Hardware Trojans are malicious alterations to integrated circuits (ICs) designed 
to jeopardize an electronic system’s security and reliability (see Fig. 16.18). This 
experiment uses advanced nano-imaging and image processing with neural net-
works to detect hardware Trojans inserted by untrusted foundries. An IC with 
on-chip trusted test structures (logic cells) with layout OR SEM images of the IC 
with trusted (golden circuits) and not investigated logic cells will be provided as a 
starter data set. The on-chip golden circuits provide authentic samples for image-
based Trojan detection. The experiment will be performed on a 28 nm backside 
thinned FPGA. 

16.4.1 Equipment and Software Needed for This Work 

This experiment involves multidisciplinary knowledge of the following subject and 
requires the following equipment’s, samples, and software:
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• IC samples: IC samples under authentication in which presence of hardware 
Trojan needs to be investigated.

• Golden layout: Trusted Trojan free layout design
• IC sample preparation instrument: Allied X-Prep
• Dual-beam SEMs: An SEM (scanning electron microscope) with FIB (focused 

ion beam)
• Software: Anaconda environment that supports Python v 3.9 or later running on 

a Windows-/Mac-based machine. 

16.4.2 Prerequisites

• Fundamental knowledge of semiconductor device layer and packaging.
• IC sample preparation (optional if polished IC sample is available).
• Scanning electron microscope training (see Sect. 16.3).
• Fundamentals of image processing and data science using Python. 

16.4.3 Experimental Setup for HT Detection in ICs Using SEM 

In this section, we will discuss the steps of setting up the experiment for HT 
detection in ICs using SEM.

• Sample Preparation Station (Optional)
• SEM imaging station (See Sect. 16.3)
• A computer setup with anaconda Python 3.9 or later environment with OpenCV, 

pandas, matplotlib, and scikit-learn Python packages installed. 

16.4.3.1 Procedure 

This experiment will be performed in the following steps as sub-modules:

• Sample preparation (optional, if the sample is ready).
• FIB and SEM Imaging for data image collection.
• Trojan detection system using image analysis and artificial intelligence. 

16.4.3.2 Sample Preparation 

Decapsulation When the die is decapsulated, internal die, lead frame, and die 
connection components, such as bond wire and ball grid arrays, are all made visible. 
Techniques for decapsulation that are nonselective include mechanical polishing 
and CNC multi-tool machining. Even after revealing the bare die, SEM imaging is



16.4 Hardware Trojan (HT) Detection in ICs Using SEM Images 309

Fig. 16.19 (a) Chamber view of allied X-prep (b) 2D thickness measurement mapping after 
polishing 

impossible because electrons can’t penetrate through a thick silicon substrate layer 
of the sample. 

The substrate must be thinned even more using precise polishing techniques. 
Furthermore, the bare die employed in the process is not flat, and its curvature 
changes during polishing, potentially resulting in uneven silicon substrate removal 
over the chip. Advanced sample preparation machine, Allied X-Prep, sophisticated 
silicon die polishing technology (see Fig. 16.19), can be utilized to accomplish 
backside thinning of up to 1–2 . μm to mitigate these difficulties. Two common 
selective decapsulation methods are wet etching and plasma etching. We employ a 
28 nm FPGA in this experiment. FPGAs are widely used in communication systems 
and military systems television boxes. By embedding a Trojan in the circuitry, an 
adversary can acquire sensitive or confidential information, cause a data breach, and 
inflict financial loss on an entity. 

An FPGA die can be a flip chip or enclosed in a mold epoxy resin. The first step 
in decapsulating (if packaged) the FPGA chip to expose the die by grinding the top 
surface followed by the exposed die can be polished and thinned down to less than 
1 . μ by using precise polishing. 

16.4.4 FIB and SEM Imaging 

16.4.4.1 FIB Delayering 

For SEM imaging and analysis, the silicon substrate needs to be thinned below 
1 . μ. The advanced polishing machines cannot be used for thinning sub-micron, so
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Fig. 16.20 SEM image variations with different beam voltages [(a), (b) and (c)], field of views 
[(d), (e), and (f)], dwelling times [(g), (h), and (i)], and resolutions [(j), (k), and (l)] 

a plasma-assisted focused ion beam will be used for further silicon thinning. In this 
step, a trainee has expected to finished the experiment as in Sect. 16.3. 

16.4.4.2 SEM Imaging 

High-resolution images from the FPGA are needed and can be taken with a scanning 
electron microscope (SEM). The goal is to scan the entire die as quickly as possible 
while obtaining enough feature details to compare with the SEM image of authentic 
logic cells. The following SEM parameters influence the timing and quality of SEM 
images. By altering one parameter at a time while leaving all other factors constant, 
we can see the effect of one parameter on SEM images (see Fig. 16.20).

• Beam voltage – The depth of an item’s penetration by electrons is determined 
by the electron beam’s accelerating voltage (measured in kV). A 5 kV beam can 
reveal active regions when imaged from the backside, but a 10 kV beam can 
reveal additional sub-surface characteristics, such as the polysilicon and first few 
metal layers.

• Field of view (FOV) – The magnification of the image is inversely proportional 
to the field of view. Because of the low magnification, a large field of view covers
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more features, but they are fuzzy. With a smaller field of view, imaging duration 
increases.

• Dwelling time (speed) – A higher dwelling time improves the signal-to-noise 
ratio of the image, leading to better SEM image quality, but also lengthens the 
image capturing process. It also has an impact on surface charge, which can cause 
artifacts while imagining. 

The microscope can also be configured to scan the entire die in the form of 
small windows of images, which are then stitched together to make a complete 
panorama image when the abovementioned parameters have been specified. Images 
captured with a large field of view and a short dwell period take less time to 
image, but their quality is not good. A small field of view, extended dwell time, 
and high-resolution capture more excellent image quality, but it collects more data 
than necessary and lengthens the imaging process. As a result, there is a trade-off 
between imaging time and image quality in order to achieve higher Trojan detection 
findings. SEM parameter optimization is done to balance time consumption and 
detection confidence. 

16.4.5 Trojan Detection System 

In this section, we are going to design an end-to-end real-time trojan detection 
system. Our computer vision-based approach consists of logical cell detection and a 
cell recognition unit. A schematic diagram of the system is presented in Fig. 16.21. 

Each SEM image is pre-processed and then analyzed to separate out cell rows. 
Cell images are extracted from each of those rows. Extracted cell images are passed 
through the cell recognition unit. Based on the output of the cell recognition unit 
and the corresponding entry in DEF file, possible Trojan presence is decided as 
mentioned in Fig. 16.21. 

Fig. 16.21 Full system architecture
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16.4.5.1 Pre-processing 

By isolating out the pixels with the same intensity, components of an image are 
detected. Each image is binarized such that the foreground pixels and background 
may be easily distinguished. To avoid noisy binarization, the image is denoised 
beforehand. Denoising the input image is the first step in our pre-processing stage, 
which is followed by binarization and the grouping of foreground or gate regions 
using connected component analysis. (see Fig. 16.22). 

Denoising In order to denoise images, nonlocal pixel methods are used. To 
determine the value of the target pixel to smooth the image, similar patches are 
discovered throughout the image and averaged out instead of averaging out a group 
of pixels (let’s say a 5 . × 5 area) surrounding the target pixel. To obtain the denoised 
image, the entire procedure and parameter settings outlined in [3] are applied to the 
input image I , . ID (Fig. 16.22b). 

. ID = FastNonLocalMeans(I )

Fig. 16.22 Pre-processing stages. (a) An SEM image of dwelling time 5. (b) Denoised image. (c) 
Binarized image. (d) Connected components. (e) 8-connectivity of a pixel with intensity .I (x, y). 
(f) A component
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Binarization To prevent disturbance brought on by potential salt-and-pepper noise 
in I, the denoised image ID is used to generate the binarized Image . IB (Fig. 16.22c). 
We investigated both globally and locally adaptive thresholding methods to figure 
out the optimal threshold for binarization. Otsu’s method [6] is used to determine 
the global threshold. Fast binarization is followed as in [7] for local thresholding, 
which entails thresholding individual portions of images. 

. IB = Binarization(ID)

Components Gate regions in the foreground pixels (pixels with value 255) are 
grouped using components from the binary image .IB (pixel value set, . PB =
{0, 255}). From top to bottom and left to right, .IB is scanned pixel by pixel, 
and adjacent pixels that share the same intensity values are grouped together. 
Different connection measurements are used in the labeling process. In our scenario, 
grouping is done by taking into account each pixel’s 8-connectivity (Fig. 16.22e). 
When calculating related components, the background pixel was ignored. This 
stage results in a collection of explicitly labeled connected components, . C =
{c0, c1, c2, . . . . . . , cT −1} (Fig. 16.22d) where each . ci denotes a rectangular com-
ponent region with top-left point .(x1, y1) and bottom-right point .(x2, y2) as shown 
in Fig. 16.22f and T represents a total number of components in the image I . Cs are  
sorted vertically by . y1 (Fig. 16.23). 

16.4.6 Cell Extraction 

Each image I along with its connected component list C are used to extract out cell 
images. Image I is divided into N rows .R = R1, R2, R3, ......, RN where each . Ri

represents a row of gate (see Fig. 16.24). The experimental files of cell extraction 
can be found at http://cad4security.org/index.php/trainings/hsl/ch16_sem/. 

This row division can be done by first vertically sorting the component list C and 
then comparing y coordinates between each consecutive component. 

Cells can be made of single or multiple entities (Fig. 16.24). So we need to 
check whether any component is itself a cell or part of a cell. Rs are individually 
scanned to extract the cells. As shown in Fig. 16.24b(i)), each R is made up of 
two vertically symmetric parts, or Ps. For convenience, we chose one of the Ps 
(see Fig. 16.24b(ii)). In order to estimate the distances D between subsequent 
components, the component list .Ci = c0, c1, . . . . . . , cm−1 associated with row . Pi

is scanned from left to right (Fig. 16.24b(ii)) where 

.D = {d1, d2, ......, dm−1}
dj = |cj .x1 − cj−1.x2|; 1 ≤ j ≤ m − 1

http://cad4security.org/index.php/trainings/hsl/ch16_sem/
http://cad4security.org/index.php/trainings/hsl/ch16_sem/
http://cad4security.org/index.php/trainings/hsl/ch16_sem/
http://cad4security.org/index.php/trainings/hsl/ch16_sem/
http://cad4security.org/index.php/trainings/hsl/ch16_sem/
http://cad4security.org/index.php/trainings/hsl/ch16_sem/
http://cad4security.org/index.php/trainings/hsl/ch16_sem/
http://cad4security.org/index.php/trainings/hsl/ch16_sem/
http://cad4security.org/index.php/trainings/hsl/ch16_sem/
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Fig. 16.23 Top – An SEM image, a bottom-green highlighted portion from top image with single 
(blue shaded) and composite cells (red shaded) marked 

Two consecutive components are merged if their distance is less than a certain 
threshold. That is, 

. cj = merge(cj−1, cj ) if dj < threshold

In our experiments, we set the threshold to 9 pixel but it differs from image to image. 
A global threshold can be determined by analyzing gaps from all available images 
which will be done in the future.
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Fig. 16.24 SEM image and cell extraction from its rows 

After merging, we obtain margins in P for both composite and individual 
components. Cells are located and extracted from the relevant gate row R using the 
same margin (see Fig. 16.24b(iv)–(v)). Cells are then manually annotated. These 
annotated cells constitute the real image dataset . DR . 

16.4.7 Synthetic Cell Image Generation 

We must train an effective classifier in order to develop a complete recognition 
system. To accomplish that goal, a sizable dataset is needed; however, it is not 
always accessible. A significant constraint that cannot be completely overcome by 
IC SEM image collection is the need to create a dataset. This procedure involves a 
variety of specific variables, such as magnification, dwelling time, brightness, and 
contrast, which can have a detrimental impact on the acquisition time. Additionally, 
there are variations in the noise, pixel intensity, brightness, and contrast of the 
IC SEM images. This further limits the possibilities of applying traditional image 
augmentation techniques together with the imaging differences brought on by the 
quality of the sample polishing process. 

In order to solve the problem of insufficient data, we will create synthetic copies 
of cell pictures using the retrieved ones. The generative adversarial network (GAN) 
[2] training setup, which holds the current state of the art in the relevant field, is 
favored among the various methods of creating synthetic data. 

Generative Adversarial Network A generator function called G creates synthetic 
data in the adversarial setup by mapping random noise variables to data space. 
Random variables are sampled from a Gaussian distribution in this instance.



316 16 Scanning Electron Microscope Training

. z ∼ N(0, 1)

Is = G(z) (16.1) 

where N(0,1) represents normal distribution with zero mean and unit variance. 

On the other hand, a discriminative function D acts as a critic and outputs a 
probability value indicating whether the input is close to real data distribution or 
not. 

. D(x) = 1 if x ∈ DR

D(x) = 0 if x ∈ G(z) (16.2) 

Throughout the learning process, G trains D to produce the most accurate labels 
for both real and synthetic images. D is therefore taught to optimize expectation for 
both actual and artificial data. 

E[D] =  max Ex∼DR
[log D(x)] +  Ez∼N(0,1)[log(1 − D(G(z))] (16.3) 

The aforementioned expectation is maximized when D produces values for genuine 
data samples that are close to 1 and zero for artificial data samples. 

G, on the other hand, has been trained to duplicate real images in order to trick 
the discriminator. A minimal log.(1 − D(G(z)) is obtained when D starts producing 
greater values for synthetic images .G(z). For the generator, the subsequent expec-
tation is minimized: 

E[G] =  min Ez∼N(0,1)[log(1 − D(G(z))] (16.4) 

Putting Eqs. (16.3) and (16.4) together, we see that G and D play a two-player 
minimax game with value .V (D,G): 

.
min
G

max
D V (D,G) = Ex∼DR

[log D(x)] + Ez∼N(0,1)[log(1 − D(G(z))] (16.5) 

Choice of GAN Our training scheme for GAN needs to be selected based on two 
design decisions:

• Images need to be generated class-wise to reduce human efforts of labeling.
• Prevent mode collapse, i.e., refrain generator from generating samples for only 

one class. 

Firstly, to generate synthetic images conditioned on classes, we have encoded 
class label information with the sampled random variables (see Fig. 16.25) and 
passed it to the generator. The class conditional formulation (Eq. (16.6)) is followed  
from the conditional GAN [5]. 

.LcGAN = Ex∼DR
[log D(x, c)] + Ez∼N(0,1)[log(1 − D(G(c, z))] (16.6)
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Fig. 16.25 Implementation of MSGAN for our system 

Secondly, in case of mode collapse, mapped images are collapsed into a few modes, 
i.e., two closely sampled latent codes z1 and z2 are highly likely to be mapped to 
the same mode of images (Eq. (16.7)): 

.G(c, z1) ≈ G(c, z2) where z1, z2 ≈ N(0, 1) and z1 ≈ z2 (16.7) 

To address this issue, the distinctive mapping of two closely sampled random 
variables (z1, z2) can be enforced by mode-seeking regularization term (Eq. (16.8)) 
as in mode-seeking GAN [4]. 

.Lms = max
G

dI (G(c, z1),G(c, z2))

dz(z1, z2)
(16.8) 

The overall objective function can be written as follows: 

.L = LcGAN + λmsLms (16.9) 

where .λms controls the weight of the mode-seeking ratio. 
Synthetic data .DS generated this way is used alongside .DR to train the CNN 

classifier. 

16.4.8 Logical Cell Recognition 

A CNN classifier will be trained on the real (. DR) and synthetic (. DS) datasets. Any 
popular architecture can be chosen as the backbone of the network. The network 
should generalize on the logical cell images enough to differentiate even among 
classes with less inter-class variability. 

Two things should be kept in mind while designing the network.

• Attacker can change the gate shape in a way that it may closely resemble one of 
the existing cells. The classifier should be able to identify if any cell image is even
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slightly out of the distribution of known cells. Domain adaptation techniques can 
be explored to solve this.

• Different cell images come with drastically different aspect ratios. The classifier 
should be size invariant. 

On testing time, we will pass cell images one by one from each location of an 
SEM image into the classifier. The classifier will generate probability maps over 
classes from where the class with the maximum probability value will be selected 
(see Fig. 16.21). The output will be matched with the entry from the DEF file for 
the corresponding location. Based on the agreement between the two values, the 
presence of trojan can be detected. 

16.5 Conclusion 

In this chapter, we worked on TESCAN FERA3 and LYRA3 dual-beam systems. 
Xilinx FPGA and AMD Opteron are used to perform detailed SEM training. 
Through this experiment, we will gain a comprehensive understanding of per-
forming high-quality SEM imaging. The purpose of this chapter is for readers to 
understand how to operate a scanning electron microscope and then how to use 
electron imaging in a variety of applications. In addition, this work was done to 
detect malicious modifications by an untrusted foundry inside an IC using Xilinx 
FPGA. After successfully completing this experiment, readers will understand 
what hardware Trojan, sample preparation process, and various SEM imaging 
methods are. Through this module, several algorithms will be developed to automate 
functions that will increase the productivity of remote imaging. 
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