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To the Student

With the hope that this work will stimulate  
an interest in Engineering Mechanics  

and provide an acceptable guide to its understanding.





The main purpose of this book is to provide the student with a clear and thorough 
presentation of the theory and application of engineering mechanics. To achieve this 
objective, this work has been shaped by the comments and suggestions of hundreds 
of reviewers in the teaching profession, as well as many of the author’s students.

New to this Edition
Preliminary Problems.  This new feature can be found throughout the text, and 
is given just before the Fundamental Problems. The intent here is to test the student’s 
conceptual understanding of the theory. Normally the solutions require little or no 
calculation, and as such, these problems provide a basic understanding of the concepts 
before they are applied numerically. All the solutions are given in the back of the text.

Expanded Important Points Sections.  Summaries have been added which 
reinforce the reading material and highlights the important definitions and concepts 
of the sections.

Re-writing of Text Material.  Further clarification of concepts has been 
included in this edition, and important definitions are now in boldface throughout 
the text to highlight their importance.

End-of-Chapter Review Problems.  All the review problems now have 
solutions given in the back, so that students can check their work when studying 
for exams, and reviewing their skills when the chapter is finished.

New Photos.  The relevance of knowing the subject matter is reflected by the 
real-world applications depicted in the over 60 new or updated photos placed 
throughout the book. These photos generally are used to explain how the relevant 
principles apply to real-world situations and how materials behave under load.

New Problems.  There are approximately 30% new problems that have been 
added to this edition, which involve applications to many different fields of 
engineering.
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Hallmark Features
Besides the new features mentioned above, other outstanding features that define 
the contents of the text include the following.

Organization and Approach.  Each chapter is organized into well-defined 
sections that contain an explanation of specific topics, illustrative example problems, 
and a set of homework problems. The topics within each section are placed into 
subgroups defined by boldface titles. The purpose of this is to present a structured 
method for introducing each new definition or concept and to make the book 
convenient for later reference and review.

Chapter Contents.  Each chapter begins with an illustration demonstrating a 
broad-range application of the material within the chapter. A bulleted list of the 
chapter contents is provided to give a general overview of the material that will be 
covered.

Emphasis on Free-Body Diagrams.  Drawing a free-body diagram is 
particularly important when solving problems, and for this reason this step is strongly 
emphasized throughout the book. In particular, special sections and examples are 
devoted to show how to draw free-body diagrams. Specific homework problems have 
also been added to develop this practice.

Procedures for Analysis.  A general procedure for analyzing any mechanical 
problem is presented at the end of the first chapter. Then this procedure is customized 
to relate to specific types of problems that are covered throughout the book. This 
unique feature provides the student with a logical and orderly method to follow when 
applying the theory. The example problems are solved using this outlined method in 
order to clarify its numerical application. Realize, however, that once the relevant 
principles have been mastered and enough confidence and judgment have been 
obtained, the student can then develop his or her own procedures for solving problems.

Important Points.  This feature provides a review or summary of the most 
important concepts in a section and highlights the most significant points that should 
be realized when applying the theory to solve problems.

Fundamental Problems.  These problem sets are selectively located just after 
most of the example problems. They provide students with simple applications of the 
concepts, and therefore, the chance to develop their problem-solving skills before 
attempting to solve any of the standard problems that follow. In addition, they can 
be used for preparing for exams, and they can be used at a later time when preparing 
for the Fundamentals in Engineering Exam.

Conceptual Understanding.  Through the use of photographs placed 
throughout the book, theory is applied in a simplified way in order to illustrate some 
of its more important conceptual features and instill the physical meaning of many 
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of the terms used in the equations. These simplified applications increase interest in 
the subject matter and better prepare the student to understand the examples and 
solve problems.

Homework Problems.  Apart from the Fundamental and Conceptual type 
problems mentioned previously, other types of problems contained in the book 
include the following:

•	 Free-Body Diagram Problems.  Some sections of the book contain 
introductory problems that only require drawing the free-body diagram for the 
specific problems within a problem set. These assignments will impress upon the 
student the importance of mastering this skill as a requirement for a complete 
solution of any equilibrium problem.

•	 General Analysis and Design Problems.  The majority of problems in the 
book depict realistic situations encountered in engineering practice. Some of 
these problems come from actual products used in industry. It is hoped that this 
realism will both stimulate the student’s interest in engineering mechanics and 
provide a means for developing the skill to reduce any such problem from its 
physical description to a model or symbolic representation to which the principles 
of mechanics may be applied.

Throughout the book, there is an approximate balance of problems using either 
SI or FPS units. Furthermore, in any set, an attempt has been made to arrange the 
problems in order of increasing difficulty except for the end of chapter review 
problems, which are presented in random order.

•	 Computer Problems. An effort has been made to include some problems that 
may be solved using a numerical procedure executed on either a desktop computer 
or a programmable pocket calculator. The intent here is to broaden the student’s 
capacity for using other forms of mathematical analysis without sacrificing the 
time needed to focus on the application of the principles of mechanics. Problems 
of this type, which either can or must be solved using numerical procedures, are 
identified by a “square” symbol (■) preceding the problem number.

The many homework problems in this edition, have been placed into two different 
categories. Problems that are simply indicated by a problem number have an 
answer and in some cases an additional numerical result given in the back of the 
book. An asterisk (*) before every fourth problem number indicates a problem 
without an answer.

Accuracy.  As with the previous editions, apart from the author, the accuracy of 
the text and problem solutions has been thoroughly checked by four other parties: 
Scott Hendricks, Virginia Polytechnic Institute and State University; Karim Nohra, 
University of South Florida; Kurt Norlin, Bittner Development Group; and finally 
Kai Beng, a practicing engineer, who in addition to accuracy review provided 
suggestions for problem development.
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Contents

Statics 
The book is divided into 11 chapters, in which the principles are first applied to 
simple, then to more complicated situations. In a general sense, each principle is 
applied first to a particle, then a rigid body subjected to a coplanar system of forces, 
and finally to three-dimensional force systems acting on a rigid body.

Chapter 1 begins with an introduction to mechanics and a discussion of units. The 
vector properties of a concurrent force system are introduced in Chapter 2. This 
theory is then applied to the equilibrium of a particle in Chapter 3. Chapter 4 contains 
a general discussion of both concentrated and distributed force systems and the 
methods used to simplify them. The principles of rigid-body equilibrium are 
developed in Chapter 5 and then applied to specific problems involving the 
equilibrium of trusses, frames, and machines in Chapter 6, and to the analysis of 
internal forces in beams and cables in Chapter 7. Applications to problems involving 
frictional forces are discussed in Chapter 8, and topics related to the center of gravity 
and centroid are treated in Chapter 9. If time permits, sections involving more 
advanced topics, indicated by stars (�), may be covered. Most of these topics are 
included in Chapter 10 (area and mass moments of inertia) and Chapter 11 (virtual 
work and potential energy). Note that this material also provides a suitable 
reference for basic principles when it is discussed in more advanced courses. Finally, 
Appendix A provides a review and list of mathematical formulas needed to solve 
the problems in the book.

Alternative Coverage.  At the discretion of the instructor, some of the 
material may be presented in a different sequence with no loss of continuity. For 
example, it is possible to introduce the concept of a force and all the necessary 
methods  of vector analysis by first covering Chapter 2 and Section 4.2 (the cross 
product). Then after covering the rest of Chapter 4 (force and moment systems), the 
equilibrium methods of Chapters 3 and 5 can be discussed.

Dynamics
The book is divided into 11 chapters, in which the principles are first applied to 
simple, then to more complicated situations.

The kinematics of a particle is discussed in Chapter 12, followed by a discussion of 
particle kinetics in Chapter 13 (Equation of Motion), Chapter 14 (Work and Energy), 
and Chapter 15 (Impulse and Momentum). The concepts of particle dynamics 
contained in these four chapters are then summarized in a “review” section, and the 
student is given the chance to identify and solve a variety of problems. A similar 
sequence of presentation is given for the planar motion of a rigid body: Chapter 16 
(Planar Kinematics), Chapter 17 (Equations of Motion), Chapter 18 (Work and 
Energy), and Chapter 19 (Impulse and Momentum), followed by a summary and 
review set of problems for these chapters.

If time permits, some of the material involving three-dimensional rigid-body 
motion may be included in the course. The kinematics and kinetics of this motion 
are discussed in Chapters 20 and 21, respectively. Chapter 22 (Vibrations) may  
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be included if the student has the necessary mathematical background. Sections of 
the book that are considered to be beyond the scope of the basic dynamics course 
are indicated by a star (�) and may be omitted. Note that this material also provides 
a suitable reference for basic principles when it is discussed in more advanced 
courses. Finally, Appendix A provides a list of mathematical formulas needed to 
solve the problems in the book, Appendix B provides a brief review of vector 
analysis, and Appendix C reviews application of the chain rule.

Alternative Coverage.  At the discretion of the instructor, it is possible to cover 
Chapters 12 through 19 in the following order with no loss in continuity: Chapters 12 
and 16 (Kinematics), Chapters 13 and 17 (Equations of Motion), Chapter 14 and 18 
(Work and Energy), and Chapters 15 and 19 (Impulse and Momentum).
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Resources for Instructors
•	 MasteringEngineering.  This online Tutorial Homework program allows you to integrate dynamic homework 
with automatic grading and adaptive tutoring. MasteringEngineering allows you to easily track the performance 
of your entire class on an assignment-by-assignment basis, or the detailed work of an individual student.

•	 Instructor’s Solutions Manual.  This supplement provides complete solutions supported by problem 
statements and problem figures. The fourteenth edition manual was revised to improve readability and was 
triple accuracy checked. The Instructor’s Solutions Manual is available on Pearson Higher Education website: 
www.pearsonhighered.com.

•	 Instructor’s Resource.  Visual resources to accompany the text are located on the Pearson Higher Education 
website: www.pearsonhighered.com. If you are in need of a login and password for this site, please contact your 
local Pearson representative. Visual resources include all art from the text, available in PowerPoint slide and 
JPEG format.

•	 Video Solutions.  Developed by Professor Edward Berger, Purdue University, video solutions are located 
in the study area of MasteringEngineering and offer step-by-step solution walkthroughs of representative 
homework problems from each section of the text. Make efficient use of class time and office hours by 
showing students the complete and concise problem-solving approaches that they can access any time and 
view at their own pace. The videos are designed to be a flexible resource to be used however each instructor 
and student prefers. A valuable tutorial resource, the videos are also helpful for student self-evaluation as 
students can pause the videos to check their understanding and work alongside the video. Access the videos 
at www.masteringengineering.com. 

Resources for Students
•	 MasteringEngineering.  Tutorial homework problems emulate the instructor’s office-hour environment, 
guiding students through engineering concepts with self-paced individualized coaching. These in-depth tutorial 
homework problems are designed to coach students with feedback specific to their errors and optional hints 
that break problems down into simpler steps.

•	 Statics Study Pack.  This supplement contains chapter-by-chapter study materials and a Free-Body Diagram 
Workbook.

•	 Dynamics Study Pack.  This supplement contains chapter-by-chapter study materials and a Free-Body Diagram 
Workbook.

•	 Video Solutions.  Complete, step-by-step solution walkthroughs of representative homework problems 
from each section. Videos offer fully worked solutions that show every step of representative homework 
problems—this helps students make vital connections between concepts.

•	 Statics Practice Problems Workbook.  This workbook contains additional worked problems. The problems 
are partially solved and are designed to help guide students through difficult topics.

•	 Dynamics Practice Problems Workbook.  This workbook contains additional worked problems. The 
problems are partially solved and are designed to help guide students through difficult topics.

xiv
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Ordering Options
The Statics and Dynamics Study Packs and MasteringEngineering resources are available as stand-alone items for 
student purchase and are also available packaged with the texts. The ISBN for each valuepack is as follows:

•	 Engineering Mechanics: Statics with Study Pack: ISBN 0134136683

•	 �Engineering Mechanics: Statics Plus MasteringEngineering with Pearson eText—Access Card Package: 
ISBN: 0134160681

•	 Engineering Mechanics: Dynamics with Study Pack: ISBN: 0134116658

•	 �Engineering Mechanics: Dynamics Plus MasteringEngineering with Pearson eText — Access Card Package: 
ISBN: 0134116992

Custom Solutions

Please contact your local Pearson Sales Representative for more details about custom options or visit 

www.pearsonlearningsolutions.com, keyword: Hibbeler.
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Chapter 1

Large cranes such as this one are required to lift extremely large loads. Their 
design is based on the basic principles of statics and dynamics, which form 

the subject matter of engineering mechanics.

(© Andrew Peacock/Lonely Planet Images/Getty Images)



General Principles

CHAPTER OBJECTIVES

n	 To provide an introduction to the basic quantities and idealizations 
of mechanics.

n	 To give a statement of Newton’s Laws of Motion and Gravitation.

n	 To review the principles for applying the SI system of units.

n	 To examine the standard procedures for performing numerical 
calculations.

n	 To present a general guide for solving problems.

1.1  Mechanics

Mechanics is a branch of the physical sciences that is concerned with the 
state of rest or motion of bodies that are subjected to the action of forces. 
In general, this subject can be subdivided into three branches: rigid-body 
mechanics, deformable-body mechanics, and fluid mechanics. In this book 
we will study rigid-body mechanics since it is a basic requirement for the 
study of the mechanics of deformable bodies and the mechanics of fluids. 
Furthermore, rigid-body mechanics is essential for the design and analysis 
of many types of structural members, mechanical components, or electrical 
devices encountered in engineering.

Rigid-body mechanics is divided into two areas: statics and dynamics. 
Statics deals with the equilibrium of bodies, that is, those that are either 
at rest or move with a constant velocity; whereas dynamics is concerned 
with the accelerated motion of bodies. We can consider statics as a special 
case of dynamics, in which the acceleration is zero; however, statics 
deserves separate treatment in engineering education since many objects 
are designed with the intention that they remain in equilibrium.
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1
Historical Development.  The subject of statics developed very 
early in history because its principles can be formulated simply from 
measurements of geometry and force. For example, the writings of 
Archimedes (287–212 B.C.) deal with the principle of the lever. Studies 
of the pulley, inclined plane, and wrench are also recorded in ancient 
writings—at times when the requirements for engineering were limited 
primarily to building construction.

Since the principles of dynamics depend on an accurate measurement 
of time, this subject developed much later. Galileo Galilei (1564–1642) 
was one of the first major contributors to this field. His work consisted of 
experiments using pendulums and falling bodies. The most significant 
contributions in dynamics, however, were made by Isaac Newton  
(1642–1727), who is noted for his formulation of the three fundamental 
laws of motion and the law of universal gravitational attraction. Shortly 
after these laws were postulated, important techniques for their 
application were developed by other scientists and engineers, some of 
whom will be mentioned throughout the text.

1.2  Fundamental Concepts

Before we begin our study of engineering mechanics, it is important to 
understand the meaning of certain fundamental concepts and principles.

Basic Quantities.  The following four quantities are used throughout 
mechanics.

Length.  Length is used to locate the position of a point in space and 
thereby describe the size of a physical system. Once a standard unit of 
length is defined, one can then use it to define distances and geometric 
properties of a body as multiples of this unit.

Time.  Time is conceived as a succession of events. Although the 
principles of statics are time independent, this quantity plays an 
important role in the study of dynamics.

Mass.  Mass is a measure of a quantity of matter that is used to 
compare the action of one body with that of another. This property 
manifests itself as a gravitational attraction between two bodies and 
provides a measure of the resistance of matter to a change in velocity.

Force.  In general, force is considered as a “push” or “pull” exerted by 
one body on another. This interaction can occur when there is direct 
contact between the bodies, such as a person pushing on a wall, or it can 
occur through a distance when the bodies are physically separated. 
Examples of the latter type include gravitational, electrical, and magnetic 
forces. In any case, a force is completely characterized by its magnitude, 
direction, and point of application.
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Idealizations.  Models or idealizations are used in mechanics in 
order to simplify application of the theory. Here we will consider three 
important idealizations.

Particle.  A particle has a mass, but a size that can be neglected. For 
example, the size of the earth is insignificant compared to the size of its 
orbit, and therefore the earth can be modeled as a particle when studying 
its orbital motion. When a body is idealized as a particle, the principles of 
mechanics reduce to a rather simplified form since the geometry of the 
body will not be involved in the analysis of the problem.

Rigid Body.  A rigid body can be considered as a combination of a 
large number of particles in which all the particles remain at a fixed 
distance from one another, both before and after applying a load. This 
model is important because the body’s shape does not change when a 
load is applied, and so we do not have to consider the type of material 
from which the body is made. In most cases the actual deformations 
occurring in structures, machines, mechanisms, and the like are relatively 
small, and the rigid-body assumption is suitable for analysis.

Concentrated Force.  A concentrated force represents the effect of 
a loading which is assumed to act at a point on a body. We can represent 
a load by a concentrated force, provided the area over which the load is 
applied is very small compared to the overall size of the body. An 
example would be the contact force between a wheel and the ground.

Three forces act on the ring. Since these 
forces all meet at a point, then for any 
force analysis, we can assume the ring to 
be represented as a particle. (© Russell 
C. Hibbeler)

Steel is a common engineering material that does not deform 
very much under load. Therefore, we can consider this 
railroad wheel to be a rigid body acted upon by the 
concentrated force of the rail. (© Russell C. Hibbeler)
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Newton’s Three Laws of Motion.  Engineering mechanics is 
formulated on the basis of Newton’s three laws of motion, the validity of 
which is  based on experimental observation. These laws apply to the 
motion of a particle as measured from a nonaccelerating reference frame. 
They may be briefly stated as follows.

First Law.  A particle originally at rest, or moving in a straight line with 
constant velocity, tends to remain in this state provided the particle is not 
subjected to an unbalanced force, Fig. 1–1a.

Equilibrium

v
F2F1

F3

(a)

Second Law.  A particle acted upon by an unbalanced force F 
experiences an acceleration a that has the same direction as the force 
and a magnitude that is directly proportional to the force, Fig. 1–1b.*  
If F is applied to a particle of mass m, this law may be expressed 
mathematically as

	 F = ma � (1–1)

Accelerated motion

a
F

(b)

Third Law.  The mutual forces of action and reaction between two 
particles are equal, opposite, and collinear, Fig. 1–1c.

Action – reaction

force of A on B

force of B on A

F F
A B

(c)

Fig. 1–1

*Stated another way, the unbalanced force acting on the particle is proportional to the 
time rate of change of the particle’s linear momentum.
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Newton’s Law of Gravitational Attraction.  Shortly after 
formulating his three laws of motion, Newton postulated a law governing 
the gravitational attraction between any two particles. Stated mathematically,

 	 F = G 
m1m2

r2 � (1–2)

where

	 F	 =	 force of gravitation between the two particles

	 G 	=	� universal constant of gravitation; according to experimental 
evidence, G = 66.73(10- 12) m3> (kg # s2)

	 m1, m2	 =	mass of each of the two particles

	 r	 =	distance between the two particles

Weight.  According to Eq. 1–2, any two particles or bodies have a 
mutual attractive (gravitational) force acting between them. In the case 
of a particle located at or near the surface of the earth, however, the only 
gravitational force having any sizable magnitude is that between the 
earth and the particle. Consequently, this force, termed the weight, will 
be the only gravitational force considered in our study of mechanics.

From Eq. 1–2, we can develop an approximate expression for finding the 
weight W of a particle having a mass m1 = m. If we assume the earth to be a 
nonrotating sphere of constant density and having a mass m2 = Me, then if  
r is the distance between the earth’s center and the particle, we have

W = G 
mMe

r2

Letting g = GMe>r2 yields

	 W = mg � (1–3)

By comparison with F = ma, we can see that g is the acceleration due to 
gravity. Since it depends on r, then the weight of a body is not an absolute 
quantity. Instead, its magnitude is determined from where the measurement 
was made. For most engineering calculations, however, g is determined at 
sea level and at a latitude of 45°, which is considered the “standard location.”

1.3  Units of Measurement

The four basic quantities—length, time, mass, and force—are not all 
independent from one another; in fact, they are related by Newton’s 
second law of motion, F = ma. Because of this, the units used to measure 
these quantities cannot all be selected arbitrarily. The equality F = ma is 
maintained only if three of the four units, called base units, are defined 
and the fourth unit is then derived from the equation.

The astronaut’s weight is diminished since 
she is far removed from the gravitational 
field of the earth. (© NikoNomad/
Shutterstock)
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SI Units.  The International System of units, abbreviated SI after the 
French “Système International d’Unités,” is a modern version of the 
metric system which has received worldwide recognition. As shown in 
Table 1–1, the SI system defines length in meters (m), time in seconds (s), 
and mass in kilograms (kg). The unit of force, called a newton (N), is 
derived from F = ma. Thus, 1 newton is equal to a force required to give 
1 kilogram of mass an acceleration of 1 m>s2 (N = kg # m>s2).

If the weight of a body located at the “standard location” is to be 
determined in newtons, then Eq. 1–3 must be applied. Here measurements 
give g = 9.806 65 m>s2; however, for calculations, the value g = 9.81 m>s2 
will be used. Thus,

 	 W = mg   (g = 9.81 m>s2)� (1–4)

Therefore, a body of mass 1 kg has a weight of 9.81 N, a 2-kg body weighs 
19.62 N, and so on, Fig. 1–2a.

U.S. Customary.  In the U.S. Customary system of units (FPS) 
length is measured in feet (ft), time in seconds (s), and force in pounds (lb), 
Table 1–1. The unit of mass, called a slug, is derived from F = ma. Hence, 
1 slug is equal to the amount of matter accelerated at 1 ft>s2 when acted 
upon by a force of 1 lb (slug = lb # s2>ft).

Therefore, if the measurements are made at the “standard location,” 
where g = 32.2 ft>s2, then from Eq. 1–3,

	 m =
W
g
   (g = 32.2 ft>s2)� (1–5)

And so a body weighing 32.2 lb has a mass of 1 slug, a 64.4-lb body has a 
mass of 2 slugs, and so on, Fig. 1–2b.

32.2 lb

1 slug

(b)

Fig. 1–2 

9.81 N

1 kg

(a)

Table 1–1  Systems of Units

Name Length Time Mass Force

International 
System of Units 

SI

meter

m

second

s

kilogram 

kg

newton*

N¢kg # m

s2 ≤
U.S. Customary 

FPS
foot

ft

second

s

slug*¢ lb # s2

ft
≤ pound

lb

*Derived unit.
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Conversion of Units.  Table 1–2 provides a set of direct conversion 
factors between FPS and SI units for the basic quantities. Also, in the 
FPS system, recall that 1 ft = 12 in. (inches), 5280 ft = 1 mi (mile),  
1000 lb = 1 kip (kilo-pound), and 2000 lb = 1 ton.

1.4  The International System of Units

The SI system of units is used extensively in this book since it is intended to 
become the worldwide standard for measurement. Therefore, we will 
now present some of the rules for its use and some of its terminology 
relevant to engineering mechanics.

Prefixes.  When a numerical quantity is either very large or very 
small, the units used to define its size may be modified by using a prefix. 
Some of the prefixes used in the SI system are shown in Table 1–3. Each 
represents a multiple or submultiple of a unit which, if applied 
successively, moves the decimal point of a numerical quantity to every 
third place.* For example, 4 000 000 N = 4 000 kN (kilo-newton) =  
4 MN (mega-newton), or 0.005 m = 5 mm (milli-meter). Notice that the 
SI system does not include the multiple deca (10) or the submultiple 
centi (0.01), which form part of the metric system. Except for some 
volume and area measurements, the use of these prefixes is to be avoided 
in science and engineering.

Table 1–2  Conversion Factors

Quantity
Unit of  

Measurement (FPS) Equals
Unit of  

Measurement (SI)

Force lb 4.448 N
Mass slug 14.59 kg
Length ft 0.3048 m

*The kilogram is the only base unit that is defined with a prefix.

Table 1–3  Prefixes

Exponential Form Prefix SI Symbol

Multiple
1 000 000 000 109 giga G
1 000 000 106 mega M
1 000 103 kilo k
Submultiple
0.001 10–3 milli m
0.000 001 10–6 micro m

0.000 000 001 10–9 nano n
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Rules for Use.  Here are a few of the important rules that describe 
the proper use of the various SI symbols:

	 •	 Quantities defined by several units which are multiples of one 
another are separated by a dot to avoid confusion with prefix 
notation, as indicated by N = kg # m>s2 = kg # m # s- 2. Also, m # s 
(meter-second), whereas ms (milli-second).

	 •	 The exponential power on a unit having a prefix refers to both the 
unit and its prefix. For example, mN2 = (mN)2 = mN # mN. Likewise, 
mm2 represents (mm)2 = mm # mm.

	 •	 With the exception of the base unit the kilogram, in general avoid 
the use of a prefix in the denominator of composite units. For 
example, do not write N>mm, but rather kN>m; also, m>mg should 
be written as Mm>kg.

	 •	 When performing calculations, represent the numbers in terms of 
their base or derived units by converting all prefixes to powers of 10. 
The final result should then be expressed using a single prefix. Also, 
after calculation, it is best to keep numerical values between 0.1 and 
1000; otherwise, a suitable prefix should be chosen. For example,

 (50 kN)(60 nm) = 350(103) N4 360(10- 9) m4
 = 3000(10- 6) N # m = 3(10- 3) N # m = 3 mN # m

1.5  Numerical Calculations

Numerical work in engineering practice is most often performed by using 
handheld calculators and computers. It is important, however, that the 
answers to any problem be reported with justifiable accuracy using 
appropriate significant figures. In this section we will discuss these topics 
together with some other important aspects involved in all engineering 
calculations.

Dimensional Homogeneity.  The terms of any equation used to 
describe a physical process must be dimensionally homogeneous; that is, 
each term must be expressed in the same units. Provided this is the case, 
all the terms of an equation can then be combined if numerical values 
are substituted for the variables. Consider, for example, the equation 
s = vt +

1
2  at2 , where, in SI units, s is the position in meters, m, t is time in 

seconds, s, v is velocity in m>s and a is acceleration in m>s2. Regardless of 
how this equation is evaluated, it maintains its dimensional homogeneity. 
In the form stated, each of the three terms is expressed in meters 
3m, (m>s)s, (m>s2)s2

  4  or solving for a, a = 2s>t2 - 2v>t, the terms are 
each expressed in units of m>s2 3m>s2, m>s2, (m>s) >s4 .

Keep in mind that problems in mechanics always involve the solution 
of dimensionally homogeneous equations, and so this fact can then be 
used as a partial check for algebraic manipulations of an equation.

Computers are often used in engineering for 
advanced design and analysis. (© Blaize 
Pascall/Alamy)
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Significant Figures.  The number of significant figures contained 
in any number determines the accuracy of the number. For instance, the 
number 4981 contains four significant figures. However, if zeros occur at 
the end of a whole number, it may be unclear as to how many significant 
figures the number represents. For example, 23 400 might have three 
(234), four (2340), or five (23 400) significant figures. To avoid these 
ambiguities, we will use engineering notation to report a result. This 
requires that numbers be rounded off to the appropriate number of 
significant digits and then expressed in multiples of (103), such as (103), 
(106), or (10–9). For instance, if 23 400 has five significant figures, it is 
written as 23.400(103), but if it has only three significant figures, it is 
written as 23.4(103).

If zeros occur at the beginning of a number that is less than one, then the 
zeros are not significant. For example, 0.008 21 has three significant 
figures. Using engineering notation, this number is expressed as 8.21(10–3). 
Likewise, 0.000 582 can be expressed as 0.582(10–3) or 582(10–6).

Rounding Off Numbers.  Rounding off a number is necessary so 
that the accuracy of the result will be the same as that of the problem 
data. As a general rule, any numerical figure ending in a number greater 
than five is rounded up and a number less than five is not rounded up. 
The rules for rounding off numbers are best illustrated by examples. 
Suppose the number 3.5587 is to be rounded off to three significant 
figures. Because the fourth digit (8) is greater than 5, the third number is 
rounded up to 3.56. Likewise 0.5896 becomes 0.590 and 9.3866 becomes 
9.39. If we round off 1.341 to three significant figures, because the fourth 
digit (1) is less than 5, then we get 1.34. Likewise 0.3762 becomes 0.376 
and 9.871 becomes 9.87. There is a special case for any number that ends 
in a 5. As a general rule, if the digit preceding the 5 is an even number, 
then this digit is not rounded up. If the digit preceding the 5 is an odd 
number, then it is rounded up. For example, 75.25 rounded off to three 
significant digits becomes 75.2, 0.1275 becomes 0.128, and 0.2555 
becomes 0.256.

Calculations.  When a sequence of calculations is performed, it is 
best to store the intermediate results in the calculator. In other words, do 
not round off calculations until expressing the final result. This procedure 
maintains precision throughout the series of steps to the final solution. In 
this text we will generally round off the answers to three significant 
figures since most of the data in engineering mechanics, such as geometry 
and loads, may be reliably measured to this accuracy.
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1 1.6  General Procedure for Analysis

Attending a lecture, reading this book, and studying the example problems 
helps, but the most effective way of learning the principles of engineering 
mechanics is to solve problems. To be successful at this, it is important to 
always present the work in a logical and orderly manner, as suggested by 
the following sequence of steps:

	•	 Read the problem carefully and try to correlate the actual physical 
situation with the theory studied.

	•	 Tabulate the problem data and draw to a large scale any necessary 
diagrams.

	•	 Apply the relevant principles, generally in mathematical form. When 
writing any equations, be sure they are dimensionally homogeneous.

	•	 Solve the necessary equations, and report the answer with no more 
than three significant figures.

	•	 Study the answer with technical judgment and common sense to 
determine whether or not it seems reasonable.

When solving problems, do the work as 
neatly as possible. Being neat will 
stimulate clear and orderly thinking, 
and vice versa. (© Russell C. Hibbeler)

Important Points

	 •	 Statics is the study of bodies that are at rest or move with constant 
velocity.

	 •	 A particle has a mass but a size that can be neglected, and a rigid 
body does not deform under load.

	 •	 A force is considered as a “push” or “pull” of one body on another.

	 •	 Concentrated forces are assumed to act at a point on a body.

	 •	 Newton’s three laws of motion should be memorized.

	 •	 Mass is measure of a quantity of matter that does not change 
from one location to another. Weight refers to the gravitational 
attraction of the earth on a body or quantity of mass. Its magnitude 
depends upon the elevation at which the mass is located.

	 •	 In the SI system the unit of force, the newton, is a derived unit. 
The meter, second, and kilogram are base units.

	 •	 Prefixes G, M, k, m, m, and n are used to represent large and small 
numerical quantities. Their exponential size should be known, 
along with the rules for using the SI units.

	 •	 Perform numerical calculations with several significant figures, 
and then report the final answer to three significant figures.

	 •	 Algebraic manipulations of an equation can be checked in part by 
verifying that the equation remains dimensionally homogeneous.

	 •	 Know the rules for rounding off numbers.
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Convert 2 km>h to m>s How many ft>s is this?

Solution
Since 1 km = 1000 m and 1 h = 3600 s, the factors of conversion are 
arranged in the following order, so that a cancellation of the units can 
be applied:

	  2 km>h =
2 km

h
¢ 1000 m

km
≤ ¢ 1 h

3600 s
≤ 

	  =
2000 m

3600 s
= 0.556 m>s� Ans.

From Table 1–2, 1 ft = 0.3048 m. Thus,

	  0.556 m>s = a 0.556 m
s
b a 1 ft

0.3048 m
b  

	  = 1.82 ft>s� Ans.

NOTE: Remember to round off the final answer to three significant 
figures.

Example   1.1

Example   1.2

Convert the quantities 300 lb # s and 52 slug>ft3 to appropriate SI units.

Solution
Using Table 1–2, 1 lb = 4.448 N.

	  300 lb # s = 300 lb # sa 4.448 N

1 lb
b  

	  = 1334.5 N # s = 1.33 kN # s� Ans.

Since 1 slug = 14.59 kg and 1 ft = 0.3048 m, then

	  52 slug>ft3 =
52 slug

ft3
a 14.59 kg

1 slug
b a 1 ft

0.3048 m
b

3

 

             = 26.8(103) kg>m3 

	  = 26.8 Mg>m3 � Ans.
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1 Example   1.3 

Evaluate each of the following and express with SI units having an 
appropriate prefix: (a) (50 mN)(6 GN), (b) (400 mm)(0.6 MN)2,  
(c) 45 MN3>900 Gg.

Solution
First convert each number to base units, perform the indicated 
operations, then choose an appropriate prefix.

Part (a)

	  (50 mN)(6 GN) = 350(10-3) N4 36(109) N4  

	  = 300(106) N2  

	  = 300(106) N2a 1 kN

103 N
b a 1 kN

103 N
b  

	  = 300 kN2 � Ans.

NOTE: Keep in mind the convention kN2 = (kN)2 = 106 N2.

Part (b)

	        (400 mm)(0.6 MN)2 = 3400(10-3) m4 30.6(106) N42

	        = 3400(10-3) m4 30.36(1012) N24
	        = 144(109) m # N2  

	        = 144 Gm # N2 � Ans.

We can also write

	  144(109) m # N2 = 144(109) m # N2a 1 MN

106 N
b a 1 MN

106 N
b  

	  = 0.144 m # MN2 � Ans.

Part (c)

	  
45 MN3

900 Gg
=

45(106 N)3

900(106) kg
 

	  = 50(109) N3>kg  

	  = 50(109) N3a 1 kN

103 N
b

3 1

kg
 

	  = 50 kN3>kg � Ans.
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1–1.  What is the weight in newtons of an object that  
has a mass of (a) 8 kg, (b) 0.04 kg, and (c) 760 Mg?

1–2.  Represent each of the following combinations of 
units in the correct SI form: (a) kN>ms, (b) Mg>mN, and  
(c) MN>(kg · ms).

1–3.  Represent each of the following combinations of 
units in the correct SI form: (a) Mg>ms, (b) N>mm,  
(c) mN>(kg · ms).

*1–4.  Convert: (a) 200 lb · ft to N · m, (b) 350 lb>ft3 to kN>m3, 
(c) 8 ft>h to mm>s. Express the result to three significant 
figures. Use an appropriate prefix.

1–5.  Represent each of the following as a number between 
0.1 and 1000 using an appropriate prefix: (a) 45 320 kN, 
(b) 568(105) mm, and (c) 0.00563 mg.

1–6.  Round off the following numbers to three significant 
figures: (a) 58 342 m, (b) 68.534 s, (c) 2553 N, and (d) 7555 kg.

1–7.  Represent each of the following quantities in the 
correct SI form using an appropriate prefix: (a) 0.000 431 kg, 
(b) 35.3(103) N, (c) 0.005 32 km.

*1–8.  Represent each of the following combinations of units 
in the correct SI form using an appropriate prefix: (a) Mg>mm, 
(b) mN>ms, (c) mm # Mg.

1–9.  Represent each of the following combinations of 
units in the correct SI form using an appropriate prefix:  
(a) m>ms, (b) mkm, (c) ks>mg, and (d) km # mN.

1–10.  Represent each of the following combinations of units 
in the correct SI form: (a) GN # mm, (b) kg>mm, (c) N>ks2, 
and (d) kN>ms.

1–11.  Represent each of the following with SI units having 
an appropriate prefix: (a) 8653 ms, (b) 8368 N, (c) 0.893 kg.

*1–12.  Evaluate each of the following to three significant 
figures and express each answer in SI units using  
an appropriate prefix: (a) (684 mm)>(43 ms),  
(b) (28 ms)(0.0458 Mm)>(348 mg), (c) (2.68 mm)(426 Mg).

1–13.  The density (mass>volume) of aluminum is 
5.26 slug>ft3. Determine its density in SI units. Use an 
appropriate prefix.

1–14.  Evaluate each of the following to three significant 
figures and express each answer in SI units using an 
appropriate prefix: (a) (212 mN)2, (b) (52 800 ms)2, and  
(c) [548(106)]1>2 ms.

1–15.  Using the SI system of units, show that Eq. 1–2 is a 
dimensionally homogeneous equation which gives F in 
newtons. Determine to three significant figures the 
gravitational force acting between two spheres that are 
touching each other. The mass of each sphere is 200 kg and 
the radius is 300 mm.

*1–16.  The pascal (Pa) is actually a very small unit of 
pressure. To show this, convert 1 Pa = 1 N>m2 to lb>ft2. 
Atmosphere pressure at sea level is 14.7 lb>in2. How many 
pascals is this?

1–17.  Water has a density of 1.94 slug>ft3. What is the 
density expressed in SI units? Express the answer to three 
significant figures.

1–18.  Evaluate each of the following to three significant 
figures and express each answer in SI units using an 
appropriate prefix: (a) 354 mg(45 km)>(0.0356 kN), 
(b) (0.004 53 Mg)(201 ms), (c) 435 MN>23.2 mm.

1–19.  A concrete column has a diameter of 350 mm and 
a length of 2 m. If the density (mass>volume) of concrete is 
2.45 Mg>m3, determine the weight of the column in pounds.

*1–20.  If a man weighs 155 lb on earth, specify (a) his 
mass in slugs, (b) his mass in kilograms, and (c) his weight in 
newtons. If the man is on the moon, where the acceleration 
due to gravity is gm = 5.30 ft>s2, determine (d) his weight 
in pounds, and (e) his mass in kilograms.

1–21.  Two particles have a mass of 8 kg and 12 kg, 
respectively. If they are 800 mm apart, determine the force 
of gravity acting between them. Compare this result with 
the weight of each particle.

Problems

The answers to all but every fourth problem (asterisk) are given in the back of the book.



This electric transmission tower is stabilized by cables that exert forces on the 
tower at their points of connection. In this chapter we will show how to express 

these forces as Cartesian vectors, and then determine their resultant.

Chapter 2

(© Vasiliy Koval/Fotolia)



Force Vectors

CHAPTER OBJECTIVES

n	 To show how to add forces and resolve them into components 
using the Parallelogram Law.

n	 To express force and position in Cartesian vector form and 
explain how to determine the vector’s magnitude and direction.

n	 To introduce the dot product in order to use it to find the angle 
between two vectors or the projection of one vector onto another.

2.1  Scalars and Vectors

Many physical quantities in engineering mechanics are measured using 
either scalars or vectors.

Scalar.  A scalar is any positive or negative physical quantity that can 
be completely specified by its magnitude. Examples of scalar quantities 
include length, mass, and time.

Vector.  A vector is any physical quantity that requires both a 
magnitude and a direction for its complete description. Examples of 
vectors encountered in statics are force, position, and moment. A vector 
is shown graphically by an arrow. The length of the arrow represents the 
magnitude of the vector, and the angle u between the vector and a fixed 
axis defines the direction of its line of  action. The head or tip of the arrow 
indicates the sense of direction of the vector, Fig. 2–1.

In print, vector quantities are represented by boldface letters such as 
A, and the magnitude of a vector is italicized, A. For handwritten work, it 
is often convenient to denote a vector quantity by simply drawing an 
arrow above it, A   

S
.

Tail

Line of action
1

P

O

Head

A

20�

Fig. 2–1
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2.2  Vector Operations

Multiplication and Division of a Vector by a Scalar.  If a 
vector is multiplied by a positive scalar, its magnitude is increased by that 
amount. Multiplying by a negative scalar will also change the directional 
sense of the vector. Graphic examples of these operations are shown  
in Fig. 2–2.

Vector Addition.  When adding two vectors together it is important 
to account for both their magnitudes and their directions. To do this we 
must use the parallelogram law of addition. To illustrate, the two 
component vectors A and B in Fig. 2–3a are added to form a resultant 
vector R = A + B using the following procedure:

	 •	 First join the tails of the components at a point to make them 
concurrent, Fig. 2–3b.

	 •	 From the head of B, draw a line parallel to A. Draw another line 
from the head of A that is parallel to B. These two lines intersect at 
point P to form the adjacent sides of a parallelogram.

	 •	 The diagonal of this parallelogram that extends to P forms R, which 
then represents the resultant vector R = A + B, Fig. 2–3c.

A
A

2A

0.5

Scalar multiplication and division

�A
�

Fig. 2–2

A A

B
B

R

(a) (c)(b)

R � A � B

A

B

Parallelogram law

P

Fig. 2–3

We can also add B to A, Fig. 2–4a, using the triangle rule, which is a 
special case of the parallelogram law, whereby vector B is added to 
vector  A in a “head-to-tail” fashion, i.e., by connecting the head of  
A to the tail of B, Fig. 2–4b. The resultant R extends from the tail of A to 
the head of B. In a similar manner, R can also be obtained by adding  
A to B, Fig. 2–4c. By comparison, it is seen that vector addition is 
commutative; in other words, the vectors can be added in either order, 
i.e., R = A + B = B + A.
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As a special case, if the two vectors A and B are collinear, i.e., both 
have the same line of action, the parallelogram law reduces to an 
algebraic or scalar addition R = A + B, as shown in Fig. 2–5.

A

A

B

B

R

R

R � A � B R � B � A

(b)

Triangle rule Triangle rule

(c)

A

B

(a)

Fig. 2–4

A B

R

Addition of collinear vectors

R � A � B

Fig. 2–5

Vector Subtraction.  The resultant of the difference between two 
vectors A and B of the same type may be expressed as

R = A - B = A + (-B)

This vector sum is shown graphically in Fig. 2–6. Subtraction is therefore 
defined as a special case of addition, so the rules of vector addition also 
apply to vector subtraction.

R¿ A

�BB

A
�B

AR¿
or

Parallelogram law Triangle construction

Vector subtraction

Fig. 2–6
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2.3  Vector Addition of Forces

Experimental evidence has shown that a force is a vector quantity since 
it has a specified magnitude, direction, and sense and it adds according to 
the parallelogram law. Two common problems in statics involve either 
finding the resultant force, knowing its components, or resolving a known 
force into two components. We will now describe how each of these 
problems is solved using the parallelogram law.

Finding a Resultant Force.  The two component forces F1 and F2 
acting on the pin in Fig. 2–7a can be added together to form the resultant 
force FR = F1 + F2, as shown in Fig. 2–7b. From this construction, or using 
the triangle rule, Fig. 2–7c, we can apply the law of cosines or the law of 
sines to the triangle in order to obtain the magnitude of the resultant 
force and its direction.

Finding the Components of a Force.  Sometimes it is necessary 
to resolve a force into two components in order to study its pulling or 
pushing effect in two specific directions. For example, in Fig. 2–8a, F is to 
be resolved into two components along the two members, defined by the 
u and v axes. In order to determine the magnitude of each component, a 
parallelogram is constructed first, by drawing lines starting from the tip 
of F, one line parallel to u, and the other line parallel to v. These lines 
then intersect with the v and u axes, forming a parallelogram. The force 
components Fu and Fv are then established by simply joining the tail of F 
to the intersection points on the u and v axes, Fig. 2–8b. This parallelogram 
can then be reduced to a triangle, which represents the triangle rule,  
Fig. 2–8c. From this, the law of sines can then be applied to determine the 
unknown magnitudes of the components.

FR

F2F1

The parallelogram law must be used 
to determine the resultant of the 
two forces acting on the hook.  
(© Russell C. Hibbeler) 

FR � F1 � F2

FRFR

F1 F1 F1

F2 F2

F2

(c)(b)(a)

Fig. 2–7Fu
Fv

F
v u

Using the parallelogram law the 
supporting force F can be resolved into 
components acting along the u and v axes. 
(© Russell C. Hibbeler)
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Addition of Several Forces.  If more than two forces are to be 
added, successive applications of the parallelogram law can be carried 
out in order to obtain the resultant force. For example, if three forces  
F1, F2, F3 act at a point O, Fig. 2–9, the resultant of any two of the forces 
is found, say, F1 + F2—and then this resultant is added to the third force, 
yielding the resultant of all three forces; i.e., FR = (F1 + F2) + F3. Using 
the parallelogram law to add more than two forces, as shown here, often 
requires extensive geometric and trigonometric calculation to determine 
the numerical values for the magnitude and direction of the resultant. 
Instead, problems of this type are easily solved by using the “rectangular-
component method,” which is explained in Sec. 2.4.

Fig. 2–9

F1

F2

F1 � F2 FR

F3O

Fig. 2–8

F

u

(b)

F

FuFu

(c)

F

u

(a)

v v

Fv

Fv

FR

F1 � F2

F1

F3

F2

The resultant force FR on the hook requires 
the addition of F1 + F2, then this resultant is 
added to F3. (© Russell C. Hibbeler)
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Important Points

	 •	 A scalar is a positive or negative number.

	 •	 A vector is a quantity that has a magnitude, direction, and sense.

	 •	 Multiplication or division of a vector by a scalar will change the 
magnitude of the vector. The sense of the vector will change if the 
scalar is negative.

	 •	 As a special case, if the vectors are collinear, the resultant is 
formed by an algebraic or scalar addition.

A

C

B

b

(c)

c

a

Sine law:

sin a sin b sin c
A B� � C

Cosine law:
C �   A2 � B2 � 2AB cos c

FR

F1

F2

F

Fu

u

(b)

(a)

v

Fv

Fig. 2–10

Procedure for Analysis

Problems that involve the addition of two forces can be solved as 
follows:

Parallelogram Law.
	 •	 Two “component” forces F1 and F2 in Fig. 2–10a add according to 

the parallelogram law, yielding a resultant force FR that forms the 
diagonal of the parallelogram.

	 •	 If a force F is to be resolved into components along two axes  
u and v, Fig. 2–10b, then start at the head of force F and construct 
lines parallel to the axes, thereby forming the parallelogram. The 
sides of the parallelogram represent the components, Fu and Fv.

	 •	 Label all the known and unknown force magnitudes and the angles 
on the sketch and identify the two unknowns as the magnitude and 
direction of FR, or the magnitudes of its components.

Trigonometry.
	 •	 Redraw a half portion of the parallelogram to illustrate the 

triangular head-to-tail addition of the components.

	 •	 From this triangle, the magnitude of the resultant force can be 
determined using the law of cosines, and its direction is 
determined from the law of sines. The magnitudes of two force 
components are determined from the law of sines. The formulas 
are given in Fig. 2–10c.
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The screw eye in Fig. 2–11a is subjected to two forces, F1 and F2. 
Determine the magnitude and direction of the resultant force.

Example   2.1 

F1 � 100 N

F2 � 150 N
10�

15�

(a)

SOLUTION
Parallelogram Law.  The parallelogram is formed by drawing a line 
from the head of F1 that is parallel to F2, and another line from  
the head of F2 that is parallel to F1. The resultant force FR extends to 
where these lines intersect at point A, Fig. 2–11b. The two unknowns 
are the magnitude of FR and the angle u (theta).

Trigonometry.  From the parallelogram, the vector triangle is 
constructed, Fig. 2–11c. Using the law of cosines

	  FR = 2(100 N)2 + (150 N)2 - 2(100 N)(150 N) cos 115

	  = 210 000 + 22 500 - 30 000(-0.4226) = 212.6 N	

	  = 213 N	 Ans.

Applying the law of sines to determine u,

 
150 N

sin u
=

212.6 N

sin 115
 	  sin u =

150 N

212.6 N
 (sin 115)

	  u = 39.8

Thus, the direction f (phi) of FR, measured from the horizontal, is

	 f = 39.8 + 15.0 = 54.8	 Ans.

NOTE: The results seem reasonable, since Fig. 2–11b shows FR to have 
a magnitude larger than its components and a direction that is 
between them.

FR

90� � 25� � 65�

10�

15�

100 N

A

65�115�

150 N

(b)

� 115�
360� � 2(65�)

2

u

Fig. 2–11

(c)

FR 150 N

100 N15�

115�

u

f
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Resolve the horizontal 600-lb force in Fig. 2–12a into components 
acting along the u and v axes and determine the magnitudes of these 
components.

Example   2.2 

u

30�

30�

30�

30�

30�

120�

120�

120�

30�

30�

600 lb

(a)

u

C

B

A
600 lb

(b)

Fu

F

(c)

600 lb

Fu

F

v

v

v

v

Fig. 2–12

SOLUTION
The parallelogram is constructed by extending a line from the head of 
the 600-lb force parallel to the v axis until it intersects the u axis at 
point B, Fig. 2–12b.  The arrow from A to B represents Fu.  Similarly, the 
line extended from the head of the 600-lb force drawn parallel to the 
u axis intersects the v axis at point C, which gives Fv.

The vector addition using the triangle rule is shown in Fig. 2–12c.  
The two unknowns are the magnitudes of Fu and Fv. Applying the law 
of sines,

	  
Fu

sin 120
=

600 lb

sin 30
	

	  Fu = 1039 lb	 Ans.

	  
Fv

sin 30
=

600 lb

sin 30
	

	  Fv = 600 lb 	 Ans.

NOTE: The result for Fu shows that sometimes a component can have 
a greater magnitude than the resultant.
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Determine the magnitude of the component force F in Fig. 2–13a and 
the magnitude of the resultant force FR if FR is directed along the 
positive y axis.

Example   2.3

y

45�

45� 45�

45�

200 lb

30�

30�

30�

(a)

F

y

45�

200 lb

(b)

F
75�

60�60�
200 lb

(c)

F
FR FR

Fig. 2–13

SOLUTION
The parallelogram law of addition is shown in Fig. 2–13b, and the 
triangle rule is shown in Fig. 2–13c. The magnitudes of FR and F are the 
two unknowns. They can be determined by applying the law of sines.

	  
F

sin 60
=

200 lb

sin 45
	

	  F = 245 lb 	 Ans.

	  
FR

sin 75
=

200 lb

sin 45
	

	  FR = 273 lb 	 Ans.
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It is required that the resultant force acting on the eyebolt in Fig. 2–14a 
be directed along the positive x axis and that F2 have a minimum 
magnitude.  Determine this magnitude, the angle u, and the corresponding 
resultant force.

Example   2.4

x x x

(a)

(b) (c)

FRFR

F2

F2

F2

F1 � 800 N

F1 � 800 N F1 � 800 N

u � 90�

u

u

60�
60�60�

Fig. 2–14

SOLUTION
The triangle rule for FR = F1 + F2 is shown in Fig. 2–14b. Since the 
magnitudes (lengths) of FR and F2 are not specified, then F2 can actually 
be any vector that has its head touching the line of action of FR, Fig. 2–14c. 
However, as shown, the magnitude of F2 is a minimum or the shortest 
length when its line of action is perpendicular to the line of action of 
FR, that is, when 

	 u = 90	 Ans.

Since the vector addition now forms the shaded right triangle, the two 
unknown magnitudes can be obtained by trigonometry.

	  FR = (800 N)cos 60 = 400 N	 Ans.

	  F2 = (800 N)sin 60 = 693 N	 Ans.

It is strongly suggested that you test yourself on the solutions to these 
examples, by covering them over and then trying to draw the 
parallelogram law, and thinking about how the sine and cosine laws 
are  used to determine the unknowns. Then before solving any of 
the  problems, try to solve the Preliminary Problems and some of the 
Fundamental Problems given on the next pages. The solutions and 
answers to these are given in the back of the book. Doing this throughout  
the book will help immensely in developing your problem-solving skills.
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Preliminary Problems

u

v

(a)

70�

45�

30�

F � 200 N

u

(b)

v70�

120�

F � 400 N

u

(c)

v
30�

40�

F � 600 N

Prob. P2–2

P2–1.  In each case, construct the parallelogram law to 
show FR = F1 + F2. Then establish the triangle rule, where  
FR = F1 + F2. Label all known and unknown sides and 
internal angles.

45

15

(a)

F1 � 200 N

F2 � 100 N

130

(b)

F1 � 400 N

F2 � 500 N

(c)

20�

F1 � 450 N

F2 � 300 N

P2–2.  In each case, show how to resolve the force F into 
components acting along the u and v axes using the 
parallelogram law. Then establish the triangle rule to show 
FR = Fu + Fv. Label all known and unknown sides and 
interior angles.

Prob. P2–1

Partial solutions and answers to all Preliminary Problems are given in the back of the book. 
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F2–4.  Resolve the 30-lb force into components along the  
u and v axes, and determine the magnitude of each of these 
components.

30 lb

u

v

30�

15�

� Prob. F2–4

F2–5.  The force F = 450 lb acts on the frame. Resolve this 
force into components acting along members AB and AC, 
and determine the magnitude of each component.

A

C

B

450 lb

45�

30�

Prob. F2–5

F2–6.  If force F is to have a component along the u axis of 
Fu = 6 kN, determine the magnitude of F and the magnitude 
of its component Fv along the v axis.

u

v

F
45�

105�

� Prob. F2–6

FUNDAMENTAL PROBLEMS

F2–1.  Determine the magnitude of the resultant force 
acting on the screw eye and its direction measured clockwise 
from the x axis.

x

2 kN

6 kN

45�60�

	 Prob. F2–1

F2–2.  Two forces act on the hook. Determine the magnitude 
of the resultant force.

30�

40�

500 N

200 N

	 Prob. F2–2

F2–3.  Determine the magnitude of the resultant force and 
its direction measured counterclockwise from the positive 
x axis.

y

x

800 N

600 N

30�

	 Prob. F2–3

Partial solutions and answers to all Fundamental Problems are given in the back of the book.
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PROBLEMS

2–1.  If u = 60 and F = 450 N, determine the magnitude 
of the resultant force and its direction, measured 
counterclockwise from the positive x axis.

2–2.  If the magnitude of the resultant force is to be 500 N, 
directed along the positive y axis, determine the magnitude 
of force F and its direction u.

x

y

700 N

F

u

15�

Probs. 2–1/2

2–3.  Determine the magnitude of the resultant force 
FR = F1 + F2 and its direction, measured counterclockwise 
from the positive x axis.

y

F2 � 375 lb

x

F1 � 250 lb

45�

30�

Prob. 2–3

*2–4.  The vertical force F acts downward at A on the two-
membered frame. Determine the magnitudes of the two 
components of F directed along the axes of AB and AC.  
Set F = 500 N.

2–5.  Solve Prob. 2–4 with F = 350 lb.

F

C

B

A

30�

45�

Probs. 2–4/5

2–6.  Determine the magnitude of the resultant force 
FR = F1 + F2 and its direction, measured clockwise from 
the positive u axis.

2–7.  Resolve the force F1 into components acting along 
the u and v axes and determine the magnitudes of the 
components.

*2–8.  Resolve the force F2 into components acting along 
the u and v axes and determine the magnitudes of the 
components.

u

v

75�

30�

30�

F1 � 4 kN

F2 � 6 kN

Probs. 2–6/7/8
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2–13.  The force acting on the gear tooth is F = 20 lb. 
Resolve this force into two components acting along the 
lines aa and bb.

2–14.  The component of force F acting along line aa is 
required to be 30 lb. Determine the magnitude of F and its 
component along line bb.

80�

60�

a

a
b

b

F

Probs. 2–13/14

2–15.  Force F acts on the frame such that its component 
acting along member AB is 650 lb, directed from B 
towards A, and the component acting along member BC is 
500 lb, directed from B towards C. Determine the magnitude 
of F and its direction u. Set f =  60.

*2–16.  Force F acts on the frame such that its component 
acting along member AB is 650 lb, directed from B 
towards A. Determine the required angle f (0 … f … 45) 
and the component acting along member BC. Set F = 850 lb 
and u = 30.

A

B

C

F

45�

u

f

Probs. 2–15/16

2–9.  If the resultant force acting on the support is to be 
1200 lb, directed horizontally to the right, determine the 
force F in rope A and the corresponding angle u.

60� 900 lb

A

B

F

u

Prob. 2–9

2–10.  Determine the magnitude of the resultant force and its 
direction, measured counterclockwise from the positive x axis.

y

x

500 lb

800 lb

35�

40�

Prob. 2–10

2–11.  The plate is subjected to the two forces at A and B as 
shown. If u = 60, determine the magnitude of the resultant 
of these two forces and its direction measured clockwise 
from the horizontal.

*2–12.  Determine the angle u for connecting member A to 
the plate so that the resultant force of FA and FB is directed 
horizontally to the right. Also, what is the magnitude of the 
resultant force?

A

B

FA � 8 kN

FB � 6 kN

40�

u

Probs. 2–11/12
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2–17.  Determine the magnitude and direction of the 
resultant FR = F1 + F2 + F3 of the three forces by first 
finding the resultant F = F1 + F2 and then forming 
FR = F + F3.

2–18.  Determine the magnitude and direction of the 
resultant FR = F1 + F2 + F3 of the three forces by first 
finding the resultant F = F2 + F3 and then forming 
FR = F + F1.

y

x

F2 � 20 N

F1 � 30 N

20�

3
5

4 F3 � 50 N

Probs. 2–17/18

2–19.  Determine the design angle u (0 … u … 90) for 
strut AB so that the 400-lb horizontal force has a component 
of 500 lb directed from A towards C. What is the component 
of force acting along member AB? Take f = 40.

*2–20.  Determine the design angle f (0 … f … 90) 
between struts AB and AC so that the 400-lb horizontal 
force has a component of 600 lb which acts up to the left, in 
the same direction as from B towards A. Take u = 30.

A

C

B

400 lb

u

f

Probs. 2–19/20

2–21.  Determine the magnitude and direction of the 
resultant force, FR measured counterclockwise from 
the  positive x axis. Solve the problem by first finding the 
resultant F = F1 + F2 and then forming FR = F + F3.

2–22.  Determine the magnitude and direction of the 
resultant force, measured counterclockwise from the positive 
x axis. Solve l by first finding the resultant F = F2 + F3 and 
then forming FR = F + F1.

x

y

90º

150º

F1 � 400 N
F2 � 200 N

F3 � 300 N

Probs. 2–21/22

2–23.  Two forces act on the screw eye. If F1 = 400 N and 
F2 = 600 N, determine the angle u (0 … u … 180) between 
them, so that the resultant force has a magnitude of 
FR = 800 N.

*2–24.  Two forces F1 and F2 act on the screw eye. If their 
lines of action are at an angle u  apart and the magnitude of 
each force is F1 = F2 = F, determine the magnitude of the 
resultant force FR and the angle between FR and F1.

F2

F1

u

Probs. 2–23/24
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*2–28.  Determine the magnitude of force F so that the 
resultant FR of the three forces is as small as possible. What 
is the minimum magnitude of FR?

6 kN

8 kN

F

30�

Prob. 2–28

2–29.  If the resultant force of the two tugboats is 3 kN, 
directed along the positive x axis, determine the required 
magnitude of force FB and its direction u.

2–30.  If FB = 3 kN and u = 45, determine the magnitude 
of the resultant force of the two tugboats and its direction 
measured clockwise form the positive x axis.

2–31.  If the resultant force of the two tugboats is required 
to be directed towards the positive x axis, and FB is to be a 
minimum, determine the magnitude of FR and FB and the 
angle u.

x

y
A

B

FB

FA � 2 kN

30�

C

u

Probs. 2–29/30/31

2–25.  If F1 = 30 lb and F2 = 40 lb, determine the angles u 
and f so that the resultant force is directed along the 
positive x axis and has a magnitude of FR = 60 lb.

y

x
θ

φ

F1

F2

Prob. 2–25

2–26.  Determine the magnitude and direction u of FA so 
that the resultant force is directed along the positive x axis 
and has a magnitude of 1250 N.

2–27.  Determine the magnitude and direction, measured 
counterclockwise from the positive x axis, of the resultant 
force acting on the ring at O, if FA = 750 N and u = 45.

x
30�

y

O

B

A

F = 800 N

FA

B

Probs. 2–26/27
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2.4  �Addition of a System of Coplanar 
Forces

When a force is resolved into two components along the x and y axes, the 
components are then called rectangular components. For analytical work 
we can represent these components in one of two ways, using either scalar 
or Cartesian vector notation.

Scalar Notation.  The rectangular components of force F shown in 
Fig. 2–15a are found using the parallelogram law, so that F = Fx + Fy. 
Because these components form a right triangle, they can be  
determined from

Fx = F cos u  and  Fy = F sin u

Instead of using the angle u, however, the direction of F can also be 
defined using a small “slope” triangle, as in the example shown in  
Fig. 2–15b. Since this triangle and the larger shaded triangle are similar, 
the proportional length of the sides gives

Fx

F
=

a
c
 

or

Fx = F a a
c
b

and

 
Fy

F
=

b
c

or

 Fy = -F a b
c
b

Here the y component is a negative scalar since Fy is directed along the 
negative y axis.

It is important to keep in mind that this positive and negative scalar 
notation is to be used only for computational purposes, not for graphical 
representations in figures. Throughout the book, the head of a vector 
arrow in any figure indicates the sense of the vector graphically; algebraic 
signs are not used for this purpose. Thus, the vectors in Figs. 2–15a and  
2–15b are designated by using boldface (vector) notation.* Whenever 
italic symbols are written near vector arrows in figures, they indicate the 
magnitude of the vector, which is always a positive quantity.

*Negative signs are used only in figures with boldface notation when showing equal but 
opposite pairs of vectors, as in Fig. 2–2.

(a)

F

y

x
Fx

Fy

u

Fy

Fx

(b)

F

y

x

a
b

c

Fig. 2–15
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Cartesian Vector Notation.  It is also possible to represent the 
x and y components of a force in terms of Cartesian unit vectors i and j. 
They are called unit vectors because they have a dimensionless magnitude 
of 1, and so they can be used to designate the directions of the x and y 
axes, respectively, Fig. 2–16.*

Since the magnitude of each component of F is always a positive quantity, 
which is represented by the (positive) scalars Fx and Fy, then we can 
express F as a Cartesian vector,

F = Fx i + Fy   j

Coplanar Force Resultants.  We can use either of the two 
methods just described to determine the resultant of several coplanar 
forces, i.e., forces that all lie in the same plane. To do this, each force is first 
resolved into its x and y components, and then the respective components 
are added using scalar algebra since they are collinear. The resultant force 
is then formed by adding the resultant components using the parallelogram 
law. For example, consider the three concurrent forces in Fig. 2–17a, which 
have x and y components shown in Fig. 2–17b. Using Cartesian vector 
notation, each force is first represented as a Cartesian vector, i.e.,

F1 = F1x i + F1y j
F2 = -F2x i + F2y j
F3 = F3x i - F3y j

The vector resultant is therefore

 FR = F1 + F2 + F3

 = F1x i + F1y   j - F2x i + F2y   j + F3x i -  F3y j
 = (F1x - F2x + F3x) i + (F1y + F2y - F3y) j
 = (FRx)i + (FRy)j

If scalar notation is used, then indicating the positive directions of 
components along the x and y axes with symbolic arrows, we have

 +h   (FR)x = F1x - F2x + F3x

 +  c   (FR)y = F1y + F2y - F3y

These are the same results as the i and j components of FR determined 
above.

*For handwritten work, unit vectors are usually indicated using a circumflex, e.g., î and ĵ. 
Also, realize that Fx and Fy in Fig. 2–16 represent the magnitudes of the components, which 
are always positive scalars. The directions are defined by i and j. If instead we used scalar 
notation, then Fx and Fy could be positive or negative scalars, since they would account for 
both the magnitude and direction of the components.

F

Fx

Fy

y

x
i

j

Fig. 2–16

F3

F1

F2

(a)

x

y

 

(b)

x

y

F2x

F2y
F1y

F1x

F3x

F3y

Fig. 2–17

F1

F2

F3F4
y

x

The resultant force of the four cable forces 
acting on the post can be determined by 
adding algebraically the separate x and y 
components of each cable force. This resultant 
FR produces the same pulling effect on the 
post as all four cables. (© Russell C. Hibbeler)
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We can represent the components of the resultant force of any number 
of coplanar forces symbolically by the algebraic sum of the x and y 
components of all the forces, i.e.,

	
(FR)x = Fx

(FR)y = Fy
� (2–1)

Once these components are determined, they may be sketched along 
the x and y axes with their proper sense of direction, and the resultant 
force can be determined from vector addition, as shown in Fig. 2–17c. 
From this sketch, the magnitude of FR is then found from the Pythagorean 
theorem; that is,

FR = 2(FR)2
x + (FR)2

y

Also, the angle u, which specifies the direction of the resultant force, is 
determined from trigonometry:

u = tan-1 2 (FR)y

(FR)x

2
The above concepts are illustrated numerically in the examples which 
follow.

(c)

x

y

FR(FR)y

(FR)x

u

Fig. 2–17 (cont.)

Important Points

	 •	 The resultant of several coplanar forces can easily be determined 
if an x, y coordinate system is established and the forces are 
resolved along the axes.

	 •	 The direction of each force is specified by the angle its line of 
action makes with one of the axes, or by a slope triangle.

	 •	 The orientation of the x and y axes is arbitrary, and their positive 
direction can be specified by the Cartesian unit vectors i and j.

	 •	 The x and y components of the resultant force are simply the 
algebraic addition of the components of all the coplanar forces.

	 •	 The magnitude of the resultant force is determined from the 
Pythagorean theorem, and when the resultant components are 
sketched on the x and y axes, Fig. 2–17c, the direction u can be 
determined from trigonometry.
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y

x

F2 � 260 N

(c)

5
12

13

F2x � 260 12——
13( (N

F2y � 260 5——
13( (N

Fig. 2–18

y

x

F1 � 200 N

F1x � 200 sin 30� N

30�

F1y � 200 cos 30� N

(b)

y

x

F1 � 200 N

F2 � 260 N

30�

(a)

5
12

13

Determine the x and y components of F1 and F2 acting on the boom 
shown in Fig. 2–18a. Express each force as a Cartesian vector.

Solution
Scalar Notation.  By the parallelogram law, F1 is resolved into x and y 
components, Fig. 2–18b. Since F1x acts in the -x direction, and F1y acts in 
the +y direction, we have

	  F1x = -200 sin 30 N = -100 N = 100 N d  � Ans. 

	  F1y = 200 cos 30 N = 173 N = 173 Nc   � Ans.

The force F2 is resolved into its x and y components, as shown in  
Fig. 2–18c. Here the slope of the line of action for the force is indicated. 
From this “slope triangle” we could obtain the angle u, e.g.,  
u = tan-11 5

122, and then proceed to determine the magnitudes of the 
components in the same manner as for F1. The easier method, however, 
consists of using proportional parts of similar triangles, i.e.,

	
F2x

260 N
=

12

13
	 F2x = 260 Na 12

13
b = 240 N

Similarly,

F2y = 260 Na 5

13
b = 100 N

Notice how the magnitude of the horizontal component, F2x, was 
obtained by multiplying the force magnitude by the ratio of the 
horizontal leg of the slope triangle divided by the hypotenuse; whereas 
the magnitude of the vertical component, F2y, was obtained by 
multiplying the force magnitude by the ratio of the vertical leg divided 
by the hypotenuse. Hence, using scalar notation to represent these 
components, we have

	  F2x = 240 N = 240 N S   � Ans.

	  F2y = -100 N = 100 NT   � Ans.

Cartesian Vector Notation.  Having determined the magnitudes 
and directions of the components of each force, we can express each 
force as a Cartesian vector.

	  F1 = 5-100i + 173j6N� Ans.

	  F2 = 5240i - 100j6N� Ans.

Example   2.5
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y

F1 � 600 N

x

F2 � 400 N

30�

(b)

45�

y

F1 � 600 N

x

F2 � 400 N

45�

30�

(a)

The link in Fig. 2–19a is subjected to two forces F1 and F2. Determine 
the magnitude and direction of the resultant force.

Solution I
Scalar Notation.  First we resolve each force into its x and y 
components, Fig. 2–19b, then we sum these components algebraically.

 S+  (FR)x = Fx;  (FR)x = 600 cos 30 N - 400 sin 45 N

	  = 236.8 N S

 + c (FR)y = Fy;   (FR)y = 600 sin 30 N + 400 cos 45 N

	  = 582.8 Nc

The resultant force, shown in Fig. 2–19c, has a magnitude of

 FR = 2(236.8 N)2 + (582.8 N)2

	  = 629 N� Ans.

From the vector addition,

	 u = tan-1a 582.8 N

236.8 N
b = 67.9� Ans.

Solution II
Cartesian Vector Notation.  From Fig. 2–19b, each force is first 
expressed as a Cartesian vector.

 F1 = 5600 cos 30i + 600 sin 30j6N

 F2 = 5-400 sin 45i + 400 cos 45j6N
Then,

FR = F1 + F2 = (600 cos 30 N - 400 sin 45 N)i

	 + (600 sin 30 N + 400 cos 45 N)j

	 = 5236.8i + 582.8j6N

The magnitude and direction of FR are determined in the same 
manner as before.

NOTE: Comparing the two methods of solution, notice that the use 
of scalar notation is more efficient since the components can be 
found directly, without first having to express each force as a 
Cartesian vector before adding the components. Later, however, we 
will show that Cartesian vector analysis is very beneficial for solving 
three-dimensional problems.

Example   2.6

y

FR

x

(c)

582.8 N

236.8 N

u

Fig. 2–19
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FR
296.8 N

383.2 N

(c)

y

�
x

u

Fig. 2–20

250 N

(b)

y

�

45�

400 N

4
x

 200 N

3
5

F3 � 200 N

(a)

y

�
x

F1 � 400 N

F2 � 250 N

3
5

4

45�

The end of the boom O in Fig. 2–20a is subjected to three concurrent 
and coplanar forces. Determine the magnitude and direction of the 
resultant force.

Example   2.7

Solution
Each force is resolved into its x and y components, Fig. 2–20b. Summing 
the x components, we have

 S+ (FR)x = Fx;  (FR)x = -400 N + 250 sin 45 N - 20014
52 N

	  = -383.2 N = 383.2 N d

The negative sign indicates that FRx acts to the left, i.e., in the negative 
x direction, as noted by the small arrow. Obviously, this occurs because 
F1 and F3 in Fig. 2–20b contribute a greater pull to the left than F2 
which pulls to the right. Summing the y components yields

 + c (FR)y = Fy;  (FR)y = 250 cos 45 N + 20013
52 N

	  = 296.8 Nc

The resultant force, shown in Fig. 2–20c, has a magnitude of

 FR = 2(-383.2 N)2 + (296.8 N)2

	  = 485 N� Ans.

From the vector addition in Fig. 2–20c, the direction angle u is

	 u = tan-1a 296.8

383.2
b = 37.8   � Ans.

NOTE: Application of this method is more convenient, compared to 
using two applications of the parallelogram law, first to add F1 and F2 
then adding F3 to this resultant.
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FUNDAMENTAL PROBLEMS

F2–7.  Resolve each force acting on the post into its x and  
y components.

3

45

y

x

F2 � 450 N
F1 � 300 N

F3 � 600 N

45�

Prob. F2–7
F2–8.  Determine the magnitude and direction of the 
resultant force.

y

x
300 N

400 N

250 N

3
4

5

30�

Prob. F2–8
F2–9.  Determine the magnitude of the resultant force 
acting on the corbel and its direction u measured 
counterclockwise from the x axis.

3

4 5

F2 � 400 lb

F1 � 700 lb

y

x

F3 � 600 lb

30�

Prob. F2–9

F2–10.  If the resultant force acting on the bracket is to be 
750 N directed along the positive x axis, determine the 
magnitude of F and its direction u.

F

600 N

325 N

12

5

13

y

x
u

45�

Prob. F2–10

F2–11.  If the magnitude of the resultant force acting on 
the bracket is to be 80 lb directed along the u axis, determine 
the magnitude of F and its direction u.

90 lb

50 lb

F

3

4
5

x

u

y

45�

u

Prob. F2–11

F2–12.  Determine the magnitude of the resultant force 
and its direction u measured counterclockwise from the 
positive x axis.

F3 � 15 kN

F2 � 20 kN
F1 � 15 kN

y

x

44
33 55

Prob. F2–12
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Problems

*2–32.  Determine the magnitude of the resultant force 
and  its direction, measured counterclockwise from the 
positive x axis.

y

x

30�

F1 � 200 N

F2 � 150 N

45�

Prob. 2–32

2–33.  Determine the magnitude of the resultant force and 
its direction, measured clockwise from the positive x axis.

 800 N

 400 N

x

y

B

45�

30�

Prob. 2–33

2–34.  Resolve F1 and F2 into their x and y components.

2–35.  Determine the magnitude of the resultant force 
and its direction measured counterclockwise from the 
positive x axis.

F1 � 400 N

F2 � 250 N

x

y

60�

30�

45�

Probs. 2–34/35

*2–36.  Resolve each force acting on the gusset plate into 
its x and y components, and express each force as a 
Cartesian vector.

2–37.  Determine the magnitude of the resultant force 
acting on the plate and its direction, measured counter-
clockwise from the positive x axis.

F1 � 900 N

F2 � 750 N

45�

F3 � 650 N

3
4

5

x

y

Probs. 2–36/37
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2–42.  Express F1, F2, and F3 as Cartesian vectors.

2–43.  Determine the magnitude of the resultant force and its 
direction, measured counterclockwise from the positive x axis.

y

x

30�

45�

F2 � 625 N

F1 � 850 N

F3 � 750 N

5

4
3

Probs. 2–42/43

*2–44.  Determine the magnitude of the resultant force 
and its direction, measured clockwise from the positive 
x axis.

x

y

12

3

5

5

13

4

 30 lb

 40 lb

 91 lb

Prob. 2–44

2–45.  Determine the magnitude and direction u of the 
resultant force FR. Express the result in terms of the 
magnitudes of the components F1 and F2 and the angle f.

F1 FR

F2

u

f

Prob. 2–45

2–38.  Express each of the three forces acting on the 
support in Cartesian vector form and determine the 
magnitude of the resultant force and its direction, measured 
clockwise from positive x axis.

y

x

F2 � 80 N

F1 � 50 N

15�

3

4
5

4

F3 � 30 N

Prob. 2–38

2–39.  Determine the x and y components of F1 and F2.

*2–40.  Determine the magnitude of the resultant force 
and  its direction, measured counterclockwise from the 
positive x axis.

y

x

30�

F1 � 200 N

F2 � 150 N

45�

Probs. 2–39/40

2–41.  Determine the magnitude of the resultant force 
and its direction, measured counterclockwise from the 
positive x axis.

y

x

F2 � 5 kN 

F1 � 4 kN 

F3 � 8 kN 

60�

45�

Prob. 2–41
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2–50.  Express F1, F2, and F3 as Cartesian vectors.

2–51.  Determine the magnitude of the resultant force 
and its direction, measured counterclockwise from the 
positive x axis.

30�

y

x

F2 � 26 kN

F3 � 36 kN

5
12

13

F1 � 15 kN
40�

Probs. 2–50/51

*2–52.  Determine the x and y components of each force 
acting on the gusset plate of a bridge truss. Show that the 
resultant force is zero.

y

x

3
4

5 3
45

F1 � 8 kN

F2 � 6 kN

F3 � 4 kNF4 � 6 kN

Prob. 2–52

2–46.  Determine the magnitude and orientation u of FB so 
that the resultant force is directed along the positive y axis 
and has a magnitude of 1500 N.

2–47.  Determine the magnitude and orientation, measured 
counterclockwise from the positive y axis, of the resultant 
force acting on the bracket, if FB = 600 N and u = 20�.

y

x

30�B
A

u

FA � 700 N
FB

Probs. 2–46/47

*2–48.  Three forces act on the bracket. Determine the 
magnitude and direction u of F1 so that the resultant force 
is directed along the positive x � axis and has a magnitude 
of 800 N.

2–49.  If F1 = 300 N and u = 10�, determine the magnitude 
and direction, measured counterclockwise from the positive 
x � axis, of the resultant force acting on the bracket.

60�

y

x

F2 � 200 N

F3 � 180 N
F1

x¿

5

12

13
u

Probs. 2–48/49
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*2–56.  If the magnitude of the resultant force acting on 
the bracket is to be 450 N directed along the positive u axis, 
determine the magnitude of F1 and its direction f.

2–57.  If the resultant force acting on the bracket is 
required to be a minimum, determine the magnitudes of F1 
and the resultant force.  Set f = 30°.

5

12 13

y

x

u

F3 � 260 N

F2 � 200 N

F1

f

30�

Probs. 2–56/57

2–58.  Three forces act on the bracket. Determine the 
magnitude and direction u of F so that the resultant force is 
directed along the positive x  axis and has a magnitude 
of 8 kN.

2–59.  If F = 5 kN and u = 30°, determine the magnitude of 
the resultant force and its direction, measured counter-
clockwise from the positive x axis.

6 kN

4 kN

x'

x

y

F

15�

30�

u

Probs. 2–58/59

2–53.  Express F1 and F2 as Cartesian vectors.

2–54.  Determine the magnitude of the resultant force and 
its direction measured counterclockwise from the positive 
x axis.

F1 � 30 kN

F2 � 26 kN

12

5

13

x

y

30�

Probs. 2–53/54

2–55.  Determine the magnitude of force F so that the 
resultant force of the three forces is as small as possible. 
What is the magnitude of the resultant force?

F

8 kN

14 kN

4530

Prob. 2–55
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2.5  Cartesian Vectors

The operations of vector algebra, when applied to solving problems in 
three dimensions, are greatly simplified if the vectors are first represented 
in Cartesian vector form. In this section we will present a general method 
for doing this; then in the next section we will use this method for finding 
the resultant force of a system of concurrent forces.

Right-Handed Coordinate System.  We will use a right-
handed coordinate system to develop the theory of vector algebra that 
follows. A rectangular coordinate system is said to be right-handed if the 
thumb of the right hand points in the direction of the positive z axis when 
the right-hand fingers are curled about this axis and directed from the 
positive x towards the positive y axis, Fig. 2–21.

Rectangular Components of a Vector.  A vector A may have 
one, two, or three rectangular components along the x, y, z coordinate 
axes, depending on how the vector is oriented relative to the axes. In 
general, though, when A is directed within an octant of the x, y, z frame, 
Fig. 2–22, then by two successive applications of the parallelogram law, 
we may resolve the vector into components as A = A + Az and then  
A = Ax + Ay. Combining these equations, to eliminate A, A is 
represented by the vector sum of its three rectangular components,

	 A = Ax + Ay + Az� (2–2)

Cartesian Unit Vectors.  In three dimensions, the set of Cartesian 
unit vectors, i, j, k, is used to designate the directions of the x, y, z axes, 
respectively. As stated in Sec. 2–4, the sense (or arrowhead) of these 
vectors will be represented analytically by a plus or minus sign, depending 
on whether they are directed along the positive or negative x, y, or z axes. 
The positive Cartesian unit vectors are shown in Fig. 2–23.

k

j
i

z

y

x

Fig. 2–23

z

x

y

Fig. 2–21 (© Russell C. Hibbeler)

A

Ax

z

y

x

Ay

Az

A¿

Fig. 2–22
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Cartesian Vector Representation.  Since the three components 
of A in Eq. 2–2 act in the positive i, j, and k directions, Fig. 2–24, we can 
write A in Cartesian vector form as

	 A = A xi + A y   j + A zk 	 (2–3)

There is a distinct advantage to writing vectors in this manner. 
Separating the magnitude and direction of each component vector will 
simplify the operations of vector algebra, particularly in three dimensions.

Magnitude of a Cartesian Vector.  It is always possible to 
obtain the magnitude of A provided it is expressed in Cartesian vector 
form. As shown in Fig. 2–25, from the blue right triangle, A = 2A 2  + A 2

z , 
and from the gray right triangle, A  = 2A 2

x + A y
2. Combining these 

equations to eliminate A  yields

	 A = 2A 2
x + A 2

y + A 2
z � (2–4)

Hence, the magnitude of A is equal to the positive square root of the sum 
of the squares of its components.

Coordinate Direction Angles.  We will define the direction of 
A by the coordinate direction angles a (alpha), b (beta), and g (gamma), 
measured between the tail of A and the positive x, y, z axes provided they 
are located at the tail of A, Fig. 2–26. Note that regardless of where A is 
directed, each of these angles will be between 0° and 180°.

To determine a, b, and g, consider the projection of A onto the x, y, z 
axes, Fig. 2–27. Referring to the colored right triangles shown in the  
figure, we have

	 cos a =
A x

A
 cos b =

A y

A
 cos g =

A z

A
� (2–5)

These numbers are known as the direction cosines of A. Once they 
have been obtained, the coordinate direction angles a, b, g can then be 
determined from the inverse cosines.

A

Ax i

z

y

x

Ay j

Az k

k

i

j

Fig. 2–24

A

Axi

z

y

x

Ayj

Azk

A

A¿

Ay

Ax

Az

Fig. 2–25

A

Axi

z

y

x

Ayj

Azk

uA

g

a

b

Fig. 2–26
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An easy way of obtaining these direction cosines is to form a unit 
vector uA in the direction of A, Fig. 2–26. If A is expressed in Cartesian 
vector form, A = A xi + A y  j + A zk, then uA will have a magnitude of 
one and be dimensionless provided A is divided by its magnitude, i.e.,

	 uA =
A
A

=
A x

A
 i +

A y

A
 j +

A z

A
 k � (2–6)

where  A = 2A x
2 + A 2

y + A 2
z . By comparison with Eqs. 2–5, it is seen 

that the i, j, k components of uA represent the direction cosines of A, i.e.,

	 uA = cos a i + cos b j + cos g k� (2–7)

Since the magnitude of a vector is equal to the positive square root of 
the sum of the squares of the magnitudes of its components, and uA has a 
magnitude of one, then from the above equation an important relation 
among the direction cosines can be formulated as

	 cos2 a + cos2 b + cos2 g = 1 � (2–8)

Here we can see that if only two of the coordinate angles are known, 
the third angle can be found using this equation.

Finally, if the magnitude and coordinate direction angles of A are 
known, then A may be expressed in Cartesian vector form as

                            A = AuA

	  = A  cos a i + A  cos b j + A  cos g k� (2–9)
	  = A xi + A y  j + A zk

Transverse and Azmuth Angles.  Sometimes, the direction of A 
can be specified using two angles, namely, a transverse angle u and an 
azmuth angle f (phi), such as shown in Fig. 2–28. The components of A 
can then be determined by applying trigonometry first to the light blue 
right triangle, which yields

A z = A  cos f

and

A  = A  sin f

Now applying trigonometry to the dark blue right triangle,

A x = A   cos u = A  sin f cos u

A y = A   sin u = A  sin f sin u

z

y

x

90�

A

Ax

a
Ay

b

Az
g

Fig. 2–27

y
x

Ay

Az

Ax

A¿

A

z

O

u

f

Fig. 2–28
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Therefore A written in Cartesian vector form becomes

A = A  sin f cos u i + A  sin f sin u j + A  cos f k

You should not memorize this equation, rather it is important to 
understand how the components were determined using trigonometry.

2.6  Addition of Cartesian Vectors

The addition (or subtraction) of two or more vectors is greatly simplified 
if the vectors are expressed in terms of their Cartesian components. For 
example, if A = Ax i + Ay  j + A zk and B = Bxi + By  j + Bzk, Fig. 2–29, 
then the resultant vector, R, has components which are the scalar sums of 
the i, j, k components of A and B, i.e.,

R = A + B = (A x + Bx)i + (A y + By)j + (A z + Bz)k

If this is generalized and applied to a system of several concurrent 
forces, then the force resultant is the vector sum of all the forces in the 
system and can be written as

	 FR = F = Fxi + Fy  j + Fzk 	 (2–10)

Here Fx, Fy, and Fz represent the algebraic sums of the respective  
x, y, z or i, j, k components of each force in the system.

z

y

x

R

B

A

(Az � Bz)k

(Ax � Bx)i

(Ay � By)j

Fig. 2–29

Cartesian vector analysis provides a 
convenient method for finding both the 
resultant force and its components in three 
dimensions. (© Russell C. Hibbeler)

Important Points

	 •	 A Cartesian vector A has i, j, k components along the x, y, z axes. 

If A is known, its magnitude is defined by A = 2A x
2 + A y

2 + A z
2.

	 •	 The direction of a Cartesian vector can be defined by the three 
angles a, b, g, measured from the positive x, y, z axes to the tail of 
the vector. To find these angles formulate a unit vector in the 
direction of A, i.e., uA = A>A, and determine the inverse cosines of 
its components. Only two of these angles are independent of one 
another; the third angle is found from cos2 a + cos2 b + cos2 g = 1.

	 •	 The direction of a Cartesian vector can also be specified using a 
transverse angle u and azimuth angle f.
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(a)

z

y

x

F � 100 lb

60�

45�

Express the force F shown in Fig. 2–30a as a Cartesian vector.

Solution
The angles of 60° and 45° defining the direction of F are not coordinate 
direction angles. Two successive applications of the parallelogram law 
are needed to resolve F into its x, y, z components. First F = F + Fz, 
then F = Fx + Fy, Fig. 2–30b. By trigonometry, the magnitudes of the 
components are

 Fz = 100 sin 60 lb = 86.6 lb

 F = 100 cos 60 lb = 50 lb

Fx = F cos 45 = 50 cos 45 lb = 35.4 lb

Fy = F sin 45 = 50 sin 45 lb = 35.4 lb

Realizing that Fy has a direction defined by –j, we have

		  F = 535.4i - 35.4j + 86.6k6  lb  	 Ans.

To show that the magnitude of this vector is indeed 100 lb, apply  
Eq. 2–4,

 F = 2F2
x + F2

y + F2
z

 = 2(35.4)2 + (35.4)2 + (86.6)2 = 100 lb

If needed, the coordinate direction angles of F can be determined from 
the components of the unit vector acting in the direction of F. Hence,

 u =
F
F

=
Fx

F
 i +

Fy

F
 j +

Fz

F
 k  

 =
35.4

100
 i -

35.4

100
 j +

86.6

100
 k  

 = 0.354i - 0.354j + 0.866k

so that

 a = cos-1(0.354) = 69.3

 b = cos-1(-0.354) = 111

 g = cos-1(0.866) = 30.0

These results are shown in Fig. 2–30c.

Example   2.8 

z

F¿ Fx

Fz

y

x

F � 100 lb

60�

45�

Fy

(b)

Fig. 2–30

(c)

z

y

x

F � 100 lb

69.3�

111�

30.0�



	 2.6 A ddition of Cartesian Vectors	 49

2 

Example          2.9 

z

F2

F1 � 300 N

(a)
x

y
60�

45�

120�

z

(b)

F1 � 300 N

F2 � 700 N

FR � 800 N

x

y

g2 � 77.6�

b2 � 21.8�

a2 � 108�

Fig. 2–31

Two forces act on the hook shown in Fig. 2–31a. Specify the magnitude 
of F2 and its coordinate direction angles so that the resultant force FR 
acts along the positive y axis and has a magnitude of 800 N.

Solution
To solve this problem, the resultant force FR and its two components, 
F1 and F2, will each be expressed in Cartesian vector form. Then, as 
shown in Fig. 2–31b, it is necessary that FR = F1 + F2.

Applying Eq. 2–9,

 F1 = F1 cos a1i + F1 cos b1 j + F1 cos g1k

 = 300 cos 45 i + 300 cos 60 j + 300 cos 120 k

 = 5212.1i + 150j - 150k6N

 F2 = F2x  i + F2y   j + F2z  k

Since FR has a magnitude of 800 N and acts in the +j direction,

FR = (800 N)(+j) = 5800j6  N
We require

 FR = F1 + F2

 800j = 212.1i + 150j - 150k + F2x  i + F2y  j + F2z  k

 800j = (212.1 + F2x)i + (150 + F2y)j + (-150 + F2z)k

To satisfy this equation the i, j, k components of FR must be equal to 
the corresponding i, j, k components of (F1 + F2). Hence,

 0 = 212.1 + F2x   F2x = -212.1 N

 800 = 150 + F2y   F2y = 650 N

 0 = -150 + F2z   F2z = 150 N

The magnitude of F2 is thus

 F2 = 2(-212.1 N)2 + (650 N)2 + (150 N)2

	  = 700 N 	 Ans.

We can use Eq. 2–9 to determine a2, b2, g2.

 cos a2 =
-212.1

700
;	 a2 = 108   	 Ans.

 cos b2 =
650

700
;	 b2 = 21.8   	 Ans.

 cos g2 =
150

700
;	 g2 = 77.6   	 Ans.

These results are shown in Fig. 2–31b.
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P2–3.  Sketch the following forces on the x, y, z coordinate 
axes. Show a, b, g.
a)  F = {50i + 60j - 10k} kN

b)  F = {-40i - 80j + 60k} kN

P2–4.  In each case, establish F as a Cartesian vector, and 
find the magnitude of F and the direction cosine of b.

	 Preliminary Problems

(a)

F

y

4 kN 

x

z

4 kN 

2 kN 

(b)

F

y

z

10 N 

x

20 N 

20 N 

Prob. P2–4

P2–5.  Show how to resolve each force into its x, y, z 
components. Set up the calculation used to find the 
magnitude of each component.

(a)

y
20�

F � 600 N 

z

x

45�

(b)

y

 
z

x

5

5

4

4
3

3

F � 500 N

Prob. P2–5

y

30�

z

x

(c)

F � 800 N

60�
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F2–16.    Express the force as a Cartesian vector.

z

y
x

34

5

F � 50 lb

45�

F2–17.    Express the force as a Cartesian vector.

F � 750 N

z

y

x

45�

60�

F2–18.    Determine the resultant force acting on the hook.

F2 � 800 lb

F1 � 500 lb

3
4

5

y

z

x
30�

45�

F2–13.    Determine the coordinate direction angles of the 
force.

y

z

x 30�

F � 75 lb

45�

F2–14.    Express the force as a Cartesian vector.

F � 500 Nz

yx

60�

60�

F2–15.    Express the force as a Cartesian vector.

F � 500 N

z

y

x

45�

60�

Prob. F2–13

Prob. F2–14

Prob. F2–15

Prob. F2–16

Prob. F2–17

Prob. F2–18

     FUNDAMENTAL PROBLEMS
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*2–60.    The force F has a magnitude of 80 lb and acts 
within the octant shown. Determine the magnitudes of the  
x, y, z components of F.

y

F � 80 lb

Fx

Fy

x

a � 60�

z

Fz

b � 45�

Prob. 2–60

2–61.    The bolt is subjected to the force F, which has 
components acting along the x, y, z axes as shown. If the 
magnitude of F is 80 N, and a = 60 and g = 45, determine 
the magnitudes of its components.

x

z

Fz

Fy

Fx

F
y

g

a

b

Prob. 2–61

2–62.    Determine the magnitude and coordinate direction 
angles of the force F acting on the support. The component 
of F in the x–y plane is 7 kN. 

y

z

x

7 kN 

40�

30�

F

Prob. 2–62

2–63.    Determine the magnitude and coordinate direction 
angles of the resultant force and sketch this vector on the 
coordinate system.

*2–64.    Specify the coordinate direction angles of F1 and F2 
and express each force as a Cartesian vector.

y

z

x

F1 � 80 lb

40�

F2 � 130 lb

30�

Probs. 2–63/64

PROBLEMS
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2–65.    The screw eye is subjected to the two forces shown. 
Express each force in Cartesian vector form and then 
determine the resultant force. Find the magnitude and 
coordinate direction angles of the resultant force.

2–66.    Determine the coordinate direction angles of F1.

45�

z

x

F1 � 300 N

45�

60�

F2 � 500 N

y

60�

120�

Probs. 2–65/66

2–67.    Determine the magnitude and coordinate direction 
angles of F3 so that the resultant of the three forces acts 
along the positive y axis and has a magnitude of 600 lb.

*2–68.    Determine the magnitude and coordinate direction 
angles of F3 so that the resultant of the three forces is zero.

z

y

x

F3

30�

40�

F1 � 180 lb

F2 � 300 lb

Probs. 2–67/68

2–69.    Determine the magnitude and coordinate direction 
angles of the resultant force, and sketch this vector on the 
coordinate system.

y

z

x

45�
20�

3
4

5

60�

60�

F1 � 400 N

F2 � 125 N

Prob. 2–69

2–70.    Determine the magnitude and coordinate direction 
angles of the resultant force, and sketch this vector on the 
coordinate system.

3

4 5

60�
120�

45�

x

z

y

F2 � 525 N

F1 � 450 N

Prob. 2–70

2–71.    Specify the magnitude and coordinate direction 
angles a1, b1, g1 of F1 so that the resultant of the three 
forces acting on the bracket is FR = 5-350k6  lb. Note that  
F3 lies in the x–y plane.

z

F1

F2 � 200 lb

F3 � 400 lb

x

y30�

g1

b1

a1

Prob. 2–71



54 	 Chapter 2    Force Vectors

2 

*2–72.    Two forces F1 and F2 act on the screw eye. If the   
resultant force FR has a magnitude of 150 lb and  
the coordinate direction angles shown, determine the 
magnitude of F2 and its coordinate direction angles.

F2

120�

130�

x

y

z

g

F1 � 80 lb

FR � 150 lb

Prob. 2–72

2–73.    Express each force in Cartesian vector form.

2–74.    Determine the magnitude and coordinate direction 
angles of the resultant force, and sketch this vector on the 
coordinate system.

x

y

z

3 4

5

45�

60�F1 � 90 N

F2 � 150 N
F3 � 200 N

Probs. 2–73/74

2–75.    The spur gear is subjected to the two forces caused 
by contact with other gears. Express each force as a 
Cartesian vector.

*2–76.    The spur gear is subjected to the two forces caused 
by contact with other gears. Determine the resultant of the 
two forces and express the result as a Cartesian vector.

135�

F1 � 50 lb

F2 � 180 lb

24

7

25

60�

60�

z

y

x

Probs. 2–75/76

2–77.    Determine the magnitude and coordinate direction 
angles of the resultant force, and sketch this vector on the 
coordinate system.

x

z

F2 � 500 N

F1 = 400 N

135�

60�
60�

20�

y

60�

Prob. 2–77
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2–78.    The two forces F1 and F2 acting at A have a resultant 
force of FR = 5-100k6  lb. Determine the magnitude and 
coordinate direction angles of F2.

2–79.    Determine the coordinate direction angles of the 
force F1 and indicate them on the figure.

y

x
F1 = 60 lb

F2

z

A

B

30

50

Probs. 2–78/79

*2–80.    The bracket is subjected to the two forces shown. 
Express each force in Cartesian vector form and then 
determine the resultant force FR. Find the magnitude and 
coordinate direction angles of the resultant force.

y

z

F1 � 250 N

F2 � 400 N

x

120�

45�

35�

25�

60�

Prob. 2–80

2–81.    If the coordinate direction angles for F3 are  
a3 = 120, b3 = 60 and g3 = 45, determine the magnitude 
and coordinate direction angles of the resultant force acting 
on the eyebolt.

2–82.    If the coordinate direction angles for F3 are 
a3 = 120, b3 = 45, and g3 = 60, determine the 
magnitude and coordinate direction angles of the resultant 
force acting on the eyebolt.

2–83.    If the direction of the resultant force acting on the 
eyebolt is defined by the unit vector uFR

= cos 30j +sin 30k, 
determine the coordinate direction angles of F3 and the 
magnitude of FR.

x

30�

4 3
5

y

z

F2 � 600 lb

F1 � 700 lb

F3 � 800 lb

Probs. 2–81/82/83

*2–84.    The pole is subjected to the force F, which has 
components acting along the x, y, z axes as shown. If the 
magnitude of F is 3 kN, b = 30, and g = 75, determine 
the magnitudes of its three components.

2–85.    The pole is subjected to the force F which has 
components Fx = 1.5 kN and Fz = 1.25 kN. If b = 75, 
determine the magnitudes of F and Fy.

z

Fz

Fy

Fx

F

y

x

a

b
g

Probs. 2–84/85
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2.7  Position Vectors

In this section we will introduce the concept of a position vector. It will 
be shown that this vector is of importance in formulating a Cartesian force 
vector directed between two points in space.	

x, y, z Coordinates.  Throughout the book we will use a right-
handed coordinate system to reference the location of points in space. We 
will also use the convention followed in many technical books, which 
requires the positive z axis to be directed upward (the zenith direction) so 
that it measures the height of an object or the altitude of a point. The x, y 
axes then lie in the horizontal plane, Fig. 2–32. Points in space are located 
relative to the origin of coordinates, O, by successive measurements along 
the x, y, z axes. For example, the coordinates of point A are obtained by 
starting at O and measuring xA = +4 m along the x axis, then yA = +2 m 
along the y axis, and finally zA = - 6 m along the z axis, so that 
 A(4 m, 2 m, - 6 m). In a similar manner, measurements along the x, y, z 
axes from O to B yield the coordinates of B, that is, B(6 m, -1 m, 4 m).

Position Vector.  A position vector r is defined as a fixed vector 
which locates a point in space relative to another point. For example, if r 
extends from the origin of coordinates, O, to point P(x, y, z), Fig. 2–33a, 
then r can be expressed in Cartesian vector form as

r = xi + yj + zk

Note how the head-to-tail vector addition of the three components yields 
vector r, Fig. 2–33b. Starting at the origin O, one “travels” x in the +i 
direction, then y in the +j direction, and finally z in the +k direction to 
arrive at point P(x, y, z).

z

y

x

4 m

1 m

2 m

O
B

A

2 m

4 m

6 m

Fig. 2–32

z

y

x

y j
r

x i
O

z k

(a)

P(x, y, z)

Fig. 2–33

z

y

x

z k
r

x i
O

(b)

P(x, y, z)

y j
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In the more general case, the position vector may be directed from 
point A to point B in space, Fig. 2–34a. This vector is also designated by 
the symbol r. As a matter of convention, we will sometimes refer to this 
vector with two subscripts to indicate from and to the point where it is 
directed. Thus, r can also be designated as rAB. Also, note that rA and rB in 
Fig. 2–34a are referenced with only one subscript since they extend from 
the origin of coordinates.

From Fig. 2–34a, by the head-to-tail vector addition, using the triangle 
rule, we require

rA + r = rB

Solving for r and expressing rA and rB in Cartesian vector form yields

r = rB - rA = (xBi + yB   j + zBk) - (xAi + yA   j + zAk)

or

	 r = (xB - xA)i + (yB - yA)j + (zB - zA)k 	 (2–11)

Thus, the i, j, k components of the position vector r may be formed by 
taking the coordinates of the tail of the vector A (xA, yA, zA) and subtracting 
them from the corresponding coordinates of the head B(xB, yB, zB). We can 
also form these components directly, Fig. 2–34b, by starting at A and 
moving through a distance of (xB - xA) along the positive x axis (+i), then 
(yB - yA) along the positive y axis (+j), and finally (zB - zA) along the 
positive z axis (+k) to get to B.

z

y

x

(a)

B(xB, yB, zB)

A(xA, yA, zA)
rA

rB

r

Fig. 2–34

B

r

u

A

If an x, y, z coordinate system is established, 
then the coordinates of two points A and B 
on the cable can be determined. From this 
the position vector r acting along the cable 
can be formulated. Its magnitude represents 
the distance from A to B, and its unit vector, 
u = r>r, gives the direction defined by a, b, g.
(© Russell C. Hibbeler)

(b)

z

y

x

(xB � xA)i

r
B

A

(yB � yA)j

(zB � zA)k
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(a)

z

y

x
3 m

1 mA

B

3 m

2 m

2 m

An elastic rubber band is attached to points A and B as shown in  
Fig. 2–35a. Determine its length and its direction measured from  
A toward B.

Solution
We first establish a position vector from A to B, Fig. 2–35b. In 
accordance with Eq. 2–11, the coordinates of the tail A(1 m, 0, -3 m) 
are subtracted from the coordinates of the head B(-2 m, 2 m, 3 m), 
which yields

 r = [-2 m - 1 m]i + [2 m - 0] j + [3 m - (-3 m)]k

	  = 5-3i + 2j + 6k6  m

These components of r can also be determined directly by realizing 
that they represent the direction and distance one must travel along 
each axis in order to move from A to B, i.e., along the x axis 5-3i6  m, 
along the y axis 52j6  m, and finally along the z axis 56k6  m.

The length of the rubber band is therefore

	  r = 2(-3 m)2 + (2 m)2 + (6 m)2 = 7 m  	 Ans.

Formulating a unit vector in the direction of r, we have

u =
r
r

= -
3

7
 i +

2

7
 j +

6

7
 k

The components of this unit vector give the coordinate direction 
angles

	  a = cos-1a-  
3

7
b = 115	 Ans.

	  b = cos-1a 2

7
b = 73.4   	 Ans.

	  g = cos-1a 6

7
b = 31.0   	 Ans.

NOTE: These angles are measured from the positive axes of a localized 
coordinate system placed at the tail of r, as shown in Fig. 2–35c.

Example    2.10 

Fig. 2–35

(b)

z

y

A

B

{6 k} m

{2 j} m
{�3 i} m

r

x

(c)

A

B

z¿

y¿

x¿

r � 7 m

g � 31.0�

a � 115�
b � 73.4�
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2.8  Force Vector Directed Along a Line

Quite often in three-dimensional statics problems, the direction of a force is 
specified by two points through which its line of action passes. Such a situation 
is shown in Fig. 2–36, where the force F is directed along the cord AB. We can 
formulate F as a Cartesian vector by realizing that it has the same direction 
and sense as the position vector r directed from point A to point B on the 
cord. This common direction is specified by the unit vector u = r>r. Hence,

F = F u = Fa r
r
b = Fa (xB - xA)i + (yB - yA)j + (zB - zA)k2(xB - xA)2 + (yB - yA)2 + (zB - zA)2

b

Although we have represented F symbolically in Fig. 2–36, note that it 
has units of force, unlike r, which has units of length.

z

y

x

r

u

B

F

A

Fig. 2–36

u

r

F

The force F acting along the rope can be  
represented as a Cartesian vector by 
establishing x, y, z axes and first forming a 
position vector r along the length of the rope. 
Then the corresponding unit vector u = r>r 
that defines the direction of both the rope 
and the force can be determined. Finally, the 
magnitude of the force is combined with its 
direction, F = Fu. (© Russell C. Hibbeler)

Important Points

	 •	 A position vector locates one point in space relative to 
another point.

	 •	 The easiest way to formulate the components of a position vector is 
to determine the distance and direction that must be traveled along 
the x, y, z directions—going from the tail to the head of the vector.

	 •	 A force F acting in the direction of a position vector r can be 
represented in Cartesian form if the unit vector u of the position 
vector is determined and it is multiplied by the magnitude of the 
force, i.e., F = Fu = F(r>r).
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The man shown in Fig. 2–37a pulls on the cord with a force of 70 lb. 
Represent this force acting on the support A as a Cartesian vector and 
determine its direction.

Solution
Force F is shown in Fig. 2–37b. The direction of this vector, u, is 
determined from the position vector r, which extends from A to B. 
Rather than using the coordinates of the end points of the cord, r can 
be determined directly by noting in Fig. 2–37a that one must travel 
from A {-24k} ft, then {-8j} ft, and finally {12i} ft to get to B. Thus,

r = 512i - 8j - 24k6  ft

The magnitude of r, which represents the length of cord AB, is

 r = 2(12 ft)2 + (-8 ft)2 + (-24 ft)2 = 28 ft

Forming the unit vector that defines the direction and sense of both 
r and F, we have

u =
r
r

=
12

28
 i -

8

28
 j -

24

28
 k

Since F has a magnitude of 70 lb and a direction specified by u, then

 F = Fu = 70 lba 12

28
 i -

8

28
 j -

24

28
 kb

	  = 530i - 20j - 60k6  lb   � Ans.

The coordinate direction angles are measured between r (or F) and 
the positive axes of a localized coordinate system with origin placed at 
A, Fig. 2–37b. From the components of the unit vector:

	  a = cos-1a 12

28
b = 64.6 � Ans.

	  b = cos-1a -8

28
b = 107 � Ans.

	  g = cos-1a -24

28
b = 149 � Ans.

NOTE: These results make sense when compared with the angles identi
fied in Fig. 2–37b.

Example   2.11 

y

x

z

A

30 ft

8 ft

6 ft

12 ft

B

(a)

Fig. 2–37

F � 70 lb

(b)

x¿

y¿

z¿

A

u

r

B

g

b

a
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The roof is supported by cables as shown in the photo. If the cables 
exert forces FAB = 100 N and FAC = 120 N on the wall hook at A as 
shown in Fig. 2–38a, determine the resultant force acting at A. Express 
the result as a Cartesian vector.

Solution
The resultant force FR is shown graphically in Fig. 2–38b. We can 
express this force as a Cartesian vector by first formulating FAB and 
FAC as Cartesian vectors and then adding their components. The 
directions of FAB and FAC are specified by forming unit vectors uAB 
and uAC along the cables. These unit vectors are obtained from the 
associated position vectors rAB and rAC. With reference to Fig. 2–38a, 
to go from A to B, we must travel 5-4k6  m, and then 54i6  m. Thus,

 rAB = 54i - 4k6  m

 rAB = 2(4 m)2 + (-4 m)2 = 5.66 m

 FAB = FAB a rAB

rAB
b = (100 N) a 4

5.66
 i -

4

5.66
 kb

 FAB = 570.7i - 70.7k6  N

To go from A to C, we must travel 5-4k6m, then 52j6  m, and finally 
54i6. Thus,

 rAC = 54i + 2j - 4k6  m

 rAC = 2(4 m)2 + (2 m)2 + (-4 m)2 = 6 m

 FAC = FAC a rAC

rAC
b = (120 N) a 4

6
 i +

2

6
 j -

4

6
 kb

 = 580i + 40j - 80k6  N

The resultant force is therefore

 FR = FAB + FAC = 570.7i - 70.7k6  N + 580i + 40j - 80k6  N

 = 5151i + 40j - 151k6  N 	 Ans.

Example    2.12 

Fig. 2–38

(a)

y

x

2 m

4 m

B

4 m

A

C

FAB � 100 N FAC � 120 N

z

y

x

B C

A

FAB FAC

rAB

rAC

FR

(b)

z
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(© Russell C. Hibbeler)
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Example   2.13

Solution
As shown in Fig. 2–39b, the coordinates for points A and B are

 A (2 m, 0, 2 m) 

and

B c - a 4

5
b5 sin 30 m, a 4

5
b5 cos 30 m, a 3

5
b  5 m d

or 

B(-2 m, 3.464 m, 3 m)

Therefore, to go from A to B, one must travel {-4i} m, then {3.464j} m, 
and finally {1k} m. Thus,

 uB = a rB

rB
b =

5-4i + 3.464j + 1k6  m2(-4 m)2 + (3.464 m)2 + (1 m)2

 = -0.7428i + 0.6433j + 0.1857k

Force FB expressed as a Cartesian vector becomes

 FB = FB uB = (750 N)(-0.74281i + 0.6433j + 0.1857k)

 = 5-557i + 482j + 139k6  N � Ans.

The force in Fig. 2–39a acts on the hook. Express it as a Cartesian vector.

2 m

(a)

2 m

yx

A

B

z

5 m

30°

FB � 750 N

(b)

yx

z

rB

FB

uB

A(2 m, 0 , 2 m)

B(–2 m, 3.464 m, 3 m)

3
4

5

)(5 m)3
5

(

)(5 m)4
5

(

Fig. 2–39



2 

    Preliminary Problems

P2–6.  In each case, establish a position vector from point 
A to point B.

y

z

3 m

x

(a)

2 m
5 m

A
B

P2–7.  In each case, express F as a Cartesian vector.

y

z

4 m

3 m

x

(a)

 F � 15 kN 

y

z

x

(b)

3 m

4 m

A

B

1 m

4 m

3 m
y

z

2 m

2 m

1 mx

(b)

 F � 600 N 

Prob. P2–6

y

z

x

(c)

3 m

A

B
1 m3 m

4 m

2 m

Prob. P2–7

y

z

1 m

1 m

1 m

1 m

1 m

x

(c)

 F � 300 N 
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FUNDAMENTAL PROBLEMS

z B

A

y

x

4 m

2 m

3 m

3 m

3 mrAB

F2–19.  Express the position vector rAB in Cartesian 
vector form, then determine its magnitude and coordinate 
direction angles.

Prob. F2–19

F2–20.  Determine the length of the rod and the position 
vector directed from A  to B. What is the angle u?

4 ft

z

A yx

4 ft

2 ft
B

Ou

Prob. F2–20

F2–21.  Express the force as a Cartesian vector.

3 m

2 m

2 m

4 m

4 m yx

A

B

z

F � 630 N

Prob. F2–21

F2–22.  Express the force as a Cartesian vector.

4 m
2 m

7 m

2 m

z

y

A

B

x

F � 900 N

Prob. F2–22

F2–23.  Determine the magnitude of the resultant force  
at A .

z

yx

6 mFB � 840 N

FC � 420 N

3 m

3 m

2 m

2 m

B

C

A

Prob. F2–23

F2–24.  Determine the resultant force at A.

4 ft6 ft

4 ft

3 ft

4 ft 2 ft

z

y

x

FC � 490 lb

FB � 600 lb

2 ft

C

B

A

Prob. F2–24
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PROBLEMS

*2–88.  Express each of the forces in Cartesian vector form 
and determine the magnitude and coordinate direction 
angles of the resultant force.

2–86.  Determine the length of the connecting rod AB by 
first formulating a Cartesian position vector from A to B 
and then determining its magnitude.

300 mm

O

150 mm

A

B

x

y

30�

Prob. 2–86

2–87.  Express force F as a Cartesian vector; then determine 
its coordinate direction angles.

F � 135 lb

70�

30�

B

A

7 ft

10
 ft

5 ft
y

x

z

Prob. 2–87

F2 � 50 lb

F1 � 80 lb

C

O

A

B
2 ft

6 ft

4 ft

x

y

z

1213
5

2.5 ft

Prob. 2–88

2–89.  If F = 5350i - 250j - 450k6  N and cable AB is 
9 m long, determine the x, y, z coordinates of point A.

x

x
B

A

yy

z

z
F

Prob. 2–89
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2–93.  If FB = 560 N and FC = 700 N, determine the 
magnitude and coordinate direction angles of the resultant 
force acting on the flag pole.

2–94.  If FB = 700 N, and FC = 560 N, determine the 
magnitude and coordinate direction angles of the resultant 
force acting on the flag pole.

z

x

A

B

C

y

6 m

2 m

3 m

2 m
3 m

FB

FC

Probs. 2–93/94

2–95.  The plate is suspended using the three cables which 
exert the forces shown. Express each force as a Cartesian 
vector.

y

x

z

FBA � 350 lb
FDA � 400 lb

FCA � 500 lb

A

B

C

6 ft
3 ft3 ft 3 ft 2 ft

D
3 ft

14 ft

Prob. 2–95

2–90.  The 8-m-long cable is anchored to the ground at A. 
If x = 4 m and y = 2 m, determine the coordinate z to the 
highest point of attachment along the column.

2–91.  The 8-m-long cable is anchored to the ground at A. 
If z = 5 m, determine the location +x, +y of point A. Choose 
a value such that x = y.

x

z

z

y
x

y
A

B

Probs. 2–90/91

*2–92.  Express each of the forces in Cartesian vector form 
and determine the magnitude and coordinate direction 
angles of the resultant force.

FAC � 400 N

FAB � 250 N

y

x

0.75 m

z

A

40�

BC

1 m

2 m 2 m

3 m

Prob. 2–92
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2–99.  The load at A creates a force of 60 lb in wire AB. 
Express this force as a Cartesian vector acting on A and 
directed toward B as shown.

10 ft

5 ft
30�

A

z

y

x
F � 60 lb

B

Prob. 2–99

*2–100.  Determine the magnitude and coordinate direction 
angles of the resultant force acting at point A on the post.

4 m

3 m

3 m

2 m

3
4

5

O

A

C

B

FAC �150 N
FAB � 200 N

y

z

x

Prob. 2–100

*2–96.  The three supporting cables exert the forces shown 
on the sign. Represent each force as a Cartesian vector.

2–97.  Determine the magnitude and coordinate direction 
angles of the resultant force of the two forces acting on the 
sign at point A.

z

A

D

C

E

B

3 m

3 m

2 m

2 m

2 m

y

x

FC � 400 N

FB � 400 N

FE � 350 N

Probs. 2–96/97

2–98.  The force F has a magnitude of 80 lb and acts at the 
midpoint C of the thin rod. Express the force as a Cartesian 
vector.

y

2 ft

3 ft

6 ft

F � 80 lb

B

C

A

O

x

z

Prob. 2–98
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2–103.  Determine the magnitude and coordinate direction 
angles of the resultant force.

x

y

z

C

B

A
40 lb

4 ft

2 ft

3 ft

2 ft
20 

1.5 ft

20 lb

Prob. 2–103

*2–104.  If the force in each cable tied to the bin is 70 lb, 
determine the magnitude and coordinate direction angles 
of the resultant force.

2–105.  If the resultant of the four forces is FR = 5-360k6 lb, 
determine the tension developed in each cable. Due to 
symmetry, the tension in the four cables is the same.

z

B

C

E

D

A

x
y

6 ft

3 ft

3 ft

2 ft
2 ft

FC

D

FA

FB

Probs. 2–104/105

2–101.  The two mooring cables exert forces on the stern of 
a ship as shown. Represent each force as as Cartesian vector 
and determine the magnitude and coordinate direction 
angles of the resultant.

x

y

z

50 ft

30 ft

40 ft

A

C

B

10 ft

FB � 150 lbFA � 200 lb

Prob. 2–101

2–102.  The engine of the lightweight plane is supported by 
struts that are connected to the space truss that makes up 
the structure of the plane. The anticipated loading in two of 
the struts is shown. Express each of those forces as Cartesian 
vector.

3 ft

3 ft

2.5 ft

0.5 ft
B

C

A

D

0.5 ft

F2 � 600 lb

F1 � 400 lb

0.5 ft

y

z

x

2.5 ft

Prob. 2–102
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2.9  Dot Product

Occasionally in statics one has to find the angle between two lines or the 
components of a force parallel and perpendicular to a line. In two 
dimensions, these problems can readily be solved by trigonometry since 
the geometry is easy to visualize. In three dimensions, however, this is 
often difficult, and consequently vector methods should be employed for 
the solution. The dot product, which defines a particular method for 
“multiplying” two vectors, can be used to solve the above-mentioned 
problems.

The dot product of vectors A and B, written A # B and read “A dot B,” 
is defined as the product of the magnitudes of A and B and the cosine of 
the angle u between their tails, Fig. 2–40. Expressed in equation form,

	 A # B = AB cos u � (2–12)

where 0 … u … 180. The dot product is often referred to as the scalar 
product of vectors since the result is a scalar and not a vector.

Laws of Operation.

	 1.	 Commutative law: A # B = B # A

	 2.	 Multiplication by a scalar: a (A # B) = (aA) # B = A # (aB)

	 3.	 Distributive law: A # (B + D) = (A # B) + (A # D)

It is easy to prove the first and second laws by using Eq. 2–12. The proof 
of the distributive law is left as an exercise (see Prob. 2–112).

Cartesian Vector Formulation.  Equation 2–12 must be used to 
find the dot product for any two Cartesian unit vectors. For example, 
i # i = (1)(1) cos 0 = 1 and i # j = (1)(1) cos 90 = 0. If we want to find 
the dot product of two general vectors A and B that are expressed in 
Cartesian vector form, then we have

 A # B = (A xi + A y  j + A zk) # (Bxi + By  j + Bzk)

 = A xBx(i # i) + A xBy(i # j) + A xBz(i # k)

+ A yBx( j # i) + A yBy( j # j) + A yBz( j # k)

+ A zBx(k # i) + A zBy(k # j) + A zBz(k # k)

Carrying out the dot-product operations, the final result becomes

	 A # B = A xBx + A yBy + A zBz 	 (2–13)

Thus, to determine the dot product of two Cartesian vectors, multiply their 
corresponding x, y, z components and sum these products algebraically. Note 
that the result will be either a positive or negative scalar, or it could be zero.

A

B

u

Fig. 2–40
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Applications.  The dot product has two important applications in 
mechanics.

	 •	 The angle formed between two vectors or intersecting lines.  The 
angle u between the tails of vectors A and B in Fig. 2–40 can be 
determined from Eq. 2–12 and written as

u = cos-1aA # B
AB
b 0 … u … 180

		  Here A # B is found from Eq. 2–13. In particular, notice that if 
A # B = 0, u = cos-1 0 = 90 so that A will be perpendicular to B.

	 •	 The components of a vector parallel and perpendicular to a line. 
The component of vector A parallel to or collinear with the line aa in 
Fig. 2–40 is defined by Aa where A a = A  cos u. This component is 
sometimes referred to as the projection of A onto the line, since a 
right angle is formed in the construction. If the direction of the line is 
specified by the unit vector ua, then since ua = 1, we can determine 
the magnitude of Aa  directly from the dot product (Eq. 2–12); i.e.,

A a = A  cos u = A # ua

		  Hence, the scalar projection of A along a line is determined from the 
dot product of A and the unit vector ua which defines the direction of 
the line. Notice that if this result is positive, then Aa has a directional 
sense which is the same as ua, whereas if Aa is a negative scalar, then 
Aa has the opposite sense of direction to ua.

	 The component Aa represented as a vector is therefore

Aa = A a ua

		  The component of A that is perpendicular to line aa can also be 
obtained, Fig. 2–41. Since A = Aa + A# , then A#  = A - Aa. There 
are two possible ways of obtaining A # . One way would be to 
determine u from the dot product, u = cos-1(A # uA >A ), then 
A #  = A  sin u. Alternatively, if Aa is known, then by Pythagorean’s 
theorem we can also write A #  = 2A 2 - A a 2.

A�

a a
uaAa � A cos u ua

A

u

Fig. 2–41

A

B

u

Fig. 2–40 (Repeated)

u

ub

ur

The angle u between the rope and the beam 
can be determined by formulating unit 
vectors along the beam and rope and then 
using the dot product ub

# ur = (1)(1) cos u. 
(© Russell C. Hibbeler)

F

Fbub

The projection of the cable force F along the beam 
can be determined by first finding the unit vector 
ub that defines this direction. Then apply the dot 
product, Fb = F # ub. (© Russell C. Hibbeler)
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Important Points

	 •	 The dot product is used to determine the angle between two 
vectors or the projection of a vector in a specified direction.

	 •	 If vectors A and B are expressed in Cartesian vector form, the 
dot product is determined by multiplying the respective x, y, z 
scalar components and algebraically adding the results, i.e., 
A # B = A xBx + A yBy + A zBz.

	 •	 From the definition of the dot product, the angle formed between 
the tails of vectors A and B is u = cos-1(A # B>AB).

	 •	 The magnitude of the projection of vector A along a line aa 
whose direction is specified by ua is determined from the dot 
product Aa = A # ua.

Determine the magnitudes of the projection of the force F in Fig. 2–42 
onto the u and v axes.

Example   2.14

F � 100 N

u

(Fu)proj

v

15�

45�

(F )projv

Fig. 2–42
Solution

Projections of Force.  The graphical representation of the projections 
is shown in Fig. 2–42. From this figure, the magnitudes of the projections 
of F onto the u and v axes can be obtained by trigonometry:

	  (Fu)proj = (100 N)cos 45 = 70.7 N� Ans.

	  (F
v
)proj = (100 N)cos 15 = 96.6 N� Ans.

NOTE: These projections are not equal to the magnitudes of the 
components of force F along the u and v axes found from the  
parallelogram law. They will only be equal if the u and v axes are 
perpendicular to one another.
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Example   2.15

The frame shown in Fig. 2–43a is subjected to a horizontal force  
F = {300j} N. Determine the magnitudes of the components of this 
force parallel and perpendicular to member AB.

(a)

z

y

x

6 m

2 m

3 mA

B F � {300 j} N

Solution
The magnitude of the component of F along AB is equal to the dot 
product of F and the unit vector uB, which defines the direction of AB, 
Fig. 2–43b. Since

uB =
rB

rB
=

2i + 6j + 3k2(2)2 + (6)2 + (3)2
= 0.286 i + 0.857 j + 0.429 k

then

 FAB = F cos u = F # uB = (300j) # (0.286i + 0.857j + 0.429k)

 = (0)(0.286) + (300)(0.857) + (0)(0.429)

 = 257.1 N� Ans.

Since the result is a positive scalar, FAB has the same sense of direction 
as uB, Fig. 2–43b.

Expressing FAB in Cartesian vector form, we have

 FAB = FABuB = (257.1 N)(0.286i + 0.857j + 0.429k)

 = 573.5i + 220j + 110k6N � Ans.

The perpendicular component, Fig. 2–43b, is therefore

 F# = F - FAB = 300j - (73.5i + 220j + 110k)

 = 5-73.5i + 79.6j - 110k6N

Its magnitude can be determined either from this vector or by using 
the Pythagorean theorem, Fig. 2–43b:

 F# = 2F2 - F2
AB = 2(300 N)2 - (257.1 N)2

	  = 155 N � Ans.

Fig. 2–43
(b)

F

F

FAB

z

y

x

A

B
uB
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Example   2.16

The pipe in Fig. 2–44a is subjected to the force of F = 80 lb. Determine 
the angle u between F and the pipe segment BA and the projection of 
F along this segment.

F � 80 lb

2 ft

2 ft1 ft

B

1 ft

y

x

z

(a)

C

A

u

Solution
Angle U.  First we will establish position vectors from B to A and B 
to C; Fig. 2–44b. Then we will determine the angle u between the tails 
of these two vectors.

 rBA = 5-2i - 2j + 1k6  ft, rBA = 3 ft

 rBC = 5-3j + 1k6  ft, rBC = 210 ft

Thus,

	  cos u =
rBA

# rBC

rBArBC
=

(-2)(0) + (-2)(-3) + (1)(1)

3210
= 0.7379

	  u = 42.5� Ans.

Components of F.  The component of F along BA is shown in  
Fig. 2–44c. We must first formulate the unit vector along BA and force 
F as Cartesian vectors.

 uBA =
rBA

rBA
=

(-2i - 2j + 1k)

3
= -  

2

3
 i -

2

3
 j +

1

3
 k

 F = 80 lba rBC

rBC
b = 80a -3j + 1k210

b = -75.89j + 25.30k

Thus,

 FBA = F # uBA = (-75.89j + 25.30k) # a -  
2

3
 i -

2

3
 j +

1

3
 kb

 = 0 a- 2

3
b + (-75.89)a-  

2

3
b + (25.30) a 1

3
b

	  = 59.0 lb � Ans.

B

y

x

z

(b)

C

A

u
rBC

rBA

(c)

x F � 80 lb

F

z

y
A

B

FBA
u

Fig. 2–44
Note: Since u has been calculated, then also, FBA = F cos u =
80 lb cos 42.5 = 59.0 lb.
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Preliminary Problems
P2–8.    In each case, set up the dot product to find the  
angle u. Do not calculate the result.

(a)

2 m
y

z

x

O

A

B

3 m

2 m

1 m

u

P2–9.    In each case, set up the dot product to find the 
magnitude of the projection of the force F along a-a axes. 
Do not calculate the result.

(a)

y

z
2 m

1.5 m

x

a

2 m

2 m 1 m

a

 F � 300 N 

Prob. P2–8

(b)

2 m
y

z

x

O

B

A

2 m

1.5 m

2 m

1 m

u

Prob. P2–9

(b)

y

z

5

x

2 m

2 m

1 ma

a

3
4

 F � 500 N 
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F2–25.  Determine the angle u between the force and the 
line AO.

F2–29.  Find the magnitude of the projected component of 
the force along the pipe AO.

FUNDAMENTAL PROBLEMS

2 m

2 m

1 m

z

y

A

O

x

F � {�6 i � 9 j � 3 k} kN

u

Prob. F2–25

F2–26.  Determine the angle u between the force and the 
line AB.

y
x

z

A
F � 600 N

C

B

4 m

4 m

3 m

u

Prob. F2–26

O

z

y
x

4 m

6 m

5 m B

A

F � 400 N

4 m

Prob. F2–29

F2–30.  Determine the components of the force acting 
parallel and perpendicular to the axis of the pole.

z

x

y

A

F � 600 lb

60�

30�

4 ft

2 ft

4 ft

O

Prob. F2–30

F2–31.  Determine the magnitudes of the components of the 
force F = 56 N acting along and perpendicular to line AO.

y

x

z

C
O

D

A

B
3 m

1.5 m

1 m

1 m F � 56 N

Prob. F2–31

F2–27.  Determine the angle u between the force and the 
line OA. 

F2–28.  Determine the projected component of the force 
along the line OA.

F � 650 N

x

A

O

y

13

12
5u

Probs. F2–27/28
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*2–108.  The chandelier is supported by three chains which 
are concurrent at point O. If the force in each chain has a 
magnitude of 60 lb, express each force as a Cartesian vector 
and determine the magnitude and coordinate direction 
angles of the resultant force.

2–109.  The chandelier is supported by three chains which 
are concurrent at point O. If the resultant force at O has a 
magnitude of 130 lb and is directed along the negative  
z axis, determine the force in each chain.

120�

z

y
120� 4 ft

A

B

C

6 ft

O

FA

FB
FC

x

120�

Probs. 2–108/109

2–110.  The window is held open by chain AB. Determine 
the length of the chain, and express the 50-lb force acting at 
A along the chain as a Cartesian vector and determine its 
coordinate direction angles.

40�

x

y
5 ft

12 ft

8 ft

A

B5 ft

z

5 ft

F � 50 lb

Prob. 2–110

2–106.  Express the force F in Cartesian vector form if it 
acts at the midpoint B of the rod.

3 m

4 m y

x

z

6 m

4 m

4 m

O F � 600 N

B

A

C

D

Prob. 2–106

2–107.  Express force F in Cartesian vector form if point B 
is located 3 m along the rod from end C.

3 m

4 m y

x

z

6 m

4 m

4 m

O F � 600 N

B

A

C

D

Prob. 2–107

PROBLEMS
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2–114.  Determine the angle u between the two cables.

2–115.  Determine the magnitude of the projection of the 
force F1 along cable AC.

z

x

A

B

C

y

2 m

3 m

3 m

3 m

2 m

4 m

F1 � 70 N

F2 � 40 N

u

Probs. 2–114/115

*2–116.  Determine the angle u between the y axis of the 
pole and the wire AB.

A

B

y

z

x
2 ft

2 ft

2 ft
3 ft

θ

Prob. 2–116

2–111.  The window is held open by cable AB. Determine 
the length of the cable and express the 30-N force acting at 
A along the cable as a Cartesian vector.

x

y

250 mm

A

B

150 mm

z

300 mm

500 mm

30� 30 N

Prob. 2–111

*2–112.  Given the three vectors A, B, and D, show that 
A # (B + D) = (A # B) + (A # D).

2–113.  Determine the magnitudes of the components of 
F = 600 N acting along and perpendicular to segment DE 
of the pipe assembly.

x y

E

D

C

B

A

z

2 m

2 m

2 m

2 m

3 m

F � 600 N

Probs. 2–112/113
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*2–120.  Two cables exert forces on the pipe. Determine 
the magnitude of the projected component of F1 along the 
line of action of F2.

2–121.  Determine the angle u between the two cables 
attached to the pipe.

60�

y

z

60�

30�
30�

x

F2 � 25 lb

F1 � 30 lb

u

Probs. 2–120/121

2–122.  Determine the angle u between the cables AB and AC.

2–123.  Determine the magnitude of the projected 
component of the force F = {400i - 200j + 500k} N acting 
along the cable BA.

*2–124.  Determine the magnitude of the projected 
component of the force F = {400i - 200j + 500k} N acting 
along the cable CA.

z

A

B

C

D

y
x

3 m

6 m

1 m
2 m

1 m

F u

Probs. 2–122/123/124

2–117.  Determine the magnitudes of the projected 
components of the force F = [60i + 12j - 40k] N along the 
cables AB and AC.

2–118.  Determine the angle u between cables AB and AC.

F

1.5 m

3 m

1 m

0.75 m

1 m
B

C

A

z

y
x

u

Probs. 2–117/118

2–119.  A force of F = {-40k} lb acts at the end of the pipe. 
Determine the magnitudes of the components F1 and F2 
which are directed along the pipe’s axis and perpendicular 
to it.

z

x

y

F2

3 ft

3 ft

F1

A

O

F � {�40 k} lb

5 ft

Prob. 2–119
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*2–128.  Determine the angle u between BA and BC.

2–129.  Determine the magnitude of the projected component 
of the 3 kN force acting along the axis BC of the pipe.

y

C

B

A

D

z

3 m

2 m

1 m

4 m
5 m

x F � 3 kN

u

Probs. 2–128/129

2–130.  Determine the angles u and f made between the 
axes OA of the flag pole and AB and AC, respectively, of 
each cable.

3 m

4 m

CB

x
y

z

O

FC � 40 N
FB � 55 N

2 m

1.5 m

6 m

4 m

Au f

Prob. 2–130

2–125.  Determine the magnitude of the projection of 
force F = 600 N along the u axis.

30�

2 m

4 m
4 m

F � 600 N

z

x u

O
y

A

Prob. 2–125

2–126.  Determine the magnitude of the projected 
component of the 100-lb force acting along the axis BC of  
the pipe.

2–127.  Determine the angle u between pipe segments BA 
and BC.

z

yD

3 ft

6 ft
4 ft

8 ft

F  100 lbC

A

B

2 ft

u

x

Probs. 2–126/127
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2–135.  Determine the magnitudes of the components of 
the force F = 90 lb acting parallel and perpendicular to 
diagonal AB of the crate.

1 ft

60�

45�

F � 90 lb

A

C

B

x

z

y
1.5 ft3 ft

Prob. 2–135

*2–136.  Determine the magnitudes of the projected com
ponents of the force F = 300 N acting along the x and y axes.

2–137.  Determine the magnitude of the projected 
component of the force F = 300 N acting along line OA.

z
A

O

x y

300 mm

300 mm

300 mm

F � 300 N

30�

30�

Probs. 2–136/137
2–138.  Determine the angle u between the two cables.

2–139.  Determine the projected component of the force  
F = 12 lb acting in the direction of cable AC. Express the 
result as a Cartesian vector.

z

x

B

C

y
4 ft

6 ft

10 ft

10 ft

8 ft A

8 ft

u FAB � 12 lb

Probs. 2–138/139

2–131.  Determine the magnitudes of the components of  
F acting along and perpendicular to segment BC of the pipe 
assembly.

*2–132.  Determine the magnitude of the projected 
component of F along AC. Express this component as a 
Cartesian vector.

2–133.  Determine the angle u between the pipe segments 
BA and BC.

yx

z

A

C

B

4 ft
2 ft4 ft

4 ft

3 ft

F � {30i � 45j � 50k} lb

u

Probs. 2–131/132/133

2–134.  If the force F = 100 N lies in the plane DBEC, 
which is parallel to the x–z plane, and makes an angle of 10 
with the extended line DB as shown, determine the angle 
that F makes with the diagonal AB of the crate.

30�

F
2 � 6 kN 0.5 m

F

B

C

Ax

y

E    0.2 m

15�

zz¿

15�

10u

0.2 m

D

Prob. 2–134
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CHAPTER REVIEW

A scalar is a positive or negative number; 
e.g., mass and temperature.

A vector has a magnitude and direction, 
where the arrowhead represents the 
sense of the vector.

A

Multiplication or division of a vector by a 
scalar will change only the magnitude of 
the vector. If the scalar is negative, the 
sense of the vector will change so that it 
acts in the opposite sense.

A

2 A

0.5 A

�1.5 A

If vectors are collinear, the resultant is 
simply the algebraic or scalar addition.

R =  A + B
A B

R

Parallelogram Law

Two forces add according to the 
parallelogram law. The components form 
the sides of the parallelogram and the 
resultant is the diagonal.

To find the components of a force along 
any two axes, extend lines from the head 
of the force, parallel to the axes, to form 
the components.

To obtain the components of the 
resultant, show how the forces add by  
tip-to-tail using the triangle rule, and 
then use the law of cosines and the law of 
sines to calculate their values.

 FR = 2F 1
2 + F2

2 - 2 F1F2 cos uR

       
F1

sin u1
=

F2

sin u2
=

FR

sin uR

a

b

Components

Resultant

FR
F1

F2

u1

u2

uR

FR F1

F2
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2 F
Fy

y

x
Fx

x

y

(FR)y
FR

(FR)x
�x

y

F2x

F2y
F1y

F1x

F3x

F3y

u

u =
F
F

F = 2Fx
2 + F 2

y + F 2
z  

 u =
F
F

=
Fx

F
 i +

Fy

F
 j +

Fz

F
 k

 u = cos a i + cos b j + cos g k

u

1

F
F

Fx i

x

F

z

Fz k

y
Fy ja b

u

g

Rectangular Components: Two Dimensions

Vectors Fx and Fy are rectangular components  
of F.

The resultant force is determined from the 
algebraic sum of its components.

(FR)x = Fx

(FR)y = Fy

FR = 2(FR)x
2 + (FR)y

2

u = tan-1 2 (FR)y

(FR)x

2
Cartesian Vectors

The unit vector u has a length of 1, no units, and 
it points in the direction of the vector F.

A force can be resolved into its Cartesian 
components along the x, y, z axes so that 
F = Fxi + Fy  j + Fzk.

The magnitude of F is determined from the 
positive square root of the sum of the squares of 
its components.

The coordinate direction angles a, b, g are 
determined by formulating a unit vector in the 
direction of F. The x, y, z components of  
u represent cos a, cos b, cos g.
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The coordinate direction angles are 
related so that only two of the three 
angles are independent of one another.

To find the resultant of a concurrent force 
system, express each force as a Cartesian 
vector and add the i, j, k components of all 
the forces in the system.

cos2 a + cos2 b + cos2 g = 1

FR = F = Fxi +  Fy  j + Fzk

Position and Force Vectors

A position vector locates one point in space 
relative to another. The easiest way to 
formulate the components of a position 
vector is to determine the distance and 
direction that one must travel along the  
x, y, and z directions—going from the tail to 
the head of the vector.

If the line of action of a force passes 
through points A and B, then the force 
acts in the same direction as the position 
vector r, which is defined by the unit 
vector u. The force can then be expressed 
as a Cartesian vector.

r = (xB - xA)i

+ (yB - yA)j

+ (zB - zA)k

F = Fu = F a r
r
b

y

r
B

A

x

(xB � xA)i (yB � yA)j

z
(zB � zA)k

z

y

x

u

Br

F

A

Dot Product

The dot product between two vectors A 
and B yields a scalar. If A and B are 
expressed in Cartesian vector form, then 
the dot product is the sum of the products 
of their x, y, and z components.

The dot product can be used to determine 
the angle between A and B.

The dot product is also used to 
determine the projected component of a 
vector A onto an axis aa defined by its 
unit vector ua.

 A # B = AB cos u

 = AxBx + AyBy + AzBz

u = cos-1aA # B
AB
b

Aa = A  cos u ua = (A # ua)ua

A

B

u

A

a
ua

A

u

Aa � A cos uau
a
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Chapter Review

2 
R2–1.    Determine the magnitude of the resultant force FR 
and its direction, measured clockwise from the positive  
u axis.

u

70�

30�

45�
F1 � 300 N

F2 � 500 N v

Prob. R2–1

R2–2.    Resolve F into components along the u and v axes 
and determine the magnitudes of these components.

F � 250 N

u

v

30�

105�

Prob. R2–2

Review Problems

R2–3.    Determine the magnitude of the resultant force  
acting on the gusset plate of the bridge truss.

yx
3

4
5

3 4
5

F1 � 200 lb

F2 � 400 lb

F3 � 300 lb

F4 � 300 lb

Prob. R2–3

R2–4.    The cable at the end of the crane boom exerts a 
force of 250 lb on the boom as shown. Express F as a 
Cartesian vector.

y

x

F � 250 lb

z

30�

70�

Prob. R2–4

Partial solutions and answers to all Review Problems are given in the back of the book.
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R2–5.    The cable attached to the tractor at B exerts a force 
of 350 lb on the framework. Express this force as a Cartesian 
vector.

20�

A

F � 350 lb

y

z

x

35 ft

50 ft
B

Prob. R2–5

R2–6.    Express F1 and F2 as Cartesian vectors.

F2 � 450 N

30�
45�

F1 � 600 N

3 4

5

y

z

x

Prob. R2–6

R2–7.    Determine the angle u between the edges of the 
sheet-metal bracket.

x

y

z

400 mm

250 mm

300 mm

50 mm

u

Prob. R2–7

R2–8.    Determine the projection of the force F along 
the pole.

O

z

x

y

1 m

2 m

2 m

F � {2i � 4j � 10k} kN

Prob. R2–8



When this load is lifted at constant velocity, or is just suspended, then it is in a state of 
equilibrium. In this chapter we will study equilibrium for a particle and show how these 

ideas can be used to calculate the forces in cables used to hold suspended loads.

Chapter 3

(© Igor Tumarkin/ITPS/Shutterstock)



Equilibrium of a 
Particle

CHAPTER OBJECTIVES

n	 To introduce the concept of the free-body diagram for a particle.

n	 To show how to solve particle equilibrium problems using the 
equations of equilibrium.

3.1  �Condition for the Equilibrium  
of a Particle

A particle is said to be in equilibrium if it remains at rest if originally at 
rest, or has a constant velocity if originally in motion. Most often, however, 
the term “equilibrium” or, more specifically, “static equilibrium” is used 
to describe an object at rest. To maintain equilibrium, it is necessary to 
satisfy Newton’s first law of motion, which requires the resultant force 
acting on a particle to be equal to zero. This condition is stated by the 
equation of equilibrium,

	 �F = 0	 (3–1)

where �F is the vector sum of all the forces acting on the particle.
Not only is Eq. 3–1 a necessary condition for equilibrium, it is also a 

sufficient condition. This follows from Newton’s second law of motion, 
which can be written as �F = ma. Since the force system satisfies  
Eq. 3–1, then ma = 0, and therefore the particle’s acceleration a = 0. 
Consequently, the particle indeed moves with constant velocity or 
remains at rest.
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3

3.2  The Free-Body Diagram

To apply the equation of equilibrium, we must account for all the known 
and unknown forces (�F) which act on the particle. The best way to do 
this is to think of the particle as isolated and “free” from its surroundings. 
A drawing that shows the particle with all the forces that act on it is called 
a free-body diagram (FBD).

Before presenting a formal procedure as to how to draw a free-body 
diagram, we will first consider three types of supports often encountered 
in particle equilibrium problems.

Springs.  If a linearly elastic spring (or cord) of undeformed length 
l0 is used to support a particle, the length of the spring will change in 
direct proportion to the force F acting on it, Fig. 3–1a. A characteristic 
that defines the “elasticity” of a spring is the spring constant or stiffness k.

The magnitude of force exerted on a linearly elastic spring which has a 
stiffness k and is deformed (elongated or compressed) a distance 
s = l - l0, measured from its unloaded position, is

	 F = ks 	 (3–2)

If s is positive, causing an elongation, then F must pull on the spring; 
whereas if s is negative, causing a shortening, then F must push on it. For 
example, if the spring in Fig. 3–1a has an unstretched length of 0.8 m and 
a stiffness k = 500 N>m and it is stretched to a length of 1 m,  
so that s = l - l0 = 1 m - 0.8 m = 0.2 m, then a force F = ks =  
500 N>m(0.2 m) = 100 N is needed.

Cables and Pulleys.  Unless otherwise stated throughout this 
book, except in Sec. 7.4, all cables (or cords) will be assumed to have 
negligible weight and they cannot stretch. Also, a cable can support only 
a tension or “pulling” force, and this force always acts in the direction of 
the cable. In Chapter 5, it will be shown that the tension force developed 
in a continuous cable which passes over a frictionless pulley must have a 
constant magnitude to keep the cable in equilibrium. Hence, for any 
angle u, shown in Fig. 3–1b, the cable is subjected to a constant tension T 
throughout its length.

Smooth Contact.  If an object rests on a smooth surface, then the 
surface will exert a force on the object that is normal to the surface at 
the point of contact. An example of this is shown in Fig. 3–2a. In 
addition to this normal force N, the cylinder is also subjected to its 
weight W and the force T of the cord. Since these three forces are 
concurrent at the center of the cylinder, Fig. 3–2b, we can apply the 
equation of equilibrium to this “particle,” which is the same as applying 
it to the cylinder.

F

�s

l

l0

T

T

u

Fig. 3–1

T

W
N

T

30�
30�

20�

20�

(a) (b)

Fig. 3–2

Cable is in tension

(a)

(b)
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Procedure for Drawing a Free-Body Diagram

Since we must account for all the forces acting on the particle when 
applying the equations of equilibrium, the importance of first 
drawing a free-body diagram cannot be overemphasized. To construct 
a free-body diagram, the following three steps are necessary.

Draw Outlined Shape.
Imagine the particle to be isolated or cut “free” from its surroundings. 
This requires removing all the supports and drawing the particle’s 
outlined shape.

Show All Forces.
Indicate on this sketch all the forces that act on the particle. These 
forces can be active forces, which tend to set the particle in motion, 
or they can be reactive forces which are the result of the constraints 
or supports that tend to prevent motion. To account for all these 
forces, it may be helpful to trace around the particle’s boundary, 
carefully noting each force acting on it.

Identify Each Force.
The forces that are known should be labeled with their proper 
magnitudes and directions. Letters are used to represent the 
magnitudes and directions of forces that are unknown.

W

T

The bucket is held in equilibrium by 
the cable, and instinctively we know 
that the force in the cable must 
equal the weight of the bucket. By 
drawing a free-body diagram of the 
bucket we can understand why this 
is so. This diagram shows that there 
are only two forces acting on the 
bucket, namely, its weight W and the 
force T of the cable. For equilibrium, 
the resultant of these forces must be 
equal to zero, and so T = W .  
(© Russell C. Hibbeler)

TBTA

5(9.81) N

A B

The 5-kg plate is suspended by two straps 
A and B. To find the force in each strap 
we  should consider the free-body diagram 
of the plate. As noted, the three forces 
acting  on it are concurrent at the center. 
(© Russell C. Hibbeler)
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The sphere in Fig. 3–3a has a mass of 6 kg and is supported as shown. 
Draw a free-body diagram of the sphere, the cord CE, and the knot at C.

Example     3.1 

45�

60�

C

E

B

A

(a)

D

k

30� 30�

Solution

Sphere.  Once the supports are removed, we can see that there  
are four forces acting on the sphere, namely, its weight,  
6 kg (9.81 m>s2) = 58.9 N, the force of cord CE, and the two normal 
forces caused by the smooth inclined planes. The free-body diagram is 
shown in Fig. 3–3b.

Cord CE.  When the cord CE is isolated from its surroundings, its  
free-body diagram shows only two forces acting on it, namely, the force of 
the sphere and the force of the knot, Fig. 3–3c. Notice that FCE shown here 
is equal but opposite to that shown in Fig. 3–3b, a consequence of Newton’s 
third law of action–reaction. Also, FCE and FEC pull on the cord and keep 
it in tension so that it doesn’t collapse. For equilibrium, FCE = FEC.

Knot.  The knot at C is subjected to three forces, Fig. 3–3d. They are 
caused by the cords CBA and CE and the spring CD. As required, the 
free-body diagram shows all these forces labeled with their magnitudes 
and directions. It is important to recognize that the weight of the 
sphere does not directly act on the knot. Instead, the cord CE subjects 
the knot to this force.

Fig. 3–3

(Force of cord CE
acting on sphere)

(b)

30� 30�

NA NB

(Forces of smooth planes
acting on sphere)

58.9 N
(Weight or gravity acting on sphere)

FCE

FCE (Force of sphere acting on cord CE)

FEC (Force of knot acting on cord CE)

(c)

C

FCBA (Force of cord CBA acting on knot)

FCD (Force of spring acting on knot)

FCE (Force of cord CE acting on knot)

60�

(d)
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3.3  Coplanar Force Systems

If a particle is subjected to a system of coplanar forces that lie in the x–y 
plane, as in Fig. 3–4, then each force can be resolved into its i and j 
components. For equilibrium, these forces must sum to produce a zero 
force resultant, i.e.,

 �F = 0

 �Fx  i + �Fy  j = 0

For this vector equation to be satisfied, the resultant force’s x and y 
components must both be equal to zero. Hence,

	
�Fx = 0

�Fy = 0
	 (3–3)

These two equations can be solved for at most two unknowns, generally 
represented as angles and magnitudes of forces shown on the particle’s 
free-body diagram.

When applying each of the two equations of equilibrium, we must 
account for the sense of direction of any component by using an algebraic 
sign which corresponds to the arrowhead direction of the component 
along the x or y axis. It is important to note that if a force has an unknown 
magnitude, then the arrowhead sense of the force on the free-body 
diagram can be assumed. Then if the solution yields a negative scalar, this 
indicates that the sense of the force is opposite to that which was assumed.

For example, consider the free-body diagram of the particle subjected to 
the two forces shown in Fig. 3–5. Here it is assumed that the unknown 
force  F acts to the right, that is, in the positive x direction, to maintain 
equilibrium. Applying the equation of equilibrium along the x axis, we have

S+ �Fx = 0;                    +F + 10 N = 0

Both terms are “positive” since both forces act in the positive x 
direction. When this equation is solved, F = -10 N. Here the negative 
sign indicates that F must act to the left to hold the particle in 
equilibrium, Fig. 3–5. Notice that if the +x axis in Fig. 3–5 were directed 
to the left, both terms in the above equation would be negative, but 
again, after solving, F = -10 N, indicating that F would have to be 
directed to the left.

y

F2

F1

F3
F4

x

Fig. 3–4

F
x

10 N

Fig. 3–5



92 	 Chapter 3  E  quil ibr ium of a Part icle

3

Important Points

The first step in solving any equilibrium problem is to draw the 
particle’s free-body diagram. This requires removing all the supports 
and isolating or freeing the particle from its surroundings and then 
showing all the forces that act on it.

Equilibrium means the particle is at rest or moving at constant 
velocity. In two dimensions, the necessary and sufficient conditions 
for equilibrium require �Fx = 0 and �Fy = 0.

Procedure for Analysis

Coplanar force equilibrium problems for a particle can be solved 
using the following procedure.

Free-Body Diagram.
	 •	 Establish the x, y axes in any suitable orientation.

	 •	 Label all the known and unknown force magnitudes and 
directions on the diagram.

	 •	 The sense of a force having an unknown magnitude can be 
assumed.

Equations of Equilibrium.
	 •	 Apply the equations of equilibrium, �Fx = 0 and �Fy = 0. For 

convenience, arrows can be written alongside each equation to 
define the positive directions. 

	 •	 Components are positive if they are directed along a positive axis, 
and negative if they are directed along a negative axis.

	 •	 If more than two unknowns exist and the problem involves a 
spring, apply F = ks to relate the spring force to the deformation 
s of the spring.

	 •	 Since the magnitude of a force is always a positive quantity, then if 
the solution for a force yields a negative result, this indicates that 
its sense is the reverse of that shown on the free-body diagram.

TC
TB

TD

y

xA

B

D

A

C

The chains exert three forces on the ring at A, 
as shown on its free-body diagram. The ring 
will not move, or will move with constant 
velocity, provided the summation of these 
forces along the x and along the y axis equals 
zero. If one of the three forces is known, the 
magnitudes of the other two forces can be 
obtained from the two equations of 
equilibrium. (© Russell C. Hibbeler)
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Determine the tension in cables BA and BC necessary to support the 
60-kg cylinder in Fig. 3–6a.

(a)

B

3

4

5

A

D

C

45�

Solution
Free-Body Diagram.  Due to equilibrium, the weight of the cylinder 
causes the tension in cable BD to be TBD = 60(9.81) N, Fig. 3–6b. The 
forces in cables BA  and BC can be determined by investigating the 
equilibrium of ring B. Its free-body diagram is shown in Fig. 3–6c. The 
magnitudes of TA  and TC are unknown, but their directions are known.

Equations of Equilibrium.  Applying the equations of equilibrium 
along the x and y axes, we have

S+ �Fx = 0;	 TC cos 45� - 14
52TA = 0	 (1)

+ c �Fy = 0; 	 TC sin 45� + 13
52TA - 60(9.81) N = 0	 (2)

Equation (1) can be written as TA = 0.8839TC. Substituting this into 
Eq. (2) yields

TC sin 45� + 13
52(0.8839TC) - 60(9.81) N = 0

so that
	 TC = 475.66 N = 476 N 	 Ans.

Substituting this result into either Eq. (1) or Eq. (2), we get
	 TA = 420 N	 Ans.
NOTE: The accuracy of these results, of course, depends on the accuracy 
of the data, i.e., measurements of geometry and loads. For most 
engineering work involving a problem such as this, the data as measured 
to three significant figures would be sufficient.

Example    3.2

Fig. 3–6

60 (9.81) N

TBD � 60 (9.81) N

(b)

TBD � 60 (9.81) N

TA TC

y

x

(c)

B

3

4

5
45�
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The 200-kg crate in Fig. 3–7a is suspended using the ropes AB and AC. Each 
rope can withstand a maximum force of 10 kN before it breaks. If AB 
always remains horizontal, determine the smallest angle u to which the 
crate can be suspended before one of the ropes breaks.

Example    3.3 

FD � 1962 N

y

x

(b)

A

FC

FBu

Fig. 3–7
Solution
Free-Body Diagram.  We will study the equilibrium of ring A . There 
are three forces acting on it, Fig. 3–7b. The magnitude of FD is equal to 
the weight of the crate, i.e., FD = 200 (9.81) N = 1962 N 6 10 kN.

Equations of Equilibrium.  Applying the equations of equilibrium 
along the x and y axes,

S+ �Fx = 0;	 -FC cos u + FB = 0;  FC =
FB

cos u
	 (1)

+ c �Fy = 0;	 FC sin u - 1962 N = 0	 (2)

From Eq. (1), FC is always greater than FB since cos u … 1. Therefore, 
rope AC will reach the maximum tensile force of 10 kN before rope AB. 
Substituting FC = 10 kN into Eq. (2), we get

	 [10(103) N] sin u - 1962 N = 0

	 u = sin- 1(0.1962) = 11.31� = 11.3� 	 Ans.

The force developed in rope AB can be obtained by substituting the 
values for u and FC into Eq. (1).

 10(103) N =
FB

cos 11.31�

 FB = 9.81 kN

(a)

D

A B

C u
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Determine the required length of cord AC in Fig. 3–8a so that the 8-kg 
lamp can be suspended in the position shown. The undeformed length 
of spring AB is l�AB = 0.4 m, and the spring has a stiffness of 
kAB = 300 N>m.

(a)

A B

� 300 N/m
30�

2 m

C

kAB

Example    3.4

Fig. 3–8
Solution
If the force in spring AB is known, the stretch of the spring can be 
found using F = ks. From the problem geometry, it is then possible to 
calculate the required length of AC.

Free-Body Diagram.  The lamp has a weight W = 8(9.81) = 78.5 N 
and so the free-body diagram of the ring at A is shown in Fig. 3–8b.

Equations of Equilibrium.  Using the x, y axes,

S+ �Fx = 0;	 TAB - TAC cos 30� = 0

+ c �Fy = 0;	 TAC sin 30� - 78.5 N = 0

Solving, we obtain
	  TAC = 157.0 N

	  TAB = 135.9 N

The stretch of spring AB is therefore

TAB = kABsAB;	  135.9 N = 300 N>m(sAB)

	           sAB = 0.453 m

so the stretched length is

 lAB = l�AB + sAB

 lAB = 0.4 m + 0.453 m = 0.853 m

The horizontal distance from C to B, Fig. 3–8a, requires

	  2 m = lAC cos 30� + 0.853 m

	  lAC = 1.32 m 	 Ans.

y

x

W � 78.5 N

A

(b)

30�

TAC

TAB
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P3–1.  In each case, draw a free-body diagram of the ring 
at A and identify each force.

(a)

A

Weight
200 N

B C

4

3

5

30�

    Preliminary Problems

P3–2.  Write the two equations of equilibrium, �Fx = 0 
and �Fy = 0. Do not solve.

x

1

P

(a)

600 N

F

y

13
4

5

60�

(b)

A

600 N

C

B

4
3

5

30�

(c)

A

D

500 N

200 N

C

B 30�

45�

Prob. P3–1 Prob. P3–2

x

P

(b)

200 N

F

y

3
4

5

105�

60�

x

P

(c)

450 N 

F
y

300 N 

30�

40�

20�
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F3–4.  The block has a mass of 5 kg and rests on the smooth 
plane. Determine the unstretched length of the spring.

45�

0.4 m

0.3 m

k � 200 N/m

Prob. F3–4

F3–5.  If the mass of cylinder C is 40 kg, determine the 
mass of cylinder A in order to hold the assembly in the 
position shown.

 40 kg

D

A

C

E

B

30�

Prob. F3–5

F3–6.  Determine the tension in cables AB, BC, and CD, 
necessary to support the 10-kg and 15-kg traffic lights at B 
and C, respectively. Also, find the angle u.

B

A

C

D

u15�

Prob. F3–6

All problem solutions must include an FBD.

F3–1.  The crate has a weight of 550 lb. Determine the 
force in each supporting cable.

30�

4
35

A

B
C

D

Prob. F3–1

F3–2.  The beam has a weight of 700 lb. Determine the 
shortest cable ABC that can be used to lift it if the maximum 
force the cable can sustain is 1500 lb.

10 ft

A C

B

u u

Prob. F3–2

F3–3.  If the 5-kg block is suspended from the pulley B and 
the sag of the cord is d = 0.15 m, determine the force in cord 
ABC. Neglect the size of the pulley.

d � 0.15 m

D

A C

B

0.4 m

Prob. F3–3

    FUNDAMENTAL PROBLEMS
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*3–4.  The bearing consists of rollers, symmetrically 
confined within the housing. The bottom one is subjected to 
a 125-N force at its contact A due to the load on the shaft. 
Determine the normal reactions NB and NC on the bearing 
at its contact points B and C for equilibrium.

B

125 N

A

C

40�

NB

NC

Prob. 3–4

3–5.  The members of a truss are connected to the gusset 
plate. If the forces are concurrent at point O, determine the 
magnitudes of F and T for equilibrium. Take u = 90�.

3–6.  The gusset plate is subjected to the forces of three 
members. Determine the tension force in member C and its 
angle u for equilibrium. The forces are concurrent at point O. 
Take F = 8 kN.

x

y

A

O

F

T

9 kN

C

u

B
4

5 3

Probs. 3–5/6

All problem solutions must include an FBD.

3–1.  The members of a truss are pin connected at joint O. 
Determine the magnitudes of F1 and F2 for equilibrium.  
Set u = 60�.

3–2.  The members of a truss are pin connected at joint O. 
Determine the magnitude of F1 and its angle u for 
equilibrium. Set F2 = 6 kN.

u

F1

F270�

30�

7 kN

5 kN

4

y

x
O

3
5

Probs. 3–1/2

3–3.  Determine the magnitude and direction u of F so that 
the particle is in equilibrium.

y

5 kN

8 kN

4 kN

F

x

60�

30�

u

Prob. 3–3

       Problems
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3–7.  The man attempts to pull down the tree using the 
cable and small pulley arrangement shown. If the tension in 
AB is 60 lb, determine the tension in cable CAD and the 
angle u which the cable makes at the pulley.

20�

B

A

C

D

30�

u

Prob. 3–7

*3–8.  The cords ABC and BD can each support a 
maximum load of 100 lb. Determine the maximum weight 
of the crate, and the angle u for equilibrium.

12

5

13

B

A

C

D

u

Prob. 3–8

3–9.  Determine the maximum force F that can be 
supported in the position shown if each chain can support a 
maximum tension of 600 lb before it fails.

CA

B

4 5

3

30�

F

Prob. 3–9

3–10.  The block has a weight of 20 lb and is being hoisted 
at uniform velocity. Determine the angle u for equilibrium 
and the force in cord AB.

3–11.  Determine the maximum weight W of the block 
that can be suspended in the position shown if cords AB 
and CAD can each support a maximum tension of 80 lb. 
Also, what is the angle u for equilibrium?

B

F

20� A

C

Du

Probs. 3–10/11
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3–12.  The lift sling is used to hoist a container having a 
mass of 500 kg. Determine the force in each of the cables  
AB and AC as a function of u. If the maximum tension 
allowed in each cable is 5 kN, determine the shortest length 
of cables AB and AC that can be used for the lift. The center 
of gravity of the container is located at G.

uu

A

B C

1.5 m 1.5 m

G

F

Prob. 3–12

3–13.  A nuclear-reactor vessel has a weight of 500(103) lb. 
Determine the horizontal compressive force that the 
spreader bar AB exerts on point A and the force that each 
cable segment CA and AD exert on this point while the 
vessel is hoisted upward at constant velocity.

A B

C

D E

30� 30�

Prob. 3–13

3–14.  Determine the stretch in each spring for equilibrium 
of the 2-kg block. The springs are shown in the equilibrium 
position.

3–15.  The unstretched length of spring AB is 3 m. If the 
block is held in the equilibrium position shown, determine 
the mass of the block at D.

3 m

3 m 4 m

kAD � 40 N/m

kAB � 30 N/m

kAC � 20 N/m

C B

A

D

Probs. 3–14/15

*3–16.  Determine the mass of each of the two cylinders if 
they cause a sag of s = 0.5 m when suspended from the rings at  
A and B. Note that s = 0 when the cylinders are removed.

1 m 2 m2 m

1.5 m

s

BA

C D

k � 100 N/m k � 100 N/m

Prob. 3–16
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3–17.  Determine the stiffness kT of the single spring such 
that the force F will stretch it by the same amount s as the 
force F stretches the two springs. Express kT in terms of 
stiffness k1 and k2 of the two springs.

s

Unstretched 
position

k1

s
k2

kT

F

F

Prob. 3–17

3–18.  If the spring DB has an unstretched length of 2 m, 
determine the stiffness of the spring to hold the 40-kg crate 
in the position shown.

3–19.  Determine the unstretched length of DB to hold the 
40-kg crate in the position shown. Take k = 180 N>m.

2 m

2 m 3 m

k

C B

A

D

Probs. 3–18/19

*3–20.  A vertical force P = 10 lb is applied to the ends of 
the 2-ft cord AB and spring AC. If the spring has an 
unstretched length of 2 ft, determine the angle u for 
equilibrium. Take k = 15 lb>ft.
3–21.  Determine the unstretched length of spring AC if a 
force P = 80 lb causes the angle u = 60° for equilibrium. 
Cord AB is 2 ft long. Take k = 50 lb>ft.

2 ft

k

2 ft

A

B C

P

u

Probs. 3–20/21

3–22.  The springs BA and BC each have a stiffness of 
500 N>m and an unstretched length of 3 m. Determine the 
horizontal force F applied to the cord which is attached to 
the small ring B so that the displacement of AB from the 
wall is d = 1.5 m.

3–23.  The springs BA and BC each have a stiffness of 
500 N>m and an unstretched length of 3 m. Determine 
the displacement d of the cord from the wall when a 
force F = 175 N is applied to the cord.

F

B

C

d

A

k � 500 N/m

k � 500 N/m

6 m

Probs. 3–22/23
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*3–28.  The street-lights at A and B are suspended from 
the two poles as shown. If each light has a weight of 50 lb, 
determine the tension in each of the three supporting cables 
and the required height h of the pole DE so that cable AB is 
horizontal.

D

A
h

B

C

E
24 ft

18 ft

6 ft

10 ft

5 ft

Prob. 3–28

3–29.  Determine the tension developed in each cord 
required for equilibrium of the 20-kg lamp.

3–30.  Determine the maximum mass of the lamp that the 
cord system can support so that no single cord develops a 
tension exceeding 400 N.

A

B

D

E

F

C

45°

30°
3

4 5

Probs. 3–29/30

*3–24.  Determine the distances x and y for equilibrium if 
F1 = 800 N and F2 = 1000 N.

3–25.  Determine the magnitude of F1 and the distance y if 
x = 1.5 m and F2 = 1000 N.

B

A

C D
F1

F2

x

2 m

y

Probs. 3–24/25

3–26.  The 30-kg pipe is supported at A by a system of five 
cords. Determine the force in each cord for equilibrium.

3–27.  Each cord can sustain a maximum tension of 500 N. 
Determine the largest mass of pipe that can be supported.

A

H

E

B

C

D
3

4

5

60�

Probs. 3–26/27
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3–31.  Blocks D and E have a mass of 4 kg and 6 kg, 
respectively. If x = 2 m determine the force F and the sag s 
for equilibrium.

*3–32.  Blocks D and E have a mass of 4 kg and 6 kg, 
respectively. If F = 80 N, determine the sag s and distance x 
for equilibrium. 

ED

A

CB

6 m

x

F

s

Probs. 3–31/32

3–33.  The lamp has a weight of 15 lb and is supported by 
the six cords connected together as shown. Determine the 
tension in each cord and the angle u for equilibrium. Cord 
BC is horizontal.

3–34.  Each cord can sustain a maximum tension of 20 lb. 
Determine the largest weight of the lamp that can be 
supported. Also, determine u of cord DC for equilibrium.

E

B C

D

A

30�

45�60�

u

Probs. 3–33/34

3–35.  The ring of negligible size is subjected to a vertical 
force of 200 lb. Determine the required length l of cord AC 
such that the tension acting in AC is 160 lb. Also, what is the 
force in cord AB? Hint: Use the equilibrium condition to 
determine the required angle u for attachment, then 
determine l using trigonometry applied to triangle ABC.

40�
BC

A

l 2 ft

200 lb

u

Prob. 3–35

*3–36.  Cable ABC  has a length of 5 m. Determine the 
position x and the tension developed in ABC required for 
equilibrium of the 100-kg sack. Neglect the size of the 
pulley at B.

A

B

C

x
3.5 m

0.75 m

Prob. 3–36

3–37.  A 4-kg sphere rests on the smooth parabolic surface. 
Determine the normal force it exerts on the surface and the 
mass mB of block B needed to hold it in the equilibrium 
position shown.

B

A

y

x
0.4 m

0.4 m

60�

y � 2.5x2

Prob. 3–37
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3–38.  Determine the forces in cables AC and AB needed 
to hold the 20-kg ball D in equilibrium. Take F = 300 N and 
d = 1 m.

3–39.  The ball D has a mass of 20 kg. If a force of F = 100 N 
is applied horizontally to the ring at A, determine the 
dimension d so that the force in cable AC is zero.

A

C

B

F

D

2 m

1.5 m

d

Probs. 3–38/39

*3–40.  The 200-lb uniform container is suspended by 
means of a 6-ft-long cable, which is attached to the sides of 
the tank and passes over the small pulley located at O. If the 
cable can be attached at either points A and B, or C and D, 
determine which attachment produces the least amount of 
tension in the cable. What is this tension?

A

O

C

1 ft
B

2 ft

F

D

2 ft

2 ft

Prob. 3–40

3–41.  The single elastic cord ABC is used to support the 
40-lb load. Determine the position x and the tension in the 
cord that is required for equilibrium. The cord passes 
through the smooth ring at B and has an unstretched length 
of 6ft and stiffness of k =  50 lb>ft. 

A

C

B

x

5 ft

1 ft

Prob. 3–41

3–42.  A “scale” is constructed with a 4-ft-long cord and 
the 10-lb block D. The cord is fixed to a pin at A and passes 
over two small pulleys. Determine the weight of the 
suspended block B if the system is in equilibrium when  
s = 1.5 ft.

s � 1.5 ft

D

C

B

A

1 ft

Prob. 3–42
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       CONCEPTUAL PROBLEMS

C3–1.  The concrete wall panel is hoisted into position using 
the two cables AB and AC of equal length. Establish 
appropriate dimensions and use an equilibrium analysis to 
show that the longer the cables the less the force in each cable.

A

B C

Prob. C3–1 (© Russell C. Hibbeler)

C3–2.  The hoisting cables BA and BC each have a length 
of 20 ft. If the maximum tension that can be supported by 
each cable is 900 lb, determine the maximum distance AC 
between them in order to lift the uniform 1200-lb truss with 
constant velocity.

B

A C ED

Prob. C3–2 (© Russell C. Hibbeler)

C3–3.  The device DB is used to pull on the chain ABC to 
hold a door closed on the bin. If the angle between AB and 
BC is 30°, determine the angle between DB and BC for 
equilibrium.

A

C

B

D

Prob. C3–3 (© Russell C. Hibbeler)

C3–4.  Chain AB is 1 m long and chain AC is 1.2 m long. If 
the distance BC is 1.5 m, and AB can support a maximum 
force of 2 kN, whereas AC can support a maximum force of 
0.8 kN, determine the largest vertical force F that can be 
applied to the link at A.

F

B

A

C

Prob. C3–4 (© Russell C. Hibbeler)



106 	 Chapter 3  E  quil ibr ium of a Part icle

3

3.4  Three-Dimensional Force Systems

In Section 3.1 we stated that the necessary and sufficient condition for 
particle equilibrium is

�F = 0� (3–4)

In the case of a three-dimensional force system, as in Fig. 3–9, we can 
resolve the forces into their respective i, j, k components, so that 
�Fxi + �Fy   j + �Fzk = 0. To satisfy this equation we require

�Fx = 0

�Fy = 0

�Fz = 0
� (3–5)

These three equations state that the algebraic sum of the components of 
all the forces acting on the particle along each of the coordinate axes 
must be zero. Using them we can solve for at most three unknowns, 
generally represented as coordinate direction angles or magnitudes of 
forces shown on the particle’s free-body diagram.

F3
F2

F1

x

y

z

Fig. 3–9

FD

W

FCFB

B D C 

A 

A

The joint at A is subjected to the force from the 
support as well as forces from each of the three 
chains. If the tire and any load on it have a 
weight W, then the force at the support will be 
W, and the three scalar equations of equilibrium 
can be applied to the free-body diagram of the 
joint in order to determine the chain forces, 
FB, FC, and FD. (© Russell C. Hibbeler)

Procedure for Analysis

Three-dimensional force equilibrium problems for a particle can be 
solved using the following procedure.

Free-Body Diagram.
	 •	 Establish the x, y, z axes in any suitable orientation.

	 •	 Label all the known and unknown force magnitudes and 
directions on the diagram.

	 •	 The sense of a force having an unknown magnitude can be 
assumed.

Equations of Equilibrium.
	 •	 Use the scalar equations of equilibrium,  �Fx = 0, �Fy = 0, 

�Fz = 0, in cases where it is easy to resolve each force into its  
x, y, z components.

	 •	 If the three-dimensional geometry appears difficult, then first 
express each force on the free-body diagram as a Cartesian 
vector, substitute these vectors into �F = 0, and then set the i, j, 
k components equal to zero.

	 •	 If the solution for a force yields a negative result, this indicates 
that its sense is the reverse of that shown on the free-body diagram.
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A 90-lb load is suspended from the hook shown in Fig. 3–10a. If the 
load is supported by two cables and a spring having a stiffness 
k = 500 lb>ft, determine the force in the cables and the stretch of the 
spring for equilibrium. Cable AD lies in the x–y plane and cable AC 
lies in the x–z plane.

Solution
The stretch of the spring can be determined once the force in the spring 
is determined.

Free-Body Diagram.  The connection at A is chosen for the 
equilibrium analysis since the cable forces are concurrent at this point. 
The free-body diagram is shown in Fig. 3–10b.

Equations of Equilibrium.  By inspection, each force can easily be 
resolved into its x, y, z components, and therefore the three scalar 
equations of equilibrium can be used. Considering components 
directed along each positive axis as “positive,” we have

�Fx = 0;	  FD sin 30� - 1 4
52 FC = 0 � (1)

�Fy = 0; 	  -FD cos 30� + FB = 0�  (2)

�Fz = 0;  	  1 3
5 2 FC - 90 lb = 0 � (3)

Solving Eq. (3) for FC, then Eq. (1) for FD, and finally Eq. (2) for FB, 
yields
			        FC = 150 lb � Ans.

			        FD = 240 lb � Ans.

			        FB = 207.8 lb = 208 lb� Ans.

The stretch of the spring is therefore

 FB = ksAB

 207.8 lb = (500 lb>ft)(sAB) 

 sAB = 0.416 ft � Ans.

NOTE: Since the results for all the cable forces are positive, each  
cable is in tension; that is, it pulls on point A as expected, Fig. 3–10b.

example    3.5

y

x

z

(b)

30�

90 lb

A

5 3

4

FC

FB

FD

Fig. 3–10

x

y

z

(a)

30�

C

90 lb

A

5 3
4
k = 500 lb/ft

B

D
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example    3.6

The 10-kg lamp in Fig. 3–11a is suspended from the three equal-length 
cords. Determine its smallest vertical distance s from the ceiling if the 
force developed in any cord is not allowed to exceed 50 N.

x
y

s

(a)

z

D
A

B

C

600 mm
120�

120�

Fig. 3–11

Solution

Free-Body Diagram.  Due to symmetry, Fig. 3–11b, the distance 
DA = DB = DC = 600 mm. It follows that from gFx = 0 and gFy = 0, the tension T in each cord will be the same. Also, the angle 
between each cord and the z  axis is g.

Equation of Equilibrium.  Applying the equilibrium equation along 
the z  axis, with T = 50 N, we have

gFz = 0; 	     3[(50 N) cos g] - 10(9.81) N = 0

g = cos- 1 
98.1

150
= 49.16�

From the shaded triangle shown in Fig. 3–11b,

 tan 49.16� =
600 mm

s

  s = 519 mm � Ans.

x

y

s

600 mm

D

z

(b)

A

B

C

10(9.81) N

T
T

T
g
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Determine the force in each cable used to support the 40-lb crate 
shown in Fig. 3–12a.

example    3.7

Solution
Free-Body Diagram.  As shown in Fig. 3–12b, the free-body diagram 
of point A is considered in order to “expose” the three unknown forces 
in the cables.

Equations of Equilibrium.  First we will express each force in 
Cartesian vector form. Since the coordinates of points B and C are 
B(-3 ft, -4 ft, 8 ft) and C(-3 ft, 4 ft, 8 ft), we have

 FB = FBJ -3i - 4j + 8k2(-3)2 + (-4)2 + (8)2
R

 = -0.318FBi - 0.424FBj + 0.848FBk

  FC = FCJ -3i + 4j + 8k2(-3)2 + (4)2 + (8)2
R

 = -0.318FC i + 0.424FC j + 0.848FC k

 FD = FDi

 W = 5-40k6  lb

Equilibrium requires

�F = 0;	             FB + FC + FD + W = 0

-0.318FB  i - 0.424FB  j + 0.848FBk

-0.318FC i + 0.424FC j + 0.848FC k + FDi - 40k = 0

Equating the respective i, j, k components to zero yields

�Fx = 0;                    -0.318FB - 0.318FC + FD = 0� (1)

�Fy = 0;	                  -0.424FB + 0.424FC = 0� (2)

�Fz = 0; 	           0.848FB + 0.848FC - 40 = 0� (3)

Equation (2) states that FB = FC. Thus, solving Eq. (3) for FB and FC 
and substituting the result into Eq. (1) to obtain FD, we have

 FB = FC = 23.6 lb � Ans.

 FD = 15.0 lb � Ans.

Fig. 3–12

y

x

z

(a)

8 ft

3 ft

4 ft

4 ft

C

B

D A

y

x

z

W � 40 lb

(b)

FB

A

FC

FD
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Determine the tension in each cord used to support the 100-kg crate 
shown in Fig. 3–13a.

example    3.8

y1 m
2 m

z

60� 135�
2 m

D

120�

x

(a)

B

A

k � 1.5 kN/m

C

Fig. 3–13

Solution
Free-Body Diagram.   The force in each of the cords can be 
determined by investigating the equilibrium of point A. The free-body 
diagram is shown in Fig. 3–13b. The weight of the crate is 
W = 100(9.81) = 981 N.

Equations of Equilibrium.  Each force on the free-body diagram is 
first expressed in Cartesian vector form. Using Eq. 2–9 for FC and 
noting point D(–1 m, 2 m, 2 m) for FD, we have

 FB = FB  i

 FC = FC cos 120�i + FC cos 135�j + FC cos 60�k

 = -0.5FC i - 0.707FC 
 

j + 0.5FC k

 FD = FDJ -1i + 2j + 2k2(-1)2 + (2)2 + (2)2
R

 = -0.333FDi + 0.667FDj + 0.667FDk

 W = 5-981k6  N

Equilibrium requires

�F = 0;                FB + FC + FD + W = 0

 FB  i - 0.5FC i - 0.707FC  j + 0.5FC k

-0.333FD i + 0.667FD j + 0.667FD k - 981k = 0

Equating the respective i, j, k components to zero,

�Fx = 0;	  FB - 0.5FC - 0.333FD = 0� (1)

�Fy = 0;	  -0.707FC + 0.667FD = 0� (2)

�Fz = 0; 	  0.5FC + 0.667FD - 981 = 0� (3)

Solving Eq. (2) for FD in terms of FC and substituting this into Eq. (3) 
yields FC. FD is then determined from Eq. (2). Finally, substituting the 
results into Eq. (1) gives FB. Hence,

 FC = 813 N� Ans.

 FD = 862 N� Ans.

 FB = 694 N� Ans.

y

x

z

W � 981 N

A

FC

(b)

FD

FB
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All problem solutions must include an FBD.

F3–7.    Determine the magnitude of forces F1, F2, F3,  so 
that the particle is held in equilibrium.

900 N

600 N

z

x y

4

4
4

3

3

3

5

5 F1

F2

F3

5

Prob. F3–7

F3–8.    Determine the tension developed in cables AB, AC, 
and AD.

A

C

z

y

x

B

D

3

3

4

4

5

5

900 N

Prob. F3–8

F3–9.    Determine the tension developed in cables AB, AC, 
and AD.

2 m
1 m

2 m
A

C

z

y

x B

D

600 N

30�

Prob. F3–9

FUNDAMENTAL PROBLEMS

F3–10.    Determine the tension developed in cables AB, 
AC, and AD.

A

Cz

y

x

B

60º

300 lb

30�

45�

120�

60�

D

Prob. F3–10

F3–11.    The 150-lb crate is supported by cables AB, AC, 
and AD. Determine the tension in these wires.

A

D

E

B

C

2 ft

3 ft

3 ft

2 ft

6 ft

z

y

x

Prob. F3–11
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3–45.    If the bucket and its contents have a total weight of 
20 lb, determine the force in the supporting cables DA, DB, 
and DC.

1.5 ft

4.5 ft

2.5 ft

3 ft

3 ft
1.5 ft

A

D

B

C

y

x

z

Prob. 3–45

3–46.    Determine the stretch in each of the two springs 
required to hold the 20-kg crate in the equilibrium position 
shown. Each spring has an unstretched length of 2 m and a 
stiffness of k =  300 N>m. 

y
x

z

O

C

B
A

12 m

6 m4 m

Prob. 3–46

Problems

All problem solutions must include an FBD.

3–43.    The three cables are used to support the 40-kg 
flowerpot. Determine the force developed in each cable for 
equilibrium.

2 m

z

1.5 m

1.5 m

D

y

x

A

B

C

Prob. 3–43

*3–44.    Determine the magnitudes of F1, F2, and F3 for 
equilibrium of the particle.

y
30�

30�

25

24
7

4 kN
10 kN

F1

F2

F3

z

x

Prob. 3–44
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3–47.    Determine the force in each cable needed to support 
the 20-kg flowerpot.

D

y

x
C

A

B

4 m

2 m

2 m

6 m

3 m

z

Prob. 3–47

*3–48.    Determine the tension in the cables in order to 
support the 100-kg crate in the equilibrium position shown.

3–49.    Determine the maximum mass of the crate so that 
the tension developed in any cable does not exceeded 3 kN.

2.5 m
2 m

2 m

2 m

1 mA

z

D

y
x

B

C

Probs. 3–48/49

3–50.    Determine the force in each cable if F = 500 lb.

3–51.    Determine the greatest force F that can be applied 
to the ring if each cable can support a maximum force  
of 800 lb.

z

A

B

x

y

D

F

1

1 ft

2 ft 3 ft

3 ft

6 ft

2 ft
1 ftC

Probs. 3–50/51

*3–52.    Determine the tension developed in cables AB and 
AC and the force developed along strut AD for equilibrium 
of the 400-lb crate.

3–53.    If the tension developed in each cable cannot exceed 
300 lb, determine the largest weight of the crate that can be 
supported. Also, what is the force developed along strut AD?

x 

y 

z

5.5 ft

2 ft

2 ft

A

B

D

C
4 ft

2.5 ft

6 ft

Probs. 3–52/53
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3–58.    Determine the tension developed in the three cables 
required to support the traffic light, which has a mass of  
15 kg. Take h = 4 m.

D
A

h B

C

4 m

4 m

6 m

4 m

3 m

4 m

3 m

6 m3 m

yx

z

Prob. 3–58

3–59.    Determine the tension developed in the three cables 
required to support the traffic light, which has a mass of  
20 kg. Take h = 3.5 m.

D
A

h B

C

4 m

4 m

6 m

4 m

3 m

4 m

3 m

6 m3 m

yx

z

Prob. 3–59

3–54.    Determine the tension developed in each cable for 
equilibrium of the 300-lb crate.

3–55.    Determine the maximum weight of the crate that can 
be suspended from cables AB, AC, and AD so that the tension 
developed in any one of the cables does not exceed 250 lb.

y

A

B

C

D

x

z

6 ft

3 ft

3 ft

2 ft
2 ft

3 ft

4 ft

Probs. 3–54/55

*3–56.    The 25-kg flowerpot is supported at A by the three 
cords. Determine the force acting in each cord for 
equilibrium.

3–57.    If each cord can sustain a maximum tension of 50 N 
before it fails, determine the greatest weight of the flowerpot 
the cords can support.

30�

30�
60�

45�

x

A

z

B

y

D

C

Probs. 3–56/57
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3–62.    If the maximum force in each rod can not exceed 
1500 N, determine the greatest mass of the crate that can be 
supported.

3 m

2 m

1 m

2 m

2 m

1 m

3 m

3 m

A

O

B

C

y

x

z

2 m

Prob. 3–62

3–63.    The crate has a mass of 130 kg. Determine the 
tension developed in each cable for equilibrium.

3 m4 m

y

C

2 m1 m 
1 m 

1 m 

A B

D
x

z

Prob. 3–63

*3–60.    The 800-lb cylinder is supported by three chains as 
shown. Determine the force in each chain for equilibrium. 
Take d = 1 ft.

90�

135�

135�

1 ftD
B

C

A

x

z

y

d

Prob. 3–60

3–61.    Determine the tension in each cable for equilibrium.

5 m

y
O

C

B

D

A

5 m

4 m

4 m

3 m

800 N

4 m

2 m

x

z

Prob. 3–61
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3–66.    Determine the tension developed in cables AB, AC, 
and AD required for equilibrium of the 300-lb crate.

A

D

C

x

1 ft

3 ft

2 ft
1 ft

2 ft

2 ft

y

z

2 ft

B

Prob. 3–66

3–67.    Determine the maximum weight of the crate so that 
the tension developed in any cable does not exceed 450 lb.

A

D

C

x

1 ft

3 ft

2 ft
1 ft

2 ft

2 ft

y

z

2 ft

B

Prob. 3–67

*3–64.    If cable AD is tightened by a turnbuckle and 
develops a tension of 1300 lb, determine the tension 
developed in cables AB and AC and the force developed 
along the antenna tower AE at point A.

15 ft 15 ft

10 ft
10 ft

z

x

B E
D

C

A

y

30 ft

12.5 ft

Prob. 3–64

3–65.    If the tension developed in either cable AB or AC 
can not exceed 1000 lb, determine the maximum tension 
that can be developed in cable AD when it is tightened by 
the turnbuckle. Also, what is the force developed along the 
antenna tower at point A?

15 ft 15 ft

10 ft
10 ft

z

x

B E
D

C

A

y

30 ft

12.5 ft

Prob. 3–65
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Particle Equilibrium

When a particle is at rest or moves with 
constant velocity, it is in equilibrium. 
This requires that all the forces acting on 
the particle form a zero resultant force.

In order to account for all the forces that 
act on a particle, it is necessary to draw 
its free-body diagram. This diagram is an 
outlined shape of the particle that shows 
all the forces listed with their known or 
unknown magnitudes and directions.

F4 F3

F1 F2

Two Dimensions

If the problem involves a linearly elastic 
spring, then the stretch or compression s 
of the spring can be related to the force 
applied to it.

The tensile force developed in a 
continuous cable that passes over a 
frictionless pulley must have a constant 
magnitude throughout the cable to keep 
the cable in equilibrium.

The two scalar equations of force 
equilibrium can be applied with reference 
to an established x, y coordinate system. T

T
Cable is in tension

u

Three Dimensions

If the three-dimensional geometry is 
difficult to visualize, then the equilibrium 
equation should be applied using a 
Cartesian vector analysis. This requires 
first expressing each force on the free-
body diagram as a Cartesian vector. 
When the forces are summed and set 
equal to zero, then the i, j, and k 
components are also zero.

F3
F2

F1

x

y

z
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CHAPTER REVIEW

FR = �F = 0

�Fx = 0
�Fy = 0

 �F = 0

 �Fx = 0
 �Fy = 0
 �Fz = 0

 F = ks

F

�s

l
l0
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All problem solutions must include an FBD.

R3–1.    The pipe is held in place by the vise. If the bolt 
exerts a force of 50 lb on the pipe in the direction shown, 
determine the forces FA and FB that the smooth contacts at 
A and B exert on the pipe.

30�

50 lb

A

B
FB

FA

C

3
4

5

Prob. R3–1

R3–2.    Determine the maximum weight of the engine that 
can be supported without exceeding a tension of 450 lb in 
chain AB and 480 lb in chain AC.

B

C

A

30�

Prob. R3–2

Review Problems

R3–3.    Determine the maximum weight of the flowerpot 
that can be supported without exceeding a cable tension of 
50 lb in either cable AB or AC.

30�
4

3

5

B

C

A

Prob. R3–3

R3–4.    When y is zero, the springs sustain a force of 60 lb. 
Determine the magnitude of the applied vertical forces F 
and -F required to pull point A away from point B a 
distance of y = 2 ft. The ends of cords CAD and CBD are 
attached to rings at C and D.

F

k � 40 lb/ft k � 40 lb/ft

2 ft

2 ft

2 ft

2 ft

–F

y

A

B

DC

Prob. R3–4
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R3–7.    Determine the force in each cable needed to 
support the 500-lb load.

D

y

x

C

A

B

6 ft

8 ft

2 ft
2 ft

6 ft

z

Prob. R3–7

R3–8.    If cable AB is subjected to a tension of 700 N, 
determine the tension in cables AC and AD and the 
magnitude of the vertical force F.

y

6 m

O

C

B

D

A

F

6 m

3 m

3 m

2 m

2 m

1.5 m

x

z

Prob. R3–8

R3–5.    The joint of a space frame is subjected to four 
member forces. Member OA lies in the x–y plane and 
member OB lies in the y–z plane. Determine the force 
acting in each of the members required for equilibrium of 
the joint.

x

45�

A

B

200 lb

F1

z

y

40�

F2

F3
O

Prob. R3–5

R3–6.    Determine the magnitudes of F1, F2, and F3 for 
equilibrium of the particle.

�

F3

F2
F1

�

y

x

z

�

Prob. R3–6



Chapter 4

The force applied to this wrench will produce rotation or a tendency for 
rotation. This effect is called a moment, and in this chapter we will study how 
to determine the moment of a system of forces and calculate their resultants.

(© Rolf Adlercreutz/Alamy)



Force System 
Resultants

CHAPTER OBJECTIVES

n	 To discuss the concept of the moment of a force and show how 
to calculate it in two and three dimensions.

n	 To provide a method for finding the moment of a force about a 
specified axis.

n	 To define the moment of a couple.

n	 To show how to find the resultant effect of a nonconcurrent 
force system.

n	 To indicate how to reduce a simple distributed loading to a 
resultant force acting at a specified location.

4.1  �Moment of a Force—
Scalar Formulation

When a force is applied to a body it will produce a tendency for the body 
to rotate about a point that is not on the line of action of the force. This 
tendency to rotate is sometimes called a torque, but most often it is called 
the moment of a force or simply the moment. For example, consider a 
wrench used to unscrew the bolt in Fig. 4–1a. If a force is applied to 
the handle of the wrench it will tend to turn the bolt about point O (or 
the z axis). The magnitude of the moment is directly proportional to the 
magnitude of F and the perpendicular distance or moment arm d. The 
larger the force or the longer the moment arm, the greater the moment 
or turning effect. Note that if the force F is applied at an angle u � 90�, 
Fig. 4–1b, then it will be more difficult to turn the bolt since the moment 
arm d� = d sin u will be smaller than d. If F is applied along the wrench, 
Fig. 4–1c, its moment arm will be zero since the line of action of F will 
intersect point O (the z axis). As a result, the moment of F about O is also 
zero and no turning can occur.

z

O

(c)

F

Fig. 4–1

z

O

F

d¿ � d sin u

(b)

u

d

z

O d

F

(a)
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We can generalize the above discussion and consider the force F and 
point O which lie in the shaded plane as shown in Fig. 4–2a. The moment 
MO about point O, or about an axis passing through O and perpendicular 
to the plane, is a vector quantity since it has a specified magnitude and 
direction.

Magnitude.  The magnitude of MO is

	 MO = Fd � (4–1)

where d is the moment arm or perpendicular distance from the axis at 
point O to the line of action of the force. Units of moment magnitude 
consist of force times distance, e.g., N # m or lb # ft.

Direction.  The direction of MO is defined by its moment axis, which 
is perpendicular to the plane that contains the force F and its moment 
arm d. The right-hand rule is used to establish the sense of direction of 
MO. According to this rule, the natural curl of the fingers of the right 
hand, as they are drawn towards the palm, represent the rotation, or if no 
movement is possible, there is a tendency for rotation caused by the 
moment. As this action is performed, the thumb of the right hand will 
give the directional sense of MO, Fig. 4–2a. Notice that the moment vector 
is represented three-dimensionally by a curl around an arrow. In two 
dimensions this vector is represented only by the curl as in Fig. 4–2b. 
Since in this case the moment will tend to cause a counterclockwise 
rotation, the moment vector is actually directed out of the page.

Resultant Moment.  For two-dimensional problems, where all the 
forces lie within the x–y plane, Fig. 4–3, the resultant moment (MR )O 

  
about point O (the z axis) can be determined by finding the algebraic sum 
of the moments caused by all the forces in the system. As a convention, 
we will generally consider positive moments as counterclockwise since 
they are directed along the positive z axis (out of the page). Clockwise 
moments will be negative. Doing this, the directional sense of each 
moment can be represented by a plus or minus sign. Using this sign 
convention, with a symbolic curl to define the positive direction, the 
resultant moment in Fig. 4–3 is therefore

 a+(MR)
O

= �Fd;  (MR)
O

= F1d1 - F2d2 + F3d3

If the numerical result of this sum is a positive scalar, (MR )
O
 will be a 

counterclockwise moment (out of the page); and if the result is negative, 
(MR )

O
 will be a clockwise moment (into the page).

Sense of rotation

O

Moment axis

d
F

MO

MO

F

d

O

(a)

(b)

Fig. 4–2

y

x
O

F3

F2

F1

M3

M2 M1

d3

d2
d1

Fig. 4–3
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Example   4.1

For each case illustrated in Fig. 4–4, determine the moment of the 
force about point O.

SOLUTION (Scalar Analysis)
The line of action of each force is extended as a dashed line in order to 
establish the moment arm d. Also illustrated is the tendency of 
rotation of the member as caused by the force. Furthermore, the orbit 
of the force about O is shown as a colored curl. Thus,

Fig. 4–4a	  MO = (100 N)(2 m) = 200 N # m b� Ans.

Fig. 4–4b	  MO = (50 N)(0.75 m) = 37.5 N # mb� Ans.

Fig. 4–4c	  MO = (40 lb)(4 ft + 2 cos 30� ft) = 229 lb # ft b� Ans.

Fig. 4–4d	  MO = (60 lb)(1 sin 45� ft) = 42.4 lb # ft d� Ans.

Fig. 4–4e	  MO = (7 kN)(4 m - 1 m) = 21.0 kN # m d� Ans.

2 m

O

(a)

100 N

Fig. 4–4

2 m

O

(b)

50 N

0.75 m

2 ft

(c)

O

4 ft
2 cos 30� ft

40 lb30�

(d)

O
1 sin 45� ft

60 lb

3 ft

45�
1 ft

2 m

O (e)

4 m

1 m
7 kN
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Determine the resultant moment of the four forces acting on the rod 
shown in Fig. 4–5 about point O.

SOLUTION
Assuming that positive moments act in the +  k direction, i.e., 
counterclockwise, we have

 a + (MR)
O

= �Fd;

 (MR)
O

= -50 N(2 m) + 60 N(0) + 20 N(3 sin 30� m)

 -40 N(4 m + 3 cos 30� m)

 (MR)
O

= -334 N # m = 334 N # mb � Ans.

For this calculation, note how the moment-arm distances for the 20-N 
and 40-N forces are established from the extended (dashed) lines of 
action of each of these forces.

Example   4.2

50 N

40 N

20 N3 m

2 m 2 m

O

x

y

60 N

30�

Fig. 4–5

FN

FH

O

The ability to remove the nail will require the 
moment of FH about point O to be larger than the 
moment of the force FN about O that is needed to 
pull the nail out. (© Russell C. Hibbeler)

MA � FdA

dA

F

A B

As illustrated by the example problems, the moment of a 
force does not always cause a rotation. For example, the force 
F tends to rotate the beam clockwise about its support at A 
with a moment MA = FdA. The actual rotation would occur 
if the support at B were removed. (© Russell C. Hibbeler)
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4.2  Cross Product

The moment of a force will be formulated using Cartesian vectors in the 
next section. Before doing this, however, it is first necessary to expand our 
knowledge of vector algebra and introduce the cross-product method of 
vector multiplication, first used by Willard Gibbs in lectures given in the 
late 19th century.

The cross product of two vectors A and B yields the vector C, which is 
written

	 C = A * B	 (4–2)

and is read “C equals A cross B.”

Magnitude.  The magnitude of C is defined as the product of the 
magnitudes of A and B and the sine of the angle u between their tails 
(0� … u … 180�). Thus, C = AB sin u.

Direction.  Vector C has a direction that is perpendicular to the plane 
containing A and B such that C is specified by the right-hand rule; i.e., 
curling the fingers of the right hand from vector A (cross) to vector B, 
the thumb points in the direction of C, as shown in Fig. 4–6.

Knowing both the magnitude and direction of C, we can write

	 C = A * B = (AB sin u)uC	 (4–3)

where the scalar AB sin u defines the magnitude of C and the unit vector 
uC defines the direction of C. The terms of Eq. 4–3 are illustrated 
graphically in Fig. 4–6.

C � A � B

A

B

u

uC

Fig. 4–6
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B

A

�C � B � A

C � A � B

B

A

Fig. 4–7

Laws of Operation.

	 •	 The commutative law is not valid; i.e., A * B � B * A. Rather,

A * B = -B * A

		  This is shown in Fig. 4–7 by using the right-hand rule. The cross 
product B * A yields a vector that has the same magnitude but acts 
in the opposite direction to C; i.e., B * A = -C.

	 •	 If the cross product is multiplied by a scalar a, it obeys the associa-
tive law;

a(A * B) = (aA) * B = A * (aB) = (A * B)a

		  This property is easily shown since the magnitude of the resultant 
vector 1 � a� AB sin u2 and its direction are the same in each case.

	 •	 The vector cross product also obeys the distributive law of addition,

A * (B + D) = (A * B) + (A * D)

	 •	 The proof of this identity is left as an exercise (see Prob. 4–1). It is 
important to note that proper order of the cross products must be 
maintained, since they are not commutative.

Cartesian Vector Formulation.  Equation 4–3 may be used 
to  find the cross product of any pair of Cartesian unit vectors. For 
example,  to find i * j, the magnitude of the resultant vector is 
(i)( j)(sin 90�) = (1)(1)(1) = 1, and its direction is determined using the 
right-hand rule. As shown in Fig. 4–8, the resultant vector points in the 
+k direction. Thus, i * j = (1)k. In a similar manner,

i * j = k  i * k = -j  i * i = 0

j * k = i  j * i = -k  j * j = 0

k * i = j  k * j = - i  k * k = 0

These results should not be memorized; rather, it should be clearly 
understood how each is obtained by using the right-hand rule and the 
definition of the cross product. A simple scheme shown in Fig. 4–9 is 
helpful for obtaining the same results when the need arises. If the circle 
is constructed as shown, then “crossing” two unit vectors in a 
counterclockwise fashion around the circle yields the positive third unit 
vector; e.g., k * i = j. “Crossing” clockwise, a negative unit vector is 
obtained; e.g., i * k = -j.

y

x

z

k � i � j

j

i

Fig. 4–8

�

�

i

j k

Fig. 4–9

4
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Let us now consider the cross product of two general vectors A and B 
which are expressed in Cartesian vector form. We have

 A * B = (A x i + A y j + A zk) * (Bx i + By j + Bzk)

 = A xBx(i * i) + A xBy(i * j) + A xBz(i * k)

 + A yBx(j * i) + A yBy(j * j) + A yBz(j * k)

 + A zBx(k * i) + A zBy(k * j) + A zBz(k * k)

Carrying out the cross-product operations and combining terms yields

A * B = (A yBz - A zBy)i - (A xBz - A zBx)j + (A xBy - A yBx)k	 (4–4)

This equation may also be written in a more compact determinant 
form as

	 A * B = †
i j k

A x A y A z

Bx By Bz

† 	 (4–5)

Thus, to find the cross product of any two Cartesian vectors A and B, it is 
necessary to expand a determinant whose first row of elements consists 
of the unit vectors i, j, and k and whose second and third rows represent 
the x, y, z components of the two vectors A and B, respectively.*

*A determinant having three rows and three columns can be expanded using three 
minors, each of which is multiplied by one of the three terms in the first row. There are 
four elements in each minor, for example,

A11 A12

A21 A22

By definition, this determinant notation represents the terms (A11A22 - A12A21), which is 
simply the product of the two elements intersected by the arrow slanting downward to the 
right (A11A22) minus the product of the two elements intersected by the arrow slanting 
downward to the left (A12A21). For a 3 * 3 determinant, such as Eq. 4–5, the three minors 
can be generated in accordance with the following scheme:

For element k:

For element j:

For element i: Ax

Bx

Ay

By

Az

Bz

i j k
Ax

Bx

Ay

By

Az

Bz

i j k

i j k
Ax

Bx

Ay

By

Az

Bz

Remember the
negative sign

Adding the results and noting that the j element must include the minus sign yields the 
expanded form of A * B given by Eq. 4–4.
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4.3  �Moment of a Force—Vector 
Formulation

The moment of a force F about point O, or actually about the moment 
axis passing through O and perpendicular to the plane containing O and 
F, Fig. 4–10a, can be expressed using the vector cross product, namely,

	 MO = r * F	 (4–6)

Here r represents a position vector directed from O to any point on the 
line of action of F. We will now show that indeed the moment MO, when 
determined by this cross product, has the proper magnitude and direction.

Magnitude.  The magnitude of the cross product is defined from 
Eq. 4–3 as MO = rF sin u, where the angle u is measured between the 
tails of r and F. To establish this angle, r must be treated as a sliding vector 
so that u can be constructed properly, Fig. 4–10b. Since the moment arm 
d = r sin u, then

MO = rF sin u = F(r sin u) = Fd

which agrees with Eq. 4–1.

Direction.  The direction and sense of MO in Eq. 4–6 are determined 
by the right-hand rule as it applies to the cross product. Thus, sliding r to 
the dashed position and curling the right-hand fingers from r toward F, 
“r cross F,” the thumb is directed upward or perpendicular to the plane 
containing r and F and this is in the same direction as MO, the moment of 
the force about point O, Fig. 4–10b. Note that the “curl” of the fingers, 
like the curl around the moment vector, indicates the sense of rotation 
caused by the force. Since the cross product does not obey the 
commutative law, the order of r * F must be maintained to produce the 
correct sense of direction for MO.

Principle of Transmissibility.  The cross product operation is 
often used in three dimensions since the perpendicular distance or 
moment arm from point O to the line of action of the force is not needed. 
In other words, we can use any position vector r measured from point O 
to any point on the line of action of the force F, Fig. 4–11. Thus,

MO = r1 * F = r2 * F = r3 * F

Since F can be applied at any point along its line of action and still create 
this same moment about point O, then F can be considered a sliding 
vector. This property is called the principle of transmissibility of a force.

O

Moment axis

d

MO

rAr

F

(b)

u

u

Fig. 4–10

O

Moment axis

MO

rA

F

(a)

r1r3 r2

O

F

MO � r1 � F � r2 � F � r3 � F

Line of action

Fig. 4–11
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Cartesian Vector Formulation.  If we establish x, y, z coordinate 
axes, then the position vector r and force F can be expressed as Cartesian 
vectors, Fig. 4–12a. Applying Eq. 4–5 we have

	 MO = r * F = 3 i j k
rx ry rz

Fx Fy Fz

3 	 (4–7)

where

rx, ry, rz   �  represent the x, y, z components of the position  
vector drawn from point O to any point on the  
line of action of the force

Fx, Fy, Fz � represent the x, y, z components of the force vector

If the determinant is expanded, then like Eq. 4–4 we have

	 MO = (ryFz - rzFy)i - (rxFz - rzFx)j + (rxFy - ryFx)k	 (4–8)

The physical meaning of these three moment components becomes 
evident by studying Fig. 4–12b. For example, the i component of MO can 
be determined from the moments of Fx, Fy, and Fz about the x axis. The 
component Fx does not create a moment or tendency to cause turning 
about the x axis since this force is parallel to the x axis. The line of 
action of Fy passes through point B, and so the magnitude of the 
moment of Fy about point A on the x axis is rzFy. By the right-hand rule 
this component acts in the negative i direction. Likewise, Fz passes 
through point C and so it contributes a moment component of ryFzi 
about the x axis. Thus, (MO)x = (ryFz - rzFy) as shown in Eq. 4–8. As an 
exercise, establish the j and k components of MO in this manner and 
show that indeed the expanded form of the determinant, Eq. 4–8, 
represents the moment of F about point O. Once MO is determined, 
realize that it will always be perpendicular to the shaded plane 
containing vectors r and F, Fig. 4–12a.

Resultant Moment of a System of Forces.  If a body is acted 
upon by a system of forces, Fig. 4–13, the resultant moment of the forces 
about point O can be determined by vector addition of the moment of 
each force. This resultant can be written symbolically as

	 (MR)
O

= �(r * F)� (4–9)

z

C

y

Fy

Fx

rz

r ry

rx

x

A

B

O

F

(b)

Fz

Fig. 4–12

z

MO

Moment
axis

x

y
O

F

(a)

r

z

x

y
O

r2

r1
r3

F3 F1

F2

(MR)
O

Fig. 4–13
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Determine the moment produced by the force F in Fig. 4–14a about 
point O. Express the result as a Cartesian vector.

SOLUTION
As shown in Fig. 4–14b, either rA or rB can be used to determine the 
moment about point O. These position vectors are

rA = {12k} m˚and˚rB = {4i + 12j} m

Force F expressed as a Cartesian vector is

 F = FuAB = 2 kNC {4i + 12j - 12k} m2(4 m)2 + (12 m)2 + (-12 m)2
S

 = {0.4588i + 1.376j - 1.376k} kN

Thus

 MO = rA * F = 3 i j k
0 0 12

0.4588  1.376 -1.376

3
 = [0(-1.376) - 12(1.376)]i - [0(-1.376) - 12(0.4588)]j

 + [0(1.376) - 0(0.4588)]k

	  = {-16.5i + 5.51j} kN # m� Ans.

or

 MO = rB * F = 3 i j k
4 12 0

0.4588  1.376 -1.376

3  
 = [12(-1.376) - 0(1.376)]i - [4(-1.376) - 0(0.4588)]j

+ [4(1.376) - 12(0.4588)]k

	  = {-16.5i + 5.51j} kN # m� Ans.

NOTE: As shown in Fig. 4–14b, MO acts perpendicular to the plane 
that contains F, rA, and rB. Had this problem been worked using 
MO = Fd, notice the difficulty that would arise in obtaining the 
moment arm d.

Example   4.3

(b)

A

B

O

x

y

z

F

rB

rA

MO

Fig. 4–14

12 m

4 m

12 mA

B

O

x

y

z

(a)

F � 2 kN

uAB
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Two forces act on the rod shown in Fig. 4–15a. Determine the resultant 
moment they create about the flange at O. Express the result as a 
Cartesian vector.

Example   4.4

x

y

z

O A

B

(b)

rA

rB

F1

F2

x

z

O

5 ft

4 ft

2 ft

A

B

F2 � {80i � 40j � 30k} lb

F1 � {�60i � 40j � 20k} lb

(a)

y

x

y

z

O

 � 39.8�

 � 67.4�

 � 121�

(MR)
O

 � {30i � 40j � 60k} lb·ft

(c)

a

g
b

Fig. 4–15

SOLUTION
Position vectors are directed from point O to each force as shown in 
Fig. 4–15b. These vectors are

 rA = {5j} ft

 rB = {4i + 5j - 2k} ft

The resultant moment about O is therefore

 (MR)
O

= �(r * F)

 = rA * F1 + rB * F2

 = 3 i j k
0 5 0

-60 40 20

3 + 3 i j k
4 5 -2

80 40 -30

3
 = [5(20) - 0(40)]i - [0]j + [0(40) - (5)(-60)]k

 +  [5(-30) - (-2)(40)]i - [4(-30) - (-2)(80)]j + [4(40) - 5(80)]k

 = {30i - 40j + 60k} lb # ft� Ans.

NOTE: This result is shown in Fig. 4–15c. The coordinate direction 
angles were determined from the unit vector for (MR )

O
. Realize that 

the two forces tend to cause the rod to rotate about the moment axis 
in the manner shown by the curl indicated on the moment vector.
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4.4  Principle of Moments

A concept often used in mechanics is the principle of moments, which 
is sometimes referred to as Varignon’s theorem since it was orginally 
developed by the French mathematician Pierre Varignon (1654–1722). 
It states that the moment of a force about a point is equal to the sum of 
the moments of the components of the force about the point. This 
theorem can be proven easily using the vector cross product since the 
cross product obeys the distributive law. For example, consider the 
moments of the force F and two of its components about point O, 
Fig. 4–16. Since F = F1 + F2 we have

MO = r * F = r * (F1 + F2) = r * F1 + r * F2

For two-dimensional problems, Fig. 4–17, we can use the principle of 
moments by resolving the force into its rectangular components and 
then determine the moment using a scalar analysis. Thus,

MO = Fx y - Fy x

This method is generally easier than finding the same moment using 
MO = Fd.

F2

O

r

F1F

Fig. 4–16

MO

Fx

FFy

O

d

x

y

Fig. 4–17

Important Points

	 •	 The moment of a force creates the tendency of a body to turn 
about an axis passing through a specific point O.

	 •	 Using the right-hand rule, the sense of rotation is indicated by the 
curl of the fingers, and the thumb is directed along the moment 
axis, or line of action of the moment.

	 •	 The magnitude of the moment is determined from MO = Fd, 
where d is called the moment arm, which represents the 
perpendicular or shortest distance from point O to the line of 
action of the force.

	 •	 In three dimensions the vector cross product is used to determine 
the moment, i.e., MO = r * F. Remember that r is directed from 
point O to any point on the line of action of F.

Fy

r

Fx

FO

x

d

y

MO

The moment of the force about point O is 
MO = Fd. But it is easier to find this moment 
using MO = Fx(0) + Fyr = Fyr. (© Russell 
C. Hibbeler)
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x

y

(c)

45�

30�

30�
3 m

O

Fx � (5 kN) cos 75�

Fy � (5 kN) sin 75�

Fig. 4–18

Determine the moment of the force in Fig. 4–18a about point O.

Example   4.5

30�

(a)

45�

F � 5 kN3 m

O

d
75�

y

x

(b)

30�

45�

O

dy � 3 sin 30� m

dx � 3 cos 30� m
Fx � (5 kN) cos 45�

Fy � (5 kN) sin 45�

SOLUTION I
The moment arm d in Fig. 4–18a can be found from trigonometry.

d = (3 m) sin 75� = 2.898 m

Thus,

	 MO = Fd = (5 kN)(2.898 m) = 14.5 kN # mb� Ans.

Since the force tends to rotate or orbit clockwise about point O, the 
moment is directed into the page.

SOLUTION II
The x and y components of the force are indicated in Fig. 4–18b. 
Considering counterclockwise moments as positive, and applying the 
principle of moments, we have

 a+  MO = -Fxdy - Fydx

	 =  -(5 cos 45� kN)(3 sin 30� m) - (5 sin 45� kN)(3 cos 30� m)

	  = -14.5 kN # m = 14.5 kN # m b� Ans.

SOLUTION III
The x and y axes can be set parallel and perpendicular to the rod’s 
axis  as shown in Fig. 4–18c. Here Fx produces no moment about 
point O since its line of action passes through this point. Therefore,

 a+  MO = -Fy dx

 = -(5 sin 75� kN)(3 m)

 = -14.5 kN # m = 14.5 kN # mb� Ans.
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0.4 m

0.2 m

30�

O

F = 400 N
(a)

Force F acts at the end of the angle bracket in Fig. 4–19a. Determine 
the moment of the force about point O.

SOLUTION I (Scalar Analysis)
The force is resolved into its x and y components, Fig. 4–19b, then

 a+  MO = 400 sin 30� N(0.2 m) - 400 cos 30� N(0.4 m)

 = -98.6 N # m = 98.6 N # m b

or

	 MO = {-98.6k} N # m � Ans.

SOLUTION II (Vector Analysis)
Using a Cartesian vector approach, the force and position vectors,  
Fig. 4–19c, are

 r = {0.4i - 0.2j} m

 F = {400 sin 30� i - 400 cos 30� j} N

 = {200.0i - 346.4j} N

The moment is therefore

 MO = r * F = 3 i j k
0.4  -0.2 0

200.0  -346.4 0

3
 = 0i - 0j + [0.4(-346.4) - (-0.2)(200.0)]k

 = {-98.6k} N # m � Ans.

NOTE: It is seen that the scalar analysis (Solution I) provides a more 
convenient method for analysis than Solution II since the direction of 
the moment and the moment arm for each component force are easy 
to establish. Hence, this method is generally recommended for solving 
problems displayed in two dimensions, whereas a Cartesian vector 
analysis is generally recommended only for solving three-dimensional 
problems.

example   4.6

Fig. 4–19

0.4 m

0.2 m

(b)

400 cos 30� N

400 sin 30� N

O

y

y

x

0.4 m

0.2 m

30�

O

F(c)

r
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P4–2.  In each case, set up the determinant to find the 
moment of the force about point P.

P4–1.  In each case, determine the moment of the force 
about point O.

3 m 2 m

100 N

(a)

O

Prob. P4–1

(a)

y
P2 m

3 m

z

x

F � {�3i � 2j � 5k} kN

Prob. P4–2

Preliminary Problems

100 N

O

1 m 3 m

(b)

5 m3
4

5

100 N

(e)

O

(h)

1 m

O
500 N

3 m

4
3

1 m

5

2 m

O
3

4

5

500 N

(c)

2 m 3 m

100 N

(f)

O

(i)

O

500 N

4
3 5

1 m

2 m

1 m

2 m 3 m

3
4 5

500 N

(d)

O

(g)

1 m

2 m3
4

5

500 N

O

(b)

y
P

2 m2 m

1 m

3 m

z

x

F � {2i � 4j � 3k} kN

(c)

y

P

1 m
2 m

2 m

2 m

3 m

4 m

z

x

F � {�2i � 3j � 4k} kN
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FUNDAMENTAL PROBLEMS

F4–1.    Determine the moment of the force about point O.

5 m

2 m

100 N
3

4

5

O

Prob. F4–1

F4–2.    Determine the moment of the force about point O.

30�

45�

F � 300 N

0.4 m

0.3 m
O

Prob. F4–2

F4–3.    Determine the moment of the force about point O.

4 ft

3 ft

1 ft

600 lb

O

45�

Prob. F4–3

F4–4.    Determine the moment of the force about point O. 
Neglect the thickness of the member.

50 N

60�

45�

100 mm

100 mm

200 mm
O

Prob. F4–4

F4–5.    Determine the moment of the force about point O.

5 ft

0.5 ft

600 lb

20�

30�

O

Prob. F4–5

F4–6.    Determine the moment of the force about point O.

500 N

3 m

O

45�

Prob. F4–6
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F4–10.	 Determine the moment of force F about point O. 
Express the result as a Cartesian vector.

x

z

y

O

A
B

4 m
3 m

F � 500 N

Prob. F4–10

F4–11.	 Determine the moment of force F about point O. 
Express the result as a Cartesian vector.

x

z

y

O

A

B

C 2 ft

1 ft

4 ft

4 ft

F � 120 lb

Prob. F4–11

F4–12.	 If the two forces F1 = {100i -  120j + 75k} lb and  
F2 = { -200i  +  250j + 100k} lb act at A, determine the 
resultant moment produced by these forces about point O. 
Express the result as a Cartesian vector.

z

O

A

x

y

4 ft

3 ft 5 ft

F1

F2

Prob. F4–12

F4–7.    Determine the resultant moment produced by the 
forces about point O.

O

2 m

2.5 m45�

1 m

600 N

 300 N

 500 N

Prob. F4–7

F4–8.    Determine the resultant moment produced by the 
forces about point O.

F1 � 500 N

F2 � 600 N

A

0.25 m

0.3 m
0.125 m

60�

4
35

O

Prob. F4–8

F4–9.    Determine the resultant moment produced by the 
forces about point O.

O

30�30�

6 ft

6 ft

F2 � 200 lb

F1 � 300 lb

Prob. F4–9
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4–1.  If A, B, and D are given vectors, prove the 
distributive  law for the vector cross product, i.e., 
A * (B + D) = (A * B) + (A * D).

4–2.    Prove the triple scalar product identity 
A # (B * C) = (A * B) # C.

4–3.    Given the three nonzero vectors A, B, and C, show 
that if A # (B * C) = 0, the three vectors must lie in the 
same plane.

*4–4.    Determine the moment about point A of each of the 
three forces acting on the beam.

4–5.    Determine the moment about point B of each of the 
three forces acting on the beam.

F2 � 500 lbF1 � 375 lb

F3 � 160 lb

4

3

5

8 ft 6 ft

0.5 ft

30�

5 ft

BA

Probs. 4–4/5

4–6.  The crowbar is subjected to a vertical force of P = 25 lb 
at the grip, whereas it takes a force of F = 155 lb at the claw to 
pull the nail out. Find the moment of each force about point A 
and determine if P is sufficient to pull out the nail. The crowbar 
contacts the board at point A.

20�

3 in.

1.5 in.

60�

O

A

F

P
14 in.

Prob. 4–6

4–7.    Determine the moment of each of the three forces 
about point A.

*4–8.    Determine the moment of each of the three forces 
about point B.

2 m 3 m

4 m

60�

30�F1 � 250 N

B

F2 � 300 N

F3 � 500 N

A

4
3

5

Probs. 4–7/8

4–9.    Determine the moment of each force about the bolt 
located at A. Take FB = 40 lb, FC = 50 lb.

4–10.    If FB = 30 lb and FC = 45 lb, determine the 
resultant moment about the bolt located at A.

20�

2.5 ft

A
FB

FC

0.75 ft

30�
B

C

25�

Probs. 4–9/10

PROBLEMS
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4–15.    Two men exert forces of F = 80 lb and P = 50 lb on 
the ropes. Determine the moment of each force about A. 
Which way will the pole rotate, clockwise or counterclockwise?

*4–16.    If the man at B exerts a force of P = 30 lb on his 
rope, determine the magnitude of the force F the man at C 
must exert to prevent the pole from rotating, i.e., so the 
resultant moment about A of both forces is zero.

A

P

F

B

C

6 ft

45�

12 ft
3

4

5

Probs. 4–15/16

4–17.    The torque wrench ABC is used to measure the 
moment or torque applied to a bolt when the bolt is located 
at A and a force is applied to the handle at C. The mechanic 
reads the torque on the scale at B. If an extension AO of 
length d is used on the wrench, determine the required scale 
reading if the desired torque on the bolt at O is to be M.

A

F

B

Cd l
O

M

Prob. 4–17

4–11.    The towline exerts a force of P = 6 kN at the end of 
the 8-m-long crane boom. If u = 30�, determine the 
placement x of the hook at B so that this force creates a 
maximum moment about point O. What is this moment?

*4–12.    The towline exerts a force of P = 6 kN at the end 
of the 8-m-long crane boom. If x = 10 m, determine the 
position u of the boom so that this force creates a maximum 
moment about point O. What is this moment?

1 m

O

8 m

A

B

P � 6 kN

u

x

Probs. 4–11/12

4–13.    The 20-N horizontal force acts on the handle of the 
socket wrench. What is the moment of this force about point B. 
Specify the coordinate direction angles a, b, g of the moment 
axis.

4–14.    The 20-N horizontal force acts on the handle of the 
socket wrench. Determine the moment of this force about 
point O. Specify the coordinate direction angles a, b, g of 
the moment axis.

O

x

z

B A

y

50 mm

200 mm

10 mm

20 N

60�

Probs. 4–13/14
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4–22.  Old clocks were constructed using a fusee B to drive 
the gears and watch hands. The purpose of the fusee is to 
increase the leverage developed by the mainspring A as it 
uncoils and thereby loses some of its tension. The 
mainspring can develop a torque (moment) Ts = ku, where 
k = 0.015 N # m/rad is the torsional stiffness and u is the 
angle of twist of the spring in radians. If the torque Tf 
developed by the fusee is to remain constant as the 
mainspring winds down, and x = 10 mm when u = 4 rad, 
determine the required radius of the fusee when u = 3 rad.

Tf

A

Ts

y

x

y

t

B

12 mm

x

Prob. 4–22
4–23.    The tower crane is used to hoist the 2-Mg load upward 
at constant velocity. The 1.5-Mg jib BD, 0.5-Mg jib BC, and 
6-Mg counterweight C have centers of mass at G1, G2, and G3, 
respectively. Determine the resultant moment produced by 
the load and the weights of the tower crane jibs about point A 
and about point B.

*4–24.  The tower crane is used to hoist a 2-Mg load upward 
at constant velocity. The 1.5-Mg jib BD and 0.5-Mg jib BC 
have centers of mass at G1 and G2, respectively. Determine 
the required mass of the counterweight C so that the resultant 
moment produced by the load and the weight of the tower 
crane jibs about point A is zero. The center of mass for the 
counterweight is located at G3.

C
B D

G2

G3

A

9.5m

7.5 m

4 m

G112.5 m

23 m

Probs. 4–23/24

4–18.    The tongs are used to grip the ends of the drilling pipe P. 
Determine the torque (moment) MP that the applied force 
F = 150 lb exerts on the pipe about point P as a function of u. 
Plot this moment MP versus u for 0 …  u …  90°.

4–19.    The tongs are used to grip the ends of the drilling 
pipe P. If a torque (moment) of MP = 800 lb # ft is needed 
at P to turn the pipe, determine the cable force F that must 
be applied to the tongs. Set u = 30°.

43 in.

P

MP

6 in. 

F

u

Probs. 4–18/19

*4–20.    The handle of the hammer is subjected to the force 
of F = 20 lb. Determine the moment of this force about the 
point A.

4–21.    In order to pull out the nail at B, the force F exerted 
on the handle of the hammer must produce a clockwise 
moment of 500 lb # in. about point A. Determine the 
required magnitude of force F.

F

B

A

18 in.

5 in.

30�

Probs. 4–20/21
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4–29.    The force F = {400i - 100j - 700k} lb acts at the 
end of the beam. Determine the moment of this force about 
point O.

4–30.    The force F = {400i - 100j - 700k}  lb acts at the 
end of the beam. Determine the moment of this force about 
point A.

1.5 ft

x

8 ft

0.25 ft

z

A

O

B

F

y

Probs. 4–29/30

4–31.    Determine the moment of the force F about point P. 
Express the result as a Cartesian vector.

2 m

1 m

3 m

3 m

3 m

2 m

A

O

P

x

y

F � {2i � 4j � 6k} kN

z

Prob. 4–31

4–25.    If the 1500-lb boom AB, the 200-lb cage BCD, and 
the 175-lb man have centers of gravity located at points G1, 
G2, and G3, respectively, determine the resultant moment 
produced by each weight about point A.

4–26.    If the 1500-lb boom AB, the 200-lb cage BCD, and 
the 175-lb man have centers of gravity located at points G1, 
G2, and G3, respectively, determine the resultant moment 
produced by all the weights about point A.

75�

B
C

D

20 ft

10 ft

G1

G2

G3

1.75 ft2.5 ft

A

Probs. 4–25/26

4–27.    Determine the moment of the force F about point O. 
Express the result as a Cartesian vector.

*4–28.    Determine the moment of the force F about point P. 
Express the result as a Cartesian vector.

F � {–6i + 4 j � 8k} kN

4 m

3 m6 m

2 m

1 m
O y 

z

x

P

A

Probs. 4–27/28
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*4–36.    Determine the coordinate direction angles a, b, g 
of force F, so that the moment of F about O is zero.

4–37.    Determine the moment of force F about point O. 
The force has a magnitude of 800 N and coordinate direction 
angles of a = 60�, b = 120�, g = 45�. Express the result as 
a Cartesian vector.

x

F

0.4 m

A

z

O y

0.5 m
0.3 m

Probs. 4–36/37

4–38.    Determine the moment of the force F about the 
door hinge at A. Express the result as a Cartesian vector.

4–39.    Determine the moment of the force F about the 
door hinge at B. Express the result as a Cartesian vector. 

5 ft

1.5 ft

1.5 ft

3 ft

7 ft 4 ft

z

C
A

B D

x y

F � 80 lb

45�

Probs. 4–38/39

*4–32.    The pipe assembly is subjected to the force of 
F = {600i + 800j - 500k} N. Determine the moment of 
this force about point A.

4–33.    The pipe assembly is subjected to the force of 
F = {600i + 800j - 500k} N. Determine the moment of 
this force about point B.

y

0.5 m

0.4 m

0.3 m

0.3 m

x

z

F

B

C

A

Probs. 4–32/33

4–34.    Determine the moment of the force of F = 600 N 
about point A.

4–35.    Determine the smallest force F that must be applied 
along the rope in order to cause the curved rod, which has a 
radius of 4 m, to fail at the support A. This requires a 
moment of M = 1500 N # m to be developed at A.

4 m

4 m

z

x

y
6 m

6 m

A

C

B

F

45�

Probs. 4–34/35
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4–43.    The pipe assembly is subjected to the 80-N force. 
Determine the moment of this force about point A.

*4–44.    The pipe assembly is subjected to the 80-N force. 
Determine the moment of this force about point B.

400 mm

y300 mm

200 mm

250 mm200 mm

x

z

30�

40�

F � 80 N

B

C

A

Probs. 4–43/44

4–45.    A force of F = {6i - 2j + 1k} kN produces a 
moment of MO = {4i + 5j - 14k} kN # m about the origin, 
point O. If the force acts at a point having an x coordinate 
of x = 1 m, determine the y and z coordinates. Note: The 
figure shows F and MO in an arbitrary position. 

4–46.    The force F = {6i + 8j + 10k} N creates a moment 
about point O of MO = {-14i + 8j + 2k} N # m. If the 
force passes through a point having an x coordinate of 1 m, 
determine the y and z coordinates of the point. Also, 
realizing that MO = Fd, determine the perpendicular 
distance d from point O to the line of action of F. Note: The 
figure shows F and MO in an arbitrary position.

MO

d

z

x

y
O

y

1 m

z

P
F

Probs. 4–45/46

*4–40.    The curved rod has a radius of 5 ft. If a force of 
60 lb acts at its end as shown, determine the moment of this 
force about point C.

4–41.    Determine the smallest force F that must be applied 
along the rope in order to cause the curved rod, which has a 
radius of 5 ft, to fail at the support C. This requires a moment 
of M = 80 lb # ft to be developed at C.

5 ft

5 ft

60�

z

x

y

6 ft
60 lb

A

C

B

7 ft

Probs. 4–40/41

4–42.    A 20-N horizontal force is applied perpendicular to 
the handle of the socket wrench. Determine the magnitude 
and the coordinate direction angles of the moment created 
by this force about point O.

15�

200 mm

75 mm

20 N

A

O

x

y

z

Prob. 4–42



144 	 Chapter 4    Force System Resultants

4

4–50.    Strut AB of the 1-m-diameter hatch door exerts a 
force of 450 N on point B. Determine the moment of this 
force about point O.

x

z

y

F � 450 N

0.5 m A

B

O

30�

30�
0.5 m

Prob. 4–50

4–51.    Using a ring collar, the 75-N force can act in the 
vertical plane at various angles u. Determine the magnitude 
of the moment it produces about point A, plot the result of M 
(ordinate) versus u (abscissa) for 0� … u … 180�, and specify 
the angles that give the maximum and minimum moment.

1.5 m

75 N

y

2 m

x

z

A

u

Prob. 4–51

4–47.    A force F having a magnitude of F = 100 N acts 
along the diagonal of the parallelepiped. Determine the 
moment of F about the point A, using MA = rB * F and 
MA = rC * F.

F

F

z

y

x

B
A

C

200 mm

400 mm

600 mm

rC

rB

Prob. 4–47

*4–48.    Force F acts perpendicular to the inclined plane. 
Determine the moment produced by F about point A. 
Express the result as a Cartesian vector.

4–49.    Force F acts perpendicular to the inclined plane. 
Determine the moment produced by F about point B. 
Express the result as a Cartesian vector.

z

x y

3 m

3 m

4 m

A

B C

F � 400 N

Probs. 4–48/49
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4.5  �Moment of a Force about a 
Specified Axis

Sometimes, the moment produced by a force about a specified axis must 
be determined. For example, suppose the lug nut at O on the car tire in 
Fig. 4–20a needs to be loosened. The force applied to the wrench will 
create a tendency for the wrench and the nut to rotate about the moment 
axis passing through O; however, the nut can only rotate about the y axis. 
Therefore, to determine the turning effect, only the y component of the 
moment is needed, and the total moment produced is not important. To 
determine this component, we can use either a scalar or vector analysis.

Scalar Analysis.  To use a scalar analysis in the case of the lug nut in 
Fig. 4–20a, the moment arm, or perpendicular distance from the axis to 
the line of action of the force, is dy = d cos u. Thus, the moment of F 
about the y axis is My = F dy = F(d cos u). According to the right-hand 
rule, My is directed along the positive y axis as shown in the figure. In 
general, for any axis a, the moment is

	 Ma = Fda 	 (4–10)

(© Russell C. Hibbeler)

F

x y

d

(a)

z

O

dy

MO

My

Moment axis

u

Fig. 4–20
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Vector Analysis.  To find the moment of force F in Fig. 4–20b about 
the y axis using a vector analysis, we must first determine the moment of 
the force about any point O on the y axis by applying Eq. 4–7, MO = r * F. 
The component My along the y axis is the projection of MO onto the y axis. 
It can be found using the dot product discussed in Chapter 2, so that 
My = j # MO = j # (r * F), where j is the unit vector for the y axis.

We can generalize this approach by letting ua be the unit vector that 
specifies the direction of the a axis shown in Fig. 4–21. Then the moment 
of F about a point O on the axis is MO =  r * F, and the projection of 
this moment onto the a axis is Ma = ua

# (r * F). This combination is 
referred to as the scalar triple product. If the vectors are written in 
Cartesian form, we have

 Ma = [uax
i + uay j + uaz

k] # 3 i j k
rx ry rz

Fx Fy Fz

3
 = uax

(ryFz - rzFy ) - uay
(rxFz - rzFx ) + uaz

(rxFy - ryFx )

This result can also be written in the form of a determinant, making it 
easier to memorize.*

	 Ma = ua
# (r * F) = 3 uax

uay
uaz

rx ry rz

Fx Fy Fz

3 	 (4–11)

where 

uax
, uay

, uaz
   �represent the x, y, z components of the unit vector 

defining the direction of the a axis

rx, ry, rz    �represent the x, y, z components of the position 
vector extended from any point O on the a axis  
to any point A on the line of action of the force

Fx, Fy, Fz   �represent the x, y, z components of the force vector.

When Ma is evaluated from Eq. 4–11, it will yield a positive or negative scalar. 
The sign of this scalar indicates the sense of direction of Ma along the a axis. 
If it is positive, then Ma will have the same sense as ua, whereas if it is negative, 
then Ma will act opposite to ua. Once the a axis is established, point your 
right-hand thumb in the direction of Ma, and the curl of your fingers will 
indicate the sense of twist about the axis, Fig. 4–21.

x y

r

j

(b)

z

O

MO � r � F

F

u

u My

Fig. 4–20 (cont.)

*Take a minute to expand this determinant, to show that it will yield the above result.

r

O

MO � r � FMa

ua

a

Axis of projection

F
A

Fig. 4–21
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Important Points

	 •	 The moment of a force about a specified axis can be determined 
provided the perpendicular distance da from the force line of 
action to the axis can be determined. Ma = Fda.

	 •	 If vector analysis is used, Ma = ua
# (r * F), where ua defines the 

direction of the axis and r is extended from any point on the axis 
to any point on the line of action of the force.

	 •	 If Ma is calculated as a negative scalar, then the sense of direction 
of Ma is opposite to ua.

	 •	 The moment Ma expressed as a Cartesian vector is determined 
from Ma = Maua.

Example   4.7

Determine the resultant moment of the three forces in Fig. 4–22 about 
the x axis, the y axis, and the z axis.

SOLUTION
A force that is parallel to a coordinate axis or has a line of action that 
passes through the axis does not produce any moment or tendency for 
turning about that axis. Therefore, defining the positive direction of 
the moment of a force according to the right-hand rule, as shown in 
the figure, we have

	  Mx = (60 lb)(2 ft) + (50 lb)(2 ft) + 0 = 220 lb # ft� Ans.

	  My = 0 - (50 lb)(3 ft) - (40 lb)(2 ft) = -230 lb # ft� Ans.

	  Mz = 0 + 0 - (40 lb)(2 ft) = -80 lb # ft� Ans.

The negative signs indicate that My and Mz act in the -y and -z 
directions, respectively.

2 ft

2 ft
2 ft 3 ft

x
y

z

B

C

A

O

F3 � 40 lb

F2 � 50 lb

F1 � 60 lb

Fig. 4–22

Provided Ma is determined, we can then express Ma as a Cartesian 
vector, namely,

	 Ma = Maua	 (4–12)

The examples which follow illustrate numerical applications of the 
above concepts.
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Determine the moment MAB produced by the force F in Fig. 4–23a, 
which tends to rotate the rod about the AB axis.

SOLUTION
A vector analysis using MAB = uB

# (r * F) will be considered for the 
solution rather than trying to find the moment arm or perpendicular 
distance from the line of action of F to the AB axis. Each of the terms 
in the equation will now be identified.

Unit vector uB defines the direction of the AB axis of the rod,  
Fig. 4–23b, where

uB =
rB

rB
=

{0.4i + 0.2j} m2(0.4 m)2 + (0.2 m)2
= 0.8944i + 0.4472j

Vector r is directed from any point on the AB axis to any point on the 
line of action of the force. For example, position vectors rC and rD are 
suitable, Fig. 4–23b. (Although not shown, rBC or rBD can also be used.) 
For simplicity, we choose rD, where

rD = {0.6i} m

The force is

F = {-300k} N

Substituting these vectors into the determinant form and expanding, 
we have

MAB = uB
# (rD * F) = 3 0.8944 0.4472 0

0.6 0 0

0 0  -300

3
=  0.8944[0(-300) - 0(0)] - 0.4472[0.6(-300) - 0(0)]

+  0[0.6(0) - 0(0)]

 = 80.50 N # m

This positive result indicates that the sense of MAB is in the same 
direction as uB.

Expressing MAB in Fig. 4–23b as a Cartesian vector yields

 MAB = MABuB = (80.50 N # m)(0.8944i + 0.4472j)

	  = {72.0i + 36.0j} N # m	 Ans.

NOTE: If axis AB is defined using a unit vector directed from B toward 
A, then in the above formulation -uB would have to be used. This 
would lead to MAB = -80.50 N # m. Consequently, MAB = MAB(-uB), 
and the same result would be obtained.

0.4 m

(a)

0.3 m
0.6 m

0.2 m

C

F = 300 N

B

x

y

z

A

Example   4.8

Fig. 4–23

(b)

F

C

B

x

z

MAB

uB

rC

rD

A

D

y
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Determine the magnitude of the moment of force F about segment 
OA of the pipe assembly in Fig. 4–24a.

SOLUTION
The moment of F about the OA axis is determined from 
MOA = uOA

# (r * F), where r is a position vector extending from any 
point on the OA axis to any point on the line of action of F. As 
indicated in Fig. 4–24b, either rOD, rOC, rAD, or rAC can be used; 
however, rOD will be considered since it will simplify the calculation.

The unit vector uOA, which specifies the direction of the OA axis, is

uOA =
rOA

rOA
=

{0.3i + 0.4j} m2(0.3 m)2 + (0.4 m)2
= 0.6i + 0.8j

and the position vector rOD is

rOD = {0.5i + 0.5k} m

The force F expressed as a Cartesian vector is

 F = Fa rCD

rCD
b

 = (300 N) C {0.4i - 0.4j + 0.2k} m2(0.4 m)2 + (-0.4 m)2 + (0.2 m)2
S

 = {200i - 200j + 100k} N

Therefore,

 MOA = uOA
# (rOD * F)

 = 3 0.6 0.8   0

0.5 0   0.5

200 -200  100

3
 = 0.6[0(100) - (0.5)(-200)] - 0.8[0.5(100) - (0.5)(200)] + 0

 = 100 N # m	 Ans.

0.1 m

0.3 m

0.2 m0.4 m

0.5 m

0.5 m

(a)

x y

C

A

O

D

z

F � 300 N

B

Example   4.9

Fig. 4–24

x

y

z

F

(b)

D

A

C
O

rOD

rAD

rAC

rOC

uOA



150 	 Chapter 4    Force System Resultants

4

Preliminary Problems

P4–3.    In each case, determine the resultant moment of the 
forces acting about the x, y, and z axes.

z

y

x

200 N 50 N 

3 m 

2 m

100 N 

300 N 

(a)

z

y

x

300 N 

50 N 

3 m

2 m 100 N 

(b)

0.5 m 

400 N 

z

y

x

300 N 

50 N 
1 m 

2 m 

100 N 

(c)

0.5 m 

400 N 

200 N 

Prob. P4–3

P4–4.    In each case, set up the determinant needed to find 
the moment of the force about the a–a axes.

y

z

x

(a)

a

a

2 m

3 m 1 m

4 m

F � {6i � 2j � 3k} kN

y

z

a

x

(b)

a

2 m

3 m

2 m

2 m

4 m

F � {2i � 4j � 3k} kN

y

z

x

(c)

3 m

2 m

2 m

1 m

4 m
a

a

F � {2i � 4j � 3k} kN

Prob. P4–4
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F4–13.    Determine the magnitude of the moment of the 
force F = {300i - 200j + 150k} N about the x axis.

F4–14.    Determine the magnitude of the moment of the 
force F = {300i - 200j + 150k} N about the OA axis. 

z

O

A

BF

x
y0.4 m

0.2 m

0.3 m

Probs. F4–13/14

F4–15.    Determine the magnitude of the moment of the 
200-N force about the x axis. Solve the problem using both a 
scalar and a vector analysis.

x

O

A

45�

120�

60�

F � 200 N

z

y

0.25 m

0.3 m

Prob. F4–15

F4–16.    Determine the magnitude of the moment of the 
force about the y axis.

2 m

F � {30i � 20j � 50k} N

4 m

z

x

y

A

3 m

Prob. F4–16
F4–17.  Determine the moment of the force 
F = {50i - 40j + 20k} lb about the AB axis. Express the 
result as a Cartesian vector.

2 ft

4 ft3 ftx y

z

B

C

A

F

Prob. F4–17
F4–18.    Determine the moment of force F about the x, the 
y, and the z axes. Solve the problem using both a scalar and 
a vector analysis.

z

A

O

y

x

F � 500 N

3 m

2 m2 m

3

3

4

4

5

5

Prob. F4–18

FUNDAMENTAL PROBLEMS



152 	 Chapter 4    Force System Resultants

Fundamental Problems

4

*4–52.    The lug nut on the wheel of the automobile is to be 
removed using the wrench and applying the vertical force of 
F = 30 N at A. Determine if this force is adequate, provided 
14 N # m of torque about the x axis is initially required to 
turn the nut. If the 30-N force can be applied at A in any 
other direction, will it be possible to turn the nut?

4–53.    Solve Prob. 4–52 if the cheater pipe AB is slipped 
over the handle of the wrench and the 30-N force can be 
applied at any point and in any direction on the assembly.

F � 30 N

A

B

0.25 m

0.3 m

0.1 m

z

y

x

0.5 m

Probs. 4–52/53

4–54.    The A-frame is being hoisted into an upright 
position by the vertical force of F = 80 lb. Determine the 
moment of this force about the y � axis passing through 
points A and B when the frame is in the position shown.

4–55.    The A-frame is being hoisted into an upright 
position by the vertical force of F = 80 lb. Determine the 
moment of this force about the x axis when the frame is in 
the position shown.

30�

15�
6 ft

y

y¿

x¿

C

A

B

F

x

z

6 ft

Probs. 4–54/55

*4–56.    Determine the magnitude of the moments of the 
force F about the x, y, and z axes. Solve the problem (a) using 
a Cartesian vector approach and (b) using a scalar approach.

4–57.    Determine the moment of this force F about an axis 
extending between A and C. Express the result as a Cartesian 
vector.

4 ft

3 ft

2 ft

y

z

C

B

F � {4i � 12j � 3k} lb

x

A

Probs. 4–56/57

4–58.    The board is used to hold the end of a four-way lug 
wrench in the position shown when the man applies a force of 
F = 100 N. Determine the magnitude of the moment produced 
by this force about the x axis. Force F lies in a vertical plane.

4–59.    The board is used to hold the end of a four-way lug 
wrench in position. If a torque of 30 N # m about the x axis is 
required to tighten the nut, determine the required magnitude 
of the force F that the man’s foot must apply on the end of 
the wrench in order to turn it. Force F lies in a vertical plane.

250 mm

F

250 mm

z

y

x

60�

Probs. 4–58/59

PROBLEMS
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*4–60.  The A-frame is being hoisted into an upright 
position by the vertical force of F = 80 lb. Determine the 
moment of this force about the y axis when the frame is in 
the position shown.

30�

15�
6 ft

y

y¿

x¿

C

A

B

F

x

z

6 ft

Prob. 4–60

4–61.    Determine the magnitude of the moment of the force 
F =  {50i -  20j -  80k} N about the base line AB of the tripod.

4–62.    Determine the magnitude of the moment of the force 
F =  {50i -  20j -  80k} N about the base line BC of the tripod.

4–63.    Determine the magnitude of the moment of the force 
F =  {50i -  20j -  80k} N about the base line CA of the tripod.

x

y

C A

D

B

F

z

0.5 m

2.5 m

1 m

2 m

1.5 m

2 m

4 m

Probs. 4–61/62/63

*4–64.    A horizontal force of F =  {-50i} N is applied 
perpendicular to the handle of the pipe wrench. Determine 
the moment that this force exerts along the axis OA (z axis) 
of the pipe assembly. Both the wrench and pipe assembly, 
OABC, lie in the y-z plane. Suggestion: Use a scalar analysis.

4–65.    Determine the magnitude of the horizontal force 
F = -F i acting on the handle of the wrench so that this 
force produces a component of the moment along the 
OA axis (z axis) of the pipe assembly of Mz = {4k} N # m. 
Both the wrench and the pipe assembly, OABC, lie in 
the y-z plane. Suggestion: Use a scalar analysis.

y

z

O

A

x

135°

0.6 m

0.8 m

B

C

F

0.2 m

Probs. 4–64/65
4–66.    The force of F = 30 N acts on the bracket as shown. 
Determine the moment of the force about the a-a axis of 
the pipe if a = 60�, b = 60�, and g = 45�. Also, determine 
the coordinate direction angles of F in order to produce the 
maximum moment about the a-a axis. What is this moment?

b

g

a

y

a

a

x

z

100 mm

50 mm

F � 30 N

100 mm

Prob. 4–66
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4.6  Moment of a Couple

A couple is defined as two parallel forces that have the same magnitude, 
but opposite directions, and are separated by a perpendicular distance d, 
Fig. 4–25. Since the resultant force is zero, the only effect of a couple is to 
produce an actual rotation, or if no movement is possible, there is a 
tendency of rotation in a specified direction. For example, imagine that 
you are driving a car with both hands on the steering wheel and you are 
making a turn. One hand will push up on the wheel while the other hand 
pulls down, which causes the steering wheel to rotate.

The moment produced by a couple is called a couple moment. We can 
determine its value by finding the sum of the moments of both couple 
forces about any arbitrary point. For example, in Fig. 4–26, position vectors 
rA and rB are directed from point O to points A and B lying on the line of 
action of -F and F. The couple moment determined about O is therefore

M = rB * F + rA * -F = (rB - rA) * F

However rB = rA + r or r = rB - rA, so that

	 M = r * F	 (4–13)

This result indicates that a couple moment is a free vector, i.e., it can 
act at any point since M depends only upon the position vector r directed 
between the forces and not the position vectors rA and rB, directed from 
the arbitrary point O to the forces. This concept is unlike the moment of 
a force, which requires a definite point (or axis) about which moments 
are determined.

Scalar Formulation.  The moment of a couple, M, Fig. 4–27, is 
defined as having a magnitude of

	 M = Fd 	 (4–14)

where F is the magnitude of one of the forces and d is the perpendicular 
distance or moment arm between the forces. The direction and sense of 
the couple moment are determined by the right-hand rule, where the 
thumb indicates this direction when the fingers are curled with the sense 
of rotation caused by the couple forces. In all cases, M will act 
perpendicular to the plane containing these forces.

Vector Formulation.  The moment of a couple can also be 
expressed by the vector cross product using Eq. 4–13, i.e.,

	 M = r * F 	 (4–15)

Application of this equation is easily remembered if one thinks of taking 
the moments of both forces about a point lying on the line of action of 
one of the forces. For example, if moments are taken about point A in 
Fig. 4–26, the moment of -F is zero about this point, and the moment of 
F is defined from Eq. 4–15. Therefore, in the formulation r is crossed with 
the force F to which it is directed.

F

�F

d

Fig. 4–25

F

�F
d

M

Fig. 4–27

O

B
A

F

�F

rArB

r

Fig. 4–26
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Equivalent Couples.  If two couples produce a moment with the same 
magnitude and direction, then these two couples are equivalent. For example, 
the two couples shown in Fig. 4–28 are equivalent because each couple 
moment has a magnitude of M = 30 N(0.4 m) = 40 N(0.3 m) = 12 N # m, 
and each is directed into the plane of the page. Notice that larger forces are 
required in the second case to create the same turning effect because the 
hands are placed closer together. Also, if the wheel was connected to the shaft 
at a point other than at its center, then the wheel would still turn when each 
couple is applied since the 12 N # m couple is a free vector.

Resultant Couple Moment.  Since couple moments are vectors, 
their resultant can be determined by vector addition. For example, 
consider the couple moments M1 and M2 acting on the pipe in Fig. 4–29a. 
Since each couple moment is a free vector, we can join their tails at any 
arbitrary point and find the resultant couple moment, MR = M1 + M2 as 
shown in Fig. 4–29b.

If more than two couple moments act on the body, we may generalize 
this concept and write the vector resultant as

	 MR = �(r * F)	 (4–16)

These concepts are illustrated numerically in the examples that follow. 
In general, problems projected in two dimensions should be solved using 
a scalar analysis since the moment arms and force components are easy 
to determine.

0.3 m0.4 m

30 N

40 N

40 N

30 N

Fig. 4–28 (© Russell C. Hibbeler)

M2

M1

(a)

MR
(b)

M2 M1

Fig. 4–29
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F F

Steering wheels on vehicles have been made 
smaller than on older vehicles because 
power steering does not require the driver 
to apply a large couple moment to the rim 
of the wheel. (© Russell C. Hibbeler)

Important Points

	 •	 A couple moment is produced by two noncollinear forces that 
are equal in magnitude but opposite in direction. Its effect is to 
produce pure rotation, or tendency for rotation in a specified 
direction.

	 •	 A couple moment is a free vector, and as a result it causes the 
same rotational effect on a body regardless of where the couple 
moment is applied to the body.

	 •	 The moment of the two couple forces can be determined about 
any point. For convenience, this point is often chosen on the line 
of action of one of the forces in order to eliminate the moment of 
this force about the point.

	 •	 In three dimensions the couple moment is often determined 
using the vector formulation, M = r * F, where r is directed 
from any point on the line of action of one of the forces to any 
point on the line of action of the other force F.

	 •	 A resultant couple moment is simply the vector sum of all the 
couple moments of the system.

Determine the resultant couple moment of the three couples acting 
on the plate in Fig. 4–30.

SOLUTION
As shown the perpendicular distances between each pair of couple forces 
are d1 = 4 ft, d2 = 3 ft, and d3 = 5 ft. Considering counterclockwise 
couple moments as positive, we have

 a+  MR = �M;  MR = -F1d1 + F2d2 - F3d3

 = -(200 lb)(4 ft) + (450 lb)(3 ft) - (300 lb)(5 ft)

 = -950 lb # ft = 950 lb # ft b� Ans.

The negative sign indicates that MR has a clockwise rotational sense.

Example   4.10

F2 � 450 lb

F1 � 200 lb
F3 � 300 lb

F3 � 300 lb

F2 � 450 lb

d3 � 5 ft

F1 � 200 lb

A

B

d2 � 3 ft

d1 � 4 ft

Fig. 4–30
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Example   4.11

Determine the magnitude and direction of the couple moment acting 
on the gear in Fig. 4–31a.

30�

30�

(c)

F � 600 N

F � 600 N

O

d

Fig. 4–31

(b)

30�

F � 600 N
600 sin 30� N

600 cos 30� N

30�

F � 600 N 600 sin 30� N

600 cos 30� N

0.2 m

O

A

30�

30�

(a)

F � 600 N

F � 600 N

0.2 m

O

SOLUTION
The easiest solution requires resolving each force into its components 
as shown in Fig. 4–31b. The couple moment can be determined by 
summing the moments of these force components about any point, for 
example, the center O of the gear or point A. If we consider 
counterclockwise moments as positive, we have

 a+  M = �MO;  M = (600 cos 30� N)(0.2 m) - (600 sin 30� N)(0.2 m)

 = 43.9 N # md � Ans.

or

 a+  M = �MA;  M = (600 cos 30� N)(0.2 m) - (600 sin 30� N)(0.2 m)

 = 43.9 N # md � Ans.

This positive result indicates that M has a counterclockwise rotational 
sense, so it is directed outward, perpendicular to the page.

NOTE: The same result can also be obtained using M = Fd, where d is 
the perpendicular distance between the lines of action of the couple 
forces, Fig. 4–31c. However, the computation for d is more involved. 
Realize that the couple moment is a free vector and can act at any 
point on the gear and produce the same turning effect about point O.
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Determine the couple moment acting on the pipe shown in Fig. 4–32a. 
Segment AB is directed 30° below the x–y plane.

Example   4.12

6 in.

z

x

y

25 lb

A

25 lb

B
(d)

30�

d

O

Fig. 4–32

z

x
25 lb

A

25 lb

B

(b)

y
rB

rA

O

SOLUTION I (VECTOR ANALYSIS)
The moment of the two couple forces can be found about any point. If 
point O is considered, Fig. 4–32b, we have

 M = rA * (-25k) + rB * (25k)

 = (8j) * (-25k) + (6 cos 30�i + 8j - 6 sin 30�k) * (25k)

 = -200i - 129.9j + 200i

 = {-130j} lb # in. � Ans.

It is easier to take moments of the couple forces about a point lying on 
the line of action of one of the forces, e.g., point A, Fig. 4–32c. In this 
case the moment of the force at A is zero, so that

 M = rAB * (25k)

 = (6 cos 30�i - 6 sin 30�k) * (25k)

	  = {-130j} lb # in. � Ans.

SOLUTION II (SCALAR ANALYSIS)
Although this problem is shown in three dimensions, the geometry is 
simple enough to use the scalar equation M = Fd. The perpendicular 
distance between the lines of action of the couple forces is 
d = 6 cos 30� = 5.196 in., Fig. 4–32d. Hence, taking moments of the 
forces about either point A or point B yields

M = Fd = 25 lb (5.196 in.) = 129.9 lb # in.

Applying the right-hand rule, M acts in the -j direction. Thus,

	 M = {-130j} lb # in. � Ans.

z

x

y

25 lb

A

25 lb

B
(c)

rAB

O

O

z

30�

x
y

25 lb

A

25 lb

B

8 in.

6 in.

(a)
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Replace the two couples acting on the pipe column in Fig. 4–33a by a 
resultant couple moment.

Example   4.13

SOLUTION (VECTOR ANALYSIS)
The couple moment M1, developed by the forces at A and B, can 
easily be determined from a scalar formulation.

M1 = Fd = 150 N(0.4 m) = 60 N # m

By the right-hand rule, M1 acts in the + i direction, Fig. 4–33b. Hence,

M1 = {60i} N # m

Vector analysis will be used to determine M2, caused by forces at C 
and D. If moments are calculated about point D, Fig. 4–33a, 
M2 = rDC * FC, then

 M2 = rDC * FC = (0.3i) * 312514
52j - 12513

52k4
 = (0.3i) * [100j - 75k] = 30(i * j) - 22.5(i * k)

 = {22.5j + 30k} N # m

Since M1 and M2 are free vectors, they may be moved to some 
arbitrary point and added vectorially, Fig. 4–33c. The resultant couple 
moment becomes

	 MR = M1 + M2 = {60i + 22.5j + 30k} N # m� Ans.

0.3 m

150 N
125 N

125 N

3
45

D

z

y
53

4

C

0.4 m
150 N

A

B

x

(a)

M2

M1

3
45

(b) (c)

M1

MR
M2

Fig. 4–33
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FUNDAMENTAL PROBLEMS

F4–22.  Determine the couple moment acting on the beam.

A B

4 m

1 m

1 m

10 kN

10 kN

4

3

5

4

3

5

Prob. F4–22

F4–23.  Determine the resultant couple moment acting on 
the pipe assembly.

y

z

(Mc)3 � 300 lb �ft

(Mc)1 � 450 lb �ft

(Mc)2 � 250 lb �ft

2 ft
2 ft

2 ft
1.5 ft

3.5 ft

x

Prob. F4–23

F4–24.  Determine the couple moment acting on the pipe 
assembly and express the result as a Cartesian vector.

B

A
0.4 m

z

yx

FA � 450 N

FB � 450 N

3

3

4

4

5

5

C

O

0.3 m

Prob. F4–24

F4–19.  Determine the resultant couple moment acting on 
the beam.

0.2 m

200 N

200 N

A

300 N300 N

400 N 400 N

3 m 2 m

Prob. F4–19

F4–20.  Determine the resultant couple moment acting on 
the triangular plate.

4 ft

4 ft 4 ft

300 lb

200 lb

200 lb

300 lb

150 lb

150 lb

Prob. F4–20

F4–21.  Determine the magnitude of F so that the resultant 
couple moment acting on the beam is 1.5 kN # m clockwise.

2 kN

2 kN

0.3 m
A

F

�F

B

0.9 m

Prob. F4–21
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PROBLEMS

4–69.  If the resultant couple of the three couples acting on 
the triangular block is to be zero, determine the magnitude 
of forces F and P.

F

y

z

D P

�F

�PA

C

B

x

600 mm
150 N

150 N

400 mm

500 mm300 mm

Prob. 4–69

4–70.  Two couples act on the beam. If F = 125 lb, 
determine the resultant couple moment.

4–71.  Two couples act on the beam. Determine the 
magnitude of F so that the resultant couple moment is 
450 lb # ft, counterclockwise. Where on the beam does the 
resultant couple moment act?

200 lb

200 lb

2 ft

1.5 ft 1.25 ft

30�

30�

�F

F

Probs. 4–70/71

4–67.  A clockwise couple M = 5 N # m is resisted by the 
shaft of the electric motor. Determine the magnitude of the 
reactive forces -R and R which act at supports A and B so 
that the resultant of the two couples is zero.

A B

M

R�R

150 mm

60�60�

Prob. 4–67

*4–68.  A twist of 4 N # m is applied to the handle of the 
screwdriver. Resolve this couple moment into a pair of couple 
forces F exerted on the handle and P exerted on the blade.

30 mm

5 mm

4 N�m

F
P

–F

–P

Prob. 4–68
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4–74.  The man tries to open the valve by applying the 
couple forces of F = 75 N to the wheel. Determine the 
couple moment produced.

4–75.  If the valve can be opened with a couple moment of 
25 N # m, determine the required magnitude of each couple 
force which must be applied to the wheel.

150 mm 150 mm

F

F

Probs. 4–74/75

*4–76.  Determine the magnitude of F so that the resultant 
couple moment is 12 kN # m, counterclockwise. Where on 
the beam does the resultant couple moment act?

F�F

8 kN

8 kN

1.2 m

0.3 m

0.4 m

30� 30�

Prob. 4–76

*4–72.  Determine the magnitude of the couple forces F so 
that the resultant couple moment on the crank is zero.

150 lb

150 lb

30� 30�

45�45�
30�

30�

F

–F
5 in.

5 in.

4 in.

4 in.

Prob. 4–72

4–73.  The ends of the triangular plate are subjected to 
three couples. Determine the magnitude of the force F so 
that the resultant couple moment is 400 N # m clockwise.

250 N 250 N

600 N

600 N

1 m

�F

F

40� 40� 

Prob. 4–73
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4–82.  Express the moment of the couple acting on the 
pipe assembly in Cartesian vector form. What is the 
magnitude of the couple moment?

z

y

x
B

A

20 lb

20 lb

1 ft
C

1.5 ft

3 ft

2 ft

1 ft

Prob. 4–82

4–83.  If M1 = 180 lb # ft, M2 = 90 lb # ft, and M3 = 120 lb # ft, 
determine the magnitude and coordinate direction angles 
of the resultant couple moment.

*4–84.  Determine the magnitudes of couple moments M1, 
M2, and M3 so that the resultant couple moment is zero.

x

z

y

2 ft

2 ft

2 ft

3 ft

150 lb � ft

1 ft

45�

45�

M1

M2

M3

Probs. 4–83/84

4–77.  Two couples act on the beam as shown. If F = 150 lb, 
determine the resultant couple moment.

4–78.  Two couples act on the beam as shown. Determine 
the magnitude of F so that the resultant couple moment is 
300 lb # ft counterclockwise. Where on the beam does the 
resultant couple act?

200 lb

200 lb

1.5 ft

–F

4
35

F 4
35

4 ft

Probs. 4–77/78

4–79.  Two couples act on the frame. If the resultant couple 
moment is to be zero, determine the distance d between the 
80-lb couple forces.

*4–80.  Two couples act on the frame. If d = 4 ft, determine 
the resultant couple moment. Compute the result by 
resolving each force into x and y components and (a) finding 
the moment of each couple (Eq. 4–13) and (b) summing the 
moments of all the force components about point A.

4–81.  Two couples act on the frame. If d = 4 ft, determine 
the resultant couple moment. Compute the result by 
resolving each force into x and y components and (a) finding 
the moment of each couple (Eq. 4–13) and (b) summing the 
moments of all the force components about point B.

2 ft

B

A

y

1 ft

3 ft
50 lb

80 lb

50 lb
30�

30�

5

4
3

80 lb

3 ft

d

x

5

4
3

Probs. 4–79/80/81
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4–87.  Determine the resultant couple moment of the two 
couples that act on the assembly. Specify its magnitude and 
coordinate direction angles.

30�

60 lb

80 lb

80 lb

60 lb

x
y

z

2 in.
2 in.

4 in.

3 in.

Prob. 4–87

*4–88.  Express the moment of the couple acting on the 
frame in Cartesian vector form. The forces are applied 
perpendicular to the frame. What is the magnitude of the 
couple moment? Take F = 50 N.

4–89.  In order to turn over the frame, a couple moment is 
applied as shown. If the component of this couple moment 
along the x axis is Mx = {-20i} N # m, determine the 
magnitude F of the couple forces.

�F
x

y

z

O

1.5 m

3 m

30�

F

Probs. 4–88/89

4–85.  The gears are subjected to the couple moments 
shown. Determine the magnitude and coordinate direction 
angles of the resultant couple moment.

z

x

y

M1 � 40 lb � ft

M2 � 30 lb � ft20�

30�

15�

Prob. 4–85

4–86.  Determine the required magnitude of the couple 
moments M2 and M3 so that the resultant couple moment 
is zero.

M3

M2

45�

M1 � 300 N � m

Prob. 4–86
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4–94.  Express the moment of the couple acting on the rod 
in Cartesian vector form. What is the magnitude of the 
couple moment?

1 m

2 m

1 m 3 m

x

y

B

A

z

�F � { 4i  � 3j � 4k} kN

F � {– 4i + 3j � 4k} kN

Prob. 4–94

4–95.  If F1 = 100 N, F2 = 120 N, and F3 = 80 N, 
determine the magnitude and coordinate direction angles 
of the resultant couple moment.

*4–96.  Determine the required magnitude of F1, F2, 
and  F3 so that the resultant couple moment is  
(Mc)R = [50i - 45j - 20k] N # m.

–F1
y

x

z

0.2 m

0.2 m

0.2 m

0.3 m

0.2 m

0.2 m

0.3 m

0.3 m

30�

–F2

F1

–F4 � [�150 k] N

F4 � [150 k] N

 F2

–F3

F3

Probs. 4–95/96

4–90.  Express the moment of the couple acting on the 
pipe in Cartesian vector form. What is the magnitude of the 
couple moment? Take F = 125 N.

4–91.  If the couple moment acting on the pipe has a 
magnitude of 300 N # m, determine the magnitude F of the 
forces applied to the wrenches.

z

O

x

y

A

B

�F

F

600 mm

200 mm

150 mm

150 mm

Probs. 4–90/91

*4–92.  If F = 80 N, determine the magnitude and 
coordinate direction angles of the couple moment. The pipe 
assembly lies in the x–y plane.

4–93.  If the magnitude of the couple moment acting on 
the pipe assembly is 50 N # m, determine the magnitude of 
the couple forces applied to each wrench. The pipe assembly 
lies in the x–y plane.

x

z

y

300 mm

200 mm

200 mm
300 mm

300 mm

�F

F

Probs. 4–92/93
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4.7  �Simplification of a Force and Couple 
System

Sometimes it is convenient to reduce a system of forces and couple moments 
acting on a body to a simpler form by replacing it with an equivalent system, 
consisting of a single resultant force acting at a specific point and a resultant 
couple moment. A system is equivalent if the external effects it produces on 
a body are the same as those caused by the original force and couple 
moment system. In this context, the external effects of a system refer to the 
translating and rotating motion of the body if the body is free to move, or it 
refers to the reactive forces at the supports if the body is held fixed.

For example, consider holding the stick in Fig. 4–34a, which is subjected 
to the force F at point A. If we attach a pair of equal but opposite forces 
F and -F at point B, which is on the line of action of F, Fig. 4–34b, we 
observe that -F at B and F at A will cancel each other, leaving only F 
at  B, Fig. 4–34c. Force F has now been moved from A to B without 
modifying  its external effects on the stick; i.e., the reaction at the grip 
remains the same. This demonstrates the principle of transmissibility, 
which states that a force acting on a body (stick) is a sliding vector since 
it can be applied at any point along its line of action.

We can also use the above procedure to move a force to a point that is not 
on the line of action of the force. If F is applied perpendicular to the stick, as 
in Fig. 4–35a, then we can attach a pair of equal but opposite forces F and -F 
to B, Fig. 4–35b. Force F is now applied at B, and the other two forces, F at A 
and -F at B, form a couple that produces the couple moment M = Fd, 
Fig. 4–35c. Therefore, the force F can be moved from A to B provided a 
couple moment M is added to maintain an equivalent system. This couple 
moment is determined by taking the moment of F about B. Since M is 
actually a free vector, it can act at any point on the stick. In both cases the 
systems are equivalent, which causes a downward force F and clockwise 
couple moment M = Fd to be felt at the grip.

F F

F�FAB

(a)

AB

F

(b) (c)

Fig. 4–34 (© Russell C. Hibbeler)

F F

�F
A

d

(a)

F
F

M � Fd

(b) (c)

Fig. 4–35 (© Russell C. Hibbeler)
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System of Forces and Couple Moments.  Using the above 
method, a system of several forces and couple moments acting on a body 
can be reduced to an equivalent single resultant force acting at a point O 
and a resultant couple moment. For example, in Fig. 4–36a, O is not on the 
line of action of F1, and so this force can be moved to point O provided a 
couple moment (MO)1 = r1 * F is added to the body. Similarly, the couple 
moment (MO)2 = r2 * F2 should be added to the body when we move F2 
to point O. Finally, since the couple moment M is a free vector, it can just 
be moved to point O. By doing this, we obtain the equivalent system 
shown in Fig. 4–36b, which produces the same external effects (support 
reactions) on the body as that of the force and couple system shown in 
Fig. 4–36a. If we sum the forces and couple moments, we obtain the 
resultant force FR = F1 + F2 and the resultant couple moment 
(MR)O = M + (MO)1 + (MO)2, Fig. 4–36c.

Notice that FR is independent of the location of point O since it is 
simply a summation of the forces. However, (MR)O depends upon this 
location since the moments M1 and M2 are determined using the position 
vectors r1 and r2, which extend from O to each force. Also note that 
(MR)O is a free vector and can act at any point on the body, although 
point O is generally chosen as its point of application.

We can generalize the above method of reducing a force and couple 
system to an equivalent resultant force FR acting at point O and a 
resultant couple moment (MR)O by using the following two equations.

	
    FR = �F
(MR)O = �MO + �M

	 (4–17)

The first equation states that the resultant force of the system is 
equivalent to the sum of all the forces; and the second equation states 
that the resultant couple moment of the system is equivalent to the sum 
of all the couple moments gM plus the moments of all the forces gMO 
about point O. If the force system lies in the x–y plane and any couple 
moments are perpendicular to this plane, then the above equations 
reduce to the following three scalar equations.

	  

 (FR)x = �Fx

 (FR)y = �Fy

(MR)O = �MO + �M

	 (4–18)

Here the resultant force is determined from the vector sum of its two 
components (FR)x and (FR)y.

O

F1

(a)

F2

r2

r1

M

(b)

O(c)

�

O

F1

F2

M

(MO)2 � r2 � F2

(MO)1 � r1 � F1

FR

(MR)
O

�

u

Fig. 4–36
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The weights of these traffic lights can be 
replaced by their equivalent resultant 
force W R = W 1 + W 2 and a couple 
moment (MR)O = W 1d1 + W 2 d2 at the 
support, O. In both cases the support 
must provide the same resistance to 
translation and rotation in order to 
keep the member in the horizontal 
position. (© Russell C. Hibbeler)

W1 W2

d1
d2

O

WR

(MR)O

O

Procedure for Analysis

The following points should be kept in mind when simplifying a 
force and couple moment system to an equivalent resultant force 
and couple system.

	 •	 Establish the coordinate axes with the origin located at point O 
and the axes having a selected orientation.

Force Summation.
	 •	 If the force system is coplanar, resolve each force into its x and 

y components. If a component is directed along the positive x or 
y axis, it represents a positive scalar; whereas if it is directed along 
the negative x or y axis, it is a negative scalar.

	 •	 In three dimensions, represent each force as a Cartesian vector 
before summing the forces.

Moment Summation.
	 •	 When determining the moments of a coplanar force system about 

point O, it is generally advantageous to use the principle of 
moments, i.e., determine the moments of the components of each 
force, rather than the moment of the force itself.

	 •	 In three dimensions use the vector cross product to determine the 
moment of each force about point O. Here the position vectors 
extend from O to any point on the line of action of each force.

Important Points

	 •	 Force is a sliding vector, since it will create the same external 
effects on a body when it is applied at any point P along its line of 
action. This is called the principle of transmissibility.

	 •	 A couple moment is a free vector since it will create the same 
external effects on a body when it is applied at any point P on 
the body.

	 •	 When a force is moved to another point P that is not on its line of 
action, it will create the same external effects on the body if a 
couple moment is also applied to the body. The couple moment is 
determined by taking the moment of the force about point P.
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Replace the force and couple system shown in Fig. 4–37a by an 
equivalent resultant force and couple moment acting at point O.

Example   4.14

 0.2 m  0.3 m

 4 kN
 5 kN

3 kN

O

(a)

54
3

30�

 0.1 m

 0.1 m

	

(3 kN)cos 30�

(3 kN)sin 30�

y

x

 0.2 m  0.3 m

 4 kN

 (5 kN)

O

(b)

4
5

3
5

 (5 kN)

 0.1 m

 0.1 m

(c)

(FR)y � 6.50 kN

(MR)O � 2.46 kN �m

(FR)x � 5.598 kN

FR

u

O

Fig. 4–37

Using the Pythagorean theorem, Fig. 4–37c, the magnitude of FR is

 FR = 2(FR)x
2 + (FR)y

2 = 2(5.598 kN)2 + (6.50 kN)2 = 8.58 kN� Ans.

Its direction u is

u = tan- 1¢ (FR)y

(FR)x
≤ = tan- 1¢ 6.50 kN

5.598 kN
≤ = 49.3�� Ans.

Moment Summation.  The moments of 3 kN and 5 kN about point O  
will be determined using their x and y components. Referring to Fig. 4–37b, 
we have

a+  (MR)O = �MO;

(MR)O = (3 kN) sin 30�(0.2 m) -  (3 kN) cos 30�(0.1 m) +  13
52(5 kN) (0.1 m) 

- 14
52(5 kN) (0.5 m) - (4 kN)(0.2 m)

	  = -2.46 kN # m = 2.46 kN # mb� Ans.

This clockwise moment is shown in Fig. 4–37c.

NOTE: Realize that the resultant force and couple moment in Fig. 4–37c 
will produce the same external effects or reactions at the supports as 
those produced by the force system, Fig. 4–37a.

SOLUTION
Force Summation.  The 3 kN and 5 kN forces are resolved into  
their x and y components as shown in Fig. 4–37b. We have

  S+ (FR)x = �Fx;	 (FR)x = (3 kN) cos 30� +  13
52(5 kN) = 5.598 kN S

	 + c (FR)y = �Fy;	 (FR)y = (3 kN) sin 30� -  14
52(5 kN) -  4 kN = -6.50 kN = 6.50 kNT
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4

Example   4.15

Replace the force and couple system acting on the member in Fig. 4–38a 
by an equivalent resultant force and couple moment acting at point O.

O

4
3

5

1 m

1 m
1.25 m 1.25 m

(a)

200 N

200 N

500 N
750 N

	 (b)

O

y

x
(FR)x � 300 N

(FR)y � 350 N

(MR)O � 37.5 N�m

FR

u

Fig. 4–38

SOLUTION

Force Summation.  Since the couple forces of 200 N are equal but 
opposite, they produce a zero resultant force, and so it is not necessary 
to consider them in the force summation. The 500-N force is resolved 
into its x and y components, thus,

   S+ (FR)x = �Fx;  (FR)x = 13
52(500 N) = 300 N S

+ c (FR)y = �Fy;  (FR)y = (500 N)14
52 -  750 N = -350 N = 350 NT

From Fig. 4–15b, the magnitude of FR is

	 FR = 2(FR)x
2 + (FR)y

2

	 = 2(300 N)2 + (350 N)2 = 461 N� Ans.

And the angle u is

	 u = tan- 1¢ (FR)y

(FR)x
≤ = tan- 1¢ 350 N

300 N
≤ = 49.4�� Ans.

Moment Summation.  Since the couple moment is a free vector, it can 
act at any point on the member. Referring to Fig. 4–38a, we have

	 a+  (MR)O =  �MO + �M

    (MR)O = (500 N) 14
52(2.5 m) -  (500 N) 13

52(1 m)

   - (750 N)(1.25 m) + 200 N # m

              = -37.5 N # m = 37.5 N # m b� Ans.

This clockwise moment is shown in Fig. 4–38b.



example  4.1

	 4.7  Simplification of a Force and Couple System	 171

4

The structural member is subjected to a couple moment M and forces 
F1 and F2 in Fig. 4–39a. Replace this system by an equivalent resultant 
force and couple moment acting at its base, point O.

SOLUTION (VECTOR ANALYSIS)
The three-dimensional aspects of the problem can be simplified by using 
a Cartesian vector analysis. Expressing the forces and couple moment as 
Cartesian vectors, we have

 F1 = {-800k} N

 F2 = (300 N)uCB

 = (300 N)a rCB

rCB
b

 = 300 NJ {-0.15i + 0.1j} m2(-0.15 m)2 + (0.1 m)2
R = {-249.6i + 166.4j} N

M = -500 14
52j + 50013

52k = {-400j + 300k} N # m

Force Summation.

FR = �F;	  FR = F1 + F2 = -800k - 249.6i + 166.4j

	  = {-250i + 166j - 800k} N� Ans.

Moment Summation.

(MR)o   
=  �M + �MO

 (MR)
O

= M + rC * F1 + rB * F2

(MR)o = (-400j + 300k) + (1k) * (-800k) + 3 i j k
-0.15 0.1 1

-249.6 166.4 0

3
	  = (-400j + 300k) + (0) + (-166.4i - 249.6j)

	  = {-166i - 650j + 300k} N # m� Ans.

The results are shown in Fig. 4–39b.

Example   4.16

F1 � 800 N
0.1 m

F2 � 300 N

0.15 m

rB

1 m

y

C

5
3

4

M � 500 N � m

O

x

(a)

z

rC

B

y
x

z

(MR)
O

FR

(b)

O

Fig. 4–39
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4

P4–5.  In each case, determine the x and y components of 
the resultant force and the resultant couple moment at 
point O.

400 N500 N

200 N
O

2 m 2 m2 m

(a)

3
4

5

300 N
500 N

200 N � m

2 m 2 m

(b)

3
4

5

O

500 N

100 N

500 N

O

2 m 2 m 2 m

(c)

3

4
5

3
4

5 3

4

500 N
500 N

O

2 m

2 m

(d)

2 m

5

200 N � m

Preliminary Problem

Prob. P4–5
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Problems

4

F4–25.  Replace the loading system by an equivalent 
resultant force and couple moment acting at point A.

A

3 ft 3 ft

4 ft

150 lb

200 lb

100 lb

Prob. F4–25

F4–26.  Replace the loading system by an equivalent 
resultant force and couple moment acting at point A.

3
4

5

50 N

200 N � m

30 N
40 N

A
B

3 m 3 m

Prob. F4–26

F4–27.  Replace the loading system by an equivalent 
resultant force and couple moment acting at point A.

900 N 30�

300 N�m

0.75 m 0.75 m 0.75 m 0.75 m

A

300 N

Prob. F4–27

F4–28.  Replace the loading system by an equivalent 
resultant force and couple moment acting at point A.

50 lb

100 lb

4
35

A

4
3

5

150 lb

3 ft 3 ft

1 ft

Prob. F4–28

F4–29.  Replace the loading system by an equivalent 
resultant force and couple moment acting at point O.

x

z

y

O

A

B

2 m1 m
1.5 m

F1 � {�300i � 150j � 200k} N

F2 � {�450k} N

Prob. F4–29

F4–30.  Replace the loading system by an equivalent 
resultant force and couple moment acting at point O.

0.5 m 0.4 m

z

y

x

F2 � 200 N

F1 � 100 N

0.3 m

Mc � 75 N�m

O

Prob. F4–30

FUNDAMENTAL PROBLEMS
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Fundamental Problems

4

4–97.  Replace the force system by an equivalent resultant 
force and couple moment at point O.

4–98.  Replace the force system by an equivalent resultant 
force and couple moment at point P.

y

x
O

600 N

60�

2.5 m 2 m

0.75 m0.75 m

1 m

5
12

13

455 N

P

Probs. 4–97/98

4–99.  Replace the force system acting on the beam by an 
equivalent force and couple moment at point A.

*4–100.  Replace the force system acting on the beam by 
an equivalent force and couple moment at point B.

2.5 kN 1.5 kN

3 kN

A B

4 m

3
4

5

2 m 2 m

30�

Probs. 4–99/100

4–101.  Replace the loading system acting on the beam by 
an equivalent resultant force and couple moment at point O.

30�

y

x

450 N

O

200 N

0.2 m 200 N  � m

2 m1.5 m 1.5 m

Prob. 4–101

4–102.  Replace the loading system acting on the post by an 
equivalent resultant force and couple moment at point A.

4–103.  Replace the loading system acting on the post by an 
equivalent resultant force and couple moment at point B.

3 m

500 N
30�

60�1500 N � m

5 m 2 m

650 N
300 N

BA

Probs. 4–102/103

PROBLEMS
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4

4–106.	 The forces F1 = {-4i + 2j - 3k} kN and F2 =   
{3i - 4j - 2k} kN act on the end of the beam. Replace 
these forces by an equivalent force and couple moment 
acting at point O.

y

z

x

F1 150 mm
150 mm

F2

250 mm
O

4 m

Prob. 4–106

4–107.  A biomechanical model of the lumbar region of 
the human trunk is shown. The forces acting in the four 
muscle groups consist of FR = 35 N for the rectus, 
FO = 45 N for the oblique, FL = 23 N for the lumbar 
latissimus dorsi, and FE = 32 N for the erector spinae. These 
loadings are symmetric with respect to the y–z plane. 
Replace this system of parallel forces by an equivalent force 
and couple moment acting at the spine, point O. Express the 
results in Cartesian vector form.

75 mm

45 mm 50 mm 40 mm
30 mm

15 mm

z

x y

FR

FO FL

FE

FR

FE FL

FO

O

Prob. 4–107

*4–104.  Replace the force system acting on the post by a 
resultant force and couple moment at point O.

O

150 lb

300 lb

200 lb

3
4

5

2 ft

2 ft

2 ft

30�

Prob. 4–104

4–105.  Replace the force system acting on the frame by an 
equivalent resultant force and couple moment acting at 
point A.

1 m

0.5 m 0.3 m

0.5 m

500 N

300 N

400 N

A

30�

Prob. 4–105
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4

4–110.  Replace the force of F = 80 N acting on the pipe 
assembly by an equivalent resultant force and couple 
moment at point A.

400 mm

y300 mm

200 mm

250 mm200 mm

30

40

F  80 N

B

A

z

Prob. 4–110

4–111.  The belt passing over the pulley is subjected to 
forces F1 and F2, each having a magnitude of 40 N. F1 acts in 
the -k direction. Replace these forces by an equivalent force 
and couple moment at point A. Express the result in Cartesian 
vector form. Set u = 0� so that F2 acts in the - j direction.

*4–112.  The belt passing over the pulley is subjected to 
two forces F1 and F2, each having a magnitude of 40 N. F1 
acts in the -k direction. Replace these forces by an 
equivalent force and couple moment at point A. Express 
the result in Cartesian vector form. Take u = 45�.

x

y

z

300 mm

r � 80 mm

A

F1

F2

u

Probs. 4–111/112

*4–108.  Replace the force system by an equivalent 
resultant force and couple moment at point O. Take 
F3 = {-200i + 500j - 300k} N.

y

O

z

x
2 m

F2 = 200 N

F1 = 300 N

1.5 m

1.5 m

F3

Prob. 4–108

4–109.  Replace the loading by an equivalent resultant 
force and couple moment at point O.

0.8 m

0.5 m

0.7 m

x

y

O

z

F  = {–2 i + 5 j – 3 k} kN

F  � {8 i – 2 k} kN 1

2

Prob. 4–109
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4

4.8  �Further Simplification of a Force and 
Couple System

In the preceding section, we developed a way to reduce a force and couple 
moment system acting on a rigid body into an equivalent resultant force 
FR acting at a specific point O and a resultant couple moment (MR)O. The 
force system can be further reduced to an equivalent single resultant force 
provided the lines of action of FR and (MR)O are perpendicular to each 
other. Because of this condition, concurrent, coplanar, and parallel force 
systems can be further simplified.

Concurrent Force System.  Since a concurrent force system is 
one in which the lines of action of all the forces intersect at a common 
point O, Fig. 4–40a, then the force system produces no moment about 
this point. As a result, the equivalent system can be represented by a 
single resultant force FR = �F acting at O, Fig. 4–40b.

Coplanar Force System.  In the case of a coplanar force system, 
the lines of action of all the forces lie in the same plane,  
Fig. 4–41a, and so the resultant force FR = �F of this system also lies 
in  this plane. Furthermore, the moment of each of the forces about 
any point O is directed perpendicular to this plane. Thus, the resultant 
moment (MR)O and resultant force FR will be mutually perpendicular, 
Fig.  4–41b. The resultant moment can be replaced by moving the 
resultant  force FR a perpendicular or moment arm distance d away 
from  point O such that FR produces the same moment (MR)O about 
point O, Fig. 4–41c. This distance d can be determined from the scalar 
equation (MR)O = FRd = �MO or d = (MR)O>FR.

F2

F1

F4 F3

O

(a)

FR

O

(b)

�

F2

F1

F4 F3

O

(a)

FR

O

(b)

�

Fig. 4–40

(a) (b) (c)

O O d
(MR)O

FR

FR

F3

F4 F1

F2

� �

Fig. 4–41
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4 Parallel Force System.  The parallel force system shown in  
Fig. 4–42a consists of forces that are all parallel to the z axis. Thus, the 
resultant force FR = �F at point O must also be parallel to this axis,  
Fig. 4–42b. The moment produced by each force lies in the plane of the 
plate, and so the resultant couple moment, (MR)O, will also lie in this plane, 
along the moment axis a since FR and (MR)O are mutually perpendicular. 
As a result, the force system can be further reduced to an equivalent 
single resultant force FR, acting through point P located on the 
perpendicular b axis, Fig. 4–42c. The distance d along this axis from point 
O requires (MR)O = FRd = �MO or d = �MO>FR.

z

O

(a)

z

a O

b
b

(b)

z

O

d

(c)

a

P

F1 F2

F3

FR � �F

FR � �F

(MR)O

� �

Fig. 4–42

O

FR

The four cable forces are all concurrent at 
point O on this bridge tower. Consequently 
they produce no resultant moment there, only 
a resultant force FR. Note that the designers 
have positioned the cables so that FR is 
directed along the bridge tower directly to the 
support, so that it does not cause any bending 
of the tower. (© Russell C. Hibbeler)

Procedure for Analysis

The technique used to reduce a coplanar or parallel force system to 
a single resultant force follows a similar procedure outlined in the 
previous section.

	 •	 Establish the x, y, z, axes and locate the resultant force FR an 
arbitrary distance away from the origin of the coordinates.

Force Summation.
	 •	 The resultant force is equal to the sum of all the forces in the system.

	 •	 For a coplanar force system, resolve each force into its x and y 
components. Positive components are directed along the positive 
x and y axes, and negative components are directed along the 
negative x and y axes.

Moment Summation.
	 •	 The moment of the resultant force about point O is equal to the 

sum of all the couple moments in the system plus the moments of 
all the forces in the system about O.

	 •	 This moment condition is used to find the location of the resultant 
force from point O.
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4
Reduction to a Wrench.  In general, a three-dimensional force and 
couple moment system will have an equivalent resultant force FR acting at 
point O and a resultant couple moment (MR)O that are not perpendicular to 
one another, as shown in Fig. 4–43a. Although a force system such as this 
cannot be further reduced to an equivalent single resultant force, the 
resultant couple moment (MR)O can be resolved into components parallel 
and perpendicular to the line of action of FR, Fig.  4–43a. If this appears 
difficult to do in three dimensions, use the dot product to get M|| = (MR) # uFR

 
and then M# = MR - M||. The perpendicular component M#can be 
replaced if we move FR to point P, a distance d from point O along the b axis, 
Fig. 4–43b. As shown, this axis is perpendicular to both the a axis and the line 
of action of FR. The location of P can be determined from d = M# >FR. 
Finally, because M|| is a free vector, it can be moved to point P, Fig. 4–43c. 
This combination of a resultant force FR and collinear couple moment M|| 
will tend to translate and rotate the body about its axis and is referred to as 
a wrench or screw. A wrench is the simplest system that can represent any 
general force and couple moment system acting on a body.

Important Point

	 •	 A concurrent, coplanar, or parallel force system can always be 
reduced to a single resultant force acting at a specific point P. For 
any other type of force system, the simplest reduction is a wrench, 
which consists of resultant force and collinear couple moment 
acting at a specific point P.

W1 W2

d1
d2

O O
WR

d

Here the weights of the traffic lights are replaced by their resultant force W R = W 1 + W 2 
which acts at a distance d = (W 1d1 + W 2d2)>  W R from O. Both systems are equivalent. 
(© Russell C. Hibbeler) (a)

b
a

M

M

FR

O

(MR)O

z

(b)

P
d

O

FR

z

M

b

a

(c)

b
P

O

FR

z

M

a

�
�

(a)

b
a

M

M

FR

O

(MR)O

z

(b)

P
d

O

FR

z

M

b

a

(c)

b
P

O

FR

z

M

a

�
�

(a)

b
a

M

M

FR

O

(MR)O

z

(b)

P
d

O

FR

z

M

b

a

(c)

b
P

O

FR

z

M

a

�
�

Fig. 4–43
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4

Replace the force and couple moment system acting on the beam in 
Fig. 4–44a by an equivalent resultant force, and find where its line of 
action intersects the beam, measured from point O.

(b)

d

O

FR

(FR)x � 4.80 kN(FR)y � 2.40 kN
u

(a)

O

4 kN

15 kN�m

8 kN

3
45

1.5 m 1.5 m 1.5 m 1.5 m

0.5 m

y

x

Fig. 4–44

SOLUTION

Force Summation.  Summing the force components,

S
+ (FR)x = �Fx;    (FR)x =  8 kN13

52 = 4.80 kN S

+ c (FR)y = �Fy;    (FR)y = -4 kN + 8 kN14
52 = 2.40 kNc

From Fig. 4–44b, the magnitude of FR is

	  FR = 2(4.80 kN)2 + (2.40 kN)2 = 5.37 kN� Ans.

The angle u is

	  u = tan- 1¢ 2.40 kN

4.80 kN
≤ = 26.6�� Ans.

Moment Summation.  We must equate the moment of FR about 
point O in Fig. 4–44b to the sum of the moments of the force and 
couple moment system about point O in Fig. 4–44a. Since the line of 
action of (FR)x acts through point O, only (FR)y produces a moment 
about this point. Thus,

a+  (MR)O = �MO;     2.40 kN(d) = -(4 kN)(1.5 m) - 15 kN # m

- 38 kN13
52 4 (0.5 m) + 38 kN14

52 4 (4.5 m)

	 d = 2.25 m� Ans.

example   4.17
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4

S
+ (FR)

x
= �Fx;  (FR)

x
= -250 lb13

52 -  175 lb = -325 lb = 325 lb d

+ c (FR)
y

= �Fy;  (FR)
y

= -250 lb14
52 -  60 lb = -260 lb = 260 lbT

The jib crane shown in Fig. 4–45a is subjected to three coplanar forces. 
Replace this loading by an equivalent resultant force and specify 
where the resultant’s line of action intersects the column AB and 
boom BC.

SOLUTION
Force Summation.  Resolving the 250-lb force into x and y 
components and summing the force components yields

6 ft

y

x

5 ft

175 lb
60 lb

(a)

250 lb

5 4
3

3 ft 5 ft 3 ft

B
C

A

y

(b)

x

x

FR

FR

y

C

A

260 lb

325 lb

260 lb

325 lb
B

u

Fig. 4–45

example   4.18

As shown by the vector addition in Fig. 4–45b,

	  FR = 2(325 lb)2 + (260 lb)2 = 416 lb� Ans.

	  u = tan- 1¢ 260 lb

325 lb
≤ = 38.7� d� Ans.

Moment Summation.  Moments will be summed about point A. 
Assuming the line of action of FR intersects AB at a distance y from A, 
Fig. 4–45b, we have

a + (MR)
A

= �MA;	 325 lb (y) + 260 lb (0)

= 175 lb (5 ft) - 60 lb (3 ft) + 250 lb13
52(11 ft) - 250 lb14

52(8 ft)

	 y = 2.29 ft � Ans.

By the principle of transmissibility, FR can be placed at a distance x 
where it intersects BC, Fig. 4–45b. In this case we have

a + (MR)
A

= �MA;	 325 lb (11 ft) - 260 lb (x)

= 175 lb (5 ft) - 60 lb (3 ft) + 250 lb13
52(11 ft) - 250 lb14

52(8 ft) 

	 x = 10.9 ft � Ans.
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4

The slab in Fig. 4–46a is subjected to four parallel forces. Determine 
the magnitude and direction of a resultant force equivalent to the 
given force system, and locate its point of application on the slab.

y

x

O

FR

z

�

�

(b)

x
P(x, y)

y

y

x

B
2 m

O

600 N

500 N

z

100 N
5 m 5 m

400 N

C

8 m

�

�

(a)
Fig. 4–46

SOLUTION (SCALAR ANALYSIS)
Force Summation.  From Fig. 4–46a, the resultant force is

+ cFR = �F;	  FR = -600 N + 100 N - 400 N - 500 N

	  = -1400 N = 1400 NT � Ans.

Moment Summation.  We require the moment about the x axis of 
the resultant force, Fig. 4–46b, to be equal to the sum of the moments 
about the x axis of all the forces in the system, Fig. 4–46a. The moment 
arms are determined from the y coordinates, since these coordinates 
represent the perpendicular distances from the x axis to the lines of 
action of the forces. Using the right-hand rule, we have

(MR)x = �Mx;

-(1400 N)y = 600 N(0) + 100 N(5 m) - 400 N(10 m) + 500 N(0)

 -1400y = -3500   y = 2.50 m� Ans.

In a similar manner, a moment equation can be written about the  
y axis using moment arms defined by the x coordinates of each force.

(MR)y = �My;

 (1400 N)x = 600 N(8 m) - 100 N(6 m) + 400 N(0) + 500 N(0)

 1400x = 4200

	 x = 3 m� Ans.

NOTE: A force of FR = 1400 N placed at point P(3.00 m, 2.50 m) on 
the slab, Fig. 4–46b, is therefore equivalent to the parallel force system 
acting on the slab in Fig. 4–46a.

example   4.19
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4

Replace the force system in Fig. 4–47a by an equivalent resultant 
force and specify its point of application on the pedestal.

SOLUTION
Force Summation.  Here we will demonstrate a vector analysis. 
Summing forces,

FR = �F;  FR = FA + FB + FC

	  = {-300k} lb + {-500k} lb + {100k} lb

	  = {-700k} lb � Ans.

Location.  Moments will be summed about point O. The resultant 
force FR is assumed to act through point P (x, y, 0), Fig. 4–47b. Thus

(MR)O = �MO;

rP * FR = (rA * FA) + (rB * FB) + (rC * FC)

(xi + yj) * ( -700k) = [(4i) * (-300k)] 

+ [(-4i + 2j) * (-500k)] + [(-4j) * (100k)]

-700x(i * k) - 700y (j * k) = -1200(i * k) + 2000(i * k)

- 1000( j * k) - 400( j * k)

	  700xj - 700yi = 1200j - 2000j - 1000i - 400i

Equating the i and j components,

	 -700y = -1400 	 (1)

	 y = 2 in. � Ans.

	 700x = -800 	 (2)

	 x = -1.14 in. � Ans.

The negative sign indicates that the x coordinate of point P is 
negative.

NOTE: It is also possible to establish Eq. 1 and 2 directly by summing 
moments about the x and y axes. Using the right-hand rule, we have

(MR)x = �Mx; 	  -700y = -100 lb(4 in.) - 500 lb(2 in.)

(MR)y = �My; 	  700x = 300 lb(4 in.) - 500 lb(4 in.)

x y

z

(a)

FB � 500 lb
FA � 300 lb

FC � 100 lb 2 in.

4 in.4 in.

4 in.

B
O

A

C

rB

rA

rC

x y

z

(b)

FR � {�700k} lb

rP

O

P
y

x

Fig. 4–47

example   4.20
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4

P4–6.  In each case, determine the x and y components of 
the resultant force and specify the distance where this force 
acts from point O.

200 N
260 N

O

(a)

2 m 2 m 2 m

(b)

400 N
500 N

O

2 m 2 m

5

3

4

(c)

O

2 m 2 m 2 m

5

500 N

3
4

500 N

3
4

5
600 N � m

Prob. P4–6

P4–7.  In each case, determine the resultant force and 
specify its coordinates x and y where it acts on the x–y plane.

z

y

x

200 N 

100 N 

2 m 

2 m 

200 N 

(a)

1 m 

1 m 

z

y

x

100 N 

200 N 

2 m 

2 m 

100 N 

(b)

1 m 

z

y

x

200 N 
400 N 

4 m 

100 N 

(c)

2 m 

2 m 

300 N 

Prob. P4–7

Preliminary Problems
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4

F4–31.  Replace the loading system by an equivalent 
resultant force and specify where the resultant’s line of 
action intersects the beam measured from O.

500 lb 500 lb
250 lb

O x

y

3 ft 3 ft 3 ft 3 ft � Prob. F4–31

F4–32.  Replace the loading system by an equivalent 
resultant force and specify where the resultant’s line of 
action intersects the member measured from A.

30�

200 lb

50 lb

100 lb

3 ft 3 ft 3 ft

4
3

5

A

4
4

9
5

4
4
9
5

F4–33.  Replace the loading system by an equivalent 
resultant force and specify where the resultant’s line of 
action intersects the horizontal segment of the member 
measured from A.

2 m 2 m 2 m
2 m

A
B

20 kN

15 kN

4
3

5

F4–34.  Replace the loading system by an equivalent 
resultant force and specify where the resultant’s line of 
action intersects the member AB measured from A.

A

5 kN
6 kN

8 kN
4

3

5

1.5 m

3 m

0.5 m

0.5 m

0.5 m B

y

x
� Prob. F4–34

F4–35.  Replace the loading shown by an equivalent single 
resultant force and specify the x and y coordinates of its 
line of action.

z

x

y

100 N

400 N

500 N

4 m

4 m
3 m

� Prob. F4–35

F4–36.  Replace the loading shown by an equivalent single 
resultant force and specify the x and y coordinates of its 
line of action.

2 m

3 m2 m

3 m

3 m

1 m

1 m

z

y

x

200 N

200 N

100 N
100 N

FUNDAMENTAL PROBLEMS

Prob. F4–32

Prob. F4–33
Prob. F4–36



186 	 Chapter 4    Force System Resultants

4

4–117.  Replace the loading acting on the beam by a single 
resultant force. Specify where the force acts, measured  
from end A.

4–118.  Replace the loading acting on the beam by a  
single resultant force. Specify where the force acts, 
measured from B.

2 m

300 N 30�

60�

1500 N�m
4 m 3 m

450 N
700 N

A
B

Probs. 4–117/118

4–119.  Replace the loading on the frame by a single 
resultant force. Specify where its line of action intersects a 
vertical line along member AB, measured from A.

1.5 m

0.5 m 0.5 m

200 N200 N
400 N

600 N

A

B

C

Prob. 4–119

4–113.  The weights of the various components of the truck 
are shown. Replace this system of forces by an equivalent 
resultant force and specify its location measured from B.

4–114.  The weights of the various components of the truck 
are shown. Replace this system of forces by an equivalent 
resultant force and specify its location measured from  
point A.

14 ft 6 ft
2 ft3 ft

AB 3500 lb 5500 lb 1750 lb

Probs. 4–113/114

4–115.  Replace the three forces acting on the shaft by a 
single resultant force. Specify where the force acts, measured 
from end A.

*4–116.  Replace the three forces acting on the shaft by a 
single resultant force. Specify where the force acts, measured 
from end B.

200 lb

3
4

5

500 lb
260 lb

5

12 13

A B

5 ft 3 ft 2 ft 4 ft

Probs. 4–115/116

Problems
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4

*4–124.  Replace the parallel force system acting on the 
plate by a resultant force and specify its location on the  
x-z plane.

1 m

1 m

1 m

0.5 m

0.5 m

5 kN

3 kN

x

y

z

2 kN

Prob. 4–124

4–125.  Replace the force and couple system acting on the 
frame by an equivalent resultant force and specify where 
the resultant’s line of action intersects member AB, 
measured from A.

4–126.  Replace the force and couple system acting on the 
frame by an equivalent resultant force and specify where 
the resultant’s line of action intersects member BC, 
measured from B.

3 ft
30�

4 ft

35

4

2 ft

150 lb

50 lb

500 lb � ft

C B

A

Probs. 4–125/126

*4–120.  Replace the loading on the frame by a single 
resultant force. Specify where its line of action intersects a 
vertical line along member AB, measured from A.

4–121.  Replace the loading on the frame by a single 
resultant force. Specify where its line of action intersects a 
horizontal line along member CB, measured from end C.

1 m

B

A

y

0.5 m
1 m

0.5 m

400 N

600 N

5
4

3

400 N

900 N

1.5 m

x

5

4
3

Probs. 4–120/121

4–122.  Replace the force system acting on the post by a 
resultant force, and specify where its line of action intersects 
the post AB measured from point A.

4–123.  Replace the force system acting on the post by a 
resultant force, and specify where its line of action intersects 
the post AB measured from point B.

250 N
500 N

0.2 m

0.5 m

3
4

5

300 N

1 m

30�

1 m

1 m

A

B

Probs. 4–122/123
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4–130.  The building slab is subjected to four parallel 
column loadings. Determine the equivalent resultant force 
and specify its location (x, y) on the slab. Take F1 = 8 kN 
and F2 = 9 kN.

4–131.  The building slab is subjected to four parallel 
column loadings. Determine F1 and F2 if the resultant force 
acts through point (12 m, 10 m).

y
x

6 kN 

12 kN 

6 m

4 m

16 m12 m

8 m

z

F1 F2

Probs. 4–130/131

*4–132.  If FA = 40 kN and FB = 35 kN, determine the 
magnitude of the resultant force and specify the location of 
its point of application (x, y) on the slab.

4–133.  If the resultant force is required to act at the center 
of the slab, determine the magnitude of the column loadings 
FA and FB and the magnitude of the resultant force.

2.5 m

2.5 m

0.75 m

0.75 m

0.75 m

3 m
3 m

0.75 m 90 kN

30 kN

20 kN

x

y

z

FA

FB

Probs. 4–132/133

4–127.  If FA = 7 kN and FB = 5 kN, represent the force 
system acting on the corbels by a resultant force, and specify 
its location on the x–y plane.

*4–128.  Determine the magnitudes of FA and FB so that 
the resultant force passes through point O of the column.

750 mm

z

x y

650 mm

100 mm

150 mm

600 mm

700 mm

100 mm

150 mm

8 kN

6 kN

FA

FB 

O

Probs. 4–127/128

4–129.  The tube supports the four parallel forces. Determine 
the magnitudes of forces FC and FD acting at C and D so 
that  the equivalent resultant force of the force system acts 
through the midpoint O of the tube.

x

z

A

D

C

y
zB

O400 mm

400 mm

500 N

200 mm
200 mm

600 N

FC

FD

Prob. 4–129
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4

*4–136.  Replace the five forces acting on the plate by a 
wrench. Specify the magnitude of the force and couple 
moment for the wrench and the point P(x, z) where the 
wrench intersects the x–z plane.

y
x

z

4 m

400 N

800 N

300 N600 N

200 N

4 m

2 m

2 m

Prob. 4–136

4–137.  Replace the three forces acting on the plate by a 
wrench. Specify the magnitude of the force and couple 
moment for the wrench and the point P(x, y) where the 
wrench intersects the plate.

5 m
3 m y

y x

x
P

A

C

B

z

FA � {400i} N

FC � {200j} N

FB � {  300k} N

Prob. 4–137

4–134.  Replace the two wrenches and the force, acting 
on the pipe assembly, by an equivalent resultant force and 
couple moment at point O.

A BO

z

200 N

180 N�m

C y

x

45�

100 N

100 N�m

300 N

0.6 m 0.8 m0.5 m

Prob. 4–134

4–135.  Replace the force system by a wrench and specify 
the magnitude of the force and couple moment of the wrench 
and the point where the wrench intersects the x–z plane.

z

O

x

y
0.5 m

3 m

200 N

400 N

2 m

200 N

5

3
4

Prob. 4–135



190 	 Chapter 4    Force System Resultants

4

4.9  �Reduction of a Simple Distributed 
Loading

Sometimes, a body may be subjected to a loading that is distributed over 
its surface. For example, the pressure of the wind on the face of a sign, the 
pressure of water within a tank, or the weight of sand on the floor of a 
storage container, are all distributed loadings. The pressure exerted at 
each point on the surface indicates the intensity of the loading. It is 
measured using pascals Pa (or N>m2) in SI units or lb>ft2 in the  
U.S. Customary system.

Loading Along a Single Axis.  The most common type of 
distributed loading encountered in engineering practice can be 
represented along a single axis.* For example, consider the beam (or 
plate) in Fig. 4–48a that has a constant width and is subjected to a 
pressure loading that varies only along the x axis. This loading can be 
described by the function p = p(x ) N>m2. It contains only one variable 
x, and for this reason, we can also represent it as a coplanar distributed 
load. To do so, we multiply the loading function by the width b m of 
the beam, so that w (x ) = p(x )b N>m, Fig. 4–48b. Using the methods of 
Sec. 4.8, we can replace this coplanar parallel force system with a single 
equivalent resultant force FR acting at a specific location on the beam, 
Fig. 4–48c.

Magnitude of Resultant Force.  From Eq. 4–17 (FR = �F ), the 
magnitude of FR is equivalent to the sum of all the forces in the system. 
In this case integration must be used since there is an infinite number of 
parallel forces dF acting on the beam, Fig. 4–48b. Since dF is acting on an 
element of length dx, and w(x) is a force per unit length, then 
dF = w(x) dx = dA . In other words, the magnitude of dF is determined 
from the colored differential area dA under the loading curve. For the 
entire length L,

+ TFR = �F;	 FR = LL
w(x) dx = LA

dA = A � (4–19)

Therefore, the magnitude of the resultant force is equal to the area A under 
the loading diagram, Fig. 4–48c.

*The more general case of a surface loading acting on a body is considered in Sec. 9.5.

x

w

O

C A

L
x

FR

(c)

Fig. 4–48

p

L

p � p(x)

x

(a)

C

x

FR

b

x

w

O

L
x

dx

dF � dA
w � w(x)

(b)
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Location of Resultant Force.  Applying Eq. 4–17 (MRO
= �MO), 

the location x of the line of action of FR can be determined by equating 
the moments of the force resultant and the parallel force distribution 
about point O (the y axis). Since dF produces a moment of x dF = xw(x) dx 
about O, Fig. 4–48b, then for the entire length, Fig. 4–48c,

a+  (MR)O = �MO;	 -xFR = - LL
xw(x) dx

Solving for x, using Eq. 4–19, we have

	 x =
LL

xw(x) dx

LL
w(x) dx

=
LA

x dA

LA
 dA

	 (4–20)

This coordinate x, locates the geometric center or centroid of the area 
under the distributed loading. In other words, the resultant force has a line 
of action which passes through the centroid C (geometric center) of the area 
under the loading diagram, Fig. 4–48c. Detailed treatment of the integration 
techniques for finding the location of the centroid for areas is given in 
Chapter 9. In many cases, however, the distributed-loading diagram is in 
the shape of a rectangle, triangle, or some other simple geometric form. 
The centroid location for such common shapes does not have to be 
determined from the above equation but can be obtained directly from the 
tabulation given on the inside back cover.

Once x is determined, FR by symmetry passes through point (x, 0) on the 
surface of the beam, Fig. 4–48a. Therefore, in this case the resultant force has a 
magnitude equal to the volume under the loading curve p = p(x) and a line of 
action which passes through the centroid (geometric center) of this volume.

Important Points

	 •	 Coplanar distributed loadings are defined by using a loading 
function w = w(x) that indicates the intensity of the loading 
along the length of a member. This intensity is measured in N>m 
or lb>ft.

	 •	 The external effects caused by a coplanar distributed load acting 
on a body can be represented by a single resultant force.

	 •	 This resultant force is equivalent to the area under the loading 
diagram, and has a line of action that passes through the centroid 
or geometric center of this area. The pile of brick creates an approximate 

triangular distributed loading on the board. 
(© Russell C. Hibbeler)

x

w

O

C A

L
x

FR

(c)

Fig. 4–48 (Repeated)

x

w

O

L
x

dx

dF � dA
w � w(x)

(b)

p

L

p � p(x)

x

(a)

C

x

FR

b
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Determine the magnitude and location of the equivalent resultant 
force acting on the shaft in Fig. 4–49a.

SOLUTION
Since w = w(x) is given, this problem will be solved by integration.

The differential element has an area dA = w dx = 60x2 dx. Applying 
Eq. 4–19,

+ TFR = �F;

 FR = LA
 dA = L

2 m

0
60x2 dx = 60a x3

3
b 2

0

2 m

= 60a 23

3
-

03

3
b

 = 160 N 	 Ans.

The location x of FR measured from O, Fig. 4–49b, is determined from 
Eq. 4–20.

x =
LA

x dA

LA
 dA

=
L

2 m 

0
x(60x2) dx

160 N
=

60¢ x4

4
≤ 2

0

2 m

160 N
=

60¢ 24

4
-

04

4
≤

160 N

= 1.5 m� Ans.

NOTE: These results can be checked by using the table on the inside 
back cover, where it is shown that the formula for an exparabolic area 
of length a, height b, and shape shown in Fig. 4–49a, is

A =
ab

3
=

2 m(240 N>m)

3
= 160 N and x =

3

4
 a =

3

4
 (2 m) = 1.5 m

example   4.21

w � (60 x2)N/m

(a)

dA � w dx

2 m
x dx

O
x

240 N/mw

(b)

O
x

w

C

x � 1.5 m

FR � 160 N

Fig. 4–49 
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example   4.22

A distributed loading of p = (800x ) Pa acts over the top surface of 
the beam shown in Fig. 4–50a. Determine the magnitude and location 
of the equivalent resultant force.

SOLUTION
Since the loading intensity is uniform along the width of the beam 
(the y axis), the loading can be viewed in two dimensions as shown in 
Fig. 4–50b. Here

	  w = (800x N>m2)(0.2 m)

	  = (160x) N>m
At x = 9 m, note that w = 1440 N>m. Although we may again apply 
Eqs. 4–19 and 4–20 as in the previous example, it is simpler to use the 
table on the inside back cover.

The magnitude of the resultant force is equivalent to the area of the 
triangle.

	 FR =
1
2(9 m)(1440 N>m) = 6480 N = 6.48 kN� Ans.

The line of action of FR passes through the centroid C of this triangle. 
Hence,

	 x = 9 m -
1
3(9 m) = 6 m� Ans.

The results are shown in Fig. 4–50c.

NOTE: We may also view the resultant FR as acting through the centroid 
of the volume of the loading diagram p = p(x) in Fig. 4–50a. Hence FR 
intersects the x–y plane at the point (6 m, 0). Furthermore, the 
magnitude of FR is equal to the volume under the loading diagram; i.e.,

	 FR = V =
1
2(7200 N>m2)(9 m)(0.2 m) = 6.48 kN� Ans. Fig. 4–50

w � 160x N/m

(b)

9 m

x

w 1440 N/m

x

C

FR � 6.48 kN

3 mx � 6 m

(c)
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The granular material exerts the distributed loading on the beam as 
shown in Fig. 4–51a. Determine the magnitude and location of the 
equivalent resultant of this load.

SOLUTION
The area of the loading diagram is a trapezoid, and therefore the 
solution can be obtained directly from the area and centroid formulas 
for a trapezoid listed on the inside back cover. Since these formulas are 
not easily remembered, instead we will solve this problem by using 
“composite” areas. Here we will divide the trapezoidal loading into a 
rectangular and triangular loading as shown in Fig. 4–51b. The 
magnitude of the force represented by each of these loadings is equal 
to its associated area,

	  F1 =
1
2(9 ft)(50 lb>ft) = 225 lb

	  F2 = (9 ft)(50 lb>ft) = 450 lb

The lines of action of these parallel forces act through the respective 
centroids of their associated areas and therefore intersect the beam at

	  x1 =
1
3(9 ft) = 3 ft

	  x2 =
1
2(9 ft) = 4.5 ft

The two parallel forces F1 and F2 can be reduced to a single resultant 
FR. The magnitude of FR is

+ TFR = �F;	 FR = 225 + 450 = 675 lb	 Ans.

We can find the location of FR with reference to point A, Figs. 4–51b 
and 4–51c. We require

c+  (MR)A = �MA;   x(675) = 3(225) + 4.5(450)

 x = 4 ft� Ans.

NOTE: The trapezoidal area in Fig. 4–51a can also be divided into two 
triangular areas as shown in Fig. 4–51d. In this case

	  F3 =
1
2(9 ft)(100 lb>ft) = 450 lb

	  F4 =
1
2(9 ft)(50 lb>ft) = 225 lb

and

	  x3 =
1
3(9 ft) = 3 ft

	  x4 = 9 ft -  13(9 ft) = 6 ft

Using these results, show that again FR = 675 lb and x = 4 ft.

example   4.23

Fig. 4–51

100 lb/ft

50 lb/ft

9 ft

BA

(a)

9 ft

B
A

(b)

50 lb/ft

50 lb/ft

F1 F2

x1
x2

B
A

(c)

FR

x

F3 F4

50 lb/ft

x3

9 ft
x4

(d)

100 lb/ft
A
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Problems

4

F4–37.  Determine the resultant force and specify where it 
acts on the beam measured from A.

6 kN/m
9 kN/m

3 kN/m

3 m1.5 m 1.5 m

A B

Prob. F4–37

F4–38.  Determine the resultant force and specify where it 
acts on the beam measured from A.

A B

6 ft 8 ft

150 lb/ft

Prob. F4–38

F4–39.  Determine the resultant force and specify where it 
acts on the beam measured from A.

6 kN/m

6 m3 m

A
B

Prob. F4–39

F4–40.  Determine the resultant force and specify where it 
acts on the beam measured from A.

BA

6 ft 3 ft 3 ft

500 lb200 lb/ft

150 lb/ft

Prob. F4–40

F4–41.  Determine the resultant force and specify where it 
acts on the beam measured from A.

6 kN/m

3 kN/m

1.5 m4.5 m

A
B

Prob. F4–41

F4–42.  Determine the resultant force and specify where it 
acts on the beam measured from A.

4 m

w � 2.5x3

160 N/m

w

A
x

Prob. F4–42

FUNDAMENTAL PROBLEMS
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Fundamental Problems

4

4–138.  Replace the loading by an equivalent resultant 
force and couple moment acting at point O.

9 ft

9 ft

O

50 lb/ft

50 lb/ft

Prob. 4–138

4–139.  Replace the distributed loading with an equivalent 
resultant force, and specify its location on the beam 
measured from point O.

O

3 m 1.5 m

3 kN/m

Prob. 4–139

*4–140.  Replace the loading by an equivalent resultant force 
and specify its location on the beam, measured from point A.

BA
x

2 kN/m

5 kN/m

w

4 m 2 m

Prob. 4–140

Problems

4–141.  Currently eighty-five percent of all neck injuries 
are caused by rear-end car collisions. To alleviate this 
problem, an automobile seat restraint has been developed 
that provides additional pressure contact with the cranium. 
During dynamic tests the distribution of load on the 
cranium has been plotted and shown to be parabolic. 
Determine the equivalent resultant force and its location, 
measured from point A.

A

w

B

x

w � 12(1 � 2x2) lb/ft

0.5 ft
12 lb/ft

18 lb/ft

Prob. 4–141

4–142.  Replace the distributed loading by an equivalent 
resultant force, and specify its location on the beam, 
measured from the pin at A.

3 m3 m

A B

2 kN/m

4 kN/m

Prob. 4–142
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4–143.  Replace this loading by an equivalent resultant 
force and specify its location, measured from point O.

1.5 m2 m

6 kN/m

4 kN/m

O

Prob. 4–143

*4–144.  The distribution of soil loading on the bottom of 
a building slab is shown. Replace this loading by an 
equivalent resultant force and specify its location, measured 
from point O.

12 ft 9 ft

100 lb/ft50 lb/ft

300 lb/ft

O

Prob. 4–144

4–145.  Replace the loading by an equivalent resultant 
force and couple moment acting at point O.

1.5 m 0.75 m 0.75 m

5 kN/m

8 kN/m

O

Prob. 4–145

4–146.  Replace the distributed loading by an equivalent 
resultant force and couple moment acting at point A.

A

3 m 3 m

6 kN/m 6 kN/m

3 kN/m

B

Prob. 4–146

4–147.  Determine the length b of the triangular load and 
its position a on the beam such that the equivalent resultant 
force is zero and the resultant couple moment is 8 kN # m 
clockwise.

a

9 m

4 kN/m

A

b

2.5 kN/m

Prob. 4–147
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*4–148.  The form is used to cast a concrete wall having a 
width of 5 m. Determine the equivalent resultant force the 
wet concrete exerts on the form AB if the pressure 
distribution due to the concrete can be approximated as 
shown. Specify the location of the resultant force, measured 
from point B.

A

B

4 m

8 kPa

z

p

� (4    ) kPap z 2
1

Prob. 4–148

4–149.  If the soil exerts a trapezoidal distribution of load 
on the bottom of the footing, determine the intensities w1 
and w2 of this distribution needed to support the column 
loadings.

3.5 m2.5 m
1 m 1 m

60 kN
80 kN

50 kN

w1

w2

Prob. 4–149

4–150.  Replace the loading by an equivalent force and 
couple moment acting at point O.

O

7.5 m 4.5 m

500 kN�m

6 kN/m 15 kN

Prob. 4–150

4–151.  Replace the loading by a single resultant force, and 
specify the location of the force measured from point O.

O

7.5 m 4.5 m

500 kN�m

6 kN/m 15 kN

Prob. 4–151

*4–152.  Replace the loading by an equivalent resultant 
force and couple moment acting at point A.

4–153.  Replace the loading by a single resultant force, and 
specify its location on the beam measured from point A.

A B

3 m

400 N/m

3 m

Probs. 4–152/153
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4–154.  Replace the distributed loading by an equivalent 
resultant force and specify where its line of action intersects 
a horizontal line along member AB, measured from A.

4–155.  Replace the distributed loading by an equivalent 
resultant force and specify where its line of action intersects 
a vertical line along member BC, measured from C.

4 m

3 kN/m

2 kN/m

3 m

A
B

C

Probs. 4–154/155

*4–156.  Determine the length b of the triangular load and 
its position a on the beam such that the equivalent resultant 
force is zero and the resultant couple moment is 8 kN # m 
clockwise.

4 m

ba

6 kN/m

2 kN/mA

Prob. 4–156

4–157.  Determine the equivalent resultant force and 
couple moment at point O.

w

w � (   x3 ) kN/m

9 kN/m

1
3

x
O

3 m

Prob. 4–157

4–158.  Determine the magnitude of the equivalent 
resultant force and its location, measured from point O.

O

w

6 ft

4 lb/ft

8.90 lb/ft

x

w � (4 � 2   x ) lb/ft

Prob. 4–158
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4–161.  Replace the loading by an equivalent resultant 
force and couple moment acting at point O.

L

O x

w

w � w0 cos      x2L
p( (

Prob. 4–161

4–162.  Wet concrete exerts a pressure distribution along 
the wall of the form. Determine the resultant force of this 
distribution and specify the height h where the bracing strut 
should be placed so that it lies through the line of action of 
the resultant force. The wall has a width of 5 m.

4 m

h

� (4     ) kPap
1/2z

8 kPa

z

p

Prob. 4–162

4–159.  The distributed load acts on the shaft as shown. 
Determine the magnitude of the equivalent resultant force 
and specify its location, measured from the support, A.

10 lb/ft

28 lb/ft

A B

w

x

18 lb/ftw � (2x¤ � 8x � 18) lb/ft

1 ft 2 ft 2 ft

Prob. 4–159

*4–160.  Replace the distributed loading with an equivalent 
resultant force, and specify its location on the beam 
measured from point A.

100 lb/ft

15 ft

370 lb/ft

w

A

B
x

w � (x2 � 3x � 100) lb/ft

Prob. 4–160
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Moment of Force—Scalar Definition

A force produces a turning effect or 
moment about a point O that does not 
lie on its line of action. In scalar form, 
the moment magnitude is the product of 
the force and the moment arm or 
perpendicular distance from point O to 
the line of action of the force.

The direction of the moment is defined 
using the right-hand rule. MO always 
acts along an axis perpendicular to the 
plane containing F and d, and passes 
through the point O.

Rather than finding d, it is normally 
easier to resolve the force into its x and 
y components, determine the moment of 
each component about the point, and 
then sum the results. This is called the 
principle of moments.

MO = Fd

MO = Fd = Fxy - Fyx

O

Moment axis

d
F

MO

F
Fy

y

y

O

d x

x

Fx

Moment of a Force—Vector Definition

Since three-dimensional geometry is 
generally more difficult to visualize, the 
vector cross product should be used 
to  determine the moment. Here 
MO = r * F, where r is a position 
vector that extends from point O to 
any point A, B, or C on the line of action 
of F.

If the position vector r and force F are 
expressed as Cartesian vectors, then the 
cross product results from the expansion 
of a determinant.

MO = rA * F = rB * F = rC * F

MO = r * F = 3  i j k
rx ry rz

Fx Fy Fz

 3

z

x

y

F

O

A

B

C

rA

rB

MO

rC

 CHAPTER REVIEW
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Moment about an Axis

If the moment of a force F is to be 
determined about an arbitrary axis a, 
then for a scalar solution the moment 
arm, or shortest distance da from the line 
of action of the force to the axis must be 
used. This distance is perpendicular to 
both the axis and the force line of action.

Note that when the line of action of F 
intersects the axis, then the moment of F 
about the axis is zero. Also, when the 
line of action of F is parallel to the axis, 
the moment of F about the axis is zero.

In three dimensions, the scalar triple 
product should be used. Here ua is the 
unit vector that specifies the direction of 
the axis, and r is a position vector that is 
directed from any point on the axis to 
any point on the line of action of the 
force. If Ma is calculated as a negative 
scalar, then the sense of direction of Ma 
is opposite to ua.

Ma = Fda

Ma = ua
# (r * F) = 3 uax

uay
uaz

rx ry rz

Fx Fy Fz

3

a da

Ma F

r

Ma

ua

a

a¿

Axis of projection

F

Couple Moment

A couple consists of two equal but 
opposite forces that act a perpendicular 
distance d apart. Couples tend to 
produce a rotation without translation.

The magnitude of the couple moment is 
M = Fd, and its direction is established 
using the right-hand rule.

If the vector cross product is used to 
determine the moment of a couple, then 
r extends from any point on the line of 
action of one of the forces to any point 
on the line of action of the other force F 
that is used in the cross product.

 M = Fd

 M = r * F

�F

F
d

B
A

F

�Fr



4

	 Chapter Review	 203

Simplification of a Force and 
Couple System

Any system of forces and couples can be 
reduced to a single resultant force and 
resultant couple moment acting at a 
point. The resultant force is the sum of 
all the forces in the system,  FR = �F, 
and the resultant couple moment is 
equal to the sum of all the moments of 
the forces about the point and couple 
moments.  MRO

= �MO + �M.

Further simplification to a single resultant 
force is possible provided the force system 
is concurrent, coplanar, or parallel. To 
find  the location of the resultant force 
from a point, it is necessary to equate the 
moment of the resultant force about the 
point to the moment of the forces and 
couples in the system about the same  
point.

If the resultant force and couple moment 
at a point are not perpendicular to one 
another, then this system can be reduced 
to a wrench, which consists of the resultant 
force and collinear couple moment.

O
r2

r1 O�

FR

MRO

u
F1F2

M

O

FR

a

b
a

b

MRO

a

b
a

b

FR

d �
MRO

FR

P�
O

O �

FR

MRO

u

   

M��

O

a

b a

b

FR

P
d

Coplanar Distributed Loading

A simple distributed loading can be 
represented by its resultant force, which 
is equivalent to the area under the 
loading curve. This resultant has a line of 
action that passes through the centroid 
or geometric center of the area or 
volume under the loading diagram.

x

L

w

w � w(x)

O

               
x

O

FR

C

L

A
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Review Problems

R4–1.  The boom has a length of 30 ft, a weight of 800 lb, 
and mass center at G. If the maximum moment that can be 
developed by a motor at A is M = 20(103) lb # ft, determine 
the maximum load W, having a mass center at G�, that can 
be lifted.

2 ft

14 ft G

16 ft
800 lb

A M

G'

W
30�

Prob. R4–1

R4–2.  Replace the force F having a magnitude of F = 50 lb 
and acting at point A by an equivalent force and couple 
moment at point C.

C

B

A

F
30 ft

y10 ft15 ft

20 ft

10 ft

x

z

Prob. R4–2

R4–3.  The hood of the automobile is supported by the 
strut AB, which exerts a force of F = 24 lb on the hood. 
Determine the moment of this force about the hinged axis y.

2 ft
4 ft2 ft

4 ft

x

z

y

B

A

F

Prob. R4–3

R4–4.  Friction on the concrete surface creates a couple 
moment of MO = 100 N # m on the blades of the trowel. 
Determine the magnitude of the couple forces so that the 
resultant couple moment on the trowel is zero. The forces 
lie in the horizontal plane and act perpendicular to the 
handle of the trowel.

750 mm

1.25 mm

F

F

MO

–

Prob. R4–4
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R4–7.  The building slab is subjected to four parallel 
column loadings. Determine the equivalent resultant force 
and specify its location (x, y) on the slab. Take F1 = 30 kN, 
F2 = 40 kN.

y
x

20 kN

3 m

2 m

8 m 6 m

4 m

50 kN F1

F2

z

Prob. R4–7

R4–8.  Replace the distributed loading by an equivalent 
resultant force, and specify its location on the beam, 
measured from the pin at C.

C
A B

15 ft 15 ft

30�

800 lb/ft

Prob. R4–8

R4–5.  Replace the force and couple system by an 
equivalent force and couple moment at point P.

y

xO

5

1213

6 kN 4 kN

60�

5 m
4 m

4 m

3 m

3 m
8 kN�m

A

P

Prob. R4–5

R4–6.  Replace the force system acting on the frame by a 
resultant force, and specify where its line of action intersects 
member AB, measured from point A.

300 lb

200 lb

250 lb

4
35

A

B

2 ft

2.5 ft

4 ft

3 ft

45�

Prob. R4–6



It is important to be able to determine the forces in the cables used to support 
this boom to ensure that it does not fail. In this chapter we will study how to 

apply equilibrium methods to determine the forces acting on the supports  
of a rigid body such as this.

Chapter 5

 (© YuryZap/Shutterstock)



Equilibrium of a  
Rigid Body

CHAPTER OBJECTIVES

n	 To develop the equations of equilibrium for a rigid body.

n	 To introduce the concept of the free-body diagram for a rigid body.

n	 To show how to solve rigid-body equilibrium problems using the 
equations of equilibrium.

5.1  Conditions for Rigid-Body Equilibrium

In this section, we will develop both the necessary and sufficient conditions 
for the equilibrium of the rigid body in Fig. 5–1a. As shown, this body is 
subjected to an external force and couple moment system that is the result 
of the effects of gravitational, electrical, magnetic, or contact forces caused 
by adjacent bodies. The internal forces caused by interactions between 
particles within the body are not shown in this figure because these forces 
occur in equal but opposite collinear pairs and hence will cancel out, a 
consequence of Newton’s third law.

F1

M2

M1

F2

F3

F4

O

(a)

Fig. 5–1
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Using the methods of the previous chapter, the force and couple 
moment system acting on a body can be reduced to an equivalent 
resultant force and resultant couple moment at any arbitrary point O on 
or off the body, Fig. 5–1b. If this resultant force and couple moment are 
both equal to zero, then the body is said to be in equilibrium. 
Mathematically, the equilibrium of a body is expressed as

	 FR = �F = 0	
(5–1)

(MR)O = �MO = 0

The first of these equations states that the sum of the forces acting on the 
body is equal to zero. The second equation states that the sum of the 
moments of all the forces in the system about point O, added to all the 
couple moments, is equal to zero. These two equations are not only 
necessary for equilibrium, they are also sufficient. To show this, consider 
summing moments about some other point, such as point A in Fig. 5–1c. 
We require

�MA = r * FR + (MR)O = 0

Since r � 0, this equation is satisfied if Eqs. 5–1 are satisfied, namely 
FR = 0 and (MR)O = 0.

When applying the equations of equilibrium, we will assume that the 
body remains rigid. In reality, however, all bodies deform when 
subjected to loads. Although this is the case, most engineering materials 
such as steel and concrete are very rigid and so their deformation is 
usually very small. Therefore, when applying the equations of 
equilibrium, we can generally assume that the body will remain rigid 
and not deform under the applied load without introducing any 
significant error. This way the direction of the applied forces and their 
moment arms with respect to a fixed reference remain the same both 
before and after the body is loaded.

EQUILIBRIUM IN TWO DIMENSIONS

In the first part of the chapter, we will consider the case where the force 
system acting on a rigid body lies in or may be projected onto a single 
plane and, furthermore, any couple moments acting on the body are 
directed perpendicular to this plane. This type of force and couple system 
is often referred to as a two-dimensional or coplanar force system. For 
example, the airplane in Fig. 5–2 has a plane of symmetry through its 
center axis, and so the loads acting on the airplane are symmetrical with 
respect to this plane. Thus, each of the two wing tires will support the same 
load T, which is represented on the side (two-dimensional) view of the 
plane as 2T.

R

W

2T

G

Fig. 5–2

F1

M2

M1

F2

F3

F4

O

(a)

FR � 0

(MR)O � 0

O

(b)

Fig. 5–1 (cont.)

FR � 0

(MR)O � 0

O

A

r

(c)
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5.2  Free-Body Diagrams

Successful application of the equations of equilibrium requires a complete 
specification of all the known and unknown external forces that act on 
the body. The best way to account for these forces is to draw a free-body 
diagram. This diagram is a sketch of the outlined shape of the body, which 
represents it as being isolated or “free” from its surroundings, i.e., a “free 
body.” On this sketch it is necessary to show all the forces and couple 
moments that the surroundings exert on the body so that these effects can 
be accounted for when the equations of equilibrium are applied. A 
thorough understanding of how to draw a free-body diagram is of primary 
importance for solving problems in mechanics.

Support Reactions.  Before presenting a formal procedure as to 
how to draw a free-body diagram, we will first consider the various types 
of reactions that occur at supports and points of contact between bodies 
subjected to coplanar force systems. As a general rule,

	•	 A support prevents the translation of a body in a given direction by 
exerting a force on the body in the opposite direction.

	•	 A support prevents the rotation of a body in a given direction by 
exerting a couple moment on the body in the opposite direction.

For example, let us consider three ways in which a horizontal member, 
such as a beam, is supported at its end. One method consists of a roller or 
cylinder, Fig. 5–3a. Since this support only prevents the beam from 
translating in the vertical direction, the roller will only exert a force on 
the beam in this direction, Fig. 5–3b.

The beam can be supported in a more restrictive manner by using a pin, 
Fig. 5–3c. The pin passes through a hole in the beam and two leaves which 
are fixed to the ground. Here the pin can prevent translation of the beam 
in any direction f, Fig. 5–3d, and so the pin must exert a force F on the 
beam in the opposite direction. For purposes of analysis, it is generally 
easier to represent this resultant force F by its two rectangular components 
Fx and Fy, Fig. 5–3e. If Fx and Fy are known, then F and f can be calculated.

The most restrictive way to support the beam would be to use a fixed 
support as shown in Fig. 5–3f. This support will prevent both translation 
and rotation of the beam. To do this a force and couple moment must be 
developed on the beam at its point of connection, Fig. 5–3g. As in the 
case of the pin, the force is usually represented by its rectangular 
components Fx and Fy.

Table 5–1 lists other common types of supports for bodies subjected to 
coplanar force systems. (In all cases the angle u is assumed to be known.) 
Carefully study each of the symbols used to represent these supports and 
the types of reactions they exert on their contacting members. Fig. 5–3

(a)

roller

(b)

F

(c)

pin

pin
member

leaves

or

Fy

Fx

F

(e)(d)

f

(f)

fixed support

Fy

Fx

M

(g)
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(3)

Types of Connection Reaction Number of Unknowns

One unknown. The reaction is a tension force which acts
away from the member in the direction of the cable.

One unknown. The reaction is a force which acts along
the axis of the link.

One unknown. The reaction is a force which acts
perpendicular to the surface at the point of contact.

One unknown. The reaction is a force which acts
perpendicular to the slot.

One unknown. The reaction is a force which acts
perpendicular to the surface at the point of contact.

One unknown. The reaction is a force which acts
perpendicular to the surface at the point of contact.

One unknown. The reaction is a force which acts
perpendicular to the rod.

continued

(1)

cable

F

(2)

weightless link
F

roller F

or

(6)

roller or pin in
confined smooth slot

(4)

rocker

(5)

smooth contacting
 surface

F

F

F

(7)

or

or
F

F

F

TABLE 5–1 Supports for Rigid Bodies Subjected to Two-Dimensional Force Systems

member pin connected
to collar on smooth rod

u

u u
u

uu

u u

u

u

u

u

u u u

u

u
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Typical examples of actual supports are shown in the following sequence of photos. The numbers refer to the 
connection types in Table 5–1.

Types of Connection Reaction Number of Unknowns

Two unknowns. The reactions are two components of
force, or the magnitude and direction   of the resultant
force. Note that    and    are not necessarily equal [usually
not, unless the rod shown is a link as in (2)].

Three unknowns. The reactions are the couple moment 
and the two force components, or the couple moment and 
the magnitude and direction     of the resultant force.

Two  unknowns. The reactions are the couple moment 
and the force which acts perpendicular to the rod.

F

Fy

M

or

Fx

F

fixed support

Fy

Fx

F

or

M M

f

f

f

u

TABLE 5–1 Continued

member fixed connected
 to collar on smooth rod

smooth pin or hinge

(8)

(9)

(10)

u f

f

The cable exerts a force on the bracket 
in the direction of the cable. (1)

Typical pin support for a beam. (8) 
(© Russell C. Hibbeler)

The rocker support for this 
bridge girder allows horizontal 
movement so the bridge is free 
to expand and contract due to 
a change in temperature. (4)  
(© Russell C. Hibbeler)

This concrete girder 
rests on the ledge that 
is assumed to act as  
a smooth contacting 
surface. (5) (© Russell 
C. Hibbeler)

The floor beams of this 
building are welded 
together and thus form 
fixed connections. (10) 
(© Russell C. Hibbeler)

(©
 R

us
se

ll 
C

. H
ib

be
le

r)
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Internal Forces.  As stated in Sec. 5.1, the internal forces that act 
between adjacent particles in a body always occur in collinear pairs such 
that they have the same magnitude and act in opposite directions (Newton’s 
third law). Since these forces cancel each other, they will not create an 
external effect on the body. It is for this reason that the internal forces should 
not be included on the free-body diagram if the entire body is to be 
considered. For example, the engine shown in Fig. 5–4a has a free-body 
diagram shown in Fig. 5–4b. The internal forces between all its connected 
parts, such as the screws and bolts, will cancel out because they form equal 
and opposite collinear pairs. Only the external forces T1 and T2, exerted by 
the chains and the engine weight W, are shown on the free-body diagram.

(a) (b)

W

T2 T1

G

Fig. 5–4

Weight and the Center of Gravity.  When a body is within a 
gravitational field, then each of its particles has a specified weight. It was 
shown in Sec. 4.8 that such a system of forces can be reduced to a single 
resultant force acting through a specified point. We refer to this force 
resultant as the weight W of the body and to the location of its point of 
application as the center of gravity. The methods used for its determination 
will be developed in Chapter 9.

In the examples and problems that follow, if the weight of the body is 
important for the analysis, this force will be reported in the problem 
statement. Also, when the body is uniform or made from the same 
material, the center of gravity will be located at the body’s geometric 
center or centroid; however, if the body consists of a nonuniform 
distribution of material, or has an unusual shape, then the location of its 
center of gravity G will be given.

Idealized Models.  When an engineer performs a force analysis of 
any object, he or she considers a corresponding analytical or idealized 
model that gives results that approximate as closely as possible the  
actual situation. To do this, careful choices have to be made so that 
selection of the type of supports, the material behavior, and the object’s 
dimensions can be justified. This way one can feel confident that any  
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design or analysis will yield results which can be trusted. In complex 
cases this process may require developing several different models of the 
object that must be analyzed. In any case, this selection process requires 
both skill and experience.

The following two cases illustrate what is required to develop a proper 
model. In Fig. 5–5a, the steel beam is to be used to support the three roof 
joists of a building. For a force analysis it is reasonable to assume the 
material (steel) is rigid since only very small deflections will occur when 
the beam is loaded. A bolted connection at A will allow for any slight 
rotation that occurs here when the load is applied, and so a pin can be 
considered for this support. At B a roller can be considered since this 
support offers no resistance to horizontal movement. Building code is 
used to specify the roof loading A so that the joist loads F can be 
calculated. These forces will be larger than any actual loading on the 
beam since they account for extreme loading cases and for dynamic or 
vibrational effects. Finally, the weight of the beam is generally neglected 
when it is small compared to the load the beam supports. The idealized 
model of the beam is therefore shown with average dimensions a, b, c, 
and d in Fig. 5–5b.

As a second case, consider the lift boom in Fig. 5–6a. By inspection, it is 
supported by a pin at A and by the hydraulic cylinder BC, which can be 
approximated as a weightless link. The material can be assumed rigid, 
and with its density known, the weight of the boom and the location of its 
center of gravity G are determined. When a design loading P is specified, 
the idealized model shown in Fig. 5–6b can be used for a force analysis. 
Average dimensions (not shown) are used to specify the location of the 
loads and the supports.

Idealized models of specific objects will be given in some of the 
examples throughout the text. It should be realized, however, that each 
case represents the reduction of a practical situation using simplifying 
assumptions like the ones illustrated here.Example  5.3 

(a)

BA

F F F

A B

(b)

a b c d

Fig. 5–5 (© Russell C. Hibbeler)

(a)

A

C

B

Fig. 5–6 (© Russell C. Hibbeler)

(b)

B

C

G

A

P
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Important Points

	 •	 No equilibrium problem should be solved without first drawing 
the free-body diagram, so as to account for all the forces and 
couple moments that act on the body.

	 •	 If a support prevents translation of a body in a particular direction, 
then the support, when it is removed, exerts a force on the body 
in that direction.

	 •	 If rotation is prevented, then the support, when it is removed, 
exerts a couple moment on the body.

	 •	 Study Table 5–1.

	 •	 Internal forces are never shown on the free-body diagram since they 
occur in equal but opposite collinear pairs and therefore cancel out.

	 •	 The weight of a body is an external force, and its effect is 
represented by a single resultant force acting through the body’s 
center of gravity G.

	 •	 Couple moments can be placed anywhere on the free-body 
diagram since they are free vectors. Forces can act at any point 
along their lines of action since they are sliding vectors.

Procedure for Analysis

To construct a free-body diagram for a rigid body or any group of bodies  
considered as a single system, the following steps should be performed:

Draw Outlined Shape.
Imagine the body to be isolated or cut “free” from its constraints and 
connections and draw (sketch) its outlined shape. Be sure to 
remove all the supports from the body.

Show All Forces and Couple Moments.
Identify all the known and unknown external forces and couple 
moments that act on the body. Those generally encountered are due to 
(1) applied loadings, (2) reactions occurring at the supports or at points 
of contact with other bodies (see Table 5–1), and (3) the weight of the 
body. To account for all these effects, it may help to trace over the 
boundary, carefully noting each force or couple moment acting on it.

Identify Each Loading and Give Dimensions.
The forces and couple moments that are known should be labeled with 
their proper magnitudes and directions. Letters are used to represent 
the magnitudes and direction angles of forces and couple moments that 
are unknown. Establish an x, y coordinate system so that these 
unknowns, Ax, Ay, etc., can be identified. Finally, indicate the dimensions 
of the body necessary for calculating the moments of forces.



	 5.2 F ree-Body Diagrams	 215

5

Draw the free-body diagram of the uniform beam shown in Fig. 5–7a. 
The beam has a mass of 100 kg.

example    5.1 

(a)

2 m
1200 N

6 m

A

SOLUTION
The free-body diagram of the beam is shown in Fig. 5–7b. Since the 
support at A is fixed, the wall exerts three reactions on the beam, 
denoted as Ax, Ay, and MA . The magnitudes of these reactions are 
unknown, and their sense has been assumed. The weight of the beam, 
W = 100(9.81) N = 981 N, acts through the beam’s center of gravity G, 
which is 3 m from A since the beam is uniform.

Fig. 5–7

Ay

Ax

2 m
1200 N

3 m

A

981 N

MA

G

Effect of applied
force acting on beam

Effect of gravity (weight)
acting on beam

Effect of fixed
support acting
on beam

(b)

y

x
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Draw the free-body diagram of the foot lever shown in Fig. 5–8a.  
The operator applies a vertical force to the pedal so that the spring is 
stretched 1.5 in. and the force on the link at B is 20 lb.

example    5.2 

F

30 lb

5 in.

1.5 in.

1 in.

A

B

20 lb

Ay

Ax

(c)

F

5 in.

1.5 in.

1 in.

A

B

k � 20 lb/in.

(b)

A

B

(a)

Fig. 5–8 (© Russell C. Hibbeler)

SOLUTION
By inspection of the photo the lever is loosely bolted to the frame at A 
and so this bolt acts as a pin. (See (8) in Table 5–1.) Although not 
shown here the link at B is pinned at both ends and so it is like (2) in 
Table 5–1. After making the proper measurements, the idealized 
model of the lever is shown in Fig. 5–8b. From this, the free-body 
diagram is shown in Fig. 5–8c. Since the pin at A is removed, it exerts 
force components Ax and Ay on the lever. The link exerts a force of 
20  lb, acting in the direction of the link. In addition the spring also 
exerts a horizontal force on the lever. If the stiffness is measured and 
found to be k = 20 lb>in., then since the stretch s = 1.5 in., using 
Eq.  3–2, Fs = ks = 20 lb>in. (1.5 in.) = 30 lb. Finally, the operator’s 
shoe applies a vertical force of F on the pedal. The dimensions of the 
lever are also shown on the free-body diagram, since this information 
will be useful when calculating the moments of the forces. As usual, 
the senses of the unknown forces at A have been assumed. The correct 
senses will become apparent after solving the equilibrium equations.
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Two smooth pipes, each having a mass of 300 kg, are supported by the 
forked tines of the tractor in Fig. 5–9a. Draw the free-body diagrams 
for each pipe and both pipes together.

example    5.3

(a) (b)

30�

A

B

0.35 m

0.35 m
30�

A
30�

30�

Effect of gravity
(weight) acting on A

Effect of sloped
fork acting on A

Effect of B acting on A

Effect of sloped
blade acting on A

T

F

R

2943 N

(c)

Fig. 5–9

30�

B

30�

P

R 2943 N

(d)

30�

A

30�

T

F

2943 N

(e)

30�

B

P

2943 N

SOLUTION
The idealized model from which we must draw the free-body  
diagrams is shown in Fig. 5–9b. Here the pipes are identified, the 
dimensions have been added, and the physical situation reduced to its 
simplest form.

Removing the surfaces of contact, the free-body diagram for pipe A is 
shown in Fig. 5–9c. Its weight is W = 300(9.81) N = 2943 N. Assuming 
all contacting surfaces are smooth, the reactive forces T, F, R act in a 
direction normal to the tangent at their surfaces of contact.

The free-body diagram of the isolated pipe B is shown in Fig. 5–9d. 
Can you identify each of the three forces acting on this pipe? In 
particular, note that R, representing the force of A on B, Fig. 5–9d, is 
equal and opposite to R representing the force of B on A, Fig. 5–9c. 
This is a consequence of Newton’s third law of motion.

The free-body diagram of both pipes combined (“system”) is shown 
in Fig. 5–9e. Here the contact force R, which acts between A and B, is 
considered as an internal force and hence is not shown on the  
free-body diagram. That is, it represents a pair of equal but opposite 
collinear forces which cancel each other.

(© Russell C. Hibbeler)
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Draw the free-body diagram of the unloaded platform that is 
suspended off the edge of the oil rig shown in Fig. 5–10a. The platform 
has a mass of 200 kg.

(a)

Fig. 5–10 (© Russell C. Hibbeler)

SOLUTION
The idealized model of the platform will be considered in two 
dimensions because by observation the loading and the dimensions 
are all symmetrical about a vertical plane passing through its center, 
Fig. 5–10b. The connection at A is considered to be a pin, and the cable 
supports the platform at B. The direction of the cable and average 
dimensions of the platform are listed, and the center of gravity G has 
been determined. It is from this model that we have drawn the  
free-body diagram shown in Fig. 5–10c. The platform’s weight is 
200(9.81) = 1962 N. The supports have been removed, and the force 
components Ax and Ay along with the cable force T represent the 
reactions that both pins and both cables exert on the platform,  
Fig. 5–10a. As a result, half their magnitudes are developed on each 
side of the platform.

example    5.4 

1.40 m

1 m

70�

0.8 m

(b)

A
G

B

1.40 m

1 m

70�

0.8 m

1962 N

(c)

Ax

Ay

G

A

T
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Problems

5–1.  Draw the free-body diagram for the following 
problems.

a) The cantilevered beam in Prob. 5–10.

b) The beam in Prob. 5–11.

c) The beam in Prob. 5–12.

d) The beam in Prob. 5–14.

5–2.  Draw the free-body diagram for the following 
problems.

a) The truss in Prob. 5–15.

b) The beam in Prob. 5–16.

c) The man and load in Prob. 5–17.

d) The beam in Prob. 5–18.

5–3.  Draw the free-body diagram for the following 
problems.

a) The man and beam in Prob. 5–19.

b) The rod in Prob. 5–20.

c) The rod in Prob. 5–21.

d) The beam in Prob. 5–22.

*5–4.  Draw the free-body diagram for the following 
problems.

a) The beam in Prob. 5–25.

b) The crane and boom in Prob. 5–26.

c) The bar in Prob. 5–27.

d) The rod in Prob. 5–28.

5–5.  Draw the free-body diagram for the following 
problems.

a) The boom in Prob. 5–32.

b) The jib crane in Prob. 5–33.

c) The smooth pipe in Prob. 5–35.

d) The beam in Prob. 5–36.

5–6.  Draw the free-body diagram for the following 
problems.

a) The jib crane in Prob. 5–37.

b) The bar in Prob. 5–39.

c) The bulkhead in Prob. 5–41.

d) The boom in Prob. 5–42.

5–7.  Draw the free-body diagram for the following 
problems.

a) The rod in Prob. 5–44.

b) The hand truck and load when it is lifted in Prob. 5–45.

c) The beam in Prob. 5–47.

d) The cantilever footing in Prob. 5–51.

*5–8.  Draw the free-body diagram for the following 
problems.

a) The beam in Prob. 5–52.

b) The boy and diving board in Prob. 5–53.

c) The rod in Prob. 5–54.

d) The rod in Prob. 5–56.

5–9.  Draw the free-body diagram for the following 
problems.

a) The beam in Prob. 5–57.

b) The rod in Prob. 5–59.

c) The bar in Prob. 5–60.
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5.3  Equations of Equilibrium

In Sec. 5.1 we developed the two equations which are both necessary and 
sufficient for the equilibrium of a rigid body, namely, �F = 0 and 
�MO = 0. When the body is subjected to a system of forces, which all lie 
in the x–y plane, then the forces can be resolved into their x and y 
components. Consequently, the conditions for equilibrium in two 
dimensions are

	
�Fx =   0

�Fy =   0

�MO = 0

	 (5–2)

Here �Fx and �Fy represent, respectively, the algebraic sums of the x and y  
components of all the forces acting on the body, and �MO represents 
the algebraic sum of the couple moments and the moments of all the 
force components about the z axis, which is perpendicular to the x–y 
plane and passes through the arbitrary point O.

Alternative Sets of Equilibrium Equations.  Although  
Eqs. 5–2 are most often used for solving coplanar equilibrium problems, 
two alternative sets of three independent equilibrium equations may also 
be used. One such set is

	
�Fx =   0

�MA =   0

�MB = 0

	 (5–3)

When using these equations it is required that a line passing through 
points A and B is not parallel to the y axis. To prove that Eqs. 5–3 provide 
the conditions for equilibrium, consider the free-body diagram of the 
plate shown in Fig. 5–11a. Using the methods of Sec. 4.7, all the forces 
on  the free-body diagram may be replaced by an equivalent resultant 
force  FR = �F, acting at point A, and a resultant couple moment 
1MR2A = �MA, Fig. 5–11b. If �MA = 0 is satisfied, it is necessary that 
1MR2A = 0. Furthermore, in order that FR satisfy �Fx = 0, it must have 
no component along the x axis, and therefore FR must be parallel to the  
y axis, Fig. 5–11c. Finally, if it is required that �MB = 0, where B does not 
lie on the line of action of FR, then FR = 0. Since Eqs. 5–3 show that both 
of these resultants are zero, indeed the body in Fig. 5–11a must be in 
equilibrium.

B

A

C

(a)

F4

F3

F1

F2

x

y

Fig. 5–11

A

(MR)
A

FR

(b)

B C

(c)

A

FR

B C
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A second alternative set of equilibrium equations is

	
�MA =   0

�MB =   0

�MC = 0

 	 (5–4)

Here it is necessary that points A, B, and C do not lie on the same line. To 
prove that these equations, when satisfied, ensure equilibrium, consider 
again the free-body diagram in Fig. 5–11b. If �MA = 0 is to be satisfied, then 
1MR2A = 0. �MC = 0 is satisfied if the line of action of FR passes through 
point C as shown in Fig. 5–11c. Finally, if we require �MB = 0, it is necessary 
that FR = 0, and so the plate in Fig. 5–11a must then be in equilibrium.

Procedure for Analysis

Coplanar force equilibrium problems for a rigid body can be solved 
using the following procedure.

Free-Body Diagram.
	 •	 Establish the x, y coordinate axes in any suitable orientation.

	 •	 Remove all supports and draw an outlined shape of the body.

	 •	 Show all the forces and couple moments acting on the body.

	 •	 Label all the loadings and specify their directions relative to the x 
or y axis. The sense of a force or couple moment having an 
unknown magnitude but known line of action can be assumed.

	 •	 Indicate the dimensions of the body necessary for computing the 
moments of forces.

Equations of Equilibrium.
	 •	 Apply the moment equation of equilibrium, �MO = 0, about a 

point (O) that lies at the intersection of the lines of action of two 
unknown forces. In this way, the moments of these unknowns are 
zero about O, and a direct solution for the third unknown can be 
determined.

	 •	 When applying the force equilibrium equations, �Fx = 0 and 
�Fy = 0, orient the x and y axes along lines that will provide the 
simplest resolution of the forces into their x and y components.

	 •	 If the solution of the equilibrium equations yields a negative 
scalar for a force or couple moment magnitude, this indicates that 
the sense is opposite to that which was assumed on the free-body 
diagram.
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Example   5.5 

Determine the horizontal and vertical components of reaction on the 
beam caused by the pin at B and the rocker at A as shown in Fig. 5–12a. 
Neglect the weight of the beam.

(a)

600 N

D

100 N

A B

200 N

2 m 3 m 2 m

0.2 m

By

2 m

600 sin 45�  N

3 m 2 m

A
B

200 N

600 cos 45�  N

Ay

Bx
x

y

(b)

100 N

0.2 m

D

SOLUTION
Free-Body Diagram.  The supports are removed, and the free-body 
diagram of the beam is shown in Fig. 5–12b. (See Example 5.1.) For 
simplicity, the 600-N force is represented by its x and y components as 
shown in Fig. 5–12b.

Equations of Equilibrium.  Summing forces in the x direction yields

S+ �Fx = 0;   600 cos 45� N - Bx = 0

	 Bx = 424 N � Ans.

A direct solution for Ay can be obtained by applying the moment 
equation �MB = 0 about point B.

a+ �MB = 0;  100 N (2 m) + (600 sin 45� N)(5 m)

- (600 cos 45� N)(0.2 m) - A y(7 m) = 0

A y = 319 N � Ans.

Summing forces in the y direction, using this result, gives

+ c �Fy = 0;  319 N - 600 sin 45� N - 100 N - 200 N + By = 0

By = 405 N � Ans.

NOTE: Remember, the support forces in Fig. 5–12b are the result of 
pins that act on the beam. The opposite forces act on the pins. For 
example, Fig. 5–12c shows the equilibrium of the pin at A and the 
rocker.

Fig. 5–12

319 N

319 N

(c)

A

319 N

319 N
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Example   5.6 

The cord shown in Fig. 5–13a supports a force of 100 lb and wraps 
over the frictionless pulley. Determine the tension in the cord at C and 
the horizontal and vertical components of reaction at pin A.

100 lb

0.5 ft

� 30�

C

(a)

A

u

T100 lb

30�

p

Ax

Ay

A

(b)

p

Ax

Ay

A

T100 lb

0.5 ft

� 30�

(c)

x

y

u

SOLUTION
Free-Body Diagrams.  The free-body diagrams of the cord and 
pulley are shown in Fig. 5–13b. Note that the principle of action, equal 
but opposite reaction must be carefully observed when drawing each 
of these diagrams: the cord exerts an unknown load distribution p on 
the pulley at the contact surface, whereas the pulley exerts an equal but 
opposite effect on the cord. For the solution, however, it is simpler to 
combine the free-body diagrams of the pulley and this portion of the 
cord, so that the distributed load becomes internal to this “system” and 
is therefore eliminated from the analysis, Fig. 5–13c.

Equations of Equilibrium.  Summing moments about point A to 
eliminate Ax and Ay, Fig. 5–13c, we have

a+ �MA = 0;  100 lb (0.5 ft) - T  (0.5 ft) = 0 

T = 100 lb � Ans.

Using this result,

S+ �Fx = 0;  -A x + 100 sin 30� lb = 0

A x = 50.0 lb � Ans.

+ c �Fy = 0;  A y - 100 lb - 100 cos 30� lb = 0

A y = 187 lb � Ans.

NOTE: From the moment equation, it is seen that the tension remains 
constant as the cord passes over the pulley. (This of course is true for any 
angle u at which the cord is directed and for any radius r of the pulley.)

Fig. 5–13
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Example   5.7 

The member shown in Fig. 5–14a is pin connected at A and rests 
against a smooth support at B. Determine the horizontal and vertical 
components of reaction at the pin A.

SOLUTION
Free-Body Diagram.  As shown in Fig. 5–14b, the supports are 
removed and the reaction NB is perpendicular to the member at B. Also, 
horizontal and vertical components of reaction are represented at A. The 
resultant of the distributed loading is 1

2 (1.5  m)(80 N>m) = 60 N. It acts 
through the centroid of the triangle, 1 m from A as shown.

Equations of Equilibrium.  Summing moments about A, we obtain 
a direct solution for NB,

a+ �MA = 0; -90 N # m - 60 N(1 m) + NB(0.75 m) = 0 

NB = 200 N
Using this result,

S+ �Fx = 0;      A x - 200 sin 30� N = 0

A x = 100 N � Ans.

+ c �Fy = 0;    A y - 200 cos 30� N - 60 N = 0

A y = 233 N � Ans.

0.75 m

1.5 m

A

B

(a)

80 N/m

30�

90 N � m

NB

0.75 m
1 m

60 N

A

Ax

Ay

(b)

x

y

30�

30�

90 N � m

Fig. 5–14
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Example   5.8 

The box wrench in Fig. 5–15a is used to tighten the bolt at A. If the 
wrench does not turn when the load is applied to the handle, determine 
the torque or moment applied to the bolt and the force of the wrench 
on the bolt.

SOLUTION
Free-Body Diagram.  The free-body diagram for the wrench is 
shown in Fig. 5–15b. Since the bolt acts as a “fixed support,” when it is 
removed, it exerts force components Ax and Ay and a moment MA  on 
the wrench at A.

Equations of Equilibrium.

S
+

�Fx = 0;      A x - 521 5
132 N + 30 cos 60� N = 0

A x = 5.00 N � Ans.

+ c �Fy = 0;      A y - 52112
132 N - 30 sin 60� N = 0

A y = 74.0 N � Ans.

a+ �MA = 0;  MA - 352112
132N4  (0.3 m) - (30 sin 60� N)(0.7 m) = 0

 	 MA = 32.6 N # m � Ans.

Note that MA  must be included in this moment summation. This couple 
moment is a free vector and represents the twisting resistance of the 
bolt on the wrench. By Newton’s third law, the wrench exerts an equal 
but opposite moment or torque on the bolt. Furthermore, the resultant 
force on the wrench is

	 FA = 2(5.00)2 + (74.0)2 = 74.1 N� Ans.

NOTE: Although only three independent equilibrium equations can be 
written for a rigid body, it is a good practice to check the calculations 
using a fourth equilibrium equation. For example, the above 
computations may be verified in part by summing moments about 
point C:

a+ �MC = 0;  352112
132N4  (0.4 m) + 32.6 N # m - 74.0 N(0.7 m) = 0

19.2 N # m + 32.6 N # m - 51.8 N # m = 0

300 mm 400 mm

13 12

5

B C
60�

52 N 30 N
(a)

A

C

0.3 m 0.4 m

13 12
5

60�

52 N 30 N

(b)

Ay

MA

Ax
y

x

Fig. 5–15
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Example   5.9 

Determine the horizontal and vertical components of reaction on the 
member at the pin A, and the normal reaction at the roller B in Fig. 5–16a.

SOLUTION
Free-Body Diagram.  All the supports are removed and so the  
free-body diagram is shown in Fig. 5–16b. The pin at A exerts two 
components of reaction on the member, Ax and Ay.

3 ft

A

B

3 ft

2 ft

(a)

30�

750 lb

A

B

2 ft

3 ft 3 ft

750 lb

Ax

Ay

NB
30�

y

x

(b)

Equations of Equilibrium.  The reaction NB can be obtained directly 
by summing moments about point A, since Ax and Ay produce no 
moment about A.

a+ �MA =  0;

	 [NB cos 30�](6 ft) - [NB sin 30�](2 ft) - 750 lb(3 ft) = 0

 	 NB = 536.2 lb = 536 lb � Ans.

Using this result,

 S
+ � Fx = 0;	 A x - (536.2 lb) sin 30� = 0

	  A x = 268 lb � Ans.

+  c �Fy = 0;	 A y + (536.2 lb) cos 30� - 750 lb = 0

 	 A y = 286 lb � Ans.

Details of the equilibrium of the pin at A are shown in Fig. 5–16c.

Fig. 5–16

286 lb

268 lb

268 lb

286 lb

member
on pin

support
on pin

(c)
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The uniform smooth rod shown in Fig. 5–17a is subjected to a force 
and couple moment. If the rod is supported at A by a smooth wall and 
at B and C either at the top or bottom by rollers, determine the 
reactions at these supports. Neglect the weight of the rod.

Example   5.10 

(a)

A

2 m

300 N

4 m

2 m

C

B

2 m

(b)

2 m

300 N

4000 N � m

4 m

2 m
30�

30�

Cy¿

By¿

30� 30�

Ax

y y¿

x

x¿

30�

Fig. 5–17

SOLUTION
Free-Body Diagram.  Removing the supports as shown in Fig. 5–17b, 
all the reactions act normal to the surfaces of contact since these surfaces 
are smooth. The reactions at B and C are shown acting in the positive y� 
direction. This assumes that only the rollers located on the bottom of the 
rod are used for support.

Equations of Equilibrium.  Using the x, y coordinate system in  
Fig. 5–17b, we have

S
+

�Fx = 0;	 Cy� sin 30� + By� sin 30� - A x = 0� (1)

+  c �Fy = 0;	 -300 N + Cy� cos 30� + By� cos 30� = 0� (2)

a+ �MA = 0;	 -By�(2 m) + 4000 N # m - Cy�(6 m)

	 + (300 cos 30� N)(8 m) = 0� (3)

When writing the moment equation, it should be noted that the line of 
action of the force component 300 sin 30° N passes through point A, 
and therefore this force is not included in the moment equation.

Solving Eqs. 2 and 3 simultaneously, we obtain

	  By� = -1000.0 N = -1 kN � Ans.

	  Cy� = 1346.4 N = 1.35 kN � Ans.

Since By� is a negative scalar, the sense of By� is opposite to that shown on 
the free-body diagram in Fig. 5–17b. Therefore, the top roller at B serves 
as the support rather than the bottom one. Retaining the negative sign 
for By� (Why?) and substituting the results into Eq. 1, we obtain

1346.4 sin 30� N + (-1000.0 sin 30� N) - A x = 0

	 A x = 173 N � Ans.
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The uniform truck ramp shown in Fig. 5–18a has a weight of 400 lb 
and is pinned to the body of the truck at each side and held in the 
position shown by the two side cables. Determine the tension in the 
cables.

SOLUTION
The idealized model of the ramp, which indicates all necessary 
dimensions and supports, is shown in Fig. 5–18b. Here the center of 
gravity is located at the midpoint since the ramp is considered to be 
uniform.

Free-Body Diagram.  Removing the supports from the idealized 
model, the ramp’s free-body diagram is shown in Fig. 5–18c.

Equations of Equilibrium.  Summing moments about point A will 
yield a direct solution for the cable tension. Using the principle of 
moments, there are several ways of determining the moment of T 
about A. If we use x and y components, with T applied at B, we have

a+ �MA = 0;    -T cos 20�(7 sin 30� ft) + T sin 20�(7 cos 30� ft)

 + 400 lb (5 cos 30� ft) = 0

T = 1425 lb

We can also determine the moment of T about A by resolving it into 
components along and perpendicular to the ramp at B. Then the 
moment of the component along the ramp will be zero about A, so that

a+ �MA = 0;    -T sin 10�(7 ft) + 400 lb (5 cos 30� ft) = 0

T = 1425 lb

Since there are two cables supporting the ramp,

	 T � =
T

2
= 712 lb 	 Ans.

NOTE: As an exercise, show that A x = 1339 lb and A y = 887 lb.

Example   5.11 

(c)

G

B

A

Ay

Ax

T

30�

2 ft
10�

20�

5 ft
400 lb

x

y

Fig. 5–18

(a)

(b)

G

B

A
30�

20�

2 ft

5 ft

(© Russell C. Hibbeler)
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Example   5.12 

A

B

(a)

1.5 m 1.5 m

1 m

45�

900 N

500 N � m

A

B

Ax

MA

900 N

NB

45�500 N � m

1 m

1.5 m 1.5 m

y

x

(b)

Fig. 5–19

SOLUTION
Free-Body Diagram.  Removing the supports, the free-body diagram 
of the member is shown in Fig. 5–19b. The collar exerts a horizontal 
force Ax and moment MA  on the member. The reaction NB of the roller 
on the member is vertical.

Equations of Equilibrium.  The forces A x and NB can be determined 
directly from the force equations of equilibrium.

S
+

� Fx = 0;	 A x = 0 � Ans.

+ c �Fy = 0;	 NB - 900 N = 0

 	 NB = 900 N � Ans.

The moment MA  can be determined by summing moments either 
about point A or point B.

a+ �MA =  0;

MA - 900 N(1.5 m) - 500 N # m + 900 N [3 m + (1 m) cos 45�] = 0

	 MA = -1486 N # m = 1.49 kN # mb� Ans.

or

a+ �MB = 0;  MA + 900 N [1.5 m + (1 m) cos 45�] - 500 N # m = 0

 	 MA = -1486 N # m = 1.49 kN # mb� Ans.

The negative sign indicates that MA  has the opposite sense of rotation 
to that shown on the free-body diagram.

Determine the support reactions on the member in Fig. 5–19a. The 
collar at A is fixed to the member and can slide vertically along the 
vertical shaft.



230 	 Chapter 5  E  quil ibr ium of a Rig id Body

5

5.4  Two- and Three-Force Members

The solutions to some equilibrium problems can be simplified by 
recognizing members that are subjected to only two or three forces.

Two-Force Members.  As the name implies, a two-force member 
has forces applied at only two points on the member. An example of a 
two-force member is shown in Fig. 5–20a. To satisfy force equilibrium,  
FA and FB must be equal in magnitude, FA = FB = F, but opposite in 
direction (�F = 0), Fig. 5–20b. Furthermore, moment equilibrium requires 
that FA and FB share the same line of action, which can only happen if they 
are directed along the line joining points A and B (�MA = 0 or �MB = 0),  
Fig. 5–20c. Therefore, for any two-force member to be in equilibrium, the 
two forces acting on the member must have the same magnitude, act in 
opposite directions, and have the same line of action, directed along the line 
joining the two points where these forces act.

A

B

The hydraulic cylinder AB is a typical 
example of a two-force member since 
it is pin connected at its ends and, 
provided its weight is neglected, only 
the pin forces act on this member.  
(© Russell C. Hibbeler)

Fig. 5–20

B

FB

(a)

A FA

(b)

Two-force member

A FA � F

FB � F

B

A

FB � F

(c)

B

FA � F

Three-Force Members.  If a member is subjected to only three 
forces, it is called a three-force member. Moment equilibrium can be 
satisfied only if the three forces form a concurrent or parallel force 
system. To illustrate, consider the member subjected to the three forces 
F1, F2, and F3, shown in Fig. 5–21a. If the lines of action of F1 and F2 
intersect at point O, then the line of action of F3 must also pass through 
point O so that the forces satisfy �MO = 0. As a special case, if the three 
forces are all parallel, Fig. 5–21b, the location of the point of intersection, 
O, will approach infinity.

F3
F1

O

F1
F3

Three-force member

F2 F2

(b)(a)

Fig. 5–21

FB

FA
FC

B
A C

The link used for this railroad car brake 
is a three-force member. Since the force 
FB in the tie rod at B and FC from the 
link at C are parallel, then for equilibrium 
the resultant force FA at the pin A must 
also be parallel with these two forces. 
(© Russell C. Hibbeler)

FA
B

W

O

A
FB

The boom and bucket on this lift is a 
three-force member, provided its weight 
is neglected. Here the lines of action of 
the weight of the worker, W, and the force 
of the two-force member (hydraulic 
cylinder) at B, FB, intersect at O. For 
moment equilibrium, the resultant force 
at the pin A, FA, must also be directed 
towards O. (© Russell C. Hibbeler)
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F

F

B

D

(b)

0.2 m
B

A

C

0.5 m

0.5 m

F

O

0.1 m

(c)

0.4 m

FA

400 N

u

Fig. 5–22

0.5 m

0.2 m

B

A

D

C

0.1 m

0.2 m

(a)

400 N
The lever ABC is pin supported at A and connected to a short link BD 
as shown in Fig. 5–22a. If the weight of the members is negligible, 
determine the force of the pin on the lever at A.

SOLUTION
Free-Body Diagrams.  As shown in Fig. 5–22b, the short link BD is 
a two-force member, so the resultant forces from the pins D and B must 
be equal, opposite, and collinear. Although the magnitude of the force 
is unknown, the line of action is known since it passes through B and D.

Lever ABC is a three-force member, and therefore, in order to 
satisfy moment equilibrium, the three nonparallel forces acting on it 
must be concurrent at O, Fig. 5–22c. In particular, note that the force F 
on the lever at B is equal but opposite to the force F acting at B on the 
link. Why? The distance CO must be 0.5 m since the lines of action of 
F and the 400-N force are known.

Equations of Equilibrium.  By requiring the force system to be 
concurrent at O, since �MO = 0, the angle u which defines the line of 
action of FA  can be determined from trigonometry,

u = tan-1a 0.7

0.4
b = 60.3�

Using the x, y axes and applying the force equilibrium equations,

 S
+

�Fx = 0;  FA cos 60.3� - F cos 45� + 400 N = 0

 + c �Fy = 0;  FA sin 60.3� - F sin 45� = 0

Solving, we get

	  FA = 1.07 kN 	 Ans.

 F = 1.32 kN

NOTE: We can also solve this problem by representing the force at A 
by its two components Ax and Ay and applying �MA = 0, �Fx = 0, 
�Fy = 0 to the lever. Once A x and A y are determined, we can get FA  
and u.

Example   5.13 
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P5–1.  Draw the free-body diagram of each object.

(a)

500 N

A B

3 m 2 m

5

4
3

(b)

A

B

2 m

3 m

600 N � m

(c)

A

B

3 m 3 m

400 N/m

(d)

A

B

4 m

500 N

4

3

5

30�

3 m

(e)

A B

2 m 2 m

200 N/m

A

(f)

B

2 m

400 N

1 m

30�

C

	 Preliminary Problems

Prob. P5–1
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	 FUNDAMENTAL PROBLEMS

F5–4.  Determine the components of reaction at the fixed 
support A. Neglect the thickness of the beam.

60�

30�

3 m
1 m 1 m 1 m 400 N

200 N 200 N 200 N

A

Prob. F5–4

F5–5.  The 25-kg bar has a center of mass at G. If it is 
supported by a smooth peg at C, a roller at A, and cord AB, 
determine the reactions at these supports.

A

B
G

C

D

30� 15�

0.5 m

0.2 m

0.3 m

Prob. F5–5

F5–6.  Determine the reactions at the smooth contact 
points A, B, and C on the bar.

0.4 m

250 N

0.2 m

0.15 m

30�
A

B

C

30�

Prob. F5–6

All problem solutions must include an FBD.

F5–1.  Determine the horizontal and vertical components 
of reaction at the supports. Neglect the thickness of the 
beam.

B
A

5 ft 5 ft 5 ft

500 lb

600 lb � ft4
3

5

Prob. F5–1

F5–2.  Determine the horizontal and vertical components 
of reaction at the pin A and the reaction on the beam at C.

1.5 m

C

B

A

1.5 m 1.5 m

D

4 kN

Prob. F5–2

F5–3.  The truss is supported by a pin at A and a roller at B. 
Determine the support reactions.

A

B

2 m
5 kN

10 kN

2 m

4 m

4 m

45�

Prob. F5–3
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Problems

5–13.  Determine the reactions at the supports.

3 m 3 m

A B

900 N/m

600 N/m    

Prob. 5–13

5–14.  Determine the reactions at the supports.

B

A

3 m

800 N/m

3 m

1 m

Prob. 5–14

5–15.  Determine the reactions at the supports.

A B

2 m 2 m 2 m

2 m

6 kN

5 kN

8 kN

Prob. 5–15

All problem solutions must include an FBD.

5–10.  Determine the components of the support reactions 
at the fixed support A on the cantilevered beam.

1.5 m

1.5 m

30�

30�

4 kN

6 kN

A
1.5 m

Prob. 5–10

5–11.  Determine the reactions at the supports.

400 N/m

3 m

3

4

5

3 m

A
B

Prob. 5–11

*5–12.  Determine the horizontal and vertical components 
of reaction at the pin A and the reaction of the rocker B on 
the beam.

6 m

A B

4 kN

2 m

30�

Prob. 5–12
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5–19.  The man has a weight W and stands at the center of 
the plank. If the planes at A and B are smooth, determine 
the tension in the cord in terms of W and u.

A

B

L
uf

Prob. 5–19

*5–20.  A uniform glass rod having a length L is placed in 
the smooth hemispherical bowl having a radius r. Determine 
the angle of inclination u for equilibrium.

B
r

A

u

Prob. 5–20

5–21.  The uniform rod AB has a mass of 40 kg. Determine 
the force in the cable when the rod is in the position shown. 
There is a smooth collar at A.

A

60�

3 m

C
B

Prob. 5–21

*5–16.  Determine the tension in the cable and the 
horizontal and vertical components of reaction of the pin A. 
The pulley at D is frictionless and the cylinder weighs 80 lb.

BA

D

C

5 ft 5 ft

2

1

3 ft

Prob. 5–16

5–17.  The man attempts to support the load of boards 
having a weight W and a center of gravity at G. If he is 
standing on a smooth floor, determine the smallest angle u 
at which he can hold them up in the position shown. Neglect 
his weight.

A B

G
4 ft

4 ft

3 ft0.5 ft

u

Prob. 5–17

5–18.  Determine the components of reaction at the 
supports A and B on the rod.

A
B

P

L––
2

L––
2

Prob. 5–18
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5–25.  Determine the reactions on the bent rod which is 
supported by a smooth surface at B and by a collar at A, 
which is fixed to the rod and is free to slide over the fixed 
inclined rod.

3 ft3 ft

3

45

100 lb

200 lb � ft

2 ft

B 12
5

13

A

Prob. 5–25

5–26.  The mobile crane is symmetrically supported by two 
outriggers at A and two at B in order to relieve the 
suspension of the truck upon which it rests and to provide 
greater stability. If the crane boom and truck have a mass of 
18 Mg and center of mass at G1, and the boom has a mass 
of 1.8 Mg and a center of mass at G2, determine the vertical 
reactions at each of the four outriggers as a function of the 
boom angle u when the boom is supporting a load having a 
mass of 1.2 Mg. Plot the results measured from u = 0° to the 
critical angle where tipping starts to occur.

G2

G1

A B

1 m

6.25 m

1 m2 m

6 m

Prob. 5–26

5–22.  If the intensity of the distributed load acting on the 
beam is w = 3 kN>m, determine the reactions at the roller A 
and pin B.

5–23.  If the roller at A and the pin at B can support a load 
up to 4 kN and 8 kN, respectively, determine the maximum 
intensity of the distributed load w, measured in kN>m, so 
that failure of the supports does not occur.

A

B

w

3 m

30�

4 m

Probs. 5–22/23

*5–24.  The relay regulates voltage and current. Determine 
the force in the spring CD, which has a stiffness of k = 120 N>m,  
so that it will allow the armature to make contact at A 
in figure (a) with a vertical force of 0.4 N. Also, determine the 
force in the spring when the coil is energized and attracts 
the armature to E, figure (b), thereby breaking contact at A.

50 mm50 mm 30 mm

(a) (b)

D
D

kk

CC BB EA
A

10�

Prob. 5–24
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5–29.  Determine the force P needed to pull the 50-kg 
roller over the smooth step. Take u = 30°.

5–30.  Determine the magnitude and direction u of the 
minimum force P needed to pull the 50-kg roller over the 
smooth step.

A

B

P

300 mm
50 mm 

u

Probs. 5–29/30

5–31.  The operation of the fuel pump for an automobile 
depends on the reciprocating action of the rocker arm ABC, 
which is pinned at B and is spring loaded at A and D. When 
the smooth cam C is in the position shown, determine the 
horizontal and vertical components of force at the pin and 
the force along the spring DF for equilibrium. The vertical 
force acting on the rocker arm at A is FA = 60 N, and at C it 
is FC = 125 N.

50 mm

FA � 60 N

10 mm

C
D

B
A

F

E

20 mm

FC � 125 N

30�

Prob. 5–31

5–27.  Determine the reactions acting on the smooth 
uniform bar, which has a mass of 20 kg.

4 m

30ºA

B

60º

Prob. 5–27

*5–28.  A linear torsional spring deforms such that an 
applied couple moment M is related to the spring’s rotation u 
in radians by the equation M = (20 u) N # m. If such a spring 
is attached to the end of a pin-connected uniform 10-kg rod, 
determine the angle u for equilibrium. The spring is 
undeformed when u = 0°.

A

0.5 m

u
M � (20 u) N � m

Prob. 5–28
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5–35.  The smooth pipe rests against the opening at the 
points of contact A, B, and C. Determine the reactions at 
these points needed to support the force of 300 N. Neglect 
the pipe’s thickness in the calculation.

30�

30�

300 N

B

A

C

0.5 m 0.5 m

0.26 m

0.15 m

Prob. 5–35

*5–36.  The beam of negligible weight is supported 
horizontally by two springs. If the beam is horizontal and 
the springs are unstretched when the load is removed, 
determine the angle of tilt of the beam when the load is 
applied.

3 m 3 m

A

kA kB

B

C D

600 N/m 
 = 1 kN/m  = 1.5 kN/m 

Prob. 5–36

*5–32.  Determine the magnitude of force at the pin A and 
in the cable BC needed to support the 500-lb load. Neglect 
the weight of the boom AB.

35�22�

8 ft

C

B

A

Prob. 5–32

5–33.  The dimensions of a jib crane, which is manufactured 
by the Basick Co., are given in the figure. If the crane has a 
mass of 800 kg and a center of mass at G, and the maximum 
rated force at its end is F = 15 kN, determine the reactions 
at  its bearings. The bearing at A is a journal bearing and 
supports only a horizontal force, whereas the bearing at B is 
a thrust bearing that supports both horizontal and vertical 
components.

5–34.  The dimensions of a jib crane, which is manufactured 
by the Basick Co., are given in the figure. The crane has a 
mass of 800 kg and a center of mass at G. The bearing at A 
is a journal bearing and can support a horizontal force, 
whereas the bearing at B is a thrust bearing that supports 
both horizontal and vertical components. Determine the 
maximum load F that can be suspended from its end if the 
selected bearings at A and B can sustain a maximum 
resultant load of 24 kN and 34 kN, respectively.

F

G

A

3 m

2 m

B

0.75 m

Probs. 5–33/34
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5–41.  The bulk head AD is subjected to both water and  
soil-backfill pressures. Assuming AD is “pinned” to the ground 
at A, determine the horizontal and vertical reactions there and 
also the required tension in the ground anchor BC necessary 
for equilibrium. The bulk head has a mass of 800 kg.

6 m

310 kN/m118 kN/m

0.5 m

C F

A

B

D

4 m

Prob. 5–41

5–42.  The boom supports the two vertical loads. Neglect 
the size of the collars at D and B and the thickness of the 
boom, and compute the horizontal and vertical components 
of force at the pin A and the force in cable CB. Set 
F1 = 800 N and F2 = 350 N.

5–43.  The boom is intended to support two vertical loads, 
F1 and F2. If the cable CB can sustain a maximum load of 
1500 N before it fails, determine the critical loads if 
F1 = 2F2. Also, what is the magnitude of the maximum 
reaction at pin A?

1.5 m

30�

3

C

B

F1

F2

D

A

4

5

1 m

Probs. 5–42/43

5–37.  The cantilevered jib crane is used to support the 
load  of 780 lb. If x = 5 ft, determine the reactions at 
the supports. Note that the supports are collars that allow 
the crane to rotate freely about the vertical axis. The collar 
at B supports a force in the vertical direction, whereas the 
one at A does not.

5–38.  The cantilevered jib crane is used to support the 
load of 780 lb. If the trolley T can be placed anywhere 
between 1.5 ft … x … 7.5 ft, determine the maximum 
magnitude of reaction at the supports A and B. Note that 
the supports are collars that allow the crane to rotate freely 
about the vertical axis. The collar at B supports a force in 
the vertical direction, whereas the one at A does not.

8 ft

4 ft

780 lb

x

T

B

A

Probs. 5–37/38

5–39.  The bar of negligible weight is supported by two 
springs, each having a stiffness k = 100 N>m. If the springs 
are originally unstretched, and the force is vertical as shown, 
determine the angle u the bar makes with the horizontal, 
when the 30-N force is applied to the bar.

*5–40.  Determine the stiffness k of each spring so that 
the 30-N force causes the bar to tip u = 15° when the force is 
applied. Originally the bar is horizontal and the springs are 
unstretched. Neglect the weight of the bar.

2 m1 m

A

BC

30 N
k

k

Probs. 5–39/40
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5–47.  Determine the reactions at the pin A and the tension 
in cord BC. Set F = 40 kN. Neglect the thickness of the beam.

*5–48.  If rope BC will fail when the tension becomes 50 kN, 
determine the greatest vertical load F that can be applied to 
the beam at B. What is the magnitude of the reaction at A 
for this loading? Neglect the thickness of the beam.

C

A

F26 kN

13 12

5

5
3

4

B

4 m2 m

Probs. 5–47/48

5–49.  The rigid metal strip of negligible weight is used as 
part of an electromagnetic switch. If the stiffness of the 
springs at A and B is k = 5 N>m and the strip is originally 
horizontal when the springs are unstretched, determine the 
smallest force F needed to close the contact gap at C.

50 mm 50 mm

10 mm
A

B

C

k

k

F

Prob. 5–49

*5–44.  The 10-kg uniform rod is pinned at end A. If it is 
also subjected to a couple moment of 50 N # m, determine 
the smallest angle u for equilibrium. The spring is 
unstretched when u = 0, and has a stiffness of k = 60 N>m.

0.5 m

2 m

50 N � m

k � 60 N/m

B

A

u

Prob. 5–44

5–45.  The man uses the hand truck to move material up the 
step. If the truck and its contents have a mass of 50 kg with 
center of gravity at G, determine the normal reaction on both 
wheels and the magnitude and direction of the minimum 
force required at the grip B needed to lift the load.

A

B

60�

0.4 m

0.5 m

0.4 m

0.4 m

0.1 m

0.2 m G

Prob. 5–45

5–46.  Three uniform books, each having a weight W and 
length a, are stacked as shown. Determine the maximum 
distance d that the top book can extend out from the bottom 
one so the stack does not topple over.

a d

Prob. 5–46
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*5–52.  The uniform beam has a weight W and length l 
and is supported by a pin at A and a cable BC. Determine 
the horizontal and vertical components of reaction at A 
and the tension in the cable necessary to hold the beam in 
the position shown.

f

C

B
A

l

Prob. 5–52

5–53.  A boy stands out at the end of the diving board, which 
is supported by two springs A and B, each having a stiffness 
of k = 15 kN>m. In the position shown the board is horizontal. 
If the boy has a mass of 40 kg, determine the angle of tilt 
which the board makes with the horizontal after he jumps off. 
Neglect the weight of the board and assume it is rigid.

BA

1 m 3 m

Prob. 5–53

5–50.  The rigid metal strip of negligible weight is used as 
part of an electromagnetic switch. Determine the maximum 
stiffness k of the springs at A and B so that the contact at C 
closes when the vertical force developed there is F = 0.5 N. 
Originally the strip is horizontal as shown.

50 mm 50 mm

10 mm
A

B

C

k

k

F

Prob. 5–50

5–51.  The cantilever footing is used to support a wall near 
its edge A so that it causes a uniform soil pressure under the 
footing. Determine the uniform distribution loads, wA and 
wB, measured in lb>ft at pads A and B, necessary to support 
the wall forces of 8000 lb and 20 000 lb.

wA

A B

wB

8 ft2 ft 3 ft

1.5 ft

8000 lb

20 000 lb

0.25 ft

Prob. 5–51
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*5–56.  The uniform rod of length L and weight W is 
supported on the smooth planes. Determine its position u 
for equilibrium. Neglect the thickness of the rod.

L

u

f
c

Prob. 5–56

5–57.  The beam is subjected to the two concentrated loads. 
Assuming that the foundation exerts a linearly varying load 
distribution on its bottom, determine the load intensities 
w1 and w2 for equilibrium if P = 500 lb and L = 12 ft.

P 2P

w2

w1

L––
3

L––
3

L––
3

Prob. 5–57

5–54.  The 30-N uniform rod has a length of l = 1 m.  
If s = 1.5 m, determine the distance h of placement at the 
end A along the smooth wall for equilibrium.

h

s

C

B

A

l

Prob. 5–54

5–55.  The uniform rod has a length l and weight W. It is 
supported at one end A by a smooth wall and the other end 
by a cord of length s which is attached to the wall as shown. 
Determine the placement h for equilibrium.

h

s

C

B

A

l

Prob. 5–55
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*5–60.  Determine the distance d for placement of the load P 
for equilibrium of the smooth bar in the position u as shown. 
Neglect the weight of the bar.

P

d

a

u

Prob. 5–60

5–61.  If d = 1 m, and u = 30°, determine the normal 
reaction at the smooth supports and the required distance a 
for the placement of the roller if P = 600 N. Neglect the 
weight of the bar.

P

d

a

u

Prob. 5–61

5–58.  The beam is subjected to the two concentrated 
loads.  Assuming that the foundation exerts a linearly 
varying load distribution on its bottom, determine the load 
intensities w1 and w2 for equilibrium in terms of the 
parameters shown.

P 2P

w2

w1

L––
3

L––
3

L––
3

Prob. 5–58

5–59.  The rod supports a weight of 200 lb and is pinned at its 
end A. If it is also subjected to a couple moment of  
100 lb  #  ft, determine the angle u for equilibrium. The spring 
has an unstretched length of 2 ft and a stiffness of k = 50 lb>ft.

3 ft
3 ft

2 ft100 lb � ft
k � 50 lb/ft

B

A u

Prob. 5–59
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C5–3.    Like all aircraft, this jet plane rests on three wheels. 
Why not use an additional wheel at the tail for better 
support? (Can you think of any other reason for not 
including this wheel?) If there was a fourth tail wheel, draw 
a free-body diagram of the plane from a side (2 D) view, and 
show why one would not be able to determine all the wheel 
reactions using the equations of equilibrium.

Prob. C5–3 (© Russell C. Hibbeler)

C5–4.     Where is the best place to arrange most of the logs 
in the wheelbarrow so that it minimizes the amount of force 
on the backbone of the person transporting the load? Do an 
equilibrium analysis to explain your answer.

Prob. C5–4 (© Russell C. Hibbeler)

C5–1.    The tie rod is used to support this overhang at the 
entrance of a building. If it is pin connected to the building 
wall at A and to the center of the overhang B, determine if 
the force in the rod will increase, decrease, or remain the 
same if (a) the support at A is moved to a lower position D, 
and (b) the support at B is moved to the outer position C. 
Explain your answer with an equilibrium analysis, using 
dimensions and loads. Assume the overhang is pin supported 
from the building wall.

C
B

D

A

Prob. C5–1 (© Russell C. Hibbeler)

C5–2.    The man attempts to pull the four wheeler up the 
incline and onto the trailer. From the position shown, is it 
more effective to pull on the rope at A, or would it be better 
to pull on the rope at B? Draw a free-body diagram for each 
case, and do an equilibrium analysis to explain your answer.
Use appropriate numerical values to do your calculations.

A

B

Prob. C5–2 (© Russell C. Hibbeler)

Conceptual Problems
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EQUILIBRIUM IN THREE DIMENSIONS

5.5  Free-Body Diagrams

The first step in solving three-dimensional equilibrium problems, as in the 
case of two dimensions, is to draw a free-body diagram. Before we can do 
this, however, it is first necessary to discuss the types of reactions that can 
occur at the supports.

Support Reactions.  The reactive forces and couple moments 
acting at various types of supports and connections, when the members 
are viewed in three dimensions, are listed in Table 5–2. It is important to 
recognize the symbols used to represent each of these supports and to 
understand clearly how the forces and couple moments are developed. 
As in the two-dimensional case:

	•	 A force is developed by a support that restricts the translation of its 
attached member.

	•	 A couple moment is developed when rotation of the attached 
member is prevented.

For example, in Table 5–2, item (4), the ball-and-socket joint prevents 
any translation of the connecting member; therefore, a force must act on 
the member at the point of connection. This force has three components 
having unknown magnitudes, Fx, Fy, Fz. Provided these components 
are known, one can obtain the magnitude of force,  F = 2F x

2 + F y
2 + F z

2, 
and the force’s orientation defined by its coordinate direction angles  
a, b, g, Eqs. 2–5.* Since the connecting member is allowed to rotate freely 
about any axis, no couple moment is resisted by a ball-and-socket joint.

It should be noted that the single bearing supports in items (5) and (7), 
the single pin (8), and the single hinge (9) are shown to resist both force 
and couple-moment components. If, however, these supports are used in 
conjunction with other bearings, pins, or hinges to hold a rigid body in 
equilibrium and the supports are properly aligned when connected to the 
body, then the force reactions at these supports alone are adequate for 
supporting the body. In other words, the couple moments become 
redundant and are not shown on the free-body diagram. The reason for 
this should become clear after studying the examples which follow.

* The three unknowns may also be represented as an unknown force magnitude F and 
two unknown coordinate direction angles. The third direction angle is obtained using the 
identity cos2 a + cos2 b + cos2 g = 1, Eq. 2–8
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Types of Connection Reaction Number of Unknowns

continued

One unknown. The reaction is a force which acts away 
from the member in the known direction of the cable.

One unknown. The reaction is a force which acts 
perpendicular to the surface at the point of contact.

One unknown. The reaction is a force which acts 
perpendicular to the surface at the point of contact.

Three unknowns. The reactions are three rectangular 
force components.

Four unknowns. The reactions are two force and two 
couple-moment components which act perpendicular to 
the shaft.  Note: The couple moments are generally not 
applied if the body is supported elsewhere. See the 
examples.

F

F

F

Fz

FyFx

single journal bearing

Fz

Fx

Mz

Mx

(1)

cable

(2)

(3)

roller

ball and socket

(4)

(5)

smooth surface support

TABLE 5–2 Supports for Rigid Bodies Subjected to Three-Dimensional Force Systems
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Reaction Number of Unknowns

Five unknowns. The reactions are two force and three 
couple-moment components. Note: The couple moments 
are generally not applied if the body is supported 
elsewhere. See the examples.

Five unknowns. The reactions are three force and two 
couple-moment components. Note: The couple moments 
are generally not applied if the body is supported 
elsewhere. See the examples.

Five unknowns. The reactions are three force and two 
couple-moment components. Note: The couple moments 
are generally not applied if the body is supported 
elsewhere. See the examples.

Five unknowns. The reactions are three force and two 
couple-moment components. Note: The couple moments 
are generally not applied if the body is supported 
elsewhere. See the examples.

Six unknowns. The reactions are three force and three 
couple-moment components.

Fz

Fx

Mz

Mx

Fy

Fz

Fx

Mz

Mx
My

Fz

Mz

Fx

Fy My

Mz

Fx

Fy

Mx

Fz

Mz

Fx
MyMx

Fy

Fz

Types of Connection

TABLE 5–2 Continued

single hinge

fixed support

single thrust bearing

single journal bearing
with square shaft

single smooth pin

(7)

(6)

(8)

(10)

(9)
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Typical examples of actual supports that are referenced to Table 5–2 are 
shown in the following sequence of photos.

This ball-and-socket joint provides a 
connection for the housing of an earth 
grader to its frame. (4) (© Russell C. 
Hibbeler)

The journal bearings support the ends of 
the shaft. (5) (© Russell C. Hibbeler)

This thrust bearing is used to support the 
drive shaft on a machine. (7) (© Russell 
C. Hibbeler)

This pin is used to support the end of the 
strut used on a tractor. (8) (© Russell  
C. Hibbeler)

Free-Body Diagrams.  The general procedure for establishing the 
free-body diagram of a rigid body has been outlined in Sec. 5.2. Essentially 
it requires first “isolating” the body by drawing its outlined shape. This is 
followed by a careful labeling of all the forces and couple moments with 
reference to an established x, y, z coordinate system. As a general rule, it 
is suggested to show the unknown components of reaction as acting on 
the free-body diagram in the positive sense. In this way, if any negative 
values are obtained, they will indicate that the components act in the 
negative coordinate directions.
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45 N � m

500 N

Properly aligned journal
bearings at A, B, C.

A

B

C

45 N � m

500 N

The force reactions developed by
the bearings are sufficient for
equilibrium since they prevent the
shaft from rotating about each of the 
coordinate axes. No couple moments
at each bearing are developed.

Bz

Bx

Cx

Cy

x
yAy

Az

z

Example  5.14 

Consider the two rods and plate, along with their associated free-body 
diagrams, shown in Fig. 5–23. The x, y, z axes are established on the 
diagram and the unknown reaction components are indicated in the 
positive sense. The weight is neglected.

SOLUTION

C

Pin at A and cable BC.

A

B300 lb

200 lb � ft

Moment components are developed
by the pin on the rod to prevent
rotation about the x and z axes.

x

B300 lb

y

Az

z

MAz

MAx

Ax

Ay

T

400 lb

A

B

C

Properly aligned journal bearing
at A and hinge at C. Roller at B.

Ax

400 lb

Bz

z

yx

Az

Cx

Cz

Cy

Only force reactions are developed by
the bearing and hinge on the plate to
prevent rotation about each coordinate axis.
No moments are developed at the hinge.

Fig. 5–23
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5.6  Equations of Equilibrium

As stated in Sec. 5.1, the conditions for equilibrium of a rigid body 
subjected to a three-dimensional force system require that both the 
resultant force and resultant couple moment acting on the body be equal 
to zero.

Vector Equations of Equilibrium.  The two conditions for 
equilibrium of a rigid body may be expressed mathematically in vector 
form as

	
�F = 0

�MO = 0
	 (5–5)

where �F is the vector sum of all the external forces acting on the body 
and �MO is the sum of the couple moments and the moments of all the 
forces about any point O located either on or off the body.

Scalar Equations of Equilibrium.  If all the external forces and 
couple moments are expressed in Cartesian vector form and substituted 
into Eqs. 5–5, we have

 �F = �Fxi + �Fyj + �Fzk = 0

 �MO = �Mxi + �Myj + �Mzk = 0

Since the i, j, and k components are independent from one another, the 
above equations are satisfied provided

	
�Fx = 0

�Fy = 0

�Fz = 0

	 (5–6a)

and

	
�Mx = 0

�My = 0

�Mz = 0

	 (5–6b)

These six scalar equilibrium equations may be used to solve for at most 
six unknowns shown on the free-body diagram. Equations 5–6a require 
the sum of the external force components acting in the x, y, and z 
directions to be zero, and Eqs. 5–6b require the sum of the moment 
components about the x, y, and z axes to be zero.



	 5.7  Constraints and Statical Determinacy	 251

5

5.7  Constraints and Statical Determinacy

To ensure the equilibrium of a rigid body, it is not only necessary to satisfy 
the equations of equilibrium, but the body must also be properly held or 
constrained by its supports. Some bodies may have more supports than 
are necessary for equilibrium, whereas others may not have enough or the 
supports may be arranged in a particular manner that could cause the 
body to move. Each of these cases will now be discussed.

Redundant Constraints.  When a body has redundant supports, 
that is, more supports than are necessary to hold it in equilibrium, it 
becomes  statically indeterminate. Statically indeterminate means that 
there will be more unknown loadings on the body than equations of 
equilibrium available for their solution. For example, the beam in Fig. 5–24a 
and the pipe assembly in Fig. 5–24b, shown together with their free-body 
diagrams, are both statically indeterminate because of additional 
(or redundant) support reactions. For the beam there are five unknowns, 
MA, A x, A y, By, and Cy, for which only three equilibrium equations can be 
written (�Fx = 0, �Fy = 0, and �MO = 0, Eq. 5–2). The pipe assembly 
has eight unknowns, for which only six equilibrium equations can be 
written, Eqs. 5–6.

The additional equations needed to solve statically indeterminate 
problems of the type shown in Fig. 5–24 are generally obtained from the 
deformation conditions at the points of support. These equations involve 
the physical properties of the body which are studied in subjects dealing 
with the mechanics of deformation, such as “mechanics of materials.”*

500 N

B C

A

2 kN � m

500 N

2 kN � m

Ax

Ay

MA
By Cy

(a)

x

y

Fig. 5–24

* See R. C. Hibbeler, Mechanics of Materials, 8th edition, Pearson Education/Prentice 
Hall, Inc.

B

A

400 N

200 N

400 N

200 N

Ay

Az

ByBx

Mx My

Bz

Mz

(b)

y

z

x
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Improper Constraints.  Having the same number of unknown 
reactive forces as available equations of equilibrium does not always 
guarantee that a body will be stable when subjected to a particular 
loading. For example, the pin support at A and the roller support at B for 
the beam in Fig. 5–25a are placed in such a way that the lines of action of 
the reactive forces are concurrent at point A. Consequently, the applied 
loading P will cause the beam to rotate slightly about A, and so the beam 
is improperly constrained, �MA �  0.

In three dimensions, a body will be improperly constrained if the lines of 
action of all the reactive forces intersect a common axis. For example, the 
reactive forces at the ball-and-socket supports at A and B in Fig. 5–25b  
all intersect the axis passing through A and B. Since the moments of these 
forces about A and B are all zero, then the loading P will rotate the 
member about the AB axis, �MAB �  0.

A
B

FB

Ay

Ax

A

PP

(a)

A

Az
Bz

Ax BxAy

By

z

x

B

y

A

z

x

B

y

PP

(b)

Fig. 5–25
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Another way in which improper constraining leads to instability occurs 
when the reactive forces are all parallel. Two- and three-dimensional 
examples of this are shown in Fig. 5–26. In both cases, the summation of 
forces along the x axis will not equal zero.

In some cases, a body may have fewer reactive forces than equations of 
equilibrium that must be satisfied. The body then becomes only partially 
constrained. For example, consider member AB in Fig. 5–27a with its 
corresponding free-body diagram in Fig. 5–27b. Here �Fy = 0 will not 
be satisfied for the loading conditions and therefore equilibrium will not 
be maintained.

To summarize these points, a body is considered improperly constrained 
if all the reactive forces intersect at a common point or pass through a 
common axis, or if all the reactive forces are parallel. In engineering 
practice, these situations should be avoided at all times since they will 
cause an unstable condition.

A

FA

AB

FB

PP

(a)

y

x

Fig. 5–26

FB

100 N

A

B

C

100 N

FA

FC

x

(b)

z

y

A B

(a)

100 N

FB

(b)

FA

100 N

Fig. 5–27

Stability is always an important concern 
when operating a crane, not only when 
lifting a load, but also when moving it about. 
(© Russell C. Hibbeler)
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Important Points
	 •	 Always draw the free-body diagram first when solving any 

equilibrium problem.

	 •	 If a support prevents translation of a body in a specific direction, 
then the support exerts a force on the body in that direction.

	 •	 If a support prevents rotation about an axis, then the support 
exerts a couple moment on the body about the axis.

	 •	 If a body is subjected to more unknown reactions than available 
equations of equilibrium, then the problem is statically indeterminate.

	 •	 A stable body requires that the lines of action of the reactive forces 
do not intersect a common axis and are not parallel to one another.

Procedure for Analysis
Three-dimensional equilibrium problems for a rigid body can be 
solved using the following procedure.
Free-Body Diagram.

	 •	 Draw an outlined shape of the body.
	 •	 Show all the forces and couple moments acting on the body.
	 •	 Establish the origin of the x, y, z axes at a convenient point and 

orient the axes so that they are parallel to as many of the external 
forces and moments as possible.

	 •	 Label all the loadings and specify their directions. In general, 
show all the unknown components having a positive sense along 
the x, y, z axes.

	 •	 Indicate the dimensions of the body necessary for computing the 
moments of forces.

Equations of Equilibrium.
	 •	 If the x, y, z force and moment components seem easy to 

determine, then apply the six scalar equations of equilibrium; 
otherwise use the vector equations.

	 •	 It is not necessary that the set of axes chosen for force summation 
coincide with the set of axes chosen for moment summation. 
Actually, an axis in any arbitrary direction may be chosen for 
summing forces and moments.

	 •	 Choose the direction of an axis for moment summation such that 
it intersects the lines of action of as many unknown forces as 
possible. Realize that the moments of forces passing through 
points on this axis and the moments of forces which are parallel 
to the axis will then be zero.

	 •	 If the solution of the equilibrium equations yields a negative 
scalar for a force or couple moment magnitude, it indicates that 
the sense is opposite to that assumed on the free-body diagram.
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The homogeneous plate shown in Fig. 5–28a has a mass of 100 kg and is 
subjected to a force and couple moment along its edges. If it is supported 
in the horizontal plane by a roller at A, a ball-and-socket joint at B, and 
a cord at C, determine the components of reaction at these supports.

SOLUTION (SCALAR ANALYSIS)

Free-Body Diagram.  There are five unknown reactions acting on 
the plate, as shown in Fig. 5–28b. Each of these reactions is assumed to 
act in a positive coordinate direction.

Equations of Equilibrium.  Since the three-dimensional geometry 
is rather simple, a scalar analysis provides a direct solution to this 
problem. A force summation along each axis yields

�Fx = 0;    Bx = 0 � Ans.

�Fy = 0;    By = 0 � Ans.

�Fz = 0;    A z + Bz + TC - 300 N - 981 N = 0� (1)

Recall that the moment of a force about an axis is equal to the product 
of the force magnitude and the perpendicular distance (moment arm) 
from the line of action of the force to the axis. Also, forces that are 
parallel to an axis or pass through it create no moment about the axis. 
Hence, summing moments about the positive x and y axes, we have

�Mx = 0;    TC (2 m) - 981 N(1 m) + Bz(2 m) = 0� (2)

�My = 0;    300 N(1.5 m) + 981 N(1.5 m) - Bz(3 m) - A z (3 m)

	 - 200 N # m = 0� (3)

The components of the force at B can be eliminated if moments are 
summed about the x � and y � axes. We obtain

�Mx� = 0;    981 N(1 m) + 300 N(2 m) - A z(2 m) = 0� (4)

�My� = 0;    -300 N(1.5 m) - 981 N(1.5 m) - 200 N # m

	 + TC (3 m) = 0� (5)

Solving Eqs. 1 through 3 or the more convenient Eqs. 1, 4, and 5 yields

	 A z = 790 N Bz = -217 N TC = 707 N � Ans.

The negative sign indicates that Bz  acts downward.

NOTE: The solution of this problem does not require a summation of 
moments about the z axis. The plate is partially constrained since the 
supports cannot prevent it from turning about the z axis if a force is 
applied to it in the x–y plane.

example  5.15

A

B

C

200 N � m

1.5 m

2 m
3 m

(a)

300 N

200 N � m

1.5 m

1.5 m
y

y¿x¿�

1 m

1 m
Az

Bz

Bx By

z

z¿

981 N TC

(b)

300 N

x

Fig. 5–28
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Determine the components of reaction that the ball-and-socket joint 
at A, the smooth journal bearing at B, and the roller support at C 
exert on the rod assembly in Fig. 5–29a.

example  5.16

x

y

z

A

B

C
D

0.4 m

0.4 m

(a)

0.6 m

900 N

0.4 m
0.4 m

A

x

y

z

0.4 m

0.4 m

(b)

0.6 m
0.4 m

0.4 m
FC

Bz

Az Bx

Ax

Ay

900 N

Fig. 5–29

SOLUTION (SCALAR ANALYSIS)
Free-Body Diagram.  As shown on the free-body diagram, Fig. 5–29b, 
the reactive forces of the supports will prevent the assembly from 
rotating about each coordinate axis, and so the journal bearing at B only 
exerts reactive forces on the member. No couple moments are required.

Equations of Equilibrium.  Because all the forces are either horizontal 
or vertical, it is convenient to use a scalar analysis. A direct solution for 
A y can be obtained by summing forces along the y axis.

�Fy = 0;        A y = 0 � Ans.

The force FC can be determined directly by summing moments about 
the y axis.

�My = 0;      FC (0.6 m) - 900 N(0.4 m) = 0

	 FC = 600 N � Ans.

Using this result, Bz can be determined by summing moments about 
the x axis.

�Mx = 0;      Bz(0.8 m) + 600 N(1.2 m) - 900 N(0.4 m) = 0

	 Bz = -450 N � Ans.

The negative sign indicates that Bz acts downward. The force Bx can 
be found by summing moments about the z axis.

�Mz = 0;      -Bx(0.8 m) = 0 Bx = 0 � Ans.

Thus,

�Fx = 0;        A x + 0 = 0  A x = 0 � Ans.

Finally, using the results of Bz and FC.

�Fz =  0;      A z + (-450 N) + 600 N - 900 N = 0
	 A z = 750 N � Ans.
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example  5.17

The boom is used to support the 75-lb flowerpot in Fig. 5–30a. 
Determine the tension developed in wires AB and AC.

SOLUTION (VECTOR ANALYSIS)
Free-Body Diagram.  The free-body diagram of the boom is shown 
in Fig. 5–30b.

Equations of Equilibrium.  Here the cable forces are directed at 
angles with the coordinate axes, so we will use a vector analysis.

 FAB = FABa
rAB

rAB
b = FABa

52i - 6j + 3k6  ft2(2 ft)2 + (-6 ft)2 + (3 ft)2
b

 =
 2 
7  FABi -

 6 
7  FAB  j +

 3 
7  FABk

 FAC = FACa
rAC

rAC
b = FACa

5-2i - 6j + 3k6  ft2(-2 ft)2 + (-6 ft)2 + (3 ft)2
b

 = -
 2 
7  FAC i -

 6 
7  FAC j +

 3 
7  FAC k

We can eliminate the force reaction at O by writing the moment 
equation of equilibrium about point O.

�MO = 0;          rA * (FAB + FAC + W) = 0

 (6j) * c a  2 
7  FABi -

 6 
7  FAB  j +

 3 
7  FABkb + a -

 2 
7  FACi -

 6 
7  FAC j +

 3 
7  FACkb + (-75k) d = 0

 a  18 
7  FAB +

 18 
7  FAC - 450b i + a -

 12 
7  FAB +

 12 
7  FACbk = 0

�Mx = 0;       18 
7 FAB +

 18 
7 FAC - 450 = 0� (1)

�My = 0;	 0 = 0

�Mz = 0;      -
 12 
7 FAB +

 12 
7 FAC = 0� (2)

Solving Eqs. (1) and (2) simultaneously,

	 FAB = FAC = 87.5 lb � Ans.

x
y

O
A

z

6 ft

(a)

3 ft

2 ft
2 ft

B

C

Fig. 5–30

B

A

(b)

6 ft

x y

O

z

3 ft

2 ft

2 ft

W � 75 lb

Oz

Oy
Ox

C

rA

FAB
FAC
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1.5 m

2 m

200 N

1.5 m

2 m

E

A

B

D

C

(a)

1 m

Rod AB shown in Fig. 5–31a is subjected to the 200-N force. Determine 
the reactions at the ball-and-socket joint A and the tension in the 
cables BD and BE. The collar at C is fixed to the rod.

SOLUTION (VECTOR ANALYSIS)
Free-Body Diagram.  Fig. 5–31b.

Equations of Equilibrium.  Representing each force on the free-body 
diagram in Cartesian vector form, we have

 FA = A xi + A y  j + A zk

 TE = TEi

 TD = TD j

 F = 5-200k6  N

Applying the force equation of equilibrium.

�F = 0;	  FA + TE + TD + F = 0

 (A x + TE)i + (A y + TD)j + (A z - 200)k = 0

�Fx = 0;	 A x + TE = 0� (1)
�Fy = 0;	 A y + TD = 0� (2)

�Fz = 0;	 A z - 200 = 0� (3)

Summing moments about point A yields

�MA = 0;	 rC * F + rB * (TE + TD) = 0

Since rC =
1
2 rB, then

(0.5i + 1j - 1k) * (-200k) + (1i + 2j - 2k) * (TEi + TD j) = 0

Expanding and rearranging terms gives

(2TD - 200)i + (-2TE + 100)j + (TD - 2TE)k = 0

�Mx = 0;	 2TD - 200 = 0� (4)

�My = 0;	 -2TE + 100 = 0� (5)
�Mz = 0;	 TD - 2TE = 0� (6)

Solving Eqs. 1 through 5, we get

	  TD = 100 N � Ans.
	  TE = 50 N � Ans.

	  A x = -50 N � Ans.

	  A y = -100 N � Ans.

	  A z = 200 N � Ans.

NOTE: The negative sign indicates that Ax and Ay have a sense which 
is opposite to that shown on the free-body diagram, Fig. 5–31b. Also, 
notice that Eqs. 1–6 can be set up directly using a scalar analysis.

200 N

y

B

C

x

z

rB

rC

TD

TE

Az

A Ay

Ax

(b)

example  5.18

Fig. 5–31
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example  5.19

The bent rod in Fig. 5–32a is supported at A by a journal bearing, at D 
by a ball-and-socket joint, and at B by means of cable BC. Using only 
one equilibrium equation, obtain a direct solution for the tension in 
cable BC. The bearing at A is capable of exerting force components 
only in the z and y directions since it is properly aligned on the shaft. 
In other words, no couple moments are required at this support.

SOLUTION (VECTOR ANALYSIS)

Free-Body Diagram.  As shown in Fig. 5–32b, there are six unknowns.

Equations of Equilibrium.  The cable tension TB may be obtained 
directly by summing moments about an axis that passes through points 
D and A. Why? The direction of this axis is defined by the unit vector 
u, where

 u =
rDA

rDA
= -

122
 i -

122
 j

 = -0.7071i - 0.7071j

Hence, the sum of the moments about this axis is zero provided

�MDA = u # �(r * F) = 0

Here r represents a position vector drawn from any point on the axis 
DA to any point on the line of action of force F (see Eq. 4–11). With 
reference to Fig. 5–32b, we can therefore write

u # (rB * TB + rE * W) = 0

 (-0.7071i - 0.7071j) # 3 (-1j) * (TBk)

	 + (-0.5j) * (-981k)4 = 0

(-0.7071i - 0.7071j) # [(-TB + 490.5)i] = 0

-0.7071(-TB + 490.5) + 0 + 0 = 0

	 TB = 490.5 N � Ans.

Note: Since the moment arms from the axis to TB and W are easy to 
obtain, we can also determine this result using a scalar analysis. As 
shown in Fig. 5–32b,

�MDA = 0; TB  (1 m sin 45� ) - 981 N(0.5 m sin 45� ) = 0

	 TB = 490.5 N � Ans.

0.5 m

0.5 m

x

z

y

E

B

A

D

100 kg

C

(a)

1 m

TB

x

z

y

B

A

D

Az

Ay

Dy

Dz
Dx

rE

rB

W � 981 N

u

(b)

45�

0.5 m

0.5 m

Fig. 5–32
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P5–2.  Draw the free-body diagram of each object.

2 m

1 m

0.5 m

B

A

C

300 N

(a)

z

y
x

2 m1 m

3 m

1 m

500 N

B
C

A

(b)

z

y

x

2 m 2 m 

2 m 

(c)

400 N 

A

B

z

y

x

Prob. P5–2

P5–3.  In each case, write the moment equations about the  
x, y, and z axes.

z

y

x
3 m 

4 m 

600 N 

(a)

2 m 

400 N 
300 N 

Az

A

C

B

Bz

By

Bx

CxCz

1 m

2 m

(b)

2 m

1 m

2 m

y

x

300 N 

z

Bz

By

Ax

Az

Cz

Cy

1.5 m

800 N � m2 m

1 m

(c)

Bz

Bx

Ax

Az

CyCz

z

y

x

Prob. P5–3

Preliminary Problems
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All problem solutions must include an FBD.

F5–7.  The uniform plate has a weight of 500 lb. Determine 
the tension in each of the supporting cables.

z
A

B C

y

x

200 lb

3 ft

2 ft

2 ft

Prob. F5–7

F5–8.  Determine the reactions at the roller support A, the 
ball-and-socket joint D, and the tension in cable BC for 
the plate.

x y
D

B

C

A

z

0.4 m 0.5 m

600 N900 N

0.3 m0.4 m

0.1 m

0.2 m

Prob. F5–8

F5–9.  The rod is supported by smooth journal bearings at 
A, B, and C and is subjected to the two forces. Determine 
the reactions at these supports.

z

x
y

A

B
D

C

600N 400 N
0.6 m

0.6 m 0.6 m

0.4 m

Prob. F5–9

F5–10.  Determine the support reactions at the smooth 
journal bearings A, B, and C of the pipe assembly.

z

x

y

0.6 m

0.6 m
0.6 m

450 N
0.4 m A

B

C

Prob. F5–10

F5–11.  Determine the force developed in the short 
link BD, and the tension in the cords CE and CF, and the 
reactions of the ball-and-socket joint A on the block.

x
3 m

9 kN6 kN

1.5 m

4 m

C

A

B

E

y

z

D
F

Prob. F5–11

F5–12.  Determine the components of reaction that the 
thrust bearing A and cable BC exert on the bar.

F � 80 lb

x

y

z

B
D

C
A

1.5 ft
1.5 ft6 ft

Prob. F5–12

FUNDAMENTAL PROBLEMS
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All problem solutions must include an FBD.

5–62.  The uniform load has a mass of 600 kg and is lifted 
using a uniform 30-kg strongback beam BAC and four ropes 
as shown. Determine the tension in each rope and the force  
that must be applied at A.

2 m

1.5 m

1.25 m

1.5 m

1.25 m

F

A
B C

Prob. 5–62

5–63.  Due to an unequal distribution of fuel in the wing 
tanks, the centers of gravity for the airplane fuselage A and 
wings B and C are located as shown. If these components 
have weights W A = 45 000 lb, W B = 8000 lb, and 
W C = 6000 lb, determine the normal reactions of the 
wheels D, E, and F on the ground.

8 ft
20 ft

A
BD

E

F

8 ft
6 ft

6 ft

4 ft

3 ft

z

x

y

C

Prob. 5–63

*5–64.  Determine the components of reaction at the fixed 
support A. The 400 N, 500 N, and 600 N forces are parallel to 
the x, y, and z axes, respectively.

y

400 N

600 N

500 N

1 m

0.5 m

0.75 m

z

x

A

0.75 m

Prob. 5–64

5–65.  The 50-lb mulching machine has a center of gravity 
at G. Determine the vertical reactions at the wheels C 
and B and the smooth contact point A.

x

y

z

G

1.25 ft
1.25 ft

1.5 ft
2 ft

4 ft

C

BA

Prob. 5–65

PROBLEMS



5

5–66.  The smooth uniform rod AB is supported by a ball-
and-socket joint at A, the wall at B, and cable BC. Determine 
the components of reaction at A, the tension in the cable, 
and the normal reaction at B if the rod has a mass of 20 kg.

y

z

x

A

B

1 m

2 m

0.5 m

1.5 m

C

Prob. 5–66

5–67.  The uniform concrete slab has a mass of 2400 kg. 
Determine the tension in each of the three parallel 
supporting cables when the slab is held in the horizontal 
plane as shown.

x

A

C

B

TC

TB

TA

y

z

2 m
1 m1 m

2 m
0.5 m

15 kN

Prob. 5–67

*5–68.  The 100-lb door has its center of gravity at G. 
Determine the components of reaction at hinges A and B if 
hinge B resists only forces in the x and y directions and  
A resists forces in the x, y, z directions.

A

B

G

z

yx

18 in.

24 in.

24 in.

30�

18 in.

Prob. 5–68

5–69.  Determine the tension in each cable and the 
components of reaction at D needed to support the load.

C

z

B

x

y

3 m

2 m

6 m

400 N

30�

A

D

Prob. 5–69
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5–70.  The stiff-leg derrick used on ships is supported by a 
ball-and-socket joint at D and two cables BA and BC. The 
cables are attached to a smooth collar ring at B, which allows 
rotation of the derrick about z axis. If the derrick supports a 
crate having a mass of 200 kg, determine the tension in the 
cables and the x, y, z components of reaction at D.

z

y

x

3 m

B

D

7.5 m

4 m

6 m

6 m

2 m

A

C

1 m

Prob. 5–70

5–71.  Determine the components of reaction at the ball-
and-socket joint A and the tension in each cable necessary 
for equilibrium of the rod.

z

x

y

A

D

E

C

3 m

600 N

3 m

3 m

2 m

2 m

B

Prob. 5–71

*5–72.  Determine the components of reaction at the ball-
and-socket joint A and the tension in the supporting cables 
DB and DC.

y

1.5 m

800 N/m
1 m

1.5 m

3 m

1 m

1.5 m

1.5 m

3 m

B

z

C

A

D

x

Prob. 5–72

5–73.  The bent rod is supported at A, B, and C by smooth 
journal bearings. Determine the components of reaction at 
the bearings if the rod is subjected to the force F = 800 N. 
The bearings are in proper alignment and exert only force 
reactions on the rod.

z

y

2 m

2 m

0.75 m1 m

F

30�

60�

C

A

B

x

Prob. 5–73



5

5–74.  The bent rod is supported at A, B, and C by smooth 
journal bearings. Determine the magnitude of F which will 
cause the positive x component of reaction at the bearing C 
to be Cx = 50 N. The bearings are in proper alignment and 
exert only force reactions on the rod.

z

y

2 m

2 m

0.75 m1 m

F

30�

60�

C

A

B

x

Prob. 5–74

5–75.  Member AB is supported by a cable BC and at A by 
a square rod which fits loosely through the square hole in 
the collar fixed to the member as shown. Determine the 
components of reaction at A and the tension in the cable 
needed to hold the rod in equilibrium.

B

1.5 m

400 N

200 N

1 m

3 m

C

z

x

y

A

Prob. 5–75

*5–76.  The member is supported by a pin at A and 
cable BC. Determine the components of reaction at these 
supports if the cylinder has a mass of 40 kg.

C

0.5 m

z

A

B

D

x

3 m

1 m

1 m

1 m

y

Prob. 5–76

5–77.  The member is supported by a square rod which 
fits loosely through the smooth square hole of the attached 
collar at A and by a roller at B. Determine the components 
of reaction at these supports when the member is subjected 
to the loading shown.

y

z

x
A

B
1 m 2 m

2 m

300 N

400 N

500 N

C

Prob. 5–77
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5–78.  The bent rod is supported at A, B, and C by smooth 
journal bearings. Compute the x, y, z components of 
reaction  at the bearings if the rod is subjected to forces 
F1 = 300 lb and F2 = 250 lb. F1 lies in the y–z plane. The 
bearings are in proper alignment and exert only force 
reactions on the rod.

z

y3 ft

5 ft

F2

45�

30�

45�

F1

C
4 ft

1 ft

A

2 ft

B

x

Prob. 5–78

5–79.  The bent rod is supported at A, B, and C by smooth 
journal bearings. Determine the magnitude of F2 which will 
cause the reaction Cy at the bearing C to be equal to zero. 
The bearings are in proper alignment and exert only force 
reactions on the rod. Set F1 = 300 lb.

z

y3 ft

5 ft

F2

45�

30�

45�

F1

C
4 ft

1 ft

A

2 ft

B

x

Prob. 5–79

*5–80.  The bar AB is supported by two smooth collars. 
At A the connection is with a ball-and-socket joint and at B 
it is a rigid attachment. If a 50-lb load is applied to the bar, 
determine the x, y, z components of reaction at A and B.

z

y

x

50 lb

A

C

B

D

E

F

6 ft

3 ft

4 ft

5 ft

6 ft

Prob. 5–80

5–81.  The rod has a weight of 6 lb>ft. If it is supported by 
a ball-and-socket joint at C and a journal bearing at D, 
determine the x, y, z components of reaction at these 
supports and the moment M that must be applied along the 
axis of the rod to hold it in the position shown.

z

y

A

D

C
M

0.5 ft

1 ft

B
1 ft

x

60�

45�

Prob. 5–81
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5–82.  The sign has a mass of 100 kg with center of mass 
at G. Determine the x, y, z components of reaction at the 
ball-and-socket joint A and the tension in wires BC and BD.

x yB

1 m

z

1 m

D

C
1 m

A

2 m1 m

2 m

G

Prob. 5–82

5–83.  Both pulleys are fixed to the shaft and as the shaft 
turns with constant angular velocity, the power of pulley A 
is transmitted to pulley B. Determine the horizontal tension 
T in the belt on pulley B and the x, y, z components of 
reaction at the journal bearing C and thrust bearing D if 
u = 0�. The bearings are in proper alignment and exert only 
force reactions on the shaft.

300 mm

250 mm

150 mm

80 mm

200 mm

T

50 N

z

y

A

BC

D

x

80 N
65 N

u

Prob. 5–83

*5–84.  Both pulleys are fixed to the shaft and as the shaft 
turns with constant angular velocity, the power of pulley A 
is transmitted to pulley B. Determine the horizontal tension 
T in the belt on pulley B and the x, y, z components of 
reaction at the journal bearing C and thrust bearing D if 
u = 45�. The bearings are in proper alignment and exert 
only force reactions on the shaft.

300 mm

250 mm

150 mm

80 mm

200 mm

T

50 N

z

y

A

BC

D

x

80 N
65 N

u

Prob. 5–84

5–85.  Member AB is supported by a cable BC and at A by 
a square rod which fits loosely through the square hole at 
the end joint of the member as shown. Determine the 
components of reaction at A and the tension in the cable 
needed to hold the 800-lb cylinder in equilibrium.

B

3 ft

6 ft

2 ft

C

z

x

y

A

Prob. 5–85
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Equilibrium

A body in equilibrium is at rest or can translate 
with constant velocity.

 �F = 0

 �M = 0

F3 y

x

z

F4

F1F2

O

CHAPTER REVIEW

Two Dimensions

Before analyzing the equilibrium of a body, it is 
first necessary to draw its free-body diagram. 
This is an outlined shape of the body, which 
shows all the forces and couple moments that 
act on it.

Couple moments can be placed anywhere on a 
free-body diagram since they are free vectors. 
Forces can act at any point along their line of 
action since they are sliding vectors.

Angles used to resolve forces, and dimensions 
used to take moments of the forces, should also 
be shown on the free-body diagram.

Some common types of supports and their 
reactions are shown below in two dimensions.

Remember that a support will exert a force on 
the body in a particular direction if it prevents 
translation of the body in that direction, and it 
will exert a couple moment on the body if it 
prevents rotation.

The three scalar equations of equilibrium can be 
applied when solving problems in two 
dimensions, since the geometry is easy to 
visualize.

 �Fx = 0

 �Fy = 0
 �MO = 0

A

B

C

500 N�m

30�

Ax FBC

Ay

500 N�m

30�

y

x

1 m

1 m

2 m

2 m

roller

u

F

u

smooth pin or hinge

u

Fy

Fx

fixed support

Fy

Fx

M
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For the most direct solution, try to sum forces along 
an axis that will eliminate as many unknown forces 
as possible. Sum moments about a point A that 
passes through the line of action of as many 
unknown forces as possible.

�Fx = 0;

  Ax - P2 = 0 Ax = P2

�MA = 0;

  P2d2 + By  dB - P1d1 = 0

  By =
P1d1 - P2d2

dB
By

d1

P1

P2

d2

Ay

Ax A

dB

Three Dimensions

Some common types of supports and their 
reactions are shown here in three dimensions.

roller

F

ball and socket

Fz

FyFx

fixed support

Fz

Mz

Fx
MyMx

Fy

In three dimensions, it is often advantageous to use a 
Cartesian vector analysis when applying the 
equations of equilibrium. To do this, first express 
each known and unknown force and couple moment 
shown on the free-body diagram as a Cartesian 
vector. Then set the force summation equal to zero. 
Take moments about a point O that lies on the line 
of action of as many unknown force components as 
possible. From point O direct position vectors to 
each force, and then use the cross product to 
determine the moment of each force.

The six scalar equations of equilibrium are 
established by setting the respective i, j, and k 
components of these force and moment summations 
equal to zero.

 �F = 0

 �MO = 0

500 N

Statically indeterminate,
five reactions, three
equilibrium equations

2 kN � m

600 N

100 N

Proper constraint, statically determinate

200 N

45�

Determinacy and Stability

If a body is supported by a minimum number of 
constraints to ensure equilibrium, then it is 
statically determinate. If it has more constraints 
than required, then it is statically indeterminate.

To properly constrain the body, the reactions must 
not all be parallel to one another or concurrent.

 �Fx = 0

 �Fy = 0

 �Fz = 0

 �Mx = 0

 �My = 0

 �Mz = 0
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Review Problems
All problem solutions must include an FBD.

R5–1.  If the roller at B can sustain a maximum load of 
3 kN, determine the largest magnitude of each of the three 
forces F that can be supported by the truss.

A

B

2 m 2 m 2 m

45�

2 m

FFF

Prob. R5–1

R5–2.  Determine the reactions at the supports A and B for 
equilibrium of the beam.

4 m

200 N/m

400 N/m

A
B

3 m

Prob. R5–2

R5–3.  Determine the normal reaction at the roller A and 
horizontal and vertical components at pin B for equilibrium 
of the member.

0.4 m

60�

0.8 m

10 kN

0.6 m0.6 m

6 kN

A

B

Prob. R5–3

R5–4.  Determine the horizontal and vertical components 
of reaction at the pin at A and the reaction of the roller at B 
on the lever.

A
B

F � 50 lb

20 in. 18 in.

14 in. 30�

Prob. R5–4
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R5–5.  Determine the x, y, z components of reaction at the 
fixed wall A. The 150-N force is parallel to the z axis and the 
200-N force is parallel to the y axis.

A

2 m
1 m

150 N

200 N

2.5 m

z

yx

2 m

Prob. R5–5

R5–6.  A vertical force of 80 lb acts on the crankshaft. 
Determine the horizontal equilibrium force P that must be 
applied to the handle and the x, y, z components of reaction 
at the journal bearing A and thrust bearing B. The bearings 
are properly aligned and exert only force reactions on 
the shaft.

14 in.

14 in.

6 in.

8 in.

4 in.

80 lb
y

x

P

B
10 in.

A

z

Prob. R5–6

R5–7.  Determine the x, y, z components of reaction at the 
ball supports B and C and the ball-and-socket A (not 
shown) for the uniformly loaded plate.

z

y

2 lb/ft2

4 ft

A

B

C

x

2 ft

2 ft

1 ft

Prob. R5–7

R5–8.  Determine the x and z components of reaction at 
the journal bearing A and the tension in cords BC and BD 
necessary for equilibrium of the rod.

3 m

3 mA

C

D

B

4 m

y

F1 � {�800k} N

F2 � {350 j} N

6 m

2 m

x

z

Prob. R5–8



Chapter 6

In order to design the many parts of this boom assembly it is required that we 
know the forces that they must support. In this chapter we will show how to 

analyze such structures using the equations of equilibrium.

(© Tim Scrivener/Alamy)



Structural Analysis

CHAPTER OBJECTIVES

n	 To show how to determine the forces in the members of a truss 
using the method of joints and the method of sections.

n	 To analyze the forces acting on the members of frames and 
machines composed of pin-connected members.

6.1  Simple Trusses

A truss is a structure composed of slender members joined together at 
their end points. The members commonly used in construction consist 
of  wooden struts or metal bars. In particular, planar trusses lie in a 
single plane and are often used to support roofs and bridges. The truss 
shown in Fig. 6–1a is an example of a typical roof-supporting truss. In 
this  figure, the roof load is transmitted to the truss at the joints by 
means of a series of purlins. Since this loading acts in the same plane 
as the truss, Fig. 6–1b, the analysis of the forces developed in the truss 
members will be two-dimensional.

(a)

A

Purlin

(b)

Roof truss

Fig. 6–1
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(a)

Floor beam

Stringer
Deck

A

(b)

Bridge truss

Fig. 6–2

In the case of a bridge, such as shown in Fig. 6–2a, the load on the deck 
is first transmitted to stringers, then to floor beams, and finally to the 
joints of the two supporting side trusses. Like the roof truss, the bridge 
truss loading is also coplanar, Fig. 6–2b.

When bridge or roof trusses extend over large distances, a rocker or roller 
is commonly used for supporting one end, for example, joint A in Figs. 6–1a 
and 6–2a. This type of support allows freedom for expansion or contraction 
of the members due to a change in temperature or application of loads.

Assumptions for Design.  To design both the members and the 
connections of a truss, it is necessary first to determine the force 
developed in each member when the truss is subjected to a given loading. 
To do this we will make two important assumptions:

•		 All loadings are applied at the joints. In most situations, such as 
for bridge and roof trusses, this assumption is true. Frequently the 
weight of the members is neglected because the force supported by 
each member is usually much larger than its weight. However, if the 
weight is to be included in the analysis, it is generally satisfactory to 
apply it as a vertical force, with half of its magnitude applied at each 
end of the member.

•		 The members are joined together by smooth pins. The joint connections 
are usually formed by bolting or welding the ends of the members to a 
common plate, called a gusset plate, as shown in Fig. 6–3a, or by simply 
passing a large bolt or pin through each of the members, Fig. 6–3b. We 
can assume these connections act as pins provided the center lines of 
the joining members are concurrent, as in Fig. 6–3.

(a)

Gusset
plate

(b)

Fig. 6–3
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T C

T C

CompressionTension
(b)(a)

Fig. 6–4

The use of metal gusset plates in the 
construction of these Warren trusses is 
clearly evident. (© Russell C. Hibbeler)

A B

C

P

Fig. 6–5

A

C
D

B

P

Fig. 6–6

Because of these two assumptions, each truss member will act as a two-
force member, and therefore the force acting at each end of the member 
will be directed along the axis of the member. If the force tends to elongate 
the member, it is a tensile force (T), Fig. 6–4a; whereas if it tends to shorten 
the member, it is a compressive force (C), Fig. 6–4b. In the actual design of 
a truss it is important to state whether the nature of the force is tensile or 
compressive. Often, compression members must be made thicker than 
tension members because of the buckling or column effect that occurs 
when a member is in compression.

Simple Truss.  If three members are pin connected at their ends, 
they form a triangular truss that will be rigid, Fig. 6–5. Attaching two 
more members and connecting these members to a new joint D forms a 
larger truss, Fig. 6–6. This procedure can be repeated as many times as 
desired to form an even larger truss. If a truss can be constructed by 
expanding the basic triangular truss in this way, it is called a simple truss.
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6.2  The Method of Joints

In order to analyze or design a truss, it is necessary to determine the force 
in each of its members. One way to do this is to use the method of joints. 
This method is based on the fact that if the entire truss is in equilibrium, 
then each of its joints is also in equilibrium. Therefore, if the free-body 
diagram of each joint is drawn, the force equilibrium equations can then be 
used to obtain the member forces acting on each joint. Since the members 
of a plane truss are straight two-force members lying in a single plane, each 
joint is subjected to a force system that is coplanar and concurrent. As a 
result, only �Fx = 0 and �Fy = 0 need to be satisfied for equilibrium.

For example, consider the pin at joint B of the truss in Fig. 6–7a. 
Three forces act on the pin, namely, the 500-N force and the forces exerted 
by members BA and BC. The free-body diagram of the pin is shown in  
Fig. 6–7b. Here, FBA is “pulling” on the pin, which means that member BA 
is in tension; whereas FBC is “pushing” on the pin, and consequently 
member BC is in compression. These effects are clearly demonstrated by 
isolating the joint with small segments of the member connected to the 
pin, Fig. 6–7c. The pushing or pulling on these small segments indicates the 
effect of the member being either in compression or tension.

When using the method of joints, always start at a joint having at least 
one known force and at most two unknown forces, as in Fig. 6–7b. In this 
way, application of �Fx = 0 and �Fy = 0 yields two algebraic equations 
which can be solved for the two unknowns. When applying these 
equations, the correct sense of an unknown member force can be 
determined using one of two possible methods.

•		 The correct sense of direction of an unknown member force can, in 
many cases, be determined “by inspection.” For example, FBC in 
Fig. 6–7b must push on the pin (compression) since its horizontal 
component, FBC sin 45�, must balance the 500-N force (�Fx = 0). 
Likewise, FBA  is a tensile force since it balances the vertical 
component, FBC cos 45� (�Fy = 0). In more complicated cases, the 
sense of an unknown member force can be assumed; then, after 
applying the equilibrium equations, the assumed sense can be 
verified from the numerical results. A positive answer indicates 
that the sense is correct, whereas a negative answer indicates that 
the sense shown on the free-body diagram must be reversed.

•		 Always assume the unknown member forces acting on the joint’s 
free-body diagram to be in tension; i.e., the forces “pull” on the pin. 
If this is done, then numerical solution of the equilibrium equations 
will yield positive scalars for members in tension and negative scalars 
for members in compression. Once an unknown member force is 
found, use its correct magnitude and sense (T or C) on subsequent 
joint free-body diagrams.

B

2 m

500 N

A C

45�

2 m

(a)

B

45�

500 N

FBC (compression)FBA(tension)

(b)

FBA(tension)

B

45�

500 N

FBC (compression)

(c)

Fig. 6–7

The forces in the members of this simple 
roof truss can be determined using the 
method of joints. (© Russell C. Hibbeler) 



	 6.2 T he Method of Joints	 277

6

Important Points

	 •	 Simple trusses are composed of triangular elements. The members 
are assumed to be pin connected at their ends and loads applied 
at the joints.

	 •	 If a truss is in equilibrium, then each of its joints is in equilibrium. 
The internal forces in the members become external forces when 
the free-body diagram of each joint of the truss is drawn. A force 
pulling on a joint is caused by tension in a member, and a force 
pushing on a joint is caused by compression.

Procedure for Analysis

The following procedure provides a means for analyzing a truss 
using the method of joints.

	 •	 Draw the free-body diagram of a joint having at least one known 
force and at most two unknown forces. (If this joint is at one of 
the supports, then it may be necessary first to calculate the 
external reactions at the support.)

	 •	 Use one of the two methods described above for establishing the 
sense of an unknown force.

	 •	 Orient the x and y axes such that the forces on the free-body 
diagram can be easily resolved into their x and y components and 
then apply the two force equilibrium equations �Fx = 0 and 
�Fy = 0. Solve for the two unknown member forces and verify 
their correct sense.

	 •	 Using the calculated results, continue to analyze each of the other 
joints. Remember that a member in compression “pushes” on the 
joint and a member in tension “pulls” on the joint. Also, be sure to 
choose a joint having at most two unknowns and at least one 
known force.
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Example   6.1

Determine the force in each member of the truss shown in Fig. 6–8a 
and indicate whether the members are in tension or compression.

SOLUTION
Since we should have no more than two unknown forces at the joint 
and at least one known force acting there, we will begin our analysis at 
joint B.

Joint B.  The free-body diagram of the joint at B is shown in Fig. 6–8b. 
Applying the equations of equilibrium, we have

S+ �Fx = 0;	 500 N - FBC sin 45� = 0	 FBC = 707.1 N (C)� Ans.

+ c �Fy = 0;	 FBC cos 45� - FBA = 0	 FBA = 500 N (T)� Ans.

Since the force in member BC has been calculated, we can proceed to 
analyze joint C to determine the force in member CA and the support 
reaction at the rocker.

Joint C.  From the free-body diagram of joint C, Fig. 6–8c, we have

S+ �Fx = 0;	 -FCA + 707.1 cos 45� N = 0	 FCA = 500 N (T)� Ans.

+ c �Fy = 0; 	 Cy - 707.1 sin 45� N = 0 	 Cy = 500 N� Ans.

Joint A.  Although it is not necessary, we can determine the 
components of the support reactions at joint A using the results of FCA  
and FBA . From the free-body diagram, Fig. 6–8d, we have

S+ �Fx = 0;	 500 N - A x = 0	 A x = 500 N

+ c �Fy = 0;	 500 N - A y = 0	 A y = 500 N

NOTE: The results of the analysis are summarized in Fig. 6–8e. Note 
that the free-body diagram of each joint (or pin) shows the effects of 
all the connected members and external forces applied to the joint, 
whereas the free-body diagram of each member shows only the effects 
of the end joints on the member.

Fig. 6–8

B

2 m

2 m

500 N

A C

(a)

45�

(b)

B

45�

500 N

FBCFBA

(c)

45�
707.1 N

FCA
C

Cy

(d)

A

FBA � 500 N

FCA � 500 N

Ay

Ax

(e)

B

45�

500 N

A 45�500 N

500 N

500 N

500 N
500 N
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Example   6.2

Determine the forces acting in all the members of the truss shown in 
Fig. 6–9a.

SOLUTION
By inspection, there are more than two unknowns at each joint. 
Consequently, the support reactions on the truss must first be determined. 
Show that they have been correctly calculated on the free-body diagram 
in Fig. 6–9b. We can now begin the analysis at joint C. Why?

Joint C.  From the free-body diagram, Fig. 6–9c,

S+ �Fx = 0;	 -FCD cos 30� + FCB sin 45� = 0 

+ c �Fy = 0;	 1.5 kN + FCD sin 30� - FCB cos 45� = 0

These two equations must be solved simultaneously for each of the 
two unknowns. Note, however, that a direct solution for one of the 
unknown forces may be obtained by applying a force summation 
along an axis that is perpendicular to the direction of the other 
unknown force. For example, summing forces along the y� axis, which 
is perpendicular to the direction of FCD, Fig. 6–9d, yields a direct 
solution for FCB.

+ Q�Fy� = 0;	 1.5 cos 30�  kN - FCB sin 15� = 0

FCB = 5.019 kN = 5.02 kN (C)� Ans.

Then,

+ R�Fx� = 0;

	 -FCD + 5.019 cos 15� - 1.5 sin 30� = 0;     FCD = 4.10 kN  (T)� Ans.

Joint D.  We can now proceed to analyze joint D. The free-body 
diagram is shown in Fig. 6–9e.

S+ �Fx = 0;	 -FDA cos 30� + 4.10 cos 30�  kN = 0

	 FDA = 4.10 kN (T)� Ans.

+ c �Fy = 0;	 FDB - 2(4.10 sin 30�  kN) = 0

	 FDB = 4.10 kN (T)� Ans.

NOTE: The force in the last member, BA, can be obtained from joint B 
or joint A. As an exercise, draw the free-body diagram of joint B, sum 
the forces in the horizontal direction, and show that FBA = 0.776 kN (C). Fig. 6–9

2 m 2 m

D

B

C
A

2 m

3 kN

(a)

45�

30�30�

2 m 2 m

2 m

3 kN

(b)

3 kN

1.5 kN1.5 kN

x

FCB
FCD

1.5 kN

C

45�

30�

y

15�

(c)

x¿

FCB

FCD

1.5 kN

C

30�

y¿
15�

(d)

(e)

y

x

FDB

FDA 4.10 kN

30�30� D
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Determine the force in each member of the truss shown in Fig. 6–10a. 
Indicate whether the members are in tension or compression.

4 m

(a)

3 m

400 N

B
C

D
A

3 m

600 N

4 m

(b)

400 N

C

A

6 m
600 N

3 m

Ay

Cy

Cx

Fig. 6–10

3

45

x

y

FAB

FAD

600 N

(c)

A

SOLUTION
Support Reactions.  No joint can be analyzed until the support 
reactions are determined, because each joint has at least three 
unknown forces acting on it. A free-body diagram of the entire truss is 
given in Fig. 6–10b. Applying the equations of equilibrium, we have

 	 S+ �Fx = 0;	 600 N - Cx = 0	 Cx = 600 N 

	a+ �MC = 0;	 -Ay(6 m) + 400 N(3 m) + 600 N(4 m) = 0 

	 Ay = 600 N

	 + c �Fy = 0; 	 600 N - 400 N - Cy = 0	 Cy = 200 N

The analysis can now start at either joint A or C. The choice is arbitrary 
since there are one known and two unknown member forces acting on 
the pin at each of these joints.

Joint A.  (Fig. 6–10c). As shown on the free-body diagram, FAB is 
assumed to be compressive and FAD is tensile. Applying the equations 
of equilibrium, we have

+ c �Fy = 0;	 600 N -
4
5 FAB = 0	 FAB = 750 N (C)� Ans.

S+ �Fx = 0;	 FAD -
3
5(750 N) = 0	 FAD = 450 N (T)� Ans.

Example   6.3
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*The proper sense could have been determined by inspection, prior to applying �Fx = 0.

Joint D.  (Fig. 6–10d). Using the result for FAD and summing forces in 
the horizontal direction, Fig. 6–10d, we have

S+ �Fx = 0; 	 -450 N +
3
5 FDB + 600 N = 0	 FDB = -250 N

The negative sign indicates that FDB acts in the opposite sense to that 
shown in Fig. 6–10d.* Hence,

 	 FDB = 250 N (T)� Ans.

To determine FDC, we can either correct the sense of FDB on the free-
body diagram, and then apply �Fy = 0, or apply this equation and 
retain the negative sign for FDB, i.e.,

+ c �Fy = 0;	 -FDC -
4
5(-250 N) = 0	 FDC = 200 N (C)� Ans.

Joint C.  (Fig. 6–10e).

S+ �Fx = 0;	 FCB - 600 N = 0	 FCB = 600 N (C)� Ans.

+ c �Fy = 0;	 200 N - 200 N K 0 (check)

NOTE: The analysis is summarized in Fig. 6–10f, which shows the free-
body diagram for each joint and member.

3

4 5
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y

FDB

600 N

(d)
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D450 N

(f)

750 N 250 N

600 N

400 N
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600 N

200 N
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C
om
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pr
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sio
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750 N

450 N

600 N

A
Tension

450 N

250 N 200 N

600 N
D

C
B

x

y

200 N

(e)

C 600 N

200 N

FCB

Fig. 6–10 (cont.)
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6.3  Zero-Force Members

Truss analysis using the method of joints is greatly simplified if we can first 
identify those members which support no loading. These zero-force 
members are used to increase the stability of the truss during construction 
and to provide added support if the loading is changed.

The zero-force members of a truss can generally be found by inspection of 
each of the joints. For example, consider the truss shown in Fig. 6–11a. If a 
free-body diagram of the pin at joint A is drawn, Fig. 6–11b, it is seen that 
members AB and AF are zero-force members. (We could not have come to 
this conclusion if we had considered the free-body diagrams of joints F or B 
simply because there are five unknowns at each of these joints.) In a similar 
manner, consider the free-body diagram of joint D, Fig. 6–11c. Here again it 
is seen that DC and DE are zero-force members. From these observations, 
we can conclude that if only two non-collinear members form a truss joint 
and no external load or support reaction is applied to the joint, the two 
members must be zero-force members. The load on the truss in Fig. 6–11a is 
therefore supported by only five members as shown in Fig. 6–11d.

(a)

D

C

EF

A

P

u

B

FAB

y

x

FAF

A

(b)

�

�

�Fx � 0;  FAB � 0

�Fy � 0;  FAF � 0

FDC y

x

FDE

D

(c)

� �Fy � 0; FDC sin u = 0;   FDC � 0 since sin u � 0
�Fx � 0; FDE � 0 � 0;   FDE � 0�

u

(d)

B

C

EF

P

Fig. 6–11
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Now consider the truss shown in Fig. 6–12a. The free-body diagram of 
the pin at joint D is shown in Fig. 6–12b. By orienting the y axis along 
members DC and DE and the x axis along member DA, it is seen that 
DA  is a zero-force member. Note that this is also the case for member 
CA, Fig. 6–12c. In general then, if three members form a truss joint for 
which two of the members are collinear, the third member is a zero-force 
member provided no external force or support reaction has a component 
that acts along this member. The truss shown in Fig. 6–12d is therefore 
suitable for supporting the load P.

(a)

E

A

D

C

B

P

u

D

FDE

(b)

� �Fx � 0;
�Fy � 0;

FDA

FDC

yx

�

FDA � 0
FDC � FDE

FCD

C

FCB

FCA

yx

�

�

u

(c)

�Fx � 0;    FCA sin u = 0;    FCA � 0 since sin u � 0;
�Fy � 0;    FCB � FCD

(d)

EP

B

A

Fig. 6–12

Important Point

	 •	 Zero-force members support no load; however, they are necessary 
for stability, and are available when additional loadings are 
applied to the joints of the truss. These members can usually be 
identified by inspection. They occur at joints where only two 
members are connected and no external load acts along either 
member. Also, at joints having two collinear members, a third 
member will be a zero-force member if no external force 
components act along this member.
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Using the method of joints, determine all the zero-force members of 
the Fink roof truss shown in Fig. 6–13a. Assume all joints are pin 
connected.

SOLUTION
Look for joint geometries that have three members for which two are 
collinear. We have

Joint G.  (Fig. 6–13b).

+ c �Fy = 0;	 FGC = 0� Ans.

Realize that we could not conclude that GC is a zero-force member by 
considering joint C, where there are five unknowns. The fact that GC 
is a zero-force member means that the 5-kN load at C must be 
supported by members CB, CH, CF, and CD.

Joint D.  (Fig. 6–13c).

+ b�Fx = 0;	 FDF = 0� Ans.

Joint F.  (Fig. 6–13d).

+ c �Fy = 0;	 FFC cos u = 0 Since u � 90�,	 FFC = 0� Ans.

NOTE: If joint B is analyzed, Fig. 6–13e,

+ R�Fx = 0;	 2 kN - FBH = 0	 FBH = 2 kN (C)

Also, FHC must satisfy �Fy = 0, Fig. 6–13f, and therefore HC is not a  
zero-force member.

C

A E

5 kN

2 kN

D

FGH

B

(a)

(b)

y

x
G

FGC

FGFFGH

(c)

D

FDC

FDF

FDE

y

x

(d)

y

x
F FFEFFG

0FFC

u

(e)

B FBH

FBC

FBA

2 kN

x

y

(f)

y

x
H FHGFHA

2 kN

FHC

Fig. 6–13

Example   6.4
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P6–2.  Identify the zero-force members in each truss.

A
B D

E

3 m

800 N
300

(a)

3 m

3 m3 m

FGH

C

A
B D

E

2 m

500 N

(b)

4 m

700 N

2 m2 m

C

F

G

Prob. P6–2

P6–1.  In each case, calculate the support reactions and 
then draw the free-body diagrams of joints A, B, and C of 
the truss.

A
B C

E D

2 m 2 m

400 N

(a)

2 m

A
B

C

E

F D

2 m 2 m

600 N

30 30 30 30

(b)

Prob. P6–1

Preliminary Problems
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All problem solutions must include FBDs.

F6–1.  Determine the force in each member of the truss. 
State if the members are in tension or compression.

4 ft 4 ft

4 ft

A
B

C

D

450 lb

Prob. F6–1

F6–2.  Determine the force in each member of the truss. 
State if the members are in tension or compression.

D

A

C

B

2 ft 2 ft

300 lb

3 ft

Prob. F6–2

F6–3.  Determine the force in each member of the truss. 
State if the members are in tension or compression.

B
A

D C

4 ft

3 ft

800 lb

200 lb

Prob. F6–3

F6–4.  Determine the greatest load P that can be applied 
to the truss so that none of the members are subjected to a 
force exceeding either 2 kN in tension or 1.5 kN in 
compression.

A B

P

C

3 m

60� 60�

Prob. F6–4

F6–5.  Identify the zero-force members in the truss.

A B

C
DE

1.5 m

2 m2 m

3 kN

Prob. F6–5

F6–6.  Determine the force in each member of the truss. 
State if the members are in tension or compression.

B

D

C

E

600 lb

450 lb

3 ft 3 ft

30�A

Prob. F6–6

FUNDAMENTAL PROBLEMS
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*6–4.  Determine the force in each member of the truss 
and state if the members are in tension or compression.

2 kip

1.5 kip
4 ft

10 ft 10 ft 10 ft

3 kip

3 kip

10 ft

A B

I

H

G

F

C D
E

8 ft

Prob. 6–4

6–5.  Determine the force in each member of the truss, and 
state if the members are in tension or compression. Set u = 0�.

6–6.  Determine the force in each member of the truss, and 
state if the members are in tension or compression. Set u = 30�.

A C

B

D

2 m

4 kN

3 kN

2 m

1.5 m

u

Probs. 6–5/6

6–7.  Determine the force in each member of the truss and 
state if the members are in tension or compression.

E

D

CB

F
A 5 m

3 m

5 kN

4 kN

3 m 3 m 3 m

Prob. 6–7

All problem solutions must include FBDs.

6–1.  Determine the force in each member of the truss and 
state if the members are in tension or compression. Set  
P1 = 20 kN, P2 = 10 kN.

6–2.  Determine the force in each member of the truss and 
state if the members are in tension or compression. Set  
P1 = 45 kN, P2 = 30 kN.

C B

A

D

1.5 m

2 m

P1

P2

Probs. 6–1/2

6–3.  Determine the force in each member of the truss. 
State if the members are in tension or compression.

3 ft 3 ft 3 ft

12
5

13

130 lb

A B

C
E

D

F

4 ft 4 ft

Prob. 6–3

Problems
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6–11.  Determine the force in each member of the Pratt 
truss, and state if the members are in tension or compression.

A

B C D E F
G

H

I

J

K

L

2 m

2 m

2 m 2 m

10 kN 10 kN
20 kN

2 m 2 m 2 m

2 m

2 m

Prob. 6–11

*6–12.  Determine the force in each member of the truss 
and state if the members are in tension or compression.

500 lb

3 ft

500 lb

C

B

A F

E

D

9 ft

6 ft

6 ft

3 ft 3 ft

Prob. 6–12

*6–8.  Determine the force in each member of the truss 
and state if the members are in tension or compression.

B

E

D

A

C

600 N

900 N

4 m

4 m

6 m

Prob. 6–8

6–9.  Determine the force in each member of the truss and 
state if the members are in tension or compression. Set  
P1 = 3 kN, P2 = 6 kN.

6–10.  Determine the force in each member of the truss 
and state if the members are in tension or compression. Set 
P1 = 6 kN, P2 = 9 kN.

A
D

E

B C

P1 P2

4 m 4 m4 m

6 m

Probs. 6–9/10
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6–18.  Determine the force in each member of the truss 
and state if the members are in tension or compression. Set 
P1 = 10 kN, P2 = 8 kN.

6–19.  Determine the force in each member of the truss 
and state if the members are in tension or compression. Set 
P1 = 8 kN, P2 = 12 kN.

1 m 1 m2 m

2 m

A

F EG

B C D

P1 P2

Probs. 6–18/19

*6–20.  Determine the force in each member of the truss 
and state if the members are in tension or compression. Set 
P1 = 9 kN, P2 = 15 kN.

6–21.  Determine the force in each member of the truss 
and state if the members are in tension or compression. Set 
P1 = 30 kN, P2 = 15 kN.

3 m

A
B

C

DF E

3 m

4 m

P1

P2

Probs. 6–20/21

6–13.  Determine the force in each member of the truss in 
terms of the load P and state if the members are in tension 
or compression.

6–14.  Members AB and BC can each support a maximum 
compressive force of 800 lb, and members AD, DC, and BD 
can support a maximum tensile force of 1500 lb. If a = 10 ft, 
determine the greatest load P the truss can support.

6–15.  Members AB and BC can each support a maximum 
compressive force of 800 lb, and members AD, DC, and BD 
can support a maximum tensile force of 2000 lb. If a = 6 ft, 
determine the greatest load P the truss can support.

B

D
A

C
a a

a

a

3—
4

1—
4

Probs. 6–13/14/15

*6–16.  Determine the force in each member of the truss. 
State whether the members are in tension or compression. 
Set P = 8 kN.

6–17.  If the maximum force that any member can support 
is 8 kN in tension and 6 kN in compression, determine the 
maximum force P that can be supported at joint D.

60�60�

4 m 4 m

B

E
D

C

A

4 m

P

Probs. 6–16/17
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*6–24.  The maximum allowable tensile force in the 
members of the truss is (Ft)max = 5 kN, and the maximum 
allowable compressive force is (Fc)max = 3 kN. Determine 
the maximum magnitude of load P that can be applied to 
the truss. Take d = 2 m.

d

A C

B

D

E

d

P

d

d/2

d/2

Prob. 6–24

6–25.  Determine the force in each member of the truss in 
terms of the external loading and state if the members are 
in tension or compression. Take P = 2 kN.

6–26.  The maximum allowable tensile force in the 
members of the truss is (Ft)max = 5 kN, and the maximum 
allowable compressive force is (Fc)max = 3 kN. Determine 
the maximum magnitude P of the two loads that can be 
applied to the truss.

A B

CD
2 m

2 m

2 m

2 m

P P

30�

Probs. 6–25/26

6–22.  Determine the force in each member of the double 
scissors truss in terms of the load P and state if the members 
are in tension or compression.

A
DFE

P P

B C

L/3

L/3L/3L/3

Prob. 6–22

6–23.  Determine the force in each member of the truss in 
terms of the load P and state if the members are in tension 
or compression.

d

A C

B

D

E

d

P

d

d/2

d/2

Prob. 6–23
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6.4  The Method of Sections

When we need to find the force in only a few members of a truss, we can 
analyze the truss using the method of sections. It is based on the principle 
that if the truss is in equilibrium then any segment of the truss is also in 
equilibrium. For example, consider the two truss members shown on the left 
in Fig. 6–14. If the forces within the members are to be determined, then an 
imaginary section, indicated by the blue line, can be used to cut each member 
into two parts and thereby “expose” each internal force as “external” to the 
free-body diagrams shown on the right. Clearly, it can be seen that equilibrium 
requires that the member in tension (T) be subjected to a “pull,” whereas 
the member in compression (C) is subjected to a “push.”

The method of sections can also be used to “cut” or section the members 
of an entire truss. If the section passes through the truss and the free-body 
diagram of either of its two parts is drawn, we can then apply the equations 
of equilibrium to that part to determine the member forces at the “cut 
section.” Since only three independent equilibrium equations (�Fx = 0, 
�Fy = 0, �MO = 0) can be applied to the free-body diagram of any 
segment, then we should try to select a section that, in general, passes 
through not more than three members in which the forces are unknown. 
For example, consider the truss in Fig. 6–15a. If the forces in members BC, 
GC, and GF are to be determined, then section aa would be appropriate. 
The free-body diagrams of the two segments are shown in Figs. 6–15b and 
6–15c. Note that the line of action of each member force is specified from 
the geometry of the truss, since the force in a member is along its axis. Also, 
the member forces acting on one part of the truss are equal but opposite to 
those acting on the other part—Newton’s third law. Members BC and GC 
are assumed to be in tension since they are subjected to a “pull,” whereas 
GF in compression since it is subjected to a “push.”

The three unknown member forces FBC, FGC, and FGF can be obtained by 
applying the three equilibrium equations to the free-body diagram in 
Fig. 6–15b. If, however, the free-body diagram in Fig. 6–15c is considered, 
the three support reactions Dx, Dy and Ex will have to be known, because 
only three equations of equilibrium are available. (This, of course, is done in 
the usual manner by considering a free-body diagram of the entire truss.)

Tension

T

T

T

Internal
tensile
forces

T

T

T

C

Compression

C

Internal
compressive
forces

C

C

C

C

Fig. 6–14

B

2 m

1000 N

2 m 2 m

C D

G F E
A

2 m

a

a

Fig. 6–15
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When applying the equilibrium equations, we should carefully consider 
ways of writing the equations so as to yield a direct solution for each of 
the unknowns, rather than having to solve simultaneous equations. For 
example, using the truss segment in Fig. 6–15b and summing moments 
about C would yield a direct solution for FGF since FBC and FGC create 
zero moment about C. Likewise, FBC can be directly obtained by summing 
moments about G. Finally, FGC can be found directly from a force 
summation in the vertical direction since FGF and FBC have no vertical 
components. This ability to determine directly the force in a particular 
truss member is one of the main advantages of using the method of 
sections.*

As in the method of joints, there are two ways in which we can 
determine the correct sense of an unknown member force:

•		 The correct sense of an unknown member force can in many cases 
be determined “by inspection.” For example, FBC is a tensile force as 
represented in Fig. 6–15b since moment equilibrium about G 
requires that FBC create a moment opposite to that of the 1000-N 
force. Also, FGC is tensile since its vertical component must balance 
the 1000-N force which acts downward. In more complicated cases, 
the sense of an unknown member force may be assumed. If the 
solution yields a negative scalar, it indicates that the force’s sense is 
opposite to that shown on the free-body diagram.

•		 Always assume that the unknown member forces at the cut section 
are tensile forces, i.e., “pulling” on the member. By doing this, the 
numerical solution of the equilibrium equations will yield positive 
scalars for members in tension and negative scalars for members in 
compression.

The forces in selected members of 
this Pratt truss can readily be deter
mined using the method of sections. 
(© Russell C. Hibbeler)

*Notice that if the method of joints were used to determine, say, the force in member 
GC, it would be necessary to analyze joints A, B, and G in sequence.

2 m

1000 N

2 m

2 m

CFBC

45�

FGC

G

(b)

FGF

  (c)

2 m

2 m

45�

C

Dy

Dx

Ex

FGC

FBC

FGF

G

Fig. 6–15 (cont.)
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Simple trusses are often used 
in the construction of large 
cranes in order to reduce the 
weight of the boom and tower. 
(© Russell C. Hibbeler)

Important Point

	 •	 If a truss is in equilibrium, then each of its segments is in 
equilibrium. The internal forces in the members become external 
forces when the free-body diagram of a segment of the truss is 
drawn. A force pulling on a member causes tension in the 
member, and a force pushing on a member causes compression.

Procedure for Analysis

The forces in the members of a truss may be determined by the 
method of sections using the following procedure.

Free-Body Diagram.
	 •	 Make a decision on how to “cut” or section the truss through the 

members where forces are to be determined.

	 •	 Before isolating the appropriate section, it may first be necessary 
to determine the truss’s support reactions. If this is done then the 
three equilibrium equations will be available to solve for member 
forces at the section.

	 •	 Draw the free-body diagram of that segment of the sectioned 
truss which has the least number of forces acting on it.

	 •	 Use one of the two methods described above for establishing the 
sense of the unknown member forces.

Equations of Equilibrium.
	 •	 Moments should be summed about a point that lies at the 

intersection of the lines of action of two unknown forces, so that 
the third unknown force can be determined directly from the 
moment equation.

	 •	 If two of the unknown forces are parallel, forces may be summed 
perpendicular to the direction of these unknowns to determine 
directly the third unknown force.
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Example   6.5

Determine the force in members GE, GC, and BC of the truss shown 
in Fig. 6–16a. Indicate whether the members are in tension or 
compression.

SOLUTION
Section aa in Fig. 6–16a has been chosen since it cuts through the three 
members whose forces are to be determined. In order to use the 
method of sections, however, it is first necessary to determine  
the external reactions at A or D. Why? A free-body diagram of  
the entire truss is shown in Fig. 6–16b. Applying the equations of 
equilibrium, we have

S+ �Fx = 0;	 400 N - A x = 0	 A x = 400 N 

a+ �MA = 0;	 -1200 N(8 m) - 400 N(3 m) + Dy(12 m) = 0 

	 Dy = 900 N

+ c �Fy = 0;	 A y - 1200 N + 900 N = 0	 A y = 300 N

Free-Body Diagram.  For the analysis the free-body diagram of the 
left portion of the sectioned truss will be used, since it involves the least 
number of forces, Fig. 6–16c.

Equations of Equilibrium.  Summing moments about point G 
eliminates FGE and FGC and yields a direct solution for FBC.

a+ �MG = 0; -300 N(4 m) - 400 N(3 m) + FBC (3 m) = 0 

	 FBC = 800 N (T)� Ans.

In the same manner, by summing moments about point C we obtain 
a direct solution for FGE.

a+ �MC = 0; -300 N(8 m) + FGE (3 m) = 0

	 FGE = 800 N (C)� Ans.

Since FBC and FGE have no vertical components, summing forces in 
the y direction directly yields FGC, i.e.,

+ c �Fy = 0;    300 N -
3
5 FGC = 0

	 FGC = 500 N (T)� Ans.

NOTE: Here it is possible to tell, by inspection, the proper direction for 
each unknown member force. For example, �MC = 0 requires FGE to 
be compressive because it must balance the moment of the 300-N 
force about C.

3 m

4 m

400 N
G

4 m

E

B C
DA

a

a

1200 N

(a)

4 m

3 m

8 m

400 N

DA

1200 N

(b)

Ax

Ay Dy
4 m

3 m

4 m
400 N

A

(c)

FGE

FGC

FBC

3
4

5

G

300 N

C

4 m

Fig. 6–16
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Example   6.6

Determine the force in member CF of the truss shown in Fig. 6–17a. 
Indicate whether the member is in tension or compression. Assume 
each member is pin connected.

SOLUTION
Free-Body Diagram.  Section aa in Fig. 6–17a will be used since this 
section will “expose” the internal force in member CF as “external” on 
the free-body diagram of either the right or left portion of the truss. It 
is first necessary, however, to determine the support reactions on either 
the left or right side. Verify the results shown on the free-body diagram 
in Fig. 6–17b.

The free-body diagram of the right portion of the truss, which is the 
easiest to analyze, is shown in Fig. 6–17c. There are three unknowns, 
FFG, FCF, and FCD.

Equations of Equilibrium.  We will apply the moment equation 
about point O in order to eliminate the two unknowns FFG and FCD. 
The location of point O measured from E can be determined from 
proportional triangles, i.e., 4>(4 + x) = 6>(8 + x), x = 4 m. Or, 
stated in another manner, the slope of member GF has a drop of 2 m 
to a horizontal distance of 4 m. Since FD is 4 m, Fig. 6–17c, then from 
D to O the distance must be 8 m.

An easy way to determine the moment of FCF about point O is to 
use the principle of transmissibility and slide FCF to point C, and 
then resolve FCF into its two rectangular components. We have

a+ �MO = 0;

	 -FCF sin 45�(12 m) + (3 kN)(8 m) - (4.75 kN)(4 m) = 0

	 FCF = 0.589 kN (C)� Ans.

4 m 4 m

4 m

2 m

3 kN

(c)

4.75 kN

D E

F

x

6 m

45�

CFCF cos 45�

FCF sin 45�

FCF

FFG

FCD

O

G

G

H F

EA

B C

D

3 kN5 kN

4 m

2 m

(a)

a

a
4 m 4 m4 m 4 m

4 m

5 kN 3 kN

(b)

8 m

3.25 kN 4.75 kN

4 m

Fig. 6–17
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Example   6.7

Determine the force in member EB of the roof truss shown in Fig. 6–18a. 
Indicate whether the member is in tension or compression.

SOLUTION
Free-Body Diagrams.  By the method of sections, any imaginary 
section that cuts through EB, Fig. 6–18a, will also have to cut through 
three other members for which the forces are unknown. For example, 
section aa cuts through ED, EB, FB, and AB. If a free-body diagram of 
the left side of this section is considered, Fig. 6–18b, it is possible to 
obtain FED by summing moments about B to eliminate the other three 
unknowns; however, FEB cannot be determined from the remaining two 
equilibrium equations. One possible way of obtaining FEB is first to 
determine FED from section aa, then use this result on section bb,  
Fig.  6–18a, which is shown in Fig. 6–18c. Here the force system is 
concurrent and our sectioned free-body diagram is the same as the 
free-body diagram for the joint at E.

Equations of Equilibrium.  In order to determine the moment of 
FED about point B, Fig. 6–18b, we will use the principle of transmissibility 
and slide the force to point C and then resolve it into its rectangular 
components as shown. Therefore,

a+ �MB = 0;  1000 N(4 m) + 3000 N(2 m) - 4000 N(4 m)

	 + FED sin 30�(4 m) = 0

	 FED = 3000 N (C)

Considering now the free-body diagram of section bb, Fig. 6–18c, we have

S+ �Fx = 0;	 FEF cos 30� - 3000 cos 30� N = 0

	 FEF = 3000 N (C)

+ c �Fy = 0;	 2(3000 sin 30� N) - 1000 N - FEB = 0

	 FEB = 2000 N ( T )� Ans.

1000 N

1000 N

1000 N3000 N

A

B

C

D

E

F

a

a
bb

(a)

4000 N 2000 N

30�

2 m 2 m 2 m 2 m

1000 N

E

30�

y

x

FEB

FEF FED � 3000 N

(c)

30�

1000 N

1000 N

3000 N

B

C

E

4000 N FED sin 30�

30�

2 m 2 m 4 m

A FED cos 30�

FAB

FEB

FED

30�

(b)

FFB

Fig. 6–18
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F6–10.  Determine the force in members EF, CF, and BC 
of the truss. State if the members are in tension or 
compression.

A
B C

D

E

F

G

30� 30�

6 ft 6 ft 6 ft

300 lb300 lb

f

Prob. F6–10

F6–11.  Determine the force in members GF, GD, and CD 
of the truss. State if the members are in tension or 
compression.

A

B C D
E

F

G

H

2 m

2 m

1 m

2 m 2 m 2 m

10 kN
25 kN 15 kN

f

Prob. F6–11

F6–12.  Determine the force in members DC, HI, and JI of 
the truss. State if the members are in tension or compression. 
Suggestion: Use the sections shown.

B

t
ss

t
C

A

D

I
K

H

EFG

1600 lb
1200 lb

9 ft

6 ft

6 ft

6 ft

12 ft

9 ft6 ft

6 ft6 ft

J

Prob. F6–12

FUNDAMENTAL PROBLEMS

F6–7.  Determine the force in members BC, CF, and FE. 
State if the members are in tension or compression.

A DCB

G F E

4 ft

4 ft 4 ft 4 ft

600 lb 600 lb
800 lb

Prob. F6–7

F6–8.  Determine the force in members LK, KC, and CD 
of the Pratt truss. State if the members are in tension or 
compression.

B C D
A

E F
G

HIJKL

2 m

3 m

2 m

20 kN 30 kN 40 kN

2 m 2 m 2 m 2 m

f

Prob. F6–8

F6–9.  Determine the force in members KJ, KD, and CD 
of the Pratt truss. State if the members are in tension or 
compression.

B C D
A

E F
G

HIJKL

2 m

3 m

2 m

20 kN 30 kN 40 kN

2 m 2 m 2 m 2 m

f

Prob. F6–9

All problem solutions must include FBDs.
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All problem solutions must include FBDs.

6–27.  Determine the force in members DC, HC, and HI of 
the truss, and state if the members are in tension or 
compression.

*6–28.  Determine the force in members ED, EH, and GH 
of the truss, and state if the members are in tension or 
compression.

A

C

G

E D

H
F

I
B

2 m 2 m 2 m

1.5 m

50 kN
40 kN

40 kN

30 kN

1.5 m

1.5 m

Probs. 6–27/28

6–29.  Determine the force in members HG, HE and DE 
of the truss, and state if the members are in tension or 
compression.

6–30.  Determine the force in members CD, HI, and CH of 
the truss, and state if the members are in tension or 
compression.

A
B C D E F

GHIJK

4 ft

3 ft 3 ft3 ft3 ft3 ft

1500 lb1500 lb1500 lb1500 lb1500 lb

Probs. 6–29/30

6–31.  Determine the force in members CD, CJ, KJ, and 
DJ of the truss which serves to support the deck of a bridge. 
State if these members are in tension or compression.

*6–32.  Determine the force in members EI and JI of the 
truss which serves to support the deck of a bridge. State if 
these members are in tension or compression.

A G

HIJKL

FEDCB

4000 lb
8000 lb 5000 lb

9 ft 9 ft 9 ft 9 ft 9 ft 9 ft

12 ft

Probs. 6–31/32

6–33.  The Howe truss is subjected to the loading shown. 
Determine the force in members GF, CD, and GC, and 
state if the members are in tension or compression.

6–34.  The Howe truss is subjected to the loading shown. 
Determine the force in members GH, BC, and BG of the 
truss and state if the members are in tension or compression.

3 m

2 kN

5 kN

5 kN

2 m 2 m 2 m 2 m

A

B C D

F

G

H

E

2 kN

5 kN

Probs. 6–33/34

PROBLEMS
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6–39.  Determine the force in members BC, HC, and HG. 
After the truss is sectioned use a single equation of 
equilibrium for the calculation of each force. State if these 
members are in tension or compression.

*6–40.  Determine the force in members CD, CF, and CG 
and state if these members are in tension or compression.

A C D

H 

G

F 

4 kN

3 m

2 m

5 m5 m5 m 5 m

B E

4 kN
5 kN

3 kN
2 kN

Probs. 6–39/40

6–41.  Determine the force developed in members FE, EB, 
and BC of the truss and state if these members are in 
tension or compression.

11 kN

B

A D

C

F E

22 kN

2 m 1.5 m

2 m

2 m

Prob. 6–41

6–35.  Determine the force in members EF, CF, and BC, 
and state if the members are in tension or compression.

*6–36.  Determine the force in members AF, BF, and BC, 
and state if the members are in tension or compression.

2 m

1.5 m

2 m

F

A

8 kN

4 kN E D

C

B

Probs. 6–35/36

6–37.  Determine the force in members EF, BE, BC and 
BF of the truss and state if these members are in tension or 
compression. Set P1 = 9 kN, P2 = 12 kN, and P3 = 6 kN.

6–38.  Determine the force in members BC, BE, and EF  
of the truss and state if these members are in tension  
or compression. Set P1 = 6 kN, P2 = 9 kN, and P3 = 12 kN.

F E

B
A

D

C

3 m

3 m 3 m 3 m

P1 P2

P3

Probs. 6–37/38
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6–46.  Determine the force in members BC, CH, GH, and 
CG of the truss and state if the members are in tension or 
compression.

A
C D

H 

G

F 

8 kN

3 m

2 m

4 m4 m4 m 4 m
B

E

4 kN 5 kN

Prob. 6–46

6–47.  Determine the force in members CD, CJ, and KJ 
and state if these members are in tension or compression.

6 kN

A

B C D E

G

I

H

F

12 m, 6 @ 2 m

J

K

L

6 kN

6 kN

6 kN

6 kN

3 m

Prob. 6–47

*6–48.  Determine the force in members JK, CJ, and CD of 
the truss, and state if the members are in tension or compression.

6–49.  Determine the force in members HI, FI, and EF of the 
truss, and state if the members are in tension or compression.

A
B C D FE

G

H

IJ

L

K

6 kN8 kN
5 kN4 kN

3 m

2 m 2 m 2 m 2 m 2 m 2 m

Probs. 6–48/49

6–42.  Determine the force in members BC, HC, and HG. 
State if these members are in tension or compression.

6–43.  Determine the force in members CD, CJ, GJ, and 
CG and state if these members are in tension or compression.

6 kN

12 kN

9 kN

4 kN 6 kN

1.5 m 1.5 m

2 m

1 m 1 m

1.5 m 1.5 m

A E
B

H

G

J

C D

Probs. 6–42/43

*6–44.  Determine the force in members BE, EF, and CB, 
and state if the members are in tension or compression.

6–45.  Determine the force in members BF, BG, and AB, 
and state if the members are in tension or compression.

4 m

4 m

4 m

4 m

B

A

C

F

G

E

D

10 kN

10 kN

5 kN

5 kN

Probs. 6–44/45
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*6.5  Space Trusses

A space truss consists of members joined together at their ends to form a 
stable three-dimensional structure. The simplest form of a space truss is a 
tetrahedron, formed by connecting six members together, as shown in 
Fig. 6–19. Any additional members added to this basic element would be 
redundant in supporting the force P. A simple space truss can be built from 
this basic tetrahedral element by adding three additional members and a 
joint, and continuing in this manner to form a system of multiconnected 
tetrahedrons.

Assumptions for Design.  The members of a space truss may be 
treated as two-force members provided the external loading is applied at 
the joints and the joints consist of ball-and-socket connections. These 
assumptions are justified if the welded or bolted connections of the 
joined members intersect at a common point and the weight of the 
members can be neglected. In cases where the weight of a member is to 
be included in the analysis, it is generally satisfactory to apply it as a 
vertical force, half of its magnitude applied at each end of the member.

P

Fig. 6–19

Typical roof-supporting space 
truss. Notice the use of ball-and-
socket joints for the connections.  
(© Russell C. Hibbeler) 

For economic reasons, large electrical 
transmission towers are often constructed 
using space trusses. (© Russell C. Hibbeler)

Procedure for Analysis

Either the method of joints or the method of sections can be used to 
determine the forces developed in the members of a simple space truss.

Method of Joints.
If the forces in all the members of the truss are to be determined, 
then the method of joints is most suitable for the analysis. Here it is 
necessary to apply the three equilibrium equations �Fx = 0, 
�Fy = 0, �Fz = 0 to the forces acting at each joint. Remember that 
the solution of many simultaneous equations can be avoided if the 
force analysis begins at a joint having at least one known force and at 
most three unknown forces. Also, if the three-dimensional geometry 
of the force system at the joint is hard to visualize, it is recommended 
that a Cartesian vector analysis be used for the solution.

Method of Sections.
If only a few member forces are to be determined, the method of 
sections can be used. When an imaginary section is passed through a 
truss and the truss is separated into two parts, the force system acting 
on one of the segments must satisfy the six equilibrium equations: 
�Fx = 0, �Fy = 0, �Fz = 0, �Mx = 0, �My = 0, �Mz = 0 
(Eqs.  5–6). By proper choice of the section and axes for summing 
forces and moments, many of the unknown member forces in a space 
truss can be computed directly, using a single equilibrium equation.
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Determine the forces acting in the members of the space truss shown 
in Fig. 6–20a. Indicate whether the members are in tension or 
compression.

Solution
Since there are one known force and three unknown forces acting at 
joint A, the force analysis of the truss will begin at this joint.

Joint A.  (Fig. 6–20b). Expressing each force acting on the free-body 
diagram of joint A as a Cartesian vector, we have

P = {-4j} kN,        FAB = FAB  

j,  FAC = -FAC k,

FAE = FAEa
rAE

rAE
b = FAE (0.577i + 0.577j - 0.577k)

For equilibrium,

�F = 0;      P + FAB + FAC + FAE = 0

-4j + FAB j - FAC k + 0.577FAE i + 0.577FAE j - 0.577FAE k = 0

�Fx = 0;	 0.577FAE = 0

�Fy = 0;	 -4 + FAB + 0.577FAE = 0

�Fz = 0; 	  -FAC - 0.577FAE = 0

	  FAC = FAE = 0	 Ans.

	 FAB = 4 kN (T)� Ans.

Since FAB is known, joint B can be analyzed next.

Joint B.   (Fig. 6–20c).

�Fx = 0;	 FBE
112

= 0

�Fy = 0;	 -4 + FCB
112

= 0

�Fz = 0; 	 -2 + FBD - FBE 
112

+ FCB 
112

= 0

FBE = 0,	 FCB = 5.65 kN (C)	 FBD = 2 kN (T)	 Ans.

The scalar equations of equilibrium can now be applied to the forces 
acting on the free-body diagrams of joints D and C. Show that 

	 FDE = FDC = FCE = 0	 Ans.

Example   6.8

(a)

2 m

2 m

P � 4 kN

2 kN
z

y

x

A

B

C

D

E

2 m

x

y

z

P � 4 kN

FAC

FAE

FABA

(b)

x

y

z

FAB � 4 kN 1

1

FBE

FBD

2 kN

(c)

FCB

1

1

B

Fig. 6–20
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*6–52.  Determine the force in each member of the space truss 
and state if the members are in tension or compression. The 
truss is supported by ball-and-socket joints at A, B, C, and D.

G

A

 6 kN

4 kN

B

C

E y

z

x

D 2 m

4 m

4 m

2 m

Prob. 6–52

6–53.  The space truss supports a force  
F = {-500i + 600j + 400k} lb. Determine the force in each 
member, and state if the members are in tension or 
compression.

6–54.  The space truss supports a force  
F = {600i + 450j - 750k} lb. Determine the force in each 
member, and state if the members are in tension or 
compression.

A

B

C

D

x

y

z

F

8 ft

6 ft
6 ft

6 ft

Probs. 6–53/54

All problem solutions must include FBDs.

6–50.  Determine the force developed in each member of 
the space truss and state if the members are in tension or 
compression. The crate has a weight of 150 lb.

x
y

z

A

B

C

D

6 ft

6 ft
6 ft

6 ft

Prob. 6–50

6–51.  Determine the force in each member of the space truss 
and state if the members are in tension or compression. Hint: 
The support reaction at E acts along member EB. Why?

y

x

D
A

6 kN

C

B
E

z

5 m

2 m

4 m

3 m

3 m

Prob. 6–51

Problems
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6–57.  The space truss is supported by a ball-and-socket 
joint at D and short links at C and E. Determine the force in 
each member and state if the members are in tension or 
compression. Take F1 = {-500k} lb and F2 = {400j} lb.

6–58.  The space truss is supported by a ball-and-socket joint 
at D and short links at C and E. Determine the force in each 
member and state if the members are in tension or compression. 
Take F1 = {200i + 300j - 500k} lb and F2 = {400j} lb.

3 ft4 ft

3 ft

x

y

z

C

D

E
A

B

F

F2

F1

Probs. 6–57/58
6–59.  Determine the force in each member of the space 
truss and state if the members are in tension or compression. 
The truss is supported by ball-and-socket joints at A, B, and E. 
Set F = {800j} N. Hint: The support reaction at E acts along 
member EC. Why?

*6–60.  Determine the force in each member of the space 
truss and state if the members are in tension or compression. 
The truss is supported by ball-and-socket joints at A, B, and E. 
Set F = {-200i + 400j} N. Hint: The support reaction at E 
acts along member EC. Why?

F

A

z

2 m

x

y

B

C

E

D

5 m

1 m

2 m
1.5 m

Probs. 6–59/60

6–55.  Determine the force in members EF, AF, and DF of 
the space truss and state if the members are in tension or 
compression. The truss is supported by short links at A, B, D, 
and E.

z

x y

3 m

3 m

4 kN

2 kN

3 kN

3 m

5 m

F

A

E

D

B

C

Prob. 6–55

*6–56.  The space truss is used to support the forces at 
joints B and D. Determine the force in each member and 
state if the members are in tension or compression.

C

D

E

F

B

A

12 kN

 20 kN

2 m

90�

3 m

2.5 m

1.5 m

Prob. 6–56
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6.6  Frames and Machines

Frames and machines are two types of structures which are often 
composed of pin-connected multiforce members, i.e., members that are 
subjected to more than two forces. Frames are used to support loads, 
whereas machines contain moving parts and are designed to transmit and 
alter the effect of forces. Provided a frame or machine contains no more 
supports or members than are necessary to prevent its collapse, the forces 
acting at the joints and supports can be determined by applying the 
equations of equilibrium to each of its members. Once these forces are 
obtained, it is then possible to design the size of the members, connections, 
and supports using the theory of mechanics of materials and an appropriate 
engineering design code.

Free-Body Diagrams.  In order to determine the forces acting at 
the joints and supports of a frame or machine, the structure must be 
disassembled and the free-body diagrams of its parts must be drawn. The 
following important points must be observed:

	•	 Isolate each part by drawing its outlined shape. Then show all the 
forces and/or couple moments that act on the part. Make sure to 
label or identify each known and unknown force and couple moment 
with reference to an established x, y coordinate system. Also, 
indicate any dimensions used for taking moments. Most often the 
equations of equilibrium are easier to apply if the forces are 
represented by their rectangular components. As usual, the sense of 
an unknown force or couple moment can be assumed.

	•	 Identify all the two-force members in the structure and represent 
their free-body diagrams as having two equal but opposite collinear 
forces acting at their points of application. (See Sec. 5.4.) By 
recognizing the two-force members, we can avoid solving an 
unnecessary number of equilibrium equations.

	•	 Forces common to any two contacting members act with equal 
magnitudes but opposite sense on the respective members. If the 
two members are treated as a “system” of connected members, then 
these forces are “internal” and are not shown on the free-body 
diagram of the system; however, if the free-body diagram of each 
member is drawn, the forces are “external” and must be shown as 
equal in magnitude and opposite in direction on each of the two 
free-body diagrams.

The following examples graphically illustrate how to draw the free-
body diagrams of a dismembered frame or machine. In all cases, the 
weight of the members is neglected.

This crane is a typical example of a 
framework. (© Russell C. Hibbeler)

Common tools such as these pliers act as 
simple machines. Here the applied force on 
the handles creates a much larger force at 
the jaws. (© Russell C. Hibbeler)
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Example   6.9

For the frame shown in Fig. 6–21a, draw the free-body diagram of  
(a) each member, (b) the pins at B and A, and (c) the two members 
connected together.

PB

A C

(a)

M

P

(b)

M

Bx

By By

Ax

Ay Cy

Cx

Bx

Bx

By

Bx

By

(c)

Effect of 
member BC
on the pin

Effect of 
member AB
on the pin

B

Pin B

Ax

Ay

Ax

Ax

Pin A

Effect of
member AB

on pin
2

2

Ay

2Ay

2

(d)

Fig. 6–21

P

M

Ax

Ay Cy

Cx

(e)

SOLUTION
Part (a).  By inspection, members BA and BC are not two-force 
members. Instead, as shown on the free-body diagrams, Fig. 6–21b, BC 
is subjected to a force from each of the pins at B and C and the external 
force P. Likewise, AB is subjected to a force from each of the pins at 
A  and B and the external couple moment M. The pin forces are 
represented by their x and y components.

Part (b).  The pin at B is subjected to only two forces, i.e., the force of 
member BC and the force of member AB. For equilibrium these forces 
(or their respective components) must be equal but opposite, Fig. 6–21c. 
Realize that Newton’s third law is applied between the pin and its 
connected members, i.e., the effect of the pin on the two members, 
Fig. 6–21b, and the equal but opposite effect of the two members on 
the pin, Fig. 6–21c. In the same manner, there are three forces on pin A, 
Fig. 6–21d, caused by the force components of member AB and each 
of the two pin leafs.

Part (c).  The free-body diagram of both members connected 
together, yet removed from the supporting pins at A and C, is shown 
in Fig. 6–21e. The force components Bx and By are not shown on this 
diagram since they are internal forces (Fig. 6–21b) and therefore cancel 
out. Also, to be consistent when later applying the equilibrium 
equations, the unknown force components at A and C must act in the 
same sense as those shown in Fig. 6–21b.
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Example   6.10

A constant tension in the conveyor belt is maintained by using the 
device shown in Fig. 6–22a. Draw the free-body diagrams of the frame 
and the cylinder (or pulley) that the belt surrounds. The suspended 
block has a weight of W.

(a)

Fig. 6–22 (© Russell C. Hibbeler)

TT

B

(b)

A

u

T

Bx

By

Bx
Ax

By

Ay

T

(c)

(d)

W

u

SOLUTION
The idealized model of the device is shown in Fig. 6–22b. Here the 
angle u is assumed to be known. From this model, the free-body 
diagrams of the pulley and frame are shown in Figs. 6–22c and 6–22d, 
respectively. Note that the force components Bx and By that the pin at 
B exerts on the pulley must be equal but opposite to the ones acting 
on the frame. See Fig. 6–21c of Example 6.9.
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Example   6.11

For the frame shown in Fig. 6–23a, draw the free-body diagrams of 
(a)  the entire frame including the pulleys and cords, (b) the frame 
without the pulleys and cords, and (c) each of the pulleys.

C

A
B

75 lb

(a)

D

 

Fig. 6–23

SOLUTION
Part (a).  When the entire frame including the pulleys and cords is 
considered, the interactions at the points where the pulleys and cords are 
connected to the frame become pairs of internal forces which cancel each 
other and therefore are not shown on the free-body diagram, Fig. 6–23b.

Part (b).  When the cords and pulleys are removed, their effect on the 
frame must be shown, Fig. 6–23c.

Part (c).  The force components Bx, By, Cx, Cy of the pins on the 
pulleys, Fig. 6–23d, are equal but opposite to the force components 
exerted by the pins on the frame, Fig. 6–23c. See Example 6.9.

75 lb

(b)

Ay

Ax

T

75 lb

By

Bx

Cx

Cy

T

T

(c)

(d)

Ax

Ay

75 lb
T

Bx

Cy

CxBy

75 lb
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Example   6.12

Draw the free-body diagrams of the members of the backhoe, shown 
in the photo, Fig. 6–24a. The bucket and its contents have a weight W.

SOLUTION
The idealized model of the assembly is shown in Fig. 6–24b. By 
inspection, members AB, BC, BE, and HI are all two-force members 
since they are pin connected at their end points and no other forces 
act on them. The free-body diagrams of the bucket and the stick are 
shown in Fig. 6–24c. Note that pin C is subjected to only two forces, 
whereas the pin at B is subjected to three forces, Fig. 6–24d. The free-
body diagram of the entire assembly is shown in Fig. 6–24e.

(a)

Fig. 6–24 (© Russell C. Hibbeler)

A

B

E

C

(b)

D

F

H

I

G

(c)

Dy

Dy

FBA

Fx

Fy

FBC

FBE

FHI

DxDx

W

C

FBC

FBC 	    

B
FBC

FBE

FBA

(d) (e)

Fx

Fy

FHI

W
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Before proceeding, it is highly recommended that you cover the solutions 
of these examples and attempt to draw the requested free-body diagrams. 
When doing so, make sure the work is neat and that all the forces and 
couple moments are properly labeled. 

Example   6.13

Draw the free-body diagram of each part of the smooth piston and 
link mechanism used to crush recycled cans, Fig. 6–25a.

C

F � 800 N

A

B

D

E

75�

90�

30�

(a)

Fig. 6–25

SOLUTION
By inspection, member AB is a two-force member. The free-body 
diagrams of the three parts are shown in Fig. 6–25b. Since the pins at B 
and D connect only two parts together, the forces there are shown as 
equal but opposite on the separate free-body diagrams of their 
connected members. In particular, four components of force act on 
the piston: Dx and Dy represent the effect of the pin (or lever EBD), 
Nw is the resultant force of the wall support, and P is the resultant 
compressive force caused by the can C. The directional sense of each 
of the unknown forces is assumed, and the correct sense will be 
established after the equations of equilibrium are applied.

NOTE: A free-body diagram of the entire assembly is shown in Fig. 6–25c. 
Here the forces between the components are internal and are not shown 
on the free-body diagram.

F � 800 N

E

75�

D
Dx

Dy

A

B

BFAB

FAB

FAB

30�

Dx P
D

Nw

Dy

(b)

F � 800 N

75�

30�

P

FAB

Nw

(c)
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Procedure for Analysis

The joint reactions on frames or machines (structures) composed of 
multiforce members can be determined using the following 
procedure.

Free-Body Diagram.

	 •	 Draw the free-body diagram of the entire frame or machine, a 
portion of it, or each of its members. The choice should be made 
so that it leads to the most direct solution of the problem.

	 •	 Identify the two-force members. Remember that regardless of 
their shape, they have equal but opposite collinear forces acting 
at their ends.

	 •	 When the free-body diagram of a group of members of a frame or 
machine is drawn, the forces between the connected parts of this 
group are internal forces and are not shown on the free-body 
diagram of the group.

	 •	 Forces common to two members which are in contact act with 
equal magnitude but opposite sense on the respective free-body 
diagrams of the members.

	 •	 In many cases it is possible to tell by inspection the proper sense 
of the unknown forces acting on a member; however, if this seems 
difficult, the sense can be assumed.

	 •	 Remember that once the free-body diagram is drawn, a couple 
moment is a free vector and can act at any point on the diagram. 
Also, a force is a sliding vector and can act at any point along its 
line of action.

Equations of Equilibrium.

	 •	 Count the number of unknowns and compare it to the total 
number of equilibrium equations that are available. In two 
dimensions, there are three equilibrium equations that can be 
written for each member.

	 •	 Sum moments about a point that lies at the intersection of the 
lines of action of as many of the unknown forces as possible.

	 •	 If the solution of a force or couple moment magnitude is found to 
be negative, it means the sense of the force is the reverse of that 
shown on the free-body diagram.
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Example   6.14

Determine the tension in the cables and also the force P required to 
support the 600-N force using the frictionless pulley system shown in 
Fig. 6–26a.

Fig. 6–26

A

P B

C

600 N

(a)

A

B

C

R

T
P P

P P

T

P P
P

(b)

600 N

SOLUTION
Free-Body Diagram.  A free-body diagram of each pulley including 
its pin and a portion of the contacting cable is shown in Fig. 6–26b. 
Since the cable is continuous, it has a constant tension P acting 
throughout its length. The link connection between pulleys B and C is 
a two-force member, and therefore it has an unknown tension T acting 
on it. Notice that the principle of action, equal but opposite reaction 
must be carefully observed for forces P and T when the separate free-
body diagrams are drawn.

Equations of Equilibrium.  The three unknowns are obtained as 
follows:

Pulley A

+ c �Fy = 0;	 3P - 600 N = 0	 P = 200 N	 Ans.

Pulley B

+ c �Fy = 0;	 T - 2P = 0	 T = 400 N	 Ans.

Pulley C

+ c �Fy = 0;	 R - 2P - T = 0	 R = 800 N	 Ans.
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Example   6.15

A 500-kg elevator car in Fig. 6–27a is being hoisted by motor A using 
the pulley system shown. If the car is traveling with a constant speed, 
determine the force developed in the two cables. Neglect the mass of 
the cable and pulleys.

DE

C

B

AF

(a)

SOLUTION
Free-Body Diagram.  We can solve this problem using the free-body 
diagrams of the elevator car and pulley C, Fig. 6–27b. The tensile forces 
developed in the cables are denoted as T1 and T2.

Equations of Equilibrium.  For pulley C,

+ c �Fy = 0;    T2 - 2T1 = 0    or    T2 = 2T1	 (1)

For the elevator car,

+ c �Fy = 0;	 3T1 + 2T2 - 500(9.81) N = 0	 (2)

Substituting Eq. (1) into Eq. (2) yields

3T1 + 2(2T1) - 500(9.81) N = 0

	 T1 = 700.71 N = 701 N	 Ans.

Substituting this result into Eq. (1),

	 T2 = 2(700.71) N = 1401 N = 1.40 kN 	 Ans.

Fig. 6–27

(b)

T1

N1

N4N2

N3

T1 T1

T2 T2

500 (9.81) N

C

T1 T1

T2
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Example   6.16

Determine the horizontal and vertical components of force which the 
pin at C exerts on member BC of the frame in Fig. 6–28a.

SOLUTION I
Free-Body Diagrams.  By inspection it can be seen that AB is a two-
force member. The free-body diagrams are shown in Fig. 6–28b.

Equations of Equilibrium.  The three unknowns can be determined 
by applying the three equations of equilibrium to member BC.

a+ �MC = 0;  2000 N(2 m) - (FAB sin 60�)(4 m) = 0  FAB = 1154.7 N

S+ �Fx = 0;  1154.7 cos 60� N - Cx = 0 Cx = 577 N	 Ans.

+ c �Fy = 0;  1154.7 sin 60� N - 2000 N + Cy = 0	

Cy = 1000 N                      Ans.

SOLUTION II
Free-Body Diagrams.  If one does not recognize that AB is a two-
force member, then more work is involved in solving this problem. The 
free-body diagrams are shown in Fig. 6–28c.

Equations of Equilibrium.  The six unknowns are determined by 
applying the three equations of equilibrium to each member.

Member AB

a+ �MA = 0;  Bx(3 sin 60� m) - By(3 cos 60� m) = 0	 (1)

S+ �Fx = 0;  A x - Bx = 0� (2)

+ c �Fy = 0;  A y - By = 0� (3)

Member BC

a+ �MC = 0;  2000 N(2 m) - By(4 m) = 0	 (4)

S+ �Fx = 0;  Bx - Cx = 0� (5)

+ c �Fy = 0;  By - 2000 N + Cy = 0� (6)

The results for Cx and Cy can be determined by solving these equations 
in the following sequence: 4, 1, 5, then 6. The results are

 By = 1000 N

 Bx = 577 N

	  Cx = 577 N � Ans.

	  Cy = 1000 N� Ans.

By comparison, Solution I is simpler since the requirement that FAB in 
Fig. 6–28b be equal, opposite, and collinear at the ends of member AB 
automatically satisfies Eqs. 1, 2, and 3 above and therefore eliminates the 
need to write these equations. As a result, save yourself some time and effort 
by always identifying the two-force members before starting the analysis!

A

B

C

2000 N

2 m2 m
3 m

60�

(a)

2 m2 m
60�

FAB
Cy

Cx

FAB

FAB

2000 N

(b)

B

2 m2 m Cy

Cx
C

By

Bx

2000 N

By

Bx

Ay

AAx

(c)

3 m

60�

Fig. 6–28
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Example   6.17

The compound beam shown in Fig. 6–29a is pin connected at B. 
Determine the components of reaction at its supports. Neglect its 
weight and thickness.

SOLUTION
Free-Body Diagrams.  By inspection, if we consider a free-body 
diagram of the entire beam ABC, there will be three unknown reactions 
at A and one at C. These four unknowns cannot all be obtained from 
the three available equations of equilibrium, and so for the solution it 
will become necessary to dismember the beam into its two segments, 
as shown in Fig. 6–29b.

Equations of Equilibrium.  The six unknowns are determined as 
follows:

Segment BC

d+ �Fx = 0;	 Bx = 0

a+ �MB = 0;	 -8 kN(1 m) + Cy(2 m) = 0

+ c �Fy = 0;	 By - 8 kN + Cy = 0

Segment AB

S+ �Fx = 0;	 A x - (10 kN)13
52 + Bx = 0

a+ �MA = 0;	 MA - (10 kN)14
52(2 m) - By(4 m) = 0

+ c �Fy = 0;	 A y - (10 kN)14
52 - By = 0

Solving each of these equations successively, using previously 
calculated results, we obtain

A x = 6 kN      A y = 12 kN      MA = 32 kN # m� Ans.

Bx = 0          By = 4 kN

Cy = 4 kN � Ans.

B
C

4 kN/m
3

45

2 m2 m 2 m

(a)

A

10 kN

Fig. 6–29

2 m

4 m

3

45

10 kN

B

2 m

1 m

A

Ay

Ax

MA

By

Bx Bx

By Cy

8 kN

(b)



316 	 Chapter 6    Structural Analys is

6

Example   6.18

The two planks in Fig. 6–30a are connected together by cable BC and 
a smooth spacer DE. Determine the reactions at the smooth supports 
A and F, and also find the force developed in the cable and spacer.

SOLUTION
Free-Body Diagrams.  The free-body diagram of each plank is shown 
in Fig. 6–30b. It is important to apply Newton’s third law to the 
interaction forces FBC and FDE as shown.

Equations of Equilibrium.  For plank AD,

a+ �MA = 0;	 FDE (6 ft) - FBC (4 ft) - 100 lb (2 ft) = 0

For plank CF,

a+ �MF = 0;	 FDE(4 ft) - FBC (6 ft) + 200 lb (2 ft) = 0

Solving simultaneously,

	 FDE = 140 lb    FBC = 160 lb	 Ans.

Using these results, for plank AD,

+ c �Fy = 0;	 NA + 140 lb - 160 lb - 100 lb = 0

	 NA = 120 lb� Ans.

And for plank CF,

+ c �Fy = 0;	 NF + 160 lb - 140 lb - 200 lb = 0

	 NF = 180 lb� Ans.

NOTE: Draw the free-body diagram of the system of both planks and 
apply �MA = 0 to determine NF. Then use the free-body diagram of 
CEF to determine FDE and FBC.

F
D

E

B

C

A

2 ft 2 ft 2 ft

100 lb
200 lb

2 ft 2 ft

(a)

D C FA

100 lb

(b)

2 ft 2 ft 2 ft 2 ft2 ft 2 ft

200 lb

NA
NF

FDE

FDE

FBC

FBC

Fig. 6–30
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Example   6.19

The 75-kg man in Fig. 6–31a attempts to lift the 40-kg uniform beam 
off the roller support at B. Determine the tension developed in the 
cable attached to B and the normal reaction of the man on the beam 
when this is about to occur.

SOLUTION
Free-Body Diagrams.  The tensile force in the cable will be denoted 
as T1. The free-body diagrams of the pulley E, the man, and the beam 
are shown in Fig. 6–31b. Since the man must lift the beam off the roller 
B then NB = 0. When drawing each of these diagrams, it is very 
important to apply Newton’s third law.

Equations of Equilibrium.  Using the free-body diagram of pulley E,

+ c �Fy = 0;    2T1 - T2 = 0  or  T2 = 2T1� (1)

Referring to the free-body diagram of the man using this result,

+ c �Fy = 0    Nm + 2T1 - 75(9.81) N = 0	 (2)

Summing moments about point A on the beam,

a+ �MA = 0;  T1(3 m) - Nm  (0.8 m) - [40(9.81) N] (1.5 m) = 0� (3)

Solving Eqs. 2 and 3 simultaneously for T1 and Nm, then using  Eq. (1) 
for T2, we obtain

T1 = 256 N    Nm = 224 N    T2 = 512 N� Ans.

SOLUTION II
A direct solution for T1 can be obtained by considering the beam, the 
man, and pulley E as a single system. The free-body diagram is shown 
in Fig. 6–31c. Thus,

 a+ �MA = 0;  2T1(0.8 m) - [75(9.81) N](0.8 m)

 -  [40(9.81) N](1.5 m) + T1(3 m) = 0

	 T1 = 256 N	 Ans.

With this result Eqs. 1 and 2 can then be used to find Nm and T2.

A B

CD

H

E
F

2.2 m

(a)
0.8 m

G

H
E

1.5 m

75 (9.81) N

40 (9.81) N

(b)

0.8 m 0.7 mAy NB � 0

Ax

Nm T1

T1T1
T2 � 2T1

T2

Nm

G

1.5 m

75 (9.81) N

40 (9.81) N

(c)

0.8 m 0.7 mAy NB � 0

Ax

T1

T1T1

Fig. 6–31
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Example   6.20

The smooth disk shown in Fig. 6–32a is pinned at D and has a weight 
of 20 lb. Neglecting the weights of the other members, determine the 
horizontal and vertical components of reaction at pins B and D.

3.5 ft

3 ft

D C

A

(a)

B

SOLUTION
Free-Body Diagrams.  The free-body diagrams of the entire frame 
and each of its members are shown in Fig. 6–32b.

Equations of Equilibrium.  The eight unknowns can of course be 
obtained by applying the eight equilibrium equations to each 
member—three to member AB, three to member BCD, and two to 
the disk. (Moment equilibrium is automatically satisfied for the disk.) 
If this is done, however, all the results can be obtained only from a 
simultaneous solution of some of the equations. (Try it and find out.) 
To avoid this situation, it is best first to determine the three support 
reactions on the entire frame; then, using these results, the remaining 
five equilibrium equations can be applied to two other parts in order 
to solve successively for the other unknowns.

Entire Frame
a+ �MA = 0;	  -20 lb (3 ft) + Cx(3.5 ft) = 0	 Cx = 17.1 lb

S+ �Fx = 0;	 A x - 17.1 lb = 0	 A x = 17.1 lb

+ c �Fy = 0;	 A y - 20 lb = 0	 A y = 20 lb

Member AB
    S+ �Fx = 0;	 17.1 lb - Bx = 0	 Bx = 17.1 lb� Ans.

a+ �MB = 0;	  -20 lb (6 ft) + ND(3 ft) = 0	 ND = 40 lb

    + c �Fy = 0;	  20 lb - 40 lb + By = 0	 By = 20 lb� Ans.

Disk

S+ �Fx = 0;	   Dx = 0� Ans.

+ c �Fy = 0;	   40 lb - 20 lb - Dy = 0	 Dy = 20 lb� Ans.Fig. 6–32

3.5 ft

3 ft
Ay

Ax

20 lb

Cx

3.5 ft

3 ft
CxDx

Dy

By

Bx

3 ft

(b)

3 ft

ND

By

Bx

ND

Dy

Dx

20 lb

20 lb

17.1 lb
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Example   6.21

The frame in Fig. 6–33a supports the 50-kg cylinder. Determine the 
horizontal and vertical components of reaction at A and the force at C.

SOLUTION
Free-Body Diagrams.  The free-body diagram of pulley D, along 
with the cylinder and a portion of the cord (a system), is shown in 
Fig. 6–33b. Member BC is a two-force member as indicated by its free-
body diagram. The free-body diagram of member ABD is also shown.

Equations of Equilibrium.  We will begin by analyzing the equilibrium 
of the pulley. The moment equation of equilibrium is automatically 
satisfied with T = 50(9.81) N, and so

S+ �Fx = 0;	 Dx - 50(9.81) N = 0 Dx = 490.5 N

+ c �Fy = 0;	 Dy - 50(9.81) N = 0 Dy = 490.5 N� Ans.

Using these results, FBC can be determined by summing moments 
about point A on member ABD.

a+ �MA = 0; FBC (0.6 m) + 490.5 N(0.9 m) - 490.5 N(1.20 m) =  0

	 FBC = 245.25 N� Ans.

Now Ax and Ay can be determined by summing forces.

S+ �Fx = 0;	   Ax - 245.25 N - 490.5 N = 0 Ax = 736 N� Ans.

+ c �Fy = 0;	 Ay - 490.5 N = 0	 Ay = 490.5 N� Ans.

A

B

D

C

(a)

1.2 m

0.6 m

0.3 m

0.1 m

1.20 m

0.6 m

� 490.5 N

� 490.5 N

(b)

T �  50 (9.81) N

50 (9.81) N
Ax

Dx

FBC

FBC

FBC

Dx

Ay

Dy

Dy

 0.9 m

Fig. 6–33
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Example   6.22

800 N
800 N

800 N

800 N

FBC

FBC

FBAFBA

(b)

3 m

800 N

2 m

A
B

C

(a)

Determine the force the pins at A and B exert on the two-member 
frame shown in Fig. 6–34a.

SOLUTION I

Free-Body Diagrams.  By inspection AB and BC are two-force 
members. Their free-body diagrams, along with that of the pulley, are 
shown in Fig. 6–34b. In order to solve this problem we must also include 
the free-body diagram of the pin at B because this pin connects all three 
members together, Fig. 6–34c.

Equations of Equilibrium:  Apply the equations of force equilibrium 
to pin B.

S+ �Fx = 0;	 FBA - 800 N = 0;	 FBA = 800 N� Ans.

+ c �Fy = 0;	 FBC - 800 N = 0;	 FBC = 800 N� Ans.

Note: The free-body diagram of the pin at A, Fig. 6–34d, indicates 
how the force FAB is balanced by the force (FAB>2) exerted on the pin 
by each of the two pin leaves.

SOLUTION II
Free-Body Diagram.  If we realize that AB and BC are two-force 
members, then the free-body diagram of the entire frame produces an 
easier solution, Fig. 6–34e. The force equations of equilibrium are the 
same as those above. Note that moment equilibrium will be satisfied, 
regardless of the radius of the pulley.Fig. 6–34

A

2

FBA

FBA

2

FBA

Pin A

(d)

FBA

Pin B

FBC

800 N

800 N

(c)

3 m

800 N

2 m

B

800 N

FBC

FBA

(e)
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Preliminary Problems

P6–3.  In each case, identify any two-force members, and 
then draw the free-body diagrams of each member of the 
frame.

A B

C

1.5 m

1.5 m

200 N2 m 2 m

(a)

60 N � m 

Prob. P6–3

A

B

1 m

C

1.5 m
1 m 2 m

500 N

4

3

5

(c)

D

A B 1.5 m

200 N

(e)

2 m2 m

C

2 m

0.25 m

400 N

0.2 m

(f)

A B

2 m2 m

C

1.5 m

A
B

C

2 m6 m 2 m

800 N

(d)

200 N/m

A B

C

1 m

1 m

3 m

400 N/m

(b)
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FUNDAMENTAL PROBLEMS

F6–13.  Determine the force P needed to hold the 60-lb 
weight in equilibrium.

P

Prob. F6–13

F6–14.  Determine the horizontal and vertical components 
of reaction at pin C.

3 ft3 ft

400 lb
500 lb

3 ft3 ft

4 ft

B

A

C

Prob. F6–14

F6–15.  If a 100-N force is applied to the handles of the 
pliers, determine the clamping force exerted on the smooth 
pipe B and the magnitude of the resultant force that one of 
the members exerts on pin A.

250 mm

50 mm

100 N

100 N

45�

A

B

Prob. F6–15

F6–16.  Determine the horizontal and vertical components 
of reaction at pin C.

       

B

A

C

400 N

800 N � m
2 m1 m

1 m

1 m

Prob. F6–16

All problem solutions must include FBDs.
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F6–17.  Determine the normal force that the 100-lb plate A 
exerts on the 30-lb plate B.

4 ft

B

A

1 ft 1 ft

Prob. F6–17

F6–18.  Determine the force P needed to lift the load. Also, 
determine the proper placement x of the hook for 
equilibrium. Neglect the weight of the beam.

PB

C

A

0.9 m

100 mm 100 mm

100 mm

6 kN

x

Prob. F6–18

F6–19.  Determine the components of reaction at A and B.

A

B C

D

1.5 m

1.5 m2 m 2 m

800 N�m 600 N

45�

Prob. F6–19

F6–20.  Determine the reactions at D.

3 m3 m

10 kN
15 kN

3 m3 m

4 m

B

A

C

D 

Prob. F6–20
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F6–21.  Determine the components of reaction at A and C.

1.5 m1.5 m

3 m

400 N/ m

A

B

C

600 N

Prob. F6–21

F6–22.  Determine the components of reaction at C.

B

C

D

E

1.5 m 1.5 m 1.5 m 1.5 m

2 m

2 m
250 N

A

Prob. F6–22

F6–23.  Determine the components of reaction at E.

A

E

B

CD

5 kN

1.5 m 1.5 m

2 m

4 kN/m

Prob. F6–23

F6–24.  Determine the components of reaction at D and the 
components of reaction the pin at A exerts on member BA.

6 kN

A

B C

D

3 m

4 m

2 m

8 kN/m

Prob. F6–24
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All problem solutions must include FBDs. 6–63.  Determine the force P required to hold the 50-kg 
mass in equilibrium.

P

A

B

C

Prob. 6–63

*6–64.  Determine the force P required to hold the 150-kg 
crate in equilibrium.

P

A

B

C

Prob. 6–64

PROBLEMS

6–61.  Determine the force P required to hold the 100-lb 
weight in equilibrium.

P
A

B

C

D

Prob. 6–61

6–62.  In each case, determine the force P required to 
maintain equilibrium. The block weighs 100 lb.

P

(a) (b) (c)

P

P

Prob. 6–62
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*6–68.  The bridge frame consists of three segments which 
can be considered pinned at A, D, and E, rocker supported 
at C and F, and roller supported at B. Determine the 
horizontal and vertical components of reaction at all these 
supports due to the loading shown.

15 ft

20 ft

5 ft 5 ft

15 ft

2 kip/ft

30 ft

A

B

C F

D
E

Prob. 6–68

6–69.  Determine the reactions at supports A and B.

6 ft

500 lb/ ft
6 ft

8 ft

9 ft

700 lb/ ft

6 ft

A C

D

B

Prob. 6–69

6–70.  Determine the horizontal and vertical components 
of force at pins B and C. The suspended cylinder has a mass 
of 75 kg.

A

BC

1.5 m

0.3 m

2 m
0.5 m

Prob. 6–70

6–65.  Determine the horizontal and vertical components 
of force that pins A and B exert on the frame.

4 m

3 m

2 kN/m

A

C

B

Prob. 6–65

6–66.  Determine the horizontal and vertical components 
of force at pins A and D.

1.5 m

D

A B

C

E

1.5  m

0.3 m

12 kN

2 m

Prob. 6–66

6–67.  Determine the force that the smooth roller C exerts 
on member AB. Also, what are the horizontal and vertical 
components of reaction at pin A? Neglect the weight of the 
frame and roller.

C
0.5 ft

3 ft

A

60 lb�ft

4 ft

B

D

Prob. 6–67
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6–74.  The wall crane supports a load of 700 lb. Determine 
the horizontal and vertical components of reaction at the 
pins  A and D. Also, what is the force in the cable at the 
winch W?

6–75.  The wall crane supports a load of 700 lb. Determine 
the horizontal and vertical components of reaction at the pins 
A and D. Also, what is the force in the cable at the winch W? 
The jib ABC has a weight of 100 lb and member BD has a 
weight of 40 lb. Each member is uniform and has a center of 
gravity at its center.

4 ft

D

A B

C

E

W

4 ft

700 lb

60�

4 ft

Probs. 6–74/75

*6–76.  Determine the horizontal and vertical components 
of force which the pins at A and B exert on the frame.

400 N/m

1.5 m

2 m

3 m

3 m

1.5 m

A

F

E

D

B

C

Prob. 6–76

6–71.  Determine the reactions at the supports A, C, and E 
of the compound beam.

4 m 3 m3 m 6 m
2 m

A DB EC

3 kN/m
12 kN

Prob. 6–71

*6–72.  Determine the resultant force at pins A, B, and C 
on the three-member frame.

200 N/ m

60�

2 m

800 N

2 m

B

C

A

Prob. 6–72

6–73.  Determine the reactions at the supports at A, E, and 
B of the compound beam.

3 m

900 N/m 900 N/m

4 m3 m

A C D

B

3 m 3 m 

E

Prob. 6–73
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*6–80.  The toggle clamp is subjected to a force F at the 
handle. Determine the vertical clamping force acting at E.

1.5 a

1.5 a

60�

a/2

a/2

a/2E

C

D

F
B

A

Prob. 6–80

6–81.  The hoist supports the 125-kg engine. Determine the 
force the load creates in member DB and in member FB, 
which contains the hydraulic cylinder H.

C

D

EFG

H

2 m

1 m

1 m

2 m1 m

2 m

A B

Prob. 6–81

6–82.  A 5-lb force is applied to the handles of the vise grip. 
Determine the compressive force developed on the smooth 
bolt shank A at the jaws.

5 lb

5 lb

3 in.1 in.1.5 in.
20�

A

B

E
C

D

1 in.

0.75 in.

Prob. 6–82

6–77.  The two-member structure is connected at C by a 
pin, which is fixed to BDE and passes through the smooth 
slot in member AC. Determine the horizontal and vertical 
components of reaction at the supports.

3 ft 3 ft 2 ft

4 ft

A

B

C D
E

600 lb � ft

500 lb

Prob. 6–77

6–78.  The compound beam is pin supported at B and 
supported by rockers at A and C. There is a hinge (pin) at D. 
Determine the reactions at the supports.

C
DB

A

6 m 3 m

2 kN/m

3 m

Prob. 6–78

6–79.  When a force of 2 lb is applied to the handles of the 
brad squeezer, it pulls in the smooth rod AB. Determine the 
force P exerted on each of the smooth brads at C and D.

A

C

D

2 lb

1 in.

2 lb

2 in.

2 in.

0.25 in.

1.5 in.

1.5 in.

E

B

P

P

Prob. 6–79



	 6.6 F rames and Machines	 329

6

6–86.  The pumping unit is used to recover oil. When the 
walking beam ABC is horizontal, the force acting in the 
wireline at the well head is 250 lb. Determine the torque M 
which must be exerted by the motor in order to overcome this 
load. The horse-head C weighs 60 lb and has a center of gravity 
at GC. The walking beam ABC has a weight of 130 lb and a 
center of gravity at GB, and the counterweight has a weight of 
200 lb and a center of gravity at GW . The pitman, AD, is pin 
connected at its ends and has negligible weight.

GB

20�

250 lb

70�

5 ft

3 ft 2.5 ft

6 ft 1 ft

Gw

GC

D

A B

E

C

M

Prob. 6–86

6–87.  Determine the force that the jaws J of the metal 
cutters exert on the smooth cable C if 100-N forces are 
applied to the handles. The jaws are pinned at E and A,  
and D and B. There is also a pin at F.

F 15�

15�

15�

20 mm

20 mm

30 mm 80 mm

B

J

C

D

E A

15�

15�

400 mm

400 mm

100 N

100 N

Prob. 6–87

6–83.  Determine the force in members FD and DB of the 
frame. Also, find the horizontal and vertical components  
of reaction the pin at C exerts on member ABC and  
member EDC.

B
A

G
F

E

D

C

2 m6 kN

1 m

2 m 1 m

Prob. 6–83

*6–84.  Determine the force that the smooth 20-kg cylinder 
exerts on members AB and CDB. Also, what are the 
horizontal and vertical components of reaction at pin A?

C

1 m

1.5 m

A

2 m

BE

D

Prob. 6–84

6–85.  The three power lines exert the forces shown on the 
pin-connected members at joints B, C, and D, which in turn are 
pin connected to the poles AH and EG. Determine the force 
in the guy cable AI and the pin reaction at the support H.

125 ft

20 ft
A E

B

800 lb
800 lb 800 lb

I F

C D

H G

20 ft20 ft

40 ft40 ft

30 ft30 ft 30 ft 30 ft 50 ft50 ft

Prob. 6–85
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6–90.  The pipe cutter is clamped around the pipe P. If the 
wheel at A exerts a normal force of FA = 80 N on the pipe, 
determine the normal forces of wheels B and C on the pipe. 
Also compute the pin reaction on the wheel at C. The three 
wheels each have a radius of 7 mm and the pipe has an outer 
radius of 10 mm.

10 mm

10 mm

P

C

B
A

Prob. 6–90

6–91.  Determine the force created in the hydraulic 
cylinders EF and AD in order to hold the shovel in 
equilibrium. The shovel load has a mass of 1.25 Mg and a 
center of gravity at G. All joints are pin connected.

0.5 m

0.25 m
0.25 m

1.5 m

30�

10�

H

G

D

E

C

F

60�
2 m

A

Prob. 6–91

*6–88.  The machine shown is used for forming metal plates. 
It consists of two toggles ABC and DEF, which are operated 
by the hydraulic cylinder H. The toggles push the movable bar 
G forward, pressing the plate p into the cavity. If the force 
which the plate exerts on the head is P = 12 kN, determine the 
force F in the hydraulic cylinder when u = 30�.

200 mm
�F

F

P � 12 kN
H

F

C

G

A

D

E

B
p

200 mm

200 mm

200 mm

u � 30�

u � 30�

Prob. 6–88

6–89.  Determine the horizontal and vertical components 
of force which pin C exerts on member ABC. The 600-N 
load is applied to the pin. 

1.5 m

2 m 2 m

3 m

A

F

C

D

E

B

600 N

300 N

Prob. 6–89
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6–94.  Five coins are stacked in the smooth plastic 
container shown. If each coin weighs 0.0235 lb, determine 
the normal reactions of the bottom coin on the container at 
points A and B.

3

4

3

3

5

5

5

5

4

4

3

4

A

B

Prob. 6–94

6–95.  The nail cutter consists of the handle and the two 
cutting blades. Assuming the blades are pin connected at B 
and the surface at D is smooth, determine the normal force 
on the fingernail when a force of 1 lb is applied to the 
handles as shown. The pin AC slides through a smooth hole 
at A and is attached to the bottom member at C.

1.5 in.

A

D

C

B

1 lb

1 lb

0.25 in.0.25 in.

Prob. 6–95

*6–92.  Determine the horizontal and vertical components 
of force at pin B and the normal force the pin at C exerts on 
the smooth slot. Also, determine the moment and horizontal 
and vertical reactions of force at A. There is a pulley at E.

3 ft3 ft

4 ft

4 ft

AB

C

D E

50 lb

Prob. 6–92

6–93.  The constant moment of 50 N # m is applied to the 
crank shaft. Determine the compressive force P that is exerted 
on the piston for equilibrium as a function of u. Plot the results 
of P (vertical axis) versus u (horizontal axis) for 0� … u … 90�.

P

0.45 m

0.2 m

u

A

B

C

50 N � m

Prob. 6–93
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6–98.  The two-member frame is pin connected at E. The 
cable is attached to D, passes over the smooth peg at C, and 
supports the 500-N load. Determine the horizontal and 
vertical reactions at each pin.

0.5 m0.5 m

500 N500 N

1 m1 m 1 m1 m
0.5 m0.5 m 0.5 m0.5 m

AA
BB

CC

DD

EE

Prob. 6–98

6–99.  If the 300-kg drum has a center of mass at point G, 
determine the horizontal and vertical components of force 
acting at pin A and the reactions on the smooth pads C and D. 
The grip at B on member DAB resists both horizontal and 
vertical components of force at the rim of the drum.

P

390 mm

100 mm

60 mm
60 mm

600 mm

30�

B

A

C 

D G 

E 

Prob. 6–99

*6–96.  A man having a weight of 175 lb attempts to hold 
himself using one of the two methods shown. Determine 
the total force he must exert on bar AB in each case and the 
normal reaction he exerts on the platform at C. Neglect the 
weight of the platform.

C C

A B
A B

(a) (b)

Prob. 6–96

6–97.  A man having a weight of 175 lb attempts to hold 
himself using one of the two methods shown. Determine 
the total force he must exert on bar AB in each case and the 
normal reaction he exerts on the platform at C. The platform 
has a weight of 30 lb.

C C

A B
A B

(a) (b)

Prob. 6–97
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6–102.  If a force of F = 350 N is applied to the handle of the 
toggle clamp, determine the resulting clamping force at A.

275 mm30�

30�

235 mm

30 mm

30 mm

70 mm

F

C

E

B

D

A

Prob. 6–102

6–103.  Determine the horizontal and vertical components 
of force that the pins at A and B exert on the frame.

2 m

1 m

3 m3 m

2 m 2 m

3 m

2 kN

3 kN

4 kN

D E

C

A

B

Prob. 6–103

*6–100.  Operation of exhaust and intake valves in an 
automobile engine consists of the cam C, push rod DE, 
rocker arm EFG which is pinned at F, and a spring and 
valve,V. If the compression in the spring is 20 mm when the 
valve is open as shown, determine the normal force acting 
on the cam lobe at C. Assume the cam and bearings at H, I, 
and J are smooth. The spring has a stiffness of 300 N>m.

25 mm
40 mm

E

FG

H

I

J

V

D

C

Prob. 6–100

6–101.  If a clamping force of 300 N is required at A, 
determine the amount of force F that must be applied to the 
handle of the toggle clamp.

275 mm30�

30�

235 mm

30 mm

30 mm

70 mm

F

C

E

B

D

A

Prob. 6–101
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6–106.  If d = 0.75 ft and the spring has an unstretched 
length of 1 ft, determine the force F required for equilibrium.

d

d
A C

B

D

1 ft

1 ft

1 ft

1 ft

k � 150 lb/ft

F F

Prob. 6–106

6–107.  If a force of F = 50 lb is applied to the pads at A  
and C, determine the smallest dimension d required for 
equilibrium if the spring has an unstretched length of 1 ft.

d

d
A C

B

D

1 ft

1 ft

1 ft

1 ft

k � 150 lb/ft

F F

Prob. 6–107

*6–108.  The skid-steer loader has a mass of 1.18 Mg, and in 
the position shown the center of mass is at G1. If there is a 
300-kg stone in the bucket, with center of mass at G2, 
determine the reactions of each pair of wheels A and B on 
the ground and the force in the hydraulic cylinder CD and at 
the pin E. There is a similar linkage on each side of the loader.

1.5 m

1.25 m

A B

C
D

G1
G2

E

0.5 m

0.75 m

0.15 m

30�

Prob. 6–108

*6–104.  The hydraulic crane is used to lift the 1400-lb load. 
Determine the force in the hydraulic cylinder AB and the 
force in links AC and AD when the load is held in the 
position shown.

8 ft30�

120�

70�

1 ft

1 ft1 ft

B

A
D

C

7 ft

Prob. 6–104

6–105.  Determine force P on the cable if the spring is 
compressed 0.025 m when the mechanism is in the position 
shown. The spring has a stiffness of k = 6 kN>m.

P
150 mm

200 mm

200 mm

200 mm
800 mm

A

C

D

E

B

F

30�
k

Prob. 6–105
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*6–112.  The piston C moves vertically between the two 
smooth walls. If the spring has a stiffness of k = 15 lb>in., 
and is unstretched when u = 0�, determine the couple M 
that must be applied to AB to hold the mechanism in 
equilibrium when u = 30�.

u

A

M

B

8 in.

12 in.

C

k � 15 lb/in.

Prob. 6–112

6–113.  The platform scale consists of a combination of third 
and first class levers so that the load on one lever becomes the 
effort that moves the next lever. Through this arrangement, a 
small weight can balance a massive object. If x = 450 mm, 
determine the required mass of the counterweight S required 
to balance a 90-kg load, L.

6–114.  The platform scale consists of a combination of third 
and first class levers so that the load on one lever becomes the 
effort that moves the next lever. Through this arrangement, a 
small weight can balance a massive object. If x = 450 mm, and 
the mass of the counterweight S is 2 kg, determine the mass of 
the load L required to maintain the balance.

350 mm
150 mm

150 mm100 mm
250 mm

B
A

C D

E F

H

G

x

L

S

Probs. 6–113/114

6–109.  Determine the force P on the cable if the spring is 
compressed 0.5 in. when the mechanism is in the position 
shown. The spring has a stiffness of k = 800 lb>ft.

P

6 in.

24 in.

6 in. 6 in. 4 in.

A

C

D

E

B

30�

k

Prob. 6–109

6–110.  The spring has an unstretched length of 0.3 m. 
Determine the angle u for equilibrium if the uniform bars 
each have a mass of 20 kg.

6–111.  The spring has an unstretched length of 0.3 m. 
Determine the mass m of each uniform bar if each angle 
u = 30� for equilibrium.

2 m

k � 150 N/m

A

B

C

u

u

Probs. 6–110/111
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6–117.  The structure is subjected to the loading shown. 
Member AD is supported by a cable AB and roller at C and 
fits through a smooth circular hole at D. Member ED is 
supported by a roller at D and a pole that fits in a smooth 
snug circular hole at E. Determine the x, y, z components of 
reaction at E and the tension in cable AB.

z

C

A

D

B

E

0.3 m y

0.3 m

0.5 m

0.4 m

F � {�2.5k} kN

x

0.8 m

Prob. 6–117

6–118.  The three pin-connected members shown in the 
top view support a downward force of 60 lb at G. If only 
vertical forces are supported at the connections B, C, E and 
pad supports A, D, F, determine the reactions at each pad.

D

B
E

G

F

A

C

6 ft 6 ft

6 ft

2 ft

2 ft

4 ft

4 ft

Prob. 6–118

6–115.  The four-member “A” frame is supported at A  
and E by smooth collars and at G by a pin. All the other 
joints are ball-and-sockets. If the pin at G will fail when the 
resultant force there is 800 N, determine the largest vertical 
force P that can be supported by the frame. Also, what are 
the x, y, z force components which member BD exerts on 
members EDC and ABC? The collars at A and E and the 
pin at G only exert force components on the frame.

x

y

C

D

B
F

G

E

A

P � �Pk

z

300 mm

300 mm

600 mm

600 mm

600 mm

Prob. 6–115

*6–116.  The structure is subjected to the loadings shown. 
Member AB is supported by a ball-and-socket at A and 
smooth collar at B. Member CD is supported by a pin at C. 
Determine the x, y, z components of reaction at A and C.

2 m 3 m y

4 m

1.5 m

B

800 N � m

A

250 N

D
45�

60�

60�

z

x

C

Prob. 6–116
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Chapter Review

Simple Truss

A simple truss consists of triangular 
elements connected together by pinned 
joints. The forces within its members  can 
be determined by assuming the members 
are all two-force members, connected 
concurrently at each joint. The members 
are either in tension or compression, or 
carry no force.

Roof truss

Method of Joints

The method of joints states that if a 
truss is in equilibrium, then each of its 
joints is also in equilibrium. For a plane 
truss, the concurrent force system at 
each joint must satisfy force equilibrium.

To obtain a numerical solution for the 
forces in the members, select a joint 
that has a free-body diagram with at 
most two unknown forces and one 
known force. (This may require first 
finding the reactions at the supports.)

Once a member force is determined, use 
its value and apply it to an adjacent joint.

Remember that forces that are found to 
pull on the joint are tensile forces, and 
those that push on the joint are 
compressive forces.

To avoid a simultaneous solution of two 
equations, set one of the coordinate axes 
along the line of action of one of the 
unknown forces and sum forces 
perpendicular to this axis. This will allow 
a direct solution for the other unknown.

The analysis can also be simplified by 
first identifying all the zero-force 
members.

 �Fx = 0

 �Fy = 0

B
500 N

A C

45�

45�

B

45�

500 N

FBC (compression)FBA (tension)
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Method of Sections

The method of sections states that if a 
truss is in equilibrium, then each segment 
of the truss is also in equilibrium. Pass a 
section through the truss and the 
member whose force is to be determined. 
Then draw the free-body diagram of the 
sectioned part having the least number 
of forces on it.

B

2 m

1000 N

2 m 2 m

C D

G F E
A

2 m

a

a

Sectioned members subjected to pulling 
are in tension, and those that are 
subjected to pushing are in compression.

2 m

1000 N

2 m

2 m

CFBC

45�

FGC

G FGF

Three equations of equilibrium are 
available to determine the unknowns.

If possible, sum forces in a direction that 
is perpendicular to two of the three 
unknown forces. This will yield a direct 
solution for the third force.

Sum moments about the point where the 
lines of action of two of the three 
unknown forces intersect, so that the 
third unknown force can be determined 
directly.

 �Fx = 0
 �Fy = 0
 �MO = 0

+ c �Fy = 0
 -1000 N + FGC sin 45� = 0

FGC = 1.41 kN (T)

a+ �MC = 0
 1000 N(4 m) - FGF (2 m) = 0

FGF = 2 kN (C)
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Space Truss

A space truss is a three-dimensional truss 
built from tetrahedral elements, and is 
analyzed using the same methods as for 
plane trusses. The joints are assumed to 
be ball-and-socket connections.

P

Frames and Machines

Frames and machines are structures that 
contain one or more multiforce members, 
that is, members with three or more 
forces or couples acting on them. Frames 
are designed to support loads, and 
machines transmit and alter the effect of 
forces. A

B

C

2000 N

Two-force
member

Multi-force
member

The forces acting at the joints of a frame 
or machine can be determined by 
drawing the free-body diagrams of each 
of its members or parts. The principle of  
action–reaction should be carefully 
observed when indicating these forces 
on the free-body diagram of each 
adjacent member or pin. For a coplanar 
force system, there are three equilibrium 
equations available for each member.

To simplify the analysis, be sure to 
recognize all two-force members. They 
have equal but opposite collinear forces 
at their ends.

FAB
Cy

Cx

FAB

FAB

2000 N

Action–reaction

B
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Review Problems

All problem solutions must include FBDs.

R6–1.  Determine the force in each member of the truss 
and state if the members are in tension or compression.

2 m

1.5 m

2 m

4 kN

F
A

8 kN 10 kN

3 kN

E

DCB

Prob. R6–1

R6–2.  Determine the force in each member of the truss 
and state if the members are in tension or compression.

A

B C
D

G E

10 ft

10 ft

10 ft 10 ft

1000 lb

Prob. R6–2

R6–3.  Determine the force in member GJ and GC of the 
truss and state if the members are in tension or compression.

1000 lb

1000 lb

1000 lb

1000 lb

30�

10 ft 10 ft 10 ft 10 ft

A E
B

H

G

J

C D

Prob. R6–3

R6–4.  Determine the force in members GF, FB, and BC 
of the Fink truss and state if the members are in tension or 
compression.

A
B

G E

F

10 ft 10 ft

800 lb

10 ft

D
C

800 lb

600 lb

30�60�30� 60�

Prob. R6–4
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R6–7.  Determine the horizontal and vertical components 
of force at pins A and C of the two-member frame.

3 m

3 m

600 N/ m

400 N/m

500 N/ m

A B

C

Prob. R6–7

R6–8.  Determine the resultant forces at pins B and C on 
member ABC of the four-member frame.

2 ft

150 lb/ft

4 ft

5 ft

5 ft2 ft

A

F E D

B C

Prob. R6–8

R6–5.  Determine the force in members AB, AD, and AC 
of the space truss and state if the members are in tension or 
compression.

1.5 ft

1.5 ft

2 ft

F � {�600k} lb

8 ft
x

y

z

B
A

C

D

Prob. R6–5

R6–6.  Determine the horizontal and vertical components of 
force that the pins A and B exert on the two-member frame.

1.5 m

400 N/m

60�

1 m

1 m

B

C

A

Prob. R6–6



Chapter 7

When external loads are placed upon these beams and columns, the loads within 
them must be determined if they are to be properly designed. In this chapter we 

will study how to determine these internal loadings.

(© Tony Freeman/Science Source)



Internal Forces

CHAPTER OBJECTIVES

n	 To use the method of sections to determine the internal loadings 
in a member at a specific point.

n	 To show how to obtain the internal shear and moment throughout 
a member and express the result graphically in the form of shear 
and moment diagrams.

n	 To analyze the forces and the shape of cables supporting various 
types of loadings.

7.1  �Internal Loadings Developed in 
Structural Members

To design a structural or mechanical member it is necessary to know the 
loading acting within the member in order to be sure the material can 
resist this loading. Internal loadings can be determined by using the 
method of sections. To illustrate this method, consider the cantilever beam 
in Fig. 7–1a. If the internal loadings acting on the cross section at point B 
are to be determined, we must pass an imaginary section a–a perpendicular 
to the axis of the beam through point B and then separate the beam into 
two segments. The internal loadings acting at B will then be exposed and 
become external on the free-body diagram of each segment, Fig. 7–1b.

A B

(a)

P1

P2a

a

�
(b)

VB VB

MB MB

MA

NB NBAx

Ay

B B

P1
P2

Fig. 7–1
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In each case, the link on the backhoe is 
a two-force member. In the top photo 
it is subjected to both bending and an 
axial load at its center. It is more 
efficient to make the member straight, 
as in the bottom photo; then only an 
axial force acts within the member.  
(© Russell C. Hibbeler)

(b)

VB VB

MB MB

MA

NB NBAx

Ay

B B

P1
P2

Fig. 7–1 (Repeated)

The force component NB that acts perpendicular to the cross section is 
termed the normal force. The force component VB that is tangent to the 
cross section is called the shear force, and the couple moment MB is 
referred to as the bending moment. The force components prevent the 
relative translation between the two segments, and the couple moment 
prevents the relative rotation. According to Newton’s third law, these 
loadings must act in opposite directions on each segment, as shown in  
Fig. 7–1b. They can be determined by applying the equations of equilibrium 
to the free-body diagram of either segment. In this case, however, the right 
segment is the better choice since it does not involve the unknown support 
reactions at A. A direct solution for NB is obtained by applying �Fx = 0, 
VB is obtained from �Fy = 0, and MB can be obtained by applying 
�MB = 0, since the moments of NB and VB about B are zero.

In two dimensions, we have shown that three internal loading resultants 
exist, Fig. 7–2a; however in three dimensions, a general resultant internal 
force and couple moment resultant will act at the section. The x, y, z 
components of these loadings are shown in Fig. 7–2b. Here Ny is the normal 
force, and Vx and Vz  are shear force components. My is a torsional or twisting 
moment, and Mx and Mz  are bending moment components. For most 
applications, these resultant loadings will act at the geometric center or 
centroid (C) of the section’s cross-sectional area. Although the magnitude 
for each loading generally will be different at various points along the axis 
of the member, the method of sections can always be used to determine 
their values.

(a)

V

N

M
Shear force

Normal force

Bending moment

C

Fig. 7–2 

y

z

Ny

Normal force

My

Torsional moment

Vx

Vz

Mx

x

C

Mz

Shear force components

Bending moment
components

(b)
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Sign Convention.  For problems in two dimensions engineers 
generally use a sign convention to report the three internal loadings  
N, V, and M. Although this sign convention can be arbitrarily assigned, the 
one that is widely accepted will be used here, Fig. 7–3. The normal force is 
said to be positive if it creates tension, a positive shear force will cause the 
beam segment on which it acts to rotate clockwise, and a positive bending 
moment will tend to bend the segment on which it acts in a concave upward 
manner. Loadings that are opposite to these are considered negative.

Positive shear

Positive normal force

Positive moment

M M

V

V

N

N

N

N

V

V

M M

Fig. 7–3

A

The designer of this shop crane 
realized the need for additional 
reinforcement around the joint at A 
in order to prevent severe internal 
bending of the joint when a large load 
is suspended from the chain hoist. 
(© Russell C. Hibbeler) 

Procedure for Analysis

The method of sections can be used to determine the internal loadings 
on the cross section of a member using the following procedure.

Support Reactions.
	 •	 Before the member is sectioned, it may first be necessary to 

determine its support reactions.

Free-Body Diagram.
	 •	 It is important to keep all distributed loadings, couple moments, 

and forces acting on the member in their exact locations, then pass 
an imaginary section through the member, perpendicular to its axis 
at the point where the internal loadings are to be determined.

	 •	 After the section is made, draw a free-body diagram of the 
segment that has the least number of loads on it, and indicate 
the  components of the internal force and couple moment 
resultants at the cross section acting in their positive directions in 
accordance with the established sign convention.

Equations of Equilibrium.
	 •	 Moments should be summed at the section. This way the normal 

and shear forces at the section are eliminated, and we can obtain 
a direct solution for the moment.

	 •	 If the solution of the equilibrium equations yields a negative 
scalar, the sense of the quantity is opposite to that shown on the 
free-body diagram.

	 	        Important Point

	 •	 There can be four types of resultant internal loads in a member. 
They are the normal and shear forces and the bending and torsional 
moments. These loadings generally vary from point to point. They 
can be determined using the method of sections.
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Example   7.1

Determine the normal force, shear force, and bending moment acting 
just to the left, point B, and just to the right, point C, of the 6-kN force 
on the beam in Fig. 7–4a.

Solution
Support Reactions.  The free-body diagram of the beam is shown in 
Fig. 7–4b. When determining the external reactions, realize that the 
9@kN # m couple moment is a free vector and therefore it can be placed 
anywhere on the free-body diagram of the entire beam. Here we will 
only determine Ay, since the left segments will be used for the analysis.

a+ �MD = 0;	     9 kN # m + (6 kN)(6 m) - A y(9 m) = 0

	 A y = 5 kN

Free-Body Diagrams.  The free-body diagrams of the left segments 
AB and AC of the beam are shown in Figs. 7–4c and 7–4d. In this case 
the 9@kN # m couple moment is not included on these diagrams since it 
must be kept in its original position until after the section is made and 
the appropriate segment is isolated.

Equations of Equilibrium.
Segment AB

	    S+ �Fx = 0;	 NB = 0 		  Ans.

	  + c �Fy = 0;	 5 kN - V B = 0	 V B = 5 kN	 Ans.

	a+ �MB = 0;	 -(5 kN)(3 m) + MB = 0	 MB = 15 kN # m 	 Ans.

Segment AC

	     S+ �Fx = 0;	 NC = 0		  Ans.

	    + c �Fy = 0;	 5 kN - 6 kN - V C = 0	 V C = -1 kN 	 Ans.

	a+ �MC = 0;	 -(5 kN)(3 m) + MC = 0	 MC = 15 kN # m 	 Ans.

Note: The negative sign indicates that VC acts in the opposite sense 
to that shown on the free-body diagram. Also, the moment arm for the 
5-kN force in both cases is approximately 3 m since B and C are 
“almost” coincident.

(a)

A

CB

D

3 m 6 m

9 kN�m

6 kN

 

Ay

A
D

(b)

3 m 6 m
Dy

9 kN�m

6 kN

Dx

A

(c)

3 m
VB

NB

MB

5 kN

B

5 kN

A

(d)

6 kN

3 m

C NC

MC

VC

Fig. 7–4
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Example   7.2

Determine the normal force, shear force, and bending moment at C of 
the beam in Fig. 7–5a.

Solution
Free-Body Diagram.  It is not necessary to find the support reactions 
at A since segment BC of the beam can be used to determine the 
internal loadings at C. The intensity of the triangular distributed load 
at C is determined using similar triangles from the geometry shown in 
Fig. 7–5b, i.e.,

wC = (1200 N>m) a 1.5 m

3 m
b = 600 N>m

The distributed load acting on segment BC can now be replaced by its 
resultant force, and its location is indicated on the free-body diagram, 
Fig. 7–5c.

Equations of Equilibrium.

	 S+ �Fx = 0;	 NC = 0	 Ans.

	 + c �Fy = 0;	 V C -
1
2(600 N>m)(1.5 m) = 0

	  V C = 450 N 	 Ans.

	a+ �MC = 0;	 -MC -
1
2(600 N>m)(1.5 m)(0.5 m) = 0

	 MC = -225 N	 Ans.

The negative sign indicates that MC acts in the opposite sense to that 
shown on the free-body diagram.

B
CA

1.5 m 1.5 m

1200 N/m

(a)

Fig. 7–5 

1.5 m

(b)

1200 N/m

3 m

wC

(c)

VC

MC

NC

C B

0.5 m

600 N/m

(600 N/m)(1.5 m)1
2
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Example   7.3

Determine the normal force, shear force, and bending moment acting 
at point B of the two-member frame shown in Fig. 7–6a.

Solution
Support Reactions.  A free-body diagram of each member is shown 
in Fig. 7–6b. Since CD is a two-force member, the equations of 
equilibrium need to be applied only to member AC.

	a+ �MA = 0; 	 -400 lb (4 ft) + 13
52 FDC (8 ft) = 0 	 FDC = 333.3 lb

	    S+ �Fx = 0;	 -A x + 14
52(333.3 lb) = 0 	 A x = 266.7 lb

	   + c �Fy = 0;	 A y - 400 lb + 13
52(333.3 lb) = 0 	 A y = 200 lb

(a)

A

4 ft 4 ft

6 ft

D

B
C

50 lb/ft

 

200 lb

266.7 lb

2 ft 2 ft

200 lb
3

4

5

200 lb

2 ft2 ft

333.3 lb

C

(c)

VB

NB

MB

VB

NB

MB

BA B

(b)

4 ft

A C

4 ft

Ay

Ax

3
4

5

FDC

FDC

FDC

400 lb

Fig. 7–6

Free-Body Diagrams.  Passing an imaginary section perpendicular to 
the axis of member AC through point B yields the free-body diagrams 
of segments AB and BC shown in Fig. 7–6c. When constructing these 
diagrams it is important to keep the distributed loading where it is until 
after the section is made. Only then can it be replaced by a single 
resultant force.

Equations of Equilibrium.  Applying the equations of equilibrium 
to segment AB, we have

	 S+ �Fx = 0;	 NB - 266.7 lb = 0 	 NB = 267 lb 	 Ans.

	 + c �Fy = 0;	 200 lb - 200 lb - V B = 0 	 V B = 0 	 Ans.

	a+ �MB = 0;	  MB - 200 lb (4 ft) + 200 lb (2 ft) = 0

	 MB = 400 lb # ft 	 Ans.

NOTE: As an exercise, try to obtain these same results using segment BC.
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Example   7.4

Determine the normal force, shear force, and bending moment acting 
at point E of the frame loaded as shown in Fig. 7–7a.

Solution
Support Reactions.  By inspection, members AC and CD are two-
force members, Fig. 7–7b. In order to determine the internal loadings at 
E, we must first determine the force R acting at the end of member AC. 
To obtain it, we will analyze the equilibrium of the pin at C.

Summing forces in the vertical direction on the pin, Fig. 7–7b,  
we have

+ c �Fy = 0;    R sin 45� - 600 N = 0  R = 848.5 N

Free-Body Diagram.  The free-body diagram of segment CE is 
shown in Fig. 7–7c.

Equations of Equilibrium.

	 S+ �Fx = 0;	 848.5 cos 45� N - V E = 0 	 V E = 600 N � Ans.

	+ c �Fy = 0;	 -848.5 sin 45� N + NE = 0 	 NE = 600 N � Ans.

	a+ �ME = 0;	 848.5 cos 45� N(0.5 m) - ME = 0

	 ME = 300 N # m � Ans.

NOTE: These results indicate a poor design. Member AC should be 
straight (from A to C) so that bending within the member is eliminated. 
If AC were straight then the internal force would only create tension 
in the member.

(a)

1 m

1 m

1 m

A

E

D

B

C

600 N

0.5 m

0.5 m

 

D C

PP 45�

A

R

C

R

(b)

P
R

C
45�

600 N

VE

NE

ME

C

848.5 N

0.5 m
E

45�

(c)

Fig. 7–7
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Example   7.5

The uniform sign shown in Fig. 7–8a has a mass of 650 kg and is 
supported on the fixed column. Design codes indicate that the 
expected maximum uniform wind loading that will occur in the area 
where it is located is 900 Pa. Determine the internal loadings at A.

Solution
The idealized model for the sign is shown in Fig. 7–8b. Here the 
necessary dimensions are indicated. We can consider the free-body 
diagram of a section above point A since it does not involve the 
support reactions.

Free-Body Diagram.  The sign has a weight of W = 650(9.81) N =  
6.376 kN,  and the wind creates a resultant force of 
Fw = 900 N>m2(6 m)(2.5 m) = 13.5 kN, which acts perpendicular to 
the face of the sign. These loadings are shown on the free-body diagram, 
Fig. 7–8c.

Equations of Equilibrium.  Since the problem is three dimensional, 
a vector analysis will be used.

�F = 0;	  FA - 13.5i - 6.376k = 0

	  FA = 513.5i + 6.38k6  kN 	 Ans.

�MA = 0;	 MA + r * (Fw + W) = 0

	 MA + 3  i j k
0 3 5.25

-13.5 0 -6.376

 3 = 0

	 MA = 519.1i + 70.9j - 40.5k6  kN # m 	 Ans.

NOTE: Here FAz
= {6.38k} kN represents the normal force, whereas 

FAx
= {

 

13.5i  } kN is the shear force. Also, the torsional moment is 
MAz

= {-40.5k} kN # m, and the bending moment is determined from 
its components MAx

= {19.1i} kN # m and MAy
= {70.9j} kN # m; 

i.e., (Mb)A = 2(MA)2   
x + (MA)2   

y = 73.4 kN # m .

(a)

A

 

A

6 m

2.5 m

4 m

4 m

(b)

3 m

(c)

5.25 m
6.376 kN13.5 kN

z

G

A y

x

FA

MA

r

Fig. 7–8

(©
 R

us
se

ll 
C

. H
ib

be
le

r)



	 7.1  Internal Loadings Developed in Structural Members	 351

7

     Preliminary Problems

P7–1.  In each case, calculate the reaction at A and then 
draw the free-body diagram of segment AB of the beam in 
order to determine the internal loading at B.

(a)

200 N � m 

1 m 1 m 2 m

A
B C

(b)

A
B

3 m 3 m

200 N/m

(c)

A
B C

2 m 2 m 3 m

300 N/m

D

(d)

B C D

4 m4 m

200 N/m

2 m 2 m

A E

(e)

A

B

C
D

400 N/m 

200 N/m 

2 m

2 m
4 m

(f)

A

B

CD

2 m

1 m

2 m 2 m

800 N � m 

Prob. P7–1
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F7–1.  Determine the normal force, shear force, and 
moment at point C.

A
B

C

15 kN
10 kN

1.5 m 1.5 m 1.5 m 1.5 m

Prob. F7–1 

F7–2.  Determine the normal force, shear force, and 
moment at point C.

A BC

30 kN � m

10 kN

1.5 m 1.5 m 1.5 m 1.5 m

Prob. F7–2 

F7–3.  Determine the normal force, shear force, and 
moment at point C.

A
B

C
4.5 ft 4.5 ft6 ft

3 kip/ft

Prob. F7–3 

F7–4.  Determine the normal force, shear force, and 
moment at point C.

A
B

C

12 kN 9 kN/m

1.5 m 1.5 m 1.5 m 1.5 m

Prob. F7–4 

F7–5.  Determine the normal force, shear force, and 
moment at point C.

A B
C

3 m3 m

9 kN/m

Prob. F7–5 

F7–6.  Determine the normal force, shear force, and 
moment at point C. Assume A is pinned and B is a roller.

A C B

3 m3 m

6 kN/m

Prob. F7–6 

Fundamental Problems

All problem solutions must include FBDs.
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7–1.    Determine the shear force and moment at points C 
and D.

6 ft

A
C D

E

B

6 ft
2 ft

4 ft 4 ft

300 lb200 lb
500 lb

Prob. 7–1 
7–2.    Determine the internal normal force and shear force, 
and the bending moment in the beam at points C and D. 
Assume the support at B is a roller. Point C is located just to 
the right of the 8-kip load.

40 kip�ft

8 ft8 ft 8 ft

8 kip

A
BC D

Prob. 7–2 
7–3.    Two beams are attached to the column such that 
structural connections transmit the loads shown. Determine 
the internal normal force, shear force, and moment acting in 
the column at a section passing horizontally through point A.

185 mm23 kN

16 kN

A

6 kN

6 kN

125 mm

250 mm
40 mm30 mm

Prob. 7–3 

*7–4.    The beam weighs 280 lb>ft. Determine the internal 
normal force, shear force, and moment at point C.

A

C

B

8 ft

3 ft

7 ft

6 ft

Prob. 7–4 

7–5.    The pliers are used to grip the tube at B. If a force of 
20 lb is applied to the handles, determine the internal shear 
force and moment a point C. Assume the jaws of the pliers 
exert only normal forces on the tube.

A

20 lb

20 lb

10 in. 40� 0.5 in.

1 in.

B

C

Prob. 7–5 

Problems

All problem solutions must include FBDs.
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7–6.    Determine the distance a as a fraction of the beam’s 
length L for locating the roller support so that the moment 
in the beam at B is zero.

L

A
B

C

a L/3

P P

Prob. 7–6 

7–7.    Determine the internal shear force and moment 
acting at point C in the beam.

6 ft 6 ft

4 kip/ft

A B
C

Prob. 7–7 

*7–8.    Determine the internal shear force and moment 
acting at point C in the beam.

A C B

500 lb/ ft

6 ft 6 ft3 ft 3 ft

900 lb � ft 900 lb � ft

Prob. 7–8 

7–9.    Determine the normal force, shear force, and moment 
at a section passing through point C. Take P = 8 kN.

0.75 m

C

P

A

B

0.5 m
0.1 m

0.75 m 0.75 m

Prob. 7–9

7–10.    The cable will fail when subjected to a tension of  
2 kN. Determine the largest vertical load P the frame will 
support and calculate the internal normal force, shear 
force, and moment at a section passing through point C for 
this loading.

0.75 m

C

P

A

B

0.5 m
0.1 m

0.75 m 0.75 m

Prob. 7–10

7–11.    Determine the internal normal force, shear force, 
and moment at points C and D of the beam.

15 ft 10 ft

5 ft12 ft

1213

5

690 lb
40 lb/ ft

60 lb/ ft

A
C B D

Prob. 7–11 
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*7–12.    Determine the distance a between the bearings in 
terms of the shaft’s length L so that the moment in the 
symmetric shaft is zero at its center.

L

a

w

Prob. 7–12

7–13.    Determine the internal normal force, shear force, and 
moment in the beam at sections passing through points D 
and E. Point D is located just to the left of the 5-kip load.

6 ft 4 ft 4 ft

B CD E

6 ft

5 kip

1.5 kip/ ft
6 kip � ft

A

Prob. 7–13 

7–14.    The shaft is supported by a journal bearing at A and 
a thrust bearing at B. Determine the normal force, shear 
force, and moment at a section passing through (a) point C, 
which is just to the right of the bearing at A, and (b) point D, 
which is just to the left of the 3000-lb force.

2500 lb

A

C D B

3000 lb
75 lb/ft

6 ft 12 ft
2 ft

Prob. 7–14 

7–15.    Determine the internal normal force, shear force, 
and moment at point C.

3 m3 m
C

A B

6 kN/m

Prob. 7–15 

*7–16.    Determine the internal normal force, shear force, 
and moment at point C of the beam.

3 m 3 m

400 N/m

200 N/m

A
C

B

Prob. 7–16 

7–17.    The cantilevered rack is used to support each end of 
a smooth pipe that has a total weight of 300 lb. Determine 
the normal force, shear force, and moment that act in the 
arm at its fixed support A along a vertical section.

6 in.

30�

A

B

C

Prob. 7–17 
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7–18.    Determine the internal normal force, shear force, 
and the moment at points C and D.

2 kN/m

3 m 3 m

B
D

6 m
45�

A

C2 m

Prob. 7–18 

7–19.    Determine the internal normal force, shear force, 
and moment at point C.

8 ft

3 ft

4 ft

150 lb/ ft

2 ft

0.5 ft

A
C

B

Prob. 7–19 

*7–20.    Rod AB is fixed to a smooth collar D, which slides 
freely along the vertical guide. Determine the internal 
normal force, shear force, and moment at point C, which is 
located just to the left of the 60-lb concentrated load.

15 lb/ft

60 lb

B

C

A
D 30�

3 ft 1.5 ft

Prob. 7–20 

7–21.    Determine the internal normal force, shear force, 
and moment at points E and F of the compound beam. 
Point E is located just to the left of 800 N force.

A

1 m

400 N/m
800 N 1200 N

2 m 1 m1.5 m 1.5 m

D
E FB C

54

3

1.5 m

Prob. 7–21 

7–22.    Determine the internal normal force, shear force, 
and moment at points D and E in the overhang beam. 
Point D is located just to the left of the roller support at B, 
where the couple moment acts.

2 kN/m

5 kN

3 m 1.5 m 3
4

5

A
D B E

C

6 kN � m

1.5 m

Prob. 7–22 

7–23.    Determine the internal normal force, shear force, 
and moment at point C.

3 m 2 m

1.5 m

1 m

0.2 m 400 N

A
C

B

Prob. 7–23 
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*7–24.    Determine the ratio of a>b for which the shear 
force will be zero at the midpoint C of the beam.

BCA

a b/2 b/2

w

a

A BC

Prob. 7–24 

7–25.    Determine the normal force, shear force, and 
moment in the beam at sections passing through points D  
and E. Point E is just to the right of the 3-kip load.

6 ft 4 ft

A

4 ft

B CD E

6 ft

3 kip

1.5 kip/ ft

Prob. 7–25 

7–26.    Determine the internal normal force, shear force, 
and bending moment at point C.

A
3 m 3 m

0.3 m

C
B

8 kN/ m
40 kN

3 m

60�

Prob. 7–26 

7–27.    Determine the internal normal force, shear force, 
and moment at point C.

A

C

E

D

B

1 m 1 m 2 m

1 m

800 N � m

200 N

Prob. 7–27 

*7–28.    Determine the internal normal force, shear force, 
and moment at points C and D in the simply supported 
beam. Point D is located just to the left of the 10-kN 
concentrated load.

A
C D

B

1.5 m

6 kN/m
10 kN

1.5 m 1.5 m 1.5 m

Prob. 7–28 
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7–29.    Determine the normal force, shear force, and 
moment acting at a section passing through point C.

7–30.    Determine the normal force, shear force, and 
moment acting at a section passing through point D.

800 lb

700 lb

600 lb
2 ft3 ft

1.5 ft

1.5 ft

1 ft

3 ftD

A B
C 30� 30�

Probs. 7–29/30 

7–31.    Determine the internal normal force, shear force, 
and moment acting at points D and E of the frame.

2 m

900 N  m

600 N

D

E

B

A

4 m
C

1.5 m

.    

Prob. 7–31 

*7–32.    Determine the internal normal force, shear force, 
and moment at point D.

A

D

E

C

B

6 kN

3 m

3 m

 

1 m

3 m

Prob. 7–32 

7–33.    Determine the internal normal force, shear force, 
and moment at point D of the two-member frame.

7–34.    Determine the internal normal force, shear force, 
and moment at point E.

1.5 m

1.5 m1.5 m

1.5 m

1.5 kN/m

2 kN/m A C

B

D

E

Probs. 7–33/34 
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7–35.    The strongback or lifting beam is used for materials 
handling. If the suspended load has a weight of 2 kN and a 
center of gravity of G, determine the placement d of the 
padeyes on the top of the beam so that there is no moment 
developed within the length AB of the beam. The lifting 
bridle has two legs that are positioned at 45°, as shown.

45� 45�

3 m 3 m

0.2 m
0.2 m

d d

E

A B

F

G

Prob. 7–35 

*7–36.    Determine the internal normal force, shear force, 
and moment acting at points B and C on the curved rod.

45�

30�

0.5 m

B

C

A

200 N

3

4
5

Prob. 7–36 

7–37.    Determine the internal normal force, shear force, 
and moment at point D of the two-member frame.

7–38.    Determine the internal normal force, shear force, 
and moment at point E of the two-member frame.

2 m
1.5 m

250 N/m

300 N/m

4 m

A

C

D

E

B

Probs. 7–37/38 

7–39.    The distributed loading w = w0 sin u, measured per 
unit length, acts on the curved rod. Determine the internal 
normal force, shear force, and moment in the rod at u = 45°.

*7–40.    Solve Prob. 7–39 for u = 120°.

u

r

w � w0 sin u

Probs. 7–39/40 
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7–43.    Determine the x, y, z components of internal loading at 
a section passing through point B in the pipe assembly. Neglect 
the weight of the pipe. Take F1 =  5200i - 100j - 400k6N  
and F2 = 5300i - 500k6 N.

x

z

y

B

A

1 m

1.5 m F1

F2

1 m

Prob. 7–43

*7–44.    Determine the x, y, z components of internal 
loading at a section passing through point B in the pipe 
assembly. Neglect the weight of the pipe. Take  
F1 = 5100i - 200j - 300k6  N and F2 = 5100i + 500j6N.

x

z

y

B

A

1 m

1.5 m F1

F2

1 m

Prob. 7–44

7–41.    Determine the x, y, z components of force and 
moment at point C in the pipe assembly. Neglect the weight 
of the pipe. Take F1 = 5350i - 400j6  lb and 
F2 = 5-300j + 150k6  lb.

 F2

2 ft

1.5 ft y

z

x

C

B

3 ft

 F1

Prob. 7–41

7–42.    Determine the x, y, z components of force and 
moment at point C in the pipe assembly. Neglect the weight 
of the pipe. The load acting at (0, 3.5 ft, 3 ft) is 
F1 = {-24i - 10k} lb and M = {-30k} lb #  ft and at  
point (0, 3.5 ft, 0) F2 = {-80i} lb.

2 ft
x

z

y

3 ft

C

B

M

A

1.5 ft

F1

F2

Prob. 7–42 
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*7.2  �Shear and Moment Equations and 
Diagrams

Beams are structural members designed to support loadings applied 
perpendicular to their axes. In general, they are long and straight and have 
a constant cross-sectional area. They are often classified as to how they are 
supported. For example, a simply supported beam is pinned at one end and 
roller supported at the other, as in Fig. 7–9a, whereas a cantilevered beam 
is fixed at one end and free at the other. The actual design of a beam requires 
a detailed knowledge of the variation of the internal shear force V  
and bending moment M acting at each point along the axis of the beam.*

These variations of V and M along the beam’s axis can be obtained by 
using the method of sections discussed in Sec. 7.1. In this case, however, it 
is necessary to section the beam at an arbitrary distance x from one end 
and then apply the equations of equilibrium to the segment having the 
length x. Doing this we can then obtain V and M as functions of x.

In general, the internal shear and bending-moment functions will be 
discontinuous, or their slopes will be discontinuous, at points where a 
distributed load changes or where concentrated forces or couple 
moments are applied. Because of this, these functions must be determined 
for each segment of the beam located between any two discontinuities of 
loading. For example, segments having lengths x1, x2, and x3 will have to 
be used to describe the variation of V and M along the length of the 
beam in Fig. 7–9a. These functions will be valid only within regions  
from 0 to a for x1, from a to b for x2, and from b to L for x3. If the 
resulting functions of x are plotted, the graphs are termed the  
shear diagram and bending-moment diagram, Fig. 7–9b and Fig. 7–9c, 
respectively.7777

*The internal normal force is not considered for two reasons. In most cases, the loads 
applied to a beam act perpendicular to the beam’s axis and hence produce only an internal 
shear force and bending moment. And for design purposes, the beam’s resistance to shear, 
and particularly to bending, is more important than its ability to resist a normal force.

To save on material and thereby produce an 
efficient design, these beams, also called girders, 
have been tapered, since the internal moment 
in the beam will be larger at the supports, 
or  piers, than at the center of the span. 
(© Russell C. Hibbeler)

L
Pb

a

x3

x2

x1

w

(a)       

V

x

(b)

a b
L

      

M

x

(c)

ba L

Fig. 7–9
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Positive shear

Positive moment

Beam sign convention

M M

V

V

V

V

M M

Fig. 7–10 

Important Points

	 •	 Shear and moment diagrams for a beam provide graphical 
descriptions of how the internal shear and moment vary 
throughout the beam’s length.

	 •	 To obtain these diagrams, the method of sections is used to 
determine V and M as functions of x. These results are then 
plotted. If the load on the beam suddenly changes, then regions 
between each load must be selected to obtain each function of x.

Procedure for Analysis

The shear and bending-moment diagrams for a beam can be 
constructed using the following procedure.

Support Reactions.
	 •	 Determine all the reactive forces and couple moments acting on 

the beam and resolve all the forces into components acting 
perpendicular and parallel to the beam’s axis.

Shear and Moment Functions.
	 •	 Specify separate coordinates x having an origin at the beam’s left 

end and extending to regions of the beam between concentrated 
forces and/or couple moments, or where the distributed loading is 
continuous.

	 •	 Section the beam at each distance x and draw the free-body 
diagram of one of the segments. Be sure V and M are shown acting 
in their positive sense, in accordance with the sign convention given 
in Fig. 7–10.

	 •	 The shear V is obtained by summing forces perpendicular to the 
beam’s axis, and the moment M is obtained by summing moments 
about the sectioned end of the segment.

Shear and Moment Diagrams.
	 •	 Plot the shear diagram (V versus x) and the moment diagram  

(M versus x). If computed values of the functions describing V 
and M are positive, the values are plotted above the x axis, 
whereas negative values are plotted below the x axis.	The shelving arms must be designed to resist 

the internal loading in the arms caused by 
the lumber. (© Russell C. Hibbeler)
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Example   7.6

Draw the shear and moment diagrams for the shaft shown in Fig. 7–11a. 
The support at A is a thrust bearing and the support at C is a journal 
bearing.

Solution
Support Reactions.  The support reactions are shown on the shaft’s 
free-body diagram, Fig. 7–11d.

Shear and Moment Functions.  The shaft is sectioned at an arbitrary 
distance x from point A, extending within the region AB, and the free-
body diagram of the left segment is shown in Fig. 7–11b. The unknowns 
V and M are assumed to act in the positive sense on the right-hand face 
of the segment according to the established sign convention. Applying 
the equilibrium equations yields

+ c �Fy = 0;	  V = 2.5 kN	 (1)

a+ �M = 0;	  M = 2.5x kN # m	 (2)

A free-body diagram for a left segment of the shaft extending from A 
a distance x, within the region BC is shown in Fig. 7–11c. As always, 
V and M are shown acting in the positive sense. Hence,

+ c �Fy = 0;	 2.5 kN - 5 kN - V = 0

	 V = -2.5 kN	 (3)

a+ �M = 0;    	       M + 5 kN(x - 2 m) - 2.5 kN(x) = 0

	 M = (10 - 2.5x) kN # m	 (4)

Shear and Moment Diagrams.  When Eqs. 1 through 4 are plotted 
within the regions in which they are valid, the shear and moment 
diagrams shown in Fig. 7–11d are obtained. The shear diagram indicates 
that the internal shear force is always 2.5 kN (positive) within segment 
AB. Just to the right of point B, the shear force changes sign and 
remains at a constant value of -2.5 kN for segment BC. The moment 
diagram starts at zero, increases linearly to point B at x = 2 m, where 
Mmax = 2.5 kN(2 m) = 5 kN # m, and thereafter decreases back to zero.

NOTE: It is seen in Fig. 7–11d that the graphs of the shear and moment 
diagrams “jump” or changes abruptly where the concentrated force 
acts, i.e., at points A, B, and C. For this reason, as stated earlier, it is 
necessary to express both the shear and moment functions separately 
for regions between concentrated loads. It should be realized, however, 
that all loading discontinuities are mathematical, arising from the 
idealization of a concentrated force and couple moment. Physically, 
loads are always applied over a finite area, and if the actual load 
variation could be accounted for, the shear and moment diagrams 
would then be continuous over the shaft’s entire length.

2 m

5 kN

(a)

B
A C

2 m

x

2.5 kN

(b)

A M

V

0 � x � 2 m

2.5 kN

x

5 kN

M

V2 m
x � 2 m

A
B

(c)
2 m � x � 4 m

 

M � (10 � 2.5x)

2.5 kN 2.5 kN
V (kN)

V � 2.5

V � �2.5

x (m)

5 kN

CA

(d)

B

M � 2.5x

M (kN � m)

Mmax � 5

x (m)

2

2

4

4

Fig. 7–11
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Example   7.7

Draw the shear and moment diagrams for the beam shown in  
Fig. 7–12a.

Solution
Support Reactions.  The support reactions are shown on the beam’s 
free-body diagram, Fig. 7–12c.

Shear and Moment Functions.  A free-body diagram for a left 
segment of the beam having a length x is shown in Fig. 7–12b. Due to 
proportional triangles, the distributed loading acting at the end of this 
segment has an intensity of w>x = 6>9  or w = (2>3) x. It is replaced by 
a resultant force after the segment is isolated as a free-body diagram. 
The magnitude of the resultant force is equal to 1

2(x)12
3 x2  = 1

3 x2. This 
force acts through the centroid of the distributed loading area, a 
distance 1

3 x from the right end. Applying the two equations of 
equilibrium yields

+ c �Fy = 0;	 9 -
1

3
 x2 - V = 0	

	 V = a9 -
x2

3
b  kN	 (1)

a+ �M = 0;	 M +
1

3
 x2a x

3
b - 9x = 0

	 M = a9x -
x3

9
b  kN # m	 (2)

Shear and Moment Diagrams.  The shear and moment diagrams 
shown in Fig. 7–12c are obtained by plotting Eqs. 1 and 2.

The point of zero shear can be found using Eq. 1:

 V = 9 -
x2

3
= 0

 x = 5.20 m

NOTE: It will be shown in Sec. 7.3 that this value of x happens to 
represent the point on the beam where the maximum moment occurs. 
Using Eq. 2, we have

 Mmax = a9(5.20) -
(5.20)3

9
b  kN # m

 = 31.2 kN # m

(a)

9 m

6 kN/m

(b)

x

1
3 2

3

x
3

x2 kN
x kN/m

M

V

9 kN

6 kN/m

9 kN

18 kN
V (kN)

5.20 m
x (m)

V � 9 �

M (kN � m)

M � 9x �
Mmax � 31.2

(c)

9

�18

x2

3

x3

9

x (m)

9

95.20

Fig. 7–12 
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F7–10.    Determine the shear and moment as a function of 
x, and then draw the shear and moment diagrams.

x

BA

6 m

12 kN � m

Prob. F7–10

F7–11.    Determine the shear and moment as a function of 
x, where 0 … x 6 3 m and 3 m 6 x … 6 m, and then draw 
the shear and moment diagrams.

BA
C

x

3 m 3 m

30 kN � m

Prob. F7–11

F7–12.    Determine the shear and moment as a function of 
x, where  0 … x 6 3 m and 3 m 6 x … 6 m, and then draw 
the shear and moment diagrams.

BA
C

12 kN � m

4 kN

3 m3 m

x

Prob. F7–12

F7–7.    Determine the shear and moment as a function of x, 
and then draw the shear and moment diagrams.

3 m

x

6 kN

A

Prob. F7–7

F7–8.    Determine the shear and moment as a function of x, 
and then draw the shear and moment diagrams.

3 m

2 kN/m

15 kN�m

x
A

Prob. F7–8

F7–9.    Determine the shear and moment as a function of x, 
and then draw the shear and moment diagrams.

3 m

6 kN/m

Ax

Prob. F7–9

Fundamental Problems
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*7–48.    Draw the shear and moment diagrams for the 
cantilevered beam.

CA
B

5 ft

100 lb

800 lb�ft

5 ft

Prob. 7–48

7–49.    Draw the shear and moment diagrams of the beam 
(a) in terms of the parameters shown; (b) set M0 = 500 N #  m, 
L = 8 m.

7–50.    If L = 9 m, the beam will fail when the maximum 
shear force is V max = 5 kN or the maximum bending 
moment is Mmax = 2 kN # m. Determine the magnitude M0 
of the largest couple moments it will support.

L/3 L/3 L/3

M0 M0

Probs. 7–49/50

7–51.    Draw the shear and moment diagrams for the beam.

A
B C

a a

w

Prob. 7–51

7–45.    Draw the shear and moment diagrams for the shaft 
(a) in terms of the parameters shown; (b) set P = 9 kN, 
a = 2 m, L = 6 m. There is a thrust bearing at A and a 
journal bearing at B.

P

a

A B

L

Prob. 7–45

7–46.    Draw the shear and moment diagrams for the beam 
(a) in terms of the parameters shown; (b) set P = 800 lb, 
a = 5 ft, L = 12 ft.

a a

L

P P

Prob. 7–46

7–47.    Draw the shear and moment diagrams for the beam 
(a) in terms of the parameters shown; (b) set P = 600 lb, 
a = 5 ft, b = 7 ft.

A B

P

a b

Prob. 7–47

Problems
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*7–52.    Draw the shear and moment diagrams for the beam.

C

w

A
B

L

L––
2

Prob. 7–52

7–53.    Draw the shear and bending-moment diagrams for 
the beam.

C
A

B

20 ft 10 ft

50 lb/ft

200 lb�ft

Prob. 7–53

7–54.    The shaft is supported by a smooth thrust bearing at 
A and a smooth journal bearing at B. Draw the shear and 
moment diagrams for the shaft (a) in terms of the 
parameters shown; (b) set w = 500 lb>ft, L = 10 ft.

L

A B

w

Prob. 7–54

7–55.    Draw the shear and moment diagrams for the beam.

40 kN/m
20 kN

150 kN�m

A
B C

8 m 3 m

Prob. 7–55

*7–56.    Draw the shear and moment diagrams for the beam.

2 m

4 m

1.5 kN/m

A
B

C

Prob. 7–56

7–57.    Draw the shear and moment diagrams for the 
compound beam. The beam is pin connected at E and F.

A

L

w

B E F C
D

L––
3

L––
3

L––
3

L

Prob. 7–57

7–58.    Draw the shear and bending-moment diagrams for 
each of the two segments of the compound beam.

A

C D

150 lb/ft

B

10 ft 4 ft
2 ft 2 ft

Prob. 7–58

7–59.    Draw the shear and moment diagrams for the beam.

A
B C

9 ft 4.5 ft

30 lb/ ft

180 lb � ft

Prob. 7–59
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*7–60.    The shaft is supported by a smooth thrust bearing 
at A and a smooth journal bearing at B. Draw the shear and 
moment diagrams for the shaft.

B

300 lb/ft

6 ft

A

6 ft

Prob. 7–60

7–61.    Draw the shear and moment diagrams for the beam.

4 kip/ ft

20 kip 20 kip

15 ft

A B

30 ft 15 ft

Prob. 7–61

7–62.    The beam will fail when the maximum internal 
moment is Mmax. Determine the position x of the 
concentrated force P and its smallest magnitude that will 
cause failure.

L

x

P

Prob. 7–62

7–63.    Draw the shear and moment diagrams for the beam.

12 ft

A

12 ft

4 kip/ft

Prob. 7–63

*7–64.    Draw the shear and moment diagrams for the beam.

A
B C

6 ft 3 ft

3 kip/ ft
2 kip/ ft

Prob. 7–64

7–65.    Draw the shear and moment diagrams for the beam.

3 m

6 m

12 kN/m

A B
C

Prob. 7–65
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7–66.    Draw the shear and moment diagrams for the beam.

w

L

w––
2

A B

Prob. 7–66

7–67.    Determine the internal normal force, shear force, 
and moment in the curved rod as a function of u. The force 
P acts at the constant angle f.

P

r

u

f

Prob. 7–67

*7–68.    The quarter circular rod lies in the horizontal plane and 
supports a vertical force P at its end. Determine the magnitudes 
of the components of the internal shear force, moment, and 
torque acting in the rod as a function of the angle u.

90�

P

r

A

u

Prob. 7–68

7–69.    Express the internal shear and moment components 
acting in the rod as a function of y, where 0 … y … 4 ft.

y

z

x

y

4 ft 2 ft

4 lb/ft

Prob. 7–69
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*7.3  �Relations between Distributed 
Load, Shear, and Moment

If a beam is subjected to several concentrated forces, couple moments,  
and distributed loads, the method of constructing the shear and bending-
moment diagrams discussed in Sec. 7.2 may become quite tedious. In  
this section a simpler method for constructing these diagrams is 
discussed—a method based on differential relations that exist between 
the load, shear, and bending moment.

Distributed Load.  Consider the beam AD shown in Fig. 7–13a, 
which is subjected to an arbitrary load w = w(x) and a series of 
concentrated forces and couple moments. In the following discussion, the 
distributed load will be considered positive when the loading acts upward 
as shown. A free-body diagram for a small segment of the beam having a 
length �x is chosen at a point x along the beam which is not subjected to 
a concentrated force or couple moment, Fig. 7–13b. Hence any results 
obtained will not apply at these points of concentrated loading. The 
internal shear force and bending moment shown on the free-body 
diagram are assumed to act in the positive sense according to the 
established sign convention. Note that both the shear force and moment 
acting on the right-hand face must be increased by a small, finite amount 
in order to keep the segment in equilibrium. The distributed loading has 
been replaced by a resultant force �F = w(x) �x that acts at a fractional 
distance k(�x) from the right end, where 0 6 k 6 1 [for example, if w(x) 
is uniform, k =

1
2].

Relation between the Distributed Load and Shear.  If we 
apply the force equation of equilibrium to the segment, then

+ c �Fy = 0;     V + w(x)�x -  (V + �V ) = 0
 �V = w(x)�x

Dividing by �x, and letting �x S 0, we get

	  
dV

dx
= w(x)	

	   Slope of
shear diagram

 =  
Distributed load

intensity

� (7–1)

In order to design the beam used to 
support these power lines, it is 
important to first draw the shear and 
moment diagrams for the beam.  
(© Russell C. Hibbeler)

x

F1 F2
w

w � w (x)

x�

B

M0

C
x

DA

(a)

M

V

M
V

x�

�� M

F � w(x) �x�

w(x)

�� V

(b)

k (�x)

O

Fig. 7–13 
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If we rewrite the above equation in the form dV = w(x)dx and perform 
an integration between any two points B and C on the beam, we see that

       �V = Lw(x) dx

	  
Change in

shear
 =  

Area under
loading curve

	 (7–2)

Relation between the Shear and Moment.  If we apply the 
moment equation of equilibrium about point O on the free-body diagram 
in Fig. 7–13b, we get

a+ �MO = 0;   (M +  �M) -  [w(x)�x] k�x -  V�x -  M =  0
�M =  V�x + k w(x)�x2

Dividing both sides of this equation by �x, and letting �x S 0, yields

dM

dx
= V

	  
Slope of

moment diagram
 = Shear

	 (7–3)

In particular, notice that a maximum bending moment � M � max will 
occur at the point where the slope dM>dx = 0, since this is where the 
shear is equal to zero.

If Eq. 7–3 is rewritten in the form dM = 1  V dx and integrated between 
any two points B and C on the beam, we have

�M = LV dx

	  
Change in
moment

 =  
Area under

shear diagram

	 (7–4)

As stated previously, the above equations do not apply at points where 
a concentrated force or couple moment acts. These two special cases 
create discontinuities in the shear and moment diagrams, and as a result, 
each deserves separate treatment.

Force.  A free-body diagram of a small segment of the beam in 
Fig. 7–13a, taken from under one of the forces, is shown in Fig. 7–14a. 
Here force equilibrium requires

+ c �Fy = 0;	 �V = F	 (7–5)

Since the change in shear is positive, the shear diagram will “jump” 
upward when F acts upward on the beam. Likewise, the jump in shear 
(�V ) is downward when F acts downward.

V

M
V

x�

�� V

M � �M

(a)

F

Fig. 7–14 
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Couple Moment.  If we remove a segment of the beam in Fig. 7–13a 
that is located at the couple moment M0, the free-body diagram shown in 
Fig. 7–14b results. In this case letting �x S 0, moment equilibrium requires

a+ �M = 0;	 �M = M0	 (7–6)

Thus, the change in moment is positive, or the moment diagram will 
“jump” upward if M0 is clockwise. Likewise, the jump �M is downward 
when M0 is counterclockwise.

The examples which follow illustrate application of the above equations 
when used to construct the shear and moment diagrams. After working 
through these examples, it is recommended that you also go back and 
solve Examples 7.6 and 7.7 using this method.

M

V

M
V

x�

�� M

�� V

(b)

M0

Fig. 7–14 (cont.)

This concrete beam is used to support the 
deck. Its size and the placement of steel 
reinforcement within it can be determined 
once the shear and moment diagrams have 
been established. (© Russell C. Hibbeler)

Important Points

	 •	 The slope of the shear diagram at a point is equal to the intensity 
of the distributed loading, where positive distributed loading is 
upward, i.e., dV>dx = w(x).

	 •	 The change in the shear �V  between two points is equal to the 
area under the distributed-loading curve between the points.

	 •	 If a concentrated force acts upward on the beam, the shear will 
jump upward by the same amount.

	 •	 The slope of the moment diagram at a point is equal to the shear, 
i.e., dM>dx = V .

	 •	 The change in the moment �M between two points is equal to 
the area under the shear diagram between the two points.

	 •	 If a clockwise couple moment acts on the beam, the shear will not 
be affected; however, the moment diagram will jump upward by 
the amount of the moment.

	 •	 Points of zero shear represent points of maximum or minimum 
moment since dM>dx = 0.

	 •	 Because two integrations of w = w(x) are involved to first 
determine the change in shear, �V = 1  w (x) dx, then to 
determine the change in moment, �M = 1  V dx, then if the 
loading curve w = w(x) is a polynomial of degree n, V = V(x) will 
be a curve of degree n + 1, and M = M(x) will be a curve of 
degree n + 2.
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Example   7.8

Draw the shear and moment diagrams for the cantilever 
beam in Fig. 7–15a.

2 kN
1.5 kN/m

(a)

A
B

2 m 2 m

Fig. 7–15 

Solution
The support reactions at the fixed support B are shown in 
Fig. 7–15b.

Shear Diagram.  The shear at end A is -2 kN. This value is 
plotted at x = 0, Fig. 7–15c. Notice how the shear diagram is 
constructed by following the slopes defined by the loading w. 
The shear at x = 4 m is -5 kN, the reaction on the beam. This 
value can be verified by finding the area under the 
distributed loading; i.e.,

V � x = 4 m = V � x = 2 m + �V = -2 kN - (1.5 kN>m)(2 m) = -5 kN

Moment Diagram.  The moment of zero at x = 0 is plotted 
in Fig. 7–15d. Construction of the moment diagram is based 
on knowing that its slope is equal to the shear at each point. 
The change of moment from x = 0 to x = 2 m is determined 
from the area under the shear diagram. Hence, the moment 
at x = 2 m is

M � x = 2 m = M � x = 0 + �M = 0 + [-2 kN(2 m)] = -4 kN # m

This same value can be determined from the method of 
sections, Fig. 7–15e.

(d)

(c)

2 4

�5

�2

By � 5 kN

MB � 11 kN�m

x (m)

V (kN)

2
0

4

�11

�4

x (m)

M (kN�m)

w � 0
V slope � 0

w � negative constant
V slope � negative constant

V � negative constant
M slope � negative constant

V � negative increasing
M slope � negative increasing

2 kN
1.5 kN/m

(b)

2 m 2 m

(e)

2 m

V � 2 kN

M � 4 kN�m

2 kN
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Draw the shear and moment diagrams for the overhang 
beam in  Fig. 7–16a.

4 kN/m

4 m 2 m

(a)

A
B

Fig. 7–16 

Example   7.9

�2

8

4 6

4

0 x (m)

V (kN)

6

�8

0 x (m)

M (kN�m)

w � 0
V slope � 0

V � positive decreasing
M slope � positive decreasing

V � negative constant
M slope � negative constant

w � negative constant
V slope � negative constant

(d)

(c)

(b)

4 kN/m

4 m 2 m

A
B

Ay � 2 kN By � 10 kN

Solution
The support reactions are shown in Fig. 7–16b.

Shear Diagram.  The shear of -2 kN at end A of the beam 
is plotted at x = 0, Fig. 7–16c. The slopes are determined 
from the loading and from this the shear diagram is 
constructed, as indicated in the figure. In particular, notice 
the positive jump of 10 kN at x = 4 m due to the force By, as 
indicated in the figure. 

Moment Diagram.  The moment of zero at x = 0 is plotted, 
Fig. 7–16d, then following the behavior of the slope found 
from the shear diagram, the moment diagram is constructed. 
The moment at x = 4 m is found from the area under the 
shear diagram.

M � x = 4 m = M � x = 0 + �M = 0 + [-2 kN(4 m)] = -8 kN # m

We can also obtain this value by using the method of 
sections, as shown in Fig. 7–16e.

4 m

2 kN

A

(e)

V � 2 kN

M � 8 kN�m
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Example   7.10

The shaft in Fig. 7–17a is supported by a thrust bearing at A 
and a journal bearing at B. Draw the shear and moment 
diagrams.

BA

12 ft

(a)

120 lb/ft

Fig. 7–17 

Solution
The support reactions are shown in Fig. 7–17b.

Shear Diagram.  As shown in Fig. 7–17c, the shear at x = 0 is +240. 
Following the slope defined by the loading, the shear diagram is 
constructed, where at B its value is -480 lb. Since the shear changes 
sign, the point where V = 0 must be located. To do this we will use 
the method of sections. The free-body diagram of the left segment 
of the shaft, sectioned at an arbitrary position x within the region 
0 … x 6 12 ft, is shown in Fig. 7–17e. Notice that the intensity of the 
distributed load at x is w = 10x, which has been found by proportional 
triangles, i.e., 120>12 = w>x. 

Thus, for V = 0,

+ c �Fy = 0;	  240 lb -1
2(10x)x = 0

	 x = 6.93 ft

Moment Diagram.  The moment diagram starts at 0 since 
there is no moment at A, then it is constructed based on the 
slope as determined from the shear diagram. The maximum 
moment occurs at x = 6.93 ft, where the shear is equal to zero, 
since dM>dx = V = 0,  Fig. 7–17e,

a+ �M = 0; 
Mmax +

1
2 [(10)(6.93)] 6.93 11

3 (6.93)2 - 240(6.93) = 0

	 Mmax = 1109 lb # ft

Finally, notice how integration, first of the loading w which is 
linear, produces a shear diagram which is parabolic, and then a 
moment diagram which is cubic.

x (ft)

126.93

6.93 12

240

� 480

V (lb)

x (ft)

0

0

M (lb�ft)

V � negative increasing
M slope � negative increasing

V �positive decreasing
M slope � positive decreasing

(d)

(c)

Ay � 240 lb By � 480 lb(b)

linear

parabolic

cubic

1109

BA

12 ft

120 lb/ft

w � negative increasing
V slope � negative increasing

A

x

(e)

Ay � 240 lb

x
3

10 x

[       ] x1
2 10 x

V

M
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Fundamental Problems

F7–16.    Draw the shear and moment diagrams for the beam.

BA

6 kN/m

1.5 m 3 m

6 kN/m

1.5 m

Prob. F7–16

F7–17.    Draw the shear and moment diagrams for the beam.

A
B

3 m

6 kN/m 6 kN/m

3 m

Prob. F7–17

F7–18.    Draw the shear and moment diagrams for the beam.

A
B

3 m

9 kN/m

3 m

Prob. F7–18

F7–13.    Draw the shear and moment diagrams for the beam.

1 m1 m1 m

8 kN
6 kN4 kN

A

Prob. F7–13

F7–14.    Draw the shear and moment diagrams for the beam.

6 kN
8 kN/m

1.5 m 1.5 m

A

Prob. F7–14

F7–15.    Draw the shear and moment diagrams for the beam.

BA

2 m 2 m 2 m

6 kN
12 kN

Prob. F7–15

7
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7–73.    Draw the shear and moment diagrams for the 
simply-supported beam.

w0

2w0

L/2 L/2

A B

Prob. 7–73

7–74.    Draw the shear and moment diagrams for the beam. 
The supports at A and B are a thrust bearing and journal 
bearing, respectively.

0.5 m 0.5 m1 m

1200 N/m

A

300 N

600 N

B

Prob. 7–74

7–75.    Draw the shear and moment diagrams for the beam.

A B C
2 m

250 N/m

500 N

3 m

2 m

Prob. 7–75

Problems

7–70.    Draw the shear and moment diagrams for the beam.

1 m1 m1 m 1 m

800 N
600 N

A B

1200 N � m

Prob. 7–70

7–71.    Draw the shear and moment diagrams for the beam.

1 m 2 m 1 m

600 N 600 N

A B

Prob. 7–71

*7–72.    Draw the shear and moment diagrams for the 
beam. The support at A offers no resistance to vertical load.

L

A B

w0

Prob. 7–72
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*7–76.    Draw the shear and moment diagrams for the beam.

2 m 1 m 1 m

15 kN

A B

10 kN/m

20 kN � m

2 m

Prob. 7–76

7–77.    Draw the shear and moment diagrams for the beam.

2 kip/ ft

10 ft

A B

20 ft 10 ft

50 kip � ft50 kip � ft

Prob. 7–77

7–78.    Draw the shear and moment diagrams for the beam.

2 m 1 m 2 m

8 kN

A B

15 kN/m
20 kN�m

3 m

Prob. 7–78

7–79.    Draw the shear and moment diagrams for the shaft. The 
support at A is a journal bearing and at B it is a thrust bearing.

1 ft 4 ft 1 ft

100 lb/ft

A 300 lb�ft

200 lb

B

Prob. 7–79

*7–80.    Draw the shear and moment diagrams for the beam.

4 ft 2 ft 3 ft

400 lb/ ft 900 lb � ft

A B
C

Prob. 7–80

7–81.    The beam consists of three segments pin connected at 
B and E. Draw the shear and moment diagrams for the beam.

4.5 m 2 m 2 m 2 m 4 m

9 kN/m

A
B

C D
E

F

Prob. 7–81



7

	 7.3 R elations between Distributed Load, Shear, and Moment	 379

7–82.    Draw the shear and moment diagrams for the beam. 
The supports at A and B are a thrust and journal bearing, 
respectively.

A B

200 N/m

6 m
600 N � m 300 N � m

Prob. 7–82

7–83.    Draw the shear and moment diagrams for the beam.

9 kN/m 9 kN/m

A B

3 m 3 m

Prob. 7–83

*7–84.    Draw the shear and moment diagrams for the beam.

3 m 3 m

3 kN/m

6 kN/m

A
B

C

Prob. 7–84

7–85.    Draw the shear and moment diagrams for the beam.

6 ft3 ft 3 ft

600 lb/ ft

B A

Prob. 7–85

7–86.    Draw the shear and moment diagrams for the beam.

3 m

3 kN/m

6 kN/m

A

Prob. 7–86

7–87.    Draw the shear and moment diagrams for the beam.

3 m 1.5 m

2 kN/m

4 kN/m

A
B

Prob. 7–87
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*7–88.    Draw the shear and moment diagrams for the beam.

1.5 m1.5 m

3 kN
6 kN/m

A B

Prob. 7–88

7–89.    Draw the shear and moment diagrams for the beam.

6 ft

400 lb/ ft 400 lb/ ft
1500 lb

6 ft 4 ft

A

B

Prob. 7–89

7–90.    Draw the shear and moment diagrams for the beam.

3 m

9 kN/m

6 kN � m

B
A

Prob. 7–90

7–91.    Draw the shear and moment diagrams for the beam.

12 kN/m

A
B C

6 m 3 m

6 kN

Prob. 7–91

*7–92.    Draw the shear and moment diagrams for the beam.

1.5 m

6 kN/m6 kN/m

1.5 m
A B

C

Prob. 7–92

7–93.    Draw the shear and moment diagrams for the beam.

15 ft

1 kip/ft

/ft

A

Prob. 7–93
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Each of the cable segments remains 
approximately straight as they sup
port the weight of these traffic lights. 
(© Russell C. Hibbeler)

*As will be shown in the following example, the eight equilibrium equations also can be 
written for the entire cable, or any part thereof. But no more than eight independent 
equations are available.

yC
h

P1

B

P2

A

L1 L2 L3

yD

D
C

Fig. 7–18

*7.4  Cables

Flexible cables and chains combine strength with lightness and often are 
used in structures for support and to transmit loads from one member to 
another. When used to support suspension bridges and trolley wheels, 
cables form the main load-carrying element of the structure. In the force 
analysis of such systems, the weight of the cable itself may be neglected 
because it is often small compared to the load it carries. On the other 
hand, when cables are used as transmission lines and guys for radio 
antennas and derricks, the cable weight may become important and must 
be included in the structural analysis.

Three cases will be considered in the analysis that follows. In each case 
we will make the assumption that the cable is perfectly flexible and 
inextensible. Due to its flexibility, the cable offers no resistance to bending, 
and therefore, the tensile force acting in the cable is always tangent to the 
cable at points along its length. Being inextensible, the cable has a constant 
length both before and after the load is applied. As a result, once the load 
is applied, the geometry of the cable remains unchanged, and the cable or 
a segment of it can be treated as a rigid body.

Cable Subjected to Concentrated Loads.  When a cable 
of negligible weight supports several concentrated loads, the cable 
takes the form of several straight-line segments, each of which is 
subjected to a constant tensile force. Consider, for example, the cable 
shown in Fig. 7–18, where the distances h, L1, L2, and L3 and the loads P1 
and P2 are known. The problem here is to determine the nine unknowns 
consisting of the tension in each of the three segments, the four 
components of reaction at A and B, and the two sags yC and yD at 
points C and D. For the solution we can write two equations of force 
equilibrium at each of points A, B, C, and D. This results in a total of 
eight equations.* To complete the solution, we need to know something 
about the geometry of the cable in order to obtain the necessary ninth 
equation. For example, if the cable’s total length L is specified, then the 
Pythagorean theorem can be used to relate each of the three segmental 
lengths, written in terms of h, yC, yD, L1, L2, and L3, to the total length L. 
Unfortunately, this type of problem cannot be solved easily by hand. 
Another possibility, however, is to specify one of the sags, either yC or 
yD, instead of the cable length. By doing this, the equilibrium equations 
are then sufficient for obtaining the unknown forces and the remaining 
sag. Once the sag at each point of loading is obtained, the length of the 
cable can then be determined by trigonometry. The following example 
illustrates a procedure for performing the equilibrium analysis for a 
problem of this type.
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E

15 kN

4 kN

3 kN

3 m 2 m
5 m 8 m

(b)

Ex

Ey

Ax

Ay

4 kN

3 m
5 m

(c)

Ax

C

12 m

TBC

12 kN

uBC

Fig. 7–19

Determine the tension in each segment of the cable shown in Fig. 7–19a.

A

12 m

C
B

yB

D

15 kN

4 kN

3 kN

E

3 m 2 m
5 m 8 m

(a)

yD

Example   7.11

Solution
By inspection, there are four unknown external reactions (Ax, Ay, Ex, 
and Ey) and four unknown cable tensions, one in each cable segment. 
These eight unknowns along with the two unknown sags yB and yD can 
be determined from ten available equilibrium equations. One method 
is to apply the force equations of equilibrium (�Fx = 0, �Fy = 0) to 
each of the five points A through E. Here, however, we will take a 
more direct approach.

Consider the free-body diagram for the entire cable, Fig. 7–19b. Thus,

S+ �Fx = 0;	 -Ax + Ex = 0

a+ �ME = 0;

-Ay(18 m) + 4 kN (15 m) + 15 kN (10 m) + 3 kN (2 m) = 0

	 Ay = 12 kN

+ c �Fy = 0;	 12 kN - 4 kN - 15 kN - 3 kN + Ey = 0

	 Ey = 10 kN

Since the sag yC = 12 m is known, we will now consider the leftmost 
section, which cuts cable BC, Fig. 7–19c.

a+ �MC = 0; Ax(12 m) - 12 kN (8 m) + 4 kN (5 m) = 0

	 Ax = Ex = 6.33 kN

S+ �Fx = 0;	 TBC cos uBC - 6.33 kN = 0

+ c �Fy = 0;	 12 kN - 4 kN - TBC sin uBC = 0

Thus,

	  uBC = 51.6�

	  TBC = 10.2 kN 	 Ans.
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Proceeding now to analyze the equilibrium of points A, C, and E in 
sequence, we have

Point A.  (Fig. 7–19d).

S+ �Fx = 0;	 TAB cos uAB - 6.33 kN = 0

+ c �Fy = 0;	 -TAB  sin uAB + 12 kN = 0

	  uAB = 62.2�

	  TAB = 13.6 kN 	 Ans.

Point C.  (Fig. 7–19e).

S+ �Fx = 0;	 TCD cos uCD - 10.2 cos 51.6� kN = 0

+ c �Fy = 0;	 TCD sin uCD + 10.2 sin 51.6� kN - 15 kN = 0

	  uCD = 47.9�

	  TCD = 9.44 kN 	 Ans.

Point E.  (Fig. 7–19f).

S+ �Fx = 0;	 6.33 kN - TED cos uED = 0

+ c �Fy = 0;	 10 kN - TED sin uED = 0

	  uED = 57.7�

	  TED = 11.8 kN 	 Ans.

NOTE: By comparison, the maximum cable tension is in segment AB 
since this segment has the greatest slope (u) and it is required that for 
any cable segment the horizontal component T cos u = Ax = Ex  
(a constant). Also, since the slope angles that the cable segments make 
with the horizontal have now been determined, it is possible to 
determine the sags yB and yD, Fig. 7–19a, using trigonometry.

uAB
A

12 kN

6.33 kN

TAB

(d)

10 kN

6.33 kN

TED

E

(f)

uED

TCD

51.6

10.2 kN

15 kN

(e)

C

uCD

Fig. 7–19 (cont.)
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A

(a)

B

w � w(x)

�xx

y

x

Fig. 7–20

Cable Subjected to a Distributed Load.  Let us now consider 
the weightless cable shown in Fig. 7–20a, which is subjected to a distributed 
loading w = w(x) that is measured in the x direction. The free-body 
diagram of a small segment of the cable having a length �s is shown in 
Fig. 7–20b. Since the tensile force changes in both magnitude and direction 
along the cable’s length, we will denote this change on the free-body 
diagram by �T. Finally, the distributed load is represented by its resultant 
force w(x)(�x), which acts at a fractional distance k(�x) from point O, 
where 0 6 k 6 1. Applying the equations of equilibrium, we have

      S+ �Fx = 0;	  -T cos u + (T + �T ) cos(u + �u) = 0 

   + c �Fy = 0;	 -T sin u - w(x)(�x) + (T + �T ) sin(u + �u) = 0

a+ �MO = 0;	 w(x)(�x)k(�x) - T cos u �y + T sin u �x = 0

Dividing each of these equations by �x and taking the limit as �x S 0, 
and therefore �y S 0, �u S 0, and �T S 0, we obtain

	  
d(T cos u)

dx
= 0 � (7–7)

	  
d(T sin u)

dx
- w(x) = 0 � (7–8)

	  
dy

dx
= tan u� (7–9)

The cable and suspenders are used to 
support the uniform load of a gas pipe 
which crosses the river. (© Russell C. 
Hibbeler)
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Integrating Eq. 7–7, we have

	 T cos u = constant = FH	 (7–10)

where FH represents the horizontal component of tensile force at any 
point along the cable.

Integrating Eq. 7–8 gives

	   T sin u = Lw(x) dx		  (7–11)

Dividing Eq. 7–11 by Eq. 7–10 eliminates T. Then, using Eq. 7–9, we 
can obtain the slope of the cable.

        tan u =
dy

dx
=

1

FH
 Lw(x) dx

Performing a second integration yields

	 y =
1

FH
 L aLw(x) dx b  dx 	 (7–12)

This equation is used to determine the curve for the cable, y = f(x). The 
horizontal force component FH and the additional two constants, say  
C1 and C2, resulting from the integration are determined by applying the 
boundary conditions for the curve.
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(b)

T � �T

w(x)(�s)
(�x)k

O

T

��u

u

u

�x

�s

�y

Fig. 7–20 (cont.)

The cables of the suspension bridge exert 
very large forces on the tower and the 
foundation block which have to be accounted 
for in their design. (© Russell C. Hibbeler)
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The cable of a suspension bridge supports half of the uniform road 
surface between the two towers at A and B, Fig. 7–21a. If this 
distributed loading is w0, determine the maximum force developed in 
the cable and the cable’s required length. The span length L and sag h 
are known.

Example   7.12

L

y

xO

h

BA

w0

(a)

Fig. 7–21

Solution
We can determine the unknowns in the problem by first finding the 
equation of the curve that defines the shape of the cable using Eq. 7–12. 
For reasons of symmetry, the origin of coordinates has been placed at 
the cable’s center. Noting that w(x) = w0, we have

y =
1

FH
 L aLw0 dxb  dx

Performing the two integrations gives

	 y =
1

FH
 aw0 x

2

2
+ C1x + C2b 	 (1)

The constants of integration may be determined using the boundary 
conditions y = 0 at x = 0 and dy>dx = 0 at x = 0. Substituting into 
Eq. 1 and its derivative yields C1 = C2 = 0. The equation of the curve 
then becomes

	 y =
w0

2FH
 x2	 (2)



7

	 7.4  Cables	 387

This is the equation of a parabola. The constant FH may be obtained 
using the boundary condition y = h at x = L>2. Thus,

	 FH =
w0L

2

8h
	 (3)

Therefore, Eq. 2 becomes

	 y =
4h

L2  x2	 (4)

Since FH is known, the tension in the cable may now be determined 
using Eq. 7–10, written as T = FH>cos u. For 0 … u 6 p>2, the 
maximum tension will occur when u is maximum, i.e., at point B, 
Fig. 7–21a. From Eq. 2, the slope at this point is

dy

dx
`
x = L>2

= tan umax =
w0

FH
 x `

x = L>2
or

	 umax = tan-1aw0L

2FH
b 	 (5)

Therefore,

	 Tmax =
FH

cos(umax)
	 (6)

Using the triangular relationship shown in Fig. 7–21b, which is based 
on Eq. 5, Eq. 6 may be written as

Tmax =
24FH

2 + w0
2 L2

2
Substituting Eq. 3 into the above equation yields

	 Tmax =
w0L

2
 B1 + a L

4h
b

2

	 Ans.

For a differential segment of cable length ds, we can write

	 ds = 2(dx)2 + (dy)2 = B1 + a dy

dx
b

2

 dx	

Hence, the total length of the cable can be determined by integration. 
Using Eq. 4, we have

	 � = Lds = 2L
L>2

0 B1 + a 8h

L2xb
2

 dx	 (7)

Integrating yields

	 � =
L

2
 cB1 + a 4h

L
b

2

+
L

4h
 sinh-1a 4h

L
b d 	 Ans.

w0L

2FH

4FH
2  � w0

2  L
2

(b)

umax

Fig. 7–21 (cont.)
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Cable Subjected to Its Own Weight.  When the weight of a 
cable becomes important in the force analysis, the loading function along 
the cable will be a function of the arc length s rather than the projected 
length x. To analyze this problem, we will consider a generalized loading 
function w = w(s) acting along the cable, as shown in Fig. 7–22a. The free-
body diagram for a small segment �s of the cable is shown in Fig. 7–22b. 
Applying the equilibrium equations to the force system on this diagram, 
one obtains relationships identical to those given by Eqs. 7–7 through 7–9, 
but with s replacing x in Eqs. 7–7 and 7–8. Therefore, we can show that

	  T cos u = FH

	  T sin u = Lw(s) ds 	 (7–13)

	        
dy

dx
=

1

FH
 Lw(s) ds	 (7–14)

To perform a direct integration of Eq. 7–14, it is necessary to replace 
dy >dx by ds>dx. Since

ds = 2dx2 + dy2

then

dy

dx
= B a ds

dx
b

2

- 1

s�

y

x

s

(a)

B

w � w(s)

A

Fig. 7–22
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Therefore,

ds

dx
= c 1 +

1

FH
2 aLw(s) dsb

2

d
1>2

Separating the variables and integrating we obtain

                   	    x = L  
ds

c 1 +
1

FH
2 aLw(s) dsb

2

d
1>2 	

(7–15)

The two constants of integration, say C1 and C2, are found using the 
boundary conditions for the curve.

(b)

T � �T

u � �u

w(s)(�s)
k (�x)

O

T

�y

�s

�x

u

Fig. 7–22 (cont.) 

Electrical transmission towers must be designed 
to support the weights of the suspended power 
lines. The weight and length of the cables can 
be determined since they each form a 
catenary curve. (© Russell C. Hibbeler)
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Determine the deflection curve, the length, and the maximum tension 
in the uniform cable shown in Fig. 7–23. The cable has a weight per 
unit length of w0 = 5 N>m.

Solution
For reasons of symmetry, the origin of coordinates is located at the 
center of the cable. The deflection curve is expressed as y = f (x). We 
can determine it by first applying Eq. 7–15, where w(s) = w0.

x = L  
ds

c 1 + (1>FH
2)aLw0 dsb

2

d
1>2

Integrating the term under the integral sign in the denominator,  we have

x = L  
ds

[1 + (1>FH
2)(w0s + C1)

2]1>2

Substituting u = (1>FH)(w0s + C1) so that du = (w0>FH) ds, a second 
integration yields

x =
FH

w0
 (sinh-1 u + C2)

or

	 x =
FH

w0
 e sinh-1 c 1

FH
 (w0s + C1) d + C2 f 	 (1)

To evaluate the constants note that, from Eq. 7–14,

dy

dx
=

1

FH
 Lw0 ds or 

dy

dx
=

1

FH
 (w0s + C1)

Since dy>dx = 0 at s = 0, then C1 = 0. Thus,

	
dy

dx
=

w0s

FH
	 (2)

The constant C2 may be evaluated by using the condition s = 0 at 
x = 0 in Eq. 1, in which case C2 = 0. To obtain the deflection curve, 
solve for s in Eq. 1, which yields

	 s =
FH

w0
 sinhaw0

FH
 xb 	 (3)

Now substitute into Eq. 2, in which case

dy

dx
= sinhaw0

FH
 xb

Example   7.13

y

x
s

L � 20 m

h � 6 m

umax

Fig. 7–23
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Hence,

y =
FH

w0
 coshaw0

FH
 xb + C3

If the boundary condition y = 0 at x = 0 is applied, the constant 
C3 = -FH>w0, and therefore the deflection curve becomes

	 y =
FH

w0
 c coshaw0

FH
 xb - 1 d 	 (4)

This equation defines the shape of a catenary curve. The constant FH 
is obtained by using the boundary condition that y = h at x = L>2, in 
which case

	 h =
FH

w0
 c coshaw0L

2FH
b - 1 d 	 (5)

Since w0 = 5 N>m, h = 6 m, and L = 20 m, Eqs. 4 and 5 become

	  y =
FH

5 N>m c cosha 5 N>m
FH

 xb - 1 d 	 (6)

	  6 m =
FH

5 N>m c cosha 50 N

FH
b - 1 d 	 (7)

Equation 7 can be solved for FH by using a trial-and-error procedure. 
The result is

FH = 45.9 N

and therefore the deflection curve, Eq. 6, becomes

	 y = 9.19[cosh(0.109x) - 1] m	 Ans.

Using Eq. 3, with x = 10 m, the half-length of the cable is

�

2
=

45.9 N

5 N>m sinh c 5 N>m
45.9 N

 (10 m) d = 12.1 m

Hence,

	 � = 24.2 m 	 Ans.

Since T = FH>cos u, the maximum tension occurs when u is 
maximum, i.e., at s = �>2 = 12.1 m. Using Eq. 2 yields

 
dy

dx
2
s = 12.1 m

= tan umax =
5 N>m(12.1 m)

45.9 N
= 1.32

 umax = 52.8�

And so,

	 Tmax =
FH

cos umax
=

45.9 N

cos 52.8�
= 75.9 N	 Ans.
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Problems

7–94.  The cable supports the three loads shown. 
Determine the sags yB and yD of B and D. Take P1 = 800 N, 
P2 = 500 N.

7–95.  The cable supports the three loads shown. 
Determine the magnitude of P1 if P2 = 600 N and yB = 3 m. 
Also find sag yD.

1 m

3 m 6 m 6 m 3 m

A
E

B

C
D

yB yD
4 m

P2 P2

P1

Probs. 7–94/95

*7–96.  Determine the tension in each segment of the 
cable and the cable’s total length.

4 ft 5 ft

A

3 ft

B

7 ft

4 ft

C

D

50 lb

100 lb

Prob. 7–96

7–97.  The cable supports the loading shown. Determine 
the distance xB  the force at B acts from A. Set P = 800 N.

7–98.  The cable supports the loading shown. Determine 
the magnitude of the horizontal force P so that xB = 5 m.

4 m

1 m

2 m

600 N
D

C

B

A

xB

6 m

P

Probs. 7–97/98

7–99.  The cable supports the three loads shown. 
Determine the sags yB and yD of points B and D. Take  
P1 = 400 lb, P2 = 250 lb.

*7–100.  The cable supports the three loads shown. 
Determine the magnitude of P1 if P2 = 300 lb and yB = 8 ft. 
Also find the sag yD.

4 ft

12 ft 20 ft 15 ft 12 ft

A
E

B

C

D

yB yD
14 ft

P2 P2

P1

Probs. 7–99/100

7
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7–101.  Determine the force P needed to hold the cable  
in the position shown, i.e., so segment BC remains 
horizontal. Also, compute the sag yB and the maximum 
tension in the cable.

4 m 3 m 2 m6 m

4 kN P

6 kN

yB
3 m

A

B C

D

E

Prob. 7–101

7–102.  Determine the maximum uniform loading w, 
measured in lb>ft, that the cable can support if it is capable 
of sustaining a maximum tension of 3000 lb before it will 
break.

7–103.  The cable is subjected to a uniform loading of 
w = 250 lb>ft. Determine the maximum and minimum 
tension in the cable.

50 ft

6 ft

w

Probs. 7–102/103

*7–104.  The cable AB is subjected to a uniform loading of 
200 N>m. If the weight of the cable is neglected and the 
slope angles at points A and B are 30° and 60°, respectively, 
determine the curve that defines the cable shape and the 
maximum tension developed in the cable.

15 m
200 N/m

y

x
A

B

60�

30�

Prob. 7–104

7–105.  If x = 2 ft and the crate weighs 300 lb, which cable 
segment AB, BC, or CD has the greatest tension? What is 
this force and what is the sag yB?

7–106.  If yB = 1.5 ft, determine the largest weight of the 
crate and its placement x so that neither cable segment AB, 
BC, or CD is subjected to a tension that exceeds 200 lb.

3 ft 3 ft

3 ft

2 ft

A D

B

x

C

yB

Probs. 7–105/106
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7–107.  The cable supports a girder which weighs 850 lb>ft. 
Determine the tension in the cable at points A, B, and C.

100 ft
A

C

B

40 ft

20 ft

Prob. 7–107

*7–108.  The cable is subjected to a uniform loading of  
w = 200 lb>ft. Determine the maximum and minimum 
tension in the cable.

100 ft

20 ft

y

x

A B

200 lb/ ft

Prob. 7–108

7–109.  If the pipe has a mass per unit length of 1500 kg>m, 
determine the maximum tension developed in the cable.

7–110.  If the pipe has a mass per unit length of 1500 kg>m, 
determine the minimum tension developed in the cable.

30 m

3 m
A B

Probs. 7–109/110

7–111.  Determine the maximum tension developed in the 
cable if it is subjected to the triangular distributed load.

20 ft

20 ft

15�

300 lb/ ft

y

x
A

B

Prob. 7–111

*7–112.  The cable will break when the maximum tension 
reaches Tmax = 10 kN. Determine the minimum sag h if it 
supports the uniform distributed load of w = 600 N>m.

h

25 m

600 N/m

Prob. 7–112

7–113.  The cable is subjected to the parabolic loading  
w = 150(1 - (x>50)2) lb>ft, where x is in ft. Determine the 
equation y = f(x) which defines the cable shape AB and the 
maximum tension in the cable.

100 ft

20 ft

y

x

A B

150 lb/ ft

Prob. 7–113



7

	 7.4  Cables	 395

7–114.  The power transmission cable weighs 10 lb>ft. If 
the resultant horizontal force on tower BD is required to be 
zero, determine the sag h of cable BC.

7–115.  The power transmission cable weighs 10 lb>ft. If 
h  = 10 ft, determine the resultant horizontal and vertical 
forces the cables exert on tower BD.

A B
h

C

D

300 ft

10 ft

200 ft

Probs. 7–114/115

*7–116.  The man picks up the 52-ft chain and holds it just 
high enough so it is completely off the ground. The chain 
has points of attachment A and B that are 50 ft apart. If the 
chain has a weight of 3 lb>ft, and the man weighs 150 lb, 
determine the force he exerts on the ground. Also, how 
high h must he lift the chain? Hint: The slopes at A and B 
are zero.

A B

h

25 ft 25 ft

Prob. 7–116

7–117.  The cable has a mass of 0.5 kg>m and is 25 m long. 
Determine the vertical and horizontal components of force 
it exerts on the top of the tower.

30�B

A

15 m

Prob. 7–117

7–118.  A 50-ft cable is suspended between two points a 
distance of 15 ft apart and at the same elevation. If the 
minimum tension in the cable is 200 lb, determine the total 
weight of the cable and the maximum tension developed in 
the cable.

7–119.  Show that the deflection curve of the cable 
discussed in Example 7.13 reduces to Eq. 4 in Example 7.12 
when the hyperbolic cosine function is expanded in terms of 
a series and only the first two terms are retained. (The 
answer indicates that the catenary may be replaced by a 
parabola in the analysis of problems in which the sag is 
small. In this case, the cable weight is assumed to be 
uniformly distributed along the horizontal.)

*7–120.  A telephone line (cable) stretches between two 
points which are 150 ft apart and at the same elevation. The 
line sags 5 ft and the cable has a weight of 0.3 lb>ft. 
Determine the length of the cable and the maximum 
tension in the cable.

7–121.  A cable has a weight of 2 lb>ft. If it can span 100 ft 
and has a sag of 12 ft, determine the length of the cable. The 
ends of the cable are supported from the same elevation.

7–122.  A cable has a weight of 3 lb>ft and is supported at 
points that are 500 ft apart and at the same elevation. If it 
has a length of 600 ft, determine the sag.

7–123.  A cable has a weight of 5 lb>ft. If it can span 300 ft 
and has a sag of 15 ft, determine the length of the cable. The 
ends of the cable are supported at the same elevation.

*7–124.  The 10 kg>m cable is suspended between the 
supports A and B. If the cable can sustain a maximum 
tension of 1.5 kN and the maximum sag is 3 m, determine 
the maximum distance L between the supports.

A B

L

3 m

Prob. 7–124
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Internal Loadings

If a coplanar force system acts on a 
member, then in general a resultant 
internal normal force N, shear force V, 
and bending moment M will act at any 
cross section along the member. For 
two-dimensional problems the positive 
directions of these loadings are shown 
in the figure.

The resultant internal normal force, 
shear force, and bending moment are 
determined using the method of 
sections. To find them, the member is 
sectioned at the point C where the 
internal loadings are to be determined. 
A free-body diagram of one of the 
sectioned parts is then drawn and the 
internal loadings are shown in their 
positive directions.

The resultant normal force is determined 
by summing forces normal to the cross 
section. The resultant shear force is 
found by summing forces tangent to the 
cross section, and the resultant bending 
moment is found by summing moments 
about the geometric center or centroid 
of the cross-sectional area.

If the member is subjected to a three-
dimensional loading, then, in general, a 
torsional moment will also act on the 
cross section. It can be determined by 
summing moments about an axis that is 
perpendicular to the cross section and 
passes through its centroid.

V

N

M
Shear force

Normal force

Bending moment

C

B

Ay

Ax

By

A
C

F1 F2

A

Ay

Ax

VC

B

By

C
NC

MC

VC

C
NC

MC

F1

F2

A

Ay

Ax

VC

B

By

C
NC

MC

VC

C
NC

MC

F1

F2

    �Fx = 0

    �Fy = 0

 �MC = 0

Chapter Review

y

z

Ny

Normal force

My

Torsional moment

Vx

Vz

Mx

x

C

Mz

Shear force components

Bending moment
components

7
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Shear and Moment Diagrams

To construct the shear and moment 
diagrams for a member, it is necessary to 
section the member at an arbitrary point, 
located a distance x from the left end. 

If the external loading consists of 
changes in the distributed load, or a 
series of concentrated forces and couple 
moments act on the member, then 
different expressions for V and M must 
be determined within regions between 
any load discontinuities.

w

x1

M

Oy

Ox

V

The unknown shear and moment are 
indicated on the cross section in the 
positive direction according to the 
established sign convention, and then 
the internal shear and moment are 
determined as functions of x.

O

L
Pb

a

x3

x2

x1

w

M

x
ba L

Each of the functions of the shear 
and moment is then plotted to create 
the shear and moment diagrams.

V

x
a b

L
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Relations between Shear and Moment

It is possible to plot the shear and 
moment diagrams quickly by using 
differential relationships that exist 
between the distributed loading w, V 
and M.

The slope of the shear diagram is equal 
to the distributed loading at any point. 
The slope is positive if the distributed 
load acts upward, and vice-versa.

The slope of the moment diagram is 
equal to the shear at any point. The slope 
is positive if the shear is positive, or vice-
versa.

The change in shear between any two 
points is equal to the area under the 
distributed loading between the points.

The change in the moment is equal to the 
area under the shear diagram between 
the points.

Cables

When a flexible and inextensible cable is 
subjected to a series of concentrated 
forces, then the analysis of the cable can 
be performed by using the equations of 
equilibrium applied to free-body 
diagrams of either segments or points of 
application of the loading.

If external distributed loads or the weight 
of the cable are to be considered, then the 
shape of the cable must be determined by 
first analyzing the forces on a differential 
segment of the cable and then integrating 
this result. The two constants, say C1 and 
C2, resulting from the integration are 
determined by applying the boundary 
conditions for the cable.

 
dV

dx
= w

 
dM

dx
= V

�V = Lw dx

�M = LV dx

P1
P2

y =
1

FH
 L aLw(x) dxb  dx

Distributed load

x = L  
ds

c 1 +
1

FH
2  aLw(s) dsb

2

d
1>2

Cable weight



Problems

All problem solutions must include FBDs.

R7–1.  Determine the internal normal force, shear force, 
and moment at points D and E of the frame.

E

4 ft

1 ft

8 ft
3 ft

D

F

C

A
30�

150 lb

B

Prob. R7–1

R7–2.  Determine the normal force, shear force, and 
moment at points B and C of the beam.

5 m5 m 3 m

2 kN/m
1 kN/m

7.5 kN

40 kN�m

6 kN

1 m

A D
B

C

Prob. R7–2

R7–3.  Draw the shear and moment diagrams for the beam.

9 ft

A B

9 ft

8 kip/ft 8 kip/ft

9 ft 9 ft

Prob. R7–3

R7–4.  Draw the shear and moment diagrams for the beam.

5 m

2 kN/m

5 kN�m

B
A

Prob. R7–4

R7–5.  Draw the shear and moment diagrams for the beam.

5 m 5 m

2 kN/m

A

50 kN � m

B
C

Prob. R7–5

R7–6.  A chain is suspended between points at the same 
elevation and spaced a distance of 60 ft apart. If it has a 
weight per unit length of 0.5 lb>ft and the sag is 3 ft, 
determine the maximum tension in the chain.

     Review Problems
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Chapter 8

The effective design of this brake requires that it resist the frictional forces 
developed between it and the wheel. In this chapter we will study dry friction, 

and show how to analyze friction forces for various engineering applications.

(© Pavel Polkovnikov/Shutterstock)



CHAPTER OBJECTIVES

n	 To introduce the concept of dry friction and show how to analyze 
the equilibrium of rigid bodies subjected to this force.

n	 To present specific applications of frictional force analysis on 
wedges, screws, belts, and bearings.

n	 To investigate the concept of rolling resistance.

8.1  Characteristics of Dry Friction

Friction is a force that resists the movement of two contacting surfaces 
that slide relative to one another. This force always acts tangent to the 
surface at the points of contact and is directed so as to oppose the possible 
or existing motion between the surfaces.

In this chapter, we will study the effects of dry friction, which is 
sometimes called Coulomb friction since its characteristics were studied 
extensively by the French physicist Charles-Augustin de Coulomb 
in  1781. Dry friction occurs between the contacting surfaces of bodies 
when there is no lubricating fluid.*

Friction

*Another type of friction, called fluid friction, is studied in fluid mechanics.

The heat generated by the abrasive 
action of friction can be noticed 
when using this grinder to sharpen a 
metal blade. (© Russell C. Hibbeler) 
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Theory of Dry Friction.  The theory of dry friction can be 
explained by considering the effects caused by pulling horizontally on a 
block of uniform weight W which is resting on a rough horizontal surface 
that is nonrigid or deformable, Fig. 8–1a. The upper portion of the block, 
however, can be considered rigid. As shown on the free-body diagram of 
the block, Fig. 8–1b, the floor exerts an uneven distribution of both 
normal force �Nn and frictional force �Fn along the contacting surface. 
For equilibrium, the normal forces must act upward to balance the 
block’s weight W, and the frictional forces act to the left to prevent the 
applied force P from moving the block to the right. Close examination of 
the contacting surfaces between the floor and block reveals how these 
frictional and normal forces develop, Fig. 8–1c. It can be seen that many 
microscopic irregularities exist between the two surfaces and, as a result, 
reactive forces �Rn are developed at each point of contact.* As shown, 
each reactive force contributes both a frictional component �Fn and a 
normal component �Nn.

Equilibrium.  The effect of the distributed normal and frictional 
loadings is indicated by their resultants N and F on the free-body diagram, 
Fig. 8–1d. Notice that N acts a distance x to the right of the line of action 
of W, Fig. 8–1d. This location, which coincides with the centroid or 
geometric center of the normal force distribution in Fig. 8–1b, is necessary 
in order to balance the “tipping effect” caused by P. For example, if P is 
applied at a height h from the surface, Fig. 8–1d, then moment equilibrium 
about point O is satisfied if Wx = Ph or x = Ph>W .

P

W

(a)
    

P

W

(b)

�Nn

�Fn

     

(c)

�F1

�N1

�N2

�R1

�R2

�F2 �Fn

�Rn

�Nn      

P

W

(d)

a/2 a/2

h
F

O

Nx

Resultant normal
and frictional forces

Fig. 8–1

A

B

C

Regardless of the weight of the rake or 
shovel that is suspended, the device has 
been designed so that the small roller 
holds the handle in equilibrium due to 
frictional forces that develop at the points 
of contact, A, B, C. (© Russell C. Hibbeler)

*Besides mechanical interactions as explained here, which is referred to as a classical 
approach, a detailed treatment of the nature of frictional forces must also include the 
effects of temperature, density, cleanliness, and atomic or molecular attraction between the 
contacting surfaces. See J. Krim, Scientific American, October, 1996.
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Impending Motion.  In cases where the surfaces of contact are 
rather “slippery,” the frictional force F may not be great enough to 
balance P, and consequently the block will tend to slip. In other words, as 
P is slowly increased, F correspondingly increases until it attains a certain 
maximum value Fs, called the limiting static frictional force, Fig. 8–1e. 
When this value is reached, the block is in unstable equilibrium since any 
further increase in P will cause the block to move. Experimentally, it has 
been determined that this limiting static frictional force Fs is directly 
proportional to the resultant normal force N. Expressed mathematically,

	 Fs = ms N 	 (8–1)

where the constant of proportionality, ms (mu “sub” s), is called the 
coefficient of static friction.

Thus, when the block is on the verge of sliding, the normal force N and 
frictional force Fs combine to create a resultant Rs, Fig. 8–1e. The angle fs 
(phi “sub” s) that Rs makes with N is called the angle of static friction. 
From the figure,

fs = tan-1aFs

N
b = tan-1ams N

N
b = tan-1 ms

Typical values for ms are given in Table 8–1. Note that these values can 
vary since experimental testing was done under variable conditions of 
roughness and cleanliness of the contacting surfaces. For applications, 
therefore, it is important that both caution and judgment be exercised 
when selecting a coefficient of friction for a given set of conditions. 
When  a more accurate calculation of Fs is required, the coefficient of 
friction should be determined directly by an experiment that involves 
the two materials to be used.

W

(e)

N
x

Fs

Rs

Impending
motion

P

Equilibrium

h

fs

Some objects, such as this barrel, may not be 
on the verge of slipping, and therefore the 
friction force F must be determined 
strictly  from the equations of equilibrium. 
(© Russell C. Hibbeler)

Table 8–1  Typical Values for Ms

Contact 
Materials

Coefficient of 
Static Friction (ms)

Metal on ice 0.03–0.05

Wood on wood 0.30–0.70

Leather on wood 0.20–0.50

Leather on metal 0.30–0.60

Copper on copper 0.74–1.21

Fig. 8–1 (cont.)

F

W
T

N
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Motion.  If the magnitude of P acting on the block is increased so that 
it becomes slightly greater than Fs, the frictional force at the contacting 
surface will drop to a smaller value Fk, called the kinetic frictional force. 
The block will begin to slide with increasing speed, Fig. 8–2a. As this 
occurs, the block will “ride” on top of these peaks at the points of contact, 
as shown in Fig. 8–2b. The continued breakdown of the surface is the 
dominant mechanism creating kinetic friction.

Experiments with sliding blocks indicate that the magnitude of the 
kinetic friction force is directly proportional to the magnitude of the 
resultant normal force, expressed mathematically as

	 Fk = mk  N 	 (8–2)

Here the constant of proportionality, mk, is called the coefficient of 
kinetic friction. Typical values for mk are approximately 25 percent 
smaller than those listed in Table 8–1 for ms.

As shown in Fig. 8–2a, in this case, the resultant force at the surface of 
contact, Rk, has a line of action defined by fk. This angle is referred to as 
the angle of kinetic friction, where

fk = tan-1aFk

N
b = tan-1amk  N

N
b = tan-1 mk

By comparison, fs Ú fk.

	

P

W

(a)

N

Fk

Motion

Rk

fk � (b)

�F1

�N1

�N2
�R2

�R1

�F2 �Fn

�Rn

�Nn

Fig. 8–2
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The above effects regarding friction can be summarized by referring to 
the graph in Fig. 8–3, which shows the variation of the frictional force F 
versus the applied load P. Here the frictional force is categorized in three 
different ways:

	•	 F is a static frictional force if equilibrium is maintained.

	•	 F is a limiting static frictional force Fs when it reaches a maximum 
value needed to maintain equilibrium.

	•	 F is a kinetic frictional force Fk when sliding occurs at the contacting 
surface.

Notice also from the graph that for very large values of P or for high 
speeds, aerodynamic effects will cause Fk and likewise mk to begin to 
decrease.

Characteristics of Dry Friction.  As a result of experiments that 
pertain to the foregoing discussion, we can state the following rules 
which apply to bodies subjected to dry friction.

	•	 The frictional force acts tangent to the contacting surfaces in a 
direction opposed to the motion or tendency for motion of one 
surface relative to another.

	•	 The maximum static frictional force Fs that can be developed is 
independent of the area of contact, provided the normal pressure is 
not very low nor great enough to severely deform or crush the 
contacting surfaces of the bodies.

	•	 The maximum static frictional force is generally greater than the 
kinetic frictional force for any two surfaces of contact. However, if 
one of the bodies is moving with a very low velocity over the surface 
of another, Fk becomes approximately equal to Fs, i.e., ms � mk.

	•	 When slipping at the surface of contact is about to occur, the 
maximum static frictional force is proportional to the normal force, 
such that Fs = ms N.

	•	 When slipping at the surface of contact is occurring, the kinetic 
frictional force is proportional to the normal force, such that 
Fk = mk  N.

F

Fs

Fk

P

No motion Motion

F � P

45�

Fig. 8–3
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8.2  Problems Involving Dry Friction

If a rigid body is in equilibrium when it is subjected to a system of 
forces that includes the effect of friction, the force system must satisfy not 
only the equations of equilibrium but also the laws that govern the 
frictional forces.

Types of Friction Problems.  In general, there are three types of 
static problems involving dry friction. They can easily be classified once 
free-body diagrams are drawn and the total number of unknowns are 
identified and compared with the total number of available equilibrium 
equations.

No Apparent Impending Motion.  Problems in this category are 
strictly equilibrium problems, which require the number of unknowns to 
be equal to the number of available equilibrium equations. Once the 
frictional forces are determined from the solution, however, their 
numerical values must be checked to be sure they satisfy the inequality 
F … ms N; otherwise, slipping will occur and the body will not remain in 
equilibrium. A problem of this type is shown in Fig. 8–4a. Here we must 
determine the frictional forces at A and C to check if the equilibrium 
position of the two-member frame can be maintained. If the bars are 
uniform and have known weights of 100 N each, then the free-body 
diagrams are as shown in Fig. 8–4b. There are six unknown force 
components which can be determined strictly from the six equilibrium 
equations (three for each member). Once FA, NA, FC, and NC are 
determined, then the bars will remain in equilibrium provided FA … 0.3NA  
and FC … 0.5NC are satisfied.

Impending Motion at All Points of Contact.  In this case the total 
number of unknowns will equal the total number of available equilibrium 
equations plus the total number of available frictional equations, F = mN. 
When motion is impending at the points of contact, then Fs = ms N; 
whereas if the body is slipping, then Fk = mk  N. For example, consider the 
problem of finding the smallest angle u at which the 100-N bar in Fig. 8–5a 
can be placed against the wall without slipping. The free-body diagram is 
shown in Fig. 8–5b. Here the five unknowns are determined from the three 
equilibrium equations and two static frictional equations which apply at 
both points of contact, so that FA = 0.3NA  and FB = 0.4NB.

(a)

B

mC � 0.5mA � 0.3

A C

(b)

Bx

By

By

Bx

100 N 100 N

FA
FC

NA NC

Fig. 8–4

A

B
mB � 0.4

mA � 0.3

u

(a)

NB

NA

FB

FA

(b)

100 N
u

Fig. 8–5
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Impending Motion at Some Points of Contact.  Here the 
number of unknowns will be less than the number of available equilibrium 
equations plus the number of available frictional equations or conditional 
equations for tipping. As a result, several possibilities for motion or 
impending motion will exist and the problem will involve a determination 
of the kind of motion which actually occurs. For example, consider the 
two-member frame in Fig. 8–6a. In this problem we wish to determine the 
horizontal force P needed to cause movement. If each member has a 
weight of 100 N, then the free-body diagrams are as shown in Fig. 8–6b. 
There are seven unknowns. For a unique solution we must satisfy the six 
equilibrium equations (three for each member) and only one of two 
possible static frictional equations. This means that as P increases it will 
either cause slipping at A and no slipping at C, so that FA = 0.3NA  and 
FC … 0.5NC; or slipping occurs at C and no slipping at A, in which case 
FC = 0.5NC and FA … 0.3NA. The actual situation can be determined by 
calculating P for each case and then choosing the case for which P is 
smaller. If in both cases the same value for P is calculated, which would be 
highly improbable, then slipping at both points occurs simultaneously; 
i.e., the seven unknowns would satisfy eight equations.

Equilibrium Versus Frictional Equations.  Whenever we 
solve a problem such as the one in Fig. 8–4, where the friction force F 
is to be an “equilibrium force” and satisfies the inequality F 6 ms N , 
then we can assume the sense of direction of F on the free-body 
diagram. The correct sense is made known after solving the equations 
of equilibrium for F. If F is a negative scalar the sense of F is the 
reverse of that which was assumed. This convenience of assuming the 
sense of F is possible because the equilibrium equations equate to 
zero the components of vectors acting in the same direction. However, 
in cases where the frictional equation F = mN  is used in the solution 
of a problem, as in the case shown in Fig. 8–5, then the convenience of 
assuming the sense of F is lost, since the frictional equation relates 
only the magnitudes of two perpendicular vectors. Consequently, F 
must always be shown acting with its correct sense on the free-body 
diagram, whenever the frictional equation is used for the solution of 
a problem.

P

(a)

A

B

mC � 0.5mA � 0.3

C

By

Bx

100 N

P

(b)

FC

NC

By

Bx

100 N
FA

NA

Fig. 8–6
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Important Points

	 •	 Friction is a tangential force that resists the movement of one 
surface relative to another.

	 •	 If no sliding occurs, the maximum value for the friction force is 
equal to the product of the coefficient of static friction and the 
normal force at the surface.

	 •	 If sliding occurs at a slow speed, then the friction force is the 
product of the coefficient of kinetic friction and the normal force 
at the surface.

	 •	 There are three types of static friction problems. Each of these 
problems is analyzed by first drawing the necessary free-body 
diagrams, and then applying the equations of equilibrium, 
while satisfying the conditions of friction or the possibility of 
tipping.

Depending upon where the man pushes 
on the crate, it will either tip or slip. 
(© Russell C. Hibbeler) 
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Procedure for Analysis

Equilibrium problems involving dry friction can be solved using the 
following procedure.

Free-Body Diagrams.
	 •	 Draw the necessary free-body diagrams, and unless it is stated in 

the problem that impending motion or slipping occurs, always 
show the frictional forces as unknowns (i.e., do not assume 
F = mN).

	 •	 Determine the number of unknowns and compare this with the 
number of available equilibrium equations.

	 •	 If there are more unknowns than equations of equilibrium, it will 
be necessary to apply the frictional equation at some, if not all, 
points of contact to obtain the extra equations needed for a 
complete solution.

	 •	 If the equation F = mN is to be used, it will be necessary to show 
F acting in the correct sense of direction on the free-body 
diagram.

Equations of Equilibrium and Friction.
	 •	 Apply the equations of equilibrium and the necessary frictional 

equations (or conditional equations if tipping is possible) and 
solve for the unknowns.

	 •	 If the problem involves a three-dimensional force system such 
that it becomes difficult to obtain the force components or the 
necessary moment arms, apply the equations of equilibrium using 
Cartesian vectors.
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The uniform crate shown in Fig. 8–7a has a mass of 20 kg. If a force 
P = 80 N is applied to the crate, determine if it remains in equilibrium. 
The coefficient of static friction is ms = 0.3.

0.8 m
P � 80 N

0.2 m

30�

(a)

Fig. 8–7

SOLUTION
Free-Body Diagram.  As shown in Fig. 8–7b, the resultant normal 
force NC must act a distance x from the crate’s center line in order to 
counteract the tipping effect caused by P. There are three unknowns, 
F, NC, and x, which can be  determined strictly from the three equations 
of equilibrium.

Equations of Equilibrium.

S+ �Fx = 0;	 80 cos 30� N - F = 0

+ c �Fy = 0;	 -80 sin 30� N + NC - 196.2 N = 0

  a+ �MO = 0;   80 sin 30� N(0.4 m) -  80 cos 30� N(0.2 m) +  NC (x) = 0

Solving, 

 F = 69.3 N

 NC = 236.2 N

 x = -0.00908 m = -9.08 mm

Since x is negative it indicates the resultant normal force acts (slightly) 
to the left of the crate’s center line. No tipping will occur since 
x 6 0.4 m. Also, the maximum frictional force which can be developed 
at the surface of contact is Fmax = ms NC = 0.3(236.2 N) = 70.9 N. 
Since F = 69.3 N 6 70.9 N, the crate will not slip, although it is very 
close to doing so.

P � 80 N

0.2 m

30�

(b)

196.2 N

0.4 m 0.4 m

NC

x

F
O

example   8.1
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(a)

u � 25�
2.5 ft

G

1.5 ft
1.5 ft

(b)

(c)

2.5 ft

G

O

x

1.5 ft
1.5 ft

W 25�

N

F

Fig. 8–8

It is observed that when the bed of the dump truck is raised to an 
angle of u = 25� the vending machines will begin to slide off the bed, 
Fig. 8–8a. Determine the static coefficient of friction between a 
vending machine and the surface of the truckbed.

example   8.2

SOLUTION
An idealized model of a vending machine resting on the truckbed is 
shown in Fig. 8–8b. The dimensions have been measured and the 
center of gravity has been located. We will assume that the vending 
machine weighs W.

Free-Body Diagram.  As shown in Fig. 8–8c, the dimension x is used 
to locate the position of the resultant normal force N. There are four 
unknowns, N, F, ms, and x.

Equations of Equilibrium.

  + R�Fx = 0;	 W  sin 25� - F = 0� (1)

  + Q�Fy = 0;	 N - W  cos 25� = 0� (2)

a+ �MO = 0;  -W  sin 25�(2.5 ft) + W  cos 25�(x) = 0� (3)

Since slipping impends at u = 25�, using Eqs. 1 and 2, we have

 Fs = ms N;	  W  sin 25� = ms(W  cos 25�)

	  ms = tan 25� = 0.466� Ans.

The angle of u = 25� is referred to as the angle of repose, and by 
comparison, it is equal to the angle of static friction, u = fs. Notice 
from the calculation that u is independent of the weight of the vending 
machine, and so knowing u provides a convenient method for 
determining the coefficient of static friction.

NOTE: From Eq. 3, we find x = 1.17 ft. Since 1.17 ft 6 1.5 ft, indeed 
the vending machine will slip before it can tip as observed in Fig. 8–8a.

(© Russell C. Hibbeler)
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The uniform 10-kg ladder in Fig. 8–9a rests against the smooth wall 
at B, and the end A rests on the rough horizontal plane for which the 
coefficient of static friction is ms = 0.3. Determine the angle of 
inclination u of the ladder and the normal reaction at B if the ladder is 
on the verge of slipping.

4 m

B

A

(a)

u

Fig. 8–9

example   8.3

A

(b)

NB

NA

FA

 (4 m) sin u

 (2 m) cos u  (2 m) cos u

10(9.81) N

u

SOLUTION
Free-Body Diagram.  As shown on the free-body diagram, Fig. 8–9b, 
the frictional force FA must act to the right since impending motion at A 
is to the left.

Equations of Equilibrium and Friction.  Since the ladder is on the 
verge of slipping, then FA = msNA = 0.3NA . By inspection, NA  can be 
obtained directly.

+ c �Fy = 0;	 NA - 10(9.81) N = 0� NA = 98.1 N

Using this result, FA = 0.3(98.1 N) = 29.43 N. Now NB can be found.

S+ �Fx = 0;	 29.43 N - NB = 0

	 NB = 29.43 N = 29.4 N� Ans.

Finally, the angle u can be determined by summing moments about 
point A.

a+ �MA = 0;	 (29.43 N)(4 m) sin u - [10(9.81) N](2 m) cos u = 0

	
sin u

cos u
 = tan u = 1.6667

	 u = 59.04� = 59.0� 	 Ans.
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0.75 m

0.25 m
P

B

(c)

C

400 N

NC

FC

FB

Fig. 8–10

200 N/m

0.75 m

B

P

4 m

0.25 m
C

A

(a)

Beam AB is subjected to a uniform load of 200 N>m and is supported 
at B by post BC, Fig. 8–10a. If the coefficients of static friction at B 
and C are mB = 0.2 and mC = 0.5, determine the force P needed to 
pull the post out from under the beam. Neglect the weight of the 
members and the thickness of the beam.

example   8.4

SOLUTION
Free-Body Diagrams.  The free-body diagram of the beam is shown 
in Fig. 8–10b. Applying �MA = 0, we obtain NB = 400 N. This result 
is shown on the free-body diagram of the post, Fig. 8–10c. Referring to 
this member, the four unknowns FB, P, FC, and NC are determined from 
the three equations of equilibrium and one frictional equation applied 
either at B or C.

Equations of Equilibrium and Friction.

S+ �Fx = 0;	 P - FB - FC = 0� (1)

+ c �Fy = 0;	 NC - 400 N = 0� (2)

a+ �MC = 0;	 -P(0.25 m) + FB(1 m) = 0� (3)

(Post Slips at B and Rotates about C.)  This requires FC … mCNC and

FB = mBNB;	 FB = 0.2(400 N) = 80 N

Using this result and solving Eqs. 1 through 3, we obtain

 P = 320 N

 FC = 240 N

 NC = 400 N

Since FC = 240 N 7 mCNC = 0.5(400 N) = 200 N, slipping at C 
occurs. Thus the other case of movement must be investigated.

(Post Slips at C and Rotates about B.)  Here FB … mBNB and

FC = mCNC;	 FC = 0.5NC� (4)

Solving Eqs. 1 through 4 yields
	 P = 267 N� Ans.

 NC = 400 N
 FC = 200 N
 FB = 66.7 N

Obviously, this case occurs first since it requires a smaller value for P.

800 N

2 m

(b)

Ax

Ay

A
2 m

NB � 400 N

FB
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A

C
B

(a)

P

30�

C

y

x

(b)

P

FAC

FA

NA

FBC

3(9.81) N
FAC � 1.155P

FBC � 0.5774P

FB

NB

9(9.81) N

30�

30�

Fig. 8–11

Blocks A and B have a mass of 3 kg and 9 kg, respectively, and are 
connected to the weightless links shown in Fig. 8–11a. Determine the 
largest vertical force P that can be applied at the pin C without causing 
any movement. The coefficient of static friction between the blocks 
and the contacting surfaces is ms = 0.3.

SOLUTION
Free-Body Diagram.  The links are two-force members and so the 
free-body diagrams of pin C and blocks A and B are shown in  Fig. 8–11b. 
Since the horizontal component of FAC tends to move block A to the 
left, FA must act to the right. Similarly, FB must act to the left to oppose 
the tendency of motion of block B to the right, caused by FBC. There 
are seven unknowns and six available force equilibrium equations, two 
for the pin and two for each block, so that only one frictional 
equation is needed.

Equations of Equilibrium and Friction.  The force in links AC and 
BC can be related to P by considering the equilibrium of pin C.

+ c �Fy = 0;	 FAC cos 30� -  P = 0;	 FAC = 1.155P

S+ �Fx = 0;	 1.155P sin 30� -  FBC = 0;	 FBC = 0.5774P

Using the result for FAC, for block A,

S+ �Fx = 0;	 FA  -  1.155P sin 30� = 0;	 FA = 0.5774P� (1)

+ c �Fy = 0;	 NA  -  1.155P cos 30� -  3(9.81 N) = 0;

	 NA = P +  29.43 N� (2)

Using the result for FBC, for block B,

S+ �Fx = 0;	 (0.5774P) - FB = 0;	 FB = 0.5774P� (3)

+ c �Fy = 0;	 NB - 9(9.81) N = 0;	 NB = 88.29 N

Movement of the system may be caused by the initial slipping of either 
block A or block B. If we assume that block A slips first, then

	 FA = ms NA = 0.3NA � (4)

Substituting Eqs. 1 and 2 into Eq. 4,

	  0.5774P = 0.3(P + 29.43)

	  P = 31.8 N� Ans.

Substituting this result into Eq. 3, we obtain FB = 18.4 N. Since the 
maximum static frictional force at B is (FB)max = msNB =  
0.3(88.29 N) = 26.5 N 7 FB, block B will not slip. Thus, the above 
assumption is correct. Notice that if the inequality were not satisfied, 
we would have to assume slipping of block B and then solve for P.

example   8.5
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P8–3.  Determine the force P to move block B.

A

B

C

P

W � 200 N 

ms � 0.2

ms � 0.1

W � 100 N 

W � 100 N 

ms � 0.2

Prob. P8–3

P8–4.  Determine the force P needed to cause impending 
motion of the block.

(a)

1 m

2 m

P

W � 200 N 

ms � 0.3

(b)

1 m

1 m

P

W � 100 N 

ms � 0.4

Prob. P8–4

P8–1.  Determine the friction force at the surface of contact.

W � 200 N  

(a)

ms � 0.3
mk � 0.2

500 N

4
3

5

 

(b)

W � 40 N 

ms � 0.9
mk � 0.6

100 N

4
3

5

Prob. P8–1

P8–2.  Determine M to cause impending motion of 
the cylinder.

1 m

A

BM

Smooth

W � 100 N 

ms � 0.1

Prob. P8–2

Preliminary Problems
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All problem solutions must include FBDs.

F8–1.  Determine the friction developed between the 50-kg 
crate and the ground if a) P = 200 N, and b) P = 400 N. The 
coefficients of static and kinetic friction between the crate 
and the ground are ms = 0.3 and mk = 0.2.

4
3

5
P

Prob. F8–1

F8–2.  Determine the minimum force P to prevent the 
30-kg rod AB from sliding. The contact surface at B is 
smooth, whereas the coefficient of static friction between 
the rod and the wall at A is ms = 0.2.

 3 m

A

BP

4 m

Prob. F8–2

F8–3.  Determine the maximum force P that can be applied 
without causing the two 50-kg crates to move. The coefficient 
of static friction between each crate and the ground is 
ms = 0.25.

BA

30�

P

Prob. F8–3

F8–4.  If the coefficient of static friction at contact points A 
and B is ms = 0.3, determine the maximum force P that can 
be applied without causing the 100-kg spool to move.

P

0.6 m
0.9 m

B

A

Prob. F8–4

F8–5.  Determine the maximum force P that can be 
applied without causing movement of the 250-lb crate that 
has a center of gravity at G. The coefficient of static friction 
at the floor is ms = 0.4.

1.5 ft 1.5 ft

2.5 ft

3.5 ft
4.5 ft

P

A

G

Prob. F8–5

FUNDAMENTAL PROBLEMS
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F8–6.  Determine the minimum coefficient of static friction 
between the uniform 50-kg spool and the wall so that the 
spool does not slip.

A

B

0.6 m

0.3 m

60�

Prob. F8–6

F8–7.  Blocks A, B, and C have weights of 50 N, 25 N, and 
15 N, respectively. Determine the smallest horizontal force P 
that will cause impending motion. The coefficient of static 
friction between A and B is ms = 0.3, between B and C, 
m=s = 0.4, and between block C and the ground, m==s = 0.35.

P

A

B

C

D

Prob. F8–7

F8–8.  If the coefficient of static friction at all contacting 
surfaces is ms, determine the inclination u at which the 
identical blocks, each of weight W, begin to slide.

A

B

u

Prob. F8–8

F8–9.  Blocks A and B have a mass of 7 kg and 10 kg, 
respectively. Using the coefficients of static friction 
indicated, determine the largest force P which can be 
applied to the cord without causing motion. There are 
pulleys at C and D.

400 mm

300 mm

A

D

C P

mAB � 0.3

mA � 0.1

B

Prob. F8–9
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8–3.  The mine car and its contents have a total mass of 
6 Mg and a center of gravity at G. If the coefficient of static 
friction between the wheels and the tracks is ms = 0.4 when 
the wheels are locked, find the normal force acting on the 
front wheels at B and the rear wheels at A when the brakes 
at both A and B are locked. Does the car move?

0.15 mA

G

B

0.9 m

0.6 m

10 kN

1.5 m

Prob. 8–3

*8–4.  The winch on the truck is used to hoist the garbage 
bin onto the bed of the truck. If the loaded bin has a weight 
of 8500 lb and center of gravity at G, determine the force in 
the cable needed to begin the lift. The coefficients of static 
friction at A and B are mA = 0.3 and mB = 0.2, respectively. 
Neglect the height of the support at A.

G

12 ft10 ft BA

30� 

Prob. 8–4

All problem solutions must include FBDs.

8–1.  Determine the maximum force P the connection can 
support so that no slipping occurs between the plates. There 
are four bolts used for the connection and each is tightened 
so that it is subjected to a tension of 4 kN. The coefficient of 
static friction between the plates is ms = 0.4.

P
P
2
P
2

Prob. 8–1

8–2.  The tractor exerts a towing force T = 400 lb. 
Determine the normal reactions at each of the two front 
and two rear tires and the tractive frictional force F on each 
rear tire needed to pull the load forward at constant velocity. 
The tractor has a weight of 7500 lb and a center of gravity 
located at GT. An additinal weight of 600 lb is added to its 
front having a center of gravity at GA. Take ms = 0.4. 
The front wheels are free to roll.

4 ft
3 ft

5 ft

2.5 ft
A

C B

T

F

GA

GT

Prob. 8–2

Problems
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*8–8.  The block brake consists of a pin-connected lever 
and friction block at B. The coefficient of static friction 
between the wheel and the lever is ms = 0.3, and a torque of 
5 N # m is applied to the wheel. Determine if the brake can 
hold the wheel stationary when the force applied to the 
lever is (a) P = 30 N, (b) P = 70 N.

200 mm

50 mm

400 mm

P
150 mm

O

B

A

5 N�m

Prob. 8–8

8–9.  The pipe of weight W is to be pulled up the inclined 
plane of slope a using a force P. If P acts at an angle f, show 
that for slipping P = W sin(a + u)>cos(f - u), where u is 
the angle of static friction; u = tan-1 ms.

8–10.  Determine the angle f at which the applied force P 
should act on the pipe so that the magnitude of P is as small 
as possible for pulling the pipe up the incline. What is the 
corresponding value of P? The pipe weighs W and the slope 
a is known. Express the answer in terms of the angle of 
kinetic friction, u = tan-1 mk.

P

f

a

Probs. 8–9/10

8–5.  The automobile has a mass of 2 Mg and center of 
mass at G. Determine the towing force F required to move 
the car if the back brakes are locked, and the front wheels 
are free to roll. Take ms = 0.3.

8–6.  The automobile has a mass of 2 Mg and center of 
mass at G. Determine the towing force F required to move 
the car. Both the front and rear brakes are locked. 
Take ms = 0.3.

F

0.75 m

30�

0.3 m 0.6 m
G

A

C

B
1.50 m1 m

Probs. 8–5/6

8–7.  The block brake consists of a pin-connected lever and 
friction block at B. The coefficient of static friction between 
the wheel and the lever is ms = 0.3, and a torque of 5 N # m 
is applied to the wheel. Determine if the brake can hold the 
wheel stationary when the force applied to the lever is 
(a) P = 30 N, (b) P = 70 N.

200 mm

50 mm

400 mm

P
150 mm

O

B

A

5 N�m

Prob. 8–7
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8–13.  If a torque of M = 300 N # m is applied to the 
flywheel, determine the force that must be developed in the 
hydraulic cylinder CD to prevent the flywheel from rotating. 
The coefficient of static friction between the friction pad 
at B and the flywheel is ms = 0.4.

30�

0.6 m

60 mm

0.3 m M � 300 N�m

A

D

B
C

1 m

O

Prob. 8–13

8–14.  The car has a mass of 1.6 Mg and center of mass at G. 
If the coefficient of static friction between the shoulder of the 
road and the tires is ms = 0.4, determine the greatest slope u 
the shoulder can have without causing the car to slip or tip 
over if the car travels along the shoulder at constant velocity.

A

B
G

5 ft

2.5 ft

u

Prob. 8–14

8–11.  Determine the maximum weight W the man can lift 
with constant velocity using the pulley system, without and 
then with the “leading block” or pulley at A. The man has a 
weight of 200 lb and the coefficient of static friction between 
his feet and the ground is ms = 0.6.

(a)

45�
C

B

C

B

(b)

w

A

w

Prob. 8–11

*8–12.  The block brake is used to stop the wheel from 
rotating when the wheel is subjected to a couple moment M0. 
If the coefficient of static friction between the wheel and the 
block is ms, determine the smallest force P that should 
be applied.

O
M0

P
a

c

b

r

C

Prob. 8–12
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8–18.  The spool of wire having a weight of 300 lb rests on 
the ground at B and against the wall at A. Determine the 
force P required to begin pulling the wire horizontally off 
the spool. The coefficient of static friction between the 
spool and its points of contact is ms = 0.25.

8–19.  The spool of wire having a weight of 300 lb rests on 
the ground at B and against the wall at A. Determine the 
normal force acting on the spool at A if P = 300 lb. 
The coefficient of static friction between the spool and the 
ground at B is ms = 0.35. The wall at A is smooth.

A

B

O

3 ft

1 ft
P

Probs. 8–18/19

*8–20.  The ring has a mass of 0.5 kg and is resting on the 
surface of the table. In an effort to move the ring a normal 
force P from the finger is exerted on it. If this force is directed 
towards the ring’s center O as shown, determine its magnitude 
when the ring is on the verge of slipping at A. The coefficient 
of static friction at A is mA = 0.2 and at B, mB = 0.3.

75 mm

O

B

P

60�

A

Prob. 8–20

8–15.  The log has a coefficient of state friction of ms = 0.3 
with the ground and a weight of 40 lb>ft. If a man can pull 
on the rope with a maximum force of 80 lb, determine the 
greatest length l of log he can drag.

Prob. 8–15

*8–16.  The 180-lb man climbs up the ladder and stops at the 
position shown after he senses that the ladder is on the verge 
of slipping. Determine the inclination u of the ladder if the 
coefficient of static friction between the friction pad A and the 
ground is ms = 0.4. Assume the wall at B is smooth. The center 
of gravity for the man is at G. Neglect the weight of the ladder.

8–17.  The 180-lb man climbs up the ladder and stops at the 
position shown after he senses that the ladder is on the verge 
of slipping. Determine the coefficient of static friction 
between the friction pad at A and ground if the inclination of 
the ladder is u = 60� and the wall at B is smooth. The center 
of gravity for the man is at G. Neglect the weight of the ladder.

G

A

10 ft

3 ft

u

B

Probs. 8–16/17
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8–23.  The beam is supported by a pin at A and a roller at B 
which has negligible weight and a radius of 15 mm. If the 
coefficient of static friction is mB = mC = 0.3, determine 
the largest angle u of the incline so that the roller does not 
slip for any force P applied to the beam.

A

2 m 2 m

P

B

C
u

Prob. 8–23

*8–24.  The uniform thin pole has a weight of 30 lb and a 
length of 26 ft. If it is placed against the smooth wall and on 
the rough floor in the position d = 10 ft, will it remain in 
this position when it is released? The coefficient of static 
friction is ms = 0.3.

8–25.  The uniform pole has a weight of 30 lb and a length 
of 26 ft. Determine the maximum distance d it can be placed 
from the smooth wall and not slip. The coefficient of static 
friction between the floor and the pole is ms = 0.3.

A

d

B

26 ft

Probs. 8–24/25

8–21.  A man attempts to support a stack of books 
horizontally by applying a compressive force of F = 120 N 
to the ends of the stack with his hands. If each book has a 
mass of 0.95 kg, determine the greatest number of books 
that can be supported in the stack. The coefficient of static 
friction between his hands and a book is (ms)h = 0.6 and 
between any two books (ms)b = 0.4.

F � 120 NF � 120 N

Prob. 8–21

8–22.  The tongs are used to lift the 150-kg crate, whose 
center of mass is at G. Determine the least coefficient of 
static friction at the pivot blocks so that the crate can be lifted.

275 mm

300 mm

30�

500 mm

500 mm

A

C D

F

H

E

B

P

G

Prob. 8–22
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8–29.  The friction pawl is pinned at A and rests against the 
wheel at B. It allows freedom of movement when the wheel 
is rotating counterclockwise about C. Clockwise rotation is 
prevented due to friction of the pawl which tends to bind 
the wheel. If (ms)B =  0.6, determine the design angle u 
which will prevent clockwise motion for any value of 
applied moment M. Hint: Neglect the weight of the pawl so 
that it becomes a two-force member.

u

M

B

C

20�

A

Prob. 8–29

8–30.  Two blocks A and B have a weight of 10 lb and 6 lb, 
respectively. They are resting on the incline for which the 
coefficients of static friction are mA = 0.15 and mB = 0.25. 
Determine the incline angle u for which both blocks begin 
to slide. Also find the required stretch or compression in the 
connecting spring for this to occur. The spring has a stiffness 
of k = 2 lb>ft.
8–31.  Two blocks A and B have a weight of 10 lb and 6 lb, 
respectively. They are resting on the incline for which the 
coefficients of static friction are mA = 0.15 and mB = 0.25. 
Determine the angle u which will cause motion of one of 
the blocks. What is the friction force under each of the 
blocks when this occurs? The spring has a stiffness of 
k = 2 lb>ft and is originally unstretched.

u

A

Bk � 2 lb/ft

Probs. 8–30/31

8–26.  The block brake is used to stop the wheel from 
rotating when the wheel is subjected to a couple moment 
M0 = 360 N # m. If the coefficient of static friction between 
the wheel and the block is ms = 0.6, determine the smallest 
force P that should be applied.

8–27.  Solve Prob. 8–26 if the couple moment M0 is applied 
counterclockwise.

O

0.05 m

0.3 m

P
1 m

0.4 m

CC

M0

B

Probs. 8–26/27

*8–28.  A worker walks up the sloped roof that is defined 
by the curve y = (5e0.01x) ft, where x is in feet. Determine 
how high h he can go without slipping. The coefficient of 
static friction is ms = 0.6.

y

x

5 ft

h

Prob. 8–28
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*8–36.  Determine the minimum force P needed to push 
the tube E up the incline. The force acts parallel to the 
plane, and the coefficients of static friction at the contacting 
surfaces are mA = 0.2, mB = 0.3, and mC = 0.4. The 100-kg 
roller and 40-kg tube each have a radius of 150 mm.

A

E

B

C

30�P

Prob. 8–36

8–37.  The coefficients of static and kinetic friction between 
the drum and brake bar are ms = 0.4 and mk = 0.3, 
respectively. If M = 50 N # m and P = 85 N, determine the 
horizontal and vertical components of reaction at the pin O. 
Neglect the weight and thickness of the brake. The drum has 
a mass of 25 kg.

8–38.  The coefficient of static friction between the drum 
and brake bar is ms = 0.4. If the moment M = 35 N # m, 
determine the smallest force P that needs to be applied to 
the brake bar in order to prevent the drum from rotating. 
Also determine the corresponding horizontal and vertical 
components of reaction at pin O. Neglect the weight and 
thickness of the brake bar. The drum has a mass of 25 kg.

A

M

P

B
O 125 mm

700 mm

500 mm

300 mm

Probs. 8–37/38

*8–32.  Determine the smallest force P that must be 
applied in order to cause the 150-lb uniform crate to move. 
The coefficent of static friction between the crate and the 
floor is ms = 0.5.

8–33.  The man having a weight of 200 lb pushes 
horizontally on the crate. If the coefficient of static friction 
between the 450-lb crate and the floor is ms = 0.3 and 
between his shoes and the floor is m�s = 0.6, determine if he 
can move the crate.

3 ft

2 ft

P

Probs. 8–32/33

8–34.  The uniform hoop of weight W is subjected to the 
horizontal force P. Determine the coefficient of static 
friction between the hoop and the surface of A and B if the 
hoop is on the verge of rotating.

8–35.  Determine the maximum horizontal force P that 
can be applied to the 30-lb hoop without causing it to rotate. 
The coefficient of static friction between the hoop and the 
surfaces A and B is ms = 0.2. Take r = 300 mm.

r

A

B

P

B

A

Probs. 8–34/35
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8–41.  If the coefficient of static friction at A and B is 
ms = 0.6, determine the maximum angle u so that the frame 
remains in equilbrium, regardless of the mass of the cylinder. 
Neglect the mass of the rods.

C

L L

A B

uu

Prob. 8–41
8–42.  The 100-kg disk rests on a surface for which mB = 0.2. 
Determine the smallest vertical force P that can be applied 
tangentially to the disk which will cause motion to impend.

0.5 m

B

A

P

Prob. 8–42
8–43.  Investigate whether the equilibrium can be 
maintained. The uniform block has a mass of 500 kg, and 
the coefficient of static friction is ms = 0.3.

A

800 mm

200 mm3

4
5

600 mmB

Prob. 8–43

8–39.  Determine the smallest coefficient of static friction 
at both A and B needed to hold the uniform 100-lb bar 
in  equilibrium. Neglect the thickness of the bar. 
Take mA = mB = m.

13 ft

3 ft

B

A

5 ft

Prob. 8–39

*8–40.  If u = 30�, determine the minimum coefficient of 
static friction at A and B so that equilibrium of the 
supporting frame is maintained regardless of the mass of 
the cylinder. Neglect the mass of the rods.

C

L L

A B

uu

Prob. 8–40
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8–46.  The beam AB has a negligible mass and thickness 
and is subjected to a triangular distributed loading. It is 
supported at one end by a pin and at the other end by a post 
having a mass of 50 kg and negligible thickness. Determine 
the two coefficients of static friction at B and at C so that 
when the magnitude of the applied force is increased to  
P = 150 N, the post slips at both B and C simultaneously.

2 m
400 mm

800 N/m

C

B

300 mm

A
P

4
35

Prob. 8–46

8–47.  Crates A and B weigh 200 lb and 150 lb, respectively. 
They are connected together with a cable and placed on the 
inclined plane. If the angle u is gradually increased, 
determine u when the crates begin to slide. The coefficients 
of static friction between the crates and the plane are 
mA = 0.25 and mB = 0.35.

B

A
C

D

u

Prob. 8–47

*8–44.  The homogenous semicylinder has a mass of 20 kg 
and mass center at G. If force P is applied at the edge, and 
r = 300 mm, determine the angle u at which the semicylinder 
is on the verge of slipping. The coefficient of static friction 
between the plane and the cylinder is ms = 0.3. Also, what is 
the corresponding force P for this case?

Gu

P

r

4r
3p

Prob. 8–44

8–45.  The beam AB has a negligible mass and thickness 
and is subjected to a triangular distributed loading. It is 
supported at one end by a pin and at the other end by a post 
having a mass of 50 kg and negligible thickness. Determine 
the minimum force P needed to move the post. The 
coefficients of static friction at B and C are mB = 0.4 and 
mC = 0.2, respectively.

2 m
400 mm

800 N/m

C

B

300 mm

A
P

4
35

Prob. 8–45
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8–51.  Beam AB has a negligible mass and thickness, and 
supports the 200-kg uniform block. It is pinned at A and 
rests on the top of a post, having a mass of 20 kg and 
negligible thickness. Determine the minimum force P 
needed to move the post. The coefficients of static friction 
at B and C are mB = 0.4 and mC = 0.2, respectively.

*8–52.  Beam AB has a negligible mass and thickness, and 
supports the 200-kg uniform block. It is pinned at A and 
rests on the top of a post, having a mass of 20 kg and 
negligible thickness. Determine the two coefficients of static 
friction at B and at C so that when the magnitude of the 
applied force is increased to P = 300 N, the post slips at 
both B and C simultaneously.

1.5 m 1.5 m

C

B

0.75 m

1 m

A P

4
35

Probs. 8–51/52

8–53.  Determine the smallest couple moment that can be 
applied to the 150-lb wheel that will cause impending 
motion. The uniform concrete block has a weight of 300 lb. 
The coefficients of static friction are mA = 0.2, mB = 0.3, 
and between the concrete block and the floor, m = 0.4.

1 ft

5 ft
B

A

1.5 ft

M

Prob. 8–53

*8–48.  Two blocks A and B, each having a mass of 5 kg, 
are connected by the linkage shown. If the coefficient of 
static friction  at the contacting surfaces is ms = 0.5, 
determine the largest force P that can be applied to pin C of 
the linkage without causing the blocks to move. Neglect the 
weight of the links.

P

30�
30�

30�

A

C
B

Prob. 8–48

8–49.  The uniform crate has a mass of 150 kg. If the 
coefficient of static friction between the crate and the floor 
is ms = 0.2, determine whether the 85-kg man can move the 
crate. The coefficient of static friction between his shoes and 
the floor is m�s = 0.4. Assume the man only exerts a 
horizontal force on the crate.

8–50.  The uniform crate has a mass of 150 kg. If the coefficient 
of static friction between the crate and the floor is ms = 0.2, 
determine the smallest mass of the man so he can move the 
crate. The coefficient of static friction between his shoes and 
the floor is m�s = 0.45. Assume the man exerts only a 
horizontal force on the crate. 

2.4 m

1.2 m

1.6 m

Probs. 8–49/50
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*8–56.  The disk has a weight W and lies on a plane that 
has a coefficient of static friction m. Determine the 
maximum height h to which the plane can be lifted without 
causing the disk to slip.

z

x

y

2a

a
h

Prob. 8–56

8–57.  The man has a weight of 200 lb, and the coefficient 
of static friction between his shoes and the floor is ms = 0.5. 
Determine where he should position his center of gravity G 
at d in order to exert the maximum horizontal force on the 
door. What is this force?

d

3 ft

G

Prob. 8–57

8–54.  Determine the greatest angle u so that the ladder 
does not slip when it supports the 75-kg man in the position 
shown. The surface is rather slippery, where the coefficient 
of static friction at A and B is ms = 0.3.

A B

C

G

2.5 m

0.25 m

2.5 m

u

Prob. 8–54

8–55.  The wheel weighs 20 lb and rests on a surface for 
which mB = 0.2. A cord wrapped around it is attached to 
the top of the 30-lb homogeneous block. If the coefficient of 
static friction at D is mD = 0.3, determine the smallest 
vertical force that can be applied tangentially to the wheel 
which will cause motion to impend.

1.5 ft

1.5 ft

C

DB

A

P

3 ft

Prob. 8–55
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C8–1.  Draw the free-body diagrams of each of the two 
members of this friction tong used to lift the 100-kg block.

C8–1 (© Russell C. Hibbeler)

C8–2.  Show how to find the force needed to move the top 
block. Use reasonable data and use an equilibrium analysis 
to explain your answer.

C8–2 (© Russell C. Hibbeler)

C8–3.  The rope is used to tow the refrigerator. Is it best to 
pull slightly up on the rope as shown, pull horizontally, or 
pull somewhat downwards? Also, is it best to attach the 
rope at a high position as shown, or at a lower position? Do 
an equilibrium analysis to explain your answer.

C8–4.  The rope is used to tow the refrigerator. In order to 
prevent yourself from slipping while towing, is it best to pull 
up as shown, pull horizontally, or pull downwards on the 
rope? Do an equilibrium analysis to explain your answer.

C8–3/4 (© Russell C. Hibbeler)

C8–5.  Explain how to find the maximum force this man 
can exert on the vehicle. Use reasonable data and use an 
equilibrium analysis to explain your answer.

C8–5 (© Russell C. Hibbeler)

CONCEPTUAL PROBLEMS
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8.3  Wedges

A wedge is a simple machine that is often used to transform an applied 
force into much larger forces, directed at approximately right angles to 
the applied force. Wedges also can be used to slightly move or adjust 
heavy loads.

Consider, for example, the wedge shown in Fig. 8–12a, which is used to 
lift the block by applying a force to the wedge. Free-body diagrams of the 
block and wedge are shown in Fig. 8–12b. Here we have excluded the 
weight of the wedge since it is usually small compared to the weight W of 
the block. Also, note that the frictional forces F1 and F2 must oppose the 
motion of the wedge. Likewise, the frictional force F3 of the wall on the 
block must act downward so as to oppose the block’s upward motion. 
The locations of the resultant normal forces are not important in the 
force analysis since neither the block nor wedge will “tip.” Hence the 
moment equilibrium equations will not be considered. There are seven 
unknowns, consisting of the applied force P, needed to cause motion of 
the wedge, and six normal and frictional forces. The seven available 
equations consist of four force equilibrium equations, �Fx = 0, �Fy = 0 
applied to the wedge and block, and three frictional equations, F = mN, 
applied at each surface of contact.

If the block is to be lowered, then the frictional forces will all act in a 
sense opposite to that shown in Fig. 8–12b. Provided the coefficient of 
friction is very small or the wedge angle u is large, then the applied 
force P must act to the right to hold the block. Otherwise, P may have a 
reverse sense of direction in order to pull on the wedge to remove it. If P 
is not applied and friction forces hold the block in place, then the wedge is 
referred to as self-locking.

Wedges are often used to adjust the 
elevation of structural or mechanical parts. 
Also, they provide stability for objects 
such as this pipe. (© Russell C. Hibbeler)

(a)

Impending
 

motion

P

W

u

Fig. 8–12

F3

N3

(b)

W

F2

N2

P

F2

N2

F1

N1

u
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The uniform stone in Fig. 8–13a has a mass of 500 kg and is held in the 
horizontal position using a wedge at B. If the coefficient of static 
friction is ms = 0.3 at the surfaces of contact, determine the minimum 
force P needed to remove the wedge. Assume that the stone does not 
slip at A.

(a)

P

7�

BA

C

1 m

FA

0.3NB

P

7�

0.5 m

(b)

0.5 m

NBNA

7�

7� 7�

NC

NB

0.3NB

0.3NC

4905 N

A

Impending
motion

Fig. 8–13 

Solution
The minimum force P requires F = msN at the surfaces of contact with 
the wedge. The free-body diagrams of the stone and wedge are shown 
in Fig. 8–13b. On the wedge the friction force opposes the impending 
motion, and on the stone at A, FA … msNA, since slipping does not occur 
there. There are five unknowns. Three equilibrium equations for the 
stone and two for the wedge are available for solution. From the 
free-body diagram of the stone,

a+ �MA = 0; -4905 N(0.5 m) + (NB cos 7� N)(1 m)

 + (0.3NB sin 7� N)(1 m) = 0
NB = 2383.1 N

Using this result for the wedge, we have

+ c �Fy = 0;  NC - 2383.1 cos 7� N - 0.3(2383.1 sin 7� N) = 0

NC = 2452.5 N

S+ �Fx = 0;  2383.1 sin 7� N - 0.3(2383.1 cos 7� N) +

 P - 0.3(2452.5 N) = 0

P = 1154.9 N = 1.15 kN� Ans.

NOTE: Since P is positive, indeed the wedge must be pulled out. If P 
were zero, the wedge would remain in place (self-locking) and the 
frictional forces developed at B and C would satisfy FB 6 msNB and 
FC 6 msNC.

example   8.6
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r

l
A

B

2pr

r

A

B

l

(b)

B

A
u

(a)

Fig. 8–14 

8.4  Frictional Forces on Screws

In most cases, screws are used as fasteners; however, in many types of 
machines they are incorporated to transmit power or motion from one 
part of the machine to another. A square-threaded screw is commonly 
used for the latter purpose, especially when large forces are applied along 
its axis. In this section, we will analyze the forces acting on square-threaded 
screws. The analysis of other types of screws, such as the V-thread, is based 
on these same principles.

For analysis, a square-threaded screw, as in Fig. 8–14, can be considered 
a cylinder having an inclined square ridge or thread wrapped around it. If 
we unwind the thread by one revolution, as shown in Fig. 8–14b, the slope 
or the lead angle u is determined from u = tan-1(l>2pr). Here l and 2pr 
are the vertical and horizontal distances between A and B, where r is the 
mean radius of the thread. The distance l is called the lead of the screw 
and it is equivalent to the distance the screw advances when it turns one 
revolution.

Upward Impending Motion.  Let us now consider the case of 
the square-threaded screw jack in Fig. 8–15 that is subjected to upward 
impending motion caused by the applied torsional moment *M. A free-
body diagram of the entire unraveled thread h in contact with the jack can 
be represented as a block, as shown in Fig. 8–16a. The force W is the 
vertical force acting on the thread or the axial force applied to the shaft, 
Fig. 8–15, and M>r is the resultant horizontal force produced by the 
couple moment M about the axis of the shaft. The reaction R of the 
groove on the thread has both frictional and normal components, where 
F = ms N. The angle of static friction is fs = tan-1(F>N) = tan-1ms. 
Applying the force equations of equilibrium along the horizontal and 
vertical axes, we have

 S
+

�Fx = 0;	  M>r - R sin (u + fs) = 0

+ c �Fy = 0;	  R cos (u + fs) - W = 0

Eliminating R from these equations, we obtain

	 M = rW tan (u + fs) � (8–3)

*For applications, M is developed by applying a horizontal force P at a right angle to the 

end of a lever that would be fixed to the screw.

Square-threaded screws find 
applications on valves, jacks, 
and vises, where particularly 
large forces must be developed 
along the axis of the screw.  
(© Russell C. Hibbeler)
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Self-Locking Screw.  A screw is said to be self-locking if it remains 
in place under any axial load W when the moment M is removed. For this 
to occur, the direction of the frictional force must be reversed so that R 
acts on the other side of N. Here the angle of static friction fs becomes 
greater than or equal to u, Fig. 8–16d. If fs = u, Fig. 8–16b, then R will act 
vertically to balance W, and the screw will be on the verge of winding 
downward.

Downward Impending Motion,  (U + Fs). If the screw is not 
self-locking, it is necessary to apply a moment M� to prevent the screw 
from winding downward. Here, a horizontal force M�>r is required to 
push against the thread to prevent it from sliding down the plane, 
Fig. 8–16c. Using the same procedure as before, the magnitude of the 
moment M� required to prevent this unwinding is

	 M� = rW tan (u - fs) � (8–4)

Downward Impending Motion,  (Fs + U). If a screw is self-
locking, a couple moment M� must be applied to the screw in the opposite 
direction to wind the screw downward (fs 7  u). This causes a reverse 
horizontal force M�>r that pushes the thread down as indicated in  
Fig. 8–16d. In this case, we obtain

	 M� = rW tan (fs - u) � (8–5)

If motion of the screw occurs, Eqs. 8–3, 8–4, and 8–5 can be applied by 
simply replacing fs with fk.

W

h

r

M

Fig. 8–15 

W

Upward screw motion

N

F

R

(a)

n

M/r

u

u

fs

W

Self-locking screw (u � fs)
(on the verge of rotating downward)

R

(b)

n

u

fs � u

W

Downward screw motion (u � fs)

M¿/ r

n

(c)

R
fs

u

u

W

Downward screw motion (u � fs)

(d)

M–/ r

R

n

u

u

fs

Fig. 8–16 
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Example   8.7

The turnbuckle shown in Fig. 8–17 has a square thread with a mean 
radius of 5 mm and a lead of 2 mm. If the coefficient of static friction 
between the screw and the turnbuckle is ms = 0.25, determine the 
moment M that must be applied to draw the end screws closer 
together.

M

2 kN

2 kN(© Russell C. Hibbeler)

Fig. 8–17 

Solution
The moment can be obtained by applying Eq. 8–3. Since friction at 
two screws must be overcome, this requires

	 M = 2[rW tan(u + fs)]� (1)

Here W = 2000 N, fs = tan-1ms = tan-1(0.25) = 14.04�, r = 5 mm, 
and  u = tan-1(l>2pr) = tan-1(2 mm>[2p(5 mm)]) = 3.64�. Substi
tuting these values into Eq. 1 and solving gives

	  M = 2[(2000 N)(5 mm) tan(14.04� + 3.64�)]�

	  = 6374.7 N # mm = 6.37 N # m � Ans.

NOTE: When the moment is removed, the turnbuckle will be  
self-locking; i.e., it will not unscrew since fs 7 u.
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8–58.  Determine the largest angle u that will cause the 
wedge to be self-locking regardless of the magnitude of 
horizontal force P applied to the blocks. The coefficient of 
static friction between the wedge and the blocks is ms = 0.3. 
Neglect the weight of the wedge.

P P
u

Prob. 8–58

8–59.  If the beam AD is loaded as shown, determine the 
horizontal force P which must be applied to the wedge in 
order to remove it from under the beam. The coefficients of 
static friction at the wedge’s top and bottom surfaces are 
mCA = 0.25 and mCB = 0.35, respectively. If P = 0, is the 
wedge self-locking? Neglect the weight and size of the 
wedge and the thickness of the beam.

3 m

A
P

10�

4 kN/m

C
B

4 m

D

Prob. 8–59

*8–60.  The wedge is used to level the member. Determine 
the horizontal force P that must be applied to begin to 
push  the wedge forward. The coefficient of static friction 
between the wedge and the two surfaces of contact is 
ms = 0.2. Neglect the weight of the wedge.

2 m

1 m

500 N/m

A

B

C

P

5�

Prob. 8–60

8–61.  The two blocks used in a measuring device have 
negligible weight. If the spring is compressed 5 in. when in 
the position shown, determine the smallest axial force P 
which the adjustment screw must exert on B in order to 
start the movement of B downward. The end of the screw is  
smooth and the coefficient of static friction at all other 
points of contact is ms = 0.3.

60�

45�

k = 20 lb/ in.

B

A

P

Prob. 8–61

8–62.  If P = 250 N, determine the required minimum 
compression in the spring so that the wedge will not move 
to the right. Neglect the weight of A and B. The coefficient 
of static friction for all contacting surfaces is ms = 0.35. 
Neglect friction at the rollers.

8–63.  Determine the minimum applied force P required to 
move wedge A to the right. The spring is compressed a 
distance of 175 mm. Neglect the weight of A and B. The 
coefficient of static friction for all contacting surfaces is 
ms = 0.35. Neglect friction at the rollers.

k � 15 kN/m

A
P

B

10�

Probs. 8–62/63

PROBLEMS
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*8–64.  If the coefficient of static friction between all the 
surfaces of contact is ms, determine the force P that must be 
applied to the wedge in order to lift the block having a 
weight W.

P
A

C

B

a

Prob. 8–64

8–65.  Determine the smallest force P needed to lift the 
3000-lb load. The coefficient of static friction between A 
and C and between B and D is ms = 0.3, and between A and 
B m�s = 0.4. Neglect the weight of each wedge.

8–66.  Determine the reversed horizontal force −P needed 
to pull out wedge A. The coefficient of static friction between 
A and C and between B and D is ms = 0.2, and between A 
and B m�s = 0.1. Neglect the weight of each wedge.

3000 lb

15P
A

B
D

C

Probs. 8–65/66

8–67.  If the clamping force at G is 900 N, determine the 
horizontal force F that must be applied perpendicular to the 
handle of the lever at E. The mean diameter and lead of both 
single square-threaded screws at C and D are 25 mm and 
5 mm, respectively. The coefficient of static friction is ms = 0.3.

*8–68.  If a horizontal force of F = 50 N is applied 
perpendicular to the handle of the lever at E, determine the 
clamping force developed at G. The mean diameter and lead 
of the single square-threaded screw at C and D are 25 mm and 
5 mm, respectively. The coefficient of static friction is ms = 0.3.

200 mm

E

D

CG

200 mm

125 mm

B

A

Probs. 8–67/68

8–69.  The column is used to support the upper floor. If a 
force F = 80 N is applied perpendicular to the handle to 
tighten the screw, determine the compressive force in the 
column. The square-threaded screw on the jack has a 
coefficient of static friction of ms = 0.4, mean diameter of 
25 mm, and a lead of 3 mm.

8–70.  If the force F is removed from the handle of the jack 
in Prob. 8–69, determine if the screw is self-locking.

0.5 m

F

Probs. 8–69/70
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8–71.  If couple forces of F = 10 lb are applied perpendicular 
to the lever of the clamp at A and B, determine the clamping 
force on the boards. The single square-threaded screw of the 
clamp has a mean diameter of 1 in. and a lead of 0.25 in. The 
coefficient of static friction is ms = 0.3.

*8–72.  If the clamping force on the boards is 600 lb, 
determine the required magnitude of the couple forces that 
must be applied perpendicular to the lever AB of the clamp 
at A and B in order to loosen the screw. The single square-
threaded screw has a mean diameter of 1 in. and a lead of 
0.25 in. The coefficient of static friction is ms = 0.3.

6 in.6 in.

BA

Probs. 8–71/72

8–73.  Prove that the lead l must be less than 2prms for the 
jack screw shown in Fig. 8–15 to be “self-locking.”

8–74.  The square-threaded bolt is used to join two plates 
together. If the bolt has a mean diameter of d = 20 mm and 
a lead of l = 3 mm, determine the smallest torque M required 
to loosen the bolt if the tension in the bolt is T = 40  kN. 
The coefficient of static friction between the threads and the 
bolt is ms = 0.15.

M

d

Prob. 8–74

8–75.  The shaft has a square-threaded screw with a lead of 
8 mm and a mean radius of 15 mm. If it is in contact with a 
plate gear having a mean radius of 30 mm, determine the 
resisting torque M on the plate gear which can be overcome 
if a torque of 7 N # m is applied to the shaft. The coefficient 
of static friction at the screw is mB = 0.2. Neglect friction of 
the bearings located at A and B.

15 mm

M

30 mm

B

A

7 N�m

Prob. 8–75

*8–76.  If couple forces of F = 35 N are applied to the 
handle of the machinist’s vise, determine the compressive 
force developed in the block. Neglect friction at the bearing A. 
The guide at B is smooth. The single square-threaded screw 
has a mean radius of 6 mm and a lead of 8 mm, and the 
coefficient of static friction is ms = 0.27.

125 mm

125 mm

�F

F

A B

Prob. 8–76
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8–77.  The square-threaded screw has a mean diameter of 
20 mm and a lead of 4 mm. If the weight of the plate A is 
5  lb, determine the smallest coefficient of static friction 
between the screw and the plate so that the plate does not 
travel down the screw when the plate is suspended as shown.

A

Prob. 8–77

8–78.  The device is used to pull the battery cable terminal 
C from the post of a battery. If the required pulling force is 
85 lb, determine the torque M that must be applied to the 
handle on the screw to tighten it. The screw has square 
threads, a mean diameter of 0.2 in., a lead of 0.08 in., and the 
coefficient of static friction is ms = 0.5.

C

A

B

M

Prob. 8–78

8–79.  Determine the clamping force on the board A if 
the screw is tightened with a torque of M = 8 N # m. The 
square-threaded screw has a mean radius of 10 mm and a 
lead of 3 mm, and the coefficient of static friction is 
ms = 0.35.

*8–80.  If the required clamping force at the board A is to 
be 2 kN, determine the torque M that must be applied to the  
screw to tighten it down. The square-threaded screw has a 
mean radius of 10 mm and a lead of 3 mm, and the coefficient 
of static friction is ms = 0.35.

M

A

Probs. 8–79/80

8–81.  If a horizontal force of P = 100 N is applied 
perpendicular to the handle of the lever at A, determine 
the compressive force F exerted on the material. Each 
single square-threaded screw has a mean diameter of 
25  mm and a lead of 7.5 mm. The coefficient of static 
friction at all contacting surfaces of the wedges is 
ms = 0.2, and the  coefficient of static friction at the screw 
is m�s = 0.15.

8–82.  Determine the horizontal force P that must be 
applied perpendicular to the handle of the lever at A in 
order to develop a compressive force of 12 kN on the 
material. Each single square-threaded screw has a mean 
diameter of 25 mm and a lead of 7.5 mm. The coefficient of 
static friction at all contacting surfaces of the wedges is 
ms = 0.2, and the coefficient of static friction at the screw is 
ms� = 0.15.

A

B

250 mm15� 15�C

Probs. 8–81/82
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8.5  Frictional Forces on Flat Belts

Whenever belt drives or band brakes are designed, it is necessary to 
determine the frictional forces developed between the belt and its 
contacting surface. In this section we will analyze the frictional forces 
acting on a flat belt, although the analysis of other types of belts, such as 
the V-belt, is based on similar principles.

Consider the flat belt shown in Fig. 8–18a, which passes over a fixed 
curved surface. The total angle of belt-to-surface contact in radians is b, 
and the coefficient of friction between the two surfaces is m. We wish to 
determine the tension T2 in the belt, which is needed to pull the belt 
counterclockwise over the surface, and thereby overcome both the 
frictional forces at the surface of contact and the tension T1 in the other 
end of the belt. Obviously, T2 7 T1.

Frictional Analysis.  A free-body diagram of the belt segment in 
contact with the surface is shown in Fig. 8–18b. As shown, the normal and 
frictional forces, acting at different points along the belt, will vary both in 
magnitude and direction. Due to this unknown distribution, the analysis 
of the problem will first require a study of the forces acting on a 
differential element of the belt.

A free-body diagram of an element having a length ds is shown in 
Fig.  8–18c. Assuming either impending motion or motion of the belt, 
the magnitude of the frictional force dF = m dN. This force opposes the 
sliding motion of the belt, and so it will increase the magnitude of the 
tensile force acting in the belt by dT. Applying the two force equations 
of equilibrium, we have

R + �Fx = 0;   T cosa du

2
b + m dN - (T + dT ) cosa du

2
b = 0

+ Q�Fy = 0;  dN - (T + dT ) sina du

2
b - T sina du

2
b = 0

Since du is of infinitesimal size, sin(du>2) = du>2 and cos(du>2) = 1. 
Also, the product of the two infinitesimals dT and du>2 may be neglected 
when compared to infinitesimals of the first order. As a result, these two 
equations become

m dN = dT

and

dN = T du

Eliminating dN yields

dT

T
= m du

Motion or impending
motion of belt relative
to surface

(a)

r

T2

T1

b

u

(b)

T1

T2 u

dF � m dN
ds

(c)

T � dT

T

y

dN

x

du
2

du
2

du
2

du
2

Fig. 8–18
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Motion or impending
motion of belt relative
to surface

(a)

r

T2

T1

b

u

Fig. 8–18 (Repeated)

Flat or V-belts are often used to transmit 
the torque developed by a motor to a 
wheel attached to a pump, fan, or blower.   
(© Russell C. Hibbeler)

Integrating this equation between all the points of contact that the belt 
makes with the drum, and noting that T = T1 at u = 0 and T = T2 at 
u = b, yields

 L
T2

T1

 
dT

T
= mL

b

0
du

 ln 
T2

T1
= mb

Solving for T2, we obtain

	 T2 = T1e
mb � (8–6)

where

T2, T1 = belt tensions; T1 opposes the direction of motion (or 
impending motion) of the belt measured relative to the 
surface, while T2 acts in the direction of the relative belt 
motion (or impending motion); because of friction, 
T2 7 T1

m = coefficient of static or kinetic friction between the belt 
and the surface of contact

b = angle of belt-to-surface contact, measured in radians

e = 2.718c, base of the natural logarithm

Note that T2 is independent of the radius of the drum, and instead it is 
a function of the angle of belt to surface contact, b. As a result, this 
equation is valid for flat belts passing over any curved contacting surface.
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example   8.8

The maximum tension that can be developed in the cord shown in  
Fig. 8–19a is 500 N. If the pulley at A is free to rotate and the coefficient 
of static friction at the fixed drums B and C is ms = 0.25, determine 
the largest mass of the cylinder that can be lifted by the cord.

T

A

(a)

CB
D

45� 45�

SOLUTION
Lifting the cylinder, which has a weight W = mg, causes the cord to 
move counterclockwise over the drums at B and C; hence, the 
maximum tension T2 in the cord occurs at D. Thus, F = T2 = 500 N. A 
section of the cord passing over the drum at B is shown in  
Fig. 8–19b. Since 180� = p rad the angle of contact between the drum 
and the cord is b = (135�>180�)p = 3p>4 rad. Using Eq. 8–6, we have

T2 = T1e
msb;       500 N = T1e

0.25[(3>4)p]

Hence,

T1 =
500 N

e0.25[(3>4)p]
=

500 N

1.80
= 277.4 N

Since the pulley at A is free to rotate, equilibrium requires that the 
tension in the cord remains the same on both sides of the pulley.

The section of the cord passing over the drum at C is shown in  
Fig. 8–19c. The weight W 6 277.4 N. Why? Applying Eq. 8–6, we obtain

T2 = T1e
msb;    277.4 N = We0.25[(3>4)p]

 W = 153.9 N

so that

 m =
W
g

=
153.9 N

9.81 m>s2

	  = 15.7 kg � Ans.

135�

Impending
motion

B

500 N
T1

(b)

W � mg

277.4 N

135�

Impending
motion

(c)

C

Fig. 8–19
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8–83.  A cylinder having a mass of 250 kg is to be supported 
by the cord that wraps over the pipe. Determine the smallest 
vertical force F needed to support the load if the cord passes 
(a) once over the pipe, b = 180�, and (b) two times over the 
pipe, b = 540�. Take ms = 0.2.

*8–84.  A cylinder having a mass of 250 kg is to be supported 
by the cord that wraps over the pipe. Determine the largest 
vertical force F that can be applied to the cord without moving 
the cylinder. The cord passes (a) once over the pipe, b = 180�, 
and (b) two times over the pipe, b = 540�. Take ms = 0.2.

F

Probs. 8–83/84
8–85.  A 180-lb farmer tries to restrain the cow from escaping 
by wrapping the rope two turns around the tree trunk as shown. 
If the cow exerts a force of 250 lb on the rope, determine if the 
farmer can successfully restrain the cow. The coefficient of 
static friction between the rope and the tree trunk is ms = 0.15, 
and between the farmer’s shoes and the ground m�s = 0.3.

Prob. 8–85

8–86.  The 100-lb boy at A is suspended from the cable 
that passes over the quarter circular cliff rock. Determine if 
it is possible for the 185-lb woman to hoist him up; and if 
this is possible, what smallest force must she exert on the 
horizontal cable? The coefficient of static friction between 
the cable and the rock is ms = 0.2, and between the shoes of 
the woman and the ground m�s = 0.8.

A

Prob. 8–86

8–87.  The 100-lb boy at A is suspended from the cable 
that passes over the quarter circular cliff rock. What 
horizontal force must the woman at A exert on the cable in 
order to let the boy descend at constant velocity? The 
coefficients of static and kinetic friction between the cable 
and the rock are ms = 0.4 and mk = 0.35, respectively.

A

Prob. 8–87

Problems
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8–90.  The smooth beam is being hoisted using a rope that 
is wrapped around the beam and passes through a ring at A 
as shown. If the end of the rope is subjected to a tension T 
and the coefficient of static friction between the rope and 
ring is ms = 0.3, determine the smallest angle of u for 
equilibrium.

u

A

T

Prob. 8–90

8–91.  The boat has a weight of 500 lb and is held in 
position off the side of a ship by the spars at A and B. A man 
having a weight of 130 lb gets in the boat, wraps a rope 
around an overhead boom at C, and ties it to the end of the 
boat as shown. If the boat is disconnected from the spars, 
determine the minimum number of half turns the rope must 
make around the boom so that the boat can be safely 
lowered into the water at constant velocity. Also, what is the 
normal force between the boat and the man? The coefficient 
of kinetic friction between the rope and the  boom is 
ms = 0.15. Hint: The problem requires that the normal force 
between the man’s feet and the boat be as small as possible.

A

C

B

Prob. 8–91

*8–88.  The uniform concrete pipe has a weight of 800 lb 
and is unloaded slowly from the truck bed using the rope 
and skids shown. If the coefficient of kinetic friction 
between the rope and pipe is mk =  0.3, determine the force 
the worker must exert on the rope to lower the pipe at 
constant speed. There is a pulley at B, and the pipe does not 
slip on the skids. The lower portion of the rope is parallel to 
the skids.

15�

B

30�

Prob. 8–88

8–89.  A cable is attached to the 20-kg plate B, passes over 
a fixed peg at C, and is attached to the block at A. Using the 
coefficients of static friction shown, determine the smallest 
mass of block A so that it will prevent sliding motion of B 
down the plane.

30�
B

A
mA � 0.2

mC � 0.3
C

mB � 0.3

Prob. 8–89
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*8–96.  Determine the maximum and the minimum values 
of weight W which may be applied without causing the 50-lb 
block to slip. The coefficient of static friction between the 
block and the plane is ms = 0.2, and between the rope and 
the drum D is m=s = 0.3.

�

Prob. 8–96

8–97.  Granular material, having a density of 1.5 Mg>m3, is 
transported on a conveyor belt that slides over the fixed 
surface, having a coefficient of kinetic friction of mk = 0.3. 
Operation of the belt is provided by a motor that supplies a 
torque M to wheel A. The wheel at B is free to turn, and the 
coefficient of static friction between the wheel at A and the 
belt is mA = 0.4. If the belt is subjected to a pretension of 
300 N when no load is on the belt, determine the greatest 
volume V of material that is permitted on the belt at any 
time without allowing the belt to stop. What is the torque M 
required to drive the belt when it is subjected to this 
maximum load?

100 mm
100 mm

B A

M

mk � 0.3 mA � 0.4

Prob. 8–97

*8–92.  Determine the force P that must be applied to the 
handle of the lever so that the wheel is on the verge of 
turning if M = 300 N # m. The coefficient of static friction 
between the belt and the wheel is ms = 0.3.

8–93.  If a force of P = 30 N is applied to the handle of the 
lever, determine the largest couple moment M that can be 
resisted so that the wheel does not turn. The coefficient of 
static friction between the belt and the wheel is ms = 0.3.

700 mm60 mm

25 mm

C

300 mm

B

M

A

D

P

Probs. 8–92/93

8–94.  A minimum force of P = 50 lb is required to hold  
the cylinder from slipping against the belt and the wall. 
Determine the weight of the cylinder if the coefficient of 
friction between the belt and cylinder is ms = 0.3 and 
slipping does not occur at the wall.

8–95.   The cylinder weighs 10 lb and is held in equilibrium 
by the belt and wall. If slipping does not occur at the wall, 
determine the minimum vertical force P which must be 
applied to the belt for equilibrium. The coefficient of static  
friction between the belt and the cylinder is ms = 0.25.

P

B A

0.1 ft

30�

O

Probs. 8–94/95
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*8–100.  Blocks A and B have a mass of 7 kg and 10 kg, 
respectively. Using the coefficients of static friction 
indicated, determine the largest vertical force P which can 
be applied to the cord without causing motion.

P

300 mm

400 mm

A
C

D

B

mC � 0.4

mB � 0.4

mA � 0.3

mD � 0.1

Prob. 8–100

8–101.  The uniform bar AB is supported by a rope that 
passes over a frictionless pulley at C and a fixed peg at D. If 
the coefficient of static friction between the rope and the 
peg is mD = 0.3, determine the smallest distance x from the 
end of the bar at which a 20-N force may be placed and not 
cause the bar to move.

1 m

20 N

A

x

C D

B

Prob. 8–101

8–98.  Show that the frictional relationship between the 
belt tensions, the coefficient of friction m, and the angular 
contacts a and b for the V-belt is T2 = T1e

mb>sin(a>2).

T2 T1

Impending
motion a

b

Prob. 8–98

8–99.  The wheel is subjected to a torque of M = 50 N # m. 
If the coefficient of kinetic friction between the band brake 
and the rim of the wheel is mk = 0.3, determine the smallest 
horizontal force P that must be applied to the lever to stop 
the wheel.

25 mm
50 mm

400 mm

100 mm

M

C

A

B

P

150 mm

Prob. 8–99
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8–105.  A 10-kg cylinder D, which is attached to a small 
pulley B, is placed on the cord as shown. Determine the 
largest angles u so that the cord does not slip over the peg 
at  C. The cylinder at E also has a mass of 10 kg, and the 
coefficient of static friction between the cord and the peg 
is ms = 0.1.

A

B

D

E

Cu u

Prob. 8–105

8–106.	 A conveyer belt is used to transfer granular 
material and the frictional resistance on the top of the belt 
is F = 500 N. Determine the smallest stretch of the spring 
attached to the moveable axle of the idle pulley B so that 
the belt does not slip at the drive pulley A when the 
torque M is applied. What minimum torque M is required to 
keep the belt moving? The coefficient of static friction 
between the belt and the wheel at A is ms = 0.2.

0.1 m
0.1 m

F � 500 N

k � 4 kN/m
A

BM

Prob. 8–106

8–102.  The belt on the portable dryer wraps around the 
drum D, idler pulley A, and motor pulley B. If the motor 
can develop a maximum torque of M = 0.80 N # m, 
determine the smallest spring tension required to hold the 
belt from slipping. The coefficient of static friction between 
the belt and the drum and motor pulley is ms = 0.3.

50 mm

20 mm

A

B

C

D

50 mm

45�

30�
M � 0.8 N�m

Prob. 8–102

8–103.  Blocks A and B weigh 50 lb and 30 lb, respectively. 
Using the coefficients of static friction indicated, determine 
the greatest weight of block D without causing motion.

A

B

C
D

m � 0.5

mBA � 0.6

mAC � 0.4

20�

Prob. 8–103

*8–104.  The 20-kg motor has a center of gravity at G and 
is pin connected at C to maintain a tension in the drive belt. 
Determine the smallest counterclockwise twist or torque M 
that must be supplied by the motor to turn the disk B if 
wheel A locks and causes the belt to slip over the disk. No 
slipping occurs at A. The coefficient of static friction 
between the belt and the disk is ms = 0.3.

50 mm

M

50 mm

150 mm

100 mm

B

C

A G

Prob. 8–104
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*8.6  �Frictional Forces on Collar Bearings, 
Pivot Bearings, and Disks

Pivot and collar bearings are commonly used in machines to support an 
axial load on a rotating shaft. Typical examples are shown in Fig. 8–20. 
Provided these bearings are not lubricated, or are only partially lubricated, 
the laws of dry friction may be applied to determine the moment needed 
to turn the shaft when it supports an axial force.

R

Pivot bearing

(a)

M

P

    
Collar bearing

(b)

R1

R2

M

P

Fig. 8–20

Frictional Analysis.  The collar bearing on the shaft shown in Fig. 8–21 
is subjected to an axial force P and has a total bearing or contact area 
p(R2

2 - R1
2). Provided the bearing is new and evenly supported, then the 

normal pressure p on the bearing will be uniformly distributed over this 
area.  Since �Fz = 0, then p, measured as a force per unit area, is 
p = P>p(R2

2 - R1
2).

The moment needed to cause impending rotation of the shaft can be 
determined from moment equilibrium about the z axis. A differential 
area element dA = (r du)(dr), shown in Fig. 8–21, is subjected to both a 
normal force dN = p dA  and an associated frictional force,

dF = ms dN = ms p dA =
msP

p(R2
2 - R1

2)
 dA

z

r
R1R2

dF

dN
dAp

M

P

u

Fig. 8–21
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The normal force does not create a moment about the z axis of the 
shaft; however, the frictional force does; namely, dM = r dF. Integration 
is needed to compute the applied moment M needed to overcome all the 
frictional forces. Therefore, for impending rotational motion,

�Mz = 0;      M - LA
r dF = 0

Substituting for dF and dA and integrating over the entire bearing area 
yields

M =L
R2

R1 L
2p

0
rc msP

p(R2
2 - R1

2)
d (r du dr) =

msP

p(R2
2 - R1

2)
 L

R2

R1

r2 drL
2p

0
du

or

	 M =
2

3
 msPa

R2
3 - R1

3

R2
2 - R1

2 b � (8–7)

The moment developed at the end of the shaft, when it is rotating at 
constant speed, can be found by substituting mk for ms in Eq. 8–7.

In the case of a pivot bearing, Fig. 8–20a, then R2 = R and R1 = 0, and 
Eq. 8–7 reduces to

	 M =
2

3
 msPR� (8–8)

Remember that Eqs. 8–7 and 8–8 apply only for bearing surfaces 
subjected to constant pressure. If the pressure is not uniform, a variation 
of the pressure as a function of the bearing area must be determined 
before integrating to obtain the moment. The following example 
illustrates this concept.

z

p

M
R1

R2

P

Fig. 8–21 (Repeated)

The motor that turns the disk of this 
sanding machine develops a torque that 
must overcome the frictional forces 
acting on the disk. (© Russell C. Hibbeler)
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The uniform bar shown in Fig. 8–22a has a weight of 4 lb. If it is 
assumed that the normal pressure acting at the contacting surface 
varies linearly along the length of the bar as shown, determine the 
couple moment M required to rotate the bar. Assume that the bar’s 
width is negligible in comparison to its length. The coefficient of static 
friction is equal to ms = 0.3.

SOLUTION
A free-body diagram of the bar is shown in Fig. 8–22b. The intensity 
w0 of the distributed load at the center (x = 0) is determined from 
vertical force equilibrium, Fig. 8–22a.

+ c �Fz = 0;  -4 lb + 2 c 1
2

 a2 ftbw0 d = 0  w0 = 2 lb>ft

Since w = 0 at x = 2 ft, the distributed load expressed as a function 
of x is

w = (2 lb>ft)a1 -
x

2 ft
b = 2 - x

The magnitude of the normal force acting on a differential segment of 
area having a length dx is therefore

dN = w dx = (2 - x)dx

The magnitude of the frictional force acting on the same element of 
area is

dF = ms dN = 0.3(2 - x)dx

Hence, the moment created by this force about the z axis is

dM = x dF = 0.3(2x - x2)dx

The summation of moments about the z axis of the bar is determined 
by integration, which yields

�Mz = 0;   M - 2L
2

0
 (0.3)(2x - x2) dx = 0

 M = 0.6ax2 -
x3

3
b 2

0

2

 M = 0.8 lb # ft � Ans.

2 f t

2 f t

z

M

w0 y

(a)

w � w(x)ax

4 lb

z

(b)

y

x

�x

dF

dx
dN

dN
dx

dF

M

x

4 lb

Fig. 8–22

example   8.9
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8.7  Frictional Forces on Journal Bearings

When a shaft or axle is subjected to lateral loads, a journal bearing is 
commonly used for support. Provided the bearing is not lubricated, or is 
only partially lubricated, a reasonable analysis of the frictional resistance 
on the bearing can be based on the laws of dry friction.

Frictional Analysis.  A typical journal-bearing support is shown in 
Fig. 8–23a. As the shaft rotates, the contact point moves up the wall of the 
bearing to some point A where slipping occurs. If the vertical load acting 
at the end of the shaft is P, then the bearing reactive force R acting at A 
will be equal and opposite to P, Fig. 8–23b. The moment needed to 
maintain constant rotation of the shaft can be found by summing 
moments about the z axis of the shaft; i.e.,

�Mz = 0;	 M - (R sin fk)r = 0

or

	 M = Rr sin fk� (8–9)

where fk  is the angle of kinetic friction defined by tan fk =
F>N = mkN >N = mk. In Fig. 8–23c, it is seen that r sin fk = rf. The dashed 
circle with radius rf is called the friction circle, and as the shaft rotates, the 
reaction R will always be tangent to it. If the bearing is partially lubricated, 
mk is small, and therefore sin fk � tan fk � mk. Under these conditions, 
a reasonable approximation to the moment needed to overcome the 
frictional resistance becomes

	 M � Rrmk� (8–10)

Notice that to minimize friction the bearing radius r should be as small as 
possible. In practice, however, this type of journal bearing is not suitable 
for long service since friction between the shaft and bearing will eventually 
wear down the surfaces. Instead, designers will incorporate “ball bearings” 
or “rollers” in journal bearings to minimize frictional losses.

Unwinding the cable from this spool 
requires overcoming friction from the 
supporting shaft. (© Russell C. Hibbeler)

A

z
Rotation

(a)

Fig. 8–23

M

P

r
A fk

fk N

R

F

(b)

M

P

r

R

(c)

rf

fk
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example   8.10

The 100-mm-diameter pulley shown in Fig. 8–24a fits loosely on a 
10-mm-diameter shaft for which the coefficient of static friction is 
ms = 0.4. Determine the minimum tension T in the belt needed to (a) 
raise the 100-kg block and (b) lower the block. Assume that no slipping 
occurs between the belt and pulley and neglect the weight of the pulley.

50 mm

r � 5 mm

100 kg T (a)

SOLUTION
Part (a).  A free-body diagram of the pulley is shown in Fig. 8–24b. 
When the pulley is subjected to belt tensions of 981 N each, it makes 
contact with the shaft at point P1. As the tension T is increased, the 
contact point will move around the shaft to point P2 before motion 
impends. From the figure, the friction circle has a radius rf = r sin fs. 
Using the simplification that sin fs � tan fs � ms then rf � rms =

(5 mm)(0.4) = 2 mm, so that summing moments about P2 gives

a+ �MP2
= 0;  981 N(52 mm) - T(48 mm) = 0

	 T = 1063 N = 1.06 k N � Ans.

If a more exact analysis is used, then fs = tan-1 0.4 = 21.8�. Thus, the 
radius of the friction circle would be rf = r sin fs = 5 sin 21.8� =

1.86 mm. Therefore,

a+ �MP2
= 0;

	 981 N(50 mm + 1.86 mm) - T(50 mm - 1.86 mm) = 0
	 T = 1057 N = 1.06 kN � Ans.

Part (b).  When the block is lowered, the resultant force R acting on 
the shaft passes through point as shown in Fig. 8–24c. Summing 
moments about this point yields

a+ �MP3
= 0;   981 N(48 mm) - T(52 mm) = 0

	 T =  906 N	 Ans.

NOTE: Using the approximate analysis, the difference between raising 
and lowering the block is thus 157 N.

Impending
motion

52 mm 48 mm

981 N
R

T

P1 P2

rf

(b)

fs

52 mm48 mm

981 N
R

T

P3

rf

fs

(c)

Impending
motion

Fig. 8–24
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*8.8  Rolling Resistance

When a rigid cylinder rolls at constant velocity along a rigid surface, the 
normal force exerted by the surface on the cylinder acts perpendicular to 
the tangent at the point of contact, as shown in Fig. 8–25a. Actually, 
however, no materials are perfectly rigid, and therefore the reaction of the 
surface on the cylinder consists of a distribution of normal pressure. For 
example, consider the cylinder to be made of a very hard material, and the 
surface on which it rolls to be relatively soft. Due to its weight, the cylinder 
compresses the surface underneath it, Fig. 8–25b. As the cylinder rolls, the 
surface material in front of the cylinder retards the motion since it is being 
deformed, whereas the material in the rear is restored from the deformed 
state and therefore tends to push the cylinder forward. The normal 
pressures acting on the cylinder in this manner are represented in  
Fig. 8–25b by their resultant forces Nd and Nr. The magnitude of the force 
of deformation, Nd, and its horizontal component is always greater than 
that of restoration, Nr, and consequently a horizontal driving force P must 
be applied to the cylinder to maintain the motion. Fig. 8–25b.*

Rolling resistance is caused primarily by this effect, although it is also, 
to a lesser degree, the result of surface adhesion and relative micro-
sliding between the surfaces of contact. Because the actual force P 
needed to overcome these effects is difficult to determine, a simplified 
method will be developed here to explain one way engineers have 
analyzed this phenomenon. To do this, we will consider the resultant of 
the entire normal pressure, N = Nd + Nr , acting on the cylinder,  
Fig. 8–25c. As shown in Fig. 8–25d, this force acts at an angle u with the 
vertical. To keep the cylinder in equilibrium, i.e., rolling at a constant 
rate, it is necessary that N be concurrent with the driving force P and the 
weight W. Summing moments about point A gives Wa = P (r cos u). 
Since  the deformations are generally very small in relation to the 
cylinder’s radius, cos u � 1; hence,

Wa � Pr

or

	 P �
Wa

r
	 (8–11)

The distance a is termed the coefficient of rolling resistance, which has 
the dimension of length. For instance, a � 0.5 mm for a wheel rolling on 
a rail, both of which are made of mild steel. For hardened steel ball 

*Actually, the deformation force Nd causes energy to be stored in the material as its 
magnitude is increased, whereas the restoration force Nr, as its magnitude is decreased, allows 
some of this energy to be released. The remaining energy is lost since it is used to heat up 
the surface, and if the cylinder’s weight is very large, it accounts for permanent deformation 
of the surface. Work must be done by the horizontal force P to make up for this loss.

(a)

r

W

O

N

Rigid surface of contact

Nd

(b)

W

Soft surface of contact

P

Nr

N
Nd

Nr

(c)

(d)

r

W

P

A

a
u

N

Fig. 8–25
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bearings on steel, a � 0.1 mm. Experimentally, though, this factor is 
difficult to measure, since it depends on such parameters as the rate of 
rotation of the cylinder, the elastic properties of the contacting surfaces, 
and the surface finish. For this reason, little reliance is placed on the data 
for determining a. The analysis presented here does, however, indicate 
why a heavy load (W) offers greater resistance to motion (P) than a light 
load under the same conditions. Furthermore, since Wa>r is generally 
very small compared to mkW , the force needed to roll a cylinder over the 
surface will be much less than that needed to slide it across the surface. It 
is for this reason that a roller or ball bearings are often used to minimize 
the frictional resistance between moving parts.

example   8.11

A 10-kg steel wheel shown in Fig. 8–26a has a radius of 100 mm and 
rests on an inclined plane made of soft wood. If u is increased so that 
the wheel begins to roll down the incline with constant velocity when 
u = 1.2�, determine the coefficient of rolling resistance.

(a)

100 mm

u

(b)

1.2�

98.1 N

98.1 cos 1.2� N

98.1 sin 1.2� N

100 mm

1.2�

O

N

A a

Fig. 8–26
SOLUTION
As shown on the free-body diagram, Fig. 8–26b, when the wheel has 
impending motion, the normal reaction N acts at point A defined by the 
dimension a. Resolving the weight into components parallel and 
perpendicular to the incline, and summing moments about point A, yields

a+ �MA = 0;

	 -(98.1 cos 1.2� N)(a) + (98.1 sin 1.2� N)(100 cos 1.2� mm) = 0

Solving, we obtain

	 a = 2.09 mm 	 Ans.

Rolling resistance of railroad wheels on the 
rails is small since steel is very stiff. By 
comparison, the rolling resistance of the 
wheels of a tractor in a wet field is very large. 
(© Russell C. Hibbeler)
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8–110.  The double-collar bearing is subjected to an axial 
force P = 4 kN. Assuming that collar A supports 0.75P and 
collar B supports 0.25P, both with a uniform distribution of 
pressure, determine the maximum frictional moment M that 
may be resisted by the bearing. Take ms = 0.2 for both collars.

A

B

30 mm

10 mm

20 mm

P

M

Prob. 8–110

8–111.  The double-collar bearing is subjected to an axial 
force P = 16 kN. Assuming that collar A supports 0.75P 
and collar B supports 0.25P, both with a uniform distribution 
of pressure, determine the smallest torque M that must be 
applied to overcome friction. Take ms = 0.2 for both collars.

P 

30 mm

50 mm

A

B

M

75 mm

100 mm

Prob. 8–111

8–107.  The collar bearing uniformly supports an axial 
force of P = 5 kN. If the coefficient of static friction is 
ms = 0.3, determine the smallest torque M required to 
overcome friction.

*8–108.  The collar bearing uniformly supports an axial 
force of P = 8 kN. If a torque of M = 200 N # m is applied to 
the shaft and causes it to rotate at constant velocity, determine 
the coefficient of kinetic friction at the surface of contact.

200 mm

150 mm

P

M

Probs. 8–107/108

8–109.  The floor-polishing machine rotates at a constant 
angular velocity. If it has a weight of 80 lb, determine the 
couple forces F the operator must apply to the handles to 
hold the machine stationary. The coefficient of kinetic 
friction between the floor and brush is mk = 0.3. Assume 
the brush exerts a uniform pressure on the floor.

2 ft

1.5 ft

Prob. 8–109

Problems
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8–114.  The 4-in.-diameter shaft is held in the hole such 
that the normal pressure acting around the shaft varies 
linearly with its depth as shown. Determine the frictional 
torque that must be overcome to rotate the shaft. Take 
ms = 0.2.

M

6 in.

60 lb/ in2

Prob. 8–114

8–115.  The plate clutch consists of a flat plate A that slides 
over the rotating shaft S. The shaft is fixed to the driving 
plate gear B. If the gear C, which is in mesh with B, is 
subjected to a torque of M = 0.8 N # m, determine the 
smallest force P, that must be applied via the control arm, to 
stop the rotation. The coefficient of static friction between 
the plates A and D is ms = 0.4. Assume the bearing pressure 
between A and D to be uniform.

E

200 mm

F

A

D

P

100 mm

125 mm

150 mm

30 mm

S

B

M � 0.8 N�m

C

150 mm

Prob. 8–115

*8–112.  The pivot bearing is subjected to a pressure 
distribution at its surface of contact which varies as shown. 
If the coefficient of static friction is m, determine the 
torque M required to overcome friction if the shaft supports 
an axial force P.

P

M

2Rp � p0
rcos

r

R

p0
p 

Prob. 8–112

8–113.  The conical bearing is subjected to a constant 
pressure distribution at its surface of contact. If the 
coefficient of static friction is ms, determine the torque M 
required to overcome friction if the shaft supports an axial 
force P.

P

M

R

u

Prob. 8–113
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8–119.  A disk having an outer diameter of 120 mm fits 
loosely over a fixed shaft having a diameter of 30 mm. If the 
coefficient of static friction between the disk and the shaft is 
ms = 0.15 and the disk has a mass of 50 kg, determine the 
smallest vertical force F acting on the rim which must be 
applied to the disk to cause it to slip over the shaft.

Prob. 8–119

*8–120.  The 4-lb pulley has a diameter of 1 ft and the axle 
has a diameter of 1 in. If the coefficient of kinetic friction 
between the axle and the pulley is mk = 0.20, determine the 
vertical force P on the rope required to lift the 20-lb block 
at constant velocity.

8–121.  Solve Prob. 8–120 if the force P is applied 
horizontally to the left.

6 in.

P

Probs. 8–120/121

*8–116.  The collar fits loosely around a fixed shaft that has 
a radius of 2 in. If the coefficient of kinetic friction between 
the shaft and the collar is mk = 0.3, determine the force P 
on the horizontal segment of the belt so that the collar 
rotates counterclockwise with a constant angular velocity. 
Assume that the belt does not slip on the collar; rather, the 
collar slips on the shaft. Neglect the weight and thickness of 
the belt and collar. The radius, measured from the center of 
the collar to the mean thickness of the belt, is 2.25 in.

8–117.  The collar fits loosely around a fixed shaft that has 
a radius of 2 in. If the coefficient of kinetic friction between 
the shaft and the collar is mk = 0.3, determine the force P 
on the horizontal segment of the belt so that the collar 
rotates clockwise with a constant angular velocity. Assume 
that the belt does not slip on the collar; rather, the collar 
slips on the shaft. Neglect the weight and thickness of the 
belt and collar. The radius, measured from the center of the 
collar to the mean thickness of the belt, is 2.25 in.

20 lb

P

2 in.

2.25 in.

Probs. 8–116/117
8–118.  The pivot bearing is subjected to a parabolic 
pressure distribution at its surface of contact. If the 
coefficient of static friction is mk, determine the torque M 
required to overcome friction and turn the shaft if it 
supports an axial force P.

P

p0
p � p0 (1�     ) r2––R2

R

r

M

Prob. 8–118
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8–125.  The 5-kg skateboard rolls down the 5° slope at 
constant speed. If the coefficient of kinetic friction between 
the 12.5-mm-diameter axles and the wheels is mk = 0.3, 
determine the radius of the wheels. Neglect rolling 
resistance of the wheels on the surface. The center of mass 
for the skateboard is at G.

250 mm

75 mm

300 mm

G

5�

Prob. 8–125

8–126.  The bell crank fits loosely into a 0.5-in-diameter pin. 
Determine the required force P which is just sufficient to 
rotate the bell crank clockwise. The coefficient of static 
friction between the pin and the bell crank is ms = 0.3.

P

10 in.

12 in.50 lb

45�

Prob. 8–126

8–127.  The bell crank fits loosely into a 0.5-in-diameter 
pin. If P = 41 lb, the bell crank is then on the verge of 
rotating counterclockwise. Determine the coefficient of 
static friction between the pin and the bell crank.

P

10 in.

12 in.50 lb

45�

Prob. 8–127

8–122.  Determine the tension T in the belt needed to 
overcome the tension of 200 lb created on the other side. 
Also, what are the normal and frictional components of 
force developed on the collar bushing? The coefficient of 
static friction is ms = 0.21.

8–123.  If a tension force T = 215 lb is required to pull the 
200-lb force around the collar bushing, determine the 
coefficient of static friction at the contacting surface. The 
belt does not slip on the collar.

200 lb

1.125 in.

2 in.

T

Probs. 8–122/123

*8–124.  The uniform disk fits loosely over a fixed shaft 
having a diameter of 40 mm. If the coefficient of static 
friction between the disk and the shaft is ms = 0.15, 
determine the smallest vertical force P, acting on the rim, 
which must be applied to the disk to cause it to slip on the 
shaft. The disk has a mass of 20 kg.

150 mm

40 mm

P

Prob. 8–124
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8–131.  The cylinder is subjected to a load that has a weight W. 
If the coefficients of rolling resistance for the cylinder’s top and 
bottom surfaces are aA  and aB, respectively, show that a 
horizontal force having a magnitude of P = [W (aA + aB )]>2r 
is required to move the load and thereby roll the cylinder 
forward. Neglect the weight of the cylinder.

W

P

r

A

B

Prob. 8–131

*8–132.  The 1.4-Mg machine is to be moved over a level 
surface using a series of rollers for which the coefficient of 
rolling resistance is 0.5 mm at the ground and 0.2 mm at the 
bottom surface of the machine. Determine the appropriate 
diameter of the rollers so that the machine can be pushed 
forward with a horizontal force of P = 250 N. Hint: Use the 
result of Prob. 8–131.

P

Prob. 8–132

*8–128.  The vehicle has a weight of 2600 lb and center of 
gravity at G. Determine the horizontal force P that must be 
applied to overcome the rolling resistance of the wheels. 
The coefficient of rolling resistance is 0.5 in. The tires have a 
diameter of 2.75 ft.

G

5 ft

P

2 ft

2.5 ft

Prob. 8–128

8–129.  The tractor has a weight of 16 000 lb and the 
coefficient of rolling resistance is a = 2 in. Determine the 
force P needed to overcome rolling resistance at all four 
wheels and push it forward.

3 ft
6 ft

2 ft

2 ft

GP

Prob. 8–129

8–130.  The handcart has wheels with a diameter of 6 in. If 
a crate having a weight of 1500 lb is placed on the cart, 
determine the force P that must be applied to the handle to 
overcome the rolling resistance. The coefficient of rolling 
resistance is 0.04 in. Neglect the weight of the cart.

P
5

4
3

Prob. 8–130
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Chapter Review

Dry Friction

Frictional forces exist between two rough surfaces of 
contact. These forces act on a body so as to oppose its 
motion or tendency of motion.

A static frictional force approaches a maximum value 
of Fs = msN, where ms is the coefficient of static friction. 
In this case, motion between the contacting surfaces is 
impending.

If slipping occurs, then the friction force remains 
essentially constant and equal to Fk = mkN. Here mk is 
the coefficient of kinetic friction.

The solution of a problem involving friction requires 
first drawing the free-body diagram of the body. If the 
unknowns cannot be determined strictly from the 
equations of equilibrium, and the possibility of 
slipping occurs, then the friction equation should be 
applied at the appropriate points of contact in order to 
complete the solution.

It may also be possible for slender objects, like crates, 
to tip over, and this situation should also be 
investigated.

P

W

Rough surface

        

W

N

F

P

W

N

N

Fs � ms N

Fk � mk N

Motion

motion

Impending

P

P

W

P

W

N
F

Impending slipping
F � msN              

P

W

N

F

Tipping
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Wedges

Wedges are inclined planes used to 
increase the application of a force. The 
two force equilibrium equations are 
used to relate the forces acting on the 
wedge.

An applied force P must push on the 
wedge to move it to the right.

If the coefficients of friction between the 
surfaces are large enough, then P can be 
removed, and the wedge will be self-
locking and remain in place.

�Fx = 0

�Fy = 0

Impending
 motion

P

W

u

F3

N3

W

F2

N2

P

F2

N2

F1 N1

u

Screws

Square-threaded screws are used to 
move heavy loads. They represent an 
inclined plane, wrapped around a 
cylinder.

The moment needed to turn a screw 
depends upon the coefficient of friction 
and the screw’s lead angle u.

If the coefficient of friction between the 
surfaces is large enough, then the screw 
will support the load without tending to 
turn, i.e., it will be self-locking.

M = rW  tan(u + fs)

Upward Impending Screw Motion

M � = rW  tan(u - fs)

Downward Impending Screw 
Motion

u 7 fs

M � = rW  tan(fs - u)

Downward Screw Motion

fs 7 u

W

r

M

Flat Belts

The force needed to move a flat belt 
over a rough curved surface depends 
only on the angle of belt contact, b, and 
the coefficient of friction.

T2 = T1e
mb

T2 7 T1

Motion or impending
motion of belt relative
to surface

� r

T2

T1

u
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Collar Bearings and Disks

The frictional analysis of a collar 
bearing or disk requires looking at a 
differential element of the contact area. 
The normal force acting on this element 
is determined from force equilibrium 
along the shaft, and the moment needed 
to turn the shaft at a constant rate is 
determined from moment equilibrium 
about the shaft’s axis.

If the pressure on the surface of a collar 
bearing is uniform, then integration 
gives the result shown.

M =
2

3
 msPa

R2
3 - R1

3

R2
2 - R1

2 b

z

p

M
R1

R2

P

Journal Bearings

When a moment is applied to a shaft in 
a nonlubricated or partially lubricated 
journal bearing, the shaft will tend to 
roll up the side of the bearing until 
slipping occurs. This defines the radius 
of a friction circle, and from it the 
moment needed to turn the shaft can be 
determined.

M = Rr sin fk	
A

zRotation

	

M

P

r
fk

NF

A

Rolling Resistance

The resistance of a wheel to rolling over 
a surface is caused by localized 
deformation of the two materials in 
contact. This causes the resultant normal 
force acting on the rolling body to be 
inclined so that it provides a component 
that acts in the opposite direction of the 
applied force P causing the motion. This 
effect is characterized using the 
coefficient of rolling resistance, a, which 
is determined from experiment.

P �
Wa

r

r

W

P

a

N
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R8–3.  A 35-kg disk rests on an inclined surface for which 
ms = 0.2. Determine the maximum vertical force P that 
may be applied to bar AB without causing the disk to slip 
at C. Neglect the mass of the bar.

600 mm

P

B

300 mm200 mm

200 mm
A

C

30�

Prob. R8–3

R8–4.  The cam is subjected to a couple moment of 5 N # m. 
Determine the minimum force P that should be applied to 
the follower in order to hold the cam in the position shown. 
The coefficient of static friction between the cam and the 
follower is m = 0.4. The guide at A is smooth.

P

A B

O

60 mm

10 mm

5 N�m

Prob. R8–4

All problem solutions must include FBDs.

R8–1.  The uniform 20-lb ladder rests on the rough floor for 
which the coefficient of static friction is ms = 0.4 and against 
the smooth wall at B. Determine the horizontal force P the 
man must exert on the ladder in order to cause it to move.

A

B

8 ft

5 ft

5 ft

6 ft

P

Prob. R8–1
R8–2.  The uniform 60-kg crate C rests uniformly on a 
10-kg dolly D. If the front casters of the dolly at A are 
locked to prevent rolling while the casters at B are free to 
roll, determine the maximum force P that may be applied 
without causing motion of the crate. The coefficient of static 
friction between the casters and the floor is mf = 0.35 and 
between the dolly and the crate, md = 0.5.

A

D

P

0.25 m

0.8 m

1.5 m

1.5 m

0.6 m

0.25 m

C

B

Prob. R8–2

Review Problems
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R8–7.  The uniform 50-lb beam is supported by the rope 
that is attached to the end of the beam, wraps over the 
rough peg, and is then connected to the 100-lb block. If 
the coefficient of static friction between the beam and the 
block, and between the rope and the peg, is ms = 0.4, 
determine the maximum distance that the block can be 
placed from A and still remain in equilibrium. Assume the 
block will not tip.

10 ft

1 ft

d

A

Prob. R8–7

R8–8.  The hand cart has wheels with a diameter of 80 mm. 
If a crate having a mass of 500 kg is placed on the cart so 
that each wheel carries an equal load, determine the 
horizontal force P that must be applied to the handle to 
overcome the rolling resistance. The coefficient of rolling 
resistance is 2 mm. Neglect the mass of the cart.

P

Prob. R8–8

R8–5.  The three stone blocks have weights of W A = 600 lb, 
W B = 150 lb, and W C = 500 lb. Determine the smallest 
horizontal force P that must be applied to block C in order 
to move this block. The coefficient of static friction between 
the blocks is ms = 0.3, and between the floor and each 
block  ms

= = 0.5.

A B C
45�

P

Prob. R8–5

R8–6.  The jacking mechanism consists of a link that has a 
square-threaded screw with a mean diameter of 0.5 in. and a 
lead of 0.20 in., and the coefficient of static friction is 
ms = 0.4. Determine the torque M that should be applied to 
the screw to start lifting the 6000-lb load acting at the end of 
member ABC.

D

B

C

A

7.5 in.

10 in.

15 in.20 in. 10 in.

6000 lb

M

Prob. R8–6
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When a tank of any shape is designed, it is important to be able to 
determine its center of gravity, calculate its volume and surface area, 

and determine the forces of the liquids they contain. These topics  
will be covered in this chapter.

Chapter 9

(© Heather Reeder/Shutterstock)



9.1  �Center of Gravity, Center of Mass, 
and the Centroid of a Body

Knowing the resultant or total weight of a body and its location is 
important when considering the effect this force produces on the body. 
The point of location is called the center of gravity, and in this section we 
will show how to find it for an irregularly shaped body. We will then 
extend this method to show how to find the body’s center of mass, and its 
geometric center or centroid.

Center of Gravity.  A body is composed of an infinite number of 
particles of differential size, and so if the body is located within a 
gravitational field, then each of these particles will have a weight dW. 
These weights will form a parallel force system, and the resultant of this 
system is the total weight of the body, which passes through a single point 
called the center of gravity, G*.

CHAPTER OBJECTIVES

n	 To discuss the concept of the center of gravity, center of mass, 
and the centroid.

n	 To show how to determine the location of the center of gravity 
and centroid for a body of arbitrary shape and one composed of 
composite parts.

n	 To use the theorems of Pappus and Guldinus for finding the 
surface area and volume for a body having axial symmetry.

n	 To present a method for finding the resultant of a general 
distributed loading and to show how it applies to finding the 
resultant force of a pressure loading caused by a fluid.

Center of Gravity  
and Centroid

*In a strict sense this is true as long as the gravity field is assumed to have the same 
magnitude and direction everywhere. Although the actual force of gravity is directed toward 
the center of the earth, and this force varies with its distance from the center, for most 
engineering applications we can assume the gravity field has the same magnitude and 
direction everywhere.



466 	 Chapter 9    Center of Gravity and Centroid

9

y

x

x
~x

dW

W

G

(a)

G

dW
W

(c)

~z

z

y
~x

x~y

y

z

x

y

~y

W

x

~x
x

y

dW

G

(b)

To show how to determine the location of the center of gravity, consider 
the rod in Fig. 9–1a, where the segment having the weight dW is located 
at the arbitrary position �x . Using the methods outlined in Sec. 4.8, the total 
weight of the rod is the sum of the weights of all of its particles, that is

+ TFR = �Fz; 	 W = LdW

The location of the center of gravity, measured from the y axis, is 
determined by equating the moment of W about the y axis, Fig. 9–1b, to 
the sum of the moments of the weights of all its particles about this same 
axis. Therefore,

(MR)y = �My;	 xW = L x�dW

 x =
L x� dW

L  dW
 

In a similar manner, if the body represents a plate, Fig. 9–1b, then a 
moment balance about the x and y axes would be required to determine 
the location (x, y) of point G. Finally we can generalize this idea to a 
three-dimensional body, Fig. 9–1c, and perform a moment balance about 
all three axes to locate G for any rotated position of the axes. This results 
in the following equations.

x =
L x� dW

L  dW
  y =

L y� dW

L  dW
  z =

L z� dW

L  dW
� (9–1)

where

x, y, z are the coordinates of the center of gravity G.
�x, �y, �z  are the coordinates of an arbitrary particle in the body.

Fig. 9–1
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Center of Mass of a Body.  In order to study the dynamic 
response or accelerated motion of a body, it becomes important to locate 
the body’s center of mass Cm, Fig. 9–2. This location can be determined 
by substituting dW = g dm into Eqs. 9–1. Provided g is constant, it cancels 
out, and so

x =
L x� dm

L  dm
  y =

L y� dm

L  dm
  z =

L z� dm

L  dm
� (9–2)

Centroid of a Volume.  If the body in Fig. 9–3 is made from a 
homogeneous material, then its density r (rho) will be constant. Therefore, 
a differential element of volume dV has a mass dm = r dV . Substituting 
this into Eqs. 9–2 and canceling out r, we obtain formulas that locate the 
centroid C or geometric center of the body; namely

x =
LV

x� dV

LV
dV
  y =

LV
y� dV

LV
dV
  z =

LV
z� dV

LV
dV

� (9–3)

These equations represent a balance of the moments of the volume of 
the body. Therefore, if the volume possesses two planes of symmetry, 
then its centroid must lie along the line of intersection of these two 
planes. For example, the cone in Fig. 9–4 has a centroid that lies on the 
y  axis so that x = z = 0. The location y can be found using a single 
integration by choosing a differential element represented by a thin disk 
having a thickness dy and radius r = z. Its volume is  
dV = pr2 dy = pz2 dy and its centroid is at x� = 0, y� = y, z� = 0.

dm Cm

~z

z

y
~x

x~y

y

z

x

Fig. 9–2

C

dV

x

y

z

x

~y

y
~x

~zz

Fig. 9–3

z

y

x

y

y � y

dy

r � z

(0, y, 0) C

~

Fig. 9–4
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y y

xx

y

dx

dy

x

x � x

y � y

x �

(x, y)

(x, y)

y � y
2

x
2

(b) (c)

y � f(x)

y

x
x

y

(a)

y � f(x)
y � f(x)

C

~

~

~

~

Fig. 9–5

Centroid of an Area.  If an area lies in the x–y plane and is 
bounded by the curve y = f (x), as shown in Fig. 9–5a, then its centroid 
will be in this plane and can be determined from integrals similar to  
Eqs. 9–3, namely,

     x =
LA

x� dA

LA
dA
 y =

LA
y� dA

LA
dA

	 	 (9–4)

These integrals can be evaluated by performing a single integration if we use 
a rectangular strip for the differential area element. For example, if a vertical 
strip is used, Fig. 9–5b, the area of the element is dA = y dx, and its centroid 
is located at x� = x and y� = y >2. If we consider a horizontal strip, Fig. 9–5c, 
then dA = x dy, and its centroid is located at x� = x >2 and y� = y.

Centroid of a Line.  If a line segment (or rod) lies within the x–y 
plane and it can be described by a thin curve y = f (x), Fig. 9–6a, then its 
centroid is determined from

	 x =
LL

x� dL

LL
dL
 y =

LL
y� dL

LL
dL

	 (9–5)

Integration must be used to determine 
the location of the center of gravity of 
this lamp post due to the curvature of 
the member. (© Russell C. Hibbeler)
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Here, the length of the differential element is given by the Pythagorean 
theorem, dL = 2(dx)2 + (dy)2, which can also be written in the form

 dL = B a dx

dx
b

2

dx2 + a dy

dx
b

2

dx2

dl  = ¢B1 + a dy

dx
b

2

 ≤ dx

or

 dL = B a dx

dy
b

2

dy2 + a dy

dy
b

2

dy2

dl  = ¢B a dx

dy
b

2

+ 1 ≤ dy

Either one of these expressions can be used; however, for application, 
the one that will result in a simpler integration should be selected. For 
example, consider the rod in Fig. 9–6b, defined by y = 2x2. The length 
of the element is  dL = 21 + (dy>dx)2 dx, and since dy>dx = 4x,  
then  dL = 21 + (4x)2 dx. The centroid for this element is located at 
x� = x and y� = y.

C

dL

dL dy
dx

x

y

y

~

~

x

O

y

x

(a)

y

x

2 m

1 m

x � x

y � y dx

dy

y � 2x2

~

~

(b)

Fig. 9–6

Important Points

	 •	 The centroid represents the geometric center of a body. This point 
coincides with the center of mass or the center of gravity only if 
the material composing the body is uniform or homogeneous.

	 •	 Formulas used to locate the center of gravity or the centroid 
simply represent a balance between the sum of moments of all 
the parts of the system and the moment of the “resultant” for the 
system.

	 •	 In some cases the centroid is located at a point that is not on  
the object, as in the case of a ring, where the centroid is at its 
center. Also, this point will lie on any axis of symmetry for the  
body, Fig. 9–7.

C

y

x

Fig. 9–7
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Procedure for Analysis

The center of gravity or centroid of an object or shape can be 
determined by single integrations using the following procedure.

Differential Element.
	 •	 Select an appropriate coordinate system, specify the coordinate 

axes, and then choose a differential element for integration.

	 •	 For lines the element is represented by a differential line segment 
of length dL.

	 •	 For areas the element is generally a rectangle of area dA, having a 
finite length and differential width.

	 •	 For volumes the element can be a circular disk of volume dV, 
having a finite radius and differential thickness.

	 •	 Locate the element so that it touches the arbitrary point (x, y, z) 
on the curve that defines the boundary of the shape.

Size and Moment Arms.
	 •	 Express the length dL, area dA, or volume dV of the element in 

terms of the coordinates describing the curve.

	 •	 Express the moment arms x�, y�, z�  for the centroid or center of 
gravity of the element in terms of the coordinates describing the 
curve.

Integrations.
	 •	 Substitute the formulations for x�, y�, z�  and dL, dA, or dV into the 

appropriate equations (Eqs. 9–1 through 9–5).

	 •	 Express the function in the integrand in terms of the same variable 
as the differential thickness of the element.

	 •	 The limits of the integral are defined from the two extreme 
locations of the element’s differential thickness, so that when the 
elements are “summed” or the integration performed, the entire 
region is covered.
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Locate the centroid of the rod bent into the shape of a parabolic arc as 
shown in Fig. 9–8.

Solution
Differential Element.  The differential element is shown in Fig. 9–8. 
It is located on the curve at the arbitrary point (x, y).

Area and Moment Arms.  The differential element of length dL 
can be expressed in terms of the differentials dx and dy using the 
Pythagorean theorem.

 dL = 2(dx)2 + (dy)2 = B a dx

dy
b

2

+ 1 dy

Since x = y2,   then dx >dy = 2y.. Therefore, expressing dL in terms  
of y and dy, we have

dL = 2(2y)2 + 1 dy

As shown in Fig. 9–8, the centroid of the element is located at x� = x, 
y� = y.

Integrations.  Applying Eq. 9–5 and using the integration formula 
to evaluate the integrals, we get

 x =
LL

x� dL

LL
dL

=
L

1 m

0
x24y2 + 1 dy

L
1 m

0
24y2 + 1 dy

=
L

1 m

0
y224y2 + 1 dy

L
1 m

0
24y2 + 1 dy

 =
0.6063

1.479
= 0.410 m 	 Ans.

 y =
LL

y� dL

LL
dL

=
L

1 m

0
y24y2 + 1 dy

L
1 m

0
24y2 + 1 dy

=
0.8484

1.479
= 0.574 m 	 Ans.

NOTE: These results for C seem reasonable when they are plotted on 
Fig. 9–8.

1 m

~

C(x, y)

y

dL

1 m

x

y � y

x � x

O

x � y2

(x, y)~ ~

~

Fig. 9–8 

Example   9.1
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Locate the centroid of the circular wire segment shown in Fig. 9–9.

y

x

d

~

~

C(x, y )

(R, u)

O

R

u

u

Fig. 9–9 

Solution
Polar coordinates will be used to solve this problem since the arc is 
circular.

Differential Element.  A differential circular arc is selected as 
shown in the figure. This element lies on the curve at (R, u).

Length and Moment Arm.  The length of the differential element 
is dL = R du,  and its centroid is located at x� = R  cos  u and 
y� = R  sin u.

Integrations.  Applying Eqs. 9–5 and integrating with respect to u, 
we obtain

 x =
LL

x� dL

LL
dL

=
L

p>2

0
(R cos u)R du

L
p>2

0
R du

=

R2L
p>2

0
 cos u du

R L
p>2

0
du

=
2R
p

	 Ans.

 y =
LL

y� dL

LL
dL

=
L

p>2

0
(R sin u)R du

L
p>2

0
R du

=

R2L
p>2

0
 sin u du

R L
p>2

0
du

=
2R
p

	 Ans.

NOTE: As expected, the two coordinates are numerically the same due 
to the symmetry of the wire.

Example   9.2
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Determine the distance y measured from the x axis to the centroid of 
the area of the triangle shown in Fig. 9–10.

y

x

y

h

dy

y �     (b � x)

b

x

(x, y)

(x, y)
~ ~

h
b

Fig. 9–10 

Solution
Differential Element.  Consider a rectangular element having a 
thickness dy, and located in an arbitrary position so that it intersects 
the boundary at (x, y), Fig. 9–10.

Area and Moment Arms.  The area of the element is dA = x dy 

=  
b

h
 (h - y) dy, and its centroid is located a distance y� = y from the 

x axis.

Integration.  Applying the second of Eqs. 9–4 and integrating with 
respect to y yields

 y =
LA

y� dA

LA
dA

=
L

h

0
y c  

b

h
 (h - y) dy d

L
h

0
 
b

h
 (h - y) dy

=

1
6 bh2

1
2 bh

	 =
h

3
	 Ans.

NOTE: This result is valid for any shape of triangle. It states that the 
centroid is located at one-third the height, measured from the base of 
the triangle.

Example   9.3



474 	 Chapter 9    Center of Gravity and Centroid

9

Locate the centroid for the area of a quarter circle shown in Fig. 9–11.

y

x

du

R du

~

y �     R sin u~

R
R, u

u

R
3

2
3

2
3

x �     R cos u

Fig. 9–11 

Solution
Differential Element.  Polar coordinates will be used, since the 
boundary is circular. We choose the element in the shape of a triangle, 
Fig. 9–11. (Actually the shape is a circular sector; however, neglecting 
higher-order differentials, the element becomes triangular.) The 
element intersects the curve at point (R, u).

Area and Moment Arms.  The area of the element is 

dA =
1
2(R)(R du) =

R2

2
 du 

and using the results of Example 9.3, the centroid of the (triangular) 
element is located at x� =

2
3 R cos u, y� =

2
3 R sin u.

Integrations.  Applying Eqs. 9–4 and integrating with respect to u, 
we obtain

Example	  9.4

 x =
LA

x� dA

LA
dA

=
L

p>2

0
a 2

3
 R cos ub  

R2

2
 du

L
p>2

0
 
R2

2
 du

 =

a 2

3
 RbL

p>2

0
 cos u du

L
p>2

0
du

=
4R

3p
	 Ans.

 y =
LA

y� dA

LA
dA

=
L

p>2

0
a 2

3
 R sin ub  

R2

2
 du

L
p>2

0
 
R2

2
 du

 =

a 2

3
 RbL

p>2

0
 sin u du

L
p>2

0
du

=
4R

3p
	 Ans.
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example    9.5

Locate the centroid of the area shown in Fig. 9–12a.

Solution I

Differential Element.  A differential element of thickness dx is 
shown in Fig. 9–12a. The element intersects the curve at the arbitrary 
point (x, y), and so it has a height y.
Area and Moment Arms.  The area of the element is dA = y dx,, 
and its centroid is located at x� = x, y� = y >2.
Integrations.  Applying Eqs. 9–4 and integrating with respect to x yields

1 m
dy

1 m

y

x

y

(b)

(x, y)~~

(x, y)

x

y � x2

(1 � x)

 x =
LA

x� dA

LA
dA

=
L

1 m

0
xy dx

L
1 m

0
y dx

=
L

1 m

0
x3 dx

L
1 m

0
x2 dx

=
0.250

0.333
= 0.75 m             Ans.

 y =
LA

y� dA

LA
dA

=
L

1 m

0
(y >2)y dx

L
1 m

0
y dx

 = 
L

1 m

0
(x2>2)x2 dx

L
1 m

0
x2 dx

=
0.100

0.333
= 0.3 m Ans.

Solution II
Differential Element.  The differential element of thickness dy is 
shown in Fig. 9–12b. The element intersects the curve at the arbitrary 
point (x, y), and so it has a length (1 - x).

Area and Moment Arms.  The area of the element is  dA = (1 - x) dy, 
and its centroid is located at

x� = x + a 1 - x

2
b =

1 + x

2
, y� = y

Integrations.  Applying Eqs. 9–4 and integrating with respect to y, 
we obtain

 x =
LA

x� dA

LA
dA

=
L

1 m

0
[(1 + x)>2](1 - x) dy

L
1 m

0
(1 - x) dy

= 

1

2
 L

1 m

0
(1 - y) dy

L
1 m

0
(1 - 1y) dy

=
0.250

0.333
= 0.75 m� Ans.

 y =
LA

y� dA

LA
dA

=
L

1 m

0
y(1 - x) dy

L
1 m

0
(1 - x) dy

=
L

1 m

0
(y - y3>2) dy

L
1 m

0
(1 - 1y) dy

=
0.100

0.333
= 0.3 m	 Ans.

NOTE: Plot these results and notice that they seem reasonable. Also, 
for this problem, elements of thickness dx offer a simpler solution.

Fig. 9–12

y � x2

1 m

dx
1 m

y

x

y

(a)

(x, y)~~

(x, y)

x
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example    9.6

Locate the centroid of the semi-elliptical area shown in Fig. 9–13a.

 y =
LA

y� dA

LA
dA

=
L

1 ft

0
y(2x dy)

L
1 ft

0
2x dy

 =
L

1 ft

0
4y31 -  y2 dy

L
1 ft

0
431 -  y2 dy

=
4>3
p

 ft =  0.424 ft   Ans.

1 ft

2 ft

y

2 ft

y

x

(a)

x � x

y �
y
2

2 ft2 ft

dx

y

y

x

(b)

(�x, y)

dy

xx y � y

 �     � 1x2
y2

4

 �     � 1x2
y2

4
~

~
~

Fig. 9–13 

Solution I
Differential Element.  The rectangular differential element parallel 
to the y axis shown shaded in Fig. 9–13a will be considered. This 
element has a thickness of dx and a height of y.

Area and Moment Arms.  Thus, the area is dA = y dx, and its 
centroid is located at x� = x and y� = y >2.

Integration.  Since the area is symmetrical about the y axis,

	 x = 0	 Ans.

Applying the second of Eqs. 9–4 with  y = B1 -
x2

4
, we have

 y =
LA

y� dA

LA
dA

=
L

2 ft

- 2 ft

y

2
 (y dx)

L
2 ft

- 2 ft
y dx

=

1

2 L
2 ft

- 2 ft
a1 -

x2

4
bdx

L
2 ft

- 2 ftB1 -
x2

4
 dx

=
4>3
p

 = 0.424 ft 	 Ans.

Solution II
Differential Element.  The shaded rectangular differential element 
of thickness dy and width 2x, parallel to the x axis, will be considered, 
Fig. 9–13b.

Area and Moment Arms.  The area is dA = 2x dy , and its centroid 
is at x� = 0 and y� = y.

Integration.  Applying the second of Eqs. 9–4, with x = 231 - y2, 
we have
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example    9.7

Locate the y centroid for the paraboloid of revolution, shown in  
Fig. 9–14.

100 mm

dy
y

z

z

x

~y � y
z2 � 100y

100 mm

~(0, y, 0)

r

(0, y, z)

Fig. 9–14 

Solution
Differential Element.  An element having the shape of a thin disk is 
chosen. This element has a thickness dy, it intersects the generating 
curve at the arbitrary point (0, y, z), and so its radius is r = z.

Volume and Moment Arm.  The volume of the element is  
dV = (pz2) dy, and its centroid is located at y� = y.

Integration.  Applying the second of Eqs. 9–3 and integrating with 
respect to y yields.

y =
LV

y� dV

LV
dV

=
L

100 mm

0
y(pz2) dy

L
100 mm

0
(pz2) dy

=

100pL
100 mm

0
y2 dy

100pL
100 mm

0
y dy

= 66.7 mm      Ans.
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example    9.8

Determine the location of the center of mass of the cylinder shown 
in Fig. 9–15 if its density varies directly with the distance from its base, 
i.e., r = 200z kg>m3.

y

dz

z

1 m

x

0.5 m

z

(0,0, z)~

Fig. 9–15 

Solution
For reasons of material symmetry,

	 x = y = 0 	 Ans.

Differential Element.  A disk element of radius 0.5 m and thickness 
dz is chosen for integration, Fig. 9–15, since the density of the entire 
element is constant for a given value of z. The element is located along 
the z axis at the arbitrary point (0, 0, z).

Volume and Moment Arm.  The volume of the element is  
dV =  p(0.5)2 dz, and its centroid is located at z� = z.

Integrations.  Using the third of Eqs. 9–2 with dm = r dV and 
integrating with respect to z, noting that r = 200z,  we have

	  z =
LV

z�r dV

LV
r dV

=
L

1 m

0
z(200z)3p(0.5)2 dz 4

L
1 m

0
(200z)p(0.5)2 dz

	

	               =
L

1 m

0
z2 dz

L
1 m

0
z dz

= 0.667 m 	�  Ans.
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P9–1.  In each case, use the element shown and specify 
�x, �y , and dA.

(a)

x

y

1 m

1 m

y2  � x

Preliminary Problem

(b)

x

y

1 m

1 m

y2  � x

(c)

x

y

1 m

1 m
y � x2

(d)

x

y

1 m

1 m

y � x2

Prob. P9–1
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F9–4.  Locate the center of mass x of the straight rod if its 
mass per unit length is given by m = m0(1 + x2>L2).

y

x

L

Prob. F9–4

F9–5.  Locate the centroid y of the homogeneous solid 
formed by revolving the shaded area about the y axis.

y

x

1 m

0.5 m

z
z2 �     y1

4

Prob. F9–5

F9–6.  Locate the centroid z  of the homogeneous solid 
formed by revolving the shaded area about the z axis.

x

z

z �      (12 � 8y)1––
3

2 ft

1.5 ft

2 ft

y

Prob. F9–6

FUNDAMENTAL PROBLEMS

F9–1.  Determine the centroid (x, y ) of the shaded area.

y

x

y � x3

1 m

1 m

Prob. F9–1

F9–2.  Determine the centroid (x, y ) of the shaded area.

y

x

1 m

1 m

y � x3

Prob. F9–2

F9–3.  Determine the centroid y of the shaded area.

y

x

2 m

1 m1 m

y � 2x2

Prob. F9–3
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9–1.  Locate the center of mass of the homogeneous rod 
bent into the shape of a circular arc.

y

x

30�

300 mm

30�

Prob. 9–1

9–2.  Determine the location (x, y) of the centroid of the wire.

y

x

y � x 

2

2 ft

4 ft

Prob. 9–2

9–3.  Locate the center of gravity x  of the homogeneous 
rod. If the rod has a weight per unit length of 100 N>m, 
determine the vertical reaction at A and the x and y 
components of reaction at the pin B.

*9–4.  Locate the center of gravity y  of the homogeneous rod.

A

B

x

1 m

1 m

y � x2

y

Probs. 9–3/4

9–5.  Determine the distance y  to the center of gravity of 
the homogeneous rod.

y

y � 2x3

x

2 m

1 m

Prob. 9–5

9–6.  Locate the centroid y of the area.
y

x
2 m

1 m

y � 1 �     x21–
4

Prob. 9–6

PROBLEMS
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9–7.  Locate the centroid x of the parabolic area.

b
x

y

h

y � ax2

Prob. 9–7

*9–8.  Locate the centroid of the shaded area.

y

x
L 

a

y � a cos
L
px

2
L 
2

Prob. 9–8

9–9.  Locate the centroid x of the shaded area.

9–10.  Locate the centroid y of the shaded area.

y

x
4 m

4 m

x2y � 1
4

Probs. 9–9/10

9–11.  Locate the centroid x of the area.

*9–12.  Locate the centroid y of the area.

b
x

y

h

y �     x2h—
b2

Probs. 9–11/12

9–13.  Locate the centroid x of the area.

9–14.  Locate the centroid y of the area.
y

x
8 m

4 m

y � 4 �       x2 1––
 16

Probs. 9–13/14

9–15.  Locate the centroid x of the shaded area. Solve the 
problem by evaluating the integrals using Simpson’s rule.

*9–16.  Locate the centroid y of the shaded area. Solve the 
problem by evaluating the integrals using Simpson’s rule.

y = 0.5ex2

y

x

1 m

Probs. 9–15/16
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9–17.  Locate the centroid y of the area.

y

y � x

x

8 in.

4 in.

2––
3

Prob. 9–17

9–18.  Locate the centroid x of the area.

9–19.  Locate the centroid y of the area.

y

x
a

y � h �      xn

h

h—
an

Probs. 9–18/19

*9–20.  Locate the centroid y of the shaded area.

y

x

a

y �      xn

h

h—
an

Prob. 9–20

9–21.  Locate the centroid x of the shaded area.

9–22.  Locate the centroid y of the shaded area.

y

x

16 ft

4 ft

4 ft

y � (4 � x  )2
1
2

Probs. 9–21/22

9–23.  Locate the centroid x of the shaded area.

*9–24.  Locate the centroid y of the shaded area.

h

a
x

y

y� �   x2�h
h
a2

Probs. 9–23/24

9–25.  The plate has a thickness of 0.25 ft and a specific 
weight of g = 180 lb>ft3. Determine the location of its 
center of gravity. Also, find the tension in each of the cords 
used to support it.

16 ft
16 ft

A

x

B

z

C

y

y    � x   � 4
1
2

1
2

Prob. 9–25
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9–26.  Locate the centroid x of the shaded area.

9–27.  Locate the centroid y of the shaded area.

y

x

4 ft

4 ft
x2y � 1

4

Probs. 9–26/27

*9–28.  Locate the centroid x of the shaded area.

9–29.  Locate the centroid y of the shaded area.

y

x

100 mm

100 mm

y �

y � x

1
100 x2

Probs. 9–28/29

9–30.  Locate the centroid x of the shaded area.

9–31.  Locate the centroid y of the shaded area.

y

x

h

a

y �     xh––a
y � (    )(x�b)

b

h
a�b

Probs. 9–30/31

*9–32.  Locate the centroid x of the area.

9–33.  Locate the centroid y of the area.

p

y

x
a

a

y � a sin  xa

Probs. 9–32/33

9–34.  The steel plate is 0.3 m thick and has a density of 
7850 kg>m3. Determine the location of its center of mass. 
Also find the reactions at the pin and roller support.

A

B

x

y

y � �x

y2 � 2x

2 m

2 m

2 m

Prob. 9–34

9–35.  Locate the centroid x of the shaded area.

*9–36.  Locate the centroid y of the shaded area.

y

x
a

y � h �      xn

h

h—
an

y � h �      x
h—a

Probs. 9–35/36
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9–37.  Locate the centroid x of the circular sector.

y

x
C

r

x

a

a

Prob. 9–37

9–38.  Determine the location r of the centroid C for the 
loop of the lemniscate, r2 = 2a2cos 2u, ( -45� … u … 45�).

O

C

_
r

r

r2 � 2a2 cos 2u

u

Prob. 9–38

9–39.  Locate the center of gravity of the volume. The 
material is homogeneous.

z

y

y2 � 2z
2 m

2 m

Prob. 9–39

*9–40.  Locate the centroid y of the paraboloid.

y

z2 � 4y

4 m

4 m

z

Prob. 9–40

9–41.  Locate the centroid z  of the frustum of the  
right-circular cone.

z

x y

h

r

R

Prob. 9–41
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9–42.  Determine the centroid y of the solid.

y

x

z

z �      (y � 1)
y
––
6

3 ft

1 ft

Prob. 9–42

9–43.  Locate the centroid of the quarter-cone.

y

z

x

h

a

Prob. 9–43

*9–44.  The hemisphere of radius r is made from a stack of 
very thin plates such that the density varies with height, 
r = kz, where k is a constant. Determine its mass and the 
distance z to the center of mass G.

z

y

z

G

x

_
r

Prob. 9–44

9–45.  Locate the centroid z of the volume.

z

y

y2 � 0.5z

1 m

2 m

x

Prob. 9–45

9–46.  Locate the centroid of the ellipsoid of revolution.

z

x

b

y

a

    �     � 1y2
—
b2

z2
—
a2

Prob. 9–46
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9–47.  Locate the center of gravity z of the solid.

16 in.

8 in.

x

y

z

z � 4y
2––
3

Prob. 9–47

*9–48.  Locate the center of gravity y of the volume. The 
material is homogeneous.

y

4 in.

10 in.

z

10 in.

1 in.

 z �        y21
100

Prob. 9–48

9–49.  Locate the centroid z of the spherical segment.

z

x

y

a

z

1—
2

C

a

z2 � a2 � y2

Prob. 9–49

9–50.  Determine the location z  of the centroid for the 
tetrahedron. Suggestion: Use a triangular “plate” element 
parallel to the x–y plane and of thickness dz.

y

z

x

a

b

c

Prob. 9–50
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A stress analysis of this angle requires that 
the centroid of its cross-sectional area be 
located. (© Russell C. Hibbeler)

9.2  Composite Bodies

A composite body consists of a series of connected “simpler” shaped 
bodies, which may be rectangular, triangular, semicircular, etc. Such a 
body can often be sectioned or divided into its composite parts and, 
provided the weight and location of the center of gravity of each of these 
parts are known, we can then eliminate the need for integration to 
determine the center of gravity for the entire body. The method for doing 
this follows the same procedure outlined in Sec. 9.1. Formulas analogous 
to Eqs. 9–1 result; however, rather than account for an infinite number of 
differential weights, we have instead a finite number of weights. Therefore,

	 x =
� x�W

�W
 y =

� y�W

�W
 z =

� z�W

�W
	 (9–6)

Here

x, y, z represent the coordinates of the center of gravity G of the 
composite body.

x�, y�, z� represent the coordinates of the center of gravity of each 
composite part of the body.

�W is the sum of the weights of all the composite parts of the 
body, or simply the total weight of the body.

When the body has a constant density or specific weight, the center of 
gravity coincides with the centroid of the body. The centroid for composite 
lines, areas, and volumes can be found using relations analogous to Eqs. 9–6; 
however, the W’s are replaced by L’s, A’s, and V’s, respectively. Centroids 
for common shapes of lines, areas, shells, and volumes that often make up a 
composite body are given in the table on the inside back cover.

G

In order to determine the force required 
to tip over this concrete barrier it is  
first necessary to determine the location 
of its center of gravity G. Due to symmetry, 
G will lie on the vertical axis of symmetry. 
(© Russell C. Hibbeler)
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Procedure for Analysis

The location of the center of gravity of a body or the centroid of a 
composite geometrical object represented by a line, area, or volume 
can be determined using the following procedure.

Composite Parts.
	 •	 Using a sketch, divide the body or object into a finite number of 

composite parts that have simpler shapes.

	 •	 If a composite body has a hole, or a geometric region having no 
material, then consider the composite body without the hole and 
consider the hole as an additional composite part having negative 
weight or size.

Moment Arms.
	 •	 Establish the coordinate axes on the sketch and determine the 

coordinates x�, y�, z�  of the center of gravity or centroid of each part.

Summations.

	 •	 Determine x, y, z by applying the center of gravity equations, 
Eqs. 9–6, or the analogous centroid equations.

	 •	 If an object is symmetrical about an axis, the centroid of the object 
lies on this axis.

If desired, the calculations can be arranged in tabular form, as 
indicated in the following three examples.

The center of gravity of this water tank can be 
determined by dividing it into composite parts 
and applying Eqs. 9–6. (© Russell C. Hibbeler)
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Locate the centroid of the wire shown in Fig. 9–16a.

Solution
Composite Parts.  The wire is divided into three segments as shown 
in Fig. 9–16b.

Moment Arms.  The location of the centroid for each segment is 
determined and indicated in the figure. In particular, the centroid of 
segment 1  is determined either by integration or by using the table 
on the inside back cover.

Summations.  For convenience, the calculations can be tabulated as 
follows:

Example   9.9

(b)

� 38.2 mm
20 mm

10 mm

60 mm

20 mm

(2) (60)
 

 p

y

x

2

3

1

z

40 mm

20 mm

(a)

y

z

x

60 mm

Segment L (mm) x� (mm) y� (mm) z� (mm) x�L (mm2) y�L (mm2)  z�L (mm2)

1 p(60) = 188.5 60 -38.2 0 11 310 -7200 0

2 40   0 20 0 0 800 0

3 20   0 40 -10 0 800 -200

 �L = 248.5    � x�L = 11 310 � y�L = -5600 � z�L = -200

Thus,

	  x =
� x�L

�L
=

11 310

248.5
= 45.5 mm 	 Ans.

	  y =
� y�L

�L
=

-5600

248.5
= -22.5 mm	 Ans.

	  z =
� z�L

�L
=

-200

248.5
= -0.805 mm	 Ans.

Fig. 9–16 
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Locate the centroid of the plate area shown in Fig. 9–17a.

(a)

y

x

1 ft
2 ft

2 ft

1 ft

3 ft

Fig. 9–17 

Solution
Composite Parts.  The plate is divided into three segments as shown 
in Fig. 9–17b. Here the area of the small rectangle 3  is considered 
“negative” since it must be subtracted from the larger one 2 .

Moment Arms.  The centroid of each segment is located as indicated 
in the figure. Note that the x�  coordinates of 2  and 3  are negative.

Summations.  Taking the data from Fig. 9–17b, the calculations are 
tabulated as follows:

Segment A (ft2) x� (ft) y� (ft) x�A (ft3) y�A (ft3)

1 1
2(3)(3) = 4.5 1 1 4.5 4.5

2 (3)(3) = 9 -1.5 1.5 -13.5 13.5

3 -(2)(1) = -2 -2.5 2 5 -4

  �A = 11.5   � x�A = -4 � y�A = 14

Thus,

	  x =
� x�A

�A
=

-4

11.5
= -0.348 ft	 Ans.

	  y =
� y�A

�A
=

14

11.5
= 1.22 ft	 Ans.

NOTE: If these results are plotted in Fig. 9–17a, the location of point C 
seems reasonable.

Example   9.10

(b)

y

x

2.5 ft

2 ft

3

y

x
1 ft

1.5 ft 1 ft

1.5 ft
1

2
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Locate the center of mass of the assembly shown in Fig. 9–18a. The 
conical frustum has a density of rc = 8 Mg>m3, and the hemisphere 
has a density of rh = 4 Mg>m3. There is a 25-mm-radius cylindrical 
hole in the center of the frustum.

Solution
Composite Parts.  The assembly can be thought of as consisting of 
four segments as shown in Fig. 9–18b. For the calculations, 3  and 4  
must be considered as “negative” segments in order that the four 
segments, when added together, yield the total composite shape shown 
in Fig. 9–18a.

Moment Arm.  Using the table on the inside back cover, the 
computations for the centroid z�  of each piece are shown in the figure.

Summations.  Because of symmetry, note that

	 x = y = 0	 Ans.

Since W = mg, and g is constant, the third of Eqs. 9–6 becomes 
z = � z�m>�m. The mass of each piece can be computed from m = rV  
and used for the calculations. Also, 1 Mg>m3 = 10-6 kg>mm3, so that

Example   9.11

Segment m (kg) z� (mm) z�m (kg # mm)

1 8(10-6)11
32p(50)2(200) = 4.189 50 209.440

2 4(10-6)12
32p(50)3 = 1.047 -18.75 -19.635

3 -8(10-6)11
32p(25)2(100) = -0.524 100 + 25 = 125 -65.450

4 -8(10-6)p(25)2(100) = -1.571 50 -78.540

 �m = 3.142  � z�m = 45.815

(a)

50 mm

100 mm

25 mm

50 mm

x

y

z

Fig. 9–18 

200 mm

50 mm

50 mm

� 50 mm200 mm
4

1

2

(50) �  18.75 mm8
3

� 25 mm
4

100 mm

25 mm 100 mm

100 mm

50 mm

(b)

3
25 mm

4

Thus,	 z� =
� z�m

�m
=

45.815

3.142
= 14.6 mm  	 Ans.
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F9–10.  Locate the centroid (x, y ) of the cross-sectional 
area.

x

y

4 in.

3 in.

C y

0.5 in.

0.5 in.

x

Prob. F9–10

F9–11.   Locate the center of mass (x, y, z ) of the  
homogeneous solid block. 

y

x

z

6 ft

2 ft
4 ft

5 ft2 ft

3 ft

Prob. F9–11

F9–12.  Determine the center of mass (x, y, z ) of the 
homogeneous solid block.

y

x

z

1.8 m

1.5 m

1.5 m

0.5 m

0.5 m 2 m

Prob. F9–12

F9–7.  Locate the centroid (x, y, z ) of the wire bent in the 
shape shown.

x

z

400 mm

600 mm

300 mm

y

Prob. F9–7

F9–8.  Locate the centroid y of the beam’s cross-sectional 
area.

y

x

25 mm

50 mm

300 mm

25 mm

150 mm 150 mm

Prob. F9–8

F9–9.  Locate the centroid y of the beam’s cross-sectional area.

y

x

400 mm

50 mm 50 mm

C 200 mm

50 mm

Prob. F9–9

FUNDAMENTAL PROBLEMS
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9–51.  The truss is made from five members, each having a 
length of 4 m and a mass of 7 kg>m. If the mass of the gusset 
plates at the joints and the thickness of the members can be 
neglected, determine the distance d to where the hoisting 
cable must be attached, so that the truss does not tip (rotate) 
when it is lifted.

x

y

4 m

4 m4 m

4 m

4 m

60�

C
B
d

A D

Prob. 9–51

*9–52.  Determine the location (x, y, z) of the centroid of 
the homogeneous rod.

x

y

z

600 mm

200 mm

100 mm

30�

Prob. 9–52

9–53.  A rack is made from roll-formed sheet steel and has 
the cross section shown. Determine the location (x, y) of the 
centroid of the cross section. The dimensions are indicated 
at the center thickness of each segment.

y

x

30 mm

15 mm 15 mm

80 mm

50 mm

Prob. 9–53

9–54.  Locate the centroid (x, y) of the metal cross section. 
Neglect the thickness of the material and slight bends at 
the corners.

50 mm

x

150 mm

100 mm 100 mm50 mm 50 mm

y

Prob. 9–54

Problems
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9–55.  Locate the center of gravity (x, y, z) of the 
homogeneous wire.

z

y

x

400 mm

300 mm

Prob. 9–55

*9–56.  The steel and aluminum plate assembly is bolted 
together and fastened to the wall. Each plate has a constant 
width in the z direction of 200 mm and thickness of 20 mm. 
If the density of A and B is rs = 7.85 Mg>m3, and for C, 
ral = 2.71 Mg>m3, determine the location x of the center of 
mass. Neglect the size of the bolts.

300 mm

200 mm
100 mm

A

B
C

x

y

Prob. 9–56

9–57.  Locate the center of gravity G(x, y) of the streetlight. 
Neglect the thickness of each segment. The mass per unit 
length of each segment is as follows: rAB = 12 kg>m, 
rBC = 8 kg>m, rCD = 5 kg>m, and rDE = 2 kg>m.

1 m

1 m

1 m90�

1 m
C

B

A

D E

y

x

1.5 m

3 m

4 m

G (x, y)

Prob. 9–57

9–58.  Determine the location y  of the centroidal axis x9x  
of the beam’s cross-sectional area. Neglect the size of the 
corner welds at A and B for the calculation.

50 mm

A

C

B

15 mm

15 mm

150 mm

150 mm

_
x

_
x

_
y

Prob. 9–58
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9–59.  Locate the centroid (x, y) of the shaded area.

y

x

6 in.

6 in.

6 in.

6 in.

Prob. 9–59

*9–60.  Locate the centroid y for the beam’s cross-sectional 
area.

120 mm

120 mm

240 mm

240 mm
240 mm

x   

y

Prob. 9–60

9–61.  Determine the location y of the centroid C of the 
beam having the cross-sectional area shown.

A

C

B

15 mm

15 mm

15 mm

150 mm

150 mm

100 mm

y

xx

Prob. 9–61

9–62.  Locate the centroid (x, y) of the shaded area.
y

6 in.

3 in.

6 in.

6 in.
x

Prob. 9–62

9–63.  Determine the location y of the centroid of the 
beam’s cross-sectional area. Neglect the size of the corner 
welds at A and B for the calculation.

35 mm

50 mm

110 mm

15 mm

_
y

C

A

B

Prob. 9–63

*9–64.  Locate the centroid (x, y) of the shaded area.

x

y

3 in.1 in.

3 in.3 in.

Prob. 9–64
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9–65.  Determine the location (x, y) of the centroid C of 
the area.

x

y

1.5 in.

1.5 in.

1.5 in.

1.5 in.

1.5 in.

Prob. 9–65

9–66.  Determine the location y of the centroid C for a 
beam having the cross-sectional area shown. The beam is 
symmetric with respect to the y axis.

2 in. 2 in.1 in. 1 in.

1 in.

3 in.

y

x

C

y

Prob. 9–66

9–67.  Locate the centroid y of the cross-sectional area of 
the beam constructed from a channel and a plate. Assume 
all corners are square and neglect the size of the weld at A.

y

70 mm

20 mm

10 mm

350 mm

325 mm

C

A

325 mm

Prob. 9–67

*9–68.  A triangular plate made of homogeneous material has a 
constant thickness that is very small. If it is folded over as shown, 
determine the location y of the plate’s center of gravity G.

_
z

_
y

G

1 in.

1 in.

3 in.

3 in.

z

1 in.

1 in.

y

x

6 in.

3 in.

3 in.

Prob. 9–68

9–69.  A triangular plate made of homogeneous material 
has a constant thickness that is very small. If it is folded over 
as shown, determine the location z  of the plate’s center of 
gravity G.

_
z

_
y

G

1 in.

1 in.

3 in.

3 in.

z

1 in.

1 in.

y

x

6 in.

3 in.

3 in.

Prob. 9–69
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9–70.  Locate the center of mass z  of the forked level 
which is made from a homogeneous material and has the 
dimensions shown.

3 in.
2 in.

G

0.5 in.

2.5 in.

0.5 in.
z

x y

z

Prob. 9–70
9–71.  Determine the location x of the centroid C of the 
shaded area that is part of a circle having a radius r.

y

x
C

r

_
x

a

a

Prob. 9–71
*9–72.  A toy skyrocket consists of a solid conical top, 
ri = 600 kg>m3, a hollow cylinder, rc = 400 kg>m3, and a 
stick having a circular cross section, rs = 300 kg>m3. 
Determine the length of the stick, x, so that the center of 
gravity G of the skyrocket is located along line aa.

xa

a

G

100 mm5 mm
3 mm

10 mm

20 mm

Prob. 9–72

9–73.  Locate the centroid y for the cross-sectional area of 
the angle.

aa
–y

t t

C

Prob. 9–73

9–74.  Determine the location (x, y) of the center of gravity 
of the three-wheeler. The location of the center of gravity of 
each component and its weight are tabulated in the figure. If 
the three-wheeler is symmetrical with respect to the x–y 
plane, determine the normal reaction each of its wheels 
exerts on the ground.

1.
2.
3.
4.

Rear wheels
Mechanical components
Frame
Front wheel

18 lb
85 lb

120 lb
8 lb

y

A B
x

2 ft1.50 ft 1.30 ft1 ft

2.30 ft 1.40 ft
0.80 ft

14

3

2

Prob. 9–74
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9–75.  Locate the center of mass (x, y, z) of the 
homogeneous block assembly.

y

z

x 150 mm

250 mm

200 mm

150 mm
150 mm100 mm

Prob. 9–75

*9–76.  The sheet metal part has the dimensions shown. 
Determine the location (x, y, z) of its centroid.

9–77.  The sheet metal part has a weight per unit area of 
2 lb>ft2 and is supported by the smooth rod and the cord at 
C. If the cord is cut, the part will rotate about the y axis until 
it reaches equilibrium. Determine the equilibrium angle of 
tilt, measured downward from the negative x axis, that AD 
makes with the -x axis.

y

z

x

A

D

B

C

3 in.

4 in.

6 in.

Probs. 9–76/77

9–78.  The wooden table is made from a square board 
having a weight of 15 lb. Each of the legs weighs 2 lb and is 
3 ft long. Determine how high its center of gravity is from 
the floor. Also, what is the angle, measured from the 
horizontal, through which its top surface can be tilted on 
two of its legs before it begins to overturn? Neglect the 
thickness of each leg.

4 ft

3 ft

4 ft

Prob. 9–78

9–79.  The buoy is made from two homogeneous cones 
each having a radius of 1.5 ft. If h = 1.2 ft, find the distance 
z  to the buoy’s center of gravity G.

*9–80.  The buoy is made from two homogeneous cones 
each having a radius of 1.5 ft. If it is required that the buoy’s 
center of gravity G be located at z = 0.5 ft, determine the 
height h of the top cone.

h

G
4 ft

1.5 ft

_
z

Probs. 9–79/80
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9–81.  The assembly is made from a steel hemisphere, 
rst = 7.80 Mg>m3, and an aluminum cylinder, 
ral = 2.70 Mg>m3. Determine the mass center of the 
assembly if the height of the cylinder is h = 200 mm.

9–82.  The assembly is made from a steel hemisphere, 
rst = 7.80 Mg>m3, and an aluminum cylinder, 
ral = 2.70 Mg>m3. Determine the height h of the cylinder so 
that the mass center of the assembly is located at z  = 160 mm.

160 mm

h

z

y

x

80 mm

z
_

G

Probs. 9–81/82
9–83.  The car rests on four scales and in this position the 
scale readings of both the front and rear tires are shown by 
FA and FB. When the rear wheels are elevated to a height of 
3 ft above the front scales, the new readings of the front 
wheels are also recorded. Use this data to compute the 
location x and y to the center of gravity G of the car. The 
tires each have a diameter of 1.98 ft.

FA � 1129 lb � 1168 lb � 2297 lb

FA � 1269 lb � 1307 lb � 2576 lb

FB � 975 lb � 984 lb � 1959 lb

A
_
x

B

9.40 ft

3.0 ft

G
_
y

B G

A

Prob. 9–83

*9–84.  Determine the distance h to which a 100-mm-diameter 
hole must be bored into the base of the cone so that the center 
of mass of the resulting shape is located at z = 115 mm. The 
material has a density of 8 Mg>m3.

z

y

x

C

150 mm
50 mm

h

500 mm

_
z

Prob. 9–84

9–85.  Determine the distance z to the centroid of the 
shape that consists of a cone with a hole of height h = 50 mm 
bored into its base.

z

y

x

C

150 mm
50 mm

h

500 mm

_
z

Prob. 9–85
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9–86.  Locate the center of mass z   of the assembly. The 
cylinder and the cone are made from materials having 
densities of 5 Mg>m3 and 9 Mg>m3, respectively.

z

x

0.8 m

0.6 m0.4 m

0.2 m

y

Prob. 9–86

9–87.  Major floor loadings in a shop are caused by the 
weights of the objects shown. Each force acts through its 
respective center of gravity G. Locate the center of gravity 
(x, y) of all these components.

z

y

G2

G4G3

G1

x

600 lb
9 ft

7 ft

12 ft

6 ft

8 ft
4 ft 3 ft

5 ft

1500 lb

450 lb

280 lb

Prob. 9–87

*9–88.  The assembly consists of a 20-in. wooden dowel 
rod and a tight-fitting steel collar. Determine the distance x 
to its center of gravity if the specific weights of the materials 
are gw = 150 lb>ft3 and gst = 490 lb>ft3. The radii of the 
dowel and collar are shown.

x

5 in.
5 in.

10 in.
G

2 in.

1 in.

_
x

Prob. 9–88

9–89.  The composite plate is made from both steel (A) 
and brass (B) segments. Determine the mass and location 
(x, y, z) of its mass center G. Take rst = 7.85 Mg>m3 and 
rbr = 8.74 Mg>m3.

y

x

z

G

B

A
225 mm

150 mm

150 mm

30 mm

Prob. 9–89
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*9.3  Theorems of Pappus and Guldinus

The two theorems of Pappus and Guldinus are used to find the surface 
area and volume of any body of revolution. They were first developed 
by Pappus of Alexandria during the fourth century a.d. and then restated 
at a later time by the Swiss mathematician Paul Guldin or Guldinus 
(1577–1643).

2   rp

r

L

C

dL

dA

r

Fig. 9–19

Surface Area.  If we revolve a plane curve about an axis that does 
not intersect the curve we will generate a surface area of revolution. For 
example, the surface area in Fig. 9–19 is formed by revolving the curve of 
length L about the horizontal axis. To determine this surface area, we will 
first consider the differential line element of length dL. If this element is 
revolved 2p radians about the axis, a ring having a surface area of 
dA = 2pr dL will be generated. Thus, the surface area of the entire body 
is A = 2p1r dL. Since 1r dL = rL (Eq. 9–5), then A = 2prL. If the 
curve is revolved only through an angle u (radians), then

	 A = urL 	 (9–7)

where

A = surface area of revolution

u = angle of revolution measured in radians, u … 2p

r = perpendicular distance from the axis of revolution to 
the centroid of the generating curve

L = length of the generating curve

Therefore the first theorem of Pappus and Guldinus states that the 
area of a surface of revolution equals the product of the length of the 
generating curve and the distance traveled by the centroid of the curve in 
generating the surface area.

The amount of material used on this 
storage building can be estimated by 
using the first theorem of Pappus and 
Guldinus to determine its surface area. 
(© Russell C. Hibbeler)
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Volume.  A volume can be generated by revolving a plane area about 
an axis that does not intersect the area. For example, if we revolve the 
shaded area A in Fig. 9–20 about the horizontal axis, it generates the 
volume shown. This volume can be determined by first revolving  
the differential element of area dA 2p radians about the axis, so that a 
ring having the volume dV = 2pr dA  is generated. The entire volume is 
then V = 2p1r  dA. However, 1r  dA = r  A, Eq. 9–4, so that V = 2prA. 
If the area is only revolved through an angle u (radians), then

	 V = ur A 	 (9–8)

where

V = volume of revolution

u = angle of revolution measured in radians, u … 2p

r = perpendicular distance from the axis of revolution to 
the centroid of the generating area

A = generating area

Therefore the second theorem of Pappus and Guldinus states that the 
volume of a body of revolution equals the product of the generating area 
and the distance traveled by the centroid of the area in generating the 
volume.

Composite Shapes.  We may also apply the above two theorems 
to lines or areas that are composed of a series of composite parts. In this 
case the total surface area or volume generated is the addition of  
the surface areas or volumes generated by each of the composite parts. If 
the perpendicular distance from the axis of revolution to the centroid of 
each composite part is r�, then

	 A = u�( r�L)	 (9–9)

and

	 V = u�(r�A )	 (9–10)

Application of the above theorems is illustrated numerically in the 
following examples.

dA

2   r

C
A

rr

p

Fig. 9–20

The volume of fertilizer contained within 
this silo can be determined using the 
second theorem of Pappus and Guldinus. 
(© Russell C. Hibbeler)
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Example   9.12

Show that the surface area of a sphere is A = 4pR2 and its volume is 
V =

4
3 pR3.

y

x

R

C

2R

(a)

p

(b)

y

x

R C

4R
3p

Fig. 9–21

SOLUTION
Surface Area.   The surface area of the sphere in Fig. 9–21a is 
generated by revolving a semicircular arc about the x axis. Using the 
table on the inside back cover, it is seen that the centroid of this arc is 
located at a distance r = 2R >p from the axis of revolution (x axis). 
Since the centroid moves through an angle of u = 2p rad to generate 
the sphere, then applying Eq. 9–7 we have

A = urL;	 A = 2pa 2R
p
bpR = 4pR2� Ans.

Volume.  The volume of the sphere is generated by revolving the 
semicircular area in Fig. 9–21b about the x axis. Using the table on the 
inside back cover to locate the centroid of the area, i.e., r = 4R >3p, 
and applying Eq. 9–8, we have

V = urA ;	 V = 2pa 4R

3p
b a 1

2
 pR2b =

4

3
 pR3� Ans.
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Determine the surface area and volume of the full solid in Fig. 9–22a.

Example   9.13

1 in.

2 in.

1 in.

(c)

z

3 in.

2.5 in. � (    )(1 in.) � 3.1667 in.2
3

1 in.

1 in.

2 in.

(a)

2.5 in.

z

(b)

z
1 in.

3.5 in.
3 in.

2.5 in.

1 in.

2 in.

Fig. 9–22 

Solution
Surface Area.  The surface area is generated by revolving the four 
line segments shown in Fig. 9–22b 2p radians about the z axis. The 
distances from the centroid of each segment to the z axis are also 
shown in the figure. Applying Eq. 9–7 yields

A  = 2p�rL = 2p[(2.5 in.)(2 in.) + (3 in.)¢3(1 in.)2 + (1 in.)2≤
	 + (3.5 in.)(3 in.) + (3 in.)(1 in.)]

	 = 143 in2� Ans.

Volume.  The volume of the solid is generated by revolving the two 
area segments shown in Fig. 9–22c 2p radians about the z axis. The 
distances from the centroid of each segment to the z axis are also 
shown in the figure. Applying Eq. 9–10, we have

 V = 2p�rA = 2p5 (3.1667 in.) c 1
2

 (1 in.)(1 in.) d  +  (3 in.)[(2 in.)(1 in.)6
	  = 47.6 in3� Ans.



506 	 Chapter 9    Center of Gravity and Centroid

9

FUNDAMENTAL PROBLEMS

F9–13.  Determine the surface area and volume of the solid 
formed by revolving the shaded area 360� about the z axis.

z

1.5 m

2 m

2 m

Prob. F9–13

F9–14.  Determine the surface area and volume of the solid 
formed by revolving the shaded area 360� about the z axis.

1.2 m

0.9 m1.5 m

1.5 m

z

Prob. F9–14

F9–15.  Determine the surface area and volume of the solid 
formed by revolving the shaded area 360� about the z axis.

z

18 in.

15 in.

20 in.

30 in.

Prob. F9–15

F9–16.  Determine the surface area and volume of the solid 
formed by revolving the shaded area 360� about the z axis.

z

2 m

1.5 m

1.5 m

Prob. F9–16
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Problems

9–90.  Determine the volume of the silo which consists of 
a cylinder and hemispherical cap. Neglect the thickness of 
the plates.

10 ft 10 ft

10 ft

80 ft

Prob. 9–90

9–91.  Determine the outside surface area of the storage tank.

*9–92.  Determine the volume of the storage tank.

15 ft

4 ft

30 ft

Probs. 9–91/92

9–93.  Determine the surface area of the concrete seawall, 
excluding its bottom.

9–94.  A circular seawall is made of concrete. Determine 
the total weight of the wall if the concrete has a specific 
weight of gc = 150 lb>ft3.

50�

30 ft

15 ft

8 ft

60 ft

Probs. 9–93/94

9–95.  A ring is generated by rotating the quarter circular 
area about the x axis. Determine its volume.

*9–96.  A ring is generated by rotating the quarter circular 
area about the x axis. Determine its surface area.

a

x

2a

Probs. 9–95/96
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9–101.  The water-supply tank has a hemispherical bottom 
and cylindrical sides. Determine the weight of water in the 
tank when it is filled to the top at C. Take gw = 62.4 lb>ft3.
9–102.  Determine the number of gallons of paint needed 
to paint the outside surface of the water-supply tank, which 
consists of a hemispherical bottom, cylindrical sides, and 
conical top. Each gallon of paint can cover 250 ft2.

6 ft

8 ft

C

6 ft

9–103.  Determine the surface area and the volume of the 
ring formed by rotating the square about the vertical axis.

b

a

a

45�

*9–104.  Determine the surface area of the ring. The cross 
section is circular as shown.

8 in.

4 in.

9–97.  Determine the volume of concrete needed to 
construct the curb.

9–98.  Determine the surface area of the curb. Do not 
include the area of the ends in the calculation.

30� 4 m

150 mm
150 mm

100 mm

150 mm

Probs. 9–97/98

9–99.  A ring is formed by rotating the area 360° about the 
x – x axes. Determine its surface area.

*9–100.  A ring is formed by rotating the area 360° about 
the x – x axes. Determine its volume.

50 mm
30 mm 30 mm

80 mm

100 mm
x x

Probs. 9–99/100

Probs. 9–101/102

Prob. 9–103

Prob. 9–104
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9–107.  The suspension bunker is made from plates which 
are curved to the natural shape which a completely flexible 
membrane would take if subjected to a full load of coal. This 
curve may be approximated by a parabola, y = 0.2x2. 
Determine the weight of coal which the bunker would 
contain when completely filled. Coal has a specific weight of 
g = 50 lb>ft3, and assume there is a 20% loss in volume due 
to air voids. Solve the problem by integration to determine 
the cross-sectional area of ABC; then use the second 
theorem of Pappus–Guldinus to find the volume.

y

x

10 ft

20 ft

Ay � 0.2x2

C

B

Prob. 9–107

*9–108.  Determine the height h to which liquid should be 
poured into the cup so that it contacts three-fourths the 
surface area on the inside of the cup. Neglect the cup’s 
thickness for the calculation.

160 mm

h

40 mm

Prob. 9–108

9–105.  The heat exchanger radiates thermal energy at 
the rate of 2500 kJ>h for each square meter of its surface 
area. Determine how many joules (J) are radiated within a 
5-hour period.

0.75 m

1.5 m0.75 m

0.5 m

0.75 m

1 m

0.5 m

Prob. 9–105

9–106.  Determine the interior surface area of the brake 
piston. It consists of a full circular part. Its cross section is 
shown in the figure.

30 mm 20 mm40 mm

40 mm

60 mm

80 mm

20 mm

Prob. 9–106
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*9–112.  The water tank has a paraboloid-shaped roof. If 
one liter of paint can cover 3 m2 of the tank, determine the 
number of liters required to coat the roof.

x

y

2.5 m

12 m

y �      (144 � x2)1––
96

Prob. 9–112

9–113.  Determine the volume of material needed to make 
the casting.

6 in. 4 in.6 in.

2 in.

Side View Front View

Prob. 9–113

9–114.  Determine the height h to which liquid should be 
poured into the cup so that it contacts half the surface area 
on the inside of the cup. Neglect the cup’s thickness for the 
calculation.

50 mm

10 mm

h

30 mm

Prob. 9–114

9–109.  Determine the surface area of the roof of the structure 
if it is formed by rotating the parabola about the y axis.

16 m

y

x

16 m

 y � 16 � (x2/16)

Prob. 9–109

9–110.  A steel wheel has a diameter of 840 mm and a cross 
section as shown in the figure. Determine the total mass of 
the wheel if r = 5 Mg>m3.

30 mm

30 mm

80 mm

Section A–A

100 mm

250 mm
420 mm

840 mm

60 mm

A

A

Prob. 9–110

9–111.  Half the cross section of the steel housing is shown 
in the figure. There are six 10-mm-diameter bolt holes 
around its rim. Determine its mass. The density of steel 
is 7.85 Mg>m3. The housing is a full circular part.

20 mm
40 mm

10 mm

10 mm

10 mm

10 mm

30 mm

30 mm

Prob. 9–111



9

	 9.4 R esultant of a General Distributed Loading	 511

*9.4  �Resultant of a General Distributed 
Loading

In Sec. 4.9, we discussed the method used to simplify a two-dimensional 
distributed loading to a single resultant force acting at a specific point. In 
this section we will generalize this method to include flat surfaces that 
have an arbitrary shape and are subjected to a variable load distribution. 
Consider, for example, the flat plate shown in Fig. 9–23a, which is subjected 
to the loading defined by p = p(x, y) Pa, where 1 Pa (pascal) = 1 N>m2. 
Knowing this function, we can determine the resultant force FR acting on 
the plate and its location (x, y), Fig. 9–23b.

Magnitude of Resultant Force.  The force dF acting on the 
differential area dA  m2 of the plate, located at the arbitrary point (x, y), 
has a magnitude of dF = [p(x, y) N>m2](dA  m2) = [p(x, y) dA ] N. Notice 
that p(x, y) dA = dV , the colored differential volume element shown in 
Fig. 9–23a. The magnitude of FR is the sum of the differential forces acting 
over the plate’s entire surface area A. Thus:

FR = �F;	 FR = LA
p(x, y) dA = LV

dV = V � (9–11)

This result indicates that the magnitude of the resultant force is equal to 
the total volume under the distributed-loading diagram.

Location of Resultant Force.  The location (x, y) of FR is 
determined by setting the moments of FR equal to the moments of all the 
differential forces dF about the respective y and x axes: From Figs. 9–23a 
and 9–23b, using Eq. 9–11, this results in

x =
LA

xp(x, y) dA

LA
p(x, y) dA

=
LV

x dV

LV
dV
 y =

LA
yp(x, y) dA

LA
p(x, y) dA

=
LV

y dV

LV
dV

	 (9–12)

Hence, the line of action of the resultant force passes through the 
geometric center or centroid of the volume under the distributed-loading 
diagram.

x y

y
x

(a)

dF

p

p � p(x, y)

dA dV

x y

yx

(b)

FR

The resultant of a wind loading that is 
distributed on the front or side walls  
of this building must be calculated 
using integration in order to design the 
framework that holds the building 
together. (© Russell C. Hibbeler)

Fig. 9–23
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*9.5  Fluid Pressure

According to Pascal’s law, a fluid at rest creates a pressure p at a point that 
is the same in all directions. The magnitude of p, measured as a force per 
unit area, depends on the specific weight g or mass density r of the fluid 
and the depth z of the point from the fluid surface.*  The relationship can 
be expressed mathematically as

	 p = gz = rgz � (9–13)

where g is the acceleration due to gravity. This equation is valid only for 
fluids that are assumed incompressible, as in the case of most liquids. 
Gases are compressible fluids, and since their density changes significantly 
with both pressure and temperature, Eq. 9–13 cannot be used.

To illustrate how Eq. 9–13 is applied, consider the submerged plate 
shown in Fig. 9–24. Three points on the plate have been specified. Since 
point B is at depth z1 from the liquid surface, the pressure at this point has 
a magnitude p1 = gz1.  Likewise, points C and D are both at depth z2; 
hence, p2 = gz2.  In all cases, the pressure acts normal to the surface area 
dA located at the specified point.

Using Eq. 9–13 and the results of Sec. 9.4, it is possible to determine 
the resultant force caused by a liquid and specify its location on the 
surface of a submerged plate. Three different shapes of plates will now be 
considered.

*In particular, for water g = 62.4 lb>ft3, or g = rg = 9810 N>m3 since r = 1000 kg>m3 
and g = 9.81 m>s2.

z
y

x

b
dA dA

C
z2

z1

Liquid surface

dA

p1

p2
p2

D

B

Fig. 9–24
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Flat Plate of Constant Width.  A flat rectangular plate of 
constant width, which is submerged in a liquid having a specific weight g, 
is shown in Fig. 9–25a. Since pressure varies linearly with depth, Eq. 9–13, 
the distribution of pressure over the plate’s surface is represented by a 
trapezoidal volume having an intensity of p1 = gz1 at depth z1 and 
p2 = gz2 at depth z2. As noted in Sec. 9.4, the magnitude of the resultant 
force FR is equal to the volume of this loading diagram and FR has a line 
of action that passes through the volume’s centroid C. Hence, FR does not 
act at the centroid of the plate; rather, it acts at point P, called the center 
of pressure.

Since the plate has a constant width, the loading distribution may also 
be viewed in two dimensions, Fig. 9–25b. Here the loading intensity is 
measured as force> length and varies linearly from w1 = bp1 = bgz1 to 
w2 = bp2 = bgz2. The magnitude of FR in this case equals the trapezoidal 
area, and FR has a line of action that passes through the area’s centroid C. 
For numerical applications, the area and location of the centroid for a 
trapezoid are tabulated on the inside back cover.

The walls of the tank must be designed 
to support the pressure loading of the 
liquid that is contained within it. 
(© Russell C. Hibbeler)

x

Liquid surface

z2

z1

C
Pp2 � gz2

p1 � gz1

(a)

y
FR

z

L

b
2 b

2

Liquid surface
y

w2 � bp2

z

P
L

(b)

FR C

y¿

w1 � bp1
z2

z1

Fig. 9–25
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Curved Plate of Constant Width.  When a submerged plate 
of constant width is curved, the pressure acting normal to the plate 
continually changes both its magnitude and direction, and therefore 
calculation of the magnitude of FR and its location P is more difficult 
than for a flat plate. Three- and two-dimensional views of the loading 
distribution are shown in Figs. 9–26a and 9–26b, respectively. Although 
integration can be used to solve this problem, a simpler method exists. 
This method requires separate calculations for the horizontal and vertical 
components of FR.

For example, the distributed loading acting on the plate can be 
represented by the equivalent loading shown in Fig. 9–26c. Here the plate 
supports the weight of liquid W f  contained within the block BDA. This 
force has a magnitude W f = (gb)(areaBDA)  and acts through the centroid 
of BDA. In addition, there are the pressure distributions caused by the 
liquid acting along the vertical and horizontal sides of the block. Along 
the vertical side AD, the force FAD has a magnitude equal to the area of 
the trapezoid. It acts through the centroid CAD of this area. The distributed 
loading along the horizontal side AB is constant since all points lying in 
this plane are at the same depth from the surface of the liquid. The 
magnitude of FAB is simply the area of the rectangle. This force acts 
through the centroid CAB or at the midpoint of AB. Summing these three 
forces yields FR = �F = FAD + FAB + Wf.  Finally, the location of the 
center of pressure P on the plate is determined by applying MR = �M, 
which states that the moment of the resultant force about a convenient 
reference point such as D or B, in Fig. 9–26b, is equal to the sum of the 
moments of the three forces in Fig. 9–26c about this same point.

B

CAB

FAB

A
z1

z2

y

w1 � bp1

z

CAD

FAD

w1 � bp2

WfCBDA

Liquid surface

D

(c)

y

p1 � gz1

Liquid surface

z

xz1

Lz2

FR

p2 � gz2

b

C
P

(a)

Liquid surface
y

w2 � bp2
C

FR

w1 � bp1

B

z

P

D

(b)

Fig. 9–26
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The resultant force of the water pressure 
and its location on the elliptical back plate 
of this tank truck must be determined by 
integration. (© Russell C. Hibbeler)

Flat Plate of Variable Width.  The pressure distribution acting 
on the surface of a submerged plate having a variable width is shown in 
Fig. 9–27. If we consider the force dF acting on the differential area strip 
dA, parallel to the x axis, then its magnitude is dF = p dA. Since the 
depth of dA is z, the pressure on the element is p = gz. Therefore, 
dF = (gz)dA  and so the resultant force becomes

FR = 1  dF = g 1z dA

If the depth to the centroid C� of the area is z , Fig. 9–27, then, 1z dA = zA. 
Substituting, we have

	 FR = gzA � (9–14)

In other words, the magnitude of the resultant force acting on any flat 
plate is equal to the product of the area A of the plate and the pressure 
p = gz at the depth of the area’s centroid C�. As discussed in Sec. 9.4, this 
force is also equivalent to the volume under the pressure distribution. 
Realize that its line of action passes through the centroid C of this volume 
and intersects the plate at the center of pressure P, Fig. 9–27. Notice that 
the location of C� does not coincide with the location of P.

y
x

y¿

Liquid surfacez

FR

p � gz

dy¿

dA

dF

C ¿P

x
z

C

Fig. 9–27
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Example   9.14

Determine the magnitude and location of the resultant hydrostatic force 
acting on the submerged rectangular plate AB shown in Fig. 9–28a.  
The plate has a width of 1.5 m; rw = 1000 kg>m3.

Solution I
The water pressures at depths A and B are

 pA = rwgzA = (1000 kg>m3)(9.81 m>s2)(2 m) = 19.62 kPa

 pB = rwgzB = (1000 kg>m3)(9.81 m>s2)(5 m) = 49.05 kPa

Since the plate has a constant width, the pressure loading can be 
viewed in two dimensions, as shown in Fig. 9–28b. The intensities of 
the load at A and B are

 wA = bpA = (1.5 m)(19.62 kPa) = 29.43 kN>m
 wB = bpB = (1.5 m)(49.05 kPa) = 73.58 kN>m

From the table on the inside back cover, the magnitude of the resultant 
force FR created by this distributed load is

FR = area of a trapezoid =
1
2(3)(29.4 + 73.6) = 154.5 kN� Ans.

This force acts through the centroid of this area,

	 h =
1

3
 a 2(29.43) + 73.58

29.43 + 73.58
b (3) = 1.29 m	 Ans.

measured upward from B, Fig. 9–31b.

Solution II
The same results can be obtained by considering two components of 
FR, defined by the triangle and rectangle shown in Fig. 9–28c. Each 
force acts through its associated centroid and has a magnitude of

 FRe = (29.43 kN>m)(3 m) = 88.3 kN

 Ft =
1
2(44.15 kN>m)(3 m) = 66.2 kN

Hence,

	 FR = FRe + Ft = 88.3 + 66.2 = 154.5 kN� Ans.

The location of FR is determined by summing moments about B,  
Figs. 9–28b and c, i.e.,

c+(MR)B = �MB; (154.5)h = 88.3(1.5) + 66.2(1)

	  h = 1.29 m� Ans.

NOTE: Using Eq. 9–14, the resultant force can be calculated as 
FR = gzA = (9810 N>m3)(3.5 m)(3 m)(1.5 m) = 154.5 kN.

2 m

3 m

1.5 m

A

B

(a)

(c)

2 m

3 m

A

B

Ft
1 m

44.15 kN/m
29.43 kN/m

FRe

1.5 m

Fig. 9–28 

(b)

2 m

3 m

A

B

h

FR

wB � 73.58 kN/m

wA � 29.43 kN/m
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Example   9.15

Determine the magnitude of the resultant hydrostatic force acting on 
the surface of a seawall shaped in the form of a parabola, as shown 
in Fig. 9–29a. The wall is 5 m long; rw = 1020 kg>m3.

3 m

1 m

(a)

Fh

wB � 150.1 kN/m

C

Fv

A

B

(b)

Fig. 9–29 

Solution
The horizontal and vertical components of the resultant force will be 
calculated, Fig. 9–29b. Since

 pB = rwgzB = (1020 kg>m3)(9.81 m>s2)(3 m) = 30.02 kPa

then

 wB = bpB = 5 m(30.02 kPa) = 150.1 kN>m

Thus,

 Fh =
1
2(3 m)(150.1 kN>m) = 225.1 kN

The area of the parabolic section ABC can be determined using the 
formula for a parabolic area A =

1
3 ab. Hence, the weight of water 

within this 5-m-long region is

	      Fv = (rwgb)(areaABC)

	  = (1020 kg>m3)(9.81 m>s2)(5 m)31
3(1 m)(3 m)4 = 50.0 kN	

The resultant force is therefore

 FR = 2Fh
2 + Fy

2 = 2(225.1 kN)2 + (50.0 kN)2

	  = 231 kN 	 Ans.
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Determine the magnitude and location of the resultant force acting on 
the triangular end plates of the water trough shown in Fig. 9–30a; 
rw = 1000 kg>m3.

Example    9.16

0.5 m

y
x

z

1 m

z

dz
A

B

(b)

O

2x

dF

1 m

1 m

(a)

E

Fig. 9–30 

Solution
The pressure distribution acting on the end plate E is shown in Fig. 9–30b. 
The magnitude of the resultant force is equal to the volume of this loading 
distribution. We will solve the problem by integration. Choosing the 
differential volume element shown in the figure, we have

dF = dV = p dA = rwgz(2x dz) = 19 620zx dz

The equation of line AB is

x = 0.5(1 - z)

Hence, substituting and integrating with respect to z from z = 0 to 
z = 1 m yields

 F = V = LV
dV = L

1 m

0
(19 620)z[0.5(1 - z)] dz

	  = 9810L
1 m

0
(z - z2) dz = 1635 N = 1.64 kN 	 Ans.

This resultant passes through the centroid of the volume. Because of 
symmetry,

	 x = 0	 Ans.

Since z� = z for the volume element, then

 z =
LV

z� dV

LV
dV

=
L

1 m

0
z(19 620)z[0.5(1 - z)] dz

1635
=

9810L
1 m

0
(z2 - z3) dz

1635

   = 0.5 m  	 Ans.

NOTE: We can also determine the resultant force by applying Eq. 9–14,  
FR = gzA = 19810 N>m3211

32(1 m)312(1 m)(1 m)4 = 1.64 kN.
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F9–17.  Determine the magnitude of the hydrostatic force 
acting per meter length of the wall. Water has a density of 
r = 1 Mg>m3.

6 m

Prob. F9–17

F9–18.  Determine the magnitude of the hydrostatic force 
acting on gate AB, which has a width of 4 ft. The specific 
weight of water is g = 62.4 lb>ft3.

A B

4 ft

3 ft

Prob. F9–18

F9–19.  Determine the magnitude of the hydrostatic force 
acting on gate AB, which has a width of 1.5 m. Water has a 
density of r = 1 Mg>m3.

B

A

2 m

1.5 m

Prob. F9–19

F9–20.  Determine the magnitude of the hydrostatic force 
acting on gate AB, which has a width of 2 m. Water has a 
density of r = 1 Mg>m3.

B

A

2 m

3 m

Prob. F9–20

F9–21.  Determine the magnitude of the hydrostatic force 
acting on gate AB, which has a width of 2 ft. The specific 
weight of water is g = 62.4 lb>ft3.

B

A

3 ft

4 ft

6 ft

Prob. F9–21

FUNDAMENTAL PROBLEMS
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9–118.  The rectangular plate is subjected to a distributed 
load over its entire surface. The load is defined by  
the expression p = p0 sin (px >a) sin (py >b),where p0 
represents the pressure acting at the center of the plate. 
Determine the magnitude and location of the resultant 
force acting on the plate.

x
b

a

p0

y

p

Prob. 9–118

9–119.  A wind loading creates a positive pressure on one 
side of the chimney and a negative (suction) pressure on 
the other side, as shown. If this pressure loading acts 
uniformly along the chimney’s length, determine the 
magnitude of the resultant force created by the wind.

p � p0 cos u

p

l

u

Prob. 9–119

9–115.  The pressure loading on the plate varies uniformly 
along each of its edges. Determine the magnitude of the 
resultant force and the coordinates (x, y) of the point where 
the line of action of the force intersects the plate. Hint:  
The equation defining the boundary of the load has the form  
p = ax + by + c, where the constants a, b, and c have to be 
determined.

x

p

y

10 ft
5 ft

40 lb/ft

20 lb/ft30 lb/ft

10 lb/ft

Prob. 9–115

*9–116.  The load over the plate varies linearly along the 
sides of the plate such that p =  (12 - 6x + 4y) kPa. 
Determine the magnitude of the resultant force and the 
coordinates (x, y ) of the point where the line of action of 
the force intersects the plate.

p

1.5 m

2 m
y

x
18 kPa

12 kPa

6 kPa

Prob. 9–116

9–117.  The load over the plate varies linearly along the 
sides of the plate such that p =

2
3 [x(4 - y)] kPa. Determine 

the resultant force and its position (x, y) on the plate.
p

3 m

4 m

y

x

8 kPa

Prob. 9–117

Problems



9

	 9.5 F luid Pressure	 521

9–123.  The factor of safety for tipping of the concrete dam is 
defined as the ratio of the stabilizing moment due to the dam’s 
weight divided by the overturning moment about O due to 
the water pressure. Determine this factor if the concrete has a 
density of rconc = 2.5 Mg>m3 and for water rw = 1 Mg>m3.

y
1 m

x

4 m

6 m

O

Prob. 9–123

*9–124.  The concrete dam in the shape of a quarter circle. 
Determine the magnitude of the resultant hydrostatic force 
that acts on the dam per meter of length. The density of 
water is rw = 1 Mg>m3.

3 m

Prob. 9–124

9–125.  The tank is used to store a liquid having a density 
of 80 lb>ft3. If it is filled to the top, determine the magnitude 
of force the liquid exerts on each of its two sides ABDC  
and BDFE.

4 ft

6 ft

12 ft

3 ft

B

A

C

D

F

E

Prob. 9–125

*9–120.  When the tide water A subsides, the tide gate 
automatically swings open to drain the marsh B. For the 
condition of high tide shown, determine the horizontal 
reactions developed at the hinge C and stop block D. The 
length of the gate is 6 m and its height is 4 m.  rw = 1.0 Mg>m3.

A
B

C

D

3 m
2 m

4 m

Prob. 9–120
9–121.  The tank is filled with water to a depth of d = 4 m. 
Determine the resultant force the water exerts on side A and 
side B of the tank. If oil instead of water is placed in the tank, 
to what depth d should it reach so that it creates the same 
resultant forces? ro = 900 kg>m3 and rw = 1000 kg>m3.

d
BA

3 m 2 m

Prob. 9–121
9–122.  The concrete “gravity” dam is held in place by its 
own weight. If the density of concrete is rc = 2.5 Mg>m3, 
and water has a density of rw = 1.0 Mg>m3, determine the 
smallest dimension d that will prevent the dam from 
overturning about its end A.

A

d

1 m

6 m

d – 1

Prob. 9–122
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*9–128.  The tank is filled with a liquid that has a density of 
900 kg>m3. Determine the resultant force that it exerts on 
the elliptical end plate, and the location of the center of 
pressure, measured from the x axis.

0.5 m

1 m

0.5 m

1 m

x

y

4 y2 + x2 = 1

Prob. 9–128

9–129.  Determine the magnitude of the resultant force 
acting on the gate ABC due to hydrostatic pressure. The 
gate has a width of 1.5 m. rw = 1.0 Mg>m3.

B

C

2 m

60�

A

1.25 m

1.5 m

Prob. 9–129

9–130.  The semicircular drainage pipe is filled with water. 
Determine the resultant horizontal and vertical force 
components that the water exerts on the side AB of the 
pipe per foot of pipe length; gw = 62.4 lb>ft3.

B

2 ft

A

Prob. 9–130

9–126.   The parabolic plate is subjected to a fluid pressure 
that varies linearly from 0 at its top to 100 lb>ft at its bottom B. 
Determine the magnitude of the resultant force and its 
location on the plate.

2 ft 2 ft

4 ft

y � x2

y

x

B

Prob. 9–126

9–127.  The 2-m-wide rectangular gate is pinned at its 
center A and is prevented from rotating by the block at B. 
Determine the reactions at these supports due to hydrostatic 
pressure. rw = 1.0 Mg>m3.

6 m

1.5 m

A

B
1.5 m

Prob. 9–127
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Chapter Review

Center of Gravity and Centroid

The center of gravity G represents a point 
where the weight of the body can be 
considered concentrated. The distance 
from an axis to this point can be 
determined from a balance of moments, 
which requires that the moment of the 
weight of all the particles of the body 
about this axis must equal the moment of 
the entire weight of the body about  
the axis.

The center of mass will coincide with 
the center of gravity provided the 
acceleration of gravity is constant.

The centroid is the location of the 
geometric center for the body. It is 
determined in a similar manner, using a 
moment balance of geometric elements 
such as line, area, or volume segments. 
For bodies having a continuous shape, 
moments are summed (integrated) 
using differential elements.

The center of mass will coincide with 
the centroid provided the material is 
homogeneous, i.e., the density of the 
material is the same throughout. The 
centroid will always lie on an axis of 
symmetry.

 x =
L x� dW

LdW

 y =
L y� dW

LdW

 z =
L z� dW

LdW

 x =
LL

x� dL

LL
dL
 y =

LL
y� dL

LL
dL
 z =

LL
z� dL

LL
dL

 x =
LA

x� dA

LA
dA
 y =

LA
y� dA

LA
dA
 z =

LA
z� dA

LA
dA

 x =
LV

x� dV

LV
dV
 y =

LV
y� dV

LA
dV
 z =

LV
z� dV

LV
dV

GdV

~z

z

y
~x

x~y

y

z

x

W

dW

C

y

x
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Composite Body

If the body is a composite of several 
shapes, each having a known location 
for its center of gravity or centroid, then 
the location of the center of gravity or 
centroid of the body can be determined 
from a discrete summation using its 
composite parts.

Theorems of Pappus and Guldinus

The theorems of Pappus and Guldinus 
can be used to determine the surface 
area and volume of a body of revolution.

The surface area equals the product of  
the length of the generating curve and the 
distance traveled by the centroid of the 
curve needed to generate the area.

The volume of the body equals the 
product of the generating area and the 
distance traveled by the centroid of this 
area needed to generate the volume. 

x

y

z
x =

�x�W

�W

y =
�y�W

�W

z =
� z�W

�W

A = urL

V = urA
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General Distributed Loading

The magnitude of the resultant force is 
equal to the total volume under the 
distributed-loading diagram. The line of 
action of the resultant force passes 
through the geometric center or centroid 
of this volume.

FR = LA
p(x, y) dA = LV

dV

x =
LV

x dV

LV
dV

y =
LV

y dV

LV
dV

Fluid Pressure

The pressure developed by a liquid at a 
point on a submerged surface depends 
upon the depth of the point and the 
density of the liquid in accordance with 
Pascal’s law, p = rgh = gh. This pressure 
will create a linear distribution of loading 
on a flat vertical or inclined surface.

P

FR

x y

y
x

dF

p

dVdA

p � p(x, y)

If the surface is horizontal, then the 
loading will be uniform.

In any case, the resultants of these 
loadings can be determined by finding 
the volume under the loading curve or 
using FR = gz A, where z is the depth to 
the centroid of the plate’s area. The line 
of action of the resultant force passes 
through the centroid of the volume of 
the loading diagram and acts at a point P 
on the plate called the center of pressure.
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R9–1.  Locate the centroid x of the area.

R9–2.  Locate the centroid y of the area.

y

x

a

b

xy � c2    

Probs. R9–1/2

R9–3.  Locate the centroid z  of the hemisphere.

y

z

x

a

y2 � z2 � a2

Prob. R9–3

R9–4.  Locate the centroid of the rod.

z

4 ft

2 ft

x
A

4 ft

y

Prob. R9–4

R9–5.  Locate the centroid y of the beam’s cross-sectional 
area.

100 mm

25 mm

25 mm

x

25 mm

y

50 mm 50 mm

y

75 mm75 mm

C

Prob. R9–5

Review Problems
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R9–6.  A circular V-belt has an inner radius of 600 mm and 
a cross-sectional area as shown. Determine the surface area 
of the belt.

R9–7.  A circular V-belt has an inner radius of 600 mm and 
a cross-sectional area as shown. Determine the volume of 
material required to make the belt.

75 mm

50 mm
25 mm 25 mm

600 mm

Probs. R9–6/7

R9–8.  The rectangular bin is filled with coal, which creates 
a pressure distribution along wall A that varies as shown, 
i.e., p = 4z1/3  lb>ft2,   where z is in feet. Determine the 
resultant force created by the coal, and its location, 
measured from the top surface of the coal.

8 ft

3 ft

z

A

z

p � 4z1/3

Prob. R9–8

R9–9.  The gate AB is 8 m wide. Determine the horizontal 
and vertical components of force acting on the pin at B  
and the vertical reaction at the smooth support A; 
rw = 1.0 Mg>m3.

5 m

4 m

3 m

A

B

Prob. R9–9

R9–10.  Determine the magnitude of the resultant 
hydrostatic force acting per foot of length on the seawall; 
gw = 62.4 lb>ft3.

2 ft

8 ft

y

x
y � �2x2

Prob. R9–10
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The design of these structural members requires calculation of their cross-
sectional moment of inertia. In this chapter we will discuss how this is done.

Chapter 10

(© Michael N. Paras/AGE Fotostock/Alamy)



10.1  �Definition of Moments of Inertia 
for Areas

Whenever a distributed load acts perpendicular to an area and its intensity 
varies linearly, the calculation of the moment of the loading about an axis 
will involve an integral of the form 1y2dA . For example, consider the plate 
in Fig. 10–1, which is submerged in a fluid and subjected to the pressure p. 
As discussed in Sec. 9.5, this pressure varies linearly with depth, such that 
p = gy, where g is the specific weight of the fluid. Thus, the force acting 
on the differential area dA  of the plate is dF = p dA = (gy)dA . 
The moment of this force about the x axis is therefore dM = y dF = gy2dA , 
and so integrating dM over the entire area of the plate yields M = g1y2dA . 
The integral 1y2dA  is sometimes referred to as the “second moment” of 
the area about an axis (the x axis), but more often it is called the moment 
of inertia of the area. The word “inertia” is used here since the formulation 
is similar to the mass moment of inertia, 1y2dm , which is a dynamical 
property described in Sec. 10.8. Although for an area this integral has no 
physical meaning, it often arises in formulas used in fluid mechanics, 
mechanics of materials, structural mechanics, and mechanical design, and 
so the engineer needs to be familiar with the methods used to determine  
the moment of inertia.

Moments of Inertia

CHAPTER OBJECTIVES

n	 To develop a method for determining the moment of inertia for 
an area.

n	 To introduce the product of inertia and show how to determine 
the maximum and minimum moments of inertia for an area.

n	 To discuss the mass moment of inertia.

y

x

z

y

dF

dAp � gy

Fig. 10–1



530 	 Chapter 10    Moments of Inert ia

10

O
x

y

y

x

r

dA

A

Fig. 10–2

O
x

y

d

dx

dy

x¿

y�

x¿

y¿
dA

C

Fig. 10–3

Moment of Inertia.  By definition, the moments of inertia of a 
differential area dA about the x and y axes are dIx = y2 dA  and 
dIy = x2 dA , respectively, Fig. 10–2. For the entire area A the moments of 
inertia are determined by integration; i.e.,

	
Ix = LA

y2 dA

Iy = LA
x2 dA

	 (10–1)

We can also formulate this quantity for dA about the “pole” O or z axis, 
Fig. 10–2. This is referred to as the polar moment of inertia. It is defined 
as dJO = r2 dA , where r is the perpendicular distance from the pole  
(z axis) to the element dA. For the entire area the polar moment of inertia is

	  JO = LA
r2 dA = Ix + Iy

	 (10–2)

This relation between JO and Ix, Iy is possible since r2 = x2 + y2,  
Fig. 10–2.

From the above formulations it is seen that Ix, Iy, and JO will always be 
positive since they involve the product of distance squared and area. 
Furthermore, the units for moment of inertia involve length raised to the 
fourth power, e.g., m4, mm4, or ft4, in.4.

10.2  Parallel-Axis Theorem for an Area

The parallel-axis theorem can be used to find the moment of inertia of an 
area about any axis that is parallel to an axis passing through the centroid 
and about which the moment of inertia is known. To develop this theorem, 
we will consider finding the moment of inertia of the shaded area shown 
in Fig. 10–3 about the x axis. To start, we choose a differential element dA 
located at an arbitrary distance y � from the centroidal x � axis. If the distance 
between the parallel x and x � axis is dy, then the moment of inertia of dA 
about the x axis is dIx = (y � + dy)

2 dA . For the entire area,

 Ix = LA
(y � + dy)

2 dA

 = LA
y �2 dA + 2dy LA

y � dA + dy
2LA

dA
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The first integral represents the moment of inertia of the area about the 
centroidal axis, Ix�. The second integral is zero since the x � axis passes 
through the area’s centroid C; i.e., 1y � dA = y �1dA = 0 since y � = 0. 
Since the third integral represents the total area A, the final result is 
therefore

	 Ix = Ix� + Ady
2 � (10–3)

A similar expression can be written for Iy; i.e.,

	 Iy = Iy� + Adx
2 � (10–4)

And finally, for the polar moment of inertia, since JC = Ix� + Iy� and 
d2 = d2

x +  d2
y, we have

	 JO = JC + Ad2 � (10–5)

The form of each of these three equations states that the moment of 
inertia for an area about an axis is equal to its moment of inertia about a 
parallel axis passing through the area’s centroid plus the product of the 
area and the square of the perpendicular distance between the axes.

10.3  Radius of Gyration of an Area

The radius of gyration of an area about an axis has units of length and is 
a quantity that is often used for the design of columns in structural 
mechanics. Provided the areas and moments of inertia are known, the radii 
of gyration are determined from the formulas

	 kx = DIx

A

	 ky = DIy

A
� (10–6)

	 kO = DJO

A

The form of these equations is easily remembered since it is similar to 
that for finding the moment of inertia for a differential area about an 
axis. For example, Ix = kx

2A ; whereas for a differential area, dIx = y2 dA .

In order to predict the strength and 
deflection of this beam, it is necessary to 
calculate the moment of inertia of the 
beam’s cross-sectional area. (© Russell 
C. Hibbeler)



532 	 Chapter 10    Moments of Inert ia

10

y

(a)

y

x

dy

x

(x, y)

y � f(x)

dA

x

(b)

y

x

y

dx

(x, y)

dA

y � f(x)

Fig. 10–4

Important Points

	 •	 The moment of inertia is a geometric property of an area that is 
used to determine the strength of a structural member or the 
location of a resultant pressure force acting on a plate submerged 
in a fluid. It is sometimes referred to as the second moment of the 
area about an axis, because the distance from the axis to each area 
element is squared.

	 •	 If the moment of inertia of an area is known about its centroidal 
axis, then the moment of inertia about a corresponding parallel 
axis can be determined using the parallel-axis theorem.

Procedure for Analysis

In most cases the moment of inertia can be determined using a 
single integration. The following procedure shows two ways in which 
this can be done.

	 •	 If the curve defining the boundary of the area is expressed as 
y = f(x), then select a rectangular differential element such that 
it has a finite length and differential width.

	 •	 The element should be located so that it intersects the curve at 
the arbitrary point (x, y).

Case 1.
	 •	 Orient the element so that its length is parallel to the axis about 

which the moment of inertia is computed. This situation occurs 
when the rectangular element shown in Fig. 10–4a is used to 
determine Ix for the area. Here the entire element is at a distance y 
from the x axis since it has a thickness dy. Thus Ix = 1y

2
dA . To find 

Iy, the element is oriented as shown in Fig. 10–4b. This element lies 
at the same distance x from the y axis so that Iy = 1x

2
dA .

Case 2.
	 •	 The length of the element can be oriented perpendicular to the 

axis about which the moment of inertia is computed; however, 
Eq. 10–1 does not apply since all points on the element will not lie 
at the same moment-arm distance from the axis. For example, if 
the rectangular element in Fig. 10–4a is used to determine Iy, it 
will first be necessary to calculate the moment of inertia of the 
element about an axis parallel to the y axis that passes through 
the element’s centroid, and then determine the moment of inertia 
of the element about the y axis using the parallel-axis theorem. 
Integration of this result will yield Iy. See Examples 10.2 and 10.3.



	 10.3 R adius of Gyration of an Area	 533

10

example    10.1

Determine the moment of inertia for the rectangular area shown in 
Fig. 10–5 with respect to (a) the centroidal x � axis, (b) the axis xb 
passing through the base of the rectangle, and (c) the pole or z � axis 
perpendicular to the x �9y � plane and passing through the centroid C.

SOLUTION (CASE 1)
Part (a).  The differential element shown in Fig. 10–5 is chosen for 
integration. Because of its location and orientation, the entire element 
is at a distance y � from the x � axis. Here it is necessary to integrate from 
y � = -h>2 to y � = h>2. Since dA = b dy �, then

	  Ix� = LA
y=2 dA = L

h>2

-h>2
y=2(b dy �) = bL

h>2

-h>2
y=2 dy=

	  Ix� =
1

12
 bh3 � Ans.

Part (b).  The moment of inertia about an axis passing through the 
base of the rectangle can be obtained by using the above result of 
part (a) and applying the parallel-axis theorem, Eq. 10–3.

	  Ixb
= Ix� + Ady

2

	  =
1

12
 bh3 + bha h

2
b

2

=
1

3
 bh3 � Ans.

Part (c).  To obtain the polar moment of inertia about point C, we 
must first obtain Iy�, which may be found by interchanging the 
dimensions b and h in the result of part (a), i.e.,

Iy� =
1

12
 hb3

Using Eq. 10–2, the polar moment of inertia about C is therefore

	 JC = Ix� + Iy� =
1

12
 bh(h2 + b2) � Ans.

x¿

y¿

y¿

xb

C

dy¿

b
2

b
2

h
2

h
2

Fig. 10–5
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Determine the moment of inertia for the shaded area shown in  
Fig. 10–6a about the x axis.

SOLUTION I (CASE 1)
A differential element of area that is parallel to the x axis, as shown in 
Fig. 10–6a, is chosen for integration. Since this element has a thickness 
dy and intersects the curve at the arbitrary point (x, y), its area is 
dA = (100 - x) dy. Furthermore, the element lies at the same distance y 
from the x axis. Hence, integrating with respect to y, from y = 0 to 
y = 200 mm, yields

 Ix = LA
y2 dA = L

200 mm

0
y2(100 - x) dy

 = L
200 mm

0
y2a100 -

y2

400
b  dy = L

200 mm

0
a100y2 -

y4

400
b  dy  

 = 107(106) mm4 � Ans.

SOLUTION II (CASE 2)
A differential element parallel to the y axis, as shown in Fig. 10–6b, is 
chosen for integration. It intersects the curve at the arbitrary point  
(x, y). In this case, all points of the element do not lie at the same 
distance from the x axis, and therefore the parallel-axis theorem must 
be used to determine the moment of inertia of the element with respect 
to this axis. For a rectangle having a base b and height h, the moment 
of inertia about its centroidal axis has been determined in part (a) of 
Example 10.1. There it was found that Ix� =

1
12 bh3. For the differential 

element shown in Fig. 10–6b, b = dx and h = y, and thus dIx� =
1

12 dx y3. 
Since the centroid of the element is y� = y >2 from the x axis, the 
moment of inertia of the element about this axis is

dIx = dIx� + dA  y�2 =
1

12
 dx y3 + y dx a y

2
b

2

=
1

3
 y3 dx

(This result can also be concluded from part (b) of Example 10.1.) 
Integrating with respect to x, from x = 0 to x = 100 mm, yields

 Ix = LdIx = L
100 mm

0
 
1

3
 y3 dx = L

100 mm

0
 
1

3
 (400x)3>2 dx

 = 107(106) mm4 � Ans.

example   10.2

x

y

200 mm

100 mm

y

x
dy

y2 � 400x

(a)

(100 – x)

Fig. 10–6

x

y

200 mm

x

y

100 mm

dx

x¿

y2 � 400x

(b)

y �~ y
––
2
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Determine the moment of inertia with respect to the x axis for the 
circular area shown in Fig. 10–7a.

x

y

y

x�x

dy

(�x, y)
(x, y)

x2 � y2 � a2

(a)

O

a

SOLUTION I (CASE 1)
Using the differential element shown in Fig. 10–7a, since dA = 2x dy, 
we have

 Ix = LA
y2 dA = LA

y2(2x) dy

	    = L
a

-a
y2122a2 - y22 dy =

pa4

4
 � Ans.

SOLUTION II (CASE 2)
When the differential element shown in Fig. 10–7b is chosen, the 
centroid for the element happens to lie on the x axis, and since 
Ix� =

1
12 bh3 for a rectangle, we have

	  dIx =
1

12
 dx(2y)3

	  =
2

3
 y3 dx

Integrating with respect to x yields

	 Ix = L
a

-a
 
2

3
 (a2 - x2)3>2 dx =

pa4

4
 � Ans.

NOTE: By comparison, Solution I requires much less computation. 
Therefore, if an integral using a particular element appears difficult to 
evaluate, try solving the problem using an element oriented in the 
other direction.

example   10.3

Fig. 10–7

O
x

y

a

(x, y)

(x, �y)
dx

y

�y

(b)

(x, y)~ ~

x2 � y2 � a2
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FUNDAMENTAL PROBLEMS

F10–1.  Determine the moment of inertia of the shaded 
area about the x axis.

y

x

1 m

1 m

y3 � x2

Prob. F10–1

F10–2.  Determine the moment of inertia of the shaded 
area about the x axis.

y

x

1 m

1 m

y3 � x2

Prob. F10–2

F10–3.  Determine the moment of inertia of the shaded 
area about the y axis.

y

x

1 m

1 m

y3 � x2

Prob. F10–3

F10–4.  Determine the moment of inertia of the shaded 
area about the y axis.

y

x

1 m

1 m

y3 � x2

Prob. F10–4
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Problems

10–5.  Determine the moment of inertia for the shaded 
area about the x axis.

10–6.  Determine the moment of inertia for the shaded 
area about the y axis.

y

x

y �x1/2

1 m

1 m

Probs. 10–5/6

10–7.  Determine the moment of inertia for the shaded 
area about the x axis.

*10–8.  Determine the moment of inertia for the shaded 
area about the y axis.

y

x

2 m

1 m

y2 � 1 � 0.5x

Probs. 10–7/8

10–1.  Determine the moment of inertia about the x axis.

10–2.  Determine the moment of inertia about the y axis.

y

x

a

b
y �      xn

an
b

Probs. 10–1/2

10–3.  Determine the moment of inertia for the shaded 
area about the x axis.

*10–4.  Determine the moment of inertia for the shaded 
area about the y axis.

100 mm

200 mm

y

x

y �      x21
50

Probs. 10–3/4
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10–13.  Determine the moment of inertia about the x axis.

10–14.  Determine the moment of inertia about the y axis.

y

x

2 m

1 m

x2 � 4y2 � 4

Probs. 10–13/14

10–15.  Determine the moment of inertia for the shaded 
area about the x axis.

y

x

16 in.

4 in.
y2 � x

Prob. 10–15

*10–16.  Determine the moment of inertia for the shaded 
area about the y axis.

y

x

16 in.

4 in.
y2 � x

Prob. 10–16

10–9.  Determine the moment of inertia of the area about 
the x axis. Solve the problem in two ways, using rectangular 
differential elements: (a) having a thickness dx and  
(b) having a thickness of dy.

y

x

y � 2.5 � 0.1x2

5 ft

2.5 ft

Prob. 10–9

10–10.  Determine the moment of inertia of the area about 
the x axis.

b
x

y

y2 � — x

h

h2

b

Prob. 10–10

10–11.  Determine the moment of inertia for the shaded 
area about the x axis.

*10–12.  Determine the moment of inertia for the shaded 
area about the y axis.

y �      x3

y

8 m

4 m

x

1
8

Probs. 10–11/12
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10–21.  Determine the moment of inertia for the shaded 
area about the x axis.

10–22.  Determine the moment of inertia for the shaded 
area about the y axis.

y

x
2 m

2 m

y2 � 2x

y � x

Probs. 10–21/22

10–23.  Determine the moment of inertia for the shaded 
area about the x axis.

b

x

y

a

y2 � —xb2

a

y �— x2b
a2      

Prob. 10–23

*10–24.  Determine the moment of inertia for the shaded 
area about the y axis.

b

x

y

a

y2 � —xb2

a

y �— x2b
a2      

Prob. 10–24

10–17.  Determine the moment of inertia for the shaded 
area about the x axis.

y

x

h

b

y �       x3  h
b3

Prob. 10–17

10–18.  Determine the moment of inertia for the shaded 
area about the y axis.

y

x

h

b

y �       x3  h
b3

Prob. 10–18

10–19.  Determine the moment of inertia for the shaded 
area about the x axis.

*10–20.  Determine the moment of inertia for the shaded 
area about the y axis.

y

y2 � 1 � x

x

1 m

1 m

1 m

Probs. 10–19/20
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10.4  �Moments of Inertia for  
Composite Areas

A composite area consists of a series of connected “simpler” parts or 
shapes, such as rectangles, triangles, and circles. Provided the moment of 
inertia of each of these parts is known or can be determined about a 
common axis, then the moment of inertia for the composite area about 
this axis equals the algebraic sum of the moments of inertia of all its parts.

For design or analysis of this T-beam, 
engineers must be able to locate the 
centroid of its cross-sectional area, 
and then find the moment of inertia 
of this area about the centroidal axis. 
(© Russell C. Hibbeler)

Procedure for Analysis

The moment of inertia for a composite area about a reference axis 
can be determined using the following procedure.

Composite Parts.
	 •	 Using a sketch, divide the area into its composite parts and 

indicate the perpendicular distance from the centroid of each 
part to the reference axis.

Parallel-Axis Theorem.
	 •	 If the centroidal axis for each part does not coincide with the 

reference axis, the parallel-axis theorem, I = I + Ad2, should be 
used to determine the moment of inertia of the part about the 
reference axis. For the calculation of I, use the table on the inside 
back cover.

Summation.
	 •	 The moment of inertia of the entire area about the reference axis 

is determined by summing the results of its composite parts about 
this axis.

	 •	 If a composite part has an empty region (hole), its moment of 
inertia is found by subtracting the moment of inertia of this region 
from the moment of inertia of the entire part including the region.
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example   10.4

Determine the moment of inertia of the area shown in Fig. 10–8a about 
the x axis.

x

100 mm

75 mm

75 mm

25 mm

–

(b)

x

100 mm

75 mm

75 mm

25 mm

(a)

Fig. 10–8

SOLUTION
Composite Parts.  The area can be obtained by subtracting the circle 
from the rectangle shown in Fig. 10–8b. The centroid of each area is 
located in the figure.
Parallel-Axis Theorem.  The moments of inertia about the x axis 
are  determined using the parallel-axis theorem and the geometric 
properties formulae for circular and rectangular areas Ix =

1
4pr4;

Ix =
1

12bh3, found on the inside back cover.

Circle

 Ix = Ix = + Ady
2

 =
1

4
 p(25)4 + p(25)2(75)2 = 11.4(106) mm4

Rectangle

 Ix = Ix = + Ady
2

 =
1

12
 (100)(150)3 + (100)(150)(75)2 = 112.5(106) mm4

Summation.  The moment of inertia for the area is therefore

 Ix = -11.4(106) + 112.5(106)

 = 101(106) mm4 � Ans.
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example   10.5

Determine the moments of inertia for the cross-sectional area of the 
member shown in Fig. 10–9a about the x and y centroidal axes.

SOLUTION
Composite Parts.  The cross section can be subdivided into the three 
rectangular areas A, B, and D shown in Fig. 10–9b. For the calculation, 
the centroid of each of these rectangles is located in the figure.

Parallel-Axis Theorem.  From the table on the inside back cover, or 
Example 10.1, the moment of inertia of a rectangle about its centroidal 
axis is I =

1
12 bh3. Hence, using the parallel-axis theorem for rectangles A 

and D, the calculations are as follows:

Rectangles A and D

 Ix = Ix� + Ady
2 =

1

12
 (100)(300)3 + (100)(300)(200)2

 = 1.425(109) mm4

 Iy = Iy� + Adx
2 =

1

12
 (300)(100)3 + (100)(300)(250)2

 = 1.90(109) mm4

Rectangle B

 Ix =
1

12
 (600)(100)3 = 0.05(109) mm4

 Iy =
1

12
 (100)(600)3 = 1.80(109) mm4

Summation.  The moments of inertia for the entire cross section 
are thus

 Ix =  2[1.425(109)] + 0.05(109)

 = 2.90(109) mm4 � Ans.

 Iy = 2[1.90(109)] + 1.80(109)

 = 5.60(109) mm4 � Ans.

100 mm

400 mm

100 mm

100 mm
600 mm

400 mm

x

y

(a)

C

Fig. 10–9

100 mm

100 mm

x

y

300 mm

300 mm
200 mm

250 mm

200 mm

(b)

A

B

D

250 mm



	 10.4  Moments of Inertia for Composite Areas 	 543

10

F10–5.  Determine the moment of inertia of the beam’s 
cross-sectional area about the centroidal x and y axes.

200 mm

150 mm 150 mm

200 mm

50 mm

50 mm

x

y

Prob. F10–5

F10–6.  Determine the moment of inertia of the beam’s 
cross-sectional area about the centroidal x and y axes.

300 mm

200 mm

30 mm 30 mm

30 mm

30 mm

x

y

Prob. F10–6

F10–7.  Determine the moment of inertia of the  
cross-sectional area of the channel with respect to the y axis.

x

y

50 mm

50 mm

300 mm

50 mm

200 mm

Prob. F10–7

F10–8.  Determine the moment of inertia of the cross-
sectional area of the T-beam with respect to the x � axis 
passing through the centroid of the cross section.

30 mm

150 mm

150 mm

30 mm

y

x¿

Prob. F10–8

FUNDAMENTAL PROBLEMS
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10–25.  Determine the moment of inertia of the composite 
area about the x axis.

10–26.  Determine the moment of inertia of the composite 
area about the y axis.

y

x

6 in.

3 in.

3 in.

3 in.

Probs. 10–25/26

10–27.  The polar moment of inertia for the area is  
 JC = 642 (106) mm4, about the z� axis passing through the 
centroid C. The moment of inertia about the y� axis is  
264 (106) mm4, and the moment of inertia about the x axis is 
938 (106) mm4. Determine the area A.

y

200 mm

C x¿

x

¿

Prob. 10–27

*10–28.  Determine the location y of the centroid of the 
channel’s cross-sectional area and then calculate the 
moment of inertia of the area about this axis.

50 mm

50 mm

x

–y

50 mm

350 mm

250 mm

Prob. 10–28

10–29.  Determine y, which locates the centroidal axis x � 
for the cross-sectional area of the T-beam, and then find the 
moments of inertia Ix� and Iy�.

75 mm

x¿

y¿

C

75 mm

150 mm

20 mm

20 mm
y

Prob. 10–29

PROBLEMS
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10–34.  Determine the moment of inertia of the beam’s 
cross-sectional area about the y axis.

10–35.  Determine y, which locates the centroidal axis x � 
for the cross-sectional area of the T-beam, and then find the 
moment of inertia about the x � axis.

C

x

y

x¿

_
y

x¿

250 mm

50 mm

150 mm
150 mm

25 mm
25 mm

Probs. 10–34/35

*10–36.  Determine the moment of inertia about the x axis.

10–37.  Determine the moment of inertia about the y axis.

150 mm150 mm

y

xC

200 mm

200 mm

20 mm

20 mm

20 mm

Probs. 10–36/37

10–30.  Determine the moment of inertia for the beam’s 
cross-sectional area about the x axis.

10–31.  Determine the moment of inertia for the beam’s 
cross-sectional area about the y axis.

8 in.

y

x
10 in.

3 in.

1 in.

1 in.

1 in.

Probs. 10–30/31

*10–32.  Determine the moment of inertia Ix of the shaded 
area about the x axis.

10–33.  Determine the moment of inertia Ix of the shaded 
area about the y axis.

O
x

150 mm

150 mm100 mm 100 mm

75 mm150 mm

y

Probs. 10–32/33
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10–42.  Determine the moment of inertia of the beam’s 
cross-sectional area about the x axis.

10–43.  Determine the moment of inertia of the beam’s 
cross-sectional area about the y axis.

*10–44.  Determine the distance y to the centroid C of the 
beam’s cross-sectional area and then compute the moment 
of inertia Ix� about the x � axis.

10–45.  Determine the distance x to the centroid C of the 
beam’s cross-sectional area and then compute the moment 
of inertia Iy� about the y � axis.

170 mm30 mm

30 mm

70 mm

140 mm

30 mm

30 mm

y

x

x¿

y¿

_
x

C

_
y

Probs. 10–42/43/44/45

10–46.  Determine the moment of inertia for the shaded 
area about the x axis.

10–47.  Determine the moment of inertia for the shaded 
area about the y axis.

x

y

3 in. 3 in.

6 in.

3 in.

3 in.

3 in.
2 in.

Probs. 10–46/47

10–38.  Determine the moment of inertia of the shaded 
area about the x axis.

10–39.  Determine the moment of inertia of the shaded 
area about the y axis.

x
6 in.

3 in.

6 in.

y

6 in.

Probs. 10–38/39

*10–40.  Determine the distance y to the centroid of the 
beam’s cross-sectional area; then find the moment of inertia 
about the centroidal x � axis.

10–41.  Determine the moment of inertia for the beam’s 
cross-sectional area about the y axis.

y

x

3 in.
1 in.

1 in.

4 in.

1 in.

y¿

x ¿C

y

3 in.

Probs. 10–40/41
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10–51.  Determine the moment of inertia for the beam’s 
cross-sectional area about the x � axis passing through the 
centroid C of the cross section.

x¿

100 mm
100 mm

200 mm

200 mm

C

25 mm

25 mm

45�

45� 45�

45�

Prob. 10–51

*10–52.  Determine the moment of inertia of the area 
about the x axis.

10–53.  Determine the moment of inertia of the area about 
the y axis.

y

x

3 in. 3 in.

6 in.

4 in.
2 in.

Probs. 10–52/53

*10–48.  Determine the moment of inertia of the 
parallelogram about the x � axis, which passes through the 
centroid C of the area.

y

b
x

C
a

y¿

x¿

u

Prob. 10–48

10–49.  Determine the moment of inertia of the 
parallelogram about the y � axis, which passes through the 
centroid C of the area.

y

b
x

C
a

y¿

x¿

u

Prob. 10–49

10–50.  Locate the centroid y of the cross section and 
determine the moment of inertia of the section about the 
x � axis.

0.2 m

0.05 m

0.4 m

0.2 m 0.2 m 0.2 m
0.3 m

x¿
–y

Prob. 10–50
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*10.5  Product of Inertia for an Area

It will be shown in the next section that the property of an area, called the 
product of inertia, is required in order to determine the maximum and 
minimum moments of inertia for the area. These maximum and minimum 
values are important properties needed for designing structural and 
mechanical members such as beams, columns, and shafts.

The product of inertia of the area in Fig. 10–10 with respect to the 
x and y axes is defined as

	 Ixy = LA
xy dA 	 (10–7)

If the element of area chosen has a differential size in two directions, as 
shown in Fig. 10–10, a double integration must be performed to evaluate 
Ixy. Most often, however, it is easier to choose an element having a 
differential size or thickness in only one direction in which case the 
evaluation requires only a single integration (see Example 10.6).

Like the moment of inertia, the product of inertia has units of length 
raised to the fourth power, e.g., m4, mm4 or ft4, in4. However, since x or y 
may be negative, the product of inertia may either be positive, negative, or 
zero, depending on the location and orientation of the coordinate axes. 
For example, the product of inertia Ixy for an area will be zero if either the 
x or y axis is an axis of symmetry for the area, as in Fig. 10–11. Here every 
element dA located at point (x, y) has a corresponding element dA 
located at (x, -y). Since the products of inertia for these elements are, 
respectively, xy dA and -xy dA , the algebraic sum or integration of all the 
elements that are chosen in this way will cancel each other. Consequently, 
the product of inertia for the total area becomes zero. It also follows from 
the definition of Ixy that the “sign” of this quantity depends on the 
quadrant where the area is located. As shown in Fig. 10–12, if the area is 
rotated from one quadrant to another, the sign of Ixy will change.

x

y

x

y
�y

dA

dA

Fig. 10–11

x

y

x

y

A

dA

Fig. 10–10

The effectiveness of this beam to resist 
bending can be determined once its 
moments of inertia and its product of 
inertia are known. (© Russell C. Hibbeler)



10

	 10.5 P roduct of Inertia for an Area	 549

x

y

yy

�x x

�x

�y �y

xIxy � � xy dA

Ixy � � xy dAIxy �  xy dA

Ixy �  xy dA

Fig. 10–12

Parallel-Axis Theorem.  Consider the shaded area shown in  
Fig. 10–13, where x � and y � represent a set of axes passing through the 
centroid of the area, and x and y represent a corresponding set of parallel 
axes. Since the product of inertia of dA with respect to the x and y axes is 
dIxy = (x � + dx) (y � + dy) dA , then for the entire area,

 Ixy = LA
(x � + dx)(y � + dy) dA

 = LA
x �y � dA + dx LA

y � dA + dy LA
x � dA + dxdy LA

dA

The first term on the right represents the product of inertia for the area 
with respect to the centroidal axes, Ix�y�. The integrals in the second and 
third terms are zero since the moments of the area are taken about the 
centroidal axis. Realizing that the fourth integral represents the entire 
area A, the parallel-axis theorem for the product of inertia becomes

	 Ixy = Ix�y� + Adxdy � (10–8)

It is important that the algebraic signs for dx and dy be maintained 
when applying this equation.

x

y

x¿

y¿

dx

dy

C

dA y¿

x¿

Fig. 10–13
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example   10.6

Determine the product of inertia Ixy for the triangle shown in  
Fig. 10–14a.

SOLUTION I
A differential element that has a thickness dx, as shown in Fig. 10–14b, 
has an area dA = y dx. The product of inertia of this element with 
respect to the x and y axes is determined using the parallel-axis 
theorem.

dIxy = dIx�y� + dA  x� y�

where x�  and y�  locate the centroid of the element or the origin of the 
x �, y � axes. (See Fig. 10–13.) Since dIx�y� = 0, due to symmetry, and 
x� = x, y� = y >2, then

 dIxy = 0 + (y dx)x a y

2
b = a h

b
 x dx bx a h

2b
 x b

 =
h2

2b2 x3 dx

Integrating with respect to x from x = 0 to x = b yields

	 Ixy =
h2

2b2 L
b

0
x3 dx =

b2h2

8
 	 Ans.

SOLUTION II
The differential element that has a thickness dy, as shown in  
Fig. 10–14c, can also be used. Its area is dA = (b - x) dy. The centroid 
is located at point x� = x + (b - x)>2 = (b + x)>2, y� = y, so the 
product of inertia of the element becomes

 dIxy = dIx�y� + dA  x �y�

 = 0 + (b - x) dy a b + x

2
by

 = ab -
b

h
 y bdy c b + (b>h)y

2
d y =

1

2
 y ab2 -

b2

h2 y2b  dy

Integrating with respect to y from y = 0 to y = h yields

	 Ixy =
1

2
 L

h

0
y ab2 -

b2

h2 y2b  dy =
b2h2

8
 � Ans.

x

y

h

b

(a)

Fig. 10–14

x

y

h

b

(x, y)

dx

y

(b)

(x, y)~ ~

y � xh
b

x

y

h

b

(x, y)

dy

y(b � x)

x

(c)

(x, y)~ ~

y � xh
b
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example   10.7

Determine the product of inertia for the cross-sectional area of the 
member shown in Fig. 10–15a, about the x and y centroidal axes.

100 mm

400 mm

100 mm

100 mm
600 mm

400 mm

x

y

(a)

C

100 mm

100 mm

x

y

300 mm

300 mm
200 mm

250 mm

200 mm

(b)

A

B

D

250 mm

Fig. 10–15

SOLUTION
As in Example 10.5, the cross section can be subdivided into three 
composite rectangular areas A, B, and D, Fig. 10–15b. The coordinates 
for the centroid of each of these rectangles are shown in the figure. 
Due to symmetry, the product of inertia of each rectangle is zero about 
a set of x �, y � axes that passes through the centroid of each rectangle. 
Using the parallel-axis theorem, we have

Rectangle A

 Ixy = Ix�y� + Adxdy

	  = 0 + (300)(100)(-250)(200) = -1.50(109) mm4

Rectangle B

 Ixy = Ix�y� + Adxdy

 = 0 + 0 = 0

Rectangle D

 Ixy = Ix�y� + Adxdy

 = 0 + (300)(100)(250)(-200) = -1.50(109) mm4

The product of inertia for the entire cross section is therefore

	 Ixy = -1.50(109) + 0 - 1.50(109) = -3.00(109) mm4	 Ans.

NOTE: This negative result is due to the fact that rectangles A and D 
have centroids located with negative x and negative y coordinates, 
respectively.
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*10.6  �Moments of Inertia for an Area 
about Inclined Axes

In structural and mechanical design, it is sometimes necessary to calculate 
the moments and product of inertia Iu, Iv, and Iuv for an area with respect 
to a set of inclined u and v axes when the values for u, Ix, Iy, and Ixy are 
known. To do this we will use transformation equations which relate the 
x, y and u, v coordinates. From Fig. 10–16, these equations are

 u = x cos u + y sin u

 v = y cos u - x sin u

With these equations, the moments and product of inertia of dA about 
the u and v axes become

 dIu = v2 dA = (y cos u - x sin u)2 dA

 dIv = u2  dA = (x cos u + y sin u)2  dA

 dIuv = uv dA = (x cos u + y sin u)(y cos u - x sin u) dA

Expanding each expression and integrating, realizing that Ix = 1y2 dA, 
Iy = 1x2 dA, and Ixy = 1xy dA,  we obtain

 Iu = Ix cos2 u + Iy sin2 u - 2Ixy sin u cos u

 Iv = Ix sin2  u + Iy cos2  u + 2Ixy sin u cos u

 Iuv = Ix sin u cos u - Iy sin u cos u + Ixy(cos2  u - sin2  u)

Using the trigonometric identities sin 2u = 2 sin u cos u and  
cos 2u =  cos2 u - sin2 u we can simplify the above expressions, in which case

	

     Iu =
Ix + Iy

2
+

Ix - Iy

2
 cos 2u - Ixy sin 2u

     Iv =
Ix + Iy

2
-

Ix - Iy

2
 cos 2u + Ixy sin 2u

 Iuv =
Ix - Iy

2
 sin 2u + Ixy cos 2u

	 (10–9)

Notice that if the first and second equations are added together, we can 
show that the polar moment of inertia about the z axis passing through 
point O is, as expected, independent of the orientation of the u and v  
axes; i.e.,

JO = Iu + Iv = Ix + Iy

v

v

x

y

O

u

A

dA

x

y

x cos
u

y cos

y sin

x sin

Fig. 10–16
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Principal Moments of Inertia.  Equations 10–9 show that Iu, Iv, 
and Iuv depend on the angle of inclination, u, of the u, v axes. We will now 
determine the orientation of these axes about which the moments of 
inertia for the area are maximum and minimum. This particular set of axes 
is called the principal axes of the area, and the corresponding moments of 
inertia with respect to these axes are called the principal moments of 
inertia. In general, there is a set of principal axes for every chosen origin O. 
However, for structural and mechanical design, the origin O is located at 
the centroid of the area.

The angle which defines the orientation of the principal axes can be 
found by differentiating the first of Eqs. 10–9 with respect to u and setting 
the result equal to zero. Thus,

dIu

du
= -2a

Ix - Iy

2
b  sin 2u - 2Ixy cos 2u = 0

Therefore, at u = up,

	 tan 2up =
-Ixy

(Ix - Iy)>2 	 (10–10)

The two roots up1
 and up2

 of this equation are 90° apart, and so they each 
specify the inclination of one of the principal axes. In order to substitute 
them into Eq. 10–9, we must first find the sine and cosine of 2up1

 and 2up2
. 

This can be done using these ratios from the triangles shown in Fig. 10–17, 
which are based on Eq. 10–10.

Substituting each of the sine and cosine ratios into the first or second 
of Eqs. 10–9 and simplifying, we obtain

	 Imax
min

=
Ix + Iy

2
{ Ca Ix - Iy

2
b

2

+ Ix y
2 	 (10–11)

Depending on the sign chosen, this result gives the maximum or minimum 
moment of inertia for the area. Furthermore, if the above trigonometric 
relations for up1

 and up2
 are substituted into the third of Eqs. 10–9, it can 

be shown that Iuv = 0; that is, the product of inertia with respect to the 
principal axes is zero. Since it was indicated in Sec. 10.6 that the product 
of inertia is zero with respect to any symmetrical axis, it therefore follows 
that any symmetrical axis represents a principal axis of inertia for the area.

2up2

2up1

Ix � Iy

2( )

Ix � Iy

2( )�

�Ixy

Ixy

Ix � Iy

2( )2

� I2
xy

Fig. 10–17
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x

y

(b)

C

u

v
up1

 � 57.1�

up2
 � �32.9�

Fig. 10–18

example   10.8

Determine the principal moments of inertia and the orientation of 
the principal axes for the cross-sectional area of the member shown in 
Fig. 10–18a with respect to an axis passing through the centroid.

SOLUTION
The moments and product of inertia of the cross section with respect 
to the x, y axes have been determined in Examples 10.5 and 10.7. 
The results are

Ix = 2.90(109) mm4 Iy = 5.60(109) mm4 Ixy = -3.00(109) mm4

Using Eq. 10–10, the angles of inclination of the principal axes u and 
v are

 tan 2up =
-Ixy

(Ix - Iy)>2 =
-[-3.00(109)]

[2.90(109) - 5.60(109)]>2 = -2.22

	  2up = -65.8� and 114.2�

Thus, by inspection of Fig. 10–18b,

	 up2
= -32.9� and up1

= 57.1�	 Ans.

The principal moments of inertia with respect to these axes are 
determined from Eq. 10–11. Hence,

	  I max
min =

Ix + Iy

2
{ Ca Ix - Iy

2
b

2

+ Ixy
2

	  =
2.90(109) + 5.60(109)

2

	  { C c 2.90(109) - 5.60(109)

2
d

2

+ [-3.00(109)]2

	  I 
min
max = 4.25(109) { 3.29(109)

or

	 Imax = 7.54(109) mm4 Imin = 0.960(109) mm4 	 Ans.

NOTE: The maximum moment of inertia, Imax = 7.54(109) mm4, occurs 
with respect to the u axis since by inspection most of the cross-sectional 
area is farthest away from this axis. Or, stated in another manner, Imax 
occurs about the u axis since this axis is located within {45� of the 
y  axis, which has the larger value of I  (Iy 7 Ix). Also, this can be 
concluded by substituting the data with u = 57.1� into the first of 
Eqs.  10–9 and solving for Iu.

100 mm

400 mm

100 mm

100 mm
600 mm

400 mm

x

y

(a)

C
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*10.7  �Mohr’s Circle for Moments  
of Inertia

Equations 10–9 to 10–11 have a graphical solution that is convenient to use 
and generally easy to remember. Squaring the first and third of Eqs. 10–9 
and adding, it is found that

a Iu -
Ix + Iy

2
b

2

+ Iuv
2 = a Ix - Iy

2
b

2

+ Ixy
2

Here Ix, Iy, and Ixy are known constants. Thus, the above equation may be 
written in compact form as

(Iu - a)2 + Iuv
2 = R2

When this equation is plotted on a set of axes that represent the 
respective moment of inertia and the product of inertia, as shown in 
Fig. 10–19, the resulting graph represents a circle of radius

 R = Ca Ix - Iy

2
b

2

+ Ixy
2

and having its center located at point (a, 0), where a = (Ix + Iy)>2. The 
circle so constructed is called Mohr’s circle, named after the German 
engineer Otto Mohr (1835–1918).

x

y

u

v

up1

Axis for minor principal
moment of inertia, Imin

Axis for major principal
moment of inertia, Imax

(a)

P

Fig. 10–19

I
O

Imax

Imin

A

(b)

2up1 Ixy

Ixy

Ix

R �
Ix � Iy

2

2

� I2
xy

Ix � Iy

2

Ix � Iy

2
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Fig. 10–19 (Repeated)

Procedure for Analysis

The main purpose in using Mohr’s circle here is to have a convenient 
means for finding the principal moments of inertia for an area. The 
following procedure provides a method for doing this.

Determine Ix, Iy, and Ixy.

	 •	 Establish the x, y axes and determine Ix, Iy, and Ixy, Fig. 10–19a.

Construct the Circle.

	 •	 Construct a rectangular coordinate system such that the 
horizontal axis represents the moment of inertia I, and the 
vertical axis represents the product of inertia Ixy, Fig. 10–19b.

	 •	 Determine the center of the circle, O, which is located at a distance 
(Ix + Iy)>2 from the origin, and plot the reference point A 
having  coordinates (Ix, Ixy). Remember, Ix is always positive, 
whereas Ixy can be either positive or negative.

	 •	 Connect the reference point A with the center of the circle and 
determine the distance OA by trigonometry. This distance 
represents the radius of the circle, Fig. 10–19b. Finally, draw 
the circle.

Principal Moments of Inertia.
	 •	 The points where the circle intersects the I axis give the values 

of the principal moments of inertia Imin and Imax. Notice that, 
as expected, the product of inertia will be zero at these points, 
Fig. 10–19b.

Principal Axes.
	 •	 To find the orientation of the major principal axis, use trigonometry 

to find the angle 2up1
, measured from the radius OA to the positive 

I axis, Fig. 10–19b. This angle represents twice the angle from the 
x axis to the axis of maximum moment of inertia Imax, Fig. 10–19a. 
Both the angle on the circle, 2up1

, and the angle up1
 must be 

measured in the same sense, as shown in Fig. 10–19. The axis for 
minimum moment of inertia Imin is perpendicular to the axis 
for Imax.

x

y

u

v

up1

Axis for minor principal
moment of inertia, Imin

Axis for major principal
moment of inertia, Imax

(a)

P

I
O

Imax

Imin

A

(b)

2up1 Ixy

Ixy

Ix

R �
Ix � Iy

2

2

� I2
xy

Ix � Iy

2

Ix � Iy

2

Using trigonometry, the above procedure can be verified to be in 
accordance with the equations developed in Sec. 10.6.
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O

(c)

A (2.90, �3.00)

Imin � 0.960

Imax � 7.54

2up
1

3.29

Ixy (109) mm4

I (109) mm4

Fig. 10–20

Ixy (109) mm4

I (109) mm4
O

(b)

4.25

2.90
1.35

�3.00

A (2.90, �3.00)

B

Using Mohr’s circle, determine the principal moments of inertia and 
the orientation of the major principal axes for the cross-sectional area 
of the member shown in Fig. 10–20a, with respect to an axis passing 
through the centroid.

100 mm

400 mm

100 mm

100 mm
600 mm

400 mm

x

y

(a)

C

x

y

C

u

v
up1

 � 57.1�

(d)

SOLUTION
Determine Ix, Iy, Ixy. The moments and product of inertia have been 
determined in Examples 10.5 and 10.7 with respect to the  
x, y axes shown in Fig. 10–20a. The results are Ix = 2.90(109) mm4, 
Iy = 5.60(109) mm4, and Ixy = -3.00(109) mm4.

Construct the Circle. The I and Ixy axes are shown in Fig. 10–20b. 
The  center of the circle, O, lies at a distance (Ix + Iy)>2 =  
(2.90 +  5.60)>2 = 4.25 from the origin. When the reference point 
A (Ix, Ixy) or A (2.90,-3.00) is connected to point O, the radius OA is 
determined from the triangle OBA using the Pythagorean theorem.

	  OA = 2(1.35)2 + (-3.00)2 = 3.29

The circle is constructed in Fig. 10–20c.
Principal Moments of Inertia.  The circle intersects the I axis at 
points (7.54, 0) and (0.960, 0). Hence,

	  Imax = (4.25 + 3.29)109 = 7.54(109) mm4 	 Ans.

	  Imin = (4.25 - 3.29)109 = 0.960(109) mm4 	 Ans.

Principal Axes.   As shown in Fig. 10–20c, the angle 2up1
 is determined 

from the circle by measuring counterclockwise from OA to the 
direction of the positive I axis. Hence,

2up1
= 180� - sin-1a � BA �

� OA �
b = 180� - sin-1a 3.00

3.29
b = 114.2�

The principal axis for Imax = 7.54(109) mm4 is therefore oriented at an 
angle up1

= 57.1�, measured counterclockwise, from the positive x axis 
to the positive u axis. The v axis is perpendicular to this axis. The results 
are shown in Fig. 10–20d.

example   10.9
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10–54.  Determine the product of inertia of the thin strip of 
area with respect to the x and y axes. The strip is oriented at 
an angle u from the x axis. Assume that t V l.

u

y

x

l

t

Prob. 10–54

10–55.  Determine the product of inertia of the shaded 
area with respect to the x and y axes.

y �      x31
9

3 in.
x

3 in.

y

Prob. 10–55

*10–56.  Determine the product of inertia for the shaded 
portion of the parabola with respect to the x and y axes.

200 mm

100 mm

x

y

y � x21
50

Prob. 10–56

Problems

10–57.  Determine the product of inertia of the shaded 
area with respect to the x and y axes, and then use the 
parallel-axis theorem to find the product of inertia of the 
area with respect to the centroidal x � and y � axes.

y2 � x

2 m

y y¿

x

4 m

C
x¿

Prob. 10–57

10–58.  Determine the product of inertia for the parabolic 
area with respect to the x and y axes.

y

x

a

b

y � x1/2b
a1/2

Prob. 10–58

10–59.  Determine the product of inertia of the shaded 
area with respect to the x and y axes.

x

y

O
a

a

y � (a2 – x2 )2
11

Prob. 10–59
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*10–60.  Determine the product of inertia of the shaded 
area with respect to the x and y axes.

2 in.

2 in.

y

x

x2 + y2 � 4

Prob. 10–60

10–61.  Determine the product of inertia of the shaded 
area with respect to the x and y axes.

x

y

2 in.

y � 0.25x 2
1 in.

Prob. 10–61

10–62.  Determine the product of inertia for the beam’s 
cross-sectional area with respect to the x and y axes.

8 in.

y

x
12 in.

3 in.
1 in.

1 in.

1 in.

Prob. 10–62

10–63.  Determine the moments of inertia of the shaded 
area with respect to the u and v axes.

y

x

v
u

0.5 in.

0.5 in.
0.5 in.

1 in. 4 in.

5 in.
30�

Prob. 10–63

*10–64.  Determine the product of inertia for the beam’s 
cross-sectional area with respect to the u and v axes.

150 mm

150 mm

y

x

u

C

200 mm
20 mm

20 mm

20�

v

Prob. 10–64
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10–65.  Determine the product of inertia for the shaded 
area with respect to the x and y axes.

y

x

4 in.

2 in.

1 in.

2 in.2 in.

Prob. 10–65

10–66.  Determine the product of inertia of the cross-
sectional area with respect to the x and y axes.

400 mm

100 mm

20 mm

20 mm

400 mm

x

y

100 mm

20 mm

C

Prob. 10–66

10–67.  Determine the location (x , y ) to the centroid C of 
the angle’s cross-sectional area, and then compute the 
product of inertia with respect to the x � and y � axes.

150 mm 18 mm

150 mm 

18 mm

y y¿

C x¿

x
y

x

Prob. 10–67

*10–68.  Determine the distance y  to the centroid of the 
area and then calculate the moments of inertia Iu  and Iv  of 
the channel’s cross-sectional area. The u and v axes have 
their origin at the centroid C. For the calculation, assume all 
corners to be square.

150 mm150 mm

y

x

u

50 mm

10 mm

10 mm10 mm

y–
20�C

v

Prob. 10–68
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10–69.  Determine the moments of inertia Iu, Iv and the 
product of inertia Iuv for the beam’s cross-sectional area. 
Take u = 45°.

y

x

v u

16 in.

O
8 in.

2 in. 2 in.
8 in. 2 in.

u

Prob. 10–69

10–70.  Determine the moments of inertia Iu, Iv and the 
product of inertia Iuv for the rectangular area. The u and v 
axes pass through the centroid C.

10–71.  Solve Prob. 10–70 using Mohr’s circle. Hint: To 
solve, find the coordinates of the point P(Iu, Iuv) on the 
circle, measured counterclockwise from the radial line OA. 
(See Fig. 10–19.) The point Q(Iv, -Iuv) is on the opposite 
side of the circle.

x

u

v

y

30 mm

120 mm

C

30�

Probs. 10–70/71

*10–72.  Determine the directions of the principal axes 
having an origin at point O, and the principal moments of 
inertia for the triangular area about the axes.

10–73.  Solve Prob. 10–72 using Mohr’s circle.

9 in.

6 in.

O

y

x

Probs. 10–72/73

10–74.  Determine the orientation of the principal axes 
having an origin at point C, and the principal moments of 
inertia of the cross section about these axes.

10–75.  Solve Prob. 10–74 using Mohr’s circle.

x

10 mm

10 mm

100 mm

100 mm

80 mm

80 mm

y

C

Probs. 10–74/75
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*10–80.  Determine the moments and product of inertia 
for the shaded area with respect to the u and v axes.

10–81.  Solve Prob. 10–80 using Mohr’s circle.

y

x

v

u
10 mm

10 mm

10 mm

20 mm
120 mm

120 mm

60�

Probs. 10–80/81

10–82.  Determine the directions of the principal axes with 
origin located at point O, and the principal moments of 
inertia for the area about these axes.

10–83.  Solve Prob. 10–82 using Mohr’s circle.

y

x

4 in.

2 in.

1 in.

2 in.2 in.

O

Probs. 10–82/83

*10–76.  Determine the orientation of the principal axes 
having an origin at point O, and the principal moments of 
inertia for the rectangular area about these axes.

10–77.  Solve Prob. 10–76 using Mohr’s circle.

O x

y

3 in.

6 in.

Probs. 10–76/77

10–78.  The area of the cross section of an airplane wing 
has the following properties about the x and y axes passing 
through the centroid C: Ix = 450 in4, Iy = 1730 in4, 
Ixy = 138 in4. Determine the orientation of the principal 
axes and the principal moments of inertia.

10–79.  Solve Prob. 10–78 using Mohr’s circle.

y

x
C

Probs. 10–78/79
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10

10.8  Mass Moment of Inertia

The mass moment of inertia of a body is a measure of the body’s resistance 
to angular acceleration. Since it is used in dynamics to study rotational 
motion, methods for its calculation will now be discussed.*

Consider the rigid body shown in Fig. 10–21. We define the mass 
moment of inertia of the body about the z axis as

	 I = Lm
r    2 dm	 (10–12)

Here r is the perpendicular distance from the axis to the arbitrary 
element dm. Since the formulation involves r, the value of I is unique for 
each axis about which it is computed. The axis which is generally chosen, 
however, passes through the body’s mass center G. Common units used 
for its measurement are kg # m2 or slug # ft2.

If the body consists of material having a density r, then dm = r dV , 
Fig. 10–22a. Substituting this into Eq. 10–12, the body’s moment of inertia 
is then computed using volume elements for integration; i.e.,

	 I = LV
r   2r dV 	 (10–13)

For most applications, r will be a constant, and so this term may be 
factored out of the integral, and the integration is then purely a function 
of geometry.

	 I = rLV
r   2 dV 	 (10–14)

z

y

x

dm � rdV

(x, y, z)

(a)

Fig. 10–22

*Another property of the body, which measures the symmetry of the body’s mass with 
respect to a coordinate system, is the mass product of inertia. This property most often 
applies to the three-dimensional motion of a body and is discussed in Engineering 
Mechanics: Dynamics (Chapter 21).

r

dm

z

Fig. 10–21
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y

z

(x, y)

(b)

z

x

y dy

	 (c)

z

y

x

z

(x,y)

dzy

Fig. 10–22  (cont’d)

Procedure for Analysis

If a body is symmetrical with respect to an axis, as in Fig. 10–22, then 
its mass moment of inertia about the axis can be determined by using 
a single integration. Shell and disk elements are used for this purpose.

Shell Element.
	 •	 If a shell element having a height z, radius y, and thickness dy  

is chosen for integration, Fig. 10–22b, then its volume is 
dV = (2py)(z) dy.

	 •	 This element can be used in Eq. 10–13 or 10–14 for determining 
the moment of inertia Iz of the body about the z axis since the 
entire element, due to its “thinness,” lies at the same perpendicular 
distance r = y from the z axis (see Example 10.10).

Disk Element.
	 •	 If a disk element having a radius y and a thickness dz is chosen 

for integration, Fig. 10–22c, then its volume is dV = (py2) dz.

	 •	 In this case the element is finite in the radial direction, and 
consequently its points do not all lie at the same radial distance r 
from the z axis. As a result, Eqs. 10–13 or 10–14 cannot be used to 
determine Iz. Instead, to perform the integration using this 
element, it is first necessary to determine the moment of inertia 
of the element about the z axis and then integrate this result (see 
Example 10.11).
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Determine the mass moment of inertia of the cylinder shown in  
Fig. 10–23a about the z axis. The density of the material, r, is constant.

	

y

z

x

R

O

(a)

h
2

h
2

	

z

r
dr

y

x

(b)

O

h
2

h
2

Fig. 10–23 

Solution
Shell Element.  This problem will be solved using the shell element 
in Fig. 10–23b and thus only a single integration is required. The  
volume of the element is dV = (2pr)(h) dr, and so its mass is 
dm = r dV = r(2phr dr). Since the entire element lies at the same 
distance r from the z axis, the moment of inertia of the element is

dIz = r2 dm = r2phr3 dr

Integrating over the entire cylinder yields

Iz = Lm
r2 dm = r2phL

R

0
r3 dr =

rp

2
 R4h

Since the mass of the cylinder is

m = Lm
dm = r2phL

R

0
r dr = rphR2

then

	 Iz =
1

2
 mR2 	 Ans.

Example   10.10
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If the density of the solid in Fig. 10–24a is 5 slug>ft3, determine the mass 
moment of inertia about the y axis.

x

1 ft

y2 � x

(a)

y

	

y

1 ft

x
1 ft

y

dy

(x, y)

(b)

Fig. 10–24 

Solution
Disk Element.  The moment of inertia will be determined using this 
disk element, as shown in Fig. 10–24b. Here the element intersects the 
curve at the arbitrary point (x, y) and has a mass

dm = r dV = r(px2) dy

Although all points on the element are not located at the same 
distance from the y axis, it is still possible to determine the moment of 
inertia dIy of the element about the y axis. In the previous example it 
was shown that the moment of inertia of a homogeneous cylinder 
about its longitudinal axis is I =

1
2 mR2, where m and R are the mass 

and radius of the cylinder. Since the height of the cylinder is not 
involved in this formula, we can also use this result for a disk. Thus, for 
the disk element in Fig. 10–24b, we have

dIy =
1

2
 (dm)x2 =

1

2
 [r(px2) dy]x2

Substituting x = y2, r = 5 slug>ft3, and integrating with respect to y, 
from y = 0 to y = 1 ft, yields the moment of inertia for the entire solid.

	 Iy =
5p

2
 L

1 ft

0
x4 dy =

5p

2
 L

1 ft

0
y8 dy = 0.873 slug # ft2	 Ans.

Example   10.11
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Parallel-Axis Theorem.  If the moment of inertia of the body 
about an axis passing through the body’s mass center is known, then the 
moment of inertia about any other parallel axis can be determined by 
using the parallel-axis theorem. To derive this theorem, consider the body 
shown in Fig. 10–25. The z� axis passes through the mass center G, 
whereas the corresponding parallel z axis lies at a constant distance d 
away. Selecting the differential element of mass dm, which is located at 
point (x�, y�), and using the Pythagorean theorem, r2 = (d + x�)2 + y�2, 
the moment of inertia of the body about the z axis is

	  I = Lm
r2 dm = Lm

[(d + x�)2 + y�2] dm

	  = Lm
(x�2 + y�2) dm + 2dLm

x� dm + d2Lm
dm

Since r�2 = x�2 + y�2, the first integral represents IG. The second integral 
is equal to zero, since the z� axis passes through the body’s mass center, 
i.e., 1x� dm = x1dm = 0 since x = 0. Finally, the third integral is the 
total mass m of the body. Hence, the moment of inertia about the z axis 
becomes

	 I = IG + md2 	 (10–15)

where

 IG = moment of inertia about the z� axis passing through the mass 
center G

 m = mass of the body

 d = distance between the parallel axes

y¿

x¿

z z¿

y¿r¿

x¿d

r

dm

A G

Fig. 10–25 
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Radius of Gyration.  Occasionally, the moment of inertia of a body 
about a specified axis is reported in handbooks using the radius of 
gyration, k. This value has units of length, and when it and the body’s mass m 
are known, the moment of inertia can be determined from the equation

	 I = mk2 or k = A I
m

	 (10–16)

Note the similarity between the definition of k in this formula and r in 
the equation dI = r2 dm, which defines the moment of inertia of a 
differential element of mass dm of the body about an axis.

Composite Bodies.  If a body is constructed from a number of 
simple shapes such as disks, spheres, and rods, the moment of inertia of 
the body about any axis z can be determined by adding algebraically the 
moments of inertia of all the composite shapes calculated about the same 
axis. Algebraic addition is necessary since a composite part must be 
considered as a negative quantity if it has already been included within 
another part—as in the case of a “hole” subtracted from a solid plate. 
Also, the parallel-axis theorem is needed for the calculations if the center 
of mass of each composite part does not lie on the z axis. For calculations, 
a table of some simple shapes is given on the inside back cover.

This flywheel, which operates a metal 
cutter, has a large moment of inertia 
about its center. Once it begins 
rotating it is difficult to stop it and 
therefore a uniform motion can be 
effectively transferred to the cutting 
blade. (© Russell C. Hibbeler)
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If the plate shown in Fig. 10–26a has a density of 8000 kg>m3 and a 
thickness of 10 mm, determine its mass moment of inertia about an axis 
perpendicular to the page and passing through the pin at O.

Example   10.12

O

0.25 m
0.125 m

G

(a)

Thickness 0.01 m

	

0.25 m

G G– 0.125 m

(b)

Fig. 10–26 

Solution
The plate consists of two composite parts, the 250-mm-radius disk 
minus a 125-mm-radius disk, Fig. 10–26b. The moment of inertia  
about O can be determined by finding the moment of inertia of each 
of these parts about O and then algebraically adding the results. The 
calculations are performed by using the parallel-axis theorem in 
conjunction with the mass moment of inertia formula for a circular 
disk, IG =

1
2 mr2, as found on the inside back cover.

Disk.  The moment of inertia of a disk about an axis perpendicular 
to the plane of the disk and passing through G is IG =

1
2 mr2. The mass 

center of both disks is 0.25 m from point O. Thus,

	  md = rdVd = 8000 kg>m3 [p(0.25 m)2(0.01 m)] = 15.71 kg

	  (IO)d =
1
2 mdrd

2 + mdd
2

	  =
1
2(15.71 kg)(0.25 m)2 + (15.71 kg)(0.25 m)2

	  = 1.473 kg # m2

Hole.  For the smaller disk (hole), we have

	  mh = rhVh = 8000 kg>m3 [p(0.125 m)2(0.01 m)] = 3.93 kg

	  (IO)h =
1
2 mhrh

2 + mhd
2

	  =
1
2(3.93 kg)(0.125 m)2 + (3.93 kg)(0.25 m)2

	  = 0.276 kg # m2

The moment of inertia of the plate about the pin is therefore

	  IO = (IO)d - (IO)h 	

	  = 1.473 kg # m2 - 0.276 kg # m2	

	  = 1.20 kg # m2 	 Ans.



570 	 Chapter 10    Moments of Inert ia

10

Example   10.13

The pendulum in Fig. 10–27 consists of two thin rods each having a 
weight of 10 lb. Determine the pendulum’s mass moment of inertia 
about an axis passing through (a) the pin at O, and (b) the mass center G 
of the pendulum.

SOLUTION
Part (a). Using the table on the inside back cover, the moment of 
inertia of rod OA about an axis perpendicular to the page and passing 
through the end point O of the rod is IO =

1
3 ml2. Hence,

(IOA)O =
1

3
 ml2 =

1

3
 a 10 lb

32.2 ft>s2 b (2 ft)2 = 0.414 slug # ft2

Realize that this same value may be determined using IG =
1

12 ml2 and 
the parallel-axis theorem; i.e.,

 (IOA)O =
1

12
 ml2 + md2 =

1

12
 a 10 lb

32.2 ft>s2 b (2 ft)2 +
10 lb

32.2 ft>s2 (1 ft)2

 = 0.414 slug # ft2

For rod BC we have

 (IBC)O =
1

12
 ml2 + md2 =

1

12
 a 10 lb

32.2 ft>s2 b (2 ft)2 +
10 lb

32.2 ft>s2 (2 ft)2

 = 1.346 slug # ft2

The moment of inertia of the pendulum about O is therefore

	 IO = 0.414 + 1.346 = 1.76 slug # ft2	 Ans.

Part (b).  The mass center G will be located relative to the pin at O. 
Assuming this distance to be y, Fig. 10–27, and using the formula for 
determining the mass center, we have

y =
�y�m

�m
=

1(10>32.2) + 2(10>32.2)

(10>32.2) + (10>32.2)
= 1.50 ft

The moment of inertia IG may be computed in the same manner as IO, 
which requires successive applications of the parallel-axis theorem in 
order to transfer the moments of inertia of rods OA and BC to G. 
A more direct solution, however, involves applying the parallel-axis 
theorem using the result for IO determined above; i.e.,

IO = IG + md2;     1.76 slug # ft2 = IG + a 20 lb

32.2 ft>s2 b (1.50 ft)2

	  IG = 0.362 slug # ft2 	 Ans.

2 ft

y–

O

G

A
B C

1 ft 1 ft

Fig. 10–27
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*10–84.  Determine the moment of inertia of the thin ring 
about the z axis. The ring has a mass m.

x

y

R

Prob. 10–84

10–85.  Determine the moment of inertia of the ellipsoid 
with respect to the x axis and express the result in terms of 
the mass m of the ellipsoid. The material has a constant 
density r.

y

x

y

b

x

a
��

a

b

Prob. 10–85

10–86.  Determine the radius of gyration kx of the 
paraboloid. The density of the material is r = 5 Mg>m3.

y

x

100 mm

y2 � 50 x

200 mm

Prob. 10–86

10–87.  The paraboloid is formed by revolving the shaded 
area around the x axis. Determine the moment of inertia about 
the x axis and express the result in terms of the total mass m of 
the paraboloid. The material has a constant density r.

	

y

x

a

 a2
–
h xy2 =

h 	 Prob. 10–87

*10–88.  Determine the moment of inertia of the homogenous 
triangular prism with respect to the y axis. Express the result 
in terms of the mass m of the prism. Hint: For integration, 
use thin plate elements parallel to the x–y plane having a 
thickness of dz.

	

x

y

z

�h
a (x � a)z �

h

ab

	 Prob. 10–88

10–89.  Determine the moment of inertia of the semiellipsoid 
with respect to the x axis and express the result in terms of 
the mass m of the semiellipsoid. The material has a constant 
density r.

	

y

x

b

y2

–
b2

x2

–
a2 � 1�

a 	 Prob. 10–89

Problems
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10–90.  Determine the radius of gyration kx of the solid 
formed by revolving the shaded area about x axis. The 
density of the material is r.

y

x

h

a

yn�      x
a
hn

Prob. 10–90

10–91.  The concrete shape is formed by rotating the 
shaded area about the y axis. Determine the moment of 
inertia Iy. The specific weight of concrete is g = 150 lb>ft3.

y

x

8 in.

6 in. 4 in.

2––
9 x2y �

Prob. 10–91

*10–92.  Determine the moment of inertia Ix of the sphere 
and express the result in terms of the total mass m of the 
sphere. The sphere has a constant density r.

x

y

r

x2 � y2 � r2

Prob. 10–92

10–93.  The right circular cone is formed by revolving the 
shaded area around the x axis. Determine the moment of 
inertia Ix and express the result in terms of the total mass m 
of the cone. The cone has a constant density r.

y

x

r

 r–
h xy �

h

Prob. 10–93

10–94.  Determine the mass moment of inertia Iy of the 
solid formed by revolving the shaded area around the y axis. 
The total mass of the solid is 1500 kg.

y

x

z

4 m

2 mz2 �      y31––
16

O

Prob. 10–94
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10–95.  The slender rods have a mass of 4 kg>m. Determine 
the moment of inertia of the assembly about an axis 
perpendicular to the page and passing through point A.

A

100 mm 100 mm

200 mm

Prob. 10–95

*10–96.  The pendulum consists of a 8-kg circular disk A, a 
2-kg circular disk B, and a 4-kg slender rod. Determine the 
radius of gyration of the pendulum about an axis 
perpendicular to the page and passing through point O.

O

0.5 m1 m
0.4 m 0.2 m

A
B

Prob. 10–96

10–97.  Determine the moment of inertia Iz of the frustum 
of the cone which has a conical depression. The material has 
a density of 200 kg>m3.

z

0.8 m
0.6 m

0.2 m

0.4 m

Prob. 10–97

10–98.  The pendulum consists of the 3-kg slender rod and 
the 5-kg thin plate. Determine the location y of the center 
of mass G of the pendulum; then find the mass moment of 
inertia of the pendulum about an axis perpendicular to the 
page and passing through G.

G

2 m

1 m

0.5 m

O

–y

Prob. 10–98
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10–102.  Determine the mass moment of inertia of the 
assembly about the z axis. The density of the material is  
7.85 Mg>m3.

z

yx

450 mm

300 mm

300 mm

100 mm

Prob. 10–102

10–103.  Each of the three slender rods has a mass m. 
Determine the moment of inertia of the assembly about an 
axis that is perpendicular to the page and passes through 
the center point O.

O

a

aa

Prob. 10–103

10–99.  Determine the mass moment of inertia of the thin 
plate about an axis perpendicular to the page and passing 
through point O. The material has a mass per unit area of  
20 kg>m2.

400 mm

150 mm

400 mm

O

50 mm

50 mm
150 mm

150 mm 150 mm

Prob. 10–99

*10–100.  The pendulum consists of a plate having a weight 
of 12 lb and a slender rod having a weight of 4 lb. Determine 
the radius of gyration of the pendulum about an axis 
perpendicular to the page and passing through point O.

O

2 ft3 ft

1 ft

1 ft

Prob. 10–100

10–101.  If the large ring, small ring and each of the spokes 
weigh 100 lb, 15 lb, and 20 lb, respectively, determine the 
mass moment of inertia of the wheel about an axis 
perpendicular to the page and passing through point A.

A

O

1 ft

4 ft

Prob. 10–101
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*10–108.  The pendulum consists of two slender rods AB 
and OC which have a mass of 3 kg>m. The thin plate has a 
mass of 12 kg>m2. Determine the location y  of the center of 
mass G of the pendulum, then calculate the moment of 
inertia of the pendulum about an axis perpendicular to the 
page and passing through G.

A B

0.1 m

0.3 m

C

G

O

1.5 m

y–

0.4 m 0.4 m

Prob. 10–108

10–109.  Determine the moment of inertia Iz of the frustum 
of the cone which has a conical depression. The material has 
a density of 200 kg>m3.

z

200 mm

800 mm

600 mm

400 mm

Prob. 10–109

*10–104.  The thin plate has a mass per unit area of 10 kg>m2. 
Determine its mass moment of inertia about the y axis.

10–105.  The thin plate has a mass per unit area of 10 kg>m2. 
Determine its mass moment of inertia about the z axis.

200 mm

200 mm

200 mm

200 mm

200 mm

200 mm

200 mm

200 mm

z

y
x

100 mm

100 mm

Probs. 10–104/105

10–106.  Determine the moment of inertia of the assembly 
about an axis that is perpendicular to the page and passes 
through the center of mass G. The material has a specific 
weight of g = 90 lb>ft3.
10–107.  Determine the moment of inertia of the assembly 
about an axis that is perpendicular to the page and passes 
through point O. The material has a specific weight of 
g = 90 lb>ft3.

O

1 ft

2 ft

0.5 ft

G

0.25 ft

1 ft

Probs. 10–106/107
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Chapter Review

Area Moment of Inertia

The area moment of inertia represents 
the second moment of the area about an 
axis. It is frequently used in formulas 
related to the strength and stability of 
structural members or mechanical 
elements.

If the area shape is irregular but can  
be described mathematically, then a 
differential element must be selected 
and integration over the entire area 
must be performed to determine the 
moment of inertia.

Product of Inertia

The product of inertia of an area is used in 
formulas to determine the orientation of 
an axis about which the moment of inertia 
for the area is a maximum or minimum.

If the product of inertia for an area is 
known with respect to its centroidal x�, y� 
axes, then its value can be determined with 
respect to any x, y axes using the parallel-
axis theorem for the product of inertia.

x

y

y

x

dx

y � f(x)

dA

Iy = LA
x2 dA

Parallel-Axis Theorem

If the moment of inertia for an area is 
known about a centroidal axis, then its 
moment of inertia about a parallel axis 
can be determined using the parallel-
axis theorem.

d

C

A

I

I

x x

–

Composite Area

If an area is a composite of common 
shapes, as found on the inside back cover, 
then its moment of inertia is equal to the 
algebraic sum of the moments of inertia 
of each of its parts.

O
x

y

d

dx

dy

x¿

y�

x¿

y¿
dA

C

Ixy = LA
xy dA

Ixy = Ix�y� + Adxdy

I = I + Ad2
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Principal Moments of Inertia

Provided the moments of inertia, Ix and 
Iy, and the product of inertia, Ixy, are 
known, then the transformation formulas, 
or Mohr’s circle, can be used to determine 
the maximum and minimum or principal 
moments of inertia for the area, as well as 
finding the orientation of the principal 
axes of inertia.

Imax 
min 

=
Ix + Iy

2
{ Ca Ix - Iy

2
b

2

+ Ixy
2

tan 2up =
- Ixy

(Ix - Iy)>2

Mass Moment of Inertia

The mass moment of inertia is a property 
of a body that measures its resistance to a 
change in its rotation. It is defined as the 
“second moment” of the mass elements 
of the body about an axis.

For homogeneous bodies having axial 
symmetry, the mass moment of inertia 
can be determined by a single integration, 
using a disk or shell element.

The mass moment of inertia of a 
composite body is determined by using 
tabular values of its composite shapes, 
found on the inside back cover, along 
with the parallel-axis theorem.

I = Lm
r2 dm

r

dm

z

I = rLV
r2 dV

z

y

x

z

(x,y)

dzy

I = IG + md2

y

z

(x, y)

z

x

y dy
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R10–1.  Determine the moment of inertia for the shaded 
area about the x axis.

y

x

4 in.

2 in.y �      x3
32
1

Prob. R10–1

R10–2.  Determine the moment of inertia for the shaded 
area about the x axis.

y

4y � 4 � x2

1 ft

x
2 ft

Prob. R10–2

R10–3.  Determine the area moment of inertia of the 
shaded area about the y axis.

y

4y � 4 � x2

1 ft

x
2 ft

Prob. R10–3

R10–4.  Determine the area moment of inertia of the area 
about the x axis. Then, using the parallel-axis theorem, find 
the area moment of inertia about the x � axis that passes 
through the centroid C of the area. y = 120 mm.

1–––
200

200 mm

200 mm

y

x

x¿
–y

C

y �      x2

Prob. R10–4

Review Problems  
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R10–7.  Determine the area moment of inertia of the 
beam’s cross-sectional area about the x axis which passes 
through the centroid C.

x

y

d
2

d
2

d
2

d
2 60�

60�
C

Prob. R10–7

R10–8.  Determine the mass moment of inertia Ix  of the 
body and express the result in terms of the total mass m of 
the body. The density is constant.

y

x

2b

b–a x � by �

a

z

b

Prob. R10–8

R10–5.  Determine the area moment of inertia of the 
triangular area about (a) the x axis, and (b) the centroidal  
x � axis.

y

x

x¿
h

b

Ch–3

Prob. R10–5

R10–6.  Determine the product of inertia of the shaded 
area with respect to the x and y axes.

y � x3

y

1 m

1 m

x

Prob. R10–6



Equilibrium and stability of this scissors lift as a function of its position 
can be determined using the methods of work and energy, which are 

explained in this chapter. 

Chapter 11

(© John Kershaw/Alamy)



11.1  Definition of Work

The principle of virtual work was proposed by the Swiss mathematician 
Jean Bernoulli in the eighteenth century. It provides an alternative method 
for solving problems involving the equilibrium of a particle, a rigid body, 
or a system of connected rigid bodies. Before we discuss this principle, 
however, we must first define the work produced by a force and by a 
couple moment.

Work of a Force.  A force does work when it undergoes a displacement 
in the direction of its line of action. Consider, for example, the force F in  
Fig. 11–1a that undergoes a differential displacement dr. If u is the angle 
between the force and the displacement, then the component of F in  

Virtual Work

CHAPTER OBJECTIVES

n	 To introduce the principle of virtual work and show how it applies 
to finding the equilibrium configuration of a system of pin-
connected members.

n	 To establish the potential-energy function and use the potential-
energy method to investigate the type of equilibrium or stability 
of a rigid body or system of pin-connected members.
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the direction of the displacement is F cos u. And so the work produced  
by F is

dU = F dr cos u

Notice that this expression is also the product of the force F and the 
component of displacement in the direction of the force, dr cos u,  
Fig. 11–1b. If we use the definition of the dot product (Eq. 2–11) the 
work can also be written as

dU = F # dr

As the above equations indicate, work is a scalar, and like other scalar 
quantities, it has a magnitude that can either be positive or negative.

In the SI system, the unit of work is a joule (J), which is the work 
produced by a 1-N force that displaces through a distance of 1 m in the 
direction of the force (1 J = 1 N # m). The unit of work in the FPS system 
is the foot-pound (ft # lb), which is the work produced by a 1-lb force 
that displaces through a distance of 1 ft in the direction of  
the force.

The moment of a force has this same combination of units; however, 
the concepts of moment and work are in no way related. A moment is a 
vector quantity, whereas work is a scalar.

Work of a Couple Moment.  The rotation of a couple moment 
also produces work. Consider the rigid body in Fig. 11–2, which is acted 
upon by the couple forces F and –F that produce a couple moment M 
having a magnitude M = Fr. When the body undergoes the differential 
displacement shown, points A  and B move drA  and drB to their final 
positions A� and B�, respectively. Since drB = drA + dr�, this movement 
can be thought of as a translation drA , where A and B move to A�  
and B �, and a rotation about A�, where the body rotates through the angle 
du about A. The couple forces do no work during the translation drA  
because each force undergoes the same amount of displacement  
in opposite directions, thus canceling out the work. During  
rotation, however, F is displaced dr� = r du, and so it does work 
dU = F dr� = F r du. Since M = Fr, the work of the couple moment M 
is therefore

dU = Mdu

If M and du have the same sense, the work is positive; however, if they 
have the opposite sense, the work will be negative.

F

dr
F cos

(a)

u
u

F

–F A
A¿

B–
dr¿

drA

drA

drB
B¿

B

r du

Fig. 11–2

F

dr

dr cos u

(b)

u

Fig. 11–1
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Virtual Work.  The definitions of the work of a force and a couple 
have been presented in terms of actual movements expressed by 
differential displacements having magnitudes of dr and du. Consider 
now an imaginary or virtual movement of a body in static equilibrium, 
which indicates a displacement or rotation that is assumed and does not 
actually exist. These movements are first-order differential quantities 
and will be denoted by the symbols dr and du (delta r and delta u), 
respectively. The virtual work done by a force having a virtual 
displacement dr is

	 dU = F cos u dr 	 (11–1)

Similarly, when a couple undergoes a virtual rotation du in the plane of 
the couple forces, the virtual work is

	 dU = M du 	 (11–2)

11.2  Principle of Virtual Work

The principle of virtual work states that if a body is in equilibrium, then 
the algebraic sum of the virtual work done by all the forces and couple 
moments acting on the body is zero for any virtual displacement of the 
body. Thus,

	 dU = 0	 (11–3)

For example, consider the free-body diagram of the particle (ball) that 
rests on the floor, Fig. 11–3. If we “imagine” the ball to be displaced 
downwards a virtual amount dy, then the weight does positive virtual 
work, W  dy, and the normal force does negative virtual work, -N dy. For 
equilibrium the total virtual work must be zero, so that 
dU = W  dy - N dy = (W  -  N) dy = 0. Since dy � 0, then N = W  as 
required by applying �Fy = 0.

W

N

dy

Fig. 11–3
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In a similar manner, we can also apply the virtual-work equation 
dU = 0 to a rigid body subjected to a coplanar force system. Here, 
separate virtual translations in the x and y directions, and a virtual 
rotation about an axis perpendicular to the x–y plane that passes through 
an arbitrary point O, will correspond to the three equilibrium equations, 
�Fx = 0, �Fy = 0, and �MO = 0. When writing these equations, it is not 
necessary to include the work done by the internal forces acting within 
the body since a rigid body does not deform when subjected to an 
external loading, and furthermore, when the body moves through a 
virtual displacement, the internal forces occur in equal but opposite 
collinear pairs, so that the corresponding work done by each pair of 
forces will cancel.

To demonstrate an application, consider the simply supported beam in 
Fig. 11–4a. When the beam is given a virtual rotation du about point B, 
Fig. 11–4b, the only forces that do work are P and Ay. Since dy = l du  
and dy � = (l>2) du, the virtual work equation for this case is 
dU = A y(l du) - P(l>2) du = (A yl - Pl>2) du = 0. Since du � 0, then 
A y = P>2. Excluding du, notice that the terms in parentheses actually 
represent the application of �MB = 0.

As seen from the above two examples, no added advantage is gained 
by solving particle and rigid-body equilibrium problems using the 
principle of virtual work. This is because for each application of the 
virtual-work equation, the virtual displacement, common to every term, 
factors out, leaving an equation that could have been obtained in a more 
direct manner by simply applying an equation of equilibrium.

A

(a)

B

P

l––
2

l––
2

(b)

By

Ay

Bx

P

du

l––
2

l––
2

dy

dy¿

Fig. 11–4
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11.3  �Principle of Virtual Work for a 
System of Connected Rigid Bodies

The method of virtual work is particularly effective for solving equilibrium 
problems that involve a system of several connected rigid bodies, such as 
the ones shown in Fig. 11–5.

Each of these systems is said to have only one degree of freedom since 
the arrangement of the links can be completely specified using only one 
coordinate u. In other words, with this single coordinate and the length of 
the members, we can locate the position of the forces F and P.

In this text, we will only consider the application of the principle of 
virtual work to systems containing one degree of freedom.* Because 
they are less complicated, they will serve as a way to approach the 
solution of more complex problems involving systems with many degrees 
of freedom. The procedure for solving problems involving a system of 
frictionless connected rigid bodies follows.

F

l

l

P

F

l l

P

uu

u u

Fig. 11–5

*This method of applying the principle of virtual work is sometimes called the method 
of virtual displacements because a virtual displacement is applied, resulting in the calculation 
of a real force. Although it is not used here, we can also apply the principle of virtual work 
as a method of virtual forces. This method is often used to apply a virtual force and then 
determine the displacements of points on deformable bodies. See R. C. Hibbeler, Mechanics 
of Materials, 8th edition, Pearson/Prentice Hall, 2011.

Important Points

	 •	 A force does work when it moves through a displacement in the 
direction of the force. A couple moment does work when it moves 
through a collinear rotation. Specifically, positive work is done 
when the force or couple moment and its displacement have the 
same sense of direction.

	 •	 The principle of virtual work is generally used to determine the 
equilibrium configuration for a system of multiple connected 
members.

	 •	 A virtual displacement is imaginary; i.e., it does not really happen. 
It is a differential displacement that is given in the positive 
direction of a position coordinate.

	 •	 Forces or couple moments that do not virtually displace do no 
virtual work.

A

B

This scissors lift has one degree of 
freedom. Without the need for 
dismembering the mechanism, the 
force in the hydraulic cylinder AB 
required to provide the lift can be 
determined directly by using the 
principle of virtual work. (© Russell 
C. Hibbeler)



586 	 Chapter 11    Virtual Work

11

Procedure for Analysis

Free-Body Diagram.

	 •	 Draw the free-body diagram of the entire system of connected 
bodies and define the coordinate q.

	 •	 Sketch the “deflected position” of the system on the free- 
body diagram when the system undergoes a positive virtual 
displacement dq.

Virtual Displacements.

	 •	 Indicate position coordinates s, each measured from a fixed point 
on the free-body diagram. These coordinates are directed to the 
forces that do work.

	 •	 Each of these coordinate axes should be parallel to the line of 
action of the force to which it is directed, so that the virtual work 
along the coordinate axis can be calculated.

	 •	 Relate each of the position coordinates s to the coordinate q; 
then differentiate these expressions in order to express each 
virtual displacement ds in terms of dq.

Virtual-Work Equation.

	 •	 Write the virtual-work equation for the system assuming that, 
whether possible or not, each position coordinate s undergoes a 
positive virtual displacement ds. If a force or couple moment is in 
the same direction as the positive virtual displacement, the work 
is positive. Otherwise, it is negative.

	 •	 Express the work of each force and couple moment in the 
equation in terms of dq.

	 •	 Factor out this common displacement from all the terms, and 
solve for the unknown force, couple moment, or equilibrium 
position q.
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Example   11.1

1 m1 m

D

u

B F � 25 N

C

(a)

Determine the angle u for equilibrium of the two-member linkage 
shown in Fig. 11–6a. Each member has a mass of 10 kg.

Solution
Free-Body Diagram.  The system has only one degree of freedom 
since the location of both links can be specified by the single coordinate, 
(q = ) u. As shown on the free-body diagram in Fig. 11–6 b, when u has 
a positive (clockwise) virtual rotation du, only the force F and the two 
98.1-N weights do work. (The reactive forces Dx and Dy are fixed, and 
By does not displace along its line of action.)

Virtual Displacements.  If the origin of coordinates is established at 
the fixed pin support D, then the position of F and W can be specified 
by the position coordinates xB and yw. In order to determine the work, 
note that, as required, these coordinates are parallel to the lines of 
action of their associated forces. Expressing these position coordinates 
in terms of u and taking the derivatives yields

 xB = 2(1 cos u) m  dxB = -2 sin u du m � (1)

 yw =
1
2(1 sin u) m   dyw = 0.5 cos u du m 	 (2)

It is seen by the signs of these equations, and indicated in Fig. 11–6b, that 
an increase in u (i.e., du) causes a decrease in xB and an increase in yw.

Virtual-Work Equation.  If the virtual displacements dxB and dyw 
were both positive, then the forces W and F would do positive work 
since the forces and their corresponding displacements would have the 
same sense. Hence, the virtual-work equation for the displacement du is

dU = 0;	 W dyw + W dyw + F dxB = 0	 (3)

Substituting Eqs. 1 and 2 into Eq. 3 in order to relate the virtual 
displacements to the common virtual displacement du yields

98.1(0.5 cos u du) + 98.1(0.5 cos u du) + 25(-2 sin u du) = 0

Notice that the “negative work” done by F (force in the opposite sense 
to displacement) has actually been accounted for in the above 
equation by the “negative sign” of Eq. 1. Factoring out the common 
displacement du and solving for u, noting that du � 0, yields

	  (98.1 cos u - 50 sin u) du = 0

	  u = tan-1 
98.1

50
= 63.0�	 Ans.

NOTE:  If this problem had been solved using the equations of equilibrium, 
it would be necessary to dismember the links and apply three scalar 
equations to each link. The principle of virtual work, by means of calculus, 
has eliminated this task so that the answer is obtained directly.

D B

F � 25 N

(b)

W � 98.1 NW � 98.1 N

ByDy

Dx

dxB

du

u
dywdyw

yw

xB

Fig. 11–6 
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Determine the required force P in Fig. 11–7a needed to maintain 
equilibrium of the scissors linkage when u = 60�. The spring is 
unstretched when u = 30�. Neglect the mass of the links.

Solution
Free-Body Diagram.  Only Fs and P do work when u undergoes a 
positive virtual displacement du, Fig. 11–7b. For the arbitrary position u, 
the spring is stretched (0.3 m) sin u - (0.3 m) sin 30�, so that

Fs = ks = 5000 N>m [(0.3 m) sin u - (0.3 m) sin 30�]

	 = (1500 sin u - 750) N

Virtual Displacements.  The position coordinates, xB and xD, 
measured from the fixed point A, are used to locate Fs and P. These 
coordinates are parallel to the line of action of their corresponding 
forces. Expressing xB and xD in terms of the angle u using trigonometry,

	  xB = (0.3 m) sin u

	  xD = 3[(0.3 m) sin u] = (0.9 m) sin u

Differentiating, we obtain the virtual displacements of points B and D.

	 dxB = 0.3 cos u du	 (1)

	 dxD = 0.9 cos u du	 (2)

Virtual-Work Equation.  Force P does positive work since it acts in 
the positive sense of its virtual displacement. The spring force Fs does 
negative work since it acts opposite to its positive virtual displacement. 
Thus, the virtual-work equation becomes

dU = 0; 	 -Fs dxB + PdxD = 0

	 -[1500 sin u - 750] (0.3 cos u du) + P (0.9 cos u du) = 0

	 [0.9P + 225 - 450 sin u] cos u du = 0

Since cos u du � 0, then this equation requires

	 P = 500 sin u - 250	

When u = 60�,

	 P = 500 sin 60� - 250 =  183 N 	 Ans.

Example   11.2

A

B

k � 5 kN/m

(a)

C

E

D

G
0.3 m

0.3 m0.3 m

0.3 m

u

u

P

B

(b)

Gx

Ax

Ay

Fs

xD

xB

dxD

dxB

P

u

du

Fig. 11–7 
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If the box in Fig. 11–8a has a mass of 10 kg, determine the couple 
moment M needed to maintain equilibrium when u = 60�. Neglect the 
mass of the members.

Example   11.3

D

CA

B

M

0.45 m

0.45 m

(a)

0.2 m
0.4 m

uu

	

0.45 m

C

b

A

M

(b)

yE

yE

Bx Dx

By Dy

10(9.81) N

udud

uu

d

Fig. 11–8 Solution
Free-Body Diagram.  When u undergoes a positive virtual 
displacement du, only the couple moment M and the weight of the box 
do work, Fig. 11–8b.

Virtual Displacements.  The position coordinate yE, measured from 
the fixed point B, locates the weight, 10(9.81) N. Here,

	 yE = (0.45 m) sin u + b	

where b is a constant distance. Differentiating this equation, we obtain

	 dyE = 0.45 m cos u du� (1)

Virtual-Work Equation.  The virtual-work equation becomes

dU = 0;	    M du - [10(9.81) N]dyE = 0	

Substituting Eq. 1 into this equation

	  M du - 10(9.81) N(0.45 m cos u du) = 0

	     du(M - 44.145 cos u) = 0

Since du � 0, then

	 M - 44.145 cos u = 0	

Since it is required that u = 60�, then

		             M = 44.145 cos 60� = 22.1 N # m	�  Ans.
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The mechanism in Fig. 11–9a supports the 50-lb cylinder. Determine 
the angle u for equilibrium if the spring has an unstretched length of  
2 ft when u = 0�. Neglect the mass of the members.

Solution
Free-Body Diagram.  When the mechanism undergoes a positive 
virtual displacement du, Fig. 11–9b, only Fs and the 50-lb force do work. 
Since the final length of the spring is 2(1 ft cos u), then

	 Fs = ks = (200 lb>ft)(2 ft - 2 ft cos u) = (400 - 400 cos u) lb	

Virtual Displacements.  The position coordinates xD and xE are 
established from the fixed point A to locate Fs at D and at E.  
The coordinate yB, also measured from A, specifies the position of the 
50-lb force at B. The coordinates can be expressed in terms of u using 
trigonometry.

	  xD = (1 ft) cos u

	  xE = 3[(1 ft) cos u] = (3 ft) cos u

	  yB = (2 ft) sin u

Differentiating, we obtain the virtual displacements of points D, E, 
and B as

	  dxD = -1 sin u du	 (1)

	  dxE = -3 sin u du	 (2)

	  dyB = 2 cos u du 	 (3)

Virtual-Work Equation.  The virtual-work equation is written as if 
all virtual displacements are positive, thus

dU = 0;	 Fs dxE + 50 dyB - Fs dxD = 0

(400 - 400 cos u)(-3 sin u du) + 50(2 cos u du)

- (400 - 400 cos u)(-1 sin u du) = 0

	  du(800 sin u cos u - 800 sin u + 100 cos u) = 0

Since du � 0, then

	 800 sin u cos u - 800 sin u + 100 cos u = 0	

Solving by trial and error,

u = 34.9� 		  Ans.

Example   11.4

C

D E
k � 200 lb/ft

B

A

1 ft

1 ft 1 ft

(a)

1 ft

u u

E
D

50 lb

(b)

Ax

Ay Cy

Fs Fs

xD

yB

xE

dxEdxD

dyB

u

du

Fig. 11–9 
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F11–1.  Determine the required magnitude of force P to 
maintain equilibrium of the linkage at u = 60�. Each link 
has a mass of 20 kg.

1.5 m
1.5 m

A

B

C
P

uu

Prob. F11–1

F11–2.  Determine the magnitude of force P required to 
hold the 50-kg smooth rod in equilibrium at u = 60�.

 5 m

Pu

A

B

Prob. F11–2

F11–3.  The linkage is subjected to a force of P = 2 kN. 
Determine the angle u for equilibrium. The spring is 
unstretched when u = 0�. Neglect the mass of the links.

D

k � 15 kN/m

A

B
C

0.6 m

0.6 m

0.6 m

P � 2 kN

uu

Prob. F11–3

F11–4.  The linkage is subjected to a force of P = 6 kN. 
Determine the angle u for equilibrium. The spring is 
unstretched at u = 60�. Neglect the mass of the links.

0.9 m

k � 20 kN/m

0.9 m

A

B

C

P � 6 kN

u

Prob. F11–4

F11–5.  Determine the angle u where the 50-kg bar is in 
equilibrium. The spring is unstretched at u = 60�.

 5 m

A

B

k � 600 N/mu

Prob. F11–5

F11–6.  The scissors linkage is subjected to a force of 
P = 150 N. Determine the angle u for equilibrium. The 
spring is unstretched at u = 0�. Neglect the mass of the links.

C

0.3 m

0.3 m

P � 150 N

A

B

k � 15 kN/m u

Prob. F11–6

       FUNDAMENTAL PROBLEMS



592 	 Chapter 11    Virtual Work

11

11–1.  Use the method of virtual work to determine the 
tension in cable AC. The lamp weighs 10 lb.

B

A

C

45� 30�

Prob. 11–1

11–2.  The scissors jack supports a load P. Determine the 
axial force in the screw necessary for equilibrium when the 
jack is in the position u. Each of the four links has a length 
L and is pin connected at its center. Points B and D can 
move horizontally.

C D

A B

P

u

Prob. 11–2

11–3.  If a force of P = 5 lb is applied to the handle of the 
mechanism, determine the force the screw exerts on the cork 
of the bottle. The screw is attached to the pin at A and passes 
through the collar that is attached to the bottle neck at B.

3 in.

D

B

A

u � 30°

P � 5 lb

Prob. 11–3

*11–4.  The disk has a weight of 10 lb and is subjected to a 
vertical force  P = 8 lb and a couple moment M = 8 lb # ft. 
Determine the disk’s rotation u if the end of the spring 
wraps around the periphery of the disk as the disk turns. 
The spring is originally unstretched.

k � 12 lb/ft

P � 8 lb

M � 8 lb � ft

1.5 ft

Prob. 11–4

Problems
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11–5.  The punch press consists of the ram R, connecting 
rod AB, and a flywheel. If a torque of M = 75 N # m is 
applied to the flywheel, determine the force F applied at the 
ram to hold the rod in the position u = 60�.

11–6.  The flywheel is subjected to a torque of  
M = 75 N # m. Determine the horizontal compressive force 
F and plot the result of F (ordinate) versus the equilibrium 
position u (abscissa) for 0� … u … 180�.

F

200 mm

M

B
R

A

600 mm

u

Probs. 11–5/6

11–7.  When u = 20�, the 50-lb uniform block compresses 
the two vertical springs 4 in. If the uniform links AB and CD 
each weigh 10 lb, determine the magnitude of the applied 
couple moments M needed to maintain equilibrium when 
u = 20�.

u u

A

B D

C

M
M

1 ft

4 ft

1 ft

k � 2 lb/in.k � 2 lb/in.

1 ft

2 ft

Prob. 11–7

*11–8.  The bar is supported by the spring and smooth 
collar that allows the spring to be always perpendicular to 
the bar for any angle u. If the unstretched length of the 
spring is l0, determine the force P needed to hold the bar in 
the equilibrium position u. Neglect the weight of the bar.

C

A
B

k

l

P

a

u

Prob. 11–8

11–9.  The 4-ft members of the mechanism are pin 
connected at their centers. If vertical forces P1 = P2 = 30 lb 
act at C and E as shown, determine the angle u for 
equilibrium. The spring is unstretched when u = 45�. 
Neglect the weight of the members.

P1 P2

k � 200 lb/ft

E C

A D

B
2 ft

2 ft

2 ft

2 ft

u

Prob. 11–9
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11–10.  The thin rod of weight W rests against the smooth 
wall and floor. Determine the magnitude of force P needed 
to hold it in equilibrium for a given angle u.

A

l

B

P θ

Prob. 11–10

11–11.  If each of the three links of the mechanism have a 
mass of 4 kg, determine the angle u for equilibrium. The 
spring, which always remains vertical, is unstretched  
when u = 0�.

200 mm

200 mm

200 mm

C

D

A
M � 30 N � m

k � 3 kN/m

B

u

u

Prob. 11–11

*11–12.  The disk is subjected to a couple moment M. 
Determine the disk’s rotation u required for equilibrium. 
The end of the spring wraps around the periphery of the 
disk as the disk turns. The spring is originally unstretched.

k � 4 kN/m

M � 300 N � m

0.5 m

Prob. 11–12

11–13.  A 5-kg uniform serving table is supported on each 
side by pairs of two identical links, AB and CD, and 
springs  CE. If the bowl has a mass of 1 kg, determine the 
angle u where the table is in equilibrium. The springs each 
have a stiffness of k = 200 N>m and are unstretched when 
u = 90�. Neglect the mass of the links.

11–14.  A 5-kg uniform serving table is supported on each 
side by two pairs of identical links, AB and CD, and 
springs  CE. If the bowl has a mass of 1 kg and is in 
equilibrium when u = 45�, determine the stiffness k of each 
spring. The springs are unstretched when u = 90�. Neglect 
the mass of the links.

A C k

250 mm

250 mm 150 mm

150 mm

B
D

E

u u

Probs. 11–13/14
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11–15.  The service window at a fast-food restaurant 
consists of glass doors that open and close automatically 
using a motor which supplies a torque M to each door. The 
far ends, A and B, move along the horizontal guides. If a 
food tray becomes stuck between the doors as shown, 
determine the horizontal force the doors exert on the tray 
at the position u.

M A

a a a a

C B DM

u u

Prob. 11–15

*11–16.  The members of the mechanism are pin connected. 
If a vertical force of 800 N acts at A, determine the angle u 
for equilibrium. The spring is unstretched when u = 0�. 
Neglect the mass of the links.

1 m1 m

800 N

1 m
k � 6 kN/m

DB

A

u

Prob. 11–16

11–17.  When u = 30�, the 25-kg uniform block compresses 
the two horizontal springs 100 mm. Determine the 
magnitude of the applied couple moments M needed to 
maintain equilibrium. Take k = 3 kN>m and neglect the 
mass of the links.

A

B

D

C

M

M

300 mm

200 mm

100 mm

100 mm

50 mm

k 

k 

u

u

Prob. 11–17

11–18.  The “Nuremberg scissors” is subjected to a 
horizontal force of P = 600 N. Determine the angle u for 
equilibrium. The spring has a stiffness of k = 15 kN>m and 
is unstretched when u = 15�.

11–19.  The “Nuremberg scissors” is subjected to a 
horizontal force of P = 600 N. Determine the stiffness k of 
the spring for equilibrium when u = 60�. The spring is 
unstretched when u = 15�.

P 

200 mm

200 mm

A

C
D

E

B
k

u

Probs. 11–18/19
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11–23.  Determine the weight of block G required to 
balance the differential lever when the 20-lb load F is placed 
on the pan. The lever is in balance when the load and block 
are not on the lever. Take x = 12 in.

*11–24.  If the load F weighs 20 lb and the block G weighs 
2 lb, determine its position x for equilibrium of the 
differential lever. The lever is in balance when the load and 
block are not on the lever.

4 in. 4 in. x

A

B

C G

ED

2 in.

F

Probs. 11–23/24

11–25.  The dumpster has a weight W and a center of 
gravity at G. Determine the force in the hydraulic cylinder 
needed to hold it in the general position u.

b d
G

a

c

u

Prob. 11–25

*11–20.  The crankshaft is subjected to a torque of 
M = 50 N # m. Determine the horizontal compressive force F 
applied to the piston for equilibrium when u = 60�.

11–21.  The crankshaft is subjected to a torque of 
M = 50 N # m. Determine the horizontal compressive force F 
and plot the result of F (ordinate) versus u (abscissa) for 
0� … u … 90�.

100 mm
400 mm

F

M

u

Probs. 11–20/21

11–22.  The spring is unstretched when u = 0�. If P = 8 lb, 
determine the angle u for equilibrium. Due to the roller 
guide, the spring always remains vertical. Neglect the weight 
of the links.

4 ft

4 ft

2 ft

2 ft

k � 50 lb/ft

P

u

Prob. 11–22
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*11.4  Conservative Forces

When a force does work that depends only upon the initial and final 
positions of the force, and it is independent of the path it travels, then the 
force is referred to as a conservative force. The weight of a body and the 
force of a spring are two examples of conservative forces.

Weight.  Consider a block of weight W that travels along the path in 
Fig. 11–10a. When it is displaced up the path by an amount dr, then the 
work is dU = W # dr or dU = -W (dr cos u) = -Wdy, as shown in 
Fig. 11–10b. In this case, the work is negative since W acts in the opposite 
sense of dy. Thus, if the block moves from A  to B, through the vertical 
displacement h, the work is

U = - L
h

0
W  dy = -Wh

The weight of a body is therefore a conservative force, since the work 
done by the weight depends only on the vertical displacement of the 
body, and is independent of the path along which the body travels.

Spring Force.  Now consider the linearly elastic spring in Fig. 11–11, 
which undergoes a displacement ds. The work done by the spring force 
on the block is dU = -Fs ds = -ks ds. The work is negative because  
Fs acts in the opposite sense to that of ds. Thus, the work of Fs when the 
block is displaced from s = s1 to s = s2 is

U = - L
s2

s1

ks ds = - a1
2 ks2

2 -
1
2 ks1

2b

Here the work depends only on the spring’s initial and final positions,  
s1 and s2, measured from the spring’s unstretched position. Since this 
result is independent of the path taken by the block as it moves, then a 
spring force is also a conservative force.

y

hdr

A

B

W

s

W

(a)

Undeformed
    position

s
ds

Fs

Fig. 11–11

dr
dy � dr cos u

W

(b)

u

Fig. 11–10
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Friction.  In contrast to a conservative force, consider the force of 
friction exerted on a sliding body by a fixed surface. The work done by 
the frictional force depends on the path; the longer the path, the greater 
the work. Consequently, frictional forces are nonconservative, and most 
of the work done by them is dissipated from the body in the form of heat.

*11.5  Potential Energy

A conservative force can give the body the capacity to do work. This capacity, 
measured as potential energy, depends on the location or “position” of the 
body measured relative to a fixed reference position or datum.

Gravitational Potential Energy.  If a body is located a distance 
y above a fixed horizontal reference or datum as in Fig. 11–12, the weight 
of the body has positive gravitational potential energy Vg since W has the 
capacity of doing positive work when the body is moved back down to 
the datum. Likewise, if the body is located a distance y below the datum, 
Vg is negative since the weight does negative work when the body is 
moved back up to the datum. At the datum, Vg = 0.

Measuring y as positive upward, the gravitational potential energy of 
the body’s weight W is therefore

	 Vg = Wy 	 (11–4)

Elastic Potential Energy.  When a spring is either elongated or 
compressed by an amount s from its unstretched position (the datum), 
the energy stored in the spring is called elastic potential energy. It is 
determined from

	 Ve =
1
2 ks2 	 (11–5)

This energy is always a positive quantity since the spring force acting on 
the attached body does positive work on the body as the force returns the 
body to the spring’s unstretched position, Fig. 11–13.

Fs

Fs

s s

Undeformed
position

Undeformed
position

Ve� �    ks21
2

Fig. 11–13

�y

�y

Datum

Vg � � Wy

Vg � � Wy

Vg � 0

W

W

Fig. 11–12
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Potential Function.  In the general case, if a body is subjected to 
both gravitational and elastic forces, the potential energy or potential 
function V of the body can be expressed as the algebraic sum

	 V = Vg + Ve 	 (11–6)

where measurement of V depends on the location of the body with 
respect to a selected datum in accordance with Eqs. 11–4 and 11–5.

In particular, if a system of frictionless connected rigid bodies has a 
single degree of freedom, such that its vertical distance from the datum is 
defined by the coordinate q, then the potential function for the system 
can be expressed as V = V(q). The work done by all the weight and 
spring forces acting on the system in moving it from q1 to q2, is measured 
by the difference in V; i.e.,

	 U1- 2 = V(q1) - V(q2)	 (11–7)

For example, the potential function for a system consisting of a block of 
weight W supported by a spring, as in Fig. 11–14, can be expressed in 
terms of the coordinate (q = ) y, measured from a fixed datum located at 
the unstretched length of the spring. Here

 V = Vg + Ve

	  = -W  y +
1
2 k  y2	 (11–8)

If the block moves from y1 to y2, then applying Eq. 11–7 the work of  
W and Fs is 

U1- 2 = V( y1) - V( y2) = -W ( y1 - y2) +
1
2 k  y1

2 -
1
2 k  y2

2

y2

y1
y

Datum

W

k

(a)

Fig. 11–14
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*11.6  �Potential-Energy Criterion for 
Equilibrium

If a frictionless connected system has one degree of freedom, and its 
position is defined by the coordinate q, then if it displaces from q to 
q + dq, Eq. 11–7 becomes

dU = V (q) - V (q + dq)

or

dU = -dV

If the system is in equilibrium and undergoes a virtual displacement dq, 
rather than an actual displacement dq, then the above equation becomes 
dU = -dV . However, the principle of virtual work requires that dU = 0, 
and therefore, dV = 0, and so we can write dV = (dV >dq)dq = 0. Since 
dq � 0, this expression becomes

	
dV

dq
= 0 	 (11–9)

Hence, when a frictionless connected system of rigid bodies is in 
equilibrium, the first derivative of its potential function is zero. For 
example, using Eq. 11–8 we can determine the equilibrium position for 
the spring and block in Fig. 11–14a. We have

dV

d y
= -W + k  y = 0

Hence, the equilibrium position y = yeq is

yeq =
W

k

Of course, this same result can be obtained by applying �Fy = 0 to the 
forces acting on the free-body diagram of the block, Fig. 11–14b.

A
B

The counterweight at A  balances the 
weight of the deck B of this simple lift 
bridge. By applying the method of potential 
energy we can analyze the equilibrium 
state of the bridge. (© Russell C. Hibbeler)

y2

y1
y

Datum

W

k

(a)

W

Fs � kyeq

(b)

Fig. 11–14  (cont’d)
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*11.7  �Stability of Equilibrium 
Configuration

The potential function V of a system can also be used to investigate the 
stability of the equilibrium configuration, which is classified as stable, 
neutral, or unstable.

Stable Equilibrium.  A system is said to be in stable equilibrium if 
a system has a tendency to return to its original position when a small 
displacement is given to the system. The potential energy of the system in 
this case is at its minimum. A simple example is shown in Fig. 11–15a. 
When the disk is given a small displacement, its center of gravity G will 
always move (rotate) back to its equilibrium position, which is at the 
lowest point of its path. This is where the potential energy of the disk is at 
its minimum.

Neutral Equilibrium.  A system is said to be in neutral equilibrium 
if the system still remains in equilibrium when the system is given a small 
displacement away from its original position. In this case, the potential 
energy of the system is constant. Neutral equilibrium is shown in  
Fig. 11–15b, where a disk is pinned at G. Each time the disk is rotated, a 
new equilibrium position is established and the potential energy remains 
unchanged.

Unstable Equilibrium.  A system is said to be in unstable 
equilibrium if it has a tendency to be displaced farther away from its 
original equilibrium position when it is given a small displacement. The 
potential energy of the system in this case is a maximum. An unstable 
equilibrium position of the disk is shown in Fig. 11–15c. Here the disk will 
rotate away from its equilibrium position when its center of gravity is 
slightly displaced. At this highest point, its potential energy is at a maximum.

One-Degree-of-Freedom System.  If a system has only one 
degree of freedom, and its position is defined by the coordinate q, then the 
potential function V for the system in terms of q can be plotted, Fig. 11–16. 

During high winds and when going 
around a curve, these sugar-cane 
trucks can become unstable and tip 
over since their center of gravity is 
high off the road when they are fully 
loaded. (© Russell C. Hibbeler)

Stable equilibrium Unstable equilibriumNeutral equilibrium

(a) (b) (c)

G
G

G

Fig. 11–15
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Provided the system is in equilibrium, then dV >dq, which represents the 
slope of this function, must be equal to zero. An investigation of stability 
at  the equilibrium configuration therefore requires that the second 
derivative of the potential function be evaluated.

If d2V >dq2 is greater than zero, Fig. 11–16a, the potential energy of the 
system will be a minimum. This indicates that the equilibrium configuration 
is stable. Thus,

  
dV

dq
= 0,    

d 2V

dq2 7 0   stable equilibrium	 (11–10)

If d 2V >dq2 is less than zero, Fig. 11–16b, the potential energy of the 
system will be a maximum. This indicates an unstable equilibrium 
configuration. Thus,

  
dV

dq
= 0,    

d 2V

dq2 6 0   unstable equilibrium	 (11–11)

Finally, if d 2V >dq2 is equal to zero, it will be necessary to investigate the 
higher order derivatives to determine the stability. The equilibrium 
configuration will be stable if the first non-zero derivative is of an even 
order and it is positive. Likewise, the equilibrium will be unstable if this 
first non-zero derivative is odd or if it is even and negative. If all the higher 
order derivatives are zero, the system is said to be in neutral equilibrium, 
Fig. 11–16c. Thus,

	
dV

dq
=

d 2V

dq2  =
d 3V

dq3 = g = 0  neutral equilibrium	 (11–12)

This condition occurs only if the potential-energy function for the 
system is constant at or around the neighborhood of qeq.

V

q
qeq

d2V
dq2 � 0

Stable equilibrium

(a)

dV
dq

� 0

V

q
qeq

d2V
dq2 � 0

Unstable equilibrium

(b)

dV
dq

� 0

V

q
qeq

d2V
dq2 � 0

Neutral equilibrium

(c)

dV
dq

� 0

Fig. 11–16

Important Points

	 •	 A conservative force does work that is independent of the path 
through which the force moves. Examples include the weight and 
the spring force.

	 •	 Potential energy provides the body with the capacity to do work 
when the body moves relative to a fixed position or datum. 
Gravitational potential energy can be positive when the body is 
above a datum, and negative when the body is below the datum. 
Spring or elastic potential energy is always positive. It depends 
upon the stretch or compression of the spring.

	 •	 The sum of these two forms of potential energy represents the 
potential function. Equilibrium requires that the first derivative 
of the potential function be equal to zero. Stability at the 
equilibrium position is determined from the second derivative of 
the potential function.
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Procedure for Analysis

Using potential-energy methods, the equilibrium positions and the 
stability of a body or a system of connected bodies having a single 
degree of freedom can be obtained by applying the following 
procedure.

Potential Function.
	 •	 Sketch the system so that it is in the arbitrary position specified 

by the coordinate q.

	 •	 Establish a horizontal datum through a fixed point* and express 
the gravitational potential energy Vg in terms of the weight W of 
each member and its vertical distance y from the datum, Vg = Wy.

	 •	 Express the elastic potential energy Ve of the system in terms of 
the stretch or compression, s, of any connecting spring, Ve =

1
2 ks2.

	 •	 Formulate the potential function V = Vg + Ve and express the 
position coordinates y and s in terms of the single coordinate q.

Equilibrium Position.
	 •	 The equilibrium position of the system is determined by taking 

the first derivative of V and setting it equal to zero, dV>dq = 0.

Stability.
	 •	 Stability at the equilibrium position is determined by evaluating 

the second or higher-order derivatives of V.

	 •	 If the second derivative is greater than zero, the system is stable; 
if all derivatives are equal to zero, the system is in neutral 
equilibrium; and if the second derivative is less than zero, the 
system is unstable.

*The location of the datum is arbitrary, since only the changes or differentials  
of V are required for investigation of the equilibrium position and its stability.
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example    11.5

The uniform link shown in Fig. 11–17a has a mass of 10 kg. If the spring 
is unstretched when u = 0�, determine the angle u for equilibrium and 
investigate the stability at the equilibrium position.

SOLUTION
Potential Function.  The datum is established at the bottom of the 
link, Fig. 11–17b. When the link is located in the arbitrary position u, 
the spring increases its potential energy by stretching and the weight 
decreases its potential energy. Hence,

	 V = Ve + Vg =
1

2
 ks2 + Wy	

Since l = s + l cos u or s = l(1 - cos u), and y = (l>2) cos u, then 

	 V =
1

2
 kl2(1 - cos u)2 + W a l

2
 cos ub 	

Equilibrium Position.  The first derivative of V is

	
dV

du
= kl2(1 - cos u) sin u -

Wl

2
 sin u = 0	

or

	 l c kl(1 - cos u) -
W

2
d  sin u = 0	

This equation is satisfied provided

	 sin u = 0  u = 0�� Ans.

or

	 u = cos-1a1 -
W

2kl
b = cos-1 c 1 -

10(9.81)

2(200)(0.6)
d = 53.8�� Ans.

Stability.  The second derivative of V is

d2V

du2 = kl2(1 - cos u) cos u + kl2 sin u sin u -
Wl

2
 cos u

 = kl2(cos u - cos 2u) -
Wl

2
 cos u

Substituting values for the constants, with u = 0� and u = 53.8�, yields

 
d2V

du2
2
u= 0�

= 200(0.6)2(cos 0� - cos 0�) -
10(9.81)(0.6)

2
 cos 0�

 = -29.4 6 0  (unstable equilibrium at u = 0�)� Ans.

 
d2V

du2
2
u= 53.8�

= 200(0.6)2(cos 53.8� - cos 107.6�) -
10(9.81)(0.6)

2
 cos 53.8� 

= 46.9 7 0  (stable equilibrium at u = 53.8�)� Ans.

l � 0.6 m

A

k � 200 N/m

B

(a)

u

s

cos u

l—
2

l—
2

l

W

W

l—
2

k

Datum

(b)

F � ks

u

u

y �

Fig. 11–17



11

	 11.7  Stability of Equilibrium Configuration	 605

example   11.6

If the spring AD in Fig. 11–18a has a stiffness of 18 kN>m and is unstretched  
when u = 60�, determine the angle u for equilibrium. The load has a 
mass of 1.5 Mg. Investigate the stability at the equilibrium position.

SOLUTION
Potential Energy.   The gravitational potential energy for the load 
with respect to the fixed datum, shown in Fig. 11–18b, is

Vg = mgy = 1500(9.81) N[(4 m) sin u + h] = 58 860 sin u + 14 715h

where h is a constant distance. From the geometry of the system, the 
elongation of the spring when the load is on the platform is 
s = (4 m) cos u - (4 m) cos 60� = (4 m) cos u - 2 m.

Thus, the elastic potential energy of the system is

Ve =
1
2 ks2 =

1
2(18 000 N>m)(4 m cos u - 2 m)2 = 9000(4 cos u - 2)2

The potential energy function for the system is therefore

V = Vg + Ve = 58 860 sin u + 14 715h + 9000(4 cos u - 2)2� (1)

Equilibrium.  When the system is in equilibrium,

dV

du
= 58 860 cos u + 18 000(4 cos u - 2)(-4 sin u) = 0

58 860 cos u - 288 000 sin u cos u + 144 000 sin u = 0

Since sin 2u =  2 sin u cos u,

	 58 860 cos u - 144 000 sin 2u + 144 000 sin u = 0	

Solving by trial and error,

	 u = 28.18� and u = 45.51� � Ans.

Stability.  Taking the second derivative of Eq. 1,

	
d2V

du2 = -58 860 sin u - 288 000 cos 2u + 144 000 cos u�

Substituting u = 28.18� yields

	
d2V

du2 = -60 402 6 0     Unstable � Ans.

And for u = 45.51�, 

	
d2V

du2 = 64 073 7 0     Stable � Ans.

(a)

2 m

2 m
A

C

E

B

D

G

k � 18 kN/m

uu

Fig. 11–18

2 m

2 m
A

C

E

B

D

G

k � 18 kN/m

(b)

4 m cos u

(4 m)sin u

h

y

Datum
uu
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example   11.7

The uniform block having a mass m rests on the top surface of the half 
cylinder, Fig. 11–19a. Show that this is a condition of unstable 
equilibrium if h 7 2R.

SOLUTION
Potential Function.  The datum is established at the base of the 
cylinder, Fig. 11–19b. If the block is displaced by an amount u from the 
equilibrium position, the potential function is

	  V = V e + V g

	  = 0 + mgy

From Fig. 11–19b,

	 y = aR +
h

2
b  cos u + Ru sin u	

Thus,

	 V = mg c aR +
h

2
b  cos u + Ru sin u d 	

Equilibrium Position.

	  
dV

du
= mg c - aR +

h

2
b  sin u + R sin u + Ru cos u d = 0

	  = mga -
h

2
 sin u + Ru cos ub = 0

Note that u = 0� satisfies this equation.

Stability.  Taking the second derivative of V yields

	
d2V

du2 = mga -
h

2
 cos u + R cos u - Ru sin ub 	

At u = 0�,

	
d2V

du2
2
u= 0�

= -mga h

2
- Rb 	

Since all the constants are positive, the block is in unstable equilibrium 
provided h 7 2R, because then d2V >du2 6 0.

hm

R

(a)

y

W � mg

R

(b)
) cos u(R �

Ru sin u
Ru

h—
2

h—
2

Datum

u

u

Fig. 11–19
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Problems

11–26.  The potential energy of a one-degree-of-freedom 
system is defined by V = (20x3 - 10x2 - 25x - 10) ft # lb, 
where x is in ft. Determine the equilibrium positions and 
investigate the stability for each position.

11–27.  If the potential function for a conservative one-
degree-of-freedom system is V  =  (12 sin 2u +15 cos u) J, 
where 0� 6 u 6 180�, determine the positions for equilibrium 
and investigate the stability at each of these positions.

*11–28.  If the potential function for a conservative one-
degree-of-freedom system is V = (8x  3 - 2x  2 - 10) J, 
where x is given in meters, determine the positions for 
equilibrium and investigate the stability at each of these 
positions.

11–29.  If the potential function for a conservative one-
degree-of-freedom system is V = (10 cos 2u + 25 sin u) J, 
where 0� 6 u 6 180�, determine the positions for equilibrium 
and investigate the stability at each of these positions.

11–30.  If the potential energy for a conservative one-
degree-of-freedom system is expressed by the relation 
V = (4x3 - x2 - 3x + 10) ft # lb, where x is given in feet, 
determine the equilibrium positions and investigate the 
stability at each position.

11–31.  The uniform link AB, has a mass of 3 kg and is pin 
connected at both of its ends. The rod BD, having negligible 
weight, passes through a swivel block at C. If the spring has 
a stiffness of k = 100 N>m and is unstretched when u = 0�, 
determine the angle u for equilibrium and investigate the 
stability at the equilibrium position. Neglect the size of the 
swivel block.

k � 100 N/m

400 mm

400 mm
D

C

B

A

u

Prob. 11–31

*11–32.  The spring of the scale has an unstretched length 
of a. Determine the angle u for equilibrium when a 
weight W is supported on the platform. Neglect the weight 
of the members. What value W would be required to keep 
the scale in neutral equilibrium when u = 0�?

u u

k

L

W

LL

L

a

Prob. 11–32

11–33.  The uniform bar has a mass of 80 kg. Determine 
the angle u for equilibrium and investigate the stability of 
the bar when it is in this position. The spring has an 
unstretched length when u = 90�.

4 m

k � 400 N/m

A

B

u

Prob. 11–33
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*11–36.  Determine the angle u for equilibrium and 
investigate the stability at this position. The bars each have 
a mass of 3 kg and the suspended block D has a mass of 
7 kg. Cord DC has a total length of 1 m.

500 mm

500 mm

A

D

C

500 mm

u u

Prob. 11–36

11–37.  Determine the angle u for equilibrium and 
investigate the stability at this position. The bars each have 
a mass of 10 kg and the spring has an unstretched length of 
100 mm.

500 mm

500 mm

A C

500 mm

k �1.5 kN/mu u

Prob. 11–37

11–34.  The uniform bar AD has a mass of 20 kg. If the 
attached spring is unstretched when u = 90�, determine the 
angle u for equilibrium. Note that the spring always remains 
in the vertical position due to the roller guide. Investigate 
the stability of the bar when it is in the equilibrium position.

D

1 m

0.5 m

k � 2 kN/m

C

B

A

u

Prob. 11–34

11–35.  The two bars each have a weight of 8 lb. Determine 
the required stiffness k of the spring so that the two bars are 
in equilibrium when u = 30�. The spring has an unstretched 
length of 1 ft.

2 ft

B

A C

2 ft

ku

Prob. 11–35
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*11–40.  A conical hole is drilled into the bottom of the 
cylinder, which is supported on the fulcrum at A. Determine 
the minimum distance d in order for it to remain in stable 
equilibrium.

d

A

r

h

Prob. 11–40

11–41.  The uniform rod has a mass of 100 kg. If the spring 
is unstretched when u = 60�, determine the angle u for 
equilibrium and investigate the stability at the equilibrium 
position. The spring is always in the horizontal position due 
to the roller guide at B.

2 m
k � 500 N/m

A

B

2 m

u

Prob. 11–41

11–38.  The two bars each have a mass of 8 kg. Determine 
the required stiffness k of the spring so that the two bars are 
in equilibrium when u = 60�. The spring has an unstretched 
length of 1 m. Investigate the stability of the system at the 
equilibrium position.

1.5 m

1.5 m

B

A

C

k

u

Prob. 11–38

11–39.  A spring with a torsional stiffness k is attached to 
the hinge at B. It is unstretched when the rod assembly is in 
the vertical position. Determine the weight W of the block 
that results in neutral equilibrium. Hint: Establish the 
potential energy function for a small angle u, i.e., 
approximate sin u � 0, and cos u � 1 - u2>2.

C

A

B
k

L
2

L
2

L
2

Prob. 11–39
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*11–44.  The small postal scale consists of a counterweight 
W1, connected to the members having negligible weight. 
Determine the weight W2 that is on the pan in terms of the 
angles u and f and the dimensions shown. All members are 
pin connected. 

W2

W1

b a

a
f

f

u

Prob. 11–44

11–45.  A 3-lb weight is attached to the end of rod ABC. If 
the rod is supported by a smooth slider block at C and  
rod BD, determine the angle u for equilibrium. Neglect the 
weight of the rods and the slider.

6 in.

10 in.
4 in.

A

B

C

D

u

Prob. 11–45

11–42.  Each bar has a mass per length of m0. Determine the 
angles u and f at which they are suspended in equilibrium. 
The contact at A is smooth, and both are pin connected at B.

B

3
2

2

u f
l

l

A

l

Prob. 11–42

11–43.  The truck has a mass of 20 Mg and a mass center  
at G. Determine the steepest grade u along which it can 
park without overturning and investigate the stability in this 
position.

G

u

3.5 m

1.5 m
1.5 m

Prob. 11–43
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*11–48.  The bent rod has a weight of 5 lb>ft. A pivot is 
attached at its center A and the rod is balanced as shown. 
Determine the length L of its vertical segments so that it 
remains in neutral equilibrium. Neglect the thickness of 
the rod.

8 in. 8 in.

2 in.

LL

A 

Prob. 11–48

11–49.  The triangular block of weight W rests on the 
smooth corners which are a distance a apart. If the block 
has three equal sides of length d, determine the angle u for 
equilibrium.

d

a

G 60�

60�

u

Prob. 11–49

11–46.  If the uniform rod OA has a mass of 12 kg, 
determine the mass m that will hold the rod in equilibrium 
when  u = 30�. Point C is coincident with B when OA is 
horizontal. Neglect the size of the pulley at B.

m

u

1 mA

C

O

B

3 m

Prob. 11–46

11–47.  The cylinder is made of two materials such that it 
has a mass of m and a center of gravity at point G. Show 
that when G lies above the centroid C of the cylinder, the 
equilibrium is unstable.

C

G
a

r

Prob. 11–47
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Chapter Review

Principle of Virtual Work

The forces on a body will do virtual 
work when the body undergoes an 
imaginary differential displacement or 
rotation.

For equilibrium, the sum of the virtual 
work done by all the forces acting on the 
body must be equal to zero for any virtual 
displacement. This is referred to as the 
principle of virtual work, and it is useful 
for finding the equilibrium configuration 
for a mechanism or a reactive force acting 
on a series of connected members.

If the system of connected members has 
one degree of freedom, then its position 
can be specified by one independent 
coordinate, such as u.

To apply the principle of virtual work, 
it  is first necessary to use position 
coordinates to locate all the forces and 
moments on the mechanism that will do 
work when the mechanism undergoes a 
virtual movement du.

The coordinates are related to the 
independent coordinate u and then these 
expressions are differentiated in order to 
relate the virtual coordinate displacements 
to the virtual displacement du.

Finally, the equation of virtual work is 
written for the mechanism in terms of 
the common virtual displacement du, 
and then it is set equal to zero. By 
factoring du out of the equation, it is 
then possible to determine either the 
unknown force or couple moment, or 
the equilibrium position u.

By

Ay

Bx

P

du
dy

dy¿

F

l

l

P

F

l l

P

uu

u u

dy, dy�9virtual displacements

du9virtual rotation

dU = 0
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Potential-Energy Criterion for Equilibrium

When a system is subjected only to con
servative forces, such as weight and spring 
forces, then the equilibrium configuration 
can be determined using the potential-energy 
function V for the system.

The potential-energy function is established 
by expressing the weight and spring potential 
energy for the system in terms of the 
independent coordinate q.

Once the potential-energy function is 
formulated, its first derivative is set equal 
to zero. The solution yields the equilibrium 
position qeq for the system.

The stability of the system can be investigated 
by taking the second derivative of V.

y2

y1
y

Datum

W

k

V = Vg + Ve = -Wy +
1
2 ky2

dV

dq
= 0

dV

dq
= 0, 

d2V

dq2 7 0 

dV

dq
= 0, 

d2V

dq2 6 0 

dV

dq
=

d2V

dq2 =
d3V

dq3 = g = 0 
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stable equilibrium

unstable equilibrium

neutral equilibrium
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11

R11–3.  The punch press consists of the ram R, connecting 
rod AB, and a flywheel. If a torque of M = 50 N # m is 
applied to the flywheel, determine the force F applied at the 
ram to hold the rod in the position u = 60�.

u
F

0.1 m

M

B
R

A

0.4 m

Prob. R11–3

R11–4.  The uniform bar AB weighs 10 lb. If the attached 
spring is unstretched when u = 90�, use the method of 
virtual work and determine the angle u for equilibrium. 
Note that the spring always remains in the vertical position 
due to the roller guide.

4 ft

k � 5 lb/ft

A

B

4 ft

u

Prob. R11–4

R11–1.  The toggle joint is subjected to the load P. 
Determine the compressive force F it creates on the cylinder 
at A as a function of u.

F

P

L L

A

u

Prob. R11–1

R11–2.  The uniform links AB and BC each weigh 2 lb and 
the cylinder weighs 20 lb. Determine the horizontal force P 
required to hold the mechanism in the position when 
u = 45�. The spring has an unstretched length of 6 in.

P

10 in.

B

A
C

10 in.

k � 2 lb/in. u = 45�

Prob. R11–2

Review Problems  
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R11–7.  The uniform bar AB weighs 100 lb. If both springs 
DE and BC are unstretched when u = 90�, determine the 
angle u for equilibrium using the principle of potential 
energy. Investigate the stability at the equilibrium position. 
Both springs always act in the horizontal position because 
of the roller guides at C and E.

u

A

k � 2 lb/in.

k � 4 lb/in.

2 ft

4 ft
D

B
C

E

Prob. R11–7

R11–8.  The spring attached to the mechanism has an 
unstretched length when u = 90�. Determine the position u 
for equilibrium and investigate the stability of the 
mechanism at this position. Disk A is pin connected to the 
frame at B and has a weight of 20 lb. Neglect the weight of 
the bars.

u

u u

u

1.25 ft

1.25 ft

A
B

C

k � 16 lb/ft

Prob. R11–8

R11–5.  The spring has an unstretched length of 0.3 m. 
Determine the angle u for equilibrium if the uniform links 
each have a mass of 5 kg.

uu

0.1 m

0.6 m

C

A

B
D

E
k � 400 N/m

Prob. R11–5

R11–6.  Determine the angle u for equilibrium and 
investigate the stability of the mechanism in this position. 
The spring has a stiffness of k = 1.5 kN>m and is unstretched 
when u = 90�. The block A has a mass of 40 kg. Neglect the 
mass of the links.

F

450 mm

600 mm

C

B D

E

k
A

uu

Prob. R11–6



Mathematical Review 
and Expressions

Geometry and Trigonometry Review
The angles u in Fig.  A–1 are equal between the transverse and two 
parallel lines.

180� � u
u

u

u

uu

Fig. A–1

For a line and its normal, the angles u in Fig. A–2 are equal.

u
u

u

u

Fig. A–2

A
APPENDIX
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A

For the circle in Fig. A–3, s = ur, so that when u = 360� = 2p rad then 
the circumference is s = 2pr. Also, since 180� = p rad, then 
u (rad) = (p>180�)u�.  The area of the circle is A = pr 2.

s

r

r

u

Fig. A–3

a

b

c
A

B

C

Fig. A–4

The sides of a similar triangle can be obtained by proportion as in  

Fig. A–4, where 
a

A
=

b

B
=

c

C
.

For the right triangle in Fig. A–5, the Pythagorean theorem is

h = 2(o)2 + (a)2

The trigonometric functions are

 sin u =
o

h

 cos u =
a

h

 tan u =
o
a

This is easily remembered as “soh, cah, toa”, i.e., the sine is the opposite 
over the hypotenuse, etc. The other trigonometric functions follow 
from this.

 csc u =
1

sin u
 =

h
o

 sec u =
1

cos u
 =

h
a

 cot u =
1

tan u
 =

a
o

a (adjacent)

o (opposite)h (hypotenuse)

u

Fig. A–5
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A

Trigonometric Identities

sin2 u + cos2 u = 1

sin(u { f) = sin u cos f { cos u sin f

sin 2u = 2 sin u cos u

cos(u { f) = cos u cos f | sin u sin f

cos 2u = cos2 u - sin2 u

cos u = {A1 + cos 2u

2
, sin u = {A1 - cos 2u

2

tan u =
sin u

cos u

1 + tan2 u = sec2 u  1 + cot2 u = csc2 u

Quadratic Formula

If ax2 + bx + c = 0,  then x =
-b { 2b2 - 4ac

2a

Hyperbolic Functions

 sinh x =
ex - e-x

2
,

cosh x =
ex + e-x

2
,

tanh x  =
sinh x

cosh x

Power-Series Expansions

sin x = x -
x3

3!
+ g , cos x = 1 -

x2

2!
+ g

sinh x = x +
x3

3!
+ g , cosh x = 1 +

x2

2!
+ g

Derivatives

 
d

dx
 (un) = nun - 1 

du

dx
           

d

dx
 (sin u) = cos u 

du

dx

 
d

dx
 (uv) = u 

dv

dx
+ v 

du

dx
     

d

dx
 (cos u) = -sin u 

du

dx

 
d

dx
 a u

v
b =

v 
du

dx
- u 

dv

dx

v2
    

d

dx
 (tan u) = sec2 u 

du

dx

 
d

dx
 (cot u) = -csc2 u 

du

dx
   

d

dx
 (sinh u) = cosh u 

du

dx

 
d

dx
 (sec u) = tan u sec u 

du

dx
  

d

dx
 (cosh u) = sinh u 

du

dx

 
d

dx
 (csc u) = -csc u cot u 

du

dx
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A

Integrals

Lxn dx =
xn + 1

n + 1
+ C, n � -1

L  
dx

a + bx
=

1

b
 ln(a + bx) + C

L  
dx

a + bx2 =
1

22-ab
 ln c a + x2-ab

a - x2-ab
d + C, 

	 ab 6 0

L  
x dx

a + bx2 =
1

2b
 ln(bx2 + a) + C

L  
x2 dx

a + bx2 =
x

b
-

a

b2ab
 tan-1 

x2ab
a

+ C, ab 7 0

L2a + bx dx =
2

3b
 2(a + bx)3 + C

Lx2a + bx dx =
-2(2a - 3bx)2(a + bx)3

15b2 + C

Lx22a + bx dx =  

	
2(8a2 - 12abx + 15b2x2)2(a + bx)3

105b3 + C

L2a2 - x2 dx =
1

2
 c x2a2 - x2 + a2 sin-1 

x
a
d + C,

	 a 7 0

Lx2a2 - x2 dx = -
1

3
 2(a2 - x2)3 + C

Lx22a2 - x2 dx = -
x

4
 2(a2 - x2)3 

	 +
a2

8
 ax2a2 - x2 + a2 sin-1 

x
a
b + C, a 7 0

L2x2 { a2 dx =  

	
1

2
 c x2x2 { a2 { a2 ln1x + 2x2 { a22 d + C

Lx2x2 { a2 dx =
1

3
 2(x2 { a2)3 + C

Lx22x2 { a2 dx =
x

4
 2(x2 { a2)3 

|
a2

8
 x2x2 { a2 -

a4

8
 ln1x + 2x2 { a22 + C

L  
dx2a + bx

=
22a + bx

b
+ C

L  
x dx2x2 { a2

= 2x2 { a2 + C

L  
dx2a + bx + cx2

=
11c

 ln c2a + bx + cx2 +  

	 x1c +
b

21c
d + C, c 7 0

	 =
11-c

 sin-1a -2cx - b2b2 - 4ac
b + C, c 6 0

L  sin x dx = -cos x + C

L  cos x dx = sin x + C

Lx cos(ax) dx =
1

a2 cos(ax) +
x
a

 sin(ax) + C

Lx2 cos(ax) dx =
2x

a2  cos(ax) +
a2x2 - 2

a3  sin(ax) + C

Leax dx =
1
a

 eax + C

Lxeax dx =
eax

a2  (ax - 1) + C

L  sinh x dx = cosh x + C

L  cosh x dx = sinh x + C



F2–9.

 +S(FR)x = �Fx;

 (FR)x = -  (700 lb) cos 30� + 0 + 13
52 (600 lb)

 = -246.22 lb

 + c(FR)y = �Fy;

 (FR)y = - (700 lb) sin 30� - 400 lb - 14
52 (600 lb)

 = -1230 lb

 FR = 2(246.22 lb)2 + (1230 lb)2 = 1254 lb � Ans.

 f = tan-11 1230 lb
246.22 lb2 = 78.68�

 u = 180� + f = 180� + 78.68� = 259� � Ans.

F2–10.	  +S(FR)x = �Fx;

	  750 N = F cos u + 1 5
132(325 N) + (600 N)cos 45�

	  + c(FR)y = �Fy;

	 0 = F sin u + 112
132(325 N) - (600 N)sin 45�

	  tan u = 0.6190 u = 31.76� = 31.8�a� Ans.

	  F = 236 N� Ans.

F2–11.	  S
+ (FR)x = �Fx;

	  (80 lb) cos 45� = F cos u + 50 lb - 13
5290 lb

	  + c(FR)y = �Fy;

	 - (80 lb) sin 45� = F sin u - 14
52(90 lb)

	  tan u = 0.2547 u = 14.29� = 14.3�a� Ans.

	  F = 62.5 lb� Ans.

F2–12.	  (FR)x = 1514
52 + 0 + 1514

52 = 24 kN S

	  (FR)y = 1513
52 + 20 - 1513

52 = 20 kN c

	  FR = 31.2 kN � Ans.

	  u = 39.8� � Ans.

F2–13.	  Fx = 75 cos 30� sin 45� = 45.93 lb

	  Fy = 75 cos 30� cos 45� = 45.93 lb

	  Fz = -75 sin 30� = -37.5 lb

	  a = cos-1145.93
75 2 = 52.2� � Ans.

	  b = cos-1145.93
75 2 = 52.2� � Ans.

	  g = cos-11 - 37.5
75 2 = 120� � Ans.

Chapter 2
F2–1.	
 FR = 2(2 kN)2 + (6 kN)2 - 2(2 kN)(6 kN) cos 105�

 = 6.798 kN = 6.80 kN � Ans.

	  
sin f

6 kN
=

sin 105�

6.798 kN
 ,  f = 58.49�

	  u = 45� + f = 45� + 58.49� = 103�� Ans.

F2–2.	  FR = 22002 + 5002 - 2(200)(500) cos 140�

	  = 666 N � Ans.

F2–3.	  FR = 26002 + 8002 - 2(600)(800) cos 60�

	  = 721.11 N = 721 N � Ans.

	  
sin a

800
=

sin 60�

721.11
 ;  a = 73.90�

	  f = a - 30� = 73.90� - 30� = 43.9�� Ans.

F2–4.	
Fu

sin 45�
=

30

sin 105�
 ;  Fu = 22.0 lb� Ans.

	
Fv

sin 30�
=

30

sin 105�
 ;  Fv = 15.5 lb� Ans.

F2–5.	  
FAB

sin 105�
=

450

sin 30�
	  FAB = 869 lb � Ans.

	  
FAC

sin 45�
=

450

sin 30�
	  FAC = 636 lb � Ans.

F2–6.	  
F

sin 30�
=

6

sin 105�
  F = 3.11 kN� Ans.

	  
Fv

sin 45�
=

6

sin 105�
  Fv = 4.39 kN� Ans.

F2–7.	 (F1)x = 0  (F1)y = 300 N � Ans.

	  (F2)x = - (450 N) cos 45� = -318 N� Ans.

	  (F2)y = (450 N) sin 45� = 318 N� Ans.

	  (F3)x = 13
52600 N = 360 N� Ans.

	  (F3)y = 14
52600 N = 480 N� Ans.

F2–8.	  FRx = 300 + 400 cos 30� - 25014
52 = 446.4 N

	  FRy = 400 sin 30� + 25013
52 = 350 N

	  FR = 2(446.4)2 + 3502 = 567 N � Ans.

	  u = tan-1 350
446.4 = 38.1�a� Ans.

Fundamental Problems  
Partial Solutions And Answers 

620
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F2–22.	  F = FuAB = 900N1-
4
9i +

7
9j -

4
9k2

	  = 5-400i + 700j - 400k6  N � Ans.

F2–23.	  FB = FBuB

	  = (840 N)13
7i -

2
7j -

6
7k2

	  = 5360i - 240j - 720k6  N

	  FC = FCuC

	  = (420 N)12
7i +

3
7j -

6
7k2

	  = 5120i + 180j - 360k6  N

	  FR = 2(480 N)2 + (-60 N)2 + (-1080 N)2

	  = 1.18 kN � Ans.

F2–24.	  FB = FBuB

	  = (600 lb)1-
1
3i +

2
3j -

2
3k2

	  = 5-200i + 400j - 400k6  lb

	  FC = FCuC

	  = (490 lb)1-
6
7i +

3
7j -

2
7k2

	  = 5-420i + 210j - 140k6  lb

	  FR = FB + FC = 5-620i + 610j -  540k6  lb�Ans.

F2–25.	  uAO = -
1
3i +

2
3j -

2
3k

	  uF = -0.5345i + 0.8018j + 0.2673k

	  u = cos-1 (uAO 
# uF) = 57.7� � Ans.

F2–26.	  uAB = -
3
5j +

4
5k

	  uF =
4
5i -

3
5j

	  u = cos-1 (uAB 
# uF) = 68.9�� Ans.

F2–27.	  uOA =
12
13i +

5
13j

	  uOA
# j = uOA(1) cos u

	  cos u =
5
13; u = 67.4�� Ans.

F2–28.	  uOA =
12
13i +

5
13j

	  F = FuF = [650j] N

	  FOA = F # uOA = 250 N

	  FOA = FOA uOA = 5231i + 96.2j6  N� Ans.

F2–14.	 cos b =21 - cos2 120� - cos2 60� = {0.7071

	 Require b = 135�.

	  F = FuF = (500 N)(-0.5i - 0.7071j + 0.5k)

	  = 5-250i - 354j + 250k6  N � Ans.

F2–15.	  cos2a + cos2135� + cos2 120� = 1

	  a = 60�

	  F = FuF = (500 N)(0.5i - 0.7071j - 0.5k)

	  = 5250i - 354j - 250k6  N � Ans.

F2–16.	  Fz = (50 lb) sin 45� = 35.36 lb

	  F� = (50 lb) cos 45� = 35.36 lb

	  Fx = 13
52(35.36 lb) = 21.21 lb

	  Fy = 14
52(35.36 lb) = 28.28 lb

	  F = 5-21.2i + 28.3j + 35.4k6  lb� Ans.

F2–17.	  Fz = (750 N) sin 45� = 530.33 N

	  F� = (750 N) cos 45� = 530.33 N

	  Fx = (530.33 N) cos 60� = 265.2 N

	  Fy = (530.33 N) sin 60� = 459.3 N

	  F2 = 5265i -  459j + 530k6  N � Ans.

F2–18.	  F1 =  14
52(500 lb) j + 13

52(500 lb)k

	   =  5400j + 300k6  lb

	  F2 =  [(800 lb) cos 45�] cos 30� i

	  + [(800 lb) cos 45�] sin 30�j

	  + (800 lb) sin 45� (-k)

	   =  5489.90i + 282.84j - 565.69k6  lb

	  FR =  F1 + F2 = 5490i + 683j - 266k6  lb  � Ans.

F2–19.	  rAB = 5-6i + 6j + 3k6  m  � Ans.

	  rAB = 2(-6 m)2 + (6 m)2 + (3 m)2 = 9 m� Ans.

	  a = 132�, b = 48.2�, g = 70.5� � Ans.

F2–20.	  rAB = 5-4i + 2j + 4k6  ft � Ans.

	  rAB = 2(-4 ft)2 + (2 ft)2 + (4 ft)2 = 6 ft� Ans.

	  a = cos-11 - 4 ft
6 ft 2 = 131.8�

	  u = 180� - 131.8� = 48.2� � Ans.

F2–21.	  rAB = 52i + 3j - 6k6  m

	  FAB = FABuAB

	  = (630 N)12
7i +

3
7j -

6
7k2

	  = 5180i + 270j - 540k6  N  � Ans.
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F3–5.	  + c �Fy = 0; (392.4 N)sin 30� - mA(9.81) = 0

	  mA = 20 kg� Ans.

F3–6.	  + c �Fy = 0; TAB sin 15� - 10(9.81) N = 0

	  TAB = 379.03 N = 379 N� Ans.

	  +
S�Fx = 0; TBC - 379.03 N cos 15� = 0

	  TBC = 366.11 N = 366 N� Ans.

	  +
S�Fx = 0; TCD cos u - 366.11 N = 0

	  + c �Fy = 0; TCD sin u - 15(9.81) N = 0

	  TCD = 395 N� Ans.

	  u = 21.9�� Ans.

F3–7.	  �Fx = 0; 313
52F3413

52 + 600 N - F2 = 0	 (1)

	  �Fy = 0; 14
52F1 - 313

52F3414
52 = 0	 (2)

	  �Fz = 0; 14
52F3 + 13

52F1 - 900 N = 0	 (3)
	  F3 = 776 N� Ans.

	  F1 = 466 N� Ans.

	  F2 = 879 N� Ans.

F3–8.	  �Fz = 0; FAD14
52 - 900 = 0

	  FAD = 1125 N = 1.125 kN� Ans.

	  �Fy = 0; FAC14
52 - 112513

52 = 0

	  FAC = 843.75 N = 844 N� Ans.

	  �Fx = 0; FAB - 843.7513
52 = 0

	  FAB = 506.25 N = 506 N� Ans.

F3–9.	 FAD = FADa
rAD

rAD
b =

1
3FADi -

2
3FAD j +

2
3FAD k

	  �Fz = 0; 	 2
3FAD - 600 = 0

				   FAD = 900 N� Ans.

	  �Fy = 0;	 FAB cos 30� -
2
3 (900) = 0 

		  FAB = 692.82 N = 693 N� Ans.

	  �Fx = 0;	 1
3 (900) + 692.82 sin 30� - FAC = 0

			   FAC = 646.41 N = 646 N� Ans.

F3–10.	  FAC = FAC 5-cos 60� sin 30� i  

	     + cos 60� cos 30� j + sin 60� k6
	  = -0.25FAC i + 0.4330FAC j + 0.8660FAC k

	  FAD = FAD5cos 120� i + cos 120� j + cos 45� k6
	  = -0.5FAD i - 0.5FAD j + 0.7071FAD k

	  �Fy = 0; 0.4330FAC - 0.5FAD = 0

	  �Fz = 0; 0.8660FAC + 0.7071FAD - 300 = 0

	  FAD = 175.74 lb = 176 lb� Ans.

	  FAC = 202.92 lb = 203 lb� Ans.

	  �Fx = 0; FAB - 0.25(202.92) - 0.5(175.74) = 0

	  FAB = 138.60 lb = 139 lb� Ans.

F2–29.	  F = (400 N) 

54 i +  1 j -  6 k6m2(4 m)2 + (1 m)2 + (-6 m)2

	  = 5219.78i + 54.94j - 329.67k6  N

	  uAO =
5-4 j -  6 k6  m2(-4 m)2 + (-6 m)2

	  = -0.5547j - 0.8321k

	  (FAO)proj = F # uAO = 244 N � Ans.

F2–30.	  F = [(-600 lb) cos 60�] sin 30� i
	  + [(600 lb) cos 60�] cos 30� j
	  + [(600 lb) sin 60�] k
	  = 5-150i + 259.81j + 519.62k6  lb

	  uA = -
2
3i +

2
3j +

1
3k

	  (FA)par = F # uA = 446.41 lb = 446 lb� Ans.

	  (FA)per = 2(600 lb)2 - (446.41 lb)2

	  = 401 lb � Ans.

F2–31.	  F = 56 N13
7i -

6
7j +

2
7k2

	 = 524i - 48j + 16k6  N
 1FAO2} = F # uAO = 124i - 48j + 16k2 # 13

7 i -
6
7 j -

2
7k2

	 = 46.86 N =  46.9 N� Ans.

 1FAO2# = 2F2 - 1FAO2} = 215622 - 146.8622

	 = 30.7 N� Ans.

Chapter 3
F3–1.	  +

S �Fx = 0; 4
5FAC - FAB cos 30� = 0

	 + c �Fy = 0; 3
5FAC + FAB sin 30� - 550 = 0

	 FAB = 478 lb � Ans.

	 FAC = 518 lb � Ans.

F3–2.	  + c �Fy = 0; -2(1500) sin u + 700 = 0

	  u = 13.5�

	  LABC = 21 5 ft
cos 13.5�2 = 10.3 ft� Ans.

F3–3.	  S
+ �Fx = 0; T cos u -  T cos f = 0

	  f = u

	  + c �Fy = 0; 2T sin u - 49.05 N = 0

	  u = tan-110.15 m
0.2 m 2 = 36.87�

	  T = 40.9 N� Ans.

F3–4.	  + Q�Fx = 0; 4
5(Fsp) - 5(9.81) sin 45� = 0

	  Fsp = 43.35 N

	  Fsp = k(l - l0); 43.35 = 200(0.5 - l0)

	  l0 = 0.283 m� Ans.
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F4–8.	  a+ (MR)O = �Fd;

	 (MR)O = 313
52500 N4(0.425 m)

	  - 314
52500 N4(0.25 m)

	  - [(600 N) cos 60�](0.25 m)

	  - [(600 N) sin 60�](0.425 m)

	  = -268 N # m = 268 N # m b� Ans.

F4–9.	 a + (MR)O = �Fd;

	  (MR)O = (300 cos 30� lb)(6 ft + 6 sin 30� ft)

	   -  (300 sin 30� lb)(6 cos 30� ft)

	   + (200 lb)(6 cos 30� ft)

	  = 2.60 kip # ft � Ans.

F4–10.	 F = FuAB = 500 N14
5i -

3
5j2 = 5400i - 300j6  N

	  MO = rOA * F = 53j6  m * 5400i - 300j6  N

	  = 5-1200k6  N # m � Ans.

	 or

	  MO = rOB * F = 54i6  m * 5400i - 300j6  N

	  = 5-1200k6  N # m � Ans.

F4–11.	  F = FuBC

	  = 120 lbJ 54 i -  4 j -  2 k6  ft2(4 ft)2 + (-4 ft)2 + (-2 ft)2
R

	  = 580i - 80j - 40k6  lb

	  MO = rC * F = 3 i j k
5 0 0

80 -80 -40

3
	  = 5200j - 400k6  lb # ft � Ans.

	 or

	  MO = rB * F = 3 i j k
1 4 2

80 -80 -40

3
	  = 5200j - 400k6  lb # ft � Ans.

F4–12.	  FR = F1 + F2

	  = 5(100 - 200)i + (-120 + 250)j

	  + (75 + 100)k6  lb

	  = 5-100i + 130j + 175k6  lb

	  (MR)O = rA * FR = 3 i j k
4 5 3

-100 130 175

3
	  = 5485i - 1000j + 1020k6  lb # ft � Ans.

F3–11.	  FB = FBa
rAB

rAB
b

	  = FBJ 5-6i + 3j + 2k6  ft2(-6 ft)2 + (3 ft)2 + (2 ft)2
R

	  = -
6
7FBi +

3
7 FB j +

2
7 FB k

	  FC = FCa
rAC

rAC
b

	  = FCJ 5-6i - 2j + 3k6  ft2(-6 ft)2 + (-2 ft)2 + (3ft)2
R

	  = -
6
7 FC i -

2
7 FC   j +

3
7 FC k

	  FD = FDi

	  W = 5-150k6  lb

	  �Fx = 0; -
6
7 FB -

6
7 FC + FD = 0 	 (1)

	  �Fy = 0; 3
7 FB -

2
7 FC = 0 	 (2)

	  �Fz = 0; 2
7 FB +

3
7 FC - 150 = 0 	 (3)

	  FB = 162 lb � Ans.

	  FC = 1.5(162 lb) = 242 lb � Ans.

	  FD = 346.15 lb = 346 lb  � Ans.

Chapter 4
F4–1.	 a +MO = - 14

52(100 N)(2 m) -  13
52(100 N)(5 m)

	  = -460 N # m = 460 N # mb� Ans.

F4–2.	 a+MO = [(300 N) sin 30�][0.4 m + (0.3 m) cos 45�]
	   - [(300 N) cos 30�][(0.3 m) sin 45�]
	  = 36.7 N # m� Ans.

F4–3.	 a +MO = (600 lb)(4 ft + (3 ft)cos 45� - 1 ft)

	  = 3.07 kip # ft � Ans.

F4–4.	 c +MO = 50 sin 60� (0.1 + 0.2 cos 45� + 0.1)

	  - 50 cos 60�(0.2 sin 45�)

	  = 11.2 N # m � Ans.

F4–5.	 a +MO = 600 sin 50� (5) + 600 cos 50� (0.5)
	  = 2.49 kip # ft � Ans.

F4–6.	 a+MO = 500 sin 45� (3 + 3 cos 45�)

	  - 500 cos 45� (3 sin 45�)

	  = 1.06 kN # m � Ans.

F4–7.	 a+ (MR)O = �Fd;

	  (MR)O = - (600 N)(1 m)

	  + (500 N)[3 m + (2.5 m) cos 45�]

	  - (300 N)[(2.5 m) sin 45�]

	  = 1254 N # m = 1.25 kN # m �Ans.
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	 Fz =
3
515002 = 300 N

	  Mx = -320132 + 300122 = -360 N # m� Ans.

	  My = -240132 - 300 (-2) = -120 N # m� Ans.

 Mz = 240122 - 320 (2) = -160 N # m� Ans.

	 Vector Analysis

	  F = 5-240i + 320j + 300k6N

	  rOA = 5-2i + 2j + 3k6  m

	  Mx = i # 1rOA * F2 = -360 N # m

	  My = j # 1rOA * F2 = -120 N # m

	  Mz = k # 1rOA * F2 = -160 N # m

F4–19.	  c+MCR
= �MA = 400(3) - 400(5) + 300(5)

	 + 200(0.2) = 740 N # m � Ans.

	 Also,

	  c+MCR
= 300(5) - 400(2) + 200(0.2)

	  = 740 N # m � Ans.

F4–20.	 	 a+MCR
= 300(4) + 200(4) + 150(4)

	   = 2600 lb # ft � Ans.

F4–21.	  a+ (MB)R = �MB

	  -1.5 kN # m = (2 kN)(0.3 m) -  F(0.9 m)

	  F = 2.33 kN � Ans.

F4–22.	  a+MC = 1013
52(2) - 1014

52(4) = -20 kN # m

	  = 20 kN # mb� Ans.

F4–23.	  u1 =
r1

r1
=

{-2i + 2j + 3.5k} ft2(-2 ft)2 + (2 ft)2 + (3.5 ft)2

	  = -
2

4.5i +
2

4.5j +
3.5
4.5k

	  u2 = -k

	  u3 =
1.5
2.5i -

2
2.5j

	  (Mc)1 = (Mc)1u1

	  = (450 lb # ft)1- 2
4.5i +

2
4.5j +

3.5
4.5k2

	  = 5-200i + 200j + 350k6  lb # ft

	  (Mc)2 = (Mc)2u2 = (250 lb # ft)(-k)

	  = 5-250k6  lb # ft

	  (Mc)3 = (Mc)3 u3 = (300 lb # ft)11.5
2.5i -

2
2.5j2

	  = 5180i - 240j6  lb # ft

	  (Mc)R = �Mc;

	  (Mc)R = {-20i - 40j + 100k} lb # ft � Ans.

F4–13.	  Mx = i # (rOB *  F) = 3 1 0 0

0.3 0.4 -0.2

300 -200 150

3
	  = 20 N # m � Ans.

F4–14.	  uOA =
rA

rA
=

50.3i + 0.4j6  m2(0.3 m)2 + (0.4 m)2
     = 0.6 i + 0.8 j

	 MOA = uOA
# (rAB * F) = 3 0.6 0.8 0

0 0 -0.2

300 -200 150

3
	  = -72 N # m � Ans.

	 ` MOA ` = 72 N # m

F4–15.	 �Scalar Analysis
	 The magnitudes of the force components are

	 Fx = � 200 cos 120� � =  100 N

	 Fy = 200 cos 60� = 100 N

	 Fz = 200 cos 45� = 141.42 N

	  Mx = -Fy1z2 + Fz1y2
	  = - 1100 N2 10.25 m2 + 1141.42 N2 10.3 m2
	  = 17.4 N # m� Ans.

	 Vector Analysis

	 Mx = 3 1 0 0

0 0.3 0.25

-100 100 141.42

3 = 17.4 N # m� Ans.

F4–16.	  My = j # (rA * F) = 3 0 1 0

-3 -4 2

30 -20 50

3
	  = 210 N # m � Ans.

F4–17.	  uAB =
rAB

rAB
=

5-4i + 3j6ft2(-4 ft)2 + (3 ft)2
= -0.8i + 0.6j

	  MAB = uAB
# (rAC * F)

	  = 3 -0.8 0.6 0

0 0 2

50 -40 20

3  = -4 lb # ft

	  MAB = MABuAB = 53.2i - 2.4j6  lb # ft� Ans.

F4–18.	 Scalar Analysis

	 The magnitudes of the force components are
	 Fx = 13

52 34
515002 4 = 240 N

	 Fy =
4
5 34

515002 4 = 320 N
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F4–28.	  +S (FR)x = �Fx;

	  (FR)x = 15013
52 + 50 - 10014

52 = 60 lb S

	  + c(FR)y = �Fy;

	  (FR)y = -15014
52 - 10013

52
	  = -180 lb = 180 lb T

	  FR = 2602 + 1802 = 189.74 lb = 190 lb� Ans.

	  u = tan-11180
60 2 = 71.6� c� Ans.

	  a+ (MR)A = �MA;

	  (MR)A = 10014
52(1) - 10013

52(6) - 15014
52(3)

	 = -640 = 640 lb # ft b� Ans.

F4–29.	  FR = �F;

	  FR = F1 + F2

	  = (-300i + 150j + 200k) + (-450k)

	  = 5-300i + 150j - 250k6  N � Ans.

	  rOA = (2 - 0)j = 52j6  m

	  rOB = (-1.5-  0)i + (2 - 0)j + (1 - 0)k

	  = 5-1.5i + 2j + 1k6  m

	  (MR)O = �M;

	  (MR)O = rOB * F1 + rOA * F2

	  = 3 i j k
-1.5 2 1

-300 150 200

3 + 3 i j k
0 2 0

0 0 -450

3
	 = 5-650i + 375k6N # m� Ans.

F4–30.	  F1 = 5-100j6  N 	

	  F2 = (200 N)J 5-0.4i - 0.3k6  m2(-0.4 m)2 + (-0.3 m)2
R

	  = 5-160i - 120k6  N

	  Mc = 5-75i6  N # m

	  FR = {-160i - 100j - 120k} N �Ans.

	  (MR)O = (0.3k) *  (-100j)

	  + 3 i j k
0 0.5 0.3

-160 0 -120

3 + (-75i)

	  = {-105i - 48j + 80k} N # m� Ans.

F4–31.	  + TFR = �Fy; FR = 500 + 250 + 500

	  = 1250 lb � Ans.

		  c+FRx = �MO;

	  1250(x) = 500(3) + 250(6) + 500(9)

	  x = 6 ft � Ans.

F4–24.	  FB = 14
52(450 N)j - 13

52(450 N)k

	  = 5360j - 270k6  N

	  Mc = rAB * FB = 3 i j k
0.4 0 0

0 360 -270

3
	  = {108j + 144k} N # m � Ans.
	 Also,

	  Mc = (rA * FA) + (rB * FB)

	  = 3 i j k
0 0 0.3

0 -360 270

3 + 3 i j k
0.4 0 0.3

0 360 -270

3
	  = {108j + 144k} N # m � Ans.

F4–25.	  +d FRx = �Fx; FRx = 200 -
3
5 (100) = 140 lb

	  + TFRy = �Fy; FRy = 150 -
4
5 (100) = 70 lb

	  FR = 21402 + 702 = 157 lb � Ans.

	  u = tan-11 70
1402 = 26.6� d� Ans.

	  c+MAR
= �MA;

	  MAR
=

3
5(100)(4) -

4
5 (100)(6) + 150(3)

	  MRA
= 210 lb # ft � Ans.

F4–26.	  +S FRx = �Fx;    FRx =
4
5 (50) = 40 N

	  + TFRy = �Fy;    FRy = 40 + 30 +
3
5 (50)

	  = 100 N

	  FR = 2(40)2 + (100)2 = 108 N � Ans.

	  u = tan-11100
40 2 = 68.2� c� Ans.

	  c+MAR
= �MA;

	  MAR
= 30(3) +

3
5 (50)(6) + 200

	  = 470 N # m � Ans.

F4–27.	 S
+  (FR)x = �Fx;  

	  (FR)x = 900 sin 30� = 450 N S

	  + c(FR)y = �Fy;  

	  (FR)y = -900 cos 30� - 300

	  = -1079.42 N = 1079.42 N T

	  FR = 24502 + 1079.422

	  = 1169.47 N = 1.17 kN � Ans.

	  u = tan-111079.42
450 2 = 67.4� c� Ans.

		   a+ (MR)A = �MA;  

	  (MR)A = 300 - 900 cos30� (0.75) - 300(2.25)

	  = -959.57 N # m

	  = 960 N # m b � Ans.
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F4–32.	  S+ (FR)x = �Fx;

	  (FR)x = 10013
52+  50 sin 30� = 85 lb S

	  + c(FR)y = �Fy;

	  (FR)y = 200 + 50 cos 30� - 10014
52

	  = 163.30 lbc

	  FR = 2852 + 163.302 = 184 lb

	  u = tan-11163.30
85 2 = 62.5� a� Ans.

	  a+ (MR)A = �MA;

	  163.30(d) = 200(3) - 10014
52(6) + 50 cos 30�(9)

	  d = 3.12 ft � Ans.

F4–33.	  S+ (FR)x = �Fx;

	  (FR)x = 1514
52 = 12 kN S

	  + c(FR)y = �Fy;

	  (FR)y = -20 + 1513
52 = -11 kN = 11 kNT

	  FR = 2122 + 112 = 16.3 kN � Ans.

	  u = tan-1111
122 = 42.5� c� Ans.

		  a+ (MR)A = �MA;

	  -11(d) = -20(2) - 1514
52(2) + 1513

52(6)

	  d = 0.909 m� Ans.

F4–34.	  +S(FR)x = �Fx;

	  (FR)x = 13
52 5 kN - 8 kN

	  = -5 kN = 5 kN d

	  + c(FR)y = �Fy;

	  (FR)y = -6 kN - 14
52 5 kN

	  = -10 kN = 10 kNT

	  FR = 252 + 102 = 11.2 kN� Ans.

	  u = tan-1110 kN
5 kN 2 = 63.4� d� Ans.

		  a+ (MR)A = �MA;

	  5 kN(d) = 8 kN(3 m) - 6 kN(0.5 m)

	  - 314
525 kN4(2 m)

	  - 313
525 kN4(4 m)

	  d = 0.2 m� Ans.

F4–35.	  + TFR = �Fz; FR = 400 + 500 - 100

	  = 800 N  � Ans.

	  MRx = �Mx; -800y = -400(4) - 500(4)

	  y = 4.50 m� Ans.

	  MRy = �My; 800x = 500(4) - 100(3)

	  x = 2.125 m� Ans.

F4–36.	  + TFR = �Fz;

	  FR = 200 + 200 + 100 + 100

	  = 600 N � Ans.

		  a+MRx = �Mx;

	  -600y = 200(1) + 200(1) + 100(3) - 100(3)

	  y = -0.667 m� Ans.

		  c+MRy = �My;

	  600x = 100(3) + 100(3) + 200(2) - 200(3)

	  x = 0.667 m� Ans.

F4–37.	  + cFR = �Fy;

	  -FR = -6(1.5) - 9(3) - 3(1.5)

	  FR = 40.5 kNT � Ans.

		  a+ (MR)A = �MA;

	  -40.5(d) = 6(1.5)(0.75)

	  -  9(3)(1.5) - 3(1.5)(3.75)

	  d = 1.25 m� Ans.

F4–38.	  FR =
1
2 (6)(150) + 8(150) = 1650 lb � Ans.

	  c+MAR
= �MA;

	  1650d = 31
2 (6)(150)4(4) + [8(150)](10)

	  d = 8.36 ft� Ans.

F4–39.	  + cFR = �Fy;

	  -FR = -  12 (6)(3) -
1
2 (6)(6)

	  FR = 27 kNT � Ans.

		  a+ (MR)A = �MA;

	  -27(d) =
1
2(6)(3)(1) -

1
2(6)(6)(2)

	  d = 1 m � Ans.

F4–40.	  + TFR = �Fy;

	  FR =
1
2(50)(6) + 150(6) + 500

	  = 1550 lb � Ans.

	  c+MAR
= �MA;

	  1550d = 31
2(50)(6)4(4) + [150(6)](3) + 500(9)

	  d = 5.03 ft � Ans.

F4–41.	  + cFR = �Fy;

	  -FR = -  12(3)(4.5) - 3(6)

	  FR = 24.75 kNT � Ans.

		  a+ (MR)A = �MA;

	  -24.75(d) = -  12(3)(4.5)(1.5) - 3(6)(3)

	  d = 2.59 m � Ans.
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F5–5.	 a+ �MA = 0;

	 NC(0.7 m) - [25(9.81) N] (0.5 m) cos 30� = 0

	 NC = 151.71 N = 152 N� Ans.

	 +
S�Fx = 0;

	 TAB cos 15� - (151.71 N) cos 60� = 0

	 TAB = 78.53 N = 78.5 N� Ans.

	  + c �Fy = 0;

	 FA + (78.53 N) sin 15�

	 + (151.71 N) sin 60� - 25(9.81) N = 0

	 FA = 93.5 N� Ans.

F5–6.	 +
S�Fx = 0;

	 NC sin 30� - (250 N) sin 60� = 0

	  NC = 433.0 N = 433 N� Ans.

		 a+ �MB = 0;

	 -NA sin 30�(0.15 m) - 433.0 N(0.2 m)

	 + [(250 N) cos 30�](0.6 m) = 0

	 NA = 577.4 N = 577 N� Ans.

	 + c �Fy = 0;

	 NB -  577.4 N + (433.0 N)cos 30�

	 - (250 N) cos 60� = 0

	 NB = 327 N� Ans.

F5–7.	  �Fz = 0;

	 TA + TB + TC - 200 - 500 = 0

	  �Mx = 0;

	 TA(3) + TC(3) - 500(1.5) - 200(3) = 0

	  �My = 0;

	 -TB(4) - TC(4) + 500(2) + 200(2) = 0

	  TA = 350 lb, TB = 250 lb, TC = 100 lb� Ans.

F5–8.	 �My = 0;

	 600 N(0.2 m) + 900 N(0.6 m) - FA(1 m) = 0

	 FA = 660 N� Ans.

	 �Mx = 0;

	 Dz(0.8 m) - 600 N(0.5 m) - 900 N(0.1 m) = 0

	 Dz = 487.5 N� Ans.

	 �Fx = 0;	 Dx = 0� Ans.

	 �Fy = 0;	 Dy = 0� Ans.

	 �Fz = 0;

	 TBC + 660 N + 487.5 N - 900 N - 600 N = 0

	 TBC = 352.5 N� Ans.

F4–42.	  FR = Lw(x) dx = L
4

0
2.5x3 dx = 160 N

	  c+MAR
= �MA;

	  x =
Lxw(x) dx

Lw(x) dx
=

L
4

0
2.5x4 dx

160
= 3.20 m�Ans.

Chapter 5
F5–1.	  +S�Fx = 0; -Ax + 50013

52 = 0

	  Ax = 300 lb � Ans.

		  a+ �MA = 0; By(10) - 50014
52(5) - 600 = 0

	  By = 260 lb � Ans.

	  + c �Fy = 0;   Ay + 260 - 50014
52 = 0

	  Ay = 140 lb � Ans.

F5–2.	 a+ �MA = 0;

	 FCD sin 45�(1.5 m) - 4 kN(3 m) = 0

	 FCD = 11.31 kN = 11.3 kN� Ans.

	  +S�Fx = 0; Ax + (11.31 kN) cos 45� = 0

	  Ax = -8 kN = 8 kN d � Ans.

	  + c �Fy = 0;

	  Ay + (11.31 kN) sin 45� - 4 kN = 0

	  Ay = -4 kN = 4 kN T � Ans.

F5–3.	 a+ �MA = 0;

	 NB[6 m + (6 m) cos 45�]

	 -  10 kN[2 m + (6 m) cos 45�]

	 -  5 kN(4 m) = 0

	 NB = 8.047 kN = 8.05 kN� Ans.
	  +

S�Fx = 0;

	  (5 kN) cos 45� - Ax = 0

	  Ax = 3.54 kN� Ans.
	  + c �Fy = 0;

	  Ay + 8.047 kN - (5 kN) sin 45� - 10 kN = 0

	 Ay = 5.49 kN� Ans.

F5–4.	  +S�Fx = 0;  -Ax + 400 cos 30� = 0

	  Ax = 346 N� Ans.
	 + c �Fy = 0;

	  Ay - 200 - 200 - 200 - 400 sin 30� = 0

	 Ay = 800 N � Ans.
	  a+ �MA = 0;

	  MA - 200(2.5) - 200(3.5) - 200(4.5)

	 - 400 sin 30�(4.5) - 400 cos 30�(3 sin 60�) = 0

	  MA = 3.90 kN # m � Ans.
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F5–12.	  �Fx = 0;   Ax = 0 � Ans.

	  �Fy = 0;   Ay = 0 � Ans.

	  �Fz = 0;   Az + FBC - 80 = 0 	

	  �Mx = 0; (MA)x + 6FBC - 80(6) = 0 	

	  �My = 0; 3FBC - 80(1.5) = 0   FBC = 40 lb� Ans.

	  �Mz = 0; (MA)z = 0 � Ans.

	  Az = 40 lb  (MA)x = 240 lb # ft � Ans.

Chapter 6
F6–1.	 Joint A.

	  + c �Fy = 0;  225 lb - FAD sin 45� = 0

	  FAD = 318.20 lb = 318 lb (C)� Ans.

	  +
S�Fx = 0;  FAB - (318.20 lb) cos 45� = 0

	  FAB = 225 lb (T)� Ans.

	 Joint B.

	 +
S�Fx = 0;  FBC - 225 lb = 0

	 FBC = 225 lb (T)� Ans.

	 + c �Fy = 0;  FBD = 0      � Ans.

	 Joint D.

	 +
S�Fx = 0;

	 FCD cos 45� + (318.20 lb) cos 45� - 450 lb = 0

	 FCD = 318.20 lb = 318 lb (T)� Ans.

F6–2.	 Joint D.

	  + c �Fy = 0; 3
5 FCD - 300 = 0;

	  FCD = 500 lb (T)� Ans.

	  S+ �Fx = 0; -FAD +
4
5 (500) = 0

	  FAD = 400 lb (C) 	 Ans.

	 FBC = 500 lb (T), FAC = FAB = 0� Ans.

F6–3.	 Dx = 200 lb, Dy = 650 lb, By = 150 lb

	 Joint B.

 S+ �Fx = 0; FBA = 0� Ans.

 + c �Fy = 0; 150 - FBC = 0; FBC = 150 lb (C)	 Ans.

Joint A.

 S+ �Fx = 0; FAC14
52 = 0; FAC = 0	 Ans.

 + c �Fy = 0; FAD - 800 = 0; FAD = 800 lb (T)� Ans.

	Joint C.

 S+ �Fx = 0; -FCD + 200 = 0; FCD = 200 lb (T)	Ans.

F5–9.	 �Fy = 0;   400 N + Cy = 0;

	 Cy = -400 N� Ans.

	 �My = 0;   -Cx (0.4 m) - 600 N (0.6 m) = 0

	  Cx = -900 N � Ans.

	  �Mx = 0;   Bz (0.6 m) + 600 N (1.2 m)

	  + (-400 N)(0.4 m) = 0

	 Bz = -933.3 N� Ans.

	  �Mz = 0;

	  -Bx (0.6 m) - (-900 N)(1.2 m)

	 + (-400 N)(0.6 m) = 0

	  Bx = 1400 N� Ans.

	 �Fx = 0;  1400 N + (-900 N) + Ax = 0

	 Ax = -500 N� Ans.

	 �Fz =  0;   Az - 933.3 N + 600 N = 0

	  Az = 333.3 N� Ans.

F5–10.	 �Fx = 0;	  Bx = 0� Ans.

	 �Mz = 0; 

	 Cy(0.4 m + 0.6 m) = 0   Cy = 0� Ans.

	 �Fy = 0;   Ay + 0 = 0   Ay = 0� Ans.

	 �Mx = 0; Cz(0.6 m + 0.6 m) + Bz(0.6 m)

	 - 450 N(0.6 m + 0.6 m) = 0

	 1.2Cz + 0.6Bz - 540 = 0

	 �My = 0; -Cz(0.6 m + 0.4 m)

	 - Bz(0.6 m) + 450 N(0.6 m) = 0

	 -Cz - 0.6Bz + 270 = 0

	 Cz = 1350 N Bz = -1800 N� Ans.

	 �Fz = 0;

	 Az + 1350 N + (-1800 N) -  450 N = 0

	 Az = 900 N� Ans.

F5–11.	  �Fy = 0; Ay = 0 � Ans.

	  �Mx = 0; -9(3) + FCE(3) = 0

	  FCE = 9 kN � Ans.

	  �Mz = 0; FCF(3) - 6(3) = 0

	  FCF = 6 kN � Ans.

	  �My = 0; 9(4) - Az (4) - 6(1.5) = 0

	  Az = 6.75 kN � Ans.

	  �Fx = 0; Ax + 6 - 6 = 0 Ax = 0 � Ans.

	  �Fz = 0; FDB + 9 - 9 + 6.75 = 0

	  FDB = -6.75 kN � Ans.
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F6–8.	 a+ �MA = 0;	 Gy(12 m) - 20 kN(2 m) 

� - 30 kN(4 m) - 40 kN(6 m) = 0

	 Gy = 33.33 kN

	 + c �Fy = 0; FKC + 33.33 kN - 40 kN = 0

	  FKC = 6.67 kN (C)� Ans.

		 a+  �MK = 0;

	 33.33 kN(8 m) - 40 kN(2 m) - FCD(3 m) = 0

	 FCD = 62.22 kN = 62.2 kN (T)� Ans.

	 +
S�Fx = 0;  FLK - 62.22 kN = 0

	  FLK = 62.2 kN (C)� Ans.

F6–9.	 From the geometry of the truss, 

	 f = tan-1(3 m>2 m) = 56.31�.

	 a+ �MK = 0; 

	 33.33 kN(8 m) - 40 kN(2 m) - FCD(3 m) = 0

	  FCD = 62.2 kN (T)� Ans.

	  a+ �MD = 0; 33.33 kN(6 m) - FKJ(3 m) = 0

	  FKJ = 66.7 kN (C)� Ans.

	 + c �Fy = 0;

	 33.33 kN - 40 kN + FKD sin 56.31� = 0

	  FKD = 8.01 kN (T)� Ans.

F6–10.	 From the geometry of the truss,

	 tan f =
(9 ft) tan 30�

3 ft = 1.732 f = 60�

		 a+ �MC = 0; 

	 FEF sin 30�(6 ft) + 300 lb(6 ft) = 0

	  FEF = -600 lb = 600 lb (C)� Ans.

		 a+ �MD = 0; 

	 300 lb(6 ft) - FCF sin 60� (6 ft) = 0

	  FCF = 346.41 lb = 346 lb (T)� Ans.

		 a+ �MF = 0;

	 300 lb(9 ft) - 300 lb(3 ft) - FBC(9 ft)tan 30� = 0

	 FBC = 346.41 lb = 346 lb (T)� Ans.

F6–11.	 From the geometry of the truss, 
	 u = tan-1 (1 m>2 m) = 26.57� 
	 f = tan-1 (3 m>2 m) = 56.31�.

	� The location of O can be found using similar 
triangles.

	  
1 m

2 m
=

2 m

2 m + x

	  4 m = 2 m + x

	  x = 2 m

F6–4.	 Joint C.

	 + c �Fy = 0;  2F cos 30� - P = 0

	 FAC = FBC = F =
P

2 cos 30� = 0.5774P (C)

	 Joint B.

	 +
S�Fx = 0; 0.5774P cos 60� - FAB = 0

	  FAB = 0.2887P (T)

	  FAB = 0.2887P = 2 kN

	  P = 6.928 kN

	  FAC = FBC = 0.5774P = 1.5 kN

	  P = 2.598 kN

	 The smaller value of P is chosen,

	 P = 2.598 kN = 2.60 kN� Ans.

F6–5.	 FCB = 0 � Ans.

	 FCD = 0� Ans.

	 FAE = 0 � Ans.

	 FDE = 0� Ans.

F6–6.	 Joint C.

	  + c �Fy = 0;  259.81 lb - FCD sin 30� = 0

	  FCD = 519.62 lb = 520 lb (C)� Ans.

	 +
S�Fx = 0; (519.62 lb) cos 30� - FBC = 0

	 FBC = 450 lb (T)� Ans.

	 Joint D.

	  + Q�Fy� = 0; FBD cos 30� = 0 FBD = 0� Ans.

	  + R�Fx� = 0; FDE  -  519.62 lb = 0

	  FDE = 519.62 lb = 520 lb (C)� Ans.

	 Joint B.

	 c �Fy = 0; FBE sin f = 0 FBE = 0� Ans.

	 +
S�Fx = 0;  450 lb - FAB = 0

	 FAB = 450 lb (T) � Ans.

	 Joint A.

	  + c �Fy = 0;   340.19 lb - FAE = 0

	  FAE = 340 lb (C)� Ans.

F6–7.	  + c �Fy = 0; FCF sin 45� - 600 - 800 = 0

	  FCF = 1980 lb (T) �Ans.

		  a+ �MC = 0; FFE(4) - 800(4) = 0

	  FFE = 800 lb (T) �Ans.

		  a+ �MF = 0; FBC(4) - 600(4) - 800(8) = 0

	  FBC = 2200 lb (C) �Ans.



630 	 Part ial Solut ions And Answers

F6–16.	 	a+ �MC = 0;

	  400(2) + 800 - FBA 1 3110
2(1)

� - FBA 1 1110
2(3) = 0

	 FBA = 843.27 N

	  S
+ �Fx = 0; Cx - 843.27 1 3110

2 = 0

	  Cx = 800 N� Ans.

	  + c �Fy = 0; Cy + 843.271 1110
2-  400 = 0

	  Cy = 133 N� Ans.

F6–17.	 Plate A:
	 + c �Fy = 0; 2T + NAB - 100 = 0

	 Plate B:
	 + c �Fy = 0; 2T - NAB - 30 = 0

	 T = 32.5 lb, NAB = 35 lb� Ans.

F6–18.	 Pulley C:
	 + c �Fy = 0; T - 2P = 0; T = 2P

	 Beam:
	  + c �Fy = 0; 2P + P - 6 = 0

	  P = 2 kN � Ans.

	  a+ �MA = 0; 2(1) - 6(x) = 0

	  x = 0.333 m � Ans.

F6–19.	 Member CD

	 a+ �MD = 0;  60011.52 - NC132 = 0

	 NC = 300 N

	 Member ABC

	 a+ �MA = 0; -800 + By122 - 1300  sin 45�2 4 = 0

	 By = 824.26 = 824 N� Ans.

	 +
S�Fx = 0; Ax - 300 cos 45� = 0;

	 Ax = 212 N� Ans.

	 + c �Fy = 0; -Ay + 824.26 - 300  sin 45� = 0;

	 Ay = 612 N� Ans.

F6–20.	 AB is a two-force member.
	 Member BC

	 a+ �Mc = 0;  15132 + 10162 - FBC14
52192 = 0

	 FBC = 14.58 kN

	 +
S�Fx = 0; 114.58213

52 - Cx = 0;

	 Cx = 8.75 kN

	 + c �Fy = 0; 114.58214
52 - 10 - 15 + Cy = 0;

	 Cy = 13.3 kN

	 Member CD

 +S�Fx = 0;  8.75 - Dx = 0;  Dx = 8.75 kN � Ans.

 + c �Fy = 0;  -13.3 + Dy = 0;  Dy = 13.3 kN � Ans.

 a+ �MD = 0;  -8.75142 + MD = 0;  MD = 35 kN # m� Ans.

		 a+ �MG = 0;

	 26.25 kN(4 m) - 15 kN(2 m) - FCD(3 m) = 0

	 FCD = 25 kN (T)� Ans.

	 a+ �MD = 0;

	 26.25 kN(2 m) - FGF cos 26.57�(2 m) = 0

	 FGF = 29.3 kN (C)� Ans.

		 a+ �MO = 0;  15 kN(4 m) - 26.25 kN(2 m)

�  - FGD sin 56.31�(4 m) = 0

	 FGD = 2.253 kN = 2.25 kN (T)� Ans.

F6–12.	  a+ �MH = 0;

	  FDC(12 ft) + 1200 lb(9 ft) - 1600 lb(21 ft) = 0

	  FDC = 1900 lb (C)� Ans.

		  a+ �MD = 0;

	  1200 lb(21 ft) - 1600 lb(9 ft) - FHI 

(12 ft) = 0

	  FHI = 900 lb (C)� Ans.

		  a+ �MC = 0;  FJI cos 45�(12 ft) + 1200 lb(21 ft)

� - 900 lb(12 ft) - 1600 lb(9 ft) = 0

	  FJI = 0� Ans.

F6–13.	  + c �Fy = 0; 3P - 60 = 0

	 P = 20 lb� Ans.

F6–14.	 a+ �MC = 0;

	 - 14
52(FAB)(9) + 400(6) + 500(3) = 0

	 FAB = 541.67 lb

	 S
+ �Fx = 0; -Cx +

3
5 (541.67) = 0

	  Cx = 325 lb� Ans.

	  + c �Fy = 0; Cy +
4
5 (541.67) - 400 - 500 = 0

	 Cy = 467 lb� Ans.

F6–15.	  a+ �MA = 0; 100 N(250 mm) - NB(50 mm) = 0

	 NB = 500 N� Ans.

	 S
+ �Fx = 0; (500 N) sin 45� - Ax = 0

	 Ax = 353.55 N

	  + c �Fy = 0; Ay - 100 N - (500 N) cos 45� = 0

	 Ay = 453.55 N

	  FA = 2(353.55 N)2 + (453.55 N)2

	  = 575 N � Ans.
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F6–24.	 AC and DC are two-force members.

	 Member BC

	 a+ �MC = 0; 3  12 (3)(8)4 112 - By132 = 0

	 By = 4 kN�
	 Member BA

	 a+ �MB = 0; 6122 - Ax142 = 0

	 Ax = 3 kN� Ans.

	 + c �Fy = 0; -4 kN + Ay = 0; Ay = 4 kN�Ans.

	 Entire Frame
� a+ �MA = 0; -6122 - 312132 182 4 122 + Dy132 = 0

	 Dy = 12 kN� Ans.

	 Since DC is a two-force member 1�MC = 02 then
	 Dx = 0� Ans.

Chapter 7
F7–1.	  a+ �MA = 0; By(6) - 10(1.5) - 15(4.5) = 0

	  By = 13.75 kN

	  S
+ �Fx = 0; NC = 0� Ans.

	  + c �Fy = 0; VC + 13.75 - 15 = 0

	 VC = 1.25 kN� Ans.

	  a+ �MC = 0; 13.75(3) - 15(1.5) - MC = 0

	 MC = 18.75 kN # m� Ans.

F7–2.	  a+ �MB = 0; 30 - 10(1.5) - Ay(3) = 0

	 Ay = 5 kN

	 S
+ �Fx = 0; NC = 0� Ans.

	  + c �Fy = 0; 5 - VC = 0

	  VC = 5 kN� Ans.

	  a+ �MC = 0; MC + 30 - 5(1.5) = 0

	  MC = -22.5 kN # m� Ans.

F7–3.	 S
+ �Fx = 0; Bx = 0

	  a+ �MA = 0; 3(6)(3) - By(9) = 0

	  By = 6 kip

	 S
+ �Fx = 0; NC = 0� Ans.

	  a+ c �Fy = 0; VC - 6 = 0

	  VC = 6 kip� Ans.

	  a+ �MC = 0; -MC - 6(4.5) = 0

	  MC = -27 kip # ft� Ans.

F7–4.	  a+ �MA = 0; By(6) - 12(1.5) - 9(3)(4.5) = 0

	  By = 23.25 kN

	 S
+ �Fx = 0; NC = 0� Ans.

	  + c �Fy = 0; VC + 23.25 - 9(1.5) = 0

	  VC = -9.75 kN� Ans.

	 a+ �MC = 0;

	 23.25(1.5) - 9(1.5)(0.75) - MC = 0

	 MC = 24.75 kN # m� Ans.

F6–21.	 Entire frame

a+ �MA = 0; -600132 - 3400132 
4 11.52 + Cy132 = 0

	 Cy = 1200 N� Ans.

	 + c �Fy = 0; Ay - 400132 + 1200 = 0

	 Ay = 0� Ans.

	 +
S�Fx = 0; 600 - Ax - Cx = 0

	 Member AB

	 a+ �MB = 0; 40011.52 10.752 - Ax132 = 0

	 Ax = 150 N� Ans.

	 Cx = 450 N� Ans.

	� These same results can be obtained by considering 
members AB and BC.

F6–22.	 Entire frame

	 a+ �ME = 0; 250162 - Ay162 = 0

	 Ay = 250 N

	 +
S�Fx = 0; Ex = 0

	 + c �Fy = 0; 250 - 250 + Ey = 0; Ey = 0

	 Member BD

	 a+ �MD = 0; 25014.52 - By132 = 0;

	 By = 375 N

	 Member ABC

� a+ �MC = 0; -250132 + 37511.52 + Bx122 = 0

	 Bx = 93.75 N

	 +
S�Fx = 0; Cx - Bx = 0; Cx = 93.75 N� Ans.

	 + c �Fy = 0; 250 - 375 + Cy = 0; Cy = 125 N� Ans.

F6–23.	 AD, CB are two-force members.

	 Member AB

	 a+ �MA = 0; - 312132 142 411.52 + By132 = 0

	 By = 3 kN

	� Since BC is a two-force member Cy = By = 3 kN 
and Cx = 0 1�MB = 02.

	 Member EDC

	 a+ �ME = 0; FDA14
52 11.52 - 5132 - 3132 = 0

	 FDA = 20 kN

	 +
S�Fx = 0; Ex - 2013

52 = 0; Ex = 12 kN� Ans.

	 + c �Fy = 0; -Ey + 2014
52 - 5 - 3 = 0;

	 Ey = 8 kN� Ans.
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F7–9.	 + c �Fy = 0; - V -
1
2(2x)(x) = 0

	 V = - (x2) kN
	 a+ �MO = 0; M +

1
2(2x)(x)(x

3) = 0
	  M = - (1

3 x
3) kN # m

M (kN�m)

x (m)

�9 �9

V (kN)

x (m)
3 3

Fig. F7–9 

F7–10.	 + c �Fy = 0; - V - 2x = 0
	 V = -2 kN
	 a+ �MO = 0; M + 2x = 0
		   M = (-2x) kN # m

�2

V (kN)

x (m)

�12

M (kN�m)

x (m)
6 6

Fig. F7–10 

F7–11.	 Region 3 m … x 6 3 m
	 + c �Fy = 0; - V - 5 = 0   V = -5 kN
	 a+ �MO = 0; M + 5x = 0
		   M = (-5x) kN # m
	 Region 0 6 x … 6 m
	 + c �Fy = 0; V + 5 = 0   V = -5 kN
	 a+ �MO = 0; 5(6 - x ) - M = 0
		   M = 15(6 - x)2 kN # m

�5

V (kN)

x (m)

15

3

�15

M (kN�m)

x (m)
6 6

Fig. F7–11 

F7–5.	  a+ �MA = 0; By(6) -
1
2 (9)(6)(3) = 0

	  By = 13.5 kN

	 S
+ �Fx = 0; NC = 0� Ans.

	  + c �Fy = 0; VC + 13.5 -
1
2 (9)(3) = 0

	  VC = 0� Ans.

	  a+ �MC = 0; 13.5(3) -
1
2 (9)(3)(1) - MC = 0

	  MC = 27 kN # m� Ans.

F7–6.	 a+ �MA = 0;

	 By(6) -
1
2 (6)(3)(2) - 6(3)(4.5) = 0

	 By = 16.5 kN

	 +
S�Fx = 0; NC = 0� Ans.

	  + c �Fy = 0; VC + 16.5 - 6(3) = 0

	  VC = 1.50 kN� Ans.

	  a+ �MC = 0; 16.5(3) - 6(3)(1.5) - MC = 0

	  MC = 22.5 kN # m� Ans.

F7–7.	 + c �Fy = 0; 6 - V = 0 V = 6 kN
	 a+ �MO = 0; M + 18 - 6x = 0
	  M = (6x - 18) kN # m

�3

6

V (kN)

x (m)

�18

M (kN�m)

x (m)
3

Fig. F7–7 

F7–8.	 + c �Fy = 0; - V - 2x = 0
	 V = (-2x) kN
	 a+ �MO = 0; M + 2x1x2 2 - 15 = 0
	  M = (15 - x2) kN # m

3

6
15

M (kN�m)

x (m)

�6

V (kN)

x (m)
3

Fig. F7–8 
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F7–16.

�9

V (kN)

x (m)
64.5

1.5

9

�6.75

M (kN�m)

x (m)
1.5 4.5 6

Fig. F7–16 

F7–17.
V (kN)

x (m)

�9

9
3 6

M (kN�m)

x (m)

9

3 6

Fig. F7–17 

F7–18.
V (kN)

x (m)

�13.5

13.5
3 6

M (kN�m)

x (m)

27

3 6

Fig. F7–18 

Chapter 8

F8–1.	 a)	  + c �Fy = 0; N - 50(9.81) - 20013
52 = 0

		   N = 610.5 N

		   +S�Fx = 0; F - 20014
52 = 0

		   F = 160 N

		  F 6 Fmax = ms N = 0.3(610.5) = 183.15 N, 

		  therefore F = 160 N� Ans.

	 b)	  + c �Fy = 0; N - 50(9.81) - 40013
52 = 0

		   N = 730.5 N

		   +S�Fx = 0; F - 40014
52 = 0

		   F = 320 N

		  F 7 Fmax = ms N = 0.3(730.5) = 219.15 N

		  Block slips

		  F = ms N = 0.2(730.5) = 146 N� Ans.

F7–12.	 Region 0 … x 6 3 m
	 + c �Fy = 0; V = 0
	 a+ �MO = 0; M - 12 = 0
		   M = 12 kN # m
	 Region 3 m 6 x … 6 m
	 + c �Fy = 0; V + 4 = 0      V = -4 kN
	 a+ �MO = 0; 4(6 - x ) - M = 0
		   M = 14(6 - x)2 kN # m

�4

V (kN)

x (m)

12

M (kN�m)

x (m)
3 6

3 6

Fig. F7–12 

F7–13.

1 2 3

�10
�4

�18

V (kN)

x (m)
1 2 3

�4

�14

�32

M (kN�m)

x (m)

Fig. F7–13 

F7–14.

3

18

V (kN)

x (m)
31.5

�27
�9

M (kN�m)

x (m)
1.5

6

Fig. F7–14 

F7–15.

�10

V (kN)

x (m)
2 4

6

8 16
20

M (kN�m)

x (m)
2 4 6

2

Fig. F7–15 
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F8–7.	 �A will not move. Assume B is about to slip on C 
and A, and C is stationary.

	 +
S�Fx = 0; P - 0.31502 - 0.41752; P = 45 N

	� Assume C is about to slip and B does not slip on 
C, but is about to slip at A.

	 +
S�Fx = 0;  P - 0.31502 - 0.351902 = 0

	  P = 46.5 N 7 45 N

	  P = 45 N � Ans.

F8–8.	 �A is about to move down the plane and B moves 
upward.

	 Block A

	 + a�Fy = 0; N = W  cos u

	 + Q�Fx = 0; T + ms1W cos u2 - W  sin u = 0

	 T = W sin u - ms W cos u� (1)

	 Block B

	 + a�Fy = 0; N� = 2 W cos u

	 + Q�Fx = 0; 2T - msW cos u - ms12W  cos u2
� - W  sin u = 0
	 Using Eq.(1);

	 u =  tan -1 5ms� Ans.

F8–9.	 Assume B is about to slip on A, FB = 0.3 NB.

	 +
S�Fx = 0; P - 0.31102 19.812 = 0

P = 29.4 N

	 Assume B is about to tip on A, x = 0.

	 a+ �MO = 0; 1019.812 10.152 - P10.42 = 0

P = 36.8 N

	 Assume A is about to slip, FA = 0.1 NA.

	 +
S�Fx = 0 P - 0.13719.812 + 1019.812 

4 = 0

P = 16.7 N

	 Choose the smallest result. P = 16.7 N� Ans.

Chapter 9

F9–1.	 x =
LA

x� dA

LA
 dA

=

1

2 L
1 m

0
 y2/3 dy

L
1 m

0
y1/3dy

= 0.4 m� Ans.

	 y =
LA

 y� dA

LA
 dA

=
L

1 m

0
 y4/3 dy

L
1 m

0
y1/3dy

= 0.571 m� Ans.

F8–2.	 a+ �MB = 0;

	 NA(3) + 0.2NA(4) - 30(9.81)(2) = 0

	 NA = 154.89 N

	  +S�Fx = 0; P - 154.89 = 0

	  P = 154.89 N = 155 N� Ans.

F8–3.	 Crate A

	  + c �Fy = 0; NA - 50(9.81) = 0

	  NA = 490.5 N

	  S+ �Fx = 0; T - 0.25(490.5) = 0

	  T = 122.62 N

	 Crate B

	 + c �Fy = 0;   NB + P sin 30� - 50(9.81) = 0

	  NB = 490.5 - 0.5P

	 S
+ �Fx = 0;

	 P cos 30� - 0.25(490.5 - 0.5 P) - 122.62 = 0

	 P = 247 N� Ans.

F8–4.	 +
S�Fx = 0; NA - 0.3NB = 0

	 + c �Fy = 0;

	 NB + 0.3NA + P - 100(9.81) = 0

	 a+ �MO = 0;

	  P(0.6) - 0.3NB(0.9) - 0.3 NA(0.9) = 0

	 NA = 175.70 N   NB = 585.67 N

	 P = 343 N� Ans.

F8–5.	 If slipping occurs:

	 + c �Fy = 0; Nc - 250 lb = 0; Nc = 250 lb

	 S
+ �Fx = 0; P - 0.4(250) = 0; P = 100 lb

	 If tipping occurs:

	 a+ �MA = 0; -P(4.5) + 250(1.5) = 0

	 P = 83.3 lb � Ans.

F8–6.	
a+ �MA = 0; 490.510.62 - T cos 60�10.3  cos  60� + 0.62
	 - T sin 60� 10.3 sin 60�2 = 0

T = 490.5 N

�  +S�Fx = 0; 490.5 sin 60� - NA = 0; NA = 424.8 N

�  + c �Fy = 0; ms1424.82 + 490.5 cos 60� - 490.5 = 0

	 ms = 0.577� Ans.
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F9–8.	  y =
� y� A

�A
=

150[300(50)] + 325[50(300)]

300(50) + 50(300)

	  = 237.5 mm � Ans.

F9–9.	  y =
� y� A

�A
=

100[2(200)(50)] + 225[50(400)]

2(200)(50) + 50(400)

	  = 162.5 mm �Ans.

F9–10.	  x =
� x� A

�A
=

0.25[4(0.5)] + 1.75[0.5(2.5)]

4(0.5) + 0.5(2.5)

	  = 0.827 in. � Ans.

	  y =
� y� A

�A
=

2[4(0.5)] + 0.25[(0.5)(2.5)]

4(0.5) + (0.5)(2.5)

	  = 1.33 in. � Ans.

F9–11.	  x =
� x� V

�V
=

1[2(7)(6)] + 4[4(2)(3)]

2(7)(6) + 4(2)(3)

	  = 1.67 ft � Ans.

	  y =
� y� V

�V
=

3.5[2(7)(6)] + 1[4(2)(3)]

2(7)(6) + 4(2)(3)

	  = 2.94 ft � Ans.

	  z =
� z� V

�V
=

3[2(7)(6)] + 1.5[4(2)(3)]

2(7)(6) + 4(2)(3)

	  = 2.67 ft � Ans.

F9–12.	  x =
� x� V

�V

=

0.25[0.5(2.5)(1.8)] + 0.25J 1

2
(1.5)(1.8)(0.5) R + (1.0)J 1

2
(1.5)(1.8)(0.5) R

0.5(2.5)(1.8) +
1

2
 (1.5)(1.8)(0.5) +

1

2
(1.5)(1.8)(0.5)

	  = 0.391 m � Ans.

	  y =
� y� V

�V
=

5.00625

3.6
= 1.39 m� Ans.

	  z =
� z� V

�V
=

2.835

3.6
= 0.7875 m� Ans.

F9–13.	  A = 2p� r�L

	  = 2p30.75(1.5) + 1.5(2) + 0.752(1.5)2 + (2)24
	  = 37.7 m2 � Ans.

	  V = 2p� r�A

	  = 2p30.75(1.5)(2) + 0.511
22(1.5)(2)4

	  = 18.8 m3 � Ans.

F9–2.	  x =
LA

 x� dA

LA
 dA

=
L

1 m

0
 x(x3 dx)

L
1 m

0
 x3 dx

	  = 0.8 m � Ans.

	  y =
LA

 y� dA

LA
 dA

=
L

1 m

0

1

2
 x31x3 dx2

L
1 m

0
 x3 dx

	  = 0.286 m � Ans.

F9–3.	  y =
LA

 y� dA

 LA
 dA

=
L

2 m

0
 ya2a y1/222

b bdy

L
2 m

0
2a y1/222

bdy

	  = 1.2 m � Ans.

F9–4.	  x =
Lm

 x� dm 

Lm
dm

=
L

L

0
xJm0¢1 +

x2

L2 ≤dx R
L

L

0
m0¢1 +

x2

L2 ≤dx

	  =
9

16
 L � Ans.

F9–5.	  y =
LV

 y� dV

LV
 dV

=
L

1 m

0
 y¢p

4
 ydy≤

L
1 m

0
 
p

4
y dy

	  = 0.667 m � Ans.

F9–6.	  z =
LV

 z� dV

LV
 dV

=
L

2 ft

0
 z c 9p

64
 (4 - z)2 dz d

L
2 ft

0
 
9p

64
 (4 - z)2 dz

	  = 0.786 ft � Ans.

F9–7.	  x =
� x� L

 �L
=

150(300) + 300(600) + 300(400)

300 + 600 + 400

	  = 265 mm � Ans.

	  y =
� y� L

�L
=

0(300) + 300(600) + 600(400)

300 + 600 + 400

	  = 323 mm � Ans.

	  z =
� z� L

�L
=

0(300) + 0(600) + (-200)(400)

300 + 600 + 400

	  = -61.5 mm � Ans.
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Chapter 10
F10–1.

Ix = LA
 y2 dA = L

1 m

0
 y23 11 - y3/22dy4 = 0.111 m4 � Ans.

F10–2.

Ix = LA
 y2 dA = L

1 m

0
 y21y3/2 dy2 = 0.222 m4� Ans.

F10–3.

Iy = LA
 x2 dA = L

1 m

0
x21x2/32dx = 0.273 m4� Ans.

F10–4.

Iy = LA
 x2 dA = L

1 m

0
 x23(1 - x2/3) dx4 = 0.0606 m4� Ans.

F10–5.	  Ix = 3 1
12 (50)145032 + 04 + 3 1

12(300)15032 + 04
	  = 38311062 mm4 � Ans.

	  Iy = 3 1
12 (450)15032 + 04

	  + 23 1
12(50)115032 + (150)(50)(100)24

	  = 18311062 mm4   � Ans.

F10–6.	  Ix =
1
12 (360)120032 -

1
12 (300)114032

	  = 17111062 mm4 � Ans.

	  Iy =
1
12 (200)136032 -

1
12(140)130032

	  = 46311062 mm4 � Ans.

F10–7.	  Iy = 23 1
12(50)120032 + 04

	  + 3 1
12(300)15032 + 04

	  = 69.8 (106) mm4 � Ans.

F10–8.

	  y =
� y� A

�A
=

15(150)(30) + 105(30)(150)

150(30) + 30(150)
= 60 mm

	  Ix� = �(I + Ad2)

	  = 3 1
12 (150)(30)3 + (150)(30)(60 - 15)24

	  + 3 1
12(30)(150)3 + 30(150)(105 - 60)24

	  = 27.0 (106) mm4� Ans.

F9–14.	  A = 2p� r�L

�=  2p31.952(0.9)2 + (1.2)2 + 2.4(1.5) + 1.95(0.9) + 1.5(2.7)4
	  = 77.5 m2 � Ans.

	  V = 2p� r�A

	  = 2p31.811
22(0.9)(1.2) + 1.95(0.9)(1.5)4

	  = 22.6 m3 � Ans.

F9–15.	  A = 2p� r�L

�  = 2p37.5(15) + 15(18) + 22.52152 + 202 + 15(30)4
	  = 8765 in.2 � Ans.

	  V = 2p� r�A

	  = 2p37.5(15)(38) + 2011
22(15)(20)4

	  = 45 710 in.3 � Ans.

F9–16.	  A = 2p� r�L

	  = 2p32(1.5)
p 1p(1.5)

2 2 + 1.5(2) + 0.75(1.5)4
	  = 40.1 m2 � Ans.

	  V = 2p� r�A

	  = 2p34(1.5)
3p 1p11.522

4 2 + 0.75(1.5)(2)4
	  = 21.2 m3 � Ans.

F9–17.	  wb = rwghb = 1000(9.81)(6)(1)

	  = 58.86 kN>m
	  FR =

1
2 (58.76)(6) = 176.58 kN = 177 kN� Ans.

F9–18.	 wb = gw hb = 62.4 (4)(4) = 998.4 lb>ft
	 FR = 998.4(3) = 3.00 kip � Ans.

F9–19.	  wb = rwghBb = 1000(9.81)(2)(1.5)

	  = 29.43 kN>m
	  FR =

1
2 (29.43)12(1.5)2 + (2)22

	  = 36.8 kN � Ans.

F9–20.	  wA = rwghAb = 1000(9.81)(3)(2)

	  = 58.86 kN>m
	 wB = rwghBb = 1000(9.81)(5)(2)

	  = 98.1 kN>m
	  FR =

1
2 (58.86 + 98.1)(2) = 157 kN� Ans.

F9–21.	  wA = gwhA b = 62.4(6)(2) = 748.8 lb>ft
	  wB = gwhB b = 62.4(10)(2) = 1248 lb>ft
	  FR =

1
2 (748.8 + 1248)12(3)2 + (4)22

	  = 4.99 kip � Ans.
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	 611032(-0.9 sin u du)

	 -  3611032(cos u - 0.5)(-1.8 sin u du) = 0

	 sin u (64 800 cos u - 37 800)du = 0

	 sin u = 0   u = 0�� Ans.

64 800 cos u - 37 800 = 0 

	 u = 54.31� = 54.3�� Ans.

F11–5.	  yG = 2.5 sin u  dyG = 2.5 cos u du

	  xA = 5 cos u  dxC = -5 sin u du

	  dU = 0;            1-FspdxA2-WdyG = 0

	  (15 000 sin u cos u - 7500 sin u

	  - 1226.25 cos u)du = 0

	 u = 56.33� = 56.3�� Ans.

	 or u = 9.545� = 9.55�� Ans.

F11–6.	 Fsp = 15 000(0.6 - 0.6 cos u)

	  xC = 3[0.3 sin u]   dxC = 0.9 cos u du

	  yB = 2[0.3 cos u]   dyB = -0.6 sin u du

	 dU = 0;  PdxC + FspdyB = 0

	  (135 cos u - 5400 sin u + 5400 sin u cos u)du = 0

	 u = 20.9�� Ans.

Chapter 11

F11–1.	  yG = 0.75 sin u   dyG = 0.75 cos u du

	  xC = 2(1.5) cos u   dxC = -3 sin u du

	  dU = 0; 2WdyG + PdxC = 0

	 (294.3 cos u - 3P sin u)du = 0

	 P = 98.1 cot u � u= 60� = 56.6 N� Ans.

F11–2.	  xA = 5 cos u   dxA = -5 sin u du

	  yG = 2.5 sin u   dyG = 2.5 cos u du

	  dU = 0;   -PdxA + (-WdyG) = 0

	 (5P sin u - 1226.25 cos u)du = 0

	 P = 245.25 cot u � u= 60� = 142 N� Ans.

F11–3.	  xB = 0.6 sin u   dxB = 0.6 cos u du

	  yC = 0.6 cos u      dyC = -0.6 sin u du

	  dU = 0;   -FspdxB + (-PdyC) = 0

	  -911032 sin u (0.6 cos u du)

	 -  2000(-0.6 sin u du) = 0

	 sin u = 0  u = 0�� Ans.

	 -5400 cos u + 1200 = 0 

	 u = 77.16� = 77.2�� Ans.

F11–4.	  xB = 0.9 cos u  dxB = -0.9 sin u du

	  xC = 2(0.9 cos u)  dxC = -1.8 sin u du

	  dU = 0; PdxB + 1-Fsp dxC2 = 0



Preliminary Problems  
Statics Solutions
Chapter 2
2–1.

45� 120�

200 N

100 N

45�
120�
200 N

100 N
15�

60�
FR

FR

u

(a)

130� 130�

500 N

400 N

500 N
400 N

FRu

FR

130�

50�

(b)

300 N

450 N
20�

FR

20�

450 N

FR

u

(c)

2–2.

70�

110�

30�

200 N

Fv

Fu

u

v

200 N Fv

Fu

30�
110�

(a)

u

60�120�

60�

10�
v

(b)

400 N

400 N

Fu

Fu

Fv

10�

Fv

60�

(c)

110�

30�40�

600 N
Fu

Fv

40�
600 N Fu

110�

Fv

2–3.

FR

y

z

60j

50i

�10k

b

ga

x

(a)

FR

y

z

60k 

�40i 

�80j 

b

g

a

x

(b)

2–4.  a) F = 5-4i - 4j + 2k6  kN

		 F = 2(4)2 + (-4)2 + (2)2 = 6 kN

	 cos b =
-2

3

	 b) F = 520i + 20j - 10k6  N

	 F = 2(20)2 + (20)2 + (-10)2 = 30 N

	 cos b =
2

3

638
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2–5.

(a)

y
20�

600 N

z

x

45�

Fy

Fx

Fz

600 sin 45� N

	 Fx = (600 sin 45�) sin 20� N

	 Fy = (600 sin 45�) cos 20� N

	 Fz = 600 cos 45� N 

y

 (500 N) � 400 N

z

x

5

5

4

4
3

3

Fy

Fz

Fx

500 N

4
5

(b)

	 Fx = -
3

5
 (400) N

	 Fy =
4

5
 (400) N

	 Fz =
3

5
 (500) N

	

y

30�

800 N

z

x

(c)

60�

Fz

Fx

Fy

800 cos 60� N

	 Fx = 800 cos 60� cos 30� N

	 Fy = -800 cos 60� sin 30� N

	 Fz = 800 sin 60� N

2–6.  a)  rAB = 5-5i + 3j - 2k6  m

	 b)  rAB = 54i + 8j - 3k6  m

	 c)  rAB = 56i - 3j - 4k6  m

2–7.  a) F = 15 kNa -3

5
 i +

4

5
 jb = 5-9i + 12j6  kN

	 b) F = 600 Na2

3
 i +

2

3
 j -

1

3
 kb

	 = 5400i + 400j - 200k6  N

	 c) F = 300 Na -
2

3
 i +

2

3
 j -

1

3
 kb

	 = 5-200i + 200j - 100k6  N

2–8.  a) rA = 53k6  m,  rA = 3 m

	 rB = 52i + 2j - 1k6  m,  rB = 3 m

	 rA
# rB = 0(2) + 0(2) + (3)(-1) = -3 m2

	 rA
# rB = rArB cos u

	   -3 = 3(3) cos u

	 b) rA = 5-2i + 2j + 1k6  m,  rA = 3 m

	 rB = 51.5i - 2k6  m,  rB = 2.5 m

	 rA
# rB = (-2)(1.5) + 2(0) + (1)(-2) = -5 m2

	 rA
# rB = rArB cos u

	   -5 = 3(2.5) cos u
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2–9.  a)

F = 300 Na2

3
 i +

2

3
 j -

1

3
 kb = 5200i + 200j - 100k6  N 

  ua = -
3

5
 i +

4

5
 j

	 Fa = F # u a = (200)a -
3

5
b + (200)a4

5
b + (-100)a0b

	 b)   F = 500 N a -
4

5
j +

3

5
 kb = 5-400j + 300k6  N

	 ua = -
1

3
 i +

2

3
j +

2

3
 k

	 Fa = F # u a = (0)a -
1

3
b + (-400)a2

3
b + (300)a2

3
b

Chapter 3

3–1.	

200 N

(a)

FAB FAC

4
3

5
30�

 

600 N

(b)

FAB

FAC

4
3

5

30�

 

500 N

(c)

FADFAB

45�30�

3–2.  a) �Fx = 0;  F cos 60� - Pa 112
b - 600a4

5
b = 0

	 �Fy = 0;  -F sin 60� - Pa 112
b + 600a3

5
b = 0

	 b) �Fx = 0;  Pa4

5
b - F sin 60� - 200 sin 15� = 0

	 �Fy = 0;  -Pa3

5
b - F cos 60� + 200 cos 15� = 0

	 c) �Fx = 0;

300 cos 40� + 450 cos 30� - P cos 30� + F sin 10� = 0

	 �Fy = 0;

-300 sin 40� + 450 sin 30� - P sin 30� - F cos 10� = 0

Chapter 4

4–1.  a) MO = 100 N(2 m) = 200 N # md

	 b) MO = -100 N(1 m) = 100 N # mb

	 c) MO = - a3

5
b(500 N)(2 m) = 600 N # mb

	 d) MO = a4

5
b(500 N)(3 m) = 1200 N # md

	 e) MO = - a3

5
b(100 N)(5 m) = 300 N # mb

	 f) MO = 100 N(0) = 0

	 g) MO = - a3

5
b(500 N)(2 m) + a4

5
b(500 N)(1 m)

	 = 200 N # mb

	 h) MO = - a3

5
b(500 N)(3 m - 1 m)

	 + a4

5
b(500 N)(1 m) = 200 N # mb

	 i) MO = a3

5
b(500 N)(1 m) - a4

5
b(500 N)(3 m)

		      = 900 N # mb

4–2.	 MP = 3 i j k
2 -3 0

-3 2 5

3 	 MP = 3 i j k
2 5 -1

2 -4 -3

3
	 MP = 3 i j k

5 -4 -1

-2 3 4

3
4–3.  a) Mx = - (100 N)(3 m) = -300 N # m

	 My = - (200 N)(2 m) = -400 N # m

	 Mz = - (300 N)(2 m) = -600 N # m

	 b) Mx = (50 N)(0.5 m) = 25 N # m

	 My = (400 N)(0.5 m) - (300 N)(3 m) = -700 N # m

	 Mz = (100 N)(3 m) = 300 N # m

	 c) Mx = (300 N)(2 m) - (100 N)(2 m) = 400 N # m

	 My = - (300 N)(1 m) + (50 N)(1 m)

	 + (400 N)(0.5 m) = 250 N # m

	  Mz = - (200 N)(1 m) = -200 N # m

4–4.  a)

	  Ma =
4 - 4

5
-

3

5
0

-5 2 0

6 2 3

4
=
4 - 4

5
-

3

5
0

-1 5 0

6 2 3

4
	 b)

	  Ma =
4 - 122

122
0

3 4 -2

2 -4 3

4
=
4 - 122

122
0

5 2 -2

2 -4 3

4
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	 c) Ma =
4 2

3
-

1

3

2

3

-5 -4 0

2 -4 3

4
=
4 2

3
-

1

3

2

3

-3 -5 2

2 -4 3

4
4–5.  a) +

S (FR)x = �Fx  ; 

	 (FR)x = - a4

5
b500 N + 200 N = -200 N

	 + c(FR)y = �Fy  ;

	 (FR)y = -
3

5
 (500 N) - 400 N = -700 N

	 a+  (MR)O = �MO; 

	 (MR)O = - a3

5
b(500 N)(2 m) - 400 N(4 m)

	 = -2200 N # m

	 b) +
S (FR)x = �Fx; 

	 (FR)x = a4

5
b(500 N) = 400 N

	 + c(FR)y = �Fy;

	 (FR)y = - (300 N) - a3

5
b(500 N) = -600 N

	 a+  (MR)O = �MO; 

	 (MR)O = - (300 N)(2 m) - a3

5
b(500 N)(4 m)

	 - 200 N # m = -2000 N # m

	 c) +
S (FR)x = �Fx;

	 (FR)x = a3

5
b(500 N) + 100 N = 400

	 + c(FR)y = �Fy;

	 (FR)y = - (500 N) - a4

5
b(500 N) = -900 N

	 a+  (MR)O = �MO; 

	 (MR)O = - (500 N)(2 m) - a4

5
b(500 N)(4 m)

	 + a3

5
b(500 N)(2 m) = -2000 N # m

	 d) +
S (FR)x = �Fx;

	 (FR)x = - a4

5
b(500 N) + a3

5
b(500 N) = -100 N

	 + c(FR)y = �Fy;

	 (FR)y = - a3

5
b(500 N) - a4

5
b(500 N) = -700 N

	 a+  (MR)O = �MO;

	 (MR)O = a4

5
b(500 N)(4 m) + a3

5
b(500 N)(2 m)

	 - a3

5
b(500 N)(4 m) + 200 N # m = 1200 N # m

4–6.  a) +
S (FR)x = �Fx;	 (FR)x = 0

	 + c(FR)y = �Fy; 

	 (FR)y = -200 N - 260 N = -460 N

	 a+  (FR)yd = �MO;

	 - (460 N)d = - (200 N)(2 m) - (260 N)(4 m)

	 d = 3.13 m

	� Note: Although 460 N acts downward, this is not 
why −(460 N)d is negative. It is because the moment 
of 460 N about O is negative.

	 b) +
S (FR)x = �Fx;

	 (FR)x = - a3

5
b(500 N) = -300 N

	 + c(FR)y = �Fy;

	 (FR)y = -400 N - a4

5
b(500 N) = -800 N

	 a+  (FR)yd = �MO;

 	 - (800 N)d = - (400 N)(2 m) - a4

5
b(500 N)(4 m)

	 d = 3 m

	 c) +
S (FR)x = �Fx;

	 (FR)x = a4

5
b(500 N) - a4

5
b(500 N) = 0

	 + c(FR)y = �Fy;

	 (FR)y = - a3

5
b(500 N) - a3

5
b(500 N) = -600 N

	 a+  (FR)yd = �MO;

	   - (600 N)d = - a3

5
b(500 N)(2 m) - a3

5
b(500 N)(4 m)

	 - 600 N # m
	 d = 4 m

4–7.  a) + TFR = �Fz; 

	 FR = 200 N + 100 N + 200 N = 500 N

	 (MR)x = �Mx; 
	 - (500 N)y = - (100 N)(2 m) - (200 N)(2 m)
	 y = 1.20 m

	 (MR)y = �My; 
	  (500 N)x = (100 N)(2 m) + (200 N)(1 m)

	 x = 0.80 m
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(d)

4 m
500 N

4

3

5

3 m
Ay

NB

Ax

30�

(e)

2 m 2 m

400 N

By

MA

Ax

30�

Cx

By

FA

Cy

2 m 1 m

(f)
5–2.	

2 m

1 m

0.5 m

300 N

(a)

Cy
Cx

Cz

Az

Bz

2 m
1 m

3 m

1 m

500 N

Bz

Cy

Ay

Cz

Bx

Ax

(b)

	 b) + TFR = �Fz;

	 FR = 100 N - 100 N + 200 N = 200 N

	 (MR)x = �Mx; 
	 - (200 N)y = (100 N)(1 m) + (100 N)(2 m)

	 - (200 N)(2 m)

	 y = 0.5 m

	 (MR)y = �My; 

	  (200 N)x = - (100 N)(2 m) + (100 N)(2 m)
	 x = 0

	 c) + TFR = �Fz; 
	 FR = 400 N + 300 N + 200 N + 100 N = 1000 N

	 (MR)x = �Mx;
	 - (1000 N)y = - (300 N)(4 m) - (100 N)(4 m)
	 y = 1.6 m

	 (MR)y = �My; 
	  (1000 N)x = (400 N)(2 m) + (300 N)(2 m)
	 - (200 N)(2 m) - (100 N)(2 m)
	 x = 0.8 m

Chapter 5

5–1.	

3 m 2 m

500 N

Ax

Ay

3
4

5
TB

(a)

(b)

3 m

600 N � m

Ax

Ay

Bx

2 m

2 m

1200 N

1 m
Ay

By

Bx

(c)
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	 b) Ay = 300 N, Cx = 0, Cy = 300 N

A

B

30�

30�30�

30�

300 N

300 N

600 N

FAB

FCB

FCD

FBD

FBC

FBE

FAB

FBF

FAF

6–2.	 a)

H

D

E
FHG � 0

FDE � 0
FEF � 0

FED  � 0FEC � 0
FHA � 0 FDC � 0

B

FBG � 0

0

FGF

FGA FGC � 0

FCF � 0

FCB FCD

0

FBA FBC

0

FFE

FFG FFD � 0

2 m2 m

2 m

400 N

Bz

Mx

Mz

Az

By

Bx

(c)

5–3.  a) �Mx = 0; 
	 - (400 N)(2 m) - (600 N)(5 m) + Bz  (5 m) = 0

	 �My = 0;  	 -Az(4 m) - Bz(4 m) = 0

	 �Mz = 0;  	 By(4 m) - Bx(5 m)
	 + (300 N)(5 m) = 0

	 b) �Mx = 0; 	 Az(4 m) + Cz(6 m) = 0

	 �My = 0;  	 Bz(1 m) - Cz(1 m) = 0

	 �Mz = 0;  	� -By(1 m) + (300 N)(2 m)
		�   - Ax(4 m) + Cy(1 m) = 0

	 c) �Mx = 0;  Bz(2 m) + Cz(3 m) - 800 N # m = 0

	 �My = 0;       -Cz(1.5 m) = 0

	 �Mz = 0;       -Bx(2 m) + Cy(1.5 m) = 0

Chapter 6

6–1.  a) Ay = 200 N, Dx = 0, Dy = 200 N

A

B

45�

45�

200 N

400 N

FAB

FBC

FCE FCD

FBC

FBE

FAB

FAE

C

b)
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2 m
3 m

2 m

800 N
600 N

3 m

Ay

Ax

MA

By

Bx

By

Bx

Cy

	 BC is a two-force member.

200 N

2 m2 m

3
4

200 N

200 N

200 N

200 N

200 NAy

Ax

FBC

FBC

FBC

	 BC is a two-force member.

	

400 N

2 m2 m

400 N

400 N

400 N

400 N

400 NAy

Ax

FBC
FBC

4
3 

4
3 

5

5

FBC

Chapter 7

7–1.	

100 N

1 m
NB

MB

VC

(a)

6–3.	 a)

4 m

1.5 m

1.5 m

200 N

60 N � m

Ax

Ay By

Cy

Bx

By

Cx

Bx

	 b) CB is a two-force member.

Ay

Ax

FCB

FCB

FCB

600 N

2 m 1 m

45�

45�

	 c) CD is a two-force member.

	

1.5 m

By

Bx

Ax

1 m

500 N

Ay

MA

By

4
35 4

35

3

54

FCD

Bx
FCD

FCD

1 m

	

d)

e)

f)
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600 N

2400 N � m 

150 N

2 m 1 m
NB

MB

VB

(b)

600 N

2 m

NB

MB

VB

600 N

(c)

(d)

400 N

1600 N � m 

2 m

NB

MB

VB

	

MB

800 N

400 N

800 N
1600 N � m 

NB

VB

2 m

(e) 	 (f)

200 N

NB

MB
VB

1 m

Chapter 8

8–1.	 a)

200 N

500 N

4
3 5

N
F¿

	 +
S �Fx = 0; 

	 a4

5
b(500 N) - F� = 0, F� = 400 N

	 + c �Fy = 0;

	 N - 200 N - a3

5
b(500 N) = 0, N = 500 N

	 Fmax = 0.3(500 N) = 150 N 6 400 N

	 Slipping	 F = mkN = 0.2(500 N) = 100 N� Ans.

100 N

4
3 5

N
F¿

40 N

	 +
S �Fx = 0; 

	
4

5
 (100 N) - F� = 0; F� = 80 N

	 + c �Fy = 0;

	 N - 40 N - a3

5
b(100 N) = 0; N = 100 N

	 Fmax = 0.9(100 N) = 90 N 7 80 N

	 F = F� = 80 N� Ans.

8–2.

100 N

1 m NB

M

FA

O

NA

	 Require	 FA = 0.1 NA

	 + c �Fy = 0; 	 NA - 100 N = 0

	 NA = 100 N

	 FA = 0.1(100 N) = 10 N

	 a+ �MO = 0;	 -M + (10 N)(1 m) = 0

	 M = 10 N # m�

b)
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	 FC = 0.1(400 N) = 40 N

	 +S �Fx = 0;	 P - 20 N - 40 N = 0

	 P = 60 N

	 Therefore,	 P = 60 N� Ans.

8–4.	
a)

2 m

0.5 m

P

200 N

N � 200 N
x

o
F

Assume slipping,	 F = 0.3(200 N) = 60 N

	 +S �Fx = 0;	 P - 60 N = 0;  P = 60 N

	 a+ �MO = 0;	 200 N(x) - (60 N)(2 m) = 0

	 x = 0.6 m 7 0.5 m

Block tips,	 x = 0.5 m

	 a+ �MO = 0	 (200 N)(0.5 m) - P(2 m) = 0

	 P = 50 N� Ans.

1 m

0.5 m

P
100 N

N � 100 N
x

F

Assume slipping,	  F = 0.4(100 N) = 40 N

	 +S �Fx = 0;	 P - 40 N = 0; P = 40 N

	 a+ �MO = 0;	 (100 N)(x) - (40 N)(1 m) = 0 

	 x = 0.4 m 6 0.5 m 

	 No tipping

	 P = 40 N� Ans.

8–3.	 a) Slipping must occur between A and B.

NA � 100 N

FA

TA

100 N

	 FA = 0.2(100 N) = 20 N

	 b) Assume B slips on C and C does not slip.

NB � 200 N

FB

P

100 N

20 N

100 N

	 FB = 0.2(200 N) = 40 N

	 +S �Fx = 0;	 P - 20 N - 40 N = 0

	 P = 60 N

	 c) Assume C slips and B does not slip on C.

P

400 N

FC

100 N

20 N

100 N

200 N

b)
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x

y

y

dy

x

	 x� =
x

2
=
1y

2
	 y� = y

	 dA = xdy = 1y dy

x

y

y

dx

x

1 m

	 x� = x

	 y� = y + a1 - y

2
b =

1 + y

2
=

1 + x2

2

	 dA = (1 - y)dx = (1 - x2)dx

Chapter 9

9–1.  a)

x

y

y

x

dx

	 x� = x

	 y� =
y

2
=
1x

2

	 dA = ydx = 1x dx

x

y

y

x

dy

1 m

	 x� = x + a1 - x

2
b =

1 + x

2
=

1 + y2

2

	 y� = y

	 dA = (1 - x)dy = (1 - y2)dy

b)

c)

d)



Review Problem Solutions

Chapter 2

R2–1.	 FR = 2(300)2 + (500)2 - 2(300)(500) cos 95�

	 = 605.1 = 605 N� Ans.

	
605.1

sin 95�
=

500

sin u

	 u = 55.40�

	 f = 55.40� + 30� = 85.4�� Ans.

R2–2.	
F1v

sin 30�
=

250

sin 105�
    F1v = 129 N� Ans.

	
F1u

sin 45�
=

250

sin 105�
    F1u = 183 N� Ans.

R2–3.	 FRx = F1x + F2x + F3x + F4x

	 FRx = -200 + 320 + 180 - 300 = 0

	 FRy = F1y + F2y + F3y + F4y

	 FRy = 0 - 240 + 240 + 0 = 0

	 Thus, FR = 0� Ans.

R2–4.	 cos2 30� + cos2 70� + cos2 g = 1

	 cos g = {0.3647

	 g = 68.61� or 111.39�

	 By inspection, g = 111.39�. 

	 F = 2505cos 30�i + cos 70�j + cos 111.39�61b

	    = 5217i + 85.5j - 91.2k61b� Ans.

R2–5.	 r = {50 sin 20�i + 50 cos 20�j - 35k} ft

	 r = 2(17.10)2 + (46.98)2 + (-35)2 = 61.03 ft

	 u =
r
r

= (0.280i +  0.770j - 0.573k) 

	 F = Fu = 598.1i + 269j - 201k6  lb� Ans.

R2–6.	 F1 = 600a4

5
bcos 30�(+ i) + 600a4

5
bsin 30�(- j)

� + 600a3

5
b(+k)

	 = 5415.69i - 240j + 360k6  N� Ans. 

	 F2 = 0i + 450 cos 45�(+ j) + 450 sin 45�(+k)

	 = 5318.20j + 318.20k6N� Ans.

R2–7.	 r1 = 5400i + 250k6mm;	 r1 = 471.70 mm

	 r2 = 550i + 300j6  mm;	 r2 = 304.14 mm

	 r1
# r2 = (400)(50) + 0(300) + 250(0) = 20 000

	 u = cos- 1a r1
# r2

r1r2
b = cos- 1a 20 000

(471.70)(304.14)
b

	   = 82.0�� Ans.

R2–8.	 FProj = F # uv = (2i + 4j + 10k) # a2

3
 i +

2

3
 j -

1

3
 kb

	 FProj = 0.667 kN

Chapter 3
R3–1.	 S+ �Fx = 0;	 FB - FA  cos 60� - 50a4

5
b = 0

	 + c �Fy = 0;	 -FA  sin 60� + 50a3

5
b = 0

	  FA = 34.6 lb 	  FB = 57.3 lb � Ans.

R3–2.	 S+ �Fx = 0;	 FAC cos 30� - FAB = 0� (1)

	 + c �Fy = 0;	 FAC sin 30� - W = 0� (2) 

Assuming cable AB reaches the maximum tension 
FAB = 450 lb.

From Eq. (1) FAC cos 30� - 450 = 0 

    FAC = 519.6 lb 7 480 lb� (No Good)
Assuming cable AC reaches the maximum tension 
FAC = 480 lb.

From Eq. (1) 480 cos 30� - FAB = 0

    FAB = 415.7 lb 6 450 lb� (OK)

From Eq. (2) 480 sin 30� - W = 0	 W = 240 lb
� Ans.

R3–3.	 S+ �Fx = 0;	 FAC sin 30� - FABa
3

5
b = 0 

		    FAC = 1.20FAB� (1) 

	 + c �Fy = 0;	 FAC cos 30� + FABa
4

5
b - W = 0

		    0.8660FAC + 0.8FAB = W � (2)

Since FAC 7 FAB, failure will occur first at cable AC 
with FAC = 50 lb. Then solving Eqs. (1) and (2) yields 

	 FAB = 41.67 lb

	 W = 76.6 lb� Ans.

648
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	  FAC = FACa
-1.5i + 2j - 6k2(-1.5)2 + 22 + (-6)2

b

	  = -0.2308FAC 

i + 0.3077FAC 

j - 0.9231FAC  k

	  FAD = FAD a -3i - 6j - 6k2(-3)2 + (-6)2 + (-6)2
b

	  = -0.3333FAD 

i - 0.6667FAD j - 0.6667FAD 

k

	 F = Fk 

    �F = 0;    FAB + FAC + FAD + F = 0 

	 (200 - 0.2308FAC - 0.3333FAD)i

	   + (300 + 0.3077FAC - 0.6667FAD)j

  + (-600 -  0.9231FAC -  0.6667FAD + F)k = 0

200 - 0.2308FAC - 0.3333FAD = 0

300 + 0.3077FAC - 0.6667FAD = 0

-600 - 0.9231FAC - 0.6667FAD + F = 0

	 FAC - 130 N    FAD = 510 N

	 F = 1060 N = 1.06 kN� Ans.

Chapter 4
R4–1.	 20(103) = 800(16 cos 30�) + W (30 cos 30� + 2)

	 W = 319 lb� Ans.

R4–2.	 FR = 50 lb £ (10i + 15j - 30k)2(10)2 + (15)2 + (-30)2
§

	 FR = 514.3i + 21.4j - 42.9k6  1b� Ans. 

	 (MR )C = rCB * F = 3 i j k
10 45 0

14.29 21.43 -42.86

3
	 = 5-1929i + 428.6j - 428.6k6  lb # ft � Ans.

R4–3.	 r = 54i6  ft

	 F = 24 lb a -2i + 2j + 4k2(-2)2 + (2)2 + (4)2
b

	 = 5-9.80i + 9.80j +  19.60k61b

	 My = 3 0 1 0

4 0 0

-9.80 9.80 19.60

3 = -78.4 lb # ft

	 My = 5-78.4j6  lb # ft� Ans.

R4–4.	 (Mc)R = �Mz;	 0 = 100 - 0.75F

	 	 F = 133 N� Ans.

R3–4.	 s1 =
60

40
= 1.5 ft

	 + c �Fy = 0;    F - 2a1

2
 Tb = 0 ;    F =  T

	 S+ �Fx = 0;	 -Fs + 2a23

2
bF = 0

	 	 Fs =  1.732F

Final stretch is 1.5 + 0.268 = 1.768 ft 

	                    40(1.768) = 1.732F 

	                 F = 40.8 lb � Ans.

R3–5.	 �Fx = 0;    -F1 sin 45� = 0    F1 = 0� Ans. 

	 �Fz = 0;    F2 sin 40� - 200 = 0

	 	 F2 = 311.14 lb = 311 lb� Ans.

Using the results F1 = 0 and F2 = 311.14 lb and 
then summing forces along the y axis, we have 
�Fy = 0;	 F3 - 311.14 cos 40� = 0

	 F3 = 238 lb� Ans.

R3–6.	  F1 = F15cos 60�i + sin 60�k6
	  = 50.5F1i + 0.8660F1k6  N

	  F2 = F2 b  
3

5
 i -

4

5
 jr  

	  = 50.6 F2i -  0.8 F2 j6  N

	  F3 = F35-cos 30�i - sin 30�j6
	  = 5-0.8660F3 i - 0.5F3 j6  N

	 �Fx = 0;	 0.5F1 + 0.6F2 - 0.8660F3 = 0

	 �Fy = 0;	 -0.8F2 - 0.5F3 + 800 sin 30� = 0 

	 �Fz = 0;	 0.8660F1 - 800 cos 30� = 0

	 F1 = 800 N    F2 = 147 N    F3 = 564 N� Ans.

R3–7.	 �Fx = 0;  FCA a 1210
b - FCBa 1210

b = 0

	 �Fy = 0;  -FCA a
3210
b - FCBa

3210
b

	 �Fz = 0;    -500 + FCDa4

5
b = 0

	 Solving:

	     FCD = 625 lb    FCA = FCB = 198 lb

R3–8.	  FAB = 700a 2i + 3j - 6k222 + 32 + (-6)2
b

	  = 5200i + 300j - 600k6  N

+ FCDa3

5
b = 0
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Chapter 5

R5–1. a

		  F = 0.3536 kN = 354 N� Ans.

R5–2.	 a+ �MA = 0; NB(7) - 1400(3.5) - 300(6) = 0

	 NB = 957.14 N = 957 N� Ans. 

         + c gFy = 0;   Ay - 1400 - 300 + 957 = 0   Ay = 743 N

	 S+ �Fx = 0;    Ax = 0� Ans.

R5–3.	 a+ �MA = 0;  10(0.6 + 1.2 cos 60�) + 6(0.4)

	 - NA(1.2 + 1.2 cos 60�) = 0

	 NA = 8.00 kN� Ans. 
+S �Fx = 0;  Bx - 6 cos 30� = 0;  Bx = 5.20 kN� Ans.

	 + c �Fy = 0;  By + 8.00 - 6 sin 30� - 10 = 0

	 By = 5.00 kN� Ans.

R5–4.	 a+ �MA = 0;  50 cos 30�(20) + 50 sin 30�(14)

	 - FB(18) = 0

	 FB = 67.56 lb = 67.6 lb� Ans. 
	 +S �Fx = 0;  Ax - 50 sin 30� = 0

	 Ax = 25 lb� Ans. 
	 + c �Fy = 0;  Ay - 50 cos 30� - 67.56 = 0

	 Ay = 110.86 lb = 111 lb� Ans.

R5–5.	 �Fx = 0;	 Ax = 0� Ans. 
	 �Fy = 0;	 Ay + 200 = 0

		  Ay = -200 N� Ans. 

	 �Fz = 0;	 Az - 150 = 0

		  Az = 150 N� Ans. 

	 �Mx = 0;	 -150(2) + 200(2) - (MA)x = 0

		  (MA )x = 100 N #  m� Ans. 

	 �My = 0;	 (MA )y = 0� Ans. 

	 �Mz = 0;	 200(2.5) - (MA)z = 0

		  (MA )z = 500 N # m� Ans.

R5–6.	

�My = 0;	 P(8) - 80(10) = 0	 P = 100 lb� Ans. 

�Mx = 0;	 Bz(28) - 80(14) = 0	 Bz = 40 lb� Ans. 

�Mz = 0;	 -Bx(28) - 100(10) = 0	 Bx = -35.7 lb� Ans. 

�Fx = 0;	 Ax + (-35.7) - 100 = 0	 Ax = 136 lb� Ans. 

�Fy = 0;	 By = 0� Ans. 

�Fz = 0;	 Az + 40 - 80 = 0	 Az = 40 lb� Ans.

R4–5.	 S+ �FRx = �Fx;     FRx = 6a 5

13
b - 4 cos 60�

		   = 0.30769 kN

	 + c �FRy = �Fy;     FRy = 6a12

13
b - 4 sin 60�

	 	  = 2.0744 kN

	 FR = 2(0.30769)2 + (2.0744)2 = 2.10 kN� Ans. 

	 u = tan- 1 c 2.0744

0.30769
d = 81.6� a� Ans. 

	 a+  MP = �MP;  MP = 8 - 6a12

13
b(7) + 6a 5

13
b(5)

	�  - 4 cos 60�(4) + 4 sin 60�(3)

		   MP = -16.8 kN # m

		   = 16.8 kN # mb� Ans.

R4–6.	 S+ �(FR)x = �Fx;  (FR)x = 200 cos 45� - 250a4

5
b  

	�  - 300 = -358.58 lb = 358.58 lb d

	 + c(FR)y = �Fy;  (FR)y = -200 sin 45� - 250a3

5
b  

	�  = -291.42 lb = 291.42 lbT

FR = 2(FR)x
2 + (FR)y

2 = 2358.582 + 291.422 

	 = 462.07 lb = 462 lb� Ans. 

u = tan-1 c
(FR)y

(FR)x
d = tan-1 c 291.42

358.58
d = 39.1� d� Ans. 

a+ (MR )A = �MA;  358.58(d) = 250a3

5
b(2.5) + 250a4

5
b(4)

	 + 300(4) - 200 cos 45�(6) - 200 sin 45�(3)

	 d = 3.07 ft� Ans.

R4–7.	 + cFR = �Fz;  FR = -20 - 50 - 30 - 40

	        = -140 kN = 140 kNT � Ans. 

	 (MR)x = �Mx;  -140y = -50(3) - 30(11) - 40(13)

	 y = 7.14 m� Ans. 

	 (MR)y = �My;  140x = 50(4) + 20(10) + 40(10)

	 x = 5.71 m� Ans.

R4–8.	 + TFR = �F;  FR = 12 000 + 6000 = 18 000 lb

	 FR = 18.0 kip� Ans. 

	 c+MRC = �MC;  18 000x = 12 000(7.5) + 6000(20)

	 x = 11.7 ft� Ans.

+ �MA = 0: F(6) + F(4) + F(2) - 3 cos 45�(2) = 0
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Joint D: 

    + c �Fy = 0;	 13.125 - 10 -
3

5
 FDF = 0

		  FDF = 5.21 kN (T)� Ans.

R6–2.	 Joint A:
+S �Fx = 0;	 FAB - FAG cos 45� = 0

	 + c �Fy = 0;	 333.3 - FAG sin 45� = 0
		  FAG = 471 lb (C)� Ans. 
		  FAB = 333.3 = 333 lb (T)� Ans.
Joint B: 

+S �Fx = 0;	 FBC = 333.3 = 333 lb (T)� Ans. 
   + c �Fy = 0;	 FGB = 0� Ans.

Joint D: 
+S �Fx = 0;	 -FDC + FDE cos 45� = 0� Ans. 

   + c �Fy = 0;	 666.7 - FDE sin 45� = 0
		  FDE = 942.9 lb = 943 lb (C)� Ans. 
		  FDC = 666.7 lb = 667 lb (T)� Ans.

Joint E: 
+S �Fx = 0;	 -942.9 sin 45� + FEG = 0

   + c �Fy = 0;	 -FEC + 942.9 cos 45� = 0
		  FEC = 666.7 lb = 667 lb (T)� Ans. 
		  FEG = 666.7 lb = 667 lb (C)� Ans.
Joint C: 
   + c �Fy = 0;	 FGC cos 45� + 666.7 - 1000 = 0
		  FGC = 471 lb (T)� Ans.

R6–3.	 a+ �MC = 0;	 -1000(10) + 1500(20)

		  - FGJ cos 30�(20 tan 30�) = 0

	 FGJ = 2.00 kip (C)� Ans. 

+ c �Fy = 0;	 -1000 + 2(2000 cos 60�) - FGC = 0

	 FGC = 1.00 kip (T)� Ans.

R6–4.	

+ c �Fy = 0;	 2Ay - 800 - 600 - 800 = 0	 Ay = 1100 lb

+S �Fx = 0; 	 Ax = 0

a+ �MB = 0;	 FGF sin 30�(10) + 800(10 - 10 cos2 30�)

		  - 1100(10) = 0

		  FGF = 1800 lb (C) = 1.80 kip (C)� Ans. 
a+ �MA = 0;	 FFB sin 60�(10) - 800(10 cos2 30�) = 0

		  FFB = 692.82 lb (T) = 693 lb (T)� Ans. 
a+ �MF = 0;	 FBC(15 tan 30�) + 800(15 - 10 cos2 30�)

		  - 1100(15) = 0

		  FBC = 1212.43 lb (T) = 1.21 kip (T)� Ans.

R5–7.	 W = (4 ft)(2 ft)(2 lb>ft2) = 16 lb

	 �Fx = 0;	 Ax = 0� Ans. 

	 �Fy = 0;	 Ay = 0� Ans. 

	 �Fz = 0;	 Az + Bz + Cz - 16 = 0

	 �Mx = 0;	 2Bz - 16(1) + Cz(1) = 0

	 �My = 0;	 -Bz(2) + 16(2) - Cz(4) = 0

		  Az + Bz + Cz = 5.33 lb� Ans.

R5–8.	

�Fx = 0;	 Ax = 0� Ans. 

�Fy = 0;	 350 - 0.6FBC + 0.6FBD = 0

�Fz = 0;	 Az - 800 + 0.8FBC + 0.8FBD = 0

�Mx = 0;	 (MA )x + 0.8FBD(6) + 0.8FBC(6) - 800(6) = 0

�My = 0;	 800(2) - 0.8FBC(2) - 0.8FBD(2) = 0

�Mz = 0;	 (MA )z - 0.6FBC(2) + 0.6FBD(2) = 0

	 FBD = 208 N� Ans. 

	  FBC = 792 N� Ans. 

	  Az = 0� Ans. 

	 (MA )x = 0� Ans. 

	 (MA )z = 700 N # m� Ans.

Chapter 6

R6–1.	 Joint B: 

+S �Fx = 0;	 FBC = 3 kN (C)� Ans. 
    + c �Fy = 0;	 FBA = 8 kN (C)� Ans.

Joint A: 

    + c �Fy = 0;	 8.875 - 8 -
3

5
 FAC =  0

		  FAC =  1.458 =  1.46 kN (C)� Ans. 

+S �Fx = 0;	 FAF - 3 -
4

5
 (1.458) = 0

		  FAF = 4.17 kN (T)� Ans.
Joint C: 

+S �Fx = 0;	 3 +
4

5
 (1.458) - FCD = 0

		  FCD = 4.167 = 4.17 kN (C)� Ans. 

    + c �Fy = 0;	 FCF - 4 +
3

5
 (1.458) = 0

		  FCF = 3.125 = 3.12 kN (C)� Ans.
Joint E: 

+S �Fx = 0;	 FEF = 0� Ans. 

    + c �Fy = 0;	 FED = 13.125 = 13.1 kN (C)� Ans.
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R6–8.	 a+ �MB = 0;	 FCD(7) -
4

5
 FBE(2) = 0

a+ �MA = 0;	 -150(7)(3.5) +
4

5
 FBE(5) - FCD(7) = 0

	 FBE = 1531 lb = 1.53 kip� Ans.
	 FCD = 350 lb� Ans.

Chapter 7
R7–1.	 a+ �MA = 0;	 FCD(8) - 150(8 tan 30�) = 0

	 	 FCD = 86.60 lb

Since member CF is a two-force member, 
	 VD = MD = 0� Ans.
	 ND = FCD = 86.6 lb� Ans.

 a+ �MA = 0;	 By(12) - 150(8 tan 30�) = 0
	 By = 57.735 lb

+S �Fx = 0;	 NE = 0� Ans.

    + c �Fy = 0;	 V E + 57.735 - 86.60 = 0

V E = 28.9 lb� Ans.
  a+ �ME = 0;	 57.735(9) - 86.60(5) - ME = 0

	 ME = 86.6 lb # ft� Ans.

R7–2.	 Segment DC

+S �Fx = 0;	 NC = 0� Ans.

    + c �Fy = 0;	 V C - 3.00 - 6 = 0	 V C = 9.00 kN� Ans.

 a+ �MC = 0;	 -MC - 3.00(1.5) - 6(3) - 40 = 0

	 MC = -62.5 kN # m� Ans.

Segment DB
+S �Fx = 0;	 NB = 0� Ans.

    + c �Fy = 0;	 V B - 10.0 - 7.5 - 4.00 - 6 = 0

	 V B = 27.5 kN� Ans.

a+ �MB = 0;	 -MB - 10.0(2.5)-7.5(5)

	 -4.00(7) - 6(9) - 40 = 0

	 MB = -184.5 kN # m� Ans.

R7–3.	
V (kip)

x

36

0

�36

36

�36
M (kip�ft)

x0

�108 �108

R6–5.	 Joint A:

�Fz = 0;	 FADa
2268
b - 600 = 0

	 FAD = 2473.86 lb (T) = 2.47 kip (T)� Ans. 

�Fx = 0;	 FACa
1.5266.25

b - FABa
1.5266.25

b = 0

	 FAC = FAB

�Fy = 0;	 FACa 8266.25
b + FABa 8266.25

b

	 - 2473.86a 8268
b = 0

	 0.9829 FAC + 0.9829 FAB = 2400

FAC = FAB = 1220.91 lb (C) = 1.22 kip (C)� Ans.

R6–6.	 CB is a two force member.

Member AC: 

a+ �MA = 0;	 -600(0.75) + 1.5(FCB sin 75�) = 0

		  FCB = 310.6

	 Bx = By = 310.6a 122
b = 220 N� Ans. 

+S �Fx = 0;	 -Ax + 600 sin 60� - 310.6 cos 45� = 0

	 Ax = 300 N� Ans. 

+ c �Fy = 0;	 Ay - 600 cos 60� + 310.6 sin 45� = 0

	 Ay = 80.4 N� Ans.

R6–7.	 Member AB: 

 a+ �MA = 0;	 -750(2) + By(3) = 0

		  By = 500 N

Member BC: 

 a+ �MC = 0;	 -1200(1.5) - 900(1) + Bx(3) - 500(3) = 0

	 Bx = 1400 N

    + c �Fy = 0;	 Ay - 750 + 500 = 0

	 Ay = 250 N� Ans.

Member AB:
+S �Fx = 0;	 -Ax + 1400 = 0

		     Ax = 1400 N = 1.40 kN� Ans.

Member BC: 
+S �Fx = 0;	 Cx + 900 - 1400 = 0

		  Cx = 500 N� Ans. 

    + c �Fy = 0;	 -500 - 1200 + Cy = 0

		  Cy = 1700 N = 1.70 kN� Ans.
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R8–2.	 Crate

+ c �Fy = 0;	 Nd - 588.6 = 0    Nd = 588.6 N

S+ �Fx = 0;	 P - Fd = 0� (1)

a+ �MA = 0;	 588.6(x) - P(0.8) = 0� (2)

Crate and dolly

+ c �Fy = 0;	 NB + NA - 588.6 - 98.1 = 0� (3)

S+ �Fx = 0;	 P - FA = 0� (4)

a+ �MB = 0;	 NA(1.5) - P(1.05)

	 -  588.6(0.95) - 98.1(0.75) = 0� (5)

Friction: Assuming the crate slips on dolly, then  
Fd =  msdNd = 0.5(588.6) = 294.3 N. Solving Eqs. (1) and (2)

P = 294.3 N    x = 0.400 m

Since x 7 0.3 m, the crate tips on the dolly. If this is the case 
x = 0.3 m. Solving Eqs. (1) and (2) with x = 0.3 m yields

P = 220.725 N

Fd = 220.725 N

Assuming the dolly slips at A, then FA = msfNA = 0.35NA. 
Substituting this value into Eqs. (3), (4), and (5) and solving, 
we have

NA = 559 N    NB = 128 N

	 P = 195.6 N = 196 N (Controls)� Ans.

R8–3.	 Bar

a+ �MB = 0;	 P(600) - Ay(900) = 0	 Ay = 0.6667P

Disk

+ c �Fy = 0;	 NC sin 60� - FC sin 30�

	 - 0.6667P - 343.35 = 0� (1)

a+ �MO = 0;	 FC(200) - 0.6667P(200) = 0� (2)

Friction: If the disk is on the verge of moving, slipping 
would have to occur at point C. Hence, FC = ms NC = 0.2NC. 
Substituting this into Eqs. (1) and (2) and solving, we have

	 P = 182 N� Ans.

	 NC = 606.60 N 

R8–4.	 Cam:

a+ �MO = 0;	 5 - 0.4 NB(0.06) - 0.01(NB) = 0

	 NB = 147.06 N

Follower:

+ c �Fy = 0;	 147.06 - P = 0

	 P = 147 N� Ans.

R7–4.
V (kN)

x0

10

M (kN�m)

x0

�30

�5

R7–5.

 

V (kN)

x (m)
2.5

1.25 m
�7.5

M (kN�m)

x (m)
1.56

�12.5

�50 m

R7–6.

At x = 30 ft;	 y = 3 ft;	 3 =
FH

0.5
Ccos h a0.5

FH
(30)b - 1S

	 FH = 75.25 lb

	 tan umax =
dy

dx
`
x = 30  ft

= sin ha0.5(30)

75.25
b umax = 11.346�

	 Tmax =
FH

cos umax
=

75.25

cos 11.346�
= 76.7 lb� Ans.

Chapter 8

R8–1.	 Assume that the ladder slips at A:

FA = 0.4 NA

+ c �Fy = 0;	 NA - 20 = 0

	 	 NA = 20 lb

	 	 FA = 0.4(20) = 8 lb

a+ �MB = 0;    P(4) - 20(3) + 20(6) - 8(8) = 0

		  P = 1 lb� Ans.

S+ �Fx = 0;	 NB + 1 - 8 = 0

		  NB = 7 lb 7 0� OK

The ladder will remain in contact with the wall.
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Chapter 9

R9–1.	 Using an element of thickness dx,

x =
LA

x
�

dA

LA
dA

=
L

b

a
x a c2

x
 dx b

c2 ln 
b

a

=
L

b

a
c2 dx

c2 ln 
b

a

=

c2 x `
b

a

c2 ln 
b

a

=
b - a

ln 
b

a

 

Ans.

R9–2.	 Using an element of thickness dx,

	 y =
LA

y dA

LA
dA

=
L

b

a
a c2

2x
b a c2

x
 dx b

c2 ln 
b

a

=
L

b

a

c4

2x2 dx

c2 ln 
b

a

	 =

-
c4

2x
`
b

a

c2 ln 
b

a

=  
c2(b - a)

2ab ln 
b

a

�  Ans.

R9–3.	 z� =
Lv

 z� dV

Lv
 dV

=
L

a

0
 z 3p(a2 - z2)dz 4

L
a

0
p(a2 - z2)dz

	 =  

paa2z2

2
-

z4

4
b 2 a

0

paa2z -
z3

3
b 2 a

0

=
3

8
 a� Ans.

R9–4.	 �x�L = 0(4) + 2(p)(2) = 12.5664 ft2

�y�L = 0(4) +
2(2)

p
 (p)(2) = 8 ft2

� z�L = 2(4) + 0(p)(2) = 8 ft2

	 �L = 4 + p(2) = 10.2832 ft 

	 x� =
�x�L

�L
=

12.5664

10.2832
= 1.22 ft� Ans.

	 y� =
�y�L

�L
=

8

10.2832
= 0.778 ft� Ans.

	 z� =
� z�L

�L
=

8

10.2832
= 0.778 ft� Ans.

R9–5.	

Segment A(mm2) y� (mm) y�A(mm3)
1 300(25) 112.5 843 750
2 100(50) 50 250 000

� 12 500 1 093 750

R8–5.	 S+ �Fx = 0;    -P + 0.5(1250) = 0

		  P = 625 lb
Assume block B slips up and block A does not move.

Block A:

S+ �Fx = 0;	 FA - N � = 0

+ c �Fy = 0;	 NA - 600 - 0.3N � = 0

Block B:

S+ �Fx = 0;	 N � - N � cos 45� - 0.3 N � sin 45� = 0

+ c �Fy = 0;	 N � sin 45 - 0.3 N � cos 45� - 150 - 0.3 N ��

	 = 0

Block C:

S+ �Fx = 0;	 0.3 N �cos 45 - N �cos 45 - 0.5 NC - P = 0

+ c �Fy = 0;	 NC - N �sin 45 - 0.3 N � sin 45 - 500 = 0

Solving
	 N � = 629.0 lb,	N � = 684.3 lb,	NC = 838.7 lb,	P = 1048 lb,

	 NA = 411.3 lb

	 FA = 629.0 lb 7 0.5 (411.3) = 205.6 lb� No good
All blocks slip at the same time:	 P = 625 lb� Ans.

R8–6.	 a = tan- 1a10

25
 b = 21.80�

a+ �MA = 0;	 - 6000 (35) + FBD cos 21.80�(10)
� + FBD sin 21.80�(20) = 0

	 FBD = 12 565 lb

	 fs = tan- 1 (0.4) = 21.80�

	 u = tan- 1 a 0.2

2p(0.25)
b = 7.256�

	 M = Wr tan (u + f)

	 M = 12 565 (0.25) tan (7.256� + 21.80�)

	 M = 1745 lb # in = 145 lb # ft� Ans.

R8–7.	 Block:
+ c �Fy = 0;	 N - 100 = 0

		  N - 100 lb

S+ �Fx = 0;	 T1 = 0.4(100) = 0

		  T1 = 40 lb

T2 = T1e
mb

;	 T2 = 40e0.4 (p2 ) = 74.978 lb

System:
a+ �MA = 0;	 -100(d) - 40(1) - 50(5) + 74.978(10) = 0

 d = 4.60 ft� Ans.

R8–8.	 	 P �
Wa

r

	       = 500(9.81)a 2

40
b

	 P = 245 N� Ans.
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R9–10.	

A = LA
dA = L

a

-2
-ydx = L

a

-2
2x2dx =

2

3
x3 `

0

-2
= 5.333 ft2

w = b g h = 1(62.4)(8) = 499.2 lb # ft

Fy = 5.333(1)(62.4) = 332.8 lb

Fx =
1

2
 (499.2)(8) = 1997 lb

FN = 2(332.8)2 + (1997)2 = 2024 lb = 2.02 kip� Ans.

Chapter 10
R10–1.	

 Ix = LA
y2dA = L

2

0
 y2(4 - x)dy = L

2

0
 y214 - (32)

1
3y

1
32dy

 = 1.07 in4 � Ans.

R10–2.

Ix = LA
y2dA = L

1

0
 y2(2x dy) = L

1

0
 y214(1 - y)

1
2 2 dy

    = 0.610 ft4� Ans.

R10–3.	

Iy = LA
x2dA = 2L

2

0
 x2(y dx) = 2L

2

0
 x2(1 - 0.25 x2)dx

	 = 2.13 ft4� Ans.

R10–4.	  dIxy = d Ix2y2 + dAx y = 0 + 1y1
3 dy2 a1

2
 y

1
3b  (y)

	 =
1

2
 y

5
3  d y

	Ixy = Ld Ixy = L
1 m

0

1

2
 y

5
3 dy =

3

16
 y

8
3 2 1 m

0
= 0.1875 m4� Ans.

R10–5.	
s

h - y
=

b

h
,    s =

b

h
 (h - y)

(a)	 dA = s dy = c b
h

 (h - y) d dy

	 Ix = Ly2dA = L
h

0
y2 c b

h
(h - y) d dy =

bh3

12
� Ans.

(b)	Ix = Ix� + A  d2 
bh3

12
= Ix� +

1

2
 bh ah

3
b

2

  Ix =
bh3

36
�Ans.

R10–6.	 dIxy = dIx2y2 + dA  x y

	    = 0 + (y
1
3dy ) a1

2
 y

1
3b(y)

	      =  
1

2
 y

5
3  dy

Thus, 

	 y =
�y�A

�A
=

1 093 750

12 500
= 87.5 mm� Ans.

R9–6.	

A = �u r�L

	 = 2p3 0.6 (0.05) + 2(0.6375)2 (0.025)2 + (0.075)2 

	 + 0.675 (0.1)4
	 =  1.25 m2� Ans.

R9–7.	

V = �u r�A

	 = 2p c 2 (0.65) a1

2
 (0.025)(0.075)b + 0.6375(0.05)(0.075) d

	 = 0.0227 m3� Ans.

R9–8.	 dF = LdA = 4z
1
3(3)dz

	   F = 12 L
x

0
z

1
3 dz = 12 c 3

4
 z

4
3 d

8

0
= 144 lb� Ans. 

	 LA
 z dF = 12 L

8

0
 z

4
3 dz = 12 c 3

7
 z

7
3 d

8

0
= 658.29 lb # ft

	   z� =
658.29

144
= 4.57 ft� Ans.

R9–9.	

pa = 1.0(103)(9.81)(9) = 88 290 N>m2 = 88.29 kN>m2

pb = 1.0(103)(9.81)(5) = 49 050 N>m2 = 49.05 kN>m2

Thus, 

wA = 88.29(8) = 706.32 kN>m 

wB = 49.05(8) = 392.40 kN>m 

FR1
= 392.4(5) = 1962.0 kN 

FR2
=

1

2
 (706.32 - 392.4) (5) =  784.8 kN 

 a+ �MB = 0;	 1962.0(2.5) + 784.8(3.333) - Ay(3) = 0

	 Ay = 2507 kN = 2.51 MN� Ans.

+S �Fx = 0;	 784.8a4

5
b + 1962a4

5
b - Bx = 0

	 Bx = 2197 kN = 2.20 MN� Ans.

   + c �Fy = 0;	 2507 - 784.8a3

5
b - 1962a3

5
b - By = 0

		  By = 859 kN� Ans.
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	 dU = 0;	 -FspdxC - 2(2dyD - 20dyB + PdxC = 0

(20Fsp sin u - 20P sin u - 220 cos u)du = 0

However, from the spring formula, 
Fsp = kx = 2[2(10 cos u) - 6] = 40 cos u - 12. 
Substituting

(800 sin u cos u - 240 sin u - 220 cos u - 20P sin u) du = 0

Since du � 0, then

800 sin u cos u - 240 sin u - 220 cos u - 20P sin u = 0

P = 40 cos u - 11 cot u - 12

At the equilibrium position, u = 45�. Then

	 P = 40 cos 45� - 11 cot 45� - 12 = 5.28 lb� Ans.

R11–3.	 Using the law of cosines,

	 0.42 = x2
A + 0.12 - 2(xA)(0.1)cos u

	 Differentiating,

	 0 = 2xAdxA - 0.2dxA cos u + 0.2xA sin udu

dxA =
0.2 xA sin u

0.2 cos u - 2xA
 du

	 dU = 0;	 -FdxA - 50du = 0

a 0.2 xA  sin u

0.2 cos u - 2xA
 F - 50bdu = 0

	 Since du � 0, then
0.2xA  sin u

0.2 cos u - 2xA
 F - 50 = 0

F =
50(0.2 cos u - 2xA)

0.2xA  sin u

	 At the equilibrium position, u = 60�,

0.42 = x2
A + 0.12 - 2(xA)(0.1) cos 60�

xA = 0.4405 m

	 F = -
5030.2 cos 60� - 2(0.4405)4

0.2(0.4405) sin 60�
= 512 N� Ans.

R11–4.	 y = 4 sin u

dy = 4 cos u du

Fs = 5(4 - 4 sin u)

dU = 0;	 -10dy + Fsdy = 0

	 3-10 + 20(1 - sin u)4(4 cos u du) = 0

	 cos u = 0  and  10 - 20 sin u = 0

	 u = 90�	 u = 30�� Ans.

R11–5.	 xB = 0.1 sin u	 dxB = 0.1 cos udu

	 xD = 2(0.7 sin u) - 0.1 sin u = 1.3 sin u	 dxD = 1.3 cos udu

	 yG = 0.35 cos u	 dyG = -0.35 sin udu

	 Ixy = LdIxy = L
1 m

0
 
1

2
y

5
3d y =

3

16
 y  83 2 1 m

0

          = 0.1875 m4� Ans.

R10–7.	 Iy = c 1

12
(d)(d3) + 0 d + 4 c  1

36
 (0.2887d) ad

2
b

3

	     +
1

2
 (0.2887d) ad

2
b  ad

6
b

2

d

	     =  0.0954d 4� Ans.

R10–8.	 d Ix =
1

2
 rp y4 dx =

1

2
 rpab4

a4 x4 +
4b4

a3  x3 +
6b4

a2  x2

	�  +
4b4

a
 x + b4bdx

	 Ix = LdIx =
1

2
rpL

a

0
ab4

a4x4 +
4b4

a3 x3 +
6b4

a2 x2

	�  +
4b4

a
x + b4bdx

	        =
31

10
 rpab4

	 m = Lm
 dm = L

a

0
 rp y2 dx

	        = rp L
a

0
ab2

a2
 x2

+
2b2

a
x + b2bdx

	        =
7

3
 rpab2

	 Ix =
93

70
 mb2� Ans.

Chapter 11

R11–1.	 x = 2L cos u

	 dx = -2L sin u du

	 y = L sin u

	 dy = L cos u du

	 dU = 0;  -Pdy -  Fdx = 0

	 -PL cos udu - F(-2L sin u)du = 0

	 -P cos u + 2F sin u = 0

	 F =
P

2 tan u
� Ans.

R11–2.	 yB = 10 sin u	 dyB = 10 cos udu

	 yD = 5 sin u	 dyD = 5 cos udu

	 xC = 2(10 cos u)	 dxC = -20 sin udu
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R11–7.	 V = V e + V g

	    =
1

2
 (24) (2 cos u)2 +

1

2
 (48) (6 cos u)2

	   + 100(3 sin u)

	    = 912 cos2 u + 300 sin u

	
dV

du
= -1824 sin u cos u + 300 cos u = 0

	
dV

du
= -912 sin 2u + 300 cos u = 0

	 u = 90�    or    u = 9.467�

	
d2V

du2 = -1824 cos 2u - 300 sin u

	
d2V

du2 `
u= 90�

= -1824 cos 180� - 300 sin 90�

             = 1524 7 0� Ans.

	
d2V

du2 `
u= 9.467�

= -1824 cos 18.933� - 300 sin 9.467�

             = 1774.7 6 0
Thus, the system is in unstable equilibrium at u = 9.47�.� Ans.

R11–8.	 V = Ve + Vg

	 =
1

2
 kx2 - Wy

	 =
1

2
 (16)(2.5 - 2.5 sin u)2 - 20(2.5 cos u)

	 = 50 sin2 u - 100 sin u - 50 cos u + 50

	
dV

du
= 100 sin u cos u - 100 cos u + 50 sin u = 0

	
dV

du
= 50 sin 2u - 100 cos u + 50 sin u = 0

	 u = 37.77� = 37.8�

	
d2V

du2 = 100 cos 2u +  100 sin u +  50 cos u

d2V

du2 `
u= 37.77�

= 100 cos 75.55� + 100 sin 37.77� + 50 cos 37.77�

	   = 125.7 7 0

Thus, the system is in stable equilibrium at u = 37.8�� Ans.

dU = 0;	 2(-49.05dyG) + Fsp(dxB - dxD) = 0

	 (34.335 sin u - 1.2Fsp cos u)du = 0

However, from the spring formula, 

Fsp = kx = 40032(0.6 sin u) - 0.34 = 480 sin u - 120. 

Substituting,

(34.335 sin u -  576 sin u cos u + 144 cos u)du = 0

Since du � 0, then

	 34.335 sin u - 576 sin u cos u + 144 cos u = 0

	 u = 15.5�	 Ans.

	 and u = 85.4�� Ans.

R11–6.	
Vg = mgy = 40(9.81)(0.45 sin u + b) = 176.58 sin u + 392.4 b

Ve =
1

2
 (1500)(0.45 cos u)2 = 151.875 cos2 u

V = Vg + Ve = 176.58 sin u + 151.875 cos2 u + 392.4 b

	
dV

du
= 176.58 cos u - 303.75 cos u sin u = 0

	 cos u(176.58 - 303.75 sin u) = 0

	 cos u = 0	 u = 90�� Ans.

	 u = 35.54� = 35.5�� Ans.

d2V

d2u
= -176.58 sin u - 303.75 cos 2u

At u = 90�, 
d2V

d2u
`
u- a�

= -176.58 sin 90� - 303.75 cos 180�

	 = 127.17 7 0

	 = 127.17 7 0    Stable � Ans.

At u = 35.54�,
d2V

d2u
`
u= 35.54�

= -176.58 sin 35.54�

	   -  303.75 cos 71.09�

	 = -201.10 6 0    Unstable� Ans.



2–5.	 FAB = 314 lb, FAC = 256 lb
2–6.	 f = 1.22�
2–7.	 (F1)v = 2.93 kN, (F1)u = 2.07 kN
2–9.	 F = 616 lb, u = 46.9�
2–10.	 FR = 980 lb, f = 19.4�
2–11.	 FR = 10.8 kN, f = 3.16�
2–13.	 Fa = 30.6 lb, Fb = 26.9 lb
2–14.	 F = 19.6 lb, Fb = 26.4 lb
2–15.	 F = 917 lb, u = 31.8�
2–17.	 FR = 19.2 N, u = 2.37� c
2–18.	 FR = 19.2 N, u = 2.37� c
2–19.	 u = 53.5�, FAB = 621 lb
2–21.	 FR = 257 N, f = 163�
2–22.	 FR = 257 N, f = 163�
2–23.	 u = 75.5�
2–25.	 u = 36.3�, f = 26.4�
2–26.	 u = 54.3�, FA = 686 N
2–27.	 FR = 1.23 kN, u = 6.08�
2–29.	 FB = 1.61 kN, u = 38.3�
2–30.	 FR = 4.01 kN, f = 16.2�
2–31.	 u = 90�, FB = 1 kN, FR = 1.73 kN
2–33.	 FR = 983 N, u = 21.8�
2–34.	 �F1 = 5200i + 346j6  N, F2 = 5177i - 177j6  N
2–35.	 FR = 413 N, u = 24.2�
2–37.	 FR = 1.96 kN, u = 4.12�
2–38.	 �F1 = {30i + 40j} N, F2 = {-20.7i - 77.3j} N,  

F3 = {30i}, FR = 54.2 N, u = 43.5�
2–39.	 �F1x = 141 N, F1y = 141 N, F2x = -130 N, 

F2y = 75 N
2–41.	 FR = 12.5 kN, u = 64.1�
2–42.	 �F1 = {680i - 510j}  N, F2 = {-312i - 541j}  N, 

F3 = {-530i + 530j}  N
2–43.	 FR = 546 N, u = 253�

2–45.	 �FR = 2F1 

2 + F2 

2 + 2F1F2 cos f, 

u = tan-1a F1 sin f

F2 + F1 cos f
b

2–46.	 u = 68.6�, FB = 960 N
2–47.	 FR = 839 N, u = 14.8�
2–49.	 FR = 389 N, f� = 42.7�
2–50.	 �F1 = {9.64i + 11.5j}  kN, F2 = {-24i + 10j}  kN, 

F3 = {31.2i - 18j}  kN
2–51.	 �FR = 17.2 kN, u = 11.7�
2–53.	 �F1 = {-15.0i - 26.0j}  kN, 

F2 = {-10.0i + 24.0j}  kN
2–54.	 FR = 25.1 kN, u = 185�
2–55.	 F = 2.03 kN, FR = 7.87 kN
2–57.	 �FR = 380 N, F1 = 57.8 N

Chapter 1
1–1.	 a.	 78.5 N
	 b.	 0.392 mN
	 c.	 7.46 MN
1–2.	 a.	 GN>s
	 b.	 Gg>N
	 c.	 GN>(kg # s)
1–3.	 a.	 Gg>s
	 b.	 kN>m
	 c.	 kN>(kg # s)
1–5.	 a.	 45.3 MN
	 b.	 56.8 km
	 c.	 5.63 mg
1–6.	 a.	 58.3 km
	 b.	 68.5 s
	 c.	 2.55 kN
	 d.	 7.56 mg
1–7.	 a.	 0.431 g
	 b.	 35.3 kN
	 c.	 5.32 m
1–9.	 a.	 km>s
	 b.	 mm
	 c.	 Gs>kg
	 d.	 mm # N
1–10.	 a.	 kN # m
	 b.	 Gg>m
	 c.	 mN>s2

	 d.	 GN>s
1–11.	 a.	 8.653 s
	 b.	 8.368 kN
	 c.	 893 g
1–13.	 2.71 Mg>m3

1–14.	 a.	 44.9(10)-3 N2

	 b.	 2.79(103) s2

	 c.	 23.4 s
1–15.	 7.41 mN
1–17.	 1.00 Mg>m3

1–18.	 a.	 0.447 kg # m>N
	 b.	 0.911 kg # s
	 c.	 18.8 GN>m
1–19.	 1.04 kip
1–21.	 F = 10.0 nN, W 1 = 78.5 N, W 2 = 118 N

Chapter 2
2–1.	 FR = 497 N, f = 155�
2–2.	 F = 960 N, u = 45.2�
2–3.	 FR = 393 lb, f = 353�

Answers to Selected Problems

658
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2–106.	 F = {466i + 339j - 169k} N
2–107.	 F = {476i + 329j - 159k} N
2–109.	 F = 52.1 lb
2–110.	 �rAB = 10.0 ft, 
	 �F = {-19.1i - 14.9j + 43.7k} lb, a = 112�, 

b = 107�, g = 29.0�
2–111.	 rAB = 592 mm, F = { -13.2i - 17.7j + 20.3k}  N
2–113.	 (FED)� � = 334 N, (FED)# = 498 N
2–114.	 u = 36.4�
2–115.	 (F1)AC = 56.3 N
2–117.	 |Proj FAB| = 70.5 N, |Proj FAC| = 65.1 N
2–118.	 u = 31.0�
2–119.	 F1 = 18.3 lb, F2 = 35.6 lb
2–121.	 u = 100�
2–122.	 u = 19.2�
2–123.	 FBA = 187 N
2–125.	 Fu = 246 N
2–126.	 F� � = 10.5 lb
2–127.	 u = 142�
2–129.	 F� � = 0.182 kN
2–130.	 u = 74.4�, f = 55.4�
2–131.	 (FBC) � � = 28.3 lb, (FBC)# = 68.0 lb
2–133.	 u = 132�
2–134.	 u = 23.4�
2–135.	 3(F )AB 4 � � = 63.2 lb, 3(F )AB 4 # = 64.1 lb
2–137.	 �FOA = 242 N
2–138.	 u = 82.9�
2–139.	 Proj FAB = {0.229i - 0.916j + 1.15k} lb

Chapter 3
3–1.	 F2 = 9.60 kN, F1 = 1.83 kN
3–2.	 u = 4.69�, F1 = 4.31 kN
3–3.	 u = 82.2�, F = 3.96 kN
3–5.	 T = 7.20 kN, F = 5.40 kN
3–6.	 T = 7.66 kN, u = 70.1�
3–7.	 u = 20°, T = 30.5 lb
3–9.	 F = 960 lb
3–10.	 u = 40�, TAB = 37.6 lb
3–11.	 u = 40�, W = 42.6 lb
3–13.	 �FCA = 500(103) lb, FAB = 433(103) lb, 

FAD = 250(103) lb
3–14.	 xAD = 0.4905 m, xAC = 0.793 m, xAB = 0.467 m
3–15.	 m = 8.56 kg

3–17.	
1

kT
=

1

k1
+

1

k2

3–18.	 k = 176 N>m
3–19.	 l0 = 2.03 m
3–21.	 l = 2.66 ft
3–22.	 F = 158 N
3–23.	 d = 1.56 m
3–25.	 y = 2 m, F1 = 833 N

2–58.	 u = 86.0�, F = 1.97 kN
2–59.	 FR = 11.1 kN, u = 47.7�
2–61.	 Fx = 40 N, Fy = 40 N, Fz = 56.6 N
2–62.	 a = 48.4�, b = 124�, g = 60�, F = 8.08 kN
2–63.	 FR = 114 lb, a = 62.1�, b = 113�, g = 142�
2–65.	 �F1 = {-106i + 106j + 260k}  N, 

F2 = {250i + 354j - 250k}  N, 
FR = {144i + 460j + 9.81k}  N, FR = 482 N, 
a = 72.6�, b = 17.4�, g = 88.8�

2–66.	 a1 = 111�, b1 = 69.3�, g1 = 30.0�
2–67.	 F3 = 428 lb, a = 88.3�, b = 20.6�, g = 69.5�
2–69.	 FR = 430 N, a = 28.9�, b = 67.3�, g = 107�
2–70.	 �FR = 384 N, cos a = 14.8�, �cos b = 88.9�,
	 cos g = 105�
2–71.	 F1 = 429 lb, a1 = 62.2�, b1 = 110�, g1 = 145�
2–73.	 �F1 = {72.0i + 54.0k} N,

F2 = {53.0i + 53.0j + 130k} N, F3 = {200k}
2–74.	 FR = 407 N, a = 72.1�, b = 82.5�, g = 19.5�
2–75.	 �F1 = {14.0j - 48.0k} lb, 

F2 = {90i - 127j + 90k} lb
2–77.	 FR = 610 N, a = 19.4�, b = 77.5�, g = 105�
2–78.	 F2 = 66.4 lb, a = 59.8�, b = 107�, g = 144�
2–79.	 a = 124�, b = 71.3�, g = 140�
2–81.	 FR = 1.55 kip, a = 82.4�, b = 37.6�, g = 53.4�
2–82.	 FR = 1.60 kN, a = 82.6�, b = 29.4�, g = 61.7�
2–83.	 �a3 = 139�,  

b3 = 128�, g3 = 102�, FR1 = 387 N, 
b3 = 60.7�, g3 = 64.4�, FR2 = 1.41 kN

2–85.	 F = 2.02 kN, Fy = 0.523 kN
2–86.	 rAB = 397 mm
2–87.	 �F = {59.4i - 88.2j - 83.2k} lb, a = 63.9�, 

b = 131�, g = 128�
2–89.	 x = 5.06 m, y = 3.61 m, z = 6.51 m
2–90.	 z = 6.63 m
2–91.	 x = y = 4.42 m
2–93.	 FR = 1.17 kN, a = 66.9�, b = 92.0�, g = 157�
2–94.	 FR = 1.17 kN, a = 68.0�, b = 96.8�, g = 157�
2–95.	 FBA = {-109i + 131j + 306k} lb,
	 FCA = {103i + 103j + 479k} lb,
	 FDA = {-52.1i - 156j + 365k} lb
2–97.	 FR = 757 N, a = 149�, b = 90.0�, g = 59.0�
2–98.	 F = {-34.3i + 22.9j - 68.6k} lb
2–99.	 F = {13.4i + 23.2j + 53.7k} lb
2–101.	 �FA = {169i + 33.8j - 101k} lb, 

FB = {97.6i + 97.6j - 58.6k} lb, 
FR = 338 lb, a = 37.8�, 
b = 67.1�, g = 118�

2–102.	 �F1 = {389i - 64.9j + 64.9k}  lb, 
F2 = {-584i + 97.3j - 97.3k}  lb

2–103.	 FR = 52.2 lb, a = 87.8�, b = 63.7�, g = 154�
2–105.	 F = 105 lb
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4–14.	 �MO = {0.5i + 0.866j - 3.36k} N # m,  
a = 81.8�, b = 75.7�, g = 163�

4–15.	 (MA)C = 768 lb # ftb
	 (MA)B = 636  lb # ftd
	 Clockwise

4–17.	 m = a l

d + l
b  M

4–18.	 MP = (537.5 cos u + 75 sin u) lb # ft
4–19.	 F = 239 lb
4–21.	 F = 27.6 lb
4–22.	 r = 13.3 mm
4–23.	 (MR)A = (MR)B = 76.0 kN # md
4–25.	 �(MAB)A = 3.88  kip # ftb,  

(MBCD)A = 2.05  kip # ftb,  
(Mman)A = 2.10  kip # ftb

4–26.	 (MR)A = 8.04  kip # ftb
4–27.	 MO = {-40i - 44j - 8k} kN # m
4–29.	 MO = {-25i + 6200j - 900k} lb # ft
4–30.	 MA = {-175i + 5600j - 900k} lb # ft
4–31.	 MP = {-24i + 24j + 8k} kN # m
4–33.	 MB = {-110i - 180j - 420k} N # m
4–34.	 MA = {574i + 350j + 1385k} N # m
4–35.	 F = 585 N
4–37.	 MO = {163i - 346j - 360k} N # m
4–38.	 MA = {-82.9i + 41.5j + 232k} lb # ft
4–39.	 MB = {-82.9i - 96.8j - 52.8k} lb # ft
4–41.	 F = 18.6 lb
4–42.	 MO = 4.27 N # m, a = 95.2�, b = 110�, g = 20.6�
4–43.	 MA = {-5.39i + 13.1j + 11.4k} N # m
4–45.	 y = 2 m, z = 1 m
4–46.	 y = 1 m, z = 3 m, d = 1.15 m
4–47.	 MA = {-16.0i - 32.1k} N # m
4–49.	 �MB = {1.00i + 0.750j - 1.56k} kN # m
4–50.	 MO = {373i - 99.9j + 173k} N # m�	
4–51.	 umax = 90�, umin = 0, 180�
4–53.	 �Yes, yes
4–54.	 My� = 464 lb # ft
4–55.	 Mx = 440 lb # ft
4–57.	 M AC = {11.5i + 8.64j} lb # ft
4–58.	 Mx = 21.7 � # m
4–59.	 F = 139 �
4–61.	 MAB = 136 N # m
4–62.	 MBC = 165 N # m
4–63.	 MCA = 226 N # m
4–65.	 F = 5.66 N
4–66.	 �Ma = 4.37 N # m, a = 33.7�, b = 90�, g = 56.3�, 

M = 5.41 N # m
4–67.	 R = 28.9 N
4–69.	 F = 75 N, P = 100 N
4–70.	 (MR)C = 435  lb # ft d
4–71.	 F = 139 lb
4–73.	 F = 830 N

3–26.	 �THA = 294 N, TAB = 340 N, TAE = 170 N, 
TBD = 490 N, TBC = 562 N

3–27.	 m = 26.7 kg
3–29.	 �FDE = 392 N, FCD = 340 N, FCB = 275 N, 

FCA = 243 N
3–30.	 m = 20.4 kg
3–31.	 s = 3.38 m, F = 76.0 N
3–33.	 �TAB = 11.0 lb, TAC = 7.76 lb, TBC = 11.0 lb,
	 TBE = 19.0 lb, TCD = 17.4 lb, u = 18.4�
3–34.	 u = 18.4�, W = 15.8 lb
3–35.	 �FAB = 175 lb, l = 2.34 ft, or  

FAB = 82.4 lb, l = 1.40 ft
3–37.	 mB = 3.58 kg, N = 19.7 N
3–38.	 FAB = 98.6 N, FAC = 267 N
3–39.	 d = 2.42 m
3–41.	 T = 30.6 lb, x = 1.92 ft
3–42.	 WB = 18.3 lb
3–43.	 FAD = 763 N, FAC = 392 N, FAB = 523 N
3–45.	 FDA = 10.0 lb, FDB = 1.11 lb, FDC = 15.6 lb
3–46.	 sOB = 327 mm, sOA = 218 mm
3–47.	 FAB = 219 N, FAC = FAD = 54.8 N
3–49.	 m = 102 kg
3–50.	 FAC = 113 lb, FAB = 257 lb, FAD = 210 lb
3–51.	 F = 1558 lb
3–53.	 FAD = 557 lb, W = 407 lb
3–54.	 FAB = 79.2 lb, FAC = 119 lb, FAD = 283 lb
3–55.	 WC = 265 lb
3–57.	 W = 55.8 N
3–58.	 FAB = 441 N, FAC = 515 N, FAD = 221 N
3–59.	 FAB = 348 N, FAC = 413 N, FAD = 174 N
3–61.	 FAC = 85.8 N, FAB = 578 N, FAD = 565 N
3–62.	 m = 88.5 kg
3–63.	 FAD = 1.56 kN, FBD = 521 N, FCD = 1.28 kN
3–65.	 FAE = 2.91 kip, F = 1.61 kip
3–66.	 FAB = 360 lb, FAC = 180 lb, FAD = 360 lb
3–67.	 �W = 375 lb

Chapter 4
4–5.	 �(MF1

)B = 4.125 kip # ftd, 
	 (MF2

)B = 2.00 kip # ftd,
	 (MF3

)B = 40.0 lb # ftd
4–6.	 MP = 341 in. # lbd
	 MF = 403 in. # lbb
	 Not sufficient
4–7.	 �(MF1

)A = 433 N # mb 
(MF2

)A = 1.30 kN # mb 
(MF3

)A = 800 N # mb 
4–9.	 MB = 90.6 lb # ftb, MC = 141 lb # ftd
4–10.	 MA = 195 lb # ftd
4–11.	 (MO)max = 48.0 kN # md, x = 9.81 m
4–13.	 �MB = {-3.36k} N # m, a = 90�, b = 90�, 

g = 180�
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4–133.	 FA = 30 kN, FB = 20 kN, FR = 190 kN
4–134.	 �FR = 5141i + 100j + 159k6  N, 

MRO
= 5122i - 183k6  N # m

4–135.	 FR = 379 N,  MR = 590 N # m, z = 2.68 m,  
	 x = -2.76 m
4–137.	 FR = 539 N,  MR = 1.45 kN # m, x = 1.21 m,
	 y = 3.59 m
4–138.	 FR = 0, MRO = 1.35 kip # ft
4–139.	 FR = 6.75 kN, x = 2.5 m
4–141.	 FR = 7 lb, x = 0.268 ft
4–142.	 FR = 15.0 kN, d = 3.40 m
4–143.	 FR = 12.5 kN, d = 1.54 m
4–145.	 FR = 15.4 kN, (MR)O = 18.5 kN # m b
4–146.	 FR = 27.0 kN, (MR)A = 81.0 kN # m b
4–147.	 a = 1.54 m
4–149.	 w2 = 17.2 kN>m, w1 = 30.3 kN>m
4–150.	 FR = 51.0 kN T , MRO

= 914 kN # m b
4–151.	 FR = 51.0 kN T , d = 17.9 m
4–153.	 FR = 1.80 kN, d = 2.33 m
4–154.	 FR = 12.0 kN, u = 48.4� d, d = 3.28 m
4–155.	 FR = 12.0 kN, u = 48.4� d, d = 3.69 m
4–157.	 FR = 6.75 kN, (MR)O = 4.05 kN # m d
4–158.	 FR = 43.6 lb, x = 3.27 ft
4–159.	 d = 2.22 ft

4–161.	 FR =
2Lw0

p
, (MR)O = a2p - 4

p2 bw0L
2  b

4–162.	 FR = 107 kN, h = 1.60 m

Chapter 5
5–10.	 Ax = 3.46 kN, Ay = 8 kN, MA = 20.2 kN # m
5–11.	 NA = 750 N, By = 600 N, Bx = 450 N
5–13.	 NA = 2.175 kN, By = 1.875 kN, Bx = 0
5–14.	 NA = 3.33 kN, Bx = 2.40 kN, By = 133 N
5–15.	 Ay = 5.00 kN, NB = 9.00 kN, Ax = 5.00 kN
5–17.	 u = 41.4�

5–18.	 Ax = 0, By = P, MA =
PL

2

5–19.	 T =
W

2
 sin u

5–21.	 TBC = 113 N
5–22.	 NA = 3.71 kN, Bx = 1.86 kN, By = 8.78 kN
5–23.	 w = 2.67 kN>m
5–25.	 NA = 39.7 lb, NB = 82.5 lb, MA = 106 lb # ft
5–26.	 �u = 70.3�, N =

A = (29.4 - 31.3 sin u) kN, 
N =

B = (73.6 + 31.3 sin u) kN
5–27.	 NB = 98.1 N, Ax = 85.0 N, Ay = 147 N
5–29.	 P = 272 N
5–30.	 Pmin = 271 N
5–31.	 FB = 86.6 N, Bx = 43.3 N, By = 110 N
5–33.	 Ax = 25.4 kN, By = 22.8 kN, Bx = 25.4 kN
5–34.	 F = 14.0 kN

4–74.	 MC = 22.5 N # mb
4–75.	 F = 83.3 N
4–77.	 (MR)C = 240 lb # ft d
4–78.	 �F = 167 lb. Resultant couple can act anywhere.
4–79.	 d = 2.03 ft
4–81.	 MC = 126 lb # ftd
4–82.	 MC = {-50i + 60j} lb # ft
4–83.	 �MR = 96.0 lb # ft, a = 47.4�, b = 74.9�, g = 133�
4–85.	 �MR = 64.0 lb # ft, a = 94.7�, b = 13.2�, g = 102�
4–86.	 �M2 = 424 N # m, M3 = 300 N # m
4–87.	 �MR = 576 lb # in., a = 37.0�, b = 111�, g = 61.2�
4–89.	 F = 15.4 N
4–90.	 MC = 45.1 N # m
4–91.	 F = 832 N
4–93.	 F = 98.1 N
4–94.	 �MC = {-2i + 20j + 17k} kN # m, 

MC = 26.3 kN # m
4–95.	 �(MC)R = 71.9 � # m, a = 44.2�, b = 131�, g = 103�
4–97.	 FR = 365 N, u = 70.8� d, (MR)O = 2364 N # m d
4–98.	 FR = 365 N, u = 70.8� d, (MR)P = 2799 N # m d
4–99.	 �FR = 5.93 kN, u = 77.8� d, MRA

= 34.8 kN # m b
4–101.	 FR = 294 N, u = 40.1� d, 
	 MRO = 39.6 N # mb
4–102.	 FR = 1.30 kN, u = 86.7� c,
	 (MR)A = 1.02 kN # m d
4–103.	 FR = 1.30 kN, u = 86.7� c,
	 (MR)B = 10.1 kN # m d
4–105.	 FR = 938 N, u = 35.9� c, (MR)A = 680 N # m d
4–106.	 MRO = {0.650i + 19.75j - 9.05k} kN # m
4–107.	 FR = 5270k6  N, MRO = 5-2.22i6  N # m
4–109.	 FR = {6i + 5j - 5k} kN, 
	 (MR)O = {2.5i - 7j} kN # m
4–110.	 FR = {44.5i + 53.1j - 40.0k} N,
	 MRA = {-5.39i + 13.1j + 11.4k} N # m
4–111.	 �FR = 5-40j - 40k6  N,

MRA = 5-12j + 12k6  N # m
4–113.	 FR = 10.75 kip  T , d = 13.7 ft
4–114.	 FR = 10.75 kip T , d = 9.26 ft
4–115.	 F = 798 lb, 67.9� d, x = 7.43 ft
4–117.	 F = 1302 N, u = 84.5� d, x = 7.36 m
4–118.	 �F = 1302 N, u = 84.5� d, 

x = 1.36 m (to the right)
4–119.	 FR = 1000 N, u = 53.1� c, d = 2.17 m
4–121.	 FR = 356 N, u = 51.8�, d = 1.75 m
4–122.	 FR = 542 N, u = 10.6� b, d = 0.827 m
4–123.	 FR = 542 N, u = 10.6� b, d = 2.17 m
4–125.	 FR = 197 lb, u = 42.6�a, d = 5.24 ft
4–126.	 FR = 197 lb, u = 42.6�a, d = 0.824 ft
4–127.	 �FR = 26 kN, y = 82.7 mm, x = 3.85 mm
4–129.	 FC = 600 N, FD = 500 N
4–130.	 FR = 35 kN, y = 11.3 m, x = 11.5 m
4–131.	 F1 = 27.6 kN, F2 = 24.0 kN
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5–83.	 �T = 58.0 N, Cz = 87.0 N,  Cy = 28.8 N, Dx = 0, 
Dy = 79.2 N, Dz = 58.0 N

5–85.	 FBC = 0, Ay = 0, Az = 800 lb, 
	 (MA)x = 4.80 kip # ft, (MA)y = 0, (MA)z = 0

Chapter 6
6–1.	 FCB = 0,  FCD = 20.0 kN (C), 
	 FDB = 33.3 kN (T),  FDA = 36.7 kN (C)
6–2.	 FCB = 0,  FCD = 45.0 kN (C), 
	 FDB = 75.0 kN (T),  FDA = 90.0 kN (C)
6–3.	 �FAC = 150 lb (C), FAB = 140 lb (T), 

FBD = 140 lb  (T), FBC = 0, FCD = 150 lb (T), 
FCE = 180 lb (C), FDE = 120 lb (C), 
FDF = 230 lb (T), FEF = 300 lb (C)

6–5.	 �FCD = 5.21 kN (C), FCB = 4.17 kN (T),
FAD = 1.46 kN (C), FAB = 4.17 kN (T),
FBD = 4 kN (T)

6–6.	 �FCD = 5.21 kN (C), FCB = 2.36 kN (T), 
FAD = 1.46 kN (C), FAB = 2.36 kN (T), 
FBD = 4 kN (T)

6–7.	 �FDE = 16.3 kN (C), FDC = 8.40 kN (T), 
FEA = 8.85 kN (C), FEC = 6.20 kN (C), 
FCF = 8.77 kN (T), FCB = 2.20 kN (T), 
FBA = 3.11 kN (T), FBF = 6.20 kN (C), 
FFA = 6.20 kN (T)

6–9.	 FAE = 5.66 kN (C), FAB = 4.00 kN (T), 
	 FDE = 7.07 kN (C), FDC = 5.00 kN (T), 
	 FBE = 3.16 kN (T), FBC = 3.00 kN (T), 
	 FCE = 6.32 kN (T)
6–10.	 FAE = 9.90 kN (C), FAB = 7.00 kN (T), 
	 FDE = 11.3 kN (C), FDC = 8.00 kN (T), 
	 FBE = 6.32 kN (T), FBC = 5.00 kN (T), 
	 FCE = 9.49 kN (T)
6–11.	 �FJD = 33.3 kN (T), 

FAL = FGH = FLK = FHI = 28.3 kN (C), 
FAB = FGF = FBC = FFE = FCD = FED =

20 kN (T),
	 �FBL = FFH = FLC = FHE = 0, 		

FCK = FEI = 10 kN (T), FKJ = FIJ = 23.6 kN (C), 
FKD = FID = 7.45 kN (C)

6–13.	 �FCD = FAD = 0.687P (T), 
FCB = FAB = 0.943P (C),  
FDB = 1.33P (T)

6–14.	 Pmax = 849 lb
6–15.	 Pmax = 849 lb
6–17.	 �P = 5.20 kN

6–18.	 FDE = 8.94 kN (T), FDC = 4.00 kN (C), 
	 FCB = 4.00 kN (C), FCE = 0,  
	 FEB = 11.3 kN (C), FEF = 12.0 kN (T), 
	 FBA = 12.0 kN (C), FBF = 18.0 kN (T), 
	 FFA = 20.1 kN (C), FFG = 21.0 kN (T)

5–35.	 NA = 173 N, NC = 416 N, NB = 69.2 N
5–37.	 NA = 975 lb, Bx = 975 lb, By = 780 lb
5–38.	 Ax = 1.46 kip, FB = 1.66 kip
5–39.	 u = 17.5�
5–41.	 F = 311 kN, Ax = 460 kN, Ay = 7.85 kN
5–42.	 FCB = 782 N, Ax = 625 N,  Ay = 681 N
5–43.	 F2 = 724 N, F1 = 1.45 kN, FA = 1.75 kN
5–45.	 P = 660 N, NA = 442 N, u = 48.0�  b

5–46.	 d =
3a

4
5–47.	 FBC = 80 kN, Ax = 54 kN, Ay = 16 kN
5–49.	 FC = 10 mN
5–50.	 k = 250 N>m
5–51.	 wB = 2.19 kip>ft, wA = 10.7 kip>ft
5–53.	 a = 10.4�
5–54.	 h = 0.645 m

5–55.	 h = A s2 - l2

3
5–57.	 w1 = 83.3 lb>ft, w2 = 167 lb>ft
5–58.	 w1 =

2P

L
, w2 =

4P

L
 

5–59.	 u = 23.2�, 85.2�
5–61.	 NA = 346 N,  NB = 693 N, a = 0.650 m
5–62.	 T = 1.84 kN, F = 6.18 kN
5–63.	 RD = 22.6 kip, RE = 22.6 kip, RF = 13.7 kip
5–65.	 NA = 28.6 lb, NB = 10.7 lb, NC = 10.7 lb
5–66.	 TBC = 43.9 N, NB = 58.9 N, Ax = 58.9 N,
	 Ay = 39.2 N, Az = 177 N
5–67.	 TC = 14.8 kN, TB = 16.5 kN, TA = 7.27 kN
5–69.	 FAB = 467 N, FAC = 674 N, Dx = 1.04 kN,
	 Dy = 0, Dz = 0
5–70.	 TBA = 2.00 kN, TBC = 1.35 kN, Dx = 0.327 kN,
	 Dy = 1.31 kN, Dz = 4.58 kN
5–71.	 FBD = FBC = 350 N, Ax = 600 N,  
	 Ay = 0, Az = 300 N
5–73.	 Cy = 800 N, Bz = 107 N, By = 600 N,  
	 Cx = 53.6 N, Ax = 400 N, Az = 800 N
5–74.	 F = 746 N
5–75.	 TBC = 1.40 kN, Ay = 800 N, Ax = 1.20 kN, 
	 (MA)x = 600 N # m, (MA )y = 1.20 kN # m, 
	 (MA)z = 2.40 kN # m
5–77.	 Ax = 300 N, Ay = 500 N, NB = 400 N, 
	 (MA)x = 1.00 kN # m, (MA )y = 200 N # m, 
	 (MA)z = 1.50 kN # m
5–78.	 �Ax = 633 lb, Ay = -141 lb, Bx = -721 lb

Bz = 895 lb, Cy = 200 lb, Cz = -506 lb
5–79.	 F2 = 674 lb
5–81.	 Cz = 10.6 lb, Dy = -0.230 lb,
	 Cy = 0.230 lb, Dx = 5.17 lb,
	 Cx = 5.44 lb, M = 0.459 lb # ft
5–82.	 �FBD = 294 N, FBC = 589 N, Ax = 0,  

Ay = 589 N,  Az = 490.5 N
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6–49.	 �FEF = 12.9 kN (T), FFI = 7.21 kN (T), 
FHI = 21.1 kN (C)

6–50.	 �FCA = FCB = 122  lb (C), FCD = 173  lb (T), 
FBD = 86.6  lb (T), FBA = 0, FDA = 86.6  lb (T)

6–51.	 �FAB = 6.46  kN (T), FAC = FAD = 1.50  kN (C), 
FBC = FBD = 3.70  kN (C), FBE = 4.80  kN (T)

6–53.	 �FCA = 833 lb (T), FCB = 667 lb (C), 
FCD = 333 lb (T), FAD = FAB = 354 lb (C), 
FDB = 50 lb (T)

6–54.	 �FCA = 1000 lb (C), FCD = 406 lb (T), 
FCB = 344 lb (C), FAB = FAD = 424 lb (T), 
FDB = 544 lb (C)

6–55.	 FDF = 5.31 kN (C), FEF = 2.00 kN (T), 
	 FAF = 0.691 kN (T)
6–57.	 �FBF = 0, FBC = 0, FBE = 500 lb (T), 

FAB = 300 lb (C), FAC = 583 lb (T), 
FAD = 333 lb (T), FAE = 667 lb (C), FDE = 0,
FEF = 300 lb (C), FCD = 300 lb (C),
FCF = 300 lb (C), FDF = 424 lb (T)

6–58.	 �FBF = 0, FBC = 0, FBE = 500 lb (T), 
FAB = 300 lb (C), FAC = 972 lb (T), FAD = 0, 
FAE = 367 lb (C), FDE = 0, FEF = 300 lb (C), 
FCD = 500 lb (C), FCF = 300 lb (C), 
FDF = 424 lb (T)

6–59.	 �FAD = 686 N (T), FBD = 0, FCD = 615 N (C), 
FBC = 229 N (T), FAC = 343 N (T), 
FEC = 457 N (C)

6–61.	 P = 12.5 lb
6–62.	 a. P = 25.0 lb, b. P = 33.3 lb, c. P = 11.1 lb
6–63.	 �P = 18.9 N
6–65.	 Bx = 4.00 kN, By = 5.33 kN, Ax = 4.00 kN, 
	 Ay = 5.33 kN
6–66.	 Ax = 24.0 kN, Ay = 12.0 kN, Dx = 18.0 kN, 
	 Dy = 24.0 kN
6–67.	 Ax = 120 lb, Ay = 0, NC = 15.0 lb
6–69.	 �Bx = 2.80 kip, By = 1.05 kip, Ax = 2.80 kip, 

Ay = 5.10 kip, MA = 43.2 kip # ft
6–70.	 Cy = 184 N, Cx = 490.5 N, Bx = 1.23 kN, 
	 By = 920 kN
6–71.	 NE = 18.0 kN, NC = 4.50 kN, Ax = 0, 
	 Ay = 7.50 kN, MA = 22.5 kN # m
6–73.	  NE = 3.60 kN, NB = 900 N, Ax = 0, 
	 Ay = 2.70 kN, MA = 8.10 kN # m
6–74.	 �T = 350 lb, Ay = 700 lb, Ax = 1.88 kip, 

Dx = 1.70 kip, Dy = 1.70 kip
6–75.	 �T = 350  lb, Ay = 700  lb, Dx = 1.82  kip, 

Dy = 1.84  kip, Ax = 2.00 kip
6–77.	 �Ax = 96 lb, Ay = 72 lb, Dy = 2.18 kip, 

Ex = 96.0 lb, Ey = 1.61 kip
6–78.	 NC = 3.00 kN, NA = 3.00 kN,  
	 By = 18.0 kN, Bx = 0 

6–19.	 FDE = 13.4 kN (T), FDC = 6.00 kN (C), 
	 FCB = 6.00 kN (C), FCE = 0, FEB = 17.0 kN (C), 
	 FEF = 18.0 kN (T), FBA = 18.0 kN (C), 
	 FBF = 20.0 kN (T), FFA = 22.4 kN (C), 
	 FFG = 28.0 kN (T)
6–21.	 FDE = FDC = FFA = 0, FCE = 34.4 kN (C), 
	 FCB = 20.6 kN (T), FBA = 20.6 kN (T), 
	 FBE = 15.0 kN (T), FFE = 30.0 kN (C), 
	 FEA = 15.6 kN (T)
6–22.	 �FFE = 0.667P (T),  FFD = 1.67P (T), 

FAB = 0.471P (C), FAE = 1.67P (T), 
FAC = 1.49P (C),    FBF = 1.41P (T), 
FBD = 1.49P (C),   FEC = 1.41P (T), 
FCD = 0.471P (C)

6–23.	 �FEC = 1.20P (T), FED = 0, 
FAB = FAD = 0.373P (C), FDC = 0.373P (C), 
FDB = 0.333P (T), FBC = 0.373P (C)

6–25.	 FCB = 2.31 kN (C), FCD = 1.15 kN (C), 
	 FDB = 4.00  kN (T), FDA = 4.62 kN (C), 
	 FAB = 2.31 kN (C)
6–26.	 Pmax = 1.30 kN
6–27.	 �FHI = 42.5 kN (T), FHC = 100 kN (T), 

FDC = 125 kN (C)
6–29.	 �FHG = 1125  lb (T), FDE = 3375  lb (C), 

FEH = 3750  lb (T)
6–30.	 �FCD = 3375 lb (C),  FHI = 6750 lb (T), 

FCH = 5625 lb (C)
6–31.	 �FKJ = 11.25 kip (T), FCD = 9.375 kip (C),
	  FCJ = 3.125 kip (C), FDJ = 0
6–33.	 FGF = 12.5 kN (C), FCD = 6.67 kN (T), FGC = 0
6–34.	 �FGH = 12.5 kN (C), FBG = 6.01 kN (T), 

FBC = 6.67 kN (T)
6–35.	 FBC = 5.33 kN (C), FEF = 5.33 kN (T), 
	 FCF = 4.00 kN (T)
6–37.	 FEF = 14.0 kN (C), FBC = 13.0 kN (T), 
	 FBE = 1.41 kN (T), FBF = 8.00 kN (T)
6–38.	 FEF = 15.0 kN (C), FBC = 12.0 kN (T), 
	 FBE = 4.24 kN (T)
6–39.	 �FBC = 10.4 kN (C), FHG = 9.16 kN (T), 

FHC = 2.24 kN (T)
6–41.	 FBC = 18.0 kN (T), FFE = 15.0 kN (C), 
	 FEB = 5.00 kN (C)
6–42.	 FHG = 17.6 kN (C), FHC = 5.41 kN (C), 
	 FBC = 19.1 kN (T)
6–43.	 FGJ = 17.6 kN (C), FCJ = 8.11 kN (C), 
	 FCD = 21.4 kN (T), FCG = 7.50 kN (T)
6–45.	 FBF = 0, FBG = 35.4 kN (C), FAB = 45 kN (T)
6–46.	 FBC = 11.0 kN (T), FGH = 11.2 kN (C), 
	 FCH = 1.25 kN (C), FCG = 10.0 kN (T)
6–47.	 FCD = 18.0 kN (T), FCJ = 10.8 kN (T), 
	 FKJ = 26.8 kN (T)
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6–79.	 NC = ND = 2 lb
6–81.	 FFB = 1.94 kN, FBD = 2.60 kN
6–82.	 NA = 36.0 lb
6–83.	 FFD = 20.1 kN, FBD = 25.5 kN, 
	 Member EDC: Cx� = 18.0 kN, Cy� = 12.0 kN, 
	 Member ABC: C�y = 12.0 kN, C�x = 18.0 kN
6–85.	 TAI = 2.88 kip, FH = 3.99 kip
6–86.	 M = 314 lb # ft
6–87.	 FC = 19.6  kN
6–89.	 Cx = 650 N, Cy = 0
6–90.	 NB = NC = 49.5 N
6–91.	 FEF = 8.18 kN (T), FAD = 158 kN (C)

6–93.	 P(u) =
250 22.252 - cos2 u

sin u cos u + 22.252 - cos2 u # cos u

6–94.	 NB = 0.1175 lb, NA = 0.0705 lb
6–95.	 FN = 5.25 lb
6–97.	 �a. F = 205 lb, NC = 380 lb, 
	 b. F = 102 lb, NC = 72.5 lb
6–98.	 Ey = 1.00 kN, Ex = 3.00 kN, Bx = 2.50 kN, 
	 By = 1.00 kN, Ax = 2.50 kN, Ay = 500 N
6–99.	 �NC = 12.7 kN, Ax = 12.7 kN, Ay = 2.94 kN, 

ND = 1.05 kN
6–101.	 F = 370 N
6–102.	 NA = 284 N
6–103.	 By = 2.67 kN, Bx = 4.25 kN,  
	 Ay = 3.33 kN, Ax = 7.25 kN
6–105.	 P = 198 N
6–106.	 F = 66.1 lb
6–107.	 �d = 0.638  ft
6–109.	 P = 46.9 lb
6–110.	 u = 23.7�
6–111.	 m = 26.0 kg
6–113.	 mS = 1.71 kg
6–114.	 mL = 106 kg
6–115.	 �P = 283 N, Bx = Dx = 42.5 N, 

By = Dy = 283 N, Bz = Dz = 283 N
6–117.	 MEx = 0.5 kN # m, MEy = 0, Ey = 0, Ex = 0
6–118.	 FD = 20.8 lb, FF = 14.7 lb, FA = 24.5 lb

Chapter 7
7–1.	 �NC = 0, V C = -386 lb, MC = -857 lb # ft, 

ND = 0, V D = 300 lb, MD = -600 lb # ft
7–2.	 �NC = 0, V C = -1.00 kip, MC = 56.0 kip # ft, 

ND = 0, V D = -1.00 kip, MD = 48.0 kip # ft
7–3.	 V A = 0, NA = -39 kN, MA = -2.425 kN # m
7–5.	 VC = -133 lb, MC = 133 lb # in.

7–6.	 a =
L

3
7–7.	 VC = -4.00 kip, MC = 24.0 kip # ft
7–9.	 NC = -30 kN,  V C = -8 kN,  MC = 6 kN # m

7–10.	 �P = 0.533 kN, NC = -2  kN, VC = -0.533 kN, 
MC = 0.400  kN # m

7–11.	 �NC = 265 lb, VC = -  649 lb, MC = - 4.23 kip # ft, 
ND = - 265 lb, V D = 637 lb, MD = -3.18 kip # ft

7–13.	 �ND = 0, VD = 3.00 kip, MD = 12.0 kip # ft, 
NE = 0, VE = -8.00 kip, ME = -20.0 kip # ft

7–14.	 �MC = -15.0 kip # ft, NC = 0, V C = 2.01 kip, 
MD = 3.77 kip # ft, ND = 0, V D = 1.11 kip

7–15.	 NC = 0, VC = -1.50 kN, MC = 13.5 kN # m
7–17.	 NA = 86.6 lb, V A = 150 lb, MA = 1.80 kip # in.
7–18.	 �V C = 2.49 kN, NC = 2.49 kN, MC = 4.97 kN # m, 

ND = 0, V D = -2.49 kN, MD = 16.5 kN # m
7–19.	 �NC = -4.32 kip, V C = 1.35 kip, MC = 4.72 kip # ft
7–21.	 �NE = 720 N, VE = 1.12 kN, ME = -320 N # m,

NF = 0, VF = -1.24 kN, MF = -1.41 kN # m
7–22.	 �ND = 4 kN, V D = -9 kN, MD = -18 kN # m, 

NE = 4 kN, V E = 3.75 kN, ME = -4.875 kN # m
7–23.	 NC = 400 N, V C = -96 N, MC = -144 N # m
7–25.	 �ND = 0, V D = 0.75 kip, MD = 13.5 kip # ft, 

NE = 0, V E = -9 kip, ME = -24.0 kip # ft
7–26.	 �NC = -20.0 kN, V C = 70.6 kN, 

MC = -302 kN # m
7–27.	 NC = -1.60 kN, VC = 200 N, MC = 200 N # m
7–29.	 NC = -406 lb, V C = 903 lb, MC = 1.35 kip # ft
7–30.	 ND = -464 lb, V D = -203 lb, MD = 2.61 kip # ft
7–31.	 ���NE = 2.20 kN, V E = 0, ME = 0,  

ND = -2.20 kN, V D = 600 N, MD = 1.20 kN # m
7–33.	 ND = -2.25 kN, V D = 1.25 kN, -1.88 kN # m
7–34.	 NE = 1.25 kN, V E = 0, MB = 1.69 kN # m
7–35.	 d = 0.200 m
7–37.	 ND = 1.26 kN, V D = 0, MD = 500 N # m
7–38.	 NE = -1.48 kN, V E = 500 N, ME = 1000 N # m
7–39.	 �V = 0.278 w0 r, N = 0.0759 w0 r, 

M = 0.0759 w0 r2

7–41.	 �NC = -350 lb, (V C)y = 700 lb, (V C)z = -150 lb , 
(MC)x = -1.20 kip # ft, (MC)y = -750 lb # ft, 
(MC)z = 1.40 kip # ft

7–42.	 �(VC)x = 104 lb,  NC = 0,  (VC)z = 10 lb, 
(MC)x = 20 lb # ft, (MC)y = 72 lb # ft, 
(MC)z = -178 lb # ft

7–43.	 �Nx = -500 N, V y = 100 N, V z = 900 N ,
Mx = 600 N # m, My = -900 N # m, 
Mz = 400 N # m

7–45.	 a.	 �0 … x 6 a: V = a1 -
a

L
bP,

	 M = a1 -
a

L
bPx,

	 a 6 x … L: V = - a a

L
bP,

	 M = Paa -
a

L
 x b
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7–57.	 �For 0 … x 6 L,  V =
w

18
 (7L - 18x),

	 M =
w

18
 (7Lx - 9x2),

	 For L 6 x 6 2L, 

	 V =
w

2
 (3L - 2x), M =

w

18
 (27Lx - 20L2 - 9x2), 

	 �For 2L 6 x … 3L,  V =
w

18
 (47L - 18x),

	 M =
w

18
 (47Lx - 9x2 - 60L2)

7–58.	 �Member AB: For 0 … x 6 12 ft,  
V = {875 - 150x} lb, 
M = 5875x - 75.0x26 lb # ft, 
For 12 ft 6 x … 14 ft,  V = 52100 - 150x6 lb, 
M = 5-75.0x2 + 2100x - 147006 lb # ft, 
Member CBD: For 0 … x 6 2 ft,  V = 919 lb, 
M = {919x} lb # ft, For 2 ft 6 x … 8 ft,  
V = -306 lb, M = 52450 - 306x6 lb # ft

7–59.	 �For 0 … x 6 9 ft, V = 25 - 1.67x2, 
M = 25x - 0.556x3 

	 For 9 ft 6 x … 13.5 ft, V = 0, M = -180
7–61.	 �x = 15- , V = -20, M = -300, 

x = 30+ , V = 0, M = 150, 
x = 45- , V = -60, M = -300

7–62.	 x =
L

2
, P =

4Mmax

L

7–63.	 0 … x … 12 ft: V = e48.0 -
x2

6
f  kip, 

	 M = e48.0x -
x3

18
- 576 f  kip # ft,

	 12 6 x … 24 ft: V = e 1

6
 (24 - x)2 f  kip,

	 M = e -
1

18
 (24 - x)3 f  kip # ft

7–65.	 �For 0 … x 6 3 m, V = 521.0 - 2x26  kN, 

M = e21.0x -
2

3
x3 f  kN # m,  

For 3 m 6 x … 6 m, V = {39.0 - 12x} kN, 
	 M = {-6x2 + 39x - 18} kN # m

7–66.	 V =
w

12L
 (4L2 - 6Lx - 3x2), 

M =
w

12L
 (4L2x - 3Lx2 - x3 ), Mmax = 0.0940 wL2

7–67.	 �N = P sin (u + f), V = -P cos (u + f), 
M = Pr [sin (u + f) - sin f]

7–69.	 �V x = 0, Vz = {24.0 - 4y} lb, 
Mx = {2y2 - 24y + 64.0} lb # ft, 
My = 8.00 lb # ft, Mz = 0

7–70.	 x = 1-, V = 450 N, M = 450 N # m,
	 x = 3+ , V = -950 N, M = 950 N # m

	 b.	 0 … x 6 2 m: V = 6 kN, M = {6x} kN # m
	 2 m

#
6 x … 6 m: V = -3 kN, 

	 M = {18 - 3x} kN # m
7–46.	 �a.	� For 0 … x 6 a, V = P, M = Px, 

For a 6 x 6 L - a, V = 0, M = Pa, 
For L - a 6 x … L, V = -P, 
M = P(L - x)

	 b.	� For 0 … x 6 5 ft, V = 800  lb,  
M = 800x    lb # ft,

	 For 5 ft 6 x 6 7 ft, V = 0,
	 M = 4000  lb # ft,
	 For 7 ft 6 x … 12 ft, V = -800  lb, 
	 M = (9600 - 800x)  lb # ft

7–47.	 �a.	 For 0 … x 6 a, V =
Pb

a + b
, M =

Pb

a + b
 x,

	 	 For a 6 x … a + b, V = -
Pa

a + b
,

	 	 M = Pa -
Pa

a + b
 x,

	 �b.	� For 0 … x 6 5 ft, V = 350 lb, 
M = 350x lb # ft, 
For 5 ft 6 x … 12 ft, V = -250 lb,  
M = 3000 - 250x lb # ft

7–49.	 0 … x 6
L

3
: V = 0, M = 0,

	
L

3
6 x 6

2L

3
: V = 0, M = M0,

	
2L

3
6 x … L: V = 0, M = 0,

	 0 … x 6
8

3
 m: V = 0, M = 0,

	
8

3
 m 6 x 

16

3
 m: V = 0, M = 500 N # m,

	
16

3
 m 6 x … 8 m: V = 0, M = 0

7–50.	 Mmax = 2 kN # m

7–51.	 0 … x 6 a: V = -wx, M = -
w
2

 x2

	 �a 6 x … 2a: V = w (2a - x), 

	 M = 2wax - 2wa2 -
w

2
 x2

7–53.	 �For 0 … x 6 20 ft,  V = 5490 - 50.0x6 lb, 
M = 5490x - 25.0x26 lb # ft, 
For 20 ft 6 x … 30 ft,  V = 0, M = -200 lb # ft

7–54.	 a.	 V =
w

2
 (L - 2x), M =

w

2
 (Lx - x2) 

	 b.	� V = (2500 - 500x) lb, 
M = (2500x - 250x2) lb # ft

7–55.	 �For 0 … x 6 8 m, V = (133.75 - 40x) kN, 
M = (133.75x - 20x2) kN # m, 
For 8 m 6 x … 11 m, V = 20 kN, 
M = (20x - 370) kN # m
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8–6.	 F = 5.79 kN
8–7.	 a.	 No
	 b.	 Yes
8–10.	 f = u, P = W  sin (a + u)
8–11.	 a.	 W = 318 lb
	 b.	 W = 360 lb
8–13.	 FCD = 3.05 kN
8–14.	 u = 21.8�
8–15.	 l = 26.7 ft
8–17.	 ms = 0.231
8–18.	 P = 1350 lb
8–19.	 NA = 200 lb
8–21.	 n = 12
8–22.	 ms = 0.595
8–23.	 u = 33.4� 
8–25.	 d = 13.4 ft
8–26.	 P = 740 N
8–27.	 P = 860 N
8–29.	 u = 11.0�
8–30.	 u = 10.6�, x = 0.184 ft 
8–31.	 u = 8.53�, FA = 1.48 lb, FB = 0.890 lb
8–33.	 No

8–34.	 If P =
1

2
 W , ms =

1

3

	 If P �
1

2
 W ,

	 �ms =
(P + W ) - 2(W + 7P)(W - P)

2(2P - W )
 

	 for 0 6 P 6 W  
8–35.	 P = 8.18 lb
8–37.	 Oy = 400 N, Ox = 46.4 N
8–38.	 P = 350 N, Oy = 945 N, Ox = 280 N
8–39.	 ms = 0.230
8–41.	 u = 31.0�
8–42.	 P = 654 N
8–43.	 The block fails to be in equilibrium.
8–45.	 P = 355 N
8–46.	 mC = 0.0734, mB = 0.0964
8–47.	 u = 16.3�
8–49.	 Yes
8–50.	 m = 66.7 kg
8–51.	 P = 408 N
8–53.	 M = 55.2 lb # ft
8–54.	 u = 33.4�
8–55.	 P = 13.3 lb
8–57.	 P = 100 N, d = 1.50 ft 
8–58.	 u = 33.4�
8–59.	 �P = 5.53 kN, yes
8–61.	 P = 39.6 lb
8–62.	 x = 18.3 mm
8–63.	 P = 2.39 kN

7–71.	 x = 1- , V = 600 N, M = 600 N # m
7–74.	 x = 0.5+ , V = 450 N, M = -150 N # m,
	 x = 1.5- , V = -750 N, M = -300 N # m
7–75.	 x = 2+ , V = -375 N, M = 750 N # m
7–77.	 x = 10+ , V = 20.0 kip, M = -50.0 kip # ft
7–78.	 x = 2+ , V = -14.3, M = -8.6
7–79.	 �x = 1+ , V = 175, M = -200, 

x = 5- , V = -225, M = -300
7–81.	 x = 4.5- , V = -31.5 kN, M = -45.0 kN # m,
	 x = 8.5+ , V = 36.0 kN, M = -54.0 kN # m
7–82.	 x = 2.75, V = 0, M = 1356 N # m
7–83.	 x = 3, V = -2.25 kN, M = 20.25 kN # m
7–85.	 x = 3+ , V = 1800 lb, M = -900 lb # ft
	 x = 6, V = 0, M = 1800 lb # ft
7–86.	 x = 1.5, V = 2.25 kN, M = -2.25 kN # m
7–87.	 x = 3, V = 3.00 kN, M = -1.50 kN # m
7–89.	 x = 215, V = 0, M = 1291 lb # ft
	 x = 12- , V = -1900 lb, M = -6000 lb # ft
7–90.	 x = 0, V = 13.5 kN, M = -9.5 kN # m
7–91.	 x = 3, V = 0, M = 18.0 kN # m
	 x = 6- , V = -27.0 kN, M = -18.0 kN # m
7–93.	 x = 15, V = 0, M = 37.5 kip # ft
7–94.	 yB = 2.22 m, yD = 1.55 m
7–95.	 P1 = 320 N, yD = 2.33 m
7–97.	 xB = 5.39 m
7–98.	 P = 700 N
7–99.	 yB = 8.67 ft, yD = 7.04 ft
7–101.	 �yB = 3.53 m, P = 0.8 kN, Tmax = TDE = 8.17 kN
7–102.	 w = 51.9 lb>ft
7–103.	 Tmax = 14.4 kip, Tmin = 13.0 kip
7–105.	 TAB = TCD = 212  lb (max), yB = 2 ft
7–106.	 x = 2.57 ft,  W = 247 lb
7–107.	 TA = 61.7 kip, TB = 36.5 kip, TC = 50.7 kip
7–109.	 Tmax = 594  kN
7–110.	 Tmin = 552  kN
7–111.	 Tmax = 3.63 kip

7–113.	 y =
x2

7813
 a75 -

x2

200
b , Tmax = 9.28 kip

7–114.	 h = 4.44 ft
7–115.	 (Fh)R = 6.25  kip, (Fv)R = 2.51  kip
7–117.	 (Fv)A = 165  N, (Fh)A = 73.9  N
7–118.	 W = 4.00 kip, Tmax = 2.01 kip
7–121.	 l = 104  ft
7–122.	 h = 146 ft
7–123.	 L = 302  ft

Chapter 8
8–1.	 P = 12.8 kN
8–2.	 NB = 2.43 kip, NC = 1.62 kip, F = 200 lb
8–3.	 NA = 16.5 kN, NB = 42.3 kN, 
	 It does not move.
8–5.	 F = 2.76 kN
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Chapter 9
9–1.	 x = 124 mm, y = 0
9–2.	 x = 0, y = 1.82 ft
9–3.	 x = 0.574 m, Bx = 0, Ay = 63.1 N, By = 84.8 N
9–5.	 y = 0.857 m

9–6.	 y =
2

5
 m

9–7.	 x =
3

8
 a

9–9.	 x =
3

2
 m 

9–10.	 y =
12

5
 m

9–11.	 x =
3

4
 b

9–13.	 x = 6 m
9–14.	 y = 2.8 m
9–15.	 x = 0.398 m
9–17.	 y = 1.43 in.

9–18.	 x =
a(1 + n)

2(2 + n)
 

9–19.	 y =
hn

2n + 1
 

9–21.	 x = 1
3

5
 ft

9–22.	 y = 4
8

55
 ft

9–23.	 x =
3

8
a

9–25.	 �x = 3.20 ft, y = 3.20 ft, TA = 384 lb,  
TC = 384 lb, TB = 1.15 kip

9–26.	 x = 3 ft

9–27.	 y =
6

5
 ft

9–29.	 y = 40.0 mm

9–30.	 x =
1

3
(a + b)

9–31.	 y =
h

3

9–33.	 y =
pa

8
9–34.	 �x = 1.26 m, y = 0.143 m, NB = 47.9 kN, 

Ax = 33.9 kN, Ay = 73.9 kN

9–35.	 x = c 2(n + 1)

3(n + 2)
d a

9–37.	 x =
2

3
a r sin a

a
b

9–38.	 x = 0.785 a

9–39.	 x = y = 0, z =
4

3
  m

8–65.	 P = 4.05 kip
8–66.	 P = 106 lb
8–67.	 F = 66.7 N
8–69.	 W = 7.19 kN
8–70.	 The screw is self-locking.
8–71.	 P = 617 lb
8–74.	 M = 40.6 N # m
8–75.	 M = 48.3 N # m
8–77.	 ms = 0.0637
8–78.	 M = 5.69 lb # in.
8–79.	 F = 1.98 kN
8–81.	 F = 11.6 kN
8–82.	 P = 104 N
8–83.	 a.	 F = 1.31 kN 
	 b.	 F = 372 N
8–85.	 �He will successfully restrain the cow.
8–86.	 �Yes, it is possible.
	 F = 137 lb
8–87.	 T1 = 57.7 lb
8–89.	 mA = 2.22 kg
8–90.	 u = 99.2�
8–91.	 n = 3 half turns, Nm = 6.74 lb
8–93.	 M = 458 N # m
8–94.	 W = 9.17 lb
8–95.	 P = 78.7 lb
8–97.	 M = 75.4 N # m, V = 0.171 m3

8–99.	 P = 53.6 N
8–101.	 x = 0.384 m
8–102.	 Fs = 85.4 N
8–103.	 W D = 12.7 lb
8–105.	 umax = 38.8�
8–106.	 M = 50.0 N # m, x = 286 mm
8–107.	 M = 132 N # m
8–109.	 F = 10.7 lb
8–110.	 M = 16.1 N # m
8–111.	 M = 237 N # m

8–113.	 M =
2ms PR

3 cos u
8–114.	 T = 905 lb # in.
8–115.	 P = 118  N
8–117.	 P = 29.0 lb

8–118.	 M =
8

15
 ms PR

8–119.	 F = 18.9 N
8–121.	 P = 20.5 lb
8–122.	 T = 289 lb, N = 479 lb, F = 101 lb
8–123.	 ms = 0.0407
8–125.	 r = 20.6 mm
8–126.	 P = 42.2 lb
8–127.	 ms = 0.411
8–129.	 P = 1333  lb
8–130.	 P = 25.3 lb
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9–94.	 W = 3.12(106) lb

9–95.	 V =
p(6p + 4)

6
 a3

9–97.	 V = 0.114 m3

9–98.	 A = 2.25 m2

9–99.	 A = 276(103) mm2

9–101.	 W = 84.7 kip
9–102.	 Number of gal. = 2.75 gal
9–103.	 A = 8pba, V = 2pba2

9–105.	 Q = 205 MJ
9–106.	 A = 119(103) mm2

9–107.	 W = 126 kip
9–109.	 A = 1365 m2

9–110.	 m = 138 kg
9–111.	 m = 2.68 kg
9–113.	 V = 1.40(10 3) in3

9–114.	 h = 29.9 mm
9–115.	 FR = 1250 lb, x = 2.33 ft, y = 4.33 ft
9–117.	 FR = 24.0 kN,
	 x = 2.00 m, y = 1.33 m

9–118.	 FR =
4ab

p2 p0,  x =
a

2
 , y =

b

2

9–119.	 FRx = 2rlp0ap2 b , FR = plrp0

9–121.	 For water: FRA
= 157 kN, FRB

= 235 kN

	 For oil: d = 4.22 m
9–122.	 d = 2.61 m
9–123.	 F.S. = 2.71
9–125.	 F1 = 9.60 kip, F2 = 40.3 kip
9–126.	 FR = 427 lb, y = 1.71 ft, x = 0
9–127.	 FB = 29.4 kN, FA = 235 kN
9–129.	 F = 102 kN
9–130.	 FRv

= 196 lb, FRh
= 125 lb

Chapter 10
10–1.	 Ix =

ab3

3(3n + 1)

10–2.	 Iy =
a3b

n + 3
10–3.	 Ix = 457(106) mm4

10–5.	 Ix = 0.133 m4

10–6.	 Iy = 0.286 m4

10–7.	 Ix = 0.267 m4

10–9.	 Ix = 23.8 ft4

10–10.	 Ix =
2

15
 bh3

10–11.	 Ix = 614 m4

10–13.	 Ix =
p

8
 m4

10–14.	 Iy =
p

2
 m4

9–41.	 z =
R2 + 3r2 + 2rR

4(R2 + r2 + rR)
 h

9–42.	 y = 2.61 ft

9–43.	 z =
h

4
, x = y =

a
p

9–45.	 z =
4

3
 m

9–46.	 y =
3

8
 b, x = z = 0

9–47.	 z = 12.8 in .
9–49.	 z = 0.675a

9–50.	 z =
c

4
9–51.	 d = 3 m
9–53.	 x = 24.4 mm, y = 40.6 mm
9–54.	 x = 0, y = 58.3 mm
9–55.	 x = 112 mm, y = 112 mm, z = 136 mm
9–57.	 x = 0.200 m, y = 4.37 m
9–58.	 y = 154 mm
9–59.	 x = 0.571 in., y = -0.571 in.
9–61.	 y = 79.7 mm
9–62.	 x = -1.00 in., y = 4.625 in.
9–63.	 y = 85.9 mm 
9–65.	 x = 1.57 in., y = 1.57 in.
9–66.	 y = 2 in.
9–67.	 y = 272 mm
9–69.	 z = 1.625 in.
9–70.	 z = 4.32 in.

9–71.	 x =

2
3 r sin3 a

a -
sin 2a

2

9–73.	 y =
22(a2 + at - t2)

2(2a - t)
9–74.	 �x = 2.81 ft, y = 1.73 ft, NB = 72.1 lb, 

NA = 86.9 lb
9–75.	 x = 120 mm, y = 305 mm, z = 73.4 mm
9–77.	 u = 53.1�

9–78.	 z = 2.48 ft, u = 38.9�

9–79.	 z = 0.70 ft
9–81.	 z = 122 mm
9–82.	 h = 385 mm
9–83.	 x = 5.07 ft, y = 3.80 ft
9–85.	 z = 128 mm
9–86.	 z = 754 mm
9–87.	 x = 19.0 ft, y = 11.0 ft
9–89.	 �m = 16.4 kg, x = 153 mm,
	 y = -15 mm, z = 111 mm

9–90.	 V = 27.2(103) ft3

9–91.	 A = 3.56 (103) ft2

9–93.	 A = 4856 ft2
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10–70.	 Iu = 1.28(106) mm4, Iv = 3.31(106) mm4, 
	 Iuv = -1.75(106) mm4

10–71.	 Iu = 1.28(106) mm4, Iuv = -1.75(106) mm4,
	 Iv = 3.31(106) mm4

10–73.	 Imax = 1219 in4, Imin = 36.3 in4, (up)2 = 19.0� d, 
	 (up)1 = 71.0� b
10–74.	 �Imax = 17.4(106) mm4, Imin = 1.84(106) mm4

	 (up)1 = 60.0�, (up)2 = -30.0�
10–75.	 Imax = 17.4(106) mm4, Imin = 1.84(106) mm4,
	 (up)2 = 30.0� b, (up)1 = 60.0� d
10–77.	 �Imax = 250 in4, Imin = 20.4 in4, (up)2 = 22.5� d
	 (up)1 = 67.5� b
10–78.	 u = 6.08�, Imax = 1.74(103) in4, Imin = 435 in4

10–79.	 u = 6.08�, Imax = 1.74(103) in4, Imin = 435 in4

10–81.	 �Iu = 11.8(106) mm4, Iuv = -5.09(106) mm4,
	 Iv = 5.90(106) mm4

10–82.	 up1 = -31.4�, up2 = 58.6�, Imax = 309 in4, 		
	 Imin = 42.1 in4

10–83.	 Imax = 309 in4, Imin = 42.1 in4, 
	 up1 = -31.4�, up2 = 58.6�

10–85.	 Ix =
2

5
 mb2

10–86.	 kx = 57.7 mm

10–87.	 Ix =
1

3
 ma2

10–89.	 Ix =
2

5
 mb2

10–90.	 kx = A n + 2

2(n + 4)
 h

10–91.	 Iy = 2.25 slug # ft2

10–93.	 Ix =
3

10
 mr2

10–94.	 Iy = 1.71(103) kg # m2

10–95.	 IA = 0.0453 kg # m2

10–97.	 Iz = 1.53 kg # m2

10–98.	 y = 1.78 m, IG = 4.45 kg # m2

10–99.	 IO = 0.276 kg # m2

10–101.	 IA = 222 slug # ft2

10–102.	 Iz = 29.4 kg # m2

10–103.	 IO =
1

2
 ma2

10–105.	 Iz = 0.113 kg # m2

10–106.	 IG = 118 slug # ft2

10–107.	 IO = 282 slug # ft2

10–109.	 Iz = 34.2 kg # m2

Chapter 11
11–1.	 FAC = 7.32 lb
11–2.	 F = 2P cot u
11–3.	 FS = 15 lb
11–5.	 F = 369 N

10–15.	 Ix = 205 in4

10–17.	 Ix =
1

30
 bh3

10–18.	 Iy =
b3h

6
10–19.	 Ix = 0.267 m4

10–21.	 Ix = 0.8 m4

10–22.	 Iy = 0.571 m4

10–23.	 Ix =
3ab3

35
10–25.	 Ix = 209 in4

10–26.	 Iy = 533 in4

10–27.	  A = 14.0(103) mm2

10–29.	 �y = 52.5 mm, Ix� = 16.6(106) mm4, 
Iy� = 5.725(106) mm4

10–30.	 Ix = 182 in4

10–31.	 Iy = 966 in4

10–33.	 Iy = 2.03(109) mm4

10–34.	 Iy = 115 (106) mm4

10–35.	 y = 207 mm, Ix� = 222 (106) mm4

10–37.	 Iy = 90.2(106) mm4

10–38.	 Ix = 1971 in4

10–39.	 Iy = 2376 in4

10–41.	 Iy = 341 in4

10–42.	 Ix = 154(106) mm4

10–43.	 Iy = 91.3(106) mm4

10–45.	 x = 61.6 mm, Iy= = 41.2(106) mm4

10–46.	 Ix = 1845 in4

10–47.	 Iy = 522 in4

10–49.	 Iy� =
ab sin u

12
(b2 + a2 cos2 u)

10–50.	 y = 0.181 m, Ix� = 4.23(10-3) m4

10–51.	 Ix= = 520(106) mm4

10–53.	 Iy = 365 in4

10–54.	 Ixy =
1

3
 tl3sin 2u

10–55.	 Ixy = 5.06 in4

10–57.	 Ixy = 10.7 m4, Ix�y� = 1.07 m4

10–58.	 Ixy =
1

6
 a2b2

10–59.	 Ixy =
a4

280
10–61.	 Ixy = 0.667 in4

10–62.	 Ixy = 97.8 in4

10–63.	 Iu = 15.75 in4, Iu = 25.75 in4

10–65.	 Ixy = 119 in4

10–66.	 Ixy = 98.4(106) mm4

10–67.	 x = y = 44.1 mm, Ix=y= = -6.26(106) mm4

10–69.	 �Iu = 3.47(103) in4, Iv = 3.47(103) in4,  
Iuv = 2.05(103) in4
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11–29.	 �u = 38.7� unstable, u = 90� stable, 
u = 141� unstable

11–30.	 x = -0.424 ft unstable, x = 0.590 ft stable
11–31.	 u = 20.2�, stable
11–33.	 �Unstable equilibrium at u = 90� 

Stable equilibrium at u = 49.0�
11–34.	 �Unstable equilibrium at u = 0� 

Stable equilibrium at u = 72.9�
11–35.	 k = 2.81 lb>ft
11–37.	 �Stable equilibrium at u = 51.2� 

Unstable equilibrium at u = 4.71�
11–38.	 k = 157 N>m 
	 Stable equilibrium at u = 60�

11–39.	 W =
8k

3L
11–41.	 Stable equilibrium at u = 24.6�
11–42.	 f = 17.4�, u = 9.18�
11–43.	 �Unstable equilibrium at u = 23.2�
11–45.	 u = 0�, u = 33.0�
11–46.	 m = 5.29 kg

11–49.	 u = 0�, u = cos-1a d

4a
b

11–7.	 M = 52.0 lb # ft
11–9.	 u = 16.6�, u = 35.8�

11–10.	 P =
W

2
 cot u

11–11.	 u = 23.8�, u = 72.3�
11–13.	 u = 90�, u = 36.1�
11–14.	 k = 166 N>m
11–15.	 F =

M

2a sin u
11–17.	 M = 13.1 N # m
11–18.	 u = 41.2�
11–19.	 k = 9.88 kN>m
11–21.	 F =

50020.04 cos2 u + 0.6

(0.2 cos u + 20.04 cos2 u + 0.6) sin u
11–22.	 u = 9.21�
11–23.	 W G = 2.5 lb

11–25.	 �F =
W(a + b - d tan u)

ac
 2a2 + c2 + 2ac sin u

11–26.	 x = -0.5 ft unstable, x = 0.833 ft stable

11–27.	 Unstable at u = 34.6�, stable at u = 145�



671

Index
Active force, 89
Angles, 45–47, 69–73, 82–83, 403–405, 432

azimuth (f), 46–47
Cartesian force vectors, 45–47
coordinate direction, 45–46, 82–83
dot product used for, 69–73, 83
dry friction and, 403–405, 432
formed between intersecting lines, 70
impending motion and, 403–405
kinetic friction (uk), 404–405
lead, 432
mathematical review of, 616–617
Pythagorean’s theorem for, 70, 617
screws, 432
static friction (us), 403, 405
transverse (u), 46–47
vectors and, 45–47, 69–73, 82–81

Applied force (P), 402–405, 459–460
Area (A), 468, 470, 502–505, 523–524, 

529–535, 540–542, 548–557, 576
axial symmetry and rotation, 502–505, 

524, 548–549
centroid (C) of an, 468, 470, 502–505, 

523–524
centroidal axis of, 530–531
composite shapes, 503, 540–542, 576
inclined axis, about, 552–554
integration for, 468, 523, 529–532
Mohr’s circle for, 555–557
moments of inertia (I) for, 529–535, 

540–542, 548–557, 576
Pappus and Guldinus, theorems of, 

502–505, 524
parallel-axis theorem for, 530–531, 

540, 549, 567, 576
polar moment of inertia, 530–531
principal moments of inertia, 553–554
procedures for analysis of, 470, 532, 540
product of inertia for, 548–551, 576
radius of gyration of, 531
surface of revolution, 502, 504–505, 524
transformation equations for, 552
volume of revolution, 503–505, 524

Associative law, 126
Axes, 145–149, 190, 202, 529–535, 540–542, 

552–557, 563–570, 576–577
area moments of inertia for, 529–535, 

552–554
centroidal axis of, 530–531
composite bodies, 540–542, 568
distributed loads along single, 190
inclined, area about, 552–554
mass moments of inertia for, 

563–570, 577
Mohr’s circle for, 555–557

moment of a force about specified, 
145–149, 202

moments of inertia (I), 529–535, 
540–542, 552–557, 563–570, 576–577

parallel-axis theorem for, 530–531, 
540, 549, 567, 576

principal, 553–554, 556
procedures for analysis of, 532, 556, 564
product of inertia and, 548–551, 576
radius of gyration for, 531, 568
resultant forces and, 145–149, 190, 202
scalar analysis, 145
transformation equations for, 552
vector analysis, 146–147

Axial loads, friction (F) and, 447–449, 461
Axial revolution, 502–505, 524
Axial symmetry, 488–489, 502–505, 523–524

axial revolution and, 502–505, 524
center of gravity (G) and, 488–489, 

502–505, 523
centroid (C) and, 488–489, 502–505, 523
composite bodies, 488–489, 503
Pappus and Guldinus, theorems of, 

502–505, 524
rotation and, 502–505, 524
surface area and, 502, 504–505, 524
volume and, 503–505, 524

Axis of symmetry, 467, 469, 488–489, 523, 
548–551

area product of inertia, 548–551
centroid (C) and, 467, 469, 488, 523

Azimuth angles, 46

Ball and socket connections, 245–246, 248
Base units, 7
Beams, 342–380, 396–398

bending moments (M) and, 344–345, 
370–375, 396

cantilevered, 361
centroid (C), 344
couple moment (M) and, 372
distributed loads, 370–375, 398
force equilibrium, 370–371
free-body diagrams, 343–350, 396
internal forces, 342–380, 396–398
internal loads of, 361–364, 370–375
method of sections for, 343–350
moments, 344–345, 370–375, 396
normal force (N) and, 344–345, 396
procedures for analysis of, 345, 362
resultant loadings, 344, 396
shear and moment diagrams,  

361–364, 397
shear force (V) and, 344–345, 

370–375, 396

sign convention for, 345, 397
simply supported, 361
torsional (twisting) moment, 344, 396

Bearings, 246–248, 447–451, 461
collar, 447–449, 461
free-body diagrams, 246–248
frictional analysis of, 447–451, 461
journal, 246–247, 450–451, 461
pivot, 447–449, 461
rigid-body support reactions, 

246–248
thrust, 247–248

Belts (flat), frictional analysis of, 439–441, 460
Bending moment diagrams, 361–364. See 

also Shear and moment diagrams
Bending moments (M), 344–345, 370–375, 

396, 398
distributed loads and, 370–375, 398
internal forces and, 344–345, 370–375, 

396, 398
method of sections for, 344–345
shear (V) and, 371

Body at rest (zero), 208
By inspection, determination of forces, 

282, 292

Cables, 88, 117, 210, 246, 381–395, 398
concentrated loads, 381–383, 398
continuous, 88, 117
distributed loads, 384–387, 398
equilibrium of, 88, 117
flexibility of, 381
free-body diagram for, 88, 246
inextensible, 381
internal forces of, 381–395, 398
support reactions, 88, 246
weight of as force, 388–391, 398

Calculations, engineering importance of, 
10–11

Cantilevered beam, 361
Cartesian coordinate system, 44–49, 56–58, 

69, 82–83, 125–131, 201
addition of vectors, 47
azimuth angles (f), 46
concurrent force resultants, 47–49, 83
coordinate direction angles, 45–46, 

82–83
coplanar force resultants, 34
cross product using, 125–127
direction and, 45–47, 125, 128
dot product in, 69
magnitude in, 45, 82, 125, 128
moment of a force, calculations by, 

128–131, 201
position vectors (r), 56–58, 83
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Cartesian coordinate system (continued)
rectangular components, 44, 82
right-hand rule, 44, 56, 125–126, 128
three-dimensional systems, 44–49
transverse angles (u), 46–47
two-dimensional systems, 34
unit vectors, 44, 82
vector formulation, 126–127, 129
vector representation, 45, 82–83

Cartesian vector notation, 34
Center of gravity (G), 6, 212, 464–527

center of mass (Cm) and, 467, 523
centroid (C) and, 464–527
composite bodies, 488–492, 524
constant density and, 488
coplanar forces, 212
free-body diagrams of, 212
location of, 465–466, 470, 523
Newton’s law and, 6
procedure for analysis of, 470, 489
rigid-body equilibrium and, 212
specific weight and, 488
weight (W) and, 6, 212, 465–466, 

488, 523
Center of pressure (P), 513, 525
Centroid (C), 191, 212, 344, 464–527

area in x–y plane, 468, 523
axis of symmetry, 467, 469, 488, 523
axial symmetry, 488–489, 502–505, 

523–424
beam cross-section location, 344
center of gravity (G) and, 464–527
composite bodies, 488–492, 524
composite shapes, 503
coplanar forces, 212
distributed loads and, 511–518, 525
distributed loads, 191
flat surfaces, 511
fluid pressure and, 512–518, 525
free-body diagrams and, 212
integration for determination of, 

467–477, 523
line in x–y plane, 468–469, 523
line of action and, 191, 511, 513, 525
location of, 191, 467–477, 523
mass of a body (Cm), 467, 478, 523
method of sections and, 344
Pappus and Guldinus, theorems of, 

502–505, 524
plates, 497–518
procedure for analysis of, 470, 489
Pythagorean’s theorem for, 469
resultant forces and, 191, 344, 511, 

513–518, 525
rigid-body equilibrium and, 212

rotation of an axis, 502–505, 524
surface area and, 502, 504–505, 524
volume and, 467, 503–505, 523–524

Centroidal axis, 530–531
Coefficient of kinetic friction (mk), 404–405
Coefficient of rolling resistance, 452–453
Coefficient of static friction (ms), 403, 405
Collar bearings, frictional analysis of, 

447–449, 461
Collinear vectors, 19, 81
Communitative law, 18, 126
Components of a force, 18, 20–22
Composite bodies, 488–492, 503, 503, 524, 

540–542, 568, 576–577
area of, 503, 540–542, 576
axial symmetry and, 488–489
center of gravity (G), 488–492, 524
centroid (C) of, 488–492, 503, 524
constant density and, 488
mass moments of inertia, 568, 577
moments of inertia (I), 540–542, 

568, 576
procedure for analysis of, 489, 540
theorem of Pappus and Guldinus for 

parts of, 503
specific weight and, 488
weight (W) and, 488, 524

Compressive forces (C), 275–277, 291–292
method of joints and, 276–277
method of sections and, 291–292
truss members, 275

Concentrated force, 5
Concentrated loads, 370–371, 381–383, 

397–398
cables subjected to, 381–383, 398
distributed loads, 370–371
shear and moment discontinuities 

from, 371, 397
Concurrent forces, 47–49, 83, 106–110, 117, 

177, 252
addition of vectors, 47–49
Cartesian coordinate system for, 

47–49, 83
couple moments and, 177
equilibrium of, 106–110, 117, 252
statical determinacy and, 252
systems, simplification of, 177

Conservative forces, 597–599
potential energy and, 598–599
potential function for, 599
spring force, 597
virtual work (U) and, 597–599
weight, 597

Constant density, center of gravity (G) 
and, 488

Constraints, 251–259
improper, 252–253
procedure of analysis of, 254
redundant, 251
statical determinacy and, 251–259
rigid-body equilibrium and, 251–259

Conversion of units, 9
Coordinate direction angles, 45–46, 82–83
Coordinates, 44–49, 56–58, 82–83, 585–586, 

600, 612. See also Cartesian 
coordinate system

Cartesian, 44–49, 56–58, 82–83
direction angles (u), 45–46, 82
frictionless systems, 600
position, 585–586, 600, 612
potential energy and, 600
vector representation, 44–49, 56–58
virtual work for rigid-body connec-

tions, 585–586, 600, 612
x, y, z positions, 56

Coplanar distributed loads, 190–194
Coplanar forces, 33–38, 82, 91–95, 117, 

166–171, 177, 208–244, 268–269
addition of systems of, 33–38
Cartesian vector notation, 34
center of gravity, 212
centroid (geometric center), 212
couple moments and, 166–171, 177
direct solution for unknowns, 

220–229, 269
direction of, 33, 34
equations of equilibrium, 91, 208, 

220–229
equilibrium of, 91–95, 117, 208–244, 

268–269
equivalent system, 166–171
free-body diagrams, 91–92, 209–218, 268
idealized models of, 212–213
internal forces and, 212
magnitude of, 33, 34, 91
particles subjected to, 91–95, 117
procedure for analysis of, 92, 214, 221
rectangular components, 33–38, 82
resultants, 34–38
rigid bodies, 208–244, 268–269
scalar notation, 33, 34
support reactions, 209–211, 268
system components, 33–38
systems, simplification of, 166–171, 

177
three-force members, 230–231
two-force members, 230–231
vectors for, 33–38, 82
weight and, 212

Cosine functions, 617
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Cosine law, 22, 81
Coulomb friction, 401. See also 

Dry friction
Couple, 154
Couple moments (M0), 154–159, 166–171, 

177–183, 202–203, 372, 582–583
concurrent force systems and, 177
coplanar force systems and,  

166–171, 177
distributed load relationships, 372
equivalent couples, 155
equivalent system, 166–171
force systems, 154–159
free vectors, 154
internal forces and, 372
parallel force systems and, 178
procedure for analysis of, 168
resultant, 155–156
right-hand rule for, 154
rotation of, 582
scalar formulation of, 154
shear load (V) relationships, 372
systems, simplification of, 166–171, 

177–183
three-dimensional systems, 166–171, 

177–183
translation of, 582
vector formulation of, 154
virtual work of, 583
work of, 582
wrench, reduction of forces to, 179

Cross product, 125–127
Cartesian vector formulation, 126–127
direction and magnitude by, 125
laws of operation, 126
right-hand rule for, 125–126
vector multiplication using, 125–127

Curved plates, fluid pressure and, 514
Cylinders, rolling resistance of, 452–453, 461

Derivatives, 618
Derived units, 7–8
Dimensional homogeneity, 10
Direct solution for unknowns, 220–229, 269
Direction, 17, 33, 34, 45–47, 70, 81, 122, 125, 

128, 201, 405, 407
azimuth angles, 46
Cartesian coordinate vectors, 45–47
coordinate direction angles, 45–46
coplanar force systems, 33, 34
cross product and, 125
dot product applications, 70
frictional forces, 405, 407
moments, 122, 125, 128, 201
right-hand rule for, 125, 128, 201

three-dimensional systems, 45–47
transverse angles, 46–47
vector sense of, 17, 33, 34, 81

Direction cosines, 45–46
Disks, 447–449, 461, 564, 577

frictional analysis of, 447–449, 461
mass moments of inertia, 564, 577

Displacement (d), 583–590, 600, 612
frictionless systems, 600
potential energy and, 600
principle of virtual work and, 

583–590, 612
procedure for analysis of, 586
rigid-bodies, connected systems of, 

585–590
virtual work (U) and, 583–590, 

 600, 612
virtual work equations for, 583

Distributed loads, 190–194, 203, 370–375, 
384–387, 397–398, 511–518, 525

axis representation, along single, 190
beams subjected to, 370–375, 

397–398
bending moment (M) relationships, 

370–375, 398
cables subjected to, 384–387, 398
center of pressure (P), 513, 525
centroid (C) of, 191, 511–518, 525
concentrated loads, 370–371
coplanar, 190
couple moment (M0) relationships, 372
fluid pressure and, 512–518, 525
force equilibrium, 370–371
force system resultants, 190–194, 203
incompressible fluids, 512
internal forces, 370–375, 384–387, 

397–398
linearly, 513, 515, 525
line of action of, 191
magnitude and, 190, 511, 525
reduction of force and, 190–194, 203
resultant forces of, 190–194, 203, 

511, 525
shear force (V) relationships, 

370–375, 398
uniform, 370, 525

Distributive law, 69, 132
Dot notation, 10
Dot product, 69–73, 83, 146

applications in mechanics, 70
Cartesian vector formulation, 69
laws of operation, 69
moment about a specified axis, 146
vector angles and direction from, 

69–73, 83

Dry friction, 400–463
angles (u) of, 403–404
applied force (P) and, 402–405, 

459–460
bearings, analysis of, 447–451, 447
belts (flat), analysis of, 439–441, 460
collar and pivot bearings, analysis of, 

447–449, 461
characteristics of, 401–405, 459
coefficients of (m), 403–405, 459
direction of force, 405, 407
disks, analysis of, 447–449
equations for friction versus equilib-

rium, 407–414
equilibrium and, 402, 407
impending motion, 403, 406–414, 

432–433, 459–460
journal bearings, analysis of, 

450–451, 461
kinetic force (Fk), 404–405, 459
motion and, 403–405, 406–414, 

432–434, 459–460
problems involving, 406–414
procedure for analysis of, 409
rolling resistance and, 452–453, 461
screws, forces on, 432–434, 460
slipping and, 403–405, 406–414, 459
static force (Fs), 403, 405, 459
theory of, 402
tipping effect, balance of, 402, 459
wedges and, 430–431, 460

Dynamics, study of, 3

Elastic potential energy(Ve), 598
Engineering notation, 11
Equations of equilibrium, 87, 91, 106, 208, 

220–229, 250, 268–269, 407–414
alternative sets, 220–221
body at rest (zero), 208
coplanar force systems, 91, 220–229, 

268–269
direct solution, 220–229, 269
frictional equations and, 407–414
particles, 87, 91, 106
procedure for analysis using, 221
rigid bodies, 208, 220–229, 268–269
scalar form, 250, 268–269
three-dimensional force systems, 106, 

250, 269
three-force members, 230–231
two-force members, 230–231
vector form, 250, 269

Equilibrium, 86–119, 206–271, 370–371, 402, 
407–414, 600–606, 613

concurrent forces, 106–110, 117
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Equilibrium (continued)
conditions for, 87, 207–208, 220
coplanar force systems, 91–95, 117, 

208–244, 268–269
distributed loads, 370–371
free-body diagrams, 88–91, 106, 

209–218, 245–248, 268–269
friction and, 402, 407
frictionless systems, 600
impending motion and, 407–414
improper constraints and, 252–253
neutral, 601–602
one degree-of-freedom system, 601
particles, 86–119
potential-energy (V) criterion for, 

600, 613
procedures for analysis of, 92, 106, 

214, 221, 254, 603
redundant constraints and, 251
rigid bodies, 206–271
stability of systems, 601–606, 613
stable, 601–602
statical determinacy and,  

251–259, 269
support reactions, 209–211, 245–249, 

268–269
three-dimensional force systems, 

106–110, 117, 245–259, 269
three-force members, 230–231
tipping effect, balance of, 402, 459
two-dimensional force systems, 

91–95, 117
two-force members, 230–231
unstable, 601–602
virtual work (U) and, 600–606, 613
zero condition, 87, 117, 208

Equivalent couples, 155
Equivalent systems, 166–171, 177–183

concurrent force system, 177
coplanar systems, 166–171, 177
force and couple moment simplifica-

tion, 166–171, 177–183
parallel force systems, 178
principle of transmissibility for, 166
procedures for analysis, 168, 178
wrench, reduction to, 179
three-dimensional systems, 166–171, 177

Exponential notation, 10
External effects, 166
External forces, 207, 305

Fixed supports, 209, 211, 247
Flat plates, 511, 513, 515, 525

constant width, 513
distributed loads on, 511, 525

fluid pressure and, 513, 515, 525
variable width, 515

Floor beams, truss analysis and, 274
Fluid pressure, 512–518, 525

center of pressure (P), 513
centroid (C), 512–518, 525
curved plate of constant width, 514
flat plate of constant width, 513
flat plate of variable width, 515
incompressible fluids, 512
line of action, 513
Pascal’s law, 512
plates, 512–518, 525
resultant forces and, 513–518, 525

Force, 4, 5–9, 16–85, 86–119, 120–205, 212, 
230–231, 275–277, 291, 305, 342–399, 
402–405, 459–460, 511, 513–518, 
525, 581–583, 585–590, 597–598

active, 89
addition of vectors, 20–26, 33–38, 

47–49
applied (P), 402–405, 459–460
axis, about a specified, 145–149, 190
basic quantity of mechanics, 4
by inspection, 282, 292
cables, 88, 381–395
Cartesian vector notation for, 34
components of, 20–22, 33–38
compressive (C), 275–277, 291–292
concentrated, 5
concurrent, 47–49, 83, 166–171, 177
conservative, 597–598
coplanar, 33–38, 91–95, 117, 166–171, 

177, 203
couple moments and, 154–159, 

166–171, 177–183, 203
cross product, 125–127
directed along a line, 59–62
displacements from, 585–590
distributed loads, 190–194, 203, 511, 525
dot product, 69–73, 83
equilibrium and, 86–119, 230–231, 

370–371
equivalent system, reduction to, 

166–171, 177–183
external, 207, 305
free-body diagrams, 88–92, 117, 

291–296, 305, 343–350
friction, 402–405, 459, 597
gravitational, 7
internal, 212, 291, 305, 342–399
kinetic frictional (Fk), 404–405, 459
line of action, 17, 59–62, 83
method of sections for, 291–296, 

343–350

moment of, 121–124, 128–131, 145–149, 
154–159, 166–171, 201–202

motion and, 403–405
Newton’s laws, 6–7
nonconservative, 597
normal (N), 344–345, 396, 402–403
parallel systems, 178
parallelogram law for, 18, 20–22, 81
particles subjected to, 86–119
position vectors and, 56–58, 83
principle of moments, 132–134
principle of transmissibility, 128, 166
procedures for analysis of, 22, 89, 92, 

168, 178, 345
pulleys, 88
reactive, 89
rectangular components, 33–38, 44, 82
resultant, 18, 20–22, 34–38, 120–205, 

511, 513–518, 525
scalar notation for, 33, 34
scalars and, 17, 18, 69, 81, 121–124, 201
shear (V), 344–345, 370–375,  

396, 398
simplification of systems, 166–171, 203
spring (Fs), 597
springs, 88
static frictional (Fs), 403, 405, 459
structural analysis and, 275–277, 

291–292, 305, 343–350
structural members, 230–231, 274–275, 

292–293, 343–380
systems of, 33–38, 120–205
tensile (T), 275–277, 291–292
three-dimensional systems, 44–49, 

56–58, 106–110, 117, 166–171
unbalanced, 6
units of, 8–9
unknown, 291–292
virtual work (U) and, 581–583, 

585–590, 597–598
weight, 7, 388–391, 398, 597
work (W) of, 581–583
wrench, reduction to, 179
vectors and, 16–85, 86–119, 125–131, 201

Frames, 305–320, 337
free-body diagrams for, 305–311, 337
procedure for analysis of, 311
structural analysis of, 305–320, 337

Free vector, 154
Free-body diagrams, 88–92, 106, 117, 

209–218, 245–249, 251, 268–269, 
291–296, 305–311, 337, 343–350, 396

beams, 343–350, 396
cables, 88
center of gravity, 212
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centroid (geometric center), 212
concurrent forces, 106
coplanar force systems, 91–92, 

209–218, 221, 268
equilibrium and, 88–92, 209–218, 221, 

245–259, 251, 268–269
external forces and, 305
frames, 305–311, 337
idealized models of, 212–213
internal forces and, 212, 305,  

343–350, 396
machines, 305–311, 337
method of sections using, 291–296, 

343–350
particle equilibrium, 88–92
procedures for analysis using, 214, 

221, 254, 311
pulleys, 88
rigid bodies, 209–218, 245–249, 251, 

268–269
smooth surfaces, 88
springs, 88
statical determinacy and, 251, 269
structural analysis using, 291–296, 

305–311, 337
support reactions, 209–211, 245–248, 

251, 268–269
three-dimensional systems, 245–249, 

251, 269
weight and, 212

Frictional circle, 450
Friction (F), 400–463, 597

angles (u) of, 403–404
applied force (P), 402–405,  

459–460
axial loads and, 447–449, 461
bearings, analysis of, 447–451, 461
belts (flat), forces on, 439–441, 460
characteristics of, 401–405, 459
coefficients of (m), 403–405,  

452–453, 459
collar bearings, analysis of, 447–449, 461
Coulomb, 401
disks, analysis of, 447–449, 461
dry, 400–463
equations for friction and equilib-

rium, 407–414
equilibrium and, 402, 407
force of, 402–405, 459
impending motion, 403, 406–414, 

432–433, 459–460
journal bearings, analysis of, 

450–451, 461
kinetic force (Fk), 404–405, 459
lateral loads and, 450–451, 461

nonconservative force, as a, 597
point of contact, 401–402, 404
pivot bearings, analysis of, 447–449, 461
procedure for analysis of, 409
rolling resistance and, 452–453, 461
screws, forces of, 432–434, 460
shaft rotation and, 447–451, 461
slipping and, 404–405, 406–414, 459
static force (Fs), 403, 405, 459
virtual work (U) and, 597
wedges and, 430–431, 460

Frictionless systems, 600

Geometric center, 191, 212, 344. See also 
Centroid (C)

Gravitational attraction, Newton’s law of, 7
Gravitational potential energy (Vg), 598
Gravity, see Center of gravity (G)

Hinge connections, 209, 212, 245, 247
Hyperbolic functions, 618

Idealizations for mechanics, 5
Impending motion, 403, 406–414, 432–433, 

459–460
all points of contact, 406
angle of static friction for, 403
coefficient of static friction (ms)  

for, 403
downward, 433, 460
dry friction problems due to, 406–414
equilibrium and frictional equations 

for, 407–414
friction and, 403, 406–414, 432–433, 

459–460
no apparent, 406
points of contact, 404
procedure for analysis of, 409
screws and, 432–434, 460
some points of contact, 407
upward, 432–433, 460
verge of slipping, 403

Inclined axes, moment of inertia for area 
about, 552–554

Incompressible fluids, 512
Inertia, see Moments of inertia
Integrals, 619
Integration, 467–477, 511, 515, 525, 529–532, 

563, 576–577
area (A) integration, 468, 529–532
center of mass (Cm), determination of 

using, 467–477
centroid (C), determination of using, 

467–477, 511, 515, 525
distributed loads, 511, 515, 525

line segment, 468–469
mass moments of inertia, determina-

tion of using, 563, 577
moments of inertia, determination of 

using, 529–532, 576
parallel-axis theorem for, 530–531
pressure distribution and, 515, 525
procedure for analysis using, 532
resultant force integration, 511, 525
volume (V), 467
volume elements for, 563

Internal forces, 212, 291, 305, 342–399
beams subjected to, 342–380, 396–398
bending moments (M) and, 344–345, 

370–375, 396, 398
cables subjected to, 381–395, 398
compressive (C), 291
concentrated loads, 370–371, 381–383, 

397–398
couple moment (M0) and, 372
distributed loads, 370–375, 397–398
force equilibrium, 370–371
frames, 305
free-body diagrams, 305, 343–350, 396
machines, 305
method of sections and, 291, 343–350
moments and, 344–345, 370–375, 

396–398
normal force (N) and, 344–345, 396
procedures for analysis of, 345, 362
resultant loadings, 344, 396
rigid-body equilibrium and, 212
shear and moment diagrams, 

361–364, 397
shear force (V) and, 344–345, 

370–375, 396, 398
sign convention for, 345, 397
structural members with, 343–350, 396
tensile (T), 291
torsional (twisting) moment, 344, 396
weight, 388–391, 398

International System (SI) of units, 8, 9–10

Joints, truss analysis and, 273–274, 276–281. 
See also Method of joints

Joules (J), unit of, 582
Journal bearings, 246–248, 450–451, 461

frictional analysis of, 450–451, 461
support connections, 246–248

Kinetic frictional force (Fk), 404–405, 459

Lateral loads, friction (F) and, 450–451, 460
Laws of operation, 69
Lead of a screw, 432
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Lead angle, 432
Length, 4, 8–9, 468–470, 523

basic quantity of mechanics, 4
centroid (C) of lines, 468–470, 523
procedure for analysis of, 470
Pythagorean theorem for, 469
units of, 8–9

Line of action, 17, 59–62, 83, 191, 511, 513, 525
force vector directed along, 59–62, 83
resultant force, 191, 511
vector representation of, 17

Linear elastic behavior, 88
Lines, centroid (C) of, 468–469. See also 

Length
Loads, 190–194, 274, 370–375, 381–383, 

396–398, 447–451, 461, 512–518, 525.
	 See also Distributed loads
axial, 447–449, 461
beams, 370–375, 396–397
cables, 381–383, 398
concentrated, 370–371, 381–383, 

397–398
distributed, 370–375, 398
fluid pressure, 512–518
friction (F) and, 447–451, 461
lateral, 450–451, 461
linear distribution of, 513–514, 525
moment (M) relations with, 

370–375, 398
resultant forces, 190–192
reduction of distributed, 190–194
shaft rotation and, 447–451, 461
shear (V), 370–375, 396, 398
single axis representation, 190
three-dimensional, 344, 396
truss joints, 274
uniform, 525

Machines, 305–320, 337
free-body diagrams for, 305–311, 337
procedure for analysis of, 311
structural analysis and, 305–320, 337

Magnitude, 17, 33, 34, 44, 88, 91, 122, 125, 
128, 190, 201, 511, 525

Cartesian vectors, 45
coplanar force systems, 33, 34, 91
constant, 88
cross product and, 125
distributed load reduction and, 190, 

511, 525
equilibrium and, 88, 91
integration for, 511, 525
moments and, 122, 125, 128, 201
resultant forces, 190, 511, 525

right-hand rule for, 128
vector representation of, 17, 33, 34, 45
units of, 122

Mass, 4, 8–9, 467, 478, 523
basic quantity of mechanics, 4
center of (Cm), 467, 478, 523
integration of, 467, 523
units of, 8–9

Mass moments of inertia, 563–570, 577
axis systems, 563–570, 563, 577
composite bodies, 568, 577
disk elements, 564, 577
parallel-axis theorem for, 567
procedure for analysis of, 564
radius of gyration for, 568
shell elements, 564, 577
volume elements for integration, 563

Mathematical expressions, 616–619
Mechanics, study of, 3
Members, 230–231, 274–275, 292–293, 

343–350, 396
compressive force (C), 275
equilibrium of forces, 230–231
internal loads in, 343–350, 396
joint connections, 274
tensile force (T), 275
three-force, 230–231
truss analysis and, 274–275, 291–292
two-force, 230–231
unknown forces, 291–292

Method of joints, 276–284, 301, 335
compressive forces, 276–277
procedures for analysis using, 277, 301
space truss analysis, 301
structural analysis using, 276–284, 

301, 335
tensile forces, 276–277
truss analysis, 276–284, 301, 335
zero-force members, 282–284

Method of sections, 291–296, 301, 336, 
343–350

compressive forces, 291–292
internal forces from, 291, 343–350
free-body diagrams for, 291–296, 

343–350
procedures for analysis using, 293, 

301, 345
space truss analysis, 301
structural analysis using, 291–296, 301, 

336, 343–350
tensile forces, 291–292
truss analysis, 291–296, 336
unknown member forces, 291–292, 336

Models, idealized rigid bodies, 212–213

Mohr’s circle, 555–557
Moment arm (perpendicular distance), 

121–122
Moment axis, 122, 145–149, 202

direction and, 122
force about a, 145–149, 202
scalar analysis of, 145
vector analysis of, 146–147

Moments (M), 120–205, 344–345, 370–375, 
396, 398

bending (M), 344–345, 370–375, 396, 398
concentrated load discontinuities, 371
couple (M0), 154–159, 166–171, 

177–183, 202–203, 372
cross product for, 125–127
direction and, 122, 125, 128, 201
distributed loads and, 190–194, 203, 

370–375, 398
force, of, 120–205
free vector, 154
internal forces and, 344–345, 370–375, 

396, 398
magnitude and, 122, 125, 128, 201
parallel force systems and, 178
perpendicular to force resultants, 

177–183
principle of moments, 132–134
principle of transmissibility, 128, 166
procedures for analysis of, 168, 178
resultant, 122–124, 129, 155–156
scalar formulation of, 121–124, 

154, 201
shear loads (V) and, 370–375, 398
sign convention for, 122, 126
system simplification of, 166–171, 

177–183, 203
torque, 121
torsional (twisting), 344, 396
Varignon’s theorem, 132–134
vector formulation of, 126–131, 

154, 201
wrench, reduction of force and couple 

to, 179
Moments of inertia (I), 528–579

algebraic sum of, 540
area (A), 529–535, 540–542, 

548–557, 576
axis systems, 529–535, 540–542, 

548–554, 563–570
composite shapes, 540–542, 564, 

576–577
disk elements, 564
inclined axis, area about, 552–554
integration and, 529–532
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mass, 563–570, 563, 577
Mohr’s circle for, 555–557
parallel-axis theorem for, 530–531, 

540, 549, 567, 576
polar, 530–531
principle, 552–554, 556, 577
procedures for analysis of, 532, 540, 

556, 564
product of inertia and, 548–551, 576
radius of gyration for, 531, 568
shell elements, 564
transformation equations for, 552

Motion, 6, 403–414, 430–434, 439–441, 
447–435, 459–461

belt drives, 439–441, 460
coefficients of friction (m) and, 

403–405, 452–453, 459
downward, 433, 460
equilibrium and frictional equations 

for, 407–414
friction and, 403–414, 430–434, 

439–441, 447–435, 459–460
impending, 403, 406–414, 432–433, 

459–460
kinetic frictional force (Fk),  

404–405, 459
Newton’s laws of, 6
points of contact, 404
procedure for analysis of, 409
rolling resistance and,  

452–453, 461
screws and, 432–434, 460
self-locking mechanisms, 430, 433
shaft rotation, 447–451, 461
slipping, 404–405, 406–414, 459
static frictional force (Fs), 403,  

405, 459
upward, 432–433, 460
verge of sliding, 403
wedges, 430–431, 460

Multiforce members, 305. See also Frames; 
Machines

Neutral equilibrium, 601–602
Newton, unit of, 8
Newton’s laws, 6–7

gravitational attraction, 7
motion, 6

Nonconservative force, friction as a, 597
Normal force (N), 344–345, 396, 402–403

friction and, 402–403
internal forces as, 344–345
method of sections for, 344–345

Numerical calculations, importance of, 10–11

Pappus and Guldinus, theorems of, 
502–505, 524

axial revolution and symmetry, 502–505
centroid (C) and, 502–505, 524
composite shapes, 503
surface area and, 502, 504–505, 524
volume and, 503–505, 524

Parallel-axis theorem, 530–531, 540, 549, 
567, 576

area moments of inertia determined 
by, 530–531

area product of inertia determined by, 
549, 576

centroidal axis for, 530–531, 576
composite areas, 540
mass moments of inertia, 567
moments of inertia, 530–531, 540, 

567, 576
product of inertia determined by, 

549, 576
Parallel force and couple moments, 

simplification of, 178
Parallelogram law, 18, 20–22, 81
Particles, 5–7, 86–119

coplanar force systems, 91–95, 117
defined, 5
equations of equilibrium, 87, 91, 106
equilibrium of, 86–119
free-body diagrams, 88–91
gravitational attraction, 7
Newton’s laws applied to, 6–7
nonaccelerating reference of motion, 6
procedures for analysis of, 92, 106
three-dimensional force systems, 

106–110, 117
two-dimensional force systems, 

91–95, 117
zero condition, 87, 117

Perpendicular distance (moment arm), 
121–122

Pin connections, 209–211, 213, 247–248, 274
coplanar systems, 209–211, 213
free-body diagrams of, 209–211, 

247–248
three-dimensional systems, 247–248
truss member joints, 274

Pivot bearings, frictional analysis of, 
447–449

Planar truss, 273
Plates, 511–518, 525

flat of constant width, 513
distributed loads on, 511
flat of variable width, 515
centroid (C), 511–518, 525

curved of constant width, 514
flat of constant width, 499
flat of variable width, 501
fluid pressure and, 512–518, 525
resultant forces acting on, 511, 

513–518, 525
Point of contact, 401–402, 404
Polar moments of inertia, 530–531
Position coordinates, 585–586, 600, 612
Position vectors (r), 56–58, 83

head-to-tail addition, 56–57
x, y, z coordinates, 56, 83

Potential energy (V), 598–606, 613
elastic (Ve), 598
equilibrium, criterion for, 600, 613
equilibrium configurations, 601–606
frictionless systems, 600
gravitational (Vg), 598
position coordinates for, 600
potential function equations, 599
procedure for analysis of, 603
single degree-of-freedom systems, 

599, 601
stability of systems and, 601–606, 613
virtual work (V) and, 598–606, 613

Power-series expansions, 618
Pressure, see Fluid pressure
Principal axes, 552–554, 556
Principle moments of inertia, 553–554, 

556, 563
Principle of moments, 132–134
Principle of transmissibility, 128, 166
Principle of virtual work, 581, 583–590, 612
Product of inertia, 548–551, 576

axis of symmetry for, 548–549
moments of inertia of an area and, 

548–551, 576
parallel-axis theorem for, 549, 576

Procedure for analysis, 12–14
Projection, 70, 146
Pulleys, free-body diagram of, 88
Purlins, 273
Pythagorean theorem, 70, 469, 617

Quadratic formula, 618

Radius of gyration, 531, 568
Reactive force, 89
Rectangular components, force vectors of, 

33–38, 44
Resultants, 18, 20–22, 34–38, 81, 120–205, 

344, 396, 511, 513–518, 525
axis, moment of force about, 145–149, 

190, 202
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Resultants (continued)
Cartesian vector components, 44
Cartesian vector notation for, 34
centroid (C) and, 191, 344, 511, 

513–518, 525
concurrent forces, 47–49, 177
coplanar forces, 34–38, 177
couple moments, 154–159, 166–171, 

177–183, 203
distributed loads, reduction of, 

190–194, 203, 511, 525
fluid pressure and, 513–518, 525
force components of, 18, 20–22
force system, 120–205
integration for, 511, 525
internal forces, 344, 396
line of action, 191, 511, 513
magnitude of, 190, 511, 525
method of sections for, 344
moments of a force, 128–132
parallel forces, 178
parallelogram law for, 18, 20–22, 81
perpendicular to moments, 177–183
plates, 511–518, 525
principle moments, 132–134
procedure for analysis of, 178
scalar formulation of, 121–124, 145, 

154, 201
scalar notation for, 33
system reduction for, 166–171, 

177–183, 203
vector addition for, 18, 20–22
vector formulation of, 128–131, 

154, 202
wrench, reduction to, 179

Revolution, 502–505, 524
axial symmetry and, 502–505
centroid (C) and, 502–505, 524
composite shapes, 503
Pappus and Guldinus, theorems of, 

502–505, 524
surface area, 502, 504–505, 524
volume, 503–505, 524

Right-hand rule, 44, 56, 125–126, 128, 154
cross product direction, 125–126
moment of a couple, 154
three-dimensional coordinate  

systems, 44, 56
vector formulation, 126, 128

Rigid bodies, 3, 5, 206–271, 585–590, 612
center of gravity, 212
centroid (geometric center), 212
conditions for, 207–208
connected systems of, 585–590, 612
constraints of, 251–259

coplanar force systems, 208–244, 
268–269

defined, 5
displacement (d) and, 585–590, 600, 612
equations of equilibrium for, 208, 

220–229, 268–269
equilibrium of, 206–271
external forces and, 207
force and couple systems acting on, 

207–208
free-body diagrams, 209–218, 245–249, 

251, 268–269
frictionless systems, 600
idealized models of, 212–213
internal forces and, 212
improper constraints for, 252–253
mechanics, study of, 3
position coordinates for, 585–586, 

600, 612
procedures for analysis of, 214, 221, 

254, 586
redundant constraints for, 251
statical determinacy and, 251–259, 269
support reactions, 209–211, 245–248, 

251–259, 268–269
three-dimensional systems,  

245–259, 269
three-force members, 230–231
two-force members, 230–231
uniform, 212
virtual work (V) for, 585–590, 600, 612
weight and, 212

Rocker connections, 210
Roller connections, 209–210, 213, 246
Rolling resistance, frictional forces and, 

452–453, 461
Roof truss, 273–274, 335
Rotation of couple moments, 582. See also 

Revolution; Shaft rotation
Rounding off numbers, 11

Scalar notation, 33, 34
Scalar product, 69
Scalar triple product, 146
Scalars, 17, 18, 33, 69, 121–124, 145, 154, 201, 

250, 268–269, 582
couple moments, formulation by, 154
dot product and, 69
equations of equilibrium, 250, 

268–269
moment of a force about an axis, 145
moment of a force, formulation by, 

121–124, 201
multiplication and division of vectors 

by, 18

vectors and, 17, 69
negative, 33, 91
torque, 121
work as, 582

Screw, reduction of force and couple to, 179
Screws, frictional forces on, 430–434, 460
Self-locking mechanisms, 430, 433
Sense of direction, 17
Shaft rotation, 447–451, 461

axial loads, 447–449, 461
collar and pivot bearings for, 447–449
frictional analysis of, 447–451, 461
frictional circle, 450
journal bearings for, 450–451, 461
lateral loads, 450–451, 461

Shear and moment diagrams, 361–364, 
370–357, 397–398

beam analysis using, 361–364,  
370–375

couple moment (M0) and, 372
discontinuities in, 371
distributed load relations and, 

370–375, 398
internal forces and, 361–364, 370–375, 

397–398
moment (M) relations in, 371–375, 398
procedure for analysis of, 362
shear force (V) relations in,  

370–375, 398
Shear force (V), 344–345, 370–375, 396, 398

beams, 344–345, 370–375, 396, 398
bending moments (M) and, 344–345, 

370–375, 396, 398
concentrated load discontinuities, 371
couple moment (M0) and, 372
distributed load relations,  

370–375, 398
internal forces, 344–345, 370–375, 

396, 398
method of sections for, 344–345

Shell elements, mass moments of inertia, 
564, 577

Significant figures, 11
Simple truss, 275
Simply supported beam, 361
Sine functions, 617
Sine law, 22, 81
Single degree-of-freedom systems, 599, 601
Sliding vector, 128, 166
Slipping, 403–414, 459

friction and, 403–414, 459
impending motion of, 403,  

406–414, 459
kinetic frictional force (Fk),  

404–405, 459
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motion of, 404–414
points of contact, 404
problems involving, 406–414
static frictional force (Fs), 403, 405, 459
verge of, 403, 459

Slug, unit of, 8
Smooth surface support, 88, 246
Solving problems, procedure for, 12–14
Space trusses, structural analysis of, 

301–302, 337
Specific weight, center of gravity (G)  

and, 488
Spring constant (k), 88
Spring force (Fs), virtual work and, 597
Springs, free-body diagram of, 88, 117
Stability of a system, 252–253, 269, 601–606, 

613. See also Equilibrium
equilibrium configurations for, 

601–602, 613
potential energy and, 601–606
procedure for analysis of, 603
statical determinacy and, 252–253, 269
virtual work and, 601–606, 613

Stable equilibrium, 601–602
Static frictional force (Fs), 403, 405, 459
Statical determinacy, 251–259, 269

procedure for analysis of, 254
improper constraints and, 252–253
indeterminacy, 251, 269
reactive parallel forces, 243
redundant constraints and, 251
rigid-body equilibrium and,  

251–259, 269
stability and, 252–253, 269

Statically indeterminate bodies, 251, 269
Statics, 2–15

basic quantities, 4
concentrated force, 5
force, 4, 5–9
gravitational attraction, 7
historical development of, 4
idealizations, 5
length, 4, 8–9
mass, 4, 8–9
mechanics study of, 3
motion, 6
Newton’s laws, 6–7
numerical calculations for, 10–11
particles, 5
procedure for analysis of, 12–14
rigid bodies, 5
study of, 2–15
time, 4, 8
units of measurement, 7–10
weight, 7

Stiffness factor (k), 88
Stringers, 274
Structural analysis, 272–341, 343–350

compressive forces (C), 275–277, 
291–292

frames, 305–320, 337
free-body diagrams, 291–296, 

305–311, 337
internal forces and, 343–350
machines, 305–320, 337
method of joints, 276–284, 301, 335
method of sections, 291–296, 301, 336, 

343–350
multiforce members, 305
procedures for analysis of, 277, 293, 

301, 311, 345
space trusses, 301–302, 337
tensile forces (T), 275–277, 291–292
trusses, 273–304, 335–337
zero-force members, 282–284

Structural members, see Members
Support reactions, 209–211, 245–248, 

251–259, 268–269
coplanar force systems, 209–211, 268
improper constraints, 252–253
procedure for analysis of, 254
redundant constraints, 251
rigid-body equilibrium and, 209–211, 

245–248, 268–269
statical determinacy and, 251–259, 269
three-dimensional force systems, 

245–248, 251–259, 269
Surface area, centroid (C) and, 502, 

504–505, 524
Symmetry, see Axial symmetry; Axis of 

symmetry
System simplification, 166–171, 177–183

concurrent force system, 177
coplanar force system, 177
coplanar systems, 166–171, 177
equivalent system, reduction to, 

166–171, 177–183
force and couple moments, 167
parallel force systems, 178
procedures for analysis, 168, 178
reduction to a wrench, 179
three-dimensional systems,  

166–171, 177

Tangent functions, 617
Tensile forces (T), 275–277, 291–292

method of joints and, 276–277
method of sections and, 291–292
truss members, 275

Tetrahedron form, 301

Thread of a screw, 432
Three-dimensional systems, 44–49, 

56–58, 82–83, 106–110, 117, 166–171, 
245–259, 269.

	 See also Concurrent forces
addition of vectors, 47
azimuth angles, 46
Cartesian coordinate system for, 

44–49, 82–83
Cartesian unit vectors, 44
Cartesian vector representation, 45
concurrent forces, 47–49, 83, 106–110, 

117, 252
constraints for, 251–259, 269
coordinate direction angles,  

45–46
direction and, 45–47
equations of equilibrium, 106,  

250, 269
equilibrium of, 106–110, 117, 

245–259, 269
equivalent system, 166–171
force and couple moments, 166–171
force vectors, 44–49
free-body diagrams, 106
magnitude in, 45
particles, 106–110, 117
position vectors, 56–58, 83
procedure for analysis of, 106
reactive parallel forces, 253
rectangular components, 44
resultants, 47–49
right-hand rule, 44, 56
rigid bodies, 245–259
statical determinacy and,  

251–259, 269
support reactions for, 245–248, 

251–259, 269
transverse angles (u), 46–47

Three-force member equilibrium, 
230–231

Thrust bearing connections, 247, 248
Time, 4, 8

basic quantity of mechanics, 4
units of, 8

Tipping effect, balance of, 402, 459
Torque, 121. See also Moments (M)
Torsional (twisting) moment, 344, 396
Transformation equations, moments of 

inertia (I) and, 552
Translation of a couple moment, 582
Transverse angles, 46–47
Triangle rule, 18–19, 81
Triangular truss, 275
Trigonometric identities, 618



680 	 Index

Trusses, 273–304, 335–337
assumptions for design, 274–275, 301
compressive force (C) and, 275–277, 

291–292
floor beams, 274
joints, 273–274, 276–281
method of joints, 276–284, 301, 335
method of sections, 291–296, 301, 336
planar, 273
procedures for analysis of, 277,  

293, 301
purlins, 273
roof, 273–274, 335
simple, 273–275
space trusses, 301–302, 337
stringers, 274
structural analysis for, 273–304, 

335–337
tensile force (T) and, 275–277, 291–292
zero-force members, 282–284

Two-dimensional systems, 33–38, 82, 91–95, 
208–244. See also Coplanar forces

force vectors, 33–38, 82
particle equilibrium, 91–95
rigid-body equilibrium, 208–244

Two-force member equilibrium, 230–231

U.S. Customary (FPS) system of units, 8
Uniform distributed load, 370, 525
Uniform rigid bodies, 212
Unit vectors, 44, 59, 82
Units of measurement, 7–10

base, 7
conversion of, 9
derived, 7–8
International System (SI) of, 8, 9–10
prefixes, 9
rules for use, 10
U.S. Customary (FPS) system of, 8

Unknown member forces, 291–292, 336
Unstable equilibrium, 601–602

Varignon’s theorem, 132–134
Vectors, 16–85, 125–131, 146–147, 154, 201, 

250, 269
addition of, 18–19, 47
addition of forces, 20–26, 33–38
Cartesian coordinate system, 44–49, 

56–58, 69, 125–131, 201
Cartesian notation for, 34

components of a force, 18, 20–22, 81
concurrent forces, 47–49, 83
coplanar force systems, 33–38
cross product method of multiplica-

tion, 125–127
collinear, 19, 81
couple moments, formulation  

by, 154
direction and, 17, 33, 34, 45–47
division by scalars, 18
dot product, 69–73, 83
equations of equilibrium, 250, 269
force directed along a line, 59–62
forces and, 16–85
free, 154
line of action, 17, 59–62, 83
magnitude and, 17, 33, 34, 45
moment of a force about an axis, 

146–147
moments of a force, formulation by, 

128–131, 201
multiplication by scalars, 18
operations, 18–19
parallelogram law for, 18, 20–22, 81
physical quantity requirements, 17
position (r), 56–58, 83
procedure for analysis of, 22
rectangular components, 33–38,  

44, 82
resultant of a force, 18, 20–22, 81
scalar notation for, 33
scalars and, 17, 18, 69, 81
sliding, 128, 166
subtraction, 19
systems of coplanar forces, 33–38
three-dimensional systems, 44–49, 

82–83
triangle rule for, 18–19, 81
two-dimensional systems, 33–38, 82
unit, 44, 59, 82

Virtual work (U), 580–615
conservative forces and, 597–599
couple moment, work of, 582–583
displacement (d) and, 583–590, 

600, 612
equations for, 583
equilibrium and, 600–606, 613
force (F) and, 581–583, 585–590, 

597–598, 612
friction and, 598

frictionless systems, 600
movement as, 583
position coordinates for, 585–586, 

600, 612
potential energy (V) and,  

598–606, 613
principle of, 581, 583–590, 612
procedures for analysis using, 

586, 603
rigid-bodies, connected systems of, 

585–590
single degree-of-freedom systems, 

599, 601
spring force (Fs) and, 597
stability of a system, 601–606, 613
weight (W) and, 597
work (W) of a force, 581–583

Volume (V), 467, 470, 503–505, 523–524
axial rotation and symmetry, 

503–505, 524
centroid of (C), 467, 470, 503–505, 

523–524
integration of, 467, 523
Pappus and Guldinus, theorems of, 

503–505, 524
procedure for analysis of, 470

Wedges, 430–431, 460
Weight (W), 7, 212, 388–391, 398, 465–466, 

488, 523–524, 597
cables subjected to own,  

388–391, 398
center of gravity (G) and, 212, 

465–466, 523–524
composite bodies, 488, 524
conservative force of, 597
gravitational attraction and, 7
internal force of, 388–391, 398
rigid-body equilibrium and, 212
virtual work (U) and, 597

Work (W) of a force, 581–583. See also 
Virtual work

Wrench, reduction of force and moment 
to, 179

x, y, z position coordinates, 56, 83

Zero condition of equilibrium, 87, 117, 208
Zero-force members, method of joints  

and, 282–284
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Kinematics of a Particle

Chapter Objectives

n	 To introduce the concepts of position, displacement, velocity, 
and acceleration.

n	 To study particle motion along a straight line and represent this 
motion graphically.

n	 To investigate particle motion along a curved path using different 
coordinate systems.

n	 To present an analysis of dependent motion of two particles.

n	 To examine the principles of relative motion of two particles 
using translating axes.

12.1  Introduction

Mechanics is a branch of the physical sciences that is concerned with the 
state of rest or motion of bodies subjected to the action of forces. 
Engineering mechanics is divided into two areas of study, namely, statics 
and dynamics. Statics is concerned with the equilibrium of a body that is 
either at rest or moves with constant velocity. Here we will consider 
dynamics, which deals with the accelerated motion of a body. The subject 
of dynamics will be presented in two parts: kinematics, which treats only 
the geometric aspects of the motion, and kinetics, which is the analysis of 
the forces causing the motion. To develop these principles, the dynamics 
of a particle will be discussed first, followed by topics in rigid-body 
dynamics in two and then three dimensions.
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Historically, the principles of dynamics developed when it was 

possible to make an accurate measurement of time. Galileo Galilei 
(1564–1642) was one of the first major contributors to this field. His 
work consisted of experiments using pendulums and falling bodies. The 
most significant contributions in dynamics, however, were made by 
Isaac Newton (1642–1727), who is noted for his formulation of the 
three fundamental laws of motion and the law of universal gravitational 
attraction. Shortly after these laws were postulated, important 
techniques for their application were developed by Euler, D’Alembert, 
Lagrange, and others.

There are many problems in engineering whose solutions require 
application of the principles of dynamics. Typically the structural 
design of any vehicle, such as an automobile or airplane, requires 
consideration of the motion to which it is subjected. This is also true 
for many mechanical devices, such as motors, pumps, movable tools, 
industrial manipulators, and machinery. Furthermore, predictions of 
the motions of artificial satellites, projectiles, and spacecraft are based 
on the theory of dynamics. With further advances in technology, there 
will be an even greater need for knowing how to apply the principles 
of this subject.

Problem Solving.  Dynamics is considered to be more involved 
than statics since both the forces applied to a body and its motion must 
be taken into account. Also, many applications require using calculus, 
rather than just algebra and trigonometry. In any case, the most 
effective way of learning the principles of dynamics is to solve problems. 
To be successful at this, it is necessary to present the work in a logical 
and orderly manner as suggested by the following sequence of steps:

	 1.	 Read the problem carefully and try to correlate the actual physical 
situation with the theory you have studied.

	 2.	 Draw any necessary diagrams and tabulate the problem data.

	 3.	 Establish a coordinate system and apply the relevant principles, 
generally in mathematical form.

	 4.	 Solve the necessary equations algebraically as far as practical; then, 
use a consistent set of units and complete the solution numerically. 
Report the answer with no more significant figures than the accuracy 
of the given data.

	 5.	 Study the answer using technical judgment and common sense to 
determine whether or not it seems reasonable.

	 6.	 Once the solution has been completed, review the problem. Try to 
think of other ways of obtaining the same solution.

In applying this general procedure, do the work as neatly as possible. Being 
neat generally stimulates clear and orderly thinking, and vice versa.
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1212.2  �Rectilinear Kinematics: Continuous 
Motion

We will begin our study of dynamics by discussing the kinematics of a 
particle that moves along a rectilinear or straight-line path. Recall that a 
particle has a mass but negligible size and shape. Therefore we must limit 
application to those objects that have dimensions that are of no 
consequence in the analysis of the motion. In most problems, we will be 
interested in bodies of finite size, such as rockets, projectiles, or vehicles. 
Each of these objects can be considered as a particle, as long as the motion 
is characterized by the motion of its mass center and any rotation of the 
body is neglected.

Rectilinear Kinematics.  The kinematics of a particle is characterized 
by specifying, at any given instant, the particle’s position, velocity, and 
acceleration.

Position.  The straight-line path of a particle will be defined using a 
single coordinate axis s, Fig. 12–1a. The origin O on the path is a fixed 
point, and from this point the position coordinate s is used to specify the 
location of the particle at any given instant. The magnitude of s is the 
distance from O to the particle, usually measured in meters (m) or 
feet (ft), and the sense of direction is defined by the algebraic sign on s. 
Although the choice is arbitrary, in this case s is positive since the 
coordinate axis is positive to the right of the origin. Likewise, it is negative 
if the particle is located to the left of O. Realize that position is a vector 
quantity since it has both magnitude and direction. Here, however, it is 
being represented by the algebraic scalar s, rather than in boldface s, 
since the direction always remains along the coordinate axis.

Displacement.  The displacement of the particle is defined as the 
change in its position. For example, if the particle moves from one point 
to another, Fig. 12–1b, the displacement is

�s = s� - s

In this case �s is positive since the particle’s final position is to the right 
of its initial position, i.e., s� 7 s. Likewise, if the final position were to the 
left of its initial position, �s would be negative.

The displacement of a particle is also a vector quantity, and it should be 
distinguished from the distance the particle travels. Specifically, the 
distance traveled is a positive scalar that represents the total length of 
path over which the particle travels.

s

s

Position

(a)

O

s

s

Displacement

(b)

s¿

O
�s

Fig. 12–1
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Velocity.  If the particle moves through a displacement �s during the 
time interval �t, the average velocity of the particle during this time 
interval is

vavg =
�s

�t

If we take smaller and smaller values of �t, the magnitude of �s becomes 
smaller and smaller. Consequently, the instantaneous velocity is a vector 
defined as v = lim

�tS0
(�s>�t), or

( S+ )	 v =
ds

dt
	 (12–1)

Since �t or dt is always positive, the sign used to define the sense of the 
velocity is the same as that of �s or ds. For example, if the particle is 
moving to the right, Fig. 12–1c, the velocity is positive; whereas if it is 
moving to the left, the velocity is negative. (This is emphasized here by 
the arrow written at the left of Eq. 12–1.) The magnitude of the velocity is 
known as the speed, and it is generally expressed in units of m>s or ft>s.

Occasionally, the term “average speed” is used. The average speed is 
always a positive scalar and is defined as the total distance traveled by a 
particle, sT , divided by the elapsed time �t; i.e.,

(vsp)avg =
sT

�t

For example, the particle in Fig. 12–1d travels along the path of length sT 
in time �t, so its average speed is (vsp)avg = sT>�t, but its average velocity 
is vavg = - �s>�t.

s

Velocity

(c)

O
�s

v

�s

s
P

sT

Average velocity and
Average speed

O

P¿

(d)

Fig. 12–1 (cont.) 
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Acceleration.  Provided the velocity of the particle is known at 
two  points, the average acceleration of the particle during the time 
interval �t is defined as

aavg =
�v

�t

Here �v represents the difference in the velocity during the time interval 
�t, i.e., �v = v� - v, Fig. 12–1e.

The instantaneous acceleration at time t is a vector that is found by 
taking smaller and smaller values of �t and corresponding smaller and 
smaller values of �v, so that a = lim

�tS0
(�v>�t), or

( S+ )	 a =
dv

dt
	 (12–2)

Substituting Eq. 12–1 into this result, we can also write

( S+ )	 a =
d2s

dt2
	

Both the average and instantaneous acceleration can be either positive or 
negative. In particular, when the particle is slowing down, or its speed is 
decreasing, the particle is said to be decelerating. In this case, v� in Fig. 12–1f 
is less than v, and so �v = v� - v will be negative. Consequently, a will also 
be negative, and therefore it will act to the left, in the opposite sense to v. 
Also, notice that if the particle is originally at rest, then it can have an 
acceleration if a moment later it has a velocity v�; and, if the velocity is 
constant, then the acceleration is zero since �v = v - v = 0. Units 
commonly used to express the magnitude of acceleration are m>s2 or ft>s2.

Finally, an important differential relation involving the displacement, 
velocity, and acceleration along the path may be obtained by eliminating 
the time differential dt between Eqs. 12–1 and 12–2. We have

dt =
ds
v

=
dv
a

or

( S+ )	 a ds = v dv 	 (12–3)

Although we have now produced three important kinematic 
equations, realize that the above equation is not independent of 
Eqs. 12–1 and 12–2.

s

Acceleration

(e)

O

a

v v¿

s
P

Deceleration

(f)

O

P¿

v v¿

a

Fig. 12–1 (cont.)
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Constant Acceleration, a = ac 

.  When the acceleration is 
constant, each of the three kinematic equations ac = dv>dt, v = ds>dt, 
and ac ds = v dv can be integrated to obtain formulas that relate ac , v, s, 
and t.

Velocity as a Function of Time.  Integrate ac = dv>dt, assuming 
that initially v = v0 when t = 0.

L
v

v0

dv = L
t

0
ac dt

( S+ )	
  v = v0 + ac t 	 (12–4)

Position as a Function  of  Time.  Integrate v =  ds>dt =  v0 +  act, 
assuming that initially s = s0 when t = 0.

L
s

s0

ds = L
t

0
(v0 + act) dt

( S+ )	
s = s0 + v0t +

1
2 ac t

2

	 (12–5)

Velocity as a Function of Position.  Either solve for t in 
Eq. 12–4 and substitute into Eq. 12–5, or integrate v dv = ac ds, assuming 
that initially v = v0 at s = s0.

L
v

v0

v dv = L
s

s0

ac ds

( S+ )	 
 v2 = v0

2 + 2ac(s - s0)  
	 (12–6)

The algebraic signs of s0, v0 , and ac , used in the above three equations, 
are determined from the positive direction of the s axis as indicated by 
the arrow written at the left of each equation. Remember that these 
equations are useful only when the acceleration is constant and when 
t = 0, s = s0, v = v0 . A typical example of constant accelerated motion 
occurs when a body falls freely toward the earth. If air resistance is 
neglected and the distance of fall is short, then the downward acceleration 
of the body when it is close to the earth is constant and approximately 
9.81 m>s2 or 32.2 ft>s2. The proof of this is given in Example 13.2. 

When the ball is released, it has zero 
velocity  but an acceleration of 9.81 m>s2.  
(© R.C. Hibbeler) Constant Acceleration

Constant Acceleration

Constant Acceleration
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12Important Points

	 •	 Dynamics is concerned with bodies that have accelerated motion.

	 •	 Kinematics is a study of the geometry of the motion.

	 •	 Kinetics is a study of the forces that cause the motion.

	 •	 Rectilinear kinematics refers to straight-line motion.

	 •	 Speed refers to the magnitude of velocity.

	 •	 Average speed is the total distance traveled divided by the total 
time. This is different from the average velocity, which is the 
displacement divided by the time.

	 •	 A particle that is slowing down is decelerating.

	 •	 A particle can have an acceleration and yet have zero velocity.

	 •	 The relationship a ds = v dv is derived from a = dv>dt and 
v = ds>dt, by eliminating dt.

During the time this vvvvket undergoes 
rectilinear motion, its altitude as a function 
of time can be measured and expressed as 
s = s(t). Its velocity can then be found 
using v = ds>dt, and its acceleration 
can  be determined from a = dv>dt.  
(© NASA) 

Procedure for Analysis

Coordinate System.
	 •	 Establish a position coordinate s along the path and specify its fixed origin and positive direction.

	 •	 Since motion is along a straight line, the vector quantities position, velocity, and acceleration can be 
represented as algebraic scalars. For analytical work the sense of s, v, and a is then defined by their 
algebraic signs.

	 •	 The positive sense for each of these scalars can be indicated by an arrow shown alongside each kinematic 
equation as it is applied.

Kinematic Equations.

	 •	 If a relation is known between any two of the four variables a, v, s, and t, then a third variable can be 
obtained by using one of the kinematic equations, a = dv>dt, v = ds>dt or a ds = v dv, since each 
equation relates all three variables.*

	 •	 Whenever integration is performed, it is important that the position and velocity be known at a given 
instant in order to evaluate either the constant of integration if an indefinite integral is used, or the limits 
of integration if a definite integral is used.

	 •	 Remember that Eqs. 12–4 through 12–6 have only limited use. These equations apply only when the 
acceleration is constant and the initial conditions are s = s0 and v = v0 when t = 0.

*Some standard differentiation and integration formulas are given in Appendix A.
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(© R.C. Hibbeler)

The car on the left in the photo and in Fig. 12–2 moves in a straight 
line such that for a short time its velocity is defined by 
v = (3t2 + 2t) ft>s, where t is in seconds. Determine its position and 
acceleration when t = 3 s. When t = 0, s = 0.

s

O

a, v

Fig. 12–2 

Example   12.1

Solution
Coordinate System.  The position coordinate extends from the fixed 
origin O to the car, positive to the right.

Position.  Since v = f(t), the car’s position can be determined from 
v = ds>dt, since this equation relates v, s, and t. Noting that s = 0 
when t = 0, we have*

( S+ )	  v =
ds

dt
= (3t2 + 2t)

	  L
s

0
ds = L

t

0
(3t2 + 2t)dt 	

	  s `
s

0
= t3 + t2 `

t

0

	  s = t3 + t2

When t = 3 s,

	 s = (3)3 + (3)2 = 36 ft	 Ans.

Acceleration.  Since v = f(t), the acceleration is determined from 
a = dv>dt, since this equation relates a, v, and t.

( S+ )	  a =
dv

dt
=

d

dt
 (3t2 + 2t)	

	  = 6t + 2

When t = 3 s,

	 a = 6(3) + 2 = 20 ft>s2 S 	 Ans.

NOTE: The formulas for constant acceleration cannot be used to solve 
this problem, because the acceleration is a function of time.

*The same result can be obtained by evaluating a constant of integration C rather 
than using definite limits on the integral. For example, integrating ds = (3t2 + 2t)dt 
yields s = t3 + t2 + C. Using the condition that at t = 0, s = 0, then C = 0.



	 12.2 R ectilinear Kinematics: Continuous Motion	 11

12

A small projectile is fired vertically downward into a fluid medium with 
an initial velocity of 60 m>s. Due to the drag resistance of the fluid the 
projectile experiences a deceleration of a = (-0.4v3) m>s2, where v is in 
m>s. Determine the projectile’s velocity and position 4 s after it is fired.

Solution
Coordinate System.  Since the motion is downward, the position 
coordinate is positive downward, with origin located at O, Fig. 12–3.

Velocity.  Here a = f(v) and so we must determine the velocity as a 
function of time using a = dv>dt, since this equation relates v, a, and t. 
(Why not use v = v0 + act?) Separating the variables and integrating, 
with v0 = 60 m>s when t = 0, yields

(+ T )	 a =
dv

dt
= -0.4v3

	 L
v

60 m>s
 

dv

-0.4v3 = L
t

0
dt

	
1

-0.4
 a 1

-2
b  

1

v2 `
60

v

= t - 0

	
1

0.8
 c 1

v2 -
1

(60)2 d = t

	 v = e c 1

(60)2 + 0.8t d
-1>2
f

 

m>s
Here the positive root is taken, since the projectile will continue to 
move downward. When t = 4 s,

	 v = 0.559 m>sT 	 Ans.

Position.  Knowing v = f(t), we can obtain the projectile’s position 
from v = ds>dt, since this equation relates s, v, and t. Using the initial 
condition s = 0, when t = 0, we have

(+ T )	 v =
ds

dt
= c 1

(60)2 + 0.8t d
-1>2

	 L
s

0
ds = L

t

0
c 1

(60)2 + 0.8t d
-1>2

dt

	 s =
2

0.8
 c 1

(60)2 + 0.8t d
1>2
`
0

t

	 s =
1

0.4
 e c 1

(60)2 + 0.8t d
1>2

-
1

60
f  m

When t = 4 s,

	 s = 4.43 m	 Ans.

Example   12.2

s

O

Fig. 12–3 
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During a test a rocket travels upward at 75 m>s, and when it is 40 m 
from the ground its engine fails. Determine the maximum height sB 
reached by the rocket and its speed just before it hits the ground. 
While in motion the rocket is subjected to a constant downward 
acceleration of 9.81 m>s2 due to gravity. Neglect the effect of air 
resistance.

Solution
Coordinate System.  The origin O for the position coordinate s is 
taken at ground level with positive upward, Fig. 12–4.

Maximum Height.  Since the rocket is traveling upward, 
vA = +75 m>s when t = 0. At the maximum height s = sB the velocity 
vB = 0. For the entire motion, the acceleration is ac = -9.81 m>s2 
(negative since it acts in the opposite sense to positive velocity or 
positive displacement). Since ac is constant the rocket’s position may 
be related to its velocity at the two points A and B on the path by using 
Eq. 12–6, namely,

 (+ c )	  vB
2 = vA

2 + 2ac(sB - sA)

	  0 = (75 m>s)2 + 2(-9.81 m>s2)(sB - 40 m)

	  sB = 327 m 	 Ans.

Velocity.  To obtain the velocity of the rocket just before it hits the 
ground, we can apply Eq. 12–6 between points B and C, Fig. 12–4.

 (+ c )	  vC
2 = vB

2 + 2ac(sC - sB)

	  = 0 + 2(-9.81 m>s2)(0 - 327 m)

	  vC = -80.1 m>s = 80.1 m>s T 	 Ans.

The negative root was chosen since the rocket is moving downward. 
Similarly, Eq. 12–6 may also be applied between points A and C, i.e.,

 (+ c )	  vC
2 = vA

2 + 2ac(sC - sA)

	  = (75 m>s)2 + 2(-9.81 m>s2)(0 - 40 m)

	  vC = -80.1 m>s = 80.1 m>s T 	 Ans.

NOTE: It should be realized that the rocket is subjected to a deceleration 
from A to B of 9.81 m>s2, and then from B to C it is accelerated at this 
rate. Furthermore, even though the rocket momentarily comes to rest 
at B (vB = 0) the acceleration at B is still 9.81 m>s2 downward!

Example   12.3

A

O

vA � 75 m/s

vB � 0

sA � 40 m

s

sB

B

C

Fig. 12–4 
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A metallic particle is subjected to the influence of a magnetic field as 
it travels downward through a fluid that extends from plate A to 
plate B, Fig. 12–5. If the particle is released from rest at the midpoint C, 
s = 100 mm, and the acceleration is a = (4s) m>s2, where s is in 
meters, determine the velocity of the particle when it reaches plate B, 
s = 200 mm, and the time it takes to travel from C to B.

Solution
Coordinate System.  As shown in Fig. 12–5, s is positive downward, 
measured from plate A.

Velocity.  Since a = f(s), the velocity as a function of position can 
be obtained by using v dv = a ds. Realizing that v = 0 at s = 0.1 m, 
we have

 (+ T )	 v dv = a ds

	  L
v

0
v dv = L

s

0.1 m
4s ds

	  
1

2
 v2 `

0

v

=
4

2
 s2 `

0.1 m

s

	 v = 2(s2 - 0.01)1>2 m>s� (1)

At s = 200 mm = 0.2 m,

	 vB = 0.346 m>s = 346 mm>s T 	 Ans.

The positive root is chosen since the particle is traveling downward, 
i.e., in the +s direction.

Time.  The time for the particle to travel from C to B can be obtained 
using v = ds>dt and Eq. 1, where s = 0.1 m when t = 0. From 
Appendix A,

 (+ T ) 	 ds = v dt

	  = 2(s2 - 0.01)1>2dt

	 L
s

0.1
 

ds

(s2 - 0.01)1>2 = L
t

0
2 dt

	  ln12s2 - 0.01 + s2 `
0.1

s

= 2t `
0

t

	  ln12s2 - 0.01 + s2 + 2.303 = 2t

At s = 0.2 m,

	 t =
ln12(0.2)2 - 0.01 + 0.22 + 2.303

2
= 0.658 s	 Ans.

NOTE: The formulas for constant acceleration cannot be used here 
because the acceleration changes with position, i.e., a = 4s.

Example   12.4

A

200 mm

100 mm

B

s
C

Fig. 12–5 
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A particle moves along a horizontal path with a velocity of 
v = (3t2 - 6t) m>s, where t is the time in seconds. If it is initially 
located at the origin O, determine the distance traveled in 3.5 s, and the 
particle’s average velocity and average speed during the time interval.

Solution
Coordinate System.  Here positive motion is to the right, measured 
from the origin O, Fig. 12–6a.

Distance Traveled.  Since v = f(t), the position as a function of time 
may be found by integrating v = ds>dt with t = 0, s = 0.

 ( S+ )	  ds = v dt

	  = (3t2 - 6t) dt

	  L
s

0
ds = L

t

0
(3t2 - 6t) dt 

	  s = (t3 - 3t2) m	 (1)

In order to determine the distance traveled in 3.5 s, it is necessary 
to investigate the path of motion. If we consider a graph of the 
velocity function, Fig. 12–6b, then it reveals that for 0 6 t 6 2 s the 
velocity is negative, which means the particle is traveling to the left, 
and for t 7 2 s the velocity is positive, and hence the particle is 
traveling to the right. Also, note that v = 0 at t = 2 s. The particle’s 
position when t = 0, t = 2 s, and t = 3.5 s can be determined from 
Eq. 1. This yields

s � t = 0 = 0 s � t = 2 s = -4.0 m s � t = 3.5 s = 6.125 m

The path is shown in Fig. 12–6a. Hence, the distance traveled in 3.5 s is

	 sT = 4.0 + 4.0 + 6.125 = 14.125 m = 14.1 m� Ans.

Velocity.  The displacement from t = 0 to t = 3.5 s is

�s = s � t = 3.5 s - s � t = 0 = 6.125 m - 0 = 6.125 m

and so the average velocity is

	 vavg =
�s

�t
=

6.125 m

3.5 s - 0
= 1.75 m>s S 	 Ans.

The average speed is defined in terms of the distance traveled sT . This 
positive scalar is

	 (vsp)avg =
sT

�t
=

14.125 m

3.5 s - 0
= 4.04 m>s	 Ans.

NOTE: In this problem, the acceleration is a = dv>dt = (6t - 6) m>s2, 
which is not constant.

Example   12.5

O

s � �4.0 m s � 6.125 m

t � 2 s t � 0 s t � 3.5 s

(a)

(0, 0)

v (m/s)

v � 3t2 � 6t

(2 s, 0)
t (s)

(1 s, �3 m/s)

(b)

Fig. 12–6 
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It is highly suggested that you test yourself on the solutions to these 

examples, by covering them over and then trying to think about which 
equations of kinematics must be used and how they are applied in 
order to determine the unknowns. Then before solving any of the 
problems, try and solve some of the Preliminary and Fundamental 
Problems which follow. The solutions and answers to all these problems 
are given in the back of the book. Doing this throughout the book will 
help immensely in understanding how to apply the theory, and thereby 
develop your problem-solving skills.

Preliminary Problem

P12–1. 

�a)	� If s = (2t3) m, where t is in seconds, determine  
v when t = 2 s.

 b)	�If v = (5s) m>s, where s is in meters, determine a at s = 1 m.

c)	� If v = (4t + 5) m>s, where t is in seconds, determine a 
when t = 2 s.

d)	� If a = 2 m>s2, determine v when t = 2 s if v = 0 when  
t = 0.

e)	� If a = 2 m>s2, determine v at s = 4 m if v = 3 m>s at s = 0.

f)	� If a = (s) m>s2, where s is in meters, determine v when  
s = 5 m if v = 0 at s = 4 m.

g)	� If a = 4 m>s2, determine s when t = 3 s if v = 2 m>s and  
s = 2 m when t = 0.

h)	� If a = (8t2) m>s2, determine v when t = 1 s if  
v = 0 at t = 0.

i)	� If s = (3t2 + 2) m, determine v when t = 2 s.

j)	� When t = 0 the particle is at A. In four seconds it travels 
to B, then in another six seconds it travels to C. 
Determine the average velocity and the average speed. 
The origin of the coordinate is at O.

O

7 m

B
sA C

1 m

14 m

Prob. P12–1
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F12–5.    The position of the particle is given by 
s = (2t2 - 8t + 6) m, where t is in seconds. Determine the 
time when the velocity of the particle is zero, and the total 
distance traveled by the particle when t = 3 s.

s

Prob. F12–5

F12–6.    A particle travels along a straight line with an 
acceleration of a = (10 - 0.2s) m>s2, where s is measured 
in meters. Determine the velocity of the particle when 
s = 10 m if v = 5 m>s at s = 0. 

s

s

Prob. F12–6

F12–7.    A particle moves along a straight line such that its 
acceleration is a = (4t2 - 2) m>s2, where t is in seconds. 
When t = 0, the particle is located 2 m to the left of the 
origin, and when t = 2 s, it is 20 m to the left of the origin. 
Determine the position of the particle when t = 4 s. 

F12–8.    A particle travels along a straight line with a 
velocity of v = (20 - 0.05s2) m>s, where s is in meters. 
Determine the acceleration of the particle at s = 15 m. 

F12–1.    Initially, the car travels along a straight road with a 
speed of 35 m>s. If the brakes are applied and the speed of 
the car is reduced to 10 m>s in 15 s, determine the constant 
deceleration of the car.

Prob. F12–1

F12–2.    A ball is thrown vertically upward with a speed of 
15 m>s. Determine the time of flight when it returns to its 
original position.

s

Prob. F12–2

F12–3.    A particle travels along a straight line with a 
velocity of v = (4t - 3t2) m>s, where t is in seconds. 
Determine the position of the particle when t = 4 s. 
s = 0 when t = 0.

F12–4.    A particle travels along a straight line with a speed 
v = (0.5t3 - 8t) m>s, where t is in seconds. Determine the 
acceleration of the particle when t = 2 s.

Fundamental Problems
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12–1.  Starting from rest, a particle moving in a straight 
line has an acceleration of a = (2t - 6) m>s2, where t is  
in seconds. What is the particle’s velocity when t = 6 s, and 
what is its position when t = 11 s?

12–2.  If a particle has an initial velocity of v0 = 12 ft>s to 
the right, at s0 = 0, determine its position when t = 10 s, if 
a = 2 ft>s2 to the left.

12–3.  A particle travels along a straight line with a velocity 
v = (12 - 3t2) m>s, where t is in seconds. When t = 1 s, the 
particle is located 10 m to the left of the origin. Determine 
the acceleration when t = 4 s, the displacement from t = 0 to 
t = 10 s, and the distance the particle travels during this  
time period.

*12–4.  A particle travels along a straight line with a constant 
acceleration. When s = 4 ft, v = 3 ft>s and when s = 10 ft,  
v = 8 ft>s. Determine the velocity as a function of position.

12–5.  The velocity of a particle traveling in a straight line 
is given by v = (6t - 3t2) m>s, where t is in seconds. If s = 0 
when t = 0, determine the particle’s deceleration and 
position when t = 3 s. How far has the particle  
traveled during the 3-s time interval, and what is its average 
speed?

12–6.  The position of a particle along a straight line is 
given by s = (1.5t 3 - 13.5t 2 + 22.5t) ft, where t is in 
seconds. Determine the position of the particle when t = 6 s 
and the total distance it travels during the 6-s time interval. 
Hint: Plot the path to determine the total distance traveled.

12–7.  A particle moves along a straight line such that its 
position is defined by s = (t2 - 6t + 5) m. Determine the 
average velocity, the average speed, and the acceleration of 
the particle when t = 6 s.

*12–8.  A particle is moving along a straight line such that 
its position is defined by s = (10t2 + 20) mm, where t is in 
seconds. Determine (a) the displacement of the particle 
during the time interval from t = 1 s to t = 5 s, (b) the average 
velocity of the particle during this time interval, and (c) the 
acceleration when t = 1 s.

12–9.  The acceleration of a particle as it moves along a 
straight line is given by a = (2t - 1) m>s2, where t is in 
seconds. If s = 1 m and v = 2 m>s when t = 0, determine 
the particle’s velocity and position when t = 6 s. Also, 
determine the total distance the particle travels during this 
time period.

12–10.  A particle moves along a straight line with an 
acceleration of a = 5>(3s 1>3 + s 5>2) m>s2, where s is in 
meters. Determine the particle’s velocity when s = 2 m, if it 
starts from rest when s = 1 m. Use a numerical method to 
evaluate the integral.

12–11.  A particle travels along a straight-line path such 
that in 4 s it moves from an initial position sA = -8 m to a 
position sB = +3 m. Then in another 5 s it moves from sB to 
sC = -6 m. Determine the particle’s average velocity and 
average speed during the 9-s time interval.

*12–12.  Traveling with an initial speed of 70 km>h, a car 
accelerates at 6000 km>h2 along a straight road. How long 
will it take to reach a speed of 120 km>h? Also, through 
what distance does the car travel during this time?

12–13.  Tests reveal that a normal driver takes about 0.75 s 
before he or she can react to a situation to avoid a collision. 
It takes about 3 s for a driver having 0.1% alcohol in his 
system to do the same. If such drivers are traveling on a 
straight road at 30 mph (44 ft>s) and their cars can 
decelerate at 2 ft>s2, determine the shortest stopping 
distance d for each from the moment they see the 
pedestrians. Moral: If you must drink, please don’t drive!

d

v1 � 44 ft/s

Prob. 12–13

PROBLEMS
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12–14.  The position of a particle along a straight-line path 
is defined by s = (t3 - 6t2 - 15t + 7) ft, where t is in seconds. 
Determine the total distance traveled when t = 10 s. What 
are the particle’s average velocity, average speed, and the 
instantaneous velocity and acceleration at this time?

12–15.  A particle is moving with a velocity of v0 when s = 0 
and t = 0. If it is subjected to a deceleration of a = -kv3, 
where k is a constant, determine its velocity and position as 
functions of time.

*12–16.  A particle is moving along a straight line with an 
initial velocity of 6 m>s when it is subjected to a deceleration 
of a = (-1.5v1>2) m>s2, where v is in m>s. Determine how far 
it travels before it stops. How much time does this take?

12–17.  Car B is traveling a distance d ahead of car A. Both 
cars are traveling at 60 ft>s when the driver of B suddenly 
applies the brakes, causing his car to decelerate at 12 ft>s2. It 
takes the driver of car A 0.75 s to react (this is the normal 
reaction time for drivers). When he applies his brakes, he 
decelerates at 15 ft>s2. Determine the minimum distance d 
be tween the cars so as to avoid a collision.

d

A B

Prob. 12–17

12–18.  The acceleration of a rocket traveling upward is 
given by a = (6 + 0.02s) m>s2, where s is in meters. Determine 
the time needed for the rocket to reach an altitude of  
s = 100 m. Initially, v = 0 and s = 0 when t = 0.

s

Prob. 12–18

12–19.  A train starts from rest at station A and accelerates 
at 0.5  m>s2 for 60 s. Afterwards it travels with a constant 
velocity for 15 min. It then decelerates at 1 m>s2 until it is 
brought to rest at station B. Determine the distance between 
the stations.

*12–20.  The velocity of a particle traveling along a straight 
line is v = (3t2 - 6t) ft>s, where t is in seconds. If s = 4 ft when 
t = 0, determine the position of the particle when t = 4 s. 
What is the total distance traveled during the time interval 
t = 0 to t = 4 s? Also, what is the acceleration when t = 2 s?

12–21.  A freight train travels at v = 60(1-  e - t ) ft>s, 
where t is the elapsed time in seconds. Determine the 
distance traveled in three seconds, and the acceleration at 
this time.

s v

Prob. 12–21
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12–22.  A sandbag is dropped from a balloon which is 
ascending vertically at a constant speed of 6 m>s. If the bag 
is released with the same upward velocity of 6 m>s when  
t = 0 and hits the ground when t = 8 s, determine the speed 
of the bag as it hits the ground and the altitude of the 
balloon at this instant.

12–23.  A particle is moving along a straight line such that 
its acceleration is defined as a = (-2v) m>s2, where v is in 
meters per second. If v = 20 m>s when s = 0 and t = 0, 
determine the particle’s position, velocity, and acceleration 
as functions of time.

*12–24.  The acceleration of a particle traveling along a 

straight line is a = 
1

4
 s1>2 m>s2, where s is in meters. If v = 0,

s = 1 m when t = 0, determine the particle’s velocity at s = 2 m. 

12–25.  If the effects of atmospheric resistance are 
accounted for, a freely falling body has an acceleration 
defined by the equation a = 9.81[1 - v 2 (10 -4)] m>s2, 
where v is in m>s and the positive direction is downward. If 
the body is released from rest at a very high altitude, 
determine (a) the velocity when t = 5 s, and (b) the body’s 
terminal or maximum attainable velocity (as t S �).

12–26.  The acceleration of a particle along a straight line 
is defined by a = (2t - 9) m>s2, where t is in seconds. At 
t = 0, s = 1 m and v = 10 m>s. When t = 9 s, determine 
(a) the particle’s position, (b) the total distance traveled, 
and (c) the velocity.

12–27.  When a particle falls through the air, its initial 
acceleration a = g diminishes until it is zero, and there-
after it falls at a constant or terminal velocity vf . If this 
variation of the acceleration can be expressed as  
a = (g>v2

 f) (v2
 f - v2),  determine the time needed for the 

velocity to become v = vf>2 . Initially the particle falls 
from rest.

*12–28.  Two particles A and B start from rest at the origin 
s = 0 and move along a straight line such that 
aA = (6t - 3) ft>s2 and aB = (12t 2 - 8) ft>s2, where t is in 
seconds. Determine the distance between them when 
t = 4 s and the total distance each has traveled in t = 4 s.

12–29.  A ball A is thrown vertically upward from the top 
of a 30-m-high building with an initial velocity of 5 m>s. At 
the same instant another ball B is thrown upward from the 
ground with an initial velocity of 20 m>s. Determine the 
height from the ground and the time at which they pass.

12–30.  A sphere is fired downwards into a medium with 
an initial speed of 27 m>s. If it experiences a deceleration of 
a = (-6t) m>s2, where t is in seconds, determine the 
distance traveled before it stops.

12–31.  The velocity of a particle traveling along a straight 
line is v = v0 - ks, where k is constant. If s = 0 when t = 0, 
determine the position and acceleration of the particle as a 
function of time.

*12–32.  Ball A is thrown vertically upwards with a velocity 
of v0. Ball B is thrown upwards from the same point with 
the same velocity t seconds later. Determine the elapsed 
time t < 2v0>g from the instant ball A is thrown to when the 
balls pass each other, and find the velocity of each ball at 
this instant.

12–33.  As a body is projected to a high altitude above the 
earth’s surface, the variation of the acceleration of gravity 
with respect to altitude y must be taken into account. 
Neglecting air resistance, this acceleration is determined 
from the formula a = -g0[R

2>(R + y)2], where g0 is the 
constant gravitational acceleration at sea level, R is the 
radius of the earth, and the positive direction is measured 
upward. If g0 = 9.81 m>s2 and R = 6356 km, determine the 
minimum initial velocity (escape velocity) at which a 
projectile should be shot vertically from the earth’s surface 
so that it does not fall back to the earth. Hint: This requires 
that v = 0 as y S � .

12–34.  Accounting for the variation of gravitational 
acceleration a with respect to altitude y (see Prob. 12–36), 
derive an equation that relates the velocity of a freely 
falling particle to its altitude. Assume that the particle is 
released from rest at an altitude y0 from the earth’s surface. 
With what velocity does the particle strike the earth if it is 
released from rest at an altitude y0 = 500 km? Use the 
numerical data in Prob. 12–33.
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12 12.3  �Rectilinear Kinematics: Erratic 
Motion

When a particle has erratic or changing motion then its position, velocity, 
and acceleration cannot be described by a single continuous mathematical 
function along the entire path. Instead, a series of functions will be 
required to specify the motion at different intervals. For this reason, it is 
convenient to represent the motion as a graph. If a graph of the motion 
that relates any two of the variables s,v, a, t can be drawn, then this graph 
can be used to construct subsequent graphs relating two other variables 
since the variables are related by the differential relationships v = ds>dt, 
a = dv>dt, or a ds = v dv. Several situations occur frequently.

The s–t, v–t, and a–t Graphs.  To construct the v9t graph given 
the s–t graph, Fig. 12–7a, the equation v = ds>dt should be used, since it 
relates the variables s and t to v. This equation states that

	  
ds

dt
= v 	

	  
slope of
s9t graph

 = velocity	

For example, by measuring the slope on the s–t graph when t = t1, the 
velocity is v1, which is plotted in Fig. 12–7b. The v9t graph can be 
constructed by plotting this and other values at each instant.

The a–t graph can be constructed from the v9t graph in a similar 
manner, Fig. 12–8, since

	  
dv

dt
= a

	  
slope of
v9t graph

  = acceleration	

Examples of various measurements are shown in Fig. 12–8a and plotted 
in Fig. 12–8b.

If the s–t curve for each interval of motion can be expressed by a 
mathematical function s = s(t), then the equation of the v9t graph for 
the same interval can be obtained by differentiating this function with 
respect to time since v = ds/dt. Likewise, the equation of the a–t graph 
for the same interval can be determined by differentiating v = v(t) since 
a = dv>dt. Since differentiation reduces a polynomial of degree n to that 
of degree n – 1, then if the s–t graph is parabolic (a second-degree curve), 
the v9t graph will be a sloping line (a first-degree curve), and the  
a–t graph will be a constant or a horizontal line (a zero-degree curve).

tO

v0 � t � 0

(a)

s

ds
dt

v1 � t1

s1

t1 t2 t3

s2
s3

ds
dt

v2 � t2
ds
dt

v3 � t3
ds
dt

tO

(b)

v0

v

v1

v3

v2

t1 t2

t3

Fig. 12–7 

a0 �

v

tt1 t2 t3

v1

v2

v3

v0

a1 �

a2 �

O

(a)

a3 � t3
dv
dt

t2
dv
dtt � 0

dv
dt

t1
dv
dt

t

a

a0 � 0
a1 a2

a3
t1 t2 t3O

(b)

Fig. 12–8 
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t

a

a0

t1

�v � �   a dt
0

t1

t

v

v0

t1

v1
�v

(a)

(b)

Fig. 12–9 

t

v

v0

t1

t

s

s0

t1

s1
�s

(b)

(a)

�s � �   v dt
0

t1

Fig. 12–10 

If the a–t graph is given, Fig. 12–9a, the v9t graph may be constructed 
using a = dv>dt, written as

	  �v = La dt 	

	  
change in
velocity

 =  
area under
a9t graph

	

Hence, to construct the v9t graph, we begin with the particle’s initial 
velocity v0 and then add to this small increments of area (�v) determined 
from the a–t graph. In this manner successive points, v1 = v0 + �v, etc., 
for the v9t graph are determined, Fig. 12–9b. Notice that an algebraic 
addition of the area increments of the a–t graph is necessary, since areas 
lying above the t axis correspond to an increase in v (“positive” area), 
whereas those lying below the axis indicate a decrease in v (“negative” 
area). 

Similarly, if the v9t graph is given, Fig. 12–10a, it is possible to determine 
the s–t graph using v = ds>dt, written as

	  �s = Lv dt 	

	  displacement =
area under
v9t graph

In the same manner as stated above, we begin with the particle’s initial 
position s0 and add (algebraically) to this small area increments �s 
determined from the v9t graph, Fig. 12–10b.

If segments of the a–t graph can be described by a series of equations, 
then each of these equations can be integrated to yield equations 
describing the corresponding segments of the v9t graph. In a similar 
manner, the s–t graph can be obtained by integrating the equations 
which describe the segments of the v9t graph. As a result, if the  
a–t graph is linear (a first-degree curve), integration will yield a  
v9t graph that is parabolic (a second-degree curve) and an s–t graph 
that is cubic (third-degree curve).
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a

a0

s1

�  a ds �    (v1
2
 � v0

2)
0

s1

(a)

1—
2

s

v

v0

s1

v1

(b)

s

Fig. 12–11 

v

v0

(a)

s

dv
ds

v

s

a0

(b)

s

a

s

a � v(dv/ds)

Fig. 12–12 

The v–s and a–s Graphs.  If the a–s graph can be constructed, 
then points on the v9s graph can be determined by using v dv = a ds. 
Integrating this equation between the limits v = v0 at s = s0 and v = v1 
at s = s1 , we have,

	 1
2(v2

1 - v2
0) = L

s1

s0

 a ds

	   
area under
a9s graph

	

Therefore, if the red area in Fig. 12–11a is determined, and the initial 
velocity v0 at s0 = 0 is known, then v1 = 121 s1

0
a ds + v0

221>2,  
Fig. 12–11b. Successive points on the v–s graph can be constructed in this 
manner. 

If the v–s graph is known, the acceleration a at any position s can be 
determined using a ds = v dv, written as

	  a = va dv

ds
b 	

	 velocity times	
	 acceleration = slope of	
	 v9s graph	

Thus, at any point (s, v) in Fig. 12–12a, the slope dv>ds of the v–s graph is 
measured. Then with v and dv>ds known, the value of a can be calculated, 
Fig. 12–12b.

The v–s graph can also be constructed from the a–s graph, or vice 
versa, by approximating the known graph in various intervals with 
mathematical functions, v = f(s) or a = g(s), and then using a ds = v dv 
to obtain the other graph.
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A bicycle moves along a straight road such that its position is described 
by the graph shown in Fig. 12–13a. Construct the v9t and a–t graphs 
for 0 … t … 30 s.

t (s)

s (ft)

500

100

10 30

(a)

s � t2

s � 20t � 100

t (s)

v (ft/s)

20

10 30

(b)

v � 2t v � 20

t (s)

a (ft/s2)

2

30

(c)

10

Fig. 12–13 

Solution
v–t Graph.  Since v = ds>dt, the v9t graph can be determined by 
differentiating the equations defining the s–t graph, Fig. 12–13a. We have

0 … t 6 10 s; 	 s = (t 2) ft	 v =
ds

dt
= (2t) ft>s

10 s 6 t … 30 s; 	 s = (20t - 100) ft	 v =
ds

dt
= 20 ft>s

The results are plotted in Fig. 12–13b. We can also obtain specific 
values of v by measuring the slope of the s–t graph at a given instant. 
For example, at t = 20 s, the slope of the s–t graph is determined from 
the straight line from 10 s to 30 s, i.e.,

t = 20 s;	 v =
�s

�t
=

500 ft - 100 ft

30 s - 10 s
= 20 ft>s

a–t Graph.  Since a = dv>dt, the a–t graph can be determined by 
differentiating the equations defining the lines of the v9t graph. 
This yields

0 … t 6 10 s;	  v = (2t) ft>s    a =
dv

dt
= 2 ft>s2

10 6 t … 30 s;  v = 20 ft>s   a =
dv

dt
= 0

The results are plotted in Fig. 12–13c.

NOTE: Show that a = 2 ft>s2 when t = 5 s by measuring the slope of 
the v9t graph.

Example   12.6
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The car in Fig. 12–14a starts from rest and travels along a straight track 
such that it accelerates at 10 m>s2 for 10 s, and then decelerates at 
2 m>s2. Draw the v9t and s–t graphs and determine the time t� needed 
to stop the car. How far has the car traveled?

Example   12.7

t (s)

a (m/s2)

(a)

10

�2
10

A1

A2

t¿

t (s)

v (m/s)

(b)

100

10

v � 10t

v � �2t � 120

t¿ � 60

t (s)

s (m)

(c)

10 60

500

3000

s � 5t2

s � �t2 � 120t � 600

Fig. 12–14

Solution
v–t Graph.  Since dv = a dt, the v9t graph is determined by 
integrating the straight-line segments of the a–t graph. Using the initial 
condition v = 0 when t = 0, we have

0 … t 6 10 s;    a = (10) m>s2;    L
v

0
dv = L

t

0
10 dt,� v = 10t

When t = 10 s, v = 10(10) = 100 m>s. Using this as the initial 
condition for the next time period, we have

10 s 6 t … t�; a = (-2) m>s2;L
v

100 m>s
dv = L

t

10 s
-2 dt, v = (-2t + 120) m>s

When t = t� we require v = 0. This yields, Fig. 12–14b,

	 t� = 60 s	 Ans.

A more direct solution for t� is possible by realizing that the area 
under the a–t graph is equal to the change in the car’s velocity. We 
require �v = 0 = A1 + A2 , Fig. 12–14a. Thus

	 0 = 10 m>s2(10 s) + (-2 m>s2)(t� - 10 s)

	 t� = 60 s	 Ans.

s–t Graph.  Since ds = v dt, integrating the equations of the  
v9t graph yields the corresponding equations of the s–t graph. Using 
the initial condition s = 0 when t = 0, we have

0 … t … 10 s;    v = (10t) m>s;    L
s

0
ds = L

t

0
10t dt,� s = (5t2) m

When t = 10 s, s = 5(10)2 = 500 m. Using this initial condition,

10 s … t … 60 s; v = (-2t + 120) m>s;L
s

500 m
ds = L

t

10 s
(-2t + 120) dt

 s - 500 = - t2 + 120t - [-(10)2 + 120(10)]

 s = (- t2 + 120t - 600) m
When t� = 60 s, the position is

	 s = -(60)2 + 120(60) - 600 = 3000 m	 Ans.

The s–t graph is shown in Fig. 12–14c.

NOTE: A direct solution for s is possible when t� = 60 s, since the 
triangular area under the v9t graph would yield the displacement 
�s = s - 0 from t = 0 to t� = 60 s. Hence,

	 �s =
1
2(60 s)(100 m>s) = 3000 m	 Ans.



	 12.3 R ectilinear Kinematics: Erratic Motion	 25

12

The v–s graph describing the motion of a motorcycle is shown in  
Fig. 12–15a. Construct the a–s graph of the motion and determine the 
time needed for the motorcycle to reach the position s = 400 ft.

Example   12.8

(a)

v (ft/s)

s (ft)
10

50

200 400

v � 0.2s � 10
v � 50

(b)

200 400
s (ft)

a (ft/s2)

10

2

a � 0.04s � 2

a � 0

Fig. 12–15 

Solution
a–s Graph.  Since the equations for segments of the v–s graph are 
given, the a–s graph can be determined using a ds = v dv.

0 … s 6 200 ft;	 v = (0.2s + 10) ft>s

	 a = v 
dv

ds
= (0.2s + 10) 

d

ds
 (0.2s + 10) = 0.04s + 2	

200 ft 6 s … 400  ft;	  v = 50 ft>s

	  a = v 
dv

ds
= (50) 

d

ds
 (50) = 0	

The results are plotted in Fig. 12–15b.

Time.  The time can be obtained using the v–s graph and v = ds>dt, 
because this equation relates v, s, and t. For the first segment of 
motion, s = 0 when t = 0, so

0 … s 6 200 ft;      v = (0.2s + 10) ft>s;� dt =
ds
v

=
ds

0.2s + 10

	  L
t

0
dt = L

s

0
 

ds

0.2s + 10
	

	  t = (5 ln(0.2s + 10) - 5 ln 10) s

At s = 200  ft, t = 5 ln[0.2(200) + 10] - 5 ln 10 = 8.05 s. Therefore, 
using these initial conditions for the second segment of motion,

200 ft 6 s … 400  ft;    v = 50 ft>s;    dt =
ds
v

=
ds

50

	  L
t

8.05 s
dt = L

s

200 m
 
ds

50
 ;

	  t - 8.05 =
s

50
- 4;  t = a s

50
+ 4.05b  s

Therefore, at s = 400 ft,

	 t =
400

50
+ 4.05 = 12.0 s� Ans.

NOTE: The graphical results can be checked in part by calculating slopes. 
For example, at s = 0, a = v(dv>ds) = 10(50 - 10)>200 = 2 m>s2. 
Also, the results can be checked in part by inspection. The v–s graph 
indicates the initial increase in velocity (acceleration) followed by 
constant velocity (a = 0).
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P12–2. 

a)  Draw the s–t and a–t graphs if s = 0 when t = 0.

t (s)

v (m/s)

4

2

v � 2t

b)  Draw the a–t and v–t graphs.

t (s)

2

1

s � �2t � 2

s (m)

c) � Draw the v–t and s–t graphs if v = 0, s = 0 when  
t = 0.

t (s)

a (m/s2)

�2

2

d) � Determine s and a when t = 3 s if s = 0 when t = 0.

t (s)

v (m/s)

2

2 4

e) � Draw the v–t graph if v = 0 when t = 0. Find the equation 
v = f(t) for each segment.

t (s)

a (m/s2)

�2

2

2
4

f)  Determine v at s = 2 m if v = 1 m>s at s = 0.

s (m)

a (m/s)

4

2

g)  Determine a at s = 1 m.

s (m)

4

2

v (m/s)

Preliminary Problem

Prob. P12–2
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F12–12.    The sports car travels along a straight road such 
that its acceleration is described by the graph. Construct the 
v9s graph for the same interval and specify the velocity of 
the car when s = 10 m and s = 15 m. 

s (m)
5

10

10
0

a (m/s2)

15

Prob. F12–12
F12–13.    The dragster starts from rest and has an 
acceleration described by the graph. Construct the v9t 
graph for the time interval  0 … t … t�, where t� is the time 
for the car to come to rest. 

t (s)
t ¿

a (m/s2)

5
0

20

�10

Prob. F12–13
F12–14.    The dragster starts from rest and has a velocity 
described by the graph. Construct the s9t graph during the 
time interval 0 … t … 15 s. Also, determine the total 
distance traveled during this time interval. 

15
t (s)

v (m/s)

v � 30 t

v � �15 t � 225

5

150

Prob. F12–14

F12–9.    The particle travels along a straight track such that 
its position is described by the s9t graph. Construct the  
v9t graph for the same time interval.

t (s)

s (m)

6 8 10

108

s � 0.5 t3

s � 108

Prob. F12–9
F12–10.    A van travels along a straight road with a velocity 
described by the graph. Construct the s9t and a9t graphs 
during the same period. Take s = 0 when t = 0. 

t (s)

v (ft/s)

v � �4t � 80

80

20

Prob. F12–10
F12–11.    A bicycle travels along a straight road where its 
velocity is described by the v9s graph. Construct the  
a9s graph for the same interval.

s (m)

  (m/s)

10

40

v � 0.25 s

v

Prob. F12–11

Fundamental Problems
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12–35.  A freight train starts from rest and travels with a 
constant acceleration of 0.5 ft>s2. After a time t� it maintains a 
constant speed so that when t = 160 s it has traveled 2000 ft. 
Determine the time t� and draw the v–t graph for the 
motion.

*12–36.  The s–t graph for a train has been experimentally 
determined. From the data, construct the v–t and a–t graphs 
for the motion; 0 … t … 40 s. For 0 … t … 30 s, the curve is  
s = (0.4t2) m, and then it becomes straight for t Ú 30 s.

t (s)

s (m)

600

360

30 40

Prob. 12–36

12–37.  Two rockets start from rest at the same elevation. 
Rocket A accelerates vertically at 20 m>s2 for 12 s and then 
maintains a constant speed. Rocket B accelerates at 15 m>s2 
until reaching a constant speed of 150 m>s. Construct the 
a–t, v–t, and s–t graphs for each rocket until t = 20 s. What is 
the distance between the rockets when t = 20 s?

12–38.  A particle starts from s = 0 and travels along a 
straight line with a velocity v = (t2 - 4t + 3) m>s, where t is in 
seconds. Construct the v–t and a–t graphs for the time 
interval 0 … t … 4 s.

12–39.  If the position of a particle is defined by 
s = [2 sin (p>5)t + 4] m, where t is in seconds, construct the 
s9t, v9t, and a9t graphs for 0 … t … 10 s.

*12–40.  An airplane starts from rest, travels 5000 ft down 
a runway, and after uniform acceleration, takes off with a 
speed of 162 mi>h. It then climbs in a straight line with a 
uniform acceleration of 3 ft>s2 until it reaches a constant 
speed of 220 mi>h. Draw the s–t, v–t, and a–t graphs that 
describe the motion.

12–41.  The elevator starts from rest at the first floor of the 
building. It can accelerate at 5 ft>s2 and then decelerate at 
2 ft>s2. Determine the shortest time it takes to reach a floor 
40 ft above the ground. The elevator starts from rest and 
then stops. Draw the a–t, v–t, and s–t graphs for the motion.

40 ft

Prob. 12–41

12–42.  The velocity of a car is plotted as shown. Determine 
the total distance the car moves until it stops (t = 80 s). 
Construct the a–t graph.

t (s)

10

40 80

v (m/s)

Prob. 12–42
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12–43.  The motion of a jet plane just after landing on a 
runway is described by the a–t graph. Determine the time t� 
when the jet plane stops. Construct the v–t and s–t graphs 
for the motion. Here s = 0, and v = 300 ft>s when t = 0.

t (s)
10

a (m/s2)

�10

20 t¿

�20

Prob. 12–43

*12–44.  The v–t graph for a particle moving through an 
electric field from one plate to another has the shape shown 
in the figure. The acceleration and deceleration that occur 
are constant and both have a magnitude of 4 m>s2. If the 
plates are spaced 200 mm apart, determine the maximum 
velocity vmax  and the time t� for the particle to travel from 
one plate to the other. Also draw the s–t graph. When 
t = t�>2 the particle is at s = 100 mm.

12–45.  The v–t graph for a particle moving through an 
electric field from one plate to another has the shape shown 
in the figure, where t� = 0.2 s and vmax = 10 m>s. Draw the 
s–t and a–t graphs for the particle. When t = t�>2 the 
particle is at s = 0.5 m. 

t¿/2 t¿
t

v

smax

vmax
s

Probs. 12–44/45

12–46.  The a–s graph for a rocket moving along a straight 
track has been experimentally determined. If the rocket 
starts at s = 0 when v = 0, determine its speed when it is at  
s = 75 ft, and 125 ft, respectively. Use Simpson’s rule with  
n = 100 to evaluate v at s = 125 ft.

s (ft)

a (ft/s2)

100

5

a � 5 � 6( s � 10)5/3

Prob. 12–46

12–47.  A two-stage rocket is fired vertically from rest at  
s = 0 with the acceleration as shown. After 30 s the first 
stage, A, burns out and the second stage, B, ignites. Plot the 
v–t and s–t graphs which describe the motion of the second 
stage for 0 … t … 60 s.

24

30 60

12

A

B

a (m/s2)

t (s)

Prob. 12–47
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*12–48.  The race car starts from rest and travels along a 
straight road until it reaches a speed of 26 m>s in 8 s as 
shown on the v–t graph. The flat part of the graph is caused 
by shifting gears. Draw the a–t graph and determine the 
maximum acceleration of the car.

26

14

5 84
t (s)

v (m/s)

v � 3.5t

v � 4t � 6

6

Prob. 12–48

12–49.  The jet car is originally traveling at a velocity  
of 10 m>s when it is subjected to the acceleration shown. 
Determine the car’s maximum velocity and the time t� when 
it stops. When t = 0, s = 0.

6

15

�4

t (s)

a (m/s2)

t¿

Prob. 12–49

12–50.  The car starts from rest at s = 0 and is subjected to 
an acceleration shown by the a–s graph. Draw the v–s graph 
and determine the time needed to travel 200 ft.

s (ft)

a (ft/s2)

a � �0.04s � 24

300

6

12

450

Prob. 12–50

12–51.  The v–t graph for a train has been experimentally 
determined. From the data, construct the s–t and a–t graphs 
for the motion for 0 … t … 180 s. When t = 0, s = 0.

t (s)

v (m/s)

10

6

12060 180

Prob. 12–51
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*12–52.  A motorcycle starts from rest at s = 0 and travels 
along a straight road with the speed shown by the v–t graph. 
Determine the total distance the motorcycle travels until it 
stops when t = 15 s. Also plot the a–t and s–t graphs.

12–53.  A motorcycle starts from rest at s = 0 and travels 
along a straight road with the speed shown by the v–t graph. 
Determine the motorcycle’s acceleration and position when 
t = 8 s and t = 12 s.

5

10 154
t (s)

v (m/s)

v � 1.25t v � 5

v � �t � 15

Probs. 12–52/53

12–54.  The v–t graph for the motion of a car as it moves 
along a straight road is shown. Draw the s–t and a–t graphs. 
Also determine the average speed and the distance traveled 
for the 15-s time interval. When t = 0, s = 0.

5 15

15

v � 0.6t2 

t (s)

v (m/s)

Prob. 12–54

12–55.  An airplane lands on the straight runway, originally 
traveling at 110 ft>s when s = 0. If it is subjected to the 
decelerations shown, determine the time t� needed to stop 
the plane and construct the s–t graph for the motion.

t (s)
5

a (ft/s2)

�3

15 20 t¿

�8

Prob. 12–55

*12–56.  Starting from rest at s = 0, a boat travels in a 
straight line with the acceleration shown by the a–s graph. 
Determine the boat’s speed when s = 50 ft, 100 ft, and 150 ft.

12–57.  Starting from rest at s = 0, a boat travels in a 
straight line with the acceleration shown by the a–s graph. 
Construct the v–s graph.

6

8

100 150
s (ft)

a (ft/s2)

Probs. 12–56/57
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12–58.  A two-stage rocket is fired vertically from rest with 
the acceleration shown. After 15 s the first stage A burns out 
and the second stage B ignites. Plot the v–t and s–t graphs 
which describe the motion of the second stage for 0 … t … 40 s.

A

B

t (s)

a (m/s2)

15

15

20

40

Prob. 12–58

12–59.  The speed of a train during the first minute has 
been recorded as follows: 

 t 1s2    0 20 40 60

 v 1m>s2   0 16 21 24

Plot the v–t graph, approximating the curve as straight-line 
segments between the given points. Determine the total 
distance traveled.

*12–60.  A man riding upward in a freight elevator 
accidentally drops a package off the elevator when it is  
100 ft from the ground. If the elevator maintains a constant 
upward speed of 4 ft>s, determine how high the elevator is 
from the ground the instant the package hits the ground. 
Draw the v–t curve for the package during the time it is in 
motion. Assume that the package was released with the 
same upward speed as the elevator.

12–61.  Two cars start from rest side by side and travel 
along a straight road. Car A accelerates at 4 m>s2 for 10 s 
and then maintains a constant speed. Car B accelerates at 
5 m>s 2 until reaching a constant speed of 25 m>s and then 
maintains this speed. Construct the a–t, v–t, and s–t graphs 
for each car until t = 15 s. What is the distance between the 
two cars when t = 15 s?

12–62.  If the position of a particle is defined as s =  
(5t - 3t2) ft, where t is in seconds, construct the s–t, v–t, and 
a–t graphs for 0 … t … 10 s.

12–63.  From experimental data, the motion of a jet plane 
while traveling along a runway is defined by the v–t graph. 
Construct the s–t and a–t graphs for the motion. When  
t = 0, s = 0.

60

20 30

20

5
t (s)

v (m/s)

Prob. 12–63

*12–64.  The motion of a train is described by the a–s graph 
shown. Draw the v–s graph if v = 0 at s = 0.

300 600

3

s (m)

a (m/s2)

Prob. 12–64
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12–65.  The jet plane starts from rest at s = 0 and is 
subjected to the acceleration shown. Determine the speed 
of the plane when it has traveled 1000 ft. Also, how much 
time is required for it to travel 1000 ft?

75

50

1000

a � 75 � 0.025s

s (ft)

a (ft/s2)

Prob. 12–65

12–66.  The boat travels along a straight line with the speed 
described by the graph. Construct the s–t and a–s graphs. 
Also, determine the time required for the boat to travel a 
distance s = 400 m if s = 0  when  t = 0.

v (m/s)

100 400

20

80

s (m)

v2 � 4s

v � 0.2s

Prob. 12–66

12–67.  The v–s graph of a cyclist traveling along a straight 
road is shown. Construct the a–s graph.

s  (ft)

v (ft/s)

100 350

15

5

v � 0.1s � 5
v � �0.04 s � 19

Prob. 12–67

*12–68.  The v–s graph for a test vehicle is shown. Determine 
its acceleration when s = 100 m and when s = 175 m.

50

150 200
s (m)

v (m/s)

Prob. 12–68
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Curvilinear motion occurs when a particle moves along a curved path. 
Since this path is often described in three dimensions, vector analysis will 
be used to formulate the particle’s position, velocity, and acceleration.* In 
this section the general aspects of curvilinear motion are discussed, and 
in subsequent sections we will consider three types of coordinate systems 
often used to analyze this motion.

Position.  Consider a particle located at a point on a space curve 
defined by the path function s(t), Fig. 12–16a. The position of the particle, 
measured from a fixed point O, will be designated by the position vector 
r = r(t). Notice that both the magnitude and direction of this vector will 
change as the particle moves along the curve.

Displacement.  Suppose that during a small time interval �t the 
particle moves a distance �s along the curve to a new position, defined 
by r� = r + �r, Fig. 12–16b. The displacement �r represents the change 
in the particle’s position and is determined by vector subtraction; i.e., 
�r = r� - r.

Velocity.  During the time �t, the average velocity of the particle is

vavg =
�r
�t

The instantaneous velocity is determined from this equation by letting 
�t S 0, and consequently the direction of �r approaches the tangent to 
the curve. Hence, v = lim

�tS0
(�r>�t) or

	 v =
dr
dt

	 (12–7)

Since dr will be tangent to the curve, the direction of v is also tangent to 
the curve, Fig. 12–16c. The magnitude of v, which is called the speed, is 
obtained by realizing that the length of the straight line segment �r in  
Fig. 12–16b approaches the arc length �s as �t S 0, we have 
v = lim

�tS0
(�r>�t) = lim

�tS0
(�s>�t), or

	 v =
ds

dt
	 (12–8)

Thus, the speed can be obtained by differentiating the path function s with 
respect to time.

s
r

O

Position

(a)
Path

s

Displacement

(b)

r

r¿

�s

�r
s

O

Velocity

(c)

r

v

s

O

Fig. 12–16

*A summary of some of the important concepts of vector analysis is given in Appendix B.
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Acceleration.  If the particle has a velocity v at time t and a velocity 
v� = v + �v at t + �t, Fig. 12–16d, then the average acceleration of the 
particle during the time interval �t is

aavg =
�v
�t

where �v = v� - v. To study this time rate of change, the two velocity 
vectors in Fig. 12–16d are plotted in Fig. 12–16e such that their tails are 
located at the fixed point O� and their arrowheads touch points on a 
curve. This curve is called a hodograph, and when constructed, it describes 
the locus of points for the arrowhead of the velocity vector in the same 
manner as the path s describes the locus of points for the arrowhead of 
the position vector, Fig. 12–16a.

To obtain the instantaneous acceleration, let �t S 0 in the above 
equation. In the limit �v will approach the tangent to the hodograph, and 
so a = lim

�tS0
(�v>�t), or

	 a =
dv
dt

	 (12–9)

Substituting Eq. 12–7 into this result, we can also write

a =
d2r

dt2

By definition of the derivative, a acts tangent to the hodograph,  
Fig. 12–16f, and, in general it is not tangent to the path of motion,  
Fig. 12–16g. To clarify this point, realize that �v and consequently a must 
account for the change made in both the magnitude and direction of the 
velocity v as the particle moves from one point to the next along the path,  
Fig. 12–16d. However, in order for the particle to follow any curved path, 
the directional change always “swings” the velocity vector toward the 
“inside” or “concave side” of the path, and therefore a cannot remain 
tangent to the path. In summary, v is always tangent to the path and a is 
always tangent to the hodograph.

vv¿

(d)

v

v¿

(e)

�v

O¿

v
a

(f)

O¿

Hodograph

Acceleration

(g)
path

a

Fig. 12–16 
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12 12.5  �Curvilinear Motion: Rectangular 
Components

Occasionally the motion of a particle can best be described along a path 
that can be expressed in terms of its x, y, z coordinates.

Position.   If the particle is at point (x, y, z) on the curved path s 
shown in Fig. 12–17a, then its location is defined by the position vector

	 r = xi + yj + zk � (12–10)

When the particle moves, the x, y, z components of r will be functions of 
time; i.e., x = x(t), y = y(t), z = z(t), so that r = r(t).

At any instant the magnitude of r is defined from Eq. B–3 in 
Appendix B as

r = 2x2 + y2 + z2

And the direction of r is specified by the unit vector ur = r>r.

Velocity.   The first time derivative of r yields the velocity of the 
particle. Hence,

v =
dr
dt

=
d

dt
 (xi) +

d

dt
 (yj) +

d

dt
 (zk)

When taking this derivative, it is necessary to account for changes in both 
the magnitude and direction of each of the vector’s components. For 
example, the derivative of the i component of r is

d

dt
 (xi) =

dx

dt
 i + x 

di
dt

The second term on the right side is zero, provided the x, y, z reference 
frame is fixed, and therefore the direction (and the magnitude) of i does 
not change with time. Differentiation of the j and k components may be 
carried out in a similar manner, which yields the final result,

	 v =
dr
dt

= vxi + vy  

j + vzk 	 (12–11)

where

	 vx = x
#
 vy = y

#
 vz = z

#
	 (12–12)

y

x

z

r � xi � yj � zk

z

y
x

s

k
i

j

Position

(a)

y

x

z

s

Velocity

(b)

v � vxi � vyj � vzk

Fig. 12–17 
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12
The “dot” notation x

#
, y

#
, z

#
 represents the first time derivatives of  x = x(t), 

y = y(t), z = z(t), respectively.
The velocity has a magnitude that is found from

v = 2vx
2 + vy

2 + vz
2

and a direction that is specified by the unit vector uv = v>v. As discussed 
in Sec. 12.4, this direction is always tangent to the path, as shown in 
Fig. 12–17b.

Acceleration.  The acceleration of the particle is obtained by taking 
the first time derivative of Eq. 12–11 (or the second time derivative of 
Eq. 12–10). We have

	 a =
dv
dt

= ax i + ay  j + az k 	 (12–13)

where

	
 ax = v

#
x = x

$

 ay = v
#
y = y

$

 az = v
#
z = z

$
	 (12–14)

Here ax , ay , az represent, respectively, the first time derivatives of 
vx = vx(t), vy = vy(t), vz = vz(t), or the second time derivatives of the 
functions x = x(t), y = y(t), z = z(t).

The acceleration has a magnitude

a = 2ax
2 + ay

2 + az
2

and a direction specified by the unit vector ua = a>a. Since a represents 
the time rate of change in both the magnitude and direction of the velocity, 
in general a will not be tangent to the path, Fig. 12–17c.

y

x

z

s

a � axi � ayj � azk

Acceleration

(c)
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12 Important Points

	 •	 Curvilinear motion can cause changes in both the magnitude and 
direction of the position, velocity, and acceleration vectors.

	 •	 The velocity vector is always directed tangent to the path.

	 •	 In general, the acceleration vector is not tangent to the path, but 
rather, it is tangent to the hodograph.

	 •	 If the motion is described using rectangular coordinates, then the 
components along each of the axes do not change direction, only 
their magnitude and sense (algebraic sign) will change.

	 •	 By considering the component motions, the change in magnitude 
and direction of the particle’s position and velocity are automatically 
taken into account.

Procedure for Analysis

Coordinate System.
	 •	 A rectangular coordinate system can be used to solve problems 

for which the motion can conveniently be expressed in terms of 
its x, y, z components.

Kinematic Quantities.
	 •	 Since rectilinear motion occurs along each coordinate axis, the 

motion along each axis is found using v = ds>dt and a = dv>dt; 
or in cases where the motion is not expressed as a function of 
time, the equation a ds = v dv can be used.

	 •	 In two dimensions, the equation of the path y = f (x) can be used 
to relate the x and y components of velocity and acceleration by 
applying the chain rule of calculus. A review of this concept is 
given in Appendix C.

	 •	 Once the x, y, z components of v and a have been determined, the 
magnitudes of these vectors are found from the Pythagorean 
theorem, Eq. B-3, and their coordinate direction angles from the 
components of their unit vectors, Eqs. B-4 and B-5.
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At any instant the horizontal position of the weather balloon in 
Fig.  12–18a is defined by x = (8t) ft, where t is in seconds. If the 
equation of the path is y = x2>10, determine the magnitude and 
direction of the velocity and the acceleration when t = 2 s.

Solution

Velocity.   The velocity component in the x direction is

 vx = x
#

=
d

dt
 (8t) = 8 ft>s S

To find the relationship between the velocity components we will use the 
chain rule of calculus. When t = 2 s, x = 8122 = 16 ft, Fig. 12–18a, and so

 vy = y
#

=
d

dt
 (x2>10) = 2xx

# >10 = 2(16)(8)>10 = 25.6 ft>s c

When t = 2 s, the magnitude of velocity is therefore

	  v = 2(8 ft>s)2 + (25.6 ft>s)2 = 26.8 ft>s	 Ans.

The direction is tangent to the path, Fig. 12–18b, where

	 uv = tan-1 
vy

vx
= tan-1 

25.6

8
= 72.6�	 Ans.

Acceleration.  The relationship between the acceleration components 
is determined using the chain rule. (See Appendix C.) We have

 ax = v
#
x =

d

dt
 (8) = 0

 ay = v
#
y =

d

dt
 (2xx

# >10) = 2(x
#
)x
# >10 + 2x(x

$
)>10

 = 2(8)2>10 + 2(16)(0)>10 = 12.8 ft>s2 c

Thus,

	  a = 2(0)2 + (12.8)2 = 12.8 ft>s2	 Ans.

The direction of a, as shown in Fig. 12–18c, is

	 ua = tan-1 
12.8

0
= 90�	 Ans.

NOTE: It is also possible to obtain vy and ay by first expressing 
y = f (t) = (8t)2>10 = 6.4t2 and then taking successive time derivatives.

Example   12.9

y

A

B

x

16 ft

(a)

y � x2

10

(b)

B

v � 26.8 ft/s

uv � 72.6�

(c)

a � 12.8 ft/s2

B

ua � 90�

Fig. 12–18 
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For a short time, the path of the plane in Fig. 12–19a is described by 
y = (0.001x2) m. If the plane is rising with a constant upward velocity of 
10 m>s, determine the magnitudes of the velocity and acceleration of the 
plane when it reaches an altitude of y = 100 m.

Solution
When y = 100 m, then 100 = 0.001x2 or x = 316.2 m. Also, due to 
constant velocity vy = 10 m>s, so

y = vy t;    100 m = (10 m>s) t        t = 10 s

Velocity.  Using the chain rule (see Appendix C) to find the 
relationship between the velocity components, we have

	 y = 0.001x2

	 vy = y
#

=
d

dt
 (0.001x2) = (0.002x)x

#
= 0.002 xvx	 (1)

Thus

    10 m>s = 0.002(316.2 m)(vx)

  vx = 15.81 m>s   

The magnitude of the velocity is therefore

 v = 2vx
2 + vy

2 = 2(15.81 m>s)2 + (10 m>s)2 = 18.7 m>s	 Ans.

Acceleration.  Using the chain rule, the time derivative of Eq. (1) 
gives the relation between the acceleration components.

ay = v
#
y = (0.002x

#
)x
#

+ 0.002x(x
$
) = 0.002(vx

2 + xax)

When x = 316.2 m, vx = 15.81 m>s , v
#
y = ay = 0,

0 = 0.0023(15.81 m>s)2 + 316.2 m(ax)4
ax = -0.791 m>s2

The magnitude of the plane’s acceleration is therefore

 a = 2ax
2 + ay

2 = 2(-0.791 m>s2)2 + (0 m>s2)2

	 = 0.791 m>s2	 Ans.

These results are shown in Fig. 12–19b.

Example   12.10

y

x

(© R.C. Hibbeler)

x

y

(a)

y � 0.001x2

100 m

Fig. 12–19 

x

y

(b)

100 m

vy v

a
vx
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1212.6   Motion of a Projectile

The free-flight motion of a projectile is often studied in terms of its 
rectangular components. To illustrate the kinematic analysis, consider a 
projectile launched at point (x0 , y0), with an initial velocity of v0 , having 
components (v0)x and (v0)y , Fig. 12–20. When air resistance is neglected, 
the only force acting on the projectile is its weight, which causes the 
projectile to have a constant downward acceleration of approximately 
ac = g = 9.81 m>s2 or g = 32.2 ft>s2.* 

y

x

a � g

(v0)y

(v0)x

v0

vx

vy v

r

y0

y

x0

x

Fig. 12–20 

*This assumes that the earth’s gravitational field does not vary with altitude.

Horizontal Motion.   Since ax = 0, application of the constant 
acceleration equations, 12–4 to 12–6, yields

( S+ )	  v = v0 + act;	  vx = (v0)x

( S+ )	  x = x0 + v0t +
1
2 act

2;	  x = x0 + (v0)xt

( S+ )	   v2 = v0
2 + 2ac(x - x0);	  vx = (v0)x

The first and last equations indicate that the horizontal component of 
velocity always remains constant during the motion.

Vertical Motion.   Since the positive y axis is directed upward, then 
ay = -g. Applying Eqs. 12–4 to 12–6, we get

(+ c )	  v = v0 + act;	  vy = (v0)y - gt

(+ c )	  y = y0 + v0t +
1
2 act

2;	  y = y0 + (v0)yt -
1
2 gt2

(+ c )	  v2 = v0
2 + 2ac(y -  y0);	  vy

2 = (v0)
2
y -  2g(y -  y0)

Recall that the last equation can be formulated on the basis of eliminating 
the time t from the first two equations, and therefore only two of the above 
three equations are independent of one another.

Each picture in this sequence is taken 
after the same time interval. The red ball 
falls from rest, whereas the yellow ball is 
given a horizontal velocity when released. 
Both balls accelerate downward at the 
same rate, and so they remain at the same 
elevation at any instant. This acceleration 
causes the difference in elevation between 
the balls to increase between successive 
photos. Also, note the horizontal distance 
between successive photos of the yellow 
ball is constant since the velocity in the 
horizontal direction remains constant. 
(© R.C. Hibbeler)
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To summarize, problems involving the motion of a projectile can have 

at most three unknowns since only three independent equations can be 
written; that is, one equation in the horizontal direction and two in the 
vertical direction. Once vx and vy are obtained, the resultant velocity v, 
which is always tangent to the path, can be determined by the vector sum 
as shown in Fig. 12–20.

Gravel falling off the end of this conveyor 
belt follows a path that can be predicted 
using the equations of constant 
acceleration. In this way the location of 
the accumulated pile can be determined. 
Rectangular coordinates are used for the 
analysis since the acceleration is only in 
the vertical direction. (© R.C. Hibbeler)

Procedure for Analysis

Coordinate System.
	 •	 Establish the fixed x, y coordinate axes and sketch the trajectory 

of the particle. Between any two points on the path specify the 
given problem data and identify the three unknowns. In all cases 
the acceleration of gravity acts downward and equals 9.81 m>s2 
or 32.2 ft>s2. The particle’s initial and final velocities should be 
represented in terms of their x and y components.

	 •	 Remember that positive and negative position, velocity, and 
acceleration components always act in accordance with their 
associated coordinate directions.

Kinematic Equations.
	 •	 Depending upon the known data and what is to be determined, a 

choice should be made as to which three of the following four 
equations should be applied between the two points on the path 
to obtain the most direct solution to the problem.

Horizontal Motion.
	 •	 The velocity in the horizontal or x direction is constant, i.e., 

vx = (v0)x , and

x = x0 + (v0)x t

Vertical Motion.
	 •	 In the vertical or y direction only two of the following three 

equations can be used for solution.

	  vy = (v0)y + ac t

	  y = y0 + (v0)y t +
1
2 ac t

2

	  vy
2 = (v0)y

2 + 2ac( y - y0)

		  For example, if the particle’s final velocity vy is not needed, then 
the first and third of these equations will not be useful.

Once thrown, the basketball follows a 
parabolic trajectory. (© R.C. Hibbeler)
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12

A sack slides off the ramp, shown in Fig. 12–21, with a horizontal 
velocity of 12 m>s. If the height of the ramp is 6 m from the floor, 
determine the time needed for the sack to strike the floor and the 
range R where sacks begin to pile up.

Example   12.11

x

y

R

6 m

12 m/sA

B
C

a � g

Fig. 12–21 

Solution
Coordinate System.  The origin of coordinates is established at the 
beginning of the path, point A, Fig. 12–21. The initial velocity of a sack 
has components (vA)x = 12 m>s and (vA)y = 0. Also, between points A 
and B the acceleration is ay = -9.81 m>s2. Since (vB)x = (vA)x = 12 m>s, 
the three unknowns are (vB)y , R, and the time of flight tAB . Here we do 
not need to determine (vB)y .

Vertical Motion.  The vertical distance from A to B is known, and 
therefore we can obtain a direct solution for tAB by using the equation

 (+ c )	  yB = yA + (vA)ytAB +
1
2 actAB

2

	  -6 m = 0 + 0 +
1
2(-9.81 m>s2)tAB

2

	 tAB = 1.11 s	 Ans.

Horizontal Motion.  Since tAB has been calculated, R is determined 
as follows:
( S+ )	  xB = xA + (vA)xtAB

	  R = 0 + 12 m>s (1.11 s)

	  R = 13.3 m 	 Ans.

NOTE: The calculation for tAB also indicates that if a sack were released 
from rest at A, it would take the same amount of time to strike the 
floor at C, Fig. 12–21.
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The chipping machine is designed to eject wood chips at vO = 25 ft>s 
as shown in Fig. 12–22. If the tube is oriented at 30° from the horizontal, 
determine how high, h, the chips strike the pile if at this instant they 
land on the pile 20 ft from the tube.

4 ft

O

30�

y

x

20 ft

h

A

vO � 25 ft/s

Fig. 12–22 

Solution
Coordinate System.  When the motion is analyzed between points O 
and A, the three unknowns are the height h, time of flight tOA , and 
vertical component of velocity (vA)y . [Note that (vA)x = (vO)x .] With 
the origin of coordinates at O, Fig. 12–22, the initial velocity of a chip 
has components of

 (vO)x = (25 cos 30�) ft>s = 21.65 ft>s S

 (vO)y = (25 sin 30�) ft>s = 12.5 ft>sc

Also, (vA)x = (vO)x = 21.65 ft>s and ay = -32.2 ft>s2. Since we do 
not need to determine (vA)y , we have 

Horizontal Motion.

( S+ )	  xA = xO + (vO)xtOA

	  20 ft = 0 + (21.65 ft>s)tOA

	  tOA = 0.9238 s

Vertical Motion.  Relating tOA to the initial and final elevations of a 
chip, we have

(+ c )  yA = yO + (vO)ytOA +
1
2 ac tOA

2

 (h - 4 ft) = 0 + (12.5 ft>s)(0.9238 s) +
1
2(-32.2 ft>s2)(0.9238 s)2

 h = 1.81 ft � Ans.

NOTE: We can determine (vA)y by using (vA)y = (vO)y + actOA .

Example   12.12
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The track for this racing event was designed so that riders jump off the 
slope at 30°, from a height of 1 m. During a race it was observed that 
the rider shown in Fig. 12–23a remained in mid air for 1.5 s. Determine 
the speed at which he was traveling off the ramp, the horizontal 
distance he travels before striking the ground, and the maximum 
height he attains. Neglect the size of the bike and rider.

(a)

Solution
Coordinate System.  As shown in Fig. 12–23b, the origin of the 
coordinates is established at A. Between the end points of the path AB 
the three unknowns are the initial speed vA , range R, and the vertical 
component of velocity (vB)y .

Vertical Motion.  Since the time of flight and the vertical distance 
between the ends of the path are known, we can determine vA .

(+ c )	  yB = yA + (vA)ytAB +
1
2 act

2
AB

	  -1 m = 0 + vA sin 30�(1.5 s) +
1
2(-9.81 m>s2)(1.5 s)2

	  vA = 13.38 m>s = 13.4 m>s	 Ans.

Horizontal Motion.  The range R can now be determined.

( S+ )	  xB = xA + (vA)xtAB

	  R = 0 + 13.38 cos 30� m>s (1.5 s)

	  = 17.4 m 	 Ans.

In order to find the maximum height h we will consider the path AC, 
Fig. 12–23b. Here the three unknowns are the time of flight tAC , the 
horizontal distance from A to C, and the height h. At the maximum 
height (vC)y = 0, and since vA is known, we can determine h directly 
without considering tAC using the following equation.

	  (vC)y
2 = (vA)y

2 + 2ac[ yC - yA]

	  02 = (13.38 sin 30� m>s)2 + 2(-9.81 m>s2)[(h - 1 m) - 0]

	  h = 3.28 m � Ans.

NOTE:  Show that the bike will strike the ground at B with a velocity 
having components of

(vB)x = 11.6 m>s S , (vB)y = 8.02 m>sT

Example    12.13

30�

A

C

B

y

x

R

h 1 m

(b)

Fig. 12–23 

(©
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P12–5.  The particle travels from A to B. Identify the 
three unknowns, and write the three equations needed 
to solve for them.

y

x
B

A

30�

10 m/s

8 m

P12–6.  The particle travels from A to B. Identify the 
three unknowns, and write the three equations needed 
to solve for them.

 

y

x

B

A

20�

60 m/s

tAB � 5 s

P12–3.  Use the chain-rule and find y· and ÿ in terms of 
x, x·  and ẍ if

              a)  y = 4x2

              b)  y = 3ex

               c)  y = 6 sin x

P12–4.  The particle travels from A to B. Identify the 
three unknowns, and write the three equations needed 
to solve for them.

y

x
B

A

40 m/s

20 m

Preliminary Problems

Prob. P12–4 Prob. P12–6

Prob. P12–5



	 12.6   Motion of a Projectile	 47

12Fundamental Problems

F12–15.    If the x and y components of a particle’s velocity 
are vx = (32t) m>s and vy = 8 m>s, determine the equation 
of the path y = f(x), if x = 0 and y = 0 when t = 0.

F12–16.    A particle is traveling along the straight path. If 
its position along the x axis is x = (8t) m, where t is in 
seconds, determine its speed when t = 2 s.

y

x

3 m

4 m

y � 0.75x

x � 8t

Prob. F12–16

F12–17.    A particle is constrained to travel along the path. 
If x = (4t4) m, where t is in seconds, determine the 
magnitude of the particle’s velocity and acceleration when 
t = 0.5 s. 

x

y
y2 � 4x

x � (4t4) m

Prob. F12–17

F12–18.    A particle travels along a straight-line path 
y = 0.5x. If the x component of the particle’s velocity is 
vx = (2t2) m>s, where t is in seconds, determine the magnitude 
of the particle’s velocity and acceleration when t = 4 s.

x

y

y � 0.5x

Prob. F12–18

F12–19.    A particle is traveling along the parabolic path 
y = 0.25x2. If x = 8 m, vx = 8 m>s, and ax = 4 m>s2 when  
t = 2 s, determine the magnitude of the particle’s velocity 
and acceleration at this instant. 

x

y

y � 0.25x2

Prob. F12–19

F12–20.    The box slides down the slope described by the 
equation y = (0.05x2) m, where x is in meters. If the box has 
x components of velocity and acceleration of vx = -3 m>s 
and ax = -1.5 m>s2 at x = 5 m, determine the y components 
of the velocity and the acceleration of the box at this instant. 

y

x

y � 0.05 x2

Prob. F12–20
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F12–25.    A ball is thrown from A. If it is required to clear 
the wall at B, determine the minimum magnitude of its 
initial velocity vA.

A

B

x

y

x

v

8 ft

3 ft

12 ft

30�

Prob. F12–25

F12–26.    A projectile is fired with an initial velocity of 
vA = 150 m>s off the roof of the building. Determine the 
range R where it strikes the ground at B.

A

150 m

vA � 150 m/s

B

y

4
35

x

R

Prob. F12–26

F12–21.    The ball is kicked from point A with the initial 
velocity vA = 10 m>s. Determine the maximum height h it 
reaches. 

F12–22.    The ball is kicked from point A with the initial 
velocity vA = 10 m>s. Determine the range R, and the 
speed when the ball strikes the ground.

vA � 10 m/s

y

xB

A

B

h
x

30� C

Prob. F12–21/22

F12–23.    Determine the speed at which the basketball at A 
must be thrown at the angle of 30� so that it makes it to the 
basket at B.

3 m

B

A
x

y

vA

30�

10 m

1.5 m

Prob. F12–23

F12–24.    Water is sprayed at an angle of 90� from the slope 
at 20 m>s. Determine the range R. 

R

vB � 20 m/s

3
4

5

Prob. F12–24
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12–69.  If the velocity of a particle is defined as v(t) = 
{0.8t2i + 12t1>2j + 5k} m>s, determine the magnitude and 
coordinate direction angles a, b, g of the particle’s 
acceleration when t = 2 s.

12–70.  The velocity of a particle is v =  53i +  (6 -  2t)j6  m>s, 
where t is in seconds. If r = 0 when t = 0, determine the 
displacement of the particle during the time interval 
t = 1 s to t = 3  s.

12–71.  A particle, originally at rest and located at point  
(3 ft, 2 ft, 5 ft), is subjected to an acceleration of 
a = 56t i + 12 t  2k6  ft>s2. Determine the particle’s position 
(x, y, z) at t = 1 s.

*12–72.  The velocity of a particle is given by v = 516t  2
 i +

4t  3j + (5t + 2)k6  m>s, where t is in seconds. If the particle 
is at the origin when t = 0, determine the magnitude of the 
particle’s acceleration when t = 2 s. Also, what is the x, y, z 
coordinate position of the particle at this instant?

12–73.  The water sprinkler, positioned at the base of a hill, 
releases a stream of water with a velocity of 15 ft>s as 
shown. Determine the point B(x, y) where the water strikes 
the ground on the hill. Assume that the hill is defined by the 
equation y = (0.05x2) ft and neglect the size of the sprinkler.

y

x

60�

15 ft/s
B

y � (0.05x2) ft

Prob. 12–73

Problems

12–74.  A particle, originally at rest and located at point (3 ft, 
2 ft, 5 ft), is subjected to an acceleration a = {6t i + 12t2 k} ft>s2. 
Determine the particle’s position (x, y, z) when t = 2 s.

12–75.  A particle travels along the curve from A to B in 2 s. 
It takes 4 s for it to go from B to C and then 3 s to go from C 
to D. Determine its average speed when it goes from A to D.

A

C

D

B

x

y

10 m

5 m
15 m

Prob. 12–75

*12–76.  A particle travels along the curve from A to B in 5 s. 
It takes 8 s for it to go from B to C and then 10 s to go from 
C to A. Determine its average speed when it goes around 
the closed path.

A

B

x

y

C

20 m

30 m

Prob. 12–76
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12
12–81.  A particle travels along the curve from A to B in  
1 s. If it takes 3 s for it to go from A to C, determine its 
average velocity when it goes from B to C.

45�

30�

30 m

x

y

A

B

C

Prob. 12–81

12–82.  The roller coaster car travels down the helical path 
at constant speed such that the parametric equations that 
define its position are x = c sin kt, y = c cos kt, z = h − bt, 
where c, h, and b are constants. Determine the magnitudes 
of its velocity and acceleration.

y

z

x

Prob. 12–82

12–77.  The position of a crate sliding down a ramp is given 
by x = (0.25t3) m, y = (1.5t2) m, z = (6 − 0.75t5>2) m, where t 
is in seconds. Determine the magnitude of the crate’s 
velocity and acceleration when t = 2 s.

12–78.  A rocket is fired from rest at x = 0 and travels 
along a parabolic trajectory described by y2 = [120(103)x] m.

If the x component of acceleration is ax = a 1

4
 t2b   m>s2,

where t  is in seconds, determine the magnitude of the 
rocket’s velocity and acceleration when t = 10 s.

12–79.  The particle travels along the path defined by the 
parabola y = 0.5x  2. If the component of velocity along  
the x axis is vx = (5t) ft>s, where t is in seconds, determine 
the particle’s distance from the origin O and the magnitude 
of its acceleration when t = 1 s. When t = 0, x = 0, y = 0.

x

y

O

y � 0.5x2

Prob. 12–79

*12–80.  The motorcycle travels with constant speed v0  
along the path that, for a short distance, takes the form of a 
sine curve. Determine the x and y components of its velocity 
at any instant on the curve.

L L

c
c

x

y

v0

y � c sin (     x)––
L
p

Prob. 12–80
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12–86.  Determine the minimum initial velocity v0 and the 
corresponding angle u0 at which the ball must be kicked in 
order for it to just cross over the 3-m high fence.

v0 3 m

6 m

u0

Prob. 12–86

12–87.  The catapult is used to launch a ball such that it 
strikes the wall of the building at the maximum height of its 
trajectory. If it takes 1.5 s to travel from A to B, determine 
the velocity vA at which it was launched, the angle of release u, 
and the height h.

18 ft

3.5 ft

h

A

vA

B

u

Prob. 12–87

*12–88.  Neglecting the size of the ball, determine the 
magnitude vA of the basketball’s initial velocity and its 
velocity when it passes through the basket.

3 m

B

A

vA
30�

10 m

Prob. 12–88

12–83.  Pegs A and B are restricted to move in the elliptical 
slots due to the motion of the slotted link. If the link moves 
with a constant speed of 10 m>s, determine the magnitude 
of the velocity and acceleration of peg A when  x = 1 m.

A

C D

B

y

x

v � 10 m/s

x2

4 � v2 � 1

Prob. 12–83

*12–84.  The van travels over the hill described by 
y = (-1.5(10- 3) x2 + 15) ft. If it has a constant speed of 
75 ft>s, determine the x and y components of the van’s 
velocity and acceleration when x = 50 ft.

x

y � (�1.5 (10�3) x2 � 15) ft

y

100 ft

15 ft

Prob. 12–84

12–85.  The flight path of the helicopter as it takes off from 
A is defined by the parametric equations x = (2t2) m and  
y = (0.04t3) m, where t is the time in seconds. Determine the 
distance the helicopter is from point A and the magnitudes 
of its velocity and acceleration when t = 10 s.

y

x
A

Prob. 12–85
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1212
12–93.  A golf ball is struck with a velocity of 80 ft>s as 
shown. Determine the distance d to where it will land.

12–94.  A golf ball is struck with a velocity of 80 ft>s as 
shown. Determine the speed at which it strikes the ground 
at B and the time of flight from A to B.

d

B

A 10�
45�

vA � 80 ft/s

Probs. 12–93/94

12–95.  The basketball passed through the hoop even 
though it barely cleared the hands of the player B who 
attempted to block it. Neglecting the size of the ball, 
determine the magnitude vA of its initial velocity and the 
height h of the ball when it passes over player B.

10 ft
h

C

B

A

vA
30�

5 ft25 ft

7 ft

Prob. 12–95

12–89.  The girl at A can throw a ball at vA = 10 m>s. 
Calculate the maximum possible range R = Rmax and the 
associated angle u at which it should be thrown. Assume the 
ball is caught at B at the same elevation from which it is 
thrown.

12–90.  Show that the girl at A can throw the ball to the 
boy at B by launching it at equal angles measured up or 
down from a 45° inclination. If vA = 10 m >s, determine 
the range R if this value is 15°, i.e., u1 = 45° − 15° = 30° 
and u2 = 45° + 15° = 60°. Assume the ball is caught at the 
same elevation from which it is thrown.

R

BA

vA � 10 m/s

u

Probs. 12–89/90

12–91.  The ball at A is kicked with a speed vA = 80 ft>s 
and at an angle uA = 30°. Determine the point (x, –y) where 
it strikes the ground. Assume the ground has the shape of a 
parabola as shown.

*12–92.  The ball at A is kicked such that uA = 30�. If it 
strikes the ground at B having coordinates x = 15 ft, 
y = -9 ft, determine the speed at which it is kicked and the 
speed at which it strikes the ground.

x

�y

B

A

vA

y � �0.04x2

y

x
uA

Probs. 12–91/92
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12
12–99.  The missile at A takes off from rest and rises 
vertically to B, where its fuel runs out in 8 s. If the 
acceleration varies with time as shown, determine  
the missile’s height hB and speed vB. If by internal controls 
the missile is then suddenly pointed 45° as shown, and 
allowed to travel in free flight, determine the maximum 
height attained, hC, and the range R to where it crashes at D.

R

A

t (s)

a (m/s2)

B

40

8

D

CvB

hB

45�

hC

Prob. 12–99

*12–100.  The projectile is launched with a velocity v0. 
Determine the range R, the maximum height h attained, 
and the time of flight. Express the results in terms of the 
angle u and v0. The acceleration due to gravity is g.

y

x

R

h

v0

u

Prob. 12–100

*12–96.  It is observed that the skier leaves the ramp A at 
an angle uA = 25� with the horizontal. If he strikes the 
ground at B, determine his initial speed vA and the time 
of flight tAB.

12–97.  It is observed that the skier leaves the ramp A at an 
angle uA = 25� with the horizontal. If he strikes the ground 
at B, determine his initial speed vA and the speed at which 
he strikes the ground.

4 m

vA

100 m

B

A

3
4

5

uA

Probs. 12–96/97

12–98.  Determine the horizontal velocity vA of a tennis 
ball at A so that it just clears the net at B. Also, find the 
distance s where the ball strikes the ground.

21 fts

7.5 ft
3 ft

vA

C

A

B

Prob. 12–98
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1212
*12–104.  The man at A wishes to throw two darts at the 
target at B so that they arrive at the same time. If each dart 
is thrown with a speed of 10 m>s, determine the angles uC  
and uD at which they should be thrown and the time between 
each throw. Note that the first dart must be thrown at 
uC  (7  uD), then the second dart is thrown at uD.

B

5 m

A D

CuC

uD

Prob. 12–104

12–105.  The velocity of the water jet discharging from the

orifice can be obtained from v = 22 gh, where h = 2 m is 
the depth of the orifice from the free water surface. 
Determine the time for a particle of water leaving the 
orifice to reach point B and the horizontal distance x where 
it hits the surface.

1.5 m

2 m A

x
B

vA

Prob. 12–105

12–101.  The drinking fountain is designed such that the 
nozzle is located from the edge of the basin as shown. 
Determine the maximum and minimum speed at which 
water can be ejected from the nozzle so that it does not 
splash over the sides of the basin at B and C.

A

B C

vA

50 mm

100 mm

250 mm

40�

100 mm

Prob. 12–101

12–102.  If the dart is thrown with a speed of 10 m>s, 
determine the shortest possible time before it strikes the 
target. Also, what is the corresponding angle uA at which it 
should be thrown, and what is the velocity of the dart when 
it strikes the target?

12–103.  If the dart is thrown with a speed of 10 m>s, 
determine the longest possible time when it strikes the 
target. Also, what is the corresponding angle uA at which it 
should be thrown, and what is the velocity of the dart when 
it strikes the target?

B

4 m

A vA uA

Probs. 12–102/103
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*12–108.  The baseball player A hits the baseball at 
vA = 40 ft>s and uA = 60� from the horizontal. When the 
ball is directly overhead of player B he begins to run under 
it. Determine the constant speed at which B must run and 
the distance d in order to make the catch at the same 
elevation at which the ball was hit.

vA � 40 ft/s

uA

vA
A B C

15 ft d

Prob. 12–108

12–109.  The catapult is used to launch a ball such that it 
strikes the wall of the building at the maximum height of its 
trajectory. If it takes 1.5 s to travel from A to B, determine 
the velocity vA at which it was launched, the angle of  
release u, and the height h.

3.5 ft

h

A

B

vA

18 ft

u

Prob. 12–109

12–106.  The snowmobile is traveling at 10 m>s when it 
leaves the embankment at A. Determine the time of flight 
from A to B and the range R of the trajectory.

40�

3

4

5

R

B

A

Prob. 12–106

12–107.  The fireman wishes to direct the flow of water 
from his hose to the fire at B. Determine two possible angles 
u1 and u2 at which this can be done. Water flows from the 
hose at vA = 80 ft>s.

35 ft

20 ft

A
u

B

vA

Prob. 12–107
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12 12.7  �Curvilinear Motion: Normal and 
Tangential Components

When the path along which a particle travels is known, then it is often 
convenient to describe the motion using n and t coordinate axes which act 
normal and tangent to the path, respectively, and at the instant considered 
have their origin located at the particle.

Planar Motion.  Consider the particle shown in Fig. 12–24a, which 
moves in a plane along a fixed curve, such that at a given instant it is at 
position s, measured from point O. We will now consider a coordinate 
system that has its origin on the curve, and at the instant considered this 
origin happens to coincide with the location of the particle. The t axis is 
tangent to the curve at the point and is positive in the direction of 
increasing s. We will designate this positive direction with the unit vector 
ut . A unique choice for the normal axis can be made by noting that 
geometrically the curve is constructed from a series of differential arc 
segments ds, Fig. 12–24b. Each segment ds is formed from the arc of an 
associated circle having a radius of curvature r (rho) and center of 
curvature O�. The normal axis n is perpendicular to the t axis with its 
positive sense directed toward the center of curvature O�, Fig. 12–24a. 
This positive direction, which is always on the concave side of the curve, 
will be designated by the unit vector un . The plane which contains the n 
and t axes is referred to as the embracing or osculating plane, and in this 
case it is fixed in the plane of motion.* 

Velocity.  Since the particle moves, s is a function of time. As indicated 
in Sec. 12.4, the particle’s velocity v has a direction that is always tangent 
to the path, Fig. 12–24c, and a magnitude that is determined by taking the 
time derivative of the path function s = s(t), i.e., v = ds>dt (Eq. 12–8). 
Hence

	 v = vut 	 (12–15)

where

	 v = s
#

	 (12–16)

*The osculating plane may also be defined as the plane which has the greatest contact 
with the curve at a point. It is the limiting position of a plane contacting both the point and 
the arc segment ds. As noted above, the osculating plane is always coincident with a plane 
curve; however, each point on a three-dimensional curve has a unique osculating plane.

s

O

O¿

n

un

ut

t
Position

(a)

O¿

ds

Radius of curvature

O¿

O¿
ds

ds

r

r

r
r

r
r

(b)

O¿

Velocity

r r

v

(c)

Fig. 12–24
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12
Acceleration.  The acceleration of the particle is the time rate of 
change of the velocity. Thus,

	 a = v
#

= v
#
ut + vu

#
t	 (12–17)

In order to determine the time derivative u
#
t , note that as the particle 

moves along the arc ds in time dt, ut preserves its magnitude of unity; 
however, its direction changes, and becomes u=t , Fig. 12–24d. As shown in 
Fig. 12–24e, we require u=t = ut + dut . Here dut stretches between the 
arrowheads of ut and u=t , which lie on an infinitesimal arc of radius ut = 1. 
Hence, dut has a magnitude of dut = (1) du, and its direction is defined by 
un . Consequently, dut = duun , and therefore the time derivative becomes 
u
#
t = u

#
un . Since ds = rdu, Fig. 12–24d, then u

#
= s

# >r, and therefore

u
#
t = u

#
un =

s
#

r
 un =

v
r

 un

Substituting into Eq. 12–17, a can be written as the sum of its two 
components,

	 a = atut + anun 	 (12–18)

where

	 at = v
#

	 or	 at ds = v dv 	 (12–19)

and

	 an =
v2

r
	 (12–20)

These two mutually perpendicular components are shown in Fig. 12–24f. 
Therefore, the magnitude of acceleration is the positive value of

	 a = 2at
2 + an

2	 (12–21)

O¿

(d)

r
r

ut

u¿t

un

d u

ds

ut

u¿t

un

dut

du

(e)

an

O¿

Acceleration

P
at

a

(f)

Fig. 12–24 (cont.) 
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12
To better understand these results, consider the following two special 

cases of motion.

	 1.	 If the particle moves along a straight line, then r S �  and from 
Eq. 12–20, an = 0. Thus a = at = v

#
, and we can conclude that the 

tangential component of acceleration represents the time rate of 
change in the magnitude of the velocity.

	 2.	 If the particle moves along a curve with a constant speed, then 
at = v

#
= 0 and a = an = v2>r. Therefore, the normal component 

of acceleration represents the time rate of change in the direction of 
the velocity. Since an always acts towards the center of curvature, 
this component is sometimes referred to as the centripetal  (or center 
seeking) acceleration.

As a result of these interpretations, a particle moving along the curved 
path in Fig. 12–25 will have accelerations directed as shown.

Increasing
speed

at

an
a

a

at

an

a � at

Change in
direction of
velocity

Change in
magnitude of
velocity

Fig. 12–25 

Three-Dimensional Motion.  If the particle moves along a space 
curve, Fig. 12–26, then at a given instant the t axis is uniquely specified; 
however, an infinite number of straight lines can be constructed normal 
to the tangent axis. As in the case of planar motion, we will choose the 
positive n axis directed toward the path’s center of curvature O�. This 
axis is referred to as the principal normal to the curve. With the n and t 
axes so defined, Eqs. 12–15 through 12–21 can be used to determine v 
and a. Since ut and un are always perpendicular to one another and lie in 
the osculating plane, for spatial motion a third unit vector, ub , defines the 
binormal axis b which is perpendicular to ut and un , Fig. 12–26.

Since the three unit vectors are related to one another by the vector 
cross product, e.g., ub = ut * un , Fig. 12–26, it may be possible to use this 
relation to establish the direction of one of the axes, if the directions of 
the other two are known. For example, no motion occurs in the ub 
direction, and if this direction and ut are known, then un can be 
determined, where in this case un = ub * ut , Fig. 12–26. Remember, 
though, that un is always on the concave side of the curve.

O¿

un

O

ub

ut

b osculating plane

t

n

s

Fig. 12–26 

v

at

t
n

an

As the boy swings upward with a 
velocity v, his motion can be analyzed 
using n–t coordinates. As he rises, the 
magnitude of his velocity (speed) is 
decreasing, and so at will be negative. 
The rate at which the direction of his 
velocity changes is an, which is always 
positive, that is, towards the center of 
rotation. (© R.C. Hibbeler)
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12Procedure for Analysis

Coordinate System.
	 •	 Provided the path of the particle is known, we can establish a set 

of n and t coordinates having a fixed origin, which is coincident 
with the particle at the instant considered.

	 •	 The positive tangent axis acts in the direction of motion and the 
positive normal axis is directed toward the path’s center of 
curvature.

Velocity.
	 •	 The particle’s velocity is always tangent to the path.
	 •	 The magnitude of velocity is found from the time derivative of 

the path function.

v = s
#

Tangential Acceleration.
	 •	 The tangential component of acceleration is the result of the time 

rate of change in the magnitude of velocity. This component acts 
in the positive s direction if the particle’s speed is increasing or in 
the opposite direction if the speed is decreasing.

	 •	 The relations between at , v, t, and s are the same as for rectilinear 
motion, namely,

at = v
#
 at ds = v dv

	 •	 If at is constant, at = (at)c , the above equations, when integrated, 
yield

 s = s0 + v0t +
1
2(at)ct

2

 v = v0 + (at)ct

 v2 = v0
2 + 2(at)c(s - s0)

Normal Acceleration.
	 •	 The normal component of acceleration is the result of the time 

rate of change in the direction of the velocity. This component is 
always directed toward the center of curvature of the path, i.e., 
along the positive n axis.

	 •	 The magnitude of this component is determined from

an =
v2

r

	 •	 If the path is expressed as y = f(x), the radius of curvature r at 
any point on the path is determined from the equation

r =
[1 + (dy>dx)2]3>2

� d2y>dx2 �
		  The derivation of this result is given in any standard calculus text.

Motorists traveling along this cloverleaf 
interchange experience a normal 
acceleration due to the change in direction 
of their velocity. A tangential component 
of acceleration occurs when the cars’ 
speed is increased or decreased.  
(© R.C. Hibbeler)

Once the rotation is constant, the riders will 
then have only a normal component of 
acceleration. (© R.C. Hibbeler)



60 	 Chapter 12    Kinematics of a Part icle

12 Example   12.14

5 m

10 m

y

x

vA A
t

n

(a)

u

y � x21
20

2 m/s2

1.273 m/s2

45�
90�

a

t

n

(b)

f

Fig. 12–27 

When the skier reaches point A along the parabolic path in Fig. 12–27a, 
he has a speed of 6 m>s which is increasing at 2 m>s2. Determine the 
direction of his velocity and the direction and magnitude of his 
acceleration at this instant. Neglect the size of the skier in the calculation.

Solution
Coordinate System.  Although the path has been expressed in terms 
of its x and y coordinates, we can still establish the origin of the n, t axes 
at the fixed point A on the path and determine the components of v 
and a along these axes, Fig. 12–27a.

Velocity.  By definition, the velocity is always directed tangent to 
the path. Since y =

1
20 x2, dy>dx =

1
10 x, then at x = 10 m, dy>dx = 1. 

Hence, at A, v makes an angle of u = tan-11 = 45� with the x axis, 
Fig. 12–27b. Therefore,

	 vA = 6 m>s 45� d� Ans.

The acceleration is determined from a = v
#
ut +  (v2>r)un . However, it 

is first necessary to determine the radius of curvature of the path at A 
(10 m, 5 m). Since d2y>dx2 =

1
10 , then

r =
[1 + (dy>dx)2]3>2

� d2y>dx2 �
=
31 + 1 1

10 x2243>2

� 1
10 �

`
x = 10 m

= 28.28 m

The acceleration becomes

 aA = v
#
ut +

v2

r
 un

 = 2ut +
(6 m>s)2

28.28 m
 un

 = 52ut + 1.273un6m>s2

As shown in Fig. 12–27b,

 a = 2(2 m>s2)2 + (1.273 m>s2)2 = 2.37 m>s2

 f = tan-1 
2

1.273
= 57.5�

Thus, 45� + 90� + 57.5� - 180� = 12.5� so that,

	 a = 2.37 m>s2 12.5� d� Ans.

NOTE: By using n, t coordinates, we were able to readily solve this 
problem through the use of Eq. 12–18, since it accounts for the 
separate changes in the magnitude and direction of v.
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A race car C travels around the horizontal circular track that has a 
radius of 300 ft, Fig. 12–28. If the car increases its speed at a constant 
rate of 7 ft>s2, starting from rest, determine the time needed for it to 
reach an acceleration of 8 ft>s2. What is its speed at this instant?

t

n

at
an

a

C

r � 300 ft

Fig. 12–28 

Solution
Coordinate System.  The origin of the n and t axes is coincident with 
the car at the instant considered. The t axis is in the direction of motion, 
and the positive n axis is directed toward the center of the circle. This 
coordinate system is selected since the path is known.

Acceleration.  The magnitude of acceleration can be related to its 
components using  a = 2at

2 + an
2 . Here at = 7 ft>s2. Since an = v2>r, 

the velocity as a function of time must be determined first.

 v = v0 + (at)ct

 v = 0 + 7t

Thus

an =
v2

r
=

(7t)2

300
= 0.163t2 ft>s2

The time needed for the acceleration to reach 8 ft>s2 is therefore

 a = 2at
2 + an

2

 8 ft>s2 = 2(7 ft>s2)2 + (0.163t2)2

Solving for the positive value of t yields

 0.163t2 = 2(8 ft>s2)2 - (7 ft>s2)2

	  t = 4.87 s � Ans.

Velocity.  The speed at time t = 4.87 s is
	 v = 7t = 7(4.87) = 34.1 ft>s� Ans.

NOTE: Remember the velocity will always be tangent to the path, 
whereas the acceleration will be directed within the curvature of the path.

Example   12.15
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12

The boxes in Fig. 12–29a travel along the industrial conveyor. If a box 
as in Fig. 12–29b starts from rest at A and increases its speed such that 
at = (0.2t) m>s2, where t is in seconds, determine the magnitude of its 
acceleration when it arrives at point B.

Solution
Coordinate System.  The position of the box at any instant is defined 
from the fixed point A using the position or path coordinate s,  
Fig. 12–29b. The acceleration is to be determined at B, so the origin of 
the n, t axes is at this point.

Acceleration.  To determine the acceleration components at = v
#
 

and an = v2>r, it is first necessary to formulate v and v
#
 so that they 

may be evaluated at B. Since vA = 0 when t = 0, then

	  at = v
#

= 0.2t � (1)

	  L
v

0
dv = L

t

0
0.2t dt�

	  v = 0.1t2 � (2)

The time needed for the box to reach point B can be determined by 
realizing that the position of B is sB = 3 + 2p(2)>4 = 6.142 m,  
Fig. 12–29b, and since sA = 0 when t = 0 we have

 v =
ds

dt
= 0.1t2

 L
6.142 m

0
ds = L

tB

0
0.1t2dt

 6.142 m = 0.0333tB
3

 tB = 5.690s

Substituting into Eqs. 1 and 2 yields

 (aB)t = v
#
B = 0.2(5.690) = 1.138 m>s2

 vB = 0.1(5.69)2 = 3.238 m>s
At B, rB = 2 m, so that

(aB)n =
vB

2

rB
=

(3.238 m>s)2

2 m
= 5.242 m>s2

The magnitude of aB , Fig. 12–29c, is therefore

	  aB = 2(1.138 m>s2)2 + (5.242 m>s2)2 = 5.36 m>s2� Ans.

(a)

3 m

s

n
2 m

B

t

(b)

A

(c)

B

t

n
aB5.242 m/s2

1.138 m/s2

Fig. 12–29 

Example   12.16

(©
 R

.C
. H

ib
be

le
r)
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12Preliminary Problem

P12–7. 

a) � Determine the acceleration at the instant shown.

v � 2 m/s

1 m

v � 3 m/s2

b) � Determine the increase in speed and the normal component 
of acceleration at s = 2 m. At s = 0, v = 0.

2 m

v � 4 m/s2

s � 2 m

c)  �Determine the acceleration at the instant shown. The 
particle has a constant speed of 2 m>s.

y

x

y � 2 x2

2 m/s

d)     �Determine the normal and tangential components of 
acceleration at s = 0 if v = (4s + 1) m>s, where s is  
in meters.

2 m

s

 e)  �Determine the acceleration at s = 2 m if v
#
 = (2 s) m>s2, 

where s is in meters. At s = 0, v = 1 m>s.

3 m

s

f.�      � Determine the acceleration when t = 1 s if v  =  (4t2 + 2) m>s, 
where t is in seconds.

6 m

v �(4 t2 + 2) m/s

Prob. P12–7
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12 Fundamental Problems

F12–27.  The boat is traveling along the circular path 
with a speed of v = (0.0625t2) m>s, where t is in seconds. 
Determine the magnitude of its acceleration when t = 10 s.

v � 0.0625t2

O

40 m

t

n

Prob. F12–27

F12–28.  The car is traveling along the road with a speed 
of v = (2 s) m>s, where s is in meters. Determine the 
magnitude of its acceleration when s = 10 m.

O

50 m

v � (2s) m/s

s

t

n

Prob. F12–28

F12–29.  If the car decelerates uniformly along the curved 
road from 25 m>s at A to 15 m>s at C, determine the 
acceleration of the car at B. 

250 m

50 m

C

O

A

B

rB � 300 m

Prob. F12–29

F12–30.  When x = 10 ft, the crate has a speed of 20 ft>s 
which is increasing at 6 ft>s2. Determine the direction of the 
crate’s velocity and the magnitude of the crate’s acceleration 
at this instant.

y

x

y �     x2

10 ft

1
24

20 ft/s

Prob. F12–30

F12–31.  If the motorcycle has a deceleration of 
at = - (0.001s) m>s2 and its speed at position A is 25 m>s, 
determine the magnitude of its acceleration when it 
passes point B. 

300 m

A

s

B

n

t

90�

Prob. F12–31

F12–32.  The car travels up the hill with a speed of 
v = (0.2s) m>s, where s is in meters, measured from A. 
Determine the magnitude of its acceleration when it is at 
point s = 50 m, where r = 500 m. 

y

n

A
s � 50 m

x

t

Prob. F12–32
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12PROBLEMS

12–110.  An automobile is traveling on a curve having a 
radius of 800 ft. If the acceleration of the automobile is  
5 ft>s2, determine the constant speed at which the 
automobile is traveling.

12–111.  Determine the maximum constant speed a race 
car can have if the acceleration of the car cannot exceed 
7.5 m>s2 while rounding a track having a radius of curvature 
of 200 m.

*12–112.  A boat has an initial speed of 16 ft>s. If it then 
increases its speed along a circular path of radius r = 80 ft at 
the rate of v#  = (1.5s) ft>s, where s is in feet, determine the 
time needed for the boat to travel s = 50 ft.

12–113.  The position of a particle is defined by r =  
{4(t - sin t)i + (2t2 - 3)j} m, where t is in seconds and the 
argument for the sine is in radians. Determine the speed of 
the particle and its normal and tangential components of 
acceleration when t = 1 s.

12–114.  The automobile has a speed of 80 ft>s at point A 
and an acceleration having a magnitude of 10 ft>s2, acting in 
the direction shown. Determine the radius of curvature of 
the path at point A and the tangential component of 
acceleration.

u � 30�

n

t

aA

Prob. 12–114

12–115.  The automobile is originally at rest at s = 0. If its 
speed is increased by   v 

#
 = (0.05t 2) ft>s2, where t is in 

seconds, determine the magnitudes of its velocity and 
acceleration when t = 18 s.

*12–116.  The automobile is originally at rest s = 0. If it 
then starts to increase its speed at  v 

#
= (0.05t 2) ft>s2, where 

t is in seconds, determine the magnitudes of its velocity and 
acceleration at s = 550 ft.

s

240 ft

300 ft

Probs. 12–115/116

12–117.  The two cars A and B travel along the circular 
path at constant speeds vA = 80 ft>s and vB = 100 ft>s, 
respectively. If they are at the positions shown when t = 0, 
determine the time when the cars are side by side, and the 
time when they are 90° apart.

12–118.  Cars A and B are traveling around the circular 
race track. At the instant shown, A has a speed of 60 ft>s 
and is increasing its speed at the rate of 15 ft>s2 until it 
travels for a distance of 100p ft, after which it maintains a 
constant speed. Car B has a speed of 120 ft>s and is 
decreasing its speed at 15 ft>s2 until it travels a distance 
of  65p ft, after which it maintains a constant speed.  
Determine the time when they come side by side.

A

B

vA

vB

rB � 390 ft

rA � 400 ft

Probs. 12–117/118
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1212
12–121.  The car passes point A with a speed of 25 m>s 
after which its speed is defined by v = (25 - 0.15s) m>s. 
Determine the magnitude of the car’s acceleration when it 
reaches point B, where s = 51.5 m and x = 50 m.

12–122.  If the car passes point A with a speed of 20 m>s 
and begins to increase its speed at a constant rate of 
at =  0.5 m>s2, determine the magnitude of the car’s 
acceleration when s = 101.68 m and x = 0.

y � 16 �        x1
625

y

s

x

B

A

Probs. 12–121/122

12–123.  The motorcycle is traveling at 1 m>s when it is  
at A. If the speed is then increased at v. = 0.1 m>s2, determine 
its speed and acceleration at the instant t = 5 s.

x

s

A

y

y � 0.5x2

Prob. 12–123

12–119.  The satellite S travels around the earth in a 
circular path with a constant speed of 20 Mm>h. If the 
acceleration is 2.5 m>s2, determine the altitude h. Assume 
the earth’s diameter to be 12 713 km.

h

S

Prob. 12–119

*12–120.  The car travels along the circular path such that 
its speed is increased by at = (0.5et) m>s2, where t is in 
seconds. Determine the magnitudes of its velocity and 
acceleration after the car has traveled s = 18 m starting 
from rest. Neglect the size of the car.

s � 18 m

� 30 mρ

Prob. 12–120
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12
12–127.  At a given instant the train engine at E has a speed 
of 20 m>s and an acceleration of 14 m>s2 acting in the 
direction shown. Determine the rate of increase in the 
train’s speed and the radius of curvature r of the path.

v � 20 m/s

a � 14 m/s2 E

75�

r

Prob. 12–127

*12–128.  The car has an initial speed v0 = 20 m>s. If it 
increases its speed along the circular track at s = 0, 
at = (0.8s) m>s2, where s is in meters, determine the time 
needed for the car to travel s = 25 m.

12–129.  The car starts from rest at s = 0 and increases its 
speed at at = 4 m>s2. Determine the time when the 
magnitude of acceleration becomes 20 m>s2. At what 
position s does this occur?

s 

r � 40 m

Probs. 12–128/129

*12–124.  The box of negligible size is sliding down along a 
curved path defined by the parabola y = 0.4x2. When it is at 
A(xA = 2 m, yA = 1.6 m), the speed is v = 8 m>s and the 
increase in speed is dv>dt = 4 m>s2. Determine the 
magnitude of the acceleration of the box at this instant.

y

x

2 m

y � 0.4x2

A

Prob. 12–124

12–125.  The car travels around the circular track having a 
radius of r = 300 m such that when it is at point A it has a 
velocity of 5 m>s, which is increasing at the rate of  
v
. = (0.06t) m>s2, where t is in seconds. Determine the 

magnitudes of its velocity and acceleration when it has 
traveled one-third the way around the track.

12–126.  The car travels around the portion of a circular 
track having a radius of r = 500 ft such that when it is at 
point A it has a velocity of 2 ft>s, which is increasing at the 
rate of v

#
=  (0.002t) ft>s2, where t is in seconds. Determine 

the magnitudes of its velocity and acceleration when it has 
traveled three-fourths the way around the track.

y

x

r

A

Probs. 12–125/126
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1212
*12–136.  At a given instant the jet plane has a speed of  
550 m>s and an acceleration of 50 m>s2 acting in the 
direction shown. Determine the rate of increase in the 
plane’s speed, and also the radius of curvature r of the path.

550 m/s

70�

a � 50 m/s2

r

Prob. 12–136

12–137.  The ball is ejected horizontally from the tube with 
a speed of 8 m>s. Find the equation of the path, y = f(x), 
and then find the ball’s velocity and the normal and 
tangential components of acceleration when t = 0.25 s.

vA � 8 m/s

y

x
A

Prob. 12–137

12–138.  The motorcycle is traveling at 40 m>s when it is at 
A. If the speed is then decreased at  v 

#
 = -  (0.05 s) m>s2, 

where s is in meters measured from A, determine its speed 
and acceleration when it reaches B.

A

B150 m

150 m60�

Prob. 12–138

12–130.  A boat is traveling along a circular curve having a 
radius of 100 ft. If its speed at t = 0 is 15 ft>s and is 
increasing at  v 

#
 = (0.8t) ft>s2, determine the magnitude of 

its acceleration at the instant t = 5 s.

12–131.  A boat is traveling along a circular path having a 
radius of 20 m. Determine the magnitude of the boat’s 
acceleration when the speed is v = 5 m>s and the rate of 
increase in the speed is  v 

#
= 2 m>s2.

*12–132.  Starting from rest, a bicyclist travels around  
a horizontal circular path, r = 10 m, at a speed of 
v = (0.09t2 + 0.1t) m>s, where t is in seconds. Determine 
the magnitudes of his velocity and acceleration when he has 
traveled s = 3 m.

12–133.  A particle travels around a circular path having a 
radius of 50 m. If it is initially traveling with a speed of  
10 m>s and its speed then increases at a rate of 
 v 
#
 = (0.05 v) m>s2, determine the magnitude of the particle’s 

acceleration four seconds later.

12–134.  The motorcycle is traveling at a constant speed of 
60 km>h. Determine the magnitude of its acceleration when 
it is at point A.

y
y2 � 2x

x

25 m

A

Prob. 12–134

12–135.  When t = 0, the train has a speed of 8 m>s, which is 
increasing at 0.5 m>s2. Determine the magnitude of the 
acceleration of the engine when it reaches point A, at  
t = 20 s. Here the radius of curvature of the tracks is rA = 400 m.

vt � 8 m/s

A

Prob. 12–135
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12
12–142.  The race car has an initial speed vA = 15 m>s at A. 
If it increases its speed along the circular track at the rate  
at = (0.4s) m>s2, where s is in meters, determine the time 
needed for the car to travel 20 m. Take r = 150 m.

A
s

r

Prob. 12–142

12–143.  The motorcycle travels along the elliptical track at 
a constant speed v. Determine its greatest acceleration if 
a 7 b.

*12–144.  The motorcycle travels along the elliptical track 
at a constant speed v. Determine its smallest acceleration if 
a 7 b.

b

a

y

x

�      � 1
x2

a
2

y2

b
2

Probs. 12–143/144

12–139.  Cars move around the “traffic circle” which is in the 
shape of an ellipse. If the speed limit is posted at 60 km>h, 
determine the minimum acceleration experienced by the 
passengers.

*12–140.  Cars move around the “traffic circle” which is in 
the shape of an ellipse. If the speed limit is posted at 60 km>h, 
determine the maximum acceleration experienced by the 
passengers.

x

60 m

40 m

y

(40)2 � 1�
y2

(60)2
x2

(60)2

x

40

y

0)2 � 1
2

Probs. 12–139/140

12–141.  A package is dropped from the plane which is 
flying with a constant horizontal velocity of vA = 150 ft>s. 
Determine the normal and tangential components of 
acceleration and the radius of curvature of the path of 
motion (a) at the moment the package is released at A, 
where it has a horizontal velocity of vA = 150 ft>s, and  
(b) just before it strikes the ground at B.

vA
A

B

1500 ft

Prob. 12–141
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1212
12–149.  The train passes point B with a speed of 20 m>s 
which is decreasing at at = -  0.5 m>s2. Determine the 
magnitude of acceleration of the train at this point.

12–150.  The train passes point A with a speed of 30 m>s 
and begins to decrease its speed at a constant rate of  
at = -  0.25 m>s2. Determine the magnitude of the acceleration 
of the train when it reaches point B, where sAB = 412 m.

y

x

400 m

y � 200 e        
x

1000

B
A

Probs. 12–149/150

12–151.  The particle travels with a constant speed of  
300 mm>s along the curve. Determine the particle’s 
acceleration when it is located at point (200 mm, 100 mm) 
and sketch this vector on the curve.

y (mm)

x (mm)

P

v

y �
20(103)

x

Prob. 12–151

12–145.  Particles A and B are traveling counter-clockwise 
around a circular track at a constant speed of 8 m>s. If at the 
instant shown the speed of A begins to increase by  
(at)A = (0.4sA) m>s2, where sA is in meters, determine the 
distance measured counterclockwise along the track from B 
to A when t = 1 s. What is the magnitude of the acceleration 
of each particle at this instant?

12–146.  Particles A and B are traveling around a circular 
track at a speed of 8 m>s at the instant shown. If the speed 
of B is increasing by (at)B = 4 m>s2, and at the same instant A 
has an increase in speed of (at)A = 0.8t m>s2, determine how 
long it takes for a collision to occur. What is the magnitude 
of the acceleration of each particle just before the  
collision occurs?

r � 5 m

� 120� sB

sA

A

B

u

Probs. 12–145/146

12–147.  The jet plane is traveling with a speed of 120 m>s 
which is decreasing at 40 m>s2 when it reaches point A. 
Determine the magnitude of its acceleration when it is at 
this point. Also, specify the direction of flight, measured 
from the x axis.

*12–148.  The jet plane is traveling with a constant speed 
of 110 m>s along the curved path. Determine the magnitude 
of the acceleration of the plane at the instant it reaches 
point A(y = 0).

y � 15 lnQ     R

80 m

y

x
A

x
80

Probs. 12–147/148



	 12.8  Curvilinear Motion: Cylindrical Components	 71

12
12–153.  The motion of a particle is defined by the 
equations x = (2t + t2) m and y = (t2) m, where t is in 
seconds. Determine the normal and tangential components 
of the particle’s velocity and acceleration when t = 2 s.

12–154.  If the speed of the crate at A is 15 ft>s, which is 
increasing at a rate v#  = 3 ft>s2 , determine the magnitude of 
the acceleration of the crate at this instant.

y

x

A

10 ft

y �      x21
16

Prob. 12–154

*12–152.  A particle P travels along an elliptical spiral path 
such that its position vector r is defined by 
r = 52 cos(0.1t)i + 1.5 sin(0.1t)j + (2t)k6  m, where t is in 
seconds and the arguments for the sine and cosine are given 
in radians. When t = 8 s, determine the coordinate direction 
angles a, b, and g, which the binormal axis to the osculating 
plane makes with the x, y, and z axes. Hint: Solve for the 
velocity vP and acceleration aP of the particle in terms of their 
i, j, k components. The binormal is parallel to vP * aP. Why?

z

y

r

P

x

Prob. 12–152

12.8  �Curvilinear Motion: Cylindrical 
Components

Sometimes the motion of the particle is constrained on a path that is best 
described using cylindrical coordinates. If motion is restricted to the plane, 
then polar coordinates are used.

Polar Coordinates.  We can specify the location of the particle 
shown in Fig. 12–30a using a radial coordinate r, which extends outward 
from the fixed origin O to the particle, and a transverse coordinate u, 
which is the counterclockwise angle between a fixed reference line and 
the r axis. The angle is generally measured in degrees or radians, where 
1 rad = 180�>p. The positive directions of the r and u coordinates are 
defined by the unit vectors ur and uu , respectively. Here ur is in the 
direction of increasing r when u is held fixed, and uu is in a direction of 
increasing u when r is held fixed. Note that these directions are 
perpendicular to one another.

O

r

r

ur

uu

Position

(a)

u

u

Fig. 12–30
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12
Position.  At any instant the position of the particle, Fig. 12–30a, is 
defined by the position vector

	 r = r ur	 (12–22)

Velocity.  The instantaneous velocity v is obtained by taking the time 
derivative of r. Using a dot to represent the time derivative, we have

v = r
#

= r
#  ur + r u

#
r

To evaluate u
#
r , notice that ur only changes its direction with respect to 

time, since by definition the magnitude of this vector is always one unit. 
Hence, during the time �t, a change �r will not cause a change in the 
direction of ur ; however, a change �u will cause ur to become ur

=
 

, where 
ur
= = ur + �ur 

, Fig. 12–30b. The time change in ur is then �ur . For small 
angles �u this vector has a magnitude �ur � 1(�u) and acts in the uu 
direction. Therefore, �ur = �uuu , and so

 u
#
r = lim

�tS0
 
�ur

�t
= a lim

�tS0
 
�u

�t
b  uu

	  u
#
r = u

#
uu� (12–23)

Substituting into the above equation, the velocity can be written in 
component form as

	 v = vrur + vuuu 	 (12–24)

where

	
vr = r

#

  vu = ru
# 	 (12–25)

These components are shown graphically in Fig. 12–30c. The radial 
component vr is a measure of the rate of increase or decrease in the 
length of the radial coordinate, i.e., r

#  ; whereas the transverse component 
vu can be interpreted as the rate of motion along the circumference of a 
circle having a radius r. In particular, the term u

#
= du>dt is called the 

angular velocity, since it indicates the time rate of change of the angle u. 
Common units used for this measurement are rad>s.

Since vr and vu are mutually perpendicular, the magnitude of velocity 
or speed is simply the positive value of

	  v = 2(r
#
)2 + (ru

#
)2� (12–26)

and the direction of v is, of course, tangent to the path, Fig. 12–30c.

O

r

r

ur

uu

Position

(a)

u

u

(b)

�ur

ur

uu u¿r

�u

O

r

vr

vu

v

Velocity

(c)

u

Fig. 12–30 (cont.)
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12
Acceleration.  Taking the time derivatives of Eq. 12–24, using 
Eqs. 12–25, we obtain the particle’s instantaneous acceleration,

a = v
#

= r
$
ur + r

#
u
#
r + r

#
u
#
uu + ru

$
uu + ru

#
u
#
u

To evaluate u
#
u , it is necessary only to find the change in the direction of 

uu since its magnitude is always unity. During the time �t, a change �r 
will not change the direction of uu , however, a change �u will cause uu to 
become uu

= , where u=u = uu + �uu , Fig. 12–30d. The time change in uu is 
thus �uu . For small angles this vector has a magnitude �uu � 1(�u) and 
acts in the -ur direction; i.e., �uu = - �uur . Thus,

 u
#
u = lim

�tS0
 
�uu

�t
= - a lim

�tS0
 
�u

�t
bur

	  u
#
u = -u

#
ur � (12–27)

Substituting this result and Eq. 12–23 into the above equation for a, we 
can write the acceleration in component form as

	  a = arur + auuu � (12–28)

where

	
ar = r

$
- ru

#
2

au = ru
$

+ 2r
#
u
#
 

� (12–29)

The term u
$

= d2u>dt2 = d>dt(du>dt) is called the angular acceleration 
since it measures the change made in the angular velocity during an 
instant of time. Units for this measurement are rad>s2.

Since ar and au are always perpendicular, the magnitude of acceleration 
is simply the positive value of

	  a = 2(r
$

- r u
#

 
2)2 + (ru

$
+ 2r  #

  u
#
)2� (12–30)

The direction is determined from the vector addition of its two 
components. In general, a will not be tangent to the path, Fig. 12–30e.

(d)

ur

u¿u

uu
�uu

�u

 

O

r
ar

au

a

Acceleration

(e)

u
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12
Cylindrical Coordinates.  If the particle moves along a space 
curve as shown in Fig. 12–31, then its location may be specified by the 
three cylindrical coordinates, r, u, z. The z coordinate is identical to that 
used for rectangular coordinates. Since the unit vector defining its 
direction, uz , is constant, the time derivatives of this vector are zero, and 
therefore the position, velocity, and acceleration of the particle can be 
written in terms of its cylindrical coordinates as follows:

 rP = rur + zuz   

 v = r
#
ur + ru

#
uu + z

#
uz 	 (12–31)

 a = (r
$

- ru
#
2)ur + (ru

$
+ 2r

#
u
#
)uu + z

$
uz	 (12–32)

Time Derivatives.  The above equations require that we obtain the 
time derivatives r

#
, r
$
, u

#
, and u

$
 in order to evaluate the r and u components 

of v and a. Two types of problems generally occur:

	 1.	 If the polar coordinates are specified as time parametric equations, 
r = r(t) and u = u(t), then the time derivatives can be found directly.

	 2.	 If the time-parametric equations are not given, then the path r = f(u) 
must be known. Using the chain rule of calculus we can then find the 
relation between r

#
 and u

#
, and between r

$
 and u

$
. Application of the 

chain rule, along with some examples, is explained in Appendix C.

z

r

rP

ur

uz

uu

O

u

Fig. 12–31 

The spiral motion of this girl can 
be followed by using cylindrical 
components. Here the radial 
coordinate r is constant, the 
transverse coordinate u will 
increase with time as the  girl 
rotates about the vertical, and her 
altitude z will decrease with time. 
(© R.C. Hibbeler)

Procedure for Analysis

Coordinate System.

	 •	 Polar coordinates are a suitable choice for solving problems when 
data regarding the angular motion of the radial coordinate r is 
given to describe the particle’s motion. Also, some paths of motion 
can conveniently be described in terms of these coordinates.

	 •	 To use polar coordinates, the origin is established at a fixed point, 
and the radial line r is directed to the particle.

	 •	 The transverse coordinate u is measured from a fixed reference 
line to the radial line.

Velocity and Acceleration.

	 •	 Once r and the four time derivatives r
#
, r

$
, u

#
, and u

$
 have been 

evaluated at the instant considered, their values can be substituted 
into Eqs. 12–25 and 12–29 to obtain the radial and transverse 
components of v and a.

	 •	 If it is necessary to take the time derivatives of r = f(u), then the 
chain rule of calculus must be used. See Appendix C.

	 •	 Motion in three dimensions requires a simple extension of the 
above procedure to include z

#
 and z

$
.
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12

The amusement park ride shown in Fig. 12–32a consists of a chair that 
is rotating in a horizontal circular path of radius r such that the arm OB 
has an angular velocity u

#
 and angular acceleration u

$
. Determine the 

radial and transverse components of velocity and acceleration of the 
passenger. Neglect his size in the calculation.

Example    12.17

Solution
Coordinate System.  Since the angular motion of the arm is 
reported, polar coordinates are chosen for the solution, Fig. 12–32a. 
Here u is not related to r, since the radius is constant for all u.

Velocity and Acceleration.  It is first necessary to specify the first 
and second time derivatives of r and u. Since r is constant, we have

r = r  r
#

= 0  r
$

= 0

Thus,

	  vr = r
#

= 0 	 Ans.

	  vu = ru
#

	 Ans.

	  ar = r
$

- ru
#
2 = -ru

#
2	 Ans.

	  au = ru
$

+ 2r
#
u
#

= ru
$

	 Ans.

These results are shown in Fig. 12–32b.

NOTE: The n, t axes are also shown in Fig. 12–32b, which in this special 
case of circular motion happen to be collinear with the r and u axes, 
respectively. Since v = vu = vt = ru

#
, then by comparison,

	  -ar = an =
v2

r
=

(ru
#
)2

r
= ru

#
2

 au = at =
dv

dt
=

d

dt
 (ru

#
) =

dr

dt
 u
#

+ r 
du

#

dt
= 0 + ru

$

, r

O

r

(a)

B

 ·  · ·
u u

u

(b)

··

·
v � ru

u, t

·
�ar � ru2

au � ru

n

r

Fig. 12–32 
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12 Example   12.18

(a)

A

B
r

O

u

(b)

r

vu � 300 mm/s

vr � 200 mm/s

v

u

d

u � 57.3�

(c)

r

au � 1800 mm/s2

a

ar � 700 mm/s2

u � 57.3� u
f

Fig. 12–33 

The rod OA in Fig. 12–33a rotates in the horizontal plane such that 
u = (t3) rad. At the same time, the collar B is sliding outward along OA 
so that r = (100t2) mm. If in both cases t is in seconds, determine the 
velocity and acceleration of the collar when t = 1 s.

Solution
Coordinate System.  Since time-parametric equations of the path 
are given, it is not necessary to relate r to u.

Velocity and Acceleration.  Determining the time derivatives and 
evaluating them when t = 1 s, we have

 r = 100t2 `
t = 1 s

= 100 mm u = t3 `
t = 1 s

= 1 rad = 57.3�

 r
#

= 200t `
t = 1 s

= 200 mm>s u
#

= 3t2 `
t = 1 s

= 3 rad>s

 r
$

= 200 `
t = 1 s

= 200 mm>s2 u
$

= 6t `
t = 1 s

= 6 rad>s2.

As shown in Fig. 12–33b,

 v = r
#
ur + ru

#
uu

 = 200ur + 100(3)uu = 5200ur + 300uu6  mm>s
The magnitude of v is

	  v = 2(200)2 + (300)2 = 361 mm>s� Ans.

	 d = tan-1a 300

200
b = 56.3� d + 57.3� = 114�� Ans.

As shown in Fig. 12–33c,

 a = ( r
$

- ru
#
2)ur + (ru

$
+ 2r

#
u
#
)uu

 = [200 - 100(3)2]ur + [100(6) + 2(200)3]uu

 = 5-700ur + 1800uu6  mm>s2

The magnitude of a is

	 a = 2(-700)2 + (1800)2 = 1930 mm>s2� Ans.

f = tan-1a 1800

700
b = 68.7� (180� - f) + 57.3� = 169�� Ans.

NOTE: The velocity is tangent to the path; however, the acceleration is 
directed within the curvature of the path, as expected.
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The searchlight in Fig. 12–34a casts a spot of light along the face of a 
wall that is located 100 m from the searchlight. Determine the 
magnitudes of the velocity and acceleration at which the spot appears 
to travel across the wall at the instant u = 45�. The searchlight rotates 
at a constant rate of u

#
= 4 rad>s.

Solution
Coordinate System.  Polar coordinates will be used to solve this 
problem since the angular rate of the searchlight is given. To find the 
necessary time derivatives it is first necessary to relate r to u. From 
Fig. 12–34a,

r = 100>cos u = 100 sec u

Velocity and Acceleration.  Using the chain rule of calculus, noting 
that d(sec u) = sec u tan u du, and d(tan u) = sec2 u du, we have

 r
#

= 100(sec u tan u)u
#

 r
$

= 100(sec u tan u)u
#
(tan u)u

#
+ 100 sec u(sec2 u)u

#
(u

#
)

       + 100 sec u tan u(u
$
)

 = 100 sec u tan2 u (u
#
)2 + 100 sec3u (u

#
)2 + 100(sec u tan u)u

$

Since u
#

= 4 rad>s = constant, then u
$

= 0, and the above equations, 
when u = 45�, become

 r = 100 sec 45� = 141.4
 r
#

= 400 sec 45� tan 45� = 565.7
 r
$

= 1600 (sec 45� tan2 45� + sec3 45�) = 6788.2

As shown in Fig. 12–34b,

 v = r
#
ur + ru

#
uu

 = 565.7ur + 141.4(4)uu

 = 5565.7ur + 565.7uu6  m>s
 v = 2vr

2 + vu
2 = 2(565.7)2 + (565.7)2

 = 800 m>s 	 Ans.

As shown in Fig. 12–34c,

 a = ( r
$

- ru
#
2)ur + (ru

$
+ 2r

#
u
#
)uu

 = [6788.2 - 141.4(4)2]ur + [141.4(0) + 2(565.7)4]uu

 = 54525.5ur + 4525.5uu6  m>s2

 a = 2ar
2 + au

2 = 2(4525.5)2 + (4525.5)2

	  = 6400 m>s2 � Ans.

NOTE: It is also possible to find a without having to calculate r
$

 (or  
ar). As shown in Fig. 12–34d, since au = 4525.5 m>s2, then by vector 
resolution, a = 4525.5>cos 45� = 6400 m>s2.

Example   12.19

100 mu � 4 rad/s
·

r

(a)

u

100 mr

v

vr

r

vu

(b)

u

u

u

100 mr

a

ar

au

(c)

r

u

u

u

ar

(d)

u � 45�

a

au � 4525.5 m/s2

Fig. 12–34 
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12

Due to the rotation of the forked rod, the ball in Fig. 12–35a travels 
around the slotted path, a portion of which is in the shape of a 
cardioid, r = 0.5(1 - cos u) ft, where u is in radians. If the ball’s 
velocity is v = 4 ft>s and its acceleration is a = 30 ft>s2 at the instant 
u = 180�, determine the angular velocity u

#
 and angular acceleration 

u
$

 of the fork.

Solution
Coordinate System.  This path is most unusual, and mathematically 
it is best expressed using polar coordinates, as done here, rather than 
rectangular coordinates. Also, since u

#
 and u

$
 must be determined, 

then r, u coordinates are an obvious choice.

Velocity and Acceleration.  The time derivatives of r and u can be 
determined using the chain rule.

 r = 0.5(1 - cos u)

 r
#

= 0.5(sin u)u
#

 r
$

= 0.5(cos u) u
#
(u

#
) + 0.5(sin u)u

$

Evaluating these results at u = 180�, we have

r = 1 ft  r
#

= 0  r
$

= -0.5u
#
2

Since v = 4 ft>s, using Eq. 12–26 to determine u
#
 yields

 v = 2(r
#
)2 + (ru

#
)2

 4 = 2(0)2 + (1u
#
)2

	  u
#

= 4 rad>s � Ans.

In a similar manner, u
$

 can be found using Eq. 12–30.

 a = 2(r
$

- ru
#
2)2 + (ru

$
+ 2r

#
u
#
)2

 30 = 2[-0.5(4)2 - 1(4)2]2 + [1u
$

+ 2(0)(4)]2

 (30)2 = (-24)2 + u
$

 
2

	  u
$

= 18 rad>s2 � Ans.

Vectors a and v are shown in Fig. 12–35b.

NOTE: At this location, the u and t (tangential) axes will coincide. The 
+n (normal) axis is directed to the right, opposite to +r.

Example   12.20

· ··,
r

r � 0.5 (1 � cos u) ft

u u

u

(a)

r

a � 30 ft/s2

v � 4 ft/s

(b)

u

Fig. 12–35 
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12

F12–33.  The car has a speed of 55 ft>s. Determine the 
angular velocity u

#
 of the radial line OA at this instant.

r � 400 ft

O

A

u

Prob. F12–33

F12–34.  The platform is rotating about the vertical axis 
such that at any instant its angular position is u = (4t3/2) rad, 
where t is in seconds. A ball rolls outward along the radial 
groove so that its position is r = (0.1t3) m, where t is in 
seconds. Determine the magnitudes of the velocity and 
acceleration of the ball when t = 1.5 s.

	
r

,

u

uu

  Prob. F12–34

F12–35.  Peg P is driven by the fork link OA along the 
curved path described by r = (2u) ft. At the instant 
u = p>4 rad, the angular velocity and angular acceleration 
of the link are u

#
= 3 rad>s and u

$
= 1 rad>s2. Determine the 

magnitude of the peg’s acceleration at this instant. 

	

A

P
r

O

u

,uu

  Prob. F12–35

Fundamental Problems

F12–36.  Peg P is driven by the forked link OA along the path 
described by r = eu, where r is in meters. When u =

p
4  rad, the 

link has an angular velocity and angular acceleration of 
u
#

= 2 rad>s and u
$

= 4 rad>s2. Determine the radial and 
transverse components of the peg’s acceleration at this instant.

r

O

P

A
r � eu

u

,uu

  Prob. F12–36
F12–37.  The collars are pin connected at B and are free to 
move along rod OA and the curved guide OC having 
the shape of a cardioid, r = [0.2(1 + cos u)] m. At u = 30�, 
the angular velocity of OA is u

#
= 3 rad>s. Determine the 

magnitude of the velocity of the collars at this point. 

O

Br

A

C

r � 0.2(l + cos u) m

u

u � 3 rad/s F12–37
F12–38.  At the instant u = 45�, the athlete is running with 
a constant speed of 2 m>s. Determine the angular velocity at 
which the camera must turn in order to follow the motion.  

A

r
30 m

v

u

u

r � (30 csc u) m

  Prob. F12–38

Prob. 
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12

*12–160.  A radar gun at O rotates with the angular 
velocity of u  # = 0.1 rad>s and angular acceleration of u

$
 = 

0.025 rad>s2, at the instant u = 45°, as it follows the motion 
of the car traveling along the circular road having a radius 
of r = 200  m. Determine the magnitudes of velocity and 
acceleration of the car at this instant.

r � 200 m

O

u

Prob. 12–160

12–161.  If a particle moves along a path such that 
r = (2 cos t) ft and u = (t>2) rad, where t is in seconds, plot 
the path r = f(u) and determine the particle’s radial and 
transverse components of velocity and acceleration. 

12–162.  If a particle moves along a path such that r = (eat) m 
and u = t, where t is in seconds, plot the path r = f(u), and 
determine the particle’s radial and transverse components 
of velocity and acceleration.

12–163.  The car travels along the circular curve having a 
radius r = 400 ft. At the instant shown, its angular rate of 
rotation is u

#
= 0.025 rad>s, which is decreasing at the rate 

u
$

= -0.008 rad>s2. Determine the radial and transverse 
components of the car’s velocity and acceleration at this 
instant and sketch these components on the curve.

*12–164.  The car travels along the circular curve of radius 
r = 400 ft with a constant speed of v = 30 ft>s. Determine 
the angular rate of rotation u

#
 of the radial line r and the 

magnitude of the car’s acceleration.

r � 400 ft

u
.

Probs. 12–163/164

12–155.  A particle is moving along a circular path having a 
radius of 4 in. such that its position as a function of time is 
given by u = cos 2t, where u is in radians and t is in seconds. 
Determine the magnitude of the acceleration of the particle 
when u = 30�.

*12–156.  For a short time a rocket travels up and to the 
right at a constant speed of 800 m>s along the parabolic 
path y = 600 - 35x2. Determine the radial and transverse 
components of velocity of the rocket at the instant u = 60°, 
where u is measured counterclockwise from the x axis.

12–157.  A particle moves along a path defined by polar 
coordinates r = (2et) ft and u = (8t2) rad, where t is in seconds. 
Determine the components of its velocity and acceleration 
when t = 1 s.

12–158.  An airplane is flying in a straight line with a 
velocity of 200 mi>h and an acceleration of 3 mi>h2. If the 
propeller has a diameter of 6 ft and is rotating at a constant 
angular rate of 120 rad>s, determine the magnitudes of 
velocity and acceleration of a particle located on the tip of 
the propeller.

12–159.  The small washer is sliding down the cord OA. 
When it is at the midpoint, its speed is 28 m>s and its 
acceleration is 7 m>s2. Express the velocity and acceleration 
of the washer at this point in terms of its cylindrical 
components.

6 m

2 m
3 m

O

z

y

x

A

Prob. 12–159

PROBLEMS
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12
12–169.  The slotted link is pinned at O, and as a result of 
the constant angular velocity u

#
= 3 rad>s it drives the peg P 

for a short distance along the spiral guide r = (0.4 u) m, 
where u is in radians. Determine the velocity and 
acceleration of the particle at the instant it leaves the slot in 
the link, i.e., when r = 0.5 m.

0.5 m

O

r

P

� 3 rad/s
r � 0.4u ·

u

u

Prob. 12–169

12–170.  A particle moves in the x -y plane such that its 
position is defined by r = {2ti + 4t2j} ft, where t is in 
seconds. Determine the radial and transverse components 
of the particle’s velocity and acceleration when t = 2 s.

12–171.  At the instant shown, the man is twirling a hose 
over his head with an angular velocity u

#
 = 2 rad>s and an 

angular acceleration u
$

 = 3 rad>s2. If it is assumed that the 
hose lies in a horizontal plane, and water is flowing through 
it at a constant rate of 3 m>s, determine the magnitudes of 
the velocity and acceleration of a water particle as it exits 
the open end, r = 1.5 m.

� 2 rad/s
 ·
u

� 3 rad/s2 · ·
u

u

r � 1.5 m

Prob. 12–171

12–165.  The time rate of change of acceleration is referred 
to as the jerk, which is often used as a means of measuring 
passenger discomfort. Calculate this vector, a

#
, in terms of its 

cylindrical components, using Eq. 12–32.

12–166.  A particle is moving along a circular path having a 
radius of 6 in. such that its position as a function of time is 
given by u = sin 3t, where u and the argument for the sine 
are in radians, and t is in seconds. Determine the magnitude 
of the acceleration of the particle at u = 30�. The particle 
starts from rest at u = 0�.

12–167.  The slotted link is pinned at O, and as a result of 
the constant angular velocity u

#
= 3 rad>s it drives the peg P 

for a short distance along the spiral guide r = (0.4 u) m, 
where u is in radians. Determine the radial and transverse 
components of the velocity and acceleration of P at the 
instant u = p>3 rad.

0.5 m

O

r

P

� 3 rad/s
r � 0.4u ·

u

u

Prob. 12–167

*12–168.  For a short time the bucket of the backhoe traces 
the path of the cardioid r = 25(1 − cos u) ft. Determine 
the  magnitudes of the velocity and acceleration of the 
bucket when u = 120° if the boom is rotating with an angular 
velocity of u

#
 = 2 rad>s and an angular acceleration of  

u
$

 = 0.2 rad>s2 at the instant shown.

u � 120�
r

Prob. 12–168
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1212
*12–176.  The car travels around the circular track with a 
constant speed of 20 m>s. Determine the car’s radial and 
transverse components of velocity and acceleration at the 
instant u = p>4 rad.

12–177.  The car travels around the circular track such that 
its transverse component is u = (0.006t2) rad, where t is in 
seconds. Determine the car’s radial and transverse 
components of velocity and acceleration at the instant t = 4 s.

r � (400 cos u) m

r

u

Probs. 12–176/177

12–178.  The car travels along a road which for a short 
distance is defined by r = (200>u) ft, where u is in radians.  
If it maintains a constant speed of v = 35 ft>s, determine the 
radial and transverse components of its velocity when  
u = p>3 rad.

*12–172.  The rod OA rotates clockwise with a constant 
angular velocity of 6 rad>s. Two pin-connected slider blocks, 
located at B, move freely on OA and the curved rod whose 
shape is a limaçon described by the equation  
r = 200(2 − cos u) mm. Determine the speed of the slider 
blocks at the instant u = 150°.
12–173.  Determine the magnitude of the acceleration of 
the slider blocks in Prob. 12–172 when u = 150°.

O

400 mm

200 mm
600 mm

r
 6 rad/s

B

A

u

Probs. 12–172/173

12–174.  A double collar C is pin connected together such 
that one collar slides over a fixed rod and the other slides over 
a rotating rod. If the geometry of the fixed rod for a short 
distance can be defined by a lemniscate, r2 = (4 cos 2u) ft2, 
determine the collar’s radial and transverse components of 
velocity and acceleration at the instant u = 0° as shown. Rod 
OA is rotating at a constant rate of u

#
 = 6 rad>s.

r2 � 4 cos 2 u

u � 6 rad/s
O

r C

A
·

Prob. 12–174

12–175.  A block moves outward along the slot in the 
platform with a speed of  r 

#
 = (4t) m>s, where t is in seconds. 

The platform rotates at a constant rate of 6 rad>s. If the 
block starts from rest at the center, determine the 
magnitudes of its velocity and acceleration when t = 1 s. 

  · � 6 rad/s
r

u

u

Prob. 12–175

r

u

Prob. 12–178
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12–183.  A truck is traveling along the horizontal circular 
curve of radius r = 60 m with a constant speed v = 20 m>s. 
Determine the angular rate of rotation u

#
 of the radial line r 

and the magnitude of the truck’s acceleration.

*12–184.  A truck is traveling along the horizontal circular 
curve of radius r = 60 m with a speed of 20 m>s which is 
increasing at 3 m>s2, Determine the truck’s radial and 
transverse components of acceleration.

r � 60 m

u

u

Probs. 12–183/184

12–185.  The rod OA rotates counterclockwise with a 
constant angular velocity of u

#
 = 5 rad>s. Two pin-connected 

slider blocks, located at B, move freely on OA and the 
curved rod whose shape is a limaçon described by the 
equation r = 100(2 − cos u) mm. Determine the speed of the 
slider blocks at the instant u = 120°.

12–186.  Determine the magnitude of the acceleration of 
the slider blocks in Prob. 12–185 when u = 120°.

A

u

O

B

r

y

x

r � 100 (2 � cos u) mm

 ·
u � 5 rad/s

Probs. 12–185/186

12–179.  A horse on the merry-go-round moves according 
to the equations r = 8 ft, u = (0.6t) rad, and z = (1.5 sin u) ft, 
where t is in seconds. Determine the cylindrical components 
of the velocity and acceleration of the horse when t = 4 s.

*12–180.  A horse on the merry-go-round moves according 
to the equations r = 8 ft, u

#
 = 2 rad>s and z = (1.5 sin u) ft, 

where t is in seconds. Determine the maximum and 
minimum magnitudes of the velocity and acceleration of 
the horse during the motion.

z

z

ru

Probs. 12–179/180

12–181.  If the slotted arm AB rotates counterclockwise 
with a constant angular velocity of u 

#
 = 2 rad>s, determine 

the magnitudes of the velocity and acceleration of peg P at 
u = 30°. The peg is constrained to move in the slots of the 
fixed bar CD and rotating bar AB.

12–182.  The peg is constrained to move in the slots of the 
fixed bar CD and rotating bar AB. When u = 30°, the angular 
velocity and angular acceleration of arm AB are u 

#
 = 2 rad>s 

and u
$

 = 3 rad>s2, respectively. Determine the magnitudes of 
the velocity and acceleration of the peg P at this instant.

A

D

B
P

C

r � (4 sec   ) ftu

u

4 ft

Probs. 12–181/182
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12–191.	 The arm of the robot moves so that r = 3 ft is 
constant,  and its grip A moves along the path z = (3 sin 4u) ft, 
where u is in radians. If u = (0.5t) rad, where t is in seconds, 
determine the magnitudes of the grip’s velocity and 
acceleration when t = 3 s.

*12–192.  For a short time the arm of the robot is extending 
such that  r 

#
 = 1.5 ft>s when r = 3 ft, z = (4t2) ft, and 

u = 0.5t rad, where t is in seconds. Determine the 
magnitudes of the velocity and acceleration of the grip A 
when t = 3 s.

r

z

A

u

Probs. 12–191/192

12–193.  The double collar C is pin connected together such 
that one collar slides over the fixed rod and the other slides 
over the rotating rod AB. If the angular velocity of AB is 
given as u

#
 = (e0.5 t2) rad>s, where t is in seconds, and the path 

defined by the fixed rod is r = |(0.4 sin u + 0.2)| m, determine 
the radial and transverse components of the collar’s velocity 
and acceleration when t = 1 s. When t = 0, u = 0. Use Simpson’s 
rule with n = 50 to determine u at t = 1 s.

12–194.	 The double collar C is pin connected together such 
that one collar slides over the fixed rod and the other slides 
over the rotating rod AB. If the mechanism is to be designed 
so that the largest speed given to the collar is 6 m>s, determine 
the required constant angular velocity u

#
 of rod AB. The path 

defined by the fixed rod is r = (0.4 sin u + 0.2) m.

A

0.6 m

0.2 m

0.2 m 0.2 m

u

C

B

r

Probs. 12–193/194

12–187.  The searchlight on the boat anchored 2000 ft from 
shore is turned on the automobile, which is traveling along 
the straight road at a constant speed 80 ft>s, Determine the 
angular rate of rotation of the light when the automobile is 
r = 3000 ft from the boat.

*12–188.  If the car in Prob. 12–187 is accelerating at  
15 ft>s2 at the instant r = 3000 ft determine the required 
angular acceleration u

$
 of the light at this instant.

2000 ft

80 ft/s

r u

u

Probs. 12–187/188

12–189.  A particle moves along an Archimedean spiral 
r =  (8u) ft, where u is given in radians. If u

#
= 4 rad>s 

(constant), determine the radial and transverse components 
of the particle’s velocity and acceleration at the instant 
u = p>2 rad. Sketch the curve and show the components on 
the curve.

12–190.  Solve Prob. 12–189 if the particle has an angular 
acceleration u

$
= 5 rad>s2 when u

#
= 4 rad>s at u = p>2 rad.

y

x

u

r � (8 u) ft

r

Probs. 12–189/190
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1212.9  �Absolute Dependent Motion 
Analysis of Two Particles

In some types of problems the motion of one particle will depend on the 
corresponding motion of another particle. This dependency commonly 
occurs if the particles, here represented by blocks, are interconnected by 
inextensible cords which are wrapped around pulleys. For example, the 
movement of block A downward along the inclined plane in Fig. 12–36 
will cause a corresponding movement of block B up the other incline. We 
can show this mathematically by first specifying the location of the blocks 
using position coordinates sA and sB . Note that each of the coordinate axes 
is (1) measured from a fixed point (O) or fixed datum line, (2) measured 
along each inclined plane in the direction of motion of each block, and 
(3) has a positive sense from the fixed datums to A and to B. If the total 
cord length is lT , the two position coordinates are related by the equation

sA + lCD + sB = lT

Here lCD is the length of the cord passing over arc CD. Taking the time 
derivative of this expression, realizing that lCD and lT remain constant, while 
sA and sB measure the segments of the cord that change in length, we have

dsA

dt
+

dsB

dt
= 0  or  vB = -vA

The negative sign indicates that when block A has a velocity downward, 
i.e., in the direction of positive sA , it causes a corresponding upward 
velocity of block B; i.e., B moves in the negative sB direction.

In a similar manner, time differentiation of the velocities yields the 
relation between the accelerations, i.e.,

aB = -aA

A more complicated example is shown in Fig. 12–37a. In this case, the 
position of block A is specified by sA , and the position of the end of the 
cord from which block B is suspended is defined by sB . As above, we have 
chosen position coordinates which (1) have their origin at fixed points 
or datums, (2) are measured in the direction of motion of each block, and 
(3) from the fixed datums are positive to the right for sA and positive 
downward for sB. During the motion, the length of the red colored 
segments of the cord in Fig. 12–37a remains constant. If l represents the 
total length of cord minus these segments, then the position coordinates 
can be related by the equation

2sB + h + sA = l

Since l and h are constant during the motion, the two time derivatives yield

2vB = -vA  2aB = -aA

Hence, when B moves downward (+sB), A moves to the left (-sA) with 
twice the motion.

A B

C D

Datum
Datum
sB

sA

O

Fig. 12–36 

A

sB

Datum

hB

sADatum

(a)

Fig. 12–37 
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This example can also be worked by defining the position of block B 

from the center of the bottom pulley (a fixed point), Fig. 12–37b. In 
this case

2(h - sB) + h + sA = l

Time differentiation yields

2vB = vA   2aB = aA

Here the signs are the same. Why?
sB

Datum

(b)

A

Datum

hB

sADatum

Fig. 12–37 (cont.)

Procedure for Analysis

The above method of relating the dependent motion of one particle 
to that of another can be performed using algebraic scalars or 
position coordinates provided each particle moves along a rectilinear 
path. When this is the case, only the magnitudes of the velocity and 
acceleration of the particles will change, not their line of direction. 

Position-Coordinate Equation.

	 •	 Establish each position coordinate with an origin located at a 
fixed point or datum.

	 •	 It is not necessary that the origin be the same for each of the 
coordinates; however, it is important that each coordinate axis 
selected be directed along the path of motion of the particle.

	 •	 Using geometry or trigonometry, relate the position coordinates 
to the total length of the cord, lT , or to that portion of cord, l, 
which excludes the segments that do not change length as the 
particles move—such as arc segments wrapped over pulleys.

	 •	 If a problem involves a system of two or more cords wrapped 
around pulleys, then the position of a point on one cord must be 
related to the position of a point on another cord using the above 
procedure. Separate equations are written for a fixed length of 
each cord of the system and the positions of the two particles are 
then related by these equations (see Examples 12.22 and 12.23).

Time Derivatives.

	 •	 Two successive time derivatives of the position-coordinate 
equations yield the required velocity and acceleration equations 
which relate the motions of the particles.

	 •	 The signs of the terms in these equations will be consistent with 
those that specify the positive and negative sense of the position 
coordinates.

The cable is wrapped around the pulleys on 
this crane in order to reduce the required force 
needed to hoist a load. (© R.C. Hibbeler)
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Determine the speed of block A in Fig. 12–38 if block B has an upward 
speed of 6 ft>s.

sA

B

A

sB

C D

E

6 ft/s

Datum

Fig. 12–38 

Solution
Position-Coordinate Equation.  There is one cord in this system 
having segments which change length. Position coordinates sA and sB 
will be used since each is measured from a fixed point (C or D) and 
extends along each block’s path of motion. In particular, sB is directed 
to point E since motion of B and E is the same.

The red colored segments of the cord in Fig. 12–38 remain at a 
constant length and do not have to be considered as the blocks move. 
The remaining length of cord, l, is also constant and is related to the 
changing position coordinates sA and sB by the equation

sA + 3sB = l

Time Derivative.  Taking the time derivative yields

vA + 3vB = 0

so that when vB = -6 ft>s (upward),

	 vA = 18 ft>s T � Ans.

Example   12.21
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Determine the speed of A in Fig. 12–39 if B has an upward speed  
of 6 ft>s.

A

B

sA

sB

Datum

6 ft/s

C

D

sC

Fig. 12–39 

Solution
Position-Coordinate Equation.  As shown, the positions of blocks 
A and B are defined using coordinates sA and sB . Since the system has 
two cords with segments that change length, it will be necessary to use 
a third coordinate, sC , in order to relate sA to sB . In other words, the 
length of one of the cords can be expressed in terms of sA and sC , and 
the length of the other cord can be expressed in terms of sB and sC .

The red colored segments of the cords in Fig. 12–39 do not have to 
be considered in the analysis. Why? For the remaining cord lengths, 
say l1 and l2 , we have

sA + 2sC = l1   sB + (sB - sC) = l2

Time Derivative.  Taking the time derivative of these equations yields

vA + 2vC = 0      2vB - vC = 0

Eliminating vC produces the relationship between the motions of each 
cylinder.

vA + 4vB = 0

so that when vB = -6 ft>s (upward),

	 vA = +24 ft>s = 24 ft>s T � Ans.

Example   12.22
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Determine the speed of block B in Fig. 12–40 if the end of the cord at 
A is pulled down with a speed of 2 m>s.

sA

Datum

sC

sB

C

A

B

D

2 m/s

E

Fig. 12–40 

Solution
Position-Coordinate Equation.  The position of point A is defined by 
sA , and the position of block B is specified by sB since point E on the 
pulley will have the same motion as the block. Both coordinates are 
measured from a horizontal datum passing through the fixed pin at pulley 
D. Since the system consists of two cords, the coordinates sA and sB cannot 
be related directly. Instead, by establishing a third position coordinate, sC , 
we can now express the length of one of the cords in terms of sB and sC , 
and the length of the other cord in terms of sA , sB , and sC .

Excluding the red colored segments of the cords in Fig. 12–40, the 
remaining constant cord lengths l1 and l2 (along with the hook and 
link dimensions) can be expressed as

sC + sB = l1
(sA - sC) + (sB - sC) + sB = l2

Time Derivative.  The time derivative of each equation gives

vC + vB = 0
vA - 2vC + 2vB = 0

Eliminating vC, we obtain

vA + 4vB = 0

so that when vA = 2 m>s (downward),

	 vB = -0.5 m>s = 0.5 m>s c � Ans.

Example   12.23
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D

10 m

15 m

E

y

vA � 0.5 m/sA

S

C

x

Fig. 12–41 

aS =
d2y

dt2
= c -x(dx>dt)

(225 + x2)3>2 d xvA + c 12225 + x2
d a dx

dt
bvA + c 12225 + x2

d x 
dvA

dt
=

225vA
2

(225 + x2)3>2

At x = 20 m, with vA = 0.5 m>s, the acceleration becomes

  aS =
225(0.5 m>s)2

[225 + (20 m)2]3>2 = 0.00360 m>s2 = 3.60 mm>s2 c � Ans.

NOTE: The constant velocity at A causes the other end C of the rope 
to have an acceleration since vA causes segment DA to change its 
direction as well as its length.

A man at A is hoisting a safe S as shown in Fig. 12–41 by walking to the 
right with a constant velocity vA = 0.5 m>s. Determine the velocity and 
acceleration of the safe when it reaches the elevation of 10 m. The rope 
is 30 m long and passes over a small pulley at D.

Solution
Position-Coordinate Equation.  This problem is unlike the previous 
examples since rope segment DA changes both direction and 
magnitude. However, the ends of the rope, which define the positions 
of C and A, are specified by means of the x and y coordinates since 
they must be measured from a fixed point and directed along the paths 
of motion of the ends of the rope.

The x and y coordinates may be related since the rope has a fixed 
length l = 30 m, which at all times is equal to the length of segment DA 
plus CD. Using the Pythagorean theorem to determine lDA , we have
 lDA = 2(15)2 + x2; also, lCD = 15 - y. Hence,

 l = lDA + lCD

 30 = 2(15)2 + x2 + (15 - y)

	  y = 2225 + x2 - 15 � (1)

Time Derivatives.  Taking the time derivative, using the chain rule 
(see Appendix C), where vS = dy>dt and vA = dx>dt, yields

	  vS =
dy

dt
= J1

2
 

2x2225 + x2
R  

dx

dt

	  =
x2225 + x2

 vA � (2)

At y = 10 m, x is determined from Eq. 1, i.e., x = 20 m. Hence, from 
Eq. 2 with vA = 0.5 m>s,

   vS =
202225 + (20)2

 (0.5) = 0.4 m>s = 400 mm>s c � Ans.

The acceleration is determined by taking the time derivative of Eq. 2. 
Since vA is constant, then aA = dvA>dt = 0, and we have
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1212.10  �Relative-Motion of Two Particles 
Using Translating Axes

Throughout this chapter the absolute motion of a particle has been 
determined using a single fixed reference frame. There are many cases, 
however, where the path of motion for a particle is complicated, so that it 
may be easier to analyze the motion in parts by using two or more frames 
of reference. For example, the motion of a particle located at the tip of an 
airplane propeller, while the plane is in flight, is more easily described if 
one observes first the motion of the airplane from a fixed reference and 
then superimposes (vectorially) the circular motion of the particle 
measured from a reference attached to the airplane.

In this section translating frames of reference will be considered for the 
analysis.

Position.  Consider particles A and B, which move along the 
arbitrary paths shown in Fig. 12–42. The absolute position of each 
particle, rA and rB , is measured from the common origin O of the fixed 
x, y, z reference frame. The origin of a second frame of reference x�, y�, 
z� is attached to and moves with particle A. The axes of this frame are 
only permitted to translate relative to the fixed frame. The position of B 
measured relative to A is denoted by the relative-position vector rB>A . 
Using vector addition, the three vectors shown in Fig. 12–42 can be 
related by the equation

	 rB = rA + rB>A � (12–33)

Velocity.  An equation that relates the velocities of the particles is 
determined by taking the time derivative of the above equation; i.e.,

	 vB = vA + vB>A � (12–34)

Here vB = drB>dt and vA = drA>dt refer to absolute velocities, since 
they are observed from the fixed frame; whereas the relative velocity 
vB>A = drB>A>dt is observed from the translating frame. It is important 
to note that since the x�, y�, z� axes translate, the components of rB>A 
will not change direction and therefore the time derivative of these 
components will only have to account for the change in their 
magnitudes. Equation 12–34 therefore states that the velocity of B is 
equal to the velocity of A plus (vectorially) the velocity of “B with 
respect to A,” as measured by the translating observer fixed in the  
x�, y�, z� reference frame.

z¿

z

A

O

x¿

x

y

y¿

rB

rA

rB/A

Translating
observer

Fixed
observer

B

Fig. 12–42 
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Acceleration.  The time derivative of Eq. 12–34 yields a similar 
vector relation between the absolute and relative accelerations of 
particles A and B.

	 aB = aA + aB>A 	 (12–35)

Here aB>A is the acceleration of B as seen by the observer located at A and 
translating with the x�, y�, z� reference frame.*

* An easy way to remember the setup of these equations is to note the “cancellation” of 
the subscript A between the two terms, e.g., aB = aA + aB>A .

Procedure for Analysis

	 •	 When applying the relative velocity and acceleration equations, it 
is first necessary to specify the particle A that is the origin for the 
translating x�, y�, z� axes. Usually this point has a known velocity 
or acceleration.

	 •	 Since vector addition forms a triangle, there can be at most two 
unknowns, represented by the magnitudes and>or directions of 
the vector quantities.

	 •	 These unknowns can be solved for either graphically, using 
trigonometry (law of sines, law of cosines), or by resolving each of 
the three vectors into rectangular or Cartesian components, 
thereby generating a set of scalar equations.

The pilots of these close-flying planes 
must be aware of their relative positions 
and velocities at all times in order to 
avoid a collision. (© R.C. Hibbeler)
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A train travels at a constant speed of 60 mi>h and crosses over a road 
as shown in Fig. 12–43a. If the automobile A is traveling at 45 mi>h 
along the road, determine the magnitude and direction of the velocity 
of the train relative to the automobile.

Solution I
Vector Analysis.  The relative velocity vT>A is measured from the 
translating x�, y� axes attached to the automobile, Fig. 12–43a. It is 
determined from vT = vA + vT>A . Since vT and vA are known in both 
magnitude and direction, the unknowns become the x and y components 
of vT>A . Using the x, y axes in Fig. 12–43a, we have

	  vT = vA + vT>A

	  60i = (45 cos 45�i + 45 sin 45�j) + vT>A

	  vT>A = 528.2i - 31.8j6  mi>h 	

The magnitude of vT>A is thus

	  vT>A = 2(28.2)2 + (-31.8)2 = 42.5 mi>h	 Ans.

From the direction of each component, Fig. 12–43b, the direction of 
vT>A is

	  tan u =
(vT>A)y

(vT>A)x
=

31.8

28.2

	  u = 48.5� c 	 Ans.

Note that the vector addition shown in Fig. 12–43b indicates the 
correct sense for vT>A . This figure anticipates the answer and can be 
used to check it.

Solution II
Scalar Analysis.  The unknown components of vT>A can also be 
determined by applying a scalar analysis. We will assume these 
components act in the positive x and y directions. Thus,

	  vT = vA + vT>A	

	  c 60 mi>h
S

d = c 45 mi>h
    45� d + c (vT>A)x

S
d + c (vT>A)y

c
d 	

Resolving each vector into its x and y components yields

( S+ )	  60 = 45 cos 45� + (vT>A)x + 0

(+ c )	  0 = 45 sin 45� + 0 + (vT>A)y

Solving, we obtain the previous results,

	  (vT>A)x = 28.2 mi>h = 28.2 mi>h S

	  (vT>A)y = -31.8 mi>h = 31.8 mi>h T 	

Example   12.25

vT � 60 mi/h
y¿

45�T

 vA � 45 mi/h

y

x
A

(a)

x¿

31.8 mi/h

28.2 mi/h

(b)

vT/A

u

(c)

45�

vA � 45 mi/h

vT � 60 mi/h

vT/A

u

Fig. 12–43 

a
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Plane A in Fig. 12–44a is flying along a straight-line path, whereas 
plane B is flying along a circular path having a radius of curvature  
of rB = 400 km. Determine the velocity and acceleration of B as 
measured by the pilot of A.

Solution
Velocity.  The origin of the x and y axes are located at an arbitrary 
fixed point. Since the motion relative to plane A is to be determined, 
the translating frame of reference x�, y� is attached to it, Fig. 12–44a. 
Applying the relative-velocity equation in scalar form since the velocity 
vectors of both planes are parallel at the instant shown, we have

 (+ c )	  vB = vA + vB>A 	

	  600 km>h = 700 km>h + vB>A 	

	  vB>A = -100 km>h = 100 km>h T 	 Ans.

The vector addition is shown in Fig. 12–44b.

Acceleration.  Plane B has both tangential and normal components 
of acceleration since it is flying along a curved path. From Eq. 12–20, 
the magnitude of the normal component is

(aB)n =
vB

2

r
=

(600 km>h)2

400 km
= 900 km>h2

Applying the relative-acceleration equation gives

 aB = aA + aB>A

 900i - 100j = 50j + aB>A

Thus,

aB>A = 5900i - 150j6  km>h2

From Fig. 12–44c, the magnitude and direction of aB>A are therefore

	 aB>A = 912 km>h2 u = tan-1 
150

900
= 9.46� c	 Ans.

NOTE: The solution to this problem was possible using a translating 
frame of reference, since the pilot in plane A is “translating.” 
Observation of the motion of plane A with respect to the pilot of 
plane B, however, must be obtained using a rotating set of axes 
attached to plane B. (This assumes, of course, that the pilot of B is 
fixed in the rotating frame, so he does not turn his eyes to follow the 
motion of A.) The analysis for this case is given in Example 16.21.

Example   12.26

400 km

600 km/h

100 km/h2

y

x

y¿

4 km

A B
x¿

700 km/h

50 km/h2

(a)

(b)

vB/A

vB � 600 km/hvA � 700 km/h

150 km/h2

900 km/h2

(c)

aB/A

u

Fig. 12–44 
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At the instant shown in Fig. 12–45a, cars A and B are traveling with 
speeds of 18 m>s and 12 m>s, respectively. Also at this instant, A has a 
decrease in speed of 2 m>s2, and B has an increase in speed of 3 m>s2. 
Determine the velocity and acceleration of B with respect to A.

Solution
Velocity.  The fixed x, y axes are established at an arbitrary point on 
the ground and the translating x�, y� axes are attached to car A,  
Fig.  12–45a. Why? The relative velocity is determined from 
vB = vA + vB>A . What are the two unknowns? Using a Cartesian vector 
analysis, we have

 vB = vA + vB>A

 -12j = (-18 cos 60�i - 18 sin 60�j) + vB>A

 vB>A = 59i + 3.588j6  m>s
Thus,

	 vB>A = 2(9)2 + (3.588)2 = 9.69 m>s	 Ans.

Noting that vB>A has + i and +j components, Fig. 12–45b, its direction is

	  tan u =
(vB>A)y

(vB>A)x
=

3.588

9
	

	  u = 21.7� a	 Ans.

Acceleration.  Car B has both tangential and normal components of 
acceleration. Why? The magnitude of the normal component is

	 (aB)n =
vB

2

r
=

(12 m>s)2

100 m
= 1.440 m>s2	

Applying the equation for relative acceleration yields

	 aB = aA + aB>A	

	 (-1.440i - 3j) = (2 cos 60�i + 2 sin 60�j) + aB>A	

	 aB>A = 5-2.440i - 4.732j6  m>s2	

Here aB>A has - i and -j components. Thus, from Fig. 12–45c,

	  aB>A = 2(2.440)2 + (4.732)2 = 5.32 m>s2	 Ans.

	  tan f =
(aB>A)y

(aB>A)x
=

4.732

2.440

	  f = 62.7� d	 Ans.

NOTE: Is it possible to obtain the relative acceleration of aA>B using this 
method? Refer to the comment made at the end of Example 12.26.

Example   12.27

y¿

x¿

y

x

r � 100 m

12 m/s

3 m/s2

B

A

18 m/s

2 m/s2

60�

60�

(a)

(b)

9 m/s

3.588 m/s vB/A

u

(c)

2.440 m/s2

4.732 m/s2aB/A

f

Fig. 12–45 
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12 Fundamental Problems

F12–39.    Determine the velocity of block D if end A of the 
rope is pulled down with a speed of vA = 3 m>s.

vA � 3 m/s

A

D

B C

Prob. F12–39

F12–40.    Determine the velocity of block A if end B of the 
rope is pulled down with a speed of 6 m>s.

A

6 m/s

B

F12–41.    Determine the velocity of block A if end B of the 
rope is pulled down with a speed of 1.5 m>s.

A

B

1.5 m/s

Prob. F12–40

Prob. F12–41

F12–42.    Determine the velocity of block A if end F of the 
rope is pulled down with a speed of vF = 3 m>s.

vF � 3 m/s

F

B

C E

D

A

Prob. F12–42

F12–43.    Determine the velocity of car A if point P on the 
cable has a speed of 4 m>s when the motor M winds the cable in.

P

M

A

F12–44.  �  Determine the velocity of cylinder B if cylinder A 
moves downward with a speed of vA = 4 ft>s.

F

B

vA � 4 ft/s

E

C

D
A

Prob. F12–44

Prob. F12–43
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F12–47.    The boats A and B travel with constant speeds of 
vA = 15 m>s and vB = 10 m>s when they leave the pier at 
O at the same time. Determine the distance between them 
when t = 4 s.

y

xO

B

A
vA � 15 m/s

vB � 10 m/s

30�

30�

Prob. F12–47

F12–48.    At the instant shown, cars A and B are traveling at 
the speeds shown. If B is accelerating at 1200 km>h2 while A 
maintains a constant speed, determine the velocity and 
acceleration of A with respect to B.

A 100 m

20 km/h

65 km/h

45�

B

Prob. F12–48

F12–45.    Car A is traveling with a constant speed of 
80 km>h due north, while car B is traveling with a constant 
speed of 100 km>h due east. Determine the velocity of car B 
relative to car A.

2 km

A

B

100 km/h

80 km/h

45�

Prob. F12–45

F12–46.    Two planes A and B are traveling with the 
constant velocities shown. Determine the magnitude and 
direction of the velocity of plane B relative to plane A.

vB � 800 km/h

vA � 650 km/h

A

B

60�

Prob. F12–46
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12–195.  If the end of the cable at A is pulled down with a 
speed of 2 m>s, determine the speed at which block B rises.

C
D

 2 m/s
A

B

Prob. 12–195
*12–196.  The motor at C pulls in the cable with an 
acceleration aC = (3t2) m>s2, where t is in seconds. The 
motor at D draws in its cable at aD = 5 m>s2. If both motors 
start at the same instant from rest when d = 3 m, determine 
(a) the time needed for d = 0, and (b) the velocities of 
blocks A and B when this occurs.

d

A

D

C

B

Prob. 12–196
12–197.  The pulley arrangement shown is designed for 
hoisting materials. If BC remains fixed while the plunger P is 
pushed downward with a speed of 4 ft>s, determine the 
speed of the load at A.

B

A
C
P

4 ft/s

Prob. 12–197

12–198.  If the end of the cable at A is pulled down with a 
speed of 5 m>s, determine the speed at which block B rises.

A

5 m/s

B

Prob. 12–198

12–199.  Determine the displacement of the log if the truck 
at C pulls the cable 4 ft to the right.

CB

Prob. 12–199

*12–200.  Determine the constant speed at which the cable 
at A must be drawn in by the motor in order to hoist the 
load 6 m in 1.5 s.

12–201.  Starting from rest, the cable can be wound onto 
the drum of the motor at a rate of vA = (3t2) m>s, where t is 
in seconds. Determine the time needed to lift the load 7 m.

C
A

B

D

Probs. 12–200/201

PROBLEMS
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12–202.  If the end A of the cable is moving at vA = 3 m>s, 
determine the speed of block B.

C D A
 vA � 3 m/s

B

Prob. 12–202

12–203.  Determine the time needed for the load at B to 
attain a speed of 10 m>s, starting from rest, if the cable is 
drawn into the motor with an acceleration of 3 m>s2.

*12–204.  The cable at A is being drawn toward the motor 
at vA = 8 m>s. Determine the velocity of the block.

C

A

vA

B

Probs. 12–203/204

12–205.  If block A of the pulley system is moving 
downward at 6 ft>s while block C is moving down at 18 ft>s, 
determine the relative velocity of block B with respect to C.

B

A

C

Prob. 12–205

12–206.  Determine the speed of the block at B. 

A

B

6 m/s

Prob. 12–206

12–207.  Determine the speed of block A if the end of the 
rope is pulled down with a speed of 4 m>s.

A

4 m/s
B

Prob. 12–207

*12–208.  The motor draws in the cable at C with a 
constant velocity of vC = 4 m>s. The motor draws in the 
cable at D with a constant acceleration of aD = 8 m>s2. If  
vD = 0 when t = 0, determine (a) the time needed for 
block A to rise 3 m, and (b) the relative velocity of block A 
with respect to block B when this occurs.

C

A

B

D

Prob. 12–208
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*12–212.  The girl at C stands near the edge of the pier and 
pulls in the rope horizontally at a constant speed of 6 ft>s. 
Determine how fast the boat approaches the pier at the 
instant the rope length AB is 50 ft.

A
C

xC

xB

B

6 ft/s

8 ft

Prob. 12–212

12–213.  If the hydraulic cylinder H draws in rod BC at  
2 ft>s, determine the speed of slider A.

A

B C
H

Prob. 12–213

12–214.  At the instant shown, the car at A is traveling at  
10 m>s around the curve while increasing its speed at 5 m>s2. 
The car at B is traveling at 18.5 m>s along the straightaway and 
increasing its speed at 2 m>s2. Determine the relative velocity 
and relative acceleration of A with respect to B at this instant.

yB � 18.5 m/s

yA � 10 m/s

100 m

45�

100 m

A
B

Prob. 12–214

12–209.  The cord is attached to the pin at C and passes 
over the two pulleys at A and D. The pulley at A is attached 
to the smooth collar that travels along the vertical rod. 
Determine the velocity and acceleration of the end of the 
cord at B if at the instant sA = 4 ft the collar is moving 
upward at 5 ft>s, which is decreasing at 2 ft>s2.

12–210.  The 16-ft-long cord is attached to the pin at C and 
passes over the two pulleys at A and D. The pulley at A is 
attached to the smooth collar that travels along the vertical 
rod. When sB = 6 ft, the end of the cord at B is pulled 
downward with a velocity of 4 ft>s and is given an 
acceleration of 3 ft>s2. Determine the velocity and 
acceleration of the collar at this instant.

sA

A

C

B

D

sB

3 ft 3 ft

Probs. 12–209/210

12–211.	 The roller at A is moving with a velocity of 
vA = 4 m>s and has an acceleration of aA = 2 m>s2  when 
xA = 3 m. Determine the velocity and acceleration of 
block B at this instant.

4 m

A

vA � 4 m/s

xA 

Prob. 12–211
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12–218.  Two planes, A and B, are flying at the same 
altitude. If their velocities are vA = 500 km>h and 
vB = 700 km>h such that the angle between their straight-
line courses is u = 60�, determine the velocity of plane B 
with respect to plane A.

A

B

 vA � 500 km/h

 vB � 700 km/h
60�

Prob. 12–218

12–219.  At the instant shown, cars A and B are traveling at 
speeds of 55 mi>h and 40 mi>h, respectively. If B is 
increasing its speed by 1200 mi>h2, while A maintains a 
constant speed, determine the velocity and acceleration of B 
with respect to A. Car B moves along a curve having a 
radius of curvature of 0.5 mi.

vB � 40 mi/h

vA � 55 mi/h

B

A 30�

Prob. 12–219

*12–220.  The boat can travel with a speed of 16 km>h in still 
water. The point of destination is located along the dashed 
line. If the water is moving at 4 km>h, determine the bearing 
angle u at which the boat must travel to stay on course.

vW � 4 km/h

70�

u

Prob. 12–220

12–215.  The motor draws in the cord at B with an 
acceleration of aB = 2 m>s2. When sA = 1.5 m, vB = 6 m>s. 
Determine the velocity and acceleration of the collar at  
this instant.

B

2 m

A

sA

Prob. 12–215

*12–216.  If block B is moving down with a velocity vB and 
has an acceleration aB, determine the velocity and 
acceleration of block A in terms of the parameters shown.

h
A

B

vB, aB

sA

Prob. 12–216

12–217.  The crate C is being lifted by moving the roller at A 
downward with a constant speed of vA = 2 m>s along the 
guide. Determine the velocity and acceleration of the crate at 
the instant s = 1 m. When the roller is at B, the crate rests on 
the ground. Neglect the size of the pulley in the calculation. 
Hint: Relate the coordinates xC and xA using the problem 
geometry, then take the first and second time derivatives.

s

C

A

4 m

4 m

B

xA

xC

Prob. 12–217
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*12–224.  At the instant shown, car A has a speed of 20 km>h, 
which is being increased at the rate of 300 km>h2 as the car 
enters the expressway. At the same instant, car B is 
decelerating at 250 km>h2 while traveling forward at  
100 km>h. Determine the velocity and acceleration of A 
with respect to B.

B

A

100 m

Prob. 12–224

12–225.  Cars A and B are traveling around the circular 
race track. At the instant shown, A has a speed of 90 ft>s 
and is increasing its speed at the rate of 15 ft>s2, whereas B 
has a speed of 105 ft>s and is decreasing its speed at 25 ft>s2. 
Determine the relative velocity and relative acceleration of 
car A with respect to car B at this instant.

A
B

vA

vB

rB � 250 ft

rA � 300 ft
60�

Prob. 12–225

12–221.  Two boats leave the pier P at the same time and 
travel in the directions shown. If vA = 40 ft>s and vB =  
30 ft>s, determine the velocity of boat A relative to boat B. 
How long after leaving the pier will the boats be 1500 ft apart?

y

x

B

P

A
vB � 30 ft/s

vA � 40 ft/s

45�

30�

Prob. 12–221

12–222.  A car is traveling north along a straight road at 
50 km>h. An instrument in the car indicates that the wind is 
coming from the east. If the car’s speed is 80 km>h, the 
instrument indicates that the wind is coming from the  
northeast. Determine the speed and direction of the wind.

12–223.  Two boats leave the shore at the same time and 
travel in the directions shown. If vA = 10 m>s and 
vB = 15 m>s, determine the velocity of boat A with respect 
to boat B. How long after leaving the shore will the boats be 
600 m apart?

A

O

B

 vA � 10 m/s

 vB � 15 m/s

30�

45�

Prob. 12–223
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12–229.  A passenger in an automobile observes that 
raindrops make an angle of 30° with the horizontal as the 
auto travels forward with a speed of 60 km>h. Compute the 
terminal (constant) velocity vr of the rain if it is assumed to 
fall vertically.

vr

va � 60 km/h

Prob. 12–229

12–230.  A man can swim at 4 ft>s in still water. He wishes 
to cross the 40-ft-wide river to point B, 30 ft downstream. If 
the river flows with a velocity of 2 ft>s, determine the speed 
of the man and the time needed to make the crossing. Note: 
While in the water he must not direct himself toward point B 
to reach this point. Why?

B

A

30 ft

vr � 2 ft/s 40 ft

Prob. 12–230

12–226.  A man walks at 5 km>h in the direction of a  
20 km>h wind. If raindrops fall vertically at 7 km>h in still 
air, determine direction in which the drops appear to fall 
with respect to the man.

vw � 20 km/h

vm � 5 km/h

Prob. 12–226

12–227.  At the instant shown, cars A and B are traveling at 
velocities of 40 m>s and 30 m>s, respectively. If B is 
increasing its velocity by 2 m>s2, while A maintains a constant 
velocity, determine the velocity and acceleration of B with 
respect to A. The radius of curvature at B is rB = 200 m.

*12–228.  At the instant shown, cars A and B are traveling at 
velocities of 40 m>s and 30 m>s, respectively. If A is increasing 
its speed at 4 m>s2, whereas the speed of B is decreasing at  
3 m>s2, determine the velocity and acceleration of B with 
respect to A. The radius of curvature at B is rB = 200 m.

B
A

30�

 vA � 40 m/s
 vB � 30 m/s

Probs. 12–227/228
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12–234.  At a given instant the football player at A throws 
a football C with a velocity of 20 m>s in the direction shown. 
Determine the constant speed at which the player at B must 
run so that he can catch the football at the same elevation at 
which it was thrown. Also calculate the relative velocity and 
relative acceleration of the football with respect to B at the 
instant the catch is made. Player B is 15 m away from A 
when A starts to throw the football.

15 m

A
B

C20 m/s

60�

Prob. 12–234

12–235.  At the instant shown, car A travels along the 
straight portion of the road with a speed of 25 m>s. At this 
same instant car B travels along the circular portion of the 
road with a speed of 15 m>s. Determine the velocity of car B 
relative to car A.

A

B

r � 200 m

C

30�

15�
15�

Prob. 12–235

12–231.  The ship travels at a constant speed of vs = 20 m>s 
and the wind is blowing at a speed of vw = 10 m>s, as 
shown. Determine the magnitude and direction of the 
horizontal component of velocity of the smoke coming from 
the smoke stack as it appears to a passenger on the ship.

vs � 20 m/s

vw � 10 m/s
y

x

30�
45�

Prob. 12–231

*12–232.  The football player at A throws the ball in the 
y–z plane at a speed vA = 50 ft>s and an angle uA = 60° with 
the horizontal. At the instant the ball is thrown, the player is 
at B and is running with constant speed along the line BC in 
order to catch it. Determine this speed, vB, so that he makes 
the catch at the same elevation from which the ball  
was thrown.

12–233.  The football player at A throws the ball in the  
y–z plane with a speed vA = 50 ft>s and an angle uA = 60° with 
the horizontal. At the instant the ball is thrown, the player is 
at B and is running at a constant speed of vB = 23 ft>s along 
the line BC. Determine if he can reach point C, which has the 
same elevation as A, before the ball gets there.

yz

30 ft 20 ft

A
B

C

x

vA vB
uA

Probs. 12–232/233
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Problems 12CONCEPTUAL PROBLEMS

C12–1.  If you measured the time it takes for the construction 
elevator to go from A to B, then B to C, and then C to D, and 
you also know the distance between each of the points, how 
could you determine the average velocity and average 
acceleration of the elevator as it ascends from A to D? Use 
numerical values to explain how this can be done.

D

C

B

A

Prob. C12–1 (© R.C. Hibbeler)

C12–2.  If the sprinkler at A is 1 m from the ground, then 
scale the necessary measurements from the photo to 
determine the approximate velocity of the water jet as it 
flows from the nozzle of the sprinkler.

A

Prob. C12–2 (© R.C. Hibbeler)

C12–3.  The basketball was thrown at an angle measured 
from the horizontal to the man’s outstretched arm. If 
the  basket is 3 m from the ground, make appropriate 
measurements in the photo and determine if the ball located 
as shown will pass through the basket.

Prob. C12–3 (© R.C. Hibbeler)

C12–4.  The pilot tells you the wingspan of her plane and 
her constant airspeed. How would you determine the 
acceleration of the plane at the moment shown? Use 
numerical values and take any necessary measurements 
from the photo.

Prob. C12–4 (© R.C. Hibbeler)
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Rectilinear Kinematics

Rectilinear kinematics refers to motion 
along a straight line. A position 
coordinate s specifies the location of the 
particle on the line, and the displacement 
�s  is the change in this position.

The average velocity is a vector quantity, 
defined as the displacement divided by 
the time interval.

The average speed is a scalar, and is the 
total distance traveled divided by the 
time of travel.

The time, position, velocity, and 
acceleration are related by three 
differential equations.

If the acceleration is known to be 
constant, then the differential equations 
relating time, position, velocity, and 
acceleration can be integrated.

Chapter Review

vavg =
�s

�t

(vsp)avg =
sT

�t

a =
dv

dt
,    v =

ds

dt
,    a ds = v dv

 v = v0 + act

 s = s0 + v0t +
1
2 act

2

 v2 = v0
2 + 2ac(s - s0)

s

s
O

�s

�s
s

sT

O

Graphical Solutions

If the motion is erratic, then it can be 
described by a graph. If one of these 
graphs is given, then the others can  
be established using the differential 
relations between a, v, s, and t.

 a =
dv

dt
,

 v =
ds

dt
,

 a ds = v dv
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Curvilinear Motion, x, y, z

Curvilinear motion along the path can be 
resolved into rectilinear motion along the x, 
y, z axes. The equation of the path is used to 
relate the motion along each axis. 

 vx = x
#

   ax = v
#
x

 vy = y
#

   ay = v
#
y

 vz = z
#

   az = v
#
z

Projectile Motion

Free-flight motion of a projectile follows a 
parabolic path. It has a constant velocity in 
the horizontal direction, and a constant 
downward acceleration of g = 9.81 m>s2 or 
32.2  ft>s2 in the vertical direction. Any two 
of the three equations for constant 
acceleration apply in the vertical direction, 
and in the horizontal direction only one 
equation applies.

(+ c)   vy = (v0)y + act

(+ c)   y = y0 + (v0)yt +
1
2 act

2

(+ c)   vy
2 = (v0)y

2 + 2ac(y - y0)

( S+ )   x = x0 + (v0)xt

y

x

z

r � xi � yj � zk

z

y
x

s

k
i

j

a
v

y

x

a � g

(v0)y

(v0)x

v0

vx

vy v

r

y0

y

x0

x
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Curvilinear Motion n, t

If normal and tangential axes are used 
for the analysis, then v is always in the 
positive t direction.

The acceleration has two components. 
The tangential component, at, accounts 
for the change in the magnitude of the 
velocity; a slowing down is in the 
negative t direction, and a speeding up is 
in the positive t direction. The normal 
component an accounts for the change 
in the direction of the velocity. This 
component is always in the positive n 
direction.

at = v
#
    or    at ds = v dv

an =
v2

r

an

O¿

at

as

O n

t
v

Curvilinear Motion r, U 

If the path of motion is expressed in 
polar coordinates, then the velocity and 
acceleration components can be related 
to the time derivatives of r and u.

To apply the time-derivative equations, 
it is necessary to determine r, r

#
, r

$
, u

#
, u

$
 at 

the instant considered. If the path 
r = f(u) is given, then the chain rule of 
calculus must be used to obtain time 
derivatives. (See Appendix C.)

Once the data are substituted into the 
equations, then the algebraic sign of the 
results will indicate the direction of 
the components of v or a along each axis.

 vr = r
#

 vu = ru
#

 ar = r
$

- ru
#
2

 au = ru
$

+ 2r
#
u
#

O

Pr

vr

vu

v

Velocity

u

O

r
ar

au

a

Acceleration

u
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Absolute Dependent Motion of Two 
Particles

The dependent motion of blocks that 
are suspended from pulleys and cables 
can be related by the geometry of the 
system. This is done by first establishing 
position coordinates, measured from a 
fixed origin to each block. Each 
coordinate must be directed along the 
line of motion of a block.

Using geometry and/or trigonometry, 
the coordinates are then related to the 
cable length in order to formulate a 
position coordinate equation.

The first time derivative of this equation 
gives a relationship between the 
velocities of the blocks, and a second 
time derivative gives the relation between 
their accelerations.

2sB + h + sA = l

 2vB = -vA

 2aB = -aA

A

sB

Datum

hB

sADatum

Relative-Motion Analysis Using 
Translating Axes

If two particles A and B undergo 
independent motions, then these 
motions can be related to their relative 
motion using a translating set of axes 
attached to one of the particles (A).

For planar motion, each vector equation 
produces two scalar equations, one in 
the x, and the other in the y direction. 
For solution, the vectors can be 
expressed in Cartesian form, or the x 
and y scalar components can be written 
directly.

 rB = rA + rB>A

 vB = vA + vB>A
 aB = aA + aB>A

z¿

z

A

O

x¿

x

y

y¿

rB

rA

rB/A

Translating
observer

a

a

b

b

Fixed
observer

B
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R12–1.  The position of a particle along a straight line is 
given by s = (t 3 - 9t 2 + 15t) ft, where t is in seconds. 
Determine its maximum acceleration and maximum 
velocity during the time interval 0 … t … 10 s.

R12–2.  If a particle has an initial velocity v0 = 12 ft>s to the 
right, and a constant acceleration of 2 ft>s2 to the left, 
determine the particle’s displacement in 10 s. Originally s0 = 0.

R12–3.  A projectile, initially at the origin, moves along a 
straight-line path through a fluid medium such that its 
velocity is v = 1800(1 - e-0.3t) mm>s where t is in seconds. 
Determine the displacement of the projectile during the 
first 3 s.

R12–4.  The v–t graph of a car while traveling along a road 
is shown. Determine the acceleration when t = 2.5 s, 10 s, 
and 25 s. Also if s = 0 when t = 0, find the position when  
t = 5 s, 20 s, and 30 s.

20

20 305
t (s)

v (m/s)

Prob. R12–4

R12–5.  A car traveling along the straight portions of the 
road has the velocities indicated in the figure when it arrives 
at points A, B, and C. If it takes 3 s to go from A to B, and 
then 5 s to go from B to C, determine the average 
acceleration between points A and B and between points A 
and C.

Cx

y

B 45�

vA � 20 m/s

vB � 30 m/s

vC � 40 m/s

A

Prob. R12–5

R12–6.	 From a videotape, it was observed that a player 
kicked a football 126 ft during a measured time of  
3.6 seconds. Determine the initial speed of the ball and the 
angle u at which it was kicked.

A

v0

126 ft

u

Prob. R12–6
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R12–9.  A particle is moving along a circular path of 2-m 
radius such that its position as a function of time is given by 
u = (5t2) rad, where t is in seconds. Determine the magnitude 
of the particle’s acceleration when u = 30°. The particle 
starts from rest when u = 0°.

R12–10.  Determine the time needed for the load at B to 
attain a speed of 8 m>s, starting from rest, if the cable is 
drawn into the motor with an acceleration of 0.2 m>s2.

A

vA

vBB

Prob. R12–10

R12–11.  Two planes, A and B, are flying at the same 
altitude. If their velocities are vA = 600 km>h and 
vB = 500 km>h such that the angle between their straight-
line courses is u = 75�, determine the velocity of plane B 
with respect to plane A.

A

B

vA

vB

u

Prob. R12–11

R12–7.  The truck travels in a circular path having a radius 
of 50 m at a speed of v = 4 m>s. For a short distance from 
s = 0, its speed is increased by v

#
= (0.05s) m>s2, where s is 

in meters. Determine its speed and the magnitude of its 
acceleration when it has moved s = 10 m. 

50 m

v � (0.05s) m/s2

v � 4 m/s

.

Prob. R12–7

R12–8.  Car B turns such that its speed is increased by 
(at)B = (0.5et) m>s2, where t is in seconds. If the car starts 
from rest when u = 0�, determine the magnitudes of its 
velocity and acceleration when t = 2 s. Neglect the size of 
the car.

B

A

v

5 m

u

Prob. R12–8



A car driving along this road will be subjected to forces that create both 
normal and tangential accelerations. In this chapter we will study how these 

forces are related to the accelerations they create.

Chapter 13

(© Migel/Shutterstock)



Kinetics of a Particle: 
Force and Acceleration

Chapter Objectives

n	 To state Newton’s Second Law of Motion and to define mass and 
weight.

n	 To analyze the accelerated motion of a particle using the equation 
of motion with different coordinate systems.

n	 To investigate central-force motion and apply it to problems in 
space mechanics.

13.1  Newton’s Second Law of Motion

Kinetics is a branch of dynamics that deals with the relationship between 
the change in motion of a body and the forces that cause this change. The 
basis for kinetics is Newton’s second law, which states that when an 
unbalanced force acts on a particle, the particle will accelerate in the 
direction of the force with a magnitude that is proportional to the force.

This law can be verified experimentally by applying a known 
unbalanced force F to a particle, and then measuring the acceleration a. 
Since the force and acceleration are directly proportional, the constant of 
proportionality, m, may be determined from the ratio m = F>a. This 
positive scalar m is called the mass of the particle. Being constant during 
any acceleration, m provides a quantitative measure of the resistance of 
the particle to a change in its velocity, that is its inertia.

The jeep leans backward due to its inertia, 
which resists its forward acceleration.  
(© R.C. Hibbeler)
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If the mass of the particle is m, Newton’s second law of motion may be 
written in mathematical form as

F = ma

The above equation, which is referred to as the equation of motion, is one 
of the most important formulations in mechanics.* As previously stated, 
its validity is based solely on experimental evidence. In 1905, however, 
Albert Einstein developed the theory of relativity and placed limitations 
on the use of Newton’s second law for describing general particle motion. 
Through experiments it was proven that time is not an absolute quantity 
as assumed by Newton; and as a result, the equation of motion fails to 
predict the exact behavior of a particle, especially when the particle’s 
speed approaches the speed of light (0.3 Gm>s). Developments of the 
theory of quantum mechanics by Erwin Schrödinger and others indicate 
further that conclusions drawn from using this equation are also invalid 
when particles are the size of an atom and move close to one another. 
For the most part, however, these requirements regarding particle speed 
and size are not encountered in engineering problems, so their effects 
will not be considered in this book.

Newton’s Law of Gravitational Attraction.  Shortly after 
formulating his three laws of motion, Newton postulated a law governing 
the mutual attraction between any two particles. In mathematical form 
this law can be expressed as

	 F = G 
m1m2

r2 	 (13–1)

where 

		  F =    force of attraction between the two particles
	 G =   � universal constant of gravitation; according to experimental 

evidence G =  66.73(10-12) m3>(kg # s2)
	 m1 , m2 =    mass of each of the two particles
	 r =    distance between the centers of the two particles

*Since m is constant, we can also write F = d(mv)>dt, where mv is the particle’s linear 
momentum. Here the unbalanced force acting on the particle is proportional to the time 
rate of change of the particle’s linear momentum.
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In the case of a particle located at or near the surface of the earth, the 
only gravitational force having any sizable magnitude is that between the 
earth and the particle. This force is termed the “weight” and, for our 
purpose, it will be the only gravitational force considered.

From Eq. 13–1, we can develop a general expression for finding the 
weight W of a particle having a mass m1 = m. Let m2 = Me be the mass 
of the earth and r the distance between the earth’s center and the particle. 
Then, if g = GMe>r2, we have

W = mg

By comparison with F = ma, we term g the acceleration due to gravity. 
For most engineering calculations g is measured at a point on the surface 
of the earth at sea level, and at a latitude of 45°, which is considered the 
“standard location.” Here the values g = 9.81 m>s2 = 32.2 ft>s2 will be 
used for calculations.

In the SI system the mass of the body is specified in kilograms, and the 
weight must be calculated using the above equation, Fig. 13–1a. Thus,

	 W = mg (N)  ( g = 9.81 m>s2) 	 (13–2)

As a result, a body of mass 1 kg has a weight of 9.81 N; a 2-kg body 
weighs 19.62 N; and so on.

In the FPS system the weight of the body is specified in pounds. The 
mass is measured in slugs, a term derived from “sluggish” which refers to 
the body’s inertia. It must be calculated, Fig. 13–1b, using

	 m =
W
g

  (slug) (g = 32.2 ft>s2) 	 (13–3)

Therefore, a body weighing 32.2 lb has a mass of 1 slug; a 64.4-lb body has 
a mass of 2 slugs; and so on.

a � g (m/s2)

W � mg (N)

m (kg)

SI system

(a)

a � g (ft/s2)

W (lb)

FPS system

(b)

m � W
g (slug)

Fig. 13–1 
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13.2  The Equation of Motion

When more than one force acts on a particle, the resultant force is 
determined by a vector summation of all the forces; i.e., FR = �F. For this 
more general case, the equation of motion may be written as

	 �F = ma 	 (13–4)

To illustrate application of this equation, consider the particle shown 
in Fig. 13–2a, which has a mass m and is subjected to the action of two 
forces, F1 and F2 . We can graphically account for the magnitude and 
direction of each force acting on the particle by drawing the particle’s 
free-body diagram, Fig. 13–2b. Since the resultant of these forces produces 
the vector ma, its magnitude and direction can be represented graphically 
on the kinetic diagram, shown in Fig. 13–2c.* The equal sign written 
between the diagrams symbolizes the graphical equivalency between the 
free-body diagram and the kinetic diagram; i.e., �F = ma.† In particular, 
note that if FR = �F = 0, then the acceleration is also zero, so that the 
particle will either remain at rest or move along a straight-line path with 
constant velocity. Such are the conditions of static equilibrium, Newton’s 
first law of motion.

Inertial Reference Frame.  When applying the equation of 
motion, it is important that the acceleration of the particle be measured 
with respect to a reference frame that is either fixed or translates with a 
constant velocity. In this way, the observer will not accelerate and 
measurements of the particle’s acceleration will be the same from any 
reference of this type. Such a frame of reference is commonly known as a 
Newtonian or inertial reference frame, Fig. 13–3.

When studying the motions of rockets and satellites, it is justifiable to 
consider the inertial reference frame as fixed to the stars, whereas 
dynamics problems concerned with motions on or near the surface of the 
earth may be solved by using an inertial frame which is assumed fixed to 
the earth. Even though the earth both rotates about its own axis and 
revolves about the sun, the accelerations created by these rotations are 
relatively small and so they can be neglected for most applications.

a

(a)

F2

F1

F2

F1

Free-body
diagram

FR � �F � ma

Kinetic
diagram

Fig. 13–2 

*Recall the free-body diagram considers the particle to be free of its surrounding supports 
and shows all the forces acting on the particle. The kinetic diagram pertains to the particle’s 
motion as caused by the forces.

†The equation of motion can also be rewritten in the form �F - ma = 0. The vector 
-ma is referred to as the inertia force vector. If it is treated in the same way as a “force 
vector,” then the state of “equilibrium” created is referred to as dynamic equilibrium. This 
method of application, which will not be used in this text, is often referred to as the 
D’Alembert principle, named after the French mathematician Jean le Rond d’Alembert.

y

xO

vO

a

Inertial frame of reference

Path of particle

Fig. 13–3 

(b) (c)
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We are all familiar with the sensation one feels when sitting in a car that is subjected to a forward acceleration. Often 
people think this is caused by a “force” which acts on them and tends to push them back in their seats; however, this is 
not the case. Instead, this sensation occurs due to their inertia or the resistance of their mass to a change in velocity.

Consider the passenger who is strapped to the seat of a rocket sled. Provided the sled is at rest or is moving with 
constant velocity, then no force is exerted on his back as shown on his free-body diagram.

When the thrust of the rocket engine causes the sled to accelerate, then the seat upon which he is sitting exerts a 
force F on him which pushes him forward with the sled. In the photo, notice that the inertia of his head resists this 
change in motion (acceleration), and so his head moves back against the seat and his face, which is nonrigid, tends 
to distort backward.

Upon deceleration the force of the seatbelt F� tends to pull his body to a stop, but his head leaves contact with the 
back of the seat and his face distorts forward, again due to his inertia or tendency to continue to move forward. 
No force is pulling him forward, although this is the sensation he receives.
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13.3  �Equation of Motion for a System  
of Particles

The equation of motion will now be extended to include a system 
of particles isolated within an enclosed region in space, as shown in 
Fig. 13–4a. In particular, there is no restriction in the way the particles 
are connected, so the following analysis applies equally well to the 
motion of a solid, liquid, or gas system.

At the instant considered, the arbitrary i-th particle, having a mass mi , 
is subjected to a system of internal forces and a resultant external force. 
The internal force, represented symbolically as fi , is the resultant of all 
the forces the other particles exert on the ith particle. The resultant 
external force Fi represents, for example, the effect of gravitational, 
electrical, magnetic, or contact forces between the ith particle and 
adjacent bodies or particles not included within the system.

The free-body and kinetic diagrams for the ith particle are shown in 
Fig. 13–4b. Applying the equation of motion,

�F = ma;	 Fi + fi = miai

When the equation of motion is applied to each of the other particles of 
the system, similar equations will result. And, if all these equations are 
added together vectorially, we obtain

�Fi + �fi = �miai

z

yx

Inertial coordinate
system

(a)

G
rG

ri

fi
i

Fi

�
mi ai

Fi

fi

Free-body
diagram

Kinetic
diagram

(b)

Fig. 13–4 
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The summation of the internal forces, if carried out, will equal zero, since 
internal forces between any two particles occur in equal but opposite 
collinear pairs. Consequently, only the sum of the external forces will 
remain, and therefore the equation of motion, written for the system of 
particles, becomes

	 �Fi = �miai	 (13–5)

If rG is a position vector which locates the center of mass G of the 
particles, Fig. 13–4a, then by definition of the center of mass, mrG = �miri , 
where m = �mi is the total mass of all the particles. Differentiating this 
equation twice with respect to time, assuming that no mass is entering or 
leaving the system, yields

maG = �miai

Substituting this result into Eq. 13–5, we obtain

	 �F = maG 	 (13–6)

Hence, the sum of the external forces acting on the system of particles is 
equal to the total mass of the particles times the acceleration of its center 
of mass G. Since in reality all particles must have a finite size to possess 
mass, Eq. 13–6 justifies application of the equation of motion to a body 
that is represented as a single particle.

Important Points

	 •	 The equation of motion is based on experimental evidence and is 
valid only when applied within an inertial frame of reference.

	 •	 The equation of motion states that the unbalanced force on a 
particle causes it to accelerate.

	 •	 An inertial frame of reference does not rotate, rather its axes  
either translate with constant velocity or are at rest.

	 •	 Mass is a property of matter that provides a quantitative measure 
of its resistance to a change in velocity. It is an absolute quantity 
and so it does not change from one location to another.

	 •	 Weight is a force that is caused by the earth’s gravitation. It is not 
absolute; rather it depends on the altitude of the mass from the 
earth’s surface.
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13.4  �Equations of Motion: Rectangular 
Coordinates

When a particle moves relative to an inertial x, y, z frame of reference, the 
forces acting on the particle, as well as its acceleration, can be expressed 
in terms of their i, j, k components, Fig. 13–5. Applying the equation of 
motion, we have

�F = ma;	 �Fxi + �Fy j + �Fzk = m(axi + ay j + azk)

For this equation to be satisfied, the respective i, j, k components on the 
left side must equal the corresponding components on the right side. 
Consequently, we may write the following three scalar equations:

 �Fx = max

	  �Fy = may 	 (13–7)

 �Fz = maz

In particular, if the particle is constrained to move only in the x–y plane, 
then the first two of these equations are used to specify the motion.

Fy

Fz

Fx

x

z

y

y

x

z

Fig. 13–5 

*It is a convention in this text always to use the kinetic diagram as a graphical aid when 
developing the proofs and theory. The particle’s acceleration or its components will be 
shown as blue colored vectors near the free-body diagram in the examples.

Procedure for Analysis

The equations of motion are used to solve problems which require 
a  relationship between the forces acting on a particle and the 
accelerated motion they cause.

Free-Body Diagram.
	 •	 Select the inertial coordinate system. Most often, rectangular or 

x, y, z coordinates are chosen to analyze problems for which the 
particle has rectilinear motion.

	 •	 Once the coordinates are established, draw the particle’s free-
body diagram. Drawing this diagram is very important since it 
provides a graphical representation that accounts for all the forces 
(�F) which act on the particle, and thereby makes it possible to 
resolve these forces into their x, y, z components.

	 •	 The direction and sense of the particle’s acceleration a should also 
be established. If the sense is unknown, for mathematical 
convenience assume that the sense of each acceleration component 
acts in the same direction as its positive inertial coordinate axis.

	 •	 The acceleration may be represented as the ma vector on the 
kinetic diagram.* 

	 •	 Identify the unknowns in the problem.
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Equations of Motion.
	 •	 If the forces can be resolved directly from the free-body diagram, 

apply the equations of motion in their scalar component form.

	 •	 If the geometry of the problem appears complicated, which often 
occurs in three dimensions, Cartesian vector analysis can be used 
for the solution.

	 •	 Friction. If a moving particle contacts a rough surface, it may be 
necessary to use the frictional equation, which relates the 
frictional and normal forces Ff  and N acting at the surface of 
contact by using the coefficient of kinetic friction, i.e., Ff = mkN. 
Remember that Ff  always acts on the free-body diagram such 
that it opposes the motion of the particle relative to the surface it 
contacts. If the particle is on the verge of relative motion, then the 
coefficient of static friction should be used.

	 •	 Spring. If the particle is connected to an elastic spring having 
negligible mass, the spring force Fs can be related to the 
deformation of the spring by the equation Fs = ks. Here k is 
the spring’s stiffness measured as a force per unit length, and s is 
the stretch or compression defined as the difference between the 
deformed length l and the undeformed length l0 , i.e., s = l - l0 .

Kinematics.

	 •	 If the velocity or position of the particle is to be found, it will be 
necessary to apply the necessary kinematic equations once the 
particle’s acceleration is determined from �F = ma.

	 •	 If acceleration is a function of time, use a = dv>dt and v = ds>dt 
which, when integrated, yield the particle’s velocity and position, 
respectively.

	 •	 If acceleration is a function of displacement, integrate a ds = v dv 
to obtain the velocity as a function of position.

	 •	 If acceleration is constant, use v = v0 + act, s = s0 + v0t +
1
2 act2, 

v2 = v0
2 + 2ac(s - s0) to determine the velocity or position of the 

particle.

	 •	 If the problem involves the dependent motion of several particles, 
use the method outlined in Sec. 12.9 to relate their accelerations. 
In all cases, make sure the positive inertial coordinate directions 
used for writing the kinematic equations are the same as those 
used for writing the equations of motion; otherwise, simultaneous 
solution of the equations will result in errors.

	 •	 If the solution for an unknown vector component yields a 
negative scalar, it indicates that the component acts in the 
direction opposite to that which was assumed.
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Example   13.1

The 50-kg crate shown in Fig. 13–6a rests on a horizontal surface for 
which the coefficient of kinetic friction is mk = 0.3. If the crate is 
subjected to a 400-N towing force as shown, determine the velocity of 
the crate in 3 s starting from rest.

Solution
Using the equations of motion, we can relate the crate’s acceleration 
to the force causing the motion. The crate’s velocity can then be 
determined using kinematics.

Free-Body Diagram.   The weight of the crate is W = mg =

50 kg (9.81 m>s2) = 490.5 N. As shown in Fig. 13–6b, the frictional 
force has a magnitude F = mkNC and acts to the left, since it opposes 
the motion of the crate. The acceleration a is assumed to act horizontally, 
in the positive x direction. There are two unknowns, namely NC and a.

Equations of Motion.   Using the data shown on the free-body 
diagram, we have

 S+ �Fx = max;	 400 cos 30� - 0.3NC = 50a� (1)
+ c �Fy = may;	 NC - 490.5 + 400 sin 30� = 0� (2)

Solving Eq. 2 for NC , substituting the result into Eq. 1, and solving 
for a yields

 NC = 290.5 N

 a = 5.185 m>s2

Kinematics.  Notice that the acceleration is constant, since the applied 
force P is constant. Since the initial velocity is zero, the velocity of the 
crate in 3 s is
( S+ )	  v = v0 + act = 0 + 5.185(3)

	  = 15.6 m>s S � Ans.

P � 400 N

30�

(a)

30�

400 N

490.5 N

F � 0.3 NC

NC

(b)

y

x

a

30�

400 N

490.5 N

F � 0.3NC

NC (c)

�
50a

NOTE: We can also use the alternative procedure of drawing the 
crate’s free-body and kinetic diagrams, Fig. 13–6c, prior to applying 
the equations of motion.

Fig. 13–6 
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A 10-kg projectile is fired vertically upward from the ground, with an 
initial velocity of 50 m>s, Fig. 13–7a. Determine the maximum height 
to which it will travel if (a) atmospheric resistance is neglected; and 
(b) atmospheric resistance is measured as FD = (0.01v2) N, where v is 
the speed of the projectile at any instant, measured in m>s.

Solution
In both cases the known force on the projectile can be related to its 
acceleration using the equation of motion. Kinematics can then be 
used to relate the projectile’s acceleration to its position.

Part (a) Free-Body Diagram.   As shown in Fig. 13–7b, the projectile’s 
weight is W = mg = 10(9.81) = 98.1 N. We will assume the unknown 
acceleration a acts upward in the positive z direction.

Equation of Motion. 
+ c �Fz = maz;      -98.1 = 10 a,      a = -9.81 m>s2

The result indicates that the projectile, like every object having free-
flight motion near the earth’s surface, is subjected to a constant 
downward acceleration of 9.81 m>s2.

Kinematics.   Initially, z0 = 0 and v0 = 50 m>s, and at the maximum 
height z = h, v = 0. Since the acceleration is constant, then
(+ c )	  v2 = v0

2 + 2 ac(z - z0)

	  0 = (50)2 + 2(-9.81)(h - 0)
	  h = 127 m � Ans.

Part (b) Free-Body Diagram.   Since the force FD = (0.01v2) N tends 
to retard the upward motion of the projectile, it acts downward as 
shown on the free-body diagram, Fig. 13–7c.

Equation of Motion.
+ c �Fz = maz;  -0.01v2 - 98.1 = 10 a,  a = -(0.001v2 + 9.81)

Kinematics.   Here the acceleration is not constant since FD depends 
on the velocity. Since a = f(v), we can relate a to position using

(+ c ) a dz = v dv;	 -(0.001v2 + 9.81) dz = v dv

Separating the variables and integrating, realizing that initially z0 = 0, 
v0 = 50 m>s (positive upward), and at z = h, v = 0, we have

L
h

0
dz = -L

0
 

50 m>s
v dv

0.001v2 + 9.81
= -500 ln(v2 + 9810) 2

50 m>s

0

	  h = 114 m� Ans.

NOTE: The answer indicates a lower elevation than that obtained in 
part (a) due to atmospheric resistance or drag.

Example   13.2

z

98.1 N

a

(c)

FD

Fig. 13–7 

z

98.1 N

a

(b)

z

(a)
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The baggage truck A shown in the photo has a weight of 900 lb and tows 
a 550-lb cart B and a 325-lb cart C. For a short time the driving frictional 
force developed at the wheels of the truck is FA = (40t) lb, where t is in 
seconds. If the truck starts from rest, determine its speed in 2 seconds. 
Also, what is the horizontal force acting on the coupling between the 
truck and cart B at this instant? Neglect the size of the truck and carts.

NA NB
NC

FA

900 lb
550 lb 325 lb

(a)

Solution
Free-Body Diagram.  As shown in Fig. 13–8a, it is the frictional 
driving force that gives both the truck and carts an acceleration. Here 
we have considered all three vehicles as a single system.

Equation of Motion.  Only motion in the horizontal direction has to 
be considered.

d+ �Fx = max;	 40t = a 900 + 550 + 325

32.2
ba

	 a = 0.7256t

Kinematics.  Since the acceleration is a function of time, the velocity 
of the truck is obtained using a = dv>dt with the initial condition that 
v0 = 0 at t = 0. We have

L
v

0
dv = L

2 s

0
0.7256t dt;      v = 0.3628t2 2

0

2 s

= 1.45 ft>s	 Ans.

Free-Body Diagram.  In order to determine the force between the 
truck and cart B, we will consider a free-body diagram of the truck so 
that we can “expose” the coupling force T as external to the free-body 
diagram, Fig. 13–8b.

Equation of Motion.  When t = 2 s, then

d+ �Fx = max:	  40(2) - T = a 900

32.2
b [0.7256(2)]

	  T = 39.4 lb	 Ans.

NOTE: Try and obtain this same result by considering a free-body 
diagram of carts B and C as a single system.

Example   13.3

A B C

(© R.C. Hibbeler)

NA

T

FA

900 lb

(b)

Fig. 13–8 
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A smooth 2-kg collar, shown in Fig. 13–9a, is attached to a spring 
having a stiffness k = 3 N>m and an unstretched length of 0.75 m. If 
the collar is released from rest at A, determine its acceleration and the 
normal force of the rod on the collar at the instant y = 1 m.

Solution
Free-Body Diagram.  The free-body diagram of the collar when it 
is located at the arbitrary position y is shown in Fig. 13–9b. Furthermore, 
the collar is assumed to be accelerating so that “a” acts downward in 
the positive y direction. There are four unknowns, namely, NC , Fs , a, 
and u.

Equations of Motion.

S+ �Fx = max;	 -NC + Fs cos u = 0� (1)

+ T �Fy = may;	 19.62 - Fs sin u = 2a� (2)

From Eq. 2 it is seen that the acceleration depends on the magnitude 
and direction of the spring force. Solution for NC and a is possible 
once Fs and u are known.

The magnitude of the spring force is a function of the stretch s of the 
spring; i.e., Fs = ks. Here the unstretched length is AB = 0.75 m,  
Fig. 13–9a; therefore, s = CB - AB = 2y2 + (0.75)2 - 0.75. Since 
k = 3 N>m, then

	 Fs = ks = 3a2y2 + (0.75)2 - 0.75b � (3)

From Fig. 13–9a, the angle u is related to y by trigonometry.

tan u =
y

0.75

Substituting y = 1 m into Eqs. 3 and 4 yields Fs = 1.50 N and 
u = 53.1�. Substituting these results into Eqs. 1 and 2, we obtain

	  NC = 0.900 N	 Ans.

	  a = 9.21 m>s2 T 	 Ans.

NOTE: This is not a case of constant acceleration, since the spring 
force changes both its magnitude and direction as the collar moves 
downward.

Example   13.4

x

y

a

(b)
NC

19.62 N
Fs

u

Fig. 13–9 

y

0.75 m

C

k � 3 N/m

(a)

B

A u
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The 100-kg block A shown in Fig. 13–10a is released from rest. If the 
masses of the pulleys and the cord are neglected, determine the velocity 
of the 20-kg block B in 2 s.

Solution
Free-Body Diagrams.  Since the mass of the pulleys is neglected, then 
for pulley C, ma = 0 and we can apply �Fy = 0, as shown in Fig. 13–10b. 
The free-body diagrams for blocks A and B are shown in Fig. 13–10c and 
d, respectively. Notice that for A to remain stationary T = 490.5 N, 
whereas for B to remain static T = 196.2 N. Hence A will move down 
while B moves up. Although this is the case, we will assume both blocks 
accelerate downward, in the direction of +sA and +sB . The three 
unknowns are T, aA , and aB .

Equations of Motion.  Block A, 

+ T �Fy = may;	 981 - 2T = 100aA� (1)

Block B,

+ T �Fy = may;	 196.2 - T = 20aB� (2)

Kinematics.  The necessary third equation is obtained by relating aA 
to aB using a dependent motion analysis, discussed in Sec. 12.9. The 
coordinates sA and sB in Fig. 13–10a measure the positions of A and B 
from the fixed datum. It is seen that

2sA + sB = l

where l is constant and represents the total vertical length of cord. 
Differentiating this expression twice with respect to time yields

	 2aA = -aB� (3)

Notice that when writing Eqs. 1 to 3, the positive direction was 
always assumed downward. It is very important to be consistent in this 
assumption since we are seeking a simultaneous solution of equations. 
The results are

 T = 327.0 N

 aA = 3.27 m>s2

 aB = -6.54 m>s2

Hence when block A accelerates downward, block B accelerates upward 
as expected. Since aB is constant, the velocity of block B in 2 s is thus

(+ T )	 v = v0 + aBt
		  = 0 + (-6.54)(2)
	  = -13.1 m>s	 Ans.

The negative sign indicates that block B is moving upward.

Example   13.5

Datum

A

C
sB

sA

(a)

B

TT

2T

(b)

2T

981 NsA

(c)

aA

T

196.2 N
sB

(d)

aB

Fig. 13–10 
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P13–1.  The 10-kg block is subjected to the forces shown. 
In each case, determine its velocity when t = 2 s if v = 0 
when t = 0.

300 N

500 N

5
3

4

(a)

               

F � (20t) N

(b)

Prob. P13–1

P13–2.  The 10-kg block is subjected to the forces shown. 
In each case, determine its velocity at s = 8 m if v = 3 m>s 
at s = 0. Motion occurs to the right.

40 N 30 N

200 N

(a)

F � (2.5 s) N

(b)

Prob. P13–2

P13–3.  Determine the initial acceleration of the 10-kg 
smooth collar. The spring has an unstretched length of 1 m.

4 m

3 m
k � 10 N/m

Prob. P13–3

P13–4.  Write the equations of motion in the x and y 
directions for the 10-kg block.

30�

x

y

mk � 0.2

Prob. P13–4

Preliminary Problems
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Fundamental Problems

F13–1.    The motor winds in the cable with a constant 
acceleration, such that the 20-kg crate moves a distance 
s = 6 m in 3 s, starting from rest. Determine the tension 
developed in the cable. The coefficient of kinetic friction 
between the crate and the plane is mk = 0.3.

F13–4.    The 2-Mg car is being towed by a winch. If the 
winch exerts a force of T = 100(s + 1) N on the cable, 
where s is the displacement of the car in meters, determine 
the speed of the car when s = 10 m, starting from rest. 
Neglect rolling resistance of the car.

F13–5.    The spring has a stiffness k = 200 N>m and is 
unstretched when the 25-kg block is at A. Determine the 
acceleration of the block when s = 0.4 m. The contact 
surface between the block and the plane is smooth.

s

M

A

30�

Prob. F13–1

F13–2.    If motor M exerts a force of F = (10t2 + 100) N on 
the cable, where t is in seconds, determine the velocity of the 
25-kg crate when t = 4 s. The coefficients of static and 
kinetic friction between the crate and the plane are ms = 0.3 
and mk = 0.25, respectively. The crate is initially at rest.

M

Prob. F13–2

F13–3.    A spring of stiffness k = 500 N>m is mounted 
against the 10-kg block. If the block is subjected to the force 
of F = 500 N, determine its velocity at s = 0.5 m. When 
s = 0, the block is at rest and the spring is uncompressed. 
The contact surface is smooth.

s
F � 500 N

k � 500 N/m

3
4

5

Prob. F13–3

Prob. F13–4

0.3 m

s

A F � 100 N F � 100 N

k � 200 N/m

Prob. F13–5

F13–6.    Block B rests upon a smooth surface. If the 
coefficients of static and kinetic friction between A and B 
are ms = 0.4 and mk = 0.3, respectively, determine the 
acceleration of each block if P = 6 lb. 

20 lb
A

B 50 lb

P

Prob. F13–6
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13–5.  If blocks A and B of mass 10 kg and 6 kg respectively, 
are placed on the inclined plane and released, determine 
the force developed in the link. The coefficients of kinetic 
friction between the blocks and the inclined plane are 
mA = 0.1 and mB = 0.3. Neglect the mass of the link.

A

B

30�

Prob. 13–5

13–6.  The 10-lb block has a speed of 4 ft>s when the force 
of F = (8t2) lb is applied. Determine the velocity of the 
block when t = 2 s. The coefficient of kinetic friction at the 
surface is mk = 0.2.

13–7.  The 10-lb block has a speed of 4 ft>s when the force 
of F = (8t2) lb is applied. Determine the velocity of the 
block when it moves s = 30 ft. The coefficient of kinetic 
friction at the surface is ms = 0.2.

v � 4 ft/s

F � (8t2) lb

Probs. 13–6/7

13–1.  The 6-lb particle is subjected to the action of its 
weight and forces F1 = 52i + 6j - 2tk6  lb, F2 =

5t 2 i - 4tj - 1k6  lb, and F3 = 5-2ti6  lb, where t is in 
seconds. Determine the distance the ball is from the origin 
2 s after being released from rest.

z

y

x
F1

F3

F2

Prob. 13–1

13–2.  The two boxcars A and B have a weight of 20 000 lb 
and 30 000 lb, respectively. If they are freely coasting down 
the incline when the brakes are applied to all the wheels of 
car A, determine the force in the coupling C between the 
two cars. The coefficient of kinetic friction between the 
wheels of A and the tracks is mk = 0.5. The wheels of car B 
are free to roll. Neglect their mass in the calculation. 
Suggestion: Solve the problem by representing single 
resultant normal forces acting on A and B, respectively.

C
5�

A B

Prob. 13–2

13–3.  If the coefficient of kinetic friction between the 
50-kg crate and the ground is mk = 0.3, determine the 
distance the crate travels and its velocity when t = 3 s. 
The crate starts from rest, and P = 200 N.

*13–4.  If the 50-kg crate starts from rest and achieves a 
velocity of v = 4 m>s when it travels a distance of 5 m to 
the right, determine the magnitude of force P acting on the 
crate. The coefficient of kinetic friction between the crate 
and the ground is mk = 0.3.

30�

P

Probs. 13–3/4

Problems
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*13–8.  The speed of the 3500-lb sports car is plotted over 
the 30-s time period. Plot the variation of the traction force 
F needed to cause the motion.

t (s)

v (ft/s)

80

60

10 30

F

Prob. 13–8

13–9.  The conveyor belt is moving at 4 m>s. If the 
coefficient of static friction between the conveyor and 
the  10-kg package B is ms = 0.2, determine the shortest 
time the belt can stop so that the package does not slide 
on the belt.

13–10.  The conveyor belt is designed to transport packages 
of various weights. Each 10-kg package has a coefficient of 
kinetic friction mk = 0.15. If the speed of the conveyor is 
5 m>s, and then it suddenly stops, determine the distance the 
package will slide on the belt before coming to rest.

B

Probs. 13–9/10

13–11.  Determine the time needed to pull the cord at B 
down 4 ft starting from rest when a force of 10 lb is applied 
to the cord. Block A weighs 20 lb. Neglect the mass of the 
pulleys and cords.

A
10 lb

B
C

Prob. 13–11

*13–12.  Cylinder B has a mass m and is hoisted using the 
cord and pulley system shown. Determine the magnitude 
of force F as a function of the block’s vertical position y so 
that when F is applied the block rises with a constant 
acceleration aB. Neglect the mass of the cord and pulleys.

aB B

F

y

d

Prob. 13–12
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13–13.  Block A has a weight of 8 lb and block B has a 
weight of 6 lb. They rest on a surface for which the coefficient 
of kinetic friction is mk = 0.2. If the spring has a stiffness of 
k = 20 lb>ft, and it is compressed 0.2 ft, determine the 
acceleration of each block just after they are released.

k
BA

Prob. 13–13

13–14.  The 2-Mg truck is traveling at 15 m>s when the 
brakes on all its wheels are applied, causing it to skid for a 
distance of 10 m before coming to rest. Determine the 
constant horizontal force developed in the coupling C, and 
the frictional force developed between the tires of the truck 
and the road during this time. The total mass of the boat and 
trailer is 1 Mg.

C

Prob. 13–14

13–15.  The motor lifts the 50-kg crate with an acceleration 
of 6 m>s2. Determine the components of force reaction and 
the couple moment at the fixed support A.

4 m

y

x
B

A

6 m/s2

30�

Prob. 13–15

*13–16.  The 75-kg man pushes on the 150-kg crate with a 
horizontal force F. If the coefficients of static and kinetic 
friction between the crate and the surface are ms = 0.3 and 
mk = 0.2, and the coefficient of static friction between the 
man’s shoes and the surface is ms = 0.8, show that the man 
is able to move the crate. What is the greatest acceleration 
the man can give the crate?

F

Prob. 13–16

13–17.  Determine the acceleration of the blocks when the 
system is released. The coefficient of kinetic friction is mk, 
and the mass of each block is m. Neglect the mass of the 
pulleys and cord.

A

B

Prob. 13–17

13–18.  A 40-lb suitcase slides from rest 20 ft down the 
smooth ramp. Determine the point where it strikes the 
ground at C. How long does it take to go from A to C?

13–19.  Solve Prob. 13–18 if the suitcase has an initial 
velocity down the ramp of vA = 10 ft>s and the coefficient 
of kinetic friction along AB is mk = 0.2.

20 ft

4 ft

30�

R

C

A

B

Probs. 13–18/19
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*13–20.  The conveyor belt delivers each 12-kg crate to the 
ramp at A such that the crate’s speed is vA = 2.5 m>s, 
directed down along the ramp. If the coefficient of kinetic 
friction between each crate and the ramp is mk = 0.3, 
determine the speed at which each crate slides off the ramp 
at B. Assume that no tipping occurs. Take u = 30�.

13–21.  The conveyor belt delivers each 12-kg crate to the 
ramp at A such that the crate’s speed is vA = 2.5 m>s, 
directed down along the ramp. If the coefficient of kinetic 
friction between each crate and the ramp is mk = 0.3, 
determine the smallest incline u of the ramp so that the 
crates will slide off and fall into the cart.

vA � 2.5 m/s

3 m
A

Bu

Probs. 13–20/21

13–22.  The 50-kg block A is released from rest. Determine 
the velocity of the 15-kg block B in 2 s.

A

B

D

C

E

Prob. 13–22

13–23.  If the supplied force F = 150 N, determine the 
velocity of the 50-kg block A when it has risen 3 m, starting 
from rest.

A

B

C

F

Prob. 13–23

*13–24.  A 60-kg suitcase slides from rest 5 m down the 
smooth ramp. Determine the distance R where it strikes the 
ground at B. How long does it take to go from A to B?

13–25.  Solve Prob. 13–24 if the suitcase has an initial 
velocity down the ramp of vA = 2 m>s, and the coefficient 
of kinetic friction along AC is mk = 0.2.

5 m

2.5 m

30�

R

C

A

B

Probs. 13–24/25
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13–26.  The 1.5 Mg sports car has a tractive force of  
F = 4.5 kN. If it produces the velocity described by v-t graph 
shown, plot the air resistance R versus t for this time period.

t (s)

v (m/s)

45

30

F

R

v � (–0.05t2 + 3t) m/s 

Prob. 13–26

13–27.  The conveyor belt is moving downward at 4 m>s. 
If the coefficient of static friction between the conveyor and 
the 15-kg package B is ms = 0.8, determine the shortest 
time the belt can stop so that the package does not slide 
on the belt.

B

30�

 4 m/s

Prob. 13–27

*13–28.  At the instant shown the 100-lb block A is moving 
down the plane at 5 ft>s while being attached to the 50-lb 
block B. If the coefficient of kinetic friction between the 
block and the incline is mk = 0.2, determine the acceleration 
of A and the distance A slides before it stops. Neglect the 
mass of the pulleys and cables.

C

B

D

3A 4
5

Prob. 13–28

13–29.  The force exerted by the motor on the cable is 
shown in the graph. Determine the velocity of the 200-lb 
crate when t = 2.5 s.

M

A

250 lb

2.5

F (lb)

t (s)

Prob. 13–29

13–30.  The force of the motor M on the cable is shown in 
the graph. Determine the velocity of the 400-kg crate A 
when t = 2 s.

A

M

F (N)

F � 625 t2

2500

2
t (s)

Prob. 13–30
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13–31.  The tractor is used to lift the 150-kg load B with the 
24-m-long rope, boom, and pulley system. If the tractor 
travels to the right at a constant speed of 4 m>s, determine 
the tension in the rope when sA = 5 m. When sA = 0, sB = 0. 

*13–32.  The tractor is used to lift the 150-kg load B with 
the 24-m-long rope, boom, and pulley system. If the tractor 
travels to the right with an acceleration of 3 m>s2 and has a 
velocity of 4 m>s at the instant sA = 5 m, determine the  
tension in the rope at this instant. When sA = 0, sB = 0.

sA

sB

A
B

12 m

Probs. 13–31/32

13–33.  Block A and B each have a mass m. Determine the 
largest horizontal force P which can be applied to B so that 
it will not slide on A. Also, what is the corresponding 
acceleration? The coefficient of static friction between  
A and B is ms. Neglect any friction between A and the 
horizontal surface.

P

A

B

�

Prob. 13–33

13–34.  The 4-kg smooth cylinder is supported by the 
spring having a stiffness of kAB = 120 N>m. Determine the 
velocity of the cylinder when it moves downward s = 0.2 m 
from its equilibrium position, which is caused by the 
application of the force F = 60 N.

s

kAB � 120 N/m

F � 60 N

B

A

Prob. 13–34

13–35.  The coefficient of static friction between the 200-kg 
crate and the flat bed of the truck is  ms = 0.3. Determine 
the shortest time for the truck to reach a speed of 60 km>h, 
starting from rest with constant acceleration, so that the 
crate does not slip. 

Prob. 13–35

*13–36.  The 2-lb collar C fits loosely on the smooth shaft. 
If the spring is unstretched when s = 0 and the collar is 
given a velocity of 15 ft>s, determine the velocity of the 
collar when s = 1 ft.

C

1 ft
k � 4 lb/ft

15 ft/s
s

Prob. 13–36
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13–37.  The 10-kg block A rests on the 50-kg plate B in the 
position shown. Neglecting the mass of the rope and pulley, 
and using the coefficients of kinetic friction indicated, 
determine the time needed for block A to slide 0.5 m on the 
plate when the system is released from rest.

CA

BmAB � 0.2

30�

0.5 m

mBC � 0.1

Prob. 13–37

13–38.  The 300-kg bar B, originally at rest, is being towed 
over a series of small rollers. Determine the force in the 
cable when t = 5 s, if the motor M is drawing in the cable 
for a short time at a rate of v = (0.4t2) m>s, where t is in 
seconds (0 … t … 6 s). How far does the bar move in 5 s? 
Neglect the mass of the cable, pulley, and the rollers.

B

M

v

Prob. 13–38

13–39.  An electron of mass m is discharged with an initial 
horizontal velocity of v0. If it is subjected to two fields of 
force for which Fx = F0 and Fy = 0.3F0, where F0 is 
constant, determine the equation of the path, and the speed 
of the electron at any time t.

y

x
v0

+ + + + + + + + + + + + + +

+
 +

 +
 +

 +
 +

 +
 +

 +
 +

 +
 +

 +
 +

Prob. 13–39

*13–40.  The 400-lb cylinder at A is hoisted using the 
motor and the pulley system shown. If the speed of point B 
on the  cable is increased at a constant rate from zero to 
vB = 10 ft>s in t = 5 s, determine the tension in the cable 
at B to cause the motion.

A

B

vA

Prob. 13–40
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13–41.  Block A has a mass mA and is attached to a spring 
having a stiffness k and unstretched length l0. If another 
block B, having a mass mB, is pressed against A so that the 
spring deforms a distance d, determine the distance both 
blocks slide on the smooth surface before they begin to 
separate. What is their velocity at this instant?

13–42.  Block A has a mass mA and is attached to a spring 
having a stiffness k and unstretched length l0. If another 
block B, having a mass mB, is pressed against A so that the 
spring deforms a distance d, show that for separation to 
occur it is necessary that d 7 2mkg(mA + mB ) >k, where mk 
is the coefficient of kinetic friction between the blocks and 
the ground. Also, what is the distance the blocks slide on the 
surface before they separate?

A
k

B

Probs. 13–41/42

13–43.  A parachutist having a mass m opens his parachute 
from an at-rest position at a very high altitude. If the 
atmospheric drag resistance is FD = kv 2, where k is a 
constant, determine his velocity when he has fallen for a 
time t. What is his velocity when he lands on the ground? 
This velocity is referred to as the terminal velocity, which is 
found by letting the time of fall t S � .

FD

v

Prob. 13–43

*13–44.  If the motor draws in the cable with an acceleration 
of 3 m>s2, determine the reactions at the supports A and B. 
The beam has a uniform mass of 30 kg>m, and the crate has 
a mass of 200 kg. Neglect the mass of the motor and pulleys.

C

A B

2.5 m 3 m
0.5 m

 3 m/s2

Prob. 13–44

13–45.  If the force exerted on cable AB by the motor is 
F = (100t 3>2) N, where t is in seconds, determine the 50-kg 
crate’s velocity when t = 5 s. The coefficients of static and 
kinetic friction between the crate and the ground are ms = 0.4 
and mk = 0.3, respectively. Initially the crate is at rest.

BA

Prob. 13–45
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13–46.  Blocks A and B each have a mass m. Determine 
the largest horizontal force P which can be applied to B so 
that A will not move relative to B. All surfaces are smooth.

13–47.  Blocks A and B each have a mass m. Determine the 
largest horizontal force P which can be applied to B so that A 
will not slip on B. The coefficient of static friction between A 
and B is ms. Neglect any friction between B and C.

A

B
P

u

C

Probs. 13–46/47

*13–48.  The smooth block B of negligible size has a mass m 
and rests on the horizontal plane. If the board AC pushes on 
the block at an angle u with a constant acceleration a0, 
determine the velocity of the block along the board and the 
distance s the block moves along the board as a function of 
time t. The block starts from rest when s = 0, t = 0.

A

C

B

s

a0

u

Prob. 13–48

13–49.  If a horizontal force P = 12 lb is applied to block A 
determine the acceleration of the block B. Neglect friction.

P
A

B

15 lb

8 lb

15°

Prob. 13–49

13–50.  A freight elevator, including its load, has a mass of 
1 Mg. It is prevented from rotating due to the track and 
wheels mounted along its sides. If the motor M develops a 
constant tension T = 4 kN in its attached cable, determine 
the velocity of the elevator when it has moved upward 6 m 
starting from rest. Neglect the mass of the pulleys and 
cables.

M

Prob. 13–50

13–51.  The block A has a mass mA  and rests on the pan B, 
which has a mass mB. Both are supported by a spring having 
a stiffness k that is attached to the bottom of the pan and to 
the ground. Determine the distance d the pan should be 
pushed down from the equilibrium position and then 
released from rest so that separation of the block will take 
place from the surface of the pan at the instant the spring 
becomes unstretched.

A
B

k
dy

Prob. 13–51
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13.5 � Equations of Motion: Normal  
and Tangential Coordinates

When a particle moves along a curved path which is known, the equation 
of motion for the particle may be written in the tangential, normal, and 
binormal directions, Fig. 13–11. Note that there is no motion of the particle 
in the binormal direction, since the particle is constrained to move along 
the path. We have

 �F = ma

 �Ftut + �Fnun + �Fbub = mat + man

This equation is satisfied provided

	  �Ft = mat 

	  �Fn = man 	 (13–8)

	  �Fb = 0    

Recall that at (=  dv>dt) represents the time rate of change in the 
magnitude of velocity. So if �Ft acts in the direction of motion, the 
particle’s speed will increase, whereas if it acts in the opposite direction, 
the particle will slow down. Likewise, an (=  v2>r) represents the time 
rate of change in the velocity’s direction. It is caused by �Fn , which 
always acts in the positive n direction, i.e., toward the path’s center of 
curvature. For this reason it is often referred to as the centripetal force.

n

t

As a roller coaster falls downward along the 
track, the cars have both a normal and a 
tangential component of acceleration.  
(© R.C. Hibbeler)

b

tO

n �Fnun

�Fbub

�Ftut

P

Inertial coordinate
system

Fig. 13–11 
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Procedure for Analysis

When a problem involves the motion of a particle along a known 
curved path, normal and tangential coordinates should be  
considered for the analysis since the acceleration components can 
be readily formulated. The method for applying the equations of 
motion, which relate the forces to the acceleration, has been outlined 
in the procedure given in Sec. 13.4. Specifically, for t, n, b coordinates 
it may be stated as follows:

Free-Body Diagram.

	 •	 Establish the inertial t, n, b coordinate system at the particle and 
draw the particle’s free-body diagram.

	 •	 The particle’s normal acceleration an always acts in the positive n 
direction.

	 •	 If the tangential acceleration at is unknown, assume it acts in the 
positive t direction.

	 •	 There is no acceleration in the b direction.

	 •	 Identify the unknowns in the problem.

Equations of Motion.

	 •	 Apply the equations of motion, Eq. 13–8.

Kinematics.

	 •	 Formulate the tangential and normal components of acceleration; 
i.e., at = dv>dt or at = v dv>ds and an = v2>r.

	 •	 If the path is defined as y = f(x), the radius of curvature at the 
point where the particle is located can be obtained from 
r = [1 + (dy>dx)2]3>2> � d2y>dx2 � .

n

b

t

The unbalanced force of the rope on the 
skier gives him a normal component of 
acceleration. (© R.C. Hibbeler)
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Determine the banking angle u for the race track so that the wheels of 
the racing cars shown in Fig. 13–12a will not have to depend upon 
friction to prevent any car from sliding up or down the track. Assume 
the cars have negligible size, a mass m, and travel around the curve of 
radius r with a constant speed v.

u

(a)

Solution
Before looking at the following solution, give some thought as to why 
it should be solved using t, n, b coordinates.

Free-Body Diagram.  As shown in Fig. 13–12b, and as stated in the 
problem, no frictional force acts on the car. Here NC represents the 
resultant of the ground on all four wheels. Since an can be calculated, 
the unknowns are NC and u.

Equations of Motion.  Using the n, b axes shown,

S+ �Fn = man;	 NC sin u = m 
v2

r
� (1)

+ c �Fb = 0;	 NC cos u - mg = 0� (2)

Eliminating NC and m from these equations by dividing Eq. 1 by Eq. 2, 
we obtain

 tan u =
v2

gr

	  u = tan-1 a v2

gr
b 	 Ans.

NOTE: The result is independent of the mass of the car. Also, a force 
summation in the tangential direction is of no consequence to the 
solution. If it were considered, then at = dv>dt = 0, since the car 
moves with constant speed. A further analysis of this problem is 
discussed in Prob. 21–53.

Example   13.6

(b)

b

n
an

NC

W � mg

u

Fig. 13–12 

(©
 R

.C
. H

ib
be

le
r)
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The 3-kg disk D is attached to the end of a cord as shown in Fig. 13–13a. 
The other end of the cord is attached to a ball-and-socket joint located 
at the center of a platform. If the platform rotates rapidly, and the disk 
is placed on it and released from rest as shown, determine the time it 
takes for the disk to reach a speed great enough to break the cord. The 
maximum tension the cord can sustain is 100 N, and the coefficient of 
kinetic friction between the disk and the platform is mk = 0.1.

Example   13.7

1 m

Motion of
platform

(a)

D

(b)

29.43 N

nt

b

at an

TF � 0.1 ND

ND

Fig. 13–13 

Solution
Free-Body Diagram.  The frictional force has a magnitude 
F = mkND = 0.1ND and a sense of direction that opposes the relative 
motion of the disk with respect to the platform. It is this force that 
gives the disk a tangential component of acceleration causing v to 
increase, thereby causing T to increase until it reaches 100 N. The 
weight of the disk is W = 3(9.81) = 29.43 N. Since an can be related to 
v, the unknowns are ND , at , and v.

Equations of Motion. 

�Fn = man; 	 T = 3av2

1
b � (1)

�Ft = mat; 	 0.1ND = 3at � (2)

�Fb = 0; 	 ND - 29.43 = 0� (3)

Setting T = 100 N, Eq. 1 can be solved for the critical speed vcr of the 
disk needed to break the cord. Solving all the equations, we obtain

 ND = 29.43 N

 at = 0.981 m>s2

 vcr = 5.77 m>s

Kinematics.  Since at is constant, the time needed to break the cord is

	  vcr = v0 + att

	  5.77 = 0 + (0.981)t

	  t = 5.89 s 	 Ans.
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Example   13.8

Design of the ski jump shown in the photo requires knowing the type 
of forces that will be exerted on the skier and her approximate 
trajectory. If in this case the jump can be approximated by the parabola 
shown in Fig. 13–14a, determine the normal force on the 150-lb skier 
the instant she arrives at the end of the jump, point A, where her 
velocity is 65 ft>s. Also, what is her acceleration at this point?

Solution
Why consider using n, t coordinates to solve this problem?

Free-Body Diagram.  Since dy>dx = x>100 0 x = 0 = 0, the slope at A 
is horizontal. The free-body diagram of the skier when she is at A is 
shown in Fig. 13–14b. Since the path is curved, there are two 
components of acceleration, an and at . Since an can be calculated, the 
unknowns are at and NA .

Equations of Motion.

+ c �Fn = man;	 NA - 150 =
150

32.2
 a (65)2

r
b � (1)

  d+ �Ft = mat;	 0 =
150

32.2
 at� (2)

The radius of curvature r for the path must be determined at point 
A(0, -200 ft). Here y =

1
200 x2 - 200, dy>dx =

1
100 x, d2y>dx2 =

1
100, so 

that at x = 0,

r =
[1 + (dy>dx)2]3>2

� d2y>dx2 �
2
x = 0

=
[1 + (0)2]3>2

� 1
100 �

= 100 ft

Substituting this into Eq. 1 and solving for NA , we obtain

	 NA = 347 lb	 Ans.

Kinematics.  From Eq. 2,
at = 0

Thus,

 an =
v2

r
=

(65)2

100
= 42.2 ft>s2

	  aA = an = 42.2 ft>s2 c 	 Ans.

NOTE: Apply the equation of motion in the y direction and show that 
when the skier is in midair her downward acceleration is 32.2 ft>s2.

t

n

an

at

150 lb

NA
(b)

Fig. 13–14 

y

A

x

200 ft

(a)

y �  x2 � 2001
200

(©
 R

.C
. H

ib
be

le
r)
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Example   13.9

The 60-kg skateboarder in Fig. 13–15a coasts down the circular 
track. If he starts from rest when u = 0�, determine the 
magnitude of the normal reaction the track exerts on him when 
u = 60�. Neglect his size for the calculation.

Solution
Free-Body Diagram.  The free-body diagram of the skateboarder 
when he is at an arbitrary position u is shown in Fig. 13–15b. At  
u = 60� there are three unknowns, Ns , at , and an (or v).

Equations of Motion.

 + Q �Fn = man;	 Ns - [60(9.81)N] sin u =  (60 kg)a v2

4 m
b  	 (1)

 + R �Ft = mat;	 [60(9.81)N] cos u = (60 kg) at

	 at = 9.81 cos u

Kinematics.  Since at is expressed in terms of u, the equation 
v dv = at ds must be used to determine the speed of the  
skateboarder when u = 60�. Using the geometric relation s = ur, 
where ds = r du = (4 m) du, Fig. 13–15c, and the initial condition  
v = 0 at u = 0�, we have,

 v dv = at ds

 L
v

0
v dv = L

60�

0
 9.81 cos u(4 du)

 
v2

2
2
0

v

= 39.24 sin u 2
0

60�

 
v2

2
- 0 = 39.24(sin 60� - 0)

 v2 = 67.97  m2>s2

Substituting this result and u = 60� into Eq. (1), yields

	 Ns = 1529.23 N = 1.53 kN� Ans.

(c)

O

4 m
du

ds � 4du

u

Fig. 13–15 

(b)

60 (9.81) N

n

an

Ns

at

t

u

(a)

O

4 m

u
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Preliminary Problems

P13–5.  Set up the n, t axes and write the equations of 
motion for the 10-kg block along each of these axes.

mk � 0.3

10 m

6 m/s

(a)

mk � 0.2

5 m

30�

4 m/s

(b)

6 m

8 m/s

60�

(c)

Prob. P13–5

P13–6.  Set up the n, b, t axes and write the equations of 
motion for the 10-kg block along each of these axes.

8 m/s

4 m

mk � 0.2

(a)

2 mv

ms � 0.3

Constant rotation
Block has impending motion

(b)

Prob. P13–6
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Fundamental Problems

F13–7.    The block rests at a distance of 2 m from the center 
of the platform. If the coefficient of static friction between the 
block and the platform is ms = 0.3, determine the maximum 
speed which the block can attain before it begins to slip. 
Assume the angular motion of the disk is slowly increasing. 

2 m

z

Prob. F13–7 

F13–8.   Determine the maximum speed that the jeep can travel 
over the crest of the hill and not lose contact with the road. 

 

r � 250 ft

Prob. F13–8 

F13–9.    A pilot weighs 150 lb and is traveling at a constant 
speed of 120 ft>s. Determine the normal force he exerts on 
the seat of the plane when he is upside down at A. The loop 
has a radius of curvature of 400 ft. 

A

400 ft

Prob. F13–9

F13–10.    The sports car is traveling along a 30� banked 
road having a radius of curvature of r = 500 ft. If the 
coefficient of static friction between the tires and the road is  
ms = 0.2, determine the maximum safe speed so no slipping 
occurs. Neglect the size of the car.

u � 30�

r � 500 ft

Prob. F13–10 

F13–11.    If the 10-kg ball has a velocity of 3 m>s when it is 
at the position A, along the vertical path, determine the 
tension in the cord and the increase in the speed of the ball at 
this position.

O

A

2 m

3 m/s

u � 45�

Prob. F13–11 

F13–12.    The motorcycle has a mass of 0.5 Mg and a 
negligible size. It passes point A traveling with a speed of  
15 m>s, which is increasing at a constant rate of 1.5 m>s2. 
Determine the resultant frictional force exerted by the road 
on the tires at this instant.

A

rA � 200 m

Prob. F13–12 
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*13–52.  A girl, having a mass of 15 kg, sits motionless 
relative to the surface of a horizontal platform at a distance 
of r = 5 m from the platform’s center. If the angular motion 
of the platform is slowly increased so that the girl’s 
tangential component of acceleration can be neglected, 
determine the maximum speed which the girl will have 
before she begins to slip off the platform. The coefficient of 
static friction between the girl and the platform is m = 0.2.

z

5 m

Prob. 13–52

13–53.  The 2-kg block B and 15-kg cylinder A are 
connected to a light cord that passes through a hole in the 
center of the smooth table. If the block is given a speed of 
v = 10  m>s, determine the radius r of the circular path 
along which it travels.

13–54.  The 2-kg block B and 15-kg cylinder A are connected 
to a light cord that passes through a hole in the center of the 
smooth table. If the block travels along a circular path of 
radius r = 1.5 m, determine the speed of the block.

r

A

v

B

Probs. 13–53/54

13–55.  Determine the maximum constant speed at which 
the pilot can travel around the vertical curve having a radius 
of curvature r = 800 m, so that he experiences a maximum 
acceleration an = 8g = 78.5 m>s2. If he has a mass of 70 kg, 
determine the normal force he exerts on the seat of the 
airplane when the plane is traveling at this speed and is at 
its lowest point.

r � 800 m

Prob. 13–55

*13–56.  Cartons having a mass of 5 kg are required to 
move along the assembly line at a constant speed of 8 m>s. 
Determine the smallest radius of curvature, r, for the 
conveyor so the cartons do not slip. The coefficients of static 
and kinetic friction between a carton and the conveyor are 
ms = 0.7 and mk = 0.5, respectively.

8 m/s

r

Prob. 13–56

Problems
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13–57.  The collar A, having a mass of 0.75 kg, is attached to 
a spring having a stiffness of k = 200 N>m. When rod BC 
rotates about the vertical axis, the collar slides outward 
along the smooth rod DE. If the spring is unstretched when 
s = 0, determine the constant speed of the collar in order 
that s = 100 mm. Also, what is the normal force of the rod 
on the collar? Neglect the size of the collar. 

k � 200 N/m

s

B

A

E

C

D

Prob. 13–57

13–58.   The 2-kg spool S fits loosely on the inclined rod for 
which the coefficient of static friction is ms = 0.2. If the 
spool is located 0.25 m from A, determine the minimum 
constant speed the spool can have so that it does not slip 
down the rod.

13–59.  The 2-kg spool S fits loosely on the inclined rod for 
which the coefficient of static friction is ms = 0.2. If the spool 
is located 0.25 m from A, determine the maximum constant 
speed the spool can have so that it does not slip up the rod.

z

S

A

0.25 m

3
4

5

Probs. 13–58/59

*13–60.  At the instant u = 60�, the boy’s center of mass G 
has a downward speed vG = 15 ft>s. Determine the rate of 
increase in his speed and the tension in each of the two 
supporting cords of the swing at this instant. The boy has a 
weight of 60 lb. Neglect his size and the mass of the seat 
and cords.

13–61.  At the instant u = 60�, the boy’s center of mass G 
is momentarily at rest. Determine his speed and the tension 
in each of the two supporting cords of the swing when 
u = 90�. The boy has a weight of 60 lb. Neglect his size and 
the mass of the seat and cords.

10 ft

G

u

Probs. 13–60/61

13–62.  A girl having a mass of 25 kg sits at the edge of the 
merry-go-round so her center of mass G is at a distance of 
1.5 m from the axis of rotation. If the angular motion of the 
platform is slowly increased so that the girl’s tangential 
component of acceleration can be neglected, determine the 
maximum speed which she can have before she begins to 
slip off the merry-go-round. The coefficient of static friction 
between the girl and the merry-go-round is ms = 0.3.

z

1.5 m

G

Prob. 13–62
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13–63.  The pendulum bob B has a weight of 5 lb and is 
released from rest in the position shown, u = 0�. Determine 
the tension in string BC just after the bob is released, 
u = 0�, and also at the instant the bob reaches u = 45�. 
Take r = 3 ft.

*13–64.  The pendulum bob B has a mass m and is released 
from rest when u = 0�. Determine the tension in string BC 
immediately afterwards, and also at the instant the bob 
reaches the arbitrary position u.

C

r

B
u

Probs. 13–63/64

13–65.  Determine the constant speed of the passengers on 
the amusement-park ride if it is observed that the supporting 
cables are directed at u = 30� from the vertical. Each chair 
including its passenger has a mass of 80 kg. Also, what are 
the components of force in the n, t, and b directions which 
the chair exerts on a 50-kg passenger during the motion?

6 m

4 m

n

b

t
u

Prob. 13–65

13–66.  A motorcyclist in a circus rides his motorcycle 
within the confines of the hollow sphere. If the coefficient of 
static friction between the wheels of the motorcycle and the 
sphere is ms = 0.4, determine the minimum speed at which 
he must travel if he is to ride along the wall when u = 90�. 
The mass of the motorcycle and rider is 250 kg, and the 
radius of curvature to the center of gravity is r = 20 ft. 
Neglect the size of the motorcycle for the calculation.

u

Prob. 13–66

13–67.  The vehicle is designed to combine the feel of a 
motorcycle with the comfort and safety of an automobile. If 
the vehicle is traveling at a constant speed of 80 km>h along 
a circular curved road of radius 100 m, determine the tilt 
angle u of the vehicle so that only a normal force from the 
seat acts on the driver. Neglect the size of the driver.

u

Prob. 13–67
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*13–68.  The 0.8-Mg car travels over the hill having the 
shape of a parabola. If the driver maintains a constant speed 
of 9 m>s, determine both the resultant normal force and the 
resultant frictional force that all the wheels of the car exert 
on the road at the instant it reaches point A. Neglect the size 
of the car.

13–69.  The 0.8-Mg car travels over the hill having the 
shape of a parabola. When the car is at point A, it is traveling 
at 9 m>s and increasing its speed at 3 m>s2. Determine both 
the resultant normal force and the resultant frictional force 
that all the wheels of the car exert on the road at this instant. 
Neglect the size of the car.

y

A
x

y � 20 (1 �           )

80 m

x2

6400

Probs. 13–68/69

13–70.  The package has a weight of 5 lb and slides down the 
chute. When it reaches the curved portion AB, it is traveling 
at 8 ft>s (u = 0�). If the chute is smooth, determine the speed 
of the package when it reaches the intermediate point 
C (u = 30�) and when it reaches the horizontal plane 
(u = 45�). Also, find the normal force on the package at C.

20 ft

45�

45�u � 30�

B

A

8 ft/s

C

Prob. 13–70

13–71.  The 150-lb man lies against the cushion for which 
the coefficient of static friction is ms = 0.5. Determine the 
resultant normal and frictional forces the cushion exerts on 
him if, it due to rotation about the z axis, he has a constant 
speed v = 20 ft>s. Neglect the size of the man. Take u = 60�.   

*13–72.  The 150-lb man lies against the cushion for which 
the coefficient of static friction is ms = 0.5. If he rotates 
about the z axis with a constant speed v = 30 ft>s, 
determine the smallest angle u of the cushion at which he 
will begin to slip off.

z

G

8 ft

u

Probs. 13–71/72

13–73.  Determine the maximum speed at which the car with 
mass m can pass over the top point A of the vertical curved 
road and still maintain contact with the road. If the car maintains 
this speed, what is the normal reaction the road exerts on the 
car when it passes the lowest point B on the road?

r r

r r

A

B

Prob. 13–73



150 	 Chapter 13    Kinet ics of a Part icle:  Force and Accelerat ion

13 

13–74.  Determine the maximum constant speed at which 
the 2-Mg car can travel over the crest of the hill at A without 
leaving the surface of the road. Neglect the size of the car in 
the calculation.

y

A

x

y � 20 (1 �          )

 100 m

x2

10 000

Prob. 13–74

13–75.  The box has a mass m and slides down the smooth 
chute having the shape of a parabola. If it has an initial 
velocity of v0 at the origin determine its velocity as a 
function of x. Also, what is the normal force on the box, and 
the tangential acceleration as a function of x?

y

x

x

y � �0.5 x2

Prob. 13–75

*13–76.  Prove that if the block is released from rest at 
point B of a smooth path of arbitrary shape, the speed it 
attains when it reaches point A is equal to the speed it attains 
when it falls freely through a distance h; i.e., v = 22gh.

A

B

h

Prob. 13–76

13–77.  The cylindrical plug has a weight of 2 lb and it is free 
to move within the confines of the smooth pipe. The spring 
has a stiffness k = 14 lb>ft and when no motion occurs the 
distance d = 0.5 ft. Determine the force of the spring on the 
plug when the plug is at rest with respect to the pipe. The 
plug is traveling with a constant speed of 15 ft>s, which is 
caused by the rotation of the pipe about the vertical axis.

3 ft

d

k � 14 lb/ft

G

Prob. 13–77

13–78.  When crossing an intersection, a motorcyclist 
encounters the slight bump or crown caused by the 
intersecting road. If the crest of the bump has a radius of 
curvature r = 50 ft, determine the maximum constant 
speed at which he can travel without leaving the surface of 
the road. Neglect the size of the motorcycle and rider in the 
calculation. The rider and his motorcycle have a total weight 
of 450 lb.

r � 50 ft

Prob. 13–78
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13–79.  The airplane, traveling at a constant speed of 50 m>s, 
is executing a horizontal turn. If the plane is banked at 
u = 15�, when the pilot experiences only a normal force on 
the seat of the plane, determine the radius of curvature r of 
the turn. Also, what is the normal force of the seat on the 
pilot if he has a mass of 70 kg.

u

r

Prob. 13–79
*13–80.  The 2-kg pendulum bob moves in the vertical 
plane with a velocity of 8 m>s when u = 0�. Determine the 
initial tension in the cord and also at the instant the bob 
reaches u = 30�. Neglect the size of the bob.

13–81.  The 2-kg pendulum bob moves in the vertical plane 
with a velocity of 6 m>s when u = 0�. Determine the angle u 
where the tension in the cord becomes zero.

2 m

�

Probs. 13–80/81
13–82.  The 8-kg sack slides down the smooth ramp. If it 
has a speed of 1.5 m>s when y = 0.2 m, determine the 
normal reaction the ramp exerts on the sack and the rate of 
increase in the speed of sack at this instant.

y

x

y � 0.2ex

Prob. 13–82

13–83.  The ball has a mass m and is attached to the cord of 
length l. The cord is tied at the top to a swivel and the ball is 
given a velocity v0. Show that the angle u which the cord 
makes with the vertical as the ball travels around the 
circular path must satisfy the equation tan u sin u = v2

0>gl. 
Neglect air resistance and the size of the ball.

O

l

v0

u

Prob. 13–83

*13–84.  The 2-lb block is released from rest at A and slides 
down along the smooth cylindrical surface. If the attached 
spring has a stiffness k = 2 lb>ft, determine its unstretched 
length so that it does not allow the block to leave the surface 
until u = 60�.

k � 2 lb/ft

A

2 ft

u

Prob. 13–84
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O

r

z

P

�Fzuz

�Fuuu

�Frur

Inertial coordinate system

u

Fig. 13–16 

Motion of the roller coaster along this spiral 
can be studied using cylindrical coordinates. 
(© R.C. Hibbeler)

13.6  �Equations of Motion: Cylindrical 
Coordinates

When all the forces acting on a particle are resolved into cylindrical 
components, i.e., along the unit-vector directions ur , uu , uz , Fig. 13–16, the 
equation of motion can be expressed as

 �F = ma

 �Frur + �Fuuu + �Fzuz = marur + mauuu + mazuz

To satisfy this equation, we require

	  �Fr = mar	

	  �Fu = mau	 (13–9)

	  �Fz = maz	

If the particle is constrained to move only in the r9u plane, then only the 
first two of Eq. 13–9 are used to specify the motion.

Tangential and Normal Forces.  The most straightforward 
type of problem involving cylindrical coordinates requires the 
determination of the resultant force components �Fr , �Fu , �Fz which 
cause a particle to move with a known acceleration. If, however, the 
particle’s accelerated motion is not completely specified at the given 
instant, then some information regarding the directions or magnitudes 
of the forces acting on the particle must be known or calculated in 
order to solve Eqs. 13–9. For example, the force P causes the particle in 
Fig. 13–17a to move along a path r = f(u). The normal force N which 
the path exerts on the particle is always perpendicular to the tangent of 
the path, whereas the frictional force F always acts along the tangent in 
the opposite direction of motion. The directions of N and F can be 
specified relative to the radial coordinate by using the angle c (psi), 
Fig. 13–17b, which is defined between the extended radial line and the 
tangent to the curve.

O

r

Tangent

P F

N

r � f (u)

(a)

u
O

r

Tangent

r � f (u)

(b)

u

c

Fig. 13–17
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This angle can be obtained by noting that when the particle is displaced 
a distance ds along the path, Fig. 13–17c, the component of displacement 
in the radial direction is dr and the component of displacement in the 
transverse direction is r du. Since these two components are mutually 
perpendicular, the angle c can be determined from tan c = r du>dr, or

	 tan c =
r

dr>du	 (13–10)

If c is calculated as a positive quantity, it is measured from the extended 
radial line to the tangent in a counterclockwise sense or in the positive 
direction of u. If it is negative, it is measured in the opposite direction to 
positive u. For example, consider the cardioid r = a(1 + cos u), shown in 
Fig. 13–18. Because dr>du = -a sin u, then when u = 30�, 
tan c = a(1 + cos 30�)>(-a sin 30�) = -3.732, or c = -75�, measured 
clockwise, opposite to +u as shown in the figure.

Procedure for Analysis

Cylindrical or polar coordinates are a suitable choice for the analysis of 
a problem for which data regarding the angular motion of the radial 
line r are given, or in cases where the path can be conveniently 
expressed in terms of these coordinates. Once these coordinates have 
been established, the equations of motion can then be applied in order 
to relate the forces acting on the particle to its acceleration components. 
The method for doing this has been outlined in the procedure for 
analysis given in Sec. 13.4. The following is a summary of this procedure.

Free-Body Diagram.
	 •	 Establish the r, u, z inertial coordinate system and draw the 

particle’s free-body diagram.
	 •	 Assume that ar , au , az act in the positive directions of r, u, z if they 

are unknown.
	 •	 Identify all the unknowns in the problem.

Equations of Motion.
	 •	 Apply the equations of motion, Eq. 13–9.

Kinematics.
	 •	 Use the methods of Sec. 12.8 to determine r and the time 

derivatives r
#
, r

$
, u

#
, u

$
, z

$
, and then evaluate the acceleration 

components ar = r
$

- ru
#
2, au = ru

$
+ 2r

#
u
#
, az = z

$
.

	 •	 If any of the acceleration components is computed as a negative 
quantity, it indicates that it acts in its negative coordinate direction.

	 •	 When taking the time derivatives of r = f(u), it is very important 
to use the chain rule of calculus, which is discussed in Appendix C.

Tangent

r

O

2a

 � 75�

 � 30�u

c

r

u

Fig. 13–18 

O

r

Tangent

r � f (u)

(c)

d

dr

ds

 r d c

c
u

u

u

Fig. 13–17 
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A

C B

0.4 m

(a)

r � (0.8 cos u) m

u � 3 rad/s

u

The smooth 0.5-kg double-collar in Fig. 13–19a can freely slide on arm 
AB and the circular guide rod. If the arm rotates with a constant 
angular velocity of u

#
= 3 rad>s, determine the force the arm exerts on 

the collar at the instant u = 45�. Motion is in the horizontal plane.

Solution
Free-Body Diagram.  The normal reaction NC of the circular guide 
rod and the force F of arm AB act on the collar in the plane of motion, 
Fig. 13–19b. Note that F acts perpendicular to the axis of arm AB, that 
is, in the direction of the u axis, while NC acts perpendicular to the 
tangent of the circular path at u = 45�. The four unknowns are 
NC, F, ar, au.

Equations of Motion.

+ Q�Fr = mar:	 -NC cos 45� = (0.5 kg) ar	 (1)

+ a�Fu = mau:	 F - NC sin 45� = (0.5 kg) au	 (2)

Kinematics.  Using the chain rule (see Appendix C), the first and 
second time derivatives of r when u =  45�, u

#  =  3 rad>s,  
$
u  =  0, are

 r = 0.8 cos u = 0.8 cos 45� =  0.5657 m

 r
#

= -0.8 sin u u
#

= -0.8 sin 45�(3) = -1.6971 m>s
 r
$

= -0.83sin u u
$ +  cos u u

#
24

 = -0.8[sin 45�(0) +  cos 45�(32)] = -5.091 m>s2

We have

 ar = r
$ -  ru

#
2 = -5.091 m>s2 - (0.5657 m)(3 rad>s)2 = -10.18 m>s2

 au = ru
$

+ 2r
#
u
#

= (0.5657 m)(0) + 2(-1.6971 m>s)(3 rad>s)

 = -10.18 m>s2

Substituting these results into Eqs. (1) and (2) and solving, we get

 NC = 7.20 N

	  F = 0 	 Ans.

Example   13.10

C

r

(b)

tangent

NC

F

au
ar

45�

u

Fig. 13–19
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19.62 N

FP

NC

r

au

ar

(b)

u

u

u

Fig. 13–20 

0.4 m

P

u

u
O

   � 0.5 rad/s

C

A

(a)

r

·

The smooth 2-kg cylinder C in Fig. 13–20a has a pin P through its 
center which passes through the slot in arm OA. If the arm is forced to 
rotate in the vertical plane at a constant rate u

#
= 0.5 rad>s, determine 

the force that the arm exerts on the peg at the instant u = 60�.

Solution
Why is it a good idea to use polar coordinates to solve this problem?

Free-Body Diagram.  The free-body diagram for the cylinder is 
shown in Fig. 13–20b. The force on the peg, FP , acts perpendicular to 
the slot in the arm. As usual, ar and au are assumed to act in the 
directions of positive r and u, respectively. Identify the four unknowns.

Equations of Motion.  Using the data in Fig. 13–20b, we have

+ b�Fr = mar;	 19.62 sin u - NC sin u = 2ar� (1)

+ R�Fu = mau;	 19.62 cos u + FP - NC cos u = 2au� (2)

Kinematics.  From Fig. 13–20a, r can be related to u by the equation

	 r =
0.4

sin u
= 0.4 csc u	

Since d(csc u) = -(csc u cot u) du and d(cot u) = -(csc2 u) du, then r 
and the necessary time derivatives become

u
#

= 0.5	 r = 0.4 csc u

u
$

= 0	  r
#

= -0.4(csc u cot u)u
#

 = -0.2 csc u cot u

 r
$

= -0.2(-csc u cot u)(u
#
) cot u - 0.2 csc u(-csc2 u)u

#

 = 0.1 csc u(cot2 u + csc2 u)

Evaluating these formulas at u = 60�, we get

u
#

= 0.5	 r = 0.462

u
$

= 0	  r
#

= -0.133

 r
$

= 0.192

 ar = r
$

- ru
#
2 = 0.192 - 0.462(0.5)2 = 0.0770

 au = ru
$

+ 2r
#
u
#

= 0 + 2(-0.133)(0.5) = -0.133

Substituting these results into Eqs. 1 and 2 with u = 60� and  
solving yields

	 NC = 19.4 N	 FP = -0.356 N� Ans.

The negative sign indicates that FP acts opposite to the direction 
shown in Fig. 13–20b.

Example   13.11
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(b)

NC

FC

r

ar

auTangent

u

f

f

   � 4 rad/s

O

r � 0.1

CA r

u

u
u

Top View

(a)

·

Example   13.12

r

(c)

Tangent

u � pr � 0.1 u

c

f

u

Fig. 13–21 

A can C, having a mass of 0.5 kg, moves along a grooved horizontal 
slot shown in Fig. 13–21a. The slot is in the form of a spiral, which is 
defined by the equation r = (0.1u) m, where u is in radians. If the arm 
OA rotates with a constant rate u

#
= 4 rad>s in the horizontal plane, 

determine the force it exerts on the can at the instant u = p rad. 
Neglect friction and the size of the can.

Solution
Free-Body Diagram.  The driving force FC acts perpendicular to the 
arm OA, whereas the normal force of the wall of the slot on the can, 
NC , acts perpendicular to the tangent to the curve at u = p rad,   
Fig. 13–21b. As usual, ar and au are assumed to act in the positive 
directions of r and u, respectively. Since the path is specified, the angle 
c which the extended radial line r makes with the tangent, Fig. 13–21c, 
can be determined from Eq. 13–10. We have r = 0.1u, so that 
dr>du = 0.1, and therefore

tan c =
r

dr>du =
0.1u

0.1
= u

When u = p, c = tan-1p = 72.3�, so that f = 90� - c = 17.7�, as 
shown in Fig. 13–21c. Identify the four unknowns in Fig. 13–21b.

Equations of Motion.  Using f = 17.7� and the data shown in 
Fig. 13–21b, we have

S+ �Fr = mar;	 NC cos 17.7� = 0.5ar 	 (1)

+ T �Fu = mau;	 FC - NC sin 17.7� = 0.5au	 (2)

Kinematics.  The time derivatives of r and u are

u
#

= 4 rad>s	  r = 0.1u

u
$

= 0	  r
#

= 0.1u
#

= 0.1(4) = 0.4 m>s

	  r
$

= 0.1u
$

= 0

At the instant u = p rad,

 ar = r
$

- ru
#
2 = 0 - 0.1(p)(4)2 = -5.03 m>s2

 au = ru
$

+ 2r
#
u
#

= 0 + 2(0.4)(4) = 3.20 m>s2

Substituting these results into Eqs. 1 and 2 and solving yields

	  NC = -2.64 N	

	  FC = 0.800 N 	 Ans.

What does the negative sign for NC indicate?
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F13–15.    The 2-Mg car is traveling along the curved road 
described by r = (50e2u) m, where u is in radians. If a 
camera is located at A and it rotates with an angular 
velocity of u

#
= 0.05 rad>s and an angular acceleration of 

u
$

= 0.01 rad>s2 at the instant u =
p
6  rad, determine the 

resultant friction force developed between the tires and the 
road at this instant.

A

r

r � (50e2u) m

u

u, u

Prob. F13–15

F13–16.    The 0.2-kg pin P is constrained to move in the 
smooth curved slot, which is defined by the lemniscate 
r = (0.6 cos 2u) m. Its motion is controlled by the rotation 
of the slotted arm OA, which has a constant clockwise 
angular velocity of u

#
= -3 rad>s. Determine the force arm  

OA exerts on the pin P when u = 0�. Motion is in the 
vertical plane.

O

P A

r � (0.6 cos 2u) m

u

u

Prob. F13–16

F13–13.    Determine the constant angular velocity u
#
 of the 

vertical shaft of the amusement ride if f = 45�. Neglect the 
mass of the cables and the size of the passengers. 

1.5 m

8 m

u

f

Prob. F13–13

F13–14.    The 0.2-kg ball is blown through the smooth 
vertical circular tube whose shape is defined by 
r = (0.6 sin u) m, where u is in radians. If u = (p t2) rad,  
where t is in seconds, determine the magnitude of force F 
exerted by the blower on the ball when t = 0.5 s. 

r

F

0.3 m

u

Prob. F13–14

Fundamental Problems
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Problems

13–85.  The spring-held follower AB has a weight of 0.75 lb 
and moves back and forth as its end rolls on the contoured 
surface of the cam, where r = 0.2 ft and z = (0.1 sin 2u) ft. 
If the cam is rotating at a constant rate of 6 rad>s, determine 
the force at the end A of the follower when u = 45�. In this 
position the spring is compressed 0.4 ft. Neglect friction at 
the bearing C.

z 
z � 0.1 sin 2u

0.2 ft 

k � 12 lb/ftA 

C 

B 
 u � 6 rad/s· 

Prob. 13–85

13–86.  Determine the magnitude of the resultant force 
acting on a 5-kg particle at the instant t = 2 s, if the particle 
is moving along a horizontal path defined by the equations 
r = (2t + 10) m and u = (1.5t2 - 6t) rad, where t is in 
seconds.

13–87.  The path of motion of a 5-lb particle in the 
horizontal plane is described in terms of polar coordinates 
as r = (2t + 1) ft and u = (0.5t 2 - t) rad, where t is in 
seconds. Determine the magnitude of the unbalanced force 
acting on the particle when t = 2 s.

*13–88.  Rod OA rotates counterclockwise with a constant 
angular velocity of u

.
= 5 rad>s. The double collar B is pin-

connected together such that one collar slides over the 
rotating rod and the other slides over the horizontal curved 
rod, of which the shape is described by the equation 
r = 1.5(2 - cos u) ft. If both collars weigh 0.75 lb, determine 
the normal force which the curved rod exerts on one collar 
at the instant u = 120�. Neglect friction.

r

O

�

r � 1.5 (2 � cos u) ft

u = 5 rad/s·

B

A

Prob. 13–88

13–89.  The boy of mass 40 kg is sliding down the spiral slide 
at a constant speed such that his position, measured from the 
top of the chute, has components r = 1.5 m, u = (0.7t) rad, 
and z = (-0.5t) m, where t is in seconds. Determine the 
components of force Fr, Fu, and Fz which the slide exerts on 
him at the instant t = 2 s. Neglect the size of the boy.

z

z

r � 1.5 m
u

Prob. 13–89
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13–90.  The 40-kg boy is sliding down the smooth spiral 
slide such that z = -2 m>s and his speed is 2 m>s. Determine 
the r, u, z components of force the slide exerts on him at this 
instant. Neglect the size of the boy.

z

z

r � 1.5 m
u

Prob. 13–90

13–91.  Using a forked rod, a 0.5-kg smooth peg P is forced 
to move along the vertical slotted path r = (0.5 u) m, where u 
is in radians. If the angular position of the arm is 
u = (p8 t2) rad, where t is in seconds, determine the force of 
the rod on the peg and the normal force of the slot on the 
peg at the instant t = 2 s. The peg is in contact with only 
one edge of the rod and slot at any instant.

r

P

r � (0.5  ) m�

�

Prob. 13–91

*13–92.  The arm is rotating at a rate of u
#

= 4 rad>s when 
u
$

= 3 rad>s2 and u = 180�. Determine the force it must 
exert on the 0.5-kg smooth cylinder if it is confined to move 
along the slotted path. Motion occurs in the horizontal plane.

r � (    ) m
�
2—

� 4 rad/s,�

 ·

� 180��

� 3 rad/s2�
 · ·

r

Prob. 13–92

13–93.  If arm OA rotates with a constant clockwise 
angular velocity of u

#
= 1.5 rad>s, determine the force arm 

OA exerts on the smooth 4-lb cylinder B when u = 45�.

4 ft

A
B

O

r

u
u

Prob. 13–93
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13–94.  Determine the normal and frictional driving forces 
that the partial spiral track exerts on the 200-kg motorcycle 
at the instant u =

5
3p rad, u

#
= 0.4 rad>s, u

$
= 0.8 rad>s2. 

Neglect the size of the motorcycle.

r

r � (5u) m

u

Prob. 13–94

13–95.  A smooth can C, having a mass of 3 kg, is lifted 
from a feed at A to a ramp at B by a rotating rod. If the rod 
maintains a constant angular velocity of u

#
= 0.5 rad>s, 

determine the force which the rod exerts on the can at the 
instant u = 30�. Neglect the effects of friction in the 
calculation and the size of the can so that r = (1.2 cos u) m. 
The ramp from A to B is circular, having a radius of 600 mm.

600 mm

600 mm

B

A

C

u � 0.5 rad/s · r

u

Prob. 13–95

*13–96.  The spring-held follower AB has a mass of 0.5 kg 
and moves back and forth as its end rolls on the contoured 
surface of the cam, where r = 0.15 m and  z = (0.02 cos 2u) m. 
If the cam is rotating at a constant rate of 30 rad>s, 
determine the force component Fz at the end A of the 
follower when u = 30�. The spring is uncompressed when 
u = 90�. Neglect friction at the bearing C.

z

0.15 m

z � (0.02 cos 2  ) m�

k � 1000 N/m
A

C
B�

 ·

� 30 rad/s

Prob. 13–96

13–97.  The spring-held follower AB has a mass of 0.5 kg 
and moves back and forth as its end rolls on the contoured 
surface of the cam, where r = 0.15 m and z = (0.02 cos 2u) m. 
If the cam is rotating at a constant rate of 30 rad>s, 
determine the maximum and minimum force components 
Fz the follower exerts on the cam if the spring is 
uncompressed when u = 90�.

z

0.15 m

z � (0.02 cos 2  ) m�

k � 1000 N/m
A

C
B�

 ·

� 30 rad/s

Prob. 13–97
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13–98.  The particle has a mass of 0.5 kg and is confined to 
move along the smooth vertical slot due to the rotation of 
the arm OA. Determine the force of the rod on the particle 
and the normal force of the slot on the particle when 
u = 30�. The rod is rotating with a constant angular velocity 
u
.
 = 2 rad>s. Assume the particle contacts only one side of 

the slot at any instant.

0.5 m

O

A

r

u = 2 rad/s

u

Prob. 13–98

13–99.  A car of a roller coaster travels along a track which 
for a short distance is defined by a conical spiral, r =

3
4z, 

u = -1.5z, where r and z are in meters and u in radians. If 
the angular motion u

#
= 1 rad>s is always maintained, 

determine the r, u, z components of reaction exerted on the 
car by the track at the instant z = 6 m. The car and 
passengers have a total mass of 200 kg.

r

z

u

Prob. 13–99

*13–100.  The 0.5-lb ball is guided along the vertical 
circular path r =  2rc cos u using the arm OA. If the arm has 
an angular velocity u

.
=  0.4 rad>s and an angular 

acceleration u
$

=  0.8 rad>s2 at the instant u = 30�, 
determine the force of the arm on the ball. Neglect friction 
and the size of the ball. Set rc =  0.4 ft.

13–101.  The ball of mass m is guided along the vertical 
circular path r =  2rc cos u using the arm OA. If the arm has 
a constant angular velocity u

.
0, determine the angle u … 45� 

at which the ball starts to leave the surface of the 
semicylinder. Neglect friction and the size of the ball.

P

r

A

O

rc

u

Probs. 13–100/101

13–102.  Using a forked rod, a smooth cylinder P, having a 
mass of 0.4 kg, is forced to move along the vertical slotted 
path r = (0.6u) m, where u is in radians. If the cylinder has a 
constant speed of vC = 2 m>s, determine the force of the rod 
and the normal force of the slot on the cylinder at the instant 
u = p rad. Assume the cylinder is in contact with only one 
edge of the rod and slot at any instant. Hint: To obtain the 
time derivatives necessary to compute the cylinder’s 
acceleration components ar and au, take the first and second 
time derivatives of r = 0.6u. Then, for further information, 
use Eq. 12–26 to determine u

#
. Also, take the time derivative 

of Eq. 12–26, noting that v 
#

= 0 to determine u
$
.

r

P

r � 0.6u

u � p

Prob. 13–102
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13–103.  The pilot of the airplane executes a vertical loop 
which in part follows the path of a cardioid, 
r = 200(1 + cosu) m, where u is in radians. If his speed at A 
is a constant vp = 85 m>s, determine the vertical reaction 
the seat of the plane exerts on the pilot when the plane is 
at A. He has a mass of 80 kg. Hint: To determine the time 
derivatives necessary to calculate the acceleration 
components ar and au, take the first and second time 
derivatives of r = 200(1 + cosu). Then, for further 
information, use Eq. 12–26 to determine u

#
.

A

�

r � 200 (1 � cos   ) m�

Prob. 13–103

*13–104.  The collar has a mass of 2 kg and travels along 
the smooth horizontal rod defined by the equiangular spiral 
r = (eu) m, where u is in radians. Determine the tangential 
force F and the normal force N acting on the collar when 
u = 45�, if the force F maintains a constant angular motion 
u = 2 rad>s.

.

r

F

r � eθ

u

Prob. 13–104

13–105.  The particle has a mass of 0.5 kg and is confined 
to move along the smooth horizontal slot due to the rotation 
of the arm OA. Determine the force of the rod on the 
particle and the normal force of the slot on the particle 
when u = 30�. The rod is rotating with a constant angular 
velocity  u

.
 = 2 rad>s. Assume the particle contacts only one 

side of the slot at any instant.

13–106.  Solve Prob. 13–105 if the arm has an angular 
acceleration of u

$
= 3 rad>s2 when u

#
= 2 rad>s at u = 30�.

0.5 m

O

A

r

u

 ·
u � 2 rad/s

Probs. 13–105/106

13–107.  The forked rod is used to move the smooth 2-lb 
particle around the horizontal path in the shape of a 
limaçon, r = (2 + cos u) ft. If u = (0.5t2) rad, where t is in 
seconds, determine the force which the rod exerts on the 
particle at the instant t = 1 s. The fork and path contact the 
particle on only one side.

3 ft

r2 ft

·

u

u

Prob. 13–107
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*13–108.  The collar, which has a weight of 3 lb, slides along 
the smooth rod lying in the horizontal plane and having the 
shape of a parabola r = 4>(1 - cos u), where u is in radians 
and r is in feet. If the collar’s angular rate is constant and 
equals u

#
= 4 rad>s, determine the tangential retarding force 

P needed to cause the motion and the normal force that the 
collar exerts on the rod at the instant u = 90�.

r

P

u

Prob. 13–108

13–109.  Rod OA rotates counterclockwise at a constant 
angular rate u

.
= 4 rad>s. The double collar B is pin-

connected together such that one collar slides over the 
rotating rod and the other collar slides over the circular rod 
described by the equation r = (1.6 cos u) m. If both collars 
have a mass of 0.5 kg, determine the force which the circular 
rod exerts on one of the collars and the force that OA exerts 
on the other collar at the instant u = 45�. Motion is in the 
horizontal plane.

13–110.  Solve Prob. 13–109 if motion is in the vertical 
plane.

A

B

0.8 m

r � 1.6 cos u

O

u = 4 rad/s

u

Probs. 13–109/110

13–111.  A 0.2-kg spool slides down along a smooth rod. 
If the rod has a constant angular rate of rotation 
u
#

= 2 rad>s in the vertical plane, show that the equations 
of motion for the spool are r

$
 - 4r - 9.81 sin u = 0  

and 0.8r
#

+ Ns - 1.962 cos u = 0, where Ns is the magnitude 
of the normal force of the rod on the spool. Using the 
methods of differential equations, it can be shown that  
the solution of the first of these equations is 
r = C1  e-2t + C2  e

2t - (9.81>8) sin 2t. If r, r
#
, and u are zero 

when t = 0, evaluate the constants C1 and C2 determine r 
at the instant u = p>4 rad.

u

u � 2 rad/s r

Prob. 13–111

*13–112.  The pilot of an airplane executes a vertical loop 
which in part follows the path of a “four-leaved rose,” 
r = (-600cos 2u) ft, where u is in radians. If his speed is a 
constant vP = 80 ft>s, determine the vertical reaction the 
seat of the plane exerts on the pilot when the plane is at A. 
He weights 130 lb. Hint: To determine the time derivatives 
necessary to compute the acceleration components ar, 
and  a0, take the first and second time derivatives of 
r = 400(1 + cosu). Then, for further information, use  
Eq. 12–26 to determine u

#
. Also, take the time derivative of 

Eq. 12–26, noting that vP
#

= 0 to determine u
#
.

r
r ��600 cos 2u

80 ft/s
A

u

Prob. 13–112
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*13.7  �Central-Force Motion and Space 
Mechanics

If a particle is moving only under the influence of a force having a line of 
action which is always directed toward a fixed point, the motion is called 
central-force motion. This type of motion is commonly caused by 
electrostatic and gravitational forces.

In order to analyze the motion, we will consider the particle P shown 
in Fig. 13–22a, which has a mass m and is acted upon only by the central 
force F. The free-body diagram for the particle is shown in Fig. 13–22b. 
Using polar coordinates (r, u), the equations of motion, Eq. 13–9, become

�Fr = mar;	  

 -F = m c d
2r

dt2
- ra du

dt
b

2

d

�Fu = mau;	  0 = mar 
d2u

dt2
+ 2 

dr

dt
 
du

dt
b 	

(13–11)

The second of these equations may be written in the form

1
r

 c d

dt
 ar2 

du

dt
b d = 0

so that integrating yields

	 r2 
du

dt
= h� (13–12)

Here h is the constant of integration.
From Fig. 13–22a notice that the shaded area described by the radius r, 

as r moves through an angle du, is dA =
1
2 r2 du. If the areal velocity is 

defined as

	
dA

dt
=

1

2
 r2 

du

dt
=

h

2
� (13–13)

then it is seen that the areal velocity for a particle subjected to central-
force motion is constant. In other words, the particle will sweep out equal 
segments of area per unit of time as it travels along the path. To obtain the 
path of motion, r = f(u), the independent variable t must be eliminated 
from Eqs. 13–11. Using the chain rule of calculus and Eq. 13–12, the time 
derivatives of Eqs. 13–11 may be replaced by

 
dr

dt
=

dr

du
 
du

dt
=

h

r2   
dr

du

 
d2r

dt2
=

d

dt
 a h

r2 
dr

du
b =

d

du
 a h

r2 
dr

du
b  

du

dt
= c d

du
 a h

r2 
dr

du
b d  

h

r2

rdu

O

F

P

(a)

u
dA �      r2du1

2
—

r

F

(b)

u

u

Fig. 13–22 
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This satellite is subjected to a central 
force and its orbital motion can be closely 
predicted using the equations developed 
in this section. (UniversalImagesGroup/
Getty Images)

F

v0

Free-flight
trajectory

Satellite

Power-flight
trajectory

Launching

r � r0

F

Fig. 13–23 

Substituting a new dependent variable (xi) j = 1>r into the second 
equation, we have

d2r

dt2
= -h2j2d2j

du2

Also, the square of Eq. 13–12 becomes

a du

dt
b

2

= h2j4

Substituting these two equations into the first of Eqs. 13–11 yields

-h2j2 
d2j

du2 - h2j3 = -
F
m

or

	
d2j

du2 + j =
F

mh2j2� (13–14)

This differential equation defines the path over which the particle travels 
when it is subjected to the central force F.* 

For application, the force of gravitational attraction will be considered. 
Some common examples of central-force systems which depend on 
gravitation include the motion of the moon and artificial satellites about 
the earth, and the motion of the planets about the sun. As a typical 
problem in space mechanics, consider the trajectory of a space satellite 
or space vehicle launched into free-flight orbit with an initial velocity v0 ,  
Fig. 13–23. It will be assumed that this velocity is initially parallel to the 
tangent at the surface of the earth, as shown in the figure.† Just after  
the satellite is released into free flight, the only force acting on it is the 
gravitational force of the earth. (Gravitational attractions involving other 
bodies such as the moon or sun will be neglected, since for orbits close to 
the earth their effect is small in comparison with the earth’s gravitation.) 
According to Newton’s law of gravitation, force F will always act 
between the mass centers of the earth and the satellite, Fig. 13–23. 
From Eq. 13–1, this force of attraction has a magnitude of

F = G 
Mem

r2

where Me and m represent the mass of the earth and the satellite, 
respectively, G is the gravitational constant, and r is the distance between 

*In the derivation, F is considered positive when it is directed toward point O. If F is 
oppositely directed, the right side of Eq. 13–14 should be negative.

†The case where v0 acts at some initial angle u to the tangent is best described using the 
conservation of angular momentum.
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the mass centers. To obtain the orbital path, we set j = 1>r in the 
foregoing equation and substitute the result into Eq. 13–14. We obtain

	
d2j

du2 + j =
GMe

h2 � (13–15)

This second-order differential equation has constant coefficients and is 
nonhomogeneous. The solution is the sum of the complementary and 
particular solutions given by

	 j =
1
r

= C cos (u - f) +
GMe

h2 � (13–16)

This equation represents the free-flight trajectory of the satellite. It is 
the equation of a conic section expressed in terms of polar coordinates. 

A geometric interpretation of Eq. 13–16 requires knowledge of the 
equation for a conic section. As shown in Fig. 13–24, a conic section is 
defined as the locus of a point P that moves in such a way that the ratio 
of its distance to a focus, or fixed point F, to its perpendicular distance to 
a fixed line DD called the directrix, is constant. This constant ratio will be 
denoted as e and is called the eccentricity. By definition

e =
FP

PA

From Fig. 13–24,

FP = r = e(PA) = e[p - r cos(u - f)]

or

1
r

=
1
p

 cos(u - f) +
1
ep

Comparing this equation with Eq. 13–16, it is seen that the fixed distance 
from the focus to the directrix is

	 p =
1

C
� (13–17)

And the eccentricity of the conic section for the trajectory is

	 e =
Ch2

GMe
� (13–18)

x¿

x

A

directrix

focus

D

D

p

P

F

r

u�f

f

u

Fig. 13–24



13 

Provided the polar angle u is measured from the x axis (an axis of 
symmetry since it is perpendicular to the directrix), the angle f is zero, 
Fig. 13–24, and therefore Eq. 13–16 reduces to

	
1
r

= C cos u +
GMe

h2 � (13–19)

The constants h and C are determined from the data obtained for the 
position and velocity of the satellite at the end of the power-flight 
trajectory. For example, if the initial height or distance to the space 
vehicle is r0, measured from the center of the earth, and its initial speed 
is v0 at the beginning of its free flight, Fig. 13–25, then the constant h may 
be obtained from Eq. 13–12. When u = f = 0�, the velocity v0 has no 
radial component; therefore, from Eq. 12–25, v0 = r0(du>dt), so that

h = r0
2 

du

dt

or

	 h = r0v0 � (13–20)

To determine C, use Eq. 13–19 with u = 0�, r = r0 , and substitute 
Eq. 13–20 for h:

	 C =
1
r0

 a1 -
GMe

r0v0
2 b � (13–21)

The equation for the free-flight trajectory therefore becomes

	
1
r

=
1
r0

 a1 -
GMe

r0v0
2 b  cos u +

GMe

r0
2v0

2 � (13–22)

The type of path traveled by the satellite is determined from the value 
of the eccentricity of the conic section as given by Eq. 13–18. If

 e = 0 free@flight trajectory is a circle
 e = 1 free@flight trajectory is a parabola
 e 6 1 free@flight trajectory is an ellipse
 e 7 1 free@flight trajectory is a hyperbola

� (13–23)
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Parabolic Path.  Each of these trajectories is shown in Fig. 13–25. 
From the curves it is seen that when the satellite follows a parabolic path, 
it is “on the border” of never returning to its initial starting point. The 
initial launch velocity, v0 , required for the satellite to follow a parabolic 
path is called the escape velocity. The speed, ve , can be determined by 
using the second of Eqs. 13–23, e = 1, with Eqs. 13–18, 13–20, and 13–21. It 
is left as an exercise to show that

	 ve = B2GMe

r0
� (13–24)

Circular Orbit.  The speed vc required to launch a satellite into 
a circular orbit can be found using the first of Eqs. 13–23, e = 0. 
Since e is related to h and C, Eq. 13–18, C must be zero to satisfy this 
equation (from Eq. 13–20, h cannot be zero); and therefore, using 
Eq. 13–21, we have

	 vc = BGMe

r0
� (13–25)

Provided r0 represents a minimum height for launching, in which 
frictional resistance from the atmosphere is neglected, speeds at launch 
which are less than vc will cause the satellite to reenter the earth’s 
atmosphere and either burn up or crash, Fig. 13–25.

v0

v0 � vc

Crash
trajectory Circular

trajectory

Elliptical trajectory

Parabolic trajectory

Hyperbolic trajectory
e � 1

e � 1

e � 1

e � 0

r0

Fig. 13–25 
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Elliptical Orbit.  All the trajectories attained by planets and most 
satellites are elliptical, Fig. 13–26. For a satellite’s orbit about the earth, 
the minimum distance from the orbit to the center of the earth O (which 
is located at one of the foci of the ellipse) is rp and can be found using  
Eq. 13–22 with u = 0�. Therefore;

	 rp = r0 � (13–26)

This minimum distance is called the perigee of the orbit. The apogee or 
maximum distance ra can be found using Eq. 13–22 with u = 180�.* Thus,

	 ra =
r0

(2GMe>r0y0
2) - 1

� (13–27)

With reference to Fig. 13–26, the half-length of the major axis of the 
ellipse is

	 a =
rp + ra

2
� (13–28)

Using analytical geometry, it can be shown that the half-length of the 
minor axis is determined from the equation

	 b = 2rpra� (13–29)

b

b

a a

Orp ra

Fig. 13–26 

*Actually, the terminology perigee and apogee pertains only to orbits about the earth. 
If any other heavenly body is located at the focus of an elliptical orbit, the minimum and 
maximum distances are referred to respectively as the periapsis and apoapsis of the orbit.
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Furthermore, by direct integration, the area of an ellipse is

	 A = pab =
p

2
 (rp + ra)2rpra� (13–30)

The areal velocity has been defined by Eq. 13–13, dA>dt = h>2. 
Integrating yields A = hT>2, where T is the period of time required to 
make one orbital revolution. From Eq. 13–30, the period is

	 T =
p

h
 (rp + ra)2rpra � (13–31)

In addition to predicting the orbital trajectory of earth satellites, the 
theory developed in this section is valid, to a surprisingly close 
approximation, at predicting the actual motion of the planets traveling 
around the sun. In this case the mass of the sun, Ms , should be substituted 
for Me when the appropriate formulas are used.

The fact that the planets do indeed follow elliptic orbits about the sun 
was discovered by the German astronomer Johannes Kepler in the early 
seventeenth century. His discovery was made before Newton had 
developed the laws of motion and the law of gravitation, and so at the 
time it provided important proof as to the validity of these laws. Kepler’s 
laws, developed after 20 years of planetary observation, are summarized 
as follows:

	 1.	 Every planet travels in its orbit such that the line joining it to the 
center of the sun sweeps over equal areas in equal intervals of time, 
whatever the line’s length.

	 2.	 The orbit of every planet is an ellipse with the sun placed at one of 
its foci.

	 3.	 The square of the period of any planet is directly proportional to 
the cube of the major axis of its orbit.

A mathematical statement of the first and second laws is given by  
Eqs. 13–13 and 13–22, respectively. The third law can be shown from  
Eq. 13–31 using Eqs. 13–19, 13–28, and 13–29. (See Prob. 13–117.)
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Problems

In the following problems, except where otherwise 
indicated, assume that the radius of the earth is 6378 km, the 
earth’s mass is 5.976(1024) kg, the mass of the sun is 
1.99(1030) kg, and the gravitational constant is 
G = 66.73(10- 12) m3>(kg # s2).

13–113.  The earth has an orbit with eccentricity 0.0167 
around the sun. Knowing that the earth’s minimum distance 
from the sun is 146(106) km, find the speed at which the 
earth travels when it is at this distance. Determine the 
equation in polar coordinates which describes the earth’s 
orbit about the sun.

13–114.  A communications satellite is in a circular orbit 
above the earth such that it always remains directly over a 
point on the earth’s surface. As a result, the period of the 
satellite must equal the rotation of the earth, which is 
approximately 24 hours. Determine the satellite’s altitude h 
above the earth’s surface and its orbital speed.

13–115.  The speed of a satellite launched into a circular 
orbit about the earth is given by Eq. 13–25. Determine the 
speed of a satellite launched parallel to the surface of the 
earth so that it travels in a circular orbit 800 km from the 
earth’s surface.

*13–116.  The rocket is in circular orbit about the earth at 
an altitude of 20 Mm. Determine the minimum increment in 
speed it must have in order to escape the earth’s gravitational 
field.

20 Mm

Prob. 13–116

13–117.  Prove Kepler’s third law of motion. Hint: Use 
Eqs. 13–19, 13–28, 13–29, and 13–31.

13–118.  The satellite is moving in an elliptical orbit with an 
eccentricity e = 0.25. Determine its speed when it is at  its 
maximum distance A and minimum distance B from the earth.

BA 2 Mm

Prob. 13–118

13–119.  The rocket is traveling in free flight along the 
elliptical orbit. The planet has no atmosphere, and its mass is 
0.60 times that of the earth. If the rocket has the orbit shown, 
determine the rocket’s speed when it is at A and at B.

18.3 Mm
7.60 Mm

B A
O

Prob. 13–119

*13–120.  Determine the constant speed of satellite S so 
that it circles the earth with an orbit of radius r = 15 Mm. 
Hint: Use Eq. 13–1.

S

r � 15 Mm

Prob. 13–120

	 13.7  Central-Force Motion and Space Mechanics	 171



172 	 Chapter 13    Kinet ics of a Part icle:  Force and Accelerat ion

13 

13–121.  The rocket is in free flight along an elliptical 
trajectory A �A . The planet has no atmosphere, and its mass 
is 0.70 times that of the earth. If the rocket has an apoapsis 
and periapsis as shown in the figure, determine the speed of 
the rocket when it is at point A.

6 Mm 9 Mm

BA A¿

r � 3 Mm

O

Prob. 13–121

13–122.  The Viking Explorer approaches the planet Mars on 
a parabolic trajectory as shown. When it reaches point A its 
velocity is 10 Mm>h. Determine r0 and the required change in 
velocity at A so that it can then maintain a circular orbit as 
shown. The mass of Mars is 0.1074 times the mass of the earth.

A

r0

Prob. 13–122

13–123.  The rocket is initially in free-flight circular orbit  
around the earth. Determine the speed of the rocket at A. 
What change in the speed at A is required so that it can 
move in an elliptical orbit to reach point A �?

*13–124.  The rocket is in free-flight circular orbit around 
the earth. Determine the time needed for the rocket to 
travel from the innner orbit at A to the outer orbit at A �.

A¿
A

O

8 Mm

19 Mm

Probs. 13–123/124

13–125.  A satellite is launched at its apogee with an initial 
velocity v0 = 2500 mi>h parallel to the surface of the earth. 
Determine the required altitude (or range of altitudes) 
above the earth’s surface for launching if the free-flight 
trajectory is to be (a) circular, (b) parabolic, (c) elliptical, 
with launch at apogee, and (d) hyperbolic. Take 
G = 34.4(10- 9)(lb # ft2)>slug2, Me = 409(1021) slug, the 
earth’s radius re = 3960 mi, and 1 mi = 5280 ft.

13–126.  The rocket is traveling around the earth in free 
flight along the elliptical orbit. If the rocket has the orbit 
shown, determine the speed of the rocket when it is at A 
and at B.

20 Mm30 Mm

B A

Prob. 13–126
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13–127.  An elliptical path of a satellite has an eccentricity 
e = 0.130. If it has a speed of 15 Mm>h when it is at perigee, 
P, determine its speed when it arrives at apogee, A. Also, 
how far is it from the earth’s surface when it is at A?

PA

Prob. 13–127

*13–128.  A rocket is in free-flight elliptical orbit around 
the planet Venus. Knowing that the periapsis and apoapsis 
of the orbit are 8 Mm and 26 Mm, respectively, determine 
(a) the speed of the rocket at point A �, (b) the required 
speed it must attain at A just after braking so that it 
undergoes an 8-Mm free-flight circular orbit around Venus, 
and (c) the periods of both the circular and elliptical orbits. 
The mass of Venus is 0.816 times the mass of the earth.

A¿ A
O

8 Mm

18 Mm

Prob. 13–128

13–129.  The rocket is traveling in a free flight along an 
elliptical trajectory A �A . The planet has no atmosphere, and 
its mass is 0.60 times that of the earth. If the rocket has the 
orbit shown, determine the rocket’s velocity when it is at 
point A.

13–130.  If the rocket is to land on the surface of the planet, 
determine the required free-flight speed it must have at A � 
so that the landing occurs at B. How long does it take for 
the rocket to land, going from A � to B? The planet has no 
atmosphere, and its mass is 0.6 times that of the earth. 

100 Mm 70 Mm

B AA¿

r � 6 Mm

O

Probs. 13–129/130

13–131.  The rocket is traveling around the earth in free 
flight along an elliptical orbit AC. If the rocket has the orbit 
shown, determine the rocket’s velocity when it is at point A.

*13–132.  The rocket is traveling around the earth in free 
flight along the elliptical orbit AC. Determine its change in 
speed when it reaches A so that it travels along the elliptical 
orbit AB.

10 Mm8 Mm8 Mm

AC B

Probs. 13–131/132
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C13–1.    If the box is released from rest at A, use numerical 
values to show how you would estimate the time for it to 
arrive at B. Also, list the assumptions for your analysis. 

C13–2.    The tugboat has a known mass and its propeller 
provides a known maximum thrust. When the tug is fully 
powered you observe the time it takes for the tug to reach a 
speed of known value starting from rest. Show how you 
could determine the mass of the barge. Neglect the drag 
force of the water on the tug. Use numerical values to 
explain your answer.

Conceptual Problems

A

B

Prob. C13–1 (© R.C. Hibbeler)

B

A

Prob. C13–3 (© R.C. Hibbeler)

Prob. C13–2 (© R.C. Hibbeler)

A

Prob. C13–4 (© R.C. Hibbeler)

C13–3.    Determine the smallest speed of each car A and B 
so that the passengers do not lose contact with the seat 
while the arms turn at a constant rate. What is the largest 
normal force of the seat on each passenger? Use numerical 
values to explain your answer.

C13–4.    Each car is pin connected at its ends to the rim of 
the wheel which turns at a constant speed. Using numerical 
values, show how to determine the resultant force the seat 
exerts on the passenger located in the top car A. The 
passengers are seated toward the center of the wheel. Also, 
list the assumptions for your analysis.
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Kinetics

Kinetics is the study of the relation between 
forces and the acceleration they cause. This 
relation is based on Newton’s second law of 
motion, expressed mathematically as �F = ma. 

Before applying the equation of motion, it is 
important to first draw the particle’s free-body 
diagram in order to account for all of the forces 
that act on the particle. Graphically, this diagram 
is equal to the kinetic diagram, which shows the 
result of the forces, that is, the ma vector.

Chapter Review

Inertial Coordinate Systems

When applying the equation of motion, it is 
important to measure the acceleration from an 
inertial coordinate system. This system has axes 
that do not rotate but are either fixed or translate 
with a constant velocity. Various types of inertial 
coordinate systems can be used to apply �F = ma 
in component form. 

�Fx = max , �Fy = may , �Fz = maz

F2

F1

Free-body
diagram

FR = �F � ma

Kinetic
diagram

O

vO

a

Inertial frame of reference

Path of particle

x

y

Rectangular x, y, z axes are used to describe the 
motion along each of the axes.

Normal, tangential, and binormal axes n, t, b, are 
often used when the path is known. Recall that an 
is always directed in the +n direction. It indicates 
the change in the velocity direction. Also recall 
that at is tangent to the path. It indicates the 
change in the velocity magnitude.

�Ft = mat , �Fn = man , �Fb = 0

at = dv>dt or at = v dv>ds

an = v2>r      where   r =
[1 + (dy>dx)2]3>2

� d2y>dx2 �

Cylindrical coordinates are useful when angular 
motion of the radial line r is specified or when the 
path can conveniently be described with these 
coordinates. 

�Fr = m(r
$

- ru
#
2)

�Fu = m(ru
$

+ 2r
#
u)
#

�Fz = mz
$

Central-Force Motion

When a single force acts upon a particle, such as during the free-flight trajectory of a satellite in a gravitational field, then 
the motion is referred to as central-force motion. The orbit depends upon the eccentricity e; and as a result, the trajectory 
can either be circular, parabolic, elliptical, or hyperbolic.
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R13–1.  The van is traveling at 20 km>h when the coupling 
of the trailer at A fails. If the trailer has a mass of 250 kg and 
coasts 45 m before coming to rest, determine the constant 
horizontal force F created by rolling friction which causes 
the trailer to stop.

 

A

20 km/h

F

Prob. R13–1

R13–2.  The motor M pulls in its attached rope with an 
acceleration ap = 6 m>s2. Determine the towing force 
exerted by M on the rope in order to move the 50-kg crate 
up the inclined plane. The coefficient of kinetic friction 
between the crate and the plane is mk = 0.3. Neglect the 
mass of the pulleys and rope.

aP � 6 m/s2

P

M

u � 30�

Prob. R13–2

R13–3.  Block B rests on a smooth surface. If the 
coefficients of friction between A and B are ms = 0.4 and 
mk = 0.3, determine the acceleration of each block if  
F = 50 lb.

20 lb

A

B 50 lb

F

Prob. R13–3

R13–4.  If the motor draws in the cable at a rate of 
v = (0 .0 5 s3 >2) m>s, where s is in meters, determine the 
tension developed in the cable when s = 10 m. The crate 
has a mass of 20 kg, and the coefficient of kinetic friction 
between the crate and the ground is mk = 0.2.

s

M

v

Prob. R13–4

Review Problems
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R13–5.  The ball has a mass of 30 kg and a speed v = 4 m>s 
at the instant it is at its lowest point, u = 0�. Determine the 
tension in the cord and the rate at which the ball’s speed is 
decreasing at the instant u = 20�. Neglect the size of the ball.

4 m

u

Prob. R13–5

R13–6.  The bottle rests at a distance of 3 ft from the center 
of the horizontal platform. If the coefficient of static friction 
between the bottle and the platform is ms = 0.3, determine 
the maximum speed that the bottle can attain before 
slipping. Assume the angular motion of the platform is 
slowly increasing.

Motion

3 ft

Prob. R13–6

R13–7.  The 10-lb suitcase slides down the curved ramp for 
which the coefficient of kinetic friction is mk = 0.2. If at the 
instant it reaches point A it has a speed of 5 ft>s, determine 
the normal force on the suitcase and the rate of increase of 
its speed.

A

y

x

6 ft

1––
8

y �     x2

Prob. R13–7

R13–8.  The spool, which has a mass of 4 kg, slides along 
the rotating rod. At the instant shown, the angular rate of 
rotation of the rod is u

#
 =  6 rad>s and this rotation is 

increasing at u
$

 =  2 rad>s2. At this same instant, the spool has 
a velocity of 3 m>s and an acceleration of 1 m>s2, both 
measured relative to the rod and directed away from the 
center O when r = 0.5 m. Determine the radial frictional 
force and the normal force, both exerted by the rod on the 
spool at this instant.

••

u � 2 rad/s2

•

u � 6 rad/s

vs � 3 m/s

as � 1 m/s2

r � 0.5 m

O

Prob. R13–8



As the woman falls, her energy will have to be absorbed by the bungee cord. 
The principles of work and energy can be used to predict the motion.

Chapter 14

(© Oliver Furrer/Ocean/Corbis)



Kinetics of a Particle: 
Work and Energy

Chapter Objectives

n	 To develop the principle of work and energy and apply it to solve 
problems that involve force, velocity, and displacement.

n	 To study problems that involve power and efficiency.

n	 To introduce the concept of a conservative force and apply the 
theorem of conservation of energy to solve kinetic problems.

14.1  The Work of a Force

In this chapter, we will analyze motion of a particle using the concepts of 
work and energy. The resulting equation will be useful for solving 
problems that involve force, velocity, and displacement. Before we do this, 
however, we must first define the work of a force. Specifically, a force F 
will do work on a particle only when the particle undergoes a displacement 
in the direction of the force. For example, if the force F in Fig. 14–1 causes 
the particle to move along the path s from position r to a new position r�, 
the displacement is then dr = r� - r. The magnitude of dr is ds, the 
length of the differential segment along the path. If the angle between the 
tails of dr and F is u, Fig. 14–1, then the work done by F is a scalar quantity, 
defined by

dU = F ds cos u

F

dr
ds

s

r¿
r

u

Fig. 14–1 
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By definition of the dot product (see Eq. B–14) this equation can also 
be written as

dU = F # dr

This result may be interpreted in one of two ways: either as the product 
of F and the component of displacement ds cos u in the direction of the 
force, or as the product of ds and the component of force, F cos u, in the 
direction of displacement. Note that if 0� … u 6 90�, then the force 
component and the displacement have the same sense so that the work is 
positive; whereas if 90� 6 u … 180�, these vectors will have opposite 
sense, and therefore the work is negative. Also, dU = 0 if the force is 
perpendicular to displacement, since cos 90� = 0, or if the force is applied 
at a fixed point, in which case the displacement is zero.

The unit of work in SI units is the joule (J), which is the amount of 
work done by a one-newton force when it moves through a distance of 
one meter in the direction of the force (1 J = 1 N # m). In the FPS system, 
work is measured in units of foot-pounds (ft # lb), which is the work done 
by a one-pound force acting through a distance of one foot in the 
direction of the force.*

Work of a Variable Force.  If the particle acted upon by the 
force F undergoes a finite displacement along its path from r1 to r2 or s1 
to s2 , Fig. 14–2a, the work of force F is determined by integration. 
Provided F and u can be expressed as a function of position, then

	 U1 -2 = L
r2

r1

F # dr = L
s2

s1

F cos u ds 	 (14–1)

Sometimes, this relation may be obtained by using experimental data 
to plot a graph of F cos u vs. s. Then the area under this graph bounded by 
s1 and s2 represents the total work, Fig. 14–2b.

F

dr
ds

s

r¿
r

u

F

r1

r2

F cos u

s2

s1

s

(a)

u

(b)

F cos u

ds
s2s1

s

F cos u

Fig. 14–2 

*By convention, the units for the moment of a force or torque are written as lb # ft, to 
distinguish them from those used to signify work, ft # lb.

Fig. 14–1 (Repeated)
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Work of a Constant Force Moving Along a Straight Line.   
If the force Fc has a constant magnitude and acts at a constant angle u 
from its straight-line path, Fig. 14–3a, then the component of Fc in the 
direction of displacement is always Fc cos u. The work done by Fc when 
the particle is displaced from s1 to s2 is determined from Eq. 14–1, in 
which case

U1 -2 = Fc cos uL
s2

s1

ds

or

	 U1 -2 = Fc cos u(s2 - s1) 	 (14–2)

Here the work of Fc represents the area of the rectangle in Fig. 14–3b.

Work of a Weight.  Consider a particle of weight W, which moves 
up along the path s shown in Fig. 14–4 from position s1 to position s2 . At 
an intermediate point, the displacement dr = dxi + dyj + dzk. Since 
W = -Wj, applying Eq. 14–1 we have

 U1 -2 = LF # dr = L
r2

r1

(-Wj) # (dxi + dyj + dzk)

 = L
y2

y1

-W dy = -W(y2 - y1)

or

	 U1 -2 = -W �y 	 (14–3)

Thus, the work is independent of the path and is equal to the magnitude 
of the particle’s weight times its vertical displacement. In the case shown 
in Fig. 14–4 the work is negative, since W is downward and �y is upward. 
Note, however, that if the particle is displaced downward (- �y), the 
work of the weight is positive. Why?

Fc

Fc cos u s2s1
s

(a)

u

s

(b)

F cos u

Fc cos u

s2s1

Fig. 14–3 

dr

s r1
r2

y

W
s2

s1

z

xy1

y2

Fig. 14–4 

The crane must do work in order to hoist 
the weight of the pipe. (© R.C. Hibbeler)
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Fs

s

Fs � ks

s1 s2

(b)

Work of a Spring Force.  If an elastic spring is elongated a 
distance ds, Fig. 14–5a, then the work done by the force that acts on the 
attached particle is dU = -Fsds = -ks ds. The work is negative since Fs 
acts in the opposite sense to ds. If the particle displaces from s1 to s2, the 
work of Fs is then

 U1 -2 = L
s2

s1

Fs ds = L
s2

s1

 -ks ds

	 U1 -2 = - 11
2 ks2

2 -
1
2 ks1

22 	 (14–4)

This work represents the trapezoidal area under the line Fs = ks, 
Fig. 14–5b.

A mistake in sign can be avoided when applying this equation if one 
simply notes the direction of the spring force acting on the particle and 
compares it with the sense of direction of displacement of the particle—
if both are in the same sense, positive work results; if they are opposite to 
one another, the work is negative.

Unstretched
position, s � 0

Fs

s

ds

Force on
Particle

(a)

k

Fig. 14–5

N

T

W
u

u

f

The forces acting on the cart, as it is 
pulled a distance s up the incline, are shown 
on its free-body diagram. The constant 
towing force T does positive work of 
UT = (T cos f)s, the weight does 
negative work of UW = -(W sin u)s, 
and the normal force N does no work 
since there is no displacement of this 
force along its line of action.  
(© R.C. Hibbeler)
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The 10-kg block shown in Fig. 14–6a rests on the smooth incline. If the 
spring is originally stretched 0.5 m, determine the total work done by 
all the forces acting on the block when a horizontal force P = 400 N 
pushes the block up the plane s = 2 m.

Solution
First the free-body diagram of the block is drawn in order to account 
for all the forces that act on the block, Fig. 14–6b.

Horizontal Force P.  Since this force is constant, the work is 
determined using Eq. 14–2. The result can be calculated as the force 
times the component of displacement in the direction of the force; i.e.,

UP = 400 N (2 m cos 30�) = 692.8 J

or the displacement times the component of force in the direction of 
displacement, i.e.,

UP = 400 N cos 30�(2 m) = 692.8 J

Spring Force Fs.  In the initial position the spring is stretched 
s1 = 0.5 m and in the final position it is stretched s2 = 0.5 m + 2 m =

2.5 m. We require the work to be negative since the force and 
displacement are opposite to each other. The work of Fs is thus

Us = - 31
2(30 N>m)(2.5 m)2 -

1
2(30 N>m)(0.5 m)24 = -90 J

Weight W.  Since the weight acts in the opposite sense to its vertical 
displacement, the work is negative; i.e.,

UW = -(98.1 N) (2 m sin 30�) = -98.1 J

Note that it is also possible to consider the component of weight in the 
direction of displacement; i.e.,

UW = -(98.1 sin 30� N) (2 m) = -98.1 J

Normal Force NB.  This force does no work since it is always 
perpendicular to the displacement.

Total Work.  The work of all the forces when the block is displaced 
2 m is therefore

	 UT = 692.8 J - 90 J - 98.1 J = 505 J� Ans.

Example   14.1

(a)

2 cos 30� m

P � 400 N

30�

k � 30 N/m

Initial
position of spring

2 sin 30� m

s � 2 m

	

P � 400 N
30�

FsNB

30�98.1 N

(b)

Fig. 14–6 
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14.2  Principle of Work and Energy

Consider the particle in Fig. 14–7, which is located on the path defined 
relative to an inertial coordinate system. If the particle has a mass m and 
is subjected to a system of external forces represented by the resultant 
FR = �F, then the equation of motion for the particle in the tangential 
direction is �Ft = mat . Applying the kinematic equation at = v dv>ds 
and integrating both sides, assuming initially that the particle has a 
position s = s1 and a speed v = v1 , and later at s = s2 , v = v2 , we have

� L
s2

s1

Ft ds = L
y2

y1

mv dv

	 � L
s2

s1

Ft ds =
1
2 mv2

2 -
1
2 mv1

2� (14–5)

From Fig. 14–7, note that �Ft = �Fcos u, and since work is defined 
from Eq. 14–1, the final result can be written as

	 �U1 -2 =
1
2 mv2

2 -
1
2 mv1

2� (14–6)

This equation represents the principle of work and energy for the particle. 
The term on the left is the sum of the work done by all the forces acting 
on the particle as the particle moves from point 1 to point 2. The two terms 
on the right side, which are of the form T =

1
2 mv2, define the particle’s 

final and initial kinetic energy, respectively. Like work, kinetic energy is a 
scalar and has units of joules (J) and ft # lb. However, unlike work, which 
can be either positive or negative, the kinetic energy is always positive, 
regardless of the direction of motion of the particle.

When Eq. 14–6 is applied, it is often expressed in the form

	 T1 + �U1 -2 = T2 � (14–7)

which states that the particle’s initial kinetic energy plus the work done 
by all the forces acting on the particle as it moves from its initial to its final 
position is equal to the particle’s final kinetic energy.

As noted from the derivation, the principle of work and energy 
represents an integrated form of �Ft = mat , obtained by using the 
kinematic equation at = v dv>ds. As a result, this principle will provide a 
convenient substitution for �Ft = mat when solving those types of kinetic 
problems which involve force, velocity, and displacement since these 
quantities are involved in Eq. 14–7. For application, it is suggested that 
the following procedure be used.

s

v

1
2

n

FR � �F

t�Ft

�Fn

ds

u

Fig. 14–7 
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Numerical application of this procedure is illustrated in the examples 
following Sec. 14.3.

Procedure for Analysis

Work (Free-Body Diagram).
	 •	 Establish the inertial coordinate system and draw a free-body 

diagram of the particle in order to account for all the forces that 
do work on the particle as it moves along its path.

Principle of Work and Energy.
	 •	 Apply the principle of work and energy, T1 + �U1 -2 = T2 .

	 •	 The kinetic energy at the initial and final points is always positive, 
since it involves the speed squared 1T =

1
2 mv22.

	 •	 A force does work when it moves through a displacement in the 
direction of the force.

	 •	 Work is positive when the force component is in the same sense of 
direction as its displacement, otherwise it is negative.

	 •	 Forces that are functions of displacement must be integrated to 
obtain the work. Graphically, the work is equal to the area under 
the force-displacement curve.

	 •	 The work of a weight is the product of the weight magnitude and 
the vertical displacement, UW = {Wy. It is positive when the 
weight moves downwards.

	 •	 The work of a spring is of the form Us =
1
2 ks2, where k is the 

spring stiffness and s is the stretch or compression of the spring.

If an oncoming car strikes these crash barrels, the car’s kinetic energy will be 
transformed into work, which causes the barrels, and to some extent the car, to be 
deformed. By knowing the amount of energy that can be absorbed by each barrel it is 
possible to design a crash cushion such as this. (© R.C. Hibbeler)



186 	 Chapter 14    Kinet ics of a Part icle:  Work and Energy

14

14.3  �Principle of Work and Energy 
for a System of Particles

The principle of work and energy can be extended to include a system of 
particles isolated within an enclosed region of space as shown in Fig. 14–8. 
Here the arbitrary ith particle, having a mass mi , is subjected to a resultant 
external force Fi and a resultant internal force fi which all the other 
particles exert on the ith particle. If we apply the principle of work and 
energy to this and each of the other particles in the system, then since 
work and energy are scalar quantities, the equations can be summed 
algebraically, which gives

	 �T1 + �U1 -2 = �T2� (14–8)

In this case, the initial kinetic energy of the system plus the work done by 
all the external and internal forces acting on the system is equal to the 
final kinetic energy of the system.

If the system represents a translating rigid body, or a series of 
connected translating bodies, then all the particles in each body will 
undergo the same displacement. Therefore, the work of all the internal 
forces will occur in equal but opposite collinear pairs and so it will 
cancel out. On the other hand, if the body is assumed to be nonrigid, the 
particles of the body may be displaced along different paths, and some of 
the energy due to force interactions would be given off and lost as heat 
or stored in the body if permanent deformations occur. We will discuss 
these effects briefly at the end of this section and in Sec. 15.4. Throughout 
this text, however, the principle of work and energy will be applied to 
problems where direct accountability of such energy losses does not 
have to be considered.

si

i

Inertial coordinate system

fi

Fi

t
n

Fig. 14–8
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Work of Friction Caused by Sliding.  A special class of 
problems will now be investigated which requires a careful application 
of Eq. 14–8. These problems involve cases where a body slides over the 
surface of another body in the presence of friction. Consider, for 
example, a block which is translating a distance s over a rough surface 
as shown in Fig. 14–9a. If the applied force P just balances the resultant 
frictional force mkN, Fig. 14–9b, then due to equilibrium a constant 
velocity v is maintained, and one would expect Eq. 14–8 to be applied 
as follows:

1
2 mv2 + Ps - mkNs =

1
2 mv2

Indeed this equation is satisfied if P = mkN; however, as one realizes from 
experience, the sliding motion will generate heat, a form of energy which 
seems not to be accounted for in the work-energy equation. In order to 
explain this paradox and thereby more closely represent the nature of 
friction, we should actually model the block so that the surfaces of contact 
are deformable (nonrigid).* Recall that the rough portions at the bottom 
of the block act as “teeth,” and when the block slides these teeth deform 
slightly and either break off or vibrate as they pull away from “teeth” at 
the contacting surface, Fig. 14–9c. As a result, frictional forces that act on 
the block at these points are displaced slightly, due to the localized 
deformations, and later they are replaced by other frictional forces as 
other points of contact are made. At any instant, the resultant F of all these 
frictional forces remains essentially constant, i.e., mkN; however, due to the 
many localized deformations, the actual displacement s� of mkN is not the 
same as the displacement s of the applied force P. Instead, s� will be less 
than s (s� 6 s), and therefore the external work done by the resultant 
frictional force will be mkNs� and not mkNs. The remaining amount of work, 
mkN(s - s�), manifests itself as an increase in internal energy, which in fact 
causes the block’s temperature to rise.

In summary then, Eq. 14–8 can be applied to problems involving 
sliding friction; however, it should be fully realized that the work of the 
resultant frictional force is not represented by mkNs; instead, this term 
represents both the external work of friction (mkNs�) and internal work 
[mkN(s - s�)] which is converted into various forms of internal energy, 
such as heat.†

P P

v v

s

(a)

P

F � mkN

(b)

W

N

(c)

Fig. 14–9 

*See Chapter 8 of Engineering Mechanics: Statics.
†See B. A. Sherwood and W. H. Bernard, “Work and Heat Transfer in the Presence of 

Sliding Friction,” Am. J. Phys. 52, 1001 (1984).
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The 3500-lb automobile shown in Fig. 14–10a travels down the 10° 
inclined road at a speed of 20 ft>s. If the driver jams on the brakes, 
causing his wheels to lock, determine how far s the tires skid on the 
road. The coefficient of kinetic friction between the wheels and the 
road is mk = 0.5.

Solution
This problem can be solved using the principle of work and energy, 
since it involves force, velocity, and displacement.

Work (Free-Body Diagram).  As shown in Fig. 14–10b, the normal 
force NA does no work since it never undergoes displacement along its 
line of action. The weight, 3500 lb, is displaced s sin 10° and does 
positive work. Why? The frictional force FA does both external and 
internal work when it undergoes a displacement s. This work is negative 
since it is in the opposite sense of direction to the displacement. 
Applying the equation of equilibrium normal to the road, we have

+ a�Fn = 0;  NA - 3500 cos 10� lb = 0  NA = 3446.8 lb

Thus,

FA = mk NA = 0.5 (3446.8 lb) = 1723.4 lb

Principle of Work and Energy.

T1 + �U192 = T2

1

2
 a 3500 lb

32.2 ft>s2 b (20 ft>s)2 + 3500 lb(s sin 10�) - (1723.4 lb)s = 0

Solving for s yields

	 s = 19.5 ft� Ans.

Note:  If this problem is solved by using the equation of motion, two 
steps are involved. First, from the free-body diagram, Fig. 14–10b, the 
equation of motion is applied along the incline. This yields

+ b�Fs = mas;    3500 sin 10� lb - 1723.4 lb =
3500 lb

32.2 ft>s2 a

a = -10.3 ft>s2

Then, since a is constant, we have

	 1+ b2 v2 = v0
2 + 2ac(s - s0);

	 (0)2 = (20 ft>s)2 + 2(-10.3 ft>s2)(s - 0)

	 s = 19.5 ft � Ans.

Example   14.2

20 ft/s

(a)

10�

s
A

10�

(b)

s
3500 lb

10�

FA

NA

Fig. 14–10 
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Example   14.3

For a short time the crane in Fig. 14–11a lifts the 2.50-Mg beam with a 
force of F = (28 + 3s2) kN. Determine the speed of the beam when it 
has risen s = 3 m. Also, how much time does it take to attain this 
height starting from rest?

Solution
We can solve part of this problem using the principle of work and 
energy since it involves force, velocity, and displacement. Kinematics 
must be used to determine the time. Note that at s = 0, 
F = 28(103)N 7 W = 2.50(103)(9.81)N, so motion will occur.

Work (Free-Body Diagram).  As shown on the free-body diagram,  
Fig. 14–11b, the lifting force F does positive work, which must be 
determined by integration since this force is a variable. Also, the weight 
is constant and will do negative work since the displacement is upward.

Principles of Work and Energy.

T1 + �U192 = T2

0 + L
s

0
(28 + 3s2)(103) ds - (2.50)(103)(9.81)s =

1
2(2.50)(103)v2

28(103)s + (103)s3 - 24.525(103)s = 1.25(103)v2

	 v = (2.78s + 0.8s3)
1
2� (1)

When s = 3 m,

	 v = 5.47 m>s� Ans.

Kinematics.  Since we were able to express the velocity as a 
function of displacement, the time can be determined using 
v = ds>dt. In this case,

(2.78s + 0.8s3)
1
2 =

ds

dt

t = L
3

0
 

ds

(2.78s + 0.8s3)
1
2

The integration can be performed numerically using a pocket 
calculator. The result is

	 t = 1.79 s� Ans.

Note:  The acceleration of the beam can be determined by integrating 
Eq. (1) using v dv = a ds, or more directly, by applying the equation 
of motion, �F = ma.

(a)

2.50 (103)(9.81) N

(b)

F

Fig. 14–11 

(©
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The platform P, shown in Fig. 14–12a, has negligible mass and is tied 
down so that the 0.4-m-long cords keep a 1-m-long spring compressed 
0.6 m when nothing is on the platform. If a 2-kg block is placed on the 
platform and released from rest after the platform is pushed down 
0.1 m, Fig. 14–12b, determine the maximum height h the block rises in 
the air, measured from the ground.

Example   14.4

(c)

19.62 N

Fs

Solution
Work (Free-Body Diagram).  Since the block is released from rest 
and later reaches its maximum height, the initial and final velocities  
are zero. The free-body diagram of the block when it is still in contact 
with the platform is shown in Fig. 14–12c. Note that the weight does 
negative work and the spring force does positive work. Why? In 
particular, the initial compression  in the spring is 
s1 = 0.6 m + 0.1 m = 0.7 m. Due to the cords, the spring’s final 
compression is s2 = 0.6 m (after the block leaves the platform). The 
bottom of the block rises from a height of (0.4 m - 0.1 m) = 0.3 m to 
a final height h.

Principle of Work and Energy.

	  T1 + �U192 = T2

	  12 mv1
2 + 5 - 11

2 ks2
2 -

1
2 ks1

22 - W �y6 =
1
2 mv2

2

Note that here s1 = 0.7 m 7 s2 = 0.6 m and so the work of the spring 
as determined from Eq. 14–4 will indeed be positive once the 
calculation is made. Thus,

0 + 5 - 31
2(200 N>m)(0.6 m)2 -

1
2(200 N>m)(0.7 m)24

- (19.62 N)[h - (0.3 m)]6 = 0

Solving yields

	 h = 0.963 m� Ans.

0.3 m

h

(b)

0.4 m

(a)

k � 200 N/m

P

Fig. 14–12 
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The 40-kg boy in Fig. 14–13a slides down the smooth water slide. If he 
starts from rest at A, determine his speed when he reaches B and the 
normal reaction the slide exerts on the boy at this position.

Example   14.5

y � 0.075x2

y

x
B

A

10 m

7.5 m

(a)

(b)

Nb

40(9.81) N

u

u

n

t

t

(c)

NB

n

40(9.81) N

Fig. 14–13 

Solution
Work (Free-Body Diagram).  As shown on the free-body diagram, 
Fig. 14–13b, there are two forces acting on the boy as he goes down the 
slide. Note that the normal force does no work.

Principle of Work and Energy.

TA + �UA -B = TB

0 + (40(9.81)N) (7.5 m) =
1
2(40 kg)vB

2

vB = 12.13 m>s = 12.1 m>s� Ans.

Equation of Motion.  Referring to the free-body diagram of the boy 
when he is at B, Fig. 14–13c, the normal reaction NB can now be 
obtained by applying the equation of motion along the n axis. Here the 
radius of curvature of the path is

rB =

c 1 + a dy

dx
b

2

d
3>2

� d2y>dx2 �
=
31 + (0.15x)243>2

� 0.15 �
3
x = 0

= 6.667 m

Thus,

+ c �Fn = man;    NB - 40(9.81) N = 40 kg¢ (12.13 m>s)2

6.667 m
≤

	 NB = 1275.3 N = 1.28 kN� Ans.

14
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Blocks A and B shown in Fig. 14–14a have a mass of 10 kg and 100 kg, 
respectively. Determine the distance B travels when it is released from 
rest to the point where its speed becomes 2 m>s.

Solution
This problem may be solved by considering the blocks separately and 
applying the principle of work and energy to each block. However, the 
work of the (unknown) cable tension can be eliminated from the 
analysis by considering blocks A and B together as a single system.

Work (Free-Body Diagram).  As shown on the free-body diagram  
of the system, Fig. 14–14b, the cable force T and reactions R1 and R2 do 
no work, since these forces represent the reactions at the supports and 
consequently they do not move while the blocks are displaced. The 
weights both do positive work if we assume both move downward, in 
the positive sense of direction of sA and sB.

Principle of Work and Energy.  Realizing the blocks are released 
from rest, we have

�T1 + �U192 = �T2

51
2 mA(vA)1

2 +
1
2 mB(vB)1

26 + 5WA �sA + WB �sB6 =

51
2 mA(vA)2

2 +
1
2 mB(vB)2

26
50 + 06 + 598.1 N (�sA) + 981 N (�sB)6 =

	 51
2(10 kg)(vA)2

2 +
1
2(100 kg)(2 m>s)26 � (1)

Kinematics.  Using methods of kinematics, as discussed in Sec. 12.9, 
it may be seen from Fig. 14–14a that the total length l of all the vertical 
segments of cable may be expressed in terms of the position coordinates 
sA and sB as

sA + 4sB = l

Hence, a change in position yields the displacement equation

�sA + 4 �sB = 0

�sA = -4 �sB

Here we see that a downward displacement of one block produces an 
upward displacement of the other block. Note that �sA and �sB must 
have the same sign convention in both Eqs. 1 and 2. Taking the time 
derivative yields

	 vA = -4vB = -4(2 m>s) = -8 m>s� (2)

Retaining the negative sign in Eq. 2 and substituting into Eq. 1 yields

	 �sB = 0.883 m T � Ans.

Example   14.6

Datum

B

10 kg

sB

sA

(a)

100 kg

A

B

A

(b)

981 N

98.1 N

T R1 R2

Fig. 14–14 
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Preliminary Problems

P14–1.  Determine the work of the force when it displaces 2 m.

2 m

(a)

500 N

5
4

3

(a)

2 m

(f)

k � 10 N/m

Spring is originally compressed 3 m.

(f)

100 N

5
3

4

2 m

Prob. P14–1

(g)

2 m

(b)

98.1 N

(b)

2 m

(c)

F � (6 s2) N      

(c)

2 m

(d)

100 N

5
3

4

(d)

2 m

F

5
3

4

s (m)

F (N)

20

1 2

(e)
(e) Prob. P14–2

60�

6 m/s

3 m

(b)

P14–2.  Determine the kinetic energy of the 10-kg block.

30�

2 m/s

(a)
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F14–4.  The 1.8-Mg dragster is traveling at 125 m>s when 
the engine is shut off and the parachute is released. If the 
drag force of the parachute can be approximated by the 
graph, determine the speed of the dragster when it has 
traveled 400 m.

  

FD (kN)

400

50

20

s (m)

� Prob. F14–4

F14–5.  When s = 0.6 m, the spring is unstretched and the 
10-kg block has a speed of 5 m>s down the smooth plane. 
Determine the distance s when the block stops.

    

F � 100 N

5 m/s

s k � 200 N/m

30�

� Prob. F14–5

F14–6.  The 5-lb collar is pulled by a cord that passes 
around a small peg at C. If the cord is subjected to a constant 
force of F = 10 lb, and the collar is at rest when it is at A, 
determine its speed when it reaches B. Neglect friction.

	 F � 10 lb

BA

C

3 ft

4 ft

�Prob. F14–6

F14–1.  The spring is placed between the wall and the 10-kg 
block. If the block is subjected to a force of F = 500 N, 
determine its velocity when s = 0.5 m. When s = 0, the 
block is at rest and the spring is uncompressed. The contact 
surface is smooth.

s

k � 500 N/m

500 N

4
3 5

  F14–1 

F14–2.  If the motor exerts a constant force of 300 N on the 
cable, determine the speed of the 20-kg crate when it travels 
s = 10 m up the plane, starting from rest. The coefficient of 
kinetic friction between the crate and the plane is mk = 0.3.

    

s � 10 m

M

A 30�

� Prob. F14–2 

F14–3.  If the motor exerts a force of F = (600 + 2s2) N 
on the cable, determine the speed of the 100-kg crate 
when it rises to s = 15 m. The crate is initially at rest on 
the ground.

	

C

s

M

15 m

� Prob. F14–3 

Fundamental Problems

Prob.
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Problems

14–1.  The 20-kg crate is subjected to a force having a constant 
direction and a magnitude F = 100 N. When s = 15 m, the 
crate is moving to the right with a speed of 8 m>s. Determine 
its speed when s = 25 m. The coefficient of kinetic friction 
between the crate and the ground is mk = 0.25.

30�

F

Prob. 14–1
14–2.  For protection, the barrel barrier is placed in front 
of the bridge pier. If the relation between the force and 
deflection of the barrier is F = (90(103)x1>2) lb, where x is in 
ft, determine the car’s maximum penetration in the barrier. 
The car has a weight of 4000 lb and it is traveling with a 
speed of 75 ft>s just before it hits the barrier.

F (lb)

F � 90(10)3 x1/2

x (ft)

Prob. 14–2
14–3.  The crate, which has a mass of 100 kg, is subjected to 
the action of the two forces. If it is originally at rest, 
determine the distance it slides in order to attain a speed of 
6 m>s. The coefficient of kinetic friction between the crate 
and the surface is mk = 0.2.

3
4

5

1000 N

30�

800 N

Prob. 14–3

*14–4.  The 100-kg crate is subjected to the forces shown. 
If it is originally at rest, determine the distance it slides in 
order to attain a speed of v = 8 m>s. The coefficient of 
kinetic friction between the crate and the surface is 
mk = 0.2.

400 N

30�

45�

500 N

Prob. 14–4

14–5.  Determine the required height h of the roller 
coaster so that when it is essentially at rest at the crest of the 
hill A it will reach a speed of 100 km>h when it comes to the 
bottom B. Also, what should be the minimum radius of 
curvature r for the track at B so that the passengers do not 
experience a normal force greater than 4mg = (39.24m) N? 
Neglect the size of the car and passenger.

A

h

B

r

Prob. 14–5
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14–6.  When the driver applies the brakes of a light truck 
traveling 40 km>h, it skids 3 m before stopping. How far will 
the truck skid if it is traveling 80 km>h when the brakes are 
applied?

Prob. 14–6

14–7.  As indicated by the derivation, the principle of work 
and energy is valid for observers in any inertial reference 
frame. Show that this is so, by considering the 10-kg block 
which rests on the smooth surface and is subjected to a 
horizontal force of 6 N. If observer A is in a fixed frame x, 
determine the final speed of the block if it has an initial 
speed of 5 m>s and travels 10 m, both directed to the right 
and measured from the fixed frame. Compare the result 
with that obtained by an observer B, attached to the x � axis 
and moving at a constant velocity of 2 m>s relative to A. 
Hint: The distance the block travels will first have to be 
computed for observer B before applying the principle of 
work and energy.

6 N

5 m/s

2 m/s

10 m

B

x

x¿

A

Prob. 14–7

*14–8.  A force of F = 250 N is applied to the end at B. 
Determine the speed of the 10-kg block when it has moved 
1.5 m, starting from rest.

F
A

B

Prob. 14–8

14–9.  The “air spring” A is used to protect the support B and 
prevent damage to the conveyor-belt tensioning weight C  
in the event of a belt failure D. The force developed by the 
air spring as a function of its deflection is shown by the 
graph. If the block has a mass of 20 kg and is suspended a 
height d = 0.4 m above the top of the spring, determine the 
maximum deformation of the spring in the event the 
conveyor belt fails. Neglect the mass of the pulley and belt.

d

B

A

D
F (N)

s (m)

C

1500

0.2 

Prob. 14–9
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14–10.  The force F, acting in a constant direction on the 
20-kg block, has a magnitude which varies with the position s 
of the block. Determine how far the block must slide before 
its velocity becomes 15 m>s. When s = 0 the block is 
moving to the right at v = 6 m>s. The coefficient of kinetic 
friction between the block and surface is mk = 0.3.

F (N)

F � 50s1/2

s (m)

F
v

Prob. 14–10

14–11.  The force of F = 50 N is applied to the cord when 
s = 2 m. If the 6-kg collar is orginally at rest, determine its 
velocity at s = 0. Neglect friction.

A

s

1.5 m

F

Prob. 14–11

*14–12.  Design considerations for the bumper B on the 
5-Mg train car require use of a nonlinear spring having the 
load-deflection characteristics shown in the graph. Select 
the proper value of k so that the maximum deflection of the 
spring is limited to 0.2 m when the car, traveling at 4 m>s, 
strikes the rigid stop. Neglect the mass of the car wheels.

F (N)
F � ks2

s (m)

B

Prob. 14–12

14–13.  The 2-lb brick slides down a smooth roof, such that 
when it is at A it has a velocity of 5 ft>s. Determine the 
speed of the brick just before it leaves the surface at B, the 
distance d from the wall to where it strikes the ground, and 
the speed at which it hits the ground.

30 ft

d

A

B

15 ft

5 ft/s

5

x

y

3

4

Prob. 14–13
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14–14.  Block A has a weight of 60 lb and block B has a 
weight of 10 lb. Determine the speed of block A after it 
moves 5 ft down the plane, starting from rest. Neglect 
friction and the mass of the cord and pulleys.

B
A

5

4
3

Prob. 14–14

14–15.  The two blocks A and B have weights W A = 60 lb 
and W B = 10 lb. If the kinetic coefficient of friction between 
the incline and block A is mk = 0.2, determine the speed of A 
after it moves 3 ft down the plane starting from rest. Neglect 
the mass of the cord and pulleys.

BA

5

4

3

Prob. 14–15

*14–16.  A small box of mass m is given a speed of
v = 21

4gr at the top of the smooth half cylinder. Determine 
the angle u at which the box leaves the cylinder.

r

O

A

u

Prob. 14–16

14–17.  If the cord is subjected to a constant force of  
F = 30 lb and the smooth 10-lb collar starts from rest at A, 
determine its speed when it passes point B. Neglect the size 
of pulley C.

F � 30 lb
A

C
B

y y �      x2

x

4.5 ft

3 ft1 ft 2 ft

1
2

Prob. 14–17
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14–18.  When the 12-lb block A is released from rest it lifts 
the two 15-lb weights B and C. Determine the maximum 
distance A will fall before its motion is momentarily 
stopped. Neglect the weight of the cord and the size of the 
pulleys.

B C

A

4 ft 4 ft

Prob. 14–18

14–19.  If the cord is subjected to a constant force of 
F = 300 N and the 15-kg smooth collar starts from rest at A, 
determine the velocity of the collar when it reaches point B. 
Neglect the size of the pulley.

A

B

C

300 mm

200 mm

200 mm

200 mm

F � 300 N

30�

Prob. 14–19

*14–20.  The crash cushion for a highway barrier consists 
of a nest of barrels filled with an impact-absorbing material. 
The barrier stopping force is measured versus the vehicle 
penetration into the barrier. Determine the distance a car 
having a weight of 4000 lb will penetrate the barrier if it is 
originally traveling at 55 ft>s when it strikes the first barrel.

52 10 15
Vehicle penetration (ft)

20 25

B
ar

ri
er

 s
to

pp
in

g 
fo

rc
e 

(k
ip

) 36

27

18

9

0

Prob. 14–20

14–21.  Determine the velocity of the 60-lb block A if the 
two blocks are released from rest and the 40-lb block B 
moves 2 ft up the incline. The coefficient of kinetic friction 
between both blocks and the inclined planes is mk = 0.10.

60�

A
B

30�

Prob. 14–21
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14–22.  The 25-lb block has an initial speed of v0 = 10 ft>s 
when it is midway between springs A and B. After striking 
spring B, it rebounds and slides across the horizontal plane 
toward spring A, etc. If the coefficient of kinetic friction 
between the plane and the block is mk = 0.4, determine the 
total distance traveled by the block before it comes to rest.

2 ft

1 ft

v0 � 10 ft/s

kA � 10 lb/in. kB � 60 lb/in.

A B

Prob. 14–22

14–23.  The 8-kg block is moving with an initial speed of  
5 m>s. If the coefficient of kinetic friction between the block 
and plane is mk = 0.25, determine the compression in the 
spring when the block momentarily stops.

2 m 
 5 m/s

kA � 200 N/m

A
B

Prob. 14–23

*14–24.  At a given instant the 10-lb block A is moving 
downward with a speed of 6 ft>s. Determine its speed 2 s 
later. Block B has a weight of 4 lb, and the coefficient of 
kinetic friction between it and the horizontal plane is 
mk = 0.2. Neglect the mass of the cord and pulleys.

A

B

Prob. 14–24

14–25.  The 5-lb cylinder is falling from A with a speed 
vA = 10 ft>s onto the platform. Determine the maximum 
displacement of the platform, caused by the collision. The 
spring has an unstretched length of 1.75 ft and is originally 
kept in compression by the 1-ft long cables attached to the 
platform. Neglect the mass of the platform and spring and 
any energy lost during the collision.

A

3 ft

1 ft

vA � 10 ft/s

k � 400 lb/ft

Prob. 14–25

14–26.  The catapulting mechanism is used to propel the 
10-kg slider A to the right along the smooth track. The 
propelling action is obtained by drawing the pulley attached 
to rod BC rapidly to the left by means of a piston P. If the 
piston applies a constant force F = 20 kN to rod BC such 
that it moves it 0.2 m, determine the speed attained by the 
slider if it was originally at rest. Neglect the mass of the 
pulleys, cable, piston, and rod BC.

F
B C

A

P

Prob. 14–26
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14–27.  The “flying car” is a ride at an amusement park 
which consists of a car having wheels that roll along a track 
mounted inside a rotating drum. By design the car cannot fall 
off the track, however motion of the car is developed by 
applying the car’s brake, thereby gripping the car to the track 
and allowing it to move with a constant speed of the track, 
vt = 3 m>s. If the rider applies the brake when going from B 
to A and then releases it at the top of the drum, A, so that the 
car coasts freely down along the track to B (u = p rad), 
determine the speed of the car at B and the normal reaction 
which the drum exerts on the car at B. Neglect friction during 
the motion from A to B. The rider and car have a total mass 
of 250 kg and the center of mass of the car and rider moves 
along a circular path having a radius of 8 m.

A

B

8 m

vt

u

Prob. 14–27

*14–28.  The 10-lb box falls off the conveyor belt at 5-ft>s. If 
the coefficient of kinetic friction along AB is mk = 0.2, 
determine the distance x when the box falls into the cart.

5 ft/s

30 ft

5 ft

15 ft

B

C

x

y

x

4

3 5
A

Prob. 14–28

14–29.  The collar has a mass of 20 kg and slides along the 
smooth rod. Two springs are attached to it and the ends of 
the rod as shown. If each spring has an uncompressed 
length of 1 m and the collar has a speed of 2 m>s when 
s = 0, determine the maximum compression of each spring 
due to the back-and-forth (oscillating) motion of the collar.

s

0.25 m
1 m 1 m

kA � 50 N/m kB � 100 N/m

Prob. 14–29

14–30.  The 30-lb box A is released from rest and slides 
down along the smooth ramp and onto the surface of a 
cart. If the cart is prevented from moving, determine the 
distance s from the end of the cart to where the box stops. 
The coefficient of kinetic friction between the cart and the 
box is mk = 0.6.

10 ft
4 fts

A

BC

Prob. 14–30

14–31.  Marbles having a mass of 5 g are dropped from 
rest at A through the smooth glass tube and accumulate in 
the can at C. Determine the placement R of the can from 
the end of the tube and the speed at which the marbles fall 
into the can. Neglect the size of the can.

R

2 m

3 m

A

B

C

Prob. 14–31
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*14–32.  The block has a mass of 0.8 kg and moves within 
the smooth vertical slot. If it starts from rest when the 
attached spring is in the unstretched position at A, determine 
the constant vertical force F which must be applied to the 
cord so that the block attains a speed vB = 2.5 m>s when it 
reaches B; sB = 0.15 m. Neglect the size and mass of the 
pulley. Hint: The work of F can be determined by finding the 
difference �l in cord lengths AC and BC and using 
UF = F �l.

B

C

F
A

0.4 m

k � 100 N/m

0.3 m

sB

Prob. 14–32

14–33.  The 10-lb block is pressed against the spring so as 
to compress it 2 ft when it is at A. If the plane is smooth, 
determine the distance d, measured from the wall, to where 
the block strikes the ground. Neglect the size of the block.

3 ft

4 ft d

B

A
k � 100 lb/ft

Prob. 14–33

14–34.  The spring bumper is used to arrest the motion of 
the 4-lb block, which is sliding toward it at v = 9 ft>s. As 
shown, the spring is confined by the plate P and wall using 
cables so that its length is 1.5 ft. If the stiffness of the spring 
is k = 50 lb>ft, determine the required unstretched length 
of the spring so that the plate is not displaced more than 0.2 ft 
after the block collides into it. Neglect friction, the mass of 
the plate and spring, and the energy loss between the plate 
and block during the collision.

Pk
vA

1.5 ft 5 ft
A

Prob. 14–34

14–35.  When the 150-lb skier is at point A he has a speed 
of 5 ft>s. Determine his speed when he reaches point B on 
the smooth slope. For this distance the slope follows the 
cosine curve shown. Also, what is the normal force on his 
skis at B and his rate of increase in speed? Neglect friction 
and air resistance.

35 ft

A

B

x

y

y � 50 cos (         x)
100
p

Prob. 14–35
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*14–36.  The spring has a stiffness k = 50 lb>ft and an 
unstretched length of 2 ft. As shown, it is confined by the 
plate and wall using cables so that its length is 1.5 ft. A 4-lb 
block is given a speed vA when it is at A, and it slides down 
the incline having a coefficient of kinetic friction mk = 0.2. 
If it strikes the plate and pushes it forward 0.25 ft before 
stopping, determine its speed at A. Neglect the mass of the 
plate and spring.

3 ft

1.5 ft

Ak  � 50 lb/ft

3
4

5

vA

Prob. 14–36

14–37.  If the track is to be designed so that the passengers 
of the roller coaster do not experience a normal force equal 
to zero or more than 4 times their weight, determine the 
limiting heights hA and hC so that this does not occur. The 
roller coaster starts from rest at position A. Neglect friction.

A

hA

C

B
hC

rC � 20 m

rB � 15 m

Prob. 14–37

14–38.  If the 60-kg skier passes point A with a speed of  
5 m>s, determine his speed when he reaches point B. Also 
find the normal force exerted on him by the slope at this 
point. Neglect friction.

y

x

B

A

15 m

y � (0.025x2 � 5) m

Prob. 14–38

14–39.  If the 75-kg crate starts from rest at A, determine 
its speed when it reaches point B. The cable is subjected to 
a constant force of F = 300 N. Neglect friction and the size 
of the pulley.

*14–40.  If the 75-kg crate starts from rest at A, and its 
speed is 6 m>s when it passes point B, determine the 
constant force F exerted on the cable. Neglect friction and 
the size of the pulley.

B
A

6 m 2 m

6 m

30�

F

C

Probs. 14–39/40

14–41.  A 2-lb block rests on the smooth semicylindrical 
surface. An elastic cord having a stiffness k = 2 lb>ft is 
attached to the block at B and to the base of the 
semicylinder at point C. If the block is released from rest at 
A  (u = 0�), determine the unstretched length of the cord so 
the block begins to leave the semicylinder at the instant 
u = 45�. Neglect the size of the block.

uC A

B

k � 2 lb/ft

1.5 ft

Prob. 14–41
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14.4  Power and Efficiency

Power.  The term “power” provides a useful basis for choosing the 
type of motor or machine which is required to do a certain amount of 
work in a given time. For example, two pumps may each be able to empty 
a reservoir if given enough time; however, the pump having the larger 
power will complete the job sooner.

The power generated by a machine or engine that performs an amount 
of work dU within the time interval dt is therefore

	 P =
dU

dt
� (14–9)

If the work dU is expressed as dU = F # dr, then

P =
dU

dt
=

F # dr
dt

= F # dr
dt

or

	 P = F # v � (14–10)

Hence, power is a scalar, where in this formulation v represents the 
velocity of the particle which is acted upon by the force F.

The basic units of power used in the SI and FPS systems are the watt 
(W) and horsepower (hp), respectively. These units are defined as

1 W = 1 J>s = 1 N # m>s
1 hp = 550 ft # lb>s

For conversion between the two systems of units, 1 hp = 746 W.

Efficiency.  The mechanical efficiency of a machine is defined as the 
ratio of the output of useful power produced by the machine to the input 
of power supplied to the machine. Hence,

	 e =
power output

power input
� (14–11)

The power output of this locomotive 
comes from the driving frictional force 
developed at its wheels. It is this force that 
overcomes the frictional resistance of the 
cars in tow and is able to lift the weight of 
the train up the grade. (© R.C. Hibbeler)
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If energy supplied to the machine occurs during the same time interval at 
which it is drawn, then the efficiency may also be expressed in terms of 
the ratio

	 e =
energy output

energy input
� (14–12)

Since machines consist of a series of moving parts, frictional forces will 
always be developed within the machine, and as a result, extra energy or 
power is needed to overcome these forces. Consequently, power output 
will be less than power input and so the efficiency of a machine is always 
less than 1.

The power supplied to a body can be determined using the following 
procedure.

F

v

Procedure for Analysis

	 •	 First determine the external force F acting on the body which 
causes the motion. This force is usually developed by a machine 
or engine placed either within or external to the body.

	 •	 If the body is accelerating, it may be necessary to draw its free-
body diagram and apply the equation of motion (�F = ma) to 
determine F.

	 •	 Once F and the velocity v of the particle where F is applied have 
been found, the power is determined by multiplying the force 
magnitude with the component of velocity acting in the direction 
of F, (i.e., P = F # v = Fv cos u).

	 •	 In some problems the power may be found by calculating the 
work done by F per unit of time (Pavg = �U>�t,).

The power requirement of this hoist depends upon 
the vertical force F that acts on the elevator and 
causes it to move upward. If the velocity of the 
elevator is v, then the power output is P = F # v. 
(© R.C. Hibbeler)
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The man in Fig. 14–15a pushes on the 50-kg crate with a force of 
F = 150 N. Determine the power supplied by the man when t = 4 s. 
The coefficient of kinetic friction between the floor and the crate is 
mk = 0.2. Initially the create is at rest.

Example   14.7

Solution
To determine the power developed by the man, the velocity of the 
150-N force must be obtained first. The free-body diagram of the crate 
is shown in Fig. 14–15b. Applying the equation of motion,

+ c �Fy = may;      N - 13
52150 N - 50(9.81) N = 0

N = 580.5 N

S+ �Fx = max;      14
52150 N - 0.2(580.5 N) = (50 kg)a

a = 0.078 m>s2

The velocity of the crate when t = 4 s is therefore

( S+ )	 v = v0 + act

v = 0 + (0.078 m>s2)(4 s) = 0.312 m>s
The power supplied to the crate by the man when t = 4 s is therefore

 P = F # v = Fxv = 14
52(150 N)(0.312 m>s)

	  = 37.4 W � Ans.

(a)

F � 150 N

4
3 5

F � 150 N

y

x

50 (9.81) N

(b)

4
3

5

N

Fƒ � 0.2 N

a

Fig. 14–15
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The motor M of the hoist shown in Fig. 14–16a lifts the 75-lb crate C so 
that the acceleration of point P is 4 ft>s2. Determine the power that 
must be supplied to the motor at the instant P has a velocity of 2 ft>s. 
Neglect the mass of the pulley and cable and take e = 0.85.

Solution
In order to find the power output of the motor, it is first necessary to 
determine the tension in the cable since this force is developed by 
the motor.

From the free-body diagram, Fig. 14–16b, we have

	 + T �Fy = may;    -2T + 75 lb =
75 lb

32.2 ft>s2 ac� (1)

The acceleration of the crate can be obtained by using kinematics to 
relate it to the known acceleration of point P, Fig. 14–16a. Using the 
methods of absolute dependent motion, the coordinates sC and sP can 
be related to a constant portion of cable length l which is changing in 
the vertical and horizontal directions. We have 2sC + sP = l. Taking 
the second time derivative of this equation yields

	 2aC = -aP� (2)

Since aP = +4 ft>s2, then aC = -(4 ft>s2)>2 =  -2 ft>s2. What does 
the negative sign indicate? Substituting this result into Eq. 1 and 
retaining the negative sign since the acceleration in both Eq. 1 and 
Eq. 2 was considered positive downward, we have

 -2T + 75 lb = a 75 lb

32.2 ft>s2 b (-2 ft>s2)

 T = 39.83 lb

The power output, measured in units of horsepower, required to draw 
the cable in at a rate of 2 ft>s is therefore

 P = T # v = (39.83 lb)(2 ft>s)[1 hp>(550 ft # lb>s)]

 = 0.1448 hp

This power output requires that the motor provide a power input of

 power input =
1
e

 (power output)

	 =
1

0.85
 (0.1448 hp) = 0.170 hp� Ans.

Note:  Since the velocity of the crate is constantly changing, the 
power requirement is instantaneous.

Example   14.8

P M

sP

sC

C

(a)

Datum

Datum

y

aC

2T

75 lb
(b)

Fig. 14–16 
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Fundamental Problems

F14–7.  If the contact surface between the 20-kg block and 
the ground is smooth, determine the power of force F when 
t = 4 s. Initially, the block is at rest.

F � 30 N

3
5

4

Prob. F14–7

F14–8.  If F = (10 s) N, where s is in meters, and the 
contact surface between the block and the ground is 
smooth, determine the power of force F when s = 5 m. 
When s = 0, the 20-kg block is moving at v = 1 m>s.

F � (10 s) Ns

Prob. F14–8

F14–9.  If the motor winds in the cable with a constant 
speed of v = 3 ft>s, determine the power supplied to the 
motor. The load weighs 100 lb and the efficiency of the 
motor is e = 0.8. Neglect the mass of the pulleys.

C D

B

A

E

M

v � 3 ft/s

Prob. F14–9

F14–10.  The coefficient of kinetic friction between the 
20-kg block and the inclined plane is mk = 0.2. If the block 
is traveling up the inclined plane with a constant velocity 
v = 5 m>s, determine the power of force F.

30�

F

Prob. F14–10

F14–11.  If the 50-kg load A is hoisted by motor M so that the 
load has a constant velocity of 1.5 m>s, determine the power 
input to the motor, which operates at an efficiency e = 0.8.

A

M

1.5 m/s

Prob. F14–11

F14–12.  At the instant shown, point P on the cable has a 
velocity vP = 12 m>s, which is increasing at a rate of 
aP = 6 m>s2. Determine the power input to motor M at this 
instant if it operates with an efficiency e = 0.8. The mass of 
block A is 50 kg.

M

A

P
12 m/s
6 m/s2

Prob. F14–12
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14–42.  The jeep has a weight of 2500 lb and an engine 
which transmits a power of 100 hp to all the wheels. 
Assuming the wheels do not slip on the ground, determine 
the angle u of the largest incline the jeep can climb at a 
constant speed v = 30 ft>s.

u

Prob. 14–42

14–43.  Determine the power input for a motor necessary 
to lift 300 lb at a constant rate of 5 ft>s. The efficiency of the 
motor is e = 0.65.

*14–44.  An automobile having a mass of 2 Mg travels up a 
7° slope at a constant speed of v = 100 km>h. If mechanical 
friction and wind resistance are neglected, determine the 
power developed by the engine if the automobile has an 
efficiency e = 0.65.

7�

Prob. 14–44

14–45.  The Milkin Aircraft Co. manufactures a turbojet 
engine that is placed in a plane having a weight of 13000 lb. 
If the engine develops a constant thrust of 5200 lb, 
determine the power output of the plane when it is just 
ready to take off with a speed of 600 mi>h. 

14–46.  To dramatize the loss of energy in an automobile, 
consider a car having a weight of 5000 lb that is traveling at 
35 mi>h. If the car is brought to a stop, determine how long 
a 100-W light bulb must burn to expend the same amount 
of energy. (1 mi = 5280 ft.)

14–47.  Escalator steps move with a constant speed of 0.6 
m>s. If the steps are 125 mm high and 250 mm in length, 
determine the power of a motor needed to lift an average 
mass of 150 kg per step. There are 32 steps.

*14–48.  The man having the weight of 150 lb is able to run 
up a 15-ft-high flight of stairs in 4 s. Determine the power 
generated. How long would a 100-W light bulb have to 
burn to expend the same amount of energy? Conclusion: 
Please turn off the lights when they are not in use!

15 ft

Prob. 14–48

14–49.  The 2-Mg car increases its speed uniformly from 
rest to 25 m>s in 30 s up the inclined road. Determine the 
maximum power that must be supplied by the engine, 
which operates with an efficiency of e = 0.8. Also, find the 
average power supplied by the engine.

10
1

Prob. 14–49

Problems
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14–50.  Determine the power output of the draw-works 
motor M necessary to lift the 600-lb drill pipe upward with 
a constant speed of 4 ft>s. The cable is tied to the top of the 
oil rig, wraps around the lower pulley, then around the top 
pulley, and then to the motor.

M

4 ft/s

Prob. 14–50
14–51.  The 1000-lb elevator is hoisted by the pulley system 
and motor M. If the motor exerts a constant force of 500 lb 
on the cable, determine the power that must be supplied to 
the motor at the instant the load has been hoisted s = 15 ft 
starting from rest. The motor has an efficiency of e = 0.65.

M

Prob. 14–51

*14–52.  The 50-lb crate is given a speed of 10 ft>s in 
t = 4 s starting from rest. If the acceleration is constant, 
determine the power that must be supplied to the motor 
when t = 2 s. The motor has an efficiency e = 0.65. Neglect 
the mass of the pulley and cable.

s

M

Prob. 14–52

14–53.  The sports car has a mass of 2.3 Mg, and while it is 
traveling at 28 m>s the driver causes it to accelerate at 
5 m>s2. If the drag resistance on the car due to the wind is 
FD = (0.3v2

 ) N, where v is the velocity in m>s, determine 
the power supplied to the engine at this instant. The engine 
has a running efficiency of e = 0.68.

14–54.  The sports car has a mass of 2.3 Mg and accelerates 
at 6 m>s2, starting from rest. If the drag resistance on the car 
due to the wind is FD = (10v) N, where v is the velocity in 
m>s, determine the power supplied to the engine when 
t = 5 s. The engine has a running efficiency of e = 0.68.

FD

Probs. 14–53/54
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14–55.  The elevator E and its freight have a total mass of 
400 kg. Hoisting is provided by the motor M and the 60-kg 
block C. If the motor has an efficiency of e = 0.6, determine 
the power that must be supplied to the motor when the 
elevator is hoisted upward at a constant speed of vE = 4 m>s.

E

C

M

vE

Prob. 14–55

*14–56.  The 10-lb collar starts from rest at A and is lifted 
by applying a constant vertical force of F = 25  lb to the 
cord. If the rod is smooth, determine the power developed 
by the force at the instant u = 60�.

14–57.  The 10-lb collar starts from rest at A and is lifted with 
a constant speed of 2 ft>s along the smooth rod. Determine 
the power developed by the force F at the instant shown.

4 ft

A

3 ft

F

u

Prob. 14–57

14–58.  The 50-lb block rests on the rough surface for 
which the coefficient of kinetic friction is mk = 0.2. A force 
F = (40 + s2) lb, where s is in ft, acts on the block in the 
direction shown. If the spring is originally unstretched 
(s = 0) and the block is at rest, determine the power 
developed by the force the instant the block has moved 
s = 1.5 ft.

F
k � 20 lb/ft30�

Prob. 14–58

14–59.  The escalator steps move with a constant speed of 
0.6 m>s. If the steps are 125 mm high and 250 mm in length, 
determine the power of a motor needed to lift an average 
mass of 150 kg per step. There are 32 steps.

*14–60.  If the escalator in Prob. 14–46 is not moving, 
determine the constant speed at which a man having a 
mass of 80 kg must walk up the steps to generate 100 W of 
power—the same amount that is needed to power a 
standard light bulb.

4 m

125 mm

250 mm

v � 0.6 m/s

Probs. 14–59/60
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14–61.  If the jet on the dragster supplies a constant thrust 
of T = 20 kN, determine the power generated by the jet as 
a function of time. Neglect drag and rolling resistance, and 
the loss of fuel. The dragster has a mass of 1 Mg and starts 
from rest.

T

Prob. 14–61

14–62.  An athlete pushes against an exercise machine with 
a force that varies with time as shown in the first graph. 
Also, the velocity of the athlete’s arm acting in the same 
direction as the force varies with time as shown in the 
second graph. Determine the power applied as a function of 
time and the work done in t = 0.3 s.

14–63.  An athlete pushes against an exercise machine with 
a force that varies with time as shown in the first graph. 
Also, the velocity of the athlete’s arm acting in the same 
direction as the force varies with time as shown in the 
second graph. Determine the maximum power developed 
during the 0.3-second time period.

800

0.2 0.3
t (s)

F (N)

20

0.3
t (s)

v (m/s)

Probs. 14–62/63

*14–64.  The block has a weight of 80 lb and rests on the 
floor for which mk = 0.4. If the motor draws in the cable at 
a constant rate of 6 ft>s, determine the output of the motor 
at the instant u = 30�. Neglect the mass of the cable and 
pulleys.

u

u

3 ft

3 ft

6 ft/s

Prob. 14–64

14–65.  The block has a mass of 150 kg and rests on a 
surface for which the coefficients of static and kinetic 
friction are ms = 0.5 and mk = 0.4, respectively. If a force 
F = (60t2) N, where t is in seconds, is applied to the cable, 
determine the power developed by the force when t = 5 s. 
Hint: First determine the time needed for the force to cause 
motion.

F

Prob. 14–65
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14.5  �Conservative Forces and 
Potential Energy

Conservative Force.  If the work of a force is independent of the 
path and depends only on the force’s initial and final positions on the 
path, then we can classify this force as a conservative force. Examples of 
conservative forces are the weight of a particle and the force developed 
by a spring. The work done by the weight depends only on the vertical 
displacement of the weight, and the work done by a spring force depends 
only on the spring’s elongation or compression.

In contrast to a conservative force, consider the force of friction exerted 
on a sliding object by a fixed surface. The work done by the frictional 
force depends on the path—the longer the path, the greater the work. 
Consequently, frictional forces are nonconservative. The work is 
dissipated from the body in the form of heat.

Energy.  Energy is defined as the capacity for doing work. For 
example, if a particle is originally at rest, then the principle of work and 
energy states that �U1S2 = T2. In other words, the kinetic energy is 
equal to the work that must be done on the particle to bring it from a 
state of rest to a speed v. Thus, the kinetic energy is a measure of the 
particle’s capacity to do work, which is associated with the motion of the 
particle. When energy comes from the position of the particle, measured 
from a fixed datum or reference plane, it is called potential energy. Thus, 
potential energy is a measure of the amount of work a conservative force 
will do when it moves from a given position to the datum. In mechanics, 
the potential energy created by gravity (weight) and an elastic spring is 
important.

Gravitational Potential Energy.  If a particle is located a 
distance y above an arbitrarily selected datum, as shown in Fig. 14–17, the 
particle’s weight W has positive gravitational potential energy, Vg , since W 
has the capacity of doing positive work when the particle is moved back 
down to the datum. Likewise, if the particle is located a distance y below 
the datum, Vg is negative since the weight does negative work when the 
particle is moved back up to the datum. At the datum Vg = 0.

In general, if y is positive upward, the gravitational potential energy of 
the particle of weight W is*

	 Vg = Wy � (14–13)

*Here the weight is assumed to be constant. This assumption is suitable for small 
differences in elevation �y. If the elevation change is significant, however, a variation of 
weight with elevation must be taken into account (see Prob. 14–82).

W

W

W

�y

�y

Datum

Gravitational potential energy

Vg � �Wy

Vg � �Wy

Vg � 0

Fig. 14–17

Gravitational potential energy of this 
weight is increased as it is hoisted 
upward. (© R.C. Hibbeler)



214 	 Chapter 14    Kinet ics of a Part icle:  Work and Energy

14

Elastic Potential Energy.  When an elastic spring is elongated or 
compressed a distance s from its unstretched position, elastic potential 
energy Ve can be stored in the spring. This energy is

	 Ve = +
1
2 ks2 � (14–14)

Here Ve is always positive since, in the deformed position, the force of 
the spring has the capacity or “potential” for always doing positive work 
on the particle when the spring is returned to its unstretched position, 
Fig. 14–18.

Ve � 0

Unstretched
position, s � 0

Elastic potential energy

�s

�s

k

k

k

Ve � � ks21
2

Ve � � ks21
2

Fig. 14–18

The weight of the sacks resting on this 
platform causes potential energy to be 
stored in the supporting springs. As each 
sack is removed, the platform will rise 
slightly since some of the potential energy 
within the springs will be transformed into 
an increase in gravitational potential 
energy of the remaining sacks. Such a 
device is useful for removing the sacks 
without having to bend over to pick them 
up as they are unloaded. (© R.C. Hibbeler)
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Potential Function.  In the general case, if a particle is subjected 
to both gravitational and elastic forces, the particle’s potential energy can 
be expressed as a potential function, which is the algebraic sum

	 V = V g + V e � (14–15)

Measurement of V depends on the location of the particle with respect to 
a selected datum in accordance with Eqs. 14–13 and 14–14.

The work done by a conservative force in moving the particle from one 
point to another point is measured by the difference of this function, i.e.,

	 U1 -2 = V1 - V2� (14–16)

For example, the potential function for a particle of weight W 
suspended from a spring can be expressed in terms of its position, s, 
measured from a datum located at the unstretched length of the spring, 
Fig. 14–19. We have

	  V = Vg + Ve

	  = -Ws +
1
2 ks2

If the particle moves from s1 to a lower position s2 , then applying  
Eq. 14–16 it can be seen that the work of W and Fs is

 U1 -2 = V1 - V2 = 1-Ws1 +
1
2 ks1

22 - 1-Ws2 +
1
2 ks2

22
 = W(s2 - s1) - 11

2 ks2
2 -

1
2 ks1

22

W

s

Datum

Fs

k

Fig. 14–19 
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When the displacement along the path is infinitesimal, i.e., from point 
(x, y, z) to (x + dx, y + dy, z + dz), Eq. 14–16 becomes

 dU = V(x, y, z) - V(x + dx, y + dy, z + dz)

	  = -dV(x, y, z) 	 (14–17)

If we represent both the force and its displacement as Cartesian 
vectors, then the work can also be expressed as

 dU = F # dr = (Fxi + Fyj + Fzk) # (dxi + dyj + dzk)

 = Fx dx + Fy dy + Fz dz

Substituting this result into Eq. 14–17 and expressing the differential  
dV(x, y, z) in terms of its partial derivatives yields

Fx dx + Fy dy + Fz dz = - a 0V

0x
 dx +

0V

0y
 dy +

0V

0z
 dzb

Since changes in x, y, and z are all independent of one another, this 
equation is satisfied provided

	 Fx = -
0V

0x
,    Fy = -

0V

0y
,    Fz = -

0V

0z
	 (14–18)

Thus,

 F = -
0V

0x
 i -

0V

0y
 j -

0V

0z
 k

 = - a 0

0x
 i +

0

0y
 j +

0

0z
 kbV

or

	 F = - �V � (14–19)

where � (del) represents the vector operator  
� = (0>0x)i +  (0>0y)j + (0>0z)k.

Equation 14–19 relates a force F to its potential function V and thereby 
provides a mathematical criterion for proving that F is conservative. For 
example, the gravitational potential function for a weight located a distance 
y above a datum is Vg = Wy. To prove that W is conservative, it is necessary 
to show that it satisfies Eq. 14–18 (or Eq. 14–19), in which case

Fy = -
0V

0y
;        Fy = -

0

0y
 (Wy) = -W

The negative sign indicates that W acts downward, opposite to positive y, 
which is upward.
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14.6  Conservation of Energy

When a particle is acted upon by a system of both conservative and 
nonconservative forces, the portion of the work done by the conservative 
forces can be written in terms of the difference in their potential energies 
using Eq. 14–16, i.e., (�U1 -2)cons. = V1 - V2 . As a result, the principle of 
work and energy can be written as

	 T1 + V1 + (�U1 -2)noncons. = T2 + V2	 (14–20)

Here (�U1 -2)noncons. represents the work of the nonconservative forces 
acting on the particle. If only conservative forces do work then we have

	 T1 + V1 = T2 + V2 	 (14–21)

This equation is referred to as the conservation of mechanical energy 
or simply the conservation of energy. It states that during the motion the 
sum of the particle’s kinetic and potential energies remains constant. For 
this to occur, kinetic energy must be transformed into potential energy, 
and vice versa. For example, if a ball of weight W is dropped from a 
height h above the ground (datum), Fig. 14–20, the potential energy of 
the ball is maximum before it is dropped, at which time its kinetic energy 
is zero. The total mechanical energy of the ball in its initial position  
is thus

E = T1 + V1 = 0 + Wh = Wh

When the ball has fallen a distance h>2, its speed can be determined by 
using v2 = v0

2 + 2ac(y - y0), which yields v = 22g(h>2) = 2gh. The 
energy of the ball at the mid-height position is therefore

E = T2 + V2 =
1

2
  
W
g

 12gh22 + Wa  
h

2
b = Wh

Just before the ball strikes the ground, its potential energy is zero and its 
speed is v = 22gh. Here, again, the total energy of the ball is

E = T3 + V3 =
1

2
  
W
g

 122gh22 + 0 = Wh

Note that when the ball comes in contact with the ground, it deforms 
somewhat, and provided the ground is hard enough, the ball will rebound 
off the surface, reaching a new height h�, which will be less than the 
height  h from which it was first released. Neglecting air friction, the 
difference in height accounts for an energy loss, El = W(h - h�), which 
occurs during the collision. Portions of this loss produce noise, localized 
deformation of the ball and ground, and heat.

Datum

h

Potential Energy (max)
Kinetic Energy (zero)

Potential Energy and
Kinetic Energy

Potential Energy (zero)
Kinetic Energy (max)

h
2

Fig. 14–20 
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System of Particles.  If a system of particles is subjected only to 
conservative forces, then an equation similar to Eq. 14–21 can be written 
for the particles. Applying the ideas of the preceding discussion, Eq. 14–8 
(�T1 + �U1 -2 = �T2) becomes

	 �T1 + �V1 = �T2 + �V2 	 (14–22)

Here, the sum of the system’s initial kinetic and potential energies is equal 
to the sum of the system’s final kinetic and potential energies. In other 
words, �T + �V = const.

Procedure for Analysis

The conservation of energy equation can be used to solve problems 
involving velocity, displacement, and conservative force systems. It 
is generally easier to apply than the principle of work and energy 
because this equation requires specifying the particle’s kinetic 
and potential energies at only two points along the path, rather 
than determining the work when the particle moves through a 
displacement. For application it is suggested that the following 
procedure be used.

Potential Energy.
	 •	 Draw two diagrams showing the particle located at its initial and 

final points along the path.

	 •	 If the particle is subjected to a vertical displacement, establish the 
fixed horizontal datum from which to measure the particle’s 
gravitational potential energy Vg .

	 •	 Data pertaining to the elevation y of the particle from the datum 
and the stretch or compression s of any connecting springs can be 
determined from the geometry associated with the two diagrams.

	 •	 Recall Vg = Wy, where y is positive upward from the datum and 
negative downward from the datum; also for a spring, Ve =

1
2 ks2, 

which is always positive.

Conservation of Energy.
	 •	 Apply the equation T1 + V1 = T2 + V2 .

	 •	 When determining the kinetic energy, T =
1
2 mv2, remember  

that the particle’s speed v must be measured from an inertial 
reference frame.
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The gantry structure in the photo is used to test the response of an 
airplane during a crash. As shown in Fig. 14–21a, the plane, having a 
mass of 8 Mg, is hoisted back until u = 60�, and then the pull-back 
cable AC is released when the plane is at rest. Determine the speed of 
the plane just before it crashes into the ground, u = 15�. Also, what is 
the maximum tension developed in the supporting cable during the 
motion? Neglect the size of the airplane and the effect of lift caused 
by the wings during the motion.

Example   14.9

C

B

A

20 m

(a)

Datum

u

8000(9.81) N

T

15�

(b)

n

t

Fig. 14–21 

Solution
Since the force of the cable does no work on the plane, it must be 
obtained using the equation of motion. First, however, we must 
determine the plane’s speed at B.

Potential Energy.  For convenience, the datum has been established 
at the top of the gantry, Fig. 14–21a.

Conservation of Energy.

	 TA + VA = TB + VB

	 0 - 8000 kg (9.81 m>s2)(20 cos 60� m) =

	 1
2(8000 kg)vB

2 - 8000 kg (9.81 m>s2)(20 cos 15� m)

	 vB = 13.52 m>s = 13.5 m>s	 Ans.

Equation of Motion.  From the free-body diagram when the plane 
is at B, Fig. 14–21b, we have

+ a �Fn = man;

	 T - (8000(9.81) N) cos 15� = (8000 kg) 
(13.52 m>s)2

20 m
	 T = 149 kN	 Ans.

(© R.C. Hibbeler)



220 	 Chapter 14    Kinet ics of a Part icle:  Work and Energy

14

The ram R shown in Fig. 14–22a has a mass of 100 kg and is released 
from rest 0.75 m from the top of a spring, A, that has a stiffness 
kA = 12 kN>m. If a second spring B, having a stiffness kB =  
15 kN>m, is “nested” in A, determine the maximum displacement of 
A needed to stop the downward motion of the ram. The unstretched 
length of each spring is indicated in the figure. Neglect the mass of 
the springs.

Solution
Potential Energy.  We will assume that the ram compresses both 
springs at the instant it comes to rest. The datum is located through the 
center of gravity of the ram at its initial position, Fig. 14–22b. When the 
kinetic energy is reduced to zero (v2 = 0), A is compressed a distance 
sA and B compresses sB = sA - 0.1 m.

Conservation of Energy.

T1 + V1 = T2 + V2

 0 + 0 = 0 + 51
2 kAsA

2 +
1
2 kB(sA - 0.1)2 - Wh6

 0 + 0 = 0 + 51
2(12 000 N>m)sA

2 +
1
2(15 000 N>m)(sA - 0.1 m)2

- 981 N (0.75 m + sA)6
Rearranging the terms,

	 13 500sA
2 - 2481sA - 660.75 = 0

Using the quadratic formula and solving for the positive root, we have

	 sA = 0.331 m	 Ans.

Since sB = 0.331 m - 0.1 m = 0.231 m, which is positive, the 
assumption that both springs are compressed by the ram is correct.

Note:  The second root, sA = -0.148 m, does not represent the 
physical situation. Since positive s is measured downward, the negative 
sign indicates that spring A would have to be “extended” by an amount 
of 0.148 m to stop the ram.

Example   14.10

R

0.75 m

0.4 m
0.3 m

kA�12 kN/m

A

B

kB � 15 kN/m
(a)

0.75 m

sB � sA � 0.1 m

(b)

1 Datum

981 N

2

981 N

sA

sA

Fig. 14–22 
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A smooth 2-kg collar, shown in Fig. 14–23a, fits loosely on the vertical 
shaft. If the spring is unstretched when the collar is in the position A, 
determine the speed at which the collar is moving when y = 1 m, if 
(a) it is released from rest at A, and (b) it is released at A with an 
upward velocity vA = 2 m>s.

Solution
Part (a) Potential Energy.  For convenience, the datum is established 
through AB, Fig. 14–23b. When the collar is at C, the gravitational 
potential energy is -(mg)y, since the collar is below the datum, and the 
elastic potential energy is 1

2 ksCB
2 . Here sCB = 0.5 m, which represents 

the stretch in the spring as shown in the figure.

Conservation of Energy.

 TA + VA = TC + VC

 0 + 0 =
1
2 mvC

2 + 51
2 ksCB

2 - mgy6
 0 + 0 = 51

2(2 kg)vC
2 6 + 51

2(3 N>m)(0.5 m)2 - 2(9.81) N (1 m)6
 vC = 4.39 m>s T Ans.

This problem can also be solved by using the equation of motion or 
the principle of work and energy. Note that for both of these methods 
the variation of the magnitude and direction of the spring force must 
be taken into account (see Example 13.4). Here, however, the above 
solution is clearly advantageous since the calculations depend only on 
data calculated at the initial and final points of the path.

Part (b) Conservation of Energy.  If vA = 2 m>s, using the data in 
Fig. 14–23b, we have

 TA + VA = TC + VC

 12 mvA
2 + 0 =

1
2 mvC

2 + 51
2 ksCB

2 - mgy6
 12(2 kg)(2 m>s)2 + 0 =

1
2(2 kg)vC

2 + 51
2(3 N>m)(0.5 m)2

- 2(9.81) N (1 m)6
 vC = 4.82 m>s T 	 Ans.

Note:  The kinetic energy of the collar depends only on the magnitude 
of velocity, and therefore it is immaterial if the collar is moving up or 
down at 2 m>s when released at A.

Example   14.11

y

A

C

(a)

0.75 m

k � 3 N/m

B

y � 1 m

A

C

(b)

Datum

W

W

vC

sCB � 1.25 m � 0.75 m � 0.5 m

0.75 m

B

(1 m)2 � (0.75 m)2 � 1.25 m

Fig. 14–23 
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Preliminary Problems

P14–3.  Determine the potential energy of the block that 
has a weight of 100 N.

5 2 m

4

3

Datum

(a)

5 m 3 m

Datum

(b)

4 m

Datum

3 m

(c)

Prob. P14–3

P14–4.  Determine the potential energy in the spring that 
has an unstretched length of 4 m.

4 m

3 m
k � 10 N/m

(a)

8 m

6 m

k � 10 N/m

(b)

k � 10 N/m

5 m

30�

(c)

Prob. P14–4
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F14–13.    The 2-kg pendulum bob is released from rest when 
it is at A. Determine the speed of the bob and the tension in 
the cord when the bob passes through its lowest position, B.

A

B

1.5 m

F14–14.    The 2-kg package leaves the conveyor belt at A 
with a speed of vA = 1 m>s and slides down the smooth 
ramp. Determine the required speed of the conveyor belt at 
B so that the package can be delivered without slipping on 
the belt. Also, find the normal reaction the curved portion 
of the ramp exerts on the package at B if rB = 2 m.

4 m

vA � 1 m/s

vB

A

B

y

x

F14–15.    The 2-kg collar is given a downward velocity of 
4 m>s when it is at A. If the spring has an unstretched length 
of 1 m and a stiffness of k = 30 N>m, determine the velocity 
of the collar at s = 1 m.

k � 30 N/m

s

A

C

2 m

4 m/s B

F14–16.    The 5-lb collar is released from rest at A and travels 
along the frictionless guide. Determine the speed of the collar 
when it strikes the stop B. The spring has an unstretched 
length of 0.5 ft.

Fundamental Problems

Prob. F14–13

Prob. F14–14

Prob. F14–15

Prob. F14–16

Prob. F14–17

k � 4 lb/ft

1.5 ft

1 ft

A

B

F14–17.    The 75-lb block is released from rest 5 ft above 
the plate. Determine the compression of each spring when 
the block momentarily comes to rest after striking the plate. 
Neglect the mass of the plate. The springs are initially 
unstretched.

5 ft

0.25 ft

CB
k � 1000 lb/ft

k¿ � 1500 lb/ft

k � 1000 lb/ft
A

F14–18.    The 4-kg collar C has a velocity of vA = 2 m>s when 
it is at A. If the guide rod is smooth, determine the speed of the 
collar when it is at B. The spring has an unstretched length of 
l0 = 0.2 m.

A

B

C

k � 400 N/m

0.4 m

0.1 m

Prob. F14–18
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Problems

14–66.  The girl has a mass of 40 kg and center of mass at G. 
If she is swinging to a maximum height defined by u = 60�, 
determine the force developed along each of the four 
supporting posts such as AB at the instant u = 0�. The  
swing is centrally located between the posts.

2 m

30� 30�

�

A

B

G

Prob. 14–66

14–67.  The 30-lb block A is placed on top of two nested 
springs B and C and then pushed down to the position 
shown. If it is then released, determine the maximum height h 
to which it will rise.

 

A

B

C

6 in.
4 in.

A

h

kB � 200 lb/ in.

kC � 100 lb/ in.

Prob. 14–67

*14–68.  The 5-kg collar has a velocity of 5 m>s to the right 
when it is at A. It then travels down along the smooth guide. 
Determine the speed of the collar when it reaches point B, 
which is located just before the end of the curved portion of the 
rod. The spring has an unstretched length of 100 mm and B is 
located just before the end of the curved portion of the rod.

14–69.  The 5-kg collar has a velocity of 5 m>s to the right 
when it is at A. It then travels along the smooth guide. 
Determine its speed when its center reaches point B and the 
normal force it exerts on the rod at this point. The spring has 
an unstretched length of 100 mm and B is located just before 
the end of the curved portion of the rod.

k � 50 N/m

200 mm

200 mm

A

B

Probs. 14–68/69

14–70.  The ball has a weight of 15 lb and is fixed to a rod 
having a negligible mass. If it is released from rest when 
u = 0�, determine the angle u at which the compressive 
force in the rod becomes zero.

3 ft
u

Prob. 14–70
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14–71.  The car C and its contents have a weight of 600 lb, 
whereas block B has a weight of 200 lb. If the car is released 
from rest, determine its speed when it travels 30 ft down the 
20° incline. Suggestion: To measure the gravitational 
potential energy, establish separate datums at the initial 
elevations of B and C.

v
20�

30 ft

B

C

Prob. 14–71

*14–72.  The roller coaster car has a mass of 700 kg, 
including its passenger. If it starts from the top of the hill A 
with a speed vA = 3 m>s, determine the minimum height h 
of the hill crest so that the car travels around the inside 
loops without leaving the track. Neglect friction, the mass of 
the wheels, and the size of the car. What is the normal 
reaction on the car when the car is at B and when it is at C? 
Take rB = 7.5 m and rC = 5 m.

14–73.  The roller coaster car has a mass of 700 kg, 
including its passenger. If it is released from rest at the top 
of the hill A, determine the minimum height h of the hill 
crest so that the car travels around both inside the loops 
without leaving the track. Neglect friction, the mass of the 
wheels, and the size of the car. What is the normal reaction 
on the car when the car is at B and when it is at C?  
Take rB = 7.5 m and rC = 5 m.

h
15 m 

C 

B

A

10 m 

Probs. 14–72/73

14–74.  The assembly consists of two blocks A and B 
which have a mass of 20 kg and 30 kg, respectively. 
Determine the speed of each block when B descends 1.5 m. 
The blocks are released from rest. Neglect the mass of the 
pulleys and cords.

BA

Prob. 14–74

14–75.  The assembly consists of two blocks A and B, 
which have a mass of 20 kg and 30 kg, respectively. 
Determine the distance B must descend in order for A to 
achieve a speed of 3 m>s starting from rest.

BA

Prob. 14–75
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*14–76.  The spring has a stiffness  k = 50 N>m and an 
unstretched length of 0.3 m. If it is attached to the 2-kg 
smooth collar and the collar is released from rest at A 
(u = 0�), determine the speed of the collar when u = 60�. 
The motion occurs in the horizontal plane. Neglect the size 
of the collar.

z

A

x

2 m

u
y

k � 50 N/m

Prob. 14–76

14–77.  The roller coaster car having a mass m is released 
from rest at point A. If the track is to be designed so that the 
car does not leave it at B, determine the required height h. 
Also, find the speed of the car when it reaches point C. 
Neglect friction.

C

A

B

20 m

7.5 m

h

Prob. 14–77

14–78.  The spring has a stiffness k = 200 N>m and an 
unstretched length of 0.5 m. If it is attached to the 3-kg 
smooth collar and the collar is released from rest at A, 
determine the speed of the collar when it reaches B. Neglect 
the size of the collar.

2 m

A

B

k � 200 N/m

1.5 m

Prob. 14–78

14–79.  A 2-lb block rests on the smooth semicylindrical 
surface at A. An elastic cord having a stiffness of k = 2 lb>ft is 
attached to the block at B and to the base of the semicylinder 
at C. If the block is released from rest at u = 0, A, determine 
the longest unstretched length of the cord so the block 
begins to leave the semicylinder at the instant u = 45�. 
Neglect the size of the block.

1.5 ft

AC

B

k � 2 lb/ft

u

Prob. 14–79
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*14–80.  When s = 0, the spring on the firing mechanism is 
unstretched. If the arm is pulled back such that s = 100 mm 
and released, determine the speed of the 0.3-kg ball and the 
normal reaction of the circular track on the ball when 
u = 60�. Assume all surfaces of contact to be smooth. 
Neglect the mass of the spring and the size of the ball.

s

k � 1500 N/m

1.5 mu

Prob. 14–80

14–81.  When s = 0, the spring on the firing mechanism is 
unstretched. If the arm is pulled back such that s = 100 mm 
and released, determine the maximum angle u the ball will 
travel without leaving the circular track. Assume all surfaces 
of contact to be smooth. Neglect the mass of the spring and 
the size of the ball.

s

k � 1500 N/m

1.5 mu

Prob. 14–81

14–82.  If the mass of the earth is Me, show that the 
gravitational potential energy of a body of mass m located 
a distance r from the center of the earth is V g = -GMe  m >r. 
Recall that the gravitational force acting between the earth 
and the body is F = G(Me  m >r2

 ), Eq. 13–1. For the 
calculation, locate the datum at r S � . Also, prove that F is 
a conservative force.

14–83.  A rocket of mass m is fired vertically from the surface 
of the earth, i.e., at r = r1. Assuming that no mass is lost as it 
travels upward, determine the work it must do against gravity 
to reach a distance r2. The force of gravity is F = GMe  m >r2 
(Eq. 13–1), where Me is the mass of the earth and r the distance 
between the rocket and the center of the earth.

r2

r1

r

Probs. 14–82/83

*14–84.  The 4-kg smooth collar has a speed of 3 m>s 
when it is at s = 0. Determine the maximum distance s it 
travels before it stops momentarily. The spring has an 
unstretched length of 1 m.

1.5 m

3 m/s

k � 100 N/m

s

A

B

Prob. 14–84
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14–85.  A 60-kg satellite travels in free flight along an 
elliptical orbit such that at A, where rA = 20 Mm, it has a 
speed vA = 40 Mm>h. What is the speed of the satellite 
when it reaches point B, where rB = 80 Mm? Hint: See 
Prob. 14–82, where Me = 5.976(1024) kg and 
G = 66.73(10- 12) m3>(kg # s2).

A

B

vA

vB rB � 80 Mm

rA � 20 Mm

Prob. 14–85

14–86.  The skier starts from rest at A and travels down the 
ramp. If friction and air resistance can be neglected, 
determine his speed vB when he reaches B. Also, compute 
the distance s to where he strikes the ground at C, if he 
makes the jump traveling horizontally at B. Neglect the 
skier’s size. He has a mass of 70 kg.

4 m

vB

s
C

B

A

50 m

30�

Prob. 14–86

14–87.  The block has a mass of 20 kg and is released from 
rest when  s = 0.5 m. If the mass of the bumpers A and B 
can be neglected, determine the maximum deformation of 
each spring due to the collision.

kB � 800 N/m

s � 0.5 m
A

B

kA � 500 N/m

Prob. 14–87

*14–88.  The 2-lb collar has a speed of 5 ft>s at A. The 
attached spring has an unstretched length of 2 ft and a 
stiffness of k = 10 lb>ft. If the collar moves over the smooth 
rod, determine its speed when it reaches point B, the normal 
force of the rod on the collar, and the rate of decrease in  
its speed.

y

x

A

B

4.5 ft

3 ft

k � 10 lb/ft

x21
2y � 4.5 �

Prob. 14–88
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14–89.  When the 6-kg box reaches point A it has a speed 
of vA = 2 m>s. Determine the angle u at which it leaves the 
smooth circular ramp and the distance s to where it falls 
into the cart. Neglect friction.

u

vA � 2 m/s

1.2 m

BA

s

20�

Prob. 14–89

14–90.  When the 5-kg box reaches point A it has a speed 
vA = 10 m>s. Determine the normal force the box exerts on 
the surface when it reaches point B. Neglect friction and the 
size of the box.

9 m

9 m

B

y

x
A

y � x

x1/2 � y1/2 � 3

Prob. 14–90

14–91.  When the 5-kg box reaches point A it has a speed 
vA = 10 m>s. Determine how high the box reaches up the 
surface before it comes to a stop. Also, what is the resultant 
normal force on the surface at this point and the 
acceleration? Neglect friction and the size of the box.

9 m

9 m

B

y

x
A

y � x

x1/2 � y1/2 � 3

Prob. 14–91

*14–92.  The roller coaster car has a speed of 15 ft>s when it 
is at the crest of a vertical parabolic track. Determine the 
car’s velocity and the normal force it exerts on the track 
when it reaches point B. Neglect friction and the mass of the 
wheels. The total weight of the car and the passengers  
is 350 lb.

vA � 15 ft/s

200 ft

A

B

200 ft

y

x
O

 (40 000 � x2)1
200y �

Prob. 14–92
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14–93.  The 10-kg sphere C is released from rest when 
u = 0� and the tension in the spring is 100 N. Determine the 
speed of the sphere at the instant u = 90�. Neglect the mass 
of rod AB and the size of the sphere.

A

k � 500 N/m

D

C

E

B

0.4 m

0.15 m

0.3 m

u

Prob. 14–93

14–94.  A quarter-circular tube AB of mean radius r 
contains a smooth chain that has a mass per unit length of 
m0. If the chain is released from rest from the position 
shown, determine its speed when it emerges completely 
from the tube.

A

B

O

r

Prob. 14–94

14–95.  The cylinder has a mass of 20 kg and is released 
from rest when h = 0. Determine its speed when h = 3 m. 
Each spring has a stiffness k = 40 N>m and an unstretched 
length of 2 m.

kk
h

2 m 2 m

Prob. 14–95

*14–96.  If the 20-kg cylinder is released from rest at h = 0, 
determine the required stiffness k of each spring so that its 
motion is arrested or stops when h = 0.5 m. Each spring has 
an unstretched length of 1 m.

kk
h

2 m 2 m

Prob. 14–96

14–97.  A pan of negligible mass is attached to two identical 
springs of stiffness k = 250 N>m. If a 10-kg box is dropped 
from a height of 0.5 m above the pan, determine the 
maximum vertical displacement d. Initially each spring has 
a tension of 50 N.

1 m 1 m

0.5 m
k � 250 N/m k � 250 N/m

d

Prob. 14–97
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C14–3.    The woman pulls the water balloon launcher back, 
stretching each of the four elastic cords. Estimate the 
maximum height and the maximum range of a ball placed 
within the container if it is released from the position shown. 
Use numerical values and any necessary measurements 
from the photo. Assume the unstretched length and stiffness 
of each cord is known.

Prob. C14–3 (© R.C. Hibbeler)

C14–4.    The girl is momentarily at rest in the position 
shown. If the unstretched length and stiffness of each of the 
two elastic cords is known, determine approximately how 
far the girl descends before she again becomes momentarily 
at rest. Use numerical values and take any necessary 
measurements from the photo.

Prob. C14–4 (© R.C. Hibbeler) 

C14–1.    The roller coaster is momentarily at rest at A. 
Determine the approximate normal force it exerts on the 
track at B. Also determine its approximate acceleration at 
this point. Use numerical data, and take scaled measurements 
from the photo with a known height at A.

A
B

Prob. C14–1 (© R.C. Hibbeler)

C14–2.    As the large ring rotates, the operator can apply a 
breaking mechanism that binds the cars to the ring, which 
then allows the cars to rotate with the ring. Assuming the 
passengers are not belted into the cars, determine the 
smallest speed of the ring (cars) so that no passenger will 
fall out. When should the operator release the brake so that 
the cars can achieve their greatest speed as they slide freely 
on the ring? Estimate the greatest normal force of the seat 
on a passenger when this speed is reached. Use numerical 
values to explain your answer.

Prob. C14–2 (© R.C. Hibbeler)

Conceptual PROBLEMS
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The Principle of Work and Energy

If the equation of motion in the 
tangential direction, �Ft = mat, is 
combined with the kinematic equation, 
at ds = v dv, we obtain the principle of 
work and energy. This equation states 
that the initial kinetic energy T, plus 
the work done �U1 - 2 is equal to the 
final kinetic energy.

Work of a Force

A force does work when it undergoes a 
displacement along its line of action. If 
the force varies with the displacement, 
then the work is U = 1F cos u ds.

Graphically, this represents the area 
under the F9s diagram.

F

F cos u s2s1
s

u

F cos u

F cos u

ds
s2s1

s

s

y

W
s2

s1

z

xy1

y2

Unstretched
position, s � 0

Fs

s

Force on
Particle

k

The work done by a spring force, 
F = ks, depends upon the stretch or 
compression s of the spring.

If the force is constant, then for a 
displacement �s in the direction of the 
force, U = Fc �s. A typical example of 
this case is the work of a weight, 
U = -W �y. Here, �y is the vertical 
displacement.

U = - a1
2 ks2

2 -
1
2 ks1

2b

T1 + �U192 = T2

Chapter Review
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The principle of work and energy is 
useful for solving problems that involve 
force, velocity, and displacement. For 
application, the free-body diagram of 
the particle should be drawn in order to 
identify the forces that do work.

Conservation of Energy

A conservative force does work that is 
independent of its path. Two examples 
are the weight of a particle and the 
spring force.

Friction is a nonconservative force since 
the work depends upon the length of 
the path. The longer the path, the more 
work done.

The work done by a conservative force 
depends upon its position relative to a 
datum. When this work is referenced 
from a datum, it is called potential 
energy. For a weight, it is Vg =  {  Wy, 
and for a spring it is Ve = +

1
2 ks2.

Mechanical energy consists of kinetic 
energy T and gravitational and elastic 
potential energies V. According to the 
conservation of energy, this sum is 
constant and has the same value at any 
position on the path. If only gravitational 
and spring forces cause motion of the 
particle, then the conservation-of-energy 
equation can be used to solve problems 
involving these conservative forces, 
displacement, and velocity.

Power and Efficiency

Power is the time rate of doing work. 
For application, the force F creating the 
power and its velocity v must be 
specified.

Efficiency represents the ratio of power 
output to power input. Due to frictional 
losses, it is always less than one.

P =
dU

dt

P = F # v

e =
power output

power input

W

W

W

�y

�y

Datum

Gravitational potential energy

Vg � �Wy

Vg � �Wy

Vg � 0

sk

Ve � ks21
2

Elastic potential energy

T1 + V1 = T2 + V2
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R14–1.  If a 150-lb crate is released from rest at A, 
determine its speed after it slides 30 ft down the plane. The 
coefficient of kinetic friction between the crate and plane is 
mk = 0.3.

30 ft

30�

A

Prob. R14–1

R14–2.  The small 2-lb collar starting from rest at A slides 
down along the smooth rod. During the motion, the collar is 
acted upon by a force F = {10i + 6yj + 2zk} lb, where x, y, z 
are in feet. Determine the collar’s speed when it strikes the 
wall at B.

y

x

z

8 ft

10 ft

F

1 ft

B

4 ft

A

Prob. R14–2

R14–3.  The block has a weight of 1.5 lb and slides along 
the smooth chute AB. It is released from rest at A, which 
has coordinates of A(5 ft, 0, 10 ft). Determine the speed at 
which it slides off at B, which has coordinates of B(0, 8 ft, 0).

z

y

x

A

B

10 ft

5 ft

8 ft

Prob. R14–3

R14–4.  The block has a mass of 0.5 kg and moves within 
the smooth vertical slot. If the block starts from rest when 
the attached spring is in the unstretched position at A, 
determine the constant vertical force F which must be 
applied to the cord so that the block attains a speed 
vB = 2.5 m>s when it reaches B; sB = 0.15 m. Neglect the 
mass of the cord and pulley.

0.3 m

0.3 m

sB
F

B

C

A

k � 100 N/m

Prob. R14–4

Review Problems
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R14–7.  The collar of negligible size has a mass of 0.25 kg 
and is attached to a spring having an unstretched length of 
100 mm. If the collar is released from rest at A and travels 
along the smooth guide, determine its speed just before it 
strikes B.

400 mm

200 mm

B

A

k � 150 N/m

Prob. R14–7

R14–8.  The blocks A and B weigh 10 and 30 lb, 
respectively. They are connected together by a light cord 
and ride in the frictionless grooves. Determine the speed of 
each block after block A moves 6 ft up along the plane. The 
blocks are released from rest.

3 ft

B

A

1 ft1 ft

15 ft

3 ft

x
y

z

Prob. R14–8

R14–5.  The crate, having a weight of 50 lb, is hoisted by 
the pulley system and motor M. If the crate starts from rest 
and, by constant acceleration, attains a speed of 12 ft>s after 
rising 10 ft, determine the power that must be supplied to 
the motor at the instant s = 10 ft. The motor has an 
efficiency e = 0.74.

M

s

Prob. R14–5

R14–6.  The 50-lb load is hoisted by the pulley system and 
motor M. If the motor exerts a constant force of 30 lb on the 
cable, determine the power that must be supplied to the 
motor if the load has been hoisted s = 10 ft starting from 
rest. The motor has an efficiency of e = 0.76.

s

M

B

Prob. R14–6



The design of the bumper cars used for this amusement park ride requires 
knowledge of the principles of impulse and momentum.

Chapter 15

(© David J. Green/Alamy)



Kinetics of a Particle: 
Impulse and 
Momentum

Chapter Objectives

n	 To develop the principle of linear impulse and momentum for a 
particle and apply it to solve problems that involve force, velocity, 
and time.

n	 To study the conservation of linear momentum for particles.

n	 To analyze the mechanics of impact.

n	 To introduce the concept of angular impulse and momentum.

n	 To solve problems involving steady fluid streams and propulsion 
with variable mass.

15.1  �Principle of Linear Impulse 
and Momentum

In this section we will integrate the equation of motion with respect to 
time and thereby obtain the principle of impulse and momentum. The 
resulting equation will be useful for solving problems involving force, 
velocity, and time.

Using kinematics, the equation of motion for a particle of mass m can 
be written as

	 F = ma = m  
dv
dt

� (15–1)

where a and v are both measured from an inertial frame of reference. 
Rearranging the terms and integrating between the limits v = v1 at t = t1 
and v = v2 at t = t2 , we have

 L
t2

t1

Fdt = m L
v2

v1

dv
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or

	 � L
t2

t1

Fdt = mv2 - mv1� (15–2)

This equation is referred to as the principle of linear impulse and 
momentum. From the derivation it can be seen that it is simply a time 
integration of the equation of motion. It provides a direct means of 
obtaining the particle’s final velocity v2 after a specified time period when 
the particle’s initial velocity is known and the forces acting on the particle 
are either constant or can be expressed as functions of time. By  
comparison, if v2 was determined using the equation of motion, a two-step 
process would be necessary; i.e., apply �F = ma to obtain a, then  
integrate a = dv>dt to obtain v2 .

Linear Momentum.  Each of the two vectors of the form L = mv 
in Eq. 15–2 is referred to as the particle’s linear momentum. Since m is a 
positive scalar, the linear-momentum vector has the same direction as v, 
and its magnitude mv has units of mass times velocity, e.g., kg # m>s, or 
slug # ft>s.

Linear Impulse.  The integral I = 1F dt in Eq. 15–2 is referred to as 
the linear impulse. This term is a vector quantity which measures the 
effect of a force during the time the force acts. Since time is a positive 
scalar, the impulse acts in the same direction as the force, and its magnitude 
has units of force times time, e.g., N # s or lb # s.* 

If the force is expressed as a function of time, the impulse can be 
determined by direct evaluation of the integral. In particular, if the force 
is constant in both magnitude and direction, the resulting impulse 
becomes 

I = 1 t2
t1

Fc dt = Fc(t2 - t1). 

Graphically the magnitude of the impulse can be represented by the 
shaded area under the curve of force versus time, Fig. 15–1. A constant 
force creates the shaded rectangular area shown in Fig. 15–2.

The impulse tool is used to remove the 
dent in the trailer fender. To do so its end 
is first screwed into a hole drilled in the 
fender, then the weight is gripped and 
jerked upwards, striking the stop ring.  
The impulse developed is transferred 
along the shaft of the tool and pulls 
suddenly on the dent. (© R.C. Hibbeler)

*Although the units for impulse and momentum are defined differently, it can be shown 
that Eq. 15–2 is dimensionally homogeneous.

F

t
t1 t2

Variable Force

F(t)dt
t2

t1
I � �

Fig. 15–1

F

t
t1 t2

I � Fc(t2 � t1)

Fc

Constant Force

Fig. 15–2 
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The study of many types of sports, such 
as golf, requires application of the 
principle of linear impulse and 
momentum. (© R.C. Hibbeler)

mv1

mv2

Final
momentum
diagram

Initial
momentum
diagram

Impulse
diagram

+ =

F dt
t2

t1
�

Fig. 15–3 

Principle of Linear Impulse and Momentum.  For problem 
solving, Eq. 15–2 will be rewritten in the form

	 mv1 +  L
t2

t1

F dt = mv2 � (15–3)

which states that the initial momentum of the particle at time t1 plus the 
sum of all the impulses applied to the particle from t1 to t2 is equivalent 
to the final momentum of the particle at time t2 . These three terms are 
illustrated graphically on the impulse and momentum diagrams shown in 
Fig. 15–3. The two momentum diagrams are simply outlined shapes of the 
particle which indicate the direction and magnitude of the particle’s initial 
and final momenta, mv1 and mv2. Similar to the free-body diagram, the 
impulse diagram is an outlined shape of the particle showing all the 
impulses that act on the particle when it is located at some intermediate 
point along its path.

If each of the vectors in Eq. 15–3 is resolved into its x, y, z components, 
we can write the following three scalar equations of linear impulse and 
momentum.

	

 m(vx)1 +  L
t2

t1

Fx dt = m(vx)2

 
m(vy)1 +  L

t2

t1

Fy dt = m(vy)2

 
m(vz)1 +  L

t2

t1

Fz dt = m(vz)2

� (15–4)
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x

y

z

G i

rG

Fi
fi

ri

Inertial coordinate system

Fig. 15–4 

15.2  �Principle of Linear Impulse and 
Momentum for a System of Particles

The principle of linear impulse and momentum for a system of particles 
moving relative to an inertial reference, Fig. 15–4, is obtained from the 
equation of motion applied to all the particles in the system, i.e.,

	 Fi = mi 
dvi

dt
� (15–5)

The term on the left side represents only the sum of the external forces 
acting on the particles. Recall that the internal forces fi acting between 
particles do not appear with this summation, since by Newton’s third law 
they occur in equal but opposite collinear pairs and therefore cancel out. 
Multiplying both sides of Eq. 15–5 by dt and integrating between the 
limits t = t1, vi = (vi)1 and t = t2, vi = (vi)2 yields

	 mi (vi)1 +  L
t2

t1

Fi dt = mi (vi)2 � (15–6)

This equation states that the initial linear momentum of the system plus 
the impulses of all the external forces acting on the system from t1 to t2 is 
equal to the system’s final linear momentum.

Since the location of the mass center G of the system is determined 
from mrG = miri, where m = mi is the total mass of all the particles, 
Fig. 15–4, then taking the time derivative, we have

mvG = mivi

which states that the total linear momentum of the system of particles is 
equivalent to the linear momentum of a “fictitious” aggregate particle of 
mass m = mi moving with the velocity of the mass center of the system. 
Substituting into Eq. 15–6 yields

	 m(vG)1 +  L
t2

t1

Fi dt = m(vG)2� (15–7)

Here the initial linear momentum of the aggregate particle plus the 
external impulses acting on the system of particles from t1 to t2 is equal to 
the aggregate particle’s final linear momentum. As a result, the above 
equation justifies application of the principle of linear impulse and 
momentum to a system of particles that compose a rigid body.
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*This procedure will be followed when developing the proofs and theory in the text.

W�t

�Ndt

�N¿dt

�F¿dt

�Fdt

As the wheels of the pitching machine rotate, 
they apply frictional impulses to the ball, 
thereby giving it a linear momentum. These 
impulses are shown on the impulse diagram. 
Here both the frictional and normal impulses 
vary with time. By comparison, the weight 
impulse is constant and is very small since 
the time t the ball is in contact with the 
wheels is very small. (© R.C. Hibbeler)

Procedure for Analysis

The principle of linear impulse and momentum is used to solve 
problems involving force, time, and velocity, since these terms are 
involved in the formulation. For application it is suggested that 
the following procedure be used.* 

Free-Body Diagram.
	 •	 Establish the x, y, z inertial frame of reference and draw the 

particle’s free-body diagram in order to account for all the forces 
that produce impulses on the particle.

	 •	 The direction and sense of the particle’s initial and final velocities 
should be established.

	 •	 If a vector is unknown, assume that the sense of its components is 
in the direction of the positive inertial coordinate(s).

	 •	 As an alternative procedure, draw the impulse and momentum 
diagrams for the particle as discussed in reference to Fig. 15–3.

Principle of Impulse and Momentum.
	 •	 In accordance with the established coordinate system, apply the 

principle of linear impulse and momentum,  mv1 +  1 t2
t1

F dt = mv2 . 
If motion occurs in the x–y plane, the two scalar component 
equations can be formulated by either resolving the vector 
components of F from the free-body diagram, or by using the 
data on the impulse and momentum diagrams.

	 •	 Realize that every force acting on the particle’s free-body diagram 
will create an impulse, even though some of these forces will do 
no work.

	 •	 Forces that are functions of time must be integrated to obtain the 
impulse. Graphically, the impulse is equal to the area under the 
force–time curve.
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The 100-kg crate shown in Fig. 15–5a is originally at rest on the smooth 
horizontal surface. If a towing force of 200 N, acting at an angle of 45°, is 
applied for 10 s, determine the final velocity and the normal force which 
the surface exerts on the crate during this time interval.

Solution
This problem can be solved using the principle of impulse and 
momentum since it involves force, velocity, and time.

Free-Body Diagram.  See Fig. 15–5b. Since all the forces acting are 
constant, the impulses are simply the product of the force magnitude 
and 10 s [I = Fc(t2 - t1)]. Note the alternative procedure of drawing 
the crate’s impulse and momentum diagrams, Fig. 15–5c.

Principle of Impulse and Momentum.  Applying Eqs. 15–4 yields

( S+ )	  m(vx)1 + L
t2

t1

 Fx dt = m(vx)2

	  0 + 200 N cos 45(10 s) = (100 kg)v2

	  v2 = 14.1 m>s� Ans.

( + c )	  m(vy)1 +  L
t2

t1

Fy dt = m(vy)2

	 0 + NC(10 s) - 981 N(10 s) + 200 N sin 45(10 s) = 0

	 NC = 840 N� Ans.

NOTE: Since no motion occurs in the y direction, direct application of 
the equilibrium equation Fy = 0 gives the same result for NC . Try to 
solve the problem by first applying Fx = max, then v = v0 + ac t. 

Example   15.1

45�

200 N

(a)

y

x

(b)

v

NC

45�

200 N

981 N

200 N (10 s)

=

(c)

NC (10 s)

(100 kg) v2
+

981 N (10 s)

45�

Fig.15–5 
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The 50-lb crate shown in Fig. 15–6a is acted upon by a force having a 
variable magnitude P = (20t) lb, where t is in seconds. Determine the 
crate’s velocity 2 s after P has been applied. The initial velocity is 
v1 = 3 ft>s down the plane, and the coefficient of kinetic friction 
between the crate and the plane is mk = 0.3.

Solution
Free-Body Diagram.  See Fig. 15–6b. Since the magnitude of force 
P = 20t varies with time, the impulse it creates must be determined by 
integrating over the 2-s time interval. 

Principle of Impulse and Momentum.  Applying Eqs. 15–4 in the  
x direction, we have

( + b )	 m(vx)1 +  L
t2

t1

Fx dt = m(vx)2

50 lb

32.2 ft>s2 (3 ft>s) + L
2 s

0
20t dt - 0.3NC (2 s) + (50 lb) sin 30(2 s) =

50 lb

32.2 ft>s2 v2

	 4.658 + 40 - 0.6NC + 50 = 1.553v2

The equation of equilibrium can be applied in the y direction. Why?

+ aFy = 0;	 NC - 50 cos 30 lb = 0

Solving,

	  NC = 43.30 lb

	  v2 = 44.2 ft>s b� Ans.

Note: We can also solve this problem using the equation of motion. 
From Fig. 15–6b,

+ bFx = max;  20t - 0.3(43.30) + 50 sin 30 =
50

32.2
 a

	 a = 12.88t + 7.734

Using kinematics

+ bdv = a dt;	  L
v

3 ft>s 
dv = L

2 s

0
(12.88t + 7.734)dt

	  v = 44.2 ft>s� Ans.

By comparison, application of the principle of impulse and momentum 
eliminates the need for using kinematics (a = dv>dt) and thereby yields 
an easier method for solution.

Example   15.2

P

v1 � 3 ft/s

30�

(a)

y

x

30�

NC

F � 0.3 NC

50 lb

P � 20t

(b)

v

Fig. 15–6 
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Blocks A and B shown in Fig. 15–7a have a mass of 3 kg and 5 kg, 
respectively. If the system is released from rest, determine the velocity 
of block B in 6 s. Neglect the mass of the pulleys and cord.

Solution
Free-Body Diagram.  See Fig. 15–7b. Since the weight of each block 
is constant, the cord tensions will also be constant. Furthermore, since 
the mass of pulley D is neglected, the cord tension TA = 2TB . Note that 
the blocks are both assumed to be moving downward in the positive 
coordinate directions, sA  and sB .

Principle of Impulse and Momentum.
Block A:

( + T )	  m(vA)1 +  L
t2

t1

Fy dt = m(vA)2

Example   15.3

	  0 - 2TB(6 s) + 3(9.81) N(6 s) = (3 kg)(vA)2� (1)

Block B:

(+ T )	  m(vB)1 +  L
t2

t1

Fy dt = m(vB)2

	  0 + 5(9.81) N(6 s) - TB(6 s) = (5 kg)(vB)2� (2)

Kinematics.  Since the blocks are subjected to dependent motion, the 
velocity of A can be related to that of B by using the kinematic analysis 
discussed in Sec. 12.9. A horizontal datum is established through the 
fixed point at C, Fig. 15–7a, and the position coordinates, sA  and sB , are 
related to the constant total length l of the vertical segments of the cord 
by the equation

2sA + sB = l

Taking the time derivative yields

	 2vA = -vB� (3)

As indicated by the negative sign, when B moves downward A moves 
upward. Substituting this result into Eq. 1 and solving Eqs. 1 and 2 yields

	  (vB)2 = 35.8 m>s T � Ans.

	  TB = 19.2 N

NOTE: Realize that the positive (downward) direction for vA  and vB is 
consistent in Figs. 15–7a and 15–7b and in Eqs. 1 to 3. This is important 
since we are seeking a simultaneous solution of equations.

Datum

sB

5 kg

(a)

3 kg

B

C

D

A

sA

sA

sB

2TB

TB

TA � 2TB

TB

TB

3(9.81) N

5(9.81) N

vA

vB

(b)

Fig. 15–7
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15–1.  Determine the impulse of the force for t = 2 s.

a)
	 

100 N

30�

b)	
 

200 N

c)

	 
 F � (6t) N

3
4

5

 

d)
	

F

30�

t (s)

F (N)

20

1 3

e)

	

 
k � 10 N/m

80 N

f)	 

60 N 5
3

4

15–2.  Determine the linear momentum of the 10-kg 
block.

a)	
 

10 m/s

6 m

b)	

  30�

2 m/s

c)
	

 

100 N

60 N

45�3 m/s

PRELIMINARY PROBLEMS

Prob. P15–1

Prob. P15–2
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F15–1.  The 0.5-kg ball strikes the rough ground and 
rebounds with the velocities shown. Determine the 
magnitude of the impulse the ground exerts on the ball. 
Assume that the ball does not slip when it strikes the 
ground, and neglect the size of the ball and the impulse 
produced by the weight of the ball. 

v1 � 25 m/s v2 � 10 m/s

30�45�

Prob. F15–1 

F15–2.  If the coefficient of kinetic friction between the 
150-lb crate and the ground is mk = 0.2, determine the 
speed of the crate when t = 4 s. The crate starts from rest 
and is towed by the 100-lb force. 

100 lb

30�

Prob. F15–2 

F15–3.  The motor exerts a force of F = (20t2) N on the 
cable, where t is in seconds. Determine the speed of the 
25-kg crate when t = 4 s. The coefficients of static and 
kinetic friction between the crate and the plane are ms = 0.3 
and mk = 0.25, respectively. 

A

Prob. F15–3 

F15–4.  The wheels of the 1.5-Mg car generate the traction 
force F described by the graph. If the car starts from rest, 
determine its speed when t = 6 s. 

F

t (s)

F (kN)

6 kN

62

Prob. F15–4 

F15–5.  The 2.5-Mg four-wheel-drive SUV tows the 1.5-Mg 
trailer. The traction force developed at the wheels is 
FD = 9 kN. Determine the speed of the truck in 20 s, starting 
from rest. Also, determine the tension developed in the 
coupling, A, between the SUV and the trailer. Neglect the 
mass of the wheels. 

A

FD

Prob. F15–5 

F15–6.  The 10-lb block A  attains a velocity of 1 ft>s in 
5 seconds, starting from rest. Determine the tension in the 
cord and the coefficient of kinetic friction between block A  
and the horizontal plane. Neglect the weight of the pulley. 
Block B has a weight of 8 lb. 

B

A

Prob. F15–6 

Fundamental problems
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PROBLEMS

15–5.  A hockey puck is traveling to the left with a velocity 
of v1 = 10 m>s when it is struck by a hockey stick and given 
a velocity of v2 = 20 m>s as shown. Determine the 
magnitude of the net impulse exerted by the hockey stick 
on the puck. The puck has a mass of 0.2 kg.

v1 � 10 m/s

v2 � 20 m/s

40�

Prob. 15–5

15–6.  A train consists of a 50-Mg engine and three cars, 
each having a mass of 30 Mg. If it takes 80 s for the train to 
increase its speed uniformly to 40 km>h, starting from rest, 
determine the force T developed at the coupling between 
the engine E and the first car A. The wheels of the engine 
provide a resultant frictional tractive force F which gives 
the train forward motion, whereas the car wheels roll freely. 
Also, determine F acting on the engine wheels.

F

v
EA

Prob. 15–6

15–1.  A man kicks the 150-g ball such that it leaves the 
ground at an angle of 60 and strikes the ground at the same 
elevation a distance of 12 m away. Determine the impulse of 
his foot on the ball at A. Neglect the impulse caused by the 
ball’s weight while it’s being kicked.

A

60�

v

Prob. 15–1

15–2.  A 20-lb block slides down a 30° inclined plane with 
an initial velocity of 2 ft>s. Determine the velocity of the 
block in 3 s if the coefficient of kinetic friction between the 
block and the plane is mk = 0.25.

15–3.  The uniform beam has a weight of 5000 lb. 
Determine the average tension in each of the two cables AB 
and AC if the beam is given an upward speed of 8 ft>s in  
1.5 s starting from rest. Neglect the mass of the cables.

*15–4.  Each of the cables can sustain a maximum tension 
of 5000 lb. If the uniform beam has a weight of 5000 lb, 
determine the shortest time possible to lift the beam with a 
speed of 10 ft>s starting from rest.

P

3 ft

A

4 ft

B C

3 ft

Probs. 15–3/4
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15–9.  The 200-kg crate rests on the ground for which the 
coefficients of static and kinetic friction are μs = 0.5 and  
μk = 0.4, respectively. The winch delivers a horizontal towing 
force T to its cable at A which varies as shown in the graph. 
Determine the speed of the crate when t = 4 s. Originally 
the tension in the cable is zero. Hint: First determine the 
force needed to begin moving the crate.

T (N)

800

t (s)
T � 400 t1/2

4

A T

Prob. 15–9

15–10.  The 50-kg crate is pulled by the constant force P. If 
the crate starts from rest and achieves a speed of 10 m>s in 
5 s, determine the magnitude of P. The coefficient of kinetic 
friction between the crate and the ground is mk = 0.2.

30�

P

Prob. 15–10

15–7.  Crates A and B weigh 100 lb and 50 lb, respectively. 
If they start from rest, determine their speed when t = 5 s. 
Also, find the force exerted by crate A on crate B during the 
motion. The coefficient of kinetic friction between the 
crates and the ground is mk = 0.25.

P � 50 lb

A

B

Prob. 15–7

*15–8.  The automobile has a weight of 2700 lb and is 
traveling forward at 4 ft>s when it crashes into the wall. If 
the impact occurs in 0.06 s, determine the average impulsive 
force acting on the car. Assume the brakes are not applied. If 
the coefficient of kinetic friction between the wheels and the 
pavement is μk = 0.3, calculate the impulsive force on the 
wall if the brakes were applied during the crash.The brakes 
are applied to all four wheels so that all the wheels slip.

Prob. 15–8
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15–14.  A tankcar has a mass of 20 Mg and is freely rolling 
to the right with a speed of 0.75 m>s. If it strikes the barrier, 
determine the horizontal impulse needed to stop the car if 
the spring in the bumper B has a stiffness (a) k S ∞ (bumper 
is rigid), and (b) k = 15 kN>m.

v � 0.75 m/s

k

B

Prob. 15–14

15–15.  The motor, M, pulls on the cable with a force  
F = (10t2 + 300) N, where t is in seconds. If the 100 kg crate 
is originally at rest at t = 0, determine its speed when t = 4 s. 
Neglect the mass of the cable and pulleys. Hint: First find 
the time needed to begin lifting the crate.

M

Prob. 15–15

15–11.  During operation the jack hammer strikes the concrete 
surface with a force which is indicated in the graph. To achieve 
this the 2-kg spike S is fired into the surface at 90 m>s. 
Determine the speed of the spike just after rebounding.

F (kN)

0

1500

0.10 0.4
t (ms)

S

Prob. 15–11

*15–12.  For a short period of time, the frictional driving 
force acting on the wheels of the 2.5-Mg van is FD = (600t2) N, 
where t is in seconds. If the van has a speed of 20 km>h when  
t = 0, determine its speed when t = 5 s.

FD

Prob. 15–12

15–13.  The 2.5-Mg van is traveling with a speed of 100 km>h 
when the brakes are applied and all four wheels lock. If the 
speed decreases to 40 km>h in 5 s, determine the coefficient 
of kinetic friction between the tires and the road.

Prob. 15–13
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15–18.  The motor exerts a force F on the 40-kg crate as 
shown in the graph. Determine the speed of the crate when 
t = 3 s and when t = 6 s. When t = 0, the crate is moving 
downward at 10 m>s.

F (N)

t (s)

150

450

6

B

A

F

Prob. 15–18

15–19.  The 30-kg slider block is moving to the left with a 
speed of 5 m>s when it is acted upon by the forces F1 and F2. 
If these loadings vary in the manner shown on the graph, 
determine the speed of the block at t = 6 s. Neglect friction 
and the mass of the pulleys and cords.

F2

F2

t (s)

F (N)

0 2 4 6

40

F1

F1

30

20

10

Prob. 15–19

*15–16.  The choice of a seating material for moving 
vehicles depends upon its ability to resist shock and 
vibration. From the data shown in the graphs, determine the 
impulses created by a falling weight onto a sample of 
urethane foam and CONFOR foam.

t (ms)

F (N)

urethane

CONFOR

1410742

1.2

0.8

0.5
0.4
0.3

Prob. 15–16

15–17.  The towing force acting on the 400-kg safe varies as 
shown on the graph. Determine its speed, starting from rest, 
when t = 8 s. How far has it traveled during this time?

t (s)

F (N)

5

600

750

8

F

Prob. 15–17
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15–22.  The thrust on the 4-Mg rocket sled is shown in the 
graph. Determine the sleds maximum velocity and the 
distance the sled travels when t = 35 s. Neglect friction.

T (kN)

t (s)

T

T � 4 t1/2

20

25 35

Prob. 15–22

15–23.  The motor pulls on the cable at A with a force 
F =  (30 + t2) lb, where t is in seconds. If the 34-lb crate is 
originally on the ground at t = 0, determine its speed in t = 4 s. 
Neglect the mass of the cable and pulleys. Hint: First find 
the time needed to begin lifting the crate.

A

Prob. 15–23

*15–24.  The motor pulls on the cable at A with a force 
F = (e2t) lb, where t is in seconds. If the 34-lb crate is originally 
at rest on the ground at t = 0, determine the crate’s velocity 
when t = 2 s. Neglect the mass of the cable and pulleys. Hint: 
First find the time needed to begin lifting the crate.

A

Prob. 15–24

*15–20.  The 200-lb cabinet is subjected to the force 
F = 20(t + 1) lb where t is in seconds. If the cabinet is initially 
moving to the left with a velocity of 20 ft>s, determine its 
speed when t = 5 s. Neglect the size of the rollers.

30�

F

Prob. 15–20

15–21.  If it takes 35 s for the 50-Mg tugboat to increase its 
speed uniformly to 25 km>h, starting from rest, determine 
the force of the rope on the tugboat. The propeller provides 
the propulsion force F which gives the tugboat forward 
motion, whereas the barge moves freely. Also, determine F 
acting on the tugboat. The barge has a mass of 75 Mg. 

F

Prob. 15–21
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15–27.  The 20-kg crate is lifted by a force of F = (100 + 5t2) N, 
where t is in seconds. Determine the speed of the crate when  
t = 3 s, starting from rest.

*15–28.  The 20-kg crate is lifted by a force of  
F =  (100 + 5t2) N, where t is in seconds. Determine how high 
the crate has moved upward when t = 3 s, starting from rest.

A

B

F

Probs. 15–27/28

15–29.  In case of emergency, the gas actuator is used to 
move a 75-kg block B by exploding a charge C near a 
pressurized cylinder of negligible mass. As a result of the 
explosion, the cylinder fractures and the released gas forces 
the front part of the cylinder, A, to move B forward, giving it 
a speed of 200 mm>s in 0.4 s. If the coefficient of kinetic 
friction between B and the floor is μk = 0.5, determine the 
impulse that the actuator imparts to B.

vB � 200 mm/s

B

B

C

A

A

Prob. 15–29

15–25.  The balloon has a total mass of 400 kg including 
the passengers and ballast. The balloon is rising at a constant 
velocity of 18 km>h when h = 10 m. If the man drops the 
40-kg sand bag, determine the velocity of the balloon when 
the bag strikes the ground. Neglect air resistance.

h

vA � 18 km/h

A

Prob. 15–25

15–26.  As indicated by the derivation, the principle of 
impulse and momentum is valid for observers in any inertial 
reference frame. Show that this is so, by considering the 10-kg 
block which slides along the smooth surface and is subjected 
to a horizontal force of 6 N. If observer A is in a fixed frame x, 
determine the final speed of the block in 4 s if it has an initial 
speed of 5 m>s measured from the fixed frame. Compare the 
result with that obtained by an observer B, attached to the x  
axis that moves at a constant velocity of 2 m>s relative to A.

6 N

5 m/s

2 m/s

xA

x¿B

Prob. 15–26
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15–33.  The log has a mass of 500 kg and rests on the ground 
for which the coefficients of static and kinetic friction are 
ms = 0.5 and mk = 0.4, respectively. The winch delivers a 
horizontal towing force T to its cable at A which varies as 
shown in the graph. Determine the speed of the log when 
t = 5 s. Originally the tension in the cable is zero. Hint: First 
determine the force needed to begin moving the log.

T (N)

1800

t (s)

T � 200 t2

3

A T

Prob. 15–33

15–34.  The 0.15-kg baseball has a speed of v = 30 m>s just 
before it is struck by the bat. It then travels along the 
trajectory shown before the outfielder catches it. Determine 
the magnitude of the average impulsive force imparted to 
the ball if it is in contact with the bat for 0.75 ms.

100 m

2.5 m
0.75 m

15�
v1 � 30 m/s

v2 15�

Prob. 15–34

15–30.  A jet plane having a mass of 7 Mg takes off from an 
aircraft carrier such that the engine thrust varies as shown 
by the graph. If the carrier is traveling forward with a speed 
of 40 km>h, determine the plane’s airspeed after 5 s.

t (s)

F (kN)

0 2 5

15

5

40 km/h

Prob. 15–30

15–31.  Block A weighs 10 lb and block B weighs 3 lb. If B 
is moving downward with a velocity (vB)1 = 3 ft>s at t = 0, 
determine the velocity of A when t = 1 s. Assume that the 
horizontal plane is smooth. Neglect the mass of the pulleys 
and cords.

*15–32.  Block A weighs 10 lb and block B weighs 3 lb. If B 
is moving downward with a velocity (vB)1 = 3  ft>s at t = 0, 
determine the velocity of A when t = 1 s. The coefficient of 
kinetic friction between the horizontal plane and block A is 
mA = 0.15.

(vB)1 � 3 ft/s B

A

Probs. 15–31/32
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15.3  �Conservation of Linear Momentum 
for a System of Particles

When the sum of the external impulses acting on a system of particles is 
zero, Eq. 15–6 reduces to a simplified form, namely,

	 mi (vi)1 = mi (vi)2 � (15–8)

This equation is referred to as the conservation of linear momentum.  
It states that the total linear momentum for a system of particles remains 
constant during the time period t1 to t2 . Substituting mvG = mivi into 
Eq. 15–8, we can also write

	 (vG)1 = (vG)2� (15–9)

which indicates that the velocity vG of the mass center for the system of 
particles does not change if no external impulses are applied to the system.

The conservation of linear momentum is often applied when particles 
collide or interact. For application, a careful study of the free-body 
diagram for the entire system of particles should be made in order to 
identify the forces which create either external or internal impulses and 
thereby determine in what direction(s) linear momentum is conserved. 
As stated earlier, the internal impulses for the system will always cancel 
out, since they occur in equal but opposite collinear pairs. If the time 
period over which the motion is studied is very short, some of the 
external impulses may also be neglected or considered approximately 
equal to zero. The forces causing these negligible impulses are called 
nonimpulsive forces. By comparison, forces which are very large and act 
for a very short period of time produce a significant change in momentum 
and are called impulsive forces. They, of course, cannot be neglected in 
the impulse–momentum analysis.

Impulsive forces normally occur due to an explosion or the striking of 
one body against another, whereas nonimpulsive forces may include the 
weight of a body, the force imparted by a slightly deformed spring having 
a relatively small stiffness, or for that matter, any force that is very small 
compared to other larger (impulsive) forces. When making this distinction 
between impulsive and nonimpulsive forces, it is important to realize 
that this only applies during the time t1 to t2 . To illustrate, consider the 
effect of striking a tennis ball with a racket as shown in the photo. During 
the very short time of interaction, the force of the racket on the ball 
is  impulsive since it changes the ball’s momentum drastically. By 
comparison, the ball’s weight will have a negligible effect on the change 

The hammer in the top photo 
applies an impulsive force  
to the stake. During this 
extremely short time of 
contact the weight of the 
stake  can be considered 
nonimpulsive, and provided 
the stake is driven into soft 
ground, the impulse of the 
ground acting on the stake 
can  also be considered 
nonimpulsive. By contrast, if 
the stake is used in a concrete 
chipper to break concrete, 
then two impulsive forces act 
on the stake: one at its top due 
to the chipper and the other 
on its bottom due to the 
rigidity of the concrete.  
(© R.C. Hibbeler)

(© R.C. Hibbeler)
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in momentum, and therefore it is nonimpulsive. Consequently, it can be 
neglected from an impulse–momentum analysis during this time. If an 
impulse–momentum analysis is considered during the much longer time 
of flight after the racket–ball interaction, then the impulse of the ball’s 
weight is important since it, along with air resistance, causes the change 
in the momentum of the ball.

Procedure for Analysis

Generally, the principle of linear impulse and momentum or the 
conservation of linear momentum is applied to a system of particles  
in order to determine the final velocities of the particles just after  
the time period considered. By applying this principle to the entire 
system, the internal impulses acting within the system, which may  
be unknown, are eliminated from the analysis. For application it is 
suggested that the following procedure be used.

Free-Body Diagram.
	 •	 Establish the x, y, z inertial frame of reference and draw the free-

body diagram for each particle of the system in order to identify 
the internal and external forces.

	 •	 The conservation of linear momentum applies to the system in a 
direction which either has no external forces or the forces can be 
considered nonimpulsive.

	 •	 Establish the direction and sense of the particles’ initial and final 
velocities. If the sense is unknown, assume it is along a positive 
inertial coordinate axis.

	 •	 As an alternative procedure, draw the impulse and momentum 
diagrams for each particle of the system.

Momentum Equations.
	 •	 Apply the principle of linear impulse and momentum or the 

conservation of linear momentum in the appropriate directions.

	 •	 If it is necessary to determine the internal impulse 1F dt acting 
on only one particle of a system, then the particle must be isolated 
(free-body diagram), and the principle of linear impulse and 
momentum must be applied to this particle.

	 •	 After the impulse is calculated, and provided the time t for 
which the impulse acts is known, then the average impulsive force 
Favg can be determined from Favg = 1F dt>t.

(© R.C. Hibbeler)
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Example   15.4

The 15-Mg boxcar A is coasting at 1.5 m>s on the horizontal track 
when it encounters a 12-Mg tank car B coasting at 0.75 m>s toward it 
as shown in Fig. 15–8a. If the cars collide and couple together,  
determine (a) the speed of both cars just after the coupling, and  
(b) the average force between them if the coupling takes place in 0.8 s.

x
v

(b)

F �F

(c)

x
v

�F

Fig. 15–8

1.5 m/s 0.75 m/s
A

B

(a)

Solution
Part (a) Free-Body Diagram.*  Here we have considered both cars 
as a single system, Fig. 15–8b. By inspection, momentum is conserved 
in the x direction since the coupling force F is internal to the system 
and will therefore cancel out. It is assumed both cars, when coupled, 
move at v2 in the positive x direction.

Conservation of Linear Momentum.

( S+ )	 mA(vA)1 + mB(vB)1 = (mA + mB)v2

	  (15 000 kg)(1.5 m>s) - 12 000 kg(0.75 m>s) = (27 000 kg)v2

	 v2 = 0.5 m>s S � Ans.

Part (b).  The average (impulsive) coupling force, Favg , can be 
determined by applying the principle of linear momentum to either one 
of the cars.

Free-Body Diagram.  As shown in Fig. 15–8c, by isolating the boxcar 
the coupling force is external to the car.

Principle of Impulse and Momentum.  Since 1F dt = Favg t 
=  Favg(0.8 s), we have

( S+ )	  mA(vA)1 +  LF dt = mAv2

	  (15 000 kg)(1.5 m>s) - Favg(0.8 s) = (15 000 kg)(0.5 m>s)

	 Favg = 18.8 kN� Ans.

NOTE: Solution was possible here since the boxcar’s final velocity was 
obtained in Part (a). Try solving for Favg by applying the principle of 
impulse and momentum to the tank car.

*Only horizontal forces are shown on the free-body diagram.
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Example   15.5

The bumper cars A and B in Fig. 15–9a each have a mass of 150 kg and 
are coasting with the velocities shown before they freely collide head 
on. If no energy is lost during the collision, determine their velocities 
after collision.

Solution
Free-Body Diagram.  The cars will be considered as a single system. 
The free-body diagram is shown in Fig. 15–9b.

Conservation of Momentum.

( S+ )	 mA(vA)1 + mB(vB)1 = mA(vA)2 + mB(vB)2

(150 kg)(3 m>s) + (150 kg)(-2 m>s) = (150 kg)(vA)2 + (1 5 0  kg)(vB)2

	 (vA)2 = 1 - (vB)2 � (1)

Conservation of Energy.  Since no energy is lost, the conservation 
of energy theorem gives

	 T1 + V 1 = T2 + V2

	
1

2
 mA(vA)1 

2 +
1

2
 mB(vB)1 

2 + 0 =
1

2
 mA(vA)2 

2 +
1

2
 mB(vB)2 

2 + 0

	
1

2
 (150 kg)(3 m>s)2 +

1

2
 (150 kg)(2 m>s)2 + 0 =

1

2
 (150 kg)(vA)2 

2

	 +
1

2
 (150 kg)(vB)2

2 + 0

	 (vA)2 
2 + (vB)2 

2 = 13 � (2)

Substituting Eq. (1) into (2) and simplifying, we get

(vB)2 
2 - (vB)2 - 6 = 0

Solving for the two roots,

(vB)2 = 3  m>s   and   (vB)2 = -2  m>s
Since (vB)2 = -2  m>s refers to the velocity of B just before collision, 
then the velocity of B just after the collision must be

	 (vB)2 = 3  m>s S  � Ans.

Substituting this result into Eq. (1), we obtain

	 (vA)2 = 1 - 3  m>s = -2 m>s = 2 m>s d  � Ans.

A B

(vA)1 � 3 m/s

(a)

(vB)1 � 2 m/s

A B

150(9.81) N 150(9.81) N

(b)

F F

NA NB

Fig. 15–9 
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Example   15.6

An 800-kg rigid pile shown in Fig. 15–10a is driven into the ground using 
a 300-kg hammer. The hammer falls from rest at a height y0 = 0.5 m 
and strikes the top of the pile. Determine the impulse which the pile 
exerts on the hammer if the pile is surrounded entirely by loose sand so 
that after striking, the hammer does not rebound off the pile.

Solution
Conservation of Energy.  The velocity at which the hammer 
strikes the pile can be determined using the conservation of energy 
equation applied to the hammer. With the datum at the top of the 
pile, Fig. 15–10a, we have

 T0 + V 0 = T1 + V1

 
1

2
 mH (vH)0

2 + W  Hy0 =
1

2
 mH (vH)1

2 + W  Hy1

 0 + 300(9.81) N(0.5 m) =
1

2
 (300 kg)(vH)1

2 + 0

 (vH)1 = 3.132 m>s
Free-Body Diagram.  From the physical aspects of the problem, the 
free-body diagram of the hammer and pile, Fig. 15–10b, indicates that 
during the short time from just before to just after the collision, the 
weights of the hammer and pile and the resistance force Fs of the sand 
are all nonimpulsive. The impulsive force R is internal to the system 
and therefore cancels. Consequently, momentum is conserved in the 
vertical direction during this short time.

Conservation of Momentum.  Since the hammer does not rebound 
off the pile just after collision, then (vH)2 = (vP)2 = v2 .

 (+ T )	  mH (vH)1 + mP (vP)1 = mHv2 + mP v2

 (300 kg)(3.132 m>s) + 0 = (300 kg)v2 + (800 kg)v2

 v2 = 0.8542 m>s
Principle of Impulse and Momentum.  The impulse which the pile 
imparts to the hammer can now be determined since v2 is known. From 
the free-body diagram for the hammer, Fig. 15–10c, we have

(+ T )	 mH (vH)1 +  L
t2

t1

Fy dt = mH v2

(300 kg)(3.132 m>s) - LR dt = (300 kg)(0.8542 m>s)

	 LR dt = 683 N # s � Ans.

NOTE: The equal but opposite impulse acts on the pile. Try finding this 
impulse by applying the principle of impulse and momentum to the pile.

H

P
Sand

(a)

Datum

y0 � 0.5 m

(b)

WH � 0

WP � 0

Fs � 0

�R

R

y

v

(c)

WH � 0

R y

v

Fig. 15–10 

(© R.C. Hibbeler)
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The 80-kg man can throw the 20-kg box horizontally at 4 m>s when 
standing on the ground. If instead he firmly stands in the 120-kg boat 
and throws the box, as shown in the photo, determine how far the boat 
will move in three seconds. Neglect water resistance.

Solution
Free-Body Diagram.  If the man, boat, and box are considered as a 
single system, the horizontal forces between the man and the boat and 
the man and the box become internal to the system, Fig. 15–11a, and so 
linear momentum will be conserved along the x axis. 

Conservation of Momentum.  When writing the conservation of 
momentum equation, it is important that the velocities be measured 
from the same inertial coordinate system, assumed here to be fixed. 
From this coordinate system, we will assume that the boat and man go 
to the right while the box goes to the left, as shown in Fig. 15–11b.

Applying the conservation of linear momentum to the man, boat, 
box system,

( S+ )	 0 + 0 + 0 = (mm + mb) vb − mbox vbox

	 0 = (80 kg + 120 kg) vb − (20 kg) vbox

	 vbox = 10 vb	 (1)

Kinematics.  Since the velocity of the box relative to the man (and 
boat), vbox>b, is known, then vb can also be related to vbox using the 
relative velocity equation.

( S+ )	 vbox = vb + vbox>b

	 −vbox = vb − 4 m>s	 (2)

Solving Eqs. (1) and (2),

	 vbox = 3.64 m>s d

	 vb = 0.3636 m>s S

The displacement of the boat in three seconds is therefore

	 sb = vbt = (0.3636 m>s)(3 s) = 1.09 m� Ans.

Example   15.7

F F

F F

(a)

 vbox

vb

(b)

Fig. 15–11 

(© R.C. Hibbeler)
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Example   15.8

The 1200-lb cannon shown in Fig. 15–12a fires an 8-lb projectile with a 
muzzle velocity of 1500 ft>s measured relative to the cannon. If firing 
takes place in 0.03 s, determine the recoil velocity of the cannon just 
after firing. The cannon support is fixed to the ground, and the 
horizontal recoil of the cannon is absorbed by two springs.

Solution
Part (a) Free-Body Diagram.*  As shown in Fig. 15–12b, we will 
consider the projectile and cannon as a single system, since the 
impulsive forces, F and -F, between the cannon and projectile are 
internal to the system and will therefore cancel from the analysis. 
Furthermore, during the time t = 0.03 s, the two recoil springs which 
are attached to the support each exert a nonimpulsive force Fs on the 
cannon. This is because t is very short, so that during this time the 
cannon only moves through a very small distance s. Consequently, 
Fs = ks � 0, where k is the spring’s stiffness, which is also considered 
to be relatively small. Hence it can be concluded that momentum for 
the system is conserved in the horizontal direction.

Conservation of Linear Momentum.
( S+ )	 mc(vc)1 + mp(vp)1 = -mc(vc)2 + mp(vp)2

0 + 0 = -  a 1200 lb

32.2 ft>s2 b (vc)2 + a 8 lb

32.2 ft>s2 b(vp)2

	 (vp)2 = 150 (vc)2� (1)

These unknown velocities are measured by a fixed observer. As in 
Example 15–7, they can also be related using the relative velocity 
equation.

S+ 	 (vp)2 = (vc)2 + vp>c
	 (vp)2 = -(vc)2 + 1500 ft>s� (2)

Solving Eqs. (1) and (2) yields

	 (vc)2 = 9.93 ft>s � Ans.

	 (vp)2 = 1490 ft>s
Apply the principle of impulse and momentum to the projectile (or 
the cannon) and show that the average impulsive force on the 
projectile is 12.3 kip.

NOTE: If the cannon is firmly fixed to its support (no springs), the 
reactive force of the support on the cannon must be considered as an 
external impulse to the system, since the support would allow no 
movement of the cannon. In this case momentum is not conserved.

(a)

Recoil spring

�F

x

vpvc

F2Fs

(b)

Fig. 15–12 

*Only horizontal forces are shown on the free-body diagram.
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F15–7.  The freight cars A  and B have a mass of 20 Mg and 
15 Mg, respectively. Determine the velocity of A  after 
collision if the cars collide and rebound, such that B moves 
to the right with a speed of 2 m>s. If A  and B are in contact 
for 0.5 s, find the average impulsive force which acts 
between them. 

BA
1.5 m/s3 m/s

Prob. F15–7

F15–8.  The cart and package have a mass of 20 kg and 
5 kg, respectively. If the cart has a smooth surface and it is 
initially at rest, while the velocity of the package is as shown, 
determine the final common velocity of the cart and 
package after the impact. 

10 m/s
3

4

5

Prob. F15–8

F15–9.  The 5-kg block A  has an initial speed of 5 m>s as it 
slides down the smooth ramp, after which it collides with 
the stationary block B of mass 8 kg. If the two blocks couple 
together after collision, determine their common velocity 
immediately after collision. 

1.5 m

A

vA � 5 m/s

B

Prob. F15–9

F15–10.  The spring is fixed to block A  and block B is 
pressed against the spring. If the spring is compressed 
s = 200 mm and then the blocks are released, determine 
their velocity at the instant block B loses contact with the 
spring. The masses of blocks A  and B are 10 kg and 15 kg, 
respectively. 

A B

k � 5 kN/m

Prob. F15–10

F15–11.  Blocks A  and B have a mass of 15 kg and 10 kg, 
respectively. If A  is stationary and B has a velocity of 15 m>s 
just before collision, and the blocks couple together after 
impact, determine the maximum compression of the spring. 

k � 10 kN/m

A B

15 m/s

Prob. F15–11

F15–12.  The cannon and support without a projectile 
have a mass of 250 kg. If a 20-kg projectile is fired from the 
cannon with a velocity of 400 m>s, measured relative to the 
cannon, determine the speed of the projectile as it leaves 
the barrel of the cannon. Neglect rolling resistance. 

30�

Prob. F15–12

Fundamental Problems
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15–35.  The 5-Mg bus B is traveling to the right at 20 m>s. 
Meanwhile a 2-Mg car A is traveling at 15 m>s to the right. 
If the vehicles crash and become entangled, determine their 
common velocity just after the collision. Assume that the 
vehicles are free to roll during collision.

vB � 20 m/s

vA � 15 m/sB

A

Prob. 15–35

*15–36.  The 50-kg boy jumps on the 5-kg skateboard with 
a horizontal velocity of 5 m>s. Determine the distance s the 
boy reaches up the inclined plane before momentarily 
coming to rest. Neglect the skateboard’s rolling resistance.

30�

s

Prob. 15–36

15–37.  The 2.5-Mg pickup truck is towing the 1.5-Mg car 
using a cable as shown. If the car is initially at rest and the 
truck is coasting with a velocity of 30 km>h when the cable is 
slack, determine the common velocity of the truck and the car 
just after the cable becomes taut. Also, find the loss of energy.

30 km/h

Prob. 15–37

15–38.  A railroad car having a mass of 15 Mg is coasting at 
1.5 m>s on a horizontal track. At the same time another car 
having a mass of 12 Mg is coasting at 0.75 m>s in the 
opposite direction. If the cars meet and couple together, 
determine the speed of both cars just after the coupling. 
Find the difference between the total kinetic energy before 
and after coupling has occurred, and explain qualitatively 
what happened to this energy.

15–39.  A ballistic pendulum consists of a 4-kg wooden 
block originally at rest, u = 0°. When a 2-g bullet strikes and 
becomes embedded in it, it is observed that the block swings 
upward to a maximum angle of u = 6°. Estimate the initial 
speed of the bullet.

1.25 m 1.25 mu u

Prob. 15–39

*15–40.  The boy jumps off the flat car at A with a velocity 
of v = 4 ft>s relative to the car as shown. If he lands on the 
second flat car B, determine the final speed of both cars 
after the motion. Each car has a weight of 80 lb. The boy’s 
weight is 60 lb. Both cars are originally at rest. Neglect the 
mass of the car’s wheels.

v � 4 ft/s
13

12
5

AB

Prob. 15–40

PROBLEMS
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15–41.  A 0.03-lb bullet traveling at 1300 ft>s strikes the 
10-lb wooden block and exits the other side at 50 ft>s as 
shown. Determine the speed of the block just after the 
bullet exits the block, and also determine how far the block 
slides before it stops. The coefficient of kinetic friction 
between the block and the surface is μk = 0.5.

15–42.  A 0.03-lb bullet traveling at 1300 ft>s strikes the 
10-lb wooden block and exits the other side at 50 ft>s as 
shown. Determine the speed of the block just after the bullet 
exits the block. Also, determine the average normal force on 
the block if the bullet passes through it in 1 ms, and the time 
the block slides before it stops. The coefficient of kinetic 
friction between the block and the surface is μk = 0.5.

5
12

3
4

5
13

1300 ft/s
50 ft/s

Probs. 15–41/42

15–43.  The 20-g bullet is traveling at 400 m>s when it 
becomes embedded in the 2-kg stationary block. Determine 
the distance the block will slide before it stops. The 
coefficient of kinetic friction between the block and the 
plane is mk = 0.2.

400 m/s

Prob. 15–43

*15–44.  A toboggan having a mass of 10 kg starts from rest 
at A and carries a girl and boy having a mass of 40 kg and 
45 kg, respectively. When the toboggan reaches the bottom 
of the slope at B, the boy is pushed off from the back with a 
horizontal velocity of vb>t = 2 m>s, measured relative to the 
toboggan. Determine the velocity of the toboggan 
afterwards. Neglect friction in the calculation.

vb/t

vt

B

A

3 m

Prob. 15–44

15–45.	 The block of mass m travels at v1 in the direction 
u1 shown at the top of the smooth slope. Determine its 
speed v2 and its direction u2 when it reaches the bottom.

   1

   2

v1

v2

x

h

y

u

u

z

Prob. 15–45
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15–49.  A boy A having a weight of 80 lb and a girl B having 
a weight of 65 lb stand motionless at the ends of the toboggan, 
which has a weight of 20 lb. If they exchange positions, A 
going to B and then B going to A’s original position, 
determine the final position of the toboggan just after the 
motion. Neglect friction between the toboggan and the snow.  

15–50.  A boy A having a weight of 80 lb and a girl B having a 
weight of 65 lb stand motionless at the ends of the toboggan, 
which has a weight of 20 lb. If A walks to B and stops, and both 
walk back together to the original position of A, determine the 
final position of the toboggan just after the motion stops. 
Neglect friction between the toboggan and the snow.

4 ft
A B

Probs. 15–49/50

15–51.  The 10-Mg barge B supports a 2-Mg automobile A. 
If someone drives the automobile to the other side of the 
barge, determine how far the barge moves. Neglect the 
resistance of the water.

40 m

A

B

Prob. 15–51

15–46.  The two blocks A and B each have a mass of 5 kg 
and are suspended from parallel cords. A spring, having a 
stiffness of k = 60 N>m, is attached to B and is compressed 
0.3 m against A and B as shown. Determine the maximum 
angles u and f of the cords when the blocks are released 
from rest and the spring becomes unstretched.

u

B

f
2 m2 m

A

Prob. 15–46

15–47.  The 30-Mg freight car A and 15-Mg freight car B 
are moving towards each other with the velocities shown. 
Determine the maximum compression of the spring 
mounted on car A. Neglect rolling resistance.

BA
10  km/h20 km/h

k � 3 MN/m

Prob. 15–47

*15–48.  Blocks A and B have masses of 40 kg and 60 kg, 
respectively. They are placed on a smooth surface and the 
spring connected between them is stretched 2 m. If they are 
released from rest, determine the speeds of both blocks the 
instant the spring becomes unstretched.

k � 180 N/m
A B

Prob. 15–48
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*15–52.  The free-rolling ramp has a mass of 40 kg. A 10-kg 
crate is released from rest at A and slides down 3.5 m to 
point B. If the surface of the ramp is smooth, determine the 
ramp’s speed when the crate reaches B. Also, what is the 
velocity of the crate?

3.5 m
A

B30�

Prob. 15–52

15–53.  Block A has a mass of 5 kg and is placed on the 
smooth triangular block B having a mass of 30 kg. If the 
system is released from rest, determine the distance B 
moves from point O when A reaches the bottom. Neglect 
the size of block A.

15–54.  Solve Prob. 15–53 if the coefficient of kinetic 
friction between A and B is μk = 0.3. Neglect friction 
between block B and the horizontal plane.

O

0.5 m

A

B

30�

Probs. 15–53/54

15–55.  The cart has a mass of 3 kg and rolls freely from A 
down the slope. When it reaches the bottom, a spring loaded 
gun fires a 0.5-kg ball out the back with a horizontal velocity 
of vb>c = 0.6 m>s, measured relative to the cart. Determine 
the final velocity of the cart.

vb/c

vc

B

A

1.25 m

Prob. 15–55

*15–56.  Two boxes A and B, each having a weight of 160 lb, 
sit on the 500-lb conveyor which is free to roll on the ground. 
If the belt starts from rest and begins to run with a speed of 
3 ft>s, determine the final speed of the conveyor if (a) the 
boxes are not stacked and A falls off then B falls off, and 
(b) A is stacked on top of B and both fall off together.

A
B

Prob. 15–56

15–57.  The 10-kg block is held at rest on the smooth 
inclined plane by the stop block at A. If the 10-g bullet is 
traveling at 300 m>s when it becomes embedded in the 
10-kg block, determine the distance the block will slide up 
along the plane before momentarily stopping.

A

300 m/s

30�

Prob. 15–57
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15.4  Impact

Impact occurs when two bodies collide with each other during a very short 
period of time, causing relatively large (impulsive) forces to be exerted 
between the bodies. The striking of a hammer on a nail, or a golf club on 
a ball, are common examples of impact loadings.

In general, there are two types of impact. Central impact occurs when 
the direction of motion of the mass centers of the two colliding particles 
is along a line passing through the mass centers of the particles. This 
line is called the line of impact, which is perpendicular to the plane of 
contact, Fig. 15–13a. When the motion of one or both of the particles 
make an angle with the line of impact, Fig. 15–13b, the impact is said to 
be oblique impact.

Central Impact.  To illustrate the method for analyzing the mechanics 
of impact, consider the case involving the central impact of the two particles 
A and B shown in Fig. 15–14.

	•	 The particles have the initial momenta shown in Fig. 15–14a. 
Provided (vA)1 7 (vB)1 , collision will eventually occur.

	•	 During the collision the particles must be thought of as deformable 
or nonrigid. The particles will undergo a period of deformation such 
that they exert an equal but opposite deformation impulse1P dt on 
each other, Fig. 15–14b.

	•	 Only at the instant of maximum deformation will both particles 
move with a common velocity v, since their relative motion is zero, 
Fig. 15–14c.

	•	 Afterward a period of restitution occurs, in which case the particles 
will either return to their original shape or remain permanently 
deformed. The equal but opposite restitution impulse1R dt  
pushes the particles apart from one another, Fig. 15–14d. In reality, 
the physical properties of any two bodies are such that the 
deformation impulse will always be greater than that of restitution, 
i.e.,1P dt 7  1R dt.

	•	 Just after separation the particles will have the final momenta 
shown in Fig. 15–14e, where (vB)2 7 (vA)2 .

mA(vA)2 mB(vB)2

(vB)2 � (vA)2

After impact

(e)

A B

Maximum deformation

(c)

v

A B

A B

�R dt ��R dt

Effect of A on B Effect of B on A

Restitution impulse

(d)

Fig. 15–14 

Line of impact

Plane of contact

Central impact

(a)

vA vB
BA

Line of impact

Plane of contact

Oblique impact

(b)

vA

BA

vB

fu

Fig. 15–13 

mA(vA)1 mB(vB)1

Require
(vA)1 � (vB)1

Before impact

(a)

A B

A B

�P dt ��P dt

Effect of A on B Effect of B on A

Deformation impulse

(b)
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In most problems the initial velocities of the particles will be known, 
and it will be necessary to determine their final velocities (vA)2  and (vB)2 . 
In this regard, momentum for the system of particles is conserved since 
during collision the internal impulses of deformation and restitution 
cancel. Hence, referring to Fig. 15–14a and Fig. 15–14e we require

( S+ )	 mA(vA)1 + mB(vB)1 = mA(vA)2 + mB(vB)2 � (15–10)

In order to obtain a second equation necessary to solve for (vA)2  and 
(vB)2 , we must apply the principle of impulse and momentum to each 
particle. For example, during the deformation phase for particle A, 
Figs. 15–14a, 15–14b, and 15–14c, we have

( S+ )	 mA(vA)1 - LP dt = mAv

For the restitution phase, Figs. 15–14c, 15–14d, and 15–14e,

( S+ )	 mAv - LR dt = mA(vA)2

The ratio of the restitution impulse to the deformation impulse is 
called the coefficient of restitution, e. From the above equations, this value 
for particle A is

e =
LR dt

LP dt
=

v - (vA)2

(vA)1 - v

In a similar manner, we can establish e by considering particle B,  
Fig. 15–14. This yields

e =
LR dt

LP dt
=

(vB)2 - v

v - (vB)1

If the unknown v is eliminated from the above two equations, the 
coefficient of restitution can be expressed in terms of the particles’ initial 
and final velocities as

( S+ )	 e =
(vB)2 - (vA)2

(vA)1 - (vB)1
� (15–11)
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Provided a value for e is specified, Eqs. 15–10 and 15–11 can be solved 
simultaneously to obtain (vA)2  and (vB)2 . In doing so, however, it is 
important to carefully establish a sign convention for defining the 
positive direction for both vA  and vB and then use it consistently when 
writing both equations. As noted from the application shown, and 
indicated symbolically by the arrow in parentheses, we have defined the 
positive direction to the right when referring to the motions of both A 
and B. Consequently, if a negative value results from the solution of 
either (vA)2  or (vB)2 , it indicates motion is to the left.

Coefficient of Restitution.  From Figs. 15–14a and 15–14e, it is 
seen that Eq. 15–11 states that e is equal to the ratio of the relative 
velocity of the particles’ separation just after impact, (vB) 2 - (vA) 2 , to 
the relative velocity of the particles’ approach just before impact, 
(vA)1 - (vB)1 . By measuring these relative velocities experimentally, it 
has been found that e varies appreciably with impact velocity as well 
as with the size and shape of the colliding bodies. For these reasons the 
coefficient of restitution is reliable only when used with data which 
closely approximate the conditions which were known to exist when 
measurements of it were made. In general e has a value between zero 
and one, and one should be aware of the physical meaning of these two 
limits.

Elastic Impact (e � 1).  If the collision between the two particles 
is perfectly elastic, the deformation impulse 1  1P dt2 is equal and opposite 
to the restitution impulse 1  1R dt2. Although in reality this can never be 
achieved, e = 1 for an elastic collision.

Plastic Impact (e � 0).  The impact is said to be inelastic or plastic 
when e = 0. In this case there is no restitution impulse 1  1R dt = 02, so 
that after collision both particles couple or stick together and move with 
a common velocity.

From the above derivation it should be evident that the principle of 
work and energy cannot be used for the analysis of impact problems 
since it is not possible to know how the internal forces of deformation 
and restitution vary or displace during the collision. By knowing the 
particle’s velocities before and after collision, however, the energy loss 
during collision can be calculated on the basis of the difference in the 
particle’s kinetic energy. This energy loss, U1- 2 = T2 - T1 , occurs 
because some of the initial kinetic energy of the particle is transformed 
into thermal energy as well as creating sound and localized deformation 
of the material when the collision occurs. In particular, if the impact is 
perfectly elastic, no energy is lost in the collision; whereas if the collision 
is plastic, the energy lost during collision is a maximum.

The quality of a manufactured tennis ball is 
measured by the height of its bounce, which 
can be related to its coefficient of restitution. 
Using the mechanics of oblique impact, 
engineers can design a separation device to 
remove substandard tennis balls from a 
production line. (© Gary S. Settles/Science 
Source)

The mechanics of pool depends upon 
application of the conservation of momentum 
and the coefficient of restitution.  
(© R.C. Hibbeler)
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Oblique Impact.  When oblique impact occurs between two 
smooth particles, the particles move away from each other with velocities 
having unknown directions as well as unknown magnitudes. Provided the 
initial velocities are known, then four unknowns are present in the 
problem. As shown in Fig. 15–15a, these unknowns may be represented 
either as (vA) 2 , (vB) 2 , u 2 , and f2 , or as the x and y components of the 
final velocities.

Procedure for Analysis (Central Impact)

In most cases the final velocities of two smooth particles are to be 
determined just after they are subjected to direct central impact. 
Provided the coefficient of restitution, the mass of each particle, and 
each particle’s initial velocity just before impact are known, the 
solution to this problem can be obtained using the following two 
equations:

	 •	 The conservation of momentum applies to the system of particles, 
mv 1 = mv 2 .

	 •	 The coefficient of restitution, e = [(vB) 2 - (vA) 2]>[(vA) 1 - (vB) 1], 
relates the relative velocities of the particles along the line of 
impact, just before and just after collision.

When applying these two equations, the sense of an unknown 
velocity can be assumed. If the solution yields a negative magnitude, 
the velocity acts in the opposite sense.

Procedure for Analysis (Oblique Impact)

If the y axis is established within the plane of contact and the x axis along the line of impact, the impulsive 
forces of deformation and restitution act only in the x direction, Fig. 15–15b. By resolving the velocity or 
momentum vectors into components along the x and y axes, Fig. 15–15b, it is then possible to write four 
independent scalar equations in order to determine (vAx) 2 , (vAy) 2 , (vBx) 2 , and (vBy) 2 .

	 •	 Momentum of the system is conserved along the line of impact, x axis, so that m(vx) 1 = m(vx) 2 .

	 •	 The coefficient of restitution, e = [(vBx) 2 - (vAx) 2]>[(vAx) 1 - (vBx) 1], relates the relative-velocity 
components of the particles along the line of impact (x axis).

	 •	 If these two equations are solved simultaneously, we obtain (vAx) 2 and (vBx) 2.

	 •	 Momentum of particle A is conserved along the y axis, perpendicular to the line of impact, since no impulse 
acts on particle A in this direction. As a result mA(vAy) 1 = mA(vAy) 2 or (vAy) 1 = (vAy) 2

	 •	 Momentum of particle B is conserved along the y axis, perpendicular to the line of impact, since no impulse 
acts on particle B in this direction. Consequently (vBy) 1 = (vBy) 2.

Application of these four equations is illustrated in Example 15.11.

Line of impact

(a)

BA

(vB)1

(vB)2

(vA)1

(vA)2

Plane of contact

y

x
f1

f2

u1

u2

mA(vAx)1

mB(vBx)1

mB(vBy)2

mB(vBx)2

mB(vBy)1

mA(vAy)1

mA(vAx)2

mA(vAy)2

�Fdt

�Fdt

A A A

B B B

(b)

Fig. 15–15 
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Example   15.9

The bag A, having a weight of 6 lb, is released from rest at the position 
u = 0, as shown in Fig. 15–16a. After falling to u = 90, it strikes an 
18-lb box B. If the coefficient of restitution between the bag and box is 
e = 0.5, determine the velocities of the bag and box just after impact. 
What is the loss of energy during collision?

Solution
This problem involves central impact. Why? Before analyzing the 
mechanics of the impact, however, it is first necessary to obtain the 
velocity of the bag just before it strikes the box.

Conservation of Energy.  With the datum at u = 0, Fig. 15–16b,  
we have

 T0 + V 0 = T1 + V 1

 0 + 0 =
1

2
 a 6 lb

32.2 ft>s2 b (vA)1
2 - 6 lb(3 ft);	(vA)1 = 13.90 ft>s

Conservation of Momentum.  After impact we will assume A and B 
travel to the left. Applying the conservation of momentum to the system, 
Fig. 15–16c, we have

( d+ )	 mB(vB)1 + mA(vA)1 = mB(vB)2 + mA(vA)2

0 + a 6 lb

32.2 ft>s2 b (13.90 ft>s) = a 18 lb

32.2 ft>s2 b (vB)2 +a 6 lb

32.2 ft>s2 b(vA)2

	  (vA)2 = 13.90 - 3(vB)2� (1)

Coefficient of Restitution.  Realizing that for separation to occur 
after collision (vB)2 7 (vA)2 , Fig. 15–16c, we have

( d+ )	 e =
(vB)2 - (vA)2

(vA)1 - (vB)1
;	 0.5 =

(vB)2 - (vA)2

13.90 ft>s - 0

	 (vA)2 = (vB)2 - 6.950� (2)

Solving Eqs. 1 and 2 simultaneously yields

(vA)2 = -1.74 ft>s = 1.74 ft>s S and (vB)2 = 5.21 ft>s d � Ans.

Loss of Energy.  Applying the principle of work and energy to the 
bag and box just before and just after collision, we have

U1- 2 = T2 - T1;

U1- 2 = c 1
2

 a 18 lb

32.2 ft>s2 b (5.21 ft>s)2 +
1

2
 a 6 lb

32.2 ft>s2 b (1.74 ft>s)2 d

	 - c 1
2

 a 6 lb

32.2 ft>s2 b (13.9 ft>s)2 d
	 U1- 2 = -10.1 ft # lb� Ans.

NOTE: The energy loss occurs due to inelastic deformation during the 
collision.

3 ft

Line of impact

B

A

(a)

u

3 ft6 lb

6 lb

Datum

(b)

1

0

Just before impact

Just after impact

B A

(vA)1 � 13.90 ft/s

B
A

(vA)2(vB)2

(vB)1 � 0

(c)

Fig. 15–16 
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Example   15.10

Ball B shown in Fig. 15–17a has a mass of 1.5 kg and is suspended from 
the ceiling by a 1-m-long elastic cord. If the cord is stretched downward 
0.25 m and the ball is released from rest, determine how far the cord 
stretches after the ball rebounds from the ceiling. The stiffness of the 
cord is k = 800 N>m, and the coefficient of restitution between the 
ball and ceiling is e = 0.8. The ball makes a central impact with the 
ceiling.

Solution
First we must obtain the velocity of the ball just before it strikes the 
ceiling using energy methods, then consider the impulse and 
momentum between the ball and ceiling, and finally again use energy 
methods to determine the stretch in the cord.

Conservation of Energy.  With the datum located as shown in  
Fig. 15–17a, realizing that initially y = y0 = (1 + 0.25) m = 1.25 m,  
we have

T0 + V 0 = T1 + V 1
1
2 m(vB)0

2 - W By0 +
1
2  ks2 =

1
2  m(vB)1

2 + 0

0 - 1.5(9.81)N(1.25 m) +
1
2(800 N>m)(0.25 m)2 =

1
2(1.5 kg)(vB)1

2

(vB)1 = 2.968 m>s c

The interaction of the ball with the ceiling will now be considered 
using the principles of impact.* Since an unknown portion of the mass 
of the ceiling is involved in the impact, the conservation of momentum 
for the ball–ceiling system will not be written. The “velocity” of this 
portion of ceiling is zero since it (or the earth) are assumed to remain 
at rest both before and after impact.

Coefficient of Restitution.  Fig. 15–17b.

(+ c ) e =
(vB)2 - (vA)2

(vA)1 - (vB)1
;	  0.8 =

(vB)2 - 0

0 - 2.968 m>s
	  (vB)2 = -2.374 m>s = 2.374 m>s T

Conservation of Energy.  The maximum stretch s3 in the cord can 
be determined by again applying the conservation of energy equation 
to the ball just after collision. Assuming that y = y3 = (1 + s3) m,  
Fig. 15–17c, then

 T2 + V 2 = T3 + V 3

 12 m(vB)2
2 + 0 =

1
2  m(vB)3

2 - WBy3 +
1
2  ks3

2

 12(1.5 kg)(2.37 m>s)2 = 0 - 9.81(1.5) N(1 m + s3) +
1
2(800 N>m)s3

2

400s3
2 - 14.715s3 - 18.94 = 0

Solving this quadratic equation for the positive root yields
	 s3 = 0.237 m = 237 mm� Ans.

y � (1 � 0.25) m

Datum

k � 800 N/m

B

(a)

1

0

x

y

(vB)2 (vB)1 � 2.97 m/s

(b)

y � (1 � s3)  m

Datum

k � 800 N/m

B

(c)

2

3

Fig. 15–17 

*The weight of the ball is considered a nonimpulsive force.
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A

B B B

A A

(b)

mA(vAx)1 mA(vAx)2

mA(vAy)2mA(vAy)1

mB(vBy)1

mB(vBy)2

mB(vBx)1 mB(vBx)2

��Fdt

�Fdt

Example   15.11

Line of impact

(a)

B

A

(vB)1 � 1 m/s

(vA)1 � 3 m/s
Plane of contact

y

x
u1 � 30�

f1 � 45�

(c)

(vA)2 � 1.96 m/s

(vB)2 � 1.41 m/s

B
A

y

x
u2 � 50.0�

f2 � 30.1�

Fig. 15–18 

Two smooth disks A and B, having a mass of 1 kg and 2 kg, respectively, 
collide with the velocities shown in Fig. 15–18a. If the coefficient of 
restitution for the disks is e = 0.75, determine the x and y components 
of the final velocity of each disk just after collision.

Solution
This problem involves oblique impact. Why? In order to solve it, we 
have established the x and y axes along the line of impact and the 
plane of contact, respectively, Fig. 15–18a.

Resolving each of the initial velocities into x and y components, we 
have

 (vAx)1 = 3 cos 30 = 2.598 m>s      (vAy)1 = 3 sin 30 = 1.50 m>s
(vBx)1 = -1 cos 45 = -0.7071 m>s  (vBy)1 = -1 sin 45 = -0.7071 m>s
The four unknown velocity components after collision are assumed to 
act in the positive directions, Fig. 15–18b. Since the impact occurs in the 
x direction (line of impact), the conservation of momentum for both 
disks can be applied in this direction. Why?

Conservation of “x” Momentum.  In reference to the momentum 
diagrams, we have

( S+ )	  mA(vAx)1 + mB(vBx)1 = mA(vAx)2 + mB(vBx)2

 1 kg(2.598 m>s) + 2 kg(-0.707 m>s) = 1 kg(vAx)2 + 2 kg(vBx)2

	  (vAx)2 + 2(vBx)2 = 1.184� (1)

Coefficient of Restitution (x). 

( S+ )	 e =
(vBx)2 - (vAx)2

(vAx)1 - (vBx)1
;  0.75 =

(vBx)2 - (vAx)2

2.598 m>s - (-0.7071 m>s)

	 (vBx)2 - (vAx)2 = 2.482� (2)

Solving Eqs. 1 and 2 for (vAx)2 and (vBx)2 yields

(vAx)2 = -1.26 m>s = 1.26 m>s d (vBx)2 = 1.22 m>s S � Ans.

Conservation of “y” Momentum.  The momentum of each disk is 
conserved in the y direction (plane of contact), since the disks are 
smooth and therefore no external impulse acts in this direction. From 
Fig. 15–18b,

(+ c ) mA(vAy)1 = mA(vAy)2;  (vAy)2 = 1.50 m>s c � Ans.

(+ c) mB(vBy)1 = mB(vBy)2;    (vBy)2 = -0.707 m>s = 0.707 m>s T �Ans.

NOTE: Show that when the velocity components are summed vectorially, 
one obtains the results shown in Fig. 15–18c.
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F15–16.  The ball strikes the smooth wall with a velocity of 
(vb)1 = 20 m>s. If the coefficient of restitution between the 
ball and the wall is e = 0.75, determine the velocity of the 
ball just after the impact. 

(vb)1 � 20 m/s

(vb)2

30�

u

Prob. F15–16
F15–17.  Disk A  has a mass of 2 kg and slides on the 
smooth horizontal plane with a velocity of 3 m>s. Disk B 
has a mass of 11 kg and is initially at rest. If after impact A  
has a velocity of 1 m>s, parallel to the positive x axis, 
determine the speed of disk B after impact. 

x

y

B

A

3 m/s

Prob. F15–17
F15–18.  Two disks A and B each have a mass of 1 kg and 
the initial velocities shown just before they collide. If the 
coefficient of restitution is e = 0.5, determine their speeds 
just after impact. 

B

y

x

A

(vA)1 � 4 m/s

(vB)1 � 3 m/s

4
3 5

Prob. F15–18

F15–13.  Determine the coefficient of restitution e between 
ball A and ball B. The velocities of A and B before and after 
the collision are shown. 

8 m/s 2 m/s

9 m/s1 m/s

Before collision

After collision

A B

A B

Prob. F15–13

F15–14.  The 15-Mg tank car A  and 25-Mg freight car B 
travel toward each other with the velocities shown. If the 
coefficient of restitution between the bumpers is e = 0.6, 
determine the velocity of each car just after the collision. 

BA
7 m/s5 m/s

Prob. F15–14

F15–15.  The 30-lb package A  has a speed of 5 ft>s when it 
enters the smooth ramp. As it slides down the ramp, it 
strikes the 80-lb package B which is initially at rest. If the 
coefficient of restitution between A  and B is e = 0.6, 
determine the velocity of B just after the impact. 

5 ft/s

10 ft

5 ft

A

B

Prob. F15–15

Fundamental problems
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15–58.	 Disk A has a mass of 250 g and is sliding on a 
smooth horizontal surface with an initial velocity 
(vA)1 = 2 m>s. It makes a direct collision with disk B, which 
has a mass of 175 g and is originally at rest. If both disks are 
of the same size and the collision is perfectly elastic (e = 1), 
determine the velocity of each disk just after collision. Show 
that the kinetic energy of the disks before and after collision 
is the same.

15–59.  The 5-Mg truck and 2-Mg car are traveling with the 
free-rolling velocities shown just before they collide. After 
the collision, the car moves with a velocity of 15 km>h to the 
right relative to the truck. Determine the coefficient of 
restitution between the truck and car and the loss of energy 
due to the collision.

30 km/h

10 km/h

Prob. 15–59

*15–60.  Disk A has a mass of 2 kg and is sliding forward 
on the smooth surface with a velocity (vA)1 = 5 m>s when it 
strikes the 4-kg disk B, which is sliding towards A at 
(vB)1 = 2 m>s, with direct central impact. If the coefficient 
of restitution between the disks is e = 0.4, compute the 
velocities of A and B just after collision.

(vA)1 � 5 m/s (vB)1 � 2 m/s

A B

Prob. 15–60

15–61.  The 15-kg block A slides on the surface for which 
mk = 0.3. The block has a velocity v = 10 m>s when it is  
s = 4 m from the 10-kg block B. If the unstretched spring 
has  a  stiffness k = 1000 N>m, determine the maximum 
compression of the spring due to the collision. Take e = 0.6.

k � 1000 N/m

AB

s

10 m/s

Prob. 15–61

15–62.  The four smooth balls each have the same mass m. 
If A and B are rolling forward with velocity v and strike C, 
explain why after collision C and D each move off with 
velocity v. Why doesn’t D move off with velocity 2v? The 
collision is elastic, e = 1. Neglect the size of each ball.

15–63.  The four balls each have the same mass m. If A 
and  B are rolling forward with velocity v and strike C, 
determine the velocity of each ball after the first three 
collisions. Take e = 0.5 between each ball.

v

A B C D

v

Probs. 15–62/63

*15–64.  Ball A has a mass of 3 kg and is moving with a 
velocity of 8 m>s when it makes a direct collision with ball 
B, which has a mass of 2 kg and is moving with a velocity of 
4 m>s. If e = 0.7, determine the velocity of each ball just after 
the collision. Neglect the size of the balls.

A B

8 m/s 4 m/s

Prob. 15–64

PROBLEMS
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15–65.  A 1-lb ball A is traveling horizontally at 20 ft>s 
when it strikes a 10-lb block B that is at rest. If the coefficient 
of restitution between A and B is e = 0.6, and the coefficient 
of kinetic friction between the plane and the block is 
mk = 0.4, determine the time for the block B to stop sliding.

15–66.  Block A, having a mass m, is released from rest, 
falls a distance h and strikes the plate B having a mass 2m. If 
the coefficient of restitution between A and B is e, determine 
the velocity of the plate just after collision. The spring has a 
stiffness k.

A

B

k

h

Prob. 15–66

15–67.  The three balls each weigh 0.5 lb and have a 
coefficient of restitution of e = 0.85. If ball A is released 
from rest and strikes ball B and then ball B strikes ball C, 
determine the velocity of each ball after the second collision 
has occurred. The balls slide without friction.

r � 3 ft

A

B C

Prob. 15–67

*15–68.  A pitching machine throws the 0.5-kg ball toward 
the wall with an initial velocity vA = 10 m>s as shown. 
Determine (a) the velocity at which it strikes the wall at B, 
(b) the velocity at which it rebounds from the wall if e = 0.5, 
and (c) the distance s from the wall to where it strikes the 
ground at C.

3 m

30�

1.5 m

vA � 10 m/s

s

B

A

C

Prob. 15–68

15–69.  A 300-g ball is kicked with a velocity of vA = 25 m>s 
at point A as shown. If the coefficient of restitution between 
the ball and the field is e = 0.4, determine the magnitude 
and direction u of the velocity of the rebounding ball at B.

AB

u 30�

  vA � 25 m/s
v¿B

Prob. 15–69

15–70.  Two smooth spheres A and B each have a mass m. 
If A is given a velocity of v0, while sphere B is at rest, 
determine the velocity of B just after it strikes the wall. The 
coefficient of restitution for any collision is e.

A  B

v0

Prob. 15–70
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15–71.  It was observed that a tennis ball when served 
horizontally 7.5 ft above the ground strikes the smooth 
ground at B 20 ft away. Determine the initial velocity vA of 
the ball and the velocity vB (and u) of the ball just after it 
strikes the court at B. Take e = 0.7.

*15–72.  The tennis ball is struck with a horizontal velocity 
vA, strikes the smooth ground at B, and bounces upward at 
u = 30. Determine the initial velocity vA, the final velocity 
vB, and the coefficient of restitution between the ball and 
the ground.

20 ft

vB

vA

7.5 ft

A

B
u

Probs. 15–71/72

15–73.  Two smooth disks A and B each have a mass of 0.5 kg. 
If both disks are moving with the velocities shown when they 
collide, determine their final velocities just after collision. The 
coefficient of restitution is e = 0.75.

15–74.  Two smooth disks A and B each have a mass of 0.5 kg. 
If both disks are moving with the velocities shown when they 
collide, determine the coefficient of restitution between the 
disks if after collision B travels along a line,  30° counterclockwise 
from the y axis.

y

5 4
3

x

A

B

(vA)1 � 6 m/s

(vB)1 � 4 m/s

Probs. 15–73/74

15–75.  The 0.5-kg ball is fired from the tube at A with  
a velocity of v = 6 m>s. If the coefficient of restitution 
between the ball and the surface is e = 0.8, determine the 
height h after it bounces off the surface.

2 m
h

30�

B

C
A

v � 6 m/s

Prob. 15–75

*15–76.  A ball of mass m is dropped vertically from a 
height h0 above the ground. If it rebounds to a height of h1, 
determine the coefficient of restitution between the ball 
and the ground.

h1

h0

Prob. 15–76

15–77.  The cue ball A is given an initial velocity  
(vA)1 = 5 m>s. If it makes a direct collision with ball 
B (e = 0.8), determine the velocity of B and the angle u just 
after it rebounds from the cushion at C (e = 0.6). Each ball 
has a mass of 0.4 kg. Neglect their size.

u

(vA)1 � 5 m/s

30�

C

A
B

Prob. 15–77
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15–81.  The girl throws the 0.5-kg ball toward the wall with 
an initial velocity yA = 10 m>s. Determine (a) the velocity 
at which it strikes the wall at B, (b) the velocity at which it 
rebounds from the wall if the coefficient of restitution 
e = 0.5, and (c) the distance s from the wall to where it 
strikes the ground at C.

vA � 10 m/s

1.5 m
30�

3 m
s

A

C

B

Prob. 15–81

15–82.  The 20-lb box slides on the surface for which 
m k = 0.3. The box has a velocity v = 15 ft>s when it is 2 ft 
from the plate. If it strikes the smooth plate, which has a 
weight of 10 lb and is held in position by an unstretched 
spring of stiffness k = 400 lb>ft, determine the maximum 
compression imparted to the spring. Take e = 0.8 between 
the box and the plate. Assume that the plate slides smoothly.

v � 15 ft/s
k

2 ft

Prob. 15–82

15–83.  The 10-lb collar B is at rest, and when it is in the 
position shown the spring is unstretched. If another 1-lb 
collar A strikes it so that B slides 4 ft on the smooth rod 
before momentarily stopping, determine the velocity of A 
just after impact, and the average force exerted between A 
and B during the impact if the impact occurs in 0.002 s. 
The coefficient of restitution between A and B is e = 0.5.

A B

k � 20 lb/ft 3 ft

Prob. 15–83

15–78.  Using a slingshot, the boy fires the 0.2-lb marble at the 
concrete wall, striking it at B. If the coefficient of restitution 
between the marble and the wall is e = 0.5, determine the 
speed of the marble after it rebounds from the wall.

5 ft

A

B

C

100 ft

vA � 75 ft/s

45�

60�

Prob. 15–78

15–79.  The two disks A and B have a mass of 3 kg and 5 kg, 
respectively. If they collide with the initial velocities shown, 
determine their velocities just after impact. The coefficient 
of restitution is e = 0.65.

Line of impact
A

B
60�(vA)1 � 6 m/s

(vB)1 � 7 m/s

Prob. 15–79

*15–80.  A ball of negligible size and mass m is given a 
velocity of v0 on the center of the cart which has a mass M 
and is originally at rest. If the coefficient of restitution 
between the ball and walls A and B is e, determine the 
velocity of the ball and the cart just after the ball strikes A. 
Also, determine the total time needed for the ball to strike A, 
rebound, then strike B, and rebound and then return to the 
center of the cart. Neglect friction.

v0

A B

dd

Prob. 15–80
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15–87.  The “stone” A used in the sport of curling slides 
over the ice track and strikes another “stone” B as shown. If 
each “stone” is smooth and has a weight of 47 lb, and the 
coefficient of restitution between the “stones” is e = 0.8, 
determine their speeds just after collision. Initially A has a 
velocity of 8 ft>s and B is at rest. Neglect friction.

*15–88.  The “stone” A used in the sport of curling slides 
over the ice track and strikes another “stone” B as shown. If 
each “stone” is smooth and has a weight of 47 lb, and the 
coefficient of restitution between the “stone” is e = 0.8, 
determine the time required just after collision for B to 
slide off the runway. This requires the horizontal component 
of displacement to be 3 ft.

30�

x

y
B

(vA)1 � 8 ft/s

3 ft

A

Probs. 15–87/88

15–89.  Two smooth disks A and B have the initial velocities 
shown just before they collide. If they have masses 
mA = 4 kg and mB = 2 kg, determine their speeds just after 
impact. The coefficient of restitution is e = 0.8.

A

B

45

3

vA � 15 m/s

vB � 8 m/s

Prob. 15–89

*15–84.  A ball is thrown onto a rough floor at an angle u. 
If it rebounds at an angle f and the coefficient of kinetic 
friction is m, determine the coefficient of restitution e. 
Neglect the size of the ball. Hint: Show that during impact, 
the average impulses in the x and y directions are related by 
Ix = mIy. Since the time of impact is the same, Fx t = mFy t 
or Fx = mFy.

15–85.  A ball is thrown onto a rough floor at an angle of 
u = 45. If it rebounds at the same angle f = 45, determine 
the coefficient of kinetic friction between the floor and the 
ball. The coefficient of restitution is e = 0.6. Hint: Show 
that during impact, the average impulses in the x and y 
directions are related by Ix = mIy. Since the time of impact 
is the same, Fx t = mFy t or Fx = mFy.

y

x

u f

Probs. 15–84/85

15–86.  Two smooth billiard balls A and B each have a 
mass of 200 g. If A strikes B with a velocity (vA)1 = 1.5 m>s 
as shown, determine their final velocities just after collision. 
Ball B is originally at rest and the coefficient of restitution is 
e = 0.85. Neglect the size of each ball.

40�

x

y

B

(vA)1 � 1.5 m/s

A

Prob. 15–86
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*15–92.  The two billiard balls A and B are originally in 
contact with one another when a third ball C strikes each of 
them at the same time as shown. If ball C remains at rest 
after the collision, determine the coefficient of restitution. 
All the balls have the same mass. Neglect the size of 
each ball.

C
B

A

v

Prob. 15–92

15–93.  Disks A and B have a mass of 15 kg and 10 kg, 
respectively. If they are sliding on a smooth horizontal plane 
with the velocities shown, determine their speeds just after 
impact. The coefficient of restitution between them is 
e = 0.8.

y

x

A

B

10 m/s

Line of
impact

8 m/s

4
3

5

Prob. 15–93

15–90.  Before a cranberry can make it to your dinner 
plate, it must pass a bouncing test which rates its quality. If 
cranberries having an e Ú 0.8 are to be accepted, determine 
the dimensions d and h for the barrier so that when a 
cranberry falls from rest at A it strikes the incline at B and 
bounces over the barrier at C.

5 3

4
3.5 ft

h

C

B

A

d

Prob. 15–90

15–91.  The 200-g billiard ball is moving with a speed of 
2.5 m>s when it strikes the side of the pool table at A. If the 
coefficient of restitution between the ball and the side of 
the table is e = 0.6, determine the speed of the ball just after 
striking the table twice, i.e., at A, then at B. Neglect the size 
of the ball.

v � 2.5 m/s
45�

A
B

Prob. 15–91
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15.5  Angular Momentum

The angular momentum of a particle about point O is defined as the 
“moment” of the particle’s linear momentum about O. Since this concept 
is analogous to finding the moment of a force about a point, the angular 
momentum, HO , is sometimes referred to as the moment of momentum.

Scalar Formulation.  If a particle moves along a curve lying in 
the x–y plane, Fig. 15–19, the angular momentum at any instant can be 
determined about point O (actually the z axis) by using a scalar 
formulation. The magnitude of HO is

	 (HO)z = (d)(mv) � (15–12)

Here d is the moment arm or perpendicular distance from O to the line 
of action of mv. Common units for (HO)z are kg # m2>s or slug # ft2>s. The 
direction of HO is defined by the right-hand rule. As shown, the curl of the 
fingers of the right hand indicates the sense of rotation of mv about O, 
so that in this case the thumb (or HO) is directed perpendicular to the 
x–y plane along the +z axis.

Vector Formulation.  If the particle moves along a space curve, 
Fig. 15–20, the vector cross product can be used to determine the angular 
momentum about O. In this case

	 HO = r * mv � (15–13)

Here r denotes a position vector drawn from point O to the particle. As 
shown in the figure, HO is perpendicular to the shaded plane containing r 
and mv.

In order to evaluate the cross product, r and mv should be expressed 
in terms of their Cartesian components, so that the angular momentum 
can be determined by evaluating the determinant:

	 HO = 3 i j k
rx ry rz

mvx mvy mvz

3 � (15–14)

x

yO
d

mv

z

HO

Fig. 15–19 

x

y

z

O

mv

HO � r � mv

r

Fig. 15–20 
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15.6  �Relation Between Moment of 
a Force and Angular Momentum

The moments about point O of all the forces acting on the particle in 
Fig. 15–21a can be related to the particle’s angular momentum by applying 
the equation of motion. If the mass of the particle is constant, we may write

	 F = mv
#

The moments of the forces about point O can be obtained by performing 
a cross-product multiplication of each side of this equation by the 
position vector r, which is measured from the x, y, z inertial frame of 
reference. We have

	 MO = r * F = r * mv
#
	

From Appendix B, the derivative of r * mv can be written as

H
#

O =
d

dt
 (r * mv) = r

#
* mv + r * mv

#

The first term on the right side, r
#

* mv = m(r
#

* r
#
) = 0, since the cross 

product of a vector with itself is zero. Hence, the above equation becomes

	 MO = H
#

O � (15–15)

which states that the resultant moment about point O of all the forces acting 
on the particle is equal to the time rate of change of the particle’s angular 
momentum about point O. This result is similar to Eq. 15–1, i.e.,

	 F = L
#

� (15–16)

Here L = mv, so that the resultant force acting on the particle is equal to 
the time rate of change of the particle’s linear momentum.

From the derivations, it is seen that Eqs. 15–15 and 15–16 are actually 
another way of stating Newton’s second law of motion. In other sections 
of this book it will be shown that these equations have many practical 
applications when extended and applied to problems involving either a 
system of particles or a rigid body.

x

y

z

O

r

Inertial coordinate
system

(a)

�F

Fig. 15–21 
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System of Particles.  An equation having the same form as  
Eq. 15–15 may be derived for the system of particles shown in  
Fig. 15–21b. The forces acting on the arbitrary ith particle of the system 
consist of a resultant external force Fi and a resultant internal force fi. 
Expressing the moments of these forces about point O, using the form of 
Eq. 15–15, we have

	 (ri * Fi) + (ri * fi) = (H
#

i)O

Here (H
#

i)O is the time rate of change in the angular momentum of the 
ith particle about O. Similar equations can be written for each of the 
other particles of the system. When the results are summed vectorially, 
the result is

	 (ri * Fi) + (ri * fi) = (H
#

i)O	

The second term is zero since the internal forces occur in equal but opposite 
collinear pairs, and hence the moment of each pair about point O is zero. 
Dropping the index notation, the above equation can be written in a 
simplified form as

	 MO = H
#

O� (15–17)

which states that the sum of the moments about point O of all the external 
forces acting on a system of particles is equal to the time rate of change of 
the total angular momentum of the system about point O. Although O has 
been chosen here as the origin of coordinates, it actually can represent 
any fixed point in the inertial frame of reference.

x

y

z

O

ri

Inertial coordinate
system

(b)

fi
Fi

i

Fig. 15–21 (cont.) 
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Example   15.12

The box shown in Fig. 15–22a has a mass m and travels down the smooth 
circular ramp such that when it is at the angle u it has a speed v. 
Determine its angular momentum about point O at this instant and the 
rate of increase in its speed, i.e., at .

r

O

(a)

v

u

Solution
Since v is tangent to the path, applying Eq. 15–12 the angular 
momentum is

	 HO = r mvb� Ans.

The rate of increase in its speed (dv>dt) can be found by applying  
Eq. 15–15. From the free-body diagram of the box, Fig. 15–22b, it can be 
seen that only the weight W = mg contributes a moment about point O. 
We have

c+ MO = H
#
O;        mg(r sin u) =

d

dt
 (r mv)

Since r and m are constant,

	  mgr sin u = r m  
dv

dt

	  
dv

dt
= g sin u� Ans.

Note: This same result can, of course, be obtained from the equation 
of motion applied in the tangential direction, Fig. 15–22b, i.e.,

+ bFt = mat;           mg sin u = m a dv

dt
b

	           
dv

dt
= g sin u� Ans.

r

O

n
W

N

t

r sin u

(b)

u

Fig. 15–22 
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15.7  �Principle of Angular Impulse  
and Momentum

Principle of Angular Impulse and Momentum.  If Eq. 15–15 
is rewritten in the form MO dt = d HO and integrated, assuming that at 
time t = t1 , HO = (HO)1 and at time t = t2 , HO = (HO)2, we have

 L
t2

t1

MO dt = (HO)2 - (HO)1

or

	 (HO)1 +  L
t2

t1

MO dt = (HO)2� (15–18)

This equation is referred to as the principle of angular impulse and 
momentum. The initial and final angular momenta (HO)1 and (HO)2 are 
defined as the moment of the linear momentum of the particle 
(HO = r * mv) at the instants t1 and t2 , respectively. The second term on 
the left side,  1MO dt, is called the angular impulse. It is determined by 
integrating, with respect to time, the moments of all the forces acting on 
the particle over the time period t1 to t2 . Since the moment of a force 
about point O is MO = r * F, the angular impulse may be expressed in 
vector form as

	 angular impulse = L
t2

t1

MO dt = L
t2

t1

(r * F) dt � (15–19)

Here r is a position vector which extends from point O to any point on 
the line of action of F.

In a similar manner, using Eq. 15–18, the principle of angular impulse 
and momentum for a system of particles may be written as

	 (HO)1 +  L
t2

t1

MO dt = (HO)2� (15–20)
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Here the first and third terms represent the angular momenta of all the 
particles [HO = (ri * mvi)] at the instants t1 and t2 . The second term 
is the sum of the angular impulses given to all the particles from t1 to t2 . 
Recall that these impulses are created only by the moments of the external 
forces acting on the system where, for the ith particle, MO = ri * Fi.

Vector Formulation.  Using impulse and momentum principles, it 
is therefore possible to write two equations which define the particle’s 
motion, namely, Eqs. 15–3 and Eqs. 15–18, restated as

 	
mv1 + g L

t2

t1

F dt = mv2

 (HO)1 + g L
t2

t1

MO dt = (HO)2

� (15–21)

Scalar Formulation.  In general, the above equations can be 
expressed in x, y, z component form. If the particle is confined to move in 
the x–y plane, then three scalar equations can be written to express the 
motion, namely,

	

m(vx)1 + g L
t2

t1

Fx dt = m(vx)2

m(vy)1 + g L
t2

t1

Fy dt = m(vy)2

 
(HO)1 +  L

t2

t1

MO dt = (HO)2

� (15–22)

The first two of these equations represent the principle of linear impulse 
and momentum in the x and y directions, which has been discussed in 
Sec.  15–1, and the third equation represents the principle of angular 
impulse and momentum about the z axis.
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Conservation of Angular Momentum.  When the angular 
impulses acting on a particle are all zero during the time t1 to t2 , Eq. 15–18 
reduces to the following simplified form:

	 (HO)1 = (HO)2� (15–23)

This equation is known as the conservation of angular momentum. It states 
that from t1 to t2 the particle’s angular momentum remains constant. 
Obviously, if no external impulse is applied to the particle, both linear and 
angular momentum will be conserved. In some cases, however, the particle’s 
angular momentum will be conserved and linear momentum may not. An 
example of this occurs when the particle is subjected only to a central force 
(see Sec. 13.7). As shown in Fig. 15–23, the impulsive central force F is always 
directed toward point O as the particle moves along the path. Hence, the 
angular impulse (moment) created by F about the z axis is always zero, and 
therefore angular momentum of the particle is conserved about this axis.

From Eq. 15–20, we can also write the conservation of angular 
momentum for a system of particles as

	 �(HO)1 = �(HO)2� (15–24)

In this case the summation must include the angular momenta of all 
particles in the system.

Procedure for Analysis

When applying the principles of angular impulse and momentum, or 
the conservation of angular momentum, it is suggested that the 
following procedure be used.

Free-Body Diagram. 
	 •	 Draw the particle’s free-body diagram in order to determine any 

axis about which angular momentum may be conserved. For this 
to occur, the moments of all the forces (or impulses) must either 
be parallel or pass through the axis so as to create zero moment 
throughout the time period t1 to t2 .

	 •	 The direction and sense of the particle’s initial and final velocities 
should also be established.

	 •	 An alternative procedure would be to draw the impulse and 
momentum diagrams for the particle.

Momentum Equations.
	 •	 Apply the principle of angular impulse and momentum, 

(HO)1 + � 1 t2
t1

MOdt = (HO)2 , or if appropriate, the conservation 
of angular momentum, (HO)1 = (HO)2 .

x

y

O

F

Fig. 15–23 

N

W

z

Provided air resistance is neglected, the 
passengers on this amusement-park ride are 
subjected to a conservation of angular 
momentum about the z axis of rotation. As 
shown on the free-body diagram, the line of 
action of the normal force N of the seat on the 
passenger passes through this axis, and the 
passenger’s weight W is parallel to it. Thus, no 
angular impulse acts around the z axis.

(© Petra Hilke/Fotolia)
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Example   15.13

The 1.5-Mg car travels along the circular road as shown in Fig. 15–24a. 
If the traction force of the wheels on the road is F = (150t2) N, where t 
is in seconds, determine the speed of the car when t = 5 s. The car 
initially travels with a speed of 5 m>s. Neglect the size of the car.

100 m

(a)

F

Free-Body Diagram.  The free-body diagram of the car is shown in 
Fig. 15–24b. If we apply the principle of angular impulse and momentum 
about the z axis, then the angular impulse created by the weight, normal 
force, and radial frictional force will be eliminated since they act 
parallel to the axis or pass through it.

Principle of Angular Impulse and Momentum.

(Hz)1 +  L
t2

t1

 Mz dt = (Hz)2

r mc(vc)1 + L
t2

t1

 r F dt = r mc(vc)2

(100 m)(1500 kg)(5 m>s) + L
5 s

0
 (100 m)[(150t2) N] dt

	                       = (100 m)(1500 kg)(vc)2

       750(103) + 5000t3 2
0

5 s

= 150(103)(vc)2

	 (vc)2 = 9.17 m>s� Ans.

r � 100 m

W � 1500 (9.81)N

(b)

z

F � (150t2)N
Fr

N

Fig. 15–24 
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Example   15.14

The 0.8-lb ball B, shown in Fig. 15–25a, is attached to a cord which 
passes through a hole at A in a smooth table. When the ball is 
r1 = 1.75 ft from the hole, it is rotating around in a circle such that its 
speed is v1 = 4 ft>s. By applying the force F the cord is pulled 
downward through the hole with a constant speed vc = 6 ft>s. 
Determine (a) the speed of the ball at the instant it is r2 = 0.6 ft from 
the hole, and (b) the amount of work done by F in shortening the 
radial distance from r1 to r2 . Neglect the size of the ball.

Solution
Part (a) Free-Body Diagram.  As the ball moves from r1 to r2 ,  
Fig. 15–25b, the cord force F on the ball always passes through the  
z axis, and the weight and NB are parallel to it. Hence the moments, or 
angular impulses created by these forces, are all zero about this axis. 
Therefore, angular momentum is conserved about the z axis.

Conservation of Angular Momentum.  The ball’s velocity v2 is 
resolved into two components. The radial component, 6 ft>s, is known; 
however, it produces zero angular momentum about the z axis. Thus,

 H1 = H2

 r1mBv1 = r2mBv2
=

 1.75 fta 0.8 lb

32.2 ft>s2 b  4 ft>s = 0.6 fta 0.8 lb

32.2 ft>s2 bv2
=

 v2
= = 11.67 ft>s

The speed of the ball is thus

 v2 = 2(11.67 ft>s)2 + (6 ft>s)2

= 13.1 ft>s
Part (b).  The only force that does work on the ball is F. (The normal 
force and weight do not move vertically.) The initial and final kinetic 
energies of the ball can be determined so that from the principle of 
work and energy we have

 T1 + U1- 2 = T2

 
1

2
 a 0.8 lb

32.2 ft>s2 b (4 ft>s)2 + UF =
1

2
 a 0.8 lb

32.2 ft>s2 b (13.1 ft>s)2

	 UF = 1.94 ft # lb� Ans.

NOTE: The force F is not constant because the normal component of 
acceleration, an = v2>r, changes as r changes.

F

vc � 6 ft/s

A

B
4 ft/s

r1

r2

(a)

(b)

4 ft/s

z

NB

0.8 lb

F

r2 � 0.6 ft

r1 � 1.75 ft

v2

v¿2
6 ft/s

Fig. 15–25 
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Example   15.15

The 2-kg disk shown in Fig. 15–26a rests on a smooth horizontal 
surface and is attached to an elastic cord that has a stiffness 
kc = 20 N>m and is initially unstretched. If the disk is given a velocity 
(vD)1 = 1.5 m>s, perpendicular to the cord, determine the rate at 
which the cord is being stretched and the speed of the disk at the 
instant the cord is stretched 0.2 m.

Solution
Free-Body Diagram.  After the disk has been launched, it slides 
along the path shown in Fig. 15–26b. By inspection, angular momentum 
about point O (or the z axis) is conserved, since none of the forces 
produce an angular impulse about this axis. Also, when the distance is 
0.7 m, only the transverse component (vD

= )2 produces angular 
momentum of the disk about O.

Conservation of Angular Momentum.  The component (vD
= )2 can 

be obtained by applying the conservation of angular momentum 
about O (the z axis).

 (HO)1 = (HO)2

 r1mD(vD)1 = r2mD(vD
= )2

 0.5 m (2 kg)(1.5 m/s) = 0.7 m(2 kg)(vD
= )2

 (vD
= )2 = 1.071 m>s

Conservation of Energy.  The speed of the disk can be obtained by 
applying the conservation of energy equation at the point where the 
disk was launched and at the point where the cord is stretched 0.2 m.

 T1 + V 1 = T2 + V 2

 12mD(vD)1
2 +

1
2kx1

2 =
1
2mD(vD)2

2 +
1
2kx2

2

 12(2 kg)(1.5 m>s)2 + 0 =
1
2(2 kg)(vD)2

2 +
1
2(20 N>m)(0.2 m)2

    (vD)2 = 1.360 m>s = 1.36 m>s� Ans.

Having determined (vD)2 and its component (vD
= )2 , the rate of stretch 

of the cord, or radial component, (vD
> )2 is determined from the 

Pythagorean theorem,

 (vD
> )2 = 2(vD)2

2 - (vD
= )2

2

 = 2(1.360 m>s)2 - (1.071 m>s)2

 = 0.838 m>s � Ans.

0.5 m

x

y

(vD)1 � 1.5 m/s

O

(a)

kc � 20 N/m

z

(vD)1

ND

2(9.81) N

z

x

y

(b)

FC

0.5 m

0.5 m
0.2 m

O

(v¿D)2 (vD)2

(v¿¿D)2

Fig. 15–26 
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F15–19.  The 2-kg particle A  has the velocity shown. 
Determine its angular momentum HO about point O. 

y

x

A

4 m

3 m

3
45

O

 10 m/s

2 kg

F15–20.  The 2-kg particle A  has the velocity shown. 
Determine its angular momentum HP about point P. 

y

x

15 m/s

2 m

2 m3 m

P

A

30�

F15–21.  Initially the 5-kg block is moving with a constant 
speed of 2 m>s around the circular path centered at O on 
the smooth horizontal plane. If a constant tangential force 
F = 5 N is applied to the block, determine its speed when 
t = 3 s. Neglect the size of the block. 

1.5 m

F � 5 N

O

A

 2 m/s

F15–22.  The 5-kg block is moving around the circular path 
centered at O on the smooth horizontal plane when it is 
subjected to the force F = (10t) N, where t is in seconds. If 
the block starts from rest, determine its speed when t = 4 s. 
Neglect the size of the block. The force maintains the same 
constant angle tangent to the path. 

1.5 m

F � (10 t) N

O

A 5

34

F15–23.  The 2-kg sphere is attached to the light rigid rod, 
which rotates in the horizontal plane centered at O. If the 
system is subjected to a couple moment M = (0.9t2) N # m, 
where t is in seconds, determine the speed of the sphere at 
the instant t = 5 s starting from rest. 

O 0.6 m
M � (0.9t2) N�m

F15–24.  Two identical 10-kg spheres are attached to the 
light rigid rod, which rotates in the horizontal plane centered 
at pin O. If the spheres are subjected to tangential forces of 
P = 10 N, and the rod is subjected to a couple moment 
M = (8t) N # m, where t is in seconds, determine the speed 
of the spheres at the instant t = 4 s. The system starts from 
rest. Neglect the size of the spheres. 

M � (8t) N�m
O

P � 10 N

P � 10 N

0.5 m0.5 m

Fundamental problems

Prob. F15–23

Prob. F15–24

Prob. F15–20

 Prob. F15–19

Prob. F15–21

Prob. F15–22
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15–98.  Determine the angular momentum HO  of the 3-kg 
particle about point O.

15–99.  Determine the angular momentum HP  of the 3-kg 
particle about point P.

x

P

O

B

A

y

2 m

2 m

2 m
1.5 m

3 m

3 m

1.5 m

1 m

3 kg

6 m/s

z

Probs. 15–98/99

*15–100.  Each ball has a negligible size and a mass of 
10  kg  and is attached to the end of a rod whose mass 
may  be  neglected. If the rod is subjected to a torque 
M = (t2 + 2) N # m, where t is in seconds, determine the 
speed of each ball when t = 3 s. Each ball has a speed v = 2 
m>s when t = 0.

M � (t2 � 2) N � m

0.5 m

v

v

Prob. 15–100

15–94.  Determine the angular momentum HO  of the 6-lb 
particle about point O.

15–95.  Determine the angular momentum Hp  of the 6-lb 
particle about point P.

y

z

8 ft

8 ft 10 ft

12 ft

O

P

4 ft/s

6 lb

B

x

A

Probs. 15–94/95

*15–96.  Determine the angular momentum Ho of each of 
the two particles about point O.

15–97.  Determine the angular momentum Hp  of each of 
the two particles about point P.

y

A

O

B

P

x

6 m/s
3 kg

1.5 m5 m

2 m

1 m

3

5 4 30�

4 m

8 m/s

4 kg

4 m

Probs. 15–96/97

PROBLEMS
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*15–104.  A 4-lb ball B is traveling around in a circle of 
radius r1 = 3 ft with a speed (vB)1 = 6 ft>s. If the attached 
cord is pulled down through the hole with a constant speed 
vr = 2 ft>s, determine how much time is required for the ball 
to reach a speed of 12 ft>s. How far r2 is the ball from the hole 
when this occurs? Neglect friction and the size of the ball.

B

(vB)1 � 6 ft/s

vr � 2 ft/s

r1 � 3 ft

Prob. 15–104

15–105.  The two blocks A and B each have a mass of  
400 g. The blocks are fixed to the horizontal rods, and their 
initial velocity along the circular path is 2 m>s. If a couple 
moment of M = (0.6) N # m is applied about CD of the 
frame, determine the speed of the blocks when t = 3 s. The 
mass of the frame is negligible, and it is free to rotate about 
CD. Neglect the size of the blocks.

M � 0.6 N � m

C

A

B

0.3 m
0.3 m

D

Prob. 15–105

15–101.  The 800-lb roller-coaster car starts from rest on 
the track having the shape of a cylindrical helix. If the helix 
descends 8 ft for every one revolution, determine the speed 
of the car when t = 4 s. Also, how far has the car descended 
in this time? Neglect friction and the size of the car.

15–102.  The 800-lb roller-coaster car starts from rest on 
the track having the shape of a cylindrical helix. If the helix 
descends 8 ft for every one revolution, determine the time 
required for the car to attain a speed of 60 ft>s. Neglect 
friction and the size of the car.

8 ft

r � 8 ft

Probs. 15–101/102

15–103.  A 4-lb ball B is traveling around in a circle of 
radius r1 = 3 ft with a speed (vB)1 = 6 ft>s. If the attached 
cord is pulled down through the hole with a constant speed 
vr = 2 ft>s, determine the ball’s speed at the instant 
r2 = 2 ft. How much work has to be done to pull down the 
cord? Neglect friction and the size of the ball.

B

(vB)1 � 6 ft/s

vr � 2 ft/s

r1 � 3 ft

Prob. 15–103



	 15.7  Principle of Angular Impulse and Momentum 	 293

15

*15–108.  When the 2-kg bob is given a horizontal speed of 
1.5 m>s, it begins to move around the horizontal circular 
path A. If the force F on the cord is increased, the bob rises 
and then moves around the horizontal circular path B. 
Determine the speed of the bob around path B. Also, find 
the work done by force F.

A

B

F

300 mm

600 mm

Prob. 15–108

15–109.  The elastic cord has an unstretched length l0 = 1.5 ft 
and a stiffness k = 12 lb>ft. It is attached to a fixed point at A 
and a block at B, which has a weight of 2 lb. If the block is 
released from rest from the position shown, determine its 
speed when it reaches point C after it slides along the smooth 
guide. After leaving the guide, it is launched onto the smooth 
horizontal plane. Determine if the cord becomes unstretched. 
Also, calculate the angular momentum of the block about 
point A, at any instant after it passes point C.

B
C

A

4 ft

3 ft
k � 12 lb/ft

Prob. 15–109

15–106.  A small particle having a mass m is placed inside 
the semicircular tube. The particle is placed at the position 
shown and released. Apply the principle of angular 
momentum about point O (�MO = H

#
O), and show that the 

motion of the particle is governed by the differential 
equation u

$
+ (g>R) sin u = 0.

R

O

u

Prob. 15–106

15–107.  If the rod of negligible mass is subjected to a 
couple moment of M = (30t2) N # m, and the engine of the 
car supplies a traction force of F = (15t) N to the wheels, 
where t is in seconds, determine the speed of the car at the 
instant t = 5 s. The car starts from rest. The total mass of the 
car and rider is 150 kg. Neglect the size of the car.

M � (30t2) N�m

F � 15t N

4 m

Prob. 15–107
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*15–112.  A toboggan and rider, having a total mass of 
150  kg, enter horizontally tangent to a 90° circular curve 
with a velocity of vA = 70 km>h. If the track is flat and 
banked at an angle of 60°, determine the speed vB and the 
angle u of “descent,” measured from the horizontal in a 
vertical x–z plane, at which the toboggan exists at B. Neglect 
friction in the calculation.

60�

60�

90�

vA � 70 km/h

vB
rB � 57 m

rA � 60 m

x

y

z

55 m55 m

A

B

u

Prob. 15–112

15–113.  An earth satellite of mass 700 kg is launched into a 
free-flight trajectory about the earth with an initial speed of 
vA = 10 km>s when the distance from the center of the 
earth is rA = 15 Mm. If the launch angle at this position is 
fA = 70, determine the speed vB of the satellite and its 
closest distance rB from the center of the earth. The earth 
has a mass Me = 5.976(1024) kg. Hint: Under these 
conditions, the satellite is subjected only to the earth’s 
gravitational force, F = GMems>r2, Eq. 13–1. For part of the 
solution, use the conservation of energy.

  A

rA

rB

vB

vA

f

Prob. 15–113

15–110.  The amusement park ride consists of a 200-kg car 
and passenger that are traveling at 3 m>s along a circular path 
having a radius of 8 m. If at t = 0, the cable OA is pulled in 
toward O at 0.5 m>s, determine the speed of the car when 
t = 4 s. Also, determine the work done to pull in the cable.

A

O

r

Prob. 15–110

15–111.  A box having a weight of 8 lb is moving around in 
a circle of radius rA = 2 ft with a speed of (vA)1 = 5 ft>s while 
connected to the end of a rope. If the rope is pulled inward 
with a constant speed of vr = 4 ft>s, determine the speed of 
the box at the instant rB = 1 ft. How much work is done 
after pulling in the rope from A to B? Neglect friction and 
the size of the box.

rA � 2 ft

B

vr � 4 ft/s

(vA)1 � 5 ft/s

rB � 1 ft

A

Prob. 15–111
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15.8  Steady Flow of a Fluid Stream

Up to this point we have restricted our study of impulse and momentum 
principles to a system of particles contained within a closed volume. In 
this section, however, we will apply the principle of impulse and 
momentum to the steady mass flow of fluid particles entering into and 
then out of a control volume. This volume is defined as a region in space 
where fluid particles can flow into or out of the region. The size and shape 
of the control volume is frequently made to coincide with the solid 
boundaries and openings of a pipe, turbine, or pump. Provided the flow 
of the fluid into the control volume is equal to the flow out, then the flow 
can be classified as steady flow.

Principle of Impulse and Momentum.  Consider the steady 
flow of a fluid stream in Fig. 15–27a that passes through a pipe. The region 
within the pipe and its openings will be taken as the control volume. As 
shown, the fluid flows into and out of the control volume with velocities 
vA  and vB, respectively. The change in the direction of the fluid flow 
within the control volume is caused by an impulse produced by the 
resultant external force exerted on the control surface by the wall of the 
pipe. This resultant force can be determined by applying the principle of 
impulse and momentum to the control volume.

The conveyor belt must supply frictional 
forces to the gravel that falls upon it in 
order to change the momentum of the 
gravel stream, so that it begins to travel 
along the belt. (© R.C. Hibbeler)

The air on one side of this fan is essentially 
at rest, and as it passes through the blades 
its momentum is increased. To change the 
momentum of the air flow in this manner, 
the blades must exert a horizontal thrust 
on the air stream. As the blades turn faster, 
the equal but opposite thrust of the air on 
the blades could overcome the rolling 
resistance of the wheels on the ground and 
begin to move the frame of the fan.  
(© R.C. Hibbeler)

vA

vB

(a)

A

B

Fig. 15–27
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As indicated in Fig. 15–27b, a small amount of fluid having a mass dm 
is about to enter the control volume through opening A with a velocity 
of vA  at time t. Since the flow is considered steady, at time t + dt, the 
same amount of fluid will leave the control volume through opening B 
with a velocity vB. The momenta of the fluid entering and leaving the 
control volume are therefore dm vA  and dm vB, respectively. Also, during 
the time dt, the momentum of the fluid mass within the control volume 
remains constant and is denoted as mv. As shown on the center diagram, 
the resultant external force exerted on the control volume produces the 
impulse F dt. If we apply the principle of linear impulse and momentum, 
we have

dm vA + mv + F dt = dm vB + mv

If r, rA , rB are position vectors measured from point O to the geometric 
centers of the control volume and the openings at A and B, Fig. 15–27b, 
then the principle of angular impulse and momentum about O becomes

rA * dm vA + r * mv + r * F dt = r * mv + rB * dm vB

Dividing both sides of the above two equations by dt and simplifying, 
we get

	 F =
dm

dt
 (vB - vA) � (15–25)

	 MO =
dm

dt
 (rB * vB - rA * vA) � (15–26)

AA

dm

dsA

dsB dm

AB

(c)

Fig. 15–27 (cont.) 

(b)

dm

Time t Time dt

dm vA
mv mv

�F dt

Time t � dt

dm

dm vB

rA r

O O O

rB

rr¿

B

A

B

A

B

A
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The term dm >dt is called the mass flow. It indicates the constant amount 
of fluid which flows either into or out of the control volume per unit of time. 
If the cross-sectional areas and densities of the fluid at the entrance A 
are A A , rA  and at exit B, A B , rB , Fig. 15–27c, then for an incompressible 
fluid, the continuity of mass requires dm = rdV = rA(dsAA A) = rB(dsBA B). 
Hence, during the time dt, since vA = dsA >dt and vB = dsB >dt, we have 
dm >dt = rAvAA A = rBvBA B or in general,

	
dm

dt
= rvA = rQ � (15–27)

The term Q = vA  measures the volume of fluid flow per unit of time and 
is referred to as the discharge or the volumetric flow. 

Procedure for Analysis

Problems involving steady flow can be solved using the following 
procedure.

Kinematic Diagram.

	 •	 Identify the control volume. If it is moving, a kinematic diagram 
may be helpful for determining the entrance and exit velocities of 
the fluid flowing into and out of its openings since a relative-
motion analysis of velocity will be involved.

	 •	 The measurement of velocities vA  and vB must be made by an 
observer fixed in an inertial frame of reference.

	 •	 Once the velocity of the fluid flowing into the control volume is 
determined, the mass flow is calculated using Eq. 15–27.

Free-Body Diagram.

	 •	 Draw the free-body diagram of the control volume in order to 
establish the forces F that act on it. These forces will include the 
support reactions, the weight of all solid parts and the fluid contained 
within the control volume, and the static gauge pressure forces of the 
fluid on the entrance and exit sections.* The gauge pressure is the 
pressure measured above atmospheric pressure, and so if an opening 
is exposed to the atmosphere, the gauge pressure there will be zero.

Equations of Steady Flow.

	 •	 Apply the equations of steady flow, Eq. 15–25 and 15–26, using 
the appropriate components of velocity and force shown on the 
kinematic and free-body diagrams.

* In the SI system, pressure is measured using the pascal (Pa), where 1Pa = 1 N>m2.
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Determine the components of reaction which the fixed pipe joint at A 
exerts on the elbow in Fig. 15–28a, if water flowing through the pipe is 
subjected to a static gauge pressure of 100 kPa at A. The discharge at 
B is QB = 0.2 m3>s. Water has a density rw = 1000 kg>m3, and the 
water-filled elbow has a mass of 20 kg and center of mass at G.

Solution
We will consider the control volume to be the outer surface of the 
elbow. Using a fixed inertial coordinate system, the velocity of flow at 
A and B and the mass flow rate can be obtained from Eq. 15–27. Since 
the density of water is constant, QB = QA = Q. Hence,

 
dm

dt
= rwQ = (1000 kg>m3)(0.2 m3>s) = 200 kg>s

   vB =
Q

A B
=

0.2 m3>s
p(0.05 m)2 = 25.46 m>s T

   vA =
Q

A A
=

0.2 m3>s
p(0.1 m)2 = 6.37 m>s S

Free-Body Diagram.  As shown on the free-body diagram of the 
control volume (elbow) Fig. 15–28b, the fixed connection at A exerts a 
resultant couple moment MO and force components Fx and Fy on the 
elbow. Due to the static pressure of water in the pipe, the pressure force 
acting on the open control surface at A is FA = pAA A . Since 
1 kPa = 1000 N>m2,

FA = pAA A = [100(103) N>m2][p(0.1 m)2] = 3141.6 N

There is no static pressure acting at B, since the water is discharged at 
atmospheric pressure; i.e., the pressure measured by a gauge at B is 
equal to zero, pB = 0.

Equations of Steady Flow.

S+ Fx =
dm

dt
 (vBx - vAx); -Fx + 3141.6 N = 200 kg>s(0 - 6.37 m>s)

	 Fx = 4.41 kN� Ans.

+ c Fy =
dm

dt
 (vBy - vAy); -Fy - 20(9.81) N = 200 kg>s(-25.46 m>s - 0)

	 Fy = 4.90 kN� Ans.
If moments are summed about point O, Fig. 15–28b, then Fx , Fy , and 
the static pressure FA  are eliminated, as well as the moment of 
momentum of the water entering at A, Fig. 15–28a. Hence,

c+ MO =
dm

dt
 (dOBvB - dOAvA)

 MO + 20(9.81) N (0.125 m) = 200 kg>s[(0.3 m)(25.46 m>s) - 0]

	   MO = 1.50 kN # m� Ans.

Example   15.16

0.1 m

0.3 m

(a)

vB

vA
0.1 m

0.1 m

0.125 m

G

B

A

O

	

0.125 m

0.3 m

(b)

B

A

O G

20(9.81) N

y

x

MO
FA

Fx

Fy

Fig. 15–28
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A 2-in.-diameter water jet having a velocity of 25 ft>s impinges upon 
a single moving blade, Fig. 15–29a. If the blade moves with a constant 
velocity of 5 ft>s away from the jet, determine the horizontal and 
vertical components of force which the blade is exerting on the 
water. What power does the water generate on the blade? Water has 
a specific weight of gw = 62.4 lb>ft3.
Solution
Kinematic Diagram.  Here the control volume will be the stream of 
water on the blade. From a fixed inertial coordinate system, Fig. 15–29b, 
the rate at which water enters the control volume at A is

vA = 525i6  ft>s
The relative-flow velocity within the control volume is 
vw>cv = vw - vcv = 25i - 5i = 520i6  ft>s. Since the control volume 
is moving with a velocity of vcv = 55i6  ft>s, the velocity of flow at B 
measured from the fixed x, y axes is the vector sum, shown in  
Fig. 15–29b. Here,

 vB = vcv + vw>cv

 = 55i + 20j6  ft>s
Thus, the mass flow of water onto the control volume that undergoes 
a momentum change is

dm

dt
= rw(vw>cv)A A = a 62.4

32.2
b  (20) cpa 1

12
b

2

d = 0.8456 slug>s
Free-Body Diagram.  The free-body diagram of the control volume 
is shown in Fig. 15–29c. The weight of the water will be neglected in 
the calculation, since this force will be small compared to the reactive 
components Fx and Fy .

Equations of Steady Flow.

 F =
dm

dt
 (vB - vA)

 -Fxi + Fyj = 0.8456(5i + 20j - 25i)

Equating the respective i and j components gives

	  Fx = 0.8456(20) = 16.9 lb d � Ans.

	    Fy = 0.8456(20) = 16.9 lb c � Ans.
The water exerts equal but opposite forces on the blade.

Since the water force which causes the blade to move forward 
horizontally with a velocity of 5 ft>s is Fx = 16.9 lb, then from  
Eq. 14–10 the power is

P = F # v;        P =
16.9 lb(5 ft>s)

550 hp>(ft # lb>s)
= 0.154 hp

Example   15.17

vw � 25 ft/s

vbl � 5 ft/s

A

B

2 in.

(a)

vbl
vA A

B
vcv

vw/cv

vB

x

y

(b)

x

y

Fy j

�Fx i

(c)

Fig. 15–29 
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*15.9  Propulsion with Variable Mass

A Control Volume That Loses Mass.  Consider a device such 
as a rocket which at an instant of time has a mass m and is moving 
forward with a velocity v, Fig. 15–30a. At this same instant the amount of 
mass me is expelled from the device with a mass flow velocity ve . For the 
analysis, the control volume will include both the mass m of the device 
and the expelled mass me . The impulse and momentum diagrams for the 
control volume are shown in Fig. 15–30b. During the time dt, its velocity 
is increased from v to v + dv since an amount of mass dme has been 
ejected and thereby gained in the exhaust. This increase in forward 
velocity, however, does not change the velocity ve of the expelled mass, 
as seen by a fixed observer, since this mass moves with a constant 
velocity once it has been ejected. The impulses are created by Fcv, 
which represents the resultant of all the external forces, such as drag or 
weight, that act on the control volume in the direction of motion. This 
force resultant does not include the force which causes the control 
volume to move forward, since this force (called a thrust) is internal to 
the control volume; that is, the thrust acts with equal magnitude but 
opposite direction on the mass m of the device and the expelled exhaust 
mass me .* Applying the principle of impulse and momentum to the 
control volume, Fig. 15–30b, we have

( S+ )	 mv - meve + Fcv dt = (m - dme)(v + dv) - (me + dme)ve

or

Fcv  dt = -v dme + m dv - dme dv - ve dme

*F represents the external resultant force acting on the control volume, which is different 
from F, the resultant force acting only on the device.

(b)

m

me

meve

mv

Time t

(me � dme)ve

m � dme

� Fcv dt

(m � dme) (v � dv)

(me � dme)
Time t � dtTime dt

Fig. 15–30 

m

Control
Volume

me

ve

v

(a)
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Without loss of accuracy, the third term on the right side may be neglected 
since it is a “second-order” differential. Dividing by dt gives

Fcv = m  
dv

dt
- (v + ve) 

dme

dt

The velocity of the device as seen by an observer moving with the particles 
of the ejected mass is vD>e = (v + ve), and so the final result can be 
written as

	 Fcv = m  
dv

dt
- vD>e 

dme

dt
	 (15–28)

Here the term dme>dt represents the rate at which mass is being ejected.
To illustrate an application of Eq. 15–28, consider the rocket shown 

in Fig. 15–31, which has a weight W and is moving upward against an 
atmospheric drag force FD . The control volume to be considered 
consists of the mass of the rocket and the mass of ejected gas me . 
Applying Eq. 15–28 gives

(+ c )	 -FD - W =
W
g

  

dv

dt
- vD>e  

dme

dt

The last term of this equation represents the thrust T which the engine 
exhaust exerts on the rocket, Fig. 15–31. Recognizing that dv>dt = a, we 
can therefore write

(+ c )	 T - FD - W =
W
g

 a

If a free-body diagram of the rocket is drawn, it becomes obvious that this 
equation represents an application of F = ma for the rocket.

A Control Volume That Gains Mass.  A device such as a scoop 
or a shovel may gain mass as it moves forward. For example, the device 
shown in Fig. 15–32a has a mass m and moves forward with a velocity v. At 
this instant, the device is collecting a particle stream of mass mi. The flow 
velocity vi of this injected mass is constant and independent of the velocity 
v such that v 7 vi. The control volume to be considered here includes 
both the mass of the device and the mass of the injected particles. 

Control Volume

mi

vi

v

(a)

m

Fig. 15–32 

W

FD

v

Tve

Control Volume

Fig. 15–31 
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The impulse and momentum diagrams are shown in Fig. 15–32b. Along 

with an increase in mass dmi gained by the device, there is an assumed 
increase in velocity dv during the time interval dt. This increase is caused 
by the impulse created by Fcv , the resultant of all the external forces 
acting on the control volume in the direction of motion. The force 
summation does not include the retarding force of the injected mass 
acting on the device. Why? Applying the principle of impulse and 
momentum to the control volume, we have

( S+ )	 mv + mivi + Fcv dt = (m + dmi)(v + dv) + (mi - dmi)vi

Using the same procedure as in the previous case, we may write this 
equation as

Fcv = m  
dv

dt
+ (v - vi) 

dmi

dt

Since the velocity of the device as seen by an observer moving with the 
particles of the injected mass is vD>i = (v - vi), the final result can be 
written as

	 Fcv = m  
dv

dt
+ vD>i 

dmi

dt
	 (15–29)

where dmi>dt is the rate of mass injected into the device. The last term in 
this equation represents the magnitude of force R, which the injected 
mass exerts on the device, Fig. 15–32c. Since dv>dt = a, Eq. 15–29 becomes

Fcv - R = ma

This is the application of F = ma.
As in the case of steady flow, problems which are solved using  

Eqs. 15–28 and 15–29 should be accompanied by an identified control 
volume and the necessary free-body diagram. With this diagram one can 
then determine Fcv and isolate the force exerted on the device by the 
particle stream.

Fig. 15–32 (cont.)

mi

mivi

mv

Time t

� Fcv dt

m + dmi

mi � dmi

(mi � dmi) vi

(m � dmi) (v � dv)

Time t � dt
(b)

m

Time dt

(c)

m
� Fs R

a

The scraper box behind this tractor 
represents a device that gains mass. If the 
tractor maintains a constant velocity v, then 
dv>dt = 0 and, because the soil is originally 
at rest, vD>i = v. Applying Eq. 15–29, the 
horizontal towing force on the scraper box 
is then T = 0 + v(dm >dt), where dm >dt is 
the rate of soil accumulated in the box. 
(© R.C. Hibbeler)
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The initial combined mass of a rocket and its fuel is m0 . A total mass 
mf of fuel is consumed at a constant rate of dme>dt = c and expelled 
at a constant speed of u relative to the rocket. Determine the maximum 
velocity of the rocket, i.e., at the instant the fuel runs out. Neglect the 
change in the rocket’s weight with altitude and the drag resistance of 
the air. The rocket is fired vertically from rest.

Solution
Since the rocket loses mass as it moves upward, Eq. 15–28 can be used 
for the solution. The only external force acting on the control volume 
consisting of the rocket and a portion of the expelled mass is the 
weight W, Fig. 15–33. Hence,

+ c Fcv = m  
dv

dt
- vD>e 

dme

dt
;	 -W = m  

dv

dt
- uc	 (1)

The rocket’s velocity is obtained by integrating this equation.
At any given instant t during the flight, the mass of the rocket can be 

expressed as m = m0 - (dme>dt)t = m0 - ct. Since W = mg, Eq.  1 
becomes

-(m0 - ct)g = (m0 - ct) 
dv

dt
- uc

Separating the variables and integrating, realizing that v = 0 at t = 0, 
we have

 L
v

0
dv = L

t

0
a uc

m0 - ct
- gb  dt

     v = -u ln(m0 - ct) - gt 2
0

t

= u lna m0

m0 - ct
b - gt	 (2)

Note that liftoff requires the first term on the right to be greater than 
the second during the initial phase of motion. The time t needed to 
consume all the fuel is

mf = a dme

dt
b t = ct

Hence,

t = mf>c
Substituting into Eq. 2 yields

	 vmax = u lna m0

m0 - mf
b -

gmf

c
� Ans.

Example   15.18

T

W

Fig. 15–33

(© NASA)
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A chain of length l, Fig. 15–34a, has a mass m. Determine the magnitude 
of force F required to (a) raise the chain with a constant speed vc , 
starting from rest when y = 0; and (b) lower the chain with a constant 
speed vc , starting from rest when y = l.

Example   15.19

y

(a)

	

F

y

(b)

�P

P

mg( )
y
l

	

F

(c)

y

mg( )
y
l

Fig. 15–34 

Solution
Part (a).  As the chain is raised, all the suspended links are given a 
sudden downward impulse by each added link which is lifted off the 
ground. Thus, the suspended portion of the chain may be considered as 
a device which is gaining mass. The control volume to be considered 
is the length of chain y which is suspended by F at any instant, including 
the next link which is about to be added but is still at rest, Fig. 15–34b. 
The forces acting on the control volume exclude the internal forces P 
and -P, which act between the added link and the suspended portion 
of the chain. Hence, Fcv = F - mg(y >l).

To apply Eq. 15–29, it is also necessary to find the rate at which mass 
is being added to the system. The velocity vc of the chain is equivalent to 
vD>i. Why? Since vc is constant, dvc>dt = 0 and dy >dt = vc . Integrating, 
using the initial condition that y = 0 when t = 0, gives y = vct. Thus, 
the mass of the control volume at any instant is mcv = m(y >l) = m(vct>l), 
and therefore the rate at which mass is added to the suspended chain is

dmi

dt
= m avc

l
b

Applying Eq. 15–29 using this data, we have

 + c Fcv = m  
dvc

dt
+ vD>i 

dmi

dt

 F - mga y

l
b = 0 + vcm a

vc

l
b

Hence,
	 F = (m >l)(gy + vc

2)� Ans.

Part (b).  When the chain is being lowered, the links which are expelled 
(given zero velocity) do not impart an impulse to the remaining suspended 
links. Why? Thus, the control volume in Part (a) will not be considered. 
Instead, the equation of motion will be used to obtain the solution. At 
time t the portion of chain still off the floor is y. The free-body diagram 
for a suspended portion of the chain is shown in Fig. 15–34c. Thus,

+ c F = ma;	 F - mga y

l
b = 0

	 F = mga y

l
b � Ans.
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*15–116.  The 200-kg boat is powered by the fan which 
develops a slipstream having a diameter of 0.75 m. If the 
fan ejects air with a speed of 14 m>s, measured relative to 
the boat, determine the initial acceleration of the boat if it 
is initially at rest. Assume that air has a constant density of 
rw = 1.22 kg>m3  and that the entering air is essentially at 
rest. Neglect the drag resistance of the water.

0.75 m

Prob. 15–116

15–117.  The nozzle discharges water at a constant rate of 
2 ft3>s. The cross-sectional area of the nozzle at A is 4 in2, 
and at B the cross-sectional area is 12 in2. If the static gauge 
pressure due to the water at B is 2 lb> in2, determine the 
magnitude of force which must be applied by the coupling 
at B to hold the nozzle in place. Neglect the weight of the 
nozzle and the water within it. gw = 62.4 lb>ft3.

A

B

Prob. 15–117

15–114.  The fire boat discharges two streams of seawater, 
each at a flow of 0.25 m3  >s and with a nozzle velocity of 
50  m>s. Determine the tension developed in the anchor 
chain, needed to secure the boat. The density of seawater is 
rsv = 1020 kg>m3.

30�

60�

45�

Prob. 15–114

15–115.  The chute is used to divert the flow of water,  
Q = 0.6 m3>s. If the water has a cross-sectional area of 
0.05 m2, determine the force components at the pin D and 
roller C necessary for equilibrium. Neglect the weight of the 
chute and weight of the water on the chute. rw = 1 Mg>m3 .

2 m

1.5 m

0.12 m

C

D

A

B

Prob. 15–115

PROBLEMS
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*15–120.  The gauge pressure of water at A is 150.5 kPa. 
Water flows through the pipe at A with a velocity of 18 m>s, 
and out the pipe at B and C with the same velocity v. 
Determine the horizontal and vertical components of 
force  exerted on the elbow necessary to hold the pipe 
assembly in  equilibrium. Neglect the weight of water 
within the pipe and the weight of the pipe. The pipe has a 
diameter of  50  mm at A, and at B and C the diameter is 
30 mm. rw =  1000 kg>m3.

B

A

C

4

5 3

 18 m/s

v

v

Prob. 15–120

15–121.  The gauge pressure of water at C is 40 lb>in2. If 
water flows out of the pipe at A and B with velocities 
vA = 12 ft>s and vB = 25 ft>s, determine the horizontal 
and vertical components of force exerted on the elbow 
necessary to hold the pipe assembly in equilibrium. Neglect 
the weight of water within the pipe and the weight of the 
pipe. The pipe has a diameter of 0.75 in. at C, and at A and B 
the diameter is 0.5 in. gw = 62.4 lb>ft3.

B

A

C

4 5

3

vB � 25 ft/s
vA � 12 ft/s

vC

Prob. 15–121

15–118.  The blade divides the jet of water having a 
diameter of 4 in. If one-half of the water flows to the right 
while the other half flows to the left, and the total flow is 
Q  = 1.5 ft3>s, determine the vertical force exerted on the 
blade by the jet, gv = 62.4 lb>ft3.

4 in.

Prob. 15–118

15–119.  The blade divides the jet of water having a 
diameter of 3 in. If one-fourth of the water flows downward 
while the other three-fourths flows upward, and the total 
flow is Q = 0.5 ft3>s, determine the horizontal and vertical 
components of force exerted on the blade by the jet, 
gw = 62.4 lb>ft3.

3 in.

Prob. 15–119
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15–125.  Water is discharged from a nozzle with a velocity 
of 12 m>s and strikes the blade mounted on the 20-kg cart. 
Determine the tension developed in the cord, needed to 
hold the cart stationary, and the normal reaction of the 
wheels on the cart. The nozzle has a diameter of 50 mm and 
the density of water is rw =  1000 kg>m3.

45�

A B

Prob. 15–125

15–126.  A snowblower having a scoop S with a cross-
sectional area of As = 0.12 m3 is pushed into snow with a speed 
of vs = 0.5 m>s. The machine discharges the snow through a 
tube T that has a cross-sectional area of AT = 0.03 m2 and is 
directed 60° from the horizontal. If the density of snow is 
rs =  104 kg>m3, determine the horizontal force P required to 
push the blower forward, and the resultant frictional force F of 
the wheels on the ground, necessary to prevent the blower 
from moving sideways. The wheels roll freely.

P

T

F

60

S
vx

Prob. 15–126

15–122.  The fountain shoots water in the direction shown. 
If the water is discharged at 30° from the horizontal, and the 
cross-sectional area of the water stream is approximately 
2  in2, determine the force it exerts on the concrete wall at B. 
gw = 62.4 lb>ft3.

vA

A
B

3 ft

20 ft

30�

Prob. 15–122

15–123.  A plow located on the front of a locomotive 
scoops up snow at the rate of 10 ft3>s and stores it in the 
train. If the locomotive is traveling at a constant speed of  
12  ft>s, determine the resistance to motion caused by the 
shoveling. The specific weight of snow is gs = 6 lb>ft3.

*15–124.  The boat has a mass of 180 kg and is traveling 
forward on a river with a constant velocity of 70 km>h, 
measured relative to the river. The river is flowing in the 
opposite direction at 5 km>h. If a tube is placed in the water, 
as shown, and it collects 40 kg of water in the boat in 80 s, 
determine the horizontal thrust T on the tube that is 
required to overcome the resistance due to the water 
collection and yet maintain the constant speed of the boat. 
rw = 1 Mg>m3.

T vR � 5 km/h

Prob. 15–124
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15–129.  The water flow enters below the hydrant at C at 
the rate of 0.75 m3>s. It is then divided equally between the 
two outlets at A and B. If the gauge pressure at C is 300 kPa, 
determine the horizontal and vertical force reactions and 
the moment reaction on the fixed support at C. The diameter 
of the two outlets at A and B is 75 mm, and the diameter 
of  the inlet pipe at C is 150 mm. The density of water is  
rw = 1000 kg>m3. Neglect the mass of the contained water 
and the hydrant.

A

C

B

650 mm
600 mm

250 mm

30�

Prob. 15–129

15–130.  Sand drops onto the 2-Mg empty rail car at 50 kg>s 
from a conveyor belt. If the car is initially coasting at 4 m>s, 
determine the speed of the car as a function of time.

4 m/s

Prob. 15–130

15–127.  The fan blows air at 6000 ft3>min. If the fan has a 
weight of 30 lb and a center of gravity at G, determine the 
smallest diameter d of its base so that it will not tip over. 
The specific weight of air is g = 0.076 lb/ft3.

4 ft

0.5 ft

1.5 ft G

d

Prob. 15–127

*15–128.  The nozzle has a diameter of 40 mm. If it 
discharges water uniformly with a downward velocity of 
20 m>s against the fixed blade, determine the vertical force 
exerted by the water on the blade. rw =  1 Mg>m3.

40 mm

45�45�

Prob. 15–128
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15–133.  The tractor together with the empty tank has a 
total mass of 4 Mg. The tank is filled with 2 Mg of water. The 
water is discharged at a constant rate of 50 kg>s with a 
constant velocity of 5 m>s, measured relative to the tractor. 
If the tractor starts from rest, and the rear wheels provide a 
resultant traction force of 250 N, determine the velocity 
and  acceleration of the tractor at the instant the tank 
becomes empty.

F

Prob. 15–133

15–134.  A rocket has an empty weight of 500 lb and carries 
300 lb of fuel. If the fuel is burned at the rate of 15 lb>s and 
ejected with a relative velocity of 4400 ft>s, determine the 
maximum speed attained by the rocket starting from rest. 
Neglect the effect of gravitation on the rocket.

v

Prob. 15–134

15–131.  Sand is discharged from the silo at A at a rate of 
50 kg>s with a vertical velocity of 10 m>s onto the conveyor 
belt, which is moving with a constant velocity of 1.5 m>s. If 
the conveyor system and the sand on it have a total mass of 
750 kg and center of mass at point G, determine the 
horizontal and vertical components of reaction at the pin 
support B and roller support A. Neglect the thickness of the 
conveyor.

1.5 m/s

10 m/s

4 m4 m

30�
A

G

B

Prob. 15–131

*15–132.  Sand is deposited from a chute onto a conveyor 
belt which is moving at 0.5 m>s. If the sand is assumed to fall 
vertically onto the belt at A at the rate of 4 kg>s, determine 
the belt tension FB to the right of A. The belt is free to move 
over the conveyor rollers and its tension to the left of A is 
FC = 400 N.

0.5 m/s

FBFC = 400 N A

Prob. 15–132
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15–137.  If the chain is lowered at a constant speed v =  
4 ft>s, determine the normal reaction exerted on the floor as 
a function of time. The chain has a weight of 5 lb>ft and a 
total length of 20 ft. 

20 ft

v � 4 ft/s

Prob. 15–137

15–138.  The second stage of a two-stage rocket weighs 
2000 lb (empty) and is launched from the first stage with a 
velocity of 3000 mi>h. The fuel in the second stage weighs 
1000 lb. If it is consumed at the rate of 50 lb>s and ejected 
with a relative velocity of 8000 ft>s, determine the 
acceleration of the second stage just after the engine is fired. 
What is the rocket’s acceleration just before all the fuel is 
consumed? Neglect the effect of gravitation.

15–139.  The missile weighs 40 000 lb. The constant thrust 
provided by the turbojet engine is T = 15 000 lb. Additional 
thrust is provided by two rocket boosters B. The propellant 
in each booster is burned at a constant rate of 150 lb>s, with 
a relative exhaust velocity of 3000 ft>s. If the mass of the 
propellant lost by the turbojet engine can be neglected, 
determine the velocity of the missile after the 4-s burn time 
of the boosters. The initial velocity of the missile is 300 mi>h.

B

T

Prob. 15–139

15–135.  A power lawn mower hovers very close over the 
ground. This is done by drawing air in at a speed of 6 m>s 
through an intake unit A, which has a cross-sectional area of 
AA = 0.25 m2, and then discharging it at the ground, B, 
where the cross-sectional area is AB = 0.35 m2. If air at A is 
subjected only to atmospheric pressure, determine the air 
pressure which the lawn mower exerts on the ground when 
the weight of the mower is freely supported and no load is 
placed on the handle. The mower has a mass of 15 kg with 
center of mass at G. Assume that air has a constant density 
of ra = 1.22 kg/m3.

A

vA

B

G

Prob. 15–135

*15–136.  The rocket car has a mass of 2 Mg (empty) and 
carries 120 kg of fuel. If the fuel is consumed at a constant 
rate of 6 kg>s and ejected from the car with a relative 
velocity of 800 m>s, determine the maximum speed attained 
by the car starting from rest. The drag resistance due to the 
atmosphere is FD = (6.8v2) N, where v is the speed in m>s.

v

Prob. 15–136
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15–143.  The jet is traveling at a speed of 500 mi>h, 30° 
with the horizontal. If the fuel is being spent at 3 lb>s, and 
the engine takes in air at 400 lb>s, whereas the exhaust gas 
(air and fuel) has a relative speed of 32 800 ft>s, determine 
the acceleration of the plane at this instant. The drag 
resistance of the air is FD = (0.7v2) lb, where the speed is 
measured in ft>s. The jet has a weight of 15 000 lb. Hint: See 
Prob. 15–142.

500 mi/h

30�

Prob. 15–143

*15–144.  A four-engine commercial jumbo jet is cruising 
at a constant speed of 800 km>h in level flight when all four 
engines are in operation. Each of the engines is capable of 
discharging combustion gases with a velocity of 775 m>s 
relative to the plane. If during a test two of the engines, one 
on each side of the plane, are shut off, determine the new 
cruising speed of the jet. Assume that air resistance (drag) is 
proportional to the square of the speed, that is, FD = cv2, 
where c is a constant to be determined. Neglect the loss of 
mass due to fuel consumption.

Prob. 15–144

*15–140.  The jet is traveling at a speed of 720 km>h. If the 
fuel is being spent at 0.8 kg>s, and the engine takes in air at 
200 kg>s, whereas the exhaust gas (air and fuel) has a relative 
speed of 12 000 m>s, determine the acceleration of the plane at 
this instant. The drag resistance of the air is FD = (55 v2), where 
the speed is measured in m>s. The jet has a mass of 7 Mg.

720 km/h

Prob. 15–140

15–141.  The rope has a mass m per unit length. If the end 
length y = h is draped off the edge of the table, and released, 
determine the velocity of its end A for any position y, as the 
rope uncoils and begins to fall.

y � h

A

Prob. 15–141

15–142.  The 12-Mg jet airplane has a constant speed of  
950 km>h when it is flying along a horizontal straight line. 
Air enters the intake scoops S at the rate of 50 m3>s. If the 
engine burns fuel at the rate of 0.4 kg>s and the gas (air and 
fuel) is exhausted relative to the plane with a speed of  
450 m>s, determine the resultant drag force exerted on the 
plane by air resistance. Assume that air has a constant 
density of 1.22 kg>m3. Hint: Since mass both enters and exits 
the plane, Eqs. 15–28 and 15–29 must be combined to yield

Fs = m 
dv

dt
- vD>e 

dme

dt
+ vD>i 

dmi

dt
.

v � 950 km/h

S

Prob. 15–142

	 15.9 P ropulsion with Variable Mass	 311



312 	 Chapter 15    Kinet ics of a Part icle:  Impulse and Momentum

15

*15–148.  The truck has a mass of 50 Mg when empty. When 
it is unloading 5 m3  of sand at a constant rate of 0.8 m3>s, 
the sand flows out the back at a speed of 7 m>s, measured 
relative to the truck, in the direction shown. If the truck is 
free to roll, determine its initial acceleration just as the load 
begins to empty. Neglect the mass of the wheels and any 
frictional resistance to motion. The density of sand is 
rs = 1520 kg>m3.

45�

7 m/s

a

Prob. 15–148

15–149.  The car has a mass m0 and is used to tow the 
smooth chain having a total length l and a mass per unit of 
length m . If the chain is originally piled up, determine the 
tractive force F that must be supplied by the rear wheels of 
the car, necessary to maintain a constant speed v while the 
chain is being drawn out.

v

F

Prob. 15–149

15–145.  The 10-Mg helicopter carries a bucket containing 
500 kg of water, which is used to fight fires. If it hovers over 
the land in a fixed position and then releases 50 kg>s of 
water at 10 m>s, measured relative to the helicopter, 
determine the initial upward acceleration the helicopter 
experiences as the water is being released.

a

Prob. 15–145

15–146.  A rocket has an empty weight of 500 lb and carries 
300 lb of fuel. If the fuel is burned at the rate of 1.5 lb>s and 
ejected with a velocity of 4400 ft>s relative to the rocket, 
determine the maximum speed attained by the rocket 
starting from rest. Neglect the effect of gravitation on the 
rocket.

15–147.  Determine the magnitude of force F as a function 
of time, which must be applied to the end of the cord at A to 
raise the hook H with a constant speed v = 0.4 m>s. Initially 
the chain is at rest on the ground. Neglect the mass of the 
cord and the hook. The chain has a mass of 2 kg>m.

v � 0.4 m/s
H

A

Prob. 15–147
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C15–1.  The ball travels to the left when it is struck by the 
bat. If the ball then moves horizontally to the right, 
determine which measurements you could make in order to 
determine the net impulse given to the ball. Use numerical 
values to give an example of how this can be done.

Prob. C15–1 (© R.C. Hibbeler) 

C15–2.  The steel wrecking “ball” is suspended from the 
boom using an old rubber tire A . The crane operator lifts 
the ball then allows it to drop freely to break up the 
concrete. Explain, using appropriate numerical data, why it 
is a good idea to use the rubber tire for this work.

AA

Prob. C15–2 (© R.C. Hibbeler) 

C15–3.  The train engine on the left, A , is at rest, and the 
one on the right, B, is coasting to the left. If the engines are 
identical, use numerical values to show how to determine 
the maximum compression in each of the spring bumpers 
that are mounted in the front of the engines. Each engine is 
free to roll.

A B

Prob. C15–3 (© R.C. Hibbeler) 

C15–4.  Three train cars each have the same mass and are 
rolling freely when they strike the fixed bumper. Legs AB 
and BC on the bumper are pin connected at their ends and 
the angle BAC is 30 and BCA  is 60. Compare the average 
impulse in each leg needed to stop the motion if the cars 
have no bumper and if the cars have a spring bumper. Use 
appropriate numerical values to explain your answer.

A

C

B

Prob. C15–4 (© R.C. Hibbeler) 

CONCEPTUAL PROBLEMS
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Chapter Review

Impulse

An impulse is defined as the product of force and time. 
Graphically it represents the area under the F9t diagram. 
If  the force is constant, then the impulse becomes 
I = Fc(t2 - t1). 

F

t
t1 t2

F(t)dt
t2

t1
I � �

Principle of Impulse and Momentum

When the equation of motion, F = ma, and the kinematic 
equation, a = dv>dt, are combined, we obtain the principle 
of impulse and momentum. This is a vector equation that 
can be resolved into rectangular components and used to 
solve problems that involve force, velocity, and time. For 
application, the free-body diagram should be drawn in order 
to account for all the impulses that act on the particle. 

mv1 +  L
t2

t1

F dt = mv2

Conservation of Linear Momentum

If the principle of impulse and momentum is applied to a 
system of particles, then the collisions between the particles 
produce internal impulses that are equal, opposite, and 
collinear, and therefore cancel from the equation. Furthermore, 
if an external impulse is small, that is, the force is small and the 
time is short, then the impulse can be classified as nonimpulsive 
and can be neglected. Consequently, momentum for the 
system of particles is conserved.

The conservation-of-momentum equation is useful for 
finding the final velocity of a particle when internal impulses 
are exerted between two particles and the initial velocities 
of the particles is known. If the internal impulse is to be 
determined, then one of the particles is isolated and the 
principle of impulse and momentum is applied to this particle.

 mi(vi)1 = mi(vi)2

Impact

When two particles A and B have a direct impact, the internal 
impulse between them is equal, opposite, and collinear. 
Consequently the conservation of momentum for this system 
applies along the line of impact. mA(vA)1 + mB(vB)1 = mA(vA)2 + mB(vB)2

Line of impact

Plane of contact

vA vB
BA
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If the final velocities are unknown, a second equation 
is needed for solution. We must use the coefficient 
of restitution, e. This experimentally determined 
coefficient depends upon the physical properties of 
the colliding particles. It can be expressed as the ratio 
of their relative velocity after collision to their 
relative velocity before collision. If the collision is 
elastic, no energy is lost and e = 1. For a plastic 
collision e = 0.

If the impact is oblique, then the conservation of 
momentum for the system and the coefficient-of-
restitution equation apply along the line of impact. 
Also, conservation of momentum for each particle 
applies perpendicular to this line (plane of contact) 
because no impulse acts on the particles in this 
direction.

e =
(vB)2 - (vA)2

(vA)1 - (vB)1

Line of impact

Plane of contact

vA

BA

vB

fu

(HO)z = (d)(mv)

(HO)1 +  L
t2

t1

MO dt = (HO)2

Steady Fluid Streams

Impulse-and-momentum methods are often used to 
determine the forces that a device exerts on the mass 
flow of a fluid—liquid or gas. To do so, a free-body 
diagram of the fluid mass in contact with the device 
is drawn in order to identify these forces. Also, the 
velocity of the fluid as it flows into and out of a 
control volume for the device is calculated. The 
equations of steady flow involve summing the forces 
and the moments to determine these reactions.

F =
dm

dt
 (vB - vA)

MO =
dm

dt
 (rB * vB - rA * vA)

Principle of Angular Impulse and Momentum

The moment of the linear momentum about an axis (z) 
is called the angular momentum.

The principle of angular impulse and momentum is 
often used to eliminate unknown impulses by 
summing the moments about an axis through which 
the lines of action of these impulses produce no 
moment. For this reason, a free-body diagram should 
accompany the solution.

Propulsion with Variable Mass

Some devices, such as a rocket, lose mass as they are 
propelled forward. Others gain mass, such as a shovel. 
We can account for this mass loss or gain by applying 
the principle of impulse and momentum to a control 
volume for the device. From this equation, the force 
exerted on the device by the mass flow can then be 
determined.

Fcv = m  
dv

dt
- vD>e 

dme

dt

Loses Mass

Fcv = m  
dv

dt
+ vD>i 

dmi

dt

Gains Mass

x

yO
d

mv

HO

z
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R15–3.  A 20-kg block is originally at rest on a horizontal 
surface for which the coefficient of static friction is μs = 0.6 
and the coefficient of kinetic friction is μk = 0.5. If a 
horizontal force F is applied such that it varies with time as 
shown, determine the speed of the block in 10 s. Hint: First 
determine the time needed to overcome friction and start 
the block moving.

F

F (N)

t (s)

200

5 10

Prob. R15–3

R15–4.  The three freight cars A, B, and C have masses of 
10 Mg, 5 Mg, and 20 Mg, respectively. They are traveling 
along the track with the velocities shown. Car A collides 
with car B first, followed by car C. If the three cars couple 
together after collision, determine the common velocity of 
the cars after the two collisions have taken place.

A B C

20 km/h 25 km/h5 km/h

Prob. R15–4

R15–1.  Packages having a mass of 6 kg slide down a 
smooth chute and land horizontally with a speed of 3 m>s 
on the surface of a conveyor belt. If the coefficient of kinetic 
friction between the belt and a package is μk = 0.2, determine 
the time needed to bring the package to rest on the belt if 
the belt is moving in the same direction as the package with 
a speed v = 1 m>s.

1 m/s

3 m/s

Prob. R15–1

R15–2.  The 50-kg block is hoisted up the incline using the 
cable and motor arrangement shown. The coefficient of 
kinetic friction between the block and the surface is 
mk = 0.4. If the block is initially moving up the plane at 
v0 = 2  m>s, and at this instant (t = 0) the motor develops 
a tension in the cord of T = (300 + 1201t) N, where t is in 
seconds, determine the velocity of the block when t = 2 s.

v0 � 2 m/s

30�

Prob. R15–2

Fundamental Review Problems
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R15–7.  Two smooth billiard balls A and B have an equal 
mass of m = 200 g. If A strikes B with a velocity of 
(vA)1 =  2 m>s as shown, determine their final velocities just 
after collision. Ball B is originally at rest and the coefficient 
of restitution is e = 0.75.

y

x
40�

B

A

(vA)1

Prob. R15–7

R15–8.  The small cylinder C has a mass of 10 kg and is 
attached to the end of a rod whose mass may be neglected. 
If the frame is subjected to a couple M = (8t2 + 5) N # m, 
where t is in seconds, and the cylinder is subjected to a force 
of 60 N, which is always directed as shown, determine the 
speed of the cylinder when t = 2 s. The cylinder has a speed 
v0 = 2 m/s when t = 0.

3

45

M � (8t2 � 5) N�m
y

v
x C

z

0.75 m

60 N

Prob. R15–8

R15–5.  The 200-g projectile is fired with a velocity of 
900  m>s towards the center of the 15-kg wooden block, 
which rests on a rough surface. If the projectile penetrates 
and emerges from the block with a velocity of 300 m>s, 
determine the velocity of the block just after the projectile 
emerges. How long does the block slide on the rough 
surface, after the projectile emerges, before it comes to rest 
again? The coefficient of kinetic friction between the 
surface and the block is mk = 0.2.

900 m/s

Before

300 m/s

After

Prob. R15–5

R15–6.  Block A has a mass of 3 kg and is sliding on a 
rough horizontal surface with a velocity (vA)1 = 2 m>s 
when it makes a direct collision with block B, which has a 
mass of 2 kg and is originally at rest. If the collision is 
perfectly elastic (e = 1), determine the velocity of each 
block just after collision and the distance between the 
blocks when they stop sliding. The coefficient of kinetic 
friction between the blocks and the plane is mk = 0.3.

(vA)1

A B

Prob. R15–6



Kinematics is important for the design of the mechanism used on this dump truck.
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Planar Kinematics 
of a Rigid Body

16.1  Planar Rigid-Body Motion

In this chapter, the planar kinematics of a rigid body will be discussed. 
This study is important for the design of gears, cams, and mechanisms used 
for many mechanical operations. Once the kinematics is thoroughly 
understood, then we can apply the equations of motion, which relate the 
forces on the body to the body’s motion.

The planar motion of a body occurs when all the particles of a rigid 
body move along paths which are equidistant from a fixed plane. There 
are three types of rigid-body planar motion. In order of increasing 
complexity, they are

Chapter Objectives

•	 To classify the various types of rigid-body planar motion.

•	 To investigate rigid-body translation and angular motion about 
a fixed axis.

•	 To study planar motion using an absolute motion analysis.

•	 To provide a relative motion analysis of velocity and acceleration 
using a translating frame of reference.

•	 To show how to find the instantaneous center of zero velocity and 
determine the velocity of a point on a body using this method.

•	 To provide a relative-motion analysis of velocity and acceleration 
using a rotating frame of reference.
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	•	 Translation.  This type of motion occurs when a line in the body 
remains parallel to its original orientation throughout the motion. 
When the paths of motion for any two points on the body are 
parallel lines, the motion is called rectilinear translation, Fig. 16–1a. 
If the paths of motion are along curved lines, the motion is called 
curvilinear translation, Fig. 16–1b.

	•	 Rotation about a fixed axis.  When a rigid body rotates about a 
fixed axis, all the particles of the body, except those which lie on the 
axis of rotation, move along circular paths, Fig. 16–1c.

	•	 General plane motion.  When a body is subjected to general plane 
motion, it undergoes a combination of translation and rotation, 
Fig. 16–1d. The translation occurs within a reference plane, and the 
rotation occurs about an axis perpendicular to the reference plane.

In the following sections we will consider each of these motions in detail. 
Examples of bodies undergoing these motions are shown in Fig. 16–2.

Path of rectilinear translation

(a)

Path of curvilinear translation

(b)

Rotation about a fixed axis

(c)

General plane motion

(d)

Fig. 16–1 

r
r

Rotation about a fixed axis

Curvilinear translation
General plane motion

Rectilinear translation

Fig. 16–2 
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16.2  Translation

Consider a rigid body which is subjected to either rectilinear or curvilinear 
translation in the x–y plane, Fig. 16–3.

y

x
O

y¿

x¿
A

B

rB/A

rA

rB

Translating
coordinate system

Fixed
coordinate system

Fig. 16–3 

Position.  The locations of points A and B on the body are defined 
with respect to fixed x, y reference frame using position vectors rA  and rB . 
The translating x �, y � coordinate system is fixed in the body and has its 
origin at A, hereafter referred to as the base point. The position of B with 
respect to A is denoted by the relative-position vector rB>A  (“r of B with 
respect to A”). By vector addition,

rB = rA + rB>A

Velocity.  A relation between the instantaneous velocities of A and B 
is obtained by taking the time derivative of this equation, which yields 
vB = vA + drB>A >dt. Here vA  and vB denote absolute velocities since  
these vectors are measured with respect to the x, y axes. The term 
drB>A >dt = 0, since the magnitude of rB>A  is constant by definition of a 
rigid body, and because the body is translating the direction of rB>A  is also 
constant. Therefore,

vB = vA

Acceleration.  Taking the time derivative of the velocity equation yields 
a similar relationship between the instantaneous accelerations of A and B:

aB = aA

The above two equations indicate that all points in a rigid body 
subjected to either rectilinear or curvilinear translation move with the 
same velocity and acceleration. As a result, the kinematics of particle 
motion, discussed in Chapter 12, can also be used to specify the kinematics 
of points located in a translating rigid body.

Riders on this Ferris wheel are subjected 
to curvilinear translation, since the 
gondolas move in a circular path, yet it 
always remains in the upright position. 
(© R.C. Hibbeler)
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16.3  Rotation about a Fixed Axis

When a body rotates about a fixed axis, any point P located in the body 
travels along a circular path. To study this motion it is first necessary to 
discuss the angular motion of the body about the axis.

Angular Motion.  Since a point is without dimension, it cannot 
have angular motion. Only lines or bodies undergo angular motion. For 
example, consider the body shown in Fig. 16–4a and the angular motion 
of a radial line r located within the shaded plane.

Angular Position.  At the instant shown, the angular position of  
r is defined by the angle u, measured from a fixed reference line to r.

Angular Displacement.  The change in the angular position, which 
can be measured as a differential dU, is called the angular displacement.* 
This vector has a magnitude of dU, measured in degrees, radians, or 
revolutions, where 1 rev = 2p rad. Since motion is about a fixed axis, the 
direction of dU is always along this axis. Specifically, the direction is 
determined by the right-hand rule; that is, the fingers of the right hand are 
curled with the sense of rotation, so that in this case the thumb, or dU, 
points upward, Fig. 16–4a. In two dimensions, as shown by the top view of 
the shaded plane, Fig. 16–4b, both u and du are counterclockwise, and so 
the thumb points outward from the page.

Angular Velocity.  The time rate of change in the angular position 
is called the angular velocity V (omega). Since dU occurs during an 
instant of time dt, then,

(a+)	 v =
du

dt
� (16–1)

This vector has a magnitude which is often measured in rad>s. It is 
expressed here in scalar form since its direction is also along the axis of 
rotation, Fig. 16–4a. When indicating the angular motion in the shaded 
plane, Fig. 16–4b, we can refer to the sense of rotation as clockwise or 
counterclockwise. Here we have arbitrarily chosen counterclockwise 
rotations as positive and indicated this by the curl shown in parentheses 
next to Eq. 16–1. Realize, however, that the directional sense of V is 
actually outward from the page.

O

P

du
u

r

(a)

dU

A

V

O

dU
P

r

(b)

V A

u

Fig. 16–4 
*It is shown in Sec. 20.1 that finite rotations or finite angular displacements are not vector 

quantities, although differential rotations dU are vectors.
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Angular Acceleration.  The angular acceleration A (alpha) 
measures the time rate of change of the angular velocity. The magnitude 
of this vector is

(a+)	 a =
dv

dt
� (16–2)

Using Eq. 16–1, it is also possible to express a as 

(a+)	 a =
d2u

dt2 � (16–3)

The line of action of A is the same as that for V, Fig. 16–4a; however, its 
sense of direction depends on whether V is increasing or decreasing. If V 
is decreasing, then A is called an angular deceleration and therefore has a 
sense of direction which is opposite to V.

By eliminating dt from Eqs. 16–1 and 16–2, we obtain a differential 
relation between the angular acceleration, angular velocity, and angular 
displacement, namely, 

(a+)	 a du = v dv � (16–4)

The similarity between the differential relations for angular motion 
and those developed for rectilinear motion of a particle (v = ds>dt, 
a = dv>dt, and a ds = v dv) should be apparent.

Constant Angular Acceleration.  If the angular acceleration of 
the body is constant, A = Ac , then Eqs. 16–1, 16–2, and 16–4, when 
integrated, yield a set of formulas which relate the body’s angular velocity, 
angular position, and time. These equations are similar to Eqs. 12–4 to 12–6 
used for rectilinear motion. The results are 

(a+)	  v = v0 + act � (16–5)

(a+)	  u = u0 + v0t +
1
2 act

2 � (16–6)

(a+)	  v2 = v0
2 + 2ac(u - u0)� (16–7)

Constant Angular Acceleration

Here u0 and v0 are the initial values of the body’s angular position and 
angular velocity, respectively.

The gears used in the operation of a crane 
all rotate about fixed axes. Engineers 
must be able to relate their angular 
motions in order to properly design this 
gear system. (© R.C. Hibbeler)
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Motion of Point P.  As the rigid body in Fig. 16–4c rotates, point P 
travels along a circular path of radius r with center at point O. This path 
is contained within the shaded plane shown in top view, Fig. 16–4d.

Position and Displacement.  The position of P is defined by the 
position vector r, which extends from O to P. If the body rotates du then P 
will displace ds = r du.

Velocity.  The velocity of P has a magnitude which can be found by 
dividing ds = r du by dt so that

	 v = vr � (16–8)

As shown in Figs. 16–4c and 16–4d, the direction of v is tangent to the 
circular path.

Both the magnitude and direction of v can also be accounted for by 
using the cross product of V and rP (see Appendix B). Here, rP is directed 
from any point on the axis of rotation to point P, Fig. 16–4c. We have

	 v = V * rP � (16–9)

The order of the vectors in this formulation is important, since the 
cross product is not commutative, i.e., V * rP � rP * V. Notice in 
Fig. 16–4c how the correct direction of v is established by the right-hand 
rule. The fingers of the right hand are curled from V toward rP (V “cross” rP). 
The thumb indicates the correct direction of v, which is tangent to the 
path in the direction of motion. From Eq. B–8, the magnitude of v in  
Eq. 16–9 is v = vrP sin f, and since r = rP sin f, Fig. 16–4c, then v = vr, 
which agrees with Eq. 16–8. As a special case, the position vector r can 
be chosen for rP. Here r lies in the plane of motion and again the 
velocity of point P is

	 v = V * r� (16–10)

O

P
r

(c)

v

rP

V

f

dU

ds

(d)

O

P

r v

Fig. 16–4 (cont.) 
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Acceleration.  The acceleration of P can be expressed in terms of its 
normal and tangential components. Applying Eq. 12–19 and Eq. 12–20, 
at = dv>dt and an = v2>r, where r = r, v = vr, and a = dv>dt, we get

	 at = ar � (16–11)

	 an = v2r � (16–12)

The tangential component of acceleration, Figs. 16–4e and 16–4f, 
represents the time rate of change in the velocity’s magnitude. If the speed 
of P is increasing, then at acts in the same direction as v; if the speed is 
decreasing, at acts in the opposite direction of v; and finally, if the speed is 
constant, at is zero.

The normal component of acceleration represents the time rate of 
change in the velocity’s direction. The direction of an is always toward O, 
the center of the circular path, Figs. 16–4e and 16–4f.

Like the velocity, the acceleration of point P can be expressed in terms 
of the vector cross product. Taking the time derivative of Eq. 16–9 
we have

a =
dv
dt

=
dV

dt
* rP + V *

drP

dt

Recalling that A = dV>dt, and using Eq. 16–9 (drP>dt = v = V * rP), 
yields

	 a = A * rP + V * (V * rP)� (16–13)

From the definition of the cross product, the first term on the right has a 
magnitude at = arP sin f = ar, and by the right-hand rule, A * rP is in the 
direction of at , Fig. 16–4e. Likewise, the second term has a magnitude 
an = v2rP sin f = v2r, and applying the right-hand rule twice, first to 
determine the result vP = V * rP then V * vP, it can be seen that this 
result is in the same direction as an, shown in Fig. 16–4e. Noting that this 
is also the same direction as -r, which lies in the plane of motion, we can 
express an in a much simpler form as an = -v2r. Hence, Eq. 16–13 can be 
identified by its two components as

	
a = at + an

  = A * r - v2r
� (16–14)

Since at and an are perpendicular to one another, if needed the magnitude 
of acceleration can be determined from the Pythagorean theorem; namely, 
a = 2an

2 + at
2, Fig. 16–4f.
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Fig. 16–4 (cont.) 
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Fig. 16–5

If two rotating bodies contact one another, then the points in contact move 
along different circular paths, and the velocity and tangential components 
of acceleration of the points will be the same: however, the normal 
components of acceleration will not be the same. For example, consider 
the two meshed gears in Fig. 16–5a. Point A is located on gear B and 
a coincident point A¿ is located on gear C. Due to the rotational motion, 
vA = vA¿, Fig. 16–5b, and as a result, vBrB = vCrC or vB = vC(rC>rB). Also, 
from Fig. 16–5c, (aA)t = (aA¿)t, so that aB = aC(rC>rB); however, since both 
points follow different circular paths, (aA)n Z (aA¿)n and therefore, as 
shown, aA Z aA¿.

Important Points

	 •	 A body can undergo two types of translation. During rectilinear 
translation all points follow parallel straight-line paths, and 
during curvilinear translation the points follow curved paths that 
are the same shape.

	 •	 All the points on a translating body move with the same velocity 
and acceleration.

	 •	 Points located on a body that rotates about a fixed axis follow 
circular paths.

	 •	 The relation a du = v dv is derived from a = dv>dt and 
v = du>dt by eliminating dt.

	 •	 Once angular motions v and a are known, the velocity and 
acceleration of any point on the body can be determined.

	 •	 The velocity always acts tangent to the path of motion.

	 •	 The acceleration has two components. The tangential acceleration 
measures the rate of change in the magnitude of the velocity and 
can be determined from at = ar. The normal acceleration 
measures the rate of change in the direction of the velocity and 
can be determined from an = v2r.
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Procedure for Analysis

The velocity and acceleration of a point located on a rigid body that 
is rotating about a fixed axis can be determined using the following 
procedure.

Angular Motion.

	 •	 Establish the positive sense of rotation about the axis of rotation 
and show it alongside each kinematic equation as it is applied.

	 •	 If a relation is known between any two of the four variables a, v, u, 
and t, then a third variable can be obtained by using one of the 
following kinematic equations which relates all three variables.

v =
du

dt
  a =

dv

dt
  a du = v dv

	 •	 If the body’s angular acceleration is constant, then the following 
equations can be used:

 v = v0 + act

 u = u0 + v0t +
1
2 act

2

 v2 = v0
2 + 2ac(u - u0)

	 •	 Once the solution is obtained, the sense of u, v, and a is 
determined from the algebraic signs of their numerical quantities.

Motion of Point P.

	 •	 In most cases the velocity of P and its two components of 
acceleration can be determined from the scalar equations

 v = vr

 at = ar

 an = v2r

	 •	 If the geometry of the problem is difficult to visualize, the 
following vector equations should be used:

 v = V * rP = V * r

 at = A * rP = A * r

 an = V * (V * rP) = -v2r

	 •	 Here rP is directed from any point on the axis of rotation to 
point P, whereas r lies in the plane of motion of P. Either of these 
vectors, along with V and A, should be expressed in terms of its 
i, j, k components, and, if necessary, the cross products determined 
using a determinant expansion (see Eq. B–12).
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A cord is wrapped around a wheel in Fig. 16–6, which is initially at rest 
when u = 0. If a force is applied to the cord and gives it an acceleration 
a = (4t) m>s2, where t is in seconds, determine, as a function of time, 
(a) the angular velocity of the wheel, and (b) the angular position of 
line OP in radians.

Solution
Part (a).  The wheel is subjected to rotation about a fixed axis passing 
through point O. Thus, point P on the wheel has motion about a circular 
path, and the acceleration of this point has both tangential and normal 
components. The tangential component is (aP)t = (4t) m>s2, since the 
cord is wrapped around the wheel and moves tangent to it. Hence the 
angular acceleration of the wheel is

(c+)	  (aP)t = ar

	  (4t) m>s2 = a(0.2 m)

	  a = (20t) rad>s2b 

Using this result, the wheel’s angular velocity v can now be 
determined from a = dv>dt, since this equation relates a, t, and v. 
Integrating, with the initial condition that v = 0 when t = 0, yields

(c+)	  a =
dv

dt
= (20t) rad>s2

	  L
v

0
dv = L

t

0
20t dt

	  v = 10t2 rad>sb 	 Ans.

Part (b).  Using this result, the angular position u of OP can be found 
from v = du>dt, since this equation relates u, v, and t. Integrating, with 
the initial condition u = 0 when t = 0, we have

(c+)	
du

dt
= v = (10t2) rad>s

	  L
u

0
du = L

t

0
10t2 dt

	  u = 3.33t3 rad � Ans.

Note: We cannot use the equation of constant angular acceleration, 
since a is a function of time.

EXAMPLE   16.1

F

0.2 m

P

a

O
u

Fig. 16–6
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The motor shown in the photo is used to turn a wheel and attached 
blower contained within the housing. The details are shown in 
Fig. 16–7a. If the pulley A connected to the motor begins to rotate 
from rest with a constant angular acceleration of aA = 2 rad>s2, 
determine the magnitudes of the velocity and acceleration of point P 
on the wheel, after the pulley has turned two revolutions. Assume 
the transmission belt does not slip on the pulley and wheel.

Solution
Angular Motion.  First we will convert the two revolutions to radians. 
Since there are 2p rad in one revolution, then

uA = 2 rev a 2p rad

1 rev
b = 12.57 rad

Since aA is constant, the angular velocity of pulley A is therefore

(c+)	  v2 = v0
2 + 2ac(u - u0)

	  vA
2 = 0 + 2(2 rad>s2)(12.57 rad - 0)

	  vA = 7.090 rad>s
The belt has the same speed and tangential component of 

acceleration as it passes over the pulley and wheel. Thus,

v = vArA = vBrB;  7.090 rad>s (0.15 m) = vB(0.4 m)

vB = 2.659 rad>s
at = aArA = aBrB;  2 rad>s2 (0.15 m) = aB(0.4 m)

aB = 0.750 rad>s2

Motion of P.  As shown on the kinematic diagram in Fig. 16–7b,  
we have

	  vP = vBrB = 2.659 rad>s (0.4 m) = 1.06 m>s � Ans.

	  (aP)t = aBrB = 0.750 rad>s2 (0.4 m) = 0.3 m>s2

	  (aP)n = vB
2rB = (2.659 rad>s)2(0.4 m) = 2.827 m>s2

Thus

       aP = 2(0.3 m>s2)2 + (2.827 m>s2)2 = 2.84 m>s2� Ans.

P

A

B

(a)

0.4 m

0.15 m
aA � 2 rad/s2

(b)

P

aP

(aP)t

vP

(aP)n

Fig. 16–7

EXAMPLE   16.2

(© R.C. Hibbeler)
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F16–4.    The bucket is hoisted by the rope that wraps around 
a drum wheel. If the angular displacement of the wheel is 
u = (0.5t3 + 15t) rad, where t is in seconds, determine the 
velocity and acceleration of the bucket when t = 3 s. 

0.75 ft

v

u

Prob. F16–4

F16–5.    A wheel has an angular acceleration of 
a = (0.5 u) rad>s2, where u is in radians. Determine the 
magnitude of the velocity and acceleration of a point P 
located on its rim after the wheel has rotated 2 revolutions. 
The wheel has a radius of 0.2 m and starts at v0 = 2 rad>s. 

F16–6.    For a short period of time, the motor turns gear A 
with a constant angular acceleration of aA = 4.5 rad>s2, 
starting from rest. Determine the velocity of the cylinder and 
the distance it travels in three seconds. The cord is wrapped 
around pulley D which is rigidly attached to gear B. 

A

B
P P¿

D

C

 75 mm
225 mm

 125 mm

aA � 4.5 rad/s2

Prob. F16–6

F16–1.    When the gear rotates 20 revolutions, it achieves 
an angular velocity of v = 30 rad>s, starting from rest. 
Determine its constant angular acceleration and the time 
required. 

v
u

Prob. F16–1

F16–2.    The flywheel rotates with an angular velocity of 
v = (0.005u2) rad>s, where u is in radians. Determine the 
angular acceleration when it has rotated 20 revolutions. 

v u

Prob. F16–2

F16–3.    The flywheel rotates with an angular velocity of 
v = (4 u1>2) rad>s, where u is in radians. Determine the time 
it takes to achieve an angular velocity of v = 150 rad>s. 
When t = 0, u = 1 rad. 

v

u

Prob. F16–3

Fundamental Problems
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16–5.  The disk is driven by a motor such that the angular 
position of the disk is defined by u = (20t + 4t 2) rad, where t 
is in seconds. Determine the number of revolutions, the angular 
velocity, and angular acceleration of the disk when t = 90 s.

0.5 ft

u

Prob. 16–5

16–6.  A wheel has an initial clockwise angular velocity of  
10 rad>s and a constant angular acceleration of 3 rad>s2. 
Determine the number of revolutions it must undergo to acquire 
a clockwise angular velocity of 15 rad>s. What time is required?

16–7.  If gear A rotates with a constant angular acceleration 
of aA = 90 rad>s2, starting from rest, determine the time 
required for gear D to attain an angular velocity of 600 rpm. 
Also, find the number of revolutions of gear D to attain this 
angular velocity. Gears A, B, C, and D have radii of 15 mm, 
50 mm, 25 mm, and 75 mm, respectively.

*16–8.  If gear A rotates with an angular velocity of 
vA = (uA + 1) rad>s, where uA is the angular displacement 
of gear A, measured in radians, determine the angular 
acceleration of gear D when uA = 3 rad, starting from rest. 
Gears A, B, C, and D have radii of 15 mm, 50 mm, 25 mm, 
and 75 mm, respectively.

D A

B

C

F

Probs. 16–7/8

16–1.  The angular velocity of the disk is defined by 
v = (5t2 + 2) rad>s, where t is in seconds. Determine the 
magnitudes of the velocity and acceleration of point A on 
the disk when t = 0.5 s.

A

0.8 m

Prob. 16–1

16–2.  The angular acceleration of the disk is defined by  
a = 3t2 + 12 rad>s, where t is in seconds. If the disk is 
originally rotating at v0 = 12 rad>s, determine the 
magnitude of the velocity and the n and t components of 
acceleration of point A on the disk when t = 2 s.

16–3.  The disk is originally rotating at v0 = 12 rad>s. 
If  it is subjected to a constant angular acceleration of  
a = 20 rad>s2, determine the magnitudes of the velocity 
and the n and t components of acceleration of point A at 
the instant t = 2 s.

*16–4.  The disk is originally rotating at v0 = 12 rad>s.  
If it is subjected to a constant angular acceleration of  
a = 20 rad>s2, determine the magnitudes of the velocity 
and the n and t components of acceleration of point B when 
the disk undergoes 2 revolutions.

0.4 m

0.5 m

B

A

v0 � 12 rad/s 

Probs. 16–2/3/4

PROBLEMS
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16–9.  At the instant vA = 5 rad>s, pulley A is given an 
angular acceleration a = (0.8u) rad>s2, where u is in radians. 
Determine the magnitude of acceleration of point B on 
pulley C when A rotates 3 revolutions. Pulley C has an inner 
hub which is fixed to its outer one and turns with it.

16–10.  At the instant vA = 5 rad>s, pulley A is given a 
constant angular acceleration aA = 6 rad>s2. Determine 
the magnitude of acceleration of point B on pulley C when 
A rotates 2 revolutions. Pulley C has an inner hub which is 
fixed to its outer one and turns with it.

50 mm

40 mm

60 mm

B

A

C

vA 
aA 

Probs. 16–9/10

16–11.  The cord, which is wrapped around the disk, is given 
an acceleration of a = (10t) m>s2, where t is in seconds. 
Starting from rest, determine the angular displacement, 
angular velocity, and angular acceleration of the disk when 
t = 3 s.

a � (10t) m/s2

0.5 m

Prob. 16–11

*16–12.  The power of a bus engine is transmitted using the 
belt-and-pulley arrangement shown. If the engine turns 
pulley A at vA = (20t + 40) rad>s, where t is in seconds, 
determine the angular velocities of the generator pulley B 
and the air-conditioning pulley C when t = 3 s.

16–13.  The power of a bus engine is transmitted using the 
belt-and-pulley arrangement shown. If the engine turns 
pulley A at vA = 60 rad>s, determine the angular velocities 
of the generator pulley B and the air-conditioning pulley C. 
The hub at D is rigidly connected to B and turns with it.

B
D

C
A

25 mm

75 mm

50 mm

100 mm

vA

vB

vC

Probs. 16–12/13

16–14.  The disk starts from rest and is given an angular 
acceleration a = (2t 2) rad>s2, where t is in seconds. 
Determine the angular velocity of the disk and its angular 
displacement when t = 4 s.

16–15.  The disk starts from rest and is given an angular 
acceleration a = (5t1>2) rad>s2, where t is in seconds. 
Determine the magnitudes of the normal and tangential 
components of acceleration of a point P on the rim of the 
disk when t = 2 s.

*16–16.  The disk starts at v0 = 1 rad>s when u = 0, and is 
given an angular acceleration a = (0.3u) rad>s2, where u is 
in radians. Determine the magnitudes of the normal and 
tangential components of acceleration of a point P on the 
rim of the disk when u = 1 rev.

0.4 m

P

Probs. 16–14/15/16
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16–17.  A motor gives gear A an angular acceleration of  
aA = (2 + 0.006 u2) rad>s2, where u is in radians. If this 
gear is initially turning at vA = 15 rad>s, determine the 
angular velocity of gear B after A undergoes an angular 
displacement of 10 rev.

16–18.  A motor gives gear A an angular acceleration of  
aA = (2t3) rad>s2, where t is in seconds. If this gear is 
initially turning at vA = 15 rad>s, determine the angular 
velocity of gear B when t = 3 s.

B
175 mm

100 mm

A

aA
vA

aB

Probs. 16–17/18

16–19.  The vacuum cleaner’s armature shaft S rotates with 
an angular acceleration of a = 4v3>4 rad>s2, where v is in 
rad>s. Determine the brush’s angular velocity when t = 4 s, 
starting from v0 = 1 rad>s, at u = 0. The radii of the shaft 
and the brush are 0.25 in. and 1 in., respectively. Neglect the 
thickness of the drive belt.

A S A S

Prob. 16–19

*16–20.  A motor gives gear A an angular acceleration of  
aA = (4t3) rad>s2, where t is in seconds. If this gear is 
initially turning at (vA)0 = 20 rad>s, determine the angular 
velocity of gear B when t = 2 s.

A

B

0.15 m

0.05 m

(vA)0 � 20 rad/s

aA

Prob. 16–20

16–21.  The motor turns the disk with an angular velocity 
of v = (5t2 + 3t) rad>s, where t is in seconds. Determine 
the magnitudes of the velocity and the n and t components 
of acceleration of the point A on the disk when t = 3 s.

u

150 mm

A

Prob. 16–21
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16–22.  If the motor turns gear A with an angular 
acceleration of aA = 2 rad>s2 when the angular velocity is  
vA = 20 rad>s, determine the angular acceleration and 
angular velocity of gear D.

A

B

C

D

50 mm

100 mm

100 mm

40 mm
vA

Prob. 16–22

16–23.  If the motor turns gear A with an angular 
acceleration of aA = 3 rad>s2 when the angular velocity is  
vA = 60 rad>s, determine the angular acceleration and 
angular velocity of gear D.

A

B

C

D

50 mm

100 mm

100 mm

40 mm
vA

Prob. 16–23

*16–24.  The gear A on the drive shaft of the outboard 
motor has a radius rA = 0.5 in. and the meshed pinion 
gear  B on the propeller shaft has a radius rB = 1.2 in. 
Determine the angular velocity of the propeller in t = 1.5 s, 
if the drive shaft rotates with an angular acceleration 
a = (400t3) rad>s2, where t is in seconds. The propeller is 
originally at rest and the motor frame does not move.

16–25.  For the outboard motor in Prob. 16–24, determine 
the magnitude of the velocity and acceleration of point P 
located on the tip of the propeller at the instant t = 0.75 s.

2.20 in.

P

B

A

Probs. 16–24/25

16–26.  The pinion gear A on the motor shaft is given a 
constant angular acceleration a = 3 rad>s2. If the gears A 
and B have the dimensions shown, determine the angular 
velocity and angular displacement of the output shaft C, 
when t = 2 s starting from rest. The shaft is fixed to B and 
turns with it.

C

125 mm

35 mm
A

B

Prob. 16–26
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16–27.  The gear A on the drive shaft of the outboard motor 
has a radius rA = 0.7 in. and the meshed pinion gear B on 
the propeller shaft has a radius rB = 1.4 in. Determine the 
angular velocity of the propeller in t = 1.3 s if the drive shaft 
rotates with an angular acceleration a = (3001t) rad>s2, 
where t is in seconds. The propeller is originally at rest and 
the motor frame does not move.

2.2 in.

P

B

A

Prob. 16–27

*16–28.  The gear A on the drive shaft of the outboard 
motor has a radius rA = 0.7 in. and the meshed pinion gear 
B on the propeller shaft has a radius rB = 1.4 in. Determine 
the magnitudes of the velocity and acceleration of a point P 
located on the tip of the propeller at the instant t = 0.75 s. 
the drive shaft rotates with an angular acceleration a =

(3001t) rad>s2, where t is in seconds. The propeller is 
originally at rest and the motor frame does not move.

2.2 in.

P

B

A

Prob. 16–28

16–29.  A stamp S, located on the revolving drum, is used 
to label canisters. If the canisters are centered 200 mm apart 
on the conveyor, determine the radius rA of the driving 
wheel A and the radius rB of the conveyor belt drum so that 
for each revolution of the stamp it marks the top of a 
canister. How many canisters are marked per minute if the 
drum at B is rotating at vB = 0.2 rad>s? Note that the 
driving belt is twisted as it passes between the wheels.

200 mm

A

B

rA

rB

rB

S

B � 0.2 rad/sv

Prob. 16–29

16–30.  At the instant shown, gear A is rotating with a 
constant angular velocity of vA = 6 rad>s. Determine the 
largest angular velocity of gear B and the maximum speed 
of point C.

100 mm

B

C

A

100 mm

100 mm

100 mm

B
A� 6 rad/s

v
v

Prob. 16–30
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16–31.  Determine the distance the load W is lifted in t = 5 s 
using the hoist. The shaft of the motor M turns with an angular 
velocity v = 100(4 + t) rad>s, where t is in seconds.

W

300 mm

30 mm

50 mm 225 mm

B

A

E

C

D

40 mm

M

Prob. 16–31

*16–32.  The driving belt is twisted so that pulley B rotates 
in the opposite direction to that of drive wheel A. If A has a 
constant angular acceleration of aA = 30 rad>s2, determine 
the tangential and normal components of acceleration of 
a  point located at the rim of B when t = 3 s, starting 
from rest.

A

B
125 mm200 mm

vA

vB

Prob. 16–32

16–33.  The driving belt is twisted so that pulley B rotates 
in the opposite direction to that of drive wheel A. If the 
angular displacement of A is uA = (5t3 + 10t2) rad, where t 
is in seconds, determine the angular velocity and angular 
acceleration of B when t = 3 s.

A

B
125 mm200 mm

vA

vB

Prob. 16–33

16–34.  For a short time a motor of the random-orbit 
sander drives the gear A with an angular velocity of  
vA = 40(t3 + 6t) rad>s, where t is in seconds. This gear is 
connected to gear B, which is fixed connected to the shaft 
CD. The end of this shaft is connected to the eccentric 
spindle EF and pad P, which causes the pad to orbit around 
shaft CD at a radius of 15 mm. Determine the magnitudes of 
the velocity and the tangential and normal components of 
acceleration of the spindle EF when t = 2 s after starting 
from rest.

40 mm

10 mm

15 mm

A

B

CC

D

E

F

P

VA

Prob. 16–34
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16–35.  If the shaft and plate rotates with a constant 
angular velocity of v = 14 rad>s, determine the velocity 
and acceleration of point C located on the corner of the 
plate at the instant shown. Express the result in Cartesian 
vector form.

x y

C
O

D

B

z

0.2 m

0.3 m
0.3 m

0.4 m

0.4 m

0.6 m

A
v

a

Prob. 16–35

*16–36.  At the instant shown, the shaft and plate rotates 
with an angular velocity of v = 14 rad>s and angular 
acceleration of a = 7 rad>s2. Determine the velocity and 
acceleration of point D located on the corner of the plate at 
this instant. Express the result in Cartesian vector form.

x y

C
O

D

B

z

0.2 m

0.3 m
0.3 m

0.4 m

0.4 m

0.6 m

A
v

a

Prob. 16–36

16–37.  The rod assembly is supported by ball-and-socket 
joints at A and B. At the instant shown it is rotating about 
the y axis with an angular velocity v = 5 rad>s and has an 
angular acceleration a = 8 rad>s2. Determine the 
magnitudes of the velocity and acceleration of point C at 
this instant. Solve the problem using Cartesian vectors and 
Eqs. 16–9 and 16–13.

0.3 m

z

x

y
A

C

B
0.4 m

0.4 m

a v

Prob. 16–37

16–38.  The sphere starts from rest at u = 0° and rotates 
with an angular acceleration of a = (4u + 1) rad>s2, where 
u is in radians. Determine the magnitudes of the velocity 
and acceleration of point P on the sphere at the instant  
u = 6 rad.

P

r � 8 in.

30�

Prob. 16–38
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A

C

B

a

b

s

u

The dumping bin on the truck rotates 
about a fixed axis passing through the 
pin at A. It is operated by the extension 
of the hydraulic cylinder BC. The 
angular position of the bin can be 
specified using the angular position 
coordinate u, and the position of point C 
on the bin is specified using the 
rectilinear position coordinate s. Since a 
and b are fixed lengths, then the two 
coordinates can be related by the 
cosine law,  s = 2a2 + b2 - 2ab cos u. 
The time derivative of this equation 
relates the speed at which the hydraulic 
cylinder extends to the angular velocity 
of the bin. (© R.C. Hibbeler)

16.4  Absolute Motion Analysis

A body subjected to general plane motion undergoes a simultaneous 
translation and rotation. If the body is represented by a thin slab, the slab 
translates in the plane of the slab and rotates about an axis perpendicular 
to this plane. The motion can be completely specified by knowing both the 
angular rotation of a line fixed in the body and the motion of a point on 
the body. One way to relate these motions is to use a rectilinear position 
coordinate s to locate the point along its path and an angular position 
coordinate u to specify the orientation of the line. The two coordinates are 
then related using the geometry of the problem. By direct application of 
the time-differential equations v = ds>dt, a = dv>dt, v = du>dt, and 
a = dv>dt, the motion of the point and the angular motion of the line can 
then be related. This procedure is similar to that used to solve dependent 
motion problems involving pulleys, Sec. 12.9. In some cases, this same 
procedure may be used to relate the motion of one body, undergoing 
either rotation about a fixed axis or translation, to that of a connected 
body undergoing general plane motion.

Procedure for Analysis

The velocity and acceleration of a point P undergoing rectilinear 
motion can be related to the angular velocity and angular acceleration 
of a line contained within a body using the following procedure.

Position Coordinate Equation.
	 •	 Locate point P on the body using a position coordinate s, which is 

measured from a fixed origin and is directed along the straight-line 
path of motion of point P.

	 •	 Measure from a fixed reference line the angular position u of a 
line lying in the body.

	 •	 From the dimensions of the body, relate s to u, s = f(u), using 
geometry and/or trigonometry.

Time Derivatives.
	 •	 Take the first derivative of s = f(u) with respect to time to get a 

relation between v and v.

	 •	 Take the second time derivative to get a relation between a and a.

	 •	 In each case the chain rule of calculus must be used when taking 
the time derivatives of the position coordinate equation. See 
Appendix C.
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The end of rod R shown in Fig. 16–8 maintains contact with the cam by 
means of a spring. If the cam rotates about an axis passing through 
point O with an angular acceleration A and angular velocity V, 
determine the velocity and acceleration of the rod when the cam is in 
the arbitrary position u.

EXAMPLE   16.3

A

O
C

rr

B
x

R

u

V

A

Fig. 16–8

Solution
Position Coordinate Equation.  Coordinates u and x are chosen in 
order to relate the rotational motion of the line segment OA on the cam 
to the rectilinear translation of the rod. These coordinates are measured 
from the fixed point O and can be related to each other using 
trigonometry. Since OC = CB = r cos u, Fig. 16–8, then

x = 2r cos u

Time Derivatives.  Using the chain rule of calculus, we have

	  
dx

dt
= -2r(sin u)

du

dt

	  v = -2rv sin u� Ans.

	  
dv

dt
= -2ra dv

dt
b  sin u - 2rv(cos u)

du

dt

	  a = -2r(a sin u + v2 cos  u) � Ans.

Note: The negative signs indicate that v and a are opposite to the 
direction of positive x. This seems reasonable when you visualize  
the motion.
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At a given instant, the cylinder of radius r, shown in Fig. 16–9, has an 
angular velocity V and angular acceleration A. Determine the velocity 
and acceleration of its center G if the cylinder rolls without slipping.

sG

G
r

A¿

B A
sG � ru

G¿
uu

V

A

Fig. 16–9

Solution
Position Coordinate Equation.  The cylinder undergoes general 
plane motion since it simultaneously translates and rotates. By 
inspection, point G moves in a straight line to the left, from G to G�, as 
the cylinder rolls, Fig. 16–9. Consequently its new position G� will be 
specified by the horizontal position coordinate sG , which is measured 
from G to G�. Also, as the cylinder rolls (without slipping), the arc length 
A�B on the rim which was in contact with the ground from A to B,  
is equivalent to sG. Consequently, the motion requires the radial line GA 
to rotate u to the position G�A�. Since the arc A�B = ru, then G travels 
a distance

	 sG = ru

Time Derivatives.  Taking successive time derivatives of this 
equation, realizing that r is constant, v = du>dt, and a = dv>dt, gives 
the necessary relationships:

	  sG = ru

	  vG = rv� Ans.

	  aG = ra� Ans.

Note: Remember that these relationships are valid only if the cylinder 
(disk, wheel, ball, etc.) rolls without slipping.

EXAMPLE   16.4
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EXAMPLE   16.5

1 m

1 m

2 m

s

B

O

A

u

Fig. 16–10

The large window in Fig. 16–10 is opened using a hydraulic cylinder AB. 
If the cylinder extends at a constant rate of 0.5 m>s, determine the 
angular velocity and angular acceleration of the window at the instant 
u = 30�.

Solution
Position Coordinate Equation.  The angular motion of the window 
can be obtained using the coordinate u, whereas the extension or motion 
along the hydraulic cylinder is defined using a coordinate s, which 
measures its length from the fixed point A to the moving point B.  
These coordinates can be related using the law of cosines, namely,

	 s2 = (2 m)2 + (1 m)2 - 2(2 m)(1 m) cos u

	 s2 = 5 - 4 cos u� (1)

When u = 30�,

	 s = 1.239 m

Time Derivatives.  Taking the time derivatives of Eq. 1, we have

	  2s 
ds

dt
= 0 - 4(-sin u) 

du

dt

	  s(vs) = 2(sin u)v � (2)

Since vs = 0.5 m>s, then at u = 30�,

	 (1.239 m)(0.5 m>s) = 2 sin 30�v

	 v = 0.6197 rad>s = 0.620 rad>s� Ans.

Taking the time derivative of Eq. 2 yields 

	  
ds

dt
 vs + s 

dvs

dt
= 2(cos u) 

du

dt
 v + 2(sin u) 

dv

dt

	  vs
2 + sas = 2(cos u)v2 + 2(sin u)a

Since as = dvs>dt = 0, then

	  (0.5 m>s)2 + 0 = 2 cos 30�(0.6197 rad>s)2 + 2 sin 30�a

	  a = -0.415 rad>s2� Ans.

Because the result is negative, it indicates the window has an angular 
deceleration.
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16–41.  At the instant u = 50�, the slotted guide is moving 
upward with an acceleration of 3 m>s2 and a velocity of  
2 m>s. Determine the angular acceleration and angular 
velocity of link AB at this instant. Note: The upward motion 
of the guide is in the negative y direction.

300 mm

y

v � 2 m/s
a � 3 m/s2

A

B

u

v, a

Prob. 16–41

16–42.  At the instant shown, u = 60°, and rod AB is   
subjected to a deceleration of 16 m>s2 when the velocity is 
10  m>s. Determine the angular velocity and angular 
acceleration of link CD at this instant.

300 mm300 mm

DB

x

C

A

v � 10 m/s

a � 16 m/s2

uu

Prob. 16–42

16–39.  The end A of the bar is moving downward along 
the slotted guide with a constant velocity vA. Determine the 
angular velocity V and angular acceleration A of the bar as 
a function of its position y.

y

B

r

vA A

V, A

U

Prob. 16–39

*16–40.  At the instant u = 60°, the slotted guide rod is 
moving to the left with an acceleration of 2 m>s2 and a 
velocity of 5 m>s. Determine the angular acceleration and 
angular velocity of link AB at this instant.

200 mm

v � 5 m/s
a � 2 m/s2

A

B

u

Prob. 16–40

PROBLEMS
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16–43.  The crank AB is rotating with a constant angular 
velocity of 4 rad>s. Determine the angular velocity of the 
connecting rod CD at the instant u = 30�.

u

A

C

B

D
4 rad/s

600 mm

300 mm

Prob. 16–43

*16–44.	 Determine the velocity and acceleration of the 
follower rod CD as a function of u when the contact 
between the cam and follower is along the straight region 
AB on the face of the cam. The cam rotates with a constant 
counterclockwise angular velocity V.

A

C

B

Dr
O

u

v

Prob. 16–44

16–45.  Determine the velocity of rod R for any angle u of 
the cam C if the cam rotates with a constant angular 
velocity  V. The pin connection at O does not cause an 
interference with the motion of A on C.

u

v

C

R

r2

r1

A

O

x

Prob. 16–45

16–46.  The circular cam rotates about the fixed point O 
with a constant angular velocity V. Determine the velocity 
v of the follower rod AB as a function of u.

A B

R

d

r

v

u
O

v

Prob. 16–46

16–47.  Determine the velocity of the rod R for any  
angle u of cam C as the cam rotates with a constant angular 
velocity V. The pin connection at O does not cause an 
interference with the motion of plate A on C.

uR

A

C
r

O

x

V

Prob. 16–47

*16–48.  Determine the velocity and acceleration of the  
peg A which is confined between the vertical guide and the 
rotating slotted rod.

A

b

O

v

a

u

Prob. 16–48
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16–49.  Bar AB rotates uniformly about the fixed pin A 
with a constant angular velocity V. Determine the velocity 
and acceleration of block C, at the instant u = 60�.

L

A

L

L

C

B

v

u

Prob. 16–49

16–50.  The center of the cylinder is moving to the left with 
a constant velocity v0. Determine the angular velocity V 
and angular acceleration A of the bar. Neglect the thickness 
of the bar.

u

V
A r 

vO
O

Prob. 16–50

16–51.  The pins at A and B are confined to move in the 
vertical and horizontal tracks. If the slotted arm is causing A 
to move downward at vA, determine the velocity of B at the 
instant shown.

90�
y

d

h

x

B

A

vA

u

Prob. 16–51 

*16–52.  The crank AB has a constant angular velocity V. 
Determine the velocity and acceleration of the slider at C as 
a function of u. Suggestion: Use the x coordinate to express 
the motion of C and the f coordinate for CB. x = 0 when  
f = 0°.

C

B

bl

x

x

y

A

f u

v

Prob. 16–52
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16–53.  If the wedge moves to the left with a constant 
velocity v, determine the angular velocity of the rod as a 
function of u.

L

v

fu

Prob. 16–53

16–54.  The crate is transported on a platform which rests 
on rollers, each having a radius r. If the rollers do not slip, 
determine their angular velocity if the platform moves 
forward with a velocity v.

v

vr

Prob. 16–54

16–55.  Arm AB has an angular velocity of V and an 
angular acceleration of A. If no slipping occurs between the 
disk D and the fixed curved surface, determine the angular 
velocity and angular acceleration of the disk.

B
R

A
D

C

r

ω, a

v¿, a¿

Prob. 16–55

*16–56.  At the instant shown, the disk is rotating with an 
angular velocity of V and has an angular acceleration of A. 
Determine the velocity and acceleration of cylinder B at 
this instant. Neglect the size of the pulley at C.

3 ft

5 ft

A

V, A C
u

B

Prob. 16–56



346 	 Chapter 16  P  lanar Kinematics of a Rig id Body

16

drA

drB

rB/A

A
A

BB

(b)

General plane
motion

Time t Time t � dt

A

B drB

drA

drA

rB/A

x¿

y¿
y¿

(c)

B¿

B

A
x¿

rB/A

drB/A

RotationTranslation

du

16.5  Relative-Motion Analysis: Velocity

The general plane motion of a rigid body can be described as a 
combination of translation and rotation. To view these “component” 
motions separately we will use a relative-motion analysis involving two sets 
of coordinate axes. The x, y coordinate system is fixed and measures the 
absolute position of two points A and B on the body, here represented as 
a bar, Fig. 16–11a. The origin of the x�, y� coordinate system will be 
attached to the selected “base point” A, which generally has a known 
motion. The axes of this coordinate system translate with respect to the 
fixed frame but do not rotate with the bar.

Position.  The position vector rA in Fig. 16–11a specifies the location 
of the “base point” A, and the relative-position vector rB>A locates point B 
with respect to point A. By vector addition, the position of B is then

rB = rA + rB>A

Displacement.  During an instant of time dt, points A and B 
undergo displacements drA and drB as shown in Fig. 16–11b. If we 
consider the general plane motion by its component parts then the entire 
bar first translates by an amount drA so that A, the base point, moves to 
its final position and point B moves to B�, Fig. 16–11c. The bar is then 
rotated about A by an amount du so that B� undergoes a relative 
displacement drB>A and thus moves to its final position B. Due to the 
rotation about A, drB>A = rB>A du, and the displacement of B is

drB = drA + drB>A

due to rotation about A
due to translation of A

due to translation and rotation

B

A
x¿

y¿

y

x

rB

rA

rB/A

O
Fixed reference

Translating
reference

(a)

Fig. 16–11 
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Velocity.  To determine the relation between the velocities of points A 
and B, it is necessary to take the time derivative of the position equation, 
or simply divide the displacement equation by dt. This yields

drB

dt
=

drA

dt
+

drB>A
dt

The terms drB>dt = vB and drA>dt = vA are measured with respect to 
the fixed x, y axes and represent the absolute velocities of points A and B, 
respectively. Since the relative displacement is caused by a rotation, the 
magnitude of the third term is drB>A>dt = rB>A du>dt =  rB>Au

#
= rB>Av, 

where v is the angular velocity of the body at the instant considered. We 
will denote this term as the relative velocity vB>A , since it represents the 
velocity of B with respect to A as measured by an observer fixed to the 
translating x�, y� axes. In other words, the bar appears to move as if it were 
rotating with an angular velocity V about the z� axis passing through A. 
Consequently, vB>A has a magnitude of vB>A = vrB>A and a direction which 
is perpendicular to rB>A . We therefore have

	 vB = vA + vB>A � (16–15)

where

 vB = velocity of point B
 vA = velocity of the base point A

 vB>A = velocity of B with respect to A

A
B

C
vA

vB

V

As slider block A moves horizontally to the left with a velocity vA , 
it causes crank CB to rotate counterclockwise, such that vB is 
directed tangent to its circular path, i.e., upward to the left. The 
connecting rod AB is subjected to general plane motion, and at 
the instant shown it has an angular velocity V. (© R.C. Hibbeler)
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What the equation vB = vA + vB>A states is that the velocity of B,  
Fig. 16–11d, is determined by considering the entire bar to translate with a 
velocity of vA , Fig. 16–11e, and rotate about A with an angular velocity V, 
Fig. 16–11f. Vector addition of these two effects, applied to B, yields vB , as 
shown in Fig. 16–11g.

Since the relative velocity vB>A represents the effect of circular motion, 
about A, this term can be expressed by the cross product vB>A = V * rB>A , 
Eq. 16–9. Hence, for application using Cartesian vector analysis, we can 
also write Eq. 16–15 as

	 vB = vA + V * rB>A � (16–16)

where

 vB = velocity of B
 vA = velocity of the base point A
 V = angular velocity of the body

 rB>A = position vector directed from A to B

The velocity equation 16–15 or 16–16 may be used in a practical 
manner to study the general plane motion of a rigid body which is either 
pin connected to or in contact with other moving bodies. When applying 
this equation, points A and B should generally be selected as points on 
the body which are pin-connected to other bodies, or as points in contact 
with adjacent bodies which have a known motion. For example, point A 
on link AB in Fig. 16–12a must move along a horizontal path, whereas 
point B moves on a circular path. The directions of vA and vB can 
therefore be established since they are always tangent to their paths of 
motion, Fig. 16–12b. In the case of the wheel in Fig. 16–13, which rolls 
without slipping, point A on the wheel can be selected at the ground. 
Here A (momentarily) has zero velocity since the ground does not 
move. Furthermore, the center of the wheel, B, moves along a horizontal 
path so that vB is horizontal.

vB/A

vA

vB

(g)

45�
C

B

BC

(a)

v
A

	

45�

B

vB 

A

(b)

vA

Fig. 16–12 

A
vA � 0

vB
B

V

Fig. 16–13 

vA

vB

B

A

Path of
point A

Path of
point B

�

General plane motion

(d)

V

B

A vA

vA

Translation

(e)

B

A

rB/A

vB/A � vrB/A

�

Rotation about the
base point A

(f)

V

Fig. 16–11 (cont.) 
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Procedure for Analysis

The relative velocity equation can be applied either by using 
Cartesian vector analysis, or by writing the x and y scalar component 
equations directly. For application, it is suggested that the following 
procedure be used.

Vector Analysis

Kinematic Diagram.
	 •	 Establish the directions of the fixed x, y coordinates and draw a 

kinematic diagram of the body. Indicate on it the velocities vA , vB 
of points A and B, the angular velocity V, and the relative-
position vector rB>A .

	 •	 If the magnitudes of vA , vB , or V are unknown, the sense of 
direction of these vectors can be assumed.

Velocity Equation.
	 •	 To apply vB = vA + V * rB>A , express the vectors in Cartesian 

vector form and substitute them into the equation. Evaluate the 
cross product and then equate the respective i and j components 
to obtain two scalar equations.

	 •	 If the solution yields a negative answer for an unknown magnitude, 
it indicates the sense of direction of the vector is opposite to that 
shown on the kinematic diagram.

Scalar Analysis

Kinematic Diagram.
	 •	 If the velocity equation is to be applied in scalar form, then the 

magnitude and direction of the relative velocity vB>A must be 
established. Draw a kinematic diagram such as shown in Fig. 16–11g, 
which shows the relative motion. Since the body is considered to be 
“pinned” momentarily at the base point A, the magnitude of vB>A 
is vB>A = vrB>A . The sense of direction of vB>A is always 
perpendicular to rB>A in accordance with the rotational motion V 
of the body.* 

Velocity Equation.
	 •	 Write Eq. 16–15 in symbolic form, vB = vA + vB>A , and 

underneath each of the terms represent the vectors graphically 
by showing their magnitudes and directions. The scalar equations 
are determined from the x and y components of these vectors. 

*The notation vB = vA + vB>A(pin) may be helpful in recalling that A is “pinned.”
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EXAMPLE   16.6

0.2 m

B

A

0.1 m C

u � 45�

vA � 2 m/s

(a)

y

x

vB

rB/A

B

A

vA � 2 m/s

(b)

V45�

 

rB/A

B

A

V
vB/A

45�

(c)

45�

Relative motion

Fig. 16–14

The link shown in Fig. 16–14a is guided by two blocks at A and B, 
which move in the fixed slots. If the velocity of A is 2 m>s downward, 
determine the velocity of B at the instant u = 45�.

Solution I (Vector Analysis)
Kinematic Diagram.  Since points A and B are restricted to move along 
the fixed slots and vA is directed downward, then velocity vB must be 
directed horizontally to the right, Fig. 16–14b. This motion causes the link 
to rotate counterclockwise; that is, by the right-hand rule the angular 
velocity V is directed outward, perpendicular to the plane of motion.

Velocity Equation.  Expressing each of the vectors in Fig. 16–14b in 
terms of their i, j, k components and applying Eq. 16–16 to A, the base 
point, and B, we have

	  vB = vA + V * rB>A
	  vBi = -2j + [vk * (0.2 sin 45�i - 0.2 cos 45�j)]

	  vBi = -2j + 0.2v sin 45�j + 0.2v cos 45�i

Equating the i and j components gives

	 vB = 0.2v cos 45� 0 = -2 + 0.2v sin 45�

Thus,

	  v = 14.1 rad>sd     vB = 2 m>s S 	 Ans.

Solution II (Scalar Analysis)
The kinematic diagram of the relative “circular motion” which  
produces vB>A is shown in Fig. 16–14c. Here vB>A = v(0.2 m).

Thus,
	 vB = vA + vB/A

	  c vB

S
d = c 2 m>s

T
d + cv(0.2 m)

     45�
d

( S+ )	  vB = 0 + v(0.2) cos 45�

(+ c ) 	  0 = -2 + v(0.2) sin 45�

The solution produces the above results.
It should be emphasized that these results are valid only at the 

instant u = 45�. A recalculation for u = 44� yields vB = 2.07 m>s 
and v = 14.4 rad>s; whereas when u = 46�, vB = 1.93 m>s and 
v = 13.9 rad>s, etc.

Note: Since vA and v are known, the velocity of any other point on the 
link can be determined. As an exercise, see if you can apply Eq. 16–16 to 
points A and C or to points B and C and show that when u = 45�, 
vC = 3.16 m>s, directed at an angle of 18.4� up from the horizontal.

a
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The cylinder shown in Fig. 16–15a rolls without slipping on the surface 
of a conveyor belt which is moving at 2 ft>s. Determine the velocity of 
point A. The cylinder has a clockwise angular velocity v = 15 rad>s at 
the instant shown.

Solution I (Vector Analysis)
Kinematic Diagram.  Since no slipping occurs, point B on the cylinder 
has the same velocity as the conveyor, Fig. 16–15b. Also, the angular 
velocity of the cylinder is known, so we can apply the velocity equation 
to B, the base point, and A to determine vA .

Velocity Equation
	  vA = vB + V * rA>B

	  (vA)xi + (vA)y j = 2i + (-15k) * (-0.5i + 0.5j)

	  (vA)xi + (vA)y j = 2i + 7.50j + 7.50i

so that

	  (vA)x = 2 + 7.50 = 9.50 ft>s� (1)

	  (vA)y = 7.50 ft>s � (2)

Thus,

	  vA = 2(9.50)2 + (7.50)2 = 12.1 ft>s� Ans.

	  u = tan-1 
7.50

9.50
= 38.3� a � Ans.

Solution II (Scalar Analysis)
As an alternative procedure, the scalar components of vA = vB + vA>B 
can be obtained directly. From the kinematic diagram showing the 
relative “circular” motion which produces vA>B , Fig. 16–15c, we have

	 vA>B = vrA>B = (15 rad>s)a 0.5 ft

cos 45�
b = 10.6 ft>s

Thus,

	  vA = vB + vA>B

	  c (vA)x

S
d + c (vA)y

c
d = c 2 ft>s

S
d + c 10.6 ft>s

a 45�
d

Equating the x and y components gives the same results as before, 
namely,

( S+ )	  (vA)x = 2 + 10.6 cos 45� = 9.50 ft>s
(+ c )	  (vA)y = 0 + 10.6 sin 45� = 7.50 ft>s

EXAMPLE   16.7

O

B

A

0.5 ft

vC � 2 ft/s

v � 15 rad/s

y

x

(a)

v � 15 rad/s

(b)

B

A
rA/B

vB � 2 ft/s

vA

u

	  
Relative motion

B

A

rA/B

vA/B

(c)

45�

45�
0.5 ft

v � 15 rad/s

Fig. 16–15



352 	 Chapter 16  P  lanar Kinematics of a Rig id Body

16

v EXAMPLE   16.8

The collar C in Fig. 16–16a is moving downward with a velocity of 
2 m>s. Determine the angular velocity of CB at this instant.

Solution I (Vector Analysis)
Kinematic Diagram.  The downward motion of C causes B to move 
to the right along a curved path. Also, CB and AB rotate 
counterclockwise.

Velocity Equation.  Link CB (general plane motion): See Fig. 16–16b.

	  vB = vC + VCB * rB>C

	  vBi = -2j + vCBk * (0.2i - 0.2j)

	  vBi = -2j + 0.2vCB j + 0.2vCBi

	  vB = 0.2vCB � (1)

	  0 = -2 + 0.2vCB� (2)

	  vCB = 10 rad>s d 	 Ans.

	  vB = 2 m>s S

Solution II (Scalar Analysis)
The scalar component equations of vB = vC + vB>C can be obtained 
directly. The kinematic diagram in Fig. 16–16c shows the relative 
“circular” motion which produces vB>C . We have

	  vB = vC + vB>C

	  c vB

S
d = c 2 m>s 

T
d + cvCB10.222 m2

a45�
d

Resolving these vectors in the x and y directions yields

( S+ )	  vB = 0 + vCB10.222 cos 45�2
(+ c )	 0 = -2 + vCB10.222 sin 45�2
which is the same as Eqs. 1 and 2.

Note: Since link AB rotates about a fixed axis and vB is known,  
Fig. 16–16d, its angular velocity is found from vB = vABrAB or 
2 m>s = vAB (0.2 m), vAB = 10 rad>s.

vC � 2 m/s

(a)

C
A

B

0.2 m

0.2 m

y

x

vB

rB/CvC � 2 m/s

B

C

VCB

(b)

B

A

(d)

0.2 m

VAB

vB � 2 m/s

vB/ArB/C
45�

B

VCB

(c)

45�

C

Relative motion

Fig. 16–16
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P16–1.  Set up the relative velocity equation between 
points A and B.

3 m

2 m

A

60�

B

6 rad/s

(a)

30�
A

B

4 rad/s

No slipping

0.5 m

(b)

A

30�

45�

B2 rad/s

3 m

4 m

(c)

3 rad/s

A B

3 m

2 m

(d)

30�

A

B
v

3 m
0.5 m

4 rad/s

No slipping

(e)

A

B

4 m

4 m

1 m
6 rad/s

Preliminary Problem

(f)

Prob. P16–1
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Fundamental Problems

F16–7.    If roller A moves to the right with a constant 
velocity of vA = 3 m>s, determine the angular velocity of 
the link and the velocity of roller B at the instant u = 30�. 

A

B

1.5 m

vA � 3 m/s

u � 30�

Prob. F16–7

F16–8.    The wheel rolls without slipping with an angular 
velocity of v = 10 rad>s. Determine the magnitude of the 
velocity of point B at the instant shown. 

A

B

0.6 m

v

Prob. F16–8

F16–9.    Determine the angular velocity of the spool. The 
cable wraps around the inner core, and the spool does not 
slip on the platform P. 

1 ft

2 ft

A P

B
 4 ft/s

 2 ft/s

O

Prob. F16–9

F16–10.    If crank OA rotates with an angular velocity of 
v = 12 rad>s, determine the velocity of piston B and the 
angular velocity of rod AB at the instant shown. 

0.3 m

0.6 m

O
B

A

12 rad/s

30�

Prob. F16–10

F16–11.    If rod AB slides along the horizontal slot with a 
velocity of 60 ft>s, determine the angular velocity of link 
BC at the instant shown. 

B A

O

C

0.5 ft

2.5 ft

60 ft/s

30�

Prob. F16–11

F16–12.    End A of the link has a velocity of vA = 3 m>s. 
Determine the velocity of the peg at B at this instant. The 
peg is constrained to move along the slot. 

A

vA � 3 m/s

2 m

B

30�

45�

Prob. F16–12
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16–59.  The link AB has an angular velocity of 3 rad>s. 
Determine the velocity of block C and the angular velocity 
of link BC at the instant u = 45�. Also, sketch the position 
of link BC when u = 60�, 45�, and 30° to show its general 
plane motion.

1.5 m

0.5 m

vAB � 3 rad/s

 � 45�u

A

B C

Prob. 16–59

*16–60.  The slider block C moves at 8 m>s down the 
inclined groove. Determine the angular velocities of links 
AB and BC, at the instant shown.

2 m

2 m

A

C

B

45�

vC � 8 m/s

Prob. 16–60

16–57.  At the instant shown the boomerang has an angular 
velocity v = 4 rad>s, and its mass center G has a velocity  
vG = 6 in.>s. Determine the velocity of point B at this instant.

5 in.

45�

30�

1.5 in.

G B

A

 � 4 rad/s

vG � 6 in./s

v

Prob. 16–57

16–58.  If the block at C is moving downward at 4 ft>s, 
determine the angular velocity of bar AB at the instant shown.

A

B

C

2 ft

3 ft vC � 4 ft/s

30�

vAB

Prob. 16–58

PROBLEMS



356 	 Chapter 16  P  lanar Kinematics of a Rig id Body

16

16–61.  Determine the angular velocity of links AB  
and BC at the instant u = 30°. Also, sketch the position of 
link BC when u = 55°, 45°, and 30° to show its general 
plane motion.

A

B

C

1 ft

3 ft

vC � 6 ft/s 

u

Prob. 16–61

16–62.  The planetary gear A is pinned at B. Link BC 
rotates clockwise with an angular velocity of 8 rad>s, while 
the outer gear rack rotates counterclockwise with an 
angular velocity of 2 rad>s. Determine the angular velocity 
of gear A.

15 in.

C

BC � 8 rad/s

20 in.

D

A
B

 � 2 rad/sv

v

Prob. 16–62

16–63.  If the angular velocity of link AB is vAB = 3 rad>s, 
determine the velocity of the block at C and the angular 
velocity of the connecting link CB at the instant u = 45� 
and f = 30�.

3 ft

2 ft

u � 45�

f � 30�

C

B

A

vAB � 3 rad/s

Prob. 16–63

*16–64.  The pinion gear A rolls on the fixed gear rack B 
with an angular velocity v = 4 rad>s. Determine the 
velocity of the gear rack C.

16–65.  The pinion gear rolls on the gear racks. If B is 
moving to the right at 8 ft>s and C is moving to the left at  
4 ft>s, determine the angular velocity of the pinion gear and 
the velocity of its center A.

C

B

0.3 ft
A

v

Probs. 16–64/65
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16–66.  Determine the angular velocity of the gear and the 
velocity of its center O at the instant shown.

3 ft/s

4 ft/s

A

O
45�

1.50 ft

0.75 ft

Prob. 16–66

16–67.  Determine the velocity of point A  on the rim of the 
gear at the instant shown.

3 ft/s

4 ft/s

A

O
45�

1.50 ft

0.75 ft

Prob. 16–67

*16–68.  Knowing that angular velocity of link AB is  
vAB = 4 rad>s, determine the velocity of the collar at C and 
the angular velocity of link CB at the instant shown. Link 
CB is horizontal at this instant.

500 mm

60�

45�

A

C B
350 mm

vAB � 4 rad/s

Prob. 16–68

16–69.  Rod AB is rotating with an angular velocity of  
vAB = 60 rad>s. Determine the velocity of the slider C at 
the instant u = 60° and f = 45°. Also, sketch the position 
of  bar BC when u = 30°, 60° and 90° to show its general 
plane motion.

C

   vAB � 60 rad/s
A

300 mm

600 mm
B

f

u

Prob. 16–69

16–70.  The angular velocity of link AB is vAB = 5 rad>s. 
Determine the velocity of block C and the angular velocity 
of link BC at the instant u = 45° and f = 30°. Also, sketch 
the position of link CB when u = 45°, 60°, and 75° to show 
its general plane motion.

f

A

B

2 m

3 m

C

vAB  � 5 rad/s

u

Prob. 16–70
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16–71.  The similar links AB and CD rotate about the 
fixed  pins at A and C. If AB has an angular velocity  
vAB = 8 rad>s, determine the angular velocity of BDP and 
the velocity of point P.

300 mm

B

A

D

C

P

700 mm

300 mm

300 mm300 mm

60� 60�

vAB � 8 rad/s

Prob. 16–71

*16–72.  If the slider block A is moving downward at  
vA = 4 m>s, determine the velocities of blocks B and C at 
the instant shown.

16–73.  If the slider block A is moving downward at vA = 
4 m>s, determine the velocity of point E at the instant shown.

4

5
3250 mm

400 mm
300 mm

300 mm
E

B

C

D

A
30�

vA � 4 m/s

Probs. 16–72/73

16–74.  The epicyclic gear train consists of the sun gear A 
which is in mesh with the planet gear B. This gear has an 
inner hub C which is fixed to B and in mesh with the fixed 
ring gear R. If the connecting link DE pinned to B and C is 
rotating at vDE = 18 rad>s about the pin at E, determine 
the angular velocities of the planet and sun gears.

BA

200 mm

100 mm

DE � 18 rad/s

R

v

C

300 mm

E

600 mm

D

Prob. 16–74

16–75.  If link AB is rotating at vAB = 3 rad>s, determine 
the angular velocity of link CD at the instant shown.

*16–76.  If link CD is rotating at vCD = 5 rad>s, determine 
the angular velocity of link AB at the instant shown.

A
B

8 in.

30�

45�

4 in.

D

C

vCD

6 in.

vAB

Probs. 16–75/76
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16–77.  The planetary gear system is used in an automatic 
transmission for an automobile. By locking or releasing 
certain gears, it has the advantage of operating the car at 
different speeds. Consider the case where the ring gear R is 
held fixed, vR = 0, and the sun gear S is rotating at 
vS = 5 rad>s. Determine the angular velocity of each of the 
planet gears P and shaft A.

R

S

P

A

vS

vR

80 mm

40 mm

40 mm

Prob. 16–77

16–78.  If the ring gear A rotates clockwise with an angular 
velocity of vA = 30 rad>s, while link BC rotates clockwise 
with an angular velocity of vBC = 15 rad>s, determine the 
angular velocity of gear D.

250 mm

C

vBC � 15 rad/s

300 mm

D

A

B

   � 30 rad/svA    

Prob. 16–78

16–79.  The mechanism shown is used in a riveting 
machine. It consists of a driving piston A, three links, and a 
riveter which is attached to the slider block D. Determine 
the velocity of D at the instant shown, when the piston at A 
is traveling at vA = 20 m>s.

150 mm 300 mm

v  � 20 m/s

200 mm

A

A

C

D

B

45�

45�

60�
30�

45�

Prob. 16–79

*16–80.  The mechanism is used on a machine for the 
manufacturing of a wire product. Because of the rotational 
motion of link AB and the, sliding of block F, the segmental 
gear lever DE undergoes general plane motion. If AB is 
rotating at vAB = 5 rad>s, determine the velocity of point E 
at the instant shown.

C

A

45�45�
B

50 mm
200 mm

20 mm

20 mm

50 mm
45�

E

F

D

vAB � 5 rad/s

Prob. 16–80
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16.6  �Instantaneous Center of Zero 
Velocity

The velocity of any point B located on a rigid body can be obtained in a 
very direct way by choosing the base point A to be a point that has zero 
velocity at the instant considered. In this case, vA = 0, and therefore the 
velocity equation, vB = vA + V * rB>A , becomes vB = V * rB>A . For a 
body having general plane motion, point A so chosen is called the 
instantaneous center of zero velocity (IC), and it lies on the instantaneous 
axis of zero velocity. This axis is always perpendicular to the plane of 
motion, and the intersection of the axis with this plane defines the location 
of the IC. Since point A coincides with the IC, then vB = V * rB>IC and 
so point B moves momentarily about the IC in a circular path; in other 
words, the body appears to rotate about the instantaneous axis. The 
magnitude of vB is simply vB = vrB>IC , where v is the angular velocity of 
the body. Due to the circular motion, the direction of vB must always be 
perpendicular to rB>IC .

For example, the IC for the bicycle wheel in Fig. 16–17 is at the contact 
point with the ground. There the spokes are somewhat visible, whereas at 
the top of the wheel they become blurred. If one imagines that the wheel 
is momentarily pinned at this point, the velocities of various points can 
be found using v = vr. Here the radial distances shown in the photo,  
Fig. 16–17, must be determined from the geometry of the wheel.

IC

Fig. 16–17 
(© R.C. Hibbeler)
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Location of the IC.  To locate the IC we can use the fact that the 
velocity of a point on the body is always perpendicular to the relative-
position vector directed from the IC to the point. Several possibilities 
exist:

•		 The velocity vA of a point A on the body and the angular velocity V 
of the body are known, Fig. 16–18a. In this case, the IC is located 
along the line drawn perpendicular to vA at A, such that the distance 
from A to the IC is rA>IC = vA>v. Note that the IC lies up and to the 
right of A since vA must cause a clockwise angular velocity V about 
the IC.

•		 The lines of action of two nonparallel velocities vA and vB are known, 
Fig. 16–18b. Construct at points A and B line segments that are 
perpendicular to vA and vB . Extending these perpendiculars to 
their point of intersection as shown locates the IC at the instant 
considered.

•		 The magnitude and direction of two parallel velocities vA and vB are 
known. Here the location of the IC is determined by proportional 
triangles. Examples are shown in Fig. 16–18c and d. In both cases 
rA>IC = vA>v and rB>IC = vB>v. If d is a known distance between 
points A and B, then in Fig. 16–18c, rA>IC + rB>IC = d and in   
Fig. 16–18d, rB>IC - rA>IC = d.

vA

rA/IC

A

IC
vIC � 0

(a)

Location of IC
knowing vA and V

Centrode

V

B

A
rA/IC

rB/IC

vB

vA
IC

vIC � 0

(b)

V

Location of IC
knowing the directions

of vA and vB

Fig. 16–18 

B

A

d
IC

rA/IC

rB/IC

vB

vA

(c)

V

Location of IC
knowing vA and vB

rA/IC

B

A
vA

vB

IC

d 

rB/IC

(d)

V
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Realize that the point chosen as the instantaneous center of zero 
velocity for the body can only be used at the instant considered since the 
body changes its position from one instant to the next. The locus of points 
which define the location of the IC during the body’s motion is called a 
centrode, Fig. 16–18a, and so each point on the centrode acts as the IC for 
the body only for an instant.

Although the IC may be conveniently used to determine the velocity of 
any point in a body, it generally does not have zero acceleration and therefore 
it should not be used for finding the accelerations of points in a body.

vB

IC
B

A

vA

As the board slides downward to the left it is 
subjected to general plane motion. Since the 
directions of the velocities of its ends A and 
B are known, the IC is located as shown. At 
this instant the board will momentarily rotate 
about this point. Draw the board in several 
other positions and establish the IC for 
each case. (© R.C. Hibbeler)

Procedure for Analysis

The velocity of a point on a body which is subjected to general plane 
motion can be determined with reference to its instantaneous center 
of zero velocity provided the location of the IC is first established 
using one of the three methods described above.

	 •	 As shown on the kinematic diagram in Fig. 16–19, the body is 
imagined as “extended and pinned” at the IC so that, at the instant 
considered, it rotates about this pin with its angular velocity V.

	 •	 The magnitude of velocity for each of the arbitrary points A, B, 
and C on the body can be determined by using the equation 
v = vr, where r is the radial distance from the IC to each point.

	 •	 The line of action of each velocity vector v is perpendicular to its 
associated radial line r, and the velocity has a sense of direction 
which tends to move the point in a manner consistent with the 
angular rotation V of the radial line, Fig. 16–19. 

rA/IC

rB/IC
rC/IC

vB � v rB/IC

vC � v rC/IC

vA � v rA/IC
A

B

C

IC

V

Fig. 16–19 
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EXAMPLE   16.9

(a)

B

A
C

u

v

D
b

C

A B

VDC

(c)

Show how to determine the location of the instantaneous center of zero 
velocity for (a) member BC shown in Fig. 16–20a; and (b) the link CB 
shown in Fig. 16–20c.

vB

rB/IC VBC

vC

rC/IC

IC

C

B

(b)

u

Solution
Part (a).  As shown in Fig. 16–20a, point B moves in a circular path 
such that vB is perpendicular to AB. Therefore, it acts at an angle u 
from the horizontal as shown in Fig. 16–20b. The motion of point B 
causes the piston to move forward horizontally with a velocity vC . 
When lines are drawn perpendicular to vB and vC , Fig. 16–20b, they 
intersect at the IC.

Part (b).  Points B and C follow circular paths of motion since 
links  AB and DC are each subjected to rotation about a fixed axis, 
Fig.  16–20c. Since the velocity is always tangent to the path, at the 
instant considered, vC on rod DC and vB on rod AB are both directed 
vertically downward, along the axis of link CB, Fig. 16–20d. Radial 
lines  drawn perpendicular to these two velocities form parallel lines 
which intersect at “infinity;” i.e., rC>IC S �  and rB>IC S � . Thus, 
vCB = (vC>rC>IC) S 0. As a result, link CB momentarily translates. An 
instant later, however, CB will move to a tilted position, causing the IC 
to move to some finite location.

VCB

C

vC

rB/IC

vB

B

IC

rC/IC

(d)

Fig. 16–20
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EXAMPLE   16.10

0.4 m

IC

B

D

rD/IC

(b)

rB/IC

vD � 3 m/s

vB

BD

45�

V

A

B

0.4 m

(c)

vB � 2.12 m/s

ABV

45�

Fig. 16–21

Block D shown in Fig. 16–21a moves with a speed of 3 m>s. Determine the 
angular velocities of links BD and AB, at the instant shown.

(a)

A

B

D

0.4 m 0.4 m

90�

45�45� 3 m/s

Solution
As D moves to the right, it causes AB to rotate clockwise about point A. 
Hence, vB is directed perpendicular to AB. The instantaneous center of zero 
velocity for BD is located at the intersection of the line segments drawn 
perpendicular to vB and vD , Fig. 16–21b. From the geometry,

	  rB>IC = 0.4 tan 45� m = 0.4 m

	  rD>IC =
0.4 m

cos 45�
= 0.5657 m

Since the magnitude of vD is known, the angular velocity of link BD is

	 vBD =
vD

rD>IC
=

3 m>s
0.5657 m

= 5.30 rad>sd� Ans.

The velocity of B is therefore

	 vB = vBD(rB>IC) = 5.30 rad>s (0.4 m) = 2.12 m>s c45�

From Fig. 16–21c, the angular velocity of AB is

	 vAB =
vB

rB>A
=

2.12 m>s
0.4 m

= 5.30 rad>sb� Ans.

Note: Try to solve this problem by applying vD = vB + vD>B to 
member BD.
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EXAMPLE   16.11

The cylinder shown in Fig. 16–22a rolls without slipping between the 
two moving plates E and D. Determine the angular velocity of the 
cylinder and the velocity of its center C.

vD = 0.4 m/s

C

B

AE

D

0.125 m

vE = 0.25 m/s

(a)

Solution
Since no slipping occurs, the contact points A and B on the cylinder 
have the same velocities as the plates E and D, respectively. 
Furthermore, the velocities vA and vB are parallel, so that by the 
proportionality of right triangles the IC is located at a point on line AB, 
Fig. 16–22b. Assuming this point to be a distance x from B, we have

 vB = vx;	  0.4 m>s = vx

 vA = v(0.25 m - x);	  0.25 m>s = v(0.25 m - x)

Dividing one equation into the other eliminates v and yields

	 0.4(0.25 - x) = 0.25x

	 x =
0.1

0.65
= 0.1538 m

Hence, the angular velocity of the cylinder is

	 v =
vB

x
=

0.4 m>s
0.1538 m

= 2.60 rad>sb� Ans.

The velocity of point C is therefore

	  vC = vrC>IC = 2.60 rad>s (0.1538 m - 0.125 m)

	  = 0.0750 m>s d 	 Ans.

C

B

A vA � 0.25 m/s

vB � 0.4 m/s

0.25 m
x

0.125 m

IC
rC/IC

(b)

V

rC

Fig. 16–22
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The crankshaft AB turns with a clockwise angular velocity of 10 rad>s, 
Fig. 16–23a. Determine the velocity of the piston at the instant shown.

(a)

B

A

C

0.75 ft

0.25 ft

13.6�

45�

AB � 10 rad/s

BC � 2.43 rad/sv

v

Solution
The crankshaft rotates about a fixed axis, and so the velocity of 
point B is

	 vB = 10 rad>s (0.25 ft) = 2.50 ft>s  a45�

Since the directions of the velocities of B and C are known, then the 
location of the IC for the connecting rod BC is at the intersection of 
the lines extended from these points, perpendicular to vB and vC,  
Fig. 16–23b. The magnitudes of rB>IC and rC>IC can be obtained from the 
geometry of the triangle and the law of sines, i.e.,

	  
0.75 ft

sin 45�
=

rB>IC
sin 76.4�

	  rB>IC = 1.031 ft

	  
0.75 ft

sin 45�
=

rC>IC
sin 58.6�

	  rC>IC = 0.9056 ft

The rotational sense of VBC must be the same as the rotation caused 
by vB about the IC, which is counterclockwise. Therefore,

	 vBC =
vB

rB>IC
=

2.5 ft>s
1.031 ft

= 2.425 rad>s
Using this result, the velocity of the piston is

	 vC = vBCrC>IC = (2.425 rad>s)(0.9056 ft) = 2.20 ft>s� Ans.

EXAMPLE   16.12

0.75 ft

2.50 ft/s

IC
C

B

(b)

vC

58.6�

45.0� 76.4�

Fig. 16–23
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P16–2.  Establish the location of the instantaneous center 
of zero velocity for finding the velocity of point B.

B

2 m

45�

8 rad/s

No slipping

(a)

0.5 m

A

B

2 m

4 rad/s 3
4

5

(b)

0.5 m

A

B

4 rad/s

0.3 m

1.5 m

30�

(c)

C

B

1 m

1 m

A

3 m/s

4 m/s

(d)

0.5 m

3 rad/s

No slipping

A

0.5 m

B2 m

(e)

No slipping

45�
2 m

B
30�

0.5 m

6 rad/s

(f)

A

Preliminary Problem

Prob. P16–2



368 	 Chapter 16  P  lanar Kinematics of a Rig id Body

16

F16–16.    If cable AB is unwound with a speed of 3 m>s, and 
the gear rack C has a speed of 1.5 m>s, determine the 
angular velocity of the gear and the velocity of its center O. 

F16–13.    Determine the angular velocity of the rod and the 
velocity of point C at the instant shown. 

Fundamental Problems

A

C

2.5 m

2.5 m

4 m

B

vA � 6 m/s

Prob. F16–13

F16–14.    Determine the angular velocity of link BC and 
velocity of the piston C at the instant shown. 

B

C

 3 m/s

 1.5 m/s

0.3 m
0.2 m

O

A

Prob. F16–16

F16–17.    Determine the angular velocity of link BC and the 
velocity of the piston C at the instant shown. 

A
0.2 m

0.8 m

C

B 30�

v � 6 rad/s

Prob. F16–17

F16–18.    Determine the angular velocity of links BC and 
CD at the instant shown. 

A

B C

D

0.4 m
0.2 m

0.2 m

vAB � 10 rad/s
30�

Prob. F16–18

A
B C

0.6 m 1.2 m

vAB � 12 rad/s

Prob. F16–14

F16–15.    If the center O of the wheel is moving with a 
speed of vO = 6 m>s, determine the velocity of point A on 
the wheel. The gear rack B is fixed. 

A

B

 6 m/s

0.6 m 0.3 m

O

Prob. F16–15
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16–83.  The shaper mechanism is designed to give a slow 
cutting stroke and a quick return to a blade attached to the 
slider at C. Determine the angular velocity of the link CB at 
the instant shown, if the link AB is rotating at 4 rad>s.

C

   AB � 4 rad/sv

A

60�

300 mm

45�

125 mm

B

Prob. 16–83

*16–84.  The conveyor belt is moving to the right at  
v = 8 ft>s, and at the same instant the cylinder is rolling 
counterclockwise at v = 2 rad>s without slipping. Determine 
the velocities of the cylinder’s center C and point B at this 
instant.

16–85.  The conveyor belt is moving to the right at  
v = 12 ft>s, and at the same instant the cylinder is rolling 
counterclockwise at v = 6 rad>s while its center has a 
velocity of 4 ft>s to the left. Determine the velocities of 
points A and B on the disk at this instant. Does the 
cylinder slip on the conveyor?

v

v1 ft
C

B

A

Probs. 16–84/85

16–81.  In each case show graphically how to locate the 
instantaneous center of zero velocity of link AB. Assume 
the geometry is known.

A A

A

B

B
B

C

(a)

(c)

(b)

v

v
v

Prob. 16–81

16–82.  Determine the angular velocity of link AB at the 
instant shown if block C is moving upward at 12 in>s.

A

B

5 in. 45�

30�

4 in.

C

ABω

Prob. 16–82

PROBLEMS
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16–86.  As the cord unravels from the wheel’s inner hub, 
the wheel is rotating at v = 2 rad>s at the instant shown. 
Determine the velocities of points A and B.

5 in.

2 in.

A

B

 � 2 rad/s

O

v

Prob. 16–86

16–87.  If rod CD is rotating with an angular velocity  
vCD = 4 rad>s, determine the angular velocities of rods AB 
and CB at the instant shown.

B

30�

C

D

A

vCD

0.4 m1 m

0.5 m

� 4 rad/s

Prob. 16–87

*16–88.  If bar AB has an angular velocity vAB = 6 rad>s, 
determine the velocity of the slider block C at the instant 
shown.

30�

500 mm200 mm

 � 45�A

B

C

u

vAB � 6 rad/s

Prob. 16–88

16–89.  Show that if the rim of the wheel and its hub 
maintain contact with the three tracks as the wheel rolls, it is 
necessary that slipping occurs at the hub A if no slipping 
occurs at B. Under these conditions, what is the speed at A 
if the wheel has angular velocity V?

B

A

v

r2

r1

Prob. 16–89
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16–90.  Due to slipping, points A and B on the rim of the 
disk have the velocities shown. Determine the velocities of 
the center point C and point D at this instant.

16–91.  Due to slipping, points A and B on the rim of the 
disk have the velocities shown. Determine the velocities of 
the center point C and point E at this instant.

C

A

B

F

D

E

vB � 10 ft/s

vA � 5 ft/s

0.8 ft

30�

45�

Probs. 16–90/91

*16–92.  Member AB is rotating at vAB = 6 rad>s. 
Determine the velocity of point D and the angular velocity 
of members BPD and CD.

16–93.  Member AB is rotating at vAB = 6 rad>s. 
Determine the velocity of point P, and the angular velocity 
of member BPD.

200 mm

B

A

D

C

P

250 mm

200 mm

200 mm200 mm

vAB� 6 rad/s

60� 60�

Probs. 16–92/93

16–94.  The cylinder B rolls on the fixed cylinder A without 
slipping. If connected bar CD is rotating with an angular 
velocity vCD = 5 rad>s, determine the angular velocity of 
cylinder B. Point C is a fixed point.

B

C A

D
0.1 m

0.3 m

vCD � 5 rad/s

Prob. 16–94

16–95.  As the car travels forward at 80 ft>s on a wet road, 
due to slipping, the rear wheels have an angular velocity 
v = 100 rad>s. Determine the speeds of points A, B, and C 
caused by the motion.

80 ft/s

100 rad/s1.4 ft A

C

B

Prob. 16–95

*16–96.  The pinion gear A rolls on the fixed gear rack B 
with an angular velocity v = 8 rad>s. Determine the 
velocity of the gear rack C.

150 mm

A

B

C

v

Prob. 16–96
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16–97.  If the hub gear H and ring gear R have angular 
velocities vH = 5 rad>s and vR = 20 rad>s, respectively, 
determine the angular velocity vS of the spur gear S and the 
angular velocity of its attached arm OA.

16–98.  If the hub gear H has an angular velocity  
vH = 5 rad>s, determine the angular velocity of the ring 
gear R so that the arm OA attached to the spur gear S 
remains stationary (vOA = 0). What is the angular velocity 
of the spur gear?

H

S

R

O
150 mm

50 mm
A

SH

R

250 mm

O

v

v

v

Probs. 16–97/98

16–99.  The crankshaft AB rotates at vAB = 50 rad>s 
about the fixed axis through point A, and the disk at C is 
held fixed in its support at E. Determine the angular 
velocity of rod CD at the instant shown.

E

C

D
F

AB

75 mm

40 mm
75 mm

vAB � 50 rad/s

100 mm

60�

300 mm

Prob. 16–99

*16–100.  Cylinder A rolls on the fixed cylinder B without 
slipping. If bar CD is rotating with an angular velocity of  
vCD = 3 rad>s, determine the angular velocity of A.

C

D

B

A
200 mm

200 mm

vCD

Prob. 16–100

16–101.  The planet gear A is pin connected to the end of 
the link BC. If the link rotates about the fixed point B at  
4 rad>s, determine the angular velocity of the ring gear R. 
The sun gear D is fixed from rotating.

16–102.  Solve Prob. 16–101 if the sun gear D is rotating 
clockwise at vD = 5 rad>s while link BC rotates 
counterclockwise at vBC = 4 rad>s.

R

D

B C
A

150 mm
75 mm

vR

vBC � 4 rad/s

Probs. 16–101/102
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16.7  �Relative-Motion Analysis: 
Acceleration

An equation that relates the accelerations of two points on a bar (rigid 
body) subjected to general plane motion may be determined by 
differentiating vB = vA + vB>A with respect to time. This yields

dvB

dt
=

dvA

dt
+

dvB>A
dt

The terms dvB>dt = aB and dvA>dt = aA are measured with respect to 
a set of fixed x, y axes and represent the absolute accelerations of points B 
and A. The last term represents the acceleration of B with respect to A as 
measured by an observer fixed to translating x�, y� axes which have their 
origin at the base point A. In Sec. 16.5 it was shown that to this observer 
point B appears to move along a circular arc that has a radius of 
curvature rB>A . Consequently, aB>A can be expressed in terms of its 
tangential and normal components; i.e., aB>A = (aB>A)t + (aB>A)n , where 
(aB>A)t = arB>A and (aB>A)n = v2rB>A . Hence, the relative-acceleration 
equation can be written in the form

	 aB = aA + (aB>A)t + (aB>A)n � (16–17)

where

 aB = acceleration of point B

 aA = acceleration of point A

 (aB>A)t = �tangential acceleration component of B with respect 
to A. The magnitude is (aB>A)t = arB>A , and the 
direction is perpendicular to rB>A .

 (aB>A)n = �normal acceleration component of B with respect 
to A. The magnitude is (aB>A)n = v2rB>A , and the 
direction is always from B toward A .

The terms in Eq. 16–17 are represented graphically in Fig. 16–24. Here 
it is seen that at a given instant the acceleration of B, Fig. 16–24a, is 
determined by considering the bar to translate with an acceleration aA , 
Fig. 16–24b, and simultaneously rotate about the base point A with an 
instantaneous angular velocity V and angular acceleration A, Fig. 16–24c. 
Vector addition of these two effects, applied to B, yields aB , as shown in 
Fig. 16–24d. It should be noted from Fig. 16–24a that since points A and B 
move along curved paths, the accelerations of these points will have both 
tangential and normal components. (Recall that the acceleration of a 
point is tangent to the path only when the path is rectilinear or when it is 
an inflection point on a curve.)

Path of
point A

Path of
point B

B

A

aB

aA

General plane motion

(a)

V A

A

aA

B

aA

Translation

(b)

�

�

B

A

aB/A

(aB/A)t

(aB/A)n

rB/A

Rotation about the
base point A

(c)

V
A

(d)

(aB/A)n

(aB/A)t

aA

aB

Fig. 16–24 
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Since the relative-acceleration components represent the effect of 
circular motion observed from translating axes having their origin at the 
base point A, these terms can be expressed as (aB>A)t = A * rB>A and 
(aB>A)n = -v2rB>A , Eq. 16–14. Hence, Eq. 16–17 becomes

	 aB = aA + A * rB>A - v2rB>A � (16–18)

where

 aB = acceleration of point B 

 aA = acceleration of the base point A 

 A = angular acceleration of the body 

 V = angular velocity of the body 

 rB>A = position vector directed from A to B

If Eq. 16–17 or 16–18 is applied in a practical manner to study the 
accelerated motion of a rigid body which is pin connected to two other 
bodies, it should be realized that points which are coincident at the pin 
move with the same acceleration, since the path of motion over which 
they travel is the same. For example, point B lying on either rod BA or 
BC of the crank mechanism shown in Fig. 16–25a has the same 
acceleration, since the rods are pin connected at B. Here the motion of B 
is along a circular path, so that aB can be expressed in terms of its 
tangential and normal components. At the other end of rod BC point C 
moves along a straight-lined path, which is defined by the piston. Hence, 
aC is horizontal, Fig. 16–25b.

Finally, consider a disk that rolls without slipping as shown in Fig. 16–26a. 
As a result, vA = 0 and so from the kinematic diagram in Fig. 16–26b, the 
velocity of the mass center G is 

vG = vA + V * rG>A = 0 + (-vk) * (rj)

So that

	 vG = vr� (16–19)

This same result can also be determined using the IC method where 
point A is the IC.

Since G moves along a straight line, its acceleration in this case can be 
determined from the time derivative of its velocity.

dvG

dt
=

dv

dt
 r 

	 aG = ar� (16–20)

These two important results were also obtained in Example 16–4. They 
apply as well to any circular object, such as a ball, gear, wheel, etc., that 
rolls without slipping.

(a)

A

B

C

Path of B

v
a

A

B

C
aB aC

(b)

B

(aB)n
(aB)t

aB

Fig. 16–25 

r

A

G

(a)

V
A

 

rG/A

G

(b)

vG

A

V

Fig. 16–26 
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Procedure for Analysis

The relative acceleration equation can be applied between any two 
points A and B on a body either by using a Cartesian vector analysis, 
or by writing the x and y scalar component equations directly.

Velocity Analysis.
	 •	 Determine the angular velocity V of the body by using a velocity 

analysis as discussed in Sec. 16.5 or 16.6. Also, determine the 
velocities vA and vB of points A and B if these points move along 
curved paths.

Vector Analysis
Kinematic Diagram.

	 •	 Establish the directions of the fixed x, y coordinates and draw the 
kinematic diagram of the body. Indicate on it aA , aB , V, A, and rB>A .

	 •	 If points A and B move along curved paths, then their accelerations 
should be indicated in terms of their tangential and normal 
components, i.e., aA = (aA)t + (aA)n and aB = (aB)t + (aB)n .

Acceleration Equation.

	 •	 To apply aB = aA + A * rB>A - v2rB>A, express the vectors in 
Cartesian vector form and substitute them into the equation. 
Evaluate the cross product and then equate the respective i and j 
components to obtain two scalar equations.

	 •	 If the solution yields a negative answer for an unknown magnitude, 
it indicates that the sense of direction of the vector is opposite to 
that shown on the kinematic diagram.

Scalar Analysis
Kinematic Diagram.

	 •	 If the acceleration equation is applied in scalar form, then the 
magnitudes and directions of the relative-acceleration components 
(aB>A)t and (aB>A)n must be established. To do this draw a kinematic 
diagram such as shown in Fig. 16–24c. Since the body is considered 
to be momentarily “pinned” at the base point A, the magnitudes 
of these components are (aB>A)t = arB>A and (aB>A)n = v2rB>A . 
Their sense of direction is established from the diagram such that 
(aB>A)t acts perpendicular to rB>A , in accordance with the rotational 
motion A of the body, and (aB>A)n is directed from B toward A.* 

Acceleration Equation.
	 •	 Represent the vectors in aB = aA + (aB>A)t + (aB>A)n graphically 

by showing their magnitudes and directions underneath each 
term. The scalar equations are determined from the x and y 
components of these vectors.

*The notation aB = aA + (aB>A(pin))t + (aB>A(pin))n may be helpful in recalling that A 
is assumed to be pinned.

A

C

B

(aA)n

(aA)t

aB

V, A

The mechanism for a window is shown. Here 
CA rotates about a fixed axis through C, and 
AB undergoes general plane motion. Since 
point A moves along a curved path it has two 
components of acceleration, whereas point B 
moves along a straight track and the direction 
of its acceleration is specified. (© R.C. Hibbeler)
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The rod AB shown in Fig. 16–27a is confined to move along 
the inclined planes at A and B. If point A has an acceleration 
of 3 m>s2 and a velocity of 2 m>s, both directed down the 
plane at the instant the rod is horizontal, determine the 
angular acceleration of the rod at this instant.

Solution I (Vector Analysis)
We will apply the acceleration equation to points A and B on 
the rod. To do so it is first necessary to determine the angular 
velocity of the rod. Show that it is v = 0.283 rad>sd using 
either the velocity equation or the method of instantaneous 
centers.

Kinematic Diagram.  Since points A and B both move 
along straight-line paths, they have no components of 
acceleration normal to the paths. There are two unknowns in 
Fig. 16–27b, namely, aB and a.

Acceleration Equation.

	 aB = aA + A * rB>A - v2rB>A

Example   16.13

10 m

BA

(a)

vA � 2 m/s
aA � 3 m/s2

45� 45�

x

y

A B

45�

45�

aA � 3 m/s2

rB/A

v � 0.283 rad/s

aB

(b)

A

aB cos 45�i + aB sin 45�j = 3 cos 45�i - 3 sin 45�j + (ak) * (10i) - (0.283)2(10i)

Carrying out the cross product and equating the i and j components 
yields

	  aB cos 45� = 3 cos 45� - (0.283)2(10)� (1)

	  aB sin 45� = -3 sin 45� + a(10) � (2)

Solving, we have

 aB = 1.87 m>s2a45�

	  a = 0.344 rad>s2 d� Ans.

Solution II (Scalar Analysis)
From the kinematic diagram, showing the relative-acceleration 
components (aB>A)t and (aB>A)n , Fig. 16–27c, we have

 aB = aA + (aB>A)t + (aB>A)n

c aB

a45�
d =  c3 m>s2

c45�
d + ca(10 m)

c
d + c (0.283 rad>s)2(10 m)

d
d

Equating the x and y components yields Eqs. 1 and 2, and the solution 
proceeds as before.

A B

10 m

rB/A

(aB/A)t � a rB/A

(aB/A)n � v2 rB/A

v � 0.283 rad/s

(c)

A

Fig. 16–27 
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G

(c)

A

rA/G(aA/G)y

(aA/G)x

v � 6 rad/s
 a � 4 rad/s2

Fig. 16–28

Example   16.14

The disk rolls without slipping and has the angular motion shown in 
Fig. 16–28a. Determine the acceleration of point A at this instant.

Solution I (Vector Analysis)
Kinematic Diagram.  Since no slipping occurs, applying Eq. 16–20,

aG = ar = (4 rad>s2)(0.5 ft) = 2 ft>s2

Acceleration Equation.
We will apply the acceleration equation to points G and A, Fig. 16–28b,

	  aA = aG + A : rA>G - v2rA>G
 aA = -2i + (4k) : (-0.5j) - (6)2(-0.5j)

 = {18j} ft>s2

Solution II (Scalar Analysis)
Using the result for aG = 2 ft>s2 determined above, and from the 
kinematic diagram, showing the relative motion aA>G, Fig. 16–28c, 
we have

	 aA = aG + (aA>G)x + (aA>G)y

c (aA)x

S
d + c (aA)y

c
d = c 2 ft>s2

d
d + c (4 rad>s2)(0.5 ft)

S
d + c (6 rad>s)2(0.5 ft)

c
d

S+ 	  (aA)x = -2 + 2 = 0

+ c 	  (aA)y = 18 ft>s2

Therefore,

	  aA = 2(0)2 + (18 ft>s2)2 = 18 ft>s2� Ans.

Note: The fact that aA = 18 ft>s2 indicates that the instantaneous 
center of zero velocity, point A, is not a point of zero acceleration.

A

G

(a)

v � 6 rad/s
 a � 4 rad/s2

0.5 ft

G

(b)

A

rA/G

(aA)y

(aA)x

v � 6 rad/s
 a � 4 rad/s2

 2 ft/s2
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Example   16.15

The spool shown in Fig. 16–29a unravels from the cord, such that at 
the instant shown it has an angular velocity of 3 rad>s and an angular 
acceleration of 4 rad>s2. Determine the acceleration of point B.

Solution I (Vector Analysis)
The spool “appears” to be rolling downward without slipping at  
point A. Therefore, we can use the results of Eq. 16–20 to determine 
the acceleration of point G, i.e.,

	 aG = ar = (4 rad>s2)(0.5 ft) = 2 ft>s2

We will apply the acceleration equation to points G and B.

Kinematic Diagram.  Point B moves along a curved path having an 
unknown radius of curvature.* Its acceleration will be represented by 
its unknown x and y components as shown in Fig. 16–29b.

Acceleration Equation.
	  aB = aG + A * rB>G - v2rB>G

	  (aB)xi + (aB)y j = -2j + (-4k) * (0.75j) - (3)2(0.75j)

Equating the i and j terms, the component equations are

	  (aB)x = 4(0.75) = 3 ft>s2 S � (1)

	  (aB)y = -2 - 6.75 = -8.75 ft>s2 = 8.75 ft>s2 T � (2)

The magnitude and direction of aB are therefore

	  aB = 2(3)2 + (8.75)2 = 9.25 ft>s2� Ans.

	  u = tan-1 
8.75

3
= 71.1�  c � Ans.

Solution II (Scalar Analysis)
This problem may be solved by writing the scalar component equations 
directly. The kinematic diagram in Fig. 16–29c shows the relative-
acceleration components (aB>G)t and (aB>G)n . Thus,

	 aB = aG + (aB>G)t + (aB>G)n

c (aB)x

S
d + c (aB)y

c
d

	 = c 2 ft>s2

T
d + c 4 rad>s2 (0.75 ft)

S
d + c (3 rad>s)2(0.75 ft)

T
d

The x and y components yield Eqs. 1 and 2 above.

v � 3 rad/s
a � 4 rad/s2

(a)

B

A G

0.5 ft
0.75 ft

(b)

aG � 2 ft/s2

x

y

rB/G

(aB)x

(aB)y

v � 3 rad/s
a � 4 rad/s2

(c)

rB/G � 0.75 ft

G

B (aB/G)t  � arB/G

(aB/G)n  � v2rB/G

v � 3 rad/s
a � 4 rad/s2

Fig. 16–29 

*Realize that the path’s radius of curvature r is not equal to the radius of the spool 
since the spool is not rotating about point G. Furthermore, r is not defined as the distance 
from A (IC) to B, since the location of the IC depends only on the velocity of a point and 
not the geometry of its path.
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Example   16.16

The collar C in Fig. 16–30a moves downward with an acceleration of 
1 m>s2. At the instant shown, it has a speed of 2 m>s which gives 
links CB and AB an angular velocity vAB = vCB = 10 rad>s. (See 
Example 16.8.) Determine the angular accelerations of CB and AB 
at this instant.

(b)

C
A

B

0.2 m

0.2 m

vAB � 10 rad/s 

vCB �
 10 rad/s 

aC � 1 m/s2

x

y

rB/C
rB

ACB
AAB

Fig. 16–30 

vC � 2 m/s

(a)

C
A

B

0.2 m

0.2 m

10 rad/s
vCB �

AB �10 rad/s  

aC � 1 m/s2

v

Solution (Vector Analysis)
Kinematic Diagram.  The kinematic diagrams of both links AB and 
CB are shown in Fig. 16–30b. To solve, we will apply the appropriate 
kinematic equation to each link.

Acceleration Equation.
Link AB (rotation about a fixed axis):

	  aB = AAB * rB - vAB
2 rB

	  aB = (aABk) * (-0.2j) - (10)2(-0.2j)

	  aB = 0.2aABi + 20j

Note that aB has n and t components since it moves along a circular path. 

Link BC (general plane motion): Using the result for aB and applying 
Eq. 16–18, we have

	  aB = aC + ACB * rB>C - vCB
2 rB>C

	  0.2aABi + 20j = -1j + (aCBk) * (0.2i - 0.2j) - (10)2(0.2i - 0.2j)

	  0.2aABi + 20j = -1j + 0.2aCB j + 0.2aCBi - 20i + 20j

Thus,
	  0.2aAB = 0.2aCB - 20

	  20 = -1 + 0.2aCB + 20

Solving,
	  aCB = 5 rad>s2 d 	 Ans.

	  aAB = -95 rad>s2 = 95 rad>s2 b	 Ans.
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Example   16.17

The crankshaft AB turns with a clockwise angular acceleration of 
20 rad>s2, Fig. 16–31a. Determine the acceleration of the piston at the 
instant AB is in the position shown. At this instant vAB = 10 rad>s and 
vBC = 2.43 rad>s. (See Example 16.12.)

Solution (Vector Analysis)
Kinematic Diagram.  The kinematic diagrams for both AB and BC 
are shown in Fig. 16–31b. Here aC is vertical since C moves along a 
straight-line path.

Acceleration Equation.  Expressing each of the position vectors in 
Cartesian vector form

 rB = 5-0.25 sin 45�i + 0.25 cos 45�j6  ft = 5-0.177i + 0.177j6  ft

 rC>B = 50.75 sin 13.6�i + 0.75 cos 13.6�j6  ft = 50.177i + 0.729j6  ft

Crankshaft AB (rotation about a fixed axis):

	  aB = AAB * rB - vAB
2 rB

	  = (-20k) * (-0.177i + 0.177j) - (10)2(-0.177i + 0.177j)

	  = 521.21i - 14.14j6  ft>s2

Connecting Rod BC (general plane motion): Using the result for aB 
and noting that aC is in the vertical direction, we have

 aC = aB + ABC * rC>B - vBC
2 rC>B

13.6�

45�

(a)

B

A

C

0.75 ft

0.25 ft

vBC � 2.43 rad/s

vAB � 10 rad/s
aAB � 20 rad/s2

13.6�

45�

(b)

B

A

C

0.75 cos 13.6� ft

x

y

0.25 cos 45� ft rB

rC/B

aC

vBC � 2.43 rad/s

vAB � 10 rad/s
aAB � 20 rad/s2

aBC

Fig. 16–31 

 aCj = 21.21i - 14.14j + (aBCk) * (0.177i + 0.729j) - (2.43)2(0.177i + 0.729j)	

 aCj = 21.21i - 14.14j + 0.177aBC j - 0.729aBCi - 1.04i - 4.30j

	  0 = 20.17 - 0.729aBC

	  aC = 0.177aBC - 18.45

Solving yields

 aBC = 27.7 rad>s2 d

	  aC = -13.5 ft>s2 � Ans.

Note: Since the piston is moving upward, the negative sign for aC 
indicates that the piston is decelerating, i.e., aC = 5-13.5j6  ft>s2. This 
causes the speed of the piston to decrease until AB becomes vertical, 
at which time the piston is momentarily at rest.
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Preliminary Problem

P16–3.   Set up the relative acceleration equation between 
points A and B. The angular velocity is given.

45�

A

v � 2.12 rad/s

3 m

3 m/s

2 m/s2

2 m

(a)

B

45�

A

v � 4 rad/s

a � 2 rad/s2
2 m

(b)

B

No slipping

4 m

2 m

1 m

A B

6 rad/s

3 rad/s
2 rad/s2

v � 0

2 m

v � 3 rad/s

6 m/s2

A
B

60�

2 m

A

4 rad/s
8 rad/s2

(e)

B 30�

v � 1.15 rad/s

0.5 m

(f)

v � 4 rad/s

a � 2 rad/s2

0.5 m
A

B

Prob. P16–3

(d)

(c)
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Fundamental Problems

F16–19.  At the instant shown, end A of the rod has the 
velocity and acceleration shown. Determine the angular 
acceleration of the rod and acceleration of end B of the rod. 

F16–22.  At the instant shown, cable AB has a velocity of 
3 m>s and acceleration of 1.5 m>s2, while the gear rack has a 
velocity of 1.5 m>s and acceleration of 0.75 m>s2. Determine 
the angular acceleration of the gear at this instant. 

B

C

0.3 m
0.2 m

O

A

vB � 3 m/s
aB � 1.5 m/s2

vC � 1.5 m/s
aC � 0.75 m/s2

Prob. F16–22 

F16–23.  At the instant shown, the wheel rotates with an 
angular velocity of v = 12 rad>s and an angular acceleration 
of a = 6 rad>s2. Determine the angular acceleration of  
link BC at the instant shown.

B

0.3 m

 v � 12 rad/s
 a � 6 rad/s2

D

C
45�

0.3 m

1.2 m

Prob. F16–23 

F16–24.  At the instant shown, wheel A rotates with an 
angular velocity of v = 6 rad>s and an angular acceleration 
of a = 3 rad>s2. Determine the angular acceleration of  
link BC and the acceleration of piston C. 

A

v � 6 rad/s

0.2 m

0.8 m

C

B

 a � 3 rad/s2

30�

Prob. F16–24 

A

5 m
4 m

B

vA � 6 m/s
aA � 5 m/s2

Prob. F16–19 

F16–20.  The gear rolls on the fixed rack with an angular 
velocity of v = 12 rad>s and angular acceleration of 
a = 6 rad>s2. Determine the acceleration of point A. 

0.3 m

O

A
 v � 12 rad/s
 a � 6 rad/s2

Prob. F16–20 

F16–21.  The gear rolls on the fixed rack B. At the instant 
shown, the center O of the gear moves with a velocity of 
vO = 6 m>s and acceleration of aO = 3 m>s2. Determine 
the angular acceleration of the gear and acceleration of 
point A at this instant. 

A

B

0.6 m 0.3 m

O
vO � 6 m/s
aO � 3 m/s2

Prob. F16–21 
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16–103.  Bar AB has the angular motions shown. Determine 
the velocity and acceleration of the slider block C at this 
instant.

1 m

0.5 m       

B

A

C

45�

60�

vAB � 4 rad/s

AB � 6 rad/s2a

Prob. 16–103

*16–104.  At a given instant the bottom A of the ladder has 
an acceleration aA = 4 ft>s2 and velocity vA = 6 ft>s, both 
acting to the left. Determine the acceleration of the top of 
the ladder, B, and the ladder’s angular acceleration at this 
same instant.

16–105.  At a given instant the top B of the ladder has an 
acceleration aB = 2 ft>s2 and a velocity of vB = 4 ft>s, both 
acting downward. Determine the acceleration of  
the bottom A of the ladder, and the ladder’s angular 
acceleration at this instant.

30�A

B
16 ft

Probs. 16–104/105

16–106.  Member AB has the angular motions shown. 
Determine the velocity and acceleration of the slider block 
C at this instant.

2 m

0.5 m

4 rad/s
5 rad/s2

A
C

B

5
3

4

Prob. 16–106

16–107.  At a given instant the roller A on the bar has the 
velocity and acceleration shown. Determine the velocity 
and acceleration of the roller B, and the bar’s angular 
velocity and angular acceleration at this instant.

A

B

0.6 m

30�  

30�

4 m/s
6 m/s2

Prob. 16–107

PROBLEMS
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16–110.  The slider block has the motion shown. Determine 
the angular velocity and angular acceleration of the wheel 
at this instant.

400 mm

A

C

B

150 mm

vB � 4 m/s 
aB � 2 m/s2 

Prob. 16–110

16–111.  At a given instant the slider block A is moving to 
the right with the motion shown. Determine the angular 
acceleration of link AB and the acceleration of point B at 
this instant.

2 m

2 m

30� A

B

vA � 4 m/s
aA � 6 m/s2

Prob. 16–111

*16–108.  The rod is confined to move along the path due 
to the pins at its ends. At the instant shown, point A has the 
motion shown. Determine the velocity and acceleration of 
point B at this instant.

3 ft

A

B

vA � 6 ft/s

aA � 3 ft/s2

5 ft

Prob. 16–108

16–109.  Member AB has the angular motions shown. 
Determine the angular velocity and angular acceleration of 
members CB and DC.

vAB � 2 rad/s

aAB � 4 rad/s2

200 mm

450 mm

60�100 mm

B

A

D

C

Prob. 16–109
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*16–112.  Determine the angular acceleration of link CD 
if link AB has the angular velocity and angular acceleration 
shown.

0.5 m
0.5 m

1 m

A

B

C

D

1 m

aAB � 6 rad/s2

vAB � 3 rad/s

Prob. 16–112

16–113.  The reel of rope has the angular motion shown. 
Determine the velocity and acceleration of point A at the 
instant shown.

16–114.  The reel of rope has the angular motion shown. 
Determine the velocity and acceleration of point B at the 
instant shown.

A

B
100 mm

C
 � 3 rad/s
 � 8 rad/s2

v
a

Probs. 16–113/114

16–115.  A cord is wrapped around the inner spool of the 
gear. If it is pulled with a constant velocity v, determine the 
velocities and accelerations of points A and B. The gear 
rolls on the fixed gear rack.

G

B

r

2r

v

A

Prob. 16–115

*16–116.  The disk has an angular acceleration a = 8 rad>s2 
and angular velocity v = 3 rad>s at the instant shown. If it 
does not slip at A, determine the acceleration of point B.

C

A

B

0.5 m
45�

45�

 � 3 rad/s
 � 8 rad/s2a
v

Prob. 16–116
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16–117.  The disk has an angular acceleration a = 8 rad>s2 
and angular velocity v = 3 rad>s at the instant shown. If it 
does not slip at A, determine the acceleration of point C.

C

A

B

0.5 m
45�

45�

 � 3 rad/s
 � 8 rad/s2a
v

Prob. 16–117

16–118.  A single pulley having both an inner and outer rim 
is pin connected to the block at A. As cord CF unwinds 
from the inner rim of the pulley with the motion shown, 
cord DE unwinds from the outer rim. Determine the 
angular acceleration of the pulley and the acceleration of 
the block at the instant shown.

E

D

C A

25 mm50 mm

F

a  � 3 m/s2
vF

F

 � 2 m/s

Prob. 16–118

16–119.  The wheel rolls without slipping such that at the 
instant shown it has an angular velocity V and angular 
acceleration A. Determine the velocity and acceleration of 
point B on the rod at this instant.

2a
a

OA

B

v, a

Prob. 16–119

*16–120.  The collar is moving downward with the motion 
shown. Determine the angular velocity and angular 
acceleration of the gear at the instant shown as it rolls along 
the fixed gear rack.

O

200 mm

60�

500 mmA v � 2 m/s
a � 3 m/s2

B 

150 mm

Prob. 16–120
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16–121.  The tied crank and gear mechanism gives rocking 
motion to crank AC, necessary for the operation of a 
printing press. If link DE has the angular motion shown, 
determine the respective angular velocities of gear F and 
crank AC at this instant, and the angular acceleration of 
crank AC.

100 mm

100 mm

75 mm

A

B

G

F

C

D
E

50 mm

150 mm

30�

vDE � 4 rad/s

aDE � 20 rad/s2

Prob. 16–121

16–122.  If member AB has the angular motion shown, 
determine the angular velocity and angular acceleration of 
member CD at the instant shown.

u

vAB � 3 rad/s
aAB � 8 rad/s2 

300 mm

200 mm

A B

D

C
 � 60�

500 mm

Prob. 16–122

16–123.  If member AB has the angular motion shown, 
determine the velocity and acceleration of point C at the 
instant shown.

u

vAB � 3 rad/s
aAB � 8 rad/s2 

300 mm

200 mm

A B

D

C
 � 60�

500 mm

Prob. 16–123

*16–124.  The disk rolls without slipping such that it has an 
angular acceleration of a = 4 rad>s2 and angular velocity of 
v = 2 rad>s at the instant shown. Determine the 
acceleration of points A and B on the link and the link’s 
angular acceleration at this instant. Assume point A lies on 
the periphery of the disk, 150 mm from C.

v � 2 rad/s
a � 4 rad/s2

500 mm

400 mm

150 mm
C

B

A

Prob. 16–124
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16–125.  The ends of the bar AB are confined to move 
along the paths shown. At a given instant, A has a velocity 
of vA = 4 ft>s and an acceleration of aA = 7 ft>s2. 
Determine the angular velocity and angular acceleration  
of AB at this instant.

2 ft

2 ft
60�

A

B

vA � 4 ft/s
aA � 7 ft/s2

Prob. 16–125

16–126.  The mechanism produces intermittent motion of 
link AB. If the sprocket S is turning with an angular 
acceleration aS = 2 rad>s2 and has an angular velocity  
vS = 6 rad>s at the instant shown, determine the angular 
velocity and angular acceleration of link AB at this instant. 
The sprocket S is mounted on a shaft which is separate from 
a collinear shaft attached to AB at A. The pin at C is 
attached to one of the chain links such that it moves 
vertically downward.

15�30�

200 mm

150 mm

175 mm

A

B

CS

D

50 mm

vS � 6 rad/s

aS � 2 rad/s2

Prob. 16–126

16–127.  The slider block moves with a velocity of 
vB = 5 ft>s and an acceleration of aB = 3 ft>s2. Determine 
the angular acceleration of rod AB at the instant shown.

B

vB � 5 ft/s
aB � 3 ft/s2

A

1.5 ft

2 ft

30�

Prob. 16–127

*16–128.  The slider block moves with a velocity of 
vB = 5 ft>s and an acceleration of aB = 3 ft>s2. Determine 
the acceleration of A at the instant shown.

B

vB � 5 ft/s
aB � 3 ft/s2

A

1.5 ft

2 ft

30�

Prob. 16–128
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*The more general, three-dimensional motion of the points is developed in Sec. 20.4.

Y

X

y
x

A

B

rB

rA

yB

xB

rB/A

(a)

�
� .

Fig. 16–32 

16.8  �Relative-Motion Analysis using 
Rotating Axes

In the previous sections the relative-motion analysis for velocity and 
acceleration was described using a translating coordinate system. This 
type of analysis is useful for determining the motion of points on the 
same rigid body, or the motion of points located on several pin-connected 
bodies. In some problems, however, rigid bodies (mechanisms) are 
constructed such that sliding will occur at their connections. The 
kinematic analysis for such cases is best performed if the motion is 
analyzed using a coordinate system which both translates and rotates. 
Furthermore, this frame of reference is useful for analyzing the motions 
of two points on a mechanism which are not located in the same body 
and for specifying the kinematics of particle motion when the particle 
moves along a rotating path.

In the following analysis two equations will be developed which relate 
the velocity and acceleration of two points, one of which is the origin of a 
moving frame of reference subjected to both a translation and a rotation 
in the plane.*

Position.  Consider the two points A and B shown in Fig. 16–32a. 
Their location is specified by the position vectors rA and rB , which are 
measured with respect to the fixed X, Y, Z coordinate system. As shown 
in the figure, the “base point” A represents the origin of the x, y, z 
coordinate system, which is assumed to be both translating and rotating 
with respect to the X, Y, Z system. The position of B with respect to A is 
specified by the relative-position vector rB>A . The components of this 
vector may be expressed either in terms of unit vectors along the X, Y 
axes, i.e., I and J, or by unit vectors along the x, y axes, i.e., i and j. For 
the development which follows, rB>A will be measured with respect to 
the moving x, y frame of reference. Thus, if B has coordinates (xB , yB), 
Fig. 16–32a, then

rB>A = xBi + yBj

Using vector addition, the three position vectors in Fig. 16–32a are 
related by the equation

	 rB = rA + rB>A 	 (16–21)

At the instant considered, point A has a velocity vA and an acceleration 
aA , while the angular velocity and angular acceleration of the x, y axes 
are � (omega) and �

#
= d� >dt, respectively.



390 	 Chapter 16  P  lanar Kinematics of a Rig id Body

16

Velocity.  The velocity of point B is determined by taking the time 
derivative of Eq. 16–21, which yields

	 vB = vA +
drB>A

dt
	 (16–22)

The last term in this equation is evaluated as follows:

	  
drB>A

dt
=

d

dt
 (xBi + yB j)

	  =
dxB

dt
 i + xB 

di
dt

+
dyB

dt
 j + yB 

dj

dt

	  = a dxB

dt
 i +

dyB

dt
 jb + axB 

di
dt

+ yB 
dj

dt
b 	 (16–23)

The two terms in the first set of parentheses represent the components 
of velocity of point B as measured by an observer attached to the 
moving x, y, z coordinate system. These terms will be denoted by vector 
(vB>A)xyz . In the second set of parentheses the instantaneous time rate 
of change of the unit vectors i and j is measured by an observer located 
in the fixed X, Y, Z coordinate system. These changes, di and dj, are due 
only to the rotation du of the x, y, z axes, causing i to become i� = i + di 
and j to become j� = j + dj, Fig. 16–32b. As shown, the magnitudes of 
both di and dj equal 1 du, since i = i� = j = j� = 1. The direction of di 
is defined by +j, since di is tangent to the path described by the 
arrowhead of i in the limit as �t S dt. Likewise, dj acts in the - i 
direction, Fig. 16–32b. Hence,

di
dt

=
du

dt
 (j) = �j  

dj

dt
=

du

dt
 (- i) = - �i

Viewing the axes in three dimensions, Fig. 16–32c, and noting that 
� = �k, we can express the above derivatives in terms of the cross 
product as

	
di
dt

= � * i  
dj

dt
= � * j	 (16–24)

Substituting these results into Eq. 16–23 and using the distributive 
property of the vector cross product, we obtain

drB>A
dt

= (vB>A)xyz + � * (xBi + yB j) = (vB>A)xyz + � * rB>A	 (16–25)

j
j¿

x

y

djdu

j � 1 i � 1

du
i¿ di

(b)

i

�

x

z

y
j

k
i

(c)

�

Fig. 16–32 (cont.) 
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Hence, Eq. 16–22 becomes

	 vB = vA + � * rB>A + (vB>A)xyz 	 (16–26)

where

	  vB = velocity of B, measured from the X, Y, Z reference

	  vA = �velocity of the origin A of the x, y, z reference, measured 
from the X, Y, Z reference

	 (vB>A)xyz = �velocity of “B with respect to A,” as measured by an 
observer attached to the rotating x, y, z reference

	  � = �angular velocity of the x, y, z reference, measured from the 
X, Y, Z reference

	  rB>A = position of B with respect to A

Comparing Eq. 16–26 with Eq. 16–16 (vB = vA + � * rB>A), which is 
valid for a translating frame of reference, it can be seen that the only 
difference between these two equations is represented by the  
term (vB>A)xyz .

When applying Eq. 16–26 it is often useful to understand what each of 
the terms represents. In order of appearance, they are as follows:

vB	 e absolute velocity of B
	 fmotion of B observed

from the X, Y, Z frame
 

(equals) 

vA	 e absolute velocity of the 

origin of x, y, z frame
 	

(plus)	

� * rB>A	 e angular velocity effect caused

by rotation of x, y, z frame
 	

(plus) 

(vB>A)xyz	 evelocity of B

with respect to A
	 fmotion of B observed

from the x, y, z frame

ymotion of x, y, z frame

observed from the

X, Y, Z frame
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Acceleration.  The acceleration of B, observed from the X, Y, Z 
coordinate system, may be expressed in terms of its motion measured 
with respect to the rotating system of coordinates by taking the time 
derivative of Eq. 16–26.

	
dvB

dt
=

dvA

dt
+

d�

dt
* rB>A + � *

drB>A
dt

+
d(vB>A)xyz

dt

	 aB = aA + �
#

* rB>A + � *
drB>A

dt
+

d(vB>A)xyz

dt
	 (16–27)

Here �
#

= d� >dt is the angular acceleration of the x, y, z coordinate 
system. Since � is always perpendicular to the plane of motion, then �

#
  

measures only the change in magnitude of �. The derivative drB>A>dt is 
defined by Eq. 16–25, so that

	 � *
drB>A

dt
= � * (vB>A)xyz + � * (� * rB>A)	 (16–28)

Finding the time derivative of (vB>A)xyz = (vB>A)xi + (vB>A)y j,

d(vB>A)xyz

dt
= c

d(vB>A)x

dt
 i +

d(vB>A)y

dt
 j d + c (vB>A)x 

di
dt

+ (vB>A)y 
dj

dt
d

The two terms in the first set of brackets represent the components of 
acceleration of point B as measured by an observer attached to the 
rotating coordinate system. These terms will be denoted by (aB>A)xyz . The 
terms in the second set of brackets can be simplified using Eqs. 16–24.

d(vB>A)xyz

dt
= (aB>A)xyz + � * (vB>A)xyz

Substituting this and Eq. 16–28 into Eq. 16–27 and rearranging terms,

aB = aA + �
#

* rB>A + � * (� * rB>A) + 2� * (vB>A)xyz + (aB>A)xyz

� (16–29)

where

 aB = �acceleration of B, measured from the X, Y, Z 
reference

 aA = �acceleration of the origin A of the x, y, z reference, 
measured from the X, Y, Z reference

 (aB>A)xyz , (vB>A)xyz = �acceleration and velocity of B with respect to A, as 
measured by an observer attached to the rotating x, 
y, z reference

 �
#

, � = �angular acceleration and angular velocity of the  
x, y, z reference, measured from the X, Y, Z reference

 rB>A = position of B with respect to A
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If Eq. 16–29 is compared with Eq. 16–18, written in the form 
aB = aA + �

#
* rB>A + � * (� * rB>A), which is valid for a translating 

frame of reference, it can be seen that the difference between these two 
equations is represented by the terms 2� * (vB>A)xyz and (aB>A)xyz . In 
particular, 2� * (vB>A)xyz is called the Coriolis acceleration, named after 
the French engineer G. C. Coriolis, who was the first to determine it. This 
term represents the difference in the acceleration of B as measured from 
nonrotating and rotating x, y, z axes. As indicated by the vector cross 
product, the Coriolis acceleration will always be perpendicular to both � 
and (vB>A)xyz . It is an important component of the acceleration which must 
be considered whenever rotating reference frames are used. This often 
occurs, for example, when studying the accelerations and forces which act 
on rockets, long-range projectiles, or other bodies having motions whose 
measurements are significantly affected by the rotation of the earth.

The following interpretation of the terms in Eq. 16–29 may be useful 
when applying this equation to the solution of problems.

aB	 e absolute acceleration of B	 fmotion of B observed

from the X, Y, Z frame

	 (equals)

aA	 e absolute acceleration of the 

origin of x, y, z frame
	

	 (plus)	

�
#

* rB>A	 c angular acceleration effect

caused by rotation of x, y, z

frame

	

	 (plus)

� * (� * rB>A)	 e angular velocity effect caused

by rotation of x, y, z frame

	 (plus)

2� * (vB>A)xyz	 c combined effect of B moving

relative to x, y, z coordinates

and rotation of x, y, z frame

  s interacting motion

(plus)

(aB>A)xyz e acceleration of B with

respect to A
fmotion of B observed

from the x, y, z frame

motion of

x, y, z frame

observed from

the X, Y, Z frame

y
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Procedure for Analysis

Equations 16–26 and 16–29 can be applied to the solution of problems 
involving the planar motion of particles or rigid bodies using the 
following procedure.

Coordinate Axes.
	 •	 Choose an appropriate location for the origin and proper 

orientation of the axes for both fixed X, Y, Z and moving x, y, z 
reference frames.

	 •	 Most often solutions are easily obtained if at the instant considered:

		  1.  the origins are coincident
		  2.  the corresponding axes are collinear
		  3.  the corresponding axes are parallel

	 •	 The moving frame should be selected fixed to the body or device 
along which the relative motion occurs.

Kinematic Equations.
	 •	 After defining the origin A of the moving reference and specifying 

the moving point B, Eqs. 16–26 and 16–29 should be written in 
symbolic form

 vB = vA + � * rB>A + (vB>A)xyz

 aB = aA + �
#

* rB>A + � * (� * rB>A) + 2� * (vB>A)xyz + (aB>A)xyz

	 •	 The Cartesian components of all these vectors may be expressed 
along either the X, Y, Z axes or the x, y, z axes. The choice is 
arbitrary provided a consistent set of unit vectors is used.

	 •	 Motion of the moving reference is expressed by vA , aA , �, and 
�
#

; and motion of B with respect to the moving reference is 
expressed by rB>A , (vB>A)xyz , and (aB>A)xyz .

y

x

C

A

B
The rotation of the dumping bin of the 
truck about point C is operated by the 
extension of the hydraulic cylinder AB. 
To determine the rotation of the bin 
due to this extension, we can use the 
equations of relative motion and fix  
the x, y axes to the cylinder so that the 
relative motion of the cylinder’s 
extension occurs along the y axis. 
(© R.C. Hibbeler)
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Example   16.18

At the instant u = 60�, the rod in Fig. 16–33 has an angular velocity of 
3 rad>s and an angular acceleration of 2 rad>s2. At this same instant, 
collar C travels outward along the rod such that when x = 0.2 m the 
velocity is 2 m>s and the acceleration is 3 m>s2, both measured relative 
to the rod. Determine the Coriolis acceleration and the velocity and 
acceleration of the collar at this instant.

Solution
Coordinate Axes.  The origin of both coordinate systems is located 
at point O, Fig. 16–33. Since motion of the collar is reported relative to 
the rod, the moving x, y, z frame of reference is attached to the rod.

Kinematic Equations.
 vC = vO + � * rC>O + (vC>O)xyz� (1)

 aC = aO  

+   �
#

* rC>O  

+   � * (� * rC>O)    +   2� * (vC>O)xyz  

+   (aC>O)xyz

� (2)

It will be simpler to express the data in terms of i, j, k component 
vectors rather than I, J, K components. Hence,

Motion of  
moving reference

Motion of C with respect  
to moving reference

 vO = 0  rC>O = 50.2i6  m

 aO = 0  (vC>O)xyz = 52i6  m>s
 � = 5-3k6  rad>s  (aC>O)xyz = 53i6  m>s2

 �
#

= 5-2k6  rad>s2

The Coriolis acceleration is defined as

	 aCor = 2� * (vC>O)xyz = 2(-3k) * (2i) = 5-12j6  m>s2� Ans.

This vector is shown dashed in Fig. 16–33. If desired, it may be resolved 
into I, J components acting along the X and Y axes, respectively.

The velocity and acceleration of the collar are determined by 
substituting the data into Eqs. 1 and 2 and evaluating the cross products, 
which yields 

Y

X

y

x

x � 0.2 m

C
3 m/s2

2 m/s
aCor

30� 

2 rad/s2

3 rad/s u � 60�

O

Fig. 16–33 

 vC = vO + � * rC>O + (vC>O)xyz

 = 0 + (-3k) * (0.2i) + 2i

 = 52i - 0.6j6  m>s � Ans.

 aC = aO + �
#

* rC>O + � * (� * rC>O) + 2� * (vC>O)xyz + (aC>O)xyz

 = 0 + (-2k) * (0.2i) + (-3k) * [(-3k) * (0.2i)] + 2(-3k) * (2i) + 3i

 = 0 - 0.4j - 1.80i - 12j + 3i

 = 51.20i - 12.4j6  m>s2 � Ans.
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Example   16.19

Rod AB, shown in Fig. 16–34, rotates clockwise such that it has an 
angular velocity vAB = 3 rad>s and angular acceleration aAB = 4 rad>s2 
when u = 45�. Determine the angular motion of rod DE at this instant. 
The collar at C is pin connected to AB and slides over rod DE.

Solution
Coordinate Axes.  The origin of both the fixed and moving frames 
of reference is located at D, Fig. 16–34. Furthermore, the x, y, z reference 
is attached to and rotates with rod DE so that the relative motion of 
the collar is easy to follow.

Kinematic Equations. 
 vC = vD + � * rC>D + (vC>D)xyz� (1)

0.4 m

Y, y

X, x

B

E
VDE, ADE

0.4 m

A

u � 45�

aAB � 4 rad/s2
vAB � 3 rad/s

C

D

Fig. 16–34   aC = aD + �
#

* rC>D + � * (� * rC>D) + 2� * (vC>D)xyz + (aC>D)xyz

� (2)
All vectors will be expressed in terms of i, j, k components.

Motion of  
moving reference

Motion of C with respect  
to moving reference 

 vD = 0  rC>D = 50.4i6m
 aD = 0  (vC>D)xyz = (vC>D)xyzi
 � = -vDEk  (aC>D)xyz = (aC>D)xyzi

 �
#

= -aDEk

Motion of C:  Since the collar moves along a circular path of radius 
AC, its velocity and acceleration can be determined using Eqs. 16–9 
and 16–14.

 vC = VAB * rC>A = (-3k) * (0.4i + 0.4j) = 51.2i - 1.2j6  m>s
 aC = AAB * rC>A - vAB

2 rC>A
 = (-4k) * (0.4i + 0.4j) - (3)2(0.4i + 0.4j) = 5-2i - 5.2j6  m>s2

Substituting the data into Eqs. 1 and 2, we have

	  vC = vD + � * rC>D + (vC>D)xyz

	  1.2i - 1.2j = 0 + (-vDEk) * (0.4i) + (vC>D)xyzi
	  1.2i - 1.2j = 0 - 0.4vDE j + (vC>D)xyzi
	  (vC>D)xyz = 1.2 m>s
	  vDE = 3 rad>s b 	 Ans.

 aC = aD + �
#

* rC>D + � * (� * rC>D) + 2� * (vC>D)xyz + (aC>D)xyz

	  -2i - 5.2j = 0 + (-aDEk) * (0.4i) + (-3k) * [(-3k) * (0.4i)]

	  +  2(-3k) * (1.2i) + (aC>D)xyzi
	  -2i - 5.2j = -0.4aDE j - 3.6i - 7.2j + (aC>D)xyzi
	  (aC>D)xyz = 1.6 m>s2

	  aDE = -5 rad>s2 = 5 rad>s2d	 Ans.
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4 km

400 km

50 km/h2

700 km/h

600 km/h 100 km/h2

x, X

y, Y

rA/BA B

Fig. 16–35 

Example   16.20

Planes A and B fly at the same elevation and have the motions shown 
in Fig. 16–35. Determine the velocity and acceleration of A as 
measured by the pilot of B.

Solution
Coordinate Axes.  Since the relative motion of A with respect to 
the pilot in B is being sought, the x, y, z axes are attached to plane B, 
Fig. 16–35. At the instant considered, the origin B coincides with the 
origin of the fixed X, Y, Z frame.

Kinematic Equations.
 vA = vB + � * rA>B + (vA>B)xyz� (1)

 aA = aB + �
#

* rA>B + � * (� * rA>B) + 2� * (vA>B)xyz + (aA>B)xyz 
� (2)

Motion of Moving Reference:
 vB = 5600j6  km>h

 (aB)n =
vB

2

r
=

(600)2

400
= 900 km>h2

 aB = (aB)n + (aB)t = 5900i - 100j6  km>h2

 � =
vB

r
=

600 km>h
400 km

= 1.5 rad>h b	  � = 5-1.5k6  rad>h

 �
#

=
(aB)t

r
=

100 km>h2

400 km
= 0.25 rad>h2d	  �

#
= 50.25k6  rad>h2

Motion of A with Respect to Moving Reference:

	 rA>B = 5-4i6  km (vA>B)xyz = ? (aA>B)xyz = ?

Substituting the data into Eqs. 1 and 2, realizing that vA = 5700j6km>h 
and aA = 550j6  km>h2, we have

	  vA = vB + � * rA>B + (vA>B)xyz

	  700j = 600j + (-1.5k) * (-4i) + (vA>B)xyz

	  (vA>B)xyz = 594j6  km>h 	 Ans.

 aA = aB + �
#

* rA>B + � * (� * rA>B) + 2� * (vA>B)xyz + (aA>B)xyz

 50j = (900i - 100j) + (0.25k) * (-4i)

   + (-1.5k) * [(-1.5k) * (-4i)] + 2(-1.5k) * (94j) + (aA>B)xyz

 (aA>B)xyz = 5-1191i + 151j6  km>h2	 Ans.

Note: The solution of this problem should be compared with that of 
Example 12.26, where it is seen that (vB>A)xyz � (vA>B)xyz and 
(aB>A)xyz � (aA>B)xyz.
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16–129.  At the instant shown, ball B is rolling along the slot 
in the disk with a velocity of 600 mm>s and an acceleration of 
150 mm>s2, both measured relative to the disk and directed 
away from O. If at the same instant the disk has the angular 
velocity and angular acceleration shown, determine the 
velocity and acceleration of the ball at this instant.

yx

z
v � 6 rad/s
a � 3 rad/s2

0.4 m

0.8 m
B

O

Prob. 16–129

16–130.  The crane’s telescopic boom rotates with the 
angular velocity and angular acceleration shown. At the 
same instant, the boom is extending with a constant speed 
of 0.5 ft>s, measured relative to the boom. Determine the 
magnitudes of the velocity and acceleration of point B at 
this instant.

B

A30�

60 ft

vAB � 0.02 rad/s
aAB � 0.01 rad/s2

Prob. 16–130

16–131.  While the swing bridge is closing with a constant 
rotation of 0.5 rad>s, a man runs along the roadway at a 
constant speed of 5 ft>s relative to the roadway. Determine 
his velocity and acceleration at the instant d = 15 ft.

d
z

x y

O

v � 0.5 rad/s

Prob. 16–131

*16–132.  While the swing bridge is closing with a constant 
rotation of 0.5 rad>s, a man runs along the roadway such 
that when d = 10 ft he is running outward from the center 
at 5 ft>s with an acceleration of 2 ft>s2, both measured 
relative to the roadway. Determine his velocity and 
acceleration at this instant.

d
z

x y

O

v � 0.5 rad/s

Prob. 16–132

PROBLEMS
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16–133.  Water leaves the impeller of the centrifugal pump 
with a velocity of 25 m>s and acceleration of 30 m>s2, both 
measured relative to the impeller along the blade line AB. 
Determine the velocity and acceleration of a water particle at 
A as it leaves the impeller at the instant shown. The impeller 
rotates with a constant angular velocity of v = 15 rad>s.

v � 15 rad/s

B

A

0.3 m

y

x

30�

Prob. 16–133

16–134.  Block A, which is attached to a cord, moves along 
the slot of a horizontal forked rod. At the instant shown, the 
cord is pulled down through the hole at O with an 
acceleration of 4 m>s2 and its velocity is 2 m>s. Determine 
the acceleration of the block at this instant. The rod rotates 
about O with a constant angular velocity v = 4 rad>s.

O

100 mm

A

y x

v

Prob. 16–134

16–135.  Rod AB rotates counterclockwise with a constant 
angular velocity v = 3 rad>s. Determine the velocity of 
point C located on the double collar when u = 30°. The 
collar consists of two pin-connected slider blocks which are 
constrained to move along the circular path and the rod AB.

*16–136.  Rod AB rotates counterclockwise with a constant 
angular velocity v = 3 rad>s. Determine the velocity and 
acceleration of point C located on the double collar when  
u = 45°. The collar consists of two pin-connected slider 
blocks which are constrained to move along the circular 
path and the rod AB.

BC

0.4 m

A

v = 3 rad/s
u

Probs. 16–135/136

16–137.  Particles B and A move along the parabolic and 
circular paths, respectively. If B has a velocity of 7 m>s in 
the direction shown and its speed is increasing at 4 m>s2, 
while A has a velocity of 8 m>s in the direction shown and 
its speed is decreasing at 6 m>s2, determine the relative 
velocity and relative acceleration of B with respect to A.

A

B
x

y

1 m

2 m

vB � 7 m/s

vA � 8 m/s

y � x2

Prob. 16–137
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16–138.  Collar B moves to the left with a speed of 5 m>s, 
which is increasing at a constant rate of 1.5 m>s2, relative to 
the hoop, while the hoop rotates with the angular velocity 
and angular acceleration shown. Determine the magnitudes 
of the velocity and acceleration of the collar at this instant.

A

B

200 mm

450 mm

v � 6 rad/s
a � 3 rad/s2

Prob. 16–138

16–139.  Block D of the mechanism is confined to move 
within the slot of member CB. If link AD is rotating at a 
constant rate of vAD = 4 rad>s, determine the angular velocity 
and angular acceleration of member CB at the instant shown.

30�

D

A

B

300 mm

200 mm

C

vAD � 4 rad/s

Prob. 16–139

*16–140.  At the instant shown rod AB has an angular 
velocity vAB = 4 rad>s and an angular acceleration 
aAB = 2 rad>s2. Determine the angular velocity and angular 
acceleration of rod CD at this instant. The collar at C is pin 
connected to CD and slides freely along AB.

B

v

a

D

A

C

0.5 m60�

AB � 4 rad/s
AB � 2 rad/s2

0.75 m

Prob. 16–140

16–141.  The collar C is pinned to rod CD while it slides on 
rod AB. If rod AB has an angular velocity of 2 rad>s  
and an angular acceleration of 8 rad>s2, both acting 
counterclockwise, determine the angular velocity and the 
angular acceleration of rod CD at the instant shown.

D

A

B

C

1 m

60�

1.5 m

vAB � 2 rad/s
aAB � 8 rad/s2

Prob. 16–141

16–142.  At the instant shown, the robotic arm AB is 
rotating counterclockwise at v = 5 rad>s and has an angular 
acceleration a = 2 rad>s2. Simultaneously, the grip BC is 
rotating counterclockwise at v� = 6 rad>s and a� = 2 rad>s2, 
both measured relative to a fixed reference. Determine the 
velocity and acceleration of the object held at the grip C.

15�

30� 

125 mm

300 mm
B

v¿, a¿

v, a

y

x

C

A

Prob. 16–142

16–143.  Peg B on the gear slides freely along the slot in 
link AB. If the gear’s center O moves with the velocity and 
acceleration shown, determine the angular velocity and 
angular acceleration of the link at this instant.

vO � 3 m/s
aO � 1.5 m/s2

A

O

B

600 mm

150 mm

150 mm

Prob. 16–143
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*16–144.  The cars on the amusement-park ride rotate around 
the axle at A with a constant angular velocity vA>f = 2 rad>s, 
measured relative to the frame AB. At the same time the frame 
rotates around the main axle support  at B with a constant 
angular velocity vf = 1 rad>s. Determine the velocity and 
acceleration of the passenger at C at the instant shown.

D

C

8 ft
8 ft

vf � 1 rad/s

vA/f � 2 rad/s
15 ft

A

B
30�

x

y

Prob. 16–144

16–145.  A ride in an amusement park consists of a rotating 
arm AB having a constant angular velocity vAB = 2 rad>s 
point A and a car mounted at the end of the arm which has 
a constant angular velocity V� = {−0.5k} rad>s, measured 
relative to the arm. At the instant shown, determine the 
velocity and acceleration of the passenger at C.

16–146.  A ride in an amusement park consists of a rotating 
arm AB that has an angular acceleration of aAB = 1 rad>s2 
when vAB = 2 rad>s at the instant shown. Also at this instant 
the car mounted at the end of the arm has an angular 
acceleration of A = {−0.6k} rad>s2 and angular velocity of V�

= {−0.5k} rad>s, measured relative to the arm. Determine 
the velocity and acceleration of the passenger C at this instant.

60�

30�

B

C

A
x

y 2 ft
10 ft

vAB � 2 rad/s

v¿ � 0.5 rad/s

Probs. 16–145/146

16–147.  If the slider block C is fixed to the disk that has a 
constant counterclockwise angular velocity of 4 rad>s, 
determine the angular velocity and angular acceleration of 
the slotted arm AB at the instant shown.

180 mm

A

B
40 mm

60�

C 60 mm

v � 4 rad/s30�

Prob. 16–147

*16–148.  At the instant shown, car A travels with a speed 
of 25 m>s, which is decreasing at a constant rate of 2 m>s2, 
while car C travels with a speed of 15 m>s, which is increasing 
at a constant rate of 3 m>s. Determine the velocity and 
acceleration of car A with respect to car C.

 250 m

15 m/s
2 m/s2

200 m

A

B

15 m/s
3 m/s2

25 m/s

2 m/s2

C

45�

Prob. 16–148
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16–149.  At the instant shown, car B travels with a speed of 
15 m>s, which is increasing at a constant rate of 2 m>s2, 
while car C travels with a speed of 15 m>s, which is increasing 
at a constant rate of 3 m>s2. Determine the velocity and 
acceleration of car B with respect to car C.

 250 m

15 m/s
2 m/s2

200 m

A

B

15 m/s
3 m/s2

25 m/s

2 m/s2

C

45�

Prob. 16–149

16–150.  The two-link mechanism serves to amplify angular 
motion. Link AB has a pin at B which is confined to move 
within the slot of link CD. If at the instant shown, AB (input) 
has an angular velocity of vAB = 2.5 rad>s, determine the 
angular velocity of CD (output) at this instant.

vAB � 2.5 rad/s

45�

150 mm

C

A

B

D

30�

Prob. 16–150

16–151.  The disk rotates with the angular motion shown. 
Determine the angular velocity and angular acceleration of 
the slotted link AC at this instant. The peg at B is fixed to 
the disk.

A

C

v � 6 rad/s
a � 10 rad/s2

30�

30�

0.3 m

0.75 m

B

Prob. 16–151

*16–152.  The Geneva mechanism is used in a packaging 
system to convert constant angular motion into intermittent 
angular motion. The star wheel A makes one sixth of a 
revolution for each full revolution of the driving wheel B 
and the attached guide C. To do this, pin P, which is attached 
to B, slides into one of the radial slots of A, thereby turning 
wheel A, and then exits the slot. If B has a constant angular 
velocity of vB = 4 rad>s, determine VA and AA of wheel A 
at the instant shown.

A

vB

B
C

P

4 in.

u � 30�

       � 4 rad/s

Prob. 16–152
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C16–4.  If the tires do not slip on the pavement, determine 
the points on the tire that have a maximum and minimum 
speed and the points that have a maximum and minimum 
acceleration. Use appropriate numerical values for the car’s 
speed and tire size to explain your result.

A

B

C

u

Prob. C16–3 (© R.C. Hibbeler) 

A

BC

D
E

u

Prob. C16–2 (© R.C. Hibbeler) 

C16–2.  The crank AB turns counterclockwise at a 
constant rate V causing the connecting arm CD and 
rocking beam DE to move. Draw a sketch showing the 
location of the IC for the connecting arm when 
u = 0�, 90�, 180�, and 270�. Also, how was the curvature of 
the head at E determined, and why is it curved in this way?

A

Prob. C16–1 (© R.C. Hibbeler) 

C16–3.  The bi-fold hangar door is opened by cables that 
move upward at a constant speed of 0.5 m>s. Determine the 
angular velocity of BC and the angular velocity of AB  
when u = 45�. Panel BC is pinned at C and has a height 
which is the same as the height of BA. Use appropriate 
numerical values to explain your result.

C16–1.  An electric motor turns the tire at A at a constant 
angular velocity, and friction then causes the tire to roll 
without slipping on the inside rim of the Ferris wheel. Using 
appropriate numerical values, determine the magnitude of 
the velocity and acceleration of passengers in one of the 
baskets. Do passengers in the other baskets experience this 
same motion? Explain.

CONCEPTUAL PROBLEMS

Prob. C16–4 (© R.C. Hibbeler) 
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General Plane Motion

When a body undergoes general plane motion, it 
simultaneously translates and rotates. There are several 
methods for analyzing this motion.

Absolute Motion Analysis
If the motion of a point on a body or the angular motion of a 
line is known, then it may be possible to relate this motion to 
that of another point or line using an absolute motion 
analysis. To do so, linear position coordinates s or angular 
position coordinates u are established (measured from a 
fixed point or line). These position coordinates are then 
related using the geometry of the body. The time derivative 
of this equation gives the relationship between the velocities 
and/or the angular velocities. A second time derivative 
relates the accelerations and/or the angular accelerations. 

Rigid-Body Planar Motion

A rigid body undergoes three types of planar motion: 
translation, rotation about a fixed axis, and general plane 
motion. 

CHAPTER REVIEW

Path of rectilinear translation

Rotation about a fixed axis

General plane motion

Path of curvilinear translation

Translation

When a body has rectilinear translation, all the particles of 
the body travel along parallel straight-line paths. If the paths 
have the same radius of curvature, then curvilinear translation 
occurs. Provided we know the motion of one of the particles, 
then the motion of all of the others is also known. 

Rotation about a Fixed Axis

For this type of motion, all of the particles move along 
circular paths. Here, all line segments in the body undergo 
the same angular displacement, angular velocity, and 
angular acceleration.

Once the angular motion of the body is known, then the 
velocity of any particle a distance r from the axis can be 
obtained.

The acceleration of any particle has two components. The 
tangential component accounts for the change in the 
magnitude of the velocity, and the normal component 
accounts for the change in the velocity’s direction. 

 v = du>dt		   v = v0 + act

 a = dv>dt	 or	  u = u0 + v0t +
1
2 act

2

 a du = v dv		   v2 = v0
2 + 2ac(u - u0)

                                                             Constant ac

	 v = vr		  at = ar,   an = v2r
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 vB = vA + � * rB>A + (vB>A)xyz

 aB = aA + �
#

* rB>A + � * (� * rB>A) + 2� * (vB>A)xyz + (aB>A)xyz

Relative-Motion using Translating Axes
General plane motion can also be analyzed using 
a relative-motion analysis between two points A 
and B located on the body. This method considers 
the motion in parts: first a translation of the 
selected base point A, then a relative “rotation” of 
the body about point A, which is measured from a 
translating axis. Since the relative motion is 
viewed as circular motion about the base point, 
point B will have a velocity vB>A that is tangent to 
the circle. It also has two components of 
acceleration, (aB>A)t and (aB>A)n . It is also important 
to realize that aA and aB will have tangential and 
normal components if these points move along 
curved paths.

Instantaneous Center of Zero Velocity
If the base point A is selected as having zero 
velocity, then the relative velocity equation 
becomes vB = V * rB>A . In this case, motion 
appears as if the body rotates about an 
instantaneous axis passing through A.

The instantaneous center of rotation (IC) can be 
established provided the directions of the 
velocities of any two points on the body are 
known, or the velocity of a point and the angular 
velocity are known. Since a radial line r will always 
be perpendicular to each velocity, then the IC is at 
the point of intersection of these two radial lines. 
Its measured location is determined from the 
geometry of the body. Once it is established, then 
the velocity of any point P on the body can be 
determined from v = vr, where r extends from 
the IC to point P.

B

A rA/IC

rP/IC

rB/IC

vB

vA vP
IC

P vIC � 0
V

Relative Motion using Rotating Axes
Problems that involve connected members that 
slide relative to one another or points not 
located on the same body can be analyzed 
using a relative-motion analysis referenced 
from a rotating frame. This gives rise to the 
term 2� * (vB>A)xyz that is called the Coriolis 
acceleration.

 vB = vA + V * rB>A

 aB = aA + A * rB>A - v2  rB>A
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R16–1.  The hoisting gear A has an initial angular velocity 
of 60 rad>s and a constant deceleration of 1 rad>s2. 
Determine the velocity and deceleration of the block which 
is being hoisted by the hub on gear B when t = 3 s.

B

A
2 ft

1 ft

0.5 ft

Prob. R16–1

R16–2.  Starting at (vA)0 = 3 rad>s, when u = 0, s = 0,
pulley A is given an angular acceleration a = (0.6u) rad>s2, 
where u is in radians. Determine the speed of block B when 
it has risen s = 0.5 m. The pulley has an inner hub D which 
is fixed to C and turns with it.

A
75 mm50 mm

s

B

150 mm

D C

Prob. R16–2

R16–3.  The board rests on the surface of two drums. At 
the instant shown, it has an acceleration of 0.5 m>s2 to the 
right, while at the same instant points on the outer rim of 
each drum have an acceleration with a magnitude of 3 m>s2. 
If the board does not slip on the drums, determine its speed 
due to the motion.

250 mm 250 mm

a � 0.5 m/s2

Prob. R16–3

R16–4.  If bar AB has an angular velocity vAB = 6 rad>s, 
determine the velocity of the slider block C at the instant 
shown.

30�

500 mm200 mm

vAB � 6 rad/s

u � 45�A

B

C

Prob. R16–4

Review Problems
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R16–5.  The center of the pulley is being lifted vertically 
with an acceleration of 4 m>s2 at the instant it has a velocity 
of 2 m>s. If the cable does not slip on the pulley’s surface, 
determine the accelerations of the cylinder B and point C 
on the pulley.

aA = 4 m/s2

vA = 2 m/s

80 mm

C

B

D
A

Prob. R16–5

R16–6.  At the instant shown, link AB has an angular 
velocity vAB = 2 rad>s and an angular acceleration aAB =  
6 rad>s2. Determine the acceleration of the pin at C and the 
angular acceleration of link CB at this instant, when u = 60°.

vAB � 2 rad/s
aAB � 6 rad/s2

300 mm

500 mm

175 mm

BA

DC

u

Prob. R16–6

R16–7.  The disk is moving to the left such that it has an 
angular acceleration a = 8 rad>s2 and angular velocity 
v = 3 rad>s at the instant shown. If it does not slip at A, 
determine the acceleration of point B.

C

A
B

v

a

0.5 m

30�

 � 3 rad/s
 � 8 rad/s2

Prob. R16–7

R16–8.  At the given instant member AB has the angular 
motions shown. Determine the velocity and acceleration of 
the slider block C at this instant.

5 in.

5 in.

7 in.

3 rad/s
2 rad/s2

A

C

B

5
3

4

Prob. R16–8
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Tractors and other heavy equipment can be subjected to severe loadings due 
to dynamic loadings as they accelerate. In this chapter we will show how to 

determine these loadings for planar motion.

Chapter 17

(© Surasaki/Fotolia)



Planar Kinetics of a 
Rigid Body: Force 
and Acceleration

Chapter Objectives

n	 To introduce the methods used to determine the mass moment 
of inertia of a body.

n	 To develop the planar kinetic equations of motion for a symmetric 
rigid body.

n	 To discuss applications of these equations to bodies undergoing 
translation, rotation about a fixed axis, and general plane motion.

17.1  Mass Moment of Inertia

Since a body has a definite size and shape, an applied nonconcurrent force 
system can cause the body to both translate and rotate. The translational 
aspects of the motion were studied in Chapter 13 and are governed by the 
equation F = ma. It will be shown in the next section that the rotational 
aspects, caused by a moment M, are governed by an equation of the form 
M = IA. The symbol I in this equation is termed the mass moment of 
inertia. By comparison, the moment of inertia is a measure of the resistance 
of a body to angular acceleration (M = IA) in the same way that mass is 
a measure of the body’s resistance to acceleration (F = ma).
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The flywheel on the engine of this tractor has a large moment of inertia 
about its axis of rotation. Once it is set into motion, it will be difficult to 
stop, and this in turn will prevent the engine from stalling and instead will 
allow it to maintain a constant power.

We define the moment of inertia as the integral of the “second moment” 
about an axis of all the elements of mass dm which compose the body.*  
For example, the body’s moment of inertia about the z axis in Fig. 17–1 is

	 I = Lm
r 2 dm � (17–1)

Here the “moment arm” r is the perpendicular distance from the z axis to 
the arbitrary element dm. Since the formulation involves r, the value of I 
is different for each axis about which it is computed. In the study of planar 
kinetics, the axis chosen for analysis generally passes through the body’s 
mass center G and is always perpendicular to the plane of motion. The 
moment of inertia about this axis will be denoted as IG . Since r is squared 
in Eq. 17–1, the mass moment of inertia is always a positive quantity. 
Common units used for its measurement are kg # m2 or slug # ft2.

If the body consists of material having a variable density, r = r (x,y,z), 
the elemental mass dm of the body can be expressed in terms of its 
density and volume as dm = r dV. Substituting dm into Eq. 17–1, the 
body’s moment of inertia is then computed using volume elements for 
integration; i.e.,

	 I = LV
r2r dV � (17–2)

r

dm

z

Fig. 17–1 

*Another property of the body, which measures the symmetry of the body’s mass with 
respect to a coordinate system, is the product of inertia. This property applies to the three-
dimensional motion of a body and will be discussed in Chapter 21.

(© R.C. Hibbeler)
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In the special case of r being a constant, this term may be factored out of 
the integral, and the integration is then purely a function of geometry,

	 I = rLV
r2 dV 	 (17–3)

When the volume element chosen for integration has infinitesimal 
dimensions in all three directions, Fig. 17–2a, the moment of inertia of the 
body must be determined using “triple integration.” The integration 
process can, however, be simplified to a single integration provided the 
chosen volume element has a differential size or thickness in only one 
direction. Shell or disk elements are often used for this purpose.

Procedure for Analysis

To obtain the moment of inertia by integration, we will consider 
only symmetric bodies having volumes which are generated by 
revolving a curve about an axis. An example of such a body is shown 
in Fig. 17–2a. Two types of differential elements can be chosen.

Shell Element.

	 •	 If a shell element having a height z, radius r = y, and thickness dy 
is chosen for integration, Fig. 17–2b, then the volume is 
dV = (2py)(z)dy.

	 •	 This element may be used in Eq. 17–2 or 17–3 for determining the 
moment of inertia Iz of the body about the z axis, since the entire 
element, due to its “thinness,” lies at the same perpendicular 
distance r = y from the z axis (see Example 17.1).

Disk Element.

	 •	 If a disk element having a radius y and a thickness dz is chosen 
for integration, Fig. 17–2c, then the volume is dV = (py2)dz.

	 •	 This element is finite in the radial direction, and consequently its 
parts do not all lie at the same radial distance r from the z axis. As 
a result, Eq. 17–2 or 17–3 cannot be used to determine Iz directly. 
Instead, to perform the integration it is first necessary to 
determine the moment of inertia of the element about the z axis 
and then integrate this result (see Example 17.2).

z

y

x

dm � r dV

x
y

z

(a)

(b)

z

y

x

y dy

z

(c)

z

y

x

z

dz

y

Fig. 17–2 
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Determine the moment of inertia of the cylinder shown in Fig. 17–3a 
about the z axis. The density of the material, r, is constant.

Example   17.1

z

y

x

O

(a)

R

2
h

2
h

(b)

z

y

x

O

r dr

2
h

2
h

Fig. 17–3 

Solution
Shell Element.  This problem can be solved using the shell element in 
Fig. 17–3b and a single integration. The volume of the element is 
dV = (2pr)(h) dr, so that its mass is dm = rdV = r(2phr dr). Since the 
entire element lies at the same distance r from the z axis, the moment 
of inertia of the element is

dIz = r2dm = r2phr3 dr

Integrating over the entire region of the cylinder yields

Iz = Lm
r2 dm = r2phL

R

0
r3 dr =

rp

2
 R4h

The mass of the cylinder is

m = Lm
dm = r2phL

R

0
r dr = rphR2

so that

	 Iz =
1

2
 mR2� Ans.
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If the density of the material is 5 slug>ft3, determine the moment of 
inertia of the solid in Fig. 17–4a about the y axis.

Example   17.2

y

x

1 ft

1 ft

y2 � x

(a)

y

x

1 ft
y

dy

(x,y)

x
1 ft

(b)

Fig. 17–4 

Solution
Disk Element.  The moment of inertia will be found using a disk 
element, as shown in Fig. 17–4b. Here the element intersects the curve 
at the arbitrary point (x,y) and has a mass

dm = r dV = r(px2) dy

Although all portions of the element are not located at the same 
distance from the y axis, it is still possible to determine the moment of 
inertia dIy of the element about the y axis. In the preceding example it 
was shown that the moment of inertia of a cylinder about its 
longitudinal axis is I =

1
2 mR2, where m and R are the mass and radius 

of the cylinder. Since the height is not involved in this formula, the 
disk itself can be thought of as a cylinder. Thus, for the disk element in 
Fig. 17–4b, we have

dIy =
1
2(dm)x2 =

1
2[r(px2) dy]x2

Substituting x = y2, r = 5 slug>ft3, and integrating with respect to y, 
from y = 0 to y = 1 ft, yields the moment of inertia for the entire solid.

Iy =
p(5 slug>ft3)

2 L
1 ft

0
x4 dy =

p(5)

2 L
1 ft

0
y8 dy = 0.873 slug # ft2�Ans.
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y¿

x¿

z z¿

y¿r¿

x¿d

r

dm

A G

Fig. 17–5 

Parallel-Axis Theorem.  If the moment of inertia of the body 
about an axis passing through the body’s mass center is known, then the 
moment of inertia about any other parallel axis can be determined by 
using the parallel-axis theorem. This theorem can be derived by considering 
the body shown in Fig. 17–5. Here the z� axis passes through the mass 
center G, whereas the corresponding parallel z axis lies at a constant 
distance d away. Selecting the differential element of mass dm, which is 
located at point (x�, y�), and using the Pythagorean theorem, 
r2 = (d + x�)2 + y�2, we can express the moment of inertia of the body 
about the z axis as

 I = Lm
r2 dm = Lm

[(d + x�)2 + y�2] dm

 = Lm
(x�2 + y�2) dm + 2dLm

x� dm + d2Lm
dm

Since r�2 = x�2 + y�2, the first integral represents IG . The second 
integral equals zero, since the z� axis passes through the body’s mass 
center, i.e., 1x�dm = x�m = 0 since x� = 0. Finally, the third integral 
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represents the total mass m of the body. Hence, the moment of inertia 
about the z axis can be written as

	 I = IG + md2 � (17–4)

where

 IG = �moment of inertia about the z� axis passing through the mass 
center G

 m = mass of the body
 d = perpendicular distance between the parallel z and z� axes

Radius of Gyration.  Occasionally, the moment of inertia of a body 
about a specified axis is reported in handbooks using the radius of 
gyration, k. This is a geometrical property which has units of length. When 
it and the body’s mass m are known, the body’s moment of inertia is 
determined from the equation

	 I = mk2 or k = A I
m

� (17–5)

Note the similarity between the definition of k in this formula and r in the 
equation dI = r2 dm, which defines the moment of inertia of an elemental 
mass dm of the body about an axis.

Composite Bodies.  If a body consists of a number of simple 
shapes such as disks, spheres, and rods, the moment of inertia of the body 
about any axis can be determined by adding algebraically the moments 
of inertia of all the composite shapes computed about the axis. Algebraic 
addition is necessary since a composite part must be considered as a 
negative quantity if it has already been counted as a piece of another 
part—for example, a “hole” subtracted from a solid plate. The parallel-
axis theorem is needed for the calculations if the center of mass of each 
composite part does not lie on the axis. For the calculation, then, 
I = �(IG + md2). Here IG for each of the composite parts is determined 
by integration, or for simple shapes, such as rods and disks, it can be 
found from a table, such as the one given on the inside back cover of 
this book.
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If the plate shown in Fig. 17–6a has a density of 8000 kg>m3 and a 
thickness of 10 mm, determine its moment of inertia about an axis 
directed perpendicular to the page and passing through point O.

Example   17.3

Solution
The plate consists of two composite parts, the 250-mm-radius disk 
minus a 125-mm-radius disk, Fig. 17–6b. The moment of inertia about O 
can be determined by computing the moment of inertia of each of 
these parts about O and then adding the results algebraically. The 
calculations are performed by using the parallel-axis theorem in 
conjunction with the data listed in the table on the inside back cover.

Disk.  The moment of inertia of a disk about the centroidal axis 
perpendicular to the plane of the disk is IG =

1
2 mr2. The mass center of 

the disk is located at a distance of 0.25 m from point O. Thus,

 md = rdVd = 8000 kg>m3 [p(0.25 m)2(0.01 m)] = 15.71 kg

 (Id)O =
1
2 mdrd

2 + mdd
2

 =
1

2
 (15.71 kg)(0.25 m)2 + (15.71 kg)(0.25 m)2

 = 1.473 kg # m2

Hole.  For the 125-mm-radius disk (hole), we have

 mh = rhVh = 8000 kg>m3 [p(0.125 m)2(0.01 m)] = 3.927 kg

 (Ih)O =
1
2 mhrh

2 + mhd
2

 =
1

2
 (3.927 kg)(0.125 m)2 + (3.927 kg)(0.25 m)2

 = 0.276 kg # m2

The moment of inertia of the plate about point O is therefore

 IO = (Id)O - (Ih)O

 = 1.473 kg # m2 - 0.276 kg # m2

	  = 1.20 kg # m2 � Ans.

O

250 mm
125 mm

G

(a)

Thickness 10 mm

250 mm

G G– 125 mm

(b)

Fig. 17–6 
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The pendulum in Fig. 17–7 is suspended from the pin at O and consists 
of two thin rods. Rod OA weighs 10 lb, and BC weighs 8 lb. Determine 
the moment of inertia of the pendulum about an axis passing through 
(a) point O, and (b) the mass center G of the pendulum.

Solution
Part (a).  Using the table on the inside back cover, the moment of 
inertia of rod OA about an axis perpendicular to the page and passing 
through point O of the rod is IO =

1
3 ml2. Hence,

(IOA)O =
1

3
 ml2 =

1

3
 a 10 lb

32.2 ft>s2 b (2 ft)2 = 0.414 slug # ft2

This same value can be obtained using IG =
1

12 ml2 and the parallel-axis 
theorem.

 (IOA)O =
1

12
 ml2 + md2 =

1

12
 a 10 lb

32.2 ft>s2b (2 ft)2 + a 10 lb

32.2 ft>s2b (1 ft)2

 = 0.414 slug # ft2

For rod BC we have

 (IBC)O =
1

12
 ml2 + md2 =

1

12
 a 8 lb

32.2 ft>s2b (1.5 ft)2 + a 8 lb

32.2 ft>s2b (2 ft)2

 = 1.040 slug # ft2

The moment of inertia of the pendulum about O is therefore

	 IO = 0.414 + 1.040 = 1.454 = 1.45 slug # ft2� Ans.

Part (b).  The mass center G will be located relative to point O. 
Assuming this distance to be y, Fig. 17–7, and using the formula for 
determining the mass center, we have

y =
� y�m

�m
=

1(10>32.2) + 2(8>32.2)

(10>32.2) + (8>32.2)
= 1.444 ft

The moment of inertia IG may be found in the same manner as IO , 
which requires successive applications of the parallel-axis theorem to 
transfer the moments of inertia of rods OA and BC to G. A more direct 
solution, however, involves using the result for IO , i.e.,

IO = IG + md2;   1.454 slug # ft2 = IG + a 18 lb

32.2 ft>s2 b (1.444 ft)2

	 IG = 0.288 slug # ft2� Ans.

Example   17.4

2 ft

y–

O

G

A
B C

0.75 ft0.75 ft

Fig. 17–7 
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17–1.  Determine the moment of inertia Iy for the slender 
rod. The rod’s density r and cross-sectional area A are 
constant. Express the result in terms of the rod’s total mass m.

x

y

z

A

l

Prob. 17–1

17–2.  The solid cylinder has an outer radius R, height h, 
and is made from a material having a density that varies 
from its center as r = k + ar 2, where k and a are constants. 
Determine the mass of the cylinder and its moment of 
inertia about the z axis.

R

h

z

Prob. 17–2

17–3.  Determine the moment of inertia of the thin ring 
about the z axis. The ring has a mass m.

x

y

R

Prob. 17–3

*17–4.  The paraboloid is formed by revolving the shaded 
area around the x axis. Determine the radius of gyration kx. 
The density of the material is r = 5 Mg>m3.

y

x

y2 � 50x

200 mm

100 mm

Prob. 17–4

PROBLEMS
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17–5.  Determine the radius of gyration kx of the body. The 
specific weight of the material is g = 380 lb>ft3.

y

x

2 in.

y3 � x

8 in.

Prob. 17–5

17–6.  The sphere is formed by revolving the shaded area 
around the x axis. Determine the moment of inertia Ix and 
express the result in terms of the total mass m of the sphere. 
The material has a constant density r.

x

y

x2 � y2 � r2

Prob. 17–6

17–7.  The frustum is formed by rotating the shaded area 
around the x axis. Determine the moment of inertia Ix and 
express the result in terms of the total mass m of the 
frustum. The frustum has a constant density r.

y

x

2b

b–a x � by �

a

z

b

Prob. 17–7

*17–8.  The hemisphere is formed by rotating the shaded 
area around the y axis. Determine the moment of inertia Iy 
and express the result in terms of the total mass m of the 
hemisphere. The material has a constant density r.

x2 � y2 � r2

y

x

Prob. 17–8
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17–9.  Determine the moment of inertia of the 
homogeneous triangular prism with respect to the y axis. 
Express the result in terms of the mass m of the prism. Hint: 
For integration, use thin plate elements parallel to the  
x–y plane and having a thickness dz.

x

y

z

�h––a (x � a)z �

h

ab

Prob. 17–9

17–10.  The pendulum consists of a 4-kg circular plate and 
a 2-kg slender rod. Determine the radius of gyration of the 
pendulum about an axis perpendicular to the page and 
passing through point O.

1 m

O

2 m

Prob. 17–10

17–11.  The assembly is made of the slender rods that have 
a mass per unit length of 3 kg>m. Determine the mass 
moment of inertia of the assembly about an axis 
perpendicular to the page and passing through point O.

O

 0.8 m

 0.4 m

0.4 m

Prob. 17–11

*17–12.  Determine the moment of inertia of the solid 
steel assembly about the x axis. Steel has a specific weight of 
gst = 490 lb>ft3.

2 ft 3 ft

0.5 ft

0.25 ft

x

Prob. 17–12

17–13.  The wheel consists of a thin ring having a mass of 
10 kg and four spokes made from slender rods and each 
having a mass of 2 kg. Determine the wheel’s moment of 
inertia about an axis perpendicular to the page and passing 
through point A.

A

500 mm

Prob. 17–13
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17–14.  If the large ring, small ring and each of the spokes 
weigh 100 lb, 15 lb, and 20 lb, respectively, determine the 
mass moment of inertia of the wheel about an axis 
perpendicular to the page and passing through point A.

A

O

1 ft

4 ft

Prob. 17–14

17–15.  Determine the moment of inertia about an axis 
perpendicular to the page and passing through the pin at O. 
The thin plate has a hole in its center. Its thickness is 50 mm, 
and the material has a density r = 50 kg>m3.

1.40 m 1.40 m

150 mm

O

Prob. 17–15

*17–16.  Determine the mass moment of inertia of the thin 
plate about an axis perpendicular to the page and passing 
through point O. The material has a mass per unit area of 
20 kg>m2.

200 mm200 mm

200 mm

O

Prob. 17–16

17–17.  Determine the location y of the center of mass G of 
the assembly and then calculate the moment of inertia about 
an axis perpendicular to the page and passing through G.  
The block has a mass of 3 kg and the semicylinder has a mass 
of 5 kg.

17–18.  Determine the moment of inertia of the assembly 
about an axis perpendicular to the page and passing through 
point O. The block has a mass of 3 kg, and the semicylinder 
has a mass of 5 kg.

G

400 mm

300 mm

200 mm

O

y–

Probs. 17–17/18
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17–19.  Determine the moment of inertia of the wheel 
about an axis which is perpendicular to the page and passes 
through the center of mass G. The material has a specific 
weight g = 90 lb>ft3.
*17–20.  Determine the moment of inertia of the wheel 
about an axis which is perpendicular to the page and passes 
through point O. The material has a specific weight 
g = 90 lb>ft3.

G

O
0.5 ft

1 ft

0.25 ft

0.25 ft

1 ft

2 ft

Probs. 17–19/20

17–21.  The pendulum consists of the 3-kg slender rod and 
the 5-kg thin plate. Determine the location y of the center 
of mass G of the pendulum; then calculate the moment of 
inertia of the pendulum about an axis perpendicular to the 
page and passing through G.

G

2 m

1 m

0.5 m

y

O

Prob. 17–21

17–22.  Determine the moment of inertia of the overhung 
crank about the x axis. The material is steel having a density 
of r = 7.85 Mg>m3.

90 mm

50 mm

20 mm

20 mm

20 mm

x

x¿

50 mm
30 mm

30 mm

30 mm

180 mm

Prob. 17–22

17–23.  Determine the moment of inertia of the overhung 
crank about the x � axis. The material is steel having a density 
of r = 7.85 Mg>m3.

90 mm

50 mm

20 mm

20 mm

20 mm

x

x¿

50 mm
30 mm

30 mm

30 mm

180 mm

Prob. 17–23
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17.2  Planar Kinetic Equations of Motion

In the following analysis we will limit our study of planar kinetics to rigid 
bodies which, along with their loadings, are considered to be symmetrical 
with respect to a fixed reference plane.* Since the motion of the body can 
be viewed within the reference plane, all the forces (and couple moments) 
acting on the body can then be projected onto the plane. An example of 
an arbitrary body of this type is shown in Fig. 17–8a. Here the inertial 
frame of reference x, y, z has its origin coincident with the arbitrary point P 
in the body. By definition, these axes do not rotate and are either fixed or 
translate with constant velocity.

y

x

G

W

P

F1

M1

M2

F4

F3

F2

(a)

A

V

Fig. 17–8 

Equation of Translational Motion.  The external forces 
acting on the body in Fig. 17–8a represent the effect of gravitational, 
electrical, magnetic, or contact forces between adjacent bodies. Since 
this force system has been considered previously in Sec. 13.3 for the 
analysis of a system of particles, the resulting Eq. 13–6 can be used 
here, in which case

�F = maG

This equation is referred to as the translational equation of motion for the 
mass center of a rigid body. It states that the sum of all the external forces 
acting on the body is equal to the body’s mass times the acceleration of its 
mass center G.

For motion of the body in the x–y plane, the translational equation of 
motion may be written in the form of two independent scalar equations, 
namely,

 �Fx = m(aG)x

 �Fy = m(aG)y

*By doing this, the rotational equation of motion reduces to a rather simplified form. 
The more general case of body shape and loading is considered in Chapter 21.
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Equation of Rotational Motion.  We will now determine the 
effects caused by the moments of the external force system computed 
about an axis perpendicular to the plane of motion (the z axis) and 
passing through point P. As shown on the free-body diagram of the ith 
particle, Fig. 17–8b, Fi represents the resultant external force acting on the 
particle, and fi is the resultant of the internal forces caused by interactions 
with adjacent particles. If the particle has a mass mi and its acceleration is ai , 
then its kinetic diagram is shown in Fig. 17–8c. Summing moments about 
point P, we require

r * Fi + r * fi = r * mi ai

or

(MP)i = r * mi ai

The moments about P can also be expressed in terms of the acceleration 
of point P, Fig. 17–8d. If the body has an angular acceleration A and angular 
velocity V, then using Eq. 16–18 we have

 (MP)i = mi r * (aP + A * r - v2r)

 = mi[r * aP + r * (A * r) - v2(r * r)]

The last term is zero, since r * r = 0. Expressing the vectors with 
Cartesian components and carrying out the cross-product operations 
yields

 (MP)i k = mi5(xi + yj) * [(aP)x i + (aP)y j]

  + (xi + yj) * [ak * (xi + yj)]6
 (MP)i k = mi[-y(aP)x + x(aP)y + ax2 + ay2]k

	 a(MP)i = mi[-y(aP)x + x(aP)y + ar2]

Letting mi S dm and integrating with respect to the entire mass m of the 
body, we obtain the resultant moment equation

a�MP = - aLm
y dmb (aP)x + aLm

x dmb (aP)y + aLm
r2dmba

Here �MP represents only the moment of the external forces acting on the 
body about point P. The resultant moment of the internal forces is zero, 
since for the entire body these forces occur in equal and opposite collinear 
pairs and thus the moment of each pair of forces about P cancels. The 
integrals in the first and second terms on the right are used to locate the 
body’s center of mass G with respect to P, since ym = 1y dm and 
xm = 1x dm, Fig. 17–8d. Also, the last integral represents the body’s 
moment of inertia about the z axis, i.e., IP = 1r2dm. Thus,

	 a�MP = -ym(aP)x + xm(aP)y + IPa� (17–6)

y

xP

(b)

Particle free-body diagram

i
fi

Fi
x

yr

y

xP

(c)

Particle kinetic diagram

i
miaix

yr

=
y

xP

(d)

_
x

_
r

aP

G
_
y

aG

A

V

Fig. 17–8 (cont.) 
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It is possible to reduce this equation to a simpler form if point P coincides 
with the mass center G for the body. If this is the case, then x = y = 0, 
and therefore* 

	 �MG = IGa � (17–7)

This rotational equation of motion states that the sum of the moments of 
all the external forces about the body’s mass center G is equal to the 
product of the moment of inertia of the body about an axis passing through G 
and the body’s angular acceleration.

Equation 17–6 can also be rewritten in terms of the x and y components 
of aG and the body’s moment of inertia IG . If point G is located at (x, y), 
Fig. 17–8d, then by the parallel-axis theorem, IP = IG + m(x2 + y2). 
Substituting into Eq. 17–6 and rearranging terms, we get

	 a�MP = ym[-(aP)x + ya] + xm[(aP)y + xa] + IGa� (17–8)

From the kinematic diagram of Fig. 17–8d, aP can be expressed in terms 
of aG as

aG = aP + A * r - v2r

(aG)x i + (aG)y j = (aP)x i + (aP)y j + ak * (x i + y j) - v2(x i + y j)

Carrying out the cross product and equating the respective i and j 
components yields the two scalar equations

 (aG)x = (aP)x - ya - xv2

 (aG)y = (aP)y + xa - yv2

From these equations, [-(aP)x + ya] = [-(aG)x - xv2]  and 
[(aP)y + xa] = [(aG)y + yv2]. Substituting these results into Eq. 17–8 and 
simplifying gives

	 a�MP = -ym(aG)x + xm(aG)y + IGa� (17–9)

This important result indicates that when moments of the external forces 
shown on the free-body diagram are summed about point P, Fig. 17–8e, 
they are equivalent to the sum of the “kinetic moments” of the components 
of maG about P plus the “kinetic moment” of IG A, Fig. 17–8f. In other 
words, when the “kinetic moments,” �(mk)P , are computed, Fig.  17–8f, 
the vectors m(aG)x and m(aG)y are treated as sliding vectors; that is, they 
can act at any point along their line of action. In a similar manner, IG A 
can be treated as a free vector and can therefore act at any point. It is 
important to keep in mind, however, that maG and IG A are not the same 
as a force or a couple moment. Instead, they are caused by the external 
effects of forces and couple moments acting on the body. With this in 
mind we can therefore write Eq. 17–9 in a more general form as

	 �MP = �(mk)P � (17–10)

*It also reduces to this same simple form �MP = IPa if point P is a fixed point (see 
Eq. 17–16) or the acceleration of point P is directed along the line PG.

F1
F4

F3

F2

G

W

y

xP

(e)

Free-body diagram

M1

M2

y

xP

(f)

Kinetic diagram

m(aG)x_
y

G

m(aG)y

IG

_
x

A

Fig. 17–8 (cont.) 
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General Application of the Equations of Motion.  To 
summarize this analysis, three independent scalar equations can be written 
to describe the general plane motion of a symmetrical rigid body.

 �Fx = m(aG)x

 �Fy = m(aG)y

 �MG = IGa

or	   �MP = �(�k)P� (17–11)

When applying these equations, one should always draw a free-body 
diagram, Fig. 17–8e, in order to account for the terms involved in �Fx , 
�Fy , �MG , or �MP . In some problems it may also be helpful to draw the 
kinetic diagram for the body, Fig. 17–8f. This diagram graphically accounts 
for the terms m(aG)x , m(aG)y , and IG A. It is especially convenient when 
used to determine the components of maG and the moment of these 
components in �(mk)P .*

17.3  Equations of Motion: Translation

When the rigid body in Fig. 17–9a undergoes a translation, all the particles 
of the body have the same acceleration.  Furthermore, A = 0, in which 
case the rotational equation of motion applied at point G reduces to a 
simplified form, namely, �MG = 0. Application of this and the force 
equations of motion will now be discussed for each of the two types of 
translation.

Rectilinear Translation.  When a body is subjected to rectilinear 
translation, all the particles of the body (slab) travel along parallel straight-
line paths. The free-body and kinetic diagrams are shown in Fig.  17–9b. 
Since IG A = 0, only maG is shown on the kinetic diagram. Hence, the 
equations of motion which apply in this case become

	
�Fx = m(aG)x

�Fy = m(aG)y

�MG = 0   

� (17–12)

F1
F4

F3

F2

G

W

y

xP

(e)

Free-body diagram

M1

M2

y

xP

(f)

Kinetic diagram

m(aG)x_
y

G

m(aG)y

IG

_
x

A

Fig. 17–8 (cont.) 

*For this reason, the kinetic diagram will be used in the solution of an example problem 
whenever �MP = �(�k)P is applied.

G

M2

M1

F1

F4

F2

F3

(a)

Fig. 17–9 
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It is also possible to sum moments about other points on or off the body, 
in which case the moment of maG must be taken into account. For example, 
if point A is chosen, which lies at a perpendicular distance d from the line 
of action of maG , the following moment equation applies: 

a+ �MA = �(�k)A;        �MA = (maG)d

Here the sum of moments of the external forces and couple moments 
about A (�MA , free-body diagram) equals the moment of maG about A 
(�(�k)A, kinetic diagram).

Curvilinear Translation. When a rigid body is subjected to curvilinear 
translation, all the particles of the body have the same accelerations as 
they travel along curved paths as noted in Sec.16.1. For analysis, it is often 
convenient to use an inertial coordinate system having an origin which 
coincides with the body’s mass center at the instant considered, and axes 
which are oriented in the normal and tangential directions to the path of 
motion, Fig. 17–9c. The three scalar equations of motion are then

	
�Fn = m(aG)n

�Ft = m(aG)t

�MG = 0  

� (17–13)

If moments are summed about the arbitrary point B, Fig. 17–9c, then it 
is necessary to account for the moments, �(�k)B , of the two components 
m(aG)n and m(aG)t about this point. From the kinetic diagram, h and e 
represent the perpendicular distances (or “moment arms”) from B to the 
lines of action of the components. The required moment equation 
therefore becomes

a+ �MB = �(mk)B;        �MB = e[m(aG)t] - h[m(aG)n]

G
M2

M1

F1

F4

F2

F3

(b)
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d maG
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=
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h
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Fig. 17–9 
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Procedure for Analysis

Kinetic problems involving rigid-body translation can be solved 
using the following procedure.

Free-Body Diagram.

	 •	 Establish the x, y or n, t inertial coordinate system and draw the 
free-body diagram in order to account for all the external forces 
and couple moments that act on the body.

	 •	 The direction and sense of the acceleration of the body’s mass 
center aG should be established.

	 •	 Identify the unknowns in the problem.

	 •	 If it is decided that the rotational equation of motion 
�MP = �(mk)P is to be used in the solution, then consider 
drawing the kinetic diagram, since it graphically accounts for the 
components m(aG)x , m(aG)y or m(aG)t , m(aG)n and is therefore 
convenient for “visualizing” the terms needed in the moment 
sum �(mk)P .

Equations of Motion.

	 •	 Apply the three equations of motion in accordance with the 
established sign convention.

	 •	 To simplify the analysis, the moment equation �MG = 0 can be 
replaced by the more general equation �MP = �(mk)P , where 
point P is usually located at the intersection of the lines of action 
of as many unknown forces as possible.

	 •	 If the body is in contact with a rough surface and slipping occurs, 
use the friction equation F = mkN. Remember, F always acts on 
the body so as to oppose the motion of the body relative to the 
surface it contacts.

Kinematics.

	 •	 Use kinematics to determine the velocity and position of the body.

	 •	 For rectilinear translation with variable acceleration

		  aG = dvG>dt aGdsG = vGdvG

	 •	 For rectilinear translation with constant acceleration

		   vG = (vG)0 + aGt vG
2 = (vG)0

2 + 2aG[sG - (sG)0]

		   sG = (sG)0 + (vG)0t +
1
2 aGt2

	 •	 For curvilinear translation

		  (aG)n = vG
2 >r

		  (aG)t = dvG>dt  (aG)t dsG = vG dvG

The free-body and kinetic diagrams for 
this boat and trailer are drawn first in 
order to apply the equations of motion. 
Here the forces on the free-body diagram 
cause the effect shown on the kinetic 
diagram. If moments are summed about 
the mass center, G, then �MG = 0. 
However, if moments are summed about 
point B then c + �MB = maG(d).  
(© R.C. Hibbeler)

NA

maG

T

W
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The car shown in Fig. 17–10a has a mass of 2 Mg and a center of mass 
at G. Determine the acceleration if the rear “driving” wheels are always 
slipping, whereas the front wheels are free to rotate. Neglect the mass 
of the wheels. The coefficient of kinetic friction between the wheels and 
the road is mk = 0.25.

Solution I
Free-Body Diagram.  As shown in Fig. 17–10b, the rear-wheel 
frictional force FB pushes the car forward, and since slipping occurs, 
FB = 0.25NB . The frictional forces acting on the front wheels are zero, 
since these wheels have negligible mass.*  There are three unknowns in 
the problem, NA , NB , and aG . Here we will sum moments about the mass 
center. The car (point G) accelerates to the left, i.e., in the negative x 
direction, Fig. 17–10b.

Equations of Motion.

S+ �Fx = m(aG)x;	 -0.25NB = -(2000 kg)aG	 (1)

+ c �Fy = m(aG)y;	 NA + NB - 2000(9.81) N = 0	 (2)

a+ �MG = 0;	  -NA(1.25 m) - 0.25NB(0.3 m) + NB(0.75 m) = 0	 (3)

Solving,

	  aG = 1.59 m>s2 d � Ans.

 NA = 6.88 kN

 NB = 12.7 kN

Solution II
Free-Body and Kinetic Diagrams.  If the “moment” equation is 
applied about point A, then the unknown NA will be eliminated from 
the equation. To “visualize” the moment of maG about A, we will include 
the kinetic diagram as part of the analysis, Fig. 17–10c.

Equation of Motion.

a+ �MA = �(mk)A;	 NB(2 m) - [2000(9.81) N](1.25 m) =

	 (2000 kg)aG(0.3 m)

Solving this and Eq. 1 for aG leads to a simpler solution than that 
obtained from Eqs. 1 to 3.

Example   17.5

*With negligible wheel mass, Ia = 0 and the frictional force at A required to turn 
the wheel is zero. If the wheels’ mass were included, then the solution would be more 
involved, since a general-plane-motion analysis of the wheels would have to be 
considered (see Sec. 17.5).

0.3 m

0.75 m1.25 m
B

(a)

A

G

G

0.75 m
1.25 m

(b)

2000 (9.81) N

0.3 m

NA NB

FB � 0.25 NB

y

x

aG

A

G

0.75 m1.25 m

(c)

2000 (9.81) N

A

NA NB

FB � 0.25 NB

G

0.3 mA

2000 aG

0.3 m

=

Fig. 17–10 
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The motorcycle shown in Fig. 17–11a has a mass of 125 kg and a center 
of mass at G1 , while the rider has a mass of 75 kg and a center of mass 
at G2 . Determine the minimum coefficient of static friction between 
the wheels and the pavement in order for the rider to do a “wheely,” 
i.e., lift the front wheel off the ground as shown in the photo. What 
acceleration is necessary to do this? Neglect the mass of the wheels 
and assume that the front wheel is free to roll.

Example   17.6

0.3 m

0.6 m

AB
0.4 m 0.4 m 0.7 m

G2

(a)

G1

(b)

AB
0.4 m 0.4 m

0.7 m

0.3 m

0.6 m

75 kg aG

NB

FB

735.75 N
1226.25 N

B

NA � 0

125 kg aG

=

Fig. 17–11 

Solution
Free-Body and Kinetic Diagrams.  In this problem we will consider 
both the motorcycle and the rider as a single system. It is possible first to 
determine the location of the center of mass for this “system” by using 
the equations x = � x�m>�m and y = � y�m>�m. Here, however, we will 
consider the weight and mass of the motorcycle and rider separately as 
shown on the free-body and kinetic diagrams, Fig. 17–11b. Both of these 
parts move with the same acceleration. We have assumed that the front 
wheel is about to leave the ground, so that the normal reaction NA � 0. 
The three unknowns in the problem are NB , FB , and aG .

Equations of Motion.

S+ �Fx = m(aG)x;	 FB = (75 kg + 125 kg)aG 	 (1)

+ c �Fy = m(aG)y; NB - 735.75 N - 1226.25 N = 0

a+ �MB = �(mk)B; -(735.75 N)(0.4 m) - (1226.25 N)(0.8 m) =

	 -(75 kg aG)(0.9 m) - (125 kg aG)(0.6 m)	 (2)

Solving,
	  aG = 8.95 m>s2 S 	 Ans.

	  NB = 1962 N 	

	  FB = 1790 N 	

Thus the minimum coefficient of static friction is

	 (ms)min =
FB

NB
=

1790 N

1962 N
= 0.912� Ans.

(© R.C. Hibbeler)
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The 100-kg beam BD shown in Fig. 17–12a is supported by two rods 
having negligible mass. Determine the force developed in each rod if 
at the instant u = 30�, v = 6 rad>s.

Solution
Free-Body and Kinetic Diagrams.  The beam moves with curvilinear 
translation since all points on the beam move along circular paths, 
each path having the same radius of 0.5 m, but different centers of 
curvature. Using normal and tangential coordinates, the free-body and 
kinetic diagrams for the beam are shown in Fig. 17–12b. Because of the 
translation, G has the same motion as the pin at B, which is connected 
to both the rod and the beam. Note that the tangential component of 
acceleration acts downward to the left due to the clockwise direction 
of A, Fig. 17–12c. Furthermore, the normal component of acceleration 
is always directed toward the center of curvature (toward point A 
for  rod AB). Since the angular velocity of AB is 6 rad>s when 
u = 30� , then

(aG)n = v2r = (6 rad>s)2(0.5 m) = 18 m>s2

The three unknowns are TB , TD , and (aG)t .

Example   17.7

u � 30�

0.5 m G

A C

DB
0.4 m 0.4 m

(a)

V

G

0.4 m 0.4 m

(b)
981 N

30�30� 30�TB TD

100 kg(aG)t

100 kg(aG)n

=

Fig. 17–12

0.5 m

A

B

an

at

(c)

v � 6 rad/s
A

Equations of Motion.

+ a�Fn = m(aG)n;  TB + TD - 981 cos 30� N = 100 kg(18 m>s2)	 (1)

+ b�Ft = m(aG)t;	 981 sin 30� = 100 kg(aG)t	 (2)

a+ �MG = 0;  -(TB cos 30�)(0.4 m) + (TD cos 30�)(0.4 m) = 0	 (3)

Simultaneous solution of these three equations gives

	  TB = TD = 1.32 kN 	 Ans.

	  (aG)t = 4.905 m>s2	

Note: It is also possible to apply the equations of motion along horizontal 
and vertical x, y axes, but the solution becomes more involved.
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P17–1.  Draw the free-body and kinetic diagrams of the 
object AB.

A
mk � 0.2

G 100 N3
4

3 m

(a)

2 m
B

0.5 m

100 kg

0.5 m

5

G

1.5 m

0.5 m

2 m

A

B

(b)

100 kg

500 N

100 kg

2 m

2 m

G

30�

A

B mk � 0.2

(c)

4 rad/s

A B

G

2 m 2 m

1 m

(d)

100 kg
1 m

A B

3 rad/s 3 m

60�

2 m 2 m

0.5 m

(e)

G

100 kg

(f)

G

B

A

100 kg

5 3

4

1.5 m0.5 m

1 m

Preliminary Problems

Prob. P17–1
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P17–2.  Draw the free-body and kinetic diagrams of the 
100-kg object.

3 m

O 2 rad/s

20 N � m

(a)

O
4 rad/s

3 m

45�

60 N

(b)

5 m

Unstretched length of spring is 1 m.

4 m

2 rad/s

O

k � 6 N/m 

(c)

3 m

100 N

O

2 m

(d)

v � 4 rad/s

v � 3 rad/s
O

2 m

(e)

45�

2 rad/s

30 N � m

2 m
1 m

(f)

O

Prob. P17–2
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F17–4.  Determine the maximum acceleration of the truck 
without causing the assembly to move relative to the truck. 
Also what is the corresponding normal reaction on legs 
A and B? The 100@kg table has a mass center at G and the 
coefficient of static friction between the legs of the table 
and the bed of the truck is ms = 0.2. 

0.6 m 0.9 m

0.75 m
a

G

B A

	Prob. F17–4 

F17–5.  At the instant shown both rods of negligible mass 
swing with a counterclockwise angular velocity of 
v = 5 rad>s, while the 50@kg bar is subjected to the 100@N 
horizontal force. Determine the tension developed in the 
rods and the angular acceleration of the rods at this instant. 

	

A C

B D100 N

1 m 1 m

1.5 m

G

 v � 5 rad/s

	Prob. F17–5 
F17–6.  At the instant shown, link CD rotates with an 
angular velocity of v = 6 rad>s. If it is subjected to a couple 
moment M = 450 N # m, determine the force developed in 
link AB, the horizontal and vertical component of reaction 
on pin D, and the angular acceleration of link CD at this 
instant. The block has a mass of 50 kg and center of mass at G. 
Neglect the mass of links AB and CD. 

	

A

CD

B
0.4 m

0.6 m
0.1 m

G

M � 450 N�m

v � 6 rad/s0.4 m

	 Prob. F17–6 

F17–1.  The cart and its load have a total mass of 100 kg. 
Determine the acceleration of the cart and the normal reactions 
on the pair of wheels at A and B. Neglect the mass of the wheels. 

	 0.6 m

0.5 m

0.4 m0.3 m

1.2 m
G

B A

100 N

3
4

5

	 Prob.  F17–1 

F17–2.  If the 80-kg cabinet is allowed to roll down the 
inclined plane, determine the acceleration of the cabinet 
and the normal reactions on the pair of rollers at A and B 
that have negligible mass. 

	

1.5 m

A

B
0.5 m

0.5 m

G

15�

	 Prob. F17–2 
F17–3.  The 20@lb link AB is pinned to a moving frame at A 
and held in a vertical position by means of a string BC which 
can support a maximum tension of 10 lb. Determine the 
maximum acceleration of the frame without breaking the 
string. What are the corresponding components of reaction 
at the pin A? 

	

3 ft

3 ft

A

B

C

4 ft

a

	 Prob. F17–3 

Fundamental problems
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17–27.  The sports car has a weight of 4500 lb and center 
of gravity at G. If it starts from rest it causes the rear 
wheels to slip as it accelerates. Determine how long it 
takes for it to reach a speed of 10 ft>s. Also, what are the 
normal reactions at each of the four wheels on the road? 
The coefficients of static and kinetic friction at the road 
are ms = 0.5 and mk = 0.3, respectively. Neglect the mass 
of the wheels.

4 ftB A

G

2 ft

2.5 ft

Prob. 17–27

*17–28.  The assembly has a mass of 8 Mg and is hoisted 
using the boom and pulley system. If the winch at B draws in 
the cable with an acceleration of 2 m>s2, determine the 
compressive force in the hydraulic cylinder needed to support 
the boom. The boom has a mass of 2 Mg and mass center at G.

17–29.  The assembly has a mass of 4 Mg and is hoisted 
using the winch at B. Determine the greatest acceleration of 
the assembly so that the compressive force in the hydraulic 
cylinder supporting the boom does not exceed 180 kN. What 
is the tension in the supporting cable? The boom has a mass 
of 2 Mg and mass center at G.

G

C

DA

4 m

1 m

2 m

2 m

6 m

B
60

Probs. 17–28/29

*17–24.  The door has a weight of 200 lb and a center of 
gravity at G. Determine how far the door moves in 2 s, 
starting from rest, if a man pushes on it at C with a horizontal 
force F = 30 lb. Also, find the vertical reactions at the 
rollers A and B.

17–25.  The door has a weight of 200 lb and a center of 
gravity at G. Determine the constant force F that must be 
applied to the door to push it open 12 ft to the right in 5 s, 
starting from rest. Also, find the vertical reactions at the 
rollers A and B.

6 ft 6 ft
A B

C G 12 ft

5 ft
3 ft

F

Probs. 17–24/25

17–26.  The jet aircraft has a total mass of 22 Mg and a 
center of mass at G. Initially at take-off the engines provide 
a thrust 2T = 4 kN and T� = 1.5 kN. Determine the 
acceleration of the plane and the normal reactions on the 
nose wheel at A and each of the two wing wheels located at 
B. Neglect the mass of the wheels and, due to low velocity, 
neglect any lift caused by the wings.

T¿ 2T
G

2.5 m 2.3 m B
1.2 m

A
6 m3 m

Prob. 17–26

PROBLEMS
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17–30.  The uniform girder AB has a mass of 8 Mg. 
Determine the internal axial, shear, and bending-moment 
loadings at the center of the girder if a crane gives it an 
upward acceleration of 3 m>s2.

A

C

60� 4 m B

3 m/s2

60�

Prob. 17–30

17–31.  A car having a weight of 4000 lb begins to skid and 
turn with the brakes applied to all four wheels. If the 
coefficient of kinetic friction between the wheels and the 
road is mk = 0.8, determine the maximum critical height h 
of the center of gravity G such that the car does not 
overturn. Tipping will begin to occur after the car rotates 
90° from its original direction of motion and, as shown in 
the figure, undergoes translation while skidding. Hint: Draw 
a free-body diagram of the car viewed from the front. When 
tipping occurs, the normal reactions of the wheels on the 
right side (or passenger side) are zero.

y

x
2.5 ft

2.5 ft h

z

G

Prob. 17–31

*17–32.  A force of P = 300 N is applied to the 60-kg cart. 
Determine the reactions at both the wheels at A and both 
the wheels at B. Also, what is the acceleration of the cart? 
The mass center of the cart is at G. 

0.3 m

0.08 m

0.2 m

0.3 m

0.4 m

30�

A B

G

P

Prob. 17–32

17–33.  Determine the largest force P that can be applied 
to the 60-kg cart, without causing one of the wheel reactions, 
either at A or at B, to be zero. Also, what is the acceleration 
of the cart? The mass center of the cart is at G.

0.3 m

0.08 m

0.2 m

0.3 m

0.4 m

30�

A B

G

P

Prob. 17–33
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17–34.  The trailer with its load has a mass of 150-kg and a 
center of mass at G. If it is subjected to a horizontal force of 
P = 600 N, determine the trailer’s acceleration and the 
normal force on the pair of wheels at A and at B. The wheels 
are free to roll and have negligible mass.

1.25 m

0.75 m
1.25 m

0.25 m0.25 m 0.5 m

G

B A

P � 600 N

Prob. 17–34

17–35.  The desk has a weight of 75 lb and a center of 
gravity at G. Determine its initial acceleration if a man 
pushes on it with a force F = 60 lb. The coefficient of kinetic 
friction at A and B is mk = 0.2.

*17–36.  The desk has a weight of 75 lb and a center of 
gravity at G. Determine the initial acceleration of a desk 
when the man applies enough force F to overcome the static 
friction at A and B. Also, find the vertical reactions on each 
of the two legs at A and at B. The coefficients of static and 
kinetic friction at A and B are ms = 0.5 and mk = 0.2, 
respectively.

G

F

A

30�

B

2 ft 2 ft

1 ft

2 ft

Probs. 17–35/36

17–37.  The 150-kg uniform crate rests on the 10-kg cart. 
Determine the maximum force P that can be applied to the 
handle without causing the crate to tip on the cart. Slipping 
does not occur.

1 m

0.5 m

P

Prob. 17–37

17–38.  The 150-kg uniform crate rests on the 10-kg cart. 
Determine the maximum force P that can be applied to the 
handle without causing the crate to slip or tip on the cart. 
The coefficient of static friction between the crate and cart 
is ms = 0.2.

1 m

0.5 m

P

Prob. 17–38
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17–39.  The bar has a weight per length w and is supported 
by the smooth collar. If it is released from rest, determine 
the internal normal force, shear force, and bending moment 
in the bar as a function of x.

30�

x

Prob. 17–39

*17–40.  The smooth 180-lb pipe has a length of 20 ft and a 
negligible diameter. It is carried on a truck as shown. 
Determine the maximum acceleration which the truck can 
have without causing the normal reaction at A to be zero. 
Also determine the horizontal and vertical components of 
force which the truck exerts on the pipe at B.

17–41.  The smooth 180-lb pipe has a length of 20 ft and a 
negligible diameter. It is carried on a truck as shown. If the 
truck accelerates at a = 5 ft>s2, determine the normal 
reaction at A and the horizontal and vertical components of 
force which the truck exerts on the pipe at B.

B

A
20 ft

5 ft

12 ft

Probs. 17–40/41

17–42.  The uniform crate has a mass of 50 kg and rests on 
the cart having an inclined surface. Determine the smallest 
acceleration that will cause the crate either to tip or slip 
relative to the cart. What is the magnitude of this 
acceleration? The coefficient of static friction between the 
crate and cart is ms = 0.5. 

15�

1 m

0.6 m

F

Prob. 17–42

17–43.  Determine the acceleration of the 150-lb cabinet 
and the normal reaction under the legs A and B if P = 35 lb. 
The coefficients of static and kinetic friction between the 
cabinet and the plane are ms = 0.2 and mk = 0.15, 
respectively. The cabinet’s center of gravity is located at G.

A

3.5 ft

1 ft 1 ft

P

4 ft

G

B

Prob. 17–43
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*17–44.  The uniform bar of mass m is pin connected to the 
collar, which slides along the smooth horizontal rod. If the 
collar is given a constant acceleration of a, determine 
the bar's inclination angle u. Neglect the collar's mass. 

L

A
a

u

Prob. 17–44

17–45.  The drop gate at the end of the trailer has a mass  
of 1.25 Mg and mass center at G. If it is supported by the 
cable AB and hinge at C, determine the tension in the cable 
when the truck begins to accelerate at 5 m>s2. Also, what 
are the horizontal and vertical components of reaction at 
the hinge C?

17–46.  The drop gate at the end of the trailer has a mass of 
1.25 Mg and mass center at G. If it is supported by the  
cable AB and hinge at C, determine the maximum 
deceleration of the truck so that the gate does not begin to 
rotate forward. What are the horizontal and vertical 
components of reaction at the hinge C?

B

C

30�

1.5 m
1 m

45�

G

Probs. 17–45/46

17–47.  The snowmobile has a weight of 250 lb, centered  
at G1, while the rider has a weight of 150 lb, centered at G2. 
If the acceleration is a = 20 ft>s2, determine the maximum 
height h of G2 of the rider so that the snowmobile’s front 
skid does not lift off the ground. Also, what are the traction 
(horizontal) force and normal reaction under the rear  
tracks at A?

*17–48.  The snowmobile has a weight of 250 lb, centered 
at G1, while the rider has a weight of 150 lb, centered at G2. 
If h = 3 ft, determine the snowmobile’s maximum 
permissible acceleration a so that its front skid does not lift 
off the ground. Also, find the traction (horizontal) force and 
the normal reaction under the rear tracks at A.

a

1.5 ft

0.5 ft

G1

G2

1 ft

h

A

Probs. 17–47/48

17–49.  If the cart’s mass is 30 kg and it is subjected to  
a horizontal force of P = 90 N, determine the tension in  
cord AB and the horizontal and vertical components of 
reaction on end C of the uniform 15-kg rod BC.

17–50.  If the cart’s mass is 30 kg, determine the horizontal 
force P that should be applied to the cart so that the cord AB 
just becomes slack. The uniform rod BC has a mass  
of 15 kg.

P

30�

30�

1 m

C

B

A

Probs. 17–49/50
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17–53.  The crate C has a weight of 150 lb and rests on the 
truck elevator for which the coefficient of static friction is 
ms = 0.4. Determine the largest initial angular acceleration a, 
starting from rest, which the parallel links AB and DE  
can have without causing the crate to slip. No tipping occurs.

B

A
C

D
2 ft

2 ft

E

30�

a

a

Prob. 17–53

17–54.  The crate C has a weight of 150 lb and rests on the 
truck elevator. Determine the initial friction and normal 
force of the elevator on the crate if the parallel links are given 
an angular acceleration a = 2 rad>s2  starting from rest.

B

A
C

D
2 ft

2 ft

E

30�

a

a

Prob. 17–54

17–51.  The pipe has a mass of 800 kg and is being towed 
behind the truck. If the acceleration of the truck is 
at = 0.5 m>s2, determine the angle u and the tension in the 
cable. The coefficient of kinetic friction between the pipe 
and the ground is mk = 0.1.

45�

0.4 m

G

A

B

C

a t

u

Prob. 17–51

*17–52.  The pipe has a mass of 800 kg and is being towed 
behind a truck. If the angle u = 30�, determine the 
acceleration of the truck and the tension in the cable.  
The coefficient of kinetic friction between the pipe and the 
ground is mk = 0.1.

45�

0.4 m

G

A

B

C

a t

u

Prob. 17–52



	 17.4 E quations of Motion: Rotation about a Fixed Axis	 441

17

17–55.  The 100-kg uniform crate C rests on the elevator 
floor where the coefficient of static friction is ms = 0.4. 
Determine the largest initial angular acceleration a, starting 
from rest at u = 90�, without causing the crate to slip. No 
tipping occurs.

1.2 m

0.6 m

1.5 m

1.5 m

C

B

D

E

A
a

u u

Prob. 17–55

*17–56.  The two uniform 4-kg bars DC and EF are fixed 
(welded) together at E. Determine the normal force NE , 
shear force V E , and moment ME , which DC exerts on EF at 
E if at the instant u = 60� BC has an angular velocity 
v = 2 rad>s and an angular acceleration a = 4 rad>s2  
as shown.

u � 60� a � 4 rad/s2

v � 2 rad/s

E

F

2 m2 m

D

BA

C

1.5 m

Prob. 17–56

17.4  �Equations of Motion: Rotation 
about a Fixed Axis

Consider the rigid body (or slab) shown in Fig. 17–13a, which is 
constrained to rotate in the vertical plane about a fixed axis perpendicular 
to the page and passing through the pin at O. The angular velocity and 
angular acceleration are caused by the external force and couple 
moment system acting on the body. Because the body’s center of mass G 
moves around a circular path, the acceleration of this point is best 
represented by its tangential and normal components. The tangential 
component of acceleration has a magnitude of (aG)t = arG and must act 
in a direction which is consistent with the body’s angular acceleration A. 
The magnitude of the normal component of acceleration is (aG)n = v2rG . 
This component is always directed from point G to O, regardless of the 
rotational sense of V.

G

A

V

(aG)t

(aG)n
rG

M1

M2

F4

F3

F2

F1

(a)

O

Fig. 17–13 
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The free-body and kinetic diagrams for the body are shown in Fig. 17–13b. 
The two components m(aG)t and m(aG)n , shown on the kinetic diagram, 
are associated with the tangential and normal components of acceleration 
of the body’s mass center. The IG A vector acts in the same direction as A 
and has a magnitude of IGa, where IG is the body’s moment of inertia 
calculated about an axis which is perpendicular to the page and passes 
through G. From the derivation given in Sec. 17.2, the equations of 
motion which apply to the body can be written in the form

	
�Fn = m(aG)n = mv2rG

�Ft = m(aG)t = marG

�MG = IGa

� (17–14)

The moment equation can be replaced by a moment summation about 
any arbitrary point P on or off the body provided one accounts for the 
moments �(mk)P produced by IG A, m(aG)t , and m(aG)n about the point.

Moment Equation About Point O.  Often it is convenient to 
sum moments about the pin at O in order to eliminate the unknown 
force FO . From the kinetic diagram, Fig. 17–13b, this requires

a+ �MO = �(mk)O;	 �MO = rGm(aG)t + IGa� (17–15)

Note that the moment of m(aG)n is not included here since the line of 
action of this vector passes through O. Substituting (aG)t = rGa, we may 
rewrite the above equation as a+ �MO = (IG + mrG

2 )a. From the parallel-
axis theorem, IO = IG + md2, and therefore the term in parentheses 
represents the moment of inertia of the body about the fixed axis of 
rotation passing through O.* Consequently, we can write the three 
equations of motion for the body as

	
�Fn = m(aG)n = mv2rG

�Ft = m(aG)t = marG

�MO = IOa

� (17–16)

When using these equations, remember that ;IOa< accounts for the 
“moment” of both m(aG)t and IG A about point O, Fig. 17–13b. In other 
words, �MO = �(mk)O = IOa, as indicated by Eqs. 17–15 and 17–16.

O

G
(aG)t

(aG)n
rG

M1

M2

F4

F3

F2

F1

(a)

A

V

O

G

M1

M2

F4

F3

F2

F1

W

FO

=

(b)

rGO

G

m(aG)t

m(aG)n

IGA

Fig. 17–13 (cont.) 
*The result �MO = IOa can also be obtained directly from Eq. 17–6 by selecting  

point P to coincide with O, realizing that (aP)x = (aP)y = 0.
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Procedure for Analysis

Kinetic problems which involve the rotation of a body about a fixed 
axis can be solved using the following procedure.

Free-Body Diagram.

	 •	 Establish the inertial n, t coordinate system and specify the 
direction and sense of the accelerations (aG)n and (aG)t and the 
angular acceleration A of the body. Recall that (aG)t must act in a 
direction which is in accordance with the rotational sense of A, 
whereas (aG)n always acts toward the axis of rotation, point O.

	 •	 Draw the free-body diagram to account for all the external forces 
and couple moments that act on the body.

	 •	 Determine the moment of inertia IG or IO .

	 •	 Identify the unknowns in the problem.

	 •	 If it is decided that the rotational equation of motion 
�MP = �(mk)P is to be used, i.e., P is a point other than G or O, 
then consider drawing the kinetic diagram in order to help 
“visualize” the “moments” developed by the components m(aG)n , 
m(aG)t , and IG A when writing the terms for the moment sum 
�(mk)P .

Equations of Motion.

	 •	 Apply the three equations of motion in accordance with the 
established sign convention.

	 •	 If moments are summed about the body’s mass center, G, then 
�MG = IGa, since (maG)t and (maG)n create no moment about G.

	 •	 If moments are summed about the pin support O on the axis of 
rotation, then (maG)n creates no moment about O, and it can be 
shown that �MO = IOa.

Kinematics.

	 •	 Use kinematics if a complete solution cannot be obtained strictly 
from the equations of motion.

	 •	 If the angular acceleration is variable, use

a =
dv

dt
 a du = v dv  v =

du

dt

	 •	 If the angular acceleration is constant, use

 v = v0 + act

 u = u0 + v0t +
1
2 act

2

 v2 = v0
2 + 2ac(u - u0)

The crank on the oil-pumping rig undergoes 
rotation about a fixed axis which is caused by 
a driving torque M of the motor. The loadings 
shown on the free-body diagram cause the 
effects shown on the kinetic diagram. If 
moments are summed about the mass 
center,  G, then �MG = IGa. However, if 
moments are summed about point O, noting 
that (aG)t = ad, then a+ �MO = IGa+  
m(aG)t d + m(aG)n(0) = (IG + md2)a = IOa. 
(© R.C. Hibbeler)

Oy

Ox

M

W

T

=

G

G

O

O

IGA

m(aG)n

m(aG)t

d
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The unbalanced 50-lb flywheel shown in Fig. 17–14a has a radius of 
gyration of kG = 0.6 ft about an axis passing through its mass center G. 
If it is released from rest, determine the horizontal and vertical 
components of reaction at the pin O.

Solution
Free-Body and Kinetic Diagrams.  Since G moves in a circular path, 
it will have both normal and tangential components of acceleration. 
Also, since a, which is caused by the flywheel’s weight, acts clockwise, 
the tangential component of acceleration must act downward. Why? 
Since v = 0, only m(aG)t = marG and IGa are shown on the kinetic 
diagram in Fig. 17–14b. Here, the moment of inertia about G is

IG = mkG
2 = (50 lb>32.2 ft>s2)(0.6 ft)2 = 0.559 slug # ft2

The three unknowns are On , Ot , and a.

Equations of Motion.

d+ �Fn = mv2rG;	 On = 0� Ans.

+ T �Ft = marG;	   -Ot + 50 lb = a 50 lb

32.2 ft>s2 b (a)(0.5 ft)	 (1)

c+ �MG = IGa;	 Ot(0.5 ft) = (0.5590 slug # ft2)a	

Solving,

	 a = 26.4 rad>s2 Ot = 29.5 lb� Ans.

Moments can also be summed about point O in order to eliminate On 
and Ot and thereby obtain a direct solution for A, Fig. 17–14b. This can 
be done in one of two ways.

c+ �MO = �(mk)O;

(50 lb)(0.5 ft) = (0.5590 slug # ft2)a + c a 50 lb

32.2 ft>s2 ba(0.5 ft) d (0.5 ft)

	 50 lb(0.5 ft) = 0.9472a	 (2)

If �MO = IOa is applied, then by the parallel-axis theorem the 
moment of inertia of the flywheel about O is

IO = IG + mrG
2 = 0.559 + a 50

32.2
b (0.5)2 = 0.9472 slug # ft2

Hence,

c+ �MO = IOa;  (50 lb)(0.5 ft) = (0.9472 slug # ft2)a

which is the same as Eq. 2. Solving for a and substituting into Eq. 1 
yields the answer for Ot obtained previously.

Example   17.8

0.5 ft

G

(a)

O

n

t

(b)

0.5 ft

O
GOn

Ot 50 lb

O G

rG

IGa

marG

=

Fig. 17–14 
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At the instant shown in Fig. 17–15a, the 20-kg slender rod has an 
angular velocity of v = 5 rad>s. Determine the angular acceleration 
and the horizontal and vertical components of reaction of the pin 
on the rod at this instant.

v � 5 rad/s

3 m

60 N � m

(a)

O

Example   17.9

 IGA

O G

O G

1.5 m

On

Ot

60 N � m

20(9.81) N

(b)

mv2rG

marG

rG

=

Fig. 17–15 

Solution
Free-Body and Kinetic Diagrams.  Fig. 17–15b. As shown on the 
kinetic diagram, point G moves around a circular path and so it has two 
components of acceleration. It is important that the tangential 
component at = arG act downward since it must be in accordance with 
the rotational sense of A. The three unknowns are On , Ot , and a.

Equation of Motion. 

d+ �Fn = mv2rG;	 On = (20 kg)(5 rad>s)2(1.5 m)

+ T �Ft = marG;	 -Ot + 20(9.81)N = (20 kg)(a)(1.5 m)

c+ �MG = IGa;	 Ot(1.5 m) + 60 N # m = 3 1
12(20 kg)(3 m)24a

Solving

	 On = 750 N Ot = 19.05 N a = 5.90 rad>s2� Ans.

A more direct solution to this problem would be to sum moments 
about point O to eliminate On and Ot and obtain a direct solution for a. 
Here,

c+ �MO = �(mk)O;  60 N # m + 20(9.81) N(1.5 m) =

	 3 1
12(20 kg)(3 m)24a + [20 kg(a)(1.5 m)](1.5 m)

	  a = 5.90 rad>s2� Ans.

Also, since IO =
1
3 ml2 for a slender rod, we can apply

c+ �MO = IOa;  60 N # m + 20(9.81) N(1.5 m) = 31
3(20 kg)(3 m)24a

	 a = 5.90 rad>s2� Ans.

Note: By comparison, the last equation provides the simplest solution 
for a and does not require use of the kinetic diagram.
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The drum shown in Fig. 17–16a has a mass of 60 kg and a radius of 
gyration kO = 0.25 m. A cord of negligible mass is wrapped around 
the periphery of the drum and attached to a block having a mass of 20 kg. 
If the block is released, determine the drum’s angular acceleration.

Solution I 
Free-Body Diagram.  Here we will consider the drum and block 
separately, Fig. 17–16b. Assuming the block accelerates downward at a, 
it creates a counterclockwise angular acceleration A of the drum.
The moment of inertia of the drum is

IO = mkO
2 = (60 kg)(0.25 m)2 = 3.75 kg # m2

There are five unknowns, namely Ox , Oy , T, a, and a.

Equations of Motion.  Applying the translational equations of 
motion �Fx = m(aG)x and �Fy = m(aG)y to the drum is of no 
consequence to the solution, since these equations involve the 
unknowns Ox and Oy . Thus, for the drum and block, respectively,

a+ �MO = IOa;	 T(0.4 m) = (3.75 kg # m2)a	 (1)

+ c �Fy = m(aG)y;	 -20(9.81)N + T = -(20 kg)a	 (2)

Kinematics.  Since the point of contact A between the cord and 
drum has a tangential component of acceleration a, Fig. 17–16a, then

a+a = ar;	 a = a(0.4 m)	 (3)

Solving the above equations,

 T = 106 N  a = 4.52 m>s2

	  a = 11.3 rad>s2d  � Ans.
Solution II
Free-Body and Kinetic Diagrams.  The cable tension T can be 
eliminated from the analysis by considering the drum and block as a 
single system, Fig. 17–16c. The kinetic diagram is shown since moments 
will be summed about point O.

Equations of Motion.  Using Eq. 3 and applying the moment 
equation about O to eliminate the unknowns Ox and Oy , we have

a+ �MO = �(�k)O;	 [20(9.81) N] (0.4 m) =

	 (3.75 kg # m2)a + [20 kg(a 0.4 m)](0.4 m)	

	 a = 11.3 rad>s2� Ans.

Note: If the block were removed and a force of 20(9.81) N were 
applied to the cord, show that a = 20.9 rad>s2. This value is larger 
since the block has an inertia, or resistance to acceleration.

Example   17.10

0.4 m
O

(a)

A

0.4 m
O

(b)

Ox

Oy

60 (9.81) N

20 (9.81) N

T

T y

x

a

A

0.4 m

(c)

Ox

Oy

60 (9.81) N

O
0.4 m O

20(9.81) N (20 kg)a

IOa

=

Fig. 17–16 
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The slender rod shown in Fig. 17–17a has a mass m and length l and is 
released from rest when u = 0�. Determine the horizontal and vertical 
components of force which the pin at A exerts on the rod at the instant 
u = 90�.

Solution
Free-Body and Kinetic Diagrams.  The free-body diagram for the 
rod in the general position u is shown in Fig. 17–17b. For convenience, 
the force components at A are shown acting in the n and t directions. 
Note that A acts clockwise and so (aG)t acts in the +t direction.

The moment of inertia of the rod about point A is IA =
1
3 ml2.

Equations of Motion.  Moments will be summed about A in order 
to eliminate An and At.

 + a�Fn = mv2rG;	  An - mg sin u = mv2(l>2)	 (1)

 + b�Ft = marG;	  At + mg cos u = ma(l>2)	 (2)

c+ �MA = IAa;	  mg cos u(l>2) = 11
3 ml22a	 (3)

Kinematics.  For a given angle u there are four unknowns in the 
above three equations: An , At , v, and a. As shown by Eq. 3, a is not 
constant; rather, it depends on the position u of the rod. The necessary 
fourth equation is obtained using kinematics, where a and v can be 
related to u by the equation

(c+)	 v dv = a du	 (4)

Note that the positive clockwise direction for this equation agrees 
with that of Eq. 3. This is important since we are seeking a simultaneous 
solution.

In order to solve for v at u = 90�, eliminate a from Eqs. 3 and 4, 
which yields

v dv = (1.5g>l) cos u du

Since v = 0 at u = 0�, we have

	  L
v

0
v dv = (1.5g>l)L

90�

0�

cos u du	

	  v2 = 3g>l 	

Substituting this value into Eq. 1 with u = 90� and solving Eqs. 1 to 3 
yields

a = 0

	 At = 0 A n = 2.5 mg� Ans.

Note: If �MA = �(�k)A  is used, one must account for the moments 
of IG A and m(aG)t about A. 

Example   17.11

l

A

(a)

u

(b)

G

mv2

IGÅ

l–
2

A

An

At

mg

G

u

u

=

l–
2( (

mÅ l–
2( (

Fig. 17–17 
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F17–10.  At the instant shown, the 30@kg disk has a 
counterclockwise angular velocity of v = 10 rad>s. 
Determine the tangential and normal components of 
reaction of the pin O on the disk and the angular 
acceleration of the disk at this instant. 

0.3 m

O

P � 50 N
3

4

5

 v � 10 rad/s

Prob. F17–10
F17–11.  The uniform slender rod has a mass of 15 kg. 
Determine the horizontal and vertical components of 
reaction at the pin O, and the angular acceleration of the 
rod just after the cord is cut. 

O

0.6 m 0.3 m

Prob. F17–11 
F17–12.  The uniform 30@kg slender rod is being pulled by 
the cord that passes over the small smooth peg at A. If the 
rod has a counterclockwise angular velocity of v = 6 rad>s 
at the instant shown, determine the tangential and normal 
components of reaction at the pin O and the angular 
acceleration of the rod. 

A

O

P � 300 N

0.8 m

0.6 m 0.3 m

 v � 6 rad/s

Prob. F17–12 

F17–7.  The 100@kg wheel has a radius of gyration about its 
center O of kO = 500 mm. If the wheel starts from rest, 
determine its angular velocity in t = 3 s. 

0.6 m

O

P � 100 N

Prob. F17–7 

F17–8.  The 50@kg disk is subjected to the couple moment 
of M = (9t) N # m, where t is in seconds. Determine the 
angular velocity of the disk when t = 4 s starting from rest. 

O

0.3 m
M � (9t) N�m

Prob. F17–8 

F17–9.  At the instant shown, the uniform 30@kg slender 
rod has a counterclockwise angular velocity of v = 6 rad>s. 
Determine the tangential and normal components of 
reaction of pin O on the rod and the angular acceleration of 
the rod at this instant. 

O

0.3 m 0.6 m

M � 60 N�m

Prob. F17–9 

Fundamental problems
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              PROBLEMS 

17–57.  The 10-kg wheel has a radius of gyration kA = 200 mm. 
If the wheel is subjected to a moment M = (5t) N # m, where t 
is in seconds, determine its angular velocity when t = 3 s 
starting from rest. Also, compute the reactions which the fixed 
pin A exerts on the wheel during the motion.

A

M

Prob. 17–57

17–58.  The uniform 24-kg plate is released from rest at the 
position shown. Determine its initial angular acceleration 
and the horizontal and vertical reactions at the pin A.

0.5 m

A

0.5 m

Prob. 17–58

17–59.  The uniform slender rod has a mass m. If it is 
released from rest when u = 0�, determine the magnitude 
of the reactive force exerted on it by pin B when u = 90�.

A

B

C

L
3

2
3 L

u

Prob. 17–59

*17–60.  The bent rod has a mass of 2 kg>m. If it is released 
from rest in the position shown, determine its initial angular 
acceleration and the horizontal and vertical components of 
reaction at A.

1.5 m

1.5 m

A

B

C

Prob. 17–60

17–61.  If a horizontal force of P = 100 N is applied to the 
300-kg reel of cable, determine its initial angular 
acceleration. The reel rests on rollers at A and B and has a 
radius of gyration of kO = 0.6 m.

20� 20�

O

A B

0.75 m

1 m

P

Prob. 17–61
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17–62.  The 10-lb bar is pinned at its center O and 
connected to a torsional spring. The spring has a stiffness 
k = 5 lb # ft>rad, so that the torque developed is 
M = (5u) lb # ft, where u is in radians. If the bar is released 
from rest when it is vertical at u = 90�, determine its 
angular velocity at the instant u = 0�.

17–63.  The 10-lb bar is pinned at its center O and 
connected to a torsional spring. The spring has a stiffness 
k = 5 lb # ft>rad, so that the torque developed is 
M = (5u) lb # ft, where u is in radians. If the bar is released 
from rest when it is vertical at u = 90�, determine its 
angular velocity at the instant u = 45�.

1 ft

1 ft

O

u

Probs. 17–62/63

*17–64.  A cord is wrapped around the outer surface of the 
8-kg disk. If a force of F = (¼ u2) N, where u is in radians,  
is applied to the cord, determine the disk’s angular 
acceleration when it has turned 5 revolutions. The disk has 
an initial angular velocity of v0 = 1 rad>s. 

v

300 mm

O

F

Prob. 17–64

17–65.  Disk A has a weight of 5 lb and disk B has a weight 
of 10 lb. If no slipping occurs between them, determine the 
couple moment M which must be applied to disk A to give 
it an angular acceleration of 4 rad>s2.

0.75 ft

B

M

A

a � 4 rad/s2

0.5 ft

Prob. 17–65

17–66.  The kinetic diagram representing the general 
rotational motion of a rigid body about a fixed axis passing 
through O is shown in the figure. Show that IGA may be 
eliminated by moving the vectors m(aG)t and m(aG)n to  
point P, located a distance rGP = k2

G>rOG from the center of 
mass G of the body. Here kG represents the radius of 
gyration of the body about an axis passing through G. The 
point P is called the center of percussion of the body.

rGP

rOG

m(aG)n

G
IG

m(aG)t

O

P

a

a

Prob. 17–66
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17–67.  If the cord at B suddenly fails, determine the 
horizontal and vertical components of the initial reaction at 
the pin A, and the angular acceleration of the 120-kg beam. 
Treat the beam as a uniform slender rod.

B
A

2 m 2 m

800 N

Prob. 17–67

*17–68.  The device acts as a pop-up barrier to prevent the 
passage of a vehicle. It consists of a 100-kg steel plate AC 
and a 200-kg counterweight solid concrete block located as 
shown. Determine the moment of inertia of the plate and 
block about the hinged axis through A. Neglect the mass of 
the supporting arms AB. Also, determine the initial angular 
acceleration of the assembly when it is released from rest at 
u = 45°.

AC

1.25 m

0.5 m
0.5 m

0.3 m

B
u

Prob. 17–68

17–69.  The 20-kg roll of paper has a radius of gyration  
kA = 90 mm about an axis passing through point A. It is pin 
supported at both ends by two brackets AB. If the roll rests 
against a wall for which the coefficient of kinetic friction is 
μk = 0.2 and a vertical force F = 30 N is applied to the end of 
the paper, determine the angular acceleration of the roll as 
the paper unrolls.

17–70.  The 20-kg roll of paper has a radius of gyration  
kA = 90 mm about an axis passing through point A. It is pin 
supported at both ends by two brackets AB. If the roll rests 
against a wall for which the coefficient of kinetic friction is 
μk = 0.2, determine the constant vertical force F that must 
be applied to the roll to pull off 1 m of paper in t = 3 s 
starting from rest. Neglect the mass of paper that is removed.

300 mm

B

AC
125 mm

F

Probs. 17–69/70

17–71.  The reel of cable has a mass of 400 kg and a radius 
of gyration of kA = 0.75 m. Determine its angular velocity 
when t = 2 s, starting from rest, if the force P = (20t2 + 80) N, 
when t is in seconds. Neglect the mass of the unwound cable, 
and assume it is always at a radius of 0.5 m.

A

1 m

0.5 m P

Prob. 17–71
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*17–72.  The 30-kg disk is originally spinning at v = 125 rad>s. 
If it is placed on the ground, for which the coefficient of 
kinetic friction is μC = 0.5, determine the time required for 
the motion to stop. What are the horizontal and vertical 
components of force which the member AB exerts on the 
pin at A during this time? Neglect the mass of AB.

B

0.3 m

0.5 m

0.5 m   v � 125 rad/s
C

A

Prob. 17–72

17–73.  Cable is unwound from a spool supported on small 
rollers at A and B by exerting a force T = 300 N on the 
cable. Compute the time needed to unravel 5 m of cable 
from the spool if the spool and cable have a total mass of 
600 kg and a radius of gyration of kO = 1.2 m. For the 
calculation, neglect the mass of the cable being unwound 
and the mass of the rollers at A and B. The rollers turn with 
no friction.

30�

1 m

O

T � 300 N

0.8 m

A B

1.5 m

Prob. 17–73

17–74.  The 5-kg cylinder is initially at rest when it is placed 
in contact with the wall B and the rotor at A. If the rotor 
always maintains a constant clockwise angular velocity 
v = 6 rad>s, determine the initial angular acceleration of 
the cylinder. The coefficient of kinetic friction at the 
contacting surfaces B and C is mk = 0.2.

C

A

v

125 mm

45�

B

Prob. 17–74

17–75.  The wheel has a mass of 25 kg and a radius of 
gyration kB = 0.15 m. It is originally spinning at 
v = 40 rad>s. If it is placed on the ground, for which the 
coefficient of kinetic friction is mC = 0.5, determine the 
time required for the motion to stop. What are the horizontal 
and vertical components of reaction which the pin at A 
exerts on AB during this time? Neglect the mass of AB.

0.3 m

B

0.4 m

A

C

0.2 m

v

Prob. 17–75
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*17–76.  The 20-kg roll of paper has a radius of gyration  
kA = 120 mm about an axis passing through point A. It is pin 
supported at both ends by two brackets AB. The roll rests 
on the floor, for which the coefficient of kinetic friction is  
μk = 0.2. If a horizontal force F = 60 N is applied to the end 
of the paper, determine the initial angular acceleration of 
the roll as the paper unrolls.

300 mm

C

400 mm

B

A

F

Prob. 17–76

17–77.  Disk D turns with a constant clockwise angular 
velocity of 30 rad>s. Disk E has a weight of 60 lb and is initially 
at rest when it is brought into contact with D. Determine the 
time required for disk E to attain the same angular velocity as 
disk D. The coefficient of kinetic friction between the two 
disks is μk = 0.3. Neglect the weight of bar BC.

A

B

1 ft

2 ft

2 ft

1 ft

 � 30 rad/s

C

E

D

v

Prob. 17–77

17–78.  Two cylinders A and B, having a weight of 10 lb and 
5 lb, respectively, are attached to the ends of a cord which 
passes over a 3-lb pulley (disk). If the cylinders are released 
from rest, determine their speed in t = 0.5 s. The cord does 
not slip on the pulley. Neglect the mass of the cord. 
Suggestion: Analyze the “system” consisting of both the 
cylinders and the pulley.

A

B

O
0.75 ft

Prob. 17–78

17–79.  The two blocks A and B have a mass of 5 kg and 
10 kg, respectively. If the pulley can be treated as a disk of 
mass 3 kg and radius 0.15 m, determine the acceleration of 
block A. Neglect the mass of the cord and any slipping on 
the pulley.

*17–80.  The two blocks A and B have a mass mA and mB, 
respectively, where mB 7 mA. If the pulley can be treated as 
a disk of mass M, determine the acceleration of block A. 
Neglect the mass of the cord and any slipping on the pulley.

A

B

r O

Probs. 17–79/80
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17–81.  Determine the angular acceleration of the 25-kg 
diving board and the horizontal and vertical components of 
reaction at the pin A the instant the man jumps off. Assume 
that the board is uniform and rigid, and that at the instant 
he jumps off the spring is compressed a maximum amount 
of 200 mm, v = 0, and the board is horizontal. Take 
k = 7 kN>m.

k
A

1.5 m 1.5 m

Prob. 17–81

17–82.  The lightweight turbine consists of a rotor which is 
powered from a torque applied at its center. At the instant 
the rotor is horizontal it has an angular velocity of 15 rad>s 
and a clockwise angular acceleration of 8 rad>s2. Determine 
the internal normal force, shear force, and moment at a 
section through A. Assume the rotor is a 50-m-long slender 
rod, having a mass of 3 kg>m.

25 m

A

10 m

Prob. 17–82

17–83.  The two-bar assembly is released from rest in the 
position shown. Determine the initial bending moment at 
the fixed joint B. Each bar has a mass m and length l.

A l

l

B

C

Prob. 17–83

*17–84.  The armature (slender rod) AB has a mass of 
0.2  kg and can pivot about the pin at A. Movement is 
controlled by the electromagnet E, which exerts a horizontal 
attractive force on the armature at B of FB = (0.2(10-3)l-2) N, 
where l in meters is the gap between the armature and the 
magnet at any instant. If the armature lies in the horizontal 
plane, and is originally at rest, determine the speed of the 
contact at B the instant l = 0.01 m. Originally l = 0.02 m.

B

150 mm

A

E

l

Prob. 17–84
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17–85.  The bar has a weight per length of w. If it is rotating 
in the vertical plane at a constant rate v about point O, 
determine the internal normal force, shear force, and 
moment as a function of x and  u.

x

L

O

u

v

Prob. 17–85

17–86.  The 4-kg slender rod is initially supported 
horizontally by a spring at B and pin at A. Determine the 
angular acceleration of the rod and the acceleration of the 
rod’s mass center at the instant the 100-N force is applied.

A

1.5 m 1.5 m

100 N

k � 20 N/m
B 

Prob. 17–86

17–87.  The 100-kg pendulum has a center of mass at G and 
a radius of gyration about G of kG = 250 mm. Determine the 
horizontal and vertical components of reaction on the beam 
by the pin A and the normal reaction of the roller B at the 
instant u = 90° when the pendulum is rotating at  
v = 8 rad>s. Neglect the weight of the beam and the support.

*17–88.  The 100-kg pendulum has a center of mass at G 
and a radius of gyration about G of kG = 250 mm. Determine 
the horizontal and vertical components of reaction on the 
beam by the pin A and the normal reaction of the roller B at 
the instant u = 0° when the pendulum is rotating at  
v = 4 rad>s. Neglect the weight of the beam and the support.

A B

C

0.6 m 0.6 m

0.75 m

1 m

G

v

u

Probs. 17–87/88

17–89.  The “Catherine wheel” is a firework that consists of 
a coiled tube of powder which is pinned at its center. If the 
powder burns at a constant rate of 20 g>s such as that the 
exhaust gases always exert a force having a constant 
magnitude of 0.3 N, directed tangent to the wheel, determine 
the angular velocity of the wheel when 75% of the mass is 
burned off. Initially, the wheel is at rest and has a mass of 
100 g and a radius of r = 75 mm. For the calculation, consider 
the wheel to always be a thin disk.

0.3 N

r

C

Prob. 17–89
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17.5  �Equations of Motion: General 
Plane Motion

The rigid body (or slab) shown in Fig. 17–18a is subjected to general plane 
motion caused by the externally applied force and couple-moment system. 
The free-body and kinetic diagrams for the body are shown in Fig. 17–18b. 
If an x and y inertial coordinate system is established as shown, the three 
equations of motion are

	
�Fx = m(aG)x

�Fy = m(aG)y

�MG = IGa       

� (17–17)

In some problems it may be convenient to sum moments about a point P 
other than G in order to eliminate as many unknown forces as possible 
from the moment summation. When used in this more general case, the 
three equations of motion are

	
�Fx = m(aG)x

�Fy = m(aG)y

�MP = �(mk)P

� (17–18)

Here �(mk)P represents the moment sum of IG A and maG (or its 
components) about P as determined by the data on the kinetic diagram.

Moment Equation About the IC.  There is a particular type of 
problem that involves a uniform disk, or body of circular shape, that rolls 
on a rough surface without slipping, Fig. 17–19. If we sum the moments 
about the instantaneous center of zero velocity, then �(mk)IC becomes 
IICa, so that 

	 �MIC = IICa � (17–19)

This result compares with�MO = IOa , which is used for a body pinned at 
point O, Eq. 17–16. See Prob. 17–90.

aG

G

M1

M2

F4

F1

F2

F3

(a)

V

A

(b)

�

G

IGA

m(aG)y

m(aG)x

maG

G

M1

M2

F4

F1

F2

F3

W

y

x

Fig. 17–18 

F

A

IC

Fig. 17–19
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As the soil compactor, or “sheep’s foot roller” 
moves forward, the roller has general plane 
motion. The forces shown on its free-body 
diagram cause the effects shown on the kinetic 
diagram. If moments are summed about the 
mass center, G, then �MG = IGa. However, if 
moments are summed about point A (the IC) 
then a+ �MA = IGa + (maG)d = IAa.

=

IG

Gy

Gx

FA

NA

maG

W

G

G

A

A

d

AProcedure for Analysis

Kinetic problems involving general plane motion of a rigid body can 
be solved using the following procedure.

Free-Body Diagram.

	 •	 Establish the x, y inertial coordinate system and draw the free-
body diagram for the body.

	 •	 Specify the direction and sense of the acceleration of the mass 
center, aG , and the angular acceleration A of the body.

	 •	 Determine the moment of inertia IG .

	 •	 Identify the unknowns in the problem.

	 •	 If it is decided that the rotational equation of motion 
�MP = �(mk)P is to be used, then consider drawing the kinetic 
diagram in order to help “visualize” the “moments” developed by 
the components m(aG)x , m(aG)y , and IG A when writing the terms 
in the moment sum �(mk)P .

Equations of Motion.

	 •	 Apply the three equations of motion in accordance with the 
established sign convention.

	 •	 When friction is present, there is the possibility for motion with 
no slipping or tipping. Each possibility for motion should be 
considered.

Kinematics.

	 •	 Use kinematics if a complete solution cannot be obtained strictly 
from the equations of motion.

	 •	 If the body’s motion is constrained due to its supports, additional 
equations may be obtained by using aB = aA + aB>A , which 
relates the accelerations of any two points A and B on the body.

	 •	 When a wheel, disk, cylinder, or ball rolls without slipping, then 
aG = ar.

(© R.C. Hibbeler)
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Determine the angular acceleration of the spool in Fig. 17–20a. The 
spool has a mass of 8 kg and a radius of gyration of kG = 0.35 m. The 
cords of negligible mass are wrapped around its inner hub and  
outer rim.

Solution I 
Free-Body and Kinetic Diagrams.  Fig. 17–20b. The 100-N force 
causes aG to act upward. Also, A acts clockwise, since the spool winds 
around the cord at A.

There are three unknowns T, aG , and a. The moment of inertia of 
the spool about its mass center is

IG = mkG
2 = 8 kg(0.35 m)2 = 0.980 kg # m2

Equations of Motion.
+ c �Fy = m(aG)y;    T + 100 N - 78.48 N = (8 kg)aG	 (1)

c+ �MG = IGa;  100 N(0.2 m) - T(0.5 m) = (0.980 kg # m2)a	 (2)

Kinematics.  A complete solution is obtained if kinematics is used to 
relate aG to a. In this case the spool “rolls without slipping” on the cord 
at A. Hence, we can use the results of Example 16.4 or 16.15 so that,

(c+) aG = ar;	 aG = a (0.5 m)	 (3)

Solving Eqs. 1 to 3, we have

	  a = 10.3 rad>s2	 Ans.

	  aG = 5.16 m>s2 	

	  T = 19.8 N 	

Solution II
Equations of Motion.  We can eliminate the unknown T by summing 
moments about point A. From the free-body and kinetic diagrams  
Figs. 17–20b and 17–20c, we have

c+ �MA = �(mk)A;    100 N(0.7 m) - 78.48 N(0.5 m)

= (0.980 kg # m2)a + [(8 kg)aG](0.5 m)

Using Eq. (3),

	 a = 10.3 rad>s2� Ans.

Solution III
Equations of Motion.  The simplest way to solve this problem is to 
realize that point A is the IC for the spool. Then Eq. 17–19 applies.

c+ �MA = IAa;  (100 N)(0.7 m) - (78.48 N)(0.5 m)

= [0.980 kg # m2 + (8 kg)(0.5 m)2]a

	 a = 10.3 rad>s2

Example   17.12

0.5 m0.2 m

A

100 N

G

(a)

100 N

0.2 m
0.5 m

G

78.48 N

T

A

=

G

(8 kg) aG

(0.980 kg�m2)

(b)

AA
0.5 m

Fig. 17–20 
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The 50-lb wheel shown in Fig. 17–21 has a radius of gyration 
kG = 0.70 ft. If a 35@lb # ft couple moment is applied to the wheel, 
determine the acceleration of its mass center G. The coefficients of 
static and kinetic friction between the wheel and the plane at A are 
ms = 0.3 and mk = 0.25, respectively.

Solution
Free-Body and Kinetic Diagrams.  By inspection of Fig. 17–21b, it 
is seen that the couple moment causes the wheel to have a clockwise 
angular acceleration of A. As a result, the acceleration of the mass 
center, aG , is directed to the right. The moment of inertia is

IG = mkG
2 =

50 lb

32.2 ft>s2 (0.70 ft)2 = 0.7609 slug # ft2

The unknowns are NA , FA , aG , and a.

Equations of Motion.

S+ �Fx = m(aG)x;	 FA = a 50 lb

32.2 ft>s2 baG
	 (1)

+ c �Fy = m(aG)y;	 NA - 50 lb = 0	 (2)

c+ �MG = IGa;    35 lb # ft - 1.25 ft(FA) = (0.7609 slug # ft2)a	 (3)

A fourth equation is needed for a complete solution.

Kinematics (No Slipping).  If this assumption is made, then

(c+)	 aG = (1.25 ft)a	 (4)

Solving Eqs. 1 to 4,

 NA = 50.0 lb   FA = 21.3 lb

 a = 11.0 rad>s2  aG = 13.7 ft>s2

This solution requires that no slipping occurs, i.e., FA … msNA . 
However, since 21.3 lb 7 0.3(50 lb) = 15 lb, the wheel slips as it rolls.

(Slipping).  Equation 4 is not valid, and so FA = mkNA , or

	 FA = 0.25NA	 (5)

Solving Eqs. 1 to 3 and 5 yields

NA = 50.0 lb  FA = 12.5 lb

 a = 25.5 rad>s2

	  aG = 8.05 ft>s2 S � Ans.

Example   17.13

G

(a)

1.25 ft

M � 35 lb�ft

A

35 lb�ft

G

(b)

1.25 ft

50 lb

FA

NA

maG

IG a

=

Fig. 17–21 
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The uniform slender pole shown in Fig. 17–22a has a mass of 100 kg. If 
the coefficients of static and kinetic friction between the end of the 
pole and the surface are ms = 0.3, and mk = 0.25, respectively, 
determine the pole’s angular acceleration at the instant the 400-N 
horizontal force is applied. The pole is originally at rest.

Solution
Free-Body and Kinetic Diagrams.  Figure 17–22b. The path of motion 
of the mass center G will be along an unknown curved path having a 
radius of curvature r, which is initially on a vertical line. However, 
there is no normal or y component of acceleration since the pole is 
originally at rest, i.e., vG = 0, so that (aG)y = vG

2 >r = 0. We will assume 
the mass center accelerates to the right and that the pole has a clockwise 
angular acceleration of A. The unknowns are NA , FA , aG , and a.

Equation of Motion.

S+ �Fx = m(aG)x;	 400 N - FA = (100 kg)aG
	 (1)

+ c �Fy = m(aG)y;	 NA - 981 N = 0	 (2)

c+ �MG = IGa; 	FA(1.5 m) - (400 N)(1 m) = [ 1
12(100 kg)(3 m)2]a	 (3)

A fourth equation is needed for a complete solution.

Kinematics (No Slipping).  With this assumption, point A acts as a 
“pivot” so that a is clockwise, then aG is directed to the right.

aG = arAG;	 aG = (1.5 m) a	 (4)

Solving Eqs. 1 to 4 yields

 NA = 981 N  FA = 300 N

 aG = 1 m>s2  a = 0.667 rad>s2

The assumption of no slipping requires FA … msNA . However, 
300 N 7 0.3(981 N) = 294 N and so the pole slips at A. 

(Slipping).  For this case Eq. 4 does not apply. Instead the frictional 
equation FA = mkNA must be used. Hence,

	 FA = 0.25NA	 (5)

Solving Eqs. 1 to 3 and 5 simultaneously yields

NA = 981 N FA = 245 N aG = 1.55 m>s2

	 a = -0.428 rad>s2 = 0.428 rad>s2d � Ans.

Example   17.14

0.5 m

400 N

3 m

(a)

A

1.5 m
400 N

1 m

G

FA

NA

981 N

(b)

(100 kg)aG

IGA
=

Fig. 17–22 
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The uniform 50-kg bar in Fig. 17–23a is held in the equilibrium position 
by cords AC and BD. Determine the tension in BD and the angular 
acceleration of the bar immediately after AC is cut.

Solution
Free-Body and Kinetic Diagrams.  Fig. 17–23b. There are four 
unknowns, TB , (aG)x , (aG)y , and a.

Equations of Motion.

S+ �Fx = m(aG)x;	 0 = 50 kg (aG)x

	 (aG)x = 0

+ c �Fy = m(aG)y; 	 TB - 50(9.81)N = -50 kg (aG)y	 (1)

a+ �MG = IGa;	 TB(1.5 m) = J 1

12
(50 kg)(3 m)2 Ra	 (2)

Kinematics.  Since the bar is at rest just after the cable is cut, then its 
angular velocity and the velocity of point B at this instant are equal to 
zero. Thus (aB)n = vB

2 >rBD = 0. Therefore, aB only has a tangential 
component, which is directed along the x axis, Fig. 17–23c. Applying 
the relative acceleration equation to points G and B,

 aG = aB + A * rG/B - v2rG/B

-  (aG)yj = aBi + (ak) * (-1.5i) - 0

 -(aG)yj = aBi - 1.5aj

Equating the i and j components of both sides of this equation,

	  0 = aB 	

	  (aG)y = 1.5a	 (3)

Solving Eqs. (1) through (3) yields

	  a = 4.905 rad>s2� Ans.

	  TB = 123 N � Ans.

	  (aG)y = 7.36 m>s2 	

Example   17.15

C D

BA

 3 m

(a)

B

 1.5 m

50(9.81) N

(b)

TB

G

(50 kg)(aG)y

IGA

(50 kg)(aG)x

B

(c)

G

 � 0

(aG)x � 0

(aG)y

aB

 1.5 m

rG/B
� �

Fig. 17–23 
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F17–16.  The 20@kg sphere rolls down the inclined plane 
without slipping. Determine the angular acceleration of the 
sphere and the acceleration of its mass center. 

0.15 m

30�

Prob. F17–16 

F17–17.  The 200@kg spool has a radius of gyration about its 
mass center of kG = 300 mm. If the couple moment is 
applied to the spool and the coefficient of kinetic friction 
between the spool and the ground is mk = 0.2, determine 
the angular acceleration of the spool, the acceleration of G 
and the tension in the cable. 

0.4 m

0.6 m

BA

G M � 450 N�m

Prob. F17–17 

F17–18.  The 12@kg slender rod is pinned to a small roller A 
that slides freely along the slot. If the rod is released from rest 
at u = 0�, determine the angular acceleration of the rod and 
the acceleration of the roller immediately after the release. 

A

0.6 m

u

Prob. F17–18 

F17–13.  The uniform 60@kg slender bar is initially at rest 
on a smooth horizontal plane when the forces are applied. 
Determine the acceleration of the bar’s mass center and the 
angular acceleration of the bar at this instant. 

 20 N

80 N

0.75 m 0.5 m
1.75 m

Prob. F17–13 

F17–14.  The 100@kg cylinder rolls without slipping on the 
horizontal plane. Determine the acceleration of its mass 
center and its angular acceleration. 

0.3 m
P � 200 N

Prob. F17–14 

F17–15.  The 20@kg wheel has a radius of gyration about its 
center O of kO = 300 mm. When the wheel is subjected to 
the couple moment, it slips as it rolls. Determine the angular 
acceleration of the wheel and the acceleration of the wheel’s 
center O. The coefficient of kinetic friction between the 
wheel and the plane is mk = 0.5. 

O

0.4 m

M � 100 N�m

 
Prob. F17–15 

Fundamental Problems
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PROBLEMS

17–90.  If the disk in Fig. 17–19 rolls without slipping, show 
that when moments are summed about the instantaneous 
center of zero velocity, IC, it is possible to use the moment 
equation �MIC = IIC a, where IIC  represents the moment of 
inertia of the disk calculated about the instantaneous axis of 
zero velocity.

17–91.  The 20-kg punching bag has a radius of gyration 
about its center of mass G of kG = 0.4 m. If it is initially at 
rest and is subjected to a horizontal force F = 30 N, 
determine the initial angular acceleration of the bag and the 
tension in the supporting cable AB.

B

A

1 m

0.6 m

0.3 m

F

G

Prob. 17–91

*17–92.  The uniform 150-lb beam is initially at rest when 
the forces are applied to the cables. Determine the 
magnitude of the acceleration of the mass center and the 
angular acceleration of the beam at this instant.

BA

FA � 100 lb FB � 200 lb

60�

12 ft

Prob. 17–92

17–93.  The slender 12-kg bar has a clockwise angular 
velocity of v = 2 rad>s when it is in the position shown. 
Determine its angular acceleration and the normal reactions 
of the smooth surface A and B at this instant.

B

A

3 m

60�

Prob. 17–93

17–94.  The tire has a weight of 30 lb and a radius of 
gyration of kG = 0.6 ft. If the coefficients of static and 
kinetic friction between the tire and the plane are ms = 0.2 
and mk = 0.15, determine the tire’s angular acceleration as 
it rolls down the incline. Set u = 12�.

17–95.  The tire has a weight of 30 lb and a radius of 
gyration of kG = 0.6 ft. If the coefficients of static and 
kinetic friction between the tire and the plane are ms = 0.2 
and mk = 0.15, determine the maximum angle u of the 
inclined plane so that the tire rolls without slipping.

1.25 ft

G

u

Probs. 17–94/95



464 	 Chapter 17  P  lanar Kinet ics of a Rig id Body: Force and Accelerat ion

17

*17–96.  The spool has a mass of 100 kg and a radius of 
gyration of kG = 0.3 m. If the coefficients of static and 
kinetic friction at A are ms = 0.2 and mk = 0.15, respectively, 
determine the angular acceleration of the spool if P = 50 N.

17–97.  Solve Prob. 17–96 if the cord and force P = 50 N 
are directed vertically upwards.

17–98.  The spool has a mass of 100 kg and a radius of 
gyration kG = 0.3 m. If the coefficients of static and kinetic 
friction at A are ms = 0.2 and mk = 0.15, respectively, 
determine the angular acceleration of the spool if 
P = 600 N.

P

250 mm 400 mm
G

A

Probs. 17–96/97/98

17–99.  The 12-kg uniform bar is supported by a roller at A. 
If a horizontal force of F = 80 N is applied to the roller, 
determine the acceleration of the center of the roller at the 
instant the force is applied. Neglect the weight and the size 
of the roller.

F � 80 NA

2 m

Prob. 17–99

*17–100.  A force of F = 10 N is applied to the 10-kg ring as 
shown. If slipping does not occur, determine the ring’s initial 
angular acceleration, and the acceleration of its mass center, G. 
Neglect the thickness of the ring.

17–101.  If the coefficient of static friction at C is μs = 0.3, 
determine the largest force F that can be applied to the 5-kg 
ring, without causing it to slip. Neglect the thickness of  
the ring.

45�

30�

0.4 m

G

A

C

F

Probs. 17–100/101

17–102.  The 25-lb slender rod has a length of 6 ft. Using a 
collar of negligible mass, its end A is confined to move along 
the smooth circular bar of radius 322 ft. End B rests on the 
floor, for which the coefficient of kinetic friction is mB = 0.4. 
If the bar is released from rest when u = 30°, determine the 
angular acceleration of the bar at this instant.

A

B

3  2 ft

6 ft

u

Prob. 17–102
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17–103.  The 15-lb circular plate is suspended from a pin  
at A. If the pin is connected to a track which is given an 
acceleration aA = 5 ft>s2, determine the horizontal and 
vertical components of reaction at A and the angular 
acceleration of the plate. The plate is originally at rest.

G

A

aA

2 ft

Prob. 17–103

*17–104.  If P = 30 lb, determine the angular acceleration 
of the 50-lb roller. Assume the roller to be a uniform 
cylinder and that no slipping occurs.

17–105.  If the coefficient of static friction between 
the 50-lb roller and the ground is ms = 0.25, determine the 
maximum force P that can be applied to the handle, so that 
roller rolls on the ground without slipping. Also, find the 
angular acceleration of the roller. Assume the roller to be a 
uniform cylinder.

1.5 ft

P

30�

Probs. 17–104/105

17–106.  The uniform bar of mass m and length L is 
balanced in the vertical position when the horizontal force 
P is applied to the roller at A. Determine the bar’s initial 
angular acceleration and the acceleration of its top point B.

17–107.  Solve Prob. 17–106 if the roller is removed and the 
coefficient of kinetic friction at the ground is μk.

A

B

L

P

Probs. 17–106/107

*17–108.  The semicircular disk having a mass of 10 kg is 
rotating at v = 4 rad>s at the instant u = 60�. If the 
coefficient of static friction at A is ms = 0.5, determine if 
the disk slips at this instant.

 4 (0.4)——— m
    3p

O

G

0.4 m

A

u

v

Prob. 17–108

17–109.  The 500-kg concrete culvert has a mean radius of 
0.5 m. If the truck has an acceleration of 3 m>s2, determine 
the culvert’s angular acceleration. Assume that the culvert 
does not slip on the truck bed, and neglect its thickness.

4 m

0.5m

3 m/s2

Prob. 17–109
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17–110.  The 15-lb disk rests on the 5-lb plate. A cord is 
wrapped around the periphery of the disk and attached to 
the wall at B. If a torque M = 40 lb # ft is applied to the disk, 
determine the angular acceleration of the disk and the time 
needed for the end C of the plate to travel 3 ft and strike the 
wall. Assume the disk does not slip on the plate and the 
plate rests on the surface at D having a coefficient of kinetic 
friction of μk = 0.2. Neglect the mass of the cord.

A B

C
D 3 ft

M � 40 lb � ft

1.25 ft

Prob. 17–110

17–111.  The semicircular disk having a mass of 10 kg is 
rotating at v = 4 rad>s at the instant u = 60�. If the 
coefficient of static friction at A is ms = 0.5, determine if 
the disk slips at this instant.

 4 (0.4)——— m
    3p

O

G

0.4 m

A

u

v

Prob. 17–111

*17–112.  The circular concrete culvert rolls with an angular 
velocity of v = 0.5 rad>s when the man is at the position 
shown. At this instant the center of gravity of the culvert and 
the man is located at point G, and the radius of gyration 
about G is kG = 3.5 ft. Determine the angular acceleration 
of the culvert. The combined weight of the culvert and the 
man is 500 lb. Assume that the culvert rolls without slipping, 
and the man does not move within the culvert.

4 ft

0.5 ft

G
O

v

Prob. 17–112

17–113.  The uniform disk of mass m is rotating with an 
angular velocity of v0 when it is placed on the floor. 
Determine the initial angular acceleration of the disk and 
the acceleration of its mass center. The coefficient of kinetic 
friction between the disk and the floor is μk.

17–114.  The uniform disk of mass m is rotating with an 
angular velocity of v0 when it is placed on the floor. 
Determine the time before it starts to roll without slipping. 
What is the angular velocity of the disk at this instant? 
The coefficient of kinetic friction between the disk and the 
floor is μk.

v0

r

Probs. 17–113/114

17–115.  A cord is wrapped around each of the two 10-kg 
disks. If they are released from rest determine the angular 
acceleration of each disk and the tension in the cord C. 
Neglect the mass of the cord. 

A

B

90 mm

90 mm

C

D

Prob. 17–115
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*17–116.  The disk of mass m and radius r rolls without 
slipping on the circular path. Determine the normal force 
which the path exerts on the disk and the disk’s angular 
acceleration if at the instant shown the disk has an angular 
velocity of V. 

R

r

u

v

Prob. 17–116

17–117.  The uniform beam has a weight W. If it is originally 
at rest while being supported at A and B by cables, 
determine the tension in cable A if cable B suddenly fails. 
Assume the beam is a slender rod.

A B

L––
4

L––
2

L––
4

Prob. 17–117

17–118.  The 500-lb beam is supported at A and B when it 
is subjected to a force of 1000 lb as shown. If the pin support 
at A suddenly fails, determine the beam’s initial angular 
acceleration and the force of the roller support on the beam. 
For the calculation, assume that the beam is a slender rod so 
that its thickness can be neglected.

B A

8 ft 2 ft

1000 lb

3

4

5

Prob. 17–118

17–119.  The solid ball of radius r and mass m rolls without 
slipping down the 60° trough. Determine its angular 
acceleration.

30�

45�

30�

Prob. 17–119

*17–120.  By pressing down with the finger at B, a thin ring 
having a mass m is given an initial velocity v0 and a backspin V0 
when the finger is released. If the coefficient of kinetic 
friction between the table and the ring is μk, determine the 
distance the ring travels forward before backspinning stops.

B

A

v0

v0

r

Prob. 17–120
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C17–3.  How can you tell the driver is accelerating this 
SUV? To explain your answer, draw the free-body and 
kinetic diagrams. Here power is supplied to the rear wheels. 
Would the photo look the same if power were supplied to 
the front wheels? Will the accelerations be the same? Use 
appropriate numerical values to explain your answers. 

Prob. C17–3 (© R.C. Hibbeler)

C17–4.  Here is something you should not try at home, at 
least not without wearing a helmet! Draw the free-body and 
kinetic diagrams and show what the rider must do to 
maintain this position. Use appropriate numerical values to 
explain your answer.

Prob. C17–4 (© R.C. Hibbeler)

C17–1.  The truck is used to pull the heavy container. To be 
most effective at providing traction to the rear wheels at A, 
is it best to keep the container where it is or place it at the 
front of the trailer? Use appropriate numerical values to 
explain your answer.

A

Prob. C17–1 (© R.C. Hibbeler)

C17–2.  The tractor is about to tow the plane to the right. Is 
it possible for the driver to cause the front wheel of the 
plane to lift off the ground as he accelerates the tractor?  
Draw the free-body and kinetic diagrams and explain 
algebraically (letters) if and how this might be possible.

Prob. C17–2 (© R.C. Hibbeler)

CONCEPTUAL PROBLEMS
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Moment of Inertia

The moment of inertia is a measure of the 
resistance of a body to a change in its 
angular velocity. It is defined by 
I = 1r2dm and will be different for each 
axis about which it is computed. 

I = IG + md2

Planar Equations of Motion

The equations of motion define the 
translational, and rotational motion of a 
rigid body. In order to account for all of 
the terms in these equations, a free-body 
diagram should always accompany their 
application, and for some problems, it may 
also be convenient to draw the kinetic 
diagram which shows maG and  IGA.

r

G

IG

dm

m

I

d

 �Fn = m(aG)n = mv2rG

 �Ft = m(aG)t = marG

 �MG = IGa or  �MO = IOa

Rotation About a Fixed Axis

 �Fx = m(aG)x

 �Fy = m(aG)y

 �MG = IGa or  �MP = �(mk)P

General Plane Motion17

Many bodies are composed of simple 
shapes. If this is the case, then tabular 
values of I can be used, such as the ones 
given on the inside back cover of this 
book.  To obtain the moment of inertia of a 
composite body about any specified axis, 
the moment of inertia of each part is 
determined about the axis and the results 
are added together. Doing this often 
requires use of the parallel-axis theorem.

 �Fx = m(aG)x

 �Fy = m(aG)y

 �MG = 0

Rectilinear translation

 �Fn = m(aG)n

 �Ft = m(aG)t

 �MG = 0

Curvilinear translation

Chapter Review
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R17–3.  The car has a mass of 1.50 Mg and a mass center  
at G. Determine the maximum acceleration it can have if 
power is supplied only to the rear wheels. Neglect the mass 
of the wheels in the calculation, and assume that the wheels 
that do not receive power are free to roll. Also, assume that 
slipping of the powered wheels occurs, where the coefficient 
of kinetic friction is mk = 0.3.

1.6 m 1.3 mB A

0.4 m
G

Prob. R17–3

R17–4.  A 20-kg roll of paper, originally at rest, is pin-
supported at its ends to bracket AB. The roll rest against a 
wall for which the coefficient of kinetic friction at C is  
mC = 0.3. If a force of 40 N is applied uniformly to the end of 
the sheet, determine the initial angular acceleration of the 
roll and the tension in the bracket as the paper unwraps.  
For the calculation, treat the roll as a cylinder.

12

5

13

A

B

120 mm

60� P � 40 N

C a

Prob. R17–4

R17–1.  The handcart has a mass of 200 kg and center of 
mass at G. Determine the normal reactions at each of the 
wheels at A and B if a force P = 50 N is applied to  
the handle. Neglect the mass and rolling resistance of  
the wheels.

0.3 m 0.4 m
0.2 m

0.2 m

0.5 m

60�

P

A B

G

Prob. R17–1

R17–2.  The two 3-lb rods EF and HI are fixed (welded) to 
the link AC at E. Determine the internal axial force Ex, 
shear force Ey, and moment ME, which the bar AC exerts on 
FE at E if at the instant u = 30° link AB has an angular 
velocity v = 5 rad>s and an angular acceleration  
a = 8 rad>s2 as shown.

u � 30�

a � 8 rad/s2

v � 5 rad/s
x

E

3 ft

3 ft

D

B

F

A

C
I

H

2 ft

2 ft

y

Prob. R17–2

Review Problems
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R17–7.  The spool and wire wrapped around its core have a 
mass of 20 kg and a centroidal radius of gyration  
kG = 250 mm. if the coefficient of kinetic friction at the 
ground is mB = 0.1, determine the angular acceleration of 
the spool when the 30-N # m couple moment is applied.

30 N�m

200 mm

400 mm
G

B

Prob. R17–7

R17–8.  Determine the backspin V which should be given 
to the 20-lb ball so that when its center is given an initial 
horizontal velocity vG = 20 ft>s it stops spinning and 
translating at the same instant. The coefficient of kinetic 
friction is mA = 0.3.

0.5 ft

G

A

vG � 20 ft/s

v

Prob. R17–8

R17–5.  At the instant shown, two forces act on the 30-lb 
slender rod which is pinned at O. Determine the magnitude 
of force F and the initial angular acceleration of the rod so 
that the horizontal reaction which the pin exerts on the rod 
is 5 lb directed to the right.

O

3 ft

3 ft

20 lb

2 ft

F

Prob. R17–5

R17–6.  The pendulum consists of a 30-lb sphere and a 
10-lb slender rod. Compute the reaction at the pin O just 
after the cord AB is cut.

2 ft

O

A

B

1 ft

Prob. R17–6



Chapter 18

Roller coasters must be able to coast over loops and through turns, and have 
enough energy to do so safely. Accurate calculation of this energy must 

account for the size of the car as it moves along the track.

(© Arinahabich/Fotolia)



Planar Kinetics 
of a Rigid Body: 
Work and Energy

Chapter Objectives

n	 To develop formulations for the kinetic energy of a body, and 
define the various ways a force and couple do work.

n	 To apply the principle of work and energy to solve rigid–body 
planar kinetic problems that involve force, velocity, and 
displacement.

n	 To show how the conservation of energy can be used to solve 
rigid–body planar kinetic problems.

18.1  Kinetic Energy

In this chapter we will apply work and energy methods to solve planar 
motion problems involving force, velocity, and displacement. But first it 
will be necessary to develop a means of obtaining the body’s kinetic 
energy when the body is subjected to translation, rotation about a fixed 
axis, or general plane motion.

To do this we will consider the rigid body shown in Fig. 18–1, which is 
represented here by a slab moving in the inertial x–y reference plane. An 
arbitrary ith particle of the body, having a mass dm, is located a distance r 
from the arbitrary point P. If at the instant shown the particle has a 
velocity vi , then the particle’s kinetic energy is Ti =

1
2  dm vi

2.

y

x

x

yr

P

i

vP

vi

V

Fig. 18–1 
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The kinetic energy of the entire body is determined by writing similar 
expressions for each particle of the body and integrating the results, i.e.,

T =
1

2 Lm
dm vi

2

This equation may also be expressed in terms of the velocity of point P. 
If the body has an angular velocity V, then from Fig. 18–1 we have

	  vi = vP + vi>P
	  = (vP)x i + (vP)y j + vk * (xi + yj)

	  = [(vP)x - vy]i + [(vP)y + vx]j

The square of the magnitude of vi is thus

	  vi
# vi = vi

2 = [(vP)x - vy]2 + [(vP)y + vx]2

	  = (vP)x
2 - 2(vP)xvy + v2y2 + (vP)y

2 + 2(vP)yvx + v2x2

	  = vP
2 - 2(vP)xvy + 2(vP)yvx + v2r2

Substituting this into the equation of kinetic energy yields

y

x

x

yr

P

i

vP

vi

V

Fig. 18–1 (repeated)

T =
1

2
aLm

dmbvP
2 - (vP)xvaLm

y dmb + (vP)yvaLm
x dmb +

1

2
 v2aLm

r2 dmb

The first integral on the right represents the entire mass m of the body. Since 
ym = 1y dm and xm = 1x dm, the second and third integrals locate the 
body’s center of mass G with respect to P. The last integral represents the 
body’s moment of inertia IP , computed about the z axis passing through 
point P. Thus,

	 T =
1
2 mvP

2 - (vP)xvym + (vP)yvxm +
1
2 IPv

2� (18–1)

As a special case, if point P coincides with the mass center G of the 
body, then y = x = 0, and therefore

	 T =
1
2 mvG

2 +
1
2 IGv

2� (18–2)

Both terms on the right side are always positive, since vG and v are 
squared. The first term represents the translational kinetic energy, 
referenced from the mass center, and the second term represents the 
body’s rotational kinetic energy about the mass center.
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Translation.  When a rigid body of mass m is subjected to either 
rectilinear or curvilinear translation, Fig. 18–2, the kinetic energy due to 
rotation is zero, since V = 0. The kinetic energy of the body is therefore

	 T =
1
2 mvG

2 � (18–3)

Rotation about a Fixed Axis.   When a rigid body rotates about 
a fixed axis passing through point O, Fig. 18–3, the body has both 
translational and rotational kinetic energy so that

	 T =
1
2 mvG

2 +
1
2 IGv

2 � (18–4)

The body’s kinetic energy may also be formulated for this case by noting 
that vG = rGv, so that T =

1
2(IG + mrG

2 )v2. By the parallel–axis theorem, 
the terms inside the parentheses represent the moment of inertia IO of the 
body about an axis perpendicular to the plane of motion and passing 
through point O. Hence,* 

	 T =
1
2 IOv

2 � (18–5)

From the derivation, this equation will give the same result as Eq. 18–4, 
since it accounts for both the translational and rotational kinetic energies 
of the body.

General Plane Motion.   When a rigid body is subjected to general 
plane motion, Fig. 18–4, it has an angular velocity V and its mass center 
has a velocity vG . Therefore, the kinetic energy is

	 T =
1
2 mvG

2 +
1
2 IGv

2 � (18–6)

This equation can also be expressed in terms of the body’s motion about 
its instantaneous center of zero velocity i.e.,

	 T =
1
2IICv

2 � (18–7)

where IIC is the moment of inertia of the body about its instantaneous 
center. The proof is similar to that of Eq. 18–5. (See Prob. 18–1.)

vG � v

G

Translation

v

Fig. 18–2 

vG

G

V

rG
O

Rotation About a Fixed Axis

Fig. 18–3 

vG

G

General Plane Motion

V

Fig. 18–4 

*The similarity between this derivation and that of �MO = IOa, should be noted. Also the 
same result can be obtained directly from Eq. 18–1 by selecting point P at O, realizing that 
vO = 0.
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System of Bodies.  Because energy is a scalar quantity, the total 
kinetic energy for a system of connected rigid bodies is the sum of the 
kinetic energies of all its moving parts. Depending on the type of motion, 
the kinetic energy of each body is found by applying Eq. 18–2 or the 
alternative forms mentioned above.

18.2  The Work of a Force

Several types of forces are often encountered in planar kinetics problems 
involving a rigid body. The work of each of these forces has been presented 
in Sec. 14.1 and is listed below as a summary.

Work of a Variable Force.  If an external force F acts on a body, 
the work done by the force when the body moves along the path s, 
Fig. 18–5, is

	 UF = LF # dr = Ls
F cos u ds � (18–8)

Here u is the angle between the “tails” of the force and the differential 
displacement. The integration must account for the variation of the force’s 
direction and magnitude.

The total kinetic energy of this soil 
compactor consists of the kinetic energy 
of the body or frame of the machine due 
to its translation, and the translational and 
rotational kinetic energies of the roller 
and the wheels due to their general plane 
motion. Here we exclude the additional 
kinetic energy developed by the moving 
parts of the engine and drive train.  
(© R.C. Hibbeler)

s

F

F
s

F

F

u

u

Fig. 18–5 

s

Fc

Fc

Fc cos u

Fc cos u

u

u

Fig. 18–6 

Work of a Constant Force.  If an external force Fc acts on a 
body, Fig. 18–6, and maintains a constant magnitude Fc and constant 
direction u, while the body undergoes a translation s, then the above 
equation can be integrated, so that the work becomes

	 UFc
= (Fc cos u)s � (18–9)
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Work of a Weight.   The weight of a body does work only when the 
body’s center of mass G undergoes a vertical displacement �y. If this 
displacement is upward, Fig. 18–7, the work is negative, since the weight is 
opposite to the displacement.

	 UW = -W �y � (18–10)

Likewise, if the displacement is downward (- �y) the work becomes 
positive. In both cases the elevation change is considered to be small so 
that W, which is caused by gravitation, is constant.

Work of a Spring Force.  If a linear elastic spring is attached to a 
body, the spring force Fs = ks acting on the body does work when the 
spring either stretches or compresses from s1 to a farther position s2 . In 
both cases the work will be negative since the displacement of the body is 
in the opposite direction to the force, Fig. 18–8. The work is

	 Us = - 11
2 ks2

2 -
1
2 ks1

22 � (18–11)

where � s2 � 7 � s1 � .

Forces That Do No Work.   There are some external forces that 
do no work when the body is displaced. These forces act either at fixed 
points on the body, or they have a direction perpendicular to their 
displacement. Examples include the reactions at a pin support about 
which a body rotates, the normal reaction acting on a body that moves 
along a fixed surface, and the weight of a body when the center of 
gravity of the body moves in a horizontal plane, Fig. 18–9. A frictional 
force Ff  acting on a round body as it rolls without slipping over a rough 
surface also does no work.*  This is because, during any instant of time 
dt, Ff  acts at a point on the body which has zero velocity (instantaneous 
center, IC) and so the work done by the force on the point is zero. In 
other words, the point is not displaced in the direction of the force 
during this instant. Since Ff  contacts successive points for only an 
instant, the work of Ff  will be zero.

W

W

G

G

�y

s

Fig. 18–7 

s1

s

s2

Fsk

Unstretched
position of
spring, s � 0

Fig. 18–8 

r

Ff

N

W

IC

V

Fig. 18–9 *The work done by a frictional force when the body slips is discussed in Sec. 14.3.
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18.3  The Work of a Couple Moment

Consider the body in Fig. 18–10a, which is subjected to a couple moment 
M = Fr. If the body undergoes a differential displacement, then the 
work done by the couple forces can be found by considering the 
displacement as the sum of a separate translation plus rotation. When 
the body translates, the work of each force is produced only by the 
component of displacement along the line of action of the forces dst ,  
Fig. 18–10b. Clearly the “positive” work of one force cancels the 
“negative” work of the other. When the body undergoes a differential 
rotation du about the arbitrary point O, Fig. 18–10c, then each force 
undergoes a displacement dsu = (r>2) du in the direction of the force. 
Hence, the total work done is

	  dUM = Fa r

2
 dub + Fa r

2
 dub = (Fr) du

	  = M du

The work is positive when M and dU have the same sense of direction and 
negative if these vectors are in the opposite sense.

When the body rotates in the plane through a finite angle u measured 
in radians, from u1 to u2 , the work of a couple moment is therefore 

	 UM = L
u2

u1

M du � (18–12)

If the couple moment M has a constant magnitude, then

	 UM = M(u2 - u1) � (18–13)

(a)

M

u

r

(b)

F

F

Translation

dst

(c)

F

F

Odu

Rotation

dsu

dsu
du

r
2

r
2

Fig. 18–10 
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Example   18.1

The bar shown in Fig. 18–11a has a mass of 10 kg and is subjected to a 
couple moment of M = 50 N # m and a force of P = 80 N, which is 
always applied perpendicular to the end of the bar. Also, the spring 
has an unstretched length of 0.5 m and remains in the vertical position 
due to the roller guide at B. Determine the total work done by all the 
forces acting on the bar when it has rotated downward from u = 0� to 
u = 90�.

Solution
First the free-body diagram of the bar is drawn in order to account for 
all the forces that act on it, Fig. 18–11b.

Weight W.  Since the weight 10(9.81) N = 98.1 N is displaced 
downward 1.5 m, the work is

	 UW = 98.1 N(1.5 m) = 147.2 J

Why is the work positive?

Couple Moment M.  The couple moment rotates through an angle 
of u = p>2 rad. Hence,

	 UM = 50 N # m(p>2) = 78.5 J

Spring Force Fs.  When u = 0� the spring is stretched (0.75 m - 0.5 m)
=  0.25 m, and when u = 90�, the stretch is (2 m + 0.75 m) - 0.5 m =  
2.25 m. Thus,

	 Us = - 31
2(30 N>m)(2.25 m)2 -

1
2(30 N>m)(0.25 m)24 = -75.0 J

By inspection the spring does negative work on the bar since Fs acts in 
the opposite direction to displacement. This checks with the result.

Force P.  As the bar moves downward, the force is displaced through 
a distance of (p>2)(3 m) = 4.712 m. The work is positive. Why?

	 UP = 80 N(4.712 m) = 377.0 J

Pin Reactions.  Forces Ax and Ay do no work since they are not 
displaced.

Total Work.  The work of all the forces when the bar is displaced is 
thus

	 U = 147.2 J + 78.5 J - 75.0 J + 377.0 J = 528 J� Ans.

0.75 m

A

B

2 m

1 m

k � 30 N/m

M = 50 N�m

P � 80 N

(a)

u

1.5 m

1 m
0.5 m

98.1 N

P � 80 N
Fs

Ay

Ax

(b)

50 N�mu

Fig. 18–11 
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18.4  Principle of Work and Energy

By applying the principle of work and energy developed in Sec. 14.2 to 
each of the particles of a rigid body and adding the results algebraically, 
since energy is a scalar, the principle of work and energy for a rigid body 
becomes

	 T1 + �U192 = T2 � (18–14)

This equation states that the body’s initial translational and rotational 
kinetic energy, plus the work done by all the external forces and couple 
moments acting on the body as the body moves from its initial to its final 
position, is equal to the body’s final translational and rotational kinetic 
energy. Note that the work of the body’s internal forces does not have to 
be considered. These forces occur in equal but opposite collinear pairs, so 
that when the body moves, the work of one force cancels that of its 
counterpart. Furthermore, since the body is rigid, no relative movement 
between these forces occurs, so that no internal work is done.

When several rigid bodies are pin connected, connected by inextensible 
cables, or in mesh with one another, Eq. 18–14 can be applied to the entire 
system of connected bodies. In all these cases the internal forces, which 
hold the various members together, do no work and hence are eliminated 
from the analysis.

The work of the torque or moment developed by the 
driving gears on the motors is transformed into kinetic 
energy of rotation of the drum. (© R.C. Hibbeler)

The counterweight on this bascule bridge 
does positive work as the bridge is lifted and 
thereby cancels the negative work done by 
the weight of the bridge. (© R.C. Hibbeler)
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Procedure for Analysis

The principle of work and energy is used to solve kinetic problems 
that involve velocity, force, and displacement, since these terms are 
involved in the formulation. For application, it is suggested that the 
following procedure be used.

Kinetic Energy (Kinematic Diagrams).
	 •	 The kinetic energy of a body is made up of two parts. Kinetic 

energy of translation is referenced to the velocity of the mass 
center, T =

1
2 mvG

2 , and kinetic energy of rotation is determined 
using the moment of inertia of the body about the mass center, 
T =

1
2 IGv

2. In the special case of rotation about a fixed axis (or 
rotation about the IC), these two kinetic energies are combined 
and can be expressed as T =

1
2 IOv

2, where IO is the moment of 
inertia about the axis of rotation.

	 •	 Kinematic diagrams for velocity may be useful for determining 
vG and v or for establishing a relationship between vG and v.* 

Work (Free–Body Diagram).
	 •	 Draw a free–body diagram of the body when it is located at an 

intermediate point along the path in order to account for all the 
forces and couple moments which do work on the body as it 
moves along the path.

	 •	 A force does work when it moves through a displacement in the 
direction of the force.

	 •	 Forces that are functions of displacement must be integrated to 
obtain the work. Graphically, the work is equal to the area under 
the force–displacement curve.

	 •	 The work of a weight is the product of its magnitude and the 
vertical displacement, UW = Wy. It is positive when the weight 
moves downwards.

	 •	 The work of a spring is of the form Us =
1
2 ks2, where k is the 

spring stiffness and s is the stretch or compression of the spring.
	 •	 The work of a couple is the product of the couple moment and 

the angle in radians through which it rotates, UM = Mu.
	 •	 Since algebraic addition of the work terms is required, it is important 

that the proper sign of each term be specified. Specifically, work is 
positive when the force (couple moment) is in the same direction as 
its displacement (rotation); otherwise, it is negative.

Principle of Work and Energy.
	 •	 Apply the principle of work and energy, T1 + �U192 = T2 . Since 

this is a scalar equation, it can be used to solve for only one 
unknown when it is applied to a single rigid body.

*A brief review of Secs. 16.5 to 16.7 may prove helpful when solving problems, since 
computations for kinetic energy require a kinematic analysis of velocity.
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The 30-kg disk shown in Fig. 18–12a is pin supported at its center. 
Determine the angle through which it must rotate to attain an angular 
velocity of 2 rad>s starting from rest. It is acted upon by a constant 
couple moment M = 5 N # m. The spring is orginally unstretched and 
its cord wraps around the rim of the disk.

Example   18.2

0.2 m

O

M � 5 N�m

(a)

k � 10 N/m

0.2 m

M � 5 N�m

(b)

O

294.3 N

Oy

Ox

Fs

Fig. 18–12 

Solution
Kinetic Energy.  Since the disk rotates about a fixed axis, and it is 
initially at rest, then

	  T1 = 0

	  T2 =
1
2 IOv2

2 =
1
2 31

2(30 kg)(0.2 m)24(2 rad>s)2 = 1.2 J

Work (Free–Body Diagram).   As shown in Fig. 18–12b, the pin 
reactions Ox and Oy and the weight (294.3 N) do no work, since they 
are not displaced. The couple moment, having a constant magnitude, 
does positive work UM = Mu as the disk rotates through a clockwise 
angle of u rad, and the spring does negative work Us = -

1
2 ks2.

Principle of Work and Energy.

	  5T16 + 5�U1 -26 = 5T26
	  5T16 + eMu -

1
2 ks2 f = 5T26

	  506 + e (5 N # m)u -
1

2
 (10 N>m)[u(0.2 m)]2 f = 51.2 J6

	  - 0.2u2 + 5u - 1.2 = 0

Solving this quadratic equation for the smallest positive root,

	  u = 0.2423 rad = 0.2423 rada 180�

p rad
b = 13.9�� Ans.
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Example   18.3

The wheel shown in Fig. 18–13a weighs 40 lb and has a radius of 
gyration kG = 0.6 ft about its mass center G. If it is subjected to a 
clockwise couple moment of 15 lb # ft and rolls from rest without 
slipping, determine its angular velocity after its center G moves 0.5 ft. 
The spring has a stiffness k = 10 lb>ft and is initially unstretched 
when the couple moment is applied.

Solution
Kinetic Energy (Kinematic Diagram).   Since the wheel is initially 
at rest,

T1 = 0

The kinematic diagram of the wheel when it is in the final position is 
shown in Fig. 18–13b. The final kinetic energy is determined from

	  T2 =
1
2 IICv2

2

	  =
1

2
 c 40 lb

32.2 ft>s2 (0.6 ft)2 +  ¢ 40 lb

32.2 ft>s2 ≤(0.8 ft)2 dv2
2

	  T2 = 0.6211 v2
2

Work (Free–Body Diagram).   As shown in Fig. 18–13c, only the 
spring force Fs and the couple moment do work. The normal force 
does not move along its line of action and the frictional force does no 
work, since the wheel does not slip as it rolls.

The work of Fs is found using Us = -
1
2 ks2. Here the work is negative 

since Fs is in the opposite direction to displacement. Since the wheel 
does not slip when the center G moves 0.5 ft, then the wheel rotates 
u = sG>rG>IC = 0.5 ft>0.8 ft = 0.625 rad, Fig. 18–13b. Hence, the 
spring stretches s = ur

A>IC = (0.625 rad)(1.6 ft) = 1 ft.

Principle of Work and Energy.

	  5T16 + 5�U1 -26 = 5T26
	  5T16 + 5Mu -

1
2 ks26 = 5T26

 506 + e15 lb # ft(0.625 rad) -
1

2
 (10 lb>ft)(1 ft)2 f = 50.6211 v2

2 ft # lb6

	 v2 = 2.65 rad>s b� Ans.

k � 10 lb/ft A

G

0.8 ft 15 lb�ft

(a)

G

0.8 ft

(b)

1.6 ft

(vG)2

A

IC

V2

Fs

40 lb

(c)

15 lb�ft

FB

NB

Fig. 18–13 
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Example   18.4

The 700-kg pipe is equally suspended from the two tines of the fork 
lift shown in the photo. It is undergoing a swinging motion such that 
when u = 30� it is momentarily at rest. Determine the normal and 
frictional forces acting on each tine which are needed to support the 
pipe at the instant u = 0�. Measurements of the pipe and the 
suspender are shown in Fig. 18–14a. Neglect the mass of the suspender 
and the thickness of the pipe.

G

O

0.15 m

(a)

0.4 m

u

 
Fig. 18–14

Solution
We must use the equations of motion to find the forces on the tines 
since these forces do no work. Before doing this, however, we will 
apply the principle of work and energy to determine the angular 
velocity of the pipe when u = 0�.

Kinetic Energy (Kinematic Diagram).  Since the pipe is originally 
at rest, then

T1 = 0

The final kinetic energy may be computed with reference to either the 
fixed point O or the center of mass G. For the calculation we will 
consider the pipe to be a thin ring so that IG = mr2. If point G is 
considered, we have

	  T2 =
1
2 m(vG)2

2 +
1
2 IGv2

2

	  =
1
2(700 kg)[(0.4 m)v2]

2 +
1
2[700 kg(0.15 m)2]v2

2

	  = 63.875v2
2

If point O is considered then the parallel-axis theorem must be used 
to determine IO . Hence,

	  T2 =
1
2 IOv2

2 =
1
2[700 kg(0.15 m)2 + 700 kg(0.4 m)2]v2

2

	  = 63.875v2
2

(© R.C. Hibbeler)
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Work (Free-Body Diagram).  Fig. 18–14b. The normal and frictional 
forces on the tines do no work since they do not move as the pipe 
swings. The weight does positive work since the weight moves downward 
through a vertical distance �y = 0.4 m - 0.4 cos 30� m = 0.05359 m.

Principle of Work and Energy.

	  5T16 + 5�U1 -26 = 5T26
	  506 + 5700(9.81) N(0.05359 m)6 = 563.875v2

26
	  v2 = 2.400 rad>s
Equations of Motion.  Referring to the free-body and kinetic 
diagrams shown in Fig. 18–14c, and using the result for v2, we have

d+ �Ft = m(aG)t;	 FT = (700 kg)(aG)t

+ c �Fn = m(aG)n;	 NT - 700(9.81) N = (700 kg)(2.400 rad>s)2(0.4 m)

c+ �MO = IOa;	 0 = [(700 kg)(0.15 m)2 + (700 kg)(0.4 m)2]a

Since (aG)t = (0.4 m)a, then

	  a = 0, (aG)t = 0

	  FT = 0

	  NT = 8.480 kN

There are two tines used to support the load, therefore

	 F T
= = 0 � Ans.

	 NT
= =

8.480 kN

2
= 4.24 kN� Ans.

Note: Due to the swinging motion the tines are subjected to a greater 
normal force than would be the case if the load were static, in which 
case NT

= = 700(9.81) N>2 = 3.43 kN.

G

O

700 (9.81) N

(b)

0.4 m

FT

NT

u

�y

G

O

700 (9.81) N

(c)

0.4 m

FT

NT

G

O

700 kg(aG)t

700 kg(aG)n 0.4 m
=

IGA

Fig. 18–14 
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Example   18.5

The 10–kg rod shown in Fig. 18–15a is constrained so that its ends 
move along the grooved slots. The rod is initially at rest when u = 0�. 
If the slider block at B is acted upon by a horizontal force P = 50 N, 
determine the angular velocity of the rod at the instant u = 45�. 
Neglect friction and the mass of blocks A and B.

Solution
Why can the principle of work and energy be used to solve this problem?

Kinetic Energy (Kinematic Diagrams).  Two kinematic diagrams of 
the rod, when it is in the initial position 1 and final position 2, are 
shown in Fig. 18–15b. When the rod is in position 1, T1 = 0 since 
(vG)1 = V1 = 0. In position 2 the angular velocity is V2 and the 
velocity of the mass center is (vG)2 . Hence, the kinetic energy is

	  T2 =
1
2 m(vG)2

2 +
1
2 IGv2

2

	  =
1
2(10 kg)(vG)2

2 +
1
2 3 1

12(10 kg)(0.8 m)24v2
2

	  = 5(vG)2
2 + 0.2667(v2)

2

The two unknowns (vG)2 and v2 can be related from the instantaneous 
center of zero velocity for the rod. Fig. 18–15b. It is seen that as A 
moves downward with a velocity (vA)2 , B moves horizontally to the 
left with a velocity (vB)2 , Knowing these directions, the IC is located as 
shown in the figure. Hence,

	  (vG)2 = rG>ICv2 = (0.4 tan 45� m)v2

	  = 0.4v2

Therefore,

T2 = 0.8v2
2 + 0.2667v2

2 = 1.0667v2
2

Of course, we can also determine this result using T2 =
1
2 IICv2

2.

Work (Free–Body Diagram).  Fig. 18–15c. The normal forces NA 
and NB do no work as the rod is displaced. Why? The 98.1-N weight is 
displaced a vertical distance of �y = (0.4 - 0.4 cos 45�) m; whereas 
the 50-N force moves a horizontal distance of s = (0.8 sin 45�) m. 
Both of these forces do positive work. Why?

Principle of Work and Energy.
	  5T16 + 5�U1 -26 = 5T26
	  5T16 + 5W �y + Ps6 = 5T26
	 506 + 598.1 N(0.4 m - 0.4 cos 45� m) + 50 N(0.8 sin 45� m)6
� = 51.0667v2

2 J6
Solving for v2 gives

	 v2 = 6.11 rad>sb� Ans.

(a)

P � 50 N

B

u
G

A

0.4 m

0.4 m

(b)

(vB)2

B

G

A

0.4 m

0.4 m45�

45�

IC

rG/IC

(vG)2

(vA)2

2

1

G(vG)1 � 0

v1 � 0

V2

(0.4 cos 45�) m

(c)

A

0.4 m

0.4 m

45�

NA

NB

50 N B

98.1 N

(0.8 sin 45�) m

Fig. 18–15 
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Preliminary Problem

P18–1.  Determine the kinetic energy of the 100-kg object.

100 kg

3 rad/s

(a)

2 rad/s

4 m2 m

O

(b)

100 kg

2 m

2 rad/s

No slipping

(c)

100 kg

O

3 m

2 rad/s

100 kg

30�

(d)

2 m

4 rad/s

(e)

100 kg

2 m

100 kg

4 rad/s

3 m

(f)

Prob. P18–1
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Fundamental problems

F18–1.  The 80@kg wheel has a radius of gyration about its 
mass center O of kO = 400 mm. Determine its angular 
velocity after it has rotated 20 revolutions starting from rest. 

F18–4.  The 50@kg wheel is subjected to a force of 50 N. If 
the wheel starts from rest and rolls without slipping, determine 
its angular velocity after it has rotated 10 revolutions.  
The radius of gyration of the wheel about its mass center G 
is kG = 0.3 m. 

G

0.4 m

M � 50 N�m

Prob. F18–6 

F18–6.  The 20@kg wheel has a radius of gyration about its 
center G of kG = 300 mm. When it is subjected to a couple 
moment of M = 50 N # m, it rolls without slipping. Determine 
the angular velocity of the wheel after its mass center G has 
traveled through a distance of sG = 20 m, starting from rest. 

30 N

20 N

0.5 m 0.5 m 0.5 m1.5 m

 20 N�m
O

Prob. F18–5 

F18–5.  If the uniform 30@kg slender rod starts from rest at 
the position shown, determine its angular velocity after it 
has rotated 4 revolutions. The forces remain perpendicular 
to the rod. 

�

30�

Prob. F18–4 

A

5 m
4 m

B

P � 600 N

Prob. F18–3 

F18–3.  The uniform 50@kg slender rod is at rest in the 
position shown when P = 600 N is applied. Determine the 
angular velocity of the rod when the rod reaches the vertical 
position.

O

5 ft

M�100 lb�ft

u

Prob. F18–2 

F18–2.  The uniform 50@lb slender rod is subjected to a 
couple moment of M = 100 lb # ft. If the rod is at rest when 
u = 0�, determine its angular velocity when u = 90�. 

0.6 m P � 50 N

O

Prob. F18–1 

18
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PROBLEMS

18–1.  At a given instant the body of mass m has an angular 
velocity V and its mass center has a velocity vG. Show that 
its kinetic energy can be represented as T =

1
2 IICv

2, where 
IIC is the moment of inertia of the body determined about 
the instantaneous axis of zero velocity, located a distance 
rG>IC from the mass center as shown.

IC

G

rG/IC

vG v

Prob. 18–1

18–2.  The wheel is made from a 5-kg thin ring and two 
2-kg slender rods. If the torsional spring attached to the 
wheel’s center has a stiffness k = 2 N # m>rad, and the wheel 
is rotated until the torque M = 25 N # m is developed, 
determine the maximum angular velocity of the wheel if it 
is released from rest.

18–3.  The wheel is made from a 5-kg thin ring and two 
2-kg slender rods. If the torsional spring attached to the 
wheel’s center has a stiffness k = 2 N # m>rad, so that the 
torque on the center of the wheel is M = (2u) N # m, where 
u is in radians, determine the maximum angular velocity of 
the wheel if it is rotated two revolutions and then released 
from rest.

M

O
0.5 m

Probs. 18–2/3

*18–4.  A force of P = 60 N is applied to the cable, which 
causes the 200-kg reel to turn since it is resting on the two 
rollers A and B of the dispenser. Determine the angular 
velocity of the reel after it has made two revolutions starting 
from rest. Neglect the mass of the rollers and the mass of 
the cable. Assume the radius of gyration of the reel about 
its center axis remains constant at kO = 0.6 m.

0.75 m

0.6 m

1 m

P

A

O

B

Prob. 18–4

18–5.  A force of P = 20 N is applied to the cable, which 
causes the 175-kg reel to turn since it is resting on the two 
rollers A and B of the dispenser. Determine the angular 
velocity of the reel after it has made two revolutions starting 
from rest. Neglect the mass of the rollers and the mass of 
the cable. The radius of gyration of the reel about its center 
axis is kG = 0.42 m.

18–6.  A force of P = 20 N is applied to the cable, which causes 
the 175-kg reel to turn without slipping on the two rollers A 
and B of the dispenser. Determine the angular velocity of the 
reel after it has made two revolutions starting from rest. Neglect 
the mass of the cable. Each roller can be considered as an 18-kg 
cylinder, having a radius of 0.1 m. The radius of gyration of the 
reel about its center axis is kG = 0.42 m.

500 mm

250 mm

30�

P

A

G

B

400 mm

Probs. 18–5/6
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18–7.  The double pulley consists of two parts that are 
attached to one another. It has a weight of 50 lb and a 
centroidal radius of gyration of kO = 0.6 ft and is turning 
with an angular velocity of 20 rad>s clockwise. Determine 
the kinetic energy of the system. Assume that neither cable 
slips on the pulley.

*18–8.  The double pulley consists of two parts that are 
attached to one another. It has a weight of 50 lb and a 
centroidal radius of gyration of kO = 0.6 ft and is turning 
with an angular velocity of 20 rad>s clockwise. Determine 
the angular velocity of the pulley at the instant the 20-lb 
weight moves 2 ft downward.

1 ft0.5 ft
O

A

30 lbB

20 lb

v � 20 rad/s

Probs. 18–7/8

18–9.  The disk, which has a mass of 20 kg, is subjected to 
the couple moment of M = (2u + 4) N # m, where u is in 
radians. If it starts from rest, determine its angular velocity 
when it has made two revolutions.

O

M300 mm

Prob. 18–9

18–10.  The spool has a mass of 40 kg and a radius of 
gyration of kO = 0.3 m. If the 10-kg block is released from 
rest, determine the distance the block must fall in order for 
the spool to have an angular velocity v = 15 rad>s. Also, 
what is the tension in the cord while the block is in motion? 
Neglect the mass of the cord.

500 mm300 mm
O

Prob. 18–10

18–11.  The force of T = 20 N is applied to the cord of 
negligible mass. Determine the angular velocity of the 20-kg 
wheel when it has rotated 4 revolutions starting from rest. 
The wheel has a radius of gyration of kO = 0.3 m.

T � 20 N

O

0.4 m

Prob. 18–11



	 18.4 P rinciple of Work and Energy	 491

18

*18–12.  Determine the velocity of the 50-kg cylinder after 
it has descended a distance of 2 m. Initially, the system is at 
rest. The reel has a mass of 25 kg and a radius of gyration 
about its center of mass A of kA = 125 mm.

75 mmA

Prob. 18–12

18–13.  The 10-kg uniform slender rod is suspended at rest 
when the force of F = 150 N is applied to its end. Determine 
the angular velocity of the rod when it has rotated 90° 
clockwise from the position shown. The force is always 
perpendicular to the rod.

18–14.  The 10-kg uniform slender rod is suspended at rest 
when the force of F = 150 N is applied to its end. Determine 
the angular velocity of the rod when it has rotated 180° 
clockwise from the position shown. The force is always 
perpendicular to the rod.

O

3 m

F

Probs. 18–13/14

18–15.  The pendulum consists of a 10-kg uniform disk and 
a 3-kg uniform slender rod. If it is released from rest in the 
position shown, determine its angular velocity when it rotates 
clockwise 90°.

2 m

M � 30 N � m
A

B

D

0.8 m

Prob. 18–15

*18–16.  A motor supplies a constant torque M = 6 kN # m 
to the winding drum that operates the elevator. If the 
elevator has a mass of 900 kg, the counterweight C has a 
mass of 200 kg, and the winding drum has a mass of 600 kg 
and radius of gyration about its axis of k = 0.6 m, determine 
the speed of the elevator after it rises 5 m starting from rest. 
Neglect the mass of the pulleys.

M

D

C

0.8 m

Prob. 18–16
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18–17.  The center O of the thin ring of mass m is given an 
angular velocity of v0. If the ring rolls without slipping, 
determine its angular velocity after it has traveled a distance 
of s down the plane. Neglect its thickness.

s

O

r

u

v0

Prob. 18–17

18–18.  The wheel has a mass of 100 kg and a radius 
of  gyration of kO = 0.2 m. A motor supplies a torque  
M = (40 u + 900) N # m, where u is in radians, about the drive 
shaft at O. Determine the speed of the loading car, which 
has a mass of 300 kg, after it travels s = 4 m. Initially the car 
is at rest when s = 0 and u = 0°. Neglect the mass of the 
attached cable and the mass of the car’s wheels.

30�

M

s
0.3 m

O

Prob. 18–18

18–19.  The rotary screen S is used to wash limestone. 
When empty it has a mass of 800 kg and a radius of gyration 
of kG = 1.75 m. Rotation is achieved by applying a torque of 
M = 280 N # m about the drive wheel at A. If no slipping 
occurs at A and the supporting wheel at B is free to roll, 
determine the angular velocity of the screen after it has 
rotated 5 revolutions. Neglect the mass of A and B.

0.3 m

A

S

M � 280 N � m
B

2 m

Prob. 18–19

*18–20.  If P = 200 N and the 15-kg uniform slender rod 
starts from rest at u = 0�, determine the rod’s angular 
velocity at the instant just before u = 45�.

A

B

45°

600 mm

P � 200 Nu

Prob. 18–20

18
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18–21.  A yo-yo has a weight of 0.3 lb and a radius of 
gyration of kO = 0.06 ft. If it is released from rest, determine 
how far it must descend in order to attain an angular 
velocity v = 70 rad>s. Neglect the mass of the string and 
assume that the string is wound around the central peg such 
that the mean radius at which it unravels is r = 0.02 ft.

O
r

Prob. 18–21

18–22.  If the 50-lb bucket, C, is released from rest, determine 
its velocity after it has fallen a distance of 10 ft. The windlass A 
can be considered as a 30-lb cylinder, while the spokes are 
slender rods, each having a weight of 2 lb. Neglect the 
pulley’s weight.

4 ft

0.5 ft
0.5 ft

3 ft
B

A

C

Prob. 18–22

18–23.  The coefficient of kinetic friction between the 100-lb 
disk and the surface of the conveyor belt is μA = 0.2. If the 
conveyor belt is moving with a speed of vC = 6 ft>s when 
the disk is placed in contact with it, determine the number 
of revolutions the disk makes before it reaches a constant 
angular velocity.

C � 6 ft/sv
A

B0.5 ft

Prob. 18–23

*18–24.  The 30-kg disk is originally at rest, and the spring 
is unstretched. A couple moment of M = 80 N # m is then 
applied to the disk as shown. Determine its angular velocity 
when its mass center G has moved 0.5 m along the plane. 
The disk rolls without slipping.

18–25.  The 30-kg disk is originally at rest, and the spring is 
unstretched. A couple moment M = 80 N # m is then applied 
to the disk as shown. Determine how far the center of mass 
of the disk travels along the plane before it momentarily 
stops. The disk rolls without slipping.

0.5 m

G

M � 80 N � m

k � 200 N/m
A

Probs. 18–24/25
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18–26.  Two wheels of negligible weight are mounted at 
corners A and B of the rectangular 75-lb plate. If the plate is 
released from rest at u =  90�, determine its angular 
velocity at the instant just before u = 0�.

A

B

1.5 ft

3 ft

u

Prob. 18–26

18–27.  The link AB is subjected to a couple moment of  
M = 40 N # m. If the ring gear C is fixed, determine the 
angular velocity of the 15-kg inner gear when the link has 
made two revolutions starting from rest. Neglect the mass 
of the link and assume the inner gear is a disk. Motion 
occurs in the vertical plane.

150 mm

200 mm

M � 40  N � m 

A B

C

Prob. 18–27

*18–28.  The 10-kg rod AB is pin connected at A and 
subjected to a couple moment of M = 15 N # m. If the rod is 
released from rest when the spring is unstretched at u = 30°, 
determine the rod’s angular velocity at the instant u = 60°. 
As the rod rotates, the spring always remains horizontal, 
because of the roller support at C.

C

A

B
k � 40 N/m

M � 15 N · m

0.75 mu

Prob. 18–28

18–29.  The 10-lb sphere starts from rest at u = 0° and rolls 
without slipping down the cylindrical surface which has a 
radius of 10 ft. Determine the speed of the sphere’s center 
of mass at the instant u = 45°.

10 ft

0.5 ft

u

Prob. 18–29

18
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18–30.  Motor M exerts a constant force of P = 750 N on 
the rope. If the 100-kg post is at rest when u =  0�, 
determine the angular velocity of the post at the instant 
u =  60�. Neglect the mass of the pulley and its size, and 
consider the post as a slender rod.

M CP � 750 N

3 m

4 m
A

u

B

Prob. 18–30

18–31.  The linkage consists of two 6-kg rods AB and CD 
and a 20-kg bar BD. When u = 0°, rod AB is rotating with an 
angular velocity v = 2 rad>s. If rod CD is subjected to a 
couple moment of M = 30 N # m, determine vAB at the 
instant u = 90°.

*18–32.  The linkage consists of two 6-kg rods AB and CD 
and a 20-kg bar BD. When u = 0°, rod AB is rotating with an 
angular velocity v = 2 rad>s. If rod CD is subjected to a 
couple moment M = 30 N # m, determine v at the instant  
u = 45°.

1.5 m

1 m 1 m

u

v
M � 30 N � m

B

CA

D

Probs. 18–31/32

18–33.  The two 2-kg gears A and B are attached to the 
ends of a 3-kg slender bar. The gears roll within the fixed 
ring gear C, which lies in the horizontal plane. If a 10-N # m 
torque is applied to the center of the bar as shown, 
determine the number of revolutions the bar must rotate 
starting from rest in order for it to have an angular velocity 
of vAB = 20 rad>s. For the calculation, assume the gears 
can be approximated by thin disks. What is the result if the 
gears lie in the vertical plane?

400 mm

150 mm

M � 10 N�m

150 mm

A B

C

Prob. 18–33

18–34.  The linkage consists of two 8-lb rods AB and CD 
and a 10-lb bar AD. When u = 0°, rod AB is rotating with an 
angular velocity vAB = 2 rad>s. If rod CD is subjected to a 
couple moment M = 15 lb # ft and bar AD is subjected to a 
horizontal force P = 20 lb as shown, determine vAB at the 
instant u = 90°.

18–35.  The linkage consists of two 8-lb rods AB and CD 
and a 10-lb bar AD. When u = 0°, rod AB is rotating with an 
angular velocity vAB = 2 rad>s. If rod CD is subjected to a 
couple moment M = 15 lb # ft and bar AD is subjected to a 
horizontal force P = 20 lb as shown, determine vAB at the 
instant u = 45°.

3 ft

2 ft 2 ft

M � 15 lb · ftB C

A D P � 20 lb

u

vAB 

Probs. 18–34/35
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18.5  Conservation of Energy

When a force system acting on a rigid body consists only of 
conservative forces, the conservation of energy theorem can be used 
to solve a problem that otherwise would be solved using the principle 
of work and energy. This theorem is often easier to apply since the 
work of a conservative force is independent of the path and depends 
only on the initial and final positions of the body. It was shown in  
Sec. 14.5 that the work of a conservative force can be expressed as 
the difference in the body’s potential energy measured from an 
arbitrarily selected reference or datum.

Gravitational Potential Energy.  Since the total weight of a 
body can be considered concentrated at its center of gravity, the 
gravitational potential energy of the body is determined by knowing the 
height of the body’s center of gravity above or below a horizontal datum. 

	 Vg = WyG � (18–15)

Here the potential energy is positive when yG is positive upward, since the 
weight has the ability to do positive work when the body moves back to 
the datum, Fig. 18–16. Likewise, if G is located below the datum (-yG), the 
gravitational potential energy is negative, since the weight does negative 
work when the body returns to the datum.

Elastic Potential Energy.  The force developed by an elastic 
spring is also a conservative force. The elastic potential energy which a 
spring imparts to an attached body when the spring is stretched or 
compressed from an initial undeformed position (s = 0) to a final 
position s, Fig. 18–17, is

	 Ve = +
1
2 ks2 � (18–16)

In the deformed position, the spring force acting on the body always has 
the ability for doing positive work when the spring returns back to its 
original undeformed position (see Sec. 14.5).

�yG

W

Datum

Vg � �WyG

�yG

Vg � �WyG

G

G

W

Gravitational potential energy

Fig. 18–16 

s

Fs

k

Unstretched
position of
spring, s � 0

Elastic potential energy

Ve � �     ks21—
2

Fig. 18–17 

18
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Conservation of Energy.  In general, if a body is subjected to 
both gravitational and elastic forces, the total potential energy can be 
expressed as a potential function represented as the algebraic sum

	 V = Vg + Ve � (18–17)

Here measurement of V depends upon the location of the body with 
respect to the selected datum.

Realizing that the work of conservative forces can be written as a 
difference in their potential energies, i.e., (�U192)cons = V1 - V2 , Eq. 14–16, 
we can rewrite the principle of work and energy for a rigid body as

	 T1 + V1 + (�U1 -2)noncons = T2 + V2� (18–18)

Here (�U192)noncons represents the work of the nonconservative forces such 
as friction. If this term is zero, then

	 T1 + V1 = T2 + V2 � (18–19)

This equation is referred to as the conservation of mechanical energy. It 
states that the sum of the potential and kinetic energies of the body 
remains constant when the body moves from one position to another. It 
also applies to a system of smooth, pin-connected rigid bodies, bodies 
connected by inextensible cords, and bodies in mesh with other bodies. In 
all these cases the forces acting at the points of contact are eliminated 
from the analysis, since they occur in equal but opposite collinear pairs 
and each pair of forces moves through an equal distance when the system 
undergoes a displacement.

It is important to remember that only problems involving conservative 
force systems can be solved by using Eq. 18–19. As stated in Sec. 14.5, 
friction or other drag-resistant forces, which depend on velocity or 
acceleration, are nonconservative. The work of such forces is transformed 
into thermal energy used to heat up the surfaces of contact, and 
consequently this energy is dissipated into the surroundings and may not 
be recovered. Therefore, problems involving frictional forces can be 
solved by using either the principle of work and energy written in the 
form of Eq. 18–18, if it applies, or the equations of motion.

The torsional springs located at the top 
of the garage door wind up as the door 
is lowered. When the door is raised, the 
potential energy stored in the springs is 
then transferred into gravitational 
potential energy of the door’s weight, 
thereby making it easy to open.  
(© R.C. Hibbeler)
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Procedure for Analysis

The conservation of energy equation is used to solve problems 
involving velocity, displacement, and conservative force systems. For 
application it is suggested that the following procedure be used.

Potential Energy.
	 •	 Draw two diagrams showing the body located at its initial and 

final positions along the path.

	 •	 If the center of gravity, G, is subjected to a vertical displacement, 
establish a fixed horizontal datum from which to measure the 
body’s gravitational potential energy Vg .

	 •	 Data pertaining to the elevation yG of the body’s center of gravity 
from the datum and the extension or compression of any 
connecting springs can be determined from the problem geometry 
and listed on the two diagrams.

	 •	 The potential energy is determined from V = Vg + Ve . Here 
Vg = WyG , which can be positive or negative, and Ve =

1
2 ks2, 

which is always positive.

Kinetic Energy.
	 •	 The kinetic energy of the body consists of two parts, namely 

translational kinetic energy, T =
1
2 mvG

2 , and rotational kinetic 
energy, T =

1
2 IGv

2.

	 •	 Kinematic diagrams for velocity may be useful for establishing a 
relationship between vG and v.

Conservation of Energy.
	 •	 Apply the conservation of energy equation T1 + V1 = T2 + V2 .
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Example   18.6

The 10-kg rod AB shown in Fig. 18–18a is confined so that its ends 
move in the horizontal and vertical slots. The spring has a stiffness of 
k = 800 N>m and is unstretched when u = 0�. Determine the angular 
velocity of AB when u = 0�, if the rod is released from rest when 
u = 30�. Neglect the mass of the slider blocks.

Solution
Potential Energy.  The two diagrams of the rod, when it is located at 
its initial and final positions, are shown in Fig. 18–18b. The datum, used 
to measure the gravitational potential energy, is placed in line with the 
rod when u = 0�.

When the rod is in position 1, the center of gravity G is located 
below the datum so its gravitational potential energy is negative. 
Furthermore, (positive) elastic potential energy is stored in the spring, 
since it is stretched a distance of s1 = (0.4 sin 30�) m. Thus,

	  V1 = -Wy1 +
1
2 ks1

2

	  = -(98.1 N)(0.2 sin 30� m) +
1
2(800 N>m)(0.4 sin 30� m)2 = 6.19 J

When the rod is in position 2, the potential energy of the rod is zero, 
since the center of gravity G is located at the datum, and the spring is 
unstretched, s2 = 0. Thus,

V2 = 0

Kinetic Energy.  The rod is released from rest from position 1, thus 
(vG)1 = V1 = 0, and so 

T1 = 0

In position 2, the angular velocity is V2 and the rod’s mass center has 
a velocity of (vG)2 . Thus,

	  T2 =
1
2 m(vG)2

2 +
1
2 IGv2

2

	  =
1
2(10 kg)(vG)2

2 +
1
2 3 1

12(10 kg)(0.4 m)24v2
2

Using kinematics, (vG)2 can be related to V2 as shown in Fig. 18–18c. At 
the instant considered, the instantaneous center of zero velocity (IC) for 
the rod is at point A; hence, (vG)2 = (rG>IC)v2 = (0.2 m)v2 . Substituting 
into the above expression and simplifying (or using 12IICv2

2), we get

T2 = 0.2667v2
2

Conservation of Energy.
	  5T16 + 5V16 = 5T26 + 5V26
	  506 + 56.19 J6 = 50.2667v2

26 + 506
	  v2 = 4.82 rad>sd� Ans.

0.2 m

0.2 m

A

B

G

k � 800 N/m

(a)

u

A

G

(b)

Datum

98.1 N

30�

y1 � (0.2 sin 30�) m

1

A
B

98.1 N

2

s2 � 0

s1 � (0.4 sin 30�) m

B

G

(c)

G

0.2 m

IC

rG/IG

(vG)2
V2

B

Fig. 18–18 

A

G

(b)

Datum

98.1 N

30�

y1 � (0.2 sin 30�) m

1

A
B

98.1 N

2

s2 � 0

s1 � (0.4 sin 30�) m

B

G
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Example   18.7

The wheel shown in Fig. 18–19a has a weight of 30 lb and a radius of 
gyration of kG = 0.6 ft. It is attached to a spring which has a stiffness 
k = 2 lb>ft and an unstretched length of 1 ft. If the disk is released 
from rest in the position shown and rolls without slipping, determine 
its angular velocity at the instant G moves 3 ft to the left.

Solution
Potential Energy.  Two diagrams of the wheel, when it at the initial 
and final positions, are shown in Fig. 18–19b. A gravitational datum is 
not needed here since the weight is not displaced vertically. From the 
problem geometry the spring is stretched s1 = 1232 + 42 - 12 = 4 ft  
in the initial position, and spring s2 = (4 - 1) = 3 ft in the final 
position. Hence, the positive spring potential energy is

	  V1 =
1
2 ks1

2 =
1
2(2 lb>ft)(4 ft)2 = 16 ft # lb

	  V2 =
1
2 ks2

2 =
1
2(2 lb>ft)(3 ft)2 = 9 ft # lb

Kinetic Energy.  The disk is released from rest and so (vG)1 = 0, 
V1 = 0. Therefore, 

T1 = 0

Since the instantaneous center of zero velocity is at the ground, Fig. 18–19c, 
we have

	  T2 =
1

2
 IICv2

2

	  =
1

2
 c a 30 lb

32.2 ft>s2 b (0.6 ft)2 +  a 30 lb

32.2 ft>s2 b (0.75 ft)2 dv2
2

	  = 0.4297v2
2

Conservation of Energy.

	  5T16 + 5V16 = 5T26 + 5V26
	  506 + 516 ft # lb6 = 50.4297v2

26 + 59 ft # lb6
	  v2 = 4.04 rad>sd� Ans.

Note: If the principle of work and energy were used to solve this 
problem, then the work of the spring would have to be determined 
by considering both the change in magnitude and direction of the 
spring force.

3 ft

G
0.75 ft

4 ft

k � 2 lb/ft

(a)

(b)

30 lb

s1 � 4 ft
s2 � 3 ft

2 1

30 lb

(c)

IC

0.75 ft

(vG)2

V2

Fig. 18–19 
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Example   18.8

The 10-kg homogeneous disk shown in Fig. 18–20a is attached to a 
uniform 5-kg rod AB. If the assembly is released from rest when 
u = 60�, determine the angular velocity of the rod when u = 0�. 
Assume that the disk rolls without slipping. Neglect friction along the 
guide and the mass of the collar at B.

Solution
Potential Energy.  Two diagrams for the rod and disk, when they 
are located at their initial and final positions, are shown in Fig. 18–20b. 
For convenience the datum passes through point A.

When the system is in position 1, only the rod’s weight has positive 
potential energy. Thus,

V1 = Wry1 = (49.05 N)(0.3 sin 60� m) = 12.74 J

When the system is in position 2, both the weight of the rod and the 
weight of the disk have zero potential energy. Why? Thus,

V2 = 0

Kinetic Energy.  Since the entire system is at rest at the initial position,

T1 = 0

In the final position the rod has an angular velocity (Vr)2 and its mass 
center has a velocity (vG)2 , Fig. 18–20c. Since the rod is fully extended 
in this position, the disk is momentarily at rest, so (Vd)2 = 0 and 
(vA)2 = 0. For the rod (vG)2 can be related to (Vr)2 from the 
instantaneous center of zero velocity, which is located at point A, 
Fig. 18–20c. Hence, (vG)2 = rG>IC(vr)2 or (vG)2 = 0.3(vr)2 . Thus,

	  T2 =
1

2
 mr(vG)2

2 +
1

2
 IG(vr)2

2 +
1

2
 md(vA)2

2 +
1

2
 IA(vd)2

2

	  =
1

2
 (5 kg)[(0.3 m)(vr)2]

2 +
1

2
 c 1

12
 (5 kg)(0.6 m)2 d (vr)2

2 + 0 + 0

	  = 0.3(vr)2
2

Conservation of Energy.

	  5T16 + 5V16 = 5T26 + 5V26
	  506 + 512.74 J6 = 50.3(vr)2

26 + 506
	  (vr)2 = 6.52 rad>sb� Ans.

Note: We can also determine the final kinetic energy of the rod using 
T2 =

1
2IICv2

2.

(a)

0.1 m

G

A

B

0.6 m

u

(b)

60�

A

49.05 N98.1 N
98.1 N

Datum

49.05 N

G

y1 � (0.3 sin 60�) m

1 2
GA

(c)

G
(vG)2

A(IC)
rG/IC

(Vd)2 � 0
(Vr)2

Fig. 18–20 
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Fundamental Problems

F18–7.  If the 30@kg disk is released from rest when u = 0�, 
determine its angular velocity when u = 90�. 

F18–10.  The 30@kg rod is released from rest when u = 0�. 
Determine the angular velocity of the rod when u = 90�. 
The spring is unstretched when u = 0�. 

0.3 m
O

G

u

Prob. F18–7 

F18–8.  The 50@kg reel has a radius of gyration about its 
center O of kO = 300 mm. If it is released from rest, 
determine its angular velocity when its center O has traveled 
6 m down the smooth inclined plane. 

O

0.4 m

0.2 m

30�

Prob. F18–8 

F18–9.  The 60@kg rod OA is released from rest when 
u = 0�. Determine its angular velocity when u = 45�.  The 
spring remains vertical during the motion and is unstretched 
when u = 0�. 

F18–12.  The 20@kg rod is released from rest when u = 0�. 
Determine its angular velocity when u = 90�. The spring 
has an unstretched length of 0.5 m. 

k � 150 N/m

3 m

A

O
u

Prob. F18–9 

1.5 m

B

A

k � 300 N/m

u

Prob. F18–11 

F18–11.  The 30@kg rod is released from rest when u = 45�. 
Determine the angular velocity of the rod when u = 0�. The 
spring is unstretched when u = 45�. 

k � 80 N/m
1.5 m

A

O
u

2 m

Prob. F18–10 

A

k � 100 N/m

B

2 m

2 m

1 m

u

v

Prob. F18–12 
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PROBLEMS

*18–36.  The assembly consists of a 3-kg pulley A and 
10-kg pulley B. If a 2-kg block is suspended from the cord, 
determine the block’s speed after it descends 0.5 m starting 
from rest. Neglect the mass of the cord and treat the pulleys 
as thin disks. No slipping occurs.

18–37.  The assembly consists of a 3-kg pulley A and  
10-kg pulley B. If a 2-kg block is suspended from the cord, 
determine the distance the block must descend, starting 
from rest, in order to cause B to have an angular velocity of 
6 rad>s. Neglect the mass of the cord and treat the pulleys as 
thin disks. No slipping occurs.

A
B

30 mm

100 mm

Probs. 18–36/37

18–38.  The spool has a mass of 50 kg and a radius of 
gyration of kO = 0.280 m. If the 20-kg block A is released 
from rest, determine the distance the block must fall in 
order for the spool to have an angular velocity v = 5 rad>s. 
Also, what is the tension in the cord while the block is in 
motion? Neglect the mass of the cord.

18–39.  The spool has a mass of 50 kg and a radius of gyration 
of kO = 0.280 m. If the 20-kg block A is released from rest, 
determine the velocity of the block when it descends 0.5 m.

A

0.2 m
O

0.3 m

Probs. 18–38/39

*18–40.  An automobile tire has a mass of 7 kg and radius 
of gyration of kG = 0.3 m. If it is released from rest at A on 
the incline, determine its angular velocity when it reaches 
the horizontal plane. The tire rolls without slipping.

0.4 m

30�

5 m

G

A

B

0.4 m

Prob. 18–40

18–41.  The spool has a mass of 20 kg and a radius of 
gyration of kO = 160 mm. If the 15-kg block A is released 
from rest, determine the distance the block must fall in 
order for the spool to have an angular velocity v = 8 rad>s. 
Also, what is the tension in the cord while the block is in 
motion? Neglect the mass of the cord.

18–42.  The spool has a mass of 20 kg and a radius of 
gyration of kO = 160 mm. If the 15-kg block A is released 
from rest, determine the velocity of the block when it 
descends 600 mm.

200 mm

A

O

Probs. 18–41/42
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18–43.  A uniform ladder having a weight of 30 lb is released 
from rest when it is in the vertical position. If it is allowed to 
fall freely, determine the angle u at which the bottom end A 
starts to slide to the right of A. For the calculation, assume the 
ladder to be a slender rod and neglect friction at A.

u

A

10 ft

Prob. 18–43

*18–44.  Determine the speed of the 50-kg cylinder after it 
has descended a distance of 2 m, starting from rest. Gear A 
has a mass of 10 kg and a radius of gyration of 125 mm 
about its center of mass. Gear B and drum C have a 
combined mass of 30 kg and a radius of gyration about their 
center of mass of 150 mm.

A
B

D

C

150 mm
100 mm

200 mm

Prob. 18–44

18–45.  The 12-kg slender rod is attached to a spring, which 
has an unstretched length of 2 m. If the rod is released from 
rest when u = 30°, determine its angular velocity at the 
instant u = 90°.

2 m
u

2 m

A

C

k � 40 N/m

B

Prob. 18–45

18–46.  The 12-kg slender rod is attached to a spring, which 
has an unstretched length of 2 m. If the rod is released from 
rest when u = 30°, determine the angular velocity of the rod 
the instant the spring becomes unstretched.

2 m
u

2 m

A

C

k � 40 N/m

B

Prob. 18–46

18–47.  The 40-kg wheel has a radius of gyration about its 
center of gravity G of kG = 250 mm. If it rolls without 
slipping, determine its angular velocity when it has rotated 
clockwise 90° from the position shown. The spring AB has a 
stiffness k = 100 N>m and an unstretched length of 500 mm. 
The wheel is released from rest.

G

B

A

k � 100 N/m

1500 mm

400 mm

200 mm

200 mm

Prob. 18–47

18
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*18–48.  The assembly consists of two 10-kg bars which are 
pin connected. If the bars are released from rest when u = 60°, 
determine their angular velocities at the instant u = 0°. The 
5-kg disk at C has a radius of 0.5 m and rolls without 
slipping.

18–49.  The assembly consists of two 10-kg bars which are 
pin connected. If the bars are released from rest when  
u = 60°, determine their angular velocities at the instant  
u = 30°. The 5-kg disk at C has a radius of 0.5 m and rolls 
without slipping.

A

3 m3 m

C

B

uu

Prob. 18–48/49

18–50.  The compound disk pulley consists of a hub and 
attached outer rim. If it has a mass of 3 kg and a radius of 
gyration of kG = 45 mm, determine the speed of block A 
after A descends 0.2 m from rest. Blocks A and B each have 
a mass of 2 kg. Neglect the mass of the cords.

B

100 mm

30 mm

G

A

Prob. 18–50

18–51.  The uniform garage door has a mass of 150 kg and 
is guided along smooth tracks at its ends. Lifting is done 
using the two springs, each of which is attached to the 
anchor bracket at A and to the counterbalance shaft at B 
and C. As the door is raised, the springs begin to unwind 
from the shaft, thereby assisting the lift. If each spring 
provides a torsional moment of M = (0.7u) N # m, where u is 
in radians, determine the angle u0 at which both the left-
wound and right-wound spring should be attached so that 
the door is completely balanced by the springs, i.e., when 
the door is in the vertical position and is given a slight force 
upward, the springs will lift the door along the side tracks to 
the horizontal plane with no final angular velocity. Note: 
The elastic potential energy of a torsional spring is  

Ve = 
1

2
ku2, where M = ku and in this case k = 0.7 N # m>rad.

3 m 4 m

C
A

B

Prob. 18–51

*18–52.  The two 12-kg slender rods are pin connected and 
released from rest at the position u = 60°. If the spring has 
an unstretched length of 1.5 m, determine the angular 
velocity of rod BC, when the system is at the position u = 0°. 
Neglect the mass of the roller at C.

A
C

B

2 m

k � 20 N/m

2 m

u

Prob. 18–52
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18–53.  The two 12-kg slender rods are pin connected and 
released from rest at the position u = 60°. If the spring has 
an unstretched length of 1.5 m, determine the angular 
velocity of rod BC, when the system is at the position  
u = 30°.

A
C

B

2 m

k � 20 N/m

2 m

u

Prob. 18–53

18–54.  If the 250-lb block is released from rest when the 
spring is unstretched, determine the velocity of the block 
after it has descended 5 ft. The drum has a weight of 50 lb 
and a radius of gyration of kO = 0.5 ft about its center of 
mass O.

k � 75 lb/ft
0.75 ft

0.375 ft

O

Prob. 18–54

18–55.  The slender 15-kg bar is initially at rest and 
standing in the vertical position when the bottom end A is 
displaced slightly to the right. If the track in which it moves 
is smooth, determine the speed at which end A strikes the 
corner D. The bar is constrained to move in the vertical 
plane. Neglect the mass of the cord BC.

4 m

4 m

5 m

A D

B

C

Prob. 18–55

*18–56.  If the chain is released from rest from the position 
shown, determine the angular velocity of the pulley after 
the end B has risen 2 ft. The pulley has a weight of 50 lb and 
a radius of gyration of 0.375 ft about its axis. The chain 
weighs 6 lb>ft.

A

B

6 ft

4 ft

0.5  ft

Prob. 18–56

18
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18–57.  If the gear is released from rest, determine its 
angular velocity after its center of gravity O has descended 
a distance of 4 ft. The gear has a weight of 100 lb and a 
radius of gyration about its center of gravity of k = 0.75 ft.

1 ft

O

Prob. 18–57

18–58.  The slender 6-kg bar AB is horizontal and at rest 
and the spring is unstretched. Determine the stiffness k of 
the spring so that the motion of the bar is momentarily 
stopped when it has rotated clockwise 90° after being 
released.

k

A B

C

2 m

1.5 m

Prob. 18–58

18–59.  The slender 6-kg bar AB is horizontal and at rest 
and the spring is unstretched. Determine the angular 
velocity of the bar when it has rotated clockwise 45° after 
being released. The spring has a stiffness of k = 12 N>m.

k

A B

C

2 m

1.5 m

Prob. 18–59

*18–60.  The pendulum consists of a 6-kg slender rod fixed 
to a 15-kg disk. If the spring has an unstretched length of 
0.2  m, determine the angular velocity of the pendulum 
when it is released from rest and rotates clockwise 90° from 
the position shown. The roller at C allows the spring to 
always remain vertical.

0.5 m 0.5 m 
0.3 m

 k � 200 N/m

C

B DA

0.5 m

Prob. 18–60
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18–61.  The 500-g rod AB rests along the smooth inner 
surface of a hemispherical bowl. If the rod is released from 
rest from the position shown, determine its angular velocity 
at the instant it swings downward and becomes horizontal.

A

B

200 mm

200 mm

Prob. 18–61

18–62.  The 50-lb wheel has a radius of gyration about its 
center of gravity G of kG = 0.7 ft. If it rolls without slipping, 
determine its angular velocity when it has rotated clockwise 
90° from the position shown. The spring AB has a stiffness 
k = 1.20 lb>ft and an unstretched length of 0.5 ft. The wheel 
is released from rest.

G

B

Ak � 1.20 lb/ft

3 ft

1 ft

0.5 ft

0.5 ft

Prob. 18–62

18–63.  The system consists of 60-lb and 20-lb blocks A  
and B, respectively, and 5-lb pulleys C and D that can be 
treated as thin disks. Determine the speed of block A after 
block B has risen 5 ft, starting from rest. Assume that the cord 
does not slip on the pulleys, and neglect the mass of the cord.

0.5 ft

A

C

D
0.5 ft

B

Prob. 18–63

*18–64.  The door is made from one piece, whose ends 
move along the horizontal and vertical tracks. If the door is 
in the open position, u = 0�, and then released, determine 
the speed at which its end A strikes the stop at C. Assume 
the door is a 180-lb thin plate having a width of 10 ft.

C A

B

5 ft

3 ft

u

Prob. 18–64

18
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18–65.  The door is made from one piece, whose ends move 
along the horizontal and vertical tracks. If the door is in the 
open position, u = 0�, and then released, determine its 
angular velocity at the instant u = 30�.  Assume the door is 
a 180-lb thin plate having a width of 10 ft.

C A

B

5 ft

3 ft

u

Prob. 18–65

18–66.  The end A of the garage door AB travels along the 
horizontal track, and the end of member BC is attached to a 
spring at C. If the spring is originally unstretched, determine 
the stiffness k so that when the door falls downward from 
rest in the position shown, it will have zero angular velocity 
the moment it closes, i.e., when it and BC become vertical. 
Neglect the mass of member BC and assume the door is a 
thin plate having a weight of 200 lb and a width and height 
of 12 ft. There is a similar connection and spring on the 
other side of the door.

15�
7 ft

5 ft

12 ft
A

B

C

D

2 ft 6 ft

1 ft

Prob. 18–66

18–67.  The system consists of a 30-kg disk, 12-kg slender 
rod BA, and a 5-kg smooth collar A. If the disk rolls without 
slipping, determine the velocity of the collar at the instant 
u = 0�. The system is released from rest when u = 45�.

0.5 m

2 m

A

C

B

30�

u

Prob. 18–67

*18–68.  The system consists of a 30-kg disk A, 12-kg 
slender rod BA, and a 5-kg smooth collar A. If the disk rolls 
without slipping, determine the velocity of the collar at the 
instant u = 30�. The system is released from rest when 
u = 45�.

0.5 m

2 m

A

C

B

30�

u

Prob. 18–68
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C18–4.  Determine the counterweight of A needed to balance 
the weight of the bridge deck when u = 0�. Show that this 
weight will maintain equilibrium of the deck by considering 
the potential energy of the system when the deck is in the 
arbitrary position u. Both the deck and AB are horizontal 
when u = 0�. Neglect the weights of the other members. Use 
appropriate numerical values to explain this result.

C18–2.  Two torsional springs, M = ku, are used to assist in 
opening and closing the hood of this truck. Assuming the 
springs are uncoiled (u = 0�) when the hood is opened, 
determine the stiffness k (N # m>rad) of each spring so that 
the hood can easily be lifted, i.e., practically no force applied 
to it, when it is closed in the unlocked position. Use 
appropriate numerical values to explain your result. 

C18–3.  The operation of this garage door is assisted using 
two springs AB and side members BCD, which are pinned at C. 
Assuming the springs are unstretched when the door is in the 
horizontal (open) position and ABCD is vertical, determine 
each spring stiffness k so that when the door falls to the vertical 
(closed) position, it will slowly come to a stop. Use appropriate 
numerical values to explain your result. 

C18–1.  The bicycle and rider start from rest at the top of 
the hill. Show how to determine the speed of the rider when 
he freely coasts down the hill. Use appropriate dimensions 
of the wheels, and the mass of the rider, frame and wheels of 
the bicycle to explain your results. 

Conceptual Problems

B

A

u

Prob. C18–1 (© R.C. Hibbeler)
Prob. C18–3 (© R.C. Hibbeler)

Prob. C18–2 (© R.C. Hibbeler) Prob. C18–4 (© R.C. Hibbeler)
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Chapter Review

Kinetic Energy

The kinetic energy of a rigid body that undergoes 
planar motion can be referenced to its mass 
center. It includes a scalar sum of its translational 
and rotational kinetic energies. 

Translation

T =
1
2 mvG

2

Rotation About a Fixed Axis

T =
1
2 mvG

2 +
1
2 IGv

2

or 

T =
1
2 IOv

2

General Plane Motion

T =
1
2 mvG

2 +
1
2 IGv

2

or 

T =
1
2IICv

2

vG

G

O

Rotation About a Fixed Axis

V

vG

G

General Plane Motion

V

vG � v

G

Translation

v
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Work of a Force and a Couple Moment

A force does work when it undergoes a 
displacement ds in the direction of the 
force. In particular, the frictional and 
normal forces that act on a cylinder or 
any circular body that rolls without 
slipping will do no work, since the 
normal force does not undergo a 
displacement and the frictional force 
acts on successive points on the surface 
of the body. 

UF = LF cos u ds

UFC
= (Fc cos u)s

Constant Force

U = -
1

2
 k s2

Spring

UM = L
u2

u1

M du

UM = M(u2 - u1)

Constant Magnitude

UW = -W�y

Weight

s

F

F
s

F

F

u

u

s

Fc

Fc

Fc cos u

Fc cos u

u

u

W

W

G

G

�y

s

k

s

Fsk

Unstretched
position of
spring, s � 0

M

u
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Principle of Work and Energy

Problems that involve velocity, force, and 
displacement can be solved using the 
principle of work and energy. The kinetic 
energy is the sum of both its rotational 
and translational parts. For application, a 
free-body diagram should be drawn in 
order to account for the work of all of the 
forces and couple moments that act on 
the body as it moves along the path. 

T1 + �U1 - 2 = T2

The potential energy is the sum of the 
body’s gravitational and elastic potential 
energies. The gravitational potential energy 
will be positive if the body’s center of 
gravity is located above a datum. If it is 
below the datum, then it will be negative. 
The elastic potential energy is always 
positive, regardless if the spring is stretched 
or compressed. 

T1 + V1 = T2 + V2

where V = Vg + Ve

Conservation of Energy

If a rigid body is subjected only to 
conservative forces, then the conservation- 
of-energy equation can be used to solve the 
problem. This equation requires that the 
sum of the potential and kinetic energies of 
the body remain the same at any two points 
along the path.

�yG

W

Datum

�yG

G

G

W

Gravitational potential energy

Vg � �WyG

 Vg � WyG

s

Fs

k

Unstretched
position of
spring, s � 0

Elastic potential energy

Ve �     ks2
1
2
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R18–1.  The pendulum of the Charpy impact machine has 
a mass of 50 kg and a radius of gyration of kA = 1.75 m. If it 
is released from rest when u = 0°, determine its angular 
velocity just before it strikes the specimen S, u = 90°

A

S

u

G

1.25 m

Prob. R18–1

R18–2.  The 50-kg flywheel has a radius of gyration of  
k0 = 200 mm about its center of mass. If it is subjected to a 
torque of M = (9u1>2 + 1) N # m, where u is in radians, 
determine its angular velocity when it has rotated  
5 revolutions, starting from rest.

M � (9 u1�2 + 1) N�m

O

Prob. R18–2

R18–3.  The drum has a mass of 50 kg and a radius of 
gyration about the pin at O of kO = 0.23 m. Starting from 
rest, the suspended 15-kg block B is allowed to fall 3 m 
without applying the brake ACD. Determine the speed of 
the block at this instant. If the coefficient of kinetic friction 
at the brake pad C is mk = 0.5, determine the force P that 
must be applied at the brake handle which will then stop the 
block after it descends another 3 m. Neglect the thickness of 
the handle.

0.25 m
0.15 m

O

A
B

C

P

0.75 m

0.5 m

D

Prob. R18–3

R18–4.  The spool has a mass of 60 kg and a radius of 
gyration of kG = 0.3 m. If it is released from rest, determine 
how far its center descends down the smooth plane before it 
attains an angular velocity of v = 6 rad>s. Neglect the mass 
of the cord which is wound around the central core. the 
coefficient of kinetic friction between the spool and plane 
at A is mk = 0.2.

30�

G

A

0.5 m
0.3 m

Prob. R18–4

Review Problems
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R18–5.  The gear rack has a mass of 6 kg, and the gears 
each have a mass of 4 kg and a radius of gyration of  
k = 30 mm at their centers. If the rack is originally moving 
downward at 2 m>s, when s = 0, determine the speed of the 
rack when s = 600 mm. The gears are free to turn about their 
centers A and B.

s

A B

50 mm50 mm

Prob. R18–5

R18-6.  At the instant shown, the 50-lb bar rotates 
clockwise at 2 rad>s. The spring attached to its end always 
remains vertical due to the roller guide at C. If the spring has 
an unstretched length of 2 ft and a stiffness of k = 6 lb>ft, 
determine the angular velocity of the bar the instant it has 
rotated 30° clockwise.

A

B

k

C

6 ft

4 ft

2 rad/s

Prob. R18–6

R18–7.  The system consists of a 20-lb disk A, 4-lb slender 
rod BC, and a 1-lb smooth collar C. If the disk rolls without 
slipping, determine the velocity of the collar at the instant 
the rod becomes horizontal, i.e., u = 0°. The system is 
released from rest when u = 45°.

0.8 ft

3 ft

A

C

B

u

Prob. R18–7

R18–8.  At the instant the spring becomes undeformed, 
the center of the 40-kg disk has a speed of 4 m>s. From this 
point determine the distance d the disk moves down the 
plane before momentarily stopping. The disk rolls without 
slipping.

0.3 m

k � 200 N/m

30�

Prob. R18–8



The impulse that this tugboat imparts to this ship will cause it to turn 
in a manner that can be predicted by applying the principles of 

impulse and momentum.

Chapter 19

(© Hellen Sergeyeva/Fotolia)



Planar Kinetics of a 
Rigid Body: Impulse 
and Momentum

Chapter Objectives

n	 To develop formulations for the linear and angular momentum  
of a body.

n	 To apply the principles of linear and angular impulse and 
momentum to solve rigid-body planar kinetic problems that 
involve force, velocity, and time.

n	 To discuss application of the conservation of momentum.

n	 To analyze the mechanics of eccentric impact.

19.1  Linear and Angular Momentum

In this chapter we will use the principles of linear and angular impulse 
and momentum to solve problems involving force, velocity, and time as 
related to the planar motion of a rigid body. Before doing this, we will first 
formalize the methods for obtaining a body’s linear and angular 
momentum, assuming the body is symmetric with respect to an inertial 
x–y reference plane.

Linear Momentum.  The linear momentum of a rigid body is 
determined by summing vectorially the linear momenta of all the particles 
of the body, i.e., L = mi vi. Since mi vi = mvG (see Sec. 15.2) we can 
also write

	 L = mvG� (19–1)

This equation states that the body’s linear momentum is a vector quantity 
having a magnitude mvG, which is commonly measured in units of 
kg #  m>s or slug #  ft>s and a direction defined by vG the velocity of the 
body’s mass center.
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Angular Momentum.  Consider the body in Fig. 19–1a, which is 
subjected to general plane motion. At the instant shown, the arbitrary 
point P has a known velocity vP, and the body has an angular velocity . 
Therefore the velocity of the ith particle of the body is

vi = vP + vi>P = vP + V * r

The angular momentum of this particle about point P is equal to the 
“moment” of the particle’s linear momentum about P, Fig. 19–1a. Thus,

(HP)i = r * mi vi

Expressing vi in terms of vP and using Cartesian vectors, we have

(HP)i k = mi (xi + yj) * [(vP)x i + (vP)y j + vk * (xi + yj)] 

  (HP)i = -miy(vP)x + mix(vP)y + mivr2

Letting mi S dm and integrating over the entire mass m of the body, 
we obtain

HP = - aLm
y dmb (vP)x + aLm

x dmb (vP)y + aLm
r2 dmbv

Here HP represents the angular momentum of the body about an axis 
(the z axis) perpendicular to the plane of motion that passes through 
point P. Since ym = 1y dm and  xm = 1x dm, the integrals for the first 
and second terms on the right are used to locate the body’s center of 
mass G with respect to P, Fig. 19–1b. Also, the last integral represents the 
body’s moment of inertia about point P. Thus,

	 HP = -ym(vP)x + xm(vP)y + IPv� (19–2)

This equation reduces to a simpler form if P coincides with the mass 
center G for the body,* in which case x = y = 0. Hence,

	 HG = IGv � (19–3)

y

xP

vP

r

i
vi

y

x

(a)

V

y

xP

vP

G

(b)

vG

_
r

V

_
x

_
y

Fig. 19–1 

*It also reduces to the same simple form, HP = IPv, if point P is a fixed point (see   
Eq. 19–9) or the velocity of P is directed along the line PG.
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Here the angular momentum of the body about G is equal to the product 
of the moment of inertia of the body about an axis passing through G and 
the body’s angular velocity. Realize that HG is a vector quantity having a 
magnitude IGv, which is commonly measured in units of kg # m2>s or 
slug # ft2>s, and a direction defined by V, which is always perpendicular to 
the plane of motion.

Equation 19–2 can also be rewritten in terms of the x and y components 
of the velocity of the body’s mass center, (vG)x and (vG)y, and the body’s 
moment of inertia IG. Since G is located at coordinates (x,y), then by the 
parallel-axis theorem, IP = IG + m(x2 + y2). Substituting into Eq. 19–2 
and rearranging terms, we have

	 HP = ym[-(vP)x + yv] + xm[(vP)y + xv] + IGv� (19–4)

From the kinematic diagram of Fig. 19–1b, vG can be expressed in terms 
of vP as

 vG = vP + v * r

 (vG)x i + (vG)y j = (vP)x i + (vP)y j + vk * (xi + yj)

Carrying out the cross product and equating the respective i and j 
components yields the two scalar equations

 (vG)x = (vP)x - yv

 (vG)y = (vP)y + xv

Substituting these results into Eq. 19–4 yields

	 (a+ )HP = -ym(vG)x + xm(vG)y + IGv� (19–5)

As shown in Fig. 19–1c, this result indicates that when the angular 
momentum of the body is computed about point P, it is equivalent to the 
moment of the linear momentum mvG, or its components m(vG)x and 
m(vG)y, about P plus the angular momentum IG V. Using these results, we 
will now consider three types of motion.

y

xP

G
_
y

_
x

(c)

m(vG)y

HG � IGV

L � mvG

m(vG)x

Body momentum
diagram

 Fig. 19–1 
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Translation.  When a rigid body is subjected to either rectilinear or 
curvilinear translation, Fig. 19–2a, then V = 0 and its mass center has a 
velocity of vG = v. Hence, the linear momentum, and the angular 
momentum about G, become

	
L = mvG

 HG = 0
� (19–6)

If the angular momentum is computed about some other point A, the 
“moment” of the linear momentum L must be found about the point. 
Since d is the “moment arm” as shown in Fig. 19–2a, then in accordance 
with Eq. 19–5, HA = (d)(mvG)d.

Rotation About a Fixed Axis.  When a rigid body is rotating 
about a fixed axis, Fig. 19–2b, the linear momentum, and the angular 
momentum about G, are

	
 L = mvG

 HG = IGv
� (19–7)

It is sometimes convenient to compute the angular momentum about 
point O. Noting that L (or vG) is always perpendicular to rG, we have

	 (a+) HO = IGv + rG(mvG)� (19–8)

Since vG = rGv, this equation can be written as HO = (IG + mr G
2 )v. 

Using the parallel-axis theorem,*

	 HO = IO v � (19–9)

For the calculation, then, either Eq. 19–8 or 19–9 can be used.

d

G

L � mvG

vG � vA

Translation

(a)

G

L � mvG

HG � IGV

O

Rotation about a fixed axis

(b)

rG

V

Fig. 19–2

*The similarity between this derivation and that of Eq. 17–16 (MO = IOa) and  
Eq. 18–5 1T =

1
2 IOv

22 should be noted. Also note that the same result can be obtained 
from Eq. 19–2 by selecting point P at O, realizing that (vO)x = (vO)y = 0.
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General Plane Motion.  When a rigid body is subjected to general 
plane motion, Fig. 19–2c, the linear momentum, and the angular 
momentum about G, become

	
 L = mvG

 HG = IG v
� (19–10)

If the angular momentum is computed about point A, Fig. 19–2c, it is 
necessary to include the moment of L and HG about this point. In this case,

(a+) HA = IGv + (d)(mvG)

Here d is the moment arm, as shown in the figure. 
As a special case, if point A is the instantaneous center of zero velocity 

then, like Eq. 19–9, we can write the above equation in simplified form as 

	 HIC = IIC v 	 (19–11)

where IIC is the moment of inertia of the body about the IC. (See Prob. 19–2.)

HG � IGV

L � mvG

G

A

d

General plane motion

(c)

Fig. 19–2 

O

G

d

IGV

mvG As the pendulum swings downward, its angular 
momentum about point O can be determined by 
computing the moment of IG V and mvG about O. 
This is HO = IGv + (mvG)d. Since vG = vd, then 
HO = IGv + m(vd)d = (IG + md2)v = IOv. 
(© R.C. Hibbeler)
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At a given instant the 5-kg slender bar has the motion shown in  
Fig. 19–3a. Determine its angular momentum about point G and about 
the IC at this instant.

Example    19.1

G

(a)

30�

4 m

B

A

vA � 2 m/s

G

A

B

(b)

2 m/s

2 m

2 m

2 m

4 m cos 30�IC

vG
vB 30�

30� 30�

30�

V

Fig. 19–3 

Solution
Bar.  The bar undergoes general plane motion. The IC is established 
in Fig. 19–3b, so that

 v =
2 m>s

4 m cos 30
= 0.5774 rad>s  

 vG = (0.5774 rad>s)(2 m) = 1.155 m>s

Thus,

(c+) HG = IGv = 3 1
12(5 kg)(4 m)24(0.5774 rad>s) = 3.85 kg # m2>sb	 Ans.

Adding IGv and the moment of mvG about the IC yields

(c+) HIC = IGv + d(mvG)

= c 1
12(5 kg)(4 m)2 d (0.5774 rad>s) + (2 m)(5 kg)(1.155 m>s)

 = 15.4 kg # m2>sb	 Ans.

We can also use

(c +) HIC = IICv

 = 3 1
12 (5 kg)(4 m)2 +  (5 kg)(2 m)24(0.5774 rad>s)

 = 15.4 kg # m2>sb	 Ans.
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19.2  Principle of Impulse and Momentum

Like the case for particle motion, the principle of impulse and momentum 
for a rigid body can be developed by combining the equation of motion 
with kinematics. The resulting equation will yield a direct solution to 
problems involving force, velocity, and time.

Principle of Linear Impulse and Momentum.  The equation 
of translational motion for a rigid body can be written as 
F = maG = m(dvG>dt). Since the mass of the body is constant,

F =
d

dt
 (mvG)

Multiplying both sides by dt and integrating from t = t1, vG = (vG)1 to 
t = t2, vG = (vG)2 yields

 L
t2

t1

F dt = m(vG)2 - m(vG)1

This equation is referred to as the principle of linear impulse and 
momentum. It states that the sum of all the impulses created by the 
external force system which acts on the body during the time interval t1 to 
t2 is equal to the change in the linear momentum of the body during this 
time interval, Fig. 19–4.

Principle of Angular Impulse and Momentum.  If the body 
has general plane motion then MG = IGa = IG(dv>dt). Since the 
moment of inertia is constant,

MG =
d

dt
 (IGv)

Multiplying both sides by dt and integrating from t = t1, v = v1 to 
t = t2, v = v2 gives

	  L
t2

t1

MG dt = IGv2 - IGv1� (19–12)

In a similar manner, for rotation about a fixed axis passing through 
point O, Eq. 17–16 (MO = IOa) when integrated becomes

	  L
t2

t1

MO dt = IOv2 - IOv1� (19–13)

Equations 19–12 and 19–13 are referred to as the principle of angular 
impulse and momentum. Both equations state that the sum of the angular 
impulses acting on the body during the time interval t1 to t2 is equal to 
the change in the body’s angular momentum during this time interval.

m(vG)1

IGV1

G

Initial
momentum
diagram

(a)

F1 dt

G

M1 dt

W(t2 � t1)

F3 dt
F2 dt

Impulse
diagram

(b)

�
t2

t1
�

t2

t1
�

t2

t1
� t2

t1
�

G

Final
momentum
diagram

(c)

IGV2

m(vG)2

=

Fig. 19–4 
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To summarize these concepts, if motion occurs in the x–y plane, the 
following three scalar equations can be written to describe the planar 
motion of the body.

 m(vGx)1 +  L
t2

t1

Fx dt = m(vGx)2

	  m(vGy)1 +  L
t2

t1

Fy dt = m(vGy)2 	 (19–14)

 IGv1 +  L
t2

t1

MG dt = IGv2

The terms in these equations can be shown graphically by drawing a 
set of impulse and momentum diagrams for the body, Fig. 19–4. Note that 
the linear momentum mvG is applied at the body’s mass center, Figs. 19–4a 
and 19–4c; whereas the angular momentum IG V is a free vector, and 
therefore, like a couple moment, it can be applied at any point on the 
body. When the impulse diagram is constructed, Fig. 19–4b, the forces F 
and moment M vary with time, and are indicated by the integrals. 
However, if F and M are constant integration of the impulses yields 
F(t2 - t1) and M(t2 - t1), respectively. Such is the case for the body’s 
weight W, Fig. 19–4b.

Equations 19–14 can also be applied to an entire system of connected 
bodies rather than to each body separately. This eliminates the need to 
include interaction impulses which occur at the connections since they 
are internal to the system. The resultant equations may be written in 
symbolic form as

aa syst. linear

momentum
b

x1
+ aa syst. linear

impulse
b

x(1 -2)
= aa syst. linear

momentum
b

x2

aa syst. linear

momentum
b

y1
+ aa syst. linear

impulse
b

y(1 -2)
= aa syst. linear

momentum
b

y2

 aa syst. angular

momentum
b

O1
+ aa syst. angular

impulse
b

O(1 -2)
= aa syst. angular

momentum
b

O2

(19–15)

As indicated by the third equation, the system’s angular momentum and 
angular impulse must be computed with respect to the same reference 
point O for all the bodies of the system.

m(vG)1

IGV1

G

Initial
momentum
diagram

(a)

F1 dt

G

M1 dt

W(t2 � t1)

F3 dt
F2 dt

Impulse
diagram

(b)

�
t2

t1
�

t2

t1
�

t2

t1
� t2

t1
�

G

Final
momentum
diagram

(c)

IGV2

m(vG)2

=

Fig. 19–4 (repeated) 
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Procedure For Analysis

Impulse and momentum principles are used to solve kinetic 
problems that involve velocity, force, and time since these terms are 
involved in the formulation.

Free-Body Diagram.
	 •	 Establish the x, y, z inertial frame of reference and draw the free-

body diagram in order to account for all the forces and couple 
moments that produce impulses on the body.

	 •	 The direction and sense of the initial and final velocity of the body’s 
mass center, vG, and the body’s angular velocity V should be 
established. If any of these motions is unknown, assume that the sense 
of its components is in the direction of the positive inertial coordinates.

	 •	 Compute the moment of inertia IG or IO.
	 •	 As an alternative procedure, draw the impulse and momentum 

diagrams for the body or system of bodies. Each of these diagrams 
represents an outlined shape of the body which graphically accounts 
for the data required for each of the three terms in Eqs. 19–14 or 
19–15, Fig. 19–4. These diagrams are particularly helpful in order to 
visualize the “moment” terms used in the principle of angular 
impulse and momentum, if application is about the IC or another 
point other than the body’s mass center G or a fixed point O.

Principle of Impulse and Momentum.
	 •	 Apply the three scalar equations of impulse and momentum.
	 •	 The angular momentum of a rigid body rotating about a fixed axis is the 

moment of mvG plus IG V about the axis. This is equal to HO = IO v, 
where IO is the moment of inertia of the body about the axis.

	 •	 All the forces acting on the body’s free-body diagram will create 
an impulse; however, some of these forces will do no work.

	 •	 Forces that are functions of time must be integrated to obtain  
the impulse.

	 •	 The principle of angular impulse and momentum is often used to 
eliminate unknown impulsive forces that are parallel or pass 
through a common axis, since the moment of these forces is zero 
about this axis.

Kinematics.
	 •	 If more than three equations are needed for a complete solution, 

it may be possible to relate the velocity of the body’s mass center 
to the body’s angular velocity using kinematics. If the motion 
appears to be complicated, kinematic (velocity) diagrams may be 
helpful in obtaining the necessary relation.
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The 20-lb disk shown in Fig. 19–5a is acted upon by a constant couple 
moment of 4 lb # ft and a force of 10 lb which is applied to a cord 
wrapped around its periphery. Determine the angular velocity of the 
disk two seconds after starting from rest. Also, what are the force 
components of reaction at the pin?

Solution
Since angular velocity, force, and time are involved in the problems, 
we will apply the principles of impulse and momentum to the solution.

Free-Body Diagram.  Fig. 19–5b. The disk’s mass center does not 
move; however, the loading causes the disk to rotate clockwise.

The moment of inertia of the disk about its fixed axis of rotation is

IA =
1

2
 mr 2 =

1

2
 a 20 lb

32.2 ft>s2 b (0.75 ft)2 = 0.1747 slug # ft2

Principle of Impulse and Momentum.

( S+ )	  m(vAx)1 +  L
t2

t1

Fx dt = m(vAx)2

	  0 + Ax(2 s) = 0

(+ c )	   m(vAy)1 +  L
t2

t1

Fy dt = m(vAy)2

	 0 + Ay(2 s) - 20 lb(2 s) - 10 lb(2 s) = 0

(c+)	  IAv1 +  L
t2

t1

MA dt = IAv2

	 0 + 4 lb # ft(2 s) + [10 lb(2 s)](0.75 ft) = 0.1747v2

Solving these equations yields

	  Ax = 0� Ans.

	  Ay = 30 lb	 Ans.

	  v2 = 132 rad>sb 	 Ans.

Example   19.2

0.75 ft

M � 4 lb � ft

F � 10 lb
(a)

A

Ax

Ay

0.75 ftA

20 lb

4 lb � ft

10 lb

 (b)

y

x

V

Fig. 19–5 
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981 N

G

P � (t � 10) N

A

NA

FA

vG

y

x

(b)

0.75 m

0.4 m

V

Fig. 19–6 

G

A

P � (t � 10) N

(a)

0.75 m

0.4 m

The 100-kg spool shown in Fig. 19–6a has a radius of gyration 
kG = 0.35 m. A cable is wrapped around the central hub of the spool, 
and a horizontal force having a variable magnitude of P = (t + 10) N 
is applied, where t is in seconds. If the spool is initially at rest, 
determine its angular velocity in 5 s. Assume that the spool rolls 
without slipping at A.

Example   19.3

Solution
Free-Body Diagram.  From the free-body diagram, Fig. 19–6b, the 
variable force P will cause the friction force FA to be variable, and thus 
the impulses created by both P and FA must be determined by 
integration. Force P causes the mass center to have a velocity vG to the 
right, and so the spool has a clockwise angular velocity V.

Principle of Impulse and Momentum.  A direct solution for V can 
be obtained by applying the principle of angular impulse and 
momentum about point A, the IC, in order to eliminate the unknown 
friction impulse.

(c+)	 IAv1 +  LMA dt = IAv2

0 + JL5 s

0

(t + 10) N dtR (0.75 m +  0.4 m) = [100 kg (0.35 m)2 +  (100 kg)(0.75 m)2]v2

62.5(1.15) = 68.5v2

	 v2 = 1.05 rad>sb� Ans.

NOTE: Try solving this problem by applying the principle of impulse 
and momentum about G and using the principle of linear impulse and 
momentum in the x direction.
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The cylinder B, shown in Fig. 19–7a has a mass of 6 kg. It is attached to 
a cord which is wrapped around the periphery of a 20-kg disk that has 
a moment of inertia IA = 0.40 kg # m2. If the cylinder is initially moving 
downward with a speed of 2 m>s, determine its speed in 3 s. Neglect the 
mass of the cord in the calculation.

Example   19.4

B

vB � 2 m/s

0.2 m
A

(a)

vB

y

x

T

58.86 N

0.2 m

A

Ay

Ax

196.2 N

T

(b)

V

Fig. 19–7 

Solution I
Free-Body Diagram.  The free-body diagrams of the cylinder and 
disk are shown in Fig. 19–7b. All the forces are constant since the weight 
of the cylinder causes the motion. The downward motion of the 
cylinder, vB, causes V of the disk to be clockwise.

Principle of Impulse and Momentum.  We can eliminate Ax and Ay 
from the analysis by applying the principle of angular impulse and 
momentum about point A. Hence

Disk

(c+)	 IAv1 +  LMA dt = IAv2

0.40 kg # m2(v1) + T(3 s)(0.2 m) = (0.40 kg # m2)v2

Cylinder

(+ c )	 mB(vB)1 +  LFy dt = mB(vB)2

-6 kg(2 m>s) + T(3 s) - 58.86 N(3 s) = -6 kg(vB)2

Kinematics.  Since v = vB>r, then v1 = (2 m>s)>(0.2 m) = 10 rad>s 
and v2 = (vB)2>0.2 m = 5(vB)2. Substituting and solving the equations 
simultaneously for (vB)2 yields

	 (vB)2 = 13.0 m>s T 	 Ans.
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Solution II
Impulse and Momentum Diagrams.  We can obtain (vB)2 directly by 
considering the system consisting of the cylinder, the cord, and the disk. 
The impulse and momentum diagrams have been drawn to clarify 
application of the principle of angular impulse and momentum about 
point A, Fig. 19–7c.

Principle of Angular Impulse and Momentum.  Realizing that 
v1 = 10 rad>s and v2 = 5(vB)2, we have

(c+)aa syst. angular

momentum
b

A1
+ aa syst. angular

impulse
b

A(1 - 2)
= aa syst. angular

momentum
b

A2

 (6 kg)(2 m>s)(0.2 m) + (0.40 kg # m2)(10 rad>s) + (58.86 N)(3 s)(0.2 m)

 = (6 kg)(vB)2(0.2 m) + (0.40 kg # m2)[5(vB)2]

	 (vB)2 = 13.0 m>s T � Ans.

�

6 kg(2 m/s)

0.2 m

A �

58.86 N(3 s)

0.2 m

A
Ax (3 s)

Ay (3 s)

196.2 N(3 s)

6 kg(vB)2

0.2 m

A

0.40 kg � m2(10 rad/s) 0.40 kg � m2
V2

(c)

Fig. 19–7  (cont.)
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The Charpy impact test is used in materials testing to determine the energy 
absorption characteristics of a material during impact. The test is 
performed using the pendulum shown in Fig. 19–8a, which has a mass m, 
mass center at G, and a radius of gyration kG about G. Determine the 
distance rP from the pin at A to the point P where the impact with the 
specimen S should occur so that the horizontal force at the pin A is 
essentially zero during the impact. For the calculation, assume the 
specimen absorbs all the pendulum’s kinetic energy gained during the time 
it falls and thereby stops the pendulum from swinging when u = 0.

Solution
Free-Body Diagram.  As shown on the free-body diagram,  
Fig. 19–8b, the conditions of the problem require the horizontal force 
at A to be zero. Just before impact, the pendulum has a clockwise 
angular velocity V1, and the mass center of the pendulum is moving to 
the left at (vG)1 = rv1.

Principle of Impulse and Momentum.  We will apply the principle 
of angular impulse and momentum about point A. Thus,

 IAv1 + LMA dt = IAv2

(c+)	  IAv1 - aLF dtbrP = 0

	  m(vG)1 +  LF dt = m(vG)2

( S+ )	  -m(rv1) + LF dt = 0

Eliminating the impulse 1F dt and substituting IA = mkG
2 + mr 2 yields

[mkG
2 + mr 2]v1 - m(rv1)rP = 0

Factoring out mv1 and solving for rP, we obtain

	 rP = r +
kG

2

r
� Ans.

Note: Point P, so defined, is called the center of percussion. By placing 
the striking point at P, the force developed at the pin will be minimized. 
Many sports rackets, clubs, etc. are designed so that collision with the 
object being struck occurs at the center of percussion. As a 
consequence, no “sting” or little sensation occurs in the hand of the 
player. (Also see Probs. 17–66 and 19–1.)

Example   19.5

rP
A

S

G

P

(a)

_
r

u

y

x

A

Ay

Ax � 0

(b)

_
r

rP

G

P

W

F

vG

V

Fig. 19–8 
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P19–1.  Determine the angular momentum of the 100-kg 
disk or rod about point G and about point O.

a)                

G

3 rad/s

No slipping

2 m

(a)

O

b)

                     
 

G

O

4 rad/s

1.5 m

(b)

1.5 m

c)

               

G

4 rad/s

2 m

(c)

O

d)               

G

O

1 m

(b)

2 m

3 rad/s

1 m

P19–2.  Determine the angular impulse about point O 
for t = 3 s.

a)              

 

O

2 m

(a)

1 m

500 N

5 3

4

b )      

 

 F

t (s)

F (N)

20

2 3

(b)

2 m

O

c)    

 

4 m
O

(c)

5
3

4

F � (2t � 2) N

d)                               

2 m

(d)

O

M � (30 t2) N�m

Preliminary Problems

Prob. P19–1 Prob. P19–2
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G

P � 150 N

0.3 m

0.2 m

Prob. F19–5 

F19–4.  Gears A and B of mass 10 kg and 50 kg have radii 
of gyration about their respective mass centers of 
kA = 80 mm and kB = 150 mm. If gear A is subjected to the 
couple moment M = 10 N # m when it is at rest, determine 
the angular velocity of gear B when t  5 s.

F19–2.  The 300@kg wheel has a radius of gyration about its 
mass center O of kO = 400 mm. If the wheel is subjected to 
a couple moment of M = 300 N # m, determine its angular 
velocity 6 s after it starts from rest and no slipping occurs. 
Also, determine the friction force that the ground applies to 
the wheel.

M � (3t2) N � m

O

Prob. F19–1 

F19–1.  The 60@kg wheel has a radius of gyration about its 
center O of kO = 300 mm. If it is subjected to a couple moment 
of M = (3t2) N # m, where t is in seconds, determine the 
angular velocity of the wheel when t = 4 s, starting from rest.

O

0.6 m

M � 300 N � m

Prob. F19–2 

F19–3.  If rod OA of negligible mass is subjected to the 
couple moment M = 9 N # m, determine the angular 
velocity of the 10@kg inner gear t = 5 s after it starts from 
rest. The gear has a radius of gyration about its mass center 
of kA = 100 mm, and it rolls on the fixed outer gear, B. 
Motion occurs in the horizontal plane. 

B

O

0.6 m
0.15 m

A M � 9 N � m

Prob. F19–3 

B

0.2 m

0.1 m

M � 10 N ·  m

A B

Prob. F19–4 

F19–5.  The 50@kg spool is subjected to a horizontal force of 
P = 150 N. If the spool rolls without slipping, determine its 
angular velocity 3 s after it starts from rest. The radius of 
gyration of the spool about its center of mass is kG = 175 mm.

F19–6.  The reel has a weight of 150 lb and a radius of 
gyration about its center of gravity of kG = 1.25 ft. If it is 
subjected to a torque of M = 25 lb # ft, and starts from rest 
when the torque is applied, determine its angular velocity in 
3 seconds. The coefficient of kinetic friction between the 
reel and the horizontal plane is mk = 0.15.

1.5 ft

1 ft

M � 25 lb � ft
G

A

Prob. F19–6 

Fundamental problems
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19–1.  The rigid body (slab) has a mass m and rotates with 
an angular velocity V about an axis passing through the 
fixed point O. Show that the momenta of all the particles 
composing the body can be represented by a single vector 
having a magnitude mvG and acting through point P, called 
the center of percussion, which lies at a distance 
rP>G = k2

G>rG>O from the mass center G. Here kG is the radius 
of gyration of the body, computed about an axis 
perpendicular to the plane of motion and passing through G.

mvG

vG

G

V

P
rP/G

rG/O

O

Prob. 19–1

19–2.  At a given instant, the body has a linear momentum 
L = mvG and an angular momentum HG = IGV computed 
about its mass center. Show that the angular momentum of 
the body computed about the instantaneous center of zero 
velocity IC can be expressed as HIC = IICV, where IIC 
represents the body’s moment of inertia computed about 
the instantaneous axis of zero velocity. As shown, the IC is 
located at a distance rG>IC away from the mass center G.

G IGV

rG/IC

IC

mvG

Prob. 19–2

19–3.  Show that if a slab is rotating about a fixed axis 
perpendicular to the slab and passing through its mass 
center G, the angular momentum is the same when 
computed about any other point P.

P

G

V

Prob. 19–3

*19–4.  The 40-kg disk is rotating at V = 100 rad>s. When 
the force P is applied to the brake as indicated by the graph. 
If the coefficient of kinetic friction at B is mk = 0.3, 
determine the time t needed to stay the disk from rotating. 
Neglect the thickness of the brake.

150 mm
O

300 mm300 mm

200 mm

A

P

B

P (N)

500

2
t (s)

V

Prob. 19–4

PROBLEMS
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19–5.  The impact wrench consists of a slender 1-kg rod AB 
which is 580 mm long, and cylindrical end weights at A  
and B that each have a diameter of 20 mm and a mass  
of 1 kg. This assembly is free to turn about the handle and 
socket, which are attached to the lug nut on the wheel of a 
car. If the rod AB is given an angular velocity of 4 rad>s and 
it strikes the bracket C on the handle without rebounding, 
determine the angular impulse imparted to the lug nut.

A

B

300 mm

300 mm

C

Prob. 19–5

19–6.  The airplane is traveling in a straight line with a 
speed of 300 km>h, when the engines A and B produce a 
thrust of TA = 40 kN and T B = 20 kN, respectively. 
Determine the angular velocity of the airplane in t = 5 s. The 
plane has a mass of 200 Mg, its center of mass is located 
at G, and its radius of gyration about G is kG = 15 m.

8 m

8 m

A

G

B

TA � 40 kN

TB � 20 kN

Prob. 19–6

19–7.  The double pulley consists of two wheels which are 
attached to one another and turn at the same rate. The 
pulley has a mass of 15 kg and a radius of gyration of 
kO = 110 mm. If the block at A has a mass of 40 kg, 
determine the speed of the block in 3 s after a constant 
force of 2 kN is applied to the rope wrapped around the 
inner hub of the pulley. The block is originally at rest.

200 mm

75 mm
O

A

2 kN

Prob. 19–7

*19–8.  The assembly weighs 10 lb and has a radius of 
gyration kG = 0.6 ft about its center of mass G. The kinetic 
energy of the assembly is 31 ft # lb when it is in the position 
shown. If it rolls counterclockwise on the surface without 
slipping, determine its linear momentum at this instant.

1 ft

1 ft0.8 ft

G

Prob. 19–8
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19–9.  The disk has a weight of 10 lb and is pinned at its 
center O. If a vertical force of P = 2 lb is applied to the cord 
wrapped around its outer rim, determine the angular 
velocity of the disk in four seconds starting from rest. 
Neglect the mass of the cord.

0.5 ft

O

P

Prob. 19–9

19–10.  The 30-kg gear A has a radius of gyration about its 
center of mass O of kO = 125 mm. If the 20-kg gear rack B 
is subjected to a force of P = 200 N, determine the time 
required for the gear to obtain an angular velocity of  
20 rad>s, starting from rest. The contact surface between the 
gear rack and the horizontal plane is smooth.

P � 200 NB
A

O

0.15 m

Prob. 19–10

19–11.  The pulley has a weight of 8 lb and may be treated 
as a thin disk. A cord wrapped over its surface is subjected 
to forces TA = 4 lb and TB = 5 lb. Determine the angular 
velocity of the pulley when t = 4 s if it starts from rest when 
t = 0. Neglect the mass of the cord.

TB � 5 lb TA � 4 lb

0.6 ft

Prob. 19–11

*19–12.  The 40-kg roll of paper rests along the wall where 
the coefficient of kinetic friction is mk = 0.2. If a vertical 
force of P = 40 N is applied to the paper, determine the 
angular velocity of the roll when t = 6 s starting from rest. 
Neglect the mass of the unraveled paper and take the radius 
of gyration of the spool about the axle O to be kO = 80 mm.

12

5

13

O

B

120 mm

P � 40 N

A

Prob. 19–12
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19–13.  The slender rod has a mass m and is suspended at 
its end A by a cord. If the rod receives a horizontal blow 
giving it an impulse I at its bottom B, determine the location y 
of the point P about which the rod appears to rotate during 
the impact.

A

BI

P

l

y

Prob. 19–13

19–14.  The rod of length L and mass m lies on a smooth 
horizontal surface and is subjected to a force P at its end A 
as shown. Determine the location d of the point about 
which the rod begins to turn, i.e, the point that has zero 
velocity.

A

P

L

d

Prob. 19–14

19–15.  A 4-kg disk A is mounted on arm BC, which has a 
negligible mass. If a torque of M = (5e0.5t ) N # m, where t is 
in seconds, is applied to the arm at C, determine the angular 
velocity of BC in 2 s starting from rest. Solve the problem 
assuming that (a) the disk is set in a smooth bearing at B so 
that it moves with curvilinear translation, (b) the disk is 
fixed to the shaft BC, and (c) the disk is given an initial 
freely spinning angular velocity of VD = {−80k} rad>s prior 
to application of the torque.

250 mm

M � (5e0.5t) N � m60 mm

z

C

A B

Prob. 19–15

*19–16.  The frame of a tandem drum roller has a weight of 
4000 lb excluding the two rollers. Each roller has a weight of 
1500 lb and a radius of gyration about its axle of 1.25 ft. If a 
torque of M = 300 lb # ft is supplied to the rear roller A, 
determine the speed of the drum roller 10 s later, starting 
from rest.

1.5 ft1.5 ft

A B

M � 300 lb�ft

Prob. 19–16
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19–17.  The 100-lb wheel has a radius of gyration of 
kG = 0.75 ft. If the upper wire is subjected to a tension of 
T = 50 lb, determine the velocity of the center of the wheel 
in 3 s, starting from rest. The coefficient of kinetic friction 
between the wheel and the surface is mk = 0.1.

1 ft

T

G

0.5 ft

Prob. 19–17

19–18.  The 4-kg slender rod rests on a smooth floor. If it is 
kicked so as to receive a horizontal impulse I = 8 N # s at 
point A as shown, determine its angular velocity and the 
speed of its mass center.

2 m

1.75 m

60�

I � 8 N � s

A

Prob. 19–18

19–19.  The double pulley consists of two wheels which are 
attached to one another and turn at the same rate. The 
pulley has a mass of 15 kg and a radius of gyration 
kO = 110 mm. If the block at A has a mass of 40 kg, 
determine the speed of the block in 3 s after a constant 
force F = 2 kN is applied to the rope wrapped around the 
inner hub of the pulley. The block is originally at rest. 
Neglect the mass of the rope.

Prob. 19–19

*19–20.  The 100-kg spool is resting on the inclined surface 
for which the coefficient of kinetic friction is mk = 0.1. 
Determine the angular velocity of the spool when t = 4 s 
after it is released from rest. The radius of gyration about 
the mass center is kG = 0.25 m.

30�

G

A

0.2 m

0.4 m

Prob. 19–20
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19–21.  The spool has a weight of 30 lb and a radius of 
gyration kO = 0.45 ft. A cord is wrapped around its inner 
hub and the end subjected to a horizontal force P = 5 lb. 
Determine the spool’s angular velocity in 4 s starting from 
rest. Assume the spool rolls without slipping.

P � 5 lb

0.9 ft

0.3 ft

O

A

Prob. 19–21

19–22.  The two gears A and B have weights and radii of 
gyration of W A = 15 lb, kA = 0.5 ft and W B = 10 lb, 
kB = 0.35 ft, respectively. If a motor transmits a couple 
moment to gear B of M = 2(1 -  e- 0.5t ) lb # ft, where t is in 
seconds, determine the angular velocity of gear A in t = 5 s, 
starting from rest.

0.8 ft

A
B

0.5 ftM

Prob. 19–22

19–23.  The hoop (thin ring) has a mass of 5 kg and is 
released down the inclined plane such that it has a backspin 
v = 8 rad>s and its center has a velocity vG = 3 m>s as 
shown. If the coefficient of kinetic friction between the 
hoop and the plane is mk = 0.6, determine how long the 
hoop rolls before it stops slipping.

G

0.5 m� 3 m/svG

30�

v � 8 rad/s

Prob. 19–23

*19–24.  The 30-kg gear is subjected to a force of 
P = (20t) N, where t is in seconds. Determine the angular 
velocity of the gear at t = 4 s, starting from rest. Gear rack B 
is fixed to the horizontal plane, and the gear’s radius of 
gyration about its mass center O is kO = 125 mm.

P � (20t) N

B A

O

150 mm

Prob. 19–24
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19–25.  The 30-lb flywheel A has a radius of gyration about 
its center of 4 in. Disk B weighs 50 lb and is coupled to the 
flywheel by means of a belt which does not slip at its 
contacting surfaces. If a motor supplies a counterclockwise 
torque to the flywheel of M = (50t) lb # ft, where t is in 
seconds, determine the time required for the disk to attain 
an angular velocity of 60 rad>s starting from rest.

6 in.

A

9 in.

B

M � (50t) lb � ft

Prob. 19–25

19–26.  If the shaft is subjected to a torque of M =  
(15t2) N # m, where t is in seconds, determine the angular 
velocity of the assembly when t = 3 s, starting from rest. 
Rods AB and BC each have a mass of 9 kg.

1 m

C

B

A

M � (15t2) N � m1 m

Prob. 19–26

19–27.  The double pulley consists of two wheels which are 
attached to one another and turn at the same rate. The 
pulley has a mass of 15 kg and a radius of gyration of  
kO = 110 mm. If the block at A has a mass of 40 kg and the 
container at B has a mass of 85 kg, including its contents, 
determine the speed of the container when t = 3 s after it is 
released from rest.

75 mm

200 mm

A

C

B

O

Prob. 19–27

*19–28.  The crate has a mass mc. Determine the constant 
speed v0 it acquires as it moves down the conveyor. The 
rollers each have a radius of r, mass m, and are spaced d 
apart. Note that friction causes each roller to rotate when 
the crate comes in contact with it.

A

d

30°

Prob. 19–28
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19.3  Conservation of Momentum

Conservation of Linear Momentum.  If the sum of all the 
linear impulses acting on a system of connected rigid bodies is zero in a 
specific direction, then the linear momentum of the system is constant, or 
conserved in this direction, that is,

	  aa syst. linear

momentum
b

1
= aa syst. linear

momentum
b

2
� (19–16)

This equation is referred to as the conservation of linear momentum.
Without introducing appreciable errors in the calculations, it may 

be possible to apply Eq. 19–16 in a specified direction for which  
the linear impulses are small or nonimpulsive. Specifically, nonimpulsive 
forces occur when small forces act over very short periods of time. 
Typical examples include the force of a slightly deformed spring,  
the initial contact force with soft ground, and in some cases the weight 
of the body.

Conservation of Angular Momentum.  The angular momentum 
of a system of connected rigid bodies is conserved about the system’s 
center of mass G, or a fixed point O, when the sum of all the angular 
impulses about these points is zero or appreciably small (nonimpulsive). 
The third of Eqs. 19–15 then becomes

	 aa syst. angular

momentum
b

O1
= aa syst. angular

momentum
b

O2
� (19–17)

This equation is referred to as the conservation of angular momentum. 
In the case of a single rigid body, Eq. 19–17 applied to point G becomes 
(IGv)1 = (IGv)2. For example, consider a swimmer who executes a 
somersault after jumping off a diving board. By tucking his arms and 
legs in close to his chest, he decreases his body’s moment of inertia and 
thus increases his angular velocity (IGv must be constant). If he 
straightens out just before entering the water, his body’s moment of 
inertia is increased, and so his angular velocity decreases. Since the 
weight of his body creates a linear impulse during the time of motion, 
this example also illustrates how the angular momentum of a body can 
be conserved and yet the linear momentum is not. Such cases occur 
whenever the external forces creating the linear impulse pass through 
either the center of mass of the body or a fixed axis of rotation.
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Procedure for Analysis

The conservation of linear or angular momentum should be applied 
using the following procedure.

Free-Body Diagram.
	 •	 Establish the x, y inertial frame of reference and draw the free-

body diagram for the body or system of bodies during the time of 
impact. From this diagram classify each of the applied forces as 
being either “impulsive” or “nonimpulsive.”

	 •	 By inspection of the free-body diagram, the conservation of linear 
momentum applies in a given direction when no external 
impulsive forces act on the body or system in that direction; 
whereas the conservation of angular momentum applies about a 
fixed point O or at the mass center G of a body or system of 
bodies when all the external impulsive forces acting on the body 
or system create zero moment (or zero angular impulse) about O 
or G.

	 •	 As an alternative procedure, draw the impulse and momentum 
diagrams for the body or system of bodies. These diagrams are 
particularly helpful in order to visualize the “moment” terms 
used in the conservation of angular momentum equation, when it 
has been decided that angular momenta are to be computed 
about a point other than the body’s mass center G.

Conservation of Momentum.
	 •	 Apply the conservation of linear or angular momentum in the 

appropriate directions.

Kinematics.
	 •	 If the motion appears to be complicated, kinematic (velocity) 

diagrams may be helpful in obtaining the necessary kinematic 
relations.
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98.1   t

G

A
r¿ � (0.2 � 0.03) m

m(vG)1

G

A

(b)

G

A

d

r � 0.2 m

_
+

F dt

m(vG)2

�

u

IGV2

IG V1

�

The 10-kg wheel shown in Fig. 19–9a has a moment of inertia 
IG = 0.156 kg # m2. Assuming that the wheel does not slip or rebound, 
determine the minimum velocity vG it must have to just roll over the 
obstruction at A.

Solution
Impulse and Momentum Diagrams.  Since no slipping or 
rebounding occurs, the wheel essentially pivots about point A during 
contact. This condition is shown in Fig. 19–9b, which indicates, 
respectively, the momentum of the wheel just before impact, the 
impulses given to the wheel during impact, and the momentum of the 
wheel just after impact. Only two impulses (forces) act on the wheel. 
By comparison, the force at A is much greater than that of the weight, 
and since the time of impact is very short, the weight can be considered 
nonimpulsive. The impulsive force F at A has both an unknown 
magnitude and an unknown direction u. To eliminate this force from 
the analysis, note that angular momentum about A is essentially 
conserved since (98.1�t)d � 0.

Conservation of Angular Momentum.  With reference to Fig. 19–9b,

(c+)	  (HA)1 = (HA)2

 r�m(vG)1 + IGv1 = rm(vG)2 + IGv2

(0.2 m - 0.03 m)(10 kg)(vG)1 + (0.156 kg # m2)(v1) =

	 (0.2 m)(10 kg)(vG)2 + (0.156 kg # m2)(v2)

Kinematics.  Since no slipping occurs, in general v = vG>r =  
vG>0.2 m = 5vG. Substituting this into the above equation and 
simplifying yields

	 (vG)2 = 0.8921(vG)1	 (1)

Conservation of Energy.*  In order to roll over the obstruction, the 
wheel must pass position 3 shown in Fig. 19–9c. Hence, if (vG)2 [or (vG)1] 
is to be a minimum, it is necessary that the kinetic energy of the wheel 
at position 2 be equal to the potential energy at position 3. Placing the 
datum through the center of gravity, as shown in the figure, and applying 
the conservation of energy equation, we have

5T26 + 5V26 = 5T36 + 5V36
51

2(10 kg)(vG)2
2 +

1
2(0.156 kg # m2)v2

26 + 506 =

506 + 5(98.1 N)(0.03 m)6
Substituting v2 = 5(vG)2 and Eq. 1 into this equation, and solving,
	 (vG)1 = 0.729 m>s S 	 Ans.

Example   19.6

(c)

G

(vG)2

0.03 m

98.1 N

Datum

2

3V2

Fig. 19–9 

*This principle does not apply during impact, since energy is lost during the collision. 
However, just after impact, as in Fig. 19–9c, it can be used.
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G
(vG)2

(vB)2

V2

O

0.5 m

0.75 m

(c)

Fig. 19–10 

0.25 m

O

0.75 mB

vB � 400 m/s

30�

(a)

Example   19.7

The 5-kg slender rod shown in Fig. 19–10a is pinned at O and is 
initially at rest. If a 4-g bullet is fired into the rod with a velocity of 
400 m>s, as shown in the figure, determine the angular velocity of the 
rod just after the bullet becomes embedded in it.

Solution
Impulse and Momentum Diagrams.  The impulse which the bullet 
exerts on the rod can be eliminated from the analysis, and the angular 
velocity of the rod just after impact can be determined by considering 
the bullet and rod as a single system. To clarify the principles involved, 
the impulse and momentum diagrams are shown in Fig. 19–10b. The 
momentum diagrams are drawn just before and just after impact. During 
impact, the bullet and rod exert equal but opposite internal impulses 
at A. As shown on the impulse diagram, the impulses that are external 
to the system are due to the reactions at O and the weights of the bullet 
and rod. Since the time of impact, t, is very short, the rod moves only 
a slight amount, and so the “moments” of the weight impulses about 
point O are essentially zero. Therefore angular momentum is conserved 
about this point.

�

O

30�

(b)

mB(vB)1
0.75 m

A

O

G
49.05    t

0.0392    t

Oy    t

Ox    t�

�

�

�

� G mR(vG)2

mB(vB)2

IG V2

O

0.5 m
0.75 m

Conservation of Angular Momentum.  From Fig. 19–10b, we have
(a+)	 (HO)1 = (HO)2

mB(vB)1 cos 30(0.75 m) = mB(vB)2(0.75 m) + mR(vG)2(0.5 m) + IGv2

(0.004 kg)(400 cos 30 m>s)(0.75 m) =

(0.004 kg)(vB)2(0.75 m) + (5 kg)(vG)2(0.5 m) + 3 1
12(5 kg)( 1 m)24v2	 (1)

or

1.039 = 0.003(vB)2 + 2.50(vG)2 + 0.4167v2

Kinematics.  Since the rod is pinned at O, from Fig. 19–9c we have

(vG)2 = (0.5 m)v2 (vB)2 = (0.75 m)v2

Substituting into Eq. 1 and solving yields

	 v2 = 0.623 rad>sd	 Ans.
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*19.4  Eccentric Impact

The concepts involving central and oblique impact of particles were 
presented in Sec. 15.4. We will now expand this treatment and discuss 
the  eccentric impact of two bodies. Eccentric impact occurs when the 
line connecting the mass centers of the two bodies does not coincide with 
the line of impact.*  This type of impact often occurs when one or both of the 
bodies are constrained to rotate about a fixed axis. Consider, for example, 
the collision at C between the two bodies A and B, shown in Fig. 19–11a. It 
is assumed that just before collision B is rotating counterclockwise with an 
angular velocity (VB)1, and the velocity of the contact point C located on A 
is (uA)1. Kinematic diagrams for both bodies just before collision are shown 
in Fig. 19–11b. Provided the bodies are smooth, the impulsive forces they 
exert on each other are directed along the line of impact. Hence, the 
component of velocity of point C on body B, which is directed along the line 
of impact, is (vB)1 = (vB)1r, Fig. 19–11b. Likewise, on body A the component 
of velocity (uA)1 along the line of impact is (vA)1. In order for a collision to 
occur, (vA)1 7 (vB)1.

During the impact an equal but opposite impulsive force P is exerted 
between the bodies which deforms their shapes at the point of contact. The 
resulting impulse is shown on the impulse diagrams for both bodies, Fig. 19–11c. 
Note that the impulsive force at point C on the rotating body creates 
impulsive pin reactions at O. On these diagrams it is assumed that the 
impact creates forces which are much larger than the nonimpulsive weights 
of the bodies, which are not shown. When the deformation at point C is a 
maximum, C on both the bodies moves with a common velocity v along the 
line of impact, Fig. 19–11d. A period of restitution then occurs in which the 
bodies tend to regain their original shapes. The restitution phase creates an 
equal but opposite impulsive force R acting between the bodies as shown 
on the impulse diagram, Fig. 19–11e. After restitution the bodies move apart 
such that point C on body B has a velocity (vB)2 and point C on body A 
has a velocity (uA)2, Fig. 19–11f, where (vB)2 7 (vA)2.

In general, a problem involving the impact of two bodies requires 
determining the two unknowns (vA)2 and (vB)2, assuming (vA)1 and (vB)1 are 
known (or can be determined using kinematics, energy methods, the 
equations of motion, etc.). To solve such problems, two equations must be 
written. The first equation generally involves application of the conservation 
of angular momentum to the two bodies. In the case of both bodies A and B, 
we can state that angular momentum is conserved about point O since the 
impulses at C are internal to the system and the impulses at O create zero 
moment (or zero angular impulse) about O. The second equation can be 
obtained using the definition of the coefficient of restitution, e, which is a 
ratio of the restitution impulse to the deformation impulse.

Here is an example of eccentric impact 
occurring between this bowling ball  
and pin. (© R.C. Hibbeler)

A
B

C

O

Line
of impact

Plane of impact

(a)

Fig. 19–11

*When these lines coincide, central impact occurs and the problem can be analyzed as 
discussed in Sec. 15.4.
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A

B

C

O

(b)

(vB)1 � (vB)1r

r

(vA)1

Velocity
before collision

C

(VB)1

(uA)1

A

B

C

O

(c)

r

Deformation
impulse

C

� Oy dt

� Ox dt

� Pdt

� Pdt A B

C

O

(d)

v � vr

r

u

v

Velocity at maximum
deformation

V

� O¿y dt

� O¿x dt

A

B

C

O

(e)

r

Restitution
impulse

C

� Rdt

� Rdt

Is is important to realize, however, that this analysis has only a very 
limited application in engineering, because values of e for this case have 
been found to be highly sensitive to the material, geometry, and the velocity 
of each of the colliding bodies. To establish a useful form of the coefficient 
of restitution equation we must first apply the principle of angular 
impulse and momentum about point O to bodies B and A separately. 
Combining the results, we then obtain the necessary equation. Proceeding 
in this manner, the principle of impulse and momentum applied to body B 
from the time just before the collision to the instant of maximum 
deformation, Figs. 19–11b, 19–11c, and 19–11d, becomes

(a+)	 IO(vB)1 + rLP dt = IOv� (19–18)

Here IO is the moment of inertia of body B about point O. Similarly, 
applying the principle of angular impulse and momentum from the 
instant of maximum deformation to the time just after the impact, Figs. 19–11d, 
19–11e, and 19–11f, yields

(a+)	 IOv + rLR dt = IO(vB)2� (19–19)

Solving Eqs. 19–18 and 19–19 for 1P dt and 1R dt, respectively, and 
formulating e, we have

e =
LR dt

LP dt
=

r(vB)2 - rv

rv - r(vB)1
=

(vB)2 - v

v - (vB)1

A

B

C

O

(f)

(vB)2 � (vB)2r

r

(vA)2

Velocity
after collision

(uA)2
C

(VB)2

Fig. 19–11 (cont.) 
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In the same manner, we can write an equation which relates the 
magnitudes of velocity (vA)1 and (vA)2 of body A. The result is

e =
v - (vA)2

(vA)1 - v

Combining the above two equations by eliminating the common velocity v 
yields the desired result, i.e.,

(+ Q)	 e =
(vB)2 - (vA)2

(vA)1 - (vB)1
 � (19–20)

This equation is identical to Eq. 15–11, which was derived for the central 
impact between two particles. It states that the coefficient of restitution 
is equal to the ratio of the relative velocity of separation of the points of 
contact (C) just after impact to the relative velocity at which the points 
approach one another just before impact. In deriving this equation, we 
assumed that the points of contact for both bodies move up and to the 
right both before and after impact. If motion of any one of the contacting 
points occurs down and to the left, the velocity of this point should be 
considered a negative quantity in Eq. 19–20.

During impact the columns of many highway signs are intended to break out of their 
supports and easily collapse at their joints. This is shown by the slotted connections at 
their base and the breaks at the column’s midsection. (© R.C. Hibbeler) 
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The 10-lb slender rod is suspended from the pin at A, Fig. 19–12a. If a 
2-lb ball B is thrown at the rod and strikes its center with a velocity of 
30 ft>s, determine the angular velocity of the rod just after impact. The 
coefficient of restitution is e = 0.4.

Solution
Conservation of Angular Momentum.  Consider the ball and rod as 
a system, Fig. 19–12b. Angular momentum is conserved about point A 
since the impulsive force between the rod and ball is internal. Also, the 
weights of the ball and rod are nonimpulsive. Noting the directions of 
the velocities of the ball and rod just after impact as shown on the 
kinematic diagram, Fig. 19–12c, we require

(a+)	  (HA)1 = (HA)2

 mB(vB)1(1.5 ft) = mB(vB)2(1.5 ft) + mR(vG)2(1.5 ft) + IGv2

a 2 lb

32.2 ft>s2 b 130 ft>s2(1.5 ft) = a 2 lb

32.2 ft>s2 b (vB)2(1.5 ft) +

a 10 lb

32.2 ft>s2 b (vG)2(1.5 ft) + c 1

12
 a 10 lb

32.2 ft>s2 b (3 ft)2 dv2

Since (vG)2 = 1.5v2 then

	 2.795 = 0.09317(vB)2 + 0.9317v2� (1)

Coefficient of Restitution.  With reference to Fig. 19–12c, we have

( S+ )	 e =
(vG)2 - (vB)2

(vB)1 - (vG)1
 0.4 =

(1.5 ft)v2 - (vB)2

30 ft>s - 0

	  12.0 = 1.5v2 - (vB)2� (2)

Solving Eqs. 1 and 2, yields

 (vB)2 = -6.52 ft>s = 6.52 ft>s d

	  v2 = 3.65 rad>sd	 Ans.

A

(b)

Ay

Ax

y

x

2 lb
10 lb

1.5 ft

1.5 ft

1.5 ft

30 ft/s

A

(a)

B

1.5 ft
(vB)1 � 30 ft/s

A

(c)

B

G
(vG)2

V2

(vB)2

Fig. 19–12 

Example    19.8
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19–29.  The turntable T of a record player has a mass of 
0.75 kg and a radius of gyration kz = 125 mm. It is turning 
freely at vT = 2 rad>s when a 50-g record (thin disk) falls on 
it. Determine the final angular velocity of the turntable just 
after the record stops slipping on the turntable.

150 mm

z

vT � 2 rad/s

T

Prob. 19–29

19–30.  The 10-g bullet having a velocity of 800 m>s is fired 
into the edge of the 5-kg disk as shown. Determine the 
angular velocity of the disk just after the bullet becomes 
embedded into its edge. Also, calculate the angle u the disk 
will swing when it stops. The disk is originally at rest. Neglect 
the mass of the rod AB.

19–31.  The 10-g bullet having a velocity of 800 m>s is fired 
into the edge of the 5-kg disk as shown. Determine the 
angular velocity of the disk just after the bullet becomes 
embedded into its edge. Also, calculate the angle u the disk 
will swing when it stops. The disk is originally at rest. The 
rod AB has a mass of 3 kg.

 0.4 m

2 m

B

v � 800 m/s

A

Probs. 19–30/31

*19–32.  The circular disk has a mass m and is suspended at  
A by the wire. If it receives a horizontal impulse I at its 
edge B, determine the location y of the point P about which 
the disk appears to rotate during the impact.

B

A

P

I

y

a

Prob. 19–32

19–33.  The 80-kg man is holding two dumbbells while 
standing on a turntable of negligible mass, which turns 
freely about a vertical axis. When his arms are fully 
extended, the turntable is rotating with an angular velocity 
of 0.5 rev>s. Determine the angular velocity of the man 
when he retracts his arms to the position shown. When his 
arms are fully extended, approximate each arm as a uniform 
6-kg rod having a length of 650 mm, and his body as a 68-kg 
solid cylinder of 400-mm diameter. With his arms in the 
retracted position, assume the man is an 80-kg solid cylinder 
of 450-mm diameter. Each dumbbell consists of two 5-kg 
spheres of negligible size.

0.65 m
0.20 m

0.3 m 0.3 m

Prob. 19–33

PROBLEMS
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19–34.  The platform swing consists of a 200-lb flat plate 
suspended by four rods of negligible weight. When the 
swing is at rest, the 150-lb man jumps off the platform when 
his center of gravity G is 10 ft from the pin at A. This is done 
with a horizontal velocity of 5 ft>s, measured relative to the 
swing at the level of G. Determine the angular velocity he 
imparts to the swing just after jumping off.

4 ft

A

G

10 ft

11 ft

Prob. 19–34

19–35.  The 2-kg rod ACB supports the two 4-kg disks at its 
ends. If both disks are given a clockwise angular velocity 
(vA)1 = (vB)1 = 5 rad>s while the rod is held stationary and 
then released, determine the angular velocity of the rod 
after both disks have stopped spinning relative to the rod 
due to frictional resistance at the pins A and B. Motion is in 
the horizontal plane. Neglect friction at pin C.

B

0.15 m0.15 m

A
C

0.75m 0.75m

ω(    B)
1

ω(    A)
1

Prob. 19–35

*19–36.  The satellite has a mass of 200 kg and a radius of 
gyration about z axis of kz = 0.1 m, excluding the two solar 
panels A and B. Each solar panel has a mass of 15 kg and 
can be approximated as a thin plate. If the satellite is 
originally spinning about the z axis at a constant rate 
vz = 0.5 rad>s when u = 90, determine the rate of spin if 
both panels are raised and reach the upward position, 
u = 0, at the same instant.

0.3 m

1.5 m
0.2 m

u � 90�

A

B

z

y

x

vz

Prob. 19–36

19–37.  Disk A has a weight of 20 lb. An inextensible cable 
is attached to the 10-lb weight and wrapped around the 
disk. The weight is dropped 2 ft before the slack is taken up. 
If the impact is perfectly elastic, i.e., e = 1, determine the 
angular velocity of the disk just after impact.

0.5 ft

A

10 lb

Prob. 19–37
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19–38.  The plank has a weight of 30 lb, center of gravity  
at G, and it rests on the two sawhorses at A and B. If the end D 
is raised 2 ft above the top of the sawhorses and is released 
from rest, determine how high end C will rise from the top 
of the sawhorses after the plank falls so that it rotates 
clockwise about A, strikes and pivots on the sawhorse at B, 
and rotates clockwise off the sawhorse at A.

A

C DG

B

3 ft 3 ft

2 ft

1.5 ft 1.5 ft

Prob. 19–38

19–39.  The 12-kg rod AB is pinned to the 40-kg disk. If the 
disk is given an angular velocity vD = 100 rad>s while the 
rod is held stationary, and the assembly is then released, 
determine the angular velocity of the rod after the disk has 
stopped spinning relative to the rod due to frictional 
resistance at the bearing B. Motion is in the horizontal 
plane. Neglect friction at the pin A.

A B

2 m

0.3 m

vD

Prob. 19–39

*19–40.  A thin rod of mass m has an angular velocity V0 
while rotating on a smooth surface. Determine its new 
angular velocity just after its end strikes and hooks onto the 
peg and the rod starts to rotate about P without rebounding. 
Solve the problem (a) using the parameters given, (b) 
setting m = 2 kg, v0 = 4 rad>s, l = 1.5 m.

l

P

v0 

Prob. 19–40

19–41.  Tests of impact on the fixed crash dummy are 
conducted using the 300-lb ram that is released from rest at 
u = 30, and allowed to fall and strike the dummy at 
u = 90. If the coefficient of restitution between the 
dummy and the ram is e = 0.4, determine the angle u to 
which the ram will rebound before momentarily coming  
to rest.

u

10 ft 10 ft

Prob. 19–41
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19–42.  The vertical shaft is rotating with an angular 
velocity of 3 rad>s when u = 0. If a force F is applied to the 
collar so that u = 90, determine the angular velocity of the 
shaft. Also, find the work done by force F. Neglect the mass 
of rods GH and EF and the collars I and J. The rods AB  
and CD each have a mass of 10 kg.

z

A

G

HF

F

D

E

C

B

I

0.3 m 0.3 m

0.3 m 0.3 m

J

0.1 m0.1 m
v

u u

Prob. 19–42

19–43.  The mass center of the 3-lb ball has a velocity of 
(vG)1 = 6 ft>s when it strikes the end of the smooth 5-lb 
slender bar which is at rest. Determine the angular velocity 
of the bar about the z axis just after impact if e = 0.8.

(vG)1 � 6 ft/s

r � 0.5 ft

G

2 ft

0.5 ft

z

2 ft

OB

A

Prob. 19–43

*19–44.  The pendulum consists of a slender 2-kg rod AB 
and 5-kg disk. It is released from rest without rotating. 
When it falls 0.3 m, the end A strikes the hook S, which 
provides a permanent connection. Determine the angular 
velocity of the pendulum after it has rotated 90. Treat the 
pendulum’s weight during impact as a nonimpulsive force.

A B 0.2 m
0.3 m

0.5 m

S

Prob. 19–44

19–45.  The 10-lb block is sliding on the smooth surface 
when the corner D hits a stop block S. Determine the 
minimum velocity v the block should have which would 
allow it to tip over on its side and land in the position 
shown. Neglect the size of S. Hint: During impact consider 
the weight of the block to be nonimpulsive.

1 ft

v

A

A B

CDS

B C

D

1 ft

Prob. 19–45

19–46.  Determine the height h at which a billiard ball of 
mass m must be struck so that no frictional force develops 
between it and the table at A. Assume that the cue C only 
exerts a horizontal force P on the ball.

A

P

h

Cr

Prob. 19–46
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19–47.  The pendulum consists of a 15-kg solid ball and 
6-kg rod. If it is released from rest when u1 = 90, determine 
the angle u2 after the ball strikes the wall, rebounds, and the 
pendulum swings up to the point of momentary rest. Take 
e = 0.6.

100 mm

300 mm

2 m

A

u

Prob. 19–47

*19–48.  The 4-lb rod AB is hanging in the vertical position. 
A 2-lb block, sliding on a smooth horizontal surface with a 
velocity of 12 ft>s, strikes the rod at its end B. Determine 
the velocity of the block immediately after the collision. The 
coefficient of restitution between the block and the rod at B 
is e = 0.8.

B

A

3 ft

12 ft/s

Prob. 19–48

19–49.  The hammer consists of a 10-kg solid cylinder C 
and 6-kg uniform slender rod AB. If the hammer is released 
from rest when u = 90 and strikes the 30-kg block D when 
u = 0, determine the velocity of block D and the angular 
velocity of the hammer immediately after the impact. The 
coefficient of restitution between the hammer and the 
block is e = 0.6.

A

B

C

D

500 mm

100 mm

50 mm
150 mm

u

Prob. 19–49

19–50.  The 20-kg disk strikes the step without rebounding. 
Determine the largest angular velocity v1 the disk can have 
and not lose contact with the step, A.

200 mm

◊1

30 mmA

Prob. 19–50
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19–51.  The solid ball of mass m is dropped with a velocity v1 
onto the edge of the rough step. If it rebounds horizontally 
off the step with a velocity v2, determine the angle u at 
which contact occurs. Assume no slipping when the ball 
strikes the step. The coefficient of restitution is e.

u

Prob. 19–51

*19–52.  The wheel has a mass of 50 kg and a radius of 
gyration of 125 mm about its center of mass G. Determine 
the minimum value of the angular velocity V1 of the wheel, 
so that it strikes the step at A without rebounding and then 
rolls over it without slipping.

25 mm

150 mm

A

G

V1

Prob. 19–52

19–53.  The wheel has a mass of 50 kg and a radius of 
gyration of 125 mm about its center of mass G. If it rolls 
without slipping with an angular velocity of V1 = 5 rad>s 
before it strikes the step at A, determine its angular velocity 
after it rolls over the step. The wheel does not lose contact 
with the step when it strikes it.

25 mm

150 mm

A

G

V1

Prob. 19–53

19–54.  The rod of mass m and length L is released from 
rest without rotating. When it falls a distance L, the end A 
strikes the hook S, which provides a permanent connection. 
Determine the angular velocity v of the rod after it has 
rotated 90. Treat the rod’s weight during impact as a 
nonimpulsive force.

A

L

L

S

Prob. 19–54
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19–55.  The 15-lb rod AB is released from rest in the 
vertical position. If the coefficient or restitution between 
the floor and the cushion at B is e = 0.7, determine how 
high the end of the rod rebounds after impact with the floor.

2 ft

A

B

Prob. 19–55

*19–56.  A ball having a mass of 8 kg and initial speed of 
v1 = 0.2 m>s rolls over a 30-mm-long depression. Assuming 
that the ball rolls off the edges of contact first A, then B, 
without slipping, determine its final velocity v2 when it 
reaches the other side.

A
B

30 mm

v2

v1 � 0.2 m/s

125 mm

Prob. 19–56

19–57.  A solid ball with a mass m is thrown on the ground 
such that at the instant of contact it has an angular velocity 
V1 and velocity components (vG)x1 and (vG)y1 as shown. If 
the ground is rough so no slipping occurs, determine the 
components of the velocity of its mass center just after 
impact. The coefficient of restitution is e.

(vG)
y1

(vG)
x1

r

ω 1

G

Prob. 19–57

19–58.  The pendulum consists of a 10-lb solid ball and 4-lb 
rod. If it is released from rest when u0 = 0, determine the 
angle u1 of rebound after the ball strikes the wall and the 
pendulum swings up to the point of momentary rest.  
Take e = 0.6.

0.3 ft

0.3 ft

2 ft

A

u

Prob. 19–58
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C19–4.  The amusement park ride consists of two gondolas 
A and B, and counterweights C and D that swing in opposite 
directions. Using realistic dimensions and mass, calculate 
the angular momentum of this system for any angular 
position of the gondolas. Explain through analysis why it is 
a good idea to design this system to have counterweights 
with each gondola.

C19–3.  Why is it necessary to have the tail blade B on the 
helicopter that spins perpendicular to the spin of the main 
blade A? Explain your answer using numerical values and 
an impulse and momentum analysis.

A

M

B

Prob. C19–2 (© R.C. Hibbeler) 

C19–2.  The swing bridge opens and closes by turning 90 
using a motor located under the center of the deck at A that 
applies a torque M to the bridge. If the bridge was supported 
at its end B, would the same torque open the bridge at the 
same time, or would it open slower or faster? Explain your 
answer using numerical values and an impulse and 
momentum analysis. Also, what are the benefits of making 
the bridge have the variable depth as shown?

A

B

G

Prob. C19–1 (© R.C. Hibbeler) 

C19–1.  The soil compactor moves forward at constant 
velocity by supplying power to the rear wheels. Use 
appropriate numerical data for the wheel, roller, and body 
and calculate the angular momentum of this system about 
point A at the ground, point B on the rear axle, and point G, 
the center of gravity for the system.

CONCEPTUAL PROBLEMS

A

B

Prob. C19–3 (© R.C. Hibbeler) 

A

C

B

D

Prob. C19–4 (© R.C. Hibbeler) 
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Linear and Angular Momentum

The linear and angular momentum of a 
rigid body can be referenced to its mass 
center G.

If the angular momentum is to be 
determined about an axis other than the 
one passing through the mass center, then 
the angular momentum is determined by 
summing vector HG and the moment of 
vector L about this axis.

d

G

L � mvG

vG � vA

Translation

Chapter Review

G

L � mvG

HG � IGV

V

O

Rotation about a fixed axis

HG � IGV

L � mvG

G

A

d

General plane motion

	 L = mvG	  L = mvG	  L = mvG

	 HG = 0	  HG = IGv	  HG = IG v

	 HA = (mvG)d	 HO = IO v	 HA = IGv + (mvG)d

Principle of Impulse and Momentum

The principles of linear and angular impulse 
and momentum are used to solve problems 
that involve force, velocity, and time. Before 
applying these equations, it is important to 
establish the x, y, z inertial coordinate 
system. The free-body diagram for the body 
should also be drawn in order to account 
for all of the forces and couple moments 
that produce impulses on the body.

 m(vGx)1 +  L
t2

t1

Fx dt = m(vGx)2

 m(vGy)1 +  L
t2

t1

Fy dt = m(vGy)2

 IGv1 +  L
t2

t1

MG dt = IGv2
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Conservation of Momentum

Provided the sum of the linear impulses 
acting on a system of connected rigid 
bodies is zero in a particular direction, 
then the linear momentum for the system 
is conserved in this direction. Conservation 
of angular momentum occurs if the 
impulses pass through an axis or are 
parallel to it. Momentum is also conserved 
if the external forces are small and thereby 
create nonimpulsive forces on the system. 
A free-body diagram should accompany 
any application in order to classify the 
forces as impulsive or nonimpulsive and to 
determine an axis about which the angular 
momentum may be conserved.

aa syst. linear

momentum
b

1
= aa syst. linear

momentum
b

2

aa syst. angular

momentum
b

O1
= aa syst. angular

momentum
b

O2

Eccentric Impact

If the line of impact does not coincide with 
the line connecting the mass centers of 
two colliding bodies, then eccentric impact 
will occur. If the motion of the bodies just 
after the impact is to be determined, then 
it is necessary to consider a conservation 
of momentum equation for the system and 
use the coefficient of restitution equation.

e =
(vB)2 - (vA)2

(vA)1 - (vB)1
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R19–3.  The tire has a mass of 9 kg and a radius of gyration 
kO = 225 mm. If it is released from rest and rolls down the 
plane without slipping, determine the speed of its center O 
when t = 3 s.

300 mm O

30�

Prob. R19–3

R19–4.  The wheel having a mass of 100 kg and a radius of 
gyration about the z axis of kz = 300 mm, rests on the 
smooth horizontal plane. If the belt is subjected to a force of 
P = 200 N, determine the angular velocity of the wheel and 
the speed of its center of mass O, three seconds after the 
force is applied.

P � 200 N

yx

z

400 mm

O

Prob. R19–4

R19–1.  The cable is subjected to a force of P = (10t2) lb. 
where t is in seconds. Determine the angular velocity of the 
spool 3 s after P is applied, starting from rest. The spool has 
a weight of 150 lb and a radius of gyration of 1.25 ft about its 
center, O.

1 ft

O

P = (10t2) lb

Prob. R19–1

R19–2.  The space capsule has a mass of 1200 kg and a 
moment of inertia IG = 900 kg # m2 about an axis passing 
through G and directed perpendicular to the page. If it is 
traveling forward with a speed vG = 800 m>s and executes 
a turn by means of two jets, which provide a constant thrust 
of 400 N for 0.3 s, determine the capsule’s angular velocity 
just after the jets are turned off.

15°

15°

T = 400 N

T = 400 N

vG = 800 m/s
G

1.5 m

1.5 m

Prob. R19–2

Review Problems
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R19–7.  A thin disk of mass m has an angular velocity V1 
while rotating on a smooth surface. Determine its new 
angular velocity just after the hook at its edge strikes the 
peg P and the disk starts to rotate about P without 
rebounding.

P

r

ω1

Prob. R19–7

R19–8.  The space satellite has a mass of 125 kg and a 
moment of inertia Iz = 0.940 kg # m2, excluding the four 
solar panels A, B, C, and D. Each solar panel has a mass of 
20 kg and can be approximated as a thin plate. If the 
satellite is originally spinning about the z axis at a constant 
rate vz = 0.5 rad>s when u = 90, determine the rate of 
spin if all the panels are raised and reach the upward 
position, u = 0, at the same instant.

Prob. R19–8

R19–5.  The spool has a weight of 30 lb and a radius of 
gyration kO = 0.65 ft. If a force of 40 lb is applied to the 
cord at A, determine the angular velocity of the spool in 
t = 3 s starting from rest. Neglect the mass of the pulley 
and cord.

A

B

0.5 ft
1 ft

O
40 lb

Prob. R19–5

R19–6.  Spool B is at rest and spool A is rotating at 6 rad>s 
when the slack in the cord connecting them is taken up. If 
the cord does not stretch, determine the angular velocity of 
each spool immediately after the cord is jerked tight.  
The spools A and B have weights and radii of  
gyration W A = 30 lb, kA = 0.8 ft, W B = 15 lb, kB = 0.6 ft, 
respectively.

A B

1.2 ft
0.4 ft

6 rad/s

Prob. R19–6



Design of industrial robots requires knowing the kinematics of their 
three-dimensional motions.

Chapter 20
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Three-Dimensional 
Kinematics of a  
Rigid Body

Chapter Objectives

n	 To analyze the kinematics of a body subjected to rotation about 
a fixed point and to general plane motion.

n	 To provide a relative-motion analysis of a rigid body using 
translating and rotating axes.

20.1  Rotation About a Fixed Point

When a rigid body rotates about a fixed point, the distance r from the 
point to a particle located on the body is the same for any position of the 
body. Thus, the path of motion for the particle lies on the surface of a 
sphere having a radius r and centered at the fixed point. Since motion 
along this path occurs only from a series of rotations made during a finite 
time interval, we will first develop a familiarity with some of the properties 
of rotational displacements.

The boom can rotate up and down, 
and because it is hinged at a point on 
the vertical axis about which it turns, 
it  is subjected to rotation about a 
fixed point. (© R.C. Hibbeler)
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Euler’s Theorem.  Euler’s theorem states that two “component” 
rotations about different axes passing through a point are equivalent to a 
single resultant rotation about an axis passing through the point. If more 
than two rotations are applied, they can be combined into pairs, and each 
pair can be further reduced and combined into one rotation.

Finite Rotations.  If component rotations used in Euler’s theorem 
are finite, it is important that the order in which they are applied be 
maintained. To show this, consider the two finite rotations U1 + U2 
applied to the block in Fig. 20–1a. Each rotation has a magnitude of 90° 
and a direction defined by the right-hand rule, as indicated by the arrow. 
The final position of the block is shown at the right. When these two 
rotations are applied in the order U2 + U1 , as shown in Fig. 20–1b, the 
final position of the block is not the same as it is in Fig. 20–1a. Because 
finite rotations do not obey the commutative law of addition 
(U1 + U2 � U2 + U1), they cannot be classified as vectors. If smaller, yet 
finite, rotations had been used to illustrate this point, e.g., 10° instead of 
90°, the final position of the block after each combination of rotations 
would also be different; however, in this case, the difference is only a 
small amount.
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Infinitesimal Rotations.  When defining the angular motions of a 
body subjected to three-dimensional motion, only rotations which are 
infinitesimally small will be considered. Such rotations can be classified as 
vectors, since they can be added vectorially in any manner. To show this, for 
purposes of simplicity let us consider the rigid body itself to be  
a sphere which is allowed to rotate about its central fixed point O, 
Fig. 20–2a. If we impose two infinitesimal rotations dU1 + dU2 on the body, 
it is seen that point P moves along the path dU1 * r + dU2 * r and ends 
up at P�. Had the two successive rotations occurred in the order dU2 + dU1 , 
then the resultant displacements of P would have been dU2 * r + dU1 * r. 
Since the vector cross product obeys the distributive law, by comparison 
(dU1 + dU2) * r = (dU2 + dU1) * r. Here infinitesimal rotations dU are 
vectors, since these quantities have both a magnitude and direction for 
which the order of (vector) addition is not important, i.e., 
dU1 + dU2 = dU2 + dU1 . As a result, as shown in Fig. 20–2a, the two 
“component” rotations dU1 and dU2 are equivalent to a single resultant 
rotation dU = dU1 + dU2 , a consequence of Euler’s theorem.

Angular Velocity.  If the body is subjected to an angular rotation 
dU about a fixed point, the angular velocity of the body is defined by the 
time derivative,

	 V = U
#

	 (20–1)

The line specifying the direction of V, which is collinear with dU, is 
referred to as the instantaneous axis of rotation, Fig. 20–2b. In general, this 
axis changes direction during each instant of time. Since dU is a vector 
quantity, so too is V, and it follows from vector addition that if the body 
is subjected to two component angular motions, V1 = U

#
1 and V2 = U

#
2 , 

the resultant angular velocity is V = V1 + V2 .

Angular Acceleration.  The body’s angular acceleration is 
determined from the time derivative of its angular velocity, i.e.,

	 A = V
#

	 (20–2)

For motion about a fixed point, A must account for a change in both the 
magnitude and direction of V, so that, in general, A is not directed along 
the instantaneous axis of rotation, Fig. 20–3.

As the direction of the instantaneous axis of rotation (or the line of 
action of V) changes in space, the locus of the axis generates a fixed space 
cone, Fig. 20–4. If the change in the direction of this axis is viewed with 
respect to the rotating body, the locus of the axis generates a body cone.
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dU � r
O

(a)

P

r

dU

(b)

Instantaneous axis
of rotation

O

V

V2

V1
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At any given instant, these cones meet along the instantaneous axis of 
rotation, and when the body is in motion, the body cone appears to roll 
either on the inside or the outside surface of the fixed space cone. 
Provided the paths defined by the open ends of the cones are described 
by the head of the V vector, then A must act tangent to these paths at any 
given instant, since the time rate of change of V is equal to A. Fig. 20–4. 

To illustrate this concept, consider the disk in Fig. 20–5a that spins about 
the rod at Vs, while the rod and disk precess about the vertical axis at Vp. 
The resultant angular velocity of the disk is therefore V = Vs + Vp. Since 
both point O and the contact point P have zero velocity, then all points on 
a line between these points must have zero velocity. Thus, both V and the 
instantaneous axis of rotation are along OP. Therefore, as the disk rotates, 
this axis appears to move along the surface of the fixed space cone shown 
in Fig. 20–5b. If the axis is observed from the rotating disk, the axis then 
appears to move on the surface of the body cone. At any instant, though, 
these two cones meet each other along the axis OP. If V has a constant 
magnitude, then A indicates only the change in the direction of V, which is 
tangent to the cones at the tip of V as shown in Fig. 20–5b.

Velocity.  Once V is specified, the velocity of any point on a body 
rotating about a fixed point can be determined using the same methods 
as for a body rotating about a fixed axis. Hence, by the cross product,

	 v = V * r 	 (20–3)

Here r defines the position of the point measured from the fixed point O, 
Fig. 20–3.

Acceleration.   If V and A are known at a given instant, the acceleration 
of a point can be obtained from the time derivative of  Eq. 20–3, which yields

	 a = A * r + V * (V * r) 	 (20–4)

*20.2  �The Time Derivative of a Vector 
Measured from Either a Fixed 
or Translating-Rotating System

In many types of problems involving the motion of a body about a fixed 
point, the angular velocity V is specified in terms of its components. Then, 
if the angular acceleration A of such a body is to be determined, it is often 
easier to compute the time derivative of V using a coordinate system that 
has a rotation defined by one or more of the components of V. For 
example, in the case of the disk in Fig. 20–5a, where V = Vs + Vp, the x, 
y, z axes can be given an angular velocity of Vp . For this reason, and for 
other uses later, an equation will now be derived, which relates the time 
derivative of any vector A defined from a translating-rotating reference 
to its time derivative defined from a fixed reference.

Space cone

Body cone

Instantaneous
axis of rotation

V

A
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Consider the x, y, z axes of the moving frame of reference to be rotating 
with an angular velocity �, which is measured from the fixed X, Y, Z 
axes, Fig. 20–6a. In the following discussion, it will be convenient to 
express vector A in terms of its i, j, k components, which define the 
directions of the moving axes. Hence,

A = Ax i + Ay j + Az k

In general, the time derivative of A must account for the change in 
both its magnitude and direction. However, if this derivative is taken 
with respect to the moving frame of reference, only the change in the 
magnitudes of the components of A must be accounted for, since the 
directions of the components do not change with respect to the moving 
reference. Hence,

	 (A
#
)xyz = A

#
x i + A

#
y j + A

#
z k	 (20–5)

When the time derivative of A is taken with respect to the fixed frame 
of reference, the directions of i, j, and k change only on account of the 
rotation � of the axes and not their translation. Hence, in general,

A
#

= A
#
x i + A

#
y j + A

#
z k + Axi

#
+ Ay j

#
+ Azk

#

The time derivatives of the unit vectors will now be considered. For 
example, i

#
= d i>dt represents only the change in the direction of i with 

respect to time, since i always has a magnitude of 1 unit. As shown in 
Fig.  20–6b, the change, di, is tangent to the path described by the 
arrowhead of i as i swings due to the rotation �. Accounting for both the 
magnitude and direction of di, we can therefore define i

#
 using the cross 

product, i
#

= � * i. In general, then

i
#

= � * i  j
#

= � * j  k
#

= � * k

These formulations were also developed in Sec. 16.8, regarding planar 
motion of the axes. Substituting these results into the above equation 
and using Eq. 20–5 yields

	 A
#

= (A
#
)xyz + � * A 	 (20–6)

This result is important, and will be used throughout Sec. 20.4 and 
Chapter 21. It states that the time derivative of any vector A as observed 
from the fixed X, Y, Z frame of reference is equal to the time rate of change 
of A as observed from the x, y, z translating-rotating frame of reference, 
Eq. 20–5, plus � * A, the change of A caused by the rotation of the x, y, z 
frame. As a result, Eq. 20–6 should always be used whenever � produces 
a change in the direction of A as seen from the X, Y, Z reference. If this 
change does not occur, i.e., � = 0, then A

#
= (A

#
)xyz , and so the time rate 

of change of A as observed from both coordinate systems will be the same.
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The disk shown in Fig. 20–7 spins about its axle with a constant angular 
velocity vs = 3 rad>s, while the horizontal platform on which the disk 
is mounted rotates about the vertical axis at a constant rate 
vp = 1 rad>s. Determine the angular acceleration of the disk and the 
velocity and acceleration of point A on the disk when it is in the 
position shown.

0.25 m

1 m
O

Y, y

Z, z

X, x

vs � 3 rad/s

vp � 1 rad/s

rA A

Fig. 20–7 

Solution
Point O represents a fixed point of rotation for the disk if one considers 
a hypothetical extension of the disk to this point. To determine the 
velocity and acceleration of point A, it is first necessary to determine 
the angular velocity V and angular acceleration A of the disk, since 
these vectors are used in Eqs. 20–3 and 20–4.

Angular Velocity.  The angular velocity, which is measured from X, 
Y, Z, is simply the vector addition of its two component motions. Thus,

V = Vs + Vp = 53j - 1k6  rad>s

Example   20.1
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Angular Acceleration.  Since the magnitude of V is constant, only a 
change in its direction, as seen from the fixed reference, creates the 
angular acceleration A of the disk. One way to obtain A is to compute 
the time derivative of each of the two components of V using Eq. 20–6. 
At the instant shown in Fig. 20–7, imagine the fixed X, Y, Z and a 
rotating x, y, z frame to be coincident. If the rotating x, y, z frame is 
chosen to have an angular velocity of � = Vp = 5-1k6  rad>s, then
Vs will always be directed along the y (not Y ) axis, and the time rate of 
change of Vs as seen from x, y, z is zero; i.e., (V

#
s)xyz = 0 (the magnitude 

and direction of Vs is constant). Thus,

V
#

s = (V
#

s)xyz + Vp * Vs = 0 + (-1k) * (3j) = 53i6  rad>s2

By the same choice of axes rotation, � = Vp , or even with � = 0, 
the time derivative (V

#
p)xyz = 0, since Vp has a constant magnitude and 

direction with respect to x, y, z. Hence,

V
#

p = (V
#

p)xyz + Vp * Vp = 0 + 0 = 0

The angular acceleration of the disk is therefore

A = V
#

= V
#

s + V
#

p = 53i6  rad>s2 Ans.

Velocity and Acceleration.  Since V and A have now been 
determined, the velocity and acceleration of point A can be found 
using Eqs. 20–3 and 20–4. Realizing that rA = 51j + 0.25k6  m,
Fig. 20–7, we have

 vA = V * rA = (3j - 1k) * (1j + 0.25k) = 51.75i6  m>s 	 Ans.

 aA = A * rA + V * (V * rA)

= (3i) * (1j + 0.25k) + (3j - 1k) * [(3j - 1k) * (1j + 0.25k)]

= 5-2.50j - 2.25k6  m>s2 � Ans.
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At the instant u = 60�, the gyrotop in Fig. 20–8 has three components 
of angular motion directed as shown and having magnitudes defined as:

	 Spin:	  vs = 10 rad>s, increasing at the rate of 6 rad>s2

	 Nutation:	  vn = 3 rad>s, increasing at the rate of 2 rad>s2

	 Precession:	  vp = 5 rad>s, increasing at the rate of 4 rad>s2

Determine the angular velocity and angular acceleration of the top.

Solution
Angular Velocity.  The top rotates about the fixed point O. If the 
fixed and rotating frames are coincident at the instant shown, then the 
angular velocity can be expressed in terms of i, j, k components, with 
reference to the x, y, z frame; i.e.,

	  V = -vn i + vs sin uj + (vp + vs cos u)k

	  = -3i + 10 sin 60�j + (5 + 10 cos 60�)k

	  = 5-3i + 8.66j + 10k6  rad>s � Ans.

Angular Acceleration.  As in the solution of Example 20.1, the 
angular acceleration A will be determined by investigating separately 
the time rate of change of each of the angular velocity components as 
observed from the fixed X, Y, Z reference. We will choose an � for the 
x, y, z reference so that the component of V being considered is viewed 
as having a constant direction when observed from x, y, z.

Careful examination of the motion of the top reveals that Vs  has  
a constant direction relative to x, y, z if these axes rotate at 
� = Vn + Vp . Thus,

Example   20.2

Y, y

Always in x–y plane
X, x

vp � 5 rad/s

vs � 10 rad/s

vn � 3 rad/s

vp � 4 rad/s2.

Always in
Z direction

Z, z

O

vn � 2 rad/s2.

vs � 6 rad/s2.

u

Fig. 20–8 

 V
#

s = (V
#

s)xyz + (Vn + Vp) * Vs

 = (6 sin 60�j + 6 cos 60�k) + (-3i + 5k) * (10 sin 60�j + 10 cos 60�k)

= 5-43.30i + 20.20j - 22.98k6  rad>s2

Since Vn always lies in the fixed X–Y plane, this vector has a constant 
direction if the motion is viewed from axes x, y, z having a rotation of 
� = Vp (not � = Vs + Vp). Thus,

V
#

n = (V
#

n)xyz + Vp * Vn = -2i +  (5k) * (-3i) = 5-2i - 15j6 rad>s2

Finally, the component Vp is always directed along the Z axis so that here 
it is not necessary to think of x, y, z as rotating, i.e., � = 0. Expressing 
the data in terms of the i, j, k components, we therefore have

	 V
#

p = (V
#

p)xyz + 0 * Vp = 54k6  rad>s2

Thus, the angular acceleration of the top is

	 A = V
#

s + V
#

n + V
#

p = 5-45.3i + 5.20j - 19.0k6  rad>s2� Ans.
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20.3  General Motion 

Shown in Fig. 20–9 is a rigid body subjected to general motion in three 
dimensions for which the angular velocity is V and the angular acceleration 
is A. If point A has a known motion of vA and aA , the motion of any other 
point B can be determined by using a relative-motion analysis. In this 
section a translating coordinate system will be used to define the relative 
motion, and in the next section a reference that is both rotating and 
translating will be considered.

If the origin of the translating coordinate system x, y, z (� = 0) is 
located at the “base point” A, then, at the instant shown, the motion of 
the body can be regarded as the sum of an instantaneous translation of 
the body having a motion of vA, and aA, and a rotation of the body about 
an instantaneous axis passing through point A. Since the body is rigid, 
the motion of point B measured by an observer located at A is therefore 
the same as the rotation of the body about a fixed point. This relative 
motion occurs about the instantaneous axis of rotation and is defined 
by  vB>A = V * rB>A , Eq. 20–3, and aB>A = A * rB>A + V * (V * rB>A), 
Eq. 20–4. For translating axes, the relative motions are related to absolute 
motions by vB = vA + vB>A and aB = aA + aB>A , Eqs. 16–15 and 16–17, so 
that the absolute velocity and acceleration of point B can be determined 
from the equations

	 vB = vA + V * rB>A 	 (20–7)

and

	 aB = aA + A * rB>A + V * (V * rB>A) 	 (20–8)

These two equations are essentially the same as those describing the 
general plane motion of a rigid body, Eqs. 16–16 and 16–18. However, 
difficulty in application arises for three-dimensional motion, because A 
now measures the change in both the magnitude and direction of V. 

Although this may be the case, a direct solution for vB and aB can be 
obtained  by noting that vB>A = vB - vA, and so Eq. 20–7 becomes  
vB>A  =  V * rB>A. The cross product indicates that vB>A is perpendicular 
to rB>A, and so, as noted by Eq. C–14 of Appendix C, we require

	 rB>A # vB>A = 0 	 (20–9)

Taking the time derivative, we have

	 vB>A # vB>A + rB>A # aB>A = 0 	 (20–10)

Solution II of the following example illustrates application of this idea.

Instantaneous
axis of rotation

Y

X

Z

y

z

x

rB/A
B

A
vA

aA

O

V

A

Fig. 20–9 
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Example   20.3

vC � 3 m/s
2 m1 m

Z

1 m

0.5 m

D

Y
C

B

E

F

X

A

(a)

vC � 3 m/s
C

D

EX, x

A

Z, z

Y, y

vD

rD/C

(b)

V

Fig. 20–10 

*Although this is the case, the magnitude of vD can be obtained. For example, solve

Eqs. 1 and 2 for vy and vx in terms of vz and substitute this into Eq. 3. Then vz will 

cancel out, which will allow a solution for vD .

If the collar at C in Fig. 20–10a moves toward B with a speed of 3 m>s, 
determine the velocity of the collar at D and the angular velocity of 
the bar at the instant shown. The bar is connected to the collars at its 
end points by ball-and-socket joints.

Solution i
Bar CD is subjected to general motion. Why? The velocity of point D 
on the bar can be related to the velocity of point C by the equation

vD = vC + V * rD>C

The fixed and translating frames of reference are assumed to coincide 
at the instant considered, Fig. 20–10b. We have

vD = -vD k  vC = 53j6  m>s
rD>C = 51i + 2j - 0.5k6  m  V = vx i + vy j + vz k

Substituting into the above equation we get

-vD k = 3j + 3 i j k
vx vy vz

1 2  -0.5

3
Expanding and equating the respective i, j, k components yields

 -0.5vy - 2vz = 0 (1)

 0.5vx + 1vz + 3 = 0 (2)

 2vx - 1vy + vD = 0 (3)

These equations contain four unknowns.* A fourth equation can be 
written if the direction of V is specified. In particular, any component 
of V acting along the bar’s axis has no effect on moving the collars. 
This is because the bar is free to rotate about its axis. Therefore, if V is 
specified as acting perpendicular to the axis of the bar, then V must 
have a unique magnitude to satisfy the above equations. Hence, 

V # rD>C = (vx i + vy j + vz k) # (1i + 2j - 0.5k) = 0

1vx + 2vy - 0.5vz = 0 (4)
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Solving Eqs. 1 through 4 simultaneously yields

vx = -4.86 rad>s vy = 2.29 rad>s vz = -0.571 rad>s, 
vD = 12.0 m>s, so that     v = 5.40 rad>s� Ans.

Solution Ii

Applying Eq. 20–9, vD>C = vD - vC = -vD 

k - 3j, so that

rD>C # vD>C = (1i + 2j - 0.5k) # (-vDk - 3j) = 0

 (1)(0) + (2)(-3) + (-0.5)(-vD) = 0

vD = 12 m>s� Ans.

Since V is perpendicular to rD>C then  vD>C = V * rD>C or 

vD>C = v rD>C 2(-12)2 + (-3)2 = v2(1)2 + (2)2 + (-0.5)2

v = 5.40 rad>s	 Ans.

PROBLEMS

20–1.  The propeller of an airplane is rotating at a constant 
speed vx i, while the plane is undergoing a turn at a constant 
rate vt. Determine the angular acceleration of the propeller 
if (a) the turn is horizontal, i.e., vt k, and (b) the turn is 
vertical, downward, i.e., vt j.

z

x y

Vx

Prob. 20–1

20–2.  The disk rotates about the z axis at a constant rate 
vz = 0.5 rad>s without slipping on the horizontal plane. 
Determine the velocity and the acceleration of point A on 
the disk.

z

y

A

x

Vz � 0.5 rad/s

150 mm

300 mm

Prob. 20–2
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20–3.  The ladder of the fire truck rotates around the z axis 
with an angular velocity v1 = 0.15 rad>s, which is increasing at 
0.8 rad>s2. At the same instant it is rotating upward at a constant 
rate v2 = 0.6 rad>s. Determine the velocity and acceleration 
of point A located at the top of the ladder at this instant.

*20–4.  The ladder of the fire truck rotates around the 
z axis with an angular velocity of v1 = 0.15 rad>s, which is 
increasing at 0.2 rad>s2. At the same instant it is rotating 
upward at v2 = 0.6 rad>s while increasing at 0.4 rad>s2. 
Determine the velocity and acceleration of point A located 
at the top of the ladder at this instant.

v1

z

y

x

A

40 ft

30�

v2

Probs. 20–3/4

20–5.  If the plate gears A and B are rotating with the 
angular velocities shown, determine the angular velocity of 
gear C about the shaft DE. What is the angular velocity of 
DE about the y axis?

100 mm

100 mm

A

B
D

E
25 mm

y

x

vA� 5 rad/s

vB� 15 rad/s

C

Prob. 20–5

20–6.  The conical spool rolls on the plane without slipping. 
If the axle has an angular velocity of v1 = 3 rad>s and an 
angular acceleration of a1 = 2 rad>s2 at the instant shown, 
determine the angular velocity and angular acceleration of 
the spool at this instant.

20�

B
A

v1 � 3 rad/s

a1 � 2 rad/s2

y

x

z

Prob. 20–6

20–7.  At a given instant, the antenna has an angular 
motion v1 = 3 rad>s and  v 

#
1 = 2 rad>s2 about the z axis. At 

this same instant u = 30�, the angular motion about the  
x axis is v2 = 1.5 rad>s, and  v 

#
2 = 4 rad>s2. Determine the 

velocity and acceleration of the signal horn A at this instant. 
The distance from O to A is d = 3 ft.

z

u � �

v1

v2
v2

v1

Prob. 20–7
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*20–8.  The disk rotates about the shaft S, while the shaft is 
turning about the z axis at a rate of vz = 4 rad>s, which is 
increasing at 2 rad>s2. Determine the velocity and acceleration 
of point A on the disk at the instant shown. No slipping occurs.

20–9.  The disk rotates about the shaft S, while the shaft is 
turning about the z axis at a rate of vz = 4 rad>s, which is 
increasing at 2 rad>s2. Determine the velocity and acceleration 
of point B on the disk at the instant shown. No slipping occurs.

z

y

A

B

S

x

2 rad/s2

4 rad/s

0.1 m

0.1 m
0.5 m

Probs. 20–8/9

20–10.  The electric fan is mounted on a swivel support 
such that the fan rotates about the z axis at a constant rate 
of vz  = 1 rad>s and the fan blade is spinning at a constant 
rate vs = 60 rad>s. If f = 45° for the motion, determine the 
angular velocity and the angular acceleration of the blade.

20–11.  The electric fan is mounted on a swivel support 
such that the fan rotates about the z axis at a constant rate 
of vz  = 1 rad>s  and the fan blade is spinning at a constant 
rate vs = 60 rad>s. If at the instant f = 45°, f

#
 = 2 rad>s for 

the motion, determine the angular velocity and the angular 
acceleration of the blade.

x

z

Vz

Vs

f

Probs. 20–10/11

*20–12.  The drill pipe P turns at a constant angular rate 
vP = 4 rad>s. Determine the angular velocity and angular 
acceleration of the conical rock bit, which rolls without 
slipping. Also, what are the velocity and acceleration of 
point A?

50 mm

P

A

vP � 4 rad/s

45�

Prob. 20–12

20–13.  The right circular cone rotates about the z axis at a 
constant rate of v1 = 4 rad>s without slipping on the 
horizontal plane. Determine the magnitudes of the velocity 
and acceleration of points B and C.

C

B

50 mm

A
y

x

z

v1 � 4 rad/s

Prob. 20–13
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*20–16.  Gear A is fixed while gear B is free to rotate on 
the shaft S. If the shaft is turning about the z axis at 
vz = 5 rad>s, while increasing at 2 rad>s2, determine the 
velocity and acceleration of point P at the instant shown. 
The face of gear B lies in a vertical plane.

y

x

z

vz

A B

S

P

80 mm
160 mm

80 mm

Prob. 20–16

20–17.  The truncated double cone rotates about the z axis at 
vz  = 0.4 rad>s without slipping on the horizontal plane.  
If at this same instant vz  is increasing at v# z = 0.5 rad>s2, 
determine the velocity and acceleration of point A on the cone.

1.5 ft0.5 ft

30�

A

z

y
x

vz � 0.4 rad/s

1 ft
2 ft

Prob. 20–17

20–18.  Gear A is fixed to the crankshaft S, while gear C is 
fixed. Gear B and the propeller are free to rotate. The 
crankshaft is turning at 80 rad>s about its axis. Determine 
the magnitudes of the angular velocity of the propeller and 
the angular acceleration of gear B.

0.1 ft

C A

B

S y

z

80 rad/s

0.4 ft

Prob. 20–18

20–14.  The wheel is spinning about shaft AB with an 
angular velocity of vs = 10 rad>s, which is increasing at a 
constant rate of v

#
s = 6 rad>s2, while the frame precesses 

about the z axis with an angular velocity of vp = 12 rad>s, 
which is increasing at a constant rate of  v 

#
p = 3 rad>s2. 

Determine the velocity and acceleration of point C located 
on the rim of the wheel at this instant.

z

x

vp � 12 rad/s
vp � 3 rad/s2

vs � 10 rad/s
vs � 6 rad/s2

A

BC

0.15 m

y

Prob. 20–14

20–15.  At the instant shown, the tower crane rotates about 
the z axis with an angular velocity v1 = 0.25 rad>s, which is 
increasing at 0.6 rad>s2. The boom OA rotates downward 
with an angular velocity v2 = 0.4 rad>s, which is increasing 
at 0.8 rad>s2. Determine the velocity and acceleration of 
point A located at the end of the boom at this instant.

v1 � 0.25 rad/s

40 ft

z

y

x

A

O

v2 � 0.4 rad/s

30�

Prob. 20–15
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20–19.  Shaft BD is connected to a ball-and-socket joint at B, 
and a beveled gear A is attached to its other end. The gear is 
in mesh with a fixed gear C. If the shaft and gear A are 
spinning with a constant angular velocity v1 = 8 rad>s, 
determine the angular velocity and angular acceleration of 
gear A.

300 mm

100 mm
A

B

C

D

v1

y

x

75 mm

Prob. 20–19

*20–20.  Gear B is driven by a motor mounted on turntable C. 
If gear A is held fixed, and the motor shaft rotates with a 
constant angular velocity of vy = 30 rad>s, determine the 
angular velocity and angular acceleration of gear B.

20–21.  Gear B is driven by a motor mounted on turntable C. 
If gear A and the motor shaft rotate with constant angular 
speeds of vA = {10k} rad>s and vy = {30j} rad>s, respectively, 
determine the angular velocity and angular acceleration of 
gear B.

  vy � 30 rad/s

z

y

0.3 m

0.15 m

A

C

B

Probs. 20–20/21

20–22.  The crane boom OA rotates about the z axis with a 
constant angular velocity of v1 = 0.15 rad>s, while it is 
rotating downward with a constant angular velocity of 
v2 = 0.2 rad>s. Determine the velocity and acceleration of 
point A located at the end of the boom at the instant shown.

110 ft

x

A
z

y

V1

V2

50 ft

O

Prob. 20–22

20–23.  The differential of an automobile allows the two 
rear wheels to rotate at different speeds when the 
automobile travels along a curve. For operation, the rear 
axles are attached to the wheels at one end and have 
beveled gears A and B on their other ends. The differential 
case D is placed over the left axle but can rotate about C 
independent of the axle. The case supports a pinion gear E 
on a shaft, which meshes with gears A and B. Finally, a ring 
gear G is fixed to the differential case so that the case 
rotates with the ring gear when the latter is driven by the 
drive pinion H. This gear, like the differential case, is free to 
rotate about the left wheel axle. If the drive pinion is 
turning at vH = 100 rad>s and the pinion gear E is spinning 
about its shaft at vE = 30 rad>s, determine the angular 
velocity, vA and vB, of each axle.

50 mm

180 mm

To left
wheel

G E

z
H

A B

O
C

D

To right
wheel

From motor

40 mm

60 mm

vA y

vH

vE

vB

Prob. 20–23



576 	 Chapter 20  T  hree-Dimensional Kinematics of a Rig id Body

20

20–26.  Rod AB is attached to collars at its ends by using ball-
and-socket joints. If collar A moves along the fixed rod at vA = 
5 m>s, determine the angular velocity of the rod and the velocity 
of collar B at the instant shown. Assume that the rod’s angular 
velocity is directed perpendicular to the axis of the rod.

20–27.  Rod AB is attached to collars at its ends by using ball-
and-socket joints. If collar A moves along the fixed rod with a 
velocity of vA = 5 m>s and has an acceleration aA = 2 m>s2 at 
the instant shown, determine the angular acceleration of the 
rod and the acceleration of collar B at this instant. Assume 
that the rod’s angular velocity and angular acceleration are 
directed perpendicular to the axis of the rod.

x

vA � 5 m/s

z

y

2 m

1 m

45�

A

B

Probs. 20–26/27

*20–28.  If the rod is attached with ball-and-socket joints to 
smooth collars A and B at its end points, determine the 
velocity of B at the instant shown if A is moving upward at 
a constant speed of vA = 5 ft>s. Also, determine the angular 
velocity of the rod if it is directed perpendicular to the axis 
of the rod.

20–29.  If the collar at A in Prob. 20–28 is moving upward 
with an acceleration of aA = {-2k} ft>s2, at the instant its 
speed is vA = 5 ft>s, determine the acceleration of the collar 
at B at this instant.

y

z

x

vA � 5 ft/s

3 ft

6 ft 

2 ft
B

A

Probs. 20–28/29

*20–24.  The end C of the plate rests on the horizontal plane, 
while end points A and B are restricted to move along the 
grooved slots. If at the instant shown A is moving downward 
with a constant velocity of vA = 4 ft>s, determine the angular 
velocity of the plate and the velocities of points B and C.

B

vA

C2 ft

2 ft

1 ft

0.8 ft

0.4 ft

z

y

x

A

Prob. 20–24

20–25.  Disk A rotates at a constant angular velocity of 
10 rad>s. If rod BC is joined to the disk and a collar by ball-
and-socket joints, determine the velocity of collar B at the 
instant shown. Also, what is the rod’s angular velocity VBC if 
it is directed perpendicular to the axis of the rod?

100 mm
x

z

y

500 mm

300 mm

D B

C
A

v � 10 rad/s

E

200 mm

Prob. 20–25
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20–30.  Rod AB is attached to collars at its ends by ball-and-
socket joints. If collar A has a speed vA = 4 m>s, determine the 
speed of collar B at the instant z = 2 m. Assume the angular 
velocity of the rod is directed perpendicular to the rod.

vA � 4 m/s

A

1.5 m

1 m
1.5 m

2 m

B

z

z

x

y

Prob. 20–30

20–31.  The rod is attached to smooth collars A and B at its 
ends using ball-and-socket joints. Determine the speed of B 
at the instant shown if A is moving at vA = 8 m>s. Also, 
determine the angular velocity of the rod if it is directed 
perpendicular to the axis of the rod.

*20–32.  If the collar A in Prob. 20–31 has a deceleration of  
aA = {-5k} m>s2, at the instant shown, determine the 
acceleration of collar B at this instant.

y

x

vA � 8 m/s

1 m

1.5 m

A

B

z

2 m

Probs. 20–31/32

20–33.  Rod CD is attached to the rotating arms using ball-
and-socket joints. If AC has the motion shown, determine the 
angular velocity of link BD at the instant shown.

20–34.  Rod CD is attached to the rotating arms using ball-
and-socket joints. If AC has the motion shown, determine 
the angular acceleration of link BD at this instant.

z

x

y

0.4 m

0.8 m

1 m

0.6 m

A

B

C

D

vAC � 2 rad/s2
vAC � 3 rad/s
�

Probs. 20–33/34

20–35.  Solve Prob. 20–28 if the connection at B consists of a 
pin as shown in the figure below, rather than a ball-and-socket 
joint. Hint: The constraint allows rotation of the rod both 
along the bar (j direction) and along the axis of the pin 
(n direction). Since there is no rotational component in the 
u direction, i.e., perpendicular to n and j where u = j :  n, 
an additional equation for solution can be obtained from 
V # u = 0. The vector n is in the same direction as rD>B  :  rC>B.

B

D

C

u

j

n

Prob. 20–35

*20–36.  Member ABC is pin connected at A and has a 
ball-and-socket joint at B. If the collar at B is moving along 
the inclined rod at vB = 8 m>s, determine the velocity of 
point C at the instant shown. Hint: See Prob. 20–35.

z

x

y

vB � 8 m/s

30�

C
A

B

1 m
2 m

1.5 m

Prob. 20–36
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*20.4  �Relative-Motion Analysis Using 
Translating and Rotating Axes

The most general way to analyze the three-dimensional motion of a rigid 
body requires the use of x, y, z axes that both translate and rotate relative 
to a second frame X, Y, Z. This analysis also provides a means to determine 
the motions of two points A and B located on separate members of a 
mechanism, and the relative motion of one particle with respect to another 
when one or both particles are moving along curved paths.

As shown in Fig. 20–11, the locations of points A and B are specified 
relative to the X, Y, Z frame of reference by position vectors rA and rB . 
The base point A represents the origin of the x, y, z coordinate system, 
which is translating and rotating with respect to X, Y, Z. At the instant 
considered, the velocity and acceleration of point A are vA and aA , and 
the angular velocity and angular acceleration of the x, y, z axes are � and 
�
#

= d� >dt. All these vectors are measured with respect to the X, Y, Z 
frame of reference, although they can be expressed in Cartesian 
component form along either set of axes.

X

Y

Z
y

x

z
B

JI

K

i

j

k

rA

rB

rB/A

zB

yB

xBA

�

Fig. 20–11 
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Position.  If the position of “B with respect to A” is specified by the 
relative-position vector rB>A , Fig. 20–11, then, by vector addition,

	 rB = rA + rB>A 	 (20–11)

where

 rB = position of B

 rA = position of the origin A

 rB>A = position of “B with respect to A”

Velocity.   The velocity of point B measured from X, Y, Z can be 
determined by taking the time derivative of Eq. 20–11,

	 r
#
B = r

#
A + r

#
B>A	

The first two terms represent vB and vA . The last term must be evaluated 
by applying Eq. 20–6, since rB>A is measured with respect to a rotating 
reference. Hence,

	 r
#
B>A = (r

#
B>A)xyz + � * rB>A = (vB>A)xyz + � * rB>A	 (20–12)

Therefore,

	 vB = vA + � * rB>A + (vB>A)xyz 	 (20–13)

where

 vB = velocity of B

 vA = velocity of the origin A of the x, y, z frame of reference

 (vB>A)xyz = �velocity of “B with respect to A” as measured by an 
observer attached to the rotating x, y, z frame of reference

 � = angular velocity of the x, y, z frame of reference

 rB>A = position of “B with respect to A”
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Acceleration.   The acceleration of point B measured from X, Y, Z is 
determined by taking the time derivative of Eq. 20–13.

v
#
B = v

#
A + �

#
* rB>A + � * r

#
B>A +

d

dt
 (vB>A)xyz

The time derivatives defined in the first and second terms represent aB 
and aA, respectively. The fourth term can be evaluated using Eq. 20–12, 
and the last term is evaluated by applying Eq. 20–6, which yields

 
d

dt
 (vB>A)xyz = (v

#
B>A)xyz + � * (vB>A)xyz = (aB>A)xyz + � * (vB>A)xyz

Here (aB>A)xyz is the acceleration of B with respect to A measured from x, 
y, z. Substituting this result and Eq. 20–12 into the above equation and 
simplifying, we have

aB = aA + �
#

* rB>A + � * (� * rB>A) + 2� * (vB>A)xyz + (aB>A)xyz

� (20–14)

where

	  aB = acceleration of B

	  aA = �acceleration of the origin A of the x, y, z frame of 
reference

	 (aB>A)xyz ,  (vB>A)xyz = �relative acceleration and relative velocity of “B 
with respect to A” as measured by an observer 
attached to the rotating x, y, z frame of reference

	  �
#

, � = �angular acceleration and angular velocity of the 
x, y, z frame of reference

	  rB>A = position of “B with respect to A”

Equations 20–13 and 20–14 are identical to those used in Sec. 16.8 for 
analyzing relative plane motion.* In that case, however, application is 
simplified since � and �

#
 have a constant direction which is always 

perpendicular to the plane of motion. For three-dimensional motion, �
#

 
must be computed by using Eq. 20–6, since �

#
 depends on the change in 

both the magnitude and direction of �.

Z

A

B

z

y
x

Complicated spatial motion of the concrete 
bucket B occurs due to the rotation of the 
boom about the Z axis, motion of the 
carriage A along the boom, and extension 
and swinging of the cable AB. A 
translating-rotating x, y, z coordinate 
system can be established on the carriage, 
and a relative-motion analysis can then be 
applied to study this  motion.  
(© R.C. Hibbeler) *Refer to Sec. 16.8 for an interpretation of the terms.



20

	 20.4 R elative-Motion Analysis Using Translating and Rotating Axes	 581

Procedure for Analysis

Three-dimensional motion of particles or rigid bodies can be analyzed 
with Eqs. 20–13 and 20–14 by using the following procedure. 

Coordinate Axes.
	 •	 Select the location and orientation of the X, Y, Z and x, y, z coordinate 

axes. Most often solutions can be easily obtained if at the instant 
considered:

		  (1) the origins are coincident

		  (2) the axes are collinear

		  (3) the axes are parallel

	 •	 If several components of angular velocity are involved in a problem, 
the calculations will be reduced if the x, y, z axes are selected such 
that only one component of angular velocity is observed with respect 
to this frame 1�xyz2 and the frame rotates with � defined by the 
other components of angular velocity.

Kinematic Equations.
	 •	 After the origin of the moving reference, A, is defined and the 

moving point B is specified, Eqs. 20–13 and 20–14 should then be 
written in symbolic form as

	  vB = vA + � * rB>A + (vB>A)xyz

	  aB = aA + �
#

* rB>A + � * (� * rB>A) + 2� * (vB>A)xyz + (aB>A)xyz

	 •	 If rA and � appear to change direction when observed from the 
fixed X, Y, Z reference then use a set of primed reference axes, x�, y�, 
z� having a rotation � � = �. Equation 20–6 is then used to 
determine �

#
 and the motion vA and aA of the origin of the moving x, 

y, z axes.

	 •	 If rB>A and �xyz appear to change direction as observed from x, y, z, 
then use a set of double-primed reference axes x�, y�, z� having 
� � = �xyz and apply Eq. 20–6 to determine �

#
xyz and the relative 

motion (vB>A)xyz and (aB>A)xyz.

	 •	 After the final forms of �
#

, vA, aA, �
#

xyz, (vB>A)xyz, and (aB>A)xyz are 
obtained, numerical problem data can be substituted and the 
kinematic terms evaluated. The components of all these vectors can 
be selected either along the X, Y, Z or along the x, y, z axes. The choice 
is arbitrary, provided a consistent set of unit vectors is used. 
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A motor and attached rod AB have the angular motions shown in 
Fig.  20–12. A collar C on the rod is located 0.25 m from A and is 
moving downward along the rod with a velocity of 3 m>s and an 
acceleration of 2 m>s2. Determine the velocity and acceleration of C 
at this instant.

Solution
Coordinate Axes.
The origin of the fixed X, Y, Z reference is chosen at the center of 
the platform, and the origin of the moving x, y, z frame at point A, 
Fig. 20–12. Since the collar is subjected to two components of angular 
motion, Vp and VM , it will be viewed as having an angular velocity of 
�xyz = VM in x, y, z. Therefore, the x, y, z axes will be attached to the 
platform so that � = Vp .

Example   20.4

0.25 m

X, x, x¿, x¿¿

·vM � 1 rad/s2
vM � 3 rad/s

2 m/s2
3 m/s

Y, y¿

y, y¿¿

vp � 5 rad/s

vp � 2 rad/s2·

Z, z¿

z, z¿¿

1 m
2 m O

C

B

A

Fig. 20–12 
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Kinematic Equations.  Equations 20–13 and 20–14, applied to 
points C and A, become

 vC = vA + � * rC>A + (vC>A)xyz

 aC = aA + �
#

* rC>A + � * (� * rC>A) + 2� * (vC>A)xyz + (aC>A)xyz

Motion of A.  Here rA changes direction relative to X, Y, Z. To find 
the time derivatives of rA we will use a set of x�, y�, z� axes coincident 
with the X, Y, Z axes that rotate at � � = Vp . Thus,

 � = Vp = 55k6  rad>s (� does not change direction relative to X, Y, Z.)

 �
#

= V
#

p = 52k6  rad>s2

 rA = 52i6  m

 vA = r
#
A = (r

#
A)x�y�z� + Vp * rA = 0 + 5k * 2i = 510j6  m>s

 aA = r
$

A = [(r
$

A)x�y�z� + Vp * (r
#
A)x�y�z�] + V

#
p * rA + Vp * r

#
A

= [0 + 0] + 2k * 2i + 5k * 10j = 5-50i + 4j6  m>s2

Motion of C with Respect to A.  Here rC>A changes direction 
relative to x, y, z, and so to find its time derivatives use a set of x�, y�, 
z� axes that rotate at � � = �xyz = VM . Thus,

 �xyz = VM = 53i6  rad>s (�xyz does not change direction relative to x, y, z.)

 �
#

xyz = V
#

M = 51i6  rad>s2

 rC>A = 5-0.25k6  m

 (vC>A)xyz = (r
#
C>A)xyz = (r

#
C>A)x�y�z� + VM * rC>A

= -3k + [3i * (-0.25k)] = 50.75j - 3k6  m>s
 (aC>A)xyz = (r

$
C>A)xyz = [(r

$
C>A)x�y�z� + VM * (r

#
C>A)x�y�z�] + V

#
M * rC>A + VM * (r

#
C>A)xyz

= [-2k + 3i * (-3k)] + (1i) * (-0.25k) + (3i) * (0.75j - 3k)

= 518.25j + 0.25k6  m>s2

Motion of C.
 vC = vA + � * rC>A + (vC>A)xyz

= 10j + [5k * (-0.25k)] + (0.75j - 3k)

= 510.75j - 3k6  m>s Ans.

 aC = aA + �
#

* rC>A + � * (� * rC>A) + 2� * (vC>A)xyz + (aC>A)xyz

= (-50i + 4j) + [2k * (-0.25k)] + 5k * [5k * (-0.25k)]

+ 2[5k * (0.75j - 3k)] + (18.25j + 0.25k)

= 5-57.5i + 22.25j + 0.25k6  m>s2 � Ans.
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Example   20.5

The pendulum shown in Fig. 20–13 consists of two rods; AB is pin 
supported at A and swings only in the Y–Z plane, whereas a bearing at B 
allows the attached rod BD to spin about rod AB. At a given instant, the 
rods have the angular motions shown. Also, a collar C, located 0.2 m from B, 
has a velocity of 3 m>s and an acceleration of 2 m>s2 along the rod. 
Determine the velocity and acceleration of the collar at this instant.

Solution I
Coordinate Axes.  The origin of the fixed X, Y, Z frame will be placed 
at A. Motion of the collar is conveniently observed from B, so the origin 
of the x, y, z frame is located at this point. We will choose � = V1 and 
�xyz = V2 .

Kinematic Equations.
 vC = vB + � * rC>B + (vC>B)xyz

 aC = aB + �
#

* rC>B + � * (� * rC>B) + 2� * (vC>B)xyz + (aC>B)xyz

0.5 m

Y, y¿

3 m/s
2 m/s2

D
y, y¿¿C0.2 m

v2 � 6 rad/s2.

x, x¿¿

v2 � 5 rad/s

B

Z, z, z¿, z¿¿

v1 � 4 rad/s

A

X, x¿

v1 � 1.5 rad/s2.

Fig. 20–13 

Motion of B.  To find the time derivatives of rB let the x�, y�, z� axes rotate with � � = V1 . Then

 � � = V1 = 54i6  rad>s �
#

� = V
#

1 = 51.5i6  rad>s2

 rB = 5-0.5k6  m

 vB = r
#
B = (r

#
B)x�y�z� + V1 * rB = 0 + 4i * (-0.5k) = 52j6  m>s

 aB = r
$

B = [(r
$

B)x�y�z� + V1 * (r
#
B)x�y�z�] + V

#
1 * rB + V1 * r

#
B

 = [0 + 0] + 1.5i * (-0.5k) + 4i * 2j = 50.75j + 8k6  m>s2

Motion of C with Respect to B.  To find the time derivatives of rC>B relative to x, y, z, let the x�, y�, z� axes 
rotate with �xyz = V2 . Then

�xyz = V2 = 55k6  rad>s �
#

xyz = V
#

2 = 5-6k6  rad>s2

rC>B = 50.2j6  m

 (vC>B)xyz = (r
#
C>B)xyz = (r

#
C>B)x�y�z� + V2 * rC>B = 3j + 5k * 0.2j = 5-1i + 3j6  m>s

 (aC>B)xyz = (r
$

C>B)xyz = [(r
$

C>B)x�y�z� + V2 * (r
#
C>B)x�y�z�] + V

#
2 * rC>B + V2 * (r

#
C>B)xyz

 = (2j + 5k * 3j) + (-6k * 0.2j) + [5k * (-1i + 3j)]

 = 5-28.8i - 3j6  m>s2

Motion of C.
 vC = vB + � * rC>B + (vC>B)xyz = 2j + 4i * 0.2j + (-1i + 3j)

 = 5-1i + 5j + 0.8k6  m>s 		 Ans.

 aC = aB + �
#

* rC>B + � * (� * rC>B) + 2� * (vC>B)xyz + (aC>B)xyz

 = (0.75j + 8k) + (1.5i * 0.2j) + [4i * (4i * 0.2j)]

 + 2[4i * (-1i + 3j)] + (-28.8i - 3j)

 = 5-28.8i - 5.45j + 32.3k6  m>s2 	Ans.
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Solution II
Coordinate Axes.  Here we will let the x, y, z axes rotate at

� = V1 + V2 = 54i + 5k6  rad>s
Then �xyz = 0.

Motion of B.  From the constraints of the problem V1 does not 
change direction relative to X, Y, Z; however, the direction of V2 is 
changed by V1 . Thus, to obtain �

#
 consider x�, y�, z� axes coincident 

with the X, Y, Z axes at A, so that � � = V1 . Then taking the derivative 
of the components of �, 

�
#

= V
#

1 + V
#

2 = [(V
#

1)x�y�z� + V1 * V1] + [(V
#

2)x�y�z� + V1 * V2]

= [1.5i + 0] + [-6k + 4i * 5k] = 51.5i - 20j - 6k6  rad>s2

Also, V1 changes the direction of rB so that the time derivatives of rB 
can be found using the primed axes defined above. Hence,

vB = r
#
B = (r

#
B)x�y�z� + V1 * rB

= 0 + 4i * (-0.5k) = 52j6  m>s
aB = r

$
B = [(r

$
B)x�y�z� + V1 * (r

#
B)x�y�z�] + V

#
1 * rB + V1 * r

#
B

= [0 + 0] + 1.5i * (-0.5k) + 4i * 2j = 50.75j + 8k6  m>s2

Motion of C with Respect to B.

 �xyz = 0

 �
#

xyz = 0

 rC>B = 50.2j6  m

 (vC>B)xyz = 53j6  m>s
 (aC>B)xyz = 52j6  m>s2

Motion of C.
 vC = vB + � * rC>B + (vC>B)xyz

= 2j + [(4i + 5k) * (0.2j)] + 3j

= 5-1i + 5j + 0.8k6  m>s Ans.

 aC = aB + �
#

* rC>B + � * (� * rC>B) + 2� * (vC>B)xyz + (aC>B)xyz

= (0.75j + 8k) + [(1.5i - 20j - 6k) * (0.2j)]

+ (4i + 5k) * [(4i + 5k) * 0.2j] + 2[(4i + 5k) * 3j] + 2j

= 5-28.8i - 5.45j + 32.3k6  m>s2 	 Ans.
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PROBLEMS

20–37.  Solve Example 20.5 such that the x, y, z axes move 
with curvilinear translation, � = 0 in which case  
the collar appears to have both an angular velocity 
�xyz = V1 + V2 and radial motion.

20–38.  Solve Example 20.5 by fixing x, y, z axes to rod BD 
so that � = V1 + V2. In this case the collar appears only to 
move radially outward along BD; hence �xyz = 0.

20–39.  At the instant u = 60�, the telescopic boom AB of 
the construction lift is rotating with a constant angular 
velocity about the z axis of v1 = 0.5 rad>s and about the pin 
at A with a constant angular speed of v2 = 0.25 rad>s. 
Simultaneously, the boom is extending with a velocity of  
1.5 ft>s, and it has an acceleration of 0.5 ft>s2, both measured 
relative to the construction lift. Determine the velocity and 
acceleration of point B located at the end of the boom at 
this instant.

*20–40.  At the instant u = 60�, the construction lift is
rotating about the z axis with an angular velocity of 
v1 = 0.5 rad>s and an angular acceleration of 
v1
#

= 0.25 rad>s2 while the telescopic boom AB rotates
about the pin at A with an angular velocity of v2 = 0.25 rad>s 
and angular acceleration of v

#
2 = 0.1 rad>s2. Simultaneously, 

the boom is extending with a velocity of 1.5 ft>s, and it has 
an acceleration of 0.5 ft>s2, both measured relative to the 
frame. Determine the velocity and acceleration of point B 
located at the end of the boom at this instant.

z

y

x

15 ft

2 ft
C

OA

B

u

v1, v1

v2, v2

Probs. 20–39/40

20–41.  At the instant shown, the arm AB is rotating about the 
fixed pin A with an angular velocity v1 = 4 rad>s and angular 
acceleration v# 1 = 3 rad>s2. At this same instant, rod BD is 
rotating relative to rod AB with an angular velocity v2 = 5 rad>s, 
which is increasing at v# 2 = 7 rad>s2. Also, the collar C is moving 
along rod BD with a velocity of 3 m>s and an acceleration of  
2 m>s2, both measured relative to the rod. Determine the 
velocity and acceleration of the collar at this instant.

z

x
y

1.5 m

0.6 mD

A

B

C

v1 � 4 rad/s
�v1 � 3 rad/s2

v2 � 5 rad/s
�v2 � 7 rad/s2

3 m/s
2 m/s2

AAAAAAAAAA

Prob. 20–41

20–42.  At the instant u = 30�, the frame of the crane and 
the boom AB rotate with a constant angular velocity of 
v1 = 1.5 rad>s and v2 = 0.5 rad>s, respectively. Determine 
the velocity and acceleration of point B at this instant.

20–43.  At the instant u = 30�, the frame of the crane is 
rotating with an angular velocity of v1 = 1.5 rad>s and 
angular acceleration of v

#
1 = 0.5 rad>s2, while the boom AB 

rotates with an angular velocity of v2 = 0.5 rad>s and 
angular acceleration of v

#
2 = 0.25 rad>s2. Determine the 

velocity and acceleration of point B at this instant.

12 m
1.5 m

z

y
A

B

O u

V2, V2

V1, V1

Probs. 20–42/43
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*20–44.  At the instant shown, the rod AB is rotating about 
the z axis with an angular velocity v1 = 4 rad>s and an 
angular acceleration v# 1 = 3 rad>s2. At this same instant, the 
circular rod has an angular motion relative to the rod as 
shown. If the collar C is moving down around the circular 
rod with a speed of 3 in.>s, which is increasing at 8 in.>s2, 
both measured relative to the rod, determine the collar’s 
velocity and acceleration at this instant.

z

x

y

5 in.

4 in.

A

B

C

v1 � 4 rad/s
�v1 � 3 rad/s2

v2 � 2 rad/s
�v2 � 8 rad/s2

Prob. 20–44

20–45.  The particle P slides around the circular hoop with 
a constant angular velocity of u

#
 = 6 rad>s, while the hoop 

rotates about the x axis at a constant rate of v = 4 rad>s. If 
at the instant shown the hoop is in the x–y plane and the 
angle u = 45°, determine the velocity and acceleration of the 
particle at this instant.

200 mm

z

P

y

x

O

V � 4 rad/s

u

Prob. 20–45

20–46.  At the instant shown, the industrial manipulator is 
rotating about the z axis at v1 = 5 rad>s, and about joint B at 
v2 = 2 rad>s. Determine the velocity and acceleration of the 
grip A at this instant, when f = 30°, u = 45°, and r = 1.6 m.

20–47.  At the instant shown, the industrial manipulator is 
rotating about the z axis at v1 = 5 rad>s, and v

#
1 = 2 rad>s2; 

and about joint B at v2 = 2 rad>s and v
#

2 = 3 rad>s2. 
Determine the velocity and acceleration of the grip A at 
this instant, when f = 30°, u = 45°, and r = 1.6 m.

v2

v1

u

f

1.2 m

z

Ar
x

y

B

Probs. 20–46/47

*20–48.  At the given instant, the rod is turning about the z 
axis with a constant angular velocity v1 = 3 rad>s. At this 
same instant, the disk is spinning at v2 = 6 rad>s when  
v
#
2 = 4 rad>s2, both measured relative to the rod. Determine 

the velocity and acceleration of point P on the disk at  
this instant.

y

z

 v2 � 6 rad/s

 v2 � 4 rad/s2
O

1.5 m
0.5 m

0.5 m

x
2 m

 v1 � 3 rad/s

P

�

Prob. 20–48



588 	 Chapter 20  T  hree-Dimensional Kinematics of a Rig id Body

20

20–49.  At the instant shown, the backhoe is traveling 
forward at a constant speed vO = 2 ft>s, and the boom ABC 
is rotating about the z axis with an angular velocity  
v1 = 0.8 rad>s and an angular acceleration v

#
1 = 1.30 rad>s2. 

At this same instant the boom is rotating with v2 = 3 rad>s 
when v

#
2 = 2 rad>s2, both measured relative to the frame. 

Determine the velocity and acceleration of point P on the 
bucket at this instant.

y

5 ft

x

P

B

C

A
u

15 ft

3 ft

2 ft

4 ft

v1 � 0.8 rad/s
v1 � 1.30 rad/s2v2 � 3 rad/s

v2 � 2 rad/s2

z

vO � 2 ft/s

O

Prob. 20–49

20–50.  At the instant shown, the arm OA of the conveyor 
belt is rotating about the z axis with a constant angular 
velocity v1 = 6 rad>s, while at the same instant the arm is 
rotating upward at a constant rate v2 = 4 rad>s. If the 
conveyor is running at a constant rate  r 

#
 = 5 ft>s, determine 

the velocity and acceleration of the package P at the instant 
shown. Neglect the size of the package.

20–51.  At the instant shown, the arm OA of the conveyor 
belt is rotating about the z axis with a constant angular velocity 
v1 = 6 rad>s, while at the same instant the arm is rotating 
upward at a constant rate v2 = 4 rad>s. If the conveyor is 
running at a rate  r 

#
 = 5 ft>s, which is increasing at r  

$
= 8 ft>s2,

determine the velocity and acceleration of the package P at 
the instant shown. Neglect the size of the package.

V1 � 6 rad/s

V2 � 4 rad/s
y

z

x

A

O

r � 6 ft

u � 45�

P

Probs. 20–50/51

*20–52.  The crane is rotating about the z axis with a
constant rate v1 = 0.25 rad>s, while the boom OA is rotating 
downward with a constant rate v2 = 0.4 rad>s. Compute the 
velocity and acceleration of point A located at the top of the 
boom at the instant shown.

20–53.  Solve Prob. 20–52 if the angular motions are 
increasing at v

#
1 = 0.4 rad>s2 and v

#
2 = 0.8 rad>s2 at the 

instant shown.

30�

y

A

x

O

z

v1 � 0.25 rad/s

v2 � 0.4 rad/s

40 ft

Probs. 20–52/53

20–54.  At the instant shown, the arm AB is rotating about 
the fixed bearing with an angular velocity v1 = 2 rad>s and 
angular acceleration v

#
1 = 6 rad>s2. At the same instant, rod 

BD is rotating relative to rod AB at v2 = 7 rad>s, which is 
increasing at v

#
2 = 1 rad>s2. Also, the collar C is moving 

along rod BD with a velocity r
#

= 2 ft>s and a deceleration 
r
$

= -0.5 ft>s2, both measured relative to the rod.
Determine the velocity and acceleration of the collar at  
this instant.

u � 30�

A

C
B

v2 � 7 rad/s
v2 � 1 rad/s2

v1 � 2 rad/s
v1 � 6 rad/s2

r � 1 ft

D

y

x 2 ft

1.5 ft

z

Prob. 20–54
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Chapter Review

Rotation About a Fixed Point

When a body rotates about a fixed point O, 
then points on the body follow a path 
that lies on the surface of a sphere 
centered at  O. 

Since the angular acceleration is a time 
rate of change in the angular velocity, 
then it is necessary to account for both 
the magnitude and directional changes 
of V when finding its time derivative. To 
do this, the angular velocity is often 
specified in terms of its component 
motions, such that the direction of some 
of these components will remain 
constant relative to rotating x, y, z axes. 
If this is the case, then the time derivative 
relative to the fixed axis can be 
determined using A

#
= (A

#
)xyz + � * A.

Once V and A are known, the velocity 
and acceleration of any point P in the 
body can then be determined.

General Motion

If the body undergoes general motion, 
then the motion of a point B on the body 
can be related to the motion of another 
point A using a relative motion analysis, 
with translating axes attached to A.

Relative Motion Analysis Using 
Translating and Rotating Axes

The motion of two points A and B on a 
body, a series of connected bodies, or 
each point located on two different paths, 
can be related using a relative motion 
analysis with rotating and translating 
axes at A.

When applying the equations, to find vB 
and aB, it is important to account for both 
the magnitude and directional changes of 
rA , rB>A, �, and �xyz when taking their 
time derivatives to find vA , aA , (vB>A)xyz , 
(aB>A)xyz , �

#
, and �

#
xyz . To do this properly, 

one must use Eq. 20–6.

vP = V * r

aP = A * r + V * (V * r)

vB = vA + V * rB>A

aB = aA + A * rB>A + V * (V * rB>A)

vB = vA + � * rB>A + (vB>A)xyz

aB = aA + �
#

* rB>A + � * (� * rB>A) + 2� * (vB>A)xyz + (aB>A)xyz

P

r

O

Instantaneous axis
of rotationV

A



The forces acting on each of these motorcycles can be determined using the 
equations of motion as discussed in this chapter.

Chapter 21

(© Derek Watt/Alamy)



Three-Dimensional Kinetics 
of a Rigid Body

Chapter Objectives

n	 To introduce the methods for finding the moments of inertia and 
products of inertia of a body about various axes.

n	 To show how to apply the principles of work and energy and 
linear and angular impulse and momentum to a rigid body having 
three-dimensional motion.

n	 To develop and apply the equations of motion in three 
dimensions.

n	 To study gyroscopic and torque-free motion.

*21.1  Moments and Products of Inertia

When studying the planar kinetics of a body, it was necessary to introduce 
the moment of inertia IG , which was computed about an axis perpendicular 
to the plane of motion and passing through the body’s mass center G. For 
the kinetic analysis of three-dimensional motion it will sometimes be 
necessary to calculate six inertial quantities. These terms, called the 
moments and products of inertia, describe in a particular way the 
distribution of mass for a body relative to a given coordinate system that 
has a specified orientation and point of origin.
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Moment of Inertia.  Consider the rigid body shown in Fig. 21–1. 
The moment of inertia for a differential element dm of the body about 
any one of the three coordinate axes is defined as the product of the 
mass of the element and the square of the shortest distance from the axis 
to the element. For example, as noted in the figure, rx = 2y2 + z2, so 
that the mass moment of inertia of the element about the x axis is

dIxx = rx
2 dm = (y2 + z2) dm

The moment of inertia Ixx for the body can be determined by integrating 
this expression over the entire mass of the body. Hence, for each of the 
axes, we can write

	

 Ixx = Lm
rx

2dm = Lm
(y2 + z2) dm

 Iyy = Lm
r2

ydm = Lm
(x2 + z2) dm

 Izz = Lm
r2

zdm = Lm
(x2 + y2) dm

	 (21–1)

Here it is seen that the moment of inertia is always a positive quantity, 
since it is the summation of the product of the mass dm, which is always 
positive, and the distances squared.

Product of Inertia.  The product of inertia for a differential element 
dm with respect to a set of two orthogonal planes is defined as the product 
of the mass of the element and the perpendicular (or shortest) distances 
from the planes to the element. For example, this distance is x to the  
y–z plane and it is y to the x–z plane, Fig. 21–1. The product of inertia dIxy 
for the element is therefore

dIxy = xy dm

Note also that dIyx = dIxy. By integrating over the entire mass, the 
products of inertia of the body with respect to each combination of 
planes can be expressed as

	

 Ixy = Iyx = Lm
xy dm

 Iyz = Izy = Lm
yz dm

 Ixz = Izx = Lm
xz dm

	 (21–2)

z

dm

rz

rx

ry

z

x
y

x

y
O

Fig. 21–1 
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Unlike the moment of inertia, which is always positive, the product of 
inertia may be positive, negative, or zero. The result depends on the 
algebraic signs of the two defining coordinates, which vary independently 
from one another. In particular, if either one or both of the orthogonal 
planes are planes of symmetry for the mass, the product of inertia with 
respect to these planes will be zero. In such cases, elements of mass will 
occur in pairs located on each side of the plane of symmetry. On one side 
of the plane the product of inertia for the element will be positive, while 
on the other side the product of inertia of the corresponding element will 
be negative, the sum therefore yielding zero. Examples of this are shown 
in Fig. 21–2. In the first case, Fig. 21–2a, the y–z plane is a plane of 
symmetry, and hence Ixy = Ixz = 0. Calculation of Iyz will yield a positive 
result, since all elements of mass are located using only positive y and z 
coordinates. For the cylinder, with the coordinate axes located as shown 
in Fig. 21–2b, the x–z and y–z planes are both planes of symmetry. Thus, 
Ixy = Iyz = Izx = 0.

Parallel-Axis and Parallel-Plane Theorems.   The techniques 
of integration used to determine the moment of inertia of a body were 
described in Sec. 17.1. Also discussed were methods to determine the 
moment of inertia of a composite body, i.e., a body that is composed of 
simpler segments, as tabulated on the inside back cover. In both of these 
cases the parallel-axis theorem is often used for the calculations. This 
theorem, which was developed in Sec. 17.1, allows us to transfer the 
moment of inertia of a body from an axis passing through its mass 
center G to a parallel axis passing through some other point. If G has 
coordinates xG , yG , zG defined with respect to the x, y, z axes, Fig. 21–3, 
then the parallel-axis equations used to calculate the moments of inertia 
about the x, y, z axes are

	
 Ixx = (Ix�x�)G + m(yG

2 + zG
2 )

 Iyy = (Iy�y�)G + m(xG
2 + zG

2 )

 Izz = (Iz�z�)G + m(xG
2 + yG

2 )

	 (21–3)

x
y

O

z

(a) (b)

x
y

z

O

Fig. 21–2 

z

x

y

y¿

z¿

x¿

G

zG

xG

yG

Fig. 21–3 
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The products of inertia of a composite body are computed in the same 
manner as the body’s moments of inertia. Here, however, the parallel-
plane theorem is important. This theorem is used to transfer the products 
of inertia of the body with respect to a set of three orthogonal planes 
passing through the body’s mass center to a corresponding set of three 
parallel planes passing through some other point O. Defining the 
perpendicular distances between the planes as xG , yG, and zG , Fig. 21–3, 
the parallel-plane equations can be written as

	
 Ixy = (Ix�y�)G + mxGyG

 Iyz = (Iy�z�)G + myGzG

 Izx = (Iz�x�)G + mzGxG

	 (21–4)

The derivation of these formulas is similar to that given for the parallel-
axis equation, Sec. 17.1.

Inertia Tensor.  The inertial properties of a body are therefore 
completely characterized by nine terms, six of which are independent of 
one another. This set of terms is defined using Eqs. 21–1 and 21–2 and 
can be written as £ Ixx -Ixy -Ixz

-Iyx Iyy -Iyz

-Izx -Izy Izz

≥
This array is called an inertia tensor.* It has a unique set of values for a 
body when it is determined for each location of the origin O and 
orientation of the coordinate axes.

In general, for point O we can specify a unique axes inclination for 
which the products of inertia for the body are zero when computed with 
respect to these axes. When this is done, the inertia tensor is said to be 
“diagonalized” and may be written in the simplified form£ Ix 0 0

0 Iy 0

0 0 Iz

≥
Here Ix = Ixx , Iy = Iyy , and Iz = Izz are termed the principal moments of 
inertia for the body, which are computed with respect to the principal 
axes of inertia. Of these three principal moments of inertia, one will be a 
maximum and another a minimum of the body’s moment of inertia.

z

x

y

y¿

z¿

x¿

G

zG

xG

yG

Fig. 21–3 (repeated) 

*The negative signs are here as a consequence of the development of angular momentum, 
Eqs. 21–10.

The dynamics of the space shuttle while 
it orbits the earth can be predicted only 
if its moments and products of inertia 
are known relative to its mass center. 
(©Ablestock/Getty Images)
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The mathematical determination of the directions of principal axes of 
inertia will not be discussed here (see Prob. 21–22). However, there are 
many cases in which the principal axes can be determined by inspection. 
From the previous discussion it was noted that if the coordinate axes are 
oriented such that two of the three orthogonal planes containing the axes 
are planes of symmetry for the body, then all the products of inertia for 
the body are zero with respect to these coordinate planes, and hence 
these coordinate axes are principal axes of inertia. For example, the  
x, y, z axes shown in Fig. 21–2b represent the principal axes of inertia for 
the cylinder at point O.

Moment of Inertia About an Arbitrary Axis.  Consider the 
body shown in Fig. 21–4, where the nine elements of the inertia tensor 
have been determined with respect to the x, y, z axes having an origin at O. 
Here we wish to determine the moment of inertia of the body about the 
Oa axis, which has a direction defined by the unit vector ua. By definition 
IOa = 1b2 dm, where b is the perpendicular distance from dm to Oa. If 
the position of dm is located using r, then b = r sin u, which represents 
the magnitude of the cross product ua * r. Hence, the moment of inertia 
can be expressed as

IOa = Lm
� (ua * r) � 2dm = Lm

(ua * r) # (ua * r)dm

Provided ua = ux i + uy j + uz k and r = xi + yj + zk, then ua * r =

(uyz - uzy)i + (uzx - uxz)j + (uxy - uyx)k. After substituting and 
performing the dot-product operation, the moment of inertia is

 IOa = Lm
[(uyz - uzy)2 + (uzx - uxz)2 + (uxy - uyx)2]dm

 = ux
2Lm

(y2 + z2)dm + uy
2Lm

(z2 + x2)dm + uz
2Lm

(x2 + y2) dm

- 2uxuy Lm
xy dm - 2uyuz Lm

yz dm - 2uzux Lm
zx dm

Recognizing the integrals to be the moments and products of inertia of 
the body, Eqs. 21–1 and 21–2, we have

	 IOa = Ixxux
2 + Iyyuy

2 + Izzuz
2 - 2Ixyuxuy - 2Iyzuyuz - 2Izxuzux 	 (21–5)

Thus, if the inertia tensor is specified for the x, y, z axes, the moment of 
inertia of the body about the inclined Oa axis can be found. For the 
calculation, the direction cosines ux , uy , uz of the axes must be determined. 
These terms specify the cosines of the coordinate direction angles a, b, g 
made between the positive Oa axis and the positive x, y, z axes, 
respectively (see Appendix B).

z

x

y
O

b � r sin u

a

ua

r

dm

u

Fig. 21–4 
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Determine the moment of inertia of the bent rod shown in Fig. 21–5a 
about the Aa axis. The mass of each of the three segments is given in 
the figure.

Solution
Before applying Eq. 21–5, it is first necessary to determine the moments 
and products of inertia of the rod with respect to the x, y, z axes. This is 
done using the formula for the moment of inertia of a slender rod, 
I =

1
12 ml2, and the parallel-axis and parallel-plane theorems, Eqs. 21–3 

and 21–4. Dividing the rod into three parts and locating the mass center 
of each segment, Fig. 21–5b, we have

 Ixx = 3 1
12(2)(0.2)2 + 2(0.1)24 + [0 + 2(0.2)2]

	 + 3 1
12(4)(0.4)2 + 4((0.2)2 + (0.2)2)4 = 0.480 kg # m2

 Iyy = 3 1
12(2)(0.2)2 + 2(0.1)24 + 3 1

12(2)(0.2)2 + 2((-0.1)2 + (0.2)2)4
	 + [0 + 4((-0.2)2 + (0.2)2)] = 0.453 kg # m2

 Izz = 30 + 04 + 3 1
12(2)(0.2)2 + 2(-0.1)24 + 3 1

12(4)(0.4)2 +

	 4((-0.2)2 + (0.2)2)4  = 0.400 kg # m2

 Ixy = [0 + 0] + [0 + 0] + [0 + 4(-0.2)(0.2)] = -0.160 kg # m2

 Iyz = [0 + 0] + [0 + 0] + [0 + 4(0.2)(0.2)] = 0.160 kg # m2

 Izx = [0 + 0] + [0 + 2(0.2)(-0.1)] +

	 [0 + 4(0.2)(-0.2)] = -0.200 kg # m2

The Aa axis is defined by the unit vector

uAa =
rD

rD
=

-0.2i + 0.4j + 0.2k2(-0.2)2 + (0.4)2 + (0.2)2
= -0.408i + 0.816j + 0.408k

Thus,

	 ux = -0.408  uy = 0.816  uz = 0.408	

Substituting these results into Eq. 21–5 yields

 IAa = Ixxux
2 + Iyyuy

2 + Izzuz
2 - 2Ixyuxuy - 2Iyzuyuz - 2Izxuzux

 = 0.480(-0.408)2 + (0.453)(0.816)2 + 0.400(0.408)2

  - 2(-0.160)(-0.408)(0.816) - 2(0.160)(0.816)(0.408)

  - 2(-0.200)(0.408)(-0.408)

 = 0.169 kg # m2	 Ans.

Example   21.1

y

2 kg

0.4 m

0.2 m

(a)

D

a4 kg0.2 m

z

A

B C
2 kg

0.2 m

x

z

x

y
A

B
C

D

2 kg
(0, 0, 0.1)

2 kg
(�0.1, 0, 0.2)

4 kg
(�0.2, 0.2, 0.2)

(b)

Fig. 21–5 
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*21–4.  Determine the moments of inertia Ix and Iy of the 
paraboloid of revolution. The mass of the paraboloid is 
20 slug.

2 ft

2 ft

z

x

y

z2 � 2y

Prob. 21–4

21–5.  Determine by direct integration the product of 
inertia Iyz for the homogeneous prism. The density of the 
material is r. Express the result in terms of the total mass m 
of the prism.

21–6.  Determine by direct integration the product of 
inertia Ixy for the homogeneous prism. The density of the 
material is r. Express the result in terms of the total mass m 
of the prism.

a

x

y

z

a

h

Probs. 21–5/6

21–1.  Show that the sum of the moments of inertia of a 
body, Ixx + Iyy + Izz, is independent of the orientation of the 
x, y, z axes and thus depends only on the location of the 
origin.

21–2.  Determine the moment of inertia of the cone with 
respect to a vertical y axis passing through the cone’s center 
of mass. What is the moment of inertia about a parallel axis 
y � that passes through the diameter of the base of the cone? 
The cone has a mass m.

h

x

y

a

y y¿–

Prob. 21–2

21–3.  Determine moment of inertia Iy of the solid formed 
by revolving the shaded area around the x axis. The density 
of the material is r = 12 slug>ft3.

4 ft

2 ft

y

x

y2 � x

Prob. 21–3

PROBLEMS
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21–7.  Determine the product of inertia Ixy of the object 
formed by revolving the shaded area about the line x = 5 ft. 
Express the result in terms of the density of the material, r.

3 ft 2 ft

y

x

y2 � 3x

Prob. 21–7

*21–8.  Determine the moment of inertia Iy of the object 
formed by revolving the shaded area about the line x = 5 ft. 
Express the result in terms of the density of the material, r.

3 ft 2 ft

y

x

y2 � 3x

Prob. 21–8

21–9.  Determine the moment of inertia of the cone about 
the z �  axis. The weight of the cone is 15 lb, the height is 
h = 1.5 ft and the radius is r = 0.5 ft.

z¿

z¿

z
r

h

Prob. 21–9

21–10.  Determine the radii of gyration kx and ky for the 
solid formed by revolving the shaded area about the y axis. 
The density of the material is r.

4 ft

4 ft

0.25 ft

0.25 ft

y

x

xy � 1

Prob. 21–10

21–11.  Determine the moment of inertia of the cylinder 
with respect to the a–a axis of the cylinder. The cylinder has 
a mass m.

a

a

a

h

Prob. 21–11
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*21–12.  Determine the moment of inertia Ixx of the composite 
plate assembly. The plates have a specific weight of 6 lb>ft2.
21–13.  Determine the product of inertia Iyz of the composite 
plate assembly. The plates have a weight of 6 lb>ft2.

0.5 ft
0.5 ft

0.5 ft

0.5 ft

z

y

x

0.25 ft

Probs. 21–12/13

21–14.  Determine the products of inertia Ixy, Iyz, and Ixz, of 
the thin plate. The material has a density per unit area 
of 50 kg>m2.

200 mm

400 mm

400 mm

z

yx

Prob. 21–14

21–15.  Determine the moment of inertia of both the 1.5-kg 
rod and 4-kg disk about the z �  axis.

300 mm z

z¿

100 mm

Prob. 21–15

*21–16.  The bent rod has a mass of 3 kg>m. Determine the 
moment of inertia of the rod about the O–a axis.

x y

0.5 m

0.3 m

1 m

a

O

z

Prob. 21–16

21–17.  The bent rod has a weight of 1.5 lb>ft. Locate the 
center of gravity G(x, y) and determine the principal 
moments of inertia Ix� , Iy� , and Iz� of the rod with respect to 
the x �, y �, z� axes.

x

y

z

x¿

y¿

z¿

1 ft

1 ft

G

A

_
x

_
y

Prob. 21–17
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21–18.  Determine the moment of inertia of the rod-and-
disk assembly about the x axis. The disks each have a weight 
of 12 lb. The two rods each have a weight of 4 lb, and their 
ends extend to the rims of the disks.

2 ft

1 ft

x

1 ft

Prob. 21–18

21–19.  Determine the moment of inertia of the composite 
body about the aa axis. The cylinder weighs 20 lb, and each 
hemisphere weighs 10 lb.

2 ft

2 ft

a

a

Prob. 21–19

*21–20.  Determine the moment of inertia of the disk 
about the axis of shaft AB. The disk has a mass of 15 kg.

30�
B

150 mm

A

Prob. 21–20

21–21.  The thin plate has a weight of 5 lb and each of the 
four rods weighs 3 lb. Determine the moment of inertia of 
the assembly about the z axis.

z

x

y
0.5 ft

0.5 ft

0.5 ft0.5 ft

1.5 ft

Prob. 21–21
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21.2  Angular Momentum

In this section we will develop the necessary equations used to determine 
the angular momentum of a rigid body about an arbitrary point. These 
equations will provide a means for developing both the principle of 
impulse and momentum and the equations of rotational motion for a 
rigid body.

Consider the rigid body in Fig. 21–6, which has a mass m and center of 
mass at G. The X, Y, Z coordinate system represents an inertial frame of 
reference, and hence, its axes are fixed or translate with a constant 
velocity. The angular momentum as measured from this reference will be 
determined relative to the arbitrary point A. The position vectors rA  
and RA  are drawn from the origin of coordinates to point A and from A 
to the ith particle of the body. If the particle’s mass is mi , the angular 
momentum about point A is

(HA)i = RA * mi vi

where vi represents the particle’s velocity measured from the X, Y, Z 
coordinate system. If the body has an angular velocity V at the instant 
considered, vi may be related to the velocity of A by applying Eq. 20–7, i.e., 

vi = vA + V * RA

Thus,

 (HA)i = RA * mi(vA + V * RA)

 = (RAmi) * vA + RA * (V * RA)mi

Summing the moments of all the particles of the body requires an 
integration. Since mi S dm, we have

	 HA = aLm
RAdm b * vA + Lm

RA * (V * RA)dm	 (21–6)

Z

X

Y

G
i

A
rA

vi

Inertial coordinate system

V

RA

vA

Fig. 21–6 



602 	 Chapter 21  T  hree-Dimensional Kinet ics of a Rig id Body

21

Z

X

Y

z

x

y

O

i

RO

Fixed Point

(a)

Z

X

Y

Arbitrary Point

z

x

y

G

RG/A

A

mvG

HG

(c)

Fixed Point O.  If A becomes a fixed point O in the body, Fig. 21–7a, 
then vA = 0 and Eq. 21–6 reduces to

	 HO = Lm
RO * (V * RO) dm 	 (21–7)

Center of Mass G.  If A is located at the center of mass G of the 
body, Fig. 21–7b, then 1mRA dm = 0 and

	 HG = Lm
RG * (V * RG) dm 	 (21–8)

Arbitrary Point A.  In general, A can be a point other than O or G, 
Fig. 21–7c, in which case Eq. 21–6 may nevertheless be simplified to the 
following form (see Prob. 21–23).

	 HA = RG>A * mvG + HG 	 (21–9)

Here the angular momentum consists of two parts—the moment of the 
linear momentum mvG of the body about point A added (vectorially) to  
the angular momentum HG . Equation 21–9 can also be used to determine 
the angular momentum of the body about a fixed point O. The results, of 
course, will be the same as those found using the more convenient Eq. 21–7.

Rectangular Components of H.  To make practical use of  
Eqs. 21–7 through 21–9, the angular momentum must be expressed in 
terms of its scalar components. For this purpose, it is convenient to 

Fig. 21–7 

Z

X

Y

z

x
yi

RG

G

Center of Mass

(b)
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choose a second set of x, y, z axes having an arbitrary orientation relative 
to the X, Y, Z axes, Fig. 21–7, and for a general formulation, note that  
Eqs. 21–7 and 21–8 are both of the form

H = Lm
R * (V * R)dm

Expressing H, R, and V in terms of x, y, z components, we have

Hx i + Hy j + Hz k = Lm
(xi + yj + zk) * [(vx i + vy j + vz k)

* (xi + yj + zk)]dm

Expanding the cross products and combining terms yields

Hx i + Hy j + Hz k = cvx Lm
(y2 + z2)dm - vy Lm

xy dm - vz Lm
xz dm d i

	  + c -vx Lm
xy dm + vy Lm

(x2 + z2)dm - vz Lm
yz dm d j

 + c -vx Lm
zx dm - vy Lm

yz dm + vz Lm
(x2 + y2)dm dk

Equating the respective i, j, k components and recognizing that the 
integrals represent the moments and products of inertia, we obtain

	  

Hx = Ixxvx - Ixyvy - Ixzvz     

 Hy = -Iyxvx + Iyyvy - Iyzvz   

 Hz = -Izxvx - Izyvy + Izzvz   

	 (21–10)

These equations can be simplified further if the x, y, z coordinate axes 
are oriented such that they become principal axes of inertia for the body 
at the point. When these axes are used, the products of inertia 
Ixy = Iyz = Izx = 0, and if the principal moments of inertia about the x, y, 
z axes are represented as Ix = Ixx , Iy = Iyy , and Iz = Izz , the three 
components of angular momentum become

	 Hx = Ixvx Hy = Iyvy Hz = Izvz 	 (21–11)
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Principle of Impulse and Momentum.  Now that the 
formulation of the angular momentum for a body has been developed, 
the principle of impulse and momentum, as discussed in Sec. 19.2, can be 
used to solve kinetic problems which involve force, velocity, and time. For 
this case, the following two vector equations are available:

	 m(vG)1 + � L
t2

t1

F dt = m(vG)2 	 (21–12)

	 (HO)1 + � L
t2

t1

MO dt = (HO)2 	 (21–13)

In three dimensions each vector term can be represented by three scalar 
components, and therefore a total of six scalar equations can be written. 
Three equations relate the linear impulse and momentum in  
the x, y, z directions, and the other three equations relate the body’s 
angular impulse and momentum about the x, y, z axes. Before applying 
Eqs. 21–12 and 21–13 to the solution of problems, the material in  
Secs. 19.2 and 19.3 should be reviewed.

21.3  Kinetic Energy

In order to apply the principle of work and energy to solve problems 
involving general rigid body motion, it is first necessary to formulate 
expressions for the kinetic energy of the body. To do this, consider the 
rigid body shown in Fig. 21–8, which has a mass m and center of mass at G. 
The kinetic energy of the ith particle of the body having a mass mi and 
velocity vi , measured relative to the inertial X, Y, Z frame of reference, is

Ti =
1
2 mivi

2 =
1
2 mi(vi

# vi)

Provided the velocity of an arbitrary point A in the body is known, vi can 
be related to vA  by the equation vi = vA + V * RA, where V is the 
angular velocity of the body, measured from the X, Y, Z coordinate 
system, and RA  is a position vector extending from A to i. Using this 
expression, the kinetic energy for the particle can be written as

	  Ti =
1
2 mi(vA + V * RA) # (vA + V * RA)

	  =
1
2(vA

# vA)mi + vA
# (V * RA)mi +

1
2 

(V * RA) # (V * RA)mi

The kinetic energy for the entire body is obtained by summing the kinetic 
energies of all the particles of the body. This requires an integration. 
Since mi S dm, we get

T =
1
2 m(vA

# vA) + vA
# aV * Lm

RAdm b +
1
2 Lm

(V * RA) # (V * RA)dm

Z

X

Y
Inertial coordinate system

G

i

A

vi

RA

rA

V

vA

Fig. 21–8 

The motion of the astronaut is controlled 
by use of small directional jets attached to 
his or her space suit. The impulses these 
jets provide must be carefully specified in 
order to prevent tumbling and loss of 
orientation. (© Nasa)
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The last term on the right can be rewritten using the vector identity 
a * b # c = a # b * c, where a = V, b = RA , and c = V * RA. The final 
result is

T =
1
2 m(vA

# vA) + vA
# 1V * Lm

RAdm2
	 +

1
2 V # Lm

RA * (V * RA)dm	 (21–14)

This equation is rarely used because of the computations involving the 
integrals. Simplification occurs, however, if the reference point A is either 
a fixed point or the center of mass.

Fixed Point O.  If A is a fixed point O in the body, Fig. 21–7a, then 
vA = 0, and using Eq. 21–7, we can express Eq. 21–14 as

T =
1
2 V # HO

If the x, y, z axes represent the principal axes of inertia for the body, then 
V = vx i + vy j + vz k and HO = Ixvx i + Iyvy j + Izvz k. Substituting 
into the above equation and performing the dot-product operations 
yields

	 T =
1
2 Ixvx

2 +
1
2 Iyvy

2 +
1
2 Izvz

2 	 (21–15)

Center of Mass G.  If A is located at the center of mass G of the 
body, Fig. 21–7b, then 1RA dm = 0 and, using Eq. 21–8, we can write  
Eq. 21–14 as

T =
1
2 mvG

2 +
1
2 V # HG

In a manner similar to that for a fixed point, the last term on the right 
side may be represented in scalar form, in which case

	 T =
1
2 mvG

2 +
1
2 Ixvx

2 +
1
2 Iyvy

2 +
1
2 Izvz

2 	 (21–16)

Here it is seen that the kinetic energy consists of two parts; namely, the 
translational kinetic energy of the mass center, 1

2 mvG
2 , and the body’s 

rotational kinetic energy.

Principle of Work and Energy.  Having formulated the kinetic 
energy for a body, the principle of work and energy can be applied to 
solve kinetics problems which involve force, velocity, and displacement. 
For this case only one scalar equation can be written for each body, 
namely,

	 T1 + �U192 = T2 	 (21–17)

Before applying this equation, the material in Chapter 18 should be 
reviewed.
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(b)

�

�

G

A

m(vG)2

rG/A

(HG)2

G

A

W�t � 0

�Fdt

G

m(vG)1

rG/A

A

Fig. 21–9 

The rod in Fig. 21–9a has a weight per unit length of 1.5 lb>ft. 
Determine its angular velocity just after the end A falls onto the hook 
at E. The hook provides a permanent connection for the rod due to 
the spring-lock mechanism S. Just before striking the hook the rod is 
falling downward with a speed (vG)1 = 10 ft>s.

Solution
The principle of impulse and momentum will be used since impact occurs.

Impulse and Momentum Diagrams.  Fig. 21–9b. During the short 
time �t, the impulsive force F acting at A changes the momentum of 
the rod. (The impulse created by the rod’s weight W during this time 
is small compared to 1F dt, so that it can be neglected, i.e., the weight 
is a nonimpulsive force.) Hence, the angular momentum of the rod is 
conserved about point A since the moment of 1F dt about A is zero.
Conservation of Angular Momentum.  Equation 21–9 must be used 
to find the angular momentum of the rod, since A does not become a 
fixed point until after the impulsive interaction with the hook. Thus, 
with reference to Fig. 21–9b, (HA)1 = (HA)2 , or

	 rG>A * m(vG)1 = rG>A * m(vG)2 + (HG)2	 (1)

From Fig. 21–9a, rG>A = 5-0.667i + 0.5j6  ft. Furthermore, the primed 
axes are principal axes of inertia for the rod because Ix�y�  = Ix�z� = Iz�y� = 0. 
Hence, from Eqs. 21–11, (HG)2 = Ix�vx i +  Iy�vy j + Iz�vz k. The principal 
moments of inertia are Ix� =  0.0272 slug # ft2, Iy� = 0.0155 slug # ft2, 
Iz� = 0.0427 slug # ft2 (see Prob. 21–17). Substituting into Eq. 1, we have

Example   21.2

(-0.667i + 0.5j) * c a 4.5

32.2
b (-10k) d = (-0.667i + 0.5j) * c a 4.5

32.2
b (-vG)2 k d

+ 0.0272vx i + 0.0155vy j + 0.0427vz k

Expanding and equating the respective i, j, k components yields

	  -0.699 = -0.0699(vG)2 + 0.0272vx	 (2)

	  -0.932 = -0.0932(vG)2 + 0.0155vy	 (3)

	  0 = 0.0427vz 	 (4)
Kinematics.  There are four unknowns in the above equations; 
however, another equation may be obtained by relating V to (vG)2 
using kinematics. Since vz = 0 (Eq. 4) and after impact the rod rotates 
about the fixed point A, Eq. 20–3 can be applied, in which case 
(vG)2 = V * rG>A , or

-(vG)2 k =  (vx i + vy j) * (-0.667i + 0.5j)

	  -(vG)2 = 0.5vx + 0.667vy 	 (5)

Solving Eqs. 2, 3 and 5 simultaneously yields

	 (vG)2 = 5-8.41k6  ft>s V = 5-4.09i - 9.55j6  rad>s� Ans.

z
z¿

1 ft

y

y¿
0.333 ft

0.667 ft
G

x
x¿

0.5 ft

A

(a)

S

E
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A 5@N # m torque is applied to the vertical shaft CD shown in Fig. 21–10a, 
which allows the 10-kg gear A to turn freely about CE. Assuming  
that gear A starts from rest, determine the angular velocity of CD after 
it has turned two revolutions. Neglect the mass of shaft CD and axle CE 
and assume that gear A can be approximated by a thin disk. Gear B  
is fixed.

Solution
The principle of work and energy may be used for the solution. Why?

Work.  If shaft CD, the axle CE, and gear A are considered as a system 
of connected bodies, only the applied torque M does work. For two 
revolutions of CD,  this work is  �U1-2 = (5 N # m)(4p rad) = 62.83 J.

Kinetic Energy.  Since the gear is initially at rest, its initial kinetic 
energy is zero. A kinematic diagram for the gear is shown in Fig. 21–10b. 
If the angular velocity of CD is taken as VCD , then the angular velocity 
of gear A is VA = VCD + VCE . The gear may be imagined as a portion 
of a massless extended body which is rotating about the fixed point C. 
The instantaneous axis of rotation for this body is along line CH, 
because both points C and H on the body (gear) have zero velocity  
and must therefore lie on this axis. This requires that the components 
VCD and VCE be related by the equation vCD>0.1 m = vCE>0.3 m or 
vCE = 3vCD . Thus,

	 VA = -vCE i + vCD k = -3vCD i + vCD k	 (1)

The x, y, z axes in Fig. 21–10a represent principal axes of inertia at C 
for the gear. Since point C is a fixed point of rotation, Eq. 21–15 may 
be applied to determine the kinetic energy, i.e.,

	 T =
1
2 Ixvx

2 +
1
2 Iyvy

2 +
1
2 Izvz

2	 (2)

Using the parallel-axis theorem, the moments of inertia of the gear 
about point C are as follows:

	  Ix =
1
2 

(10 kg)(0.1 m)2 = 0.05 kg # m2	

	  Iy = Iz =
1
4 

(10 kg)(0.1 m)2 + 10 kg(0.3 m)2 = 0.925 kg # m2

Since vx = -3vCD , vy = 0, vz = vCD , Eq. 2 becomes

	 TA =
1
2 

(0.05)(-3vCD)2 + 0 +
1
2 

(0.925)(vCD)2 = 0.6875vCD
2 	

Principle of Work and Energy.  Applying the principle of work and 
energy, we obtain

	  T1 + �U1-2 = T2	

	  0 + 62.83 = 0.6875vCD
2

	  vCD = 9.56 rad>s � Ans.

Example   21.3

M � 5 N � m

D

(a)

y
x

B
0.1 m

z

0.3 m

A
C

E

(b)

E
A

H
D

C

z

x
0.1 m

0.3 m

VCD VA

VCE

Instantaneous
axis of rotation

Fig. 21–10 
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21–23.  Show that if the angular momentum of a body is 
determined with respect to an arbitrary point A, then HA 
can be expressed by Eq. 21–9. This requires substituting 
RA = RG + RG>A into Eq. 21–6 and expanding, noting 
that1RG dm = 0 by definition of the mass center and 
vG = vA + V :  RG> A.

RA

RG

RG/A

G P

A
y

Y

Z
z

x

X

Prob. 21–23

*21–24.  The 15-kg circular disk spins about its axle with a 
constant angular velocity of v1 = 10 rad>s. Simultaneously, 
the yoke is rotating with a constant angular velocity of 
v2 = 5 rad>s. Determine the angular momentum of the 
disk about its center of mass O, and its kinetic energy.

v1 � 10 rad/s

v2 � 5 rad/s

150 mm

yx

z

O

Prob. 21–24

21–22.  If a body contains no planes of symmetry, the 
principal moments of inertia can be determined 
mathematically. To show how this is done, consider the rigid 
body which is spinning with an angular velocity V, directed 
along one of its principal axes of inertia. If the principal 
moment of inertia about this axis is I, the angular momentum 
can be expressed as H = IV = Ivx  i + Ivy  j + Ivz  k. The 
components of H may also be expressed by Eqs. 21–10, 
where the inertia tensor is assumed to be known. Equate 
the i, j, and k components of both expressions for H and 
consider vx, vy, and vz to be unknown. The solution of these 
three equations is obtained provided the determinant of the 
coefficients is zero. Show that this determinant, when 
expanded, yields the cubic equation

I3 - (Ixx + Iyy + Izz)I
2

    + (IxxIyy + IyyIzz + IzzIxx - I2
xy - I2

yz - I2
zx)I

    - (IxxIyyIzz - 2IxyIyzIzx - IxxI
2
yz - IyyI

2
zx - IzzI

2
xy) = 0

The three positive roots of I, obtained from the solution of 
this equation, represent the principal moments of inertia Ix, 
Iy, and Iz.

y

V

z

x

O

Prob. 21–22

PROBLEMS
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21–25.  The large gear has a mass of 5 kg and a radius of 
gyration of kz = 75 mm. Gears B and C each have a mass of 
200 g and a radius of gyration about the axis of their connecting 
shaft of 15 mm. If the gears are in mesh and C has an angular 
velocity of Vc = 515j6  rad>s, determine the total angular 
momentum for the system of three gears about point A.

40 mm

40 mm

100 mm
C

A45�

x

z

y

B vC � {15j} rad/s

Prob. 21–25

21–26.  The circular disk has a weight of 15 lb and is 
mounted on the shaft AB at an angle of 45� with the 
horizontal. Determine the angular velocity of the shaft 
when t = 3 s if a constant torque M = 2 lb # ft is applied to 
the shaft. The shaft is originally spinning at v1 = 8 rad>s 
when the torque is applied.

21–27.  The circular disk has a weight of 15 lb and is 
mounted on the shaft AB at an angle of 45� with the 
horizontal. Determine the angular velocity of the shaft 
when t = 2 s if a torque M = (4e 0.1t ) lb # ft, where t is in 
seconds, is applied to the shaft. The shaft is originally 
spinning at v1 = 8 rad>s when the torque is applied.

v1 � 8 rad/s
BA

45�

0.8 ft

M

Probs. 21–26/27

*21–28.  The rod assembly is supported at G by a 
ball-and-socket joint. Each segment has a mass of 0.5 kg>m. 
If the assembly is originally at rest and an impulse of 
I = 5-8k6  N # s is applied at D, determine the angular 
velocity of the assembly just after the impact.

z

1 m

D

1 m

x
y

C

G

B

A

0.5 m

0.5 m
I � {–8k} N � s

Prob. 21–28

21–29.  The 4-lb rod AB is attached to the 1-lb collar at A 
and a 2-lb link BC using ball-and-socket joints. If the rod is 
released from rest in the position shown, determine the 
angular velocity of the link after it has rotated 180�.

0.5 m

1.2 m

1.3 m

z

y

x

A

C

B

Prob. 21–29
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21–30.  The rod weighs 3 lb>ft and is suspended from 
parallel cords at A and B. If the rod has an angular velocity 
of 2 rad>s about the z axis at the instant shown, determine 
how high the center of the rod rises at the instant the rod 
momentarily stops swinging.

v � 2 rad/s

3 ft

3 ft
z

A

B

Prob. 21–30

21–31.  The 4-lb rod AB is attached to the rod BC and 
collar A using ball-and-socket joints. If BC has a constant 
angular velocity of 2 rad>s, determine the kinetic energy  
of AB when it is in the position shown. Assume the angular 
velocity of AB is directed perpendicular to the axis of AB.

2 rad/s

1 ft

z

y

x

A

3 ft

B

C

1 ft

Prob. 21–31

*21–32.  The 2-kg thin disk is connected to the slender rod 
which is fixed to the ball-and-socket joint at A. If it is 
released from rest in the position shown, determine the spin 
of the disk about the rod when the disk reaches its lowest 
position. Neglect the mass of the rod. The disk rolls without 
slipping.

0.1 m

30�

C

B

A

0.5 m

Prob. 21–32

21–33.  The 20-kg sphere rotates about the axle with a 
constant angular velocity of vs = 60 rad>s. If shaft AB is 
subjected to a torque of M = 50 N # m, causing it to rotate, 
determine the value of vp after the shaft has turned 90� 
from the position shown. Initially, vp = 0. Neglect the mass 
of arm CDE.

z

x

D

C B

A

E

y

0.1 m

0.4 m

0.3 m

vs � 60 rad/s

M � 50 N�m

vp

Prob. 21–33
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21–34.  The 200-kg satellite has its center of mass at 
point  G. Its radii of gyration about the z �, x �, y � axes are 
kz� = 300 mm, kx� = ky� = 500 mm, respectively. At the 
instant shown, the satellite rotates about the x �, y �, and z �  
axes with the angular velocity shown, and its center of mass G 
has a velocity of vG = 5-250i + 200j +  120k6  m>s. 
Determine the angular momentum of the satellite about 
point A at this instant.

21–35.  The 200-kg satellite has its center of mass at point G. 
Its radii of gyration about the  z �,  x �, y � axes are kz� = 300 mm, 
kx� = ky� = 500 mm, respectively. At the instant shown, the 
satellite rotates about the x �, y �, and z �  axes with the angular 
velocity shown, and its center of mass G has a velocity 
of  vG = 5-250i + 200j +  120k6  m>s. Determine the 
kinetic energy of the satellite at this instant.

x¿

x

y¿

y

G

A

800 mm

Vx¿ � 600 rad/s

Vz¿ � 1250 rad/s

Vy¿ � 300 rad/s

z, z¿

vG

Probs. 21–34/35

*21–36.	 The 15-kg rectangular plate is free to rotate about 
the y axis because of the bearing supports at A and B. When 
the plate is balanced in the vertical plane, a 3-g bullet is 
fired into it, perpendicular to its surface, with a velocity 
v = 5-2000i6  m>s. Compute the angular velocity of the 
plate at the instant it has rotated 180�. If the bullet strikes 
corner D with the same velocity v, instead of at C, does the 
angular velocity remain the same? Why or why not?

D

A

y
x

z

150 mm

150 mm
150 mm

v

C

B

Prob. 21–36

21–37.  The 5-kg thin plate is suspended at O using a ball-
and-socket joint. It is rotating with a constant angular velocity 
V = 52k6  rad>s when the corner A strikes the hook at S, 
which provides a permanent connection. Determine the 
angular velocity of the plate immediately after impact.

S

O

400 mm

300 mm

300 mm

z

y

x

A

V� {2k} rad/s

Prob. 21–37

21–38.  Determine the kinetic energy of the 7-kg disk and 
1.5-kg rod when the assembly is rotating about the z axis at 
v = 5 rad>s.

21–39.  Determine the angular momentum Hz  of the 7-kg 
disk and 1.5-kg rod when the assembly is rotating about the 
z axis at v = 5 rad>s.

B

C

200 mm

v � 5 rad/s

A

z

100 mm

D

Probs. 21–38/39
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*21.4  Equations of Motion

Having become familiar with the techniques used to describe both the 
inertial properties and the angular momentum of a body, we can now 
write the equations which describe the motion of the body in their most 
useful forms.

Equations of Translational Motion.  The translational motion 
of a body is defined in terms of the acceleration of the body’s mass 
center, which is measured from an inertial X, Y, Z reference. The equation 
of translational motion for the body can be written in vector form as

	 �F = maG	 (21–18)

or by the three scalar equations

	
 �Fx = m(aG)x

 �Fy = m(aG)y

 �Fz = m(aG)z

	 (21–19)

Here, �F = �Fx i + �Fy j + �Fz k represents the sum of all the external 
forces acting on the body.

Equations of Rotational Motion.  In Sec. 15.6, we developed 
Eq. 15–17, namely, 

	 �MO = H
#
O	 (21–20)

which states that the sum of the moments of all the external forces 
acting on a system of particles (contained in a rigid body) about a fixed 
point O is equal to the time rate of change of the total angular momentum 
of the body about point O. When moments of the external forces acting on 
the particles are summed about the system’s mass center G, one again 
obtains the same simple form of Eq. 21–20, relating the moment 
summation �MG to the angular momentum HG . To show this, consider 
the system of particles in Fig. 21–11, where X, Y, Z represents an inertial 
frame of reference and the x, y, z axes, with origin at G, translate with 
respect to this frame. In general, G is accelerating, so by definition the 
translating frame is not an inertial reference. The angular momentum of 
the ith particle with respect to this frame is, however,

(Hi)G = ri>G * mi vi>G

where ri>G and vi>G represent the position and velocity of the ith particle 
with respect to G. Taking the time derivative we have

(H
#
i)G = r

#
i>G * mi vi>G + ri>G * miv

#
i>G

Z

Y

y

z

rG

X

x
ri

ri/G i

Inertial coordinate system

G

O

Fig. 21–11 
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By definition, vi>G = r
#
i>G . Thus, the first term on the right side is zero 

since the cross product of the same vectors is zero. Also, ai>G = v
#
i>G , 

so that

(H
#
i)G = (ri>G * mi ai>G)

Similar expressions can be written for the other particles of the body. 
When the results are summed, we get

H
#
G = �(ri>G * mi ai>G)

Here H
#
G is the time rate of change of the total angular momentum of the 

body computed about point G.
The relative acceleration for the ith particle is defined by the equation 

ai>G = ai - aG , where ai and aG represent, respectively, the accelerations 
of the ith particle and point G measured with respect to the inertial frame 
of reference. Substituting and expanding, using the distributive property 
of the vector cross product, yields

H
#
G = �(ri>G * mi ai) - (�mi ri>G) * aG

By definition of the mass center, the sum (�mi ri>G) = (�mi)r is equal to 
zero, since the position vector r relative to G is zero. Hence, the last term 
in the above equation is zero. Using the equation of motion, the product 
mi ai can be replaced by the resultant external force Fi acting on the ith 
particle. Denoting �MG = �(ri>G * Fi), the final result can be written as

	 �MG = H
#
G	 (21–21)

The rotational equation of motion for the body will now be developed 
from either Eq. 21–20 or 21–21. In this regard, the scalar components of 
the angular momentum HO or HG are defined by Eqs. 21–10 or, if principal 
axes of inertia are used either at point O or G, by Eqs. 21–11. If these 
components are computed about x, y, z axes that are rotating with an 
angular velocity � that is different from the body’s angular velocity V, 
then the time derivative H

#
= dH>dt, as used in Eqs. 21–20 and 21–21, 

must account for the rotation of the x, y, z axes as measured from the 
inertial X, Y, Z axes. This requires application of Eq. 20–6, in which case 
Eqs. 21–20 and 21–21 become

	  �MO = (H
#
O)xyz + � * HO	

	  �MG = (H
#
G)xyz + � * HG	

(21–22)

Here (H
#
)xyz is the time rate of change of H measured from the x, y, z 

reference.
There are three ways in which one can define the motion of the x, y, z 

axes. Obviously, motion of this reference should be chosen so that it will 
yield the simplest set of moment equations for the solution of a particular 
problem.
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x, y, z Axes Having Motion � =  0.  If the body has general 
motion, the x, y, z axes can be chosen with origin at G, such that the axes 
only translate relative to the inertial X, Y, Z frame of reference. Doing 
this simplifies Eq. 21–22, since � = 0. However, the body may have a 
rotation V about these axes, and therefore the moments and products of 
inertia of the body would have to be expressed as functions of time. In 
most cases this would be a difficult task, so that such a choice of axes has 
restricted application.

x, y, z Axes Having Motion � = V.  The x, y, z axes can be 
chosen such that they are fixed in and move with the body. The moments 
and products of inertia of the body relative to these axes will then be 
constant during the motion. Since � = V, Eqs. 21–22 become

	  �MO = (H
#

O)xyz + V * HO	

	  �MG = (H
#

G)xyz + V * HG	
(21–23)

We can express each of these vector equations as three scalar equations 
using Eqs. 21–10. Neglecting the subscripts O and G yields

 �Mx = Ixxv
#

x - (Iyy - Izz)vyvz - Ixy(v
#

y - vzvx)

	  - Iyz(vy
2 - vz

2) - Izx(v
#

z + vxvy)

	  �My = Iyyv
#

y - (Izz - Ixx)vzvx - Iyz(v
#

z - vxvy)	 (21–24)

	  - Izx(vz
2 - vx

2) - Ixy(v
#

x + vyvz)

 �Mz = Izzv
#

z - (Ixx - Iyy)vxvy - Izx(v
#

x - vyvz)

	  - Ixy(vx
2 - vy

2) - Iyz(v
#

y + vzvx)

If the x, y, z axes are chosen as principal axes of inertia, the products of 
inertia are zero, Ixx = Ix , etc., and the above equations become

	
 �Mx = Ixv

#
x - (Iy - Iz)vyvz

 �My = Iyv
#

y - (Iz - Ix)vzvx

 �Mz = Izv
#

z - (Ix - Iy)vxvy

	 (21–25)

This set of equations is known historically as the Euler equations of 
motion, named after the Swiss mathematician Leonhard Euler, who first 
developed them. They apply only for moments summed about either 
point O or G.
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When applying these equations it should be realized that v
#

x , v
#

y , v
#

z 
represent the time derivatives of the magnitudes of the x, y, z components 
of V as observed from x, y, z. To determine these components, it is first 
necessary to find vx , vy , vz when the x, y, z axes are oriented in a general 
position and then take the time derivative of the magnitude of these 
components, i.e., (V

#
)xyz . However, since the x, y, z axes are rotating at 

� = V, then from Eq. 20–6, it should be noted that V
#

= (V
#
)xyz + V * V. 

Since V * V = 0, then V
#

= (V
#
)xyz . This important result indicates that 

the time derivative of V with respect to the fixed X, Y, Z axes, that is V
#
, 

can also be used to obtain (V
#
)xyz . Generally this is the easiest way to 

determine the result. See Example 21.5.

x, y, z Axes Having Motion � 3 V.  To simplify the 
calculations for the time derivative of V, it is often convenient to choose 
the x, y, z axes having an angular velocity � which is different from the 
angular velocity V of the body. This is particularly suitable for the 
analysis of spinning tops and gyroscopes which are symmetrical about 
their spinning axes.* When this is the case, the moments and products of 
inertia remain constant about the axis of spin.

Equations 21–22 are applicable for such a set of axes. Each of these 
two vector equations can be reduced to a set of three scalar equations 
which are derived in a manner similar to Eqs. 21–25,† i.e.,

	
 �Mx = Ixv

#
x - Iy�zvy + Iz�yvz

 �My = Iyv
#

y - Iz�xvz + Ix�zvx

 �Mz = Izv
#

z - Ix�yvx + Iy�xvy

	 (21–26)

Here �x , �y , �z represent the x, y, z components of �, measured from 
the inertial frame of reference, and v

#
x , v

#
y , v

#
z must be determined relative 

to the x, y, z axes that have the rotation �. See Example 21.6.
Any one of these sets of moment equations, Eqs. 21–24, 21–25, or  

21–26, represents a series of three first-order nonlinear differential 
equations. These equations are “coupled,” since the angular-velocity 
components are present in all the terms. Success in determining the 
solution for a particular problem therefore depends upon what is 
unknown in these equations. Difficulty certainly arises when one 
attempts to solve for the unknown components of V when the external 
moments are functions of time. Further complications can arise if the 
moment equations are coupled to the three scalar equations of 
translational motion, Eqs. 21–19. This can happen because of the 
existence of kinematic constraints which relate the rotation of the body 
to the translation of its mass center, as in the case of a hoop which rolls 

*A detailed discussion of such devices is given in Sec. 21.5.
†See Prob. 21–42.
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without slipping. Problems that require the simultaneous solution of 
differential equations are generally solved using numerical methods with 
the aid of a computer. In many engineering problems, however, we are 
given information about the motion of the body and are required to 
determine the applied moments acting on the body. Most of these 
problems have direct solutions, so that there is no need to resort to 
computer techniques.

Procedure for Analysis

Problems involving the three-dimensional motion of a rigid body 
can be solved using the following procedure.

Free-Body Diagram.
	 •	 Draw a free-body diagram of the body at the instant considered 

and specify the x, y, z coordinate system. The origin of this 
reference must be located either at the body’s mass center G, or 
at point O, considered fixed in an inertial reference frame and 
located either in the body or on a massless extension of the body.

	 •	 Unknown reactive force components can be shown having a 
positive sense of direction.

	 •	 Depending on the nature of the problem, decide what type of 
rotational motion � the x, y, z coordinate system should have, 
i.e., � = 0, � = V, or � � V. When choosing, keep in mind 
that the moment equations are simplified when the axes move in 
such a manner that they represent principal axes of inertia for the 
body at all times.

	 •	 Compute the necessary moments and products of inertia for the 
body relative to the x, y, z axes.

Kinematics.
	 •	 Determine the x, y, z components of the body’s angular velocity 

and find the time derivatives of V.

	 •	 Note that if � = V, then V
#

= (V
#
)xyz. Therefore we can either 

find the time derivative of V with respect to the X, Y, Z axes, V
#
, 

and then determine its components v
#

x , v
#

y , v
#

z , or we can find the 
components of V along the x, y, z axes, when the axes are oriented 
in a general position, and then take the time derivative of the 
magnitudes of these components, (V

#
)xyz .

Equations of Motion.

	 •	 Apply either the two vector equations 21–18 and 21–22 or the six 
scalar component equations appropriate for the x, y, z coordinate 
axes chosen for the problem.
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The gear shown in Fig. 21–12a has a mass of 10 kg and is mounted at 
an angle of 10° with the rotating shaft having negligible mass. If 
Iz = 0.1 kg # m2, Ix = Iy = 0.05 kg # m2, and the shaft is rotating with a 
constant angular velocity of v = 30 rad>s, determine the components 
of reaction that the thrust bearing A and journal bearing B exert on 
the shaft at the instant shown.

Solution
Free-Body Diagram.  Fig. 21–12b. The origin of the x, y, z coordinate 
system is located at the gear’s center of mass G, which is also a fixed 
point. The axes are fixed in and rotate with the gear so that these axes 
will then always represent the principal axes of inertia for the gear. 
Hence � = V.

Kinematics.  As shown in Fig. 21–12c, the angular velocity V of the 
gear is constant in magnitude and is always directed along the axis of 
the shaft AB. Since this vector is measured from the X, Y, Z inertial 
frame of reference, for any position of the x, y, z axes,

vx = 0 vy = -30 sin 10� vz = 30 cos 10�

These components remain constant for any general orientation of 
the x, y, z axes, and so v

#
x = v

#
y = v

#
z = 0. Also note that since � = V, 

then V
#

= (V
#
)xyz. Therefore, we can find these time derivatives relative 

to the X, Y, Z axes. In this regard V has a constant magnitude and 
direction (+Z) since V

#
= 0, and so v

#
x = v

#
y = v

#
z = 0. Furthermore, 

since G is a fixed point, (aG)x = (aG)y = (aG)z = 0.

Equations of Motion.  Applying Eqs. 21–25 (� = V) yields

 �Mx = Ixv
#

x - (Iy - Iz)vyvz

 -(A Y)(0.2) + (BY)(0.25) = 0 - (0.05 - 0.1)(-30 sin 10�)(30 cos 10�)

	 -0.2A Y + 0.25BY = -7.70	 (1)

�My = Iyv
#

y - (Iz - Ix)vzvx

A X(0.2) cos 10� - BX(0.25) cos 10� = 0 - 0

	 A X = 1.25BX 	 (2)

�Mz = Izv
#

z - (Ix - Iy)vxvy

A X(0.2) sin 10� - BX(0.25) sin 10� = 0 - 0

A X = 1.25BX  (check)

Applying Eqs. 21–19, we have

�FX = m(aG)X;	 A X + BX = 0	 (3)

�FY = m(aG)Y ;	 A Y + BY - 98.1 = 0	 (4)

�FZ = m(aG)Z;	 A Z = 0� Ans.

Solving Eqs. 1 through 4 simultaneously gives

	 AX = BX = 0  AY = 71.6 N  BY = 26.5 N� Ans.

Example   21.4

0.2 m

0.25 m

Z

Y

X, x

y
z

A

B

(a)

10�10�

G

v � 30 rad/s

10�

0.2 m

0.25 m
x

y

z

A

B

(b)

98.1 N
BX

AX

AY

BY

10�

G

AZ

x

y

z

A

B

G

(c)

10�

V

10�

Fig. 21–12 
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Example   21.5

The airplane shown in Fig. 21–13a is in the process of making a steady 
horizontal turn at the rate of vp . During this motion, the propeller is 
spinning at the rate of vs . If the propeller has two blades, determine 
the moments which the propeller shaft exerts on the propeller at the 
instant the blades are in the vertical position. For simplicity, assume the 
blades to be a uniform slender bar having a moment of inertia I about 
an axis perpendicular to the blades passing through the center of the 
bar, and having zero moment of inertia about a longitudinal axis.

Vs

Vp

(a)

x

y

z

G

FR

MR

(b)

 Z, z¿, z

X, x¿, x

 Y, y¿, y(c)

Vs

Vp

Fig. 21–13

Solution
Free-Body Diagram.  Fig. 21–13b. The reactions of the connecting 
shaft on the propeller are indicated by the resultants FR and MR . (The 
propeller’s weight is assumed to be negligible.) The x, y, z axes will be 
taken fixed to the propeller, since these axes always represent the 
principal axes of inertia for the propeller. Thus, � = V. The moments 
of inertia Ix and Iy are equal (Ix = Iy = I ) and Iz = 0.

Kinematics.  The angular velocity of the propeller observed from 
the X, Y, Z axes, coincident with the x, y, z axes, Fig. 21–13c, is 
V = Vs + Vp = vs i + vp k, so that the x, y, z components of V are

vx = vs  vy = 0 vz = vp

Since � = V, then V
#

= (V
#
)xyz . To find V

#
, which is the time 

derivative with respect to the fixed X, Y, Z axes, we can use Eq. 20–6 
since V changes direction relative to X, Y, Z. The time rate of change 
of each of these components V

#
= V

#
s + V

#
p relative to the X, Y, Z axes 

can be obtained by introducing a third coordinate system x �, y �, z �, 
which has an angular velocity � � = Vp and is coincident with the 
X, Y, Z axes at the instant shown. Thus

(©
 R

.C
. H

ib
be

le
r)
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 V
#

= (V
#
)x� y� z� + Vp * V

= (V
#

s)x� y� z� + (V
#

p)x� y� z� + Vp * (Vs + Vp)

= 0 + 0 + Vp * Vs + Vp * Vp

= 0 + 0 + vp k * vs i + 0 = vpvs j

Since the X, Y, Z axes are coincident with the x, y, z axes at the instant 
shown, the components of V

#
 along x, y, z are therefore

v
#

x = 0  v
#

y = vpvs  v
#

z = 0

These same results can also be determined by direct calculation of 
(V

#
)xyz; however, this will involve a bit more work. To do this, it will be 

necessary to view the propeller (or the x, y, z axes) in some general 
position such as shown in Fig. 21–13d. Here the plane has turned 
through an angle f (phi) and the propeller has turned through an 
angle c (psi) relative to the plane. Notice that Vp is always directed 
along the fixed Z axis and Vs follows the x axis. Thus the general 
components of V are

vx = vs  vy = vp sin c  vz = vp cos c

Since vs and vp are constant, the time derivatives of these components 
become

v
#

x = 0  v
#

y = vp cos c c
#
 vz = -vp sin c c

#

But f = c = 0� and c
#

= vs at the instant considered. Thus,

 vx = vs   vy = 0  vz = vp

 v
#

x = 0   v
#

y = vpvs   v
#

z = 0

which are the same results as those obtained previously.

Equations of Motion.  Using Eqs. 21–25, we have

 �Mx = Ixv
#

x - (Iy - Iz)vy vz = I(0) - (I - 0)(0)vp

 Mx = 0� Ans.

 �My = Iyv
#

y - (Iz - Ix)vz vx = I(vpvs) - (0 - I)vpvs

 My = 2Ivpvs� Ans.

 �Mz = Izv
#

z - (Ix - Iy)vx vy = 0(0) - (I - I)vs(0)

 Mz = 0	 Ans.

X

Y

Z

x

y

z

(d)

Vs

Vp

c

f

Fig. 21–13
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The 10-kg flywheel (or thin disk) shown in Fig. 21–14a rotates (spins) 
about the shaft at a constant angular velocity of vs = 6 rad>s. At the 
same time, the shaft rotates (precessing) about the bearing at A with 
an angular velocity of vp = 3 rad>s. If A is a thrust bearing and B is a 
journal bearing, determine the components of force reaction at each 
of these supports due to the motion.

Solution I
Free-Body Diagram.  Fig. 21–14b. The origin of the x, y, z coordinate 
system is located at the center of mass G of the flywheel. Here we will 
let these coordinates have an angular velocity of � = Vp = 53k6  rad>s.
Although the wheel spins relative to these axes, the moments of inertia 
remain constant,* i.e.,

 Ix = Iz =
1
4(10 kg)(0.2 m)2 = 0.1 kg # m2

 Iy =
1
2(10 kg)(0.2 m)2 = 0.2 kg # m2

Kinematics.  From the coincident inertial X, Y, Z frame of reference, 
Fig. 21–14c, the flywheel has an angular velocity of 
V = 56j + 3k6  rad>s, so that

vx = 0 vy = 6 rad>s  vz = 3 rad>s
The time derivative of V must be determined relative to the x, y, z 
axes. In this case both Vp and Vs do not change their magnitude or 
direction, and so

v
#

x = 0 v
#

y = 0  v
#

z = 0

Equations of Motion.  Applying Eqs. 21–26 (� � V) yields

�Mx = Ixv
#

x - Iy �z vy + Iz �y vz

-Az(0.5) + Bz(0.5) = 0 - (0.2)(3)(6) + 0 = -3.6

�My = Iyv
#

y - Iz �x vz + Ix �z vx

0 = 0 - 0 + 0

�Mz = Izv
#

z - Ix �y vx + Iy �x vy

A x(0.5) - Bx(0.5) = 0 - 0 + 0

Example   21.6

(b)

Bx

Ax

Ay

Az

Bz

10(9.81) N

z

0.5 m

y

x

A

B

0.5 m

G

Fig. 21–14

*This would not be true for the propeller in Example 21.5.

(a)

0.5 m

A

B

0.5 m

0.2 mG

vp � 3 rad/s

vs � 6 rad/s
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vp � 3 rad/s 

(c)

Z, z, z¿

X, x, x¿

Y, y, y¿

A

vs � 6 rad/s 

B

G
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Applying Eqs. 21–19, we have

 �FX = m(aG)X; Ax + Bx = 0

 �FY = m(aG)Y; Ay = -10(0.5)(3)2

 �FZ = m(aG)Z; Az + Bz - 10(9.81) = 0

Solving these equations, we obtain

Ax = 0 Ay = -45.0 N Az = 52.6 N Ans.

Bx = 0 Bz = 45.4 N Ans.

Note: If the precession Vp had not occurred, the z component of 
force at A and B would be equal to 49.05 N. In this case, however, the 
difference in these components is caused by the “gyroscopic moment” 
created whenever a spinning body precesses about another axis. We 
will study this effect in detail in the next section.

Solution II
This example can also be solved using Euler’s equations of motion, 
Eqs. 21–25. In this case � = V = 56j + 3k6  rad>s, and the time
derivative (V

#
)xyz can be conveniently obtained with reference to the 

fixed X, Y, Z axes since V
#

= (V
#
)xyz . This calculation can be performed 

by choosing x �, y �, z� axes to have an angular velocity of � � = Vp , 
Fig. 21–14c, so that

V
#

= (V
#
)x�y�z� + Vp * V = 0 + 3k * (6j + 3k) = 5-18i6  rad>s2

v
#

x = -18 rad>s v
#

y = 0 v
#

z = 0

The moment equations then become

�Mx = Ixv
#

x - (Iy - Iz)vyvz

-Az(0.5) + Bz(0.5) = 0.1(-18) - (0.2 - 0.1)(6)(3) = -3.6

�My = Iyv
#

y - (Iz - Ix)vzvx

0 = 0 - 0

�Mz = Izv
#

z - (Ix - Iy)vxvy

A x(0.5) - Bx(0.5) = 0 - 0

The solution then proceeds as before.

Fig. 21–14
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21–45.  If the shaft AB is rotating with a constant angular 
velocity of v = 30 rad>s, determine the X, Y, Z components 
of reaction at the thrust bearing A and journal bearing B at 
the instant shown. The disk has a weight of 15 lb. Neglect 
the weight of the shaft AB.

z

A

B

y

x

1.5 ft

1 ft

v � 30 rad/s

30�

0.5 ft

Prob. 21–45

21–46.  The assembly is supported by journal bearings at A 
and B, which develop only y and z force reactions on the shaft. 
If the shaft is rotating in the direction shown at V = 52i6  rad>s, 
determine the reactions at the bearings when the assembly is 
in the position shown. Also, what is the shaft’s angular 
acceleration? The mass per unit length of each rod is 5 kg>m.

21–47.  The assembly is supported by journal bearings at A 
and B, which develop only y and z force reactions on the 
shaft. If the shaft A is subjected to a couple moment 
M = 540i6  N # m, and at the instant shown the shaft has an 
angular velocity of V = 52i6  rad>s, determine the 
reactions at the bearings of the assembly at this instant. 
Also, what is the shaft’s angular acceleration? The mass per 
unit length of each rod is 5 kg>m.

1 m

2 m

1 m

A

x

y

B

z

v

Probs. 21–46/47

*21–40.  Derive the scalar form of the rotational equation 
of motion about the x axis if � � V and the moments and 
products of inertia of the body are not constant with respect 
to time.

21–41.  Derive the scalar form of the rotational equation 
of motion about the x axis if � � V and the moments and 
products of inertia of the body are constant with respect 
to time.

21–42.  Derive the Euler equations of motion for � � V, 
i.e., Eqs. 21–26.

21–43.  The 4-lb bar rests along the smooth corners of 
an  open box. At the instant shown, the box has a 
velocity v = 53j6 ft>s and an acceleration a = 5-6j6 ft>s2. 
Determine the x, y, z components of force which the corners 
exert on the bar.

z

y
x

2 ft

1 ft 2 ft

B

A

Prob. 21–43

*21–44.  The uniform plate has a mass of m = 2 kg and is 
given a rotation of v = 4 rad>s about its bearings at A 
and B. If a = 0.2 m and c = 0.3 m, determine the vertical 
reactions at the instant shown. Use the x, y, z axes shown 

and note that Izx = -  amac

12
b a c2 - a2

c2 + a2 b .

ω

x

A

B

c
ay

z

Prob. 21–44

PROBLEMS
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*21–48.  The man sits on a swivel chair which is rotating 
with a constant angular velocity of 3 rad>s. He holds the 
uniform 5-lb rod AB horizontal. He suddenly gives it an 
angular acceleration of 2 rad>s2, measured relative to him, 
as shown. Determine the required force and moment 
components at the grip, A, necessary to do this. Establish 
axes at the rod’s center of mass G, with +z upward, and +y 
directed along the axis of the rod toward A.

3 ft 2 ft

AB

3 rad/s

2 rad/s2

Prob. 21–48

21–49.  The rod assembly is supported by a ball-and-socket 
joint at C and a journal bearing at D, which develops only x 
and y force reactions. The rods have a mass of 0.75 kg>m. 
Determine the angular acceleration of the rods and the 
components of reaction at the supports at the instant 
v = 8 rad>s as shown.

v � 8 rad/s2 m

1 m

2 m

y
x

z

C

B

A

D

50 N � m

Prob. 21–49

21–50.  The bent uniform rod ACD has a weight of 5 lb>ft 
and is supported at A by a pin and at B by a cord. If the 
vertical shaft rotates with a constant angular velocity 
v = 20 rad>s, determine the x, y, z components of force and 
moment developed at A and the tension in the cord.

1 ft

0.5 ft

1 ft

y
C

B

A

D

z

v

Prob. 21–50

21–51.  The uniform hatch door, having a mass of 15 kg and 
a mass center at G, is supported in the horizontal plane by 
bearings at A and B. If a vertical force F = 300 N is applied 
to the door as shown, determine the components of reaction 
at the bearings and the angular acceleration of the door. 
The bearing at A will resist a component of force in the y 
direction, whereas the bearing at B will not. For the 
calculation, assume the door to be a thin plate and neglect 
the size of each bearing. The door is originally at rest.

y
30 mm

z

x

G

B

A

30 mm

100 mm
150 mm

150 mm

100 mm

200 mm
200 mm

F

Prob. 21–51
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*21–52.  The 5-kg circular disk is mounted off center on a 
shaft which is supported by bearings at A and B. If the shaft 
is rotating at a constant rate of v = 10 rad>s, determine the 
vertical reactions at the bearings when the disk is in the 
position shown.

100 mm
20 mm

A B
G

100 mm
100 mm

v

Prob. 21–52

21–53.  Two uniform rods, each having a weight of 10 lb, 
are pin connected to the edge of a rotating disk. If the disk 
has a constant angular velocity vD = 4 rad>s, determine 
the angle u made by each rod during the motion, and the 
components of the force and moment developed at 
the pin A. Suggestion: Use the x, y, z axes oriented as shown.

y2 ft

2 ft

x

z

A

G

B

1.75 ft

uu

vD � 4 rad/s

Prob. 21–53

21–54.  The 10-kg disk turns around the shaft AB, while 
the shaft rotates about BC at a constant rate of vx = 5 rad>s. 
If the disk does not slip, determine the normal and frictional 
force it exerts on the ground. Neglect the mass of shaft AB.

x

0.4 m

y

z

2 m A

C

B

 vx � 5 rad/s

Prob. 21–54

21–55.  The 20-kg disk is spinning on its axle at 
vs = 30 rad>s, while the forked rod is turning at 
v1 = 6 rad>s. Determine the x and z moment components 
the axle exerts on the disk during the motion.

x
O

y

200 mm

z

A

 vs � 30 rad/s

 v1 � 6 rad/s

Prob. 21–55
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*21–56.  The 4-kg slender rod AB is pinned at A and held 
at B by a cord. The axle CD is supported at its ends by ball-
and-socket joints and is rotating with a constant angular 
velocity of 2 rad>s. Determine the tension developed in the 
cord and the magnitude of force developed at the pin A.

D

2 m

C

A

B

y

z 40

v

Prob. 21–56

21–57.  The blades of a wind turbine spin about the shaft S 
with a constant angular speed of vs, while the frame precesses 
about the vertical axis with a constant angular speed of vp. 
Determine the x, y, and z components of moment that the 
shaft exerts on the blades as a function of u. Consider each 
blade as a slender rod of mass m and length l.

z

x

y

S
u

u

vs

vp

Prob. 21–57

21–58.  The 15-lb cylinder is rotating about shaft AB with a 
constant angular speed v = 4 rad>s. If the supporting shaft 
at C, initially at rest, is given an angular acceleration 
aC = 12 rad>s2, determine the components of reaction at the 
bearings A and B. The bearing at A cannot support a force 
component along the x axis, whereas the bearing at B does.

x

z

y

1 ft

0.5 ft

1 ft

A

C

B

G

v

aC

Prob. 21–58

21–59.  The thin rod has a mass of 0.8 kg and a total length 
of 150 mm. It is rotating about its midpoint at a constant 
rate u 

#
 = 6 rad>s,  while the table to which its axle A is 

fastened is rotating at 2 rad>s. Determine the x, y, z moment 
components which the axle exerts on the rod when the rod 
is in any position u.

2 rad/s

z

x

y

A

u

u

Prob. 21–59
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*21.5  Gyroscopic Motion

In this section we will develop the equations defining the motion of a 
body (top) which is symmetrical with respect to an axis and rotating about 
a fixed point. These equations also apply to the motion of a particularly 
interesting device, the gyroscope.

The body’s motion will be analyzed using Euler angles f, u, c 
(phi,  theta, psi). To illustrate how they define the position of a body, 
consider the top shown in Fig. 21–15a. To define its final position,  
Fig. 21–15d, a second set of x, y, z axes is fixed in the top. Starting with the 
X, Y, Z and x, y, z axes in coincidence, Fig. 21–15a, the final position of the 
top can be determined using the following three steps:

	 1.	 Rotate the top about the Z (or z) axis through an angle 
f (0 … f 6 2p), Fig. 21–15b.

	 2.	 Rotate the top about the x axis through an angle u (0 … u … p), 
Fig. 21–15c.

	 3.	 Rotate the top about the z axis through an angle c (0 … c 6 2p) 
to obtain the final position, Fig. 21–15d.

The sequence of these three angles, f, u, then c, must be maintained, since 
finite rotations are not vectors (see Fig. 20–1). Although this is the case, 
the differential rotations dF, dU, and dC are vectors, and thus the angular 
velocity V of the top can be expressed in terms of the time derivatives of 
the Euler angles. The angular-velocity components f

#
, u

#
, and c

#
 are known 

as the precession, nutation, and spin, respectively. 

Z, z

X, x

Y, yO

(a)

X

Y

x

y

Precession f

(b)

Z, z

O

f

f

f

.

.

Y

y

X
x

(c)

O

Z
z

u

u

u

f

f

.

Nutation u
.

Y

y

X x

(d)

O

Zz

u

u

f

f

c

c

c
.

Spin c
.

Fig. 21–15 
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Their positive directions are shown in Fig. 21–16. It is seen that these 
vectors are not all perpendicular to one another; however, V of the top 
can still be expressed in terms of these three components.

Since the body (top) is symmetric with respect to the z or spin axis, 
there is no need to attach the x, y, z axes to the top since the inertial 
properties of the top will remain constant with respect to this frame 
during the motion. Therefore � = Vp + Vn , Fig. 21–16. Hence, the 
angular velocity of the body is

 V = vx i + vy j + vz k

	  = u
#
i + (f 

#
sin u)j + (f 

#
cos u + c

#
)k	 (21–27)

And the angular velocity of the axes is

 � = �x i + �y j + �z k

 = u
#
i + (f 

#
sin u)j + (f

#
 cos u)k	 (21–28)

Have the x, y, z axes represent principal axes of inertia for the top, and so 
the moments of inertia will be represented as Ixx = Iyy = I and Izz = Iz . 
Since � � V, Eqs. 21–26 are used to establish the rotational equations of 
motion. Substituting into these equations the respective angular-velocity 
components defined by Eqs. 21–27 and 21–28, their corresponding time 
derivatives, and the moment of inertia components, yields

 �Mx = I(u
$

- f
#
2 sin u cos u) + Izf

#
 sin u(f

#
 cos u + c

#
)

	  �My = I(f
$
 sin u + 2f

#
u
#
 cos u) - Izu

#
(f

#
 cos u + c

#
) 	 (21–29)

 �Mz = Iz(c
$

+ f
$
 cos u - f

#
u
#
 sin u)

Each moment summation applies only at the fixed point O or the center 
of mass G of the body. Since the equations represent a coupled set of 
nonlinear second-order differential equations, in general a closed-form 
solution may not be obtained. Instead, the Euler angles f, u, and c may 
be obtained graphically as functions of time using numerical analysis and 
computer techniques.

A special case, however, does exist for which simplification of  
Eqs. 21–29 is possible. Commonly referred to as steady precession, it 
occurs when the nutation angle u, precession f

#
, and spin c

#
 all remain 

constant. Equations 21–29 then reduce to the form

	 �Mx = -If
#
2 sin u cos u + Izf

#
 sin u(f

#
 cos u + c

#
) 	 (21–30)

	  �My = 0	

 �Mz = 0

Y

y

X

x

Z
z

O

G

u

u

f

f

vs � c
.

vp � f
.

vn � u
.

Fig. 21–16 
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Equation 21–30 can be further simplified by noting that, from Eq. 21–27, 
vz = f 

#
cos u + c

#
, so that

�Mx = -If
#
2 sin u cos u + Izf

#
 (sin u)vz

or

	 �Mx = f 
#

sin u(Izvz - If 
#

cos u) 	 (21–31)

It is interesting to note what effects the spin c
#
 has on the moment 

about the x axis. To show this, consider the spinning rotor in Fig. 21–17. 
Here u = 90�, in which case Eq. 21–30 reduces to the form

�Mx = Izf
#
c
#

or

	 �Mx = Iz�yvz 	 (21–32)

z
G

y, Z

Y

X, x

W

O

rG

u � 90�

�y � f
.

vz � c
.

Fig. 21–17 

From the figure it can be seen that �y and Vz act along their respective 
positive axes and therefore are mutually perpendicular. Instinctively, one 
would expect the rotor to fall down under the influence of gravity! 
However, this is not the case at all, provided the product Iz�yvz is 
correctly chosen to counterbalance the moment �Mx = WrG of the 
rotor’s weight about O. This unusual phenomenon of rigid-body motion 
is often referred to as the gyroscopic effect.
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x

z, Y
HO

y, Z

�Mx
�y

X

O
Vz

Fig. 21–18 

Perhaps a more intriguing demonstration of the gyroscopic effect 
comes from studying the action of a gyroscope, frequently referred to as 
a gyro. A gyro is a rotor which spins at a very high rate about its axis of 
symmetry. This rate of spin is considerably greater than its precessional 
rate of rotation about the vertical axis. Hence, for all practical purposes, 
the angular momentum of the gyro can be assumed directed along its 
axis of spin. Thus, for the gyro rotor shown in Fig. 21–18, vz W �y , and 
the magnitude of the angular momentum about point O, as determined 
from Eqs. 21–11, reduces to the form HO = Izvz . Since both the magnitude 
and direction of HO are constant as observed from x, y, z, direct application 
of Eq. 21–22 yields

	 �Mx = �y * HO 	 (21–33)

Using the right-hand rule applied to the cross product, it can be seen 
that �y always swings HO (or Vz) toward the sense of �Mx . In effect, the 
change in direction of the gyro’s angular momentum, dHO , is equivalent 
to the angular impulse caused by the gyro’s weight about O, i.e., 
dHO = �Mx dt, Eq. 21–20. Also, since HO = Izvz and �Mx , �y , and HO 
are mutually perpendicular, Eq. 21–33 reduces to Eq. 21–32.

When a gyro is mounted in gimbal rings, Fig. 21–19, it becomes free of 
external moments applied to its base. Thus, in theory, its angular 
momentum H will never precess but, instead, maintain its same fixed 
orientation along the axis of spin when the base is rotated. This type of 
gyroscope is called a free gyro and is useful as a gyrocompass when the 
spin axis of the gyro is directed north. In reality, the gimbal mechanism is 
never completely free of friction, so such a device is useful only for the 
local navigation of ships and aircraft. The gyroscopic effect is also useful 
as a means of stabilizing both the rolling motion of ships at sea and the 
trajectories of missiles and projectiles. Furthermore, this effect is of 
significant importance in the design of shafts and bearings for rotors 
which are subjected to forced precessions.

Gimbals

Bearings

Gyro

Fig. 21–19 

HO

W
O

Vp

The spinning of the gyro within the frame 
of this toy gyroscope produces angular 
momentum HO, which is changing direction 
as the frame precesses Vp about the 
vertical axis. The gyroscope will not fall 
down since the moment of its weight W 
about the support is balanced by the 
change in the direction of HO . 
(© R.C. Hibbeler)
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·

(a)

50 mm

O

G 60�

vs � 100 rad/s

vp � f

Fig. 21–20 

Z

X

Y

x

z

y
G 60�

(b)

0.05 m
OX

OZ

OY

4.905 N

Example   21.7

The top shown in Fig. 21–20a has a mass of 0.5 kg and is precessing 
about the vertical axis at a constant angle of u = 60�. If it spins with 
an angular velocity vs = 100 rad>s, determine the precession Vp . 
Assume that the axial and transverse moments of inertia of the top 
are 0.45(10-3) kg # m2 and 1.20(10-3) kg # m2, respectively, measured 
with respect to the fixed point O.

Solution
Equation 21–30 will be used for the solution since the motion is steady 
precession. As shown on the free-body diagram, Fig. 21–20b, the 
coordinate axes are established in the usual manner, that is, with the 
positive z axis in the direction of spin, the positive Z axis in the direction 
of precession, and the positive x axis in the direction of the moment 
�Mx (refer to Fig. 21–16). Thus,

 �Mx = -If
#
2 sin u cos u + Izf

#
 sin u(f

#
 cos u + c

#
)

 4.905 N(0.05 m) sin 60� = -[1.20(10-3) kg # m2 f
#
2] sin 60� cos 60�

	 + [0.45(10-3) kg # m2]f
#
 sin 60�(f

#
 cos 60� + 100 rad>s)

or
	 f

#
2 - 120.0f

#
+ 654.0 = 0	 (1)

Solving this quadratic equation for the precession gives

	 f
#

= 114 rad>s (high precession)	 Ans.

and
	 f

#
= 5.72 rad>s (low precession)	 Ans.

Note: In reality, low precession of the top would generally be observed, 
since high precession would require a larger kinetic energy.
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Example   21.8

The 1-kg disk shown in Fig. 21–21a spins about its axis with a constant 
angular velocity vD = 70 rad>s. The block at B has a mass of 2 kg, 
and by adjusting its position s one can change the precession of the 
disk about its supporting pivot at O while the shaft remains 
horizontal. Determine the position s that will enable the disk to have 
a constant precession vp = 0.5 rad>s about the pivot. Neglect the 
weight of the shaft.

200 mm

s

D

(a)

50 mm
O

B

vp � 0.5 rad/s

vD � 70 rad/s

(b)

0.2 m

u � 90�

s

B

R
9.81 N

19.62 Nz

Y

X, x

Z, y

O

Fig. 21–21 

Solution
The free-body diagram of the assembly is shown in Fig. 21–21b. The 
origin for both the x, y, z and X, Y, Z coordinate systems is located at 
the fixed point O. In the conventional sense, the Z axis is chosen along 
the axis of precession, and the z axis is along the axis of spin, so that 
u = 90�. Since the precession is steady, Eq. 21–32 can be used for the 
solution.

	 �Mx = Iz�yvz

Substituting the required data gives

(9.81 N) (0.2 m) - (19.62 N)s = 31
2 

(1 kg)(0.05 m)240.5 rad>s(-70 rad>s)

 s = 0.102 m = 102 mm	 Ans.
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21.6  Torque-Free Motion

When the only external force acting on a body is caused by gravity, the 
general motion of the body is referred to as torque-free motion. This type 
of motion is characteristic of planets, artificial satellites, and projectiles—
provided air friction is neglected.

In order to describe the characteristics of this motion, the distribution 
of the body’s mass will be assumed axisymmetric. The satellite shown in 
Fig. 21–22 is an example of such a body, where the z axis represents an 
axis of symmetry. The origin of the x, y, z coordinates is located at the 
mass center G, such that Izz = Iz and Ixx = Iyy = I. Since gravity is the 
only external force present, the summation of moments about the mass 
center is zero. From Eq. 21–21, this requires the angular momentum of 
the body to be constant, i.e.,

HG = constant

At the instant considered, it will be assumed that the inertial frame of 
reference is oriented so that the positive Z axis is directed along HG and 
the y axis lies in the plane formed by the z and Z axes, Fig. 21–22. The 
Euler angle formed between Z and z is u, and therefore, with this choice 
of axes the angular momentum can be expressed as

HG = HG sin u j + HG cos u k

Furthermore, using Eqs. 21–11, we have

HG = Ivx i + Ivy j + Izvz k

Equating the respective i, j, and k components of the above two  
equations yields

x

G

y
Z

z
HG

u

V

Fig. 21–22 
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	 vx = 0 vy =
HG sin u

I
 vz =

HG cos u

Iz
� (21–34)

or

	 V =
HG sin u

I
 j +

HG cos u

Iz
 k � (21–35)

In a similar manner, equating the respective i, j, k components of  
Eq. 21–27 to those of Eq. 21–34, we obtain

 u
#

= 0

 f
#
 sin u =

HG sin u

I

 f 
#

cos u + c
#

=
HG cos u

Iz

Solving, we get

	

 u = constant

 f
#

=
HG

I

 c
#

=
I - Iz

I Iz
 HG cos u

� (21–36)

Thus, for torque-free motion of an axisymmetrical body, the angle u 
formed between the angular-momentum vector and the spin of the body 
remains constant. Furthermore, the angular momentum HG , precession f

#
, 

and spin c
#
 for the body remain constant at all times during the motion.

Eliminating HG from the second and third of Eqs. 21–36 yields the 
following relation between the spin and precession:

	 c
#

=
I - Iz

Iz
 f 

#
cos u � (21–37)
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These two components of angular motion can be studied by using the 
body and space cone models introduced in Sec. 20.1. The space cone 
defining the precession is fixed from rotating, since the precession has a 
fixed direction, while the outer surface of the body cone rolls on the 
space cone’s outer surface. Try to imagine this motion in Fig. 21–23a. The 
interior angle of each cone is chosen such that the resultant angular 
velocity of the body is directed along the line of contact of the two cones. 
This line of contact represents the instantaneous axis of rotation for the 
body cone, and hence the angular velocity of both the body cone and  
the body must be directed along this line. Since the spin is a function of 
the moments of inertia I and Iz of the body, Eq. 21–36, the cone model in 
Fig. 21–23a is satisfactory for describing the motion, provided I 7 Iz . 
Torque-free motion which meets these requirements is called regular 
precession. If I 6 Iz , the spin is negative and the precession positive. This 
motion is represented by the satellite motion shown in Fig. 21–23b 
(I 6 Iz). The cone model can again be used to represent the motion; 
however, to preserve the correct vector addition of spin and precession 
to obtain the angular velocity V, the inside surface of the body cone must 
roll on the outside surface of the (fixed) space cone. This motion is 
referred to as retrograde precession.

ZAxis of
precession

Instantaneous
axis of rotation

z

Body cone

Axis of
spin

Space cone

G

V

c

f

(a)

.

.

I � Iz

G

Z

Body cone

Axis of
precession

Space
cone Axis of

spin

(b)

V

zf
.

c
.

I � Iz

Instantaneous
axis of rotation

Fig. 21–23 

Satellites are often given a spin before they are launched. If their angular momentum 
is not collinear with the axis of spin, they will exhibit precession. In the photo on the 
left, regular precession will occur since I 7 Iz , and in the photo on the right, retrograde 
precession will occur since I 6 Iz .

(© R.C. Hibbeler) (© R.C. Hibbeler)
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Example   21.9

The motion of a football is observed using a slow-motion projector. 
From the film, the spin of the football is seen to be directed 30° from 
the horizontal, as shown in Fig. 21–24a. Also, the football is precessing 
about the vertical axis at a rate f

#
= 3 rad>s. If the ratio of the axial to 

transverse moments of inertia of the football is 1
3, measured with 

respect to the center of mass, determine the magnitude of the football’s 
spin and its angular velocity. Neglect the effect of air resistance.

30�

(a)

f � 3 rad/s
.

c
.

(b)

Z

z

u � 60�

f
.

c
.

Solution
Since the weight of the football is the only force acting, the motion is 
torque-free. In the conventional sense, if the z axis is established 
along the axis of spin and the Z axis along the precession axis, as 
shown in Fig. 21–24b, then the angle u = 60�. Applying Eq. 21–37, the 
spin is

 c
#

=
I - Iz

Iz
 f 

#
cos u =

I -
1
3 I

1
3 I

 (3) cos 60�

	       = 3 rad>s� Ans.

Using Eqs. 21–34, where HG = f
#
I (Eq. 21–36), we have

	  vx = 0

	  vy =
HG sin u

I
=

3I sin 60�

I
= 2.60 rad>s

	  vz =
HG cos u

Iz
=

3I cos 60�
1
3 I

= 4.50 rad>s
Thus,

	  v = 2(vx)
2 + (vy)

2 + (vz)
2

	  = 2(0)2 + (2.60)2 + (4.50)2

	  = 5.20 rad>s � Ans.

Fig. 21–24 
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*21–60.  Show that the angular velocity of a body, in terms 
of Euler angles f, u, and c, can be expressed as 
v = (f

#
 sin u sin c + u

#
 cos c)i + (f

#
 sin u cos c - u

#
 sin c)j +

(f
#
 cos u + c

#
)k, where i, j, and k are directed along the x, y, z 

axes as shown in Fig. 21–15d.

21–61.  A thin rod is initially coincident with the Z axis 
when it is given three rotations defined by the Euler angles 
f = 30�, u = 45�, and c = 60�. If these rotations are given 
in the order stated, determine the coordinate direction 
angles a, b, g of the axis of the rod with respect to the X, Y, 
and Z axes. Are these directions the same for any order of 
the rotations? Why?

21–62.  The gyroscope consists of a uniform 450-g disk D 
which is attached to the axle AB of negligible mass. The 
supporting frame has a mass of 180 g and a center of mass 
at G. If the disk is rotating about the axle at vD = 90 rad>s, 
determine the constant angular velocity vp  at which the 
frame precesses about the pivot point O. The frame moves 
in the horizontal plane.

25 mm

35 mm

25 mm
20 mm 80 mm

A B G

D

O

vp

vD

Prob. 21–62

21–63.  The toy gyroscope consists of a rotor R which is 
attached to the frame of negligible mass. If it is observed 
that the frame is precessing about the pivot point O at 
vp = 2 rad>s, determine the angular velocity vR of the 
rotor. The stem OA moves in the horizontal plane. The rotor 
has a mass of 200 g and a radius of gyration kOA = 20 mm 
about OA.

30 mm

O

A

R

vR

vp

Prob. 21–63

*21–64.  The top consists of a thin disk that has a weight  
of 8 lb and a radius of 0.3 ft. The rod has a negligible mass 
and a length of 0.5 ft. If the top is spinning with an angular 
velocity vs = 300 rad>s, determine the steady-state 
precessional angular velocity vp  of the rod when u = 40�.

21–65.  Solve Prob. 21–64 when u = 90�.

0.3 ft
0.5 ft

u

vsvp

Probs. 21–64/65

PROBLEMS
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21–66.  The propeller on a single-engine airplane has a 
mass of 15 kg and a centroidal radius of gyration of 0.3 m 
computed about the axis of spin. When viewed from the 
front of the airplane, the propeller is turning clockwise at 
350 rad>s about the spin axis. If the airplane enters a vertical 
curve having a radius of 80 m and is traveling at 200 km>h, 
determine the gyroscopic bending moment which the 
propeller exerts on the bearings of the engine when the 
airplane is in its lowest position.

p � 80 m

Prob. 21–66

21–67.  A wheel of mass m and radius r rolls with constant 
spin V about a circular path having a radius a. If the angle of 
inclination is u, determine the rate of precession. Treat the 
wheel as a thin ring. No slipping occurs.

ar

u

v

.
f

Prob. 21–67

*21–68.	 The conical top has a mass of 0.8 kg, and the 
moments of inertia are Ix = Iy = 3.5(10-3) kg # m2 and 
Iz = 0.8(10-3) kg # m2. If it spins freely in the ball-and socket 
joint at A with an angular velocity vs = 750 rad>s, compute 
the precession of the top about the axis of the shaft AB.

30�

yB

x

z

100 mm

A

vs

G

Prob. 21–68

21–69.  The top has a mass of 90 g, a center of mass at G, 
and a radius of gyration k = 18 mm about its axis of 
symmetry. About any transverse axis acting through point O 
the radius of gyration is kt = 35 mm. If the top is connected 
to a ball-and-socket joint at O and the precession is 
vp = 0.5 rad>s, determine the spin Vs.

Vp

Vs

60 mm

G

O

45�

Prob. 21–69
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21–70.  The 1-lb top has a center of gravity at point G. If it 
spins about its axis of symmetry and precesses about the 
vertical axis at constant rates of vs = 60 rad>s and 
vp = 10 rad>s, respectively, determine the steady state 
angle u. The radius of gyration of the top about the z axis is 
kz = 1 in., and about the x and y axes it is kx = ky = 4 in.

y
x

O

z

3 in.

vp � 10 rad/s
u

G

vs � 60 rad/s

Prob. 21–70

21–71.  The space capsule has a mass of 2 Mg, center of 
mass at G, and radii of gyration about its axis of symmetry  
(z axis) and its transverse axes (x or y axis) of kz = 2.75 m 
and kx = ky = 5.5 m, respectively. If the capsule has the 
angular velocity shown, determine its precession f

#
 and  

spin c
#
. Indicate whether the precession is regular or retrograde. 

Also, draw the space cone and body cone for the motion.

y

x

G

z

30�

v � 150 rad/s

Prob. 21–71

*21–72.  The 0.25 kg football is spinning at vz = 15 rad>s 
as shown. If u = 40�, determine the precession about the 
z  axis. The radius of gyration about the spin axis is 
kz = 0.042 m, and about a transverse axis is ky = 0.13 m.

Z

G

z

 vz � 15 rad/s

Prob. 21–72

21–73.  The projectile shown is subjected to torque-free 
motion. The transverse and axial moments of inertia are I 
and Iz, respectively. If u represents the angle between the 
precessional axis Z and the axis of symmetry z, and b is the 
angle between the angular velocity V and the z axis, show 
that b and u are related by the equation tan u = (I>Iz ) tan b.

G

Zy

x z
u

v

b

Prob. 21–73

21–74.  The radius of gyration about an axis passing 
through the axis of symmetry of the 1.6-Mg space capsule is 
kz = 1.2 m and about any transverse axis passing through 
the center of mass G, kt = 1.8 m. If the capsule has a known 
steady-state precession of two revolutions per hour about 
the Z axis, determine the rate of spin about the z axis.

G z

Z

20�

Prob. 21–74
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21–75.  The rocket has a mass of 4 Mg and radii of gyration  
kz = 0.85 m and kx = ky = 2.3 m. It is initially spinning 
about the z axis at vz = 0.05 rad>s when a meteoroid M 
strikes it at A and creates an impulse I = 5300i6  N # s. 
Determine the axis of precession after the impact.

G A

M

z

x
y

3 m

vz

Prob. 21–75

*21–76.  The football has a mass of 450 g and radii of gyration 
about its axis of symmetry (z axis) and its transverse axes (x or 
y axis) of kz = 30 mm and kx = ky = 50 mm, respectively. If 
the football has an angular momentum of HG = 0.02 kg # m2>s,  
determine its precession f

#
 and spin c

#
. Also, find the angle b 

that the angular velocity vector makes with the z axis.

z

y

x

G

45�

V

B

HG � 0.02 kg � m2/s

Prob. 21–76

21–77.  The satellite has a mass of 1.8 Mg, and about axes 
passing through the mass center G the axial and transverse 
radii of gyration are kz = 0.8 m and kt = 1.2 m, respectively. 
If it is spinning at vs = 6 rad>s when it is launched, 
determine its angular momentum. Precession occurs about 
the Z axis.

5�

vs

z

G

Z

Prob. 21–77

21–78.  The radius of gyration about an axis passing 
through the axis of symmetry of the 1.2-Mg satellite is 
kz = 1.4 m, and about any transverse axis passing through 
the center of mass G, kt = 2.20 m. If the satellite has a 
known spin of 2700 rev>h about the z axis, determine the 
steady-state precession about the z axis.

15�

z

Z

G

Prob. 21–78
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Chapter Review

Moments and Products of Inertia

A body has six components of inertia for 
any specified x, y, z axes. Three of these 
are moments of inertia about each of the 
axes, Ixx , Iyy , Izz , and three are products of 
inertia, each defined from two orthogonal 
planes, Ixy , Iyz , Ixz . If either one or both of 
these planes are planes of symmetry, then 
the product of inertia with respect to 
these planes will be zero.

The moments and products of inertia can 
be determined by direct integration or by 
using tabulated values. If these quantities 
are to be determined with respect to axes 
or planes that do not pass through the 
mass center, then parallel-axis and 
parallel-plane theorems must be used.

Provided the six components of inertia 
are known, then the moment of inertia 
about any axis can be determined using 
the inertia transformation equation.

 Ixx = Lm
rx

2 dm = Lm
(y2 + z2) dm 	  Ixy = Iyx = Lm

xy dm

 Iyy = Lm
ry

2 dm = Lm
(x2 + z2) dm 	  Iyz = Izy = Lm

yz dm

 Izz = Lm
rz

2 dm = Lm
(x2 + y2) dm 	  Ixz = Izx = Lm

xz dm

IOa = Ixxux
2 + Iyyuy

2 + Izzuz
2 - 2Ixyuxuy - 2Iyzuyuz - 2Izxuzux

Principal Moments of Inertia

At any point on or off the body, the x, y, z 
axes can be oriented so that the products 
of inertia will be zero. The resulting 
moments of inertia are called the principal 
moments of inertia. In general, one will be 
a maximum and the other a minimum. 

£ Ix 0 0

0 Iy 0

0 0 Iz

≥
Principle of Impulse and Momentum

The angular momentum for a body can be 
determined about any arbitrary point A.

Once the linear and angular momentum 
for the body have been formulated, then 
the principle of impulse and momentum 
can be used to solve problems that 
involve force, velocity, and time. 

m(vG)1 + � L
t2

t1

F dt = m(vG)2

HO = Lm
RO * (V * RO) dm 

Fixed Point O

HG = Lm
RG * (V * RG) dm 

Center of Mass 
HA = RG>A * mvG + HG 

Arbitrary Point 

(HO)1 + � L
t2

t1

MO dt = (HO)2

where 
 Hx = Ixxvx - Ixyvy - Ixzvz

 Hy = - Iyxvx + Iyyvy - Iyzvz

 Hz = - Izxvx - Izyvy + Izzvz
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Principle of Work and Energy

The kinetic energy for a body is usually 
determined relative to a fixed point or the 
body’s mass center.

T =
1
2 Ixvx

2 +
1
2 Iyvy

2 +
1
2 Izvz

2    T =
1
2 mvG

2 +
1
2 Ixvx

2 +
1
2 Iyvy

2 +
1
2 Izvz

2

Fixed Point	 Center of Mass 
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These formulations can be used with the 
principle of work and energy to solve 
problems that involve force, velocity, and 
displacement. 

T1 + �U1 - 2 = T2

Equations of Motion

There are three scalar equations of 
translational motion for a rigid body that 
moves in three dimensions.

The three scalar equations of rotational 
motion depend upon the motion of the x, 
y, z reference. Most often, these axes are 
oriented so that they are principal axes of 
inertia. If the axes are fixed in and move 
with the body so that � = V, then the 
equations are referred to as the Euler 
equations of motion.

A free-body diagram should always 
accompany the application of the 
equations of motion. 

 �Fx = m(aG)x 
 �Fy = m(aG)y

 �Fz = m(aG)z

 �Mx = Ixv
#

x - (Iy - Iz)vyvz

 �My = Iyv
#

y - (Iz - Ix)vzvx

 �Mz = Izv
#

z - (Ix - Iy)vxvy

� = V

 �Mx = Ixv
#

x - Iy�zvy + Iz�yvz

 �My = Iyv
#

y - Iz�xvz + Ix�zvx

 �Mz = Izv
#

z - Ix�yvx + Iy�xvy

� � V

Torque-Free Motion

A body that is only subjected to a 
gravitational force will have no moments 
on it about its mass center, and so the 
motion is described as torque-free motion. 
The angular momentum for the body 
about its mass center will remain constant. 
This causes the body to have both a spin 
and a precession. The motion depends 
upon the magnitude of the moment of 
inertia of a symmetric body about the spin 
axis, Iz , versus that about a perpendicular 
axis, I. 

Gyroscopic Motion

The angular motion of a gyroscope is 
best described using the three Euler 
angles f, u, and c. The angular velocity 
components are called the precession f

#
, 

the nutation u
#
, and the spin c

#
.

If u
#  =  0 and f

#
 and c

#
 are constant, then the 

motion is referred to as steady precession.

It is the spin of a gyro rotor that is 
responsible for holding a rotor from falling 
downward, and instead causing it to precess 
about a vertical axis. This phenomenon is 
called the gyroscopic effect.

Y

y

f
u

 ·
vp � f 

 ·
vn � u 

 ·
vs � c

X
x

Zz

O

G

f

u

�Mx = - If
#
2 sin u cos u + Izf

#
 sin u(f

#
 cos u + c

#
)

	 �My = 0, �Mz = 0

	  u = constant

	  f
#

=
HG

I

 c
#

=
I - Iz

I Iz
 HG cos u

Problems2121



The analysis of vibrations plays an important role in the study of the behavior 
of structures subjected to earthquakes.

Chapter 22
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Vibrations

Chapter Objectives

n	 To discuss undamped one-degree-of-freedom vibration of a rigid 
body using the equation of motion and energy methods.

n	 To study the analysis of undamped forced vibration and viscous 
damped forced vibration.

*22.1  Undamped Free Vibration

A vibration is the oscillating motion of a body or system of connected 
bodies displaced from a position of equilibrium. In general, there are two 
types of vibration, free and forced. Free vibration occurs when the motion 
is maintained by gravitational or elastic restoring forces, such as the 
swinging motion of a pendulum or the vibration of an elastic rod. Forced 
vibration is caused by an external periodic or intermittent force applied 
to the system. Both of these types of vibration can either be damped or 
undamped. Undamped vibrations exclude frictional effects in the analysis. 
Since in reality both internal and external frictional forces are present, the 
motion of all vibrating bodies is actually damped.
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The simplest type of vibrating motion is undamped free vibration, 
represented by the block and spring model shown in Fig. 22–1a. 
Vibrating motion occurs when the block is released from a displaced 
position x so that the spring pulls on the block. The block will attain  
a velocity such that it will proceed to move out of equilibrium when 
x = 0, and provided the supporting surface is smooth, the block will 
oscillate back and forth.

The time-dependent path of motion of the block can be determined by 
applying the equation of motion to the block when it is in the displaced 
position x. The free-body diagram is shown in Fig. 22–1b. The elastic 
restoring force F = kx is always directed toward the equilibrium position, 
whereas the acceleration a is assumed to act in the direction of positive 
displacement. Since a = d 2x>dt 2 = x

$
, we have

S+ �Fx = max ;	 -kx = mx
$

Note that the acceleration is proportional to the block’s displacement. 
Motion described in this manner is called simple harmonic motion. 
Rearranging the terms into a “standard form” gives

	 x
$

+ vn
2 x = 0� (22–1)

The constant vn, generally reported in rad>s, is called the natural 
frequency, and in this case

	 vn = A k
m

� (22–2)

Equation 22–1 can also be obtained by considering the block to be 
suspended so that the displacement y is measured from the block’s 
equilibrium position, Fig. 22–2a. When the block is in equilibrium, the 
spring exerts an upward force of F = W = mg on the block. Hence, when 
the block is displaced a distance y downward from this position, the 
magnitude of the spring force is F = W + ky, Fig. 22–2b. Applying the 
equation of motion gives

+ T �Fy = may ;	 -W - ky + W = my
$

or

	 y
$

+ vn
2 y = 0

which is the same form as Eq. 22–1 and vn is defined by Eq. 22–2.

Equilibrium
position

x

(a)

k

F � kx

(b)

W � mg

NB

Fig. 22–1 

Equilibrium
position

y

(a)

k

F � W � ky

W

(b)

	 Fig. 22–2 
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Equation 22–1 is a homogeneous, second-order, linear, differential 
equation with constant coefficients. It can be shown, using the methods 
of differential equations, that the general solution is

	 x = A sin vnt + B cos vnt � (22–3)

Here A and B represent two constants of integration. The block’s velocity 
and acceleration are determined by taking successive time derivatives, 
which yields

	  v = x
#

= Avn cos vnt - Bvn sin vnt � (22–4)

	  a = x
$

= -Avn  

2 sin vnt - Bvn  

2 cos vnt� (22–5)

When Eqs. 22–3 and 22–5 are substituted into Eq. 22–1, the differential 
equation will be satisfied, showing that Eq. 22–3 is indeed the solution to 
Eq. 22–1.

The integration constants in Eq. 22–3 are generally determined from 
the initial conditions of the problem. For example, suppose that the block 
in Fig. 22–1a has been displaced a distance x1 to the right from its 
equilibrium position and given an initial (positive) velocity v1 directed  
to the right. Substituting x = x1 when t = 0 into Eq. 22–3 yields B = x1. 
And since v = v1 when t = 0, using Eq. 22–4 we obtain A = v1>vn . If 
these values are substituted into Eq. 22–3, the equation describing the 
motion becomes

	 x =
v1

vn
 sin vnt + x1 cos vnt� (22–6)

Equation 22–3 may also be expressed in terms of simple sinusoidal 
motion. To show this, let

	 A = C cos f� (22–7)

and

	 B = C sin f� (22–8)

where C and f are new constants to be determined in place of A and B. 
Substituting into Eq. 22–3 yields

x = C cos f sin vnt + C sin f cos vnt

And since sin(u + f) = sin u cos f + cos u sin f, then

	 x = C sin(vnt + f) � (22–9)

If this equation is plotted on an x versus vnt axis, the graph shown in 
Fig. 22–3 is obtained. The maximum displacement of the block from its 

	 22.1  Undamped Free Vibration	 645
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equilibrium position is defined as the amplitude of vibration. From either 
the figure or Eq. 22–9 the amplitude is C. The angle f is called the phase 
angle since it represents the amount by which the curve is displaced from 
the origin when t = 0. We can relate these two constants to A and B 
using Eqs. 22–7 and 22–8. Squaring and adding these two equations, the 
amplitude becomes

	 C = 2A2 + B2� (22–10)

If Eq. 22–8 is divided by Eq. 22–7, the phase angle is then

	 f = tan-1 
B

A
� (22–11)

Note that the sine curve, Eq. 22–9, completes one cycle in time 
t = t (tau) when vnt = 2p, or

	 t =
2p
vn

� (22–12)

This time interval is called a period, Fig. 22–3. Using Eq. 22–2, the period 
can also be represented as

	 t = 2p Am

k
� (22–13)

Finally, the frequency f is defined as the number of cycles completed per 
unit of time, which is the reciprocal of the period; that is,

	 f =
1
t

=
vn

2p
� (22–14)

or

	 f =
1

2p
 A k

m
	 (22–15)

The frequency is expressed in cycles>s. This ratio of units is called a hertz 
(Hz), where 1 Hz = 1 cycle>s = 2p rad>s.

When a body or system of connected bodies is given an initial 
displacement from its equilibrium position and released, it will vibrate 
with the natural frequency, vn . Provided the system has a single degree of 
freedom, that is, it requires only one coordinate to specify completely the 
position of the system at any time, then the vibrating motion will have 
the same characteristics as the simple harmonic motion of the block and 
spring just presented. Consequently, the motion is described by a 
differential equation of the same “standard form” as Eq. 22–1, i.e.,

	 x
$

+ vn  

2x = 0 � (22–16)

Hence, if the natural frequency vn is known, the period of vibration t, 
frequency f, and other vibrating characteristics can be established using 
Eqs. 22–3 through 22–15.

C sin f
C

x

C

O

Period of time (t)

1 cycle 2p � vnt

vnt

x � C sin (vnt � f)

f

Fig. 22–3 
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Important Points

	 •	 Free vibration occurs when the motion is maintained by 
gravitational or elastic restoring forces.

	 •	 The amplitude is the maximum displacement of the body.

	 •	 The period is the time required to complete one cycle.

	 •	 The frequency is the number of cycles completed per unit of time, 
where 1 Hz = 1 cycle>s.

	 •	 Only one position coordinate is needed to describe the location 
of a one-degree-of-freedom system.

Procedure for Analysis

As in the case of the block and spring, the natural frequency vn of a 
body or system of connected bodies having a single degree of 
freedom can be determined using the following procedure:

Free-Body Diagram.
	 •	 Draw the free-body diagram of the body when the body is 

displaced a small amount from its equilibrium position.

	 •	 Locate the body with respect to its equilibrium position by using 
an appropriate inertial coordinate q. The acceleration of the 
body’s mass center aG or the body’s angular acceleration A should 
have an assumed sense of direction which is in the positive 
direction of the position coordinate.

	 •	 If the rotational equation of motion �MP = �(mk)P is to be used, 
then it may be beneficial to also draw the kinetic diagram since it 
graphically accounts for the components m(aG)x , m(aG)y , and IGA, 
and thereby makes it convenient for visualizing the terms needed 
in the moment sum �(mk)P .

Equation of Motion.
	 •	 Apply the equation of motion to relate the elastic or gravitational 

restoring forces and couple moments acting on the body to the 
body’s accelerated motion.

Kinematics.
	 •	 Using kinematics, express the body’s accelerated motion in terms 

of the second time derivative of the position coordinate, q
$
.

	 •	 Substitute the result into the equation of motion and determine 
vn by rearranging the terms so that the resulting equation is in 
the “standard form,” q

$
+ vn  

2q = 0.
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Determine the period of oscillation for the simple pendulum shown in 
Fig. 22–4a. The bob has a mass m and is attached to a cord of length l. 
Neglect the size of the bob.

Solution
Free-Body Diagram.  Motion of the system will be related to the 
position coordinate (q =) u, Fig. 22–4b. When the bob is displaced by a 
small angle u, the restoring force acting on the bob is created by the 
tangential component of its weight, mg sin u. Furthermore, at acts in the 
direction of increasing s (or u).

Equation of Motion.  Applying the equation of motion in the 
tangential direction, since it involves the restoring force, yields

+Q�Ft = mat ;	 -mg sin u = mat� (1)

Kinematics.  at = d 2s>dt 2 = s
$
. Furthermore, s can be related to u by 

the equation s = lu, so that at = lu
$
. Hence, Eq. 1 reduces to

	 u
$

+
g

l
 sin u = 0� (2)

The solution of this equation involves the use of an elliptic integral. 
For small displacements, however, sin u � u, in which case

	 u
$

+
g

l
 u = 0� (3)

Comparing this equation with Eq. 22–16 (x
$

+ vn  

2x = 0), it is seen that 
vn = 1g>l. From Eq. 22–12, the period of time required for the bob to 
make one complete swing is therefore

	 t =
2p
vn

= 2pA l
g

� Ans.

This interesting result, originally discovered by Galileo Galilei 
through experiment, indicates that the period depends only on the 
length of the cord and not on the mass of the pendulum bob or the 
angle u.

NOTE: The solution of Eq. 3 is given by Eq. 22–3, where vn = 1g>l 
and u is substituted for x. Like the block and spring, the constants A 
and B in this problem can be determined if, for example, one knows 
the displacement and velocity of the bob at a given instant.

Example   22.1

s

l

(a)

u

T

W � mg

n

t
an at

(b)

u

Fig. 22–4 
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The 10-kg rectangular plate shown in Fig. 22–5a is suspended at its 
center from a rod having a torsional stiffness k = 1.5 N # m>rad. 
Determine the natural period of vibration of the plate when it is given a 
small angular displacement u in the plane of the plate.

Example   22.2

(a)

a � 0.2 m
b � 0.3 m

O

u

O

T � W

M � ku

W

(b)

Fig. 22–5 

Solution
Free-Body Diagram.  Fig. 22–5b. Since the plate is displaced in its 
own plane, the torsional restoring moment created by the rod is M = ku. 
This moment acts in the direction opposite to the angular displacement u. 
The angular acceleration u

$
 acts in the direction of positive u.

Equation of Motion.

�MO = IOa;	 -ku = IOu
$

or

u
$

+
k

IO
 u = 0

Since this equation is in the “standard form,” the natural frequency is 
vn = 1k>IO.

From the table on the inside back cover, the moment of inertia of 
the plate about an axis coincident with the rod is IO =

1
12 m(a2 + b2). 

Hence,

IO =
1

12
 (10 kg)3(0.2 m)2 + (0.3 m)24 = 0.1083 kg # m2

The natural period of vibration is therefore,

	 t =
2p
vn

= 2pA IO

k
= 2pA0.1083

1.5
= 1.69 s� Ans.

	 22.1  Undamped Free Vibration	 649
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The bent rod shown in Fig. 22–6a has a negligible mass and supports a 
5-kg collar at its end. If the rod is in the equilibrium position shown, 
determine the natural period of vibration for the system.

Example   22.3

(a)
k � 400 N/m

200 mm

B

A

C
5 kg

100 mm

�

(b)

B

x

0.2 m

0.1 m

y

By

Bx

Fs � kx � kxst

49.05 N

0.2 m

5ay

u

u

u

(c)

0.2 m

B

x � 0.1u

y � 0.2u

0.1 m

u

u

Fig. 22–6 

Solution
Free-Body and Kinetic Diagrams.  Fig. 22–6b. Here the rod is 
displaced by a small angle u from the equilibrium position. Since  
the spring is subjected to an initial compression of xst for equilibrium, 
then when the displacement x 7 xst the spring exerts a force of 
Fs = kx - kxst on the rod. To obtain the “standard form,” Eq. 22–16, 5ay 
must act upward, which is in accordance with positive u displacement.

Equation of Motion.  Moments will be summed about point B to 
eliminate the unknown reaction at this point. Since u is small,

a+ �MB = �(mk)B;

kx(0.1 m) - kxst(0.1 m) + 49.05 N(0.2 m) = -(5 kg)ay (0.2 m)

The second term on the left side, -kxst(0.1 m), represents the moment 
created by the spring force which is necessary to hold the collar in 
equilibrium, i.e., at x = 0. Since this moment is equal and opposite to 
the moment 49.05 N(0.2 m) created by the weight of the collar, these 
two terms cancel in the above equation, so that

	 kx(0.1) = -5ay(0.2)	 (1)

Kinematics.  The deformation of the spring and the position of the 
collar can be related to the angle u, Fig. 22–6c. Since u is small, 
x = (0.1 m)u and y = (0.2 m)u. Therefore, ay = y

$
= 0.2u

$
. Substituting 

into Eq. 1 yields

400(0.1u) 0.1 = -5(0.2u
$
)0.2

Rewriting this equation in the “standard form” gives

u
$

+ 20u = 0

Compared with x
$

+ vn  

2x = 0 (Eq. 22–16), we have

vn  

2 = 20 vn = 4.47 rad>s
The natural period of vibration is therefore

	 t =
2p
vn

=
2p

4.47
= 1.40 s	 Ans.
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A 10-lb block is suspended from a cord that passes over a 15-lb disk, 
as shown in Fig. 22–7a. The spring has a stiffness k = 200 lb>ft. 
Determine the natural period of vibration for the system.

Solution
Free-Body and Kinetic Diagrams.  Fig. 22–7b. The system consists 
of the disk, which undergoes a rotation defined by the angle u, and the 
block, which translates by an amount s. The vector IO U

$
 acts in 

the direction of positive u, and consequently mB ab acts downward in the 
direction of positive s.
Equation of Motion.  Summing moments about point O to eliminate 
the reactions Ox and Oy , realizing that IO =

1
2 mr 2, yields

a+ �MO = �(mk)O;

10 lb(0.75 ft) - Fs(0.75 ft)

=
1

2
 a 15 lb

32.2 ft>s2 b (0.75 ft)2 u
$

+ a 10 lb

32.2 ft>s2 ba
b
(0.75 ft)� (1)

Kinematics.  As shown on the kinematic diagram in Fig. 22–7c, a 
small positive displacement u of the disk causes the block to lower by 
an amount s = 0.75u; hence, a

b
= s

$
= 0.75u

$
. When u = 0�, the spring 

force required for equilibrium of the disk is 10 lb, acting to the right. 
For position u, the spring force is Fs = (200 lb>ft)(0.75u ft) + 10 lb. 
Substituting these results into Eq. 1 and simplifying yields

u
$

+ 368u = 0

Hence,
vn  

2 = 368      vn = 19.18 rad>s
Therefore, the natural period of vibration is

	 t =
2p
vn

=
2p

19.18
= 0.328 s	 Ans.

Example    22.4

k � 200 lb/ft

0.75 ft

(a)

O

=

(b)

Fs

s

0.75 ft O Ox

Oy

15 lb

10 lb

0.75 ft O

mBab

uu

IO ü

s � 0.75 u

0.75 ft

0.75 u

(c)

 u

 u

Fig. 22–7 
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22–1.  A spring is stretched 175 mm by an 8-kg block. If the 
block is displaced 100 mm downward from its equilibrium 
position and given a downward velocity of 1.50 m>s, 
determine the differential equation which describes the 
motion. Assume that positive displacement is downward. 
Also, determine the position of the block when t = 0.22 s.

22–2.  A spring has a stiffness of 800 N>m. If a 2-kg block 
is attached to the spring, pushed 50 mm above its equilibrium 
position, and released from rest, determine the equation 
that describes the block’s motion. Assume that positive 
displacement is downward.

22–3.  A spring is stretched 200 mm by a 15-kg block. If the 
block is displaced 100 mm downward from its equilibrium 
position and given a downward velocity of 0.75 m>s, 
determine the equation which describes the motion. What is 
the phase angle? Assume that positive displacement is 
downward.

*22–4.  When a 20-lb weight is suspended from a spring, 
the spring is stretched a distance of 4 in. Determine the 
natural frequency and the period of vibration for a 10-lb 
weight attached to the same spring.

22–5.  When a 3-kg block is suspended from a spring, the 
spring is stretched a distance of 60 mm. Determine the 
natural frequency and the period of vibration for a 0.2-kg 
block attached to the same spring.

22–6.  An 8-kg block is suspended from a spring having a 
stiffness k = 80 N>m. If the block is given an upward 
velocity of 0.4 m>s when it is 90 mm above its equilibrium 
position, determine the equation which describes the 
motion and the maximum upward displacement of the 
block measured from the equilibrium position. Assume that 
positive displacement is measured downward.

22–7.  A 2-lb weight is suspended from a spring having a 
stiffness k = 2 lb>in. If the weight is pushed 1 in. upward 
from its equilibrium position and then released from rest, 
determine the equation which describes the motion. What is 
the amplitude and the natural frequency of the vibration?

*22–8.  A 6-lb weight is suspended from a spring having a 
stiffness k = 3 lb>in. If the weight is given an upward 
velocity of 20 ft>s when it is 2 in. above its equilibrium 
position, determine the equation which describes the motion 
and the maximum upward displacement of the  weight, 
measured from the equilibrium position. Assume positive 
displacement is downward.

22–9.  A 3-kg block is suspended from a spring having a 
stiffness of k = 200 N>m. If the block is pushed 50 mm 
upward from its equilibrium position and then released 
from rest, determine the equation that describes the motion. 
What are the amplitude and the natural frequency of the 
vibration? Assume that positive displacement is downward.

22–10.  The uniform rod of mass m is supported by a pin 
at  A and a spring at B. If B is given a small sideward 
displacement and released, determine the natural period of 
vibration.

A

B

L

k

Prob. 22–10

22–11.  While standing in an elevator, the man holds a 
pendulum which consists of an 18-in. cord and a 0.5-lb 
bob.  If the elevator is descending with an acceleration 
a = 4 ft>s2, determine the natural period of vibration for 
small amplitudes of swing.

a � 4 ft/s2 aaa 4 ft4 ft4 ft///sss222

Prob. 22–11

PROBLEMS
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*22–12.  Determine the natural period of vibration of the 
uniform bar of mass m when it is displaced downward 
slightly and released.

O

k

L—
2

L—
2

Prob. 22–12

22–13.  The body of arbitrary shape has a mass m, mass 
center at G, and a radius of gyration about G of kG. If it is 
displaced a slight amount u from its equilibrium position 
and released, determine the natural period of vibration.

O

u

G

d

Prob. 22–13

22–14.  The 20-lb rectangular plate has a natural period of 
vibration t = 0.3 s, as it oscillates around the axis of 
rod  AB. Determine the torsional stiffness k, measured 
in lb # ft>rad, of the rod. Neglect the mass of the rod.

k

4 ft

2 ft

B

A

Prob. 22–14

22–15.  A platform, having an unknown mass, is supported 
by four springs, each having the same stiffness k. When 
nothing is on the platform, the period of vertical vibration is 
measured as 2.35 s; whereas if a 3-kg block is supported on 
the platform, the period of vertical vibration is 5.23 s. 
Determine the mass of a block placed on the (empty) 
platform which causes the platform to vibrate vertically 
with a period of 5.62 s. What is the stiffness k of each of 
the springs?

k k

Prob. 22–15
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*22–16.  A block of mass m is suspended from two springs 
having a stiffness of k1 and k2, arranged a) parallel to each 
other, and b) as a series. Determine the equivalent stiffness 
of a single spring with the same oscillation characteristics 
and the period of oscillation for each case.

22–17.  The 15-kg block is suspended from two springs 
having a different stiffness and arranged a) parallel to each 
other, and b) as a series. If the natural periods of oscillation 
of the parallel system and series system are observed to be 
0.5 s and 1.5 s, respectively, determine the spring stiffnesses 
k1 and k2.

(b)(a)

k2

k2k1 k1

Probs. 22–16/17

22–18.  The uniform beam is supported at its ends by two 
springs A and B, each having the same stiffness k. When 
nothing is supported on the beam, it has a period of vertical 
vibration of 0.83 s. If a 50-kg mass is placed at its center, the 
period of vertical vibration is 1.52 s. Compute the stiffness 
of each spring and the mass of the beam.

A

k k

B

Prob. 22–18

22–19.  The slender rod has a mass of 0.2 kg and is 
supported at O by a pin and at its end A by two springs, 
each having a stiffness k = 4 N>m. The period of vibration 
of the rod can be set by fixing the 0.5-kg collar C to the rod 
at an appropriate location along its length. If the springs are 
originally unstretched when the rod is vertical, determine 
the position y of the collar so that the natural period of 
vibration becomes t = 1 s. Neglect the size of the collar.

y
O

600 mm

kA

C

k

Prob. 22–19

*22–20.  A uniform board is supported on two wheels 
which rotate in opposite directions at a constant angular 
speed. If the coefficient of kinetic friction between the 
wheels and board is m, determine the frequency of vibration 
of the board if it is displaced slightly, a distance x from the 
midpoint between the wheels, and released.

dd

x

A B

Prob. 22–20
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22–21.  If the wire AB is subjected to a tension of 20 lb, 
determine the equation which describes the motion when 
the 5-lb weight is displaced 2 in. horizontally and released 
from rest.

6 ft

6 ft

A

B

Prob. 22–21

22–22.  The bar has a length l and mass m. It is supported 
at its ends by rollers of negligible mass. If it is given a small 
displacement and released, determine the natural frequency 
of vibration.

A B

R

l

Prob. 22–22

22–23.  The 20-kg disk, is pinned at its mass center O and 
supports the 4-kg block A. If the belt which passes over the 
disk is not allowed to slip at its contacting surface, determine 
the natural period of vibration of the system.

k = 50 N/m

A

300 mm

k � 200 N/m

O

Prob. 22–23

*22–24.  The 10-kg disk is pin connected at its mass center. 
Determine the natural period of vibration of the disk if the 
springs have sufficient tension in them to prevent the cord 
from slipping on the disk as it oscillates. Hint: Assume that 
the initial stretch in each spring is dO. 

22–25.  If the disk in Prob. 22–24 has a mass of 10 kg, 
determine the natural frequency of vibration. Hint: Assume 
that the initial stretch in each spring is dO.

k � 80 N/m

k � 80 N/m

O
150 mm

Probs. 22–24/25
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22–26.  A flywheel of mass m, which has a radius of 
gyration about its center of mass of kO, is suspended from a 
circular shaft that has a torsional resistance of M = Cu. If 
the flywheel is given a small angular displacement of u and 
released, determine the natural period of oscillation.

L
O

u

Prob. 22–26

22–27.  The 6-lb weight is attached to the rods of negligible 
mass. Determine the natural frequency of vibration of the 
weight when it is displaced slightly from the equilibrium 
position and released.

3 ft

2 ft

k � 5 lb/ft

O

Prob. 22–27

*22–28.  The platform AB when empty has a mass of 400 kg, 
center of mass at G1, and natural period of oscillation 
t1 = 2.38 s. If a car, having a mass of 1.2 Mg and center of 
mass at G2, is placed on the platform, the natural period 
of oscillation becomes t2 = 3.16 s. Determine the moment 
of inertia of the car about an axis passing through G2.

A B

2.50 m
1.83 m

O

G2

G1

Prob. 22–28

22–29.  The plate of mass m is supported by three 
symmetrically placed cords of length l as shown. If the plate 
is given a slight rotation about a vertical axis through its 
center and released, determine the natural period of 
oscillation.

120�

R

l

l

l

120�

120�

Prob. 22–29
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*22.2  Energy Methods

The simple harmonic motion of a body, discussed in the previous section, 
is due only to gravitational and elastic restoring forces acting on the body. 
Since these forces are conservative, it is also possible to use the 
conservation of energy equation to obtain the body’s natural frequency 
or period of vibration. To show how to do this, consider again the block 
and spring model in Fig. 22–8. When the block is displaced x from the 
equilibrium position, the kinetic energy is T =

1
2 mv2 =

1
2 mx

# 2 and the 
potential energy is V =

1
2 kx2. Since energy is conserved, it is necessary that

 T + V = constant

 12 mx
# 2 +

1
2 kx2 = constant� (22–17)

The differential equation describing the accelerated motion of the 
block can be obtained by differentiating this equation with respect to 
time; i.e.,

 m x 
#
x
$

+ k x x
#

= 0

	  x
#
(m x

$
+ k x) = 0

Since the velocity x
#
 is not always zero in a vibrating system,

x
$

+ vn  

2x = 0  vn = 2k>m

which is the same as Eq. 22–1.
If the conservation of energy equation is written for a system of 

connected bodies, the natural frequency or the equation of motion can 
also be determined by time differentiation. It is not necessary to 
dismember the system to account for the internal forces because they do 
no work.

k

Equilibrium
position

x

Fig. 22–8 
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The suspension of a railroad car consists of a set 
of springs which are mounted between the frame 
of the car and the wheel truck. This will give the 
car a natural frequency of vibration which can be 
determined. (© R.C. Hibbeler)

Procedure for Analysis

The natural frequency vn of a body or system of connected bodies 
can be determined by applying the conservation of energy equation 
using the following procedure.

Energy Equation.
	 •	 Draw the body when it is displaced by a small amount from its 

equilibrium position and define the location of the body from its 
equilibrium position by an appropriate position coordinate q.

	 •	 Formulate the conservation of energy for the body, T + V =  
constant, in terms of the position coordinate.

	 •	 In general, the kinetic energy must account for both the body’s 
translational and rotational motion, T =

1
2 mvG

2 +
1
2 IGv

2,  Eq. 18–2.

	 •	 The potential energy is the sum of the gravitational and elastic 
potential energies of the body, V = Vg + Ve , Eq. 18–17. In 
particular, Vg should be measured from a datum for which q = 0 
(equilibrium position).

Time Derivative.
	 •	 Take the time derivative of the energy equation using the chain 

rule of calculus and factor out the common terms. The resulting 
differential equation represents the equation of motion for the 
system. The natural frequency of vn is obtained after rearranging 
the terms in the “standard form,” q

$
+ vn  

2q = 0.
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The thin hoop shown in Fig. 22–9a is supported by the peg at O. 
Determine the natural period of oscillation for small amplitudes of 
swing. The hoop has a mass m.

Solution
Energy Equation.  A diagram of the hoop when it is displaced a small 
amount (q =) u from the equilibrium position is shown in  
Fig. 22–9b. Using the table on the inside back cover and the parallel-
axis theorem to determine IO , the kinetic energy is

T =
1
2 IOvn  

2 =
1
2[mr 2 + mr 2]u

#
2 = mr 2u

#
2

If a horizontal datum is placed through point O, then in the displaced 
position, the potential energy is

V = -mg(r cos u)

The total energy in the system is

T + V = mr 2u
#
2 - mgr cos u

Time Derivative.

 mr 2(2u
#
)u
$

+ mgr (sin u)u
#

= 0

 mru
#
(2ru

$
+ g sin u) = 0

Since u
#
 is not always equal to zero, from the terms in parentheses,

u
$

+
g

2r
 sin u = 0

For small angle u, sin u ^ u.

	 u
$

+
g

2r
  u = 0

	 vn = A g

2r
so that

	 t =
2p
vn

= 2pA2r
g

	 Ans.

Example    22.5

r

O

(a)

(b)

r cos u

O

r

Datum
FO

W � mg

u

Fig. 22–9 
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A 10-kg block is suspended from a cord wrapped around a 5-kg disk, 
as shown in Fig. 22–10a. If the spring has a stiffness k = 200 N>m, 
determine the natural period of vibration for the system.

Solution
Energy Equation.  A diagram of the block and disk when they are 
displaced by respective amounts s and u from the equilibrium position 
is shown in Fig. 22–10b. Since s = (0.15 m)u, then vb � s

#
= (0.15 m)u

#
. 

Thus, the kinetic energy of the system is

 T =
1
2 mbvb

2 +
1
2 IOvd

2

 =
1
2(10 kg)[(0.15 m)u

#
]2 +

1
2 31

2(5 kg)(0.15 m)24(u# )2

 = 0.1406(u
#
)2

Establishing the datum at the equilibrium position of the block and 
realizing that the spring stretches sst for equilibrium, the potential 
energy is

	  V =
1
2 k(sst + s)2 - Ws

	  =
1
2(200 N>m)[sst + (0.15 m)u]2 - 98.1 N[(0.15 m)u]

The total energy for the system is therefore,

T + V = 0.1406(u
#
)2 + 100(sst + 0.15u)2 - 14.715u

Time Derivative.

0.28125(u
#
)u
$

+ 200(sst + 0.15u)0.15u
#

- 14.72u
#

= 0

Since sst = 98.1>200 = 0.4905 m, the above equation reduces to the 
“standard form”

u
$

+ 16u = 0

so that

 vn = 216 = 4 rad>s
Thus,

	 t =
2p
vn

=
2p

4
= 1.57 s	 Ans.

Example   22.6

O

u

u

s � 0.15 u

0.15 m

0.15 u

(b)
98.1 N

Datum

sst � s

 
Fig. 22–10 

k � 200 N/m

0.15 m
O

(a)
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PROBLEMS

22–33.  If the 20-kg wheel is displaced a small amount and 
released, determine the natural period of vibration. The 
radius of gyration of the wheel is kG = 0.36 m. The wheel 
rolls without slipping.

k � 500 N/m

G

0.5 m

Prob. 22–33

22–34.  Determine the differential equation of motion of 
the 3-kg spool. Assume that it does not slip at the surface of 
contact as it oscillates. The radius of gyration of the spool 
about its center of mass is kG = 125 mm.

k � 400 N/m

G

200 mm

100 mm

Prob. 22–34

22–35.  Determine the natural period of vibration of the 
3-kg sphere. Neglect the mass of the rod and the size of 
the sphere.

300 mm300 mm

k = 500 N/m
O

Prob. 22–35

22–30.  Determine the differential equation of motion of 
the 3-kg block when it is displaced slightly and released. The 
surface is smooth and the springs are originally unstretched.

k = 500 N/m k = 500 N/m

3 kg

Prob. 22–30

22–31.  Determine the natural period of vibration of the 
pendulum. Consider the two rods to be slender, each having 
a weight of 8 lb>ft.

O

1 ft 1 ft

2 ft

Prob. 22–31

*22–32.  Determine the natural period of vibration of the 
10-lb semicircular disk.

0.5 ft

Prob. 22–32
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*22–36.  If the lower end of the 6-kg slender rod is 
displaced a small amount and released from rest, determine 
the natural frequency of vibration. Each spring has a 
stiffness of k = 200 N>m and is unstretched when the rod is 
hanging vertically.

O

kk

2 m

2 m

Prob. 22–36

22–37.  The disk has a weight of 30 lb and rolls without 
slipping on the horizontal surface as it oscillates about its 
equilibrium position. If the disk is displaced, by rolling it 
counterclockwise 0.2 rad, determine the equation which 
describes its oscillatory motion and the natural period when 
it is released.

0.5 ft

k � 80 lb/ft

Prob. 22–37

22–38.  The machine has a mass m and is uniformly 
supported by four springs, each having a stiffness k. 
Determine the natural period of vertical vibration.

d—
2

d—
2

G

kk

Prob. 22–38

22–39.  The slender rod has a weight of 4 lb>ft. If it is 
supported in the horizontal plane by a ball-and-socket joint 
at A and a cable at B, determine the natural frequency of 
vibration when the end B is given a small horizontal 
displacement and then released.

1.5 ft

B

A 0.75 ft

Prob. 22–39

*22–40.  If the slender rod has a weight of 5 lb, determine 
the natural frequency of vibration. The springs are originally 
unstretched.

k � 5 lb/ft

O

k � 4 lb/ft

2 ft

1 ft

Prob. 22–40
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(a)

k F � F0 sin v0 t

Equilibrium
position x
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*22.3  Undamped Forced Vibration

Undamped forced vibration is considered to be one of the most important 
types of vibrating motion in engineering. Its principles can be used to 
describe the motion of many types of machines and structures.

Periodic Force.  The block and spring shown in Fig. 22–11a provide 
a convenient model which represents the vibrational characteristics of a 
system subjected to a periodic force F = F0 sin v0t. This force has an 
amplitude of F0 and a forcing frequency v0 . The free-body diagram for 
the block when it is displaced a distance x is shown in Fig. 22–11b. 
Applying the equation of motion, we have

S+ �Fx = max;	 F0 sin v0t - kx = mx
$

or

	 x
$

+
k
m

 x =
F0

m
 sin v0t� (22–18)

This equation is a nonhomogeneous second-order differential equation. 
The general solution consists of a complementary solution, xc , plus a 
particular solution, xp .

The complementary solution is determined by setting the term on the 
right side of Eq. 22–18 equal to zero and solving the resulting 
homogeneous equation. The solution is defined by Eq. 22–9, i.e.,

	 xc = C sin(vnt + f)� (22–19)

where vn is the natural frequency,  vn = 2k>m, Eq. 22–2.
Since the motion is periodic, the particular solution of Eq. 22–18 can be 

determined by assuming a solution of the form

	 xp = X sin v0t� (22–20)

where X is a constant. Taking the second time derivative and substituting 
into Eq. 22–18 yields

-Xv0
2 sin v0t +

k
m

 (X sin v0t) =
F0

m
 sin v0t

Factoring out sin v 0t and solving for X gives

	 X =
F0>m

(k>m) - v0
2 =

F0>k
1 - (v0>vn)

2 � (22–21)

Substituting into Eq. 22–20, we obtain the particular solution

		  xp =
F0>k

1 - (v0>vn)
2 sin v0t � (22–22)

W � mg

kx

(b)
N � W

F � F0 sin v0 t

Fig. 22–11 

Shaker tables provide forced vibration 
and are used to separate out granular 
materials. (© R.C. Hibbeler)
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The general solution is therefore the sum of two sine functions having 
different frequencies.

	 x = xc + xp = C sin(vnt + f) +
F0>k

1 - (v0>vn)
2 sin v0t� (22–23)

The complementary solution xc defines the free vibration, which depends 
on the natural frequency vn = 1k>m and the constants C and f. The 
particular solution xp describes the forced vibration of the block caused 
by the applied force F = F0 sin v0t. Since all vibrating systems are subject 
to friction, the free vibration, xc , will in time dampen out. For this reason 
the free vibration is referred to as transient, and the forced vibration is 
called steady-state, since it is the only vibration that remains.

From Eq. 22–21 it is seen that the amplitude of forced or steady-state 
vibration depends on the frequency ratio v0>vn . If the magnification 
factor MF is defined as the ratio of the amplitude of steady-state 
vibration, X, to the static deflection, F0>k, which would be produced by 
the amplitude of the periodic force F0 , then, from Eq. 22–21,

The soil compactor operates  
by forced vibration developed 
by an internal motor. It is  
important that the forcing  
frequency not be close to the 
natural frequency of vibration 
of the compactor, which can be 
determined when the motor is 
turned off; otherwise resonance 
will occur and the machine 
will  become uncontrollable. 
(© R.C. Hibbeler)
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	 MF =
X

F0>k =
1

1 - (v0>vn)
2� (22–24)

This equation is graphed in Fig. 22–12. Note that if the force or 
displacement is applied with a frequency close to the natural frequency 
of the system, i.e., v0>vn � 1, the amplitude of vibration of the block 
becomes extremely large. This occurs because the force F is applied to 
the block so that it always follows the motion of the block. This condition 
is called resonance, and in practice, resonating vibrations can cause 
tremendous stress and rapid failure of parts.* 

Periodic Support Displacement.  Forced vibrations can also 
arise from the periodic excitation of the support of a system. The model 
shown in Fig. 22–13a represents the periodic vibration of a block which is 
caused by harmonic movement d = d0 sin v0t of the support. The free-
body diagram for the block in this case is shown in Fig. 22–13b. The 
displacement d of the support is measured from the point of zero 
displacement, i.e., when the radial line OA coincides with OB. Therefore, 
general deformation of the spring is (x - d0 sin v0t). Applying the 
equation of motion yields

S+ Fx = max;	 -k(x - d0 sin v0t) = mx
$

or

	 x
$

+
k
m

 x =
kd0

m
 sin v0t� (22–25)

By comparison, this equation is identical to the form of Eq. 22–18, 
provided F0 is replaced by kd0 . If this substitution is made into the 
solutions defined by Eqs. 22–21 to 22–23, the results are appropriate for 
describing the motion of the block when subjected to the support 
displacement d = d0 sin v0t.

*A swing has a natural period of vibration, as determined in Example 22.1. If someone 
pushes on the swing only when it reaches its highest point, neglecting drag or wind 
resistance, resonance will occur since the natural and forcing frequencies are the same.

1

3

2

1

0

�1

�2

2 3

MF

(    )vn

v0

(v0 �� vn)

Fig. 22–12 

(a)

k

Equilibrium
position

x

O

O

A
B

d � d0 sin v0t

A

B

d0

v0

V0

W � mg

(b)

N � W

k(x � d0 sin v0t)

Fig. 22–13 
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The instrument shown in Fig. 22–14 is rigidly attached to a platform P, 
which in turn is supported by four springs, each having a stiffness 
k = 800 N>m. If the floor is subjected to a vertical displacement 
d = 10 sin(8t) mm, where t is in seconds, determine the amplitude of 
steady-state vibration. What is the frequency of the floor vibration 
required to cause resonance? The instrument and platform have a 
total mass of 20 kg.

P

k k

Fig. 22–14 

Solution
The natural frequency is

 vn = A k
m

=  B4(800 N>m)

20 kg
= 12.65 rad>s

The amplitude of steady-state vibration is found using Eq. 22–21,  
with kd0 replacing F0 .

X =
d0

1 - (v0>vn)
2 =

10

1 - [(8 rad>s)>(12.65 rad>s)]2 = 16.7 mm� Ans.

Resonance will occur when the amplitude of vibration X caused by 
the floor displacement approaches infinity.  This requires

	  v0 = vn = 12.6 rad>s� Ans.

Example   22.7
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*22.4  Viscous Damped Free Vibration

The vibration analysis considered thus far has not included the effects of 
friction or damping in the system, and as a result, the solutions obtained 
are only in close agreement with the actual motion. Since all vibrations 
die out in time, the presence of damping forces should be included in the 
analysis.

In many cases damping is attributed to the resistance created by the 
substance, such as water, oil, or air, in which the system vibrates. Provided 
the body moves slowly through this substance, the resistance to motion is 
directly proportional to the body’s speed. The type of force developed 
under these conditions is called a viscous damping force. The magnitude 
of this force is expressed by an equation of the form

	 F = cx
#
	 (22–26)

where the constant c is called the coefficient of viscous damping and has 
units of N # s>m or lb # s>ft.

The vibrating motion of a body or system having viscous damping can 
be characterized by the block and spring shown in Fig. 22–15a. The effect 
of damping is provided by the dashpot connected to the block on the 
right side. Damping occurs when the piston P moves to the right or left 
within the enclosed cylinder. The cylinder contains a fluid, and the 
motion of the piston is retarded since the fluid must flow around or 
through a small hole in the piston. The dashpot is assumed to have a 
coefficient of viscous damping c.

If the block is displaced a distance x from its equilibrium position, the 
resulting free-body diagram is shown in Fig. 22–15b. Both the spring and 
damping force oppose the forward motion of the block, so that applying 
the equation of motion yields

S+ �Fx = max ;	 -kx - cx
#

= mx
$

or

	 mx
$

+ cx
#

+ kx = 0	 (22–27)

This linear, second-order, homogeneous, differential equation has a 
solution of the form

x = elt

where e is the base of the natural logarithm and l (lambda) is a constant. 
The value of l can be obtained by substituting this solution and its time 
derivatives into Eq. 22–27, which yields

ml2elt + clelt + kelt = 0

or

elt(ml2 + cl + k) = 0

(a)

k

Equilibrium
position

x P

c

W � mg

kx

(b)

N � W

cx
.

Fig. 22–15 
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Since elt can never be zero, a solution is possible provided

ml2 + cl + k = 0

Hence, by the quadratic formula, the two values of l are

	  l1 = -
c

2m
+ B a c

2m
b

2

-
k
m

	

(22–28)

 l2 = -
c

2m
- B a c

2m
b

2

-
k
m

The general solution of Eq. 22–27 is therefore a combination of 
exponentials which involves both of these roots. There are three possible 
combinations of l1 and l2 which must be considered. Before discussing 
these combinations, however, we will first define the critical damping 
coefficient cc as the value of c which makes the radical in Eqs. 22–28 equal 
to zero; i.e.,

a cc

2m
b

2

-
k
m

= 0

or

	 cc = 2mA k
m

= 2mvn 	 (22–29)

Overdamped System.  When c 7 cc , the roots l1 and l2 are both 
real. The general solution of Eq. 22–27 can then be written as

	 x = Ael1t + Bel2t	 (22–30)

Motion corresponding to this solution is nonvibrating. The effect of 
damping is so strong that when the block is displaced and released, it 
simply creeps back to its original position without oscillating. The system 
is said to be overdamped.

Critically Damped System.  If c = cc, then l1 = l2 = -cc>2m = -vn. 
This situation is known as critical damping, since it represents a condition 
where c has the smallest value necessary to cause the system to be 
nonvibrating. Using the methods of differential equations, it can be shown 
that the solution to Eq. 22–27 for critical damping is

	 x = (A + Bt)e-vnt	 (22–31)
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Underdamped System.  Most often c 6 cc , in which case the 
system is referred to as underdamped. In this case the roots l1 and l2 are 
complex numbers, and it can be shown that the general solution of 
Eq. 22–27 can be written as

	 x = D[e-(c>2m)t sin(vdt + f)] 	 (22–32)

where D and f are constants generally determined from the initial 
conditions of the problem. The constant vd is called the damped natural 
frequency of the system. It has a value of

	    vd = B k
m

- a c

2m
b

2

= vnB1 - a c
cc
b

2

	 (22–33)

where the ratio c>cc is called the damping factor.
The graph of Eq. 22–32 is shown in Fig. 22–16. The initial limit of 

motion, D, diminishes with each cycle of vibration, since motion is 
confined within the bounds of the exponential curve. Using the damped 
natural frequency vd , the period of damped vibration can be written as

	 td =
2p
vd

	 (22–34)

Since vd 6 vn , Eq. 22–33, the period of damped vibration, td , will be 
greater than that of free vibration, t = 2p>vn .

x � D[e�(c/2m)tsin (vd t � f)]

x2

x1
D

D

x

De�(c/2m)t

�De�(c/2m)t

x3

x4

t1 t2 t3 t4
t

td

Fig. 22–16 
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*22.5  Viscous Damped Forced Vibration

The most general case of single-degree-of-freedom vibrating motion 
occurs when the system includes the effects of forced motion and induced 
damping. The analysis of this particular type of vibration is of practical 
value when applied to systems having significant damping characteristics.

If a dashpot is attached to the block and spring shown in Fig. 22–11a, 
the differential equation which describes the motion becomes

	 mx
$

+ cx
#

+ kx = F0 sin v0t	 (22–35)

A similar equation can be written for a block and spring having a 
periodic support displacement, Fig. 22–13a, which includes the effects 
of damping. In that case, however, F0 is replaced by kd0 . Since Eq. 22–35 
is nonhomogeneous, the general solution is the sum of a complementary 
solution, xc , and a particular solution, xp . The complementary solution 
is determined by setting the right side of Eq. 22–35 equal to zero and 
solving the homogeneous equation, which is equivalent to Eq. 22–27. 
The solution is therefore given by Eq. 22–30, 22–31, or 22–32, depending 
on the values of l1 and l2 . Because all systems are subjected to friction, 
then this solution will dampen out with time. Only the particular 
solution, which describes the steady-state vibration of the system, will 
remain. Since the applied forcing function is harmonic, the steady-state 
motion will also be harmonic. Consequently, the particular solution will 
be of the form

	 XP = X� sin(v0 t - f�)	 (22–36)

The constants X� and f� are determined by taking the first and second 
time derivatives and substituting them into Eq. 22–35, which after 
simplification yields

-X�mv0
2 sin(v0t - f�) +

X�cv0 cos(v0t - f�) + X�k sin(v0t - f�) = F0 sin v0t

Since this equation holds for all time, the constant coefficients can be 
obtained by setting v0t - f� = 0 and v0t - f� = p>2, which causes the 
above equation to become

	  X�cv0 = F0 sin f� 	

	  -X�mv0
2 + X�k = F0 cos f�	
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The amplitude is obtained by squaring these equations, adding the 
results, and using the identity sin2f� +  cos2f� = 1, which gives

	 X� =
F02(k - mv0

2)2 + c2v0
2  

	 (22–37)

Dividing the first equation by the second gives

	 f� = tan-1 c cv0

k - mv0
2 d 	 (22–38)

Since vn = 2k>m and cc = 2mvn , then the above equations can also be 
written as

	 X� =
F0>k2[1 - (v0>vn)

2]2 + [2(c>cc)(v0>vn)]
2

	

	 f� = tan-1 c 2(c>cc)(v0>vn)

1 - (v0>vn)
2 d 	

(22–39)

The angle f� represents the phase difference between the applied force 
and the resulting steady-state vibration of the damped system.

The magnification factor MF has been defined in Sec. 22.3 as the ratio 
of the amplitude of deflection caused by the forced vibration to the 
deflection caused by a static force F0 . Thus,

	 MF =
X�

F0>k =
12[1 - (v0>vn)

2]2 + [2(c>cc)(v0>vn)]
2
	 (22–40)

The MF is plotted in Fig. 22–17 versus the frequency ratio v0>vn for 
various values of the damping factor c>cc . It can be seen from this graph 
that the magnification of the amplitude increases as the damping factor 
decreases. Resonance obviously occurs only when the damping factor is 
zero and the frequency ratio equals 1.

5

4

3

2

1

0 1 2 3

MF

 � 0cc
c

v0
vn

 � 0.10cc
c

 � 0.50cc
c

 � 0.25cc
c

 � 1.00cc
c

  Fig. 22–17 
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The 30-kg electric motor shown in Fig. 22–18 is confined to move 
vertically, and is supported by four springs, each spring having a 
stiffness of 200 N>m. If the rotor is unbalanced such that its effect is 
equivalent to a 4-kg mass located 60 mm from the axis of rotation, 
determine the amplitude of vibration when the rotor is turning at 
v0 = 10 rad>s. The damping factor is c>cc = 0.15.

V

Fig. 22–18 

Solution
The periodic force which causes the motor to vibrate is the centrifugal 
force due to the unbalanced rotor. This force has a constant magnitude of

F0 = man = mrv0
2 = 4 kg(0.06 m)(10 rad>s)2 = 24 N

The stiffness of the entire system of four springs is k = 4(200 N>m) = 
800 N>m. Therefore, the natural frequency of vibration is

vn = A k
m

= B800 N>m
30 kg

= 5.164 rad>s

Since the damping factor is known, the steady-state amplitude can be 
determined from the first of Eqs. 22–39, i.e.,

	  X� =
F0>k2[1 - (v0>vn)

2]2 + [2(c>cc)(v0>vn)]
2

	

	  =
24>8002 [1 - (10>5.164)2]2 + [2(0.15)(10>5.164)]2

	

	  = 0.0107 m = 10.7 mm � Ans.

Example   22.8



22

*22.6  Electrical Circuit Analogs

The characteristics of a vibrating mechanical system can be represented by 
an electric circuit. Consider the circuit shown in Fig. 22–19a, which consists 
of an inductor L, a resistor R, and a capacitor C. When a voltage E(t) is 
applied, it causes a current of magnitude i to flow through the circuit. As 
the current flows past the inductor the voltage drop is L(di>dt), when it 
flows across the resistor the drop is Ri, and when it arrives at the capacitor 
the drop is (1>C)1 i dt. Since current cannot flow past a capacitor, it is only 
possible to measure the charge q acting on the capacitor. The charge can, 
however, be related to the current by the equation i = dq>dt. Thus, the 
voltage drops which occur across the inductor, resistor, and capacitor 
become L d2q>dt2, R dq>dt, and q>C, respectively. According to Kirchhoff’s 
voltage law, the applied voltage balances the sum of the voltage drops 
around the circuit. Therefore,

	 L 
d2q

dt2
+ R 

dq

dt
+

1

C
 q = E(t)	 (22–41)

Consider now the model of a single-degree-of-freedom mechanical 
system, Fig. 22–19b, which is subjected to both a general forcing function 
F(t) and damping. The equation of motion for this system was established 
in the previous section and can be written as

	 m 
d2x

dt2
+ c 

dx

dt
+ kx = F(t)	 (22–42)

By comparison, it is seen that Eqs. 22–41 and 22–42 have the same form, 
and hence mathematically the procedure of analyzing an electric circuit 
is the same as that of analyzing a vibrating mechanical system. The 
analogs between the two equations are given in Table 22–1.

This analogy has important application to experimental work, for it is 
much easier to simulate the vibration of a complex mechanical system 
using an electric circuit, which can be constructed on an analog computer, 
than to make an equivalent mechanical spring-and-dashpot model.

C

L R

E (t)

(a)

k

m F (t)

(b)

c

Fig. 22–19 

Table 22–1   

Electrical–Mechanical Analogs

Electrical Mechanical

Electric charge q Displacement x

Electric current i Velocity dx>dt

Voltage E(t) Applied force F(t)

Inductance L Mass m

Resistance R Viscous damping 
coefficient

c

Reciprocal of capacitance 1>C Spring stiffness k
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22–46.  A 5-kg block is suspended from a spring having a 
stiffness of 300 N>m. If the block is acted upon by a vertical 
force F = (7 sin 8t) N, where t is in seconds, determine the 
equation which describes the motion of the block when it is 
pulled down 100 mm from the equilibrium position and 
released from rest at t = 0. Assume that positive 
displacement is downward.

k � 300 N/m

F � 7 sin 8t

Prob. 22–46

22–47.  The uniform rod has a mass of m. If it is acted upon 
by a periodic force of F = F0 sin vt, determine the 
amplitude of the steady-state vibration.

kk

L
2

L
2

F � F0  sin vt

A

Prob. 22–47

22–41.  If the block-and-spring model is subjected to the 
periodic force F = F0 cos vt, show that the differential 
equation of motion is x

$
+ (k >m)x = (F0>m ) cos vt , where x 

is measured from the equilibrium position of the block. 
What is the general solution of this equation?

F � F0 cos vtk

Equilibrium
position

x

m

Prob. 22–41

22–42.  A block which has a mass m is suspended from a 
spring having a stiffness k. If an impressed downward vertical 
force F = FO acts on the weight, determine the equation 
which describes the position of the block as a function of time.

22–43.  A 4-lb weight is attached to a spring having a 
stiffness k = 10 lb>ft. The weight is drawn downward a 
distance of 4 in. and released from rest. If the support moves 
with a vertical displacement d = (0.5 sin 4t) in., where t is in 
seconds, determine the equation which describes the 
position of the weight as a function of time.

*22–44.  A 4-kg block is suspended from a spring that has 
a stiffness of k = 600 N>m. The block is drawn downward  
50 mm from the equilibrium position and released from 
rest when t = 0. If the support moves with an impressed 
displacement of d = (10 sin 4t) mm, where t is in seconds, 
determine the equation that describes the vertical  
motion of the block. Assume positive displacement is 
downward.

22–45.  Use a block-and-spring model like that shown in 
Fig.  22–13a, but suspended from a vertical position and 
subjected to a periodic support displacement d = d0 sin v0t, 
determine the equation of motion for the system, and 
obtain its general solution. Define the displacement y 
measured from the static equilibrium position of the block 
when t = 0.

PROBLEMS
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*22–48.  The 30-lb block is attached to two springs having 
a stiffness of 10 lb>ft. A periodic force F = (8 cos 3t) lb, 
where t is in seconds, is applied to the block. Determine the 
maximum speed of the block after frictional forces cause 
the free vibrations to dampen out.

    k � 10 lb/ft

    k � 10 lb/ft

F � 8 cos 3t

Prob. 22–48

22–49.  The light elastic rod supports a 4-kg sphere. When 
an 18-N vertical force is applied to the sphere, the rod 
deflects 14 mm. If the wall oscillates with harmonic 
frequency of 2 Hz and has an amplitude of 15 mm, determine 
the amplitude of vibration for the sphere.

0.75 m

Prob. 22–49

22–50.  Find the differential equation for small oscillations 
in terms of u for the uniform rod of mass m. Also show that 
if c 6 1mk >2, then the system remains underdamped. The 
rod is in a horizontal position when it is in equilibrium.

A
B

a

C

c k 

2

u

a

Prob. 22–50

22–51.  The 40-kg block is attached to a spring having a 
stiffness of 800 N>m. A force F = (100 cos 2t) N, where t is 
in seconds is applied to the block. Determine the maximum 
speed of the block for the steady-state vibration.

F � (100 cos 2t) N

k � 800 N/m

Prob. 22–51

*22–52.  Using a block-and-spring model, like that shown 
in Fig. 22–13a, but suspended from a vertical position and 
subjected to a periodic support displacement of d = d0 cos v0t, 
determine the equation of motion for the system, and obtain 
its general solution. Define the displacement y measured from 
the static equilibrium position of the block when t = 0.

22–53.  The fan has a mass of 25 kg and is fixed to the end 
of a horizontal beam that has a negligible mass. The fan 
blade is mounted eccentrically on the shaft such that it is 
equivalent to an unbalanced 3.5-kg mass located 100 mm 
from the axis of rotation. If the static deflection of the beam 
is 50 mm as a result of the weight of the fan, determine the 
angular velocity of the fan blade at which resonance will 
occur. Hint: See the first part of Example 22.8.

22–54.  In Prob. 22–53, determine the amplitude of steady-
state vibration of the fan if its angular velocity is 10 rad>s.

22–55.  What will be the amplitude of steady-state vibration 
of the fan in Prob. 22–53 if the angular velocity of the fan 
blade is 18 rad>s? Hint: See the first part of Example 22.8.

V

Probs. 22–53/54/55
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*22–60.  The 450-kg trailer is pulled with a constant speed 
over the surface of a bumpy road, which may be approximated 
by a cosine curve having an amplitude of 50 mm and wave 
length of 4 m. If the two springs s which support the trailer 
each have a stiffness of 800  N>m, determine the speed v 
which will cause the greatest vibration (resonance) of the 
trailer. Neglect the weight of the wheels.

22–61.  Determine the amplitude of vibration of the trailer 
in Prob. 22–60 if the speed v = 15 km>h.

s

v

100 mm

2 m 2 m

Probs. 22–60/61

22–62.  The motor of mass M is supported by a simply 
supported beam of negligible mass. If block A of mass m is 
clipped onto the rotor, which is turning at constant angular 
velocity of v, determine the amplitude of the steady-
state  vibration. Hint: When the beam is subjected to a 
concentrated force of P at its mid-span, it deflects 
d = PL3>48EI at this point. Here E is Young’s modulus of 
elasticity, a property of the material, and I is the moment of 
inertia of the beam’s cross-sectional area.

A

r

L
2

L
2

Prob. 22–62

*22–56.  The small block at A has a mass of 4 kg and is 
mounted on the bent rod having negligible mass. If the rotor 
at B causes a harmonic movement dB = (0.1 cos 15t) m, 
where t is in seconds, determine the steady-state amplitude 
of vibration of the block.

k � 15 N/m

0.6 m

1.2 m

A
O

B

V

Prob. 22–56

22–57.  The electric motor turns an eccentric flywheel 
which is equivalent to an unbalanced 0.25-lb weight located 
10 in. from the axis of rotation. If the static deflection of the 
beam is 1 in. because of the weight of the motor, determine 
the angular velocity of the flywheel at which resonance will 
occur. The motor weighs 150 lb. Neglect the mass of 
the beam.

22–58.  What will be the amplitude of steady-state 
vibration of the motor in Prob. 22–57 if the angular velocity 
of the flywheel is 20 rad>  s?

22–59.  Determine the angular velocity of the flywheel in 
Prob. 22–57 which will produce an amplitude of vibration 
of 0.25 in.

V

Probs. 22–57/58/59
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*22–68.	 The 200-lb electric motor is fastened to the 
midpoint of the simply supported beam. It is found that  
the beam deflects 2 in. when the motor is not running. The 
motor turns an eccentric flywheel which is equivalent to an 
unbalanced weight of 1 lb located 5 in. from the axis of 
rotation. If the motor is turning at 100 rpm, determine the 
amplitude of steady-state vibration. The damping factor is 
c>cc = 0.20. Neglect the mass of the beam.

Prob. 22–68

22–69.  Two identical dashpots are arranged parallel to 
each other, as shown. Show that if the damping coefficient  
c 6 1mk, then the block of mass m will vibrate as an 
underdamped system.

k 

cc

Prob. 22–69

22–63.  The spring system is connected to a crosshead that 
oscillates vertically when the wheel rotates with a constant 
angular velocity of V. If the amplitude of the steady-state 
vibration is observed to be 400 mm, and the springs each 
have a stiffness of k = 2500 N>m, determine the two 
possible values of V at which the wheel must rotate. The 
block has a mass of 50 kg.

*22–64.	 The spring system is connected to a crosshead that 
oscillates vertically when the wheel rotates with a constant 
angular velocity of v = 5 rad>s. If the amplitude of the 
steady-state vibration is observed to be 400 mm, determine 
the two possible values of the stiffness k of the springs. The 
block has a mass of 50 kg.

200 mm

k k

v

Probs. 22–63/64

22–65.  A 7-lb block is suspended from a spring having a 
stiffness of k = 75 lb>ft. The support to which the spring is 
attached is given simple harmonic motion which may be 
expressed as d = (0.15 sin 2t) ft, where t is in seconds. If the 
damping factor is c>cc = 0.8, determine the phase angle f 
of forced vibration.

22–66.  Determine the magnification factor of the block, 
spring, and dashpot combination in Prob. 22–65.

22–67.  A block having a mass of 7 kg is suspended from a 
spring that has a stiffness k = 600 N>m. If the block is given 
an upward velocity of 0.6 m>s from its equilibrium position 
at t = 0, determine its position as a function of time. 
Assume that positive displacement of the block is downward 
and that motion takes place in a medium which furnishes a 
damping force F = (50 � v � ) N, where v  is in m>  s.
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22–73.  The bar has a weight of 6 lb. If the stiffness of the 
spring is k = 8 lb>ft and the dashpot has a damping 
coefficient c = 60 lb # s>ft, determine the differential 
equation which describes the motion in terms of the angle u
of the bar’s rotation. Also, what should be the damping 
coefficient of the dashpot if the bar is to be critically 
damped?

c

CA

k

B

2 ft 3 ft

Prob. 22–73

22–74.  A bullet of mass m has a velocity of v0 just before it 
strikes the target of mass M. If the bullet embeds in the 
target, and the vibration is to be critically damped, determine 
the dashpot’s critical damping coefficient, and the springs’ 
maximum compression. The target is free to move along the 
two horizontal guides that are “nested” in the springs.

22–75.  A bullet of mass m has a velocity v0 just before it 
strikes the target of mass M. If the bullet embeds in the 
target, and the dashpot’s damping coefficient is 0 6 c << cc, 
determine the springs’ maximum compression. The target is 
free to move along the two horizontal guides that are 
“nested” in the springs.

k

c

v0

k

Probs. 22–74/75

22–70.  The damping factor, c>cc, may be determined 
experimentally by measuring the successive amplitudes 
of  vibrating motion of a system. If two of these 
maximum  displacements can be approximated by x1   
and x2, as shown  in Fig. 22–16, show that  
ln  (x1>x2) =  2p(c>cc)>21- (c>cc)2. The quantity ln (x1>x2) 
is called the logarithmic decrement.

22–71.  If the amplitude of the 50-lb cylinder’s steady-state 
vibration is 6 in., determine the wheel’s angular velocity v.

c � 25 lb�s/ft

k � 200 lb/ftk � 200 lb/ft

9 in.
v

Prob. 22–71

*22–72.  The block, having a weight of 12 lb, is immersed in 
a liquid such that the damping force acting on the block has 
a magnitude of F = (0.7|v|) lb, where v is in ft>s. If the block 
is pulled down 0.62 ft and released from rest, determine the 
position of the block as a function of time. The spring has a 
stiffness of k = 53 lb>ft. Assume that positive displacement 
is downward.

k

Prob. 22–72



22

22–78.  Draw the electrical circuit that is equivalent to the 
mechanical system shown. What is the differential equation 
which describes the charge q in the circuit?

k kc

m

Prob. 22–78

22–79.  Draw the electrical circuit that is equivalent to the 
mechanical system shown. Determine the differential 
equation which describes the charge q in the circuit.

k

m

c

Prob. 22–79

*22–76.  Determine the differential equation of motion for 
the damped vibratory system shown. What type of motion 
occurs? Take k = 100 N>m, c = 200 N # s>m, m = 25 kg.

k k k

c c

m

Prob. 22–76

22–77.  Draw the electrical circuit that is equivalent to the 
mechanical system shown. Determine the differential 
equation which describes the charge q in the circuit.

k

m
F � F0 cos vt  

c

Prob. 22–77
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Chapter Review

Undamped Free Vibration

A body has free vibration when 
gravitational or elastic restoring forces 
cause the motion. This motion is 
undamped when friction forces are 
neglected. The periodic motion of an 
undamped, freely vibrating body can be 
studied by displacing the body from the 
equilibrium position and then applying 
the equation of motion along the path.

For a one-degree-of-freedom system,  
the resulting differential equation can  
be written in terms of its natural 
frequency vn .

Equilibrium
position

x

k

x
$

+ vn 

2 x = 0    t =
2p
vn

    f =
1
t

=
vn

2p

Energy Methods

Provided the restoring forces acting on 
the body are gravitational and elastic, 
then conservation of energy can also be 
used to determine its simple harmonic 
motion. To do this, the body is displaced 
a small amount from its equilibrium 
position, and an expression for its 
kinetic and potential energy is written. 
The time derivative  of this equation can 
then be rearranged  in the standard form 
x
$

+ vn 

2 x = 0.

Undamped Forced Vibration

When the equation of motion is applied 
to a body, which is subjected to a periodic 
force, or the support has a displacement 
with a frequency v0 , then the solution of 
the differential equation consists of a 
complementary solution and a particular 
solution. The complementary solution is 
caused by the free vibration and can be 
neglected. The particular solution is 
caused by the forced vibration.

Resonance will occur if the natural 
frequency of vibration vn is equal to the 
forcing frequency v0 . This should be 
avoided, since the motion will tend to 
become unbounded.

k F � F0 sin v0t

Equilibrium
position x

xp =
F0>k

1 - (v0>vn)
2 sin v0t



22

	 Chapter Review	 681

Viscous Damped Free Vibration

A viscous damping force is caused by 
fluid drag on the system as it vibrates. If 
the motion is slow, this drag force will be 
proportional to the velocity, that is, 
F = cx

#
. Here c is the coefficient of 

viscous damping. By comparing its value 
to the critical damping coefficient 
cc = 2mvn , we can specify the type of 
vibration that occurs. If c 7 cc , it is an 
overdamped system; if c = cc , it is a 
critically damped system; if c 6 cc , it is 
an underdamped system.

k

Equilibrium
position

x

c

Viscous Damped Forced Vibration

The most general type of vibration for a 
one-degree-of-freedom system occurs 
when the system is damped and 
subjected to periodic forced motion. The 
solution provides insight as to how the 
damping factor, c>cc , and the frequency 
ratio, v0>vn , influence the vibration.

Resonance is avoided provided 
c>cc � 0 and v0>vn � 1.

Electrical Circuit Analogs

The vibrating motion of a complex 
mechanical system can be studied by 
modeling it as an electrical circuit. This is 
possible since the differential equations 
that govern the behavior of each system 
are the same.



Mathematical 
Expressions

Quadratic Formula

If ax2 + bx + c = 0, then x =
-b { 2b2 - 4ac

2a

Hyperbolic Functions

sinh x =
ex - e-x

2
, cosh x =

ex + e-x

2
, tanh x =

sinh x

cosh x

Trigonometric Identities

sin u =
A

C
, csc u =

C

A

cos u =
B

C
, sec u =

C

B

tan u =
A

B
, cot u =

B

A
sin2 u + cos2 u = 1

sin(u { f) = sin u cos f { cos u sin f

sin 2u = 2 sin u cos u

cos(u { f) = cos u cos f | sin u sin f

cos 2u = cos2 u - sin2 u

cos u = {A1 + cos 2u

2
, sin u = {A1 - cos 2u

2

tan u =
sin u

cos u
1 + tan2 u = sec2 u 1 + cot2 u = csc2 u

Power-Series Expansions

 sin x = x -
x3

3!
+ g sinh x = x +

x3

3!
+ g

 cos x = 1 -
x2

2!
+ g cosh x = 1 +

x2

2!
+ g

A
Appendix

Derivatives

d

dx
 (un) = nun -1 

du

dx

d

dx
 (uv) = u 

dv

dx
+ v 

du

dx

d

dx
 a u

v
b =

v 
du

dx
- u 

dv

dx

v2

d

dx
 (cot u) = -csc2 u 

du

dx

d

dx
 (sec u) = tan u sec u 

du

dx

d

dx
 (csc u) = -csc u cot u 

du

dx

d

dx
 (sin u) = cos u 

du

dx

d

dx
 (cos u) = -sin u 

du

dx

d

dx
 (tan u) = sec2 u 

du

dx

d

dx
 (sinh u) = cosh u 

du

dx

d

dx
 (cosh u) = sinh u 

du

dx

AC

u

B
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A

Integrals

Lxn dx =
xn +1

n + 1
+ C, n � -1

L  
dx

a + bx
=

1

b
 ln(a + bx) + C

L  
dx

a + bx2 =
1

22-ba
 ln£ a + x2-ab

a - x2-ab
§ + C,  ab 6 0

L  
x dx

a + bx2 =
1

2b
 ln(bx2 + a) + C

L  
x2 dx

a + bx2 =
x

b
-

a

b2ab
 tan-1 

x2ab
a

+ C, ab 7 0

L  
dx

a2 - x2 =
1

2a
 ln c a + x

a - x
d + C, a2 7 x2

L2a + bx dx =
2

3b
2(a + bx)3 + C

Lx2a + bx dx =
-2(2a - 3bx)2(a + bx)3

15b2 + C

Lx22a + bx dx =
2(8a2 - 12abx + 15b2x2)2(a + bx)3

105b3 + C

L2a2 - x2 dx =
1

2
 c x2a2 - x2 + a2 sin-1 

x
a
d + C, a 7 0

 Lx2x2 { a2 dx =
1

3
 2(x2 { a2)3 + C

Lx22a2 - x2 dx = -
x

4
2(a2 - x2)3

	 +
a2

8
 ax2a2 - x2 + a2 sin-1 

x
a
b + C, a 7 0

L2x2 { a2 dx =
1

2
 3x2x2 { a2 { a2 ln1x + 2x2 { a22 4 + C

Lx2a2 - x2 dx = -
1

3
2(a2 - x2)3 + C

 Lx22x2 { a2 dx =
x

4
 2(x2 { a2)3 |

a2

8
 x2x2 { a2

	 -
a4

8
 ln1x + 2x2 { a22 + C

L  
dx2a + bx

=
22a + bx

b
+ C

L  
x dx2x2 { a2

= 2x2 { a2 + C

L  
dx2a + bx + cx2

=
11c

 ln c2a + bx + cx2

� + x1c +
b

21c
d + C,  c 7 0

� =
11-c

 sin-1a -2cx - b2b2 - 4ac
b + C, c 6 0

L  sin x dx = -cos x + C

L  cos x dx = sin x + C

Lx cos(ax) dx =
1

a2 cos(ax) +
x
a

 sin(ax) + C

Lx2 cos(ax) dx =
2x

a2  cos(ax)

� +
a2x2 - 2

a3  sin(ax) + C

Leax dx =
1
a

 eax + C

Lxeax dx =
eax

a2  (ax - 1) + C

Lsinh x dx = cosh x + C

Lcosh x dx = sinh x + C



Vector AnalysisAppendix

B
The following discussion provides a brief review of vector analysis. 
A  more detailed treatment of these topics is given in Engineering 
Mechanics: Statics. 

Vector.  A vector, A, is a quantity which has magnitude and direction, 
and adds according to the parallelogram law. As shown in Fig. B–1, 
A = B + C, where A is the resultant vector and B and C are 
component vectors.

Unit Vector.  A unit vector, uA, has a magnitude of one “dimensionless” 
unit and acts in the same direction as A. It is determined by dividing A by 
its magnitude A, i.e,

	 uA =
A
A

	 (B–1)

684

A � B � C

B

C

Fig. B–1 
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Cartesian Vector Notation.  The directions of the positive x, y, z 
axes are defined by the Cartesian unit vectors i, j, k, respectively.

As shown in Fig. B–2, vector A is formulated by the addition of its 
x, y, z components as

	 A = A x i + A y j + A z k	 (B–2)

The magnitude of A is determined from

	 A = 2A x
2 + A y

2 + A z
2 	 (B–3)

The direction of A is defined in terms of its coordinate direction angles, a, 
b, g, measured from the tail of A to the positive x, y, z axes, Fig. B–3. These 
angles are determined from the direction cosines which represent the i, j, 
k components of the unit vector uA ; i.e., from Eqs. B–1 and B–2

	 uA =
A x

A
 i +

A y

A
 j +

A z

A
 k 	 (B–4)

so that the direction cosines are

	 cos a =
A x

A
 cos b =

A y

A
  cos g =

A z

A
	 (B–5)

Hence, uA = cos ai + cos bj + cos gk, and using Eq. B–3, it is seen that

	 cos2 a + cos2 b + cos2 g = 1	 (B–6)

The Cross Product.  The cross product of two vectors A and B, 
which yields the resultant vector C, is written as

	 C = A * B	 (B–7)

and reads C equals A “cross” B. The magnitude of C is

	 C = AB sin u	 (B–8)

where u is the angle made between the tails of A and B (0� … u … 180�). 
The direction of C is determined by the right-hand rule, whereby the 
fingers of the right hand are curled from A to B and the thumb points in 
the direction of C, Fig. B–4. This vector is perpendicular to the plane 
containing vectors A and B.

Axi

Ayj

Azk

y

x

ji

k

A

z

Fig. B–2 

z

y
a

g

b

x

A

Fig. B–3 

C

u
B

A

Fig. B–4 
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The vector cross product is not commutative, i.e., A * B � B * A. 
Rather,

	 A * B = -B * A	 (B–9)

The distributive law is valid; i.e.,

	 A * (B + D) = A * B + A * D	 (B–10)

And the cross product may be multiplied by a scalar m in any manner; i.e.,

	 m(A * B) = (mA) * B = A * (mB) = (A * B)m	 (B–11)

Equation B–7 can be used to find the cross product of any pair of 
Cartesian unit vectors. For example, to find i * j, the magnitude is 
(i)(j) sin 90� = (1)(1)(1) = 1, and its direction +k is determined from the 
right-hand rule, applied to i * j, Fig. B–2. A simple scheme shown in 
Fig. B–5 may be helpful in obtaining this and other results when the need 
arises. If the circle is constructed as shown, then “crossing” two of the 
unit vectors in a counterclockwise fashion around the circle yields a 
positive third unit vector, e.g., k * i = j. Moving clockwise, a negative 
unit vector is obtained, e.g., i * k = -j.

If A and B are expressed in Cartesian component form, then the cross 
product, Eq. B–7, may be evaluated by expanding the determinant

	 C = A * B = 3 i j k
A x A y A z

Bx By Bz

3 	 (B–12)

which yields

	 C = (A yBz - A zBy)i - (A xBz - A zBx)j + (A xBy - A yBx)k	

Recall that the cross product is used in statics to define the moment of 
a force F about point O, in which case

	 MO = r * F	 (B–13)

where r is a position vector directed from point O to any point on the line 
of action of F.

i

kj

�

�
Fig. B–5 



	 Appendix B    Vector Analysis	 687

B

The Dot Product.  The dot product of two vectors A and B, which 
yields a scalar, is defined as

	 A # B = AB cos u	 (B–14)

and reads A “dot” B. The angle u is formed between the tails of A and B 
(0� … u … 180�).

The dot product is commutative; i.e.,

	 A # B = B # A	 (B–15)

The distributive law is valid; i.e.,

	 A # (B + D) = A # B + A # D	 (B–16)

And scalar multiplication can be performed in any manner, i.e.,

	 m(A # B) = (mA) # B = A # (mB) = (A # B)m	 (B–17)

Using Eq. B–14, the dot product between any two Cartesian  
vectors can be determined. For example, i # i = (1)(1) cos 0� = 1 and 
i # j = (1)(1) cos 90� = 0.

If A and B are expressed in Cartesian component form, then the dot 
product, Eq. C–14, can be determined from

	 A # B = A xBx + A yBy + A zBz 	 (B–18)

The dot product may be used to determine the angle u formed between 
two vectors. From Eq. B–14,

	 u = cos-1aA # B
AB
b 	 (B–19)
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It is also possible to find the component of a vector in a given direction 
using the dot product. For example, the magnitude of the component (or 
projection) of vector A in the direction of B, Fig. B–6, is defined by 
A  cos u. From Eq. B–14, this magnitude is

	 A  cos u = A # B
B

= A # uB	 (B–20)

where uB represents a unit vector acting in the direction of B, Fig. B–6.

Differentiation and Integration of Vector Functions.   The 
rules for differentiation and integration of the sums and products of scalar 
functions also apply to vector functions. Consider, for example, the two 
vector functions A(s) and B(s). Provided these functions are smooth and 
continuous for all s, then

	
d

ds
 (A + B) =

dA
ds

+
dB
ds

	 (B–21)

	 L(A + B) ds = LA ds + LB ds 	 (B–22)

For the cross product,

	
d

ds
 (A * B) = a dA

ds
* Bb + aA *

dB
ds
b 	 (B–23)

Similarly, for the dot product,

	
d

ds
 (A # B) =

dA
ds

# B + A # dB
ds

	 (B–24)

A

uB

A cos u
B

u

Fig. B–6 



The Chain Rule Appendix 

The chain rule of calculus can be used to determine the time derivative of 
a composite function. For example, if y is a function of x and x is a function 
of t, then we can find the derivative of y with respect to t as follows

	  y 
#
 =

 dy

  dt
 =

 dy

  dx
  

 dx

  dt
 	 (C–1)

In other words, to find y 
#
 we take the ordinary derivative (dy>dx) and 

multiply it by the time derivative (dx>dt).
If several variables are functions of time and they are multiplied 

together, then the product rule d(uv) = du v + u dv must be used along 
with the chain rule when taking the time derivatives. Here are some 
examples. 

C

689
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If y = x3 and x = t4, find  y 
$
, the second derivative of y with respect  

to time.

SOLUTION
Using the chain rule, Eq. C–1,

y
#

= 3x2x
#

To obtain the second time derivative we must use the product rule 
since x and x

#
 are both functions of time, and also, for 3x2 the chain rule 

must be applied. Thus, with u = 3x2 and v = x
#
, we have

 y
$

= [6xx
#
]x

#
+ 3x2[x

$
]

	  = 3x[2x
#2 + xx

$
]

Since x = t4, then x
#

= 4t3 and x
$

= 12t2 so that

 y
$

= 3(t4)[2(4t3)2 + t4(12t2)]

 = 132t10

Note that this result can also be obtained by combining the functions, 
then taking the time derivatives, that is,

 y = x3 = (t4)3 = t12

	  y
#

= 12t11

	  y
$

= 132t10

Example   C–1

Example   C–2

If y = xex, find y
$
.

SOLUTION
Since x and ex are both functions of time the product and chain rules 
must be applied. Have u = x and v = ex.

y
#

= [x
#
]ex + x[exx

#
]

The second time derivative also requires application of the product 
and chain rules. Note that the product rule applies to the three time 
variables in the last term, i.e., x, ex, and x

#
.

 y
$

= 5[x
$
]ex + x

#
[exx]

# 6 + 5[x
#
]exx

#
+ x[exx

#
]x

#
+ xex[x

$
]6

	  = ex[x
$
(1 + x) + x

# 2(2 + x)]

If x = t2 then x
#

= 2t, x
$

= 2 so that in terms in t, we have

y
$

= et2
[2(1 + t2) + 4t2(2 + t2)]C
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If the path in radial coordinates is given as r =  5u2, where u is a 
known function of time, find r

$
.

SOLUTION
First, using the chain rule then the chain and product rules where 
u = 10u and v = u

#
, we have

r = 5u2

	 r
# =  10uu

#

r
$ =  10[(u

#
)u

#
+ u(u

$
)]

 = 10u
#
2 + 10uu

$

Example   C–3

Example   C–4

If r2 = 6u3, find r
$
.

SOLUTION
Here the chain and product rules are applied as follows.

 r2 = 6u3

2rr
#

= 18u2u
#

2[(r
#
)r

#
+ r(r

$
)] = 18[(2uu

#
)u

#
+ u2(u

$
)]

 r
# 2 + rr

$
= 9(2uu

#
2 + u2u

$
)

To find r
$
 at a specified value of u which is a known function of time, 

we can first find u
#
 and u

$
. Then using these values, evaluate r from  

the first equation, r
#
 from the second equation and r

$
 using the last 

equation.

C



F12–8.	�  a = v dv
ds

	  = 120 - 0.05s221-0.1s2
	 At s = 15 m,
	 a = -13.1 m>s2 = 13.1 m>s2 d � Ans.

F12–9.	� v =
ds
dt =

d
dt 10.5t32 = 1.5t2

	 v =
ds
dt =

d
dt (108) = 0� Ans.

106

54

v (m/s)

t (s)

F12–10.	� ds = v dt

	 L
s

0
 ds = L

t

0
 (-4t + 80) dt

	 s = -2t2 + 80t

	 a =
dv
dt =

d
dt (-4t + 80) = -4 ft>s2 = 4 ft>s2 d

	 Also,
	 a =

v
t =

0 - 80 ft>s
20 s - 0 = -4 ft>s2

20

800

s (ft)

t (s)

20

�4

a (ft/s2)

t (s)

Chapter 12

F12–1.	 v = v0 + act 
	 10 = 35 + ac(15) 
	 ac = -1.67 m>s2 = 1.67 m>s2 d � Ans.

F12–2.	��  s = s0 + v0t +
1
2act

2  

	  0 = 0 + 15t +
1
2 (-9.81)t2 

	  t = 3.06 s � Ans.

F12–3.	�   ds = v dt  

	  L
s

0
ds = L

t

0
14t - 3t

22dt  

	  s = 12t2 -  t32m 

	  s = 21422  -  43 
	  =  -32 m = 32 m d � Ans.

F12–4.	� a =
dv
dt =

d
dt 10.5t3 -  8t2 

	 a = 11.5t2 -  82 m>s2

	 When t = 2 s,
	 a = 1.51222 - 8 = -2 m>s2 = 2 m>s2 d � Ans.

F12–5.	� v =
ds
dt =

d
dt (2t2 - 8t + 6) = (4t - 8) m>s 

	 v = 0 = (4t - 8)
	 t = 2 s � Ans.
	 s�t = 0 = 21022 - 8(0) + 6 = 6 m 
	 s�t = 2 = 21222 - 8(2) + 6 = -2 m 	
	 s�t = 3 = 21322 - 8(3) + 6 = 0 m 
	 (s)Tot = 8 m + 2 m = 10 m� Ans.

F12–6.	� Lv dv = La ds 

	 L
v

5 m>s
v dv = L

s

0
(10 - 0.2s)ds 

	 v = 1220s - 0.2s2 + 25 2 m>s
	 At s = 10 m,
	  v = 220(10) - 0.2(102   ) + 25

	     = 14.3 m>s S � Ans.

F12–7.	� v = L (4t2 - 2) dt

	 v =
4
3 t3 - 2t + C1

	 s = L 
 14

3 t3 - 2t + C12 dt

	 s =
1
3 t 

4 - t 

2 + C1t + C2

	 t = 0, s = -2, C2 = -2

	 t = 2, s = -20, C1 = -9.67

	 t = 4, s = 28.7 m� Ans.

Fundamental Problems  
Partial Solutions And Answers 
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	 0 = 150 - 10t
	 t = 15 s
	 Also,
	 v = 0 = Area under the a- t graph
	 0 = (20 m>s2)(5 s) + [- (10 m>s)(t -  5) s]
	 t = 15 s

155

100

v (m/s)

t (s)

F12–14.	� 0 … t … 5 s,

	  ds = v dt  L
s

0
ds = L

t

0
 30t dt

	  s 0 s0 = 15t2 0 t0
	  s = (15t2) m
	 5 s 6 t … 15 s,

	 ( S+
 

)  ds = v dt; L
s

375 m
 ds = L

t

5 s
  (-15t + 225)dt

	  s = (-7.5t2 + 225t - 562.5) m
	  s = (-7.5)(15)2 + 225(15) - 562.5 m
	  = 1125 m � Ans.
	 Also,
	  s = Area under the v- t graph
	  =

1
2 (150 m>s)(15 s)

	  = 1125 m � Ans.

155

1125

375

s (m)

t (s)

F12–15.	� L
x

0
dx = L

t

0
32t dt

	 x = 116t 22 m� (1)

	 L
y

0
dy = L

t

0
8 dt

	 t =
y

8
� (2)

F12–11.	� a ds = v dv

	 a = vdv
ds = 0.25s d

ds (0.25s) = 0.0625s

	 a �  s = 40 m = 0.0625(40 m) = 2.5 m>s2 S

40

2.5

a (m/s2)

s (m)

F12–12.	 For 0 … s … 10 m

	 a = s

	 L
v

0
v	dv = L

s

0
s ds

	 	 v = s

	 at s = 10 m, v = 10 m

	 For 10 m … s … 15

		  a = 10

	  L
v

10
v	dv = L

s

10
10 ds 

	  
1

2
 v2 - 50 = 10s - 100

	  v = 220s - 100

		  at s = 15 m

		  v = 14.1 m>s	 Ans.

15105

10

v (m/s)

s (m)

F12–13.	� 0 … t 6 5 s,

	 dv = a dt L
v

0
dv = L

t

0
20 dt

	 v = (20t) m>s
	 5 s 6 t … t,

	 ( S+
 

) dv = a dt    L
v

100 m>s
dv = L

t

5 s
-10 dt

	 v - 100 = (50 - 10t) m>s,
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	 ax = 4 m>s2   
	 Thus,

	 a = 2ax
2 + ay

2 = 242 + 482 = 48.2 m>s2� Ans.

F12–20.	� y
#

= 0.1xx
#

	 vy = 0 .1(5)(-3) = -1.5 m>s = 1.5 m>s T � Ans.

	 y
$

= 0.13x# x# + xx
$4

	 ay = 0.13(-3)2 + 5(-1.5)4 = 0.15 m>s2 c � Ans.

F12–21.	�  (vB)y
2 = (vA)y

2 + 2ay(yB - yA)

	  02 = (5 m>s)2 + 2(-9.81 m>s2)(h - 0)

	  h = 1.27 m � Ans.

F12–22.	� yC = yA + (vA)ytAC +
1
2 ayt  2AC

	 0 = 0 + (5 m>s)tAC +
1
2 (-9.81 m>s2)t 2AC  

	 tAC = 1.0194 s

	  (vC)y = (vA)y + aytAC

	  (vC)y = 5 m>s + (-9.81 m>s2)(1.0194 s)

	   = -5 m>s = 5 m>s T

	  vC = 2(vC)x
2 + (vC)y

2

	   = 2(8.660 m>s)2 + (5 m>s)2 = 10 m>s �Ans.

	  R = xA + (vA)xtAC = 0 + (8.660 m>s)(1.0194 s)

	  =  8.83 m � Ans.

F12–23.	� s = s0 + v0t

	 10 = 0 + vA cos 30t

	 s = s0 + v0t +
1
2 act

2

	 3 = 1.5 + vA sin 30t +
1
2 (-9.81)t 2

	 t = 0.9334 s, vA = 12.4 m>s� Ans.

F12–24.	�  s = s0 + v0t

	  R14
52 = 0 + 2013

52t
	  s = s0 + v0t +

1
2 act 2

	  -R13
52 = 0 + 2014

52t +
1
2 (-9.81)t 2

	 t = 5.10 s

	 R = 76.5 m� Ans.

F12–25.	�  xB = xA + (vA)xtAB

	 12 ft = 0 + (0.8660 vA)tAB

	 vAtAB = 13.856� (1)

	 yB = yA + (vA)ytAB +
1
2 ay  t  2AB

	 Substituting Eq. (2) into Eq. (1), get

	 y = 22x� Ans.

F12–16.	� y = 0.75(8t) = 6t

	 vx = x
#

=
dx
dt =

d
dt (8t) = 8 m>s S

	 vy = y
#

=
dy
dt =

d
dt (6t) = 6 m>s c

	 The magnitude of the particle’s velocity is

	  v = 2vx
2 + vy

2 = 2(8 m>s)2 + (6 m>s)2

	  = 10 m>s � Ans.

F12–17.	� y = (4t 2) m

	 vx = x
#

=
d
dt 14t 42 = 116t 32 m>s S

	 vy = y
#

=
d
dt 14t 22 = (8t) m>s c

	 When t = 0.5 s,

	  v = 2vx
2 + v2

y = 2(2 m>s)2 + (4 m>s)2

	  = 4.47 m>s � Ans.

	 ax = v
#
x =

d
dt 116t32 = 148t22 m>s2

	 ay = v
#
y =

d
dt (8t) = 8 m>s2

	 When t = 0.5 s,

	  a = 2ax
2 + ay

2 = 2(12 m>s2)2 + (8 m>s2)2

	  = 14.4 m>s2 � Ans.

F12–18.	� y = 0.5x

	 y
#

= 0.5x
#

	 vy = t2

	 When t = 4 s,

	 vx = 32 m>s  vy = 16 m>s
	 v = 2vx

2 + vy
2 = 35.8 m>s� Ans.

	 ax = v
#
x = 4t

	 ay = v
#
y = 2t

	 When t = 4 s,

	 ax = 16 m>s2   ay = 8 m>s2

	 a = 2ax
2 + ay

2 = 2162 + 82 = 17.9 m>s2� Ans.

F12–19.	� vy = y
#

= 0.5 x x
#

= 0.5(8)(8) = 32 m>s
	 Thus,

	 v = 2vx
2 + vy

2 = 33.0 m>s� Ans.

		 ay = v
#
y = 0.5 

#
 x2 + 0.5 x $

x

	 = 0.5(8)2 + 0.5(8)(4)

	 = 48 m>s2
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	  v2
B = (25 m>s)2 + 2(-0.6667 m>s2)(250 m - 0)

	  vB = 17.08 m>s

	 (aB)n =
v2

B

r
=

(17.08 m>s)2

300 m
= 0.9722 m>s2

	  aB = 2(aB)2
t + (aB)n

2

	  = 2(-0.6667 m>s2)2 + (0.9722 m>s2)2

	  = 1.18 m>s2� Ans.

F12–30.	� tan u =
dy
dx =

d
dx  1 1

24 x 22 =
1
12 x

	  u = tan-11 1
12 x2 2

x = 10 ft

	  = tan-1110
122 = 39.81 = 39.8 d� Ans.

	  r =
31 + (dy>dx)243>2

� d2 y>dx2 �
=
31 + 1 1

12 x2243>2

� 1
12 �

2
x = 10 ft

	  = 26.468 ft

	  an =
v2

r
=

(20 ft>s)2

26.468 ft
= 15.11 ft>s2

	  a = 2(at)
2 + (an)

2 = 2(6 ft>s2)2 + (15.11 ft>s2)2

	  = 16.3 ft>s2   � Ans.

F12–31.	�  (aB)t = -0.001s = (-0.001)(300 m)1p2  rad2 m>s2

	  = -0.4712 m>s2

	  v dv = at ds

	 L
vB

25 m>s
v	dv = L

150p	m

0
-0.001s ds

	 vB = 20.07 m>s

	 (aB)n =
vB

2

r
=

(20.07 m>s)2

300 m
= 1.343 m>s2

	  aB = 2(aB)t
2 + (aB)n

2

	  = 2(-0.4712 m>s2)2 + (1.343 m>s2)2

	  = 1.42 m>s2 � Ans.

F12–32.	� at ds = v dv

	 at = v dv
ds = (0.2s)(0.2) = (0.04s) m>s2

	 at = 0.04(50 m) = 2 m>s2

	 v = 0.2 (50 m) = 10 m>s

	 (8 - 3) ft = 0 + 0.5vAtAB +
1
2 (-32.2 ft>s2)t  2AB

	 Using Eq. (1),

	  5 = 0.5(13.856) -  16.1 t  2AB

	  tAB = 0.3461 s

	  vA = 40.0 ft>s � Ans.

F12–26.	�  yB = yA + (vA)ytAB +
1
2 ayt 2AB 

	  -150 m = 0 + (90 m>s)tAB +
1
2 (-9.81 m>s2)t  2AB

	  tAB = 19.89 s

	  xB = xA + (vA)x  tAB

	  R = 0 + 120 m>s(19.89 s) = 2386.37 m

	  = 2.39 km � Ans.

F12–27.	�  at = v
#

 =
dv
dt =

d
dt (0.0625t 2) = (0.125t) m>s2  � t = 10 s

	  = 1.25 m>s2

	  an =
v2

r
=

(0.0625t2)2

40 m
= 397.656(10-6)t 44  m>s2 �  t = 10 s

	  = 0.9766 m>s2

	  a = 2a2
t + a2

n = 2(1.25 m>s2)2 + (0.9766 m>s2)2

	  = 1.59 m>s2 � Ans.

F12–28.	� v = 2s �  s = 10 = 20 m>s

	  an =
v2

r
=

(20 m>s)2

50 m
= 8 m>s2

	  at = v
dv

ds
 = 4s � s = 10 = 40 m>s2

	  a = 2at
2 + an

2 = 4140 m>s222 + 18 m>s222

	 = 40.8 m>s2� Ans.

F12–29.	� v2
C = v2

A + 2at(sC - sA)

	 (15 m>s)2 = (25 m>s)2 + 2at(300 m - 0)

	 at = -0.6667 m>s2

	  v2
B = v2

A + 2at(sB - sA)
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	  au = r u
$

+ 2r
#
 u
#

	  = 1p 2 ft2(1 rad>s2) + 2(6 ft>s)(3 rad>s)

	  = 37.57 ft>s2

	  a = 2ar
2 + au

2

	  = 2(-12.14 ft>s2)2 + (37.57 ft>s2)2

	  = 39.5 ft>s2 � Ans.

F12–36.	� r = eu

	 r
#

= euu
#

	 r
$

= euu
$

+ euu
#
2

	  ar = r
$

- r u
#
2 = (euu

$
+ euu

#
2) - euu

#
2 = ep>4(4)

	  = 8.77 m>s2 � Ans.

	  au = ru
$

+ 2 r
#
 u
#

= (euu
$
) + (2(euu

#
)u

#
) = eu(u

$
+ 2u

#
2)

	  = ep>4(4 + 2(2)2)

	  = 26.3 m>s2� Ans.

F12–37.	�  r = [0.2(1 + cos u)] m � u= 30 = 0.3732 m

	  r
#

= 3 -0.2 (sin u)u
# 4  m>s � u= 30

	  = -0.2 sin 30(3 rad>s)

	  = -0.3 m>s
	 vr = r

#
= -0.3 m>s

	 vu = r u
#

= (0.3732 m)(3 rad>s) = 1.120 m>s
	  v = 2v2

r + v2
u = 2(-0.3 m>s)2 + (1.120 m>s)2

	  = 1.16 m>s� Ans.

F12–38.	� 30 m = r sin u

	 r = 1 30 m
sin u 2 = (30 csc u) m

	 r = (30 csc u)  � u= 45 = 42.426 m

	 r
#

= -30 csc u ctn u u
#
� u= 45 = - 142.426u

# 2 m>s
	 vr = r

#
= - (42.426u

#
) m>s

	 vu = ru
#

= (42.426u
#
) m>s

	 v = 2v2
r + v2

u

	 2 = 2(-42.426u
#
)2 + (42.426u

#
)2

	 u
#

= 0.0333 rad>s� Ans.

F12–39.	� lT = 3sD + sA

	 0 = 3vD + vA

	 0 = 3vD + 3 m>s
	 vD = -1 m>s = 1 m>s c � Ans.

	 an =
v2

r
=

(10 m>s)2

500 m
= 0.2 m>s2

	  a = 2at
2 + an

2 = 2(2 m>s2)2 + (0.2 m>s2)2

	 = 2.01 m>s2� Ans.

F12–33.	� vr = r
#

= 0

	 vu = ru
#

= (400u
#
) ft>s

	 v = 2v2
r + v2

u

	 55 ft>s = 202 + [(400u
#

  ) ft>s]2

	 u
#

= 0.1375 rad>s� Ans.

F12–34.	 r = 0.1t3  � t= 1.5 s = 0.3375 m

	 r
#

= 0.3t2  � t = 1.5 s = 0.675 m>s
	 r

$
= 0.6t � t = 1.5 s = 0.900 m>s2

	 u = 4t3>2  � t= 1.5 s = 7.348 rad

	 u
#

= 6t1>2  � t = 1.5 s = 7.348 rad>s
	 u

$
= 3t-1>2  � t = 1.5 s = 2.449 rad>s2

	  vr = r
#

= 0.675 m>s
	  vu = r u

#
= (0.3375 m)(7.348 rad>s) = 2.480 m>s

	  ar = r
$
 - r u

#
2

	  = (0.900 m>s2) - (0.3375 m)(7.348 rad>s)2

	  = -17.325 m>s2

	  au = r u
$

+ 2r
#
 u
#

= (0.3375 m)(2.449 rad>s2)

	  + 2(0.675 m>s)(7.348 rad>s) = 10.747 m>s2

	  v = 2vr
2 + vu

2

	  = 2(0.675 m>s)2 + (2.480 m>s)2

	  = 2.57 m>s � Ans.

	  a = 2ar
2 + au

2

	  = 2(-17.325 m>s2)2 + (10.747 m>s2)2

	  = 20.4 m>s2 � Ans.

F12–35.	� r = 2u

	 r
#

= 2u
#

	 r
$

= 2u
$

	 At u = p>4 rad,

	 r = 21p4 2 =
p
2  ft

	 r
#

= 2(3 rad>s) = 6 ft>s
	 r

$
= 2(1 rad>s) = 2 ft>s2

	  ar = r
$ -  r u

#
2 = 2 ft>s2 - 1p2  ft2(3 rad>s)2

	    = -12.14 ft>s2
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F12–47.	� vB = vA + vB>A
	 (5i + 8.660j) = (12.99i + 7.5j) + vB>A
	  vB>A = [-7.990i + 1.160j] m>s
	  vB>A = 2(-7.990 m>s)2 + (1.160 m>s)2

	  = 8.074 m>s �

	  dAB = vB>At = (8.074 m>s)(4 s) = 32.3 m� Ans.

F12–48.	� vA = vB + vA>B
	 -20 cos 45i + 20 sin 45j = 65i + vA>B
	  vA>B = -79.14i + 14.14j

	  vA>B = 2(-79.14)2 + (14.14)2

	  = 80.4 km>h � Ans.

	 aA = aB + aA>B

	
(20)2

0.1
 cos 45i +

(20)2

0.1
 sin 45j = 1200i + aA>B

	  aA>B = 1628i + 2828j

	  aA>B = 2(1628)2 + (2828)2

	  = 3.26(103) km>h2 � Ans.

Chapter 13

F13–1.	� s = s0 + v0t +
1
2 ac t 2

	  6 m = 0 + 0 +
1
2 a(3 s)2

	 a = 1.333 m>s2

	 Fy = may;  NA - 20(9.81) N cos 30 = 0

	 NA = 169.91 N

	 Fx = max; T - 20(9.81) N sin 30

		   -  0.3(169.91 N) = (20 kg)(1.333 m>s2)

	 T = 176 N� Ans.

F13–2.	� (Ff)max = msNA = 0.3(245.25 N) = 73.575 N.  
Since F = 100 N 7 (Ff)max when t = 0, the crate 
will start to move immediately after F is applied.

	 + c Fy = may;  NA - 25(9.81) N = 0

	  NA = 245.25 N

	 +
S Fx = max;

	 10t 2 + 100 - 0.25(245.25 N) = (25 kg)a

	 a = (0.4t 2 + 1.5475) m>s2

	 dv = a dt

	 L
v

0
dv = L

4 s

0
10.4t2 + 1.54752dt

	 v = 14.7 m>s S � Ans.

F12–40.	� sB + 2sA + 2h = l

	 vB + 2vA = 0

	 6 + 2vA = 0 vA = -3 m>s = 3 m>s c � Ans.

F12–41.	� 3sA + sB = l

	 3vA + vB = 0

	 3vA + 1.5 = 0 vA = -0.5 m>s = 0.5 m>s c �Ans.

F12–42.	� lT = 4 sA + sF

	 0 = 4 vA + vF

	 0 = 4 vA + 3 m>s
	 vA = -0.75 m>s = 0.75 m>s c � Ans.

F12–43.	� sA + 2(sA - a) + (sA - sP) = l

	 4sA - sP = l + 2a

	 4vA - vP = 0

	 4vA - (-4) = 0 

	 4vA + 4 = 0  vA = -1 m>s = 1 m>s Q � Ans.

F12–44.	� sC + sB = lCED� (1)
	 (sA - sC) + (sB - sC) + sB = lACDF

	 sA + 2sB - 2sC = lACDF� (2)
	 Thus
	 vC + vB = 0

	 vA + 2vB - 2vC = 0

	 Eliminating vC,
	 vA + 4vB = 0

	 Thus,
	 4 ft>s + 4vB = 0

	 vB = -1 ft>s = 1 ft>s c � Ans.

F12–45.	� vB = vA + vB>A
	 100i = 80j + vB>A
	 vB>A = 100i - 80j

	  vB>A = 2(vB>A)2
x + (vB>A)2

y

	  = 2(100 km>h)2 + (-80 km>h)2

	  = 128 km>h� Ans.

u = tan-1J (vB>A)y

(vB>A)x
R = tan-1¢ 80 km>h

100 km>h ≤ = 38.7 c	 Ans.

F12–46.	� vB = vA + vB>A
	 (-400i - 692.82j) = (650i) + vB>A
	 vB>A = [-1050i -  692.82j] km>h
	  vB>A = 2(vB>A)2

x + (vB>A)2
y

	  = 2(1050 km>h)2 + (692.82 km>h)2

	  = 1258 km>h� Ans.

u = tan-1J  
(vB>A)y

(vB>A)x 
  R = tan-1¢692.82 km>h

1050 km>h ≤ = 33.4 d�Ans.
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F13–11.	� Ft = mat;  10(9.81) N cos 45 = (10 kg)at

	  at = 6.94 m>s2 � Ans.

	 Fn = man;

	 T - 10(9.81) N sin 45 = (10 kg) 
(3 m>s)2

2 m

	 T = 114 N� Ans.

F13–12.	� Fn = man;

	 Fn = (500 kg) 
(15 m>s)2

200 m
= 562.5 N

	 Ft = mat;

	  Ft = (500 kg)(1.5 m>s2) = 750 N

	  F = 2F n
2 + F t

2 = 2(562.5 N)2 + (750 N)2

	  = 938 N � Ans.

F13–13.	�  ar = r
# #

- ru
#
  2 = 0 - (1.5 m + (8 m)sin 45)u

#
  2

	  = (-7.157 u
#

  2) m>s2

	 Fz = maz;

	 T cos 45 - m(9.81) = m(0) T = 13.87 m

	 Fr = mar;

	 - (13.87m) sin 45 = m(-7.157 u
#

  2)

	 u
#

= 1.17 rad>s� Ans.

F13–14.	� u = pt2 � t = 0.5 s = (p>4) rad

	 u
#

= 2pt � t= 0.5 s = p rad>s
	 u

# #
= 2p rad>s2

	 r = 0.6 sin u 0 u=p>4 rad = 0.4243 m

	 r
#

= 0.6 (cos u)u
#

 � u=p>4 rad = 1.3329 m>s
r
# #

= 0.6 [(cos u)u
# #

- (sinu)u
#

  2   ] � u=p>4 rad = -1.5216 m>s2

 ar = r
# #

 - ru
#

  2 = -1.5216 m>s2 - (0.4243 m)(p rad>s)2

	  = -5.7089 m>s2

	  au = ru
# #

+ 2r
#
 u
#

= 0.4243 m(2p rad>s2)

	     + 2(1.3329 m>s)(p rad>s)

	  = 11.0404 m>s2

	 Fr = mar;

	  Fcos 45 - N cos 45 -0.2(9.81)cos 45

	  = 0.2(-5.7089)

	 Fu = mau;

	  F sin 45 + N sin 45 -0.2(9.81)sin 45

	  = 0.2(11.0404)

	 N = 2.37 N    F = 2.72 N� Ans.

F13–3.	� +S Fx = max;

	 14
52500 N - (500s)N = (10 kg)a

	  a = (40 - 50s) m>s2

	  v dv = a ds

	  L
v

0
v dv = L

0.5 m

0
(40 - 50s) ds

	 v2

2 � v0 = 140s - 25s22  � 0.5 m
0

	 v = 5.24 m>s� Ans.

F13–4.	� +S Fx = max  100(s + 1) N = (2000 kg)a

	  a = (0.05(s + 1)) m>s2

	  v dv = a ds

	  L
v

0
v dv = L

10 m

0
0.05(s + 1) ds

	 v = 2.45 m>s
F13–5.	�  Fsp = k(l - l0) = (200 N>m)(0.5 m - 0.3 m)

	  = 40 N

	  u = tan-11 0.3 m
0.4 m2 = 36.86

	 +
S Fx = max;

	 100 N - (40 N)cos 36.86 = (25 kg)a

	 a = 2.72 m>s2

F13–6.	� Blocks A and B:

	 +
S Fx = max; 6 =

70
32.2 a; a = 2.76 ft>s2

	 Check if slipping occurs between A and B.

	 +
S Fx = max; 6 - F =

20
32.2 (2.76);

	 F = 4.29 lb 6 0.4(20) = 8 lb

	 aA = aB = 2.76 ft>s2� Ans.

F13–7.	�  Fn = m v
2

r ; (0.3)m(9.81) = m v
2

2

	  v = 2.43 m>s � Ans.

F13–8.	� + T Fn = man; m(32.2) = m1 v2

2502
	 v = 89.7 ft>s� Ans.

F13–9.	� + T Fn = man; 150 + Np =
150

32.2
 ¢ (120)2

400
 ≤

	 Np = 17.7 lb� Ans.

F13–10.	� +d Fn = man;

	 Nc sin 30 + 0.2 Nc cos 30 = m 
v2

500
	 + c Fb = 0;

	 Nc cos 30 - 0.2Nc sin 30 - m(32.2) = 0

	 v = 119 ft>s� Ans.
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	 0 + 300 N(10 m) - 0.3(169.91 N) (10 m)

	 - 20(9.81)N (10 m) sin 30

	 =  12 (20 kg)v2

	 v = 12.3 m>s � Ans.

F14–3.	� T1 + U1 - 2 = T2

� 0 + 2 c L
 15 m

 0
(600 + 2s2) N ds d - 100(9.81) N(15 m)

	 =
1
2 (100 kg)v2

	 v = 12.5 m>s � Ans.

F14–4.	� T1 + U1 - 2 = T2

�  12 (1800 kg)(125 m>s)2 - J (50 000 N + 20 000 N)
2  (400 m) R

 =
1
2 (1800 kg)v2

	 v = 8.33 m>s � Ans.

F14–5.	� T1 + U1 - 2 = T2
1
2 (10 kg)(5 m>s)2 + 100 Ns + [10(9.81) N] s sin 30

			      -
1
2 (200 N>m)(s)2 = 0

	 s = 2.09 m

	 s = 0.6 m + 2.09 m = 2.69 m � Ans.

F14–6.	� TA + UA - B = TB

	� Consider difference in cord length AC - BC, 
which is distance F moves. 

	 0 + 10 lb(2(3 ft)2 + (4 ft)2 - 3 ft)

			        =
1
2 1 5

32.2 slug2vB
2

	 vB = 16.0 ft>s� Ans.

F14–7.	� S+  Fx = max;

	 3014
52 = 20a a = 1.2 m>s2 S

	 v = v0 + act

	  v = 0 + 1.2(4) = 4.8 m>s
	  P = F # v = F (cos u)v

	  = 3014
52(4.8)

	  = 115 W  � Ans.

F14–8.	�  S+  Fx = max;

	  10s = 20a a = 0.5s m>s2 S

	 vdv = ads

	 L
v

1
v dv = L

5 m

0
0.5 s ds

	 v = 3.674 m>s
	 P = F # v = [10(5)](3.674) = 184 W� Ans.

F13–15.	�   r = 50e2u � u=p>6 rad = 350e2(p>6)4  m = 142.48 m

	  r
#
 = 5012e2u u

#
 2 = 100e2u u

#
 � u=p>6 rad

	  = 3100e2(p>6)(0.05)4 = 14.248 m>s
	  r

# #
   = 1001(2e2uu

#
  )u

#
 + e2u(u

# #
)  2  � u=p>6 rad

	  = 10032e2(p>6) (0.052) + e2(p>6)(0.01)4
	  = 4.274 m>s2

 ar = r
# #

 - ru
#

  2 = 4.274 m>s2 - 142.48 m(0.05 rad>s)2

	  = 3.918 m>s2

	  au = r u
# #

 + 2r 
#
u
#

= 142.48 m(0.01 rad>s2)

	 + 2(14.248 m>s)(0.05 rad>s)

	  = 2.850 m>s2

	  Fr = mar;

	  Fr = (2000 kg)(3.918 m>s2) = 7836.55 N

	  Fu = mau;

	  Fu = (2000 kg)(2.850 m>s2) = 5699.31 N

	  F = 2Fr
2 + Fu

2

	  = 2(7836.55 N)2 + (5699.31 N)2

	  = 9689.87 N = 9.69 kN

F13–16.  r = (0.6 cos 2u) m � u= 0 = [0.6 cos 2(0)] m = 0.6 m

	  r
#
 = (-1.2 sin2uu

#
) m>s � u= 0

	  = 3 -1.2 sin2(0)(-3)4  m>s = 0

	  r
# #

= -1.21sin2uu
# #
+ 2cos2uu

#
22 m>s2�u= 0

	  = -21.6 m>s2

	 Thus,

	  ar = r
# #

- r u
#

  2 = -21.6 m>s2 - 0.6 m(-3 rad>s)2

	  = -27 m>s2

 au = r u
# #

+ 2r
#
 u
#

= 0.6 m(0) + 2(0)(-3 rad>s) = 0

	 Fu = mau;  F - 0.2(9.81) N = 0.2 kg(0)

	  F = 1.96 N c � Ans.

Chapter 14

F14–1.	� T1 + U1 - 2 = T2

	 0 + 14
52(500 N)(0.5 m) -

1
2 (500 N>m)(0.5 m)2

	 =
1
2 (10 kg)v2

	 v = 5.24 m>s � Ans.

F14–2.	� Fy = may; NA - 20(9.81) N cos 30 = 0

	 NA = 169.91 N

	 T1 + U1 - 2 = T2
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F14–15.	� T1 + V1 = T2 + V2

	 1
2 (2)(4)2 +

1
2 (30)(2 - 1)2

	 =
1
2 (2)(v)2 - 2(9.81)(1) +

1
2 (30) (25 - 1)2

	 v = 5.26 m>s� Ans.

F14–16.	� TA + VA = TB + VB

	 0 +
1
2 (4)(2.5 - 0.5)2 + 5(2.5)

	 =
1
2 1 5

32.22vB
2 +

1
2 (4) (1 - 0.5)2

	 vB = 16.0 ft>s� Ans.

F14–17.	� T1 + V1 = T2 + V2

	 1
2mv1

2 + mgy1 +
1
2ks1

2

	 =
1
2 mv2

2 + mgy2 +
1
2 ks2

2

	 [0] + [0] + [0] = [0] +

	 [-75 lb(5 ft + s)] + 3211
2 (1000 lb>ft)s22

	 +
1
2 (1500 lb>ft)(s - 0.25 ft)24

	 s = sA = sC = 0.580 ft� Ans.

	 Also,

	 sB = 0.5803 ft - 0.25 ft = 0.330 ft� Ans.

F14–18.	� TA + VA = TB + VB

	 1
2 mv2

A + 11
2 ksA

2 + mgyA 2
	 =

1
2  mvB

2 + 11
2 ksB

2 + mgyB2
1
2  (4 kg)(2 m>s)2 +

1
2 (400 N>m)(0.1 m - 0.2 m)2 + 0

	 =  12  (4 kg)vB
2 +

1
2 (400 N>m)(2(0.4 m)2 + (0.3 m)2

	 -  0.2 m)2 +   [4(9.81) N](- (0.1 m + 0.3 m))

	 vB = 1.962 m>s = 1.96 m>s� Ans.

Chapter 15
F15–1.	� (+

S) m(v1)x +  L
 t2

t1
Fx dt = m(v2)x

	 (0.5 kg)(25 m>s) cos 45 - L 
 Fx dt

	 =  (0.5 kg)(10 m>s)cos 30

	 Ix = L 
 Fx dt = 4.509 N # s

	 (+ c) m(v1)y +  L
 t2

t1
Fy dt = m(v2)y

	 - (0.5 kg)(25 m>s)sin 45+ LFy dt

			        = (0.5 kg)(10 m>s)sin 30

	 Iy = L 
 Fy dt = 11.339 N # s

	   I = L 
 F dt = 2(4.509 N # s)2 + (11.339 N # s)2 

            = 12.2 N # s� Ans.

F14–9.	� (+ c)Fy = 0;

	 T1 - 100 lb = 0  T1 = 100 lb

	 (+ c)Fy = 0;

	 100 lb + 100 lb - T2 = 0 T2 = 200 lb

	  Pout = TB # vB = (200 lb)(3 ft>s) = 1.091 hp

	  Pin =
Pout

e
=

1.091 hp

0.8
= 1.36 hp � Ans.

F14–10.	� Fy = may;  N - 20(9.81) cos 30 = 20(0)

	 N = 169.91 N

	 Fx = max;  
	 F - 20(9.81) sin 30 - 0.2(169.91) = 0

	 F = 132.08 N

	 P = F # v = 132.08(5) = 660 W� Ans.

F14–11.	� + c Fy = may;

	 T - 50(9.81) = 50(0) T = 490.5 N

	  Pout = T # v = 490.5(1.5) = 735.75 W

	 Also, for a point on the other cable

	 Pout = a490.5

2
b  (1.5)(2) = 735.75 W

	  Pin =
Pout

e
=

735.75

0.8
= 920 W � Ans.

F14–12.	� 2sA + sP = l

	 2aA + aP = 0

	 2aA + 6 = 0

	 aA = -3 m>s2 = 3 m>s2 c

	 Fy = may;     TA -  490.5 N = (50 kg)(3 m>s2)

	 TA = 640.5 N

	 Pout = T # v = (640.5 N>2)(12) = 3843 W

	 Pin =
Pout

e
=

3843

0.8
= 4803.75 W = 4.80 kW� Ans.

F14–13.	� TA + VA = TB + VB

	 0 + 2(9.81)(1.5) =
1
2 (2)(vB)2 + 0

	 vB = 5.42 m>s� Ans.

	 + c Fn = man; T - 2(9.81) = 2a (5.42)2

1.5
b

	 T = 58.9 N� Ans.

F14–14.	� TA + VA = TB + VB

	 1
2 mAvA

2 + mghA =
1
2 mBvB

2 + mghB

	 31
2 (2 kg)(1 m>s)24 + [2 (9.81) N(4 m)]

	 = 31
2 (2 kg)vB

2 4 + [0]

	 vB = 8.915 m>s = 8.92 m>s� Ans.

	 + c Fn = man; NB - 2(9.81) N

	 = (2 kg)a (8.915 m>s)2 

2 m
b

	 NB = 99.1 N� Ans.
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F15–7.	� ( S+
 

) mA (vA)1 + mB (vB)1 = mA (vA)2 + mB (vB)2

	 (20(103) kg)(3 m>s) + (15(103) kg)(-1.5 m>s)

	 = (20(103) kg)(vA)2 + (15(103) kg)(2 m>s)

	 (vA)2 = 0.375 m>s S � Ans.

	 ( S+
 

) m(vB)1 +  L
 t 2

 t1
F dt = m(vB)2

	 (15(103) kg)(-1.5 m>s) + Favg (0.5 s)

			     = (15(103) kg)(2 m>s)

	 Favg = 105(103) N = 105 kN� Ans.

F15–8.	� ( S+
 

) mp [(vp)1]x + mc[(v)1]x = (mp + mc)v2

	 531014
524 + 0 = (5 + 20)v2

	 v2 = 1.6 m>s� Ans.

F15–9.	� T1 + V1 = T2 + V2

	 1
2 mA (vA)1

2 + (Vg)1 =
1
2 mA (yA)2

2 + (Vg)2

	 1
2 (5)(5)2 + 5(9.81)(1.5) =

1
2 (5)(vA)2

2 + 0

	 (vA)2 = 7.378 m>s
	 ( d+

 

) mA (vA)2 + mB (vB)2 = (mA + mB)v

	 5(7.378) + 0 = (5 + 8)v

	 v = 2.84 m>s� Ans.

F15–10.	� ( S+
 

) mA (vA)1 + mB (vB)1 = mA (vA)2 + mB (vB)2

	 0 + 0 = 10(vA)2 + 15(vB)2	 (1)

	 T1 + V1 = T2 + V2

	 1
2 mA (vA)1

2 +
1
2 mB (vB)1

2 + (V  e)1

	 =
1
2 mA (vA)2

2 +
1
2 mB (vB)2

2 + (Ve)2

	 0 + 0 +
1
2 3511032 4 10.222

	 =
1
2 (10)(vA)2

2 +
1
2 (15)(vB)2

2 + 0

	 5(vA)2
2 + 7.5 (vB)2

2 = 100� (2)

	 Solving Eqs. (1) and (2),

	 (vB)2 = 2.31 m>s S � Ans.

	 (vA)2 = - 3.464 m>s = 3.46 m>s d � Ans.

F15–11.	� ( d+
 

)  mA (vA)1 + mB (vB)1 = (mA + mB)v2

	  0 + 10(15) = (15 + 10)v2

	 v2 = 6 m>s
	 T1 + V1 = T2 + V2

	 1
2 (mA + mB)v2

2 + (Ve)2 =
1
2 (mA + mB)v3

2 + (Ve)3

	 1
2 (15 + 10)1622 + 0 = 0 +

1
2 310110324smax

2

	 smax = 0.3 m = 300 mm� Ans.

F15–2.	� (+ c) m(v1)y +  L
 t 2

 t1
 Fy dt = m(v2)y

	 0 + N(4 s) + (100 lb)(4 s)sin 30

			      - (150 lb)(4 s) = 0 
	 N = 100 lb

	 ( S+ ) m(v1)x +  L
 t 2

 t1
 Fx dt = m(v2)x

	 0 + (100 lb)(4 s)cos 30 - 0.2(100 lb)(4 s)

			       = 1 150
32.2 slug2v

	 v = 57.2 ft>s� Ans.

F15–3.	� Time to start motion,

+ c Fy = 0; N - 25(9.81) N = 0 N = 245.25 N

S+  Fx = 0; 20t2 - 0.3(245.25 N) = 0 t = 1.918 s

	 ( S+ ) m(v1)x +  L
 t 2

 t1
 Fx dt = m(v2)x

0 + L
 4 s

 1.918 s
  20t2 dt - (0.25(245.25 N))(4 s - 1.918 s)

				      = (25 kg)v
	 v = 10.1 m>s� Ans.

F15–4.	� ( S+
 

) m(v1)x +  L
 t 2

 t1
 Fx dt = m(v2)x

� (1500 kg)(0) + 31
2 (6000 N)(2 s) + (6000 N)(6 s - 2 s)4

			        = (1500 kg) v

	 v = 20 m>s� Ans.

F15–5.	� SUV and trailer,

	 m(v1)x +  L
 t 2

 t1
 Fx dt = m(v2)x

	 0 + (9000 N)(20 s) = (1500 kg + 2500 kg)v

	 v = 45.0 m>s� Ans.

	 Trailer,

	 m(v1)x +  L
 t 2

 t1
 Fx dt = m(v2)x

	 0 + T(20 s) = (1500 kg)(45.0 m>s)

	 T = 3375 N = 3.375 kN� Ans.

F15–6.	� Block B:

	 (+ T) mv1 + LF dt = mv2

	 0 + 8(5) - T(5) =
8

32.2 (1)

	 T = 7.95 lb� Ans.

	 Block A:

	 (S
+ ) mv1 + L  F dt = mv2

	 0 + 7.95(5) - mk (10)(5) =
10

32.2 (1)

	 mk = 0.789� Ans.
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	 ( d+
 

)   e =
(vB)3 - (vA)3

(vA)2 - (vB)2

	 0.6 =
(vB)3 - (vA)3

25.87 ft>s - 0
	 (vB)3 - (vA)3 = 15.52� (2)

	 Solving Eqs. (1) and (2), yields

	 (vB)3 = 11.3 ft>s d

	 (vA)3 = -4.23 ft>s = 4.23 ft>s S � Ans.

F15–16.	� (+ c)  m[(vb)1]y = m[(vb)2]y

	 [(vb )2]y = [(vb)1]y = (20 m>s) sin30 = 10 m>s c

	 ( S+
 

)   e =
(vw)2 - [(vb)2]x

[(vb)1]x-  (vw)1

	 0.75 =
0 - [(vb)2]x

(20 m>s)cos 30-  0

	 [(vb)2]x = -  12.99 m>s = 12.99 m>s d

	  (vb)2 = 2[(vb)2]x
2 +  [(vb)2]y

2

	  = 2(12.99 m>s)2 + (10 m>s)2

	  = 16.4 m>s � Ans.

	 u = tan-1a
[(vb)2]y

[(vb)2]x
b = tan- 1a 10 m>s

12.99 m>s b

	  = 37.6� Ans.

F15–17.	�  m(vx)1 = m(vx)2

	  0 + 0 = 2 (1) + 11 (vBx)2

	 (vBx)2 = - 0.1818 m>s
	 m(vy)1 = m(vy)2

	 2 (3) + 0 = 0 + 11 (vBy)2

	 (vBy)2 = 0.545 m>s
	  (vB)2 = 3(-0.1818)2 + (0.545)2

	  = 0.575 m>s� Ans.

F15–18.	 +Q
 

	  1 (3)13
52 -  1 (4)14

52
		  =  1 (vB )2x +  1 (vA )2x

	 +Q
 

  0.5 = 3(vA)2x -  (vB)2x4 > 3(3)13
52 -  ( -4)14

524
	 Solving,

	 1vA22x = 0.550 m>s, 1vB22x = -1.95  m>s
	 Disc A,

	     + a -114213
52 = 11vA22y

	 1vA22y = -2.40  m>s

F15–12.	� ( S+
 

) 0 + 0 = mp (vp)x - mcvc

	 0 = (20 kg) (vp)x - (250 kg)vc

	 (vp)x = 12.5 vc	 (1)

	 vp = vc + vp>c
	 (vp)x i + (vp)y j = -vc i + [(400 m>s) cos 30i

	 + (400 m>s) sin 30j]

	 (vp)x i + (vp)y j = (346.41 - vc)i + 200j

	 (vp)x = 346.41 - vc

	 (vp)y = 200 m>s
	 (vp)x = 320.75 m>s vc = 25.66 m>s
	  vp = 2(vp)x

2 + (vp)y
2

	  = 2(320.75 m>s)2 + (200 m>s)2

	  = 378 m>s � Ans.

F15–13.	� ( S+
 

)  e =
(vB)2 - (vA)2

(vA)1 - (vB)1

	  =
(9 m>s) - (1 m>s)

(8 m>s) - (-2 m>s)
= 0.8

F15–14.	� ( S+
 

) mA (vA)1 + mB (vB)1 = mA (vA)2 + mB (vB)2

	 [15(103) kg](5 m>s) + [25(103)](-7 m>s)

	 = [15(103) kg](vA)2 + [25(103)](vB)2

	 15(vA)2 + 25(vB)2 = -100� (1)

	 Using the coefficient of restitution equation,

	 ( S+
 

) e =
(vB)2 - (vA)2

(vA)1 - (vB)1

	 0.6 =
(vB)2 - (vA)2

5 m>s - (-7 m>s)

	 (vB)2 - (vA)2 = 7.2� (2)

	 Solving,

	 (vB)2 = 0.2 m>s S � Ans.

	 (vA)2 = -7 m>s = 7 m>s d � Ans.

F15–15.	� T1 + V1 = T2 + V2

	 1
2 m(vA)1

2 + mg(hA)1 =
1
2 m(vA)2

2 + mg(hA)2

	 1
21 30

32.2 slug2(5 ft>s)2 + (30 lb)(10ft)

	 =
1
21 30

32.2 slug2(vA)2
2 + 0

	 (vA)2 = 25.87 ft>s d

	 ( d+
 

) mA(vA)2 + mB(vB)2 = mA(vA)3 + mB(vB)3

	 1 30
 32.2 slug2(25.87 ft>s) + 0

	 = 1 30
32.2 slug2(vA)3 + 1 80

32.2 slug2(vB)3

	 30(vA)3 + 80(vB)3 = 775.95� (1)
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F16–2.	 dv
 du = 2(0.005u) = (0.01u)

	 a = v dvdu = 10.005 u22(0.01u) = 50110-62u3 rad>s2

	 When u = 20 rev(2p rad>1 rev) = 40p rad,

	  a = 350110-62(40p)34  rad>s2

	  = 99.22 rad>s2 = 99.2 rad>s2   � Ans.

F16–3.	 v = 4u1>2

	 150 rad>s = 4 u1>2

	 u = 1406.25 rad

	  dt =
du
 v

	  L
t

0
dt = L

u

1 rad

du

4u1>2

	  t � t0 =
1
2 u1>2 �  

u
1 rad

	  t =
1
2 u1>2 -

1
2

	  t =
1
2 (1406.25)1>2 -

1
2 = 18.25 s� Ans.

F16–4.	 v =
du
dt = (1.5t2 + 15) rad>s

	 a =
dv
dt = (3t) rad>s2

	 v = [1.5(32) + 15] rad>s = 28.5 rad>s
	 a = 3(3) rad>s2 = 9 rad>s2

	 v = vr = (28.5 rad>s)(0.75 ft) = 21.4 ft>s� Ans.

	 a = ar = (9 rad>s2 )(0.75 ft) = 6.75 ft>s2 � Ans.

F16–5.	 v dv = a du

	  L
v

2 rad>s
v dv = L

u

0
0.5u du

	  v
2

2 � 2 rad>s
v = 0.25u2 � u0

	 v = (0.5 u 2 + 4)1/2 rad>s
	 When u = 2 rev = 4p rad,

	 v = [0.5(4p)2 + 4]1/2 rad>s = 9.108 rad>s
	 vP = vr = (9.108 rad>s)(0.2 m) = 1.82 m>s� Ans.

	  (aP)t = ar =  (0.5u rad>s2 )(0.2 m) � u= 4p rad

	  = 1.257 m>s2

	  (aP)n = v2r = (9.108 rad>s)2(0.2 m) = 16.59 m>s2

	  ap = 2(aP)t
2 + (aP)n

2

	  = 2(1.257 m>s2)2 + (16.59 m>s2)2 

	  = 16.6 m>s2� Ans.

	 Disc B,

	     -113214
52 = 11vB22y

			       1vB22y = -2.40  m>s
	 1vA22 = 210.55022 + 12.4022 =  2 .46  m>s	 Ans.

	 1vB22 = 211.9522 + 12.4022 = 3.09  m>s	 Ans.

F15–19.	� HO = mvd;

	 HO  =  32(10)14
524(4) - 32(10)13

524(3)

	     = 28 kg # m2>s
F15–20.	� HP  =  mvd;

	  HP = [2(15) sin 30](2) - [2(15) cos 30](5)

	  = -99.9 kg # m2 >s = 99.9 kg # m2>s b

F15–21.	� (Hz)1 +  L 
 Mz dt = (Hz)2

	 5(2)(1.5) + 5(1.5)(3) = 5v(1.5)

	 v = 5 m>s� Ans.

F15–22.	� (Hz)1 +  L 
 Mz dt = (Hz)2

	 0 + L
4 s

 0
 (10t)14

52(1.5)dt = 5v(1.5)

	 v = 12.8 m>s� Ans.

F15–23.	� (Hz)1 +  L 
 Mz dt = (Hz)2

	 0 + L
5 s

 0
 0.9t2 dt = 2v(0.6)

	 v = 31.2 m>s� Ans.

F15–24.	� (Hz)1 +  L 
 Mz dt = (Hz)2

	 0 + L
4 s

 0
 8tdt + 2(10)(0.5)(4) = 2[10v(0.5)]

	 v = 10.4 m>s� Ans.

Chapter 16

F16–1.	 u = (20 rev)12p rad
1 rev 2 = 40p rad

	 v2 =  v0  2 + 2ac (u - u0)

	  (30 rad>s)2 = 02 + 2ac [(40p rad) - 0]

	  ac = 3.581 rad>s2 = 3.58 rad>s2� Ans.

	 v = v0 + act

	 30 rad>s = 0 + (3.581 rad>s2)t

	 t = 8.38 s� Ans.
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F16–6.	  aB = aA ¢ rA

rB
≤

	  = (4.5 rad>s2)1 0.075 m
0.225 m2 = 1.5 rad>s2

	  vB = (vB)0 + aBt

	  vB = 0 + (1.5 rad>s2)(3 s) = 4.5 rad>s
	  uB = (uB)0 + (vB)0t +

1
2 aBt2

	  uB = 0 + 0 +
1
2 (1.5 rad>s2)(3 s)2

	  uB = 6.75 rad

	 	vC = vBrD = (4.5 rad>s)(0.125 m)

	  = 0.5625 m>s  � Ans.

	  sC = uBrD = (6.75 rad)(0.125 m) = 0.84375 m

	  = 844 mm � Ans.

F16–7.	 Vector Analysis

	 vB = vA + V * rB>A
	  -vB j = (3i) m>s
	  + (vk) * (-1.5 cos 30i + 1.5 sin 30j)

	  -vB j = [3 - vAB (1.5 sin 30)]i - v(1.5 cos 30)j

	  0 = 3 - v(1.5 sin 30) � (1)

	  -vB = 0 - v(1.5 cos 30) � (2)

	 v = 4 rad>s  vB = 5.20 m>s� Ans.

	 Scalar Solution

	 vB = vA + vB>A

	 c TvB d = c 3
S d + cv(1.5) e30 d

	 This yields Eqs. (1) and (2).

F16–8.	 Vector Analysis

	 vB = vA + V * rB>A
	 (vB)xi + (vB)y j = 0 + (-10k) * (-0.6i + 0.6j)

	 (vB )xi + (vB)y j = 6i + 6j

	 (vB)x = 6 m>s and (vB)y = 6 m>s
	  vB = 2(vB)2

x + (vB)2
y

	  = 2(6 m>s)2 + (6 m>s)2  

	  = 8.49 m>s � Ans.

	 Scalar Solution

		 vB = vA + vB>A

c (vB)x

S
d + c (vB)y c d = c 0 d + c     45   10 a 0.6

cos 45
b d

S+
 

 1vB2x = 0 + 1010.6>cos 452 cos 45 = 6 m>s S

 + c 1vB2y = 0 + 1010.6>cos 452 sin 45 = 6 m>sc

a

F16–9.	 Vector Analysis

	 vB = vA + V * rB>A
	 (4 ft>s)i = (-2 ft>s)i + (-vk) * (3 ft)j

	 4i = (-2 + 3v)i

	 v = 2 rad>s� Ans.

	 Scalar Solution

	  vB = vA + vB>A

	  c 4
S
d = c 2

d
d + cv(3)

S
d

	 S+
 

 4 = -2 + v132;  v = 2 rad>s

F16–10.	 Vector Analysis

	  vA = VOA * rA

	  = (12 rad>s)k * (0.3 m)j

	  = [-3.6i] m>s
	  vB = vA + VAB * rB>A
	  vB j = (-3.6 m>s)i

	     + (vAB k) * (0.6 cos 30i - 0.6 sin 30j) m

�  vB j = [vAB (0.6 sin 30) - 3.6]i + vAB (0.6 cos 30)j

	  0 = vAB (0.6 sin 30) - 3.6 � (1)

	  vB = vAB (0.6 cos 30)� (2)

	 vAB = 12 rad>s vB = 6.24 m>s c 	 Ans.

	 Scalar Solution

	 vB = vA + vB>A

	  cvB c d = c d
12(0.3) d + cg30v(0.6) d

	 This yields Eqs. (1) and (2).

F16–11.	 Vector Analysis

	  vC = vB + VBC * rC>B
	  vC j = (-60i) ft>s
	 + (-vBCk) * (-2.5 cos 30i + 2.5 sin 30j) ft

	 vC j = (-60)i + 2.165vBC j + 1.25vBC i

	 0 = -60 + 1.25vBC� (1)

	 vC = 2.165 vBC� (2)

	 vBC = 48 rad>s� Ans.

	 vC = 104 ft>s
	 Scalar Solution

	 vC = vB + vC>B

	  cvCc d = c vB
d
d + cg30 v (2.5) d

	 This yields Eqs. (1) and (2).



	 Fundamental Problems	 705

	 Also, rO>IC = 0.3 - rC>IC = 0.3 - 0.1667

	 =  0.1333 m. 

	 vO = vrO>IC = 9(0.1333) = 1.20 m>s� Ans.

F16–17.	 vB = vrB>A = 6(0.2) = 1.2 m>s
	 rB>IC = 0.8 tan 60 = 1.3856 m

	 rC>IC =
0.8

cos 60 = 1.6 m

	  vBC =
vB

rB>IC
=

1.2

1.3856
= 0.8660 rad>s

	  = 0.866 rad>s � Ans.

	 Then,

	 vC = vBC rC>IC = 0.8660(1.6) = 1.39 m>s� Ans.

F16–18.	 vB = vAB rB>A = 10(0.2) = 2 m>s
	 vC = vCD rC>D = vCD (0.2) S

	 rB>IC =
0.4

cos 30 = 0.4619 m

	  rC>IC = 0.4 tan 30 = 0.2309 m

	  vBC =
vB

rB>IC
=

2

0.4619
= 4.330 rad>s

	  = 4.33 rad>s� Ans.

	 vC = vBC rC>IC
	 vCD (0.2) = 4.330(0.2309)

	 vCD = 5 rad>s� Ans.

F16–19.	  v =
vA 

 rA>IC 
=

6

 3
= 2 rad>s

	 Vector Analysis

	  aB = aA + A * rB>A - v2 rB>A
	  aBi = -5j + 1ak2 *  (3i - 4j) - 22(3i - 4j)

	  aBi = 14a - 122i + 13a + 112j
	  aB = 4a - 12 � (1)

	  0 = 3a + 11 � (2)

	  a = -3.67 rad>s2 � Ans.

	  aB = -26.7 m>s2 � Ans.

	 Scalar Solution

	 aB = aA + aB>A

	 c aB

S
d  =  c T  5 d  + c  a (5)   5  a

4   
3 d + c 4b

3

5
 (2)2(5) d

	 This yields Eqs. (1) and (2).

F16–12.	 Vector Analysis

	 vB = vA + V * rB>A
	 -vB cos 30 i + vB sin 30 j = (-3 m>s)j +

	   (-vk) * (-2 sin 45i - 2 cos 45j) m

	   -0.8660vB i + 0.5vB j

	       = -1.4142vi + (1.4142v - 3)j

	 -0.8660vB = -1.4142v� (1)

	 0.5vB = 1.4142v - 3� (2)

	 v = 5.02 rad>s vB = 8.20 m>s� Ans.

	 Scalar Solution

	  vB = vA + vB>A

	 cb30 vB d = c T  3 d + cb45 v(2) d
	 This yields Eqs. (1) and (2).

F16–13.	 vAB =
vA 

rA>IC
=

6

3
= 2 rad>s� Ans.

	 f = tan-1 1 2
1.5 2 = 53.13

�rC>IC = 21322 + 12.522 - 213212.52 cos  53.13 = 2.5 m

	 vC = vAB rC>IC = 2(2.5) = 5 m>s� Ans.

	 u = 90 -  f = 90 -  53.13 = 36.9 c� Ans.

F16–14.	 vB = vAB rB>A = 12(0.6) = 7.2 m>s T

	 vC = 0� Ans.

	 vBC =
vB 

rB>IC
=

7.2

1.2
= 6 rad>s� Ans.

F16–15.	 v =
vO

rO>IC
=

6

0.3
= 20 rad>s� Ans.

	 rA>IC = 20.32 + 0.62 = 0.6708 m

	 f = tan-110.3
0.62 = 26.57

	 vA = vrA>IC = 20(0.6708) = 13.4 m>s� Ans.

	 u = 90 -  f = 90 -  26.57 = 63.4 a� Ans.

F16–16.	� The location of IC can be determined using similar 
triangles.

	
0.5 - rC>IC

3
=

rC>IC
1.5

   rC>IC = 0.1667 m

	 v =
vC

rC>IC
=

1.5

0.1667
= 9 rad>s� Ans.
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	 Scalar Analysis

	 aA = aC + aA>C

	 c 1.5
S
d + c (aA)n

T
d = c 0.75

d
d + c (aC)n

c
d + ca(0.5)

S
d

� + c (9)2(0.5)

T
d

	 S+
 

    1.5 = -0.75 + a10.52
	 a = 4.5 rad>s2

F16–23.	 vB = vrB>A = 12(0.3) = 3.6 m>s

	 vBC =
vB

rB>IC
=

3.6

1.2
= 3 rad>s

	 Vector Analysis

	  aB = A * rB>A - v2rB>A
	  = (-6k) * (0.3i) - 122(0.3i)

	  = {-43.2i - 1.8j} m>s2

	 aC = aB + ABC * rC>B - v2
BCrC>B

	  aC i = (-43.2i - 1.8j)

	  + (aBC k) * (1.2i) - 32(1.2i)

	  aC i = -54i + (1.2aBC - 1.8)j

	  aC = -54 m>s2 = 54 m>s2  d � Ans.

	  0 = 1.2aBC - 1.8 aBC = 1.5 rad>s2� Ans.

	 Scalar Analysis

	 aC = aB + aC>B

c aC

d
d = c 6(0.3)

T
d + c (12)2(0.3)

d
d + caBC(1.2)

c
d + c (3)2(1.2)

d
d

	 d+    aC = 43.2 + 10.8 = 54 m>s2 d

	 + c   0 = -610.32 + 1.2aBC

	  aBC = 1.5 rad>s2

F16–24.	 vB = v rB>A = 6(0.2) = 1.2 m>s S

	 rB>IC = 0.8 tan 60 = 1.3856 m

	 vBC =
vB

rB>IC
=

1.2

1.3856
= 0.8660 rad>s

	 Vector Analysis

	  aB = A * rB>A - v 2 rB>A
	  = (-3k) * (0.2j) - 62 (0.2j)

	  = [0.6i - 7.2j] m>s
	 aC = aB + ABC * rC>B - v 2rC>B
	 aC cos 30i + aC sin 30j

	 = (0.6i - 7.2j) + (aBC k * 0.8i) - 0.86602(0.8i)

F16–20.	 Vector Analysis

	  aA = aO + A * rA>O - v2 rA>O �

	  = 1.8i + (-6k) * (0.3j) - 122 (0.3j)

	  = {3.6i - 43.2j}m>s2� Ans.

	 Scalar Analysis

	 aA = aO + aA>O

	 c (aA)x

S
d + c(aA)ycR = c(6)(0.3)

S
d + c(6)(0.3)

S
d

	 + 3 T(12)2(0.3)4
	 S+

 

   1aA2x = 1.8 + 1.8 = 3.6 m>s2 S

	 + c   1aA2y = -43.2 m>s2

F16–21.	 Using

	 vO = vr;	 6 = v10.32
		  v = 20  rad>s
	 aO = ar;	 3 = a 10.32
		  a = 10 rad>s2� Ans.

	 Vector Analysis

	  aA = aO + A * rA>O - v2rA>O

	  = 3i + (-10k) * (-0.6i) -  202(-0.6i)

	  = {243i + 6j} m>s2� Ans.

	 Scalar Analysis

	 aA = aO + aA>O

� c (aA)x

S
d + c (aA)y

c
d = c 3

S
d + c 10(0.6)

c
d + c (20)2(0.6)

S
d

	 S+
 

     1aA2x = 3 + 240 = 243 m>s2

	 + c   1aA2y = 1010.62 = 6 m>s2 c

F16–22.	
rA>IC

3
=

0.5 - rA>IC 

1.5
;  rA>IC = 0.3333 m 

	 v =
vA

rA>IC
=

3

0.3333
= 9 rad>s

	 Vector Analysis

	 aA = aC + A * rA>C - v2 rA>C

	 1.5i - (aA)n j = -0.75i + (aC)n j

	 +  (-ak) * 0.5j - 92 (0.5j)

	  1.5i - (aA)n j = (0.5a - 0.75)i + 3(aC)n - 40.54j
	  1.5 = 0.5a - 0.75

	 a = 4.5 rad>s2� Ans.
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F17–4.	 FA = ms NA = 0.2NA  FB = ms NB = 0.2NB

	 S+
 

Fx = m(aG)x ;

	 0.2NA + 0.2NB = 100a� (1)

	 + c Fy = m(aG)y;

	 NA + NB - 100(9.81) = 0� (2)

	 a+ MG = 0;

	 0.2NA(0.75) + NA(0.9) + 0.2NB (0.75)

	 - NB(0.6) = 0� (3)

	 Solving Eqs. (1), (2), and (3),

	 NA = 294.3 N = 294 N

	 NB = 686.7 N = 687 N

	 a = 1.96 m>s2� Ans.

	� Since NA is positive, the table will indeed slide 
before it tips.

F17–5.	 (aG)t = ar = a(1.5 m) 

	 (aG)n = v2r = (5 rad>s)2(1.5 m) = 37.5 m>s2 

	 Ft = m(aG)t;  100 N = 50 kg[a(1.5 m)]

			   a = 1.33 rad>s2� Ans.

	 Fn = m(aG)n;  TAB + TCD - 50(9.81) N

	 = 50 kg(37.5 m>s2)

	 TAB + TCD = 2365.5

	 a+ MG = 0; TCD (1 m) - TAB (1 m) = 0

	 TAB = TCD = 1182.75 N = 1.18 kN� Ans.

F17–6.	 a+ MC = 0;
	 aG = aD = aB

	 Dy(0.6) - 450 = 0 Dy = 750 N� Ans.

	 (aG)n = v2r = 62(0.6) = 21.6 m>s2

	 (aG)t = ar = a(0.6)

	 + c Ft = m(aG)t;

	 750 - 50(9.81) = 50[a(0.6)]

	 a = 8.65 rad>s2� Ans.

	 S+ Fn = m(aG)n;

	 FAB + Dx = 50(21.6)� (1)

	 a+ MG = 0;

	 Dx(0.4) + 750(0.1) - FAB(0.4) = 0� (2)

	 Dx = 446.25 N = 446 N� Ans.

	 FAB = 633.75 N = 634 N� Ans.

	 0.8660aC i + 0.5aC j = (0.8aBC - 7.2)j

	 0.8660aC = 0� (1)

	 0.5aC = 0.8aBC - 7.2� (2)

	 aC = 0  aBC = 9 rad>s2� Ans.

	 Scalar Analysis

	 aC = aB + aC>B

	 c aC

a 30
d = c 3(0.2)

S
d + c (6)2(0.2)

T
d + caBC(0.8)

c
d

� + c (0.8660)2(0.8)
d

d
	 This yields Eqs. (1) and (2).

Chapter 17
F17–1.	 S+

 

 Fx = m(aG)x; 10014
52 = 100a

	 a = 0.8 m>s2 S � Ans.

	 + c Fy = m(aG)y;

	 NA + NB - 10013
52 - 100(9.81) = 0� (1)

	 a+  MG = 0;

	 NA(0.6) + 1001 3
52(0.7)

			  - NB(0.4) - 1001 4
52(0.7) = 0� (2)

	 NA = 430.4 N = 430 N� Ans.

	 NB = 610.6 N = 611 N� Ans.

F17–2.	 Fx = m(aG)x; 80(9.81) sin 15 = 80a

	 a = 2.54 m>s2� Ans.

	 Fy = m(aG)y;

	 NA + NB - 80(9.81) cos 15 = 0� (1)

	 a+ MG = 0;

	 NA(0.5) - NB(0.5) = 0� (2)

	 NA = NB = 379 N� Ans.

F17–3.	 a+ MA = (Mk)A; 1013
52(7) =

20
32.2 a(3.5)

	 a = 19.3 ft>s2� Ans.

	 S+
 

Fx = m(aG)x; Ax + 101 3
 52 =

20
32.2(19.32)

	 Ax = 6 lb� Ans.

	 + c Fy = m(aG)y; Ay - 20 + 1014
52 = 0

	 Ay = 12 lb � Ans.
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F17–11.	 IG =
1
12ml2 =

1
12 (15 kg)(0.9 m)2 = 1.0125 kg # m2 

	 (aG)n = v2rG = 0

	 (aG)t = a(0.15 m)

	  IO = IG + md 2OG

	  = 1.0125 kg # m2 + 15 kg(0.15 m)2

	  = 1.35 kg # m2

	 a+ MO = IOa;

	 [15(9.81) N](0.15 m) = (1.35 kg # m2)a

	 a = 16.35 rad>s2� Ans.

	 + T Ft = m(aG)t ; - Ot + 15(9.81)N

	 = (15 kg)[16.35 rad>s2(0.15 m)]

	 Ot = 110.36 N = 110 N� Ans.

	 S+ Fn = m(aG)n;  On = 0� Ans.

F17–12.	 (aG)t = arG = a(0.45)

	 (aG)n = v2rG = 62(0.45) = 16.2 m>s2

	 IO =
1
 3 ml2 =

1
 3 (30)(0.92) = 8.1 kg # m2

	 a+ MO = IO a;

	 30014
52(0.6) - 30(9.81)(0.45) = 8.1a

	 a = 1.428 rad>s2 = 1.43 rad>s2� Ans.

	 d+ Fn = m(aG)n;  On + 30013
52 = 30(16.2)

	 On = 306 N� Ans.

	 + c Ft = m(aG)t;    Ot + 30014
52 - 30(9.81)

	 = 30[1.428(0.45)]

	 Ot = 73.58 N = 73.6 N� Ans.

F17–13.	 IG =
1
12ml2 =

1
12(60)(32) = 45 kg # m2

	 + c Fy = m(aG)y;

	 80 - 20 = 60aG  aG = 1 m>s2c

	 a+ MG = IGa;  80(1) + 20(0.75) = 45a

	 a = 2.11 rad>s2� Ans.

F17–14.	 a+ MA = (Mk)A;

	 -200(0.3) = -100aG(0.3) - 4.5a

	 30aG + 4.5a = 60  (1)

	 aG = ar = a(0.3)   (2)

	 a = 4.44 rad>s2 aG = 1.33 m>s2 S � Ans.

F17–15.	 + c Fy = m(aG)y;

	 N - 20(9.81) = 0 N = 196.2 N

	 S+ Fx = m(aG)x; 0.5(196.2) = 20aO

	 aO = 4.905 m>s2 S � Ans.

F17–7.	 IO = mk2
O = 100(0.52) = 25 kg # m2

	 a+ MO = IOa;  -100(0.6) = -25a

	 a = 2.4 rad>s2

	 v = v0 + act

	 v = 0 + 2.4(3) = 7.2 rad>s� Ans.

F17–8.	 IO =
1
2 mr2 =

1
2 (50) (0.32) = 2.25 kg # m2

	 a+ MO = IOa;

	      -9t = -2.25a  a = (4t) rad>s2 

	 dv = a dt

	 L
v

0
dv = L

t

0
4t dt

	 v = (2t2) rad>s
	 v = 2(42) = 32 rad>s� Ans.

F17–9.	 (aG)t = arG = a(0.15)

	 (aG)n = v2rG = 62(0.15) = 5.4 m>s2

	  IO = IG + md2 =
1
12 (30)(0.92) + 30(0.152)

	  = 2.7 kg # m2

	 a+ MO = IOa; 60 - 30(9.81)(0.15) = 2.7a

	 a = 5.872 rad>s2 = 5.87 rad>s2� Ans.

	 d+ Fn = m(aG)n;  On = 30(5.4) = 162 N� Ans.

	 + c Ft = m(aG)t;

	 Ot - 30(9.81) = 30[5.872(0.15)]

	 Ot = 320.725 N = 321 N� Ans.

F17–10.	 (aG)t = arG = a(0.3)

	 (aG)n = v2rG = 102(0.3) = 30 m>s2

	  IO = IG + md2 =
1
2 (30)(0.32) + 30(0.32)

	  = 4.05 kg # m2

	 a+ MO = IOa;

	 5013
52(0.3) + 5014

52(0.3) = 4.05a

	 a = 5.185 rad>s2 = 5.19 rad>s2� Ans.

	 + c Fn = m(aG)n;

	 On + 5013
52 - 30(9.81) = 30(30)

	 On = 1164.3 N = 1.16kN� Ans.

	 S+ Ft = m(aG)t;

	 Ot + 5014
52 = 30[5.185(0.3)]

	 Ot = 6.67 N� Ans.
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Chapter 18

F18–1.	 IO = mkO
2 = 8010.422 = 12.8 kg # m2

	 T1 = 0

	 T2 =
1
2 IOv

2 =
1
2 (12.8)v2 = 6.4v2

	 s = ur = 20(2p)(0.6) = 24p m

	 T1 + U1-2 = T2

	 0 + 50(24p) = 6.4v2

	 v = 24.3 rad>s� Ans.

F18–2.	 T1 = 0

	  T2 =
1
2 m(vG)2

2 +
1
2 IGv2

2

	  =
1
21 50

32.2 slug2(2.5v2)
2

	    +
1
2 3 1

121 50
32.2 slug2(5 ft)24v2

2

	 T2 = 6.4700v2
2

	 Or,

	  IO =
1
3 ml2 =

1
3 1 50

32.2 slug2(5 ft)2

	  = 12.9400 slug # ft2

	 So that

	  T2 =
1
2 IOv2

2 =
1
2 (12.9400 slug # ft2)v2

2

	  = 6.4700v2
2

	 T1 + U1-2 = T2

	 T1 + [-WyG + Mu] = T2

	 0 + 3- (50 lb)(2.5 ft) + (100 lb # ft)(p2 ) 4
	 = 6.4700v2

2

	 v2 = 2.23 rad>s� Ans.

F18–3.	 (vG)2 = v2rG>IC = v2(2.5)

	 IG =
1
12 ml2 =

1
12 (50)1522 = 104.17 kg # m2

	 T1 = 0

	 T2 =
1
2 m(vG)2

2 +
1
2 IGv2

2

	 =
1
2 (50)3v2(2.5)42 +

1
2 (104.17)v2

2 = 208.33v2
2

	 UP = PsP = 600(3) = 1800 J

	 UW = -Wh = -50(9.81)(2.5 - 2) = -245.25 J

	 T1 + U1-2 = T2

	 0 + 1800 + (-245.25) = 208.33v2
2

	 v2 = 2.732 rad>s = 2.73 rad>s� Ans.

	 a+ MO = IOa;

	 0.5(196.2)(0.4) - 100 = -1.8a

	 a = 33.8 rad>s2� Ans.

F17–16.	 Sphere IG  2
5 (20)(0.15)2 = 0.18 kg #  m2

	 a+ MIC = (Mk)IC;

	 20(9.81)sin 30(0.15) = 0.18a + (20aG)(0.15)

	 0.18a + 3aG = 14.715

	 aG = ar = a(0.15)

	 a = 23.36 rad>s2 = 23.4 rad>s2� Ans.

	 aG = 3.504 m>s2 = 3.50 m>s2� Ans.

F17–17.	 + c Fy = m(aG)y;

	 N - 200(9.81) = 0 N = 1962 N

	 S+ Fx = m(aG)x;

	 T - 0.2(1962) = 200aG� (1)

	 a+ MA = (Mk)A; 450 - 0.2(1962)(1)

	 = 18a + 200aG(0.4)� (2)

	 (aA)t = 0  aA = (aA)n

	 aG = aA + A * rG>A - v2rG>A
	 aGi = -aAj + ak * (-0.4j) - v2(-0.4j)

	 aGi = 0.4ai + (0.4v2 - aA)j

	 aG = 0.4a� (3)

	 Solving Eqs. (1), (2), and (3),

	 a = 1.15 rad>s2  aG = 0.461 m>s2

	 T = 485 N� Ans.

F17–18.	 S+ Fx = m(aG)x;  0 = 12(aG)x  (aG)x = 0

	 a+ MA = (Mk)A

	 -12(9.81)(0.3) = 12(aG)y(0.3) -
1
12(12)(0.6)2a

	 0.36a - 3.6(aG)y = 35.316� (1)

	 v = 0

	 aG = aA + A * rG>A - v2rG>A
	 (aG)y  j = aAi + (-ak) * (0.3i) - 0

	 (aG)y j = (aA)i - 0.3 j

	 aA = 0� Ans.

	 (aG)y = -0.3a� (2)

	 Solving Eqs. (1) and (2)

	  a = 24.5 rad>s2

	 (aG)y = -7.36 m>s2 = 7.36 m>s2T � Ans.
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	  T2 =
1
2 m(vG)2

2 +
1
2 IGv2

2

	  =
1
2 (30)[v2(0.3)]2 +

1
2 (1.35)v2

2 = 2.025v2
2

	 1Vg21 = Wy1 = 0

	 1Vg22 = -Wy2 = -30(9.81)(0.3) = -88.29 J

	  T1 + V1 = T2 + V2

	  0 + 0 = 2.025v2
2 + (-88.29)

	 v2 = 6.603 rad>s = 6.60 rad>s� Ans.

F18–8.	 vO = vrO>IC = v(0.2)

	 IO = mkO
2 = 5010.322 = 4.5 kg # m2

	 T1 = 0

	  T2 =
1
2 m(vO)2

2 +
1
2 IOv2

2

	  =
1
2 (50)3v2(0.2)42 +

1
2 (4.5)v2

2

	  = 3.25v2
2

	   1Vg21 = Wy1 = 0

 1Vg22 = -Wy2 = -50(9.81)(6 sin 30)

 = -1471.5J

	  T1 + V1 = T2 + V2

	  0 + 0 = 3.25v2
2 + (-1471.5)

	 v2 = 21.28 rad>s = 21.3 rad>s� Ans.

F18–9.	 vG = vrG = v(1.5) 

	 IG =
1
12(60)1322 = 45 kg # m2

	 T1 = 0

	  T2 =
1
2 m(vG)2

2 +
1
2 IGv2

2

	  =
1
2 (60)[v2(1.5)]2 +

1
2 (45)v2

2

	  = 90v2
2

	 Or, 

	 T2 =
1
2 IOv2

2 =
1
2 345 + 6011.5224v2

2 = 90v2
2

	 1Vg21 = Wy1 = 0

	  1Vg22 = -Wy2 = -60(9.81)(1.5 sin 45)

	  = -624.30 J

	 1Ve21 =
1
2 ks1

2 = 0

	 1Ve22 =
1
2 ks2

2 =
1
2 (150)(3 sin 45)2 = 337.5 J

	  T1 + V1 = T2 + V2

	  0 + 0 = 90v2
2 + [-624.30 + 337.5]

	 v2 = 1.785 rad>s = 1.79 rad>s� Ans.

F18–10.	 vG = vrG = v(0.75)

	  IG =
1
12 (30)11.522 = 5.625 kg # m2

	  T1 = 0

F18–4.	  T =
1
2 mvG

2 +
1
2 IGv

2

	  =
1
2 (50 kg)(0.4v)2 +

1
2 350 kg(0.3 m)24v2

	  = 6.25v2 J
	 Or,
	  T =

1
2 IICv

2

	  =
1
2 350 kg(0.3 m)2 + 50 kg(0.4 m)24v2

	  = 6.25v2 J

	 sG = ur = 10(2p rad)(0.4 m) = 8p m

	  T1 + U1 - 2 = T2

	  T1 + P cos 30 sG = T2

	  0 + (50 N)cos 30(8p m) = 6.25v2 J

	 v = 13.2 rad>s� Ans.

F18–5.	  IG =
1
12 ml2 =

1
12 (30)1322 = 22.5 kg # m2

	  T1 = 0

	  T2 =
1
2 mvG

2 +
1
2 IGv

2

	  =
1
2 (30)[v(0.5)]2 +

1
2 (22.5)v2 = 15v2

	 Or,

	  IO = IG + md2 =
1
12 (30)1322 + 3010.522

	  = 30 kg # m2

	 T2 =
1
2 IOv

2 =
1
2 (30)v2 = 15v2

	 s1 = ur1 = 8p(0.5) = 4p m

	 s2 = ur2 = 8p(1.5) = 12p m

	 UP1
= P1s1 = 30(4p) = 120p J

	 UP2
= P2s2 = 20(12p) = 240p J

	 UM = Mu = 20[4(2p)] = 160p J

	 UW = (0 bar returns to same position)
	 T1 + U1 - 2 = T2

	 0 + 120p + 240p + 160p = 15v2

	 v = 10.44 rad>s = 10.4 rad>s� Ans.

F18–6.	 vG = vr = v(0.4)

	 IG = mkG
2 = 2010.322 = 1.8 kg # m2

	  T1 = 0

	  T2 =
1
2 mvG

2 +
1
2IGv

2

	  =
1
2 (20)3v(0.4)42 +

1
2 (1.8)v2

	  = 2.5v2

	 UM = Mu = M1sO
r 2 = 501 20

0.42 = 2500 J

	  T1 + U1 - 2 = T2

	  0 + 2500 = 2.5v2

	 v = 31.62 rad>s = 31.6 rad>s� Ans.

F18–7.	 vG = vr = v(0.3)

	 IG =
1
2 mr2 =

1
2 (30)10.322 = 1.35 kg # m2

	 T1 = 0
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Chapter 19
F19–1.	 c + IOv1 +  L

t2

t1

MO  dt = IOv2

	  0 + L
4 s

0
3t2  dt = 36010.3224v2

	 v2 = 11.85 rad>s = 11.9 rad>s� Ans.

F19–2.	 c+ (HA)1 +  L
t2

t1

MAdt = (HA)2

	 0 + 300(6) = 30010.422v2 + 300[v(0.6)](0.6)

	 v2 = 11.54 rad>s = 11.5 rad>s� Ans.

	 S+
 

  m(v1)x +  L
t2

t1

Fxdt = m(v2)x

	        0 + Ff  (6) = 300[11.54(0.6)]

	        Ff = 346 N� Ans.

F19–3.	 vA = vArA>IC = vA(0.15)

	 a+ MO = 0; 9 - At(0.45) = 0 At = 20 N

	 a+ (HC)1 +  L
t2

t1

MC  dt = (HC)2

	        0 + [20(5)](0.15)

	       = 10[vA(0.15)](0.15)

	          + 31010.1224vA

	 vA = 46.2 rad>s� Ans.

F19–4.	 IA = mkA
2 = 1010.0822 = 0.064 kg # m2

	 IB = mkB
2 = 5010.1522 = 1.125 kg # m2

	 vA = ¢ rB

rA
≤vB = ¢0.2

0.1
≤vB = 2vB

	 c+  IA(vA)1 +  L
t2

t1

MA dt = IA(vA)2

	 0 + 10(5) - L
5 s

0
F(0.1)dt = 0.064[2(vB)2]

	 L
5 s

0
Fdt = 500 - 1.28(vB)2� (1)

	 a+ IB(vB)1 +  L
t2

t1

MB dt = IB(vB)2

	 0 + L
5 s

0
F(0.2)dt = 1.125(vB)2

	 L
5 s

0
Fdt = 5.625(vB)2� (2)

	 Equating Eqs. (1) and (2),

	 500 - 1.28(vB)2 = 5.625(vB)2

	 (vB)2 = 72.41 rad>s = 72.4 rad>s� Ans.

	  T2 =
1
2 m(vG)2

2 +
1
2 IGv2

2

	  =
1
2 (30)[v(0.75)]2 +

1
2 (5.625)v2

2 = 11.25v2
2

	 Or, 

	  T2 =
1
2 IOv2

2 =
1
2 35.625 + 3010.75224v2

2

	  = 11.25v2
2

	  1Vg21 = Wy1 = 0

	  1Vg22 = -Wy2 = -30(9.81)(0.75)

	  = -220.725 J

	 (Ve)1 =
1
2 ks1

2 = 0

� (Ve)2 =
1
2 ks2

2 =
1
2 (80)1222 + 1.52 - 0.522 = 160 J

	  T1 + V1 = T2 + V2

	  0 + 0 = 11.25v2
2 + (-220.725 + 160)

	 v2 = 2.323 rad>s = 2.32 rad>s� Ans.

F18–11.	 (vG)2 = v2rG>IC = v2(0.75)

	 IG =
1
12 (30)11.522 = 5.625 kg # m2

	 T1 = 0

	  T2 =
1
2 m(vG)2

2 +
1
2 IGv2

2

	  =
1
2 (30)[v2(0.75)]2 +

1
2 (5.625)v2

2 = 11.25v2
2

	 1Vg21 = Wy1 = 30(9.81)(0.75 sin 45) = 156.08 J

	 1Vg22 = -Wy2 = 0

	 1Ve21 =
1
2ks1

2 = 0

	  (Ve)2 =
1
2 ks2

2 =
1
2 (300)(1.5 - 1.5 cos 45)2

	  = 28.95 J

			   T1 + V1 = T2 + V2

	  0 + (156.08 + 0) = 11.25v2
2 + (0 + 28.95)

	 v2 = 3.362 rad>s = 3.36 rad>s� Ans.

F18–12.	  (Vg)1 = -Wy1 = - [20(9.81) N](1 m) = -196.2 J

	  (Vg)2 = 0

	  (Ve)1 =
1
2 ks1

2

	  =
1
2(100 N>m)a2(3 m)2 + (2 m)2 - 0.5 mb

2

	  = 482.22 J

	  (Ve)2 =
1
2 ks2

2 =
1
2 (100 N>m)(1 m - 0.5 m)2

	  = 12.5 J

	  T1 = 0

	  T2 =
1
2 IAv

2 =
1
2 31

3 (20 kg)(2 m)24v2

	  = 13.3333v2

	 T1 + V1 = T2 + V2

	  0 + [-196.2 J + 482.22 J]

			   = 13.3333v2
2 + [0 + 12.5 J]

	 v2 = 4.53 rad>s� Ans.
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	 0 + [(150 N)(0.2 + 0.3) m](3 s)

	 = [(50 kg)(0.175 m)2 + (50 kg)(0.3 m)2 ]v2

	       v2 = 37.3 rad>s� Ans.

F19–6.	 1+ c 2 m3 1vG214 y +  LFy dt = m3 1vG224 y

	       0 + NA(3 s) - (150 lb)(3 s) = 0

	       NA = 150 lb

	 c+  (HIC)1 +  LMIC dt = (HIC)2

	 0 + (25 lb # ft)(3 s) - [0.15(150 lb)(3 s)](0.5 ft)

	 =  3 150
32.2 slug(1.25 ft)24v2 +  1 150

32.2 slug2 3v2(1 ft)4(1 ft)

	 v2 = 3.46 rad>s		  Ans.

F19–5.	 ( S+
 

) m3(vO)x41 +  LFx dt = m3(vO)x42

	       0 + (150 N)(3 s) + FA(3 s)

			        = (50 kg)(0.3v2)

	 c+ IGv1 +  LMG dt = IGv2

	 0 + (150 N)(0.2 m)(3 s) - FA(0.3 m)(3 s)

			    = [(50 kg)(0.175 m)2] v2

	       v2 = 37.3 rad>s� Ans.

	       FA = 36.53 N

	 Also,

	       IICv1 +  LMIC dt = IICv2



2

Chapter 12

P12–1.  a)  v =
ds

dt
=

d

dt
 (2t3) = 6t2 `

t =  2 s
=  24 m>s

	 b)  a ds = v dv,     v = 5s,     dv = 5 ds
	 a ds = (5s) 5 ds

	 a = 25s `
s =  1 m

= 25 m>s2

	 c)  a =
dv

dt
=

d

dt
 (4t + 5) = 4 m>s2

	 d)  v = v0 + ac t
	 v = 0 + 2(2) = 4 m>s
	 e)    v2 = v0

2 + 2ac(s - s0)

	 v2 = (3)2 + 2(2)(4 - 0)

	 v = 5  m>s
	 f)  a ds = v dv

	 L
s2

s1

s ds = L
v

0

v dv

	 s2 `
5

4
= v2 `

v

0

	 25 - 16 = v2

	 v = 3 m>s

	 g)  s = s0 + v0 t +
1

2
 ac t

2

	 s = 2 + 2(3) +
1

2
 (4)(3)2 = 26 m

	 h)  dv = a dt

	 L
v

0
dv = L

1

0
(8t2) dt

	 v = 2.67t3 `
1

0
 = 2.67 m>s

	 i)  v =
ds

dt
=

d

dt
 (3t2 + 2) = 6t `

t =  2 s
= 12 m>s

	 j)  vavg =
�s

�t
=

6 m - (-1 m)

10 s - 0
= 0.7 m>s S

	 (vsp)avg =
sT

�t
=

7 m + 14 m

10 s - 0
= 2.1 m>s

Preliminary Problems 
Dynamics Solutions

P12–2.  a)  v = 2t

	 s = t2

	 a = 2

t (s)

s (m)

4

2
t (s)

a (m/s2)

2

2

	 b)  s = -2t + 2
	 v = -2
	 a = 0

t (s)

v (m/s)

�2

1 t (s)

a (m/s2)

1

	 c)  a = -2
	 v = -2t
	 s = - t2

t (s)

v (m/s)

�4

2 t (s)

s (m)

�4

2

	 d) 

	 �s = L
3

0
v dt = Area =

1

2
 (2)(2) + 2(3 - 2) = 4 m

	 s - 0 = 4 m,	 s = 4 m

	 a =
dv

dt
= slope at t = 3 s, a = 0

713
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P12–6.        xB, yB, (vB)y

	 xB = 0 + (60 cos 20�)(5)

	 yB = 0 + (60 sin 20�)(5) +
1

2
 (-9.81)(5)2

	 (vB)y = 60 sin 20� + (-9.81)(5)

P12–7.  a)  at = v
#

= 3 m>s2

	 an =
v2

r
 =

(2)2

1
 = 4 m>s2

	 a = 2(3)2 + (4)2 = 5 m>s2

	 b)  at = v
#

= 4 m>s2

	 v2 = v2
0 + 2ac(s - s0)

	 v2 = 0 + 2(4)(2 - 0)

	 v = 4 m>s

	 an =
v2

r
=

(4)2

2
= 8 m>s2

	 c)  at = 0

	 r =

c 1 + ady
dx b

2

d
3
2

d2y

dx2

`
x = 0

=
1 + 0

4
=

1

4

	 an =
v2

r
=

(2)2

1
4

= 16 m>s2

	 a = 2(0)2 + (16)2 = 16 m>s2

	 d)  at ds = v dv

	 at ds = (4s + 1)(4 ds)

	 at = (16s + 4) 0 s = 0 = 4 m>s2

	 an =
v2

r
=

(4(0) + 1)2

2
= 0.5 m>s2

	 e)  at ds = v dv

	 L
s

0
 2s ds = L

v

1
v dv

	 s2 =
1

2
(v2 - 1)

	 v = 2 2s2 + 1 `
s =  2 m

= 3 m>s
	 at = v

#
= 2(2) = 4 m>s2

	 an =
v2

r
=

(3)2

3
= 3 m>s2

	 a = 2(4)2 + (3)2 = 5 m>s2

	 f)   at = v
#

= 8t `
t =  1

= 8 m>s2

	 an =
v2

r
=

(4(1)2 + 2)2

6
= 6 m>s2

	 a = 2(8)2 + (6)2 = 10 m>s2 

	 e)  For a = 2,
	 v = 2t

	 When t = 2 s, v = 4 m>s.
	 For a = -2,

	 L
v

4
dv = L

t

2
 -2 dt

	 v - 4 = -2t + 4
	 v = -2t + 8

t (s)

v (m/s)

4

2 4

	 f)  L
v

1
v dv = L

2

0

a ds = Area

	
1

2
 v2 -

1

2
 (1)2 =

1

2
 (2)(4)

	 v = 3 m>s
	 g)  v dv = a ds At s = 1 m, v = 2 m>s.

	 a = v 
dv

ds
= v(slope) = 2(-2) = -4 m>s

P12–3.  a)  y = 4x2

	 y
#

= 8xx
#

	 y
$

= (8x
#
)x

#
+ 8x(x

$
)

	 b)  y = 3ex

	 y
#

= 3exx
#

	 y
$

= (3exx
#
)x

#
+ 3ex(x

$
)

	 c)  y = 6 sin x

	 y
#

= (6 cos x)x
#

	 y
$

= [(-6 sin x)x
#
] x

#
+ (6 cos x)(x

$
)

P12–4.        yA, tAB, (vB)y

	 20 = 0 + 40tAB

	 0 = yA + 0 +
1

2
 (-9.81)(tAB)2

	 (vB)2
y = 02 + 2(-9.81)(0 - yA)

P12–5.        xB, tAB, (vB)y

	 xB = 0 + (10 cos 30�)(tAB)

	 0 = 8 + (10 sin 30�)tAB +
1

2
 (-9.81)tAB

2

	 (vB)2
y = 02 + 2(-9.81)(0 - 8)
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	 S+
 

�Fx = max;	 2.5s = 10a
	   a = 2.5s
	   v dv = a ds

	 L
v

3
 v dv = L

8

0
 2.5s ds

	 v2 - (3)2 = 2.5(8 - 0)2

	 v = 13 m>s

P13–3. 

98.1 NN

5 3
4

Fs

10a

	 Fs = kx = (10 N>m) (5 m - 1 m) = 40 N

	 d
+

 �Fx = max;	
4

5
 (40 N) = 10a

	 a = 3.2 m>s2

P13–4.

 

98.1 N

N

0.2N

30�

10a

	 R+ �Fx = max;	 98.1 sin 30� - 0.2N = 10a

	 +Q�Fy = may;  N - 98.1 cos 30� = 0

P13–5.  a)  98.1 N

n

10an

10at

N

t 0.3N

	 d+
 

�Ft = mat;	 -0.3N = 10at

	 + T �Fn = man;	 98.1 - N = 10a (6)2

10
b

	 b)

 

10an

10at

n

N

t
30�

98.1 N

0.2N

Chapter 13

P13–1.  a)	

300 N

500 N

5
3

4
98.1 N

N

10a

	 S+
 

�Fx = max; 	 a4

5
b(500 N) - 300 N = 10a

	 a = 10 m>s2

	 S+
 

v = v0 + ac t;  v = 0 + 10(2) = 20 m>s
	 b) 

F � (20t) N

98.1 N

N

10a

	 S+
 

�Fx = max;  20t = 10a

	 a = 2t

	 dv = a dt;  L
v

0
dv = L

2

0
2t dt

	 v = 4 m>s
P13–2.	 	

	 a) 

 

10a
40 N 30 N

200 N

98.1 N

N

	 S+
 

�Fx = max;  40 N - 30 N = 10a 

	 a = 1 m>s2

	 S+
 

v2 = v0
2 + 2ac(s - s0);  v

2 = (3)2 + 2(1) (8 - 0)

	 v = 5 m>s
	 b)

	 F � (2.5s) N

98.1 N

N

10a
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Chapter 14

P14–1.  a)  U =
3

5
 (500 N)(2 m) = 600 J

	 b)  U = 0

	 c)  U = L
2

0
6s2 ds = 2(2)3 = 16 J

	 d)  U = 100 Na3

5
 (2 m)b =

3

5
 (100 N)(2 m) = 120 J

	 e)  U =
4

5
 (Area) =

4

5
c 1
2

 (1)(20) + (1)(20) d = 24 J

	 f)  U =
1

2
 (10 N>m)((3 m)2 - (1 m)2) = 40 J

	 g)  U = - a4

5
b(100 N)(2 m) = -160 J

P14–2.  a)  T =
1

2
 (10 kg)(2 m>s)2 = 20 J

	 b)  T =
1

2
 (10 kg)(6 m>s)2 = 180 J 

P14–3.  a)  V = (100 N)(2 m) = 200 J

	 b)  V = (100 N)(3 m) = 300 J
	 c)  V = 0

P14–4.  a)  V =
1

2
 (10 N>m)(5 m - 4 m)2 = 5 J

	 b)  V =
1

2
 (10 N>m)(10 m - 4 m)2 = 180 J

	 c)  V =
1

2
 (10 N>m)(5 m - 4 m)2 = 5 J

Chapter 15

P15–1.  a)  I = (100 N)(2 s) = 200 N # s b

	 b)  I = (200 N)(2 s) = 400 N # sT

	 c)  I = L
2

0
6t dt = 3(2)2 = 12 N # s R

	 d)  I = Area =
1

2
 (1)(20) + (2)(20) = 50 N # s Q

	 e)  I = (80 N)(2 s) = 160 N # s S

	 f)   I = (60 N)(2 s) = 120 N # s Q

P15–2.  a)  L = (10 kg)(10 m>s) = 100 kg # m>sR

	 b)  L = (10 kg)(2 m>s) = 20 kg # m>s b

	 c)  L = (10 kg)(3 m>s) = 30 kg # m>s S

	  R+ �Ft = mat;	 98.1 sin 30� -  0.2N = 10at

	  +Q �Fn = man;  	 N - 98.1 cos 30� = 10a (4)2

5
b

	

c) 

10an

10at

T

t 60�

98.1 N

n

	 +b �Ft = mat; 	  98.1 cos 60� = 10at

	  a+  �Fn = man;	  T - 98.1 sin 60� = 10a 82

6
b

P13–6.  a)

 

T

0.2Nt

98.1 N

N

10an

10at

n

b

	 �Fb = 0;	 N - 98.1 = 0

	 �Ft = mat;	 -0.2N = 10at

	 �Fn = man;	 T = 10 
(8)2

4

	 b)

 

98.1 N

0.3N

n

b

N

t

10an

	 �Fb = 0;	 0.3N - 98.1 = 0

	 �Ft = mat;	 0 = 0

	 �Fn = man;	 N = 10 
v2

2
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P16–2.  a) 

B

IC

r

2 m

2 m 45�

8 rad/s
vB

	 r = 2(2 cos 45�)2 + (2 + 2 sin 45�)2

	 b) 

8 m/s

0.4 m IC
V

0.3 m vB

	 c) 

 

2 m/s

IC

vB

V

 r    �
 r    �

	 vB = 2 m>s, v = 0

	 d) 

IC

(2 � d)

3 m/s

4 m/s

d

V

vB

1 m

	

Chapter 16

P16–1.  a) 

vB =

vB = vA vB/A (pin)�

2v�18 m/s
60�

    Also,

	 -vBj = -18j
+  (-vk) * (-2 cos 60�i) - 2 sin 60�j)

	 b) 
�(vB)x � (vB)y � 4(0.5) m/s4(0.5) m/s

30�

vB vA vB/A (pin)= �

    Also,

	 (vB)xi + (vB)y  j = 2i

+  (-4k) * (-0.5 cos 30�i + 0.5 sin 30�j)

	 c) 

vB � 6 m/s � v (5)

45� 30�

vB vA vB/A (pin)= �

    Also,

	 vB cos 45�i + vB sin 45�j = 6i + (vk) * (4i - 3j)

	 d) 

vB �
30�

 � v (3)6 m/s

vB vA vB/A (pin)= �

    Also,

	 vBi = 6 cos 30�i + 6 sin 30�j + (vk) * (3i)

	

e)
 

vA v12 m/s (0.5 m)��

�vB vA vB/A (pin)�

(vB)x (vB)y 12 m/s (24)(0.5)�� �

v 24 rad/s�

    Also,

	 (vB)xi + (vB)y  j = 12j + (24k) * (0.5j)

	

f)  vB vA vB/A (pin)� �

vB 6 m/s� � v(5)

5

3

4

    Also,

	 vBi = 6i + (vk) * (4i + 3j)
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	 c) 

(aB)x (6)2(l)

aB � aA � aB/A (pin)

�� � �2(2) (3)2(2) a(4)

    Also,

	 (aB)xi - 36j = 4i - 18j + (-ak) * (4i)

	 d)    

aB � 
60�     

� a(2) � (3)2 (2)6

aB � aA � aB/A (pin)

    Also,

	 aBi = -6 cos 60�i - 6 sin 60�j
	 + (-ak) * (-2i) - (3)2 (-2i)

	
e)

 

aB � 8(0.5) � (4)2(0.5) �  (1.15)2(2)�a(2)

aB � aA � aB/A (pin)

30�
30�

   Also,

	 -aBi = -4j + 8i + (-ak) * (-2 cos 30�i - 2 sin 30�j)
	 -  (1.15)2(-2 cos 30�i - 2 sin 30�j)

	 f)      

(aB)x � (aB)y � 2(0.5) � 2(0.5) � (4)2(0.5) 

aB � aA � aB/A (pin)

   Also,

	 (aB)xi + (aB)y  j = -1j + (-2k) * (0.5j)
- (4)2(0.5j)

	

e) 

IC

IC

2 m

2 m

45�

V¿

vB

45�
vB

45�

1.5 m/s

V

	 f) 

45�

105�

2 m

30�

30�

60�

IC 3 m/s

vB

P16–3.  a) 

(2.12)2(2)(3)2

3
2a

aB � aA � aB/A (pin)

� � �aB  � 2 m/s2

45�45�

    Also,

	 -aB  j = -2i + 3j + (-ak) * (2 sin 45�i + 2 cos 45�j)

	 -  (2.12)2(2 sin 45�i + 2 cos 45�j)

	 b) 

(aB)x (aB)y a(2)

aB � aA � aB/A (pin)

�� � �(2)(2) m/s2

45�

(4)2(2)
45�

Also,

  (aB)xi + (aB)y  j = 4i + (-ak) * (-2 cos 45�i + 2 sin 45�j)

 -  (4)2(-2 cos 45�i + 2 sin 45�j)
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Chapter 17

P17–1.  a) 

100 N
3

4

3 m 2 m
NBNA

0.2NA

0.5 m

5

981 N

1 m

100 aG

	 b) 

1.5 m

2 m

981 N

NB

NA

100 aG

	 c) 

500 N
2 m

2 m

30�
981 N

NB

0.2NB

NA

2 m

2 m

30�

100 aG

	 d)  Ax

Ay

981 N

By

2 m 2 m

Bx

100(4)2(1)

100(aG)x
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	 e)
 

Bx

Ax

ByAy

100(aG)t

100(3)2(3) 30�2 m 2 m

981 N

0.5 m

30�

	 f) 

5

3

4

1.5 m

2.5 m

981 N

NB

NA

3

1.5 m

100aG

4

5

P17–2.

 

a) 

1.5 m
Ox

20 N � m

Oy

(100)(2)2(1.5)

1[ ]12

100(a)(1.5)

(100)(3)2

981 N

A

	

b) 

100(a)(1.5)

1[ ]12
(100)(3)2

981 N

100(4)2(1.5)

1.5 m

Ox

Oy

45�

1.5 m
60 N

1.5 m

A

	

c) 

1[ ]12
(100)(4)2981 N

53.1�

Ox

Oy

2 m

2 m 2 m

100 (2)2(2)

100(a)(2)

�

Fs � (6)(3 � 1)
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	 d) 

Ox

Oy

2 m

100 N

981 N

2 m

[   (100)(2)2]A1
2

100(a)(2)

100(4)2(2)

	

e)
 

Ox

Oy

2 m

981 N

2 m

45�

[   (100)(2)2]a1
2

100(a)(2)

100(3)2(2)

	

f)
      (100)(2)2 A1

2

Ox

Oy

30 N � m

1 m 100(2)2(1)

98l N

1 m

100(a)(1)

[ ]

Chapter 18

P18–1.    a)  T =
1

2
c 100(2)2

2
d (3)2 = 900 J

	 b)	 T =
1

2
 (100)[2(1)]2 +

1

2
 c 1

12
 (100)(6)2 d (2)2

	 = 800 J

Also,

	 T =
1

2
 c 1

12
(100)(6)2 + 100(1)2 d (2)2 = 800 J

	 c)	 T =
1

2
 (100)[2(2)]2 +

1

2
c 1
2

 (100)(2)2 d (2)2

	 = 1200 J

Also,

	 T =
1

2
c 1
2

(100)(2)2 + 100(2)2 d (2)2

	 = 1200 J

	 d)	 T =
1

2
 (100)[2(1.5)]2 +

1

2
 c 1

12
 (100)(3)2 d (2)2

	 = 600 J

Also,

	 T =
1

2
c 1

12
(100)(3)2 + 100(1.5)2 d (2)2

	 = 600 J

	 e)	 T =
1

2
 (100)[4(2)]2 +

1

2
c 1
2

(100)(2)2 d (4)2

	 = 4800 J

Also,

	 T =
1

2
 c 1

2
(100)(2)2 + 100(2)2 d (4)2

	 = 4800 J

	 f)	 T =
1

2
(100)[(4)(2)]2 = 3200 J

Chapter 19

P19–1.	 a)	 HG = c 1
2

 (100)(2)2 d (3) = 600 kg # m2>sb

	 HO = c 1
2

 (100)(2)2 + 100(2)2 d (3)

	 = 1800 kg # m2>s  b
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	 b)	 HG = c 1

12
 (100)(3)2 d (4) = 300 kg # m2>s b

	 HO = c 1

12
(100)(3)2 + (100)(1.5)2 d (4)

	 = 1200 kg # m2>sb

	 c)	 HG = c 1
2

 (100)(2)2 d (4) = 800 kg # m2>s b

	 HO = c 1
2

 (100)(2)2 + (100)(2)2 d (4)

	 = 2400 kg # m2>s  b

	 d)	 HG = c 1

12
 (100)(4)2 d 3 = 400 kg # m2>s d

	 HO = c 1

12
 (100)(4)2 + (100)(1)2 d  3 

	 = 700 kg # m2>s d

P19–2.	 a)	 LMO dt = a4

5
b(500)(2)(3) = 2400 N # s # mb

	 b)	 LMO dt = c 2(20) +
1

2
 (3 - 2)(20) d 4

	 = 200 N # s # m b

	 c)	 LMO dt =
3

5 L
3

0
4(2t + 2)dt = 36 N # s # m b

	 d)	 LMO dt = L
3

0
(30 t2)dt = 270 b



Chapter 12 

R12–1.	 s = t3 - 9t2 + 15t

	 v =
ds

dt
= 3t2 - 18t + 15

	 a =
dv

dt
= 6t - 18

	 a  max occurs at t = 10 s.

	 a  max = 6(10) - 18 = 42 ft>s2� Ans.
	 vmax occurs when t = 10 s 
	 vmax = 3(10)2 -  18(10) + 15 = 135 ft>s� Ans.

R12–2.	 1S
+ 2	 s = s0 + v0 t +

1

2
 a ct

2 

	 s = 0 + 12(10) +
1

2
 (-2)(10)2

	 s = 20.0 ft� Ans.

R12–3.	 v =
ds

dt
= 1800(1 - e-0.3t)

	 L
x

0
ds = L

t

0
 1800(1 - e-0.3t) dt

	 s = 1800 a t +  
1

0.3
 e-0.3tb - 6000

	 Thus, in t = 3 s

	 s = 1800 a3 +
1

0.3
 e-0.3(3)b - 6000

	 s = 1839.4 mm = 1.84 m � Ans.

R12–4.	 0 … t … 5    a =
�v

�t
=

20

5
= 4 m>s2 � Ans.

	 5 … t … 20  a =
�v

�t
=

20 - 20

20 - 5
= 0 m>s2� Ans.

	 20 … t … 30   a =
�v

�t
=

0 - 20

30 - 20
= -2 m>s2� Ans.

	 At t1 = 5 s, t2 = 20 s, and t3 = 30 s,

	 s1 = A1 =
1

2
 (5)(20) = 50 m� Ans.

	 s2 = A1 + A2 = 50 + 20(20 - 5) = 350 m� Ans.

	 s3 = A1 + A2 + A3 = 350

	 +  
1

2
 (30 - 20)(20) = 450 m� Ans.

R12–5.	 vA = 20i

	 vB = 21.21i + 21.21j

	 vC = 40i

	 aAB =
�v

�t
=

21.21i + 21.21j - 20i

3

	 aAB = {0.404i + 7.07j} m>s2� Ans.

	 aAC =
�v

�t
=

40i - 20i
8

	 aAC = {2.50i} m>s2 � Ans.

R12–6.	 ( S
+ )	 s = s0 +  v0 t

	 126 =  0 +  (v0)x (3.6)

	 (v0)x = 35 ft>s
	 ( + c )	 s = s0 +  v0t +  

1

2
 act

2

	 O = 0 + (v0)y (3.6) +
1

2
 (-32.2)(3.6)2

	 (v0)y = 57.96 ft>s
	 v0 = 2(35)2 + (57.96)2 = 67.7 ft>s� Ans.

	 u = tan-1a57.96

35
b = 58.9� � Ans.

R12–7.	 v dv = at ds

	 L
v

4

v dv = L
10

0

0.05s ds

	 0.5v2 - 8 =
0.05

2
 (10)2

	 v = 4.583 = 4.58 m>s� Ans.

	 a n =
v2

r
=

(4.583)2

50
= 0.420 m>s2 

	 a t = 0.05(10) = 0.5 m>s2

	 a = 2(0.420)2 + (0.5)2 = 0.653 m>s2� Ans.

R12–8.	 dv = a dt	

	 L
y

0
dv = L

t

0
0.5et dt

	 v = 0.51et - 12
	 When t = 2 s, v = 0.51e2 - 12 = 3.195 m>s
	 = 3.19 m>s� Ans.

Review Problem Solutions

 723
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	 a = -  0.3429 m>s2 = 0.3429 m>s2 S

	 S
+ �Fx = max;	 F = 250(0.3429) = 85.7 N� Ans.

R13–2.	 a + �Fy = may;    NC - 50(9.81) cos 30� = 0

	 NC = 424.79

	 Q + �Fx = max;	 3T - 0.3(424.79) - 50(9.81)
	 sin 30� = 50aC� (1)

	 Kinematics, 2sC + (sC -  sp) = l

	 Taking two time derivatives, yields
	 3aC = ap

	 Thus, aC =
6

3
= 2

	 Substituting into Eq. (1) and solving,

	 T = 158 N� Ans.

R13–3.	 Suppose the two blocks move together.

	 Then

	 50 lb =
50 + 20

32.2
 a

	 a = 23 m>s2

	 Then the friction force on block B is

	 FB =
50

32.2
 (23) = 35.7 lb

	� The maximum friction force between blocks A and 
B is

	 Fmax = 0.4(20) = 8 lb 6 35.7 1b

	 The blocks have different accelerations.

	 Block A:

	 S+ �Fx = max;	 20(0.3) =
20

32.2
aA

	 aA = 70.8 ft>s2� Ans.

	 Block B:

	 S+ �Fx = max;	 20(0.3) =
50

32.2
 aB

	 aB = 3.86 ft>s2� Ans.

R13–4.	 �Kinematics: Since the motion of the crate is 
known, its acceleration a will be determined first.

	 a = v 
dv

ds
= (0.05s3>2) c (0.05) a3

2
bs1>2 d

	 = 0.00375s2 m>s2

	 When s = 10 m,

	 a = 0.00375(102) = 0.375 m>s2 S

	 When t = 2 s a t = 0.5e2 = 3.695 m>s2

		  an =
v2

r
=

3.1952

5
= 2.041 m>s2

	 a = 2a2
t + a2

n = 23.6952 + 2.0412

	       = 4.22 m>s2� Ans.

R12–9.	 r = 2 m	 u = 5t2

	 r
#

= 0	 u
#

= 10t
	 r

$
= 0	 u

$
= 10

	 a = (r
$

- ru
# 2)ur + (ru

$

+ 2r
#
 u
#

)uu

	 = 30 - 2(10t)24ur + [2(10) + 0]uu
	 = 5-200t2 ur + 20uu6  m>s2

	 When u = 30� = 30a p

180
b = 0.524 rad

	 0.524 = 5t2

			      t = 0.324 s

	 a = 3-200(0.324)24ur + 20uu
	 = 5-20.9ur + 20uu6m>s2

	 a = 2(-20.9)2 +  (20)2 =  29.0 m>s2� Ans.

R12–10.	     4sB + sA = l

	     4vB = -vA

	     4aB = -aA

	     4aB = -0.2

	     aB = -0.05 m>s2

	 1+ T 2	 vB = (vB)0 + aB t

	 -8 = 0 -  (0.05)(t)

	 t = 160 s� Ans.

R12–11.	 vB = vA + vB>A

	 [500 d ] = [600 cu 
75�

] + vB>A
	 1 d

+ 2	 500 =  -600 cos 75� +  (vB>A)x

	 (vB>A)x = 655.29 d

	 1+c 2	 0 = -  600 sin 75� + (vB>A)y

	 (vB>A)y = 579.56 c

	 (vB>A) = 2(655.29)2 + (579.56)2

	 vB>A = 875 km>h� Ans.

	 u = tan-1 a579.56

655.29
b = 41.5�  b� Ans.

Chapter 13

R13–1.	 20 km>h =  
20(10)3

3600
= 5.556 m>s

	 1 d
+ 2	 v2 = v2

0 + 2ac (s - s0)
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	� Free-Body Diagram: The kinetic friction 
F1 = mkN = 0.2N must act to the left to oppose 
the motion of the crate which is to the right.

	 Equations of Motion: Here, ay = 0. Thus,

	 + c �Fy = may;	 N -  20(9.81) = 20(0)

	 N = 196.2 N

	 Using the results of N and a,

	 S
+ �Fx = max;	 T - 0.2(196.2) = 20(0.375)

	 T = 46.7 N� Ans.

R13–5.	 + a�Fn = man;    T - 30(9.81) cos u = 30av2

4
b  

	 + Q�Ft =  mat;	 -30(9.81) sin u = 30at

	 at = -9.81 sin u

	 at ds = v dv Since ds = 4 du, then

	 -9.81L
u

0
sin u (4 du) = L

y

4
vdv

	 9.81(4) cos u `
u

0
=

1

2
 (v)2 -

1

2
 (4)2

	 39.24(cos u - 1) + 8 =
1

2
 v2

 	 At u = 20�

	 v = 3.357 m>s
	 at = -3.36 m>s2 = 3.36 m>s2 b� Ans.

	 T = 361 N� Ans.

R13–6.	 �Fz = maz;	 Nz - mg = 0      Nz = mg

	 �Fx = man;	 0.3(mg) = m av2

r
b

	 v = 20.3gr = 20.3(32.2)(3) = 5.38 ft>s� Ans.

R13–7.	 v =
1

8
 x2

	
dy

dx
= tan u =

1

4
x `

x = -6
= -1.5  u = -56.31�

	
d2y

dx2 =
1

4

	 r =

c 1 + ady

dx
b

2

d
3
2

` d
2y

dx2 `
=

c 1 + (-1.5)2 d
3
2

` 1
4
`

= 23.436 ft

	 + Q�Fn = man;  N - 10 cos 56.31�

� = a 10

32.2
b a (5)2

23.436
b

	 N = 5.8783 = 5.88 lb� Ans.

	 + R�Ft = mat; 	 -0.2(5.8783) + 10 sin 56.31�

	  = a 10

32.2
 bat

	 at = 23.0 ft>s2� Ans.

R13–8.	 r = 0.5 m

	 r
#

= 3 m>s	 u
#

= 6 rad>s
	 r

$
= 1 m>s2	 u

$
= 2 rad>s

	 ar = r
$

- ru2
#

= 1 - 0.5(6)2 = -17

	 au = ru
$

+ 2r
#
u
#

= 0.5(2) + 2(3)(6) = 37

	 �Fr =  mar;	 Fr = 4(-17) = -68 N

	 �Fu = mau;	 Nu = 4(37) = 148 N

	 �Fz = maz;	 Nz = 4(9.81) = 0

			   Nz = 39.24 N

	 Fr = -68 N� Ans.

	 N = 2(148)2 + (39.24)2 = 153 N� Ans.

Chapter 14

R14–1.	 + a�Fy = 0;	 NC -  150 cos 30� = 0

			   NC = 129.9 lb

	 T1 + �U1 - 2 = T2

0 + 150 sin 30�(30) - (0.3)129.9(30) =
1

2
 a 150

32.2
bv2

2

	 v2 = 21.5 ft>s� Ans.

R14–2.	 rAB = rB - rA = -4i + 8j - 9k

	 T1 + �  LFds = T2

	 0 + 2(10 - 1) + L
0

4
10dx + L

8

0
6y dy

� + L
1

10
2z dz =

1

2
a 2

32.2
bv2n

	 vB = 47.8 ft>s� Ans.

R14–3.	 T1 + V 1 = T2 + V 2

	 0 + 1.5(10) =
1

2
 a 1.5

32.2
bv 2B

	 vB = 25.4 ft>s� Ans.
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R14–8.	
6

z
=
2152 + 22

15

	 z = 5.95 ft

	 T1 + V1 = T2 + V2

	 0 + 0 =
1

2
 a 10

32.2
bv2

2 +
1

2
a 30

32.2
bv2

2

			     + 10(5.95) - 30(5.95)

	 v2 = 13.8 ft>s� Ans.

Chapter 15

R15–1.	 ( + c )  m(v1)y + � LFy dt = m(v2)y

		  0 + Np(t) - 58.86(t) = 0

		  Np = 58.86 N

	 1S+ 2  m(v1)x + � LFx dt = m(v2)x

		  6(3) - 0.2(58.86)(t) = 6(1)

		  t = 1.02 s� Ans.

R15–2.	 + a�Fx = 0;  NB - 50(9.81) cos 30� = 0

	 NB = 424.79 N

	 (+ Q)	 m(vx)1 + � LFx dt = m(vx)2

	 50(2) + L
2

0
1300 + 1201t2dt - 0.4(424.79)(2)

		            - 50(9.81) sin 30�(2) = 50v2

	 v2 = 1.92 m>s� Ans.

R15–3.	 The crate starts moving when

		  F = Fr = 0.6(196.2) = 117.72 N

	 From the graph since

		       F =
200

5
 t. 0 … t … 5 s

	 The time needed for the crate to start moving is

		     t =
5

200
 (117.72) = 2.943 s

	� Hence, the impulse due to F is equal to the area 
under the curve from 2.943 s … t … 10 s

	 S+   m(vx)1 + � LFx dt = m(vx)2

		  0 + L
5

2.943

200

5
 t dt + L

10

5
200 dt

� - (0.5)196.2(10 - 2.943) = 20v2

R14–4.	 �The work done by F depends upon the difference 
in the cord length AC−BC.

	 TA + �UA - B = TB

0 + F32(0.3)2 + (0.3)2 - 2(0.3)2 + (0.3 - 0.15)24
� - 0.5(9.81)(0.15)

	 -  
1

2
 (100)(0.15)2 =

1

2
 (0.5)(2.5)2

	 F(0.0889) = 3.423

	 F = 38.5 N� Ans.

R14–5.	 ( + c )	 v2 = v0
2 + 2ac(s - s0)

		    (12)2 = 0 + 2ac(10 - 0)

	 ac = 7.20 ft>s2

	 + c �Fy = may;  2T - 50 =
50

32.2
 (7.20)

		  T = 30.6 lb

	 sC + (sC - sM ) = l

	 vM = 2vC

	 vM = 2(12) = 24 ft>s
	 P0 = T # v = 30.6(24) = 734.2 lb # ft>s

	 Pi =
734.2

0.74
= 992.1 lb # ft>s = 1.80 hp� Ans.

R14–6.	 + c �Fy = m  ay;  2(30) - 50 =
50

32.2
 aB

		  aB = 6.44 m>s2

	 ( + c )	 v2 = v2
0 + 2ac(s - s0)

		  v2
B = 0 + 2(6.44)(10 - 0)

	 vB = 11.349 ft>s
	 2sB + sM = l

	 2vB = -vM

	 vM = -2(11.349) = 22.698 ft>s
	 Po = F # v = 30(22.698) = 680.94 ft # lb>s

	 Pi =
680.94

0.76
= 895.97 ft # lb>s

	 Pi = 1.63 hp� Ans.

R14–7.	 TA + VA = TB + VB

	 0 + (0.25)(9.81)(0.6) +
1

2
 (150)(0.6 - 0.1)2

	   =
1

2
 (0.25)(vB)2 +

1

2
(150)(0.4 - 0.1)2

	 vB = 10.4 m>s� Ans.
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	 40a1

2
 t2b `

5

2.943
+ 200(10 - 5) - 692.292 = 20v2

	 634.483 = 20v2

	 v2 = 31.7 m>s� Ans.

R15–4.	� (vA )1 = c 20(103) 
m

h
d a 1 h

3600 s
b = 5.556 m>s

	 (vB )1 = c 5(103) 
m

h
d a 1 h

3600 s
b = 1.389 m>s,

	 and (vC)1 = c 25(103) 
m

h
d a 1 h

3600 s
b = 6.944 m>s

	 For the first case,

	 1S+ 2	 mA(vA)1 + mB(vB)1 = (mA + mB)v2

	 10000(5.556) + 5000(1.389) = (10000 + 5000)vAB

		  vAB = 4.167 m>s S

	� Using the result of vAB and considering the second 
case,

	 1S+ 2	 (mA + mB )vAB + mC(vC)1

	�  = (mA + mB + mC)vABC

		  (10000 + 5000)(4.167) + [-20000(6.944)]

	�  = (10000 + 5000 + 20000)vABC

	            vABC = -2.183 m>s = 2.18 m>s d � Ans.

R15–5.	 1S+ 2  mP(vP)1 + mB(vB )1 = mP(vp)2 + mB(vB )2

		  0.2(900) + 15(0) = 0.2(300) + 15(vB)2

		  (vB)2 = 8 m>s S � Ans.

	 ( + c )	 m (v1)y + � L
t2

t1

Fy  dt = m (v2)y

		  15(0) + N(t) - 15(9.81)(t) = 15(0)

		  N = 147.15  N

	 1S+ 2	 m (v1)x + � L
t2

t1

Fx  dt = m (v2)x

		  15(8) + [-0.2(147.15)(t)] = 15(0)

		  t = 4.077 s = 4.08 s� Ans.

R15–6.	 1S+ 2  �mv1 = �mv2

		  3(2) + 0 = 3(vA)2 + 2(vB)2

	 1S+ 2  e =
(vB)2 - (vA)2)

(vA)1 - (vB)1

		  1 =
(vB)2 - (vA)2

2 - 0

	 Solving

		      (vA)2 = 0.400 m>s S � Ans.

		      (vB)2 = 2.40 m>s S � Ans.

	 Block A:
		  T1 + �U1 - 2 = T2

		
1

2
 (3)(0.400)2 - 3(9.81)(0.3)dA = 0

		  dA = 0.0272 m

	 Block B:
		  T1 + �U1 - 2 = T2

		
1

2
 (2)(2.40)2 - 2(9.81)(0.3)dB = 0

		  dB = 0.9786 m
		  d = dB - dA = 0.951 m	 Ans.

R15–7.	 (vA)x1
= -2 cos 40� = -1.532 m>s

	 (vA)y1
= -2 sin 40� = -1.285 m>s

	 ( S+ ) mA(vA)x1
+ mB(vB)x1

= mA(vA)x2

		          + mB(vB)x2

	     -2(1.532) + 0 = 0.2(vA)x2
�

		        + 0.2(vB)x2
� (1)

	 ( +S )	 e =
(vref)2

(vref)1

	     0.75 =
(vA)x2

- (vB)x1

1.532
� (2)

	 Solving Eqs. (1) and (2)

	 (vA)x2
= -0.1915 m>s

	 (vB)x2
= -1.3405 m>s

	 For A:
	 ( + T)	 mA(vA)y1

= mA(vA)y2

	 (vA)y2
= 1.285 m>s	

	 For B:
	 (+ c)	 mB(vB)y1

= mB(vB)y2

	 (vB)y2
= 0	

	 Hence (vB)2 = (vB)x2
= 1.34 m>s d          Ans.

	 (vA) 2 = 2(-0.1915)2 + (1.285)2 = 1.30 m>s Ans.

	 (uA)2 = tan-1a0.1915

1.285
b = 8.47�e	            Ans.

R15–8.	 (Hz)1 + � LMzdt = (Hz)2

	 (10)(2)(0.75) + 60(2)a3

5
b(0.75) +

	     L
2

0
(8t2 + 5)dt = 10v(0.75)

	 69 + c 8
3

t3 + 5t d
0

2

= 7.5v

	 v = 13.4 m>s	 Ans.
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	 vCi = (6k) * (0.2 cos 45�i + 0.2 sin 45�j) +

	�  (vk) * (0.5 cos 30�i - 0.5 sin 30�j)

	 vC = -0.8485 + v(0.25)

	 0 = 0.8485 + 0.433 v

	 Solving

		          v = 1.96 rad>sb
		           vC = 1.34 m>s	 Ans.

R16–5.	 v =
2

0.08
= 25 rad>s

	 a =
4

0.08
= 50 rad>s2

	 aC = aA + (aC>A)n + (aC>A)t

	 aC = 4j + (25)2(0.08)i + 50(0.08)j

	 +
S

    aC cos u = 0 + 50

	 +c      aC sin u = 4 + 0 + 4

	 Solving, aC = 50.6 m>s2	 Ans.

		    u = 9.09� au	 Ans.

	 The cylinder moves up with an acceleration

	 aB = (aC)t = 50.6 sin 9.09� = 8.00 m>s2c 	 Ans.

R16–6.	 aC = aB + aC>B
	 2.057 + (aC)t = 1.8 + 1.2 + aCB(0.5)
	  S            T         T        d 	    cu 30�

	 ( +S ) 2.057 = -1.2 + aCB(0.5) cos 30�

	 ( + T )  (aC)t = 1.8 + aCB(0.5) sin 30�

	 aCB = 7.52 rad>s2 	 Ans.

	 (aC)t = 3.68 m>s2

	 aC = 2(3.68)2 + (2.057)2 = 4.22 m>s2   Ans.

	 u = tan-1a 3.68

2.057
b = 60.8�  c	 Ans.

	 Also,

	 aC = aB + aCB * rC>B - v2rC>B

	 - (aC)t j +
(0.6)2

0.175
i = - (2)2(0.3)i - 6(0.3)j

	 + (aCBk) * (-0.5 cos 60�i - 0.5 sin 60�j) - 0

	 2.057 = -1.20 + aCB(0.433)

	 - (aC)t = -1.8 - aCB(0.250)

	 aCB = 7.52 rad>s2	 Ans.

	 at = 3.68 m>s2

	 aC = 2(3.68)2 + (2.057)2 = 4.22 m>s2 	 Ans.

	 u = tan-1a 3.68

2.057
b = 60.8�  cu	 Ans.

Chapter 16
R16–1.	 (vA)O = 60 rad>s
	 aA = -1 rad>s2

	 vA = (vA)O + aAt

	 vA = 60 + (-1)(3) = 57 rad>s
	 vA = rvA = (1)(57) = 57 ft>s = vB

	 vB =
vB

r
= 57>2 = 28.5 rad>s

	 vW = rCvC = (0.5)(28.5) = 14.2 ft>s� Ans.

	 aA = 1		

	 aAt
= l(1) = 1 ft>s2

	 aB =
1

2
= 0.5 rad>s2

	 aW = raB = (0.5)(0.5) = 0.25 ft>s2� Ans.

R16–2.	 aa = 0.6uA

	 uC =
0.5

0.075
= 6.667 rad

	 uA(0.05) = (6.667)(0.15)

	 uA = 20 rad

	 adu = vdv

	 L
20

0
0.6uAduA = L

vA

3
vAdvA

	 0.3u2
A `

20

0
=

1

2
v2

A `
vA

3

	 120 =
1

2
v2

A - 4.5

	 vA = 15.780 rad>s
	 15.780(0.05) = vC(0.15)

	 vC = 5.260 rad>s
	 vB = 5.260(0.075) = 0.394 m>s	 Ans.

R16–3.	 �A point on the drum which is in contact with the 
board has a tangential acceleration of

	     at = 0.5 m>s2

	       a2 = at
2 + a2

n

	 (3)2 = (0.5)2 + a2
n

	       an = 2.96 m>s2

	    an = v2r,	 v = A2.96

0.25
= 3.44 rad>s

	   vB = vr = 3.44(0.25) = 0.860 m>s	 Ans.

R16–4.	 vB = vAB * rB>A
	 vC = vB + v * rC>B
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R16–7.	 aC = 0.5(8) = 4 m>s2

	 aB = aC + aB>C

	 aB = c 4
d d + c (3)2(0.5)

a 30�
d + c (0.5)(8)

f30� d
	 ( +S )    (aB)x = -4 + 4.5 cos 30� + 4 sin 30�

	 = 1.897 m>s2

	 ( +c)    (aB)y = 0 + 4.5 sin 30� - 4 cos 30�

	 = -1.214 m>s2

		  aB = 2(1.897)2 + (-1.214)2

	 = 2.25 m>s2� Ans.

	 u = tan-1a1.214

1.897
b = 32.6� c� Ans.

	 Also,

	 aB = aC + a * rB>C - v2rB>C
	 (aB)xi + (aB)yj = -4i + (8k) * (-0. 5 cos 30�i

	 -  0.5 sin 30�j) - (3)2(-0.5 cos 30�i - 0.5 sin 30�j)

	 ( +S )  (aB)x = -4 + 8(0.5 sin 30�) + (3)2(0.5 cos 30�)

	 = 1.897 m>s2

	 ( +c)  (aB)y = 0 - 8(0.5 cos 30�) + (3)2(0.5 sin 30�)

	 = -1.214 m>s2

	      u = tan-1a1.214

1.897
b = 32.6� c� Ans.

	        aB = 2(1.897)2 + (-1.214)2 = 2.25 m>s2�Ans.

R16–8.	 vB = 3(7) = 21 in.>s d

	 vC = vB + v * rC>B

	 -vCa4

5
b i - vCa3

5
bj = -21i + vk * (-5i - 12j)

	 ( +S )  -0.8vC = -21 + 12v

	 ( +c)  -0.6vC = -5v

	 Solving:

	 v = 1.125 rad>s
	   vC = 9.375 in.>s = 9.38 in.>s 5 3

4 	 Ans.

	 (aB)n = (3)2(7) = 63 in.>s2T

	 (aB)t = (2)(7) = 14 in.>s2 d

	 aC = aB + a * rC>B - v2 rC>B

	 -aCa4

5
b i - aCa3

5
bj = -14i - 63j + (ak)

	 * (-5i - 12j) - (1.125)2(-5i - 12j)

	 ( +S )  -0.8aC = -14 + 12a + 6.328

	 ( +c)  -0.6aC = -63 - 5a + 15.1875

		          aC = 54.7 in.>s2 5 3
4 � Ans.

		            a = -3.00 rad>s2

Chapter 17

R17–1.	 +d �Fx = max;	 50 cos 60� = 200aG	 (1)

	   + c �Fy = may; 	 NA + NB - 200(9.81)

	 -50 sin 60� = 0� (2)

         a + �MG = 0;	 -NA(0.3) + NB(0.2) +

 50 cos 60�(0.3)

			   -50 sin 60�(0.6) = 0� (3)

	 Solving,

		          aG = 0.125 m>s2

		            NA = 765.2 N

			   NB = 1240 N

	 At each wheel

		        N �A =
NA

2
= 383 N	 Ans.

		        N �B =
NB

2
= 620 N	 Ans.

R17–2.  Curvilinear Translation:

	 (aG)t = 8(3) = 24 ft>s2

	 (aG)n = (5)2(3) = 75 ft>s2

	 x =
�xm

�m
=

1(3) + 2(3)

6
= 1.5 ft

	 + T �Fy = m(aG)y;   Ey + 6 =
6

32.2
(24) cos 30�

	 +
6

32.2
(75) sin 30�

	 +S �Fx = m(aG)x;	   Ex =
6

32.2
(75) cos 30�

	 -
6

32.2
(24) sin 30�

	 a+ �MG = 0;	   ME - Ey(1.5) = 0

	 Ex = 9.87 lb	 Ans.

	 Ey = 4.86 lb	 Ans.

	 ME = 7.29 lb # ft	 Ans.

R17–3.	 (a) Rear wheel drive

	 Equations of motion:

	 +S �Fx = m(aG)x;	       0.3NB = 1.5(10)3aG	 (1)

	 c+ �MA = �(Mk)A;  1.5(10)3(9.81)(1.3)
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		      -  NB(2.9) = -1.5(10)3aG(0.4)	 (2)

	 Solving Eqs. (1) and (2) yields:

		       NB = 6881 N = 6.88 kN

	          aG = 1.38 m>s2	 Ans.

R17–4.	 S+ �Fx = m(aG)x;	40 sin 60� + NC - a 5

13
bT = 0

	 + c �Fy = m(aG)y;	-40 cos 60� + 0.3NC

	 -  20(9.81) +
12

13
T = 0

	 a+ �MA = IAa;     40(0.120) - 0.3NC(0.120)

= c 1
2

(20)(0.120)2 da

	 Solving,

	 T = 218 N� Ans.

	 NC = 49.28 N

	 a = 21.0 rad>s2� Ans.

R17–5.	 (aG)t = 4a

        d+ �Ft = m(aG)x;  F + 20 - 5 =
30

32.2
(4a)

	 c+ �MO = IOa;   20(3) + F(6) =
1

3
a 30

32.2
b(8)2a

	 Solving,

			   a = 12.1 rad>s2	 Ans.

			      F = 30.0 lb	 Ans.

R17–6.  IO =
2

5
a 30

32.2
b(1)2 + a 30

32.2
b(3)2

	 +
1

3
 a 10

32.2
b(2)2 = 9.17 slug # ft2

	 x =
30(3) + 10(1)

30 + 10
= 2.5 ft

	 +S �Fn = man; 	 Ox = 0

	 + T �Ft = mat;	 40 - Oy =
40

32.2
aG

	 a+ �MO = IOa;	 40(2.5) = 9.17a

	 Kinematics
	 aG = 2.5a

	 Solving,

	 a = 10.90 rad>s2

	 aG = 27.3 ft>s2

	 Ox = 0

	 Oy = 6.14 lb

	 Thus:
	 Fo = 6.14 lb S 	 Ans.

R17–7.	 + c �Fy = m(aG)y;    NB - 20(9.81) = 0

				      NB = 196.2 N

			       FB = 0.1(196.2) = 19.62 N

	 a+ �MIC = �(Mk)IC;  30 - 19.62(0.6)

		  = 20(0.2a)(0.2) + [20(0.25)2]a

	     a = 8.89 rad>s2� Ans.

R17–8. +d �Fx = m(aG)x;    0.3NA =
20

32.2
aG

	 + c �Fy = m(aG)y;    NA - 20 = 0

	 c+ �MG = IGa;    0.3NA(0.5)

� = c 2
5

 a 20

32.2
b(0.5)2 da

	 Solving,

	 NA = 20 lb

	 aG = 9.66 ft>s2

	 a = 48.3 rad>s2

	 (a+ ) v = v0 + act

	 0 = v1 - 48.3t

	 v1 = 48.3t

	 ( +S )  v = v0 + act

	 0 = 20 - 9.66a v

48.3
b

	 v = 100 rad>s	 Ans.

Chapter 18

R18–1.		  T1 + �U1 - 2 = T2

	 0 + (50)(9.81)(1.25) =
1

2
c (50)(1.75)2 dv2

2

		  v2 = 2.83 rad>s� Ans.

R18–2.	� Kinetic Energy and Work: The mass moment inertia 
of the flywheel about its mass center is IO = mkO

2 

= 50(0.22) = 2 kg # m2. Thus, 

T =
1

2
IOv

2 =
1

2
 (2)v2 = v2

	� Since the wheel is initially at rest, T1 =  0. W, Ox, 
and Oy do no work while M does positive work. 
When the wheel rotates

	 u = (5 rev)a2p rad

1 rev
b = 10p, the work done by M is
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		  UM = LMdu = L
10p

0
(9u1>2 + 1)du

			   = (6u3>2 + u) `
0

10p

			   = 1087.93 J

	 Principle of Work and Energy:

		         T1 + �U1 - 2 = T2

		         0 + 1087.93 = v2

		            v = 33.0 rad>s 	 Ans.

R18–3.	 Before braking:

T1 + �U1 - 2 = T2

                            0 + 15(9.81)(3) =
1

2
(15)v2

B +
1

2
350(0.23)24 a vB

0.15
b

2

		          vB = 2.58 m>s	 Ans.

		        
sB

0.15
=

sC

0.25

	 Set sB = 3 m, then sC = 5 m.

		         T1 + �U1 - 2 = T2

           0 - F(5) + 15(9.81)(6) = 0

           F = 176.6 N

	    N =
176.6

0.5
= 353.2 N

	 Brake arm:

	 a+ �MA = 0;	 -353.2(0.5) + P(1.25) = 0

			      P = 141 N	 Ans.

R18–4.		
sG

0.3
=

sA

(0.5 - 0.3)

		     sA = 0.6667sG

	 +a�Fy = 0;	 NA - 60(9.81) cos 30� = 0

			   NA = 509.7 N

		          T1 + �U1 - 2 = T2

	 0 + 60(9.81) sin 30�(sG) - 0.2(509.7)(0.6667sG)

=
1

2
360(0.3)24(6)2

			   +
1

2
 (60)3(0.3)(6)42

			   sG = 0.859 m	 Ans.

R18–5.	� Conservation of Energy: Originally, both gears are 
rotating with an angular velocity of 

	 v1 =
2

0.05
= 40 rad>s. After the rack has traveled

	� s = 600 mm, both gears rotate with an angular 

velocity of v2 =
v2

0.05
, where v2 is the speed of the 

	 rack at that moment.

	 T1 + V 1 = T2 + V2

	
1

2
(6)(2)2 + 2e 1

2
34(0.03)24(40)2 f + 0

	 = e 1

2
34(0.03)24 a v2

0.05
b

2

f - 6(9.81)(0.6)

	 v2 = 3.46 m>s	 Ans.

R18–6.	 Datum through A.

		        T1 + V 1 = T2 + V 2

	
1

2
c 1
3
a 50

32.2
b(6)2 d (2)2 +

1

2
(6)(4 - 2)2

	 =
1

2
c 1
3
a 50

32.2
b(6)2 dv2 +

1

2
 (6)(7 - 2)2 - 50(1.5)

		  v = 2.30 rad>s	 Ans.

R18–7.		        T1 + V 1 = T2 + V 2

	 0 + 4(1.5 sin 45�) + 1(3 sin 45�)

	 =
1

2
 c 1

3
a 4

32.2
b(3)2 d avC

3
b

2

+
1

2
a 1

32.2
b(v C)2 + 0

		  vC = 13.3 ft>s	 Ans.

R18–8.	 Datum at lowest point.

	 T1 + V 1 = T2 + V 2

	
1

2
c 1
2

(40)(0.3)2 d a 4

0.3
b

2

+
1

2
(40)(4)2

	 + 40(9.81)d sin 30� = 0 +
1

2
 (200)d 2

	 100d2 - 196.2d - 480 = 0

	 Solving for the positive root,

			     d = 3.38 m	 Ans.

Chapter 19

R19–1.	 IO = mkO
2 =

150

32.2
 (1.25)2 = 7.279 slug # ft2

	 IOv1 + � L
t2

t1

MOdt = IOv2

	 0 - L
3 s

0
10t2(1) dt = 7.279v2

	
10t3

3
`
3 s

0
= 7.279v2

	 v2 = 12.4 rad>s	 Ans.
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	 Also,

	 1a  + 2	 (HIC)1 + � LMICdt = (HIC)2

	              0 - 30(0.5)(3) + 40(1.5)(3)

	       = c 30

32.2
 (0.65)2 +

30

32.2
 (0.5)2 dv

	               v = 215 rad>s	 Ans.

R19–6.	 c+ (HA)1 + � LMAdt = (HA)2

	 c 30

32.2
(0.8)2 d (6) - LT dt(1.2) = c 30

32.2
(0.8)2 dvA

	 c+ (HB)1 + � LMBdt = (HB)2

	 0 + LT dt(0.4) = c 15

32.2
(0.6)2 dvB

	 Kinematics:

		             1.2vA = 0.4vB

			        vB = 3vA

	 Thus,

		          vA = 1.70 rad>s	 Ans.

		          vB = 5.10 rad>s	 Ans.

R19–7.	 H1 = H2

	 a1

2
mr2bv1 = c 1

2
mr2 + mr2 dv2

	 v2 =
1

3
v1	 Ans.

R19–8.	 H1 = H2

	 (0.940)(0.5) + (4) c  
1

12
 (20) a(0.75)2 + (0.2)2b

	 + (20)(0.375 + 0.2)2 d (0.5)

	 = (0.940)(v) + 4 c 1

12
(20)(0.2)2 + (20)(0.2)2 dv

	 v = 3.56 rad>s	 Ans.

R19–3.	 +bm(vG)1 + � LF dt = m(vG)2

	     0 + 9(9.81)(sin 30�)(3) - L
3

0
F dt = 9(vG)2	 (1)

	 a+ (HG)1 + � LMGdt = (HG)2 

	     0 + aL
3

0
F dtb(0.3) = 39(0.225)24v2	 (2)

	 Since (vG)2 = 0.3v2,

	� Eliminating L
3

0
F dt from Eqs. (1) and (2) and 

	 solving for (vG)2 yields.

		          (vG)2 = 9.42 m>s 	 Ans.

	 Also, 

	 a+ (HA)1 + � LMAdt = (HA)2

          0 + 9(9.81) sin 30�(3)(0.3) = 39(0.225)2 + 9(0.3)24v
	 v = 31.39 rad>s
	 v = 0.3(31.39) = 9.42 m>s	 Ans.

R19–4.	�  +d 	 m(vx)1 + � L
t2

t1

Fxdt = m(vx)2

		  0 + 200(3) = 100(vO)2

		  (vO)2 = 6 m>s	 Ans.

	 and

		  Izv1 + � L
t2

t1

Mzdt = Izv2

		  0 - [200(0.4)(3)] = -9v2

		  v2 = 26.7 rad>s	 Ans.

R19–5.	 ( + c )	 mv1 + � LFdt = mv2

		  0 + T(3) - 30(3) + 40(3) =
30

32.2
vo 

	 1a+ 2	 (HO)1 + � LMOdt = (HO)2

		  -T(0.5)3 + 40(1)3 = c 30

32.2
(0.65)2 dv

	 Kinematics,

 			      vo = 0.5v

	 Solving,

			      T = 23.5 lb

		            v = 215 rad>s	 Ans.

		               vO = 108 ft>s	



12–41.	 t = 7.48 s. When  t = 2.14 s,
	 v = vmax = 10.7 ft>s, h = 11.4 ft.
12–42.	 s = 600 m. For 0 … t 6 40 s, a = 0.
	 For 40 s 6 t … 80 s, a = -0.250 m>s2.
12–43.	 t� = 35 s 
	 For 0 … t 6 10 s, s = {300t} ft, v = 300 ft>s
	 For 10 s 6 t 6 20 s,

	 s = e 1

6
 t3 - 15t2 + 550t - 1167 f  ft

	 v = e 1

2
 t2 - 30t + 550 f  ft>s

	 For 20 s 6 t … 35 s,
	 s = 5-5t2 + 350t + 1676  ft
	 v = (-10t + 350) ft>s
12–45.	 When t = 0.1 s, s = 0.5 m and a changes from  
	 100 m>s2 to -100 m>s2. When t = 0.2 s, s = 1 m.

12–46.	 v `
s = 75 ft

= 27.4 ft>s, v `
s = 125 ft

= 37.4 ft>s

12–47.	 For 0 … t 6 30 s, v = e 1

5
 t2 f  m>s, s = e 1

15
 t3 f  m

	 For 30 … t … 60 s, v = {24t - 540} m>s,
	 s = 512t2 - 540t + 7200} m
12–49.	 vmax = 100 m>s, t� = 40 s
12–50.	 For 0 … s 6 300 ft, v = 54.90 s1>26m>s. 
	 For 300 ft 6 s … 450 ft, 
	 v = 5(-0.04s2 + 48s - 3600)1>26  m>s. 
	 s = 200 ft when t = 5.77 s.

12–51.	 For 0 … t 6 60 s, s = e 1

20
 t2 f  m, a = 0.1 m>s2.

	 For 60 s 6 t 6 120 s, s = {6t - 180} m, a = 0.

	 For 120 s 6 t … 180 s, s = e 1

30
 t2 - 2t + 300 f  m,

	 a = 0.0667 m>s2.
12–53.	 At t = 8 s, a = 0 and s = 30 m. 
	 At t = 12 s, a = -1 m>s2 and s = 48 m.
12–54.	 For 0 … t 6 5 s, s = 50.2t36  m,
	 a = {1.2t} m>s2

	 For 5 s 6 t … 15 s, s = e 1

4
 (90t - 3t2 - 275) f  m

	 a = -1.5 m>s2, 
	 At t = 15 s, s = 100 m, vavg = 6.67 m>s
12–55.	 t� = 33.3 s, s � t = 5 s = 550 ft, s � t = 15 s = 1500 ft, 
	 s � t = 20 s = 1800 ft, s � t = 33.3 s = 2067 ft

12–57.	 For 0 … s 6 100 ft, v = eA 1

50
 (800s - s2) f  ft>s

	 For 100 ft 6 s … 150 ft, 

	 v = e 1

5
 2-3s2 + 900s - 25 000 f  ft>s

Chapter 12
12–1.	 s = 80.7 m
12–2.	 s = 20 ft
12–3.	 a = -24 m>s2, �s = -880 m, sT = 912 m
12–5.	 sT = 8 m, vavg = 2.67 m>s
12–6.	 s�  t = 6 s = -27.0 ft, stot = 69.0 ft

12–7.	 vavg = 0, (vsp)avg = 3 m>s, a `
t = 6 s

= 2 m>s2

12–9.	 v = 32 m>s, s = 67 m, d = 66 m
12–10.	 v = 1.29 m>s
12–11.	 vavg = 0.222 m>s, (vsp)avg = 2.22 m>s
12–13.	 Normal: d = 517 ft, drunk: d = 616 ft
12–14.	 v = 165 ft>s, a = 48 ft>s2, sT = 450 ft,  
	 vavg = 25.0 ft>s, (vsp)avg = 45.0 ft>s
12–15.	 v = a2kt +

1

v2
0

b
- 1>2

, s =
1

k
c a2kt +

1

v2
0

b
1>2

-
1

v0
d

12–17.	 d = 16.9 ft
12–18.	 t = 5.62 s
12–19.	 s = 28.4 km
12–21.	 s = 123 ft, a = 2.99 ft>s2

12–22.	 h = 314 m, v = 72.5 m>s
12–23.	 v = (20e -2t) m>s, a = ( -40e -2t) m>s2, 
	 s = 10(1 - e-2t) m
12–25.	 (a) v = 45.5 m>s, (b) v max = 100 m>s
12–26.	 (a) s = -30.5 m,
	 (b) sTot = 56.0 m,
	 (c) v = 10 m>s
12–27.	 t = 0.549 a

vf

g
b

12–29.	 h = 20.4 m, t = 2 s

12–30.	 s = 54.0 m

12–31.	 s =
v0

k
 (1 -  e- kt), a = -kv0e

- kt

12–33.	 v = 11.2 km>s

12–34.	 v = -RB 2g0(y0 - y)

(R + y)(R + y0)
, vimp = 3.02 km>s

12–35.	 t� = 27.3 s. 
	 When t = 27.3 s, v = 13.7 ft>s.
12–37.	 �s = 1.11 km
12–38.	 a� t = 0 = -4 m>s2, a � t = 2 s = 0, 
	 a� t = 4 s = 4 m>s2, v � t = 0 = 3 m>s, 
	 v � t = 2 s = -1 m>s, v � t = 4 s = 3 m>s

12–39.	 s = 2 sin ap
5

 tb + 4, v =
2p

5
 cos ap

5
 tb ,

	 a = -
2p2

25
 sin ap

5
 tb
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12–105.	 tA = 0.553 s, x = 3.46 m
12–106.	 R = 19.0 m, t = 2.48 s
12–107.	 u1 = 24.9� c, u2 = 85.2� a
12–109.	 u = 76.0�, vA = 49.8 ft>s, h = 39.7 ft
12–110.	 v = 63.2 ft>s
12–111.	 v = 38.7 m>s
12–113.	 v = 4.40 m>s, at = 5.04 m>s2, an = 1.39 m>s2

12–114.	 at = 8.66 ft>s2, r = 1280 ft
12–115.	 v = 97.2 ft>s, a = 42.6 ft>s2

12–117.	 When cars A and B are side by side, t = 55.7 s.
	 When cars A and B are 90� apart, t = 27.8 s.
12–118.	 t = 66.4 s
12–119.	 h = 5.99 Mm
12–121.	 a = 2.75 m>s2

12–122.	 a = 1.68 m>s2

12–123.	 v = 1.5 m>s, a = 0.117 m>s2

12–125.	 v = 43.0 m>s, a = 6.52 m>s2

12–126.	 v = 105 ft>s, a = 22.7 ft>s2

12–127.	 at = 3.62 m>s2, r = 29.6 m
12–129.	 t = 7.00 s, s = 98.0 m
12–130.	 a = 7.42 ft>s2

12–131.	 a = 2.36 m>s2

12–133.	 a = 3.05 m>s2

12–134.	 a = 0.763 m>s2

12–135.	 a = 0.952 m>s2

12–137.	 y = -0.0766x2, v = 8.37 m>s, 
	 an = 9.38 m>s2, at = 2.88 m>s2

12–138.	 vB = 19.1 m>s, a = 8.22 m>s2, f = 17.3� 
	 up from negative- t axis
12–139.	 amin = 3.09 m>s2

12–141.	 (an)A = g = 32.2 ft>s2, (at)A = 0, 
	 rA = 699 ft, (an)B = 14.0 ft>s2, 
	 (at)B = 29.0 ft>s2, rB = 8.51(103) ft
12–142.	 t = 1.21 s

12–143.	 amax =
v2a

b2

12–145.	 	d = 11.0 m, aA = 19.0 m>s2, aB = 12.8 m>s2

12–146.	 t = 2.51 s, aA = 22.2 m>s2, aB = 65.1 m>s2

12–147.	 u = 10.6�

12–149.	 a = 0.511 m>s2

12–150.	 a = 0.309 m>s2

12–151.	 a = 322 mm>s2, u = 26.6� g
12–153.	 vn = 0, vt = 7.21 m>s,  
	 an = 0.555 m>s2, at = 2.77 m>s2

12–154.	 a = 7.48 ft>s2

12–155.	 a = 14.3 in.>s2

12–157.	 vr = 5.44 ft>s, vu = 87.0 ft>s,  
	 ar = -1386 ft>s2, au = 261 ft>s2

12–158.	 v = 464 ft>s, a = 43.2(103) ft>s2

12–159.	 v = 5-14.2ur - 24.0u z6  m>s
	 a = 5-3.61ur - 6.00u z6  m>s2

12–58.	 For 0 … t 6 15 s, v = e 1

2
t2 f

 

m>s, s = e 1

6
 t3 f

 

m. 

	 For 15 s 6 t … 40 s, 
	 v = {20t - 187.5 m>s},  
	 s = {10t2 - 187.5t + 1125} m
12–59.	 sT = 980 m
12–61.	 When t = 5 s, sB = 62.5 m. 
	 When t = 10 s, vA = (vA)max = 40 m>s and 
	 sA = 200 m.  
	 When t = 15 s, sA = 400 m and sB = 312.5 m. 
	 �s = sA - sB = 87.5 m
12–62.	 v = {5 - 6t} ft>s, a = -6 ft>s2

12–63.	 For 0 … t 6 5 s,  s = 52t26  m and a = 4 m>s2. 
	 For 5 s 6 t 6 20 s, s = {20t - 50} m and a = 0. 
	 For 20 s 6 t … 30 s, s = 52t2 - 60t + 7506  m  
	 and a = 4 m>s2.
12–65.	 v = 354 ft>s, t = 5.32 s
12–66.	 When s = 100 m, t = 10 s. 
	 When s = 400 m, t = 16.9 s.  
	 a� s = 100 m = 4 m>s2, a� s = 400 m = 16 m>s2

12–67.	 At s = 100 s, a changes from amax = 1.5 ft>s2  
	 to amin = -0.6 ft>s2.
12–69.	 a = 5.31 m>s2, a = 53.0� 
	 b = 37.0�, g = 90.0�
12–70.	 �r = 56i + 4j6  m
12–71.	 (4 ft, 2 ft, 6 ft)
12–73.	 (5.15 ft, 1.33 ft)
12–74.	 r = {11i + 2j + 21k} ft
12–75.	 (vsp)avg = 4.28 m>s
12–77.	 v = 8.55 ft>s, a = 5.82 m>s2

12–78.	 v = 1003 m>s, a = 103 m>s2

12–79.	 d = 4.00  ft, a = 37.8 ft>s2

12–81.	 	(vBC)avg = {3.88i + 6.72j} m>s
12–82.	 v = 2c2 k2 + b2, a = ck2

12–83.	 v = 10.4 m>s, a = 38.5 m>s2

12–85.	 d = 204 m, v = 41.8 m>s a = 4.66 m>s2

12–86.	 u = 58.3�, (v0) min = 9.76 m>s
12–87.	 u = 76.0�, vA = 49.8 ft>s, h = 39.7 ft
12–89.	 Rmax = 10.2 m, u = 45�
12–90.	 R = 8.83 m
12–91.	 (13.3 ft, -7.09 ft)
12–93.	 d = 166 ft
12–94.	 t = 3.57 s, vB = 67.4 ft>s
12–95.	 vA = 36.7 ft>s, h = 11.5 ft
12–97.	 vA = 19.4 m>s, vB = 40.4 m>s
12–98.	 vA = 39.7 ft>s, s = 6.11 ft
12–99.	 vB = 160 m>s, hB = 427 m, 
	 hC = 1.08 km, R = 2.98 km
12–101.	 vmin = 0.838 m>s, vmax = 1.76 m>s
12–102.	 uA = 11.6�, t = 0.408 s, uB = 11.6� c
12–103.	 uA = 78.4�, t = 2.00 s, uB = 78.4� c
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12–209.	 vB = 8 ft>sT , aB = 6.80 ft>s2 c
12–210.	 vA = 2.5 ft>sc,  aA = 2.44 ft>s2c

12–211.	 vB = 2.40 m>s c , aB = 3.25 m>s2 c
12–213.	 vA = 4 ft>s
12–214.	 vA>B = 13.4 m>s, uv = 31.7� d
	 aA>B = 4.32 m>s2, ua = 79.0� c
12–215.	 vA = 10.0 m>s d , aA = 46.0 m>s2 d

12–217.	 vC = 1.2 m>sc , aC = 0.512 m>s2c

12–218.	 vB>A = 1044 km>h, u = 54.5�a
12–219.	 vB/A = 28.5 mi>h, uv = 44.5� a, 
	 aB/A = 3418 mi>h2, ua = 80.6�a
12–221.	 vB = 13.5 ft>s, u = 84.8°, t = 1.85 min
12–222.	 vw = 58.3 km>h, u = 59.0� b
12–223.	 vA/B = 15.7 m>s, u = 7.11� d, t = 38.1 s
12–225.	 vA/B = 98.4 ft>s, uv = 67.6� d, 
	 aA>B = 19.8 ft>s2, ua = 57.4�a
12–226.	 vr>m = 16.6 km>h, u = 25.0°c
12–227.	 vB>A = 20.5 m>s, uv = 43.1� d
	 aB>A = 4.92 m>s2, ua = 6.04� d
12–229.	 vr = 34.6 km>hT

12–230.	 vm = 4.87 ft>s, t = 10.3 s
12–231.	 vw/s = 19.9 m>s, u = 74.0� d
12–233.	 Yes, he can catch the ball. 
12–234.	 vB = 5.75 m>s, vC/B = 17.8 m>s,  
	 u = 76.2� c, aC>B = 9.81 m>s2T

12–235.	 vB>A = 11.2 m>s, u = 50.3�

Chapter 13
13–1.	 s = 97.4 ft
13–2.	 T = 5.98 kip
13–3.	 v = 3.36 m>s, s = 5.04 m
13–5.	 F = 6.37 N
13–6.	 v = 59.8 ft>s
13–7.	 v = 60.7 ft>s
13–9.	 t = 2.04 s
13–10.	 s = 8.49 m

13–11.	 t = 0.249 s

13–13.	 aA = 9.66 ft>s2 d , aB = 15.0 ft>s2 S

13–14.	 T = 11.25 kN, F = 33.75 kN
13–15.	 Ax = 685 N, Ay = 1.19 kN, MA = 4.74 kN # m

13–17.	 a =
1

2
 (1 - mk) g

13–18.	 R = 5.30 ft, tAC = 1.82 s
13–19.	 R = 5.08 ft, tAC = 1.48 s
13–21.	 u = 22.6�
13–22.	 vB = 5.70 m>s c
13–23.	 v = 3.62 m>sc  
13–25.	 R = 2.45 m, tAB = 1.72 s
13–26.	 R = {150t} N
13–27.	 t = 2.11 s
13–29.	 v = 2.01 ft>s

12–161.	 vr = -2 sin t, vu =  cos t, 

	 ar = -
5

2
 cos t, au = -2 sin t

12–162.	 vr = aeat, vu = eat, 
	 ar = eat(a2-1), au = 2aeat

12–163.	 vr = 0, vu = 10 ft>s, 
	 ar = -0.25 ft>s2, au = -3.20 ft>s2

12–165.	 a
#

= ( r
%

- 3r
#
u2
# - 3ru

#
u
$
)ur 

	 +  (3r
#
 u
$

+ r
#
 u
$

+ 3r 
$
u
#

- r u
#
3)uu + (z

%
)uz

12–166.	 a = 48.3  in.>s2

12–167.	 vr = 1.20 m>s, vu = 1.26 m>s, 
	 ar = -3.77 m>s2, au = 7.20 m>s2

12–169.	 vr = 1.20 m>s, vu = 1.50 m>s, 
	 ar = -4.50 m>s2, au = 7.20 m>s2

12–170.	 vr = 16.0 ft>s, vu = 1.94 ft>s, 
	 ar = 7.76 ft>s2, au = 1.94 ft>s2

12–171.	 v = 4.24 m>s, a = 17.6 m>s2

12–173.	 a = 27.8 m>s2

12–174.	 vr = 0, vu = 12 ft>s, 
	 ar = -216 ft>s2, au = 0
12–175.	 v = 12.6 m>s, a = 83.2 m>s2

12–177.	 vr = -1.84 m>s, vu = 19.1 m>s, 
	 ar = -2.29 m>s2, au = 4.60 m>s2

12–178.	 vr = -24.2 ft>s, vu = 25.3 ft>s
12–179.	 vr = 0, vu = 4.80 ft>s,
	 vz = -0.664 ft>s, ar = -2.88 ft>s2 
	 au = 0, az = -0.365 ft>s2

12–181.	 v = 10.7 ft>s, a = 24.6 ft>s2

12–182.	 v = 10.7 ft>s, a = 40.6 ft>s2

12–183.	 u
#

= 0.333 rad>s, a = 6.67 m>s2

12–185.	 v = 1.32 m>s
12–186.	 a = 8.66 m>s2

12–187.	 u
#

= 0.0178 rad>s
12–189.	 vr = 32.0 ft>s, vu = 50.3 ft>s, 
	 ar = -201 ft>s2, au = 256 ft>s2

12–190.	 vr = 32.0 ft>s, vu = 50.3 ft>s, 
	 ar = -161 ft>s2, au = 319 ft>s2

12–191.	 v = 5.95 ft>s, a = 3.44 ft>s2

12–193.	 vr = 0.242 m>s, vu = 0.943 m>s,
	 ar = -2.33 m>s2, au = 1.74 m>s2

12–194.	 u
#

= 10.0 rad>s
12–195.	 vB = 0.5 m>s
12–197.	 v = 24 ft>s
12–198.	 vB = 1.67 m>s
12–199.	 �sB = 1.33 ft S

12–201.	 t = 3.83 s
12–202.	 vB = 0.75 m>s
12–203.	 t = 5.00 s
12–205.	 vB>C = 39 ft>sx
12–206.	 vB = 1.50 m>s
12–207.	 vA = 1.33 m>s
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13–77.	 Fs = 4.90 lb
13–78.	 v = 40.1 ft>s
13–79.	 NP = 2.65 kN, r = 68.3 m
13–81.	 u = 37.7�
13–82.	 NB = 80.4 N, at = 1.92 m>s2

13–85.	 FA = 4.46 lb
13–86.	 F = 210 N
13–87.	 F = 1.60 lb 
13–89.	 Fr = -29.4 N, Fu = 0, Fz = 392 N
13–90.	 Fr = 102 N, Fz = 375 N, Fu = 79.7 N
13–91.	 N = 4.90 N, F = 4.17 N
13–93.	 FOA = 12.0 lb
13–94.	 F = 5.07 kN, N = 2.74 kN
13–95.	 F = 17.0 N
13–97.	 (N)max = 36.0 N, (N)min = 4.00 N
13–98.	 Ns = 3.72 N, Fr = 7.44 N
13–99.	 Fr = -900 N, Fu = -200 N, Fz = 1.96 kN

13–101.	 u = tan-1a4rcu
2
0
#

g
b

13–102.	 N = 0.883 N, F = 3.92 N
13–103.	 N = 2.95 N
13–105.	 Fr = 1.78 N, Ns = 5.79 N 
13–106.	 Fr = 2.93 N, Ns = 6.37 N
13–107.	 F = 0.163 lb
13–109.	 Fr = 25.6 N, FOA = 0
13–110.	 Fr = 20.7 N, FOA = 0
13–111.	 r = 0.198 m
13–113.	 vo = 30.4 km>s,

	
1

r
= 0.348 (10-12) cos u + 6.74 (10-12)

13–114.	 h = 35.9 mm, vs = 3.07 km>s
13–115.	 v0 = 7.45 km>s
13–118.	 vB = 7.71 km>s, vA = 4.63 km>s
13–119.	 vA = 6.67(103) m>s, vB = 2.77(103) m>s
13–121.	 vA = 7.47 km>s
13–122.	 r0 = 11.1 Mm, �vA = 814 m>s
13–123.	 (vA )C = 5.27(103) m>s, �v = 684 m>s
13–125.	 (a) r = 194 (103) mi
	 (b) r = 392 (103) mi
	 (c) 194 (103) mi 6 r 6 392 (103) mi
	 (d) r 7 392 (103) mi
13–126.	 vA = 4.89(103) m>s, vB = 3.26(103) m>s
13–127.	 vA = 11.5 Mm>h, d = 27.3 Mm
13–129.	 vA = 2.01(103) m>s
13–130.	 vA� = 521 m>s, t = 21.8 h
13–131.	 vA = 7.01(103) m>s

Chapter 14
14–1.	 v = 10.7 m>s
14–2.	 x max = 3.24 ft

13–30.	 v = 0.301 m>s
13–31.	 T = 1.63 kN

13–33.	 P = 2mg a sin u + ms cos u

cos u - ms sin u
b ,

	 a = a sin u + ms cos u

cos u - ms sin u
bg

13–34.	 v = 2.19 m>s
13–35.	 t = 5.66 s
13–37.	 t = 0.519 s
13–38.	 s = 16.7 m

13–39.	 v =
1
m
21.09F2

0 t
2 + 2F0tmv0 + m2v2

0,

	 x =
y

0.3
+ v0a A 2m

0.3F0
by1>2

13–41.	 x = d, v = B kd2

mA + mB

13–42.	 x = d for separation.

13–43.	 v = Amg

k
 £ e2t 3mg>k

- 1

e2t 3mg>k
+ 1

§ ,

	 vt = Amg

k
13–45.	 v = 32.2 ft>s
13–46.	 P = 2mg tan u

13–47.	 P = 2mga  sin u + ms cos u

 cos u - ms sin u
b

13–49.	 aB = 7.59 ft>s2

13–50.	 v = 5.13 m>s
13–51.	 d =

(mA + mB)g

k
13–53.	 r = 1.36 m
13–54.	 v = 10.5 m>s
13–55.	 N = 6.18 kN
13–57.	 v = 1.63 m>s, N = 7.36 N
13–58.	 v = 0.969 m>s
13–59.	 v = 1.48 m>s
13–61.	 v = 9.29 ft>s, T = 38.0 lb
13–62.	 v = 2.10 m>s
13–63.	 T = 0, T = 10.6 lb
13–65.	 v = 6.30 m>s, Fn = 283 N, Ft = 0, Fb = 490 N
13–66.	 v = 22.1 m>s
13–67.	 u = 26.7�
13–69.	 Ff = 1.11 kN , N = 6.73 kN
13–70.	 vC = 19.9 ft>s, NC = 7.91 lb, vB = 21.0 ft>s
13–71.	 N = 277 lb, F = 13.4 lb
13–73.	 v = 2gr, N = 2mg
13–74.	 v = 49.5 m>s
13–75.	 at = g a x21 + x2

b , v = 2v2
0 + gx2,

	 N =
m21 + x2

 c g -
v2

0 + gx2

1 + x2 d
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14–71.	 vC = 17.7 ft>s
14–73.	 NB = 0, h = 18.75 m, NC = 17.2 kN
14–74.	 vA = 1.54 m>s, vB = 4.62 m>s
14–75.	 sB = 5.70 m
14–77.	 h = 23.75 m, vC = 21.6 m>s
14–78.	 vB = 15.5 m>s
14–79.	 l = 2.77 ft
14–81.	 u = 118�

14–83.	 F = GMem a 1
r1

-
1
r2
b

14–85.	 vB = 34.8 Mm>h
14–86.	 s = 130 m
14–87.	 sB = 0.638 m, sA = 1.02 m
14–89.	 u = 22.3�, s = 0.587 m
14–90.	 N = 78.6 N
14–91.	 y = 5.10 m, N = 15.3 N, a = 9.32 m>s2 R
14–93.	 v = 1.68 m>s

14–94.	 	v2 = A 2
p

 (p - 2)gr

14–95.	 v = 6.97 m>s
14–97.	 d = 1.34 m

Chapter 15
15–1.	 v = 1.75 N # s
15–2.	 v = 29.4 ft>s
15–3.	 F = 24.8 kN
15–5.	 I = 5.68 N # s
15–6.	 F = 19.4 kN, T = 12.5 kN
15–7.	 FAB = 16.7 lb, v = 13.4 ft>s
15–9.	 v = 6.62 m>s
15–10.	 P = 205 N
15–11.	 v = 60.0 m>s
15–13.	 mk = 0.340
15–14.	 I = 15 kN # s in both cases.
15–15.	 v = 4.05 m>s
15–17.	 v = 8.81 m>s, s = 24.8 m
15–18.	 v 0 t = 3 s = 5.68 m>s T , v 0 t = 6 s = 21.1 m>s c
15–19.	 v = 4.00 m>s
15–21.	 T = 14.9 kN, F = 24.8 kN
15–22.	 vmax = 108 m>s, s = 1.83 km
15–23.	 v = 10.1 ft>s
15–25.	 v = 7.21 m>s c
15–26.	 Observer A : v = 7.40 m>s, 
	 Observer B: v = 5.40 m>s
15–27.	 v = 5.07 m>s
15–29.	 t = 1.02 s, I = 162 N # s

15–30.	 v = 16.1 m>s
15–31.	 (vA)2 = 10.5 ft>s S

15–33.	 v = 7.65 m>s
15–34.	 v = 0.6 ft>s d

15–35.	 v = 18.6 m>s S

14–3.	 s = 1.35 m
14–5.	 h = 39.3 m, r = 26.2 m
14–6.	 d = 12 m
14–7.	 Observer A : v2 = 6.08 m>s, 
	 Observer B: v2 = 4.08 m>s
14–9.	 xmax = 0.173 m
14–10.	 s = 20.5 m
14–11.	 v = 4.08 m>s
14–13.	 vB = 31.5 ft>s, d = 22.6 ft, vC = 54.1 ft>s
14–14.	 vA = 7.18 ft>s
14–15.	 vA = 3.52 ft>s
14–17.	 vB = 27.8 ft>s
14–18.	 y = 3.81 ft
14–19.	 vB = 3.34 m>s
14–21.	 	vA = 0.771 ft>s
14–22.	 sTot = 3.88 ft
14–23.	 x = 0.688 m
14–25.	 s = 0.0735 ft
14–26.	 vA = 28.3 m>s
14–27.	 vB = 18.0 m>s, NB = 12.5 kN
14–29.	 s = 0.730 m
14–30.	 s = 3.33 ft
14–31.	 R = 2.83 m, vC = 7.67 m>s
14–33.	 d = 36.2 ft
14–34.	 s = 1.90 ft
14–35.	 vB = 42.2 ft>s, N = 50.6 lb, at = 26.2 ft>s2

14–37.	 hA = 22.5 m, hC = 12.5 m
14–38.	 vB = 14.9 m>s, N = 1.25 kN
14–39.	 vB = 5.42 m>s
14–41.	 l0 = 2.77 ft
14–42.	 u = 47.2�
14–43.	 Pi = 4.20 hp
14–45.	 P = 8.32 (103) hp
14–46.	 t = 46.2 min 
14–47.	 P = 12.6 kW
14–49.	 Pmax = 113 kW, Pavg = 56.5 kW
14–50.	 Po = 4.36 hp
14–51.	 P = 92.2 hp
14–53.	 Pi = 483 kW
14–54.	 Pi = 622 kW
14–55.	 Pi = 22.2 kW
14–57.	 P = 0.0364 hp
14–58.	 P = 0.231 hp
14–59.	 P = 12.6 kW
14–61.	 P = 5400(103)t6  W

14–62.	 P = 5160 t - 533t26  kW, U = 1.69 kJ
14–63.	 Pmax = 10.7 kW
14–65.	 P = 58.1 kW
14–66.	 F = 227 N
14–67.	 h = 133 in.
14–69.	 N = 694 N
14–70.	 u = 48.2�
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15–97.	 (HA )P = 5-52.8k6  kg # m2>s,
	 (HB )P = 5-118k6  kg # m2>s
15–98.	 5-21.5i + 21.5j + 37.66  kg # m2>s
15–99.	 521.5i + 21.5j + 59.1k6  kg # m2>s
15–101.	 v = 20.2 ft>s, h = 6.36 ft
15–102.	 t = 11.9 s
15–103.	 v2 = 9.22 ft>s, �U1 - 2 = 3.04 ft # lb
15–105.	 v = 9.50 m>s
15–107.	 v = 3.33 m>s
15–109.	 vC = 44.0 ft>s, HA = 8.19 slug # ft2>s. 
	 The cord will not unstretch. 
15–110.	 v2 = 4.03 m>s, �U1-2 = 725 J
15–111.	 vB = 10.8 ft>s, UAB = 11.3 ft # lb
15–113.	 vB = 10.2 km>s, rB = 13.8 Mm
15–114.	 T = 40.1 kN
15–115.	 Cx = 4.97 kN, Dx = 2.23 kN, Dy = 7.20 kN
15–117.	 F = 303 lb
15–118.	 F = 50.0 lb
15–119.	 Fx = 9.87 lb, Fy = 4.93 lb
15–121.	 Fx = 19.5 lb, Fy = 1.96 lb
15–122.	 F = 20.0 lb 
15–123.	 F = 22.4 lb
15–125.	 T = 82.8 N, N = 396 N
15–126.	 F = 6.24 N, P = 3.12 N
15–127.	 	d = 2.56 ft
15–129.	 Cx = 4.26 kN, Cy = 2.12 kN, MC = 5.16 kN # m

15–130.	 v = e 8000

2000 + 50t
f  m>s

15–131.	 Ay = 4.18 kN, Bx = 65.0 N S ,  
	 By = 3.72 kNc

15–133.	 a = 0.125 m>s2, v = 4.05 m>s
15–134.	 vmax = 2.07 (103) ft>s
15–135.	 452 Pa
15–137.	 R = {20t + 2.48} lb
15–138.	 ai = 133 ft>s2, af = 200 ft>s2

15–139.	 vmax = 580 ft>s

15–141.	 v = C2

3
 ga y3 - h3

y2 b
15–142.	 FD = 11.5 kN
15–143.	 a = 37.5 ft>s2

15–145.	 a = 0.0476 m>s2

15–146.	 v max = 2.07(103) ft>s
15–147.	 F = {7.85t + 0.320} N
15–149.	 F = m�v2

Chapter 16
16–1.	 vA = 2.60 m>s, aA = 9.35 m>s2

16–2.	 vA = 22.0 m>s, 
	 (aA )t = 12.0 m>s2, (aA )n = 968 m>s2

16–3.	 vA = 26.0 m>s, 
	 (aA )t = 10.0 m>s2, (aA )n = 1352 m>s2

15–37.	 v = 5.21 m>s d , �T = -32.6 kJ

15–38.	 y = 0.5 m>s, �T = -16.9 kJ
15–39.	 v = 733 m>s
15–41.	 vB = 3.48 ft>s, d = 0.376 ft
15–42.	 vB = 3.48 ft>s, Navg = 504 lb, t = 0.216 s
15–43.	 s = 4.00 m

15–45.	 v2 = 2v2
1 + 2gh, u2 =  sin- 1a v1 sin u2v2

1 + 2gh
b

15–46.	 u = f = 9.52�
15–47.	 s max = 481 mm
15–49.	 x = 0.364 ft d

15–50.	 x = 1.58 ft S

15–51.	 sB = 6.67 m S

15–53.	 sB = 71.4 mm S

15–54.	 sB = 71.4 mm S

15–55.	 vc = 5.04 m>s d

15–57.	 d = 6.87 mm
15–59.	 e = 0.75, �T = -9.65 kJ
15–61.	 xmax = 0.839 m
15–63.	 vC = 0.1875v S , vD = 0.5625v S , 
	 vB = 0.8125v S ,  vA = 0.4375v S  
15–65.	 t = 0.226 s

15–66.	 (vB)2 =
1

3
22gh(1 + e)

15–67.	 (vA)2 = 1.04 ft>s, (vB)3 = 0.964 ft>s, 
	 (vC)3 = 11.9 ft>s
15–69.	 v�B = 22.2 m>s, u = 13.0�

15–70.	 (vB)2 =
e(1 + e)

2
v0

15–71.	 vA = 29.3 ft>s, vB2 = 33.1 ft>s, u = 27.7� a
15–73.	 vA = 1.35 m>s S ,  vB = 5.89 m>s, u = 32.9� b
15–74.	 e = 0.0113
15–75.	 h = 1.57 m
15–77.	 (vB)3 = 3.24 m>s, u = 43.9�
15–78.	 v�B = 31.8 ft>s
15–79.	 (yA)2 = 3.80 m>s d , 
	 (yB)2 = 6.51 m>s, (uB)2 = 68.6�
15–81.	 (a) (vB)1 = 8.81 m>s, u = 10.5� a,
	 (b) (vB)2 = 4.62 m>s, f = 20.3� b,
	 (c) s = 3.96 m
15–82.	 s = 0.456 ft
15–83.	 (vA)2 = 42.8 ft>s d, F = 2.49 kip
15–85.	 mk = 0.25
15–86.	 (vB )2 = 1.06 m>s d , (vA )2 = 0.968 m>s, 
	 (uA)2 = 5.11�e
15–87.	 (vA)2 = 4.06 ft>s, (vB)2 = 6.24 ft>s
15–89.	 (vA )2 = 12.1 m>s, (vB )2 = 12.4 m>s
15–90.	 d = 1.15 ft, h = 0.770 ft
15–91.	 (vB)3 = 1.50 m>s
15–93.	 (vA)2 = 8.19 m>s, (vB)2 = 9.38 m>s
15–94.	 5-9.17i - 6.12k6  slug # ft2>s
15–95.	 5-9.17i + 4.08j - 2.72k6  slug # ft2>s
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16–5.	 u = 5443 rev, v = 740 rad>s, a = 8 rad>s2

16–6.	 u = 3.32 rev, t = 1.67 s
16–7.	 t = 6.98 s, uD = 34.9 rev
16–9.	 aB = 29.0 m>s2

16–10.	 aB = 16.5 m>s2

16–11.	 a = 60 rad>s2, v = 90.0 rad>s, u = 90.0 rad
16–13.	 vB = 180 rad>s, vC = 360 rad>s
16–14.	 v = 42.7 rad>s, u = 42.7 rad
16–15.	 at = 2.83 m>s2, an = 35.6 m>s2

16–17.	 vB = 21.9 rad>s d
16–18.	 vB = 31.7 rad>s d
16–19.	 vB = 156 rad>s
16–21.	 vA = 8.10 m>s, 
	 (aA )t = 4.95 m>s2, (aA )n = 437 m>s2

16–22.	 vD = 4.00 rad>s, aD = 0.400 rad>s2

16–23.	 vD = 12.0 rad>s, aD = 0.600 rad>s2

16–25.	 vP = 2.42 ft>s, aP = 34.4 ft>s2

16–26.	 vC = 1.68 rad>s, uC = 1.68 rad
16–27.	 v = 148 rad>s
16–29.	 rA = 31.8 mm, rB = 31.8 mm, 
	 1.91 canisters per minute
16–30.	 (vB)max = 8.49 rad>s, (vC)max = 0.6 m>s
16–31.	 sW = 2.89 m
16–33.	 vB = 312 rad>s, aB = 176 rad>s2

16–34.	 vE = 3 m>s, 
	 (aE)t = 2.70 m>s2, (aE)n = 600 m>s2

16–35.	 vC = 5-4.8i - 3.6j - 1.2k6  m>s, 
	 aC = 538.4i - 64.8j + 40.8k6  m>s2

16–37.	 vC = 2.50  m>s, aC = 13.1 m>s2

16–38.	 v = 7.21 ft>s, a = 91.2 ft>s2

16–39.	 v =
rvA

y2y2 - r2
, a =

rvA
2(2y2 - r2)

y2(y2 - r2)3>2

16–41.	 v = 8.70 rad>s, a = -50.5 rad>s2

16–42.	 v = -19.2 rad>s, a = -183 rad>s2

16–43.	 vAB = 0

16–45.	 v = - a r 2
1 v sin  2u

22r 2
1  cos2 u + r 2

2 + 2r1r2

+ r1v sin ub

16–46.	 v = vd asin u +
d sin 2u

21(R + r)2 - d2 sin2 u
b

16–47.	 v = -rv sin u
16–49.	 vC = Lvc , aC = 0.577 Lv2c

16–50.	 v =
2v0

r
 sin2 u>2, a =

2v0
 2

r2  (sin u)(sin2 u>2)

16–51.	 vB = ¢h

d
≤vA

16–53.	 u
#

=
v sin f

L cos (f - u)

16–54.	 v =
v

2r

16–55.	 v� =
(R + r)v

r
, a� =

(R + r)a

r

16–57.	 vB = 12.6 in.>s, 65.7� b
16–58.	 vAB = 2.00 rad>s
16–59.	 vC = 1.06 m>s d , vBC = 0.707 rad>s b
16–61.	 vBC = 2.31 rad>sd, vAB = 3.46 rad>sd
16–62.	 vA = 32.0 rad>s
16–63.	 vCB = 2.45 rad>sd, vC = 2.20 ft>s d

16–65.	 v = 20 rad>s, vA = 2 ft>s S

16–66.	 v = 3.11 rad>s, vO = 0.667 ft>s S

16–67.	 vA = 5.16 ft>s, u = 39.8� a
16–69.	 vC = 24.6 m>s T
16–70.	 	vBC = 10.6 rad>s d, vC = 29.0 m>s S

16–71.	 vP = 4.88 m>s d  
16–73.	 vE = 4.00 m>s, u = 52.7� c
16–74.	 vB = 90 rad>s b, vA = 180 rad>s d
16–75.	 vCD = 4.03 rad>s
16–77.	 vP = 5 rad>s, vA = 1.67 rad>s
16–78.	 vD = 105 rad>s b
16–79.	 vD = 7.07 m>s
16–82.	 vAB = 1.24 rad>s
16–83.	 vBC = 6.79 rad>s
16–85.	 vA = 2 ft>s S ,  vB = 10 ft>s d . 
	 The cylinder slips.
16–86.	 vB = 14 in.>sT , 
	 vA = 10.8 in.>s, u = 21.8� c
16–87.	 vBC = 8.66 rad>s d, vAB = 4.00 rad>s b
16–89.	 vA = v (r2 - r1)
16–90.	 vC = 2.50 ft>s d , 
	 vD = 9.43 ft>s, u = 55.8� h
16–91.	 vC = 2.50 ft>s d , 
	 vE = 7.91 ft>s, u = 18.4� e
16–93.	 vBPD = 3.00 rad>s b, vP = 1.79 m>s d

16–94.	 vB = 6.67 rad>s
16–95.	 vA = 60.0 ft>s S , vC = 220 ft>s d , 
	 vB = 161 ft>s, u = 60.3� b
16–97.	 vS = 57.5 rad>sd, vOA = 10.6 rad>sd
16–98.	 vS = 15.0 rad>s, vR = 3.00 rad>s
16–99.	 vCD = 57.7 rad>sd
16–101.	 vR = 4 rad>s
16–102.	 vR = 4 rad>s
16–103.	 vC = 3.86 m>s d , aC = 17.7 m>s2 d

16–105.	 a = 0.0962 rad>s2 b, aA = 0.385 ft>s2 S

16–106.	 aC = 13.0 m>s2 b, aBC = 12.4 rad>s2 b
16–107.	 v = 6.67 rad>s d, vB = 4.00 m>s R
	 a = 15.7 rad>s2 b, aB = 24.8 m>s2 a
16–109.	 vBC = 0, vCD = 4.00 rad>s b,
	 aBC = 6.16 rad>s2 b, aCD = 21.9 rad>s2 b
16–110.	 vC = 20.0 rad>s d, aC = 127 rad>s b
16–111.	 aAB = 4.62 rad>s2 d, 
	 aB = 13.3 m>s2, u = 37.0� c
16–113.	 vA = 0.424 m>s, uv = 45� c , 
	 aA = 0.806 m>s2, ua = 7.13� a
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17–7.	 Ix =
93

70
mb2

17–9.	 Iy =
m

6
 (a2 + h2)

17–10.	 kO = 2.17 m
17–11.	 IO = 1.36 kg # m2

17–13.	 IA = 7.67 kg # m2

17–14.	 IA = 222 slug # ft2

17–15.	 IO = 6.23 kg # m2

17–17.	 IG = 0.230 kg # m2

17–18.	 IO = 0.560 kg # m2

17–19.	 IG = 118 slug # ft2

17–21.	 y = 1.78 m, IG = 4.45 kg # m2

17–22.	 Ix = 3.25 g # m2

17–23.	 Ix� = 7.19 g # m2

17–25.	 F = 5.96 lb, NB = 99.0 lb, NA = 101 lb
17–26.	 Ay = 72.6 kN, By = 71.6 kN, aG = 0.250 m>s2

17–27.	 NA = 1393 lb, NB = 857 lb, t = 2.72 s
17–29.	 a = 2.74 m>s2, T = 25.1 kN
17–30.	 N = 29.6 kN, V = 0, M = 51.2 kN # m
17–31.	 h = 3.12 ft
17–33.	 P = 579 N
17–34.	 a = 4 m>s2 S , NB = 1.14 kN, NA = 327 N
17–35.	 aG = 13.3 ft>s2

17–37.	 P = 785 N
17–38.	 P = 314 N
17–39.	 N = 0.433wx, V = 0.25wx, M = 0.125wx2

17–41.	 Bx = 73.9 lb, By = 69.7 lb, NA = 120 lb
17–42.	 a = 2.01 m>s2. 
	 The  crate  slips.
17–43.	 a = 2.68 ft>s2, NA = 26.9 lb, NB = 123 lb
17–45.	 T = 15.7 kN, Cx = 8.92 kN, Cy = 16.3 kN
17–46.	 a = 9.81 m>s2, Cx = 12.3 kN, Cy = 12.3 kN
17–47.	 h max = 3.16 ft, FA = 248 lb, NA = 400 lb
17–49.	 FAB = 112 N, Cx = 26.2 N, Cy = 49.8 N
17–50.	 P = 765 N
17–51.	 T = 1.52 kN, u = 18.6�
17–53.	 a = 9.67 rad>s2

17–54.	 FC = 16.1 lb, NC = 159 lb
17–55.	 a = 2.62 rad>s2

17–57.	 v = 56.2 rad>s, Ax = 0, Ay = 98.1 N
17–58.	 a = 14.7 rad>s2, Ax = 88.3 N, Ay = 147 N 

17–59.	 FA =
3

2
 mg

17–61.	 a = 0.694 rad>s2

17–62.	 v = 10.9 rad>s
17–63.	 v = 9.45 rad>s
17–65.	 M = 0.233 lb # ft
17–67.	 a = 8.68 rad>s2, An = 0, At = 106 N
17–69.	 a = 7.28 rad>s2

17–70.	 F = 22.1 N
17–71.	 v = 0.474 rad>s

16–114.	 vB = 0.6 m>s T , 
	 aB = 1.84 m>s2, u = 60.6� c
16–115.	 vB = 4v S ,  
	 vA = 222v, u = 45�a, 

	 aB =
2v2

r
T , aA =

2v2

r
S

16–117.	 aC = 10.0 m>s2, u = 2.02�  d
16–118.	 a = 40.0 rad>s2, aA = 2.00 m>s2 d

16–119.	 vB = 1.58va, aB = 1.58 aa - 1.77v2a
16–121.	 vAC = 0, vF = 10.7 rad>s b, 
	 aAC = 28.7 rad>s2 b
16–122.	 vCD = 7.79 rad>s d, aCD = 136 rad>s2 b
16–123.	 vC = 1.56 m>s d ,  
	 aC = 29.7 m>s2, u = 24.1� c
16–125.	 v = 4.73 rad>s d, a = 131 rad>s2 b
16–126.	 vAB = 7.17 rad>sb, aAB = 23.1 rad>s2d
16–127.	 aAB = 3.70 rad>s2 b
16–129.	 vB = {0.6i + 2.4j} m>s,  
	 aB = {-14.2i + 8.40j} m>s2

16–130.	 vB = 1.30 ft>s, aB = 0.6204 ft>s2

16–131.	 vm = 57.5i - 5j6  ft>s, am = 55i + 3.75j6  ft>s2

16–133.	 vA = {-17.2i + 12.5j} m>s, 
	 aA = {349i + 597j} m>s2

16–134.	 aA = 5-5.60i - 16j6  m>s2

16–135.	 vC = 2.40 m>s, u = 60� b
16–137.	 (vB>A )xyz = {31.0i}  m>s, 
	 (aB>A )xyz = {-14.0i - 206j}  m>s2

16–138.	 vB = 7.7 m>s, aB = 201 m>s2

16–139.	 vCB = 1.33 rad>s d, aCD = 3.08 rad>s2 b
16–141.	 vCD = 3.00 rad>s b, aCD = 12.0 rad>s2 b
16–142.	 vC = 5-0.944i + 2.02j6  m>s, 
	 aC = 5-11.2i - 4.15j6  m>s2

16–143.	 vAB = 5 rad>s b, aAB = 2.5 rad>s2 b
16–145.	 vC = {-7.00i + 17.3j} ft>s, 
 	 aC = {-34.6i - 15.5j} ft>s2

16–146.	 vC = {-7.00i + 17.3j} ft>s, 
	 aC = {-38.8i - 6.84j} ft>s2

16–147.	 vAB = 0.667 rad>s d, aAB = 3.08 rad>s2 b
16–149.	 (vrel)xyz = 0, (arel)xyz = {1i} m>s2

16–150.	 vDC = 2.96 rad>s b
16–151.	 vAC = 0, aAC = 14.4 rad>s2 b

Chapter 17
17–1.	 Iy =

1

3
 m l2

17–2.	 m = p h R2ak +
aR2

2
b , Iz =

p h R4

2
c k +

2 aR2

3
d

17–3.	 Iz = mR2

17–5.	 kx = 1.20 in.

17–6.	 Ix =
2

5
 m  r2
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18–5.	 v = 2.02 rad>s
18–6.	 v = 1.78 rad>s
18–7.	 T = 283 ft # lb
18–9.	 v = 21.5 rad>s
18–10.	 s = 5.16 m, T = 78.5 N
18–11.	 v = 14.9 rad>s
18–13.	 v = 6.11 rad>s
18–14.	 v = 8.64 rad>s
18–15.	 v = 3.16 rad>s
18–17.	 v = Av2

0 +
g

r2 s  sin u

18–18.	 vC = 7.49 m>s
18–19.	 v = 6.92 rad>s
18–21.	 s = 0.304  ft
18–22.	 vC = 19.6 ft>s
18–23.	 u = 0.445 rev
18–25.	 sG = 1.60 m
18–26.	 v2 = 5.37 rad>s
18–27.	 v = 44.6 rad>s
18–29.	 vG = 11.9 ft>s
18–30.	 v = 2.50 rad>s
18–31.	 v = 5.40 rad>s
18–33.	 u = 0.891 rev, regardless of orientation
18–34.	 v = 5.74 rad>s
18–35.	 vAB = 5.92 rad>s
18–37.	 sC = 78.0 mm
18–38.	 s = 0.301 m, T = 163 N
18–39.	 vA = 1.29 m>s
18–41.	 sb = 242 mm, T = 67.8 N
18–42.	 vb = 2.52 m>s
18–43.	 u = 48.2�
18–45.	 v = 3.78 rad>s
18–46.	 v = 3.75 rad>s
18–47.	 v = 3.28 rad>s
18–49.	 (vAB )2 = (vBC)2 = 1.12 rad>s
18–50.	 vA = 1.40 m>s
18–51.	 u0 = 8.94 rev
18–53.	 vBC = 1.34 rad>s
18–54.	 vb = 15.5  ft>s 
18–55.	 vA = 4.00 m>s
18–57.	 v = 12.8 rad>s
18–58.	 k = 18.4 N>m
18–59.	 v = 2.67 rad>s
18–61.	 vAB = 3.70 rad>s
18–62.	 v = 1.80 rad>s
18–63.	 yA = 21.0 ft>s
18–65.	 v = 2.71 rad>s
18–66.	 k = 100 lb>ft
18–67.	 (vA)2 = 7.24 m>s

17–73.	 t = 6.71 s
17–74.	 a = 14.2 rad>s2

17–75.	 Ax = 89.2 N, Ay = 66.9 N, t = 1.25 s
17–77.	 t = 1.09 s
17–78.	 v = 4.88 ft>s
17–79.	 a = 2.97 m>s2

17–81.	 Ax = 0, Ay = 289 N, a = 23.1 rad>s2

17–82.	 NA = 177 kN, VA = 5.86 kN, MA = 50.7 kN # m
17–83.	 M = 0.3gml

17–85.	 N = wx c v
2

g
aL -

x

2
b +  cos u d ,

	 V = wx sin u, M =
1

2
wx2  sin u

17–86.	 a = 12.5 rad>sb, aG = 18.75 m>s2 T

17–87.	 NB = 2.89 kN, 
	 Ax = 0, Ay = 2.89 kN
17–89.	 v = 800 rad>s
17–91.	 a = 5.62 rad/s2, T = 196 N
17–93.	 �a = 2.45 rad>s2 b, NB = 2.23 N, NA = 33.3 N
17–94.	 a = 4.32 rad>s2

17–95.	 u = 46.9�
17–97.	 a = 0.500 rad>s2

17–98.	 a = 15.6 rad>s2

17–99.	 aA = 26.7 m>s2 S

17–101.	 F = 42.3 N
17–102.	 a = 4.01 rad>s2

17–103.	 Ay = 15.0 lb, Ax = 0.776 lb, a = 1.67 rad>s2

17–105.	 a = 18.9 rad>s2, P = 76.4 lb

17–106.	 a =
6P

mL
, aB =

2P

m

17–107.	 a =
6(P - mk mg)

mL
, aB =

2(P - mk mg)

m
17–109.	 a = 3 rad>s2

17–110.	 a = 14.5 rad>s2, t = 0.406 s
17–111.	 The disk does not slip.

17–113.	 aG = mkg d, a =
2mkg

r
 b

17–114.	 v =
1

3
v0, t =

v0r

3mkg

17–115.	 aA = 43.6 rad>s2b, aB = 43.6 rad>s2 d, T = 19.6 N

17–117.	 TA =
4

7
W

17–118.	 a = 23.4 rad>s2, By = 9.62 lb

17–119.	 a =
10g

1322 r

Chapter 18
18–2.	 v = 14.0 rad>s
18–3.	 v = 14.1 rad>s
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19–57.	 (vG)y2 = e(vG)y1 c , 

	 (vG)x2 =
5

7
a(vG)x1 -

2

5
 v1rb d

19–58.	 u1 = 39.8°

Chapter 20
20–1.	 (a) A = vs vt j, 
	 (b) A = -vs vt k
20–2.	 vA = {-0.225i} m>s, 
	 aA = {-0.1125j - 0.130k} m>s2

20–3.	 vA = 5-5.20i -  12j +  20.8k6  ft>s, 
	 aA = 5-24.1i -  13.3j -  7.20k6  ft>s2

20–5.	 (vC)DE = 40 rad>s, (vDE)y = 5 rad>s
20–6.	 V = {-8.24j} rad>s, A = {24.7i - 5.49j} rad>s2

20–7.	 vA = 5-7.79i -  2.25j +  3.90k6ft>s, 
	 aA = 58.30i -  35.2j +  7.02k6ft>s2

20–9.	 vB = 5-0.4i - 2j - 2k6  m>s,
	 aB = 5-8.20i + 40.6j - k6  rad>s2

20–10.	 V = {42.4j + 43.4k} rad>s, 
	 A = {-42.4i} rad>s2

20–11.	 V = {2i + 42.4j + 43.4k} rad>s, 
	 A = {-42.4i - 82.9j + 84.9k} rad>s2

20–13.	 vB = 0, vC = 0.283 m>s, aB = 1.13 m>s2, 
	 aC = 1.60 m>s2

20–14.	 vC = 51.8j -  1.5k6  m>s, 
	 aC = 5-36.6i +  0.45j -  0.9k6  m>s2

20–15.	 vA = 5-8.66i +  8.00j -  13.9k6  ft>s, 
	 aA = 5-24.8i +  8.29j -  30.9k6  ft>s2

20–17.	 vA = {-1.80i} ft>s, 
	 aA = {-0.750i - 0.720j - 0.831k} ft>s2

20–18.	 VP = 5-40j6  rad>s, AB = 5-6400i6  rad>s2

20–19.	 V = 54.35i +  12.7j6  rad>s, 
	 A = 5-26.1k6  rad>s2

20–21.	 V = 530j -  5k6rad>s, A = 5150i6rad>s2

20–22.	 vA = 510i +  14.7j -  19.6k6  ft>s, 
	 aA = 5-6.12i +  3j -  2k6  ft>s2

20–23.	 vA = 47.8 rad>s, vB = 7.78 rad>s
20–25.	 VBC = 50.204i -  0.612j +  1.36k6  rad>s, 
	 vB = 5-0.333j6m>s
20–26.	 VAB = 5-1.00i - 0.500j + 2.50k6  rad>s,
	 vB = 5-2.50j - 2.50k6  m>s
20–27.	 AAB = 5-7.9i - 3.95j + 4.75k6  rad>s2,
	 aB = 5-19.75j - 19.75k6  m>s2

20–29.	 aB = 5-37.6j6  ft>s2

20–30.	 vB = 5-1.92j + 2.56k6  m>s
20–31.	 vB = 5.00 m>s, 
	 VAB = 5-4.00i - 0.600j - 1.20k6  rad>s
20–33.	 VBD = {-1.20j } rad>s

Chapter 19
19–5.	 LM  dt = 0.833 kg # m2>s
19–6.	 v = 0.0178 rad>s
19–7.	 vB = 24.1 m>s
19–9.	 v2 = 103 rad>s
19–10.	 t = 0.6125 s
19–11.	 v2 = 53.7 rad>s
19–13.	 y =

2

3
 l

19–14.	 d =
2

3
 l

19–15.	 (a) vBC = 68.7 rad>s,
	 (b) vBC = 66.8 rad>s,
	 (c) vBC = 68.7 rad>s
19–17.	 vG = 26.8 ft>s
19–18.	 vG = 2 m>s, v = 3.90 rad>s
19–19.	 vA = 24.1 m>s
19–21.	 v = 12.7 rad>s
19–22.	 vA = 47.3 rad>s
19–23.	 t = 1.32 s
19–25.	 t = 1.04 s
19–26.	 v = 9 rad>s
19–27.	 vB = 1.59 m>s
19–29.	 v = 1.91 rad>s
19–30.	 v2 = 0.656 rad>s, u = 18.8�
19–31.	 v2 = 0.577 rad>s, u = 15.8�
19–33.	 v2 = 2.55 rev>s
19–34.	 v = 0.190 rad>s
19–35.	 v = 0.0906 rad>s
19–37.	 v = 22.7 rad>s
19–38.	 hC = 0.500 ft
19–39.	 v2 = 1.01 rad>s
19–41.	 u = 66.9�
19–42.	 v2 = 57 rad>s, UF = 367 J
19–43.	 v2 = 3.47 rad>s
19–45.	 v = 5.96 ft>s
19–46.	 h =

7

5
 r

19–47.	 u = 50.2�
19–49.	 (vD)3 = 1.54 m>s, v3 = 0.934 rad>s
19–50.	 v1 = 7.17 rad>s
19–51.	 u =  tan- 1aA7

5
 eb

19–53.	 v3 = 2.73 rad>s
19–54.	 v = A7.5 

g

L
19–55.	 hB = 0.980 ft
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21–18.	 Ix = 0.455 slug # ft2

21–19.	 Iaa = 1.13 slug # ft2

21–21.	 Iz = 0.0880 slug # ft2

21–25.	 H = {-477(10- 6) i + 198(10- 6) j + 0.169 k} kg #m2>s
21–26.	 v2 = 61.7 rad>s
21–27.	 v2 = 87.2 rad>s
21–29.	 vx = 19.7 rad>s
21–30.	 h = 2.24 in.
21–31.	 T = 0.0920 ft # lb
21–33.	 vp = 4.82 rad>s
21–34.	 HA = 5-2000i - 55 000j + 22 500k6  kg # m2>s
21–35.	 T = 37.0 MJ
21–37.	 V = {-0.750j + 1.00k} rad>s
21–38.	 T = 1.14 J
21–39.	 Hz = 0.4575 kg # m2>s
21–41.	 �Mx = (Ixv

#
x - Ixyv

#
y - Ixzv

#
z),  

	 -  �z(Iyvy - Iyzvz - Iyxvx), 
	 +  �y(Izvz - Izxvx - Izyvy) 
	 Similarly for �My and �Mz.
21–43.	 Bz = 4 lb, Ax = -2.00 lb, Ay = 0.627 lb, 
	 Bx = 2.00 lb, By = -   1.37 lb
21–45.	 AZ = 1.46  lb, BZ = 13.5 lb, AX = AY = BX = 0, 
21–46.	 v

#
x = -14.7 rad>s2, Bz = 77.7 N, By = 3.33 N, 

	 Ax = 0, Ay = 6.67 N, Az = 81.75 N
21–47.	 v

#
x = 9.285 rad>s2, Bz = 97.7 N, By = 3.33 N, 		

	 Ax = 0, Ay = 6.67 N, Az = 122 N
21–49.	 v

#
z = 200 rad>s2, Dy = -12.9 N, Dx = -37.5 N, 

	 Cx = -37.5 N, Cy = -11.1 N, Cz = 36.8 N
21–50.	 TB = 47.1 lb, My = 0, Mz = 0, Ax = 0, 
	 Ay = -93.2 lb, Az = 57.1 lb
21–51.	 v

#
y = -102 rad>s2, Ax = Bx = 0, Ay = 0, 

	 Az = 297 N, Bz = -143 N
21–53.	 Mz = 0, Ax = 0, My = 0, u = 64.1�, 
	 Ay = 1.30 lb, Az = 20.2 lb
21–54.	 N = 148 N, Ff = 0
21–55.	 (M0)x = 72.0 N # m, (M0)z = 0

21–57.	 Mx = -
4

3
ml2 vsvp  cos u, 

	 My =
1

3
ml2 vp

2  sin 2u, Mz = 0

21–58.	 Bx = 0, By = -3.90 lb, Ay = -1.69 lb, 
	 Az = Bz = 7.5 lb
21–59.	 �Mx = 0, �My = (-0.036  sin u) N # m, 
	 �Mz = (0.003  sin 2u) N # m
21–61.	 �a =  69.3�, b =  128�, g =  45�. No, the 

orientation will not be the same for any order. 
Finite rotations are not vectors.

21–62.	 vP = 27.9 rad>s
21–63.	 vR = 368 rad>s
21–65.	 vP = 1.19 rad>s
21–66.	 Mx = 328 N # m

20–34.	 ABD = 5-8.00j6  rad>s2

20–35.	 VAB = 5-0.500i +  0.667j -  1.00k6  rad>s
	 vB = {-7.50j}  ft>s
20–37.	 vC = 5-1.00i +  5.00j +  0.800k6  m>s, 
	 aC = 5-28.8i -  5.45j +  32.3k6  m>s2

20–38.	 vC = 5-1i +  5j +  0.8k6  m>s, 
	 aC = 5-28.2i -  5.45j +  32.3k6  m>s2

20–39.	 vB = 5-2.75i -  2.50j +  3.17k6  m>s, 
	 aB = 52.50i -  2.24j -  0.00389k6  ft>s2

20–41.	 vC = {3i + 6j - 3k} m>s, 
	 aC = {-13.0i + 28.5j - 10.2k} m>s2

20–42.	 vB = 5-17.8i -  3j +  5.20k6  m>s, 
	 aB = 59i -  29.4j -  1.5k6  m>s2

20–43.	 vB = 5-17.8i -  3j +  5.20k6  m>s, 
	 aB = 53.05i -  30.9j +  1.10k6  m>s2

20–45.	 vP = {-0.849i + 0.849j + 0.566k} m>s, 
	 aP = {-5.09i - 7.35j + 6.79k} m>s2

20–46.	 vA = {-8.66i + 2.26j + 2.26k} m>s, 
	 aA = {-22.6i - 47.8j + 45.3k} m>s2

20–47.	 vA = {-8.66i + 2.26j + 2.26k} m>s, 
	 aA = {-26.1i - 44.4j + 7.92k} m>s2

20–49.	 vP = {-9.80i + 14.4j + 48.0k} ft>s, 
	 aP = {-160i + 5.16j - 13k} ft>s2

20–50.	 vP = 5-25.5i -  13.4j +  20.5k6  ft>s, 
	 aP = 5161i -  249j -  39.6k6  ft>s2

20–51.	 vP = 5-25.5i -  13.4j +  20.5k6  ft>s, 
	 aP = 5161i -  243j -  33.9k6  ft>s2

20–53.	 vA = 5-8.66i + 8j - 13.9k6  ft>s, 
	 aA = 5-17.9i + 8.29j - 30.9k6  ft>s2,
20–54.	 vC = {-1.73i - 5.77j + 7.06k} ft>s, 
	 aC = {9.88i - 72.8j + 0.365k} ft>s2

Chapter 21
21–2.	 Iy =

3m

80
(h2 + 4a2), Iy� =

m

20
(2h2 + 3a2)

21–3.	 Iy = 2614 slug # ft2

21–5.	 Iyz =
m

6
 ah

21–6.	 Ixy =
m

12
 a2

21–7.	 Ixy = 636r
21–9.	 Iz�z� = 0.0961 slug # ft2

21–10.	 ky = 2.35 ft, kx = 1.80 ft

21–11.	 Iaa =
m

12
(3a2 + 4h2)

21–13.	 Iyz = 0
21–14.	 Ixy = 0.32 kg # m2, Iyz = 0.08 kg # m2, Ixz = 0
21–15.	 Iz� = 0.0595 kg # m2

21–17.	 y = 0.5 ft, x = -0.667 ft, Ix� = 0.0272 slug # ft2, 
	 Iy� = 0.0155 slug # ft2, Iz� = 0.0427 slug # ft2
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22–37.	 E = 0.175  
#
u2 + 10 u2, t = 0.830 s

22–38.	 t = pAm

k
22–39.	 f = 1.28 Hz

22–41.	 x = A  sin vnt + B cos vnt + +
F0>k

1 - (v>vn)
2 cos vt

22–42.	 y = A  sin vn t + B cos vn t +
FO

k
22–43.	 y = {-0.0232 sin 8.97 t + 0.333 cos 8.97 t
	 + 0.0520 sin 4t} ft

22–45.	 y = A  sin vnt + B cos vnt +
d0

1 - (v>vn)2  sin vt

22–46.	 y = 1361 sin 7.75t + 100 cos 7.75t, 
	       - 350 sin 8t2 mm

22–47.	 C =
3FO

3
2 (mg + Lk) - mLv2

22–49.	 (xp)max = 29.5 mm

22–50.	 u
$

+
4c

m
 u

#
+

k

m
 u
#

= 0

22–51.	 (vp)max = 0.3125 m>s
22–53.	 v = 14.0 rad>s
22–54.	 (xp)max = 14.6 mm
22–55.	 (xp)max = 35.5 mm
22–57.	 v = 19.7 rad>s
22–58.	 C = 0.490 in.
22–59.	 v = 19.0 rad>s
22–61.	 (xp)max = 4.53 mm

22–62.	 Y =
mrv2L3

48EI - Mv2L3

22–63.	 v = 12.2 rad>s, v = 7.07 rad>s
22–65.	 f� = 9.89�
22–66.	 MF = 0.997
22–67.	 y = 5-0.0702 e-3.57t sin (8.540)6  m

22–69.	 F = 2cy
#
, cc = 2mA k

m
, c 6 2mk

22–71.	 v = 21.1 rad/s
22–73.	 1.55u

$
+ 540u

#
+ 200u = 0,  

	 (cdp)c = 3.92 lb # s>ft
22–74.	 cc = 28(m + M)k, xmax = cm

e A 1

2k(m + M)
d v0

22–75.	 xmax =
2mv028k(m + M) - c2

 e-pc>(228k(m + M)- c2 )

22–77.	 Lq + Rq + a 1

C
bq = E0 cos vt

22–78.	 Lq
$

+ Rq
#

+ a 2

C
bq = 0

22–79.	 Lq
$

+ Rq
#

+
1

C
 q = 0

21–67.	 f
#

= a 2g cos u

a + r cos u
b

1>2

21–69.	 vs = 3.63(103) rad/s
21–70.	 u = 68.1�
21–71.	 	f

#
= 81.7 rad>s, c

#
= 212 rad>s,

	 regular precession
21–74.	 c

#
= 2.35 rev>h

21–75.	 a = 90�, b = 9.12�, g = 80.9�
21–77.	 HG = 12.5 Mg # m2>s
21–78.	 f

#
= 3.32 rad>s

Chapter 22
22–1.	 y

$
+ 56.1 y = 0, y � t = 0.22 s = 0.192 m

22–2.	 x = -0.05 cos (20t)
22–3.	 y = 0.107 sin(7.00t) + 0.100 cos(7.00t), 
	 f = 43.0�
22–5.	 vn = 49.5 rad/s, t = 0.127 s
22–6.	 x = {-0.126 sin(3.16t) - 0.09 cos(3.16t)} m, 
	 C = 0.155 m
22–7.	 vn = 19.7 rad/s, C = 1 in. 
	 y = (0.0833 cos 19.7t) ft
22–9.	 vn = 8.16 rad>s, x = -0.05 cos(8.16t), C = 50 mm

22–10.	 t = 2pB 2mL

3mg + 6kL
22–11.	 t = 1.45 s

22–13.	 t = 2pB k2
G + d2

gd
22–14.	 k = 90.8 lb # ft>rad
22–15.	 k = 1.36 N>m, mB = 3.58 kg
22–17.	 k1 = 2067 N>m, k2 = 302 N>m, or vice versa 
22–18.	 mB = 21.2 kg, k = 609 N>m
22–19.	 y = 503 mm
22–21.	 x = 0.167 cos 6.55 t

22–22.	 vn = C3g(4R2 - l2)1>2

6R2 - l2

22–23.	 t = 1.66 s
22–25.	 f = 0.900 Hz

22–26.	 t = 2pkOAm

C
22–27.	 vn = 3.45 rad>s
22–29.	 t = 2pA l

2g
22–30.	 x

$
+ 333x = 0

22–31.	 t = 1.52 s
22–33.	 t = 0.774 s
22–34.	 u

$
+ 468u = 0

22–35.	 t = 0.487 s
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Index
A
a–s (acceleration–position) graphs, 22
a–t (acceleration–time) graphs, 20–21
Absolute acceleration, 91, 373
Absolute dependent motion analysis, 

see Dependent motion analysis
Absolute motion analysis, 338–341, 404
Absolute velocity, 91, 347
Acceleration (a), 7–8, 20–22, 35, 37, 

57–58, 73, 92, 106, 112–177, 321, 
323, 325–326, 373–380, 392–393, 
404–405, 408–471, 563–564, 580

absolute, 92, 373
angular (a), 73, 323, 409, 563–564
average, 7, 35
centripetal, 58
circular motion and, 325–326, 

373–375
constant, 8, 323
continuous motion and, 7–8
Coriolis, 393, 405
curvilinear motion and, 35, 37, 

57–58, 73
cylindrical components and, 73, 

152–156, 175
equations of motion for, 116–126, 

138–143, 152–156, 175, 423–
431, 441–447, 456–461, 469

erratic motion and, 20–22
fixed-axis rotation and, 323, 

325–326, 404, 441–447, 469
fixed-point rotation and, 563–564
force (F) and, 112–177, 408–471
general plane motion and, 

373–380, 392–393, 404–405, 
456–461, 469

graphs of variables, 20–22, 106
gravitational (g), 115
hodographs and, 35
inertia and, 113
instantaneous, 7, 35
kinematics of particles and, 7–8, 

35–37, 57–58, 73, 92, 106
kinetics of particles, 112–177
magnitude of, 37, 57–58, 73, 373, 

392, 441–442
mass (m) and, 113–114
moment of inertia (I)  

and, 409–417, 442–443,  
456–457, 469

normal (n) components of, 57–58, 
138–143, 175, 325–326, 441–442

normal force (N) and, 152–156
planar kinetics of rigid bodies, 

408–471
planar kinematics of rigid bod-

ies and, 321, 323, 325–326, 
373–380, 404–405

procedure for analysis of, 375
rectangular components and, 37, 

120–126, 175
rectilinear kinematics and, 7–8, 

20–22, 106
relative, 92
relative-motion analysis and, 92, 

373–380, 392–393, 405, 580
resistance of body to, 409
rotating axes, 392–393, 405, 580
rotation and, 323, 325–326, 373–380, 

405, 424–425, 441–447, 469
sign convention for, 7
tangential (t) components of, 

57–58, 138–143, 175, 325–326, 
441–442

tangential force (tan) and, 152–156
three-dimensional rigid-body  

motion, 563–564, 580
time derivative and, 564
translating axes, 92, 373–380,  

405, 580
translation and, 321, 380–381, 405, 

423, 426–431, 469
velocity (v) and, 7–8

Amplitude of vibration, 645–646
Angular acceleration (w), 73, 323, 409, 

563–564
Angular displacement (du), 322
Angular impulse, 284–289
Angular momentum (H), 280–289, 

315, 518–522, 523–524, 540–543, 
544–547, 556–557, 601–604,  
629, 640

angular impulse and, 284–289, 315
arbitrary point A for, 602
center of mass (G) for, 601–602
conservation of, 286, 540–543, 557
eccentric impact and,  

544–547, 557
fixed-axis rotation and, 520, 556
fixed-point O for, 602

free-body diagrams for,  
280–281, 286

general plane motion and,  
521, 556

gyroscopic motion and, 629
kinetics of a particle, 280–289
magnitude of, 280
moment of a force relations with, 

281–283
moment of momentum, 280, 315
principle axes of inertia from, 603
principle of impulse and, 284–289, 

315, 523–524, 604, 640
procedures for analysis of,  

286, 541
rectangular components of  

momentum, 602–603
right-hand rule for, 280
rigid-body planar motion, 

518–522, 523–524, 540–547, 
556–557

scalar formulation, 280, 285
system of particles, 282, 284–285
three-dimensional rigid bodies, 

601–604, 629, 640
translation and, 520, 556
units of, 280
vector formulation, 280, 285

Angular motion, 322–323, 327, 338, 
404, 563–564

Angular position (u), 322
Angular velocity (v), 72, 322, 544–547, 

563–564, 626–628
Apogee, 169
Areal velocity, 164
Average acceleration, 7, 35
Average speed, 6
Average velocity, 6, 34
Axes, 91–95, 109, 320, 322–329, 346–

352, 373–380, 389–397, 404–405, 
441–447, 469, 475, 511, 520, 556, 
594–595, 612–616

angular motion and, 322–323, 327
circular motion and, 324–327, 

373–375
coordinating fixed and translat-

ing reference frames, 346–352, 
373–380, 404–405

equations of motion for, 441–447, 
469, 612–616
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Axes (continued)
Euler’s equations for, 614–615
fixed, rotation about, 320, 

322–329, 404, 441–447, 469, 475, 
614–616

fixed reference frame, 91–95
impulse and momentum of,  

520, 556
inertia (I), principle axes of, 594–595
kinematics of a particle, 91–95, 109
kinematics of rigid bodies, 320, 

322–329, 346–352, 373–380, 
389–397, 404–405

kinetic energy and, 475, 511
moments of inertia (I) about, 

442–443, 594–595
planes of symmetry, 595
pinned-end members, 346–352, 

373–380
relative-motion analysis of,  

91–95, 109, 346–352, 373–380, 
389–397, 405

rigid-body planar motion,  
441–447, 469, 475, 511, 520, 556

rotating, 389–397, 405, 612–613
rotation about, 320, 322–329, 

346–352, 373–380, 404, 441–447, 
469, 475, 511, 520, 556

symmetrical spinning axes, 
615–616

three-dimensional rigid-body  
motion, 594–595, 612–616

translating, 91–95, 109, 389–397, 405
translation for, 346–352,  

373–380, 405
Axis of rotation, 564, 569

B
Body cone, 634

C
Cartesian vector notation, 685
Center of curvature, 56
Center of mass (G), 119, 518–519, 

601–602, 605
Central impact, 266–268, 269, 314–315
Central-force motion, 164–170, 175

areal velocity, 164
circular orbit, 168
directrix, 166

eccentricity (e), 166–167
elliptical orbit, 169–170
equations of motion, 164–166
focus (F), 166
gravitational (G) attraction, 165–166
Kepler’s laws, 170
parabolic path, 168
path of motion, 164–165
space mechanics and, 164–170
trajectories, 165–170, 175

Centripetal acceleration, 58
Centripetal force, 138–143
Centrode, 362
Chain rule, 689–691
Circular motion, 324–327, 347–348, 

360–366, 373–375, 405
acceleration (a), 325–326, 373–375
instantaneous center (IC) of zero 

velocity, 360–366, 405
planar rigid-body motion, 

324–326, 347–348, 373–375
position and displacement  

from, 324
procedures for analysis of, 327, 362
relative-motion analysis of, 

347–348, 373–375
relative velocity and, 347–348
rotation about a fixed axis, 

324–327
slipping and, 348, 374
velocity (v), 324, 347–348, 

360–366, 405
Circular orbit, 168
Circular path of a point, 324–326, 360, 

374, 441
Closed volume, 295
Coefficient of restitution, 267–269, 

297, 315, 544–547, 557
Coefficient of viscous damping, 667
Composite bodies, moment of inertia 

for, 415
Conservation of energy, 217–221, 233, 

496–501, 513, 657–660, 680
conservative forces and, 217–221, 

233, 496–501, 657
differential equations for, 657
elastic potential energy, 496, 513
gravitational potential energy, 

496, 513
kinetic energy and, 217–218

kinetics of a particle,  
217–221, 233

natural frequency (vn) from, 
657–660, 680

potential energy (V) and, 
217–221, 233, 496–501, 513

procedures for analysis using, 218, 
498, 658

rigid-body planar motion, 
496–501, 513

system of particles, 218
vibration and, 657–660, 680
weight (W), displacement of, 217
work (W) and, 217–221, 233, 

496–501, 513
Conservation of momentum, 254–260, 

267, 269–272, 286, 314–315, 
540–543, 557

angular, 286, 540–543, 557
impact and, 267, 269–272, 314–315
impulsive forces and, 254–255
kinetics of particles, 254–260, 267, 

269–272, 268, 296
linear, 254–260, 267, 269–272, 314, 

540–543, 557
particle systems, 254–260, 286
procedures for analysis of, 255, 

269, 286, 541
rigid-body planar motion, 

540–543, 557
Conservative force, 213–221, 233, 

496–501, 513, 657
conservation of energy, 217–221, 

233, 496–501, 513, 657
elastic potential energy,  

214, 496, 513
friction force compared to, 213, 233
gravitational potential energy, 

213, 496, 513
potential energy (V) and, 

213–216, 233, 496–501, 513
potential function for, 215–216
spring force as, 213–216, 233,  

496, 513
vibration and, 657
weight (W), displacement of, 213, 

215–216, 233
work (U) and, 213–216,  

496–501, 513
Constant acceleration, 8, 323
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Constant force, work of, 181, 213, 232, 
476, 512

Constant velocity, 7
Continuous motion, 5–14, 106

acceleration (a), 7–8
displacement (Δ), 5
particle rectilinear kinematics 

and, 5–14
position (s), 5, 8
procedure for analysis of, 9
rectilinear kinematics of,  

5–14, 106
velocity (v), 6–8

Control volume, 295–304, 315
fluid streams, 295–299
gain of mass (m), 301–302, 315
kinematics of a particle,  

295–304, 315
loss of mass (m), 300–301, 315
mass flow, 296–297, 300–302
principles of impulse and  

momentum for, 295–299
procedure for analysis of, 297
propulsion and, 300–304, 315
steady flow, 295–299, 315
thrust (T), 300–301
volumetric flow (discharge), 297

Coordinates, 5, 36–40, 56–58, 71–78, 
85–91, 107–109, 120–126, 138–
143, 152–156, 175, 322, 324–326, 
346, 404, 423–426, 569–571, 578, 
601–603, 614–616, 641

acceleration (a) and, 37, 57–58, 
73, 120–126, 138–143, 152–156, 
175, 325–326

angular motion, 322
angular momentum (H) and, 

601–603
centripetal force, 138–143
circular motion, 324–326
continuous motion, 5
coordinating fixed and  

translating reference frames, 
346, 404

curvilinear motion, 36–40, 56–58, 
71–78, 107–108

cylindrical (r, u, z), 74, 152–156, 175
dependent motion analysis and, 

85–90, 109
directional angle (c), 152–153

equations of motion and, 
120–126, 138–143, 152–156, 
175, 423–426, 614–616, 641

fixed origin (O), 5
force (F) and, 120–126, 138–143
frictional forces (F) and, 152
kinematics of a particle, 5, 36–40, 

56–58, 71–78, 85–90, 107–109
kinetics of a particle, 120–126, 

138–143, 152–156, 175
normal (n), 56–58, 108, 138–143, 

175, 325–326
normal forces (N) and, 152
planar motion, 56–58
polar, 67–70
position (s), 5
position-coordinate equations, 

85–90, 109
position vector (r), 36, 72, 91, 324
procedures for analysis using, 38, 

58, 74, 120–121, 139, 153
radial (r), 71–73
rectangular (x, y, z), 36–40, 

107, 120–126, 175, 423–426, 
602–603, 614–616, 641

relative-motion analysis and, 91, 
109, 346, 578

rigid-body planar motion, 
423–426

tangential (t), 56–58, 108, 138–143, 
175, 325–326

tangential forces (tan) and, 
152–153

three-dimensional motion, 
58, 569–571, 578, 601–603, 
614–616, 641

translating axes and, 91, 109
translating systems, 569–571, 578
transverse (u), 71–73
velocity (v) and, 36–37, 56, 72, 324

Coriolis acceleration, 393, 405
Couple moment (M), work (W) of a, 

478–479, 512
Critical damping coefficient, 668
Critically damped vibration systems, 668
Cross product, 685–686
Curvilinear motion, 34–40, 56–62, 

71–78, 107–108
acceleration (a), 35, 37, 57–58, 73
center of curvature, 56

coordinates for, 36–40, 56–59, 
71–78, 107–108

cylindrical components, 71–78, 108
cylindrical (r, u, z) coordinates, 74
displacement (Δ), 34
general, 34–40
normal (n) axes, 56–62, 108
kinematics of a particle, 34–40, 

56–62, 71–78, 107–108
planar motion, 56–58
polar coordinates, 71–73, 108
position (s), 34, 36, 72
procedures for analysis of, 38, 

59, 74
radial coordinate (r), 71–73
radius of curvature (ρ), 56
rectangular (x, y, z) coordinates, 

36–40, 107
tangential (t) axes, 56–62, 108
time derivatives of, 74
three-dimensional motion, 58
transverse coordinate (u), 71–73
velocity (v), 34–37, 56, 72

Curvilinear translation, 320–321, 404, 
427, 469

Cycle, 646
Cylindrical components, 71–78, 108, 

152–156, 175
acceleration (a) and,  

73, 152–156, 175
curvilinear motion, 71–78, 108
directional angle (c), 152–153
cylindrical (r, u, z) coordinates, 74, 

152–156, 175
equations of motion and,  

152–156, 175
normal force (N) and, 152–156
polar coordinates for, 71–73, 108
position vector (r) for 72
procedures for analysis using, 74, 153
tangential force and, 152–156
time derivatives of, 74
velocity (v) and, 72

D
D’Alembert principle, 116
Damped vibrations, 643, 667–672, 681

critically damped systems, 668
motion of, 643
overdamped systems, 668
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Damped vibrations (continued) 
resonance from, 665, 681
underdamped systems, 669
viscous forced, 670–672, 681
viscous free, 667–669, 681

Damping factor, 669
Dashpot, 667
Deceleration, 7
Deformation, 186–187, 266–272, 544–547

angular velocity (v) and, 544–547
coefficient of restitution (e), 

267–268, 544–547
eccentric impact and, 544–547
friction force and, 187
impact and, 266–272, 544–547
localized, 187
maximum, 266
period of, 266
principles of work and energy 

and, 186–187
restitution phase, 266–269, 544
separation of contact points, 546

Dependent motion analysis, 85–90, 109
particles, 85–90, 109
position coordinates for, 85–86, 109
procedure for, 86
time derivatives for, 86, 109

Derivative equations, 682
Diagrams for impulse and  

momentum, 238–239
Directional angle (c), 152–153
Directrix, 166
Disk elements, moment of inertia for, 411
Displacement (Δ), 5, 21, 34, 179–180, 

322, 324, 346, 477–478, 512, 
644–651, 665

amplitude, 645–646
angular (du), 322
circular motion and, 324
couple moment (M) and, 478, 512
curvilinear motion, 34
erratic motion, 21
kinematics of a particle, 5, 21, 34
periodic support and, 665
planar kinematics of rigid bodies 

and, 322, 324, 346
position change as, 5, 322, 324
relative-motion analysis and, 346
right-hand rule for direction of, 

322, 324

rotation about a fixed point, 322, 324
simple harmonic motion, 644
spring force, 477
translation and rotation causing, 346
vertical, 477
vibrations and, 644–651, 665
work of a force and, 179–180, 

477–478
work of a weight and, 477

Dot notation, 36–37
Dot product, 180, 687–688
Dynamic equilibrium, 116
Dynamics, 3–4

principles of, 3–4
procedure for problem solving, 4
study of, 3

E
Eccentric impact, 544–547, 557
Eccentricity (e), 166–167
Efficiency (e), 204–207, 233

energy (E) and, 204–207, 233
mechanical, 204–205
power (P) and, 204–207, 233
procedure for analysis of, 205

Elastic impact, 268
Elastic potential energy, 214, 233, 496, 513
Electrical circuit analogs, vibrations 

and, 673, 681
Elliptical orbit, 169–170
Energy (E), 178–235, 472–515, 

604–607, 640–641, 657–660
conservation of, 217–221, 233, 

496–501, 513, 657–660
efficiency (e) and, 204–207, 233
elastic potential, 213–214, 496, 513
gravitational potential, 213, 496, 513
internal, 187
kinetic, 184–185, 213, 217–221, 

232, 473–476, 480–486, 498, 
511, 604–607, 640

kinetics of a particle, 178–235
natural frequency (vn) and, 

657–660, 680
potential (V), 213–221, 233, 

496–501, 513
power (P) and, 204–207, 233
principle of work and, 184–192, 

232–233, 480–486, 513, 615, 
640–641

procedures for analysis of, 185, 
205, 218, 481, 498

rigid-body planar motion and, 
472–515

systems of particles, 186–192
three-dimensional rigid bodies, 

604–607, 640–641
work (U) and, 178–235, 472–515
vibration and, 657–660

Equations of motion, 114–115, 116–
126, 138–143, 152–156, 164–166, 
175, 237–239, 423–431, 441–447, 
456–461, 469, 612–621, 641

acceleration (a) and, 114–126, 
138–143, 152–156, 423–431, 
441–447, 469

central-force motion, 164–166, 
175

centripetal force, 138–143
cylindrical (r, u, z) coordinates, 

152–156, 175
equilibrium and, 116
external force, 118–119, 424–425
fixed-axis rotation, 441–447, 469, 

614–616
force (F) and, 114–126, 138–143, 

152–156, 423–431 441–447, 469
free-body diagrams for, 116–117, 

175, 423–428
friction (F) force, 121, 152
general plane motion, 426, 

456–461, 469
gravitational attraction, 114–115
inertial reference frame for, 

116–117, 175, 423–426, 
612–613

instantaneous center (IC) of zero 
velocity and, 456

internal force, 118–119, 424–425
kinetic diagram for, 116
kinetics of a particle, 114–126, 

138–143, 152–156, 164–166, 
175

linear impulse and momentum, 
237–239

mass (m) and, 113–115, 118–119
moment equations, 442, 456
moments of inertia (I) and, 

442–443, 456–457
Newton’s second law, 115, 175
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normal (n) coordinates, 138–143, 
175, 441–442

normal (N) force, 152–156, 175
procedures for analysis using, 

120–121, 139, 153, 428, 443, 
457, 616

rectangular (x, y, z) coordi-
nates, 120–126, 175, 423–426, 
612–615, 641

rigid-body planar motion, 423–
431, 441–447, 456–461, 469

rotational motion, 424–425, 
441–447, 469, 612–613, 641

slipping and, 456
spring force, 121
static equilibrium conditions, 116
symmetrical spinning axes, 

615–616
symmetry of reference frames for, 

423–426
systems of particles, 118–119
tangential (t) coordinates, 

138–143, 175, 441–442
tangential force, 152–156, 175
three-dimensional rigid bodies, 

612–621, 641
trajectories, 165–166
translational motion, 423, 

426–431, 469, 612, 641
Equilibrium, equations of motion  

and, 116
Equilibrium position, vibrations, 

644–646
Erratic motion, 20–25, 106

a–s (acceleration–position), 22
a–t (acceleration–time), 20–21
integration of equations for, 21
particle rectilinear kinematics for, 

20–25, 106
s–t (position–time), 20–21
v–s (velocity–position), 22
v–t (velocity–time), 20–21

Escape velocity, 168
Euler angles, 626
Euler’s equations, 614–615
Euler’s theorem, 562
External force, 118–119, 282, 240, 

423–425
External impulses, 254
External work, 187

F
Finite rotation, 562
Fixed-axis rotation, 320, 322–329, 404, 

441–447, 469, 475, 511, 520, 556, 
614–616

acceleration (a) of, 323, 325–327, 
404, 441–447, 469

angular acceleration (a) 323
angular displacement (du), 322
angular motion and, 322–323,  

327, 404
angular position (u), 322
angular velocity (v), 322
circular motion, 324–327
circular path of a point, 324–326, 441
equations of motion for, 441–447, 

469, 614–616
Euler’s equations for, 615–616
force (F) of, 441–447, 469
impulse and momentum for, 520, 

556
kinetic energy and, 475, 511
magnitude of, 441–442
moment equation about point 

O, 442
normal (n) coordinates, 325–326, 

441–442
position and displacement, 322, 324
procedure for analysis of, 327, 443
right-hand rule for, 322, 324
rigid-body planar motion, 320, 

322–329, 404, 441–447, 475, 511, 
520, 556

tangential (t) coordinates 
325–326, 441–442

three-dimensional rigid bodies, 
614–616

velocity (v) of, 322, 324, 404
Fixed origin (O), 5
Fixed-point rotation, 561–568, 589, 

602, 605, 626–631
acceleration (a) and, 564
angular acceleration (a) of, 

563–564
angular momentum (H) and, 602
angular velocity (v) of, 563–564, 

626–628
Euler’s angles for, 626
Euler’s theorem for, 562
finite rotation, 562

gyroscopic motion, 626–631
infinitesimal rotation, 563
kinetic energy and, 605
rotational displacements, 560–564
sphere as representation of,  

563, 589
three-dimensional rigid bodies, 

561–568, 589, 602, 605, 626–631
time derivatives for, 564–568, 589
velocity (v) and, 564

Fixed reference frame, 91–95
Fluid stream, steady flow of, 295–299, 

315
Focus (F), 166
Force (F), 112–177, 179–192, 213–221, 

232–233, 254–255, 281–283, 300–
304, 408–471, 476–479, 496–501, 
512, 643–644, 657, 663–667. See 
also Central-force motion

acceleration (a) and, 112–177, 
408–471

angular momentum relations 
with, 281–283

central-force motion and, 164–170
centripetal, 138–143
conservation of energy and, 

217–221, 233, 496–501, 657
conservation of linear momentum 

and, 254–255
conservative, 213–221, 233, 

496–501, 657
constant, 181, 213, 232, 476, 512
couple moment (M) and, 

478–479, 512
displacement (Δ) of, 478, 512
equations of motion for, 114, 

116–126, 138–143, 152–156, 
423–431, 441–447, 456–461, 469

external, 118–119, 240, 282, 
423–425

fixed-axis rotation and, 441–447, 469
free-body diagrams for, 116–117, 

175, 423–428
friction (F), 121, 152, 187, 213, 233
general plane motion and, 456–461
gravitational attraction and, 

114–115
impulsive, 254–255
inertia force vector, 116
internal,118–119, 282, 424–425
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Force (F) (continued)
particle kinetics, 112–177, 179–192, 

213–216, 232–233, 281–283
potential energy (V) and, 

213–216, 233, 496–501
mass (m) and, 113–114
moments of a, 281–283
moments of inertia (I) and, 

409–417, 456–457, 469
Newton’s laws and, 113–115, 175
normal (N), 152
periodic, 663–666
planar motion and, 408–471, 

476–479, 512
potential energy (V) and, 

213–216, 233
propulsion and, 300–304
resultant, 116, 187, 281–282
rigid-body kinetics, 408–471, 

476–479, 512
rotation and, 424–425, 441–447, 469
slipping (no work) and, 456, 477, 

512
spring, 121, 182–183, 214, 232–233, 

477, 512, 644
system of particles, 118–119, 

184–192, 254–255
tangential, 152–153
thrust, 300–301
trajectories, 165–170, 175
translation and, 423, 426–431, 

469
unbalanced, 113–114
units of, 180
variable, 180, 476
vibrations and, 643–644, 657, 

663–667
viscous damping, 667
weight (W), 115, 181, 213, 

215–216, 232–233, 477, 512
work (U) of, 179–192, 213–216, 

232–233, 476–479, 512
Forced vibrations, 643, 663–666, 

670–672, 680–681
forcing frequency (v0) for, 

663–665, 680
motion of, 643
periodic force and, 663–666
periodic support displacement 

of, 665

undamped, 663–666, 680
viscous damped, 670–672, 681

Free-body diagrams, 116–117, 175, 241, 
280–281, 286, 423–428

angular momentum, 280–281, 286
equations of motion and, 116–117, 

423–428
inertial reference frames, 116–117, 

423–426
kinetics of particles using, 

116–117, 175
linear momentum, 241
rigid-body planar motion, 423–428
rotational motion, 424–425
translational motion, 423, 426–428

Free-flight trajectory, 166
Free vibrations, 643–651, 667–669, 

680–681
motion of, 643
undamped, 643–651, 680
viscous damped, 667–669, 681

Frequency (f), 644, 646–647, 657–660, 
663–665, 669, 680

damped natural (vd), 669
forcing (v0), 663–665, 680
natural (vn), 644, 646–647, 

657–660, 680
vibration and, 644, 646–647, 

663–665, 680
Friction force (F), 121, 152, 187, 213, 

233
conservative forces compared to, 

213, 233
equations of motion for, 121, 152
work of caused by sliding, 187

G
General plane motion, 320, 338–397, 

404–405, 456–461, 469, 475, 511, 
521, 556. See also Planar motion

absolute motion analysis for, 
338–341, 404

acceleration (a), 373–380, 
373–380, 392–393, 405, 456–461

displacement (Δ) from, 346
equations of motion for, 

456–461, 469
force (F) and, 456–461
impulse and momentum for,  

521, 556

instantaneous center (IC) of zero 
velocity, 360–366, 405, 456

kinetic energy and, 475, 511
moment equation about the  

instantaneous center (IC), 456
procedure for analysis of, 338, 

349, 375, 394, 457
relative-motion analysis for, 

346–352, 373–380, 389–397, 
404–405

rigid-body kinematics, 320, 338–352
rigid-body kinetics, 456–461, 469, 

475, 511, 521, 556
rotating axes, 389–397, 405
rotation and translation of, 

338–341
slipping and, 456
velocity (v), 346–352, 360–366, 

390–391, 405
General three-dimensional motion, 

564–568, 589
Graphs, 20–25, 106, 238, 314

erratic motion represented by, 20–25
impulse represented by, 238, 314
magnitude represented by, 238
rectilinear kinematic solutions 

using, 20–25, 106
Gravitational acceleration (g), 115
Gravitational attraction (G), 114–115, 

165–166
central-force motion and, 165–166
Newton’s law of, 114–115

Gravitational potential energy, 213, 
233, 496, 513

Gyroscopic motion, 615–616, 626–631, 
641

angular momentum (H) and, 629
angular velocity (v) and, 626–628
equations of motion for, 615–616
Euler angles for, 626
gyro, 629
gyroscopic effect, 628–629
symmetrical spinning axes, 615–616

H
Heat, friction forces from sliding  

and, 187
Hertz (Hz), unit of, 646
Hodographs, particle acceleration and, 35
Horizontal projectile motion, 41–45
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Horsepower (hp), unit of, 204
Hyperbolic functions, 682

I
Impact, 266–272, 314–315, 544–547, 557

central, 266–268, 268, 314–315
coefficient of restitution (e), 

267–269, 315, 544–547, 557
conservation of momentum, 267, 

269–272, 314–315
deformation and, 266–272, 544–547
eccentric, 544–547, 557
elastic, 268
energy loss from, 268, 270
kinetics of a particle, 266–272, 

314–315
line of impact, 266, 269, 314–315, 544
oblique, 266, 269, 315
plastic (inelastic), 268
procedures for analysis of, 269
restitution from, 266–269, 544
rigid-body planar motion, 

544–547, 557
separation of contact points due 

to, 546
Impulse, 236–317, 516–559, 604, 640

angular, 284–289, 296, 315, 523–524
conservation of angular momen-

tum and, 286
conservation of linear momentum 

and, 254–255
control volumes, 295–304, 315
diagrams, 239–240
equations of motion, 238–239
external forces, 240, 254
graphical representation of,  

238, 314
impact and, 266–272, 314–315, 

544–547
internal forces, 255–256
kinetics of a particle, 236–317
linear, 237–244, 296, 314, 523–524
magnitude of, 238
momentum and, 236–317, 516–559
principle of momentum and, 

237–244, 284–289, 295–299, 
314–315, 523–530, 556, 604, 640

procedures for analysis of, 241, 
255, 286, 525

propulsion and, 300–304, 315

restitution, 266, 545
rigid-body planar motion, 516–559
steady flow and, 295–299, 315
three-dimensional rigid bodies, 

604, 640
Impulsive forces, 254–255
Inertia (I), 409–417, 456–457, 469, 

591–596, 604, 640
acceleration (a) and, 409–417, 

456–457, 469
angular acceleration (a) and, 409
angular momentum (H) and, 604
arbitrary axis, moment of about, 595
composite bodies, 415
equations of motion and, 456–457
integration of, 410–411, 592
mass moments of, 409–417
moment of, 409–417, 456–457, 469, 

592, 592–597, 640
parallel-axis theorem, 414–415, 593
parallel-plane theorem, 594
principle axes of, 594–595, 603
procedure for analysis of, 411
product of, 592–593, 640
radius of gyration, 415
resistance of body to  

acceleration, 409
rigid-body planar motion and, 

409–417, 456–457, 469
tensor, 594–595
three-dimensional rigid-body  

motion, 591–596, 640
volume elements for integration 

of, 410–411
Inertial reference frames, 116–117, 

175, 423–426, 473–474, 612–613
angular momentum (H), 601–602
equations of motion, 116–117, 175, 

423–426, 612–613
force vector, 116
kinetic energy, 473–474
kinetics of a particle, 116–117, 175
rigid-body planar motion, 

423–426, 473
rotational motion, 424–425
slab in, 473–474
symmetry of, 423–426
three-dimensional rigid-body  

motion, 612–613
translational motion, 423

Infinitesimal rotation, 563
Instantaneous acceleration, 7, 35
Instantaneous center (IC), 360–366, 

405, 456
centrode, 362
circular motion and, 360–366, 405
general plane motion, 456
location of, 361–366
moment equation about, 456
procedure for analysis of, 362
zero velocity, 360–366, 405, 456

Instantaneous velocity, 6, 34
Integral equations, 683
Integration of equations, 21, 410–411, 

592, 604–605
erratic motion, 21
kinetic energy, 604–605
moment of inertia, 410–411, 592

Internal energy, 187
Internal force, 118–119, 282, 424–425
Internal impulses, 254–255

K
Kepler’s laws, 170
Kinematics, 2–111, 318–407, 560–589. 

See also Planar motion
continuous motion, 5–14
coordinates for, 36–38, 56–58, 

71–78, 107–108, 569–571
curvilinear motion, 34–40, 56–62, 

71–78, 107–108, 320–321
cylindrical components, 71–78, 108
cylindrical (r, u, z) coordinates, 74
dependent motion analysis, 

85–90, 109
erratic motion, 20–25
fixed-axis rotation, 320, 322–329, 404
fixed-point rotation, 561–568, 589
graphs for solution of, 20–25, 106
normal (n) axes, 56–62, 108
particles and, 2–111
planar, 318–407
polar coordinates, 71–73
procedures for analysis of, 9, 38, 

42, 59, 86, 92, 327, 338, 349, 362, 
375, 394, 581

projectile motion, 41–45, 107
radial (r) coordinate, 71–73
rectangular (x, y, z) coordinates, 

36–40, 107
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Kinematics (continued)
rectilinear, 5–15, 20–25, 106, 320–321
relative-motion analysis, 91–95, 

109, 346–352, 373–380, 389–397, 
405, 578–585, 589

rigid bodies, 318–407, 560–589
rotating axes, 389–397, 405, 

564–568, 578–585, 589
rotation and, 320, 322–329, 

338–341, 346–352, 404
sign conventions for, 5–7
tangential (t) axes, 56–62, 108
three-dimensional motion, 560–589
time derivative, 564–568
translating axes, 91–95, 109, 

389–397, 578–585, 589
translating-rotating systems, 

564–568
translation and, 320–321, 338–341, 

346–352, 404–405
transverse (u) coordinate, 71–73

Kinetic diagram, 116
Kinetic energy, 184–185, 213, 217–218, 

232, 473–476, 480–486, 511, 
604–607, 640–641

conservation of, 217–218
center of mass (G) for, 605
fixed-point O for, 605
general plane motion and, 475, 511
integration for, 604–605
particles, 184–185, 213, 217–218, 232
potential energy and, 213, 217–218
principle of work and energy, 

184–185, 232, 480–486, 605, 
640–641

procedure for analysis of, 481
rigid-body planar motion and, 

473–476, 480–486, 511
rotation about a fixed axis and, 

475, 511
slab in inertial reference for, 

473–474
system of bodies, 476
three-dimensional rigid-body 

motion, 604–607, 640–641
translation for, 475, 511

Kinetics, 3, 112–177, 178–235, 236–317, 
408–471, 472–515, 516–559, 
590–641. See also Planar  
motion; Space mechanics

acceleration (a) and, 112–177, 
408–471

angular momentum (H), 280–289, 
315, 518–522, 523–524, 540–
543, 556–557, 601–604, 640

central-force motion, 164–170, 175
conservation of energy, 217–221, 233
conservation of momentum, 

254–260, 286, 314, 540–543, 557
conservative forces and,  

213–221, 233
control volumes, 295–304, 315
cylindrical (r, u, z) coordinates, 

152–156, 175
efficiency (e) and, 204–207, 233
energy (E) and, 178–235, 472–515, 

604–607
equations of motion, 114–126, 138–

143, 152–156, 423–431, 441–447, 
456–461, 469, 612–621, 641

force (F) and, 112–177, 179–183, 
213–221, 232–233, 408–471

free-body diagrams for, 116–117, 
175, 423–428

gyroscopic motion, 615–616, 
626–631, 641

impact and, 266–272, 314–315, 
544–547, 557

impulse and momentum, 236–317, 
516–559, 640

inertia (I), 409–417, 456–457, 469, 
591–596, 640

inertial reference frame for 
116–117, 175

linear momentum, 517, 520–522, 
540–543

mass moments of inertia,  
409–417, 469

Newton’s laws and, 113–115, 175
normal (n) coordinates, 138–143, 175
particles, 112–177, 178–235, 

236–317
planar motion, 408–471, 472–515, 

516–559
power (P), 204–207, 233
principle of, 3
principle of impulse and momen-

tum, 523–530, 640
principle of work and energy, 

184–192, 232, 605, 640–641

procedures for analysis of, 
120–121, 139, 153, 185, 205, 218, 
241, 255, 269, 286, 297, 411, 428, 
443, 457, 481, 525, 616

propulsion, 300–304, 315
rectangular (x, y, z) coordi-

nates, 120–126, 175, 602–603, 
614–616, 641

rigid-bodies, 408–471, 472–515, 
516–559, 590–641

rotation and, 424–425, 441–447, 
469, 520, 556

steady flow, 295–299, 315
tangential (t) coordinates, 

138–143, 175
three-dimensional rigid bodies, 

590–641
torque-free motion, 632–635, 641
trajectories, 165–170, 175
translation and, 423, 426–431, 469, 

520, 556
work (U) and, 178–235, 472–515, 

605, 640–641

L
Line of action, 361, 425
Line of impact, 266, 269, 314, 544
Linear impulse and momentum, 237–

244, 254–260, 314, 517, 520–522, 
523–524, 540–543, 556–557

conservation of momentum, 
254–260, 540–543, 557

diagrams for, 239–241
external force and, 240
fixed-axis rotation and, 520, 556
force (F) and, 237–244
impulsive forces and, 254–255
general plane motion and, 521, 556
kinetics of a particle, 237–244, 

254–260, 314
principle of impulse and, 237–244, 

523–524, 556
procedures for analysis of, 241, 

255, 541
rigid-body planar motion, 517, 

520–522, 540–543
systems of particles, 240–244, 

254–260, 314
translation and, 520, 556
vector, 238
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M
Magnification factor (MF), 664–665, 671
Magnitude, 5–7, 34, 36–37, 56–58, 

72–73, 108, 238, 280, 322, 361, 
373, 390, 392, 441–442, 478, 512

acceleration (a), 7, 37, 57–58, 73, 
373, 392, 441–442

angular displacement and, 322
angular momentum (H), 280
average speed, 6
constant, 478, 512
couple moment (M), work of and, 

478, 512
curvilinear motion and, 34, 36–37, 

56–58, 72–73, 108
distance as, 5
fixed-axis rotation and, 441–442
graphical representation of, 238
impulse, 238
instantaneous center (IC)  

location from, 361
position vector (r) and, 36
rectilinear kinematics and, 5–7
relative-motion analysis and, 373, 

390, 392
rotating axes, changes in motion 

from, 390, 392
rotation, changes in motion  

from, 322
speed as, 6, 34, 36, 57–58, 72
time rate of change of, 58
velocity (v), 6, 34, 36–37, 56, 72, 

361, 390
Mass (m), 113–115, 118–119, 296–297, 

300–304, 315, 409–417, 517–522
center (G) of, 119, 518–519
continuity of, 297
control volumes and, 296–297, 

300–304, 315
equations of motion and, 114–115, 

118–119
gain of, 301–302, 315
gravitational attraction and, 

114–115
loss of, 300–301, 315
moments (M) of inertia (I), 409–417
momentum and, 517–522
particle body, 113–115
propulsion and, 300–304, 315
Newton’s laws and, 113–115

rigid-body planar motion, 
409–417, 517–522

steady flow of fluid systems and, 
296–297, 315

system of particles and, 118–119
Mass flow, 296–297, 300–302
Mathematical expressions, 682–683
Maximum deformation, 266
Mechanical efficiency, 204–205
Mechanical energy, 217–221. See also 

Conservation of energy
Mechanics, study of, 3
Moment arm, 410
Moment of inertia, 409–417, 442–443, 

456–457, 469, 592–597, 640
acceleration (a) and, 409–417, 

442–443, 456–457, 469
arbitrary axis, about, 597
body resistance to acceleration, 409
composite bodies, 415
disk elements, 411
equations of motion and, 

442–443, 456–461
fixed-axis rotation, 442–443
force (F) and, 456–457
integration of, 410–411, 592
mass, 409–417
parallel-axis theorem for, 

414–415, 593
parallel-plane theorem for, 594
principal, 594, 640
procedure for analysis of, 411
radius of gyration for, 415
rigid-body planar motion,  

409–417, 442–443, 456–461, 469
shell elements, 411
slipping and, 456
three-dimensional rigid-body  

motion, 592–597, 640
volume elements for integration 

of, 410–411
Moments, work of a couple, 478–479, 512
Momentum, 236–317, 516–559, 

601–604, 640
angular (H), 280–289, 296, 315, 

518–522, 523–524, 540–543, 
556–557, 601–604, 640

conservation of, 254–260, 267, 
269–272, 286, 314, 540–543, 557

control volumes, 295–304, 315

diagrams, 234
equations of, 239
fixed-axes rotation and, 520
general plane motion and, 521
impact (eccentric) and, 266–272, 

314–315, 544–547, 557
impulse and, 236–317, 516–559
kinetics of a particle, 236–317
linear (L), 237–244, 254–260, 296, 

314, 517, 520–522, 523–524, 
540–543, 556–557

moments of force and, 281–283
principle of impulse and, 237–244, 

284–289, 295–299, 314–315, 
523–530, 556, 604, 640

procedures for analysis of, 241, 
255, 269, 286, 525, 541

propulsion and, 300–304, 315
rigid-body planar motion, 516–559
steady flow and, 295–299, 315
systems of particles, 240–244, 

254–260, 282, 314
three-dimensional rigid bodies, 

601–604, 640
translation and, 520
vector form, 238

N
Natural frequency (vn), 644, 646–647, 

657–660, 680
energy conservation and, 657–660
procedures for analysis of, 647, 658
undamped free vibration, 644, 

646–647, 680
Newton’s laws, 113–116, 175

body mass and weight from, 115
equation of motion, 114, 175
first law of motion, 116
gravitational attraction, 114–115
kinetics of particles and,  

113–115, 175
second law of motion, 113–115, 175
static equilibrium and, 116

Nonconservative force, 213
Nonimpulsive forces, 254
Nonrigid bodies, principle of work and 

energy for, 186
Normal (n) coordinates, 56–62, 

138–143, 175, 325–326, 441–442
acceleration (a) and, 57–58, 

325–326, 441–442
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Normal (n) coordinates (continued)
circular motion components, 

325–326
curvilinear motion components, 

56–62
equations of motion and,  

138–143, 175
particle kinetics, 138–143, 175
planar motion and, 56
procedure for analysis of, 59
rigid-body planar motion, 

325–326, 441–442
rotation about a fixed axis, 

325–326, 441–442
three-dimensional motion, 58
velocity (v) and, 56

Normal (N) force, 152
Nutation, 626

O
Oblique impact, 266, 269, 315
Orbit, trajectory and, 158–170
Osculating plane, 56
Overdamped vibration systems, 668

P
Parabolic path, 168
Parallel-axis theorem, 414–415, 593
Parallel-plane theorem, 594
Particles, 2–111, 112–177, 178–235, 

236–317
acceleration (a), 7–8, 35, 37, 57–58, 

73, 92, 106, 112–177
angular momentum (H) of, 

280–289, 314
central-force motion of, 164–170, 175
conservation of energy, 217–221, 233
conservation of angular 

momentum, 286, 315
conservation of linear momen-

tum, 254–260, 267, 269–272, 315
conservative forces and,  

213–221, 233
continuous motion of, 5–14
control volume, 295–304, 315
coordinates for, 36–38, 56–58, 

71–78, 107–109, 120–126, 
138–143, 152–156

curvilinear motion of, 34–40, 
56–62, 71–78, 107–108

dependent motion analysis, 
85–90, 109

deformation of, 186–187, 266–272
displacement (Δ), 5, 34
energy (E) and, 178–235
equations of motion, 114–126, 

138–143, 152–156, 164–165, 175
erratic motion of, 20–25, 106
force (F) and, 112–177, 179–183, 

213–221, 233
free-body diagrams, 116–117, 175
gravitational attraction (G), 

114–115, 165–166
hodographs, 35
impact, 266–272, 314–315
impulse and momentum of, 

236–317
inertial reference frame, 116–117, 175
kinematics of, 2–111
kinetic energy of, 184–185, 213, 

217–218
kinetics of, 112–177, 178–235, 

236–317
mass (m), 113–115
Newton’s second law of motion, 

113–115, 175
planar motion of, 56–58
position (s), 5, 8, 34, 36, 72, 91, 106
position-coordinate equations, 

85–90
potential energy of, 213–221
power (P) and, 204–207, 233
principle of work and energy for, 

184–192, 233
principles of impulse and  

momentum, 237–244, 284–289
procedures for analysis of, 9, 38, 

42, 58, 74, 86, 92, 120–121, 139, 
153, 185, 205, 218, 241, 255, 269, 
286, 297

projectile motion of, 41–45, 107
propulsion of, 300–304, 315
rectilinear kinematics of, 5–14, 

20–25, 106
relative motion analysis, 91–95, 109
speed (magnitude), 6, 34, 36, 37, 72
system of, 118–119, 186–192, 

240–244, 254–260, 314
three-dimensional motion of, 58
time derivatives, 74, 86

translating axes, two particles on, 
91–95, 109

velocity (v), 6–8, 34–37, 56, 72, 91, 106
work (U) and, 178–235

Path of motion, 164–165
Perigee, 169
Period of deformation, 266
Period of vibration, 646
Periodic force, 663–666
Periodic support displacement, 665
Phase angle (φ), 647
Pinned-end members, 346–352, 373–380

acceleration (a) and, 373–380
relative-motion analysis of, 

346–352, 373–380
velocity (v) and, 346–352

Planar motion, 56–58, 318–407, 
408–471, 472–515, 516–559

absolute (dependent) motion 
analysis, 338–341, 404

acceleration (a) and, 57–58, 
321, 323, 325–326, 373–380, 
392–393, 404–405, 408–471

angular motion and, 322–323, 404
conservation of energy, 496–501, 513
conservation of momentum, 

540–543, 557
couple moment (M) in, 478–479, 512
curvilinear, 56–58
displacement, 322, 324, 346
energy (E) and, 472–515
equations of motion for, 423–431, 

441–447, 456–461, 469
fixed-axis rotation, 320, 322–329, 

404, 441–447, 469, 520, 556
force (F) and, 408–471, 476–479, 512
general, 320, 338–397, 404–405, 

456–461, 469, 521, 556
impact (eccentric), 544–547, 557
impulse and momentum, 516–559
instantaneous center of zero 

velocity, 360–366, 405, 456
kinematics, 56–58, 318–407
kinetic energy and, 473–476, 

480–481, 511
kinetics, 408–471, 472–515, 516–559
moment of inertia (I) for, 409–417, 

442–443, 456–457, 469
normal component (n) coordi-

nates, 56–58, 441–442
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position (r) and, 321, 322, 324, 
346, 389

potential energy (V) of,  
496–501, 513

principles of impulse and  
momentum, 523–530, 556

principle of work and energy, 
480–486, 513

procedures for analysis of, 327, 
338, 349, 362, 375, 394, 411, 
428, 443, 457, 481, 498, 525, 541

relative-motion analysis, 346–352, 
373–380, 389–397, 405

rigid bodies, 318–407, 408–471, 
472–515

rotation and, 320, 322–329, 338–
341, 346–352, 373–380, 404–405, 
424–425, 441–447, 469, 520

rotating axes, 389–397, 405
tangential component (t) 

coordinates, 56–58, 441–442
translation, 320–321, 338–341, 338–

341, 346–352, 373–380, 404–405, 
423, 426–431, 469, 520, 556

velocity (v) and, 56, 321, 322, 324, 
346–352, 360–366, 390–391, 
404–405

work (U) and, 472–515
Plastic (inelastic) impact, 268
Polar coordinates, 71–73, 108
Position (s), 5, 8, 20–22, 34, 36, 72, 

85–90, 91–95, 106, 109, 321, 322, 
324, 346, 389, 579

absolute dependent motion and, 
85–90

angular (u), 322
continuous motion and, 5, 8
coordinate, 5
curvilinear motion and, 34, 36, 72
dependent-motion analysis and, 

85–90, 109
displacement (Δ) from changes of, 

5, 322, 324
erratic motion and, 20–22
graphs of variables, 20–22
kinematics of particles and, 5, 8, 

34, 72, 91–95
magnitude and, 36
planar kinematics of rigid bodies 

and, 321, 322, 324, 346, 389

position-coordinate equations, 
85–90, 109

rectangular components, 36
rectilinear kinematics and, 5, 8, 

20–22, 106
relative-motion analysis and, 

91–95, 109, 346, 389, 579
rotating axes, 389, 579
rotation about fixed axis,  

322, 324, 346
three-dimensional rigid-body 

motion, 579
time (t), as a function of, 8
translating axes, 91–95, 579
translation and, 321, 346
vectors (r), 34, 36, 72, 91, 321,  

346, 389
velocity (v) as a function of, 8, 91

Position coordinate origin (O), 5
Potential energy (V), 213–221, 233, 

496–501, 513
conservation of energy and, 

217–221, 233, 496–501, 513
conservative forces and, 213–216, 

233, 496–501, 513
elastic, 214, 233, 496, 513
equations for conservation of, 497
gravitational, 213–214, 233, 496, 513
kinetic energy and, 213, 217–218
particles, 213–216, 233
potential function for, 215–216
procedure for analysis of, 218, 498
rigid-body planar motion, 

496–501, 513
spring force and, 213–216, 233, 

496, 513
weight (W), displacement of, 213, 

215–216, 233, 496
work (U) and, 213–216

Power (P), 204–207, 233
efficiency (e) and, 204–207, 233
energy (E) and, 204–207, 233
procedure for analysis of, 205
units of, 204

Power-flight trajectory, 167
Power-series expansions, 682
Precession, 626, 633–634
Principal moments of inertia, 594, 640
Principle axes of inertia (I),  

594–595, 603

Principle of work and energy, 184–192, 
232–233, 480–486, 513, 605, 
640–641

deformation and, 186–187
equation for, 184, 232
kinetic energy and, 184–185, 232, 

480–486, 513, 605, 640–641
kinetics of particles, 184–192, 

232–233
procedures for analysis using,  

185, 481
rigid-body planar motion, 

480–486, 513
three-dimensional rigid bodies, 

605, 640–641
systems of particles, 186–192
units of, 184
work of friction caused by  

sliding, 187
Principles of impulse and  

momentum, 237–244, 284–289, 
295–299, 314–315, 523–530, 
556, 604, 640

angular, 284–289, 296, 315, 
523–530, 556

diagrams for, 238–239
external forces, 240
kinetics of particles, 237–244, 

284–289, 314–315
linear, 237–244, 296, 314, 523–530, 

556
procedures for analysis using, 241, 

286, 525
steady flow and, 295–299
systems of particles, 240–244
three-dimensional rigid-body  

motion, 604, 640
Problem solving procedure, 4
Product of inertia, 592–593, 640
Projectile motion, 41–45, 107

horizontal, 41
particle kinematics and,  

41–45, 107
procedure for analysis of, 42
vertical, 41

Propulsion, 300–304, 315. See also 
Control volume

Q
Quadratic formula, 682
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R
Radial component (vr), 72
Radial coordinate (r), 71–73
Radius of curvature (ρ), 56
Radius of gyration, 415
Rectangular (x, y, z) coordinates,  

36–40, 107, 120–126, 175, 
602–603, 614–616, 641

angular momentum components, 
602–603

curvilinear motion, 36–40, 107
dot notation for, 36–37
equations of motion and, 

120–126, 175, 614–616, 641
kinematics of a particle, 36–40, 107
kinetics of a particle, 120–126, 175
procedures for analysis using, 38, 

120–121
three-dimensional rigid-plane 

motion and, 602–603,  
614–616, 641

Rectilinear kinematics, 5–15,  
20–25, 106

acceleration (a), 7–8, 20–22, 106
continuous motion, 5–15
displacement (Δ), 5
erratic motion, 20–25
graphs for solution of, 20–25, 106
particles and, 5–15, 20–25, 106
position (s), 5, 8, 20–22, 106
procedure for analysis of, 9
sign conventions for, 5–7
time (t) and, 8, 20–21, 106
velocity (v), 6–8, 20–22, 106

Rectilinear translation, 320–321, 404, 
426–427, 469

Reference frames, 91–95, 116–117, 
175, 322–329, 346–352, 404–405, 
423–426, 564–568

angular motion and, 322–324
axis of rotation, 564
circular path, 324–326
coordinating fixed and translating 

axes, 346–352, 405
equations of motion and, 116–117, 

175, 423–426
fixed, 91–95, 322–329, 404, 564–568
inertial, 116–117, 175, 423
kinetics of particles, 116–117, 175
relative-motion analysis, 346–352

relative motion of particles using, 
91–95

rigid-body planar motion, 423–425
rotation about fixed axis, 322–329
rotational motion, 424–425
three-dimensional rigid-body  

motion, 564–568
time derivative from, 564–568
translational motion, 423
translating, 91–95
translating-rotating systems, 

564–568
symmetry of, 423–426

Relative acceleration, 92, 405
Relative-motion analysis, 91–95, 109, 

346–352, 360–366, 373–380, 
389–397, 405, 578–585, 589

acceleration (a) and, 92, 373–380, 
392–393, 405, 580

circular motion, 347–348, 
360–366, 373–375, 405

coordinating fixed and translat-
ing reference frames, 346–352, 
373–380, 405

displacement and, 346
instantaneous center (IC) of zero 

velocity, 360–366, 405
kinematics of a particle,  

91–95, 109
pinned-end members, 346–352, 

373–380
position vectors (r) and, 91, 346, 

389, 579
procedures for analysis using, 92, 

349, 375, 394, 581
rigid-body planar motion, 

346–352, 360–366, 373–380, 
389–397, 405

rotating axes, 389–397, 405, 
578–585, 589

rotation and, 346–352, 373–380, 405
three-dimensional rigid-body  

motion, 578–585, 589
translating axes, 91–95, 109, 346–

352, 373–380, 405, 578–585, 589
translating coordinate system  

for, 578
velocity (v) and, 91, 346–352, 

360–366, 390–391, 405, 579
Relative velocity, 91, 347–348, 405

Resonance, 665, 681
Restitution, 266–269, 544–547

angular velocity (v) and, 544–547
coefficient (e) of, 267–269, 544–547
deformation from impact, 

266–269, 544–547
eccentric impact and, 544–547
impulse, 266, 545
period of, 266, 544
rigid-body planar motion, 544–547

Resultant force, 116, 187, 281–282
Retrograde precession, 634
Right-hand rule, 280, 322, 324
Rigid bodies, 186, 318–407, 408–471, 

472–515, 516–559, 560–589, 
590–641

absolute (dependent) motion 
analysis, 338–341, 402

acceleration (a) and, 321, 322, 
325–326, 373–380, 392–393, 
404–405, 408–471, 580

angular motion, 322–323, 327, 
561–564

circular motion, 324–327, 347–348, 
360–366, 373–375, 404–405

conservation of energy,  
496–501, 513

conservation of momentum, 
540–543, 557

couple moment (M) in,  
478–479, 512

displacement (Δ) of, 322, 324, 
477–478, 512

energy (E) and, 472–515
equations of motion for, 

421–431, 441–447, 456–461, 
469, 612–621, 641

fixed-axis rotation, 320, 322–329, 
404, 441–447, 469, 475, 511, 556

fixed-point rotation, 561–568, 589, 
602, 605

force (F) and, 408–471, 476–479, 512
free-body diagrams for, 423–428
general plane motion, 320, 

338–352, 456–461, 469, 475, 
511, 521, 556

gyroscopic motion, 626–631, 641
impact (eccentric), 544–547, 557
impulse and momentum, 516–559, 

601–604, 640
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inertia and, 591–596, 640
instantaneous center (IC) of zero 

velocity, 360–366, 405, 456
kinematics of, 318–407, 560–589
kinetic energy and, 473–476, 511, 

604–607, 640–641
kinetics of, 408–471, 472–515, 

516–559, 590–641
moments of inertia (I) for, 

409–417, 442–443, 456–457, 469
planar motion, 318–407, 408–471, 

472–515
position (r), 321, 322, 324, 389, 579
potential energy (V) of,  

496–501, 513
principle of impulse and momen-

tum, 523–530
principle of work and energy, 186, 

480–486, 513
procedures for analysis of, 327, 338, 

349, 362, 375, 394, 428, 443, 457, 
481, 498, 525, 541, 581, 616

relative-motion analysis, 
346–352, 373–380, 389–397, 
405, 578–585, 589

rotating axes, 389–397, 405, 
578–585, 589

rotation of, 320, 322–329, 338–331, 
346–352, 373–380, 404–405, 
424–425, 441–447, 469, 475, 511, 
520, 556

systems of particles and, 186, 476
three-dimensional, 560–589, 

590–641
time derivatives for, 564–568, 589
torque-free motion, 632–635, 641
translating axes, 389–397, 405, 

578–585, 589
translation of, 320–321, 338–341, 

346–352, 373–380, 404–405, 423, 
426–431, 469, 475, 511, 520, 556

velocity (v), 321, 322, 324, 346–352, 
360–366, 390–391, 404–405, 579

work (U) and, 472–515
zero velocity, 360–366, 405

Rotating axes, 389–397, 405, 564–568, 
578–585, 589

acceleration (a) of, 392–393, 580
axis of rotation, 564
Coriolis acceleration of, 393, 405

fixed reference frame, 564–568
magnitude changes and, 390, 392
position vectors (r) for, 389, 579
procedure for analysis of, 394, 581
relative-motion analysis for, 

389–397, 405, 578–585, 589
three-dimensional motion and, 

564–568, 578–585, 589
time derivatives for, 564–568
translating-rotating systems, 

564–568
velocity (v) of, 390–391, 579

Rotation, 320, 322–329, 338–341, 346–
352, 360–366, 404–405, 424–425, 
441–447, 469, 475, 511, 520, 556, 
561–571, 589, 612–616, 641

absolute (dependent) motion 
analysis, 338–341, 404

acceleration (a) and, 323, 
325–326, 424–425, 441–447

angular motion and, 322–323, 327, 
563–568

circular motion and, 324–327, 
360–366, 404–405

displacement and, 322, 324, 346
equations of motion for, 424–425, 

441–447, 469, 612–616, 641
Euler’s theorem for, 562
finite, 562
fixed-axis, 320, 322–329, 404, 

441–447, 469, 475, 511, 520, 
612–616

fixed-point, 561–568, 589
force (F) and, 424–425, 441–447, 469
general three-dimensional 

motion, 564–568
impulse and momentum of, 520, 556
infinitesimal, 563
instantaneous axis of, 563–564
instantaneous center of zero 

velocity, 360–366, 405
kinetic energy and, 475, 511
line of action, 361, 425, 442
moment of inertia of, 442–443
position and, 322, 324, 346
procedures for analysis of, 327, 

338, 349, 362, 616
relative-motion analysis, 

346–352, 405
right-hand rule for, 322, 324

rigid-body planar motion and, 
320, 322–329, 338–341, 346–
352, 404–405, 424–425, 441–447, 
469, 475, 511, 520, 556

symmetrical spinning axes, 615–616
symmetry of reference frames for, 

424–425
three-dimensional rigid bodies, 

561–568, 589, 612–616, 641
time derivatives for, 564–568, 589
translation and, 338–341, 346–352
velocity (v) and, 322, 324, 

346–352, 360–366

S
s–t (position–time) graphs, 20–21
Scalar formulation of angular momen-

tum, 280, 285
Separation of contact points after 

impact, 546
Shell elements, moment of inertia  

for, 411
Simple harmonic motion, 644, 680
Sliding, 187, 389

relative-motion analysis for, 389
work of friction by, 187

Slipping, 348, 374, 456, 477, 512
circular motion and, 348, 374
equations of motion and, 456
forces that do no work, 477, 512
general plane motion, 456
relative-motion analysis and,  

348, 374
rigid-body planar motion, 477, 512
zero velocity and, 348, 477

Space cone, 634
Space mechanics, 164–170, 175, 

300–304, 315, 591–596,  
632–635, 641

central-force motion and, 
164–170, 175

circular orbit, 168
control volume of particles, 

300–304, 315
elliptical orbit, 169–170
free-flight trajectory, 166
inertia (I) and, 591–596
Kepler’s laws, 170
kinetics of particles and,  

164–170, 175



758 	 Index

Space mechanics (continued)
mass flow, 300–302
parabolic path, 168
power-flight trajectory, 167
propulsion, 300–304, 315
three-dimensional rigid-body  

motion and, 591–596,  
632–635, 641

thrust, 300–301
torque-free motion, 632–635, 641
trajectories, 165–170, 175

Speed, 6, 32, 57-58.  See also Magnitude
Spheres, fixed-point rotation and,  

563, 589
Spin, 626, 633
Spinning axes, equations of motion 

for, 615–616
Spring force, 121, 182–183, 213–216, 

232–233, 477, 496, 512–513, 644
conservation of energy and, 496, 513
conservative force of, 213–216
displacement by, 477
elastic potential energy and, 214, 

233, 496, 513
equations of motion for, 121
particle kinetics, 121, 182–183, 

213–216, 232–233
rigid-body planar motion, 477, 

496, 512–513
vibrations and, 644
weight and, 215–216
work of, 182–183, 213–216, 232, 

477, 496, 512
Static equilibrium, 116
Statics, study of, 3
Steady flow, 295–299, 315

angular impulse and  
momentum, 296

closed volume, 295
control volume, 295, 315
fluid streams, 295–299
linear impulse and momentum, 296
mass flow, 296–297
principles of impulse and  

momentum for, 295–299, 315
procedure for analysis of, 297
volumetric flow (discharge), 297

Steady-state vibration, 670
Symmetrical spinning axes, see  

Gyroscopic motion

Systems, 118–119, 186–192, 218, 
240–244, 282, 476, 564–568, 589

angular momentum of, 282
center of mass (G), 119
conservation of energy, 218
conservative forces and, 218
deformation in bodies, 186–187
equations of motion for, 118–119
external forces, 118–119, 240
fixed rotating, 564–568
internal forces, 118–119
kinetic energy and, 476
nonrigid bodies, 186
particle kinetics, 118–119, 

186–192, 240–244, 282
potential energy (V) and, 218
principle of impulse and 

momentum for, 240–244
principle of work and energy for, 

186–192
rigid bodies, 186, 476,  

564–568, 589
sliding and, 187
time derivatives for, 564–568, 589
translating-rotating, 564–568, 589
work of friction and, 187

T
Tangential (t) coordinates, 56–62, 

138–143, 175, 325–326, 440–441
acceleration (a) and, 57–58, 

325–326, 440–441
circular motion components, 

325–326
curvilinear motion components, 

56–62
equations of motion and, 138–143, 

175, 440–441
particle kinetics, 138–143, 175
planar motion and, 56
procedure for analysis of, 59
rigid-body planar motion, 

325–326, 440–441
rotation about a fixed axis, 

325–326, 440–441
three-dimensional motion, 58
velocity (v) and, 56

Tangential force, 152–153, 175
Three-dimensional motion, 58, 

560–589, 590–641

angular, 561–564
angular momentum of, 601–604, 

629, 640
curvilinear, 58
equations of motion for,  

612–621, 641
Euler’s equations for, 614–615
fixed-point rotation, 561–568, 589, 

626–631
frames of reference for, 564–568
general motion of, 569–571, 589
gyroscopic motion, 615–616, 

626–631, 641
inertia, moments and products of, 

591–596, 640
inertial coordinates for, 601–602
kinematics of, 58, 560–589
kinetic energy of, 604–607, 640–641
kinetics of, 590–641
particles, 58
principle of impulse and momen-

tum, 604, 640
principle of work and energy of, 

605, 640–641
procedures for analysis of, 581, 616
rectangular (x, y, z) coordinates, 

602–603, 614–616, 641
relative-motion analysis of, 

578–585, 589
rotating axes, 564–568, 578–585, 589
time derivatives for, 564–568, 589
torque-free motion, 632–635, 641
translating axes, 578–585
translating coordinate systems 

for, 569–571
translating-rotating systems, 

564–568, 589
Thrust, 300–301
Time (t), 8, 20–21, 106, 170, 646

continuous motion and, 8
cycle, 646
erratic motion and, 20–21
graphs of variables, 20–21, 106
orbital revolution, 170
period, 646
position (s), as a function of, 8
rectilinear kinematics and, 8, 

20–21, 106
velocity (v) as a function of, 8
vibration and, 646
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Time derivatives, 74, 86, 108–109, 
564–568, 589

absolute dependent motion, 86, 109
curvilinear motion, 74, 108
fixed-point rotation, 564–568, 589
three-dimensional motion, 

564–568, 589
translating-rotating systems, 

564–568, 589
Time-differential equations, 338
Torque-free motion, 632–635, 641
Trajectories, 165–170, 175

circular orbit, 168
eccentricity of, 166–167, 175
elliptical orbit, 169–170
free-flight, 166
gravitational attraction and, 165–166
parabolic path, 168
power-flight, 167

Translating axes, 91–95, 109,  
346–352, 373–380, 405, 
564–568, 578–585, 589

acceleration (a), 92, 373–380, 580
coordinates for, 91
fixed reference frame, 91–95
kinematics of particles, 91–95, 109
observers, 91–92, 109
position vectors (r) for, 91, 346, 579
procedures for analysis of, 92, 338, 

349, 375, 581
relative-motion analysis of, 91–95, 

109, 346–352, 373–380, 405, 
578–585, 589

rigid-body planar motion, 91–95, 
109, 346–352, 373–380, 405, 
564–568, 578–585

rotation and, 338–341, 346–352, 
373–380, 404

three-dimensional rigid bodies, 
564–568, 578–585, 589

time derivatives for systems, 
564–568

translating-rotating systems, 
564–568, 589

velocity (v) of, 91, 346–352, 405, 579
Translating coordinate systems, 

569–571, 578, 589
Translation, 320–321, 338–341, 389–

397, 404–405, 423, 426–431, 469, 
475, 511, 520, 556, 612, 641

absolute (dependent) motion 
analysis, 338–341, 404

acceleration (a) and, 321, 
392–393, 404

circular motion and, 347–348
coordinate system axes,  

346–352, 404
curvilinear, 320–321, 404, 427, 469
displacement and, 346
equations of motion for, 423, 

426–431, 469, 612, 641
impulse and momentum, 520, 556
kinetic energy and, 475, 511
paths of, 320
position vectors (r), 321, 389
procedures for analysis using, 394, 

428, 616
rectilinear, 320–321, 404, 426–427, 469
relative-motion analysis,  

389–397, 405
rigid-body planar motion, 320–

321, 338–341, 389–397, 404–405, 
423, 426–431, 469, 475, 511, 
520, 556, 641

rotating axes with, 389–397, 405
symmetry of reference frames 

for, 423
three-dimensional rigid-body  

motion, 612, 641
velocity (v) and, 321, 390–391, 404

Transverse component (vu), 72
Transverse coordinate (u), 71–73
Trigonometric identities, 682

U
Unbalanced force, 113–114
Undamped vibrations, 643–651, 

663–666, 680
forcing frequency (vu) for, 

663–665, 680
forced, 663–666, 680
free, 643–651, 680
natural frequency (vn) for, 644, 

646–647, 680
periodic force and, 663–666
periodic support displacement 

of, 665
procedure for analysis of, 647

Underdamped vibration systems, 669
Unit vectors, 684

V
v–s (velocity–position) graphs, 22
v–t (velocity–time) graphs, 20–21
Variable force, work of, 180, 476
Vector analysis, 684–688
Vector formulation of angular 

momentum, 280, 285
Vector functions, 685
Vector quantity, particle position and 

displacement as, 5, 36
Velocity (v), 6–8, 20–22, 34–37, 56, 72, 

91, 106, 164, 168, 321, 322, 324, 
346–352, 360–366, 390–391, 
404–405, 477, 544–547, 563–564, 
579, 626–628

absolute, 91, 347
acceleration (a) and, 7–8
angular (v), 72, 322, 544–547, 563, 

626–628
areal, 164
average, 6, 34
central-force motion and, 164, 168
circular motion and, 324, 347–348
constant, 7
continuous motion and, 6–8
curvilinear motion and, 34–37, 

56, 72
cylindrical components and, 72
eccentric impact and, 544–547
erratic motion and, 20–22
escape, 168
fixed-point rotation and, 322, 324, 

404, 563–564, 626–628
forces doing no work, 477
graphs of variables, 20–22, 106
gyroscopic motion and, 626–628
instantaneous, 6, 34
instantaneous center (IC) of zero, 

360–366, 405
kinematics of particles and, 6–8, 

20–22, 34–37, 56, 72, 91, 106
magnitude of, 6, 34, 36–37, 56, 72, 

390, 404
normal component (n) 

coordinates, 56, 404
position (s), as a function of, 8
procedures for analysis of, 349, 362
radial component (vr), 72
rectangular components and, 

36–37
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Velocity (v) (continued)
rectilinear kinematics and, 6–8, 

20–22, 106
relative, 91, 347
relative-motion analysis and, 91, 

346–352, 390–391, 405, 579
rigid-body planar motion, 321, 

322, 324, 346–352, 360–366, 
390–391, 404–405, 544–547

rotating axis, 390–391, 405, 579
rotation and, 322, 324, 346–352, 

404–405
sign convention for, 6
slipping and, 348, 477
speed (magnitude), 6, 34, 36, 72
tangential component (t)  

coordinates, 56, 72, 404
three-dimensional rigid-body  

motion, 563–564, 579, 626–628
time (t), as a function of, 8
time derivative and, 564
translating axes and, 91, 346–352, 

405, 579
translation and, 321, 390–391, 404
transverse component (vθ), 72
zero, 348, 360–366, 405, 477

Vertical displacement (Δ), 477
Vertical projectile motion, 41–45
Vibrations, 642–681

amplitude of, 645–646
critically damped systems, 668
cycle, 646
damped, 643, 667–672, 681
displacement and, 644–651
electrical circuit analogs and,  

673, 681
energy methods for conservation 

of, 657–660, 680
equilibrium position, 644–646
forced, 643, 663–666, 670–672, 

680–681
forcing frequency (vu),  

663–666, 680
free, 643–651, 667–669, 680–681
frequency (f), 644, 646–647, 663, 669
magnification factor (MF) for, 

664–665, 671
natural frequency (vn), 644, 

646–647, 657–660, 680

overdamped systems, 668
period, 646
periodic force and, 663–666
periodic support displacement 

of, 665
phase angle (φ), 646
procedures for analysis of, 647, 658
resonance, 665, 681
simple harmonic motion of, 644
undamped forced, 663–666, 680
undamped free, 643–651, 680
underdamped systems, 666
viscous damped, 667–672, 681

Viscous damping force, 667, 681
Viscous vibration, 667–672, 681

coefficient of damping, 667
critically damped systems, 668
damped, 667–672, 681
damping force, 667
forced, 670–672, 681
free, 667–669, 681
overdamped systems, 668
steady-state, 670
underdamped systems, 669

Volume elements, integration of  
moments of inertia using, 
410–411

Volumetric flow (discharge), 297

W
Watt (W), unit of, 204
Weight (W), 115, 181, 213, 215–217, 

232–233, 477, 496, 512
conservation of energy and, 217, 

233, 496
conservative forces and displace-

ment of, 213, 215–216, 233
constant, 213
gravitational attraction and, 115
gravitational potential energy 

and, 213, 496
potential energy (V) and, 213, 

215–216, 496
spring force and, 215–216
vertical displacement (Δ) of, 477
work (U) of a, 181, 213, 215–216, 

232, 477, 496, 512
Work (U), 178–235, 472–515, 605, 

640–641

conservation of energy and, 
217–221, 233, 496–501, 513

conservative forces and,  
213–216, 233

constant force, 181, 232, 476, 512
couple moment (M), of a, 

478–479, 512
deformation and, 186–187
displacement and (Δ), 179–180, 

477–478, 512
energy (E) and, 178–235,  

472–515, 605
external, 187
force (F) as, 179–183, 186–192, 

232–233, 476–479, 512
friction caused by sliding, 187
internal, 187
kinetic energy and, 605
kinetics of a particle, 178–235
potential energy (V) and, 

213–216, 496–501, 513
potential function and, 215–216
principle of energy and, 184–192, 

232–233, 480–486, 513, 605, 
640–641

procedures for analysis of, 185, 
481, 498

rigid-body planar motion, 472–515
slipping and, 477
spring force as, 182–183, 213–216, 

232, 477, 512
system of particles, 186–192
three-dimensional rigid bodies, 

605, 640–641
units of, 180
variable force, of a, 180, 476
weight (W) as, 181, 213, 215–216, 

232, 477, 512
zero velocity and (no work), 477

Z
Zero velocity, 348, 360–366, 405, 456, 477

general plane motion, 456
instantaneous center (IC) of, 

360–366, 405
relative-motion analysis, 348
slipping (no work) and, 348, 477



KINEMATICS
Particle Rectilinear Motion
Variable a Constant a = ac

 a =
dv

dt
v = v0 + act

v =
ds

dt
 s = s0 + v0t +

1
2act 2

 a ds = v dv v2 = v2
0 + 2ac(s - s0)

Particle Curvilinear Motion
x, y, z Coordinates r, u, z Coordinates
vx = x

#
	 ax = x

# #
vr = r

#
	 ar = r

# #
- r u2

#

vy = y
#
	 ay = y

# #
vu = r u

#
	 au = r u

# #
+ 2r

#
 u

#

vz = z
#
	 az = z

# #
vz = z

#
	 az = z

# #

n, t, b Coordinates

v = s
#

 at = v
#

= v 
dv

ds

 an =
v2

r
	 r =

[1 + (dy >dx)2]3>2

0 d2y >dx2 0
Relative Motion
vB = vA + vB/A	 aB = aA + aB/A

Rigid Body Motion About a Fixed Axis
Variable a Constant a = ac

 a =
dv

dt
v = v0 + act

v =
du

dt
u = u0 + v0t +

1
2act 2

v dv = a du v2 = v2
0 + 2ac(u - u0)

For Point P

s = ur v = vr at = ar an = v2r

Relative General Plane Motion—Translating Axes
vB = vA + vB>A (pin)  aB = aA + aB>A (pin)

Relative General Plane Motion—Trans. and Rot. Axis
vB = vA + � * rB>A + (vB>A)xyz

aB = aA + �
#

 * rB>A + � * (� * rB>A) +

	 2� * (vB>A)xyz + (aB>A)xyz

KINETICS

Mass Moment of Inertia	 I = L  r2 dm

Parallel-Axis Theorem	 I = IG + md2

Radius of Gyration	 k = A I
m

Equations of Motion
Particle �F = ma
Rigid Body 
(Plane Motion)

�Fx = m(aG)x

�Fy = m(aG)y

�MG = IGa or �MP = �(mk)P

Principle of Work and Energy
T1 + �U1- 2 = T2

Kinetic Energy
Particle  T =

1
2mv2

Rigid Body (Plane Motion) T =
1
2mv2

G +
1
2IGv

2

Work
Variable force	  UF = L F cos u   ds

Constant force	  UF = (Fc cos u) � s
Weight	   UW = - W �y
Spring	  Us = - 11

2 ks 22 -
1
2 ks 212

Couple moment	   UM = M�u

Power and Efficiency

P =
dU

dt
= F # v    e =

Pout

Pin
=

Uout

Uin

Conservation of Energy Theorem
T1 + V 1 = T2 + V 2

Potential Energy
V = V g + V e, where V g = {Wy, V e = +

1
2 ks2

Principle of Linear Impulse and Momentum

Particle  mv1 + � LF dt = mv2

Rigid Body  m(vG)1 + � LF dt = m(vG)2

Conservation of Linear Momentum
�(syst. mv)1 = �(syst. mv)2

Coefficient of Restitution	 e =
(vB)2 - (vA)2

(vA)1 - (vB)1

Principle of Angular Impulse and Momentum

Particle  (HO)1 + � LMO dt = (HO)2

where HO = (d)(mv)

Rigid Body 
(Plane motion)

 (HG)1 + � LMG dt = (HG)2

where HG = IGv

 (HO)1 + � LMO dt = (HO)2

where HO = IOv
Conservation of Angular Momentum
�(syst. H)1 = �(syst. H)2

 Fundamental Equations of Dynamics



SI Prefixes

Multiple Exponential Form Prefix SI Symbol

1 000 000 000 109 giga G

1 000 000 106 mega M

1 000 103 kilo k

Submultiple

0.001 10−3 milli m

0.000 001 10−6 micro μ

0.000 000 001 10−9 nano n

Conversion Factors (FPS) to (SI)

Quantity
Unit of 

Measurement (FPS) Equals
Unit of 

Measurement (SI)

Force lb  4.448 N

Mass slug  14.59 kg

Length ft  0.3048 m

Conversion Factors (FPS)

	 1 ft = 12 in. (inches)
	 1 mi. (mile) = 5280 ft
	 1 kip (kilopound) = 1000 lb
	 1 ton = 2000 lb



Centroid Location Centroid Location Area Moment of Inertia

r sin u

r
u

u C

y

x

L � 2ur

u

Circular arc segment

 r sin u

r

C

A � ur2

2
3

y

x

u

u

u

Circular sector area

Ix = 
1

4
 r4 (u – 

1

2
 sin 2u)

Iy = 
1

4
 r4(u + 

1

2
 sin 2u)

C

L � r2
–

2r—

L � pr

C

p

rr
p

Quarter and semicircle arcs

C

y

x

r
4r
3p
—

4r
3p
—

A �   pr 21
4

Quarter circle area

Ix = 
1

16
 πr4

Iy = 
1

16
 πr4

b

h

a A

x
C

�   h (a � b)1
2

1
3

2
a � b
a � b h–

–

Trapezoidal area

y
A �

xC

p
2

r
4r
3p

r2

—

—–

Semicircular area

Ix = 
1

8
 πr4

Iy = 
1

8
 πr4

Ca

A� ab2
3

b3
8
–

–

– a3
5

b

Semiparabolic area

y

x
C

r

A � pr2

Circular area

Ix = 
1

4
πr4

Iy = 
1

4
πr4

a

b
C

A ab�

a3–
4

b3
10
—

1
3
—

Exparabolic area

b

h

y A � bh

x
C

Rectangular area

Ix = 
1

12
bh3

Iy = 
1

12
hb3

b
C

a

a2
5—

A ab= 4
3—

Parabolic area

b

h C

A �   bh

x
h1

3

1
2

–

–

Triangular area

Ix = 
1

36
bh3

Geometric Properties of Line and Area Elements



G

x

y

z

rV� r 34
3π–

Sphere

Ixx = Iyy = Izz = 
2

5
 mr2

G

x

y

z

r

V � r 32
3
–

r3–
8

p

Hemisphere

Ixx = Iyy = 0.259 mr2  Izz = 
2

5
 mr2

G

x

y

z
z'

r

Thin Circular disk

Ixx = Iyy = 
1

4
 mr2  Izz = 

1

2
 mr2  Iz¿z¿ = 

3

2
 mr2

G

x

y

r

z

Thin ring

Ixx = Iyy = 
1

2
 mr2  Izz = mr2

x

y

z

V � r 2π
h–
2

h–
2

G
h

r

Cylinder

Ixx = Iyy = 
1

12
 m(3r2 + h2)  Izz = 

1

2
 mr2

h

V � hr 21
3
π– h–

4G

x

y

z

r

Cone

Ixx = Iyy = 
3

80
 m(4r2 + h2)  Izz = 

3

10
 mr2

x

y

z

a
b

G

Thin plate

Ixx = 
1

12
 mb2  Iyy = 

1

12
 ma2  Izz = 

1

12
 m(a2 + b2)

G

x¿

y

y¿

z

x

2

2
l

l

Slender Rod

Ixx = Iyy = 
1

12
 ml2    Ix¿x¿ = Iy¿y¿ = 

1

3
 ml2    Iz¿z¿ = 0

Center of Gravity and Mass Moment of Inertia of Homogeneous Solids
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