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Conversion Factors
U.S. Customary Units to SI Units

To convert from To Multiply by

(Acceleration)
 foot/second2 (ft/sec2) meter/second2 (m/s2) 3.048 3 1021*
 inch/second2 (in./sec2) meter/second2 (m/s2) 2.54 3 1022*
(Area)
 foot2 (ft2) meter2 (m2) 9.2903 3 1022

 inch2 (in.2) meter2 (m2) 6.4516 3 1024*
(Density)
 pound mass/inch3 (lbm/in.3) kilogram/meter3 (kg/m3) 2.7680 3 104

 pound mass/foot3 (lbm/ft3) kilogram/meter3 (kg/m3) 1.6018 3 10
(Force)
 kip (1000 lb) newton (N) 4.4482 3 103

 pound force (lb) newton (N) 4.4482
(Length)
 foot (ft) meter (m) 3.048 3 1021*
 inch (in.) meter (m) 2.54 3 1022*
 mile (mi), (U.S. statute) meter (m) 1.6093 3 103

 mile (mi), (international nautical) meter (m) 1.852 3 103*
(Mass)
 pound mass (lbm) kilogram (kg) 4.5359 3 1021

 slug (lb-sec2/ft) kilogram (kg) 1.4594 3 10
 ton (2000 lbm) kilogram (kg) 9.0718 3 102

(Moment of force)
 pound-foot (lb-ft) newton-meter (N?m) 1.3558
 pound-inch (lb-in.) newton-meter (N?m) 0.1129 8
(Moment of inertia, area)
 inch4 meter4 (m4) 41.623 3 1028

(Moment of inertia, mass)
 pound-foot-second2 (lb-ft-sec2) kilogram-meter2 (kg?m2) 1.3558
(Momentum, linear)
 pound-second (lb-sec) kilogram-meter/second (kg?m/s) 4.4482
(Momentum, angular)
 pound-foot-second (lb-ft-sec) newton-meter-second (kg?m2/s) 1.3558
(Power)
 foot-pound/minute (ft-lb/min) watt (W) 2.2597 3 1022

 horsepower (550 ft-lb/sec) watt (W) 7.4570 3 102

(Pressure, stress)
 atmosphere (std)(14.7 lb/in.2) newton/meter2 (N/m2 or Pa) 1.0133 3 105

 pound/foot2 (lb/ft2) newton/meter2 (N/m2 or Pa) 4.7880 3 10
 pound/inch2 (lb/in.2 or psi) newton/meter2 (N/m2 or Pa) 6.8948 3 103

(Spring constant)
 pound/inch (lb/in.) newton/meter (N/m) 1.7513 3 102

(Velocity)
 foot/second (ft/sec) meter/second (m/s) 3.048 3 1021*
 knot (nautical mi/hr) meter/second (m/s) 5.1444 3 1021

 mile/hour (mi/hr) meter/second (m/s) 4.4704 3 1021*
 mile/hour (mi/hr) kilometer/hour (km/h) 1.6093
(Volume)
 foot3 (ft3) meter3 (m3) 2.8317 3 1022

 inch3 (in.3) meter3 (m3) 1.6387 3 1025

(Work, Energy)
 British thermal unit (BTU) joule (J) 1.0551 3 103

 foot-pound force (ft-lb) joule (J) 1.3558
 kilowatt-hour (kw-h) joule (J) 3.60 3 106*

*Exact value



SI Units Used in Mechanics

Quantity Unit SI Symbol

(Base Units)
 Length meter* m
 Mass kilogram kg
 Time second s
(Derived Units)
 Acceleration, linear meter/second2 m/s2

 Acceleration, angular radian/second2 rad/s2

 Area meter2 m2

 Density kilogram/meter3 kg/m3

 Force newton N (5 kg?m/s2)
 Frequency hertz Hz (5 1/s)
 Impulse, linear newton-second N?s
 Impulse, angular newton-meter-second N?m?s
 Moment of force newton-meter N?m
 Moment of inertia, area meter4 m4

 Moment of inertia, mass kilogram-meter2 kg?m2

 Momentum, linear kilogram-meter/second kg?m/s (5 N?s)
 Momentum, angular kilogram-meter2/second kg?m2/s (5 N?m?s)
 Power watt W (5 J/s 5 N?m/s)
 Pressure, stress pascal Pa (5 N/m2)
 Product of inertia, area meter4 m4

 Product of inertia, mass kilogram-meter2 kg?m2

 Spring constant newton/meter N/m
 Velocity, linear meter/second m/s
 Velocity, angular radian/second rad/s
 Volume meter3 m3

 Work, energy joule J (5 N?m)
(Supplementary and Other Acceptable Units)
 Distance (navigation) nautical mile (5 1.852 km)
 Mass ton (metric) t (5 1000 kg)
 Plane angle degrees (decimal) 8
 Plane angle radian —
 Speed knot (1.852 km/h)
 Time day d
 Time hour h
 Time minute min
*Also spelled metre.

SI Unit Prefi xes

Multiplication Factor Prefi x Symbol
 1 000 000 000 000 5 1012 tera T
 1 000 000 000 5 109 giga G
 1 000 000 5 106 mega M
 1 000 5 103 kilo k
 100 5 102 hecto h
 10 5 10 deka da
 0.1 5 1021 deci d
 0.01 5 1022 centi c
 0.001 5 1023 milli m
 0.000 001 5 1026 micro �

 0.000 000 001 5 1029 nano n
 0.000 000 000 001 5 10212 pico p

Selected Rules for Writing Metric Quantities
1. (a) Use prefi xes to keep numerical values generally between 0.1 and 1000.
 (b) Use of the prefi xes hecto, deka, deci, and centi should generally be avoided 

except for certain areas or volumes where the numbers would be awkward 
otherwise.

 (c) Use prefi xes only in the numerator of unit combinations. The one exception 
is the base unit kilogram. (Example: write kN/m not N/mm; J/kg not mJ/g)

 (d) Avoid double prefi xes. (Example: write GN not kMN)
2. Unit designations
 (a) Use a dot for multiplication of units. (Example: write N?m not Nm)
 (b) Avoid ambiguous double solidus. (Example: write N/m2 not N/m/m)
 (c) Exponents refer to entire unit. (Example: mm2 means (mm)2)
3. Number grouping
 Use a space rather than a comma to separate numbers in groups of three, 

counting from the decimal point in both directions. (Example: 4 607 321.048 72) 
Space may be omitted for numbers of four digits. (Example: 4296 or 0.0476)
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FOREWORD

iii

This series of textbooks was begun in 1951 by the late Dr. James L. Meriam. At that 
time, the books represented a revolutionary transformation in undergraduate mechanics 
education. They became the defi nitive textbooks for the decades that followed as well as 
models for other engineering mechanics texts that have subsequently appeared. Published 
under slightly different titles prior to the 1978 First Editions, this textbook series has 
always been characterized by logical organization, clear and rigorous presentation of the 
theory, instructive sample problems, and a rich collection of real-life problems, all with a 
high standard of illustration. In addition to the U.S. versions, the books have appeared in 
SI versions and have been translated into many foreign languages. These textbooks collec-
tively represent an international standard for undergraduate texts in mechanics.

The innovations and contributions of Dr. Meriam (1917–2000) to the fi eld of engineer-
ing mechanics cannot be overstated. He was one of the premier engineering educators of 
the second half of the twentieth century. Dr. Meriam earned the B.E., M.Eng., and Ph.D. 
degrees from Yale University. He had early industrial experience with Pratt and Whitney 
Aircraft and the General Electric Company. During the Second World War he served in the 
U.S. Coast Guard. He was a member of the faculty of the University of California—Berkeley, 
Dean of Engineering at Duke University, a faculty member at the California Polytechnic 
State University, and visiting professor at the University of California—Santa Barbara, 
fi nally retiring in 1990. Professor Meriam always placed great emphasis on teaching, and 
this trait was recognized by his students wherever he taught. He was the recipient of sev-
eral teaching awards, including the Benjamin Garver Lamme Award, which is the highest 
annual national award of the American Society of Engineering Education (ASEE).

Dr. L. Glenn Kraige, coauthor of the Engineering Mechanics series since the early 
1980s, has also made signifi cant contributions to mechanics education. Dr. Kraige earned 
his B.S., M.S., and Ph.D. degrees at the University of Virginia, principally in aerospace 
engineering, and he is Professor Emeritus of Engineering Science and Mechanics at 
Virginia Polytechnic Institute and State University. During the mid-1970s, I had the singular 
pleasure of chairing Professor Kraige’s graduate committee and take particular pride in 
the fact that he was the fi rst of my fi fty Ph.D. graduates. Professor Kraige was invited by 
Professor Meriam to team with him, thereby ensuring that the Meriam legacy of textbook 
authorship excellence would be carried forward to future generations of engineers.

In addition to his widely recognized research and publications in the fi eld of spacecraft 
dynamics, Professor Kraige has devoted his attention to the teaching of mechanics at both 
introductory and advanced levels. His outstanding teaching has been widely recognized 
and has earned him teaching awards at the departmental, college, university, state, re-
gional, and national levels. These awards include the Outstanding Educator Award from 
the State Council of Higher Education for the Commonwealth of Virginia. In 1996, the 
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Mechanics Division of ASEE bestowed upon him the Archie Higdon Distinguished Educator 
Award. The Carnegie Foundation for the Advancement of Teaching and the Council for Advance-
ment and Support of Education awarded him the distinction of Virginia Professor of the Year for 
1997. In his teaching, Professor Kraige stresses the development of analytical capabilities along 
with the strengthening of physical insight and engineering judgment. Since the early 1980s, he 
has worked on personal-computer software designed to enhance the teaching/learning process 
in statics, dynamics, strength of materials, and higher-level areas of dynamics and vibrations.

Welcomed as a new coauthor for this edition is Dr. Jeffrey N. Bolton, Assistant Professor of 
Mechanical Engineering Technology at Bluefi eld State College. Dr. Bolton earned his B.S., M.S., 
and Ph.D. in Engineering Mechanics from Virginia Polytechnic Institute and State University. 
His research interests include automatic balancing of six-degree-of-freedom elastically-mounted 
rotors. He has a wealth of teaching experience, including at Virginia Tech, where he was the 
2010 recipient of the Sporn Teaching Award for Engineering Subjects, which is primarily chosen 
by students. In 2014, Professor Bolton received the Outstanding Faculty Award from Bluefi eld 
State College. He has the unusual ability to set high levels of rigor and achievement in the 
classroom while establishing a high degree of rapport with his students. In addition to main-
taining time-tested traditions for future generations of students, Dr. Bolton will bring effective 
application of technology to this textbook series.

The Eighth Edition of Engineering Mechanics continues the same high standards set by 
previous editions and adds new features of help and interest to students. It contains a vast col-
lection of interesting and instructive problems. The faculty and students privileged to teach or 
study from the Meriam/Kraige/Bolton Engineering Mechanics series will benefi t from several 
decades of investment by three highly accomplished educators. Following the pattern of the pre-
vious editions, this textbook stresses the application of theory to actual engineering situations, 
and at this important task it remains the best.

John L. Junkins
Distinguished Professor of Aerospace Engineering
Holder of the Royce E. Wisebaker ‘39 Chair in Engineering Innovation
Texas A&M University
College Station, Texas
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Engineering mechanics is both a foundation and a framework for most of the branches 
of engineering. Many of the topics in such areas as civil, mechanical, aerospace, and 
agricultural engineering, and of course engineering mechanics itself, are based upon the 
subjects of statics and dynamics. Even in a discipline such as electrical engineering, prac-
titioners, in the course of considering the electrical components of a robotic device or a 
manufacturing process, may fi nd themselves fi rst having to deal with the mechanics 
involved.

Thus, the engineering mechanics sequence is critical to the engineering curriculum. 
Not only is this sequence needed in itself, but courses in engineering mechanics also serve 
to solidify the student’s understanding of other important subjects, including applied 
mathematics, physics, and graphics. In addition, these courses serve as excellent settings 
in which to strengthen problem-solving abilities.

PHILOSOPHY

The primary purpose of the study of engineering mechanics is to develop the capacity 
to predict the effects of force and motion while carrying out the creative design functions 
of engineering. This capacity requires more than a mere knowledge of the physical and 
mathematical principles of mechanics; also required is the ability to visualize physical 
confi gurations in terms of real materials, actual constraints, and the practical limitations 
which govern the behavior of machines and structures. One of the primary objectives in a 
mechanics course is to help the student develop this ability to visualize, which is so vital 
to problem formulation. Indeed, the construction of a meaningful mathematical model is 
often a more important experience than its solution. Maximum progress is made when 
the principles and their limitations are learned together within the context of engineering 
application.

There is a frequent tendency in the presentation of mechanics to use problems mainly 
as a vehicle to illustrate theory rather than to develop theory for the purpose of solving 
problems. When the fi rst view is allowed to predominate, problems tend to become overly 
idealized and unrelated to engineering with the result that the exercise becomes dull, aca-
demic, and uninteresting. This approach deprives the student of valuable experience in 
formulating problems and thus of discovering the need for and meaning of theory. The 
second view provides by far the stronger motive for learning theory and leads to a better 
balance between theory and application. The crucial role played by interest and purpose in 
providing the strongest possible motive for learning cannot be overemphasized.

Furthermore, as mechanics educators, we should stress the understanding that, at 
best, theory can only approximate the real world of mechanics rather than the view that 
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the real world approximates the theory. This difference in philosophy is indeed basic and 
distinguishes the engineering of mechanics from the science of mechanics.

Over the past several decades, several unfortunate tendencies have occurred in engi-
neering education. First, emphasis on the geometric and physical meanings of prerequisite 
mathematics appears to have diminished. Second, there has been a signifi cant reduction 
and even elimination of instruction in graphics, which in the past enhanced the visual-
ization and representation of mechanics problems. Third, in advancing the mathematical 
level of our treatment of mechanics, there has been a tendency to allow the notational 
manipulation of vector operations to mask or replace geometric visualization. Mechanics is 
inherently a subject which depends on geometric and physical perception, and we should 
increase our efforts to develop this ability.

A special note on the use of computers is in order. The experience of formulating prob-
lems, where reason and judgment are developed, is vastly more important for the student 
than is the manipulative exercise in carrying out the solution. For this reason, computer 
usage must be carefully controlled. At present, constructing free-body diagrams and for-
mulating governing equations are best done with pencil and paper. On the other hand, 
there are instances in which the solution to the governing equations can best be carried 
out and displayed using the computer. Computer-oriented problems should be genuine in 
the sense that there is a condition of design or criticality to be found, rather than “make-
work” problems in which some parameter is varied for no apparent reason other than to 
force artifi cial use of the computer. These thoughts have been kept in mind during the 
design of the computer-oriented problems in the Eighth Edition. To conserve adequate 
time for problem formulation, it is suggested that the student be assigned only a limited 
number of the computer-oriented problems.

As with previous editions, this Eighth Edition of Engineering Mechanics is written 
with the foregoing philosophy in mind. It is intended primarily for the fi rst engineering 
course in mechanics, generally taught in the second year of study. Engineering Mechanics 
is written in a style which is both concise and friendly. The major emphasis is on basic 
principles and methods rather than on a multitude of special cases. Strong effort has been 
made to show both the cohesiveness of the relatively few fundamental ideas and the great 
variety of problems which these few ideas will solve.

PEDAGOGICAL FEATURES

The basic structure of this textbook consists of an article which rigorously treats the 
particular subject matter at hand, followed by one or more Sample Problems, followed by 
a group of Problems. There is a Chapter Review at the end of each chapter which summa-
rizes the main points in that chapter, followed by a Review Problem set.

Problems

The 89 Sample Problems appear on specially colored pages by themselves. The solu-
tions to typical statics problems are presented in detail. In addition, explanatory and cau-
tionary notes (Helpful Hints) in blue type are number-keyed to the main presentation.

There are 1060 homework exercises, of which more than 50 percent are new to the 
Eighth Edition. The problem sets are divided into Introductory Problems and Represen-
tative Problems. The fi rst section consists of simple, uncomplicated problems designed to 
help students gain confi dence with the new topic, while most of the problems in the second 
section are of average diffi culty and length. The problems are generally arranged in order 
of increasing diffi culty. More diffi cult exercises appear near the end of the Representative 
Problems and are marked with the triangular symbol c. Computer-Oriented Problems, 
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marked with an asterisk, appear throughout the problems and also in a special section at 
the conclusion of the Review Problems at the end of each chapter. The answers to all prob-
lems have been provided in a special section near the end of the textbook.

In recognition of the need for emphasis on SI units, there are approximately two prob-
lems in SI units for every one in U.S. customary units. This apportionment between the 
two sets of units permits anywhere from a 50–50 emphasis to a 100-percent SI treatment.

A notable feature of the Eighth Edition, as with all previous editions, is the wealth of 
interesting and important problems which apply to engineering design. Whether directly 
identifi ed as such or not, virtually all of the problems deal with principles and procedures 
inherent in the design and analysis of engineering structures and mechanical systems.

Illustrations

In order to bring the greatest possible degree of realism and clarity to the illustra-
tions, this textbook series continues to be produced in full color. It is important to note that 
color is used consistently for the identifi cation of certain quantities:

 • red for forces and moments
 • green for velocity and acceleration arrows
 • orange dashes for selected trajectories of moving points

Subdued colors are used for those parts of an illustration which are not central to 
the problem at hand. Whenever possible, mechanisms or objects which commonly have a 
certain color will be portrayed in that color. All of the fundamental elements of technical 
illustration which have been an essential part of this Engineering Mechanics series of 
textbooks have been retained. The authors wish to restate the conviction that a high stan-
dard of illustration is critical to any written work in the fi eld of mechanics.

Special Features

We have retained the following hallmark features of previous editions:
 •  All theory portions are constantly reexamined in order to maximize rigor, clarity, 

readability, and level of friendliness.
 •  Key Concepts areas within the theory presentation are specially marked and high-

lighted.
 •  The Chapter Reviews are highlighted and feature itemized summaries.
 •  Approximately 50 percent of the homework problems are new to this Eighth Edition. 

All new problems have been independently solved in order to ensure a high degree of 
accuracy.

 •  All Sample Problems are printed on specially colored pages for quick identifi cation.
 •  Within-the-chapter photographs are provided in order to provide additional connec-

tion to actual situations in which statics has played a major role.

ORGANIZATION

In Chapter 1, the fundamental concepts necessary for the study of mechanics are 
established.

In Chapter 2, the properties of forces, moments, couples, and resultants are developed 
so that the student may proceed directly to the equilibrium of nonconcurrent force sys-
tems in Chapter 3 without unnecessarily belaboring the relatively trivial problem of the 
equilibrium of concurrent forces acting on a particle.
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In both Chapters 2 and 3, analysis of two-dimensional problems is presented in Sec-
tion A before three-dimensional problems are treated in Section B. With this arrangement, 
the instructor may cover all of Chapter 2 before beginning Chapter 3 on equilibrium, or 
the instructor may cover the two chapters in the order 2A, 3A, 2B, 3B. The latter order 
treats force systems and equilibrium in two dimensions and then treats these topics in 
three dimensions.

Application of equilibrium principles to simple trusses and to frames and machines is 
presented in Chapter 4 with primary attention given to two-dimensional systems. A suf-
fi cient number of three-dimensional examples are included, however, to enable students to 
exercise more general vector tools of analysis.

The concepts and categories of distributed forces are introduced at the beginning of 
Chapter 5, with the balance of the chapter divided into two main sections. Section A treats 
centroids and mass centers; detailed examples are presented to help students master 
early applications of calculus to physical and geometrical problems. Section B includes the 
special topics of beams, fl exible cables, and fl uid forces, which may be omitted without loss 
of continuity of basic concepts.

Chapter 6 on friction is divided into Section A on the phenomenon of dry friction and 
Section B on selected machine applications. Although Section B may be omitted if time is 
limited, this material does provide a valuable experience for the student in dealing with 
both concentrated and distributed friction forces.

Chapter 7 presents a consolidated introduction to virtual work with applications lim-
ited to single-degree-of-freedom systems. Special emphasis is placed on the advantage of 
the virtual-work and energy method for interconnected systems and stability determina-
tion. Virtual work provides an excellent opportunity to convince the student of the power 
of mathematical analysis in mechanics.

Moments and products of inertia of areas are presented in Appendix A. This topic 
helps to bridge the subjects of statics and solid mechanics. Appendix C contains a sum-
mary review of selected topics of elementary mathematics as well as several numerical 
techniques which the student should be prepared to use in computer-solved problems. 
Useful tables of physical constants, centroids, and moments of inertia are contained in 
Appendix D.

SUPPLEMENTS

The following items have been prepared to complement this textbook:

Instructor’s Manual

Prepared by the authors and independently checked, fully worked solutions to all 
problems in the text are available to faculty by contacting their local Wiley representative.

Instructor Lecture Resources

The following resources are available online at www.wiley.com/college/meriam. There 
may be additional resources not listed.

WileyPlus: A complete online learning system to help prepare and present lectures, 
assign and manage homework, keep track of student progress, and customize your course 
content and delivery. See the description at the back of the book for more information, and 
the website for a demonstration. Talk to your Wiley representative for details on setting 
up your WileyPlus course.
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Lecture software specifi cally designed to aid the lecturer, especially in larger class-
rooms. Written by the author and incorporating fi gures from the textbooks, this software 
is based on the Macromedia Flash platform. Major use of animation, concise review of the 
theory, and numerous sample problems make this tool extremely useful for student self-
review of the material.

All fi gures in the text are available in electronic format for use in creating lecture 
presentations.

All Sample Problems are available as electronic fi les for display and discussion in 
the classroom.

ACKNOWLEDGMENTS

Special recognition is due Dr. A. L. Hale, formerly of Bell Telephone Laboratories, for 
his continuing contribution in the form of invaluable suggestions and accurate checking 
of the manuscript. Dr. Hale has rendered similar service for all previous versions of this 
entire series of mechanics books, dating back to the 1950s. He reviews all aspects of the 
books, including all old and new text and fi gures. Dr. Hale carries out an independent 
solution to each new homework exercise and provides the authors with suggestions and 
needed corrections to the solutions which appear in the Instructor’s Manual. Dr. Hale is 
well known for being extremely accurate in his work, and his fi ne knowledge of the English 
language is a great asset which aids every user of this textbook.

We would like to thank the faculty members of the Department of Engineering Science 
and Mechanics at VPI&SU who regularly offer constructive suggestions. These include 
Saad A. Ragab, Norman E. Dowling, Michael W. Hyer, and J. Wallace Grant. Scott L. 
Hendricks has been particularly effective and accurate in his extensive review of the 
manuscript and preparation of WileyPlus materials.

The following individuals (listed in alphabetical order) provided feedback on recent 
editions, reviewed samples of the Eighth Edition, or otherwise contributed to the Eighth 
Edition:

Michael Ales, U.S. Merchant Marine 
Academy

Joseph Arumala, University of Maryland 
Eastern Shore

Eric Austin, Clemson University
Stephen Bechtel, Ohio State University
Peter Birkemoe, University of Toronto
Achala Chatterjee, San Bernardino 

Valley College
Jim Shih-Jiun Chen, Temple University
Yi-chao Chen, University of Houston
Mary Cooper, Cal Poly San Luis Obispo
Mukaddes Darwish, Texas Tech University
Kurt DeGoede, Elizabethtown College
John DesJardins, Clemson University
Larry DeVries, University of Utah
Craig Downing, Southeast Missouri 

State University
William Drake, Missouri State University
Raghu Echempati, Kettering University

Amelito Enriquez, Canada College
Sven Esche, Stevens Institute of 

Technology
Wallace Franklin, U.S. Merchant Marine 

Academy
Christine Goble, University of Kentucky
Barry Goodno, Georgia Institute of 

Technology
Robert Harder, George Fox University
Javier Hasbun, University of West Georgia
Javad Hashemi, Texas Tech University
Robert Hyers, University of Massachusetts, 

Amherst
Matthew Ikle, Adams State College
Duane Jardine, University of New Orleans
Mariappan Jawaharlal, California State 

University, Pomona
Qing Jiang, University of California, 

Riverside
Jennifer Kadlowec, Rowan University



x  Preface

The contributions by the staff of John Wiley & Sons, Inc., refl ect a high degree of pro-
fessional competence and are duly recognized. These include Executive Editor Linda Ratts 
(recipient of the John Wiley Global Education Editor of the Year Award for 2013), Senior 
Production Editor Suzie Chapman, Senior Designer Maureen Eide, and Senior Photograph 
Editor Lisa Gee. We wish to especially acknowledge the long-term production efforts 
of Christine Cervoni of Camelot Editorial Services, LLC, as well as the proofreading of 
Helen Walden. The staff members of Aptara, Inc., including production manager Jackie 
Henry, are recognized for their composition work. The talented illustrators of Precision 
Graphics continue to maintain a high standard of illustration excellence.

Finally, we wish to state the extremely signifi cant contribution of our families for the 
patience and support over the many hours of manuscript preparation. Dale Kraige has 
managed the preparation of the manuscript for the Eighth Edition and has been a key in-
dividual in checking all stages of the proof. In addition, both Stephanie Kokan and David 
Kraige have contributed problem ideas, illustrations, and solutions to a number of the 
problems over the past several editions.

We are extremely pleased to participate in extending the time duration of this text-
book series well past the sixty-fi ve-year mark. In the interest of providing you with the 
best possible educational materials over future years, we encourage and welcome all com-
ments and suggestions. Please address your comments to kraige@vt.edu.

Blacksburg, Virginia Princeton, West Virginia

Robert Kern, Milwaukee School of 
Engineering

John Krohn, Arkansas Tech University
Keith Lindler, United States Naval Academy
Francisco Manzo-Robledo, Washington 

State University
Geraldine Milano, New Jersey Institute 

of Technology
Saeed Niku, Cal Poly San Luis Obispo
Wilfrid Nixon, University of Iowa
Karim Nohra, University of South Florida
Vassilis Panoskaltsis, Case Western Reserve 

University
Chandra Putcha, California State 

University, Fullerton

Blayne Roeder, Purdue University
Eileen Rossman, Cal Poly San Luis Obispo
Nestor Sanchez, University of Texas, 

San Antonio
Scott Schiff, Clemson University
Joseph Schaefer, Iowa State University
Sergey Smirnov, Texas Tech University
Ertugrul Taciroglu, UCLA
Constantine Tarawneh, University of Texas
John Turner, University of Wyoming
Chris Venters, Virginia Tech
Sarah Vigmostad, University of Iowa
T. W. Wu, University of Kentucky
Mohammed Zikry, North Carolina 

State University



CONTENTS

xi

CHAPTER 1
INTRODUCTION TO STATICS 3

1/1 Mechanics 3
1/2 Basic Concepts 4
1/3 Scalars and Vectors 5
1/4 Newton’s Laws 7
1/5 Units 8
1/6 Law of Gravitation 12
1/7 Accuracy, Limits, and Approximations 13
1/8 Problem Solving in Statics 14
1/9 Chapter Review 18

CHAPTER 2
FORCE SYSTEMS 23

2/1 Introduction 23
2/2 Force 23

SECTION A TWO-DIMENSIONAL FORCE SYSTEMS 26

2/3 Rectangular Components 26
2/4 Moment 39
2/5 Couple 50
2/6 Resultants 58



xii   Contents

SECTION B THREE-DIMENSIONAL FORCE SYSTEMS 66

2/7 Rectangular Components 66
2/8 Moment and Couple 75
2/9 Resultants 89
2/10 Chapter Review 100

CHAPTER 3
EQUILIBRIUM 109

3/1 Introduction 109

SECTION A EQUILIBRIUM IN TWO DIMENSIONS 110

3/2 System Isolation and the Free-Body Diagram 110
3/3 Equilibrium Conditions 121

SECTION B EQUILIBRIUM IN THREE DIMENSIONS 143

3/4 Equilibrium Conditions 143
3/5 Chapter Review 160

CHAPTER 4
STRUCTURES 169

4/1 Introduction 169
4/2 Plane Trusses 171
4/3 Method of Joints 172
4/4 Method of Sections 184
4/5 Space Trusses 193
4/6 Frames and Machines 200
4/7 Chapter Review 220

CHAPTER 5
DISTRIBUTED FORCES 229

5/1 Introduction 229

SECTION A CENTERS OF MASS AND CENTROIDS 231

5/2 Center of Mass 231
5/3 Centroids of Lines, Areas, and Volumes 234
5/4 Composite Bodies and Figures; Approximations 250
5/5 Theorems of Pappus 261

SECTION B SPECIAL TOPICS 269

5/6 Beams—External Effects 269
5/7 Beams—Internal Effects 276
5/8 Flexible Cables 288
5/9 Fluid Statics 303
5/10 Chapter Review 321



Contents   xiii

CHAPTER 6
FRICTION 331

6/1 Introduction 331

SECTION A FRICTIONAL PHENOMENA 332

6/2 Types of Friction 332
6/3 Dry Friction 333

SECTION B APPLICATIONS OF FRICTION IN MACHINES 353

6/4 Wedges 353
6/5 Screws 354
6/6 Journal Bearings 364
6/7 Thrust Bearings; Disk Friction 365
6/8 Flexible Belts 372
6/9 Rolling Resistance 373
6/10 Chapter Review 381

CHAPTER 7
VIRTUAL WORK 391

7/1 Introduction 391
7/2 Work 391
7/3 Equilibrium 395
7/4 Potential Energy and Stability 411
7/5 Chapter Review 427

APPENDICES

APPENDIX A
AREA MOMENTS OF INERTIA 434

A/1 Introduction 434
A/2 Defi nitions 435
A/3 Composite Areas 449
A/4 Products of Inertia and Rotation of Axes 457

APPENDIX B
MASS MOMENTS OF INERTIA 469

APPENDIX C
SELECTED TOPICS OF MATHEMATICS 470

C/1 Introduction 470
C/2 Plane Geometry 470
C/3 Solid Geometry 471
C/4 Algebra 471
C/5 Analytic Geometry 472



xiv  Contents

C/6 Trigonometry 472
C/7 Vector Operations 473
C/8 Series 476
C/9 Derivatives 476
C/10 Integrals 477
C/11 Newton’s Method for Solving Intractable Equations 479
C/12 Selected Techniques for Numerical Integration 481

APPENDIX D
USEFUL TABLES 485

Table D/1 Physical Properties 485
Table D/2 Solar System Constants 486
Table D/3 Properties of Plane Figures 487
Table D/4 Properties of Homogeneous Solids 489

INDEX 493

PROBLEM ANSWERS 497



ENGINEERING MECHANICS

VO L U M E  1

E I G H T H  E D I T I O N

STATICS



Im
ag

e 
S

o
u

rc
e/

D
itt

o
/A

G
E

 f
o

to
st

o
ck

Structures which support large forces must be designed with the principles of mechanics foremost in mind. In this 
view of New York, one can see a variety of such structures.



33

CHAPTER OUTLINE

1/1 Mechanics
1/2 Basic Concepts
1/3 Scalars and Vectors
1/4 Newton’s Laws
1/5 Units
1/6 Law of Gravitation
1/7 Accuracy, Limits, and Approximations
1/8 Problem Solving in Statics
1/9 Chapter Review

INTRODUCTION 
TO STATICS1

1/1  MECHANICS

Mechanics is the physical science which deals with the effects of 
forces on objects. No other subject plays a greater role in engineering 
analysis than mechanics. Although the principles of mechanics are few, 
they have wide application in engineering. The principles of mechanics 
are central to research and development in the fi elds of vibrations, sta-
bility and strength of structures and machines, robotics, rocket and 
spacecraft design, automatic control, engine performance, fl uid fl ow, 
electrical machines and apparatus, and molecular, atomic, and sub-
atomic behavior. A thorough understanding of this subject is an essen-
tial prerequisite for work in these and many other fi elds.

Mechanics is the oldest of the physical sciences. The early history of 
this subject is synonymous with the very beginnings of engineering. 
The earliest recorded writings in mechanics are those of Archimedes 
(287–212 B.C.) on the principle of the lever and the principle of buoy-
ancy. Substantial progress came later with the formulation of the laws 
of vector combination of forces by Stevinus (1548–1620), who also 
formulated most of the principles of statics. The fi rst investigation of a 
dynamics problem is credited to Galileo (1564–1642) for his experiments 
with falling stones. The accurate formulation of the laws of motion, as 
well as the law of gravitation, was made by Newton (1642–1727), who 
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also conceived the idea of the infi nitesimal in mathematical analysis. Sub-
stantial contributions to the development of mechanics were also made 
by da Vinci, Varignon, Euler, D’Alembert, Lagrange, Laplace, and others.

In this book we will be concerned with both the development of the 
principles of mechanics and their application. The principles of mechan-
ics as a science are rigorously expressed by mathematics, and thus 
mathematics plays an important role in the application of these princi-
ples to the solution of practical problems.

The subject of mechanics is logically divided into two parts: statics, 
which concerns the equilibrium of bodies under action of forces, and 
dynamics, which concerns the motion of bodies. Engineering Mechan-
ics is divided into these two parts, Vol. 1 Statics and Vol. 2 Dynamics.

1/2  BASIC CONCEPTS

The following concepts and defi nitions are basic to the study of me-
chanics, and they should be understood at the outset.

Space is the geometric region occupied by bodies whose positions 
are described by linear and angular measurements relative to a coordi-
nate system. For three-dimensional problems, three independent coordi-
nates are needed. For two-dimensional problems, only two coordinates 
are required.

Time is the measure of the succession of events and is a basic quan-
tity in dynamics. Time is not directly involved in the analysis of statics 
problems.

Mass is a measure of the inertia of a body, which is its resistance to 
a change of velocity. Mass can also be thought of as the quantity of mat-
ter in a body. The mass of a body affects the gravitational attraction 
force between it and other bodies. This force appears in many applica-
tions in statics.

Force is the action of one body on another. A force tends to move a 
body in the direction of its action. The action of a force is characterized 
by its magnitude, by the direction of its action, and by its point of ap-
plication. Thus force is a vector quantity, and its properties are dis-
cussed in detail in Chapter 2.

A particle is a body of negligible dimensions. In the mathematical 
sense, a particle is a body whose dimensions are considered to be near 
zero so that we may analyze it as a mass concentrated at a point. We 
often choose a particle as a differential element of a body. We may treat 
a body as a particle when its dimensions are irrelevant to the descrip-
tion of its position or the action of forces applied to it.

Rigid body. A body is considered rigid when the change in distance 
between any two of its points is negligible for the purpose at hand. For 
instance, the calculation of the tension in the cable which supports the 
boom of a mobile crane under load is essentially unaffected by the small 
internal deformations in the structural members of the boom. For the 
purpose, then, of determining the external forces which act on the boom, 
we may treat it as a rigid body. Statics deals primarily with the calcula-
tion of external forces which act on rigid bodies in equilibrium. Determi-
nation of the internal deformations belongs to the study of the mechanics 
of deformable bodies, which normally follows statics in the curriculum.
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1/3  SCALARS AND VECTORS

We use two kinds of quantities in mechanics—scalars and vectors. 
Scalar quantities are those with which only a magnitude is associated. 
Examples of scalar quantities are time, volume, density, speed, energy, 
and mass. Vector quantities, on the other hand, possess direction as well 
as magnitude, and must obey the parallelogram law of addition as de-
scribed later in this article. Examples of vector quantities are displace-
ment, velocity, acceleration, force, moment, and momentum. Speed is a 
scalar. It is the magnitude of velocity, which is a vector. Thus velocity is 
specifi ed by a direction as well as a speed.

Vectors representing physical quantities can be classifi ed as free, 
sliding, or fi xed.

A free vector is one whose action is not confi ned to or associated 
with a unique line in space. For example, if a body moves without rota-
tion, then the movement or displacement of any point in the body may 
be taken as a vector. This vector describes equally well the direction and 
magnitude of the displacement of every point in the body. Thus, we may 
represent the displacement of such a body by a free vector.

A sliding vector has a unique line of action in space but not a unique 
point of application. For example, when an external force acts on a rigid 
body, the force can be applied at any point along its line of action without 
changing its effect on the body as a whole,* and thus it is a sliding vector.

A fi xed vector is one for which a unique point of application is speci-
fi ed. The action of a force on a deformable or nonrigid body must be speci-
fi ed by a fi xed vector at the point of application of the force. In this 
instance the forces and deformations within the body depend on the point 
of application of the force, as well as on its magnitude and line of action.

Conventions for Equations and Diagrams

A vector quantity V is represented by a line segment, Fig. 1/1, hav-
ing the direction of the vector and having an arrowhead to indicate the 
sense. The length of the directed line segment represents to some conve-
nient scale the magnitude ZV Z of the vector, which is printed with light-
face italic type V. For example, we may choose a scale such that an 
arrow one inch long represents a force of twenty pounds.

In scalar equations, and frequently on diagrams where only the mag-
nitude of a vector is labeled, the symbol will appear in lightface italic 
type. Boldface type is used for vector quantities whenever the directional 
aspect of the vector is a part of its mathematical representation. When 
writing vector equations, always be certain to preserve the mathematical 
distinction between vectors and scalars. In handwritten work, use a dis-
tinguishing mark for each vector quantity, such as an underline, V, or an 
arrow over the symbol, V

n
, to take the place of boldface type in print.

Working with Vectors

The direction of the vector V may be measured by an angle � from 
some known reference direction as shown in Fig. 1/1. The negative of V 

*This is the principle of transmissibility, which is discussed in Art. 2/2.

θ
–V

V

Figure 1/1
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is a vector 2V having the same magnitude as V but directed in the 
sense opposite to V, as shown in Fig. 1/1.

Vectors must obey the parallelogram law of combination. This law 
states that two vectors V1 and V2, treated as free vectors, Fig. 1/2a, may 
be replaced by their equivalent vector V, which is the diagonal of the 
parallelogram formed by V1 and V2 as its two sides, as shown in Fig. 1/2b. 
This combination is called the vector sum and is represented by the 
vector equation

V 5 V1 1 V2

where the plus sign, when used with the vector quantities (in boldface 
type), means vector and not scalar addition. The scalar sum of the mag-
nitudes of the two vectors is written in the usual way as V1 1 V2. The 
geometry of the parallelogram shows that V ? V1 1 V2.

The two vectors V1 and V2, again treated as free vectors, may also be 
added head-to-tail by the triangle law, as shown in Fig. 1/2c, to obtain the 
identical vector sum V. We see from the diagram that the order of addi-
tion of the vectors does not affect their sum, so that V1 1 V2 5 V2 1 V1.

The difference V1 2 V2 between the two vectors is easily obtained 
by adding 2V2 to V1 as shown in Fig. 1/3, where either the triangle or 
parallelogram procedure may be used. The difference V9 between the 
two vectors is expressed by the vector equation

V9 5 V1 2 V2

where the minus sign denotes vector subtraction.
Any two or more vectors whose sum equals a certain vector V are 

said to be the components of that vector. Thus, the vectors V1 and V2 in 
Fig. 1/4a are the components of V in the directions 1 and 2, respectively. 
It is usually most convenient to deal with vector components which are 
mutually perpendicular; these are called rectangular components. The 

Figure 1/2

(a) (b) (c)

V1 V1 V1

V2

V2
V2

V

V

Figure 1/3

V1 V1

V′
V′

–V2

–V2
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vectors Vx and Vy in Fig. 1/4b are the x- and y-components, respectively, of 
V. Likewise, in Fig. 1/4c, Vx9 and Vy9 are the x9- and y9-components of V. 
When expressed in rectangular components, the direction of the vector 
with respect to, say, the x-axis is clearly specifi ed by the angle �, where

� 5 tan21 
Vy

Vx

A vector V may be expressed mathematically by multiplying its 
magnitude V by a vector n whose magnitude is one and whose direction 
coincides with that of V. The vector n is called a unit vector. Thus,

V 5 Vn

In this way both the magnitude and direction of the vector are conve-
niently contained in one mathematical expression. In many problems, 
particularly three-dimensional ones, it is convenient to express the rect-
angular components of V, Fig. 1/5, in terms of unit vectors i, j, and k, 
which are vectors in the x-, y-, and z-directions, respectively, with unit 
magnitudes. Because the vector V is the vector sum of the components in 
the x-, y-, and z-directions, we can express V as follows:

V 5 Vxi 1 Vy j 1 Vzk

We now make use of the direction cosines l, m, and n of V, which are de-
fi ned by

l 5 cos �x  m 5 cos �y  n 5 cos �z

Thus, we may write the magnitudes of the components of V as

Vx 5 lV  Vy 5 mV  Vz 5 nV

where, from the Pythagorean theorem,

V 

2 5 Vx 

2 1 Vy 

2 1 Vz 

2

Note that this relation implies that l2 1 m2 1 n2 5 1.

1/4  NEWTON’S LAWS

Sir Isaac Newton was the fi rst to state correctly the basic laws gov-
erning the motion of a particle and to demonstrate their validity.* 
Slightly reworded with modern terminology, these laws are:

Law I. A particle remains at rest or continues to move with uniform 
velocity (in a straight line with a constant speed) if there is no unbal-
anced force acting on it.

Figure 1/5

V

k

i

j

z

x

y

Vzk

Vy j

Vxi

θ   x

θ   z θ   y

*Newton’s original formulations may be found in the translation of his Principia (1687)  
revised by F. Cajori, University of California Press, 1934.



8  Chapter 1    Introduction to Statics

Law II. The acceleration of a particle is proportional to the vector 
sum of forces acting on it and is in the direction of this vector sum.

Law III. The forces of action and reaction between interacting bod-
ies are equal in magnitude, opposite in direction, and collinear (they lie 
on the same line).

The correctness of these laws has been verifi ed by innumerable ac-
curate physical measurements. Newton’s second law forms the basis 
for most of the analysis in dynamics. As applied to a particle of mass m, 
it may be stated as

 F 5 ma (1/1)

where F is the vector sum of forces acting on the particle and a is the re-
sulting acceleration. This equation is a vector equation because the di-
rection of F must agree with the direction of a, and the magnitudes of F 
and ma must be equal.

Newton’s fi rst law contains the principle of the equilibrium of 
forces, which is the main topic of concern in statics. This law is actually 
a consequence of the second law, since there is no acceleration when the 
force is zero, and the particle either is at rest or is moving with a uni-
form velocity. The fi rst law adds nothing new to the description of mo-
tion but is included here because it was part of Newton’s classical 
statements.

The third law is basic to our understanding of force. It states that 
forces always occur in pairs of equal and opposite forces. Thus, the 
downward force exerted on the desk by the pencil is accompanied by an 
upward force of equal magnitude exerted on the pencil by the desk. This 
principle holds for all forces, variable or constant, regardless of their 
source, and holds at every instant of time during which the forces are 
applied. Lack of careful attention to this basic law is the cause of fre-
quent error by the beginner.

In the analysis of bodies under the action of forces, it is absolutely 
necessary to be clear about which force of each action–reaction pair is 
being considered. It is necessary fi rst of all to isolate the body under con-
sideration and then to consider only the one force of the pair which acts 
on the body in question.

1/5  UNITS

In mechanics we use four fundamental quantities called dimensions. 
These are length, mass, force, and time. The units used to measure these 
quantities cannot all be chosen independently because they must be con-
sistent with Newton’s second law, Eq. 1/1. Although there are a number 
of different systems of units, only the two systems most commonly used 
in science and technology will be used in this text. The four fundamental 
dimensions and their units and symbols in the two systems are summa-
rized in the following table.
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SI Units

The International System of Units, abbreviated SI (from the 
French, Système International d’Unités), is accepted in the United 
States and throughout the world, and is a modern version of the metric 
system. By international agreement, SI units will in time replace other 
systems. As shown in the table, in SI, the units kilogram (kg) for mass, 
meter (m) for length, and second (s) for time are selected as the base 
units, and the newton (N) for force is derived from the preceding three 
by Eq. 1/1. Thus, force (N) 5 mass (kg) 3 acceleration (m/s2) or

N 5 kg?m/s2

Thus, 1 newton is the force required to give a mass of 1 kg an accelera-
tion of 1 m/s2.

Consider a body of mass m which is allowed to fall freely near the 
surface of the earth. With only the force of gravitation acting on the 
body, it falls with an acceleration g toward the center of the earth. This 
gravitational force is the weight W of the body and is found from Eq. 1/1:

W (N) 5 m (kg) 3 g (m/s2)

U.S. Customary Units

The U.S. customary, or British system of units, also called the foot-
pound-second (FPS) system, has been the common system in business 
and industry in English-speaking countries. Although this system will 
in time be replaced by SI units, for many more years engineers must be 
able to work with both SI units and FPS units, and both systems are 
used freely in Engineering Mechanics.

As shown in the table, in the U.S. or FPS system, the units of feet 
(ft) for length, seconds (sec) for time, and pounds (lb) for force are se-
lected as base units, and the slug for mass is derived from Eq. 1/1. Thus, 
force (lb) 5 mass (slugs) 3 acceleration (ft/sec2), or

slug 5
lb-sec2

ft

Therefore, 1 slug is the mass which is given an acceleration of 1 ft/sec2 
when acted on by a force of 1 lb. If W is the gravitational force or weight 
and g is the acceleration due to gravity, Eq. 1/1 gives

m (slugs) 5
W (lb)

g (ft/sec2)

DIMENSIONAL
QUANTITY SYMBOL UNIT SYMBOL UNIT SYMBOL

Mass M kilogram kg slug —
Length L meter m foot ft
Time T second s second sec
Force F newton N pound lb

U.S. CUSTOMARY UNITSSI UNITS

Base
units Base

units
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Note that seconds is abbreviated as s in SI units, and as sec in FPS 
units.

In U.S. units the pound is also used on occasion as a unit of mass, 
especially to specify thermal properties of liquids and gases. When dis-
tinction between the two units is necessary, the force unit is frequently 
written as lbf and the mass unit as lbm. In this book we use almost ex-
clusively the force unit, which is written simply as lb. Other common 
units of force in the U.S. system are the kilopound (kip), which equals 
1000 lb, and the ton, which equals 2000 lb.

The International System of Units (SI) is termed an absolute system 
because the measurement of the base quantity mass is independent of 
its environment. On the other hand, the U.S. system (FPS) is termed a 
gravitational system because its base quantity force is defi ned as the 
gravitational attraction (weight) acting on a standard mass under speci-
fi ed conditions (sea level and 458 latitude). A standard pound is also the 
force required to give a one-pound mass an acceleration of 32.1740 
ft/sec2.

In SI units the kilogram is used exclusively as a unit of mass—never 
force. In the MKS (meter, kilogram, second) gravitational system, which 
has been used for many years in non-English-speaking countries, the 
kilogram, like the pound, has been used both as a unit of force and as a 
unit of mass.

Primary Standards

Primary standards for the measurements of mass, length, and time 
have been established by international agreement and are as follows:

Mass. The kilogram is defi ned as the mass of a specifi c platinum–
iridium cylinder which is kept at the International Bureau of Weights 
and Measures near Paris, France. An accurate copy of this cylinder is 
kept in the United States at the National Institute of Standards and 
Technology (NIST), formerly the National Bureau of Standards, and 
serves as the standard of mass for the United States.

Length. The meter, originally defi ned as one ten-millionth of the 
distance from the pole to the equator along the meridian through Paris, 
was later defi ned as the length of a specifi c platinum–iridium bar kept at 
the International Bureau of Weights and Measures. The diffi culty of ac-
cessing the bar and reproducing accurate measurements prompted the 
adoption of a more accurate and reproducible standard of length for the 
meter, which is now defi ned as 1 650 763.73 wavelengths of a specifi c ra-
diation of the krypton-86 atom.

Time. The second was originally defi ned as the fraction 1/(86 400) 
of the mean solar day. However, irregularities in the earth’s rotation led 
to diffi culties with this defi nition, and a more accurate and reproducible 
standard has been adopted. The second is now defi ned as the duration of 
9 192 631 770 periods of the radiation of a specifi c state of the cesium-
133 atom.

For most engineering work, and for our purpose in studying 
mechanics, the accuracy of these standards is considerably beyond 
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our needs. The standard value for gravitational acceleration g is 
its value at sea level and at a 458 latitude. In the two systems these 
values are

 SI units  g 5 9.806 65 m/s2

 U.S. units   g 5 32.1740 ft/sec2

The approximate values of 9.81 m/s2 and 32.2 ft/sec2, respectively, are 
suffi ciently accurate for the vast majority of engineering calculations.

Unit Conversions

The characteristics of SI units are shown inside the front cover of 
this book, along with the numerical conversions between U.S. custom-
ary and SI units. In addition, charts giving the approximate conversions 
between selected quantities in the two systems appear inside the back 
cover for convenient reference. Although these charts are useful for ob-
taining a feel for the relative size of SI and U.S. units, in time engineers 
will fi nd it essential to think directly in terms of SI units without con-
verting from U.S. units. In statics we are primarily concerned with the 
units of length and force, with mass needed only when we compute grav-
itational force, as explained previously.

Figure 1/6 depicts examples of force, mass, and length in the two 
systems of units, to aid in visualizing their relative magnitudes.

Figure 1/6

FORCE

MASS

LENGTH

1 kg
(2.20 lbm)

1 ft

1 m

(0.305 m)

(3.28 ft)

1 lbm
(0.454 kg)

1 slug or 32.2 lbm
(14.59 kg)

9.81 N
(2.20 lbf)

1 lbf
(4.45 N)

32.2 lbf
(143.1 N)
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1/6  LAW OF GRAVITATION

In statics as well as dynamics we often need to compute the weight 
of a body, which is the gravitational force acting on it. This computation 
depends on the law of gravitation, which was also formulated by New-
ton. The law of gravitation is expressed by the equation

 F 5 G 
m1m2

r2  (1/2)

 where F 5 the mutual force of attraction between two particles

 G 5 a universal constant known as the constant of gravitation

 m1, m2 5 the masses of the two particles

 r 5 the distance between the centers of the particles

The mutual forces F obey the law of action and reaction, since they are 
equal and opposite and are directed along the line joining the centers of 
the particles, as shown in Fig. 1/7. By experiment the gravitational con-
stant is found to be G 5 6.673(10211) m3/(kg?s2).

Gravitational Attraction of the Earth

Gravitational forces exist between every pair of bodies. On the sur-
face of the earth the only gravitational force of appreciable magnitude 
is the force due to the attraction of the earth. For example, each of two 
iron spheres 100 mm in diameter is attracted to the earth with a gravi-
tational force of 37.1 N, which is its weight. On the other hand, the 
force of mutual attraction between the spheres if they are just touching 
is 0.000 000 095 1 N. This force is clearly negligible compared with the 
earth’s attraction of 37.1 N. Consequently the gravitational attraction 
of the earth is the only gravitational force we need to consider for most 
engineering applications on the earth’s surface.

The gravitational attraction of the earth on a body (its weight) 
exists whether the body is at rest or in motion. Because this attrac-
tion is a force, the weight of a body should be expressed in newtons 
(N) in SI units and in pounds (lb) in U.S. customary units. Unfortu-
nately, in common practice the mass unit kilogram (kg) has been fre-
quently used as a measure of weight. This usage should disappear in 
time as SI units become more widely used, because in SI units the 
kilogram is used exclusively for mass and the newton is used for 
force, including weight.

For a body of mass m near the surface of the earth, the gravitational 
attraction F on the body is specifi ed by Eq. 1/2. We usually denote the 
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exerts on the moon (foreground) is a 
key factor in the motion of the moon.
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magnitude of this gravitational force or weight with the symbol W. Be-
cause the body falls with an acceleration g, Eq. 1/1 gives

 W 5 mg (1/3)

The weight W will be in newtons (N) when the mass m is in kilograms 
(kg) and the acceleration of gravity g is in meters per second squared 
(m/s2). In U.S. customary units, the weight W will be in pounds (lb) 
when m is in slugs and g is in feet per second squared. The standard val-
ues for g of 9.81 m/s2 and 32.2 ft/sec2 will be suffi ciently accurate for our 
calculations in statics.

The true weight (gravitational attraction) and the apparent weight 
(as measured by a spring scale) are slightly different. The difference, 
which is due to the rotation of the earth, is quite small and will be ne-
glected. This effect will be discussed in Vol. 2 Dynamics.

1/7  ACCURACY, L IMITS, AND APPROXIMATIONS

The number of signifi cant fi gures in an answer should be no 
greater than the number of fi gures justifi ed by the accuracy of the 
given data. For example, suppose the 24-mm side of a square bar was 
measured to the nearest millimeter, so we know the side length to two 
signifi cant fi gures. Squaring the side length gives an area of 576 mm2. 
However, according to our rule, we should write the area as 580 mm2, 
using only two signifi cant fi gures.

When calculations involve small differences in large quantities, 
greater accuracy in the data is required to achieve a given accuracy in 
the results. Thus, for example, it is necessary to know the numbers 
4.2503 and 4.2391 to an accuracy of fi ve signifi cant fi gures to express 
their difference 0.0112 to three-fi gure accuracy. It is often diffi cult in 
lengthy computations to know at the outset how many signifi cant fi g-
ures are needed in the original data to ensure a certain accuracy in the 
answer. Accuracy to three signifi cant fi gures is considered satisfactory 
for most engineering calculations.

In this text, answers will generally be shown to three signifi cant fi g-
ures unless the answer begins with the digit 1, in which case the answer 
will be shown to four signifi cant fi gures. For purposes of calculation, 
consider all data given in this book to be exact.

Differentials

The order of differential quantities frequently causes misunder-
standing in the derivation of equations. Higher-order differentials may 
always be neglected compared with lower-order differentials when the 
mathematical limit is approached. For example, the element of volume 
DV of a right circular cone of altitude h and base radius r may be taken 
to be a circular slice a distance x from the vertex and of thickness Dx. 
The expression for the volume of the element is

DV 5
�r2

h2  [x2 Dx 1 x(Dx)2 1
1
3 

(Dx)3]



14  Chapter 1    Introduction to Statics

Note that, when passing to the limit in going from DV to dV and from 
Dx to dx, the terms containing (Dx)2 and (Dx)3 drop out, leaving merely

dV 5
�r2

h2  x2 dx

which gives an exact expression when integrated.

Small-Angle Approximations

When dealing with small angles, we can usually make use of simpli-
fying approximations. Consider the right triangle of Fig. 1/8 where the 
angle �, expressed in radians, is relatively small. If the hypotenuse is 
unity, we see from the geometry of the fi gure that the arc length 1 3 � 
and sin � are very nearly the same. Also, cos � is close to unity. Further-
more, sin � and tan � have almost the same values. Thus, for small an-
gles we may write

sin � > tan � > �  cos � > 1

provided that the angles are expressed in radians. These approximations 
may be obtained by retaining only the fi rst terms in the series expan-
sions for these three functions. As an example of these approximations, 
for an angle of 18

 18 5 0.017 453 rad   tan 18 5 0.017 455

 sin 18 5 0.017 452  cos 18 5 0.999 848

If a more accurate approximation is desired, the fi rst two terms may 
be retained, and they are

sin � > � 2 �3/6  tan � > � 1 �3/3  cos � > 1 2 �2/2

where the angles must be expressed in radians. (To convert degrees to 
radians, multiply the angle in degrees by �/1808.) The error in replac-
ing the sine by the angle for 18 (0.0175 rad) is only 0.005 percent. For 58 
(0.0873 rad) the error is 0.13 percent, and for 108 (0.1745 rad), the error 
is still only 0.51 percent. As the angle � approaches zero, the following 
relations are true in the mathematical limit:

sin d� 5 tan d� 5 d�  cos d� 5 1

where the differential angle d� must be expressed in radians.

1/8  PROBLEM SOLVING IN STATICS

We study statics to obtain a quantitative description of forces which 
act on engineering structures in equilibrium. Mathematics establishes 
the relations between the various quantities involved and enables us to 
predict effects from these relations. We use a dual thought process in 

Figure 1/8
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solving statics problems: We think about both the physical situation and 
the corresponding mathematical description. In the analysis of every 
problem, we make a transition between the physical and the mathemat-
ical. One of the most important goals for the student is to develop the 
ability to make this transition freely.

Making Appropriate Assumptions

We should recognize that the mathematical formulation of a 
physical problem represents an ideal description, or model, which ap-
proximates but never quite matches the actual physical situation. 
When we construct an idealized mathematical model for a given engi-
neering problem, certain approximations will always be involved. 
Some of these approximations may be mathematical, whereas others 
will be physical.

For instance, it is often necessary to neglect small distances, angles, 
or forces compared with large distances, angles, or forces. Suppose a 
force is distributed over a small area of the body on which it acts. We 
may consider it to be a concentrated force if the dimensions of the area 
involved are small compared with other pertinent dimensions.

We may neglect the weight of a steel cable if the tension in the cable 
is many times greater than its total weight. However, if we must calcu-
late the defl ection or sag of a suspended cable under the action of its 
weight, we may not ignore the cable weight.

Thus, what we may assume depends on what information is desired 
and on the accuracy required. We must be constantly alert to the various 
assumptions called for in the formulation of real problems. The ability to 
understand and make use of the appropriate assumptions in the formula-
tion and solution of engineering problems is certainly one of the most im-
portant characteristics of a successful engineer. One of the major aims of 
this book is to provide many opportunities to develop this ability through 
the formulation and analysis of many practical problems involving the 
principles of statics.

Using Graphics

Graphics is an important analytical tool for three reasons:

 1. We use graphics to represent a physical system on paper with a 
sketch or diagram. Representing a problem geometrically helps us 
with its physical interpretation, especially when we must visualize 
three-dimensional problems.

 2. We can often obtain a graphical solution to problems more easily 
than with a direct mathematical solution. Graphical solutions are 
both a practical way to obtain results and an aid in our thought 
processes. Because graphics represents the physical situation and 
its mathematical expression simultaneously, graphics helps us make 
the transition between the two.

 3. Charts or graphs are valuable aids for representing results in a 
form which is easy to understand.
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The Free-Body Diagram

The subject of statics is based on surprisingly few fundamental con-
cepts and involves mainly the application of these basic relations to a 
variety of situations. In this application the method of analysis is all 
important. In solving a problem, it is essential that the laws which apply 
be carefully fi xed in mind and that we apply these principles literally 
and exactly. In applying the principles of mechanics to analyze forces 
acting on a body, it is essential that we isolate the body in question from 
all other bodies so that a complete and accurate account of all forces act-
ing on this body can be taken. This isolation should exist mentally and 
should be represented on paper. The diagram of such an isolated body 
with the representation of all external forces acting on it is called a free-
body diagram.

The free-body-diagram method is the key to the understanding of 
mechanics. This is so because the isolation of a body is the tool by which 

FORMULATING PROBLEMS AND OBTAINING SOLUTIONS

In statics, as in all engineering problems, we need to use a precise and 
logical method for formulating problems and obtaining their solutions. 
We formulate each problem and develop its solution through the follow-
ing sequence of steps.

 1. Formulate the problem:

 (a) State the given data.

 (b) State the desired result.

 (c) State your assumptions and approximations.

 2. Develop the solution:

 (a) Draw any diagrams you need to understand the relationships.

 (b) State the governing principles to be applied to your solution.

 (c) Make your calculations.

 (d) Ensure that your calculations are consistent with the accuracy 
justifi ed by the data.

 (e) Be sure that you have used consistent units throughout your 
calculations.

 ( f ) Ensure that your answers are reasonable in terms of magni-
tudes, directions, common sense, etc.

 (g) Draw conclusions.

Keeping your work neat and orderly will help your thought process and 
enable others to understand your work. The discipline of doing orderly 
work will help you develop skill in formulation and analysis. Problems 
which seem complicated at fi rst often become clear when you approach 
them with logic and discipline.

K
ey

 Concepts
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cause and effect are clearly separated and by which our attention is 
clearly focused on the literal application of a principle of mechanics. The 
technique of drawing free-body diagrams is covered in Chapter 3, where 
they are fi rst used.

Numerical Values versus Symbols

In applying the laws of statics, we may use numerical values to 
represent quantities, or we may use algebraic symbols and leave the 
answer as a formula. When numerical values are used, the magnitude 
of each quantity expressed in its particular units is evident at each 
stage of the calculation. This is useful when we need to know the mag-
nitude of each term.

The symbolic solution, however, has several advantages over the 
numerical solution. First, the use of symbols helps to focus our atten-
tion on the connection between the physical situation and its related 
mathematical description. Second, we can use a symbolic solution re-
peatedly for obtaining answers to the same type of problem, but hav-
ing different units or numerical values. Third, a symbolic solution 
enables us to make a dimensional check at every step, which is more 
diffi cult to do when numerical values are used. In any equation repre-
senting a physical situation, the dimensions of every term on both 
sides of the equation must be the same. This property is called dimen-
sional homogeneity.

Thus, facility with both numerical and symbolic forms of solution is 
essential.

Solution Methods

Solutions to the problems of statics may be obtained in one or more 
of the following ways.

 1. Obtain mathematical solutions by hand, using either algebraic 
symbols or numerical values. We can solve most problems this 
way.

 2. Obtain graphical solutions for certain problems.

 3. Solve problems by computer. This is useful when a large number 
of equations must be solved, when a parameter variation must be 
studied, or when an intractable equation must be solved.

Many problems can be solved with two or more of these methods. The 
method utilized depends partly on the engineer’s preference and partly 
on the type of problem to be solved. The choice of the most expedient 
method of solution is an important aspect of the experience to be gained 
from the problem work. There are a number of problems in Vol. 1 Stat-
ics which are designated as Computer-Oriented Problems. These prob-
lems appear at the end of the Review Problem sets and are selected to 
illustrate the type of problem for which solution by computer offers a 
distinct advantage.



1/9  CHAPTER REVIEW

This chapter has introduced the concepts, defi nitions, and units used in 
statics, and has given an overview of the procedure used to formulate and 
solve problems in statics. Now that you have fi nished this chapter, you should 
be able to do the following:

 1. Express vectors in terms of unit vectors and perpendicular components, 
and perform vector addition and subtraction.

 2. State Newton’s laws of motion.

 3. Perform calculations using SI and U.S. customary units, using appropriate 
accuracy.

 4. Express the law of gravitation and calculate the weight of an object.

 5. Apply simplifi cations based on differential and small-angle approximations.

 6. Describe the methodology used to formulate and solve statics problems.

18  Chapter 1    Introduction to Statics
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Sample Problem 1/1

Determine the weight in newtons of a car whose mass is 1400 kg. Convert 
the mass of the car to slugs and then determine its weight in pounds.

Solution.  From relationship 1/3, we have

 W 5 mg 5 1400(9.81) 5 13 730 N Ans.

From the table of conversion factors inside the front cover of the textbook, we 
see that 1 slug is equal to 14.594 kg. Thus, the mass of the car in slugs is

 m 5 1400 kg c 1 slug
14.594 kg

d 5 95.9 slugs Ans.

Finally, its weight in pounds is

 W 5 mg 5 (95.9)(32.2) 5 3090 lb Ans.

As another route to the last result, we can convert from kg to lbm. Again using 
the table inside the front cover, we have

 m 5 1400 kg c 1 lbm
0.45359 kg

d 5 3090 lbm 

The weight in pounds associated with the mass of 3090 lbm is 3090 lb, as calcu-
lated above. We recall that 1 lbm is the amount of mass which under standard 
conditions has a weight of 1 lb of force. We rarely refer to the U.S. mass unit 
lbm in this textbook series, but rather use the slug for mass. The sole use of 
slug, rather than the unnecessary use of two units for mass, will prove to be 
powerful and simple—especially in dynamics.

1

2

3

Helpful Hints

1  Our calculator indicates a result of 
13 734 N. Using the rules of signifi cant-
fi gure display used in this textbook, 
we round the written result to four 
signifi cant fi gures, or 13 730 N. Had 
the number begun with any digit 
other than 1, we would have rounded 
to three signifi cant fi gures.

2  A good practice with unit conversion 
is to multiply by a factor such as

 c 1 slug
14.594 kg

d , which has a value of 1,

 because the numerator and the de-
nominator are equivalent. Make sure 
that cancellation of the units leaves 
the units desired; here the units of 
kg cancel, leaving the desired units 
of slug.

m = 1400 kg

3  Note that we are using a previously calculated result (95.9 slugs). We must be sure that when a calculated number is 
needed in subsequent calculations, it is retained in the calculator to its full accuracy, (95.929834 . . .), until it is needed. 
This may require storing it in a register upon its initial calculation and recalling it later. We must not merely punch 
95.9 into our calculator and proceed to multiply by 32.2—this practice will result in loss of numerical accuracy. Some 
individuals like to place a small indication of the storage register used in the right margin of the work paper, directly 
beside the number stored.

Helpful Hint

1  The effective distance between the 
mass centers of the two bodies in-
volved is the radius of the earth.

R me

m = 70 kgSample Problem 1/2

Use Newton’s law of universal gravitation to calculate the weight of a 70-kg 
person standing on the surface of the earth. Then repeat the calculation by using 
W 5 mg and compare your two results. Use Table D/2 as needed.

Solution.  The two results are

  W 5  
Gmem

R2 5
(6.673?10211)(5.976?1024)(70)

[6371?103]2 5 688 N Ans.

  W 5  mg 5 70(9.81) 5 687 N  Ans.

The discrepancy is due to the fact that Newton’s universal gravitational law does 
not take into account the rotation of the earth. On the other hand, the value g 5 
9.81 m/s2 used in the second equation does account for the earth’s rotation. Note 
that had we used the more accurate value g 5 9.80665 m/s2 (which likewise ac-
counts for the earth’s rotation) in the second equation, the discrepancy would 
have been larger (686 N would have been the result).

1
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Sample Problem 1/3

For the vectors V1 and V2 shown in the fi gure,

 (a) determine the magnitude S of their vector sum S 5 V1 1 V2

 (b) determine the angle � between S and the positive x-axis

 (c) write S as a vector in terms of the unit vectors i and j and then write a 
unit vector n along the vector sum S

 (d) determine the vector difference D 5 V1 2 V2

Solution.  (a) We construct to scale the parallelogram shown in Fig. a for adding 
V1 and V2. Using the law of cosines, we have

  S2 5 32 1 42 2 2(3)(4) cos 1058

  S 5 5.59 units  Ans.

(b) Using the law of sines for the lower triangle, we have

  
sin 1058

5.59
5

sin(� 1 308)
4

  sin(� 1 308) 5 0.692

  (� 1 308) 5 43.88  � 5 13.768 Ans.

(c) With knowledge of both S and �, we can write the vector S as

  S 5  S[i cos � 1 j sin �]

  5  5.59[i cos 13.768 1 j sin 13.768] 5 5.43i 1 1.328j units Ans.

Then  n 5  
S
S

5
5.43i 1 1.328j

5.59
5 0.971i 1 0.238j  Ans.

(d) The vector difference D is

  D 5 V1 2 V2 5 4(i cos 458 1 j sin 458) 2 3(i cos 308 2 j sin 308)

  5 0.230i 1 4.33j units  Ans.

The vector D is shown in Fig. b as D 5 V1 1 (2V2).

1

2

Helpful Hints

1  You will frequently use the laws of 
cosines and sines in mechanics. See 
Art. C/6 of Appendix C for a review of 
these important geometric principles.

2  A unit vector may always be formed 
by dividing a vector by its magnitude. 
Note that a unit vector is dimen-
sionless.

x

y

V1 = 4 units

V2 = 3 units

45°

30°
i

j

x

y

V1 = 4 units

V2 = 3 units

45°
45° 60°

30°
105°

α

(a)

S

x

y V1

V2

–V2

(b)

D
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1/9 Compute the magnitude F of the force which the sun 
exerts on the earth. Perform the calculation fi rst in 
pounds and then convert your result to newtons. 
Refer to Table D/2 in Appendix D for necessary physi-
cal quantities.

F F

Problem 1/9

1/10 Determine the small gravitational force F which the 
copper sphere exerts on the steel sphere. Both spheres 
are homogeneous, and the value of r is 50 mm. 
Express your result as a vector.

x

y

4r

r

2r

Steel

Copper

r–
2

Problem 1/10

1/11 Evaluate the expression E 5 3 sin2� tan � cos � for 
� 5 28. Then use the small-angle assumptions and 
repeat the calculation.

1/12 A general expression is given by Q 5 kmbc/t2, where 
k is a dimensionless constant, m is mass, b and c 
are lengths, and t is time. Determine both the SI 
and U.S. units of Q, being sure to use the base units 
in each system.

PROBLEMS

1/1 Determine the angles made by the vector V 5 236i 1 
15j with the positive x- and y-axes. Write the unit vec-
tor n in the direction of V.

1/2 Determine the magnitude of the vector sum V 5 
V1 1 V2 and the angle �x which V makes with the 
positive x-axis. Complete both graphical and alge-
braic solutions.

y

x
30°

4

3

V1 = 27 units

V2 = 21 units

Problem 1/2

1/3 For the given vectors V1 and V2 of Prob. 1/2, deter-
mine the magnitude of the vector difference V9 5 
V2 2 V1 and the angle �x which V9 makes with the 
positive x-axis. Complete both graphical and alge-
braic solutions.

1/4 A force is specifi ed by the vector F 5 160i 1 80j 2 
120k N. Calculate the angles made by F with the pos-
itive x-, y-, and z-axes.

1/5 What is the mass in both slugs and kilograms of a 
1000-lb beam?

1/6 From the gravitational law calculate the weight W 
(gravitational force with respect to the earth) of an 
85-kg man in a spacecraft traveling in a circular orbit 
250 km above the earth’s surface. Express W in both 
newtons and pounds.

1/7 Determine the weight in newtons of a woman whose 
weight in pounds is 125. Also, fi nd her mass in slugs 
and in kilograms. Determine your own weight in 
newtons.

1/8 Suppose that two nondimensional quantities are ex-
actly A 5 8.67 and B 5 1.429. Using the rules for sig-
nifi cant fi gures as stated in this chapter, express the 
four quantities (A 1 B), (A 2 B), (AB), and (A/B).
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The properties of force systems must be thoroughly understood by the engineers who design structures such as 
these overhead cranes.
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FORCE SYSTEMS2

2/1  INTRODUCTION

In this and the following chapters, we study the effects of forces 
which act on engineering structures and mechanisms. The experience 
gained here will help you in the study of mechanics and in other sub-
jects such as stress analysis, design of structures and machines, and 
fl uid fl ow. This chapter lays the foundation for a basic understanding 
not only of statics but also of the entire subject of mechanics, and you 
should master this material thoroughly.

2/2  FORCE

Before dealing with a group or system of forces, it is necessary to ex-
amine the properties of a single force in some detail. A force has been 
defi ned in Chapter 1 as an action of one body on another. In dynamics we 
will see that a force is defi ned as an action which tends to cause acceler-
ation of a body. A force is a vector quantity, because its effect depends on 
the direction as well as on the magnitude of the action. Thus, forces may 
be combined according to the parallelogram law of vector addition.



24  Chapter 2   Force Systems

The action of the cable tension on the bracket in Fig. 2/1a is repre-
sented in the side view, Fig. 2/1b, by the force vector P of magnitude P. 
The effect of this action on the bracket depends on P, the angle �, and 
the location of the point of application A. Changing any one of these 
three specifi cations will alter the effect on the bracket, such as the force 
in one of the bolts which secure the bracket to the base, or the internal 
force and deformation in the material of the bracket at any point. Thus, 
the complete specifi cation of the action of a force must include its mag-
nitude, direction, and point of application, and therefore we must treat 
it as a fi xed vector.

External and Internal Effects

We can separate the action of a force on a body into two effects, exter-
nal and internal. For the bracket of Fig. 2/1 the effects of P external to the 
bracket are the reactive forces (not shown) exerted on the bracket by the 
foundation and bolts because of the action of P. Forces external to a body 
can be either applied forces or reactive forces. The effects of P internal to 
the bracket are the resulting internal forces and deformations distributed 
throughout the material of the bracket. The relation between internal 
forces and internal deformations depends on the material properties of 
the body and is studied in strength of materials, elasticity, and plasticity.

Principle of Transmissibility

When dealing with the mechanics of a rigid body, we ignore defor-
mations in the body and concern ourselves with only the net external ef-
fects of external forces. In such cases, experience shows us that it is not 
necessary to restrict the action of an applied force to a given point. For 
example, the force P acting on the rigid plate in Fig. 2/2 may be applied 
at A or at B or at any other point on its line of action, and the net exter-
nal effects of P on the bracket will not change. The external effects are 
the force exerted on the plate by the bearing support at O and the force 
exerted on the plate by the roller support at C.

This conclusion is summarized by the principle of transmissibility, 
which states that a force may be applied at any point on its given line of 
action without altering the resultant effects of the force external to the 
rigid body on which it acts. Thus, whenever we are interested in only 
the resultant external effects of a force, the force may be treated as a 
sliding vector, and we need specify only the magnitude, direction, and 
line of action of the force, and not its point of application. Because this 
book deals essentially with the mechanics of rigid bodies, we will treat 
almost all forces as sliding vectors for the rigid body on which they act.

Force Classifi cation

Forces are classifi ed as either contact or body forces. A contact force is 
produced by direct physical contact; an example is the force exerted on a 
body by a supporting surface. On the other hand, a body force is generated 
by virtue of the position of a body within a force fi eld such as a gravita-
tional, electric, or magnetic fi eld. An example of a body force is your weight.

Forces may be further classifi ed as either concentrated or distrib-
uted. Every contact force is actually applied over a fi nite area and is 

Figure 2/1
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The forces associated with this lift-
ing rig must be carefully identified, 
classified, and analyzed in order to 
provide a safe and effective working 
environment.
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therefore really a distributed force. However, when the dimensions of 
the area are very small compared with the other dimensions of the body, 
we may consider the force to be concentrated at a point with negligible 
loss of accuracy. Force can be distributed over an area, as in the case of 
mechanical contact, over a volume when a body force such as weight is 
acting, or over a line, as in the case of the weight of a suspended cable.

The weight of a body is the force of gravitational attraction distrib-
uted over its volume and may be taken as a concentrated force acting 
through the center of gravity. The position of the center of gravity is fre-
quently obvious if the body is symmetric. If the position is not obvious, 
then a separate calculation, explained in Chapter 5, will be necessary to 
locate the center of gravity.

We can measure a force either by comparison with other known forces, 
using a mechanical balance, or by the calibrated movement of an elastic 
element. All such comparisons or calibrations have as their basis a pri-
mary standard. The standard unit of force in SI units is the newton (N) 
and in the U.S. customary system is the pound (lb), as defi ned in Art. 1/5.

Action and Reaction

According to Newton’s third law, the action of a force is always ac-
companied by an equal and opposite reaction. It is essential to distin-
guish between the action and the reaction in a pair of forces. To do so, 
we fi rst isolate the body in question and then identify the force exerted 
on that body (not the force exerted by the body). It is very easy to mis-
takenly use the wrong force of the pair unless we distinguish carefully 
between action and reaction.

Concurrent Forces

Two or more forces are said to be concurrent at a point if their lines 
of action intersect at that point. The forces F1 and F2 shown in Fig. 2/3a 
have a common point of application and are concurrent at the point A. 
Thus, they can be added using the parallelogram law in their common 
plane to obtain their sum or resultant R, as shown in Fig. 2/3a. The re-
sultant lies in the same plane as F1 and F2.

Suppose the two concurrent forces lie in the same plane but are ap-
plied at two different points as in Fig. 2/3b. By the principle of transmis-
sibility, we may move them along their lines of action and complete 
their vector sum R at the point of concurrency A, as shown in Fig. 2/3b. 
We can replace F1 and F2 with the resultant R without altering the ex-
ternal effects on the body upon which they act.

We can also use the triangle law to obtain R, but we need to move 
the line of action of one of the forces, as shown in Fig. 2/3c. If we add the 
same two forces as shown in Fig. 2/3d, we correctly preserve the magni-
tude and direction of R, but we lose the correct line of action, because R 
obtained in this way does not pass through A. Therefore this type of 
combination should be avoided.

We can express the sum of the two forces mathematically by the 
vector equation

R 5 F1 1 F2 Figure 2/3

R

F1

F2

A

(a)

R

F1

F1

F2

F2

A

(b)

R

F1

F2

A

(c)

R

F1

F2

A

(d)

R

F1

Fa

F2

Fb

A
a

b

(e)
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Vector Components

In addition to combining forces to obtain their resultant, we often 
need to replace a force by its vector components in directions which are 
convenient for a given application. The vector sum of the components 
must equal the original vector. Thus, the force R in Fig. 2/3a may be re-
placed by, or resolved into, two vector components F1 and F2 with the 
specifi ed directions by completing the parallelogram as shown to obtain 
the magnitudes of F1 and F2.

The relationship between a force and its vector components along 
given axes must not be confused with the relationship between a force 
and its perpendicular* projections onto the same axes. Figure 2/3e 
shows the perpendicular projections Fa and Fb of the given force R onto 
axes a and b, which are parallel to the vector components F1 and F2 of 
Fig. 2/3a. Figure 2/3e shows that the components of a vector are not nec-
essarily equal to the projections of the vector onto the same axes. Fur-
thermore, the vector sum of the projections Fa and Fb is not the vector 
R, because the parallelogram law of vector addition must be used to 
form the sum. The components and projections of R are equal only 
when the axes a and b are perpendicular.

A Special Case of Vector Addition

To obtain the resultant when the two forces F1 and F2 are parallel 
as in Fig. 2/4, we use a special case of addition. The two vectors are com-
bined by fi rst adding two equal, opposite, and collinear forces F and 2F 
of convenient magnitude, which taken together produce no external ef-
fect on the body. Adding F1 and F to produce R1, and combining with the 
sum R2 of F2 and 2F yield the resultant R, which is correct in mag-
nitude, direction, and line of action. This procedure is also useful for 
graphically combining two forces which have a remote and inconvenient 
point of concurrency because they are almost parallel.

It is usually helpful to master the analysis of force systems in two 
dimensions before undertaking three-dimensional analysis. Thus the re-
mainder of Chapter 2 is subdivided into these two categories.

SECTION A TWO-DIMENSIONAL FORCE SYSTEMS

2/3  RECTANGULAR COMPONENTS

The most common two-dimensional resolution of a force vector is 
into rectangular components. It follows from the parallelogram rule 
that the vector F of Fig. 2/5 may be written as

 F 5 Fx 1 Fy (2/1)

where Fx and Fy are vector components of F in the x- and y-directions. 
Each of the two vector components may be written as a scalar times the 

*Perpendicular projections are also called orthogonal projections.

Figure 2/4

F2
F1 R1

R2

R1

R2

R

F
– F

Figure 2/5

y

x

Fy

F

j

iFx

θ
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appropriate unit vector. In terms of the unit vectors i and j of Fig. 2/5, 
Fx 5 Fxi and Fy 5 Fy j, and thus we may write

 F 5 Fxi 1 Fy j (2/2)

where the scalars Fx and Fy are the x and y scalar components of the 
vector F.

The scalar components can be positive or negative, depending on 
the quadrant into which F points. For the force vector of Fig. 2/5, the x 
and y scalar components are both positive and are related to the magni-
tude and direction of F by

  Fx 5 F cos �   F 5 !Fx 

2 1 Fy 

2 
(2/3)

 Fy 5 F sin �   � 5 tan21 
Fy

Fx

Conventions for Describing Vector Components

We express the magnitude of a vector with lightface italic type in 
print; that is, ZFZ is indicated by F, a quantity which is always nonnega-
tive. However, the scalar components, also denoted by lightface italic 
type, will include sign information. See Sample Problems 2/1 and 2/3 for 
numerical examples which involve both positive and negative scalar 
components.

When both a force and its vector components appear in a diagram, 
it is desirable to show the vector components of the force with dashed 
lines, as in Fig. 2/5, and show the force with a solid line, or vice versa. 
With either of these conventions it will always be clear that a force and 
its components are being represented, and not three separate forces, as 
would be implied by three solid-line vectors.

Actual problems do not come with reference axes, so their assign-
ment is a matter of arbitrary convenience, and the choice is frequently 
up to the student. The logical choice is usually indicated by the way in 
which the geometry of the problem is specifi ed. When the principal di-
mensions of a body are given in the horizontal and vertical directions, for 
example, you would typically assign reference axes in these directions.

Determining the Components of a Force

Dimensions are not always given in horizontal and vertical direc-
tions, angles need not be measured counterclockwise from the x-axis, 
and the origin of coordinates need not be on the line of action of a force. 
Therefore, it is essential that we be able to determine the correct com-
ponents of a force no matter how the axes are oriented or how the an-
gles are measured. Figure 2/6 suggests a few typical examples of vector 
resolution in two dimensions.

Memorization of Eqs. 2/3 is not a substitute for understanding the 
parallelogram law and for correctly projecting a vector onto a reference 
axis. A neatly drawn sketch always helps to clarify the geometry and 
avoid error. Figure 2/6

β

β

y

F

Fx = F sin  

x

βFy = F cos  

β

F y

x
βπFx = F sin (         )     

Fy = – F cos  

–

βπ                   (         ) –

β
F

y

x

βFx = – F cos  

βFy = – F sin  

α

β

F
y

x

αβFx = F cos(         )–
αβFy = F sin(         )–
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Rectangular components are convenient for fi nding the sum or re-
sultant R of two forces which are concurrent. Consider two forces F1 
and F2 which are originally concurrent at a point O. Figure 2/7 shows 
the line of action of F2 shifted from O to the tip of F1 according to the 
triangle rule of Fig. 2/3. In adding the force vectors F1 and F2, we may 
write

R 5 F1 1 F2 5 (F1x
i 1 F1y

j) 1 (F2x
i 1 F2y

j)

or

Rxi 1 Ryj 5 (F1x
1 F2x

)i 1 (F1y
1 F2y

) j

from which we conclude that

  Rx 5 F1x
1 F2x

5 oFx  
(2/4)

 Ry 5 F1y
1 F2y

5 ©Fy

The term oFx means “the algebraic sum of the x scalar components”. 
For the example shown in Fig. 2/7, note that the scalar component F2y

 
would be negative.

The structural elements in the fore-
ground transmit concentrated forces 
to the brackets at both ends.
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Sample Problem 2/1

The forces F1, F2, and F3, all of which act on point A of the bracket, are 
specifi ed in three different ways. Determine the x and y scalar components of 
each of the three forces.

Solution.  The scalar components of F1, from Fig. a, are

  F1x
5 600 cos 358 5 491 N Ans.

  F1y
5 600 sin 358 5 344 N Ans.

The scalar components of F2, from Fig. b, are

  F2x
5 2500(4

5) 5 2400 N Ans.

  F2y
5 500(3

5) 5 300 N  Ans.

Note that the angle which orients F2 to the x-axis is never calculated. The cosine 
and sine of the angle are available by inspection of the 3-4-5 triangle. Also note 
that the x scalar component of F2 is negative by inspection.

The scalar components of F3 can be obtained by fi rst computing the angle � 
of Fig. c.

 � 5 tan21 c 0.2
0.4
d 5 26.68

Then,  F3x
5 F3 sin � 5 800 sin 26.68 5 358 N  Ans.

  F3y
5 2F3 cos � 5 2800 cos 26.68 5 2716 N Ans.

Alternatively, the scalar components of F3 can be obtained by writing F3 as 
a magnitude times a unit vector nAB in the direction of the line segment AB. 
Thus,

  F3 5 F3nAB 5 F3 
AB
¡

AB
5 800 c 0.2i 2 0.4j

!(0.2)2 1 (20.4)2
d

  5 800 [0.447i 2 0.894j 4
  5 358i 2 716j N

The required scalar components are then

 F3x
5 358 N  Ans.

 F3y
5 2716 N Ans.

which agree with our previous results.

1

2

Helpful Hints

1  You should carefully examine the 
geometry of each component deter-
mination problem and not rely on 
the blind use of such formulas as 
Fx 5 F cos � and Fy 5 F sin �.

2  A unit vector can be formed by di-
viding any vector, such as the geo-
metric position vector AB

¡
, by its 

length or magnitude. Here we use 
the overarrow to denote the vector 
which runs from A to B and the 
overbar to determine the distance 
between A and B.

0.4 m

0.2 m

0.1 m

0.3 m

F2 = 500 N

F3 = 800 N

F1 = 600 N

3
4

A

B

x

y

35°

F2 = 500 N

3
4

F1 = 600 N

A

A

B

A

35°

F1y

F1x

F3x

F3yF2y

F2x

0.4 m

0.2 m

(a)

(b)

(c)

α

F
3 = 800 N
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Sample Problem 2/2

Combine the two forces P and T, which act on the fi xed structure at B, into 
a single equivalent force R.

Graphical solution.  The parallelogram for the vector addition of forces T and 
P is constructed as shown in Fig. a. The scale used here is 1 in. 5 800 lb; a scale 
of 1 in. 5 200 lb would be more suitable for regular-size paper and would give 
greater accuracy. Note that the angle a must be determined prior to construction 
of the parallelogram. From the given fi gure

 tan � 5
BD

AD
5

6 sin 608

3 1 6 cos 608
5 0.866   � 5 40.98

Measurement of the length R and direction � of the resultant force R yields the 
approximate results

 R 5 525 lb   � 5 498 Ans.

Geometric solution.  The triangle for the vector addition of T and P is 
shown in Fig. b. The angle � is calculated as above. The law of cosines gives

  R2 5 (600)2 1 (800)2 2  2(600)(800) cos 40.98 5 274,300

  R 5 524 lb  Ans.

From the law of sines, we may determine the angle � which orients R. Thus,

 
600
sin �

5
524

sin 40.98
  sin � 5 0.750  � 5 48.68 Ans.

Algebraic solution.  By using the x-y coordinate system on the given fi gure, 
we may write

  Rx 5 oFx 5 800 2 600 cos 40.98 5 346 lb

  Ry 5 ©Fy 5 2600 sin 40.98 5 2393 lb

The magnitude and direction of the resultant force R as shown in Fig. c are then

  R 5 !Rx 

2 1 Ry 

2 5 !(346)2 1 (2393)2 5 524 lb Ans.

  � 5 tan21 
ZRy Z

ZRx Z
5 tan21 

393
346

5 48.68  Ans.

The resultant R may also be written in vector notation as

 R 5 Rxi 1 Ry j 5 346i 2 393j lb Ans.

1

2

P = 800 lb

T = 60
0 l

b
B

DCA

y

x

α  60°

6′

3′

Helpful Hints

1  Note the repositioning of P to per-
mit parallelogram addition at B.

600 lb

RT

(a)

B
P

α

θ
800 lb

2  Note the repositioning of F so as to 
preserve the correct line of action of 
the resultant R.

600 lb

B P

R

T

α

α

θ

(b)

800 lb

Rx = 346 lb

Ry = – 393 lb

B x

y

R

θ

(c)



a

C

50°

50°

b

F2

F1

R

80 N

100 N

Fb

30°
20°

C

b

a

F1 = 100 N

F2 = 80 N
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Sample Problem 2/3

The 500-N force F is applied to the vertical pole as shown. (1) Write F in 
terms of the unit vectors i and j and identify both its vector and scalar com-
ponents. (2) Determine the scalar components of the force vector F along the 
x9- and y9-axes. (3) Determine the scalar components of F along the x- and y9-axes.

Solution.  Part (1). From Fig. a we may write F as

  F 5 (F cos �)i 2 (F sin �)j

  5 (500 cos 608)i 2 (500 sin 608)j

  5 (250i 2 433j) N  Ans.

The scalar components are Fx 5 250 N and Fy 5 2433 N. The vector compo-
nents are Fx 5 250i N and Fy 5 2433j N.

Part (2). From Fig. b we may write F as F 5 500i9 N, so that the required 
scalar components are

 Fx9 5 500 N  Fy9 5 0 Ans.

Part (3). The components of F in the x- and y9-directions are nonrectan-
gular and are obtained by completing the parallelogram as shown in Fig. c. The 
magnitudes of the components may be calculated by the law of sines. Thus,

 
ZFxZ

sin 908
5

500
sin 308

  ZFxZ 5 1000 N

 
ZFy9Z

sin 608
5

500
sin 308

  ZFy9Z 5 866 N

The required scalar components are then

 Fx 5 1000 N  Fy9 5 2866 N Ans.

1

Helpful Hint

1  Obtain Fx and Fy9 graphically and 
compare your results with the calcu-
lated values.

y

y′

x′

i′

i

j′

j

A
x

30°

30°

F = 500 N

A A

F
F

x

x

y

x′

y′

Fy

Fy′

Fx

Fx

= 60°θ

y′

i′

j′

(a) (b)

(c)

F = 500 N
30° 60°

90° 60° 30°

90°

Sample Problem 2/4

Forces F1 and F2 act on the bracket as shown. Determine the projection Fb 
of their resultant R onto the b-axis.

Solution. The parallelogram addition of F1 and F2 is shown in the fi gure. 
Using the law of cosines gives us

 R2 5 (80)2 1 (100)2 2 2(80)(100) cos 1308  R 5 163.4 N

The fi gure also shows the orthogonal projection Fb of R onto the b-axis. Its 
length is

 Fb 5 80 1 100 cos 508 5 144.3 N Ans.

Note that the components of a vector are in general not equal to the projec-
tions of the vector onto the same axes. If the a-axis had been perpendicular to 
the b-axis, then the projections and components of R would have been equal.
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x

y

F  =  6.5 kN

12

5

Problem 2/3

2/4  The force F has a magnitude of 1250 lb and has the 
indicated line of action. Write the unit vector n as-
sociated with F and use n to determine the x and y 
scalar components of F.

x, ft

y, ft

F = 1250 lb

A (–3, 7)

B (10, –8)

O

Problem 2/4

2/5 The control rod AP exerts a force F on the sector as 
shown. Determine both the x-y and the n-t components 
of the force.

x

y

n

t
α

F

β

O

A

P

r

Problem 2/5

PROBLEMS

Introductory Problems

2/1 The force F has a magnitude of 800 N. Express F as a 
vector in terms of the unit vectors i and j. Identify the 
x and y scalar components of F.

F = 800 N

35°

y

x
O

Problem 2/1

2/2 The force F has a magnitude of 7 kN and acts at the 
location indicated. Express F as a vector in terms of 
the unit vectors i and j. Next, determine the x and y 
scalar components of F.

25°

x, mO

y, m

F = 7 kN

A (–4, –5)

Problem 2/2

2/3 The slope of the 6.5-kN force F is specifi ed as shown 
in the fi gure. Express F as a vector in terms of the 
unit vectors i and j.
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F

r

s

P

O

t

n

Problem 2/8

2/9 The y-component of the force F which a person exerts 
on the handle of the box wrench is known to be 70 lb. 
Determine the x-component and the magnitude of F.

y

x

5

12

F

Problem 2/9

2/10 Determine the x-y and n-t components of the 13-kip 
force F acting on the simply-supported beam.

A

B

C

t

n
15′

25′

40°

15°

F = 13 kips

x

y

Problem 2/10

2/6 Two forces are applied to the construction bracket as 
shown. Determine the angle � which makes the resul-
tant of the two forces vertical. Determine the magni-
tude R of the resultant.

70°

x

z

yF1 = 800 lb

F2 = 425 lb

θ

Problem 2/6

2/7 Two individuals are attempting to relocate a sofa by 
applying forces in the indicated directions. If F1 5 
500 N and F2 5 350 N, determine the vector expres-
sion for the resultant R of the two forces. Then deter-
mine the magnitude of the resultant and the angle 
which it makes with the positive x-axis.

F1

x

y

F2

B

A

60°

Problem 2/7

2/8 A small probe P is gently forced against the circular 
surface with a vertical force F as shown. Determine 
the n- and t-components of this force as functions of 
the horizontal position s.
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x

y
60°

T

T

Problem 2/13

2/14 Two people exert the forces shown on the potted 
shrub. Determine the vector expression for the re-
sultant R of the forces and determine the angle 
which the resultant makes with the positive y-axis.

F1 = 25 lb

15°

40°

F2 = 35 lb

x

y

Problem 2/14

2/15 A compressive force F is transmitted via the coupler 
arm AB to disk OA. Develop the general expression 
for the n- and t-components of F as they act on the 
disk. Evaluate your expressions for (a) F 5 500 N, 
� � 608, � 5 208 and (b) F 5 800 N, � 5 458, 
� 5 1508.

Representative Problems

2/11 The two structural members, one of which is in 
tension and the other in compression, exert the indi-
cated forces on joint O. Determine the magnitude of 
the resultant R of the two forces and the angle � 
which R makes with the positive x-axis.

3 kN

2 kN

x
30°

3

4

O

Problem 2/11

2/12 The guy cables AB and AC are attached to the top of 
the transmission tower. The tension in cable AB is 
8 kN. Determine the required tension T in cable AC 
such that the net effect of the two cable tensions is 
a downward force at point A. Determine the magni-
tude R of this downward force.

40 m 50 m

20 m

30 m

A

B

C

Problem 2/12

2/13 If the equal tensions T in the pulley cable are 400 N, 
express in vector notation the force R exerted on the 
pulley by the two tensions. Determine the magni-
tude of R.
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F2 = 2.8 kN

F1

y

xz

O

θ

30°

Problem 2/17

2/18 Determine the x- and y-components of the tension T 
which is applied to point A of the bar OA. Neglect 
the effects of the small pulley at B. Assume that r 
and � are known.

T

θ O

A

x

y

n

t

r

r

B

Problem 2/18

2/19 Refer to the mechanism of the previous problem. De-
velop general expressions for the n- and t-components 
of the tension T applied to point A. Then evaluate 
your expressions for T 5 100 N and � 5 358.

n

�

t

B

F

O

A

θ

Problem 2/15

2/16 A force F of magnitude 800 lb is applied to point C 
of the bar AB as shown. Determine both the x-y and 
the n-t components of F.

B

C

F = 800 lb

A

60°

40°

x

t

n

y

Problem 2/16

2/17 The two forces shown act in the x-y plane of the 
T-beam cross section. If it is known that the resultant 
R of the two forces has a magnitude of 3.5 kN and a 
line of action that lies 158 above the negative x-axis, 
determine the magnitude of F1 and the inclination 
� of F2.
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F

Direction of F
A

50°

50°

F

a

b

A

Problem 2/22

2/23 Determine the scalar components Ra and Rb of the 
force R along the nonrectangular axes a and b. Also 
determine the orthogonal projection Pa of R onto 
axis a.

O

a

b

110°

30°
R = 800 N

Problem 2/23

2/24 Determine the components Fa and Fb of the 4-kN 
force along the oblique axes a and b. Determine the 
projections Pa and Pb of F onto the a- and b-axes.

2/20 Determine the magnitude Fs of the tensile spring 
force in order that the resultant of Fs and F is a ver-
tical force. Determine the magnitude R of this verti-
cal resultant force.

A

F = 120 lb

60°

Problem 2/20

2/21 Determine the resultant R of the two forces applied 
to the bracket. Write R in terms of unit vectors 
along the x- and y-axes shown.

35°

30°

yy

x

200 N

150 N

20°

'

x'

Problem 2/21

2/22 A sheet of an experimental composite is subjected 
to a simple tension test to determine its strength 
along a particular direction. The composite is rein-
forced by the Kevlar fi bers shown, and a close-up 
showing the direction of the applied tension force 
F in relation to the fi ber directions at point A is 
shown. If the magnitude of F is 2.5 kN, determine 
the components Fa and Fb of the force F along the 
oblique axes a and b. Also determine the projections 
Pa and Pb of F onto the a-b axes.
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2/27 At what angle � must the 800-lb force be applied in 
order that the resultant R of the two forces have a 
magnitude of 2000 lb? For this condition, determine 
the angle � between R and the vertical.

θ

1400 lb

800 lb

Problem 2/27

2/28 Power is to be transferred from the pinion A to the 
output gear C inside a mechanical drive. Because of 
output motion requirements and space limitations, 
an idler gear B is introduced as shown. A force 
analysis has determined that the total contact force 
between each pair of meshing teeth has a magni-
tude Fn 5 5500 N, and these forces are shown acting 
on idler gear B. Determine the magnitude of the 
resultant R of the two contact forces acting on the 
idler gear. Complete both a graphical and a vector 
solution.

C

BA

Fn

Fn

x

y

20°

20°45°

Problem 2/28

y

b

a

x
O

F = 4 kN

15°

30°
40°

Problem 2/24

2/25 If the projection Pa and component Fb of the force 
F along oblique axes a and b are both 325 N, deter-
mine the magnitude F and the orientation � of the 
b-axis.

a

b

A

F 

115°
75°

θ

Problem 2/25

2/26 It is desired to remove the spike from the timber by 
applying force along its horizontal axis. An obstruc-
tion A prevents direct access, so that two forces, one 
400 lb and the other P, are applied by cables as 
shown. Compute the magnitude of P necessary to 
ensure a resultant T directed along the spike. Also 
fi nd T.

8″

4″

6″
A

P

400 lb

Problem 2/26
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 c2/30 The unstretched length of the spring is r. When pin 
P is in an arbitrary position �, determine the x- and 
y-components of the force which the spring exerts 
on the pin. Evaluate your general expressions for 
r 5 400 mm, k 5 1.4 kN/m, and � 5 408. (Note: The 
force in a spring is given by F 5 k�, where � is the 
extension from the unstretched length.)

x

n

k

t

y

2r

O

A

r
P

θ

Problem 2/30

2/29 To insert the small cylindrical part into a close-fi tting 
circular hole, the robot arm must exert a 90-N force P 
on the part parallel to the axis of the hole as shown. 
Determine the components of the force which the 
part exerts on the robot along axes (a) parallel and 
perpendicular to the arm AB, and (b) parallel and 
perpendicular to the arm BC.

60°

45°

B

A
C

D

15°

P = 90 N

Problem 2/29
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2/4  MOMENT

In addition to the tendency to move a body in the direction of its ap-
plication, a force can also tend to rotate a body about an axis. The axis 
may be any line which neither intersects nor is parallel to the line of ac-
tion of the force. This rotational tendency is known as the moment M of 
the force. Moment is also referred to as torque.

As a familiar example of the concept of moment, consider the pipe 
wrench of Fig. 2/8a. One effect of the force applied perpendicular to 
the handle of the wrench is the tendency to rotate the pipe about its 
vertical axis. The magnitude of this tendency depends on both the 
magnitude F of the force and the effective length d of the wrench 
handle. Common experience shows that a pull which is not perpendic-
ular to the wrench handle is less effective than the right-angle pull 
shown.

Moment about a Point

Figure 2/8b shows a two-dimensional body acted on by a force F in 
its plane. The magnitude of the moment or tendency of the force to ro-
tate the body about the axis O-O perpendicular to the plane of the 
body is proportional both to the magnitude of the force and to the mo-
ment arm d, which is the perpendicular distance from the axis to the 
line of action of the force. Therefore, the magnitude of the moment is 
defi ned as

 M 5 Fd (2/5)

The moment is a vector M perpendicular to the plane of the body. The 
sense of M depends on the direction in which F tends to rotate the 
body. The right-hand rule, Fig. 2/8c, is used to identify this sense. We 
represent the moment of F about O-O as a vector pointing in the direc-
tion of the thumb, with the fi ngers curled in the direction of the rota-
tional tendency.

The moment M obeys all the rules of vector combination and 
may be considered a sliding vector with a line of action coinciding 
with the moment axis. The basic units of moment in SI units are 
newton-meters (N?m), and in the U.S. customary system are pound-
feet (lb-ft).

When dealing with forces which all act in a given plane, we custom-
arily speak of the moment about a point. By this we mean the moment 
with respect to an axis normal to the plane and passing through the 
point. Thus, the moment of force F about point A in Fig. 2/8d has the 
magnitude M 5 Fd and is counterclockwise.

Moment directions may be accounted for by using a stated sign con-
vention, such as a plus sign (1) for counterclockwise moments and a 
minus sign (2) for clockwise moments, or vice versa. Sign consistency 
within a given problem is essential. For the sign convention of Fig. 2/8d, 
the moment of F about point A (or about the z-axis passing through 
point A) is positive. The curved arrow of the fi gure is a convenient way 
to represent moments in two-dimensional analysis. Figure 2/8
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F

M

M
F
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d

M = Fd
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The Cross Product

In some two-dimensional and many of the three-dimensional prob-
lems to follow, it is convenient to use a vector approach for moment 
calculations. The moment of F about point A of Fig. 2/8b may be 
represented by the cross-product expression

 M 5 r 3 F (2/6)

where r is a position vector which runs from the moment reference 
point A to any point on the line of action of F. The magnitude of this ex-
pression is given by*

 M 5 Fr sin � 5 Fd (2/7)

which agrees with the moment magnitude as given by Eq. 2/5. Note that 
the moment arm d 5 r sin � does not depend on the particular point on 
the line of action of F to which the vector r is directed. We establish the 
direction and sense of M by applying the right-hand rule to the se-
quence r 3 F. If the fi ngers of the right hand are curled in the direction 
of rotation from the positive sense of r to the positive sense of F, then 
the thumb points in the positive sense of M.

We must maintain the sequence r 3 F, because the sequence F 3 r 
would produce a vector with a sense opposite to that of the correct 
moment. As was the case with the scalar approach, the moment M 
may be thought of as the moment about point A or as the moment 
about the line O-O which passes through point A and is perpendicular 
to the plane containing the vectors r and F. When we evaluate the 
moment of a force about a given point, the choice between using the 
vector cross product or the scalar expression depends on how the 
geometry of the problem is specifi ed. If we know or can easily deter-
mine the perpendicular distance between the line of action of the 
force and the moment center, then the scalar approach is generally 
simpler. If, however, F and r are not perpendicular and are easily ex-
pressible in vector notation, then the cross-product expression is often 
preferable.

In Section B of this chapter, we will see how the vector formulation 
of the moment of a force is especially useful for determining the mo-
ment of a force about a point in three-dimensional situations.

Varignon’s Theorem

One of the most useful principles of mechanics is Varignon’s theo-
rem, which states that the moment of a force about any point is equal to 
the sum of the moments of the components of the force about the same 
point.

*See item 7 in Art. C/7 of Appendix C for additional information concerning the cross 
product.
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To prove this theorem, consider the force R acting in the plane of 
the body shown in Fig. 2/9a. The forces P and Q represent any two 
nonrectangular components of R. The moment of R about point O is 

MO 5 r 3 R

Because R 5 P 1 Q, we may write

r 3 R 5 r 3 (P 1 Q)

Using the distributive law for cross products, we have

 MO 5 r 3 R 5 r 3 P 1 r 3 Q (2/8)

which says that the moment of R about O equals the sum of the mo-
ments about O of its components P and Q. This proves the theorem.

Varignon’s theorem need not be restricted to the case of two compo-
nents, but it applies equally well to three or more. Thus we could have 
used any number of concurrent components of R in the foregoing 
proof.*

Figure 2/9b illustrates the usefulness of Varignon’s theorem. The 
moment of R about point O is Rd. However, if d is more diffi cult to de-
termine than p and q, we can resolve R into the components P and Q, 
and compute the moment as 

MO 5 Rd 5 2pP 1 qQ

where we take the clockwise moment sense to be positive.
Sample Problem 2/5 shows how Varignon’s theorem can help us to 

calculate moments.

*As originally stated, Varignon’s theorem was limited to the case of two concurrent com-
ponents of a given force. See The Science of Mechanics, by Ernst Mach, originally pub-
lished in 1883.

Figure 2/9
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Sample Problem 2/5

Calculate the magnitude of the moment about the base point O of the 
600-N force in fi ve different ways.

Solution.  (I) The moment arm to the 600-N force is

 d 5 4 cos 408 1 2 sin 408 5 4.35 m

By M 5 Fd the moment is clockwise and has the magnitude 

 MO 5 600(4.35) 5 2610 N?m Ans.

(II) Replace the force by its rectangular components at A,

 F1 5 600 cos 408 5 460 N,  F2 5 600 sin 408 5 386 N

By Varignon’s theorem, the moment becomes

 MO 5 460(4) 1 386(2) 5 2610 N?m Ans.

(III) By the principle of transmissibility, move the 600-N force along its 
line of action to point B, which eliminates the moment of the component F2. The 
moment arm of F1 becomes

 d1 5 4 1 2 tan 408 5 5.68 m

and the moment is

 MO 5 460(5.68) 5 2610 N?m Ans.

(IV) Moving the force to point C eliminates the moment of the component 
F1. The moment arm of F2 becomes 

 d2 5 2 1 4 cot 408 5 6.77 m

and the moment is

 MO 5 386(6.77) 5 2610 N?m Ans.

(V) By the vector expression for a moment, and by using the coordinate 
system indicated on the fi gure together with the procedures for evaluating cross 
products, we have

  MO 5 r 3 F 5 (2i 1 4j) 3  600(i cos 408 2 j sin 408) 

  5 22610k N?m

The minus sign indicates that the vector is in the negative z-direction. The mag-
nitude of the vector expression is

 MO 5 2610 N?m Ans.

1

2

3

4

Helpful Hints

1  The required geometry here and in 
similar problems should not cause dif-
fi culty if the sketch is carefully drawn.

2  This procedure is frequently the 
shortest approach.

3  The fact that points B and C are not 
on the body proper should not cause 
concern, as the mathematical calcula-
tion of the moment of a force does not 
require that the force be on the body.

4  Alternative choices for the position 
vector r are r 5 d1j 5 5.68j m and 
r 5 d2i 5 6.77i m.

2 m

4 m

A

O

40°

600 N

2 m

4 m
600 N

40°

40°

O

d

2 m

4 m

O

F2 = 600 sin 40°

F1 = 600 cos 40°

O

C

B

F

A
x

y
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F2

F1

F1
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Sample Problem 2/6

The trap door OA is raised by the cable AB, which passes over the small fric-
tionless guide pulleys at B. The tension everywhere in the cable is T, and this ten-
sion applied at A causes a moment MO about the hinge at O. Plot the quantity MO /T 
as a function of the door elevation angle � over the range 0 # � # 908 and note mini-
mum and maximum values. What is the physical signifi cance of this ratio?

Solution.  We begin by constructing a fi gure which shows the tension force T 
acting directly on the door, which is shown in an arbitrary angular position �. It 
should be clear that the direction of T will vary as � varies. In order to deal with 
this variation, we write a unit vector nAB which “aims” T:

 nAB 5
rAB

rAB
5

rOB 2  rOA

rAB
 

Using the x-y coordinates of our fi gure, we can write

 rOB 5 0.4j m and rOA 5 0.5(cos �i 1 sin �j) m 

So
  rAB 5 rOB 2 rOA 5 0.4j 2 (0.5)(cos �i 1 sin �j)

  5 20.5 cos �i 1 (0.4 2 0.5 sin �)j m
and
  rAB 5 !(0.5 cos �)2 1 (0.4 2 0.5 sin �)2

  5 !0.41 2 0.4 sin � m

The desired unit vector is

 nAB 5
rAB

rAB
5

20.5 cos �i 1 (0.4 2 0.5 sin �)j

!0.41 2 0.4 sin �

Our tension vector can now be written as

 T 5 TnAB 5 T c20.5 cos �i 1 (0.4 2 0.5 sin �)j

!0.41 2 0.4 sin �
d

The moment of T about point O, as a vector, is MO 5 rOB 3 T, where rOB 5 0.4j m, or 

  MO 5 0.4j 3  T c20.5 cos �i 1 (0.4 2 0.5 sin �)j

!0.41 2 0.4 sin �
d

  5
0.2T cos �

!0.41 2 0.4 sin �
 k

The magnitude of MO is

 MO 5
0.2T cos �

!0.41 2 0.4 sin �

and the requested ratio is

 
MO

T
5

0.2 cos �

!0.41 2 0.4 sin �
 Ans.

which is plotted in the accompanying graph. The expression MO/T is the moment 
arm d (in meters) which runs from O to the line of action of T. It has a maximum 
value of 0.4 m at � 5 53.18 (at which point T is horizontal) and a minimum value of 
0 at � 5 908 (at which point T is vertical). The expression is valid even if T varies.

This sample problem treats moments in two-dimensional force systems, and 
it also points out the advantages of carrying out a solution for an arbitrary posi-
tion, so that behavior over a range of positions can be examined.

1

2

3

Helpful Hints

1  Recall that any unit vector can be 
written as a vector divided by its 
magnitude. In this case the vector in 
the numerator is a position vector.

0.4 m
0.5 m

0.3 m

T
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O θ
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B
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0.4

0.3

0.2

0.1

0

, m
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MO——–
T

, degθ

2  Recall that any vector may be writ-
ten as a magnitude times an “aim-
ing” unit vector.

3  In the expression M 5 r 3 F, the po-
sition vector r runs from the mo-
ment center to any point on the line 
of action of F. Here, rOB is more con-
venient than rOA.
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2/34 Calculate the moment of the 250-N force on the 
handle of the monkey wrench about the center of 
the bolt.

200 mm

30 mm

15°

250 N

Problem 2/34

2/35 An experimental device imparts a force of magni-
tude F 5 47 lb to the front edge of the rim at A to 
simulate the effect of a slam dunk. Determine the 
moments of the force F about point O and about 
point B. Finally, locate, from the base at O, a point C 
on the ground where the force imparts zero moment.

O

A

F

B

10′

36″

12″

28″

3
4

Problem 2/35

2/36 A force F of magnitude 60 N is applied to the gear. 
Determine the moment of F about point O.

PROBLEMS

Introductory Problems

2/31 Determine the moments of the 5-kN force about 
point O and about point B.

60°

B (16, 0)
x, m

A (12, −15)

F = 5 kN

y, m

O

Problem 2/31

2/32 The force of magnitude F acts along the edge of the 
triangular plate. Determine the moment of F about 
point O.

O

h

b

F

Problem 2/32

2/33 The rectangular plate is made up of 1-ft squares as 
shown. A 30-lb force is applied at point A in the di-
rection shown. Calculate the moment MB of the force 
about point B by at least two different methods.

x

A

B

y

1 ft

30 lb

1 ft

Problem 2/33
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C

B

A

P  =  30 N

45°

1.6 m

1.6 m

Problem 2/39

2/40 A man exerts a force F on the handle of the station-
ary wheelbarrow at A. The weight of the wheelbar-
row along with its load of dirt is 185 lb with center 
of gravity at G. For the confi guration shown, what 
force F must the man apply at A to make the net 
moment about the tire contact point B equal to zero?

G

A

W

F

B

26″

37″ 8″

60°

20°

Problem 2/40

2/41 A 32-lb pull T is applied to a cord, which is wound 
securely around the inner hub of the drum. Deter-
mine the moment of T about the drum center C. At 
what angle � should T be applied so that the moment 
about the contact point P is zero?

θ

T = 32 lb

5″

8″

P

C

Problem 2/41

20°

F = 60 N

r = 100 mm

O

Problem 2/36

2/37 A man uses a crowbar to lift the corner of a hot tub 
for maintenance purposes. Determine the moment 
made by the 85-lb force about point O. Neglect the 
small thickness of the crowbar.

15°
85 lb

A

O
26″20°

Problem 2/37

Representative Problems

2/38 An overhead view of a door is shown. If the com-
pressive force F acting in the coupler arm of the 
hydraulic door closer is 17 lb with the orientation 
shown, determine the moment of this force about 
the hinge axis O.

O

B

A

12″

1″

F = 17 lb

20°
1 ″3–

8

1 ″1–
2

Problem 2/38

2/39 The 30-N force P is applied perpendicular to the 
portion BC of the bent bar. Determine the moment 
of P about point B and about point A.
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B

r

F

O

A

θ�

Problem 2/44

2/45 Determine the moments of the tension T about 
point P and about point O.

P

A

O
r

T

θ
α

Problem 2/45

2/46 In raising the pole from the position shown, the ten-
sion T in the cable must supply a moment about O 
of 72 kN?m. Determine T.

60°O

T

10 m

30 m

12 m

Problem 2/46

2/42 As a trailer is towed in the forward direction, the 
force F 5 120 lb is applied as shown to the ball of 
the trailer hitch. Determine the moment of this 
force about point O.

F = 120 lb

1.25′′

1.5′′

30°

11′′

A

O

Problem 2/42

2/43 Determine the general expressions for the moments 
of F about (a) point B and (b) point O. Evaluate 
your expressions for F 5 750 N, R 5 2.4 m, � 5 308, 
and � 5 158.

2R

A

R

B

O

F
θ

Problem 2/43

2/44 The mechanism of Prob. 2/15 is repeated here. 
Develop a general expression for the moment MO of 
the force acting on the coupler arm AB about the 
center O of the disk. Evaluate your expression for 
(a) F 5 500 N, � 5 608, � 5 208, and (b) F 5 800 N, 
� 5 458, � 5 1508. Assume a value of r 5 0.4 m for 
both cases.
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2/49 In order to raise the fl agpole OC, a light frame OAB 
is attached to the pole and a tension of 780 lb is de-
veloped in the hoisting cable by the power winch D. 
Calculate the moment MO of this tension about the 
hinge point O.

B

A

OD C
20°

10′ 10′

10′

Problem 2/49

2/50 Elements of the lower arm are shown in the fi gure. 
The weight of the forearm is 5 lb with center of 
gravity at G. Determine the combined moment 
about the elbow pivot O of the weights of the fore-
arm and the sphere. What must the biceps tension 
force be so that the overall moment about O is zero?

13″

6″

2″

8 lb
5 lb

T

G

A

O

55°

Problem 2/50

2/47 The lower lumbar region A of the spine is the part 
of the spinal column most susceptible to abuse while 
resisting excessive bending caused by the moment 
about A of a force F. For given values of F, b, and h, 
determine the angle � which causes the most severe 
bending strain.

b

h

F

A

θ

Problem 2/47

2/48 A gate is held in the position shown by cable AB. If 
the tension in the cable is 6.75 kN, determine the 
moment MO of the tension (as applied to point A) 
about the pivot point O of the gate.

O

2 m

60°

6 
m

0.5 m

7 m

B

A

0.4 m

x

y

Problem 2/48
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B

C

A

θ

785mm

340mm

360
mm

110
mm

O

Problem 2/53

2/54 The 120-N force is applied as shown to one end of 
the curved wrench. If � 5 308, calculate the moment 
of F about the center O of the bolt. Determine the 
value of � which would maximize the moment about 
O; state the value of this maximum moment.

A

O

F = 120 N

150 mm

25 mm
70m

m

25 mm

α

70m
m

Problem 2/54

2/55 The bent cantilever beam is acted upon by an 8-kN 
force at B. If the angle � 5 358, determine (a) the 
moment MO of the force about point O and (b) the 
moment MA of the force about point A. What value(s) 
of � (0 , � , 3608) will result in the maximum 
possible moment about point O, and what is the 
magnitude of the moment at those orientations?

B

3 m
8 kN

4 m

45°

30°
O

x

y

A

θ

Problem 2/55

2/51 As the result of a wind blowing normal to the plane 
of the rectangular sign, a uniform pressure of 
3.5 lb/ft2 is exerted in the direction shown in the 
fi gure. Determine the moment of the resulting force 
about point O. Express your result as a vector using 
the coordinates shown.

24″

30″

40″

xz

O

y

Problem 2/51

2/52 The masthead fi tting supports the two forces shown. 
Determine the magnitude of T which will cause no 
bending of the mast (zero moment) at point O.

C

O

60 mm 2

5
30°

90 
mm

120
mm

T5 kN

Problem 2/52

2/53 The small crane is mounted along the side of a 
pickup bed and facilitates the handling of heavy 
loads. When the boom elevation angle is � 5 408, the 
force in the hydraulic cylinder BC is 4.5 kN, and 
this force applied at point C is in the direction from 
B to C (the cylinder is in compression). Determine 
the moment of this 4.5-kN force about the boom 
pivot point O.



 Article 2/4   Problems  49

5°

22′ 30′

50′

16′

4321

35′ 35′

B

A

C
O

D E
F

Problem 2/57

 *2/58 The woman maintains a slow steady motion over 
the indicated 1358 range as she exercises her triceps 
muscle. For this condition, the tension in the cable 
can be assumed to be constant at W 5 10 lb. Deter-
mine and plot the moment M of the cable tension as 
applied at A about the elbow joint O over the range 
0 # � # 1358. Find the maximum value of M and 
the value of � for which it occurs.

45°

24″

21″

13″

B

A

O

W

θ

Problem 2/58

2/56 The mechanism shown is used to lower disabled 
persons into a whirlpool tub for therapeutic treat-
ment. In the unloaded confi guration, the weight of 
the boom and hanging chair induces a compressive 
force of 575 N in hydraulic cylinder AB. (Compres-
sive means that the force which cylinder AB exerts 
on point B is directed from A toward B.) If � 5 308, 
determine the moment of this cylinder force acting 
on pin B about (a) point O and (b) point C.

A

O

C

Dimensions in millimeters

Bθ

800

200

200

400

900

150

175

175

100

Problem 2/56

2/57 The asymmetrical support arrangement is chosen 
for a pedestrian bridge because conditions at the 
right end F do not permit a support tower and an-
chorages. During a test, the tensions in cables 2, 3, 
and 4 are all adjusted to the same value T. If the 
combined moment of all four cable tensions about 
point O is to be zero, what should be the value T1 of 
the tension in cable 1? Determine the corresponding 
value of the compression force P at O resulting from 
the four tensions applied at A. Neglect the weight of 
the tower.
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2/5  COUPLE

The moment produced by two equal, opposite, and noncollinear 
forces is called a couple. Couples have certain unique properties and 
have important applications in mechanics.

Consider the action of two equal and opposite forces F and 2F a dis-
tance d apart, as shown in Fig. 2/10a. These two forces cannot be combined 
into a single force because their sum in every direction is zero. Their only 
effect is to produce a tendency of rotation. The combined moment of the 
two forces about an axis normal to their plane and passing through any 
point such as O in their plane is the couple M. This couple has a magnitude 

M 5 F(a 1 d) 2 Fa

or
M 5 Fd

Its direction is counterclockwise when viewed from above for the case il-
lustrated. Note especially that the magnitude of the couple is indepen-
dent of the distance a which locates the forces with respect to the 
moment center O. It follows that the moment of a couple has the same 
value for all moment centers.

Vector Algebra Method

We may also express the moment of a couple by using vector alge-
bra. With the cross-product notation of Eq. 2/6, the combined moment 
about point O of the forces forming the couple of Fig. 2/10b is

M 5 rA 3 F 1 rB 3 (2F) 5 (rA 2 rB) 3 F

where rA and rB are position vectors which run from point O to arbi-
trary points A and B on the lines of action of F and 2F, respectively. 
Because rA 2 rB 5 r, we can express M as

M 5 r 3 F

Here again, the moment expression contains no reference to the mo-
ment center O and, therefore, is the same for all moment centers. Thus, 
we may represent M by a free vector, as shown in Fig. 2/10c, where the 
direction of M is normal to the plane of the couple and the sense of M is 
established by the right-hand rule.

Because the couple vector M is always perpendicular to the plane of 
the forces which constitute the couple, in two-dimensional analysis we 
can represent the sense of a couple vector as clockwise or counterclockwise 
by one of the conventions shown in Fig. 2/10d. Later, when we deal with 
couple vectors in three-dimensional problems, we will make full use of 
vector notation to represent them, and the mathematics will automati-
cally account for their sense.

Equivalent Couples

Changing the values of F and d does not change a given couple as 
long as the product Fd remains the same. Likewise, a couple is not af-
fected if the forces act in a different but parallel plane. Figure 2/11 

Figure 2/10

M
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(b)

(c)

Counterclockwise
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shows four different confi gurations of the same couple M. In each of 
the four cases, the couples are equivalent and are described by the 
same free vector which represents the identical tendencies to rotate the 
bodies.

Force–Couple Systems

The effect of a force acting on a body is the tendency to push or pull 
the body in the direction of the force and to rotate the body about any 
fi xed axis which does not intersect the line of the force. We can repre-
sent this dual effect more easily by replacing the given force by an equal 
parallel force and a couple to compensate for the change in the moment 
of the force.

The replacement of a force by a force and a couple is illustrated in 
Fig. 2/12, where the given force F acting at point A is replaced by an 
equal force F at some point B and the counterclockwise couple M 5 Fd. 
The transfer is seen in the middle fi gure, where the equal and opposite 
forces F and 2F are added at point B without introducing any net exter-
nal effects on the body. We now see that the original force at A and the 
equal and opposite one at B constitute the couple M 5 Fd, which is 
counterclockwise for the sample chosen, as shown in the right-hand part 
of the fi gure. Thus, we have replaced the original force at A by the same 
force acting at a different point B and a couple, without altering the ex-
ternal effects of the original force on the body. The combination of the 
force and couple in the right-hand part of Fig. 2/12 is referred to as a 
force–couple system.

By reversing this process, we can combine a given couple and a force 
which lies in the plane of the couple (normal to the couple vector) to 
produce a single, equivalent force. Replacement of a force by an equiva-
lent force–couple system, and the reverse procedure, have many applica-
tions in mechanics and should be mastered.

Figure 2/11
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Sample Problem 2/7

The rigid structural member is subjected to a couple consisting of the two 
100-N forces. Replace this couple by an equivalent couple consisting of the two 
forces P and 2P, each of which has a magnitude of 400 N. Determine the proper 
angle �.

Solution.  The original couple is counterclockwise when the plane of the forces 
is viewed from above, and its magnitude is

[M 5 Fd] M 5 100(0.1) 5 10 N?m

The forces P and 2P produce a counterclockwise couple

 M 5 400(0.040) cos �

Equating the two expressions gives 

  10 5 (400)(0.040) cos �

  � 5 cos21
 
10
16 5 51.38  Ans.

Helpful Hint

1  Since the two equal couples are parallel free vectors, the only dimensions 
which are relevant are those which give the perpendicular distances between 
the forces of the couples.

1

M

40

100

100

100
60

100 N

100 N

Dimensions in millimeters

P

–P
θ

θ

40 mmd

θ

θ

θ

P = 400 N

P = 400 N

60°
O

9″

80 lb

80 lb

≡ ≡

80 lb
624 lb-in.

80 lb

O O O

80 lb 80 lb

Sample Problem 2/8

Replace the horizontal 80-lb force acting on the lever by an equivalent sys-
tem consisting of a force at O and a couple.

Solution.  We apply two equal and opposite 80-lb forces at O and identify the 
counterclockwise couple

[M 5 Fd] M 5 80(9 sin 608) 5 624 lb-in. Ans.

Thus, the original force is equivalent to the 80-lb force at O and the 624-lb-in. 
couple as shown in the third of the three equivalent fi gures.

Helpful Hint

1  The reverse of this problem is often encountered, namely, the replacement 
of a force and a couple by a single force. Proceeding in reverse is the same as 
replacing the couple by two forces, one of which is equal and opposite to the 
80-lb force at O. The moment arm to the second force would be M/F 5 
624/80 5 7.79 in., which is 9 sin 608, thus determining the line of action of the 
single resultant force of 80 lb.

1



 Article 2/5   Problems  53

2/61 The indicated force–couple system is applied to a 
small shaft at the center of the plate. Replace this 
system by a single force and specify the coordinate of 
the point on the x-axis through which the line of ac-
tion of this resultant force passes.

O
F = 6 kN

M = 400 N·m

x

y

Problem 2/61

2/62 Replace the 3.2-kN force by an equivalent force–
couple system at (a) point O and (b) point B. Record 
your answers in vector format.

7.5 m B (6, 2)

O

3.2 kN

30°

y, m

A

x, m

Problem 2/62

PROBLEMS

Introductory Problems

2/59 The caster unit is subjected to the pair of 80-lb 
forces shown. Determine the moment associated with 
these forces.

80 lb

1.4′′

80 lb

Problem 2/59

2/60 For F 5 65 lb, compute the combined moment of 
the two forces about (a) point O, (b) point C, and 
(c) point D.

C (−12, −12)

D (20, 0)

B (20, −7)

O 

A (−10, 14)

20°
F y, ft

x, ft

20°
F

Problem 2/60
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2/65 Each propeller of the twin-screw ship develops a 
full-speed thrust of 300 kN. In maneuvering the 
ship, one propeller is turning full speed ahead and 
the other full speed in reverse. What thrust P must 
each tug exert on the ship to counteract the effect of 
the ship’s propellers?

12 m
F

F

50 m

120 m

Problem 2/65

2/66 The upper hinge A of the uniform cabinet door has 
malfunctioned, causing the entire weight W of the 
12-lb door to be carried by the lower hinge B. De-
termine the couple associated with these two forces. 
You may neglect the slight offset from the edge of 
the cabinet door to the hinge centerline.

24″

30″

B

A

W

W

Problem 2/66

2/63 As part of a test, the two aircraft engines are revved 
up and the propeller pitches are adjusted so as to re-
sult in the fore and aft thrusts shown. What force F 
must be exerted by the ground on each of the main 
braked wheels at A and B to counteract the turning 
effect of the two propeller thrusts? Neglect any ef-
fects of the nose wheel C, which is turned 908 and 
unbraked.

500 lb

C

A

B
500 lb

8′ 14′

Problem 2/63

2/64 The cantilevered W530 3 150 beam shown is sub-
jected to an 8-kN force F applied by means of a 
welded plate at A. Determine the equivalent force–
couple system at the centroid of the beam cross sec-
tion at the cantilever O.

3 m

0.65 m

30°

A

F

O

Problem 2/64
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2/69 A force F of magnitude 50 N is exerted on the 
automobile parking-brake lever at the position 
x 5 250 mm. Replace the force by an equivalent 
force–couple system at the pivot point O.

x

100 mm
10°

20°

15°

F

O

Problem 2/69

2/70 An overhead view of a portion of an exercise ma-
chine is shown. If the tension in the cable is T 5 
780 N, determine the equivalent force–couple system 
at (a) point B and at (b) point O. Record your an-
swers in vector format.

x

y

A

O

T

B

83
mm 381

mm

127
mm20°

40°

Problem 2/70

Representative Problems

2/67 A lug wrench is used to tighten a square-head bolt. If 
50-lb forces are applied to the wrench as shown, de-
termine the magnitude F of the equal forces exerted 
on the four contact points on the 1-in. bolt head so 
that their external effect on the bolt is equivalent to 
that of the two 50-lb forces. Assume that the forces 
are perpendicular to the fl ats of the bolt head.

14″

50 lb

B

A
C

50 lb

14″

1″

View C Detail
(clearances exaggerated)

Problem 2/67

2/68 The force F is applied at the end of arm ACD, which 
is mounted to a vertical post. Replace this single 
force F by an equivalent force–couple system at B. 
Next, redistribute this force and couple by replac-
ing it with two forces acting in the same direction 
as F, one at C and the other at D, and determine the 
forces supported by the two hex-bolts. Use values of 
F 5 425 N, � 5 308, b 5 1.9 m, d 5 0.2 m, h 5 0.8 m, 
and l 5 2.75 m.

x

y

A C D

F

B

O

h

l

b

dd

θ

Problem 2/68
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2/73 An overhead view of the handlebars on an all-
terrain vehicle is shown. If the indicated forces have 
a magnitude of F 5 35 lb, determine the moment 
created by the two forces about the vertical steering 
axis through point O. Both n-axes are perpendicu-
lar to the left handlebar. Treat the problem as two-
dimensional.

A
F F

OA = OB

n n

O

B

30″

15°15°

10°10°

Problem 2/73

2/74 The force F is applied to the leg-extension exercise 
machine as shown. Determine the equivalent force–
couple system at point O. Use values of F 5 520 N, 
b 5 450 mm, h 5 215 mm, r 5 325 mm, � 5 158, and 
� 5 108.

r

O

Bb

h A

F
θ

φ

x

y

Problem 2/74

2/71 The tie-rod AB exerts the 250-N force on the steer-
ing knuckle AO as shown. Replace this force by an 
equivalent force–couple system at O.

50 mm

235 mm

10° F = 250 N

A

B

O

x

y

Problem 2/71

2/72 The 20-N force F is applied to the handle of the 
directional control valve as shown. Compute the 
equivalent force–couple system at point B.

A

O

B

25°

F
25 mm

26 mm

154 mm

102 mm

14 mm

Problem 2/72
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2/77 Replace the two cable tensions which act on the 
pulley at O of the beam trolley by two parallel forces 
which act at the track-wheel connections A and B.

200
mm

200
mm

180
mm

6.3 kN 4.1 kN

A

O

B

Problem 2/77

2/78 The force F acts along line MA, where M is the 
midpoint of the radius along the x-axis. Determine 
the equivalent force–couple system at O if � 5 408.

x

y

O M

A

F

θ

R––
2

R––
2

Problem 2/78

2/75 The system consisting of the bar OA, two identical 
pulleys, and a section of thin tape is subjected to the 
two 180-N tensile forces shown in the fi gure. Deter-
mine the equivalent force–couple system at point O.

O

A

50 mm

100 mm

r = 25 mm

r

r

45°

180 N

180 N

Problem 2/75

2/76 The device shown is a part of an automobile seat-
back-release mechanism. The part is subjected to 
the 4-N force exerted at A and a 300-N?mm restor-
ing moment exerted by a hidden torsional spring. 
Determine the y-intercept of the line of action of the 
single equivalent force.

15°

O

F = 4 N

40 mm

10 mm

300 N·mm
x

y

A

Problem 2/76
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2/6  RESULTANTS

The properties of force, moment, and couple were developed in the 
previous four articles. Now we are ready to describe the resultant action of 
a group or system of forces. Most problems in mechanics deal with a system 
of forces, and it is usually necessary to reduce the system to its simplest 
form to describe its action. The resultant of a system of forces is the sim-
plest force combination which can replace the original forces without alter-
ing the external effect on the rigid body to which the forces are applied.

Equilibrium of a body is the condition in which the resultant of all 
forces acting on the body is zero. This condition is studied in statics. When 
the resultant of all forces on a body is not zero, the acceleration of the body 
is obtained by equating the force resultant to the product of the mass and 
acceleration of the body. This condition is studied in dynamics. Thus, the 
determination of resultants is basic to both statics and dynamics.

The most common type of force system occurs when the forces all 
act in a single plane, say, the x-y plane, as illustrated by the system of 
three forces F1, F2, and F3 in Fig. 2/13a. We obtain the magnitude and 
direction of the resultant force R by forming the force polygon shown 
in part b of the fi gure, where the forces are added head-to-tail in any 
sequence. Thus, for any system of coplanar forces we may write 

R 5 F1 1 F2 1 F3 1 ? ? ? 5 ©F

 Rx 5 ©Fx  Ry 5 ©Fy  R 5 !(©Fx)2 1 (©Fy)2 (2/9)

� 5 tan21 
Ry

Rx
5 tan21 

©Fy

©Fx

Graphically, the correct line of action of R may be obtained by pre-
serving the correct lines of action of the forces and adding them by the 
parallelogram law. We see this in part a of the fi gure for the case of 
three forces where the sum R1 of F2 and F3 is added to F1 to obtain R. 
The principle of transmissibility has been used in this process.

Algebraic Method

We can use algebra to obtain the resultant force and its line of ac-
tion as follows:

 1. Choose a convenient reference point and move all forces to that 
point. This process is depicted for a three-force system in Figs. 
2/14a and b, where M1, M2, and M3 are the couples resulting from 
the transfer of forces F1, F2, and F3 from their respective original 
lines of action to lines of action through point O.

 2. Add all forces at O to form the resultant force R, and add all couples 
to form the resultant couple MO. We now have the single force–
couple system, as shown in Fig. 2/14c.

 3. In Fig. 2/14d, fi nd the line of action of R by requiring R to have a 
moment of MO about point O. Note that the force systems of Figs. 
2/14a and 2/14d are equivalent, and that o(Fd) in Fig. 2/14a is equal 
to Rd in Fig. 2/14d.

Figure 2/13

F1

F2

F3

F1

R1
R1

F2

F3

R

y

x

F1

F1x

F1y

F2yF3y

F2x
F3x

Rx

F2

θ

F3

RRy

(a)

(b)
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Principle of Moments

This process is summarized in equation form by

R 5 ©F

 MO 5 ©M 5 © (Fd) (2/10)

Rd 5 MO

The fi rst two of Eqs. 2/10 reduce a given system of forces to a force–couple 
system at an arbitrarily chosen but convenient point O. The last equation 
specifi es the distance d from point O to the line of action of R, and states 
that the moment of the resultant force about any point O equals the sum 
of the moments of the original forces of the system about the same point. 
This extends Varignon’s theorem to the case of nonconcurrent force sys-
tems; we call this extension the principle of moments.

For a concurrent system of forces where the lines of action of all 
forces pass through a common point O, the moment sum oMO about 
that point is zero. Thus, the line of action of the resultant R 5 oF, de-
termined by the fi rst of Eqs. 2/10, passes through point O. For a paral-
lel force system, select a coordinate axis in the direction of the forces. 
If the resultant force R for a given force system is zero, the resultant 
of the system need not be zero because the resultant may be a couple. 
The three forces in Fig. 2/15, for instance, have a zero resultant force 
but have a resultant clockwise couple M 5 F3d.

Figure 2/14

F1

F2

F3

d3d1

d2O

(a) (b)

F1M1 = F1d1

M2 = F2d2
M3 = F3d3

F2

F3

O

(c)

MO = Σ(Fd)

R = ΣF

O

(d)

R

O

d

d =
MO–—
R

Figure 2/15

F1

F2

d

F1 + F2 = –F3

F1

F2

F3
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Sample Problem 2/9

Determine the resultant of the four forces and one couple which act on the 
plate shown.

Solution.  Point O is selected as a convenient reference point for the force–couple 
system which is to represent the given system.

[Rx 5 ©Fx]    Rx 5 40 1 80 cos 308 2 60 cos 458 5 66.9 N

[Ry 5 ©Fy]    Ry 5 50 1 80 sin 308 1 60 cos 458 5 132.4 N

[R 5 !Rx 

2 1 Ry 

2]    R 5 !(66.9)2 1 (132.4)2 5 148.3 N Ans.

c � 5 tan21 
Ry

Rx
d      � 5 tan21 

132.4
66.9

5 63.28 Ans.

[MO 5 ©(Fd)]  MO 5 140 2 50(5) 1 60 cos 458(4) 2 60 sin 458(7) 

       5 2237 N?m

The force–couple system consisting of R and MO is shown in Fig. a.
We now determine the fi nal line of action of R such that R alone represents 

the original system.

[Rd 5 |MOu] 148.3d 5 237  d 5 1.600 m Ans.

Hence, the resultant R may be applied at any point on the line which makes a 
63.28 angle with the x-axis and is tangent at point A to a circle of 1.600-m radius 
with center O, as shown in part b of the fi gure. We apply the equation Rd 5 MO in 
an absolute-value sense (ignoring any sign of MO) and let the physics of the situa-
tion, as depicted in Fig. a, dictate the fi nal placement of R. Had MO been counter-
clockwise, the correct line of action of R would have been the tangent at point B.

The resultant R may also be located by determining its intercept distance b 
to point C on the x-axis, Fig. c. With Rx and Ry acting through point C, only Ry 
exerts a moment about O so that 

 Ry 

b 5 |MO|  and  b 5
237

132.4
5 1.792 m

Alternatively, the y-intercept could have been obtained by noting that the mo-
ment about O would be due to Rx only.

A more formal approach in determining the fi nal line of action of R is to use 
the vector expression 

 r 3 R 5 MO

where r 5 xi 1 yj is a position vector running from point O to any point on the 
line of action of R. Substituting the vector expressions for r, R, and MO and car-
rying out the cross product result in

  (xi 1 yj) 3  (66.9i 1 132.4j) 5 2237k

  (132.4x 2 66.9y)k 5 2237k

Thus, the desired line of action, Fig. c, is given by

 132.4x 2 66.9y 5 2237

By setting y 5 0, we obtain x 5 21.792 m, which agrees with our earlier calcula-
tion of the distance b.

1

2

Helpful Hints

1  We note that the choice of point O as 
a moment center eliminates any mo-
ments due to the two forces which 
pass through O. Had the clockwise 
sign convention been adopted, MO 
would have been 1237 N?m, with 
the plus sign indicating a sense 
which agrees with the sign conven-
tion. Either sign convention, of 
course, leads to the conclusion of a 
clockwise moment MO.

2  Note that the vector approach 
yields sign information automati-
cally, whereas the scalar approach 
is more physically oriented. You 
should master both methods.

50 N
60 N

2 m

2 m

2 m

1 m

5 m

140 N·m

80 N

40 N 30°

45°

O x

y

R = 148.3 N

 = 63.2°θ

O
x

y

|MO| =
237 N·m

R = 148.3 N

63.2°1.600 m

O

A

B
x

132.4x – 66.9y =
–237

O
b

x

y

R

C

(a)

(b)

(c)
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determine the equation for the line of action of the 
stand-alone resultant force R.

70°

0.3 m

0.3 m

1 m

1 m

1.5 m

x

y

O 4 kN

10 kN
6 kN

15 kN·m

0.5
m

Problem 2/81

2/82 Determine the equivalent force–couple system at the 
center O for each of the three cases of forces being 
applied along the edges of a square plate of side d.

FF

x

y

d

d O

(a)

F

F

x

y

d

O

(b)

F

F

x

y

d

O

(c)

Problem 2/82

2/83 Determine the equivalent force–couple system at O 
for each of the three cases of forces applied along 
the edges of an equilateral triangle of side l. Where 
possible, replace this force–couple system with a 
single force and specify the location along the y-axis 
through which the single force acts. Note that the 
location of O in each case is at the centroid of the tri-
angle. See Table D/3 in Appendix D for the centroid 
location of a triangle.

F 2F

x

y

l

O

(b)

F
1––
2

2F 5F

x

y

l

O

(c)

3F

3F F

x

y

l

O

(a)

2F

Problem 2/83

PROBLEMS

Introductory Problems

2/79 Determine the resultant R of the three tension forces 
acting on the eye bolt. Find the magnitude of R and 
the angle �x which R makes with the positive x-axis.

20 kN

30°

45°

y

x

8 kN

4 kN

Problem 2/79

2/80 Determine the force magnitude F and direction � 
(measured clockwise from the positive y-axis) that 
will cause the resultant R of the four applied forces 
to be directed to the right with a magnitude of 9 kN.

7 kN

30°30°

F y

x

O

20 kN

11 kN

θ

Problem 2/80

2/81 Replace the three horizontal forces and applied 
couple with an equivalent force–couple system at O 
by specifying the resultant R and couple MO. Next, 
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150
mm

150
mm

160
mm

30°

60°

320 N

400 N

M

O

Problem 2/87

Representative Problems

2/88 If the resultant of the forces shown passes through 
point A, determine the magnitude of the unknown 
tension T2 which acts on the braked pulley.

275 N 1600 N

300 N

650 N

T2

A

B

O

1.5 m 1.8 m

0.6 m

1.25 m

0.5
m

50°

Problem 2/88

2/89 Replace the three forces acting on the bent pipe by a 
single equivalent force R. Specify the distance x 
from point O to the point on the x-axis through 
which the line of action of R passes.

O

y

x

10″
40 lb

50 lb

60 lb

10″ 5″10″

Problem 2/89

2/84 Determine the height h above the base B at which 
the resultant of the three forces acts.

300 lb

250 lb

650 lb

B

30″

30″

30″

Problem 2/84

2/85 Where does the resultant of the two forces act?

500
mm

300
mm

680 N

660 N

A

Problem 2/85

2/86 If the resultant of the loads shown passes through 
point B, determine the equivalent force–couple 
system at O.

4′ 3′

O x

A B

C

M

3′

12 kips10 kips

4 kips

Problem 2/86

2/87 If the resultant of the two forces and couple M passes 
through point O, determine M.
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of its line of action. Note that the front and rear 
tracks of the vehicle are equivalent; that is, AD 5 BC. 
Treat this as a two-dimensional problem and realize 
that G lies on the car centerline.

E A B

FCD

y

x
G

30° 20°
43″ 65″

4″

61″

32″

14″

125 lb

40 lb

60 lb

160 lb

85 lb

30°

Problem 2/92

2/93 A commercial airliner with four jet engines, each 
producing 90 kN of forward thrust, is in a steady, 
level cruise when engine number 3 suddenly fails. 
Determine and locate the resultant of the three re-
maining engine thrust vectors. Treat this as a two-
dimensional problem.

9 m
90 kN

4

9 m

12 m

12 m

90 kN

90 kN

3

2

1

Problem 2/93

2/90 Four people are attempting to move a stage plat-
form across the fl oor. If they exert the horizontal 
forces shown, determine (a) the equivalent force–
couple system at O and (b) the points on the x- and 
y-axes through which the line of action of the single 
resultant force R passes.

45°A B

C

O
x

y

90 lb

80 lb

35 lb

88″

66″

70 lb

Problem 2/90

2/91 Replace the three forces which act on the bent bar 
by a force–couple system at the support point A. 
Then determine the x-intercept of the line of action 
of the stand-alone resultant force R.

1200 lb

2500 lb

800 lb

y

x

3′

30°

2′

2′

A B

C

D E

4′

Problem 2/91

2/92 Uneven terrain conditions cause the left front wheel 
of the all-wheel-drive vehicle to lose traction with 
the ground. If the driver causes the traction forces 
shown to be generated by the other three wheels 
while his two friends exert the indicated forces on the 
vehicle periphery at points E and F, determine the 
resultant of this system and the x- and y-intercepts 
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2/97 For the truss loaded as shown, determine the equa-
tion for the line of action of the stand-alone resul-
tant R and state the coordinates of the points on 
the x- and y-axes through which the line of action 
passes. All triangles are 3-4-5.

E

F D

C

B

A
x

y

G

H

35 kN

20 kN

40 kN
8 m

6 m

125 kN • m

15 kN

Problem 2/97

2/98 Five forces are applied to the beam trolley as shown. 
Determine the coordinates of the point on the y-axis 
through which the stand-alone resultant R must 
pass if F 5 5 kN and � 5 308.

F

O

y

x
3 kN

4 kN

0.8 kN

0.6 kN

600 mm
55 mm

280 mm

θ

Problem 2/98

2/94 Determine the x- and y-axis intercepts of the line of 
action of the resultant of the three loads applied to 
the gearset.

2.4 kN
1.5 kN

300 mm

200 mm
120 mm

20° 20°

20°
3.6 kN

y

O x

Problem 2/94

2/95 Replace the three cable tensions acting on the upper 
portion of the compound bow with an equivalent 
force–couple system at O.

A

AC = AD = 15 mm

B

O

D

C
y

x

37°

255 mm

50 mm

115 mm
335 N

25 N 40 N

3° 5°

53
mm

Problem 2/95

2/96 Determine the resultant R of the three forces acting 
on the simple truss. Specify the points on the x- and 
y-axes through which R must pass.

25 kN

y

xO

20 kN

30 kN

30°

6 m

5 m

3 m 3 m

Problem 2/96
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2/100 An exhaust system for a pickup truck is shown in 
the fi gure. The weights Wh, Wm, and Wt of the head-
pipe, muffl er, and tailpipe are 10, 100, and 50 N, 
respectively, and act at the indicated points. If the 
exhaust-pipe hanger at point A is adjusted so that 
its tension FA is 50 N, determine the required forces 
in the hangers at points B, C, and D so that the 
force–couple system at point O is zero. Why is a zero 
force–couple system at O desirable?

30°

D

r = 0.35

C

FC FD

FBFA

Wh Wm

BAO

30°

Wt

0.650.20.5 0.65

Dimensions in meters

0.5 0.4

Problem 2/100

2/99 As part of a design test, the camshaft–drive sprocket 
is fi xed, and then the two forces shown are applied to 
a length of belt wrapped around the sprocket. Find 
the resultant of this system of two forces and deter-
mine where its line of action intersects both the 
x- and y-axes.

45°

T1 = 400 N

T2 = 500 N

15°

y

xO

60 mm

Problem 2/99
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Figure 2/16

x

y

yθ

xθ

zθ

Fxi

O

i
j

k

Fyj

Fzk F

z

Figure 2/17

z

y

x

A (x1, y1, z1)

B (x2, y2, z2)

(z2 – z1)

(x2 – x1)

(y2 – y1)

⎫
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎭

⎫ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎭
⎫⎬⎭

F

SECTION B THREE-DIMENSIONAL FORCE SYSTEMS

2/7  RECTANGULAR COMPONENTS

Many problems in mechanics require analysis in three dimensions, 
and for such problems it is often necessary to resolve a force into its 
three mutually perpendicular components. The force F acting at point O 
in Fig. 2/16 has the rectangular components Fx, Fy, Fz, where

 Fx 5 F cos �x  F 5 !Fx 

2 1 Fy 

2 1 Fz 

2

  Fy 5 F cos �y  F 5 Fxi 1 Fy 

j 1 Fzk  (2/11)

 Fz 5 F cos �z  F 5 F(i cos �x 1 j cos �y 1 k cos �z)

The unit vectors i, j, and k are in the x-, y-, and z-directions, respec-
tively. Using the direction cosines of F, which are l 5 cos �x, m 5 cos �y, 
and n 5 cos �z, where l2 1 m2 1 n2 5 1, we may write the force as

 F 5 F(li 1 mj 1 nk) (2/12)

We may regard the right-side expression of Eq. 2/12 as the force 
magnitude F times a unit vector nF which characterizes the direction of 
F, or

 F 5 FnF (2/12a)

It is clear from Eqs. 2/12 and 2/12a that nF 5 li 1 mj 1 nk, which 
shows that the scalar components of the unit vector nF are the direction 
cosines of the line of action of F.

In solving three-dimensional problems, one must usually fi nd the x, 
y, and z scalar components of a force. In most cases, the direction of a 
force is described (a) by two points on the line of action of the force or 
(b) by two angles which orient the line of action.

(a) Specifi cation by two points on the line of action of the force. 
If the coordinates of points A and B of Fig. 2/17 are known, the force F 
may be written as

F 5 FnF 5 F  

AB
¡

AB
5 F 

(x2 2  x1)i 1 (y2 2  y1)j 1 (z2 2  z1)k

!(x2 2  x1)2 1 (y2 2  y1)2 1 (z2 2  z1)2

Thus the x, y, and z scalar components of F are the scalar coeffi cients of 
the unit vectors i, j, and k, respectively.
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(b) Specifi cation by two angles which orient the line of action 
of the force. Consider the geometry of Fig. 2/18. We assume that the 
angles � and � are known. First resolve F into horizontal and vertical 
components.

 Fxy 5 F cos �

 Fz 5 F sin �

Then resolve the horizontal component Fxy into x- and y-components.

 Fx 5 Fxy cos � 5 F cos � cos �

 Fy 5 Fxy sin � 5 F cos � sin �

The quantities Fx, Fy, and Fz are the desired scalar components of F.
The choice of orientation of the coordinate system is arbitrary, with 

convenience being the primary consideration. However, we must use a 
right-handed set of axes in our three-dimensional work to be consistent 
with the right-hand-rule defi nition of the cross product. When we rotate 
from the x- to the y-axis through the 908 angle, the positive direction for 
the z-axis in a right-handed system is that of the advancement of a 
right-handed screw rotated in the same sense. This is equivalent to the 
right-hand rule.

Dot Product

We can express the rectangular components of a force F (or any 
other vector) with the aid of the vector operation known as the dot or 
scalar product (see item 6 in Art. C/7 of Appendix C). The dot product of 
two vectors P and Q, Fig. 2/19a, is defi ned as the product of their mag-
nitudes times the cosine of the angle � between them. It is written as

P?Q 5 PQ cos �

We can view this product either as the orthogonal projection P cos � of 
P in the direction of Q multiplied by Q, or as the orthogonal projection 
Q cos � of Q in the direction of P multiplied by P. In either case the dot 
product of the two vectors is a scalar quantity. Thus, for instance, we can 
express the scalar component Fx 5 F cos �x of the force F in Fig. 2/16 
as Fx 5 F?i, where i is the unit vector in the x-direction.

Figure 2/18

F

z

Fz

θ

φ
Fy

Fx

Fxy

y

x

Figure 2/19

P

Q

F

(b)(a)

n (unit vector)Fn = F·nn

Fn = F·n

α
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In more general terms, if n is a unit vector in a specifi ed direction, 
the projection of F in the n-direction, Fig. 2/19b, has the magnitude 
Fn 5 F?n. If we want to express the projection in the n-direction as a 
vector quantity, then we multiply its scalar component, expressed by 
F?n, by the unit vector n to give Fn 5 (F?n)n. We may write this as 
Fn 5 F?nn without ambiguity because the term nn is not defi ned, and 
so the complete expression cannot be misinterpreted as F? (nn).

If the direction cosines of n are �, �, and �, then we may write n in 
vector component form like any other vector as 

n 5 �i 1 �j 1 �k

where in this case its magnitude is unity. If the direction cosines of F 
with respect to reference axes x-y-z are l, m, and n, then the projection 
of F in the n-direction becomes

 Fn 5 F?n 5 F(li 1 mj 1 nk) ? (�i 1 �j 1 �k)

 5 F(l� 1 m� 1 n�)

because

i?i 5 j?j 5 k?k 5 1

and

i?j 5 j?i 5 i?k 5 k?i 5 j?k 5 k?j 5 0

The latter two sets of equations are true because i, j, and k have unit 
length and are mutually perpendicular.

Angle between Two Vectors

If the angle between the force F and the direction specifi ed by the 
unit vector n is �, then from the dot-product defi nition we have F?n 5 
Fn cos � 5 F cos �, where ZnZ 5 n 5 1. Thus, the angle between F and n is 
given by

 � 5 cos21
 
F?n

F
 (2/13)

In general, the angle between any two vectors P and Q is

 � 5 cos21
 
P?Q
PQ

 (2/13a)

If a force F is perpendicular to a line whose direction is specifi ed by the 
unit vector n, then cos � 5 0, and F?n 5 0. Note that this relationship 
does not mean that either F or n is zero, as would be the case with 
scalar multiplication where (A)(B) 5 0 requires that either A or B (or 
both) be zero.

The dot-product relationship applies to nonintersecting vectors as 
well as to intersecting vectors. Thus, the dot product of the noninter-
secting vectors P and Q in Fig. 2/20 is Q times the projection of P9 on Q, 
or P9Q cos � 5 PQ cos � because P9 and P are the same when treated as 
free vectors.Figure 2/20

P

α
P′

Q
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Sample Problem 2/10

A force F with a magnitude of 100 N is applied at the origin O of the axes 
x-y-z as shown. The line of action of F passes through a point A whose coordi-
nates are 3 m, 4 m, and 5 m. Determine (a) the x, y, and z scalar components 
of F, (b) the projection Fxy of F on the x-y plane, and (c) the projection FOB of F 
along the line OB.

Solution.  Part (a). We begin by writing the force vector F as its magnitude 
F times a unit vector nOA.

  F 5 FnOA 5 F  

OA
¡

OA
5 100 c 3i 1 4j 1 5k

!32 1 42 1 52
d

  5 100[0.424i 1 0.566j 1 0.707k]

  5 42.4i 1 56.6j 1 70.7k N

The desired scalar components are thus

 Fx 5 42.4 N  Fy 5 56.6 N  Fz 5 70.7 N Ans.

Part (b). The cosine of the angle �xy between F and the x-y plane is

  cos �xy 5
!32 1 42

!32 1 42 1 52
5 0.707

so that Fxy 5 F cos �xy 5 100(0.707) 5 70.7 N  Ans.

Part (c). The unit vector nOB along OB is

 nOB 5
OB
¡

OB
5

6i 1 6j 1 2k

!62 1 62 1 22
5 0.688i 1 0.688j 1 0.229k

The scalar projection of F on OB is

  FOB 5 F?nOB 5 (42.4i 1 56.6j 1 70.7k) ? (0.688i 1 0.688j 1 0.229k)

  5 (42.4)(0.688) 1 (56.6)(0.688) 1 (70.7)(0.229)

  5 84.4 N  Ans.

If we wish to express the projection as a vector, we write

  FOB 5 F?nOBnOB

  5 84.4(0.688i 1 0.688j 1 0.229k)

  5 58.1i 1 58.1j 1 19.35k N

1

2

Helpful Hints

1  In this example all scalar components 
are positive. Be prepared for the case 
where a direction cosine, and hence 
the scalar component, are negative.

2  The dot product automatically fi nds 
the projection or scalar component 
of F along line OB as shown.

z

x

y

A

B

O

5 m

4 m

F = 100 N

3 m

6 m

6 m

2 m

F

z

y

x

O

Fx

Fz

Fy

xyθ Fxy = 70.7 N

F

nOB

z

y

x

O

FOB = 84.4 N
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35°

60°
30°

F = 5 kN

O

z

x

y

A

Problem 2/103

2/104 The force F has a magnitude of 300 lb and acts 
along the diagonal of the parallelepiped as shown. 
Express F in terms of its magnitude times the ap-
propriate unit vector and determine its x-, y-, and 
z-components.

x

y

z

4′
8′

8′

F = 300 lb

Problem 2/104

2/105 If the tension in the gantry-crane hoisting cable 
is T 5 14 kN, determine the unit vector n in the 
direction of T and use n to determine the scalar 
components of T. Point B is located at the center of 
the container top.

PROBLEMS

Introductory Problems

2/101 Express F as a vector in terms of the unit vectors 
i, j, and k. Determine the angle between F and the 
y-axis.

z

110

x

40

50 y

F = 60 N

O

Dimensions in millimeters

Problem 2/101

2/102 Cable AB exerts a force of magnitude F 5 6 kN on 
point A. Express F as a vector in terms of the unit 
vectors i, j, and k. Determine the angle between F 
and the x-axis.

1 m

1.5 m
4 m

3.75 m

3 mO

A

D

F

z

y

C
x

B

Problem 2/102

2/103 Express the 5-kN force F as a vector in terms of 
the unit vectors i, j, and k. Determine the projec-
tions of F onto the x-axis and onto the line OA.
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z

x

y

ET

A

B

D

O

C

30°

6′

1′

8′

8′

10′

5′

8′6′

Problem 2/107

Representative Problems

2/108 The tension in the supporting cable AB is T 5 425 N. 
Write this tension as a vector (a) as it acts on point 
A and (b) as it acts on point B. Assume a value of 
� 5 308.

B

A

yx

D

O

z

2 m

5 m

6 m

C
θ

Problem 2/108

x

O

y

z

B

A

T
20 m

12 m
8 m

16 m

9 m5 m

3 m
3 m

Problem 2/105

2/106 The turnbuckle is tightened until the tension in 
the cable AB equals 2.4 kN. Determine the vector 
expression for the tension T as a force acting on 
member AD. Also fi nd the magnitude of the projec-
tion of T along the line AC.

5 m

OC

B

x

y2 m

3 m
1 m

z

D

A

Problem 2/106

2/107 If the tension in cable AB is 1750 lb, determine the 
angles which it makes with the x-, y-, and z-axes 
as it acts on point A of the structure.
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x  y 

z

9′ 12′

12′

6′

12′
14′ 

T = 675 lb

A

O

B

C

D

Problem 2/111

2/112 If the tension in cable DE is T 5 575 N, determine 
(a) the scalar projection of T onto line EO and 
(b) the vector expression for the projection of T 
onto line EO.

30°

x

y

z

BC

D

T

E

A

F

O

3 m

3 m

4 m

4 m

3 m

BC = CD = 2.5 m

Problem 2/112

2/109 The force F has a magnitude of 2 kN and is di-
rected from A to B. Calculate the projection FCD of 
F onto line CD and determine the angle � between 
F and CD.

B

A

0.2 m

0.2 m

0.2 m 0.4 m

C
D

F

Problem 2/109

2/110 The tension in the supporting cable AB is 10 kN. 
Write the force which the cable exerts on the boom 
BC as a vector T. Determine the angles �x, �y, and 
�z which the line of action of T forms with the posi-
tive x-, y-, and z-axes.

5 m
2.5 m

z

x

y
B

C

T = 10 kN

4 m

5 m

A

Problem 2/110

2/111 If the tension in cable CD is T 5 675 lb, determine 
the magnitude of the projection of T onto line CO.
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2/115 Determine a general expression for the scalar pro-
jection of F onto line BD. Point M is located at the 
center of the bottom face of the parallelepiped. 
Evaluate your expression for d 5 b/2 and d 5 5b/2.

C

3b

1.5b

1.5b

F

E

B

A

M

D

d

Problem 2/115

2/116 If the scalar projection of F onto line OA is 0, de-
termine the scalar projection of F onto line OB. 
Use a value of b 5 6 ft.

30°

F = 1700 lb

y, ft

h

h

b

x, ft

z, ft

A

B

O

40°

Problem 2/116

2/113 Determine the angle � between the 200-lb force 
and line OC.

z

y

x 24′′ 12′′

8′′

B

A

C

O F = 200 lb

Problem 2/113

2/114 Compression member AB is used to hold up the 
325 3 500-mm rectangular plate. If the compres-
sive force in the member is 320 N for the position 
shown, determine the magnitude of the projec-
tion of this force (as it acts at point A) along di-
agonal OC.

100
410

320

325

180

30°

O B

C

A

Dimensions in millimeters

Problem 2/114
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 c2/119 A force F is applied to the surface of the sphere 
as shown. The angles � and � locate point P, and 
point M is the midpoint of ON. Express F in vector 
form, using the given x-, y-, and z-coordinates.

O

M

N

P

F

R

z

x

yθ

φ

Problem 2/119

 c2/120 Determine the x-, y-, and z-components of force 
F which acts on the tetrahedron as shown. The 
quantities a, b, c, and F are known, and M is the 
midpoint of edge AB.

z

y

M

C

O

B

A

a

c

b F

x

Problem 2/120

2/117 The rectangular plate is supported by hinges along 
its side BC and by the cable AE. If the cable ten-
sion is 300 N, determine the projection onto line 
BC of the force exerted on the plate by the cable. 
Note that E is the midpoint of the horizontal upper 
edge of the structural support.

400 mm

25°
E

C

D

A

B

T = 300 N 12
00

 m
m

Problem 2/117

 c2/118 Express the force F in terms of the unit vectors i, j, 
and k. Point M is located at the centroid of the 
triangle ABC formed by “chopping off” the corner 
of the parallelepiped. (See Table D/3 in Appendix D 
for the centroid location of a triangle.)

x
y

C

2b

2b 3b

B

M

A

O

2b

z

F

Problem 2/118
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2/8  MOMENT AND COUPLE

In two-dimensional analyses it is often convenient to determine a 
moment magnitude by scalar multiplication using the moment-arm 
rule. In three dimensions, however, the determination of the perpendic-
ular distance between a point or line and the line of action of the force 
can be a tedious computation. A vector approach with cross-product 
multiplication then becomes advantageous.

Moments in Three Dimensions

Consider a force F with a given line of action acting on a body, 
Fig. 2/21a, and any point O not on this line. Point O and the line of F estab-
lish a plane A. The moment MO of F about an axis through O normal to 
the plane has the magnitude MO 5 Fd, where d is the perpendicular dis-
tance from O to the line of F. This moment is also referred to as the mo-
ment of F about the point O.

The vector MO is normal to the plane and is directed along the axis 
through O. We can describe both the magnitude and the direction of MO 
by the vector cross-product relation introduced in Art. 2/4. (Refer to 
item 7 in Art. C/7 of Appendix C.) The vector r runs from O to any point 
on the line of action of F. As described in Art. 2/4, the cross product of r 
and F is written r 3 F and has the magnitude (r sin �)F, which is the 
same as Fd, the magnitude of MO.

The correct direction and sense of the moment are established by 
the right-hand rule, described previously in Arts. 2/4 and 2/5. Thus, 
with r and F treated as free vectors emanating from O, Fig. 2/21b, the 
thumb points in the direction of MO if the fi ngers of the right hand curl 
in the direction of rotation from r to F through the angle �. Therefore, 
we may write the moment of F about the axis through O as 

 MO 5 r 3 F (2/14)

The order r 3 F of the vectors must be maintained because F 3 r 
would produce a vector with a sense opposite to that of MO; that is, 
F 3 r 5 2MO.

Evaluating the Cross Product

The cross-product expression for MO may be written in the deter-
minant form

 MO 5 †  
i
rx

Fx

j
ry

Fy

k
rz

Fz

†   (2/15)

(Refer to item 7 in Art. C/7 of Appendix C if you are not already familiar 
with the determinant representation of the cross product.) Note the 
symmetry and order of the terms, and note that a right-handed coordi-
nate system must be used. Expansion of the determinant gives

MO 5 (ry Fz 2 rz Fy)i 1 (rz Fx 2 rx Fz)j 1 (rx Fy 2 ry Fx)k

Figure 2/21

MO

F

r

OA

(b)

(a)

α

α

MO

r

F

O
A d
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To gain more confi dence in the cross-product relationship, exam-
ine the three components of the moment of a force about a point as 
obtained from Fig. 2/22. This fi gure shows the three components of a 
force F acting at a point A located relative to O by the vector r. The 
scalar magnitudes of the moments of these forces about the positive 
x-, y-, and z-axes through O can be obtained from the moment-arm 
rule, and are 

Mx 5 ry Fz 2 rz Fy  My 5 rz Fx 2 rx Fz  Mz 5 rx Fy 2 ry Fx

which agree with the respective terms in the determinant expansion for 
the cross product r 3 F.

Moment about an Arbitrary Axis

We can now obtain an expression for the moment M	 of F about any 
axis 	 through O, as shown in Fig. 2/23. If n is a unit vector in the 
	-direction, then we can use the dot-product expression for the compo-
nent of a vector as described in Art. 2/7 to obtain MO?n, the component 
of MO in the direction of 	. This scalar is the magnitude of the moment 
M	 of F about 	.

To obtain the vector expression for the moment M	 of F about 	, 
multiply the magnitude by the directional unit vector n to obtain 

 M	 5 (r 3 F?n)n (2/16)

where r 3 F replaces MO. The expression r 3 F?n is known as a triple 
scalar product (see item 8 in Art. C/7, Appendix C). It need not be writ-
ten (r 3 F) ?n because a cross product cannot be formed by a vector and 
a scalar. Thus, the association r 3 (F?n) would have no meaning.

The triple scalar product may be represented by the determinant 

 0M	 05 M	 5 †  
rx

Fx

�

ry

Fy

�

rz

Fz

�

†  (2/17)

where �, �, � are the direction cosines of the unit vector n.

Varignon’s Theorem in Three Dimensions

In Art. 2/4 we introduced Varignon’s theorem in two dimensions. 
The theorem is easily extended to three dimensions. Figure 2/24 shows 
a system of concurrent forces F1, F2, F3, . . . . The sum of the moments 
about O of these forces is

 r 3 F1 1 r 3 F2 1 r 3 F3 1 ? ? ? 5 r 3 (F1 1 F2 1 F3 1 ? ? ? )

 5 r 3 ©F

Figure 2/22

Fy

Fz

Fx

F

O

A

x

y

z

rx

ry

Mx

My

Mz
rzr

Figure 2/23

MO

λ

r

O

Mλ

n
F

Figure 2/24
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F1

F3

AO r
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where we have used the distributive law for cross products. Using the 
symbol MO to represent the sum of the moments on the left side of the 
above equation, we have

 MO 5© (r 3 F) 5 r 3 R (2/18)

This equation states that the sum of the moments of a system of concur-
rent forces about a given point equals the moment of their sum about 
the same point. As mentioned in Art. 2/4, this principle has many appli-
cations in mechanics.

Couples in Three Dimensions

The concept of the couple was introduced in Art. 2/5 and is easily 
extended to three dimensions. Figure 2/25 shows two equal and opposite 
forces F and 2F acting on a body. The vector r runs from any point B 
on the line of action of 2F to any point A on the line of action of F. 
Points A and B are located by position vectors rA and rB from any point 
O. The combined moment of the two forces about O is

M 5 rA 3 F 1 rB 3 (2F) 5 (rA 2 rB) 3 F

However, rA 2 rB 5 r, so that all reference to the moment center O dis-
appears, and the moment of the couple becomes

 M 5 r 3 F (2/19)

Thus, the moment of a couple is the same about all points. The magni-
tude of M is M 5 Fd, where d is the perpendicular distance between the 
lines of action of the two forces, as described in Art. 2/5.

The moment of a couple is a free vector, whereas the moment of a 
force about a point (which is also the moment about a defi ned axis 
through the point) is a sliding vector whose direction is along the axis 
through the point. As in the case of two dimensions, a couple tends to 
produce a pure rotation of the body about an axis normal to the plane of 
the forces which constitute the couple.

Couple vectors obey all of the rules which govern vector quantities. 
Thus, in Fig. 2/26 the couple vector M1 due to F1 and 2F1 may be added 

Figure 2/25

rArB
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A

d

O
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M

Figure 2/26

M1

M

M2

F1

–F1

–F≡
F

M1

M2
F2

–F2



78  Chapter 2   Force Systems

as shown to the couple vector M2 due to F2 and 2F2 to produce the cou-
ple M, which, in turn, can be produced by F and 2F.

In Art. 2/5 we learned how to replace a force by its equivalent 
force–couple system. You should also be able to carry out this replace-
ment in three dimensions. The procedure is represented in Fig. 2/27, 
where the force F acting on a rigid body at point A is replaced by an 
equal force at point B and the couple M 5 r 3 F. By adding the equal 
and opposite forces F and 2F at B, we obtain the couple composed of 
2F and the original F. Thus, we see that the couple vector is simply the 
moment of the original force about the point to which the force is being 
moved. We emphasize that r is a vector which runs from B to any point 
on the line of action of the original force passing through A.

Figure 2/27
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The three-dimensionality of the cable 
system on the Leonard P. Zakim Bunker 
Hill Bridge is evident in this view.
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Sample Problem 2/11

Determine the moment of force F about point O (a) by inspection and (b) by 
the formal cross-product defi nition MO 5 r 3 F.

Solution.  (a) Because F is parallel to the y-axis, F has no moment about that 
axis. It should be clear that the moment arm from the x-axis to the line of action 
of F is c and that the moment of F about the x-axis is negative. Similarly, the 
moment arm from the z-axis to the line of action of F is a, and the moment of F 
about the z-axis is positive. So we have

 MO 5 2cFi 1 aFk 5 F(2ci 1 ak) Ans.

(b) Formally,

  MO 5 r 3 F 5 (ai 1 ck) 3 Fj 5 aFk 2 cFi  

  5 F(2ci 1 ak) Ans.

Helpful Hint

1  Again we stress that r runs from the moment center to the line of action of F. 
Another permissible, but less convenient, position vector is r 5 ai 1 bj 1 ck.

1

z

y
x

A

O

1.6 m

0.8 m
1.5 m

2 m

B

z

y
x

A

O

1.6 m

0.8 m
1.5 m

2 m

B

T

rOA

Sample Problem 2/12

The turnbuckle is tightened until the tension in cable AB is 2.4 kN. Deter-
mine the moment about point O of the cable force acting on point A and the 
magnitude of this moment.

Solution.  We begin by writing the described force as a vector.

  T 5 TnAB 5 2.4 c 0.8i 1 1.5j 2 2k

!0.82 1 1.52 1 22
d

  5 0.731i 1 1.371j 2 1.829k kN

The moment of this force about point O is

  MO 5 rOA 3 T 5 (1.6i 1 2k) 3 (0.731i 1 1.371j 2 1.829k) 

  5 22.74i 1 4.39j 1 2.19k kN?m  Ans.

This vector has a magnitude

 MO 5 !2.742 1 4.392 1 2.192 5 5.62 kN?m Ans.

Helpful Hint

1  The student should verify by inspection the signs of the moment components.

1

O

F

a b

c
y

z

x

O

F

a b

c
y

z

x

r
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Sample Problem 2/13

A tension T of magnitude 10 kN is applied to the cable attached to the top A 
of the rigid mast and secured to the ground at B. Determine the moment Mz of T 
about the z-axis passing through the base O.

Solution (a).  The required moment may be obtained by fi nding the compo-
nent along the z-axis of the moment MO of T about point O. The vector MO is 
normal to the plane defi ned by T and point O, as shown in the accompanying fi g-
ure. In the use of Eq. 2/14 to fi nd MO, the vector r is any vector from point O to 
the line of action of T. The simplest choice is the vector from O to A, which is 
written as r 5 15j m. The vector expression for T is

  T 5 TnAB 5 10 c 12i 2 15j 1 9k

!(12)2 1 (215)2 1 (9)2
d

  5 10(0.566i 2 0.707j 1 0.424k) kN

From Eq. 2/14,

 [MO 5 r 3 F]  MO 5 15j 3 10(0.566i 2 0.707j 1 0.424k)

  5 150(20.566k 1 0.424i) kN?m

The value Mz of the desired moment is the scalar component of MO in the 
z-direction or Mz 5 MO ? k. Therefore,

 Mz 5 150(20.566k 1 0.424i) ?k 5 284.9 kN?m Ans.

The minus sign indicates that the vector Mz is in the negative z-direction. Ex-
pressed as a vector, the moment is Mz 5 284.9k kN?m.

Solution (b).  The force of magnitude T is resolved into components Tz and Txy 
in the x-y plane. Since Tz is parallel to the z-axis, it can exert no moment about 
this axis. The moment Mz is, then, due only to Txy and is Mz 5 Txyd, where d is 
the perpendicular distance from Txy to O. The cosine of the angle between T and
Txy is !152 1 122

 / !152 1 122 1 92 5 0.906, and therefore,

 Txy 5 10(0.906) 5 9.06 kN

The moment arm d equals OA multiplied by the sine of the angle between Txy 
and OA, or

 d 5 15 
12

!122 1 152
5 9.37 m

Hence, the moment of T about the z-axis has the magnitude

 Mz 5 9.06(9.37) 5 84.9 kN?m Ans.

and is clockwise when viewed in the x-y plane.

Solution (c).  The component Txy is further resolved into its components Tx and 
Ty. It is clear that Ty exerts no moment about the z-axis since it passes through it, so 
that the required moment is due to Tx alone. The direction cosine of T with respect 
to the x-axis is 12 /!92 1 122 1 152 5 0.566 so that Tx 5 10(0.566) 5 5.66 kN. Thus,

 Mz 5 5.66(15) 5 84.9 kN?m Ans.

1

2

3

Helpful Hints

1  We could also use the vector from O 
to B for r and obtain the same result, 
but using vector OA is simpler.

2  It is always helpful to accompany your 
vector operations with a sketch of the 
vectors so as to retain a clear picture 
of the geometry of the problem.

3  Sketch the x-y view of the problem 
and show d.

A

B

x
z

T = 10 kN

y

12 m

15 m

9 m

O

y

A

O

x

B
z

15 m

9 m12 m

Mo

Mz

T

T

r

y

A

O

TxTz

Ty
Txy

x

B

z
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Sample Problem 2/14

Determine the magnitude and direction of the couple M which will replace 
the two given couples and still produce the same external effect on the block. 
Specify the two forces F and 2F, applied in the two faces of the block parallel to 
the y-z plane, which may replace the four given forces. The 30-N forces act paral-
lel to the y-z plane.

Solution.  The couple due to the 30-N forces has the magnitude M1 5 30(0.06) 
5 1.80 N?m. The direction of M1 is normal to the plane defi ned by the two forces, 
and the sense, shown in the fi gure, is established by the right-hand convention. 
The couple due to the 25-N forces has the magnitude M2 5 25(0.10) 5 2.50 N?m 
with the direction and sense shown in the same fi gure. The two couple vectors 
combine to give the components

  My 5 1.80 sin 608 5 1.559 N?m

  Mz 5 22.50 1 1.80 cos 608 5 21.600 N?m

Thus,  M 5 !(1.559)2 1 (21.600)2 5 2.23 N?m  Ans.

with  � 5 tan21 
1.559
1.600

5 tan21 0.974 5 44.38  Ans.

The forces F and 2F lie in a plane normal to the couple M, and their mo-
ment arm as seen from the right-hand fi gure is 100 mm. Thus, each force has the 
magnitude 

[M 5 Fd] F 5
2.23
0.10

5 22.3 N Ans.

and the direction � 5 44.38.

1

Helpful Hint

1  Bear in mind that the couple vectors 
are free vectors and therefore have 
no unique lines of action.

z

x y

25 N

25 N

30 N

100 mm

50 mm

40 mm
60 mm

30 N

60°

60°

M2 = 2.5 N·m 

M1 = 1.8 N·m 

M

60°

z

x

z

y

y

−F

F

θ

θ

θ

Sample Problem 2/15

A force of 40 lb is applied at A to the handle of the control lever which is at-
tached to the fi xed shaft OB. In determining the effect of the force on the shaft 
at a cross section such as that at O, we may replace the force by an equivalent 
force at O and a couple. Describe this couple as a vector M.

Solution. The couple may be expressed in vector notation as M 5 r 3 F, 
where r 5 OA

¡
5 8j 1 5k in. and F 5 240i lb. Thus,

 M 5 (8j 1 5k) 3 (240i) 5 2200j 1 320k lb-in.

Alternatively we see that moving the 40-lb force through a distance d 5 
!52 1 82 5 9.43 in. to a parallel position through O requires the addition of a 
couple M whose magnitude is

 M 5 Fd 5 40(9.43) 5 377 lb-in. Ans.

The couple vector is perpendicular to the plane in which the force is shifted, and 
its sense is that of the moment of the given force about O. The direction of M in 
the y-z plane is given by

 � 5 tan21
 
5
8 5 32.08 Ans.

M

O

d
A

x y

θ

θ 5″

8″

40 lb

(40 lb)

z

y

x

3″

8″
2″

B

O

z

A

40 lb
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L

y

z

A

O

B

(b)

(a)

F

F

x

D

Problem 2/123

2/124 The 4-lb force is applied at point A of the crank as-
sembly. Determine the moment of this force about 
point O.

30°

A

F = 4 lb

y

x

z

O

0.75″

1.5″

Problem 2/124

2/125 The steel H-beam is being designed as a column to 
support the two vertical forces shown. Replace 
these forces by a single equivalent force along the 
vertical centerline of the column and a couple M.

6″

3″

150 kips

100 kips

z

y

x

6″

Problem 2/125

PROBLEMS

Introductory Problems

2/121 Determine the moment of force F about point O.

O

F

a
b

c

y

z

x

Problem 2/121

2/122 Determine the moment of force F about point A.

F

y

z
b

a

x

A

Problem 2/122

2/123 Determine the moment about O of the force of 
magnitude F for the case (a) when the force F is 
applied at A and for the case (b) when F is applied 
at B.
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x  y 

z

9′ 12′

12′

6′

12′
14′ 

T = 675 lb

A

O

B

C

D

Problem 2/128

2/129 The two forces acting on the handles of the pipe 
wrenches constitute a couple M. Express the couple 
as a vector.

250 mm

150 N

150 N

x

y

250 mm

150 mm

Problem 2/129

2/126 Determine the moment associated with the pair of 
400-N forces applied to the T-shaped structure.

400 N

400 N

15°

y

z

x
O

A

B

0.25 m

0.45 m
0.25 m

15°

Problem 2/126

2/127 The turnbuckle is tightened until the tension in 
cable AB is 1.2 kN. Calculate the magnitude of 
the moment about point O of the force acting on 
point A.

z

y

x

A

B

O

1.6 m

0.8 m
1.5 m

2 m

Problem 2/127

2/128 The system of Prob. 2/111 is repeated here, and 
the tension in cable CD is T 5 675 lb. Consider the 
force which this cable exerts on point C and deter-
mine its moment about point O.
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Representative Problems

2/132 A helicopter is shown here with certain three-
dimensional geometry given. During a ground test, 
a 400-N aerodynamic force is applied to the tail 
rotor at P as shown. Determine the moment of this 
force about point O of the airframe.

P

O

400 N

1.2 m

0.8 m

6 m

x

y

z

Problem 2/132

2/133 The system of Prob. 2/108 is repeated here, and 
the tension in the supporting cable AB is 425 N. 
Determine the magnitude of the moment which 
this force, as it acts at point A, makes about the 
x-axis. Use a value of � 5 308.

B

A

yx

D

O

z

2 m

5 m

6 m

C
θ

Problem 2/133

2/130 The gantry crane of Prob. 2/105 is repeated here, 
and the tension in cable AB is 14 kN. Replace this 
force as it acts on point A by an equivalent force–
couple system at O. Point B is located at the center 
of the container top.

x

O

y

z

B

A

T
20 m

12 m
8 m

16 m

9 m5 m

3 m
3 m

Problem 2/130

2/131 Determine the combined moment made by the two 
pairs of forces about point O and about point C. 
Use the values P 5 4 kN, Q 5 7.5 kN, and b 5 3 m.

O

Q

A

C

P

y

z

x

b

2b

b

1.5b

P

Q

1.5b

B

b

Problem 2/131
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2/136 If the tension in cable DE is 575 N, determine the 
moments of this tensile force (as it acts at point D) 
about point O and about line OF.

F
3 m 2 m

30°

x

y

z

BC

D

T

E

A

O

3 m

4 m

4 m

3 m

BC = CD = 2.5 m

Problem 2/136

2/137 Determine the moment of each individual force 
about (a) point A and (b) point B.

A

F

z B

2F

3b

2b

O

x

y

b

Problem 2/137

2/134 The structure shown is constructed of circular rod 
which has a mass of 7 kg per meter of length. De-
termine the moment MO about O caused by the 
weight of the structure. Find the magnitude of MO.

yx

O

z

1.2 m

0.8 m

1.1 m

2 m

Problem 2/134

2/135 Two 1.2-lb thrusters on the nonrotating satellite 
are simultaneously fi red as shown. Compute the 
moment associated with this couple and state 
about which satellite axes rotations will begin to 
occur.

z

y

x

20″ 20″

25″

1.2 lb

G

1.2 lb

25″

Problem 2/135
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2/140 The specialty wrench shown in the fi gure is de-
signed for access to the hold-down bolt on certain 
automobile distributors. For the confi guration 
shown where the wrench lies in a vertical plane 
and a horizontal 200-N force is applied at A per-
pendicular to the handle, calculate the moment MO 
applied to the bolt at O. For what value of the dis-
tance d would the z-component of MO be zero?

x

200 mm

70 mm

d = 125 mm

A

20°
200 Ν

y

z

O

Problem 2/140

2/141 The 75-N force acts perpendicular to the bent 
portion of the wall bracket shown. Determine the 
magnitude of the moment made by this force about 
point O, which is at the center of the 60 3 80-mm 
portion of the plate in contact with the wall.

A
30°

75 N

80 mm

60 mm

80 mm

O

Problem 2/141

2/138 The system of Prob. 2/107 is repeated here, and the 
tension in cable AB is 1750 lb. Consider the force 
which this cable exerts on point A and determine 
the equivalent force–couple system at point O.

z

x

y

ET

A

B

D

O

C

30°

6′

1′

8′

8′

10′

5′

8′6′

Problem 2/138

2/139 A space shuttle orbiter is subjected to thrusts from 
fi ve of the engines of its reaction control system. 
Four of the thrusts are shown in the fi gure; the 
fi fth is an 850-N upward thrust at the right rear, 
symmetric to the 850-N thrust shown on the left 
rear. Compute the moment of these forces about 
point G and show that the forces have the same 
moment about all points.

3.2 m
3.2 m

1700 N

850 N 2 m

12 m

18 m

1700 N

1700 N

y

x
z

G

Problem 2/139
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2/144 A 1.8-lb vertical force is applied to the knob of the 
window-opener mechanism when the crank BC is 
horizontal. Determine the moment of the force 
about point A and about line AB.

z

x

B

C

D

1.8 lb

y

30°

1″

2″

3″

A

Problem 2/144

2/145 A basketball player applies a force F 5 65 lb to the 
rim at A. Determine the equivalent force–couple 
system at point B, which is at the center of the rim 
mounting bracket on the backboard.

x

y

B
O

z

30°

30°

A

F

5

12

4″

15″
9″

Problem 2/145

2/142 The body is composed of a slender uniform rod 
bent into the shape shown and having a mass � 
per unit length. Determine the expression for the 
moment of the weight of the structure about the 
base O. Evaluate your result for the values a 5 5 m, 
b 5 2.5 m, c 5 4 m, � 5 308, and � 5 24 kg/m. What 
value of c would render the moment about the 
y-axis equal to zero?

c

z

b

a

x y

O

θ

Problem 2/142

2/143 If F1 5 450 N and the magnitude of the moment 
of both forces about line AB is 30 N?m, determine 
the magnitude of F2. Use the values a 5 200 mm, 
b 5 400 mm, and c 5 500 mm.

D

O

F2

F1

z

C

A

B

yc
x

b

a

Problem 2/143
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 *2/148 The spring of stiffness k and unstretched length 
1.5R is attached to the disk at a radial distance 
of 0.75R from the center C. Considering the ten-
sion in the spring to act on point A, plot the mo-
ment which the spring tension creates about each 
of the three coordinate axes at O during one revo-
lution of the disk (0 # � # 3608). Determine the 
maximum magnitude attained by each moment 
component along with the corresponding angle of 
rotation � at which it occurs. Finally, determine 
the overall maximum magnitude for the moment 
of the spring tension about O along with the cor-
responding angle of rotation �.

2R

1.5R

0.75R
R

R

B C

O

A

k

y

x

z

θ

Problem 2/148

2/146 The special-purpose milling cutter is subjected to the 
force of 1200 N and a couple of 240 N?m as shown. 
Determine the moment of this system about point O.

O

z

60°

240 N·m
1200 N

250 mm
200 mm

x

y

Problem 2/146

2/147 The force F acts along an element of the right 
circular cone as shown. Determine the equivalent 
force–couple system at point O.

h

O
θ

F

z

y

x

h–
2

Problem 2/147
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2/9  RESULTANTS

In Art. 2/6 we defi ned the resultant as the simplest force combina-
tion which can replace a given system of forces without altering the ex-
ternal effect on the rigid body on which the forces act. We found the 
magnitude and direction of the resultant force for the two-dimensional 
force system by a vector summation of forces, Eq. 2/9, and we located the 
line of action of the resultant force by applying the principle of moments, 
Eq. 2/10. These same principles can be extended to three dimensions.

In the previous article we showed that a force could be moved to a 
parallel position by adding a corresponding couple. Thus, for the system 
of forces F1, F2, F3 . . . acting on a rigid body in Fig. 2/28a, we may move 
each of them in turn to the arbitrary point O, provided we also intro-
duce a couple for each force transferred. Thus, for example, we may 
move force F1 to O, provided we introduce the couple M1 5 r1 3 F1, 
where r1 is a vector from O to any point on the line of action of F1. 
When all forces are shifted to O in this manner, we have a system of 
concurrent forces at O and a system of couple vectors, as represented in 
part b of the fi gure. The concurrent forces may then be added vectorially 
to produce a resultant force R, and the couples may also be added to 
produce a resultant couple M, Fig. 2/28c. The general force system, then, 
is reduced to 

R 5 F1 1 F2 1 F3 1 ? ? ? 5 ©F

 M 5 M1 1 M2 1 M3 1 ? ? ? 5 © (r 3 F) 
(2/20)

The couple vectors are shown through point O, but because they are 
free vectors, they may be represented in any parallel positions. The 
magnitudes of the resultants and their components are

Rx 5©Fx  Ry 5©Fy  Rz 5©Fz

R 5 !(©Fx)2 1 (©Fy)2 1 (©Fz)2

 Mx 5© (r 3 F)x  My 5© (r 3 F)y  Mz 5© (r 3 F)z 
(2/21)

M 5 !Mx
2 1 My

2 1 Mz
2

The cables of this cable-stayed bridge 
exert a three-dimensional system of 
concentrated forces on the bridge 
tower.
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Figure 2/28
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The point O selected as the point of concurrency for the forces is ar-
bitrary, and the magnitude and direction of M depend on the particular 
point O selected. The magnitude and direction of R, however, are the 
same no matter which point is selected.

In general, any system of forces may be replaced by its resultant 
force R and the resultant couple M. In dynamics we usually select the 
mass center as the reference point. The change in the linear motion of 
the body is determined by the resultant force, and the change in the an-
gular motion of the body is determined by the resultant couple. In stat-
ics, the body is in complete equilibrium when the resultant force R is 
zero and the resultant couple M is also zero. Thus, the determination of 
resultants is essential in both statics and dynamics.

We now examine the resultants for several special force systems.

Concurrent Forces. When forces are concurrent at a point, only the 
fi rst of Eqs. 2/20 needs to be used because there are no moments about 
the point of concurrency.

Parallel Forces. For a system of parallel forces not all in the same 
plane, the magnitude of the parallel resultant force R is simply the mag-
nitude of the algebraic sum of the given forces. The position of its line of 
action is obtained from the principle of moments by requiring that 
r 3 R 5 MO. Here r is a position vector extending from the force–couple 
reference point O to the fi nal line of action of R, and MO is the sum of 
the moments of the individual forces about O. See Sample Problem 2/17 
for an example of parallel-force systems.

Coplanar Forces. Article 2/6 was devoted to this force system.

Wrench Resultant. When the resultant couple vector M is parallel 
to the resultant force R, as shown in Fig. 2/29, the resultant is called a 
wrench. By defi nition a wrench is positive if the couple and force vectors 
point in the same direction and negative if they point in opposite direc-
tions. A common example of a positive wrench is found with the applica-
tion of a screwdriver, to drive a right-handed screw. Any general force 
system may be represented by a wrench applied along a unique line of 
action. This reduction is illustrated in Fig. 2/30, where part a of the fi g-
ure represents, for the general force system, the resultant force R acting 
at some point O and the corresponding resultant couple M. Although M 
is a free vector, for convenience we represent it as acting through O.

In part b of the fi gure, M is resolved into components M1 along the di-
rection of R and M2 normal to R. In part c of the fi gure, the couple M2 is 
replaced by its equivalent of two forces R and 2R separated by a distance 

Figure 2/29

M R R

Positive wrench Negative wrench

M
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d 5 M2/R with 2R applied at O to cancel the original R. This step leaves 
the resultant R, which acts along a new and unique line of action, and the 
parallel couple M1, which is a free vector, as shown in part d of the fi gure. 
Thus, the resultants of the original general force system have been trans-
formed into a wrench (positive in this illustration) with its unique axis de-
fi ned by the new position of R.

We see from Fig. 2/30 that the axis of the wrench resultant lies in a 
plane through O normal to the plane defi ned by R and M. The wrench is 
the simplest form in which the resultant of a general force system may 
be expressed. This form of the resultant, however, has limited applica-
tion, because it is usually more convenient to use as the reference point 
some point O such as the mass center of the body or another convenient 
origin of coordinates not on the wrench axis.

Figure 2/30

M1

R
O

M1 R

–R

O
d

M
M2

M1 R

(a) (b)

(c) (d)

M

R

O O

R
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Helpful Hint

1  You should also carry out a scalar 
solution to this problem.

0.5 m

50 N

200 N
300 N

500 N

0.35 m

0.35 m

0.5 m
z

O

x

y

R
MO

r
R

z

z

O

x
x

y

Sample Problem 2/16

Determine the resultant of the force and couple system which acts on the 
rectangular solid.

Solution.  We choose point O as a convenient reference point for the initial 
step of reducing the given forces to a force–couple system. The resultant force is

 R 5 ©F 5 (80 2 80)i 1 (100 2 100)j 1 (50 2 50)k 5 0 lb 

The sum of the moments about O is

  MO 5 [50(16) 2 700]i 1 [80(12) 2 960] j 1 [100(10) 2 1000]k lb-in. 

  5 100i lb-in.

Hence, the resultant consists of a couple, which of course may be applied at any 
point on the body or the body extended.

Helpful Hints

1  Since the force summation is zero, we conclude that the resultant, if it exists, 
must be a couple.

2  The moments associated with the force pairs are easily obtained by using the 
M 5 Fd rule and assigning the unit-vector direction by inspection. In many 
three-dimensional problems, this may be simpler than the M 5 r 3 F approach.

1

2

Sample Problem 2/17

Determine the resultant of the system of parallel forces which act on the 
plate. Solve with a vector approach.

Solution.  Transfer of all forces to point O results in the force–couple system

  R 5 ©F 5 (200 1 500 2 300 2 50)j 5 350j N

  MO 5 [50(0.35) 2 300(0.35)]i 1 [250(0.50) 2 200(0.50)]k

  5 287.5i 2 125k N?m

The placement of R so that it alone represents the above force–couple system is 
determined by the principle of moments in vector form

  r 3 R 5 MO

  (xi 1 yj 1 zk) 3 350j 5 287.5i 2 125k

  350xk 2 350zi 5 287.5i 2 125k

From the one vector equation we may obtain the two scalar equations

 350x 5 2125  and  2350z 5 287.5

Hence, x 5 20.357 m and z 5 0.250 m are the coordinates through which the 
line of action of R must pass. The value of y may, of course, be any value, as 
permitted by the principle of transmissibility. Thus, as expected, the variable y 
drops out of the above vector analysis.

1

50 lb

100 lb

80 lb

80 lb

50 lb

z

x

O

y

10″

12″

100 lb

1000 lb-in.

700 lb-in.

16″

960
lb-in.
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Helpful Hints

1  Suggestion: Check the cross-product 
results by evaluating the moments 
about A of the components of the 
500-N force directly from the sketch.

2  For the 600-N and 700-N forces it is 
easier to obtain the components of 
their moments about the coordinate 
directions through A by inspection 
of the fi gure than it is to set up the 
cross-product relations.

3  The 25-N?m couple vector of the 
wrench points in the direction oppo-
site to that of the 500-N force, and 
we must resolve it into its x-, y-, and 
z-components to be added to the 
other couple-vector components.

4  Although the resultant couple vec-
tor M in the sketch of the resultants 
is shown through A, we recognize 
that a couple vector is a free vector 
and therefore has no specifi ed line 
of action.

A

B

y

z

x

500 N

25 N·m

120 mm

60 mm

40 mm
600 N

45°

40°
60°

700 N

100
mm

30
mm

50 mm

80 mm

A

R
M

Sample Problem 2/18

Replace the two forces and the negative wrench by a single force R applied 
at A and the corresponding couple M.

Solution.  The resultant force has the components

 [Rx 5 ©Fx]   Rx 5 500 sin 408 1 700 sin 608 5 928 N

 [Ry 5 ©Fy]  Ry 5 600 1 500 cos 408 cos 458 5 871 N

 [Rz 5 ©Fz]  Rz 5 700 cos 608 1 500 cos 408 sin 458 5 621 N

Thus, R 5 928i 1 871j 1 621k N

and R 5 !(928)2 1 (871)2 1 (621)2 5 1416 N Ans.

The couple to be added as a result of moving the 500-N force is

 [M 5 r 3 F] M500 5 (0.08i 1 0.12j 1 0.05k) 3 500(i sin 408 

  1 j cos 408 cos 458 1 k cos 408 sin 458)

where r is the vector from A to B.

The term-by-term, or determinant, expansion gives

 M500 5 18.95i 2 5.59j 2 16.90k N?m

The moment of the 600-N force about A is written by inspection of its x- and 
z-components, which gives 

  M600 5 (600)(0.060)i 1 (600)(0.040)k

  5 36.0i 1 24.0k N?m

The moment of the 700-N force about A is easily obtained from the moments of 
the x- and z-components of the force. The result becomes

  M700 5 (700 cos 608)(0.030)i 2 [(700 sin 608)(0.060)
     1 (700 cos 608)(0.100)] j 2 (700 sin 608)(0.030)k

  5 10.5i 2 71.4 j 2 18.19k N?m

Also, the couple of the given wrench may be written 

  M9 5 25.0(2i sin 408 2 j cos 408 cos 458 2 k cos 408 sin 458)

  5 216.07i 2 13.54 j 2 13.54k N?m

Therefore, the resultant couple on adding together the i-, j-, and k-terms of the 
four M’s is

 M 5 49.4i 2 90.5j 2 24.6k N?m

and M 5 !(49.4)2 1 (90.5)2 1 (24.6)2 5 106.0 N?m Ans.

1

2

3

4
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Sample Problem 2/19

Determine the wrench resultant of the three forces acting on the bracket. 
Calculate the coordinates of the point P in the x-y plane through which the resul-
tant force of the wrench acts. Also fi nd the magnitude of the couple M of the 
wrench.

Solution.  The direction cosines of the couple M of the wrench must be the 
same as those of the resultant force R, assuming that the wrench is positive. 
The resultant force is 

 R 5 20i 1 40j 1 40k lb   R 5 !(20)2 1 (40)2 1 (40)2 5 60 lb

and its direction cosines are

 cos �x 5 20/60 5 1/3  cos �y 5 40/60 5 2/3  cos �z 5 40/60 5 2/3

The moment of the wrench couple must equal the sum of the moments of 
the given forces about point P through which R passes. The moments about P of 
the three forces are 

  (M)Rx
5 20yk lb-in.

  (M)Ry
5 240(3)i 2 40xk lb-in.

  (M)Rz
5 40(4 2 y)i 2 40(5 2 x)j lb-in.

and the total moment is

 M 5 (40 2 40y)i 1 (2200 1 40x)j 1 (240x 1 20y)k lb-in.

The direction cosines of M are

   cos �x 5 (40 2 40y)/M

   cos �y 5 (2200 1 40x)/M

   cos �z 5 (240x 1 20y)/M

where M is the magnitude of M. Equating the direction cosines of R and M gives

  40 2 40y 5
M
3

  2200 1 40x 5
2M
3

  240x 1 20y 5
2M
3

Solution of the three equations gives

 M 5 2120 lb-in.  x 5 3 in.  y 5 2 in. Ans.

We see that M turned out to be negative, which means that the couple vector is 
pointing in the direction opposite to R, which makes the wrench negative.

1

Helpful Hint

1  We assume initially that the wrench 
is positive. If M turns out to be neg-
ative, then the direction of the cou-
ple vector is opposite to that of the 
resultant force.

3″

4″

40 lb

20 lb

40 lb

5″

y

z

x

x

y
P

3″

4″

M

5″

y

y = 2 in.

x = 3 in.

z

x

R

P
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z

x

2b

b

y

F

F

F

F

30°

30°

O

Problem 2/151

2/152 An oil tanker moves away from its docked position 
under the action of reverse thrust from screw A, 
forward thrust from screw B, and side thrust from 
the bow thruster C. Determine the equivalent 
force–couple system at the mass center G.

7 m

5 m5 m

40 m

6 m

50 kN

z

y

C

A
B

8 kNG

50 kN x

Problem 2/152

2/153 Determine the x- and y-coordinates of a point 
through which the resultant of the parallel forces 
passes.

z
8″

60 lb

50 lb

10″ 10″

12″

70 lb

30 lb

6″

80 lb
x

y

Problem 2/153

PROBLEMS

Introductory Problems

2/149 Three forces act at point O. If it is known that the 
y-component of the resultant R is 25 kN and that 
the z-component is 6 kN, determine F3, �, and R.

y

F2 = 7 kN

F1 = 4 kN

F3

x

z

O
θ

Problem 2/149

2/150 Three equal forces are exerted on the equilateral 
plate as shown. Reduce the force system to an 
equivalent force–couple system at point O. Show 
that R is perpendicular to MO.

z

O

x y

b

b

F

F

F b—
2

b—
2

Problem 2/150

2/151 The thin rectangular plate is subjected to the four 
forces shown. Determine the equivalent force–couple 
system at O. What is the resultant of the system?
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2/156 Determine the force–couple system at O which is 
equivalent to the two forces applied to the shaft 
AOB. Is R perpendicular to MO?

z

A

O

y

80 mm

160 mm

30°

45°

xB

800 N

600 N

Problem 2/156

2/157 The portion of a bridge truss is subjected to sev-
eral loads. For the loading shown, determine the 
location in the x-z plane through which the resul-
tant passes.

x

y

z

3 m 250 kN

100 kN

75 kN

120 kN

4 m

1.5 m

3 m
3 m

3 m
3 m

O

Problem 2/157

Representative Problems

2/154 The two forces and one couple act on the elements 
of a drill press as shown. Determine the equivalent 
force–couple system at point O.

y

x

z

B

O

200 mm15°

20 N

300 N
50 mm

A
12 N·m

100 mm

Problem 2/154

2/155 Represent the resultant of the force system acting 
on the pipe assembly by a single force R at A and a 
couple M.

100 N

160 N

250 mm

300 mm
120 N

50 N·m

160 N

180 NA

x
y

z

200 mm

150
mm

100
mm

25°

Problem 2/155
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2/160 Replace the three forces acting on the rectangular 
solid with a wrench. Specify the magnitude of the 
moment M associated with the wrench and state 
whether it acts in a positive or negative sense. 
Specify the coordinates of the point P in plane 
ABCD through which the line of action of the 
wrench passes. Illustrate the wrench moment and 
resultant in an appropriate sketch.

B

C

D

O

z

A

yx

80 mm

50 mm
10 N

20 N

40 N

40 mm

40 mm

100 mm

Problem 2/160

2/161 While cutting a piece of paper, a person exerts the 
two indicated forces on a paper cutter. Reduce the 
two forces to an equivalent force–couple system at 
corner O and then specify the coordinates of the 
point P in the x-y plane through which the resul-
tant of the two forces passes. The cutting surface is 
240 3 240.

z

yx 7″11″

5″

O

1″

27 lb

A

8 lb

Problem 2/161

2/158 The pulley and gear are subjected to the loads 
shown. For these forces, determine the equivalent 
force–couple system at point O.

x
z

y

100
  mm

75
mm

220
mm

330
mm

10°
200 N

1200 N

O

800 N

Problem 2/158

2/159 The commercial airliner of Prob. 2/93 is redrawn 
here with three-dimensional information supplied. 
If engine 3 suddenly fails, determine the resultant 
of the three remaining engine thrust vectors, each 
of which has a magnitude of 90 kN. Specify the 
y- and z-coordinates of the point through which 
the line of action of the resultant passes. This in-
formation would be critical to the design criteria of 
performance with engine failure.

12

90 kN90 kN

90 kN

2 m

2 m

3 m

3 m

x

y

9 m

9 m

12 m

12 m

3

4

z

Problem 2/159
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2/164 Replace the two forces and one couple acting on 
the rigid pipe frame by their equivalent resultant 
force R acting at point O and a couple MO.

O

x

y

12″

15″

30°

50 lb

10″

40 lb-ft

60 lb

z

Problem 2/164

2/165 Replace the two forces acting on the pole by a 
wrench. Write the moment M associated with the 
wrench as a vector and specify the coordinates of 
the point P in the y-z plane through which the line 
of action of the wrench passes.

T

T

z

a

3a

O

y

x

Problem 2/165

2/166 For the system of Prob. 2/154, write the moment 
M of the wrench resultant of the two forces and 
couple and specify the coordinates of the point P 
in the y-z plane through which the line of action of 
the wrench passes.

2/162 The fl oor exerts the four indicated forces on the 
wheels of an engine hoist. Determine the loca-
tion in the x-y plane at which the resultant of the 
forces acts.

210 lb

270 lb

60 lb

30 lb
z

O

B

C

D

A

80″

76″

y

x
16″

20″

24″

20″
19″

Problem 2/162

2/163 Replace the three forces acting on the structural 
support with a wrench. Specify the point P in 
the x-y plane through which the line of action of 
the wrench passes. Note that the 12-kip force is 
applied at the midpoint of member AB and lies 
parallel to the x-direction. Illustrate the wrench 
moment and resultant in an appropriate sketch.

z

x

y

14′

8′ 12′

A

D

BC

8 kips

16 kips

12 kips

O

Problem 2/163
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2/168 For the system of forces in Prob. 2/167, determine 
the coordinates of the point P in the x-z plane 
through which the line of action of the resultant 
of the system passes. Illustrate the resultant in an 
appropriate sketch.

2/167 Replace the two forces which act on the pneumatic-
hose reel by an equivalent force–couple system 
at O. The 20-N force which results from the weight 
of excess hose being wound up lies in a plane 
parallel to the y-z plane and loses contact with the 
hose reel at a radius of 160 mm.

y
350

x

z

O

A

B

20 N

130 N
75

20°
15°
30°

130

110

30°

Dimensions in millimeters

Problem 2/167



2/10  CHAPTER REVIEW

In Chapter 2 we have established the properties of forces, moments, and 
couples, and the correct procedures for representing their effects. Mastery of 
this material is essential for our study of equilibrium in the chapters which 
follow. Failure to correctly use the procedures of Chapter 2 is a common cause 
of errors in applying the principles of  equilibrium. When diffi culties arise, you 
should refer to this chapter to be sure that the forces, moments, and couples 
are correctly represented.

Forces

There is frequent need to represent forces as vectors, to resolve a single 
force into components along desired directions, and to combine two or more 
concurrent forces into an equivalent resultant force. Specifi cally, you should 
be able to:

 1. Resolve a given force vector into its components along given directions, 
and express the vector in terms of the unit vectors along a given set of 
axes.

 2. Express a force as a vector when given its magnitude and information 
about its line of action. This information may be in the form of two points 
along the line of action or angles which orient the line of action.

 3. Use the dot product to compute the projection of a vector onto a specifi ed 
line and the angle between two vectors.

 4. Compute the resultant of two or more forces concurrent at a point.

Moments

The tendency of a force to rotate a body about an axis is described by a 
moment (or torque), which is a vector quantity. We have seen that fi nding 
the moment of a force is often facilitated by combining the moments of the 
components of the force. When working with moment vectors you should be 
able to:

 1. Determine a moment by using the moment-arm rule.

 2. Use the vector cross product to compute a moment vector in terms of a 
force vector and a position vector locating the line of action of the force.

 3. Utilize Varignon’s theorem to simplify the calculation of moments, in both 
scalar and vector forms.

 4. Use the triple scalar product to compute the moment of a force vector 
about a given axis through a given point.

Couples

A couple is the combined moment of two equal, opposite, and noncollinear 
forces. The unique effect of a couple is to produce a pure twist or rotation 
regardless of where the forces are located. The couple is useful in replacing a 
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force acting at a point by a force–couple system at a different point. To solve 
problems involving couples you should be able to:

 1. Compute the moment of a couple, given the couple forces and either their 
separation distance or any position vectors locating their lines of action.

 2. Replace a given force by an equivalent force–couple system, and vice 
versa.

Resultants

We can reduce an arbitrary system of forces and couples to a single 
resultant force applied at an arbitrary point, and a corresponding resultant 
couple. We can further combine this resultant force and couple into a wrench 
to give a single resultant force along a unique line of action, together with a 
parallel couple vector. To solve problems involving resultants you should be 
able to:

 1. Compute the magnitude, direction, and line of action of the resultant of a 
system of coplanar forces if that resultant is a force; otherwise, compute 
the moment of the resultant couple.

 2. Apply the principle of moments to simplify the calculation of the moment 
of a system of coplanar forces about a given point.

 3. Replace a given general force system by a wrench along a specifi c line of 
action.

Equilibrium

You will use the preceding concepts and methods when you study 
equilibrium in the following chapters. Let us summarize the concept of 
equilibrium:

 1. When the resultant force on a body is zero (oF 5 0), the body is in 
translational equilibrium. This means that its center of mass is either at 
rest or moving in a straight line with constant velocity.

 2. In addition, if the resultant couple is zero (oM 5 0), the body is in 
rotational equilibrium, either having no rotational motion or rotating 
with a constant angular velocity.

 3. When both resultants are zero, the body is in complete equilibrium.

 Article 2/10  Chapter Review  101
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1—
4

″

5″

15 lb

5″

15 lb

Problem 2/171

2/172 The blades of the portable fan generate a 1.2-lb 
thrust T as shown. Compute the moment MO of 
this force about the rear support point O. For com-
parison, determine the moment about O due to the 
weight of the motor–fan unit AB, whose weight of 
9 lb acts at G.

10″

A

Air flow

G

B

O
2″

4″
15°

8″

2″

T = 1.2 lb

Problem 2/172

REVIEW PROBLEMS

2/169 Using the principles of equilibrium to be developed 
in Chapter 3, you will soon be able to verify that 
the tension in cable AB is 85.8% of the weight of 
the cylinder of mass m, while the tension in cable 
AC is 55.5% of the suspended weight. Write each 
tension force acting on point A as a vector if the 
mass m is 60 kg.

1.2 m

m

A

B C

0.8 m 2 m

y

x

Problem 2/169

2/170 The three forces act perpendicular to the rectangu-
lar plate as shown. Determine the moments M1 of 
F1, M2 of F2, and M3 of F3, all about point O.

x

z

yO

a

c

F2

F3

F1

Problem 2/170

2/171 A die is being used to cut threads on a rod. If 15-lb 
forces are applied as shown, determine the magni-
tude F of the equal forces exerted on the 1

4-in. rod 
by each of the four cutting surfaces so that their 
external effect on the rod is equivalent to that of 
the two 15-lb forces.
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150 mm

200 N

x

20°

A

Problem 2/175

2/176 For the angular position � 5 608 of the crank OA, 
the gas pressure on the piston induces a compres-
sive force P in the connecting rod along its center-
line AB. If this force produces a moment of 720 N?m 
about the crank axis O, calculate P.

θ 

O

A

OA = 125 mm
AB = 300 mm

B

Problem 2/176

2/177 Calculate the moment MO of the 250-N force about 
the base point O of the robot.

A

B

C

400 mm

300 mm

250 N

20°

60°

O

500 mm

Problem 2/177

2/173 Determine the moment of the force P about point A.

A

B

z

y
b

b

b

x

P

3

4

Problem 2/173

2/174 The directions of rotation of the input shaft A and 
output shaft B of the worm-gear reducer are indi-
cated by the curved dashed arrows. An input 
torque (couple) of 80 N?m is applied to shaft A in 
the direction of rotation. The output shaft B sup-
plies a torque of 320 N?m to the machine which it 
drives (not shown). The shaft of the driven ma-
chine exerts an equal and opposite reacting torque 
on the output shaft of the reducer. Determine the 
resultant M of the two couples which act on the re-
ducer unit and calculate the direction cosine of M 
with respect to the x-axis.

y

z

80 N·m

320 N·m

x

150 mm

A

B

Problem 2/174

2/175 The control lever is subjected to a clockwise couple 
of 80 N?m exerted by its shaft at A and is designed 
to operate with a 200-N pull as shown. If the resul-
tant of the couple and the force passes through A, 
determine the proper dimension x of the lever.
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Dimensions in millimeters

150
150

x

z

y

C

60 kN

200

250

150

150
150

700
200

100

125 kN

100

500

50 kN

B

A

D

O

Problem 2/180

2/181 When the pole OA is in the position shown, the 
tension in cable AB is 3 kN. (a) Write the tension 
force exerted on the small collar at point A as a 
vector using the coordinates shown. (b) Determine 
the moment of this force about point O and state the 
moments about the x-, y-, and z-axes. (c) Determine 
the projection of this tension force onto line AO.

z

60°

35°

A

B

OA = 10 m
OB = 8 m
OG = 6 m

O

G

y

x

Problem 2/181

2/178 During a drilling operation, the small robotic de-
vice is subjected to an 800-N force at point C as 
shown. Replace this force by an equivalent force–
couple system at point O.

B
A

x

C

y

z

F = 800 N
O

250 mm

300 mm

30°

20°

Problem 2/178

2/179 Reduce the given loading system to a force–couple 
system at point A. Then determine the distance x 
to the right of point A at which the resultant of the 
three forces acts.

20″8″

18″

200 lb

300 lb

180 lb

A

Problem 2/179

2/180 The 300 3 500 3 700-mm column is subjected to 
the indicated forces. Replace the given loads by an 
equivalent force–couple system at point O, which 
lies at the center of plane ABCD. Show the compo-
nents of the resultant force and couple on an ap-
propriate sketch.



 Article 2/10  Review Problems  105

 *2/184 The force F is directed from A toward D and D is 
allowed to move from B to C as measured by the 
variable s. Consider the projection of F onto line 
EF as a function of s. In particular, determine and 
plot the fraction n of the magnitude F which is 
projected as a function of s/d. Note that s/d varies 
from 0 to 2!2.

B

A

F

E

F
D

s

C d

2d
2d

Problem 2/184

 *2/185 With the 300-lb cylindrical part P in its grip, the 
robotic arm pivots about O through the range 
2458 # � # 458 with the angle at A locked at 1208. 
Determine and plot (as a function of �) the mo-
ment at O due to the combined effects of the 300-lb 
part P, the 120-lb weight of member OA (mass 
center at G1), and the 50-lb weight of member AB 
(mass center at G2). The end grip is included as a 
part of member AB. The lengths L1 and L2 are 3 ft 
and 2 ft, respectively. What is the maximum value 
of MO, and at what value of � does this maximum 
occur?

A

120°
B

P

O
G1

G2

θ

L 1
—–

2

L 1
—–

2

L
2—–2

L
2—–2

Problem 2/185

2/182 The combined action of the three forces on the 
base at O may be obtained by establishing their 
resultant through O. Determine the magnitudes of 
R and the accompanying couple M.

600 lb

45°

7′

3′

3′

3′

500 lb

400 lb
z

x

y
O

Problem 2/182

 *Computer-Oriented Problems

 *2/183 Four forces are exerted on the eyebolt as shown. If 
the net effect on the bolt is a direct pull of 600 lb 
in the y-direction, determine the necessary values 
of T and �.

30°

30°θ

y

x

400 lb

240 lb

360 lb

T

Problem 2/183
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 *2/189 The throttle-control lever OA rotates in the range 
0 #  � #  908. An internal torsional return spring 
exerts a restoring moment about O given by 
M 5 K(� 1 �/4), where K 5 500 N?mm/rad and � 
is in radians. Determine and plot as a function of 
� the tension T required to make the net moment 
about O zero. Use the two values d 5 60 mm and 
d 5 160 mm and comment on the relative design 
merits. The effects of the radius of the pulley at B 
are negligible.

d

T

B

M

A

40 mm
45° 40 mm

θ

O

Problem 2/189

 *2/190 For the rectangular parallelepiped shown, develop 
an expression for the scalar projection FBC of F 
onto line BC. Point M is located at the centroid of 
the triangle ABC formed by “chopping off ” the cor-
ner of the parallelepiped. Plot your expression over 
the range 0 # d # 3b, and determine the maximum 
value of FBC along with the corresponding value 
of d. See Table D/3 in Appendix D for the centroid 
location of a triangle.

x y

z

C

2b

b
3b

F

B
d

M

A

O

Problem 2/190

 *2/186 A fl agpole with attached light triangular frame 
is shown here for an arbitrary position during its 
raising. The 75-N tension in the erecting cable re-
mains constant. Determine and plot the moment 
about the pivot O of the 75-N force for the range 
0 # � # 908. Determine the maximum value of 
this moment and the elevation angle at which it 
occurs; comment on the physical signifi cance of 
the latter. The effects of the diameter of the drum 
at D may be neglected.

D

6 m

O

A

θ
3 m

3 m

3 m

B

C

Problem 2/186

 *2/187 Plot the magnitude of the resultant R of the three 
forces as a function of � for 0 # � # 3608 and deter-
mine the value of � which makes the magnitude R of 
the resultant of the three loads (a) a maximum and 
(b) a minimum. Record the magnitude of the resul-
tant in each case. Use values of � 5 758 and � 5 208.

105 N

60 N

85 N

O

y

x

z

θ

ψ φ

Problem 2/187

 *2/188 For the previous problem, determine the combina-
tion of angles � and � which makes the magnitude 
R of the resultant R of the three loads (a) a maxi-
mum and (b) a minimum. Record the magnitude of 
the resultant in each case and show a plot of R as a 
function of both � and �. The angle � is fi xed at 208.
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O

M

B

0.5 m

x

y

A′′ A′

A

0.3 m
k = 600 N/m

θ

Problem 2/192

 *2/191 Consider the rectangular parallelepiped of Prob. 
2/190. Develop the scalar expression for the mo-
ment MBC which the force F makes about line BC 
of the “chopped off ” corner ABC. Point M is lo-
cated at the centroid of the triangle ABC formed 
by “chopping off” the corner of the parallelepiped. 
Plot your expression over the range 0 # d # 3b, 
and determine the maximum value of MBC along 
with the corresponding value of d.

 *2/192 A motor attached to the shaft at O causes the arm 
OA to rotate over the range 0 #  � #  1808. The 
unstretched length of the spring is 0.65 m, and it 
can support both tension and compression. If the 
net moment about O must be zero, determine and 
plot the required motor torque M as a function of �.



In many applications of mechanics, the sum of the forces acting on a body is zero or near zero, and a state of equi-
librium is assumed to exist. This apparatus is designed to hold a car body in equilibrium for a considerable range 
of orientations during vehicle production. Even though there is motion, it is slow and steady with minimal accelera-
tion, so that the assumption of equilibrium is justified during the design of the mechanism.
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EQUILIBRIUM3

3/1  INTRODUCTION

Statics deals primarily with the description of the force conditions 
necessary and suffi cient to maintain the equilibrium of engineering 
structures. This chapter on equilibrium, therefore, constitutes the 
most important part of statics, and the procedures developed here 
form the basis for solving problems in both statics and dynamics. We will 
make continual use of the concepts developed in Chapter 2 involving 
forces, moments, couples, and resultants as we apply the principles of 
equilibrium.

When a body is in equilibrium, the resultant of all forces acting on 
it is zero. Thus, the resultant force R and the resultant couple M are 
both zero, and we have the equilibrium equations

 R 5 ©F 5 0  M 5 ©M 5 0 (3/1)

These requirements are both necessary and suffi cient conditions for 
equilibrium.

All physical bodies are three-dimensional, but we can treat many of 
them as two-dimensional when the forces to which they are subjected 
act in a single plane or can be projected onto a single plane. When this 
simplifi cation is not possible, the problem must be treated as three-
dimensional. We will follow the arrangement used in Chapter 2 and dis-
cuss in Section A the equilibrium of bodies subjected to two-dimensional 
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force systems and in Section B the equilibrium of bodies subjected to 
three-dimensional force systems.

SECTION A EQUILIBRIUM IN TWO DIMENSIONS

3/2  SYSTEM ISOLATION AND THE FREE-BODY DIAGRAM

Before we apply Eqs. 3/1, we must defi ne unambiguously the partic-
ular body or mechanical system to be analyzed and represent clearly 
and completely all forces acting on the body. Omission of a force which 
acts on the body in question, or inclusion of a force which does not act 
on the body, will give erroneous results.

A mechanical system is defi ned as a body or group of bodies which 
can be conceptually isolated from all other bodies. A system may be a 
single body or a combination of connected bodies. The bodies may be 
rigid or nonrigid. The system may also be an identifi able fl uid mass, ei-
ther liquid or gas, or a combination of fl uids and solids. In statics we 
study primarily forces which act on rigid bodies at rest, although we also 
study forces acting on fl uids in equilibrium.

Once we decide which body or combination of bodies to analyze, we 
then treat this body or combination as a single body isolated from all 
surrounding bodies. This isolation is accomplished by means of the 
free-body diagram, which is a diagrammatic representation of the 
isolated system treated as a single body. The diagram shows all forces 
applied to the system by mechanical contact with other bodies, which 
are imagined to be removed. If appreciable body forces are present, 
such as gravitational or magnetic attraction, then these forces must 
also be shown on the free-body diagram of the isolated system. Only 
after such a diagram has been carefully drawn should the equilibrium 
equations be written. Because of its critical importance, we emphasize 
here that

the free-body diagram is the most important single
step in the solution of problems in mechanics.

Before attempting to draw a free-body diagram, we must recall the 
basic characteristics of force. These characteristics were described in 
Art. 2/2, with primary attention focused on the vector properties of 
force. Forces can be applied either by direct physical contact or by re-
mote action. Forces can be either internal or external to the system 
under consideration. Application of force is accompanied by reactive 
force, and both applied and reactive forces may be either concentrated 
or distributed. The principle of transmissibility permits the treatment 
of force as a sliding vector as far as its external effects on a rigid body 
are concerned.

We will now use these force characteristics to develop conceptual 
models of isolated mechanical systems. These models enable us to write 
the appropriate equations of equilibrium, which can then be analyzed.



Modeling the Action of Forces

Figure 3/1 shows the common types of force application on me-
chanical systems for analysis in two dimensions. Each example 
shows the force exerted on the body to be isolated, by the body to be 
removed. Newton’s third law, which notes the existence of an equal 
and opposite reaction to every action, must be carefully observed. 
The force exerted on the body in question by a contacting or support-
ing member is always in the sense to oppose the movement of the 
isolated body which would occur if the contacting or supporting body 
were removed.

In Fig. 3/1, Example 1 depicts the action of a fl exible cable, belt, 
rope, or chain on the body to which it is attached. Because of its fl exi-
bility, a rope or cable is unable to offer any resistance to bending, 
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Figure 3/1

θ

θ

MODELING THE ACTION OF FORCES IN TWO-DIMENSIONAL ANALYSIS

Type of Contact and Force Origin

1. Flexible cable, belt,
chain, or rope

2. Smooth surfaces

3. Rough surfaces

4. Roller support

5. Freely sliding guide

Action on Body to Be Isolated

Force exerted by 
a flexible cable is 
always a tension away 
from the body in the 
direction of the cable.

Contact force is 
compressive and is 
normal to the surface.

Rough surfaces are 
capable of supporting a 
tangential component F 
(frictional force) as well 
as a normal component 
N of the resultant 
contact force R.

Roller, rocker, or ball 
support transmits a 
compressive force 
normal to the 
supporting surface.

Collar or slider free to 
move along smooth 
guides; can support 
force normal to guide 
only.

θ

θ

Weight of cable
negligible

Weight of cable
not negligible

T

T

N

N

N

N

F

R

N N
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shear, or compression and therefore exerts only a tension force in a 
direction tangent to the cable at its point of attachment. The force 
exerted by the cable on the body to which it is attached is always away 
from the body. When the tension T is large compared with the weight of 
the cable, we may assume that the cable forms a straight line. When 

MODELING THE ACTION OF FORCES IN TWO-DIMENSIONAL ANALYSIS (cont.)

Type of Contact and Force Origin

6. Pin connection

7. Built-in or fixed support

8. Gravitational attraction

9. Spring action

Action on Body to Be Isolated

A freely hinged pin 
connection is capable 
of supporting a force 
in any direction in the 
plane normal to the 
pin axis. We may 
either show two 
components Rx and
Ry or a magnitude R 
and direction   . A pin 
not free to turn also 
supports a couple M.

A built-in or fixed 
support is capable of 
supporting an axial 
force F, a transverse 
force V (shear force), 
and a couple M 
(bending moment) to 
prevent rotation.

The resultant of 
gravitational 
attraction on all 
elements of a body of 
mass m is the weight 
W = mg and acts 
toward the center of 
the earth through the 
center of gravity G.

Spring force is tensile if 
the spring is stretched 
and compressive if 
compressed. For a 
linearly elastic spring 
the stiffness k is the 
force required to deform 
the spring a unit 
distance.

Pin free to turn

Pin not free to turn

Ry

Rx

Weld

A

M

F

V

or
AA

W = mg

Gm

F

k

x
F = kx F = kx

Hardening

NonlinearLinear
Neutral
position

Softening

F

x

F

x

Ry

Rx
R

θ

θ
M

Figure 3/1, continued

10. Torsional spring action For a linear torsional 
spring, the applied 
moment M is 
proportional to the 
angular deflection 
from the neutral 
position. The stiffness 
kT is the moment 
required to deform the 
spring one radian.

M = kT θ θ

kT

M

Neutral position

θ
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the cable weight is not negligible compared with its tension, the sag of 
the cable becomes important, and the tension in the cable changes di-
rection and magnitude along its length.

When the smooth surfaces of two bodies are in contact, as in Exam-
ple 2, the force exerted by one on the other is normal to the tangent to 
the surfaces and is compressive. Although no actual surfaces are per-
fectly smooth, we can assume this to be so for practical purposes in 
many instances.

When mating surfaces of contacting bodies are rough, as in Exam-
ple 3, the force of contact is not necessarily normal to the tangent to the 
surfaces, but may be resolved into a tangential or frictional component F 
and a normal component N.

Example 4 illustrates a number of forms of mechanical support 
which effectively eliminate tangential friction forces. In these cases the 
net reaction is normal to the supporting surface.

Example 5 shows the action of a smooth guide on the body it sup-
ports. There cannot be any resistance parallel to the guide.

Example 6 illustrates the action of a pin connection. Such a con-
nection can support force in any direction normal to the axis of the 
pin. We usually represent this action in terms of two rectangular com-
ponents. The correct sense of these components in a specifi c problem 
depends on how the member is loaded. When not otherwise initially 
known, the sense is arbitrarily assigned and the equilibrium equa-
tions are then written. If the solution of these equations yields a posi-
tive algebraic sign for the force component, the assigned sense is 
correct. A negative sign indicates the sense is opposite to that initially 
assigned.

If the joint is free to turn about the pin, the connection can support 
only the force R. If the joint is not free to turn, the connection can also 
support a resisting couple M. The sense of M is arbitrarily shown here, 
but the true sense depends on how the member is loaded.

Example 7 shows the resultants of the rather complex distribution 
of force over the cross section of a slender bar or beam at a built-in or 
fi xed support. The sense of the reactions F and V and the bending cou-
ple M in a given problem depends, of course, on how the member is 
loaded.

One of the most common forces is that due to gravitational attrac-
tion, Example 8. This force affects all elements of mass in a body and is, 
therefore, distributed throughout it. The resultant of the gravitational 
forces on all elements is the weight W 5 mg of the body, which passes 
through the center of gravity G and is directed toward the center of the 
earth for earthbound structures. The location of G is frequently obvious 
from the geometry of the body, particularly where there is symmetry. 
When the location is not readily apparent, it must be determined by 
experiment or calculations.

Similar remarks apply to the remote action of magnetic and electric 
forces. These forces of remote action have the same overall effect on a 
rigid body as forces of equal magnitude and direction applied by direct 
external contact.

Example 9 illustrates the action of a linear elastic spring and of 
a nonlinear spring with either hardening or softening characteris-
tics. The force exerted by a linear spring, in tension or compression, 

Another type of car-lifting apparatus 
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is given by F 5 kx, where k is the stiffness or modulus of the spring 
and x is its deformation measured from the neutral or undeformed 
position.

In Example 10 we see the action of a torsional (or clockwork) 
spring. Shown is a linear version; as suggested in Example 9 for exten-
sion springs, nonlinear torsional springs also exist.

The representations in Fig. 3/1 are not free-body diagrams, but are 
merely elements used to construct free-body diagrams. Study these ten 
conditions and identify them in the problem work so that you can draw 
the correct free-body diagrams.

CONSTRUCTION OF FREE-BODY DIAGRAMS

The full procedure for drawing a free-body diagram which isolates a 
body or system consists of the following steps.

Step 1. Decide which system to isolate. The system chosen should 
usually involve one or more of the desired unknown quantities.

Step 2. Next isolate the chosen system by drawing a diagram which 
represents its complete external boundary. This boundary defi nes the  
isolation of the system from all other attracting or contacting bodies, 
which are considered removed. This step is often the most crucial of all. 
Make certain that you have completely isolated the system before pro-
ceeding with the next step.

Step 3. Identify all forces which act on the isolated system as ap-
plied by the removed contacting and attracting bodies, and represent 
them in their proper positions on the diagram of the isolated system. 
Make a systematic traverse of the entire boundary to identify all con-
tact forces. Include body forces such as weights, where appreciable. 
Represent all known forces by vector arrows, each with its proper mag-
nitude, direction, and sense indicated. Each unknown force should be 
represented by a vector arrow with the unknown magnitude or direc-
tion indicated by symbol. If the sense of the vector is also unknown, 
you must arbitrarily assign a sense. The subsequent calculations with 
the equilibrium equations will yield a positive quantity if the correct 
sense was assumed and a negative quantity if the incorrect sense was 
assumed. It is necessary to be consistent with the assigned characteris-
tics of unknown forces throughout all of the calculations. If you are 
consistent, the solution of the equilibrium equations will reveal the cor-
rect senses.

Step 4. Show the choice of coordinate axes directly on the diagram. 
Pertinent dimensions may also be represented for convenience. Note, 
however, that the free-body diagram serves the purpose of focusing at-
tention on the action of the external forces, and therefore the diagram 
should not be cluttered with excessive extraneous information. Clearly 
distinguish force arrows from arrows representing quantities other than 
forces. For this purpose a colored pencil may be used.

K
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Completion of the foregoing four steps will produce a correct free-body 
diagram to use in applying the governing equations, both in statics and in 
dynamics. Be careful not to omit from the free-body diagram certain 
forces which may not appear at fi rst glance to be needed in the calcula-
tions. It is only through complete isolation and a systematic representa-
tion of all external forces that a reliable accounting of the effects of all 
applied and reactive forces can be made. Very often a force which at fi rst 
glance may not appear to infl uence a desired result does indeed have an 
infl uence. Thus, the only safe procedure is to include on the free-body dia-
gram all forces whose magnitudes are not obviously negligible.

Examples of Free-Body Diagrams

Figure 3/2 gives four examples of mechanisms and structures to-
gether with their correct free-body diagrams. Dimensions and magnitudes 

Figure 3/2
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V2. Cantilever beam

3. Beam

4. Rigid system of interconnected bodies
    analyzed as a single unit

1. Plane truss

Weight of truss
assumed negligible
compared with P

Mechanical System Free-Body Diagram of Isolated Body

SAMPLE FREE-BODY DIAGRAMS
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Smooth surface
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P
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Weight of mechanism
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are omitted for clarity. In each case we treat the entire system as a single 
body, so that the internal forces are not shown. The characteristics of the 
various types of contact forces illustrated in Fig. 3/1 are used in the four 
examples as they apply.

In Example 1 the truss is composed of structural elements which, 
taken all together, constitute a rigid framework. Thus, we may remove 
the entire truss from its supporting foundation and treat it as a single 
rigid body. In addition to the applied external load P, the free-body dia-
gram must include the reactions on the truss at A and B. The rocker at 
B can support a vertical force only, and this force is transmitted to the 
structure at B (Example 4 of Fig. 3/1). The pin connection at A (Exam-
ple 6 of Fig. 3/1) is capable of supplying both a horizontal and a vertical 
force component to the truss. If the total weight of the truss members 
is appreciable compared with P and the forces at A and B, then the 
weights of the members must be included on the free-body diagram as 
external forces.

In this relatively simple example it is clear that the vertical com-
ponent Ay must be directed down to prevent the truss from rotating 
clockwise about B. Also, the horizontal component Ax will be to the left 
to keep the truss from moving to the right under the infl uence of the 
horizontal component of P. Thus, in constructing the free-body diagram 
for this simple truss, we can easily perceive the correct sense of each of 
the components of force exerted on the truss by the foundation at A and 
can, therefore, represent its correct physical sense on the diagram. 
When the correct physical sense of a force or its component is not eas-
ily recognized by direct observation, it must be assigned arbitrarily, 
and the correctness of or error in the assignment is determined by the 
algebraic sign of its calculated value.

In Example 2 the cantilever beam is secured to the wall and sub-
jected to three applied loads. When we isolate that part of the beam to 
the right of the section at A, we must include the reactive forces 
applied to the beam by the wall. The resultants of these reactive forces 
are shown acting on the section of the beam (Example 7 of Fig. 3/1). A 
vertical force V to counteract the excess of downward applied force is 
shown, and a tension F to balance the excess of applied force to the 
right must also be included. Then, to prevent the beam from rotating 
about A, a counterclockwise couple M is also required. The weight mg 
of the beam must be represented through the mass center (Example 8 
of Fig. 3/1).

In the free-body diagram of Example 2, we have represented the 
somewhat complex system of forces which actually act on the cut sec-
tion of the beam by the equivalent force–couple system in which the 
force is broken down into its vertical component V (shear force) and its 
horizontal component F (tensile force). The couple M is the bending 
moment in the beam. The free-body diagram is now complete and 
shows the beam in equilibrium under the action of six forces and one 
couple.

In Example 3 the weight W 5 mg is shown acting through the cen-
ter of mass of the beam, whose location is assumed known (Example 8 
of Fig. 3/1). The force exerted by the corner A on the beam is normal to 
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the smooth surface of the beam (Example 2 of Fig. 3/1). To perceive 
this action more clearly, visualize an enlargement of the contact point A, 
which would appear somewhat rounded, and consider the force ex-
erted by this rounded corner on the straight surface of the beam, 
which is assumed to be smooth. If the contacting surfaces at the cor-
ner were not smooth, a tangential frictional component of force could 
exist. In addition to the applied force P and couple M, there is the pin 
connection at B, which exerts both an x- and a y-component of force 
on the beam. The positive senses of these components are assigned 
arbitrarily.

In Example 4 the free-body diagram of the entire isolated mecha-
nism contains three unknown forces if the loads mg and P are known. 
Any one of many internal confi gurations for securing the cable leading 
from the mass m would be possible without affecting the external re-
sponse of the mechanism as a whole, and this fact is brought out by the 
free-body diagram. This hypothetical example is used to show that the 
forces internal to a rigid assembly of members do not infl uence the val-
ues of the external reactions.

We use the free-body diagram in writing the equilibrium equa-
tions, which are discussed in the next article. When these equations 
are solved, some of the calculated force magnitudes may be zero. This 
would indicate that the assumed force does not exist. In Example 1 
of Fig. 3/2, any of the reactions Ax, Ay, or By can be zero for specifi c 
values of the truss geometry and of the magnitude, direction, and 
sense of the applied load P. A zero reaction force is often diffi cult to 
identify by inspection, but can be determined by solving the equilib-
rium equations.

Similar comments apply to calculated force magnitudes which 
are negative. Such a result indicates that the actual sense is the op-
posite of the assumed sense. The assumed positive senses of Bx and 
By in Example 3 and By in Example 4 are shown on the free-body dia-
grams. The correctness of these assumptions is proved or disproved 
according to whether the algebraic signs of the computed forces are 
plus or minus when the calculations are carried out in an actual 
problem.

The isolation of the mechanical system under consideration is a 
crucial step in the formulation of the mathematical model. The most 
important aspect to the correct construction of the all-important free-
body diagram is the clear-cut and unambiguous decision as to what is 
included and what is excluded. This decision becomes unambiguous 
only when the boundary of the free-body diagram represents a com-
plete traverse of the body or system of bodies to be isolated, starting at 
some arbitrary point on the boundary and returning to that same 
point. The system within this closed boundary is the isolated free body, 
and all contact forces and all body forces transmitted to the system 
across the boundary must be accounted for.

The following exercises provide practice with drawing free-
body diagrams. This practice is helpful before using such diagrams 
in the application of the principles of force equilibrium in the next 
article.
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FREE-BODY DIAGRAM EXERCISES

3/A In each of the fi ve following examples, the body to be 
isolated is shown in the left-hand diagram, and an in-
complete free-body diagram (FBD) of the isolated 
body is shown on the right. Add whatever forces are 

necessary in each case to form a complete free-body 
diagram. The weights of the bodies are negligible un-
less otherwise indicated. Dimensions and numerical 
values are omitted for simplicity.

Problem 3/A

1. Bell crank
    supporting mass
    m with pin support
    at A.

2. Control lever
    applying torque
    to shaft at O.

3. Boom OA, of
    negligible mass
    compared with
    mass m. Boom
    hinged at O and
    supported by
    hoisting cable at B.

4. Uniform crate of
    mass m leaning
    against smooth
    vertical wall and
    supported on a 
    rough horizontal
    surface.

5. Loaded bracket
    supported by pin
    connection at A and
    fixed pin in smooth
    slot at B.

Body Incomplete FBD

m

A

O

A

B

A

O
O

A

B

T

A

mg
T

Flexible
cable

Pull P P

FO

m mg

mg

B

B

A
Load L

B

A
L
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3/B In each of the fi ve following examples, the body to be 
isolated is shown in the left-hand diagram, and either 
a wrong or an incomplete free-body diagram (FBD) is 
shown on the right. Make whatever changes or addi-

tions are necessary in each case to form a correct and 
complete free-body diagram. The weights of the bod-
ies are negligible unless otherwise indicated. Dimen-
sions and numerical values are omitted for simplicity.

Problem 3/B

mg

mg

1. 

Wrong or Incomplete FBDBody

P

P

N

N

PLawn roller of 
mass m being
pushed up 
incline    . 

5. Bent rod welded to
support at A and 
subjected to two 
forces and couple.

4. Supporting angle
bracket for frame;
pin joints.

3. Uniform pole of 
mass m being
hoisted into posi-
tion by winch.
Horizontal sup-
porting surface
notched to prevent
slipping of pole.

2. Prybar lifting 
body A having 
smooth horizontal 
surface. Bar rests 
on horizontal 
rough surface.

P

T

R

R

A

Notch

y

x

M

F

M

F

P

A y

F

A

A

B

P

A

B
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3/C Draw a complete and correct free-body diagram of each 
of the bodies designated in the statements. The weights 
of the bodies are signifi cant only if the mass is stated. 

All forces, known and unknown, should be labeled. 
(Note: The sense of some reaction components cannot 
always be determined without numerical calculation.)

m

L

A

A B

A

A

B

C

A

B

B

3. Loaded truss supported by pin joint at 
A and by cable at B.

2. Wheel of mass m on verge of being
rolled over curb by pull P.

4. Uniform bar of mass m and roller of
mass m0 taken together. Subjected to 
couple M and supported as shown.
Roller is free to turn.

7. Uniform heavy plate of mass m
supported in vertical plane by cable
C and hinge A.

6. Bar, initially horizontal but deflected 
under load L. Pinned to rigid support 
at each end.

8. Entire frame, pulleys, and contacting
cable to be isolated as a single unit.

1. Uniform horizontal bar of mass m 
suspended by vertical cable at A and
supported by rough inclined surface 
at B.

5. Uniform grooved wheel of mass m
supported by a rough surface and by 
action of horizontal cable.

m0
M

A

m

P

m

L

m

L

Problem 3/C
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3/3  EQUIL IBR IUM CONDIT IONS

In Art. 3/1 we defi ned equilibrium as the condition in which the re-
sultant of all forces and moments acting on a body is zero. Stated in 
another way, a body is in equilibrium if all forces and moments applied 
to it are in balance. These requirements are contained in the vector 
equations of equilibrium, Eqs. 3/1, which in two dimensions may be 
written in scalar form as

 ©Fx 5 0  ©Fy 5 0  ©MO 5 0  (3/2)

The third equation represents the zero sum of the moments of all forces 
about any point O on or off the body. Equations 3/2 are the necessary 
and suffi cient conditions for complete equilibrium in two dimensions. 
They are necessary conditions because, if they are not satisfi ed, there can 
be no force or moment balance. They are suffi cient because once they are 
satisfi ed, there can be no imbalance, and equilibrium is assured.

The equations relating force and acceleration for rigid-body motion 
are developed in Vol. 2 Dynamics from Newton’s second law of motion. 
These equations show that the acceleration of the mass center of a body 
is proportional to the resultant force ©F acting on the body. Conse-
quently, if a body moves with constant velocity (zero acceleration), the 
resultant force on it must be zero, and the body may be treated as in a 
state of translational equilibrium.

For complete equilibrium in two dimensions, all three of Eqs. 3/2 
must hold. However, these conditions are independent requirements, 
and one may hold without another. Take, for example, a body which 
slides along a horizontal surface with increasing velocity under the ac-
tion of applied forces. The force–equilibrium equations will be satisfi ed in 
the vertical direction where the acceleration is zero, but not in the hori-
zontal direction. Also, a body, such as a fl ywheel, which rotates about its 
fi xed mass center with increasing angular speed is not in rotational equi-
librium, but the two force–equilibrium equations will be satisfi ed.

Categories of Equilibrium

Applications of Eqs. 3/2 fall naturally into a number of categories 
which are easily identifi ed. The categories of force systems acting on 
bodies in two-dimensional equilibrium are summarized in Fig. 3/3 and 
are explained further as follows.

Category 1, equilibrium of collinear forces, clearly requires only 
the one force equation in the direction of the forces (x-direction), since 
all other equations are automatically satisfi ed.

Category 2, equilibrium of forces which lie in a plane (x-y plane) 
and are concurrent at a point O, requires the two force equations only, 
since the moment sum about O, that is, about a z-axis through O, is nec-
essarily zero. Included in this category is the case of the equilibrium of a 
particle.

Category 3, equilibrium of parallel forces in a plane, requires the 
one force equation in the direction of the forces (x-direction) and one mo-
ment equation about an axis (z-axis) normal to the plane of the forces.
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Category 4, equilibrium of a general system of forces in a plane 
(x-y), requires the two force equations in the plane and one moment 
equation about an axis (z-axis) normal to the plane.

Two- and Three-Force Members

You should be alert to two frequently occurring equilibrium situa-
tions. The fi rst situation is the equilibrium of a body under the action 
of two forces only. Two examples are shown in Fig. 3/4, and we see 
that for such a two-force member to be in equilibrium, the forces must 
be equal, opposite, and collinear. The shape of the member does not af-
fect this simple requirement. In the illustrations cited, we consider the 
weights of the members to be negligible compared with the applied 
forces.

The second situation is a three-force member, which is a body under 
the action of three forces, Fig. 3/5a. We see that equilibrium requires 
the lines of action of the three forces to be concurrent. If they were not 
concurrent, then one of the forces would exert a resultant moment 
about the point of intersection of the other two, which would violate the 
requirement of zero moment about every point. The only exception oc-
curs when the three forces are parallel. In this case we may consider 
the point of concurrency to be at infi nity.

Figure 3/4
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The principle of the concurrency of three forces in equilibrium is of 
considerable use in carrying out a graphical solution of the force equa-
tions. In this case the polygon of forces is drawn and made to close, as 
shown in Fig. 3/5b. Frequently, a body in equilibrium under the action 
of more than three forces may be reduced to a three-force member by a 
combination of two or more of the known forces.

Alternative Equilibrium Equations

In addition to Eqs. 3/2, there are two other ways to express the gen-
eral conditions for the equilibrium of forces in two dimensions. The fi rst 
way is illustrated in Fig. 3/6, parts (a) and (b). For the body shown in 
Fig. 3/6a, if ©MA 5 0, then the resultant, if it still exists, cannot be a 
couple, but must be a force R passing through A. If now the equation 
©Fx 5 0 holds, where the x-direction is arbitrary, it follows from Fig. 
3/6b that the resultant force R, if it still exists, not only must pass 
through A, but also must be perpendicular to the x-direction as shown. 
Now, if ©MB 5 0, where B is any point such that the line AB is not per-
pendicular to the x-direction, we see that R must be zero, and thus the 
body is in equilibrium. Therefore, an alternative set of equilibrium 
equations is

©Fx 5 0  ©MA 5 0  ©MB 5 0

where the two points A and B must not lie on a line perpendicular to the 
x-direction.

A third formulation of the equilibrium conditions may be made for 
a coplanar force system. This is illustrated in Fig. 3/6, parts (c) and 
(d). Again, if ©MA 5 0 for any body such as that shown in Fig. 3/6c, the 
resultant, if any, must be a force R through A. In addition, if ©MB 5 0, 
the resultant, if one still exists, must pass through B as shown in Fig. 
3/6d. Such a force cannot exist, however, if ©MC 5 0, where C is not 

Figure 3/5

F1

F1

F3

F3

F2

F2

Three-force member(a)

Closed polygon
satisfies 

(b)
ΣF = 0

O

Figure 3/6

ΣMA = 0 satisfied

ΣMA = 0 satisfied

ΣMA = 0 
Σ Fx = 0 

⎫
⎬
⎭

satisfied

ΣMA = 0 
Σ MB = 0 

⎫
⎬
⎭

satisfied

(a) (b)

x

(c) (d)

R R

A A

AA

B

C

B

R R
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collinear with A and B. Thus, we may write the equations of equilib-
rium as

©MA 5 0  ©MB 5 0  ©MC 5 0

where A, B, and C are any three points not on the same straight line.
When equilibrium equations are written which are not indepen-

dent, redundant information is obtained, and a correct solution of the 
equations will yield 0 5 0. For example, for a general problem in two di-
mensions with three unknowns, three moment equations written about 
three points which lie on the same straight line are not independent. 
Such equations will contain duplicated information, and solution of two 
of them can at best determine two of the unknowns, with the third 
equation merely verifying the identity 0 5 0.

Constraints and Statical Determinacy

The equilibrium equations developed in this article are both neces-
sary and suffi cient conditions to establish the equilibrium of a body. 
However, they do not necessarily provide all the information required 
to calculate all the unknown forces which may act on a body in equilib-
rium. Whether the equations are adequate to determine all the un-
knowns depends on the characteristics of the constraints against 
possible movement of the body provided by its supports. By constraint 
we mean the restriction of movement.

In Example 4 of Fig. 3/1 the roller, ball, and rocker provide con-
straint normal to the surface of contact, but none tangent to the sur-
face. Thus, a tangential force cannot be supported. For the collar and 
slider of Example 5, constraint exists only normal to the guide. In Ex-
ample 6 the fi xed-pin connection provides constraint in both directions, 
but offers no resistance to rotation about the pin unless the pin is not 
free to turn. The fi xed support of Example 7, however, offers constraint 
against rotation as well as lateral movement.

If the rocker which supports the truss of Example 1 in Fig. 3/2 were 
replaced by a pin joint, as at A, there would be one additional con-
straint beyond those required to support an equilibrium confi guration 
with no freedom of movement. The three scalar conditions of equilib-
rium, Eqs. 3/2, would not provide suffi cient information to determine 
all four unknowns, since Ax and Bx could not be solved for separately; 
only their sum could be determined. These two components of force 
would be dependent on the deformation of the members of the truss as 
infl uenced by their corresponding stiffness properties. The horizontal 
reactions Ax and Bx would also depend on any initial deformation re-
quired to fi t the dimensions of the structure to those of the foundation 
between A and B. Thus, we cannot determine Ax and Bx by a rigid-body 
analysis.

Again referring to Fig. 3/2, we see that if the pin B in Example 3 
were not free to turn, the support could transmit a couple to the beam 
through the pin. Therefore, there would be four unknown supporting re-
actions acting on the beam—namely, the force at A, the two components 
of force at B, and the couple at B. Consequently the three independent 
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scalar equations of equilibrium would not provide enough information to 
compute all four unknowns.

A rigid body, or rigid combination of elements treated as a single 
body, which possesses more external supports or constraints than are 
necessary to maintain an equilibrium position is called statically inde-
terminate. Supports which can be removed without destroying the 
equilibrium condition of the body are said to be redundant. The num-
ber of redundant supporting elements present corresponds to the de-
gree of statical indeterminacy and equals the total number of unknown 
external forces, minus the number of available independent equations 
of equilibrium. On the other hand, bodies which are supported by the 
minimum number of constraints necessary to ensure an equilibrium 
confi guration are called statically determinate, and for such bodies the 
equilibrium equations are suffi cient to determine the unknown exter-
nal forces.

The problems on equilibrium in this article and throughout Vol. 1 
Statics are generally restricted to statically determinate bodies 
where the constraints are just suffi cient to ensure a stable equilib-
rium confi guration and where the unknown supporting forces can be 
completely determined by the available independent equations of 
equilibrium.

We must be aware of the nature of the constraints before we at-
tempt to solve an equilibrium problem. A body can be recognized as 
statically indeterminate when there are more unknown external reac-
tions than there are available independent equilibrium equations for 
the force system involved. It is always well to count the number of un-
known variables on a given body and to be certain that an equal num-
ber of independent equations can be written; otherwise, effort might be 
wasted in attempting an impossible solution with the aid of the equi-
librium equations only. The unknown variables may be forces, couples, 
distances, or angles.

Adequacy of Constraints

In discussing the relationship between constraints and equilibrium, 
we should look further at the question of the adequacy of constraints. 
The existence of three constraints for a two-dimensional problem does 
not always guarantee a stable equilibrium confi guration. Figure 3/7 
shows four different types of constraints. In part a of the fi gure, point A 
of the rigid body is fi xed by the two links and cannot move, and the third 
link prevents any rotation about A. Thus, this body is completely fi xed 
with three adequate (proper) constraints.

In part b of the fi gure, the third link is positioned so that the force 
transmitted by it passes through point A where the other two constraint 
forces act. Thus, this confi guration of constraints can offer no initial re-
sistance to rotation about A, which would occur when external loads 
were applied to the body. We conclude, therefore, that this body is in-
completely fi xed under partial constraints.

The confi guration in part c of the fi gure gives us a similar condi-
tion of incomplete fi xity because the three parallel links could offer no 
initial resistance to a small vertical movement of the body as a result Figure 3/7

A

4

A

Complete fixity
Adequate constraints

(a)

Excessive fixity
Redundant constraint

(d)

Incomplete fixity
Partial constraints

(c)

A

Incomplete fixity
Partial constraints

(b)
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of external loads applied to it in this direction. The constraints in these 
two examples are often termed improper.

In part d of Fig. 3/7 we have a condition of complete fi xity, with link 
4 acting as a fourth constraint which is unnecessary to maintain a fi xed 
position. Link 4, then, is a redundant constraint, and the body is stati-
cally indeterminate.

As in the four examples of Fig. 3/7, it is generally possible by direct 
observation to conclude whether the constraints on a body in two-
dimensional equilibrium are adequate (proper), partial (improper), or 
redundant. As indicated previously, the vast majority of problems in this 
book are statically determinate with adequate (proper) constraints.

APPROACH TO SOLVING PROBLEMS

The sample problems at the end of this article illustrate the application 
of free-body diagrams and the equations of equilibrium to typical statics 
problems. These solutions should be studied thoroughly. In the problem 
work of this chapter and throughout mechanics, it is important to de-
velop a logical and systematic approach which includes the following 
steps:

 1. Identify clearly the quantities which are known and unknown.

 2. Make an unambiguous choice of the body (or system of connected 
bodies treated as a single body) to be isolated and draw its complete 
free-body diagram, labeling all external known and unknown but 
identifi able forces and couples which act on it.

 3. Choose a convenient set of reference axes, always using right-
handed axes when vector cross products are employed. Choose mo-
ment centers with a view to simplifying the calculations. Generally 
the best choice is one through which as many unknown forces pass 
as possible. Simultaneous solutions of equilibrium equations are 
frequently necessary, but can be minimized or avoided by a careful 
choice of reference axes and moment centers.

 4. Identify and state the applicable force and moment principles or 
equations which govern the equilibrium conditions of the problem. 
In the following sample problems these relations are shown in 
brackets and precede each major calculation.

 5. Match the number of independent equations with the number of 
unknowns in each problem.

 6. Carry out the solution and check the results. In many problems en-
gineering judgment can be developed by fi rst making a reasonable 
guess or estimate of the result prior to the calculation and then 
comparing the estimate with the calculated value.

K
ey

 Concepts



Sample Problem 3/1

Determine the magnitudes of the forces C and T, which, along with the 
other three forces shown, act on the bridge-truss joint.

Solution.  The given sketch constitutes the free-body diagram of the isolated 
section of the joint in question and shows the fi ve forces which are in equilibrium.

Solution I (scalar algebra).  For the x-y axes as shown we have

[©Fx 5 0]   8 1 T cos 408 1 C sin 208 2 16 5 0

         0.766T 1 0.342C 5 8 (a)

[©Fy 5 0]      T sin 408 2 C cos 208 2 3 5 0

        0.643T 2 0.940C 5 3  (b)

Simultaneous solution of Eqs. (a) and (b) produces

 T 5 9.09 kN  C 5 3.03 kN Ans.

Solution II (scalar algebra).  To avoid a simultaneous solution, we may use axes 
x9-y9 with the fi rst summation in the y9-direction to eliminate reference to T. Thus,

[©Fy9 5 0]  2C cos 208 2 3 cos 408 2 8 sin 408 1 16 sin 408 5 0

 C 5 3.03 kN  Ans.

[©Fx9 5 0]  T 1 8 cos 408 2 16 cos 408 2 3 sin 408 2 3.03 sin 208 5 0

 T 5 9.09 kN   Ans.

Solution III (vector algebra).  With unit vectors i and j in the x- and y-direc-
tions, the zero summation of forces for equilibrium yields the vector equation

[©F 5 0]   8i 1 (T cos 408)i 1 (T sin 408)j 2 3j 1 (C sin 208)i
  2 (C cos 208)j 2 16i 5 0    

Equating the coeffi cients of the i- and j-terms to zero gives

  8 1 T cos 408 1 C sin 208 2 16 5 0

  T sin 408 2 3 2 C cos 208 5 0

which are the same, of course, as Eqs. (a) and (b), which we solved above.

Solution IV (geometric).  The polygon representing the zero vector sum of 
the fi ve forces is shown. Equations (a) and (b) are seen immediately to give the 
projections of the vectors onto the x- and y-directions. Similarly, projections onto 
the x9- and y9-directions give the alternative equations in Solution II.

A graphical solution is easily obtained. The known vectors are laid off head-
to-tail to some convenient scale, and the directions of T and C are then drawn to 
close the polygon. The resulting intersection at point P completes the solution, 
thus enabling us to measure the magnitudes of T and C directly from the draw-
ing to whatever degree of accuracy we incorporate in the construction.

1

2

3

Helpful Hints

1  Since this is a problem of concur-
rent forces, no moment equation is 
necessary.

2  The selection of reference axes to fa-
cilitate computation is always an im-
portant consideration. Alternatively 
in this example we could take a set 
of axes along and normal to the di-
rection of C and employ a force sum-
mation normal to C to eliminate it.

3  The known vectors may be added in 
any order desired, but they must be 
added before the unknown vectors.
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x′

T

x

y

y′

16 kN

3 kN

C

8 kN
40°

20°

40°

20°

3 kN

8 kN

P

T
C

16 kN
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Sample Problem 3/2

Calculate the tension T in the cable which supports the 1000-lb load with 
the pulley arrangement shown. Each pulley is free to rotate about its bearing, 
and the weights of all parts are small compared with the load. Find the magni-
tude of the total force on the bearing of pulley C.

Solution.  The free-body diagram of each pulley is drawn in its relative posi-
tion to the others. We begin with pulley A, which includes the only known force. 
With the unspecifi ed pulley radius designated by r, the equilibrium of moments 
about its center O and the equilibrium of forces in the vertical direction require

[©MO 5 0]  T1r 2 T2r 5 0  T1 5 T2

[©Fy 5 0]     T1 1 T2 2 1000 5 0  2T1 5 1000  T1 5 T2 5 500 lb

From the example of pulley A we may write the equilibrium of forces on pulley B 
by inspection as

 T3 5 T4 5 T2/2 5 250 lb

For pulley C the angle � 5 308 in no way affects the moment of T about the cen-
ter of the pulley, so that moment equilibrium requires

 T 5 T3  or  T 5 250 lb  Ans.

Equilibrium of the pulley in the x- and y-directions requires

[©Fx 5 0]            250 cos 308 2 Fx 5 0    Fx 5 217 lb

[©Fy 5 0]         Fy 1 250 sin 308 2 250 5 0    Fy 5 125 lb

[F 5 !Fx 

2 1 Fy 

2]  F 5 !(217)2 1 (125)2 5 250 lb Ans.

1

Helpful Hint

1  Clearly the equilibrium of this paral-
lel force system is independent of �.

P

C
A B

2 m6 m

C

P

A

R

B
2 m

2 m

100(9.81) N
4 m 3 m

x

y

Sample Problem 3/3

The uniform 100-kg I-beam is supported initially by its end rollers on the  
horizontal surface at A and B. By means of the cable at C, it is desired to elevate 
end B to a position 3 m above end A. Determine the required tension P, the reac-
tion at A, and the angle � made by the beam with the horizontal in the elevated 
position.

Solution.  In constructing the free-body diagram, we note that the reaction on 
the roller at A and the weight are vertical forces. Consequently, in the absence of 
other horizontal forces, P must also be vertical. From Sample Problem 3/2 we 
see immediately that the tension P in the cable equals the tension P applied to 
the beam at C.

Moment equilibrium about A eliminates force R and gives

[©MA 5 0]  P(6 cos �) 2 981(4 cos �) 5 0  P 5 654 N  Ans.

Equilibrium of vertical forces requires

[©Fy 5 0] 654 1 R 2 981 5 0  R 5 327 N  Ans.

The angle � depends only on the specifi ed geometry and is

  sin � 5 3/8  � 5 22.08  Ans.

1

Helpful Hint

1  Clearly the radius r does not infl uence 
the results. Once we have analyzed a 
simple pulley, the results should be 
perfectly clear by inspection.

A

B

C
   = 30°θ

T

1000 lb

A

B

C

T
30°

O

T1
T2

T3
T4

Fy

Fx

1000 lb

y

x
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Sample Problem 3/4

Determine the magnitude T of the tension in the supporting cable and the 
magnitude of the force on the pin at A for the jib crane shown. The beam AB is a 
standard 0.5-m I-beam with a mass of 95 kg per meter of length.

Algebraic solution.  The system is symmetrical about the vertical x-y plane 
through the center of the beam, so the problem may be analyzed as the equilib-
rium of a coplanar force system. The free-body diagram of the beam is shown in 
the fi gure with the pin reaction at A represented in terms of its two rectangular 
components. The weight of the beam is 95(1023)(5)9.81 5 4.66 kN and acts 
through its center. Note that there are three unknowns Ax, Ay, and T, which may 
be found from the three equations of equilibrium. We begin with a moment 
equation about A, which eliminates two of the three unknowns from the equa-
tion. In applying the moment equation about A, it is simpler to consider the mo-
ments of the x- and y-components of T than it is to compute the perpendicular 
distance from T to A. Hence, with the counterclockwise sense as positive we 
write

[©MA 5 0]  (T cos 258)0.25 1 (T sin 258)(5 2 0.12)
 2 10(5 2 1.5 2 0.12) 2 4.66(2.5 2 0.12) 5 0

from which T 5 19.61 kN Ans.

Equating the sums of forces in the x- and y-directions to zero gives

[©Fx 5 0]   Ax 2  19.61 cos 258 5 0 Ax 5 17.77 kN

[©Fy 5 0]    Ay 1 19.61 sin 258 2  4.66 2 10 5 0  Ay 5 6.37 kN 

[A 5 !Ax 

2 1 Ay 

2] A 5 !(17.77)2 1 (6.37)2 5 18.88 kN Ans.

Graphical solution.  The principle that three forces in equilibrium must be 
concurrent is utilized for a graphical solution by combining the two known verti-
cal forces of 4.66 and 10 kN into a single 14.66-kN force, located as shown on the 
modifi ed free-body diagram of the beam in the lower fi gure. The position of this 
resultant load may easily be determined graphically or algebraically. The inter-
section of the 14.66-kN force with the line of action of the unknown tension T 
defi nes the point of concurrency O through which the pin reaction A must pass. 
The unknown magnitudes of T and A may now be found by adding the forces 
head-to-tail to form the closed equilibrium polygon of forces, thus satisfying 
their zero vector sum. After the known vertical load is laid off to a convenient 
scale, as shown in the lower part of the fi gure, a line representing the given di-
rection of the tension T is drawn through the tip of the 14.66-kN vector. Like-
wise a line representing the direction of the pin reaction A, determined from the 
concurrency established with the free-body diagram, is drawn through the tail of 
the 14.66-kN vector. The intersection of the lines representing vectors T and A 
establishes the magnitudes T and A necessary to make the vector sum of the 
forces equal to zero. These magnitudes are scaled from the diagram. The x- and 
y-components of A may be constructed on the force polygon if desired.

1

2

3

Helpful Hints

1  The justifi cation for this step is 
Varignon’s theorem, explained in 
Art. 2/4. Be prepared to take full ad-
vantage of this principle frequently.

2  The calculation of moments in two-
dimensional problems is generally 
handled more simply by scalar alge-
bra than by the vector cross product 
r 3 F. In three dimensions, as we will 
see later, the reverse is often the case.

3  The direction of the force at A could 
be easily calculated if desired. How-
ever, in designing the pin A or in 
checking its strength, it is only the 
magnitude of the force that matters.

10 kN

25°A
0.5 m

0.25 m

0.12 m

5 m

1.5 m

B

4.66 kN
10 kN

25°

T

Ax

Ay

x

y

Free-body diagram

4.66 kN
10 kN

14.66 kN

O

25°
T

A

Ax

Ay

14.66 kN

T = 19.61 kN

A = 18.88 kN

Graphical solution
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5′

A B

2′ 1′

Problem 3/3

3/4 The 450-kg uniform I-beam supports the load shown. 
Determine the reactions at the supports.

5.6 m

220 kg

A B

2.4 m

Problem 3/4

3/5 Determine the force P required to maintain the 
200-kg engine in the position for which � 5 308. The 
diameter of the pulley at B is negligible.

A

P

B

C

2 m

2 m

200 kg

�

Problem 3/5

PROBLEMS

Introductory Problems

3/1 In the side view of a 50-lb fl at-screen television rest-
ing on an 80-lb cabinet, the respective centers of 
gravity are labeled G2 and G1. Assume symmetry into 
the paper and calculate the normal reaction force at 
each of the four casters.

A

G1

B

14″ 10″

4″

G2

Problem 3/1

3/2 The mass center G of the 1400-kg rear-engine car is 
located as shown in the fi gure. Determine the normal 
force under each tire when the car is in equilibrium. 
State any assumptions.

G

1386 mm 964 mm

Problem 3/2

3/3 A carpenter carries a 12-lb 2-in. by 4-in. board as 
shown. What downward force does he feel on his 
shoulder at A?
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3/9 Determine the reactions at A and E if P 5 500 N. 
What is the maximum value which P may have for 
static equilibrium? Neglect the weight of the struc-
ture compared with the applied loads.

x

y

4 m 4 m

30°

3 m

4000 N

A B

P

E D
C

Problem 3/9

3/10 What horizontal force P must a worker exert on the 
rope to position the 50-kg crate directly over the 
trailer?

4 m

2 m

1 m

Problem 3/10

3/6 The 20-kg homogeneous smooth sphere rests on the 
two inclines as shown. Determine the contact forces 
at A and B.

A

B
75° 30°

Problem 3/6

3/7 The 600-lb drum is being hoisted by the lifting device 
which hooks over the end lips of the drum. Deter-
mine the tension T in each of the equal-length rods 
which form the two U-shaped members of the device.

10″

36″

A

B

C

Problem 3/7

3/8 If the screw B of the wood clamp is tightened so that 
the two blocks are under a compression of 500 N, 
determine the force in screw A. (Note: The force sup-
ported by each screw may be taken in the direction of 
the screw.)

100 mm150 mm

A B

Problem 3/8
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B

A

Problem 3/13

3/14 The uniform rectangular body of mass m is placed 
into a fi xed opening with slight clearances as shown. 
Determine the forces at the contact points A and B. 
Do your results depend on the height h?

B

L
4

3L
4

A m

h

Problem 3/14

3/15 What weight WB will cause the system to be in equi-
librium? Neglect all friction, and state any other 
assumptions.

B WB

100 lb

25°

A

Problem 3/15

3/11 The 20-kg uniform rectangular plate is supported 
by an ideal pivot at O and a spring which must be 
compressed prior to being slipped into place at point 
A. If the modulus of the spring is k 5 2 kN/m, what 
must be its undeformed length L?

0.12
m 0.48 m

k

0.3 m

L
A

O

0.1 m

0.15
m

Problem 3/11

3/12 The 500-kg uniform beam is subjected to the three 
external loads shown. Compute the reactions at the 
support point O. The x-y plane is vertical.

1.2 m 1.8 m

1.4 kN

15 kN·m
3 kN

x
C

AO B

1.8 m

30°

y

Problem 3/12

3/13 A former student of mechanics wishes to weigh 
himself but has access only to a scale A with capac-
ity limited to 100 lb and a small 20-lb spring dyna-
mometer B. With the rig shown he discovers that 
when he exerts a pull on the rope so that B regis-
ters 19 lb, the scale A reads 67 lb. What is his cor-
rect weight?
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G

30°

B

T

A

4 m

4 m

Problem 3/18

3/19 When the 0.05-kg body is in the position shown, the 
linear spring is stretched 10 mm. Determine the 
force P required to break contact at C. Complete 
solutions for (a) including the effect of the weight 
and (b) neglecting the weight.

P

B

A O

C

60 mm 60 mm

40 mm

40 mm
k = 1750 N/m

Problem 3/19

3/20 When the 0.05-kg body is in the position shown, the 
torsional spring at O is pretensioned so as to exert 
a 0.75-N?m clockwise moment on the body. Deter-
mine the force P required to break contact at C. 
Complete solutions for (a) including the effect of the 
weight and (b) neglecting the weight.

P

A

C

60 mm 60 mm

80 mm

kT O

Problem 3/20

3/16 The pair of hooks is designed for the hanging of 
loads from horizontal I-beams. If the load W 5 5 kN, 
estimate the contact forces at A and B. Neglect all 
friction.

A
B

W

24
mm

90 mm

24
mm

O

Problem 3/16

3/17 The winch takes in cable at the constant rate of 
200 mm/s. If the cylinder mass is 100 kg, determine 
the tension in cable 1. Neglect all friction.

1

100 kg

2

Problem 3/17

3/18 To accommodate the rise and fall of the tide, a walk-
way from a pier to a fl oat is supported by two rollers 
as shown. If the mass center of the 300-kg walkway 
is at G, calculate the tension T in the horizontal 
cable which is attached to the cleat and fi nd the 
force under the roller at A.
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14″10″10″

62″

20°

C

G

BA

T

Problem 3/23

3/24 Three cables are joined at the junction ring C. De-
termine the tensions in cables AC and BC caused by 
the weight of the 30-kg cylinder.

15°

45°

30° 30 kg

A

B

C
D

Problem 3/24

3/25 Determine the moment M which the motor must 
exert in order to position the uniform slender bar 
of mass m and length L in the arbitrary position �. 
The ratio of the radius of the gear wheel B attached 
to the bar to that of the gear wheel A attached to 
the motor shaft is 2.

3/21 When on level ground, the car is placed on four indi-
vidual scales—one under each tire. The scale read-
ings are 4450 N at each front wheel and 2950 N at 
each rear wheel. Determine the x-coordinate of the 
mass center G and the mass of the car.

B

G

A

D C

x

y

O

2640 mm

760 mm

760 mm

Problem 3/21

3/22 Determine the magnitude P of the force required to 
rotate the release pawl OB counterclockwise from 
its locked position. The torsional spring constant is 
kT 5 3.4 N?m/rad and the pawl end of the spring 
has been defl ected 258 counterclockwise from the 
neutral position in the confi guration shown. Neglect 
any forces at the contact point B.

P B

A

O

20 mm
10°

20°
30 mm

kT

Problem 3/22

3/23 The 180-lb exerciser is beginning to execute some 
slow, steady bicep curls. As the tension T 5 15 lb is 
developed against an exercise machine (not shown), 
determine the normal reaction forces at the feet A 
and B. Friction is suffi cient to prevent slipping, and 
the exerciser maintains the position shown with 
center of gravity at G.
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3/28  The rack has a mass m 5 75 kg. What moment M 
must be exerted on the gear wheel by the motor in 
order to lower the rack at a slow steady speed down 
the 608 incline? Neglect all friction. The fi xed motor 
which drives the gear wheel via the shaft at O is not 
shown.

60°

75 mm
Pitch diameter

m

M

O

Problem 3/28

3/29 The elements of a wheel-height adjuster for a lawn 
mower are shown. The wheel (partial outline shown 
dashed for clarity) bolts through the hole at A, 
which goes through the bracket but not the housing 
H. A pin fi xed to the back of the bracket at B fi ts 
into one of the seven elongated holes of the housing. 
For the position shown, determine the force at the 
pin B and the magnitude of the reaction at the pivot 
O. The wheel supports a force of magnitude W/4, 
where W is the weight of the entire mower.

20°

45°

15°

80
mm

55
mm

96
mm

B

H
O

A

W––
4

Problem 3/29

BA

m

C

L

θ

Problem 3/25

3/26 A bicyclist applies a 40-N force to the brake lever of 
her bicycle as shown. Determine the corresponding 
tension T transmitted to the brake cable. Neglect 
friction at the pivot O.

O

A

T

88 mm

40 N

22 mm

Problem 3/26

Representative Problems

3/27 Find the angle of tilt � with the horizontal so that 
the contact force at B will be one-half that at A for 
the smooth cylinder.

A

45°

θ

45°

B

Problem 3/27
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2′

A D

C
B

50 lb

45°

Problem 3/32

3/33 A pipe P is being bent by the pipe bender as shown. 
If the hydraulic cylinder applies a force of magni-
tude F 5 24 kN to the pipe at C, determine the 
magnitude of the roller reactions at A and B.

A B

C

P

F

15°

Problem 3/33

3/34 The small slider A is moved along the circular slot by a 
mechanism attached to the back side of the rectan-
gular plate. For the slider position � 5 208 shown, 
determine the normal forces exerted at the small 
stops C and D. The unstretched length of the spring 
of constant k 5 1.6 kN/m is R/3. The value of R is 
25 mm, and the plate lies in a horizontal plane. Ne-
glect all friction.

3/30 The right-angle uniform slender bar AOB has mass 
m. If friction at the pivot O is neglected, determine 
the magnitude of the normal force at A and the 
magnitude of the pin reaction at O.

O

A

B

2L/3

L/3

m

30°

Problem 3/30

3/31 Determine the minimum cylinder mass m1 required 
to cause loss of contact at A.

O

A

B

2L/3

L/3

m

m1

30°

Problem 3/31

3/32 Cable AB passes over the small ideal pulley C with-
out a change in its tension. What length of cable 
CD is required for static equilibrium in the position 
shown? What is the tension T in cable CD?
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3/37 The indicated location of the center of gravity of the 
3600-lb pickup truck is for the unladen condition. If 
a load whose center of gravity is x 5 16 in. behind 
the rear axle is added to the truck, determine the 
load weight WL for which the normal forces under 
the front and rear wheels are equal.

45″ 67″ x

BA

GGG

WL

Problem 3/37

3/38 A uniform ring of mass m and radius r carries an ec-
centric mass m0 at a radius b and is in an equilibrium 
position on the incline, which makes an angle � with 
the horizontal. If the contacting surfaces are rough 
enough to prevent slipping, write the expression for 
the angle � which defi nes the equilibrium position.

α

θ

m

r

O
b m0

Problem 3/38

3/39 Determine the force T required to hold the uniform 
bar of mass m and length L in an arbitrary angular 
position �. Plot your result over the range 0 # � # 908, 
and state the value of T for � 5 408.

O

A

B

m, L
L

T

q

Problem 3/39

θ

R

D

C

O

A

k

B

R––
2

R––
2

Problem 3/34

3/35 The asymmetric simple truss is loaded as shown. De-
termine the reactions at A and D. Neglect the weight 
of the structure compared with the applied loads. Is 
knowledge of the size of the structure necessary?

60°

B

A

L

L

L

L

D
E

C

60° 60° 30°

y

x

Problem 3/35

3/36 The tailgate OBC is attached to the rear of a trailer 
via hinges at O and two restraining cables AB. The 
120-lb tailgate is 4 in. thick with center of gravity at 
B, which is at midthickness. The crate is centered be-
tween the two cables and weighs 200 lb with center of 
gravity at G. Determine the tension T in each cable.

14″ 30″

6″

21″

21″20°C

O

A

B

G

Problem 3/36
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T1

T2

P

100

mm

500 mm

A
B

�

Problem 3/42

3/43 In a procedure to evaluate the strength of the tri-
ceps muscle, a person pushes down on a load cell 
with the palm of his hand as indicated in the fi gure. 
If the load-cell reading is 160 N, determine the ver-
tical tensile force F generated by the triceps muscle. 
The mass of the lower arm is 1.5 kg with mass cen-
ter at G. State any assumptions.

25 mm

G

Ulna

Hand

Load cell

O

Humerus

Triceps

150 mm 150 mm

Problem 3/43

3/44 A woman is holding a 3.6-kg sphere in her hand 
with the entire arm held horizontally as shown 
in the fi gure. A tensile force in the deltoid muscle 
prevents the arm from rotating about the shoulder 
joint O; this force acts at the 218 angle shown. De-
termine the force exerted by the deltoid muscle on 
the upper arm at A and the x- and y-components of 
the force reaction at the shoulder joint O. The mass 
of the upper arm is mU 5 1.9 kg, the mass of the 
lower arm is mL 5 1.1 kg, and the mass of the hand 
is mH 5 0.4 kg; all the corresponding weights act at 
the locations shown in the fi gure.

3/40 A block placed under the head of the claw hammer 
as shown greatly facilitates the extraction of the 
nail. If a 50-lb pull on the handle is required to pull 
the nail, calculate the tension T in the nail and the 
magnitude A of the force exerted by the hammer 
head on the block. The contacting surfaces at A are 
suffi ciently rough to prevent slipping.

50 lb

8″

2″

1      ″
A

20°

3–
4

Problem 3/40

3/41 The uniform slender bar of length 2r and mass m 
rests against the circular surface as shown. Deter-
mine the normal force at the small roller A and the 
magnitude of the ideal pivot reaction at O.

r

m

O

A

1.25r

2r

Problem 3/41

3/42 The chain binder is used to secure loads of logs, 
lumber, pipe, and the like. If the tension T1 is 2 kN 
when � 5 308, determine the force P required on the 
lever and the corresponding tension T2 for this posi-
tion. Assume that the surface under A is perfectly 
smooth.
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158, and the angle � is 188. In addition, calculate the 
force R which the ramp exerts on the cart.

�

�

Problem 3/46

3/47 For a given value m1 for the cart mass, determine 
the value m2 for the cylinder mass which results in 
equilibrium of the system. Neglect all friction. Eval-
uate your expression for � 5 158, 458, and 608.

m2

m1

q

Problem 3/47

3/48 The device shown is used to test automobile-engine 
valve springs. The torque wrench is directly con-
nected to arm OB. The specifi cation for the automo-
tive intake-valve spring is that 83 lb of force should 
reduce its length from 2 in. (unstressed length) to 
111

16 in. What is the corresponding reading M on the 
torque wrench, and what force F exerted on the 
torque-wrench handle is required to produce this 
reading? Neglect the small effects of changes in the 
angular position of arm OB.

F

55°

20°

A

B
O

15″

6″

Problem 3/48

y

x

635 mm
412 mm

125 mm

Deltoid muscle

21

3.6(9.81) N

WU

O

FD

A

WL WH

130 mm

Problem 3/44

3/45 A person is performing slow arm curls with a 10-kg 
weight as indicated in the fi gure. The brachialis 
muscle group (consisting of the biceps and brachi-
alis muscles) is the major factor in this exercise. 
Determine the magnitude F of the brachialis-muscle-
group force and the magnitude E of the elbow joint 
reaction at point E for the forearm position shown 
in the fi gure. Take the dimensions shown to locate 
the effective points of application of the two muscle 
groups; these points are 200 mm directly above E 
and 50 mm directly to the right of E. Include the 
effect of the 1.5-kg forearm mass with mass center 
at point G. State any assumptions.

E
G

350 mm
50 mm 100 mm

200 mm

Humerus
Biceps
Brachialis

Ulna
Radius 10 kg

Problem 3/45

3/46 The exercise machine is designed with a lightweight 
cart which is mounted on small rollers so that it is 
free to move along the inclined ramp. Two cables are 
attached to the cart—one for each hand. If the hands 
are together so that the cables are parallel and if 
each cable lies essentially in a vertical plane, deter-
mine the force P which each hand must exert on its 
cable in order to maintain an equilibrium position. 
The mass of the person is 70 kg, the ramp angle � is 
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A
B14 mm

120 mm

P

Problem 3/51

3/52 During an engine test on the ground, a propeller 
thrust T 5 3000 N is generated on the 1800-kg air-
plane with mass center at G. The main wheels at B 
are locked and do not skid; the small tail wheel at A 
has no brake. Compute the percent change n in the 
normal forces at A and B as compared with their 
“engine-off ” values.

4 m

1.4 m

12°

T

G

BA
0.8
m

Problem 3/52

3/53 To test the defl ection of the uniform 200-lb beam 
the 120-lb boy exerts a pull of 40 lb on the rope 
rigged as shown. Compute the force supported by 
the pin at the hinge O.

A
O

2′ 6′ 2′

4′

Problem 3/53

3/49 The portable fl oor crane in the automotive shop is lift-
ing a 420-lb engine. For the position shown compute 
the magnitude of the force supported by the pin at C 
and the oil pressure p against the 3.20-in.-diameter 
piston of the hydraulic-cylinder unit AB.

6″

A

B
C

30°

30″

18″

42″

Problem 3/49

 *3/50 The torsional spring of constant kT 5 50 N?m/rad is 
undeformed when � 5 0. Determine the value(s) of 
� over the range 0 # � # 1808 for which equilibrium 
exists. Use the values mA 5 10 kg, mB 5 1 kg, mOA 5 
5 kg, and r 5 0.8 m. Assume that OA is a uniform 
slender rod with a particle A (negligible size) at its 
end, and neglect the effects of the small ideal rollers.

O

kT

r

A

r

θ

B

mB

mOA

mA

Problem 3/50

3/51 A torque (moment) of 24 N?m is required to turn 
the bolt about its axis. Determine P and the forces 
between the smooth hardened jaws of the wrench 
and the corners A and B of the hexagonal head. As-
sume that the wrench fi ts easily on the bolt so that 
contact is made at corners A and B only.



Article 3/3   Problems  141

3/56 The cargo door for an airplane of circular fuselage 
section consists of the uniform quarter-circular 
segment AB of mass m. A detent in the hinge at A 
holds the door open in the position shown. Deter-
mine the moment exerted by the hinge on the door.

Closed position of B

Horiz. A

30°

B

r

Problem 3/56

3/57 It is desired that a person be able to begin closing 
the van hatch from the open position shown with 
a 10-lb vertical force P. As a design exercise, deter-
mine the necessary force in each of the two hydrau-
lic struts AB. The center of gravity of the 90-lb door 
is 1.5 in. directly below point A. Treat the problem 
as two-dimensional.

45″

22″

Hinge axis

7″24″

Strut detail

30°
A

A

O

O

B

B

P

Problem 3/57

3/54 The pin A, which connects the 200-kg steel beam 
with center of gravity at G to the vertical column, is 
welded both to the beam and to the column. To test 
the weld, the 80-kg man loads the beam by exert-
ing a 300-N force on the rope which passes through 
a hole in the beam as shown. Calculate the torque 
(couple) M supported by the pin.

GA

1200 mm 600
mm

300 mm

Welded
pin

Problem 3/54

3/55 A portion of the shifter mechanism for a manual 
car transmission is shown in the fi gure. For the 8-N 
force exerted on the shift knob, determine the corre-
sponding force P exerted by the shift link BC on the 
transmission (not shown). Neglect friction in the ball-
and-socket joint at O, in the joint at B, and in the slip 
tube near support D. Note that a soft rubber bushing 
at D allows the slip tube to self-align with link BC.

188 mm

8 N

5°

15° Slip tube

A

B

O

D

C P
75 mm

25 mm

25 mm

Problem 3/55
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F

G1

Sacrum

L3
L4
L5

G2

L

Wu

50 mm
300 mm

41°

25 mm

Problem 3/59

 *3/60 Determine and plot the moment M which much be 
applied to the crank OA in order to hold the cylin-
der of mass m 5 5 kg in equilibrium. Neglect the 
effects of the mass of OA and friction and consider 
the range 0 # � # 1808. State the maximum and 
minimum values of the absolute value of M and 
the values of � for which these extremes occur, and 
physically justify these results.

0.45 m

M

A

O

m

0.5 m

θ

OA = 0.3 m

B

Problem 3/60

3/58 Certain elements of an in-refrigerator ice-cube 
maker are shown in the fi gure. (A “cube” has the 
form of a cylindrical segment!) Once the cube 
freezes and a small heater (not shown) forms a thin 
fi lm of water between the cube and supporting sur-
face, a motor rotates the ejector arm OA to remove 
the cube. If there are eight cubes and eight arms, 
determine the required torque M as a function of �. 
The mass of eight cubes is 0.25 kg, and the center-
of-mass distance r 5 0.55r. Neglect friction, and as-
sume that the resultant of the distributed normal 
force acting on the cube passes through point O.

M

A

A

O

G
r = 37 mm

r–

8 m
m

�

Problem 3/58

 c3/59 The lumbar portion of the human spine supports 
the entire weight of the upper torso and the force 
load imposed on it. We consider here the disk 
(shaded red) between the lowest vertebra of the 
lumbar region (L5) and the uppermost vertebra of 
the sacrum region. (a) For the case L 5 0, deter-
mine the compressive force C and the shear force S 
supported by this disk in terms of the body weight 
W. The weight Wu of the upper torso (above the disk 
in question) is 68% of the total body weight W and 
acts at G1. The vertical force F which the rectus 
muscles of the back exert on the upper torso acts as 
shown in the fi gure. (b) Repeat for the case when 
the person holds a weight of magnitude L 5 W/3 as 
shown. State any assumptions.
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SECTION B EQUILIBRIUM IN THREE DIMENSIONS

3/4  EQUIL IBR IUM CONDIT IONS

We now extend our principles and methods developed for two-
dimensional equilibrium to the case of three-dimensional equilibrium. 
In Art. 3/1 the general conditions for the equilibrium of a body were 
stated in Eqs. 3/1, which require that the resultant force and resultant 
couple on a body in equilibrium be zero. These two vector equations of 
equilibrium and their scalar components may be written as

 oF 5 0  or  •
oFx 5 0
oFy 5 0
oFz 5 0

 (3/3)

oM 5 0  or  •
oMx 5 0
oMy 5 0
oMz 5 0

The fi rst three scalar equations state that there is no resultant force act-
ing on a body in equilibrium in any of the three coordinate directions. 
The second three scalar equations express the further equilibrium re-
quirement that there be no resultant moment acting on the body about 
any of the coordinate axes or about axes parallel to the coordinate axes. 
These six equations are both necessary and suffi cient conditions for com-
plete equilibrium. The reference axes may be chosen arbitrarily as a 
matter of convenience, the only restriction being that a right-handed co-
ordinate system should be chosen when vector notation is used.

The six scalar relationships of Eqs. 3/3 are independent conditions 
because any of them can be valid without the others. For example, for a 
car which accelerates on a straight and level road in the x-direction, 
Newton’s second law tells us that the resultant force on the car equals 
its mass times its acceleration. Thus ©Fx ? 0, but the remaining two 
force–equilibrium equations are satisfi ed because all other acceleration 
components are zero. Similarly, if the fl ywheel of the engine of the 
accelerating car is rotating with increasing angular speed about the 
x-axis, it is not in rotational equilibrium about this axis. Thus, for the fl y-
wheel alone, ©Mx ? 0 along with ©Fx ? 0, but the remaining four 
equilibrium equations for the fl ywheel would be satisfi ed for its mass-
center axes.

In applying the vector form of Eqs. 3/3, we fi rst express each of the 
forces in terms of the coordinate unit vectors i, j, and k. For the fi rst 
equation, ©F 5 0, the vector sum will be zero only if the coeffi cients of i, 
j, and k in the expression are, respectively, zero. These three sums, 
when each is set equal to zero, yield precisely the three scalar equations 
of equilibrium, ©Fx 5 0, ©Fy 5 0, and ©Fz 5 0.

For the second equation, ©M 5 0, where the moment sum may be 
taken about any convenient point O, we express the moment of each 
force as the cross product r 3 F, where r is the position vector from O to 
any point on the line of action of the force F. Thus ©M 5 ©(r 3 F) 5 0. 
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When the coeffi cients of i, j, and k in the resulting moment equation are 
set equal to zero, respectively, we obtain the three scalar moment equa-
tions ©Mx 5 0, ©My 5 0, and ©Mz 5 0.

Free-Body Diagrams

The summations in Eqs. 3/3 include the effects of all forces on the 
body under consideration. We learned in the previous article that the 
free-body diagram is the only reliable method for disclosing all forces 
and moments which should be included in our equilibrium equations. In 
three dimensions the free-body diagram serves the same essential pur-
pose as it does in two dimensions and should always be drawn. We have 
our choice either of drawing a pictorial view of the isolated body with all 
external forces represented or of drawing the orthogonal projections of 
the free-body diagram. Both representations are illustrated in the sam-
ple problems at the end of this article.

The correct representation of forces on the free-body diagram re-
quires knowledge of the characteristics of contacting surfaces. These char-
acteristics were described in Fig. 3/1 for two-dimensional problems, and 
their extension to three-dimensional problems is represented in Fig. 3/8 
for the most common situations of force transmission. The representa-
tions in both Figs. 3/1 and 3/8 will be used in three-dimensional analysis.

The essential purpose of the free-body diagram is to develop a reli-
able picture of the physical action of all forces (and couples if any) acting 
on a body. So it is helpful to represent the forces in their correct physi-
cal sense whenever possible. In this way, the free-body diagram becomes 
a closer model to the actual physical problem than it would be if the 
forces were arbitrarily assigned or always assigned in the same mathe-
matical sense as that of the assigned coordinate axis.

For example, in part 4 of Fig. 3/8, the correct sense of the unknowns 
Rx and Ry may be known or perceived to be in the sense opposite to those 
of the assigned coordinate axes. Similar conditions apply to the sense of 
couple vectors, parts 5 and 6, where their sense by the right-hand rule 
may be assigned opposite to that of the respective coordinate direction. By 
this time, you should recognize that a negative answer for an unknown 
force or couple vector merely indicates that its physical action is in the 
sense opposite to that assigned on the free-body diagram. Frequently, of 
course, the correct physical sense is not known initially, so that an arbi-
trary assignment on the free-body diagram becomes necessary.

Categories of Equilibrium

Application of Eqs. 3/3 falls into four categories which we identify 
with the aid of Fig. 3/9. These categories differ in the number and type 
(force or moment) of independent equilibrium equations required to 
solve the problem.

Category 1, equilibrium of forces all concurrent at point O, re-
quires all three force equations, but no moment equations because the 
moment of the forces about any axis through O is zero.

Category 2, equilibrium of forces which are concurrent with a line, 
requires all equations except the moment equation about that line, 
which is automatically satisfi ed.
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Figure 3/8

MODELING THE ACTION OF FORCES IN THREE-DIMENSIONAL ANALYSIS

Type of Contact and Force Origin Action on Body to Be Isolated

Force must be normal to the
surface and directed toward
the member.

The possibility exists for a 
force F tangent to the surface
(friction force) to act on the
member, as well as a normal
force N.

A lateral force P exerted by the
guide on the wheel can exist, in
addition to the normal force N.

A ball-and-socket joint free to
pivot about the center of the
ball can support a force R with
all three components.

In addition to three components
of force, a fixed connection
can support a couple M
represented by its three
components.

Thrust bearing is capable of
supporting axial force Ry as
well as radial forces Rx and Rz.
Couples Mx and Mz must, in
some cases, be assumed zero
in order to provide statical
determinacy.

1. Member in contact with smooth
surface, or ball-supported member

2. Member in contact
with rough
surface

3. Roller or wheel support
with lateral
constraint

4. Ball-and-socket joint

5. Fixed connection (embedded or welded)

6. Thrust-bearing support

z

x yN

z

x yN

z

x y

z
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x y
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Category 3, equilibrium of parallel forces, requires only one force 
equation, the one in the direction of the forces (x-direction as shown), 
and two moment equations about the axes (y and z) which are normal 
to the direction of the forces.

Category 4, equilibrium of a general system of forces, requires all 
three force equations and all three moment equations.

The observations contained in these statements are generally quite 
evident when a given problem is being solved.

Constraints and Statical Determinacy

The six scalar relations of Eqs. 3/3, although necessary and suffi -
cient conditions to establish equilibrium, do not necessarily provide all 
of the information required to calculate the unknown forces acting in a 
three-dimensional equilibrium situation. Again, as we found with two 
dimensions, the question of adequacy of information is decided by the 

Figure 3/9

CATEGORIES OF EQUILIBRIUM IN THREE DIMENSIONS

Force System Free-Body Diagram Independent Equations

ΣFx = 0

ΣFy = 0

ΣMx = 0

ΣMy = 0

ΣFz = 0 ΣMz = 0

ΣFx = 0 ΣMy = 0

ΣMz = 0

ΣFx = 0

ΣFy = 0

ΣMy = 0

ΣMz = 0

ΣFz = 0

ΣFx = 0

ΣFy = 0

ΣFz = 0

1. Concurrent
    at a point

2. Concurrent
    with a line

3. Parallel

4. General

O

F1 F2

F3

F4

F4

F1

F2

F3

F5

F5

F5

F4

F4

F3

F1

F2 M

F1

F2

F3

y

x

z

y
x

z

y

x

z

y

x

z
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characteristics of the constraints provided by the supports. An analyti-
cal criterion for determining the adequacy of constraints is available, 
but it is beyond the scope of this treatment.* In Fig. 3/10, however, we 
cite four examples of constraint conditions to alert the reader to the 
problem.

Part a of Fig. 3/10 shows a rigid body whose corner point A is com-
pletely fi xed by the links 1, 2, and 3. Links 4, 5, and 6 prevent rotations 
about the axes of links 1, 2, and 3, respectively, so that the body is com-
pletely fi xed and the constraints are said to be adequate. Part b of the fi g-
ure shows the same number of constraints, but we see that they provide 
no resistance to a moment which might be applied about axis AE. Here 
the body is incompletely fi xed and only partially constrained.

Similarly, in Fig. 3/10c the constraints provide no resistance to an 
unbalanced force in the y-direction, so here also is a case of incomplete 
fi xity with partial constraints. In Fig. 3/10d, if a seventh constraining 
link were imposed on a system of six constraints placed properly for 
complete fi xity, more supports would be provided than would be neces-
sary to establish the equilibrium position, and link 7 would be redun-
dant. The body would then be statically indeterminate with such a 
seventh link in place. With only a few exceptions, the supporting con-
straints for rigid bodies in equilibrium in this book are adequate, and 
the bodies are statically determinate.

Figure 3/10

5

1

2 3

6

7

4

D
C

B
A

(a) Complete fixity
      Adequate constraints

(d) Excessive fixity
      Redundant constraints

E

y

A

(b) Incomplete fixity
      Partial constraints

(c) Incomplete fixity
     Partial constraints

The three-dimensional equilibrium of the cell-phone tower must be care-
fully analyzed so that excessive net horizontal force applied by the cable 
system is avoided.
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*See the fi rst author’s Statics, 2nd Edition SI Version, 1975, Art. 16.
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Sample Problem 3/5

The uniform 7-m steel shaft has a mass of 200 kg and is supported by a ball-
and-socket joint at A in the horizontal fl oor. The ball end B rests against the 
smooth vertical walls as shown. Compute the forces exerted by the walls and the 
fl oor on the ends of the shaft.

Solution.  The free-body diagram of the shaft is fi rst drawn where the contact 
forces acting on the shaft at B are shown normal to the wall surfaces. In addition 
to the weight W 5 mg 5 200(9.81) 5 1962 N, the force exerted by the fl oor on 
the ball joint at A is represented by its x-, y-, and z-components. These compo-
nents are shown in their correct physical sense, as should be evident from the re-
quirement that A be held in place. The vertical position of B is found from 
7 5 !22 1 62 1 h2, h 5 3 m. Right-handed coordinate axes are assigned as shown.

Vector solution.  We will use A as a moment center to eliminate reference to 
the forces at A. The position vectors needed to compute the moments about A are

 rAG 5 21i 2 3j 1 1.5k m  and  rAB 5 22i 2 6j 1 3k m

where the mass center G is located halfway between A and B.
The vector moment equation gives

[©MA 5 0] rAB 3 (Bx 1 By) 1 rAG 3 W 5 0

 (22i 2 6j 1 3k) 3 (Bxi 1 By j) 1 (2i 2 3j 1 1.5k) 3 (21962k) 5 0

 †
i j k

22 26 3
Bx By 0

† 1 †
i j k

21 23 1.5
0 0 21962

† 5 0

 (23By 1 5890)i 1 (3Bx 2  1962)j 1 (22By 1 6Bx)k 5 0

Equating the coeffi cients of i, j, and k to zero and solving give

 Bx 5 654 N  and  By 5 1962 N Ans.

The forces at A are easily determined by

[©F 5 0] (654 2 Ax)i 1 (1962 2 Ay)j 1 (21962 1 Az)k 5 0

and  Ax 5 654 N  Ay 5 1962 N  Az 5 1962 N

Finally,  A 5 !Ax 

2 1 Ay 

2 1 Az 

2

  5 !(654)2 1 (1962)2 1 (1962)2 5 2850 N  Ans.

Scalar solution.  Evaluating the scalar moment equations about axes through 
A parallel, respectively, to the x- and y-axes, gives

[©MAx
5 0]  1962(3) 2 3By 5 0 By 5 1962 N

[©MAy
5 0]   21962(1) 1 3Bx 5 0 Bx 5 654 N

The force equations give, simply,

[©Fx 5 0]   2Ax 1 654 5 0  Ax 5 654 N

[©Fy 5 0]   2Ay 1 1962 5 0  Ay 5 1962 N

[©Fz 5 0]   Az 2 1962 5 0 Az 5 1962 N

1

2

3

Helpful Hints

1  We could, of course, assign all of the 
unknown components of force in the 
positive mathematical sense, in which 
case Ax and Ay would turn out to be 
negative upon computation. The free-
body diagram describes the physical 
situation, so it is generally preferable 
to show the forces in their correct 
physical senses wherever possible.

2  Note that the third equation 22By 1 
6Bx 5 0 merely checks the results of 
the fi rst two equations. This result 
could be anticipated from the fact 
that an equilibrium system of forces 
concurrent with a line requires only 
two moment equations (Category 2 
under Categories of Equilibrium).

3  We observe that a moment sum 
about an axis through A parallel to 
the z-axis merely gives us 6Bx 2 

2By 5 0, which serves only as a 
check as noted previously. Alterna-
tively we could have fi rst obtained 
Az from ©Fz 5 0 and then taken 
our moment equations about axes 
through B to obtain Ax and Ay.

7 m

6 m 2 m

B

A

6 m

3.5 m

3.5 m

2 m
A

B

G

y

h

x

z

W = mg

Ax

By
Bx

Ay

Az
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Sample Problem 3/6

A 200-N force is applied to the handle of the hoist in the direction shown. 
The bearing A supports the thrust (force in the direction of the shaft axis), while 
bearing B supports only radial load (load normal to the shaft axis). Determine 
the mass m which can be supported and the total radial force exerted on the 
shaft by each bearing. Assume neither bearing to be capable of supporting a mo-
ment about a line normal to the shaft axis.

Solution. The system is clearly three-dimensional with no lines or planes of 
symmetry, and therefore the problem must be analyzed as a general space sys-
tem of forces. A scalar solution is used here to illustrate this approach, although 
a solution using vector notation would also be satisfactory. The free-body dia-
gram of the shaft, lever, and drum considered a single body could be shown by a 
space view if desired, but is represented here by its three orthogonal projections.

The 200-N force is resolved into its three components, and each of the three 
views shows two of these components. The correct directions of Ax and Bx may be 
seen by inspection by observing that the line of action of the resultant of the two 
70.7-N forces passes between A and B. The correct sense of the forces Ay and By 
cannot be determined until the magnitudes of the moments are obtained, so they 
are arbitrarily assigned. The x-y projection of the bearing forces is shown in 
terms of the sums of the unknown x- and y-components. The addition of Az and 
the weight W 5 mg completes the free-body diagrams. It should be noted that 
the three views represent three two-dimensional problems related by the corre-
sponding components of the forces.

From the x-y projection:

[©MO 5 0] 100(9.81m) 2 250(173.2) 5 0  m 5 44.1 kg Ans.

From the x-z projection:

[©MA 5 0] 150Bx 1 175(70.7) 2 250(70.7) 5 0 Bx 5 35.4 N

[©Fx 5 0] Ax 1 35.4 2 70.7 5 0 Ax 5 35.4 N

The y-z view gives

[©MA 5 0] 150By 1 175(173.2) 2 250(44.1)(9.81) 5 0  By 5 520 N

[©Fy 5 0] Ay 1 520 2 173.2 2 (44.1)(9.81) 5 0  Ay 5 86.8 N

[©Fz 5 0] Az 5 70.7 N

The total radial forces on the bearings become

[Ar 5 !Ax 

2 1 Ay 

2]   Ar 5 !(35.4)2 1 (86.8)2 5 93.5 N Ans.

[B 5 !Bx 

2 1 By 

2]   B 5 !(35.4)2 1 (520)2 5 521 N Ans.

1

2

3

4

Helpful Hints

1  If the standard three views of ortho-
graphic projection are not entirely 
familiar, then review and practice 
them. Visualize the three views as 
the images of the body projected 
onto the front, top, and end surfaces 
of a clear plastic box placed over and 
aligned with the body.

2  We could have started with the x-z 
projection rather than with the x-y 
projection.

3  The y-z view could have followed im-
mediately after the x-y view since 
the determination of Ay and By may 
be made after m is found.

4  Without the assumption of zero mo-
ment supported by each bearing 
about a line normal to the shaft axis, 
the problem would be statically in-
determinate.

Thrust
bearing

Radial
bearing

100 45°

60°

200 N75150
100

100 250

x

z

y

A

B

m

Dimensions in millimeters

70.7 N

173.2 N 173.2 N

70.7 N

70.7 N

70.7 N

Az

Az

Ax + Bx

Ay + By

Bx

z

x

Ax

By Ay

z x

yy

mg = 9.81m mg = 9.81m

O
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Sample Problem 3/7

The welded tubular frame is secured to the horizontal x-y plane by a ball-
and-socket joint at A and receives support from the loose-fi tting ring at B. Under 
the action of the 2-kN load, rotation about a line from A to B is prevented by the 
cable CD, and the frame is stable in the position shown. Neglect the weight of 
the frame compared with the applied load and determine the tension T in the 
cable, the reaction at the ring, and the reaction components at A.

Solution.  The system is clearly three-dimensional with no lines or planes of 
symmetry, and therefore the problem must be analyzed as a general space sys-
tem of forces. The free-body diagram is drawn, where the ring reaction is shown 
in terms of its two components. All unknowns except T may be eliminated by 
a moment sum about the line AB. The direction of AB is specifi ed by the unit

vector n 5
1

!62 1 4.52
 (4.5j 1 6k) 5

1
5(3j 1 4k). The moment of T about AB 

is the component in the direction of AB of the vector moment about the point A 
and equals r1 3 T?n. Similarly the moment of the applied load F about AB is 
r2 3 F?n. With CD 5 !46.2 m, the vector expressions for T, F, r1, and r2 are

 T 5
T

!46.2
 (2i 1 2.5j 2 6k)  F 5 2j kN

 r1 5 2i 1 2.5j m  r2 5 2.5i 1 6k m

The moment equation now becomes

[©MAB 5 0] (2i 1 2.5j) 3
T

!46.2
 (2i 1 2.5j 2 6k) ?

1
5(3j 1 4k)

 1 (2.5i 1 6k) 3 (2j) ?
1
5(3j 1 4k) 5 0

Completion of the vector operations gives

 2
48T

!46.2
1 20 5 0  T 5 2.83 kN Ans.

and the components of T become

 Tx 5 0.833 kN  Ty 5 1.042 kN  Tz 5 22.50 kN

We may fi nd the remaining unknowns by moment and force summations as 
follows:

[©Mz 5 0 4   2(2.5) 2 4.5Bx 2 1.042(3) 5 0   Bx 5 0.417 kN  Ans.

[©Mx 5 0]  4.5Bz 2 2(6) 2 1.042(6) 5 0   Bz 5 4.06 kN  Ans.

[©Fx 5 0]  Ax 1 0.417 1 0.833 5 0   Ax 5 21.250 kN Ans.

[©Fy 5 0]  Ay 1 2 1 1.042 5 0   Ay 5 23.04 kN  Ans.

[©Fz 5 0]  Az 1 4.06 2 2.50 5 0   Az 5 21.556 kN Ans.

1

2

3

Helpful Hints

1  The advantage of using vector nota-
tion in this problem is the freedom 
to take moments directly about any 
axis. In this problem this freedom 
permits the choice of an axis that 
eliminates fi ve of the unknowns.

2  Recall that the vector r in the expres-
sion r 3 F for the moment of a force 
is a vector from the moment center to 
any point on the line of action of the 
force. Instead of r1, an equally simple 
choice would be the vector AC

¡
.

3  The negative signs associated with 
the A-components indicate that they 
are in the opposite direction to those 
shown on the free-body diagram.

2.5 m

3 m
z

x y

C

B

DA

6 m

4.5 m

2 kN

1 m

2.5 m

BxE

D

z

x y

F = 2 kN

r2

r1

T

n

z B

A
x y

n

Bz

Az

AxAy

T· nr1

Tr1
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3/64 An 80-lb sheet of plywood rests on two small 
wooden blocks as shown. It is allowed to lean 208 
from the vertical under the action of a force P which 
is perpendicular to the sheet. Friction at all sur-
faces of blocks A and B is suffi cient to prevent slip-
ping. Determine the magnitude P and the vertical 
reaction forces at A and B.

C

D P

20°

y

x

z

2′

5′

4′

DE = 3 ft

1′

E

A

B

Problem 3/64

3/65 The vertical and horizontal poles at the traffi c-light 
assembly are erected fi rst. Determine the additional 
force and moment reactions at the base O caused by 
the addition of the three 100-lb traffi c signals B, C, 
and D. Report your answers as a force magnitude 
and a moment magnitude.

B

A

D

C

O

x
y

z

100 lb

100 lb

100 lb

25′

25′
35′

Problem 3/65

PROBLEMS

Introductory Problems

3/61 A uniform steel plate 18 in. square weighing 68 lb is 
suspended in the horizontal plane by the three verti-
cal wires as shown. Calculate the tension in each wire.

6″

12″ 9″

9″

A

B

C

Problem 3/61

3/62 The uniform I-beam has a mass of 60 kg per meter 
of its length. Determine the tension in the two sup-
porting cables and the reaction at D.

2 m

3 m

2 m

2 m

1 m

5 mA

D

C

B

Problem 3/62

3/63 Determine the tensions in cables AB, AC, and AD.

120 kg

2.5
m

A

B

C

D

1.25 m

2 m
1.5 m

0.5 m

Problem 3/63
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C

c

z

y

a

D

H

A

G

E

b

B x

F Px

Pz

Py

Problem 3/68

3/69 When on level ground, the car is placed on four indi-
vidual scales—one under each tire. The four scale 
readings are 4300 N at A, 2900 N at B, 3000 N at C, 
and 4600 N at D. Determine the x- and y-coordinates 
of the mass center G and the mass of the car.

BA

D C

x

y

O

2640 mm

760 mm

760 mm

Problem 3/69

3/70 The uniform rectangular plate of mass m is suspended 
by three cables. Determine the tension in each cable.

B

E

D

F

C
m

A

0.8 m
0.5 m

0.3 m
0.4 m

0.3 m

0.8 m

Problem 3/70

3/66 The body is constructed of uniform slender rod 
which has mass � per unit length. Determine the 
magnitudes of the force and moment reactions at 
the built-in support O.

c

O

3a––
4

a––
4

b––
3

2b––
3

yx

z

Problem 3/66

3/67 In order to make an adjustment, engineering stu-
dents remove leg D from a laboratory worktable. To 
ensure that the table remains stable, they place a 
6-kg stack of statics textbooks centered at point E 
of the tabletop as shown. Determine the normal 
reaction force at each leg A, B, and C. The uniform 
tabletop has a mass of 40 kg, and each leg has a 
mass of 5 kg.

D

6 kg

0.7 m

0.3 m

E

0.5 m

1.5 m

C

B

A

Problem 3/67

3/68 The rectangular solid is loaded by a force which 
has been resolved into three given components Px, 
Py, and Pz acting at corner F. Determine the force 
in each supporting link. State what type of physi-
cal support could be used in place of the ideal links 
shown at points D and E.
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3/73 A three-legged stool is subjected to the load L as 
shown. Determine the vertical force reaction under 
each leg. Neglect the weight of the stool.

A

B

120° 120°

120°

325

Dimensions in millimeters

L

7575100

C

Problem 3/73

3/74 The uniform slender rod of mass m is suspended 
by a ball-and-socket joint at O and two cables. 
Determine the force reactions at O and the tension 
in each cable.

30°

OB = 1.2 m, OA = 0.9 m

z

x
y

D

B

A

mC

O

0.8 m0.4 m

0.4 m

Problem 3/74

3/71 A uniform right-circular cylinder of mass m is sup-
ported by two cables and a vertical wall as shown. 
Determine the tension in each cable and the normal 
force exerted by the wall. Neglect friction.

r

B

D

m

3r

2.5r

r

r
A

C

E

Problem 3/71

3/72 The uniform square plate is suspended by three 
equal-length cables as shown. Determine the tension 
in each cable.

r

r

r
r

r

A

m

C

O

B

2.5r

120°

120°

120°

D

Problem 3/72
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3/77 The mass center of the 30-kg door is in the center of 
the panel. If the weight of the door is supported en-
tirely by the lower hinge A, calculate the magnitude 
of the total force supported by the hinge at B.

1500 mm

80 mm 360 mm

30 kg

1640 mm

A

B

Problem 3/77

3/78 The two I-beams are welded together and are initially 
supported by the three cables of equal length hanging 
vertically from supports directly above A, B, and C. 
When applied with the appropriate offset d, the 200-N 
force causes the system to assume the new equilib-
rium confi guration shown. All three cables are in-
clined at the same angle � from the vertical, in planes 
parallel to the y-z plane. Determine this defl ection � 
and the proper offset d. Beams AB and OC have 
masses of 72 kg and 50 kg, respectively. The mass 
center of beam OC has a y-coordinate of 725 mm.

1200
mm

800
mm

1400

mm

θ

TA TB

TC

A

d B

C

O

x

y

z

200 N

Problem 3/78

3/75 One of the vertical walls supporting end B of the 
200-kg uniform shaft of Sample Problem 3/5 is 
turned through a 308 angle as shown here. End A is 
still supported by the ball-and-socket connection in 
the horizontal x-y plane. Calculate the magnitudes 
of the forces P and R exerted on the ball end B of 
the shaft by the vertical walls C and D, respectively.

x y

z

B
D

C

A
6 m

7 m

2 m

30°

Problem 3/75

3/76 The light right-angle boom which supports the 
400-kg cylinder is supported by three cables and a 
ball-and-socket joint at O attached to the vertical 
x-y surface. Determine the reactions at O and the 
cable tensions.

400 kg

B

A

C

O

D

E

1 m

1 m

y

x

z

1.5 m

1 m

2 m

0.75 m
0.75 m

Problem 3/76
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z

y

E

O

C
D

A

B

x

10′

25′
20′

16′

30°

θ
W1 W2

Problem 3/81

3/82 The smooth homogeneous sphere rests in the 1208 
groove and bears against the end plate, which is 
normal to the direction of the groove. Determine the 
angle �, measured from the horizontal, for which 
the reaction on each side of the groove equals the 
force supported by the end plate.

60°

60°

θ
Horizontal

End view
of V-groove

Problem 3/82

3/83 Determine the magnitudes of the force R and couple 
M exerted by the nut and bolt on the loaded bracket 
at O to maintain equilibrium.

200 mm
30°

50°

1.6 kN

200 mm

150 mm

O

z

2.4 kN

yx

Problem 3/83

3/79 The 50-kg uniform triangular plate is supported 
by two small hinges A and B and the cable system 
shown. For the horizontal position of the plate, de-
termine all hinge reactions and the tension T in the 
cable. Hinge A can resist axial thrust, but hinge B 
cannot. See Table D/3 in Appendix D for the mass-
center location of a triangular plate.

y

x

T

z

D

CA

B

0.8 m

0.2 m

0.2 m

0.3 m
0.3 m

1.2 m

Problem 3/79

3/80 The large bracket is constructed of heavy plate 
which has a mass � per unit area. Determine the 
force and moment reactions at the support bolt at O.

a––
2

x

a

O

b c

h

z

y

Problem 3/80

Representative Problems

3/81 The 800-lb tree trunk is known to have insect dam-
age near point O, so the winch arrangement shown 
is used to fell the tree with no cutting. If winch W1 
is tightened to 200 lb and winch W2 to 300 lb, de-
termine the force and moment reactions at O. If the 
tree ultimately falls at this point because of the 
moment at O, determine the angle � which charac-
terizes the line of impact OE. Assume that the base 
of the tree is equally strong in all directions.



156  Chapter 3   Equil ibrium

3/86 The shaft, lever, and handle are welded together 
and constitute a single rigid body. Their combined 
mass is 28 kg with mass center at G. The assem-
bly is mounted in bearings A and B, and rotation is 
prevented by link CD. Determine the forces exerted 
on the shaft by bearings A and B while the 30-N?m 
couple is applied to the handle as shown. Would 
these forces change if the couple were applied to the 
shaft AB rather than to the handle?

30 N·m

y

x

z

B

A

C

D

450 mm

100 mm

G

200mm 200mm

220
mm

300mm

600
mm

300mm

Problem 3/86

3/87 During a test, the left engine of the twin-engine air-
plane is revved up and a 2-kN thrust is generated. 
The main wheels at B and C are braked in order 
to prevent motion. Determine the change (compared 
with the nominal values with both engines off) in 
the normal reaction forces at A, B, and C.

T = 2 kN

C

A
B

4 m

2.4 m
2.4 m

2 m

Problem 3/87

3/84 The 25-kg rectangular access door is held in the 908 
open position by the single prop CD. Determine the 
force F in the prop and the magnitude of the force 
normal to the hinge axis AB in each of the small 
hinges A and B.

A

B

D

C

1000 mm

600 mm

1200 mm

300 mm

Problem 3/84

3/85 As part of a check on its design, a lower A-arm (part 
of an automobile suspension) is supported by bear-
ings at A and B and subjected to the pair of 900-N 
forces at C and D. The suspension spring, not shown 
for clarity, exerts a force Fs at E as shown, where E 
is in plane ABCD. Determine the magnitude Fs of 
the spring force and the magnitudes FA and FB of 
the bearing forces at A and B which are perpendicu-
lar to the hinge axis AB.

420 mm

900 N

900 N

15°Fs

170 mm

190 mm

180
mm

120
mm

A

C

E

B

D

Problem 3/85
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3/90 The spring of modulus k 5 900 N/m is stretched a 
distance � 5 60 mm when the mechanism is in the 
position shown. Calculate the force Pmin required to 
initiate rotation about the hinge axis BC, and deter-
mine the corresponding magnitudes of the bearing 
forces which are perpendicular to BC. What is the 
normal reaction force at D if P 5 Pminy2?

45 mm

45 mm

40 mm

k = 900 N/m

P

A

B

C

D

55
mm

55
mm

90
mm

135
mm

135
mm

165
mm

Problem 3/90

3/91 A homogeneous door of mass m, height h, and 
width w is leaned against a wall for painting. Small 
wooden strips are placed beneath corners A, B, and 
C. There is negligible friction at C, but friction at 
A and B is suffi cient to prevent slipping. Determine 
the y- and z-components of the force reactions at A 
and B and the force normal to the wall at C.

B

A

C
D

w

m

h

y

z

x

35°

15°

Problem 3/91

3/88 The bent rod ACDB is supported by a sleeve at A 
and a ball-and-socket joint at B. Determine the 
components of the reactions and the tension in the 
cable. Neglect the mass of the rod.

E
B

D

C

A

O

x
y

z

100 kg

0.5 m

0.2 m

0.3 m
0.2 m

0.3 m

0.4 m

Problem 3/88

3/89 Turnbuckle T1 is tightened to a tension of 750 N 
and turnbuckle T2 is tightened to 500 N. Determine 
the components of the corresponding force and mo-
ment reactions at the built-in support at O. Neglect 
the weight of the structure.

z

y

EO
F

C

A

D

B

T2

T1

x

0.45 m

0.9 m

0.9 m

0.8 m

0.6 m

0.6 m

Problem 3/89
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Simplified spring detail

A

B

C

D

Problem 3/93

3/94 The uniform 30- by 40-in. trap door weighs 200 lb 
and is propped open by the light strut AB at the 
angle � 5 tan21 (4/3). Calculate the compression FB 
in the strut and the force supported by the hinge D 
normal to the hinge axis. Assume that the hinges 
act at the extreme ends of the lower edge.

30″

A

C

D

B30″

32″8″

 = tan–1θ 4—
3

Problem 3/94

3/95 A uniform bar of length b and mass m is suspended 
at its ends by two wires, each of length b, from 
points A and B in the horizontal plane a distance 
b apart. A couple M is applied to the bar, causing 
it to rotate about a vertical axis to the equilibrium 
position shown. Derive an expression for the height 
h which it rises from its original equilibrium posi-
tion where it hangs freely with no applied moment. 
What value of M is required to raise the bar the 
maximum amount b?

3/92 Consider the rudder assembly of a radio-controlled 
model airplane. For the 158 position shown in the 
fi gure, the net pressure acting on the left side of 
the rectangular rudder area is p 5 4(1025) N/mm2. 
Determine the required force P in the control rod 
DE and the horizontal components of the reactions 
at hinges A and B which are parallel to the rudder 
surface. Assume the aerodynamic pressure to be 
uniform.

15

Dimensions in
millimeters

22

10 15°

32 16

B

A
C

D

E
P16

42

12

Problem 3/92

3/93 The upper ends of the vertical coil springs in the 
stock racecar can be moved up and down by means 
of a screw mechanism not shown. This adjustment 
permits a change in the downward force at each 
wheel as an optimum handling setup is sought. Ini-
tially, scales indicate the normal forces to be 800 lb, 
800 lb, 1000 lb, and 1000 lb at A, B, C, and D, re-
spectively. If the top of the right rear spring at A is 
lowered so that the scale at A reads an additional 
100 lb, determine the corresponding changes in the 
normal forces at B, C, and D. Neglect the effects of 
the small attitude changes (pitch and roll angles) 
caused by the spring adjustment. The front wheels 
are the same distance apart as the rear wheels.
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2400 mm

1200 mm

30°

A

B

C

D

T

E

Problem 3/97

 *3/98 Determine and plot the moment M required to ro-
tate arm OA over the range 0 # � # 1808. Find the 
maximum value of M and the angle � at which it 
occurs. The collar C fastened to the shaft prevents 
downward motion of the shaft in its bearing. De-
termine and plot the magnitude of the distributed 
vertical force supported by this collar over the same 
range of �. The spring constant k 5 200 N/m, and 
the spring is unstretched when � � 0. Neglect the 
mass of the structure and any effects of mechanical 
interference.

200 mm

180 mm

160 mm A

O

O′

z

x
y

B
M

k
C

θ

Problem 3/98

b

b

b

A

B

b
M

Problem 3/95

3/96 A rectangular sign over a store has a mass of 100 kg, 
with the center of mass in the center of the rectan-
gle. The support against the wall at point C may be 
treated as a ball-and-socket joint. At corner D sup-
port is provided in the y-direction only. Calculate 
the tensions T1 and T2 in the supporting wires, the 
total force supported at C, and the lateral force R 
supported at D.

4 m

1 m

2.5 m

1.5 m

1.5 m

2.5 m

1 m

x

D

B

A

T1 T2

C
y

z

Problem 3/96

 c3/97 The uniform rectangular panel ABCD has a mass 
of 40 kg and is hinged at its corners A and B to the 
fi xed vertical surface. A wire from E to D keeps 
edges BC and AD horizontal. Hinge A can support 
thrust along the hinge axis AB, whereas hinge B 
supports force normal to the hinge axis only. Find 
the tension T in the wire and the magnitude B of 
the force supported by hinge B.



3/5  CHAPTER REVIEW

In Chapter 3 we have applied our knowledge of the properties of forces, 
moments, and couples studied in Chapter 2 to solve problems involving rigid 
bodies in equilibrium. Complete equilibrium of a body requires that the vector 
resultant of all forces acting on it be zero (©F 5 0) and the vector resultant 
of all moments on the body about a point (or axis) also be zero (©M 5 0). We 
are guided in all of our solutions by these two requirements, which are easily 
comprehended physically.

Frequently, it is not the theory but its application which presents diffi culty. 
The crucial steps in applying our principles of equilibrium should be quite 
familiar by now. They are:

 1. Make an unequivocal decision as to which system (a body or collection of 
bodies) in equilibrium is to be analyzed.

 2. Isolate the system in question from all contacting bodies by drawing its 
free-body diagram showing all forces and couples acting on the isolated 
system from external sources.

 3. Observe the principle of action and reaction (Newton’s third law) when 
assigning the sense of each force.

 4. Label all forces and couples, known and unknown.

 5. Choose and label reference axes, always choosing a right-handed set 
when vector notation is used (which is usually the case for three-
dimensional analysis).

 6. Check the adequacy of the constraints (supports) and match the number 
of unknowns with the number of available independent equations of 
equilibrium.

When solving an equilibrium problem, we should fi rst check to see 
that the body is statically determinate. If there are more supports than are 
necessary to hold the body in place, the body is statically indeterminate, 
and the equations of equilibrium by themselves will not enable us to solve 
for all of the external reactions. In applying the equations of equilibrium, 
we choose scalar algebra, vector algebra, or graphical analysis according to 
both preference and experience; vector algebra is particularly useful for many 
three-dimensional problems.

The algebra of a solution can be simplifi ed by the choice of a moment 
axis which eliminates as many unknowns as possible or by the choice of a 
direction for a force summation which avoids reference to certain unknowns. 
A few moments of thought to take advantage of these simplifi cations can save 
appreciable time and effort.

The principles and methods covered in Chapters 2 and 3 constitute the 
most basic part of statics. They lay the foundation for what follows not only in 
statics but in dynamics as well.
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45°

150 mm

A

B

C

200 mm

80 N·m

Problem 3/101

3/102 The uniform bar with end rollers weighs 60 lb and 
is supported by the horizontal and vertical sur-
faces and by the wire AC. Calculate the tension T 
in the wire and the reactions against the rollers at 
A and at B.

4′

A

B

C

1.5′

3′

Problem 3/102

3/103 The mass of the uniform right-triangular tabletop 
is 30 kg, and that of each of the vertical legs is 
2 kg. Determine the normal reaction force exerted 
by the fl oor on each leg. The mass center of a right-
triangular body can be obtained from Table D/3 in 
Appendix D.

B

A C

1.2 m
0.6 m

Problem 3/103

REVIEW PROBLEMS

3/99 The rack for storing automobile wheels consists of 
two parallel rods A and B. Determine the magnitude 
of the force P required to begin extracting the wheel. 
The mass of the wheel is m. Neglect all friction.

30°
60°

40°

P

m

A

B

Problem 3/99

3/100 The positioning device locks the sliding panel C 
into place relative to the fi xed panel D, to which 
the device is attached. Pressing at E rotates the 
moving part of the device clockwise about O, re-
tracting the pin AB from the hole in panel C. If a 
force P 5 40 N is required to begin clockwise rota-
tion of the device, determine the moment M about 
point O exerted by the internal coiled spring S.

5°

38 mm

25 mm

D

E

P

C

S
O

B

A

Problem 3/100

3/101 The light bracket ABC is freely hinged at A and is 
constrained by the fi xed pin in the smooth slot at B. 
Calculate the magnitude R of the force supported 
by the pin at A under the action of the 80-N?m 
applied couple.
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B

A

P

1.8″

3.35″14.5″

Problem 3/106

3/107 A freeway sign measuring 12 ft by 6 ft is supported 
by the single mast as shown. The sign, supporting 
framework, and mast together weigh 600 lb, with 
center of gravity 10 ft away from the vertical cen-
terline of the mast. When the sign is subjected to 
the direct blast of a 75-mi/hr wind, an average 
pressure difference of 17.5 lb/ft2 is developed be-
tween the front and back sides of the sign, with 
the resultant of the wind-pressure forces acting at 
the center of the sign. Determine the magnitudes 
of the force and moment reactions at the base of 
the mast. Such results would be instrumental in 
the design of the base.

12′

14′

4′

6′

z

x

Problem 3/107

3/108 A slender rod of mass m1 is welded to the horizontal 
edge of a uniform semicylindrical shell of mass m2. 
Determine an expression for the angle � with the 
horizontal made by the diameter of the shell through 
m1. (Consult Table D/3 in Appendix D to locate the 
center of gravity of the semicircular section.)

3/104 The device shown in the fi gure is useful for lifting 
drywall panels into position prior to fastening to 
the stud wall. Estimate the magnitude P of the 
force required to lift the 25-kg panel. State any 
assumptions.

36 mm

5°

25 kg

60 mm90 mm

A B

P

C

Problem 3/104

3/105 Magnetic tape under a tension of 10 N at D passes 
around the guide pulleys and through the erasing 
head at C at constant speed. As a result of a small 
amount of friction in the bearings of the pulleys, 
the tape at E is under a tension of 11 N. Determine 
the tension T in the supporting spring at B. The 
plate lies in a horizontal plane and is mounted on 
a precision needle bearing at A.

100 mm

A

B

C
E

D

100
mm

50
mm

50
mm

100 mm

All pulleys
have a

radius of
25 mm

Problem 3/105

3/106 The tool shown is used for straightening twisted 
members as wooden framing is completed. If the 
force P 5 30 lb is applied to the handle as shown, 
determine the normal forces applied to the in-
stalled stud at points A and B. Ignore friction.
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3/110 The device shown in section can support the load 
L at various heights by resetting the pawl C in an-
other tooth at the desired height on the fi xed verti-
cal column D. Determine the distance b at which 
the load should be positioned in order for the two 
rollers A and B to support equal forces. The weight 
of the device is negligible compared with L.

b

7″

20″

8″

3″

2″

Pawl C

D

B

A

L

C

Problem 3/110

3/111 A large symmetrical drum for drying sand is oper-
ated by the geared motor drive shown. If the mass 
of the sand is 750 kg and an average gear-tooth 
force of 2.6 kN is supplied by the motor pinion A 
to the drum gear normal to the contacting surfaces 
at B, calculate the average offset x of the center 
of mass G of the sand from the vertical centerline. 
Neglect all friction in the supporting rollers.

x
_

O

600 mm

150 mm

B
A

G

Detail of contact
at B

20°

Problem 3/111

m2

r m1

θ

Problem 3/108

3/109 The curved arm BC and attached cables AB and 
AC support a power line which lies in the vertical 
y-z plane. The tangents to the power line at the in-
sulator below A make 158 angles with the horizon-
tal y-axis. If the tension in the power line at the 
insulator is 1.3 kN, calculate the total force sup-
ported by the bolt at D on the pole bracket. The 
weight of the arm BC can be neglected compared 
with the other forces, and it can be assumed that 
the bolt at E supports horizontal force only.

z

x

y

B
D, E

Detail of arm attachment

C

A

45�

1.2 m
1.2 m

45�

B

600 mm

160 mm

160 mm
D

E

Problem 3/109
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1200 mm 600 mm

x
y

z

A

B

C
600 mm

1200 mm
30°

Problem 3/114

3/115 The uniform 15-kg plate is welded to the vertical 
shaft, which is supported by bearings A and B. 
Calculate the magnitude of the force supported 
by bearing B during application of the 120-N?m 
couple to the shaft. The cable from C to D prevents 
the plate and shaft from turning, and the weight of 
the assembly is carried entirely by bearing A.

D

A

B

400 mm

600 mm

200 mm

80 mm

200 mm

120 N·m

C

Problem 3/115

3/116 A vertical force P on the foot pedal of the bell 
crank is required to produce a tension T of 400 N 
in the vertical control rod. Determine the corre-
sponding bearing reactions at A and B.

3/112 Determine the force P required to begin rolling the 
uniform cylinder of mass m over the obstruction of 
height h.

r
P

h

Problem 3/112

3/113 The small tripod-like stepladder is useful for sup-
porting one end of a walking board. If F denotes the 
magnitude of the downward load from such a board 
(not shown), determine the reaction at each of the 
three feet A, B, and C. Neglect friction.

A

B

C

E

G

D

F

65°

425 mm

730 mm

365 mm

460 mm

460 mm

480 mm65°

Problem 3/113

3/114 Each of the three uniform 1200-mm bars has a 
mass of 20 kg. The bars are welded together into 
the confi guration shown and suspended by three 
vertical wires. Bars AB and BC lie in the horizon-
tal x-y plane, and the third bar lies in a plane par-
allel to the x-z plane. Compute the tension in each 
wire.
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C

m
B

A

T

15°

30°

�

Problem 3/118

 *3/119 Two traffi c signals are attached to the 36-ft sup-
port cable at equal intervals as shown. Determine 
the equilibrium confi guration angles �, �, and �, 
as well as the tension in each cable segment.

A D

CB

35′

12′
12′

100 lb

12′

200 lb

α γβ

Problem 3/119

 *3/120 The two traffi c signals of Prob. 3/119 are now re-
positioned so that segment BC of the 36-ft support 
cable is 10 ft in length and is horizontal. Specify 
the necessary lengths AB and CD and the tensions 
in all three cable segments. 

A D

35′

10′
C

200 lb

B

100 lb

Problem 3/120

30°
100
mm

100
mm

60 mm

120 mm

200 mm

T = 400 N

B

x

z
y

A

P

Problem 3/116

3/117 The drum and shaft are welded together and have 
a mass of 50 kg with mass center at G. The shaft 
is subjected to a torque (couple) of 120 N?m and 
the drum is prevented from rotating by the cord 
wrapped securely around it and attached to point 
C. Calculate the magnitudes of the forces sup-
ported by bearings A and B.

200

120 N·m
100

180

240

G

C

B

A

200
200

140

150

Dimensions in millimeters

Problem 3/117

 *Computer-Oriented Problems

 *3/118 Determine and plot the tension ratio T/mg re-
quired to hold the uniform slender bar in equilib-
rium for any angle � from just above zero to just 
under 458. The bar AB of mass m is uniform.
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θ

30°45°

E

D

O

B

E

D
O

B

A
C

A

F

k
OA = 13″, OB = 2″, OF = 24″
CF = 13″, OD = 11.50″, DE = 2.75″ 

Problem 3/122

 *3/123 The basic features of a small backhoe are shown 
in the illustration. Member BE (complete with hy-
draulic cylinder CD and bucket-control links DF 
and DE) weighs 500 lb with mass center at G1. 
The bucket and its load of clay weigh 350 lb with 
mass center at G2. To disclose the operational de-
sign characteristics of the backhoe, determine and 
plot the force T in the hydraulic cylinder AB as a 
function of the angular position � of member BE 
over the range 0 # � # 908. For what value of � is 
the force T equal to zero? Member OH is fi xed for 
this exercise; note that its controlling hydraulic 
cylinder (hidden) extends from near point O to pin 
I. Similarly, the bucket-control hydraulic cylinder 
CD is held at a fi xed length.

 *3/121 In executing the biceps-curl exercise, the man 
holds his shoulder and upper arm stationary and 
rotates the lower arm OA through the range 0 # 
� # 1058. The detailed drawing shows the effective 
origin and insertion points for the biceps muscle 
group. Determine and plot the tension TB in this 
muscle group over the specifi ed range. State the 
value of TB for � 5 908. Neglect the weight of the 
forearm, and assume slow, steady motion.

θ

30°45°

E

OA = 13″, OB = 2″, OF = 24″
CF = 13″, OD = 11.50″, DE = 2.75″ 

D

O

B

E

D
O

B

A
C

A

F

W = 20 lb

Problem 3/121

 *3/122 All the conditions of Prob. 3/121 are repeated here, 
except the weight W is replaced by a spring of con-
stant k 5 2 lb/in. The spring is unstretched when 
� 5 0. Determine and plot the tension TB in the 
biceps muscle group over the range 0 # � # 1058, 
and state the maximum value of TB and the angle 
� at which it occurs.
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 *3/125 The system of Prob. 3/60 is repeated here, but now 
the crank OA has mass mC 5 3 kg with mass cen-
ter at G. Determine and plot the moment M which 
must be applied to the crank in order to hold the 
cylinder of mass m 5 5 kg in equilibrium. Use the 
range 0 # � # 1808 and neglect all friction. State 
the value of � for which M 5 0.

0.45 m

M

A

O

B

m

mC

0.5 m

θ

OA = 0.3 m, OG = 0.12 m

G

Problem 3/125

 *3/126 The 125-kg homogeneous rectangular solid is held 
in the arbitrary position shown by the tension T in 
the cable. Determine and plot the following quan-
tities as functions of � over the range 0 # � # 608: 
T, Ay, Az, Bx, By, and Bz. The hinge at A cannot 
exert an axial thrust. Assume all hinge force com-
ponents to be in the positive coordinate directions. 
Friction at D is negligible.

T
x

z

y
BD

C

A

0.5 m

0.3 m

0.4 m

0.4 m

0.125 m

θ

Problem 3/126

24″

34″

4″ 12″

18″

32″

12″

A

B

C

D
F

E

G2

G1

H

I

O

θ

Problem 3/123

 *3/124 The mass center of the 1.5-kg link OC is located 
at G, and the spring of constant k 5 25 N/m is un-
stretched when � 5 0. Plot the tension T required 
for static equilibrium over the range 0 # � # 908 
and state the values of T for � 5 458 and � 5 908.

θ

A

B

C

OG = 160 mm
OB = BC = 240 mm

D

G

O

T

k

Problem 3/124



This view of the River Tyne in the United Kingdom shows a variety of structures, including the Gateshead Millen-
nium Bridge (closest to the camera). This award-winning bridge can rotate about a horizontal axis along its span to 
allow ships to pass underneath.
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4/7 Chapter Review

STRUCTURES4

4/1  INTRODUCTION

In Chapter 3 we studied the equilibrium of a single rigid body or a 
system of connected members treated as a single rigid body. We fi rst 
drew a free-body diagram of the body showing all forces external to the 
isolated body, and then we applied the force and moment equations of 
equilibrium. In Chapter 4 we focus on the determination of the forces in-
ternal to a structure—that is, forces of action and reaction between the 
connected members. An engineering structure is any connected system 
of members built to support or transfer forces and to safely withstand 
the loads applied to it. To determine the forces internal to an engineering 
structure, we must dismember the structure and analyze separate free-
body diagrams of individual members or combinations of members. This 
analysis requires careful application of Newton’s third law, which states 
that each action is accompanied by an equal and opposite reaction.

In Chapter 4 we analyze the internal forces acting in several types 
of structures—namely, trusses, frames, and machines. In this treatment 
we consider only statically determinate structures, which do not have 
more supporting constraints than are necessary to maintain an equilib-
rium confi guration. Thus, as we have already seen, the equations of 
equilibrium are adequate to determine all unknown reactions.

The analysis of trusses, frames and machines, and beams under con-
centrated loads constitutes a straightforward application of the material 
developed in the previous two chapters. The basic procedure developed 
in Chapter 3 for isolating a body by constructing a correct free-body dia-
gram is essential for the analysis of statically determinate structures.
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Figure 4/1
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4/2  PLANE TRUSSES

A framework composed of members joined at their ends to form a 
rigid structure is called a truss. Bridges, roof supports, derricks, and 
other such structures are common examples of trusses. Structural mem-
bers commonly used are I-beams, channels, angles, bars, and special 
shapes which are fastened together at their ends by welding, riveted 
connections, or large bolts or pins. When the members of the truss lie 
essentially in a single plane, the truss is called a plane truss.

For bridges and similar structures, plane trusses are commonly uti-
lized in pairs with one truss assembly placed on each side of the struc-
ture. A section of a typical bridge structure is shown in Fig. 4/1. The 
combined weight of the roadway and vehicles is transferred to the longi-
tudinal stringers, then to the cross beams, and fi nally, with the weights 
of the stringers and cross beams accounted for, to the upper joints of the 
two plane trusses which form the vertical sides of the structure. A sim-
plifi ed model of the truss structure is indicated at the left side of the 
illustration; the forces L represent the joint loadings.

Several examples of commonly used trusses which can be analyzed 
as plane trusses are shown in schematic form in Fig. 4/2.

Simple Trusses

The basic element of a plane truss is the triangle. Three bars joined 
by pins at their ends, Fig. 4/3a, constitute a rigid frame. The term rigid 
is used to mean noncollapsible and also to mean that deformation of the 
members due to induced internal strains is negligible. On the other 
hand, four or more bars pin-jointed to form a polygon of as many sides 
constitute a nonrigid frame. We can make the nonrigid frame in Fig. 4/3b 
rigid, or stable, by adding a diagonal bar joining A and D or B and C and 
thereby forming two triangles. We can extend the structure by adding 
additional units of two end-connected bars, such as DE and CE or AF 
and DF, Fig. 4/3c, which are pinned to two fi xed joints. In this way the 
entire structure will remain rigid.

Structures built from a basic triangle in the manner described are 
known as simple trusses. When more members are present than are 
needed to prevent collapse, the truss is statically indeterminate. A stat-
ically indeterminate truss cannot be analyzed by the equations of equi-
librium alone. Additional members or supports which are not necessary 
for maintaining the equilibrium confi guration are called redundant.

To design a truss, we must fi rst determine the forces in the various 
members and then select appropriate sizes and structural shapes to 
withstand the forces. Several assumptions are made in the force analy-
sis of simple trusses. First, we assume all members to be two-force mem-
bers. A two-force member is one in equilibrium under the action of two 
forces only, as defi ned in general terms with Fig. 3/4 in Art. 3/3. Each 
member of a truss is normally a straight link joining the two points of 
application of force. The two forces are applied at the ends of the mem-
ber and are necessarily equal, opposite, and collinear for equilibrium.

The member may be in tension or compression, as shown in Fig. 4/4. 
When we represent the equilibrium of a portion of a two-force member, 
the tension T or compression C acting on the cut section is the same 

Figure 4/3

(c)
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C

(b)

A

B

D
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(a)

A

B

C

Figure 4/4
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for all sections. We assume here that the weight of the member is small 
compared with the force it supports. If it is not, or if we must account 
for the small effect of the weight, we can replace the weight W of the 
member by two forces, each W/2 if the member is uniform, with one 
force acting at each end of the member. These forces, in effect, are 
treated as loads externally applied to the pin connections. Accounting 
for the weight of a member in this way gives the correct result for the 
average tension or compression along the member but will not account 
for the effect of bending of the member.

Truss Connections and Supports

When welded or riveted connections are used to join structural 
members, we may usually assume that the connection is a pin joint if 
the centerlines of the members are concurrent at the joint as in Fig. 4/5.

We also assume in the analysis of simple trusses that all external 
forces are applied at the pin connections. This condition is satisfi ed in 
most trusses. In bridge trusses the deck is usually laid on cross beams 
which are supported at the joints, as shown in Fig. 4/1.

For large trusses, a roller, rocker, or some kind of slip joint is used 
at one of the supports to provide for expansion and contraction due to 
temperature changes and for deformation from applied loads. Trusses 
and frames in which no such provision is made are statically indetermi-
nate, as explained in Art. 3/3. Figure 3/1 shows examples of such joints.

Two methods for the force analysis of simple trusses will be given. 
Each method will be explained for the simple truss shown in Fig. 4/6a. 
The free-body diagram of the truss as a whole is shown in Fig. 4/6b. The 
external reactions are usually determined fi rst, by applying the equilib-
rium equations to the truss as a whole. Then the force analysis of the re-
mainder of the truss is performed.

4/3  METHOD OF JOINTS

This method for fi nding the forces in the members of a truss con-
sists of satisfying the conditions of equilibrium for the forces acting on 
the connecting pin of each joint. The method therefore deals with the 
equilibrium of concurrent forces, and only two independent equilibrium 
equations are involved.

We begin the analysis with any joint where at least one known load 
exists and where not more than two unknown forces are present. The 
solution may be started with the pin at the left end. Its free-body dia-
gram is shown in Fig. 4/7. With the joints indicated by letters, we usu-
ally designate the force in each member by the two letters defi ning the 
ends of the member. The proper directions of the forces should be evi-
dent by inspection for this simple case. The free-body diagrams of por-
tions of members AF and AB are also shown to clearly indicate the 
mechanism of the action and reaction. The member AB actually makes 
contact on the left side of the pin, although the force AB is drawn from 
the right side and is shown acting away from the pin. Thus, if we consis-
tently draw the force arrows on the same side of the pin as the member, 
then tension (such as AB) will always be indicated by an arrow away 

Figure 4/5

Figure 4/6

LR1 R2

(b)

L

A D
CB

F E

(a)

Figure 4/7

x

y

Tension

Compression

AF

R1

AB



 Article 4/3   Method of Joints   173

from the pin, and compression (such as AF) will always be indicated by 
an arrow toward the pin. The magnitude of AF is obtained from the 
equation ©Fy 5 0 and AB is then found from ©Fx 5 0.

Joint F may be analyzed next, since it now contains only two un-
knowns, EF and BF. Proceeding to the next joint having no more than 
two unknowns, we subsequently analyze joints B, C, E, and D in that 
order. Figure 4/8 shows the free-body diagram of each joint and its cor-
responding force polygon, which represents graphically the two equilib-
rium conditions ©Fx 5 0 and ©Fy 5 0. The numbers indicate the order in 
which the joints are analyzed. We note that, when joint D is fi nally 
reached, the computed reaction R2 must be in equilibrium with the 
forces in members CD and ED, which were determined previously from 
the two neighboring joints. This requirement provides a check on the 
correctness of our work. Note that isolation of joint C shows that the 
force in CE is zero when the equation ©Fy 5 0 is applied. The force in 

This New York City bridge structure 
suggests that members of a simple 
truss need not be straight.
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this member would not be zero, of course, if an external vertical load 
were applied at C.

It is often convenient to indicate the tension T and compression C of 
the various members directly on the original truss diagram by drawing 
arrows away from the pins for tension and toward the pins for compres-
sion. This designation is illustrated at the bottom of Fig. 4/8.

Sometimes we cannot initially assign the correct direction of one or 
both of the unknown forces acting on a given pin. If so, we may make an 
arbitrary assignment. A negative computed force value indicates that 
the initially assumed direction is incorrect.

Internal and External Redundancy

If a plane truss has more external supports than are necessary to 
ensure a stable equilibrium confi guration, the truss as a whole is stati-
cally indeterminate, and the extra supports constitute external redun-
dancy. If a truss has more internal members than are necessary to 
prevent collapse when the truss is removed from its supports, then the 
extra members constitute internal redundancy and the truss is again 
statically indeterminate.

For a truss which is statically determinate externally, there is a def-
inite relation between the number of its members and the number of its 
joints necessary for internal stability without redundancy. Because we 
can specify the equilibrium of each joint by two scalar force equations, 
there are in all 2j such equations for a truss with j joints. For the entire 
truss composed of m two-force members and having the maximum of 
three unknown support reactions, there are in all m 1 3 unknowns 
(m tension or compression forces and three reactions). Thus, for any plane 
truss, the equation m 1 3 5 2j will be satisfi ed if the truss is statically 
determinate internally.

A simple plane truss, formed by starting with a triangle and adding 
two new members to locate each new joint with respect to the existing 
structure, satisfi es the relation automatically. The condition holds for 
the initial triangle, where m 5 j 5 3, and m increases by 2 for each 
added joint while j increases by 1. Some other (nonsimple) statically de-
terminate trusses, such as the K-truss in Fig. 4/2, are arranged differ-
ently, but can be seen to satisfy the same relation.

This equation is a necessary condition for stability but it is not 
a suffi cient condition, since one or more of the m members can be 
arranged in such a way as not to contribute to a stable confi guration of 
the entire truss. If m 1 3 . 2j, there are more members than indepen-
dent equations, and the truss is statically indeterminate internally 
with redundant members present. If m 1 3 , 2j, there is a defi ciency of 
internal members, and the truss is unstable and will collapse under 
load.

Special Conditions

We often encounter several special conditions in the analysis of 
trusses. When two collinear members are under compression, as indi-
cated in Fig. 4/9a, it is necessary to add a third member to maintain 

An interesting array of trusses at the 
Lisbon Oriente Station in Portugal.
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alignment of the two members and prevent buckling. We see from a 
force summation in the y-direction that the force F3 in the third mem-
ber must be zero and from the x-direction that F1 5 F2. This conclusion 
holds regardless of the angle � and holds also if the collinear members 
are in tension. If an external force with a component in the y-direction 
were applied to the joint, then F3 would no longer be zero.

When two noncollinear members are joined as shown in Fig. 4/9b, 
then in the absence of an externally applied load at this joint, the 
forces in both members must be zero, as we can see from the two force 
summations.

When two pairs of collinear members are joined as shown in Fig. 4/9c, 
the forces in each pair must be equal and opposite. This conclusion 
follows from the force summations indicated in the fi gure.

Truss panels are frequently cross-braced as shown in Fig. 4/10a. 
Such a panel is statically indeterminate if each brace can support 
either tension or compression. However, when the braces are fl exible 
members incapable of supporting compression, as are cables, then only 
the tension member acts and we can disregard the other member. It is 
usually evident from the asymmetry of the loading how the panel will 
defl ect. If the defl ection is as indicated in Fig. 4/10b, then member AB 
should be retained and CD disregarded. When this choice cannot be 
made by inspection, we may arbitrarily select the member to be re-
tained. If the assumed tension turns out to be positive upon calcula-
tion, then the choice was correct. If the assumed tension force turns 
out to be negative, then the opposite member must be retained and 
the calculation redone.

We can avoid simultaneous solution of the equilibrium equations 
for two unknown forces at a joint by a careful choice of reference axes. 
Thus, for the joint indicated schematically in Fig. 4/11 where L is known 
and F1 and F2 are unknown, a force summation in the x-direction elimi-
nates reference to F1 and a force summation in the x9-direction elimi-
nates reference to F2. When the angles involved are not easily found, 
then a simultaneous solution of the equations using one set of reference 
directions for both unknowns may be preferable.

Figure 4/9

ΣFy = 0 requires F3 = 0
ΣFx = 0 requires F1 = F2

 ΣFx = 0 requires F1 = 0
ΣFx ′ = 0 requires F2 = 0

 ΣFx = 0 requires F1 = F2

ΣFx ′ = 0 requires F3 = F4
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Sample Problem 4/1

Compute the force in each member of the loaded cantilever truss by the 
method of joints.

Solution.  If it were not desired to calculate the external reactions at D and E, 
the analysis for a cantilever truss could begin with the joint at the loaded end. 
However, this truss will be analyzed completely, so the fi rst step will be to com-
pute the external forces at D and E from the free-body diagram of the truss as a 
whole. The equations of equilibrium give

[©ME 5 0]  5T 2 20(5) 2 30(10) 5 0   T 5 80 kN

[©Fx 5 0]  80 cos 308 2 Ex 5 0  Ex 5 69.3 kN

[©Fy 5 0]  80 sin 308 1 Ey 2 20 2 30 5 0  Ey 5 10 kN

Next we draw free-body diagrams showing the forces acting on each of the 
connecting pins. The correctness of the assigned directions of the forces is ver-
ifi ed when each joint is considered in sequence. There should be no question 
about the correct direction of the forces on joint A. Equilibrium requires

[©Fy 5 0]    0.866AB 2 30 5 0   AB 5 34.6 kN T Ans.

[©Fx 5 0]  AC 2 0.5(34.6) 5 0   AC 5 17.32 kN C Ans.

where T stands for tension and C stands for compression.
Joint B must be analyzed next, since there are more than two unknown 

forces on joint C. The force BC must provide an upward component, in which 
case BD must balance the force to the left. Again the forces are obtained from

[©Fy 5 0]  0.866BC 2 0.866(34.6) 5 0   BC 5 34.6 kN C Ans.

[©Fx 5 0]         BD 2 2(0.5)(34.6) 5 0   BD 5 34.6 kN T Ans.

Joint C now contains only two unknowns, and these are found in the same 
way as before:

[©Fy 5 0]  0.866CD 2 0.866(34.6) 2 20 5 0

  CD 5 57.7 kN T  Ans.

[©Fx 5 0]  CE 2 17.32 2 0.5(34.6) 2 0.5(57.7) 5 0

  CE 5 63.5 kN C  Ans.

Finally, from joint E there results

[©Fy 5 0] 0.866DE 5 10  DE 5 11.55 kN C Ans.

and the equation ©Fx 5 0 checks.
Note that the weights of the truss members have been neglected in compari-

son with the external loads.

1

Helpful Hint

1  It should be stressed that the ten-
sion/compression designation refers 
to the member, not the joint. Note 
that we draw the force arrow on the 
same side of the joint as the member 
which exerts the force. In this way 
tension (arrow away from the joint) 
is distinguished from compression 
(arrow toward the joint).
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30 kN 20 kN
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5 m 5 m 5 m 5 m
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B D
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17.32 kN

CE =
63.5 kN

69.3 kN

Joint C Joint E

60°60° 60°



 Article 4/3   Method of Joints   177

Sample Problem 4/2

The simple truss shown supports the two loads, each of magnitude L. De-
termine the forces in members DE, DF, DG, and CD.

Solution.  First of all, we note that the curved members of this simple truss 
are all two-force members, so that the effect of each curved member within the 
truss is the same as that of a straight member.

We can begin with joint E because there are only two unknown member 
forces acting there. With reference to the free-body diagram and accompanying 
geometry for joint E, we note that � 5 1808 2 11.258 2 908 5 78.88.

[©Fy 5 0]   DE sin 78.88 2 L 5 0  DE 5 1.020L T Ans.

[©Fx 5 0]  EF 2 DE cos 78.88 5 0  EF 5 0.1989L C

We must now move to joint F, as there are still three unknown members at joint 
D. From the geometric diagram,

 � 5 tan21 c  2R sin 22.58

2R cos 22.58 2 R
d 5 42.18

From the free-body diagram of joint F,

[©Fx 5 0]  2GF cos 67.58 1 DF cos 42.18 2 0.1989L 5 0

[©Fy 5 0]  GF sin 67.58 1 DF sin 42.18 2 L 5 0

Simultaneous solution of these two equations yields

 GF 5 0.646L T  DF 5 0.601L T Ans.

For member DG, we move to the free-body diagram of joint D and the accompa-
nying geometry.

  � 5 tan21 c  2R cos 22.58 2 2R cos 458

2R sin 458 2 2R sin 22.58
d 5 33.88

  � 5 tan21 c  2R sin 22.58 2 R sin 458

2R cos 22.58 2 R cos 458
d 5 2.928

Then from joint D:

[©Fx 5 0] 2DG cos 2.9282CD sin 33.8820.601L sin 47.9811.020L cos 78.885 0

[©Fy 5 0] 2DG sin 2.9281CD cos 33.8820.601L cos 47.9821.020L sin 78.8850

The simultaneous solution is

 CD 5 1.617L T   DG 5 21.147L or DG 5 1.147L C  Ans.

Note that � is shown exaggerated in the accompanying fi gures.

1

Helpful Hint

1  Rather than calculate and use the 
angle � 5 78.88 in the force equa-
tions, we could have used the 11.258 
angle directly.
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2 m

2 m

75 kg

2 m

A

C

B

Problem 4/3

4/4 Determine the force in each member of the loaded 
truss. Discuss the effects of varying the angle of the 
458 support surface at C.

100 lb

6′

45°

2.5′

A B

C

Problem 4/4

4/5 Calculate the forces in members BE and BD of the 
loaded truss.

3 m D

C

4 kN

E

B

A
3 m

3 m 3 m

2
2

Problem 4/5

PROBLEMS

Introductory Problems

4/1 Determine the force in each member of the loaded 
truss as a result of the hanging weight W.

A
C

B

W

24

3 1

Problem 4/1

4/2 The truss of the previous problem is modifi ed by add-
ing the vertical support member BD. Determine the 
force in each member of the modifi ed truss as a result 
of the hanging weight W.

A
C

B

D

W

24

3 1

Problem 4/2

4/3 Determine the force in each member of the simple 
equilateral truss.
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4/9 Determine the force in each member of the loaded 
truss.

5 m

3 m1.5 m

3

4

A

B
C

D

3 kN 7 kN

Problem 4/9

4/10 Determine the force in each member of the loaded 
truss. Make use of the symmetry of the truss and of 
the loading.

30 kN

A
H

B C D

G F

E

60 kN

5 m 5 m

4 m

5 m 5 m

30 kN

Problem 4/10

4/11 If the maximum tensile force in any of the truss 
members must be limited to 24 kN, and the maxi-
mum compressive force must be limited to 35 kN, 
determine the largest permissible mass m which 
may be supported by the truss.

m

A

E D

B

C

4 m 4 m

30°

Problem 4/11

4/6 Determine the force in each member of the loaded 
truss.

6 m

6 m

5 m
5000 N

BA

D C

5 m

45°

Problem 4/6

4/7 Determine the forces in members BE and CE of the 
loaded truss.

5 kN

D
E

C

B

3 m

3 m

3 m
A

3 kN

45°

BC = CD

Problem 4/7

4/8 Determine the force in each member of the loaded 
truss.

C

B

A

D
E

3000 lb 4500 lb

2.5′
3.5′

4′ 6′

Problem 4/8
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4/15 Determine the forces in members BC and BG of the 
loaded truss.

2 kN

F
G

H

3 m 3 m

2 m

2 m2 m

2 m2 m

2 m 2 m

A

3 kN

C D

B

3 kN

E

Problem 4/15

4/16 Determine the force in each member of the loaded 
truss. All triangles are 3-4-5.

A

B

C

D

E
FGH

I

4 panels at 8 m

30 kN

17 kN

24 kN

Problem 4/16

4/17 Each member of the truss is a uniform 20-ft bar 
weighing 400 lb. Calculate the average tension or 
compression in each member due to the weights of 
the members.

E D

A C
B20′

60° 60° 60° 60°

20′

Problem 4/17

4/12 Determine the forces in members AB, BC, and BD 
of the loaded truss.

A

B

R

D
L

C

Problem 4/12

Representative Problems

4/13 The truss is composed of equilateral triangles of 
sides a and is loaded and supported as shown. Deter-
mine the forces in members EF, DE, and DF.

30°

30°A

B

G

C

F

L

E

D

a

a

a

Problem 4/13

4/14 Determine the forces in members BJ, BI, CI, CH, 
DG, DH, and EG of the loaded truss. All triangles 
are 458-458-908.

A

B C D E

J I H

12′

6′

7 kips

18′

G

F

Problem 4/14
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4/21 The signboard truss is designed to support a hori-
zontal wind load of 800 lb. A separate analysis shows 
that 5

8 of this force is transmitted to the center con-
nection at C and the rest is equally divided between 
D and B. Calculate the forces in members BE and 
BC.

GA

D

C E

FB

800 lb

6′

6′

6′

6′

6′ 3′

Problem 4/21

4/22 Determine the forces in members AB, CG, and DE of 
the loaded truss.

H

B C D EA

G F

d

dddd

d d

L L L L/2L/2

Problem 4/22

4/23 A snow load transfers the forces shown to the upper 
joints of a Pratt roof truss. Neglect any horizontal 
reactions at the supports and solve for the forces in 
all members.

A

B

C

D

E
FGH

1 kN

1 kN

1 kN

1 kN

1 kN
2 m

2 m2 m2 m 2 m

Problem 4/23

4/18 Determine the force in each member of the loaded 
Palladian truss.

AB = BC = CD = DE = EF = FG

15′

D

E

F

H

B

C

30°

15°

800 lb

1000 lb

1200 lb

15′15′

GA

Problem 4/18

4/19 Determine the forces in members BG and BF of the 
loaded truss.

AB = BC = CD

DE = EF = FG

G

Bd

F

E

C

D
L

L

L

A

60°
15°

Problem 4/19

4/20 Determine the forces in members BI, CI, and HI for 
the loaded truss. All angles are 308, 608, or 908.

4 kN 2 kN

I H G
FA

E

DC

B

a aa–
2

a–
2

Problem 4/20
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4/27 The 240-ft structure is used to provide various sup-
port services to launch vehicles prior to liftoff. In a 
test, a 10-ton weight is suspended from joints F and 
G, with its weight equally divided between the two 
joints. Determine the forces in members GJ and GI. 
What would be your path of joint analysis for mem-
bers in the vertical tower, such as AB or KL?

L

I

10′

10′

10 tons

J

H G F

K

A
B

E
D

C

12
 s

ec
ti

on
s 

at
 2

0′

40′

6 sections
at 15′

Problem 4/27

4/28 Determine the force in member BF of the loaded 
truss.

A

E

L

2R

R

L

O
D

C

B

G
F

H

30°
30°

30°

Problem 4/28

4/24 The loading of Prob. 4/23 is shown applied to a Howe 
roof truss. Neglect any horizontal reactions at the 
supports and solve for the forces in all members. 
Compare with the results of Prob. 4/23.

A

B

C

D

E
FGH

1 kN

1 kN

1 kN

1 kN

1 kN
2 m

2 m2 m2 m 2 m

Problem 4/24

4/25 Determine the force in each member of the loaded 
truss.

8′ 8′

7′

8′

A

B C D

E

H

FG

L

45°
10°10°

Problem 4/25

4/26 Determine the forces in members EH and EI of the 
double Fink truss. Neglect any horizontal reactions 
at the supports and note that joints E and F divide
DG into thirds.

A

L

L
L

L
L

L
L

B
C

D
E

F

G
HIJK20° 20°

AK = KJ = JI = IH = HG = 3 m

Problem 4/26
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 c4/30 Determine the force in member CG of the loaded 
truss. Assume that the four external reactions at A, 
B, E, and F are equal in magnitude and are directed 
perpendicular to the local supporting surface.

R

B

A

H

C

G

D

LL

E

F
15° 15°

30° 30°
3R––
4

Problem 4/30

4/29 The rectangular frame is composed of four perimeter 
two-force members and two cables AC and BD which 
are incapable of supporting compression. Determine 
the forces in all members due to the load L in posi-
tion (a) and then in position (b).

L

L

4d
(a)

(b)

3d

A

D
C

B

Problem 4/29
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4/4  METHOD OF SECTIONS

When analyzing plane trusses by the method of joints, we need only 
two of the three equilibrium equations because the procedures involve 
concurrent forces at each joint. We can take advantage of the third or 
moment equation of equilibrium by selecting an entire section of the 
truss for the free body in equilibrium under the action of a nonconcur-
rent system of forces. This method of sections has the basic advantage 
that the force in almost any desired member may be found directly from 
an analysis of a section which has cut that member. Thus, it is not nec-
essary to proceed with the calculation from joint to joint until the mem-
ber in question has been reached. In choosing a section of the truss, we 
note that, in general, not more than three members whose forces are 
unknown should be cut, since there are only three available indepen-
dent equilibrium relations.

Illustration of the Method

The method of sections will now be illustrated for the truss in Fig. 
4/6, which was used in the explanation of the method of joints. The truss 
is shown again in Fig. 4/12a for ready reference. The external reactions 
are fi rst computed as with the method of joints, by considering the truss 
as a whole.

Let us determine the force in the member BE, for example. An 
imaginary section, indicated by the dashed line, is passed through the 
truss, cutting it into two parts, Fig. 4/12b. This section has cut three 
members whose forces are initially unknown. In order for the portion of 
the truss on each side of the section to remain in equilibrium, it is nec-
essary to apply to each cut member the force which was exerted on it by 
the member cut away. For simple trusses composed of straight two-force 
members, these forces, either tensile or compressive, will always be in 
the directions of the respective members. The left-hand section is in 
equilibrium under the action of the applied load L, the end reaction R1, 
and the three forces exerted on the cut members by the right-hand sec-
tion which has been removed.

We can usually draw the forces with their proper senses by a visual 
approximation of the equilibrium requirements. Thus, in balancing the 
moments about point B for the left-hand section, the force EF is clearly 
to the left, which makes it compressive, because it acts toward the cut 
section of member EF. The load L is greater than the reaction R1, so 
that the force BE must be up and to the right to supply the needed up-
ward component for vertical equilibrium. Force BE is therefore tensile, 
since it acts away from the cut section.

With the approximate magnitudes of R1 and L in mind, we see that 
the balance of moments about point E requires that BC be to the right. A 
casual glance at the truss should lead to the same conclusion when it is 
realized that the lower horizontal member will stretch under the tension 
caused by bending. The equation of moments about joint B eliminates 
three forces from the relation, and EF can be determined directly. The 
force BE is calculated from the equilibrium equation for the y-direction. 
Finally, we determine BC by balancing moments about point E. In this 

Figure 4/12
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way each of the three unknowns has been determined independently of 
the other two.

The right-hand section of the truss, Fig. 4/12b, is in equilibrium 
under the action of R2 and the same three forces in the cut members ap-
plied in the directions opposite to those for the left section. The proper 
sense for the horizontal forces can easily be seen from the balance of 
moments about points B and E.

Additional Considerations

It is essential to understand that in the method of sections an entire 
portion of the truss is considered a single body in equilibrium. Thus, the 
forces in members internal to the section are not involved in the analy-
sis of the section as a whole. To clarify the free body and the forces act-
ing externally on it, the cutting section is preferably passed through the 
members and not the joints. We may use either portion of a truss for the 
calculations, but the one involving the smaller number of forces will 
usually yield the simpler solution.

In some cases the methods of sections and joints can be combined 
for an effi cient solution. For example, suppose we wish to fi nd the force 
in a central member of a large truss. Furthermore, suppose that it is not 
possible to pass a section through this member without passing through 
at least four unknown members. It may be possible to determine the 
forces in nearby members by the method of sections and then progress 
to the unknown member by the method of joints. Such a combination of 
the two methods may be more expedient than exclusive use of either 
method.

The moment equations are used to great advantage in the method 
of sections. One should choose a moment center, either on or off the sec-
tion, through which as many unknown forces as possible pass.

It is not always possible to assign the proper sense of an unknown 
force when the free-body diagram of a section is initially drawn. Once an 
arbitrary assignment is made, a positive answer will verify the assumed 
sense, and a negative result will indicate that the force is in the sense op-
posite to that assumed. An alternative notation preferred by some is to 
assign all unknown forces arbitrarily as positive in the tension direction 
(away from the section) and let the algebraic sign of the answer distin-
guish between tension and compression. Thus, a plus sign would signify 
tension and a minus sign compression. On the other hand, the advan-
tage of assigning forces in their correct sense on the free-body diagram 
of a section wherever possible is that doing so emphasizes the physical 
action of the forces more directly. This practice is the one which is pre-
ferred here.
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Many simple trusses are periodic in 
that there are repeated and identi-
cal structural sections.
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Sample Problem 4/3

Calculate the forces induced in members KL, CL, and CB by the 20-ton 
load on the cantilever truss.

Solution.  Although the vertical components of the reactions at A and M are 
statically indeterminate with the two fi xed supports, all members other than AM 
are statically determinate. We may pass a section directly through members KL, 
CL, and CB and analyze the portion of the truss to the left of this section as a 
statically determinate rigid body.

The free-body diagram of the portion of the truss to the left of the section is 
shown. A moment sum about L quickly verifi es the assignment of CB as com-
pression, and a moment sum about C quickly discloses that KL is in tension. The 
direction of CL is not quite so obvious until we observe that KL and CB intersect 
at a point P to the right of G. A moment sum about P eliminates reference to KL 
and CB and shows that CL must be compressive to balance the moment of the 
20-ton force about P. With these considerations in mind the solution becomes 
straightforward, as we now see how to solve for each of the three unknowns in-
dependently of the other two.

Summing moments about L requires fi nding the moment arm BL 5 16 1 
(26 2 16)/2 5 21 ft. Thus,

[©ML 5 0] 20(5)(12) 2 CB(21) 5 0  CB 5 57.1 tons C Ans.

Next we take moments about C, which requires a calculation of cos �. From the 
given dimensions we see � 5 tan21(5/12) so that cos � 5 12/13. Therefore,

[©MC 5 0] 20(4)(12) 2
12
13 KL(16) 5 0  KL 5 65 tons T Ans.

Finally, we may fi nd CL by a moment sum about P, whose distance from 
C is given by PC/16 5 24/(26 2 16) or PC 5 38.4 ft. We also need �, which is 
given by � 5 tan21

 (CB/ BL) 5 tan21(12/21) 5 29.78 and cos � 5 0.868. We now 
have

[©MP 5 0]  20(48 2 38.4) 2 CL(0.868)(38.4) 5 0

  CL 5 5.76 tons C  Ans.

1

2

3

Helpful Hints

1  We note that analysis by the method 
of joints would necessitate working 
with eight joints in order to calcu-
late the three forces in question. 
Thus, the method of sections offers a 
considerable advantage in this case.

2  We could have started with mo-
ments about C or P just as well.

26′
16′

20 tons

F

H I J K
L

M

G E D C B A
6 panels at 12′

20 tons

y

x
P

G
C

θ

β

CB

CL

LKL

3  We could also have determined CL 
by a force summation in either the 
x- or y-direction.
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Sample Problem 4/4

Calculate the force in member DJ of the Howe roof truss illustrated. Ne-
glect any horizontal components of force at the supports.

Solution.  It is not possible to pass a section through DJ without cutting four 
members whose forces are unknown. Although three of these cut by section 2 are 
concurrent at J and therefore the moment equation about J could be used to ob-
tain DE, the force in DJ cannot be obtained from the remaining two equilibrium 
principles. It is necessary to consider fi rst the adjacent section 1 before analyzing 
section 2.

The free-body diagram for section 1 is drawn and includes the reaction of 
18.33 kN at A, which is previously calculated from the equilibrium of the truss 
as a whole. In assigning the proper directions for the forces acting on the three 
cut members, we see that a balance of moments about A eliminates the effects of 
CD and JK and clearly requires that CJ be up and to the left. A balance of mo-
ments about C eliminates the effect of the three forces concurrent at C and indi-
cates that JK must be to the right to supply suffi cient counterclockwise moment. 
Again it should be fairly obvious that the lower chord is under tension because of 
the bending tendency of the truss. Although it should also be apparent that the 
top chord is under compression, for purposes of illustration the force in CD will 
be arbitrarily assigned as tension.

By the analysis of section 1, CJ is obtained from 

[©MA 5 0] 0.707CJ(12) 2 10(4) 2 10(8) 5 0 CJ 5 14.14 kN C

In this equation the moment of CJ is calculated by considering its horizontal and 
vertical components acting at point J. Equilibrium of moments about J requires

[©MJ 5 0] 0.894CD(6) 1 18.33(12) 2 10(4) 2 10(8) 5 0

  CD 5 218.63 kN

The moment of CD about J is calculated here by considering its two components 
as acting through D. The minus sign indicates that CD was assigned in the 
wrong direction.

Hence, CD 5 18.63 kN C

From the free-body diagram of section 2, which now includes the known 
value of CJ, a balance of moments about G is seen to eliminate DE and JK. 
Thus,

[©MG 5 0] 12DJ 1 10(16) 1 10(20) 2 18.33(24) 2 14.14(0.707)(12) 5 0

 DJ 5 16.67 kN T  Ans.

Again the moment of CJ is determined from its components considered to be act-
ing at J. The answer for DJ is positive, so that the assumed tensile direction is 
correct.

An alternative approach to the entire problem is to utilize section 1 to deter-
mine CD and then use the method of joints applied at D to determine DJ.

1

2

3

Helpful Hints

1  There is no harm in assigning one or 
more of the forces in the wrong di-
rection, as long as the calculations 
are consistent with the assumption. 
A negative answer will show the 
need for reversing the direction of 
the force.

2  If desired, the direction of CD may 
be changed on the free-body diagram 
and the algebraic sign of CD re-
versed in the calculations, or else the 
work may be left as it stands with a 
note stating the proper direction.

6 panels at 4 m

A G

F

E

D

B

C

L K J I H
10 kN

10 kN

10 kN 1 2

6 m

10 kN

18.33 kN

10 kN

Section 1

A

CJ

JK
J

CDC

A GJJK

DJ

DE
10 kN

10 kN

Section 2

14.14 kN

18.33 kN

3  Observe that a section through mem-
bers CD, DJ, and DE could be taken 
which would cut only three unknown 
members. However, since the forces 
in these three members are all con-
current at D, a moment equation 
about D would yield no information 
about them. The remaining two force 
equations would not be suffi cient to 
solve for the three unknowns.
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4/34 Determine the forces in members CG and GH of the 
symmetrically loaded truss.

L

H G

F

E

DC

B

L

3 m

3 m

30°

L––
2

L––
2

3 m4 m

3 m

A

Problem 4/34

4/35 Determine the force in member BC of the loaded 
truss.

F3′

3′

2′ 2′

1.5′

3′

A

D

4 kips

C

5 kips

B

3 kips

E

Problem 4/35

4/36 Determine the force in member BE of the loaded 
truss.

A

G F E

B

H
C

L

L

D

L

d––
6

d––
6

d––
6

d––
6

d––
3

20°

AH = GH

Problem 4/36

PROBLEMS

Introductory Problems

4/31 Determine the force in member CG.

A F
4 m

10 kN 10 kN 

DCB

GH

E

5 panels at 3 m

Problem 4/31

4/32 Determine the force in member AE of the loaded 
truss.

A

F

D
2 m

2 m B

E

2 m

1 m

C

2.4 kN 3.2 kN

Problem 4/32

4/33 Determine the forces in members BC and CG.

A

60 kN

B C D

G

E

4 m 4 m

4 m

4 m

60°
F

Problem 4/33



 Article 4/4   Problems  189

4/40 Calculate the forces in members BC, CD, and CG of 
the loaded truss composed of equilateral triangles, 
each of side length 8 m.

5 kN

3 kN

8 mJ

A

I H G F

B C D E

Problem 4/40

4/41 Determine the forces in members BC and BH of the 
loaded truss, repeated here from Prob. 4/18.

AB = BC = CD = DE = EF = FG

15′

D

E

F

H

B

C

30°

15°

800 lb

1000 lb

1200 lb

15′15′

GA

Problem 4/41

4/42 Determine the forces in members BC and FG of the 
loaded symmetrical truss. Show that this calculation 
can be accomplished by using one section and two 
equations, each of which contains only one of the 
two unknowns. Are the results affected by the stati-
cal indeterminacy of the supports at the base?

 2 m2 m
1200 N

800 N

400 N

D
E

K

J

I

A

B

C
F

2 m

2 m

2 m

G

H

Problem 4/42

Representative Problems

4/37 Determine the forces in members DE and DL.

D E F G H

IJKL

M

N

B

C

A

2 m 2 m 2 m 2 m

2 m

2 m

2 m 1 m

0.5 m

8 kN

Problem 4/37

4/38 Calculate the forces in members BC, BE, and EF. 
Solve for each force from an equilibrium equation 
which contains that force as the only unknown.

14 kN

G F

E

CB3 m 3 m 3 m

3 m 3 m
2 m

A
D

Problem 4/38

4/39 Determine the forces in members BC and CF of the 
loaded truss, repeated here from Prob. 4/19.

AB = BC = CD

DE = EF = FG

G

Bd

F

E

C

D
L

L

L

A

60°
15°

Problem 4/39
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4/46 The hinged frames ACE and DFB are connected by 
two hinged bars, AB and CD, which cross without 
being connected. Compute the force in AB.

E F

10 kN 
D

BC

A

6 m
4 m

5 m

3 m2 m3 m

Problem 4/46

4/47 Compute the force in member HN of the loaded 
truss.

2 m

6 
m

2 m
A

B

L
L

L
L

L
L

L

C

R Q P O N M L
K

D
E

F
G

H
I

J

8 panels at 3 m

L––
2

L––
2

Problem 4/47

4/48 Determine the force in member BE of the loaded 
truss.

L 2L

15° 15°

45° 45°

15° 15°

D

16′12′ 12′

A

F E

CB

Problem 4/48

4/43 Determine the force in member BF.

9 kips 3 kips

G

F

E

15°

30°A

B

C

D

5′ 5′ 5′

Problem 4/43

4/44 The members CJ and CF of the loaded truss cross 
but are not connected to members BI and DG. Com-
pute the forces in members BC, CJ, CI, and HI.

4 kN

6 kN

10 kN 8 kN

3 m3 m3 m3 m

4 m

A B D E
C

J F
I H G

60°

Problem 4/44

4/45 Determine the forces in members CD, CJ, and DJ.

A

M L K J I H

B C D E F G

L L L L L L

6 panels at 3′

5′
4′

Problem 4/45
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4/52 Calculate the forces in members CB, CG, and FG for 
the loaded truss without fi rst calculating the force in 
any other member.

B

C

F

E

3 m

3 m
3 m

3 m

3 m

3 m

3 m

60°
2000 kg

D

G

H

J
A

Problem 4/52

4/53 Determine the force in member GK of the loaded 
symmetrical truss.

A I

L––
2

L––
2

6 m

N J

L L

L

L

K

FEDCB G H

M

L L

Arc of radius 25 m

6 panels at 3 m

Problem 4/53

4/54 Determine the force in member CL of the loaded 
truss. The radius of curvature of the upper chord 
BCDEFG is 30 m.

A

L

H 6 m
6 m6 m6 m6 m6 m

3 m

N M L K J I

L L L L L

B

C
D E

O

F

G

3 m

Arc of radius 30 m

Problem 4/54

4/49 Determine the forces in members DE, DL, LM, and 
EL of the loaded symmetrical truss.

I

8′

6′
A

N J

M K

L

E

FD

GC

HB

L

L

L

L

L

8′ 8′ 8′ 8′ 8′

L––
2

L––
2

25°

30°

Problem 4/49

4/50 Determine the force in member BF of the loaded 
truss, repeated here from Prob. 4/25.

8′ 8′

7′

8′

A

B C D

EFG

L

45°
10°10°

H

Problem 4/50

4/51 Determine the forces in members DQ and CQ of the 
loaded symmetrical truss.

A G

B

O T
P SQ R

C

L K J
IM

N H

D E F

L––
2

2 m

L L L L L L––
2

2 m

5 m 3.5 m
4 m

2 m 2 m 2 m 2 m

Problem 4/51
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A

B

C

D

EF
G

H

30°
60°

25 kN

I
J

K
L

M

O
P

N
Q

R

S

6 m

T

U

6 m

5.4 m

4 m4 m4 m 4 m4 m4 m

6 m

6 m

6 m

25 kN

30°
60°

Problem 4/57

 c4/58 Determine the force in member DG of the compound 
truss. The joints all lie on radial lines subtending an-
gles of 158 as indicated, and the curved members act 
as two-force members. Distance OC 5 OA 5 OB 5 R.

15°

R
O

A
H

D G

E

F

B

1.1R

0.9R

L

C

Problem 4/58

4/55 Determine the force in member CG of the loaded 
truss, repeated here from Prob. 4/30. The four 
external reactions at A, B, E, and F are equal in mag-
nitude and are directed perpendicular to the local 
supporting surfaces.

R

B

A

H

C

G

D

LL

E

F
15° 15°

30° 30°
3R––
4

Problem 4/55

 c4/56 Determine the force in member DK of the loaded 
overhead sign truss.

A
B C

LM K J I

D E F G

T

H

O P Q R S

N

U V

1 kip 2 kips 4 kips

6 panels at 8′

5′

5′

20′

Problem 4/56

 c4/57 A design model for a transmission-line tower is 
shown in the fi gure. Members GH, FG, OP, and NO 
are insulated cables; all other members are steel 
bars. For the loading shown, compute the forces in 
members FI, FJ, EJ, EK, and ER. Use a combina-
tion of methods if desired.
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4/5  SPACE TRUSSES

A space truss is the three-dimensional counterpart of the plane 
truss described in the three previous articles. The idealized space truss 
consists of rigid links connected at their ends by ball-and-socket joints 
(such a joint is illustrated in Fig. 3/8 in Art. 3/4). Whereas a triangle of 
pin-connected bars forms the basic noncollapsible unit for the plane 
truss, a space truss, on the other hand, requires six bars joined at their 
ends to form the edges of a tetrahedron as the basic noncollapsible unit. 
In Fig. 4/13a the two bars AD and BD joined at D require a third sup-
port CD to keep the triangle ADB from rotating about AB. In Fig. 4/13b 
the supporting base is replaced by three more bars AB, BC, and AC to 
form a tetrahedron not dependent on the foundation for its own rigidity.

We may form a new rigid unit to extend the structure with three ad-
ditional concurrent bars whose ends are attached to three fi xed joints on 
the existing structure. Thus, in Fig. 4/13c the bars AF, BF, and CF are 
attached to the foundation and therefore fi x point F in space. Likewise, 
point H is fi xed in space by the bars AH, DH, and CH. The three addi-
tional bars CG, FG, and HG are attached to the three fi xed points C, F, 
and H and therefore fi x G in space. The fi xed point E is similarly cre-
ated. We see now that the structure is entirely rigid. The two applied 
loads shown will result in forces in all of the members. A space truss 
formed in this way is called a simple space truss.

Ideally there must be point support, such as that given by a ball-
and-socket joint, at the connections of a space truss to prevent bend-
ing in the members. As in riveted and welded connections for plane 
trusses, if the centerlines of joined members intersect at a point, we 
can justify the assumption of two-force members under simple tension 
and compression.

Statically Determinate Space Trusses

When a space truss is supported externally so that it is statically 
determinate as an entire unit, a relationship exists between the num-
ber of its joints and the number of its members necessary for internal 
stability without redundancy. Because the equilibrium of each joint is 
specifi ed by three scalar force equations, there are in all 3j such equa-
tions for a space truss with j joints. For the entire truss composed of m 
members there are m unknowns (the tensile or compressive forces in 
the members) plus six unknown support reactions in the general case 
of a statically determinate space structure. Thus, for any space truss, 
the equation m 1 6 5 3j will be satisfi ed if the truss is statically deter-
minate internally. A simple space truss satisfi es this relation automati-
cally. Starting with the initial tetrahedron, for which the equation 
holds, the structure is extended by adding three members and one joint 
at a time, thus preserving the equality.

As in the case of the plane truss, this relation is a necessary condi-
tion for stability, but it is not a suffi cient condition, since one or more 
of the m members can be arranged in such a way as not to contribute 
to a stable confi guration of the entire truss. If m 1 6 . 3j, there are 
more members than there are independent equations, and the truss is 
statically indeterminate internally with redundant members present. 

Figure 4/13

B

D

C

A

B

D

C

A

B
D

E

H

G

FP2

P1

C

A

(a)

(b)

(c)
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If m 1 6 , 3j, there is a defi ciency of internal members, and the truss 
is unstable and subject to collapse under load. This relationship be-
tween the number of joints and the number of members is very helpful 
in the preliminary design of a stable space truss, since the confi gura-
tion is not as obvious as with a plane truss, where the geometry for 
statical determinacy is generally quite apparent.

Method of Joints for Space Trusses

The method of joints developed in Art. 4/3 for plane trusses may be 
extended directly to space trusses by satisfying the complete vector 
equation

 ©F 5 0 (4/1)

for each joint. We normally begin the analysis at a joint where at least one 
known force acts and not more than three unknown forces are present. 
Adjacent joints on which not more than three unknown forces act may 
then be analyzed in turn.

This step-by-step joint technique tends to minimize the number of 
simultaneous equations to be solved when we must determine the forces 
in all members of the space truss. For this reason, although it is not 
readily reduced to a routine, such an approach is recommended. As an 
alternative procedure, however, we may simply write 3j joint equations 
by applying Eq. 4/1 to all joints of the space frame. The number of un-
knowns will be m 1 6 if the structure is noncollapsible when removed 
from its supports and those supports provide six external reactions. 
If, in addition, there are no redundant members, then the number of 
equations (3j) equals the number of unknowns (m 1 6), and the entire 
system of equations can be solved simultaneously for the unknowns. Be-
cause of the large number of coupled equations, a computer solution is 
usually required. With this latter approach, it is not necessary to begin 
at a joint where at least one known and no more than three unknown 
forces act.

Method of Sections for Space Trusses

The method of sections developed in the previous article may also 
be applied to space trusses. The two vector equations

©F 5 0  and  ©M 5 0

must be satisfi ed for any section of the truss, where the zero moment 
sum will hold for all moment axes. Because the two vector equations are 
equivalent to six scalar equations, we conclude that, in general, a sec-
tion should not be passed through more than six members whose forces 
are unknown. The method of sections for space trusses is not widely 
used, however, because a moment axis can seldom be found which elimi-
nates all but one unknown, as in the case of plane trusses.

Vector notation for expressing the terms in the force and moment 
equations for space trusses is of considerable advantage and is used in 
the sample problem which follows.

A space truss is incorporated into the 
world’s longest glass skywalk which 
is located in Huangshi National Forest 
Park in Chongqing, China.
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Sample Problem 4/5

The space truss consists of the rigid tetrahedron ABCD anchored by a ball-
and-socket connection at A and prevented from any rotation about the x-, y-, or 
z-axes by the respective links 1, 2, and 3. The load L is applied to joint E, which 
is rigidly fi xed to the tetrahedron by the three additional links. Solve for the 
forces in the members at joint E and indicate the procedure for the determina-
tion of the forces in the remaining members of the truss.

Solution.  We note fi rst that the truss is supported with six properly placed 
constraints, which are the three at A and the links 1, 2, and 3. Also, with m 5 9 
members and j 5 5 joints, the condition m 1 6 5 3j for a suffi ciency of members 
to provide a noncollapsible structure is satisfi ed.

The external reactions at A, B, and D can be calculated easily as a fi rst step, 
although their values will be determined from the solution of all forces on each 
of the joints in succession.

We start with a joint on which at least one known force and not more than 
three unknown forces act, which in this case is joint E. The free-body diagram of 
joint E is shown with all force vectors arbitrarily assumed in their positive ten-
sion directions (away from the joint). The vector expressions for the three un-
known forces are 

 FEB 5
FEB

!2
 (2i 2 j),  FEC 5

FEC

5
 (23i 2 4k),  FED 5

FED

5
 (23j 2 4k)

Equilibrium of joint E requires

[©F 5 0]  L 1 FEB 1 FEC 1 FED 5 0  or

 2Li 1
FEB

!2 
 (2i 2 j) 1

FEC

5
 (23i 1 4k) 1

FED

5
 (23j 2 4k) 5 0

Rearranging terms gives

 a2L 2
FEB

!2 
2

3FEC

5
bi 1 a2 

FEB

!2 
2

3FED

5
b j 1 a2 

4FEC

5
2

4FED

5
bk 5 0

Equating the coeffi cients of the i-, j-, and k-unit vectors to zero gives the three 
equations

 
FEB

!2 
1

3FEC

5
5 2L  

FEB

!2 
1

3FED

5
5 0  FEC 1 FED 5 0

Solving the equations gives us

 FEB 5 2L/!2   FEC 5 25L/6  FED 5 5L/6 Ans.

Thus, we conclude that FEB and FEC are compressive forces and FED is tension.
Unless we have computed the external reactions fi rst, we must next analyze 

joint C with the known value of FEC and the three unknowns FCB, FCA, and FCD. 
The procedure is identical to that used for joint E. Joints B, D, and A are then 
analyzed in the same way and in that order, which limits the scalar unknowns to 
three for each joint. The external reactions computed from these analyses must, 
of course, agree with the values which can be determined initially from an analy-
sis of the truss as a whole.

1

2

Helpful Hints

1  Suggestion: Draw a free-body dia-
gram of the truss as a whole and ver-
ify that the external forces acting on 
the truss are Ax 5 Li, Ay 5 Lj, Az 5 
(4L/3)k, By 5 0, Dy 5 2Lj, Dz 5 
2(4L/3)k.

2  With this assumption, a negative 
numerical value for a force indicates 
compression.

x

y

A

E

C

D

L
B

2

1

4 m

3 m

4 m

3

z

3 m

x

y
A

E

FED
FEC

FEB

L
B

4 m

3 m3 m

4 m

z
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4/61 Determine the force in member CF.

a

2a

2a

a

a

A

C

D

E

F

G

L

B

30°

Problem 4/61

4/62 The depicted structure is under consideration as the 
upper portion of a transmission-line tower and is 
supported at points F, G, H, and I. Point C is directly 
above the center of rectangle FGHI. Determine the 
force in member CD.

L

L

a
1.5a

1.5a

1.5a

2a

2a

1.25a

1.25a

A G
F

E

B
C

D

H
I

Problem 4/62

4/63 The rectangular space truss 16 m in height is 
erected on a horizontal square base 12 m on a side. 
Guy wires are attached to the structure at E and G 
as shown and are tightened until the tension T in 
each wire is 9 kN. Calculate the force F in each of 
the diagonal members.

PROBLEMS

4/59 The base of an automobile jackstand forms an equi-
lateral triangle of side length 10 in. and is centered 
under the collar A. Model the structure as one with a 
ball and socket at each joint and determine the forces 
in members BC, BD, and CD. Neglect any horizontal 
reaction components under the feet B, C, and D.

B

C

D

A

16″

10″

800 lb

Problem 4/59

4/60 Determine the forces in members AB, AC, and AD. 
Point M is the centroid of triangle BCD.

4′

M

D

6′

1000 lb

C

B

A

4′

z

y

x

4′

Problem 4/60
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x

y

z

E

L

D

C

B

F L 

A
a

a

a

1.5a

Problem 4/65

4/66 A space truss is being designed with the elements 
shown. How many more members are needed to 
make the truss stable internally? Name the members 
(by specifying their endpoints) which would produce 
one possible confi guration of internal stability.

x

y

z

A

B

C

FE

D

O

Problem 4/66

H

G

T

E
F

T

A

D

C

B

12 m 12 m
6 m

16 m

6 m

Problem 4/63

4/64 For the space truss shown, check the suffi ciency of 
the supports and also the number and arrangement 
of the members to ensure statical determinacy, both 
external and internal. By inspection determine the 
forces in members CD, CB, and CF. Calculate the 
force in member AF and the x-component of the reac-
tion on the truss at D.

45°
E

P

B

A

D
C

F

z

x y
AB = BE = AE = a

3a–––
2

Problem 4/64

4/65 For the space truss shown, check the suffi ciency of 
the supports and also the number of and arrange-
ment of the members to ensure statical determinacy, 
both external and internal. Determine the forces in 
members AE, BE, BF, and CE.
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360
mm 360

mm

300 mm

360 mm

360 mm

440 mm

300 mm

A

5 kN

B

C

D

E

F

y

x

z

Problem 4/69

4/70 The space truss shown is secured to the fi xed sup-
ports at A, B, and E and is loaded by the force L 
which has equal x- and y-components but no vertical 
z-component. Show that there is a suffi cient number 
of members to provide internal stability and that 
their placement is adequate for this purpose. Next 
determine the forces in members CD, BC, and CE.

a

a

x

y

a

a
z

E

F

B

C

D

A

2a

L
45°

Problem 4/70

4/67 Determine the force in member BD of the regular 
pyramid with square base.

A

B

C

L

E

D

2L

5a
5a

6a

Problem 4/67

4/68 Use the method of sections to determine the forces in 
members GH and CG. The main portion of this struc-
ture is periodic in that it is composed of repeated and 
identical units. Each of the repeated and inverted 
pyramidal components is regular.

A

J L

I

C
B

H
G

K
M

E

F
D

5′
5′

5′
5′

5′
5′

5′

2.5′
2.5′

Problem 4/68

4/69 The pyramidal truss section BCDEF is symmetric 
about the vertical x-z plane as shown. Cables AE, 
AF, and AB support a 5-kN load. Determine the 
force in member BE.
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 c4/72 The space truss supports the structure of an amuse-
ment park ride (not shown) which rotates about a 
vertical axis. The eight footpads form a regular octa-
gon, and ABCDE is a pyramid with a 2.5-m-square 
base BCDE and vertex A, which is 0.5 m above the 
base. The plane of fi gure BCDE is 2 m above the 
plane of the joints supported by the footpads. The 
diagonals of the trapezoidal faces such as BCGF cross 
without touching. If the vertical load L is transmitted 
to point A and if instrumentation indicates a tensile 
force of 0.3L in member BC, determine the forces in 
members CF and CG. (Hint: Begin your analysis at 
point A and make full use of symmetry.)

B
A

D

C

E

L

x

z

yF

G

0.5 m

2 m

H

I

10 m

2.5 m 

Problem 4/72

 c4/71 A space truss is constructed in the form of a cube 
with six diagonal members shown. Verify that the 
truss is internally stable. If the truss is subjected to 
the compressive forces P applied at F and D along 
the diagonal FD, determine the forces in members 
EF and EG.

x

y

z

F

B
C

P

P

D

H

A

E

G

Problem 4/71
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4/6  FRAMES AND MACHINES

A structure is called a frame or machine if at least one of its individ-
ual members is a multiforce member. A multiforce member is defi ned as 
one with three or more forces acting on it, or one with two or more 
forces and one or more couples acting on it. Frames are structures 
which are designed to support applied loads and are usually fi xed in po-
sition. Machines are structures which contain moving parts and are de-
signed to transmit input forces or couples to output forces or couples.

Because frames and machines contain multiforce members, the 
forces in these members in general will not be in the directions of the 
members. Therefore, we cannot analyze these structures by the meth-
ods developed in Arts. 4/3, 4/4, and 4/5 because these methods apply to 
simple trusses composed of two-force members where the forces are in 
the directions of the members.

Interconnected Rigid Bodies with Multiforce Members

In Chapter 3 we discussed the equilibrium of multiforce bodies, but 
we concentrated on the equilibrium of a single rigid body. In the present 
article we focus on the equilibrium of interconnected rigid bodies which in-
clude multiforce members. Although most such bodies may be analyzed as 
two-dimensional systems, there are numerous examples of frames and 
machines which are three-dimensional.

The forces acting on each member of a connected system are found 
by isolating the member with a free-body diagram and applying the 
equations of equilibrium. The principle of action and reaction must be 
carefully observed when we represent the forces of interaction on the 
separate free-body diagrams. If the structure contains more members or 
supports than are necessary to prevent collapse, then, as in the case of 
trusses, the problem is statically indeterminate, and the principles of 
equilibrium, though necessary, are not suffi cient for solution. Although 
many frames and machines are statically indeterminate, in this article 
we will consider only those which are statically determinate.

If the frame or machine constitutes a rigid unit by itself when re-
moved from its supports, like the A-frame in Fig. 4/14a, the analysis is 
best begun by establishing all the forces external to the structure 
treated as a single rigid body. We then dismember the structure and 
consider the equilibrium of each part separately. The equilibrium equa-
tions for the several parts will be related through the terms involving 

Two devices used by rescuers to free 
accident victims from wreckage. The 
“jaws of life” machine shown at the 
left is the subject of problems in this 
article and the chapter-review article.
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o
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Figure 4/14

P1
P

P2

Rigid
noncollapsible

Nonrigid
collapsible

(a) (b)
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the forces of interaction. If the structure is not a rigid unit by itself but 
depends on its external supports for rigidity, as illustrated in Fig. 4/14b, 
then the calculation of the external support reactions cannot be com-
pleted until the structure is dismembered and the individual parts are 
analyzed.

Force Representation and Free-Body Diagrams

In most cases the analysis of frames and machines is facilitated by 
representing the forces in terms of their rectangular components. This 
is particularly so when the dimensions of the parts are given in mutu-
ally perpendicular directions. The advantage of this representation is 
that the calculation of moment arms is simplifi ed. In some three-
dimensional problems, particularly when moments are evaluated about 
axes which are not parallel to the coordinate axes, use of vector notation 
is advantageous.

It is not always possible to assign the proper sense to every force or 
its components when drawing the free-body diagrams, and it becomes 
necessary to make an arbitrary assignment. In any event, it is absolutely 
necessary that a force be consistently represented on the diagrams for in-
teracting bodies which involve the force in question. Thus, for two bod-
ies connected by the pin A, Fig. 4/15a, the force components must be 
consistently represented in opposite directions on the separate free-body 
diagrams.

For a ball-and-socket connection between members of a space 
frame, we must apply the action-and-reaction principle to all three com-
ponents as shown in Fig. 4/15b. The assigned directions may prove to be 
wrong when the algebraic signs of the components are determined upon 
calculation. If Ax, for instance, should turn out to be negative, it is actu-
ally acting in the direction opposite to that originally represented. Ac-
cordingly, we would need to reverse the direction of the force on both 
members and to reverse the sign of its force terms in the equations. Or 
we may leave the representation as originally made, and the proper 
sense of the force will be understood from the negative sign. If we 
choose to use vector notation in labeling the forces, then we must be 
careful to use a plus sign for an action and a minus sign for the corre-
sponding reaction, as shown in Fig. 4/16.

We may occasionally need to solve two or more equations simulta-
neously in order to separate the unknowns. In most instances, however, 
we can avoid simultaneous solutions by careful choice of the member or 
group of members for the free-body diagram and by a careful choice of 
moment axes which will eliminate undesired terms from the equations. 
The method of solution described in the foregoing paragraphs is illus-
trated in the following sample problems.

Figure 4/15

A

A

Ax

Ay

Ax

Az

Ay
Az

Ax

Ax

Ay

(a)

(b)

Ay

Figure 4/16

A

Ax

Ay

– Ay

– Ax

Vector 
notation
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Sample Problem 4/6

The frame supports the 400-kg load in the manner shown. Neglect the 
weights of the members compared with the forces induced by the load and com-
pute the horizontal and vertical components of all forces acting on each of the 
members.

Solution.  We observe fi rst that the three supporting members which consti-
tute the frame form a rigid assembly that can be analyzed as a single unit. We 
also observe that the arrangement of the external supports makes the frame stat-
ically determinate.

From the free-body diagram of the entire frame we determine the external 
reactions. Thus,

[©MA 5 0] 5.5(0.4)(9.81) 2 5D 5 0  D 5 4.32 kN

[©Fx 5 0] Ax 2 4.32 5 0  Ax 5 4.32 kN

[©Fy 5 0] Ay 2 3.92 5 0  Ay 5 3.92 kN

Next we dismember the frame and draw a separate free-body diagram of 
each member. The diagrams are arranged in their approximate relative positions 
to aid in keeping track of the common forces of interaction. The external reac-
tions just obtained are entered onto the diagram for AD. Other known forces are 
the 3.92-kN forces exerted by the shaft of the pulley on the member BF, as ob-
tained from the free-body diagram of the pulley. The cable tension of 3.92 kN is 
also shown acting on AD at its attachment point.

Next, the components of all unknown forces are shown on the diagrams. 
Here we observe that CE is a two-force member. The force components on CE 
have equal and opposite reactions, which are shown on BF at E and on AD at C. 
We may not recognize the actual sense of the components at B at fi rst glance, so 
they may be arbitrarily but consistently assigned.

The solution may proceed by use of a moment equation about B or E for 
member BF, followed by the two force equations. Thus,

[©MB 5 0]        3.92(5) 2
1
2 Ex(3) 5 0  Ex 5 13.08 kN Ans.

[©Fy 5 0]  By 1 3.92 2 13.08/2 5 0  By 5 2.62 kN Ans.

[©Fx 5 0]     Bx 1 3.92 2 13.08 5 0  Bx 5 9.15 kN Ans.

Positive numerical values of the unknowns mean that we assumed their direc-
tions correctly on the free-body diagrams. The value of Cx 5 Ex 5 13.08 kN ob-
tained by inspection of the free-body diagram of CE is now entered onto the 
diagram for AD, along with the values of Bx and By just determined. The equa-
tions of equilibrium may now be applied to member AD as a check, since all the 
forces acting on it have already been computed. The equations give

[©MC 5 0] 4.32(3.5) 1 4.32(1.5) 2 3.92(2) 2 9.15(1.5) 5 0

[©Fx 5 0]  4.32 2 13.08 1 9.15 1 3.92 1 4.32 5 0

[©Fy 5 0]  213.08/2 1 2.62 1 3.92 5 0

1

2

Helpful Hints

1  We see that the frame corresponds to 
the category illustrated in Fig. 4/14a.

2  Without this observation, the prob-
lem solution would be much longer, 
because the three equilibrium equa-
tions for member BF would contain 
four unknowns: Bx, By, Ex, and Ey. 
Note that the direction of the line 
joining the two points of force appli-
cation, and not the shape of the mem-
ber, determines the direction of the 
forces acting on a two-force member.

400 kg

3 m
A

E F

D

B

C

0.5 m
0.5 mR

1.5 m

1.5 m

2 m

1.5 m

Ex

Ex

D =
4.32 kN

By

By

Bx

Cx

Cx

1
2

x

y

Ay

0.4(9.81)
= 3.92 kN

Ay = 3.92 kN

3.92 kN

3.92 kN

3.92 kN

3.92 kN

3.92 kN 3.92 kN
3.92 kN

Ax =
4.32 kN 

Ax

D

Ex
1–
2

Cx
1–
2

Cx
1–
2
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Sample Problem 4/7

Neglect the weight of the frame and compute the forces acting on all of its 
members.

Solution.  We note fi rst that the frame is not a rigid unit when removed from 
its supports since BDEF is a movable quadrilateral and not a rigid triangle. Con-
sequently, the external reactions cannot be completely determined until the indi-
vidual members are analyzed. However, we can determine the vertical 
components of the reactions at A and C from the free-body diagram of the frame 
as a whole. Thus,

[©MC 5 0]  50(12) 1 30(40) 2 30Ay 5 0   Ay 5 60 lb Ans.

[©Fy 5 0]              Cy 2 50(4/5) 2 60 5 0   Cy 5 100 lb Ans.

Next we dismember the frame and draw the free-body diagram of each part. 
Since EF is a two-force member, the direction of the force at E on ED and at F on 
AB is known. We assume that the 30-lb force is applied to the pin as a part of 
member BC. There should be no diffi culty in assigning the correct directions for 
forces E, F, D, and Bx. The direction of By, however, may not be assigned by inspec-
tion and therefore is arbitrarily shown as downward on AB and upward on BC.

Member ED.  The two unknowns are easily obtained by

[©MD 5 0]  50(12) 2 12E 5 0   E 5 50 lb Ans.

[©F 5 0]     D 2 50 2 50 5 0   D 5 100 lb Ans.

Member EF.  Clearly F is equal and opposite to E with the magnitude of 50 lb.

Member AB.  Since F is now known, we solve for Bx, Ax, and By from

[©MA 5 0]  50(3/5)(20) 2 Bx(40) 5 0   Bx 5 15 lb Ans.

[©Fx 5 0]       Ax 1 15 2 50(3/5) 5 0   Ax 5 15 lb Ans.

[©Fy 5 0]          50(4/5) 2 60 2 By 5 0   By 5 220 lb Ans.

The minus sign shows that we assigned By in the wrong direction.

Member BC.  The results for Bx, By, and D are now transferred to BC, and the 
remaining unknown Cx is found from

[©Fx 5 0] 30 1 100(3/5) 2 15 2 Cx 5 0  Cx 5 75 lb Ans.

We may apply the remaining two equilibrium equations as a check. Thus,

[©Fy 5 0]  100 1 (220) 2 100(4/5) 5 0

[©MC 5 0]  (30 2 15)(40) 1 (220)(30) 5 0

1

2

3

4

Helpful Hints

1  We see that this frame corresponds to 
the category illustrated in Fig. 4/14b.

2  The directions of Ax and Cx are not 
obvious initially and can be assigned 
arbitrarily, to be corrected later if 
necessary.

3  Alternatively, the 30-lb force could 
be applied to the pin considered a 
part of BA, with a resulting change 
in the reaction Bx.

4  Alternatively, we could have re-
turned to the free-body diagram of 
the frame as a whole and found Cx.

20″
12″

30 lb

CA
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D
50 lb
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30″
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Sample Problem 4/8

The machine shown is designed as an overload protection device which re-
leases the load when it exceeds a predetermined value T. A soft metal shear pin 
S is inserted in a hole in the lower half and is acted on by the upper half. When 
the total force on the pin exceeds its strength, it will break. The two halves then 
rotate about A under the action of the tensions in BD and CD, as shown in the 
second sketch, and rollers E and F release the eye bolt. Determine the maximum 
allowable tension T if the pin S will shear when the total force on it is 800 N. 
Also compute the corresponding force on the hinge pin A.

Solution.  Because of symmetry, we analyze only one of the two hinged mem-
bers. The upper part is chosen, and its free-body diagram along with that for the 
connection at D is drawn. Because of symmetry the forces at S and A have no 
x-components. The two-force members BD and CD exert forces of equal magni-
tude B 5 C on the connection at D. Equilibrium of the connection gives

[©Fx 5 0] B cos � 1 C cos � 2 T 5 0 2B cos � 5 T

 B 5 T/(2 cos �)

From the free-body diagram of the upper part we express the equilibrium of 
moments about point A. Substituting S 5 800 N and the expression for B gives

[©MA 5 0] 
T

2 cos �
 (cos �)(50) 1

T
2 cos �

 (sin �)(36) 2 36(800) 2
T
2

 (26) 5 0

Substituting sin �/cos � 5 tan � 5 5/12 and solving for T give

 T a25 1
5(36)
2(12)

2 13b 5 28 800

 T 5 1477 N  or  T 5 1.477 kN Ans.

Finally, equilibrium in the y-direction gives us

[©Fy 5 0] S 2 B sin � 2 A 5 0

   800 2
1477

2(12/13)
 

5
13

2 A 5 0  A 5 492 N Ans.

1

2 Helpful Hints

1  It is always useful to recognize sym-
metry. Here it tells us that the forces 
acting on the two parts behave as 
mirror images of each other with re-
spect to the x-axis. Thus, we cannot 
have an action on one member in the 
plus x-direction and its reaction on 
the other member in the negative 
x-direction. Consequently, the forces 
at S and A have no x-components.

2  Be careful not to forget the moment of 
the y-component of B. Note that our 
units here are newton-millimeters.

Released
position

Dimensions
in millimeters

50

120

24

36 60

F
A

C

B

TT
D

S

E

T––
2θ

θ x
T

C

B
B

S

A

A

y
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Sample Problem 4/9

In the particular position shown, the excavator applies a 
20-kN force parallel to the ground. There are two hydraulic 
cylinders AC to control the arm OAB and a single cylinder 
DE to control arm EBIF. (a) Determine the force in the hy-
draulic cylinders AC and the pressure pAC against their pis-
tons, which have an effective diameter of 95 mm. (b) Also 
determine the force in hydraulic cylinder DE and the pres-
sure pDE against its 105-mm-diameter piston. Neglect the 
weights of the members compared with the effects of the 
20-kN force.

Solution.  (a) We begin by constructing a free-body diagram of the entire arm 
assembly. Note that we include only the dimensions necessary for this portion of 
the problem—details of the cylinders DE and GH are unnecessary at this time.

[©MO 5 0]  220 000(3.95) 2 2FAC cos 41.38(0.68) 1 2FAC sin 41.38(2) 5 0

 FAC 5 48 800 N or 48.8 kN Ans.

From FAC 5 pAC AAC , pAC 5
FAC

AAC 
5

48 800

a� 
0.0952

4
b

5 6.89(106) Pa or 6.89 MPa Ans.

(b) For cylinder DF, we “cut” the assembly at a location which makes the desired 
cylinder force external to our free-body diagram. This means isolating the verti-
cal arm EBIF along with the bucket and its applied force.

[©MB 5 0]  220 000(3.5) 1 FDE cos 11.318(0.73) 1 FDE sin 11.318(0.4) 5 0

 FDE 5 88 100 N or 88.1 kN Ans.

 p
DE

5
 FDE 
  ADE 

5
88 100

a� 
0.1052

4
b

5 10.18(106) Pa or 10.18 MPa Ans.

1

Helpful Hint

1  Recall that force 5 (pressure)(area).

0.2 m

3.5 m

0.45 m

0.28 m

0.4 m
0.1 m

0.55 m

F
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A
D

O
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J

0.4 m 0.6 m

2.1 m
0.9 m 1.4 m

20 kN

3.5 m

0.73 m

0.4 m2 m

B

E
D

By

Bx

O

Oy

Ox

FDE
2FAC

β

C

A

α

= tan−1 ( ) = 11.31°0.1 + 0.4––––––––
0.4 + 2.13.95 m

20 kN

0.68 m

= tan−1 ( ) = 41.3°α

β

0.4 + 0.28 + 0.55––––––––––––––
1.4

20 kN

(b)(a)
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4/76 Determine the magnitude of the force supported by 
each pin of the loaded truss.

R

A

B

C
M

D

45°

30°

Problem 4/76

4/77 Determine the magnitude of the pin force at A.

BC

D

A

4′

3′

4′
9″

800 lb

Problem 4/77

4/78 Determine the magnitudes of the pin reactions at A, 
B, and C caused by the weight of the uniform 6000-lb 
beam.

A

E

D

B

C

4.5′

30°

3′1.5′

Problem 4/78

PROBLEMS
(Unless otherwise instructed, neglect the mass of the vari-
ous members and all friction in the problems which follow.)

Introductory Problems

4/73 Determine the magnitude of the pin reactions at B 
and C if W 5 2400 lb.

5′ 5′

3′

W

A B C

D

Problem 4/73

4/74 Determine the force which member CD exerts on 
the pin at C.

A

B
C

D

30°

0.3 m

0.4 m 0.4 m

0.3 m

100 N

30°

Problem 4/74

4/75 The applied force of Prob. 4/74 is replaced by an ap-
plied couple as shown in the fi gure. Determine the 
force which member CD exerts on the pin at C.

A

B
C

D

30°

0.3 m

0.4 m 0.4 m

0.3 m

100 N.m

30°

Problem 4/75
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1000 mm

E F

C D

B

A

400 mm

150 mm150 mm

100 mm
4000 N

240 mm

Problem 4/81

4/82 A rectangular plate is held in the orientation shown 
by a cable which wraps over the top of a smooth 
pulley and attaches to the ground and also by a pin 
at E which bears against a smooth circular slot. If 
the tension T 5 225 N and the unstretched length 
of the spring at D is 150 mm, determine the stiff-
ness k of the spring. In the orientation shown, the 
spring is horizontal and the normal to the circular 
slot at the pin location makes an angle of 558 with 
the vertical.

T

A

B

C

E

F
D

k
120 mm

650 mm

450 mm

600 mm

600 mm

150 mm

300 mm

55°

Problem 4/82

4/79 The needle-nose pliers are used to either cut objects 
at location A or grip objects at location B. Compute 
(a) the cutting force at A and (b) the gripping force 
at B in terms of the applied force F. Determine the 
magnitude of the pin reaction at O in both cases. 
Neglect the effects of the slight opening of the jaws 
to accommodate the gripped items.

60 mm 15
mm

90 mm

F

F

OA

B

Problem 4/79

4/80 Determine the magnitude of the pin force at B.

0.6 m

0.4 m0.4 m

200 N.m
0.4 m

A

B

O

Problem 4/80

4/81 The automobile bumper jack is designed to support 
a 4000-N downward load. Begin with a free-body 
diagram of BCD and determine the force supported 
by roller C. Note that roller B does not contact the 
vertical column.
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4/85 The clamp is adjusted so that it exerts a pair of 
200-N compressive forces on the boards between its 
swivel grips. Determine the force in the threaded 
shaft BC and the magnitude of the pin reaction at D.

35 35 40

ED

B
A

C

F

10
10

30

Dimensions in millimeters

Problem 4/85

4/86 The tire chock is used to keep vehicles from rolling 
as they are jacked. For the contact force P shown, 
determine the magnitude of the force supported by 
pin C. Friction is suffi cient to prevent slipping at 
the ground interface.

38°

O

P

A

B

C

35 31

Dimensions in millimeters

10

6

46

Problem 4/86

4/83 For a gripping force of 20 lb, determine the normal 
force N exerted on the round stock by each jaw. Also, 
determine the magnitude of the force supported by 
the pin at O.

O

70°
16″

20 lb

20 lb

4″

Problem 4/83

4/84 The device shown is used for lifting 55-gallon drums. 
Determine the magnitude of the force exerted at B.

D C

B

2.2 kN

A

586 mm

240 mm

90 mm

33 mm293 mm

Problem 4/84
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4/89 The wingnut B of the collapsible bucksaw is tight-
ened until the tension in rod AB is 200 N. Determine 
the force in the saw blade EF and the magnitude F 
of the force supported by pin C.

80 mm

160 mm

25° 25°

A B

D

FE

C

Problem 4/89

4/90 Determine the cutting force F exerted on the rod S 
in terms of the forces P applied to the handles of the 
heavy-duty cutter.

22″4.5″

1.5″

1.5″15°

2″

E

C

B

A
D

E

C

D
P

P

G

H

S

15°

Problem 4/90

4/87 An 18-lb force is applied to the handle OAB of the 
cork puller. Determine the extraction force F ex-
erted on the cork.

0.2″

2.75″ 18 lb1.3″

1.3″

0.4″

A

C

O B

15°

Problem 4/87

4/88 Determine the force in the single hydraulic cylinder 
of the elevated work platform. The mass of arm OC 
is 800 kg with mass center at G1, and the combined 
mass of the bucket and worker is 300 kg with mass 
center at G2.

1.6 m

4 m

1.1 m

40°

0.65 m

G1

B

C

A O

G2

2.6 m

3 m

3 m

1.4 m

2.2 m

Problem 4/88



210  Chapter 4   Structures

15
mm

6 mm

30 mm

44 mm

25 mm

19
mm

T

A

C

E F

D

B

H

5°

Problem 4/93

Representative Problems

4/94 The dual-grip clamp shown in the fi gure is used to 
provide added clamping force with a positive action. 
If the vertical screw is tightened to produce a clamp-
ing force of 3 kN and then the horizontal screw is 
tightened until the force in the screw at A is dou-
bled, fi nd the total reaction R on the pin at B.

75
mm

125
mm

A

B

Problem 4/94

4/91 A pair of 80-N forces is applied to the handles of the 
small eyelet squeezer. The block at A slides with neg-
ligible friction in a slot machined in the lower part 
of the tool. Neglect the small force of the light return 
spring AE and determine the compressive force P ap-
plied to the eyelet.

50 mm

80 N

80 N

B

A

C

DE

62.5 mm

6.25 mm

15 mm

Problem 4/91

4/92 The device shown in the fi gure is designed to drive 
brads into picture-framing material. For a gripping 
force of 10 lb on the handles, determine the force F 
exerted on the brad.

BC

D

A

10 lb

10 lb

2.5″
0.75″

1″

Problem 4/92

4/93 The elements of a bicycle center-pull brake are 
shown in the fi gure. The two brake arms freely 
rotate about fi xed pivots at C and D (the support 
bracket is not shown). If the brake-cable tension ap-
plied at H is T 5 160 N, determine the normal forces 
exerted on the wheel by brakepads E and F.
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3.5″ 1″ 2.5″ 5.5″

P

D
C

B

Q

P

A

Problem 4/97

4/98 The fi gure shows a wheel puller which is designed 
to remove a V-belt pulley P from its tight-fi tting 
shaft S by tightening of the central screw. If the 
pulley starts to slide off the shaft when the com-
pression in the screw has reached 1.2 kN, calculate 
the magnitude of the force supported by each jaw 
at A. The adjusting screws D support horizontal 
force and keep the side arms parallel with the cen-
tral screw.

60
mm

D
D C

P

B

S A

15 mm

90 mm

60 mm

Problem 4/98

4/95 For the pair of 25-lb forces applied to the handles 
of the plier clamp, determine the normal gripping 
force on the sheet metal at E.

E

D

B

C

0.5″

1″

25 lb

4.25″1.25″ 25 lb

5″ 3″ 2″

A

Problem 4/95

4/96 The device shown is used to straighten bowed deck-
ing boards just prior to fi nal nailing to the joists. 
There is a lower bracket (not shown) at O which 
fi xes the part OA to a joist, so that the pivot A may 
be considered fi xed. For a given force P exerted per-
pendicular to the handle ABC as shown, determine 
the corresponding normal force N applied to the 
bent board near point B. Neglect friction.

175 mm

2°

500 mm

15°

P

O
A

C

B

Problem 4/96

4/97 For a given gripping force P, determine the normal 
force exerted on the small round stock by each jaw 
of the compound pliers. State any assumptions.
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FG
C

E

A

B

D

6″
27 lb

27 lb

0.7″

0.5″
0.3″

5.75″2.75″1.75″ 25°

0.75″

Problem 4/101

4/102 The “jaws-of-life” device is utilized by rescuers to pry 
apart wreckage, thus helping to free accident victims. 
If a pressure of 500 lb/in.2 is developed behind the pis-
ton P of area 20 in.2, determine the vertical force R 
which is exerted by the jaw tips on the wreckage 
for the position shown. Note that link AB and its 
counterpart are both horizontal in the fi gure for this 
position.

1.25″
1.25″

R

2″ 1″

1″

4″

4″

1″

18″

R

B
C

A
P

Problem 4/102

4/103 A 250-N force is applied to the foot-operated air 
pump. The return spring S exerts a 3-N?m mo-
ment on member OBA for this position. Determine 
the corresponding compression force C in the cylin-
der BD. If the diameter of the piston in the cylinder 
is 45 mm, estimate the air pressure generated for 
these conditions. State any assumptions.

4/99 In the spring clamp shown, an internal spring is 
coiled around the pin at A and the spring ends bear 
against the inner surfaces of the handle halves in 
order to provide the desired clamping force. In the 
position shown, a force of magnitude P 5 25 N is 
required to release the clamp. Determine the com-
pressive force at B if P 5 0.

A B

P

P

110 mm 40 mm

Problem 4/99

4/100 For a handle force of F 5 80 N, determine the mag-
nitude of the pin reaction at D in the cable-tie gun. 
The cable tie is essentially tension-free throughout, 
but the spring CE is under tension.

F

F

B
C

D

E

A

59 mm16
mm

29
mm

11
mm

13
mm

27
mm

Problem 4/100

4/101 For the pair of 27-lb forces applied to the handles 
of the crimper tool, determine the crimping force 
in the jaws at G.
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4/105 The 80-kg ventilation door OD with mass center at 
G is held in the open position shown by means of 
a moment M applied at A to the opening linkage. 
Member AB is parallel to the door for the 308 posi-
tion shown. Determine M.

0.6 m

30°

0.4 m

0.4 m

0.8 m

M
A

0.9 m

B

O

C

G

D

Problem 4/105

4/106 The elements of a fl oor jack are shown in the fi gure. 
The fi gure CDFE is a parallelogram. Calculate the 
force in the hydraulic cylinder AB corresponding to 
the 2000-lb load supported as shown. What is the 
force in link EF?

C

D

BBBBBBBBBBBBBBBBBBBB

AAAAAAAAAAAAAAAAAAAAAAA

4.75″ 9.25″

2.85″

2.5″

1.25″

1.25″

2000 lb

EEEEEEEEEEEEEEEEEEE

F

Problem 4/106

125

250 N

15°
25

225

Dimensions in millimeters

50

25

100

85

B

A

O
S

D

Problem 4/103

4/104 A lifting device for transporting 135-kg steel drums 
is shown. Calculate the magnitude of the force ex-
erted on the drum at E and F.

500
mm

340
mm

340
mm

250 mm

120 mm

B

P

A

G

F

D
C

E

350
mm

Problem 4/104
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1210 mm

G

A
B

C

2300 mm

740 mm

605 mm

Problem 4/109

4/110 The handheld press is useful for such tasks as 
squeezing rivets or punching holes. What force P is 
applied to the sheet metal at E for the 60-N forces 
applied to the handles?

B

E

D

C

A

60 N

60 N

52 mm

205 mm

55 mm

17 mm

6 mm

27 mm

Problem 4/110

4/111 The fi gure shows the side view of the upper por-
tion of a wooden attic ladder. The ladder is held in 
place by aluminum support members and springs 
on both sides and by a piano hinge at O that runs 
the width of the ladder. If the weight of the ladder 
is 60 lb with center of gravity at G, determine the 
magnitude of the force in each of the two support-
ing springs EF. Note that bar DE rests on top of 
the smooth support at C in this confi guration but 
is not constrained horizontally.

4/107 Determine the magnitude of the pin reaction at A 
and the magnitude and direction of the force reac-
tion at the rollers. The pulleys at C and D are small.

F

E

0.4 m

60 kg

0.4 m0.4 m

0.5 m

A

D

B
C

Problem 4/107

4/108 The car hoist allows the car to be driven onto the 
platform, after which the rear wheels are raised. If 
the loading from both rear wheels is 1500 lb, deter-
mine the force in the hydraulic cylinder AB. Ne-
glect the weight of the platform itself. Member 
BCD is a right-angle bell crank pinned to the ramp 
at C.

D

B

C

A

60°

4″

15″

O

28″
12″

Problem 4/108

4/109 The ramp is used as passengers board a small com-
muter airplane. The total mass of the ramp and six 
passengers is 750 kg with mass center at G. Deter-
mine the force in the hydraulic cylinder AB and the 
magnitude of the pin reaction at C.
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3060 mm1700 mm
740 mm

600 mm

150 mm

890 mm

B

A

O

G1 G2

Problem 4/113

4/114 The forklift area of the machine of Prob. 4/113 is 
shown with additional dimensional detail. Deter-
mine the force in the single hydraulic cylinder CD. 
The mass of the cube of bricks is 2000 kg with mass 
center at G2. You may neglect the effects of the 
mass of the forklift components.

835
mm

35 mm

480
mm

C

E
D

735 mm

215 mm

G2

Problem 4/114

4/115 Determine the vertical clamping force at E in terms 
of the force P applied to the handle of the toggle 
clamp.

80 mm 160 mm
16 mm

12 mm12 mm

12 mm
5 mm

D

E A
C

B

P

Problem 4/115

E

C

B

A

G

D

16″

1.75″

1.25″

8″

3.75″

3″ 20″

11″

O

F

5″

13.5″5″

Problem 4/111

4/112 The top of the folding workbench has a mass of 
50 kg with mass center at G. Calculate the x- and 
y-components of the force supported by the pin at E.

750 mm

225 mm

y

1200 mm

900 mm

x

G

D
B

HF

E

A C

Problem 4/112

4/113 The machine shown is used for moving heavy items 
such as pallets of bricks around construction sites. 
For the horizontal boom position shown, determine 
the force in each of the two hydraulic cylinders AB. 
The mass of the boom is 1500 kg with mass center 
at G1, and the mass of the cube of bricks is 2000 kg 
with mass center at G2.
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B

A

36

2 kN

2 kN

C

EH

DG

F

93 93 93 156

111

Dimensions in millimeters

Problem 4/118

4/119 The upper jaw D of the toggle press slides with neg-
ligible frictional resistance along the fi xed vertical 
column. Calculate the compressive force R exerted 
on the cylinder E and the force supported by the 
pin at A if a force F 5 200 N is applied to the han-
dle at an angle � 5 758.

100 mm

100 mm

250 mm

E
D

C

B

F

θ

A

Problem 4/119

4/120 The essential elements of a hand winch are shown. 
The toothed wheel and the handle OA pivot inde-
pendently about the same axis through O. When 
bearing against the radial fl ank of a tooth, the 
pawl BC locks at the 208 angle shown. When sepa-
rated from the tooth fl ank, the pawl can rotate 
clockwise relative to OA to allow clockwise rota-
tion of OA relative to the winch drum in prepara-
tion for another pull. A lock not shown prevents 
clockwise rotation of the toothed wheel during re-
positioning of the handle. If P 5 400 N, determine 
the tensions T1 and T2. Neglect friction at the base 
of the winch.

4/116 In the special position shown for the log hoist, 
booms AF and EG are at right angles to one an-
other and AF is perpendicular to AB. If the hoist 
is handling a log weighing 4800 lb, compute the 
forces supported by the pins at A and D in this one 
position due to the weight of the log.

G

F

C

B

A

D

E

12
′ 8′

4′

45°
24

″

12
″

12
″

2′

10′

Problem 4/116

4/117 The device shown is used to drag loaded wooden pal-
lets across warehouse fl oors. The wood board shown 
is one of several members that comprise the base of 
the pallet. For the 4-kN force applied by a forklift, de-
termine the magnitude of the force supported by pin 
C and the normal gripping forces at A and B.

B

A

36

C

E

D

F

93 93 156

111

4 kN

Dimensions in millimeters

Problem 4/117

4/118 A modifi cation of the pallet puller of Prob. 4/117 is 
shown here. For the same net 4-kN force as in 
Prob. 4/117, determine the magnitude of the force 
supported by pin C and the normal gripping forces 
at A and B.
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4/122 The elements of a rear suspension for a front-
wheel-drive car are shown in the fi gure. Determine 
the magnitude of the force at each joint if the nor-
mal force F exerted on the tire has a magnitude of 
3600 N.

BE

F = 3600 N

A

D

C

F

90 mm

260
mm

165
mm

245 mm

60 mm
220
mm

130 mm

60 mm

Problem 4/122

4/123 A double-axle suspension for use on small trucks is 
shown in the fi gure. The mass of the central frame 
F is 40 kg, and the mass of each wheel and attached 
link is 35 kg with center of mass 680 mm from the 
vertical centerline. For a load L 5 12 kN transmit-
ted to the frame F, compute the total shear force 
supported by the pin at A.

500 mm

400 mm

750 mm

F

A

L

Problem 4/123

P
A

B

O

C
T2

T1

15°

20°

30°
36

Dimensions in millimeters

35

50

300

75

Problem 4/120

4/121 The fi gure shows a side view of a tilting table. The 
left support controls the tilt angle of the table by 
means of a threaded shaft between pins C and D 
that raises and lowers the scissor mechanism. The 
table is pinned on the right to two vertical support 
posts. The scissor mechanism is located along the 
centerline of the table which lies midway between 
the right-side support posts. If the tabletop is hor-
izontal and a uniform 50-kg crate is placed along 
the centerline at the position shown, determine 
the magnitudes of the forces induced in pin E and 
in the threaded shaft between pins C and D. The 
length b 5 180 mm and � 5 158.

280

O

F

E A

C

B G
D

bb

380 640

θ

Dimensions in millimeters

Problem 4/121
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4/126 Consider the additional dimensional detail for the 
front-end loader of Prob. 4/125. Determine the 
force in the hydraulic cylinder CE. The weight of 
the bucket and its load is 4000 lb with center of 
gravity at G. You may ignore the effects of the 
weights of other members.

16′′

15′′

12′′

12′′
3′′2′′

5′′

C

G
D

E

F

Problem 4/126

4/127 The pruning mechanism of a pole saw is shown as 
it cuts a branch S. For the particular position 
drawn, the actuating cord is parallel to the pole and 
carries a tension of 30 lb. Determine the shearing 
force P applied to the branch by the cutter and the 
total force supported by the pin at E. The force 
exerted by the light return spring at C is small and 
may be neglected.

75°

20°

30 lb
20°

20°

F

D

C

B

AE
S

AB = 1″, BC = ED = 3″, EB = DC = 4   ″, DF = 6″1–
2

Problem 4/127

4/124 Determine the compression force C exerted on the 
can for an applied force P 5 50 N when the can 
crusher is in the position shown. Note that there 
are two links AB and two links AOD, with one pair 
of linkages on each side of the stationary portion of 
the crusher. Also, pin B is on the vertical centerline 
of the can. Finally, note that small square projec-
tions E of the moving jaw move in recessed slots of 
the fi xed frame.

B

A

D

O

E

5°

10°

P = 50 N

240 mm
70 mm

65 mm

18 mm

Problem 4/124

4/125 Determine the force in the hydraulic cylinder AB 
and the magnitude of the pin reaction at O for the 
position shown. The bucket and its load have a 
combined weight of 4000 lb with center of gravity 
at G. You may neglect the effect of the weights of 
the other members.

50′′ 50′′
6′′

AG
B

O

11′′
13′′

Problem 4/125
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A

T

x

y

C

E

F

B

G

D

7′

1′

4′

1200 lb

1.5′
1.5′

50°

Problem 4/129

4/130 Determine the force acting on member ABC at con-
nection A for the loaded space frame shown. Each 
connection may be treated as a ball-and-socket 
joint.

x

C

A

D

E

B

y

1 kN

4 kN

2 m

4 m

3 m

3 m 2 m

2 m

z

Problem 4/130

 c4/128 The 18-kg automobile hood (mass center at G1) is 
held in the position shown by a pair of hinges, one 
of which is shown in detail. Pin E is part of link 
CD, which is pivoted to the car body at D, and pin 
G is part of link BF, which is pivoted to the car body 
at F. Determine the compressive force acting in each 
of the two hydraulic cylinders for this situation.

347

A

A

C

E F

H

G

G1

I

D

Dimensions in millimeters

B

B

140

85

21
13

110
9

45
17 20

119

123

34

38

106 9443

Problem 4/128

4/129 In the schematic representation of an actual struc-
ture, T represents a turnbuckle, C and D are 
non-thrust-bearing hinges whose axes are along the 
line CD, and B, E, and F are ball-and-socket joints. 
Determine the tension T in the turnbuckle and the 
force in member EF.



4/7  CHAPTER REVIEW

In Chapter 4 we have applied the principles of equilibrium to two classes 
of problems: (a) simple trusses and (b) frames and machines. No new theory 
was needed, since we merely drew the necessary free-body diagrams and 
applied our familiar equations of equilibrium. The structures dealt with in 
Chapter 4, however, have given us the opportunity to further develop our 
appreciation for a systematic approach to mechanics problems.

The most essential features of the analysis of these two classes of 
structures are reviewed in the following statements.

(a) Simple Trusses

 1. Simple trusses are composed of two-force members joined at their ends 
and capable of supporting tension or compression. Each internal force, 
therefore, is always in the direction of the line joining the endpoints of its 
member.

 2. Simple trusses are built from the basic rigid (noncollapsible) unit of 
the triangle for plane trusses and the tetrahedron for space trusses. 
Additional units of a truss are formed by adding new members, two for 
plane trusses and three for space trusses, attached to existing joints and 
joined at their ends to form a new joint.

 3. The joints of simple trusses are assumed to be pin connections for plane 
trusses and ball-and-socket connections for space trusses. Thus, the joints 
can transmit force but not moment.

 4. External loads are assumed to be applied only at the joints.

 5. Trusses are statically determinate externally when the external 
constraints are not in excess of those required to maintain an equilibrium 
position.

 6. Trusses are statically determinate internally when constructed in the 
manner described in item (2), where internal members are not in excess 
of those required to prevent collapse.

 7. The method of joints utilizes the force equations of equilibrium for each 
joint. Analysis normally begins at a joint where at least one force is known 
and not more than two forces are unknown for plane trusses or not more 
than three forces are unknown for space trusses.

 8. The method of sections utilizes a free body of an entire section of a 
truss containing two or more joints. In general, the method involves the 
equilibrium of a nonconcurrent system of forces. The moment equation 
of equilibrium is especially useful when the method of sections is used. 
In general, the forces acting on a section which cuts more than three 
unknown members of a plane truss cannot be solved for completely 
because there are only three independent equations of equilibrium.

 9. The vector representing a force acting on a joint or a section is drawn 
on the same side of the joint or section as the member which transmits 
the force. With this convention, tension is indicated when the force arrow 
is away from the joint or section, and compression is indicated when the 
arrow points toward the joint or section.
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 10. When the two diagonal members which brace a quadrilateral panel are 
fl exible members incapable of supporting compression, only the one 
in tension is retained in the analysis, and the panel remains statically 
determinate.

 11. When two joined members under load are collinear and a third member 
with a different direction is joined with their connection, the force in the 
third member must be zero unless an external force is applied at the joint 
with a component normal to the collinear members.

(b) Frames and Machines

 1. Frames and machines are structures which contain one or more 
multiforce members. A multiforce member is one which has acting on it 
three or more forces, or two or more forces and one or more couples.

 2. Frames are structures designed to support loads, generally under static 
conditions. Machines are structures which transform input forces and 
moments to output forces and moments and generally involve moving 
parts. Some structures may be classifi ed as either a frame or a machine.

 3. Only frames and machines which are statically determinate externally 
and internally are considered here.

 4. If a frame or machine as a whole is a rigid (noncollapsible) unit when its 
external supports are removed, then we begin the analysis by computing 
the external reactions on the entire unit. If a frame or machine as a whole 
is a nonrigid (collapsible) unit when its external supports are removed, 
then the analysis of the external reactions cannot be completed until the 
structure is dismembered.

 5. Forces acting in the internal connections of frames and machines are 
calculated by dismembering the structure and constructing a separate 
free-body diagram of each part. The principle of action and reaction must 
be strictly observed; otherwise, error will result.

 6. The force and moment equations of equilibrium are applied to the 
members as needed to compute the desired unknowns.
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4/134 A buckling analysis of the bridge section reveals 
that the vertical truss members can safely support 
a maximum of 525 kN in compression, the horizon-
tal truss members can safely support a maximum 
of 300 kN in compression, and the diagonal truss 
members can safely support a maximum of 180 kN 
in compression. What is the largest value of L for 
which no safety requirement will be violated?

A
J I GH

C D E FB

3L L 2L L 3L

3 m

4 panels at 4 m

Problem 4/134

4/135 The specialty tool is used for installing and remov-
ing snap rings. Determine the spreading force ap-
plied at G and H if P 5 50 N.

P

B

C
F

ED

G

H

A

P

33
mm

32
mm

16 mm

13 mm
3 mm

16 mm

60
mm

30 mm

Problem 4/135

4/136 Calculate the force in member BG using a free-
body diagram of the rigid member ABC.

BCD

A

900 lb

F

10′ 10′

10′ 10′

10′

E G

Problem 4/136

REVIEW PROBLEMS

4/131 Determine the force in each member of the loaded 
truss. All triangles are equilateral with side length d.

A

B C D

E

3 kN 5 kN

G F

d

Problem 4/131

4/132 Determine the forces in members CH and CF.

A B

2 m

C D E

F

GH
I

2 m

24 kN

24 kN

24 kN

2 m

2 m 2 m

Problem 4/132

4/133 Determine the components of all forces acting on 
each member of the loaded frame.

45° 45°

C

y

x

A B

R

MM

Problem 4/133
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A

B C

7 m

5°

D

m

Problem 4/139

4/140 If it is known that the center pin A supports one-
half of the vertical loading shown, determine the 
force in member BF.

A

BG H

10 kN 8 kN 8 kN8 kN 8 kN 10 kN

6 panels at 12 m

16 m

12 m

F

D EC

Problem 4/140

4/141 The torsional spring at B is undeformed when 
bars OB and BD are both in the vertical position 
and overlap. If a force F is required to position the 
bars at a steady orientation � 5 608, determine 
the torsional spring stiffness kT. The slot at C is 
smooth, and the weight of the bars is negligible. In 
this confi guration, the pin at C is positioned at the 
midpoint of the slotted bar.

A

O

C

kTB

E

F

Dθθ

b
2

b
2

Problem 4/141

4/137 The nose-wheel assembly is raised by the applica-
tion of a torque M to link BC through the shaft at 
B. If the arm and wheel AO have a combined 
weight of 100 lb with center of gravity at G, fi nd 
the value of M necessary to lift the wheel when D is 
directly under B, at which position angle � is 308.

20″

20″
θ

MB

z

A

C

D

G

16″

32″

8″ O

Problem 4/137

4/138 Determine the force in member DI of the loaded 
truss.

L

3 
m

4 m 4 m 4 m

A

B

2L

3L

4L

3L

2L

LC

G

D

E

F

I H

AB = BC = CD = DE = EF = FG

Problem 4/138

4/139 The truss shown consists of equilateral triangles. 
If the magnitude of tensile or compressive force in 
the aluminum members must be limited to 42 kN, 
determine the largest mass m which can be sup-
ported. The cable attaches to the pin at A.
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4/145 The fi gure shows the side view of a portable traffi c 
signal. The upper portion of the signal with attached 
frame has a mass of 90 kg with mass center at G. 
The signal and frame are hinged at point E and 
rest on a vertical post at H. In operation, member 
DEH is positioned vertically by means of the hand-
operated winch so that the lights are directed to 
the left. Determine the necessary input force F that 
will just start to rotate the signal from its horizontal 
position. Note that handle A is rigidly attached to 
gear B. The dimension AB 5 200 mm. 

H

F

A

BC

D E

G

Dimensions in millimeters

760

600 820

150
50

40°

Problem 4/145

4/146 The tree feller cuts off large trees near ground level 
and then continues to grasp the trunk. Determine 
the force in hydraulic cylinder AB for the position 
shown if the tree weighs 6000 lb. Determine the re-
quired pressure on the 4.72-in.-diameter piston of 
the cylinder.

4/142 Determine the forces in members AB, BI, and CI of 
the simple truss. Note that all curved members are 
two-force members.

15 m 15 m

20 m

15 m 15 m20 m

Arc of radius 50 m

CB

A

I

H

G

F

ED

L LL L

Problem 4/142

4/143 The structure of Prob. 4/142 is modifi ed in that the 
four curved members are replaced by the two mem-
bers AIH and HGF. Instrumentation indicates the 
tension in members CH and DH to be 0.5L each. 
Determine the forces in members AB, BI, and CI. 
Is the problem solvable without the information 
about CH?

15 m 15 m

20 m

15 m 15 m20 m

Arc of radius 50 m

CB
A

I

H

G

F

ED

L LL L

Problem 4/143

4/144 Determine the forces in members DM and DN of 
the loaded symmetrical truss.

L

HB

A I30°

30°

L

E

L

F

L

C

L

D
LM

KN
JO

G

24 m

Problem 4/144
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K
H

E B

A
C

D
G

J
M

L
I

F
2 m

2 m
2 m

2 m

5000 kg

2 m
2 m 1 m

BC = BD = CD = 2 m

Problem 4/148

 c4/149 A space truss consists of two pyramids on identical 
square bases in the horizontal x-y plane with com-
mon side DG. The truss is loaded at the vertex A by 
the downward force L and is supported by the ver-
tical reactions shown at its corners. All members 
except the two base diagonals are of the same 
length b. Take advantage of the two vertical planes 
of symmetry and determine the forces in AB and 
DA. (Note that link AB prevents the two pyramids 
from hinging about DG.)

B

G

A

DR2

R2

R1

R1

L

E

F
C

H

b

b
b

b

b

b

b

x
y

z

Problem 4/149

7.5′ 6.8′

A

B

2.4′

3.6′

0.6′

Problem 4/146

 c4/147 Each of the landing struts for a planet exploration 
spacecraft is designed as a space truss symmetrical 
about the vertical x-z plane as shown. For a land-
ing force F 5 2.2 kN, calculate the corresponding 
force in member BE. The assumption of static 
equilibrium for the truss is permissible if the mass 
of the truss is very small. Assume equal loads in 
the symmetrically placed members.

F

A

E

F

D

C

B

x

z y

1.2 m

0.9 m

0.9 m

0.5 m

0.5 m

0.4 m
0.4 m

Problem 4/147

 c4/148 The lengthy boom of an overhead construction 
crane, a portion of which is shown, is an example 
of a periodic structure—one which is composed of 
repeated and identical structural units. Use the 
method of sections to fi nd the forces in members 
FJ and GJ.
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A

C

B

D

E

F

12 m 12 m

13 m

60° 60° θ 32 m

10 Mg

Problem 4/151

 *4/152 The “jaws-of-life” device of Prob. 4/102 is redrawn 
here with its jaws open. The pressure behind the 
piston P of area 20 in.2 is maintained at 500 lb/in.2 

Calculate and plot the force R as a function of � for 
0 # � # 458, where R is the vertical force acting on 
the wreckage as shown. Determine the maximum 
value of R and the corresponding value of the jaw 
angle. See the fi gure of Prob. 4/102 for dimensions 
and the geometry associated with the condition 
� 5 0. Note that link AB and its counterpart are 
both horizontal in the fi gure for � 5 0 but do not 
remain horizontal as the jaws open.

A
P B

C

R

R

θ

θ

Problem 4/152

 *4/153 The uniform 30-kg ventilation door OAP is opened 
by the mechanism shown. Plot the required force 
in the cylinder DE as a function of the door open-
ing angle � over the range 0 � � # �max, where �max 
is the maximum opening. Determine the minimum 
and maximum values of this force and the angles at 
which these extremes occur. Note that the cylinder 
is not horizontal when � 5 0.

 *Computer-Oriented Problems

 *4/150 The mechanism of Prob. 2/56 is repeated here. If 
a constant 750-N force is applied to the seat as 
shown, determine the pressure p which must act 
against the 30-mm-diameter piston in the hydrau-
lic cylinder AB to establish equilibrium of the 
machine. Plot the required pressure p over the 
range 2208 # � � 45	 and assume no mechanical 
interference within this range of motion. What is 
the maximum pressure which the cylinder must 
develop for this range of motion? Note: Figures 
CDFE and EFGH are parallelograms.

H

G

E

A

O

C

Dimensions in millimeters

Bθ

800

200

200

400

900

150

750 N

175

175

100
D

F

Problem 4/150

 *4/151 The type of marine crane shown is utilized for 
both dockside and offshore operations. Determine 
and plot the force in member BC as a function of 
the boom angle � for 0 # � # 808 and state the 
value of this force for � 5 408. Neglect the radius 
of all pulleys and the weight of the boom.
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3″

6″

11″

4″ 14″
B

C

A
M

O
θ

Problem 4/155

 *4/156 The “jaws-of-life” device is used by rescuers to pry 
apart wreckage. A pressure of 35 MPa (35(106) N/m2) 
is developed behind the piston of 50-mm radius. 
Begin by determining the prying force R, the force 
in link AB, and the horizontal force reaction at C 
for the condition shown on the left. Then develop 
expressions for and plot those quantities as functions 
of the jaw angle � (shown on the right) over the range 
0 # � � 45	. State the minimum value of R and the 
value of � for which this extreme occurs.

C A

B

C A

R R R

D D

R

110

Dimensions in millimeters

60
60

210

706020

AAAAA

B

θθ

Problem 4/156

100

400

525275

350

300

θ
A

B

D

C

E

PO

AB = 300 CD = DB = 150

Dimensions in millimeters

Problem 4/153

 *4/154 The machine shown is used to help load luggage 
into airliners. The combined mass of the conveyor 
and luggage is 100 kg with mass center at G. De-
termine and plot the force in the hydraulic cylinder 
as a function of � over the range 58 # � # 308 and 
state the maximum value over this range.

B C

G
2130 mm

1660 mm

E

A

θ
D 500 mm

1060106010601060 mmmm

DE = 1945 mm CD = 1150 mm

Problem 4/154

 *4/155 A door-opening mechanism is shown in the fi gure. 
The spring-loaded hinges at O provide a moment 
KT� which tends to close the door, where � is the 
door-opening angle and the torsional spring con-
stant KT 5 500 lb-in./rad. The motor unit at A 
provides a variable moment M so that the slowly 
opening door is always in quasi-static equilibrium. 
Determine the moment M and the pin force at B 
as functions of � for range 0 # � # 908. State 
the value of M for � 5 458.



Another view of the Auditorio de Tenerife depicted on the cover. The cumulative effect of the weight distribution 
must be determined during the design of the structure.
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DISTRIBUTED FORCES5

5/1  INTRODUCTION

In the previous chapters we treated all forces as concentrated along 
their lines of action and at their points of application. This treatment 
provided a reasonable model for those forces. Actually, “concentrated” 
forces do not exist in the exact sense, since every external force applied 
mechanically to a body is distributed over a fi nite contact area, however 
small.

The force exerted by the pavement on an automobile tire, for in-
stance, is applied to the tire over its entire area of contact, Fig. 5/1a, 
which may be appreciable if the tire is soft. When analyzing the forces 
acting on the car as a whole, if the dimension b of the contact area is 
negligible compared with the other pertinent dimensions, such as the 
distance between wheels, then we may replace the actual distributed 
contact forces by their resultant R treated as a concentrated force. Even 
the force of contact between a hardened steel ball and its race in a 
loaded ball bearing, Fig. 5/1b, is applied over a fi nite, though extremely 
small, contact area. The forces applied to a two-force member of a truss, 
Fig. 5/1c, are applied over an actual area of contact of the pin against 
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the hole and internally across the cut section as shown. In these and 
other similar examples, we may treat the forces as concentrated when 
analyzing their external effects on bodies as a whole.

If, on the other hand, we want to fi nd the distribution of internal 
forces in the material of the body near the contact location, where the 
internal stresses and strains may be appreciable, then we must not treat 
the load as concentrated but must consider the actual distribution. This 
problem will not be discussed here because it requires knowledge of the 
properties of the material and belongs in more advanced treatments of 
the mechanics of materials and the theories of elasticity and plasticity.

When forces are applied over a region whose dimensions are not 
negligible compared with other pertinent dimensions, then we must ac-
count for the actual manner in which the force is distributed. We do this by 
summing the effects of the distributed force over the entire region using 
mathematical integration. This requires that we know the intensity of 
the force at any location. There are three categories of such problems.

(1) Line Distribution. When a force is distributed along a line, as in 
the continuous vertical load supported by a suspended cable, Fig. 5/2a, 
the intensity w of the loading is expressed as force per unit length of 
line, newtons per meter (N/m) or pounds per foot (lb/ft).

(2) Area Distribution. When a force is distributed over an area, as 
with the hydraulic pressure of water against the inner face of a section 
of dam, Fig. 5/2b, the intensity is expressed as force per unit area. This 
intensity is called pressure for the action of fl uid forces and stress for the 
internal distribution of forces in solids. The basic unit for pressure or 
stress in SI is the newton per square meter (N/m2), which is also called 
the pascal (Pa). This unit, however, is too small for most applications 
(6895 Pa 5 1 lb/in.2). The kilopascal (kPa), which equals 103 Pa, is more 
commonly used for fl uid pressure, and the megapascal, which equals 
106 Pa, is used for stress. In the U.S. customary system of units, both fl uid 
pressure and mechanical stress are commonly expressed in pounds per 
square inch (lb/in.2).

(3) Volume Distribution. A force which is distributed over the vol-
ume of a body is called a body force. The most common body force is the 
force of gravitational attraction, which acts on all elements of mass in a 
body. The determination of the forces on the supports of the heavy can-
tilevered structure in Fig. 5/2c, for example, would require accounting 
for the distribution of gravitational force throughout the structure. The 
intensity of gravitational force is the specifi c weight �g, where � is the 
density (mass per unit volume) and g is the acceleration due to gravity. 
The units for �g are (kg/m3)(m/s2) 5 N/m3 in SI units and lb/ft3 or lb/in.3 
in the U.S. customary system.

The body force due to the gravitational attraction of the earth 
(weight) is by far the most commonly encountered distributed force. 
Section A of this chapter treats the determination of the point in a body 
through which the resultant gravitational force acts, and discusses the 
associated geometric properties of lines, areas, and volumes. Section B 
treats distributed forces which act on and in beams and fl exible cables 
and distributed forces which fl uids exert on exposed surfaces.

Figure 5/1
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SECTION A CENTERS OF MASS AND CENTROIDS

5/2  CENTER OF MASS

Consider a three-dimensional body of any size and shape, having 
a mass m. If we suspend the body, as shown in Fig. 5/3, from any 
point such as A, the body will be in equilibrium under the action of 
the tension in the cord and the resultant W of the gravitational forces 
acting on all particles of the body. This resultant is clearly collinear 
with the cord. Assume that we mark its position by drilling a hypo-
thetical hole of negligible size along its line of action. We repeat the 
experiment by suspending the body from other points such as B and 
C, and in each instance we mark the line of action of the resultant 
force. For all practical purposes these lines of action will be concur-
rent at a single point G, which is called the center of gravity of the 
body.

An exact analysis, however, would account for the slightly differing 
directions of the gravity forces for the various particles of the body, be-
cause those forces converge toward the center of attraction of the earth. 
Also, because the particles are at different distances from the earth, the 
intensity of the force fi eld of the earth is not exactly constant over the 
body. As a result, the lines of action of the gravity-force resultants in 
the experiments just described will not be quite concurrent, and there-
fore no unique center of gravity exists in the exact sense. This is of no 
practical importance as long as we deal with bodies whose dimensions 
are small compared with those of the earth. We therefore assume a uni-
form and parallel force fi eld due to the gravitational attraction of the 
earth. This assumption results in the concept of a unique center of 
gravity.

Determining the Center of Gravity

To determine mathematically the location of the center of gravity of 
any body, Fig. 5/4a, we apply the principle of moments (see Art. 2/6) to 
the parallel system of gravitational forces. The moment of the resultant 
gravitational force W about any axis equals the sum of the moments 

Figure 5/2

w

(a) (c)(b)

Figure 5/3

A B A
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about the same axis of the gravitational forces dW acting on all particles 
treated as infi nitesimal elements of the body. The resultant of the gravi-
tational forces acting on all elements is the weight of the body and is 
given by the sum W 5 e dW. If we apply the moment principle about the 
y-axis, for example, the moment about this axis of the elemental weight 
is x dW, and the sum of these moments for all elements of the body is 
e x dW. This sum of moments must equal W  x, the moment of the sum. 
Thus, xW 5 e x dW.

With similar expressions for the other two components, we may ex-
press the coordinates of the center of gravity G as

 x 5
E x dW

W
  y 5

E y dW

W
  z 5

E z dW

W
  (5/1a)

To visualize the physical moments of the gravity forces appearing in the 
third equation, we may reorient the body and attached axes so that the 
z-axis is horizontal. It is essential to recognize that the numerator of 
each of these expressions represents the sum of the moments, whereas 
the product of W and the corresponding coordinate of G represents the 
moment of the sum. This moment principle fi nds repeated use throughout 
mechanics.

With the substitution of W 5 mg and dW 5 g dm, the expressions 
for the coordinates of the center of gravity become

 x 5
E x dm

m
  y 5

E y dm

m
  z 5

E z dm

m
  (5/1b)

Equations 5/1b may be expressed in vector form with the aid of 
Fig. 5/4b, in which the elemental mass and the mass center G are located 

Figure 5/4
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by their respective position vectors r 5 xi 1 yj 1 zk and r 5 x i 1 y j 1 z k. 
Thus, Eqs. 5/1b are the components of the single vector equation

 r 5
E r dm

m
  (5/2)

The density � of a body is its mass per unit volume. Thus, the mass 
of a differential element of volume dV becomes dm 5 � dV. If � is not 
constant throughout the body but can be expressed as a function of the 
coordinates of the body, we must account for this variation when calcu-
lating the numerators and denominators of Eqs. 5/1b. We may then 
write these expressions as 

 x 5
E x� dV

E � dV
  y 5

E y� dV

E � dV
  z 5

E z� dV

E � dV
  (5/3)

Center of Mass versus Center of Gravity

Equations 5/1b, 5/2, and 5/3 are independent of gravitational effects 
since g no longer appears. They therefore defi ne a unique point in the 
body which is a function solely of the distribution of mass. This point is 
called the center of mass, and clearly it coincides with the center of grav-
ity as long as the gravity fi eld is treated as uniform and parallel.

It is meaningless to speak of the center of gravity of a body which is 
removed from the gravitational fi eld of the earth, since no gravitational 
forces would act on it. The body would, however, still have its unique 
center of mass. We will usually refer henceforth to the center of mass 
rather than to the center of gravity. Also, the center of mass has a spe-
cial signifi cance in calculating the dynamic response of a body to unbal-
anced forces. This class of problems is discussed at length in Vol. 2 
Dynamics.

In most problems the calculation of the position of the center of 
mass may be simplifi ed by an intelligent choice of reference axes. In gen-
eral, the axes should be placed so as to simplify the equations of the 
boundaries as much as possible. Thus, polar coordinates will be useful 
for bodies with circular boundaries.

Another important clue may be taken from considerations of sym-
metry. Whenever there exists a line or plane of symmetry in a homoge-
neous body, a coordinate axis or plane should be chosen to coincide with 
this line or plane. The center of mass will always lie on such a line or 
plane, since the moments due to symmetrically located elements will al-
ways cancel, and the body may be considered to be composed of pairs of 
these elements. Thus, the center of mass G of the homogeneous right-
circular cone of Fig. 5/5a will lie somewhere on its central axis, which is 
a line of symmetry. The center of mass of the half right-circular cone lies 
on its plane of symmetry, Fig. 5/5b. The center of mass of the half ring in 
Fig. 5/5c lies in both of its planes of symmetry and therefore is situated Figure 5/5

G

(a) (b)

(c)

G

A

B

G



234  Chapter 5   Distributed Forces

on line AB. It is easiest to fi nd the location of G by using symmetry when 
it exists.

5/3  CENTROIDS OF LINES, AREAS, AND VOLUMES

When the density � of a body is uniform throughout, it will be a 
constant factor in both the numerators and denominators of Eqs. 5/3 
and will therefore cancel. The remaining expressions defi ne a purely 
geometrical property of the body, since any reference to its mass prop-
erties has disappeared. The term centroid is used when the calculation 
concerns a geometrical shape only. When speaking of an actual physical 
body, we use the term center of mass. If the density is uniform throughout 
the body, the positions of the centroid and center of mass are identical, 
whereas if the density varies, these two points will, in general, not 
coincide.

The calculation of centroids falls within three distinct categories, 
depending on whether we can model the shape of the body involved as 
a line, an area, or a volume.

(1) Lines. For a slender rod or wire of length L, cross-sectional area 
A, and density �, Fig. 5/6, the body approximates a line segment, and 
dm 5 �A dL. If � and A are constant over the length of the rod, the coor-
dinates of the center of mass also become the coordinates of the centroid 
C of the line segment, which, from Eqs. 5/1b, may be written

 x 5
E x dL

L
  y 5

E y dL

L
  z 5

E z dL

L
  (5/4)

Note that, in general, the centroid C will not lie on the line. If the rod 
lies on a single plane, such as the x-y plane, only two coordinates need to 
be calculated.

(2) Areas. When a body of density � has a small but constant thick-
ness t, we can model it as a surface area A, Fig. 5/7. The mass of an ele-
ment becomes dm 5 �t dA. Again, if � and t are constant over the entire 
area, the coordinates of the center of mass of the body also become the 
coordinates of the centroid C of the surface area, and from Eqs. 5/1b the 
coordinates may be written 

 x 5
E x dA

A
  y 5

E y dA

A
  z 5

E z dA

A
  (5/5)

The numerators in Eqs. 5/5 are called the fi rst moments of area.* If the 
surface is curved, as illustrated in Fig. 5/7 with the shell segment, all 
three coordinates will be involved. The centroid C for the curved sur-
face will in general not lie on the surface. If the area is a fl at surface in, 

*Second moments of areas (moments of fi rst moments) appear later in our discussion of 
area moments of inertia in Appendix A.
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Figure 5/8
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say, the x-y plane, only the coordinates of C in that plane need to be 
calculated.

(3) Volumes. For a general body of volume V and density �, the ele-
ment has a mass dm 5 � dV. The density � cancels if it is constant over 
the entire volume, and the coordinates of the center of mass also become 
the coordinates of the centroid C of the body. From Eqs. 5/3 or 5/1b they 
become

 x 5
E x dV

V
  y 5

E y dV

V
  z 5

E z dV

V
  (5/6)

CHOICE OF ELEMENT FOR INTEGRATION

The principal diffi culty with a theory often lies not in its concepts 
but in the procedures for applying it. With mass centers and centroids 
the concept of the moment principle is simple enough; the diffi cult steps 
are the choice of the differential element and setting up the integrals. 
The following fi ve guidelines will be useful.

(1) Order of Element. Whenever possible, a fi rst-order differential 
element should be selected in preference to a higher-order element so 
that only one integration will be required to cover the entire fi gure. 
Thus, in Fig. 5/8a a fi rst-order horizontal strip of area dA 5 l dy will re-
quire only one integration with respect to y to cover the entire fi gure. 
The second-order element dx dy will require two integrations, fi rst with 
respect to x and second with respect to y, to cover the fi gure. As a further 
example, for the solid cone in Fig. 5/8b we choose a fi rst-order element in 
the form of a circular slice of volume dV 5 �r2 dy. This choice requires 
only one integration, and thus is preferable to choosing a third-order ele-
ment dV 5 dx dy dz, which would require three awkward integrations.

(2) Continuity. Whenever possible, we choose an element which can 
be integrated in one continuous operation to cover the fi gure. Thus, the 
horizontal strip in Fig. 5/8a would be preferable to the vertical strip in 
Fig. 5/9, which, if used, would require two separate integrals because of 
the discontinuity in the expression for the height of the strip at x 5 x1.

(3) Discarding Higher-Order Terms. Higher-order terms may al-
ways be dropped compared with lower-order terms (see Art. 1/7). Thus, 
the vertical strip of area under the curve in Fig. 5/10 is given by the 
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fi rst-order term dA 5 y dx, and the second-order triangular area 1
2 dx dy 

is discarded. In the limit, of course, there is no error.

(4) Choice of Coordinates. As a general rule, we choose the coordi-
nate system which best matches the boundaries of the fi gure. Thus, the 
boundaries of the area in Fig. 5/11a are most easily described in rectan-
gular coordinates, whereas the boundaries of the circular sector of 
Fig. 5/11b are best suited to polar coordinates.

(5) Centroidal Coordinate of Element. When a fi rst- or second-order 
differential element is chosen, it is essential to use the coordinate of the 
centroid of the element for the moment arm in expressing the moment of 
the differential element. Thus, for the horizontal strip of area in Fig. 5/12a, 
the moment of dA about the y-axis is xc dA, where xc is the x-coordinate 
of the centroid C of the element. Note that xc is not the x which de-
scribes either boundary of the area. In the y-direction for this element 
the moment arm yc of the centroid of the element is the same, in the 
limit, as the y-coordinates of the two boundaries.

As a second example, consider the solid half-cone of Fig. 5/12b with 
the semicircular slice of differential thickness as the element of vol-
ume. The moment arm for the element in the x-direction is the distance 
xc to the centroid of the face of the element and not the x-distance to the 
boundary of the element. On the other hand, in the z-direction the mo-
ment arm zc of the centroid of the element is the same as the z-coordinate 
of the element.

With these examples in mind, we rewrite Eqs. 5/5 and 5/6 in the form

 x 5
E xc dA

A
  y 5

E yc dA

A
  z 5

E zc dA

A
  (5/5a)
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Sample Problems 5/1 through 5/5 which follow have been carefully 
chosen to illustrate the application of Eqs. 5/4, 5/5, and 5/6 for calculat-
ing the location of the centroid for line segments (slender rods), areas 
(thin fl at plates), and volumes (homogeneous solids). The fi ve integra-
tion considerations listed above are illustrated in detail in these sample 
problems.

Section C/10 of Appendix C contains a table of integrals which in-
cludes those needed for the problems in this and subsequent chapters. A 
summary of the centroidal coordinates for some of the commonly used 
shapes is given in Tables D/3 and D/4, Appendix D.

and

 x 5
E xc dV

V
  y 5

E yc dV

V
  z 5

E zc dV

V
  (5/6a)

It is essential to recognize that the subscript c serves as a reminder that 
the moment arms appearing in the numerators of the integral expres-
sions for moments are always the coordinates of the centroids of the 
particular elements chosen.

At this point you should be certain to understand clearly the princi-
ple of moments, which was introduced in Art. 2/4. You should recognize 
the physical meaning of this principle as it is applied to the system of 
parallel weight forces depicted in Fig. 5/4a. Keep in mind the equiva-
lence between the moment of the resultant weight W and the sum (inte-
gral) of the moments of the elemental weights dW, to avoid mistakes in 
setting up the necessary mathematics. Recognition of the principle of 
moments will help in obtaining the correct expression for the moment 
arm xc, yc, or zc of the centroid of the chosen differential element.

Keeping in mind the physical picture of the principle of moments, 
we will recognize that Eqs. 5/4, 5/5, and 5/6, which are geometric rela-
tionships, are descriptive also of homogeneous physical bodies, because 
the density � cancels. If the density of the body in question is not con-
stant but varies throughout the body as some function of the coordi-
nates, then it will not cancel from the numerator and denominator of 
the mass-center expressions. In this event, we must use Eqs. 5/3 as ex-
plained earlier.
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y

x

h

b
x

y

dy

Sample Problem 5/1

Centroid of a circular arc.  Locate the centroid of a circular arc as shown in 
the fi gure.

Solution.  Choosing the axis of symmetry as the x-axis makes y 5 0. A differ-
ential element of arc has the length dL 5 r d� expressed in polar coordinates, 
and the x-coordinate of the element is r cos �.

Applying the fi rst of Eqs. 5/4 and substituting L 5 2�r give

[Lx 5 E x dL]  (2�r)x 5 E�

2�
 (r cos �) r d�

  2�rx 5 2r2 sin �

  x 5
r sin �

�
  Ans.

For a semicircular arc 2� 5 �, which gives x 5 2r/�. By symmetry we see 
immediately that this result also applies to the quarter-circular arc when the 
measurement is made as shown.

Helpful Hint

1  It should be perfectly evident that polar coordinates are preferable to rectan-
gular coordinates to express the length of a circular arc.

Sample Problem 5/2

Centroid of a triangular area.  Determine the distance h from the base of a 
triangle of altitude h to the centroid of its area.

Solution.  The x-axis is taken to coincide with the base. A differential strip of 
area dA 5 x dy is chosen. By similar triangles x/(h 2 y) 5 b/h. Applying the 
second of Eqs. 5/5a gives 

[Ay 5 E yc dA]  
bh
2

 y 5 Eh

0
 y 

b(h 2 y)
h

 dy 5
bh2 

6
 

and y 5
h
3

  Ans.

This same result holds with respect to either of the other two sides of the 
triangle considered a new base with corresponding new altitude. Thus, the cen-
troid lies at the intersection of the medians, since the distance of this point from 
any side is one-third the altitude of the triangle with that side considered the 
base.

1

1

Helpful Hint

1  We save one integration here by 
using the fi rst-order element of area. 
Recognize that dA must be expressed 
in terms of the integration variable 
y; hence, x 5 ƒ(y) is required.

r

α
α

C

r

C C

x

y
r cos θ

r dθ
dθ

α

α

θ

rr

2r/π
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Sample Problem 5/3

Centroid of the area of a circular sector.  Locate the centroid of the area 
of a circular sector with respect to its vertex.

Solution I.  The x-axis is chosen as the axis of symmetry, and y is therefore au-
tomatically zero. We may cover the area by moving an element in the form of 
a partial circular ring, as shown in the fi gure, from the center to the outer pe-
riphery. The radius of the ring is r0 and its thickness is dr0, so that its area is 
dA 5 2r0� dr0.

The x-coordinate to the centroid of the element from Sample Problem 5/1 is 
xc 5 r0 sin �/�, where r0 replaces r in the formula. Thus, the fi rst of Eqs. 5/5a 
gives 

[Ax 5 E xc dA]  
2�

2�
 (�r2)x 5 Er

0
 ar0 sin � 

�
b(2r0� dr0)

  r2�x 5
2
3r 

3 sin �

  x 5
2
3

 
r sin �

�
  Ans.

Solution II.  The area may also be covered by swinging a triangle of differen-
tial area about the vertex and through the total angle of the sector. This triangle, 
shown in the illustration, has an area dA 5 (r/2)(r d�), where higher-order terms 
are neglected. From Sample Problem 5/2 the centroid of the triangular element 
of area is two-thirds of its altitude from its vertex, so that the x-coordinate to the 
centroid of the element is xc 5 23 

r cos �. Applying the fi rst of Eqs. 5/5a gives

[Ax 5 E xc dA]  (r2�)x 5 E�

2�
 (2

3 r cos �)(1
2 r2 d�)

  r2�x 5
2
3r3 sin �

and as before  x 5
2
3

 
r sin �

�
  Ans.

For a semicircular area 2� 5 �, which gives x 5 4r/3�. By symmetry we see 
immediately that this result also applies to the quarter-circular area where the 
measurement is made as shown.

It should be noted that, if we had chosen a second-order element r0 dr0 d�, 
one integration with respect to � would yield the ring with which Solution I 
began. On the other hand, integration with respect to r0 initially would give the 
triangular element with which Solution II began.

1

2

Helpful Hints

1  Note carefully that we must distin-
guish between the variable r0 and 
the constant r.

2  Be careful not to use r0 as the cen-
troidal coordinate for the element.

C

r

α
α

r

y

dr0

x
r0α

α

α
r0 sin

   ——–––
α

xc =

Solution I

x

r

y

α
θ

dθ

α

C
C

rr

π4r/3

xc = r cos θ2–
3

Solution II
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Sample Problem 5/4

Locate the centroid of the area under the curve x 5 ky3 from x 5 0 to x 5 a.

Solution I.  A vertical element of area dA 5 y dx is chosen as shown in the fi g-
ure. The x-coordinate of the centroid is found from the fi rst of Eqs. 5/5a. Thus,

[Ax 5 E xc dA] x Ea

0
 y dx 5 Ea

0
 xy dx

Substituting y 5 (x/k)1/3 and k 5 a/b3 and integrating give

 
3ab

4
 x 5

3a2b
7
  x 5

4
7 a Ans.

In the solution for y from the second of Eqs. 5/5a, the coordinate to the 
centroid of the rectangular element is yc 5 y/2, where y is the height of the 
strip governed by the equation of the curve x 5 ky3. Thus, the moment principle 
becomes 

[Ay 5 E yc dA] 
3ab

4
 y 5 Ea

0
 ay

2
by dx

Substituting y 5 b(x/a)1/3 and integrating give

 
3ab

4
 y 5

3ab2 
10
  y 5

2
5 

 b Ans.

Solution II.  The horizontal element of area shown in the lower fi gure may be 
employed in place of the vertical element. The x-coordinate to the centroid of the 
rectangular element is seen to be xc 5 x 1 12 (a 2 x) 5 (a 1 x)/2, which is simply 
the average of the coordinates a and x of the ends of the strip. Hence,

[Ax 5 E xc dA] x Eb

0
 (a 2 x) dy 5 Eb

0
 aa 1 x

2
b(a 2 x) dy

The value of y is found from

[Ay 5 E yc dA] y Eb

0
 (a 2 x) dy 5 Eb

0
  y(a 2 x) dy

where yc 5 y for the horizontal strip. The evaluation of these integrals will check 
the previous results for x and y.

1

Helpful Hint

1  Note that xc 5 x for the vertical 
element.

y

x = ky3

x a

y

b

x
dx

yc =
y
–
2

y

x = ky3

x

a

y

b

x

a – x

dy

xc =
a + x––––

2

y

x = ky3

a

b

x

–x

–y

C
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Sample Problem 5/5

Hemispherical volume. Locate the centroid of the volume of a hemisphere of 
radius r with respect to its base.

Solution I.  With the axes chosen as shown in the fi gure, x 5 z 5 0 by symme -
try. The most convenient element is a circular slice of thickness dy parallel to 
the x-z plane. Since the hemisphere intersects the y-z plane in the circle y2 1 z2 5 
r2, the radius of the circular slice is z 5 1!r2 2 y2. The volume of the elemental 
slice becomes

 dV 5 �(r2 2 y2) dy

The second of Eqs. 5/6a requires

[V y 5 E yc dV ] y Er

0
 �(r2 2 y2) dy 5 Er

0
  y�(r2 2 y2) dy

where yc 5 y. Integrating gives

 2
3� r3

 y 5
1
4�r4  y 5

3
8 r Ans.

Solution II.  Alternatively we may use for our differential element a cylindrical 
shell of length y, radius z, and thickness dz, as shown in the lower fi gure. By ex-
panding the radius of the shell from zero to r, we cover the entire volume. By 
symmetry the centroid of the elemental shell lies at its center, so that yc 5 y/2. 
The volume of the element is dV 5 (2�z dz)(y). Expressing y in terms of z from 
the equation of the circle gives y 5 1!r2 2 z2. Using the value of 2

3 �r3 computed 
in Solution I for the volume of the hemisphere and substituting in the second of 
Eqs. 5/6a give us

[V  y 5 E yc dV ]  (2
3�r3)y 5 Er

0
 
!r2 2 z2  

2
 (2�z!r2 2 z2) dz

  5 Er

0
 �(r2z 2 z3) dz 5

�r4

4
 

  y 5  38 

 
r  Ans.

Solutions I and II are of comparable use since each involves an element of 
simple shape and requires integration with respect to one variable only.

Solution III.  As an alternative, we could use the angle � as our variable with 
limits of 0 and �/2. The radius of either element would become r sin �, whereas 
the thickness of the slice in Solution I would be dy 5 (r d�) sin � and that of the 
shell in Solution II would be dz 5 (r d�) cos �. The length of the shell would be 
y 5 r cos �.

1

Helpful Hint

1  Can you identify the higher-order 
element of volume which is omitted 
from the expression for dV?

z

y2 + z2 = r2

yc = y

y

x
dy

dz

r

z

z

yc = y/2

y

y

r

y

z

r

x

r dθ

θ

dθ

Solution I

Solution II

Solution III

z
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PROBLEMS

Introductory Problems

5/1 Place your pencil on the position of your best visual 
estimate of the centroid of the triangular area. Check 
the horizontal position of your estimate by referring 
to the result of Sample Problem 5/2.

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14 16

Problem 5/1

5/2 With your pencil make a dot on the position of your 
best visual estimate of the centroid of the area of the 
circular sector. Check your estimate by using the re-
sults of Sample Problem 5/3.

0

r

2

4

6

8

30° 30°

Problem 5/2

5/3 Specify the x-, y-, and z-coordinates of the mass center 
of the quarter-cylindrical shell.

y

x

z

360 mm

120 mm

Problem 5/3

5/4 Specify the x-, y-, and z-coordinates of the mass cen-
ter of the homogeneous semicylinder.

360
mm

120
mm

y

z
x

Problem 5/4

5/5 Determine the x-coordinate of the centroid of the 
shaded area.

x

y

a

b

h

Problem 5/5

5/6 Determine the y-coordinate of the centroid of the area 
under the sine curve shown.

b

a

y

y = a sin

x

  x—–
b

π

Problem 5/6
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5/7 The homogeneous slender rod has a uniform cross 
section and is bent into a circular arc of radius a. De-
termine the x- and y-coordinates of the mass center 
of the rod by direct integration.

a

y

x45°15°

Problem 5/7

5/8 Determine the x- and y-coordinates of the centroid of 
the trapezoidal area.

x
h

a

b

y

Problem 5/8

5/9 By direct integration, determine the coordinates of 
the centroid of the trapezoidal area.

y

x

Slope = 0.3

Slope = 0.6

5

0
0 5

Problem 5/9

5/10 Determine the z-coordinate of the mass center of 
the homogeneous paraboloid of revolution shown.

r

z

x

y

h

Problem 5/10

5/11 Determine the x- and y-coordinates of the centroid of 
the shaded area.

x

y = 1 +
x3
—
6

10

1

0 2

y

Problem 5/11

5/12 If the shaded area is revolved 3608 about the y-axis, 
determine the y-coordinate of the centroid of the re-
sulting volume.

x

Parabolic

y

b
2

h
4

3h
4

Problem 5/12
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5/13 Determine the x- and y-coordinates of the centroid 
of the shaded area.

x

y

b

h

y = h sin

y = h cos

2 b
xπ

2 b
xπ

Problem 5/13

5/14 Determine the coordinates of the centroid of the 
shaded area.

y

a

b

x = ky2

x

Problem 5/14

Representative Problems

5/15 Determine the coordinates of the centroid of the 
shaded area.

x

b

y

y = − kx2 2h

h

Problem 5/15

5/16 Determine the coordinates of the centroid of the 
shaded area.

x

y = kx2
b

b

y

Problem 5/16

5/17 Determine the y-coordinate of the centroid of the 
shaded area.

b /2

b

b
x

x = y2/b

0
0

y

Problem 5/17

5/18 Determine the x-coordinate of the centroid of the 
shaded area.

a
x

y

2a

r = k1 + k2

θ

θ

r

Problem 5/18
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5/22 Locate the centroid of the area shown in the fi gure 
by direct integration. (Caution: Carefully observe 
the proper sign of the radical involved.)

y

x

a

Problem 5/22

5/23 Determine the coordinates of the centroid of the 
shaded area.

y

x

x = ky2

a

b

Problem 5/23

5/24 Determine the x- and y-coordinates of the mass center 
of the homogeneous plate of uniform thickness t.

y

b

x
Thickness t

z

x =  ky2

h

Problem 5/24

5/19 Determine the y-coordinate of the centroid of the 
shaded area.

y

x = ky2b

a

b

b

x

Problem 5/19

5/20 Determine the x-coordinate of the mass center of 
the tapered steel rod of length L where the diameter 
at the large end is twice the diameter at the small 
end.

x
Ly

Dia. = D

Dia. = 2D

Problem 5/20

5/21 Determine by direct integration the coordinates of 
the centroid of the rectangular tetrahedron.

x

z

y

b

h

b 2√
⎯

Problem 5/21
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5/29 Locate the centroid of the shaded area between the 
two curves.

2

2
x

y

0
0

x =
y2
—
2

y = x3
—
4

Problem 5/29

5/30 Determine the x- and y-coordinates of the centroid 
of the shaded area.

y

4
3

x

12′′

6′′

y = y0 − kx3

Problem 5/30

5/31 Determine the z-coordinate of the centroid of the 
volume obtained by revolving the shaded area under 
the parabola about the z-axis through 1808.

z

x

x = kx2

b

y
a

Problem 5/31

5/25 If the plate of Prob. 5/24 has a density that varies 
according to � 5 �0(1 1

x
2b), determine the x- and 

y-coordinates of the mass center.

5/26 Determine the x- and y-coordinates of the centroid of 
the shaded area.

y

x

b
2

b
2

x2

a2
y2

b2
+ = 1

a

Problem 5/26

5/27 Locate the centroid of the area shown in the fi gure 
by direct integration. (Caution: Carefully observe 
the proper sign of the radical involved.)

x

a

y

Problem 5/27

5/28 Determine the coordinates of the centroid of the 
shaded area.

x

y

y =  kx2

r

r

3—
5

Problem 5/28
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5/35 Determine the y-coordinate of the mass center of 
the thin homogeneous parabolic shell.

h

r

yz

x

Problem 5/35

5/36 The thickness of the triangular plate varies linearly 
with y from a value t0 along its base y 5 0 to 2t0 at 
y 5 h. Determine the y-coordinate of the mass 
center of the plate.

y

x
b

h

t0

2t0

Problem 5/36

5/37 Determine the x-coordinate of the centroid of the 
area enclosed between the y-axis and the two arcs 
of radius a.

x

y

a

aa
2

Problem 5/37

5/32 Determine the x-coordinate of the mass center of 
the portion of the spherical shell of uniform but 
small thickness.

y

x

R—
4 3R–—

4

Problem 5/32

5/33 Determine the z-coordinate of the centroid of the 
volume obtained by revolving the shaded triangular 
area about the z-axis through 3608.

z

r

a a/2

Problem 5/33

5/34 Determine the coordinates of the mass center of the 
solid homogeneous body formed by revolving the 
shaded area 908 about the z-axis.

x

y

a

b

z

b2
z2

x = a 1 −

Problem 5/34
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5/38 Determine the x- and y-coordinates of the centroid 
of the shaded area which is bounded by the two 
ellipses.

x

y

50

50 50

50

Ellipse

Dimensions in millimeters

Ellipse

Problem 5/38

5/39 A solid is formed by revolving the trapezoidal area 
in the fi rst quadrant 3608 about the y-axis. Deter-
mine the y-coordinate of the centroid of the result-
ing volume.

30 30

20
10

40

x

y

Dimensions in millimeters

Problem 5/39

 c5/40 The cylindrical shell of uniform small thickness has 
a radius r and height z which varies from zero at 
� 5 0 to h at � 5 � according to z 5 k� where k is 
a constant. Determine the x-, y-, and z-coordinates of 
the mass center of the shell.

z

yr

h

x

z

θ

Problem 5/40

 c5/41 Determine the y-coordinate of the centroid of the 
plane area shown. Set h 5 0 in your result and

 compare with the result y 5
4a
3�

 for a full semicir- 

 cular area (see Sample Problem 5/3 and Table D/3).

 Also evaluate your result for the conditions h 5
a
4

 and h 5
a
2

.

h

a

x

y

Problem 5/41

 c5/42 Determine the coordinates of the centroid of the 
volume obtained by revolving the shaded area about 
the z-axis through the 908 angle.

z

a

a x

y

Problem 5/42
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 c5/43 Determine the x- and y-coordinates of the centroid 
of the volume generated by rotating the shaded 
area about the z-axis through 908.

z

y
a

x

Problem 5/43

 c5/44 Determine the x-coordinate of the mass center of 
the cylindrical shell of small uniform thickness.

4R

2R

x

R

Problem 5/44

 c5/45 Determine the x-coordinate of the mass center of the 
solid homogeneous body shown.

4R

2R

x

R

Problem 5/45

 c5/46 Determine the x-coordinate of the mass center of the 
homogeneous hemisphere with the smaller hemi-
spherical portion removed.

y

x

z

R––
2

R

Problem 5/46
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5/4   COMPOSITE BODIES AND FIGURES; 
APPROXIMATIONS 

When a body or fi gure can be conveniently divided into several parts 
whose mass centers are easily determined, we use the principle of mo-
ments and treat each part as a fi nite element of the whole. Such a body is 
illustrated schematically in Fig. 5/13. Its parts have masses m1, m2, m3 
with the respective mass-center coordinates x1, x2, x3 in the x-direction. 
The moment principle gives

(m1 1 m2 1 m3)X 5 m1x1 1 m2x2 1 m3x3

where X  is the x-coordinate of the center of mass of the whole. Similar 
relations hold for the other two coordinate directions.

We generalize, then, for a body of any number of parts and express 
the sums in condensed form to obtain the mass-center coordinates

 X 5
©mx
©m
  Y 5

©my
©m
  Z 5

©mz
©m

 (5/7)

Analogous relations hold for composite lines, areas, and volumes, where 
the m’s are replaced by L’s, A’s, and V ’s, respectively. Note that if a hole 
or cavity is considered one of the component parts of a composite body 
or fi gure, the corresponding mass represented by the cavity or hole is 
treated as a negative quantity.

An Approximation Method

In practice, the boundaries of an area or volume might not be ex-
pressible in terms of simple geometrical shapes or as shapes which can be 
represented mathematically. For such cases we must resort to a method 
of approximation. As an example, consider the problem of locating the 

Figure 5/13

– x3

– x2

 –
X

– x1

m1

m2

m3

G1

GG2
G3
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centroid C of the irregular area shown in Fig. 5/14. The area is divided 
into strips of width Dx and variable height h. The area A of each strip, 
such as the one shown in red, is h Dx and is multiplied by the coordi-
nates xc and yc of its centroid to obtain the moments of the element of 
area. The sum of the moments for all strips divided by the total area of 
the strips will give the corresponding centroidal coordinate. A system-
atic tabulation of the results will permit an orderly evaluation of the 
total area ©A, the sums ©Axc and ©Ayc, and the centroidal coordinates

x 5
©Axc

©A
  y 5

©Ayc

©A

We can increase the accuracy of the approximation by decreasing 
the widths of the strips. In all cases the average height of the strip 
should be estimated in approximating the areas. Although it is usually 
advantageous to use elements of constant width, it is not necessary. In 
fact, we may use elements of any size and shape which approximate the 
given area to satisfactory accuracy.

Irregular Volumes

To locate the centroid of an irregular volume, we may reduce the 
problem to one of locating the centroid of an area. Consider the volume 
shown in Fig. 5/15, where the magnitudes A of the cross-sectional areas 
normal to the x-direction are plotted against x as shown. A vertical strip 
of area under the curve is A Dx, which equals the corresponding element 
of volume DV. Thus, the area under the plotted curve represents the vol-
ume of the body, and the x-coordinate of the centroid of the area under 
the curve is given by

x 5
© (A Dx)xc

©A Dx
  which equals  x 5

©Vxc

©V

for the centroid of the actual volume.

Figure 5/14

xc

yc

x

C

y
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–y

h
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Figure 5/15
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Sample Problem 5/6

Locate the centroid of the shaded area.

Solution. The composite area is divided into the four elementary shapes 
shown in the lower fi gure. The centroid locations of all these shapes may be ob-
tained from Table D/3. Note that the areas of the “holes” (parts 3 and 4) are 
taken as negative in the following table:

  A  x y x A y A
PART in.2 in. in. in.3 in.3

 1 120  6  5 720 600
 2 30 14 10/3 420 100
 3 214.14  6  1.273 284.8 218
 4 28 12  4 296 232

TOTALS 127.9   959 650

The area counterparts to Eqs. 5/7 are now applied and yield

cX 5
©Ax
©A
d   X 5

959
127.9

5 7.50 in. Ans.

cY 5
©Ay
©A
d   Y 5

650
127.9

5 5.08 in. Ans.

Sample Problem 5/7

Approximate the x-coordinate of the volume centroid of a body whose length 
is 1 m and whose cross-sectional area varies with x as shown in the fi gure.

Solution.  The body is divided into fi ve sections. For each section, the average 
area, volume, and centroid location are determined and entered in the following 
table:

  Aav Volume V x V  x
INTERVAL m2 m3 m m4

   0–0.2 3 0.6 0.1 0.060
 0.2–0.4 4.5 0.90 0.3 0.270
 0.4–0.6 5.2 1.04 0.5 0.520
 0.6–0.8 5.2 1.04 0.7 0.728
 0.8–1.0 4.5 0.90 0.9 0.810

TOTALS  4.48  2.388

cX 5
©V x
©V

d  X 5
2.388
4.48

5 0.533 m Ans.1

x

y

12″

3″

3″ 2″ 2″

2″

5″

4″

4″

1
4

2

3

Helpful Hint

1  Note that the shape of the body as a 
function of y and z does not affect X.

0
0

1

2

3

4

5

6

0.2 0.4
x, m

A
, m

2

0.6 0.8 1.0
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Sample Problem 5/8

Locate the center of mass of the bracket-and-shaft combination. The verti-
cal face is made from sheet metal which has a mass of 25 kg/m2. The material of 
the horizontal base has a mass of 40 kg/m2, and the steel shaft has a density of 
7.83 Mg/m3.

Solution.  The composite body may be considered to be composed of the fi ve ele-
ments shown in the lower portion of the illustration. The triangular part will be 
taken as a negative mass. For the reference axes indicated, it is clear by symme-
try that the x-coordinate of the center of mass is zero.

The mass m of each part is easily calculated and should need no further ex-
planation. For Part 1 we have from Sample Problem 5/3

 z 5
4r
3�

5
4(50)

3�
5 21.2 mm

For Part 3 we see from Sample Problem 5/2 that the centroid of the triangular 
mass is one-third of its altitude above its base. Measurement from the coordinate 
axes becomes

 z 5 2[150 2 25 2
1
3 (75)] 5 2100 mm

The y- and z-coordinates to the mass centers of the remaining parts should be 
evident by inspection. The terms involved in applying Eqs. 5/7 are best handled 
in the form of a table as follows:

  m y z my mz
PART kg mm mm kg?m kg?mm

 1 0.098 0 21.2 0 2.08
 2 0.562 0 275.0 0 242.19
 3 20.094 0 2100.0 0 9.38
 4 0.600 50.0 2150.0 30.0 290.00
 5 1.476 75.0 0 110.7 0

TOTALS 2.642   140.7 2120.73

Equations 5/7 are now applied and the results are

cY 5
©my
©m

d   Y 5
140.7
2.642

5 53.3 mm  Ans.

cZ 5
©mz
©m

d   Z 5
2120.73

2.642
5 245.7 mm Ans.

y

x

z

40

50 50

50

25

100

150 75

150

Dimensions in millimeters

150

1

2

3

4

5
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Dimensions in millimeters

x

y

50 150 100

200

Problem 5/49

5/50 Determine the height above the base of the centroid 
of the cross-sectional area of the beam. Neglect the 
fi llets.

6.24″

1.40″
0.87″13.71″

1.40″

12.48″

Problem 5/50

5/51 Determine the x- and y-coordinates of the centroid of 
the shaded area.

y

x
4′′

3′′

5′′

6′′

2′′

4′′

Problem 5/51

PROBLEMS

Introductory Problems

5/47 Determine the coordinates of the centroid of the 
trapezoidal area shown.

y

x
60″

40″

60″

Problem 5/47

5/48 Determine the distance H from the upper surface 
of the symmetric double-T beam cross section to the 
location of the centroid.

200

15

15

45

120

Dimensions in millimeters

H
––

Problem 5/48

5/49 Determine the x- and y-coordinates of the centroid 
of the shaded area.
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b

b 2b

yx

z

Problem 5/54

5/55 Determine the y-coordinate of the centroid of the 
shaded area.

x

y

h
45°45°

a

Problem 5/55

5/56 Determine the y-coordinate of the centroid of the 
shaded area. The triangle is equilateral.

x

y

60 40 60

20

40

40

Dimensions in millimeters

Problem 5/56

5/52 Determine the x- and y-coordinates of the centroid of 
the shaded area.

y

x

8″ 4″

2″

4″

2″

2″

2″

8″

1.25″

1.25″

A

B

Problem 5/52

5/53 Calculate the y-coordinate of the centroid of the 
shaded area.

x

y

32
mm

32
mm

32 mm

74 mm

Problem 5/53

5/54 Determine the coordinates of the mass center of the 
body which is constructed of three pieces of uniform 
thin plate welded together.
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x

1.5b

2.5b

y

2b 2b

b

2b 3b

2b

Problem 5/59

5/60 The uniform wire is bent into the shape shown and 
held by the frictionless pin at O. Determine the angle 
� which will allow the wire to hang in the orientation 
shown.

1.5r 2r

2r

r
O θ

Problem 5/60

5/61 By inspection, state the quadrant in which the cen-
troid of the shaded area is located. Then determine 
the coordinates of the centroid. The plate center is M.

320

320

Dimensions in millimeters

60

60

80

80

x

y

M

Problem 5/61

5/57 Determine the x- and y-coordinates of the centroid 
of the shaded area.

200

300

600

y

x

400

150

60°
60°

Dimensions in millimeters

Problem 5/57

Representative Problems

5/58 Determine the coordinates of the centroid of the 
shaded area.

20

20

50

40

30

140

Dimensions in millimeters

40

40

y

x

Problem 5/58

5/59 Determine the x- and y-coordinates of the centroid of 
the shaded area.
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x

z

y

200
mm

75 mm

150 mm

250 mm

400 mm
400 mm

Problem 5/64

5/65 Determine the x-, y-, and z-coordinates of the mass 
center of the homogeneous body shown. The hole in 
the upper surface is drilled completely through the 
object.

50

5

5
30

30

20
25

z

y

x

Dimensions in millimeters

10

10

Problem 5/65

5/66 The assembly shown is formed of uniform rod. For 
what value of the length l will the mass center be 
located at a height of 3r

4  above the supporting surface?

l

r

Problem 5/66

5/62 Determine the x-, y-, and z-coordinates of the mass 
center of the body constructed of uniform slender rod.

4″

6″
6″

x

y

z

Problem 5/62

5/63 The rigidly connected unit consists of a 2-kg circular 
disk, a 1.5-kg round shaft, and a 1-kg square plate. 
Determine the z-coordinate of the mass center of the 
unit.

z

y

x

180 mm

Problem 5/63

5/64 Determine the x-, y-, and z-coordinates of the mass 
center of the body constructed of three pieces of uni-
form thin plate which are welded together.
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5/69 Determine the depth h of the square cutout in the 
uniform hemisphere for which the z-coordinate of 
the mass center will have the maximum possible 
value.

y

h

r

x

z

r––
2

r––
2 r––

2

r––
2

Problem 5/69

5/70 Determine the x-coordinate of the mass center of the 
bracket constructed of uniform steel plate.

0.2 m

0.15 m

45°

0.3 m
0.3 m0.1 m

0.1 m

x

Problem 5/70

5/71 Determine the x-, y-, and z-coordinates of the mass 
center of the sheet-metal bracket whose thickness is 
small in comparison with the other dimensions.

5/67 Determine the distance H below the upper surface 
of the machined aluminum block to the location of 
the mass center. The four 6-mm-diameter holes pass 
completely through the block, and the depth of each 
cutout in the top of the block is 5 mm.

Dimensions in millimeters

1015
20

60

10

15

30

15
20

7.5

7.5

7.5

205

7.5

3

Problem 5/67

5/68 Determine the z-coordinate of the centroid of the 
rectangular solid with the hemispherical hole. The 
center of the hemisphere is centered on the upper 
face of the solid, and z is measured upward from the 
lower face.

z

1.5R

2.5R
2.5R

R

Problem 5/68
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x

z

y40

60

Dimensions in millimeters

60

40

40

Problem 5/73

 c5/74 Determine the x-, y-, and z-coordinates of the mass 
center of the fi xture formed from thin metal plate of 
uniform thickness.

30°

y

z

6.5′′

1′′5′′

1.5′′

1.5′′

3′′

x

Problem 5/74

1.5b

1.5b

b

b

b
O

b

z

yx

Problem 5/71

5/72 Determine the distance H from the bottom of the 
base to the mass center of the bracket casting.

1″

1″

1″

2″

3″

3″
6″

Problem 5/72

5/73 The welded assembly is made of a uniform rod 
having a mass of 2 kg per meter of length and two 
thin rectangular plates having a mass of 18 kg per 
square meter. Calculate the coordinates of the mass 
center of the assembly.
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 c5/76 A cylindrical container with an extended rectangular 
back and semicircular ends is all fabricated from the 
same sheet-metal stock. Calculate the angle � made 
by the back with the vertical when the container 
rests in an equilibrium position on a horizontal 
surface.

8″

6″

16″

16″

α

Problem 5/76

 c5/75 An opening is formed in the thin cylindrical shell. 
Determine the x-, y-, and z-coordinates of the mass 
center of the homogeneous body.

z

x

y
45°

R

L––
8

3L––
8

L––
2

Problem 5/75
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5/5  THEOREMS OF PAPPUS*

A very simple method exists for calculating the surface area gener-
ated by revolving a plane curve about a nonintersecting axis in the plane 
of the curve. In Fig. 5/16 the line segment of length L in the x-y plane 
generates a surface when revolved about the x-axis. An element of this 
surface is the ring generated by dL. The area of this ring is its circum-
ference times its slant height or dA 5 2�y dL. The total area is then

A 5 2� E y dL

Because yL 5 e y dL, the area becomes

 A 5 2�yL (5/8)

where y is the y-coordinate of the centroid C for the line of length L. 
Thus, the generated area is the same as the lateral area of a right-circular 
cylinder of length L and radius y.

In the case of a volume generated by revolving an area about a 
nonintersecting line in its plane, an equally simple relation exists for 
fi nding the volume. An element of the volume generated by revolving the 
area A about the x-axis, Fig. 5/17, is the elemental ring of cross section 
dA and radius y. The volume of the element is its circumference times 
dA or dV 5 2�y dA, and the total volume is 

V 5 2� # y dA

*Attributed to Pappus of Alexandria, a Greek geometer who lived in the third century A.D. 
The theorems often bear the name of Guldinus (Paul Guldin, 1577–1643), who claimed 
original authorship, although the works of Pappus were apparently known to him.

Figure 5/16

x

L
dL

C

y

y y  –

Figure 5/17

x

y

dA C
A

y
y–



262  Chapter 5   Distributed Forces

Because yA 5 e y dA, the volume becomes

 V 5 2�y A (5/9)

where y is the y-coordinate of the centroid C of the revolved area A. 
Thus, we obtain the generated volume by multiplying the generating 
area by the circumference of the circular path described by its centroid.

The two theorems of Pappus, expressed by Eqs. 5/8 and 5/9, are use-
ful for determining areas and volumes of revolution. They are also used 
to fi nd the centroids of plane curves and plane areas when we know the 
corresponding areas and volumes created by revolving these fi gures 
about a nonintersecting axis. Dividing the area or volume by 2� times 
the corresponding line segment length or plane area gives the distance 
from the centroid to the axis.

If a line or an area is revolved through an angle � less than 2�, we 
can determine the generated surface or volume by replacing 2� by � in 
Eqs. 5/8 and 5/9. Thus, the more general relations are 

 A 5 �y L (5/8a)

and

 V 5 �y A (5/9a)

where � is expressed in radians.

Ya
n

n
 G

u
ic

h
ao

u
a/

S
u

p
er

S
to

ck

The Millau Viaduct in southern France. Note that the full height of the pylons 
is obscured here.
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Sample Problem 5/9

Determine the volume V and surface area A of the complete torus of circular 
cross section.

Solution.  The torus can be generated by revolving the circular area of radius a 
through 3608 about the z-axis. With the use of Eq. 5/9a, we have

 V 5 �rA 5 2�(R)(�a2) 5 2�2Ra2 Ans.

Similarly, using Eq. 5/8a gives

 A 5 �rL 5 2�(R)(2�a) 5 4�2Ra Ans.

1

Helpful Hint

1  We note that the angle � of revolu-
tion is 2� for the complete ring. This 
common but special-case result is 
given by Eq. 5/9.

R
z

a

z

r = R–

aa

Helpful Hint

1  Note that � must be in radians.

60
mm

60
mm

30
mm

x

z

60
mm

60
mm

30
mm

z

r–
CC

Sample Problem 5/10

Calculate the volume V of the solid generated by revolving the 60-mm right-
triangular area through 1808 about the z-axis. If this body were constructed of 
steel, what would be its mass m?

Solution.  With the angle of revolution � 5 1808, Eq. 5/9a gives

 V 5 �rA 5 �[30 1
1
3(60)][12(60)(60)] 5 2.83(105) mm3 Ans.

The mass of the body is then

  m 5 �V 5 c7830 
kg

m3 d [2.83(105)mm3] c 1 m
1000 mm

d 3

  5 2.21 kg  Ans.

1
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y

x

a

30°
30°

Problem 5/79

5/80 The area of the circular sector is rotated through 
1808 about the y-axis. Determine the volume of the 
resulting body, which is a portion of a sphere.

y

x

a

30°
30°

Problem 5/80

5/81 Compute the volume V of the solid generated by re-
volving the right triangle about the z-axis through 
1808.

12 mm

x

z

12 mm

8 mm

Problem 5/81

PROBLEMS

Introductory Problems

5/77 Using the methods of this article, determine the sur-
face area A and volume V of the body formed by re-
volving the rectangular area through 3608 about the 
z-axis.

z

x

y

4 mm

18 mm

6 mm

Problem 5/77

5/78 The body shown in cross section is a circular ring 
formed by completely revolving one of the cross-
hatched areas about the z-axis. Determine the mass m 
of the body if it is made of aluminum.

z 5
mm

5
mm

25
mm

30
mm

20
mm

Problem 5/78

5/79 The circular arc is rotated through 3608 about the 
y-axis. Determine the outer surface area S of the re-
sulting body, which is a portion of a sphere.



 Article 5/5   Problems  265

Representative Problems

5/85 The water storage tank is a shell of revolution and 
is to be sprayed with two coats of paint which has a 
coverage of 500 ft2 per gallon. The engineer (who re-
members mechanics) consults a scale drawing of the 
tank and determines that the curved line ABC has a 
length of 34 ft and that its centroid is 8.2 ft from the 
centerline of the tank. How many gallons of paint will 
be used for the tank including the vertical cylindrical 
column?

18′

A

B

C

8′

Problem 5/85

5/86 Determine the total surface area and volume of the 
complete solid body shown in cross section.

z
3″ 1″

1″

1″

1″

1.5″

Problem 5/86

5/87 Determine the total surface area A and volume V of 
the complete solid shown in cross section. Determine 
the mass of the body if it is constructed of steel.

z

20 mm 20 mm

10 mm

Problem 5/87

5/82 Determine the volume V generated by revolving the 
quarter-circular area about the z-axis through an 
angle of 908.

a x

a

z

y

Problem 5/82

5/83 The body shown in cross section is a half-circular 
ring formed by revolving one of the cross-hatched 
areas 1808 about the z-axis. Determine the total 
surface area and volume of the body.

z
60 mm

10 mm

20 mm

Problem 5/83

5/84 The body shown in cross section is a half-circular 
ring formed by revolving one of the cross-hatched 
areas 1808 about the z-axis. Determine the surface 
area A of the body.

20

Dimensions in millimeters

602040

40

20

z

Problem 5/84
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45°

80
mm

z

12
0

m
m

120m
m

Problem 5/90

5/91 The body shown in cross section is a certain type of 
rubber washer used in a hydraulic cylinder. Deter-
mine the mass of the washer if the density of the 
rubber used is 1100 kg/m3.

z

30 mm

60 mm 10 mm

Problem 5/91

5/92 Determine the surface area of one side of the 
bell-shaped shell of uniform but negligible thickness.

a

z

x

a

Problem 5/92

5/93  A thin shell, shown in section, has the form gener-
ated by revolving the arc about the z-axis through 
3608. Determine the surface area A of one of the two 
sides of the shell.

5/88 The lampshade shown is constructed of 0.6-mm-
thick steel and is symmetric about the z-axis. Both 
the upper and lower ends are open. Determine 
the mass of the lampshade. Take the radii to be to 
midthickness.

z

60

30

80

100

12

Dimensions in millimeters

Problem 5/88

5/89 The body shown in cross section is a complete circu-
lar ring formed by revolving the cross-hatched area 
about the z-axis. Determine the surface area A and 
volume V of the body.

z

2b

3b

b

2b

Problem 5/89

5/90 Compute the volume V and total surface area A of 
the complete circular ring whose cross section is 
shown.
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5/96 A hand-operated control wheel made of aluminum 
has the proportions shown in the cross-sectional view. 
The area of the total section shown is 15 200 mm2, 
and the wheel has a mass of 10 kg. Calculate the 
distance r to the centroid of the half-section. The 
aluminum has a density of 2.69 Mg/m3.

r

CC

Problem 5/96

5/97 Find the volume V of the solid generated by revolv-
ing the shaded area about the z-axis through 908.

z

x

y

a

r

Problem 5/97

5/98 Calculate the weight of the large brass fi nial shown. 
The fi nial is generated by revolving the cross sec-
tion shown 3608 about the vertical z-axis. The spe-
cifi c weight of the brass is 520 lb/ft3 and the radius 
r 5 1 in.

x

z

r

z

y
y

r

r
r

r

Problem 5/98

r

z

α
α

R

Problem 5/93

5/94 A steel die, shown in section, has the form of a solid 
generated by revolving the shaded area around the 
z-axis. Calculate the mass m of the die.

60 mm

60
mm

160 mm

200
mm

z

Problem 5/94

5/95 Determine the total surface area and volume of the 
complete solid body shown in cross section.

30 30

20
10

40

x

y

Dimensions in millimeters

Problem 5/95
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5/100 In order to provide suffi cient support for the stone 
masonry arch designed as shown, it is necessary to 
know its total weight W. Use the results of Prob. 5/8 
and determine W. The density of stone masonry is 
2.40 Mg/m3.

2 m

2 m

60°
8 m

r

1.5 m

Problem 5/100

5/99 Calculate the mass m of concrete required to con-
struct the arched dam shown. Concrete has a den-
sity of 2.40 Mg/m3.

A

60°

200 m

A

70 m

10 m

10 m
Section A-A

Problem 5/99
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SECTION B SPECIAL TOPICS

5/6  BEAMS—EXTERNAL EFFECTS

Beams are structural members which offer resistance to bending 
due to applied loads. Most beams are long prismatic bars, and the loads 
are usually applied normal to the axes of the bars.

Beams are undoubtedly the most important of all structural mem-
bers, so it is important to understand the basic theory underlying 
their design. To analyze the load-carrying capacities of a beam, we 
must fi rst establish the equilibrium requirements of the beam as a 
whole and any portion of it considered separately. Second, we must es-
tablish the relations between the resulting forces and the accompany-
ing internal resistance of the beam to support these forces. The fi rst 
part of this analysis requires the application of the principles of stat-
ics. The second part involves the strength characteristics of the mater-
ial and is usually treated in studies of the mechanics of solids or the 
mechanics of materials.

This article is concerned with the external loading and reactions act-
ing on a beam. In Art. 5/7 we calculate the distribution along the beam 
of the internal force and moment.

Types of Beams

Beams supported so that their external support reactions can be cal-
culated by the methods of statics alone are called statically determinate 
beams. A beam which has more supports than needed to provide equilib-
rium is statically indeterminate. To determine the support reactions for 
such a beam we must consider its load-deformation properties in addi-
tion to the equations of static equilibrium. Figure 5/18 shows examples 

Figure 5/18

Simple

Cantilever

Continuous

Combination

Statically determinate beams Statically indeterminate beams

End-supported cantilever

Fixed⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭ ⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
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of both types of beams. In this article we will analyze statically determi-
nate beams only.

Beams may also be identifi ed by the type of external loading they 
support. The beams in Fig. 5/18 are supporting concentrated loads, 
whereas the beam in Fig. 5/19 is supporting a distributed load. The in-
tensity w of a distributed load may be expressed as force per unit length 
of beam. The intensity may be constant or variable, continuous or dis-
continuous. The intensity of the loading in Fig. 5/19 is constant from C 
to D and variable from A to C and from D to B. The intensity is discon-
tinuous at D, where it changes magnitude abruptly. Although the inten-
sity itself is not discontinuous at C, the rate of change of intensity dw/dx 
is discontinuous.

Distributed Loads

Loading intensities which are constant or which vary linearly are 
easily handled. Figure 5/20 illustrates the three most common cases and 
the resultants of the distributed loads in each case.

In cases a and b of Fig. 5/20, we see that the resultant load R is rep-
resented by the area formed by the intensity w (force per unit length of 
beam) and the length L over which the force is distributed. The resul-
tant passes through the centroid of this area.

In part c of Fig. 5/20, the trapezoidal area is broken into a rectangu-
lar and a triangular area, and the corresponding resultants R1 and R2 of 
these subareas are determined separately. Note that a single resultant 
could be determined by using the composite technique for fi nding cen-
troids, which was discussed in Art. 5/4. Usually, however, the determi-
nation of a single resultant is unnecessary.

For a more general load distribution, Fig. 5/21, we must start with a 
differential increment of force dR 5 w dx. The total load R is then the 
sum of the differential forces, or

R 5 E w dx

As before, the resultant R is located at the centroid of the area under 
consideration. The x-coordinate of this centroid is found by the principle 
of moments Rx 5e  xw dx, or

x 5
E xw dx

R

For the distribution of Fig. 5/21, the vertical coordinate of the centroid 
need not be found.

Once the distributed loads have been reduced to their equivalent 
concentrated loads, the external reactions acting on the beam may be 
found by a straightforward static analysis as developed in Chapter 3.

Figure 5/19

A

x

w

C D

B

Figure 5/20

L/2
R = wL

L

(a)

2L/3

L

(b)

R =    wL1–
2

L/2

L

(c)

R1 = w1L
2L/3

R2 =    (w2 – w1)L1–
2

w1 

w

w

w2

Figure 5/21

  – R

dxx

dR = wdx
x

w



Helpful Hints

1  Use caution with the units of the 
constants w0 and k.

2  The student should recognize that 
the calculation of R and its location x 
is simply an application of centroids 
as treated in Art. 5/3.

4.49 m

Ay

A
Ax B

MA

10 050 N

y

x

A
8 m

B

 w(x)     

1000 N/m 2024
N/m

x

 w = w0 + kx3Sample Problem 5/12

Determine the reaction at the support A of the loaded cantilever beam.

Solution.  The constants in the load distribution are found to be w0 5 1000 N/m 
and k 5 2 N/m4. The load R is then

 R 5 E w dx 5 E8

0
 (1000 1 2x3) dx 5 a1000x 1

x4

2
b ` 8

0
5 10 050 N

The x-coordinate of the centroid of the area is found by

  x 5
E xw dx

R
5

1
10 050

 E8

0
 x(1000 1 2x3) dx

  5
1

10 050
 (500x2 1

2
5 x5) @ 8

0
5 4.49 m

From the free-body diagram of the beam, we have

[©MA 5 0] MA 2 (10 050)(4.49) 5 0

 MA 5 45 100 N?m Ans.

[©Fy 5 0] Ay 5 10 050 N Ans.

Note that Ax 5 0 by inspection.

1

2
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Sample Problem 5/11

Determine the equivalent concentrated load(s) and external reactions for 
the simply supported beam which is subjected to the distributed load shown.

Solution. The area associated with the load distribution is divided into the 
rectangular and triangular areas shown. The concentrated-load values are deter-
mined by computing the areas, and these loads are located at the centroids of the 
respective areas.

Once the concentrated loads are determined, they are placed on the free-body 
diagram of the beam along with the external reactions at A and B. Using 
principles of equilibrium, we have

[©MA 5 0] 1200(5) 1 480(8) 2 RB(10) 5 0

 RB 5 984 lb Ans.

[©MB 5 0]  RA(10) 2 1200(5) 2 480(2) 5 0

 RA 5 696 lb Ans.

1

Helpful Hint

1  Note that it is usually unnecessary 
to reduce a given distributed load to 
a single concentrated load.

A B

4′ 6′

120 lb/ft
280 lb/ft

5′
8′

120 lb/ft 120 lb/ft

160 lb/ft

(120) (10) = 1200 lb

(160) (6) = 480 lb

1200 lb 480 lb

5′
A

RA RB

A B

B
3′

1–
2
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A B

4′5′3′

y

x 160 lb/ft

Problem 5/104

5/105 Find the reaction at A due to the uniform loading 
and the applied couple.

A

200 lb/ft

7200 lb-ft

8′ 8′

Problem 5/105

5/106 Determine the reactions at A for the cantilever 
beam subjected to the distributed and concentrated 
loads.

2 kN

4 kN/m

3 m 1.5 m 1.5 m

A

y

x

Problem 5/106

5/107 Determine the reactions at A and B for the beam 
loaded as shown.

6′

A B

6′ 12′

1500 lb/ft

12,000 lb-ft

Problem 5/107

PROBLEMS

Introductory Problems

5/101 Determine the reactions at A and B for the beam 
subjected to the uniform load distribution.

6 kN/m

300 mm 300 mm

A B

Problem 5/101

5/102 Calculate the reactions at A and B for the beam 
loaded as shown.

6′12′

400 lb/ft

A

B

Problem 5/102

5/103 Determine the reactions at the supports of the 
beam which is loaded as shown.

6 m
1
m

1
m

A
B

800 N/m 400 N/m

Problem 5/103

5/104 Determine the reactions at A and B for the loaded 
beam.
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5/111 Determine the reactions at A and C for the beam 
subjected to the combination of point and distributed 
loads.

A

1200 lb/ft

6′ 9′
4000 lb

6′3′ 9′

B C

3′

Problem 5/111

5/112 Determine the reactions at the support for the beam 
which is subjected to the combination of uniform 
and parabolic loading distributions.

A B

8 kN/m
Parabolic

region

3 m 2 m

Problem 5/112

5/113 Determine the force and moment reactions at the 
support A of the cantilever beam subjected to the 
load distribution shown.

w = k  x

w0

b b

A

x

w

y

Problem 5/113

Representative Problems

5/108 Determine the force and moment reactions at the 
support A of the built-in beam which is subjected 
to the sine-wave load distribution.

A

w0

Sine wave

l

Problem 5/108

5/109 Determine the reactions at A, B, and D for the pair 
of beams connected by the ideal pin at C and sub-
jected to the concentrated and distributed loads.

A
B C

D

5 kN/m25 kN

3 m 3 m 2 m 2 m 4 m

Hinge

1 m

x

y

Problem 5/109

5/110 Determine the force and moment reactions at A 
for the cantilever beam subjected to the loading 
shown.

2 kN/m

6 kN/m

12 kN

5 m 2 m 2 m 1 m

A

Problem 5/110
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5/117 Determine the reactions at A and B for the beam 
subjected to the distributed and concentrated loads.

4 kN
6 kN/m

w = w0 + kx2

2 kN/m

0.6 m 1.4 m 0.4 m 0.6 m

BA

w

x
0.5 mw

Problem 5/117

5/118 Determine the force and moment reactions at A 
for the beam which is subjected to the distributed 
load shown.

x

w

A

16′

400 lb/ft
w = kx1.5

Problem 5/118

5/119 Determine the reactions at the supports of the 
beam which is acted on by the combination of uni-
form and parabolic loading distributions.

A B

2 kN/m
6 kN/m

1 m 1 m 3 m

Parabolic
region

w

x

Vertex

Problem 5/119

5/114 Compute the reactions at A for the cantilever 
beam subjected to the distributed load shown. 
The distributed load reaches a maximum value of 
2 kN/m at x 5 3 m.

3 m 2 m

A x

w

w = k1x – k2x2
2 kN/m

Problem 5/114

5/115 A cantilever beam supports the variable load 
shown. Calculate the supporting force RA and mo-
ment MA at A.

A

w = w0 + kx2

w

x
50 lb/ft

20′

90 lb/ft

Problem 5/115

5/116 For the beam and loading shown, determine the 
magnitude of the force F for which the vertical re-
actions at A and B are equal. With this value of F, 
compute the magnitude of the pin reaction at A.

A B

F
5 kN/m

2 kN/m

3 kN/m2 kN/m

3 m
1 m

3 m3 m 2 m

2m

Problem 5/116
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 c5/123 The quarter-circular cantilever beam is subjected 
to a uniform pressure on its upper surface as 
shown. The pressure is expressed in terms of the 
force p per unit length of circumferential arc. De-
termine the reactions on the beam at its support 
A in terms of the compression CA, shear VA, and 
bending moment MA.

θ r

A p

Problem 5/123

 c5/124 The transition between the loads of 10 kN/m and 
37 kN/m is accomplished by means of a cubic func-
tion of form w 5 k0 1 k1x 1 k2 x2 1 k3 x3, the slope of 
which is zero at its endpoints x 5 1 m and x 5 4 m. 
Determine the reactions at A and B.

A B

10 kN/m

37 kN/m

1 m 1 m3 m

Cubic
function

w

x

Problem 5/124

5/120 Determine the reactions at end A of the cantilever 
beam which is subjected to both linear and para-
bolic loads that act over the indicated regions. The 
slope of the distributed loading is continuous over 
the length of the beam.

A x

w

9′ 21′

Parabolic region

100 lb/ft

300 lb/ft

Linear
region

Problem 5/120

5/121 Determine the reactions at A and B on the beam 
subjected to the point and distributed loads.

w

A B

5 m

7 kN

1.5 kN/m

2.5 kN/m w = w0 − kx3/2

2 m 3 m

x

Problem 5/121

5/122 Determine the magnitude of the moment M which 
will cause the beam to just begin to lift off the 
roller at B. For this value of M, determine the 
magnitude of the pin reaction at A.

30°
1200 N/m

6 kN3 kN 8 m
600 N/m

12 m 6 m4 m
2 m

900 N/m

A B

M

Problem 5/122
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5/7  BEAMS—INTERNAL EFFECTS

The previous article treated the reduction of a distributed force to 
one or more equivalent concentrated forces and the subsequent determi-
nation of the external reactions acting on the beam. In this article we in-
troduce internal beam effects and apply principles of statics to calculate 
the internal shear force and bending moment as functions of location 
along the beam.

Shear, Bending, and Torsion

In addition to supporting tension or compression, a beam can resist 
shear, bending, and torsion. These three effects are illustrated in Fig. 
5/22. The force V is called the shear force, the couple M is called the 
bending moment, and the couple T is called a torsional moment. These 
effects represent the vector components of the resultant of the forces 
acting on a transverse section of the beam as shown in the lower part of 
the fi gure.

Consider the shear force V and bending moment M caused by forces 
applied to the beam in a single plane. The conventions for positive val-
ues of shear V and bending moment M shown in Fig. 5/23 are the ones 
generally used. From the principle of action and reaction we can see 
that the directions of V and M are reversed on the two sections. It is fre-
quently impossible to tell without calculation whether the shear and 
moment at a particular section are positive or negative. For this reason 
it is advisable to represent V and M in their positive directions on the 
free-body diagrams and let the algebraic signs of the calculated values 
indicate the proper directions.

As an aid to the physical interpretation of the bending couple M, 
consider the beam shown in Fig. 5/24 bent by the two equal and opposite 
positive moments applied at the ends. The cross section of the beam is 
treated as an H-section with a very narrow center web and heavy top 
and bottom fl anges. For this beam we may neglect the load carried by 
the small web compared with that carried by the two fl anges. The upper 
fl ange of the beam clearly is shortened and is under compression, 
whereas the lower fl ange is lengthened and is under tension. The resul-
tant of the two forces, one tensile and the other compressive, acting on 
any section is a couple and has the value of the bending moment on the 
section. If a beam having some other cross-sectional shape were loaded 

Figure 5/22

V

V

M

T

T

M
V

T

M

Shear

Bending

Torsion

Combined loading

Figure 5/23

+M +M

+V

+V

Figure 5/24

+M +M



 Article 5/7   Beams—Internal Effects   277

in the same way, the distribution of force over the cross section would 
be different, but the resultant would be the same couple.

Shear-Force and Bending-Moment Diagrams

The variation of shear force V and bending moment M over the 
length of a beam provides information necessary for the design analysis 
of the beam. In particular, the maximum magnitude of the bending mo-
ment is usually the primary consideration in the design or selection of a 
beam, and its value and position should be determined. The variations 
in shear and moment are best shown graphically, and the expressions 
for V and M when plotted against distance along the beam give the 
shear-force and bending-moment diagrams for the beam.

The fi rst step in the determination of the shear and moment rela-
tions is to establish the values of all external reactions on the beam by 
applying the equations of equilibrium to a free-body diagram of the 
beam as a whole. Next, we isolate a portion of the beam, either to the 
right or to the left of an arbitrary transverse section, with a free-body 
diagram, and apply the equations of equilibrium to this isolated portion 
of the beam. These equations will yield expressions for the shear force V 
and bending moment M acting at the cut section on the part of the beam 
isolated. The part of the beam which involves the smaller number of 
forces, either to the right or to the left of the arbitrary section, usually 
yields the simpler solution.

We should avoid using a transverse section which coincides with the 
location of a concentrated load or couple, as such a position represents a 
point of discontinuity in the variation of shear or bending moment. Fi-
nally, it is important to note that the calculations for V and M on each 
section chosen should be consistent with the positive convention illus-
trated in Fig. 5/23.

General Loading, Shear, and Moment Relationships

For any beam with distributed loads, we can establish certain gen-
eral relationships which will aid greatly in the determination of the 
shear and moment distributions along the beam. Figure 5/25 represents 
a portion of a loaded beam, where an element dx of the beam is isolated. 
The loading w represents the force per unit length of beam. At the loca-
tion x the shear V and moment M acting on the element are drawn in 
their positive directions. On the opposite side of the element where the 

Figure 5/25

w = ƒ (x)

w w

x dx

dx

V

M
V + dV

M + dM
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coordinate is x 1 dx, these quantities are also shown in their positive di-
rections. They must, however, be labeled V 1 dV and M 1 dM, since V 
and M change with x. The applied loading w may be considered constant 
over the length of the element, since this length is a differential quan-
tity and the effect of any change in w disappears in the limit compared 
with the effect of w itself.

Equilibrium of the element requires that the sum of the vertical 
forces be zero. Thus, we have

V 2 w dx 2 (V 1 dV) 5 0

or

 w 5 2
dV
dx

 (5/10)

We see from Eq. 5/10 that the slope of the shear diagram must 
everywhere be equal to the negative of the value of the applied loading. 
Equation 5/10 holds on either side of a concentrated load but not at the 
concentrated load because of the discontinuity produced by the abrupt 
change in shear.

We may now express the shear force V in terms of the loading w by 
integrating Eq. 5/10. Thus,

EV

V0

 dV 5 2Ex

x0

 w dx

or

 V 5 V0 1 (the negative of the area under
 the loading curve from x0 to x)

In this expression V0 is the shear force at x0 and V is the shear force at x. 
Summing the area under the loading curve is usually a simple way to 
construct the shear-force diagram.

Equilibrium of the element in Fig. 5/25 also requires that the mo-
ment sum be zero. Summing moments about the left side of the element 
gives

M 1 w dx 
dx
2

1 (V 1 dV) dx 2 (M 1 dM) 5 0

The two M’s cancel, and the terms w(dx)2/2 and dV dx may be dropped, 
since they are differentials of higher order than those which remain. 
This leaves

 V 5
dM
dx

 (5/11)

Because of its economical use of 
material in achieving bending stiff-
ness, the I-beam is a very common 
structural element.
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which expresses the fact that the shear everywhere is equal to the slope 
of the moment curve. Equation 5/11 holds on either side of a concen-
trated couple but not at the concentrated couple because of the disconti-
nuity caused by the abrupt change in moment.

We may now express the moment M in terms of the shear V by inte-
grating Eq. 5/11. Thus,

EM

M0

 dM 5 Ex

x0

 V dx

or

M 5 M0 1 (area under the shear diagram from x0 to x)

In this expression M0 is the bending moment at x0 and M is the bend-
ing moment at x. For beams where there is no externally applied mo-
ment M0 at x0 5 0, the total moment at any section equals the area 
under the shear diagram up to that section. Summing the area under 
the shear diagram is usually the simplest way to construct the mo-
ment diagram.

When V passes through zero and is a continuous function of x with 
dV/dx ? 0, the bending moment M will be a maximum or a minimum, 
since dM/dx 5 0 at such a point. Critical values of M also occur when V 
crosses the zero axis discontinuously, which occurs for beams under 
concentrated loads.

We observe from Eqs. 5/10 and 5/11 that the degree of V in x is one 
higher than that of w. Also, M is of one higher degree in x than is V. Con-
sequently, M is two degrees higher in x than w. Thus for a beam loaded 
by w 5 kx, which is of the fi rst degree in x, the shear V is of the second 
degree in x and the bending moment M is of the third degree in x.

Equations 5/10 and 5/11 may be combined to yield

 
d2M
dx2 5 2w (5/12)

Thus, if w is a known function of x, the moment M can be obtained by 
two integrations, provided that the limits of integration are properly 
evaluated each time. This method is usable only if w is a continuous 
function of x.*

When bending in a beam occurs in more than a single plane, we 
may perform a separate analysis in each plane and combine the results 
vectorially.

*When w is a discontinuous function of x, it is possible to introduce a special set of expres-
sions called singularity functions which permit writing analytical expressions for shear V and 
moment M over an interval which includes discontinuities. These functions are not discussed 
in this book.
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Sample Problem 5/13

Determine the shear and moment distributions produced in the simple 
beam by the 4-kN concentrated load.

Solution.  From the free-body diagram of the entire beam we fi nd the support 
reactions, which are

 R1 5 1.6 kN  R2 5 2.4 kN

A section of the beam of length x is next isolated with its free-body diagram 
on which we show the shear V and the bending moment M in their positive direc-
tions. Equilibrium gives

[©Fy 5 0]  1.6 2 V 5 0   V 5 1.6 kN

[©MR1
5 0]  M 2 1.6x 5 0  M 5 1.6x

These values of V and M apply to all sections of the beam to the left of the 4-kN 
load.

A section of the beam to the right of the 4-kN load is next isolated with its 
free-body diagram on which V and M are shown in their positive directions. 
Equilibrium requires

[©Fy 5 0]  V 1 2.4 5 0   V 5 22.4 kN

[©MR2
5 0]  2(2.4)(10 2 x) 1 M 5 0  M 5 2.4(10 2 x)

These results apply only to sections of the beam to the right of the 4-kN load.

The values of V and M are plotted as shown. The maximum bending mo-
ment occurs where the shear changes direction. As we move in the positive 
x-direction starting with x 5 0, we see that the moment M is merely the 
accumulated area under the shear diagram.

1

Helpful Hint

1  We must be careful not to take our 
section at a concentrated load (such 
as x 5 6 m) since the shear and mo-
ment relations involve discontinui-
ties at such positions.

4 kN

6 m 4 m

4 kN
y

y

x

V

V

M M

10 – x

x

R1 = 1.6 kN R2 = 2.4 kN

1.6 kN

1.6

0

0

9.6

0 6

2.4 kN

V, kN

M, kN·m
–2.4

10

1060

x, m

x, m
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Sample Problem 5/14

The cantilever beam is subjected to the load intensity (force per unit length) 
which varies as w 5 w0 sin (�x/l). Determine the shear force V and bending mo-
ment M as functions of the ratio x/l.

Solution.  The free-body diagram of the entire beam is drawn fi rst so that the 
shear force V0 and bending moment M0 which act at the supported end at x 5 0 
can be computed. By convention V0 and M0 are shown in their positive mathe-
matical senses. A summation of vertical forces for equilibrium gives

[©Fy 5 0] V0 2 El

0
 w dx 5 0  V0 5 El

0
 w0 sin 

�x
l

 dx 5
2w0 l

�

A summation of moments about the left end at x 5 0 for equilibrium gives

[©M 5 0]  2M0 2 El

0
 x(w dx) 5 0  M0 5 2El

0
 w0 x sin 

�x
l

 dx

   M0 5
2w0 l2

�2  c sin 
�x
l

2
�x
l

 cos 
�x
l
d l

0

5 2
w0 l2

�

From a free-body diagram of an arbitrary section of length x, integration of 
Eq. 5/10 permits us to fi nd the shear force internal to the beam. Thus,

[dV 5 2w dx] EV

V0

  dV 5 2Ex

0
 w0 sin 

�x
l

 dx

 V 2 V0 5 cw0 l
�

 cos 
�x
l
d x

0

  V 2
2w0 l

�
5

w0 l
�

 acos 
�x
l

2 1b

or in dimensionless form

 
V

w0 l
5

1
�

 a1 1 cos 
�x
l
b Ans.

The bending moment is obtained by integration of Eq. 5/11, which gives

[dM 5 V dx]  EM

M0

 dM 5 Ex

0
 
w0 l
�

 a1 1 cos 
�x
l
b dx

  M 2 M0 5
w0 l
�

 c x 1
l
�

 sin 
�x
l
d x

0

  M 5 2
w0 l2

�
1

w0 l
�

 c x 1
l
�

 sin 
�x
l

2 0 d

or in dimensionless form

 
M

w0 l2 5
1
�

 ax
l

2 1 1
1
�

 sin 
�x
l
b Ans.

The variations of V/w0l and M/w0l2 with x/l are shown in the bottom fi gures. 
The negative values of M/w0l2 indicate that physically the bending moment is in 
the direction opposite to that shown.

1

2

Helpful Hints

1  In this case of symmetry, it is clear 
that the resultant R 5 V0 5 2w0l/� of 
the load distribution acts at midspan, 
so that the moment requirement is 
simply M0 5 2Rl/2 5 2w0l2/�. The 
minus sign tells us that physically the 
bending moment at x 5 0 is opposite 
to that represented on the free-body 
diagram.

2  The free-body diagram serves to 
remind us that the integration 
limits for V as well as for x must be 
accounted for. We see that the 
expression for V is positive, so that 
the shear force is as represented on 
the free-body diagram.

x

w
w0

l

w

R

x

y

x

x

dx

M0

V0

M0

V0

M

V

0.637

0

0

–0.318

V——
w0l  

M——–
w0 l2

0.20 0.6 0.8 1.0x/l



Sample Problem 5/15

Draw the shear-force and bending-moment diagrams for the loaded beam 
and determine the maximum moment M and its location x from the left end.

Solution.  The support reactions are most easily obtained by considering the 
resultants of the distributed loads as shown on the free-body diagram of the 
beam as a whole. The fi rst interval of the beam is analyzed from the free-body 
di agram of the section for 0 , x , 4 ft. A summation of vertical forces and a mo-
ment summation about the cut section yield

[©Fy 5 0] V 5 247 2 12.5x2

[©M 5 0] M 1 (12.5x2) 
x
3

2 247x 5 0  M 5 247x 2 4.17x3

These values of V and M hold for 0 , x , 4 ft and are plotted for that interval in 
the shear and moment diagrams shown.

From the free-body diagram of the section for which 4 , x , 8 ft, equilib-
rium in the vertical direction and a moment sum about the cut section give

[©Fy 5 0]  V 1 100(x 2 4) 1 200 2 247 5 0  V 5 447 2 100x

[©M 5 0]  M 1 100(x 2 4) 
x 2 4

2
1 200[x 2

2
3(4)] 2 247x 5 0

  M 5 2267 1 447x 2 50x2

These values of V and M are plotted on the shear and moment diagrams for the 
interval 4 , x , 8 ft.

The analysis of the remainder of the beam is continued from the free-body 
diagram of the portion of the beam to the right of a section in the next interval. 
It should be noted that V and M are represented in their positive directions. A 
vertical-force summation and a moment summation about the section yield

 V 5 2353 lb  and  M 5 2930 2 353x

These values of V and M are plotted on the shear and moment diagrams for the 
interval 8 , x , 10 ft.

The last interval may be analyzed by inspection. The shear is constant at 
1300 lb, and the moment follows a straight-line relation beginning with zero at 
the right end of the beam.

The maximum moment occurs at x 5 4.47 ft, where the shear curve crosses 
the zero axis, and the magnitude of M is obtained for this value of x by substitu-
tion into the expression for M for the second interval. The maximum moment is

 M 5 732 lb-ft Ans.

As before, note that the change in moment M up to any section equals the 
area under the shear diagram up to that section. For instance, for x , 4 ft,

[DM 5 E V dx]  M 2 0 5 Ex

0
 (247 2 12.5x2) dx

and, as above,  M 5 247x 2 4.17x3

100 lb/ft
300 lb

4′ 4′ 2′ 2′

300 lb

400 lb200 lb
8′––
3

2x––
3

x – 4––––
2

x–
4

y

x

x, ft

R1 = 247 lb R2 = 653 lb

300 lb

653 lb

12.5x2

100

x

247 lb
V

M

M

V

247 lb

V, lb

M, lb-ft

200 lb

V

M

12 – x

100(x – 4)

x

x, ft

4.47′

0 4

4 8

8 10

10 12

12
0

247

732

0
0

300

–353

–600
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BA

42′′

12′

Problem 5/128

5/129 Draw the shear and moment diagrams for the 
loaded beam. What are the values of the shear force 
and bending moment at the middle of the beam?

A B

3′ 3′ 3′

2100 lb-ft

1000 lb

Problem 5/129

5/130 Determine the shear force V and bending moment 
M at a section of the loaded beam 200 mm to the 
right of A.

6 kN/m

300 mm 300 mm

A B

Problem 5/130

5/131 Draw the shear and moment diagrams for the loaded 
beam. Determine the values of the shear force and 
bending moment at midbeam.

4 kN

2 m 3 m

A B

6 kN

7 kN.m

5 kN

2 m5 m

Problem 5/131

PROBLEMS

Introductory Problems

5/125 Determine the shear-force and bending-moment 
distributions produced in the beam by the concen-
trated load. What are the values of the shear force 
and bending moment at x 5 l/2? 

A

P

2l––
3

l––
3

x

y

Problem 5/125

5/126 Determine the shear force V at a section B between A 
and C and the bending moment M at the support A.

B
A C

1.4 kN 1.8 kN

1.5 m 1.6 m 1.8 m

Problem 5/126

5/127 Draw the shear and moment diagrams for the 
beam subjected to the end couple. What is the 
bending moment M at a section 0.5 m to the right 
of B?

A B

2 m 2 m

120 N·m

Problem 5/127

5/128 Draw the shear and moment diagrams for the div-
ing board, which supports the 175-lb man poised to 
dive. Specify the bending moment with the maxi-
mum magnitude.
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5/136 Plot the shear and moment diagrams for the beam 
loaded as shown. State the maximum magnitudes of 
the shear force and bending moment for the beam.

6 m

A B

4 kN/m 24 kN

6 kN/m

12 m3 m 3 m

Problem 5/136

5/137 Draw the shear and moment diagrams for the 
beam shown. Determine the distance b, measured 
from the left end, to the point where the bending 
moment is zero between the supports.

2 m 1 m

1.5 kN/m

Problem 5/137

5/138 Plot the shear and moment diagrams for the beam 
loaded as shown. What are the values of the shear 
force and bending moment at B? Determine the 
distance b to the right of A where the bending mo-
ment equals zero for the fi rst time.

A
B

5 m

7 kN 4 kN/m

30 kN.m

2 m 2 m3 m 3 m

Problem 5/138

5/139 Construct the shear and moment diagrams for the 
beam subjected to the concentrated force and couple 
and the triangular load. State the maximum mag-
nitude of the bending moment within the beam.

Representative Problems

5/132 Determine the shear force V and bending moment 
M in the beam at a section 2 ft to the right of end A.

A B

400 lb/ft

3′ 3′

Problem 5/132

5/133 Draw the shear and moment diagrams for the 
beam subjected to the concentrated loads. What 
are the values of the shear force and bending mo-
ment at x 5 12 ft?

9′

BA

7′

1500 lb 3750 lb

6′
x

Problem 5/133

5/134 Draw the shear and moment diagrams for the can-
tilever beam with the linear loading. Find the max-
imum magnitude of the bending moment M.

A

w0

l

Problem 5/134

5/135 Draw the shear and moment diagrams for the 
beam subjected to the combination of distributed 
and point loads. Determine the values of the shear 
force and bending moment at point C, which lies 
3 m to the left of B.

5 kN
3 kN/m

4 kN

2 kN/m

2 m

A C B

4 m 3 m6 m

Problem 5/135
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6 m 3 m2 m 2 m

600 N/m
200 N/m

1200 N

A

x

B

Problem 5/142

5/143 Determine the maximum bending moment M and 
the corresponding value of x in the crane beam 
and indicate the section where this moment acts.

L

a a
x

l

A B

Problem 5/143

5/144 The pair of beams is connected by an ideal pin at 
B and subjected to a concentrated force, a concen-
trated couple, and a uniformly distributed load. Plot 
the shear and moment diagrams for the combined 
beam and determine the maximum magnitude of 
the bending moment for the combined beam along 
with its location.

A

x BPin

C
6′ 6′15′ 9′ 9′

300 lb/ft
3500 lb-ft

4000 lb

Problem 5/144

16′2′ 6′4′

1200 lb

1500 lb-ft

300 lb/ft

BA C

x

Problem 5/139

5/140 Draw the shear and moment diagrams for the can-
tilever beam subjected to the combination of dis-
tributed and point loads. State the distance b to the 
left of A where the bending moment is zero.

6 m 2 m 2 m

2 kN/m

35 kN

15 kN.m

3 m

A

Problem 5/140

5/141 Draw the shear and moment diagrams for the beam 
loaded as shown. Specify the maximum bending 
moment Mmax.

A B

w0w0

L––
2

L––
2

Problem 5/141

5/142 Plot the shear and moment diagrams for the beam 
subjected to the loading shown. State the values of 
the shear force and bending moment at x 5 10 m.
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5/148 For the beam and loading shown, determine equa-
tions for the internal shear force V and bending 
moment M at any location x. State the values of 
the internal shear force and bending moment at 
x 5 2 m and x 5 4 m.

A

2 kN/m

3 m 2 m

w = k1x – k2 x
2

x

w

Problem 5/148

5/149 Plot the shear and moment diagrams for the beam 
loaded with both distributed and point loads. What 
are the values of the shear force and bending moment 
at x 5 6 m? Determine the maximum bending mo-
ment Mmax.

A B

800 N/m
1500 N

x

2 m 2 m2 m3 m

Problem 5/149

5/150 Repeat Prob. 5/149, where the 1500-N load has 
been replaced by the 4.2-kN?m couple.

A B

800 N/m
4.2 kN·mx

2 m 2 m2 m3 m

Problem 5/150

5/145 Draw the shear and moment diagrams for the 
beam loaded by the force F applied to the strut 
welded to the beam as shown. Specify the bending 
moment at point B.

A
B

b b

h

F

Problem 5/145

5/146 Construct the shear and moment diagrams for the 
beam subjected to the combination of concentrated 
and distributed loads. State the maximum magni-
tude of the bending moment within the beam.

7′3′ 10′ 4′ 5′

1500 lb4000 lb

6000 lb-ft
800 lb/ft

400 lb/ft
A

B

5′

12′

Problem 5/146

5/147 The angle strut is welded to the end C of the 
I-beam and supports the 1.6-kN vertical force. 
Determine the bending moment at B and the dis-
tance x to the left of C at which the bending mo-
ment is zero. Also construct the moment diagram 
for the beam.

A

B

C

450 mm400 mm

200
mm

1.6 kN

Problem 5/147
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5/153 The adjusting screw of the special-purpose offset 
clamp supports a compression of 500 N. Calculate 
the shear force V, the tension T, and the bending 
moment M at section A of the clamp bar for x 5 
250 mm. Which of these three quantities changes 
with x?

50 mm

x A

400 mm

160 mm

Problem 5/153

 c5/154 The uniform quarter-circular member of mass m 
lies in the vertical plane and is hinged at A and sup-
ported against the vertical wall by its small roller 
at B. For any section S, write expressions for the 
shear force V, compression C, and bending moment 
M due to the weight of the member.

S

B

A

r

θ

Problem 5/154

5/151 Plot the shear and moment diagrams for the beam 
subjected to the concentrated force and distributed 
load. State the values of the largest positive and 
largest negative bending moment and give the 
location in the beam where each occurs.

A B

10 m 3 m

7 kN2.5 kN/m
1.5 kN/m

x

w

w = w0 – kx3/2

Problem 5/151

5/152 For the beam subjected to the concentrated cou-
ples and distributed load, determine the maximum 
value of the internal bending moment and its loca-
tion. At x 5 0, the distributed load is increasing at 
the rate of 10 lb/ft per foot.

4′

A B

20′

1500 lb-ft

500 lb/ft

200 lb/ft

2700 lb-ft

4′

w

w = w0 + k1 x + k2 x2

x

Problem 5/152
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5/8  FLEXIBLE CABLES

One important type of structural member is the fl exible cable which 
is used in suspension bridges, transmission lines, messenger cables for 
supporting heavy trolley or telephone lines, and many other applica-
tions. To design these structures we must know the relations involving 
the tension, span, sag, and length of the cables. We determine these 
quantities by examining the cable as a body in equilibrium. In the analy-
sis of fl exible cables we assume that any resistance offered to bending is 
negligible. This assumption means that the force in the cable is always 
in the direction of the cable.

Flexible cables may support a series of distinct concentrated loads, 
as shown in Fig. 5/26a, or they may support loads continuously distrib-
uted over the length of the cable, as indicated by the variable-intensity 
loading w in 5/26b. In some instances the weight of the cable is negligi-
ble compared with the loads it supports. In other cases the weight of 
the cable may be an appreciable load or the sole load and cannot be 
neglected. Regardless of which of these conditions is present, the equi-
librium requirements of the cable may be formulated in the same 
manner.

General Relationships

If the intensity of the variable and continuous load applied to the 
cable of Fig. 5/26b is expressed as w units of force per unit of horizontal 
length x, then the resultant R of the vertical loading is

R 5 E dR 5 E w dx

Figure 5/26

w dx

F1 F2 F3

(a)

(b)

(c)

–x

x

x + dx
T + dT

T

x

y

x

w

R

θ + dθ θ
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where the integration is taken over the desired interval. We fi nd the po-
sition of R from the moment principle, so that

Rx 5 E x dR  x 5
E x dR

R

The elemental load dR 5 w dx is represented by an elemental strip of 
vertical length w and width dx of the shaded area of the loading dia-
gram, and R is represented by the total area. It follows from the forego-
ing expressions that R passes through the centroid of the shaded area.

The equilibrium condition of the cable is satisfi ed if each infi nitesi-
mal element of the cable is in equilibrium. The free-body diagram of a 
differential element is shown in Fig. 5/26c. At the general position x the 
tension in the cable is T, and the cable makes an angle � with the hori-
zontal x-direction. At the section x 1 dx the tension is T 1 dT, and the 
angle is � 1 d�. Note that the changes in both T and � are taken to be 
positive with a positive change in x. The vertical load w dx completes the 
free-body diagram. The equilibrium of vertical and horizontal forces re-
quires, respectively, that

 (T 1 dT) sin (� 1 d�) 5 T sin � 1 w dx

 (T 1 dT ) cos (� 1 d�) 5 T cos �

The trigonometric expansion for the sine and cosine of the sum of two 
angles and the substitutions sin d� 5 d� and cos d� 5 1, which hold in 
the limit as d� approaches zero, yield

 (T 1 dT)(sin � 1 cos � d�) 5 T sin � 1 w dx

 (T 1 dT)(cos � 2 sin � d�) 5 T cos �

Dropping the second-order terms and simplifying give us

 T cos � d� 1 dT sin � 5 w dx

 2T sin � d� 1 dT cos � 5 0

which we write as

d(T sin �) 5 w dx  and  d(T cos �) 5 0

The second relation expresses the fact that the horizontal component of 
T remains unchanged, which is clear from the free-body diagram. If we 
introduce the symbol T0 5 T cos � for this constant horizontal force, we 
may then substitute T 5 T0/cos � into the fi rst of the two equations just 
derived and obtain d(T0 tan �) 5 w dx. Because tan � 5 dy/dx, the equi-
librium equation may be written in the form

 
d2y

dx2 5
w
T0

 (5/13)
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Equation 5/13 is the differential equation for the fl exible cable. The 
solution to the equation is that functional relation y 5 ƒ(x) which satis-
fi es the equation and also satisfi es the conditions at the fi xed ends of the 
cable, called boundary conditions. This relationship defi nes the shape of 
the cable, and we will use it to solve two important and limiting cases of 
cable loading.

Parabolic Cable

When the intensity of vertical loading w is constant, the condition 
closely approximates that of a suspension bridge where the uniform 
weight of the roadway may be expressed by the constant w. The mass of 
the cable itself is not distributed uniformly with the horizontal but is 
relatively small, and thus we neglect its weight. For this limiting case 
we will prove that the cable hangs in a parabolic arc.

We start with a cable suspended from two points A and B which are 
not on the same horizontal line, Fig. 5/27a. We place the coordinate ori-
gin at the lowest point of the cable, where the tension is horizontal and 
is T0. Integration of Eq. 5/13 once with respect to x gives

dy
dx

5
wx
T0

1 C

where C is a constant of integration. For the coordinate axes chosen, 
dy/dx 5 0 when x 5 0, so that C 5 0. Thus,

dy
dx

5
wx
T0

which defi nes the slope of the curve as a function of x. One further inte-
gration yields

 Ey

0
 dy 5 Ex

0
  

wx
T0

 dx  or   y 5
wx2

2T0
 (5/14)

Alternatively, you should be able to obtain the identical results with 
the indefi nite integral together with the evaluation of the constant of 

Figure 5/27

y
B

A

sB

sA
hA

lA

w = Load per unit of horizontal length

(a)

R = wx

(b)

yhB

lB

x
s

x/2T0

y

θ
x

T

x
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integration. Equation 5/14 gives the shape of the cable, which we see is 
a vertical parabola. The constant horizontal component of cable tension 
becomes the cable tension at the origin.

Inserting the corresponding values x 5 lA and y 5 hA in Eq. 5/14 
gives

T0 5
wlA 

2

2hA
  so that  y 5 hA(x/lA)2

The tension T is found from a free-body diagram of a fi nite portion of 
the cable, shown in Fig. 5/27b. From the Pythagorean theorem

T 5 !T0 

2 1 w2x2

Elimination of T0 gives

 T 5 w!x2 1 (lA 

2/2hA)2 (5/15)

The maximum tension occurs where x 5 lA and is

 Tmax 5 wlA!1 1 (lA/2hA)2 (5/15a)

We obtain the length sA of the cable from the origin to point A by in-
tegrating the expression for a differential length ds 5 !(dx)2 1 (dy)2 . 
Thus,

EsA

0
 ds 5 ElA

0
 !1 1 (dy/dx)2 dx 5 ElA

0
 !1 1 (wx/T0)2 dx

Although we can integrate this expression in closed form, for computa-
tional purposes it is more convenient to express the radical as a conver-
gent series and then integrate it term by term. For this purpose we use 
the binomial expansion

(1 1 x)n 5 1 1 nx 1
n(n 2 1)

2!
 x2 1

n(n 2 1)(n 2 2)
3!

 x3 1 ? ? ?

which converges for x2 , 1. Replacing x in the series by (wx/T0)2 and set-
ting n 5 12 give the expression

 sA 5 ElA

0
 a1 1

w2
 x2

2T0 

2 2
w4

 x4

8T0 

4  1 ? ? ?b dx

  5 lA c1 1
2
3

 ahA

lA
b2

2
2
5

 ahA

lA
b4

1 ? ? ? d  (5/16)

This series is convergent for values of hA / lA , 1
2, which holds for most 

practical cases.
The relationships which apply to the cable section from the origin to 

point B can be easily obtained by replacing hA, lA, and sA by hB, lB, and 
sB, respectively.
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For a suspension bridge where the supporting towers are on the 
same horizontal line, Fig. 5/28, the total span is L 5 2lA, the sag is h 5 
hA, and the total length of the cable is S 5 2sA. With these substitu-
tions, the maximum tension and the total length become

  Tmax 5
wL
2

 !1 1 (L/4h)2 (5/15b)

  S 5 L c1 1
8
3

 ah
L
b2

2
32
5

 ah
L
b4

1 ? ? ? d  (5/16a)

This series converges for all values of h/L , 14. In most cases h is much 
smaller than L/4, so that the three terms of Eq. 5/16a give a suffi ciently 
accurate approximation.

Catenary Cable

Consider now a uniform cable, Fig. 5/29a, suspended from two 
points A and B and hanging under the action of its own weight only. We 
will show in this limiting case that the cable assumes a curved shape 
known as a catenary.

The free-body diagram of a fi nite portion of the cable of length s 
measured from the origin is shown in part b of the fi gure. This free-body 
diagram differs from the one in Fig. 5/27b in that the total vertical force 
supported is equal to the weight of the cable section of length s rather 

Figure 5/28

y

h

x

L
B A

B

A

y

sB

sA

hA

lA

(a) (b)

yhB

lB

x
s

T0

y

θ
x

T

R =    sμ

x

Figure 5/29
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than the load distributed uniformly with respect to the horizontal. If the 
cable has a weight � per unit of its length, the resultant R of the load is 
R 5 �s, and the incremental vertical load w dx of Fig. 5/26c is replaced 
by � ds. With this replacement the differential relation, Eq. 5/13, for the 
cable becomes

 
d2

 y

dx2 5
�

T0
 
ds
dx

 (5/17)

Because s 5 ƒ(x, y), we must change this equation to one containing 
only the two variables.

We may substitute the identity (ds)2 5 (dx)2 1 (dy)2 to obtain

 
d2

 y

dx2 5
�

T0
 B1 1 ady

dx
b2

 (5/18)

Equation 5/18 is the differential equation of the curve (catenary) formed 
by the cable. This equation is easier to solve if we substitute p 5 dy/dx 
to obtain

dp

!1 1 p2
5

�

T0
 dx

Integrating this equation gives us

ln (p 1 !1 1 p2) 5
�

T0
 x 1 C

The constant C is zero because dy/dx 5 p 5 0 when x 5 0. Substituting 
p 5 dy/dx, changing to exponential form, and clearing the equation of 
the radical give

dy
dx

5
e�x /T0 2 e2�x /T0

2
5 sinh 

�x
T0

where the hyperbolic function* is introduced for convenience. The slope 
may be integrated to obtain

y 5
T0

�
 cosh 

�x
T0

1 K

The integration constant K is evaluated from the boundary condition 
x 5 0 when y 5 0. This substitution requires that K 5 2T0/�, and hence,

 y 5
T0

�
 acosh 

�x
T0

2 1b (5/19)

*See Arts. C/8 and C/10, Appendix C, for the defi nition and integral of hyperbolic functions.
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Equation 5/19 is the equation of the curve (catenary) formed by the 
cable hanging under the action of its weight only.

From the free-body diagram in Fig. 5/29b we see that dy/dx 5 
tan � 5 �s/T0. Thus, from the previous expression for the slope,

 s 5
T0

�
 sinh 

�x
T0

 (5/20)

We obtain the tension T in the cable from the equilibrium triangle of 
the forces in Fig. 5/29b. Thus,

T 

2 5 �2
 s2 1 T0 

2

which, when combined with Eq. 5/20, becomes

T2 5 T0 

2 a1 1 sinh2 
�x
T0
b 5 T0 

2 cosh2 
�x
T0

or

 T 5 T0 cosh 
�x
T0

 (5/21)

We may also express the tension in terms of y with the aid of Eq. 5/19, 
which, when substituted into Eq. 5/21, gives

 T 5 T0 1 �y (5/22)

Equation 5/22 shows that the change in cable tension from that at the 
lowest position depends only on �y.

Most problems dealing with the catenary involve solutions of Eqs. 
5/19 through 5/22, which can be handled by a graphical approximation 
or solved by computer. The procedure for a graphical or computer solu-
tion is illustrated in Sample Problem 5/17 following this article.

The solution of catenary problems where the sag-to-span ratio is 
small may be approximated by the relations developed for the parabolic 
cable. A small sag-to-span ratio means a tight cable, and the uniform 
distribution of weight along the cable is not very different from the 
same load intensity distributed uniformly along the horizontal.

Many problems dealing with both the catenary and parabolic cables 
involve suspension points which are not on the same level. In such cases 
we may apply the relations just developed to the part of the cable on 
each side of the lowest point.

In addition to the distributed weight 
of the cable, these tramway cars 
exert concentrated loads on the 
suspending cable.

©
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Sample Problem 5/16

A 100-ft length of surveyor’s tape weighs 0.6 lb. When the tape is stretched 
between two points on the same level by a tension of 10 lb at each end, calculate 
the sag h in the middle.

Solution.  The weight per unit length is � 5 0.6/100 5 0.006  lb/ft. The total 
length is 2s 5 100 or s 5 50 ft.

[T2 5 �2
 s2 1 T0

2]  102 5 (0.006)2(50)2 1 T0
2 

  T0 5 9.995 lb

[T 5 T0 1 �y]  10 5 9.995 1 0.006h

  h 5 0.750 ft or 9.00 in. Ans.

1

Helpful Hint

1  Suggestion: Check the value of Tmax 
directly from the free-body diagram 
of the right-hand half of the cable, 
from which a force polygon may be 
drawn.

60 m

300 m

12 kg/m

75 m 75 m
xT0

R = 12(150)(9.81)(10–3)
    = 17.66 kN

Tmaxy

60 m

Sample Problem 5/17

The light cable supports a mass of 12 kg per meter of horizontal length and 
is suspended between the two points on the same level 300 m apart. If the sag is 
60 m, fi nd the tension at midlength, the maximum tension, and the total length 
of the cable.

Solution. With a uniform horizontal distribution of load, the solution of part 
(b) of Art. 5/8 applies, and we have a parabolic shape for the cable. For h 5 60 m, 
L 5 300 m, and w 5 12(9.81)(1023) kN/m, the relation following Eq. 5/14 with 
lA 5 L/2 gives for the midlength tension

cT0 5
wL2

8h
d  T0 5

0.1177(300)2

8(60)
5 22.1 kN Ans.

The maximum tension occurs at the supports and is given by Eq. 5/15b. Thus,

cTmax 5
wL
2

 B1 1 a L
4h
b2 d

  Tmax 5
12(9.81)(1023)(300)

2
 B1 1 a 300

4(60)
b2

5 28.3 kN Ans.

The sag-to-span ratio is 60/300 5 1/5 , 1/4. Therefore, the series expression 
developed in Eq. 5/16a is convergent, and we may write for the total length 

  S 5 300 c1 1
8
3

 a1
5
b2

2
32
5

 a1
5
b4

1 ? ? ? d
  5 300[1 1 0.1067 2 0.01024 1 ? ? ?]

  5 329 m  Ans.

1

Helpful Hint

1  An extra signifi cant fi gure is dis-
played here for clarity.

h

T T

BA



Sample Problem 5/18

Replace the cable of Sample Problem 5/17, which is loaded uni-
formly along the horizontal, by a cable which has a mass of 12 kg per 
meter of its own length and supports its own weight only. The cable is 
suspended between two points on the same level 300 m apart and has a 
sag of 60 m. Find the tension at midlength, the maximum tension, and 
the total length of the cable.

Solution. With a load distributed uniformly along the length of 
the cable, the solution of part (c) of Art. 5/8 applies, and we have 
a catenary shape of the cable. Equations 5/20 and 5/21 for the 
cable length and tension both involve the minimum tension T0 at 
midlength, which must be found from Eq. 5/19. Thus, for x 5 150 m, 
y 5 60 m, and � 5 12(9.81)(1023) 5 0.1177 kN/m, we have

  60 5
T0

0.1177
c cosh 

(0.1177)(150)
T0

 2 1 d

or  
7.06
T0

5 cosh 
17.66

T0
 2 1

This equation can be solved graphically. We compute the expres-
sion on each side of the equals sign and plot it as a function of T0. The 
intersection of the two curves establishes the equality and determines 
the correct value of T0. This plot is shown in the fi gure accompanying 
this problem and yields the solution

 T0 5 23.2 kN

Alternatively, we may write the equation as

 ƒ(T0) 5 cosh 
17.66

T0
2

7.06
T0

2 1 5 0

and set up a computer program to calculate the value(s) of T0 which renders 
ƒ(T0) 5 0. See Art. C/11 of Appendix C for an explanation of one applicable nu-
merical method.

The maximum tension occurs for maximum y and from Eq. 5/22 is 

 Tmax 5 23.2 1 (0.1177)(60) 5 30.2 kN Ans.

From Eq. 5/20 the total length of the cable becomes

 2s 5 2 
23.2

0.1177
 sinh 

(0.1177)(150)
23.2

5 330 m Ans.

Helpful Hint

1  Note that the solution of Sample Problem 5/17 for the parabolic cable gives a 
very close approximation to the values for the catenary even though we have 
a fairly large sag. The approximation is even better for smaller sag-to-span 
ratios.

1

60 m

300 m

x

y

0.33

Solution
T0 = 23.2 kN

T0, kN

0.32

0.31

0.30

0.29

0.28

7.06
——–

T0

22.5 23.0 23.5 24.0

cosh – 1
17.66
——–

T0
( (

((
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5/158 A horizontal 350-mm-diameter water pipe is sup-
ported over a ravine by the cable shown. The pipe 
and the water within it have a combined mass of 
1400 kg per meter of its length. Calculate the com-
pression C exerted by the cable on each support. 
The angles made by the cable with the horizontal 
are the same on both sides of each support.

2.5 m

40 m

Problem 5/158

5/159 The Akashi Kaikyō bridge in Japan has a central 
span of 1991 meters, a sag-to-span ratio of 1 to 10, 
and a total static loading of 160 kN per lineal meter 
of horizontal measurement. The weight of both of 
the main cables is included in this fi gure and is as-
sumed to be uniformly distributed along the hori-
zontal. Calculate the midspan tension T0 in each of 
the main cables. If the angle made by the cable with 
the horizontal at the top of each tower is the same 
on each side of each tower, determine the total com-
pressive force C exerted by each cable on the top of 
each tower.

BA

1991 m

Problem 5/159

5/160 Strain-gage measurements made on the cables of 
the suspension bridge at position A indicate an in-
crease of 480,000 lb of tension in each of the two 
main cables because the bridge has been repaved. 
Determine the total weight w9 of added paving ma-
terial used per foot of roadway.

2500′

600′500′

A

Problem 5/160

PROBLEMS

(The problems marked with an asterisk (*) involve tran-
scendental equations which may be solved with a computer 
or by graphical methods.)

Introductory Problems

5/155 A coil of surveyor’s tape 100 ft in length weighs 
0.624 lb. When the tape is stretched between two 
points on the same level by a tension of 10 lb at each 
end, calculate the sag h of the tape in the middle.

5/156 The left-to-right current in the stream causes a 
uniform drag of 4 lb per cross-stream foot on the 
fl oating cable which is attached to posts A and B. 
Determine the minimum and maximum tensions 
in the cable and the location of each.

16′

24′ C

A

B

Problem 5/156

5/157 An advertising balloon is moored to a post with a 
cable which has a mass of 0.12 kg/m. In a wind the 
cable tensions at A and B are 110 N and 230 N, re-
spectively. Determine the height h of the balloon.

A

B

h

Problem 5/157
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w0
w1

L/2 L/2

x

h

y

Problem 5/164

Representative Problems

5/165 Determine the weight w per unit length of the 
30-ft steel beam which will produce a maximum 
tension of 1250 lb in the cable. Additionally, fi nd 
the minimum tension in the cable and the total 
length of the cable.

A

B

6′

3′

30′

Problem 5/165

5/166 The cable of negligible mass is suspended from 
the two fi xed points shown, and the tension at the 
lower support is suffi cient to maintain zero slope 
of the cable at that point. The cable supports a 
unit load w which increases from 200 N/m at x 5 0 
to 800 N/m at x 5 10 m with the increase propor-
tional to x3/2. Determine the tension in the cable at 
A and the equation of the curve assumed by the 
cable. What is the tension in the cable at B for this 
loading?

 *5/161 A helicopter is being used to string a pilot line 
 between two bridge supports to aid in the con-
struction of a suspension bridge. If the helicopter 
is hovering steadily in the position shown, deter-
mine the tensions in the cable at A and B. The 
cable weighs 0.8 lb per foot of length.

B

A

2100′

500′

250′

Problem 5/161

5/162 A cable weighing 40 N per meter of length is sus-
pended from point A and passes over the small 
pulley at B. Determine the mass m of the attached 
cylinder which will produce a sag of 10 m. With the 
small sag-to-span ratio, approximation as a para-
bolic cable may be used.

B

m

10 m

120 m

15 m
A

Problem 5/162

 *5/163 Repeat Prob. 5/162, but do not use the approxima-
tion of a parabolic cable. Compare your results 
with the printed answer for Prob. 5/162.

5/164 The light cable is suspended from two points a dis-
tance L apart and on the same horizontal line. If 
the load per unit of horizontal distance supported 
by the cable varies from w0 at the center to w1 at 
the ends in accordance with the relation w 5 a 1 
bx2, derive the equation for the sag h of the cable 
in terms of the midspan tension T0.
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B CA

5′

20′

Problem 5/168

 *5/169 In the position shown, aerodynamic forces hold 
the 600-g kite in equilibrium without the need 
for additional tension in the string attachment 
at B beyond the amount developed by the weight 
of the string itself. If 120 m of kite string have 
been unreeled, and the string is horizontal at A, 
determine the altitude h of the kite and the verti-
cal lift and horizontal drag forces which act on the 
kite. The kite string has a mass of 5 g per meter 
of length. Neglect aerodynamic drag on the kite 
string.

65 m

h

A

B

Problem 5/169

3 m

10 m

y

200 N/m

800 N/m

B

A
x

Problem 5/166

 *5/167 The wooden suspension bridge spans a 30-m gap 
between two cliffs as shown. Determine the ten-
sions acting at both ends of the bridge if the sup-
port ropes and wooden planks have a combined 
mass of 16 kg per meter of length. Also determine 
the total length s of cable between A and B.

B

C

A
30 m

5 m
1 m

Problem 5/167

 *5/168 A light fi xture is suspended from the ceiling of 
an outside portico. Four chains, two of which are 
shown, prevent excessive motion of the fi xture 
during windy conditions. If the chains weigh 15 lb 
per foot of length, determine the chain tension at 
C and the length L of chain BC.
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P

l

100′

Problem 5/172

 *5/173 Under the action of masses m1 and m2, the 18-m 
cable of weight � per unit length assumes the 
shape shown. If m2 5 25 kg, determine the values of 
�, m1, and the sag h. Assume the distance between 
each hanging mass and ideal pulley to be small 
compared with the overall length of the cable.

A

B

h

C

14 m

7 m

m2

m1

Problem 5/173

 *5/174 Determine the length L of chain required from B 
to A and the corresponding tension at A if the 
slope of the chain is to be horizontal as it enters 
the guide at A. The weight of the chain is 140 N 
per meter of its length.

3 m

8 m

B

A

Problem 5/174

 *5/170 The kite of Prob. 5/169 is subjected to a change in 
wind conditions which requires the tension at B to 
have a value of 20 N to maintain equilibrium. If the 
unreeled length of kite string remains 120 m and 
the horizontal location of the kite from the child 
 remains constant, determine the change in altitude 
for the kite. Compare your result with the printed 
answer for Prob. 5/169. Additionally, determine the 
tension in the string at A. Neglect aerodynamic drag 
on the kite string.

65 m

h

A

B

Problem 5/170

 *5/171 The glider A is being towed in level fl ight and is 
400 ft behind and 100 ft below the tow plane B. 
The tangent to the cable at the glider is horizontal. 
The cable weighs 0.5 lb per foot of length. Calcu-
late the horizontal tension T0 in the cable at the 
glider. Neglect air resistance and compare your re-
sult with that obtained by approximating the cable 
shape by a parabola.

100′

A

400′

B

Problem 5/171

5/172 In setting its anchor in 100 ft of water, a small 
power boat reverses its propeller, which gives a re-
verse thrust P 5 800 lb. A total of 400 ft of anchor 
chain from anchor to bow has been released. 
The chain weighs 1.63  lb/ft, and the upward force 
due to water buoyancy is 0.21 lb/ft. Calculate the 
length l of chain in contact with the bottom.
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h BA

C

Tv

Th

TC

60 m

Problem 5/177

 *5/178 The remotely-controlled robotic vehicle of Prob. 
5/177 is now connected to a 200-m tether which 
has a slight negative buoyancy in that a net 
downward force of 0.025 N per meter of its length 
acts on it. Determine the horizontal and vertical 
components of thrust which must be produced in 
order to hold the vehicle in the position shown. The 
vehicle itself is neutrally buoyant.

197 m

10 m

A

B

Tv

Th

Problem 5/178

 *5/179 The moving cable for a ski lift has a mass of 
10 kg/m and carries equally spaced chairs and pas-
sengers, whose added mass is 20 kg/m when aver-
aged over the length of the cable. The cable leads 
horizontally from the supporting guide wheel at A. 
Calculate the tensions in the cable at A and B and 
the length s of the cable between A and B.

A

B

20 m

60 m

Problem 5/179

 *5/175 A rope 40 m in length is suspended between two 
points which are separated by a horizontal dis-
tance of 10 m. Compute the distance h to the low-
est part of the loop.

h

10 m

Problem 5/175

5/176 The blimp is moored to the ground winch in a gen-
tle wind with 100 m of 12-mm cable which has a 
mass of 0.51 kg/m. A torque of 400 N?m on the 
drum is required to start winding in the cable. At 
this condition, the cable makes an angle of 308 with 
the vertical as it approaches the winch. Calculate 
the height H of the blimp. The diameter of the 
drum is 0.5 m.

30°

H

Problem 5/176

 *5/177 A small remotely-controlled underwater robotic 
vehicle and its tether are positioned as shown. 
The neutrally buoyant vehicle has independent 
thrusters for horizontal and vertical control. The 
tether, designed to be very slightly buoyant, has a 
net upward force of 0.025 N per meter of its length 
acting on it. There are 60.5 m of cable between 
points A and B. Determine the horizontal and verti-
cal forces which the vehicle must exert on the cable 
at B in order to maintain the confi guration shown. 
Also, fi nd the distance h. Assume that the tether 
 between points A and B is entirely under water.
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 *5/182 The tree surgeon attempts to pull down the par-
tially sawn-through tree trunk. He creates a ten-
sion TA 5 200 N in the rope, which has a mass of 
0.6 kg per meter of its length. Determine the angle 
�A at which he pulls, the length L of rope between 
points A and B, and the tension TB at point B.

5 m

12 m

TA
A

B

   Aθ

Problem 5/182

 *5/183 Reconsider Prob. 5/182. If the length of the rope 
between points A and B is 13.02 m, determine the 
tension TA which the tree surgeon must exert at A, 
the angle �A at which he pulls, the tension TB at B, 
and the angle �B which the rope makes with the 
horizontal at B. The rope has a mass of 0.6 kg per 
meter of its length.

 *5/184 A power line is suspended from two towers 200 m 
apart on the same horizontal line. The cable has a 
mass of 18.2 kg per meter of length and has a sag 
of 32 m at midspan. If the cable can support a 
maximum tension of 60 kN, determine the mass � 
of ice per meter which can form on the cable without 
exceeding the maximum cable tension.

 *5/180 Numerous small fl otation devices are attached to 
the cable, and the difference between buoyancy 
and weight results in a net upward force of 30 N 
per meter of cable length. Determine the force T 
which must be applied to cause the cable confi gu-
ration shown.

25 m

8 m

B

A

T

Problem 5/180

 *5/181 The cable is placed on supports A and B whose eleva-
tion differs by 9 m as shown. Plot the minimum ten-
sion T0, the tension TA at support A, and the tension 
TB at support B as functions of h for 1 # h # 10 m, 
where h is the sag below point A. State all three 
tensions for h 5 2 m. The cable mass per unit length 
is 3 kg/m.

60 m

9 mh

TA

TB
B

A

Problem 5/181
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5/9  FLUID STATICS

So far in this chapter we have treated the action of forces on and be-
tween solid bodies. In this article we consider the equilibrium of bodies 
subjected to forces due to fl uid pressures. A fl uid is any continuous sub-
stance which, when at rest, is unable to support shear force. A shear 
force is one tangent to the surface on which it acts and is developed 
when differential velocities exist between adjacent layers of fl uids. Thus, 
a fl uid at rest can exert only normal forces on a bounding surface. Fluids 
may be either gaseous or liquid. The statics of fl uids is generally called 
hydrostatics when the fl uid is a liquid and aerostatics when the fl uid is 
a gas.

Fluid Pressure

The pressure at any given point in a fl uid is the same in all direc-
tions (Pascal’s law). We may prove this by considering the equilibrium 
of an infi nitesimal triangular prism of fl uid as shown in Fig. 5/30. The 
fl uid pressures normal to the faces of the element are p1, p2, p3, and p4 as 
shown. With force equal to pressure times area, the equilibrium of 
forces in the x- and y-directions gives

p1 dy dz 5 p3 ds dz sin �  p2 dx dz 5 p3 ds dz cos �

Since ds sin � 5 dy and ds cos � 5 dx, these questions require that

p1 5 p2 5 p3 5 p

By rotating the element through 90o, we see that p4 is also equal to the 
other pressures. Thus, the pressure at any point in a fl uid at rest is 
the same in all directions. In this analysis we need not account for the 
weight of the fl uid element because, when the weight per unit volume 
(density � times g) is multiplied by the volume of the element, a differ-
ential quantity of third order results which disappears in the limit com-
pared with the second-order pressure-force terms.

In all fl uids at rest, the pressure is a function of the vertical dimen-
sion. To determine this function, we consider the forces acting on a dif-
ferential element of a vertical column of fl uid of cross-sectional area dA, 
as shown in Fig. 5/31. The positive direction of vertical measurement h 
is taken downward. The pressure on the upper face is p, and that on the 
lower face is p plus the change in p, or p 1 dp. The weight of the ele-
ment equals �g multiplied by its volume. The normal forces on the lat-
eral surface, which are horizontal and do not affect the balance of forces 
in the vertical direction, are not shown. Equilibrium of the fl uid element 
in the h-direction requires

p dA 1 �g dA dh 2 (p 1 dp) dA 5 0

 dp 5 �g dh (5/23)

This differential relation shows us that the pressure in a fl uid increases 
with depth or decreases with increased elevation. Equation 5/23 holds 

Figure 5/30
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for both liquids and gases, and agrees with our common observations of 
air and water pressures.

Fluids which are essentially incompressible are called liquids, and 
for most practical purposes we may consider their density � constant for 
every part of the liquid.* With � a constant, integration of Eq. 5/23 gives

 p 5 p0 1 �gh (5/24)

The pressure p0 is the pressure on the surface of the liquid where h 5 0. 
If p0 is due to atmospheric pressure and the measuring instrument 
records only the increment above atmospheric pressure,†  the measure-
ment gives what is called gage pressure. It is computed from p 5 �gh.

The common unit for pressure in SI units is the kilopascal (kPa), 
which is the same as a kilonewton per square meter (103 N/m2). In com-
puting pressure, if we use Mg/m3 for �, m/s2 for g, and m for h, then the 
product �gh gives us pressure in kPa directly. For example, the pressure 
at a depth of 10 m in fresh water is

 p 5 �gh 5 a1.0 
Mg

m3 b a9.81 
m
s2b(10 m) 5 98.1 a103 

kg?m

s2  
1

m2b
 5  98.1 kN/m2 5 98.1 kPa

In the U.S. customary system, fl uid pressure is generally expressed 
in pounds per square inch (lb/in.2) or occasionally in pounds per square 
foot (lb/ft2). Thus, at a depth of 10 ft in fresh water the pressure is

p 5 �gh 5 a62.4 
lb
ft3b a 1

1728
 

ft3

in.3
b (120 in.) 5 4.33 lb/in.2

Hydrostatic Pressure on Submerged Rectangular Surfaces

A body submerged in a liquid, such as a gate valve in a dam or the 
wall of a tank, is subjected to fl uid pressure acting normal to its surface 
and distributed over its area. In problems where fl uid forces are appre-
ciable, we must determine the resultant force due to the distribution of 
pressure on the surface and the position at which this resultant acts. 
For systems open to the atmosphere, the atmospheric pressure p0 acts 
over all surfaces and thus yields a zero resultant. In such cases, then, we 
need to consider only the gage pressure p 5 �gh, which is the increment 
above atmospheric pressure.

Consider the special but common case of the action of hydrostatic 
pressure on the surface of a rectangular plate submerged in a liquid. 
Figure 5/32a shows such a plate 1-2-3-4 with its top edge horizontal and 
with the plane of the plate making an arbitrary angle � with the vertical 
plane. The horizontal surface of the liquid is represented by the x-y9 
plane. The fl uid pressure (gage) acting normal to the plate at point 2 is 

*See Table D/1, Appendix D, for table of densities.
†Atmospheric pressure at sea level may be taken to be 101.3 kPa or 14.7 lb/in.2
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represented by the arrow 6-2 and equals �g times the vertical distance 
from the liquid surface to point 2. This same pressure acts at all points 
along the edge 2-3. At point 1 on the lower edge, the fl uid pressure 
equals �g times the depth of point 1, and this pressure is the same at all 
points along edge 1-4. The variation of pressure p over the area of the 
plate is governed by the linear depth relationship and therefore it is rep-
resented by the arrow p, shown in Fig. 5/32b, which varies linearly from 
the value 6-2 to the value 5-1. The resultant force produced by this pres-
sure distribution is represented by R, which acts at some point P called 
the center of pressure.

The conditions which prevail at the vertical section 1-2-6-5 in Fig. 5/32a 
are identical to those at section 4-3-7-8 and at every other vertical sec-
tion normal to the plate. Thus, we may analyze the problem from the 
two-dimensional view of a vertical section as shown in Fig. 5/32b for sec-
tion 1-2-6-5. For this section the pressure distribution is trapezoidal. If b 
is the horizontal width of the plate measured normal to the plane of the 
fi gure (dimension 2-3 in Fig. 5/32a), an element of plate area over which 

Figure 5/32
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the pressure p 5 �gh acts is dA 5 b dy, and an increment of the result-
ant force is dR 5 p dA 5 bp dy. But p dy is merely the shaded increment 
of trapezoidal area dA9, so that dR 5 b dA9. We may therefore express 
the resultant force acting on the entire plate as the trapezoidal area 
1-2-6-5 times the width b of the plate,

R 5 bE dA9 5 bA9

Be careful not to confuse the physical area A of the plate with the geo-
metrical area A9 defi ned by the trapezoidal distribution of pressure.

The trapezoidal area representing the pressure distribution is easily 
expressed by using its average altitude. The resultant force R may 
therefore be written in terms of the average pressure pav 5 1

2 ( p1 1 p2) 
times the plate area A. The average pressure is also the pressure which 
exists at the average depth, measured to the centroid O of the plate. An 
alternative expression for R is therefore

R 5 pav A 5 �gh A

where h 5 y cos �.
We obtain the line of action of the resultant force R from the princi-

ple of moments. Using the x-axis (point B in Fig. 5/32b) as the moment 
axis yields RY  5 e y(pb dy). Substituting p dy 5 dA9 and R 5 bA9 and 
canceling b give

Y 5
E y dA9

E dA9

which is simply the expression for the centroidal coordinate of the trape-
zoidal area A9. In the two-dimensional view, therefore, the resultant R 
passes through the centroid C of the trapezoidal area defi ned by the 
pressure distribution in the vertical section. Clearly Y  also locates the 
centroid C of the truncated prism 1-2-3-4-5-6-7-8 in Fig. 5/32a through 
which the resultant passes.

For a trapezoidal distribution of pressure, we may simplify the 
 calculation by dividing the trapezoid into a rectangle and a triangle, 
Fig. 5/32c, and separately considering the force represented by each 
part. The force represented by the rectangular portion acts at the cen-
ter O of the plate and is R2 5 p2A, where A is the area 1-2-3-4 of the 
plate. The force R1 represented by the triangular increment of pressure 
distribution is 12 ( p1 2 p2) A and acts through the centroid of the trian-
gular portion shown.

Hydrostatic Pressure on Cylindrical Surfaces

The determination of the resultant R due to distributed pressure on 
a submerged curved surface involves more calculation than for a fl at 
surface. For example, consider the submerged cylindrical surface shown 
in Fig. 5/33a where the elements of the curved surface are parallel to the 
horizontal surface x-y9 of the liquid. Vertical sections perpendicular to the 
surface all disclose the same curve AB and the same pressure distribution. Figure 5/33
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Thus, the two-dimensional representation in Fig. 5/33b may be used. 
To fi nd R by a direct integration, we need to integrate the x- and y-
components of dR along the curve AB, since dR continuously changes 
direction. Thus,

Rx 5 bE ( p dL)x 5 bE p dy  and  Ry 5 bE ( p dL)y 5 bE p dx

A moment equation would now be required if we wished to establish 
the position of R.

A second method for fi nding R is usually much simpler. Consider 
the equilibrium of the block of liquid ABC directly above the surface, 
shown in Fig. 5/33c. The resultant R then appears as the equal and 
opposite reaction of the surface on the block of liquid. The resultants 
of the pressures along AC and CB are Py and Px, respectively, and are 
easily obtained. The weight W of the liquid block is calculated from 
the area ABC of its section multiplied by the constant dimension b 
and by �g. The weight W passes through the centroid of area ABC. 
The equilibrant R is then determined completely from the equilib-
rium equations which we apply to the free-body diagram of the fl uid 
block.

Hydrostatic Pressure on Flat Surfaces of Any Shape

Figure 5/34a shows a fl at plate of any shape submerged in a liq-
uid. The horizontal surface of the liquid is the plane x-y9, and the 
plane of the plate makes an angle � with the vertical. The force acting 
on a differential strip of area dA parallel to the surface of the liquid 
is dR 5 p dA 5 �gh dA. The pressure p has the same magnitude 
throughout the length of the strip, because there is no change of 

Figure 5/34
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depth along the strip. We obtain the total force acting on the exposed 
area A by integration, which gives

R 5 E dR 5 E p dA 5 �gE h dA

Substituting the centroidal relation hA 5 e h dA gives us

 R 5 �gh A (5/25)

The quantity �gh is the pressure which exists at the depth of the cen-
troid O of the area and is the average pressure over the area.

We may also represent the resultant R geometrically by the volume 
V9 of the fi gure shown in Fig. 5/34b. Here the fl uid pressure p is repre-
sented as a dimension normal to the plate regarded as a base. We see 
that the resulting volume is a truncated right cylinder. The force dR 
acting on the differential area dA 5 x dy is represented by the elemental 
volume p dA shown by the shaded slice, and the total force is repre-
sented by the total volume of the cylinder. We see from Eq. 5/25 that the 
average altitude of the truncated cylinder is the average pressure �gh 
which exists at a depth corresponding to the centroid O of the area ex-
posed to pressure.

For problems where the centroid O or the volume V9 is not readily 
apparent, a direct integration may be performed to obtain R. Thus,

R 5 E dR 5 E p dA 5 E �ghx dy

where the depth h and the length x of the horizontal strip of differential 
area must be expressed in terms of y to carry out the integration.

After the resultant is obtained, we must determine its location. 
Using the principle of moments with the x-axis of Fig. 5/34b as the mo-
ment axis, we obtain

 RY 5 E y dR  or  Y 5
E y(px dy)

E px dy
 (5/26)

This second relation satisfi es the defi nition of the coordinate Y  to the 
centroid of the volume V9 of the pressure-area truncated cylinder. We 
conclude, therefore, that the resultant R passes through the centroid C 
of the volume described by the plate area as base and the linearly vary-
ing pressure as the perpendicular coordinate. The point P at which R is 
applied to the plate is the center of pressure. Note that the center of 
pressure P and the centroid O of the plate area are not the same.

Buoyancy

Archimedes is credited with discovering the principle of buoyancy. 
This principle is easily explained for any fl uid, gaseous or liquid, in equi-
librium. Consider a portion of the fl uid defi ned by an imaginary closed 
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surface, as illustrated by the irregular dashed boundary in Fig. 5/35a. If 
the body of the fl uid could be sucked out from within the closed cavity 
and replaced simultaneously by the forces which it exerted on the 
boundary of the cavity, Fig. 5/35b, the equilibrium of the surrounding 
fl uid would not be disturbed. Furthermore, a free-body diagram of the 
fl uid portion before removal, Fig. 5/35c, shows that the resultant of the 
pressure forces distributed over its surface must be equal and opposite 
to its weight mg and must pass through the center of mass of the fl uid 
element. If we replace the fl uid element by a body of the same dimen-
sions, the surface forces acting on the body held in this position will be 
identical to those acting on the fl uid element. Thus, the resultant force 
exerted on the surface of an object immersed in a fl uid is equal and op-
posite to the weight of fl uid displaced and passes through the center of 
mass of the displaced fl uid. This resultant force is called the force of 
buoyancy

 F 5 �gV  (5/27)

where � is the density of the fl uid, g is the acceleration due to gravity, 
and V is the volume of the fl uid displaced. In the case of a liquid whose 
density is constant, the center of mass of the displaced liquid coincides 
with the centroid of the displaced volume.

Thus when the density of an object is less than the density of the 
fl uid in which it is fully immersed, there is an imbalance of force in the 
vertical direction, and the object rises. When the immersing fl uid is a 
liquid, the object continues to rise until it comes to the surface of the liq-
uid and then comes to rest in an equilibrium position, assuming that the 
density of the new fl uid above the surface is less than the density of the 
object. In the case of the surface boundary between a liquid and a gas, 
such as water and air, the effect of the gas pressure on that portion of 
the fl oating object above the liquid is balanced by the added pressure in 
the liquid due to the action of the gas on its surface.

An important problem involving buoyancy is the determination of 
the stability of a fl oating object, such as a ship hull shown in cross sec-
tion in an upright position in Fig. 5/36a. Point B is the centroid of the 
displaced volume and is called the center of buoyancy. The resultant of 
the forces exerted on the hull by the water pressure is the buoyancy 
force F which passes through B and is equal and opposite to the weight 
W of the ship. If the ship is caused to list through an angle �, Fig. 5/36b, 

The designers of high-performance 
sailboats must consider both air-
pressure distributions on the sails 
and water-pressure distributions on 
the hull.
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the shape of the displaced volume changes, and the center of buoyancy 
shifts to B9.

The point of intersection of the vertical line through B9 with the 
centerline of the ship is called the metacenter M, and the distance h of M 
from the center of mass G is called the metacentric height. For most hull 
shapes h remains practically constant for angles of list up to about 208. 
When M is above G, as in Fig. 5/36b, there is a righting moment which 
tends to bring the ship back to its upright position. If M is below G, as 
for the hull of Fig. 5/36c, the moment accompanying the list is in the di-
rection to increase the list. This is clearly a condition of instability and 
must be avoided in the design of any ship.

F
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Figure 5/36

Wind-tunnel testing of this full-scale car is extremely useful 
in predicting its performance.
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Sample Problem 5/19

A rectangular plate, shown in vertical section AB, is 4 m high and 6 m wide 
(normal to the plane of the paper) and blocks the end of a fresh-water channel 3 m 
deep. The plate is hinged about a horizontal axis along its upper edge through A 
and is restrained from opening by the fi xed ridge B which bears horizontally against 
the lower edge of the plate. Find the force B exerted on the plate by the ridge.

Solution.  The free-body diagram of the plate is shown in section and includes 
the vertical and horizontal components of the force at A, the unspecifi ed weight 
W 5 mg of the plate, the unknown horizontal force B, and the resultant R of the 
triangular distribution of pressure against the vertical face.

The density of fresh water is � 5 1.000 Mg/m3 so that the average pressure is

[pav 5 �gh] pav 5 1.000(9.81)(3
2) 5 14.72 kPa

The resultant R of the pressure forces against the plate becomes

[R 5 pav A] R 5 (14.72)(3)(6) 5 265 kN

This force acts through the centroid of the triangular distribution of pressure, 
which is 1 m above the bottom of the plate. A zero moment summation about A 
establishes the unknown force B. Thus,

[©MA 5 0] 3(265) 2 4B 5 0  B 5 198.7 kN Ans.

1

Helpful Hint

1  Dividing the pressure distribution 
into these two parts is decidedly the 
simplest way in which to make the 
calculation.

Side view

Air

Water

B

A 25″

30″

End view

160 mm160 mm8″

Bp0

p0

R1

R2

R

Δp

A

19″ h
28″

Sample Problem 5/20

The air space in the closed fresh-water tank is maintained at a pressure of 
0.80 lb/in.2 (above atmospheric). Determine the resultant force R exerted by the 
air and water on the end of the tank.

Solution. The pressure distribution on the end surface is shown, where 
p0 5 0.80 lb/in.2 The specifi c weight of fresh water is � 5 �g 5 62.4/1728 5 
0.0361 lb/in.3 so that the increment of pressure Dp due to the water is

 Dp 5 � Dh 5 0.0361(30) 5 1.083 lb/in.2

The resultant forces R1 and R2 due to the rectangular and triangular distribu-
tions of pressure, respectively, are

  R1 5 p0 A1 5 0.80(38)(25) 5 760 lb

  R2 5 Dpav A2 5
1.083

2
 (30)(25) 5 406 lb

The resultant is then R 5 R1 1 R2 5 760 1 406 5 1166 lb. Ans.

We locate R by applying the moment principle about A noting that R1 acts 
through the center of the 38-in. depth and that R2 acts through the centroid of 
the triangular pressure distribution 20 in. below the surface of the water and 
20 1 8 5 28 in. below A. Thus,

[Rh 5 ©MA] 1166h 5 760(19) 1 406(28)  h 5 22.1 in. Ans.

1

Helpful Hint

1  Note that the units of pressure �gh are

 a103 
kg

m3b
 am

s2b (m) 5 a103 
kg?m

s2 b a 1
m2b

 5 kN/m2 5 kPa.

1 m

B

A

3 m

Ay

y

2 m

R

mg 4 m

Ax
x

B
1 m
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Sample Problem 5/21

Determine completely the resultant force R exerted on the cylindrical dam 
surface by the water. The density of fresh water is 1.000 Mg/m3, and the dam has 
a length b, normal to the paper, of 30 m.

Solution.  The circular block of water BDO is isolated and its free-body dia-
gram is drawn. The force Px is

 Px 5 �gh A 5
�gr
2

 br 5
(1.000)(9.81)(4)

2
 (30)(4) 5 2350 kN

The weight W of the water passes through the mass center G of the quarter- 
circular section and is

 mg 5 �gV 5 (1.000)(9.81) 
�(4)2

4
 (30) 5 3700 kN

Equilibrium of the section of water requires

[©Fx 5 0]  Rx 5 Px 5 2350 kN

[©Fy 5 0]  Ry 5 mg 5 3700 kN

The resultant force R exerted by the fl uid on the dam is equal and opposite 
to that shown acting on the fl uid and is 

[R 5 !Rx 

2 1 Ry 

2] R 5 !(2350)2 1 (3700)2 5 4380 kN Ans.

The x-coordinate of the point A through which R passes may be found from the 
principle of moments. Using B as a moment center gives

 Px 
r
3

1 mg 
4r
3�

2 Ry x 5 0,  x 5

2350a4
3
b 1 3700a16

3�
b

3700
5 2.55 m Ans.

Alternative Solution.  The force acting on the dam surface may be obtained 
by a direct integration of the components

 dRx 5 p dA cos �  and  dRy 5 p dA sin �

where p 5 �gh 5 �gr sin � and dA 5 b(r d�). Thus,

  Rx 5 E� /2

0
 �gr2b sin � cos � d� 5 2�gr2b c cos 2�

4
d

� /2

0

5
1
2�gr2b

  Ry 5 E� /2

0
 �gr2b sin2 � d� 5 �gr2b c �

2
2

sin 2�

4
d

� /2

0

5
1
4��gr2b

Thus, R 5 !Rx 

2 1 Ry 

2 5 12 �gr2b!1 1 �2/4 . Substituting the numerical values gives

 R 5
1
2(1.000)(9.81)(42)(30)!1 1 �2/4 5 4380 kN Ans.

Since dR always passes through point O, we see that R also passes through 
O and, therefore, the moments of Rx and Ry about O must cancel. So we write 
Rxy1 5 Ryx1, which gives us 

 x1/y1 5 Rx /Ry 5 (1
2�gr2b)/(1

4��gr2b) 5 2/�

By similar triangles we see that

 x/r 5 x1/y1 5 2/�  and  x 5 2r/� 5 2(4)/� 5 2.55 m Ans.

1

2
Helpful Hints

1  See note 1  in Sample Problem 5/19 
if there is any question about the 
units for �gh.

2  This approach by integration is feasi-
ble here mainly because of the simple 
geometry of the circular arc.

r = 4 m

B

O D

x

y

x

D

G

C

A

R

B

Px

O

mg

x

D

r p

θ
r sin θ

A

R

B

x1

y1

O
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Sample Problem 5/22

Determine the resultant force R exerted on the semicircular end of the 
water tank shown in the fi gure if the tank is fi lled to capacity. Express the result 
in terms of the radius r and the water density �.

Solution I.  We will obtain R fi rst by a direct integration. With a horizontal 
strip of area dA 5 2x dy acted on by the pressure p 5 �gy, the increment of the 
resultant force is dR 5 p dA so that

  R 5 E p dA 5 E �gy(2x dy) 5 2�g Er

0
  y!r2 2 y2 dy

Integrating gives R 5
2
3�gr3 Ans.

The location of R is determined by using the principle of moments. Taking 
moments about the x-axis gives

[RY 5 E y dR]  23�gr3 Y 5 2�g Er

0
  y2 !r2 2 y2 dy

Integrating gives  23�gr3 Y 5  
�gr4

4
 
�

2
  and  Y 5

3�r
16

 Ans.

Solution II.  We may use Eq. 5/25 directly to fi nd R, where the average pres-
sure is �gh and h is the coordinate to the centroid of the area over which the 
pressure acts. For a semicircular area, h 5 4r/(3�).

[R 5 �ghA] R 5 �g 
4r
3�

 
�r2

2
5

2
3�gr3 Ans.

which is the volume of the pressure-area fi gure.
The resultant R acts through the centroid C of the volume defi ned by the 

pressure-area fi gure. Calculation of the centroidal distance Y  involves the same 
integral obtained in Solution I.

1

θ

10 m

5 m

x

4 m

A
B

T

4 m

C

G

5 m
200(9.81) N

θ

Sample Problem 5/23

A buoy in the form of a uniform 8-m pole 0.2 m in diameter has a mass of 
200 kg and is secured at its lower end to the bottom of a fresh-water lake with 
5 m of cable. If the depth of the water is 10 m, calculate the angle � made by 
the pole with the horizontal.

Solution.  The free-body diagram of the buoy shows its weight acting through 
G, the vertical tension T in the anchor cable, and the buoyancy force B which 
passes through centroid C of the submerged portion of the buoy. Let x be the dis-
tance from G to the waterline. The density of fresh water is � 5 103 kg/m3, so 
that the buoyancy force is

[B 5 �gV] B 5 103(9.81)�(0.1)2(4 1 x) N

Moment equilibrium, ©MA 5 0, about A gives

 200(9.81)(4 cos�) 2 [103(9.81)�(0.1)2(4 1 x)]
4 1 x

2
 cos � 5 0

Thus, x 5 3.14 m  and  � 5 sin21a 5
4 1 3.14

b 5 44.58 Ans.

Helpful Hint

1  Be very careful not to make the mis-
take of assuming that R passes 
through the centroid of the area 
over which the pressure acts.

y

x
y

dy

x

r

p

C
R

Y
––

r
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5/187 Specify the magnitude and location of the resultant 
force which acts on each side and the bottom of the 
aquarium due to the fresh water inside it.

0.7 m0.3 m

0.4 m

Problem 5/187

5/188 Determine the depth d to which the solid oak cone 
will be submerged in the salt water.

b

d
h

Problem 5/188

5/189 The two hemispherical shells are perfectly sealed 
together over their mating surfaces, and the air in-
side is partially evacuated to a pressure of 14 kPa. 
Atmospheric pressure is 101.3 kPa. Determine the 
force F required to separate the shells.

F F

200 mm
170 mm

Problem 5/189

PROBLEMS

Introductory Problems

5/185 Determine the maximum height h to which a vacuum 
pump can cause the fresh water to rise. Assume 
standard atmospheric pressure of 1.0133(105) Pa. 
Repeat your calculations for mercury.

to vacuum
pump

h

Problem 5/185

5/186 A rectangular block of density �1 fl oats in a liquid 
of density �2. Determine the ratio r 5 h/c, where h 
is the submerged depth of block. Evaluate r for an 
oak block fl oating in fresh water and for steel fl oat-
ing in mercury.

a
b

ρ1

ρ2

ch

Problem 5/186
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3 m

2 m
A

B

C

Problem 5/192

5/193 The aquarium in the Dubai mall boasts one of the 
largest acrylic viewing panels in the world. The 
panel measures approximately 33 m 3 8.5 m and 
is 750 mm thick. If salt water rises to a height of 
0.5 m above the top of the panel, compute the re-
sultant force which the salt water exerts on the 
panel. The aquarium is open to the atmosphere.

8.5 m

33 m

Problem 5/193

5/194 One end of a uniform pole of length L and density �9  
is secured at C to the bottom of a tank of liquid of 
density � and depth h. For the conditions �9 , � 
and h , L, fi nd the angle � assumed by the pole.

C

L

θ

h

Problem 5/194

5/190 Engineering students are often asked to design a 
“concrete boat” as part of a design project to illus-
trate the buoyancy effects of water. As a proof of 
concept, determine the depth d to which the con-
crete box will rest in the fresh water. The box has a 
uniform wall thickness of 3 in. on all sides and the 
bottom.

d

6′
3′

2′

Problem 5/190

5/191 Fresh water in a channel is contained by the uni-
form 2.5-m plate freely hinged at A. If the gate is 
designed to open when the depth of the water 
reaches 0.8 m as shown in the fi gure, what must be 
the weight w (in newtons per meter of horizontal 
length into the paper) of the gate?

2 m

A

B

0.5 m

30°

0.8 m

Problem 5/191

5/192 The forms for a small concrete retaining wall are 
shown in section. There is a brace BC for every 
1.5 m of wall length. Assuming that the joints at 
A, B, and C act as hinged connections, compute the 
compression in each brace BC. Wet concrete may 
be treated as a liquid with a density of 2400 kg/m3.
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Representative Problems

5/197 One of the critical problems in the design of 
deep-submergence vehicles is to provide viewing 
ports which will withstand tremendous hydrostatic 
pressures without fracture or leakage. The fi gure 
shows the cross section of an experimental acrylic 
window with spherical surfaces under test in a 
high-pressure liquid chamber. If the pressure p is 
raised to a level that simulates the effect of a dive to 
a depth of 1 km in sea water, calculate the average 
pressure � supported by the gasket A.

A

p
275 mm

350 mm300 mm

Problem 5/197

5/198 The gate is held in the vertical position against 
the action of the body of fresh water by a counter-
weight of mass m. If the width of the gate is 5 m 
and the mass of the gate is 2500 kg, determine the 
required value of m and the magnitude of the pin 
reaction at A.

3.5 m

1.5 m

B

A m

Problem 5/198

5/199 The solid concrete cylinder 6 ft long and 4 ft in 
diameter is supported in a half-submerged position 
in fresh water by a cable which passes over a fi xed 
pulley at A. Compute the tension T in the cable. 
The cylinder is waterproofed by a plastic coating. 
(Consult Table D/1, Appendix D, as needed.)

5/195 The fi gure shows the end view of a long homoge-
neous solid cylinder which fl oats in a liquid and 
has a removed segment. Show that � 5 0 and � 5 
1808 are the two values of the angle between its 
centerline and the vertical for which the cylinder 
fl oats in stable positions.

θ

Problem 5/195

5/196 When the sea-water level inside the hemispherical 
chamber reaches the 0.6-m level shown in the fi g-
ure, the plunger is lifted, allowing a surge of sea 
water to enter the vertical pipe. For this fl uid level 
(a) determine the average pressure � supported by 
the seal area of the valve before force is applied to 
lift the plunger and (b) determine the force P (in 
addition to the force needed to support its weight) 
required to lift the plunger. Assume atmospheric 
pressure in all airspaces and in the seal area when 
contact ceases under the action of P.

Sea-water
supply Air vent

P

0.8 m

75 mm

0.4 m

0.6 m

0.6 m

Problem 5/196
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5/202 A vertical section of an oil sump is shown. The ac-
cess plate covers a rectangular opening which has 
a dimension of 400 mm normal to the plane of the 
paper. Calculate the total force R exerted by the oil 
on the plate and the location x of R. The oil has a 
density of 900 kg/m3.

x

R

600 mm

500 mm

30°
Oil

Problem 5/202

5/203 A homogeneous solid sphere of radius r is resting 
on the bottom of a tank containing a liquid of den-
sity �l, which is greater than the density �s of the 
sphere. As the tank is fi lled, a depth h is reached at 
which the sphere begins to fl oat. Determine the ex-
pression for the density �s of the sphere.

h
r

Problem 5/203

5/204 The hydraulic cylinder operates the toggle which 
closes the vertical gate against the pressure of fresh 
water on the opposite side. The gate is rectangular 
with a horizontal width of 2 m perpendicular to 
the paper. For a depth h 5 3 m of water, calculate 
the required oil pressure p which acts on the 150-mm-
diameter piston of the hydraulic cylinder.

A

1 m 1 m

2 m

2 m

1.5 m

h

Problem 5/204

A

T

6′

2′

Problem 5/199

5/200 A marker buoy consisting of a cylinder and cone has 
the dimensions shown and weighs 625 lb when out 
of the water. Determine the protrusion h when the 
buoy is fl oating in salt water. The buoy is weighted 
so that a low center of mass ensures stability.

h

2′

6′

3′

Problem 5/200

5/201 A gate is used to hold fresh water in storage. Deter-
mine the required moment M to just hold the gate 
closed against the lip of the container at C if the 
width of the gate is 5 ft. Neglect the mass of the gate.

2′

1.5′

3′

C

B

A M

60°

Problem 5/201
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20′

40′

12′

30′

G

w

Problem 5/207

5/208 The upstream side of an arched dam has the form 
of a vertical cylindrical surface of 500-ft radius and 
subtends an angle of 608. If the fresh water is 100 ft 
deep, determine the total force R exerted by the 
water on the dam face.

500′
30°

30°

100′

Problem 5/208

5/209 The small access hole A allows maintenance work-
ers to enter the storage tank at ground level when 
it is empty. Two designs, (a) and (b), are shown for 
the hole cover. If the tank is full of fresh water, 
estimate the average pressure � in the seal area 
of design (a) and the average increase DT in the 
initial tension in each of the 16 bolts of design (b). 
You may take the pressure over the hole area to be 
constant, and the pressure in the seal area of de-
sign (b) may be assumed to be atmospheric.

5/205 The design of a fl oating oil-drilling platform con-
sists of two rectangular pontoons and six cylindri-
cal columns which support the working platform. 
When ballasted, the entire structure has a dis-
placement of 26,000 tons (expressed in long tons of 
2240 lb). Calculate the total draft h of the struc-
ture when it is moored in the ocean. The specifi c 
weight of salt water is 64 lb/ft3. Neglect the vertical 
components of the mooring forces.

350′
25′

30′
diameter

40′ 40′

h

Side View End View

Problem 5/205

5/206 The Quonset hut is subjected to a horizontal wind, 
and the pressure p against the circular roof is ap-
proximated by p0 cos �. The pressure is positive on 
the windward side of the hut and is negative on the 
leeward side. Determine the total horizontal shear 
force Q on the foundation per unit length of roof 
measured normal to the paper.

θ

r

θp = p0 cos

Problem 5/206

5/207 The barge crane of rectangular proportions has a 
12-ft by 30-ft cross section over its entire length of 
80 ft. If the maximum permissible submergence 
and list in sea water are represented by the posi-
tion shown, determine the corresponding maxi-
mum safe load w which the barge can handle at the 
20-ft extended position of the boom. Also fi nd the 
total displacement W in long tons of the unloaded 
barge (1 long ton equals 2240 lb). The distribution 
of machinery and ballast places the center of grav-
ity G of the barge, minus the load w, at the center 
of the hull.
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36 m

27 m

A

C

B

b

6 m

Problem 5/211

5/212 The elements of a new method for constructing 
concrete foundation walls for new houses are shown 
in the fi gure. Once the footing F is in place, poly-
styrene forms A are erected and a thin concrete mix-
ture B is poured between the forms. Ties T prevent 
the forms from separating. After the concrete cures, 
the forms are left in place for insulation. As a de-
sign exercise, make a conservative estimate for the 
uniform tie spacing d if the tension in each tie is 
not to exceed 6.5 kN. The horizontal tie spacing is 
the same as the vertical spacing. State any assump-
tions. The density of wet concrete is 2400 kg/m3.

d

d

d/2 A A
T

B

F

3 m

Problem 5/212

0.375
m

0.5
m

12 m
0.55 m

0.75 m

(b)A

(a)

Problem 5/209

5/210 The viewing window in the tank is made of one-
fourth of a hemispherical shell of radius r. The sur-
face of the fl uid is a distance h above the highest 
point A of the window. Determine the horizontal 
and vertical forces exerted on the shell by the fl uid.

y

x

z

O

A
h

r

Problem 5/210

5/211 The fresh-water side of a concrete dam has the 
shape of a vertical parabola with vertex at A. Deter-
mine the position b of the base point B through 
which acts the resultant force of the water against 
the dam face C.
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8″

h

T

10″

Problem 5/215

 c5/216 The salt-water tank shown is closed by the para-
bolic gate which is hinged at B to the fi xed portion 
of the tank wall below it. Determine the minimum 
force P required to hold the gate closed. For this 
value of P, what is the magnitude of the hinge 
reaction at B?

5′

1.5′

Parabolic

2′
2′

A

B

P

60°

x

y

Problem 5/216

5/213 The deep-submersible research vessel has a passen-
ger compartment in the form of a spherical steel 
shell with a mean radius of 1 m and a thickness of 
35 mm. Calculate the mass of lead ballast which 
the vessel must carry so that the combined weight 
of the steel shell and lead ballast exactly cancels 
the combined buoyancy of these two parts alone. 
(Consult Table D/1, Appendix D, as needed.)

1 m 35 mm

Problem 5/213

 c5/214 Determine the total force R exerted on the viewing 
window by the fresh water in the tank. The water 
level is even with the top of the window. Addition-
ally, determine the distance h from the water sur-
face to the line of action of R.

8′4′

Problem 5/214

 c5/215 The sphere is used as a valve to close the hole in 
the fresh-water tank. As the depth h decreases, the 
tension T required to open the valve decreases be-
cause the downward force on the sphere decreases 
with less pressure. Determine the depth h for 
which T equals the weight of the sphere.



5/10  CHAPTER REVIEW

In Chapter 5 we have studied various common examples of forces distributed 
throughout volumes, over areas, and along lines. In all these problems we often 
need to determine the resultant of the distributed forces and the location of the 
resultant.

Finding Resultants of Distributed Forces

To fi nd the resultant and line of action of a distributed force:

 1. Begin by multiplying the intensity of the force by the appropriate element 
of volume, area, or length in terms of which the intensity is expressed. 
Then sum (integrate) the incremental forces over the region involved to 
obtain their resultant.

 2. To locate the line of action of the resultant, use the principle of moments. 
Evaluate the sum of the moments, about a convenient axis, of all of the 
increments of force. Equate this sum to the moment of the resultant about 
the same axis. Then solve for the unknown moment arm of the resultant.

Gravitational Forces

When force is distributed throughout a mass, as in the case of 
gravitational attraction, the intensity is the force of attraction �g per unit 
of volume, where � is the density and g is the gravitational acceleration. For 
bodies whose density is constant, we saw in Section A that �g cancels when 
the moment principle is applied. This leaves us with a strictly geometric 
problem of fi nding the centroid of the fi gure, which coincides with the mass 
center of the physical body whose boundary defi nes the fi gure.

 1. For fl at plates and shells which are homogeneous and have constant 
thickness, the problem becomes one of fi nding the properties of an area.

 2. For slender rods and wires of uniform density and constant cross section, 
the problem becomes one of fi nding the properties of a line segment.

Integration of Differential Relationships

For problems which require the integration of differential relationships, 
keep in mind the following considerations.

 1. Select a coordinate system which provides the simplest description of the 
boundaries of the region of integration.

 2. Eliminate higher-order differential quantities whenever lower-order 
differential quantities will remain.

 3. Choose a fi rst-order differential element in preference to a second-
order element and a second-order element in preference to a third-order 
element.
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 4. Whenever possible, choose a differential element which avoids discontinu-
ities within the region of integration.

Distributed Forces in Beams, Cables, and Fluids

In Section B we used these guidelines along with the principles of 
equilibrium to solve for the effects of distributed forces in beams, cables, and 
fl uids. Remember that:

 1. For beams and cables the force intensity is expressed as force per unit 
length.

 2. For fl uids the force intensity is expressed as force per unit area, or 
pressure.

Although beams, cables, and fl uids are physically quite different applications, 
their problem formulations share the common elements cited above.
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y

z

x

r

r

Problem 5/219

5/220 Determine the y-coordinate of the centroid of the 
shaded area shown. (Carefully observe the proper 
sign of the radical involved.)

a a

x

y

Problem 5/220

5/221 Determine the z-coordinate of the mass center of 
the homogeneous parabolic plate of varying thick-
ness. Take b 5 750 mm, h 5 400 mm, t0 5 35 mm, 
and t1 5 7 mm.

z

t1

t0

h

b
x

t = t0 – kz2 
x = b 1 – z

2

h2

Problem 5/221

REVIEW PROBLEMS

5/217 Determine the x- and y-coordinates of the centroid 
of the shaded area.

y

x

1

0
10.50

y = kx 1/3

Problem 5/217

5/218 Determine the y-coordinate of the centroid of the 
shaded area in terms of h.

x

y

h

h h

h/2

Problem 5/218

5/219 Determine the coordinates of the mass center of 
the portion of hemispherical shell which lies in the 
fi rst octant.
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5/225 The circular disk rotates about an axis through its 
center O and has three holes of diameter d posi-
tioned as shown. A fourth hole is to be drilled in 
the disk at the same radius r so that the disk will 
be in balance (mass center at O). Determine the re-
quired diameter D of the new hole and its angular 
position.

D

O
d

d

d

r 30°
θ

Problem 5/225

5/226 A prismatic structure of height h and base b is sub-
jected to a horizontal wind load whose pressure p 
increases from zero at the base to p0 at the top ac-
cording to p 5 k!y. Determine the resisting mo-
ment M at the base of the structure.

h

y

y

b

p0

p

p = k y

Problem 5/226

5/222 Determine the x- and y-coordinates of the centroid of 
the shaded area.

x
240

40

Dimensions in millimeters

65

105

40

y

Problem 5/222

5/223 Determine the area of the curved surface ABCD of 
the solid of revolution shown.

a

a

y

x

z

A

B
C

D

Problem 5/223

5/224 Calculate the x-, y-, and z-coordinates of the mass 
center of the bracket formed from the steel plate of 
uniform thickness.

z

y
x

200
mm

400
mm

250
mm

175
mm

150
mm

Problem 5/224



Article 5/10  Review Problems  325

5/229 Plot the shear and moment diagrams for the beam 
subjected to the two concentrated forces and com-
bination of distributed loads. State the largest pos-
itive and negative values of the bending moment 
and their locations along the beam.

12 m
4 m

6 kN
2 kN/m

3 kN
x

A
B

18 m

750 N/m

3 m3 m 4 m

Problem 5/229

5/230 Determine the x-, y-, and z-coordinates of the mass 
center of the body constructed of uniform slender 
rod which is bent into circular arcs of radius r.

z

x

y

r

Problem 5/230

5/227 The fi gure shows the cross section of a rectangular 
gate 4 m high and 6 m long (perpendicular to the 
paper) which blocks a fresh-water channel. The 
gate has a mass of 8.5 Mg and is hinged about a 
horizontal axis through C. Compute the vertical 
force P exerted by the foundation on the lower 
edge A of the gate. Neglect the mass of the frame 
to which the gate is attached.

3 m

3 m

1 m

B

A

C

Problem 5/227

5/228 Determine the vertical distance H from the lower 
edge of the built-up wooden beam to the location of 
the centroid.

16″

12″

10″

H
––

2″

2″

2″

Problem 5/228
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5/234 Determine the coordinates of the mass center of the 
fi xture formed from metal plate of uniform small 
thickness.

z

x

y

2″

2″

3″

3″

l″

l″
l″

30°

Problem 5/234

5/235 Determine the reactions at A and B for the beam 
subjected to the couples and distributed load. At 
x 5 0, the distributed load is increasing at the rate 
of 10 lb/ft per foot.

A B

4′4′4′ 16′

x

1200 lb-ft

500 lb/ft

200 lb/ft

2700 lb-ft

w
w = k0 + k1x + k2x2

Problem 5/235

5/231 As part of a preliminary design study, the effects of 
wind loads on a 900-ft building are investigated. 
For the parabolic distribution of wind pressure 
shown in the fi gure, compute the force and moment 
reactions at the base A of the building due to the 
wind load. The depth of the building (perpendicular 
to the paper) is 200 ft.

900′

x

p

A

12 lb/ft2

p = k x

Problem 5/231

 c5/232 Regard the tall building of Prob. 5/231 as a uni-
form upright beam. Determine and plot the shear 
force and bending moment in the structure as func-
tions of the height x above the ground. Evaluate 
your expressions at x 5 450 ft.

5/233 The tapered body has a horizontal cross section 
which is circular. Determine the height h of its mass 
center above the base of the homogeneous body.

2R

R

H h

Problem 5/233
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5/239 Determine the length of cable which will allow 
a sag-to-span ratio of 1/10 for the confi guration 
shown.

1200 m

Problem 5/239

5/240 A 5-m-wide vertical gate is rigidly connected to 
a 3-m-wide panel which provides a seal for an 
underground drain passage during severe storms. 
For the situation shown, determine the depth h of 
fresh water which will cause the gate to begin to 
open and drain water into the underground pas-
sage. A 1.5-m cube of concrete is used to hold the 
horizontal 3-m-wide panel fl ush with the ground 
during normal operating conditions.

5-m-wide gate

3-m-wide panel
h

B A2 m 2 m

1.5 m

1.5 m

3 m

Problem 5/240

 *Computer-Oriented Problems

 *5/241 Construct the shear and moment diagrams for the 
loaded beam shown. Determine the maximum 
bending moment and its location.

4 m

4.8 kN/m

2.4 kN/m

A B
x

w = w0 + kx2y

w

Problem 5/241

5/236 Determine the reactions at A and B for the beam 
subjected to the concentrated couple and combina-
tion of distributed loads.

1 m
4 m 2 m 2 m3 m 3 m

A
C

B

D
8 kN.m

4 kN/m

2.5 kN/m
2 kN/m

Elliptical

Problem 5/236

5/237 Determine the total surface area and volume of 
the complete solid body shown in cross section.

2r

r

x

y

r

Problem 5/237

5/238 The two beams are connected by an ideal pin at C. 
Draw the shear and moment diagrams for the com-
bined beam. State the maximum magnitude of the 
bending moment for each beam and where it oc-
curs. (Hint: Begin by drawing a free-body diagram 
of beam CD to fi nd the reaction at D.)

10′

A
B C D

10′
Pin

4′ 2′6′

1500 lb-ft

1400 lb

300 lb/ft

150 lb/ft
2500 lb-ft

Problem 5/238
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600 mm

90 mm

180 mmx

Problem 5/244

 *5/245 A cable weighing 10 lb/ft is attached to point A 
and passes over the small pulley at B on the same 
horizontal line with A. Determine the sag h and 
length S of the cable between A and B if a tension 
of 2500 lb is applied to the cable over the pulley.

300′
T = 2500 lb

h

A
B

Problem 5/245

 *5/246 An underwater detection instrument A is attached 
to the midpoint of a 100-m cable suspended be-
tween two ships 50 m apart. Determine the depth 
h of the instrument, which has negligible mass. 
Does the result depend on the mass of the cable or 
on the density of the water?

A

h

50 m

Problem 5/246

 *5/242 The 308 cylindrical sector is made of copper and is 
attached as shown to the semicylinder made of alu-
minum. Determine the angle � for the equilibrium 
position of the cylinder resting on a horizontal 
surface.

θ

r

30°

Copper

r

Aluminum

Problem 5/42

 *5/243 Find the angle � which will place the mass center 
of the thin ring a distance r/10 from the center of 
the arc.

θ

r

Problem 5/243

 *5/244 A homogeneous charge of solid propellant for a 
rocket is in the shape of the circular cylinder 
formed with a concentric hole of depth x. For the 
dimensions shown, plot X , the x-coordinate of 
the mass center of the propellant, as a function of 
the depth x of the hole from x 5 0 to x 5 600 mm. 
Determine the maximum value of X  and show that 
it is equal to the corresponding value of x.
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 *5/248 The small-remotely controlled robotic vehicle of 
Probs. 5/177 and 5/178 is shown again here. The 
200-m tether has a slight negative buoyancy in that 
a net downward force of 0.025 N per meter of its 
length acts on it. Using its onboard variable hori-
zontal and vertical thrusters, the vehicle maintains 
the constant 10-m depth as it moves slowly to the 
right. If the maximum horizontal thrust is 10 N 
and the maximum vertical thrust is 7 N, determine 
the maximum permissible value of the distance d 
and state which thruster is the limiting one.

d

10 m

A

B

Tv

Th

Problem 5/248

 *5/247 A length of power cable is suspended from the two 
towers as shown. The cable has a mass of 20 kg per 
meter of cable. If the maximum allowable cable 
tension is 75 kN, determine the mass � of ice per 
meter which can form on the cable without the 
maximum allowable tension being exceeded. If 
additional stretch in the cable is neglected, does the 
addition of the ice change the cable confi guration?

10 m

200 mA

B
30 m

Problem 5/247
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FRICTION6

6/1  INTRODUCTION

In the preceding chapters we have usually assumed that the forces 
of action and reaction between contacting surfaces act normal to the 
surfaces. This assumption characterizes the interaction between smooth 
surfaces and was illustrated in Example 2 of Fig. 3/1. Although this 
ideal assumption often involves only a relatively small error, there are 
many problems in which we must consider the ability of contacting sur-
faces to support tangential as well as normal forces. Tangential forces 
generated between contacting surfaces are called friction forces and 
occur to some degree in the interaction between all real surfaces. When-
ever a tendency exists for one contacting surface to slide along another 
surface, the friction forces developed are always in a direction to oppose 
this tendency.

In some types of machines and processes we want to minimize the 
retarding effect of friction forces. Examples are bearings of all types, 
power screws, gears, the fl ow of fl uids in pipes, and the propulsion of 
aircraft and missiles through the atmosphere. In other situations we 
wish to maximize the effects of friction, as in brakes, clutches, belt 
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drives, and wedges. Wheeled vehicles depend on friction for both start-
ing and stopping, and ordinary walking depends on friction between the 
shoe and the ground.

Friction forces are present throughout nature and exist in all ma-
chines no matter how accurately constructed or carefully lubricated. A 
machine or process in which friction is small enough to be neglected is 
said to be ideal. When friction must be taken into account, the machine 
or process is termed real. In all cases where there is sliding motion be-
tween parts, the friction forces result in a loss of energy which is dissi-
pated in the form of heat. Wear is another effect of friction.

SECTION A FRICTIONAL PHENOMENA

6/2  TYPES OF FRICT ION

In this article we briefl y discuss the types of frictional resistance 
encountered in mechanics. The next article contains a more detailed 
account of the most common type of friction, dry friction.

(a) Dry Friction. Dry friction occurs when the unlubricated surfaces 
of two solids are in contact under a condition of sliding or a tendency to 
slide. A friction force tangent to the surfaces of contact occurs both dur-
ing the interval leading up to impending slippage and while slippage 
takes place. The direction of this friction force always opposes the mo-
tion or impending motion. This type of friction is also called Coulomb 
friction. The principles of dry or Coulomb friction were developed 
largely from the experiments of Coulomb in 1781 and from the work of 
Morin from 1831 to 1834. Although we do not yet have a comprehensive 
theory of dry friction, in Art. 6/3 we describe an analytical model suffi -
cient to handle the vast majority of problems involving dry friction. This 
model forms the basis for most of this chapter.

(b) Fluid Friction. Fluid friction occurs when adjacent layers in a 
fl uid (liquid or gas) are moving at different velocities. This motion 
causes frictional forces between fl uid elements, and these forces  depend 
on the relative velocity between layers. When there is no relative veloc-
ity, there is no fl uid friction. Fluid friction depends not only on the 
 velocity gradients within the fl uid but also on the viscosity of the fl uid, 
which is a measure of its resistance to shearing action between fl uid 
layers. Fluid friction is treated in the study of fl uid mechanics and will 
not be discussed further in this book.

(c) Internal Friction. Internal friction occurs in all solid materials 
which are subjected to cyclical loading. For highly elastic materials the 
recovery from deformation occurs with very little loss of energy due to 
internal friction. For materials which have low limits of elasticity and 
which undergo appreciable plastic deformation during loading, a consid-
erable amount of internal friction may accompany this deformation. 
The mechanism of internal friction is associated with the action of shear 
deformation, which is discussed in references on materials science. 
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 Because this book deals primarily with the external effects of forces, we 
will not discuss internal friction further.

6/3 DRY FRICT ION

The remainder of this chapter describes the effects of dry friction 
acting on the exterior surfaces of rigid bodies. We will now explain the 
mechanism of dry friction with the aid of a very simple experiment.

Mechanism of Dry Friction

Consider a solid block of mass m resting on a horizontal surface, as 
shown in Fig. 6/1a. We assume that the contacting surfaces have some 
roughness. The experiment involves the application of a horizontal force 
P which continuously increases from zero to a value suffi cient to move 
the block and give it an appreciable velocity. The free-body diagram of 
the block for any value of P is shown in Fig. 6/1b, where the tangential 
friction force exerted by the plane on the block is labeled F. This friction 
force acting on the body will always be in a direction to oppose motion or 
the tendency toward motion of the body. There is also a normal force 
N which in this case equals mg, and the total force R exerted by the sup-
porting surface on the block is the resultant of N and F.

A magnifi ed view of the irregularities of the mating surfaces, 
Fig. 6/1c, helps us to visualize the mechanical action of friction. Support 
is necessarily intermittent and exists at the mating humps. The direc-
tion of each of the reactions on the block, R1, R2, R3, etc., depends not 

Figure 6/1

Pm P

F

α
RN

mg

(a)

(c)

t

n

F

F =
 P

Fmax =   s Nμ Fk =   k Nμ

R1 R3R2

(b)

P

Static
friction

(no motion)

Kinetic
friction
(motion)

Impending
motion

(d)
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only on the geometric profi le of the irregularities but also on the extent 
of local deformation at each contact point. The total normal force N is the 
sum of the n-components of the R’s, and the total frictional force F is the 
sum of the t-components of the R’s. When the surfaces are in relative 
motion, the contacts are more nearly along the tops of the humps, and 
the t-components of the R’s are smaller than when the surfaces are at 
rest relative to one another. This observation helps to explain the well-
known fact that the force P necessary to maintain motion is generally 
less than that required to start the block when the irregularities are 
more nearly in mesh.

If we perform the experiment and record the friction force F as a 
function of P, we obtain the relation shown in Fig. 6/1d. When P is zero, 
equilibrium requires that there be no friction force. As P is increased, 
the friction force must be equal and opposite to P as long as the block 
does not slip. During this period the block is in equilibrium, and all 
forces acting on the block must satisfy the equilibrium equations. Fi-
nally, we reach a value of P which causes the block to slip and to move 
in the direction of the applied force. At this same time the friction force 
decreases slightly and abruptly. It then remains essentially constant 
for a time but then decreases still more as the velocity increases.

Static Friction

The region in Fig. 6/1d up to the point of slippage or impending mo-
tion is called the range of static friction, and in this range the value of 
the friction force is determined by the equations of equilibrium. This 
friction force may have any value from zero up to and including the 
maximum value. For a given pair of mating surfaces the experiment 
shows that this maximum value of static friction Fmax is proportional to 
the normal force N. Thus, we may write

 Fmax 5 �s N (6/1)

where �s is the proportionality constant, called the coeffi cient of static 
friction.

Be aware that Eq. 6/1 describes only the limiting or maximum value 
of the static friction force and not any lesser value. Thus, the equation 
applies only to cases where motion is impending with the friction force 
at its peak value. For a condition of static equilibrium when motion is 
not impending, the static friction force is

F , �s N

Kinetic Friction

After slippage occurs, a condition of kinetic friction accompanies the 
ensuing motion. Kinetic friction force is usually somewhat less than the 
maximum static friction force. The kinetic friction force Fk is also pro-
portional to the normal force. Thus,

 Fk 5 �k 

N (6/2)



where �k is the coeffi cient of kinetic friction. It follows that �k is gener-
ally less than �s. As the velocity of the block increases, the kinetic fric-
tion decreases somewhat, and at high velocities, this decrease may be 
signifi cant. Coeffi cients of friction depend greatly on the exact condition 
of the surfaces, as well as on the relative velocity, and are subject to con-
siderable uncertainty.

Because of the variability of the conditions governing the action of 
friction, in engineering practice it is frequently diffi cult to distinguish 
between a static and a kinetic coeffi cient, especially in the region of 
transition between impending motion and motion. Well-greased screw 
threads under mild loads, for example, often exhibit comparable fric-
tional resistance whether they are on the verge of turning or whether 
they are in motion.

In the engineering literature we frequently fi nd expressions for max-
imum static friction and for kinetic friction written simply as F 5 �N. It 
is understood from the problem at hand whether maximum static fric-
tion or kinetic friction is described. Although we will frequently distin-
guish between the static and kinetic coeffi cients, in other cases no 
distinction will be made, and the friction coeffi cient will be written 
 simply as �. In those cases you must decide which of the friction condi-
tions, maximum static friction for impending motion or kinetic fric-
tion, is involved. We emphasize again that many problems involve a 
static friction force which is less than the maximum value at impend-
ing  motion, and therefore under these conditions the friction relation 
Eq. 6/1 cannot be used.

Figure 6/1c shows that rough surfaces are more likely to have 
larger angles between the reactions and the n-direction than are 
smoother surfaces. Thus, for a pair of mating surfaces, a friction coef-
fi cient refl ects the roughness, which is a geometric property of the 
surfaces. With this geometric model of friction, we describe mating 
surfaces as “smooth” when the friction forces they can support are 
 negligibly small. It is meaningless to speak of a coeffi cient of friction 
for a single surface.

Friction Angles

The direction of the resultant R in Fig. 6/1b measured from the 
direction of N is specifi ed by tan � 5 F/N. When the friction force 
reaches its limiting static value Fmax, the angle � reaches a maximum 
value �s. Thus,

tan �s 5 �s

When slippage is occurring, the angle � has a value �k corresponding to 
the kinetic friction force. In like manner,

tan �k 5 �k

In practice we often see the expression tan � 5 �, in which the 
 coeffi cient of friction may refer to either the static or the kinetic case, 

This tree surgeon depends on the 
friction between the rope and the 
mechanical devices through which 
the rope can slip.

B
la

ck
o

u
t 

C
o

n
ce

p
ts

/S
to

ck
p

h
o

to
p

ro
, I

n
c

 Art icle 6/3   Dry Frict ion  335



336  Chapter 6   Frict ion

depending on the particular problem. The angle �s is called the angle of 
static friction, and the angle �k is called the angle of kinetic friction. The 
friction angle for each case clearly defi nes the limiting direction of the 
total reaction R between two contacting surfaces. If motion is impend-
ing, R must be one element of a right-circular cone of vertex angle 2�s, 
as shown in Fig. 6/2. If motion is not impending, R is within the cone. 
This cone of vertex angle 2�s is called the cone of static friction and rep-
resents the locus of possible directions for the reaction R at impending 
motion. If motion occurs, the angle of kinetic friction applies, and the 
reaction must lie on the surface of a slightly different cone of vertex 
angle 2�k. This cone is the cone of kinetic friction.

Factors Affecting Friction

Further experiment shows that the friction force is essentially in-
dependent of the apparent or projected area of contact. The true con-
tact area is much smaller than the projected value, since only the peaks 
of the contacting surface irregularities support the load. Even rela-
tively small normal loads result in high stresses at these contact points. 
As the normal force increases, the true contact area also increases as 
the material undergoes yielding, crushing, or tearing at the points of 
contact.

A comprehensive theory of dry friction must go beyond the mechan-
ical explanation presented here. For example, there is evidence that 
 molecular attraction may be an important cause of friction under condi-
tions where the mating surfaces are in very close contact. Other factors 
which infl uence dry friction are the generation of high local tempera-
tures and adhesion at contact points, relative hardness of mating sur-
faces, and the presence of thin surface fi lms of oxide, oil, dirt, or other 
substances.

Some typical values of coeffi cients of friction are given in Table D/1, 
Appendix D. These values are only approximate and are subject to con-
siderable variation, depending on the exact conditions prevailing. They 
may be used, however, as typical examples of the magnitudes of fric-
tional effects. To make a reliable calculation involving friction, the 
 appropriate friction coeffi cient should be determined by experiments 
which duplicate the surface conditions of the application as closely as 
possible.

Figure 6/2

Cone of
static friction

2  kφ
2  sφ

Cone of
kinetic friction

R



The foregoing discussion applies to all dry contacting surfaces and, 
to a limited extent, to moving surfaces which are partially lubricated.

TYPES OF FRICT ION PROBLEMS

We can now recognize the following three types of problems encoun-
tered in applications involving dry friction. The fi rst step in solving a 
friction problem is to identify its type.

 1. In the fi rst type of problem, the condition of impending motion is 
known to exist. Here a body which is in equilibrium is on the verge 
of slipping, and the friction force equals the limiting static friction 
Fmax 5 �sN. The equations of equilibrium will, of course, also hold.

 2. In the second type of problem, neither the condition of impending 
motion nor the condition of motion is known to exist. To determine 
the actual friction conditions, we fi rst assume static equilibrium and 
then solve for the friction force F necessary for equilibrium. Three 
outcomes are possible:

 (a) F , (Fmax 5 �sN): Here the friction force necessary for 
equilibrium can be supported, and therefore the body is in 
static equilibrium as assumed. We emphasize that the actual 
friction force F is less than the limiting value Fmax given by 
Eq. 6/1 and that F is determined solely by the equations of 
equilibrium.

 (b) F 5 (Fmax 5 �sN): Since the friction force F is at its maximum 
value Fmax, motion impends, as discussed in problem type (1). 
The assumption of static equilibrium is valid.

 (c) F . (Fmax 5 �sN): Clearly this condition is impossible, because 
the surfaces cannot support more force than the maximum �sN. 
The assumption of equilibrium is therefore invalid, and motion 
occurs. The friction force F is equal to �kN from Eq. 6/2.

 3. In the third type of problem, relative motion is known to exist 
 between the contacting surfaces, and thus the kinetic coeffi cient of 
friction clearly applies. For this problem type, Eq. 6/2 always gives 
the kinetic friction force directly.

K
ey

 Concepts
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Sample Problem 6/1

Determine the maximum angle � which the adjustable incline may have 
with the horizontal before the block of mass m begins to slip. The coeffi cient of 
static friction between the block and the inclined surface is �s.

Solution. The free-body diagram of the block shows its weight W 5 mg, the 
normal force N, and the friction force F exerted by the incline on the block. The 
friction force acts in the direction to oppose the slipping which would occur if no 
friction were present.

Equilibrium in the x- and y-directions requires

[©Fx 5 0]  mg sin � 2 F 5 0   F 5 mg sin �

[©Fy 5 0]  2mg cos � 1 N 5 0   N 5 mg cos �

Dividing the fi rst equation by the second gives F/N 5 tan �. Since the maximum 
angle occurs when F 5 Fmax 5 �sN, for impending motion we have

 �s 5 tan �max  or  �max 5 tan21 �s Ans.

Sample Problem 6/2

Determine the range of values which the mass m0 may have so that the 100-kg 
block shown in the fi gure will neither start moving up the plane nor slip down 
the plane. The coeffi cient of static friction for the contact surfaces is 0.30.

Solution.  The maximum value of m0 will be given by the requirement for mo-
tion impending up the plane. The friction force on the block therefore acts down 
the plane, as shown in the free-body diagram of the block for Case I in the fi gure. 
With the weight mg 5 100(9.81) 5 981 N, the equations of equilibrium give

[©Fy 5 0] N 2 981 cos 208 5 0  N 5 922 N

[Fmax 5 �s N]  Fmax 5 0.30(922) 5 277 N

[©Fx 5 0]  m0(9.81) 2 277 2 981 sin 208 5 0  m0 5 62.4 kg Ans.

The minimum value of m0 is determined when motion is impending down the 
plane. The friction force on the block will act up the plane to oppose the ten-
dency to move, as shown in the free-body diagram for Case II. Equilibrium in the 
x-direction requires

[©Fx 5 0] m0(9.81) 1 277 2 981 sin 208 5 0  m0 5 6.01 kg Ans.

Thus, m0 may have any value from 6.01 to 62.4 kg, and the block will remain at 
rest.

In both cases equilibrium requires that the resultant of Fmax and N be con-
current with the 981-N weight and the tension T.

1

2

1

Helpful Hints

1  We choose reference axes along 
and normal to the direction of F to 
avoid resolving both F and N into 
components.

2  This problem describes a very simple 
way to determine a static coeffi cient 
of friction. The maximum value of � 
is known as the angle of repose.

Helpful Hint

1  We see from the results of Sample 
Problem 6/1 that the block would 
slide down the incline without the 
restraint of attachment to m0 since 
tan 208 . 0.30. Thus, a value of m0 will 
be required to maintain equilibrium.

20° m0

100 kg

20°

981 N

N

Case I

x

y

Fmax

Fmax

T = m0g

20°

981 N

N

Case II

x

y

T = m0g

m

θ
sμ

x

y

F N

W = mg

θ



Sample Problem 6/3

Determine the magnitude and direction of the friction force acting on the 
100-kg block shown if, fi rst, P 5 500 N and, second, P 5 100 N. The coeffi cient of 
static friction is 0.20, and the coeffi cient of kinetic friction is 0.17. The forces are 
applied with the block initially at rest.

Solution. There is no way of telling from the statement of the problem whether 
the block will remain in equilibrium or whether it will begin to slip following the 
application of P. It is therefore necessary that we make an assumption, so we will 
take the friction force to be up the plane, as shown by the solid arrow. From the 
free-body diagram a balance of forces in both x- and y-directions gives

[©Fx 5 0]  P cos 208 1 F 2 981 sin 208 5 0

[©Fy 5 0]  N 2 P sin 208 2 981 cos 208 5 0

Case I.  P 5 500 N
Substitution into the fi rst of the two equations gives

 F 5 2134.3 N

The negative sign tells us that if the block is in equilibrium, the friction force act-
ing on it is in the direction opposite to that assumed and therefore is down the 
plane, as represented by the dashed arrow. We cannot reach a conclusion on the 
magnitude of F, however, until we verify that the surfaces are capable of sup-
porting 134.3 N of friction force. This may be done by substituting P 5 500 N 
into the second equation, which gives

 N 5 1093 N

The maximum static friction force which the surfaces can support is then

[Fmax 5 �s N ] Fmax 5 0.20(1093) 5 219 N

Since this force is greater than that required for equilibrium, we conclude that 
the assumption of equilibrium was correct. The answer is, then,

 F 5 134.3 N down the plane Ans.

Case II. P 5 100 N
Substitution into the two equilibrium equations gives

 F 5 242 N  N 5 956 N

But the maximum possible static friction force is

[Fmax 5 �s N ] Fmax 5 0.20(956) 5 191.2 N

It follows that 242 N of friction cannot be supported. Therefore, equilibrium cannot 
exist, and we obtain the correct value of the friction force by using the kinetic coef-
fi cient of friction accompanying the motion down the plane. Hence, the answer is

[Fk 5 �k N ] F 5 0.17(956) 5 162.5 N up the plane Ans.

1

Helpful Hint

1  We should note that even though ©Fx 
is no longer equal to zero, equilibrium 
does exist in the y-direction, so that 
©Fy 5 0. Therefore, the normal force 
N is 956 N whether or not the block is 
in equilibrium.

20°

P 100 kg

20°

100(9.81) = 981 N

P

N

F

x

y

F
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Sample Problem 6/4

The homogeneous rectangular block of mass m, width b, and height H is 
placed on the horizontal surface and subjected to a horizontal force P which 
moves the block along the surface with a constant velocity. The coeffi cient of ki-
netic friction between the block and the surface is �k. Determine (a) the great-
est value which h may have so that the block will slide without tipping over and 
(b) the location of a point C on the bottom face of the block through which the 
resultant of the friction and normal forces acts if h 5 H/2.

Solution.  (a) With the block on the verge of tipping, we see that the entire re-
action between the plane and the block will necessarily be at A. The free-body 
diagram of the block shows this condition. Since slipping occurs, the friction 
force is the limiting value �kN, and the angle � becomes � 5 tan21 �k. The resul-
tant of Fk and N passes through a point B through which P must also pass, since 
three coplanar forces in equilibrium are concurrent. Hence, from the geometry 
of the block

 tan � 5 �k 5
b/2
h

   h 5
b

2�k
 Ans.

If h were greater than this value, moment equilibrium about A would not be 
satisfi ed, and the block would tip over.

Alternatively, we may fi nd h by combining the equilibrium requirements for 
the x- and y-directions with the moment-equilibrium equation about A. Thus,

[©Fy 5 0]  N 2 mg 5 0  N 5 mg

[©Fx 5 0]  Fk 2 P 5 0  P 5 Fk 5 �k N 5 �kmg

[©MA 5 0]  Ph 2 mg 
b
2

5 0   h 5
mgb
2P

5
mgb

2�kmg
5

b
2�k

  Ans.

(b) With h 5 H/2 we see from the free-body diagram for case (b) that the re-
sultant of Fk and N passes through a point C which is a distance x to the left of 
the vertical centerline through G. The angle � is still � 5 � 5 tan21 �k as long as 
the block is slipping. Thus, from the geometry of the fi gure we have

 
x

H/2
5 tan � 5 �k   so  x 5 �k H/2 Ans.

If we were to replace �k by the static coeffi cient �s, then our solutions would 
describe the conditions under which the block is (a) on the verge of tipping and 
(b) on the verge of slipping, both from a rest position.

1

2

Helpful Hints

1  Recall that the equilibrium equa-
tions apply to a body moving with a 
constant velocity (zero acceleration) 
just as well as to a body at rest.

2  Alternatively, we could equate the 
moments about G to zero, which 
would give us F(H/2) 2 Nx 5 0. Thus, 
with Fk 5 �kN we get x 5 �xH/2.

P
m

b

H

h

P
G

mg

θ

θ

x

y

B

A

N

Fk

h

b—
2

P
G

mg
θ

θ

C

N

xFk

H—
2



Sample Problem 6/5

The three fl at blocks are positioned on the 308 incline as shown, and a force 
P parallel to the incline is applied to the middle block. The upper block is pre-
vented from moving by a wire which attaches it to the fi xed support. The coeffi -
cient of static friction for each of the three pairs of mating surfaces is shown. 
Determine the maximum value which P may have before any slipping takes 
place.

Solution. The free-body diagram of each block is drawn. The friction forces 
are assigned in the directions to oppose the relative motion which would occur if 
no friction were present. There are two possible conditions for impending mo-
tion. Either the 50-kg block slips and the 40-kg block remains in place, or the 50-
and 40-kg blocks move together with slipping occurring between the 40-kg 
block and the incline.

The normal forces, which are in the y-direction, may be determined  without 
reference to the friction forces, which are all in the x-direction. Thus,

[©Fy 5 0]  (30-kg) N1 2 30(9.81) cos 308 5 0  N1 5  255 N

  (50-kg) N2 2 50(9.81) cos 308 2 255 5 0  N2 5 680 N

  (40-kg) N3 2 40(9.81) cos 308 2 680 5 0   N3 5 1019 N

We will assume arbitrarily that only the 50-kg block slips, so that the 40-kg 
block remains in place. Thus, for impending slippage at both surfaces of the 
50-kg block, we have

[Fmax 5 �sN]  F1 5 0.30(255) 5 76.5 N  F2 5 0.40(680) 5 272 N

The assumed equilibrium of forces at impending motion for the 50-kg block 
gives

[©Fx 5 0]  P 2 76.5 2 272 1 50(9.81) sin 308 5 0  P 5 103.1 N

We now check on the validity of our initial assumption. For the 40-kg block 
with F2 5 272 N the friction force F3 would be given by

[©Fx 5 0]  272 1 40(9.81) sin 308 2 F3 5 0  F3 5 468 N

But the maximum possible value of F3 is F3 5 �sN3 5 0.45(1019) 5 459 N. Thus, 
468 N cannot be supported and our initial assumption was wrong. We conclude, 
therefore, that slipping occurs fi rst between the 40-kg block and the incline. 
With the corrected value F3 5 459 N, equilibrium of the 40-kg block for its im-
pending motion requires

[©Fx 5 0] F2 1 40(9.81) sin 308 2 459 5 0  F2 5 263 N

Equilibrium of the 50-kg block gives, fi nally,

[©Fx 5 0]  P 1 50(9.81) sin 308 2 263 2 76.5 5 0

  P 5 93.8 N  Ans.

Thus, with P 5 93.8 N, motion impends for the 50-kg and 40-kg blocks as a unit.

1

2

Helpful Hints

1  In the absence of friction the middle 
block, under the infl uence of P, 
would have a greater movement 
than the 40-kg block, and the fric-
tion force F2 will be in the direction 
to oppose this motion as shown.

2  We see now that F2 is less than 
�sN2 5 272 N.

P

30 kg

s =
 0.30

µ

s =
 0.40

µ

50 kg

40 kg

30°

s =
 0.45

µ

30°

y

P

F1

F2

N2

N1

50(9.81) N

x

y

F1

T

N1

30(9.81) N

x

x
y

F2

F3

N3

N2

40(9.81) N
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PROBLEMS

Introductory Problems

6/1 The force P is applied to the 90-kg crate, which is 
stationary before the force is applied. Determine the 
magnitude and direction of the friction force F ex-
erted by the horizontal surface on the crate if (a) P 5 
300 N, (b) P 5 400 N, and (c) P 5 500 N.

P

90 kg

s = 0.50μ

k = 0.40μ

Problem 6/1

6/2 The 50-kg block rests on the horizontal surface, and 
a force P 5 200 N, whose direction can be varied, is 
applied to the block. (a) If the block begins to slip 
when � is reduced to 308, calculate the coeffi cient of 
static friction �s between the block and the surface. 
(b) If P is applied with � 5 458, calculate the friction 
force F.

50 kg

P

θ

μs

Problem 6/2

6/3 The force P is applied to the 100-lb block when it is at 
rest. Determine the magnitude and direction of the 
friction force exerted by the surface on the block if 
(a) P 5 0, (b) P 5 40 lb, and (c) P 5 60 lb. (d) What 
value of P is required to initiate motion up the 
 incline? The coeffi cients of static and kinetic friction 
between the block and the incline are �s 5 0.25 and 
�k 5 0.20, respectively.

20°

15°

100 lb

P

s = 0.25μ
k = 0.20μ

Problem 6/3

6/4 The designer of a ski resort wishes to have a portion 
of a beginner’s slope on which a snowboarder’s speed 
will remain fairly constant. Tests indicate the average 
coeffi cients of friction between a snowboard and 
snow to be �s 5  0.11 and �k 5 0.09. What should be 
the slope angle � of the constant-speed section?

θ

Problem 6/4

6/5 The 180-lb exerciser is repeated from Prob. 3/23. The 
tension T 5 15 lb is developed against an exercise 
machine (not shown) as he is about to begin a biceps 
curl. Determine the minimum coeffi cient of static 
friction which must exist between his shoes and the 
fl oor if he is not to slip.

14″10″10″

62″

20°

C

G

BA

T

Problem 6/5



6/8 Determine the coeffi cient �k of kinetic friction which 
allows the homogeneous body to move down the 308 
incline at constant speed. Show that this constant-
speed motion is unlikely to occur if the ideal roller 
and small foot were reversed.

b
b

30°

A

B
mk

Problem 6/8

6/9 The uniform 14-ft pole weighs 150 lb and is sup-
ported as shown. Calculate the force P required to 
move the pole if the coeffi cient of static friction for 
each contact location is 0.40.

6′

14′

8′

A

B
P

Problem 6/9

6/6 Determine the minimum coeffi cient of static friction 
�s which will allow the drum with fi xed inner hub to 
be rolled up the 158 incline at a steady speed without 
slipping. What are the corresponding values of the 
force P and the friction force F?

30°

P

15°

m

r

r/2 sμ

Problem 6/6

6/7 The tongs are designed to handle hot steel tubes 
which are being heat-treated in an oil bath. For a 208 
jaw opening, what is the minimum coeffi cient of static 
friction between the jaws and the tube which will 
 enable the tongs to grip the tube without slipping?

F

F

20°

Problem 6/7
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6/10 A vehicle tire exerts the force P on the tire chock. 
(a) Determine the minimum coeffi cient of static fric-
tion common to both A and B so that the chock will 
not slip relative to the horizontal support surface. 
(b) If foot A rests on an oily spot for which the coeffi -
cient of static friction is essentially zero, determine 
the minimum friction coeffi cient at foot B for static 
equilibrium. State any assumptions.

38°

P

A B

46
mm

64
mm

58
mm

Problem 6/10

6/11 The 30-kg homogeneous cylinder of 400-mm diam-
eter rests against the vertical and inclined surfaces 
as shown. If the coeffi cient of static friction between 
the cylinder and the surfaces is 0.30, calculate the 
applied clockwise couple M which would cause the 
cylinder to slip.

M

30°

Problem 6/11

6/12 If the coeffi cient of static friction between block A 
and the incline is �s 5 0.30, determine the range of 
cylinder weights WB for which the system will re-
main in equilibrium. Neglect all pulley friction.

B WB

ms

100 lb

25°

A

Problem 6/12

Representative Problems

6/13 The 100-lb wheel rolls on its hub up the circular in-
cline under the action of the 25-lb weight attached 
to a cord around the rim. Determine the angle � at 
which the wheel comes to rest, assuming that fric-
tion is suffi cient to prevent slippage. What is the 
minimum coeffi cient of static friction which will 
permit this position to be reached with no slipping?

25 lb

24′′

100 lb

3′′

8′′

θ

Problem 6/13

6/14 A uniform ladder is positioned as shown for the 
purpose of maintaining the light fi xture suspended 
from the cathedral ceiling. Determine the minimum 
coeffi cient of static friction required at ends A and 
B to prevent slipping. Assume that the coeffi cient is 
the same at A and B.



3′
G

15′
75 lb

x

Problem 6/17

6/18 The uniform slender bar has an ideal roller at its 
upper end A. Determine the minimum value of the 
angle � for which equilibrium is possible for �s 5 0.25 
and for �s 5 0.50.

B105° θ
ms = 0.25, 0.50

A

Problem 6/18

6/19 Determine the range of mass m2 for which the sys-
tem is in equilibrium. The coeffi cient of static fric-
tion between the block and the incline is �s 5 0.25. 
Neglect friction associated with the pulley.

m2

m1

ms 20°

Problem 6/19

32′

24′

60°

B

A

Problem 6/14

6/15 If there is a small frictionless roller on end B of the 
ladder of Prob. 6/14, determine the minimum coef-
fi cient of static friction required at end A in order 
to provide equilibrium. Compare with the results of 
the previous problem.

6/16 The homogeneous rectangular block of mass m rests 
on the inclined plane which is hinged about a hori-
zontal axis through O. If the coeffi cient of static fric-
tion between the block and the plane is �, specify 
the conditions which determine whether the block 
tips before it slips or slips before it tips as the angle 
� is gradually increased.

a

O

b

θ

Problem 6/16

6/17 The 180-lb man with center of gravity G supports 
the 75-lb drum as shown. Find the greatest distance 
x at which the man can position himself without 
slipping if the coeffi cient of static friction between 
his shoes and the ground is 0.40.
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6/20 The right-angle body is to be withdrawn from the 
close-fi tting slot by the force P. Find the maximum 
distance y from the horizontal centerline at which P 
may be applied without binding. The body lies in a 
horizontal plane, and friction underneath the body 
is to be neglected. Take the coeffi cient of static fric-
tion along both sides of the slot to be �s.

P

c

b a

y

Problem 6/20

6/21 The inverted track T with freely fl oating cylinder C 
comprise a system which is designed to hold paper 
or other thin materials P in place. The coeffi cient of 
static friction is � for all interfaces. What minimum 
value of � ensures that the device will work no mat-
ter how heavy the supported material P is?

T

P

C

30°

Problem 6/21

6/22 The top view of a bifold door is shown. The designer 
is considering a slider at B rather than the usual 
roller. Determine the critical value of the coeffi cient 
of static friction below which the door will close 
from the position shown under the action of the 
force P.

b–
2

b–
2

PA

B

b

O

ms30°

Problem 6/22

6/23 A 180-lb man pulls the 100-lb cart up the incline at 
steady speed. Determine the minimum coeffi cient 
�s of static friction for which the man’s shoes will 
not slip. Also determine the distance s required for 
equilibrium of the man’s body.

s

100 lb

10

3

40°

7″

34″

A

G

Problem 6/23

6/24 Determine the horizontal force P required to cause 
slippage to occur. The friction coeffi cients for the 
three pairs of mating surfaces are indicated. The top 
block is free to move vertically.

100 kg

= 0.60
50 kg

P

20 kg

μ
= 0.40μ

= 0.30μ

Problem 6/24

6/25 The sliding glass door rolls on the two small lower 
wheels A and B. Under normal conditions the 
upper wheels do not touch their horizontal guide. 
(a) Compute the force P required to slide the door 
at a steady speed if wheel A becomes “frozen” and 
does not turn in its bearing. (b) Rework the problem 
if wheel B becomes frozen instead of wheel A. The 



60°

75 mm
Pitch diameter

m

M

O

s, kµ µ

Problem 6/27

6/28 Determine the magnitude P of the horizontal force 
 required to initiate motion of the block of mass m0 
for the cases (a) P is applied to the right and (b) P is 
applied to the left. Complete a general solution in 
each case, and then evaluate your expression for 
the values � 5 308, m 5 m0 5 3 kg, �s 5 0.60, and 
�k 5 0.50.

θ

m

m0

B

A

P (b)P (a)
s,   kμ μ

Problem 6/28

6/29 A clockwise couple M is applied to the circular cylin-
der as shown. Determine the value of M required 
to initiate motion for the conditions mB 5 3 kg,
mC 5 6 kg, (� s)B 5 0.50, (�s)C 5 0.40, and r 5 0.2 m.
Friction between the cylinder C and the block B is 
negligible.

mB

mC

s Cμ(   ) s Bμ(   )r
M

Problem 6/29

 coeffi cient of kinetic friction between a frozen wheel 
and the supporting surface is 0.30, and the center 
of mass of the 140-lb door is at its geometric center. 
Neglect the small diameter of the wheels.

40′′

28′′
6′′ 6′′

40′′

P

BA

Problem 6/25

6/26 The fi gure shows a device, called a jam cleat, which 
secures a rope under tension by reason of large fric-
tion forces developed. For the position shown deter-
mine the minimum coeffi cient �s of static friction 
between the rope and the cam surfaces for which the 
cleat will be self-locking. Also fi nd the magnitude of 
the total reaction R on each of the cam bearings.

15 mm

72 mm

600 N

Problem 6/26

6/27 The rack has a mass m 5 75 kg. What moment 
M must be exerted by the gear wheel in order to 
(a) lower and (b) raise the rack at a slow steady 
speed on the greased 608 rail? The coeffi cients of 
static and kinetic friction are �s 5 0.10 and �k 5 
0.05. The fi xed motor which drives the gear wheel 
is not shown.
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6/30 The horizontal force P 5 50 N is applied to the 
upper block with the system initially stationary. 
The block masses are mA 5 10 kg and mB 5 5 kg. 
Determine if and where slippage occurs for the fol-
lowing conditions on the coeffi cients of static fric-
tion: (a) �1 5 0.40, �2 5 0.50 and (b) �1 5 0.30, �2 5 
0.60. Assume that the coeffi cients of kinetic friction 
are 75 percent of the static values.

μ1

μ2

P B

A15°

Problem 6/30

6/31 Reconsider the system of Prob. 6/30. If P 5 40 N, 
�1 5 0.30, and �2 5 0.50, determine the force which 
block B exerts on block A. Assume that the coeffi -
cients of kinetic friction are 75 percent of the static 
values. The block masses remain mA 5 10 kg and 
mB 5 5 kg.

6/32 The two uniform slender bars constructed from the 
same stock material are freely pinned together at 
B. Determine the minimum angle � at which slip-
ping does not occur at either contact point A or C. 
The coeffi cient of static friction at both A and C is 
�s 5 0.50. Consider only motion in the vertical plane 
shown.

CA

B

l

l l

θθ

Problem 6/32

6/33 Determine the distance s to which the 90-kg painter 
can climb without causing the 4-m ladder to slip 
at its lower end A. The top of the 15-kg ladder has 
a small roller, and at the ground the coeffi cient of 
static friction is 0.25. The mass center of the painter 
is directly above her feet.

1.5 m

s

4 m

B

A

Problem 6/33

6/34 The 1600-kg car is just beginning to negotiate the 
168 ramp. If the car has rear-wheel drive, determine 
the minimum coeffi cient of static friction required 
at B.

B A

1070
mm

16°

1475 mm

G

315 mm

185 mm

Problem 6/34

6/35 Repeat Prob. 6/34, but now the car has all-wheel 
drive. Assume that slipping occurs at A and B 
 simultaneously.

6/36 The homogeneous square body is positioned as 
shown. If the coeffi cient of static friction at B is 0.40, 
determine the critical value of the angle � below 
which slipping will occur. Neglect friction at A.

B

s

s

A

60° θ

Problem 6/36



6/37 The uniform rod with center of mass at G is sup-
ported by the pegs A and B, which are fi xed in the 
wheel. If the coeffi cient of friction between the rod 
and pegs is �, determine the angle � through which 
the wheel may be slowly turned about its horizontal 
axis through O, starting from the position shown, 
before the rod begins to slip. Neglect the diameter of 
the rod compared with the other dimensions.

B
G

A

a

a b

θ

Problem 6/37

6/38 The solid semicylinder of mass m and radius r is 
rolled through an angle � by the horizontal force P. 
If the coeffi cient of static friction is �s, determine 
the angle � at which the cylinder begins to slip on 
the horizontal surface as P is gradually increased. 
What value of �s would permit � to reach 908?

Pθ

r

Problem 6/38

6/39 The uniform slender rod of mass m and length L is 
initially at rest in a centered horizontal position on 
the fi xed circular surface of radius R 5 0.6L. If a 
force P normal to the bar is gradually applied to its 
end until the bar begins to slip at the angle � 5 208, 
determine the coeffi cient of static friction �s.

P

R

L /2 L /2θ

Problem 6/39

6/40 The body is constructed of an aluminum cylinder 
with an attached half-cylinder of steel. Determine 
the ramp angle � for which the body will remain in 
equilibrium when released in the position shown 
where the diametral section of the steel half-cylinder 
is vertical. Also calculate the necessary minimum 
coeffi cient of static friction �s.

θ

16 mm

80
mm

St Al

40 mm

Problem 6/40
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6/41 The movable left-hand jaw of the bar clamp can be 
slid along the frame to increase the capacity of the 
clamp. To prevent slipping of the jaw on the frame 
when the clamp is under load, the dimension x must 
exceed a certain minimum value. For given values 
of a and b and a static friction coeffi cient �s, specify 
this design minimum value of x to prevent slipping 
of the jaw.

x

b

a

Problem 6/41

6/42 The semicylindrical shell of mass m and radius r is 
rolled through an angle � by the horizontal force P 
applied to its rim. If the coeffi cient of friction is �s, 
determine the angle � at which the shell slips on 
the horizontal surface as P is gradually increased. 
What value of �s will permit � to reach 908?

Pθ

r

Problem 6/42

6/43 The system is released from rest. Determine the 
force (magnitude and direction) which block A 
exerts on block B if mA 5 2 kg, mB 5 3 kg, P 5 50 N, 
� 5 408, �1 5 0.70, and �2 5 0.50, where �1 and �2 
are coeffi cients of static friction. The corresponding 
coeffi cients of kinetic friction are 75 percent of the 
respective static values.

P

B

A

θ

1μ

2μ

Problem 6/43

6/44 All conditions of the previous problem are repeated, 
except now the angle � 5 308. If the system is re-
leased from rest, determine the magnitude and di-
rection of the force which block A exerts on block B.

6/45 Determine the maximum value of the angle � for 
which the uniform slender rod will remain in equi-
librium. The coeffi cient of static friction at A is 
�A 5 0.80, and friction associated with the small 
roller at B may be neglected.

A

R

B

2R

Problem 6/45

6/46 The single-lever block brake prevents rotation of the 
fl ywheel under a counterclockwise torque M. Find 
the force P required to prevent rotation if the coeffi -
cient of static friction is �s. Explain what would hap-
pen if the geometry permitted b to equal �se.



l

b e

r
M

P

Problem 6/46

6/47 The two 5-kg blocks are connected by a light rod, 
and the assembly lies in a vertical plane. The sys-
tem is released from rest with � 5 608. (a) Deter-
mine the minimum value of the coeffi cient of static 
friction common to both A and B for which the sys-
tem will remain in static equilibrium. (b) If �s 5 0
at B, what is the minimum value of �s at A for static 
equilibrium?

B

60°

A

θ

Problem 6/47

 *6/48 The two values of the coeffi cients of static friction 
for blocks A and B of Prob. 6/47 are (�s)A 5 0.40 and 
(�s)B 5 0.30. If the system is released from rest in 
the arbitrary position �, determine the minimum 
value of � for which static equilibrium is possible. 
The masses of both A and B remain 5 kg, and the 
connecting bar AB is light.

6/49 A woman pedals her bicycle up a 5-percent grade on 
a slippery road at a steady speed. The woman and 
bicycle have a combined mass of 82 kg with mass 
center at G. If the rear wheel is on the verge of 
slipping, determine the coeffi cient of friction �s be-
tween the rear tire and the road. If the coeffi cient 

of friction were doubled, what would be the friction 
force F acting on the rear wheel? (Why may we ne-
glect friction under the front wheel?)

700
 mm

460
mm

G

1080 mm
100

5

Problem 6/49

6/50 The double-block brake shown is applied to the 
 fl ywheel by means of the action of the spring. To 
release the brake, a force P is applied to the con-
trol rod. In the operating position with P 5 0, the 
spring is compressed 30 mm. Select a spring with 
an appropriate constant (stiffness) k which will 
provide suffi cient force to brake the fl ywheel under 
the torque M 5 100 N?m if the applicable coeffi cient 
of friction for both brake shoes is 0.20. Neglect the 
dimensions of the shoes.

CD

A B

P

300 mm

80 mm

250 mm

250 mm

400 mm

M

Problem 6/50
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fi t allows it to rotate slightly clockwise on the pipe. 
Determine (a) the minimum coeffi cients of static 
friction �s between the contacting surfaces at A and 
B so that the end fi tting will not slip under load and 
(b) the force R supported by the pin at O under a 
clamping force F 5 800 lb. The spring force under 
the lever projection is negligible.

0.840′′

1′′

F F C

C

F

A

B

O1′′–
4

1
1′′–
2

1′′–
8

1

Problem 6/52

6/51 The uniform slender bar of length L 5 1.8 m has 
an ideal roller at its upper end A. The coeffi cient of 
static friction along the horizontal surface varies 
according to �s 5 �0(1 2 e2x), where x is in meters 
and �0 5 0.50. Determine the minimum angle � for 
which equilibrium is possible.

B

x

A

L

θ s = 0(1 − e–x)μ μ

Problem 6/51

6/52 The pipe-clamp ends are designed to fi t a standard 
1
2-in. steel water pipe (outside diameter 5 0.840 in.). 
The right-hand fi tting slides loosely along the pipe 
when the lever C is held up to release its contact 
with the pipe, as can be seen from the  expanded 
view. Under a clamping load F, the right-hand 
fi tting contacts the pipe at A and B only, as its loose 
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SECTION B  APPLICATIONS OF FRICTION
IN MACHINES

In Section B we investigate the action of friction in various machine 
applications. Because the conditions in these applications are normally 
either limiting static or kinetic friction, we will use the variable � 
(rather than �s or �k) in general. Depending on whether motion is im-
pending or actually occurring, � can be interpreted as either the static 
or kinetic coeffi cient of friction.

6/4  WEDGES

A wedge is one of the simplest and most useful machines. A wedge is 
used to produce small adjustments in the position of a body or to apply 
large forces. Wedges largely depend on friction to function. When sliding 
of a wedge is impending, the resultant force on each sliding surface of 
the wedge will be inclined from the normal to the surface by an amount 
equal to the friction angle. The component of the resultant along the 
 surface is the friction force, which is always in the direction to oppose 
the motion of the wedge relative to the mating surfaces.

Figure 6/3a shows a wedge used to position or lift a large mass m, 
where the vertical loading is mg. The coeffi cient of friction for each pair 
of surfaces is � 5 tan �. The force P required to start the wedge is found 
from the equilibrium triangles of the forces on the load and on the 
wedge. The free-body diagrams are shown in Fig. 6/3b, where the reac-
tions are inclined at an angle � from their respective normals and are in 
the direction to oppose the motion. We neglect the mass of the wedge. 
From the free-body diagrams we write the force equilibrium conditions 
by equating to zero the sum of the force vectors acting on each body. 
The solutions of these equations are shown in part c of the fi gure, where 
R2 is found fi rst in the upper diagram using the known value of mg. The 
force P is then found from the lower triangle once the value of R2 has 
been established.

If P is removed and the wedge remains in place, equilibrium of the 
wedge requires that the equal reactions R1 and R2 be collinear as 
shown in Fig. 6/4, where the wedge angle � is taken to be less than �. 
Part a of the fi gure represents impending slippage at the upper surface, 
and part c of the fi gure represents impending slippage at the lower sur-
face. In order for the wedge to slide out of its space, slippage must occur 
at both surfaces simultaneously; otherwise, the wedge is self-locking, 
and there is a fi nite range of possible intermediate angular positions of 
R1 and R2 for which the wedge will remain in place. Figure 6/4b illus-
trates this range and shows that simultaneous slippage is not possible 
if � , 2�. You are encouraged to construct additional diagrams for 
the case where � . � and verify that the wedge is self-locking as long 
as � , 2�.

If the wedge is self-locking and is to be withdrawn, a pull P on the 
wedge will be required. To oppose the new impending motion, the reac-
tions R1 and R2 must act on the opposite sides of their normals from 
those when the wedge was inserted. The solution can be obtained as Figure 6/3

R3

P

m

mg

R2

R2

R2

R1

R1

R3

mg

P

P

R2

α

φ

+φ α

φ

φ

(a)

(b) (c)

Forces to raise load

α +φ α

φ
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with the case of raising the load. The free-body diagrams and vector 
polygons for this condition are shown in Fig. 6/5.

Wedge problems lend themselves to graphical solutions as indicated 
in the three fi gures. The accuracy of a graphical solution is easily held 
within tolerances consistent with the uncertainty of friction coeffi cients. 
Algebraic solutions may also be obtained from the trigonometry of the 
equilibrium polygons.

Figure 6/4
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φ

Figure 6/5
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6/5 SCREWS

Screws are used for fastening and for transmitting power or motion. 
In each case the friction developed in the threads largely determines the 
action of the screw. For transmitting power or motion the square thread 
is more effi cient than the V-thread, and the analysis here is confi ned to 
the square thread.
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Force Analysis

Consider the square-threaded jack, Fig. 6/6, under the action of the 
axial load W and a moment M applied about the axis of the screw. The 
screw has a lead L (advancement per revolution) and a mean radius r. 
The force R exerted by the thread of the jack frame on a small represen-
tative portion of the screw thread is shown on the free-body diagram of 
the screw. Similar reactions exist on all segments of the screw thread 
where contact occurs with the thread of the base.

If M is just suffi cient to turn the screw, the thread of the screw 
will slide around and up on the fi xed thread of the frame. The angle � 
made by R with the normal to the thread is the angle of friction, so that 
tan � 5 �. The moment of R about the vertical axis of the screw is 
Rr sin (� 1 �), and the total moment due to all reactions on the threads 
is ©Rr sin (� 1 �). Since r sin (� 1 �) appears in each term, we may fac-
tor it out. The moment equilibrium equation for the screw becomes

M 5 [r sin (� 1 �)] ©R

Equilibrium of forces in the axial direction further requires that

W 5 ©R cos (� 1 �) 5 [cos (� 1 �)] ©R

Combining the expressions for M and W gives

 M 5 Wr tan (� 1 �) (6/3)

To determine the helix angle �, unwrap the thread of the screw for one 
complete turn and note that � 5 tan21 (L/2�r).

We may use the unwrapped thread of the screw as an alternative 
model to simulate the action of the entire screw, as shown in Fig. 6/7a. 
The equivalent force required to push the movable thread up the fi xed 
incline is P 5 M/r, and the triangle of force vectors gives Eq. 6/3 
 immediately.

Figure 6/6

W
W

M
M

φ
α

α

R

r

L
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Conditions for Unwinding

If the moment M is removed, the friction force changes direction so 
that � is measured to the other side of the normal to the thread. The 
screw will remain in place and be self-locking provided that � , �, and 
will be on the verge of unwinding if � 5 �.

To lower the load by unwinding the screw, we must reverse the di-
rection of M as long as � , �. This condition is illustrated in Fig. 6/7b 
for our simulated thread on the fi xed incline. An equivalent force P 5 
M/r must be applied to the thread to pull it down the incline. From the 
triangle of vectors we therefore obtain the moment required to lower 
the screw, which is 

 M 5 Wr tan (� 2 �) (6/3a)

If � . �, the screw will unwind by itself, and Fig. 6/7c shows that 
the moment required to prevent unwinding is

 M 5 Wr tan (� 2 �) (6/3b)

Figure 6/7
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Sample Problem 6/6

The horizontal position of the 500-kg rectangular block of concrete is ad-
justed by the 58 wedge under the action of the force P. If the coeffi cient of static 
friction for both wedge surfaces is 0.30 and if the coeffi cient of static friction 
between the block and the horizontal surface is 0.60, determine the least force P 
required to move the block.

Solution.  The free-body diagrams of the wedge and the block are drawn with 
the reactions R1, R2, and R3 inclined with respect to their normals by the 
amount of the friction angles for impending motion. The friction angle for limit-
ing static friction is given by � 5 tan21 �. Each of the two friction angles is com-
puted and shown on the diagram.

We start our vector diagram expressing the equilibrium of the block at a 
convenient point A and draw the only known vector, the weight W of the block. 
Next we add R3, whose 31.08 inclination from the vertical is now known. The 
vector 2R2, whose 16.708 inclination from the horizontal is also known, must 
close the polygon for equilibrium. Thus, point B on the lower polygon is deter-
mined by the intersection of the known directions of R3 and 2R2, and their mag-
nitudes become known.

For the wedge we draw R2, which is now known, and add R1, whose direc-
tion is known. The directions of R1 and P intersect at C, thus giving us the solu-
tion for the magnitude of P.

Algebraic solution. The simplest choice of reference axes for calculation 
 purposes is, for the block, in the direction a-a normal to R3 and, for the wedge, in 
the direction b-b normal to R1. The angle between R2 and the a-direction is 
16.708 1 31.08 5 47.78. Thus, for the block 

[©Fa 5 0] 500(9.81) sin 31.08 2 R2 cos 47.78 5 0

 R2 5 3750 N

For the wedge the angle between R2 and the b-direction is 908 2 (2�1 1 
58) 5 51.68, and the angle between P and the b-direction is �1 1 58 5 21.78. Thus,

[©Fb 5 0] 3750 cos 51.68 2 P cos 21.78 5 0

 P 5 2500 N Ans.

Graphical solution.  The accuracy of a graphical solution is well within the 
uncertainty of the friction coeffi cients and provides a simple and direct result. By 
laying off the vectors to a reasonable scale following the sequence described, we 
obtain the magnitudes of P and the R’s easily by scaling them directly from the 
diagrams.

1

2

Helpful Hints

1  Be certain to note that the reactions 
are inclined from their normals in 
the direction to oppose the motion. 
Also, we note the equal and opposite 
reactions R2 and 2R2.

2  It should be evident that we avoid 
simultaneous equations by eliminat-
ing reference to R3 for the block and 
R1 for the wedge.

5°

P

500 kg

P

P

C

A
B

R1

R1

R2

R3

–R2

R2

R3

–R2

b

b

a

a

5°

1φ

1φ

1φ

2φ

1φ
W = 500(9.81) N

= tan–1 0.30
= 16.70°

16.70°

16.70°

31.0°

2φ = tan–1 0.60
= 31.0°

Wedge

Block

16.70° + 5° = 21.7°

W = 4905 N
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Sample Problem 6/7

The single-threaded screw of the vise has a mean diameter of 1 in. and has 5 
square threads per inch. The coeffi cient of static friction in the threads is 0.20. A 
60-lb pull applied normal to the handle at A produces a clamping force of 1000 lb 
between the jaws of the vise. (a) Determine the frictional moment MB, developed 
at B, due to the thrust of the screw against the body of the jaw. (b) Determine the 
force Q applied normal to the handle at A required to loosen the vise.

Solution.  From the free-body diagram of the jaw we fi rst obtain the tension T 
in the screw.

[©MC 5 0] 1000(16) 2 10T 5 0  T 5 1600 lb

The helix angle � and the friction angle � for the thread are given by

  � 5 tan21 
L

2�r
5 tan21 

1/5
2�(0.5)

5 3.648

  � 5 tan21 � 5 tan21 0.20 5 11.318

where the mean radius of the thread is r 5 0.5 in.

(a) To tighten. The isolated screw is simulated by the free-body diagram 
shown where all of the forces acting on the threads of the screw are represented 
by a single force R inclined at the friction angle � from the normal to the thread. 
The moment applied about the screw axis is 60(8) 5 480 lb-in. in the clockwise 
direction as seen from the front of the vise. The frictional moment MB due to the 
friction forces acting on the collar at B is in the counterclockwise direction to op-
pose the impending motion. From Eq. 6/3 with T substituted for W, the net mo-
ment acting on the screw is

  M 5 Tr tan (� 1 �)

  480 2 MB 5 1600(0.5) tan (3.648 1 11.318)

  MB 5 266 lb-in.  Ans.

(b) To loosen.  The free-body diagram of the screw on the verge of being loos-
ened is shown with R acting at the friction angle from the normal in the direc-
tion to counteract the impending motion. Also shown is the frictional moment 
MB 5 266 lb-in. acting in the clockwise direction to oppose the motion. The angle 
between R and the screw axis is now � 2 �, and we use Eq. 6/3a with the net 
moment equal to the applied moment M9 minus MB. Thus 

  M 5 Tr tan (� 2 �)

  M9 2 266 5 1600(0.5) tan (11.318 2 3.648)

  M9 5 374 lb-in.

Thus, the force on the handle required to loosen the vise is

 Q 5 M9/d 5 374/8 5 46.8 lb Ans.

1

2

Helpful Hints

1  Be careful to calculate the helix 
angle correctly. Its tangent is the 
lead L (advancement per revolution) 
divided by the mean circumference 
2�r and not by the diameter 2r.

2  Note that R swings to the opposite 
side of the normal as the impending 
motion reverses direction.

A

B

C

8″ 10″

6″

1000 lb

C

T

α

φR
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MB

(a) To tighten

α φ

R

T

MB M′

(b) To loosen



PROBLEMS
(Unless otherwise instructed, neglect the weights of the 
wedges and screws in the problems which follow.)

Introductory Problems

6/53 The 78 wedge is driven under the spring-loaded wheel 
whose supporting strut C is fi xed. Determine the 
minimum coeffi cient of static friction �s for which 
the wedge will remain in place. Neglect all friction 
associated with the wheel.

7°

C

sμ

Problem 6/53

6/54 The device shown is used for coarse adjustment of 
the height of an experimental apparatus without a 
change in its horizontal position. Because of the slip-
joint at A, turning the screw does not rotate the cylin-
drical leg above A. The mean diameter of the thread 
is 3

8 in. and the coeffi cient of friction is 0.15. For a 
conservative design which neglects friction at the 
slipjoint, what should be the minimum number N of 
threads per inch to ensure that the single-threaded 
screw does not turn by itself under the weight of the 
apparatus?

P

A

Problem 6/54

6/55 In wood-frame construction, two shims are fre-
quently used to fi ll the gap between the framing S 
and the thinner window/door jamb D. The members 
S and D are shown in cross section in the fi gure. For 
the 38 shims shown, determine the minimum neces-
sary coeffi cient of static friction so that the shims 
will remain in place.

DS

3°

3°

Problem 6/55

6/56 The 100-kg industrial door with mass center at G 
is being positioned for repair by insertion of the 58 
wedge under corner B. Horizontal movement is pre-
vented by the small ledge at corner A. If the coeffi -
cients of static friction at both the top and bottom 
wedge surfaces are 0.60, determine the force P re-
quired to lift the door at B.

1 m

5°
B PA

1.2  m

G

Problem 6/56

6/57 Calculate the rightward force P9 which would re-
move the wedge from under the door of Prob. 6/56. 
Assume that corner A does not slip for your calcula-
tion of P9, but then check this assumption; the coeffi -
cient of static friction at A is 0.60.
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6/58 Specify the required torque M on the power screw 
necessary to overcome a resistance of 450 N to mo-
tion of the carriage along its horizontal ways. The 
screw has a mean diameter of 25 mm and has two 
separate square threads which move the carriage 
20 mm per revolution of the screw. The coeffi cient of 
friction may be taken as 0.20.

Bearing Bearing

M

Problem 6/58

6/59 A 1600-kg rear-wheel-drive car is being driven up 
the ramp at a slow steady speed. Determine the 
minimum coeffi cient of static friction �s for which 
the portable ramp will not slip forward. Also deter-
mine the required friction force FA at each rear 
drive wheel.

1070
mm

315 mm

500 mm

2545 mm

150 mm

500 mm

380 mm

B

A
sμ

G

Problem 6/59

Representative Problems

6/60 Determine the torque M which must be applied to 
the handle of the screw to begin moving the 100-lb 
block up the 158 incline. The coeffi cient of static fric-
tion between the block and the incline is 0.50, and 
the single-thread screw has square threads with 
a mean diameter of 1 in. and advances 0.4 in. for 
each complete turn. The coeffi cient of static friction 
for the threads is also 0.50. Neglect friction at the 
small ball joint A.

M

A 15°100 lb

Problem 6/60

6/61 The large turnbuckle supports a cable tension of 
10,000 lb. The 11

4-in. screws have a mean diameter 
of 1.150 in. and have fi ve square threads per inch. 
The coeffi cient of friction for the greased threads 
does not exceed 0.25. Determine the moment M ap-
plied to the body of the turnbuckle (a) to tighten it 
and (b) to loosen it. Both screws have single threads 
and are prevented from turning.

TT

Problem 6/61

6/62 A compressive force of 600 N is to be applied to the 
two boards in the grip of the C-clamp. The threaded 
screw has a mean diameter of 10 mm and advances 
2.5 mm per turn. The coeffi cient of static friction is 
0.20. Determine the force F which must be applied 
normal to the handle at C in order to (a) tighten 
and (b) loosen the clamp. Neglect friction at point A.

A B

C

100 mm

Problem 6/62

6/63 The two 48 wedges are used to position the vertical 
column under a load L. What is the least value of the 
coeffi cient of friction �2 for the bottom pair of sur-
faces for which the column may be raised by apply-
ing a single horizontal force P to the upper wedge?



P

20°

5°

27 kg

Problem 6/66

6/67 Repeat Prob. 6/66, only now the 27-kg concrete 
block begins to move down the 208 incline as shown. 
All other conditions remain as in Prob. 6/66.

P

20°

5°

27 kg

Problem 6/67

P

L

4° 4°

  = 0.301μ

2μ

Problem 6/63

6/64 Compute the force P required to move the 20-kg 
wheel. The coeffi cient of friction at A is 0.25 and 
that for both pairs of wedge surfaces is 0.30. Also, 
the spring S is under a compression of 100 N, and 
the rod offers negligible support to the wheel.

P

10°

A

S

Problem 6/64

6/65 Work Prob. 6/64 if the compression in the spring is 
200 N. All other conditions remain unchanged.

6/66 The coeffi cient of static friction for both wedge sur-
faces is 0.40 and that between the 27-kg concrete 
block and the 208 incline is 0.70. Determine the 
minimum value of the force P required to begin 
moving the block up the incline. Neglect the weight 
of the wedge.

 Article 6/5   Problems  361



362  Chapter 6   Frict ion

6/71 The design of a joint to connect two shafts by a fl at 
58 tapered cotter is shown by the two views in the 
fi gure. If the shafts are under a constant tension 
T of 200 lb, fi nd the force P required to move the 
cotter and take up any slack in the joint. The coef-
fi cient of friction between the cotter and the sides 
of the slots is 0.20. Neglect any horizontal friction 
between the shafts.

T

P

T

5°

Problem 6/71

6/72 The vertical position of the 100-kg block is adjusted 
by the screw-activated wedge. Calculate the mo-
ment M which must be applied to the handle of the 
screw to raise the block. The single-thread screw 
has square threads with a mean diameter of 30 mm 
and advances 10 mm for each complete turn. The 
coeffi cient of friction for the screw threads is 0.25, 
and the coeffi cient of friction for all mating surfaces 
of the block and wedge is 0.40. Neglect friction at 
the ball joint A.

100 kg

10°

A

Problem 6/72

6/68 The bench hold-down clamp is being used to clamp 
two boards together while they are being glued. 
What torque M must be applied to the screw in 
order to produce a 200-lb compression between the 
boards? The 1

2-in.-diameter single-thread screw has 
12 square threads per inch, and the coeffi cient of 
friction in the threads may be taken to be 0.20. Ne-
glect any friction in the small ball contact at A and 
assume that the contact force at A is directed along 
the axis of the screw. What torque M9 is required to 
loosen the clamp?

7″

12″

A

B

C

3″

3″

Problem 6/68

6/69 The coeffi cient of static friction �s between the 
100-lb body and the 158 wedge is 0.20. Determine 
the magnitude of the force P required to begin rais-
ing the 100-lb body if (a) rollers of negligible friction 
are present under the wedge, as illustrated, and (b) 
the rollers are removed and the coeffi cient of static 
friction �s 5 0.20 applies at this surface as well.

15°

100 lb

P

Problem 6/69

6/70 For both conditions (a) and (b) as stated in Prob. 
6/69, determine the magnitude and direction of the 
force P9  required to begin lowering the 100-lb body.



6/73 The jack shown is designed to lift small unit-body 
cars. The screw is threaded into the collar pivoted at 
B, and the shaft turns in a ball thrust bearing at A. 
The thread has a mean diameter of 10 mm and a 
lead (advancement per revolution) of 2 mm. The co-
effi cient of friction for the threads is 0.20. Determine 
the force P normal to the handle at D required (a) to 
raise a mass of 500 kg from the position shown and 
(b) to lower the load from the same position. Neglect 
friction in the pivot and bearing at A.

150 mm
45°
45°

100 m
m

80 m
m

D

C

BA

Problem 6/73

 c6/74 Replace the square thread of the screw jack in 
Fig. 6/6 by a V-thread as indicated in the fi gure ac-
companying this problem and determine the mo-
ment M on the screw required to raise the load W. 
The force R acting on a representative small section 
of the thread is shown with its relevant projections. 
The vector R1 is the projection of R in the plane 
of the fi gure containing the axis of the screw. The 
analysis is begun with an axial force and a moment 
summation and includes substitutions for the an-
gles � and � in terms of �, �, and the friction angle 
� 5 tan21 �. The helix angle of the single thread is 
exaggerated for clarity.

L θ

α

γ

h

r

h

β
φR sin 

φ

φR sin 

φR cos 

αL cos 

R
R1

β–
2

Problem 6/74
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6/6  JOURNAL BEARINGS

A journal bearing is one which gives lateral support to a shaft in 
contrast to axial or thrust support. For dry bearings and for many 
 partially lubricated bearings we may apply the principles of dry fric-
tion. These principles provide a satisfactory approximation for design 
purposes.

A dry or partially lubricated journal bearing with contact or near 
contact between the shaft and the bearing is shown in Fig. 6/8, where 
the clearance between the shaft and bearing is greatly exaggerated to 
clarify the action. As the shaft begins to turn in the direction shown, it 
will roll up the inner surface of the bearing until it slips. Here it will re-
main in a more or less fi xed position during rotation. The torque M re-
quired to maintain rotation and the radial load L on the shaft will cause 

Figure 6/8

Shaft

Bearing

L

M

N
R

F

A

O
rƒ

r

a reaction R at the contact point A. For vertical equilibrium R must 
equal L but will not be collinear with it. Thus, R will be tangent to a 
small circle of radius rƒ called the friction circle. The angle between R 
and its normal component N is the friction angle �. Equating the sum of 
the moments about A to zero gives 

 M 5 Lrƒ 5 Lr sin � (6/4)

For a small coeffi cient of friction, the angle � is small, and the 
sine and tangent may be interchanged with only small error. Since � 5 
tan �, a good approximation to the torque is 

 M 5 �Lr (6/4a)

This relation gives the amount of torque or moment which must be ap-
plied to the shaft to overcome friction for a dry or partially lubricated 
journal bearing.
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6/7  THRUST BEARINGS; DISK FRICT ION

Friction between circular surfaces under distributed normal pres-
sure occurs in pivot bearings, clutch plates, and disk brakes. To examine 
these applications, we consider the two fl at circular disks shown in Fig. 
6/9. Their shafts are mounted in bearings (not shown) so that they can 
be brought into contact under the axial force P. The maximum torque 
which this clutch can transmit is equal to the torque M required to slip 
one disk against the other. If p is the normal pressure at any location 
between the plates, the frictional force acting on an elemental area is 
�p dA, where � is the friction coeffi cient and dA is the area r dr d� of 
the element. The moment of this elemental friction force about the shaft 
axis is �pr dA, and the total moment becomes

M 5 E �pr dA

where we evaluate the integral over the area of the disk. To carry out 
this integration, we must know the variation of � and p with r.

Figure 6/9

dθ

R

p dAμ dr

P P

M

M

r

In the following examples we will assume that � is constant. Fur-
thermore, if the surfaces are new, fl at, and well supported, it is reason-
able to assume that the pressure p is uniform over the entire surface so 
that �R2p 5 P. Substituting the constant value of p in the expression 
for M gives

 M 5
�P

�R2 E2�

0
  ER

0
  r2 dr d� 5

2
3�PR (6/5)

We may interpret this result as equivalent to the moment due to a fric-
tion force �P acting at a distance 23R from the shaft center.

If the friction disks are rings, as in the collar bearing shown in 
Fig. 6/10, the limits of integration are the inside and outside radii Ri 
and Ro, respectively, and the frictional torque becomes 

 M 5
2
3�P 

Ro 

3 2 Ri 

3

Ro 

2 2 Ri 

2  (6/5a)

After the initial wearing-in period is over, the surfaces retain their 
new relative shape, and further wear is therefore constant over the sur-
face. This wear depends on both the circumferential distance traveled 
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and the pressure p. Since the distance traveled is proportional to r, the 
expression rp 5 K may be written, where K is a constant. The value of K 
is determined from the equilibrium condition for the axial forces, which 
gives 

P 5 E p dA 5 K E2�

0
  ER

0
 dr d� 5 2�KR

With pr 5 K 5 P/(2�R), we may write the expression for M as

M 5 E �pr dA 5
�P

2�R
 E2�

0
 ER

0
 r dr d�

which becomes

 M 5
1
2 �PR (6/6)

The frictional moment for worn-in plates is, therefore, only (1
2)/(2

3), or 34 
as much as for new surfaces. If the friction disks are rings of inside ra-
dius Ri and outside radius Ro, substitution of these limits gives for the 
frictional torque for worn-in surfaces

 M 5
1
2 �P(Ro 1 Ri) (6/6a)

You should be prepared to deal with other disk-friction problems 
where the pressure p is some other function of r.

Figure 6/10

2Ri 2Ro
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M
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The change from mechanical energy 
to heat energy is evident in this 
view of a disk brake.
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Sample Problem 6/8

The bell crank fi ts over a 100-mm-diameter shaft which is fi xed and cannot 
rotate. The horizontal force T is applied to maintain equilibrium of the crank 
under the action of the vertical force P 5 100 N. Determine the maximum and 
minimum values which T may have without causing the crank to rotate in either 
direction. The coeffi cient of static friction � between the shaft and the bearing 
surface of the crank is 0.20.

Solution.  Impending rotation occurs when the reaction R of the fi xed shaft on 
the bell crank makes an angle � 5 tan21 � with the normal to the bearing sur-
face and is, therefore, tangent to the friction circle. Also, equilibrium requires 
that the three forces acting on the crank be concurrent at point C. These facts 
are shown in the free-body diagrams for the two cases of impending motion.

The following calculations are needed:

 Friction angle � 5 tan21 � 5 tan21 0.20 5 11.318

 Radius of friction circle rƒ 5 r sin � 5 50 sin 11.318 5 9.81 mm

 Angle � 5 tan21 
120
180

5 33.78

 Angle � 5 sin21 
rƒ 

OC 
5 sin21 

9.81

!(120)2 1 (180)2  
5 2.608

(a) Impending counterclockwise motion.  The equilibrium triangle of forces 
is drawn and gives

  T1 5 P cot (� 2 �) 5 100 cot (33.78 2 2.608)

  T1 5 Tmax 5 165.8 N  Ans.

(b) Impending clockwise motion.  The equilibrium triangle of forces for this 
case gives

  T2 5 P cot (� 1 �) 5 100 cot (33.78 1 2.608)

  T2 5 Tmin 5 136.2 N  Ans.

P = 100 N

180 mm

120 mm

T

100 mm

O

P = 100 N

P

O

T1

R1

R1

T1

–

C

r

rƒ

(a) Counterclockwise motion impends

P = 100 N

PR2

T2

+

(b) Clockwise motion impends

O

T2

R2

C

r

rƒ
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slip on B. Also, what is the minimum coeffi cient of 
friction � between B and the supporting surface C 
which will prevent B from rotating?

AA
BB

C

M

80 lb

Problem 6/78

6/79 The operator of the 6-lb disk sander applies a torque 
Mz and an additional downward force of 10 lb to the 
sander. After the sanding disk has been used for a 
while, the coeffi cient of friction between the disk and 
the surface being sanded decreases linearly with radial 
distance—from 0.80 at the center to 0.50 at the outside 
of the 6-in.-diameter disk. Assume that the pressure p 
under the disk is constant and determine Mz.

6″

z

Problem 6/79

6/80 Determine the tension T in the cable to raise the 
800-kg load if the coeffi cient of friction for the 30-mm 
bearing is 0.25. Also fi nd the tension T0 in the sta-
tionary section of the cable. The mass of the cable 
and pulley is small and may be neglected.

PROBLEMS

Introductory Problems

6/75 The two fl ywheels are mounted on a common shaft 
which is supported by a journal bearing between 
them. Each fl ywheel has a mass of 40 kg, and the 
diameter of the shaft is 40 mm. If a 3-N?m couple M 
on the shaft is required to maintain rotation of the 
fl ywheels and shaft at a constant low speed, com-
pute (a) the coeffi cient of friction in the bearing and 
(b) the radius rƒ of the friction circle.

M

Problem 6/75

6/76 Calculate the torque M required to rotate the 280-kg 
reel of telephone cable clockwise against the 1.6-kN 
tension in the cable. The diameter of the bearing is 
62.5 mm, and the coeffi cient of friction for the bear-
ing is 0.30.

550
mm

62.5
mm

45°

1.6 kN

M

Problem 6/76

6/77 Calculate the torque M9 on the 280-kg telephone-cable 
reel of Prob. 6/76 which will permit the reel to turn 
slowly counterclockwise under the action of the 
1.6-kN tension.

6/78 Circular disk A is placed on top of disk B and is sub-
jected to a compressive force of 80 lb. The diameters 
of A and B are 9 in. and 12 in., respectively, and the 
pressure under each disk is constant over its sur-
face. If the coeffi cient of friction between A and B is 
0.40, determine the couple M which will cause A to 
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400 mm

50 mm

250
mm

40 kg

D
P

Problem 6/83

6/84 Determine the force P required to lower the 40-kg 
cylinder of Prob. 6/83. Compare your answer with 
the stated results of that problem. Is the no-friction 
value of P equal to the average of the forces re-
quired to raise and lower the cylinder?

6/85 The 10-Mg crate is lowered into an underground 
storage facility on a two-screw elevator designed as 
shown. Each screw has a mass of 0.9 Mg, is 120 mm 
in mean diameter, and has a single square thread 
with a lead of 11 mm. The screws are turned in syn-
chronism by a motor unit in the base of the facility. 
The entire mass of the crate, screws, and 3-Mg eleva-
tor platform is supported equally by fl at collar bear-
ings at A, each of which has an outside diameter of 
250 mm and an inside diameter of 125 mm. The pres-
sure on the bearings is assumed to be uniform over 
the bearing surface. If the coeffi cient of friction for the 
collar bearing and the screws at B is 0.15, calculate 
the torque M which must be applied to each screw 
(a) to raise the elevator and (b) to lower the elevator.

250 mm

10 Mg

B B

A A

Detail of collar
bearing at A

125 mm

Problem 6/85

300
mm

30
mm

T

T0

800
kg

Problem 6/80

6/81 Calculate the tension T required to lower the 800-kg 
load described in Prob. 6/80. Also fi nd T0.

Representative Problems

6/82 In a design test on friction, shaft A is fi tted loosely in 
the wrist-pin bearing of the connecting rod with cen-
ter of gravity at G as shown. With the rod initially in 
the vertical position, the shaft is rotated slowly until 
the rod slips at the angle �. Write an exact expres-
sion for the coeffi cient of friction �.

r
_

d

Vertical

A

G

α

Problem 6/82

6/83 The mass of the drum D and its cable is 45 kg, and 
the coeffi cient of friction � for the bearing is 0.20. 
Determine the force P required to raise the 40-kg 
cylinder if the bearing friction is (a) neglected and 
(b) included in the analysis. The weight of the shaft 
is negligible.



370  Chapter 6   Frict ion

6/89 The axial section of the two mating circular disks 
is shown. Derive the expression for the torque M re-
quired to turn the upper disk on the fi xed lower one 
if the pressure p between the disks follows the rela-
tion p 5 k/r2, where k is a constant to be deter-
mined. The coeffi cient of friction � is constant over 
the entire surface.

Rotating

Fixed

ri

M

L

ro

Problem 6/89

6/90 An automobile disk brake consists of a fl at-faced 
rotor and a caliper which contains a disk pad on 
each side of the rotor. For equal forces P behind the 
two pads with the pressure p uniform over the pad, 
show that the moment applied to the hub is inde-
pendent of the angular span � of the pads. Would 
pressure variation with � change the moment?

Ro
Ri

β

θ

Problem 6/90

6/91 For the fl at sanding disk of radius a, the pressure p 
developed between the disk and the sanded surface 
decreases linearly with r from a value p0 at the cen-
ter to p0/2 at r 5 a. If the coeffi cient of friction is �, 
derive the expression for the torque M required to 
turn the shaft under an axial force L.

6/86 The two pulleys are fastened together and are used 
to hoist the cylinder of mass m. The fraction k can 
vary from near zero to one. Derive an expression for 
the tension T required to raise the cylinder at 
a steady speed if the coeffi cient of friction for the 
bearing of radius r0 is �, a small enough value to per-
mit the substitution of � for sin �, where � is the 
friction angle. The mass of the pulley unit is m0. 
Evaluate your expression for T if m 5 50 kg, m0 5

30 kg, r 5 0.3 m, k 5
1
2, r0 5 25 mm, and � 5 0.15.

kr

r

T

m

Problem 6/86

6/87 Repeat Prob. 6/86 for the case of lowering the cylin-
der of mass m at a steady speed.

6/88 An end of the thin board is being sanded by the disk 
sander under application of the force P. If the effec-
tive coeffi cient of kinetic friction is � and if the pres-
sure is essentially constant over the board end, 
determine the moment M which must be applied by 
the motor in order to rotate the disk at a constant 
angular speed. The board end is centered along the 
radius of the disk.

R/4
R/2

R/4

R

P

Problem 6/88
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75 mm

100 mm
150 mm 20°

P
B

A

D
E

C

25 mm

Problem 6/94

 c6/95 Determine the expression for the torque M required 
to turn the shaft whose thrust L is supported by a 
conical pivot bearing. The coeffi cient of friction is �, 
and the bearing pressure is constant.

d1

d2

α

L

M

Problem 6/95

 c6/96 A thrust bearing for a shaft under an axial load L is 
designed as a partial spherical cup of radius r. If the 
pressure between the bearing surfaces at any point 
varies according to p 5 p0 cos �, derive the expres-
sion for the torque M required to maintain constant 
rotational speed. The coeffi cient of friction is �.

60°
r

M

L

θ

Problem 6/96

a
p0

p0

p

M

L

r

1––
2

Problem 6/91

6/92 Each of the four wheels of the vehicle weighs 40 lb 
and is mounted on a 4-in.-diameter journal (shaft). 
The total weight of the vehicle is 960 lb, including 
wheels, and is distributed equally on all four wheels. 
If a force P 5 16 lb is required to keep the vehicle 
rolling at a constant low speed on a horizontal 
surface, calculate the coeffi cient of friction which 
exists in the wheel bearings. (Hint: Draw a complete 
free-body diagram of one wheel.)

P

40″
4″

Problem 6/92

6/93 Determine the angle � with the horizontal made by 
the steepest slope on which the vehicle of Prob. 6/92 
can stand without rolling in the absence of a force P. 
Take the coeffi cient of friction in the wheel bearings 
to be 0.20.

6/94 In the fi gure is shown a multiple-disk clutch de-
signed for marine use. The driving disks A are 
splined to the driving shaft B so that they are free to 
slip along the shaft but must rotate with it. The 
disks C drive the housing D by means of the bolts E, 
along which they are free to slide. In the clutch 
shown there are fi ve pairs of friction surfaces. 
Assume the pressure is uniformly distributed over 
the area of the disks and determine the maximum 
torque M which can be transmitted if the coeffi cient 
of friction is 0.15 and P 5 500 N.
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6/8  FLEXIBLE BELTS

The impending slippage of fl exible cables, belts, and ropes over 
sheaves and drums is important in the design of belt drives of all types, 
band brakes, and hoisting rigs.

Figure 6/11a shows a drum subjected to the two belt tensions T1 
and T2, the torque M necessary to prevent rotation, and a bearing reac-
tion R. With M in the direction shown, T2 is greater than T1. The free-body 
diagram of an element of the belt of length r d� is shown in part b 
of the fi gure. We analyze the forces acting on this differential element 
by establishing the equilibrium of the element, in a manner similar to 
that used for other variable-force problems. The tension increases from 
T at the angle � to T 1 dT at the angle � 1 d�. The normal force is a dif-
ferential dN, since it acts on a differential element of area. Likewise the 
friction force, which must act on the belt in a direction to oppose slip-
ping, is a differential and is � dN for impending motion.

Equilibrium in the t-direction gives 

 T cos 
d�

2
1 � dN 5 (T 1 dT) cos 

d�

2

or  � dN 5 dT

since the cosine of a differential quantity is unity in the limit. Equilib-
rium in the n-direction requires that

dN 5 (T 1 dT) sin 
d�

2
1 T sin 

d�

2

or dN 5 T d�

where we have used the facts that the sine of a differential angle in the 
limit equals the angle and that the product of two differentials must be 
neglected in the limit compared with the fi rst-order differentials re-
maining.

Combining the two equilibrium relations gives

dT
T

5 � d�

Integrating between corresponding limits yields

 ET2 

T1 
 
dT
T

5 E�

0
 � d�

or  ln 
T2 
T1 

5 ��

where the ln (T2/T1) is a natural logarithm (base e). Solving for T2 gives

 T2 5 T1e�� (6/7)
Just one turn of a line around a 
fixed cylinder can produce a large 
change in tension.
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Figure 6/11
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Note that � is the total angle of belt contact and must be expressed in 
radians. If a rope were wrapped around a drum n times, the angle � 
would be 2�n radians. Equation 6/7 holds equally well for a noncircular 
section where the total angle of contact is �. This conclusion is evident 
from the fact that the radius r of the circular drum in Fig. 6/11 does not 
enter into the equations for the equilibrium of the differential element 
of the belt.

The relation expressed by Eq. 6/7 also applies to belt drives where 
both the belt and the pulley are rotating at constant speed. In this case 
the equation describes the ratio of belt tensions for slippage or impend-
ing slippage. When the speed of rotation becomes large, the belt tends 
to leave the rim, so Eq. 6/7 involves some error in this case.

6/9  ROLL ING RESISTANCE

Deformation at the point of contact between a rolling wheel and its 
supporting surface introduces a resistance to rolling, which we mention 
only briefl y. This resistance is not due to tangential friction forces and 
therefore is an entirely different phenomenon from that of dry friction.

To describe rolling resistance, we consider the wheel shown in Fig. 6/12 
under the action of a load L on the axle and a force P applied at its 
center to produce rolling. The deformation of the wheel and supporting 
surfaces as shown is greatly exaggerated. The distribution of pressure p 
over the area of contact is similar to the distribution shown. The resul-
tant R of this distribution acts at some point A and must pass through 
the wheel center for the wheel to be in equilibrium. We fi nd the force P 
necessary to maintain rolling at constant speed by equating the mo-
ments of all forces about A to zero. This gives us

P 5
a
r  L 5 �r L

where the moment arm of P is taken to be r. The ratio �r 5 a/r is 
called the coeffi cient of rolling resistance. This coeffi cient is the ratio of 
resisting force to normal force and thus is analogous to the coeffi cient 
of static or kinetic friction. On the other hand, there is no slippage or 
impending slippage in the interpretation of �r.

Because the dimension a depends on many factors which are diffi -
cult to quantify, a comprehensive theory of rolling resistance is not 
available. The distance a is a function of the elastic and plastic proper-
ties of the mating materials, the radius of the wheel, the speed of travel, 
and the roughness of the surfaces. Some tests indicate that a varies only 
slightly with wheel radius, and thus a is often taken to be independent 
of the rolling radius. Unfortunately, the quantity a has also been called 
the coeffi cient of rolling friction in some references. However, a has the 
dimension of length and therefore is not a dimensionless coeffi cient in 
the usual sense.

Figure 6/12

R

p

a

r

A

L

P
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Sample Problem 6/9

A fl exible cable which supports the 100-kg load is passed over a fi xed circu-
lar drum and subjected to a force P to maintain equilibrium. The coeffi cient of 
static friction � between the cable and the fi xed drum is 0.30. (a) For � 5 0, de-
termine the maximum and minimum values which P may have in order not to 
raise or lower the load. (b) For P 5 500 N, determine the minimum value which 
the angle � may have before the load begins to slip.

Solution.  Impending slipping of the cable over the fi xed drum is given by 
Eq. 6/7, which is T2/T1 5 e��.

(a)  With � 5 0 the angle of contact is � 5 �/2 rad. For impending upward mo-
tion of the load, T2 5 Pmax, T1 5 981 N, and we have 

 Pmax /981 5 e0.30(�/2)   Pmax 5 981(1.602) 5 1572 N Ans.

For impending downward motion of the load, T2 5 981 N and T1 5 Pmin. Thus,

 981/Pmin 5 e0.30(�/2)   Pmin 5 981/1.602 5 612 N Ans.

(b)  With T2 5 981 N and T1 5 P 5 500 N, Eq. 6/7 gives us

 981/500 5 e0.30�   0.30� 5 ln(981/500) 5 0.674

 � 5 2.25 rad  or  � 5 2.25a360
2�
b 5 128.78

 � 5 128.78 2 908 5 38.78 Ans.

1

2

3
Helpful Hints

1  We are careful to note that � must 
be expressed in radians.

2  In our derivation of Eq. 6/7 be cer-
tain to note that T2 . T1.

3  As was noted in the derivation of 
Eq. 6/7, the radius of the drum does 
not enter into the calculations. It is 
only the angle of contact and the coeffi -
cient of friction which determine the 
limiting conditions for impending 
motion of the fl exible cable over the 
curved surface.

O
r

α

P

100 kg

O

P

981 N
(a)    = 0α

   =   /2πβ

O

α
P

981 N
(b) P = 500 N

β
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Sample Problem 6/10

Determine the range of mass m over which the system is in static 
equilibrium. The coeffi cient of static friction between the cord and the 
upper curved surface is 0.20, while that between the block and the incline 
is 0.40. Neglect friction at the pivot O.

Solution.  From the FBD of the uniform slender bar, we can determine 
the tension TA in the cable at point A.

[©MO 5 0] 2 TA  a2L
3

 cos 358b 1 9(9.81) aL
2

 cos 258b 5 0

 TA 5 73.3 N

I. Motion of m impends up the incline.
The tension TA 5 73.3 N is the larger of the two tensions associated 

with the rough rounded surface. From Eq. 6/7 we have

[T2 5 T1e�s�] 73.3 5 T1e0.20[3081408]�/1808  T1 5 57.4 N 

From the FBD of the block for Case I:

[©Fy 5 0] N 2 mg cos 408 5 0  N 5 0.766mg

[©Fx 5 0] 257.4 1 mg sin 408 1 0.40(0.766mg) 5 0

 mg 5 60.5 N  m 5 6.16 kg

II. Motion of m impends down the incline.
The value TA 5 73.3 N is unchanged, but now this is the smaller of 

the two tensions in Eq. 6/7.

[T2 5 T1e�s�] T2 5 73.3e0.20[3081408]�/1808  T2 5 93.5 N

Considering the FBD of the block for Case II, we see that the normal 
force N is unchanged from Case I.

[©Fx 5 0] 293.5 – 0.4(0.766mg) 1 mg sin 408 5 0

 mg 5 278 N  m 5 28.3 kg

So the requested range is 6.16 #  m #  28.3 kg. Ans.

1

2

Helpful Hints

1  Only the total angular contact enters 
Eq. 6/7 (as �). So our results are in-
dependent of the quantities r and d.

2  Re-solve the entire problem if the 
ramp angle � were changed to 208, 
with all other given information re-
maining constant. Be alert for a sur-
prising result!

r r

d30°

9 kg

25°
A

O

m
2L/3

L/3

ms = 0.20

ms = 0.40

q = 40°

40°

y

x

T1 = 57.4 N

N

Case I

0.40N

mg

40°
x

T2 = 93.5 N

N

Case II

0.40N

mg

A

9(9.81) N

G

TA

Ox

Oy

O
25°

35°

L/2

L/6
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200 NT

Problem 6/99

6/100 The 20-lb block and the 50-lb block are connected by 
a rope hung over the fi xed curved surface. If the sys-
tem is on the verge of slipping, calculate the coeffi -
cient of friction between the rope and the surface.

20 lb
50 lb

Problem 6/100

6/101 For a certain coeffi cient of friction � and a certain 
angle �, the force P required to raise m is 4 kN, and 
that required to lower m at a constant slow speed 
is 1.6 kN. Calculate the mass m.

m
P

α

Problem 6/101

PROBLEMS

Introductory Problems

6/97 It is observed that the two cylinders will remain in 
slow steady motion as indicated in the drawing. De-
termine the coeffi cient of friction � between the cord 
and the fi xed shaft.

m
––
10

m

Problem 6/97

6/98 Determine the force P required to (a) raise and 
(b) lower the cylinder of weight W at a slow steady 
speed. The coeffi cient of friction between the cord 
and the fi xed shaft is 0.40.

W

P

Problem 6/98

6/99 A dockworker adjusts a spring line (rope) which 
keeps a ship from drifting alongside a wharf. If he 
exerts a pull of 200 N on the rope, which has 11

4 
turns around the mooring bit, what force T can he 
support? The coeffi cient of friction between the 
rope and the cast-steel mooring bit is 0.30.
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6/105 In western movies, cowboys are frequently ob-
served hitching their horses by casually winding 
a few turns of the reins around a horizontal pole 
and letting the end hang free as shown––no 
knots! If the freely hanging length of rein weighs 
2 oz and the number of turns is as shown, what 
tension T does the horse have to produce in the 
direction shown in order to gain freedom? The co-
effi cient of friction between the reins and wooden 
pole is 0.70.

30°

Problem 6/105

Representative Problems

6/106 Calculate the horizontal force P required to raise 
the 100-kg load. The coeffi cient of friction between 
the rope and the fi xed bars is 0.40.

d

P

100 kg

d

3d
—
2

Problem 6/106

6/102 Determine the value of the force P which will cause 
motion of the 40-kg block to impend up the 258 in-
cline. The cylinder is fi xed to the block and does not 
rotate. The coeffi cients of static friction are �1 5 
0.40 and �2 5 0.20.

P

25°

30°

40 kg

1μ

2μ

Problem 6/102

6/103 Determine the magnitude of the force P which will 
cause motion of the block of Prob. 6/102 to impend 
down the incline. All given information in that 
problem remains the same.

6/104 The tape slides around the two fi xed pegs as shown 
and is under the action of the horizontal tensions 
T1 5 40 N and T2 5 160 N. Determine the coeffi -
cient of friction � between the tape and the pegs.

T2

T1

50 mm

30 mm

30 mm

Problem 6/104



378  Chapter 6   Frict ion

B

L

A

C

sµ

L
2

Problem 6/109

6/110 The positions of shafts A and C are fi xed, while that 
of shaft B can be varied via the vertical slot and the 
locking bolt. If the coeffi cient of static friction is � 
at all interfaces, determine the dependence of T on 
the coordinate y, where T is the tension required to 
begin to lift the cylinder of mass m. All shafts are 
fi xed against rotation.

r

3r

y

3r

r

r

C

B

A

m
T

Problem 6/110

 *6/111 Repeat Prob. 6/110, only now the coeffi cients of sta-
tic friction are as follows: 0.60 at A and C and 0.20 
at B. Plot T/mg as a function of y for 0 #  y #  10r, 
where r is the common radius of all three shafts. 
What are the limiting values of T/mg for y 5 0 and 
for large values of y?

6/107 Mover A exerts a horizontal force P 5 180 N on 
the 50-kg crate. What horizontal tension T must 
mover B exert in order to move the crate up the 
rough ramp (�k 5 0.40) at a slow steady speed? 
There is a fi xed horizontal pole C across the rear 
opening of the truck, for which the coeffi cient of 
kinetic friction is �k 5 0.30.

20°

10°
50 kg

P

T

C
B

A

k = 0.40µ

k = 0.30µ

Problem 6/107

6/108 The 180-lb tree surgeon lowers himself with the 
rope over a horizontal limb of the tree. If the coef-
fi cient of friction between the rope and the limb is 
0.60, compute the force which the man must exert 
on the rope to let himself down slowly.

Problem 6/108

6/109 Determine the minimum coeffi cient of static fric-
tion for which the bar can be in static equilibrium 
in the confi guration shown. The bar is uniform and 
the fi xed peg at C is small. Neglect friction at B.
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and the belt to prevent slipping if the escalator 
handles 30 people uniformly distributed along 
the belt and averaging 150 lb each. (Note: It can 
be shown that the increase in belt tension on the 
upper side of drum B and the decrease in belt ten-
sion at the lower drum A are each equal to half the 
component of the combined passenger weight along 
the incline.)

20′

50′C

A

B

M

Problem 6/114

6/115 The block of weight W1 has a circular groove to ac-
commodate the light rope. Determine the minimum 
value of the ratio W2/W1 for which the block will be 
in static equilibrium. The coeffi cient of static fric-
tion between the rope and the groove is 0.35. State 
any assumptions.

W2

W1

Problem 6/115

6/112 The uniform drum A with center of mass at mid-
length is suspended by a rope which passes over the 
fi xed cylindrical surface B. The coeffi cient of static 
friction between the rope and the surface over 
which it passes is �. Determine the maximum 
value which the dimension a may have before the 
drum tips out of its horizontal position.

L

a D

B

A

Problem 6/112

6/113 The uniform I-beam has a mass of 74 kg per meter 
of length and is supported by the rope over the 
fi xed 300-mm drum. If the coeffi cient of friction be-
tween the rope and the drum is 0.50, calculate the 
least value of the force P which will cause the beam 
to tip from its horizontal position.

P

750
mm

300
mm

750
mm

Problem 6/113

6/114 The endless belt of an escalator passes around 
idler drum A and is driven by a torque M applied 
to drum B. Belt tension is adjusted by a turnbuckle 
at C, which produces an initial tension of 1000 lb 
in each side of the belt when the escalator is un-
loaded. For the design of this system, calculate the 
minimum coeffi cient of friction � between drum B 
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7 mm
26 

mm

h

A B

45 
mm

P

Problem 6/118

6/119 Replace the fl at belt and pulley of Fig. 6/11 by a 
V-belt and matching grooved pulley as indicated by 
the cross-sectional view accompanying this prob-
lem. Derive the relation among the belt tensions, 
the angle of contact, and the coeffi cient of friction 
for the V-belt when slipping impends. A V-belt de-
sign with � 5 358 would be equivalent to increasing 
the coeffi cient of friction for a fl at belt of the same 
material by what factor n?

α

V-belt
cross section

Problem 6/119

 c6/120 A light cable is connected to the ends of the uni-
form bar AB and goes over a fi xed peg C. Beginning 
from the horizontal position shown in part a of the 
fi gure, a length d 5 0.15 m of cable is moved from 
the right to the left side of the peg as shown in 
part b of the fi gure. If the cable fi rst slips on the 
peg at this position, determine the coeffi cient of 
static friction between the peg and the cable. Ne-
glect the effects of the diameter of the peg.

A

(a) (b)
A

B

C

B

C

0.3 m

0.6 m

sμ

Problem 6/120

6/116 For the design of the band brake shown, fi nd the 
couple M required to turn the pipe in the V-block 
against the action of the fl exible band. A force 
P 5 25 lb is applied to the lever, which is pivoted 
about O. The coeffi cient of friction between the 
band and the pipe is 0.30, and that between the 
pipe and the block is 0.40. The weights of the parts 
are negligible.

10″

4″30°30°

M

B

A

P

15″

45°

O

Problem 6/116

6/117 Determine the range of mass m2 for which the sys-
tem is in equilibrium. The coeffi cient of static fric-
tion between the block and the incline is �1 5 0.25 
and that between the cord and the fi xed disk on 
the block is �2 5 0.15.

m2

m1

20°
1μ

2μ

Problem 6/117

6/118 Shown in the fi gure is the design of a band-type 
oil-fi lter wrench. If the coeffi cient of friction be-
tween the band and the fi xed fi lter is 0.25, deter-
mine the minimum value of h which ensures that 
the wrench will not slip on the fi lter, regardless 
of the magnitude of the force P. Neglect the mass 
of the wrench and assume that the effect of the 
small part A is equivalent to that of a band wrap 
which begins at the three-o’clock position and 
runs clockwise.



6/10  CHAPTER REVIEW

In our study of friction we have concentrated on dry or Coulomb friction 
where a simple mechanical model of surface irregularities between the 
contacting bodies, Fig. 6/1, explains the phenomenon adequately for most 
engineering purposes. This model helps to visualize the three types of dry-
friction problems which are encountered in practice. These problem types are:

 1. Static friction of less than the maximum possible value and determined 
by the equations of equilibrium. (This usually requires a check to see that 
F , �sN.)

 2. Limiting static friction with impending motion (F 5 �sN).

 3. Kinetic friction where sliding motion occurs between contacting surfaces 
(F 5 �kN).

Keep in mind the following when solving dry-friction problems:

 1. A coeffi cient of friction applies to a given pair of mating surfaces. It is 
meaningless to speak of a coeffi cient of friction for a single surface.

 2. The coeffi cient of static friction �s for a given pair of surfaces is usually 
slightly greater than the kinetic coeffi cient �k.

 3. The friction force which acts on a body is always in the direction to oppose 
the slipping of the body which takes place or the slipping which would 
take place in the absence of friction.

 4. When friction forces are distributed over a surface or along a line, we 
select a representative element of the surface or line and evaluate the force 
and moment effects of the elemental friction force acting on the element. 
We then integrate these effects over the entire surface or line.

 5. Friction coeffi cients vary considerably, depending on the exact condition of 
the mating surfaces. Computing coeffi cients of friction to three signifi cant 
fi gures represents an accuracy which cannot easily be duplicated by 
experiment. When cited, such values are included for purposes of computa-
tional check only. For design computations in engineering practice, any 
handbook value for a coeffi cient of static or kinetic friction must be viewed 
as an approximation.

Other forms of friction mentioned in the introductory article of the chapter 
are important in engineering. Problems which involve fl uid friction, for 
example, are among the most important of the friction problems encountered 
in engineering and are studied in the subject of fl uid mechanics.

 Article 6/10  Chapter Review  381



382  Chapter 6   Frict ion

6/123 A frictional locking device allows bar A to move to 
the left but prevents movement to the right. If the 
coeffi cient of friction between the shoe B and the 
bar A is 0.40, specify the maximum length b of 
the link which will permit the device to work as 
described.

A

B

130 mm
40

mm

b

Allowable
motion

Problem 6/123

6/124 The 4600-lb lathe with mass center at G is posi-
tioned with the aid of the 58 steel wedge. Determine 
the horizontal force P required to remove the wedge 
if the coeffi cient of friction for all contacting sur-
faces is 0.30. Also show that no horizontal move-
ment of the lathe takes place.

G

B PA

36"

92"

5°

Problem 6/124

6/125 The homogeneous disk with inner groove of mass 
m is resting on the right-angled supporting sur-
faces shown. A cord is securely wrapped around 
the inner groove. The tension P in the cord is very 
gradually increased from zero. If the friction at 
both A and B is characterized by �s 5 0.15, what 
happens fi rst––does the disk slip in place, or does 
it begin to roll up the incline? Determine the value 
of P at which this fi rst movement occurs.

REVIEW PROBLEMS

6/121 The 80-kg block is placed on the 208 incline against 
the spring and released from rest. The coeffi cient 
of static friction between the block and the incline 
is 0.25. (a) Determine the maximum and minimum 
values of the initial compression force in the 
spring for which the block will not slip upon re-
lease. (b) Calculate the magnitude and direction of 
the friction force acting on the block if the spring 
compression force C is 200 N.

80 kg

s = 0.25µ
20°

Problem 6/121

6/122 (a) Determine the tension T which the shipwork-
ers must develop in the cable to lower the 200-lb 
crate at a slow steady speed. The effective coeffi -
cient of friction at the railing is � 5 0.20. (b) What 
would be the value of T in order to raise the crate?

200 lb

T

Problem 6/122
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between the cylinder and the horizontal surface are 
0.50 and 0.40, respectively, determine the friction 
force F acting on the cylinder if (a) M 5 20 N?m 
and (b) M 5 40 N?m.

M A

30°
100 mm

150
mm

Problem 6/127

6/128 The coeffi cient of static friction between the collar of 
the drill-press table and the vertical column is 0.30. 
Will the collar and table slide down the column 
under the action of the drill thrust if the operator 
forgets to secure the clamp, or will friction be suffi -
cient to hold it in place? Neglect the weight of the 
table and collar compared with the drill thrust and 
assume that contact occurs at the points A and B.

450 mm

125 mm

200
mm

A

B

Problem 6/128

P

s = 0.15μ

30°

0.75r
r

A
B

Problem 6/125

6/126 The toggle-wedge is an effective device to close the 
gap between two planks during construction of a 
wooden boat. For the combination shown, if a force 
P of 300 lb is required to move the wedge, deter-
mine the friction force F acting on the upper end A 
of the toggle. The coeffi cients of static and kinetic 
friction for all pairs of mating surfaces are taken to 
be 0.40.

5°P

A
y

x

15°

Problem 6/126

6/127 Under the action of the applied couple M the 25-kg 
cylinder bears against the roller A, which is free to 
turn. If the coeffi cients of static and kinetic friction 



384  Chapter 6   Frict ion

6/131 The 40-mm-diameter screw has a double square 
thread with a pitch of 12 mm and a lead of 24 mm. 
The screw and its mating threads in the fi xed 
block are graphite-lubricated and have a friction 
coeffi cient of 0.15. If a torque M 5 60 N?m is ap-
plied to the right-hand portion of the shaft, deter-
mine (a) the force P required to advance the shaft 
to the right and (b) the force P which would allow 
the shaft to move to the left at a constant speed.

24 mm
12 mm

40
mm

P
M

Problem 6/131

6/132 A uniform slender bar of mass m 5 3 kg and 
length L 5 0.8 m pivots about a horizontal axis 
through point O. Because of static friction, the 
bearing can exert a moment of up to 0.4 N?m on 
the bar. Determine the largest value of � for which 
equilibrium of the bar is possible in the absence of 
the rightward horizontal force P. Then determine 
the magnitude of the force P which must be ap-
plied at the lower end to move the bar from this 
defl ected position. Such bearing friction is some-
times referred to as “stiction”.

O

P
A

m, L

maxθ

Problem 6/132

6/129 Show that the body whose shape is that of an equi-
lateral triangle cannot bind in the vertical slot if 
the coeffi cient of static friction �s # 1. The clear-
ances on both sides are small, and the coeffi cient 
of static friction is the same at all contact points.

A

B

C

b

Problem 6/129

6/130 The screw of the small press has a mean diameter 
of 25 mm and has a single square thread with a 
lead of 8 mm. The fl at thrust bearing at A is 
shown in the enlarged view and has surfaces 
which are well worn. If the coeffi cient of friction 
for both the threads and the bearing at A is 0.25, 
calculate the design torque M on the handwheel 
required (a) to produce a compressive force of 
4 kN and (b) to loosen the press from the 4-kN 
compression.

A

25 
mm

4 mm

20 mm
A

Problem 6/130
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6/135 The bar clamp is being used to clamp two boards 
together while the glue between them cures. What 
torque M must be applied to the handle of the 
screw in order to produce an 80-lb compression be-
tween the boards? The 38-in.-diameter single-thread 
screw has 12 square threads per inch, and the 
effective coeffi cient of friction is 0.20. Neglect any 
friction in the pivot contact at C. What torque M9 is 
required to loosen the clamp?

C

M

Problem 6/135

6/136 The truck unloads its cargo box by sliding it off the 
elevated rack as the truck rolls slowly forward 
with its brakes applied for control. The box has a 
total weight of 10,000 lb with center of mass at G 
in the center of the box. The coeffi cient of static 
friction between the box and the rack is 0.30. Cal-
culate the braking force F between the tires and 
the level road as the box is on the verge of slipping 
down the rack from the position shown and the 
truck is on the verge of rolling forward. No slipping 
occurs at the lower corner of the box.

30° 60°

G

20′

20/ 3 ′  

Problem 6/136

6/133 The movable head of a universal testing machine 
has a mass of 2.2 Mg and is elevated into testing 
position by two 78-mm-diameter lead screws, each 
with a single thread and a lead of 13 mm. If the co-
effi cient of friction in the threads is 0.25, how much 
torque M must be supplied to each screw (a) to 
raise the head and (b) to lower the head? The inner 
loading columns are not attached to the head dur-
ing positioning.

A

Problem 6/133

6/134 Determine the range of mass m over which the sys-
tem is in equilibrium (a) if the coeffi cient of static 
friction is 0.20 at all three fi xed shafts and (b) if the 
coeffi cient of static friction associated with shaft B 
is increased to 0.50.

C

A

B

2 kg

m

Problem 6/134
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P

20°

Problem 6/139

6/140 Flexible tape fastened at A makes a half turn 
around each of the two 100-mm-diameter drums 
and ends at the spring S, which is adjusted to pro-
duce a tension of 40 N in the tape. Calculate the 
torques M1 and M2 applied to the shafts of the 
drums to turn them at the same time in the direc-
tion shown. The coeffi cient of friction between 
drum 1 and the tape is 0.30, and that between 
drum 2 and the tape is 0.20.

S

2

1

M2

M1

A

Problem 6/140

 *Computer-Oriented Problems

 *6/141 Plot the force P required to begin moving the 
80-kg crate up the 158 incline starting from rest 
at various values of x from 1 to 10 m. Note that 
the coeffi cient of static friction increases with the 
distance x down the incline according to �s 5 �0x, 
where �0 5 0.10 and x is in meters. Determine the 
minimum value of P and the corresponding value 
of x. Neglect the effects of the length of the crate 
along the incline.

6/137 The cylinder weighs 80 lb and the attached uniform 
slender bar has an unknown weight W. The unit re-
mains in static equilibrium for values of the angle � 
ranging up to 458 but slips if � exceeds 458. If the 
coeffi cient of static friction is known to be 0.30, de-
termine W.

40
″

12″

60° 60°

W

θ

Problem 6/137

6/138 The fi gure shows a friction silent ratchet for turning 
the wheel counterclockwise under the action of a 
force P applied to the handle. The fl oating link AB 
engages the wheel so that � 5 208. If a force P 5 150 
N is required to turn the wheel about its bearing at 
O, determine (a) the minimum coeffi cient of static 
friction between the link and the wheel which will 
ensure no slipping at B and (b) the magnitude R of 
the force on the pin at A.

150 mm B

O

A

P600 mm

α

Problem 6/138

6/139 The 8-kg block is resting on the 208 inclined plane 
with a coeffi cient of static friction �s 5 0.50. De-
termine the minimum horizontal force P which will 
cause the block to slip.
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 *6/144 The small roller on the upper end of the uniform 
rod rests against the vertical surface at A, while 
the rounded end B rests on the platform which is 
slowly pivoted downward beginning at the hori-
zontal position shown. For a coeffi cient of static 
friction �s 5 0.40 at B, determine the angle � of 
the platform at which slipping will occur. Neglect 
the size and friction of the roller and the small 
thickness of the platform.

30°

A

L

B

θ
O

s = 0.40μ

Problem 6/144

 *6/145 Determine the value of the force P required to 
move the 50-kg block to the right. For the values 
�1 5 0.60 and �2 5 0.30, plot your results over the 
range 0 # x # 10 m, and interpret the results at 
x 5 0. State the value of P for x 5 3 m. Neglect 
the effects of the diameter of the rod at A.

2 m

50 kg

A

P

x

2μ

1μ

Problem 6/145

x

3 m

80 kg

P A

15°
s  =μ 0xμ

Problem 6/141

 *6/142 A semicylinder of uniform density rests on a hori-
zontal surface and is subjected to a force P applied 
as shown. If P is slowly increased and kept normal 
to the fl at surface, plot the tilt angle � as a func-
tion of P up to the point of slipping. Determine the 
tilt angle �max and the corresponding value Pmax 
for which slipping occurs. The coeffi cient of static 
friction is 0.35.

P

r

θ

s = 0.35μ

Problem 6/142

 *6/143 The uniform slender bar of Prob. 6/45 is repeated 
here, but now the ideal roller at B is removed. The 
coeffi cient of static friction at A is 0.70 and that at 
B is 0.50. Determine the maximum value of the 
angle � for which equilibrium is possible.

A

R

B

2R

Problem 6/143
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rest in the arbitrary position �, determine the min-
imum value of � for which equilibrium is possible, 
and plot this value over the range 0 # mAB # 5 kg. 
The pivots at A and B are ideal.

B

60°

A

θ

Problem 6/148

 *6/149 The band wrench is useful for loosening and tight-
ening such items as the whole-house water fi lter E 
shown. Assume that the teeth of the wrench do not 
slip on the band at point C and that the band is 
slack from C to its end D. Determine the minimum 
coeffi cient � of static friction for which the band 
will not slip relative to the fi xed fi lter.

D

P

AB

O
E

C

250 mm

55
mm

Problem 6/149

 *6/150 The uniform bar and attached cable of Prob. 6/120 
are repeated here. If the coeffi cient of static fric-
tion between the cable and the small fi xed peg is 
�s 5 0.20, determine the maximum angle � for 
which equilibrium is possible.

A

(a) (b)
A

B

C

B

C

0.3 m

0.6 m

sμ

θ

Problem 6/150

 *6/146 The device is designed to permit an adjustment 
to the horizontal tension T in the cable passing 
around the two fi xed wheels in order to lower the 
mass m. If the coeffi cient of friction between the 
cable and the wheel surfaces is 0.40, determine and 
plot the ratio T/mg as a function of � in the range 
0 # � # 908. Also fi nd the value of the shear force V 
in the adjusting pin at D in terms of mg for � 5 608.

D

m

r

A

CB

r

O

T

BC = 2r
___DO = 3r
___

Problem 6/146

 *6/147 The positions of shafts A and C are fi xed, while that 
of shaft B can be varied via the vertical slot and lock-
ing bolt. The coeffi cients of kinetic friction are 0.60 
at A and C and 0.20 at B. Plot the quantity T/mg 
as a function of y for 0 # y # 10r, where T is the ten-
sion required to lift the cylinder of mass m at a 
steady rate and r is the common radius of all three 
shafts. All shafts are fi xed against rotation. What are 
the limiting values of T/mg for y 5 0 and for large 
values of y?

r

3r

y

3r

r

r

A

B

C

m
T

Problem 6/147

 *6/148 The system of Prob. 6/47 is repeated here. The 
block masses are mA 5 mB 5 5 kg. The two values 
of the coeffi cient of static friction are (�s)A 5 0.40 
and (�s)B 5 0.30. If the system is released from 





The analysis of multi-link structures which change configuration is generally best handled by a virtual-work approach. 
This construction platform is a typical example.
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VIRTUAL WORK

CHAPTER OUTLINE
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7

7/1  INTRODUCTION

In the previous chapters we have analyzed the equilibrium of a 
body by isolating it with a free-body diagram and writing the zero-force 
and zero-moment summation equations. This approach is usually 
employed for a body whose equilibrium position is known or  specifi ed 
and where one or more of the external forces is an unknown to be 
determined.

There is a separate class of problems in which bodies are composed 
of interconnected members which can move relative to each other. Thus 
various equilibrium confi gurations are possible and must be examined. 
For problems of this type, the force- and moment-equilibrium equations, 
although valid and adequate, are often not the most direct and conve-
nient approach.

A method based on the concept of the work done by a force is 
more direct. Also, the method provides a deeper insight into the be-
havior of mechanical systems and enables us to examine the stability 
of systems in equilibrium. This method is called the method of virtual 
work.

7/2  WORK

We must fi rst defi ne the term work in its quantitative sense, in con-
trast to its common nontechnical usage.



392  Chapter 7   Virtual Work

Work of a Force

Consider the constant force F acting on the body shown in Fig. 7/1a, 
whose movement along the plane from A to A9 is represented by the vec-
tor Ds, called the displacement of the body. By defi nition the work U 
done by the force F on the body during this displacement is the compo-
nent of the force in the direction of the displacement times the displace-
ment, or

U 5 (F cos �) Ds

From Fig. 7/1b we see that the same result is obtained if we multiply the 
magnitude of the force by the component of the displacement in the di-
rection of the force. This gives

U 5 F(Ds cos �)

Because we obtain the same result regardless of the direction in which 
we resolve the vectors, we conclude that work U is a scalar quantity.

Work is positive when the working component of the force is in the 
same direction as the displacement. When the working component is in 
the direction opposite to the displacement, Fig. 7/2, the work done is 
negative. Thus,

U 5 (F cos �) Ds 5 2(F cos �) Ds

We now generalize the defi nition of work to account for conditions 
under which the direction of the displacement and the magnitude and 
direction of the force are variable.

Figure 7/3a shows a force F acting on a body at a point A which 
moves along the path shown from A1 to A2. Point A is located by its posi-
tion vector r measured from some arbitrary but convenient origin O. 
The infi nitesimal displacement in the motion from A to A9 is given by 
the differential change dr of the position vector. The work done by the 
force F during the displacement dr is defi ned as

 dU 5 F?dr (7/1)

If F denotes the magnitude of the force F and ds denotes the magnitude 
of the differential displacement dr, we use the defi nition of the dot prod-
uct to obtain

dU 5 F ds cos �

We may again interpret this expression as the force component F cos � 
in the direction of the displacement times the displacement, or as the 
displacement component ds cos � in the direction of the force times the 

Figure 7/1

F A A′

F
α
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Δs

(a)

F A A′
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(b)

α

α
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Figure 7/2

F

Δsθ

α

Figure 7/3

α
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O
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force, as represented in Fig. 7/3b. If we express F and dr in terms of 
their rectangular components, we have

 dU 5 (iFx 1 jFy 1 kFz) ? (i dx 1 j dy 1 k dz)

 5 Fx dx 1 Fy dy 1 Fz dz

To obtain the total work U done by F during a fi nite movement of 
point A from A1 to A2, Fig. 7/3a, we integrate dU between these posi-
tions. Thus,

U 5 E F?dr 5 E (Fx dx 1 Fy dy 1 Fz dz)

or

U 5 E F cos � ds

To carry out this integration, we must know the relation between the 
force components and their respective coordinates, or the relations be-
tween F and s and between cos � and s.

In the case of concurrent forces which are applied at any particular 
point on a body, the work done by their resultant equals the total work 
done by the several forces. This is because the component of the resul-
tant in the direction of the displacement equals the sum of the compo-
nents of the several forces in the same direction.

Work of a Couple

In addition to the work done by forces, couples also can do work. In 
Fig. 7/4a the couple M acts on the body and changes its angular position 
by an amount d�. The work done by the couple is easily determined from 
the combined work of the two forces which constitute the couple. In part 
b of the fi gure we represent the couple by two equal and opposite forces F 
and 2F acting at two arbitrary points A and B such that F 5 M/b. Dur-
ing the infi nitesimal movement in the plane of the fi gure, line AB moves 
to A0B9. We now take the displacement of A in two steps, fi rst, a displace-
ment drB equal to that of B and, second, a displacement drA/B (read as 
the displacement of A with respect to B) due to the rotation about B. 
Thus the work done by F during the displacement from A to A9 is equal 
and opposite in sign to that due to 2F acting through the equal displace-
ment from B to B9. We therefore conclude that no work is done by a cou-
ple during a translation (movement without rotation).

During the rotation, however, F does work equal to F?drA/B 5 
Fb d�, where drA/B 5 b d� and where d� is the infi nitesimal angle of ro-
tation in radians. Since M 5 Fb, we have

 dU 5 M d� (7/2)
Figure 7/4

M

(a)

(b)

θd

F

–F

B

B′

A′

A
A″

b

drB

drB

θd

⏐drA/B⏐ = b θd
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The work of the couple is positive if M has the same sense as d� (clock-
wise in this illustration), and negative if M has a sense opposite to that 
of the rotation. The total work of a couple during a fi nite rotation in its 
plane becomes

U 5 E M d�

Dimensions of Work

Work has the dimensions of (force) 3 (distance). In SI units the unit 
of work is the joule (J), which is the work done by a force of one newton 
moving through a distance of one meter in the direction of the force 
(J 5 N?m). In the U.S. customary system the unit of work is the foot-
pound (ft-lb), which is the work done by a one-pound force moving 
through a distance of one foot in the direction of the force.

The dimensions of the work of a force and the moment of a force are 
the same, although they are entirely different physical quantities. Note 
that work is a scalar given by the dot product and thus involves the 
product of a force and a distance, both measured along the same line. 
Moment, on the other hand, is a vector given by the cross product and 
involves the product of force and distance measured at right angles to 
the force. To distinguish between these two quantities when we write 
their units, in SI units we use the joule (J) for work and reserve the 
combined units newton-meter (N?m) for moment. In the U.S. custom-
ary system we normally use the sequence foot-pound (ft-lb) for work 
and pound-foot (lb-ft) for moment.

Virtual Work

We consider now a particle whose static equilibrium position is de-
termined by the forces which act on it. Any assumed and arbitrary small 
displacement �r away from this natural position and consistent with the 
system constraints is called a virtual displacement. The term virtual is 
used to indicate that the displacement does not really exist but only is 
assumed to exist, so that we may compare various possible equilibrium 
positions to determine the correct one.

The work done by any force F acting on the particle during the vir-
tual displacement �r is called virtual work and is

�U 5 F? �r  or  �U 5 F �s cos �

where � is the angle between F and �r, and �s is the magnitude of �r. 
The difference between dr and �r is that dr refers to an actual infi nites-
imal change in position and can be integrated, whereas �r refers to an 
infi nitesimal virtual or assumed movement and cannot be integrated. 
Mathematically both quantities are fi rst-order differentials.

A virtual displacement may also be a rotation �� of a body. Accord-
ing to Eq. 7/2 the virtual work done by a couple M during a virtual an-
gular displacement �� is �U 5 M ��.

We may regard the force F or couple M as remaining constant 
during any infi nitesimal virtual displacement. If we account for any 
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change in F or M during the infi nitesimal motion, higher-order terms 
will result which disappear in the limit. This consideration is the 
same mathematically as that which permits us to neglect the product 
dx dy when writing dA 5 y dx for the element of area under the curve 
y 5 ƒ(x).

7/3  EQUIL IBR IUM

We now express the equilibrium conditions in terms of virtual work, 
fi rst for a particle, then for a single rigid body, and then for a system of 
connected rigid bodies.

Equilibrium of a Particle

Consider the particle or small body in Fig. 7/5 which attains an 
equilibrium position as a result of the forces in the attached springs. If 
the mass of the particle were signifi cant, then the weight mg would also 
be included as one of the forces. For an assumed virtual displacement �r 
of the particle away from its equilibrium position, the total virtual work 
done on the particle is

�U 5 F1?�r 1 F2?�r 1 F3?�r 1 ? ? ? 5 ©F?�r

We now express ©F in terms of its scalar sums and �r in terms of 
its component virtual displacements in the coordinate directions, as 
follows:

 �U 5 ©F?�r 5 (i ©Fx 1 j ©Fy 1 k ©Fz) ? (i �x 1 j �y 1 k �z)

 5 ©Fx �x 1 ©Fy �y 1 ©Fz �z 5 0

The sum is zero, since ©F 5 0, which gives ©Fx 5 0, ©Fy 5 0, and 
©Fz 5 0. The equation �U 5 0 is therefore an alternative statement of 
the equilibrium conditions for a particle. This condition of zero virtual 
work for equilibrium is both necessary and suffi cient, since we may 
apply it to virtual displacements taken one at a time in each of the three 
mutually perpendicular directions, in which case it becomes equivalent 
to the three known scalar requirements for equilibrium.

The principle of zero virtual work for the equilibrium of a single 
particle usually does not simplify this already simple problem because 
�U 5 0 and ©F 5 0 provide the same information. However, we intro-
duce the concept of virtual work for a particle so that we can later apply 
it to systems of particles.

Equilibrium of a Rigid Body

We can easily extend the principle of virtual work for a single parti-
cle to a rigid body treated as a system of small elements or particles 
rigidly attached to one another. Because the virtual work done on each 
particle of the body in equilibrium is zero, it follows that the virtual 
work done on the entire rigid body is zero. Only the virtual work done 
by external forces appears in the evaluation of �U 5 0 for the entire 

Figure 7/5
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body, since all internal forces occur in pairs of equal, opposite, and 
 collinear forces, and the net work done by these forces during any move-
ment is zero.

As in the case of a particle, we again fi nd that the principle of vir-
tual work offers no particular advantage to the solution for a single rigid 
body in equilibrium. Any assumed virtual displacement defi ned by a lin-
ear or angular movement will appear in each term in �U 5 0 and when 
canceled will leave us with the same expression we would have obtained 
by using one of the force or moment equations of equilibrium directly.

This condition is illustrated in Fig. 7/6, where we want to determine 
the reaction R under the roller for the hinged plate of negligible weight 
under the action of a given force P. A small assumed rotation �� of the 
plate about O is consistent with the hinge constraint at O and is taken 
as the virtual displacement. The work done by P is 2Pa ��, and the 
work done by R is 1Rb ��. Therefore, the principle �U 5 0 gives 

2Pa �� 1 Rb �� 5 0

Canceling �� leaves

Pa 2 Rb 5 0

which is simply the equation of moment equilibrium about O. There-
fore, nothing is gained by using the virtual-work principle for a single 
rigid body. The principle is, however, decidedly advantageous for inter-
connected bodies, as discussed next.

Equilibrium of Ideal Systems of Rigid Bodies

We now extend the principle of virtual work to the equilibrium of an 
interconnected system of rigid bodies. Our treatment here will be lim-
ited to so-called ideal systems. These are systems composed of two or 
more rigid members linked together by mechanical connections which 
are incapable of absorbing energy through elongation or compression, 
and in which friction is small enough to be neglected.

Figure 7/7a shows a simple example of an ideal system where rela-
tive motion between its two parts is possible and where the equilibrium 
position is determined by the applied external forces P and F. We can 
identify three types of forces which act in such an interconnected sys-
tem. They are as follows:

(1) Active forces are external forces capable of doing virtual work 
during possible virtual displacements. In Fig. 7/7a forces P and F are 
active forces because they would do work as the links move. 

(2) Reactive forces are forces which act at fi xed support positions 
where no virtual displacement takes place in the direction of the force. 
Reactive forces do no work during a virtual displacement. In Fig. 7/7b 
the horizontal force FB exerted on the roller end of the member by the 
vertical guide can do no work because there can be no horizontal dis-
placement of the roller. The reactive force FO exerted on the system by 
the fi xed support at O also does no work because O cannot move. 

Figure 7/6
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(3) Internal forces are forces in the connections between members. 
During any possible movement of the system or its parts, the net work 
done by the internal forces at the connections is zero. This is so because 
the internal forces always exist in pairs of equal and opposite forces, as 
indicated for the internal forces FA and 2FA at joint A in Fig. 7/7c. The 
work of one force therefore necessarily cancels the work of the other 
force during their identical displacements. 

Principle of Virtual Work

Noting that only the external active forces do work during any pos-
sible movement of the system, we may now state the principle of vir-
tual work as follows:

The virtual work done by external active forces on an ideal 
 mechanical system in equilibrium is zero for any and all 
virtual displacements consistent with the constraints.

By constraint we mean restriction of the motion by the supports. We 
state the principle mathematically by the equation

 �U 5 0 (7/3)

where �U stands for the total virtual work done on the system by all ac-
tive forces during a virtual displacement.

Only now can we see the real advantages of the method of virtual 
work. There are essentially two. First, it is not necessary for us to dis-
member ideal systems in order to establish the relations between the 
active forces, as is generally the case with the equilibrium method 
based on force and moment summations. Second, we may determine 
the relations between the active forces directly without reference to the 
reactive forces. These advantages make the method of virtual work par-
ticularly useful in determining the position of equilibrium of a system 
under known loads. This type of problem is in contrast to the problem 
of determining the forces acting on a body whose equilibrium position 
is known.

The method of virtual work is especially useful for the purposes 
mentioned but requires that the internal friction forces do negligible 
work during any virtual displacement. Consequently, if internal friction 
in a mechanical system is appreciable, the method of virtual work can-
not be used for the system as a whole unless the work done by internal 
friction is included.

When using the method of virtual work, you should draw a diagram 
which isolates the system under consideration. Unlike the free-body dia-
gram, where all forces are shown, the diagram for the method of virtual 
work need show only the active forces, since the reactive forces do not 
enter into the application of �U 5 0. Such a drawing will be termed an 
active-force diagram. Figure 7/7a is an active-force diagram for the sys-
tem shown.
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Degrees of Freedom

The number of degrees of freedom of a mechanical system is the 
number of independent coordinates needed to specify completely the 
confi guration of the system. Figure 7/8a shows three examples of one-
degree-of-freedom systems. Only one coordinate is needed to establish 
the position of every part of the system. The coordinate can be a dis-
tance or an angle. Figure 7/8b shows three examples of two-degree-of-
freedom systems where two independent coordinates are needed to 
determine the confi guration of the system. By the addition of more links 
to the mechanism in the right-hand fi gure, there is no limit to the num-
ber of degrees of freedom which can be introduced.

The principle of virtual work �U 5 0 may be applied as many times 
as there are degrees of freedom. With each application, we allow only 
one independent coordinate to change at a time while holding the others 
constant. In our treatment of virtual work in this chapter, we consider 
only one-degree-of-freedom systems.*

Systems with Friction

When sliding friction is present to any appreciable degree in a me-
chanical system, the system is said to be “real.” In real systems some of 
the positive work done on the system by external active forces (input 
work) is dissipated in the form of heat generated by the kinetic friction 
forces during movement of the system. When there is sliding between 
contacting surfaces, the friction force does negative work because its di-
rection is always opposite to the movement of the body on which it acts. 
This negative work cannot be regained.

Thus, the kinetic friction force �kN acting on the sliding block in 
Fig. 7/9a does work on the block during the displacement x in the 
amount of 2�kNx. During a virtual displacement �x, the friction force 
does work equal to 2�kN �x. The static friction force acting on the 

*For examples of solutions to problems of two or more degrees of freedom, see Chapter 7 of 
the fi rst author’s Statics, 2nd Edition, 1971, or SI Version, 1975.Figure 7/9
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rolling wheel in Fig. 7/9b, on the other hand, does no work if the 
wheel does not slip as it rolls.

In Fig. 7/9c the moment Mƒ about the center of the pinned joint due 
to the friction forces which act at the contacting surfaces does negative 
work during any relative angular movement between the two parts. 
Thus, for a virtual displacement �� between the two parts, which have 
the separate virtual displacements ��1 and ��2 as shown, the negative 
work done is 2Mƒ ��1 2 Mƒ ��2 5 2Mƒ(��1 1 ��2), or simply 2Mƒ ��. For 
each part, Mƒ is in the sense to oppose the relative motion of rotation.

It was noted earlier in the article that a major advantage of the 
method of virtual work is in the analysis of an entire system of con-
nected members without taking them apart. If there is appreciable ki-
netic friction internal to the system, it becomes necessary to dismember 
the system to determine the friction forces. In such cases the method of 
virtual work fi nds only limited use.

Mechanical Effi ciency

Because of energy loss due to friction, the output work of a machine 
is always less than the input work. The ratio of the two amounts of 
work is the mechanical effi ciency e. Thus,

e 5
output work
input work

The mechanical effi ciency of simple machines which have a single de-
gree of freedom and which operate in a uniform manner may be deter-
mined by the method of work by evaluating the numerator and 
denominator of the expression for e during a virtual displacement.

As an example, consider the block being moved up the inclined 
plane in Fig. 7/10. For the virtual displacement �s shown, the output 
work is that necessary to elevate the block, or mg �s sin �. The input 
work is T �s 5 (mg sin � 1 �kmg cos �) �s. The effi ciency of the inclined 
plane is, therefore,

e 5
mg �s sin �

mg(sin � 1 �k cos �) �s
5

1
1 1 �k cot �

As a second example, consider the screw jack described in Art. 6/5 
and shown in Fig. 6/6. Equation 6/3 gives the moment M required to 
raise the load W, where the screw has a mean radius r and a helix angle 
�, and where the friction angle is � 5 tan21 �k. During a small rotation 
�� of the screw, the input work is M �� 5 Wr �� tan (� 1 �). The output 
work is that required to elevate the load, or Wr �� tan �. Thus the effi -
ciency of the jack can be expressed as 

e 5
Wr �� tan �

Wr �� tan (� 1 �)
5

tan �
tan (� 1 �)

As friction is decreased, � becomes smaller, and the effi ciency ap-
proaches unity.

Figure 7/10
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Sample Problem 7/1

Each of the two uniform hinged bars has a mass m and a length l, and is 
supported and loaded as shown. For a given force P determine the angle � for 
equilibrium.

Solution. The active-force diagram for the system composed of the two mem-
bers is shown separately and includes the weight mg of each bar in addition to 
the force P. All other forces acting externally on the system are reactive forces 
which do no work during a virtual movement �x and are therefore not shown.

The principle of virtual work requires that the total work of all external ac-
tive forces be zero for any virtual displacement consistent with the constraints. 
Thus, for a movement �x the virtual work becomes

[�U 5 0] P �x 1 2mg �h 5 0

We now express each of these virtual displacements in terms of the variable �, 
the required quantity. Hence,

 x 5 2l sin 
�

2
   and  �x 5 l cos 

�

2
 ��

Similarly,

 h 5
l
2

 cos 
�

2
   and  �h 5 2

l
4

 sin 
�

2
 ��

Substitution into the equation of virtual work gives us

 Pl cos 
�

2
 �� 2 2mg 

l
4

 sin 
�

2
 �� 5 0

from which we get

 tan 
�

2
5

2P
mg

   or  � 5 2 tan21 
2P
mg

 Ans.

To obtain this result by the principles of force and moment summation, it 
would be necessary to dismember the frame and take into account all forces act-
ing on each member. Solution by the method of virtual work involves a simpler 
operation.

1

2

Helpful Hints

1  Note carefully that with x positive 
to the right �x is also positive to the 
right in the direction of P, so that the 
virtual work is P(1�x). With h posi-
tive down �h is also mathematically 
positive down in the direction of mg, 
so that the correct mathematical 
expression for the work is mg(1�h). 
When we express �h in terms of �� in 
the next step, �h will have a negative 
sign, thus bringing our mathematical 
expression into agreement with the 
physical observation that the weight 
mg does negative work as each center 
of mass moves upward with an in-
crease in x and �.

2  We obtain �h and �x with the same 
mathematical rules of differentiation 
with which we may obtain dh and dx.

P

ll

θ

P

θ

mgmg

+x

+h
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Sample Problem 7/2

The mass m is brought to an equilibrium position by the application of the 
couple M to the end of one of the two parallel links which are hinged as shown. 
The links have negligible mass, and all friction is assumed to be absent. Deter-
mine the expression for the equilibrium angle � assumed by the links with the 
vertical for a given value of M. Consider the alternative of a solution by force and 
moment equilibrium.

Solution. The active-force diagram shows the weight mg acting through the 
center of mass G and the couple M applied to the end of the link. There are no 
other external active forces or moments which do work on the system during a 
change in the angle �.

The vertical position of the center of mass G is designated by the distance 
h below the fi xed horizontal reference line and is h 5 b cos � 1 c. The work done 
by mg during a movement �h in the direction of mg is

  1mg �h 5 mg �(b cos � 1 c)

  5 mg(2b sin � �� 1 0)

  5 2mgb sin � ��

The minus sign shows that the work is negative for a positive value of ��. The 
constant c drops out since its variation is zero.

With � measured positive in the clockwise sense, �� is also positive clock-
wise. Thus, the work done by the clockwise couple M is 1M ��. Substitution into 
the virtual-work equation gives us 

[�U 5 0] M �� 1 mg �h 5 0

which yields

  M �� 5 mgb sin � ��

  � 5 sin21 
M

mgb
 Ans.

Inasmuch as sin � cannot exceed unity, we see that for equilibrium, M is limited 
to values that do not exceed mgb.

The advantage of the virtual-work solution for this problem is readily seen 
when we observe what would be involved with a solution by force and moment 
equilibrium. For the latter approach, it would be necessary for us to draw sepa-
rate free-body diagrams of all of the three moving parts and account for all of the 
internal reactions at the pin connections. To carry out these steps, it would be 
necessary for us to include in the analysis the horizontal position of G with re-
spect to the attachment points of the two links, even though reference to this 
po sition would fi nally drop out of the equations when they were solved. We 
conclude, then, that the virtual-work method in this problem deals directly 
with cause and effect and avoids reference to irrelevant quantities.

1

Helpful Hint

1  Again, as in Sample Problem 7/1, we 
are consistent mathematically with 
our defi nition of work, and we see 
that the algebraic sign of the result-
ing expression agrees with the phys-
ical change.

M
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Sample Problem 7/3

For link OA in the horizontal position shown, determine the force P on the 
sliding collar which will prevent OA from rotating under the action of the couple 
M. Neglect the mass of the moving parts.

Solution. The given sketch serves as the active-force diagram for the system. 
All other forces are either internal or nonworking reactive forces due to the con-
straints.

We will give the crank OA a small clockwise angular movement �� as our 
virtual displacement and determine the resulting virtual work done by M and P. 
From the horizontal position of the crank, the angular movement gives a down-
ward displacement of A equal to 

 �y 5 a �� 

where �� is, of course, expressed in radians.
From the right triangle for which link AB is the constant hypotenuse we 

may write 

 b2 5 x2 1 y2

We now take the differential of the equation and get

 0 5 2x �x 1 2y �y  or  �x 5 2
y
x �y 

Thus,

 �x 5 2
y
x a ��

and the virtual-work equation becomes

[�U 5 0] M �� 1 P �x 5 0  M �� 1 P a2y
x a ��b 5 0

 P 5
Mx
ya

5
Mx
ha

 Ans.

Again, we observe that the virtual-work method produces a direct relation-
ship between the active force P and the couple M without involving other forces 
which are irrelevant to this relationship. Solution by the force and moment 
equations of equilibrium, although fairly simple in this problem, would require 
accounting for all forces initially and then eliminating the irrelevant ones.

1

2

3

Helpful Hints

1  Note that the displacement a �� of 
point A would no longer equal �y if 
the crank OA were not in a horizon-
tal position.

2  The length b is constant so that 
�b 5 0. Notice the negative sign, 
which merely tells us that if one 
change is positive, the other must be 
negative.

3  We could just as well use a counter-
clockwise virtual displacement for 
the crank, which would merely re-
verse the signs of all terms.
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PROBLEMS

 (Assume that the negative work of friction is negligible in 
the following problems unless otherwise indicated.)

Introductory Problems

7/1 Determine the moment M applied to the lower link 
through its shaft which is necessary to support the 
load P in terms of the angle �. Neglect the weights of 
the parts.

P

θ

θ

r

r

M

Problem 7/1

7/2 The mass of the uniform bar of length l is m, while 
that of the uniform bar of length 2l is 2m. For a given 
force P, determine the angle � for equilibrium.

l

ll

P

θ

Problem 7/2

7/3 For a given force P determine the angle � for equilib-
rium. Neglect the mass of the links.

bb

2b

P

θ θ

m

Problem 7/3

7/4 Determine the couple M required to maintain equilib-
rium at an angle �. Each of the two uniform bars has 
mass m and length l.

lM

θ

l/2

l/2

Problem 7/4

7/5 The foot-operated lift is used to raise a platform of 
mass m. Determine the necessary force P applied at 
the 108 angle to support the 80-kg load.

75
mm

10°

40°
B

P

m

100
mm

75
mm

Problem 7/5
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7/6 The arbor press works by a rack and pinion and is 
used to develop large forces, such as those required 
to produce force fi ts. If the mean radius of the pinion 
(gear) is r, determine the force R which can be devel-
oped by the press for a given force P on the handle.

b

P

r

Problem 7/6

7/7 For a given force P on the handle of the toggle clamp, 
the clamping force C increases to very large values 
as the angle � decreases. Determine an expression for 
C in terms of the force P and the angle �.

b

b

a

P

B

O

A
C

Problem 7/7

7/8 The uniform platform of mass m0 is supported in the 
position shown by n uniform supports of mass m and 
length b. If a couple M holds the platform and sup-
ports in the equilibrium position shown, determine 
the orientation �.

b
m

nn–1

M

321

m0

θ

Problem 7/8

7/9 Find the force Q exerted on the paper by the paper 
punch.

b

P

P

aa

Problem 7/9

7/10 For each unit of movement of the free end of the 
rope in the direction of the applied force P, the 
250-lb load moves one-fourth of a unit. If the me-
chanical effi ciency e of the hoist is 0.75, calculate the 
force P required to raise the load and the force P9 re-
quired to lower the load.

P

250 lb

Problem 7/10



 Article 7/3   Problems  405

7/11 The gear train shown is used to transmit motion to 
the vertical rack D. If an input torque M is applied 
to gear A, what force F is required to establish equi-
librium of the system? Gear C is keyed to the same 
shaft as gear B. Gears A, B, and C have pitch diam-
eters dA, dB, and dC, respectively. Neglect the weight 
of the rack.

F

D

A

B

C

M

Problem 7/11

7/12 If the gear train of the previous problem is modifi ed 
through the addition of intermediate gear E, what 
effect does this have on the force F which is neces-
sary to establish equilibrium? Gears A, B, C, and E 
have pitch diameters dA, dB, dC, and dE, respectively. 
Neglect the weight of the rack.

A
E

B
D

C

F

M

Problem 7/12

Representative Problems

7/13 The hand-operated hoist is designed to lift a 100-kg 
load where 25 turns of the handle on the worm shaft 

produce one revolution of the drum. Assuming a 
40-percent loss of energy due to friction in the mech-
anism, calculate the force F normal to the handle 
arm required to lift the load.

160 mm

F

100 kg

300 mm
dia.

Problem 7/13

7/14 Determine the couple M required to maintain equi-
librium at an angle �. The mass of the uniform bar 
of length 2l is 2m, while that of the uniform bar of 
length l is m.

M
m

2m θ
l

l/2

l/2

l/2

l/2

Problem 7/14
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7/15 The mechanism of Prob. 4/141 is repeated here. The 
torsional spring at B is undeformed when bars OB 
and BD are both in the vertical position and over-
lap. If a force F is required to position the bars at a 
steady orientation � 5 608, determine the torsional 
spring stiffness kT. The slot at C is smooth, and the 
weight of the bars is negligible. In this confi gura-
tion, the pin at C is positioned at the midpoint of 
the slotted bar.

A

O

C

kTB

E

F

Dθθ

b
2

b
2

Problem 7/15

7/16 In designing the toggle press shown, n turns of the 
worm shaft A would be required to produce one turn 
of the worm wheels B which operate the cranks 
BD. The movable ram has a mass m. Neglect any fric-
tion and determine the torque M on the worm shaft 
required to generate a compressive force C in the 
press for the position � 5 908. (Note that the virtual 
displacements of the ram and point D are equal for 
the � 5 908 position.)

B

l

r B
D

A

θ θ

m

C

M

Problem 7/16

7/17 The folding linkage is composed of n identical sec-
tions, each of which consists of two identical bars of 
mass m each. Determine the horizontal force P nec-
essary to maintain equilibrium in an arbitrary posi-
tion characterized by the angle �. Does P depend on 
the number n of sections present?

1 2 … n

C

A

B P

θ

b

b

b

b

Problem 7/17

7/18 Determine the moment M necessary to hold the 
 offset slider crank in the position shown against the 
action of the force P.

h

O

M

A

B P

L1

L2
θ

Problem 7/18

7/19 Determine the couple M which must be applied at 
O in order to support the mechanism in the position 
� 5 308. The masses of the disk at C, bar OA, and 
bar BC are m0, m, and 2m, respectively.

l

ll M

A

B

C

m

m0

2m

Oθ

Problem 7/19
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7/20 In testing the design of the screw-lift jack shown, 12 
turns of the handle are required to elevate the lifting 
pad 1 in. If a force F 5 10 lb applied normal to the 
crank is required to elevate a load L 5 2700 lb, deter-
mine the effi ciency e of the screw in raising the load.

F

L

6″

Problem 7/20

7/21 The tilting table of Prob. 4/121 is repeated here. A 
uniform crate of mass m is positioned as shown. By 
the method of this article, determine the force in the 
threaded shaft between pins C and D in terms of 
the mass m and the angle �. Evaluate your expres-
sion for m 5 50 kg, b 5 180 mm, and � 5 158.

280

A
m

C

B
D

bb

380 640

Dimensions in millimeters

θ

Problem 7/21

7/22 The elevation of the platform of mass m supported 
by the four identical links is controlled by the hy-
draulic cylinders AB and AC which are pivoted at 
point A. Determine the compression P in each of the 
cylinders required to support the platform for a 
specifi ed angle �.

θ θ

θ θ

b

b

b

b

b

CB

A

m

b

Problem 7/22

7/23 A device for counting the body radiation of a patient 
is shown. The radiation counter A has a mass m and 
is positioned by turning the screw of lead L (advance-
ment per revolution) with a torque M which controls 
the distance BC. Relate the torque M to the load mg 
for given values of b and �. Neglect all friction and 
the mass of the linkage compared with m.

A

b
b

CB

M
θ

Problem 7/23
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C C

BB
b/2 b/2

b b

b b

b/2 b/2

θ θ

Problem 7/26

7/27 The postal scale consists of a sector of mass m0 
hinged at O and with center of mass at G. The pan 
and vertical link AB have a mass m1 and are hinged 
to the sector at B. End A is hinged to the uniform 
link AC of mass m2, which in turn is hinged to the 
fi xed frame. The fi gure OBAC forms a parallelo-
gram, and the angle GOB is a right angle. Determine 
the relation between the mass m to be measured and 
the angle �, assuming that � 5 �0 when m 5 0.

mg

A

C

θ

O

a

0

θ

b B

G

Problem 7/27

7/24 The cargo box of the food-delivery truck for aircraft 
servicing has a loaded mass m and is elevated by the 
application of a torque M on the lower end of the 
link which is hinged to the truck frame. The hori-
zontal slots allow the linkage to unfold as the cargo 
box is elevated. Express M as a function of h.

b

bb

b h
M

m

Problem 7/24

7/25 The crate of mass m is supported by the light plat-
form and support links whose motion is controlled 
by the hydraulic cylinder CD. For a given confi gura-
tion �, what force P must be developed in the hy-
draulic cylinder to maintain equilibrium?

m

FB

C45°

30°
Ab

b

D Eθ θ

Problem 7/25

7/26 The portable work platform is elevated by means of 
the two hydraulic cylinders articulated at points C. 
Each cylinder is under a hydraulic pressure p and 
has a piston area A. Determine the pressure p re-
quired to support the platform and show that it is 
independent of �. The platform, worker, and supplies 
have a combined mass m, and the masses of the links 
may be neglected.
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is required to overcome friction in the threads and 
thrust bearing of the screw, determine the expres-
sion for the total moment M, applied to the adjusting 
screw, necessary to raise the load.

AM B

b

b b

b

θ

m

Problem 7/30

7/31 The can crusher of Prob. 4/124 is shown again with 
a generalized confi guration and applied force P. 
Determine the crushing force C which is applied to 
the can.

B

A

D

O

E

P

d
c

a

b

α

Problem 7/31

7/28 Determine the force P developed at the jaws of the 
rivet squeezer.

A
C

B

b

e

a

c

F

F

Problem 7/28

7/29 A horizontal force P is applied to the four-bar mech-
anism shown. If the weight of the bars is negligi-
ble compared with the applied force P, determine 
the magnitude of the couple M needed to hold the 
mechanism in equilibrium at the orientation shown. 
(Note: For simplicity, leave your answer in terms of 
�, �, and �.)

b

h

θ

P
B

C O

M

L2

L1
L3

A

Problem 7/29

7/30 The elevation of the load of mass m is controlled by 
the adjusting screw which connects joints A and B. 
The change in the distance between A and B for one 
revolution of the screw equals the lead L of the 
screw (advancement per revolution). If a moment Mƒ 
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 c7/34 Determine the force Q at the jaw of the shear for the 
400-N force applied with � 5 308. (Hint: Replace the 
400-N force by a force and a couple at the center of 
the small gear. The absolute angular displacement of 
the gear must be carefully determined.)

θ

360 mm

360 mm

75 mm

300 mm

400 N

Problem 7/34

7/32 Express the compression C in the hydraulic cylinder 
of the car hoist in terms of the angle �. The mass of 
the hoist is negligible compared with the mass m of 
the vehicle.

L

θθ

b

b
b2

Problem 7/32

7/33 Determine the force F between the jaws of the 
clamp in terms of a torque M exerted on the handle 
of the adjusting screw. The screw has a lead (ad-
vancement per revolution) L, and friction is to be 
neglected.

θ2
b

B

A

F D M

E

a

a

b

b

Problem 7/33
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7/4  POTENTIAL ENERGY AND STABIL ITY

The previous article treated the equilibrium confi guration of me-
chanical systems composed of individual members which we assumed to 
be perfectly rigid. We now extend our method to account for mechanical 
systems which include elastic elements in the form of springs. We intro-
duce the concept of potential energy, which is useful for determining the 
stability of equilibrium.

Elastic Potential Energy

The work done on an elastic member is stored in the member in the 
form of elastic potential energy Ve. This energy is potentially available 
to do work on some other body during the relief of its compression or 
extension.

Consider a spring, Fig. 7/11, which is being compressed by a force F. 
We assume that the spring is elastic and linear, which means that the 
force F is directly proportional to the defl ection x. We write this relation 
as F 5 kx, where k is the spring constant or stiffness of the spring. The 
work done on the spring by F during a movement dx is dU 5 F dx, so 
that the elastic potential energy of the spring for a compression x is the 
total work done on the spring 

Ve 5 Ex

0
 F dx 5 Ex

0
 kx dx

or Ve 5
1
2kx2 (7/4)

Thus, the potential energy of the spring equals the triangular area in 
the diagram of F versus x from 0 to x.

During an increase in the compression of the spring from x1 to x2, the 
work done on the spring equals its change in elastic potential energy or 

DVe 5 Ex2 

x1 
kx dx 5

1
2k(x2 

2 2 x1 

2)

which equals the trapezoidal area from x1 to x2.
During a virtual displacement �x of the spring, the virtual work 

done on the spring is the virtual change in elastic potential energy 

�Ve 5 F �x 5 kx �x

During a decrease in the compression of the spring as it is relaxed 
from x 5 x2 to x 5 x1, the change (fi nal minus initial) in the potential en-
ergy of the spring is negative. Consequently, if �x is negative, �Ve is also 
negative.

When we have a spring in tension rather than compression, the 
work and energy relations are the same as those for compression, where 
x now represents the elongation of the spring rather than its compres-
sion. While the spring is being stretched, the force again acts in the di-
rection of the displacement, doing positive work on the spring and 
increasing its potential energy.

Figure 7/11

x1

x

x2

F1

F2

F

F

δx

x δx

Uncompressed length

0
0

F1

F

F = kx

Ve = kx   x

F2

x1 x2

δ δ

x
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Because the force acting on the movable end of a spring is the nega-
tive of the force exerted by the spring on the body to which its movable 
end is attached, the work done on the body is the negative of the potential 
energy change of the spring.

A torsional spring, which resists the rotation of a shaft or another 
element, can also store and release potential energy. If the torsional 
stiffness, expressed as torque per radian of twist, is a constant kT, and if 
� is the angle of twist in radians, then the resisting torque is M 5 kT�. 
The potential energy becomes Ve 5 e�

0  kT� d� or 

 Ve 5
1
2kT�2 (7/4a)

which is analogous to the expression for the linear extension spring.
The units of elastic potential energy are the same as those of work 

and are expressed in joules (J) in SI units and in foot-pounds (ft-lb) in 
U.S. customary units.

Gravitational Potential Energy

In the previous article we treated the work of a gravitational force 
or weight acting on a body in the same way as the work of any other ac-
tive force. Thus, for an upward displacement �h of the body in Fig. 7/12 
the weight W 5 mg does negative work �U 5 2mg �h. If, on the other 
hand, the body has a downward displacement �h, with h measured pos-
itive downward, the weight does positive work �U 5 1mg �h.

An alternative to the foregoing treatment expresses the work done 
by gravity in terms of a change in potential energy of the body. This al-
ternative treatment is a useful representation when we describe a me-
chanical system in terms of its total energy. The gravitational potential 
energy Vg of a body is defi ned as the work done on the body by a force 
equal and opposite to the weight in bringing the body to the position 
under consideration from some arbitrary datum plane where the poten-
tial energy is defi ned to be zero. The potential energy, then, is the nega-
tive of the work done by the weight. When the body is raised, for 
example, the work done is converted into energy which is potentially 
available, since the body can do work on some other body as it returns 
to its original lower position. If we take Vg to be zero at h 5 0, Fig. 7/12, 
then at a height h above the datum plane, the gravitational potential 
energy of the body is 

 Vg 5 mgh (7/5)

If the body is a distance h below the datum plane, its gravitational po-
tential energy is 2mgh.

Note that the datum plane for zero potential energy is arbitrary be-
cause only the change in potential energy matters, and this change is 
the same no matter where we place the datum plane. Note also that the 
gravitational potential energy is independent of the path followed in ar-
riving at a particular level h. Thus, the body of mass m in Fig. 7/13 has 

Figure 7/12

Vg = +Wh
hU = –W

Vg = 0

Vg = –Wh

hδ
δδ

hVg = +W δδ

W

W

G

G

+h

+h alternative

Datum plane

or

Figure 7/13

Reference datum

Datum 2

Datum 1

m

G

G G

h + Δh

ΔVg = mg Δh

h
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the same potential-energy change no matter which path it follows in 
going from datum plane 1 to datum plane 2 because Dh is the same for 
all three paths.

The virtual change in gravitational potential energy is simply

�Vg 5 mg �h

where �h is the upward virtual displacement of the mass center of the 
body. If the mass center has a downward virtual displacement, then �Vg 
is negative.

The units of gravitational potential energy are the same as those for 
work and elastic potential energy, joules (J) in SI units and foot-pounds 
(ft-lb) in U.S. customary units.

Energy Equation

We saw that the work done by a linear spring on the body to which 
its movable end is attached is the negative of the change in the elastic 
potential energy of the spring. Also, the work done by the gravitational 
force or weight mg is the negative of the change in gravitational poten-
tial energy. Therefore, when we apply the virtual-work equation to a 
system with springs and with changes in the vertical position of its 
members, we may replace the work of the springs and the work of the 
weights by the negative of the respective potential energy changes.

We can use these substitutions to write the total virtual work �U in 
Eq. 7/3 as the sum of the work �U9 done by all active forces, other than 
spring forces and weight forces, and the work 2(�Ve 1 �Vg) done by the 
spring and weight forces. Equation 7/3 then becomes 

 �U9 2 (�Ve 1 �Vg) 5 0   or   �U9 5 �V  (7/6)

where V 5 Ve 1 Vg stands for the total potential energy of the system. 
With this formulation a spring becomes internal to the system, and the 
work of spring and gravitational forces is accounted for in the �V term.

Active-Force Diagrams

With the method of virtual work it is useful to construct the active-
force diagram of the system you are analyzing. The boundary of the sys-
tem must clearly distinguish those members which are part of the 
system from other bodies which are not part of the system. When we in-
clude an elastic member within the boundary of our system, the forces 
of interaction between it and the movable members to which it is at-
tached are internal to the system. Thus these forces need not be shown 
because their effects are accounted for in the Ve term. Similarly, weight 
forces are not shown because their work is accounted for in the Vg term.

Figure 7/14 illustrates the difference between the use of Eqs. 7/3 and 
7/6. We consider the body in part a of the fi gure to be a particle for sim-
plicity, and we assume that the virtual displacement is along the fi xed 
path. The particle is in equilibrium under the action of the applied forces 
F1 and F2, the gravitational force mg, the spring force kx, and a normal 
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reaction force. In Fig 7/14b, where the particle alone is isolated, �U in-
cludes the virtual work of all forces shown on the active-force diagram of 
the particle. (The normal reaction exerted on the particle by the smooth 
guide does no work and is omitted.) In Fig. 7/14c the spring is included in 
the system, and �U9 is the virtual work of only F1 and F2, which are the 
only external forces whose work is not accounted for in the potential- 
energy terms. The work of the weight mg is accounted for in the �Vg 
term, and the work of the spring force is included in the �Ve term.

Principle of Virtual Work

Thus, for a mechanical system with elastic members and members 
which undergo changes in position, we may restate the principle of vir-
tual work as follows:

The virtual work done by all external active forces (other 
than the gravitational and spring forces accounted for in 
the potential energy terms) on a mechanical system in 
equilibrium equals the corresponding change in the total 
elastic and gravitational potential energy of the system 
for any and all virtual displacements consistent with the 
constraints.

Figure 7/14

F1

F2

F1

F2

F1

F2

m

k
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path
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(a)

Eq. 7/3:    U = 0δ Eq. 7/6:     U ′ =   Ve +   Vg =   V
(b) (c)
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Stability of Equilibrium

Consider now the case of a mechanical system where movement is 
accompanied by changes in gravitational and elastic potential energies 
and where no work is done on the system by nonpotential forces. The 
mechanism treated in Sample Problem 7/6 is an example of such a sys-
tem. With �U9 5 0 the virtual-work relation, Eq. 7/6, becomes

 �(Ve 1 Vg) 5 0   or   �V 5 0 (7/7)

Equation 7/7 expresses the requirement that the equilibrium confi gura-
tion of a mechanical system is one for which the total potential energy V 
of the system has a stationary value. For a system of one degree of free-
dom where the potential energy and its derivatives are continuous func-
tions of the single variable, say, x, which describes the confi guration, 
the equilibrium condition �V 5 0 is equivalent mathematically to the 
requirement

 
dV
dx

5 0 (7/8)

Equation 7/8 states that a mechanical system is in equilibrium when the 
derivative of its total potential energy is zero. For systems with several 
degrees of freedom the partial derivative of V with respect to each coor-
dinate in turn must be zero for equilibrium.*

There are three conditions under which Eq. 7/8 applies, namely, 
when the total potential energy is a minimum (stable equilibrium), a 
maximum (unstable equilibrium), or a constant (neutral equilibrium). 
Figure 7/15 shows a simple example of these three conditions. The po-
tential energy of the roller is clearly a minimum in the stable position, 
a maximum in the unstable position, and a constant in the neutral 
position.

We may also characterize the stability of a mechanical system by 
noting that a small displacement away from the stable position results 
in an increase in potential energy and a tendency to return to the posi-
tion of lower energy. On the other hand, a small displacement away 
from the unstable position results in a decrease in potential energy and 

Figure 7/15

Stable Unstable Neutral

*For examples of two-degree-of-freedom systems, see Art. 43, Chapter 7, of the fi rst au-
thor’s Statics, 2nd Edition, SI Version, 1975.
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a tendency to move farther away from the equilibrium position to one of 
still lower energy. For the neutral position a small displacement one 
way or the other results in no change in potential energy and no ten-
dency to move either way.

When a function and its derivatives are continuous, the second de-
rivative is positive at a point of minimum value of the function and 
negative at a point of maximum value of the function. Thus, the mathe-
matical conditions for equilibrium and stability of a system with a single 
degree of freedom x are:

 Equilibrium   
dV
dx

 5  0

 Stable    
d2V
dx2  .  0 (7/9)

 Unstable    
d2V
dx2  ,  0

The second derivative of V may also be zero at the equilibrium position, 
in which case we must examine the sign of a higher derivative to ascer-
tain the type of equilibrium. When the order of the lowest remaining 
nonzero derivative is even, the equilibrium will be stable or unstable ac-
cording to whether the sign of this derivative is positive or negative. If 
the order of the derivative is odd, the equilibrium is classifi ed as unsta-
ble, and the plot of V versus x for this case appears as an infl ection point 
in the curve with zero slope at the equilibrium value.

Stability criteria for multiple degrees of freedom require more ad-
vanced treatment. For two degrees of freedom, for example, we use a 
Taylor-series expansion for two variables.

©
 M
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y

These lift platforms are examples of the type of 
structures which can be most easily analyzed with 
a virtual-work approach.



Sample Problem 7/4

The 10-kg cylinder is suspended by the spring, which has a stiffness of 
2 kN/m. Plot the potential energy V of the system and show that it is minimum 
at the equilibrium position.

Solution.  (Although the equilibrium position in this simple problem is clearly 
where the force in the spring equals the weight mg, we will proceed as though 
this fact were unknown in order to illustrate the energy relationships in the sim-
plest way.) We choose the datum plane for zero potential energy at the position 
where the spring is unextended.

The elastic potential energy for an arbitrary position x is Ve 5 12 

kx2 and the 
gravitational potential energy is 2mgx, so that the total potential energy is 

[V 5 Ve 1 Vg] V 5
1
2 

kx2 2 mgx

Equilibrium occurs where

c dV
dx

5 0 d  dV
dx

5 kx 2 mg 5 0  x 5 mg/k

Although we know in this simple case that the equilibrium is stable, we 
prove it by evaluating the sign of the second derivative of V at the equilibrium 
position. Thus, d2V/dx2 5 k, which is positive, proving that the equilibrium is 
stable.

Substituting numerical values gives

 V 5
1
2 (2000)x2 2 10(9.81)x

expressed in joules, and the equilibrium value of x is

 x 5 10(9.81)/2000 5 0.0490 m  or  49.0 mm Ans.

We calculate V for various values of x and plot V versus x as shown. The 
minimum value of V occurs at x 5 0.0490 m where dV/dx 5 0 and d2V/dx2 is 
positive.

1

2

Helpful Hints

1  The choice is arbitrary but simplifi es 
the algebra.

2  We could have chosen different 
datum planes for Ve and Vg without 
affecting our conclusions. Such a 
change would merely shift the sepa-
rate curves for Ve and Vg up or down 
but would not affect the position of 
the minimum value of V.

m = 10 kg

+x
V = 0

k = 2 kN/m

8

6

4
V, J

2

0
0.02 0.04 0.06 0.08 0.10

–2

–4

–6

–8

0.049

x = mg/k

V = Ve + Vg

Vg = –mgx

x, m

Ve =    kx21–
2
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Sample Problem 7/5

The two uniform links, each of mass m, are in the vertical plane and are 
connected and constrained as shown. As the angle � between the links increases 
with the application of the horizontal force P, the light rod, which is connected 
at A and passes through a pivoted collar at B, compresses the spring of stiffness 
k. If the spring is uncompressed in the position where � 5 0, determine the force 
P which will produce equilibrium at the angle �.

Solution. The given sketch serves as the active-force diagram of the system. 
The compression x of the spring is the distance which A has moved away from B, 
which is x 5 2b sin �/2. Thus, the elastic potential energy of the spring is

[Ve 5
1
2kx2] Ve 5

1
2k a2b sin 

�

2
b2

5 2kb2 sin2 
�

2

With the datum for zero gravitational potential energy taken through the 
support at O for convenience, the expression for Vg becomes 

[Vg 5 mgh] Vg 5 2mg a2b cos 
�

2
b

The distance between O and C is 4b sin �/2, so that the virtual work done by 
P is

 �U9 5 P � a4b sin 
�

2
b 5 2Pb cos 

�

2
 ��

The virtual-work equation now gives

[�U9 5 �Ve 1 �Vg]

  2Pb cos 
�

2
 �� 5 � a2kb2 sin2 

�

2
b 1 � a22mgb cos 

�

2
b

  5 2kb2 sin 
�

2
 cos 

�

2
 �� 1 mgb sin 

�

2
 ��

Simplifying gives fi nally

 P 5 kb sin 
�

2
1

1
2mg tan 

�

2
 Ans.

If we had been asked to express the equilibrium value of � corresponding to 
a given force P, we would have diffi culty solving explicitly for � in this particular 
case. But for a numerical problem we could resort to a computer solution and 
graphical plot of numerical values of the sum of the two functions of � to deter-
mine the value of � for which the sum equals P.

P
C

A
B

b
b

b bθ

k

Vg = 0
O



Sample Problem 7/6

The ends of the uniform bar of mass m slide freely in the horizontal and 
vertical guides. Examine the stability conditions for the positions of equilibrium. 
The spring of stiffness k is undeformed when x 5 0.

Solution.  The system consists of the spring and the bar. Since there are no ex-
ternal active forces, the given sketch serves as the active-force diagram. We will 
take the x-axis as the datum for zero gravitational potential energy. In the dis-
placed position the elastic and gravitational potential energies are 

 Ve 5
1
2kx2 5

1
2kb2 sin2 �  and  Vg 5 mg 

b
2

 cos �

The total potential energy is then

 V 5 Ve 1 Vg 5
1
2kb2 sin2 � 1

1
2mgb cos �

Equilibrium occurs for dV/d� 5 0 so that

 
dV
d�

5 kb2 sin � cos � 2
1
2mgb sin � 5 (kb2 cos � 2

1
2mgb) sin � 5 0

The two solutions to this equation are given by

 sin � 5 0  and  cos � 5
mg
2kb

We now determine the stability by examining the sign of the second deriva-
tive of V for each of the two equilibrium positions. The second derivative is 

  
d2V
d�2 

5 kb2(cos2 � 2 sin2 �) 2
1
2mgb cos �

  5 kb2(2 cos2 � 2 1) 2
1
2mgb cos �

Solution I.  sin � 5 0, � 5 0

 
d2V
d�2 

  5 kb2(2 2 1) 2
1
2mgb 5 kb2 a1 2

mg
2kb
b

  5 positive (stable)  if k . mg/2b

  5 negative (unstable)  if k , mg/2b Ans.

Thus, if the spring is suffi ciently stiff, the bar will return to the vertical position 
even though there is no force in the spring at that position.

Solution II.  cos � 5 
mg
2kb

, � 5 cos21 
mg
2kb

 
d2V
d�2 

5 kb2 c2amg
2kb
b2

2 1 d 2
1
2mgbamg

2kb
b 5 kb2 c amg

2kb
b2

2 1 d  Ans.

Since the cosine must be less than unity, we see that this solution is limited to 
the case where k . mg/2b, which makes the second derivative of V negative. 
Thus, equilibrium for Solution II is never stable. If k , mg/2b, we no longer 
have Solution II since the spring will be too weak to maintain equilibrium at a 
value of � between 0 and 908.

1

2

3

4

Helpful Hints

1  With no external active forces there 
is no �U9 term, and �V 5 0 is equiva-
lent to dV/d� 5 0.

x

θ
b

kx

y

x

θ
b

kx

y

2  Be careful not to overlook the solu-
tion � 5 0 given by sin � 5 0.

3  We might not have anticipated this 
result without the mathematical 
analysis of the stability.

4  Again, without the benefi t of the 
mathematical analysis of the stability 
we might have supposed erroneously 
that the bar could come to rest in a 
stable equilibrium position for some 
value of � between 0 and 908.
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A

B

C kD
m

b

θ

b

b

E

Problem 7/37

7/38 The uniform bar of mass m and length L is sup-
ported in the vertical plane by two identical springs 
each of stiffness k and compressed a distance � in 
the vertical position � 5 0. Determine the minimum 
stiffness k which will ensure a stable equilibrium 
position with � 5 0. The springs may be assumed to 
act in the horizontal direction during small angular 
motion of the bar.

k

Vertical

L

k θ

Problem 7/38

PROBLEMS

(Assume that the negative work of friction is negligible in 
the following problems.)

Introductory Problems

7/35 The potential energy of a mechanical system is 
given by V 5 6x3 2 9x2 1 7, where x is the position 
coordinate associated with its single degree of free-
dom. Determine the position or positions of equilib-
rium of the system and the stability condition of the 
system at each equilibrium position.

7/36 The torsional spring at A has a stiffness kT and is 
undeformed when bars OA and AB are in the ver-
tical position and overlap. Each uniform bar has 
mass m. Determine the equilibrium confi gurations 
of the system over the range 0 # � # 908 and the 
stability of the system at each equilibrium position 
for m 5 1.25 kg, b 5 750 mm, and kT 5 1.8 N?m/rad.

b

O

b

kTA

Bθ

Problem 7/36

7/37 For the mechanism shown, the spring is uncom-
pressed when � 5 0. Determine the angle � for the 
equilibrium position and specify the minimum 
spring stiffness k which will limit � to 308. The rod 
DE passes freely through the pivoted collar C, and 
the cylinder of mass m slides freely on the fi xed ver-
tical shaft.
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l

O kT

θ

Problem 7/41

7/42 In the mechanism shown, the rod AB slides through 
the pivoted collar at O and compresses the spring 
when the couple M is applied to link GF to increase 
the angle �. The spring has a stiffness k and would 
be uncompressed in the position � 5 0. Determine 
the angle � for equilibrium. The weights of the links 
are negligible. Figure CDEF is a parallelogram.

A

B

b

b

θ

k

CO

D
E

F

G

M

Problem 7/42

7/43 The cylinder of mass M and radius R rolls without 
slipping on the circular surface of radius 3R. At-
tached to the cylinder is a small body of mass m. 
Determine the required relationship between M 
and m if the body is to be stable in the equilibrium 
position shown.

R/4
3R/4

3R

m

M

Problem 7/43

7/39 The uniform partial circular ring of radius r and 
mass m is pivoted about O by the light support link 
OA shown. Determine the maximum value of h for 
which equilibrium in the position shown is stable. 
Evaluate for (a) � 5 308, (b) � 5 458, (c) � 5 608, and 
(d) � 5 908.

h
r

O

A

2
θ

2
θ

Problem 7/39

7/40 Determine the force P required to maintain equilib-
rium of the spring-loaded mechanism for a given angle 
�. The spring has a stiffness k and is uncompressed at 
� 5 0. The mass of the parts may be  neglected.

h

P

θ

Problem 7/40

7/41 The uniform bar of mass m and length l is hinged 
about a horizontal axis through its end O and is at-
tached to a torsional spring which exerts a torque 
M 5 kT� on the rod, where kT is the torsional stiff-
ness of the spring in units of torque per radian and 
� is the angular defl ection from the vertical in radi-
ans. Determine the maximum value of l for which 
equilibrium at the position � 5 0 is stable.
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Representative Problems

7/46 Each of the two gears carries an eccentric mass m 
and is free to rotate in the vertical plane about its 
bearing. Determine the values of � for equilibrium 
and identify the type of equilibrium for each position.

2a 2r

θ

G1

G2r
a

2θ

Problem 7/46

7/47 One of the critical requirements in the design of an 
artifi cial leg for an amputee is to prevent the knee 
joint from buckling under load when the leg is 
straight. As a fi rst approximation, simulate the arti-
fi cial leg by the two light links with a torsion spring 
at their common joint. The spring develops a torque 
M 5 kT�, which is proportional to the angle of bend 
� at the joint. Determine the minimum value of kT 
which will ensure stability of the knee joint for � 5 0.

m

l

l

β

Problem 7/47

7/48 The handle is fastened to one of the spring-connected 
gears, which are mounted in fi xed bearings. The 
spring of stiffness k connects two pins mounted in the 
faces of the gears. When the handle is in the vertical 
position, � 5 0 and the spring force is zero. Determine 
the force P required to maintain equilibrium at 
an angle �.

7/44 The fi gure shows the cross section of a uniform 
60-kg ventilator door hinged along its upper hori-
zontal edge at O. The door is controlled by the 
spring-loaded cable which passes over the small 
pulley at A. The spring has a stiffness of 160 N per 
meter of stretch and is undeformed when � 5 0. 
 Determine the angle � for equilibrium.

A

k

θO

1.4 m

Problem 7/44

7/45 The body consisting of the solid hemisphere (radius 
r and density �1) and concentric right-circular cone 
(base radius r, height h, and density �2) is resting 
on a horizontal surface. Determine the maximum 
height h which the cone may have without caus-
ing the body to be unstable in the upright position 
shown. Evaluate for the case where (a) the hemi-
sphere and cone are made of the same material, 
(b) the hemisphere is made of steel and the cone is 
made of aluminum, and (c) the hemisphere is made 
of aluminum and the cone is made of steel.

h

r

Problem 7/45
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θ

k

b O

A

B

P

D
C

b
2

b
2

b
2

Problem 7/50

7/51 One end of the torsion spring is secured to the 
ground at A, and the other end is fastened to the 
shaft at B. The torsional stiffness kT of the elastic 
spring is the torque required to twist the spring 
through an angle of one radian. The spring resists 
the moment about the shaft axis caused by the ten-
sion mg in the cable wrapped around the drum of 
radius r. Determine the equilibrium value of h mea-
sured from the dashed position, where the spring is 
untwisted.

r

A B

m

kT

h

Problem 7/51

a

P

r

θ

θ

r

b

b

k

Problem 7/48

7/49 Determine the maximum height h of the mass m for 
which the inverted pendulum will be stable in the 
vertical position shown. Each of the springs has a 
stiffness k, and they have equal precompressions in 
this position. Neglect the mass of the remainder of 
the mechanism.

k

b

k

h

m

b

Problem 7/49

7/50 The fi gure shows the side view of a door to a storage 
compartment. As the door is opened, the light rod, 
which is connected at A, slides through the collar 
at C and compresses the spring of stiffness k. Deter-
mine the force P required to hold the door in an arbi-
trary position �. The uniform door has mass m, and 
the spring is undeformed when the door is vertical.
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7/54 The uniform link AB has a mass m, and its left end 
A travels freely in the fi xed horizontal slot. End B is 
attached to the vertical plunger, which compresses 
the spring as B falls. The spring would be uncom-
pressed at the position � 5 0. Determine the angle � 
for equilibrium (other than the impossible position 
corresponding to � 5 908) and designate the condi-
tion which will ensure stability.

B

C

l

k

A
θ

Problem 7/54

7/55 The 3-lb pendulum swings about axis O-O and has 
a mass center at G. When � 5 0, each spring has 
an initial stretch of 4 in. Calculate the maximum 
stiffness k of each of the parallel springs which will 
allow the pendulum to be in stable equilibrium at 
the bottom position � 5 0.

z

O

k

k

O

θ

10″

20″

20″

G

Problem 7/55

7/52 In the fi gure is shown a small industrial lift with a 
foot release. There are four identical springs, two on 
each side of the central shaft. The stiffness of each 
pair of springs is 2k. In designing the lift, specify 
the value of k which will ensure stable equilibrium 
when the lift supports a load (weight) L in the posi-
tion where � 5 0 with no force P on the pedal. The 
springs are equally precompressed initially and 
may be assumed to act in the horizontal direction at 
all times.

2k
l

θ
l

L

P

2k

Problem 7/52

7/53 The two uniform links, each of mass m, lie in a ver-
tical plane and are connected and constrained as 
shown. Rod AB is connected to the roller at B and 
passes through a pivoted collar at A. At the posi-
tion � 5 �0, the stop C rests against roller A and the 
spring is uncompressed. As force P is applied per-
pendicular to link AE, the angle � increases and the 
spring of stiffness k is compressed. Determine the 
force P which will produce equilibrium at an arbi-
trary angle � . �0.

θ

bb

b

k

BA

ED

C

P

b

Problem 7/53
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threads) and controls the horizontal motion of the 
threaded collar C as the motor (not shown) applies 
a torque M. The screw is supported by the fi xed 
bearings A and B. The uniform support link CD has 
mass m and length b. Find the torque M necessary 
to tilt the work surface for a given value of �. Sim-
plify your result for the case where d 5 b and the 
mass of the support link is negligible.

θ

G

d
b

D

CM

B

O

A

a

Problem 7/58

 c7/59 The double-axle front suspension is used on small 
trucks. In a test of the designed action, the frame 
F must be jacked up so that h 5 350 mm in order 
to relieve the compression in the coil springs. Deter-
mine the value of h when the jack is removed. Each 
spring has a stiffness of 120 kN/m. The load L is 
12 kN, and the central frame F has a mass of 40 kg. 
Each wheel and attached link has a mass of 35 kg 
with a center of mass 680 mm from the vertical 
centerline.

500 mm

400 mm

750 mm

h

F

A

L

Problem 7/59

7/56 Predict through calculation whether the homoge-
neous semicylinder and the half-cylindrical shell 
will remain in the positions shown or whether they 
will roll off the lower cylinders.

r

r

r

r

Problem 7/56

7/57 The fi gure shows a tilting desk chair together with 
the design detail of the spring-loaded tilting mech-
anism. The frame of the seat is pivoted about the 
fi xed point O on the base. The increase in distance 
between A and B as the chair tilts back about O 
is the increase in compression of the spring. The 
spring, which has a stiffness of 96 kN/m, is uncom-
pressed when � 5 0. For small angles of tilt it may 
be assumed with negligible error that the axis of 
the spring remains parallel to the seat. The center 
of mass of an 80-kg person who sits in the chair is 
at G on a line through O perpendicular to the seat. 
Determine the angle of tilt � for equilibrium. (Hint: 
The deformation of the spring may be visualized by 
allowing the base to tilt through the required angle � 
about O while the seat is held in a fi xed position.)

50 mm

G

O
θ

O

A

B

θ
300 mm

Problem 7/57

 c7/58 The work surface with mass m0 and center of mass 
G is tilted into position by a screw-driven mecha-
nism. The double-thread screw with square threads 
has a pitch p (axial distance between adjacent 
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O
b bθ

θ
b b

E

Partial
end view

M

A B

CD
E

Problem 7/60

 c7/60 The portable roller stand for supporting boards 
ejected from a wood planer is designed with a micro- 
fi ne height adjustment produced by turning the 
knurled knob of the adjusting screw with a torque 
M. The single-thread screw with square threads 
has a pitch p (advancement per revolution) and is 
threaded into the collar at B to control the distance 
between A and B (and hence C and D). The roller E 
and supporting box have a mass m1, and the four 
uniform links (two on each side) have a combined 
mass m2 and a length 2b for each. Neglect all fric-
tion and fi nd the torque M necessary to raise the 
roller for a given value of �.



7/5 CHAPTER REVIEW

In this chapter we have developed the principle of virtual work. This 
 principle is useful for determining the possible equilibrium confi gurations 
of a body or a system of interconnected bodies where the external forces are 
known. To apply the method successfully, you must understand the concepts 
of virtual displacement, degrees of freedom, and potential energy.

Method of Virtual Work

When various confi gurations are possible for a body or a system of 
interconnected bodies under the action of applied forces, we can fi nd the 
equilibrium position by applying the principle of virtual work. When using 
this method, keep the following in mind.

 1. The only forces which need to be considered when determining the 
equilibrium position are those which do work (active forces) during the 
assumed differential movement of the body or system away from its 
equilibrium position.

 2. Those external forces which do no work (reactive forces) need not be 
involved.

 3. For this reason the active-force diagram of the body or system (rather 
than the free-body diagram) is useful to focus attention on only those 
external forces which do work during the virtual displacements.

Virtual Displacements

A virtual displacement is a fi rst-order differential change in a linear 
or angular position. This change is fi ctitious in that it is an assumed 
movement which need not take place in reality. Mathematically, a virtual 
displacement is treated the same as a differential change in an actual move-
ment. We use the symbol � for the differential virtual change and the usual 
symbol d for the differential change in a real movement.

Relating the linear and angular virtual displacements of the parts of a 
mechanical system during a virtual movement consistent with the constraints 
is often the most diffi cult part of the analysis. To do this,

 1. Write the geometric relationships which describe the confi guration of 
the system.

 2. Establish the differential changes in the positions of parts of the 
system by differentiating the geometric relationship to obtain expres-
sions for the differential virtual movements.

Degrees of Freedom

In Chapter 7 we have restricted our attention to mechanical systems 
for which the positions of the members can be specifi ed by a single variable 
(single-degree-of-freedom systems). For two or more degrees of freedom, we 
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would apply the virtual-work equation as many times as there are degrees of 
freedom, allowing one variable to change at a time while holding the remain-
ing ones constant.

Potential Energy Method

The concept of potential energy, both gravitational (Vg) and elastic (Ve), 
is useful in solving equilibrium problems where virtual displacements cause 
changes in the vertical positions of the mass centers of the bodies and changes 
in the lengths of elastic members (springs). To apply this method,

 1. Obtain an expression for the total potential energy V of the system in 
terms of the variable which specifi es the possible position of the system.

 2. Examine the fi rst and second derivatives of V to establish, respectively, 
the position of equilibrium and the corresponding stability condition.

428  Chapter 7   Virtual Work
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7/64 The light bar OC is pivoted at O and swings in the 
vertical plane. When � 5 0, the spring of stiffness 
k is unstretched. Determine the equilibrium angle 
corresponding to a given vertical force P applied to 
the end of the bar. Neglect the mass of the bar and 
the diameter of the small pulleys.

k

θ

P

C

A

B

O

a

a

a

Problem 7/64

7/65 The semicylindrical shell of radius r is pivoted 
about a shaft through points O as shown. The mass 
of the two support tabs is small compared with the 
mass of the shell. Determine the maximum value 
of h for which equilibrium in the position shown is 
stable.

O

h
O

r

Problem 7/65

REVIEW PROBLEMS

7/61 The potential energy of a mechanical system is given

  by V 5 20 1 1080x 2 51x2 2
101

3
x3 1

1
2

x4 1
1
5

x5, 

  where x is the position coordinate associated with 
its single degree of freedom. Determine the position 
or positions of equilibrium of the system and the 
stability condition of the system at each equilibrium 
position. (Note: A plot of the potential function V 
will greatly aid in the solution process.)

7/62 A control mechanism consists of an input shaft at A 
which is turned by applying a couple M and an out-
put slider B which moves in the x-direction against 
the action of force P. The mechanism is designed so 
that the linear movement of B is proportional to the 
angular movement of A, with x increasing 60 mm 
for every complete turn of A. If M 5 10 N?m, de-
termine P for equilibrium. Neglect internal friction 
and assume that all mechanical components are 
ideally connected rigid bodies.

M

B
P

A

x

θ

Problem 7/62

7/63 Neglect the mass of the crossed links and determine 
the angle � for the equilibrium position of the sym-
metrical mechanism in the vertical plane. Each of 
the identical rectangular blocks of mass m is homo-
geneous with mass center at G. Evaluate � for equi-
librium when b 5 a.

a

a

a

a aa bb

GG
a a

θ

Problem 7/63
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A

C

θ θ
θ θ

B F

E D

CD = CE = 400 mm

600 mm

600 mm

600 mm

600 mm

40 kg

Problem 7/68

7/69 Using the method of this chapter, determine the 
force supported by the roller at D. Use the values 
a 5 0.6 m, b 5 1.2 m, c 5 0.6 m, d 5 0.3 m, h 5 0.3 m, 
and P 5 200 N.

A

a
h

d

c

b

O
C

P

B

D

Problem 7/69

7/70 The fi gure shows the design of the cross section of 
a 135-kg overhead industrial door with hinged seg-
ments which pass over the rollers on the cylindrical 
guide. When the door is closed, the end A is at posi-
tion B. On each side of the door there is a control 
cable fastened to the bottom of the door and wound 
around a drum C. Each of the two drums is con-
nected to a torsion spring, which offers a torsional 
resistance which increases by 10 N?m for each 
revolution of the drum, starting from an unwound 
position of the spring where x 5 0. Determine the 
designed value of x for equilibrium and prove that 
equilibrium in this position is stable.

7/66 The sketch shows the approximate design confi gu-
ration of one of the four toggle-action hold-down 
assemblies which clamp the base fl ange of a rocket 
vehicle to the pedestal of its platform prior to 
launching. Calculate the preset clamping force F at 
A if the link CE is under tension produced by a fl uid 
pressure of 2000 lb/in.2 acting on the left side of the 
piston in the hydraulic cylinder. The piston has a net 
area of 16 in.2. The weight of the assembly is consid-
erable, but it is small compared with the clamping 
force produced and is therefore neglected here.

60″

40″

Rocket
base flange

40″

20″

A
B

C
E

D

2″

O

6″

Problem 7/66

7/67 Two semicylindrical shells with equal projecting 
rectangles are formed from sheet metal, one with 
confi guration (a) and the other with confi guration 
(b). Both shells rest on a horizontal surface. For 
case (a) determine the maximum value of h for which 
the shell will remain stable in the position shown. 
For case (b) prove that stability in the position 
shown is not affected by the dimension h.

h

(a) (b)

h

hr r

h

Problem 7/67

7/68 Use the principle of virtual work to determine the 
minimum coeffi cient of friction �s between the 40-kg 
crate and the grips of the symmetrical friction 
tongs so that the crate will not slip. Solve for the 
case where � 5 308.
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b

h

θ

B

C O

M

L2

m2

m3

m1
L1

L3

A

Problem 7/72

7/73 The cylinder of mass m is held in the equilibrium 
confi guration � by means of three light links and 
a nonlinear spring near E. The spring is uncom-
pressed when link OA is vertical, and the potential 
energy in the spring is given by Ve 5 k�3, where � 
represents the amount of spring deformation from 
the uncompressed position and the constant k is re-
lated to the stiffness of the spring. As � increases, 
the rod, which is connected at A, slides through the 
pivoted collar at E and compresses the spring be-
tween the collar and the end of the rod. Determine 
the values of � for system equilibrium over the 
range 0 # � # 908 and state whether the system is 
stable or unstable in those positions for k 5 35 N/m2, 
b 5 600 mm, and m 5 2 kg. Assume no mechanical 
interference for the indicated range of motion.

θθ

m

D

Bb

b
b

E

b

b

A

O C

Problem 7/73

2.5 m

80 mmC

A

B

x
0.6

 m

Problem 7/70

7/71 The uniform rectangular panel of mass m with 
mass center at G is guided by its rollers—the upper 
pair in the horizontal tracks and the lower pair in 
the vertical tracks. Determine the force P, applied 
to the lower edge normal to the panel, required to 
maintain equilibrium at a given angle �. (Hint: To 
evaluate the work done by P, replace it by its hori-
zontal and vertical components.)

b

b

G

P

θ

Problem 7/71

7/72 Reconsider the four-bar mechanism of Prob. 7/29. If 
the bars now have the indicated masses and if the 
force P 5 0, determine the magnitude of the couple 
M needed to hold the mechanism in equilibrium at 
the orientation shown. Evaluate your result for the 
case where m1g 5 2 lb, m2 g 5 8 lb, m3 g 5 7 lb, L1 5 
10 in., L2 5 40 in., L3 5 32 in., h 5 6 in., b 5 18 in., 
and � 5 308.
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k = 1.25 lb/in.

B

A θ

M = 480 lb-in.

24″

Problem 7/76

 *7/77 The uniform 25-kg trap door is freely hinged along 
its bottom edge O–O and is attached to the two 
springs each of stiffness k 5 800 N/m. The springs 
are unstretched when � 5 908. Take Vg 5 0 on the 
horizontal plane through O–O and plot the poten-
tial energy V 5 Vg 1 Ve as a function of � from � 5 
0 to � 5 908. Also determine the angle � for equilib-
rium and determine the stability of this position.

600 mm

600 mm

600 m
m

O

k

k

A

C

D

B

θ

O

Problem 7/77

 *7/78 The bar OA, which weighs 50 lb with center of grav-
ity at G, is pivoted about its end O and swings in 
the vertical plane under the constraint of the 20-lb 
counterweight. Write the expression for the total 
potential energy of the system, taking Vg 5 0 when 
� 5 0, and compute Vg as a function of � from � 5 0 
to � 5 3608. From your plot of the results, determine 
the position or positions of equilibrium and the 
stability of equilibrium at each position.

 c7/74 In the mechanism shown, the spring of stiffness k 
is uncompressed when � 5 608. Also, the masses of 
the parts are small compared with the sum m of the 
masses of the two cylinders. The mechanism is con-
structed so that the arms may swing past the verti-
cal, as seen in the right-hand side view. Determine 
the values � for equilibrium and investigate the 
stability of the mechanism in each position. Neglect 
friction.

B

a

a

k

O

A

θ

a

m––
2

m––
2

m

Problem 7/74

 *Computer-Oriented Problems

 *7/75 Determine the angle � for equilibrium of the uni-
form 10-kg link with mass center at G as its position 
in the vertical plane is infl uenced by the 80-N hori-
zontal force applied to its end. The spring has a con-
stant of 1.5 kN/m and is unstretched when � 5 0.

G

200 mm
200 mm

k = 1.5 kN/m 

80 N

θ

Problem 7/75

 *7/76 The end rollers of the uniform 20-lb bar AB move 
freely in the horizontal and vertical guides as 
shown. Determine the lowest value of the equilib-
rium position � under the action of the 480-lb-in. 
couple M and the spring of stiffness k 5 1.25 lb/in. 
The spring is uncompressed when � 5 0.
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 *7/80 The toggle mechanism is used to lift the 80-kg mass 
to a locked position when OB moves to OB9 in the 
38 position. To evaluate the design action of the 
toggle, plot the value of P required to operate the 
toggle as a function of � from � 5 208 to � 5 238.

3°
B′

θ B

P

O

300 mm

m = 80 kg

150 mm

150
mm

Problem 7/80

θ

2′

3′

2′

O

G

A
20 lb

Problem 7/78

 *7/79 Determine the equilibrium angle � for the mecha-
nism shown. The spring of stiffness k 5 12 lb/in. has 
an unstretched length of 8 in. Each of the uniform 
links AB and CD has a weight of 10 lb, and member 
BD with its load weighs 100 lb. Motion is in the 
vertical plane.

16″

k = 12 lb/in.

16″

16″

B

16″

A

θ

C

D

Problem 7/79
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AREA MOMENTS 
OF INERTIA

APPENDIX OUTLINE

A/1 Introduction
A/2 Defi nitions
A/3 Composite Areas
A/4 Products of Inertia and Rotation of Axes

A

A/1  INTRODUCTION

When forces are distributed continuously over an area on which 
they act, it is often necessary to calculate the moment of these forces 
about some axis either in or perpendicular to the plane of the area. Fre-
quently the intensity of the force (pressure or stress) is proportional to 
the distance of the line of action of the force from the moment axis. The 
elemental force acting on an element of area, then, is proportional to 
distance times differential area, and the elemental moment is propor-
tional to distance squared times differential area. We see, therefore, 
that the total moment involves an integral of form e (distance)2 d (area). 
This integral is called the moment of inertia or the second moment of the 
area. The integral is a function of the geometry of the area and occurs 
frequently in the applications of mechanics. Thus it is useful to develop 
its properties in some detail and to have these properties available for 
ready use when the integral arises.

Figure A/1 illustrates the physical origin of these integrals. In part a 
of the fi gure, the surface area ABCD is subjected to a distributed pres-
sure p whose intensity is proportional to the distance y from the axis 
AB. This situation was treated in Art. 5/9 of Chapter 5, where we de-
scribed the action of liquid pressure on a plane surface. The moment 
about AB due to the pressure on the element of area dA is py dA 5 
ky2 dA. Thus, the integral in question appears when the total moment 
M 5 k e y2 dA is evaluated.
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In Fig. A/1b we show the distribution of stress acting on a transverse 
section of a simple elastic beam bent by equal and opposite couples 
applied to its ends. At any section of the beam, a linear distribution of 
force intensity or stress �, given by � 5 ky, is present. The stress is posi-
tive (tensile) below the axis O–O and negative (compressive) above the 
axis. We see that the elemental moment about the axis O–O is dM 5 
y(� dA) 5 ky2 dA. Thus, the same integral appears when the total mo-
ment M 5 k e y2 dA is evaluated.

A third example is given in Fig. A/1c, which shows a circular shaft 
subjected to a twist or torsional moment. Within the elastic limit of the 
material, this moment is resisted at each cross section of the shaft by a 
distribution of tangential or shear stress �, which is proportional to the 
radial distance r from the center. Thus, � 5 kr, and the total moment 
about the central axis is M 5 e r(� dA) 5 k e r2 dA. Here the integral dif-
fers from that in the preceding two examples in that the area is normal 
instead of parallel to the moment axis and in that r is a radial coordinate 
instead of a rectangular one.

Although the integral illustrated in the preceding examples is gen-
erally called the moment of inertia of the area about the axis in question, 
a more fi tting term is the second moment of area, since the fi rst moment 
y dA is multiplied by the moment arm y to obtain the second moment 
for the element dA. The word inertia appears in the terminology by rea-
son of the similarity between the mathematical form of the integrals for 
second moments of areas and those for the resultant moments of the 
so-called inertia forces in the case of rotating bodies. The moment of iner-
tia of an area is a purely mathematical property of the area and in itself 
has no physical signifi cance.

A/2  DEF INIT IONS

The following defi nitions form the basis for the analysis of area mo-
ments of inertia.

Rectangular and Polar Moments of Inertia

Consider the area A in the x-y plane, Fig. A/2. The moments of iner-
tia of the element dA about the x- and y-axes are, by defi nition, dIx 5 
y2 dA and dIy 5 x2 dA, respectively. The moments of inertia of A about 
the same axes are therefore

 Ix 5 E y2 dA

  Iy 5 E x2 dA 

(A/1)

where we carry out the integration over the entire area.

Figure A/1
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The moment of inertia of dA about the pole O (z-axis) is, by similar 
defi nition, dIz 5 r2 dA. The moment of inertia of the entire area about 
O is

 Iz 5 E r2 dA (A/2)

The expressions defi ned by Eqs. A/1 are called rectangular moments of 
inertia, whereas the expression of Eq. A/2 is called the polar moment of 
inertia.* Because x2 1 y2 5 r2, it is clear that

 Iz 5 Ix 1 Iy (A/3)

For an area whose boundaries are more simply described in rectangular 
coordinates than in polar coordinates, its polar moment of inertia is eas-
ily calculated with the aid of Eq. A/3.

The moment of inertia of an element involves the square of the dis-
tance from the inertia axis to the element. Thus an element whose coor-
dinate is negative contributes as much to the moment of inertia as does 
an equal element with a positive coordinate of the same magnitude. 
Consequently the area moment of inertia about any axis is always a pos-
itive quantity. In contrast, the fi rst moment of the area, which was in-
volved in the computations of centroids, could be either positive, 
negative, or zero.

The dimensions of moments of inertia of areas are clearly L4, where 
L stands for the dimension of length. Thus, the SI units for area mo-
ments of inertia are expressed as quartic meters (m4) or quartic millime-
ters (mm4). The U.S. customary units for area moments of inertia are 
quartic feet (ft4) or quartic inches (in.4).

The choice of the coordinates to use for the calculation of moments 
of inertia is important. Rectangular coordinates should be used for 
shapes whose boundaries are most easily expressed in these coordinates. 
Polar coordinates will usually simplify problems involving boundaries 
which are easily described in r and �. The choice of an element of area 
which simplifi es the integration as much as possible is also important. 
These considerations are quite analogous to those we discussed and il-
lustrated in Chapter 5 for the calculation of centroids.

Radius of Gyration

Consider an area A, Fig. A/3a, which has rectangular moments of 
inertia Ix and Iy and a polar moment of inertia Iz about O. We now visu-
alize this area as concentrated into a long narrow strip of area A a dis-
tance kx from the x-axis, Fig. A/3b. By defi nition the moment of inertia 
of the strip about the x-axis will be the same as that of the original area 
if kx

2A 5 Ix. The distance kx is called the radius of gyration of the area 

*The polar moment of inertia of an area is sometimes denoted in mechanics literature by 
the symbol J.
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about the x-axis. A similar relation for the y-axis is written by consider-
ing the area as concentrated into a narrow strip parallel to the y-axis as 
shown in Fig. A/3c. Also, if we visualize the area as concentrated into a 
narrow ring of radius kz as shown in Fig. A/3d, we may express the polar 
moment of inertia as kz

2A 5 Iz. In summary we write

  Ix 5 kx
2A  kx 5 !Ix/A

  Iy 5 ky
2A   or    ky 5 !Iy/A (A/4)

  Iz 5 kz
2A  kz 5 !Iz/A

The radius of gyration, then, is a measure of the distribution of the area 
from the axis in question. A rectangular or polar moment of inertia may 
be expressed by specifying the radius of gyration and the area.

When we substitute Eqs. A/4 into Eq. A/3, we have

 kz
2 5 kx

2 1 ky
2 (A/5)

Thus, the square of the radius of gyration about a polar axis equals the 
sum of the squares of the radii of gyration about the two corresponding 
rectangular axes.

Do not confuse the coordinate to the centroid C of an area with the 
radius of gyration. In Fig. A/3a the square of the centroidal distance 
from the x-axis, for example, is y 

2, which is the square of the mean 
value of the distances from the elements of the area to the x-axis. The 
quantity kx

2, on the other hand, is the mean of the squares of these dis-
tances. The moment of inertia is not equal to Ay 

2, since the square of 
the mean is less than the mean of the squares.

Transfer of Axes

The moment of inertia of an area about a noncentroidal axis may be 
easily expressed in terms of the moment of inertia about a parallel cen-
troidal axis. In Fig. A/4 the x0-y0 axes pass through the centroid C of the 
area. Let us now determine the moments of inertia of the area about the 

Figure A/3
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parallel x-y axes. By defi nition, the moment of inertia of the element dA 
about the x-axis is

dIx 5 (y0 1 dx)2 dA

Expanding and integrating give us

Ix 5 E y0 

2 dA 1 2dx E y0 dA 1 dx 

2 E dA

We see that the fi rst integral is by defi nition the moment of inertia Ix 
about the centroidal x0-axis. The second integral is zero, since e y0 dA 5 
Ay0 and y0 is automatically zero with the centroid on the x0-axis. The 
third term is simply Adx 

2. Thus, the expression for Ix and the similar 
expression for Iy become

 Ix 5 Ix 1 Adx
2

  Iy 5 Iy 1 Ady
2 

(A/6)

By Eq. A/3 the sum of these two equations gives

 Iz 5 Iz 1 Ad2 (A/6a)

Equations A/6 and A/6a are the so-called parallel-axis theorems. Two 
points in particular should be noted. First, the axes between which the 
transfer is made must be parallel, and second, one of the axes must pass 
through the centroid of the area.

If a transfer is desired between two parallel axes neither of which 
passes through the centroid, it is fi rst necessary to transfer from one 
axis to the parallel centroidal axis and then to transfer from the cen-
troidal axis to the second axis.

The parallel-axis theorems also hold for radii of gyration. With sub-
stitution of the defi nition of k into Eqs. A/6, the transfer relation 
becomes

 k2 5 k2 1 d2 (A/6b)

where k is the radius of gyration about a centroidal axis parallel to the 
axis about which k applies and d is the distance between the two axes. 
The axes may be either in the plane or normal to the plane of the area.

A summary of the moment-of-inertia relations for some common 
plane fi gures is given in Table D/3, Appendix D.
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Sample Problem A/1

Determine the moments of inertia of the rectangular area about the cen-
troidal x0- and y0-axes, the centroidal polar axis z0 through C, the x-axis, and 
the polar axis z through O.

Solution.  For the calculation of the moment of inertia Ix about the x0-axis, a 
horizontal strip of area b dy is chosen so that all elements of the strip have the 
same y-coordinate. Thus,

[Ix 5 E y2 dA] Ix 5 Eh /2

2h /2
 y2b dy 5

1
12 bh3 Ans.

By interchange of symbols, the moment of inertia about the centroidal y0-axis is

 Iy 5
1

12hb3 Ans.

The centroidal polar moment of inertia is

[Iz 5 Ix 1 Iy] Iz 5
1

12(bh3 1 hb3) 5
1

12 A(b2 1 h2) Ans.

By the parallel-axis theorem, the moment of inertia about the x-axis is

[Ix 5 Ix 1 Adx 

2] Ix 5
1

12 bh3 1 bhah
2
b2

5
1
3 bh3 5

1
3 Ah2 Ans.

We also obtain the polar moment of inertia about O by the parallel-axis theorem, 
which gives us

[Iz 5 Iz 1 Ad2]  Iz 5
1

12 A(b2 1 h2) 1 A c ab
2
b2

1 ah
2
b2 d

  Iz 5
1
3 A(b2 1 h2)  Ans.

1

Helpful Hints

1  Here again we choose the simplest 
possible element. If we had chosen 
dA 5 dx dy, we would have to inte-
grate y2 dx dy with respect to x fi rst. 
This gives us y2x dy, which is the ex-
pression we chose at the outset.

2  Expressing x in terms of y should 
cause no diffi culty if we observe the 
proportional relationship between 
the similar triangles.

b

y

x

x′

dy h

x

Sample Problem A/2

Determine the moments of inertia of the triangular area about its base and 
about parallel axes through its centroid and vertex.

Solution.  A strip of area parallel to the base is selected as shown in the fi gure, 
and it has the area dA 5 x dy 5 [(h 2 y)b/h] dy. By defi nition

[Ix 5 E y2 dA] Ix 5 Eh

0
 y2 

h 2 y
h

 b dy 5 b c y3

3
2  

y4

4h
d h

0
5

bh3

12
 Ans.

By the parallel-axis theorem, the moment of inertia I about an axis through the 
centroid, a distance h/3 above the x-axis, is

[I 5 I 2  Ad2] I 5
bh3

12
2  abh

2
bah

3
b2

5
bh3

36
 Ans.

A transfer from the centroidal axis to the x9-axis through the vertex gives

[I 5 I 1 Ad2] Ix9 5
bh3

36
1 abh

2
ba2h

3
b2

5
bh3

4
 Ans.

1
2

Helpful Hint

1  If we had started with the second-order 
element dA 5 dx dy, integration 
with respect to x holding y constant 
amounts simply to multiplication by 
b and gives us the expression y2b dy, 
which we chose at the outset.

b

y

y

h––
2

h––
2

y0

x0

x

dy

C

O
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Sample Problem A/3

Calculate the moments of inertia of the area of a circle about a diametral 
axis and about the polar axis through the center. Specify the radii of gyration.

Solution.  A differential element of area in the form of a circular ring may be 
used for the calculation of the moment of inertia about the polar z-axis through 
O since all elements of the ring are equidistant from O. The elemental area is 
dA 5 2�r0 dr0, and thus,

[Iz 5 E r2 dA] Iz 5 Er

0
 r0 

2(2�r0 dr0) 5
�r4

2
5

1
2 Ar2 Ans.

The polar radius of gyration is

ck 5 B
I
A
d  kz 5

r

!2
 Ans.

By symmetry Ix 5 Iy, so that from Eq. A/3

[Iz 5 Ix 1 Iy] Ix 5
1
2 Iz 5

�r4

4
5

1
4 Ar2 Ans.

The radius of gyration about the diametral axis is

ck 5 B
I
A
d  kx 5

r
2

 Ans.

The foregoing determination of Ix is the simplest possible. The result may 
also be obtained by direct integration, using the element of area dA 5 r0 dr0 d� 
shown in the lower fi gure. By defi nition

[Ix 5 E y2 dA]  Ix 5 E2�

0
 Er

0
 (r0 sin �)2r0 dr0 d�

  5 E2�

0
 
r4 sin2 �

4
 d�

  5
r4

4
 
1
2

 c � 2
sin 2�

2
d 2�

0
5

�r4

4
 Ans.

1

2

Helpful Hints

1  Polar coordinates are certainly in-
dicated here. Also, as before, we 
choose the simplest and lowest-order 
element possible, which is the differ-
ential ring. It should be evident im-
mediately from the defi nition that 
the polar moment of inertia of the 
ring is its area 2�r0 dr0 times r0

2.

2  This integration is straightforward, 
but the use of Eq. A/3 along with the 
result for Iz is certainly simpler.

x

y

dr0

O

r
r0

x

y

dr0

d

O r

r0
r0 sin

θ

θ
θ
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15 mm

20 mm
C

x

x′

x0
r
_

Sample Problem A/4

Determine the moment of inertia of the area under the parabola about the 
x-axis. Solve by using (a) a horizontal strip of area and (b) a vertical strip of area.

Solution.  The constant k 5 49 is obtained fi rst by substituting x 5 4 and y 5 3 
into the equation for the parabola.

(a) Horizontal strip.  Since all parts of the horizontal strip are the same dis-
tance from the x-axis, the moment of inertia of the strip about the x-axis is y2 dA 
where dA 5 (4 2 x) dy 5 4(1 2 y2/9) dy. Integrating with respect to y gives us

[Ix 5 E y2 dA]   Ix 5 E3

0
 4y2a1 2

y2

9
b dy 5

72
5

5 14.4 (units)4 Ans.

(b) Vertical strip.  Here all parts of the element are at different distances 
from the x-axis, so we must use the correct expressions for the moment of inertia 
of the elemental rectangle about its base, which, from Sample Problem A/1, is 
bh3/3. For the width dx and the height y the expression becomes

 dIx 5
1
3(dx)y3

To integrate with respect to x, we must express y in terms of x, which gives 
y 5 31x/2, and the integral becomes

 Ix 5
1
3 E4

0
 a31x

2
b3

dx 5
72
5

5 14.4 (units)4 Ans.1

Helpful Hint

1  This problem illustrates the caution 
we should observe in using a double 
transfer of axes since neither the x9- 
nor the x-axis passes through the 
centroid C of the area. If the circle 
were complete with the centroid on 
the x9 axis, only one transfer would 
be needed.

Sample Problem A/5

Find the moment of inertia about the x-axis of the semicircular area.

Solution.  The moment of inertia of the semicircular area about the x9-axis is 
one-half of that for a complete circle about the same axis. Thus, from the results 
of Sample Problem A/3,

 Ix9 5
1
2

 
�r4

4
5

204�

8
5 2�(104) mm4

We obtain the moment of inertia I about the parallel centroidal axis x0 next. 
Transfer is made through the distance r 5 4r/(3�) 5 (4)(20)/(3�) 5 80/(3�) mm 
by the parallel-axis theorem. Hence,

[I 5 I 2  Ad2]  I 5 2(104)� 2 a202�

2
b a80

3�
b2

5 1.755(104) mm4

Finally, we transfer from the centroidal x0-axis to the x-axis. Thus,

[I 5 I 1 Ad2]  Ix 5 1.755(104) 1 a202�

2
b a15 1

80
3�
b2

   5 1.755(104) 1 34.7(104) 5 36.4(104) mm4 Ans.

1

Helpful Hint

1  There is little preference between So-
lutions (a) and (b). Solution (b) re-
quires knowing the moment of inertia 
for a rectangular area about its base.

0

3

0 4

y

x

x =
 ky2

y

x

y

x

x = 4y2 /9

x = 4y2 /9

x dx

x

y

dy

y

Solution (a)

Solution (b)
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Sample Problem A/6

Calculate the moment of inertia about the x-axis of the area enclosed be-
tween the y-axis and the circular arcs of radius a whose centers are at O and A.

Solution.  The choice of a vertical differential strip of area permits one integra-
tion to cover the entire area. A horizontal strip would require two integrations 
with respect to y by virtue of the discontinuity. The moment of inertia of the 
strip about the x-axis is that of a strip of height y2 minus that of a strip of height 
y1. Thus, from the results of Sample Problem A/1 we write

 dIx 5
1
3 (y2 dx)y2 

2 2
1
3 (y1 dx)y1 

2 5
1
3 (y2 

3 2 y1 

3) dx

The values of y2 and y1 are obtained from the equations of the two curves, 
which are x2 1 y2 

2 5 a2 and (x 2 a)2 1 y1 

2 5 a2, and which give y2 5 !a2 2 x2

and y1 5 !a2 2 (x 2 a)2. Thus,

 Ix 5
1
3 Ea/2

0
 5(a2 2 x2)!a2 2 x2 2 [a2 2 (x 2 a)2]!a2 2 (x 2 a)26 dx

Simultaneous solution of the two equations which defi ne the two circles gives 
the x-coordinate of the intersection of the two curves, which, by inspection, is 
a/2. Evaluation of the integrals gives

  Ea/2

0
 a2!a2 2 x2 dx 5

a4

4
 a!3

2
1

�

3
b

  2Ea/2

0
 x2!a2 2 x2 dx 5

a4

16
 a!3

4
1

�

3
b

  2Ea/2

0
 a2!a2 2 (x 2 a)2 dx 5

a4

4
 a!3

2
1

2�

3
b

  Ea/2

0
 (x 2 a)2!a2 2 (x 2 a)2 dx 5

a4

8
 a!3

8
1

�

3
b

Collection of the integrals with the factor of 13 gives

 Ix 5
a4

96
 (9!3 2 2�) 5 0.0969a4 Ans.

If we had started from a second-order element dA 5 dx dy, we would write y2 dx dy 
for the moment of inertia of the element about the x-axis. Integrating from y1 to y2 
holding x constant produces for the vertical strip

 dIx 5 cEy2

y1

 y2 dy d  dx 5
1
3 (y2 

3 2 y1 

3) dx

which is the expression we started with by having the moment-of-inertia result 
for a rectangle in mind.

1 Helpful Hint

1  We choose the positive signs for the 
radicals here since both y1 and y2 lie 
above the x-axis.

x
y

y1

y2

a/2 a

a

xA
O

dx
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x

y

h

b/2 b/2

Problem A/4

A/5 Calculate the moment of inertia of the shaded area 
about the y-axis.

x
O

10

40

y

y = x2/3

Problem A/5

A/6 Determine the polar moments of inertia of the 
semicircular area about points A and B.

O

y

r

A

B

x

Problem A/6

A/7 Determine the moment of inertia of the quarter-
circular area about the y-axis.

y

x

a

a––
2

Problem A/7

PROBLEMS

Introductory Problems

A/1 Determine the moments of inertia of the rectangular 
area about the x- and y-axes and fi nd the polar moment 
of inertia about point O.

x

y

h––
3

3b––
4

b––
4

2h––
3

O

Problem A/1

A/2 Use the differential element shown to determine the 
moment of inertia of the triangular area about the 
x-axis and about the y-axis.

y

x

b

a

b

dxx

Problem A/2

A/3 The narrow rectangular strip has an area of 300 
mm2, and its moment of inertia about the y-axis is 
35(103) mm4. Obtain a close approximation to the 
polar radius of gyration about point O.

O
15 mm

x

y

Problem A/3

A/4 Determine the ratio b/h such that Ix 5 Iy for the area 
of the isosceles triangle.
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A/11 Determine the moment of inertia of the shaded area 
about the y-axis.

y

x

b

Parabolic

h––
4

3h––
4

Problem A/11

A/12 Determine the moment of inertia of the shaded area 
of the previous problem about the x-axis.

A/13 Use the relationships developed and used in Sam-
ple Problem A/1 to determine expressions for the 
rectangular and polar moments of inertia Ix, Iy, 
and IO of the thin rectangular strip of area A where 
t is very small compared with b.

y

x
b

t << b

O

b

Problem A/13

A/14 By direct integration, determine the moments of 
inertia of the triangular area about the x- and x9-axes.

O

y

h

b

x

x′

Problem A/14

A/8 Determine the moment of inertia of the quarter-
circular strip about the y-axis.

y

x

a

a––
2

t << a

Problem A/8

Representative Problems

A/9 The moments of inertia of the area A about the paral-
lel p- and p9-axes differ by 50 in.4 Compute the area A, 
which has its centroid at C.

2″

1″

p
C

A

p′

Problem A/9

A/10 Determine the moments of inertia Ix and Iy of the 
area of the thin semicircular ring about the x- and 
y-axes. Also fi nd the polar moment of inertia IC of 
the ring about its centroid C.

t << r r

O

C

x

y

Problem A/10



 Article A/2   Problems  445

A/18 Determine the polar radius of gyration of the area of 
the equilateral triangle of side b about its centroid C.

b

C bb

Problem A/18

A/19 Determine the moment of inertia of the shaded area 
about the x-axis.

x

y

O
a––
2

a

Problem A/19

A/20 Calculate the moment of inertia of the shaded area 
about the x-axis.

y

x

x = ky3

30 mm

40 mm

Problem A/20

A/15 Determine the moments of inertia of the shaded 
circular sector about the x- and y-axes. Set � 5 0 and 
compare your results with those listed in Table D/3.

O

y

a

x

Problem A/15

A/16 Determine the radius of gyration about a polar axis 
through the midpoint A of the hypotenuse of the 
right-triangular area. (Hint: Simplify your calcula-
tion by observing the results for a 30 3 40-mm rec-
tangular area.)

A

30 mm

40 mm

Problem A/16

A/17 Determine by direct integration the moments of in-
ertia of the trapezoidal area about the x- and y-axes. 
Find the polar moment of inertia about point O.

O

y

a

h

b
x

Problem A/17



446  Appendix A  Area Moments of Inertia

A/24 Determine the moment of inertia of the elliptical 
area about the y-axis, and fi nd the polar radius of 
gyration about the origin O of the coordinates.

O

y

b

a

+ = 1

x

x2
—
a2

y2
—
b2

Problem A/24

A/25 Determine the polar radius of gyration of the area of 
the equilateral triangle about the midpoint M of its 
base.

M

a a

a/2 a/2

Problem A/25

A/26 Determine the moments of inertia of the shaded 
area about the x- and y-axes. Use the same differen-
tial element for both calculations.

x2
—
a

a

a

x

y = 

y

Problem A/26

A/21 Determine the rectangular and polar radii of gyra-
tion of the shaded area about the axes shown.

y

210
0 x

y = x3
––
4

Problem A/21

A/22 Determine the rectangular and polar moments of 
inertia of the shaded area about the axes shown.

y

xO

h

3b––
4

b––
4

y = k x

Problem A/22

A/23 Determine the moments of inertia of the parabolic 
area about the x- and y-axes.

y

x

y = kx2

a

b

Problem A/23
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A/30 Calculate the moments of inertia of the shaded area 
about the x- and y-axes, and fi nd the polar moment 
of inertia about point O.

4″

4″

y

x
O

y = k1x
3

y = k2   x

Problem A/30

A/31 Determine the moment of inertia of the shaded area 
about the x-axis using (a) a horizontal strip of area 
and (b) a vertical strip of area.

b

a
x

y

Problem A/31

A/32 Determine the radius of gyration about the y-axis of 
the shaded area shown.

80 mm 80 mm

80 mm

Parabolic

y

x

40 mm

Problem A/32

A/27 Determine the moments of inertia of the shaded 
area about the y- and y9-axes.

x = ky2

x

9″

9″

18″

y y′

Problem A/27

A/28 Calculate by direct integration the moment of iner-
tia of the shaded area about the x-axis. Solve, fi rst, 
by using a horizontal strip of differential area and, 
second, by using a vertical strip of differential area.

x

4″

4″

y

x = ky2

Problem A/28

A/29 Determine the moments of inertia of the shaded 
area about the x- and y-axes.

0
0

b

x

y

y = b sin x––

a

a

Problem A/29
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 cA/34 Calculate the moment of inertia of the shaded area 
of the two overlapping circles about the x-axis.

r r

x

y

Problem A/34

A/33 By the methods of this article, determine the rec-
tangular and polar radii of gyration of the shaded 
area about the axes shown.

x
O

y

a–
2

a

Problem A/33
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A/3  COMPOSITE AREAS

It is frequently necessary to calculate the moment of inertia of an 
area composed of a number of distinct parts of simple and calculable 
geometric shape. Because a moment of inertia is the integral or sum of 
the products of distance squared times element of area, it follows that 
the moment of inertia of a positive area is always a positive quantity. 
The moment of inertia of a composite area about a particular axis is 
therefore simply the sum of the moments of inertia of its component 
parts about the same axis. It is often convenient to regard a composite 
area as being composed of positive and negative parts. We may then 
treat the moment of inertia of a negative area as a negative quantity.

When a composite area is composed of a large number of parts, it is 
convenient to tabulate the results for each of the parts in terms of its 
area A, its centroidal moment of inertia I, the distance d from its cen-
troidal axis to the axis about which the moment of inertia of the entire 
section is being computed, and the product Ad2. For any one of the parts 
the moment of inertia about the desired axis by the transfer-of-axis the-
orem is I 1 Ad2. Thus, for the entire section the desired moment of iner-
tia becomes I 5 ©I 1 ©Ad2.

For such an area in the x-y plane, for example, and with the nota-
tion of Fig. A/4, where Ix is the same as Ix0

 and Iy is the same as Iy0
 the 

tabulation would include 

Part Area, A dx dy

Sums ΣIyΣIxΣAdy 

2ΣAdx 

2ΣA

IyIxAdy 

2Adx 

2

From the sums of the four columns, then, the moments of inertia 
for the composite area about the x- and y-axes become 

 Ix 5 ©Ix 1 ©Adx 

2

 Iy 5 ©Iy 1 ©Ady 

2

Although we may add the moments of inertia of the individual parts 
of a composite area about a given axis, we may not add their radii of gy-
ration. The radius of gyration for the composite area about the axis in 
question is given by k 5 !I/A, where I is the total moment of inertia and 
A is the total area of the composite fi gure. Similarly, the radius of gyra-
tion k about a polar axis through some point equals !Iz /A, where Iz 5 
Ix 1 Iy for x-y axes through that point.



Sample Problem A/7

Determine the moments of inertia about the x- and y-axes for the shaded 
area. Make direct use of the expressions given in Table D/3 for the centroidal 
moments of inertia of the constituent parts.

Solution.  The given area is subdivided into the three subareas shown—a rec-
tangular (1), a quarter-circular (2), and a triangular (3) area. Two of the subareas 
are “holes” with negative areas. Centroidal x0 2 y0 axes are shown for areas 
(2) and (3), and the locations of centroids C2 and C3 are from Table D/3.

The following table will facilitate the calculations.

[Ix 5 ©  Ix 1 ©
 
Adx

2]  Ix 5 1.366(106) 1 2.68(106) 5 4.05(106) mm4 Ans. 

[Iy 5 ©  Iy 1 ©
 
Ady

2]  Iy 5 2.46(106) 1 4.90(106) 5 7.36(106) mm4 Ans. 

The following sample problem will determine Ix by a different technique. For 
example, the area moment of inertia of subareas (1) and (3) about the x-axis are 
commonly tabulated quantities. While the above solution began with the centroidal 
moments of inertia of subareas (1) and (3), the following sample problem will make 
more direct use of the tabulated moments of inertia about the baselines.

30 mm

30 mm

x

y

40 mm

30 mm

40 mm

r

r = = 12.73 mm

10 mm

(3)

(1)

(2)

mm

x0

x

C2

C3

x0

y
y0

y0

4(30)––––
3 

40––
   3     π

r
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Sample Problem A/8

Calculate the moment of inertia and radius of gyration about the x-axis for 
the shaded area shown. Wherever possible, make expedient use of tabulated 
moments of inertia.

Solution.  The composite area is composed of the positive area of the rectangle 
(1) and the negative areas of the quarter circle (2) and triangle (3). For the rec-
tangle the moment of inertia about the x-axis, from Sample Problem A/1 (or 
Table D/3), is

 Ix 5
1
3 Ah2 5

1
3(80)(60)(60)2 5 5.76(106) mm4

From Sample Problem A/3 (or Table D/3), the moment of inertia of the negative 
quarter-circular area about its base axis x9 is

 Ix9 5 2
1
4

 a�r4

4
b 5 2

�

16
 (30)4 5 20.1590(106) mm4

We now transfer this result through the distance r 5 4r/(3�) 5 4(30)/(3�) 5 
12.73 mm by the transfer-of-axis theorem to get the centroidal moment of iner-
tia of part (2) (or use Table D/3 directly).

[I 5 I 2 Ad2]  Ix 5 20.1590(106) 2 c2�(30)2

4
 (12.73)2 d  

  5 20.0445(106) mm4

The moment of inertia of the quarter-circular part about the x-axis is now

[I 5 I 1 Ad2]  Ix 5 20.0445(106) 1 c2�(30)2

4
d (60 2 12.73)2

  5 21.624(106) mm4

Finally, the moment of inertia of the negative triangular area (3) about its base, 
from Sample Problem A/2 (or Table D/3), is

 Ix 5 2
1

12bh3 5 2
1

12(40)(30)3 5 20.90(106) mm4

The total moment of inertia about the x-axis of the composite area is, 
consequently,

 Ix 5 5.76(106) 2 1.624(106) 2 0.09(106) 5 4.05(106) mm4 Ans.

This result agrees with that of Sample Problem A/7.

The net area of the fi gure is A 5 60(80) 2 14�(30)2 2 12(40)(30) 5 3490 mm2 so 
that the radius of gyration about the x-axis is

 kx 5 !Ix /A 5 !4.05(106)/3490 5 34.0 mm Ans.

1

2

3

Helpful Hints

1  Note that we must transfer the mo-
ment of inertia for the quarter-circular 
area to its centroidal axis x0 before we 
can transfer it to the x-axis, as was 
done in Sample Problem A/5.

2  We watch our signs carefully here. 
Since the area is negative, both I 
and A carry negative signs.

3  Always use common sense at key 
points such as this. The two minus 
signs are consistent with the fact 
that subareas (2) and (3) reduce the 
numerical value of the moment of 
inertia of the basic rectangular area.

30 mm

30 mm

x

40 mm

30 mm

40 mm

x′

C

x

(2)

(1)

(3)

x0
r
_
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A/38 By the method of this article, determine the rectan-
gular and polar radii of gyration of the shaded area, 
repeated here from Prob. A/33, about the axes shown.

x
O

y

a–
2

a

Problem A/38

A/39 Calculate the polar radius of gyration of the shaded 
area about the center O of the larger circle.

C
O

2″

8″
4″

Problem A/39

A/40 Determine the percent reductions in both area and 
area moment of inertia about the y-axis caused by 
removal of the rectangular cutout from the rectan-
gular plate of base b and height h.

x

y

h––
2

3b––
4

b––
4

h––
4

h––
4

O

Problem A/40

PROBLEMS

Introductory Problems

A/35 Determine the moment of inertia about the x-axis of 
the square area without and with the central circu-
lar hole.

x

y

R

2R

2R

2R2R

Problem A/35

A/36 Determine the polar moment of inertia of the circu-
lar area without and with the central square hole.

x

y

R
R

R

Problem A/36

A/37 Calculate the polar radius of gyration of the area of 
the angle section about point A. Note that the width of 
the legs is small compared with the length of each leg.

A
20"

15"

1.5"

1.5"

Problem A/37
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O

y

70″

10″ 15″ 15″ 10″

15″

h

x

Problem A/43

A/44 The variable h designates the arbitrary vertical lo-
cation of the center of the circular cutout within the 
semicircular area. Determine the area moment of 
inertia about the x-axis for (a) h 5 0 and (b) h 5 R/2.

O

y

hR

x

R/4

Problem A/44

A/45 Calculate the moment of inertia of the shaded area 
about the x-axis.

80 mm

60 mm

80 mm

x

Problem A/45

A/41 The cross-sectional area of a wide-fl ange I-beam has 
the dimensions shown. Obtain a close approximation 
to the handbook value of Ix 5 657 in.4 by treating 
the section as being composed of three rectangles.

16.25″

7.073″

0.380″

x

0.628″

y

Problem A/41

A/42 Calculate the moment of inertia of the shaded area 
about the x-axis.

90
mm

A

x
50 mm 50 mm

30
mm

Problem A/42

A/43 The variable h designates the arbitrary vertical 
location of the bottom of the rectangular cutout 
within the rectangular area. Determine the area 
moment of inertia about the x-axis for (a) h 5 40 in. 
and (b) h 5 60 in.
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A/49 Determine the moment of inertia of the shaded area 
about the x-axis in two different ways.

4a

x
a

a

a

a

a

Problem A/49

A/50 A fl oor joist which measures a full 2 in. by 8 in. has 
a 1-in. hole drilled through it for a water-pipe instal-
lation. Determine the percent reduction n in the 
moment of inertia of the cross-sectional area about 
the x-axis (compared with that of the undrilled joist) 
for hole locations in the range 0 # y # 3.5 in. Evalu-
ate your expression for y 5 2 in.

y
x

4″

Section A

A

2″

4″
1″

Problem A/50

A/51 Calculate the moment of inertia of the shaded area 
about the x-axis.

x
3″ 3″

3″

3″

2″

3″

Problem A/51

A/46 Determine the moments of inertia of the shaded 
area about the x- and y-axes.

x

y

2a

a

Problem A/46

A/47 Calculate the moment of inertia of the cross section 
of the beam about its centroidal x0-axis.

150 mm
20 mm

20 mm

120 mm

x0

y0

Problem A/47

Representative Problems

A/48 Determine the moments of inertia of the Z-section 
about its centroidal x0- and y0-axes.

100 mm

100 mm

y0

x0

20 mm

140 mm

20 mm

20 mm

Problem A/48
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A/55 Determine the moment of inertia of the cross-
sectional area of the reinforced channel about the 
x-axis.

1″ 2″ 2″ 2″

2″

2″

1″

1″
x

Problem A/55

A/56 The rectangular area shown in part a of the fi gure is 
split into three equal areas which are then arranged 
as shown in part b of the fi gure. Determine an ex-
pression for the moment of inertia of the area in 
part b about the centroidal x-axis. What percent in-
crease n over the moment of inertia for area a does 
this represent if h 5 200 mm and b 5 60 mm?

h

b 

(a) (b) 

x x

1

3

221 3

Problem A/56

A/57 Calculate the polar moment of inertia of the shaded 
area about point O.

15 mm

O

30 mm

Problem A/57

A/52 Calculate the polar radius of gyration about point O 
of the area shown. Note that the widths of the ele-
ments are small compared with their lengths.

x

y

O

100

3––
4

0

3––
4

0

3––
4

0

Problem A/52

A/53 Develop a formula for the moment of inertia of the 
regular hexagonal area of side b about its central 
x-axis.

O
x

b

Problem A/53

A/54 By the method of this article, determine the mo-
ments of inertia about the x- and y-axes of the trap-
ezoidal area.

x

h

y

O

b2––
2

b1––
2

b1––
2

b2––
2

Problem A/54
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A/61 A hollow mast of circular section as shown is to be 
stiffened by bonding two strips of the same material 
and of rectangular section to the mast throughout 
its length. Determine the proper dimension h of 
each near-rectangle which will exactly double the 
stiffness of the mast to bending in the y-z plane. 
(Stiffness in the y-z plane is proportional to the area 
moment of inertia about the x-axis.) Take the inner 
boundary of each strip to be a straight line.

h

h

x

y

2″

4″ 8″

2″ 

Problem A/61

A/62 Calculate the moments of inertia of the shaded area 
about the x- and y-axes.

100

100

75 75

50 50

y

x

Dimensions in millimeters

Problem A/62

A/58 Calculate the area moment of inertia about the 
x-axis for the built-up structural section shown.

10 10

1010

10 10

10

x

80

160

Dimensions in millimeters

120

50

Problem A/58

A/59 The cross section of a bearing block is shown in the 
fi gure by the shaded area. Calculate the moment of 
inertia of the section about its base a-a.

4″

12″
a a

2″

4″

Problem A/59

A/60 Calculate the polar radius of gyration of the shaded 
area about its centroid C.

600

500

Dimensions in millimeters

y0

C
x0

100

100 100

Problem A/60
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A/4  PRODUCTS OF INERTIA AND ROTATION OF AXES

In this article, we defi ne the product of inertia with respect to rec-
tangular axes and develop the parallel-axis theorem for centroidal and 
noncentroidal axes. In addition, we discuss the effects of rotation of axes 
on moments and products of inertia.

Defi nition

In certain problems involving unsymmetrical cross sections and in 
the calculation of moments of inertia about rotated axes, an expression 
dIxy 5 xy dA occurs, which has the integrated form

 Ixy 5 E xy dA (A/7)

where x and y are the coordinates of the element of area dA 5 dx dy. 
The quantity Ixy is called the product of inertia of the area A with re-
spect to the x-y axes. Unlike moments of inertia, which are always posi-
tive for positive areas, the product of inertia may be positive, negative, 
or zero.

The product of inertia is zero whenever either of the reference axes 
is an axis of symmetry, such as the x-axis for the area in Fig. A/5. Here 
we see that the sum of the terms x(2y) dA and x(1y) dA due to symmet-
rically placed elements vanishes. Because the entire area may be consid-
ered as composed of pairs of such elements, it follows that the product of 
inertia Ixy for the entire area is zero.

Transfer of Axes

By defi nition the product of inertia of the area A in Fig. A/4 with re-
spect to the x- and y-axes in terms of the coordinates x0, y0 to the cen-
troidal axes is

 Ixy 5 E (x0 1 dy)(y0 1 dx) dA

 5 E x0 y0 dA 1 dx E x0 dA 1 dy E y0 dA 1 dxdy E dA

Figure A/5

+y

x

y

x

x

–y

Figure A/4, Repeated

O

y

dAA

C

x

d

x0

y0

x0

dy

dx

y0
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The fi rst integral is by defi nition the product of inertia about the cen-
troidal axes, which we write as Ixy. The middle two integrals are both 
zero because the fi rst moment of the area about its own centroid is nec-
essarily zero. The fourth term is merely dxdy A. Thus, the transfer-of-
axis theorem for products of inertia becomes

 Ixy 5 Ixy 1 dxdy A (A/8)

Rotation of Axes

The product of inertia is useful when we need to calculate the mo-
ment of inertia of an area about inclined axes. This consideration leads 
directly to the important problem of determining the axes about which 
the moment of inertia is a maximum and a minimum.

In Fig. A/6 the moments of inertia of the area about the x9- and y9-
axes are 

 Ix9 5 E y92 dA 5 E (y cos � 2 x sin �)2 dA

 Iy9 5 E x92 dA 5 E (y sin � 1 x cos �)2 dA

where x9 and y9 have been replaced by their equivalent expressions as 
seen from the geometry of the fi gure.

Expanding and substituting the trigonometric identities

sin2 � 5
1 2 cos 2�

2
  cos2 � 5

1 1 cos 2�

2

and the defi ning relations for Ix, Iy, Ixy give us

 Ix9 5
Ix 1 Iy

2
1

Ix 2 Iy

2
 cos 2� 2 Ixy sin 2�

  Iy9 5
Ix 1 Iy

2
2

Ix 2 Iy

2
 cos 2� 1 Ixy sin 2� 

(A/9)

Figure A/6

xxO

y y

y

y′

y′

x
dA

x′

θ

θ

x′

x cos          θ

x sin          θ

y sin          θ

y cos          θ
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In a similar manner we write the product of inertia about the in-
clined axes as 

Ix9y9 5 E x9y9 dA 5 E (y sin � 1 x cos �)(y cos � 2 x sin �) dA

Expanding and substituting the trigonometric identities

sin � cos � 5
1
2 sin 2�  cos2 � 2  sin2 � 5 cos 2�

and the defi ning relations for Ix, Iy, Ixy give us

 Ix9y9 5
Ix 2 Iy

2
 sin 2� 1 Ixy cos 2� (A/9a)

Adding Eqs. A/9 gives Ix9 1 Iy9 5 Ix 1 Iy 5 Iz, the polar moment of iner-
tia about O, which checks the results of Eq. A/3.

The angle which makes Ix9 and Iy9 either maximum or minimum 
may be determined by setting the derivative of either Ix9 or Iy9 with re-
spect to � equal to zero. Thus,

dIx9

d�
5 (Iy 2 Ix) sin 2� 2 2Ixy cos 2� 5 0

Denoting this critical angle by � gives

 tan 2� 5
2Ixy

Iy 2 Ix
 (A/10)

Equation A/10 gives two values for 2� which differ by �, since tan 2� 5 
tan (2� 1 �). Consequently the two solutions for � will differ by �/2. 
One value defi nes the axis of maximum moment of inertia, and the 
other value defi nes the axis of minimum moment of inertia. These two 
rectangular axes are called the principal axes of inertia.

When we substitute Eq. A/10 for the critical value of 2� in Eq. A/9a, 
we see that the product of inertia is zero for the principal axes of inertia. 
Substitution of sin 2� and cos 2�, obtained from Eq. A/10, for sin 2� and 
cos 2� in Eqs. A/9 gives the expressions for the principal moments of in-
ertia as 

 Imax 5
Ix 1 Iy

2
1

1
2

 !(Ix 2 Iy)2 1 4 Ixy 

2

  Imin 5
Ix 1 Iy

2
2

1
2

 !(Ix 2 Iy)2 1 4 Ixy 

2 

(A/11)

Mohr’s Circle of Inertia

We may represent the relations in Eqs. A/9, A/9a, A/10, and A/11 
graphically by a diagram called Mohr’s circle. For given values of Ix, Iy, 
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and Ixy the corresponding values of Ix9, Iy9, and Ix9y9 may be determined 
from the diagram for any desired angle �. A horizontal axis for the mea-
surement of moments of inertia and a vertical axis for the measurement 
of products of inertia are fi rst selected, Fig. A/7. Next, point A, which 
has the coordinates (Ix, Ixy), and point B, which has the coordinates 
(Iy, 2Ixy), are located.

We now draw a circle with these two points as the extremities of a 
diameter. The angle from the radius OA to the horizontal axis is 2� or 
twice the angle from the x-axis of the area in question to the axis of 
maximum moment of inertia. The angle on the diagram and the angle 
on the area are both measured in the same sense as shown. The coordi-
nates of any point C are (Ix9, Ix9y9), and those of the corresponding point 
D are (Iy9, 2Ix9y9). Also the angle between OA and OC is 2� or twice the 
angle from the x-axis to the x9-axis. Again we measure both angles in the 
same sense as shown. We may verify from the trigonometry of the circle 
that Eqs. A/9, A/9a, and A/10 agree with the statements made.

Figure A/7

2  α

2  θ

α

θ

Ixy

P

A

A
x

x′
x

Axis through P of
maximum moment
of inertia

C

O

B

D

Ix

Ixy

Imin

Imax

Ix′

Iy

Iy′

Ix′y′

I
–Ixy
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Sample Problem A/9

Determine the product of inertia of the rectangular area with centroid at C 
with respect to the x-y axes parallel to its sides.

Solution.  Since the product of inertia Ixy about the axes x0-y0 is zero by sym-
metry, the transfer-of-axis theorem gives us

[Ixy 5 Ixy 1 dx dy A] Ixy 5 dx dybh Ans.

In this example both dx and dy are shown positive. We must be careful to be con-
sistent with the positive directions of dx and dy as defi ned, so that their proper 
signs are observed.

x = ky2

x

x

y

y

b

a

dx
dy

x = ay2 /b
2

x

y

dx

by0

x
y/2

y

x0

a

x
dy

y

b
y0

x

y

x0

a

a + x
——–

2

Helpful Hint

1  Proper use of the transfer-of-axis 
theorem saves a great deal of labor 
in computing products of inertia.

4r––
3     p

x

x0

y0

r

y

C

x0

y0y

x

dx

h

b

C

dy

Sample Problem A/10

Determine the product of inertia about the x-y axes for the area under the 
parabola.

Solution.  With the substitution of x 5 a when y 5 b, the equation of the curve 
becomes x 5 ay2/b2.

Solution I.  If we start with the second-order element dA 5 dx dy, we have 
dIxy 5 xy dx dy. The integral over the entire area is

 Ixy 5 Eb

0
 Ea

ay2/b2
 xy dx dy 5 Eb

0
 
1
2

 aa2 2
a2y4

b4 b y dy 5
1
6 a2b2 Ans.

Solution II.  Alternatively, we can start with a fi rst-order elemental strip and 
save one integration by using the results of Sample Problem A/9. Taking a verti-
cal strip dA 5 y dx gives dIxy 5 0 1 (1

2 y)(x)(y dx), where the distances to the cen -
troidal axes of the elemental rectangle are dx 5 y/2 and dy 5 x. Now we have

 Ixy 5 Ea

0
 
y2

2
 x dx 5 Ea

0
 
xb2

2a
 x dx 5

b2

6a
 x3 `

a

0

5
1
6a2b2 Ans. 

Helpful Hint

1  If we had chosen a horizontal strip, our expression would have become 
dIxy 5 y 

1
2 (a 1 x)[(a 2 x) dy], which when integrated, of course, gives us 

the same result as before.

1

Sample Problem A/11

Determine the product of inertia of the semicircular area with respect to the 
x-y axes.

Solution.  We use the transfer-of-axis theorem, Eq. A/8, to write 

 [Ixy 5 Ixy 1 dx dy A]  Ixy 5 0 1 a2 4r
3�
b (r) a�r2

2
b 5 2

2r4

3
 Ans.

where the x- and y-coordinates of the centroid C are dy 5 1r and dx 5 24r/(3�). 
Because y0 is an axis of symmetry, Ixy 5 0.

1
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Sample Problem A/12

Determine the orientation of the principal axes of inertia through the cen-
troid of the angle section and determine the corresponding maximum and mini-
mum moments of inertia.

Solution.  The location of the centroid C is easily calculated, and its position is 
shown on the diagram.

Products of Inertia.  The product of inertia for each rectangle about its cen-
troidal axes parallel to the x-y axes is zero by symmetry. Thus, the product of in-
ertia about the x-y axes for part I is

[Ixy 5 Ixy 1 dx dy A]  Ixy 5 0 1 (212.5)(17.5)(400) 5 23.75(104) mm4

where  dx 5 2(7.5 1 5) 5 212.5 mm

and  dy 5 1(20 2 10 2 2.5) 5 7.5 mm

Likewise for part II,

[Ixy 5 Ixy 1 dxdyA] Ixy 5 0 1 (12.5)(27.5)(400) 5 23.75(104) mm4

where   dx 5 1(20 2 7.5) 5 12.5 mm,  dy 5 2(5 1 2.5) 5 27.5 mm

For the complete angle,

 Ixy 5 23.75(104) 2 3.75(104) 5 27.5(104) mm4

Moments of Inertia.  The moments of inertia about the x- and y-axes for part I 
are

[I 5 I 1 Ad2]  Ix 5
1

12(40)(10)3 1 (400)(12.5)2 5 6.58(104) mm4

  Iy 5
1

12(10)(40)3 1 (400)(7.5)2 5 7.58(104) mm4

and the moments of inertia for part II about these same axes are

[I 5 I 1 Ad2]  Ix 5
1

12(10)(40)3 1 (400)(12.5)2 5 11.58(104) mm4

  Iy 5
1

12(40)(10)3 1 (400)(7.5)2 5 2.58(104) mm4

Thus, for the entire section we have

  Ix 5 6.58(10)4 1 11.58(10)4 5 18.17(104) mm4

  Iy 5 7.58(104) 1 2.58(104) 5 10.17(104) mm4

Principal Axes.  The inclination of the principal axes of inertia is given by 
Eq. A/10, so we have

c tan 2� 5
2Ixy

Iy 2 Ix
d   tan 2� 5

2(27.50)
10.17 2 18.17

5 1.875

  2� 5 61.98  � 5 31.08  Ans.

We now compute the principal moments of inertia from Eqs. A/9 using � for 
� and get Imax from Ix9 and Imin from Iy9. Thus,

  Imax 5 c 18.17 1 10.17
2

1
18.17 2 10.17

2
 (0.471) 1 (7.50)(0.882) d  (104)

  5 22.7(104) mm4  Ans.

  Imin 5 c 18.17 1 10.17
2

2
18.17 2 10.17

2
 (0.471) 2 (7.50)(0.882) d  (104)

  5 5.67(104) mm4  Ans.

Imax = 22.7

Imin =
5.67

Iy = 10.17

Ix = 18.17

Ixy = –7.5

I, (104) mm4

–Ixy, (104) mm4

+Ixy, (104) mm4

 –Ixy =
 –(–7.5)
= +7.5

B

A

2    = 61.9°  α

Helpful Hint

Mohr’s circle. Alternatively, we could use 
Eqs. A/11 to obtain the results for Imax and Imin, 
or we could construct the Mohr’s circle from the 
calculated values of Ix, Iy, and Ixy. These values 
are spotted on the diagram to locate points A 
and B, which are the extremities of the diame-
ter of the circle. The angle 2� and Imax and Imin 
are obtained from the fi gure, as shown.

10
mm 2.5 mm

7.5 mm

10 mm

50 mm
C

40 mm

x

y

x

x′

y

C

I

II

α

dy

dy

dx

dx

y′
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A/65 Determine the product of inertia of each of the four 
areas about the x-y axes.

50

Dimensions in millimeters

80

25

25

50

80

60 60

40

40

(b)

(c)

(a)

(d)

x

y

Problem A/65

A/66 Determine the product of inertia of the shaded area 
about the x-y axes.

30

30

40

x

y

90

Dimensions in millimeters

Problem A/66

A/67 Determine the product of inertia of the rectangular 
area about the x-y axes. Treat the case where b is 
small compared with L.

x

b

L

y

α

Problem A/67

PROBLEMS

Introductory Problems

A/63 Determine the product of inertia of each of the three 
rectangular areas about the x-y axes.

60

Dimensions in millimeters

(b)

(a)

(c)

60

40

40

60

30
30

30
5050

x

y

Problem A/63

A/64 Determine the product of inertia about the x-y axes 
of the circular area with two equal square holes.

3″

3″

2″

2″

2″
x

y

3″

2″

3″

10″

Problem A/64
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A/71 Determine the product of inertia of the shaded area 
about the x-y axes.

x

y

y = kx2
a

b

Problem A/71

A/72 Determine the product of inertia of the partial cir-
cular annulus about the x-y axes.

x

y

45°

a a

Problem A/72

A/73 Calculate the product of inertia of the shaded area 
about the x-y axes. (Hint: Take advantage of the 
transfer-of-axes relations.)

x

y

60

40 40

40

60

60

Problem A/73

A/68 Determine the product of inertia of the shaded area 
about the x-y axes. The width t of the uniform strips 
is 0.5 in., and the dimensions shown are to the cen-
terlines of the strips.

6″

x

y

t

4″

4″

6″

Problem A/68

A/69 Determine the product of inertia of the area of the 
quarter-circular ring about the x-y axes. Treat the 
case where b is small compared with r.

x

b

r

O B

y

Problem A/69

Representative Problems

A/70 Derive the expression for the product of inertia of the 
right-triangular area about the x-y axes. Solve, fi rst, 
by double integration and, second, by single integra-
tion starting with a vertical strip as the element.

y

h

b
x

Problem A/70
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x

y

O
a––
2

a

Problem A/77

A/78 Determine the product of inertia of the S-shaped 
circular strip about the x-y axes. The width t of the 
strip is small compared with the radius a.

t << a

O
x

a

a

y

Problem A/78

A/79 Determine the product of inertia of the rhombic 
area about the x-y axes. (Hint: Regard the area as a 
combination of a rectangle and triangles and use 
the results of Prob. A/70.)

x

y

s

s

60°

Problem A/79

A/80 Determine the moments and product of inertia of 
the area of the square with respect to the x9-y9 axes.

x

x′

y

y′

b

b
30°

Problem A/80

A/74 Solve for the product of inertia of the semicircular 
area about the x-y axes in two different ways.

x

y

r

Problem A/74

A/75 Determine by direct integration the product of iner-
tia Ixy for the shaded area shown. Indicate an alter-
native approach.

x

y

a

Problem A/75

A/76 Determine the product of inertia of the trapezoidal 
area about the x-y axes.

x

y

b

h

a

Problem A/76

A/77 Determine the product of inertia of the shaded area, 
repeated here from Prob. A/19, about the x-y axes.
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x

y

x′

y′

30°
r

Problem A/84

A/85 Determine the maximum and minimum moments of 
inertia for the shaded area about axes through point 
O and identify the angle � to the axis of minimum 
moment of inertia.

a

a

O

y

x′

xθ

Problem A/85

A/86 Determine the minimum and maximum moments of 
inertia with respect to centroidal axes through C for 
the composite of the two rectangular areas shown. 
Find the angle � measured from the x-axis to the axis 
of maximum moment of inertia.

x

y

2a

2a

a

C

a

Problem A/86

A/87 Determine the angle � which locates the principal 
axes of inertia through point O for the rectangular 
area. Construct the Mohr’s circle of inertia and 
specify the corresponding values of Imax and Imin.

A/81 Determine the moments and product of inertia of 
the area of the equilateral triangle with respect to 
the x9-y9 axes.

15° x

x′

y 
y′

b b

b

Problem A/81

A/82 Determine the maximum and minimum moments of 
inertia with respect to centroidal axes through C for 
the composite of the four square areas shown. Find 
the angle � measured counterclockwise from the 
x-axis to the axis of maximum moment of inertia.

x

y

a

a

a

a

a
C

a

a

a

Problem A/82

A/83 Determine the maximum and minimum moments of 
inertia with respect to axes through C for the com-
posite of the two areas shown. Find the angle � mea-
sured counterclockwise from the x-axis to the axis of 
maximum moment of inertia. Make use of the results 
of Prob. A/70.

x

y

a

a

2a
2a C

Problem A/83

A/84 Determine the moments and product of inertia of the 
quarter-circular area with respect to the x9-y9 axes.
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 *Computer-Oriented Problems

 *A/90 Plot the moment of inertia of the shaded area about 
the x9-axis for the range 0 # � # 908. Determine the 
minimum value of Ix9 and the corresponding value 
of �.

y

120
mm

60
mm

80 mm

60
mm

x
O

θ
x′

y′

Problem A/90

 *A/91 Plot the moment of inertia of the shaded area about 
the x9-axis as a function of � from � 5 0 to � 5 1808. 
Determine the maximum and minimum values of Ix9 
and the corresponding values of �.

y

x

x′ 

θ

3b––
8b/8

3b––
8

3b––
4

b––
4

Problem A/91

x′

y

y′

bO

2b

x

Problem A/87

A/88 Determine the maximum moment of inertia about 
an axis through O and the angle � to this axis 
for the triangular area shown. Also construct the 
Mohr’s circle of inertia.

O
α x

x′

y

8″

4″

Problem A/88

A/89 Calculate the maximum and minimum moments 
of inertia of the structural angle about axes 
through its corner A and fi nd the angle � measured 
counterclockwise from the x-axis to the axis of maxi-
mum moment of inertia. Neglect the small rounds 
and fi llet.

60 mm

80 mm

10 mm

10 mm

x

y

A

Problem A/89
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x

x′

y
y′

θ
bb

b

Problem A/94

 *A/95 Plot the moment of inertia of the Z-section area 
about the x9-axis as a function of � from � 5 0 to 
� 5 908. Determine the maximum value of Ix9 and 
the corresponding value of � from your plot, then 
verify these results by using Eqs. A/10 and A/11.

y0

x0

10 mm

10 mm

10 mm

70 mm

50 mm

50 mm

x′

Problem A/95

 *A/96 The S-shaped area of Prob. A/78 is repeated here. 
Plot the moment of inertia about the x9-axis as a 
function of � from � 5 0 to � 5 1808. Determine the 
maximum and minimum values of Ix9 and the cor-
responding values of �.

t << a

O
x

a

a

y

x′

θ

Problem A/96

 *A/92 Determine and plot the moments and products of 
inertia of the shaded area about the x9-y9 axes as 
functions of � from � 5 0 to � 5 �. State the mini-
mum and maximum values of each function and the 
corresponding values of �.

y
y′

O

a

0.5a

x

x′ 

θ

Problem A/92

 *A/93 Plot the moment of inertia of the shaded area about 
the x9-axis as a function of � from � 5 0 to � 5 908 
and determine the minimum value of Ix9 and the 
corresponding value of �.

y

1″

3″

1″

2″
x

x′

Problem A/93

 *A/94 Plot the moment of inertia of the shaded area about 
the x9-axis as a function of � from � 5 0 to � 5 1808. 
Determine the maximum and minimum values of 
Ix9 and the corresponding values of � from the 
graph. Check your results by applying Eqs. A/10 
and A/11.



MASS MOMENTS 
OF INERTIAB

See Vol. 2 Dynamics for Appendix B, which fully treats the concept 
and calculation of mass moment of inertia. Because this quantity is an 
important element in the study of rigid-body dynamics and is not a fac-
tor in statics, we present only a brief defi nition in this Statics volume so 
that the student can appreciate the basic differences between area and 
mass moments of inertia.

Consider a three-dimensional body of mass m as shown in Fig. B/1. 
The mass moment of inertia I about the axis O–O is defi ned as

I 5 E r 2 dm

where r is the perpendicular distance of the mass element dm from the 
axis O–O and where the integration is over the entire body. For a given 
rigid body the mass moment of inertia is a measure of the distribution of 
its mass relative to the axis in question, and for that axis is a constant 
property of the body. Note that the dimensions are (mass)(length)2, 
which are kg?m2 in SI units and lb-ft-sec2 in U.S. customary units. Con-
trast these dimensions with those of area moment of inertia, which are 
(length)4, m4 in SI units and ft4 in U.S. customary units.

Figure B/1

O

O

dmr

469
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SELECTED TOPICS 
OF MATHEMATICSC

C/1  INTRODUCTION

Appendix C contains an abbreviated summary and reminder of se-
lected topics in basic mathematics which fi nd frequent use in mechanics. 
The relationships are cited without proof. The student of mechanics will 
have frequent occasion to use many of these relations, and he or she will be 
handicapped if they are not well in hand. Other topics not listed will also 
be needed from time to time.

As the reader reviews and applies mathematics, he or she should 
bear in mind that mechanics is an applied science descriptive of real 
bodies and actual motions. Therefore, the geometric and physical inter-
pretation of the applicable mathematics should be kept clearly in mind 
during the development of theory and the formulation and solution of 
problems.

C/2  PLANE GEOMETRY

 1. When two intersect-
ing lines are, respec-
tively, perpendicular 
to two other lines, 
the angles formed by 
the two pairs are equal.

 2. Similar triangles

 
x
b

5
h 2 y

h
 

 3. Any triangle

 Area 5
1
2bh

 4. Circle

 Circumference 5 2�r
 Area 5 �r2

 Arc length s 5 r�

 Sector area 5
1
2 r2�

 5. Every triangle inscribed 
within a semicircle is 
a right triangle.

 6. Angles of a triangle

 �1 1 �2 1 �3 5 1808

 �4 5 �1 1 �2

1 =θ 2θ

1θ

2θ

x y

h

b

h

b

r
sθ

1θ 2θ

1 + =   /2θ 2θ π

1θ 3θ 4θ

2θ
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C/3  SOLID GEOMETRY

 1. Sphere

 Volume 5
4
3�r3

 Surface area 5 4�r2

 2. Spherical wedge

 Volume 5
2
3 r3�

 3. Right-circular cone

 Volume 5
1
3 �r2h

 Lateral area 5 �rL

 L 5 !r2 1 h2

 4. Any pyramid or cone

 Volume 5
1
3 Bh

 where B 5 area of base

r

r
θ

r

hL

B

h

C/4  ALGEBRA

1. Quadratic equation

 ax2 1 bx 1 c 5 0

 x 5
2b 6 !b2 2 4ac

2a
, b2 $ 4ac for real roots

 2. Logarithms

 bx 5 y, x 5  log b y

  Natural logarithms

  b 5 e 5 2.718 282
  ex 5 y, x 5  log e y 5 ln  y
 log (ab) 5 log a 1 log b
 log (a/b) 5 log a 2 log b
 log (1/n) 5 2log n
 log an 5 n log a
 log 1 5 0
 log10x 5 0.4343 ln x

 3. Determinants
  2nd order

 `a1

a2

b1

b2
` 5 a1b2 2 a2b1

  3rd order

 †
a1

a2

a3

b1

b2

b3

c1

c2

c3

† 5 1a1b2c3 1 a2b3c1 1 a3b1c2

2a3b2c1 2 a2b1c3 2 a1b3c2

 4. Cubic equation

 x3 5 Ax 1 B

 Let p 5 A/3, q 5 B/2.

 Case I: q2 2 p3 negative (three roots real and
  distinct)

 cos u 5 q/(p!p), 0 , u , 1808

 x1 5 2!p cos (u/3)

 x2 5 2!p cos (u/3 1 1208)

 x3 5 2!p cos (u/3 1 2408)

 Case II: q2 2 p3 positive (one root real, two
  roots imaginary)

x1 5 (q 1 !q2 2 p3)1/3 1 (q 2 !q2 2 p3)1/3

 Case III: q2 2 p3 5 0 (three roots real, two
  roots equal)

x1 5 2q1/3, x2 5 x3 5 2q1/3

  For general cubic equation

x3 1 ax2 1 bx 1 c 5 0

  Substitute x 5 x0 2 a/3 and get x0 

3 5 Ax0 1 B. 
Then proceed as above to fi nd values of x0 from 
which x 5 x0 2 a/3.
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C/5  ANALYTIC GEOMETRY

 1. Straight line

  

m

x x

y y

1a

a

b

y = a + mx
x–
a

y–
b

+ = 1

 2. Circle

  

x

x

yy

r r

b

ax2 + y2 = r2

(x – a)2 + (y – b)2 = r2

 3. Parabola

  

b

b

a
a

y

x

x

y

x2
—
a2

y = b
y2
—
b2

x = a

 4. Ellipse

  

x

y

a

b

x2
—
a2

y2
—
b2

+ = 1

 5. Hyperbola

a
a a

y

x x
b

x2
—
a2

y2
—
b2

– = 1

y

xy = a2

C/6  TRIGONOMETRY

 1. Defi nitions

 sin � 5 a/c   csc � 5 c/a
 cos � 5 b/c   sec � 5 c/b
 tan � 5 a/b  cot � 5 b/a

 2. Signs in the four quadrants

θ

(+)

(+)

I
θ

(+)

(–)

II
θ

(–)

(–)III

θ
(+)

(–) IV

a
c

b

θ

I II III IV

sin � � � � �

cos � � � � �

tan � � � � �

csc � � � � �

sec � � � � �

cot � � � � �
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 3. Miscellaneous relations

 sin2 � 1 cos2 � 5 1
 1 1 tan2 � 5 sec2 �
 1 1 cot2 � 5 csc2 �

  sin
�

2
5!1

2 (1 2 cos �)

  cos
�

2
5!1

2 (1 2 cos �)

 sin 2� 5 2 sin � cos �
 cos 2� 5 cos2 � 2 sin2 �
 sin (a 6 b) 5 sin a cos b 6 cos a sin b
 cos (a 6 b) 5 cos a cos b < sin a sin b

 4. Law of sines

 
a
b

5
sin A
sin B

 5. Law of cosines

 c2 5 a2 1 b2 2 2ab cos C

 c2 5 a2 1 b2 1 2ab cos D

A C D

B

c

b

a

C/7  VECTOR OPERATIONS

 1. Notation. Vector quantities are printed in boldface type, and 
scalar quantities appear in lightface italic type. Thus, the vector 
quantity V has a scalar magnitude V. In longhand work vector 
quantities should always be consistently indicated by a symbol such 
as V or V

n
 to distinguish them from scalar quantities.

 2. Addition

 Triangle addition P 1 Q 5 R

 Parallelogram addition P 1 Q 5 R

 Commutative law P 1 Q 5 Q 1 P

 Associative law P 1 (Q 1 R) 5 (P 1 Q) 1 R

 3. Subtraction

P 2 Q 5 P 1 (2Q)

 4. Unit vectors  i, j, k

   V 5 Vxi 1 Vy j 1 Vzk

 where  uV u 5 V 5 !Vx 

2 1 Vy 

2 1 Vz 

2

 5. Direction cosines  l, m, n are the cosines of the angles between V 
and the x-, y-, z-axes. Thus,

 l 5 Vx/V   m 5 Vy/V  n 5 Vz/V

 so that V 5 V(li 1 mj 1 nk)

 and l2 1 m2 1 n2 5 1

P
Q

P

P

Q

R

R

Q

P

–QP – Q

V

k

i

j

z

x

y

kVz

iVx

jVy
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 6. Dot or scalar product

P?Q 5 PQ cos �

This product may be viewed as the magnitude of P multiplied by 
the component Q cos � of Q in the direction of P, or as the magni-
tude of Q multiplied by the component P cos � of P in the direction 
of Q.

Commutative law  P?Q 5 Q?P

From the defi nition of the dot product

 i?i 5 j?j 5 k?k 5 1

 i?j 5 j?i 5 i?k 5 k?i 5 j?k 5 k?j 5 0

 P?Q 5 (Pxi 1 Pyj 1 Pzk) ? (Qxi 1 Qyj 1 Qzk)
 5 PxQx 1 PyQy 1 PzQz

 P?P 5 Px 

2 1 Py 

2 1 Pz 

2

 It follows from the defi nition of the dot product that two vec-
tors P and Q are perpendicular when their dot product vanishes, 
P?Q 5 0.
 The angle � between two vectors P1 and P2 may be found from 
their dot product expression P1?P2 5 P1P2 cos �, which gives

cos � 5
P1?P2

P1P2
5

P1x
P2x

1 P1y
P2y

1 P1z
P2z

P1P2
5 l1l2 1 m1m2 1 n1n2

where l, m, n stand for the respective direction cosines of the 
vectors. It is also observed that two vectors are perpendicular to each 
other when their direction cosines obey the relation l1l2 1 m1m2 1 
n1n2 5 0.

Distributive law  P? (Q 1 R) 5 P?Q 1 P?R

 7. Cross or vector product.  The cross product P 3 Q of the two 
vectors P and Q is defi ned as a vector with a magnitude

uP 3 Q u 5 PQ sin �

and a direction specifi ed by the right-hand rule as shown. Reversing 
the vector order and using the right-hand rule give Q 3 P 5 
2P 3 Q.

Distributive law  P 3 (Q 1 R) 5 P 3 Q 1 P 3 R

 From the defi nition of the cross product, using a right-handed 
coordinate system, we get

i 3 j 5 k  j 3 k 5 i  k 3 i 5 j

j 3 i 5 2k  k 3 j 5 2i  i 3 k 5 2j

i 3 i 5 j 3 j 5 k 3 k 5 0

P

P P

θ

θθ θ

Q

Q cos θP cos
Q Q

θ

θ

Q

Q

P

P

P � Q

Q � P = –P � Q
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With the aid of these identities and the distributive law, the vector 
product may be written

  P 3 Q 5 (Pxi 1 Pyj 1 Pzk) 3 (Qxi 1 Qyj 1 Qzk)

  5 (PyQz 2 PzQy)i 1 (PzQx 2 PxQz)j 1 (PxQy 2 PyQx)k

The cross product may also be expressed by the determinant

 P 3 Q 5 †
i
Px

Qx

j
Py

Qy

k
Pz

Qz

†

 8. Additional relations

  Triple scalar product (P 3 Q) ?R 5 R? (P 3 Q). The dot and cross 
may be interchanged as long as the order of the vectors is main-
tained. Parentheses are unnecessary since P 3 (Q?R) is meaning-
less because a vector P cannot be crossed into a scalar Q?R. Thus, 
the expression may be written

 P 3 Q?R 5 P?Q 3 R

  The triple scalar product has the determinant expansion

 P 3 Q?R 5 †
Px

Qx

Rx

Py

Qy

Ry

Pz

Qz

Rz

†

  Triple vector product (P 3 Q) 3 R 5 2R 3 (P 3 Q) 5 R 3
(Q 3 P). Here we note that the parentheses must be used since an 
expression P 3 Q 3 R would be ambiguous because it would not 
identify the vector to be crossed. It may be shown that the triple 
vector product is equivalent to

  (P 3 Q) 3 R 5 R?PQ 2 R?QP

or  P 3 (Q 3 R) 5 P?RQ 2 P?QR

  The fi rst term in the fi rst expression, for example, is the dot prod-
uct R?P, a scalar, multiplied by the vector Q.

 9. Derivatives of vectors obey the same rules as they do for scalars.

  
dP
dt

5 Ṗ 5 Ṗxi 1 Ṗyj 1 Ṗzk

  
d(Pu)

dt
5 Pu̇ 1 Ṗu

  
d(P?Q)

dt
5 P?Q̇ 1 Ṗ?Q

  
d(P 3 Q)

dt
5 P 3 Q̇ 1 Ṗ 3 Q
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 10. Integration of vectors. If V is a function of x, y, and z and an el-
ement of volume is d� 5 dx dy dz, the integral of V over the volume 
may be written as the vector sum of the three integrals of its com-
ponents. Thus,

 E V d� 5 i E Vx d� 1 j E Vy d� 1 k E Vz d�

C/8  SERIES

(Expression in brackets following a series indicates the range of 
convergence.)

 (1 6 x)n 5 1 6 nx 1
n(n 2 1)

2!
 x2 6

n(n 2 1)(n 2 2)
3!

 x3 1 ? ? ?  [x2 , 1]

 sin x 5 x 2
x3

3!
1

x5

5!
2

x7

7!
1 ? ? ?  [x2 , q]

 cos x 5 1 2
x2

2!
1

x4

4!
2

x6

6!
1 ? ? ?  [x2 , q]

 sinh x 5
ex 2 e2x

2
5 x 1

x3

3!
1

x5

5!
1

x7

7!
1 ? ? ?  [x2 , q]

 cosh x 5
ex 1 e2x

2
5 1 1

x2

2!
1

x4

4!
1

x6

6!
1 ? ? ?  [x2 , q]

 ƒ(x) 5
a0

2
1 a

q

n51
an cos 

n�x
l

1 a
q

n51
bn sin 

n�x
l

 where an 5
1
l
 El

2l
 ƒ(x) cos 

n�x
l

 dx,  bn 5
1
l
 El

2l
 ƒ(x) sin 

n�x
l

 dx

[Fourier expansion for 2l , x , l]

C/9  DERIVATIVES

dxn

dx
5 nxn21,  

d(uv)
dx

5 u 
dv
dx

1 v 
du
dx

,  
dau

v
b

dx
5

v 
du
dx

2 u 
dv
dx

v2

lim
Dxn0 

sin Dx 5 sin dx 5 tan dx 5 dx

lim
Dxn0

 cos Dx 5 cos dx 5 1

d sin x
dx

5 cos x,  
d cos x

dx
5 2sin x,  

d tan x
dx

5 sec2 x

d sinh x
dx

5 cosh x,  
d cosh x

dx
5 sinh x,  

d tanh x
dx

5 sech2 x
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C/10  INTEGRALS

E xn dx 5
xn11

n 1 1

E 
dx
x

5 ln x

E!a 1 bx dx 5
2

3b
!(a 1 bx)3

E x!a 1 bx dx 5
2

15b2 (3bx 2 2a)!(a 1 bx)3

E x2!a 1 bx dx 5
2

105b3 (8a2 2 12abx 1 15b2x2)!(a 1 bx)3

E 
dx

!a 1 bx
5

2!a 1 bx
b

E 
!a 1 x

!b 2 x
 dx 5 2!a 1 x !b 2 x 1 (a 1 b) sin21 B

a 1 x
a 1 b

E 
x dx

a 1 bx
5

1
b2 [a 1 bx 2 a ln (a 1 bx)]

E 
x dx

(a 1 bx)n 5
(a 1 bx)12n

b2  aa 1 bx
2 2 n

2
a

1 2 n
b

E 
dx

a 1 bx2 5
1

!ab
 tan21 

x!ab
a
  or  

1

!2ab
 tanh21 

x!2ab
a

E 
x dx

a 1 bx2 5
1

2b
 ln (a 1 bx2)

E !x2 6 a2 dx 5
1
2[x!x2 6 a2 6 a2 ln (x 1 !x2 6 a2)]

E !a2 2 x2 dx 5
1
2 
ax!a2 2 x2 1 a2 sin21 

x
a
b

E x!a2 2 x2 dx 5 2
1
3!(a2 2 x2)3

E x2!a2 2 x2 dx 5 2
x
4
!(a2 2 x2)3 1

a2

8
 ax!a2 2 x2 1 a2 sin21 

x
a
b

E x3!a2 2 x2 dx 5 2
1
5 (x2 1

2
3a2)!(a2 2 x2)3

E 
dx

!a 1 bx 1 cx2
5

1

!c
 ln a!a 1 bx 1 cx2 1 x!c 1

b

2!c
b  or  

21

!2c
 sin21 a b 1 2cx

!b2 2 4ac
b

E dx

!x2 6 a2
5 ln (x 1 !x2 6 a2)
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E 
dx

!a2 2 x2
5 sin21 

x
a

E 
x dx

!x2 2 a2
5 !x2 2 a2

E 
x dx

!a2 6 x2
5 6!a2 6 x2

E x!x2 6 a2 dx 5
1
3!(x2 6 a2)3

E x2!x2 6 a2 dx 5
x
4
!(x2 6 a2)3 7 

a2

8
 x!x2 6 a2 2

a4

8
 ln (x 1 !x2 6 a2)

E sin x dx 5 2cos x

E cos x dx 5 sin x

E sec x dx 5
1
2

 ln 
1 1 sin x
1 2 sin x

E sin2x dx 5
x
2

2
sin 2x

4

E cos2x dx 5
x
2

1
sin 2x

4

E sin x cos x dx 5
sin2 x

2

E sinh x dx 5 cosh x

E cosh x dx 5 sinh x

E tanh x dx 5 ln cosh x

E ln x dx 5 x ln x 2 x

E eax dx 5
eax

a

E xeax dx 5
eax

a2  (ax 2 1)

E eax sin px dx 5
eax (a sin px 2 p cos px)

a2 1 p2
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E eax cos px dx 5
eax (a cos px 1 p sin px)

a2 1 p2

E eax sin2 x dx 5
eax

4 1 a2 aa sin2 x 2 sin 2x 1
2
a
b

E eax cos2 x dx 5
eax

4 1 a2 aa cos2 x 1 sin 2x 1
2
a
b

E eax sin x cos x dx 5
eax

4 1 a2 aa
2

 sin 2x 2 cos 2xb

E sin3 x dx 5 2
cos x

3
 (2 1 sin2 x)

E cos3 x dx 5
sin x

3
 (2 1 cos2 x)

E cos5 x dx 5 sin x 2
2
3 sin3 x 1

1
5 sin5 x

E x sin x dx 5 sin x 2 x cos x

E x cos x dx 5 cos x 1 x sin x

E x2 sin x dx 5 2x sin x 2 (x2 2 2) cos x

E x2 cos x dx 5 2x cos x 1 (x2 2 2) sin x

Radius of    

�xy 5

c1 1 ady
dx
b2 d 3/2

d2y

dx2

curvature   

�r� 5

c r2 1 adr
d�
b2 d 3/2

r2 1 2 adr
d�
b2

2 r 
d2r
d�2

C/11  NEWTON’S METHOD FOR SOLVING 
INTRACTABLE EQUATIONS

Frequently, the application of the fundamental principles of me-
chanics leads to an algebraic or transcendental equation which is not 
solvable (or easily solvable) in closed form. In such cases, an iterative 
technique, such as Newton’s method, can be a powerful tool for obtain-
ing a good estimate to the root or roots of the equation.

¸
˚

˚̊
˚

˚
˝

˚
˚̊

˚
˚

˛
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Let us place the equation to be solved in the form ƒ(x) 5 0. Part a of 
the accompanying fi gure depicts an arbitrary function ƒ(x) for values of 
x in the vicinity of the desired root xr. Note that xr is merely the value 

x3

ƒ(x)

ƒ(x)

x
x2 x1xr

Tangent to
ƒ(x) at x = x1

(a)

ƒ(x)

x
x1 x2

xr2
xr1

(b)

x1x2 xr

ƒ(x)

x

(c)

of x at which the function crosses the x-axis. Suppose that we have avail-
able (perhaps via a hand-drawn plot) a rough estimate x1 of this root. 
Provided that x1 does not closely correspond to a maximum or minimum 
value of the function ƒ(x), we may obtain a better estimate of the root xr 
by extending the tangent to ƒ(x) at x1 so that it intersects the x-axis at 
x2. From the geometry of the fi gure, we may write

tan � 5 ƒ9(x1) 5
ƒ(x1)

x1 2 x2

where ƒ9(x1) denotes the derivative of ƒ(x) with respect to x evaluated at 
x 5 x1. Solving the above equation for x2 results in

x2 5 x1 2
ƒ(x1)
ƒ9(x1)

The term 2ƒ(x1)/ƒ9(x1) is the correction to the initial root estimate x1. 
Once x2 is calculated, we may repeat the process to obtain x3, and so 
forth.

Thus, we generalize the above equation to

xk11 5 xk 2
ƒ(xk)
ƒ9(xk)

where

 xk11 5 the (k 1 1)th estimate of the desired root xr

 xk 5 the kth estimate of the desired root xr

  ƒ(xk) 5 the function ƒ(x) evaluated at x 5 xk

 ƒ9(xk) 5 the function derivative evaluated at x 5 xk

This equation is repeatedly applied until ƒ(xk11) is suffi ciently close to 
zero and xk11 > xk. The student should verify that the equation is valid 
for all possible sign combinations of xk, ƒ(xk), and ƒ9(xk).
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Several cautionary notes are in order:

 1. Clearly, ƒ9(xk) must not be zero or close to zero. This would mean, 
as restricted above, that xk exactly or approximately corresponds to 
a minimum or maximum of ƒ(x). If the slope ƒ9(xk) is zero, then the 
tangent to the curve never intersects the x-axis. If the slope ƒ9(xk) is 
small, then the correction to xk may be so large that xk11 is a worse 
root estimate than xk. For this reason, experienced engineers usu-
ally limit the size of the correction term; that is, if the absolute 
value of ƒ(xk)/ƒ9(xk) is larger than a preselected maximum value, 
that maximum value is used.

 2. If there are several roots of the equation ƒ(x) 5 0, we must be in the 
vicinity of the desired root xr in order that the algorithm actually 
converges to that root. Part b of the fi gure depicts the condition 
when the initial estimate x1 will result in convergence to xr2

 rather 
than xr1

.

 3. Oscillation from one side of the root to the other can occur if, for ex-
ample, the function is antisymmetric about a root which is an infl ec-
tion point. The use of one-half of the correction will usually prevent 
this behavior, which is depicted in part c of the accompanying fi gure.

Example: Beginning with an initial estimate of x1 5 5, estimate the 
single root of the equation ex 2 10 cos x 2 100 5 0.

The table below summarizes the application of Newton’s method to 
the given equation. The iterative process was terminated when the ab-
solute value of the correction 2ƒ(xk)/ƒ9(xk) became less than 1026.

C/12  SELECTED TECHNIQUES FOR 
NUMERICAL INTEGRATION

1. Area determination. Consider the problem of determining the 
shaded area under the curve y 5 ƒ(x) from x 5 a to x 5 b, as depicted in 
part a of the fi gure, and suppose that analytical integration is not feasi-
ble. The function may be known in tabular form from experimental 
measurements, or it may be known in analytical form. The function is 
taken to be continuous within the interval a , x , b. We may divide the 
area into n vertical strips, each of width Dx 5 (b 2 a)/n, and then add 
the areas of all strips to obtain A 5 e y dx. A representative strip of area 
Ai is shown with darker shading in the fi gure. Three useful numerical 
approximations are cited. In each case the greater the number of strips, 
the more accurate becomes the approximation geometrically. As a gen-
eral rule, one can begin with a relatively small number of strips and 
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increase the number until the resulting changes in the area approxima-
tion no longer improve the accuracy obtained.

x0 x1 x2 x3 xi
xxi + 1

y = ƒ(x)

= a
xn
= b

y

y0 y1 y2 y3

yn

yi

yi + 1

yn – 1Ai

(a)

x

yi + 1 ymyi

(b)

Rectangular

Ai
Ai = ym x

A =   y dx       ym x

x

I. Rectangular [Figure (b)] The areas of the strips are taken to be 
rectangles, as shown by the representative strip whose height ym is cho-
sen visually so that the small cross-hatched areas are as nearly equal as 
possible. Thus, we form the sum ©ym of the effective heights and multi-
ply by Dx. For a function known in analytical form, a value for ym equal 
to that of the function at the midpoint xi 1 Dx/2 may be calculated and 
used in the summation.

II. Trapezoidal [Figure (c)] The areas of the strips are taken to be trap-
ezoids, as shown by the representative strip. The area Ai is the average 
height (yi 1 yi 1 1)/2 times Dx. Adding the areas gives the area approxima-
tion as tabulated. For the example with the curvature shown, clearly the 
approximation will be on the low side. For the reverse curvature, the ap-
proximation will be on the high side.

yi + 1yi

(c)

Trapezoidal
 yi + yi + 1 –——–––

2
Ai = x

y0 — + y1 + y2 + … + yn – 1 + 2
 yn—
 2 

A =   y dx ( ) x

xΔ

Δ

Δ

Ai

Parabolic

x

A

x

yi

(d)

yi + 1 yi + 2

1––
3

A = x( yi + 4yi + 1 + yi + 2)

A =   y dx 1––
3

(y0 + 4y1 + 2y2 + 4y3 + 2y4

+ … + 2yn – 2 + 4yn – 1 + yn) x

ΔΔ

Δ Δ

Δ

ΔΔ
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III. Parabolic [Figure (d)] The area between the chord and the 
curve (neglected in the trapezoidal solution) may be accounted for by 
approximating the function by a parabola passing through the points 
defi ned by three successive values of y. This area may be calculated from 
the geometry of the parabola and added to the trapezoidal area of the 
pair of strips to give the area DA of the pair as cited. Adding all of the 
DA’s produces the tabulation shown, which is known as Simpson’s rule. 
To use Simpson’s rule, the number n of strips must be even.

Example: Determine the area under the curve y 5 x !1 1 x2 from x 5 0 
to x 5 2. (An integrable function is chosen here so that the three 
approximations can be compared with the exact value, which is 
A 5 e

2
0  x!1 1 x2 dx 5 13(1 1 x2)3/2u20 5 13(5!5 2 1) 5 3.393 447).

Note that the worst approximation error is less than 2 percent, even 
with only four strips.

2. Integration of fi rst-order ordinary differential equations.  
The application of the fundamental principles of mechanics frequently 
results in differential relationships. Let us consider the fi rst-order form 
dy/dt 5 ƒ(t), where the function ƒ(t) may not be readily integrable or 
may be known only in tabular form. We may numerically integrate by 
means of a simple slope-projection technique, known as Euler integra-
tion, which is illustrated in the fi gure.

t1

y1
y2

y3

y4

t
t2 t3 t4

y(t)
y(t)

Accumulated
algorithmic
error

etc.

Slope = ƒ(t3)

Slope = ƒ(t2)

Slope = ƒ(t1)

dy
––
dt

Slope       =  ƒ(t)
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Beginning at t1, at which the value y1 is known, we project the slope 
over a horizontal subinterval or step (t2 2 t1) and see that y2 5 y1 1 
ƒ(t1)(t2 2 t1). At t2, the process may be repeated beginning at y2, and so 
forth until the desired value of t is reached. Hence, the general expres-
sion is

yk11 5 yk 1 ƒ(tk)(tk11 2 tk)

If y versus t were linear, i.e., if ƒ(t) were constant, the method would 
be exact, and there would be no need for a numerical approach in that 
case. Changes in the slope over the subinterval introduce error. For the 
case shown in the fi gure, the estimate y2 is clearly less than the true 
value of the function y(t) at t2. More accurate integration techniques 
(such as Runge-Kutta methods) take into account changes in the slope 
over the subinterval and thus provide better results.

As with the area-determination techniques, experience is helpful in 
the selection of a subinterval or step size when dealing with analytical 
functions. As a rough rule, one begins with a relatively large step size 
and then steadily decreases the step size until the corresponding 
changes in the integrated result are much smaller than the desired ac-
curacy. A step size which is too small, however, can result in increased 
error due to a very large number of computer operations. This type of 
error is generally known as “round-off error,” while the error which re-
sults from a large step size is known as algorithm error.

Example: For the differential equation dy/dt 5 5t with the initial condi-
tion y 5 2 when t 5 0, determine the value of y for t 5 4.

Application of the Euler integration technique yields the following 
results:



USEFUL TABLESD

Coeffi cients of friction

(The coeffi cients in the following table represent typical values under normal 
working conditions. Actual coeffi cients for a given situation will depend on the 
exact nature of the contacting surfaces. A variation of 25 to 100 percent or more 
from these values could be expected in an actual application, depending on prevail-
ing conditions of cleanliness, surface fi nish, pressure, lubrication, and velocity.)

485
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TABLE D/2 SOLAR SYSTEM CONSTANTS

 Universal gravitational constant  G 5 6.673(10211) m3/(kg?s2)
     5 3.439(1028) ft4/(lbf-s4)
 Mass of Earth me 5 5.976(1024) kg
     5 4.095(1023) lbf-s2/ft
 Period of Earth’s rotation (1 sidereal day)    5 23 h 56 min 4 s
     5 23.9344 h
 Angular velocity of Earth   � 5 0.7292(1024) rad/s
 Mean angular velocity of Earth–Sun line  �9 5 0.1991(1026) rad/s
 Mean velocity of Earth’s center about Sun    5 107 200 km/h
     5 66,610 mi/h
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TABLE D/3 PROPERTIES OF PLANE FIGURES

Arc Segment

Circular Area

Semicircular
Area

Quarter-Circular
Area

Quarter and Semicircular Arcs

—

—

—

–r

–y

C

CC

r

r

r

α
α

–r  = r sin   ––––––α

–y  =  2r ––
�

–y  =  4r ––
3�

–y  =–x  =  4r ––
3�

Ix  =  Iy  =
    r4
 –––

4
�

α

Area of Circular
Sector

–x

r
α
α

C

r

r

–y

y

y

C
x

x

    r4
 –––

2
�Iz  =

    r4
 –––

4
�Iz  =

Ix  =  Iy  =
    r4
 –––

8
�

–y

–x

x

x
C

y

y

C

        –  –
8

–
    Ix  = ( )�    8    ––

9�
  r4

    r4
 –––

8
�Iz  =

Ix  =  Iy  =
    r4
 –––
16
�

—
16

–
    

Ix  =  Iy  = ( )�   4    ––
9�

r4

α
–x  = r sin   ––––––α2–

3

1–
2

1–
2

1–
2

r4
––
4

Ix  = (    –     sin 2   )α

r4
––
4

Iy  = (    +     sin 2   )α

Iz  = α

α

α

r4

FIGURE CENTROID AREA MOMENTS
OF INERTIA

––
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TABLE D/3 PROPERTIES OF PLANE FIGURES Continued

Rectangular Area

Triangular Area

Area of Elliptical
Quadrant

Subparabolic Area

–x  =

–x  =  4a ––
3

–y  =  4b ––
3

–x  =  3a ––
 8

–y  =  3b ––
  5

–x  =  3a ––
 4

–y  =  3b ––
  10

y

x

 bh3
 –––
 3

 a + b ––––
 3

–y  =  h ––
 3

 bh3
 –––
 12

Ix  =

x

x

x1

x

y

x0

y0

y

–
    Ix  =

FIGURE CENTROID AREA MOMENTS
OF INERTIA

h

h

C

C

b

b

a

—

 bh ––
 12

–
    Iz  = (b2 + h2)

    ab3
  ––––,

 16
    ––
16

–( )  4    ––
9

    ––
16

–( )  4    ––
9

ab3Ix  =
–

    Ix  =

a3b    a3b  ––––,
 16

Iy  =
–

    Iy  =

Iz  =
   ab –––
 16

(a2 + b2)

    ab3
  –––
  21

Ix  =

    a3b  –––
  5

Iy  =

  a3     –– +
5( )    b2    ––

  21
Iz  =  ab

  2ab3
  ––––

  7
Ix  =

   2a3b  ––––
  15

Iy  =

  a2      –– +
15( )    b2    ––

  7
Iz  =  2ab

 bh3
 –––
 12

 bh3
 –––
 36

Ix  =

 bh3
 –––
 4

Ix1  =

–
    Ix  =–y

–x

Cb

a

b

a

–y

–x

–y

–x C

y = kx2 = x2b
—
a2

ab––
3

Area A =

Parabolic Area

x

y

b

a

–y

–x C

y = kx2 = x2b
—
a2

2ab–––
3

Area A =
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TABLE D/4 PROPERTIES OF HOMOGENEOUS SOLIDS
(m 5 mass of body shown)

MASS MASS MOMENTS
BODY CENTER OF INERTIA

Circular
Cylindrical —

Shell

Half
Cylindrical 

Shell

Circular
Cylinder

—

Semicylinder

Rectangular
Parallelepiped

—

 Iy2 y2
 � 13 m(b2 � l2)

 Iy1 y1
 � 1

12 mb2 � 13 ml2

 Izz � 1
12 m(a2 � b2)

 Iyy � 1
12 m(b2 � l2)

 Ixx � 1
12 m(a2 � l2)

 Izz � �1
2

 � 16
9�2� mr2

 Izz � 12 mr2

 � 14 mr2 � 13 ml2x � 4r
3�

 Ix1x1
 � Iy1 y1

 � 14 mr2 � 1
12 ml2

 Ixx � Iyy

 Izz � 12 mr2

 Ix1x1
 � 14 mr2 � 13 ml2

 Ixx � 14 mr2 � 1
12 ml2

 Izz � �1 � 4
�2� mr2

 Izz � mr2

 � 12 mr2 � 13 ml2x � 2r
�

 Ix1x1
 � Iy1 y1

 � 12 mr2 � 1
12 ml2

 Ixx � Iyy

 Izz � mr2

 Ix1x1
 � 12 mr2 � 13 ml2

 Ixx � 12 mr2 � 1
12 ml2

z

x

y

y2

y1

G

l–
2

l–
2

b

a

x1

z

x

y

G

l–
2

l–
2

r

x1

z

x

y

G

l–
2

l–
2

r

y1

x1

z

x

G

l–
2

l–
2

r

x1

z

x

y

G

l–
2

l–
2

r

y1
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TABLE D/4 PROPERTIES OF HOMOGENEOUS SOLIDS Continued
(m 5 mass of body shown)

MASS MASS MOMENTS
BODY CENTER OF INERTIA

Spherical —
Shell

Hemispherical
Shell

Sphere —

Hemisphere

Uniform
Slender Rod

—
Iy1 y1

1
3 ml2

Iyy
1
12ml2

Iyy Izz
83
320mr2

x 3r
8

Ixx Iyy Izz
2
5mr2

Izz
2
5mr2

Iyy Izz
5
12mr2

x r
2

Ixx Iyy Izz
2
3mr2

Izz
2
3mr2

r

G

z

z

x

G

r

y

r

G

z

z

x

G

r

y

y
G

l–
2

l–
2

y1
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TABLE D/4 PROPERTIES OF HOMOGENEOUS SOLIDS Continued
(m 5 mass of body shown)

MASS MASS MOMENTS
BODY CENTER OF INERTIA

Quarter-
Circular Rod

Elliptical
Cylinder

—

Conical
Shell

Half
Conical
Shell

Right
Circular

Cone

 Iyy  3
20 mr2  3

80 mh2

 Izz  3
10 mr2

 Iy1 y1
  3

20 mr2  1
10 mh2

z  3h
4

 Iyy  3
20 mr2  35 mh2

 Izz  1
2

  16
9 2

 mr2

 Izz  12 mr2z  2h
3

  14 mr2  16 mh2

 Ix1x1
  Iy1 y1

x  4r
3

  14 mr2  12 mh2

 Ixx  Iyy

 Iyy  14mr2  1
18mh2

Izz  12mr2

Iy1y1
  14mr2  16mh2

z  2h
3

Iyy  14mr2  12mh2

Iy1y1
  14mb2  13ml2

Izz  14m(a2  b2)

Iyy  14mb2  1
12ml2

Ixx  14ma2  1
12ml2

Izz  mr2  2r
Ixx  Iyy  12mr2

 x  y

y

_
y

_
x

z

x

r

G

z

y1

y

G

h

r

y1

yh

z

x

r
x1

G

z

y1

y

G

h

r

z

x

G

l–
2

l–
2

y1 y

b

a
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TABLE D/4 PROPERTIES OF HOMOGENEOUS SOLIDS Continued
(m 5 mass of body shown)

MASS MASS MOMENTS
BODY CENTER OF INERTIA

Half Cone

Semiellipsoid

Elliptic
Paraboloid

Rectangular
Tetrahedron

Half Torus
Izz  mR2  34ma2

Ixx  Iyy  12mR2  58ma2

x  a
2  4R2

2 R

Izz  3
80m(a2  b2)

Iyy  3
80m(a2  c2)

z  c
4

Ixx  3
80m(b2  c2)

y  b
4

Izz  1
10m(a2  b2)

x  a
4

Iyy  1
10m(a2  c2)

Ixx  1
10m(b2  c2)

Iyy  16m(a2  13c2)

Ixx  16m(b2  13c2)

Izz  16m(a2  b2)z  2c
3

Iyy  16ma2  12mc2

Ixx  16mb2  12mc2

Iyy  15m(a2  19
64c2)
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Absolute system of units, 10
Acceleration, of a body, 8, 121

due to gravity, 11
Accuracy, 13
Action and reaction, principle of, 8, 25, 110, 169, 200, 221, 276
Active force, 396
Active-force diagram, 397
Addition of vectors, 6, 25, 28, 473
Aerostatics, 303
Angle, of friction, 335

of repose, 338
Approximations, 14, 250
Archimedes, 3
Area, fi rst moment of, 234

second moment of, 234, 434
Area moments of inertia, see Moments of inertia of areas
Atmospheric pressure, 304
Axes, choice of, 27, 68, 114, 175, 233, 236

rotation of, 458
Axis, moment, 39, 75

Beams, concentrated loads on, 270
defi nition of, 269
distributed loads on, 270
external effects, 270
internal effects, 276
loading-shear relation for, 277, 278
resultant of forces on cross section of, 276
shear-moment relation for, 277, 278, 279
statically determinate and indeterminate, 269
types of, 269

Bearing friction, 364
Belt friction, 372
Bending moment, 276
Bending-moment diagram, 277
Bodies, interconnected, 200, 396
Body, deformable, 5

rigid, 4
Body force, 24, 230
Boundary conditions, 290
British system of units, 9
Buoyancy, center of, 309

force of, 309
principle of, 308

Cables, catenary, 292
fl exible, 288
length of, 291, 294
parabolic, 290
tension in, 291, 294

Cajori, F., 7
Center, of buoyancy, 309

of gravity, 25, 231
of mass, 231, 233
of pressure, 305

Centroids, 234
of composite fi gures, 250
by integration, 234
of irregular volumes, 251

table of, 487
by theorems of Pappus, 261

Coeffi cient, of friction, 334, 335, 485
of rolling resistance, 373

Collinear forces, equilibrium of, 121
Components, of a force, 26, 27, 28

rectangular, 6, 26, 27, 28, 66
scalar, 27
of a vector, 6, 26, 27, 28, 66

Composite areas, moment of inertia of, 449
Composite bodies, center of mass of, 250
Composite fi gures, centroid of, 250
Compression in truss members, 171, 174
Computer-oriented problems, 17, 105, 165, 226, 327, 386, 

432, 467
Concentrated forces, 24, 229

on beams, 270
Concurrent forces, equilibrium of, 121, 144

resultant of, 25, 28, 59, 90
Cone of friction, 336
Constant of gravitation, 12, 486
Constraint, 124, 146

adequacy of, 125, 147
partial, 147
proper and improper, 125
redundant, 126, 147

Coordinates, choice of, 27, 67, 114, 236, 321, 436
Coplanar forces, equilibrium of, 121, 122

resultant of, 28, 58
Coulomb, 332
Couple, 50, 77

equivalent, 50
moment of, 50, 77
resolution of, 51, 90
resultant, 58, 89, 90
vector representation of, 50, 77
work of, 393

Cross or vector product, 40, 75, 474

D’Alembert, J., 3
da Vinci, 3
Deformable body, 4
Degrees of freedom, 398, 416, 427
Density, 233, 485
Derivative of vector, 475
Derivatives, table of, 476
Diagram, active-force, 397, 413

bending-moment, 277
free-body, 16, 110, 114, 144
shear-force, 277

Differential element, choice of, 235
Differentials, order of, 13, 235, 321
Dimensions, homogeneity of, 17
Direction cosines, 7, 66
Disk friction, 365
Displacement, 392

virtual, 394
Distributed forces, 24, 229, 230, 321, 322

on beams, 270
493
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Distributive laws, 41, 474
Dot or scalar product, 67, 392, 474
Dynamics, 4, 8

Effi ciency, mechanical, 399
Elastic potential energy, 411
Energy, criterion for equilibrium, 416

criterion for stability, 416
elastic, 411
potential, 411, 413, 415

Equilibrium, alternative equations of, 123
categories of, 121, 144
of collinear forces, 121
of concurrent forces, 121, 144
condition of, 58, 121, 143, 395, 397
of coplanar forces, 121, 122
energy criterion for, 415, 416
equations of, 121, 143
of interconnected rigid bodies, 200, 396
of machines, 200
necessary and suffi cient conditions for, 121, 143
neutral, 415
of parallel forces, 121, 146
of a particle, 395
of a rigid body, 395
stability of, 125, 415
with two degrees of freedom, 398
by virtual work, 394, 395, 397

Euler, 3
External effects of force, 24

First moment of area, 234
Fixed vector, 5, 24
Flexible cables, 288

differential equation for, 289
Fluids, 303

friction in, 332
incompressible, 304
pressure in, 303

Foot, 9
Force, action of, 23, 111, 112, 144, 145

active, 396
body, 24, 230
buoyancy, 309
components of, 26, 27, 66
concentrated, 24, 229
concept of, 4
contact, 24
coplanar system of, 58
distributed, 24, 229, 230, 321, 322
effects of, 23
external, 24
friction, 113, 331
gravitational, 12, 25, 113, 230
inertia, 435
intensity of, 230
internal, 24, 230, 276, 397
kinds of, 24
magnetic, 24, 113
measurement of, 25
mechanical action of, 111, 112, 145
moment of, 39, 75
polygon, 58, 123
reactive, 24, 396
remote action of, 113
resolution of, 26, 27, 66, 67
resultant, 58, 89, 90, 231, 321
shear, 276, 303
specifi cations of, 24

unit of, 9
work of, 392

Force–couple system, 51, 58, 78
Force system, concurrent, 59, 77, 90, 121, 144

coplanar, 58
general, 23, 90
parallel, 26, 59, 90

Formulation of problems, 14
Frames, defi ned, 200, 221

equilibrium of, 200
Frames and machines, rigidity of, 200
Free-body diagram, 16, 110, 114, 144
Freedom, degrees of, 398, 416, 427
Free vector, 5, 6, 50, 77
Friction, angle of, 335

bearing, 364, 365
belt, 372
circle of, 364
coeffi cients of, 334, 335, 485
cone of, 336
disk, 365
dry or Coulomb, 332, 333
fl uid, 332
internal, 332
journal bearing, 364
kinetic, 334
limiting, 334
in machines, 353
mechanism of, 333
pivot, 365
problems in dry friction, 337, 381
rolling, 373
screw thread, 354
static, 334
types of, 332
wedge, 353
work of, 398

Gage pressure, 304
Galileo, 3
Gas, 303
Graphical representation, 15, 25, 26, 58
Gravitation, constant of, 12, 486

law of, 12
Gravitational force, 12, 25, 113, 230
Gravitational potential energy, 412
Gravitational system of units, 10
Gravity, acceleration due to, 11

center of, 25, 231
Guldin, Paul, 261
Gyration, radius of, 436

Homogeneity, dimensional, 17
Hydrostatic pressure, 304, 306, 307
Hydrostatics, 303
Hyperbolic functions, 293

Ideal systems, 396
Impending motion, 334, 336, 337
Inclined axes, area moments of inertia about, 458
Inertia, 4, 435

area moments of, see Moments of inertia of areas
principal axes of, 459
products of, 457

Inertia force, 435
Integrals, table of selected, 477
Integration, choice of element for, 236, 321

numerical techniques for, 481, 483
of vectors, 476

Interconnected bodies, 200, 396
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Internal effects of force, 24, 230, 276, 397
Internal friction, 332
International System of units, 9

Joints, method of, 172, 194, 220
Joule, 394
Journal bearings, friction in, 364

Kilogram, 9, 10, 12
Kilopound, 10
Kinetic friction, 334

coeffi cient of, 335, 485

Lagrange, 3
Laplace, 3
Law, associative, 473

commutative, 473, 474
of cosines, 473
distributive, 41, 474
of gravitation, 12
parallelogram, 6, 25, 58
of sines, 473
Pascal’s, 303
triangle, 6, 25

Laws of motion, Newton’s, 7
Length, standard unit of, 10
Limit, mathematical, 14
Line of action, 24
Liquids, 304
Loading-shear relation for beams, 277, 278

Mach, Ernst, 41
Machines, defi ned, 200, 221

equilibrium of, 200
friction in, 353
ideal or real, 332

Mass, 4, 10
center of, 231, 233
unit of, 9, 10

Mathematical limit, 13
Mathematical model, 15
Mathematics, selected topics in, 470
Mechanical effi ciency, 399
Mechanical system, 110
Mechanics, 3
Metacenter, 310
Metacentric height, 310
Meter, 10
Method, of joints, 172, 194, 220

of problem solution, 16, 100, 114, 160, 220, 321, 381, 427
of sections, 184, 194, 220
of virtual work, 391

Metric units, 9
Minimum energy, principle of, 399
Mohr’s circle, 459
Moment, bending, 276

components of, 76
of a couple, 50, 77
of a force, 39, 75
torsional, 276, 435
units of, 39
vector representation of, 40, 75

Moment arm, 39
Moment axis, 39, 75
Moments, principle of, 59, 89, 231, 237, 321
Moments of inertia of areas, 434

for composite areas, 449
dimensions and units of, 436
about inclined axes, 458
by integration, 435

maximum and minimum, 459, 460
Mohr’s circle representation of, 460
polar, 436
principal axes of, 459
radius of gyration for, 436
rectangular, 435
table of, 487
tabular computation of, 449
transfer of axes for, 437, 457

Morin, 332
Motion, impending, 334, 336, 337
Multi-force members, 200

Neutral equilibrium, 415
Newton, Isaac, 3
Newton’s laws, 7
Newton (unit), 9
Newton’s method, 479
Numerical integration, 481, 483

Order of differentials, 13, 235, 321

Pappus, 261
theorems of, 261

Parallel-axis theorems, for area moments of inertia, 438
Parallel forces, equilibrium of, 121, 146

resultant of, 26, 59, 90
Parallelogram law, 6, 25, 58
Particle, 4
Particles, equilibrium of, 395
Pascal (unit), 230
Pascal’s law, 303
Pivot friction, 365
Polar moment of inertia, 436
Polygon, of forces, 58, 123
Potential energy, 411, 413, 415

datum for, 412
units of, 412, 413

Pound, standard, 10
Pound force, 9
Pound mass, 10
Pressure, 230, 303

atmospheric, 304
center of, 305
fl uid, 303
gage, 304
hydrostatic, 304, 306, 307
on submerged surfaces, 304, 306, 307

Principal axes of inertia, 459
Principia, 7
Principle, of action and reaction, 8, 25, 110, 169, 200, 221, 276

of buoyancy, 308
of concurrency of forces, 122
of minimum energy, 415
of moments, 59, 89, 231, 237, 321
of transmissibility, 5, 24, 58
of virtual work, 395, 397, 414

Products of inertia, 457
about inclined axes, 458

Products of vectors, 40, 67, 75, 76, 392, 474

Radius of gyration, 436
Reactive forces, 24, 396
Rectangular components, 6, 26, 27, 28, 66
Rectangular moments of inertia, 435
Redundancy, external and internal, 174, 193
Redundant supports, 125, 147
Repose, angle of, 338
Resolution, force, 26, 27, 66, 67

force and couple, 51, 58, 78
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Resultant, of concurrent forces, 25, 28, 59, 90
of coplanar forces, 28, 58
couple, 58, 89, 90
of fl uid pressure, 304, 306, 308
force, 58, 89, 90, 231, 321
of forces on beam cross section, 276
of general force system, 90
of parallel forces, 26, 59, 90

Right-hand rule, 39, 67, 75, 474
Rigid bodies, interconnected, 200, 396
Rigid body, 4

equilibrium of, 395
Rolling resistance, coeffi cient of, 373

Scalar, 4
Scalar components, 27
Scalar or dot product, 67, 392, 474
Screw, friction in, 354
Second moment of area, 234, 434
Sections, method of, 184, 194, 220
Series, selected expansions, 476
Shear force, 276, 303
Shear-force diagram, 277
Shear-moment relation for beams, 277, 278, 279
Shear stress, 435
Singularity functions, 279
SI units, 9
Sliding vector, 5, 24, 39, 77
Slug, 9
Space, 4
Space trusses, 193, 220
Specifi c weight, 230, 485
Spring, linear and nonlinear, 112, 113

potential energy of, 411
stiffness of, 114, 411
torsional, 112, 114

Stability, of equilibrium, 125, 415
of fl oating bodies, 309
for single-degree-of-freedom system, 415
of trusses, 174, 193

Statically determinate structures, 125, 146, 169, 174, 193
Statically indeterminate structures, 125, 147, 174, 193, 200
Static friction, 334

coeffi cient of, 334, 485
Statics, 4
Stevinus, 3
Stiffness of spring, 411
Stress, 230

shear, 435
Structures, statical determinacy of, 125, 146, 169, 174, 193, 200

types of, 169
Submerged surfaces, pressure on, 304, 306, 307
Subtraction of vectors, 6, 473
Symmetry, considerations of, 233, 457
System, with elastic members, 411

force–couple, 51, 58, 78
of forces, concurrent, 25, 59, 76, 90, 121, 144

coplanar, 58
general, 23, 89
parallel, 59, 90, 121, 146

ideal, 396
of interconnected bodies, 200, 396
mechanical, 110
real, 398
of units, 8

Table, of area moments of inertia, 487
of centroids, 487
of coeffi cients of friction, 485

of densities, 485
of derivatives, 476
of mathematical relations, 470
of solar system constants, 486

Tension in truss members, 171, 172
Theorem, of Pappus, 261

of Varignon, 40, 59, 76
Three-force member, 122
Thrust bearing, friction in, 365
Time, 4, 10
Ton, 10
Torque, see Moment, of force
Torsional moment, 276, 435
Transfer of axes, for moments of inertia, 437

for products of inertia, 457
Transmissibility, principle of, 5, 24, 58
Triangle law, 6, 25
Triple scalar product, 76, 475
Triple vector product, 475
Trusses, defi nition, 171

plane, 171
simple, 171, 193
space, 193, 220
stability of, 174, 193
statical determinacy of, 174, 193, 220
types of, 170

Two-force members, 122, 171

U.S. customary units, 9
Units, 8, 39, 394
Unit vectors, 7, 27, 66, 68, 76
Unstable equilibrium, 415

Varignon, 3
Varignon’s theorem, 40, 59, 76
Vector equation, 8
Vectors, 4, 23

addition of, 6, 25, 28, 473
components of, 6, 26, 27, 28, 66
couple, 50, 77
cross or vector product of, 40, 75, 474
derivative of, 475
dot or scalar product of, 67, 392, 474
fi xed, 5, 24
free, 5, 6, 50, 77
moment, 40, 75
notation for, 5
resolution of, 26, 27, 66, 67
sliding, 5, 24, 39, 77
subtraction of, 6, 473
unit, 7, 27, 66, 68, 76

Vector sum, of couples, 77, 89
of forces, 25, 28, 58, 89

Virtual displacement, 394
Virtual work, 391, 394

for elastic systems, 414
for ideal systems, 396, 397
for a particle, 395
for a rigid body, 395

Viscosity, 332

Wear in bearings, 365
Wedges, friction in, 353
Weight, 12, 25, 113, 230
Work, of a couple, 393

of a force, 392
units of, 394
virtual, 391, 394

Wrench, 90



PROBLEM ANSWERS

When a problem asks for both a general and a specifi c result, only the specifi c result might be listed below.

cDenotes that the problem is of increased diffi culty
*Denotes that the problem is best solved utilizing a numerical solution

497

1/1 �x 5 157.48, �y 5 67.48, n 5 20.923i 1 0.385j
1/2 V 5 32.2 units, �x 5 70.48

1/3 V9 5 36.1 units, �x 5 174.88

1/4 �x 5 42.08, �y 5 68.28, �z 5 123.98

1/5 m 5 31.1 slugs, m 5 454 kg
1/6 W 5 773 N, W 5 173.8 lb
1/7 W 5 556 N, m 5 3.88 slugs, m 5 56.7 kg

1/8 A 1 B 5 10.10, A 2 B 5 7.24, AB 5 12.39, 
A
B

5 6.07

CHAPTER 1

1/9 F 5 3.55(1022) N
1/10 F 5 (22.85i 2 1.427j)1029 N
1/11 Exact: E 5 1.275(1024)
 Approximate: E 5 1.276(1024)
1/12 SI: kg?m2/s2

 U.S.: lb-ft

2/1 F 5 2459i 1 655j N, Fx 5 2459 N, Fy 5 655 N
2/2 F 5 22.96i 1 6.34j kN, Fx 5 22.96 kN

Fy 5 6.34 kN
2/3 F 5 26i 2 2.5j kN
2/4 n 5 0.655i 2 0.756j, Fx 5 819 lb, Fy 5 2945 lb
2/5 Fx 5 2F sin �, Fy 5 2F cos �
 Fn 5 F sin (� 1 �), Ft 5 F cos (� 1 �)
2/6 � 5 49.98, R 5 1077 lb
2/7 R 5 675i 1 303j N, R 5 740 N, �x 5 24.28

2/8 Ft 5
Fs
r

, Fn 5 2
F!r2 2 s2

r
2/9 Fx 5 29.2 lb, F 5 75.8 lb
2/10 Fx 5 25.49 kips, Fy 5 211.78 kips
 Fn 5 28.36 kips, Ft 5 29.96 kips

CHAPTER 2

2/11 R 5 3.61 kN, � 5 2068

2/12 T 5 5.83 kN, R 5 9.25 kN
2/13 R 5 600i 1 346j N, R 5 693 N
2/14 R 5 33.3i 1 46.6j lb, �y 5 35.58 CCW off

positive y-axis
2/15 (a) Fn 5 286.8 N, Ft 5 492 N
 (b) Fn 5 773 N, Ft 5 2207 N
2/16 Fx 5 2752 lb, Fy 5 274 lb
 Fn 5 2514 lb, Ft 5 2613 lb
2/17 F1 5 1.165 kN, � 5 2.118, or
 F1 5 3.78 kN, � 5 57.98

2/18 Tx 5
T(1 1 cos �)

!3 1 2 cos � 2 2 sin �
 

 Ty 5
T(sin � 2 1)

!3 1 2 cos � 2 2 sin �
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2/19 Tn 5 66.7 N, Tt 5 74.5 N
2/20 Fs 5 60 lb, R 5 103.9 lb
2/21 R 5 88.8i 1 245j N
2/22 Fa 5 0.567 kN, Fb 5 2.10 kN
 Pa 5 1.915 kN, Pb 5 2.46 kN
2/23 Ra 5 1170 N, Rb 5 622 N, Pa 5 693 N
2/24 Fa 5 1.935 kN, Fb 5 2.39 kN
 Pa 5 3.63 kN, Pb 5 3.76 kN
2/25 F 5 424 N, � 5 17.958 or 248.08

2/26 P 5 537 lb, T 5 800 lb
2/27 � 5 51.38, � 5 18.198

2/28 R 5 8110 N
2/29 AB: Pt 5 63.6 N, Pn 5 63.6 N
 BC: Pt 5 277.9 N, Pn 5 45.0 N
 c2/30 Fx 5 2101.2 N, Fy 5 194.4 N
2/31 MO 5 35.0 kN?m CW, MB 5 75.0 kN?m CW

2/32 MO 5
Fbh

!h2 1 b2
 CW

2/33 MB 5 83.2 lb-ft CW
2/34 MO 5 46.4 N?m CW
2/35 MO 5 81.5 lb-ft CCW, MB 5 115.9 lb-ft CW
 d 5 26 in. left of O
2/36 MO 5 5.64 N?m CW
2/37 MO 5 177.9 lb-ft CW
2/38 MO 5 214 lb-in. CW
2/39 MB 5 48 N?m CW, MA 5 81.9 N?m CW
2/40 F 5 37.2 lb
2/41 MC 5 160 lb-in. CW, � 5 51.38

2/42 MO 5 102.8 lb-ft CCW
2/43 MB 5 2200 N?m CW, MO 5 5680 N?m CW
2/44 (a) MO 5 197.0 N?m CCW
 (b) MO 5 82.8 N?m CW
2/45 MO 5 Tr sin (� 1 �) CW
 MP 5 Tr[cos � 1 sin (� 1 �)] CW
2/46 T 5 8.65 kN

2/47 � 5 tan21ah
b
b

2/48 MO 5 39.9k kN?m
2/49 MO 5 5010 lb-ft CCW
2/50 MO 5 128.6 lb-in. CW, T 5 64.3 lb
2/51 MO 5 80.2k lb-ft
2/52 T 5 4.04 kN
2/53 MO 5 0.902 kN?m CW
2/54 MO 5 41.5 N?m CW, � 5 33.68

 (MO)max 5 41.6 N?m CW
2/55 MO 5 28.21k kN?m, MA 5 213.77k kN?m
 � 5 115 .98 and � 5 2968, (MO)max 5 51.8 kN?m
2/56 MO 5 71.1 N?m CCW, MC 5 259 N?m CCW
2/57 T1 5 4.21T, P 5 5.79T
 *2/58 Mmax 5 10.83 lb-ft at � 5 62.18

2/59 M 5 112 lb-in. CW
2/60 MO 5 MC 5 MD 5 2300 lb-ft CCW
2/61 R 5 6j kN at x 5 66.7 mm
2/62 (a) F 5 22.77i 2 1.6j kN, MO 5 20.8k kN?m
 (b) F 5 22.77i 2 1.6j kN, MB 5 24.8k kN?m
2/63 F 5 875 lb
2/64 F 5 8 kN at 608 CW below horizontal
 MO 5 19.48 kN?m CW
2/65 P 5 51.4 kN
2/66 M 5 144 lb-in. CW
2/67 F 5 700 lb
2/68 (a) F 5 425 N at 1208 CW below horizontal
    MB 5 1114 N?m CCW
 (b) FC 5 2230 N at 1208 CW below horizontal
    FD 5 1803 N at 608 CCW above horizontal
2/69 R 5 50 N at 1108 CCW above horizontal
 MO 5 17.29 N?m CCW
2/70 (a) T 5 267i 2 733j N, MB 5 178.1k N?m
 (b) T 5 267i 2 733j N, MO 5 271k N?m
2/71 F 5 43.4i 1 246j N, MO 5 60.0 N?m CW
2/72 F 5 20 N at 258 CCW above horizontal
 MB 5 2.93 N?m CCW
2/73 MO 5 952 lb-in. CW
2/74 F 5 520 N at 1158 CCW above horizontal
 MO 5 374 N?m CW
2/75 M 5 21.7 N?m CCW
2/76 y 5 240.3 mm
2/77 FA 5 5.70 kN down, FB 5 4.70 kN down
2/78 F at 67.58 CCW above horizontal

MO 5 0.462FR CCW
2/79 R 5 17.43 kN, �x 5 26.18

2/80 F 5 19.17 kN, � 5 20.18

2/81 R 5 7.52i 1 2.74j kN, MO 5 22.1 kN?m CCW
 y 5 0.364x 2 2.94 (m)
2/82 (a) R 5 22Fj, MO 5 0
 (b) R 5 0, MO 5 Fdk
 (c) R 5 2Fi 1 Fj, MO 5 0
2/83 (a) R 5 23Fi 2 2!3Fj, MO 5 0 
   y 5 0

 (b) R 5 22Fi 1
!3
2

 Fj, MO 5
5!3
12

 Fl CCW 

   y 5
5!3
24

 l (above O)

 (c) R 5
3
2

 Fi 1
7!3

2
 Fj, MO 5 !3 Fl CCW 

   y 5 2
2

!3
 l (below O)

2/84 h 5 45 in.
2/85 d 5 10.70 m left of A
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2/86 R 5 18 kips down, MO 5 126 kip-ft CW
2/87 M 5 148.0 N?m CCW
2/88 T2 5 732 N
2/89 R 5 250i 1 20j lb, x 5 65 in. (off pipe)
2/90 (a) R 5 219i 1 84.5j lb, MO 5 1771 lb-in. CW
 (b) x 5 221.0 in. (left of O)
    y 5 8.07 in. (above O)
2/91 R 5 400i 2 3010j lb, MA 5 18,190 lb-ft CW

x 5 6.05 ft
2/92 R 5 360i 1 144.5j lb
 (x, y) 5 (104.9, 0) in. and (0, 242.1) in.
2/93 R 5 270 kN left, d 5 4 m below O
2/94 (x, y) 5 (1.637, 0) m and (0, 20.997) m
2/95 R 5 2270i 2 266j N, MO 5 122.8 N?m CCW
2/96 R 5 215i 2 47.3j kN
 (x, y) 5 (7.42, 0) m and (0, 223.4) m
2/97 y 5 1.103x 2 6.49 (m)
 (x, y) 5 (5.88, 0) m and (0, 26.49) m
2/98 (x, y) 5 (0, 2550) mm
2/99 R 5 412i 2 766j N
 (x, y) 5 (7.83, 0) mm and (0, 14.55) mm
2/100 FC 5 FD 5 6.42 N, FB 5 98.9 N
2/101 F 5 18.68i 2 23.6j 1 51.9k N, �y 5 113.18

2/102 F 5 4.79i 1 2.40j 1 2.70k kN, �x 5 37.08

2/103 F 5 2.05i 1 3.55j 1 2.87k kN
 Fx 5 2.05 kN, FOA 5 3.55 kN

2/104 F 5 300 a1
3

 i 2
2
3

 j 2
2
3

 kb lb
 Fx 5 100 lb, Fy 5 2200 lb, Fz 5 2200 lb
2/105 nAB 5 0.488i 1 0.372j 2 0.790k
 Tx 5 6.83 kN, Ty 5 5.20 kN, Tz 5 211.06 kN
2/106 T 5 0.876i 1 0.438j 2 2.19k kN

TAC 5 2.06 kN
2/107 �x 5 79.08, �y 5 61.58, �z 5 149.18

2/108 TA 5 221i 2 212j 1 294k N
 TB 5 2221i 1 212j 2 294k N

2/109 FCD 5
!6
5

 kN, � 5 56.88

2/110 T 5 4.06i 2 7.61j 1 5.07k kN
 �x 5 66.18, �y 5 139.58, �z 5 59.58

2/111 TCO 5 543 lb
2/112 (a) TEO 5 241.1 N
 (b) TEO 5 24.7i 1 32.9j N
2/113 � 5 54.98

2/114 FOC 5 184.0 N

2/115 d 5
b
2

: FBD 5 20.286F

 d 5
5b
2

: FBD 5 0.630F

2/116 FOB 5 2444 lb
2/117 TBC 5 251 N

 c2/118 F 5
F

!6
 (i 1 2j 1 k)

 c2/119 F 5
F

!5 2 4 sin �
 [(2 sin � 2 1) (cos �i 1 sin �j)

 1 2 cos �k]

 c2/120 Fx 5
2acF

!a2 1 b2!a2 1 b2 1 4c2

 Fy 5
2bcF

!a2 1 b2!a2 1 b2 1 4c2

 Fz 5 F B
a2 1 b2

a2 1 b2 1 4c2

2/121 MO 5 F (cj 2 bk)
2/122 MA 5 F (bi 1 aj)
2/123 (a) MO 5 FLi
 (b) MO 5 F(Li 1 Dk)
2/124 MO 5 21.5i 2 2.60j 1 5.20k lb-in.
2/125 M 5 (20.450i 1 0.300j)106 lb-in.
2/126 M 5 51.8j 2 193.2k N?m
2/127 MO 5 2.81 kN?m
2/128 MO 5 28410i 2 4210k lb-ft
2/129 M 5 275i 1 22.5j N?m
2/130 R 5 6.83i 1 5.20j 2 11.06k kN
 MO 5 2237i 1 191.9j 2 55.9k kN?m
2/131 MO 5 MC 5 21.5i 2 36j 1 67.5k kN?m
2/132 MO 5 480i 1 2400k N?m
2/133 (MO)x 5 1275 N?m
2/134 MO 5 2192.6i 2 27.5j N?m, MO 5 194.6 N?m
2/135 M 5 260i 1 48k lb-in.
2/136 MO 5 22220i 1 1666j 2 14k N?m
 MOF 5 21453i 1 2180j N?m

2/137   

F    

MA 5
Fb

!5
 (23j 1 6k)

       MB 5
Fb

!5
 (2i 2 3j 1 6k)

 
2F    

MA 5 24Fbk
    MB 5 22Fb(j 1 2k)

2/138 R 5 334i 1 834j 2 1502k lb
 MO 5 28340i 1 12,350j 1 5010k lb-ft
2/139 M 5 3400i 2 51 000j 2 51 000k N?m
2/140 MO 5 248.6j 2 9.49k N?m, d 5 74.5 mm
2/141 MO 5 8.89 N?m
2/142 MO 5 22680i 1 338j N?m, c 5 3.42 m
2/143 F2 5 282 N
2/144 MA 5 25.40i 1 4.68j lb-in.
 MAB 5 24.05i 2 2.34k lb-in.
2/145 R 5 21.7i 2 12.5j 2 60k lb
 MB 5 2109.8i 2 15.28j 2 36.4k lb-ft

¸
˚̊

˝
˚̊

˛
¸̋

˛
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 *2/189 T 5

12.5a� 1
�

4
bBd2 1 80d cosa� 1

�

4
b2 3200 sina� 1

�

4
b1 3200

d sina� 1
�

4
b 1 40 cosa� 1

�

4
b

2/146 MO 5 2260i 1 328j 1 88k N?m

2/147 F 5
F

!5
 (cos �i 1 sin �j 2 2k)

 MO 5
Fh

!5
 (cos �j 2 sin �i)

 *2/148 Z(MO)x Zmax 5 0.398kR2 at � 5 2778

 Z(MO)y Zmax 5 1.509kR2 at � 5 3488

 Z(MO)z Zmax 5 2.26kR2 at � 5 3488

 ZMO Zmax 5 2.72kR2 at � 5 3478

2/149 F3 5 10.82 kN, � 5 33.78, R 5 10.49 kN

2/150 R 5 23Fk, MO 5 2
!3
2

 Fbi

2/151 R 5 0, MO 5 Fba1 1
!3
2
bi

2/152 R 5 28i kN, MG 5 48j 1 820k kN?m
2/153 (x, y) 5 (1.111, 22.67) in.
2/154 R 5 20i 1 300k N
 MO 5 230i 2 11.14j 1 10.96k N?m
2/155 R 5 120i 2 180j 2 100k N
 MO 5 100j 1 50k N?m
2/156 R 5 2266j 1 1085k N
 MO 5 248.9j 2 114.5k N?m
2/157 (x, y, z) 5 (21.844, 0, 4.78) m
2/158 R 5 792i 1 1182j N
 MO 5 260i 2 504j 1 28.6k N?m
2/159 y 5 24 m, z 5 2.33 m
2/160 M 5 0.873 N?m (positive wrench)
 (x, y, z) 5 (50, 61.9, 30.5) mm
2/161 R 5 35k, MO 5 659i 2 311j lb-in.
 x 5 8.89 in., y 5 18.83 in.
2/162 x 5 3.95 in., y 5 63.4 in.
2/163 x 5 4.73 ft, y 5 7.78 ft
2/164 R 5 25i 2 60j 2 43.3k lb
 MO 5 1153i 2 830j 1 250k lb-in.

2/165 M 5 2
Ta
2

 (i 1 j), y 5 0, z 5
7a
2

2/166 M 5 0.0595i 1 8.93k N?m
 y 5 2102.0 mm, z 5 2557 mm
2/167 R 5 16.82i 2 131.4j 2 55.9k N
 MO 5 17.38i 1 16.87j 2 15.58k N?m
2/168 x 5 140.2 mm, z 5 138.8 mm
2/169 TAB 5 2280i 1 420j N

TAC 5 280i 1 168.1j N
2/170 M1 5 2cF1i, M2 5 F2 (ci 2 ak)

M3 5 2aF3k
2/171 F 5 300 lb
2/172 MO 5 15.77 lb-in. CCW
 (MO)W 5 26.1 lb-in. CW

2/173 MA 5
Pb
5

 (23i 1 4j 2 7k)

2/174 M 5 2320i 2 80j N?m, cos �x 5 20.970
2/175 x 5 266 mm
2/176 P 5 9.18 kN
2/177 MO 5 189.6 N?m CCW
2/178 R 5 2376i 1 136.8j 1 693k N
 MO 5 161.1i 2 165.1j 1 120k N?m
2/179 R 5 80 lb down, MA 5 1240 lb-in. CW

x 5 15.5 in.
2/180 R 5 250i 2 60j 2 125k kN
 MO 5 12i 2 25j 1 9k kN?m
2/181 (a) TAB 5 22.05i 2 1.432j 2 1.663k kN
 (b) MO 5 7.63i 2 10.90j kN?m
   (MO)x 5 7.63 kN?m, (MO)y 5 210.90 kN?m

  (MO)z 5 0
 (c) TAO 5 2.69 kN
2/182 R 5 1093 lb, M 5 9730 lb-ft
 *2/183 T 5 204 lb, � 5 21.78

 *2/184 n 5

!2 
s
d

1 1

!5Ba
s
d
b2

1 5 2 2!2 
s
d

 *2/185 MO 5 1230 cos � 1 650 cos (608 2 �) lb-ft
 (MO)max 5 1654 lb-ft at � 5 19.908

 *2/186 MO 5
1350 sin (� 1 608)

!45 1 36 cos (� 1 608)
 k N?m

 (MO)max 5 225 N?m at � 5 608

 *2/187 (a) Rmax 5 181.2 N at � 5 2118

 (b) Rmin 5 150.6 N at � 5 31.38

 *2/188 (a) Rmax 5 206 N at � 5 2118 and � 5 17.278

 (b) Rmin 5 35.9 N at � 5 31.38 and � 5 217.278

 *2/190 FBC 5
(2b2 2 9bd 1 d2) F

!b2 1 d2!101b2 2 18bd 1 d2

 ZFBC Zmax 5 0.676F with d 5 2.93b

 *2/191 MBC 5
2b2(3b 1 d) F

!b2 1 d2!101b2 2 18bd 1 d2

 ZMBC Zmax 5 0.652Fb with d 5 0.462b

 *2/192 M 5
90 cos �(!0.34 1 0.3 sin � 2 0.65)

!0.34 1 0.3 sin �
 N?m
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3/45 F 5 753 N, E 5 644 N
3/46 P 5 45.5 N, R 5 691 N

3/47 m2 5
m1 sin �
1 2 sin �

3/48 M 5 41.5 lb-ft, F 5 35.3 lb
3/49 C 5 1276 lb, p 5 209 lb/in.2

 *3/50 � 5 9.408 and 103.78

3/51 P 5 200 N, A 5 2870 N, B 5 3070 N
3/52 nA 5 232.6%, nB 5 2.28%
3/53 O 5 820 lb
3/54 M 5 4.94 kN?m CCW
3/55 P 5 26.3 N
3/56 MA 5 0.709mgr CCW
3/57 F 5 187.1 lb
3/58 M 5 49.9 sin � N?mm CW
 c3/59 (a) S 5 0.669W, C 5 0.770W
 (b) S 5 2.20W, C 5 2.53W
 *3/60 ZM Zmin 5 0 at � 5 138.08

 ZM Zmax 5 14.72 N?m at � 5 74.58

3/61 TA 5 TB 5 20.4 lb, TC 5 27.2 lb
3/62 TAB 5 TAC 5 1698 N, D 5 1884 N
3/63 TAB 5 569 N, TAC 5 376 N, TAD 5 467 N
3/64 P 5 13.68 lb, Az 5 29.2 lb, Bz 5 46.1 lb
3/65 O 5 300 lb, M 5 8280 lb-ft

3/66 O 5 �g(a 1 b 1 c), M 5
�g
2 B

a4

4
1

b4

9

3/67 NA 5 263 N, NB 5 75.5 N, NC 5 260 N

3/68 Bx 5 2
a
b

 Py, Dy 5 2
b
c
 Pz, Dz 5 2Pz

  Ex 5 Px 2
a
b

 Py 1
a
c

 Pz, Ey 5 2
b
c
 Pz 2 Py

 Hx 5 2
a
c

 Pz

3/69 m 5 1509 kg, x 5 1052 mm, y 5 220.5 mm

3/70 TAD 5 0.267mg, TBE 5 0.267mg, TCF 5
mg
2

3/71 TAB 5 TCD 5 0.574mg, N 5 0.4mg
3/72 TA 5 TB 5 TC 5 0.359mg
3/73 NA 5 0.533L, NB 5 NC 5 0.233L
3/74 Ox 5 20.1443mg, Oy 5 1.384mg

Oz 5 20.299mg
 TAC 5 1.422mg, TBD 5 0.822mg
3/75 P 5 1584 N, R 5 755 N
3/76 Ox 5 1962 N, Oy 5 0, Oz 5 6540 N
 TAC 5 4810 N, TBD 5 2770 N, TBE 5 654 N
3/77 B 5 190.2 N
3/78 � 5 9.498, X 5 118.0 mm

3/1 NA 5 23.6 lb, NB 5 41.4 lb
3/2 Nƒ 5 2820 N, Nr 5 4050 N
3/3 NA 5 18 lb
3/4 Ay 5 2850 N, By 5 3720 N
3/5 P 5 1759 N
3/6 NA 5 101.6 N, NB 5 196.2 N
3/7 T 5 309 lb
3/8 A 5 1250 N
3/9 Ax 5 21290 N, Ay 5 2960 N, Ex 5 3290 N

Pmax 5 1732 N
3/10 P 5 126.6 N
3/11 L 5 153.5 mm
3/12 Ox 5 1500 N, Oy 5 6100 N

MO 5 7560 N?m CCW
3/13 W 5 162 lb
3/14 NA 5 mg down, NB 5 2mg up
3/15 WB 5 63.4 lb
3/16 A 5 2.5 kN, B 5 0.667 kN
3/17 T1 5 245 N
3/18 T 5 850 N, A 5 1472 N
3/19 (a) P 5 5.59 N, (b) P 5 5.83 N
3/20 (a) P 5 6.00 N, (b) P 5 6.25 N
3/21 m 5 1509 kg, x 5 1052 mm
3/22 P 5 44.9 N
3/23 NA 5 49.9 lb, NB 5 125.0 lb
3/24 TAC 5 215 N, TBC 5 264 N

3/25 M 5
mgL sin �

4
 CW

3/26 T 5 160 N
3/27 � 5 18.438

3/28 M 5 47.8 N?m CCW
3/29 B 5 0.1615W, O 5 0.1774W
3/30 NA 5 0.1091mg, O 5 1.006mg
3/31 m1 5 0.436m
3/32 T 5 38.3 lb, CD 5 5.23 ft
3/33 NA 5 NB 5 12.42 kN
3/34 C 5 0, D 5 13.68 N
3/35 Dx 5 L, Dy 5 1.033L, Ay 5 1.967L
3/36 T 5 303 lb
3/37 WL 5 550 lb

3/38 � 5 sin21 c r
b

 a1 1
m
m0
b sin � d

3/39 T408 5 0.342mg
3/40 T 5 200 lb, A 5 188.8 lb
3/41 NA 5 0.892mg, O 5 0.580mg
3/42 P 5 166.7 N, T2 5 1917 N
3/43 F 5 1832 N
3/44 FD 5 710 N, Ox 5 662 N, Oy 5 2185.6 N

CHAPTER 3
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 c3/97 T 5 277 N, B 5 169.9 N
 *3/98 Mmax 5 2.24 N?m at � 5 108.68

 C 5 19.62 N at � 5 1808

3/99 P 5 0.508mg
3/100 M 5 1601 N?mm CCW
3/101 R 5 566 N
3/102 A 5 15 lb, B 5 40 lb, T 5 60.2 lb
3/103 NA 5 NB 5 NC 5 117.7 N
3/104 P 5 351 N
3/105 T 5 10.62 N
3/106 NA 5 159.9 lb down, NB 5 129.9 lb up
3/107 R 5 1396 lb, M 5 25,600 lb-ft

3/108 � 5 tan21 a�m1

2m2
b

3/109 D 5 7.60 kN
3/110 b 5 10.33 in.
3/111 x 5 199.2 mm

3/112 P 5
mg!2rh 2 h2

r 2 h
3/113 NA 5 NB 5 0.367F, NC 5 0.265F
3/114 TA 5 147.2 N, TB 5 245 N, TC 5 196.2 N
3/115 B 5 2.36 kN
3/116 A 5 183.9 N, B 5 424 N
3/117 A 5 610 N, B 5 656 N

 *3/118 T 5
mg

cos �
c!3

2
 cos � 2

!2
4

 cos (� 1 158) d
 *3/119 � 5 14.448, � 5 3.578, � 5 18.168

 TAB 5 529 lb, TBC 5 513 lb, TCD 5 539 lb
 *3/120 AB 5 17.01 ft, CD 5 8.99 ft
 TAB 5 503 lb, TBC 5 493 lb, TCD 5 532 lb
 *3/121 TB 5 142.7 lb at � 5 908

 *3/122 (TB)max 5 320 lb at � 5 1058

 *3/123 T 5 0 at � 5 1.7298

 *3/124 T458 5 5.23 N, T908 5 8.22 N
 *3/125 M 5 0 at � 5 144.38

 *3/126 T 5
51.1 cos � 2 38.3 sin �

cos �
!425 2 384 sin �

3/79 Ax 5 102.2 N, Ay 5 281.8 N, Az 5 163.5 N
 By 5 327 N, Bz 5 163.5 N, T 5 156.0 N
3/80 Ox 5 0, Oy 5 �gh(a 1 b 1 c), Oz 5 0

 Mx 5 �gbhab
2

1 cb, My 5 0

 Mz 5
�gh
2

 (ab 1 ac 1 c2)

3/81 Ox 5 2303 lb, Oy 5 2203 lb, Oz 5 1062 lb
 Mx 5 3250 lb-ft, My 5 23730 lb-ft, Mz 5 0
 � 5 41.08

3/82 � 5 308

3/83 R 5 1.796 kN, M 5 0.451 kN?m
3/84 F 5 140.5 N, An 5 80.6 N, Bn 5 95.4 N
3/85 FS 5 3950 N, FA 5 437 N, FB 5 2450 N
3/86 A 5 167.9 N, B 5 117.1 N
3/87 DNA 5 1000 N, DNB 5 DNC 5 2500 N
3/88 Ax 5 0, Ay 5 613 N, Az 5 490 N
 Bx 5 2490 N, By 5 613 N, Bz 5 2490 N

T 5 1645 N
3/89 Ox 5 224 N, Oy 5 386 N, Oz 5 1090 N
 Mx 5 2310 N?m, My 5 2313 N?m

Mz 5 174.5 N?m
3/90 Pmin 5 18 N, B 5 30.8 N, C 5 29.7 N

 If P 5
Pmin

2
: D 5 13.5 N

3/91 Ay 5 20.0243 
h
w

 mg, Az 5 mga1
2

1 0.0906 
h
w
b

 By 5 mga0.0243 
h
w

 2 0.1340b
 Bz 5 mga1

2
 2 0.0906 

h
w
b

3/92 P 5 0.206 N, Ay 5 0.275 N, By 5 20.0760 N
3/93 DNB 5 DND 5 2100 lb, DNC 5 100 lb
3/94 FB 5 70 lb, Dn 5 101.1 lb

3/95 h 5 b c1 2 B1 2 a 2M
bmg

b2 d , M 5
bmg

2

3/96 T1 5 347 N, T2 5 431 N, R 5 63.1 N, C 5 768 N

4/1 AB 5 W T, AC 5 W C, BC 5
2W

!5
 T

4/2 AB 5 W T, AD 5 CD 5 W C, BC 5
2W

!5
 T, BD 5 0

4/3 AB 5 736 N T, AC 5 368 N T, BC 5 736 N C
4/4 AB 5 240 lb T, AC 5 260 lb C, BC 5 140 lb C
4/5 BE 5 0, BD 5 5.66 kN C

CHAPTER 4

4/6 AB 5 2950 N C, AD 5 4170 N T
 BC 5 7070 N C, BD 5 3950 N C

CD 5 5000 N T
4/7 BE 5 2.10 kN T, CE 5 2.74 kN C
4/8 AB 5 5660 lb T, AE 5 DE 5 4800 lb C

BC 5 16,510 lb T, BD 5 12,440 lb C
 BE 5 4500 lb T, CD 5 4790 lb T
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4/29 (a) AB 5 AD 5 BD 5 0, AC 5
5L
3

 T, BC 5 L C

    CD 5
4L
3

 C

 (b) AB 5 AD 5 BC 5 BD 5 0, AC 5
5L
3

 T

    CD 5
4L
3

 C

 c4/30 CG 5 0
4/31 CG 5 0
4/32 AE 5 5.67 kN T
4/33 BC 5 60 kN T, CG 5 84.9 kN T
4/34 CG 5 0, GH 5 L T
4/35 BC 5 4.81 kips T
4/36 BE 5 0.809L T
4/37 DE 5 24 kN T, DL 5 33.9 kN C
4/38 BC 5 21 kN T, BE 5 8.41 kN T

EF 5 29.5 kN C
4/39 BC 5 5.60L T, CF 5 1.617L C
4/40 BC 5 1.155 kN T, CD 5 5.20 kN T

CG 5 4.04 kN C
4/41 BC 5 333 lb T, BH 5 596 lb C
4/42 BC 5 600 N T, FG 5 600 N C
4/43 BF 5 2.66 kips C
4/44 BC 5 3.00 kN C, CI 5 5.00 kN T
 CJ 5 16.22 kN C, HI 5 10.50 kN T
4/45 CD 5 0.562L C, CJ 5 1.562L T, DJ 5 1.250L C
4/46 AB 5 3.78 kN C
4/47 HN 5 0
4/48 BE 5 0.787L T
4/49 DE 5 4.80L C, DL 5 0.0446L T
 EL 5 3.80L T, LM 5 4.54L T
4/50 BF 5 1.255L C
4/51 CQ 5 0, DQ 5 0.576L T
4/52 CB 5 56.2 kN C, CG 5 13.87 kN T

FG 5 19.62 kN T
4/53 GK 5 2.13L T
4/54 CL 5 0.534L T
4/55 CG 5 0
 c4/56 DK 5 1 kip T
 c4/57 EJ 5 3.61 kN C, EK 5 22.4 kN C
 ER 5 FI 5 0, FJ 5 7.81 kN T
 c4/58 DG 5 0.569L C
4/59 BC 5 BD 5 CD 5 55.6 lb T
4/60 AB 5 1607 lb T, AC 5 0, AD 5 1607 lb C
4/61 CF 5 1.936L T
4/62 CD 5 2.4L T
4/63 F 5 3.72 kN C

4/64 AF 5
!13P

3!2
 T, CB 5 CD 5 CF 5 0, Dx 5 2

P

3!2
4/65 AE 5 BF 5 0, BE 5 1.202L C, CE 5 1.244L T

4/9 AB 5 12.62 kN T, AC 5 7.38 kN C
AD 5 9.60 kN T, BC 5 10.50 kN C

 CD 5 12 kN C
4/10 AB 5 DE 5 96.0 kN C, AH 5 EF 5 75 kN T
 BC 5 CD 5 75 kN C, BH 5 CG 5 DF 5 60 kN T
 CF 5 CH 5 48.0 kN C, FG 5 GH 5 112.5 kN T
4/11 m 5 1030 kg

4/12 AB 5 BC 5
L
2

 T, BD 5 0

4/13 DE 5
2L
3

 T, DF 5
2L
3

 C, EF 5
4L
3

 C

4/14 BI 5 CH 5 3.96 kips T, BJ 5 0
CI 5 2.8 kips C, DG 5 5.94 kips C

 DH 5 EG 5 4.2 kips T
4/15 BC 5 3.46 kN C, BG 5 1.528 kN T
4/16 AB 5 21.4 kN C, BC 5 10.63 kN T
 AH 5 EF 5 FG 5 GH 5 48.5 kN T
 BG 5 BH 5 CI 5 DF 5 DG 5 0
 BI 5 DI 5 40 kN C, CD 5 10.63 kN C

DE 5 60.6 kN C

4/17 AB 5 BC 5
1000

!3
 lb T, AE 5 CD 5

2000

!3
 lb C

 BD 5 BE 5
800

!3
 lb T, DE 5

1400

!3
 lb C

4/18 AB 5 710 lb T, AH 5 2300 lb T, BC 5 333 lb T
 BH 5 596 lb C, CD 5 455 lb C, CH 5 913 lb C
 DE 5 EF 5 FG 5 1925 lb C, DH 5 1083 lb T
 EH 5 FH 5 0, GH 5 1361 lb T
4/19 BF 5 1.5L T, BG 5 1.713L C
4/20 BI 5 2.50 kN T, CI 5 2.12 kN T

HI 5 2.69 kN T
4/21 BC 5 300 lb T, BE 5 559 lb T

4/22 AB 5 DE 5
7L
2

 C, CG 5 L C

4/23 AB 5 BC 5 CD 5 DE 5 3.35 kN C
 AH 5 EF 5 3 kN T, BH 5 DF 5 1 kN C
 CF 5 CH 5 1.414 kN T, CG 5 0
 FG 5 GH 5 2 kN T
4/24 AB 5 DE 5 3.35 kN C

AH 5 EF 5 FG 5 GH 5 3 kN T
 BC 5 CD 5 2.24 kN C, BG 5 DG 5 1.118 kN C
 BH 5 DF 5 0, CG 5 1 kN T
4/25 AB 5 1.782L T, AG 5 FG 5 2.33L C
 BC 5 CD 5 2.29L T, BF 5 1.255L C

BG 5 0.347L C, CF 5 DE 5 0
 DF 5 2.59L T, EF 5 4.94L C
4/26 EH 5 1.238L T, EI 5 1.426L C
4/27 GI 5 15.38 tons T, GJ 5 4.44 tons C
4/28 BF 5 1.814L T
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4/112 Ex 5 1308 N, Ey 5 122.6 N
4/113 AB 5 142.8 kN C
4/114 CD 5 127.8 kN C
4/115 E 5 2.18P
4/116 A 5 34,000 lb, D 5 17,100 lb
4/117 An 5 Bn 5 3.08 kN, C 5 5.46 kN
4/118 An 5 Bn 5 4.5 kN, C 5 9.27 kN
4/119 A 5 833 N, R 5 966 N
4/120 T1 5 2950 N, T2 5 3330 N
4/121 CD 5 2340 N T, E 5 2340 N
4/122 A 5 4550 N, B 5 4410 N
 C 5 D 5 1898 N, E 5 F 5 5920 N
4/123 A 5 1.748 kN
4/124 C 5 249 N
4/125 AB 5 17,140 lb C, O 5 16,590 lb
4/126 CE 5 7440 lb C
4/127 P 5 338 lb, E 5 75.1 lb
 c4/128 HI 5 682 N C
4/129 T 5 1569 lb, EF 5 429 lb T
4/130 A 5 4.25 kN
4/131 AB 5 BC 5 4.23 kN C, AG 5 2.12 kN T
 BG 5 4.23 kN T, CG 5 0.770 kN C
 CD 5 DE 5 5.00 kN C, CF 5 0.770 kN T
 DF 5 5.00 kN T, EF 5 2.50 kN T
 FG 5 4.62 kN T
4/132 CF 5 26.8 kN T, CH 5 101.8 kN C

4/133 Ax 5 Bx 5 Cx 5 0, Ay 5 2
M
R

, By 5 Cy 5
M
R

4/134 L 5 105 kN
4/135 G 5 H 5 181.8 N
4/136 BG 5 1800 lb C
4/137 M 5 1250 lb-in. CCW
4/138 DI 5 4.81L T
4/139 m 5 3710 kg
4/140 BF 5 24.3 kN T

4/141 kT 5
3bF
8�

4/142 AB 5 2.26L T, BI 5 L T, CI 5 0.458L T
4/143 AB 5 1.850L T, BI 5 L T, CI 5 0.833L T
4/144 DM 5 0.785L C, DN 5 0.574L C
4/145 F 5 235 N
4/146 AB 5 59,900 lb C, p 5 3420 lb/in.2

 c4/147 BE 5 1.275 kN T
 c4/148 FJ 5 0, GJ 5 70.8 kN C

 c4/149 AB 5
!2L

4
 C, AD 5

!2L
8

 C

 *4/150 pmax 5 3.24 MPa at � 5 11.108

 *4/151 BC 5 190.5 kN at � 5 408

 *4/152 Rmax 5 1314 lb at � 5 458

4/66 4 members are needed
4/67 BD 5 2.00L C
4/68 CG 5 0, GH 5 1.25L T
4/69 BE 5 2.36 kN C

4/70 BC 5
!2L

4
 T, CD 5 0, CE 5

!3L
2

 C

 c4/71 EF 5
P

!3
 C, EG 5

P

!6
 T

 c4/72 CF 5 0.051L T, CG 5 0.312L C
4/73 B 5 9330 lb, C 5 8350 lb
4/74 CD 5 57.7 N at ]608

4/75 CD 5 192.5 N at ]608

4/76 A 5 D 5
2M

!3R
4/77 A 5 1555 lb
4/78 A 5 5460 lb, B 5 7690 lb, C 5 5210 lb
4/79 (a) A 5 6F, O 5 7F
 (b) B 5 1.2F, O 5 2.2F
4/80 B 5 202 N
4/81 C 5 6470 N
4/82 k 5 568 N/m
4/83 N 5 80 lb, O 5 88.9 lb
4/84 B 5 1.855 kN
4/85 BC 5 375 N C, D 5 425 N
4/86 C 5 0.477P
4/87 F 5 54.2 lb
4/88 F 5 30.3 kN
4/89 EF 5 100 N T, F 5 300 N
4/90 F 5 125.3P
4/91 P 5 217 N
4/92 F 5 25 lb
4/93 NE 5 NF 5 166.4 N
4/94 R 5 7.00 kN
4/95 E 5 635 lb
4/96 N 5 13.19P
4/97 N 5 0.629P
4/98 A 5 0.626 kN
4/99 B 5 68.8 N
4/100 D 5 471 N
4/101 G 5 298 lb
4/102 R 5 1111 lb
4/103 C 5 510 N, p 5 321 kPa
4/104 E 5 F 5 5.19 kN
4/105 M 5 706 N?m CCW
4/106 AB 5 7400 lb C, EF 5 0
4/107 A 5 999 N, F 5 314 N up
4/108 AB 5 3970 lb C
4/109 AB 5 5310 N C, C 5 4670 N
4/110 P 5 2050 N
4/111 Fs 5 6.07 lb
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 *4/156 � 5 0: R 5 75 kN, AB 5 211 kN T
Cx 5 85.4 kN

 Rmin 5 49.4 kN at � 5 23.28

 *4/153 (DE)max 5 3580 N at � 5 0
 (DE)min 5 0 at � 5 65.98

 *4/154 (BC)max 5 2800 N at � 5 58

 *4/155 M 5 285 lb-in. CCW at � 5 458

5/1 Horizontal coordinate 5 10
5/2 r 5 2.21
5/3 x 5 y 5 276.4 mm, z 5 2180 mm
5/4 x 5 0, y 5 250.9 mm, z 5 2180 mm

5/5 x 5
a 1 b

3

5/6 y 5
�a
8

5/7 x 5 20.214a, y 5 0.799a

5/8 x 5
h(a 1 2b) 
3(a 1 b) 

, y 5
(a2 1 ab 1 b2)

3(a 1 b) 
5/9 x 5 2.35, y 5 3.56

5/10 z 5
2h
3

5/11 x 5 1.559, y 5 0.847

5/12 y 5
13h
20

5/13 x 5 0.5b, y 5 0.244h

5/14 x 5
3b
5

, y 5
3a
8

5/15 x 5
5b
7

, y 5 2
h
5

5/16 x 5
3b
8

, y 5
3b
5

5/17 y 5
b
2

5/18 x 5 0.505a

5/19 y 5
11b
10

5/20 x 5
17L
28

5/21 x 5 y 5
b
4

, z 5
h
4

5/22 x 5 0.777a, y 5 0.223a

5/23 x 5
2a
5

, y 5
b
2

5/24 x 5
3b
5

, y 5
3h
8

5/25 x 5
57b
91

, y 5
5h
13

5/26 x 5
a

� 2 1
, y 5

7b
6(� 2 1)

CHAPTER 5

5/27 x 5 0.223a, y 5 0.777a
5/28 x 5 0.695r, y 5 0.1963r

5/29 x 5
24
25

, y 5
6
7

5/30 x 5 2.99 in., y 5 6.74 in.

5/31 z 5
2a
3

5/32 x 5
5R
8

5/33 z 5
3a
16

5/34 x 5 y 5
8a
7�

, z 5
5b
16

 c5/35 y 5 81.8 mm

5/36 y 5
3h
8

5/37 x 5 7.66 mm
5/38 x 5 69.5 mm, y 5 17.70 mm
5/39 y 5 25 mm

 c5/40 z 5
h
3

 c5/41 y 5

2
3

 (a2 2 h2)3/2

a2
 a�

2
2 sin21 

h
a
b 2 h!a2 2 h2

 c5/42 x 5 y 5 a4
�

2
3
4
b a, z 5

a
4

 c5/43 x 5 y 5 0.242a
 c5/44 x 5 1.583R
 c5/45 x 5 1.542R

 c5/46 x 5
45R
112

5/47 X 5 25.3 in., Y 5 28.0 in.
5/48 H 5 44.3 mm
5/49 X 5 76.7 mm, Y 5 93.3 mm
5/50 Y 5 5.35 in.
5/51 X 5 4.56 in., Y 5 3.14 in.
5/52 X 5 Y 5 4.32 in.
5/53 Y 5 36.2 mm

5/54 X 5
3b
10

, Y 5
4b
5

, Z 5
3b
10

5/55 Y 5
4(!2a3 2 2h3)
3(�a2 2 4h2)
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5/103 RA 5 2230 N up, RB 5 2170 N up
5/104 Ax 5 0, Ay 5 603 lb, By 5 757 lb
5/105 RA 5 1600 lb up, MA 5 800 lb-ft CW
5/106 Ax 5 0, Ay 5 8 kN, MA 5 21 kN?m CCW
5/107 RA 5 10,000 lb down, RB 5 28,000 lb up

5/108 RA 5
2w0 l

�
 up, MA 5

w0 l2

�
 CCW

5/109 Ax 5 0, Ay 5 12.96 kN, By 5 29.4 kN
Dy 5 2.67 kN

5/110 RA 5 40 kN up, MA 5 222 kN?m CCW
5/111 RA 5 14,640 lb up, RC 5 1360 lb up
5/112 RA 5 34.7 kN up, MA 5 76 kN?m CCW

5/113 RA 5
2w0b

3
 up, MA 5

14w0b2

15
 CW

5/114 RA 5 7.41 kN up, MA 5 20.8 kN?m CCW
5/115 RA 5 1267 lb up, MA 5 11.33(103) lb-ft CCW
5/116 F 5 10.36 kN, RA 5 18.29 kN
5/117 Bx 5 4 kN right, By 5 1.111 kN up

Ay 5 5.56 kN up
5/118 RA 5 2560 lb up, MA 5 29.3(103) lb-ft CCW
5/119 RA 5 RB 5 7 kN up
5/120 RA 5 8700 lb up, MA 5 144.1(103) lb-ft CCW
5/121 RA 5 9.22 kN up, RB 5 18.78 kN up
5/122 RA 5 5.49 kN, M 5 10.33 kN?m CCW
 c5/123 CA 5 VA 5 pr, MA 5 pr2 CCW
 c5/124 RA 5 43.1 kN up, RB 5 74.4 kN up

5/125 V 5 P, M 5 2
PL
6

5/126 VB 5 4.01 kN, MA 5 27.22 kN?m
5/127 M 5 2120 N?m
5/128 ZMB Z 5 Mmax 5 1488 lb-ft
5/129 V 5 2100 lb, M 5 2550 lb-ft
5/130 V 5 0.15 kN, M 5 0.15 kN?m
5/131 V 5 3.25 kN, M 5 29.5 kN?m
5/132 V 5 133.3 lb, M 5 622 lb-ft
5/133 V 5 22250 lb, M 5 213,500 lb-ft

5/134 ZMA Z 5 Mmax 5
w0 l2

6
5/135 VC 5 210.67 kN, MC 5 33.5 kN?m
5/136 Vmax 5 32 kN at A

Mmax 5 78.2 kN?m 11.66 m right of A
5/137 b 5 1.5 m
5/138 VB 5 6.86 kN, MB 5 22.8 kN?m, b 5 7.65 m
5/139 Mmax 5 4200 lb-ft 20 ft right of A
5/140 b 5 1.526 m

5/141 Mmax 5
w0 l2

24
 at midbeam

5/142 V 5 21418 N, M 5 2982 N?m

5/143 (MA)max 5
L
4l

 (l 2 a)2 at x 5
a 1 l

2

5/56 Y 5 63.9 mm
5/57 X 5 291 mm, Y 5 200 mm
5/58 X 5 88.7 mm, Y 5 37.5 mm
5/59 X 5 4.02b, Y 5 1.588b
5/60 � 5 40.68

5/61 X 5 6.58 mm, Y 5 26.58 mm
5/62 X 5 1.886 in., Y 5 0.754 in., Z 5 1.384 in.
5/63 Z 5 70 mm
5/64 X 5 63.1 mm, Y 5 211 mm, Z 5 128.5 mm
5/65 X 5 225 mm, Y 5 23.0 mm, Z 5 15 mm
5/66 l 5 (8 2 �)r
5/67 H 5 18.61 mm
5/68 Z 5 0.642R
5/69 h 5 0.416r
5/70 X 5 0.1975 m
5/71 X 5 Y 5 0.312b, Z 5 0
5/72 H 5 1.717 in.
5/73 X 5 Y 5 61.8 mm, Z 5 16.59 mm
 c5/74 X 5 23.05 in., Y 5 5.81 in., Z 5 1.497 in.
 c5/75 X 5 20.509L, Y 5 0.0443R, Z 5 20.01834R
 c5/76 � 5 39.68

5/77 A 5 2640 mm2, V 5 3170 mm3

5/78 m 5 0.1690 kg
5/79 S 5 2�a2

5/80 V 5
�a3

3
5/81 V 5 3620 mm3

5/82 V 5
�a3

12
 (3� 2 2)

5/83 A 5 22 500 mm2, V 5 88 800 mm3

5/84 A 5 90 000 mm2

5/85 8.82 gal
5/86 A 5 275 in.2, V 5 110.7 in.3

5/87 A 5 19 380 mm2, V 5 134 600 mm3

m 5 1.054 kg
5/88 m 5 0.293 kg
5/89 A 5 166.0b2, V 5 102.9b3

5/90 A 5 497(103) mm2, V 5 14.92(106) mm3

5/91 m 5 0.1696 kg
5/92 A 5 �a2(� 2 2)
5/93 A 5 4�r(R� 2 r sin �)
5/94 m 5 84.5 kg
5/95 A 5 30 700 mm2, V 5 184 300 mm3

5/96 r 5 77.8 mm

5/97 V 5
�r2

8
 c (4 2 �)a 1

10 2 3�

3
 r d

5/98 W 5 38.3 lb
5/99 m 5 1.126(106) Mg
5/100 W 5 608 kN
5/101 RA 5 1.35 kN up, RB 5 0.45 kN up
5/102 RA 5 5600 lb up, RB 5 3200 lb down
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 *5/182 �A 5 12.648, L 5 13.06 m, TB 5 229 N
 *5/183 TA 5 355 N, �A 5 16.988, TB 5 384 N, �B 5 28.08

 *5/184 � 5 13.44 kg/m
5/185 h 5 10.33 m (water); h 5 0.761 m (mercury)
5/186 Oak in water: r 5 0.8
 Steel in mercury: r 5 0.577
5/187 Bottom force 5 824 N, Side forces 5 235 N, 549 N

 All four side forces at 
2
3

 depth

5/188 d 5 0.919h
5/189 F 5 2.86 kN
5/190 d 5 1.594 ft
5/191 w 5 9810 N/m
5/192 C 5 95.5 kN
5/193 R 5 13.46 MN

5/194 � 5 sin21 ah
L B

�

�9
b

5/195 CCW couple tends to make � 5 0
 CW couple tends to make � 5 1808

5/196 � 5 10.74 kPa, P 5 1.687 kN
5/197 � 5 26.4 MPa
5/198 m 5 14 290 kg, RA 5 232 kN
5/199 T 5 8960 lb
5/200 h 5 3.89 ft
5/201 M 5 29,800 lb-ft CCW
5/202 R 5 1377 N, x 5 323 mm

5/203 �s 5 �l a h
2r
b2 a3 2

h
r
b

5/204 p 5 7.49 MPa
5/205 h 5 74.5 ft

5/206 Q 5
�rp0

2
5/207 w 5 100,800 lb, W 5 366 long tons
5/208 R 5 156.0(106) lb
5/209 � 5 262 kPa, DT 5 1192 N

 c5/210 Fx 5 Fy 5
�gr2

12
 [3�h 1 (3� 2 4)r]

 Fz 5
�g�r2

12
 (3h 1 r)

5/211 b 5 28.1 m
5/212 d 5 0.300 m
5/213 m 5 1.210 Mg
 c5/214 R 5 57,000 lb, h 5 10.22 ft
 c5/215 h 5 9.33 in.
 c5/216 P 5 1323 lb, RB 5 2440 lb

5/217 x 5
37
84

, y 5
13
30

5/218 Y 5 0.412h

5/219 x 5 y 5 z 5
r
2

5/144 ZMA Z 5 Mmax 5 139,800 lb-ft
5/145 MB 5 2Fh
5/146 Mmax 5 19,000 lb-ft 12.33 ft right of A
5/147 MB 5 20.40 kN?m, x 5 0.2 m
5/148 At x 5 2 m: V 5 5.35 kN, M 5 27.5 kN?m
 At x 5 4 m: V 5 1.481 kN, M 5 20.685 kN?m
5/149 At x 5 6 m: V 5 2600 N, M 5 4800 N?m
 Mmax 5 5620 N?m at x 5 4.25 m
5/150 At x 5 6 m: V 5 21400 N, M 5 0
 Mmax 5 2800 N?m at x 5 7 m
5/151 M1

max 5 17.52 kN?m at x 5 3.85 m
 M2

max 5 221 kN?m at x 5 10 m
5/152 Mmax 5 18,160 lb-ft at x 5 10.58 ft
5/153 V 5 262.5 N, T 5 500 N, M 5 64.4 N?m

 c5/154 V 5
2mg

�
 (� sin � 2 cos �)

 C 5
2mg

�
 (� cos � 1 sin �)

 M 5
2mgr

�
 � cos �

5/155 h 5 9.36 in.
5/156 T0 5 18 lb at C, Tmax 5 51.3 lb at A and B
5/157 h 5 101.9 m
5/158 C 5 549 kN
5/159 T0 5 199.1(103) kN, C 5 159.3(103) kN
5/160 w9 5 574 lb/ft
 *5/161 TA 5 1212 lb, TB 5 1612 lb
5/162 m 5 480 kg
 *5/163 m 5 494 kg

5/164 h 5
L2

48T0
 (5w0 1 w1)

5/165 w 5 54.2 lb/ft, T0 5 1089 lb, s 5 33.1 ft
5/166 TA 5 5620 N, TB 5 7140 N 
 y 5 (178.0x2 1 3.86x3.5) (1024) m
 *5/167 TA 5 6990 N, TB 5 6210 N, s 5 31.2 m
 *5/168 TC 5 236 lb, L 5 23.0 ft
 *5/169 h 5 92.2 m, L 5 11.77 N, D 5 1.568 N
 *5/170 �h 5 8.45 m, TA 5 15.06 N
 *5/171 Catenary: T0 5 408 lb; Parabolic: T0 5 400 lb
5/172 l 5 49.7 ft
 *5/173 � 5 19.02 N/m, m1 5 17.06 kg, h 5 2.90 m
 *5/174 L 5 8.71 m, TA 5 1559 N
 *5/175 h 5 18.53 m
5/176 H 5 89.7 m
 *5/177 Th 5 3.36 N, Tv 5 0.756 N, h 5 3.36 m
 *5/178 Th 5 8.53 N, Tv 5 2.06 N
 *5/179 TA 5 27.4 kN, TB 5 33.3 kN, s 5 64.2 m
 *5/180 T 5 1210 N
 *5/181 When h 5 2 m, T0 5 2410 N, TA 5 2470 N

TB 5 2730 N
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5/233 h 5
11h
28

5/234 x 5 1.825 in., y 5 1.531 in., z 5 0.0784 in.
5/235 RA 5 1781 lb up, RB 5 4890 lb up
5/236 RA 5 6.63 kN up, RB 5 16.22 kN up
5/237 A 5 72.5r2, V 5 25.9r3

5/238 Beam AC: ZMmax Z 5 8520 lb-ft at B
 Beam CD: ZMmax Z 5 3140 lb-ft 6.47 ft right of C
5/239 s 5 1231 m
5/240 h 5 5.55 m
 *5/241 Mmax 5 6.23 kN?m at x 5 2.13 m
 *5/242 � 5 46.88

 *5/243 � 5 33.18

 *5/244 Xmax 5 322 mm at x 5 322 mm
 *5/245 h 5 63.7 ft, s 5 333 ft
 *5/246 h 5 39.8 m
 *5/247 � 5 8.63 kg/m
 *5/248 d 5 197.7 m, horizontal thruster, Th 5 10 N

Tv 5 1.984 N 

5/220 y 5 0.339a
5/221 z 5 131.0 mm
5/222 X 5 176.7 mm, Y 5 105 mm

5/223 A 5
�a2

2
 (� 2 1)

5/224 X 5 38.3 mm, Y 5 64.6 mm, Z 5 208 mm
5/225 D 5 1.227d, � 5 84.98

5/226 M 5
4

35
 �0bh2

5/227 P 5 348 kN
5/228 H 5 9.11 in.
5/229 M1

max 5 6.08 kN?m at x 5 2.67 m
 M2

max 5 212.79 kN?m at x 5 20.7 m

5/230 x 5 y 5 z 5
4r
3�

5/231 RA 5 1.440(106) lb right
MA 5 7.78(108) lb-ft CW

 c5/232 V 5 0.931(106) lb, M 5 2.21(108) lb-ft

6/1 (a) F 5 300 N left, (b) F 5 400 N left
(c) F 5 353 N left

6/2 (a) �s 5 0.293, (b) F 5 141.4 N
6/3 (a) F 5 19.32 lb up incline
 (b) F 5 11.71 lb down incline
 (c) F 5 15.21 lb down incline
 (d) P 5 48.8 lb
6/4 � 5 5.148

6/5 �s 5 0.0806
6/6 �s 5 0.0959, F 5 0.0883mg, P 5 0.1766mg
6/7 �s 5 0.1763
6/8 �k 5 0.732
6/9 P 5 118.5 lb
6/10 (a) �s 5 0.781, (b) �s 5 0.941
6/11 M 5 32.9 N?m
6/12 22.6 # WB # 104.2 lb
6/13 � 5 32.28, �s 5 0.630
6/14 �s 5 0.321
6/15 �s 5 0.368
6/16 Tips first if a , �b
6/17 x 5 10.52 ft
6/18 �s 5 0.25: � 5 61.88

 �s 5 0.50: � 5 40.98

6/19 0.1199m1 # m2 # 1.364m1

6/20 y 5
b

2�s

6/21 � 5 0.268
6/22 �s 5 0.577

CHAPTER 6

6/23 �s 5 0.409, s 5 5.11 in.
6/24 P 5 1089 N
6/25 (a) P 5 14.7 lb, (b) P 5 36.8 lb
6/26 �s 5 0.208, R 5 1471 N
6/27 (a) M 5 23.2 N?m, (b) M 5 24.6 N?m
6/28 (a) P 5 44.7 N, (b) P 5 30.8 N
6/29 M 5 2.94 N?m
6/30 (a)  Slips between A and B
 (b)  Slips between A and the ground
6/31 40i 2 49.0j N
6/32 � 5 63.48, A slips first
6/33 s 5 2.55 m
6/34 �s 5 0.365
6/35 �s 5 0.1575
6/36 � 5 20.78

6/37 � 5 tan21 a� 
a 1 b

a
b

6/38 � 5 sin21 a 3��s

4 2 3��s
b, �s 5 0.212

6/39 �s 5 0.212
6/40 � 5 8.988, �s 5 0.1581

6/41 x 5
a 2 b�s

2�s

6/42 � 5 sin21 a ��s

2 2 ��s
b, �908 5 0.318

6/43 37.2 N ]149.88

6/44 28.2 N ]152.38
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6/88 M 5
�PR

2

6/89 M 5 �L 
ro 2 ri

ln (ro 2 ri)

6/90 M 5
4�P

3
 
R 3

o 2 R 3
i

R 2
o 2 R 2

i

6/91 M 5
5
8

 �La

6/92 � 5 0.204
6/93 � 5 0.9368

6/94 M 5 335 N?m

 c6/95 M 5
�L

3 sin 
�

2

 
d 3

2 2 d 3
1

d 2
2 2 d 2

1

 c6/96 M 5
3!3

7
 �rL

6/97 � 5 0.244
6/98 (a) P 5 1.874W, (b) P 5 0.533W
6/99 T 5 2.11 kN
6/100 � 5 0.292
6/101 m 5 258 kg
6/102 P 5 185.8 N
6/103 P 5 10.02 N
6/104 � 5 0.313
6/105 T 5 1720 lb
6/106 P 5 3.30 kN
6/107 T 5 230 N
6/108 P 5 23.7 lb
6/109 �s 5 0.396
6/110 T 5 mge��

 *6/111 � 5 0 : 
T

mg
5 6.59, � n

�

2
 : 

T
mg

 n e�B�

6/112 a 5
L
2

2
D

1 1 e��

6/113 P 5 160.3 N
6/114 � 5 0.768

6/115 
W2

W1
5 0.1247

6/116 M 5 1834 lb-in.
6/117 0.0979m1 # m2 # 2.26m1

6/118 h 5 27.8 mm

6/119 T2 5 T1e
�	/sin

�
2, n 5 3.33

 c6/120 �s 5 0.431
6/121 (a) Cmin 5 84.0 N, (b) Cmax 5 453 N
 (c) F 5 68.4 N up the incline
6/122 (a) T 5 146.1 lb, (b) T 5 274 lb
6/123 b 5 96.9 mm
6/124 P 5 913 lb
6/125 P 5 0.209mg

6/45 � 5 6.298

6/46 P 5
M
rl

 a b
�s

2 eb
6/47 (a) �s 5 0.309, (b) �s 5 0.346
 *6/48 � 5 53.88

6/49 �s 5 0.0824, F 5 40.2 N
6/50 k 5 20.8(103) N/m
6/51 � 5 58.78

6/52 (a) A: �s 5 0.25, B: �s 5 0.389
 (b) R 5 1291 lb
6/53 �s 5 0.1228
6/54 N 5 5.66 threads per inch
6/55 �s 5 0.0262
6/56 P 5 709 N
6/57 P9 5 582 N
6/58 M 5 2.69 N?m
6/59 �s 5 0.3, FA 5 1294 N
6/60 M 5 24.8 lb-in.
6/61 (a) M 5 3560 lb-in., (b) M 5 2210 lb-in.
6/62 (a) F 5 8.52 N, (b) F 5 3.56 N
6/63 �2 5 0.378
6/64 P 5 114.7 N
6/65 P 5 198.8 N
6/66 P 5 333 N
6/67 P 5 105.1 N
6/68 M 5 48.2 lb-in., M9 5 27.4 lb-in.
6/69 (a) P 5 49.4 lb, (b) P 5 69.4 lb
6/70 (a) P9 5 6.45 lb left, (b) P9 5 13.55 lb right
6/71 P 5 98.3 lb
6/72 M 5 7.30 N?m
6/73 (a) P 5 78.6 N, (b) P 5 39.6 N

 c6/74 M 5 Wr 
tan � 1 � B1 1 tan2 

�

2
 cos2 �

1 2 � tan � B1 1 tan2 
�

2
 cos2 �

  where tan � 5
L

2�r

6/75 � 5 0.1947, rƒ 5 3.82 mm
6/76 M 5 916 N?m
6/77 M9 5 844 N?m
6/78 M 5 96 lb-in., � 5 0.3
6/79 Mz 5 18.40 lb-in.
6/80 T 5 4020 N, T0 5 3830 N
6/81 T 5 3830 N, T0 5 4020 N

6/82 � 5
1

Ba
d/2

r sin �
b2

2 1

6/83 (a) P 5 245 N, (b) P 5 259 N
6/84 P 5 232 N
6/85 (a) M 5 1747 N?m, (b) M 5 1519 N?m
6/86 T 5 258 N
6/87 T 5 233 N
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6/140 M1 5 2.29 N?m, M2 5 1.749 N?m
 *6/141 Pmin 5 468 N at x 5 2.89 m
 *6/142 Pmax 5 0.857mg at �max 5 42.08

 *6/143 � 5 21.58

 *6/144 � 5 5.808

 *6/145 P 5 483 N
 *6/146 V 5 0.867mg

 *6/147 y 5 0: 
T

mg
5 21.2

 y 5 large: 
T

mg
 n 81.3

 *6/148 �min 5 53.88 and is invariant with mAB

 *6/149 � 5 0.420
 *6/150 � 5 18.008

6/126 F 5 120.3 lb
6/127 (a) F 5 133.3 N, (b) F 5 127.6 N
6/128 Friction will prevent slipping
6/129 � 5 1.732 (not possible)
6/130 (a) M 5 24.1 N?m, (b) M 5 13.22 N?m
6/131 (a) P 5 75.3 kN, (b) P 5 8.55 kN
6/132 �max 5 1.9478, P 5 1.001 N
6/133 (a) M 5 129.3 N?m, (b) M 5 81.8 N?m
6/134 (a) 0.304 # m # 13.17 kg
 (b) 0.1183 # m # 33.8 kg
6/135 M 5 4.12 lb-in., M9 5 1.912 lb-in.
6/136 F 5 2030 lb
6/137 W 5 70.1 lb
6/138 (a) �s 5 0.364, (b) R 5 1.754 kN
6/139 P 5 25.3 N

7/1 M 5 2Pr sin �

7/2 � 5 2 tan21 a 4P
mg
b

7/3 � 5 cos21 a 2P
mg
b

7/4 M 5 mgl sin 

�

2
7/5 P 5 458 N

7/6 R 5
Pb
r

7/7 C 5
P(a 1 b) 
2b sin �

7/8 � 5 cos21 c 2M
bg(2m0 1 nm)

d
7/9 Q 5

Pb
a

7/10 P 5 83.3 lb, P9 5 46.9 lb

7/11 F 5
2dB

dAdC
 M

7/12 The direction of F will reverse.
7/13 F 5 61.3 N

7/14 M 5
3
2

 mgl sin 
�

2

7/15 kT 5
3Fb
8�

7/16 M 5
r
n

 (C 2 mg)

7/17 P 5 mg tan 
�

2
, no

7/18 M 5 PL1 (sin � 1 tan 
 cos �),

 where 
 5 sin21 ah 1 L1 sin �
L2

b

CHAPTER 7

7/19 M 5 a5
4

 m 1 m0b gl!3

7/20 e 5 0.597
7/21 CD 5 2340 N

7/22 P 5 mg 
cos �

cos 
�

2

7/23 M 5
5mgL

4�
 tan 

�

2

7/24 M 5 2mgbB1 2 a h
2b
b2

7/25 P 5
1.366mg cos �
sin (� 1 308)

!1.536 21.464 cos (� 1308)

7/26 P 5
2mg

A

7/27 m 5
a
b

 m0 (tan � 2 tan �0)

7/28 P 5
2Feb

c(b 2 a) 

7/29 M 5 PL1 sin c  csc (c 2 
) sin (� 1 
)

7/30 M 5 Mƒ 1
mgL

�
 cot �

7/31 C 5
(a 1 b) sin � 1 (c 1 d) cos �

c 2 a tan 

 P

7/32 C 5 2mgB1 1 ab
L
b2

2 2 
b
L

 cos � cot �

7/33 F 5
2�M

L atan � 1
a
b
b
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7/54 � 5 sin21 amg
2kl
b, k .

mg
2l

7/55 kmax 5 1.125 lb/in.
7/56 Semicylinder: unstable
 Half-cylindrical shell: stable
7/57 � 5 11.198

 c7/58 For m 5 0 and d 5 b: M 5
m0 gp(b cot � 2 a) 

2�b
 c7/59 h 5 265 mm

 c7/60 M 5
(2m1 1 m2) pg

4�
 cot �

7/61 x 5 210 and 3: unstable
 x 5 24 and 9: stable
7/62 P 5 1047 N
7/63 � 5 28.18

7/64 � 5 tan21 a2P
ka
b

7/65 hmax 5 0.363r
7/66 F 5 960,000 lb

7/67 (a)  hmax 5 r!2

 (b)  
dV
d�

5 2pr2 sin �

7/68 �s 5 0.1443
7/69 ND 5 150 N
7/70 x 5 2.05 m: stable

7/71 P 5
mg cos �

1 1 cos2 �
7/72 M 5 20.6 lb-in. CCW
7/73 � 5 0: unstable; � 5 62.58: stable

 c7/74 � 5 0: stable if k ,
mg
a

 � 5 cos21 c 1
2

 a1 1
mg
ka
b d : stable if k .

mg
a

 *7/75 � 5 27.98

 *7/76 � 5 23.08

 *7/77 � 5 24.88: unstable
 *7/78 � 5 78.08: stable; � 5 2608: unstable
 *7/79 � 5 71.78

 *7/80 At � 5 238, P 5 227.4 N
 At � 5 208, P 5 178.9 N

 c7/34 Q 5 13.18 kN
7/35 x 5 0: unstable; x 5 1: stable
7/36 � 5 22.38: stable; � 5 908: unstable

7/37 � 5 cos21 amg
2kb
b, kmin 5

mg

b!3

7/38 kmin 5
mg
4L

7/39 (a) � 5 308: hmax 5 0.0899r
 (b) � 5 458: hmax 5 0.1392r
 (c) � 5 608: hmax 5 0.1910r
 (d) � 5 908: hmax 5 0.300r
7/40 P 5 kh tan � (1 2 cos �)

7/41 l ,
2kT

mg

7/42 � 5 sin21 a M
kb2b

7/43 M .
m
2

7/44 � 5 52.78

7/45 (a) �1 5 �2: h 5 !3r
 (b) �1 5 �steel, �2 5 �aluminum: h 5 2.96r
 (c) �1 5 �aluminum, �2 5 �steel: h 5 1.015r
7/46 � 5 0 and 1808: unstable
 � 5 1208 and 2408: stable

7/47 (kT)min 5
mgl

2

7/48 P 5
4kb2

a
 sin � (1 2 cos �)

7/49 h ,
2kb2

mg

7/50 P 5
!1 2 sin �

!1 1 sin �
 
bk (!1 1 sin � 2 1) 1 2mg!1 1 sin � tan �

2!2

7/51 h 5
mgr2

kT

7/52 k .
L
2l

7/53 P 5

4mg cos 
�

2
1 4kb a2 cos 

�0

2
 sin 

�

2
2 sin �b

3 1 cos �

A/1 Ix 5
bh3

9
, Iy 5

7b3h
48

, IO 5 bhah2

9
1

7b2

48
b

A/2 Ix 5
ab3

6
, Iy 5

a3b
2

A/3 kO 5 18.48 mm

APPENDIX A

A/4 
b
h

5 2!3

A/5 Iy 5 21.5 in.4

A/6 IA 5
3�r4

4
, IB 5 r4 a3�

4
2

4
3
b
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A/33 kx 5 ky 5
!5a

4
, kO 5

!10a
4

 cA/34 Ix 5 0.1988r4

A/35 Without hole: Ix 5 21.3R4

 With hole: Ix 5 20.6R4

A/36 Without hole: Iz 5 1.571R4

 With hole: Iz 5 1.404R4

A/37 kA 5 10.41 in.

A/38 kx 5 ky 5
!5a

4
, kz 5

!10a
4

A/39 kO 5 6.22 in.
A/40 nA 5 37.5%, nIy

5 75.6%
A/41 Ix 5 649 in.4

A/42 Ix 5 5.76(106) mm4

A/43 (a) Ix 5 4.69(106) in.4, (b) Ix 5 4.45(106) in.4

A/44 (a) Ix 5 0.391R4, (b) Ix 5 0.341R4

A/45 Ix 5 4.53(106) mm4

A/46 Ix 5 4.94a4, Iy 5 3.37a4

A/47 Ix 5 10.76(106) mm4

A/48 Ix 5 22.6(106) mm4, Iy 5 9.81(106) mm4

A/49 Ix 5
58a4

3
A/50 n 5 0.1953 1 2.34y2 (%)
 y 5 2 in.: n 5 9.57%
A/51 Ix 5 15.64 in.4

A/52 kO 5 7.92 in.

A/53 Ix 5
5!3b4

16

A/54 Ix 5 h3 a b1

12
1

b2

4
b, Iy 5

h
48

 (b 3
1 1b 2

1 b2 1b1b 2
2 1b 3

2 )

A/55 Ix 5 97.3 in.4

A/56 Ix 5
bh
9

 a7h2

4
1

2b2

9
1 bhb, n 5 176.0%

A/57 Iz 5 0.552(106) mm4

A/58 Ix 5 16.27(106) mm4

A/59 Ia2a 5 886 in.4

A/60 kC 5 261 mm
A/61 h 5 1.900 in.
A/62 Ix 5 95.1(106) mm4, Iy 5 32.2(106) mm4

A/63 (a) Ixy 5 360(104) mm4, (b) Ixy 5 2360(104) mm4

 (c) Ixy 5 290(104) mm4

A/64 Ixy 5 220 in.4

A/65 (a) Ixy 5 9.60(106) mm4, (b) Ixy 5 24.71(106) mm4

 (c) Ixy 5 9.60(106) mm4, (d) Ixy 5 22.98(106) mm4

A/66 Ixy 5 9.54(106) mm4

A/67 Ixy 5
1
6

bL3 sin 2�

A/68 Ixy 5 71.9 in.4

A/7 Iy 5 a5�

8
2 1b a4

A/8 Iy 5 a11�

8
2 3b ta3

A/9 A 5 10 in.2

A/10 Ix 5 Iy 5
�r3t

2
, IC 5 �r3ta1 2

4
�2b

A/11 Iy 5
7b3h
30

A/12 Ix 5 0.269bh3

A/13 Ix 5 Iy 5
Ab2

3
, IO 5

2Ab2

3

A/14 Ix 5
bh3

4
, Ix9 5

bh3

12

A/15 Ix 5
a4

8
c� 2

1
2

 sin 2(a 1 	) 1
1
2

 sin 	 d
 Iy 5

a4

8
c� 1

1
2

 sin 2(a 1 	) 2
1
2

 sin 	 d
A/16 kA 5 14.43 mm

A/17 Ix 5 h3 aa
4

1
b
12
b, Iy 5

h
12

 (a3 1 a2b 1 ab2 1 b3)

 IO 5
h
12

 [h2(3a 1 b) 1 a3 1 a2b 1 ab2 1 b3]

A/18 k 5
b

2!3

A/19 Ix 5
a4

8
 a�

2
2

1
3
b

A/20 Ix 5 9(104) mm4

A/21 kx 5 0.754, ky 5 1.673, kz 5 1.835
A/22 Ix 5 0.1125bh3, Iy 5 0.1802hb3

 IO 5 bh(0.1125h2 1 0.1802b2)

A/23 Ix 5
4a3b

7
, Iy 5

4ab3

15

A/24 Iy 5
�a3b

4
, kO 5

!a2 1 b2

2

A/25 kM 5
a

!6

A/26 Ix 5
a4

28
, Iy 5

a4

20
A/27 Iy 5 30,000 in.4, Iy9 5 16,000 in.4

A/28 Ix 5 51.2 in.4

A/29 Ix 5
4ab3

9�
, Iy 5

a3b
�

 a1 2
4
�2b

A/30 Ix 5 25.6 in.4, Iy 5 30.5 in.4, IO 5 56.1 in.4

A/31 Ix 5
16ab3

105
A/32 ky 5 53.1 mm
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A/83 Imax 5 3.79a4, Imin 5 0.373a4, � 5 111.58

A/84 Ix9 5
r4

16
 (� 2 !3), Iy9 5

r4

16
 (� 1 !3), Ix9y9 5

r4

16
A/85 Imax 5 0.976a4, Imin 5 0.476a4, � 5 458

A/86 Imax 5 6.16a4, Imin 5 0.505a4, � 5 112.58

A/87 Imax 5 3.08b4, Imin 5 0.252b4, � 5 222.58

A/88 Imax 5 183.6 in.4, � 5 216.858

A/89 Imax 5 1.782(106) mm4, Imin 5 0.684(106) mm4

 � 5 213.408

 *A/90 Imin 5 3.03(106) mm4 at � 5 64.18

 *A/91 Imax 5 0.312b4 at � 5 125.48

 Imin 5 0.0435b4 at � 5 35.48

 *A/92 (Ix9)min 5 0.0432a4 at � 5 21.88

 (Ix9)max 5 1.070a4 at � 5 111.88

 (Iy9)min 5 0.0432a4 at � 5 111.88

 (Iy9)max 5 1.070a4 at � 5 21.88

 (Ix9y9)min 5 20.514a4 at � 5 66.88

 (Ix9y9)max 5 0.514a4 at � 5 156.88

 *A/93 (Ix9)min 5 2.09 in.4 at � 5 67.58

 *A/94 Imax 5 0.655b4 at � 5 458

 Imin 5 0.405b4 at � 5 1358

 *A/95 Imax 5 1.820(106) mm4 at � 5 30.18

 *A/96 Imax 5 11.37a3t at � 5 115.98

 Imin 5 1.197a3t at � 5 25.98

A/69 Ixy 5
br3

2

A/70 Ixy 5
b2h2

8

A/71 Ixy 5
a2b2

12

A/72 Ixy 5
15a4

16
A/73 Ixy 5 21968 in.4

A/74 Ixy 5
2r4

3

A/75 Ixy 5
a4

12

A/76 Ixy 5
h2

24
 (3a2 1 2ab 1 b2)

A/77 Ixy 5
11a4

96
A/78 Ixy 5 4a3t

A/79 Ixy 5
5s4

16
A/80 Ix9 5 0.1168b4, Iy9 5 0.550b4, Ix9y9 5 0.1250b4

A/81 Ix9 5 0.0277b4, Iy9 5 0.1527b4, Ix9y9 5 0.0361b4

A/82 Imax 5 5.57a4, Imin 5 1.097a4, � 5 103.38
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