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welcome
Thank you for purchasing Kubernetes for Developers. I’m writing this book
to help developers like you take their application and get it running on
Kubernetes, whether it’s your first web app, or you’re moving an existing
deployment onto Kubernetes.

Kubernetes is a highly capable platform, able to represent a wide range of
application deployments and configurations, but this flexibility can make it
seem vast and complex at first. My focus is to teach you the most important
bits to get your application deployed, and to take advantage of everything it
has to offer, like automated operations and rollouts to keep your application
running and up to date. This book isn’t intended as a general reference on
Kubernetes, for that I recommend Kubernetes in Action also published by
Manning, as well as the project documentation itself.

When you get to the end of Part 1, you should have all you need to know to
confidently deploy your application into a Kubernetes cluster and keep it
running. Part 2 then goes into some more advanced topics and
troubleshooting for when you need to do something a little more complex,
like retain state in an application, or even deploy your own database (if you
really need to).

One of the reasons why I wanted to publish this book with Manning was their
fantastic Author Online forum where you can give your feedback and ask
questions. I’ve given feedback in these forums as a reader and was thrilled to
see the authors adopt my suggestions, so now I’m hoping to do the same with
your feedback. So please visit the liveBook's Discussion Forum and leave
your comments.

—William Denniss
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1 Kubernetes for Application
Deployment
This chapter covers

The benefits of packaging applications in containers
What makes Kubernetes an ideal platform to deploy containers with
Deciding when to use Kubernetes

It’s 5pm on a Friday, and the product you’ve been working on for the last
year just went viral. You need to scale everything, and fast. Is your
application and the platform it runs on capable of scaling 100x, ready to
capture your success, or are you stuck with brittle code and an inflexible
platform, meaning all your work will be for naught?

You built an amazing stateless application on a popular application platform
capable of scaling rapidly, and everything is working great. Until one day,
your business requirements shift, and suddenly you need to run a bespoke
stateful application for some critical business data, or need to configure a
nightly batch processing pipeline. Will these new workloads fit in seamlessly
with your existing ones, or will you need to start over from scratch or patch
together multiple disparate systems?

Kubernetes is fast becoming the industry standard for running workloads of
all different shapes and sizes, and at different scales—for a reason. It enables
you to launch containerized applications with the ability of scaling rapidly,
while at the same time handling a variety of complex deployment patterns,
from stateless applications to stateful databases, batch jobs with ephemeral
storage, and so on. Invented by Google[1], open-sourced, and used by
countless organizations like Spotify[2], CapitalOne[3], and OpenAI[4],
Kubernetes is an open, vendor agnostic and well proven platform that is to
cloud deployments what Linux is to operating systems.

However, with great power comes… a bit of a learning curve. Being a



general purpose platform capable of handling so many different deployment
constructs, Kubernetes can be a daunting thing to learn. I’m here to tell you
though that a) it’s not as hard as people make it out to be, and b) it’s worth
learning. If you start with the basics and gradually layer on new constructs
(which is how this book is structured), it’s a lot more approachable. You can
get a stateless app deployed with a few lines of YAML, and build your
knowledge from there.

As a professional, when you are faced with a problem, like how best to
deploy your applications, I believe the right answer isn’t always to pick the
simplest option available that can solve your immediate concern, but rather to
invest your time to learn a system that can meet your needs both now and in
the future. A platform that allows you to develop your skills and grow
professionally as your requirements evolve. Kubernetes fits this bill. You can
get up and running in hours with some simple deployments, while knowing
there exists a wealth of functionality ready for you to learn and employ when,
and if, you need it.

If you’re already sold on the idea of Kubernetes, I suggest skipping to
Chapter 2 to start building a docker image, and if you already know what a
Docker container is and want to start deploying to Kubernetes, go right to
Chapter 3. The rest of this chapter covers why Kubernetes and containers are
proving so popular for application deployment.

1.1 Why Containers?

Kubernetes is a deployment platform for containers. All code deployed into
Kubernetes, like your application, needs to be first packaged into a container.
What are containers, and why bother with them at all?

Containers are the modern way to package and run applications. Unless
you’re running one application per host (which is pretty inefficient), you
typically want some way to deploy multiple applications onto a machine,
and/or collection of machines. What are the choices?

Before virtual machines (VMs), it was common to installed each application
into a different directory on a shared host, served each on a separate port.



This presents a few problems in that the various applications need to
cooperate with each other to some extent when it comes to sharing
dependencies and the resources of the machine like CPU, memory and
available ports. It can also be hard to scale: if you have one application that
suddenly is receiving more traffic, how do you scale just that application,
while leaving the others as they are?

More recently with VMs, the solution was to package each application into a
virtual machine of its own. In this way, each application has its own
operating environment, so dependencies can be isolated, and resources
divided up and allocated. Since each virtual machine has the complexity of an
individual host though, you now need to maintain the operating system and
all packages for each application which has high overheads and is complex to
maintain.

Which brings us to containers. Containers are a way to package up just your
application and its required dependencies, for hosting in an isolated
environment much like a virtual machine, but without needing to install and
manage an operating system with the application.

Figure 1.1 evolution of shared hosting architectures





Figure 1.1 illustrates the evolution of hosting services, from running multiple
workloads on a single host, to running them on separate VMs, and finally
containers. As you can see, containers provide many of the benefits of VMs
but without the overheads of running another operating system kernel,
making them the logical modern path forward.

1.1.1 Container Benefits

Some of the top reasons people choose containers are for the language
flexibility (being able to run any language or environment on a container
platform), lightweight isolation (protect your workloads from interfering with
each other without using VMs), developer efficiency (bringing production
closer to development, and allowing easy setup), and reproducibility
(recording the steps used to create the environment in the container build
file).

Language flexibility

Containers unbind you from language or library requirements from your
deployment systems. You can bring any language, and update any package.
No longer are you locked into specific languages and versions, or stuck with
some outdated version of a critical dependency that shipped in the operating
system years ago, as you might be on a traditional PaaS.

There are no shared libraries between two containers running on the same
host, meaning the configuration of one will not interfere with the other. Need
two different versions of Java, or some random dependency? no problem.
This isolation extends beyond just the libraries of the containers: each
container can use a completely different base OS and package manager, for
example one using Debian and apt-get, while another uses CentOS and rpm.

This flexibility makes it simpler to potentially string together a system from
multiple services (a pattern known as microservices), each maintained by
separate teams, with their own dependencies or languages.

Figure 1.2 3 Containers with different languages sharing a host



Isolation Without Overhead

In the past, to achieve isolation between multiple apps running on the same



host, you would use virtual machines (VMs). VMs are heavier, both in image
size and CPU / memory resource overhead, as the kernel and much of the OS
is duplicated in each VM.

While containers are lighter than VMs, they still offer most of the same
resource isolation benefits. You can limit your containers on Kubernetes to
use only some of the resources of the host, and the system will restrict them
from using more. This ultimately means you can pack more applications onto
a single host, reducing your infrastructure costs.

Figure 1.3 Four containers running on the same host, fully isolated but sharing the kernel.



Developer Efficiency



What makes containers great for production by isolating dependencies also
makes them great for development, as you can develop a myriad of
applications on a developer machine without needing to configure the host
with the dependencies of each.

In addition to developing Linux applications directly on Linux, with Docker
you can use macOS or Windows workstations to develop a Linux container,
without needing to create a version of the app that runs natively on those
platforms, eliminating platform-specific configurations for development.

Figure 1.4 Developer Machine with two container-based projects



No longer do you need to have pages of setup instructions for developers to
get started either, as setup is now as easy as install Docker, checkout the
code, build and run. Working on multiple projects within a team or for
different teams is now simple as well as each project is nicely isolated in its
container without needing a particular host configuration.

With containers, your development and production app looks very similar,
and can be the exact same container. No more development idiosyncrasies



getting in the way like MacOS having a different MySQL library, or subtle
differences in the way the code is packaged for production. Trying to
diagnose a production issue? Download that exact container, run it against
your development environment and see what's up.

Figure 1.5 Same container being deployed in the production and development environments



Reproducibility

Containers make it easier to reproduce your application environment as well.



Imagine you have a VM on which your application is deployed, and you need
to configure TLS for secure “https” connections. You SSH into the
production host, add the TLS certificates to a folder. It didn’t work, so you
add them to another folder. Soon they’re in 3 folders and it’s working so you
don’t touch it. A year later, you need to update the TLS certificate. Can you
remember how, and which of the 3 locations need to be updated?

Containers solve this. Rather than SSHing and tweaking the state, you would
add the TLS certificate as a build step in the container. If it didn’t work,
you’d tweak that build step until it does—but crucially only keeping the step
(or steps) that actually do work. The files added in this step are also nicely
isolated from the rest of the system, so essentially you’re capturing the delta
—or differences—over the base system, just those modifications you needed
to make. This means that a year later when you need to update the certificate,
you just replace the certificate file, and re-run the container build, and it will
put it in the right place.

Listing 1.1 pseudocode Dockerfile

Use the Debian OS

Copy and configure TLS certificate

Copy application

Above is a “pseudocode” example of a Dockerfile, that is, where the code to
configure the container is expressed in plain English. In Chapter 2, we’ll
present this same concept in the Docker script itself.

Note

Docker as a tool for creating containers isn’t perfect for reproducibility.
Commands like “apt-get” to install a dependency operate on a live system, so
you won’t actually get the same output for the same input, as those dependent
systems (like the apt-get repository) may have changed in between builds.
Tools like Bazel, open sourced by Google, are designed to solve this problem
and more, but come with their own complexities and are more recommended
for sophisticated enterprise deployments. Despite this limitation, Docker’s
build system is still a heck of a lot more reproducible than trying to
remember what you did a year ago when you SSH’d into that Linux box to



fix an issue, and is good enough for most.

1.2 Why Kubernetes?

If containers sound like a great idea for packaging your application, you’ll
still need a way to actually run and manage those containers. Sure, you could
just run a container or a handful of containers on each host, in much the same
way it is possible run a bunch of different applications from folders, or VM
images, but operating like this tends to create special snowflakes of
machines, and limits your ability to scale due to the high-touch required to
configure and manage hosts.

A better option is to have a shared pool (cluster) of machines (nodes), and use
a so-called container orchestrator (like Kubernetes) to run your containers on
this resource pool. In this way, machines are managed together as a group,
where none need to be ascribed any special meaning. Should one fail, another
will be there to pick up the slack. This pattern gets you out of the individual-
machine business, and allows you to scale your application faster than your
team size.

Previously systems that could flexibly orchestrate containers at scale were the
domain of large companies. Kubernetes, and in particular managed
Kubernetes offerings on public clouds, make this operations model accessible
to deployments of all sizes, from a single container application running on 1
machine, to set of microservices each published by a different team running
on a 15,000 machine behemoth.

Kubernetes also makes it easy to achieve high availability for your
applications. As illustrated in Figure 1.6, we can deploy the same service
across multiple availability zones, where the loss of an entire zone would not
result in downtime. With a manual deployment system, this can be complex,
but we can achieve such deployment patterns rapidly in Kubernetes by
simply defining what we want to see (in this case, containers spread over
multiple zones). Section 8.2.1 covers this.

Figure 1.6 a Kubernetes cluster operating in 3 zones, managing 4 services



The best part is that updating a service in Kubernetes requires a single line of
config to be changed, and Kubernetes will handle the roll out of the update to
each of the zones for you, per your requirements. Updates to the Kubernetes
platform itself happen in a similar, automated fashion (provided you are
using a managed platform which handles this), where nodes are replaced
gradually with updated versions, and your workload migrated to avoid
downtime.

If your app isn’t big enough to require a high-availability multi-zone
deployment, fear not – Kubernetes can run at small scale too, with the added
benefit that you can scale up when you need.



Kubernetes has gained popularity as it automates much of the operational
aspects of scheduling and running containers on a pool of resources, and
provides the level of abstraction to developers that seems to have hit the
sweet spot. It isn’t too low-level that you are worried about individual
machines, but it doesn’t go too high level either in ways that limit what
workloads you can deploy.

1.2.1 Composable Building Blocks

In Kubernetes, containers are grouped into what are called “Pods”. A Pod is
simply a set of containers that get scheduled together and treated as a single
unit. Quite often this is just a single container, but it could be multiple in the
case where your app consists of multiple connected parts. Conceptually, the
Pod is your application and its dependencies. Services are used to provide
connectivity to groups of pods, both internally within the cluster, and
externally. Figure 1.7 illustrates the resources of a typical app deployed to a
Kubernetes cluster.

Figure 1.7 A Kubernetes cluster with several virtual machines running two different application
containers, exposed with load balancing.





Kubernetes has several higher-order workload constructs, described
throughout this book, that encapsulate Pods. For a stateless application, you
will create a “Deployment” object that wraps the Pod definition (specifying
your container versions) where you specify how many replicas (instances)
you want. In all these cases, Kubernetes will do the heavy lifting of finding
space in your cluster to place the Pods according to your requirements.

The range of workload types you can describe in Kubernetes configuration is
wide and varied, and includes:

Stateless applications
Databases and other applications with persistent state
Applications formerly configured in a VM
A batch process you wish to run at a certain schedule.
A batch task you want to run once, like training a Machine Learning
(ML) model.

In all cases, the applications are containerized and grouped in Pods, and you
describe to Kubernetes in configuration files how you want your workload to
be run.

1.2.2 Features and Benefits

Here are some of the top reasons why people choose Kubernetes to deploy
their containers.

Automated Operations

Provided you configure your deployment correctly, Kubernetes will automate
various aspects of your deployment. Processes running on the node restart
containers that crash, while liveness and readiness probes continue to monitor
the container's health and ability to serve live traffic. Pod auto-scalers can be
configured on your deployments to automatically increase the number of
replicas based on metrics like CPU utilization.

Kubernetes itself doesn’t repair compute node level issues. However, you can



choose a managed platform that will provide such automation. Take, for
example, the Autopilot mode of Google Kubernetes Engine (GKE): it
automatically provisions the compute capacity for your pods, scaling up and
down automatically as you change your replica count, and will repair and
upgrade nodes as needed.

High Scale

No matter the size of your application, you will want to think about how it
will scale. Whether you are deploying a huge enterprise application, or you
are a bootstrapping startup, you will need a solution that can scale as you do.
The time when you need to scale is not the time to start thinking about how
you are going to scale!

It is hard enough to create a successful product; the last thing you want in
your moment of success—when everyone is beating down your door trying to
use your product—is for your application to go offline. In that moment and
perhaps even in the months and years to come, you're likely not going to be
able to completely rearchitect your application for scale.

Kubernetes can handle applications of any size. You can have a single-node
cluster with a single CPU and a bunch of memory, or a multi-thousand node
behemoth like the 10s of thousands of cores Niantic used to run Pokémon Go
when it launched[5].

Of course, your application itself will need to have properties that enable it to
scale, and so will any dependencies, particularly database ones—but at least
you can rest assured that your compute platform will scale as you do.

A Workload Abstraction

Abstraction layers are great, until they aren't. It is a challenge to find tools
that abstract away precisely those things you do not want to care about,
without hiding details you do care about, but in my experience, Kubernetes
comes the closest to achieving exactly that.

Infrastructure as a Service (IaaS) is a hardware-level abstraction. Rather than



interacting with actual machines with spinning disks and network cards, you
interact with an API that provides software that implements those same
interfaces.

Kubernetes by comparison is a workload-level abstraction. Meaning that you
describe your application in workload terms. For example, I have a server
that needs to run in a distributed fashion; I have a database that requires
certain disk volumes to be attached; I have a logging utility that needs to run
on every node; or maybe I have a movie to render, one frame at a time, on the
cheapest resources available. All these deployment constructs and more can
be represented natively in Kubernetes.

Kubernetes provides a layer above compute instances (VMs), freeing you
from the need to manage or care about individual machines. You specify
what resources your container needs: CPU, memory, disk, GPU, etc. A
managed Kubernetes platform will also typically provision the compute
capacity to handle your workloads. You don’t need to worry about individual
machines, but you can still do things that you would expect at a machine
level, like write to a persistent local disk, tasks that until recently were often
not possible at this level of abstraction.

The abstraction layer also remains quite clean, by not interfering with your
application. Unlike many traditional Platform as a Service (PaaS)
environments, Kubernetes does not modify how your app runs; for example,
no code is injected or changed, and very little restrictions are placed on what
your app can do. If the app can be run in a container, then it can likely be run
on Kubernetes.

Figure 1.8 Illustration of the separation of concerns between the different compute layers





Declarative Configuration

Kubernetes uses a declarative resource model. You describe your workload in
configuration (primarily YAML files), and the system seeks to enact your
configuration and make it a reality. For example, if in the Deployment you
specify that you want 3 replicas (copies) of your application, connected by a
load balancer to the outside world, Kubernetes will find space in your cluster
to run those 3 replicas, and attach a load balancer. Not only does Kubernetes
place these replicas initially, but it will continue to monitor them and attempt
to keep them running in the event of a crash or failure.

Declarative configuration is useful because it allows you to describe what
your desired state is (e.g. run 3 copies of my application), and let Kubernetes
do the work of actually producing that state. As opposed to you issuing
imperative commands (e.g. create 3 copies of my application), and doing the
monitoring and adjusting yourself (like querying how many copies of my
application are currently running and adjusting accordingly).

Cost Efficiency

Kubernetes takes the lowest-level compute building blocks—virtual
machines—and makes them easy to manage. Whereas in the past, you might
have assigned one app per virtual machine for maintenance reasons,
Kubernetes allows you to efficiently host multiple instances of an app or apps
on a single machine for high efficiency (so-called bin-packing). The
combination of using commodity building blocks (raw compute nodes) with
robust orchestration of the workloads often makes Kubernetes attractive from
a price perspective.

Beyond bin-packing (running multiple services on one machine), resource
pooling is another benefit of Kubernetes that improves efficiency. Your
workloads can be configured in a way where they have a set amount of
guaranteed resources, and when there’s a usage spike, burst into the capacity
that other containers have reserved but are not currently using.

Extensibility



When you need to do something that Kubernetes can't, you can source or
even write your own Kubernetes-style API to implement it. This isn’t for
everyone, and definitely isn’t needed to deploy most workloads like stateless
or stateful web applications, but it can be extremely handy when you need to
add particular business logic, or some new construct that Kubernetes doesn't
support. The Custom Resource Definition (CRD) object and operator patterns
allow you to create your own Kubernetes-style APIs.

Open Source

Kubernetes is open source, and available on all major clouds as a managed
offering. Despite the proliferation of many different platforms, distributions,
and installers, most such offerings have been certified under the Cloud Native
Computing Foundation’s certification program[6] which offers several
guarantees around workload portability and compatibility. In fact, the only
way for a product to include the name “Kubernetes” in it (like “Google
Kubernetes Engine”) is to have formally passed these tests.

You can also run Kubernetes yourself from scratch. And if you do run
Kubernetes yourself, then the quality of the code will matter to you. Not all
open source is created equal. While open source does typically remove you
from propriety lock-in, you might end up having to maintain it yourself (you
use it, you own it, basically) unless there is a strong community. The
exception is for large, well maintained open source projects, in the caliber of
say Linux, where so many people depend on it, and so many people use it
that you can rest assured you won't need to take over maintenance.
Fortunately, Kubernetes as the leading open source container orchestrator fits
into this category.

Note

While it is possible to host Kubernetes yourself whether on a public cloud or
on a cluster of Raspberry Pi’s, I don’t recommend this for production use (i.e.
outside of learning how to manage a cluster) in most cases. Spend the time
doing what you do best: building great applications, and let someone else
handle the minutiae of running Kubernetes for you.



Beyond the project itself being open source, Kubernetes is surrounded by a
vibrant community. There are open source tools for accomplishing pretty
much anything, so you typically have the option to go with a managed
service, or deploy an open source tool yourself. This is a break from
proprietary-only marketplaces in PaaS systems of the past, where your only
option for any type of component was a paid one. Do you get value from a
managed monitoring tool? Use a proprietary product. Want to just manage it
yourself? Go install open source Prometheus.

Kubernetes has a large and growing number of practitioners as well, so
whatever the topic is, you should be able to find help on Stack Overflow, or
in books like this one.zed Workflows

Customized Workflows

Kubernetes is very unopinionated about how you setup your own, or your
company's, development workflows. Want a "git push to deploy" style
workflow? There are a bunch of ways to do that, some with only minimal
setup. Typically you'll start with a bunch of CI/CD building blocks which you
assemble into your desired workflow, from simple push-to-deploy, to
complex pipelines with admissions control, auto-injecting secrets and
security scanning. The downside is that it’s not quite as ready to use out of
the box as say a traditional PaaS, but this book will show you it’s not that
hard to get started.

Particularly for larger teams, the flexibility provided by Kubernetes in this
area is often a huge advantage. Companies with a central core platforms
teams will create opinionated pipelines for their application developer (app
dev) teams to use. The pipeline can be used to ensure certain development
practices around things like security, resource usage, and so on.

1.2.3 Kubernetes vs Platforms as a Service (PaaS)

Another approach to application deployment is to use a Platform as a Service
(PaaS). A PaaS makes it easy to deploy your application code at scale by
taking care of a lot of the packaging and deployment aspects for you. As long
as your application fits within the scope of what the PaaS offers in terms of



languages, dependencies, how it handles state, etc., you can launch each
application into the PaaS, and not worry about the machines underneath.

However, what happens when you need to highly customize your
dependencies, like using a specific version of Java? Can you host a stateful
backend alongside your stateless frontends? And is it cost effective when you
have many applications, each needing many replicas? At a certain point, the
limitations of a PaaS can be prohibitive, and once you move out of the PaaS
world, you have to start over from scratch – a daunting prospect.

Figure 1.9 developer efficiency using a traditional PaaS and Kubernetes



A traditional PaaS is often fast to learn but slows down as you mature, and
there’s a potential cliff if you exceed the capabilities of the system and need
to start from scratch. Kubernetes has a slower learning curve at the
beginning, but expansive possibilities as you grow.

If you love your PaaS, then there may not be a need to move to Kubernetes.
However, a common issue I’ve seen is that teams hit a certain level of
complexity where their requirements exceed what the PaaS is capable of. One



of the scariest things about being in that position is that you can’t simply
“break the glass” and assume more control yourselves. Often you’ll need to
re-architect the entire system, losing even the bits you were happy with, in
order to build the new parts that you need. In this book, I’ll show you how
Kubernetes can run PaaS-type workloads with marginal added complexity
over a dedicated PaaS, as well as how to run various other workload
constructs like stateful workloads, background processing, and batch jobs
which set you up for success in the future by enabling you to implement more
complex product requirements.

A word on simplicity

I like to say: be wary of tools that make the simple easier, but the complex
harder. Sure, it’s nice when something helps you get up and running sooner,
but is it leaving you in a good state, with the right knowledge and tools to get
the job done? Kubernetes is easy enough to get started with, and powerful
enough to serve your needs as you grow and expand. When choosing your
platforms, prioritize making hard tasks possible over making simple tasks
even easier.

Kubernetes will enable you to run a simple, 12-factor stateless application,
migrate in a bespoke stateful custom application previously installed on a
VM, or even run your own database. The abstraction layer doesn't limit what
you can do, while still allowing you to get started using only the bits you
need at first.

Some more modern PaaSes support containers, so you could run there, and
get the best of both worlds: the flexibility of containers, with the easy
deployments. A downside of this is that even modern PaaSes come with
many restrictions on the types of workloads you can run. Can it, for example,
run a stateful application with a block-based volume attached, as you might
need if you have a legacy application to migrate, or you wish to run a
bespoke database where no managed offering exists? I suggest carefully
consider your current and future needs, and choos a platform that will be able
to grow and scale as you do.

1.2.4 When (not) To Use Kubernetes



Like most tools, the goal of Kubernetes is to improve your efficiency, in this
case managing your applications. It’s best to ignore the hype and really
consider whether Kubernetes will help or hinder your ability to run your
service. Managed Kubernetes platforms exist to keep your cluster
components running smoothly, but be aware that there is some overhead to
running a general purpose platform like Kubernetes. Operational tasks
include allocating CPU and memory resources to containers, updating
deployments, configuring your network, and keeping everything up to date
without disrupting your running services.

If you can predict the exact scope of your business requirements now and in
the future and don’t need the flexibility that Kubernetes provides, don’t care
about the vendor portability of the Kubernetes ecosystem, and can fit your
application architecture neatly into the expectations of a more special-
purpose platform, then go ahead and use it! Honestly, you’ll probably have a
simpler time of it.

I also don’t recommend using Kubernetes for deployments of software where
fully-managed equivalents exist. For example, why run a SQL database in
Kubernetes when your cloud provider can do that for you? There are some
exceptions where it becomes desirable to self-manage, but in general I
believe if the managed service exists, use it!

Kubernetes is really good at a few things though, like running stateless
applications at high density; mixing multiple workloads like a modern
stateless application and legacy stateful monolith; migrating services from
outdated systems to a unified platform; handling high-performance compute,
like batch processing jobs for data analytics and machine learning; and of
course running a bunch of microservices. In each of these cases, Kubernetes
brings a lot to the table, by enabling high efficiency, unifying your hosting
platform, automating your systems, and running your jobs.

Kubernetes does introduce a new level of management overhead which needs
to be considered. There’s a risk of simply replacing one problem with another
if you take what you’re doing (assuming it’s working well) and throw it onto
Kubernetes. Some cases where you may want to consider carefully would be:
replacing a stateless system if it’s already handling your scale and
complexity; and moving standardized stateful workloads that have well-



established deployment patterns like SQL databases. While you may see
benefits in Kubernetes for such workloads, the advantages may not be as
many, and so the trade-off needs to be more carefully considered.

To help decide, I suggest weighing up the benefits of moving to containers
and unifying your compute platform around one deployment system suitable
for varied workloads, with the added knowledge needed to administer
Kubernetes. If what you’re starting with is a bunch of services running on
bespoke VMs in various stages of disrepair – it’s likely not going to be a hard
choice. Similarly, if you’ve outgrown your PaaS, or have a highly proficient
team wanting to deploy faster with modern tools – go for it. But that MySQL
cluster that’s running like a charm on a custom clustering setup with 4 nines
of reliability? Maybe that one’s OK to leave for now.

Going to Kubernetes doesn’t need to be an all or nothing decision. I’d
suggest starting with those workloads that make the most sense and gradually
migrate them as you and your team build up knowledge in operating
Kubernetes.

1.3 Summary

Containers are the modern way to run applications that achieves
isolation between multiple applications running on the same host and
does so with low overhead compared to virtual machines.
Kubernetes is a deployment platform for containerized applications.
Kubernetes has a bit of a learning curve, but it enables you to express a
vast variety of deployment constructs and takes care of configuring
infrastructure and keeping applications running.
Hosted platforms (like Google Kubernetes Engine) take away the
administrative burden of managing Kubernetes, allowing you to focus
on your application deployments.
Application developers focus on describing their app configuration in
Kubernetes terms, after which the system is responsible for running it in
the way you described.
A key benefit of Kubernetes is that it allows you to grow as your needs
evolve; you likely won’t need to change platforms due to new
requirements like an application needing to have its own local state.



When you need to scale up due to increased demand, Kubernetes can
help you do this in an efficient way.

[1] https://cloud.google.com/learn/what-is-kubernetes

[2] https://kubernetes.io/case-studies/spotify/

[3] https://kubernetes.io/case-studies/capital-one/

[4] https://kubernetes.io/case-studies/openai/

[5] https://cloud.google.com/blog/products/gcp/bringing-pokemon-go-to-life-
on-google-cloud

[6] https://www.cncf.io/certification/software-conformance/



2 Containerizing Apps
This chapter covers

How to containerize apps
Running your container locally
Executing commands in the container context

Containerizing your application, that is, packaging your application and its
dependencies into an executable container, is a required step before adopting
Kubernetes. The good news is that containerizing your application has
benefits beyond being able to deploy it into Kubernetes, it’s a valuable step
on its own right, as you’re packaging up the application’s dependencies and
can then run it anywhere without needing to install those dependencies on the
host machine.

Regardless of how you deploy your app, containerizing it means that your
developers can start working on it locally using Docker, enabling them to get
started on a new project with no setup beyond installing Docker. It provides
easy context switching between the different applications developers are
working on, as the environments are completely isolated. These properties
make it a valuable way to improve developer productivity even if you don’t
end up deploying your app into production with containers (though you’ll
probably want to do that too).

Figure 2.1 Comparison of multiple projects on a development machine with and without
containerization



Having your application packaged into containers means that all your
dependencies and configuration are captured by a container configuration file
—the Dockerfile—rather than a mix of bash scripts, text based instructions,
human memory and other non-standard configuration systems. It makes it
possible to deploy multiple applications on a single host machine without
worrying that they will interfere with each other, but with greater
performance and less overhead than full virtualization.

2.1 Building Docker Containers

Let’s take an application and put it in a container.



2.1.1 Developer Setup

Docker is distributed as a developer tool that is available for most platforms
as Docker Desktop (https://www.docker.com/products/docker-desktop)
which includes some convenient utilities including a local Kubernetes
environment (covered in Chapter 3). For Linux (including Windows
Subsystem for Linux) you can also install the Docker Engine standalone.

Mac

On Mac, simply install Docker Desktop.

Windows

On Windows, I highly recommend first configuring the Windows Subsystem
for Linux (WSL) (https://learn.microsoft.com/en-us/windows/wsl/install).
WSL 2 is the one you want, so that Docker can use it as well. With WSL 2
installed, you can also install a distribution of Linux like Ubuntu
(https://apps.microsoft.com/store/detail/ubuntu/9PDXGNCFSCZV) which
gives you a bash shell and is a convenient way to run the samples presented
in this section.

Once WSL is configured, install Docker Desktop.

Linux

For Linux, there is another option in addition to Docker Desktop, the Docker
Engine. You can find instructions for various platforms, including Ubuntu,
available here: https://docs.docker.com/engine/install/ubuntu/. Docker Engine
is also an option when you use Linux via WSL.

2.1.2 Running Commands in Docker

To explore how Docker works before we build our own application
container, we can bring up a containerized Linux shell in Docker like so:



$ docker run -it ubuntu bash

root@18e78382b32e:/#

What this does is download the base “ubuntu” image, start a container and
run the bash command against it. The -it parameters make it an interactive
bash terminal. Now we are in the container, and anything we run will happen
in the container.

Since we’re going to be building an application on Ubuntu, let’s install the
language package. I’m going to be using Python for many of the examples in
this chapter, but the concept applies equally to any other language.

Run the following two commands in the container shell:

apt-get update

apt-get install -y python3

Now we can try out python interactively, for example:

# python3

>>> print("Hello Docker")

Hello Docker

>>> exit()

#

And we can capture that most basic of commands into our own python script:

# echo 'print("Hello Docker")' > hello.py

# python3 hello.py 

Hello Docker

When you’re done playing around in this container, exit using exit.

The beauty of this, is that we installed Python and ran our Python command
on the container, not on our local system.

The docker run command actually created a container, from our image. The
image, ubuntu, is a prebuilt filesystem from which the container process runs
in. When we exit our interactive session with the container, it will be stopped,
but you can easily start it up again using docker ps -a to get the container
id, docker start CONTAINER_ID to boot it, and docker attach



CONTAINER_ID to reconnect our shell.

$ docker ps -a

CONTAINER ID   IMAGE     COMMAND    CREATED         STATUS                  

c5e023cab033   ubuntu    "bash"     5 minutes ago   Exited (0) 1 second ago

 

$ CONTAINER_NAME=c5e023cab033

$ docker start $CONTAINER_NAME

$ docker attach $CONTAINER_NAME

# echo "run more commands"

# exit

After running a lot of Docker containers, you’ll end up with a pretty big list
of stopped containers (and lots of hard drive space used). To clean up these
images which typically you don’t need to keep, at any time, run:

docker system prune -a

Container Image vs Container Instance

In Docker terminology, the container image is the file artifact (whether
downloaded from a registry as in this section, or built locally), and the
container instance (or just container) is an invocation of the container. In
Kubernetes, configuration refers only to images, while container instances are
created at runtime and are ephemeral in nature (they are deleted when the Pod
is stopped). When using Docker locally, the instance concept is important,
not least because every invocation creates a container instance that persists,
so eventually you’ll need to clean them up to recover the disk space.

With these steps, we now have a Linux environment on which we can use for
testing and running random commands, all without needing to install
anything (beyond Docker) on our local machine. Want two Linux container
environments with a different config? No worries—just run another
container!

If you’ve ever setup a VM before, you’ll appreciate just how fast this is to
setup! Containers are simple to create. As you’ll see in the next section, they
are also easy to build on, and expand.

2.1.3 Building our own Images



In the previous section, we started a Linux container, installed Python and
created a simple python script which we ran in the container. Let’s say we
want to make this repeatable. That is, to capture the configuration of the
container (installing Python), and our application (the python script) in our
own container image. Such an image would be useful so we don’t have to
remember the steps we took, and also so that others can build our amazing
application!

While this example uses only a simple python script, you can imagine that
the application can be as large and complex as you want to make it. It doesn’t
just have to be Python either—these steps work for any interpreted language
(see section 2.1.7 for how to deal with compiled applications). Just substitute
the Python configuration for whatever language you are using.

The process of building our container image so we can make a repeatable
application deployment uses a configuration file known as a Dockerfile. The
Dockerfile is a set of procedural instructions used to build your container.
Think of it like a bash script that configures a virtual machine image with
your app and its dependencies, only that the output is a container image.

Running the Examples

The example Docker applications and Kubernetes configuration listed in this
book can be found in the source repository. Clone the repository and change
into the root directory with the following.

<pre class="sidebarcode">git clone <a href="https://github.com/WilliamDenniss/kubernetes-for-developers.git">https://github.com/WilliamDenniss/kubernetes-for-developers.git</a>

</pre>

cd kubernetes-for-developers

The examples are arranged by folder, and section. For example, the code
from Chapter 2 is in folder Chapter02, and the examples from section 2.1.3
are in a folder like 2.1.3_Docker. Each code listing includes the path to the
sample file so you can locate it.

The shell commands given start from the root sample code folder
(kubernetes-for-developers if you cloned the repo per the above
command), so just change back to that directory after running any example or



exploring the code, and you should be ready to pick up where you left off,
and follow the next example.

Starting with the basic Python program we created in the previous section:

Listing 2.1 Chapter02/2.1.3_Dockerfile/hello.py

print("Hello Docker")

To build our own container image setup with python and containing this
script, you’ll need to create a Dockerfile, pick a base container image to use
as the starting point, and add your program. For now we’ll start with the
generic base image ubuntu, which provides a containerized Linux
environment.

Here is a basic Dockerfile to capture our steps:

Listing 2.2 Chapter02/2.1.3_Dockerfile/Dockerfile

FROM ubuntu #A

RUN apt-get update #B

RUN apt-get install -y python3 #B

COPY . /app #C

WORKDIR /app #D

Build this container, and name (tag) it “hello” like so:

cd Chapter02/2.1.3_Dockerfile/

docker build . -t hello

Once built we can run the python3 hello.py command on the container
named “hello” like so:

$ docker run hello python3 hello.py

Hello Docker

Notice how the commands in our Dockerfile are essentially the same as the
ones we used in the previous section. Rather than starting the ubuntu
container image, we use it as our base image of the Dockerfile. Then we run
the same two apt-get commands as before, to configure, install python, copy



the our python script into the image, and specify the default working
directory to indicate where commands will be run. Also notice that the
command to run the code is still python3 hello.py, it’s just now prefixed to
run in our new container image.

We’ve now encapsulated the environment we built, and our script, into a neat
package that we can use and run ourselves and share with others. The
wonderful thing about containers is that they encapsulate the configuration
steps along with the program itself. The best part is that when the ubuntu
base image is updated, we can rebuild our image by simply running that one
build command again.

Compare this to installing Python on your host and running everything
locally. For one, if you’d done that you would now have Python installed.
You probably would be happy to have Python installed, but imagine a more
complex application that brings with it dozens of tools and libraries. Do you
really want all these on your system? Furthermore, what if you’re developing
a few different applications, all with their own dependencies, or with the
same dependency but requiring particular versions of that dependency,
making it impossible to satisfy the dependencies of both applications
simultaneously (a situation sometimes referred to as “dependency hell”).

Containers solve this, by isolating each application along with their
dependencies in their own container images. You can happily work on
multiple projects, share Dockerfiles with your development team, and upload
container images to your production environment, all without messing up
your developer machine.

To see how this looks for a different language, Ruby, the setup is fairly
similar:

Listing 2.3 Chapter02-ruby/2.1.3_Dockerfile/hello.rb

puts "Hello Docker"

Listing 2.4 Chapter02-ruby/2.1.3_Dockerfile/Dockerfile

FROM ubuntu



RUN apt-get update

RUN apt-get install -y ruby

COPY . /app

WORKDIR /app

To run, the only difference is the command that is passed:

$ cd Chapter02-ruby/2.1.3_Dockerfile

$ docker build . -t hello_ruby

$ docker run hello_ruby ruby hello.rb

Hello Docker

2.1.4 Using Base Images

The above example uses the Linux container ubuntu as a base to configure
our Linux-based app. Base images including ubuntu and other distributions
such as centos, and the alpine base image are a good starting point for
configuring any Linux-based app. However, for convenience the container
community has created several more specific images designed for various
languages and environments.

Instead of installing Python ourselves onto the ubuntu base image, we can
just start with the python image, and save some steps. The added bonus is
that these base images are generally created by experts, and thus are well
configured to run Python apps.

Here’s the same container, but starting with the python base image:

Listing 2.5 Chapter02/2.1.4_BaseImage/Dockerfile

FROM python:3

COPY . /app

WORKDIR /app 

Simpler, right? Building and running it is the same as before:

$ cd Chapter02/2.1.4_BaseImage

$ docker build . -t hello2

$ docker run hello2 python3 hello.py

Hello Docker

What is a base image really?



The base image used in this example, python, is itself built with a
Dockerfile and configures an environment with everything needed to run
Python programs. For container images from Docker Hub, their Dockerfile
sources are linked so you can see how they are composed. Base images often
start with another base image, and so on, until one which starts with the
completely empty container known as scratch.

If you’re using Ruby instead of Python, setup is pretty similar, just using the
ruby base image.

Listing 2.6 Chapter02-ruby/2.1.4_BaseImage/hello.rb

puts "Hello Docker"

Listing 2.7 Chapter02-ruby/2.1.4_BaseImage/Dockerfile

FROM ruby

COPY . /app

WORKDIR /app

To build and run:

$ cd Chapter02-ruby/2.1.4_BaseImage

$ docker build . -t hello_ruby2

$ docker run hello_ruby2 ruby hello.rb

Hello Docker

There exists more than operation system, and language-specific base images
too. If you’re using an environment like Apache, you can start with the httpd
base image. Sometimes you’ll have a situation where there are multiple base
images that could serve as the base. The best rule of thumb is to pick the one
that saves you the most configuration (and you can always crib from the
Dockerfile of the one you didn’t pick!).

Base images—or at least public examples that you can copy—exist for pretty
much every common language, environment or open-source application.
Before building your own from scratch, it is wise to search Docker Hub for a
base image, or Google to see if someone has an example for your
environment that you can use as a starting point.

2.1.5 Adding a Default Command



Typically, the command executed in the container (python3 hello.py in the
earlier Python example) is the same each time. Rather than repeating it each
time, you can specify that in the Dockerfile as well:

Listing 2.8 Chapter02/2.1.5_DefaultCommand/Dockerfile

FROM python:3

COPY . /app

WORKDIR /app 

CMD python3 hello.py

To build and run this container, execute the following from the command line:

$ cd Chapter02/2.1.5_DefaultCommand

$ docker build . -t hello3

$ docker run hello3       

Hello Docker

Unlike the other lines in the Dockerfile we’ve used so far, CMD is unique as it
doesn’t actually change how the container is built, but merely saves the
default command that will be executed if you call docker run without a
command specified. This doesn’t stop you from overriding it and executing a
different command at runtime.

With the command now specified in the Dockerfile, to build and run the
Ruby version of this program it is also simply docker run.

$ cd Chapter02-ruby/2.1.5_DefaultCommand

$ docker build . -t hello_ruby3

$ docker run hello_ruby3

Hello Docker

2.1.6 Adding Dependencies

Most non-trivial applications will have their own dependencies, not included
in the base image. To load those dependencies, you can run commands
during the container build process to configure the image as you need. This
was how we added Python to the Linux base image in the example above,
and this method can be used to install all the dependencies that your
application needs.

If your application establishes a database connection to a MariaDB database,



here’s how you might build your container:

Listing 2.9 Chapter02/2.1.6_Dependencies/Dockerfile

FROM python:3

RUN apt-get update #A

RUN apt-get install -y mariadb-client #A

COPY . /app

WORKDIR /app 

CMD python3 hello.py

The python base image is built from Debian, a distribution of Linux widely
used for Containers, which uses the apt-get package manager, so we can use
apt-get to install pretty much any other dependency we need.

You don’t just have to use apt-get either. Say you have a service that’s
creating PDF files, and you need to include a Unicode font, you can build an
image that includes Google’s “Noto” free font like so:

Listing 2.10 Chapter02/2.1.6_Dependencies-2/Dockerfile

FROM python:3

RUN apt-get update

RUN apt-get install -y bsdtar #A

RUN mkdir -p ~/.fonts; cd ~/.fonts #B

RUN curl "https://noto-website-2.storage.googleapis.com/pkgs/Noto-hinted.zip" | bsdtar -xvf- #C

RUN fc-cache -f -v #D

COPY . /app

WORKDIR /app

CMD python3 hello.py

It is common for containers to have many dependencies, and you can
configure any part of the operating system you need to in this way, such as
installing fonts, or TLS certificates.

2.1.7 Compiling Code in Docker

What about programs that need compilation, like Java, .NET, Swift, or C++?
Obviously a COPY command will not suffice in the Dockerfile, unless you
already have compiled binaries lying around.



Pre-compiling the application locally would be one option, but why not
leverage Docker to compile your application as well! Let’s re-implement our
hello world example in Java, and compile it into our container.

Listing 2.11 Chapter02/2.1.7_CompiledCode/Hello.java

class Hello {

    public static void main(String[] args) {

        System.out.println("Hello Docker");

    }

}

Listing 2.12 Chapter02/2.1.7_CompiledCode/Dockerfile

FROM openjdk

COPY . /app

WORKDIR /app

RUN javac Hello.java #A

CMD java Hello

The Dockerfile is similar to the previous ones: we start with the OpenJDK
base image, and copy the app. In this case, however, we’ll use the RUN
command to build the app, prefaced with a WORKDIR directive to specify
where this action (and subsequent actions) should be performed.

To build and run this example:

$ cd Chapter02/2.1.7_CompiledCode

$ docker build . -t compiled_code

$ docker run compiled_code

Hello Docker

Another example that compiles a server-side Swift application is given in the
Chapter02-swift/2.1.7_CompiledCode folder. It can be built and run in the
same way.

2.1.8 Compiling Code with a Multi-stage Build

Using RUN to compile code or perform other actions is a viable path; however,
the drawback is that you end up configuring your container image with tools
it needs to execute the RUN command. These tools end up in the final
container image along with any source code.



For example, if you look at the image we created in the previous section, and
run ls:

$ docker run compiled_code ls

Dockerfile

Hello.class

Hello.java

You’ll see that the source code remains. Also, the Java Compiler (javac) is
still present in the image, even though it will never be used again (we don’t
need the compiler when running our application).

This mixing of responsibilities of the container image—to both build and run
—is less than ideal. Not only do all those extra binaries bloat the container
image, but they also needlessly increase the attack surface area of the
container (as any process running in the container now has a compiler to
work with). You could clean up the container with a bunch of additional
Docker commands (e.g., deleting the source code, uninstalling tools that are
no longer needed) but it’s not always practical, particularly if all these extra
tools came from the base image.

A better way to solve this problem is to use a multi-stage container build.
With a multi-stage build, we first configure a temporary container with
everything needed to build the program, and then a final container configured
with everything needed to run the program. This keeps the concerns
separated and neatly isolated to their own containers.

Figure 2.2 A multi-stage container build, where an intermediate container is used to build the
binary



Let’s rework the example in the previous section to be built using a multi-
stage Dockerfile.

Listing 2.13 Chapter02/2.1.8_MultiStage/Dockerfile

FROM openjdk:11 AS buildstage #A

COPY . /app

WORKDIR /app

RUN javac Hello.java

 

FROM openjdk:11-jre-slim #B

COPY --from=buildstage /app/Hello.class /app/ #C

WORKDIR /app

CMD java Hello

As you can see from this example, there are what looks like two Dockerfiles
in one (each beginning with a FROM command). The first is configured and
built purely to compile the app, using the full OpenJDK base image which
includes the java compiler, and the second has only what is needed to run the
app and is built from the JRE base image, which only includes the Java
runtime environment.



This Dockerfile produces as its final artifact, a production container that
only contains the compiled Java class and dependencies needed to run it. The
intermediate artifact of the first container that built the app is effectively
discarded after the build completes (technically it’s saved in your docker
cache, but no part is included in the final artifact that you would use in
production).

To run this example:

$ cd Chapter02/2.1.8_MultiStage

$ docker build . -t compiled_code2

$ docker run compiled_code2

Hello Docker

Another example that compiles a server-side Swift application with the multi-
stage build process is given in the Chapter02-swift/2.1.8_MultiStage
folder. It can be built and run in the same way.

2.2 Containerizing a Server Application

The examples in the previous section were all simple programs that run once.
This is a use-case for containers: for command line programs, batch
workloads or even to serve requests in a Functions as a Service environment.
One of the most common workloads to deploy in Kubernetes, however, is
HTTP services—that is, an application that listens for, and processes,
incoming requests, a.k.a. a web server.

A server application is no different to any other application from Docker’s
perspective. There are a few differences to how you start and connect to the
container owing to the fact that you likely want to keep the container running
(so it can serve requests). You’ll also likely want to forward ports from your
local machine so you can connect to it.

2.2.1 Containerizing an Application Server

Until now, the example program was a basic “Hello World” Python script. To
demonstrate how to containerize HTTP servers, we’ll need something that is
an HTTP server! The following code is an example of a bare-bones HTTP
server in Python that returns the current date and time. Don’t worry too much



about the code itself. This book is language agnostic, and the Python used
here is purely an example. You can apply these principles to any HTTP
server.

Listing 2.14 Chapter02/timeserver/server.py

from http.server import ThreadingHTTPServer, BaseHTTPRequestHandler

from datetime import datetime

 

class RequestHandler(BaseHTTPRequestHandler):

    def do_GET(self):

        self.send_response(200)

        self.send_header('Content-type', 'text/plain')

        self.end_headers()

        now = datetime.now()

        response_string = now.strftime("The time is %-I:%M %p, UTC.")

        self.wfile.write(bytes(response_string, "utf-8")) 

 

def startServer():

    try:

        server = ThreadingHTTPServer(('', 80), RequestHandler)

        print("Listening on " + ":".join(map(str, server.server_address)))

        server.serve_forever()

    except KeyboardInterrupt:

        server.shutdown()

 

if __name__== "__main__":

    startServer()

Containerizing this server application is very similar to the earlier command
line program.

Listing 2.15 Chapter02/timeserver/Dockerfile

FROM python:3.10

ENV PYTHONUNBUFFERED 1

COPY . /app

WORKDIR /app 

CMD python3 server.py

Containerizing your own application

If you’re containerizing your own application, follow these generic steps:



Find an ideal base image, being one that provides as much of your
configuration as possible. For a Ruby on Rails app, start with ruby and not
the more generic ubuntu. For Django, use python, and so on.

Configure any application specific dependencies you need (via RUN
statements, as we did above)

Copy your application

I find that Google is really your friend for this. Unless you’re doing
something new and exotic, someone’s probably figured out and shared an
example Dockerfile of how to configure an application using your
framework. If you’re using a popular framework like Django, Ruby on Rails,
WordPress, Node.JS, or SpringBoot I can say with certainty that there are a
lot of resources for you to draw on. Every application is different—your
dependencies won’t exactly match everyone else’s all the time—but you can
get a huge head start this way.

Now that we have our HTTP server application, we can build it like usual:

<pre class="codeacxspfirst"><a id="id_Hlk33348209" href="">$&nbsp;cd&nbsp;Chapter02/<b class="charbold">timeserver</b></a>

</pre> <pre class="codeacxsplast">$&nbsp;docker&nbsp;build&nbsp;.&nbsp;-t&nbsp;timeserver

</pre>

Running it is a little different this time, since we’ll need to forward ports
from the host machine to the container, so we can actually try this application
in the browser. Let’s forward port 8080 on our local machine to port 80 in the
container that the application is listening on.

$ docker run -it -p 8080:80 timeserver

Listening on 0.0.0.0:80

Now you should be able to browse to http://localhost:8080 and view the
application. Or, with curl:

$ curl http://localhost:8080

The time is 1:30 PM, UTC.

The -it parameter (actually two parameters but normally used together)
allows us to terminate by sending SIGTERM (often Ctrl/Command+C). This



makes the typical developer loop of build, run, fix, repeat easy (run, Ctrl+C,
fix, repeat). Alternatively you can run Docker in the background with docker
run -d -p 8080:80 timeserver. Without using -it, you’ll need to stop the
process manually: docker ps to list the process, and docker stop
CONTAINER_ID to stop it (or docker stop $(docker ps -q) to stop all
running containers).

For a neat development loop, I like to use the following one-liner that will
build and run the image in one go. When you need to rebuild, you can just hit
Ctrl+C (or equivalent), press up to show the last used command, and enter, to
do it all again. Just be sure to watch the console output for any errors during
the build stage, as otherwise it will run the last built image.

$ docker build . -t timeserver; docker run -it -p 8080:80 timeserver

That’s it! We now have a containerized application running in Docker. In the
next section, 2.3, I cover how use Docker Compose to configure and run a
local debug setup (useful if your application consists of a few different
containers), and in the next chapter, how to deploy this web application into
Kubernetes.

2.2.2 Debugging

If you’re having trouble getting your app to run after configuring a
Dockerfile, it can be useful to shell into in the container’s environment to
poke around and see what’s going wrong. When the container is running
using the previous instructions, you can shell into the running container from
a new console window like so:

$ docker container ls

$ docker exec -it CONTAINER_ID sh

# ls

Dockerfile  server.py

# exit

$

You can run any other command other than sh too, for example on a Ruby on
Rails project you might run bundle exec rails console here to directly
bring up the rails console without an intermediate step.



I won’t list out every docker command, as the docs do a great job at that, but
another one I find especially useful for debugging is docker cp. It allows you
to copy files between your host and the container. Here’s an example:

$ docker cp server.py CONTAINER_ID:/app

Or to copy a file out of the container:

$ docker cp CONTAINER_ID:/app/server.py .

If you do fix anything through running commands via exec, or copying files,
be sure to capture the change in the Dockerfile. The Dockerfile is your
primary specification, not the container instance. If you rely on manual
changes to the container instance, it’s no better than the old “shell into a VM
and change things” model that we’re moving away from.

2.3 Using Docker Compose for Local Testing

At this point, we have built a container image and are ready to start using
Kubernetes. If you like, skip ahead to the next chapter, and deploy this newly
built container into Kubernetes right away, to the cloud or using a local test
Kubernetes environment. This section covers how you can use Docker
Compose for local container testing and development before deploying to
Kubernetes.

In the previous section we booted our server application using docker, and
forwarded ports to our host for testing. Using this approach for testing during
development has a couple of drawbacks. You have to setup the ports to
forward each time, and if you’re developing an application with a few
containers, it can be complex to get everything up and running, with the right
ports forwarded, etc.

This is where Docker Compose comes in. Compose is a mini container
orchestrator that can bring up and tear down multiple containers in a logical
group, and preserve the runtime settings in between runs, which is useful for
local testing.

To run the web server container from section 2.2.1 with compose, we can
configure a docker-compose.yaml file such as the following.



Listing 2.16 Chapter02/2.3_Compose/docker-compose.yaml

services:

  web:

    build: ../timeserver #A

    command: python3 server.py #B

    ports: #C

      - "8080:80" #C

To build and run the container:

cd Chapter02/2.3_Compose

docker-compose build

docker-compose up

When developing, I tend to run both these steps as one so I can create a tight
rebuild loop.

docker-compose build; docker-compose up

With this simple configuration, there’s no need to remember the specific
docker command to boot and test the application—everything is stored neatly
in the compose file. With this example, that mostly consists of some ports to
forward, but this benefit will become apparent as you add more configuration
and dependencies.

2.3.1 Mapping Folders Locally

Earlier we used docker cp to copy files into and out of container instances.
One really useful feature of Compose is that you can actually map local
folders right into the container. In other words, instead of the container
having a copy of your application, it will actually just link to the same folder
on your hard drive. During development this can be really handy, as it allows
you to work on the files in the container right from your desktop, without
needing to copy things back and forth, or rebuild the container.

Recall from the Dockerfile that our server app is copied into the /app
directory within the container. What we want to do now is mount our local
directory into the container at that same directory. This is done through
volume binding.



Listing 2.17 Chapter02/2.3.1_VolumeMount/docker-compose.yaml

services:

  frontend:

    build: .

    command: python3 server.py

    volumes: #A

      - type: bind #A

        source: . #A

        target: /app #A

    environment:

      PYTHONDONTWRITEBYTECODE: 1 #B

    ports:

      - "8080:80"

With this volume binding, the files from our local machine are used instead
of the ones copied when we built our container. When we update those files
locally, the changes can be immediately read in the container without a
rebuild. For interpreted languages like Python, Ruby and PHP, as well as
markup like HTML and CSS, this means we can potentially have a setup
where you just hit save in your editor, and reload the page in the browser for
a really tight development loop where saving the source code triggers a code
rebuild.

There’s a catch, however. Once we run our python code, by default it isn’t
reloaded from the disk when there are changes, so while we can modify the
source code it won’t have any effect once the container is running. This will
be true for many other build systems as well.

For compiled code, this may not be of much help. You could build the binary
locally, replacing it in the container, but if you prefer to build everything
through docker (or there is an architectural difference between your local
environment and the container) then this won’t help. For compiled code I
recommend using other developer tools like Skaffold[1] to give you a tight
development loop.

Let’s update the Python timeserver app to support reloading the code while
it’s running, and configure a local mount in Compose. The steps here will
vary by language and framework. For Python we can use the reloading
library to have our GET function reloaded from disk each time there is a new



request.

Listing 2.18 Chapter02/2.3.1_VolumeMount/server.py

from reloading import reloading

from http.server import ThreadingHTTPServer, BaseHTTPRequestHandler

from datetime import datetime

 

class RequestHandler(BaseHTTPRequestHandler):

    @reloading #A

    def do_GET(self):

        self.send_response(200)

        self.send_header('Content-type', 'text/plain')

        self.end_headers()

        now = datetime.now()

        response_string = now.strftime("The time is %-I:%M %p, UTC.")

        self.wfile.write(bytes(response_string,"utf-8")) 

 

def startServer():

    try:

        server = ThreadingHTTPServer(('',80), RequestHandler)

        print("Listening on " + ":".join(map(str, server.server_address)))

        server.serve_forever()

    except KeyboardInterrupt:

        server.shutdown()

 

if __name__== "__main__":

    startServer()

Since we’re using a new library, we’ll need to add that dependency in the
Dockerfile as well:

Listing 2.19 Chapter02/2.3.1_VolumeMount/Dockerfile

FROM python:3

RUN pip install reloading

ENV PYTHONUNBUFFERED 1

COPY . /app

WORKDIR /app 

CMD python3 server.py

With our app configured to reload files from the disk, we can now run it with
Compose as before:



$ cd Chapter02/2.3.1_VolumeMount

$ docker compose build; docker-compose up

Creating network "231_volumemount_default" with the default driver

Creating 231_volumemount_frontend_1 ... done

Attaching to 231_volumemount_frontend_1

As before, browse to the app at http://localhost:8080/. This time, open up the
2.3.1_VolumeMount/server.py code, and make a change to the response.
For example, we can change the response to 24 hour time by updating this
line:

response_string = now.strftime("The time is %H:%M, UTC.")

Save the file in your editor, and reload the page. You should see the new text
in the response! That’s how you get a local development loop. In this
example we had to make some code changes to make it work, but if you’re
using a standard development framework that will likely not be necessary, as
you’ll be able to configure it to perform reloads automatically.

$ curl http://localhost:8080

The time is 10:23, UTC.

Being able to map local folders into the container to create a development
loop that is as fast as hitting save in your code editor, then reloading a page
on the browser has to be one of my favorite features of Docker Compose, and
containers in general. You have all the benefits of containers, where you
don’t need to mess around installing the developer tools locally, with the
same efficiency as if you were running it locally without any build step.

The binding works both ways too. If you make any changes in the container
within the bound volume, it will be reflected on your local disk. This can be
useful when you want to run commands in the container and save their
output. In fact, with this approach, you can completely avoid having the
developer tools installed on your local machine at all. For example, a Rails
developer will, from time to time, run gem update rails in their project
directory to keep the framework up to date. With a volume binding you can
run that in the container, and get the changed package list on your hard drive
ready to commit to version control.

localhost:8080.html


2.3.2 Adding Service Dependencies

In the case where your app is completely standalone, congratulations, you are
done. The rest of the time, though, you’ll likely have other services that you
need to bring up alongside your application. These might be other separate
servers that you build, or standard components that might be run by your
cloud provider, like a database. In both cases, you can add these
dependencies in Compose, to create a local development environment.

Compose or Kubernetes For Local Development?

Why use or consider Compose rather than Kubernetes itself to bring up
dependent services for development? Kubernetes certainly can be used for
local development, and if you want to replicate your production environment
it’s the best option (Chapter 3 includes a section on local development). What
makes Compose popular for this task, however, is its simplicity.

Compose is easy to setup for local use if you just need a handful of dependent
services, which for many simple applications is the case. In production,
where you’re not just running a few single instance services on one machine,
is a different (more complex) story, which is where Kubernetes comes in.

This duality means it’s not uncommon to see Compose for local dev, and
Kubernetes in production. It does mean that your runtime configuration is
essentially duplicated, but this configuration has two separate purposes:
development, and production, so it likely won’t look identical even if it was
all in Kubernetes. I suggest simply using whichever approach makes life as a
developer easier.

Multiple services can easily be added to the Compose. These can reference
standard images (in the case of a dependency like MySQL), or other projects
on your computer. A common project structure is to have one root folder for
all services, with each checked out in a sub-folder, and a docker-compose file
that can reference them all.

Here’s an example of a compose file with two containerized services: our app
that’s built locally, and a database instance using the public MySQL
container. The demo app here doesn’t actually use MySQL, but hopefully



you can see how easy it is to add the dependencies that your app needs. You
can add all the services you need here, including multiple locally built
containers, and multiple external images.

Listing 2.20 Chapter02/2.3.2_MultipleServices/docker-compose.yaml

services:

  frontend: #A

    build: ../timeserver #A

    command: python3 server.py

    environment: #A

      PYTHONDONTWRITEBYTECODE: 1 #A

    ports: #A

      - "8080:80" #A

 

  db:

    image: mysql:5.7 #B

    volumes: #B

      - db_data:/var/lib/mysql #B

    restart: always #B

    environment: #B

      MYSQL_ROOT_PASSWORD: super secret password #B

      MYSQL_DATABASE: my_database #B

      MYSQL_USER: dev_user #B

      MYSQL_PASSWORD: another secret password #B

volumes: #C

    db_data: #C

This is one of the key reasons to use Compose, rather than just Docker for
local testing—the ability to bring up a complete testing environment, and tear
it down all with a single command.

When configuring your application for local development, and for
production, all configuration changes should be made by environment
variables. Even a single environment variable that indicates “prod” or “dev”
to select which configuration file to use can suffice. Configuration should not
be baked into the container in such a way that you need to modify it between
environments. This allows you to reuse the same container in all
environments, and also means that you are testing the production artifact.

2.3.3 Faking External Dependencies



If to date you’ve been testing against remote dependencies (like a cloud
storage API), now might be a good time to see if you can replace those
remote dependencies with fakes. Fakes are lightweight implementations of
the same API of the external dependency, which speed up development and
testing by providing a local service.

In the past, you might have been constrained to finding a fake written in the
same language as your application (for practical reasons, like not wanting to
support multiple different environments for one project). Once of the benefits
of containers is that just like how you probably don’t care what language a
cloud service you consume is written in, you no longer need to care about
what language your fake is written in either as you don’t need to maintain the
environment—it runs in its own container.

This also brings the opportunity for high-quality fakes that are really just
lighter-weight implementations of the same API you’ll use in production. Just
as in the earlier section we used real MySQL in a container (rather than a
fake), you can use a real object storage provider to test against, even if you
ultimately use a cloud provider service like Google Cloud Storage or AWS
S3.

Taking the object storage example, say your application does cloud storage
using S3-compatible APIs (e.g. with S3 itself, or one of the many object
stores that support the API, like Google Cloud Storage). To setup a local fake
for fast iteration, you could get a container like Adobe’s S3Mock[2], but with
containers it’s equally easy to use a fully-fledged S3-comptaible local storage
solution like MinIO[3]. MinIO is not really a fake—you can deploy it into
production for cases when you want to manage your own block storage
service—but you can still use it as a high-quality fake and get benefits like a
convenient UI.

The ubiquity of the S3 API for object storage

Like SQL standardized database query languages, S3’s API is surprisingly
popular for object storage providers. For example, Google, Azure, and (of
course) AWS all implement the S3 API, along with most other clouds and
several bare metal storage options as well. The benefit of this ubiquity is you



can easily switch between providers, and have several fakes to choose from
to develop locally.

Earlier I discussed how containers make it easy to mix and match services all
running in their own environments. Here we see how this ability can make
development better as well. Rather than implementing a fake yourself, or
finding a rudimentary fake for your environment, you can either use locally
the same service as in production (such as with MySQL), or a find a
production-grade replacement for another cloud service that you use (like
with MinIO subbing in for cloud object storage).

Let’s add MinIO as another service to our Docker Compose file:

Listing 2.21 Chapter02/2.3.3_Fakes/docker-compose.yaml

services:

 

  storage: #A

    image: minio/minio

    command: minio server /data

    volumes:

      - storage_data:/data

    restart: always

    environment:

      MINIO_ACCESS_KEY: fakeaccesskey

      MINIO_SECRET_KEY: fakesecretkey

    ports:

      - "9000:9000"

 

  frontend:

    build: ../timeserver

    command: python3 server.py

    environment:

      PYTHONDONTWRITEBYTECODE: 1

      S3_ENDPOINT:            http://storage:9000 #B

      S3_USE_PATH_STYLE:      1 #B

      S3_ACCESS_KEY_ID:       fakeaccesskey #B

      S3_SECRET_ACCESS_KEY:   fakesecretkey #B

    ports:

      - "8080:80"

 

volumes:

    db_data:

    storage_data:



Typically with services used as fakes, as we are using MinIO here, you can
specify the access keys that it will use, then simply specify those same secrets
to the application using environment variables.

2.4 Summary

Containerization is essentially scripting your app’s build, environment
and configuration into a standardized format that can then be run with
VM-like properties on a host, but without the VM overhead.
Containerization is key step towards adopting Kubernetes, as this is the
executable environment that Kubernetes supports.
Not just for production, containers help developers work on multiple
projects at once, without the environments conflicting and without
needing complex setup instructions.
The process of building our container image so we can make a
repeatable application deployment uses a configuration file known as a
Dockerfile, which contains a set of procedural instructions used to build
your container.
When building a Dockerfile, begin with the base image whose
configuration is the most complete for your needs, then add the
necessary default commands and dependencies.
Multi-stage builds are useful for applications that require compilation
before they are run.
With a multi-stage container build, we first configure a temporary
container with everything needed to build the program, and then a final
container configured with everything needed to run the program. This
keeps the concerns separated and neatly isolated to their own containers.
Docker Compose is a lightweight container orchestrator that can give
you a quick container-based development environment for multiple
services.
Mapping folders locally with Compose enables the editing of non-
compiled applications in real time, for a tight development loop.
During testing, containers bring the opportunity for high-quality fakes of
external dependencies that are really just lighter-weight implementations
of the same API you’ll use in production, such as MySQL in a container
or a real object storage provider.



[1] https://skaffold.dev/

[2] https://github.com/adobe/S3Mock

[3] https://min.io/



3 Deploying to Kubernetes
This chapter covers

Kubernetes concepts related to specifying and hosting application
deployments
Deploying a containerized application to Kubernetes on a Cloud
platform, with load balancing
Updating deployments with new versions of the application container
Running a version of Kubernetes locally for testing and development

In the previous chapter, we covered how to containerize your application. If
you stopped there, you would have a portable, reproducible environment for
your app, not to mention a convenient developer setup, but you may have
trouble scaling that app when you go to production.

For ultra-simple deployments where you don’t mind running one container
per VM, you might be able to deploy containers to VMs directly, then scale
your VMs as needed. You’d get a few of the advantages of containers, like
convenient packaging, but if like most you have a number of different
services to deploy, you’ll probably need something more flexible.

This is where a container orchestrator like Kubernetes comes in. Container
orchestration is just a fancy way of saying tooling that handles the scheduling
and monitoring of a bunch of different containers on a bunch of different
machines. It allows you to work primarily in terms of your application
deployment—the container, and its deployment attributes like how many
replicas (instances) of the container there should be, requirements like high
availability (spreading across failure domains), service networking, and so on
—rather than needing to be overly concerned with the configuration of the
underlying compute.

Being able to conveniently manage multiple services on a shared pool of
compute resources gives you efficiency when running multiple applications,
or adopting patterns like micro-services where the various parts of your



application are deployed and managed separately. You can mix different
types of deployments too, from a stateless application, to a stateful database,
batch jobs, and more—all without needing to worry too much about exactly
which machine each container ends up actually running on.

3.1 Kubernetes Architecture

Kubernetes is an abstraction layer that sits at the workload level, on top of the
raw compute primitives like VMs (or bare metal machines) and load
balancers. VMs are referred to as “nodes”, arranged into a “cluster”.
Containers (one or multiple) are grouped into a scheduling unit known as a
“pod”. Networking is configured via “services”. Other higher order building
blocks like “Deployments” exist to make pods even easier to manage. Let’s
explore some of the basic building blocks of this architecture before
deploying our first workload.

3.1.1 The Kubernetes Cluster

The Kubernetes Cluster is a collection of nodes, which are the compute
instances on which the containers are run. Most commonly these are virtual
machines, but can also be bare metal (non-virtualized) machines. Each of
these nodes runs a special Kubernetes process called the “kubelet,” which is
responsible for communicating with the control plane and managing the
lifecycle of the containers which run on the nodes, and a container runtime
responsible for loading and running the containers. Other than the operating
system, the kubelet and the container runtime environment, the remaining
processes, including your own workloads as well as some system components
responsible for logging and monitoring, are run in containers, as shown in
Figure 3.1.

Figure 3.1 Processes running on a virtual machine, which Kubernetes calls a “node”



In the cluster, one or (when operating in high availability mode) multiples of
these nodes have a special role (as shown in shown in Figure 3.2): running
the Kubernetes orchestrator program itself. This special type of node, called
the control plane, has the responsibility to:



Run the API which you use to interact with the cluster (using tools such
as the Kubernetes CLI tool)
Store the state of the cluster
Coordinate with all the nodes in the cluster to schedule (start, stop,
restart) containers on them.

Figure 3.2 Self-managed Kubernetes cluster with the control-plane and worker nodes





In most cloud environments, the control plane is offered as a managed
service. In such environments the control plane nodes are typically not visible
to the user and the fact that the control plane may run on a node is
implementation detail. In these environments, you’ll typically think of the
cluster as the managed control plane with worker nodes, as shown in Figure
3.3.

Figure 3.3 Cloud-hosted Kubernetes Cluster with nodes connecting to a hosted control plane.





Worker nodes (herein referred to simply as “nodes”) have the responsibility
for managing the lifecycle of containers that run, including tasks such as
starting and stopping containers. The control plane will instruct the node to
run a certain container, but the actual execution of the container is then the
responsibility of the node. The nodes also take some actions by themselves
without needing to check in with the control plane, like restarting a container
that has crashed, or reclaiming memory when the node is running low.

Collectively, the control plane and nodes form the “Kubernetes Cluster”, and
provide the Kubernetes platform on which you can schedule your workloads.
The cluster itself is provisioned and managed by whatever platform provider
you use to run Kubernetes, which is responsible for creating the cluster
resources like nodes. This book, aimed at developers, focuses primarily on
using the Kubernetes cluster to run your workloads, rather than the platform
provider tasks (which are more in the cloud provider domain) of offering this
service to developers.

3.1.2 Kubernetes Objects

Once the cluster is created, you interact with Kubernetes primarily by
creating, inspecting and modifying Kubernetes objects through the
Kubernetes API. Each of these objects represent a particular deployment
construct in the system. For example, there is an object that represents a
group of containers (Pod), one that represents a deployment of pods
(Deployment), one for services, and so on. Even the node is represented as an
object which you can query to view aspects of the current status like how
much resources are being used.

To deploy a typical stateless web application into the cluster, you’ll use three
objects: the Pod, a Deployment (which encapsulates the Pod), and a Service.

Pod

The Pod is simply a collection of containers. Often this will just be a single
container, but could be multiple in the case where tightly coupled containers
need to be deployed together.



Figure 3.4 The Kubernetes pod. A pod can have one or many containers

The Pod is used as the primary scheduling unit in Kubernetes. Encompassing
your application and its containers, it’s the unit of compute that Kubernetes
schedules onto nodes according to the resources you require. For example, if
your workload requires 2 CPUs to run, you specify that in the Pod definition,
and Kubernetes will find a machine with 2 available CPU resources.

How many containers to a Pod?



Except for in simple cases where a tightly coupled dependency exists
between multiple containers, most containers are deployed individually with
one container per Pod. Common situations where you might have multiple
containers include so-called sidecars, where a second container is used for
authorization, logging or some other function, and other situations where
there is tight coupling between multiple containers, such that they benefit
from being deployed together.

Were you to inspect the processes running on the node, you would not see the
Pod itself, just a bunch of processes from the containers. The Pod itself is just
a logical grouping of containers. It’s Kubernetes that binds these containers
together, ensuring that they share a common lifecycle: that they are created
together, that if one fails they are restarted together, and that they are
terminated together.

Figure 3.5 Multiple Pods running on a Node





Deployment

While you can instruct Kubernetes to run Pods directly, this is rarely what
you’ll do. Applications crash, and machines fail, so Pods need to be restarted
and/or rescheduled. Instead of directly scheduling Pods, it’s better to wrap
them into a higher order object that manages the Pod lifecycle.

For applications like web servers that need to run continuously, that object is
a Deployment. Other options include a Job for running batch processes to
completion, covered in a Chapter 10. In the deployment, you specify how
many replicas of the Pod you wish to be running, and other information like
how updates should be rolled out.

Like all objects in Kubernetes, a Deployment is a specification for the desired
state of the system, which Kubernetes seeks to actuate. You can specify
things like the number of replicas of your Pod, and (as we’ll cover in later
chapters) detailed requirements for how the Pods are spread across the
cluster. Kubernetes continuously reconciles the observed state to the desired
state while attempting to deliver what you requested. For example, were a
Pod to become unavailable sometime after it was deployed like what would
happen if the node it was running on failed, Kubernetes will observe that
there are less Pods running than desired, and schedule new instances of the
Pod to once again meet your requirements. These automated operations for
scaling and repairing are the primary reason for using a Deployment to
manage the lifecycle of a service, rather than running Pods directly.

Figure 3.6 A deployment with 3 replicas of pod “foo-app”



Service

Services are how you expose an application running on a set of Pods as a
network service. A Service provides a single addressing mechanism and
balances the load across the Pods. Services get their own IP address and DNS
name which can be referenced by other Pods running within the cluster, and
can also be assigned an external IP address.

Figure 3.7 A Kubernetes Service





3.2 Deploying an Application

Let’s get started by deploying an application and making it available on the
internet, and later update it with a new version. In other words, perform a
basic application development, release and update cycle with Kubernetes. To
do this we’ll be using the Kubernetes objects discussed in the prior section; a
Pod, which will be managed by a Deployment, and exposed with a Service.

3.2.1 Creating a Cluster

Before deploying the application, you’ll need a Kubernetes cluster to use. I
recommend creating one on a public cloud, as it’s less hassle to get set up
and people can check out your creations immediately as you can share a
public IP for any services you deploy. Many cloud providers have free trials
to help reduce costs while learning.

Developing with a local Kubernetes cluster is another option, but there are
some inherent differences between the environment of a local Kubernetes
cluster and a cloud one, particularly around things like load balancing. I
prefer to learn the environment that I can one day use in production, hence
my suggestion while learning to pick a cloud provider and start with that.

Prefer a local cluster?

If you’d prefer to use a local distribution of Kubernetes, I’ve got you covered.
Follow the steps in Section 3.4 (Local Development with Kubernetes) to get
your kubectl command connected to a local cluster instead, then come back
to Section 3.2.3 on Deploying to Kubernetes and continue. Just note that
when you go to deploy your own locally built container image, there are
some considerations that are outlined in Section 3.4 to ensure Kubernetes can
find your image, and the way you access any services you create will be
different (also outlined in that section) due to the lack of public load
balancers.

At the end of the day, all you need to run just about every sample in this book
is a Kubernetes cluster hosted somewhere, and the Kubernetes command line



tool known as kubectl[1] authenticated to use that cluster, which any getting
started guide should get you. The next two steps use Google Cloud, but I’ll
also include some instructions along the way on how to substitute the
platform of your choice.

Google Kubernetes Engine

Google Kubernetes Engine (GKE) was the first Kubernetes product to market
and is a popular choice for trying out Kubernetes due to its maturity and ease
of use. I work on the GKE team, and this is the platform that I know best, so
it’s the one I’ll be using for the few places in this book where there are
platform-specific requirements.

I’ve written this book to be applicable anywhere you find Kubernetes, and I
expect that it will be useful for learning Kubernetes whether you’re using
GKE, OpenShift, AKS (Azure Kubernetes Engine), EKS (Elastic Kubernetes
Service), or any one of the other Kubernetes platforms and distributions out
there. There are a few places where the platform plays a role (like now, when
creating a cluster), and in those instances I’ll demonstrate the action with
instructions for GKE, but I’ll also be providing pointers on how to find the
equivalents on other platforms.

Creating a Kubernetes Cluster on Any Cloud

All you need to run the examples in this chapter after this setup section is the
kubectl tool authenticated to the Kubernetes cluster of your choice. Creating
and authenticating kubectl is the goal, and as you will see for GKE this can
be done with two commands. You can substitute those commands for the
equivalent cluster creation and authentication for the platform of your choice.

To run the following examples on any provider, follow the cluster creation
guide for the provider of your choice, then continue to the section “Uploading
Your Container”. Uploading containers is also another provider-specific
action, but I’ve got you covered with some general tips there on how to get
that done on any platform.

To start with GKE, you’ll need a Google Account (if you have a @gmail.com



address, then you have a Google Account). Head over to
https://console.cloud.google.com/, select your account, and review the terms.
Activate your free trial if you have not already, or add billing info so you can
run these samples (again, if you wish to run the samples locally, you can
instead follow the steps in section 3.4 to get a local-only cluster).

With your account set up, head over to Kubernetes Engine in the console
(direct link: https://console.cloud.google.com/kubernetes), and create a
cluster. I recommend Autopilot mode, which takes care of the provisioning
and management of nodes for you. With Autopilot, you can set a name, pick
a region (as I’ve done in Figure 3.8), and leave the networking and advanced
settings as the default.

Figure 3.8 GKE Autopilot’s cluster creation UI



Next, set up the command-line tools. You’ll need the cloud provider CLI (in
this case gcloud) to perform cluster operations like creating, and connecting



to it, and kubectl for interacting with the Kubernetes API. Download the
gcloud SDK at https://cloud.google.com/sdk/install and follow the
installation instructions.

Once installed, run the gcloud init command to login. If you have more
than one Google Account, be sure to select the same account that you created
the cluster in earlier.

gcloud init

The Kubernetes CLI, kubectl, can be installed stand-alone (following the
instructions at https://kubernetes.io/docs/tasks/tools/) or via gcloud. It
doesn’t matter how you install it, but since this example uses gcloud, we can
conveniently use it to install kubectl like so:

gcloud components install kubectl

Once the cluster is ready and gcloud is configured, tap “Connect” in the UI,
and copy and the gcloud command provided (as seen in Figure 3.9) into your
shell to authenticate kubectl. That command will look like this:

gcloud container clusters get-credentials $CLUSTER_NAME --region REGION --project $PROJECT_NAME

Figure 3.9 GKE’s cluster connection UI



That command is the glue between the Google Cloud world and the



Kubernetes one, and authenticates the kubectl CLI with the right credentials
to be able to access your GKE cluster.

Creating Clusters in the CLI

Rather than using the UI, you can do both the creation and connection steps
from the command line like so:

CLUSTER_NAME=my-cluster

REGION=us-west1

gcloud container clusters create-auto $CLUSTER_NAME --region $REGION

gcloud container clusters get-credentials $CLUSTER_NAME --region $REGION

With your cluster created, and kubectl authenticated, you’re ready to get
going with your first application! To make sure everything is working, run
kubectl get pods. It should state that there are no resources (since we’ve
yet to deploy any Pods).

$ kubectl get pods

No resources found in default namespace.

If you get an error, it is likely that your cluster wasn’t created or
authenticated correctly – try repeating the above steps, or lookup the error
message.

3.2.2 Uploading your Container

Till now, the containers we’ve created have been stored and run locally on
your machine. Before you can deploy the container into Kubernetes running
in the cloud, you’ll need to upload your container image to a container
registry. This is simply a place that stores the container image data, and
provides a way for Kubernetes to fetch the image. Most registries support
options for public images that anyone can use (like for open source projects
and samples for a book), or private images which require authentication
(which you will use for your own proprietary applications).

If you prefer, you can skip this step and use the publicly available image
referenced by the examples below, but I’d recommend to build and upload
your own container to use, so you can deploy your own applications when the



time comes.

When choosing a container registry to use, DockerHub is a popular choice,
particularly when it comes to public container images. This includes the base
images (like the ones we used in the previous chapter), open source software
like MariaDB, or perhaps your own software and demos you wish to share
with the world. You can also access private container images from
DockerHub (and other registries) from any Kubernetes platform, with a bit of
extra configuration to set up the credentials.

The default choice for most users who wish to keep their images private is to
use the container registry of your cloud provider, as this generally gives you
efficiencies in terms of image pull time, reduced network data costs, and
simpler authentication. For Google Cloud, that’s Artifact Registry, on AWS
it’s Amazon Elastic Container Registry, on Azure it’s Azure Container
Registry, and so on.

Once you have chosen your preferred location, follow these steps to get your
containers uploaded.

Account Setup

To get started, first create an account at your preferred provider if you don’t
have one already, and then create a repository where you’ll be uploading the
images.

For DockerHub, head over to https://hub.docker.com/, sign in, then hit
“Create Repository”.

For Artifact Registry, go to https://console.cloud.google.com/artifacts, and
create a new Repository of type Docker in your desired location. Make a note
of the path that is generated, which will look something like us-
docker.pkg.dev/my-project/my-repository.

Authenticate

Next, you want to authenticate the docker command-line tool so it can



upload images to your freshly created repository. Follow the instructions for
your container registry to authenticate the docker command-line tool.

To do this DockerHub, you would run:

docker login

For Artifact Registry, recall the path of the repository you created earlier.
Take the host portion of that path, for example us-docker.pkg.dev, and run
the following command to install a credential helper to the docker tool so you
can upload images there. You can run this multiple times, for each separate
host you use.

HOST_NAME=us-docker.pkg.dev

gcloud auth configure-docker $HOST_NAME

Authenticate Docker with Any Cloud

Authenticating Docker with the Cloud of your choice is typically an easy
operation: just find the equivalent command to configure docker with the
needed credentials. The search query “authenticate docker with [your cloud
provider] container registry” should do the trick!

Tag

When you build images, they are assigned a random hash-based name, like
82ca16cefe84. Generally, it is a good idea to add your own tag that is
somewhat meaningful so you can easily refer to your own images. In the
previous chapter, we used these tags so we could run our images locally
using nice names like docker run timeserver instead of docker run
82ca16cefe84.

When you upload containers into container registries, the tag takes on an
additional meaning. You are required to tag the image with a name that
follows a specific path convention dictated by the container registry in order
for it to know which account and path to store the image in (and so that your
local docker client knows which registry to upload it to). Tagging your image
with a simple name like “timeserver” won’t work when you’re uploading to



these repositories.

DockerHub uses the following convention:

docker.io/$USERNAME/$REPOSITORY_NAME:$VERSION_TAG

Where $USERNAME is your docker username, and $REPOSITORY_NAME is the
name of the repository you created in DockerHub, and the version tag is an
arbitrary string (typically including a number). Putting it together, in my own
case where my username is “wdenniss” and my repository is “timeserver”,
the string I get is docker.io/wdenniss/timeserver:1.

The Version Tag

The version tag is an unstructured string used to refer to the version of the
image. The convention is to use the version number (potentially constructed
as major.minor.patch) and optionally with a suffix, for example 2, 2.1,
2.1.5, 2.1.5-beta, etc. A special version tag latest can be used to refer to
the most recent image when running containers, but don’t use latest when
tagging the images for upload, as it’s is applied automatically by the
container repository.

Each repository has its own format. For Google Cloud’s Artifact Registry, the
format consists of the following construction:

<pre class="codea">$LOCATION-docker.pkg.dev/$PROJECT_ID/$REPOSITORY_NAME/$IMAGE_NAME:<a id="id_Hlk50652040" href="">$VERSION_TAG</a>

</pre>

After you create the Artifact Registry repository in the UI console, you
should see the first potion of this string displayed, for example us-
docker.pkg.dev/wdenniss/ts, which you can copy (or you can build the
string using the formula above). To this prefix, append any image name and
tag that you like, such as timeserver:1. Put it together, and you’ll get
something which for me looks like the following us-
docker.pkg.dev/wdenniss/ts/timeserver:1.

Container Registry Tag Conventions

Every private container registry has its own magic string concatenation that
you need to do to create the right tag, and they’re all different. For example



Azure provides the following example[2]
: <acrLoginServer>/hello-

world:v1, and AWS documents[3] <aws_account_id>.dkr.ecr.
<region>.amazonaws.com/my-web-app. One thing I’m sure about: make sure
you follow the guidelines of whatever container registry you’re using,
otherwise Kubernetes won’t know where to push the image. The search term
I use is “[cloud provider] registry container tag name”

Once you’ve worked out the right image tag to use (which we’ll refer to as
$IMAGE_TAG in the remaining examples), you can go and tag any existing
docker image for uploading. To upload one of the images we built in the
earlier chapter to a container registry, you can reference the image from its
previous tag and add a container registry tag (images can have multiple tags).
Our example in section 2.2 was built with docker build . -t timeserver,
so this image has the tag timeserver already, which means we can re-tag it
for the container registry like so:

IMAGE_TAG=us-docker.pkg.dev/wdenniss/ts/timeserver:1

docker tag timeserver $IMAGE_TAG

You can view the resulting list of images like so:

$ docker images

REPOSITORY                           TAG    IMAGE ID    CREATED 

timeserver                                 latest    c07e34564aa0   2 minutes ago

us-docker.pkg.dev/wdenniss/ts/timeserver 1      c07e34564aa0  2 minutes ago

python                             3.10      cf0643aafe49  1 days ago

You can also look up existing images and tag them based on Image ID
(docker tag $IMAGE_ID $IMAGE_TAG), but I suggest tagging when you build
to avoid confusion. In fact, I generally find it quicker to simply rebuild the
image than try to find the right one tag after the fact.

To build and tag the sample container, replace $IMAGE_TAG with your own
repository image name, and from the root sample directory run:

IMAGE_TAG=us-docker.pkg.dev/wdenniss/ts/timeserver:1

cd Chapter02/timeserver

docker build . -t $IMAGE_TAG

Push

Once our repositor is set up, docker is authenticated and our image tagged,



you can push the image to the repository with:

docker push $IMAGE_TAG

The previous authentication step installed a helper into the docker
configuration which enables Docker to speak with your cloud’s container
registry, whatever that may be. If you get a “permission denied” error, either
you didn’t authenticate docker correctly, or your image tag string
construction is wrong. Verify that you authenticated docker to the appropriate
repository, and set the correct image tag. Refer to the up to date docs for your
chosen container registry for guidance.

If it goes well, you should see output like the following. Pay particular
attention to the last line, which is where any authentication errors will be
displayed.

$ docker push $IMAGE_TAG

The push refers to repository [us-docker.pkg.dev/wdenniss/ts/timeserver]

9ab1337ca015: Pushed

3eaafa0b4285: Layer already exists

a6a5635d5171: Layer already exists

8c25977a7f15: Layer already exists

1cad4dc57058: Layer already exists

4ff8844d474a: Layer already exists

b77487480ddb: Layer already exists

cd247c0fb37b: Layer already exists

cfdd5c3bd77e: Layer already exists

870a241bfebd: Layer already exists

1: digest: sha256:edb99776ae47b1b16257f6743525a00fcc4f86c354c43a61397f7a9f1864afe7 size: 2425

Once the image has been uploaded, you’re now ready to deploy your code
into Kubernetes!

3.2.3 Deploying to Kubernetes

With a cluster created, and kubectl authenticated, we can deploy our first
application. To do this, we’ll create an aptly named Deployment object.
Kubernetes uses declarative configuration, where you declare the state you
want (like “I want 3 copies of my container running in the cluster”) in a
configuration file, then submit that config to the cluster, and Kubernetes will
strive to meet the requirements you specified.



For the configuration file, most developers use YAML as it’s easier to edit
manually. JSON is another option (primarily used with automated access),
and some configuration can be created imperatively (covered later in section
3.3). Here’s a minimal Deployment specification for the Timeserver
application from Chapter 2. It references a public container image built from
the included sample app which I have uploaded to DockerHub. If you have
your own image, such as one pushed to a container repository in the previous
section, edit this file and replace my image with yours.

Listing 3.1 DeployingToKubernetes/deploy.yaml

apiVersion: apps/v1

kind: Deployment

metadata:

  name: timeserver

spec:

  replicas: 3 #A

  selector:

    matchLabels:

      pod: timeserver-pod

  template:

    metadata:

      labels:

        pod: timeserver-pod

    spec:

      containers:

      - name: timeserver-container

        image: docker.io/wdenniss/timeserver:1 #B

This manifest will create three replicas of our container. Later we’ll see how
to configure a load balancer to split incoming requests over these three
running instances. In this example of a minimalist deployment config, the
three most important lines are the name, which is needed to inspect, modify
and delete the deployment, the replica count and the container name. The rest
is basically glue to make it all work (don’t worry, I’ll explain how the glue
works as well).

The container image path is like a URL that references where to find the
container. If you uploaded your container following the previous section, you
already have this image path from that step. My container image with the
docker.io prefix is available on DockerHub, a popular place to host public



images including base images. One thing to note is that if you ever see an
image path without a domain, like ubuntu, or wdenniss/timeserver, it’s
simply shorthand for images hosted on DockerHub.

So that’s the deployment, let’s go and create it in the cluster. From the root
sample directory, run:

cd Chapter03/3.2_DeployingToKubernetes/

kubectl create -f deploy.yaml

This instructs Kubernetes to create the object defined by the configuration
file. If you need to make changes once it’s deployed (like changing the image
version), you can make your changes locally, and update the deployment in
the cluster with:

kubectl apply -f deploy.yaml

To observe the state of the deployment, run:

$ kubectl get deploy

NAME         READY   UP-TO-DATE   AVAILABLE   AGE

timeserver   3/3     3            3           36s

This shows the state of the deployment. As mentioned earlier, the deployment
is declarative statement of your desired requirements, for example, “3
replicas of this Pod”. When you created the deployment and the system
returned a success response, this simply means that it accepted your
deployment for scheduling—not that it had completed scheduling in the
manner you desired. Querying the deployment with get will show you the
current status such as how many of the Pods are ready to serve traffic (the
number in the “Ready” column), and later when you update the deployment,
how many of the pods are running the latest version during a roll out of a new
version (the number in the “up to date” column).

To see more detail about the Pods which form your deployment, you can also
query the Pods themselves:

$ kubectl get pods

NAME                          READY   STATUS    RESTARTS   AGE

timeserver-6df7df9cbb-7g4tx   1/1     Running   0          68s

timeserver-6df7df9cbb-kjg4d   1/1     Running   0          68s

timeserver-6df7df9cbb-lfq6w   1/1     Running   0          68s



Pending Pods

If Pods show pending here, it may mean that your cluster doesn’t have
enough resources. In the case of a dynamically provisioned environment,
simply waiting a minute or so is generally enough to see them scheduled. If
they stay in Pending, review the “Stuck in Pending’ advice below.

The kubectl get pods command returns the state of all pods in the active
namespace, so once you have a lot of deployments, this might get a big
jumbled. Instead, you can use a more verbose form where you pass the
deployment’s label (discussed earlier in this chapter) as a selector. Here’s a
complete example, using the label of our earlier example deployment.

$ kubectl get pods --selector=pod=timeserver-pod

NAME                          READY   STATUS    RESTARTS   AGE

timeserver-6df7df9cbb-7g4tx   1/1     Running   0          2m13s

timeserver-6df7df9cbb-kjg4d   1/1     Running   0          2m13s

timeserver-6df7df9cbb-lfq6w   1/1     Running   0          2m13s

Once the Pod is “Running” we can interact with it! To connect to our fresh
deployment and visit the server that we deployed before creating a public IP,
we can simply forward a port from our local machine to the containers like
so:

$ kubectl port-forward deploy/timeserver 8080:80

Forwarding from 127.0.0.1:8080 -> 80

Forwarding from [::1]:8080 -> 80

This allows you to interact with the deployment from localhost, by browsing
to http://localhost:8080. As you try out the containerized application, you can
watch the log output in a new shell like so:

$ kubectl logs -f deploy/timeserver

Found 3 pods, using pod/timeserver-8bbb895dc-kgl8l

Listening on 0.0.0.0:80

127.0.0.1 - - [09:59:08] "GET / HTTP/1.1" 200 -

The logs command, using the “-f” (follow) param, will stream the logs from
one of the pods in the deployment. It’s a good idea to log a statement to
stdout in your own apps, as was done here with the “Listening on 0.0.0.0:80”,
so that you can be assured the container really did start as expected.



Troubleshooting

Most actions you take in Kubernetes are not instant. Creating a Pod takes
time, to provision new compute capacity (depending on what Kubernetes
platform you are using), download the container from the container registry,
and boot your container. If everything goes well, you should have running
containers in a couple of minutes.

When things have succeeded, the Pods from your deployment will report a
status (when queried with kubectl get pods) of “Running”. You may see
other statuses like “Pending” while it is waiting for capacity, and
“ContainerCreating” once the container has been scheduled to your nodes
and is booting. Confusing matters is that sometimes a Pod can get stuck in
“Pending”—it’s a bit of an ambiguous state—and there can be other errors.
What follows is a list of common situations.

Image Pull Error (ErrImagePull / ErrImagePullBackoff)

This error means that Kubernetes was unable to download the container
image. This typically means that either the image name was misspelt in your
configuration, the image doesn’t exist in the image repository, or your cluster
doesn’t have the required credentials to access the repository.

Check the spelling of your image, and verify that the image is in your
repository. For a quick fix just to get the Deployment running, try a public
container image like the one I’ve provided. Any fixes you make to your
Deployment configuration can be applied using kubectl apply –f
deploy.yaml.

Stuck in Pending

If you see a pod stuck in the “Pending” state for more than a minute or so, it
typically means that the Kubernetes scheduler is unable to find space on your
cluster to deploy the images to. Often this can be resolved by adding
additional resources to your cluster, like an extra or larger compute node.

You can see the details of the pending Pod by “describing” it, as follows:



kubectl get pods

kubectl describe pod $POD_NAME

Where $POD_NAME is one of the pods in the pending state. The “Events”
section contains a list of any errors that Kubernetes has encountered. If you
attempted to schedule a deployment and there were no resources available,
you’ll see a warning like “FailedScheduling”. Here’s the complete events
section for a Pod that I attempted to schedule, but where there were not
enough resources:

Events:

  Type     Reason            Age                From               Message

  ----     ------            ----               ----               -------

  Warning  FailedScheduling  26s (x2 over 26s)  default-scheduler  0/2 nodes are available: 2 Insufficient cpu.

As long as at least one of your Pods is in the ”Running” state, you don’t need
to worry for now, as your service should still run as long as there exists one
Pod to answer requests, but if they are all pending, you’ll need to take action
—likely by adding more compute resources.

Crashing (CrashLoopBackOff)

Another common error is a crashing container. There can be various reasons
for a crashing container, including that the container failed to start (possibly
due to a configuration error, for example), or that the container crashes soon
after starting.

For the purposes of Kubernetes deployments, a “crash” is any process that
terminates, even one that terminates with a success exit code. Deployments
are designed for long-running processes, not once-off tasks (Kubernetes does
have a way to represent a Pod that should be scheduled to run as a once-off
task, and that is the Job type, covered in a later chapter).

The occasional crash of a container in a Deployment-managed Pod like the
ones we are deploying here is handled gracefully, by restarting it. In fact,
when you run kubectl get pods, you can see how many times a container
has been restarted. You can have a container that crashes every hour, and as
far as Kubernetes is concerned that’s totally fine; it will keep restarting it and
it will go on its merry way.



A container that crashes either instantly at boot or quickly after, however, is
put into an exponential backoff loop, where rather than continuing to restart it
continuously (consuming the resources of the system), Kubernetes introduces
is a delay between restart attempts that increases exponentially (i.e. 10s, then
20s, 40s, etc).

When a container crashes the first time it will have a status like
RunContainerError (for a container that errored at start), or Completed for
one that exited. Once the crash has been repeated a couple of times, the status
will move to CrashLoopBackOff. The chances are, any container in the
CrashLoopBackOff state has an issue that needs your attention. One
possibility is that the container may exit when an external dependency (like a
database) is not being met, in which case you should ensure that the external
service is running and can be connected to.

To debug crashed containers, I’d always start with kubectl describe pod
$POD_NAME like the earlier issues to view the events for clues there. The
container’s logs are another good place to check. As described earlier, you
can retrieve these with kubectl logs -f $POD_NAME. When dealing with
crashing containers you may wish to view the logs from the prior
instantiation of the container (before it was restarted after crashing), so as to
see any error printed when it crashed, as this often will indicate the cause. To
do that, add --previous (or just -p), to your log request.

kubectl logs -p $POD_NAME

3.2.4 The Podspec

It’s worth taking a moment to understand how the Deployment object is
composed, since it actually encapsulates a Pod object which has its own
specification. This is a pattern you will see repeated with other higher order
workload types in Kubernetes like Job. It’s also relevant because the way that
we expose the Deployment in a Service is actually by referencing the Pods,
and not the Deployment.

When you create a Deployment of three replicas, what is actually happening
is that you are instructing the Kubernetes Deployment controller to create and
manage three Pods. The Deployment manages the lifecycle of these pods,



including replacing them with newer versions when you update the
Deployment with a new container, and rescheduling Pods that get evicted due
to planned or unplanned maintenance events. Figure 3.10 has a visual
breakdown of this object composition.

Figure 3.10 Pod object embedded in the Deployment object





The Pod object template is referred to throughout the Kubernetes
documentation as the Podspec. You can actually yank it out and run it by
itself. To do so, you’ll need to construct a new header specifying that this
object is of kind “Pod” rather than “Deployment”; then you can copy the
entire YAML under “template” into the root of the config. Like so.

Listing 3.2 ThePodspec/pod.yaml

apiVersion: v1

kind: Pod

metadata:

  name: timeserver

  labels:

    pod: timeserver-pod

spec:

  containers:

    - name: timeserver-container

      image: docker.io/wdenniss/timeserver:1

You can go ahead and create this Pod directly. Such pods are “unmanaged”
by any Kubernetes controller. They will be rebooted if they crash, but if they
are evicted due to causes such as an upgrade event or node failure, they won’t
be rescheduled. That’s why typically you won’t schedule the Pod directly, but
rather will use a higher-order object like a Deployment, or (as we’ll see in the
later chapters) StatefulSet, Job and others.

The Universal Podspec

One of the key takeaways of this object composition in Kubernetes is that
every time you see a Podspec in an object like a deployment, know that it
carries all the capabilities of a Pod. That means you can look at the document
for Pod, and use any of the values within the pod template of the managed
object.

The Podspec includes key information about your application, including the
container or containers that comprises it. Each of these containers has its own
name (so you can reference the individual containers in a multi-container
pod), as well as the most important field: the container image path. There are
a lot of optional fields as well, including some important ones to specify



health checks and resource requirements, which are covered in the coming
chapters.

There are some seemingly repetitive labels in the Deployment and its
embedded Podspec. The Deployment’s spec has a “selector -> matchLabels”
section, and the Pod spec has a “metadata -> labels” section, both containing
the same key value pair “pod: timeserver-pod”. So, what’s going on here?

Well, since the Pod object actually exists somewhat separately after creation
(it is created as a separate object that is managed by the Deployment), we
need a way to reference it. Kubernetes solves this by giving the pod a label
(which is an arbitrary key/value pair), and then we reference (select) that
same label from the Deployment. This is essentially the glue that binds the
two objects together. It’s easier to visualize in a diagram, so see figure 3.11.

Figure 3.11 Relationship of the Deployment’s selector, and the Pod template’s labels





This may seem unnecessary, after all: can’t Kubernetes do this object linking
for us, since the Podspec is embedded in the Deployment? The reason why
developers need to specify these labels manually is that you may reference
the Pods which the Deployment manages directly using these labels through
other systems. For example, in the next section where we configure a
network Service, it references the pods directly, not the Deployment. The
same is true for other concepts covered later in the book such as a Pod
Disruption Budget. By specifying the label for your Pods, you will know
what label to reference in these other systems. The Pod is the fundamental
execution and scheduling unit in Kubernetes, and the Deployment is just one
of many ways to create, manage, interact with Pods.

As for the key value label itself, it’s completely arbitrary. You can use “foo:
bar” for all Kubernetes cares. I used “pod: timeserver-pod”, as I find it reads
well when selecting Pods in other objects. A lot of documentation uses
something like “app: timeserver”. I have avoided repeating the name of the
deployment (“timeserver”) as the value of this label to avoid the
misconception that the name of the Deployment has anything to do with the
Pod label (since it doesn’t).

So that’s how the Deployment object is constructed with an embedded
Podspec. I hope it’s useful to understand this object composition, and how
the Pod is referenced. In the next section we’ll be exposing this Deployment
to the world, which will reference the Pod by its labels.

3.2.5 Publishing your Service

With your container successfully deployed, no doubt you’ll want to interact
with it!

Each Pod is given its own cluster-local (internal) IP address which other Pods
can use to communicate. It’s possible to expose Pods directly on the internet
as well (with the field “hostPort”), but unless you’re writing a real-time game
server, that’s rarely what you’ll do. Typically, and especially when
Deployment is used, you will aggregate your Pods into a Service, which
provides a single access point with an internal (and optionally external) IP,



and will load balance requests across your pods. Even if you had a
Deployment of a single Pod, you’ll still want to create a Service to provide a
stable address.

In addition to load balancing, Services keep track of which Pods are running
and capable of receiving traffic. For example, while you may have specified
three replicas in your Deployment, that doesn’t mean that three replicas will
be available at all times. There might only be two if a node is being upgraded,
or there could be more than three while you’re rolling out a new version of
your Deployment. The Service takes care of this, and will only route traffic to
running Pods (in the next chapter, we’ll cover some key information you
need to provide to make that work smoothly).

Services are used internally within the cluster to enable communication
between multiple applications (a so-called microservice architecture), and
offer convenient features such as service discovery for this purpose. This is
covered in detail in Chapter 7. For now, let’s focus on using a Service to
expose your new application to the internet by specifying a “LoadBalancer”
type service, to get it in the hands of end-users.

As with the deployment we’ll start with a skeleton YAML configuration:

Listing 3.3 DeployingToKubernetes/service.yaml

apiVersion: v1

kind: Service

metadata:

  name: timeserver

spec:

  selector: #A

    pod: timeserver-pod #A

  ports:

  - port: 80 #B

    targetPort: 80 #C

    protocol: TCP #D

  type: LoadBalancer #E

The port list allows you configure which port to expose for users of the
Service (port), and what port of the Pod that this traffic will be sent to
(targetPort). This allows you to, say, expose a service on port 80 (the



default HTTP port), and connect it to an application in a container running on
port 8080.

Each Pod and Service in Kubernetes has its own internal cluster IP, so you
don’t need to worry about port conflicts between Pods. This means that you
can run your application on whatever port you like (such as port 80 for a
HTTP service), and use the same number for port, and targetPort for
simplicity, as with the example above. If you do this, you can omit
targetPort completely as the default is to use the port value.

All Services are given an internal, cluster-local IP address which Pods in the
cluster can use. If you specify “type: LoadBalancer” as above, then an
external IP address will be provisioned in addition.

Notice also that this service has a section named “selector”, like our
Deployment had. The Service doesn’t reference the Deployment, and actually
has no knowledge of the Deployment at all. Instead, if references the set of
Pods that all have that label (which in this case will be the Pods created by
our Deployment). Once again, it’s easier to visualize so see Figure 3.12.

Figure 3.12 Relationship between the Service and the Pods it targets (selects)





Unlike in the Deployment object, the “selector’ section has no “matchLabels”
sub-section. They are, however, equivalent. Deployment is just using a
newer, more expressive syntax in Kubernetes, but as used here, the selectors
in the Deployment and in the Service are achieving the same result:
specifying the set of pods that the object is referencing.

Create the Service object on your cluster with:

cd Chapter03/3.2_DeployingToKubernetes

kubectl create -f service.yaml

Notice how the creation command (kubectl create) is the same for the
Deployment as the Service. All Kubernetes objects can be created, read,
updated, and deleted (so-called CRUD operations) with four kubectl
commands: kubectl create, kubectl get, kubectl apply and kubectl
delete.

To see the status of your Service, you can call kubectl get on the object
type, like so:

$ kubectl get service

NAME         TYPE           CLUSTER-IP     EXTERNAL-IP    PORT(S)        AGE

kubernetes   ClusterIP      10.22.128.1    <none>         443/TCP        1h

timeserver   LoadBalancer   10.22.129.13   203.0.113.16   80:30701/TCP   26m

Notice that your service is there (in this example, timeserver), as well as
another service named kubernetes. You can ignore the kubernetes service if
one is shown, as that’s the Kubernetes API service itself running in your
cluster. You can also specify just the service you’re interested in with
kubectl get service $SERVICE_NAME.

If the “External IP” in the output indicates “Pending”, this just means it’s
waiting for the Load Balancer to come online. It’s common for this to take a
minute or two, so no need to rush to debug why it’s Pending unless it’s been
that way for a while. Rather than repeating the above “get” command
repeatedly, you can stream any changes to the status by adding the --watch/-
w flag, i.e.: kubectl get service -w. Run that command, and within a
couple of minutes, you should see output indicating that your service now has



an external IP.

Note that to have an external IP provisioned, you must be running Kubernetes
on a cloud provider, as the provider is provisioning an externally routable
network load balancer behind the scenes. If you’re developing locally, see
section 3.4.3 on how to connect using tools like kubectl port-forward.

Once the IP comes online, try accessing the service by visiting the URL. In
this example our external IP was http://203.0.113.16 (but replace with your
own external IP from kubectl get service!). Curl is great for testing
HTTP requests from the command line (curl http://203.0.113.16);
viewing it in a browser works just as well, too.

$ curl http://203.0.113.16

The time is 7:01 PM, UTC.

Troubleshooting

Unable to connect

Two common reasons for this: 1) the selector is incorrect, or 2) your ports are
wrong. Triple check that the selector matches the labels in your deployment’s
Pod template. Verify that the target port is indeed the port your container is
listening on (a boot-time debug message in the container printing the port can
be a good idea to help verify this), and that you’re connecting to the right port
from your browser.

See if you can connect to one of your Pods directly on the targetPort using
kubectl’s port forwarding capability. If you can’t connect to the Pod directly,
then the issue is likely with the Pod, and if it does work then the issue could
be an incorrect Service definition. You can set up a port forward to one of the
Pods in the deployment like so:

kubectl port-forward deploy/$DEPLOYMENT_NAME $FROM_PORT:$TO_PORT

Where FROM_PORT is the port you’ll use locally, and $TO_PORT is the targetPort that you defined in your service. Using our example earlier, this would be:

kubectl port-forward deploy/timeserver 8080:80

Then browse to http://localhost:8080. This will select one of the Pods in the
deployment automatically (bypassing the Service). You can also specify a



specific pod to connect to directly with:

kubectl port-forward pod/$POD_NAME $FROM_PORT:$TO_PORT

External IP stuck in pending

It can take a little while to get an external IP, so give it a few minutes. Verify
that your cloud provider will provision external IPs for Services of type
LoadBalanacer. Check the provider’s documentation for any additional
information around setting up load balancers in Kubernetes.

If you’re running locally, or just want to try out the service without waiting
for the External IP, you can forward a port on your machine to the service
like so:

kubectl port-forward service/$SERVICE_NAME $FROM_PORT:$TO_PORT

3.2.6 Interacting with the Deployment

Running one-off commands

Just as we can run one-off commands on the docker image using the docker
exec command (covered in Chapter 2), we can also run one-off commands on
our Pods with kubectl exec. A common command used to diagnose issues
in the container is sh which will give you an interactive shell on the container
(provided that sh is available in the container), and from there you can
perform whatever other debugging steps you need to do inside the container.

Technically exec is run against a pod, but we can specify the deployment
instead of a specific pod, and kubectl will select one pod at random to run
the command on.

$ kubectl exec -it deploy/timeserver -- sh

# echo "Testing exec"

Testing exec

You can run any command on the container in this way, for example

$ kubectl exec -it deploy/timeserver -- echo "Testing exec"

Testing exec



Copying files to/from the container

Again, similar to docker, kubectl has a cp command allowing you to copy
files between your system and the container. This command requires that the
tar binary be present in your container image. This can be useful when you
want to download your application logs or other diagnostic information.

kubectl cp $POD_NAME:/path/to/file .

You can also copy files in the other direction.

kubectl cp $FILE $POD_NAME:/path/

3.2.7 Updating your Application

Now that your application has been deployed and published to the world, no
doubt you’ll want to be able to update it!

Make a code change to the sample app, then build and push the container
image to the container repository, with a new version tag. For example, if you
used us-docker.pkg.dev/wdenniss/ts/timeserver:1 before, your new
image could be us-docker.pkg.dev/wdenniss/ts/timeserver:2. You can
make this label anything you like, but it’s a good convention to use version
numbers.

Once the container image has been pushed to the repository (as we did in
section 3.2.2), update your deploy.yaml file with the new image name.

For example (emphasis added):

apiVersion: apps/v1

kind: Deployment

metadata:

  name: timeserver

spec:

  replicas: 3

  selector:

    matchLabels:

      pod: timeserver-pod

  template:

    metadata:

      labels:

        pod: timeserver-pod

    spec:



      containers:

      - name: timeserver-container

        image: docker.io/wdenniss/timeserver:2 #A

Save the file, and apply the change to your cluster with:

$ kubectl apply -f deploy.yaml 

deployment.apps/timeserver configured

When you apply this change, an interesting thing happens. Remember how
Kubernetes seeks constantly to actuate your requirements, driving the state it
observes in the system to the state you required? Well, since you just
declared that the deployment is now using the image with the version tag 2,
and all the Pods are currently tagged 1, Kubernetes will seek to update the
live state so that all Pods are the current version.

We can see this in action by running kubectl get deploy. Here’s some
example output:

$ kubectl get deploy

NAME         READY   UP-TO-DATE   AVAILABLE   AGE

timeserver   3/3     1            3           10m

The “READY” column shows how many pods of the are serving traffic, and
how many we requested. In this case, we have all 3 that are ready. The “UP-
TO-DATE” column, however, indicates that only 1 of these Pods are the
current version. This is because, rather than replacing all the pods at once,
something that would cause some downtime to the application, by default
pods are updated with a so-called rolling update strategy, that is, one or
several at a time.

Rolling update and other rollout strategies are covered in detail in the next
chapter, as well as important health checks that need to be configured to
avoid glitches during the rollout. For now it’s enough to know that
Kubernetes will actuate your changes and will replace the old v1 pods with
the new v2 ones.

Once the “UP-TO-DATE” count is equal to the ready count, the rollout is
complete. You can also observe the individual pods being created and
replaced with kubectl get pods, which will show a list of all Pods in the



deployment, both new and old.

Monitoring The Rollout

Since the output of the kubectl get commands displays the moment-in-time
information, but the deployment is continuously changing, most operators
will monitor the deployment in an automated way, avoiding the need to
constantly re-run the same command.

Kubernetes includes one such option, the --watch/-w flag, which can be
added to most kubectl commands. For example, kubectl get pods -w, and
kubectl get deploy -w. When watch is specified, any changes to the status
will be streamed to the console output.

The disadvantage of the watch flag is that it kind of jumbles the output. If
you have many pods changing, you’ll see line after line printed and it’s easy
to lose sight of the current state of the system. My preference is to use the
Linux watch command instead. Unlike the watch flag, the watch command
refreshes the entire output, optionally showing you what changed between the
current and the last update. This command is available in most Linux distros,
macOS, and the Windows Subsystem for Linux (WSL), and can be found
wherever you get your packages.

When watch is installed, you can simply prepend it to any kubectl command,
e.g.:

watch kubectl get deploy

My favorite watch flag is -d, which will highlight any changes, i.e.:

watch -d kubectl get deploy

With a terminal window (or tmux session window) opened for watching each
command you can put together a real-time status dashboard with just kubectl.

Watching the deployment

The kubectl get deploy and kubectl get pods commands above return all
deployments and pods, respectively, in the current cluster namespace. As you
make more deployments, you may want to specify just the resources you’re



interested in, like so:

kubectl get deploy $DEPLOYMENT_NAME

The name of the object can be found in the “name” field in the metadata
section at the top of the file. Viewing all pods from a single deployment is a
little more tricky; however, you can use the label selector to get the status of a
set of Pods like so:

kubectl get pods --selector=pod=timeserver-pod

Where pod=timeserver-pod is the label selector specified in the deployment.

3.2.8 Cleaning Up

There are a number of ways to clean up the objects we’ve created in this
chapter. You can delete by name. Since our deployment, service, and pod had
the same name, we can do it all at once like so:

$ kubectl delete deploy,service,pod timeserver 

deployment.apps "timeserver" deleted

service "timeserver" deleted

pod "timeserver" deleted

Or you can delete objects by referencing their configuration:

$ cd Chapter03

$ kubectl delete -f 3.2_DeployingToKubernetes                 

deployment.apps "timeserver" deleted

service "timeserver" deleted

$ kubectl delete -f 3.2.4_ThePodSpec

pod "timeserver" deleted

If after deleting, you change your mind, you can simply create them again
(kubectl create -f 3.2_DeployingToKubernetes). That’s the beauty of
capturing your configuration in files: you don’t need to remember any tweaks
you made to the live state, because everything is updated first in the
configuration.

3.3 Declarative Commands

Kubernetes offers two approaches for interacting with the system:



declaratively, where you specify (declare) in configuration files the state that
you want, and apply those configurations to the cluster; and imperatively,
where you instruct the API one command (imperative) at a time to perform
your wishes. The configuration driven declarative model is the approach that
is strongly preferred by most practitioners (including myself), and what
you’ll most often encounter in a workplace.

In fact it’s possible to create a Deployment without our container and expose
it to the internet using purely imperative commands. For completeness, here’s
how you would do that.

Create the Deployment:

$ kubectl create deployment timeserver --image=docker.io/wdenniss/timeserver:1

deployment.apps/timeserver created

Create a Service of type LoadBalancer on Port 80 to expose this service:

$ kubectl expose deployment timeserver --type=LoadBalancer --port 80 

service/timeserver exposed

Observe the result:

$ kubectl get deploy,svc

NAME                         READY   UP-TO-DATE   AVAILABLE   AGE

deployment.apps/timeserver   1/1     1            1           4m49s

 

NAME                 TYPE           CLUSTER-IP      EXTERNAL-IP   PORT(S)        AGE

service/kubernetes   ClusterIP      10.22.128.1     <none>        443/TCP        5m27s

service/timeserver   LoadBalancer   10.22.130.202   <pending>     80:31215/TCP   31s

And to update the container in the deployment with a new version:

$ kubectl set image deployment timeserver timeserver=wdenniss/timeserver:2

deployment.apps/timeserver image updated

This option may look simpler at first brush, when compared to controlling
Kubernetes using configuration files that are, frankly, a little verbose at times.
However, there are good reasons to prefer the configuration-based approach.
The first is reproducibility. Let’s say you need to reproduce the configuration
on another environment like production and staging, which a pretty common
use case. With the declarative approach you can just apply the same exact
config in the new environment (with any needed tweaks). Whereas if you



went the imperative route, you would need to remember the commands,
perhaps storing them in a batch file.

It’s also harder to make changes. With configuration files, if you need to
change a setting you can just update the configuration and re-apply it, after
which Kubernetes will dutifully carry out your wishes. With a command-
based approach, each change is itself a different command: kubectl set
image to change the image, kubectl scale to change the number of replicas,
and so on. You also run the risk that the command could fail, like might
occur due to a network timeout, whereas with configuration the changes will
be picked up the next time you apply them.

Chapter 11 covers taking configuration files and treating them just as you do
the source code for your application, a so-called GitOps or configuration as
code methodology where imperative commands would not be an option at all.

If you encounter a system previously built with imperative commands, fear
not as configuration can be exported from the cluster with kubectl get –o
yaml $RESOURCE_TYPE $RESOURCE_NAME. When exporting configuration like
this from the live cluster, though, there are some extraneous fields you’ll
need to remove. Fortunately, though, it’s never too late to switch, as whether
you use declarative or imperative commands, Kubernetes is still storing the
object in the same way.

3.4 Local Kubernetes Environments

This chapter so far has used a cloud-based Kubernetes provider as the
deployment environment. You can of course run Kubernetes locally as well. I
made the choice to lead with a public cloud provider instead of a local
development cluster to demonstrate deploying on Kubernetes, as I assume for
most the goal is to publish your service and make it accessible beyond your
own machine. Indeed, if you’re following the examples in this chapter in
order, then congratulations: you can now deploy your apps to the world using
Kubernetes! In future chapters you’ll learn how to operationalize them, scale
them up and more.

Local Kubernetes development clusters, however, definitely have their place.



They are useful during development when you want to rapidly deploy and
iterate on code while running in a Kubernetes cluster, particularly when your
application consists of several different services. They’re a great place to try
out and learn Kubernetes constructs without paying for a cloud service and
are a convenient option for testing your deployment configuration locally.

There are a lot of differences using Kubernetes locally on a machine in a non-
production grade environment with a fixed set of resources compared to a
production-grade cloud service with dynamic provisioning. In the cloud you
can scale up massively using multiple machines spread over a geographical
region, while your local machine has a fixed set of resources. In the cloud
you can get a production-grade routable public IP for your service; not so
much on your local machine. Due to these differences and many more, I
believe learning directly in your target product environment is more efficient,
hence the focus in this book on production-grade clusters. That being said, as
long as you understand the differences then a local development cluster can
be a useful tool indeed.

Do you need a Kubernetes cluster for application development?

There’s no requirement to use Kubernetes during application development
just because you use it for production deployment. A fairly common app
development pattern I’ve observed is using Docker Compose (covered in
Section 2.3) for local development and testing, with the resulting application
deployed to Kubernetes for production.

Docker Compose works pretty well for development of apps with only a
handful of inter-service dependencies. The downside is you need to define
the application config twice (once for development with Compose, once for
production in Kubernetes), but this overhead is minor for apps with only a
few service dependencies. The upside is that Docker has some useful tools
for development, in particular, being able to mount local folders into the
container, which means for interpreted languages like Python and Ruby you
can change code without a container rebuild. It’s also simple to configure
since you can skip all the production-related config like replica count and
resource requirements (Chapter 4).

It’s hard to understate the usefulness of Compose being able to mount your



local app folder as a rear/write volume. Edit code without a container rebuild,
get output from commands you run in the container like log files, and
perform database upgrades right in your development folder. Kubernetes
does have some tools like to level the playing field here, like Skaffold, which
gets you a tight development loop with Kubernetes (local or cloud) as the
target, but Docker has a sterling reputation among developers for a reason.

I always say, use the best tool for the job. Decide whether a local Kubernetes
cluster or a Docker Compose setup works best for application development
and use what works for you. Even if you choose to use Compose for
application development, you may still utilize a local Kubernetes cluster for
deployment testing.

There are a bunch of options for running a local Kubernetes cluster. The two
most popular are Docker Desktop and Minikube. In fact, if you have Docker
Desktop installed, then you already have a local single-node Kubernetes
cluster! Minikube, created by the Kubernetes project, is also trivial to set up,
and offers a few more advanced options like multiple nodes, useful when you
want to test more advanced Kubernetes constructs like pod spread policies
and affinity (Chapter 5).

3.4.1 Docker Desktop’s Kubernetes Cluster

Docker Desktop comes with its own single-node Kubernetes development
environment. If you have Docker Desktop installed, then you already have a
local Kubernetes environment. Follow the instructions at
https://docs.docker.com/desktop/kubernetes/ to get going in two simple steps:

1. Enable Kubernetes in Docker Desktop options, and ensure it’s running
2. Using kubectl, switch contexts to the Docker Desktop cluster

Different Flavors of Docker

Be aware that Docker’s local Kubernetes option is packaged with the
“Docker Desktop” product. If you are using Docker via the Docker Engine
install on Linux, it does not have this functionality.

Once Docker Desktop is running with Kubernetes enabled, you can view the



context and switch to it like so:

kubectl config get-contexts

kubectl config use-context docker-desktop

In fact, you can use these commands to switch to any cluster that you
previously connected to, including a cloud service like the one used
previously in this chapter. Any time you wish to switch clusters, simply run:

kubectl config get-contexts

kubectl config use-context $CONTEXT

I find those two commands a bit tedious to type when switching between
clusters a lot, so I highly recommend the kubectx tool
(https://github.com/ahmetb/kubectx) which makes it a lot quicker. To switch
contexts with kubectx:

kubectx

kubectx $CONTEXT

If you have any issues with Docker Desktop, then the “Restart Kubernetes
Cluster” and “Clean / Purge data” options, found in the debug menu, are your
friend.

3.4.2 Minikube

Minikube is another great choice for testing locally and allows you to test
more Kubernetes functionality by providing a multi-node environment. It’s
maintained by the open-source Kubernetes community. Follow the
instructions at https://minikube.sigs.k8s.io/docs/start/ to install Minikube for
your system.

Once installed, to boot a virtual multi-node cluster (which I recommend, as it
more closely resembles a production Kubernetes environment), run minikube
start, and pass the number of nodes you desire like so:

minikube start --nodes 3

The start command will automatically configure kubectl to use the Minikube
context, meaning any kubectl commands will operate on the minikube



cluster. To change the context back to a different cluster, like your production
cluster, use the kubectl config or kubectx commands described in the
previous section.

Once Minikube is running, you can go ahead and use it like a regular
Kubernetes cluster following the instructions in this chapter. Before you start
using it, to verify that things are running as expected, run kubectl get
nodes to check that you can connect to the cluster.

$ kubectl get nodes

NAME           STATUS   ROLES           AGE     VERSION

minikube       Ready    control-plane   4m54s   v1.24.3

minikube-m02   Ready    <none>          4m32s   v1.24.3

minikube-m03   Ready    <none>          3m58s   v1.24.3

If you’re done using Minikube and want to get your machine’s CPU and
memory resources back, run minikube stop. To delete all the data and allow
you to create a new minikube cluster next time with different settings (like a
different node count):

minikube delete

3.4.3 Using your Local Kubernetes Cluster

With kubectl set up to point to your preferred local Kubernetes cluster, you
can deploy your application locally using the same kubectl commands
shown earlier in this chapter. Two important differences, however, will be in
how you expose and access services, and how you reference container images
built locally.

To deploy the sample application from this chapter, from the sample root
directory run:

$ cd Chapter03/3.2_DeployingToKubernetes

$ kubectl create -f .

deployment.apps/timeserver created

service/timeserver created

Benefit of declarative configuration



Throughout this book, the examples are given using declarative configuration
rather than imperative commands. In other words, to create a deployment, we
first create the configuration of the deployment, then apply it, as opposed to
using kubectl to create the deployment directly.

One of the many benefits of this approach is it means you can test out your
configuration locally, then deploy it confidently to production later, without
needing to remember a bunch of one-off commands. Notice how we can
deploy the same configuration files against the local cluster as we did against
the production cluster. Neat!

Accessing the Service

Unlike when developing on a cloud Kubernetes provider, when creating a
LoadBalancer service locally, you won’t get an external IP.

For Docker Desktop, Minikube, and in fact any Kubernetes cluster, you can
also use kubectl to forward ports from your local machine to the Service
inside the cluster. This is useful for testing against a local Kubernetes cluster,
and also debugging your cloud cluster. The following command exposes the
Service locally:

kubectl port-forward service/$SERVICE_NAME $FROM_PORT:$TO_PORT

Where FROM_PORT is the port you’ll access the service on locally, and
TO_PORT is the IP of the Service. For our demo, choosing 8080 as a high level
port, the command can look like:

kubectl port-forward service/timeserver 8080:80

You can then browse to http://localhost:8080 to connect to the service. There
are a range of useful flags[4] for port-forward, including --address
0.0.0.0 to bind to all network interfaces so you can access the forwarded
service from other devices on the network (if your firewall allows it). Port
forwarding is also useful to debug services running on a cloud Kubernetes
service.

Minikube offers an additional way[5] to route traffic to your Service. They



can be accessed with:

minikube service $SERVICE_NAME

For the sample in the earlier section, that would be:

minikube service timeserver

Accessing Kubernetes Services locally from Docker

Are you running a Service in Kubernetes that you want to access directly
from a Docker container running outside of a Kubernetes for some reason,
like if you’re doing some rapid iterating in Docker, and want to access an
established Service in Kubernetes?

The solution is easy. Forward the service so that the port is open on your
local machine as described above. You can then reference it in containers
running directly in Docker using the host host.docker.internal on
whatever port you forwarded. host.docker.internal is how containers can
talk to services on the local machine, and since you forwarded the port to
your local machine the connection can go through.

For example, if you deploy Redis in Kubernetes (see Chapter 9), and forward
the ports like so: kubectl port-forward service/timeserver 6379:6379,
and then want to connect to it from a local container in Docker running
python, using the redis-py library, you can do that like so:
redis.Redis(host='host.docker.internal', port= '6379')

Happy coding!

Deploying Local Images

By default, a local Kubernetes cluster will attempt to pull container images
from the internet—behaving just like a production Kubernetes cluster. For
public images like ubuntu or my sample image
docker.io/wdenniss/timeserver, everything will just work. But for your
own images built locally, you’ll need to supply them to the local cluster. Of
course you could upload them to a public container registry as you would for
production, whereby your local cluster will pull them like in production.



Uploading every image you build during development, however, is a bit of a
hassle. It slows down your development as you wait for the push and pull,
and unless you’re using public images, you’ll need to provision credentials so
your local cluster can access them (a step that is typically done for you when
you’re pulling private images from the container registry of your Kubernetes
provider).

To get your local cluster to use a local image, you need to make two changes
to your Kubernetes deployment configuration. Firstly, add the
imagePullPolicy parameter, set to Never, and secondly refer to your image
using its local image name without any repository prefix.

The path for locally built images is simply their repository and version tag,
with no repository URL prefix. If you’ve built an image with docker build
. -t timeserver as we did in Chapter 2, you would reference this in your
Pod spec as image: timeserver:latest in your config file (using “latest” as
the version tag will give us the most recently built image). Run docker
images to view a list of available local images. Here’s an example of a
deployment referencing this locally built image:

apiVersion: apps/v1

kind: Deployment

metadata:

  name: timeserver

spec:

  replicas: 3

  selector:

    matchLabels:

      pod: timeserver-pod

  template:

    metadata:

      labels:

        pod: timeserver-pod

    spec:

      containers:

      - name: timeserver-container

        image: timeserver:latest #A

        imagePullPolicy: Never #B

Image pull policy



Only apply the imagePullPolicy: Never configuration to images you plan
to provide locally. You don’t want to set this on remote images, as they won’t
be pulled and will error with a ErrImageNeverPull status. If you see that
error, it means the image isn’t available locally yet the deployment was
configured to use a local image.

There is one more step if you’re using Minikube. While Docker Desktop has
access to all the images you built locally with docker, Minikube does not (it
has its own independent container runtime, and doesn’t share images with
your local install of docker). To push local images you want to use into
Minikube. Simply run the following command:

minikube image load $REPOSITORY:$TAG

For example:

minikube image load timeserver:latest

Now then apply your changes with kubectl as before: 

kubectl apply –f deploy.yaml service.yaml

3.5 Summary

A Kubernetes cluster consists of a control plane and nodes on which
your containers are run
You interact with the container via the Kubernetes API, typically with
the command line tool kubectl
To deploy your own application to Kubernetes, first upload the container
image to a container repository
Workloads are specified using objects such as a Deployment, which
encapsulates a Pod, which defines your containers
Services are used to create network endpoints and expose containers to
the internet
Pods are referenced by other objects such as Deployments and Services
with labels
Kubernetes uses declarative configuration, typically YAML formatted
configuration files
You specify your requirements though configuration, and the
Kubernetes controller seeks to actuate and fulfill them continuously
Updating the application is as simple as modifying the configuration
with the new container version and applying the change to the cluster



Kubernetes will compare changes across configuration versions and
actuate any changes specified

[1] pronounced: “cube cuttle”

[2] https://docs.microsoft.com/en-us/azure/container-registry/container-
registry-get-started-azure-cli

[3] https://docs.aws.amazon.com/AmazonECR/latest/userguide/docker-push-
ecr-image.html

[4] https://kubernetes.io/docs/reference/generated/kubectl/kubectl-
commands#port-forward

[5] https://kubernetes.io/docs/setup/learning-environment/minikube/#services



4 Automated Operations
This chapter covers

Creating long-lasting, reliable application deployments
Have Kubernetes keep your applications running without your
intervention
Updating applications without downtime

Kubernetes can automate many operations like restarting your container if it
crashes, or migrating your application in the case of hardware failure, all
which work to make your deployment more reliable without you needing to
monitor it 24/7. These automated operations are one of the key value
propositions of Kubernetes, and an essential step to taking full advantage of
everything it has to offer.

Kubernetes can also help you update your application without outages and
glitches by booting the new version of the application and monitoring its
status to ensure it’s ready to serve traffic, before removing the old version.

To help Kubernetes help keep your application running without downtime
during normal operations and upgrades, you need to provide certain
information about the state of your application with a process known as
health checks. In the next section we’ll go through adding the various health
checks to your application, and in the later section, how these can be used
with Kubernetes’ in-built roll-out strategies to update your application
without glitches or downtime.

4.1 Automated Uptime with Health Checks

There are some conditions that Kubernetes can detect and repair on its own.
If your application crashes, Kubernetes will restart it automatically. Likewise,
if the node running your container were to fail or be removed, Kubernetes
will notice that your Deployment is missing replicas, and boot new replicas



on available space in the cluster.

But what about other types of application failure like a hung process, a web
service that stops accepting connections, or an application that depends on an
external service when that service becomes inaccessible? Kubernetes can
gracefully detect and attempt to recover from all these conditions, but it needs
you to provide signals on the health of your application and whether or not it
is ready to receive traffic. The process used to provide these signals are
named health checks, which Kubernetes refers to as liveness and readiness
probes.

Since Kubernetes can’t know what it means for each and every service that
runs on the platform to be down or up, ready or unready to receive traffic—
apps must themselves implement this test. Simply put, the probe queries the
container for its status, the container checks its own internal state, and returns
a success code if everything is good. If the request times out (e.g. if the
application is under too much load), or the container itself determines that
there’s a problem (such as with a critical dependency), the probe is
considered a fail.

4.1.1 Liveness and Readiness Probes

In Kubernetes, the health of a container is determined by two separate probes:
liveness that determines if the container is running, and readiness which
indicates when the container is able to receive traffic. Both probes use the
same techniques to perform the checks, but how Kubernetes uses the result of
the probe is different.

 Liveness Readiness

Semantic meaning Is the container running? Is the container ready to
receive traffic?

Implication of probe
Pod is terminated and

Pod is removed from



failures exceeding
threshold

replaced. receiving traffic until the
probe passes.

Time to recover from
failed probe

Slow; Pod is
rescheduled on failure
and needs time to boot.

Fast; Pod is already
running and can
immediately receive
traffic once the probe
passes.

Default state at
container boot Passing (Live). Failing (Unready).

There are a few reasons for having the two probe types. One is the state at
boot. Note how the Liveness probe starts in the passing, or live, state
(container is assumed to be live, until the pod proves otherwise), whereas the
Readiness probe starts in the unready state (container is assumed to not be
able to serve traffic until it proves it can).

Without a readiness check, Kubernetes has no way to know when the
container is ready to receive traffic, so it has to assume it’s ready the moment
the container starts up, and it will be added to the Service’s load balancing
rotation immediately. Most containers take tens of seconds, or even minutes
to start up—so sending traffic right away would result in some traffic loss
during startup. The readiness check solves this by only reporting “Ready”
when the internal tests are passing.

Likewise, with a Liveness check, the conditions that require a container
restart may be different to those which indicate the container is not ready to
receive traffic. The best example is a container that is waiting for an external
dependency, like a database connection. Until the container has the database
connection, it should not be serving traffic (therefore is “Unready”), but
internally the container is good to go. You don’t want to replace this
container too hastily so that it has enough time to establish the database
connection which it depends on.



Another reason for having two types of probes is the sensitivity and recovery
times. Readiness checks are typically tuned to quickly remove the Pod from
the load balancer (as this is a fast, and cheap operation to initiate) and add it
back when the check is passing again, whereas Liveness checks are often
tuned to be a little less hasty as the time needed to re-create a container is
longer.

4.1.2 Adding a Readiness Probe

For a web service, a rudimentary health check could simply test “is the
service serving traffic?” Before building a dedicated health check endpoint
for your service, you could just find any endpoint on the service that returns a
HTTP 200 status code, and use it as the health check.

If the root path returns HTTP 200 on all responses, you can even just use that.
As it happens, the examples in the book do that, so the following readiness
probe will work just fine.

Listing 4.1 Chapter04/4.1.2_Readiness/deploy.yaml

apiVersion: apps/v1

kind: Deployment

metadata:

  name: timeserver

spec:

  replicas: 3

  selector:

    matchLabels:

      pod: timeserver-pod

  template:

    metadata:

      labels:

        pod: timeserver-pod

    spec:

      containers:

      - name: timeserver-container

        image: docker.io/wdenniss/timeserver:1

        readinessProbe:

          initialDelaySeconds: 15 #A

          periodSeconds: 30 #B

          httpGet: #C

            path: / #C



            port: 80 #C

            scheme: HTTP #C

          timeoutSeconds: 2 #D

          failureThreshold: 1 #E

          successThreshold: 1 #F

From the root directory, update the timeserver Deployment with:

cd Chapter04/4.1.2_Readiness

kubectl apply -f deploy.yaml

Now, any time the container fails to respond to the readiness check, that Pod
will be temporarily removed from the service. Say you have 3 replicas of a
Pod, and one of them fails to respond, then any traffic to the Service (which
could be a service exposed externally, or a private one available only to other
Pods in the cluster), will be routed to the remaining 2 healthy Pods. Once the
Pod returns success (a HTTP 200 response in this case), it will be added back
into service.

This is particularly important during updates, as you don’t want Pods to be
receiving traffic while they are booting (as these requests will fail). With
correctly implemented readiness checks, you can get zero-downtime updates,
as traffic is only routed to those Pods which are ready, and not ones in the
process of being created.

Observing the Difference

If you want to see the difference between having a readiness check and not
with your own experimentation, try the following test.

In one shell window, create a deployment without a readiness check (let’s use
the one from Chapter 3).

cd Chapter03/3.2_DeployingToKubernetes

kubectl create -f .

Wait for the service to be assigned an External IP:

kubectl get svc -w



Now setup a watch on the service endpoint in a separate console window:

watch -n 0.25 -d curl "http://[YOUR_IP]"

Back in the first window, trigger a rollout:

kubectl rollout restart -f deploy.yaml

As the pods restart, you should see some intermittent connection issues in the
curl window

Now update the deployment with a readiness check (like the one in this
section), and apply:

cd ../../Chapter04/4.1.2_Readiness

kubectl apply -f deploy.yaml

This time, since the deployment has a readiness check, you shouldn’t see any
connection issues on the curl window.

4.1.3 Adding a Liveness Probe

Liveness probes have the same specification as readiness, but are specified
with the key livenessProbe. How the probes are used on the other hand is
quite different. The result of the readiness probe governs whether the Pod
receives traffic, whereas a failing liveness probe will cause the Pod to be
restarted (once the failure threshold is met).

The readiness check we added to our deployment in the previous section was
rudimentary in that it just used the root path of the service rather than a
dedicated endpoint. We can continue that practice for now, and use the same
endpoint from the readiness probe for the liveness probe in the following
example, with minor changes to increase the failure tolerance. Since the
container gets restarted when the liveness probe fails the threshold, and can
take some time to come back, we don’t want the liveness probe setup on a
hair trigger. Let’s add a liveness probe to our deployment which will restart it
if it fails for 180 seconds (6 failures at a 30s interval).

Listing 4.2 Liveness/deploy.yaml



apiVersion: apps/v1

kind: Deployment

metadata:

  name: timeserver

spec:

  replicas: 3

  selector:

    matchLabels:

      pod: timeserver-pod

  template:

    metadata:

      labels:

        pod: timeserver-pod

    spec:

      containers:

      - name: timeserver-container

        image: docker.io/wdenniss/timeserver:1

        readinessProbe:

          initialDelaySeconds: 15

          periodSeconds: 30

          httpGet:

            path: /

            port: 80

            scheme: HTTP

          timeoutSeconds: 2

          failureThreshold: 1

          successThreshold: 1

        livenessProbe: #A

          initialDelaySeconds: 30 #B

          periodSeconds: 30 #C

          httpGet: #D

            path: / #D

            port: 80 #D

            scheme: HTTP #D

          timeoutSeconds: 5 #E

          failureThreshold: 10 #F

          successThreshold: 1 #G

Update the timeserver Deployment with these latest changes:

cd Chapter04/4.1.3_Liveness

kubectl apply -f deploy.yaml

Now, your Deployment has a readiness and liveness probe. Even these
rudimentary probes improve the reliability of your deployment drastically,
and if you stop here it’s probably enough for a hobby application. The next



section details some further design considerations to bulletproof your probes
for production use.

4.1.4 Designing Good Health Checks

While using an existing endpoint as we did in the previous two sections as
the health check path is better than nothing, it’s generally better to add
dedicated health check endpoints to your application. These health checks
should implement the specific semantics of readiness and liveness, and be as
lightweight as possible. Without understanding the semantic differences
between liveness and readiness you could see instability due to excessive
restarts and cascading failures, and if you’re re-using some other endpoint,
chances are it’s heavier-weight than needed—why pay the cost of rendering
an entire HTML page when a simple HTTP header response would suffice?

When creating the HTTP endpoints to implement these checks, it’s important
to take into account any external dependencies being tested. Generally, you
don’t want external dependencies to be checked in the liveness probe, rather
it should test only whether the container itself is running (assuming your
container will retry the connections to its external connections). This is
because there’s not really any value in restarting a container that’s running
just fine, and only because it can’t connect to another service which is having
trouble. This could cause unnecessary restarts that creates churn and could
lead to cascading failures, particularly if you have a complex dependency
graph. There is an exception to this principle of not testing dependencies in
liveness probes which I cover later in the section.

Since the liveness is only testing whether or not the server is responding, the
result can and should be extremely simple, generally just a HTTP 200 status
response, even one with no response body text. If the request can get through
to the server code, then it must be “live”, and this is good enough.

For Readiness probes on the other hand, it’s generally desirable that they test
their external dependencies (like a database connection). This is useful
because if you have say 3 replicas of a Pod, and only 2 of them can connect
to your database, it makes sense to only have those 2 fully functional pods in
the load balancer rotation. One way to test the connection is to lookup a



single row from the database in your readiness check.

Is pseudocode such a database connection check could look something like:

result = sql.execute("SELECT id FROM users LIMIT 1;")

if result:

  http_response(200, "Ready")

else:

  http_response(503, "Not Ready")

Performing a simple SQL query should be enough to ensure that the database
is both connected, and responsive. Rather than using a SELECT query, you
could perform any other database operation, but I personally like the
legitimacy of a SELECT statement as if this works, then I’m confident the
other queries will work too.

Figure 4.1 Liveness and Readiness checks and external dependencies





The python timeserver example app doesn’t have a Database dependency, but
let’s refactor the code to include specific /healthz and /readyz paths as is
best practice to have dedicated endpoints for these probes.

Listing 4.3 timeserver2/server.py

from http.server import ThreadingHTTPServer, BaseHTTPRequestHandler

from datetime import datetime

 

class RequestHandler(BaseHTTPRequestHandler):

    def do_GET(self):

        match self.path:

            case '/':

                now = datetime.now()

                response_string = now.strftime("The time is %-I:%M %p, UTC.")

                self.respond_with(200, response_string)

            case '/healthz':

                self.respond_with(200, "Healthy")

            case '/readyz':

                dependencies_connected = True 

                # TODO: actually verify any dependencies

                if (dependencies_connected):

                    self.respond_with(200, "Ready")

                else:

                    self.respond_with(503, "Not Ready")

            case _:

                self.respond_with(404, "Not Found")

 

    def respond_with(self, status_code: int, content: str) -> None:

        self.send_response(status_code)

        self.send_header('Content-type', 'text/plain')

        self.end_headers()

        self.wfile.write(bytes(content, "utf-8")) 

 

def startServer():

    try:

        server = ThreadingHTTPServer(('', 80), RequestHandler)

        print("Listening on " + ":".join(map(str, server.server_address)))

        server.serve_forever()

    except KeyboardInterrupt:

        server.shutdown()

 

if __name__== "__main__":

    startServer()



Updating our Deployment configuration for these new endpoints, we get:

Listing 4.4 GoodHealthChecks/deploy.yaml

apiVersion: apps/v1

kind: Deployment

metadata:

  name: timeserver

spec:

  replicas: 3

  selector:

    matchLabels:

      pod: timeserver-pod

  template:

    metadata:

      labels:

        pod: timeserver-pod

    spec:

      containers:

      - name: timeserver-container

        image: docker.io/wdenniss/timeserver:2

        readinessProbe:

          initialDelaySeconds: 15

          periodSeconds: 30

          httpGet:

            path: /readyz #A

            port: 80

            scheme: HTTP

          timeoutSeconds: 2

          failureThreshold: 1

          successThreshold: 1

        livenessProbe:

          initialDelaySeconds: 30

          periodSeconds: 30

          httpGet:

            path: /healthz #A

            port: 80

            scheme: HTTP

          timeoutSeconds: 3

          failureThreshold: 3 #B

          successThreshold: 1

Your own application may have more complex readiness and liveness logic.
While the healthz endpoint here probably works for many HTTP applications
(simply testing that the HTTP server is responding to requests is sufficient),



every application with dependencies like databases should define their own
readiness test to determine if your application is truly ready to serve user
requests.

4.1.5 Rescheduling Unready Containers

The previous section detailed the standard way to setup liveness and
readiness checks in Kubernetes, and only verifying service dependencies in
the readiness check. There is one problematic condition by not testing
dependencies in the liveness check. By separating the concerns into
readiness: “is the container ready to receive traffic” and Liveness: “is the
container running”, there could be a condition where the container is running,
but due to a bug in the container’s retry logic, the external connections will
never be resolved. In other words, your container could be stay unready
forever, something that a restart might resolve.

Recall that we don’t test readiness in the liveness check, as this could cause
the Pod to be recreated too quickly and not give any time for the external
dependencies to resolve, but it might still make sense to have this Pod be
recreated if it stays unready for too long. Sometimes it’s best just to turn it off
and on again.

Unfortunately, Kubernetes doesn’t have a way to express this logic, but it’s
easy enough to add it to our own Liveness check so that it will fail if the Pod
doesn’t come ready in a certain time. You can simply record the time of each
Readiness success response, and then fail your liveness check if too much
time has passed (for example, 5 minutes).

Here is a simple implementation of this logic into the timeserver container:

Listing 4.5 timeserver3/server.py

from http.server import ThreadingHTTPServer, BaseHTTPRequestHandler

from datetime import datetime, timedelta

 

last_ready_time = datetime.now() #A

 

class RequestHandler(BaseHTTPRequestHandler):

 



    def do_GET(self):

        global last_ready_time

 

        match self.path:

            case '/':

                now = datetime.now()

                response_string = now.strftime("The time is %-I:%M %p, UTC.")

                self.respond_with(200, response_string)

            case '/healthz':

                if (datetime.now() > last_ready_time + timedelta(minutes=5)): #B

                    self.respond_with(200, "Not Healthy") #B

                else: #B

                    self.respond_with(200, "Healthy") #B

            case '/readyz':

                dependencies_connected = True 

                # TODO: actually verify any dependencies

                if (dependencies_connected):

                    last_ready_time = datetime.now() #C

                    self.respond_with(200, "Ready")

                else:

                    self.respond_with(503, "Not Ready")

            case _:

                self.respond_with(404, "Not Found")

 

    def respond_with(self, status_code: int, content: str) -> None:

        self.send_response(status_code)

        self.send_header('Content-type', 'text/plain')

        self.end_headers()

        self.wfile.write(bytes(content, "utf-8")) 

 

def startServer():

    try:

        server = ThreadingHTTPServer(('', 80), RequestHandler)

        print("Listening on " + ":".join(map(str, server.server_address)))

        server.serve_forever()

    except KeyboardInterrupt:

        server.shutdown()

 

if __name__== "__main__":

    startServer()

Having the liveness check fail eventually if the container never becomes
ready gives it a chance to restart. Now we have the best of both worlds, we
don’t test the external dependencies in every liveness check, but we do in the
readiness one. That means our container won’t receive traffic when its
dependencies are not connected, but it’s not rebooted either, giving it some



time to self-heal. But if, after 5 minutes, the container is still not Ready, it
will fail the liveness and be restarted.

An alternative approach to achieve this (restarting the container after a
prolonged period of unreadiness) is to use the readiness endpoint for both
Liveness and Readiness probes, but with different tolerances (e.g. the
Readiness would fail after 30 seconds, but Liveness only after 5 minutes).
This approach still gives the container some time to resolve any inter-
dependent services, before eventually rebooting in the event of continued
downtime which may indicate a problem with the container itself. This is not
technically idiomatic Kubernetes, as you’re still testing dependencies in the
Liveness check, but it gets the job done.

In conclusion, these two probes are incredibly important to giving Kubernetes
the information it needs to automate the reliability of your application.
Understanding the difference between them, and implementing appropriate
checks that take into account the specific details of your application is
crucial.

4.1.6 Probe Types

To now, the examples have assumed a HTTP service, and the probes
therefore were implemented as HTTP requests. Kubernetes can be used to
host many different types of services, as well as batch jobs with no service
endpoints at all. Fortunately, there are a number of ways to expose health
checks:

HTTP. Recommended for any container that provides a HTTP service, the
service exposes an endpoint, such as /healthz. A HTTP 200 response
indicates success, any other response (or timeout) indicates a failure.

TCP. Recommended for TCP-based services other than HTTP (for example,
a SMTP service). The probe succeeds if the connection can be opened.

readinessProbe:

  initialDelaySeconds: 15

  periodSeconds: 30

  tcpSocket: #A

    port: 25 #A



  successThreshold: 1

  failureThreshold: 1

Bash Script. Recommended for any container not providing a HTTP or TCP
service such as batch jobs that don’t run service endpoints. Kubernetes will
execute the script you specify, allowing you to perform whatever tests you
need. A non-zero exit code indicates failure.

4.2 Updating Live Applications

Once you’ve implemented Readiness checks, you can now roll out changes to
your application without downtime. Kubernetes uses the Readiness check
during updates to know when the new Pod is ready to receive traffic, and to
govern the rate of the rollout according to parameters you set. There are
several different rollout strategies to choose from, each with their own
characteristics.

4.2.1 Rolling Update Strategy

The default zero-downtime update strategy offered by Kubernetes is a
“rolling update”. In a rolling update, Pods with the new version are created in
groups (the size of which is tunable). Kubernetes waits for the new group of
Pods to become available, then terminates the same number of Pods running
the old version, repeating this until all Pods are running the new version.

Figure 4.2 Pod status during a rolling update. With this strategy, requests can be served by either
the old or the new version of the app until the rollout is complete.





The goal of such a strategy is two-fold:

Provide continuous uptime during the rollout
Use as few extra resources as possible during the update

Importantly, with this strategy the two versions of your application (old, and
new) need to be able to co-exist as they will both be running for a time. That
is, your backend or any other dependencies must be able to handle these two
different versions, and that users may get alternating versions when they
make different request. Imagine reloading the page and seeing the new
version, reloading it and seeing the old version again. Depending on how
many replicas you have, a rolling update can take a while to complete (and
therefore, any rollback can also take a while).

Let’s configure our deployment to use the rolling update strategy:

Listing 4.6 RollingUpdate/deploy.yaml

apiVersion: apps/v1

kind: Deployment

metadata:

  name: timeserver

spec:

  replicas: 3

  selector:

    matchLabels:

      pod: timeserver-pod

  strategy:

    type: RollingUpdate #A

    rollingUpdate: #B

      maxSurge: 2 #B

      maxUnavailable: 1 #B

  template:

    metadata:

      labels:

        pod: timeserver-pod

    spec:

      containers:

      - name: timeserver-container

        image: docker.io/wdenniss/timeserver:1

The options maxSurge and maxUnavailable can be used to govern how



quickly the rollout happens.

MaxSurge

“maxSurge” governs how many more Pods you’re willing to create during
the rollout. For example, if you set a replica count of 5, and a maxSurge of 2,
then it may be possible to have 7 Pods (of different versions) scheduled.

The tradeoff is that the higher this number is, the faster the rollout will
complete, but the more resources it will (temporarily) use. If you’re highly
optimizing your costs, you could set this to 0. Alternatively, for a large
deployment you could temporarily increase the resources available in your
cluster during the rollout by adding nodes, and removing them when the
rollout is complete.

MaxUnavailable

“maxUnavailable” sets the maximum number of Pods that can be unavailable
during updates (percentage values are also accepted, and are rounded down to
the nearest integer). If you’ve tuned your replica count to handle your
expected traffic, you may not want to set this value much higher than zero, as
your service quality could degrade during updates.

The trade off here is that the higher the value, the more Pods can be replaced
at once and the faster the rollout completes, while reducing the number of
Ready pods temporarily that are able to process traffic.

Given that a rollout could coincide with another event that lowers availability
like a node failure, for production workloads I would recommend setting this
to 0. The caveat is that if you set it to 0, and your cluster has no schedulable
resources, the rollout will get stuck and you will see Pods in the “Pending”
state until resources become available. When the maxUnavailable is 0,
maxSurge cannot also be zero (the system needs to surge, i.e. add create new
pods, that are by definition not ready as they are booting).

Recommendation



Rolling update is a good go-to strategy for most services. For production
services, maxUnavailable is best set to 0. maxSurge should be at least 1, or
higher if you have enough spare capacity and want faster rollouts.

Deploying Changes with Rolling Update

Once your deployment is configured to use Rolling Update, deploying your
changes is as simple as updating the deployment manifest, for example with a
new container version, and applying the changes with kubectl apply. Most
changes made to the Deployment including Readiness and Liveness checks
are also versioned, and will be rolled out just like a new container image
version.

4.2.2 Replacement Strategy

Another approach, some might say the old fashion approach, is to cut the
application over directly—delete all Pods of the old version, and schedule
replacements of the new version. Unlike the other strategies discussed here,
this is not zero-downtime. It will almost certainly result in some
unavailability. With the right readiness checks in place, this downtime could
be as short as the time to boot the first Pod, assuming it can handle the client
traffic at that moment in time.

The benefit of this strategy is does not require compatibility between the new
version and the old version (since the two versions won’t be running at the
same time), nor does it require any additional compute capacity at all (since
it’s a direct replacement).

Figure 4.3 pod status during a rollout with the replacement strategy. During this type of rollout,
the app will experience a period of total downtime, and a period of degraded capacity.





For development and staging, this strategy may be useful to avoid needing to
slightly overprovision compute capacity to handle rolling updates, and for its
speed, but otherwise should generally be avoided.

strategy:

    type: Recreate

Changes to the Deployment manifest can be applied as with Rolling Update,
using kubectl apply.

4.2.3 Blue / Green Strategy

The Blue/Green strategy is a rollout strategy where the new application
version is deployed alongside the existing version. These versions are given
the names “blue” and “green”. When the new version is fully deployed,
tested, and ready to go – the service is cut over. If there’s a problem, it can be
immediately cut back, and after a time if everything looks good, the old
version can be removed. Unlike the prior two strategies, the old version
remains ready to serve and is removed only when the new version is
validated (and often with a human decision involved).

Figure 4.4 pod status during a blue / green rollout. Unlike the previous strategies, there are two
action points where other systems, potentially including human actors make decisions.





The benefits of this strategy is:

Only one version of the app is running at a time, for a consistent user
experience
The rollout is fast (within seconds)
Rollbacks are similarly fast

The drawbacks are:

Temporarily consumes double the compute resources
Not supported directly by Kubernetes Deployments.

This is an advanced rollout strategy, popular with large deployments. There
are often several other processes included. For example, when the new
version is ready—it can be tested first by a set of internal users, followed by a
percentage of external traffic prior to the 100% cut-over—a process known as
canary analysis. After the cut-over, there is often a period of time where the
new version continues to be evaluated, prior to the old version being scaled
down (this could last days). Of course, keeping both versions scaled up
doubles the resource usage, with the trade off that near-instant rollbacks are
possible during that window.

Unlike the prior two strategies—rolling update and replace—there is no
native Kubernetes support for blue green. Typically users will use additional
tooling to help with the complexities of such a rollout, native ones for
Kubernetes include Istio for being able to split traffic at a fine-grained level,
and Spinnaker to help automate the deployment pipeline with the canary
analysis and decision points. If you prefer to do a blue green style
deployment without some of the fancier features like canary analysis
provided by such tooling, then you can perform a blue / green rollouts
directly in Kubernetes using multiple deployments.

Implementing blue/green in Kubernetes

Despite the lack of native support, it is possible to perform a blue/green
rollout in Kubernetes. Without the aforementioned tools to help with the
pipeline and traffic splitting, it is a slightly manual process, and missing some



benefits like being able to do canary analysis on a tiny percentage of
production traffic, but that doesn’t mean it’s hard to implement.

Recall the Deployment and a Service we deployed in Chapter 3. Employing a
blue green strategy for this application simply requires having one extra
deployment. Duplicate the deployment, and suffix both deployment’s
filename, metadata name, and the Pod template’s labels with “-blue”, and “-
green” respectively. You can then direct traffic from your Service by
selecting either the “-blue”, or the “-green” labels.

The update strategy you would specify in the Deployment configuration in
this case is the Recreate strategy. Since only the Pods in the inactive
deployment are updated, deleting all the old version and creating Pods with
the new version won’t result in downtime, and is faster than a rolling update.

Figure 4.5 One service with a “blue” and “green” deployment with different versions of the same
application. The service’s selector is used to route traffic to the live version.





In this two-deployment system, one version is live, and one is non-live at any
given time. The Service is selecting the live deployment with the label
selector.

The steps to rollout a new version with blue green are the following:

1. Identify the non-live deployment (the one not selected by the Service)
2. Update the image path of the non-live deployment with the new

container image version
3. Wait until the Deployment is fully rolled out (kubectl get deploy)
4. Update the Service’s selector to point to the new version’s Pod

template’s labels

The update steps are performed by modifying the YAML configuration for
the resource in question, and applying the changes with kubectl apply.

The next time you want to rollout a change to this application, the steps are
the same, but the colors are reversed (if blue was live for the last update,
green will be live next time).

As mentioned, this strategy doubles the number of pods used by the
deployment which will likely impact your resource usage. To minimize
resource costs, you can scale the non-live deployment to zero when you’re
not currently doing a rollout, scaling it back up to match the live version
when you’re about to do a rollout. You’ll likely need to adjust the number of
nodes in your cluster as well. See Chapter 5 for how to perform these steps.

4.2.4 Choosing a Rollout Strategy

For most deployments, one of the built-in rollout strategies should suffice.
Use RollingUpdate as an easy way to get zero-downtime updates on
Kubernetes. To achieve the zero downtime or disruption, you will also need
to have a readiness check implemented otherwise traffic can be sent to your
container before it has fully booted. You need to consider that two versions
of your application can be serving traffic simultaneously and design attributes
like data formats with that in mind. Being able to support at least the current
and previous version is good practice generally anyway, as it also allows you



to rollback to the previous version if something goes wrong.

Replace is a useful strategy when you really don’t want two application
versions running at the same time, and things like legacy single-instance
services where only one copy can exist at a time.

Blue/green is an advance level strategy that requires additional tooling or
processes, but with the advantage for near-instant cut-overs while offering the
best of both worlds in that only one version is live at a time, but without the
downtime of the Replace strategy. I recommend getting started with the in-
built strategies but keep this one in mind for when you need something more.

4.3 Summary

Kubernetes provides many tools to help you keep your deployments
running and updated
It’s important to define health checks so that Kubernetes has the signals
it needs to keep your application running by rebooting containers that
have gotten stuck or that are non-responsive.
Liveness probes are used by Kubernetes to know when your application
needs restarting
The readiness probe governs which replicas receive traffic, which is
particularly important during updates to prevent dropped packets
Kubernetes can also help update your application without downtime
RollingUpdate is the default rollout strategy in Kubernetes, giving you
a zero-downtime rollout while using minimal additional resources
Recreate is an alternative rollout strategy that does an in-place update
with some downtime but no additional resource usage
Blue/green is a rollout strategy that isn’t directly supported by
Kubernetes but can still be performed using native Kubernetes
constructs.
Blue/green offers some of the highest quality guarantees, but is more
complex, and temporarily doubles the resources needed by the
deployment.



5 Resource Management
This chapter covers

How Kubernetes allocates the resources in your cluster
Configuring your workload to request just the resources it needs
Overcommitting resources to improve your performance-to-cost ratio
Balancing Pod replica count with internal concurrency

Chapter 2 covered how Containers are the new level of isolation each with
their own resources, and Chapter 3 that the schedulable unit in Kubernetes is
a Pod (which itself is a collection of containers). This chapter covers how
Pods are allocated to machines based on their resource requirements, as well
as the information that you need to give the system so that your Pod will
receive the resources that it needs. Knowing how Pods are allocated to Nodes
helps you make better architectural decisions around resource requests,
bursting, overcommit, availability, and reliability.

5.1 Pod Scheduling

The Kubernetes scheduler performs a resource-based allocation of Pods to
Nodes, and is really the brains of the whole system. When you submit your
configuration to Kubernetes (as we did in Chapter 3 and 4), it’s the scheduler
that does the heavy lifting of finding a Node in your cluster with enough
resources, and tasks the Node with booting and running the containers in your
Pods.

Figure 5.1 In response to the user applying configuration, the scheduler issues a Create Pod
command to the node.



The scheduler’s work doesn’t stop there either. In the case of the Deployment



object (what we’ve been using in the book so far), it continuously monitors
the system with the goal to make the system state what you requested it to be.
In other words, if your deployment requested 2 replicas of your Pod, the
scheduler doesn’t just create those replicas then forget about it, it will keep
verifying that there are still 2 replicas running. If something were to happen
(for example, say a node disappeared due to some failure), it would attempt
to find a new place to schedule the Pod so that your desired state (2 replicas
in this case) is still met.

Figure 5.2 One of the nodes develops an issue. Health checks from the Kubernetes control plane
fail, so the Scheduler issues a Create Pod command to a healthy node.





This recreation of Pods due to node failures by the scheduler is separate
behavior to the Pod restarts we covered in the last chapter. Pod restarts due to
liveness or readiness failures are handled locally on the node by the kubelet,
whereas the Scheduler is responsible for monitoring the health of the nodes,
and reallocating Pods when issues are detected.

Since each Node in the cluster is constrained by the resources that it has, and
Pods may have differing resource requirements themselves, an important
responsibility of the scheduler is finding the enough room to run your Pods. It
considers multiple scheduling dimensions when considering where to place
the containers of your Pod in the cluster whether for the first time they’re
deployed, or in response to disruption like the one illustrated in Figure 5.2.

Figure 5.3 5 containers allocated on 2 nodes based on their resource needs





It is the scheduler that has the task of finding the right place in your cluster to
fit the Pod, based on its resource requirements and (as we’ll cover later in this
chapter) any other placement requirements. Any Pods that can’t be placed on
the cluster will have the status “Pending” (see “Stuck in Pending” in Chapter
3 if you have Pods that remain in this status for too long).

5.1.1 Specifying Pod Resources

You give the scheduler the information it needs to make scheduling decisions
by specifying the resource requests in your deployment manifest (and other
workload types that have an embedded Pod specification). So far, the
examples in this book have not specified their resource requirements, but for
production grade deployments this needs to be added.

A Pod that needs 20% of the time for one CPU core, and 200MiB of memory
would be specified like so:

Listing 5.1 PodResources/A_deploy_with_requests.yaml

apiVersion: apps/v1

kind: Deployment

metadata:

  name: timeserver

spec:

  replicas: 3

  selector:

    matchLabels:

      pod: timeserver-pod

  template:

    metadata:

      labels:

        pod: timeserver-pod

    spec:

      containers:

      - name: timeserver-container

        image: docker.io/wdenniss/timeserver:1

        resources:

          requests: #A

            cpu: 200m #A

            memory: 250Mi #A



The “200m” in the example here represents 200 milli-cores, that is, 20% of 1
core. You can also use floating point numbers, e.g. “0.2”, however it’s very
common among Kubernetes practitioners to use milli-cores. The “Mi” suffix
for memory indicates Mebibytes, with “Gi” indicating Gibibyte (powers of
1024), while “M” and “G” indicate Megabyte and Gigabyte (powers of
1000).

These values are extremely important, as it gives Kubernetes the information
it needs to match the Pod requirements to the node capacity. Say you have 3
Pods that have really high requirements, and 3 with low requirements, you
would want Kubernetes to ensure each Pod has the resources it needs, and not
place them randomly without regarding their needs (for example, by placing
the 3 high requirement pods together on a node where they would each be
starved of resources).

Figure 5.4 Comparison of Pod allocation when all Pods have resource requests, and when only
some do. Pods without resource requests share the spare capacity on a best effort basis, without
regards to their actual needs.





This may sound fairly simple so far – we’re just pairing the requests with the
resources. It would be simple too, if it were not for the ability to burst, that is,
consume more resources than you requested. Much of the time a process may
not need all the resources it asked for, wouldn’t it be good if the other Pods
on the node could use that capacity on a temporary basis?

Kubernetes represents this burst capacity with limits. A Pod declares both the
resources it requests which is used for scheduling, and the limits which is
used for constraining the resources being used.

Listing 5.2 PodResources/B_deploy_with_requests_limits.yaml

apiVersion: apps/v1

kind: Deployment

metadata:

  name: timeserver

spec:

  replicas: 3

  selector:

    matchLabels:

      pod: timeserver-pod

  template:

    metadata:

      labels:

        pod: timeserver-pod

    spec:

      containers:

      - name: timeserver-container

        image: docker.io/wdenniss/timeserver:1

        resources:

          requests:

            cpu: 200m

            memory: 250Mi

          limits: #A

            cpu: 300m #A

            memory: 400Mi #A

The sample configuration above specifies both requests and limits. It is best
practice to have both requests and limits set for all your deployments. But
how do you determine what to set them at? Read on to understand how the
requests and limits interact to form a quality of service class, and how you
can measure your application’s performance to determine what values to set.



5.1.2 Quality of Service

Having limits higher than requests, or not set at all, introduces a new
problem, and that is what to do when all these Pods are consuming too many
resources (most commonly, too much memory), and they need to be evicted
to reclaim the resource. Kubernetes performs a stack rank of importance
when choosing which pods to remove first.

Kubernetes traditionally classified Pods into 3 quality of service classes in
order to rank their priority. These are no longer directly used in the eviction
algorithm, but I’ll present them here as there are a lot of people and
documentation that use the terms, and it’s still a reasonable way to consider
the quality of service a Pod will receive.

Guaranteed Class

Guaranteed class pods are where the limits are set equal to the requests. This
is the most stable configuration as the pod is guaranteed the resources it
requested, no more, no less. If your Pod has multiple containers, they all must
meet this requirement for the Pod to be considered Guaranteed.

Guaranteed class Pods are always guaranteed to have the same resources
available under varying conditions, and they won’t be evicted from the node
as it’s not possible for them to use more resources than they were scheduled
for.

Burstable Class

Burstable class Pods on the other hand have limits set higher than requests,
and are able to “burst” temporarily provided there are resources are available
(i.e. from other Pods not using all of their requests, or unallocated space on
the node).

You need to be careful with these Pods as there can be some unforeseen
consequences such as accidently relying on the bursting. Say a Pod lands on
an empty node and can burst to its heart’s content. Then sometime later, it
gets rescheduled onto another node with less resources, the performance will



now be different. So, it’s important to test burstable pods in a variety of
conditions.

A Pod with multiple containers is considered Burstable if it doesn’t meet the
criteria for Guaranteed, and if any of the containers has a request set.

Best Effort

Pods without any requests or limits set are considered “best effort” and are
scheduled wherever Kubernetes wishes. This is the lowest of the classes, and
I strongly recommend against using this pattern. You can achieve a similar
result with the burstable class by setting really low requests, and that is more
explicit than just closing your eyes and hoping for the best.

When thinking about the stability for your pods, it’s always best to at least set
the resource requests to a high enough value that gives them enough
resources to run, and avoid not setting any resource requests at all. High
priority, critical workloads should always have limits set to their requests for
guaranteed performance.

5.1.3 Evictions, Priority and Preemption

In times of resource contention (too many Pods trying to burst at once),
Kubernetes will reclaim resource by removing (through a process known as
evicting) pods that are using resources beyond their requested allocation. This
is why it’s so important to have a Pod’s resources adequately specified.

Eviction

Guaranteed class pods are never evicted in times of resource contention, so
for a bulletproof deployment, always set your Pods’ limits equal to their
requests to define them as guaranteed. The rest of this section discusses how
the non-guaranteed Pods are ranked when considering eviction, and how you
can influence the ordering.

When looking for Pods to evict, Kubernetes first considers those Pods which
are using more resources than their requests, sorts them by their priority



number, and finally by how many more resources (of the resource in
contention) that the Pod is using beyond what it requested. By default, all
Pods have the same priority number (zero). When all Pods have the same
priority, the amount of usage above requests is what’s used to rank, as shown
in the following diagram.

Figure 5.5 Eviction order for Pods of equal priority





“Evicted” Error Status

If you query your Pods and you see a status of “Evicted” it indicates that the
scheduler evicted your pod because it was using more resources than it
requested. To resolve, increase the resources requested by your containers,
and review whether your need to add more compute capacity to your cluster
as a result.

Priority

Priority is just an integer number (between 0 and 1,000,000,000) that you can
assign to Pods (via a “priority class”) to change the ranking. The following
diagram shows the eviction order if priority numbers were assigned to Pods
from the previous diagram. As you can see, the eviction is first sorted by the
priority, then how much the usage is above requests. Pods that are not using
more than their requests are not at risk of eviction, regardless of priority.

Figure 5.6 Eviction order of Pods with multiple priority values





To create your own priority level, you need to first create a PriorityClass
object:

Listing 5.3 Priority/A_priority/priorityclass_high-priority.yaml

apiVersion: scheduling.k8s.io/v1

kind: PriorityClass

metadata:

  name: high-priority

value: 1000000 #A

preemptionPolicy: Never #B

globalDefault: false #C

description: "Critical services."

Then assign it to a Pod, like so:

Listing 5.4 Priority/A_priority/deploy.yaml

apiVersion: apps/v1

kind: Deployment

metadata:

  name: timeserver

spec:

  replicas: 3

  selector:

    matchLabels:

      pod: timeserver-pod

  template:

    metadata:

      labels:

        pod: timeserver-pod

    spec:

      priorityClassName: high-priority #A

      containers:

      - name: timeserver-container

        image: docker.io/wdenniss/timeserver:1

        resources:

          requests:

            cpu: 200m

            memory: 250Mi

The priority number is also used during scheduling. If you have many Pods
waiting to be scheduled, the scheduler will schedule the highest priority Pod



first. Using priority to govern the scheduling order is particularly useful for
ranking which batch jobs should execute first (batch jobs are covered in a
later chapter).

Preemption

When used by itself, priority is useful to rank workloads so that more
important workloads are scheduled first and evicted last. There can be a
situation however where the cluster does not have enough resources for a
period of time and high-priority Pods are left stuck in Pending while low
priority ones are already running.

If you’d rather have higher priority workloads proactively bump lower
priority ones rather than waiting for capacity to free up, you can add
preemption behavior by changing the preemptionPolicy field in your
PriorityClass as shown.

Listing 5.5 Priority/B_preemption/priorityclass_high-priority-preemption.yaml

apiVersion: scheduling.k8s.io/v1

kind: PriorityClass

metadata:

  name: high-priority-preemption

value: 1000000

preemptionPolicy: PreemptLowerPriority

globalDefault: false

description: "Critical services."

Pods that belong to Deployments that are removed from the node due to
eviction, or preemption are not forgotten about. These Pods are returned to
the “Pending” state and will be re-scheduled on the cluster when there are
enough rooms.

When to Use Priority and Preemption

Priority and preemption are useful features of Kubernetes and are important
to understand due to the impact on eviction and scheduling. Before spending
too much time configuring all your Deployments with Priority, I would
prioritize ensuring that your Pod requests and limits are appropriate as that is



the most important configuration.

Priority and preemption really come into play when you’re juggling many
deployments and looking to save money by squeezing every ounce of
compute out of your cluster by overcommitting where you need a way to
signal which of your Pods are more important to resolve the resource
contention. I wouldn’t recommend starting with this design as you’re just
adding complexity. The simpler way to get started is to allocate enough
resources to schedule all your workloads amply, and fine tune things later to
squeeze some more efficiency out of your cluster.

Once again, the simplest way to guarantee the performance of your critical
services is to set the resource requests appropriately, and have enough nodes
in your cluster for them all to be scheduled.

5.2 Calculating Pod Resources

In the previous section we discussed why it’s important to set appropriate
resource requests and limits for pods for the most reliable operational
experience. But how do you determine what the best values are? The key is to
run and observe your Pods.

Kubernetes ships with a resource usage monitoring tool out of the box
kubectl top. You can use it to view the resources used by Pods and nodes.
We’ll be focusing on Pods as that’s what we need to know to set the right
resource request.

First, deploy your Pod with an excessively high resource request. This may
even be a Pod that’s already in production—after all, it’s generally OK for
performance (though not always for budget) to overestimate your resources
needed. The goal of this exercise is to start high, observe the Pod’s actual
usage, then pair the requests back to provision the right resources and avoid
wastage.

Until you have a good feel for how many resources the Pod needs, it may be
best to leave the limits unset (allowing it to use all the spare resources on the
node). This doesn’t completely solve the need to set some resource requests,



as you would prefer to be allocated dedicated capacity above what you need
at first.

Listing 5.6 ResourceUsageTest/deploy.yaml

apiVersion: apps/v1

kind: Deployment

metadata:

  name: timeserver

spec:

  replicas: 3

  selector:

    matchLabels:

      pod: timeserver-pod

  template:

    metadata:

      labels:

        pod: timeserver-pod

    spec:

      containers:

      - name: timeserver-container

        image: docker.io/wdenniss/timeserver:1

        resources: #A

          requests:

            cpu: 200m

            memory: 250Mi

Run kubectl top pods (you may need to wait a minute or two for the data to
be available), and note the startup resource usage, particularly memory. It’s
useful to have a snapshot of what resources the Pod needs to boot, as this is
the lower bound if you choose to use Burstable quality of service.

Minikube Metrics

If you’re using Minikube and get an error like error: Metrics API not
available, you can enable metrics with minikube addons enable metrics-
server.

Now, direct enough load at the Pod to simulate a real world usage.
Performance tools like Apache Bench (installed with Apache[1]) can help
here. An example Apache Bench command that will generate 10k requests
total using 20 threads is below. You typically want to run this test for a while



(say, 5 minutes) to make it simpler to observe the high water mark.

ab -n 10000 -c 20 https://example.com

The ideal situation would be to observe a Pod receiving normal production
load. To avoid impacting production, you can temporarily overprovision your
capacity (by setting high resource requests) and adding extra nodes to your
cluster. Once you have a good measure of the actual needs, you can later tune
the requests and right-size the cluster.

With your Pod under load either generated or production, run kubectl top
pods again (remembering that it can take a minute or two to reflect the latest
values, so keep your load simulation running).

Now you should have values like so:

Table 5.1 Memory and CPU usage from startup and under load

 Memory CPU

Startup 200MiB 2%

Under Normal Load 400MiB 2%

It may be useful to repeat this process a couple more times and get values for
your Pod under different loads (e.g. low, normal and high traffic), and
timeframes. Multiple timeframes (e.g. directly after boot, 1 hour after boot, 1
day after boot) are useful to account for potential growth in usage (e.g.
memory leaks).

So you might end up with something like:

Table 5.2 Memory and CPU usage after testing



 Memory CPU

Startup 400MiB 2%

Under Normal Load 500MiB 20%

Under High Load 503MiB 25%

After 1 hour 505MiB 21%

After 1 day 600MiB 20%

5.2.1 Setting Memory Requests and Limits

With this data in hand, how should you set your resource requests? For
starters, you now have an absolute lower bound for your memory: 400Mb.
Since you’re only ever guaranteed to get your resource request, and you
know your Pod uses 400Mb under load, setting it any lower will likely cause
your pod to be OOMKilled (terminated for being out of memory). You may
not see it right away if you have a higher resource limit set, but you don’t
want to rely on spare capacity when you know you’ll need it.

Does that make 400Mb the right request? Probably not. Firstly, you definitely
want to have a buffer, say 10%. Also, you can see that after an hour, 505Mb
was used, so this might be a better starting lower bound (before accounting
for the buffer). Does it need to be 600Mb though? We saw that after a day the
Pod needed that much, possibly due to a leak somewhere. This depends. You
certainly could set this higher limit, then you could have some confidence
that your pod could run for a day, but also thanks to Kubernetes’ automatic



restarting of crashed containers, having the system reboot a leaky process
after a day to reclaim memory may be OK, or even desirable.

When Memory Leaks are OK

Instagram famously[2] disabled the garbage collection in Python for a 10%
CPU improvement. While this is probably not for everyone, it’s an interesting
pattern to consider. Does it really matter if a process gets bloated over time
and is rebooted, if it all happens automatically, and there are thousands of
replicas? Maybe not.

Kubernetes automatically restarts crashed containers (including when that
crash is due to the system removing them due to an out of memory
condition), making it fairly easy to implement such a pattern. I wouldn’t
recommend this without thorough investigation, but I do think it indicates
that if your application has a slow leak that it may not be your highest priority
bug to fix.

Importantly, you need to make sure you at least give the container enough
resources to boot and run for a time, otherwise you could get caught in a
OOMKill crashloop which is no fun for anyone. Having enough replicas
(covered in the next section) is also important to avoid a user visible failure.

Using the data you gathered, find the lower bound by looking at the memory
usage of your Pod under load, and add a reasonable buffer (at least 10%).
With this example data, would have picked 505MB * 1.1 = 555Mb. You
know it’s enough to run the Pod under load for at least an hour, with a bit to
spare. Depending on your budget, and risk profile you can tune this number
accordingly (the higher it is, the lower the risk, but higher the cost).

So, requests need to at least cover the stable state of the Pod. What about the
memory limit? Assuming your data is solid and covered all use-cases (i.e.
there’s no high-memory code path that didn’t execute while you were
observing), I wouldn’t set it too much higher than the 1-day value. Having an
excessive limit (say, twice as high as the limit or greater) doesn’t really help
much since you already measured how much memory your Pods need over
the course of a day, and if you do have a memory leak it may be better for the
Pod to simply be restarted by the system when the limit is hit, than to be



allowed to grow excessively.

An alternative is to simply set the limit equal to the request, for the
guaranteed QoS class. This has the advantage of giving your Pod constant
performance regardless of what else is running on the node. In this case, you
should give the Pod a little extra resource buffer, since the Pod will be
terminated the moment it exceeds its requested amount.

5.2.2 Setting CPU Requests and Limits

Unlike Memory, CPU is compressible. What this means is that if you don’t
get the CPU resources you need, the application just runs slower. Whereas if
it doesn’t get the memory it needs, it will crash. You still likely want to give
the application the CPU it needs, otherwise performance will decrease, but
there’s not as much need to have a buffer as there is with memory.

In the example data for our application shown in Table 2 above, we can see
that the stable state is about 20% of CPU. That would seem to be a good
starting point for your CPU requests. If you want to save money and are OK
with degrading performance, you could set it a little lower.

For the CPU limit, this is an area where Kubernetes can improve your
resource efficiency as you can set a limit higher than your requests to enable
your application to consume the unused cycles on the node if it needs to
burst. As with memory, Kubernetes only guarantees the requested CPU, but
often it’s nice to allow the pod to take advantage of unused capacity on the
node to run a bit faster. For web applications that are spend a lot of time
waiting on external dependencies (e.g. waiting for a database to respond),
there is often spare CPU capacity on the node which the active request could
take advantage of.

As with memory, the downside of setting limits to higher than requests (i.e.
the Burstable QoS class), is it means that your performance won’t be
constant. A burstable Pod running on an empty node will have a lot more
resources than on a node packed with Pods. While generally it’s nice to be
able to handle bursts in traffic by consuming the unused capacity on the node,
if constant performance is important, setting limits equal to requests may be



preferable.

5.2.3 Reducing Costs by Overcommitting CPU

One strategy to reduce costs is to use the property that CPU is compressible
to overcommit the node. This is achieved by setting the CPU request to a low
value (lower than what the Pod actually needs), and therefore cramming more
Pods onto the node than you could if you were to set the CPU request to the
actual usage.

This saves money but has the obvious performance drawback. However, in
the case of workloads that are considered very bursty it can be a very
desirable strategy. Let’s say you are hosting hundreds of low-traffic
applications. Each may only get a few requests an hour, only needing the
CPU for that time. For such a deployment, each application could have a
CPU request of 1% (allowing 100 to be scheduled on a single core), and limit
of 25% (allowing it to temporarily burst up to a quarter of a core).

The key for making an overcommitment strategy like this work is that you
need to be intimately aware of what else is running on the machine. If you are
confident that most of the websites will be idle most of the time this could
work, but it may break down if all 100 suddenly need all the resources
(unless 1% of a core is actually enough). This kind of violates one of the
isolation properties of containers: now you need to be aware of and plan the
make-up of the node accordingly. However, it can be done.

The safest approach of course is not to overcommit at all. A sensible
compromise is to not overcommit too much. Giving Pods a little extra CPU
(through setting their resource limits higher) can help reduce latency in an
opportunistic fashion, but set your CPU resource requests high enough to
handle a reasonable base load so that this excess capacity isn’t being relied
on.

5.2.4 Balancing Pod Replicas and Internal Pod Concurrency

Now you have a handle on how resource requests influence how your Pods
are scheduled, and the resources they get, it’s worth considering concurrency



within the Pod. A Pod’s concurrency (e.g. how many processes/threads of the
application are running) influences the resource size, and there is a trade-off
of efficiency for durability by using concurrency within the Pod over Pod
replicas.

If you’re coming from an environment where installations of your application
were expensive, either in monetary cost for servers, or time to configure
instances, your application will likely have a lot of internal concurrency
configured through the use of threads and/or forks, often described as the
number of “workers” used to handle incoming requests concurrently.

Concurrent workers still have advantages in the Kubernetes world due to
their resource efficiency. I wouldn’t take a Pod that currently had 10 workers,
and instead deploy 10 replicas with 1 worker each. The container’s internal
concurrency is very efficient memory wise, as forks share some of the
memory used by the application binary, and threads share even more. CPU is
also pooled between workers which is useful as a typical web application
spends a lot of time waiting on external dependencies, meaning there is often
spare capacity to handle many requests at once.

Balancing the benefits of workers is the fact that the more replicas of a Pod
you have, the more durable it is. For example, if you have 2 replicas of a pod,
with 18 workers each to handle a total of 36 concurrent connections, then if
one of those Pods were to crash (or be restarted because it failed the health
check you setup in Ch.4), half your capacity would be offline before the Pod
restarts. A better approach might be to have 6 Pods replicas with 6 workers
each, still maintaining some inter-container concurrency while adding some
redundancy.

To strike the right balance, a simple heuristic like the following can be used.
Consider the total number of workers you need to serve your users, and of
those how many can be offline at any given time without noticeable user
impact. Once you’ve calculated how many can be offline—using our
previous example, say 16% of the 36 workers could be offline before issues
are noticed—then the most number of workers you can concentrate in a
single Pod is 16%, or 6. If you find this results in more replicas than you
need, increase the total number of workers so you can have more per Pod.



Figure 5.7 Comparison of two possible deployments for a total of 36 workers

In short, the more Pod replicas you have, the safer the design, but the less



efficient in terms of resource usage, so it’s worth considering this and
balancing your own availability and resource requirements.

After balancing the number of Pod replicas you have, another important
attribute to increase availability is to ensure that your Pods are spread across
multiple nodes. After all, if you design for multiple replicas, but all those
replicas run on the same node, you’re still at risk from a single point of
failure if that node were to become unhealthy. Fortunately, most Kubernetes
platforms (including GKE) enable default Pod spreading policies that will
spread Pods over all available nodes, and across multiple zones (in the case
of a regional cluster). To get this default behavior, it’s generally enough to
ensure that you have a bunch of nodes in your cluster in different zones. If
you want to dig more into node placement, and Pod Spread Topologies,
Chapter 8 has you covered.

5.3 Summary

The Kubernetes scheduler lies at the core of the system and does the
heavy lifting of finding the right home for your deployment’s Pods on
your infrastructure.
The scheduler will try to fit as many containers as it can on a given
node, provided Pods have resource requests set appropriately
Kubernetes uses the Pod’s resource requests and limits to govern how
resources are allocated, overcommitted, and reclaimed
Overcommitting resources using bursting can save resources but
introduces performance variability
The specification of requests and limits by your workloads sets the
quality of service they receive
When designing your workloads, there is an availability/resource-usage
trade-off between the replica count and the Pod’s internal thread/process
worker count
Most platforms enable Pod spreading by default, to ensure that replicas
are not generally placed on the same node, thus avoiding a single point
of failure. Make sure you have a few nodes in your cluster to achieve
higher availability.



[1] http://httpd.apache.org/docs/2.4/install.html

[2] https://instagram-engineering.com/dismissing-python-garbage-collection-
at-instagram-4dca40b29172



6 Scaling Up
This chapter covers

Scaling Pods and Nodes manually
Using CPU utilization and other metrics to dynamically scale Pod
replicas
How some Kubernetes platforms can be configured to add and remove
nodes automatically based on the resources your Pods require
Using low priority “balloon” pods to provision burst capacity
Architecting apps so that they can be scaled

Now that we have the application deployed and have health checks in place
to keep it running without intervention, it’s a good time to look at how you’re
going to scale up. I’ve named this chapter “scaling up”, as I think everyone
cares deeply about whether their system architecture can handle being scaled
up when your application becomes wildly successful and you need to serve
all your new users, but don’t worry I’ll also cover scaling down so you can
save money during the quiet periods.

The goal is ultimately to operationalize our deployment using automatic
scaling, that way we can be fast asleep, or relaxing on a beach in Australia,
and our application can be responding to traffic spikes dynamically. To get
there, we’ll need to ensure that the application is capable of scaling,
understand the scaling interactions of Pods and Nodes in the Kubernetes
cluster, and the right metrics to configure an autoscaler to do it all for us.

6.1 Scaling Pods and Nodes

Getting your application containerized and deployed on Kubernetes is a great
step towards building an application deployment that is capable of scaling
and supporting your growth. Let’s now go over how to actually scale things
up when that moment of success arrives, and the traffic increases (and scale
things down to save some money in the quiet periods).



In Kubernetes, there are essentially two resources that you need to scale: your
application (Pods), and the compute resources they run on (Nodes). What can
make life a bit complicated is that the way you scale these resources is
separate, even though the requirements (e.g. more application capacity) are
somewhat correlated. Unless you’re using a fully automated Kubernetes
platform it’s not enough to just scale Pods as they’ll run out of compute
resources to run on, nor is it enough to scale up Nodes alone as that just adds
empty capacity. Scaling both in unison and at the correct ratio is what’s
needed. Fortunately there are some tools to make your life easier which I’ll
cover below.

To handle more traffic to your application, you’ll need to increase the number
of Pod replicas. Starting with the manual approach, you can achieve this by
updating your deployment configuration with the desired number of replicas.

Listing 6.1 Replicas/deploy.yaml

apiVersion: apps/v1

kind: Deployment

metadata:

  name: timeserver

spec:

  replicas: 6 #A

  selector:

    matchLabels:

      pod: timeserver-pod

  template:

    metadata:

      labels:

        pod: timeserver-pod

    spec:

      containers:

      - name: timeserver-container

        image: docker.io/wdenniss/timeserver:1

        resources:

          requests:

            cpu: 200m

            memory: 250Mi

As usual, you can apply changes you make to config with kubectl apply -f
deploy.yaml.



Kubectl also offers a convenient imperative command that can achieve the
same result:

kubectl scale deployment YOUR_DEPLOYMENT –replicas=6

Where the nodes come in, is that if you try to add too many Pod replicas,
you’ll run out of space in your cluster for those Pods to be scheduled. You’ll
know when you’ve run out of room when you run kubectl get pods, and a
bunch are listed as “Pending”.

Pods can be in “Pending” for a number of reasons, the most common of
which is a lack of resources. Essentially the lack of resources is an unsatisfied
condition, and the Pod remains “Pending” until the condition can be satisfied.
There can be other unsatisfied conditions as well if the Pod has dependencies
(like requiring to be deployed on a node with another Pod that hasn’t been
created). To disambiguate, describe the pod with kubectl describe pod
POD_NAME, and look at the events. If you see an event such as
“FailedScheduling” with a message like “Insufficient CPU”, you likely need
to add more nodes.

Nodeless Kubernetes

I’d like to take a moment to cover Nodeless Kubernetes platforms. It is my
opinion that the ideal cloud Kubernetes platform is one where the operator
doesn’t really need to care a whole lot about Nodes. After all, if you’re using
the Cloud, why not have a platform that provisions the Node resources that
are needed based on the pod’s requirements so you can focus more on
creating great applications?

In my job as a Product Manager at Google Cloud, this is exactly the product I
built with my team. We called it GKE Autopilot. My design for this
experience is one of a platform where nodes are outside of the developer’s
concern. Define your Kubernetes resources like Deployments, StatefulSet,
and Jobs, set the appropriate CPU and memory resource requests, and
Autopilot will provision the compute needed to run your Pods, and manage
that compute capacity for you. This both improves developer efficiency (no
need to define your computing requirements twice; in the Pod and the Node),
and operational efficiency (the platform operator takes on more of the Node



operational burden).

One thing that sets Autopilot apart from the pack is that the Kubernetes node
concept retains some relevance. Much of the node-related scheduling logic
(like spread topologies, affinity, and anti-affinity covered in Chapter 5) is
relevant and can still be used. Autopilot is “nodeless” in the sense that you no
longer need to worry about how nodes are provisioned or managed, but it
doesn’t completely abstract away or hide nodes. After all, there is a machine
somewhere running your code, and this can have physical relevance around
things like failure domains or wishing to co-locate pods for reduced latency.

I believe Autopilot has a best-of-both worlds design that gives you the node
level controls that you need, while still removing the burden of operating and
administering those nodes. No need to care any more about how many nodes
you have, their size and shape, whether they are healthy, and whether they
are sitting idle or underused.

If you are using GKE Autopilot or a platform like it, you can basically ignore
everything in this chapter that talks about scaling Nodes , and focus purely on
scaling Pods. Scaling pods manually, or automatically with
aHorizontalPodAutoscaler works in Autopilot to also provision the
necessary node resources, without the need to pair it with another system that
scales nodes.

To scale the nodes, you’ll need to consult your Kubernetes provider’s
platform documentation, as Kubernetes itself doesn’t orchestrate nodes. In
the case of GKE, if you use Autopilot, nodes are provisioned automatically,
and you can skip right ahead to Section 6.2. For GKE’s Standard mode of
operation, the command looks like this:

gcloud container clusters resize cluster-name --node-pool pool-name \

--num-nodes $NODE_COUNT

Scaling down is performed with the same commands. When you scale down
the nodes, depending on your provider, you should be able to run the same
command as to scale up, and the cluster will first cordon and drain the nodes
(to prevent new Pods being scheduled on them, and give running Pods’ time
to shutdown gracefully and be re-created on other nodes). Alternatively, you



can manually cordon, drain, and remove nodes with the following
commands:

kubectl get nodes # get a list of node names

kubectl cordon node $NODE_NAME # prevent scheduling on the node

kubectl drain node $NODE_NAME # remove running pods from the node

kubectl delete node $NODE_NAME

These manual steps are also useful if you have a node that you found was not
behaving correctly, and you want it gone.

So, this is how you scale Pods and Nodes by hand. Read on to learn how you
can automate both these operations with Horizontal Pod Autoscaling to scale
pods, and Cluster Autoscaling to scale Nodes (for Cloud providers that offer
it).

6.2 Horizontal Pod Autoscaling

Scaling the number of Pod replicas of your application in Kubernetes is
referred to as horizontal pod autoscaling. It’s “horizontal” as you’re
increasing the number of replicas in order to serve increased traffic, rather
than “vertical” which implies increasing the resources available to each
replica instead. Generally, to scale up a system, it’s horizontal scaling that
you want.

Kubernetes includes a feature called the Horizontal Pod Autoscaler (HPA), a
system whereby you specify a Pod metric like CPU usage to observe and
target, along with some scaling limits (minimum and maximum replicas).
The HPA will then aim to satisfy your metric by creating and removing Pods.
In the case of CPU, say your target is 20% CPU utilization, this means that
the HPA will add replicas when your average utilization (across all pods)
goes above 20% (of what the Pod requested in its resource requests), and
remove them when it goes below 20%. These actions are subject to a
minimum and maximum limit you provide, as well as cooldown periods to
avoid too much churn.

We can create a HPA for our deployment like so:



Listing 6.2 HPA/hpa.yaml

apiVersion: autoscaling/v2

kind: HorizontalPodAutoscaler

metadata:

  name: timeserver

spec:

  minReplicas: 1 #A

  maxReplicas: 10 #B

  metrics:

  - resource:

      name: cpu

      target:

        averageUtilization: 20 #C

        type: Utilization

    type: Resource

  scaleTargetRef: #D

    apiVersion: apps/v1 #D

    kind: Deployment #D

    name: timeserver #D

You can also create it imperatively. As always, I prefer the config approach
as it makes it easier to edit things later. But here is the equivalent imperative
command for completeness:

kubectl autoscale deployment timeserver --cpu-percent=20 --min=1 --max=10

To test this, we’ll need to make the CPU really busy. Let’s add a really CPU-
intensive path to our timeserver application: calculating pi.

Listing 6.3 /timeserver4/pi.py

from decimal import *

 

# Calculate pi using the Gregory-Leibniz infinity series

def leibniz_pi(iterations):

 

  precision = 20

  getcontext().prec = 20

  piDiv4 = Decimal(1)

  odd = Decimal(3)

 

  for i in range(0, iterations):

    piDiv4 = piDiv4 - 1/odd

    odd = odd + 2



    piDiv4 = piDiv4 + 1/odd

    odd = odd + 2

 

  return piDiv4 * 4

Listing 6.4 /timeserver4/server.py

from pi import *

 

# ...

 

case '/pi':

    pi = leibniz_pi(1000000)

    self.respond_with(200, str(pi))

Showing just new function (HTTP route) added to server.py.

Here’s a revised deployment that references this new version. To work
correctly with the HPA, it’s important to set resource requests which we
added in Chapter 5 and are present here.

Listing 6.5 HPA/deploy.yaml

apiVersion: apps/v1

kind: Deployment

metadata:

  name: timeserver

spec:

  replicas: 1

  selector:

    matchLabels:

      pod: timeserver-pod

  template:

    metadata:

      labels:

        pod: timeserver-pod

    spec:

      containers:

      - name: timeserver-container

        image: docker.io/wdenniss/timeserver:4

        resources:

          requests:

            cpu: 250m

            memory: 250Mi



We can now create the deployment, service and the
HorizontalPodAutoscaler:

$ cd Chapter06/6.2_HPA

$ kubectl create -f deploy.yaml -f service.yaml -f hpa.yaml

deployment.apps/timeserver created

service/timeserver created

horizontalpodautoscaler.autoscaling/timeserver created

$ kubectl get svc -w                                       

NAME         TYPE           CLUSTER-IP      EXTERNAL-IP   PORT(S)        AGE

kubernetes   ClusterIP      10.22.128.1     <none>        443/TCP        6m35s

timeserver   LoadBalancer   10.22.131.179   <pending>     80:32650/TCP   18s

timeserver   LoadBalancer   10.22.131.179   34.83.118.233   80:32650/TCP   26s

While you’re waiting for the external IP to be provisioned you can start
watching the CPU utilization of your Pods with the following command (I’d
suggest putting it in a new window):

kubectl top pods

Once you have the external IP, generate some load on the endpoint. Apache
Bench (which you can install on most systems) works well for this. The
following command will send 50 requests simultaneously to our endpoint,
until 10k have been sent—that should do it!

ab -n 10000 -c 5 http://$EXTERNAL_IP/pi

You can watch the status of the deployment with the following:

kubectl get pods -w

To watch all resources using a single command (which kubectl can’t do by
itself), the Linux watch command is convenient:

watch -d kubectl get deploy,hpa,pods

If all goes correctly, you should observe the CPU utilization increase as
visible with kubectl top pods, and more Pods replica being created. Once
you stop sending load to the endpoint (e.g. by interrupting ab, or waiting for
it to finish), you should observe these replicas gradually being removed.
Generally the removal of replicas is slower than the addition, so that the



system quickly scales up to meet demand, and cautiously scales down so that
there’s a bit of spare capacity in case the demand is spikey.

Here’s what it looked like for my sample run:

$ kubectl get deploy,hpa,pods 

NAME                         READY   UP-TO-DATE   AVAILABLE   AGE

deployment.apps/timeserver   2/6     6            2           7m7s

 

NAME                          REFERENCE               TARGETS    MINPODS   MAXPODS   REPLICAS   AGE

horizontalpodautoscaler.autoscaling/timeserver   Deployment/timeserver   100%/30%   1         6         6          7m7s

 

NAME                             READY   STATUS              RESTARTS   AGE

pod/timeserver-b8789946f-2b969   1/1     Running             0          7m7s

pod/timeserver-b8789946f-fzbnk   0/1     Pending             0          96s

pod/timeserver-b8789946f-httwn   1/1     Running             0          96s

pod/timeserver-b8789946f-vvnhj   0/1     Pending             0          96s

pod/timeserver-b8789946f-xw9zf   0/1     ContainerCreating   0          36s

pod/timeserver-b8789946f-zbzw9   0/1     ContainerCreating   0          36s

The HPA autoscaler shown here worked pretty well using the CPU metric,
but there’s a catch—your workload may not be CPU bound. Unlike the CPU-
intensive request used in the demo, many HTTP services spend a lot of time
waiting on external services like databases. These deployments may need to
scale using other metrics like the number of requests per second hitting the
service, rather than the CPU utilization. Kubernetes offers two built in
metrics: CPU (demonstrated above), and memory. It doesn’t directly support
metrics like requests per second, but it can be configured by using custom
and external metrics exposed by your monitoring service. The next section
covers this situation.

What about Vertical Pod Autoscaling?

Vertical Pod Autoscaling (VPA) is a concept whereby Pods are scaled
vertically by adjusting their CPU and memory resources. Implementations of
VPA in Kubernetes achieve this by observing the Pods resource usage, and
dynamically changing the Pod’s resource requests over time. Kubernetes
doesn’t offer a VPA implementation out of the box, although an open source
implementation is available[1], and cloud providers including GKE offer their
own versions.



As a VPA can determine a Pod’s resource requests automatically, it could
save you some effort and provide some resource efficiency. It’s also the right
tool for the job if you need the Pod’s resource requests to be adjusted
dynamically over time (for Pods who have resource requirements that
fluctuate widely).

Using a VPA adds its own complexity and may not always play nice with the
HPA. I would focus first on setting appropriate pod resource requests, and the
horizontal scaling of replicas.

6.2.1 External Metrics

One popular scaling metric is Requests per Second (RPS). The basis of using
RPS metrics for scaling is that you measure how many requests an instance
of your application can serve every second (the replica’s capacity). Then, you
divide the current number of requests by this amount, and voila, you have the
number of replicas needed.

replica_count = RPS ÷ replica_capacity

The benefit of the RPS metric is that if you are confident of your application
to handle the RPS that you tested it for, then you can be confident that it
should be able to scale under load as it’s the auto-scaler’s job to provision
enough capacity.

In fact, even if you’re not doing automatic scaling, this is still a really good
way to plan your capacity. You can measure the capacity of your replicas,
project your traffic and increase your replicas accordingly. But since this is
Kubernetes, we can set this up as an auto scaler.

Now in this case, we’ll be using the “external metric” property of the HPA.
One issue with this is that the metric, as its name suggests, it is sourced from
outside the cluster. So, if you’re using a different monitoring solution than
the one I use in my example, you’ll need to look up what the relevant RPS
metric is. Fortunately, this is a pretty common metric, and any monitoring
solution worth its salt will offer it.

In prior chapters we discussed a few different ways to get traffic into your



cluster, via a so-called L3 LoadBalancer which operates at a TCP/IP level,
and a so-called L7 ingress which operates at the HTTP level. As “requests”
are a HTTP concept, you’ll need to be using an Ingress to get this metric.
Ingress is covered in the next chapter in depth, for now it’s enough to know
that this object sees and inspects your HTTP traffic, thus can expose a metric
for the number of requests you are getting.

For this example, we will use the same Deployment but expose it on an
Ingress, via a NodePort service, instead of a LoadBalancer.

Listing 6.6 ExternalMetricGCP/service.yaml

apiVersion: v1

kind: Service

metadata:

  name: timeserver-internal

spec:

  selector:

    pod: timeserver-pod

  ports:

  - port: 80

    targetPort: 80

    protocol: TCP

  type: NodePort

Listing 6.7 ExternalMetricGCP/ingress.yaml

apiVersion: networking.k8s.io/v1

kind: Ingress

metadata:

  name: timeserver-ingress

spec:

  rules:

  - http:

      paths:

      - path: /

        pathType: Prefix

        backend:

          service:

            name: timeserver-internal

            port:

              number: 80



Now if you’re using Google Cloud, the following HPA definition can pick up
the RPS metric from the L7 ingress, once you replace the forwarding rule
name with your own.

Listing 6.8 ExternalMetricGCP/hpa.yaml

apiVersion: autoscaling/v2

kind: HorizontalPodAutoscaler

metadata:

  name: timeserver-autoscaler

spec:

  minReplicas: 1

  maxReplicas: 6

  scaleTargetRef:

    apiVersion: apps/v1

    kind: Deployment

    name: timeserver

  metrics:

  - type: External

    external:

      metric:

        name: loadbalancing.googleapis.com|https|request_count

        selector:

          matchLabels:

            resource.labels.forwarding_rule_name: "k8s2-fr-21mgs2fl-default-timeserver-ingress-s2j1ki7x"

      target:

        type: AverageValue

        averageValue: 5

The forwarding_rule_name is how the metric server knows which ingress
object you’re talking about. You can omit the metricSelector completely,
but then it will match on all ingress objects, probably not what you want.

Unfortuantely this forwarding rule name is a platform-specific resource
name, and not the Kubernetes object name (and in this example, that name is
set automatically by GKE). To discover the platform resource name, you can
describe your ingress object like so:

$ kubectl describe ingress

Name:             timeserver-ingress

Namespace:        default

Address:          34.110.232.121

Default backend:  default-http-backend:80 (10.22.0.202:8080)

Rules:



  Host        Path  Backends

  ----        ----  --------

  *           

              /   timeserver-internal:80 (10.22.0.130:80,10.22.0.131:80,10.22.0.196:80 + 1 more...)

Annotations:  ingress.kubernetes.io/backends:

                {"k8s-be-32730--a52250670846a599":"HEALTHY","k8s1-a5225067-default-timeserver-internal-80-6284288f":"HEALTHY"}

              ingress.kubernetes.io/forwarding-rule: k8s2-fr-21mgs2fl-default-timeserver-ingress-s2j1ki7x

              ingress.kubernetes.io/target-proxy: k8s2-tp-21mgs2fl-default-timeserver-ingress-s2j1ki7x

              ingress.kubernetes.io/url-map: k8s2-um-21mgs2fl-default-timeserver-ingress-s2j1ki7x

Events:

  Type    Reason  Age                    From                     Message

  ----    ------  ----                   ----                     -------

  Normal  Sync    6m28s (x31 over 5h6m)  loadbalancer-controller  Scheduled for sync

Another way to query this information which is important if you are
configuring automated tooling, is to understand where the data is within the
object structure, and use the JsonPath format of kubectl.

$ kubectl get ingress -o=jsonpath="{.items[0].metadata.annotations['ingress\.kubernetes\.io\/forwarding-rule']}"

 

k8s2-fr-pqqby6yf-default-pluscode-ingress-hrsjzvk

(How I built that JsonPath expression is to first query the -o=json version of
the ingress, then figure out the path through a combination of looking at the
JsonPath Docs, Stack Overflow, and trial and error).

Once you have the objects ready, there’s one last step which is to install some
glue that gives the HPA access to the metrics. You may want to check the
latest instructions[2], at the time of writing it’s a one-liner:

kubectl apply -f https://raw.githubusercontent.com/GoogleCloudPlatform/k8s-stackdriver/master/custom-metrics-stackdriver-adapter/deploy/production/adapter_new_resource_model.yaml

With our Deployment, (internal NodePort) Service, Ingress, HPA and metric
adapter all configured, we can now try it out!

Generate some requests to the ingress like so (replacing the IP of your
ingress, obtained via kubectl get ingress):

ab -n 100000 -c 100 http://34.110.232.121/

And in a separate window, observe the scale out:

$ kubectl get hpa,ingress,pods

NAME                                     REFERENCE               TARGETS   MINPODS   MAXPODS   REPLICAS   AGE

horizontalpodautoscaler.autoscaling/timeserver   Deployment/timeserver   94%/30%   1         6         4          5d1h



 

NAME                                           CLASS    HOSTS   ADDRESS          PORTS   AGE

ingress.networking.k8s.io/timeserver-ingress   <none>   *       34.110.232.121   80      30h

 

NAME                             READY   STATUS              RESTARTS   AGE

pod/timeserver-b8789946f-8dpmg   1/1     Running             0          5h51m

pod/timeserver-b8789946f-gsrt5   0/1     ContainerCreating   0          110s

pod/timeserver-b8789946f-sjvqb   1/1     Running             0          110s

pod/timeserver-b8789946f-vmhsw   0/1     ContainerCreating   0          110s

One thing you may notice already is that it’s already easier to validate that the
system is performing more as expected. Apache Bench allows you to specify
concurrent requests, you can see how long they take (and therefore calculate
the RPS) and look at the number of replicas to see if it’s right. This was a bit
harder with the CPU metric where to test you might have just tried to make
the pod as busy as possible. This property of scaling based on user requests is
one reason why this is a popular metric to use.

Observing and Debugging

To see what the HPA is doing, you can run kubectl describe hpa. Pay
particular attention to the “ScalingActive” condition. If it is `False`, then it
likely means that your metric is not active which can be for a number of
reasons: a) the metric adapter wasn’t installed (or isn’t authenticated), b) your
metric name or selector is wrong, or c) there just isn’t any metrics available
yet. Note that even with the correct configuration, you will see ‘False’ when
there is no data (for example there are no requests), so be sure to send some
requests to the endpoint and wait a minute or two for the data to come
through before investigating further.

AverageValue vs Value

In the example above, we used targetAverageValue. targetAverageValue
is the target per pod value of the metric. targetValue is an alternative, which
is the target absolute value. As the RPS capacity is calculated at a per-pod
level, it’s targetAverageValue we want.

Other metrics



Another popular external metric when dealing with Batch Jobs (covered in a
later chapter) is the PubSub queue length. PubSub is a queuing system that
allows you to have a queue of work that needs to be performed, and you can
set up a workload in Kubernetes to process that queue. For such a setup, you
may wish to react to the queue size by adding and removing Pod replicas
(workers that can process the queue). You can find a fully worked example
on the GKE docs[3] for this, essentially it boils down to a HPA that looks like
the one above, just with a different metric:

metricName: pubsub.googleapis.com|subscription|num_undelivered_messages #A

      metricSelector:

        matchLabels:

          resource.labels.subscription_id: your-subscription #B

Other Monitoring Solutions

External metrics is something you should be able to configure for any
Kubernetes monitoring system. While the worked example given above was
using Cloud Monitoring on GCP, the same principles should apply if you’re
using Prometheus, or another cloud. To get things going, you’ll need to
determine a) how to install the metric adapter for your monitoring solution b)
what the metric name is in that system, and c) the right way to select the
metric resource.

6.3 Node Autoscaling & Capacity Planning

6.3.1 Cluster Autoscaling

Cluster autoscaling is not part of Kubernetes, but is a common provider-
provided feature that scales nodes for you, allowing you to focus just on your
application and how many replicas it has. As this is a platform-specific
feature, the exact implementation will vary (and not all providers offer it).
Search for “product name Cluster Autoscaler” to find the relevant docs.

In the case of GKE, if you use the Autopilot mode of operation clusters have
built-in node provisioning and autoscaling, no further configuration required.
For GKE’s Standard mode of operation, you can configure autoscaling when



creating a node pool, or update an existing node pool.

When using cluster autoscaling, you can focus on scaling your own
workloads, having the cluster respond automatically. This is really
convenient, as it can solve the “Pending” pods problem, both when scaling
existing workloads and deploying new ones. Do read the specific
implementation details of your provider though to understand what cases are
not covered (like how pods that are too big to fit on current node
configurations are handled).

Figure 6.1 The Cluster Autoscaler watches for Pending pods, and creates new nodes if needed





Traditional cluster autoscalers may only add new nodes of an existing
predefined configuration, requiring you to define each possible node type you
wish to use, so be sure to read the docs. GKE can add new nodes of any type
if you use Autopilot (no configuration needed, that’s how it works out of the
box), or Standard with Node Auto Provisioning configured.

Cluster autoscaling and other provider tools that can add and remove nodes
automatically make your life easier by allowing you to mostly ignore nodes,
and focus purely on your own Pods. When paired with Pod-based scaling like
the HorizontalPodAutoscaler, you can have a fairly hands-off, automated
deployment.

6.3.2 Spare Capacity with Cluster Autoscaling

One of the drawbacks of autoscaling nodes compared to manually adding
nodes is that sometimes the Autoscaler can tune things a little too well and
result in no spare capacity. This can be great for keeping costs down, but it
makes it slower to start new Pods, as capacity needs to be provisioned before
the Pod can startup.

Adding new Nodes then starting the Pod is slower than adding new Pods to
existing Nodes. Nodes have to be provisioned and booted, while Pods that get
scheduled onto existing nodes just have to pull the container and boot (and if
the container is already in the cache, they can even start booting right away).
As shown in the figure below, the newly scheduled Pod must wait for
capacity to be provisioned before it can begin booting.

Figure 6.2 Dynamically adding capacity with autoscaling to accommodate newly scheduled pods





One way to solve both these problems, while still keeping your autoscaler is
to use a low priority balloon pod. This is a Pod that does nothing itself, other
than to reserve capacity (keeping additional nodes up and running on
standby). This Pod’s priority is low so that when your own workloads scale
up, they can preempt this pod and use the node capacity.

Figure 6.3 Autoscaling with a balloon pod allowing for rapid booting of new pods using spare
capacity





To create our “balloon” pod deployment, first we’ll need a PriorityClass.
This priority class should have the lowest possible priority (we want every
other priority class to preempt it).

Listing 6.9 BalloonPod/balloon-priority.yaml

apiVersion: scheduling.k8s.io/v1

kind: PriorityClass

metadata:

  name: balloon-priority

value: -10

preemptionPolicy: Never

globalDefault: false

description: "Balloon pod priority."

Now we can create our “do nothing” container deployment like so:

Listing 6.10 BalloonPod/balloon-deploy.yaml

apiVersion: apps/v1

kind: Deployment

metadata:

  name: balloon-deploy

spec:

  replicas: 10 #A

  selector:

    matchLabels:

      app: balloon

  template:

    metadata:

      labels:

        app: balloon

    spec:

      priorityClassName: balloon-priority #B

      terminationGracePeriodSeconds: 0 #C

      containers:

      - name: ubuntu

        image: ubuntu

        command: ["sleep"] #D

        args: ["infinity"] #D

        resources:

            requests:

              cpu: 200m #E

              memory: 250Mi #E



When creating this yourself, consider the number of replicas you need, the
size (memory and CPU requests) of each replica. The size should be at least
the size of your largest regular pod (otherwise, your workload may not fit in
the space when the balloon pod is preempted). At the same time, don’t
increase the size too much – it would be better to use more replicas, than
replicas that are much larger than your standard workloads pods if you wish
to reserve extra capacity.

For these balloon pods to be preempted by other pods that you schedule,
those pods will need to have a priority class that both has a higher value, and
not have a preemptionPolicy of Never. Fortunately, the default priority class
has a value of 0, and a preemptionPolicy of PreemptLowerPriority, so by
default all other Pods will displace our balloon pod.

To represent the Kubernetes default as its own priority class, it would look
like the following. As you don’t actually need to change the default, I
wouldn’t bother configuring this. But if you’re creating your own priority
classes, you can use this as the reference (just don’t set globalDefault to
true, unless that’s what you really intend). Once again: for the balloon pod
preemption to work, be sure not to set preemptionPolicy to Never.

Listing 6.11 BalloonPod/default-priority.yaml

apiVersion: scheduling.k8s.io/v1

kind: PriorityClass

metadata:

  name: default-priority

value: 0

preemptionPolicy: PreemptLowerPriority

globalDefault: true

description: "The global default priority. Will preempt the balloon pods."

Balloon Pods encapsulated in a Deployment like this are useful for providing
constant scaling headroom, giving you a defined amount of capacity ready
for quick scheduling. You can also encapsulate them in a Job, or run as a
standalone Pod for alternative ways to provision capacity.

6.4 Building Your App to Scale



Scaling your application up is only part of the equation. The application itself
needs to build with scaling in mind. Even though you may not be at the point
of your growth where you need to worry about these issues, I believe that the
time when you need to scale, is not the time to design how you’re going to
scale.

When your application is one with unpredictable growth (for example, a
startup with potentially unlimited users), you really want to plan ahead to
avoid the “success failure” scenario. This is where, in a breakout moment of
your success, the app fails because it couldn’t handle the scale. Since you
don’t know when this breakout moment will be, you need to have designed
for this ahead of time. Not every startup will have a breakout moment, but if
yours does, you want to be ready to capitalize on the opportunity otherwise it
could all be for naught.

Fortunately, by choosing Kubernetes to orchestrate your containers, you are
starting with a really solid foundation for a scalable app. There are some
other factors to keep in mind when designing the application which are
largely independent to Kubernetes. Most scalable design principles apply to
both Kubernetes and non-Kubernetes environments, but I’ll cover a few best
practices that are worth keeping in mind to build a scalable app on
Kubernetes. Keeping some scalability principles in mind as you develop your
application could matter in the future when your breakout moment arrives,
and you need to scale it to the moon.

6.4.1 Avoiding State

One of the most important aspects to being able to scale, is avoiding local
state in your applications. A stateless design is where each replica (instance)
of your application that’s running can serve any incoming request, without
reference to any data stored locally on any other instance. Local “ephemeral”
storage can be used for temporary data processing, as long as it’s not shared
between replicas and doesn’t need to be available for the next request that
comes in.

The most important of the twelve factors



This property of the application being stateless is, I believe, the most
important factor in the popular “The Twelve-Factor App” design
methodology (https://12factor.net/processes). Stateless apps are easier to
scale and maintain as each instance can independently serve any request.

Unlike with a classical host machine, in Kubernetes all data written to disk by
the container is ephemeral (deleted when the container is terminated or
restarted) by default. It is possible to create stateful applications using
Persistent Volumes, and the StatefulSet construct (see Chapter 9), but by
default containers are treated as stateless, and you generally want to keep it
that way so that you can scale.

Rather than storing state on disks that you manage in Kubernetes, use
external data stores to store data instead, like SQL and NoSQL databases for
structured data, object storage for files, and memory databases like Redis for
session state. To support your ability to scale, choose managed services
(rather than self-hosting), and ensure the services you choose can handle your
potential growth.

This is not to say that all state is bad. After all, you need somewhere to store
your state, and sometimes this needs to be a self-hosted application. When
you do create such an application, be sure to choose highly scalable solutions,
like a popular open source solution with a track record of success (for
example, Redis).

Relational Database Gotchas

If you use a relational database like MySQL or PostgreSQL to store data,
then there are more than a few potential pitfalls worth paying attention to.

Taming your queries

It goes without saying that inefficient queries will give you inefficient
scaling, slowing down as the amount of data increases and the number of
requests increase. To keep things under control, I recommend logging and
analyzing your queries, and starting early in the development process (you
don’t want to wait until your app is a hit to look at the queries!).



You can’t improve what you don’t measure, so logging the queries a request
performs and their run time is the most important first step. Look for requests
that generate a lot of queries, or slow queries, and start there.

Both MYSQL and PostgreSQL support the EXPLAIN command which can
help analyze specific queries for performance. Common tactics to improve
performance include adding indices for commonly searched columns, and
reducing the number of JOINs you need to perform. MySQL’s
documentation Optimizing SELECT Statements[4] goes into great detail on
many different optimization tactics.

Avoid N+1 queries

Even if your queries are super-efficient, each individual query you make to
the database has overhead. Ideally each request your application processes
should perform a constant number of queries, regardless of how much data is
displayed.

If you have a request that renders a list of objects, you ideally want to serve
this without generating a separate query for each of those objects. This is
commonly referred to as the N+1 query problem (as when the problem
occurs, there is often 1 query to get the list, and then one for each item [N
items] in the list).

This anti-pattern is particularly common with systems that use object-rational
mapping (ORM), and feature lazy loading between parent and child objects.
Rendering the child objects of a one-to-many relationship with lazy loading
typically results in N+1 queries (1 query for the parent, N queries for the N
child objects), which will show up in your logs. Fortunately there is normally
a way with such systems to indicate upfront that you plan to access the child
objects so that the queries can be batched.

Such N+1 query situations can normally be optimized into a constant number
of queries, either with a JOIN to return the child objects in the list query, or
two queries: one to get the record set, then a second to get the details for the
child objects in that set. Remember: the goal is to have a small constant
number of queries per request, and in particular, the number of queries
shouldn’t scale linearly with the number of records being presented.



Use read replicas for SELECT queries

One of the best ways to reduce the strain on your primary DB, is to create a
read replica. In cloud environments, this is often really trivial to setup. Send
all your read queries to your read replica (or replicas!) to keep the load off the
primary “read/write” instance.

To design your application with this pattern in mind before you actually need
a read replica, you could have two database connections in your application
to the same database, using the second to simulate the read replica. Setup the
“read only” connection with its own user that only has read permissions.
Later when you need to deploy an actual read replica, you can simply update
the instance address of your second connection, and you’re good to go!

Incrementing primary keys

If you really hit it big, you may end up regretting using incrementing primary
keys. They’re a problem for scaling, as they assume a single writable
database instance (inhibiting horizontal scaling) and require a lock when
inserting which impacts performance (i.e. you can’t insert two records at
once).

This is really only a problem at very large scale, but worth keeping in mind
as it’s harder to rearchitecting things when you suddenly need to scale up.
The common solution to this is global UUIDs (e.g. 8fe05a6e-e65d-11ea-
b0da-00155d51dc33), a 128bit number commonly displayed as a
hexadecimal string, which can be uniquely generated by any client (including
code running on the user’s device).

When Twitter needed to scale up, they opted instead to create their own
global incrementing ids to retain the property that they are sortable (i.e. that
newer tweets have a higher ID number), which you can read about in their
post Announcing Snowflake[5].

On the other hand, might prefer to keep incrementing primary keys for
aesthetic reasons, like when the record ID is exposed to the user (as in the
case of a tweet ID), or for simplicity. Even if you plan to keep your
incrementing primary keys for a while, one step you can still take early on is



not using auto incrementing primary keys in places where they wouldn’t add
any value, like say a user session object—maybe not every table needs an
incrementing primary key.

6.4.2 Microservice Architectures

One way to build up your application is by splitting services into multiple
services, often described as using a microservice architecture. This is
basically just creating several internal services to perform separate tasks, and
using remote procedure calls (a HTTP request, essentially) to call those
functions from other services. This contrasts to the “monolith” service design
approach, of having the complete program logic in a single container.

While there are some benefits to splitting up a monolith into multiple smaller
services, there are some drawbacks as well, so I don’t advocate using a
microservice architecture just for the sake of it. Benefits including being able
to use different programming languages for each service, being able to
develop them independently (for example, by separate teams), and
independent scaling. Drawbacks include more complex debugging and
integration testing, as you now have more components, and need a way to
trace requests through the system.

Microservice vs Monolith

Should you build microservices, or a monolith? For the sake of this debate,
which I’m not going to litigate that in this book, let me share two views on
the topic and let you judge for yourself.

David Heinemeier Hansson (DHH) writes in his post The Majestic Monolith
(https://m.signalvnoise.com/the-majestic-monolith/) that microservices is for
large tech companies, and most smaller teams are better served by a
monolith. His argument is that while microservices can have advantages in
certain situations, it’s not always clear cut, and the overhead—particularly for
smaller teams—is not worth it.

James Lewis and Martin Fowler in their essay on Microservices
(http://martinfowler.com/articles/microservices.html) lay out a well thought



and balanced view on microservices. Benefits highlighted include a product
mentality where internal teams focus on building and managing their own
components, a decentralized approach that allows teams to make their own
architectural decisions.

Whether you go all in on microservices or not, the key point I want to focus
on here is that if you have multiple services, you can scale them separately.
This is true of course even if you have just a single internal service in
addition to your main application—there’s no need to make every endpoint
its own service to benefit from this architecture. For example, say you have a
web application that mostly serves HTML and JSON requests, but has one
endpoint that does some real-time graphics work that uses a more memory
than your average request. It might be worth creating a separate Deployment
(even one using the same container) to serve the graphics endpoint so you can
scale it separately, and also isolate it a bit.

There are a couple of ways to do this too. You can have a single front end,
that calls the internal service, as illustrated in figure 6.4, or you can have end
users connect to this new service directly, as shown in figure 6.5.

Figure 6.4 Two HTTP paths being served by the same frontend that communicates with an
internal service.



Figure 6.5 Two paths being served by separate services

Whether you are going all-in on microservices, splitting off a single service
to be handled by its own scalable deployment, using multiple programming
languages, or running internally developed and open-source software to
provide your application, you will end up creating internal services in
Kubernetes. Internal services are Kubernetes Services that are provisioned
with a private cluster IP address, and are called by other services in the
cluster in order to deliver this architecture. The next chapter covers how to
configure such internal services.

6.4.3 Background Jobs

Another important factor to help you scale is to avoid having any heavy
processing inline. For example, let’s say you have an endpoint that returns a
thumbnail of an image, and will generate the thumbnail if it doesn’t exist in
the cache. You can place this logic inline, where the user requests the
thumbnail, and the service responds by returning the thumbnail from the
cache, or generating one if the cache is empty. The problem with such a
design is that serving the thumbnail from the cache should be very fast, while
creating the thumbnail is not. If a lot of requests come in all needing to create
a thumbnail, the server could slow down or crash. Plus, it's hard to scale,
because some requests are lightweight, and others are really heavy. You
could scale this service up, but still be unlucky and have your load balancer



direct all the heavy requests at a single instance.

The solution to this is to use the background job pattern, covered in detail in
Chapter 10. Essentially, when the heavy processing is needed, rather than
doing it inline, you schedule a job and return a status code to the client
indicating it should retry the request. There is a container configured to
process this job queue, and which can be scaled accurately based on the
current queue length. So, the request comes in, resulting in a cache miss and a
queued job. If things go well, when the client automatically retries the request
after a short time, the thumbnail will have been processed by the background
queue, and be ready for serving. Similar end result for the user, a little extra
work to build a background queue and a client with retry logic, but much
better scalability.

6.5 Summary

Kubernetes is well suited to help you scale, some of the largest
applications out there run on Kubernetes.
To make the most of this architecture, design your application at the get-
go so that it can scale horizontally
The HorizontalPodAutoscaler can be used to provision new Pods as
needed, working together with the Cluster Autoscaler for a complete
auto-scaling solution
You’re not just confined to CPU metrics, but can scale your Pods based
on any metric exported by your monitoring solution
The Cluster Autoscaler technique (if supported by your provider) can be
used to provision new nodes as needed
Balloon pods can be used to add capacity headroom even while
autoscaling
Considering splitting your application into microservices, or simply
hosting multiple deployments of the same application to allow for
separate scaling groups

[1] https://github.com/kubernetes/autoscaler/tree/master/vertical-pod-



autoscaler

[2] https://github.com/GoogleCloudPlatform/k8s-
stackdriver/tree/master/custom-metrics-stackdriver-adapter

[3] https://cloud.google.com/kubernetes-engine/docs/tutorials/autoscaling-
metrics#pubsub_8

[4] https://dev.mysql.com/doc/refman/8.0/en/select-optimization.html

[5] https://blog.twitter.com/engineering/en_us/a/2010/announcing-
snowflake.html



7 Internal Services and Load
Balancing
This chapter covers

Creating internal services
How packets are routed in Kubernetes between virtual IP addresses of
pods and services
Discovering the IP address of internal services
Configuring HTTP Load Balancers with Ingress
Provisioning TLS certificates to create HTTPS endpoints

Internal services are a way to scale how you develop and service your
application by splitting your application into multiple smaller services. These
individual services can be on different development cycles (possibly by
different teams) and use completely different languages and technology from
each other. After all, as long as you can containerize it, you can run it in
Kubernetes. No longer do you need to worry whether your application
deployment platform can run what you need it to run.

In this chapter, we’ll look at how to configure and discover internal services
in the cluster, as well as how Kubernetes gives each of these a cluster-local IP
address and implements internal network routing to make them accessible
from each other. We’ll also look at how you can expose multiple services on
a single external IP using Ingress, and how it can handle TLS termination so
you can offer https endpoints for your application, without needing to
configure TLS certificates in your applications.

7.1 Internal Services

There are many reasons to create services that are completely internal to your
cluster. Perhaps you’ve adopted a microservice architecture, or you’re
integrating an open source service, or you just want to connect two



applications together that are written in different languages.

In Chapter 3, I introduced Services of the type LoadBalancer as the way to
get external traffic on a public IP. Services are also be used to connect
internal services, but using private IP addresses. Kubernetes supports a few
different Service types, the two used for internal services are ClusterIP, and
NodePort.

ClusterIP gives you a virtual IP address in the Kubernetes cluster. This IP is
addressable from any Pod within your cluster (like in this example, your main
application). NodePort on the other hand reserves a high-level port number
on each node in the cluster, allowing you to access it from any Pod using
localhost, and the service IP. In both cases, Kubernetes provides the
networking setup to proxy requests to the Pods that back the service.

7.1.1 Kubernetes Cluster Networking

Now might be a good time for a quick primer on Kubernetes networking. In
Kubernetes, each Node, Pod and Service gets its own internal IP (on a private
network). In the case of the Node, these IPs are directly routable on the
private network, being assigned to a NIC (Network Interface Card). Nodes
may also have a public IP routable on the public internet, but that isn’t
generally used for cluster-internal traffic.

In the case of Pods and Services, their internal IPs are virtual (there is no
NIC, unlike for the nodes), and networking glue (provided by Kubernetes
using either iptables or IPVS) is installed on each node to seamlessly route
traffic via the node’s NIC. This topic alone could fill several chapters; what
you primarily need to know for deploying applications and consuming
internal services is that Pods and Services have virtual IPs that are usable
within the cluster. This means that each Pod has it’s own port ranges to
allocate too: you don’t have to worry about port conflicts between Pods, in
the same way you may normally when running several applications or
containers on a host.

When a request is made from a Pod to a service over the ClusterIP or
NodePort, that request is first handled by the networking glue on the node,



which has an updated list from the Kubernetes control plane of every Pod that
belongs to that service (and which nodes those Pods are on). It will pick one
of the Pod IPs at random and route the request to that Pod via its node.
Fortunately, all this happens quite seamlessly, your app can simply make a
request such like HTTP GET using the IP of the service, and everything
behaves as you’d expect.

Figure 7.1 IP routing for an internal service named “Robohash”. Frontend-1 Pod makes an
internal request to the service. The iptables routing glue on the node has a list of Pods for the
service which is supplied by the Kubernetes control plane, and selects the Pod named “Robohash-
2” at random. The request is then routed to that Pod.





What this all means is that when it’s time for you to deploy an internal
service, you can achieve this by creating a Service, of type ClusterIP thereby
obtaining an IP address that the other services in your cluster (like your app’s
frontend) can communicate with seamlessly. This IP address automatically
balances the load between all Pod replicas of the internal service. You don’t
need to worry about all the networking glue that makes this possible, but
hopefully this section has given you at least a superficial understanding on
how it works.

7.1.2 Creating an Internal Service

Now that you hopefully understand a bit about how Kubernetes networking
works under the hood, let’s build an internal service that can be used by other
Pods in the cluster.

As an example, let’s deploy a new internal service to our app. For this I’m
going to use a neat open source library called “Robohash” that can generate
cute robot avatars for users based on a hash (like a hash of their IP). For your
own deployments, internal services can be things as simple as avatar
generators, other parts of your application, or even entire database
deployments.

Here’s the deployment for this new container:

Listing 7.1 InternalServices/robohash-deploy.yaml

apiVersion: apps/v1

kind: Deployment

metadata:

  name: robohash

spec:

  replicas: 1

  selector:

    matchLabels:

      app: robohash

  template:

    metadata:

      labels:

        app: robohash



    spec:

      containers:

      - name: robohash-container

        image: wdenniss/robohash:v1

This time, instead of exposing this service to the world with a Service of type
LoadBalancer, we’ll keep it internal with a NodePort service. Why NodePort
type instead of ClusterIP? Well, it turns out each NodePort type service also
gets a cluster IP, so it’s the best of both worlds. Plus, NodePort services can
be used with Ingress (covered in the next section), while ClusterIP ones
cannot, so that’s another advantage of choosing NodePort as the default. I
setup my internal services typically with type NodePort, but will still often
reference them via their assigned cluster IP as I find it a closer analogy to
how you would host multiple services outside of Kubernetes.

Here’s the internal service definition for our robohash deployment:

Listing 7.2 InternalServices/robohash-service.yaml

apiVersion: v1

kind: Service

metadata:

  name: robohash-internal

spec:

  selector:

    app: robohash

  ports:

  - port: 80

    targetPort: 80

    protocol: TCP

  type: NodePort

Since this isn’t a LoadBalancer type service like we used in Chapter 3, it
doesn’t have an external IP. If you want to test it, you can use kubectl port
forwarding like so:

kubectl port-forward service/robohash-internal 8080:80

Now you can browse to http://localhost:8080 on your local machine and
check out the service. To generate a test avatar, try something like
http://localhost:8080/example. You’ll get an auto-generated robot avatar like:

localhost:8080.html


Figure 7.2 Example robot avatar (attribution: Robohash.org)

Next, let’s use this internal service from another service—our front end—and
build out our microservice architecture!

Figure 7.3 UML sequence diagram of a simple microservice configuration

To access this internal service from other Pods, you can reference its cluster



IP. As the type is NodePort, you can also access it over localhost on the
assigned port. To view the cluster IP and ports assigned, query the service
like so:

$ kubectl get service

NAME               TYPE       CLUSTER-IP      EXTERNAL-IP   PORT(S)    

robohash-service   NodePort   10.63.254.218   <none>        80:32473/TCP

In this case, you can query the service from other pods on the given cluster IP
(seen as 10.63.254.218 in the output above), such as by making a HTTP
GET request to http://10.63.254.218/example. Or, using the node port of
the service (seen as 32473 in the output above) you can also call
http://localhost:32473/example from any node in the cluster. These paths
only work from other Pods inside the cluster. There’s no difference in the
outcome if you use cluster IP or the node port to call the service from other
Pods, but from here on I’ll use the cluster IP. I personally prefer to think
about services mapping to IPs, as traditionally “localhost” meant the service
was running on the same host, but it really doesn’t matter which you choose.

7.1.3 Service Discovery

In the previous example we used kubectl get service to look up the
internal cluster IP address assigned to our service. While you could simply
take that IP address and hardcode it into your application, doing this isn’t
great for portability. You may wish to deploy the same application in a few
different places, like locally on your development machine, in a staging
environment and in production (how to set up these different environments is
covered in the next chapter), and this approach will mean you need to update
your code every time.

Better is to discover the IP address dynamically in from the Pod that needs to
call the service, much like we discovered the IP address using kubectl.
Kubernetes offers Pods two ways to perform service discovery, using a DNS
lookup, or an environment variable. The DNS lookup works cluster-wide,
while the environment variable is only for Pods within the same namespace.

Service Discovery using Environment Variables

localhost:32473.html


Kubernetes automatically creates an environment variable for each service
and populates it with the Cluster IP, and makes this available in every Pod
that is created after the service is created. The variable follows a naming
conversion whereby our example robohash-internal service gets the
environment variable ROBOHASH_INTERNAL_SERVICE_HOST.

Rather than figuring out the correct conversion, you can view a list of all such
environment variables available to your Pod by running the env command on
you Pod with exec, like so (with truncated output):

$ kubectl get pods

NAME                        READY   STATUS    RESTARTS   AGE

robohash-6c96c64448-7fn24   1/1     Running   0          2d23h

 

$ kubectl exec robohash-6c96c64448-7fn24 -- env

 

ROBOHASH_INTERNAL_PORT_80_TCP_ADDR=10.63.243.43

ROBOHASH_INTERNAL_PORT_80_TCP=tcp://10.63.243.43:80

ROBOHASH_INTERNAL_PORT_80_TCP_PROTO=tcp

ROBOHASH_INTERNAL_SERVICE_PORT=80

ROBOHASH_INTERNAL_PORT=tcp://10.63.243.43:80

ROBOHASH_INTERNAL_PORT_80_TCP_PORT=80

ROBOHASH_INTERNAL_SERVICE_HOST=10.63.243.43

The benefit of this approach is that it’s extremely fast. Environment variables
are just string constants, with no dependencies external to the pod itself. It
also frees you to specify any DNS server you like to serve the other requests
of the pod (e.g., 8.8.8.8).

The downside is that only those services in the same namespace of the Pod
are populated in environment variables, and that ordering matters: the service
must be created before the Pod, for the Pod to get the service’s environment
variable.

If you find yourself in a situation where you need to restart your Pods to pick
up changes to the service, you can do this with the following command (no
change to the Pod needed):

kubectl rollout restart deployment DEPLOYMENT_NAME

One common way to reference these variables is to provide the complete



service HTTP endpoint of the internal service in its own environment
variable defined in the Deployment. This allows your container to be even
more portable and be able to run outside of Kubernetes (e.g. in Docker
Compose). Here’s how you can embed the value of the automatically
generated environment variable
(ROBOHASH_INTERNAL_SERVICE_HOST) in your own custom
environment variable (AVATAR_ENDPOINT) which your application will
ultimately consume:

Listing 7.3 InternalServices/timeserver-deploy-env.yaml

apiVersion: apps/v1

kind: Deployment

metadata:

  name: timeserver

spec:

  replicas: 1

  selector:

    matchLabels:

      pod: timeserver-pod

  template:

    metadata:

      labels:

        pod: timeserver-pod

    spec:

      containers:

      - name: timeserver-container

        image: docker.io/wdenniss/timeserver:1

        env:

        - name: AVATAR_ENDPOINT

          value: http://$(ROBOHASH_INTERNAL_SERVICE_HOST)

Using this additional layer of indirection, where our custom environment
variable references the Kubernetes one is useful as now we can run this
container standalone in docker (just populate AVATAR_ENDPOINT with
the endpoint of the internal service wherever it’s running), or switch to DNS-
based lookups.

In summary, environment variable discovery has a few advantages:

Super fast (they are string constants)
No dependency on other the DNS Kubernetes component



And some disadvantages:

Only available to pods in the same namespace
Pods must be created after the service is created

Service Discovery using DNS

The other way to discover services is via the cluster’s internal DNS service.
For services running in a different namespace to the pod, this is the only
option for discovery. The service name is exposed as a DNS host, so you can
simply do a DNS lookup on robohash-internal (or use http://robohash-
internal) as your http path, and it will resolve. When calling the service
from other namespaces, append the namespace, e.g. robohash-
internal.default to call the the service robohash-internal in the default
namespace.

The only downside to this approach is that it’s a little slower to resolve that
IP address, as a network request is needed. In many Kubernetes clusters, this
network service will be running on the same node so it’s pretty fast, in others
it may require a hop to the DNS service running on a different node, or a
managed DNS service, so be sure to cache the result.

Since we previously made the endpoint URL an environment variable of the
deployment, we can easily update the variable, this time giving it the service
name (http://robohash-internal). The complete deployment will look like
so:

Listing 7.4 InternalServices/timeserver-deploy-dns.yaml

apiVersion: apps/v1

kind: Deployment

metadata:

  name: timeserver

spec:

  replicas: 1

  selector:

    matchLabels:

      pod: timeserver-pod

  template:

    metadata:



      labels:

        pod: timeserver-pod

    spec:

      containers:

      - name: timeserver-container

        image: docker.io/wdenniss/timeserver:5

        env:

        - name: AVATAR_ENDPOINT

          value: http://robohash-internal

In summary, DNS-based service discovery has a few advantages:

Can be called from any namespace in the cluster
No ordering dependencies

And some disadvantages:

Slightly slower than using an environment variable (which is a constant)
Dependency on the internal DNS service

So that is two ways how our front-end service can discover the internal
service’s internal Pod IP, rather than having that IP address hardcoded. Since
these discovery methods are Kubernetes-specific, it’s recommended to supply
the path as an environment variable to the container as we did in the example,
so then you can easily supply a completely different path when running the
container outside of Kubernetes.

Putting it all together

Let’s make a call from the timeserver app to our internal robohash service on
a new endpoint /avatar. All this new endpoint does is to read an image from
the internal service, and return it.

Listing 7.5 /timeserver5/server.py

import urllib.request

import os

import random

 

# ...

 



case '/avatar':

    url = os.environ['AVATAR_ENDPOINT'] + "/" + str(random.randint(0, 100))

    try:

        with urllib.request.urlopen(url) as f:

            data = f.read()

            self.send_response(200)

            self.send_header('Content-type', 'image/png')

            self.end_headers()

            self.wfile.write(data) 

    except urllib.error.URLError as e:

        self.respond_with(500, e.reason)

 

 

# ...

Now that our application actually uses the internal service, we can deploy it
all to Kubernetes.

$ cd Chapter07/7.1_InternalServices

$ kubectl create -f robohash-deploy.yaml

$ kubectl create -f robohash-service.yaml

$ kubectl create -f timeserver-deploy-dns.yaml

$ kubectl create -f timeserver-service.yaml

$ kubectl get svc/timeserver

NAME         TYPE           CLUSTER-IP      EXTERNAL-IP    PORT(S)        AGE

timeserver   LoadBalancer   10.22.130.155   34.127.43.33   80:32131/TCP   4m25s

$ open "http://34.127.43.33/avatar"

Wait for the external IP to be provisioned, then try out the /avatar URL. You
should be greeted with a robot avatar.

We are now using microservice architecture for the demo! Using this
technique, you can have multiple internal services that can be deployed and
managed separately (perhaps by different teams). You can add in separate
services using open source tooling, or simply bring together different
components of your application written in different languages.

7.2 Ingress: HTTP(S) Load Balancing

So far in the book we’ve been using Services of type LoadBalancer. This
provides you a so-called level 3 (L3) load balancer, which balances requests
at the network level, and can work with a variety of protocols (TCP, UDP,



SCTP). You configure the Service with your desired protocol and port, and
you get an IP that will balance traffic over your Pods. If you expose a HTTP
service over a LoadBalancer, you need to implement your own TLS
termination handling (configuring certificates, and running a HTTPS
endpoint), and all traffic to that endpoint will get routed to one set of Pods
(based on the matchLabels rules). There is no option for exposing two or
more separate services directly on the same load balancer (though one can
proxy requests to the other internally).

When you are publishing a HTTP app specifically, you may get more utility
from a so-called level 7 (L7) load balancer, which balances at the HTTP
request level and can do more fancy things like terminate HTTPS
connections (meaning it will handle the HTTPS details for you), and perform
path-based routing, so you can serve a single domain host with multiple
services. In Kubernetes, a HTTP load balancer is created with an Ingress
object.

Ingress lets you place multiple internal services behind a single external IP
with load balancing. You can direct HTTP requests to different backend
services based on their URI path (/foo, /bar), hostname (foo.example.com,
bar.example.com), or both. The ability to have multiple services running on a
single IP (and potentially serving different paths under a single domain name)
is unique to Ingress, because if you’d exposed them with individual Services
of type LoadBalancer like in the earlier chapter, the services would have
separate IP addresses, necessitating separate domains (e.g. one Service hosted
on foo.example.com, and the other on bar.example.com).

Figure 7.4 the ingress’ rule list, or “URL Map” allows one HTTP load balancer to handle the
traffic for multiple services.





The property of Ingress being able to place multiple services under one host
is useful when scaling up your application. When you need to break up your
services into multiple services for developer efficiency (teams wanting to
manage their own deployment lifecycle), or scaling (being able to scale
aspects of the application separately), you can use Ingress to route the
requests while not altering any public-facing URL paths. For example, let’s
say that your application has a path that is a particularly CPU-intensive
request. You might wish to move it to its own service to allow it to be scaled
separately. Ingress allows you to make such changes seamlessly to end users.

Here’s an example Ingress where the routes are served by different backends.
In this example, we’ll run an internal Timeserver service on the root path (/),
and we’ll expose the internal Robohash service from the previous section on
/robohash.

Listing 7.6 Ingress/ingress_path.yaml

apiVersion: networking.k8s.io/v1

kind: Ingress

metadata:

  name: timeserver-ingress

spec:

  rules:

  - http:

      paths:

      - path: /

        pathType: Prefix

        backend:

          service:

            name: timeserver-internal

            port:

              number: 80

      - path: /robohash

        pathType: Prefix

        backend:

          service:

            name: robohash-internal

            port:

              number: 80

Here’s a variation using different hosts. Each of these hosts can also have



multiple paths using the format above.

Listing 7.7 Ingress/ingress_host.yaml

apiVersion: networking.k8s.io/v1

kind: Ingress

metadata:

  name: timeserver-ingress

spec:

  rules:

  - host: timeserver.example.com

    http:

      paths:

      - path: /

        pathType: Prefix

        backend:

          service:

            name: timeserver-internal

            port:

              number: 80

  - host: robohash.example.com

    http:

      paths:

      - path: /

        pathType: Prefix

        backend:

          service:

            name: robohash-internal

            port:

              number: 80

The Services referenced in the Ingress object are the same Services discussed
in Ch. 03, and in the prior section with one important consideration, they are
all of type NodePort.

Listing 7.8 Ingress/timeserver-service-internal.yaml

apiVersion: v1

kind: Service

metadata:

  name: timeserver-internal

spec:

  selector:

    pod: timeserver-pod

  ports:



  - port: 80

    targetPort: 80

    protocol: TCP

  type: NodePort

Ingress objects can be configured to perform exact matching (only requests
exactly matching the path given will be routed to that service), or prefix
matching (all requests matching the path prefix will be routed) with the
pathType property. I’m not going to go into a lot of detail here, as the official
docs do a great job. One facet worth reproducing is the rule on multiple
matches:

In some cases, multiple paths within an Ingress will match a request. In those
cases precedence will be given first to the longest matching path. If two paths
are still equally matched, precedence will be given to paths with an exact path
type over prefix path type.

Ingress – The Kubernetes Authors[1]

As you may have seen in the first example I presented, there was a path for /,
and a second one for /foo. A request to /foo will be routed to the second
service, even though it also matched the first path. If you’ve used other
routing mechanisms in the past (like Apache URL rewriting), often the
preference would go to the first rule matched. Not so in Kubernetes, where
the longer matched rule gets preference. This design in Kubernetes is
convenient, as it matches well with developer intent.

Deploying this example:

$ cd Chapter07/7.2_Ingress 

$ kubectl create -f robohash-deploy.yaml 

deployment.apps/robohash created

$ kubectl create -f robohash-service.yaml 

service/robohash-internal created

$ kubectl create -f timeserver-deploy-dns.yaml 

deployment.apps/timeserver created

$ kubectl create -f timeserver-service-internal.yaml 

service/timeserver-internal created

$ kubectl create -f ingress_path.yaml

ingress.networking.k8s.io/timeserver-ingress created

will@macbook-pro 7.2_Ingress % kubectl get ing -w



NAME                 CLASS    HOSTS   ADDRESS   PORTS   AGE

timeserver-ingress   <none>   *                 80      4s

timeserver-ingress   <none>   *       34.110.232.121   80      100s

Once your ingress has an IP, you can browse to it. One thing to note is that
the resources backing the ingress may take a bit of extra time to be
provisioned. Even if you have the IP address, and you browse to it, you may
see a 404 error for a time. I suggest trying again in about 5 minutes to give
the cloud provider time to update the ingress.

To debug issues with the ingress, you can use kubectl describe. Here’s
what I see when I described the ingress shortly after it had an IP, and then
again after waiting a few minutes.

$ kubectl describe ing

Name:             timeserver-ingress

Namespace:        default

Address:          34.110.232.121

Default backend:  default-http-backend:80 (10.22.0.130:8080)

Rules:

  Host        Path  Backends

  ----        ----  --------

  *           

              /           timeserver-internal:80 (10.22.0.135:80)

              /robohash   robohash-internal:80 (10.22.1.4:80)

Annotations:  ingress.kubernetes.io/backends:

                {"k8s-be-32730--a52250670846a599":"Unknown","k8s1-a5225067-default-robohash-internal-80-fa41c363":"Unknown","k8s1-a5225067-default-timeser...

              ingress.kubernetes.io/forwarding-rule: k8s2-fr-21mgs2fl-default-timeserver-ingress-s2j1ki7x

              ingress.kubernetes.io/target-proxy: k8s2-tp-21mgs2fl-default-timeserver-ingress-s2j1ki7x

              ingress.kubernetes.io/url-map: k8s2-um-21mgs2fl-default-timeserver-ingress-s2j1ki7x

Events:

  Type    Reason     Age                  From                     Message

  ----    ------     ----                 ----                     -------

  Normal  Sync       80s                  loadbalancer-controller  UrlMap "k8s2-um-21mgs2fl-default-timeserver-ingress-s2j1ki7x" created

  Normal  Sync       78s                  loadbalancer-controller  TargetProxy "k8s2-tp-21mgs2fl-default-timeserver-ingress-s2j1ki7x" created

  Normal  Sync       70s                  loadbalancer-controller  ForwardingRule "k8s2-fr-21mgs2fl-default-timeserver-ingress-s2j1ki7x" created

  Normal  IPChanged  70s                  loadbalancer-controller  IP is now 34.110.232.121

  Normal  Sync       66s (x4 over 2m46s)  loadbalancer-controller  Scheduled for sync

 

$ kubectl describe ing

Name:             timeserver-ingress

Namespace:        default

Address:          34.110.232.121

Default backend:  default-http-backend:80 (10.22.0.130:8080)

Rules:



  Host        Path  Backends

  ----        ----  --------

  *           

              /           timeserver-internal:80 (10.22.0.135:80)

              /robohash   robohash-internal:80 (10.22.1.4:80)

Annotations:  ingress.kubernetes.io/backends:

                {"k8s-be-32730--a52250670846a599":"HEALTHY","k8s1-a5225067-default-robohash-internal-80-fa41c363":"HEALTHY","k8s1-a5225067-default-timeser...

              ingress.kubernetes.io/forwarding-rule: k8s2-fr-21mgs2fl-default-timeserver-ingress-s2j1ki7x

              ingress.kubernetes.io/target-proxy: k8s2-tp-21mgs2fl-default-timeserver-ingress-s2j1ki7x

              ingress.kubernetes.io/url-map: k8s2-um-21mgs2fl-default-timeserver-ingress-s2j1ki7x

Events:

  Type    Reason     Age                    From                     Message

  ----    ------     ----                   ----                     -------

  Normal  Sync       4m48s                  loadbalancer-controller  UrlMap "k8s2-um-21mgs2fl-default-timeserver-ingress-s2j1ki7x" created

  Normal  Sync       4m46s                  loadbalancer-controller  TargetProxy "k8s2-tp-21mgs2fl-default-timeserver-ingress-s2j1ki7x" created

  Normal  Sync       4m38s                  loadbalancer-controller  ForwardingRule "k8s2-fr-21mgs2fl-default-timeserver-ingress-s2j1ki7x" created

  Normal  IPChanged  4m38s                  loadbalancer-controller  IP is now 34.110.232.121

  Normal  Sync       2m44s (x6 over 6m14s)  loadbalancer-controller  Scheduled for sync

Notice how the annotation changed from “Unknown”, to “HEALTHY”. After
that, I was able to visit the IP.

Cost Saving Tip: Saving IPs with Ingress

A benefit of Ingress is that by using host-based routing, you can host several
services all with the same external IP address. The ingress inspects the Host
header in the HTTP request, and routes traffic accordingly. This contrast with
Services of type LoadBalancer which each get their own IP address assigned
and perform no packet inspection or routing.

Cloud providers often charge based on “load balancing rules”, which roughly
translates into how many load balancing external IP addresses are assigned.
By using an ingress to combine several services into one, rather than each
being exposed with it’s own IP, you can likely save money.

If your cloud provider groups HTTP Loadbalancers (Ingress) and Network
Load Balancers (service of type LoadBalancer) separately, and has a
minimum rule fee (like Google Cloud does as the time of writing), you may
want exclusively use one or the other until you need more than the
minimums.

Another trick, but one I don’t recommend, is running your own Ingress



controller. This technique (not covered in this book), means deploying an
open source component as a LoadBalancer to implement the Kubernetes
Ingress functionality, overriding the default implementation of your cloud
provider. This approach means that the Ingress objects and LoadBalancer
objects get treated as the same rule types for billing which can save money if
you need both, but there’s a sacrifice which is that you now need to manage
this component yourself. Are you an expert at debugging Kubernetes Ingress
controllers? Better to go all-in using standard Ingress objects, or stick with
pure LoadBalancers if you need to save money, in my experience.

7.2.1 TLS

Another useful property of Ingress is that it will perform the TLS encryption
for you. Modern web applications are typically hosted as secure HTTPS
applications with TLS which is important for security, but comes with some
overhead for the application server. Depending on the server middleware you
are using, you may see performance gains by letting the Ingress load balancer
handle the TLS connection (a so-called TLS terminator), and communicate
on to the backend only over HTTP (via a secure network like that of your
cloud provider, of course). If you prefer, the Ingress can re-encrypt traffic and
connect to your services over HTTPS, but there is no option to pass the
unmodified encrypted traffic directly through from the client to the backend
(for that, you’d use a Service of type LoadBalancer, like we did in Chapter
3).

Figure 7.5 The Ingress terminates HTTPS (TLS) traffic, and can forward it to the serving Pods
over plain-HTTP or HTTPS connections.



Now that the Ingress is terminating your TLS connections, you’ll need to set
it up with certificates. If like me you’ve done this a few times on different
systems, you might be dreading this step. Fortunately, Kubernetes makes it a
breeze!

You just need to import your certificate and key as a Kubernetes Secret, then
reference that secret in your Ingress configuration. A Kubernetes Secret is
simply a data object in your cluster used to contain things like TLS keys.

To do this, normally you would follow the instructions of your certificate
authority to create a certificate, the end product of which would include the
two files we need: the private key that you created, and the certificate issued
by the certificate authority.

For demonstration purposes we can create our own self-signed certificate in
lieu of a trusted certificate. Note that while this will provide the same
encryption for the connection, there is no identity verification, and you’ll see
scary messages in your browser. The following commands will create such a
certificate.

$ create a private key

openssl genrsa -out example.key 2048

 

$ create a certificate request for 'example.com'

openssl req -new -key example.key -out example.csr \



    -subj "/CN=example.com"

 

$ self-issue an untrusted certificate

openssl x509 -req -days 365 -in example.csr -signkey \

    example.key -out example.crt

Once you have your private key and certificate (whether your created them
with the above instructions, or by following the instructions of your
certificate authority), you can now create the Kubernetes secret like so:

kubectl create secret tls my-tls-cert \

  --cert example.crt --key example.key

You may notice the imperative kubectl create command here. This is one
of the few times I recommend using an imperative command rather than
defining the configuration in a file because it’s simpler than creating the
object manually and base64-encoding all the data. If you want to see the
config that got created with this command, you can easily view it with
kubectl get -o yaml secret my-tls-cert.

The final step is to reference this secret in our ingress.

Listing 7.9 TLS/ingress_tls.yaml

apiVersion: networking.k8s.io/v1

kind: Ingress

metadata:

  name: timeserver-tls

spec:

  tls:

    - secretName: my-tls-cert

  rules:

  - host: example.com

    http:

      paths:

      - path: /

        pathType: Prefix

        backend:

          service:

            name: timeserver-internal

            port:

              number: 80

  - http:

      paths:



      - path: /

        pathType: Prefix

        backend:

          service:

            name: robohash-internal

            port:

              number: 80

With the deployment and services created in the previous section, we can
create this new ingress with a TLS secret like so:

$ kubectl create -f ingress_tls.yaml 

ingress.networking.k8s.io/timeserver-tls created

$ kubectl get ing

NAME             CLASS    HOSTS         ADDRESS          PORTS     AGE

timeserver-tls   <none>   example.com   34.110.232.121   80, 443   9m15s

$ open "https://34.110.232.121"

Remember that the provisioning step can take a while, even from the point
where the ingress has received an IP. As this is a self-signed certificate, you
will see some scary warnings in the browser.

To test out the domain name route in this ingress (“example.com” in the
example), you’ll need to configure the DNS for the domain you’ve used with
the IP of the ingress. To test locally, you can also edit your local hosts file
and add the IP and domain name (to find instructions on how to do that, a
Google search for “update hosts file in <your operating system version>”
should do the trick!). The IP of the ingress can be found with kubectl get
ingress.

Here’s what my ingress object looks like, and the entry I added to my local
hosts file:

$ kubectl get ingress

NAME               CLASS    HOSTS         ADDRESS        PORTS     AGE

timeserver-ingress <none>   example.com   203.0.113.2    80, 443   82m

 

$ cat /etc/hosts

# ...

203.0.113.2 example.com

Now, provided that you’ve configured your host, you should be able to
browse to https://example.com. If you generated a self-signed certificate,



you’ll get a scary browser error which in this case is fine to click through. To
actually publish your service to the world, you’ll want to go back and request
a certificate from an actual certificate authority, and use that to create the
TLS secret instead.

Once again, the nice thing about Kubernetes is that all this configuration is in
the form of Kubernetes objects (rather than random files on a host VM),
making it straight forward to reproduce the environment elsewhere.

Using GKE? Try Managed Certificates

The above instructions are for adding a tried-and-true CA certificate to your
Kubernetes Ingress object. If you’re using GKE, and want an even simpler
approach you can use a managed certificate instead.

With a managed certificate, you skip the CA signing step, and the copying of
your private key and certificate into Kubernetes as a Secret. Instead, you need
to first prove ownership of the domain to Google (this is done in the Google
Cloud console), create a GKE-specific ManagedCertificate object listing the
(sub)domains you wish to provision certificates for, then reference that object
in your ingress. Google will then provision and manage the certificates
automatically. It’s all pretty straight forward, so I’ll let the official docs[2] be
your guide for this one.

7.3 Summary

Kubernetes offers several tools to create, discover, connect and expose
multiple services, for when your requirements exceed what can be
hosted in a single container.
Internal services are a way to connect together a wide range of
workloads that can be written in a different language, be on a different
release schedule or simply need to scale independently
Internal services can be exposed on a private cluster IP that allows them
to be called from other services in the cluster
Kubernetes offers two forms of service discovery to find these internal
service IPs: environment variables and DNS
Ingress can be used to expose multiple internal services to the internet



using a single IP, with routing performed by path and/or host name
Ingress is a “L7” HTTP load balancer that can also handle your HTTPS
connections and TLS termination
By performing TLS termination at the load balancer layer, you can save
configuration effort in your application and reduce CPU overhead

[1] https://kubernetes.io/docs/concepts/services-networking/ingress/#multiple-
matches

[2] https://cloud.google.com/kubernetes-engine/docs/how-to/managed-certs



8 Node Feature Selection
This chapter covers

Selecting nodes with specific hardware properties
Using taints and tolerations to prevent scheduling by default on special
nodes
Keeping workloads separated on discrete nodes
Avoiding a single point of failure with a highly available deployment
strategy
Targeting and avoiding specific groups of nodes for deployments

So far this book has treated the compute nodes in the cluster—the machines
responsible for actually running your containers—as equal. Different Pods
may request more or less CPU, but they’re all running on the same type of
nodes under the hood.

One of the fundamental properties of cloud computing is that even when
you’re using an abstract platform that takes care of much of the low-level
compute provisioning for you (as Kubernetes platforms are capable of doing),
you may still care to some extent about the servers that actually running your
workloads. Serverless is a nice concept, but at the end of the day, the
workload is running on a computer, and you can’t always escape the
properties of that machine, nor do you always want to.

This is where node features selection comes in. In a managed platform,
including GKE, there is a great variety of different hardware and
configuration options for nodes. The node CPU can be of the x86
architecture, or Arm. It might be AMD, or Intel. Nodes can have expensive
hardware like GPU attached if you need it, or they can be run in the low-
priced Spot provisioning mode saving you money while risking disruption.
You may not always need to care about these elements, but it can be handy
like to save money with Spot, or critical like when you need a GPU to run an
AI/ML workload.



Another aspect to be aware of is that Kubernetes runs multiple Pods on the
same node, a technique known as bin-packing. Running multiple containers
on the same hardware can help save you money, and is especially useful for
Bursting where a Pod can temporarily use another Pod’s provisioned capacity
if that Pod isn’t using it. The downside of bin-packing is the potential for
single-points of failure. Fortunately, Kubernetes ships with a built-in method
called Pod Spread Topology to avoid concentrations of replicas of the same
Pod on a single node. In this chapter, you’ll learn how to select nodes for
their features, group pods together, and spread them apart.

8.1 Node Feature Selection

Not all compute nodes are equal. You may have workloads that require
additional hardware like higher-performance CPUs, GPUs, or properties like
running in a Spot provisioning model. Some nodes run Linux while others
run Windows. Some CPUs are the x86, others are Arm and so on. Just as in
the past we might place workloads on machines with specific features, we
can do the same in Kubernetes through node selection and affinity.

8.1.1 Node Selectors

The way these node features are differentiated in Kubernetes is through node
labels. And the way you target specific node features from your pods is with
node selection and/or node affinity. Node selection and affinity are simply
ways to express the desired labels (and therefore features) of the nodes that
your Pods require.

Take for example a Pod that needs to run on an Arm node. Arm nodes are
labelled with the well-known label kubernetes.io/arch: arm64 (well-
known labels are those that are defined in the open source and intended to be
consistent across different providers). We can use a node selector, or node
affinity to target that label, and ensure our Pod will only run on an Arm node.

The following deployment selects the arm64 architecture, to prevent the Pod
being scheduled on any other type of architecture:

Listing 8.1 NodeSelection/deploy_nodeselector.yaml



apiVersion: apps/v1

kind: Deployment

metadata:

  name: timeserver

spec:

  replicas: 1

  selector:

    matchLabels:

      pod: timeserver-pod

  template:

    metadata:

      labels:

        pod: timeserver-pod

    spec:

      nodeSelector:

        kubernetes.io/arch: arm64

      containers:

      - name: timeserver-container

        image: docker.io/wdenniss/timeserver:3

A more verbose way to express the exact same requirement is through a node
affinity.

Listing 8.2 NodeSelection/deploy_nodeaffinity.yaml

apiVersion: apps/v1

kind: Deployment

metadata:

  name: timeserver

spec:

  replicas: 1

  selector:

    matchLabels:

      pod: timeserver-pod

  template:

    metadata:

      labels:

        pod: timeserver-pod

    spec:

      affinity:

        nodeAffinity:

          requiredDuringSchedulingIgnoredDuringExecution:

            nodeSelectorTerms:

            - matchExpressions:

              - key: kubernetes.io/arch

                operator: In



                values:

                - arm64

      containers:

      - name: timeserver-container

        image: docker.io/wdenniss/timeserver:3

These previous two deployment configurations will achieve the exact same
result: a Pod placed only on an Arm node. The advantage of the node affinity
method, and the reason you would use it is that it allows for more expressive
logic, which I will go into more detail in the next section.

Requiring these feature-related node labels in your Podspecs is the first step,
but you need a way to actually have nodes provisioned with that functionality
(i.e. having the labels you are selecting). As always, the provisioning of
nodes and their associated features are done at the platform level. If you are
using a fully-managed service like GKE Autopilot, then simply specifying
your node selector with your feature labels is enough to get a node that has
those capabilities, provided the capability is offered by the platform. On a
more traditional Kubernetes platform, you would need to provision nodes that
will have those features out of band, for example by creating a node pool or
node group with the desired properties.

To find out what capabilities are supported, the provider’s docs are best but if
you have a node in the cluster with the desired properties you’re looking for,
you can also inspect it and see what labels are available for selection.

kubectl describe nodes

Here are the labels from that output for an Arm architecture node running on
GKE.

Labels:             addon.gke.io/node-local-dns-ds-ready=true

                    beta.kubernetes.io/arch=arm64

                    beta.kubernetes.io/instance-type=t2a-standard-4

                    beta.kubernetes.io/os=linux

                    cloud.google.com/compute-class=Scale-Out

                    cloud.google.com/gke-boot-disk=pd-standard

                    cloud.google.com/gke-container-runtime=containerd

                    cloud.google.com/gke-cpu-scaling-level=4

                    cloud.google.com/gke-gcfs=true

                    cloud.google.com/gke-image-streaming=true

                    cloud.google.com/gke-logging-variant=DEFAULT



                    cloud.google.com/gke-max-pods-per-node=32

                    cloud.google.com/gke-netd-ready=true

                    cloud.google.com/gke-nodepool=nap-19wjaxds

                    cloud.google.com/gke-os-distribution=cos

                    cloud.google.com/gke-provisioning=standard

                    cloud.google.com/gke-stack-type=IPV4

                    cloud.google.com/machine-family=t2a

                    cloud.google.com/private-node=false

                    failure-domain.beta.kubernetes.io/region=us-central1

                    failure-domain.beta.kubernetes.io/zone=us-central1-f

                    iam.gke.io/gke-metadata-server-enabled=true

                    kubernetes.io/arch=arm64

                    kubernetes.io/hostname=gk3-autopilot-cluster-4-nap-19wjaxds-033cf05b-tdq4

                    kubernetes.io/os=linux

                    node.kubernetes.io/instance-type=t2a-standard-4

                    node.kubernetes.io/masq-agent-ds-ready=true

                    topology.gke.io/zone=us-central1-f

                    topology.kubernetes.io/region=us-central1

                    topology.kubernetes.io/zone=us-central1-f

8.1.2 Node Affinity and Anti-Affinity

Node affinity is very expressive, and can do a lot more than require a list of
labels like node selector. With the “In” operator for example, you can specify
a list of possible values. Let’s say that you want to select either x86 or Arm
as the architecture, you can do that using node affinity, by providing a list
with the In operator.

Listing 8.3 NodeAffinity/deploy_nodeaffinity_multi.yaml

apiVersion: apps/v1

kind: Deployment

metadata:

  name: timeserver

spec:

  replicas: 1

  selector:

    matchLabels:

      pod: timeserver-pod

  template:

    metadata:

      labels:

        pod: timeserver-pod

    spec:



      affinity:

        nodeAffinity:

          requiredDuringSchedulingIgnoredDuringExecution:

            nodeSelectorTerms:

            - matchExpressions:

              - key: kubernetes.io/arch

                operator: In

                values:

                - arm64

                - amd64

      containers:

      - name: timeserver-container

        image: docker.io/wdenniss/timeserver:3

Note that you cannot express this “OR” logic using nodeSelector.
NodeSelector conditions are ANDed together, and since each label can only
have 1 key, it isn’t valid to select on two different keys for the same label (as
this can never be satisfied). For example, the following is not a valid
replacement for the In operator used above:

# Invalid

nodeSelector:

  kubernetes.io/arch: arm64

  kubernetes.io/arch: amd64

The operator logic is also very expressive and can be used to turn the
expression into one of anti-affinity (i.e. avoid nodes with the given labels)
with NotIn which will ensure the Pod doesn’t land on a node with the labels
specified.

In The value of the node label is one of
the options given.

NotIn The value is not present in the list
you supply.

Exists The label key is present on the node
(with any value)



DoesNotExist The label key is not present on the
node

Gt The value given is greater than that
which is in the node label.

Lt The value given is less than that
which is in the node label.

Preferred Node Affinity

Another benefit of node affinity is that you can create “preferred” rather than
“required” rules to express a set of preferences. For example, if your
container is multi-architecture, and can run on x86 or Arm, but you prefer to
use Arm if possible (for example, for cost reasons), then you can express that
as follows.

Listing 8.4 NodeAffinity/deploy_nodeaffinity_preferred.yaml

apiVersion: apps/v1

kind: Deployment

metadata:

  name: timeserver

spec:

  replicas: 1

  selector:

    matchLabels:

      pod: timeserver-pod

  template:

    metadata:

      labels:

        pod: timeserver-pod

    spec:

      preferredDuringSchedulingIgnoredDuringExecution:

      - weight: 100

        preference:



          matchExpressions:

          - key: kubernetes.io/arch

            operator: In

            values:

            - arm64

      containers:

      - name: timeserver-container

        image: docker.io/wdenniss/timeserver:3

Caveats of preferred affinity

This preferredDuringSchedulingIgnoredDuringExecution logic may
sometimes yield surprising results. While the preference ordering works
when you have existing unallocated capacity on nodes, the way it interacts
with cluster autoscaling when there is no unallocated capacity of the
preferred type and a new node is needed might be contrary to what you
prefer. For example, in the event that there is any unallocated capacity on
existing nodes in your cluster, even if it is of the dis-preferred type,
Kubernetes will actually schedule the Pod there first, before the platform
kicks in to add new nodes of your preferred type.

The reason for this is that the Kubernetes scheduler, responsible for placing
Pods on nodes and the platform autoscaler (a common platform component
responsible for adding new nodes) are operating somewhat separately. The
way a typical node autoscaler works at the platform level is to look for
pending pods that can be scheduled if more capacity was added. But since the
Kubernetes scheduler kicks in first and places the pod on the dispreferred but
available capacity, the autoscaler doesn’t have a chance to act.

My advice when using a cloud provider is that you can generally just require
the functionality you need, and rely on the fact that they will have capacity to
serve those needs.

8.1.3 Tainting Nodes to Prevent Scheduling by Default

Another common requirement when you have a group of nodes that have
special characteristics is that Pods should not be scheduled by default on
these nodes. Take Arm for example: since Arm is relatively new and not all
container images yet support it, you may want to configure your cluster so



that Arm nodes will not be used for scheduling by default, unless the
workload expressly indicates support. Other examples include when you have
a node with special hardware like a GPU that you need to reserve only for
Pods that will use this hardware, and when you have Spot compute that can
be shutdown abruptly, which not all workloads may respond well to.

While you could annotate every other Pod to avoid such nodes using node
anti-affinity (that is, a node affinity rule with the NotIn operator), that is
laborious, so Kubernetes allows you to “taint” a node to prevent Pods being
scheduled on it by default. How it works is that you taint nodes that have
special characteristics and shouldn’t be scheduled on by default, then you
“tolerate” this taint in the Podspec of just those workloads that are OK to run
on these nodes.

By way of example, we can taint nodes individually to see the effect. This
isn’t how you normally do it in production, but is a decent way to
experiment. For this demo, we can use minikube from Chapter 3, and taint
one of the nodes as follows:

minikube create --nodes 3

kubectl get nodes

 

kubectl taint nodes NODE_NAME spot=true:NoSchedule

kubectl taint nodes NODE_NAME spot-

In this example, spot=true is the name we gave to the taint, and is used later
when marking Pods as able to tolerate this taint. The NoSchedule keyword
indicates the desired behavior of the effect of this taint (being that Pods
without the toleration should not be scheduled). There are alternatives to the
NoSchedule behavior, but I do not recommend them. PreferNoSchedule is an
option that creates a soft rule which may sound useful, but if your primary
goal is to avoid scheduling pods on classes of nodes, a soft rule would not
achieve that and may make it harder to debug. Sometimes it’s better to have
an unscheduled Pod that you need to allocate resources for, than having it
scheduled on your special tainted machines and cause other unspecified
issues.

When you’re operating a hosted Kubernetes service, it’s unlikely that you’ll
be tainting nodes individually like in the above example. That’s because



generally a taint applies to a group of nodes (ones that share the same
characteristic like Arm, Spot, or GPU hardware), and because nodes are
regularly replaced during upgrade or repair events. Look for the platform
provider’s API that allows you to taint groups of nodes, so that the taint will
be applied to all nodes in the group, and persist during upgrades.

Node Tainting In GKE

For GKE Autopilot node tainting is completely automatic. When you select
for a particular (non-default) feature like Spot compute, or Arm, the nodes
that are provisioned are automatically tainted. Conveniently the Pods are also
modified to tolerate the automatic taint, so all you need to do is select for the
feature. This automatic modification of the Pods is done through an
admission controller (admission controllers are covered in Chapter 11) that is
installed and maintained by the platform.

In GKE Standard, you can taint node pools when you create them. For
example, you if you’re creating a node pool of Spot VMs, you can configure
all the nodes to be tainted as follows:

gcloud container node-pools create NODE_POOL_NAME --cluster CLUSTER_NAME \

  --spot --node-taints spot=true:NoSchedule

If your entire cluster was to consist of spot nodes, the taint would not
normally be used, as there would be no need to differentiate the nodes.

Once you have tainted nodes, if you now schedule a workload, you’ll notice
that it won’t be scheduled on these nodes (use kubectl get pods -o wide to
see which nodes the Pod lands on). In order to make the workload
schedulable on the node you just tainted, the workload will need to be
updated to tolerate the taint.

Listing 8.5 Taints/deploy_tolerate_spot.yaml

apiVersion: apps/v1

kind: Deployment

metadata:

  name: timeserver

spec:



  replicas: 3

  selector:

    matchLabels:

      pod: timeserver-pod

  template:

    metadata:

      labels:

        pod: timeserver-pod

    spec:

      tolerations:

      - key: spot

        value: "true"

      containers:

      - name: timeserver-container

        image: docker.io/wdenniss/timeserver:1

The toleration alone won’t force the Pod to only be scheduled on a tainted
node; it merely allows it to be scheduled there. Where the Pod is scheduled
will be determined based on a few other factors, like available capacity. Thus,
Pods with the toleration can land on untainted nodes, as well as nodes with
taints that they tolerate, as shown in Figure 5.11.

Figure 8.1 This cluster has a lower-availability Spot VM, and 2 standard nodes.



Commonly, you will combine both taints and tolerations with node selectors
or node affinity to ensure that a particular set of Pods and only that set of
Pods will be run on nodes in question. A good example of where this matters
is for GPU workloads: these workloads must only be run on a node with a
GPU, and you don’t want non-GPU workloads taking up that valuable space.
Figure 5.12 shows the preferred scheduling where only the GPU workload is
running on the node with a GPU.

Figure 8.2 This cluster has a special node with a GPU, and 2 standard nodes.



The GPU node is tainted to prevent standard workloads from being scheduled
on it. The GPU workload tolerates the taint, so can be scheduled on the GPU
node, and uses a node selector to ensure it is only scheduled on this node.

Tolerating All Taints

Some workloads, most commonly those deployed as DaemonSets (covered in
Chapter11), need to run on every node, and must be designed to handle all
the configuration of the cluster. Such workloads typically tolerate all taints,
as the following example demonstrates.

Listing 8.6 Taints/daemonset_tolerate_all_taints.yaml



apiVersion: apps/v1

kind: DaemonSet

metadata:

  name: example-ds

spec:

  selector:

    matchLabels:

      pod: example-pod

  template:

    metadata:

      labels:

        pod: example-pod

    spec:

      tolerations:

      - effect: NoExecute

        operator: Exists

      - effect: NoSchedule

        operator: Exists

      containers:

      - image: ubuntu

        command: ["sleep", "infinity"]

        name: ubuntu-container

Just be aware that when you do this, your Pod will actually need to run on all
node types that may exist in the cluster now and in the future. This can be an
issue when adding a feature like Arm nodes that requires containers to be
specifically built for Arm. If a case occurs where you need to have the Pod
schedulable on all nodes regardless of taints except those with a specific
label, such as Arm, this can be achieved through combining the tolerations
with a node anti-affinity rule, as shown in the next example.

Listing 8.7 Taints/daemonset_tolerate_antiaffinity.yaml

apiVersion: apps/v1

kind: DaemonSet

metadata:

  name: example-ds

spec:

  selector:

    matchLabels:

      pod: example-pod

  template:

    metadata:

      labels:

        pod: example-pod



    spec:

      tolerations:

      - effect: NoExecute

        operator: Exists

      - effect: NoSchedule

        operator: Exists

      affinity:

        nodeAffinity:

          requiredDuringSchedulingIgnoredDuringExecution:

            nodeSelectorTerms:

            - matchExpressions:

              - key: kubernetes.io/arch

                operator: NotIn

                values:

                - arm64

      containers:

      - image: ubuntu

        command: ["sleep", "infinity"]

        name: ubuntu-container

8.1.4 Workload Separation

Another use for taints, tolerations and node selectors is to separate workloads.
So far the use-cases for node selection we’ve covered are around feature-
based selection: requiring the Arm architecture, Spot compute, GPU nodes
and the like.

Node selection isn’t limited to node features, and also can be used to separate
workloads from each other on nodes. While you can use pod anti-affinity
(covered in the next section) to prevent particular pods being co-located,
sometimes it helps just to keep workloads on their own dedicated groups of
nodes.

One requirement for this I heard was from a customer who uses a cluster for a
lot of batch workloads, consisting of a deployment of a coordinator that
schedules the work, and the Pods for the workloads themselves. They
preferred to keep the Pods for these two roles separate, so that any
autoscaling of the nodes for the work Pods doesn’t impact that of the
coordinator Pods. Another example is for the noisy neighbor problem, where
two Pods can potentially compete for resources on the node and would be
better if separated.



Yet another example might be where you simply want your workload to land
on a “fresh” node. If you give the workload a new workload separation
label/toleration each time you deploy then you’re forcing the platform to
create a new node for it, which is generally on the current version of the
cluster and therefore less likely to be disrupted with an upgrade in the near
future.

To achieve workload separation, we can combine several of the techniques
used so far along with a custom node label. The node gets a label and a taint,
and the workload a toleration and selector for that label, which together
means the workload will be scheduled on a group of nodes by itself
(potentially shared with other workloads with the same selector and
toleration).

Here is an example Deployment with an arbitrary toleration and node selector
to achieve workload separation. For convenience, we will use the same key-
value pair (“group=1”) for both elements, though note that they are separate
concepts in Kubernetes.

Listing 8.8 WorkloadSeparation/deploy_team1.yaml

apiVersion: apps/v1

kind: Deployment

metadata:

  name: timeserver1

spec:

  replicas: 5

  selector:

    matchLabels:

      pod: timeserver1-pod

  template:

    metadata:

      labels:

        pod: timeserver1-pod

    spec:

      tolerations:

      - key: group

        operator: Equal

        value: "1"

        effect: NoSchedule

      nodeSelector:

        group: "1"



      containers:

      - name: timeserver-container

        image: docker.io/wdenniss/timeserver:1

And for demonstration we can make a copy of this deployment using
“group=2” as the key/value for the toleration and selector:

tolerations:

      - key: group

        operator: Equal

        value: "2"

        effect: NoSchedule

      nodeSelector:

        group: "2"

To have these deployments deployed on discrete sets of nodes, we’ll need to
have nodes that are tainted to prevent other pods landing on them, and
labeled so our deployments can target them. If you miss the label, then these
Deployments won’t ever be scheduled as there won’t be a node that meets the
node selector requirement. If you label, but don’t taint the nodes, then these
workloads will schedule, and be separated from each other (by way of the
node selector), but other random Pods might land on them as well since there
is no taint to keep them away.

Workload Separation on GKE Autopilot

If you deploy the above workload on GKE Autopilot, nodes with the
requested labels and taints will be provisioned automatically! That’s because
this operationally nodeless platform is actuating on your Pod’s requirements,
and providing nodes that match, so there’s nothing more you need to do. In a
traditional Kubernetes platform where you are managing nodes (like GKE
Standard, or minikube), you’ll need to create nodes with these properties
yourself.

In Kubernetes environments where you manage the nodes, you’ll need to
provide nodes with the correct taints and labels, to achieve the workload
separation. Using minikube to demonstrate, we can taint and label nodes
directly. Just note that on a managed platform, you typically operate on nodes
at a “node pool” or group level, and would use a platform API to provide the
nodes, so look for the label and taint parameters in that API.



$ minikube create --nodes 3 #A

 

$ kubectl get nodes #B

NAME           STATUS   ROLES           AGE   VERSION

minikube       Ready    control-plane   67s   v1.24.3

minikube-m02   Ready    <none>          46s   v1.24.3

minikube-m03   Ready    <none>          24s   v1.24.3

 

$ kubectl taint nodes minikube-m02 group=1:NoSchedule #C

$ kubectl label node minikube-m02 group=1 #C

 

$ kubectl taint nodes minikube-m03 group=2:NoSchedule #D

$ kubectl label node minikube-m03 group=2 #D

Both the taint and the label are required (as is the matching toleration and
node selector in the Deployment) as they serve different purposes. The taint
prevents all but those workloads that tolerate the taint from landing on it,
while the label can be used to ensure the workload doesn’t land on any other
nodes (such as nodes without any taints). For convenience, I used the same
key/value pair for both the taint and the label (e.g. “group=1”), but this
doesn’t have to be the case.

With our cluster configured, we can deploy our workload separated
deployments and watch the result. Pay particular attention to which node the
pods land on.

$ kubectl create -f Chapter08/8.4.1_WorkloadSeparation

deployment.apps/timeserver1 created

deployment.apps/timeserver2 created

 

$ kubectl get pods -o wide

NAME                           READY   STATUS    RESTARTS   AGE    NODE        

timeserver1-75b69b5795-9n7ds   1/1     Running   0          2m2s   minikube-m02

timeserver1-75b69b5795-kft64   1/1     Running   0          2m2s   minikube-m02

timeserver1-75b69b5795-mnc4j   1/1     Running   0          2m2s   minikube-m02

timeserver1-75b69b5795-msg9v   1/1     Running   0          2m2s   minikube-m02

timeserver1-75b69b5795-r8r9t   1/1     Running   0          2m2s   minikube-m02

timeserver2-6cbf875b6b-6wm7w   1/1     Running   0          2m2s   minikube-m03

timeserver2-6cbf875b6b-dtnhm   1/1     Running   0          2m2s   minikube-m03

timeserver2-6cbf875b6b-fd6vh   1/1     Running   0          2m2s   minikube-m03

timeserver2-6cbf875b6b-q6fk8   1/1     Running   0          2m2s   minikube-m03

timeserver2-6cbf875b6b-zvk72   1/1     Running   0          2m2s   minikube-m03

Once you’re done with the minikube cluster, you can delete all traces of it



like so:

minikube delete

8.2 Placing Pods

It’s good practice to have multiple Pod replicas in case one fails a health
check or has a memory leak and needs to be restarted. In addition to the
number of replicas (covered in section 5.2.4), it’s also important to consider
where those Pods are placed.

If you have 10 replicas of a Pod, but they’re all on a single node, then you
would be impacted by the failure of that node. Expanding on this using
typical cloud topologies, if all your nodes are in a single availability zone,
then you’re at risk of a zone outage. How much time and money you should
spend guarding against these conditions is a choice you need to make based
on your own production guarantees and budget, since the sky is the limit (do
you even go multi-cloud for example?).

I will focus this section on some sensible and affordable strategies for
spreading your Pods on the nodes you already have, as this is something you
can do for no extra cost, and it gets you some additional availability.

8.2.1 Building Highly Available Deployments

So far we've talked about how resource requests are used to allocate Pods to
nodes. However, there are other dimensions to consider. To make your
application highly available, it is desirable that the replicas don’t all end up
on the same node. Say you have a small Pod, 100mCPU, 100MiB, and 3
replicas. These 3 replicas could easily all fit on the same node. But then, if
that node were to fail, the deployment would be offline.

Better would be to have the scheduler spread these pods out across your
cluster! Fortunately, Kubernetes has a built-in way to achieve this called a
“topology spread constraint”. A topology spread constraint aims to spread
your nodes across a failure domain, such as the node, or even a whole zone,
and multiple can be specified, so you can spread across both nodes and zones,



or any other failure domains defined by your provider.

Figure 8.3 deployment pod placement with and without topology constraints





nOTE

Many Kubernetes providers have some default topology spread for
deployments—including GKE. If you trust the default settings to do the right
thing in most cases, feel free to skip past this section. I’ve included this
information it regardless, as I find it helps to know why things work the way
they do, so I think it’s important to understand why Pods get spread over
nodes. It is also possible to use the techniques in this chapter to modify the
default policies, such as to impose something stricter say for a mission-
critical deployment, and to apply topology spreads to objects that don’t get
them by default like Jobs (covered in a later chapter).

To override the spread topology for a particular deployment, you can add the
topologySpreadConstraints key, as I’ve done in the following example.

Listing 8.9 TopologySpread/deploy_topology.yaml

apiVersion: apps/v1

kind: Deployment

metadata:

  name: timeserver

spec:

  replicas: 3

  selector:

    matchLabels:

      pod: timeserver-pod

  template:

    metadata:

      labels:

        pod: timeserver-pod

    spec:

      topologySpreadConstraints: #A

        - maxSkew: 1  #B

          topologyKey: kubernetes.io/hostname #C

          whenUnsatisfiable: ScheduleAnyway #D

          labelSelector: #E

            matchLabels: #E

              pod: timeserver-pod #E

      containers:

      - name: timeserver-container

        image: docker.io/wdenniss/timeserver:1

        resources:

          requests:



            cpu: 200m

            memory: 250Mi

          limits:

            cpu: 300m

            memory: 400Mi

In this example we’re targeting the kubernetes.io/hostname topology using
the topologyKey parameter, which really means that Kubernetes will
consider all nodes labelled with the same value for the
kubernetes.io/hostname key to be equal. Since no two nodes should be
labelled with the same hostname, this yields a node-level spreading target.

For this configuration to work, and I cannot stress this enough, you must
ensure that the nodes in your cluster actually have the label specified in
topologyKey (kubernetes.io/hostname in my example). There are some
well-known labels[1], like the one I’m using here, but there is no guarantee
that your Kubernetes platform will use it. So, verify by running kubectl
describe node and look at the labels that your nodes have.

Going over the rest of the settings, in the example I’ve used a maxSkew of 1,
the smallest possible skew, which means there can be at most 1 level of
unbalance (which means any node can have at most 1 more pod than the
other nodes).

The whenUnsatisfiable parameter governs what happens when the
constraint can’t be satisfied (say that a node is completely full with other
pods). The choices are ScheduleAnyway and DoNotSchedule, whose behavior
is self explanatory. DoNotSchedule is helpful when testing as it makes it
easier to see when the rule is working, but for production ScheduleAnyway is
going to be safer. While ScheduleAnyway makes the rule a “soft” rule,
Kubernetes will still do its best to meet your requirements, which I think is
better than leaving the replica unscheduled altogether, especially when our
goal is higher availability of our replicas!

The last field is a labelSelector with a child matchLabels group that you
may recall from Chapter 3. It’s frustrating that Kubernetes doesn’t have a
simple self-reference here (i.e. why do you even need this at all since it’s
already embedded in the Pod’s specification?), but in any case this
matchLabels, should be the same as what you specified already in the



Deployment.

With that, let’s go ahead and deploy this example, and verify that the
topology is what we expected! To demo this, we’ll need a cluster with a few
nodes, and one without any default spreading behavior. GKE comes with
default node and zonal spreading, so this setting isn’t needed on that platform
(but in any case it’s good to understand that this is what’s happening behind
the scenes, or if you need to fine-tune the behavior). To try this out and see
the differences between various topologies, I suggest minikube configured
with 3 nodes.

minikube start --nodes 3

kubectl create -f deploy_topology.yaml

kubectl get pods -o wide

Looking at the NODE column, you should see 3 separate nodes (assuming
you have 3 nodes in the cluster).

Figure 8.4 Deployment with topologySpreadConstraints, with the unique nodes highlighted

nOTE

Topology spread is a scheduling-time constraint, in other words it’s
considered only when Pods are placed onto nodes. Once all replicas are
running, if the topology changes (e.g. a node is added), the running Pods will
not be moved. If needed, you can redeploy the Pods by making a change to
the deployment, which will apply the scheduling rules again, so any topology
changes would then be considered.



We can see from the output in Figure 8.4 that each of our 3 Pods were
scheduled on a different node. To compare, deploy the same Deployment but
without the topologySpreadConstraints field and you’ll notice that Pods
can be grouped up on the same node. If you observe that the Pods are
following a topology without one being explicitly set, then there’s likely a
default on the cluster, as in the case with GKE.

Spreading Across Zones

topologySpreadConstraints can be used with any node label, so another
common strategy is to spread across zones (if you have a multi zone cluster).
For this you can repeat the earlier example, but using a zone-based key with
topology.kubernetes.io/zone being the standardized “well known” key
(but again, do check that your nodes actually have this label otherwise it will
have no effect). Multiple topologies can be specified in the array provided to
topologySpreadConstraints, so you can have both a node and zonal spread.

8.2.2 Collocating Interdependent Pods

In some cases, you may have tightly coupled Pods where it’s desirable to
have them be present on the same physical machine. Services that are
particularly “chatty” (i.e. they make a lot of inter-service procedure calls) are
often candidates for this type of architecture. Say that you have a front end,
and a backend and they communicate a lot between each other. You may
wish to pair them on nodes together to reduce network latency and traffic.

Figure 8.5 3 frontend pods scheduled on the same node as the backend pod using pod affinity



This deployment construct can be achieved through Pod affinity rules.
Essentially one of the Deployments, using the above example perhaps the
frontend, gets a rule that tells the scheduler “only place this Pod on nodes
which have a backend Pod”.

Let’s say we have the following “backend” Deployment:

Listing 8.10 CoLocation/backend.yaml

apiVersion: apps/v1

kind: Deployment

metadata:

  name: mariadb

spec:

  replicas: 1

  selector:

    matchLabels:

      pod: mariadb-pod

  template:

    metadata:

      labels:

        pod: mariadb-pod

    spec:



      containers:

      - name: mariadb-container

        image: mariadb

        env:

          - name: MARIADB_RANDOM_ROOT_PASSWORD

            value: "1"

There is nothing special about this deployment at all, it follows the same
pattern we’ve been using. This Pod will be placed on any available space in
the cluster.

Now, for the “frontend” deployment where we want to require it to be placed
on nodes with instances of a Pod from the backend deployment, we can use
the following configuration.

Listing 8.11 CoLocation/frontend.yaml

apiVersion: apps/v1

kind: Deployment

metadata:

  name: timeserver

spec:

  replicas: 3

  selector:

    matchLabels:

      pod: timeserver-pod

  template:

    metadata:

      labels:

        pod: timeserver-pod

    spec:

      containers:

      - name: timeserver-container

        image: docker.io/wdenniss/timeserver:1

      affinity: #A

        podAffinity:

          requiredDuringSchedulingIgnoredDuringExecution:

          - labelSelector:

              matchExpressions:

              - key: pod

                operator: In

                values:

                - mariadb-pod

            topologyKey: "kubernetes.io/hostname"



This specification requires that the scheduler locate this Pod on a node within
the specified topology that has an existing pod with the label “pod: mariadb-
pod”. As the topology in the example is a node topology (using the well-
known label for hostname), this means that the app will only be scheduled
onto a node that has the target Pod. If a zonal topology was used (using the
well-known label for zone, as discussed in 8.2.1), then the Pod would be
placed on any node in the zone that has an existing Pod with the target label.

To make this co-location a “soft” (or best-effort) requirement so that your
Pods will still be scheduled, even if the requirement can’t be satisfied, the
preferredDuringSchedulingIgnoredDuringExecution can be used instead
of requiredDuringSchedulingIgnoredDuringExecution.

As you can see, Kubernetes is really flexible, allowing you to make
scheduling rules binding or just guidelines, and specify your preferred
topology in a myriad of ways (with node and zonal being two common
choices). So flexible in fact that it’s possible to get bamboozled by the
choice. For most deployments, I would advise not using Pod affinities at the
outset, but rather keep these techniques in your back pocket, and applying
them when you have specific issues you wish to resolve (like wanting to co-
locate Pods on a single node to reduce inter-service latency).

8.2.3 Avoiding Certain Pods

In the earlier section “Building Highly Available Deployments”, I covered
how you can use topology spread to spread out Pods from the same
deployment to avoid single points of failure. What about Pods that are related
(so you want them spread out) but are deployed separately? As an example,
imagine you have a Deployment for a backend service, and a separate
Deployment for a caching service, and would prefer they be spread out.

For this, you can use Pod anti-affinity. This simply throws the pod affinity
rule from the previous section into reverse so that the Pods will be scheduled
on other nodes (or the topology of your choice).

Listing 8.12 PodAntiAffinity/frontend.yaml

apiVersion: apps/v1



kind: Deployment

metadata:

  name: timeserver

spec:

  replicas: 3

  selector:

    matchLabels:

      pod: timeserver-pod

  template:

    metadata:

      labels:

        pod: timeserver-pod

    spec:

      containers:

      - name: timeserver-container

        image: docker.io/wdenniss/timeserver:1

      affinity:

        podAntiAffinity: #A

          requiredDuringSchedulingIgnoredDuringExecution:

          - labelSelector:

              matchExpressions:

              - key: pod

                operator: In

                values:

                - mariadb-pod

            topologyKey: "kubernetes.io/hostname"

All these constructs can be used together too, so you can have a topology
spread that broadly seeks to keep pods apart, with affinity rules for fine-
grained control. Just be careful that your rules can actually be satisfied;
otherwise you’ll end up with unscheduled Pods. As with the regular affinity
in the previous section, you can also use “soft” rules by specifying
preferredDuringSchedulingIgnoredDuringExecution instead of
requiredDuringSchedulingIgnoredDuringExecution. When doing this, you
might want to test it first with the required version of the rule to ensure you
have your labelSelector setup correctly, before switching to the preferred
version. The next section has some more debugging tips for setting these
rules.

8.3 Debugging Placement Issues

Pod placement is a pretty complex topic, so don’t be surprised if you



encounter bugs. The most common issue occurs when you require the
existence of a label that none of your nodes have (or in the case of a nodeless
platform, a label for a feature that isn’t supported by the platform)! Such
Pods will never be scheduled. Here are some of the common issues you
might encounter, and how to solve them:

Placement rules don’t appear to work

If your placement rules don’t appear to work in testing, the first thing I’d
suggest is ensure you are not using any “soft” (preferred) placement rules.
These rules mean that the scheduler basically ignores your rule when it can’t
be satisfied, which isn’t so great for testing. It’s better to verify that all your
rules are working before relaxing them by changing them to soft rules.

Use a small cluster with only a couple of nodes, no soft rules, and you should
be able to observe the effect of the placement features. Verify that the rules
are enforced by intentionally attempting to schedule Pods that would violate
the rules. Their status should be “Pending” because the constraints can’t be
satisfied.

Pods are Pending

Pods that display as the “Pending” state mean that the scheduler can’t find a
suitable place for them. In Chapter 3, we discussed this error in the context of
the cluster not having enough resources to place the Pod. Once you configure
your placement rules, it’s possible the Pod can’t be scheduled because the
rules can’t be satisfied. To find out what the reason is (i.e. which rule
couldn’t be satisfied), describe the pod. Note, that you need to do this at a
Pod level—the deployment itself won’t show any error messages (although it
will indicate that the desired number of replicas isn’t met).

kubectl get pods

kubectl describe pod POD_NAME

Example abridged output:

Events:

  Type     Reason            Age   From               Message



  ----     ------            ----  ----               -------

Warning  FailedScheduling  4s    default-scheduler  0/1 nodes are available: 1 node(s) had taints that the pod didn't tolerate. #A

8.4 Summary

The scheduler lies at the core of the Kubernetes system and does the
heavy lifting of finding the right home for your deployment’s Pods on
your infrastructure.
From your Pod specification you can select or avoid nodes with specific
hardware properties
Nodes can be tainted to prevent scheduling by default
Build high availability deployments with multiple replicas and a well
configured Topology Spread Policy
Pods that benefit from being in proximity to each other can be co-
located with Pod affinity
Pods that you don’t wish to co-locate can be configured with Pod anti-
affinity

[1] https://kubernetes.io/docs/reference/kubernetes-api/labels-annotations-
taints/



9 Stateful Applications
This chapter covers

How to attach persistent disk storage to Pods
How the Kubernetes concepts of volumes, PersistentVolumes,
PersistentVolumeClaims and StorageClasses interact to give you stateful
capabilities
Creating a simple single-Pod deployment with persistent state
Deploying a complex multiple-Pod stateful application with multiple
roles
Migrating and recovering data by re-linking Kubernetes objects to the
underlying disk resources
Mounting large volumes to use for ephemeral data processing

Stateful applications (workloads that have attached storage) finally have a
home with Kubernetes. While stateless applications are often lauded for their
ease of deployment and high scalability (helped greatly by avoiding the need
to attach and manage storage), that doesn’t mean that stateful applications
don’t have their place. Whether you’re deploying a sophisticated database or
are migrating an old stateful application from a VM, Kubernetes has you
covered.

Using Persistent Volumes, you can attach stateful storage to any Kubernetes
Pod. When it comes to multi-replica deployments, just as Kubernetes offers
Deployment as a high-level construct for managing a stateless application,
StatefulSet exists to provide high-level management of stateful applications.

9.1 Volumes, Persistent Volumes, Claims and
Storage Classes

To get started with storing state in Kubernetes, there are a few concepts
around volume (disk) management to cover before moving on to the higher
level StatefulSet construct. Just like nodes are the Kubernetes representation



of a virtual machine, Kubernetes has its own representation of disks as well.

9.1.1 Volumes

Kubernetes offers functionality to Pods that allows them to mount a volume.
What’s a volume? The docs describe it like so:

At its core, a volume is just a directory, possibly with some data in it, which
is accessible to the containers in a pod. How that directory comes to be, the
medium that backs it, and the contents of it are determined by the particular
volume type used.

Volumes, the Kubernetes Authors

Kubernetes ships with some built in volume types, and others can be added
by your platform administrator via storage drivers. Some types you may
encounter frequently are emptyDir, an ephemeral volume tied to the lifecycle
of the node, ConfigMap, which allows you specify files in Kubernetes
manifests and present them to your application as file on disk, and cloud
provider disks for persistent storage.

EmptyDir Volumes

The built-in volume type emptyDir is an ephemeral volume that is allocated
on space from the node’s boot disk. If the Pod is deleted, or moved to another
node, or the node itself becomes unhealthy, all data is lost. So what’s the
benefit?

Pods can have multiple containers, and emptyDir mounts can be shared
between them. So when you need to share data between containers, you
would define an emptyDir volume, and mount it in each container in the Pod.
The data is also persisted between container restarts, just not all the other
events I mentioned earlier. This is useful for ephemeral data such as that of
an on-disk cache where it is beneficial if the data was preserved between Pod
restarts, but where long term storage isn’t necessary.

Listing 9.1 Volume/emptydir_pod.yaml



apiVersion: v1

kind: Pod

metadata:

  name: emptydir-pod

  labels:

    pod: timeserver-pod

spec:

  containers:

    - name: timeserver-container

      image: docker.io/wdenniss/timeserver:1

      volumeMounts:

      - name: cache-volume #A

        mountPath: /app/cache/ #A

  volumes:

  - name: cache-volume #B

    emptyDir: {} #B

Why on earth is this called emptyDir? Because the data is stored in an
initially empty directory on the node. It’s a misnomer in my opinion, but
what can you do.

A better ephemeral volume

If you’re looking for scratch space for a workload, then see section 9.4 on
Generic Ephemeral Volumes, a more modern way to get ephemeral storage
without relying on the host volume.

As a practical example, see section 9.2.2 where emptyDir is used to share
data between two containers in the same Pod, where one of them is an “init
container” that runs first and can perform setup steps for the main container.

ConfigMap Volume

ConfigMap is a useful Kubernetes object. You can define key/value pairs in
one place and reference them from multiple other objects. You can also use
them to store entire files! Typically these files would be configuration files
like my.cnf for MariaDB, httpd.conf for Apache, redis.conf for Redis and
so on. You can mount the ConfigMap as a volume, which allows the files it
defines to be read from the container. ConfigMap volumes are read-only.

This technique is particularly useful for defining a configuration file for use



by a public container image, as it allows you to provide configuration without
needing to extend the image itself. For example, to run Redis you can
reference the official Redis image, and just mount your config file using
ConfigMap wherever Redis expects it, no need to build your own image just
to provide this one file.

See section 9.2.1 and 9.2.2 for examples of configuring Redis with a custom
configuration file specified via a ConfigMap volume.

Cloud Provider Volumes

More applicable for building stateful applications (where you don’t typically
want to use ephemeral or read-only volumes), is mounting disks from your
cloud provider as volumes. Wherever you are running Kubernetes, your
provider should have supplied drivers into the cluster that allow you to mount
persistent storage, whether that’s NFS or block-based (often, both).

Figure 9.1 Pod with a mounted cloud provider volume

By way of example, here is the specification for a MariaDB Pod running in
GKE mounting a GCE persistent disk at /var/lib/mysql for persistent
storage.

Listing 9.2 Volume/mariadb_pod.yaml



apiVersion: v1

kind: Pod

metadata:

  name: mariadb-demo

  labels:

    app: mariadb

spec:

  affinity:

    nodeAffinity: #A

      requiredDuringSchedulingIgnoredDuringExecution: #A

        nodeSelectorTerms: #A

        - matchExpressions: #A

          - key: topology.kubernetes.io/zone #A

            operator: In #A

            values: #A

            - us-west1-a #A

  containers:

  - name: mariadb-container

    image: mariadb:latest

    volumeMounts: #B

    - mountPath: /var/lib/mysql #B

      name: mariadb-volume #B

    env:

      - name: MYSQL_ROOT_PASSWORD

        value: "your database password"

  volumes:

  - name: mariadb-volume

    gcePersistentDisk:

      pdName: mariadb-disk #C

      fsType: ext4

Unlike the more automated and cloud agnostic approaches we’ll cover next,
this method is tied to your cloud provider, and requires manual creation of
the disk. You need to ensure a that a disk with the name specified exists
(which you need to create out-of-band, i.e. using your cloud provider’s tools),
and that both the disk and the pod are in the same zone. In this example, I use
nodeAffinity to target the zone of the disk, which is important for any
Kubernetes cluster that exists in multiple zones (otherwise your Pod could be
scheduled on a different zone to that of the disk).

Creating the disk used by this example out-of-band can be achieved using the
following command.

gcloud compute disks create --size=10GB --zone=us-west1-a mariadb-disk



Since we’re creating this disk manually, pay close attention to the location
where the resource is being created. The zone in the previous command, and
the zone set via the nodeAffinity configuration needs to match. If you see
your Pod stuck in “Container Creating”, inspect your event log for the
answer. Here’s a case where I hadn’t created the disk in the right project:

$ kubectl get events -w

0s          Warning   FailedAttachVolume                                                    pod/mariadb-demo                                         AttachVolume.Attach failed for volume "mariadb-volume" : GCE persistent disk not found: diskName="mariadb-disk" zone="us-west1-a"

The downside to mounting volumes directly is that the disks need to be
created outside of Kubernetes, which means:

a. The user creating the Pod must have permissions to create the disk
(which is not always the case)

b. Steps exist outside of Kubernetes configuration that need to be
remembered and ran manually

c. The volume descriptors are platform-dependent, so this Kubernetes
YAML is not portable and won’t work on another provider.

Naturally, Kubernetes has a solution to this lack of portability. By using the
volume abstraction provided by Kubernetes, you can simply request the disk
resources you need, and have them provisioned for you with no need to
perform any out-of-band steps. Read on.

9.1.2 Persistent Volumes and Claims

To provide a way to manage persistent volumes in a more platform-agnostic
way, Kubernetes offers higher level primitives around volumes, known as
persistent volumes and persistent volume claims.

Instead of linking to the volume directly, the pod references a
PersistentVolumeClaim object which defines the disk resources that the Pod
requires in platform-agnostic terms (for example: “1 gigabyte of storage”).
The disk resources themselves are represented in Kubernetes using a
PersistentVolume object, much like how Nodes in Kubernetes represent the
virtual machine resource. When the PersistentVolumeClaim is created,
Kubernetes will seek to provide the resources requested in the claim by
creating or matching it with a PersistentVolume and binding the two objects



together. Once bound, the persistent volume and claim which now reference
each other, typically remain linked until the underlying disk is to be deleted.

Figure 9.2 Pod that references a PersistentVolumeClaim that gets bound to a PersistentVolume
which references a disk

This behavior of having the claim which requests resources, and a
representation of those resources is similar to how a pod requests compute
resources like CPU and memory, and the cluster finds a Node that has these
resources to schedule the pod on. And like with a Pods CPU and memory
capacity requests, it now means that the storage requests are defined in a
platform independent manner. Unlike using the cloud provider disk directly,
when using the PersistentVolumeClaim, your Pods can be deployed
anywhere, provided the platform supports persistent storage.

Let’s rewrite our Pod from the previous section to use an



PersistentVolumeClaim to request a new persistent volume for our pod.
This Pod will attach an external disk mounted to /var/lib/mysql, which is
where MariaDB stores its data. You can replace this MariaDB container with
your own single-pod deployment that requires a persistent disk.

Listing 9.3 PersistentVolume/pvc-mariadb.yaml

apiVersion: v1

kind: Pod

metadata:

  name: mariadb-demo

  labels:

    app: mariadb

spec:

  containers:

  - name: mariadb-container

    image: mariadb:latest

    volumeMounts:

    - mountPath: /var/lib/mysql

      name: mariadb-volume

    resources: #A

        requests: #A

          cpu: 1 #A

          memory: 4Gi #A

    env:

      - name: MYSQL_ROOT_PASSWORD

        value: "your database password"

  volumes:

  - name: mariadb-volume

    persistentVolumeClaim:

      claimName: mariadb-pv-claim

---

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

  name: mariadb-pv-claim

spec:

  accessModes:

    - ReadWriteOnce

  resources: #B

    requests: #B

      storage: 2Gi #B

In the PersistentVolumeClaim definition, we’re making a request for 2Gi of
storage, and specifying the desired accessMode. The ReadWriteOnce access



mode is for a volume that behaves like a traditional hard drive where your
storage is mounted to a single pod for read write access and is the most
common. The other choices for accessMode are ReadOnlyMany which can be
used to mount a volume of existing data that’s shared across many pods, and
ReadWriteMany for mounting file storage (like NFS) where multiple pods can
read/write at the same time (a fairly special mode, only supported by a few
storage drivers). In this chapter the goal is stateful applications backed by
traditional block-based volumes, so ReadWriteOnce is used throughout.

If your provider supports dynamic provisioning, a PersistentVolume backed
by a disk resource will be created to fulfil the storage requested by the
PersistentVolumeClaim, after which the PersistentVolumeClaim and
PersistentVolume will be bound together. The dynamic provisioning
behavior of the PersisentVolume is defined through the StorageClass
(which we cover in the next section). GKE and almost every provider
supports dynamic provisioning, and will have a default storage class, so the
above Pod can be deployed pretty much anywhere.

In the rare event that your provider doesn’t have dynamic provisioning, you
(or the cluster operator/admin) will need to manually create a
PersistentVolume yourself with enough resources to satisfy the
PersistentVolumeClaim request. Kubernetes still does the matchmaking of
linking the claim to the volume for manually created PersistentVolumes.

Figure 9.3 The lifecycle of a PersistentVolumeClaim and PersistentVolume in a dynamically
provisioned system.



The PersistentVolumeClaim as defined in the above example can be thought
of as a request for resources. The claim on a resource happens later when it is
matched with, and bound to a PersistentVolume resource (and both
resources are linked to each other). Essentially the PersistentVolumeClaim
has a lifecycle that starts as a request, and becomes a claim when bound.

We could leave it there, but since your precious data will be stored on these
disks, let’s dig in to see just how this binding works. If we query the YAML
of the above PersistentVolumeClaim after it’s bound, you’ll see that it’s
been updated with a volumeName. This volumeName is the name of the
PersistentVolume that it was linked to, and now claims. Here’s what it looks
like (with some superfluous information omitted for readability):



$ kubectl get -o yaml pvc/mariadb-pv-claim

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

  name: mariadb-pv-claim

spec:

  accessModes:

  - ReadWriteOnce

  resources:

    requests:

      storage: 2Gi

  storageClassName: standard-rwo

  volumeMode: Filesystem

  volumeName: pvc-ecb0c9ed-9aee-44b2-a1e5-ff70d9d3823a #A

status:

  accessModes:

  - ReadWriteOnce

  capacity:

    storage: 2Gi

  phase: Bound

We can query the PersistentVolume named in this configuration with
kubectl get -o yaml pv NAME, and we’ll see that it links right back to the
PVC. Here is what mine looked like.

$ kubectl get -o yaml pv pvc-ecb0c9ed-9aee-44b2-a1e5-ff70d9d3823a

apiVersion: v1

kind: PersistentVolume

metadata:

  name: pvc-ecb0c9ed-9aee-44b2-a1e5-ff70d9d3823a

spec:

  accessModes:

  - ReadWriteOnce

  capacity:

    storage: 2Gi

  claimRef:

    apiVersion: v1

    kind: PersistentVolumeClaim

    name: example-pv-claim #A

    namespace: default #A

  csi:

    driver: pd.csi.storage.gke.io

    fsType: ext4

    volumeAttributes:

      storage.kubernetes.io/csiProvisionerIdentity: 1615534731524-8081-pd.csi.storage.gke.io

    volumeHandle: projects/gke-autopilot-test/zones/us-west1-b/disks/pvc-ecb0c9ed-9aee-44b2-a1e5-ff70d9d3823a #B



  persistentVolumeReclaimPolicy: Delete

  storageClassName: standard-rwo

  volumeMode: Filesystem

status:

  phase: Bound #C

It helps to visualize this side by side, so here it is:

Figure 9.4 The PersistentVolumeClaim and PersistentVolume after the latter was provisioned,
and they were bound together





The PersistentVolumeClaim has really undergone a metamorphosis here,
going from a request for resources, to being a claim for a specific disk
resource that exists (and will contain your data). This is not really like any
other Kubernetes object I can think of. While it’s common to have
Kubernetes add fields and perform actions on the object, few change like
these do, starting as a generic request for and representation of storage, and
end up as a bound stateful object.

There is one exception to this typical lifecycle of a PersistentVolumeClaim,
which is when you have existing data that you wish to mount into a Pod. In
that case, you create the PersistentVolumeClaim and the PersistentVolume
objects already pointing at each other, so they are bound immediately at birth.
This scenario is discussed in section 9.3 on migrating and recovering disks,
including a fully worked data recovery scenario.

9.1.3 Storage Classes

So far, we’ve relied on the default dynamic provisioning behavior of the
platform provider. But what about if we want to change what type of disks
we get during the binding process, or what happens to the data if the
PersistentVolumeClaim is deleted? That’s where storage classes come in.

Storage classes are way to describe the different types of dynamic storage that
are available to be requested from PersistentVolumeClaims, and how the
volumes that are requested in this way should be configured.

Your Kubernetes cluster probably has a few defined already, let’s view them
with kubectl get storageclass (some columns in the output have been
removed for readability):

$ kubectl get storageclass

NAME                     PROVISIONER             RECLAIMPOLICY

premium-rwo              pd.csi.storage.gke.io   Delete       

standard                 kubernetes.io/gce-pd    Delete       

standard-rwo (default)   pd.csi.storage.gke.io   Delete

When we created the pod in the previous section with a
PersistentVolumeClaim, the default storage class (standard-rwo in this



case) was used. If you go back and look at the bound
PersistentVolumeClaim object, you’ll see this storage class in the
configuration.

This is a pretty good start, and you may not need to change much, but there is
one aspect that might be worth reviewing. You may notice if you read the
“reclaim policy” column above and that it says Delete. What this means is
that if the persistent volume claim is deleted the bound persistent volume and
the disk resource that backs it will also be deleted. If your stateful workloads
are mostly just caching services storing non-critical data this might be fine,
but if instead your workloads store unique and precious data, this default
behavior is not ideal.

Kubernetes also offers a Retain reclaim policy which means that the
underlying disk resource will not be deleted on the deletion of the persistent
volume claim allowing you to bind it to a new persistent volume and
persistent volume claim potentially even one that you create in a completely
separate cluster.

To build our own storage class, it’s simplest to start with the system one. We
can export it as follows. If your list is different to mine, replace standard-
rwo with the storage class you want to modify:

kubectl get -o yaml storageclass standard-rwo > storageclass.yaml

Now we can customize and set the all-important Retain reclaim policy. Since
we want to create a new policy it’s also important to give it a new name, and
strip the uid and selfLink metadata fields. After performing those steps, this
is what I get:

Listing 9.4 StorageClass/storageclass.yaml

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

  annotations:

    storageclass.kubernetes.io/is-default-class: "true"

  name: example-default-rwo

parameters:

  type: pd-balanced



provisioner: pd.csi.storage.gke.io

reclaimPolicy: Retain #A

volumeBindingMode: WaitForFirstConsumer

allowVolumeExpansion: true

Before we can apply this config, we need to mark the current default as non-
default. You can edit with kubectl edit storageclass standard-rwo, or
patch it with the following one-liner. Again, replace standard-rwo with
whatever the name of your default class is.

kubectl patch storageclass standard-rwo -p '{"metadata": {"annotations":{"storageclass.kubernetes.io/is-default-class":"false"}}}'

Then create our new storage class, with kubectl create -f
storageclass.yaml and now any new PersistentVolume that is created will
follow this new default.

If you have different types of persistent data in your cluster, say precious data
and also caching data that can be re-created, you could have two storage
classes configured to represent each “class” of storage (precious data, and
cache data). You can then reference them manually using the
storageClassName field in your PersistentVolumeClaim objects. The
examples in this chapter however will all use the default StorageClass,
whatever you (or your cloud provider) set that to be.

9.1.4 Single-pod Stateful Workload Deployments

Combining these concepts, we can provision a 1-replica stateful workload by
simply enclosing our Pod into a Deployment. The benefit of using a
Deployment even for a single-replica pod is that if the pod is terminated it
will be recreated.

Listing 9.5 Deployment_MariaDB/mariadb-deploy.yaml

apiVersion: apps/v1

kind: Deployment

metadata:

  name: mariadb-demo

spec:

  replicas: 1

  selector:



    matchLabels:

      app: mariadb

  template: #A

    metadata:

      labels:

        app: mariadb

    spec: 

      containers:

      - name: mariadb-container

        image: mariadb:latest

        volumeMounts:

        - mountPath: /var/lib/mysql

          name: mariadb-volume

        resources:

            requests:

              cpu: 1

              memory: 4Gi

        env:

          - name: MYSQL_ROOT_PASSWORD

            value: "your database password"

      volumes:

      - name: mariadb-volume

        persistentVolumeClaim:

          claimName: mariadb-pvc

---

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

  name: mariadb-pvc

spec:

  accessModes:

    - ReadWriteOnce

  resources:

    requests:

      storage: 2Gi

So there we have it. This is a single Pod deployment of a MariaDB database
with an attached disk that won’t be deleted even if this entire Kubernetes
cluster is deleted, thanks to the Retain policy in the storage class we created
in the prior section.

If you want to give this database a spin, create a service for it (see
Chapter09/9.1.4_Deployment_MariaDB/service.yaml for an example).
Once the service is created, you can connect to the database from a local
client, or you can try out the containerized phpMyAdmin (see the



Bonus/phpMyAdmin folder in the code repository that accompanies the book
for a sample configuration of that).

Running Databases in Kubernetes

Before you take the plunge to manage your own like MariaDB in Kubernetes
like this, you probably want to look for managed solution with your cloud
provider. I know it's tempting just to deploy in Kubernetes because it's fairly
easy to create such a database, as I demonstrated, but the operational cost
comes later when you have to secure, update and manage it. Generally, I
recommend reserving the stateful workload functionality of Kubernetes for
customized or bespoke services, or services that your cloud provider doesn't
offer as a managed offering.

As demonstrated in this section, we can make our workloads stateful by
attaching volumes, using PersistentVolumeClaims. Using Pod and
Deployment objects for this, however, limits us to single replica stateful
workloads. This might be enough for some, but what if you have a
sophisticated stateful workload like Elasticsearch or Redis with multiple
replicas? You could try and stitch together a bunch of deployments, but
fortunately Kubernetes has a high-level construct that is designed to represent
exactly this type of deployment called the stateful set.

9.2 StatefulSet

We've seen how persistent storage can be added to a pod in Kubernetes—a
useful feature because Pods are the basic building block in Kubernetes, and
they are used in many different deployment constructs like Deployments
(Chapter 3) and Jobs (Chapter 10). Now you can add persistent storage to any
of them and build stateful pods wherever you need, provided that the volume
specification is the same for all instances.

The limitation of the deployment constructs like Deployment is that all pods
share the same specification, which creates an issue for traditional volumes
with an ReadWriteOnce access method, as they can only be mounted by a
single instance. This is OK when there is only one replica in your
Deployment, but it means that if you create a second replica, that Pod will fail



to be created as the volume is already mounted.

Fortunately, Kubernetes has a high-level construct that makes our lives easier
when we need multiple Pods where they each get their own disk (a highly
common pattern). Just like Deployment is a higher level construct for
managing continuously running services (that are typically stateless),
StatefulSet is the construct provided for managing stateful services.

StatefulSet has a few helpful properties for building such services. You can
define a volume template instead of a referencing a single volume in the
Podspec, and Kubernetes will create a new persistent volume claim for each
Pod (thus solving0 the issue when using Deployment with volumes, where
each instance got the exact same persistent volume claim). StatefulSet assigns
each pod a stable identifier which is linked to a particular persistent volume
claim and provides ordering guarantees during creation, scaling, and updates.
With StatefulSet, you can get multiple Pods and coordinate them by using
this stable identifier to potentially assign each a different role.

9.2.1 Deploying StatefulSet

Putting this into practice, let’s look at two popular stateful workloads:
MariaDB and Redis, and how to deploy them as a StatefulSet. At first we'll
stay with a single-pod StatefulSet which is the simplest to demonstrate
without multiple roles to worry about. The next section will add additional
replicas with different roles to fully use the power of StatefulSet.

MariaDB

First, let's convert the single pod MariaDB deployment we created in the
previous section to one using StatefulSet and take advantage of the persistent
volume claim template to avoid the need to create a separate
PersistentVolumeClaim object ourselves.

Listing 9.6 StatefulSet_MariaDB/mariadb-statefulset.yaml

apiVersion: apps/v1

kind: StatefulSet

metadata:



  name: mariadb

spec:

  selector: #A

    matchLabels: #A

      app: mariadb-sts #A

  serviceName: mariadb-service #B

  replicas: 1

  template:

    metadata:

      labels:

        app: mariadb-sts

    spec:

      terminationGracePeriodSeconds: 10 #C

      containers:

      - name: mariadb-container

        image: mariadb:latest

        volumeMounts:

        - name: mariadb-pvc #D

          mountPath: /var/lib/mysql #D

        resources:

            requests:

              cpu: 1

              memory: 4Gi

        env:

          - name: MYSQL_ROOT_PASSWORD

            value: "your database password"

  volumeClaimTemplates: #E

  - metadata: #E

      name: mariadb-pvc #E

    spec: #E

      accessModes: #E

        - ReadWriteOnce #E

      resources: #E

        requests: #E

          storage: 2Gi #E

---

apiVersion: v1 #F

kind: Service #F

metadata: #F

  name: mariadb-service #F

spec:

  ports:

  - port: 3306

  clusterIP: None

  selector:

    app: mariadb-sts



How is this StatefulSet specification different to the Deployment of the same
MariaDB pod in the previous section? Other than the different object
metadata, there are two key changes. The first difference is how the
PersistentVolumeClaim is configured. When used in the previous section,
this was defined as a standalone object, with StatefulSet, this is rolled into the
definition itself much like how a Deployment has a Pod template. Each Pod
the StatefulSet creates will have as PersistentVolumeClaim created based on
this template. For a single Pod StatefulSet you end up with the same result
(but don’t have to define a separate object) and it becomes critical later when
creating multiple replicas. Here is how the PersistentVolumeClaim (used in
the Deployment) and the template (used in the StatefulSet) look side by side:

Table 9.1 PersistentVolumeClaim vs volumeClaimTemplates

If you query the persistent volume claims after creating the StatefulSet, you’ll
see that one was created with this template (with some columns removed for
readability):

$ kubectl get pvc

NAME                    STATUS   VOLUME     CAPACITY   ACCESS MODES

mariadb-pvc-mariadb-0   Bound    pvc-71b1e  2Gi        RWO

The only difference is that the one created with the template has the pod
name (mariadb-0 in the case of the first pod) appended to it, so instead of
being mariadb-pvc (the name of the claim template), it’s mariadb-pvc-
mariadb-0 (the claim template name, and pod name combined).



The second difference is a service that is referenced in the StatefulSet with
the serviceName: mariadb-service line, and defined as so:

apiVersion: v1

kind: Service

metadata:

  name: clusterIP: None

  selector:

    app: mariadb-sts

This Service is a bit different to the ones presented in the book so far, as it’s
what’s known as a headless service (indicated by the clusterIP: None in the
specification). That means that unlike every other Service we created so far
there is no service endpoint with load balancing. The service has no IP,
external or internal. It exists so that the pods in the StatefulSet can get their
own network identities so that they can be addressed. Each pod in the stateful
set is unique (unlike with Deployments), and is given an incrementing integer
value known as the ordinal, so it’s common to address them individually and
directly. This is opposed to Pods in a Deployment where each pod is given a
random name. If a Pod in a StatefulSet is recreated (like when moved from
one node to another during an update) it will retain the same identifying
ordinal, whereas Pods that are replaced in a Deployment are assigned a new
random name.

Pods can be addressed using the construction$STATEFULSET_NAME-
$POD_ORDINAL.$SERVICE_NAME. In this example, our single pod can be
referenced using the DNS address: mariadb-0.mariadb-service. From
outside the namespace, you can append the namespace, for example for the
namespace named production, the Pod could be addressed with mariadb-0-
mariadb-service.production.svc.

Redis

Another example we can use is Redis. Redis is a very popular deployment in
Kubernetes, and has many different possible uses, often for caching and other
real-time data storage and retrieval needs.

For this example, let’s imagine the caching use-case where the data isn’t
super precious. You still want to persist the data to disk (to avoid rebuilding



the cache in the event of a restart), but there’s no need back it up. What
follows is a perfectly usable single-pod Redis setup for Kubernetes for such
applications.

To configure Redis, let’s first define our config file which we can mount as a
volume in the container:

apiVersion: v1

kind: ConfigMap

metadata:

  name: redis-config

data:

  redis.conf: |

    bind 0.0.0.0 #A

    port 6379 #B

    protected-mode no #C

    appendonly yes #D

    dir /redis/data #E

The key to note with this this configuration is that we’re persisting the Redis
state to the /redis/data directory, so it can be reloaded if the Pod is re-
created and we’ll next need to configure the volume to be mounted to that
directory.

This example does not configure authentication for Redis, which means that
every Pod in the cluster will have read/write access. If you take this example
and use it for in a production cluster, please consider how you wish to
configure the cluster.

Now let’s go ahead and create a StatefulSet that will reference this config,
and mount the /redis/data directory as a PersistentVolume:

Listing 9.7 StatefulSet_Redis_SinglePod/redis-statefulset.yaml

apiVersion: apps/v1

kind: StatefulSet

metadata:

  name: redis

spec:

  selector:

    matchLabels:

      app: redis-sts



  serviceName: redis-service

  replicas: 3

  template:

    metadata:

      labels:

        app: redis-sts

    spec:

      terminationGracePeriodSeconds: 10

      containers:

      - name: redis-container

        image: redis:latest

        command: ["redis-server"]

        args: ["/redis/conf/redis.conf"]

        volumeMounts:

        - name: redis-configmap-volume

          mountPath: /redis/conf/

        - name: redis-pvc

          mountPath: /redis/data

        resources:

            requests:

              cpu: 1

              memory: 4Gi

      volumes:

      - name: redis-configmap-volume

        configMap:

          name: redis-config

  volumeClaimTemplates:

  - metadata:

      name: redis-pvc

    spec:

      accessModes: [ "ReadWriteOnce" ]

      resources:

        requests:

          storage: 1Gi

---

apiVersion: v1

kind: Service

metadata:

  name: redis-service

spec:

  ports:

  - port: 6379

  clusterIP: None

  selector:

    app: redis-sts

Compared to the MariaDB StatefulSet, it’s a similar setup, other than the



application specific differences, like the different ports used, the container
image of course and the mounting of the config map into /redis/conf.

So that’s two examples of a 1-replica StatefulSet. Even with just 1 replica,
it’s more convenient than using a Deployment for such a workload, as
Kubernetes can take care of creating the PersistentVolumeClaim
automatically.

If you delete the StatefulSet object, the PersistentVolumeClaim object will
remain. If you then re-create the StatefulSet, it will re-attach to the same
PersistentVolumeClaim, so no data is lost. Deleting the
PersistentVolumeClaim object itself can delete the underlying data though,
depending on how the storage class is configured. If you care about the data
being stored (e.g. it’s more precious than a cache that can be re-created), be
sure to follow the steps in Section 9.1.3 to setup a StorageClass that will
retain the underlying cloud resources if the PersistentVolumeClaim object is
deleted for whatever reason.

If we were to increase the replicas for this StatefulSet, it would give us new
Pods with their own volumes, but it doesn’t automatically mean they will
actually talk to each other. For the Redis StatefulSet defined here, creating
more replicas it would just give us more individual Redis instances. The next
section goes into detail about how to setup a multiple Pod architecture within
a single StatefulSet, where each unique Pod is configured differently, based
on the ordinal of the pod, and connected together.

9.2.2 Deploying a Multi-Role StatefulSet

The real power of stateful set comes into play when you need to have
multiple Pods. When designing an application that will use StatefulSet, Pod
replicas within the StatefulSet need to know about each other and
communicate with each other as part of the stateful application design. This is
the benefit though of using the StatefulSet type because each of the pods gets
a unique identifier in a set known as the ordinal. You can use this uniqueness
and guaranteed ordering to assign different roles to the different unique Pods
in the set and associate the same persistent disk through updates and even
deletion and recreate.



For this example we’ll take the single pod Redis StatefulSet from the
previous section and convert it to a three-pod setup with two separate roles.
In Redis parlance, one will be assigned the role of “master”, the remaining as
“replicas” (not to be confused with “replicas” in Kubernetes which are used
to mean Pod instances).

Building on the example in the previous section, we’ll add a second file to
our configuration directory. Pods in the replica role will be instructed to
reference this alternative configuration.

Listing 9.8 StatefulSet_Redis_Replicated/config_map.yaml: ConfigMap containing two Redis
Configuration files, one for each role

apiVersion: v1

kind: ConfigMap

metadata:

  name: redis-config

data:

  master.conf: |

    bind 0.0.0.0

    port 6379

    protected-mode no

    appendonly yes

    dir /redis/data

  replica.conf: |

    replicaof redis-0.redis-service 6379

    bind 0.0.0.0

    port 6379

    protected-mode no

    appendonly yes

    dir /redis/data

ConfigMaps are simply a convenient way for us to define two configuration
files (one for each of the two roles). We could equally build our own
container using the Redis base image, and put these two files in there. But
since this is the only customization we need, it’s simpler to just define them
here, and mount them into our container.

Next, we’ll update the StatefulSet deployment to use an init container (a
container that runs during the initialization of the Pod) to set the role of each
Pod replica. The script that runs in this init container looks up the ordinal of
the Pod being initialized to determine its role and copies the relevant



configuration for that role (recall that a special feature of StatefulSets is that
each pod is assigned a unique ordinal). We can arbitrarily use the ordinal
value of 0 to designate the master Redis pod, while assigning the remaining
pods the replica role.

This technique can be applied to a variety of different stateful workloads
where you have multiple roles. If you’re looking for MariaDB, there’s a great
guide[1] provided with the Kubernetes docs.

Listing 9.9 StatefulSet_Redis_Replicated/redis-statefulset.yaml: Multi-role Redis StatefulSet

apiVersion: apps/v1

kind: StatefulSet

metadata:

  name: redis

spec:

  selector:

    matchLabels:

      app: redis-sts

  serviceName: redis-service

  replicas: 3

  template:

    metadata:

      labels:

        app: redis-sts

    spec:

      terminationGracePeriodSeconds: 10

      initContainers:

      - name: init-redis

        image: redis:latest

        command:

        - bash

        - "-c"

        - |

          set -ex

          # Generate server-id from pod ordinal index.re

          [[ `hostname` =~ -([0-9]+)$ ]] || exit 1

          ordinal=${BASH_REMATCH[1]}

          echo "ordinal ${ordinal}"

          # Copy appropriate config files from config-map to emptyDir.

          mkdir -p /redis/conf/

          if [[ $ordinal -eq 0 ]]; then

            cp /mnt/redis-configmap/master.conf /redis/conf/redis.conf

          else

            cp /mnt/redis-configmap/replica.conf /redis/conf/redis.conf



          fi

          cat /redis/conf/redis.conf

        volumeMounts:

        - name: redis-config-volume

          mountPath: /redis/conf/

        - name: redis-configmap-volume

          mountPath: /mnt/redis-configmap

      containers:

      - name: redis-container

        image: redis:latest

        command: ["redis-server"]

        args: ["/redis/conf/redis.conf"]

        volumeMounts:

        - name: redis-config-volume

          mountPath: /redis/conf/

        - name: redis-pvc

          mountPath: /redis/data

        resources:

            requests:

              cpu: 1

              memory: 4Gi

      volumes:

      - name: redis-configmap-volume

        configMap:

          name: redis-config

      - name: redis-config-volume

        emptyDir: {}

  volumeClaimTemplates:

  - metadata:

      name: redis-pvc

    spec:

      accessModes: [ "ReadWriteOnce" ]

      resources:

        requests:

          storage: 1Gi

---

apiVersion: v1

kind: Service

metadata:

  name: redis-service

spec:

  ports:

  - port: 6379

  clusterIP: None

  selector:

    app: redis-sts



There’s a bit to unpack here, so lets take a closer look. The main difference to
our single-instance Redis StatefulSet is the presence of an init container. This
init container, as its name suggests, runs during the initialization phase of the
Pod. It mounts two volumes, the ConfigMap, and a new volume “redis-
config-volume”.

volumeMounts:

        - name: redis-config-volume

          mountPath: /redis/conf/

        - name: redis-configmap-volume

          mountPath: /mnt/redis-configmap

The redis-config-volume is of type emptyDir, which allows data to be
shared between containers, but does not persist data if the pod is rescheduled
(unlike PersistentVolume). All we’re using this emptyDir volume is to store
the config, and this is ideal for that. The init container runs a bash script
contained in the YAML.

command:

        - bash

        - "-c"

        - |

          set -ex

          # Generate server-id from pod ordinal index.

          [[ `hostname` =~ -([0-9]+)$ ]] || exit 1

          ordinal=${BASH_REMATCH[1]}

          # Copy appropriate config files from config-map to emptyDir.

          mkdir -p /redis/conf/

          if [[ $ordinal -eq 0 ]]; then

            cp /mnt/redis-configmap/master.conf /redis/conf/redis.conf

          else

            cp /mnt/redis-configmap/replica.conf /redis/conf/redis.conf

          fi

This script will copy one of the two different configurations from the
ConfigMap volume (mounted at /mnt/redis-configmap) to this shared
emptyDir volume (mounted at /redis/conf), depending on the ordinal
number of the pod. That is, if the pod is “redis-0” the master.conf file is
copied, for the rest, replica.conf is copied.

The main container then mounts the same “redis-config-volume” emptyDir
volume at /redis/conf, and the Redis process is started will use whatever



configuration resides at /redis/conf/redis.conf.

9.3 Migrating/Recovering Disks

Now I know what you’re thinking: can I really trust Kubernetes with my
precious data? There’s a bit too much magic going on here, how can I be
confident that my data is safe, and recoverable if the Kubernetes cluster goes
away?

Time to build some confidence. Let’s create a stateful workload in
Kubernetes. Then completely delete every Kubernetes object associated with
it and try to recreate that workload from scratch, relinking it to the underlying
cloud disk resources.

One thing to be very aware of is that commonly by default, disk resources
that Kubernetes creates are deleted if you delete the associated bound
PersistentVolumeClaim because they are configured with the “Delete”
retainPolicy. With this policy set in the StorageClass, deleting the
StatefulSet doesn’t itself delete the PersistentVolumeClaim, which is good
(forcing admins to manually clean up the StatefulSet’s
PersistentVolumeClaims if they do wish to delete them, but avoiding
accidental delete). But, deleting the PersistentVolumeClaim objects will
delete the underlying disk resources and it’s not that hard to do (e.g. by
passing --all to the relevant kubectl delete command).

So if you value your data, the first thing is to make sure the StorageClass
that’s used when creating the disks for your precious data has its
reclaimPolicy set to “Retain”, not “Delete”. This will preserve the
underlying cloud disk when the Kubernetes objects are deleted allowing you
to manually re-create the PersistentVolumeClaim-PersistentVolume pairing
in the same, or a different cluster (which I will demonstrate). To run this
experiment using the configuration provided, follow the steps in 9.1.3 to set a
default StorageClass to be configured as “Retain”, so that the underlying
cloud disk resource won’t be deleted. Note that changes to the
reclaimPolicy only apply for disks created after the change. For any
existing PersistentVolumes, you’ll need to update them manually.



With our reclaimPolicy set correctly we can now deploy Redis, and add
some data to our newly created data volumes. First, deploy the Redis
example from 9.2.2 . Once it’s running, let’s add some data which we can use
to validate our ability to recover our Kubernetes StatefulSet after we delete it.
To add data, first exec into the master pod and run the redis-cli tool. You
can do both with the following command:

kubectl exec -it redis-0 -- redis-cli

Once connected we can add some data. If you’ve not used Redis before, don’t
worry about this—we’re just adding some trivial data so as to prove that we
can recover it. This example data is some key/value pairs for world capitals.

127.0.0.1:6379> SET capital:usa "Washington"

OK

If you like, at this point you can delete the StatefulSet, and re-create it, then
exec back into the CLI and test the data. Here’s how:

$ kubectl delete -f redis-statefulset.yaml; kubectl create -f redis-statefulset.yaml 

service "redis-service" deleted

statefulset.apps "redis" deleted

service/redis-service created

statefulset.apps/redis created

 

$ kubectl exec -it redis-0 -- redis-cli

127.0.0.1:6379> GET capital:usa

"Washington"

This works (the data is persisted) because when the StatefulSet is re-created,
it references the same PersistentVolumeClaim which has our data for Redis
to load when it boots, and so Redis picks off right where it left off.

Good so far. Now let’s take a more drastic step and delete the PVC
(PersistentVolumeClaim) and the VC (VolumeClaim), and attempt to re-
create. The re-creation can optionally be done in a completely new cluster if
you like, to simulate the entire cluster being deleted (just be sure to use the
same cloud region so the disk can be accessed).

Before we delete those objects though, let’s save their configuration. This
isn’t strictly necessary, you certainly can re-create them from scratch if



needed, but it will help save some time. Use the following commands to list
then save the objects (output truncated for readability).

$ kubectl get pvc,pv

NAME                                      STATUS   VOLUME      

persistentvolumeclaim/redis-pvc-redis-0   Bound    pvc-64b52138

persistentvolumeclaim/redis-pvc-redis-1   Bound    pvc-4530141b

persistentvolumeclaim/redis-pvc-redis-2   Bound    pvc-5bbf6729

 

NAME                            STATUS   CLAIM                    

persistentvolume/pvc-4530141b   Bound    default/redis-pvc-redis-1

persistentvolume/pvc-5bbf6729   Bound    default/redis-pvc-redis-2

persistentvolume/pvc-64b52138   Bound    default/redis-pvc-redis-0

redis-pvc-redis-0 > pvc.yaml

$ PV_NAME=pvc-64b52138

$ kubectl get -o yaml persistentvolume/$PV_NAME > pv.yaml

Now, the nuclear option: delete the stateful set and the pvc.

kubectl delete pvc,pv --all

Due to the Retain policy on the StorageClass (I hope you did use a storage
class with Retain as instructed!), the cloud disk resource will still exist. Now
it’s just a matter of manually creating a PV to link to that disk, and a PVC to
link to that.

Here’s what we know:

We know (or can find out) the name of the underlying disk resource in
our cloud provider
We know the name of the PVC that the StatefulSet will consume (redis-
pvc-redis-0)

Figure 9.5 the known values, and the objects we need to recreate|



So what we need to do is create a PVC with the name redis-pvc-redis-0
that is bound with a PV that references the disk. Importantly, the PVC needs
to name the PV, and the PV needs to define the bound PVC, otherwise the
PVC could bind a different PV, and the PV could be bound by a different
PVC.

Creating the objects from our saved config with kubectl create -f
pv.yaml and kubectl create -f pvc.yaml unfortunately won’t work. This
is because that configuration also exported the state of the binding which
uses unique identifiers that don’t carry over when you delete and create the
object from config. If you create those objects without modification, you’ll
see that the PVC Status is Lost, and the PV status is Released. Not what we
want.

To fix this, we just need to remove the binding status and the uids:

Edit the PersistentVolume (the configuration we exported to pv.yaml) and
make two changes:



a. Remove the uid field from the claimRef (the claimRef is the pointer to
the PVC, the issue is that the PVC’s uid has changed)

b. Set the storageClassName to the empty string "" (we’re manually
provisioning and don’t want to use a storageClass).

Edit to the PVC (the configuration we exported to pvc.yaml) and make 2
changes there:

a. Delete the annotations such as pv.kubernetes.io/bind-completed:
"yes" (this PVC needs to be re-bound and this annotation will prevent
that)

b. Set the storageClassName to the empty string "" (same reason as
above)

Alternatively, if you’re re-creating this config from scratch, the key is that the
volumeName of the PVC needs to be set to that of the PV, the claimRef of the
PV needs to reference the PVC’s name and namespace, and both have the
storageClassName of "".

It’s easier to visualze side by side. This figure below is based on the
configuration I exported when I ran this test, and removed the fields as
documented above.

Figure 9.6 Pre-linked PVC and PV objects



Once prepared, you can create both configuration files in the cluster, then
inspect their status with kubectl get pvc,pv.

If it goes correctly, the status for both objects should read “Bound”. If instead
one or both are listed as “Pending” or “Released”, go back and check that
they are linked correctly with all the information needed, and without any
extra information. Yes, unfortunately, this is a bit of a pain, but it is possible
to rebind these objects, provided that the underlying cloud resource is still
there (which it will be, since you used the “Retain” policy on your
StorageClass didn’t you).

This is what success looks like (with some columns removed for readability):

$ kubectl get pvc

NAME                STATUS   VOLUME           

redis-pvc-redis-0   Bound    pvc-f0fea6ae-e229



 

$ kubectl get pv

NAME                RECLAIM POLICY   STATUS   CLAIM                    

pvc-f0fea6ae-e229   Retain           Bound    default/redis-pvc-redis-0

Once you have your manually created PVC and PV objects, it’s time to re-
create the StatefulSet. As we tested earlier when we deleted and re-created
the StatefulSet, as long as the PVC exists with the expected name, it will be
re-attached to the Pods of the StatefulSet. The name of the PVCs that the
StatefulSet is deterministic, so when we recreate the StatefulSet, it will see
the existing PVC objects and reference them, rather than creating new ones.
Basically, everything should just work as we re-create these objects using the
same names as before.

Notice in this example, that despite the fact the StatefulSet has 3 PVCs and
therefore 3 associated disks, we only manually recovered 1 disk, that with the
Redis master role. This is because the Redis replicas will automatically be
recreated from the master copy.

Once the StatefulSet is deployed, let’s exec into one of those replicas and see
if the data we created earlier is still there:

$ kubectl create -f redis-statefulset.yaml 

service "redis-service" deleted

statefulset.apps "redis" deleted

service/redis-service created

statefulset.apps/redis created

 

$ kubectl exec -it redis-1 -- redis-cli

127.0.0.1:6379> GET capital:australia

"Canberra"

If you can read back the data written to Redis earlier, congratulations!
You’ve recovered the StatefulSet from scratch.

I hope this has given you some confidence about the persistence of the data
when the “Retain” policy is used. As demonstrated, you can completely
delete all the objects (heck, even the entire cluster), and re-create all the links
from scratch. It’s a bit laborsome, but it’s possible. To reduce the toil, it’s
advisable (but not essential) to export the config for our PVC and PV objects
and store them in our configuration repository, to make it faster to recreate



these objects in the future.

9.4 Generic Ephemeral Volume for Scratch Space

So far we’ve used PersistentVolumes and PersistentVolumesClaims for
stateful services. What about when you just need a really big disk to do some
temporary calculations? Scratch space for tasks like data processing. At the
beginning of the chapter, emptyDir was mentioned as an option for scratch
space, but it has some drawbacks, namely that you need to pre-allocate
storage on the node to be able to use emptyDir, which requires a lot of up-
front planning (and is even less relevant platforms that don’t expose Nodes).
Generic Ephemeral Volumes are a way to get you scratch space, but by
mounting an attached volume in the same way we do persistent volumes.

There are numerous benefits of using Ephemeral Volumes over emptyDir
when you have large amounts of temporary data to handle. By being
independent of the boot disk, you can provision very large volumes of space
on the fly without prior planning (Google Cloud for example supports up to
64TB at the time of writing). You can attach multiple volumes too, so that
limit is a per-volume limit. You can also access different storage classes and
configure different attributes on the storage class, like for example
provisioning a higher-performant SSD disk than the node’s own boot disk.

Here's an example:

Listing 9.10 EphemeralVolume/ephemeralvolume_pod.yaml

apiVersion: v1

kind: Pod

metadata:

  name: ephemeralvolume-pod

  labels:

    pod: timeserver-pod

spec:

  containers:

    - name: timeserver-container

      image: docker.io/wdenniss/timeserver:1

      volumeMounts:

      - mountPath: "/scratch"

        name: scratch-volume



  volumes:

    - name: scratch-volume

      ephemeral:

        volumeClaimTemplate:

          metadata:

            labels:

              type: scratch-volume

          spec:

            accessModes: [ "ReadWriteOnce" ]

            resources:

              requests:

                storage: 1Ti

When using generic ephemeral volumes, you will want to ensure that your
storage class has a retain policy set to “Delete”, otherwise the ephemeral
storage will be retained, which is not really the point. Here is such a
StorageClass:

Listing 9.11 EphemeralVolume/ephemeral_storageclass.yaml

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

  name: ephemeral

parameters:

  type: pd-ssd

provisioner: pd.csi.storage.gke.io

reclaimPolicy: Delete

volumeBindingMode: WaitForFirstConsumer

allowVolumeExpansion: true

Putting it together, let’s run, inspect and cleanup the sample. The following
commands (run from the sample root directory) show the pod being created,
with a 1TB disk attached, then deleted which cleans up all the resources
(output truncated for readability).

$ kubectl create -f Chapter09/9.4_EphemeralVolume

pod/ephemeralvolume-pod created

storageclass.storage.k8s.io/ephemeral created

 

$ kubectl get pod,pvc,pv

NAME                      READY   STATUS    RESTARTS   AGE

pod/ephemeralvolume-pod   1/1     Running   0          34s

 



NAME                 STATUS   VOLUME    CAPACITY   ACCESS MODES   STORAGECLASS

pvc/scratch-volume   Bound    pvc-a5a2  1Ti        RWO            ephemeral   

 

NAME          CAPACITY   ACCESS MODES   RECLAIM POLICY   STATUS   CLAIM

pv/pvc-a5a2   1Ti        RWO            Delete           Bound    default/scratch-volume

 

$ kubectl exec -it ephemeralvolume-pod -- df -h

Filesystem      Size  Used Avail Use% Mounted on

overlay          95G  4.6G   90G   5% /

/dev/sdb       1007G   28K 1007G   1% /scratch

 

$ kubectl delete -f .

pod "ephemeralvolume-pod" deleted

storageclass.storage.k8s.io "ephemeral" deleted

 

$ kubectl get pod,pvc,pv

No resources found

9.5 Summary

Kubernetes isn’t just confined to running stateless workloads, and can
deftly handle stateful workloads as well
Kubernetes supports several types of Volumes, including the ability to
directly mount a persistent disk form a cloud provider resource
PersistentVolume and PersistentVolumeClaim together with
StorageClass are the Kubernetes abstraction layer for dynamically
provisioned disk resources and make the workload portable
StatefulSet is the high level workload type designed for running stateful
workloads with advantages such as being able to define different roles
for each replica
PersistentVolume and PersistentVolumeClaim objects have a
complex lifecycle, starting as a request then being bound into a single
logical object
StorageClasses can be configured to enable dynamic storage with your
preferred options (most importantly, the option to retain the cloud
provider disk resources should the Kubernetes objects be deleted)

[1] https://kubernetes.io/docs/tasks/run-application/run-replicated-stateful-



application/



10 Background Processing
This chapter covers

How to process background tasks in Kubernetes
The Kubernetes Job and CronJob objects
When to use (and not use) Job objects for your own batch processing
workloads
Creating a custom task queue with Redis
Implementing a background processing task queue with Kubernetes

In the prior chapters we looked at developing services that are exposed on an
IP address, whether it’s an providing an external service on a public address,
or an internal service on a cluster local IP. But what about all the other
computation that you may need to do that isn’t directly part of a request-
response chain, like resizing a bunch of images, sending out device
notifications, processing financial data, or rendering a movie one frame at a
time? Background tasks all the compute processes that take an input and
produce an output without being part of the synchronous processing of user
requests.

You can process background tasks using Deployment, or the Kubernetes Job
object. Deployment is ideal for a continuously running task queue like the
one most web applications run for tasks like image resizing. The Kubernetes
Job construct is great for running one-off maintenance tasks, periodic tasks
(via CronJob), and processing a batch workload when there is a set amount of
work to complete.

Terminology: task or job

Practitioners routinely uses the terms “task” and “job” interchangeably when
referring to a background computation for example “job queue” and “task
queue”, “background job”, and “background task”. Since Kubernetes has an
object named Job, to reduce ambiguity I will always sentence-case “Job”
when referring to the object itself, and will use the word “task” (like



“background task” and “task queue”) when referring to the general concept of
background processing, however it is implemented.

This chapter covers using both Deployment and Job for background task
processing. By the end, you’ll be able to configure a continuous background
task processing queue for your web application, define batch workloads with
an end-state including periodic and one-off tasks, all in Kubernetes.

10.1 Background Processing Queues

Most web applications deployed in the wild have a major background task
processing component in order to handle processing tasks that can’t be
completed in the short HTTP request/response time window. User research
conducted by Google observes that the longer the page load time is, the
higher the chance the user will “bounce” (i.e. leave the page and go
somewhere else), so it's generally a mistake to try and do any heavy lifting
while the user is waiting, and instead put that task on a background queue,
and keep the user apprised of the progress. Page load speeds need to be on
everyone’s mind, from the front end developers to the backend; it’s a
collective responsibility.

The probability of bounce increases 32% as page load time goes from 1
second to 3 seconds.

Google/SOASTA Research, 2017.[1]

There’s a lot that goes into the time it takes to load the page, and many
aspects like image sizes and JavaScript are out of scope for Kubernetes. A
relevant metric to consider when looking at your workload deployments in
Kubernetes is “time to first byte” or TTFB. This is the time it takes for your
web server to complete its processing of the request and the client to start
downloading the response. To achieve a low overall page loading time, it’s
critical to reduce the TTFB time and respond in sub-second times. That pretty
much rules out any kind of data processing that happens “inline” as part of
the request. Need to create a ZIP file to serve to a user, or shrink an image
they just uploaded? Best not to do it in the request itself.



As a result of this, the common pattern is to run a continuous background
processing queue. The web application hands off tasks it can’t do inline like
processing data, which gets picked up by the background queue. The web
application might show a spinner or some other UI affordance while it waits
for the background queue to do its thing, or may email the user when the
results are ready, or simply prompt the user to come back later. How you
architect your user interaction is up to you. What we’ll cover here is how to
deploy this kind of background processing task queue in Kubernetes.

Figure 10.1 Front-end web server with a background task queue

Recall that a Deployment (as covered in chapter 3) is a workload construct in
Kubernetes that’s purpose is to maintain a set of continuously running Pods.



For background task processing queues, you need a set of continuously
running Pods to serve as your task workers. So that’s a match! It doesn’t
matter that the Pods in the Deployment won’t be exposed with a Service, the
key is that you want at least one worker to be continuously running. You’ll be
updating this Deployment with new container versions and scaling it up and
down just like with a deployment that serves your frontend requests, so
everything we’ve learnt so far can be applied equally to a Deployment of
background task workers.

10.1.1 Creating a custom task queue

The worker Pods that you deploy in your task processing Deployment have a
simple role: take an input and produce an output. But where do they get the
input from? For that, you’ll need a queue on which other components of the
application can add tasks. This queue will store the list of pending tasks,
which the worker Pods will process. There are a bunch of off-the-shelf
solutions for background queues (some which I mention in section 10.1.2),
but to best understand how these work, let’s create our own!

For the queue data store, we’ll be using the same Redis deployment we
created in the previous chapter. Redis includes built-in support for queues,
making it perfect for this task (and many off-the-shelf solutions also use
Redis). The design of our work system is pretty straightforward: the web
application role enqueues tasks to Redis (we can emulate this role by
manually adding tasks), and worker Pods from our Deployment pop the tasks,
perform the work and wait for the next task.

Queues in Redis

Redis has several convenient data structures out of the box. The one we’re
using today is a queue. There are two functions we’ll be using with this queue
structure to get FIFO (first-in, first-out) ordering which is typical of a
background queue (processing items in the order they are added): RPUSH to
add items to the back of the queue, and BLPOP to pop items from the front of
the queue and block if none are available.



If you think of the queue going from right to left, where the rightmost item is
at the back of the queue, and the leftmost item is the front, then the “L” and



“R” function prefixes will make sense (RPUSH to push an object on the right,
and BLPOP to blocking pop the leftmost item). The further “B” prefix refers to
the blocking form of the function (in this case the blocking version of LPOP),
which will cause it to wait for an item in the event the queue is empty rather
than returning right away with nil. We could simply use LPOP in our own
retry loop, but it’s useful to block on the response to avoid a “busy wait”
which would consume more resources, and this way we can leave that task to
Redis as well.

As a concrete but trivial example, our task will take as input an integer n, and
calculate Pi using the Leibniz series formula[2] with n iterations (the more
iterations when calculating Pi in this way, the more accurate the end result).
In practice your task will complete whatever arbitrary processing you need it
to do, and will likely take as input a URL, or dictionary of key/value
parameters. The concept is the same.

Creating a worker container

Before we get to the Kubernetes Deployment, we’ll need to create our worker
container. I’ll use Python again for this sample, as we can implement a
complete task queue in a few lines of Python. The complete code for this
container can be found in the Chapter10/worker folder in the source code
that accompanies this book. It consists of 3 python files, presented as follows:
pi.py containers our work function.

This is where the actual computation happens. The container has no
awareness of being in a queue, it just does the processing. In your own case,
you’d replace this with whatever computation you need to do, e.g. creating a
ZIP file, or compressing an image.

Listing 10.1 /pi_worker/pi.py

from decimal import *

 

# Calculate pi using the Gregory-Leibniz infinity series

def leibniz_pi(iterations):

 

  precision = 20

  getcontext().prec = 20



  piDiv4 = Decimal(1)

  odd = Decimal(3)

 

  for i in range(0, iterations):

    piDiv4 = piDiv4 - 1/odd

    odd = odd + 2

    piDiv4 = piDiv4 + 1/odd

    odd = odd + 2

 

  return piDiv4 * 4

Then, we have our worker implementation that will take the object at the
head of the queue with the parameters of the work needing to be done, and
perform the work by calling the leibniz_pi function above. For your own
implementation, the object that you queue just needs to contain the relevant
function parameters for the task, like the details of the ZIP file to create, or
image to process.

Listing 10.2 /pi_worker/pi_worker.py

import os

import redis

from pi import *

 

redis_host = os.environ.get('REDIS_HOST')

assert redis_host != None

r = redis.Redis(host=redis_host, port='6379', decode_responses=True)

 

print("starting")

while True:

  task = r.blpop('queue:task') #A

  iterations = int(task[1])

  print("got task: " + str(iterations))

  pi = leibniz_pi(iterations) #B

print (pi) 

To pop our Redis-based queue, we use the Redis BLPOP command which will
get the first element in the list, and block if the queue is empty (thus, wait for
more tasks to be added). There is more we would need to do to make this
production-grade, such as add signal handling for when the Pod is terminated
(covered in section 10.1.2), but this is enough for now.

Lastly, we have a little script to add some work to this queue. In the real



world, you will queue tasks as needed (by calling RPUSH with the task
parameters), such as in response to user actions like queuing the task to resize
an image in response to the user uploading an image. For our demonstration,
we can seed our task queue with some random values. The following code
will create 100 sample tasks using a random value for our task input integer
(with a value in the range 1 to 10 million). Here’s some python code to add
some tasks to our queue.

Listing 10.3 /pi_worker/add_tasks.py

import os

import redis

import random

 

redis_host = os.environ.get('REDIS_HOST')

assert redis_host != None

r = redis.Redis(host=redis_host, port='6379', decode_responses=True) #A

 

random.seed()

for i in range(0, 10):

  rand = random.randint(10,100)

  iterations = rand * 100000

  r.rpush('queue:task', iterations)

  print("added task: " + str(iterations)) #B

 

print("queue depth", str(r.llen('queue:task')))

print ("done")

The rpush method (mapping to RPUSH[3]) adds the given value (in our case,
an integer) to the list specified with the key (in our case the key is
"queue:task"). If you’ve not used Redis before, you might be expecting
something more complex, but this is all that’s needed to create a queue.
There’s no pre-configuration or schemas needed.

Bundling these 3 python scripts into a container is pretty simple. We can use
the official python base image, and add the Redis dependency (see chapter 2
if you need a refresher on how to build such containers). For the default
container entry point, we’ll start our worker with python3 pi_worker.py.

Listing 10.4 /pi_worker/Dockerfile



FROM python:3

RUN pip install redis

COPY . /app

WORKDIR /app 

CMD python3 pi_worker.py

With our Python worker container created, we can now get to the fun part of
deploying it to Kubernetes!

Deploying to Kubernetes

Here’s what the Kubernetes architecture looks like, we have the StatefulSet
that runs Redis, and the Deployment which runs the worker pods. There is
also the web application role which adds the tasks, but we’ll just do that
manually for this example.

Figure 10.2 Kubernetes architecture of the background processing task queue

Our worker Pods will be deployed in a hopefully now-familiar Deployment
configuration (from chapter 3). We’ll pass in the location of our Redis host
using an environment variable, that references the internal service host (as per
section 7.1.3):



Listing 10.5 /10.1.1_TaskQueue/deploy_worker.yaml

apiVersion: apps/v1

kind: Deployment

metadata:

  name: pi-worker

spec:

  replicas: 2

  selector:

    matchLabels:

      pod: pi

  template:

    metadata:

      labels:

        pod: pi

    spec:

      containers:

      - name: pi-container

        image: docker.io/wdenniss/pi_worker:v1

        env:

        - name: REDIS_HOST #A

          value: redis-0.redis-service #A

        - name: PYTHONUNBUFFERED #B

          value: "1" #B

Notice how there’s nothing special at all about this Deployment when
compared to the other Deployments used far in this book for exposing web
services. It’s just a bunch of Pods that we happen to have given the role of
task workers.

Our worker pods are expecting a Redis instance, so let’s deploy that first. We
can use the one from chapter 9, the solutions in the
9.2.1_StatefulSet_Redis_SinglePod and
9.2.2_StatefulSet_Redis_Replicated folders both work for our purposes
here. From the code sample root folder, simply run:

$ kubectl create -f Chapter09/9.2.2_StatefulSet_Redis_Replicated

$ kubectl get pods

NAME      READY   STATUS     RESTARTS   AGE

redis-0   1/1     Running    0          20s

redis-1   1/1     Running    0          13s

redis-2   0/1     Init:0/1   0          7s

Now create our worker deployment.



kubectl create -f Chapter10/10.1.1_TaskQueue/deploy_worker.yaml

Finally, verify everything is working correctly: you should see 5 running
Pods.

$ kubectl get pods

NAME                         READY   STATUS    RESTARTS   AGE

pi-worker-55477bdf7b-7rmhp   1/1     Running   0          2m5s

pi-worker-55477bdf7b-ltcsd   1/1     Running   0          2m5s

redis-0                      1/1     Running   0          3m41s

redis-1                      1/1     Running   0          3m34s

redis-2                      1/1     Running   0          3m28s

Watching Rollout Progress

The get commands I show here like kubectl get pods give you a point-in-
time status. Recall from chapter 3 that there are 2 great options for watching
your rollout, you can append -w to kubectl commands which is Kubernetes’
in-built watching option, for example kubectl get pods -w, or you can use
my favorite, the Linux watch command. I use it like so: watch -d kubectl
get pods which will refresh the status every 2 seconds, and highlight
changes. You can also customize the refresh rate. To keep the syntax simple
in the book, I won’t add watches to every command I share, but remember
that they are available for use.

Now that our app is deployed, we can look at the logs to see what it’s doing.
Unfortunately, there’s no built-in way in Kubernetes to stream logs from
multiple pods (like our 2 workers) at the same time, but we can randomly
pick one and follow its logs like so:

$ kubectl logs -f deployment/pi-worker

Found 2 pods, using pod/pi-worker-55477bdf7b-7rmhp

starting

If you want to view the logs for all pods in the deployment (but not stream
them), that can also be done by referencing the metadata labels from the
Podspec, which in our case is “pod=pi”, like so:

$ kubectl logs --selector pod=pi

starting

starting



Whichever way you view the logs, we can see that the Pod has printed
“starting”, and nothing else, which is because our Pod is waiting on tasks to
be added to the queue. Let’s add some tasks for it to work on.

Adding work to the queue

Normally, it will be the web application or another process that will be
adding work for the background queue to process. All that the web
application need do is call redis.rpush('queue:task', object) with the
object that represents the tasks.

For this example, we can run the add_tasks.py script that we included in our
container (documented above) for scheduling some tasks. We can execute a
one-off command on the container in one of our pods like so:

$ kubectl exec -it deploy/pi-worker -- python3 add_tasks.py

added task: 9500000

added task: 3800000

added task: 1900000

added task: 3600000

added task: 1200000

added task: 8600000

added task: 7800000

added task: 7100000

added task: 1400000

added task: 5600000

queue depth 8

done

Note that when we pass in deploy/pi-worker here, exec will pick one of our
Pods randomly to run the actual command on (this can even be a Pod in the
Terminating state, so be careful!). You can also run the command directly on
the pod of your choice with kubectl exec -it $POD_NAME python3
add_tasks.py.

Viewing the work

With tasks added to the queue, we can observe the logs of our worker pods to
see how they’re doing.



$ kubectl logs -f deployment/pi-worker

Found 2 pods, using pod/pi-worker-54dd47b44c-bjccg

starting

got task: 9500000

3.1415927062213693620

got task: 8600000

3.1415927117293246813

got task: 7100000

3.1415927240123234505

This worker is getting the task (being to calculate Pi with n iterations of the
Gregory-Leibniz infinity series algorithm) and performing the work.

10.1.2 Signal Handling in Worker Pods

One thing to note is that the above worker implementation has no SIGTERM
handling, which means it won’t shutdown gracefully when the Pod needs to
be replaced. There are a lot of reasons why a Pod might be terminated,
including if you update the deployment, or the Kubernetes node is upgraded,
so this is a very important signal to handle.

In Python we can implement this with a SIGTERM handler that will instruct
our worker to terminate once it finishes its current task. We’ll also add a
timeout to our queue-pop call so the worker can check the status more
frequently. For your own work, look up how to implement SIGTERM signal
handling in your language of choice.

Let’s add termination handling to shut down the worker when SIGTERM is
received:

Listing 10.6 /pi_worker2/pi_worker.py

import os

import signal

import redis

from pi import *

 

redis_host = os.environ.get('REDIS_HOST')

assert redis_host != None

r = redis.Redis(host=redis_host, port= '6379', decode_responses=True)

 

running = True #A



 

def signal_handler(signum, frame): #B

    print("got signal") #B

    running = False #B

 

signal.signal(signal.SIGTERM, signal_handler) #B

 

print("starting")

while running:

  task = r.blpop('queue:task', 5) #C

  if task != None:

    iterations = int(task[1])

    print("got task: " + str(iterations))

    pi = leibniz_pi(iterations)

    print (pi)

Then deploy this revision in an updated Deployment, specifying the new
image along with terminationGracePeriodSeconds to request 2 minutes to
handle that SIGTERM by wrapping up the current work and exiting.

Listing 10.7 TaskQueue2/deploy_worker.yaml

apiVersion: apps/v1

kind: Deployment

metadata:

  name: pi-worker

spec:

  replicas: 2

  selector:

    matchLabels:

      pod: pi

  template:

    metadata:

      labels:

        pod: pi

    spec:

      containers:

      - name: pi-container

        image: docker.io/wdenniss/pi_worker:v2

        imagePullPolicy: Always

        env:

        - name: REDIS_HOST

          value: redis-0.redis-service

        - name: PYTHONUNBUFFERED

          value: "1"

        resources:



            requests:

              cpu: 250m

              memory: 250Mi

      terminationGracePeriodSeconds: 120

Together, the signal handling in the Pod and the termination grace period
means that this Pod will stop accepting new jobs once it receives the
SIGTERM, and will have 120s to wrap up any current work. Adjust the
terminationGracePeriodSeconds as needed for your own workloads.

There’s a few more things we didn’t consider here. For example. If the
worker were to crash while processing a task, then that task would be lost (as
it was removed from the queue, but not completed). Also there’s only
minimal observability and other functions. The goal of the above sample is
not to provide a complete queue system, but rather to demonstrate
conceptually how they work. You could continue to implement fault
tolerance and other functionality or adopt an open source background task
queue and have it do that for you. That choice is yours.

10.1.3 Scaling Worker Pods

Scaling the worker Pods is the same technique for any Deployment, as
covered in Chapter 6. You can set the replica count manually, or with a
Horizontal Pod Autoscaler (HPA). Since our example workload is CPU-
intensive, the CPU metric works well for scaling using a HPA, so let’s set
one up now.

Listing 10.8 HPA/hpa.yaml

apiVersion: autoscaling/v2

kind: HorizontalPodAutoscaler

metadata:

  name: pi-worker-autoscaler

spec:

  scaleTargetRef:

    apiVersion: apps/v1

    kind: Deployment

    name: pi-worker

  minReplicas: 2

  maxReplicas: 10

  metrics:



  - type: Resource

    resource:

      name: cpu

      target:

        type: Utilization

        averageUtilization: 20

This will scale our deployment to between 2 and 10 Pods, aiming for each
Pod to be using less than 20% of a CPU resources requested by the Pod.

Create the HPA like so:

kubectl create -f kubectl create -f Chapter10/10.1.3_HPA

With the HPA in place, you can repeat the add tasks command from above,
and watch the HPA do its thing. The kubectl get command supports
multiple resource types, so you can run kubectl get pods,hpa (which I
generally prefix with the Linux watch command) in order to observe all the
components interacting.

$ kubectl exec -it deploy/pi-worker -- python3 add_tasks.py

$ kubectl get pods,hpa

NAME                             READY   STATUS    RESTARTS   AGE

pod/pi-worker-54dd47b44c-22x9b   1/1     Running   0          2m42s

pod/pi-worker-54dd47b44c-9wppc   1/1     Running   0          2m27s

pod/pi-worker-54dd47b44c-bjccg   1/1     Running   0          13m

pod/pi-worker-54dd47b44c-f79hx   1/1     Running   0          2m42s

pod/pi-worker-54dd47b44c-fptj9   1/1     Running   0          2m27s

pod/pi-worker-54dd47b44c-hgbqd   1/1     Running   0          2m27s

pod/pi-worker-54dd47b44c-lj2bk   1/1     Running   0          2m27s

pod/pi-worker-54dd47b44c-wc267   1/1     Running   0          2m10s

pod/pi-worker-54dd47b44c-wk4dg   1/1     Running   0          2m10s

pod/pi-worker-54dd47b44c-x2s4m   1/1     Running   0          13m

pod/redis-0                      1/1     Running   0          56m

pod/redis-1                      1/1     Running   0          56m

pod/redis-2                      1/1     Running   0          56m

 

NAME                                                       REFERENCE              TARGETS   MINPODS   MAXPODS   REPLICAS   AGE

horizontalpodautoscaler.autoscaling/pi-worker-autoscaler   Deployment/pi-worker   66%/20%   2         10        10         3m46s

10.1.4 Open Source Task Queues

So far, we’ve been building our own task queue. I find it best to get hands on



to understand how things work. However, you likely don’t need to implement
a task queue yourself from scratch, since others have done the work for you.

For Python, RQ (https://python-rq.org/) is a popular choice that allows you to
basically enqueue a function call with a bunch of parameters. No need to
even wrap this function in an object that implements a particular abstract
method.

For Ruby developers, Resque (https://github.com/resque/resque), created by
the team at GitHub, is a popular choice. Tasks in Resque are simply ruby
classes that implement a perform method. The Ruby on Rails framework
makes Resque particularly easy to use with its Active Job framework that
allows Resque (among other task queue implementations) to be used as the
queuing backend.

Before going out and building your own queue, I’d recommend looking at
these options and more. If you have to build something yourself, or the off-
the-shelf options just don’t cut it, then I hope you saw through the earlier
examples that it’s at least pretty straightforward to get started.

10.2 Jobs

Kubernetes offers a way to define a finite set of work to process with the Job
construct. Both Job and Deployment can be used for handling “batch jobs”
and background processing in Kubernetes in general. The key difference is
that Job is designed to process a finite set of work, and can potentially be
used without needing a queue data structure like Redis, while Deployment (as
described in section 10.1) is for a continuously running background queue
that will need some kind of queue structure for coordination. You can also
use Jobs to run one-off and periodic tasks like maintenance operations, which
wouldn’t make sense in a Deployment (which would restart the Pod once it
finishes).

You may be wondering why a separate construct is needed in Kubernetes to
run something once, since stand-alone Pods could do that as well. While it’s
true that you can schedule a Pod to perform a task and shutdown once its
complete, there is no controller to ensure that the task actually completes.



That can happen for example if the Pod was evicted due to a maintenance
event before it had a chance to complete. Job adds some useful constructs
around the Pod to ensure that the task will complete (by rescheduling it if it
failed or was evicted), as well as the potential to track multiple completions
and parallelism.

At the end of the day, Job is just another higher-order controller in
Kubernetes for managing pods, like Deployment and StatefulSet. All three
create Pods to run your actual code, just with different logic around
scheduling and management provided by the controller. Deployments are for
creating a set of continuously running Pods, StatefulSet for pods that have a
unique ordinal and can attach disks through persistent volume templates, and
Jobs for Pods that should run to completion (potentially multiple times).

10.2.1 Running one-off tasks with Jobs

Jobs are great for running one-off tasks. Let’s say you want to perform a
maintenance task like clearing a cache, or anything else that is essentially just
running a command in your container. Instead of using kubectl exec on an
existing Pod, you can schedule a Job to run the task as a separate process
with its own resources, ensure that the action will complete as requested (or
report a failure status), and make it easily repeatable.

The exec command should really only be used for debugging running Pods.
If you use exec to perform maintenance tasks, then your task is sharing the
resources with the Pod which isn’t great—the Pod may not have enough
resources to handle both, and you are impacting the performance. By moving
tasks to a Job, they get their own Pod, with their own resource allocation.

Configuration as code for maintenance tasks

Throughout this book, I’ve been espousing how important it is to capture
everything in configuration. By capturing routine maintenance tasks as Jobs,
rather than having a list of shell commands to copy/paste, you’re building
repeatable configuration. If you follow the GitOps approach whereby
production changes go through git (covered in the next chapter), then your
maintenance tasks can go through your usual code review process in order to



be rolled out into production.

In the previous section we needed to execute a command in the container to
add some work to our queue, and we used kubectl exec on an existing pod
to run python3 add_tasks.py. Let’s upgrade the process of adding work to
be a proper Job with its own Pod. The following Job definition can be used to
perform the python3 add_tasks.py task on our container named pi.

Listing 10.9 Job/job_addwork.yaml

apiVersion: batch/v1

kind: Job

metadata:

  name: addwork

spec:

  backoffLimit: 2

  template:

    spec:

      containers:

      - name: pi

        image: docker.io/wdenniss/pi_worker:v2

        command: ["python3",  "add_tasks.py"]

        env:

        - name: REDIS_HOST

          value: redis-0.redis-service

        - name: PYTHONUNBUFFERED

          value: "1"

      restartPolicy: Never

The spec within the template within the spec pattern may look familiar, and
that’s because this object embeds a Podspec template just as Deployment and
StatefulSet do. All the parameters of the Pod can be used here like resource
requests and environment variables, with only a couple of exceptions for
parameter combinations that don’t make sense in the Job context.

Figure 10.3 Object composition of Job



Our Podspec for the Job has the same environment variables as our Podspec
from the deployment. That’s the great thing about Kubernetes object
composition, the specification is the same wherever the Pod is embedded.
The other changes are the restartPolicy, and the backoffLimit.

The Pod restart property, a property of the Podspec embedded in the Job,
governs whether or not kubelet on the Node will try to restart a container that
existed with a non-success result in-place. For Jobs, this can be set to
OnFailure to restart the container if it fails, or Never to ignore failures. The
Always option doesn’t make sense for Jobs, as this would restart a succeeded
Pod, which is not what Jobs are designed to do (that’s more in the domain of
Deployment).

The backoff limit is part of the Job, and determines how many times to try
and run the Job. This encompasses both crashes, but also Node failures. For
example, if the Job crashes twice and then is evicted due to Node
maintenance, that counts as 3 restarts. Some practitioners like to use Never
during development as it’s easier to debug and see all the failed Pods and



query their logs.

Create the Job like any other Kubernetes object, and then observe the
progress like so:

$ kubectl create -f Chapter10/10.2.1_Job/job_addwork.yaml

$ kubectl get job,pods

NAME                COMPLETIONS   DURATION   AGE

job.batch/addwork   1/1           3s         9s

 

NAME                             READY   STATUS      RESTARTS   AGE

pod/addwork-99q5k                0/1     Completed   0          9s

pod/pi-worker-6f6dfdb548-7krpm   1/1     Running     0          7m2s

pod/pi-worker-6f6dfdb548-pzxq2   1/1     Running     0          7m2s

pod/redis-0                      1/1     Running     0          8m3s

pod/redis-1                      1/1     Running     0          7m30s

pod/redis-2                      1/1     Running     0          6m25s

If the Job succeeds, we can watch our worker pods which should become
busy with newly added work. If you deployed the HPA earlier, then you’ll
soon see new containers created, as I did here:

$ kubectl get pods,hpa

NAME                             READY   STATUS              RESTARTS   AGE

pod/addwork-99q5k                0/1     Completed           0          58s

pod/pi-worker-6f6dfdb548-7krpm   1/1     Running             0          7m51s

pod/pi-worker-6f6dfdb548-h6pld   0/1     ContainerCreating   0          8s

pod/pi-worker-6f6dfdb548-pzxq2   1/1     Running             0          7m51s

pod/pi-worker-6f6dfdb548-qpgxp   1/1     Running             0          8s

pod/redis-0                      1/1     Running             0          8m52s

pod/redis-1                      1/1     Running             0          8m19s

pod/redis-2                      1/1     Running             0          7m14s

 

NAME                                                       REFERENCE              TARGETS    MINPODS   MAXPODS   REPLICAS   AGE

horizontalpodautoscaler.autoscaling/pi-worker-autoscaler   Deployment/pi-worker   100%/20%   2         10        2          2d4h

One thing to note about Jobs is that whether it has completed or not, you
won’t be able to schedule it again with the same name (i.e. to repeat the
action) without deleting it first. That’s because, even though the work is now
finished, the Job object still exists in Kubernetes. You can delete like any
object:

kubectl delete -f Chapter10/10.2.1_Job/job_addwork.yaml



To recap, Job is for when you have some task or work to complete. Our
example was to execute a simple command, however this could equally have
been a long and complex computational task. If you need to run a one-off
background process, simply containerize it, define it in the Job and schedule.
When the Job reports itself as “Complete”, the work is done.

Two parameters which we didn’t use to run a one-off task are completions,
and parallelism. These parameters allow you to process a batch of tasks
using a single Job object description, which is covered in section 10.3. Before
we get to that, let’s look how to schedule Jobs at regular intervals.

10.2.2 Scheduling Tasks with Cron Jobs

In the previous section, we took a command that we had executed manually
on the cluster and created a proper Kubernetes object to encapsulate it. Now
any developer on the team can run perform that task by creating the Job
object rather than needing to remember a complex exec command.

What about tasks that you need to run repeatedly on a set interval?
Kubernetes has you covered with CronJob. CronJob encapsulates a Job object
and adds a frequency parameter that allows you to set a daily or hourly (or
any interval you like) frequency to run the Job. This is a popular way to
schedule tasks like a daily cache cleanup and the like.

Listing 10.10 CronJob/cronjob_addwork.yaml

apiVersion: batch/v1

kind: CronJob

metadata:

  name: addwork

spec:

  schedule: "*/5 * * * *"

  jobTemplate:

    spec:

      backoffLimit: 2

      template:

        spec:

          containers:

          - name: pi

            image: docker.io/wdenniss/pi_worker:v2

            command: ["python3",  "add_tasks.py"]



            env:

            - name: REDIS_HOST

              value: redis-0.redis-service

            - name: PYTHONUNBUFFERED

              value: "1"

          restartPolicy: Never

You might notice that we just copied the entire specification of the Job (i.e.
the spec dictionary) in the previous section under this CronJob’s spec
dictionary as the jobTemplate key, and added an extra spec-level field named
schedule. Recall that the Job has its own template for the Pods that will be
created (which also have their own spec).

So, the CronJob embeds a Job object, which in turn embeds a Pod. I find it
helpful to visualize this through object composition, so take a look at the
following figure.

Figure 10.4 Object composition of CronJob



Object Composition in Kubernetes

With all the specs and templates embedding other templates and specs,
sometimes it feels like turtles all the way down in Kubernetes. Here we have
a CronJob whose spec contains the template for the Job that gets run (on the
schedule), which itself containers the template of a Pod with its own spec.
This may seem confusing, and repetitive, or both, but there is a huge benefit
to this approach: when looking at the API docs, you can use any field of Job
in the jobTemplate, just as you can use any field of Pod in the spec.
Kubernetes objects are built from the composition of other objects.

Some nomenclature worth learning: when a Pod is embedded in another
object, we refer to the specification of the embedded Pod as a Podspec (e.g.,
“a Deployment contains a Podspec”). When the controller for that higher-
level object then creates the Pod in the cluster, that Pod is a Pod equal to any
other, including ones that were created directly with their own specification.



The only difference is that the Pods created by a controller (like Job or
Deployment) continue to be observed by that controller (i.e. recreating them
if they fail, etc).

So that’s how it’s composed, what about the schedule field which is
CronJob’s contribution to the specification? schedule is where we define the
frequency in the age-old Unix cron format. The cron format is extremely
expressive. In the example above, 0 0 * * * translates to “run at 12:00am
every day”. You can configure schedules like “run every 30 minutes” (*/30
* * * *), run Mondays at 4:00pm (0 16 * * 1), and many, many more. I
recommend using a visual cron editor (a Google search for “cron editor”
should do the trick) to validate your preferred expression, rather than waiting
a week to verify that the Job you wanted to run weekly actually ran.

Create the new Cronjob like so:

$ kubectl create -f Chapter10/10.2.2_CronJob/cronjob_addwork.yaml

$ kubectl get cronjob,job

NAME                    SCHEDULE      SUSPEND   ACTIVE   LAST SCHEDULE   AGE

cronjob.batch/addwork   */5 * * * *   False     0        <none>          58s

Wait a couple of minutes (for this example, the Job is created every 5
minutes, i.e. :00, :05, etc), then you can see the Job, and the Pod that it
spawned.

$ kubectl get cronjob,job,pods

NAME                    SCHEDULE      SUSPEND   ACTIVE   LAST SCHEDULE   AGE

cronjob.batch/addwork   */5 * * * *   False     0        2m38s           3m11s

 

NAME                         COMPLETIONS   DURATION   AGE

job.batch/addwork-27237815   1/1           107s       2m38s

 

NAME                             READY   STATUS      RESTARTS   AGE

pod/addwork-27237815-b44ws       0/1     Completed   0          2m38s

pod/pi-worker-6f6dfdb548-5czkc   1/1     Running     5          14m

pod/pi-worker-6f6dfdb548-gfkcq   1/1     Running     0          7s

pod/pi-worker-6f6dfdb548-pl584   1/1     Running     0          7s

pod/pi-worker-6f6dfdb548-qpgxp   1/1     Running     5          25m

pod/redis-0                      1/1     Running     0          14m

pod/redis-1                      1/1     Running     0          33m

pod/redis-2                      1/1     Running     0          32m



CronJob will spawn a new Job on a schedule (which in turn, spawns a new
Pod). You can inspect these historic jobs, as they remain with the “Complete”
status. The successfulJobsHistoryLimit and failedJobsHistoryLimit
options in the CronJobSpec[4] can be can be used to govern how many of
those historic Jobs will be kept.

Timezones

Be aware that the cron job will run on the timezone of your cluster, which for
many platforms like GKE will be UTC . The timezone used is that of the
system Kubernetes controller component, which runs on the master. If you’re
on a managed platform, it may not be possible to query the master node
directly, but it is possible to check nodes which likely are the same. Here’s
how to create a one-off Pod to run the Linux date command and then exit,
with the output highlighted in bold.

$ kubectl run date --restart=Never -it --rm --image ubuntu date +%Z

UTC

pod "date" deleted

There exists a prefix that can be added CRON_TZ=<timezone> (like
CRON_TZ=UTC 0 16 * * 1), however as of Kubernetes 1.21 it doesn’t form
part of the official Kubernetes API contract, and thus isn’t recommended.

10.3 Batch task processing with Jobs

What if you have a batch of work that you want to process as a regular, or
one-off event? As covered in section 10.1, if a continuously running task
queue is what you want, then actually Deployment is the right Kubernetes
object. But, if you have a finite batch of work to process, then Job is the ideal
Kubernetes construct to use.

If you have a dynamic work queue database like we did in section 10.1, but
want your workers to shutdown completely when the queue is empty, that’s
something that Job can do. With a Deployment, you need a separate system
(like a HorizontalPodAutoscaler) to scale the worker Pods up and down, for
example when there is no more work in the queue. When using Job, the
worker Pods themselves can signal to the Job controller when the work is



complete and they should be shutdown, and the resources reclaimed.

Another way to use Job is to run it on a static work queue in such a way
where a database is not needed at all. Let’s say you know you need to process
100 tasks in a queue, you could run the Job 100 times. The catch of course is
that each Pod instantiation in the Job series needs to know which of those 100
tasks to run on, which is where the indexed job comes in.

In this section, I’ll cover both the dynamic and static approach to task
processing.

10.3.1 Dynamic Queue Processing with Jobs

Let’s redesign the dynamic queue from section 10.1 to use Job instead of
Deployment. Both Deployment and Job allow the creation of multiple Pod
workers, and both will recreate Pods in the event of failure. Deployment
however doesn’t have the notation of a Pod “completing”, that is terminating
with a success code. Whatever replica count you give the Deployment is what
it will strive to keep running at all times. When a Pod managed by a Job on
the other hand terminates with the success exit code (i.e. exit 0), it indicates
to the Job controller that the work has completed successfully, and the Pod
won’t be restarted.

This property of Job that allows the individual workers to signal when the
work is finished is what makes Jobs useful. If you’re using a dynamic
Kubernetes environment such as one with autoscaling (including my own
product GKE Autopilot), then Job allows you to “set and forget” the work,
where you schedule it and once it’s done the resource consumption goes to
zero. Note that you can’t scale the Job back up once it’s completed, but you
can delete and re-create (which essentially starts a new processing queue).

For our task worker container to work correctly in a Job environment, we
need to add a success exit condition for when the queue becomes empty.
Here’s what our revised worker code looks like:

Listing 10.11 /pi_worker3/pi_worker.py

import os



import signal

import redis

from pi import *

 

redis_host = os.environ.get('REDIS_HOST')

assert redis_host != None

r = redis.Redis(host=redis_host, port= '6379', decode_responses=True)

 

running = True

 

def signal_handler(signum, frame):

    print("got signal")

    running = False

 

signal.signal(signal.SIGTERM, signal_handler)

 

print("starting")

while running:

  job = r.blpop('queue:task', 5)

  if task != None:

    iterations = int(task[1])

    print("got task: " + str(iterations))

    pi = leibniz_pi(iterations)

    print (pi)

  else: #A

    if os.getenv('COMPLETE_WHEN_EMPTY', '0') != '0': #A

      print ("no more work") #A

      running = False #A

 

exit(0)#B

With our worker container setup to behave correctly in the Job context, we
can create a Kubernetes Job to run it. Whereas in the deployment we use the
replica field to govern the number of pods that are running at once, with Job
it’s the parallelism parameter, which basically does the same thing.

Listing 10.12 JobWorker/job_worker.yaml

apiVersion: batch/v1

kind: Job

metadata:

  name: jobworker

spec:

  backoffLimit: 2

  parallelism: 2

  template:



    metadata:

      labels:

        pod: pi

    spec:

      containers:

      - name: pi

        image: docker.io/wdenniss/pi_worker:v3

        env:

        - name: REDIS_HOST

          value: redis-0.redis-service

        - name: PYTHONUNBUFFERED

          value: "1"

        - name: COMPLETE_WHEN_EMPTY

          value: "1"

      restartPolicy: OnFailure

If you compare the Podpec of the Job version of the worker here, to Podspec
in of the worker created as a Deployment in section 10.1, you’ll notice that
the embedded PodSpec (the configuration under template) is identical other
than the addition of the COMPLETE_WHEN_EMPTY flag, and the restart policy.
The restart policy is added, because the default of “Always” for Pods doesn’t
apply to Jobs that are designed to terminate. With the “OnFailure” restart
policy, the worker Pod will be restarted only if it crashes without returning
success, which is generally desirable. We don’t strictly need the labels
metadata for the Job version of this worker, but it can be useful to query the
logs of multiple Pods at the same time as discussed earlier (i.e. with kubectl
logs --selector pod=pi).

Preparing

If you are running the previous samples, clean them by deleting the
deployment and the CronJob if one was used.

$ cd Chapter10

 

$ kubectl delete -f 10.1.2_TaskQueue2

deployment.apps "pi-worker" deleted

 

$ kubectl delete -f 10.2.1_Job

job.batch "addwork" deleted

 

$ kubectl delete -f 10.2.2_CronJob

cronjob.batch "addwork" deleted



Since our Redis-based queue may have some existing jobs, you can reset it as
well using the LTRIM Redis command.

kubectl exec -it pod/redis-0 -- redis-cli ltrim queue:task 0 0

You can also run the redis-cli interactively if you prefer

$ kubectl exec -it pod/redis-0 -- redis-cli

127.0.0.1:6379> LTRIM queue:task 0 0

OK

Let’s take this Job for a spin. First, we can add some work to our Redis
queue, using a one-off Job like before (note that if this Job already exists in
the completed state you’ll need to delete it first).

$ cd Chapter10

 

$ kubectl create -f 10.2.1_Job

job.batch/addwork created

 

$ kubectl get job,pod

NAME                COMPLETIONS   DURATION   AGE

job.batch/addwork   0/1           19s        19s

 

NAME                READY   STATUS              RESTARTS   AGE

pod/addwork-l9fgg   0/1     ContainerCreating   0          19s

pod/redis-0         1/1     Running             0          19h

pod/redis-1         1/1     Running             0          19h

pod/redis-2         1/1     Running             0          19h

Once this “addwork” Job has completed, we can run our new Job queue to
process the work. Unlike previously, the order matters here since the Job
workers will exit if there is no work in the queue, so make sure that
“addwork” completed before you run the Job queue. Observe the status like
so:

$ kubectl get job,pod

NAME                COMPLETIONS   DURATION   AGE

job.batch/addwork   1/1           22s        36s

 

NAME                READY   STATUS      RESTARTS   AGE

pod/addwork-l9fgg   0/1     Completed   0          37s

pod/redis-0         1/1     Running     0          19h

pod/redis-1         1/1     Running     0          19h



pod/redis-2         1/1     Running     0          19h

Once we see “Completed” on our addwork task, we can go ahead and
schedule the Job queue.

$ kubectl create -f 10.2.4_JobWorker

job.batch/jobworker created

$ kubectl get job,pod

NAME                  COMPLETIONS   DURATION   AGE

job.batch/addwork     1/1           22s        3m45s

job.batch/jobworker   0/1 of 2      2m16s      2m16s

 

NAME                  READY   STATUS      RESTARTS   AGE

pod/addwork-l9fgg     0/1     Completed   0          3m45s

pod/jobworker-swb6k   1/1     Running     0          2m16s

pod/jobworker-tn6cd   1/1     Running     0          2m16s

pod/redis-0           1/1     Running     0          19h

pod/redis-1           1/1     Running     0          19h

pod/redis-2           1/1     Running     0          19h

What should happen next is that the worker Pods will process the queue, and
when the queue is empty, the workers will complete the task they are
currently working on, then exit with success. If you want to monitor the
queue depth, so as to know when the work should wrap up, you can run LLEN
on the Redis queue to observe the current queue length.

$ kubectl exec -it pod/redis-0 -- redis-cli llen queue:task

(integer) 0

When it’s zero, you should observe the Pods entering the “Completed” state.
Note that they won’t enter this state right away, but rather after they wrap up
the last task they are processing.

$ kubectl get job,pod

NAME                  COMPLETIONS   DURATION   AGE

job.batch/addwork     1/1           22s        3m45s

job.batch/jobworker   0/1 of 2      2m16s      2m16s

 

NAME                  READY   STATUS      RESTARTS   AGE

pod/addwork-l9fgg     0/1     Completed   0          10m09s

pod/jobworker-swb6k   1/1     Completed   0          8m40s

pod/jobworker-tn6cd   1/1     Completed   0          8m40s

pod/redis-0           1/1     Running     0          19h

pod/redis-1           1/1     Running     0          19h



pod/redis-2           1/1     Running     0          19h

Remember that if you want to re-run any of the Jobs, you need to delete them
first and create them again, even if the Jobs have completed and there are no
Pods running. To run the above demo a second time, delete both jobs (the one
that adds the work, and the one that runs the workers) and create them afresh:

$ kubectl delete -f 10.2.1_Job

job.batch "addwork" deleted

$ kubectl delete -f 10.2.4_JobWorker

job.batch "jobworker" deleted

$ kubectl create -f 10.2.1_Job

job.batch/addwork created

$ kubectl create -f 10.2.4_JobWorker

job.batch/jobworker created

10.3.2 Static Queue Processing with Jobs

There are a number of ways to run Jobs with a static queue, instead of using a
dynamic queue like Redis as we did in the previous section to store the task
list. When using a static queue, the queue length is known ahead of time and
is configured as part of the Job itself, and a new Pod is created for each task.
Instead of having task workers running until the queue is empty, you are
defining upfront how many times to instantiate the worker Pod.

The main reason for doing this is to avoid the container needing to
understand how to pull tasks from the dynamic queue (which for existing
containers often means effort to add that functionality). The drawback is that
there is generally additional configuration on the Kubernetes side. It
essentially shifts the configuration burden from the worker container to
Kubernetes objects.

Note that even if you have the requirement that you can’t modify the
container which performs the work, this doesn’t mean you have to use a static
queue. You have multiple containers in a Pod, and have one container that
performs the dequeuing, passing the parameters on to the other container.

So how do you represent a static work queue in Kubernetes configuration?
There are a few different options, three of which I’ll outline here.



Static queue using an index

Indexed jobs are the most interesting static queue option in my opinion.
Usable when you know ahead of time how many tasks to process, and the
task list is one that is easily indexed. One example is rendering an animated
movie. You know the number of frames (queue length) and can easily pass
each instantiation the frame number (i.e. index into the queue) of the frame to
render.

Kubernetes will run the Job the total number of times (completions) you
specify, creating a Pod for each task. Each time it runs, it will give the Job the
next index (supplied in the environment variable $JOB_COMPLETION_INDEX).
If your work is naturally indexed, for example rendering frames in an
animated movie, this works great! You can easily instruct Kubernetes to run
the job 30,000 times (render 30,000 frames), and it will give each pod the
frame number. Another obvious approach is to give each job the full list of
work using some data structure (e.g. an array of tasks encoded in YAML or
just plain text, one per line), and Kubernetes supplies the index. The Job can
then lookup the task in the list using the index.

Here's an example configuration that simply outputs the frame number. You
can sub in the actual movie rendering logic yourself.

Listing 10.13 IndexedJob/indexed_job.yaml

apiVersion: batch/v1

kind: Job

metadata:

  name: echo

spec:

  completions: 5 #A

  parallelism: 3 #B

  completionMode: Indexed #C

  template:

    spec:

      restartPolicy: Never

      containers:

      - name: 'worker'

        image: 'docker.io/library/busybox'

        command: ["echo", "render frame: $JOB_COMPLETION_INDEX"]



Kubernetes is enabling you to define your queue length and will give each
Pod can get an index into that queue. For example, say you want to render a
movie with 100,000 frames. You can set your “completions” (the number of
times you want to run the job successfully) to 100,000. This will create (over
time) 100,000 pods, and set the environment variable
$JOB_COMPLETION_INDEX in each pod with the index (0, 1, 2 and so
on).

$ kubectl create -f 10.3.2_IndexedJob 

job.batch/echo created

 

$ kubectl get job,pods

NAME             COMPLETIONS   DURATION   AGE

job.batch/echo   5/5           20s        58s

 

NAME               READY   STATUS      RESTARTS   AGE

pod/echo-0-r8v52   0/1     Completed   0          58s

pod/echo-1-nxwsm   0/1     Completed   0          58s

pod/echo-2-49kz2   0/1     Completed   0          58s

pod/echo-3-9lvt2   0/1     Completed   0          51s

pod/echo-4-2pstq   0/1     Completed   0          45s

Inspecting the logs:

$ kubectl logs --selector pod=framerender

render frame: 0

render frame: 1

render frame: 2

render frame: 3

render frame: 4

Your application can either use this environment variable directly, or you can
use an init container to take the index and perform any configuration steps
needed for the main container to perform the work, for example by building a
script that will be run.

Static queue with a message queue service

Another approach that doesn’t require modification is to populate a message
queue, and have each Pod pull the work from that. As the containers can be
configured to get the required parameters through environment variables in
the Kubernetes configuration, it’s possible to build a job where the container



is unaware of the queue. It’s still “static” since you have to declare upfront
how many tasks there are, and run one worker pod per task, but it also
requires a data structure (the message queue).

The Kubernetes docs do a great job of demonstrating this approach using
RabbitMQ for the message queue here:
https://kubernetes.io/docs/tasks/job/coarse-parallel-processing-work-queue/

Static queue via scripting

Another option is to use scripting to simply crate a separate job for each task
in the queue. Basically, if you have 100 tasks to complete, you’d setup a
script to iterate over your task definition and create 100 individual Jobs
giving each the specific input data it needs. This is personally my least
favorite option as it’s a bit unwieldy to manage. Imagine you queue all this
work up and then want to cancel it? Instead of just deleting a single Job as in
all the other examples in this section, you’d have to delete 100, so you’d
likely need more scripting to do that, and on it goes.

Again, the Kubernetes docs have a good demo of this, so if it interests you,
check it out here: https://kubernetes.io/docs/tasks/job/parallel-processing-
expansion/

10.4 Liveness Probes for Background Tasks

Just like containers that serve HTTP traffic, containers that perform tasks,
whether configured in a Deployment or Job should have liveness probes. A
liveness probe helps protect you from coding errors like the inability to
recover from the failure of an external dependency that causes your process
to hang. The kubelet will automatically restart crashed containers (subject to
how you configure your restart policy), but it has no way of knowing if your
process has hung, or is performing as expected without a liveness probe.

You may recall from Chapter 4 that Kubernetes uses the information from
liveness and readiness probes to make restart decisions on workloads. This is
still true for background tasks, but with a few differences. Readiness as a
concept isn’t generally relevant for batch jobs as they don’t serve traffic (so



they can’t therefore be ready, or not ready to receive traffic), but liveness still
applies. We can use the same liveness probe concept that we used to detect
stuck serving containers, to detect stuck tasks.

Whereas for a HTTP service we can use an endpoint that returns a success
response for the liveness, and a TCP service where liveness can be indicated
by successfully opening a connection on a port, batch workloads generally
have neither, which leaves us with the third option for liveness probes: a
command. You can provide any command, and if it exits with success, it
indicates the task is live.

But what command can you run that would verify that the process has not
hung? One approach is for the task to write the current timestamp to a file
periodically, and simply check the recency of that timestamp using the
liveness command.

Liveness Bash Script for Background Tasks

In the application code, we have a function that writes the current Unix-
format timestamp to a file. The following example is designed for a task
worker that runs in Ruby on Rails—but the same pattern could be
implemented in any language with ease.

def self.log_process_date

  fileName = "process.date"

  aFile = File.new(::Rails.root.to_s + "/log/" + fileName, "w")

  contents = Time.now.to_i.to_s

  aFile.write(contents)

  aFile.close

end

During normal operation of the background task, the log_process_date
method will be called at various points to update the timestamp contained in
the process.date file on disk. This should be done frequently, and at least
every time the worker processes a task (and periodically while it is waiting).

For the liveness command that will be run, we can create a bash script to read
and check the recency of the date in this file. The goal of this script is simply
to return the success exit code (0) when the timestamp file exists and was



recently updated, and exit with a non-zero code to indicate failure if an error
is encountered, or if the timestamp is too old. This script is included in the
application’s container and takes the timestamp file as an input parameter.

Listing 10.14 TaskLiveness/health_check.sh

#!/bin/bash

 

# Liveness probe for batch process

# The process writes a logfile every time it runs with the current Unix timestamp.

 

# Usage: process_liveness.sh <path_to_file>

# The file must contain only the latest date as a Unix timestamp and no newlines

 

if ! rundate=$(<$1); then #A

  echo >&2 failed #A

  echo "no logfile" #A

  exit 1 #A 

fi #A

 

curdate=$(date +'%s') #B

 

diff=$((curdate-rundate)) #C

 

if [ $diff -gt 300 ] #D

then #D

  echo "too old" #D

  exit 100 #D

fi #D

 

exit 0 #E

Finally, we write a liveness probe to call this script.

deploy.yaml

livenessProbe:

  initialDelaySeconds: 600 #A

  periodSeconds: 30

  exec: #B

    command: ["./script/health_check.sh", "log/process.date"] #B

  successThreshold: 1

  timeoutSeconds: 1

We now have a process to detect hung processes in the task worker. If the



worker doesn’t write an updated timestamp into the file, the liveness probe
command will return a failure status, and the Pod will be restarted.

10.5 Summary

Kubernetes has a few different options for handling background queues
and batch jobs.
Deployments can be used to build a continuously running job queue,
using a queue data structure like that offered by Redis for coordination.
The background processing that many websites run to offload
computationally heavy requests would typically be run as a Deployment
Kubernetes also has a dedicated Job object for running tasks
Jobs can be used for one-off tasks, such as a manual maintenance task
CronJob can be used to schedule Jobs to run, for example a daily
cleanup task
The Job object also supports batch jobs through the completions and
parallel configuration
Unlike a Deployment-based background queue, Job can be used to
schedule work on a static queue, avoiding the need for a queue data
structure
Liveness checks are still relevant for Pods that process background tasks
(to detect stuck/hung processes), and can be configured using an exec
liveness check

[1] https://www.thinkwithgoogle.com/marketing-strategies/app-and-
mobile/page-load-time-statistics/

[2] https://en.wikipedia.org/wiki/Leibniz_formula_for_pi

[3] https://redis.io/commands/rpush

[4] https://kubernetes.io/docs/reference/kubernetes-api/workload-
resources/cron-job-v1/#CronJobSpec



11 GitOps: Configuration as Code
This chapter covers

Using namespaces and configuration to replicate environments
The benefits of treating Kubernetes deployment configuration like
source code
Using git pull requests to drive operations
Handling secrets without storing them in plain text in version control

You may have noticed in this book so far that we’ve been writing a lot of
YAML configuration. It is possible to interact with most Kubernetes objects
without writing configuration files (using imperative kubectl commands),
and these are arguably easier to learn. So why did I exclusively use the
declarative configuration-based approach? One reason is so that now as we
take the app to production, we can treat our configuration like we do our
code.

Another reason is it allows us to easily spin up multiple environments with
the same configuration. Let’s say you want a staging and a production
environment that are as similar as possible for better testing. With your
deployment represented in configuration files it’s possible to replicate the
environments easily. Kubernetes has a namespaces feature which makes this
possible without needing to worry about name collisions.

11.1 Production and Staging Environments using
Namespaces

As you prepare your application for production, you’ll likely want to create a
staging environment where changes can be tested before the live production
application is updated. Kubernetes makes this easy with namespaces.

Namespaces as their name suggests provide name uniqueness within a single
logical space. So you can setup a “production” namespace and a “staging”



namespace, and have the deployment object “foo-deployment” and “foo-
service” in each of them. This avoids the need to excessively modify your
configuration for the different environments, like creating “foo-staging-
deployment” and “foo-staging-service”, and provides some protection against
accidental changes as by default, kubectl commands only apply to the
namespace that’s currently active.

Figure 11.1 A Kubernetes cluster with two namespaces. Note that the deployment and service
objects in these namespaces have the same name (and potentially, same configuration).





The main configuration differences between your production and staging are
typically things like the scale (number of replicas), and any external service
credentials as these external services are not included in the namespace.

Multi-environment Templating

As the complexity of your application deployment or the number of
differently configured environments increases, you may wish to consider
using a templating engine such as Kustomize or Helm.

To create a namespace names “staging” you can run:

kubectl create namespace staging

To interact with this namespace, you can either add --namespace staging
(or -n staging for short) to every kubectl command you run, or change the
kubectl context so that all commands will run in this new namespace. I
highly recommend the latter, as you don’t want to forget the -n flag and
accidentally run a command in the wrong namespace. Better to switch
contexts each time. You can list the available namespaces with kubectl get
namespace, then set the context to be the namespace of your choosing.

kubectl config set-context --current --namespace=staging

You may notice when listing the namespaces, that Kubernetes comes with a
few namespaces out of the box. kube-system is where the system pods go,
best not to touch this one unless you know what you’re doing. default is the
default user namespace, but I recommend creating your own dedicated ones,
one for each application environment.

I find the context setting command above tedious, and highly recommend
setting up your shell with a utility to make it simpler to switch. The one I use
is kubectx + kubens, written by my colleague Ahmet Alp Balkan, available
at https://github.com/ahmetb/kubectx. With kubens installed, you can run
kubens to list the namespaces, and the following to set the context.

kubens staging



The other included utility, kubectx, can be used to quickly switch between
different clusters entirely. These scripts are just shorthand for the longer
kubectl config set-context commands, so you can go back to using
kubectl as normal once the context is set.

11.1.1 Deploying to our new namespace

Once you have the namespace created, you can deploy your application
easily from configuration. This is why this book has been using configuration
files in every case. Instead re-running a bunch of imperative commands to
recreate your deployment, you can simply run the following command from
the folder with your configuration:

kubectl apply -f .

And if you make any changes to the configuration or need to deploy it to yet
another namespace, you just re-run that command each time to roll out your
changes.

In fact, creating new environments with namespaces in Kubernetes is so
trivial to configure, that if you were sharing a single staging environment in
the past with other platforms, you may see some benefit to having a lot of
different environments. You can have a namespace per developer or team,
one for staging, another for integration testing, etc. Generally, the
namespaces are free (of course the compute resources used by duplicating
your Pods are not).

11.1.2 Syncing Mutations from the Cluster

But what about any changes that were made imperatively, outside of
configuration? Perhaps you scaled a deployment with kubectl scale, or
changed the image with kubectl set-image, or created a deployment with
kubectl run. It happens, I won’t judge.

Kubernetes lets you view, and export configuration with the --output
parameter (-o for short) on any get request.

For example, to get the latest YAML configuration for a deployment:



# View the deployment as YAML

kubectl get deploy your-deployment -o yaml

 

# Pipe the deployment YAML config to a file

kubectl get deploy your-deployment -o yaml > your-deployment.yaml

The catch is that Kubernetes adds a lot of extra fields that you don’t really
want in your on-disk configuration, like status messages, etc. There used to
be a handy --export option which would strip these, but sadly it’s
deprecated (depending on when you read this, it may still work). So it’s a bit
of an art to figure out which lines you can delete, and which you need to
keep. But you can compare the YAML files you get in this way to the ones in
this book to see which lines are important.

If you plan to use the configuration in multiple namespaces (which is
common), you will definitely want to delete the metadata -> namespace
field. Removing this will allow you to deploy the configuration in the current
namespace (while keeping it will mean any changes will update the object in
whatever namespace was specified). The danger I see in keeping the
namespace is you might accidently have some configuration in your staging
folder set to the production namespace. Section 7.3 below discusses some
tactics on safety around rollouts to different namespaces, but it relies on not
specifying the namespace in resource objects directly.

Other fields to consider for removal for cleanliness are from the metadata
section, the fields uid, resourceVersion, selfLink, creationTimestamp,
and the entire status section. These fields won’t prevent you from reusing
the configuration in other namespaces or clusters, but don’t really have
meaning outside their deployed context, so best keep it out of version control
to avoid confusion.

11.2 Configuration as Code the Kubernetes Way

When you have a bug in your code, you may inspect the version history to
see when the code was changed and might even roll back a commit to get
back to the previously working state. When you treat your configuration as
code (by committing it to your version control system), you can perform
similar actions, but with your production systems.



If you have a code review process, the same process should apply to
configuration. After all, the configuration impacts the running system just as
much as the code does. Code review on configuration repositories can help to
catch errors before they are rolled out. If you typo the wrong number of
replicas, hopefully your colleague might notice.

You’ll find this pattern used at all major internet companies. Most Google
services for example are developed and deployed out of a single code
repository (https://research.google/pubs/pub45424/), so the service
configuration sits right beside the code. The exact same code review practices
are followed for code, and for service configuration, although the list of
owners (the engineers can approve the changes for merging) will differ.

There’s no obligation to store the configuration in the same repository as the
code like Google though, this is mostly a matter of taste (and endless
technical debate). The model I’ll present here for storing Kubernetes
configuration in Git is just an example which I’ve found works for me, but
you should adapt it to your own engineering practices.

I use a single Git repository to represent all the Kubernetes objects deployed
in a single cluster. In this repo is a folder for each Kubernetes namespace,
and in those folders are the YAML files for the objects in the namespace. An
alternative is to use a separate branch for each namespace, which has some
nice properties like being able to merge changes as they go from staging to
production, but as there are likely some changes you don’t want to merge, it
can get messy (you wouldn’t want to accidently merge your staging-only
changes to production).

Figure 11.2 Git repository folder structure and the relationship to Kubernetes namespaces





Here’s an example directory layout:

/_debug #A

/_cluster #B

/staging #C

/production #C

Each directory in this repository is mapped to a Kubernetes namespace. The
beauty of such a 1:1 mapping is that it allows you to confidently execute a
“kubectl apply -f .” command to rollout all changes in the directory to
the active namespace. Cloning the environment is as simple as duplicating
the entire folder (and then deploying it to its own namespace).

It’s common—particularly for smaller scale deployments—to share a cluster
with multiple environment namespaces for cost reasons. This avoids extra
charges for the control plane, and allows workloads to pool compute
resources on the Nodes. As the deployments get larger, it may be desirable to
separate environments into their own clusters to provide an extra level of
access control and resource isolation. The good news is that the configuration
repository doesn’t care where these namespaces are, it’s totally fine for them
to exist in different clusters.

Figure 11.3 configuration repository with environments in multiple clusters





Now that your resource repository is setup, the work process looks like this:

1. make changes to the deployed environment to your configuration
2. commit those changes
3. update the live state by setting the current namespace with kubectl, then

running “kubectl apply -f .” on the matching directory.

With this, you’re following a “Configuration as Code” pattern, but there is
more you can do. One danger with the setup as described so far is that you
can accidently rollout the configuration from one folder to the wrong
namespace. The next sections cover how to roll out safely and avoid this
problem, and how to up level to a full “GitOps” style process where the git
push on the configuration repository triggers the rollout automatically.

11.3 Rolling Out Safely

With your configuration as code repository setup, there is now a question of
how best to roll out the changes in the repo.

Sure, you can simply checkout the repository and run “kubectl apply -f .”
as we did earlier, but this can be dangerous. You could accidently deploy the
wrong configuration into the wrong namespace. Since we’re reusing object
names in multiple environments, this could be quite bad indeed. Also, there’s
nothing to stop you running any other commands that don’t require the
configuration to be committed to the repository.

To tackle the “wrong namespace” issue, what I recommend is to have some
guardrails in place to avoid accidently deploying the wrong configuration to
the wrong namespace. Instead of simply running “kubectl apply -f .” as
we did earlier, wrap it up in a script that performs a check to ensure you’re
deploying into the right namespace. If we name our folders the same as the
namespace, then the check is simple: if current namespace is equal to the
folder name, deploy, otherwise don’t.

Here’s an example script that compares the current directory name to the
current namespace, and exits with an error status if they mismatch.



Listing 11.1 gitops/gitops_check.sh

#! /bin/bash

 

CURRENT_DIR=`echo "${PWD##*/}"`

CURRENT_NAMESPACE=`kubectl config view --minify -o=jsonpath='{.contexts[0].context.namespace}'`

 

if [ "$CURRENT_DIR" != "$CURRENT_NAMESPACE" ]; then

    >&2 echo "Wrong namespace (currently $CURRENT_NAMESPACE but $CURRENT_DIR expected)"

    exit 1

fi

 

exit 0

You can then use this in any other scripts, like the following rollout script:

Listing 11.2 gitops/rollout.sh

#! /bin/sh

 

if [ $(../gitops_check.sh; echo $?) != 0 ]; then exit 1; fi

 

kubectl apply -f .

A full “git ops” folder structure including these scripts is provided in the
samples in Chapter11/gitops.

This isn’t the only option of course. Another approach would be to set the
desired namespace in your rollout script and then deploy (just be sure if the
“set namespace” step fails, the whole thing will bail out).

For these scripts to work though, you’ll need to ensure that none of your
configuration files specify a metadata -> namespace field directly. If they
have a namespace set, it will ignore the current context, so the above script
won’t prevent updates in that case.

To really follow the GitOps methodology, you’ll want to add an additional
guarantee that the configuration deployed at all times is what is actrually in
the repository. The best way to solve that is to remove the human from the
loop completely, and configure a deployment pipeline, or a gitops operator.



11.3.1 Deployment Pipelines

A deployment pipeline is simply a set of functions that run based on a code
repository trigger. For example: “when a code is pushed to the configuration
repository, deploy the configuration to a Kubernetes cluster”.

Using pipelines guarantees that the configuration being deployed matches
what was committed. If the operator needs to make additional changes after
the deployment (for example to correct an error), they make them in the
configuration code repository like normal, push the code and trigger the
pipeline rollout once again.

Figure 11.4 A continuous deployment pipeline to Kubernetes





Now that your pipeline is configured, you can push to producing by merging
a code on your git repo, i.e. git-driven operations, or “GitOps”. The key is to
not make any changes on the cluster directly; all changes go through the
configuration repository and the continuous deployment pipeline.

Continuous Deployment with Cloud Build

To implement such a deployment pipeline in practice, there are many
products on the market. For GKE users, one option is Cloud Build. You can
set up a trigger so that when your configuration repository is pushed, it will
run “kubectl apply -f .”.

Here’s how to set it up: 1) configure IAM permissions
(https://cloud.google.com/build/docs/securing-builds/configure-access-for-
cloud-build-service-account) for the Cloud Build service account (to give it
permission to act on your GKE cluster), 2) create a new trigger (set to fire
when your configuration repository is pushed), and 3) add a Cloud Build
configuration file to your repository, and reference it in the trigger.

Listing 11.3 cloudbuild-deploy.yaml

steps:

- name: 'gcr.io/cloud-builders/kubectl'

  id: Deploy

  args:

  - 'apply'

  - '-f'

  - '$FOLDER'

  env:

  - 'CLOUDSDK_COMPUTE_ZONE=us-west1-a'

  - 'CLOUDSDK_CONTAINER_CLUSTER=my-cluster'

This is just scratching the service of continuous delivery, if you’re using
Cloud Build, then you could consult the excellent guide GitOps-style
continuous delivery with Cloud Build, (https://cloud.google.com/kubernetes-
engine/docs/tutorials/gitops-cloud-build) which goes further and sets up a
complete end to end CI/CD flow.

Continuous Reconciliation



The method described here can be further improved by using a GitOps
operator. This is a code loop that runs in the cluster and constantly reconciles
what is running in the cluster to what is present in the configuration
repository. The end result is similar to the event-driven pipeline described
above, with the advantage that it can perform additional reconciliation if there
is ever a divergence, while the pipeline relies on the push event to trigger.
Flux (https://fluxcd.io/) is one such GitOps operator.

11.4 Secrets

A git repo is a great place to store your Kubernetes configuration, but there is
some data that probably shouldn’t be stored there: secret values like database
passwords and API Keys. If such secrets are embedded in the code itself, or
in environment variables, it means that anyone with access to your source
code will have the secret. An improvement would be that only those who can
access your production system would have access to this data. You can go
further of course, but in the context of this chapter on GitOps, I’ll focus on
how to separate your secrets from your code and config repositories.

Kubernetes actually has an object for storing secrets, aptly named “Secrets”.
These objects are a way to provide information such as credentials and keys
to workloads, in a way that separates them from the configuration of the
workload itself.

11.4.1 String-based (Password) Secrets

If you’ve been embedding secrets like passwords in plain environment
variables in the deployment configuration, now would be a good time to
migrate them to Secrets. Let’s say we have a secret with a value of
secret_value (in reality, this might be a key obtained from your cloud
provider).

We can encapsulate our secret_value into a Kubernetes Secret object like
so:

Listing 11.4 StringSecrets/secret.yaml



apiVersion: v1

kind: Secret

metadata:

  name: secrets-production

type: Opaque

stringData:

  SECRET_KEY: secret_value

  ANOTHER_KEY: another_secret_value

Secrets can be provided to Pods in two ways: as a file, and as an environment
variable. You would use the file method for secret data that your application
will access as a file (such as a private SSL key), and the environment variable
for items like database passwords. Since our secret above is a simple string,
we’ll use the environment variable method here:

Listing 11.5 StringSecrets/deploy.yaml

apiVersion: apps/v1

kind: Deployment

metadata:

  name: timeserver

spec:

  replicas: 1

  selector:

    matchLabels:

      pod: timeserver-pod

  template:

    metadata:

      labels:

        pod: timeserver-pod

    spec:

      containers:

      - name: timeserver-container

        image: docker.io/wdenniss/timeserver:4

        env:

        - name: AVATAR_ENDPOINT #A

          value: http://robohash-internal #A

        - name: SECRET_KEY #B

          valueFrom: #B

            secretKeyRef: #B

              name: secrets-production #B

              key: SECRET_KEY #B

To verify that everything worked correctly, create the deployment and secret.
Run kubectl get pods, grab one of the pod names, and run:



$ kubectl exec POD_NAME exec -- env

SECRET_KEY=secret_value

You should see the secret in the list. Our application now has access to our
SECRET_KEY environment variable.

11.4.2 Base64 Encoded Secrets

At the time of writing, the Kubernetes docs and many other materials
demonstrate secrets where the value is base64 encoded (using the data key,
rather than stringData). This isn’t done for security (base64 is an encoding,
not encryption), but rather so that you can represent data that wouldn’t be
compatible YAML.

I find that this mostly serves to obfuscate the data without adding much
value. However, if you have a string that you can’t represent in YAML, or
are storing a file, then you would want to base64 encode the data. Here’s an
equivalent representation of the secret shown earlier:

Listing 11.6 Base64Secrets/secret-base64.yaml

apiVersion: v1

kind: Secret

metadata:

  name: secrets-production

type: Opaque

data:

  SECRET_KEY: c2VjcmV0X3ZhbHVlCg==

To do the encoding, on any *nix system you can do the following:

$ echo "secret_value" | base64

c2VjcmV0X3ZhbHVlCg==

 

$ echo "c2VjcmV0X3ZhbHVlCg==" | base64 -D

secret_value

You can include both data and stringData in the same configuration file, if
you have some values that need base64 encoding, and others that don’t. You
can also store multiple secrets in each Kubernetes Secret object (one per
line). Here’s an example that defines 3 secrets, 2 using plain text, and a third



using base64.

Listing 11.7 Base64Secrets/secrets-multiple.yaml

apiVersion: v1

kind: Secret

metadata:

  name: secrets-production

type: Opaque

stringData:

  SECRET_KEY: secret_value

  ANOTHER_KEY: another_value

data:

  ENCODED_KEY: VGhpcyBzdHJpbmcKbWlnaHQgYmUgaGFyZCB0byByZXByZXNlbnQgaW4gWUFNTCDwn5iFCg==

If you are retrieving secrets from the server, those are stored in base64, so
you will need to decode to get the plain-text values.

I personally have one secret object for each of my namespaces, e.g. myapp-
secrets-production, myapp-secrets-staging, each with multiple secrets,
but I store them in a separate repo to the rest of my config (in Section 10.4.4
below, I’ll discuss some options for how to store secrets apart from your
main configuration repository, while still using a Gitops approach).

11.4.3 File-based Secrets

Sometimes you’ll be dealing with secrets that you want to access from your
application as files, rather than strings from environment variables.

Kubernetes has you covered here as well. Creating the secret is actually the
same, but I’ll provide a fresh example of a multi-line text file, since how such
data is represented in YAML has some nuance.

Say we have a private key to store. Here’s one I generated using openssl
genrsa -out example.key 256 (normally you’d use a 2048 bit key or
higher, but for brevity, I’ll use 256).

-----BEGIN RSA PRIVATE KEY-----

MIGsAgEAAiEA4TneQFg/UMsVGrAvsm1wkonC/5jX+ykJAMeNffnlPQkCAwEAAQIh

ANgcs+MgClkXFQAP0SSvmJRmnRze3+zgUbN+u+rrYNRlAhEA+K0ghKRgKlzVnOxw

qltgTwIRAOfb8LCVNf6FAdD+bJGwHycCED6YzfO1sONZBQiAWAf6Am8CEQDIEXI8



fVSNHmp108UNZcNLAhEA3hHFV5jZppEHHHLy4F9Dnw==

-----END RSA PRIVATE KEY-----

This can be represented in YAML, the following way. Note the all-important
pipe character which will preserve the line endings in the data value.

Listing 11.8 FileSecrets/secret_file.yaml

apiVersion: v1

kind: Secret

metadata:

  name: secret-files

type: Opaque

stringData:

  example.key: |

    -----BEGIN RSA PRIVATE KEY-----

    MIGsAgEAAiEA4TneQFg/UMsVGrAvsm1wkonC/5jX+ykJAMeNffnlPQkCAwEAAQIh

    ANgcs+MgClkXFQAP0SSvmJRmnRze3+zgUbN+u+rrYNRlAhEA+K0ghKRgKlzVnOxw

    qltgTwIRAOfb8LCVNf6FAdD+bJGwHycCED6YzfO1sONZBQiAWAf6Am8CEQDIEXI8

    fVSNHmp108UNZcNLAhEA3hHFV5jZppEHHHLy4F9Dnw==

    -----END RSA PRIVATE KEY-----

If you’re tired of wrestling with YAML syntax by now, you can base64
encode the file data instead using cat example.key | base64, and represent
it like so (with the data truncated for readability). Note that the entire base64
string is placed on one line (no line breaks!).

Listing 11.9 FileSecrets/secret_file_base64.yaml

apiVersion: v1

kind: Secret

metadata:

  name: secret-files

type: Opaque

data:

  example.key: LS0tLS1CRUdJTiBSU0EgU...SBLRVktLS0tLQo=

It’s a bit tedious creating these configuration files for secrets by hand. A
more automated approach is to use to use kubectl to create the files for you.
The following command will create the same functional output (note that the
base64 string is truncated for readability).

$ kubectl create secret generic secret-files --from-file=example.key=./example.key --dry-run=client -o yaml



 

apiVersion: v1

data:

  example.key: LS0tLS1CRUdJTiBSU0EgU...SBLRVktLS0tLQo=

kind: Secret

metadata:

  creationTimestamp: null

  name: secret-files

The --dry-run=client -o yaml part means that you won’t actually create
the secret on the server, and instead will output it as YAML (for you to place
in a configuration file, to be later applied to the server with kubectl apply -
f filename.yaml). Omitting the --dry-run, would create the secret directly
on the cluster (the imperative style of creating Kubernetes objects). In fact,
every example given in this section could have been written as an imperative
kubectl command, but as I hopefully convinced you in section 11.2, there
are durable benefits to a declarative, configuration-driven approach to
operating your cluster.

Once created, you can mount all the secrets in the Secret into a folder of your
choice. The below example mounts our secret-files secret into the folder
/etc/config. Each of the data keys is mounted as its own file. In our case,
there was only one: example.key.

Listing 11.10 FileSecrets/deploy.yaml

apiVersion: apps/v1

kind: Deployment

metadata:

  name: timeserver

spec:

  replicas: 1

  selector:

    matchLabels:

      pod: timeserver-pod

  template:

    metadata:

      labels:

        pod: timeserver-pod

    spec:

      containers:

      - name: timeserver-container

        image: docker.io/wdenniss/timeserver:4



        volumeMounts:

        - name: secret-volume

          mountPath: "/etc/config"

          readOnly: true

      volumes:

      - name: secret-volume

        secret:

          secretName: secret-files

To verify that everything worked correctly, create the deployment and secret.
Run kubectl get pods, grab one of the pod names, and use exec to list the
directory. You should see our file “example.key”:

$ kubectl exec POD_NAME -- ls /etc/config

example.key

Now you can point your code to this file, just like any other file on the
system.

11.4.4 Secrets and GitOps

Using Secrets is only one part of the equation. Now you’ll need to figure out
how to store them. If you place them in the same configuration repository,
you may as well have just used plain environment variables and skipped the
step in the previous section.

There’s no silver bullet to this problem, but here are a few ideas, presented in
increasing order of complexity.

Separate Repository

A simple option is to have a separate configuration repository for your secrets
with fewer users granted access than your regular repos. You still have all the
benefits of configuration as code (code reviews, rollback, etc), but can limit
the audience. If you operate a repository with granular access control, you
could place the secrets in an access-controlled folder of that repo.

One logical place for this repository to be located would be together with
your production resources at your cloud provider, with the same access



control as your production environment. Since anyone with access to your
production environment has the secrets anyway, this model doesn’t provide
any additional access if someone compromises the account.

Sealed Secrets

The Sealed Secrets (https://github.com/bitnami-labs/sealed-secrets) project
has an interesting approach: it encodes all of your secrets with a master
secret. While you still end up with the same problem of where to store the
master secret, it means that the encoded secrets can be included in the main
configuration repository with all the benefits that this entails, like rollback.

Secrets Service

Another option is to run a separate service that can inject secrets into your
cluster. Vault by HashiCorp (https://www.vaultproject.io/) is a very popular
implementation of this concept and is available as open source if you wish to
run it yourself.

11.5 Summary

Use Namespaces to separate different environments like production and
staging, and different applications
Follow the configuration as code methodology by updating the
configuration and applying it to the cluster, rather than operating on the
cluster directly
By following configuration as code, you an easily utilize namespaces to
create multiple environments
Store this configuration in a code repository, and treat it like code (with
peer reviews if you do them, etc)
Optionally, configure a continuous deployment pipeline driven by git
pushes of the config repo (so-called “GitOps”).
Get secrets out of your application config, and into Kubernetes Secret
objects. Store them in a way that limits access.



12 Securing Kubernetes
This chapter covers

Keeping your cluster up to date and patched against vulnerabilities
Managing update-related disruptions with a PodDisruptionBudget
Using DaemonSets to deploy an agent to every node
The security configuration of Pods
Building and running containers as the non-root user
Using Admission controllers to modify and/or validate Kubernetes
objects
Using the built-in Pod Security Admission to enforce security standards
in namespaces
Controlling user access to namespaces with RBAC

So far, the book has focused on deploying various different types of software
into Kubernetes clusters. In this last chapter, I’ll cover some key topics when
it comes to keeping everything secure. Security is a huge area in general, and
Kubernetes is no exception. If you deploy code to a Kubernetes cluster
managed by another team, then lucky you, you may not need to worry about
some of these topics. For developers who are also responsible for operations,
or for cluster operators themselves, securing and updating the cluster is a key
responsibility.

In addition to keeping your cluster up to date, handling disruption, deploying
node agents and building non-root containers, this chapter walks you through
the process of creating a dedicated namespace for a team of developers, and
how access can be granted specifically to that namespace. This is a pretty
common pattern I’ve observed in companies where several teams share
clusters.

12.1 Staying up to date

Kubernetes has a large surface area. There’s the Linux kernel, the Kubernetes



software running on the control plane and user nodes, then there’s your own
containers and all their dependencies including the base image. All this
means there’s a lot to keep up to date and protected against vulnerabilities.

12.1.1 Cluster and Node Updates

One critical task for a Kubernetes operator is to ensure that your cluster and
nodes are up to date. This helps mitigate against known vulnerabilities in
Kubernetes, and the operating system of your nodes.

Unlike most of the topics discussed in this book so far, the updating of
clusters and nodes is actually not part of the Kubernetes API. It sits at the
platform level, so you’ll need to consult the docs for your Kubernetes
platform. Fortunately, if you’re using a managed platform this should be
straight forward. If you’re running Kubernetes the hard way via a manual
installation on VMs (which I don’t recommend), these updates will be a
significant burden, as you are now the one offering the Kubernetes platform.

Updating GKE

In the case of GKE, staying up to date is easy. Simply enroll in one of the
three release channels: Stable, Regular or Rapid. Security patches are rolled
out to all channels quickly, what differs is how soon you get other new
features of both Kubernetes and the GKE platform.

When enrolled in a release channel, both the cluster version and nodes are
automatically kept up to date. The older “static version” option (available
only for the Standard mode of operation) is not recommended, as you need to
keep on top of the updates manually.

12.1.2 Updating Containers

Keeping the Kubernetes cluster up to date isn’t the only updating you’ll need
to do. Security vulnerabilities are often found in components of base images
like ubuntu. As your containerized application is built on these base images,
it can inherit vulnerabilities that exist in them.



The solution is to rebuild and update your containers regularly (and
especially, if any vulnerabilities are found in the base images you use). Many
developers and enterprises employ vulnerability scanners (often known as
“CVE scanners” after the Common Vulnerabilities and Exposures system
where known vulnerabilities are documented) to look through built containers
to see if any reported vulnerabilities exist in them, in order to prioritize
rebuilds and rollouts.

When updating your containers, be sure to specify the base image which
contains the latest fixes. Typically, this can be achieved by only specifying
the minor version of the base image you’re using, rather than the specific
patch version. You can use the “latest” tag to achieve this, but then you might
get some unwanted feature changes.

For example, take the python base image (https://hub.docker.com/_/python).
For any given version of python (say 3.10.2), you have a bunch of different
options: 3.10.2-bullseye, 3.10-bullseye, 3-bullseye, bullseye (bullseye
refers to the version of Debian it uses). You can also use latest. For projects
that follow semantic versioning (semver) principles, I would typically
recommend going with the major.minor version, in this example 3.10-
bullseye. This allows you to get patches to the 3.10 version automatically,
while avoiding breaking changes. The downside is that you need to pay
attention to when the support drops for 3.10, and migrate. Going with the
major version instead, i.e. 3-bullseye in this example, would give you
longer support but with slightly more risk of breakages (in theory with
semver you should be safe to use the major version as changes should be
backwards compatible, but in practice I find it safer to go with the minor
version). Using latest while great from a security perspective, is typically
not recommended due to the extremely high risk of breakage from backwards
incompatible changes.

However you configure your docker file, the key principle is to rebuild often,
reference base images that are up to date and patched, rollout updates to your
workloads frequently, and employ CVE scanning to look for containers that
are out of date.

Reducing Container Updates



A further mitigation to reduce potential vulnerabilities in application
containers is to build extremely lightweight containers that contain only the
absolute minimum needed to run your application, being your application and
its dependencies. Using a typical base image like ubuntu includes a package
manager, and various software packages which make life easy, but also
increases the vulnerability surface area. The less code there is in your
container from other sources, the less you’ll need to update it due to
vulnerabilities found in that code, and the less bugs you can potentially be
exposed to.

The code sample in section 2.1.8 earlier in the book employed this principle
by using one container to build your code, and another to run the code. To
reduce the potential attack surface, the key is to pick the slimmest possible
runtime base image for the second stage of the container build. Google has an
open source project distroless
(https://github.com/GoogleContainerTools/distroless) to assist with providing
super-lightweight runtime containers.

Here is the distroless project’s example of a building Java container,
referencing the Google-provided distroless image in the second step:

Listing 12.1
https://github.com/GoogleContainerTools/distroless/tree/main/examples/java/Dockerfile

FROM openjdk:11-jdk-slim-bullseye AS build-env

COPY . /app/examples

WORKDIR /app

RUN javac examples/*.java

RUN jar cfe main.jar examples.HelloJava examples/*.class 

 

FROM gcr.io/distroless/java11-debian11

COPY --from=build-env /app /app

WORKDIR /app

CMD ["main.jar"]

12.1.3 Handling Disruptions

With all this updating, you might be wondering: what happens to my running
workloads!? It’s inevitable that as you update, Pods will be deleted and
recreated. This can obviously be very disruptive to the workloads running in



those Pods, but fortunately Kubernetes has a number of ways to reduce this
disruption and potentially eliminate any ill-effects.

Readiness Checks

Firstly, if you’ve not setup Readiness checks, now is the time to go back and
do that as it’s absolutely critical. Kubernetes relies on your container
reporting when it’s ready, and if you don’t do that it will assume it’s ready
the moment the process starts running which is likely before your application
has finished initializing and is actually ready to serve production traffic.
Chapter 4 covers this topic. The more your Pods are moved around such as
during updates, the more requests will error out hitting Pods that are not
ready, unless you implement proper readiness checks.

Signal Handling and Graceful Termination

Just as Readiness checks are used to determine when your application is
ready to start, graceful termination is used by Kubernetes to know when your
application is ready to stop. In the case of a Job which may have a process
that takes a while to complete, you may not want to simply terminate that
process if it can be avoided. Even web applications with short-lived requests
can suffer from abrupt termination that causes requests to fail.

To prevent these issues, it’s important to handle SIGTERM events in your
application code to start the shutdown process, and set a graceful termination
window (configured with terminationGracePeriodSeconds) long enough to
complete the termination. Web applications should handle SIGTERM to
shutdown the server once all current requests are completed, and batch jobs
would ideally wrap up any work they are doing, and not start any new tasks.

In some cases, you may have a Job performing a long running task that if
interrupted would lose its progress. In these cases, you may set a very long
graceful termination window, accept the SIGTERM but simply continue to
attempt to finish the current task. Managed platforms may have a limit on
how long the graceful termination window can be for system-originated
disruption.



Section 10.1.2 has examples of SIGTERM handling and
terminationGracePeriodSeconds configuration in the context of Jobs. The
same principles apply to other workload types.

Rolling Updates

When you update the containers in a Deployment or a StatefulSet (for
example to update the base image), the rollout is governed by your rollout
strategy. Rolling update, covered in Chapter 4, is a recommended strategy
here to minimize disruption when updating workloads by updating Pods in
batches, while keeping the application available. For Deployments, be sure to
configure your maxSurge parameters of the Deployment which will do a
rollout by temporarily increasing the Pod replica count (which is safer for
availability than reducing it).

Pod Disruption Budgets

When nodes are updated, this process does not go through the same
Deployment rollout process. Here’s how it works: firstly, the node is
cordoned to prevent new Pods being deployed on it. Then the node is drained,
whereby Pods are deleted from this node, and recreated on another node. By
default, Kubernetes will delete all Pods at once from the node and schedule
them to be created elsewhere. Note that it does not first schedule them to be
created elsewhere, then delete them. If multiple replicas of a single
Deployment are running on the same node, this can cause unavailability.

Figure 12.1 node deletion without pod disruption budgets. All the Pods on the node will become
unavailable at once.



To solve the problem where draining a Node that contains multiple Pods
from the same Deployment may reduce the availability of your Deployments
(meaning too few running replicas), Kubernetes has a feature called Pod
Disruption Budgets (PDBs). PDBs allow you to inform Kubernetes how
many Pods, or what percentage of your Pods you are willing to have
unavailable for your workload to still function as you designed it.

Listing 12.2 PDB/pdb.yaml

apiVersion: policy/v1

kind: PodDisruptionBudget

metadata:

  name: timeserver-pdb



spec:

  maxUnavailable: 1

  selector:

    matchLabels:

      pod: timeserver-pod

Deploying the above PDB into your cluster will ensure that at no time during
disruptions will more than 1 of your Pods be unavailable. An alternative
configuration uses minAvailable to set how many replicas you need. I prefer
maxUnavailable, as it works better with scaling (if you use minAvailable,
you may need to scale that value along with your replica count to retain the
desired minimum availability, which is just extra work).

Figure 12.2 with a PDB, Kubernetes will wait for the required number of pods in a Deployment
to be available before deleting others, reducing the disruption





The process of handling disruptions with a PDB is somewhat similar to how a
rolling update avoids taking out too many Pods at the same time. To ensure
your application stays available during deployment updates that you initiate,
and disruptions initiated by cluster updates, you’ll need to have both the
rolling update, and the PDB configured.

12.2 Deploying Node Agents with DaemonSet

This book has covered a bunch of high-order workload constructs that
encapsulate Pods with particular objectives, like Deployment for application
deployments, StatefulSet for database deployments, and CronJob for period
tasks. DaemonSet is another workload type that allows you to run a Pod on
every node.

When would you need that? It’s almost entirely for cluster operational
reasons, like logging, monitoring, and security. As an application developer,
DaemonSet is generally not your go-to deployment construct. Due to the
ability to expose services internally on a cluster IP, any Pod in your cluster
can talk to any service you create, so you don’t need to run services on every
node to make them available within the cluster. And if you need to be able to
connect to a service on localhost, you can do that virtually with NodePort.
DaemonSets are generally for when you need to perform operations at a node
level, like reading load logs, or observing performance, putting them squarely
in the system administration domain.

DaemonSets are typically how logging, monitoring and security vendors
deploy their software. This software performs actions like reading logs off
the node and uploading it to a central logging solution, querying the kubelet
API for performance metrics (like how many Pods are running, their boot
times, etc.), and for security, such as monitoring container and host
behaviors. These are all examples of Pods that need to be on every node to
gather the data they need for the product to function.

The typical cluster will have a few DaemonSets running in kube-system,
such as the following abridged list from a GKE Autopilot cluster, that
provides functionality like logging, monitoring and cluster DNS.



$ kubectl get daemonset -n kube-system

NAMESPACE     NAME                         

kube-system   filestore-node               

kube-system   fluentbit-gke                

kube-system   gke-metadata-server          

kube-system   gke-metrics-agent            

kube-system   kube-proxy                   

kube-system   metadata-proxy-v0.1          

kube-system   netd                         

kube-system   node-local-dns               

kube-system   pdcsi-node

Typically, application developers will not be creating DaemonSets directly,
but rather be using off the shelf ones from vendors. By way of example
though, here is a simple DaemonSet that reads logs from the node into
standard output (stdout).

Listing 12.3 DaemonSet/logreaderds.yaml

apiVersion: apps/v1

kind: DaemonSet

metadata:

  name: logreader

spec:

  selector:

    matchLabels:

      ds: logreaderpod

  template:

    metadata:

      labels:

        ds: logreaderpod

    spec:

      containers:

      - image: ubuntu

        command: ["tail", "-f", "/var/log/kube-proxy.log"]

        name: logreadercontainer

        resources:

          requests:

            cpu: 50m

            memory: 100Mi

            ephemeral-storage: 100Mi

        volumeMounts:

        - name: logpath

          mountPath: /var/log

          readOnly: true

      volumes:



      - hostPath:

          path: /var/log

        name: logpath

To create the DaemonSet:

$ kubectl create -f 12.2_DaemonSet/logreader.yaml

daemonset.apps/logreader created

Once the Pods are ready, we can stream the output and we’ll see the output
from the node’s kube-proxy.log file

$ kubectl get pods

NAME              READY   STATUS    RESTARTS   AGE

logreader-2nbt4   1/1     Running   0          4m14s

$ kubectl logs -f logreader-2nbt4 

I0125 01:39:28.576504       1 proxier.go:845] "Syncing iptables rules"

I0125 01:39:28.615108       1 proxier.go:812] "SyncProxyRules complete" elapsed="38.697941ms"

In practice, you will likely encounter DaemonSets when deploying logging,
monitoring, and security solutions.

12.3 Pod Security Context

The PodSpec has a securityContext property where the security attributes
of the Pod, and its containers are defined. If your Pod needs to perform some
kind of administrative function (for example, perhaps it’s part of a
DaemonSet which is doing a Node-level operation), it’s here where you
would define the various privileges it needs. For example, here is a Pod in a
DaemonSet that requests privilege (root access) on the node:

apiVersion: apps/v1

kind: DaemonSet

metadata:

  name: admin-workload

spec:

  selector:

    matchLabels:

      name: admin-app

  template:

    metadata:

      labels:



        name: admin-app

    spec:

      containers:

      - name: admin-container

        image: ubuntu

        securityContext:

          privileged: true

As a developer of a regular application that run on Kubernetes, you will more
likely be using these properties to limit what functions your Pod can use in
order to reduce risk. Contrasting the above example, here is the PodSpec for a
Pod with locked-down privileges that runs as the non-root user and cannot
elevate privileges.

apiVersion: v1

kind: Pod

metadata:

  name: timeserver-demo

  labels:

    app: timeserver

spec:

  containers:

  - name: timeserver-container

    image: wdenniss/timeserver2:latest

    securityContext:

      runAsNonRoot: true

      runAsUser: 1001

      allowPrivilegeEscalation: false

      capabilities:

        drop:

          - ALL

By default, any Pod is free to request whatever capabilities it wants, even root
access (unless your Kubernetes platform restricts this, as some nodeless
platforms do). As the cluster operator, this may be something you want to
restrict as it basically means that anyone with kubectl access to the cluster has
root privileges. Furthermore, there are some other recommended principles
for hardening clusters, like not running containers as the root user (which is
distinct from having root on the node), something that is enforced by the
runAsNonRoot: true configuration in the prior example.

The following sections cover these topics, starting with how to build
containers so they don’t need to run as the root user, and how as a cluster



administrator you can force users of the cluster to adopt this and other desired
security settings.

12.4 Non-Root Containers

One common security recommendation when deploying containers is to not
run them as the root user. The reason for this is that despite all the fancy
packaging, Linux containers are basically just processes that run on the host
with sandboxing technology applied (like Linux cgroups and namespaces). If
your container is built to run using the root user (which is the default), then it
actually runs as root on the node, just sandboxed. The container sandboxing
means that the process doesn’t have the power of root, but it’s still running
under the root user. The issue with this configuration is that while the
sandboxing prevents the process from having root access, if there is ever a
“container escape” vulnerability due to bugs in the underlying Linux
containerization technology, the sandboxed container process can gain the
same privileges as the user it’s running, meaning if the container is running
as root, a container escape would give full root access on the Node—not so
good.

Since Docker runs all processes as root by default, this means that any
container escape vulnerabilities can present an issue. While such
vulnerabilities are fairly rare, they do occur, and for the security principle
known as “defense in depth”, it’s best to protect against it. Defense in depth
means that even though container isolation offers protection of the host in the
event your application is breached, ideally you would have further layers of
defense in case that protection is breached. In this case, defense in depth
means running your containers as the non-root user, so in the event an
attacker can breach your container and take advantage of a container escape
vulnerability in Linux, they still wouldn’t end up with elevated privileges on
the Node, and would need to string together a yet another vulnerability to
elevate their privileges making for 3 layers of defense (your application,
Linux containerization, and Linux user privileges).

Why Docker defaults to the root user

You may be wondering, if it’s the best practice to not run container processes



as root, why then does Docker default to the root user when building
containers. The answer is developer convenience. It’s convenient to act as the
root user in a container, as you can use privileged ports (those with numbers
below 1024, like the default HTTP port 80), and don’t have to deal with any
folder permission issues. As you’ll see below, building and running
containers with the non-root user can introduce some errors that need to be
worked through. If you adopt this principle from the start however, you may
not find it so difficult to fix these issues as they arise, and the payoff is
adding one more layer of defense into your system.

Preventing containers from running as the root user is simple in Kubernetes,
although the problem (as we’ll see below) is that not all containers are
designed to run this way, and may fail.

You can annotate your Pods in Kubernetes to prevent them running as a root
user. So, to achieve the goal of “not running as root”, the first step is to
simply add this annotation! If you’re configuring a Kubernetes cluster for a
wider team (or if you’re a member of that team using such a configured
cluster), a Kubernetes admission controller can be used to automatically add
this annotation to every pod (see section 12.5.1). The end result is the same,
so for this demo we’ll just add it manually. The following deployment
enforces the best practice to prevent containers running as root.

Listing 12.4 NonRootContainers/1_permission_error/deploy.yaml

apiVersion: apps/v1

kind: Deployment

metadata:

  name: timeserver

spec:

  replicas: 1

  selector:

    matchLabels:

      pod: timeserver-pod

  template:

    metadata:

      labels:

        pod: timeserver-pod

    spec:

      containers:

      - name: timeserver-container



        image: docker.io/wdenniss/timeserver:6

        securityContext:

          runAsNonRoot: true

Unfortunately, we’re not done because the container itself doesn’t configure a
non-root user to run as. If you try and create this deployment, Kubernetes will
enforce the securityContext and won’t let the container run as root. Below
is the truncated output you’ll see if you try and run this deployment.

$ kubectl get pods         

NAME                              READY   STATUS                       RESTARTS   AGE

timeserver-pod-fd574695c-5t92p   0/1     CreateContainerConfigError   0          34s

$ kubectl describe pod timeserver-pod-fd574695c-5t92p

Name:         timeserver-pod-fd574695c-5t92p

Events:

  Type     Reason     Age                From                                   Message

  ----     ------     ----               ----                                   -------

  Warning  Failed     10s (x3 over 23s)  kubelet                                Error: container has runAsNonRoot and image will run as root (pod: "timeserver-pod-fd574695c-5t92p_default(8cfaf4a9-c2e6-4dde-b506-14ab04444f50)", container: timeserver-container)

To resolve, you need to configure the user that the Pod will be run under.
Root is always user 0, so we just need to set any other user number, I’m
going to pick user 1001. This can either be declared in the Dockerfile with
USER 1001, or in the Kubernetes configuration with runAsUser: 1001. When
both are present, the Kubernetes configuration takes priority, similar to how
the command parameter in a Kubernetes deployment overrides CMD if present
in the Dockerfile.

Here's the Dockerfile option:

FROM python:3

COPY . /app

WORKDIR /app

RUN mkdir logs

CMD python3 server.py

USER 1001

Or, in the Deployment:

Listing 12.5 NonRootContainers/2_fixed/deploy.yaml

apiVersion: apps/v1

kind: Deployment



metadata:

  name: timeserver

spec:

  replicas: 1

  selector:

    matchLabels:

      pod: timeserver-pod

  template:

    metadata:

      labels:

        pod: timeserver-pod

    spec:

      containers:

      - name: timeserver-container

        image: docker.io/wdenniss/timeserver:7

        securityContext:

          runAsNonRoot: true

          runAsUser: 1001

Both approaches work, but what I recommend is to configure it on the
Kubernetes side as this is better for keeping your development and
production environments separate. If you specify the run-as user in the
Dockerfile and want to run your container locally outside of Kubernetes and
try to mount a volume, you’ll hit a snag like Docker issue #2259
(https://github.com/moby/moby/issues/2259) which prevents you from
mounting a volume as a user other than root, a 7+ year old issue. Since the
original security concern to not run containers as root is only related to
production, why not relegate this whole “run as non-root” concern to
production as well! Fortunately, it’s easy to let your container run as root in
Docker locally for maximum convenience, and non-root in production in
Kubernetes for better defense in depth.

The above configuration is enough to run our container as non-root. Provided
that the container is capable of running as non-root then your job is done.
Most public, well-known containers should be designed to run as non-root,
but this likely isn’t the case for your own containers.

In the case of our example container, it wasn’t designed to run as non-root
and will need to be fixed. Two major differences when running the container
as non-root are that you can’t listen on privileged ports, those between 1 and
1023, and you don’t have write access by default to container writable layer



(meaning, by default you can’t write any files!). This would be a problem for
the book’s Timeserver sample app (first introduced in Chapter 2, section 2.2),
which listens on port 80, and writes a logfile to /app/logs.

Updating Containers To Run As Non-Root

If you were to create the deployment above (listing 12.5), you will see that
there is no config error when deployed, but the container itself is crashing.
When your container starts crashing after you change the user it runs as non-
root, it’s probably a permission error related to that change. Before you start
debugging the non-root user errors, be sure your container runs fine as root,
otherwise the issue could be something completely unrelated.

The steps to debug permission issues for containers running as non-root will
vary, but let’s walk through how to find and fix these two common errors
with our example app. The following is the output and truncated logs that I
see for this crashing container.

$ kubectl get pods

NAME                               READY   STATUS             RESTARTS      AGE

timeserver-demo-774c7f5ff9-fq94k   0/1     CrashLoopBackOff   5 (47s ago)   4m4s

$ kubectl logs timeserver-demo-76ddf6d5c-7s9zc

Traceback (most recent call last):

  File "/app/server.py", line 23, in <module>

    startServer()

  File "/app/server.py", line 17, in startServer

    server = ThreadingHTTPServer(('',80), RequestHandler)

  File "/usr/local/lib/python3.9/socketserver.py", line 452, in __init__

    self.server_bind()

  File "/usr/local/lib/python3.9/http/server.py", line 138, in server_bind

    socketserver.TCPServer.server_bind(self)

  File "/usr/local/lib/python3.9/socketserver.py", line 466, in server_bind

    self.socket.bind(self.server_address)

PermissionError: [Errno 13] Permission denied

Fortunately, the port issue in Kubernetes is an easy fix without any end-user
impact. We can change the port that the container uses, while keeping the
standard port 80 for the load balancer. First let’s update the port used by the
container:

Listing 12.6 /timeserver7/server.py



//...

 

def startServer():

    try:

        server = ThreadingHTTPServer(('',8080), RequestHandler)

        print("Listening on " + ":".join(map(str, server.server_address)))

        server.serve_forever()

    except KeyboardInterrupt:

        server.shutdown()

 

if __name__== "__main__":

    startServer()

If we’re changing ports in the application, then we’ll need to update our
Kubernetes service configuration to match the new port by updating the
targetPort. Fortunately we don’t need to change the port of the Service, as
the Service networking glue is provided by Kubernetes, and doesn’t run as a
particular user so it can use ports below 1024.

Listing 12.7 NonRootContainers/2_fixed/service.yaml

apiVersion: v1

kind: Service

metadata:

  name: timeserver

spec:

  selector:

    pod: timeserver-pod

  ports:

  - port: 80

    targetPort: 8080

    protocol: TCP

  type: LoadBalancer

Once the socket issue is fixed, and we re-run the application, another error
will be encountered when the app attempts to write to the log file on disk.
This error didn’t stop the app starting, but is encountered when a request is
made. Looking at those logs, we see:

$ kubectl logs timeserver-demo-5fd5f6c7f9-cxzrb

10.22.0.129 - - [24/Mar/2022 02:10:43] “GET / HTTP/1.1” 200 –

Exception occurred during processing of request from (‘10.22.0.129’, 41702)

Traceback (most recent call last):

  File “/usr/local/lib/python3.10/socketserver.py”, line 683, in process_request_thread



    self.finish_request(request, client_address)

  File “/usr/local/lib/python3.10/socketserver.py”, line 360, in finish_request

    self.RequestHandlerClass(request, client_address, self)

  File “/usr/local/lib/python3.10/socketserver.py”, line 747, in __init__

    self.handle()

  File “/usr/local/lib/python3.10/http/server.py”, line 425, in handle

    self.handle_one_request()

  File “/usr/local/lib/python3.10/http/server.py”, line 413, in handle_one_request

    method()

  File “/app/server.py”, line 11, in do_GET

    with open(“logs/log.txt”, “a”) as myfile:

PermissionError: [Errno 13] Permission denied: ‘logs/log.txt’

If you see a permission denied error when running as non-root when writing a
file, it’s a clear sign that your folder permissions have not been setup
correctly for non-root users.

The simplest way to solve this is to set the group permissions on the folder in
question. I like using the group permissions, as we can use the same group
(being group 0) for running locally using Docker, and deploying in
production to Kubernetes without environment-specific changes in the
Dockerfile. Let’s update the Dockerfile to give write access to group 0:

Listing 12.8 /timeserver7/Dockerfile

FROM python:3.10

ENV PYTHONUNBUFFERED 1

COPY . /app

WORKDIR /app

RUN mkdir logs

RUN chgrp -R 0 logs \

    && chmod -R g+rwX logs

CMD python3 server.py

If you want to run the container in Docker locally using a non-root user to
test it before deploying to Kubernetes, you can set the user at runtime, like
so: docker run --user 1001:0 $CONTAINER_NAME.

So there we have it, our container now runs happily as the non-root user. If
you want to see all the changes made to enable the container and
configuration to operate as non-root, diff the before & after like .



cd Chapter12

diff timeserver6/server.py timeserver7/server.py

diff 12.4_NonRootContainers/1_permission_error 12.4_NonRootContainers/2_fixed

12.5 Admission Controllers

In the previous section we added runAsNonRoot to our Pod to prevent it from
ever running as root, but we did it manually. If this is a setting we want for all
Pods, ideally we’d be able to configure the cluster to reject any Pod without
this configuration, or even just add it automatically.

This is where admission controllers come in. Admission controllers are bits
of code that are executed via webhooks when you create an object (like with
kubectl create). There are two types: validating, and mutating. Validating
admission webhooks can accept or reject the Kubernetes object, for example,
rejecting Pods without runAsNonRoot. Mutating admission webhooks can
change the object as it comes in, for example setting runAsNonRoot to true.

Figure 12.3 admission process of a pod that gets scheduled

You can write your own admission controllers to implement the behavior you
desire, but depending on what you’re hoping to achieve, you may not need to



as Kubernetes ships with an admission controller out of the box, and others
may be available as commercial or open-source deployments.

12.5.1 Pod Security Admission

Writing admission controllers is no walk in the park. You need to configure
certificates, build an application that can be setup as webhook which
conforms to the request/response API of Kubernetes, and have a development
process to keep it up to date as Kubernetes changes (which it does fairly
frequently). The good news is that the typical end-developer running on
Kubernetes would not need to write their own admission controllers. You’ll
typically use those from third party security vendors, and those included in
Kubernetes.

Kubernetes offers included admission controllers for enforcing security
policies like runAsNonRoot. Prior to Kubernetes 1.25, PodSecurityPolicy[1]

served this purpose but never left beta and was removed. Pod Security
Admission is the current recommended way to enforce security policies via
an admission controller. It will be enabled by default from Kubernetes 1.23
(starting as a beta feature) and is GA starting in 1.25. You can also deploy it
manually[2] into clusters running older version of Kubernetes, or where the
feature wasn’t enabled by the platform operator.

Installing Pod Security Admission

First, verify if the pod-security-webhook is installed on your cluster. If it
shows up in the list of ValidatingWebhookConfigurations, then you don’t
need to install it.

$ kubectl get ValidatingWebhookConfiguration | grep pod-security-webhook.kubernetes.io

pod-security-webhook.kubernetes.io                                2          26h

If you do need to install it, then you can in the following way:

$ git clone https://github.com/kubernetes/pod-security-admission.git

$ cd pod-security-admission/webhook

$ make certs

$ kubectl apply -k .



It will take a moment to install, and in that time you won’t be able to
schedule any Pods.

Pod Security policies

Pod Security defines[3] three security policy levels that apply at a namespace
level. These are:

Privileged – Pods have unrestricted administrative access, and can gain
root access to nodes.
Baseline – Pods cannot elevate privileges to gain administrative access,
while still retaining most functionality.
Restricted – Implements current best practices for hardening (i.e.
defense in depth), adding additional layers of protection over the
baseline profile, including restricting running as the root user.

Basically: privileged should be granted for system workloads. baseline
offers a good balance of security, and compatibility, while restricted offers
additional defense in depth at a cost of some compatibility (such as needing
to ensure all containers can run as non-root, per section 12.4 above).

Creating a Namespace with Pod Security

In keeping with the running example of this chapter, and to implement the
most secure profile, let’s create a namespace with the restricted policy.
This will require pods to run as a user other than root and will enforce several
other security best practices as well.

To start, create a new namespace with the restricted policy. We’ll call this
namespace “team1”, as it can be the place for a theoretical “team1” to deploy
their code to.

Listing 12.9 PodSecurityAdmission/namespace.yaml

apiVersion: v1

kind: Namespace

metadata:

  name: team1



  labels:

    pod-security.kubernetes.io/enforce: restricted

    pod-security.kubernetes.io/enforce-version: v1.23

These two labels set the policy we want to enforce, and the version of the
policy that will be enforced. While you can skip the version label, there is a
good reason not to as the definition of what the policy actually enforces may
evolve as new security risks are uncovered. If we don’t reference the version,
then we’ll get whatever the current policy is, which could break existing
workloads as that policy is updated. Ideally you would test the newer policy
versions in a staging namespace or cluster to validate them first, before
updating the enforce-version in your production environment.

Let’s create this namespace:

kubectl create -f 12.3.1_PodSecurityAdmission/namespace.yaml

kubectl config set-context --current --namespace=team1

Now if we try to deploy a Pod from chapter 3 that doesn’t set runAsNonRoot
the pods will be rejected.

$ kubectl create -f Chapter03/3.2.4_ThePodspec/pod.yaml 

Error from server (Forbidden): error when creating "Chapter03/3.2.4_ThePodspec/pod.yaml": admission webhook "pod-security-webhook.kubernetes.io" denied the request: pods "timeserver" is forbidden: violates PodSecurity "restricted:v1.23": allowPrivilegeEscalation != false (container "timeserver-container" must set securityContext.allowPrivilegeEscalation=false), unrestricted capabilities (container "timeserver-container" must set securityContext.capabilities.drop=["ALL"]), runAsNonRoot != true (pod or container "timeserver-container" must set securityContext.runAsNonRoot=true)

If we add the appropriate securityContext to satisfy the Pod Security
admission policy, and use the updated container that is designed to run as
root from the previous section, then our pod will be admitted.

Listing 12.10 PodSecurityAdmission/nonroot_pod.yaml

apiVersion: v1

kind: Pod

metadata:

  name: timeserver-pod

spec:

  containers:

  - name: timeserver-container

    image: wdenniss/timeserver:7

    securityContext:

      runAsNonRoot: true

      allowPrivilegeEscalation: false

      runAsUser: 1001



      capabilities:

        drop:

          - ALL

Debugging Pod Admission Rejects for Deployments

The two examples in this section used Pods, rather than Deployments. The
reason I did that is it’s easier to debug when the Pod’s admission is rejected.
Once you confirm it’s working as expected as a standalone Pod, you can
always embed the PodSpec in the Deployment of your choice.

If you create a Deployment that violates the security constraints, you won’t
see an error printed on the console like for my example when I tried to create
the Pod directly. This is an unfortunate fact of Kubernetes’ implementation of
Deployment. Creating the Deployment object itself succeeds, so you don’t
see an error on the console. However, when the Deployment then goes to
create its Pods, they will fail. Also, since the Deployment actually creates an
object called a ReplicaSet under the hood to manage Pods of a particular
version of the deployment, you won’t even find this error if you describe the
Deployment object, but rather need to inspect its ReplicaSet.

I’ve not mentioned ReplicaSet yet in the book as it’s basically
implementation detail. Basically a ReplicaSet is a workload construct that
manages a set of Pods. Deployment uses them by creating a new ReplicaSet
for each version you deploy. So when you’re doing a rolling update, the
deployment will actually have 2 ReplicaSets, one for the old version, one for
the new, and these are scaled gradually to achieve the rolling update.
Normally this implementation detail doesn’t matter—which is why I didn’t
spend any time on it in the book—but here is one of the few times it does,
since the ReplicaSet is where this particular error is hidden.

It's not exactly simple, but here’s how to debug this type of issue. Normally
when you create a Deployment, it will create Pods. If you run kubectl get
pods, you should see a bunch of Pods. Now, those Pods may not always be
“Ready”—there are a bunch of reasons why they might be “Pending” (and in
some cases, may get stuck in the “Pending” state forever), but there would
still normally at least be the Pod objects there in some state. If when you call
kubectl get pods, you don’t see any Pod objects at all for your



Deployment, it could mean that those Pods were rejected during admission,
which is why there are no objects.

Since it’s the ReplicaSet owned by the Deployment that actually creates the
pods, you need to describe the ReplicaSet to see the error with kubectl
describe replicaset (or kubectl describe rs for short). Here’s an
example, with the output truncated to show the error message of interest:

$ kubectl create -f Chapter03/3.2_DeployingToKubernetes/deploy.yaml

$ kubectl get deploy

NAME         READY   UP-TO-DATE   AVAILABLE   AGE

timeserver   0/3     0            0           12s

$ kubectl get pods

No resources found in myapp namespace.

$ kubectl get rs

NAME                   DESIRED   CURRENT   READY   AGE

timeserver-5b4fc5bb4   3         0         0       31s

$ kubectl describe rs

Events:

  Type     Reason        Age                  From                   Message

  ----     ------        ----                 ----                   -------

  Warning  FailedCreate  36s                replicaset-controller  Error creating: admission webhook "pod-security-webhook.kubernetes.io" denied the request: pods "timeserver-5b4fc5bb4-hvqcm" is forbidden: violates PodSecurity "restricted:v1.23": allowPrivilegeEscalation != false (container "timeserver-container" must set securityContext.allowPrivilegeEscalation=false), unrestricted capabilities (container "timeserver-container" must set securityContext.capabilities.drop=["ALL"]), runAsNonRoot != true (pod or container "timeserver-container" must set securityContext.runAsNonRoot=true)

Balancing Security with Compatibility

In this section we used the example of the restricted pod security profile,
and configured our container to be able to run as the non-root user. Hopefully
this has given you the confidence to be able to run containers in a highly
secure manner. While this is the best practice, and may be required in
situations like regulated industries, there is a clear tradeoff with ease of
development and it may not always be practical. Ultimately, it’s up to you,
your security team (and maybe, your regulators) to determine what security
profile you’re happy with. I’m not necessarily recommending every single
Kubernetes deployment should be into a namespace with the restricted
profile. I would suggest that you should be using baseline for every non-
administrative workload you deploy in your cluster, as it helps protect your
cluster in the event that one of your containers is compromised, and shouldn’t
cause any incompatibility with the average app. Administrative workloads
that need the privileged profile should be run in their own namespaces,
separate to common workloads.



12.6 Role-based Access Control (RBAC)

Let’s say that you have a requirement for Pods to run as non-root (section
12.4), and setup an admission controller to force this using Pod Security
Admission (section 12.5). This sounds great, provided you trust all the users
of your cluster not to mess anything up and remove those restrictions whether
accidently or on purpose. To actually enforce the requirements of your
admission controller, and create a tiered user permission setup with roles like
“platform operator” (who can configure namespaces and controller), and
“developer” (who can deploy to namespaces, but not remove admission
controllers), you use role-based access control (RBAC).

RBAC is a way to control what access users of the cluster have. One common
setup is to give developers in a team access to a particular namespace in the
cluster, with all the desired Pod Security policy configured. This gives them
the freedom to deploy whatever they like within the namespace, provided it
conforms to the security requirements that’s been set. This way it’s still
DevOps, as developers are the ones doing the deployments, just with some
guardrails in place.

RBAC is configured through two Kubernetes object types at a namespace
level: Role, and RoleBinding. Role is where you define a particular role for a
namespace, like the “developer” role. RoleBinding is where you assign this
role to subjects in your cluster, i.e. your developer identities. There are also
cluster-level versions of these being ClusterRole and ClusterRoleBinding
which behave identically to their namespace level counterparts, except that
they grant access at a cluster level.

Namespace Role

In the Role, you specify the API group(s), the resource(s) within that group,
and the verb(s) which you are granting access to. Access is additive, there is
no subtractive option, so everything you define grants access. Since our goal
is to create a Role which gives the developer access to do pretty much
everything within their namespace, except to modify the namespace itself and
remove the Pod Security annotation, the following is a Role that can achieve
that:



Listing 12.11 RBAC/role.yaml

apiVersion: rbac.authorization.k8s.io/v1

kind: Role

metadata:

  name: developer-access

  namespace: team1

rules:

  - apiGroups:

    - "" #A

    resources:

    - namespaces #B

    verbs: ["get"] #B

  - apiGroups: #C

    - ""  #C

    resources: #C

    - events #C

    - pods #C

    - pods/log #C

    - services #C

    - secrets #C

    - configmaps #C

    - persistentvolumeclaims #C

    verbs: ["*"] #C

  - apiGroups:

    - apps #D

    - autoscaling #E

    - batch #F

    - networking.k8s.io #G

    - policy #H

    resources: ["*"]

    verbs: ["*"]

This Role grants access to the “team1” namespace, and allows the user to
modify Pods, Services, Secrets and ConfigMaps within the core API
grouping, and all resources in the apps, autoscaling, batch, networking.k8s.io
and policy groupings. This particular set of permissions will let the developer
deploy nearly every YAML file in this book, including Deployments,
StatefulSets Services, Ingress, HPA Autoscaling, Jobs and more. Importantly,
the “namespaces” resource is not listed in the core API group (which is the
group listed with the empty string ""), so the user won’t be able to modify the
namespace.

Once the Role exists, to grant this Role to our developer, we can use a



RoleBinding where the subject is our user.

Listing 12.12 RBAC/rolebinding.yaml

kind: RoleBinding

apiVersion: rbac.authorization.k8s.io/v1

metadata:

  name: developerA

  namespace: team1

roleRef:

  kind: Role

  name: developer-access

  apiGroup: rbac.authorization.k8s.io

subjects:

# Google Cloud user account

- kind: User

  name: developerA@gmail.com #A

Note that the acceptable values within the User subject are governed by your
Kubernetes platform, and any identity systems you have configured. With
Google Cloud, the name here can be any Google user. RBAC authorizes the
user to the actions specified in the Role, however in order to authenticate the
user, they need the Google Cloud clusters.get IAM permission which is
configured outside of Kubernetes (the “Kubernetes Engine Cluster Viewer”
role allows users to authenticate to the cluster, without granting any further
permission, after which RBAC can be used). The exact steps here will vary
depending on your platform provider.

Authentication vs Authorization

Authentication (AuthN) is the means with which the user presents their
identity credentials to the system. In this case, being able to authenticate to
the cluster means that the user can retrieve credentials to access the cluster
via kubectl. Authorization (AuthZ) is the process to grant users access within
the cluster. Depending on your platform’s IAM system, it should be possible
to allow users to authenticate to the cluster (e.g. get credentials in order to use
kubectl) but then not actually be able to perform any action (no
authorization). You can then use RBAC to grant the precise authorization you
want. In the case of GKE, granting users the “Kubernetes Engine Cluster
Viewer” role in the IAM permissions (outside of Kubernetes) will allow them



to authenticate, after which you can authorize them to access specific
resources using RBAC, and the examples shown here. Again, depending on
your particular Kubernetes platform, it's possible (as is the case with GKE)
that some IAM roles will also grant the user authorization to some resources
in addition to whatever RBAC rules you have here (the project-wide
“Viewer” role is one such example in GKE, that will allow users to view
most of the resources in the cluster without needing specific RBAC rules to
do so).

As the cluster administrator, create the namespace, and these two objects:

$ kubectl create ns team1

namespace/team1 created

$ kubectl create -f role3.yaml 

krole.rbac.authorization.k8s.io/developer-access created

$ kubectl create -f binding.yaml 

rolebinding.rbac.authorization.k8s.io/developerA created

With this role and binding deployed in the cluster, our developer user should
be able to deploy most of the code in this book in the “team1” namespace,
but specifically not be able to change any other namespaces, nor edit the
“team1” namespace itself. For a meaningful experiment, you’ll need to set as
the User subject in the RoleBinding an actual user, for example a test
developer account.

To verify the RBAC is configured correctly, switch to the test developer
account, by authenticating to the cluster as the user specified in the Subject.
Once authenticated as our developer user, try to deploy something into the
default namespace, and it should fail:

$ kubectl config set-context --current --namespace=default

$ kubectl create -f Chapter03/3.2.3_DeployingToKubernetes/deploy.yaml

Error from server (Forbidden): error when creating "Chapter03/3.2.3_DeployingToKubernetes/deploy.yaml": deployments.apps is forbidden: User "example@gmail.com" cannot create resource "deployments" in API group "apps" in the namespace "default": requires one of ["container.deployments.create"] permission(s).

Switching the context to the team1 namespace, for which we configured this
test user with the Role above, we should now be able to create the
deployment.

$ kubectl config set-context --current --namespace=team1

Context "gke_project-name_us-west1_cluster-name" modified.

$ kubectl create -f Chapter03/3.2_DeployingToKubernetes/deploy.yaml



deployment.apps/timeserver created

While this developer can now deploy things in the namespace, if they try to
edit the namespace to gain the privileged Pod Security level, it will be
restricted to the lack of edit permission on the namespace resource

$ kubectl label --overwrite ns team1 pod-security.kubernetes.io/enforce=privileged

Error from server (Forbidden): namespaces "team1" is forbidden: User "example@gmail.com" cannot patch resource "namespaces" in API group "" in the namespace "team1": requires one of ["container.namespaces.update"] permission(s).

Cluster Role

So far, we’ve setup a Role and RoleBinding to give a developer access to a
particular namespace. With this Role, they can deploy most of the
configuration in this book. There are however a couple of things they won’t
be able to do, and that is create a PriorityClass (chapter 6), create a
StorageClass (chapter 9), or list the PersistentVolumes in the cluster (chapter
9). Those resources are considered cluster-wide objects, so we can’t amend
the namespace-specific Role we created earlier to grant that permission.
Instead, we’ll need a separate ClusterRole and ClusterRole binding to grant
this additional access.

Figuring out what permissions to grant

I’ve done the work here to provide a Role definition that covers all the
needed permissions to deploy the code in the book, but this may be other
missing permissions that you need to grant developers in the context of your
own deployments. To figure out which groups, resources and verbs you need
to grant you can consult the API docs. When debugging permission errors,
say a developer is complaining that they don’t’ have access they need, you
can simply inspect the error message, for example the following:

$ kubectl create -f balloon-priority.yaml 

Error from server (Forbidden): error when creating "balloon-priority.yaml": priorityclasses.scheduling.k8s.io is forbidden: User "example@gmail.com" cannot create resource "priorityclasses" in API group "scheduling.k8s.io" at the cluster scope: RBAC: clusterrole.rbac.authorization.k8s.io "developer-cluster-access" not found

requires one of ["container.priorityClasses.create"] permission(s).

To add this permission to the Role, we can see that the group is
“scheduling.k8s.io”, the resource is “priorityClasses”, and the verb is
“create”, and thus add this to our Role definition.



Here is a ClusterRole to provide the additional permissions needed to create
StorageClass and PriorityClass objects:

Listing 12.13 RBAC/clusterrole.yaml

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRole

metadata:

  name: developer-cluster-access

rules:

- apiGroups: #A

  - scheduling.k8s.io #A

  resources: #A

  - priorityclasses #A

  verbs: ["*"] #A

- apiGroups: #B

  - storage.k8s.io #B

  resources: #B

  - storageclasses #B

  verbs: ["*"] #B

- apiGroups: #C

  - "" #C

  resources: #C

  - persistentvolumes #C

  - namespaces #C

  verbs: ["get", "list"] #C

And the ClusterRoleBinding to bind this to our test user (which looks very
similar to the RoleBinding used earlier):

Listing 12.14 RBAC/clusterrolebinding.yaml

kind: ClusterRoleBinding

apiVersion: rbac.authorization.k8s.io/v1

metadata:

  name: developerA

  namespace: team1

roleRef:

  kind: Role

  name: developer-access

  apiGroup: rbac.authorization.k8s.io

subjects:

- kind: User

  name: example@gmail.com #A



With these additional cluster roles and bindings, our developer should be able
to perform every action in this book.

Identity Federation

For RBAC to be able to reference your developer identities as Users and
Groups, your cluster needs to understand how to authenticate your
developer’s identities. In the case of GKE, it natively understands Google
users in the User field, and also Google groups, when the Google Groups for
RBAC feature is enabled. Depending on your platform and your corporate
identity provider you may have similar access already, or you may need to set
it up. This setup is outside the scope of this book, but what you may consider
is to configure OpenID Connect (OIDC) integration so that RBAC can
reference identities provided by your identity system.

When using an identity system plugin that can offer Groups support, instead
of needing to list every “User” as a subject of our role bindings, you can
specify a single Group instead.

Applying the Pod Security Profile

Previously, we created the namespace without using Pod Security. If we go
back and configure the namespace with the Pod Security labels from the
previous section, it would have the effect of locking down this namespace to
the “restricted” profile, and thanks to RBAC, our developer would not be
able to modify that restriction. Mission accomplished.

RBAC for ServiceAccounts

In the examples in this section, we used RBAC with the “User” subject, that’s
because our developers are actual human users of our cluster. Another
common use-case for RBAC is to grant access to services, that is, the code
that runs in the cluster.

Let’s say you have a Pod that belongs to a Deployment in the cluster which
needs to access the Kubernetes API, like perhaps it’s monitoring the Pod
status of another Deployment. To give this machine user access, you can



create a Kubernetes “ServiceAccount”, and then reference that in the subject
of your RBAC binding instead of a user.

You may see some documentation that sets up “ServiceAccounts” for human
users, where the user then downloads the certs of the service account to
interact with Kubernetes. While this is one way to configure your developers
and bypasses the need to setup identity federation, it is not recommended as it
sits outside of your identity system. For example, if say the developer
resigned and their account was suspended in the identity system, the tokens
they downloaded for the ServiceAccount would continue to be valid. It’s
better to properly configure identity federation and only use “User” subjects
for human users, so that if the user is suspended from the identity system
their Kubernetes access will also be revoked. Once again, managed platforms
like Google Cloud make this integration easy, for other platforms you may
need to do a bit of setup to get it working.

Kubernetes ServiceAccounts are intended for when you have for example a
Pod inside the cluster that needs its own access to the Kubernetes API. Say
you want to create a Pod to monitor another Deployment, you can create a
ServiceAccount to use as the subject of the RoleBinding, and assign that
service account to the Pod. The Pod can then utilize that credential when
making API calls, including with kubectl.

12.7 Summary

It’s important to keep your cluster and its Nodes up to date to mitigate
against security vulnerabilities
Docker base images also introduce their own attack surface area,
requiring monitoring and updating of deployed containers, which a
CI/CD system can help with
Using the smallest possible base image can help to reduce this surface
area, decreasing the frequency of application updates to mitigate security
vulnerabilities
DaemonSets can be used to run a Pod on every Node and are commonly
used to configure logging, monitoring, and security software in the
cluster
The Pod Security Context is how Pods are configured to have elevated,



or restricted permissions
Admission Controllers can be used to make changes to Kubernetes
objects as they are created, and also enforce requirements including
around the Pod Security Context
Kubernetes ships with an Admission Controller named Pod Security
Admission to enable to you to enforce security profiles like baseline, for
mitigating most known attacks and restricted to enforce security best
practices on pods
RBAC is a role-based permission system that allows users with the
cluster administrator role to grant fine-grained access to developers in
the system, like restricting a team to a particular namespace

[1] https://kubernetes.io/docs/concepts/policy/pod-security-policy/

[2] https://kubernetes.io/docs/concepts/security/pod-security-
admission/#webhook

[3] https://kubernetes.io/docs/concepts/security/pod-security-standards/
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