
M A N N I N G

Antonio Gulli
Michael Madison
Scott Surovich

Manage hybrid and multicloud
Kubernetes clusters

Anthos best practices by chapter

Overview of Anthos Modern applications require modern soft-
ware developments and delivery stack.

Container-native development enables
modern applications.

One single pane of glass Single pane of glass is the working tool for
the operational team with a visual prefer-
ence. There is no good or bad, but a visual
interface has always been one of the pil-
lars of DevOps.

Always bind SLOs to alerts to guarantee
an action for a potential issue.

Computing environment built
on Kubernetes

An introduction to Kubernetes architecture
and how Anthos uses admin clusters to
optimize the management of multiple
user clusters.

Control scheduling of Pods in a cluster to
provide the highest availability using base
Kubernetes concepts, including node
selectors, affinity and anti-affinity rules,
and taints and tolerations.

Anthos Service Mesh:
Security and observability
at scale

Anthos Service Mesh security policies
(such as authentication and authorization
policies) should be enforced on all traffic
in and out of the mesh unless strong justi-
fications exist to exclude a service or Pod.

Anthos Service Mesh receives incoming
external traffic through the Ingress gate-
way. Services exposed by the Ingress
gateway potentially face attacks from
external sources.

Operation management Define your upgrade, commissioning, and
decommissioning procedures according to
your organization’s SRE needs before
deploying your first cluster.

Make yourself define SLIs and SLOs on
your services as well as expectations on
how they should perform to measure
them.

Bringing it all together Cloud Source Repositories offer security
key detection to block Git push transac-
tions that contain sensitive information.
This feature is designed to improve the
security of your source code.

The easiest way to increase the speed of
your Docker image build in Cloud Build is
by specifying a cached image that can be
used for subsequent builds.

Hybrid applications Use native Anthos Service Mesh features
such as multicluster meshing to build
high-availability services.

Use services included in the Anthos sub-
scription such as multicluster ingress,
managed control plane, and multicloud
installation to fulfill regulatory require-
ments instead of reinventing the wheel.

Working at the edge and the
telco world

Apply a GitOps declarative model through
Anthos Config Management to manage
large fleets of clusters.

Serverless compute engine
(Knative)

Embrace Knative to abstract away the
Kubernetes implementation details from
your developers.

Use Knative to enable the portability of
your workloads to any platform that can
run Kubernetes.

Networking environment Google provides networking features and
controls at each layer of infrastructure.
These include hybrid connectivity,
Kubernetes networking, including
multicluster networking, and application
or service networking.

Use defense in depth at each layer of
infrastructure using the networking tools
provided at that layer.

Config Management
architecture

Minimize manual work on a cluster by
codifying all parts of your Kubernetes
ecosystem into an organized repository.

Establish appropriate permissions at both
the cluster and configuration repository
level to be able to easily maintain security
of your environment.

Google Anthos in Action

Google Anthos
in Action

MANAGE HYBRID AND
MULTICLOUD KUBERNETES CLUSTERS

ANTONIO GULLI

MICHAEL MADISON

SCOTT SUROVICH

MANN I NG
SHELTER ISLAND

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2023 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning Publications
was aware of a trademark claim, the designations have been printed in initial caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

The authors and publisher have made every effort to ensure that the information in this book
was correct at press time. The authors and publisher do not assume and hereby disclaim any
liability to any party for any loss, damage, or disruption caused by errors or omissions, whether
such errors or omissions result from negligence, accident, or any other cause, or from any usage
of the information herein.

Manning Publications Co. Development editor: Doug Rudder
20 Baldwin Road Review editor: Adriana Sabo
PO Box 761 Production editor: Andy Marinkovich
Shelter Island, NY 11964 Copy editor: Pamela Hunt

Proofreader: Katie Tennant
Technical proofreader: Paul Jones

Typesetter: Dennis Dalinnik
Cover designer: Marija Tudor

ISBN: 9781633439573
Printed in the United States of America

www.manning.com

v

brief contents
1 ■ Overview of Anthos 1

2 ■ One single pane of glass 8

3 ■ Computing environment built on Kubernetes 29

4 ■ Anthos Service Mesh: Security and
observability at scale 68

5 ■ Operations management 92

6 ■ Bringing it all together 122

7 ■ Hybrid applications 132

8 ■ Working at the edge and the telco world 143

9 ■ Serverless compute engine (Knative) 163

10 ■ Networking environment 182

11 ■ Config Management architecture 232

12 ■ Integrations with CI/CD 260

13 ■ Security and policies 312

14 ■ Marketplace 349

15 ■ Migrate 366

16 ■ Breaking the monolith 407

17 ■ Compute environment running on bare metal 423

contents
preface xiv
acknowledgments xv
about this book xviii
about the lead authors xxii
about the cover illustration xxiv

1 Overview of Anthos 1
APARNA SINHA

1.1 Anatomy of a modern application 2
Accelerating software development 4 ■ Standardizing operations
at scale 5

1.2 Origins in Google 5

2 One single pane of glass 8
MELIKA GOLKARAM

2.1 Single pane of glass 9
2.2 Non-Anthos visibility and interaction 10

Kubernetes Dashboard 10 ■ Provider-specific UIs 11
Bespoke software 11

2.3 The Anthos UI 11
Fleets 12 ■ Connect: How does it work? 13 ■ Installation and
registration 16
vi

CONTENTS vii
2.4 The Anthos Cloud UI 16
The Anthos dashboard 16 ■ Service Mesh 18 ■ Config
Management 19 ■ Clusters 20 ■ Features 22 ■ Migrating
to containers 22 ■ Security 23

2.5 Monitoring and logging 23
2.6 GKE dashboard 24
2.7 Connecting to a remote cluster 24

3 Computing environment built on Kubernetes 29
SCOTT SUROVICH

3.1 Why do you need to understand Kubernetes? 30
Technical requirements 31 ■ History and overview 31
Managing Kubernetes clusters 31

3.2 Kubernetes architecture 32
Understanding the cluster layers 34 ■ The control plane
components 35 ■ Worker node components 38 ■ Understanding
declarative and imperative 40 ■ Understanding Kubernetes
resources 42 ■ Kubernetes resources in depth 45 ■ Controlling
Pod scheduling 51

3.3 Advanced topics 62
Aggregate ClusterRoles 62 ■ Custom schedulers 63

3.4 Examples and case studies 64
FooWidgets Industries 64

4 Anthos Service Mesh: Security and observability at scale 68
ONOFRIO PETRAGALLO

4.1 Technical requirements 69
4.2 What is a service mesh? 69
4.3 An introduction to Istio 72

Istio architecture 72 ■ Istio traffic management 74
Istio security 75 ■ Istio observability 77

4.4 What is Anthos Service Mesh? 78
4.5 Installing ASM 79

Sidecar proxy injection 80 ■ Uniform observability 81
Operational agility 81 ■ Policy-driven security 84

4.6 Conclusion 85
4.7 Examples and case studies 86

Evermore Industries 86

CONTENTSviii
5 Operations management 92
JASON QUEK

5.1 Unified user interface from Google Cloud console 93
Registering clusters to Google Cloud console 94
Authentication 96 ■ Cluster management 97
Logging and monitoring 101 ■ Service Mesh logging 103
Using service-level indicators and agreements 103

5.2 Anthos command-line management 104
Using CLI tools for GKE on-prem 104 ■ GKE on AWS 109

5.3 Anthos attached clusters 113
5.4 Anthos on bare metal 115
5.5 Connect gateway 117
5.6 Anthos on Azure 118

Cluster management: Creation 119 ■ Cluster management:
Deletion 121

6 Bringing it all together 122
ONOFRIO PETRAGALLO

6.1 Application development 123
6.2 Application deployment 124

Cloud Source Repositories 124 ■ Cloud Build 127
Artifact Registry 129 ■ Google Cloud Marketplace 129
Migrate for Anthos 129

6.3 Policy enforcement 130

7 Hybrid applications 132
JASON QUEK

7.1 Highly available applications 133
Architecture 133 ■ Benefits 133 ■ Limitations 135

7.2 Geographically distributed applications 135
Ingress for Anthos architecture 135 ■ Ingress for Anthos
benefits 137 ■ Ingress for Anthos limitations 137

7.3 Hybrid multicloud applications with internet access 137
Traffic Director architecture 137 ■ Traffic Director benefits 138
Traffic Director limitations 138

7.4 Applications regulated by law 138
Architecture 138 ■ Benefits 140

CONTENTS ix
7.5 Applications that must run on the edge 140
Architecture 140 ■ Benefits 142 ■ Limitations 142

8 Working at the edge and the telco world 143
GIOVANNI GALLORO

8.1 Evolution of telecom applications 144
Introduction to network functions virtualization 144 ■ NFV use
cases 145 ■ Evolution to cloud native network functions 145

8.2 New edge applications 146
5G as the enabler of new edge applications 146 ■ Edge
computing 146 ■ Edge application examples 147

8.3 Anthos as a platform for edge and telco workloads 148
Google Distributed Cloud Edge 148 ■ Anthos capabilities for telco
and edge workloads 152 ■ Solution architecture example: Smart
retail 161

9 Serverless compute engine (Knative) 163
KONRAD CŁAPA

9.1 Introduction to serverless 164
9.2 Knative 164

Introduction 165 ■ Knative history 166

9.3 Knative architecture 167
Knative Kubernetes resource types 168 ■ Knative Serving 168
Knative Eventing 172 ■ Observability 176 ■ Installing
Knative 177 ■ Deploying to Knative 178

10 Networking environment 182
AMEER ABBAS

10.1 Cloud networking and hybrid connectivity 183
Single-cloud deployment 184 ■ Multi/hybrid cloud
deployment 189

10.2 Anthos GKE networking 191
Anthos cluster networking 192 ■ Anthos GKE IP address
management 218

10.3 Anthos multicluster networking 222
Multicluster networking on GCP 223 ■ Multicluster networking
in hybrid and multicloud environments 224

CONTENTSx
10.4 Services and client connectivity 227
Client-to-Service connectivity 228 ■ Service-to-Service
connectivity 228 ■ Service-to-external Services
connectivity 229

11 Config Management architecture 232
MICHAEL MADISON

11.1 What are we trying to solve? 233
Managing complexity 235 ■ Transparency and inspection 235
Remediating and preventing problems 236 ■ Bringing it
together 236

11.2 Overview of ACM 236
ACM policy structure 239 ■ ACM-specific objects 243
Additional components 244

11.3 Examples and case studies 246
Evermore Industries 247 ■ Village Linen, LLC 251
Ambiguous Rock Feasting 256

11.4 Conclusions 258

12 Integrations with CI/CD 260
KONRAD CŁAPA AND JAROSŁAW GAJEWSKI

12.1 Introduction to CI/CD 262
Repeatability 262 ■ Reliability 262 ■ Reusability 263
Automated tests 263 ■ Trunk-based development 263
Environment parity 263 ■ Deployment automation 263
Team culture 264 ■ Built-in security/DevSecOps 264
Version control 264 ■ Artifact versioning 264
Monitoring 265

12.2 Continuous delivery vs. continuous deployment 265
12.3 Continuous development 265

Setting up a local preview minikube cluster 266 ■ Continuous
development with Skaffold 268 ■ Cloud Code: Developing with
a local IDE 273 ■ Anthos Developer Sandbox: Development
with a cloud native IDE 281

12.4 Continuous integration 283
Cloud Source Repositories 283 ■ Artifact Registry 284
Cloud Build 286 ■ Kustomize for generating environment-specific
configuration 293

CONTENTS xi
12.5 Continuous deployment with Cloud Deploy 298
Cloud Deploy in the Anthos CI/CD 298 ■ Google Cloud Deploy
delivery pipeline for Anthos 299

12.6 Modern CI/CD platform 304

13 Security and policies 312
SCOTT SUROVICH

13.1 Technical requirements 313
13.2 Hypervisors vs. container runtimes 313
13.3 Kubernetes security overview 314

Understanding Kubernetes security objects 315 ■ Types of
security 315

13.4 Common security concerns 317
Understanding the Policy Controller 319 ■ Using Binary
Authorization to secure the supply chain 329 ■ Using Gatekeeper
to replace PSPs 330

13.5 Understanding container scanning 330
Enabling container scanning 330 ■ Adding images to your
repository 331 ■ Reviewing image vulnerabilities 332

13.6 Understanding container security 334
Running containers as root 335 ■ Running privileged
containers 336

13.7 Using ACM to secure your service mesh 340
Using ACM to enforce mutual TLS 340

13.8 Conclusion 341
13.9 Examples and case study 342

Evermore Industries 342

14 Marketplace 349
ANTONIO GULLI

14.1 The Google Marketplace 350
Public Marketplace 350 ■ Service Catalog 354
Deploying on a GKE on-prem cluster 354

14.2 Real-world scenarios 356
Example 1: Elasticsearch 356 ■ Example 2: MariaDB 359
What we have done so far 361 ■ Example 3: Cassandra 362
Example 4: Prometheus and Grafana 363

CONTENTSxii
15 Migrate 366
ANTONIO GULLI

15.1 Migrate for Anthos benefits 368
Density 368 ■ Cost 368 ■ Infrastructure 369
Automation 369 ■ Security 370 ■ Service
management 370 ■ Day 2 operations 371

15.2 Recommended workloads for migration 372
15.3 M4A architecture 373

Migration workflow 373 ■ From virtual machines to
containers 375 ■ A look at the Windows environment 376
A complete view of the modernization journey 376

15.4 Real-world scenarios 377
Using the fit assessment tool 377 ■ Basic migration
example 381 ■ Google Cloud console UI migration
example 385 ■ Windows migration 398 ■ Migration
from other clouds 400

15.5 Advanced topic: M4A best practices 401
15.6 Postmigration integration with CI/CD pipelines 403
15.7 Postmigration integration with ASM 405

16 Breaking the monolith 407
PHIL TAYLOR

16.1 Modernizing legacy applications 408
16.2 Using Anthos for modernization 410

Approach to modernization 411

16.3 Benefits of Anthos for microservices 419
16.4 Real-world examples 420
16.5 Antipatterns to avoid 421

17 Compute environment running on bare metal 423
GIOVANNI GALLORO

17.1 Introduction to Anthos on bare metal 424
Comparing Anthos on-prem deployment options 424

17.2 Anthos bare metal architecture 425
Cluster architecture 426

CONTENTS xiii
17.3 Installation and configuration overview 433
Operating systems and software requirements 433 ■ Hardware
capacity requirements 434 ■ Admin workstation 435
Networking requirements 435 ■ Google Cloud Platform
requirements 437

17.4 Creating clusters 439
Creating an admin, hybrid, or standalone cluster 439
Creating a user cluster 449

17.5 Upgrading clusters 451
Upgrading an admin, standalone, or hybrid cluster 451
Upgrading a user cluster 451

index 453

The following bonus appendixes are available in the ePub and Kindle versions
of this book, and you can read them online in liveBook:

appendix A Cloud is the new computing stack
PHIL TAYLOR

appendix B Lessons from the field
KYLE BASSET

appendix C Compute environment running on VMware
JAROSŁAW GAJEWSKI

appendix D Data and analytics
PATRICIA FLORISSI

appendix E An end-to-end example of ML application
AMITA KAPOOR

appendix F Compute environment running on Windows
KASLIN FIELDS

preface
The idea to write Google Anthos in Action came after discussions with hundreds of cus-
tomers interested in managing applications anywhere, delivering software faster, and
protecting applications and the software supply chain. Customers wanted to better
understand how Anthos can help them manage their application deployments in tra-
ditional on-prem setups, at the edge, and in cloud native and multicloud environ-
ments. They were interested in achieving the benefits of containers, serverless,
infrastructure as code, and service meshes to improve productivity and velocity. They
wanted to understand how to guarantee and increase security in each stage of the
application life cycle with automatization and transparent policy management.

 Google Anthos in Action brings together the collective expertise of Googlers passion-
ate about Kubernetes, serverless, and Anthos, as well as Google Cloud Certified Fel-
lows, an elite group of cloud architects and technical leaders who are experts in
designing enterprise solutions.
xiv

acknowledgments
Google Anthos in Action would not be possible without the work of countless fellow trav-
elers (https://en.wikipedia.org/wiki/Fellow_traveller).

 The lead authors would like to thank the other authors for their contributions; in
alphabetical order, we thank Ameer Abbas, Amita Kapoor, Aparna Sinha, Eric Brewer,
Giovanni Galloro, Jarosław Gajewski, Jason Quek, Kaslin Fields, Konrad Cłapa, Kyle
Bassett, Melika Golkaram, Onofrio Petragallo, Patricia Florissi, and Phil Taylor. Some
of the authors were selected for the book’s preview edition published at Google
Cloud Next in 2021. In this full-edition publication, all of the authors are included in
the 17 chapters in this book and the six additional chapters available in the eBook and
online in liveBook.

 The authors would like to thank all of the reviewers for their thoughtful input, dis-
cussion, and review. In alphabetical order, we thank Ady Degany, Alex Mattson, Alon
Pildus, Amina Mansur, Amr Abdelrazik, Anil Dhawan, Ankur Jain, Anna Beremberg,
Antoine Larmanjat, Ashwin Perti, Barbara Stanley, Ben Good, Bhagvan Kommadi,
Brian Grant, Brian Kaufman, Chen Goldberg, Christoph Bussler, Clifford Thurber,
Conor Redmond, Eric Johnson, Fabrizio Pezzella, Gabriele Di Piazza, Ganesh
Swaminathan, Gil Fidel, Glen Yu, Guy Ndjeng, Harish Yakumar, Haroon Chaudhry,
Hugo Figueiredo, Issy Ben-Shaul, Jamie Duncan, Jason Polites, Jeff Reed, Jeffrey Chu,
Jennifer Lin, Jerome Simms, John Abel, Jonathan Donaldson, Jose San Leandro, Kamesh
Ganesan, Karthikeyarajan Rajendran, Kavitha Radhakrishnan, Kevin Shatzkamer,
Krzysztof Kamyczek, Laura Cellerini, Leonid Vasetsky, Louis Ryan, Luke Kupka,
Maluin Patel, Manu Batra, Marco Ferrari, Marcus Johansonn, Massimo Mascaro, Maulin
xv

https://en.wikipedia.org/wiki/Fellow_traveller

ACKNOWLEDGMENTSxvi
Patel, Micah Baker, Michael Abd-El-Malek, Michael Bright, Michelle Au, Miguel de
Luna, Mike Columbus, Mike Ensor, Nima Badiey, Nina Kozinska, Norman Johnson,
Purvi Desai, Quan To, Raghu Nandan, Raja Jadeja, Rambabu Posa, Rich Rose, Roman
Zhuzha, Ron Avnur, Scott Penberthy, Simone Sguazza, Sri Thuraisamy, Stanley Anozie,
Stephen Muss, Steren Giannini, Sudeep Batra, Tariq Islam, Tim Hockin, Tony Savor,
Vanna Stano, Vinay Anand, Yoav Reich, Zach Casper, and Zach Seils.

 This book would not have been possible without a massive collaboration among
the authors, reviewers, editors, and marketing. We are particularly thankful to Arun
Ananthampalayam, J. P. Schaengold, Maria Bledsoe, Richard Seroter, Eyal Manor, and
Yash Kamath from Google; and Doug Rudder, Aleksandar Dragosavljević, and Gloria
Lukos from Manning. Thanks for your continuous support and inspiration.

 A special thanks goes to Will Grannis, founder and managing director of Google
Cloud’s Office of the CTO, for being a servant leader, always inspiring others. In addi-
tion, special gratitude goes to Eric Brewer, professor emeritus of computer science at
the University of California, Berkeley, and vice president of infrastructure at Google.
This book could not have been written without his support and encouragement.

 All the authors’ royalties will be donated to charities.

Authors
 Ameer Abbas, senior product manager at Google, focused on modern applica-

tions and platforms
 Amita Kapoor, former associate professor, University of Delhi, now founder of

NePeur, passionate about using AI for good
 Antonio Gulli, director of engineering at Google, worked all his life on search

and Cloud, proud father of three angels
 Aparna Sinha, senior director, product management and DevRel, built and led

Kubernetes and developed PM teams, growing the P&L 100 times
 Eric Brewer, professor emeritus of computer science at the University of Cali-

fornia, Berkeley, and vice president of infrastructure at Google
 Giovanni Galloro, customer engineer at Google focused on Kubernetes, cloud-

native tooling, and developer productivity
 Jarosław Gajewski, global lead architect and Distinguished Expert in Atos, Goo-

gle Cloud Certified Fellow, passionate about Cloud, Kubernetes, and the entire
CNCF framework

 Jason Quek, global CTO Devoteam, G Cloud, started as a programmer, now
building on Google Cloud, passionate about Kubernetes and Anthos

 Kaslin Fields, GKE and open source Kubernetes developer advocate at Google
Cloud, CNCF ambassador

 Konrad Cłapa, Google Cloud Certified Fellow #5 and a lead Cloud architect
responsible for the design of managed GCP offerings at Atos

ACKNOWLEDGMENTS xvii
 Kyle Bassett, cloud native community member and open source advocate, col-
laborated with Google product and engineering to lead the original design
partnership for Anthos

 Melika Golkaram (Googler), solutions architect in Google Cloud, with a focus
on Kubernetes, Anthos, and Google Distributed Edge Cloud

 Michael Madison, cloud architect at World Wide Technology, with a background
in software development and IaC

 Onofrio Petragallo (Googler), customer engineer at Google Cloud, focused on
data analytics and artificial intelligence

 Patricia Florissi (Googler), technical director, Office of the CTO, Google
Cloud, worked the past 10 years on federated computations, a superset of feder-
ated analytics and federated learning

 Phil Taylor, CTO at CDW Digital Velocity, started coding at age 13, relentless
entrepreneur with a track record of taking products to market using the public
Cloud and Kubernetes

 Scott Surovich, global container engineering lead at HSBC Bank, Google Fel-
low, Kubernetes advocate, and coauthor of Kubernetes: An Enterprise Guide

about this book
Anthos (https://cloud.google.com/anthos) is a multicloud containerized product
working on-prem, on multiple public cloud platforms, on private clouds, and at the
edge. It is also a managed application platform that extends Google Cloud services
and engineering practices to many environments so you can modernize apps faster
and establish operational consistency across them.

Who should read this book?
Readers should have a general understanding of distributed application architecture
and a baseline understanding of cloud technologies. They should also have a basic
understanding of Kubernetes, including commonly used resources, how to create a
manifest, and how to use the kubectl CLI.

 This book is designed for anyone interested in furthering their knowledge of
Anthos and Kubernetes. After reading this book, the reader will have an increased
knowledge of Anthos in GCP and multicloud platforms.

How this book is organized: A road map
 Chapter 1—An introduction to how Anthos and modern applications benefit busi-

nesses in driving transformation in multiple industries and how cloud native
microservices architecture provides the scalability and modularity that provide
the foundation and competitive edge that businesses need in today’s world.

 Chapter 2—Most organizations can manage a small number of clusters easily but
often run into support issues as they scale out environments, making management
xviii

https://cloud.google.com/anthos

ABOUT THIS BOOK xix
a difficult task. In this chapter, you will learn how Anthos provides a single-pane-
of-glass view to Kubernetes clusters running different cloud providers and on-
prem clusters.

 Chapter 3—Kubernetes is becoming “the data center API” and is the main com-
ponent behind Anthos, providing the compute environment we need to power
portable, cloud native applications and, in the right use cases, monolithic appli-
cations. This chapter teaches the components of Kubernetes and the differ-
ences between declarative and imperative deployment models and advanced
scheduling concepts to keep your workloads available if certain portions of the
infrastructure experience failures.

 Chapter 4—Anthos provides a fully supported version of Istio, an open source
service mesh that provides several features for workloads both running in an
Anthos cluster and on external servers, like virtual machines. Learn about the
components of ASM and how each provides features in the mesh and how to
secure traffic using mutual TLS, provide advanced release cycles like A/B or
canary testing, and offer visibility into mesh traffic using the GCP console.

 Chapter 5—Dive deeper into managing clusters and workloads using the GCP
console. Learn about the different logging and monitoring considerations, how
to manage clusters and workloads using the CLI, and how to scale and design
operations management in a hybrid environment.

 Chapter 6—Using your knowledge from the previous chapters, learn about the
Anthos components that provide tools for developers to create applications,
including the Cloud Code plugin for IntelliJ, Visual Studio Code, and Google’s
Cloud Shell, and to deploy applications using versioning and Cloud Build.

 Chapter 7—Anthos allows an organization to standardize on Kubernetes, provid-
ing a unified pattern to develop, deploy, scale, and secure portability and high
availability. Workloads can be secured using workload identity, which provides
enhanced security across multiple clusters in hybrid and multicloud environ-
ments. Learn how to route traffic to clusters with load balancers and use Google’s
Traffic Director to route traffic across multiple clusters, and see how VPC ser-
vice controls are used to secure your clusters.

 Chapter 8—Learn more about Anthos on the edge from telco examples and
how they implement 5G to enhance quality checks, self-driving cars, and inven-
tory tracking.

 Chapter 9—Serverless removes the complexity of Kubernetes for developers. In
this chapter, you will learn about Cloud Run, which is based on Knative, and
how its components are used to address different use cases, including eventing,
versioning, and traffic management.

 Chapter 10—Anthos networking features multiple layers and options. In this
chapter, you will learn about cloud networking and hybrid connectivity, includ-
ing dedicated interconnects, Cloud VPC, and using standard public internet
connections. Dive into the Anthos networking options and see how you can

ABOUT THIS BOOKxx
connect clusters running Anthos, or any compliant Kubernetes version, from
other cloud service providers and on-prem.

 Chapter 11—As an organization grows, the complexities of managing and scal-
ing multiple clusters increase along with it. Anthos Config Management (ACM)
provides security using gatekeeper policies, configuration management with
standard tools like Git, and additional namespace controls using the hierarchi-
cal namespace controller.

 Chapter 12—Continuous integration and continuous delivery are two of the
main components to becoming an agile organization. To achieve your CI/CD
goals, you will learn how to use Skaffold, Cloud Code, Cloud Source Reposito-
ries, Artifact Registry, and more to make your organization truly agile.

 Chapter 13—Build on the foundation of Anthos Config Management to secure
your clusters from malicious or accidental incidents. To understand how to
secure a system, you need to understand how it can be compromised, and in
this chapter, you will learn how a person can deploy an escalated Pod to take
over a host or an entire cluster. Then, using ACM, learn how to secure various
components from attacks or mistakes like vulnerable libraries in your image(s).

 Chapter 14—You can run millions of images and products on Anthos, and your
organization may maintain its own releases of products. Google makes it easier
for you to use a collection of workloads that are curated by Google or other
industry leaders like NetApp, IBM, Red Hat, and Microsoft. In this chapter, you
will learn about the Google Marketplace and how you can use it to easily create
solutions for your users.

 Chapter 15—Convincing developers or businesses to move from heritage appli-
cations running on virtual services can be difficult and time consuming. They
may not have the staff or subject matter experts to assist with the work and pre-
fer the status quo. Anthos includes a utility to help with the process, from identi-
fying workload candidates for migration up to the actual migration of these
workloads from virtual machines to containers.

 Chapter 16—To move a workload from any heritage technology to containers,
you need to learn the best methods and the benefits of moving to microser-
vices. This chapter will teach you how to use Anthos to modernize your applica-
tions through real-world examples and the antipatterns to avoid.

 Chapter 17—It is becoming increasingly common for more advanced workloads
to move to Kubernetes, including workloads that may require GPUs, PCI cards,
or external hardware components. Although you can accomplish this in a virtual
environment, doing so has limitations and several complexities. In this chapter,
you will learn how to deploy Anthos on bare metal, to provide a platform to
address the requirements for which you may encounter limitations on VMware.

The following bonus appendixes are available in the ePub and Kindle versions of this
book, and you can read them online in liveBook:

ABOUT THIS BOOK xxi
 appendix A Cloud is the new computing stack
Phil Taylor

 appendix B Lessons from the field
Kyle Basset

 appendix C Compute environment running on VMware
Jarosław Gajewski

 appendix D Data and analytics
Patricia Florissi

 appendix E An end-to-end example of ML application
Amita Kapoor

 appendix F Compute environment running on Windows
Kaslin Fields

liveBook discussion forum
Purchase of Google Anthos in Action includes free access to liveBook, Manning’s online
reading platform. Using liveBook’s exclusive discussion features, you can attach com-
ments to the book globally or to specific sections or paragraphs. It’s a snap to make
notes for yourself, ask and answer technical questions, and receive help from the
authors and other users. To access the forum, go to https://livebook.manning.com/
book/google-anthos-in-action/discussion. You can also learn more about Manning’s
forums and the rules of conduct at https://livebook.manning.com/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and authors can take place.
It is not a commitment to any specific amount of participation on the part of the
authors, whose contribution to the forum remains voluntary (and unpaid). We sug-
gest you try asking them some challenging questions lest their interest stray! The
forum and the archives of previous discussions will be accessible from the publisher’s
website as long as the book is in print.

https://livebook.manning.com/discussion
https://livebook.manning.com/book/google-anthos-in-action/discussion
https://livebook.manning.com/book/google-anthos-in-action/discussion

about the lead authors
ANTONIO GULLI has a passion for establishing and managing global technological tal-
ent for innovation and execution. His core expertise is in cloud computing, deep
learning, and search engines. Currently, he serves as engineering director for the
Office of the CTO, Google Cloud. Previously, he served as Google Warsaw Site leader,
doubling the size of the engineering site.

 So far, Antonio has enjoyed obtaining professional experience in four countries
in Europe and has managed teams in six countries in Europe, the Middle East, Asia,
and in the United States; in Amsterdam, as vice president at Elsevier, a leading scien-
tific publisher; in London, as engineering site lead for Microsoft working on Bing;
in Italy and the UK as CTO; in Europe and the UK for Ask.com; and in several
cofounded startups, including one of the first web search companies in Europe.

 Antonio has co-invented several technologies for search, smart energy, and AI,
with 20-plus patents issued/applied for, and he has published several books about
coding and machine learning, also translated into Japanese, Russian, Korean, and
Chinese. Antonio speaks Spanish, English, and Italian, and he is currently learning
Polish and French. Antonio is a proud father of two boys, Lorenzo, 22, and Leonardo,
17, and a little queen, Aurora, 13. They all share a passion for inventions.

SCOTT SUROVICH has been an engineer in one of the world’s largest banks, HSBC, for
the last 20 years. There he has had various engineering roles, including working with
Citrix, Windows, Linux, and virtualization. For the last three years, he has been part of
xxii

ABOUT THE LEAD AUTHORS xxiii
the hybrid integration platform team as the lead engineer and product owner for
Kubernetes/Anthos.

 Scott has always been passionate about training and writing about technology for
anyone willing to learn. He was a certified trainer for years, teaching certified classes
for multiple vendors, including Microsoft, Citrix, and CompTIA. In 2019, his first
coauthored book, Kubernetes and Docker: An Enterprise Guide, was released. It was well
received, and after the success of the first edition, an updated second edition was
released on December 19, 2021, and became a number-one best seller in the first
week of release.

 He is also a huge 3D printing enthusiast (bordering on addiction), microcontrol-
ler tinkerer, and avid hockey player. When Scott has any downtime, he prefers to
spend it with his wife, Kim, and his dog, Belle.

 Scott also wants to thank Google for the opportunity to join the initial Google Fel-
low pilot group and entrusting him with participation in the creation of this book.

MICHAEL MADISON enjoys exploring new cloud technology and finding ways to use
advancements in computing to streamline company operations and open new ave-
nues for delivering value to customers. His current position as a Cloud Platform archi-
tect at World Wide Technology allows him to assist companies and organizations in
beginning or continuing their cloud journeys.

 Although he has been an IT professional for more than 15 years, Michael began in
the entertainment sector, working for theme parks and cruise lines. Eventually, his
hobby of programming became his primary career, and he expanded his domain to
include infrastructure and cloud. When the opportunity arose, he focused on cloud
initiatives fully, bringing his decade of software development experience to bear on
the challenges surrounding cloud and hybrid deployments.

 Originally from Texas, Michael lived and went to school in Georgia, Alaska, and
Texas. He eventually wound up working in Missouri, where he currently lives outside
Saint Louis. Michael and his wife own an RV and plan to tour the country in a few
years, accompanied by their dog, Shenzi.

about the cover illustration
The figure on the cover of Google Anthos in Action is captioned “Habitante de Frascati,”
or “Resident of Frascati,” taken from a collection by Jacques Grasset de Saint-Sauveur,
published in 1797. Each illustration is finely drawn and colored by hand.

 In those days, it was easy to identify where people lived and what their trade or sta-
tion in life was just by their dress. Manning celebrates the inventiveness and initiative
of the computer business with book covers based on the rich diversity of regional cul-
ture centuries ago, brought back to life by pictures from collections such as this one.
xxiv

Overview of Anthos
Aparna Sinha

Software has been running the world for a while. As consumers, we are used to appli-
cations that make it faster, smarter, and more efficient for us to do things like calling a
cab or depositing a paycheck. Increasingly, our health, education, entertainment,
social life, and employment are all enhanced by modern software applications. At
the other end of those applications is a chain of enterprises, large and small, that
deliver these improved experiences, services, and products. Modern applications are
deployed not just in the hands of consumers but also at points along this enterprise
supply chain. Major transactional systems in many traditional industries such as retail,
media, financial services, education, and logistics are gradually being replaced by
modern microservices that autoupdate frequently, scale efficiently, and incorporate

This chapter covers
 Anatomy of a modern application

 Accelerating software development with Anthos

 Standardizing operations at scale with Anthos

 Origins at Google

 How to read this book
1

2 CHAPTER 1 Overview of Anthos
more real-time intelligence. New digital-first startups are using this opportunity to disrupt
traditional business models, whereas enterprise incumbents are rushing to modernize
their systems so they can compete and avoid disruption.

 This book will take you through the anatomy of Anthos—the platform, the devel-
opment environment, the elements of automation and scaling, and the connection to
patterns adapted from Google to attain excellence in modern software development
in any industry. Each chapter includes practical examples of how to use the platform,
and several include hands-on exercises to implement the techniques.

1.1 Anatomy of a modern application
What is a modern application? When you think of software that has improved your life,
perhaps you think of applications that are interactive, fast (low latency), connected, intel-
ligent, context aware, reliable, secure, and easy to use on any device. As technology
advances, the capabilities of modern applications, such as the level of security, reliability,
awareness, and intelligence, advance as well. For example, new development frameworks
such as React and Angular have greatly enhanced the level of interactivity of applications,
and new runtimes like Node.js have increased functionality. Modern applications have
the property of constantly getting better through frequent updates. On the backend,
these applications often comprise many services that are all continuously improving. This
modularity is attained by breaking the older “monolith” pattern for writing applications,
where all the various functions were tightly coupled to each other.

 Applications written as a set of modules or microservices offer several benefits:
constituent services can be evolved independently or replaced with other, more scal-
able or otherwise superior, services over time. Also, the modern microservices pattern
is better at separating concerns and setting contracts between services, making it eas-
ier to inspect and fix problems. This approach to writing, updating, and deploying
applications as microservices that can be used together but also updated, scaled, and
debugged independently is at the heart of modern software development. In this
book, we refer to this pattern as “modern” or “cloud native” application development.
The term cloud native applies here because the microservices pattern is well suited to
run on distributed infrastructure or the cloud. Microservices can be rolled out incre-
mentally, scaled, revised, replaced, scheduled, rescheduled, and bin packed tightly on
distributed servers, creating a highly efficient, scalable, reliable system that is respon-
sive and frequently updated.

 Modern applications can be written greenfield (from scratch) or refactored from
existing brownfield applications by following a set of architectural and operational prin-
ciples. The end goal of application modernization is typically revenue acceleration,
and often this involves teams outside IT, in line-of-business (LOB) units. IT depart-
ments in most traditional enterprises have historically focused on reducing costs and
optimizing operations. Although cost reduction and optimized operations can be by-
products of application modernization, they are not the most important benefits. Of
course, the modernization process itself requires up-front investment. Anthos is Google

31.1 Anatomy of a modern application
Cloud’s platform for application modernization in hybrid and multicloud environ-
ments. It provides the approach and technical foundation needed to attain high ROI
application modernization. An IT strategy that emphasizes modularity through APIs,
microservices, and cloud portability combined with a developer platform that auto-
mates reuse, experiments, and cost-efficient scaling along with secure, reliable opera-
tions are the basic critical prerequisites for successful application modernization.

 One aspect of Anthos is a modern developer experience that accelerates line-of-
business application development. It is optimized for refactoring brownfield apps and
writing microservices and API-based applications. It offers unified local, on-prem, and
cloud development with event-driven automation from source to production. Developers
can write code rapidly using modern languages and frameworks with local emulation
and testing and integrated CI/CD, and Anthos supports rapid iteration, experimenta-
tion, and advanced rollout strategies. The Anthos developer experience emphasizes
cloud APIs, containers, and functions, but enterprise platform teams can also customize
it. A key goal of the Anthos developer experience is for teams to release code multiple
times a day, thereby enhancing both velocity and reliability. Anthos features built-in
velocity and ROI metrics to help development teams measure and optimize their per-
formance. Data-driven benchmarks are augmented with prepackaged best practice
blueprints that teams can deploy to achieve the next level of performance.

 Another aspect of Anthos is an operator experience for central IT. Anthos shines
as the uniquely scalable, streamlined way to run operations across multiple clouds.
This function is enabled by the remarkable foundation of technology invented and
honed at Google over the past 20 years for running services with extremely high reli-
ability on relatively low-cost infrastructure. This is achieved through the standardiza-
tion of the infrastructure using a layer of abstraction comprising Kubernetes, Istio,
Knative, and several other building blocks, along with Anthos-specific extensions and
integrations for automated configuration, security, and operations. The operator
experience on Anthos offers advanced security and policy controls, automated declar-
ative configuration, highly scalable service visualization and operations, and auto-
mated resource and cost management. It features extensive automation, measurement
and fault avoidance capabilities for high availability, secure service management across
the cloud, and on-prem, edge, virtualized, and bare metal infrastructure.

 Enterprise and small companies alike find that multicloud and edge is their new
reality, either organically or through acquisitions. Regulations in many countries
require proven ability to migrate applications between clouds and a demonstration of
failure tolerance with support for sovereignty. Unregulated companies find multi-
cloud necessary for providing developers’ choice and access to innovative services.
Opportunities for running services and providing greater intelligence at the edge add
further surfaces to the infrastructure footprint. Some IT organizations roll their own
cross-cloud platform integrations, but this job gets harder every day. It is extremely dif-
ficult to build a cross-cloud platform in a scalable, maintainable way, and, more impor-
tantly, that approach detracts from precious developer time for product innovation.

4 CHAPTER 1 Overview of Anthos
 Anthos provides a solution rooted in years of time-tested experience and technical
innovation at Google in software development and site reliability engineering (SRE) oper-
ations, augmented with Google Cloud’s experience managing infrastructure for modern
applications across millions of enterprise customers. Anthos is unique in serving the needs
of LOB developers and central IT together, with advanced capabilities in both domains.
Consistency of developer and operator experience across environments enables enter-
prises to obtain maximum ROI from application modernization with Anthos.

1.1.1 Accelerating software development

Software product innovation and new customer experiences are the engine of new
revenue generation in the digital economy. But in the innovation process, only a few
ideas lead to successful new products; most fail and disappear. As every industry transi-
tions to being software driven, new product innovation depends on having a highly
agile and productive software development process. Developers are the new kingmak-
ers. Without an agile, efficient development process and platform, companies can fail
to innovate, or innovate at very high costs and even negative ROI. An extensive DevOps
Research Assessment1 study (DORA) surveyed over 30,000 IT professionals over sev-
eral years across a variety of IT functions. It shows that excellence in software develop-
ment is a hallmark of business success. This is not surprising given the importance of
modern applications in fueling the economy.

 DORA quantifies these benefits, showing that “elite,” or the highest-performing,
software teams are two times more effective in attaining revenue and business goals
than low-performing teams. The distinguishing characteristic of elite teams is the
practice of releasing software frequently. DORA finds the following four key metrics
provide an accurate measurement of software development excellence:

 Deployment frequency
 Lead time for changes
 Change fail rate
 Time to restore service

High-performance teams release software frequently, for example, several times a day.
In comparison, low performers release less than once a month. The study also found
that teams that release frequently have a lower software defect ratio and recover from
errors more rapidly than others. As a result, in addition to being more innovative and
modern, their software is more reliable and secure. Year over year, DORA results also
show that an increasing number of enterprises are investing in the tools and practices
that enable elite performance.

 Why do teams with higher development velocity have better business results? In
general, higher velocity means that developers can experiment more and test more,
so they come up with a better answer in the same amount of time. But another reason
exists. Teams with higher velocity have usually made writing and deploying code an

1 https://www.devops-research.com/research.html.

https://www.devops-research.com/research.html

51.2 Origins in Google
automated, low-effort process, which has the side effect of enabling more people to
become developers, especially those who are more entrenched in the business versus
the tooling. As a result, high-velocity developer teams have more LOB thinking and a
greater understanding of end user needs. The combination of rapid experimentation
and focus on users yields better business results. Anthos is the common substrate layer
that runs across clouds to provide a common developer experience for accelerating
application delivery.

1.1.2 Standardizing operations at scale

Developers may be the new kingmakers, but operations is the team that runs the king-
dom day in and day out. Operations includes teams that provision, upgrade, manage,
troubleshoot, and scale all aspects of services, infrastructure, and the cloud. Typically,
networking, compute, storage, security, identity, asset management, billing, and reli-
ability engineering are part of the operations team of an enterprise. Traditional IT
teams have anywhere from 15%–30% of their staff in IT operations. This team is not
always visibly engaged in new product introductions with the line of business, but it
often lays the groundwork, selecting clouds, publishing service catalogs, and qualify-
ing services for use by the business. Failing to invest in operations automation often
means that this team become the bottleneck and a source of fixed cost.

 On the flip side, modernizing operations has a tremendous positive effect on
velocity. Modern application development teams are typically supported by a very lean
operations team, where 80%-plus of staff are employed in software development ver-
sus operations. Such a developer-centric ratio is achieved only through modern infra-
structure with scaled, automated operations. This means operations are extremely
streamlined and use extensive automation to bring new services online quickly. Per-
haps the greatest value of Anthos is in automating operations at scale consistently
across environments, which is enabled by a unique open cloud approach that has its
origins in Google’s own infrastructure underpinning.

1.2 Origins in Google
Google’s software development process has been optimized and fine tuned over many
years to maximize developer productivity and innovation, which attracts the best soft-
ware developers in the world and leads to a virtuous cycle of innovation in software
and software development and delivery practices. The Anthos development stack has
evolved from these foundations and is built on core, open source technology that
Google introduced to the industry.

 At the heart of Anthos is Kubernetes, the extensive orchestration and automation
model for managing infrastructure through the container abstraction layer. The layer
above Kubernetes is grounded in Google’s SRE or operations practices, which standardize
the control, security, and management of services at scale. This layer of service manage-
ment is rooted in Google’s Istio-based Cloud Service Mesh. Enterprise policy and config-
uration automation is built in this layer using Anthos Config Management to provide

6 CHAPTER 1 Overview of Anthos
automation and security at scale. This platform can run on multiple clouds and abstracts
the disparate networking, storage, and compute layers underneath (see figure 1.1).

Figure 1.1 Anthos components and functions

Monitoring
and logging

On-prem

7Summary
Above this Anthos stack is developer experience and DevOps tooling, including a
deployment environment that uses Knative and integrated CICD with Tekton.

Summary
 Modern software applications provide a host of business benefits and are driv-

ing transformation in many industries.
 The backend for these applications is typically based on the cloud native micro-

services architectural pattern, which allows for great scalability, modularity, and
a host of operational and DevOps benefits that are well suited for running on
distributed infrastructure.

 Anthos, which originated in Google Cloud, is a platform for hosting cloud
native applications, providing both development and operational benefits.

One single pane of glass
Melika Golkaram

We live in a world where application performance is critical for success. To better
serve their end users, many organizations have pushed to distribute their workloads
from centralized data centers. Whether to be closer to their users, to enhance disas-
ter recovery, or to take advantage of the benefits of cloud computing, this distribu-
tion has placed additional pressure on the tooling used to manage and support this
strategy. The tools that have flourished under this new paradigm are those that have
matured and become more sophisticated and scalable.

 There is no one-size-fits-all tool. Likewise, no one person can manage the infra-
structure of even a small organization. All applications require tools to manage

This chapter covers
 The advantages of having a single pane of glass

and its components

 How different personas can use and benefit from
these components

 Getting some hands-on experience configuring
the UI and attaching a cluster to the Anthos UI
8

92.1 Single pane of glass
CI/CD, monitoring, logging, orchestration, deployments, storage, authentication/
authorization, and more. In addition to the scalability and sophistication mentioned
earlier, most of the tools in this space offer an informative and user-friendly graphical
user interface (GUI). Having an easily understood GUI can help people use the tool
more effectively because it lowers the bar for learning the software and increases the
amount of pertinent output the user receives.

 Anthos itself has the capacity to support hundreds of applications and thousands
of services, so a high-quality GUI and a consolidated user experience are required to
use the ecosystem to its full potential and reduce the operational overhead. To this
end, Google Cloud Platform offers a rich set of dashboards and integrated tools
within the Google Cloud console to help you monitor, troubleshoot, and interact with
your deployed Anthos clusters, regardless of their location or infrastructure provider.
This single pane of glass allows administrators, operations professionals, developers,
and business owners to view the status of their clusters and application workloads, all
while benefiting from the capabilities of Google Cloud’s Identity and Access Manage-
ment (IAM) framework and any additional security provided on each cluster.

 The Anthos GUI, its “single pane of glass,” is not the first product to attempt to
centralize the visibility and operations of a fleet of clusters, but it is the one that offers
support to provide real-time visibility to a large variety of environments. To fully
understand the benefits of the Anthos GUI, in this chapter, we are going to look at
some of the options available to aggregate and standardize interactions with multiple
Kubernetes clusters.

2.1 Single pane of glass
A single pane of glass offers the following three characteristics that are shared across
all operators, industries, and operations scales:

 Centralization—As the name suggests, a single pane of glass should provide a cen-
tral UI for resources, no matter where they run and to whom they are provided.
The former aspect relates to the infrastructure and cloud provider on which the
clusters are operating and the latter relates to inherently multitenant services,
where one operator centrally manages multiple clients’ clusters and workloads.
With the benefits of a central dashboard, admins will be able to get a high-level
view of resources and drill down to areas of interest without switching the view.

However, a central environment might cause some concern in areas of pri-
vacy and security. Not every administrator is required to connect to all clusters,
and not all admins should be able to have access to the UI. A central environ-
ment should come with its own safeguards to avoid any operational compro-
mise with industry standards.

 Consistency—Let’s go back to the scenario of an operator running clusters and
customers in multicloud or hybrid architectures. Most infrastructure providers,
whether they offer proprietary services or run on open source, attempt to offer
a solid interface for their users. However, they use different terminology and

10 CHAPTER 2 One single pane of glass
have inconsistent views on priorities. Finally, depending on their UI philosophy
and approach, they design the view and navigation differently. Remember, for a
cloud provider, cluster and container management are only parts of the bigger
suite of services and components of a predesigned dashboard. Although this
might be a positive element in single operating environments (you can learn to
navigate outside of the Kubernetes dashboard into the rest of the Cloud Ser-
vices dashboard with minimum switching), it becomes a headache in multienvi-
ronment services and for those who focus only on Kubernetes.

 Ease of use—Part of the appeal of a single pane of glass in operation is how data
coming from different sources is aggregated, normalized, and visualized. This
brings a lot of simplicity in drilling down into performance management and
triage, especially if it combines a graphical interface with it.

A graphical UI has always been an important part of any online application. First, at
some point in an app management cycle, a team doesn’t have either the skills or the
interest for working with remote calls. They expect a robust, easy-to-navigate, and a
highly device-agnostic UI for their day-to-day responsibilities.

 Second, regardless of the team’s skill sets, an aggregated dashboard has so much
more to offer in one concentrated view than calling service providers and perhaps
clusters individually given that the UI provides lots of data fields with the right installa-
tion and readability.

2.2 Non-Anthos visibility and interaction
Anthos is not the first solution to expose information about a Kubernetes cluster
through a more easily digested form than the built-in APIs. Although many develop-
ers and operators have used the command-line interface (CLI), kubectl, to interact
with a cluster, the information presented can be very technical and does not usually
display potential problems in a friendly way. Extensions to Kubernetes, such as Istio or
Anthos Config Management, typically come with their own CLIs as well (istioctl and
nomos, for example). Cross-referencing information between all the disparate tools
can be a substantial exercise, even for the most experienced developer or operator.

2.2.1 Kubernetes Dashboard

One of the first tools developed to solve this problem was the Kubernetes Dashboard
(https://github.com/kubernetes/dashboard). Although this utility is not deployed by
default on new Kubernetes clusters, it is easy to deploy to the cluster and begin using
the information it provides. In addition to providing a holistic view of most of the
components of a Kubernetes cluster, the dashboard also provides users with a GUI
interface to deploy new workloads into the cluster. This makes the dashboard a conve-
nient and quick way to view the status and interact with a new cluster.

 However, it works on only one cluster. You can certainly deploy the Kubernetes
Dashboard to each of your clusters, but they will remain independent of each other
and have no cross-connection. In addition, because the dashboard is located on the

https://github.com/kubernetes/dashboard

112.3 The Anthos UI
cluster itself, accessing it remotely requires a level of effort similar to using the CLI
tool, requiring services, load balancing, and ingress rules to properly route and validate
incoming traffic. Although the dashboard can be powerful for proof of concept or
small developer clusters, multiuser clusters need a more powerful tool.

2.2.2 Provider-specific UIs

Kubernetes was released from the beginning as an open source project. Though
based on internal Google tools, the structure of Kubernetes allowed vendors and
other cloud providers to easily create their own customized versions of Kubernetes,
either to simplify deployment or management on their platforms or to add additional
features. Many of these adaptations have customized UIs for either deployment or
management operations.

 For cloud providers, many of the user interfaces for their other products already
existed and followed a particular style. Each provider developed a different UI for their
version of Kubernetes. Although a portion of these UIs dealt with provisioning and main-
taining the infrastructure of a cluster, some of each UI was dedicated to cluster opera-
tions and manipulation. However, each UI was implemented differently and couldn’t
manage clusters other than the native Kubernetes flavor for that cloud provider.

2.2.3 Bespoke software

Some companies have decided to push the boundaries and develop their own custom
software and UIs to visualize and manage their Kubernetes installations and opera-
tions. Though always an option due to the open standards of the Kubernetes APIs, any
bespoke development brings all the associated challenges that come with maintaining
any custom operations software: maintaining the software for new versions, bug fixing,
handling OS and package upgrades, and so on. For the highest degree of customiza-
tion, nothing beats bespoke software, but the cost-versus-benefit calculation does not
work out for most companies.

2.3 The Anthos UI
Each of the previous solutions has a fundamental flaw that prevents most companies
from fully benefiting from it. The Kubernetes Dashboard has no multicluster capabil-
ity and does not handle remote access easily. The provider-specific UIs work well for
their flavor but cannot handle clusters that are not on their network or running their
version of Kubernetes. And bespoke software comes with a high cost of development
and maintenance. This is where the Anthos multicluster single pane of glass comes
into play. This single pane of glass is an extension of, and embedded in, Google Cloud
Platform’s already extensive Cloud console that allows users to view, monitor, and
manage their entire cloud infrastructure and workloads.

 The solution Google has developed for multicluster visibility in Anthos depends
on a new concept called fleets (formerly referred to as environs), the Connect frame-
work, and the Anthos dashboard. The Anthos dashboard is an enhancement of the

12 CHAPTER 2 One single pane of glass
existing GKE dashboard that Google has provided for several years for its in-cloud
GKE clusters. The Connect framework is new with Anthos and simplifies the commu-
nication process between Google Cloud and clusters located anywhere in the world.
Fleets are methods of aggregating clusters to simplify common work between them.
Let’s take a moment to discuss a bit more about fleets.

2.3.1 Fleets

Fleets are a Google Cloud concept for logically organizing clusters and other resources,
letting you use and manage multicluster capabilities and apply consistent policies
across your systems. Think of them as a grouping mechanism that applies several secu-
rity and operation boundaries to resources within a single project.1 They help admin-
istrators build a one-to-many relationship between a fleet and its member clusters and
resources to reduce the configuration burden of individual security and access rules.
The clusters in a fleet also exist in a higher trust relationship with each other by
belonging to the same fleet. This makes it easier to manage traffic into and between
the clusters and join their service meshes together.

 An Anthos cluster will belong to one and only one fleet and cannot join another
without leaving the first. Unfortunately, this limitation can present a small problem in
complex service communications. For example, assume we have an API service and a
Data Processing service that need to run in distinct fleets for security reasons, but both
need to talk to a bespoke Permissioning service. The Permissioning service can be
placed in one of the two fleets, but whichever service does not belong to Permission-
ing’s fleet will need to talk to the service using outside-the-cluster networking. How-
ever, this rule for fleets prevents users from accidentally merging clusters that must
remain separate, because allowing the common service to exist in both fleets simulta-
neously would open additional attack vectors (see figure 2.1).

 When multiple clusters are in the same fleet, many types of resources must have
unique names, or they will be treated as the same resource. This obviously includes
the clusters themselves but also covers namespaces, services, and identities. Anthos
refers to this as sameness. Sameness forces consistent ownership across all clusters
within a fleet, and namespaces that are defined on one cluster, but not on another,
will be reserved implicitly.

 When designing the architecture of your services, this sameness concept must be kept
in mind. Anthos Service Mesh, for example, typically treats a service that exists in the
same namespace with the same name as an identical service across the entire fleet and
load balances traffic between clusters automatically. If the namespace and/or service in
question has a unique name, this should not cause any confusion. However, accessing the
Webserver service in the Demo namespace might yield unexpected results.

 Finally, Anthos allows all services to use a common identity when accessing exter-
nal resources such as Google Cloud services, object stores, and so on. This common

1 A Google Cloud Platform project is a set of configuration settings that define how your app interacts with Goo-
gle services and what resources it uses.

132.3 The Anthos UI
identity makes it possible to give the services within a fleet access to an external
resource once, rather than cluster by cluster. Although this can be overridden and
multiple identities defined, if resources are not architected carefully and configured
properly, negative outcomes can occur.

2.3.2 Connect: How does it work?

Now that we have discussed fleets, we need to examine how the individual clusters com-
municate with Google Cloud. Any cluster that is part of Anthos, whether attached2 or
Anthos managed, has Connect deployed to the cluster as part of the installation or
registration process. This deployment establishes a persistent connection from the
cluster outbound to Google Cloud that accepts traffic from the cloud and provides

2 Attaching clusters lets you view your existing Kubernetes clusters in the Google Cloud console along with your
Anthos clusters and enable a subset of Anthos features on them, including configuration with Anthos Config
Management. More details can be found at http://mng.bz/pdRE.

For security, the public cluster and sensitive cluster should not belong to the same fleet. In the top two rows, this
is guaranteed while still simplifying some of the connections with the intermediate cluster. In the bottom row, the
intermediate cluster that belongs to both fleets accidentally merges the fleets, violating the security constraints.
To avoid this conflict, Anthos prevents a cluster from belonging to multiple fleets.

Figure 2.1 Example of fleet merging causing security problems

http://mng.bz/pdRE

14 CHAPTER 2 One single pane of glass
cloud-side operations secure access to the cluster. Because the initial connection is
outbound, it does not rely on a fully routable connection from the cloud to the cluster.
This setup greatly reduces the security considerations and does not require the cluster
to be discoverable on the public internet.

 Once the persistent connection is established, Anthos can proxy requests made by
Google Cloud services or users using the Google Cloud UI to the cluster, whether it is
located within Google Cloud, in another cloud provider, at the edge, or on-prem.
These requests use the user’s or the service’s credentials, maintaining the security on
the cluster and allowing the existing role-based access controls (RBAC)3 rules to span
direct connectivity as well as connections through the proxy. A request using the Anthos
UI may look like figure 2.2.

While the tunnel from the Connect Agent to Google Cloud is persistent, each stage of
each request is authenticated using various mechanisms to validate the identity of the
requestor and confirm that layer is allowed to make the request. Skipping layers is not

3 Role-based access control (RBAC) is a set of permissions and an authorization component that allows or denies
admin or compute objects access to a set of requesting resources.

UI event

Request

Request

Request

Response

Response

Response

UI update

AAA
processing

Google Cloud Platform User cluster

GKE API
server

Connect for
Anthos agent

GCP Console Connect for
Anthos proxy

User

GCP Console Connect for
Anthos proxy

User GKE API
server

Connect for
Anthos agent

Figure 2.2 Flow of request and response from Google Cloud to cluster and back

152.3 The Anthos UI
permitted and will be rejected by the next layer receiving the invalid request. An over-
view of the request-response authentication is seen in figure 2.3.

Regardless of any authorization measures at the cluster level, a user must still be
allowed to view the Google Cloud project to which the cluster is attached to use the
Connect functionality. This method uses the standard IAM processes for a given proj-
ect, but having the separate permission allows the security team to grant a user access
to a cluster through a direct connection (or some other tunnel) but not allow them
remote access via Google Cloud.

 Connect is compliant with Google’s Access Transparency,4 which provides trans-
parency to the customer in the following two areas:

4 Access Transparency–enabled services let customers control access to their organization’s data by Google person-
nel. It also provides logs that capture the actions Google personnel take when accessing the customer’s content.

GCP user credentials

ALTS

Google TLS certificate

Request authentication

Kubernetes TLS
certificate

GCP service account
credentials

ALTS

Google TLS certificate
(PKI authenticated)

(0Auth token)

Google Cloud Platform User cluster

(0Auth token)

GKE API
server

Connect for
Anthos agent

GCP Console Connect for
Anthos proxy

User

GCP Console Connect for
Anthos proxy

User GKE API
server

Connect for
Anthos agent

Figure 2.3 Request validation steps from Google Cloud to cluster

16 CHAPTER 2 One single pane of glass
 Access approval—Customers can authorize Google support staff to work on cer-
tain parts of their services. Customers can view the reasons a Google employee
might need that access.

 Activity visibility—Customers can import access logs into their project cloud log-
ging to have visibility into Google employees’ actions and location and can query
the logs in real time, if necessary.

2.3.3 Installation and registration

To use the Connect functionality, we obviously need to install the Connect Agent on
our cluster. We also need to inform Google about our cluster and determine which
project, and, therefore, which fleets, the cluster belongs to. Fortunately, Google has
provided a streamlined utility for performing this task via the gcloud command-line
tool (see http://mng.bz/Op72). This process uses either Workload Identity or a Goo-
gle Cloud service account to enroll the cluster with the project’s Connect pool and
install and start the Connect Agent on the cluster.

 Though these steps enroll the cluster with Google and enable most Anthos fea-
tures, you still need to authenticate with the cluster from the Google Console to view
and interact with the cluster from Google Cloud. Connect allows authentication via
Cloud identity (when using the Connect gateway),5 bearer token, or OIDC, if enabled
on the cluster. The easiest, and recommended, method is to use Cloud Identity, but
this requires the activation and configuration of the Connect Gateway for the cluster.
For more information on Connect Gateway, please see chapter 5 on operations man-
agement with Anthos.

2.4 The Anthos Cloud UI
Now that we’ve done the plumbing, we can walk through and show off the UI. Goo-
gle provides the Anthos UI via the Cloud console at the project level. Because the
Anthos UI is visible only at the project level, only clusters registered to that project’s
fleets are visible. The Anthos UI menu contains multiple subpages, each focusing on
a distinct aspect of cluster management. At the time of writing, these sections are
the Dashboard, Service Mesh, Config Management, Clusters, Features, Migrate to
Containers, Security, Cloud Run for Anthos, and Virtual Machines. Let’s look at
each of these pages.

2.4.1 The Anthos dashboard

The default page for the Anthos menu, and the central hub for the UI, is the dash-
board. The dashboard is intended to give admins a wide-angle view of the clusters in
the current fleet, while making it easy to drill down into details for the specific compo-

5 Google Cloud Identity and Access Management (IAM) lets you grant more granular access to specific Google
Cloud resources and prevents unwanted access to other resources.

http://mng.bz/Op72

172.4 The Anthos Cloud UI
nents. To start, go to the hamburger menu on the top-left corner of the console (fig-
ure 2.4). Select Anthos from the menu to enter the Anthos Features page.

Figure 2.5 shows an example of the Anthos dashboard view.
 Although this example shows the current Anthos project cost, the dashboard still

uses Google’s IAM, and that information will appear only if the viewing user has the
appropriate billing-related permissions. The remaining sections highlight critical
errors or other user-involved problems for that aspect of Anthos. Following those links
takes you to the appropriate subpage.

Figure 2.4 Navigation to
the Anthos dashboard

18 CHAPTER 2 One single pane of glass
2.4.2 Service Mesh

The Service Mesh page shows all services registered in any of the clusters in the cur-
rent fleet. The initial list shows the names, namespaces, and clusters of each service,
as well as basic metrics, such as error rate and latency, at predefined thresholds. You
can also filter this list by namespace, cluster name, requests per second, error rate,
latency, request size, and resource usage to allow admins to easily drill down for spe-
cific tasks. Figure 2.6 shows the Service Mesh screen filtered for services in the default
namespace.

Figure 2.5 Example of an Anthos dashboard

Figure 2.6 Service Mesh UI with filters

192.4 The Anthos Cloud UI
2.4.3 Config Management

Anthos Config Management, explored in depth in chapter 11, is Anthos’s method
of automatically adding and maintaining resources on a Kubernetes cluster. These
resources can include most common Kubernetes core objects (such as Pods, Services,
and Service Accounts) as well as custom entities such as policies and cloud-configuration
objects. This tab displays the list of all clusters in the current fleet, their sync status,
and which revision is currently enforced on the cluster (figure 2.7). The table also
shows whether Policy Controller6 has been enabled for the cluster.

Selecting a specific cluster opens the Config Management cluster detail, as shown in
figure 2.8. This detailed view gives further information about the configuration set-
tings, including the location of the repo used, the cycle for syncing, and the version of
ACM running on the cluster.

6 Policy Controller is part of Anthos Config Management, allowing administrators to define customized rules to
place guardrails for security, resource management, or operational reasons.

Figure 2.7 Clusters in Config Management view

20 CHAPTER 2 One single pane of glass
2.4.4 Clusters

The Clusters menu lists all clusters in the current fleet, along with the location, type,
labels, and any warnings associated with each cluster, as shown in figure 2.9. By select-
ing a cluster in the list, a more detailed view of the cluster, with the current Kuberne-
tes version, the CPU and memory available, and the features enabled, will be displayed
in the right sidebar, as shown in figure 2.10. Below the sidebar information, a Manage
Features button will take you to the Features tab for that cluster. In figure 2.9, the fol-
lowing clusters are created on the project:

 GKE (cluster-gcp)
 Baremetal (cluster-1)
 Azure AKS (azure-cluster and externalazure)

Figure 2.8 Cluster detail in Config Management view

212.4 The Anthos Cloud UI
Figure 2.9
List view in the
Clusters menu

Figure 2.10 Cluster detail
sidebar in the Clusters menu

22 CHAPTER 2 One single pane of glass
2.4.5 Features

The Anthos service encompasses several features (covered in more detail in other
chapters), including:

 Configuration Management
 Ingress
 Binary Authorization
 Cloud Run for Anthos
 Service Mesh

The Features menu provides an easy way to enable and disable specific services for the
entire fleet. Figure 2.11 shows the list of existing features for every cluster.

An admin also can disable or enable most of these features from the interface (some
features are integral components of Anthos and cannot be disabled). The same possi-
bility also exists through gcloud or the fleet management API for better automation.
It’s worth noting that if enablement is not fully possible through the visual interface,
the console generates the right commands for the admin to seamlessly enter them
into their CLI.

2.4.6 Migrating to containers

One of the major benefits of Anthos is the automatable migration of Windows and
Linux VMs to containers and their deployment onto a compatible Anthos cluster.

Figure 2.11 Features menu

232.5 Monitoring and logging
Previously, this was primarily done via CLI and initiated from the source cluster, but
this menu now provides a convenient, centralized process for shifting VMs to con-
tainers and into a different deployment scheme. The menu contains tabs for viewing
and managing your migrations, sources, and processing clusters. For more informa-
tion on the process of migrating your existing VMs to containers, see chapter 15,
“Migrate.”

2.4.7 Security

The Security menu is where you find multiple tools related to viewing, enabling, and
auditing the security posture of the clusters in the current fleet. Figure 2.12 shows the
basic view when you first select the Security menu.

As you can see, we do not currently have Binary Authorization7 enabled, but Anthos
provides us a shortcut to quickly turn it on. Once we do, we are presented with the
configuration page for Binary Authorization (figure 2.13), enabling us to view and
edit the policy, if needed.

2.5 Monitoring and logging
The Anthos menu in the GCP console is only part of the solution, however. Google
also provides the operations suite, including Cloud Monitoring and Cloud Logging,
to help with managing the operations of applications and infrastructure. Anthos sim-
plifies the logging of application data and metrics to the operations suite as part of the
default deployment. This can make it easy to add SLOs and SLAs based on these met-
rics.8 In addition, several pages within the Anthos menu include shortcuts and buttons
that trigger wizards to create SLOs in a guided fashion.

7 Binary Authorization is explored in further detail in chapter 12, “Integrations with CI/CD.”
8 See chapter 4 for details on SLIs, SLOs, and SLAs with Anthos.

Figure 2.12 Security menu

24 CHAPTER 2 One single pane of glass
2.6 GKE dashboard
Google has provided the GKE dashboard for several years to assist with viewing and
managing your clusters for GKE in GCP. With the release of Anthos, the GKE dash-
board has been expanded to display the details for Kubernetes clusters attached via
GKE Connect. Although the Anthos menu is focused on the clusters at a high level
and on the Anthos-specific features, such as the Service Mesh and Config Manage-
ment, the GKE dashboard allows an admin to drill down to specific workloads and ser-
vices. The next section presents a tutorial to register an Azure AKS cluster into an
Anthos dashboard.

2.7 Connecting to a remote cluster
In this example, a cluster is already created in the Azure Kubernetes Service (AKS)
engine. Google allows several cluster types to be registered remotely, referred to as
attached clusters (see http://mng.bz/Y6ne). To attach these clusters, you will need to
take the following steps:

Figure 2.13 Binary Authorization policy details

http://mng.bz/Y6ne

252.7 Connecting to a remote cluster
1 Open a terminal window on a computer that has access to the cluster to be reg-
istered. Note the full path to the kubeconfig file used to connect to the cluster.

2 In the Google console, under the IAM section, create a Google Service account
with the role GKE Connect Agent. Generate an account key and save it.

3 Decide on the official designation for the cluster in your Anthos project; this is
the Membership Name.

4 Use the next command to register your cluster, replacing the <FULLCAPS> fields
with the appropriate information:9

gcloud container fleet memberships register <MEMBERSHIP_NAME> \
 --context=<KUBECONFIG_CONTEXT> \
 --kubeconfig=<KUBECONFIG_PATH> \
 --service-account-key-file=<SERVICE_ACCOUNT_KEY_PATH>

In a few minutes, your cluster appears on the GCP console, as displayed in figure 2.14.

9 The --kubeconfig line is the local filepath where your kubeconfig containing an entry for the cluster being
registered is stored. This defaults to $KUBECONFIG if that environment variable is set; otherwise, this defaults
to $HOME/.kube/config.

Figure 2.14 Registered cluster view

26 CHAPTER 2 One single pane of glass
5 Authenticate to the registered cluster. As you can see, a warning sign appears
next to the recently created cluster (externalazure). That is normal and a
reminder to sign in to the cluster to perform more operations on it. Figure 2.15
shows the view of the registration status of the cluster.

By clicking the three dots for a cluster, you can see the available actions. Click Login,
and you can see the following login options are available:

 Use your Google identity to log in
 Token
 Basic authentication
 Authenticate with Identity Provider configured for the cluster

Let’s go ahead and authenticate with a token. To do that, you need to have a Kuberne-
tes Service Account (KSA) with the right permissions. If you do not already have one,
create a KSA by typing the following in your terminal:

KSA_NAME=[KSA_NAME]
kubectl create serviceaccount ${KSA_NAME}
kubectl create clusterrolebinding [VIEW_BINDING_NAME] \
--clusterrole view --serviceaccount default:${KSA_NAME}
kubectl create clusterrolebinding [CLOUD_CONSOLE_READER_BINDING_NAME] \
--clusterrole cloud-console-reader --serviceaccount default:${KSA_NAME}

Figure 2.15 View of the registration status of the cluster

272.7 Connecting to a remote cluster
Having created the KSA, acquire the KSA’s bearer token:

SECRET_NAME=$(kubectl get serviceaccount [KSA_NAME] -o
jsonpath=‘{$.secrets[0].name}’)

kubectl get secret ${SECRET_NAME} -o jsonpath=‘{$.data.token}’ | base64 --decode

After you have pasted the token in the login prompt in the Google console, you imme-
diately get the same view in your AKS cluster (externalazure) that you would see in
other cluster types. Figure 2.16 provides that view.

Figure 2.17 shows the nodes and their health status through the dashboard.
 Several other types of Kubernetes clusters that are not managed by GCP can be

attached to Anthos this way. Doing so gives operations simplicity and consistency, and
permits access security to administrators from a single platform.

KSA permissions
All accounts logging in to a cluster need to hold at least the following Kubernetes
RBAC roles in the cluster:

 view—Kubernetes primitive role that allows read-only access to see most
objects in a namespace. It does not allow viewing roles or role bindings.

 cloud-console-reader—Users who want to view your cluster’s resources in
the console need to have the relevant permissions to do so. You define this
set of permissions by creating a ClusterRole RBAC resource, cloud-console-
reader, in the cluster. cloud-console-reader grants its users the get, list,
and watch permissions on the cluster’s nodes, persistent volumes, and stor-
age classes, which allow them to see details about these resources.

Figure 2.16 Anthos attached cluster authenticated

28 CHAPTER 2 One single pane of glass
Summary
 Providing a single pane of glass to hybrid and multicloud Kubernetes for any

organization who uses microservices is a stepping stone to a successful and
global operation.

 One of the biggest benefits to a single pane of glass is that admins can use the
same interface to configure service-level objectives and alerts to reassure service
guarantees.

 The Anthos UI provides some major advantages including these:
– Central operation of services and resources
– Consistent operation experience across multiple service providers
– Effortless navigation and easy staff training
– A window to any organizational persona

 The Anthos UI provides multiple usages, including cluster management, ser-
vice operation, and observability, using a unified interface.

Figure 2.17 Node view on attached cluster

Computing environment
built on Kubernetes
Scott Surovich

Like many new technologies, Kubernetes can be difficult to learn and implement.
Creating a cluster manually requires an extensive skill set that includes public key
infrastructure, Kubernetes, Linux, and networking. Many vendors recognized this
problem and have automated cluster creation, allowing you to create Kubernetes
clusters with little to no Kubernetes background. Although automation allows any-
one to create a cluster, it also eliminates a lot of Kubernetes knowledge that can
help you troubleshoot problems that you may encounter as a cluster administrator,
or a developer, consuming the platform.

This chapter covers
 Understanding Kubernetes management,

architecture, components, and resources

 Declarative application management

 Understanding Kubernetes resources

 Controlling Pod scheduling

 Examples and case study
29

30 CHAPTER 3 Computing environment built on Kubernetes
 The question that comes up frequently is, “Do you really need to know Kuberne-
tes?” The answer differs, depending on the role you will play in the cluster, but no
matter what role you will have, you will need to have some understanding of how
Kubernetes functions. For example, if you are a cluster admin, you should understand
how all the cluster components interact. This understanding will help you troubleshoot
cluster and workload deployment problems. As a developer, you should understand
basic Kubernetes operations and the various Kubernetes resources, also referred to as
Kubernetes objects, which can be used to deploy your workloads. It’s also important to
understand how to force your deployment to a node or a set of nodes by using options
like selectors, tolerations, and affinity/anti-affinity rules.

 In this chapter, you will learn how each component in a Kubernetes cluster inter-
acts with the others. Once you understand the basic interaction, you will learn about
the most used Kubernetes resources. Finally, to end the chapter, you will learn the
details of how Kubernetes schedules workloads and how to constrain the scheduler to
place workloads based on labels, selectors, and affinity/anti-affinity rules.

3.1 Why do you need to understand Kubernetes?
At the heart of Anthos is Kubernetes, which provides the compute engine for applica-
tions running in a cluster. Kubernetes is an open source project created by Google
that has been around for years. At the time of this writing, the Cloud Native Comput-
ing Foundation has certified 90 Kubernetes offerings. Among the certified offerings
are distributions from IBM, Canonical, SUSE, Mirantis, VMware, Rancher, Amazon,
Microsoft, and, of course, Google.

 Hearing the common complaint that deploying Kubernetes was “too difficult,”
most vendor solutions made it easier. Although making the installation easier is a nec-
essary step for most enterprises and frees up time to focus on more important activi-
ties, it does lead to a problem: not understanding the basic components and resources
included in a cluster.

 Using a different service example, assume you have an application that requires a
new database. You may not have any idea how to create a new database schema or SQL
queries, but you know that Google offers MySQL, and you create a new instance for
the application. The MySQL instance will be created automatically, and once it has
been deployed, you can create a database using the GCP console.

 Because you may not have a strong SQL background, you may stumble through
and create a single table in the database with multiple fields that will work with the
application. The database may perform well for a few days or weeks, but as it gets
larger, the performance will start to slow down. A single-table database, though easy to
implement, is not an optimized solution. If you had a SQL background, you would
have created a database with multiple tables and relationships, making the database
more efficient and scalable.

 This scenario is like understanding how Kubernetes works and the features pro-
vided by the system. To use Kubernetes to its full potential, you should understand the

313.1 Why do you need to understand Kubernetes?
underlying architecture and the role of each component. Knowing how components
integrate with one another and what resources can be used will help you make good
architectural decisions when deploying a cluster or deploying an application.

 The details to cover each cluster component and the more than 60 resource types
included with Kubernetes could fill a series of books. Because many of the topics in this
chapter reference resources including Pods and DaemonSets, it will begin with a Kuber-
netes resource pocket guide, providing a brief definition of the most used API resources.

 In this chapter, we will provide a background of Kubernetes components, resources,
and commonly used add-on components, which provide the compute power that pow-
ers Anthos. If you are newer to Kubernetes, many books on the market today explain
how to build a cluster and how to use kubectl and devote entire chapters to each
Kubernetes resource. This chapter should be viewed as an introduction to resources,
with an in-depth focus on how to control the placement of deployments in a cluster.

3.1.1 Technical requirements

The hands-on portion of this chapter will require you to have access to a Kubernetes
cluster running in GCP with the following deployment pattern:

 The cluster must be deployed across at least two different zones in the same
region. The examples shown in this chapter will be based on us-east4 zones,
across us-east4-a, us-east4-b, and us-east4-c, but you can use different zones for
your cluster.

 Each zone must contain at least one Kubernetes node.

This chapter is not specific to Kubernetes on GCP; the resources and constructs used
in the exercises are applicable to any Kubernetes cluster.

3.1.2 History and overview

Because the audience for this book includes readers who may be newer to Kubernetes
and readers who are seasoned Kubernetes administrators, we have added information
covering some history and progression from physical servers to containers in the online
appendix A.

3.1.3 Managing Kubernetes clusters

When a company decides to run a Kubernetes cluster in the cloud, they will often use
the cloud provider’s native offering, such as the following:

 Google Kubernetes Engine (GKE): https://cloud.google.com/kubernetes-engine/
 Amazon Elastic Kubernetes Service (EKS): https://aws.amazon.com/eks/
 Azure Kubernetes Service (AKS): http://mng.bz/GR7V

Using the native offering offers the quickest and easiest way to get a new cluster up
and running, because the providers have automated the installation. To get from
ground zero to a running cluster, you need to provide only a few pieces of informa-
tion, like the number and size of the nodes, zones, and regions. With this information

https://cloud.google.com/kubernetes-engine/
https://aws.amazon.com/eks/
http://mng.bz/GR7V

32 CHAPTER 3 Computing environment built on Kubernetes
and a click or API call, you can have a cluster in a few minutes, ready to deploy your
applications.

 Google was the first cloud service provider to offer their Kubernetes solution across
both the cloud and on-prem, without requiring any specialized hardware solution.
Before Google did this, other offerings required organizations to deploy a different
solution for each cloud provider and their on-prem clusters. Using a different solution
for multiple installations often leads to a variety of different problems, including these:

 Increased staff to support each deployment
 Differences in the deployment of an application for on-prem and off-prem
 Different identity management solutions
 Different Kubernetes versions
 Different security models
 Difficulty in standardizing cluster operations
 No single view for all clusters

Each of these differences makes the job of running Kubernetes more difficult and,
ultimately, more costly for an organization.

 Google recognized these problems and created Anthos, which addresses the on-
prem and off-prem challenges by providing a Kubernetes installation and manage-
ment solution that not only works on GCP and on-prem clusters but also in other
cloud providers like AWS and Azure running Anthos.

 Using Anthos provides a common environment no matter where you deploy it.
Imagine having a single support path and a common set of tools for all your clusters
in GCP, AWS, Azure, and on-prem. Anthos provides an organization with many advan-
tages, including the following:

 A consolidated view of clusters inside the Anthos console
 A common service mesh offering
 Configuration management using ACM
 All options supported by Google: a single point of contact for all cluster

components

Best of all, Anthos is based on the upstream Kubernetes, so you get all the standard
features but with the added tools and components that Anthos provides, making mul-
tiple cloud cluster management easier.

 Next, we will jump into the architecture that makes up a Kubernetes cluster and
how the components communicate with each other.

3.2 Kubernetes architecture
Like any infrastructure, Kubernetes consists of multiple components that communi-
cate to create a cluster. The components are grouped into two layers: the control plane
and the worker nodes. The control plane keeps the cluster state, accepting incoming
requests, scheduling workloads, and running controllers, whereas the worker nodes

333.2 Kubernetes architecture
communicate with the control plane to report available resources, run container
workloads, and maintain node network rules.

 If you are running Anthos on GCP, you may not be familiar with the components
of the control plane or the worker nodes, because you do not interact with them like
you would with an on-prem installation. As this section will explain, Kubernetes clus-
ters have a layer called the control plane that contains the components required to
run Kubernetes. When a cluster is running in GCP, the control plane is created in a
Google-managed project, which limits you from interacting with the admin nodes and
the Kubernetes components.

 All GKE clusters can be viewed in your GCP console, located under the Kubernetes
Engine section. For each cluster, you can view the details of the nodes by clicking on
the cluster in the details pane, then selecting Nodes. The node details will be dis-
played, as shown in figure 3.1.

Unlike GKE on GCP, an on-prem installation of GKE provides access to the control
plane nodes and Kubernetes resources for the clusters. Of course, Google still sup-
ports the on-prem control plane, but you may be asked to look at components to trou-
bleshoot any problems or configuration changes to a cluster. If you have only
deployed GKE on GCP, you may not know all the components of the control plane
and how they interact. Understanding this interaction is vital to troubleshooting and
finding root causes to any problems.

NOTE When you deploy a GKE on-prem cluster, three Kubernetes config files
are created. One will be named using the user cluster’s name with a suffix of
-kubeconfig, one is called kubeconfig, and the last one is called internal-
cluster-kubeconfig-debug. The kubeconfig file is configured to target the
load-balanced address of the admin cluster, whereas internal-cluster-kubeconfig-
debug is configured to target the admin cluster’s API server directly.

To view the multiple configuration files, see figure 3.2.
 With the importance of understanding the system, let’s move on to each layer in a

cluster, starting with the control plane.

Figure 3.1 GKE node details

34 CHAPTER 3 Computing environment built on Kubernetes
3.2.1 Understanding the cluster layers

The first layer, the control plane, contains five or six components (in reality, the two
controllers actually contain multiple components). The control plane includes the
components that provide cluster management, cluster state, and scheduling features.
We will detail each component in the next section, but for now, we just want to intro-
duce the control plane components, shown here:

 ETCD
 The Kubernetes API server
 The Kubernetes scheduler
 The Kubernetes controller manager, which contains multiple controllers

– Node controller
– Endpoint controller
– Replication controller
– Service account/token controller

 The cloud controller manager, which contains multiple controllers
– Route controller
– Service controller
– Node controller

When a user cluster is added to an Admin
cluster, a new namespace is created using the
name that was given to the user cluster. In this
example, the admin cluster is managing two user
clusters, and .cluster-001 cluster-002
Each namespace contains the Control Plane
components for the user cluster.

Cluster Namespace

NAME READY

api

kube

kube

calico-controller-xxx

cluster- -controller

kube-apiserver-0

-controller-manager-xxx

kube-etcd-0

kube-etcd-events-0

-scheduler-xxx

metrics-server-operator-xxx

monitoring-operator-xxx

1/1
2/2
3/3
2/2
2/2
2/2
2/2
1/1
1/1

Cluster-001 Namespace

NAME READY

api

kube

kube

calico-controller-xxx

cluster- -controller

kube-apiserver-0

-controller-manager-xxx

kube-etcd-0

kube-etcd-events-0

-scheduler-xxx

metrics-server-operator-xxx

monitoring-operator-xxx

1/1
2/2
3/3
2/2
2/2
2/2
2/2
1/1
1/1

Cluster-002 Namespace

system

-node-lease

-public

default

gke-

cluster-001

cluster-002

kube

kube

NAME STATUS AGE

Active
Active
Active
Active
Active
Active

65d
65d
65d
65d
65d
65d

Figure 3.2 Admin cluster and user cluster configuration files

353.2 Kubernetes architecture
To view a graphical representation of the control plane, see figure 3.3. At the end of
this section, we will provide a complete component diagram, including how each
component communicates.

The second layer in the cluster is the collection of worker nodes, which are responsi-
ble for running the cluster workloads. Each worker node has three components that
work together to run applications, as shown in figure 3.4.

Up to this point, we haven’t explained how each component interacts with the others.
Before we show a full diagram of cluster interactions, we need to understand each
component in the cluster. In the next section, we will explain each cluster component,
and, to close out the section, we will combine the two diagrams to show the connectiv-
ity between all components.

3.2.2 The control plane components

As mentioned earlier, the control plane includes up to six components. Each of the
components works together to provide cluster services. Understanding each compo-
nent is key to delivering a robust, stable cluster.

ETCD

Every resource in the cluster and its state are maintained in the etcd key-value data-
base. The entire cluster state is stored inside this database, making etcd the most
important component in a cluster. Without a functioning etcd database, you do not
have a functioning cluster.

Figure 3.3 Control
plane components

Figure 3.4 Worker
node components

36 CHAPTER 3 Computing environment built on Kubernetes
 Because etcd is so important, you should always have at least three replicas run-
ning in a cluster. Depending on the size of the cluster, you may want to have more
than three, but no matter how many you decide to run, always run an odd number of
replicas. Running an odd number of etcd nodes allows the cluster to elect a majority
leader, minimizing the chance of the etcd cluster going into a split-brain state. If a
cluster goes into a split-brain state, more than one node claims to be the majority
leader, which leads to data inconsistencies and corruption. If you find yourself in a
split-brain state, you will need to recreate the etcd cluster from an etcd backup.

 Although running multiple copies will make etcd highly available, you also need to
create a regular backup of your database and store it outside of the cluster in a safe
location. If you lose your entire cluster or your etcd database gets corrupted, you will
be able to restore your backup to restore a node or the entire cluster. We will explain
the process to back up etcd later in this chapter.

 The last consideration for etcd after making it highly available and creating regu-
lar backups is security. The etcd database contains every Kubernetes resource, so it will
contain sensitive data like secrets, which may contain data like passwords. If someone
gets a copy of your etcd database, they can easily pull any of the resources out because,
by default, they are stored as clear text.

 Covering etcd could require an entire chapter. For more information on etcd,
head over to the main etcd site at https://etcd.io/docs/. Google also provides the
steps and a script to back up GKE on-prem clusters. You can find the documentation
and the script at http://mng.bz/zm1r.

THE KUBERNETES API SERVER

The API server is the front door to a cluster. All requests that come into the cluster
enter through the API server, which will interact with the other component to fulfill
requests. These requests come from users and services from the kubectl CLI, Kuber-
netes Dashboard, or direct JSON API calls.

 It’s really an event-driven hub-and-spoke model. The API server encapsulates etcd.
All other components communicate with the API server. The API server doesn’t com-
municate with controllers directly in response to requests. Instead, the controllers
watch for relevant change events.

THE KUBERNETES SCHEDULER

If the API server receives a request to create a Pod, it will communicate with the
Kubernetes scheduler, which decides which worker node will run the workload.

 When a workload attempts to request a resource that cannot be met, or has con-
straints that cannot be matched, it will fail to schedule and the Pod will not start. If
this happens, you will need to find out why the scheduling failed and either change
your deployment code or add resources to your nodes to fulfill the request.

THE KUBERNETES CONTROLLER MANAGER

The controller manager is often referred to as a control loop. To allow Kubernetes to
keep all resources in a requested, desired state, the state of each resource must be

http://mng.bz/zm1r
https://etcd.io/docs/

373.2 Kubernetes architecture
compared to its requested state. The process that makes this happen is known as a con-
trol loop.

 The Kubernetes controller manager consists of a single binary that runs separate
threads for each “logical” controller. The bundled controllers and their roles are
shown in table 3.1.

The main concept to take away from the table is that by using a control loop, the
manager constantly checks the resource(s) that it controls to keep them in the
declared state.

 The Kubernetes controller manager deals with internal Kubernetes resource
states. If you are using a cloud provider, your cluster will need a controller to maintain
certain resources, which is the role of the cloud controller manager.

THE CLOUD CONTROLLER MANAGER

NOTE You may not see this controller on every cluster you interact with. A
cluster will run a cloud controller only if it has been configured to interface
with a cloud provider.

To allow cloud providers flexibility, the cloud controller manager is separate from the
standard Kubernetes controller manager. By decoupling the two controllers, each
cloud provider can add features to their offering that may differ from other providers
or base Kubernetes components.

 Like the Kubernetes controller manager, the cloud controller manager uses a con-
trol loop to maintain the desired state of resources. It is also a single binary that runs
multiple controllers and their processes, as shown in table 3.2.

Table 3.1 Bundled controllers and their roles

Controller Description

Node Maintains the status of all nodes

Replication Maintains the number of pods for replication controllers

Endpoint Maintains the mapping of pods to services, creating endpoints for services

Service accounts/token Creates the initial default account and API tokens for namespaces

Table 3.2 Controllers run by the cloud controller manager

Controller Description

Node Creates node resources and maintains the status of the nodes located in the cloud provider

Route Maintains network routes to provide node communication

Service Maintains cloud provider components like load balancers, network filtering, and IP
addresses

38 CHAPTER 3 Computing environment built on Kubernetes
Finally, when we say cloud provider, we do not mean you are limited to only public cloud
service providers. At the time of this writing, Kubernetes includes support for the fol-
lowing cloud providers:

 Amazon AWS
 Microsoft Azure
 Google Cloud Platform (GCP)
 OpenStack
 Huawei
 vSphere

Now that the control plane has been explained, let’s move on to the worker node
components.

3.2.3 Worker node components

From a high level, you should have a basic understanding of the components in the
control plane. It’s the layer responsible for cluster interaction and workload deploy-
ments. Alone, the control plane can’t do very much—it needs to have a target that
can run the actual workload once it’s scheduled, and that’s where the worker node
comes in.

THE KUBELET

The kubelet is the component responsible for running a Pod and for reporting the
node’s status to the Kubernetes scheduler. When the scheduler decides which node
will run a workload, the kubelet retrieves it from the API server, and the Pod is created
based on the specs that were pulled.

KUBE-PROXY

We will mention this in more detail when we discuss services in the next section, but
for now you only need to understand a basic overview of kube-proxy. kube-proxy is
responsible for creating and deleting network rules, which allow network connectivity
to a Pod. If the host operating system offers a packet filter, kube-proxy will use it, but if
no packet filter is offered, the traffic will be managed by kube-proxy itself.

 Depending on the network provider you decide to use for a cluster, you may have
the option to run your cluster in a kube-proxyless mode. A Container Network Inter-
face (CNI) like Cilium uses eBPF to provide the same functionality that kube-proxy
provides but without requiring additional components outside of the base CNI
deployment.

CONTAINER RUNTIME

The container runtime is the component responsible for running the actual con-
tainer on the host. It has become common for people to refer to the container run-
time as simply Docker. This is understandable because Docker did bring containers to
the masses, but over the years, other alternatives have been developed. Two of the
most popular alternatives are CRI-O and containerd.

393.2 Kubernetes architecture
 At one time, the container runtime was integrated into the kubelet, which made
adding a new runtime difficult. As Kubernetes matured, the team developed the Con-
tainer Runtime Interface (CRI), which provides the ability to simply “plug in” a con-
tainer runtime. No matter which runtime is in use, its responsibility is the same: to run
the actual container on the node.

 Now that we have reviewed each layer and their components, let’s show the con-
nectivity between the two layers and how the components interact, as illustrated in fig-
ure 3.5.

This concludes the section on Kubernetes cluster components. Knowing how the
components interact will help you to diagnose problems and understand how the
cluster interacts as a system.

 Depending on your role, understanding the cluster components and how they
interact may be less important than understanding cluster resources. Kubernetes
resources are used by every user that interacts with a cluster, and users should under-
stand, at the very least, the most used resources. For reference, you can read about
Kubernetes resources on the Kubernetes website at http://mng.bz/0yRm.

Figure 3.5 Cluster component communications

http://mng.bz/0yRm

40 CHAPTER 3 Computing environment built on Kubernetes
 To effectively deploy an application on Kubernetes, you need to understand the
features of the infrastructure, starting with Kubernetes objects. Next, we will move on
to DevOps paradigms and Kubernetes cluster components.

3.2.4 Understanding declarative and imperative

In DevOps, an automation framework can use two different implementation methods,
referred to as DevOps paradigms. They include the declarative model and the impera-
tive model.

 Each of the paradigms will be explained in this chapter, but before diving into the
differences between them, you should understand the concept of a control loop.

UNDERSTANDING CONTROL LOOPS

To maintain your desired state, Kubernetes implements a set of control loops. A con-
trol loop is an endless loop that is always checking that the declared state of a resource
is the same as its current state.

 If you declare that a deployment should have three replicas of a Pod, and one Pod
is deleted accidentally, Kubernetes will create a new Pod to keep the states in sync. Fig-
ure 3.6 shows a graphical representation of the ReplicaSet control loop and how it
maintains the desired replica count.

As you can see, a control loop doesn’t need to be complex to maintain a desired state.
The replication controller simply keeps looping through all the ReplicaSet resources
in the cluster, comparing the currently available number of Pods to the desired num-
ber of Pods that is declared. Kubernetes will either add or delete a Pod to make the
current replica count equal to the count that has been set on the deployment.

 Understanding the features of Anthos and how Kubernetes maintains the declared
state of a deployment is important for any user of Kubernetes, but it’s only the begin-
ning. Because deploying a cluster has been made so simple by many vendors, develop-
ers and administrators often overlook the advantages of understanding the entire
system. As mentioned earlier, to design an effective cluster or application, you should
understand the basic functionality of the cluster components. In the next section, the
Kubernetes architecture will be covered, including the components of the control
plane and worker nodes and how they interact with each other.

Figure 3.6 Control loop example

413.2 Kubernetes architecture
 One of the first concepts to understand is the difference between the declarative
and imperative models. Table 3.3 provides a brief description of each model.

In a declarative model, you can manage several resources in a single file. For example,
if we wanted to deploy an NGINX web server that included a new namespace, the
deployment, and a service, we would create a single YAML file with all the resources.
The manifest would then be deployed using the kubectl apply command, which will
create each resource and add an annotation that includes the last applied configura-
tion. Because Kubernetes tracks the resources and you have all the resources in a sin-
gle file, it is easier to manage and track changes to the deployment and resources.

 In an imperative model, you must run multiple commands to create your final
deployment. Using the previous example where you want to deploy an NGINX server,
a service, and an Ingress rule, you would need to execute the following three kubectl
commands:

kubectl create ns web-example
kubectl run ngnix-web --image=nginx:v1 -n web-example
kubectl create service clusterip nginx-web –tcp=80:80

Although this would accomplish the same deployment as our declarative example, it
has some limitations that are not immediately noticeable using our simple example.
One limitation is that the kubectl command does not allow you to configure every
option available for each resource. In the example, we deploy a Pod with a single con-
tainer running NGINX. If we needed to add a second container to perform a special-
ized task, like logging, we wouldn’t be able to add it imperatively because the kubectl
command does not have the option to launch two containers in a Pod.

 It is a good practice to avoid using imperative deployments unless you are attempt-
ing to resolve a problem quickly. If you find yourself using imperative commands for
any reason, you should keep track of your changes so that you can alter your declara-
tive manifests to keep them in sync with any changes.

 To understand how Kubernetes uses the declarative model, you need to under-
stand how the system maintains the declared state with the currently running state for
a deployment by using control loops.

Table 3.3 Declarative and imperative models

Model Description

Declarative Developers declare what they would like the system to do; there is no need to tell the
system how to do it.

The declarative model uses Kubernetes manifests to declare the application’s desired state.

Imperative Developers are responsible for creating each step required for the desired end state. The
steps to create the deployment are completely defined by the developer.

The imperative model uses kubectl commands like create, run, and delete to tell the
API server what resources to manage.

42 CHAPTER 3 Computing environment built on Kubernetes
3.2.5 Understanding Kubernetes resources

Throughout this book, you will see references to multiple Kubernetes resources. As
mentioned earlier in the chapter, there are more than 60 resource types included with
a new cluster, not including any custom resources that may be added through CRDs
(custom resource definitions). Multiple Kubernetes books are available, so this chap-
ter will provide only an introduction to each resource to provide a base knowledge
that will be used in most of the chapters.

 It’s challenging to remember all the base resources, and you may not always have a
pocket guide available to you. Luckily, you can use a few commands to look up
resources and the options that are available for each. The first command, shown next,
lists all the API resources available on a cluster:

kubectl api-resources
NAME SHORTNAMES APIVERSION NAMESPACED KIND
bindings v1 true Binding
componentstatuses cs v1 false ComponentStatus
configmaps cm v1 true ConfigMap
endpoints ep v1 true Endpoints
events ev v1 true Event
limitranges limits v1 true LimitRange
namespaces ns v1 false Namespace
nodes no v1 false Node
persistentvolumeclaims pvc v1 true PersistentVolumeClaim
persistentvolumes pv v1 false PersistentVolume
pods po v1 true Pod
podtemplates v1 true PodTemplate
replicationcontrollers rc v1 true ReplicationController
resourcequotas quota v1 true ResourceQuota
secrets v1 true Secret
serviceaccounts sa v1 true ServiceAccount
services svc v1 true Service

The output provides the name of the resource—any short name, if it can be used at a
namespace level—and the kind of resource. This is helpful if you know what each one
does, but you forgot the name or whether it can be set at a namespace level. If you
need additional information for any resource, Kubernetes provides the next com-
mand, which provides the details for each one:

kubectl explain <resource name>

The explain command provides a short description of the resource and all the fields
that can be used in a manifest. For example, next you see a brief description of what a
Pod is and some of the fields that can be used when creating the resource:

KIND: Pod
VERSION: v1

DESCRIPTION:
 Pod is a collection of containers that can run on a host. This resource is

created by clients and scheduled onto hosts.

433.2 Kubernetes architecture
FIELDS:
 apiVersion <string>
 APIVersion defines the versioned schema of this representation of an
 object. Servers should convert recognized schemas to the latest internal
 value, and may reject unrecognized values. More info:
 https:/ /git.k8s.io/community/contributors/devel/sig-architecture/api-

conventions.md#resources

 kind <string>
 Kind is a string value representing the REST resource this object
 represents. Servers may infer this from the endpoint the client submits
 requests to. Cannot be updated. In CamelCase. More info:
 https:/ /git.k8s.io/community/contributors/devel/sig-architecture/api-

conventions.md#types-kinds

 metadata <Object>
 Standard object’s metadata. More info:
 https:/ /git.k8s.io/community/contributors/devel/sig-architecture/api-

conventions.md#metadata

As you can see from the output, each field has a detailed explanation and a link to
provide additional detailed information, when applicable.

 You may not have access to a system with kubectl installed all the time, so table 3.4
provides a short description of most of the common resources you will use in a cluster.

Table 3.4 Resources used in a cluster

Kubernetes resource Description

ConfigMaps Hold configuration data for Pods.

EndpointSlice A collection of Pods that are used as targets by services.

Namespace Used to divide clusters between multiple developers or applications.

Node Provides the compute power to a Kubernetes cluster.

PersistentVolumeClaim Allows an application to claim a persistent volume.

PersistentVolume A storage resource provisioned at the cluster layer. Claims to Persistent-
Volume are provided by a PersistentVolumeClaim.

Pod A container or a collection of containers.

ResourceQuota Sets quota restrictions, enforced per namespace.

Secret Holds secret data of a certain type. The total bytes of the values in the
data field must be less than the MaxSecretSize bytes configuration value.

ServiceAccount Provides an identity that can be authenticated and authorized to
resources in a cluster.

Service Provides a named abstraction of software service consisting of a local
port that the proxy listens on and the selector that determines which
Pods will answer requests sent through the proxy.

CustomResourceDefinition Represents a resource that should be exposed on the API server.

44 CHAPTER 3 Computing environment built on Kubernetes
Understanding the resources available is one of the keys to creating the best applica-
tion deployments and to helping troubleshoot cluster or deployment problems. With-
out an understanding of these resources, you may not know what to look at if an
Ingress rule isn’t working as expected. Using the resources in the table, you can find
three resources that are required for an Ingress rule. The first is the Ingress itself, the
second is the Service, and the last is the Endpoints/EndpointSlices.

 Looking at the flow between resources for Ingress, an incoming request is evalu-
ated by the Ingress controller, and a matching Ingress resource is found. Ingress rules
route traffic based on the Service name defined in the Ingress rule, and, finally, the
request is sent to a Pod from the Endpoints created by the Service.

DaemonSet Used to deploy a container to all nodes, or a subset of nodes, in the
cluster. This includes any new nodes that may be added after the initial
deployment.

Deployment Enables declarative updates for Pods and ReplicaSets.

ReplicaSet Ensures that a specified number of Pod replicas are running at any
given time.

StatefulSet StatefulSet represents a set of Pods with consistent identities and con-
trolled Pod starting and stopping.

Ingress A collection of rules that direct inbound connections to reach the Pod
endpoints.

NetworkPolicy Defines what network traffic is allowed for a set of Pods.

PodSecurityPolicy Controls the ability to make requests that affect the security context that
will be applied to a Pod and container.

ClusterRole A cluster-level, logical grouping of PolicyRules that can be referenced as
a unit by a RoleBinding or ClusterRoleBinding.

ClusterRoleBinding Assigns the permissions defined in a ClusterRole to a user, group, or
service account. The scope of a ClusterRoleBinding is cluster wide.

Role A namespaced, logical grouping of PolicyRules that can be referenced
as a unit by a RoleBinding.

RoleBinding Assigns the permissions defined in a Role to a user, group, or service
account. It can reference a Role in the same namespace or a ClusterRole
in the global namespace.
The scope of a RoleBinding is only to the namespace it is defined in.

StorageClass Describes the parameters for a class of storage for which Persistent-
Volumes can be dynamically provisioned.

Table 3.4 Resources used in a cluster (continued)

Kubernetes resource Description

453.2 Kubernetes architecture
3.2.6 Kubernetes resources in depth

A brief overview of resources and what they are used for is a great refresher, if you
already have experience with resources. We realize that not every reader will have
years of experience interacting with Kubernetes resources, so in this section, you will
find additional details on some of the most commonly used cluster resources.

 One thing that all GKE Kubernetes clusters have in common, on-prem or off-
prem, is that they are built on the upstream Kubernetes code, and they all contain the
base set of Kubernetes resources. Interacting with these base types is something you
are likely to do daily, and having a strong understanding of each component, its func-
tion, and use case examples is important.

NAMESPACES

Namespaces provide a scope for names. Names of resources need to be unique within
a namespace, but not across namespaces.

 Namespaces create a logical separation between tenants in the cluster, providing a
cluster with multitenancy. As defined by Gartner, “Multitenancy is a reference to the
mode of operation of software where multiple independent instances of one or multi-
ple applications operate in a shared environment. The instances (tenants) are logi-
cally isolated, but physically integrated” (http://mng.bz/Kl74).

 Kubernetes resources that are created at a namespace level are referred to as being
namespaced. If you read that a resource is namespaced, it means the resource is man-
aged at a namespace level, rather than at a cluster level.

 In a namespace, you can create resources that will provide security and resource
limits. To provide a safe multitenant cluster, you can use the following categories of
Kubernetes resources:

 RBAC
 Resource quotas
 Network policies
 Namespace security resources (previously Pod security policies)

We will discuss each of the resources in more detail in this section, but for now, you
need to understand only that a namespace is a logical partition of a cluster.

 Namespaces are also used when you create a service, which we will cover in the ser-
vices section. The service is assigned a DNS name that includes the service name and
the namespace. For example, if you created two services called myweb1 and myweb2
in a namespace called sales, in a cluster named cluster.local, the assigned DNS
names would be as follows:

 myweb1.sales.svc.cluster.local

 myweb2.sales.svc.cluster.local

PODS

A Pod is the smallest deployable unit that Kubernetes can manage and may contain
one or more containers. If a Pod has multiple containers running, they all share a

http://mng.bz/Kl74

46 CHAPTER 3 Computing environment built on Kubernetes
common networking stack, allowing each container to communicate with the other
containers in the Pod using localhost or 127.0.0.1. They also share any volumes that
are mounted to the Pod, allowing each container access to a shared file location.

 When a pod is created, it is assigned an IP address, and the assigned address
should be considered ephemeral. You should never target the IP address of a Pod
because it will likely change at some point when the Pod is replaced. To target an
application that is running in a Pod, you should target a service name, which will use
endpoints to direct traffic to the correct Pod where the application is running. We will
discuss endpoints and services in their respective topics in this section.

 Although no standard exists for how many containers should be in a single Pod,
the best practice is to add containers that should be scheduled and managed together.
Actions such as scaling and Pod restarts should be considered when deciding to add
multiple containers to a Pod. Events like these are handled at a Pod level, not at a con-
tainer level, so these actions will affect all containers in the Pod.

Many design patterns use multiple containers in a Pod. A common use case for multi-
ple containers in a Pod is referred to as a sidecar. A sidecar is a container that runs with
the main container in your Pod, usually to add some functionality to the main con-
tainer without requiring any changes to it. Some common examples that use sidecars
to handle tasks follow:

 Logging
 Monitoring
 Istio sidecar
 Backup sidecar (i.e., Veritas NetBackup)

You can look at other examples on the Kubernetes site at http://mng.bz/91Ja.
 Understanding Pods is a key point to understanding Kubernetes deployments.

They will be the most common resource that you will interact with.

LABELS AND SELECTORS

Kubernetes uses labels to identify, organize, and link resources, allowing you to iden-
tify attributes. When you create a resource in Kubernetes, you can supply one or more
key-value pair labels like app:frontend-webserver or lob=sales.

Example
You create a Pod with a web server and a database. You decide that you need to
scale the web server to handle the current traffic load. When you scale the Pod, it will
scale both the web server and the database server.

To scale only the web server, you should deploy a Pod with the web server and a sec-
ond Pod with the database server, which will allow you to scale each application
independently.

http://mng.bz/91Ja

473.2 Kubernetes architecture
 Selectors are used to reference a set of resources, allowing you to select the
resource(s) you want to link, or select, using the assigned labels. You can think of selec-
tors as a dynamic grouping mechanism—any label that matches the selector will be
added as a target. This will be shown in the next section covering the services resource,
which uses selectors to link the service to the Pods running the application.

SERVICES

We can use many of the previous resources to provide a full picture of how they con-
nect to create an application. The last piece of the puzzle is the Service resource,
which exposes an application to allow it to accept requests using a defined DNS name.

 Remember that when you create a Pod with your application, it is assigned an IP
address. This IP address will change when the Pod is replaced, which is why you never
want to configure a connection to the Pods using an IP address.

 Unlike Pods, which are ephemeral by nature, a Service is stable once created and is
rarely deleted and recreated, providing a stable IP address and DNS name. Even if a
Service is deleted and recreated, the DNS name will remain the same, providing a sta-
ble name that you can target to access the application. You can create a few Service
types in Kubernetes, as shown in table 3.5.

Now let’s use an example to explain how Kubernetes uses services to expose an appli-
cation in a namespace called sales in a cluster using the name cluster.local:

1 A deployment is created for an NGINX server.
– The deployment name is nginx-frontend.
– The deployment has been labeled with app: frontend-web.
– Three replicas have been created.
The three running Pods have been assigned the IP addresses 192.10.1.105,
192.10.3.107, and 192.10.4.108.

2 To provide access to the server, a new service is deployed called frontend-web.
In the manifest to create the service, a label selector is used to select any Pods that
match app: frontend-web.

Table 3.5 Services in Kubernetes

Service name Description Network scope

ClusterIP Exposes the service internally to the cluster. Internal
External by using an
Ingress rule

NodePort Exposes the service internally to the cluster.
Exposes the service to external clients using the assigned
NodePort. Using the NodePort with any worker node
DNS/IP address will provide a connection to the Pod(s).

Internal and external

LoadBalancer Exposes the service internally to the cluster.
Exposes the service externally to the cluster using an
external load-balancer service.

Internal and external

48 CHAPTER 3 Computing environment built on Kubernetes
3 Kubernetes will use the service request and the selector to create matching
endpoints.

Because the selector matches the label that was used in the deployment for
the NGINX server, Kubernetes will create an endpoint that links to the three
Pod IPs: 192.10.1.105, 192.10.3.107, and 192.10.4.108.

4 The service will receive an IP address from the cluster’s Service IP pool, and a
DNS name that is created using the <service name>.<namespace>.svc.<cluster
domain>.

Because the application name is nginx-frontend, the DNS name will be
nginx-frontend.sales.svc.cluster.local.

If any of the Pod IPs change due to a restart, the endpoints will be updated by the
kube-controller-manager, providing you a stable endpoint to the Pods, even when a
Pod IP address changes.

ENDPOINTSLICES

EndpointSlices map Kubernetes services to Pod(s) that are running the application,
linked by matching labels between the service selector and the Pod(s) with a matching
label. A graphical representation is shown in figure 3.7.

In this figure, a service named nginx-service has been created in a namespace. The
service is using a selector for the key app, equal to the value nginx-frontend. Using

IPs from matching Pod(s)
added to endpoint

Labels:

Labels:

Labels:

Matching labels

Matching labels

No Matching labels

Figure 3.7 Kubernetes endpoints

493.2 Kubernetes architecture
the selector, Kubernetes will look for any matching labels in the namespace equal to
app=nginx-frontend. The namespace has three running Pods, and two of the Pods
have been labeled with app=nginx-frontend. Because the selector matches, all match-
ing Pod IP addresses are added to the EndpointSlices.

ANNOTATIONS

Annotations may look similar to selectors at a first glance. They are key-value pairs,
just like labels are, but unlike labels, they are not used by selectors to create a collec-
tion of services.

 You can use annotations to create records in a resource, like Git branch informa-
tion, image hashes, support contacts, and more.

CONFIGMAPS

ConfigMaps are used to store application information that is not confidential, sepa-
rate from the container image. Although you could store a configuration directly in
your container image, it would make your deployment too rigid—any configuration
change would require you to create your new image. This would lead to maintaining
multiple images, one for each configuration.

 A better method would be to store the configuration in a ConfigMap that is read in
by your Pod when it is started. ConfigMaps can be mounted as a file in the container
or as environment variables, depending on the application requirements. Deploying
the image with a different configuration requires only a different ConfigMap, rather
than an entire image build.

 For example, imagine you have a web server image that requires a different config-
uration based on deployment location. You want to use the same image across your
entire organization, regardless of the location where the container will run. To accom-
plish this, you create a web container image that is configured to use a ConfigMap for
the web server configuration. By using an external configuration, you are making your
image portable by allowing a configuration outside of the container itself.

SECRETS

Secrets are like ConfigMaps because they contain external information that will be
used by Pods. Unlike ConfigMaps, secrets are not stored in cleartext; they are stored
using Base64 encoding.

 If you have worked with Base64 encoding before, you are probably thinking that
it’s not very different from, or more secure than, cleartext—and you would be right.
Secrets in Kubernetes do not use Base64 encoding to hide the secret; they are
Base64 encoded to allow secrets to store binary information. If a person has access
to view the secret, it is trivial to decode the information. Because of this, it is sug-
gested you encrypt your secrets using an external secret manager like Vault or Goo-
gle Secret Manager.

50 CHAPTER 3 Computing environment built on Kubernetes
RESOURCEQUOTAS

Remember that namespaces are used to provide a logical separation for applications
or teams. Because a cluster may be shared with multiple applications, we need to have
a way to control any effect a single namespace may have on the other cluster resources.
Luckily, Kubernetes includes ResourceQuotas to provide resource controls.

 A quota can be set on any standard Kubernetes resource that is namespaced; there-
fore, ResourceQuotas are set at a namespace level and control the resources that the
namespace can consume, including the following:

 CPU
 Memory
 Storage
 Pods
 Services

Quotas allow you to control the resources that a namespace can consume, allowing
you to share a cluster with multiple namespaces while providing a “guarantee” to clus-
ter resources.

RBAC
Role-based access control (RBAC), is used to control what users can do within a clus-
ter. Roles are created and assigned permissions, which are then assigned to users or
groups, providing permissions to the cluster.

 To provide RBAC, Kubernetes uses roles and binding resources. Roles are used to
create a set of permissions to a resource or resources, whereas bindings are used to
assign the permission set to a user or service.

ROLES AND CLUSTERROLES

A Role creates a set of permissions for a resource or resources. Two different types of Roles
in Kubernetes are used to define the scope of the permissions, as shown in table 3.6.

Note
You can also encrypt secrets when they are stored in etcd, but this encrypts the value
only in the database, not in Kubernetes. If you enable this feature, you are protecting
the secrets in the etcd database only. To secure your secrets, you should use both
encryption methods because this will protect your secrets both in the cluster and in etcd.

etcd was discussed in section 3.2.2, “The control plane components.”

Table 3.6 Roles used in Kubernetes

Role type Scope Description

Role Namespace Permissions in a Role can be used only in the namespace
in which it was created.

ClusterRole Cluster Permissions in a ClusterRole can be used cluster wide.

513.2 Kubernetes architecture
The scope of Roles can be confusing for people who are new to Kubernetes. The
Role resource is more straightforward than the ClusterRole resource. When you
create a Role, it must contain a namespace value, which creates the role in the
assigned namespace. Because a Role exists only in the namespace, it can be used to
assign permissions only in the namespace itself—it cannot be used anywhere else in
the cluster.

 A ClusterRole is created at the cluster level and can be used anywhere in the clus-
ter to assign permissions. When assigned to the cluster level, the permissions that are
granted in the ClusterRole will be assigned to all defined resources in the cluster.
However, if you use a ClusterRole at a namespace level, the permissions will be avail-
able only in the assigned namespace.

 Two of the most common ClusterRoles are the built-in admin and view. By them-
selves, Roles and ClusterRoles do not assign a set of permissions to any user. To
assign a Role to a user, you need to bind the Role using a RoleBinding or a Cluster-
RoleBinding.

ROLEBINDING AND CLUSTERROLEBINDING

Roles simply define the set of permissions that will be allowed for resources; they do
not assign the granted permissions to any user or service. To grant the permissions
defined in a role, you need to create a binding.

 Similar to Roles and ClusterRoles, bindings have two scopes, as described in table 3.7.

Now that we have discussed Kubernetes resources, let’s move on to how you can con-
trol where a Pod will be scheduled to run.

3.2.7 Controlling Pod scheduling

In this section, we will explain how you can control where a workload is placed
using features like node labels, affinity/anti-affinity rules, selectors, taints, and
tolerations.

 As Kubernetes has gained popularity, the use cases have grown and become more
complex. You may run into deployments that requires special scheduling, such as the
following:

 A Pod that requires a GPU or other specialized hardware
 Forcing Pods to run on the same node
 Forcing Pods to run on different nodes

Table 3.7 Binding types and their scopes

Binding type Scope Description

RoleBinding Namespace Can be used to assign permissions only in the namespace
in which it was created

ClusterRoleBinding Cluster Can be used to assign permissions cluster wide

52 CHAPTER 3 Computing environment built on Kubernetes
 Specific local storage requirements
 Using locally installed NVMe drives

If you simply deploy a manifest to your cluster, the scheduler does not take any “spe-
cial” considerations into account when selecting a node. If you deployed a Pod that
required CUDA and the Pod was scheduled to run on a node that did not have a GPU,
the application would fail to start because the required hardware would not be avail-
able to the application.

 Kubernetes provides the ability to force a Pod to run on a particular node, or set of
nodes, using advanced scheduling options that are set at the node level and in your
deployment. At the node level, we use node labels and node taints to group nodes,
and at the deployment level, we use node selectors, affinity/anti-affinity rules, and
taints/tolerations to decide on Pod placement.

USING NODE LABELS AND TAINTS

At the node level, you can use two methods to control the Pods that will be scheduled
on the node or nodes. The first method is by labeling the node, and the second is by
tainting the node. Although both methods allow you to control whether a Pod will be
scheduled on the node, they have different use cases—either attracting the Pods or
repelling them.

ATTRACTING VERSUS REPELLING

You can use labels to group a set of nodes to target in your deployment, forcing the
Pod(s) to run on that particular set of nodes. When you label a node, you are not reject-
ing any workloads. A label is an optional value that can be used by a deployment, if a
value is set in the deployment to use a label. In this way, you are setting an attraction for
Pods that may have a requirement that a label will provide, for example, gpu=true.

 To label a node using kubectl, you use the following label option:

kubectl label nodes node1 gpu=true

If a deployment requires a GPU, it uses a selector that tells the scheduler that it needs
to be scheduled on a node with a label gpu=true. The scheduler will look for nodes
with a matching label and then schedule the Pod to run on one of the nodes with a
matching label. If a matching label cannot be found, the Pod will fail to be scheduled
and will not start.

 Using a label is completely optional. Using the previous example label, if you cre-
ate a deployment that does not select the gpu=true label, your Pod will not be
excluded from nodes that contain the label.

 Taints work differently: rather than creating a key value that invites the Pods to
be run on it, you use a taint to repel any scheduling request that cannot tolerate
the value set by the taint. To create a taint, you need to supply a key value and an
effect, which controls whether a Pod is scheduled. For example, if you wanted to

533.2 Kubernetes architecture
control the nodes that have a GPU, you could set a taint on a node using kubectl
like this:

kubectl taint nodes node1 gpu=true:NoSchedule

This would taint node1 with the key-value of gpu=true and the effect of NoSchedule,
which tells the scheduler to repel all scheduling requests that do not contain a tolera-
tion of gpu=true. Unlike a label, which would allow Pods that do not specify a label to
be scheduled, a taint setting with the effect NoSchedule will deny any Pod that does
not “tolerate” gpu=true to be scheduled.

 Taints have three effects that can be set: NoSchedule, PreferNoSchedule, and
NoExecute. Each one sets a control on how the taint will be applied:

 NoSchedule—This is a “hard” setting that will deny any scheduling request that
does not tolerate the taint.

 PreferNoSchedule—This is a “soft” setting that will attempt to avoid scheduling
a Pod that does not tolerate the taint.

 NoExecute—This affects already running Pods on a node; it is not used for
scheduling a Pod.

Now that we have explained how to create labels and taints on nodes, we need to
understand how a deployment is configured to control Pod placement.

USING NODE NODESELECTORS

When a Pod is created, you can add a nodeSelector to your manifest to control the
node on which the Pod will be scheduled. By using any label that is assigned to a
node, you can force the scheduler to schedule the Pod on a node or a set of nodes.

 You may not know all the labels available on a cluster. If you have access, you can
use kubectl to get a list of the nodes and all labels by using the get nodes command
with the --show-labels option as follows:

kubectl get nodes --show-labels

This will list each node and the labels that have been assigned, as shown here:

You can also see the node labels in the GCP console, as shown in figure 3.8, by clicking
Details for a node.

54 CHAPTER 3 Computing environment built on Kubernetes
Using a label from the cluster in the images, we can create a manifest that will deploy
NGINX on the third node by using a nodeSelector, as shown next:

apiVersion: apps/v1
kind: Deployment
metadata:
 Labels:
 run: nginx-test
 name: nginx-test
spec:
 replicas: 1
 selector:
 matchLabels:
 run: nginx-test
 template:
 metadata:
 creationTimestamp: null
 labels:
 run: nginx-test
 spec:
 containers:
 - image: bitnami/nginx
 name: nginx-test
 nodeSelector:
 kubernetes.io/hostname: gke-cluster-1-default-pool-ead436da-8j7k

Using the value kubernetes.io/hostname:gke-cluster-1-default-pool-ead436da-
8j7k in a nodeSelector, we forced the Pod to run the third node in the cluster. To ver-
ify the Pod did schedule on the correct node, we can use kubectl to get the Pods using
the -o wide option, like this and as shown in figure 3.9:

kubectl get pods -o wide

Figure 3.8 GCP node console view

Figure 3.9 Getting Pods with wide output

553.2 Kubernetes architecture
The nodeSelector option allows you to use any label to control what nodes will be
used to schedule your Pods. If the nodeSelector value does not match any nodes, the
Pod will fail to schedule and will remain in a pending state until it is deleted or a label
is updated on a node that matches the selector. In the next example, shown in figure
3.10, we tried to force a deployment to a nodeSelector that had a value of a host that
does not exist in the cluster. First, we can look at all the Pods to check the status using
kubectl get pods.

Notice that the nginx-test2 Pod is in a pending state. The next step in checking why
the Pod fails to start is to describe the Pod:

kubectl describe pod nginx-test2-6dccc98749-xng5h

A description of the pod will be displayed, as illustrated in figure 3.11, including the
current status at the bottom of the output.

In the message area, the status shows 0/3 nodes are available: 3 node(s) didn’t
match node selector. Because our nodeSelector did not match any existing label, the
Pod failed to start. To resolve this, you should verify that the nodeSelector is correct
and, if it is, verify that a node has the same label set.

USING AFFINITY RULES

Node affinity is another way to control which node your Pods will run on. Unlike a
nodeSelector, an affinity rule can do the following:

 Contain additional syntax beyond a simple matching label.
 Schedule based on an affinity rule match, but if a match is not found, the Pod

will schedule on any node.

Unlike a nodeSelector, which has a single value, a node affinity rule can contain oper-
ators, allowing for more complex selections. Table 3.8 contains a list of operators and
a description of how they are evaluated.

Figure 3.10 get pods output

Figure 3.11 kubectl describe output

56 CHAPTER 3 Computing environment built on Kubernetes
Using a node affinity rule, you can choose a soft or hard affinity based on your
requirements. You can create affinity rules using two preferences: RequiredDuring-
SchedulingIgnoredDuringExecution, also known as a hard affinity, and preferred-
DuringSchedulingIgnoredDuringExecution, also known as a soft affinity. If you use a
hard affinity, the affinity must match or the Pod will fail to schedule. However, if you
use a soft affinity, the affinity rule will be used if it matches. If a match is not found,
the Pod will schedule on any node in the cluster.

Creating node affinity rules
Node affinity is set in a manifest in the PodSpec, under the Affinity field, as node-
Affinity. To better explain how to use a node affinity rule, let’s use an example clus-
ter to create a manifest that uses an affinity rule.

 The cluster has three nodes, described in table 3.9. The labels we will use in the
rule are in bold.

Table 3.8 Operators and their descriptions

Operator Description

In Checks the label against a list. If any value is in the list, it is considered a match.

NotIn Checks the label against a list, and if the value is not in the list, it is considered
a match.

Exists Checks whether the label exists; if it does, it is considered a match.

Note: The value of the label does not matter and is not evaluated in the match.

DoesNotExist Checks whether the label exists; if the label does not match any in the list, it is con-
sidered a match.

Note: The value of the label does not matter and is not evaluated in the match.

Gt Used to compare numeric values in a label; if a value is greater than (Gt) the label,
it is considered a match.

Note: This operator works only with a single number.

Lt Used to compare numeric values in a label; if a value is less than (Lt) the label,
it is considered a match.

Note: This operator works only with a single number.

Table 3.9 Nodes in a cluster

Node Node labels

Node 1 beta.kubernetes.io/arch=amd64,beta.kubernetes.io/instance-type=e2-
medium,beta.kubernetes.io/os=linux,cloud.google.com/gke-
nodepool=default-pool,cloud.google.com/gke-os-
distribution=cos,cloud.google.com/gke-preemptible=true,failure-
domain.beta.kubernetes.io/region=us-central1,failure-
domain.beta.kubernetes.io/zone=us-central1-
a,kubernetes.io/arch=amd64,kubernetes.io/hostname=gke-cluster-1-
default-pool-77fd9484-7fd6,kubernetes.io/os=linux

573.2 Kubernetes architecture
We want to create a deployment that will create an NGINX server in either the
us-central1-a or us-central1-c zones. Using the following manifest, we can create a Pod
in either of the zones using an affinity rule based on the failure-domain.beta
.kubernetes.io/zone key:

apiVersion: v1
kind: Pod
metadata:
 name: nginx-affinity
spec:
 affinity:
 nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key: failure-domain.beta.kubernetes.io/zone
 operator: In
 values:
 - us-central1-a
 - us-central1-c
 containers:
 - name: nginx-affinity
 image: bitnami/nginx

By using the key failure-domain.beta.kubernetes.io/zone in the matchExpressions,
we set the affinity to evaluate to true if the node label matches either us-central1-a or
us-central1-c. Because the second node in the cluster has a label value of us-central2-b,
it will evaluate as false and will not be selected to run the Pod.

Node 2 beta.kubernetes.io/arch=amd64,beta.kubernetes.io/instance-type=e2-
medium,beta.kubernetes.io/os=linux,cloud.google.com/gke-
nodepool=default-pool,cloud.google.com/gke-os-
distribution=cos,cloud.google.com/gke-preemptible=true,failure-
domain.beta.kubernetes.io/region=us-central1,failure-
domain.beta.kubernetes.io/zone=us-central1-
b,kubernetes.io/arch=amd64,kubernetes.io/hostname=gke-cluster-1-
default-pool-ca0442ad-hqk5,kubernetes.io/os=linux

Node 3 beta.kubernetes.io/arch=amd64,beta.kubernetes.io/instance-type=e2-
medium,beta.kubernetes.io/os=linux,cloud.google.com/gke-
nodepool=default-pool,cloud.google.com/gke-os-
distribution=cos,cloud.google.com/gke-preemptible=true,failure-
domain.beta.kubernetes.io/region=us-central1,failure-
domain.beta.kubernetes.io/zone=us-central1-
c,kubernetes.io/arch=amd64,kubernetes.io/hostname=gke-cluster-1-
default-pool-ead436da-8j7k,kubernetes.io/os=linux

Table 3.9 Nodes in a cluster (continued)

Node Node labels

58 CHAPTER 3 Computing environment built on Kubernetes
USING POD AFFINITY AND ANTI-AFFINITY RULES

A Pod affinity rule will ensure that deployed Pods are running on the same set of
nodes as a matching label, and an anti-affinity rule is used to ensure that Pods will not
run on the same nodes as a matching label. Pod affinity rules are used for different
use cases than node affinity rules. Whereas node affinity allows you to select a node
based on the cluster node labels, Pod affinity and anti-affinity rules use the labels of
Pods that are already running in the cluster.

Creating Pod affinity rules
When you create an affinity rule, you are telling the scheduler to place your Pod on a
node that has an existing Pod that matches the selected value in the affinity rule. Pod
affinity rules, like node affinity rules, can be created as soft or hard affinity rules. They
also use operators like node affinity rules, including In, NotIn, Exists, and DoesNot-
Exist, but they do not support the Gt or Lt operators.

 Pod affinity rules are specified in the PodSpec, under the affinity and podAffinity
fields. They require an additional parameter that node affinity rules do not use—the
topologyKey. The topologyKey is used by Kubernetes to create a list of nodes that will
be checked against the affinity rule. Using a topologyKey, you can decide to look for
matches based on different filters like zones or nodes.

 For example, imagine you have a software package that is licensed per node, and
each time a Pod that runs a portion of the software runs on another node, you need to
purchase an additional license. To lower costs, you decide to create an affinity rule
that will force the Pods to run where an existing licensed Pod is running. The existing
Pod runs using a label called license with a value of widgets. An example manifest
follows that creates a Pod on a node with an existing Pod with a label license=widgets.
Because we need to be on the same node to maintain licensing, we will use a topology-
Key that will filter by kubernetes.io/hostname:

apiVersion: v1
kind: Pod
metadata:
 name: widgets-license-example
spec:
 affinity:
 podAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 - labelSelector:
 matchExpressions:
 - key: license
 operator: In
 values:
 - widgets
 topologyKey: kubernetes.io/hostname
 containers:
 - name: nginx-widgets
 image: nginx-widgets

593.2 Kubernetes architecture
The manifest tells Kubernetes to create the Pod nginx-widgets, running an image
called nginx-widgets on a host that already has a Pod running using the label license
with the value of widgets.

Creating Pod anti-affinity rules
Anti-affinity rules do the opposite of affinity rules. Whereas affinity rules group Pods
based on a set of rules, anti-affinity rules are used to run Pods on different nodes.
When you use an anti-affinity rule, you are telling Kubernetes that you do not want the
Pod to run on another node that has an existing Pod with the values declared in the
rule. Some common use cases for using anti-affinity rules include forcing Pods to
avoid other running Pods or spreading Pods across availability zones.

 Pod anti-affinity rules are specified in the PodSpec, under the affinity and
podAntiAffinity fields. They also require the topologyKey parameter to filter the list
of nodes that will be used to compare the affinity rules.

 In our affinity example, we used a topologyKey that used the hostname of the
node. If we used the same key for the deployment, zones wouldn’t be considered; it
would only avoid placing the Pod on the same node as another running Pod.
Although the Pods would spread across nodes, the selected nodes could all be in the
same zone, which would fail to spread the Pods across zones.

 To spread the Pods across zones, we will use the label failure-domain.beta
.kubernetes.io/zone, and we will use the operator In to compare the label app for
the value of nginx-frontend, as shown in the next code snippet. We will also use a soft
anti-affinity rule, rather than a hard rule, allowing Kubernetes to use the same zone, if
there is no other choice:

apiVersion: v1
kind: Pod
metadata:
 name: nginx-frontend-antiaffinity-example
spec:
 podAntiAffinity:
 preferredDuringSchedulingIgnoredDuringExecution:
 podAffinityTerm:
 labelSelector:
 matchExpressions:
 - key: app
 operator: In
 values:
 - nginx-frontend
 topologyKey: failure-domain.beta.kubernetes.io/zone
 containers:
 - name: nginx-frontned
 image: bitnami/nginx

By using failure-domain.beta.kubernetes.io/zone as the topologyKey, we are tell-
ing Kubernetes that we want to avoid placing any Pod that has a label of app=nginx-
frontend in the same zone.

60 CHAPTER 3 Computing environment built on Kubernetes
USING TAINTS AND TOLERATIONS

Although you are more likely to require scheduling a Pod to a specific node, some
use cases exist where you will want to reserve specific nodes to only certain work-
loads, essentially disabling default scheduling. Unlike nodeSelector and affinity
rules, taints are used to automatically repel, rather than attract, a Pod to a node. This
is useful when you want a node to reject any scheduling attempts by default, unless a
deployment specifically states the correct “tolerations” to be scheduled on the node.
For example, imagine you have a cluster that has a few hundred nodes and a few
nodes have GPUs available. Because GPUs are expensive, we want to restrict Pods on
these nodes to only applications that require a GPU, rejecting any standard schedul-
ing requests.

 Using controls like nodeSelector or affinity rules will not tell the Kubernetes
scheduler to avoid using a node. These provide a developer the ability to control how
Pods will be deployed, and if they don’t provide either of these, the scheduler will
attempt to use any node in the cluster. Because GPUs are expensive, we want to reject
any scheduling attempt to run a Pod on a node with a GPU that doesn’t require using
a GPU.

Creating a node taint
To stop the scheduler from scheduling Pods on a node, you need to “taint” the node
with a value. To create a taint, use kubectl with the taint command and the node you
want to taint, the key-value, and the effect. The key-value can be any value that you want
to assign, and the effect can be one of three values: NoSchedule, PreferNoSchedule, or
NoExecute, described in table 3.10.

For example, if we had a GPU in a node named node1, we would taint the node using
the following command:

kubectl taint nodes node1 gpu=:NoSchedule

The key in the taint command tells the scheduler what taint must be matched to
allow a Pod to schedule on the node. If the taint is not matched by a Pod request
using a toleration, the scheduler will not schedule a Pod on the node, based on the
effect NoSchedule.

Table 3.10 Taint effects

Effect Description

NoSchedule If a Pod does not specify a toleration that matches the node taint, it will not be
scheduled to run on the node.

PreferNoSchedule If a Pod does not specify a toleration that matches the node taint, the sched-
uler will attempt to avoid scheduling the Pod on the node.

NoExecute If a Pod is already running on a node and a taint is added, if the Pod does not
match the taint, it will be evicted from the node.

613.2 Kubernetes architecture
Creating Pods with tolerations
By default, once a node has a taint set, the scheduler will not attempt to run any Pod
on the tainted node. By design, you set a taint to tell the scheduler to avoid using the
node in any scheduling, unless the deployment specifically requests running on the
node. To allow a Pod to run on a node that has been tainted, you need to supply a tol-
eration in the deployment. A toleration is used to tell the scheduler that the Pod can
“tolerate” the taint on the node, which will allow the scheduler to use a node that
matches the toleration with an assigned taint.

NOTE Taints will not attract a Pod request—they only reject any Pod that
does not have a toleration set. As such, to direct a Pod to run on a node with a
taint, you need to set a toleration and a node selection, or a node affinity. The
selector will tell the scheduler to use a node with a matching label, and then
the toleration tells the scheduler that the Pod can tolerate the taint set on the
node. Because tolerations tell the scheduler to “prefer” a node with a match-
ing taint, if one cannot be found, the scheduler will use any node in the clus-
ter with a matching label.

KEY TAKEAWAY Tolerations and node selectors/affinity rules work together
to select the node that the Pod will run on.

Tolerations are created in the pod.spec section of your manifest by assigning one or
more tolerations that include the key to match, an operator, an optional value, and
the taint effect.

 The key must be assigned to the key that matches the node on which you want to
schedule the Pod. The operator value tells the scheduler to simply look for the key
(Exists) or to match a key value (Equals). If you use the Equals operator, your toler-
ation must contain a value field. Finally, the effect needs to be matched for the Pod to
be scheduled on the node.

 To schedule a Pod that can tolerate the GPU taint for node1, you would add the
following to your PodSpec:

spec:
 tolerations:
 - key: "gpu"
 operator: "Exists"
 effect: "NoSchedule"

Adding the toleration tells the scheduler that the Pod should be assigned to a node
that has a taint key of gpu with an effect of NoSchedule.

 Controlling where Pods will be scheduled is a key point to ensure that your appli-
cation deployments can meet your assigned SLA/SLO objectives.

62 CHAPTER 3 Computing environment built on Kubernetes
3.3 Advanced topics
This section contains a few advanced topics that we wanted to include in this chapter.
We think these are important topics, but they aren’t required to understand the main
topics in the chapter.

3.3.1 Aggregate ClusterRoles

When a new component is added to the cluster, a new ClusterRole is often created
and can be assigned to users to manage the service. Sometimes a role may be created,
and you may notice that a user assigned the ClusterRole of admin has permissions to
the new components by default. Other times, you may notice that a newly added com-
ponent, like Istio, does not allow the built-in admin role to use any Istio resources.

 It may sound odd that a role like admin would not have permissions to every
resource by default. Kubernetes includes two ClusterRoles that provide some form of
admin access: the admin ClusterRole and the cluster-admin ClusterRole. They may
sound similar, but how permissions are assigned to them is very different.

 The cluster-admin role is straightforward—it is assigned wildcards for all permis-
sions, providing access to every resource, including new resources. The admin role is
not assigned wildcard permissions. Each permission assigned to the admin role is usu-
ally explicitly assigned. Because the role does not use wildcards, any new permissions
need to be assigned for new resources.

 To make this process easier, Kubernetes has a concept called aggregated Cluster-
Roles. When a new ClusterRole is created, it can be aggregated to any other Cluster-
Role by assigning an aggregationRule. An example to help explain how aggregation
works follows. The default admin ClusterRole looks similar to the next example:

kind: ClusterRole
apiVersion: rbac.authorization.k8s.io/v1
metadata:
 name: admin

...

aggregationRule:
 clusterRoleSelectors:
 - matchLabels:
 rbac.authorization.k8s.io/aggregate-to-admin: "true"

In this code snippet, you can see that the admin ClusterRole has an aggregationRule
that contains rbac.authorization.k8s.io/aggregate-to-admin: 'true'. When a
new ClusterRole is created, it can be automatically aggregated with the built-in
admin ClusterRole if it uses the same aggregationRule. For example, a new CRD
has been deployed to the cluster that creates a new ClusterRole. Because the permis-
sions for the new ClusterRole should be assigned to admins, it has been created with
an aggregationRule that matches rbac.authorization.k8s.io/aggregate-to-admin:
"true", as shown next:

633.3 Advanced topics
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
 name: aggregate-example-admin
 labels:
 rbac.authorization.k8s.io/aggregate-to-admin: "true"
rules:
- apiGroups: ["newapi"]
 resources: ["newresource"]
 verbs: ["get", "list", "watch", "create", "update", "patch", "delete"]

This will create a new ClusterRole named aggregated-example-admin that assigns the
actions get, list, watch, create, patch, and delete to the resource newresource in
the newapi apiGroup. This new ClusterRole can be bound to any user that you want
to assign permissions to, but because the permission is required by admins, it also has
a label assigned of rbac.authorization.k8s.io/aggregate-to-admin: "true", which
matches the aggregationRule that is assigned in the admin ClusterRole. The labels
match, so a controller on the API server will notice the matching labels and “merge”
the permissions from the new ClusterRole with the admin ClusterRole.

3.3.2 Custom schedulers

One of the most misunderstood concepts in Kubernetes is how the cluster schedules
workloads. You will often hear that applications deployed on a Kubernetes cluster
are highly available, and they are, when deployed correctly. To deploy a highly avail-
able application, it’s beneficial to understand how the kube-scheduler makes deci-
sions and the options available to your deployments to help influence the decisions
that it will make.

 The default Kubernetes scheduler, kube-scheduler, has the job of scheduling Pods
to worker nodes based on a set of criteria that include node affinity, taints and tolera-
tions, and node selectors. Although Kubernetes includes the base scheduler, you are
not stuck using only a single scheduler for all deployments. If you need special sched-
uling considerations that the base scheduler does not include, you can create custom
schedulers by specifying a scheduler in the manifest, and if one is not provided, the
default scheduler will be used. Creating a custom scheduler is beyond the scope of
this book, but you can read more about custom schedulers on the Kubernetes site at
http://mng.bz/jm9y.

 An example of a Pod that sets the scheduler to a custom scheduler named custom-
scheduler1 follows:

apiVersion: v1
kind: Pod
metadata:
 name: nginx-web
spec:
 containers:
 - name: nginx
 image: bitnami/nginx
 schedulerName: custom-scheduler1

http://mng.bz/jm9y

64 CHAPTER 3 Computing environment built on Kubernetes
The Kubernetes scheduler watches the API server for Pods that require scheduling.
Once it determines that a Pod needs to be scheduled, it will determine the most
appropriate node by going through a multistage decision process that will filter out
nodes and then assign a score to nodes that have not been filtered out.

3.4 Examples and case studies
Using the knowledge from the chapter, address each of the requirements in the case
study found next. Remember, if you deployed your GKE cluster across different
regions, replace the example regions in the exercises with your regions. To save on
any potential cost, the examples require only a single node in each region.

3.4.1 FooWidgets Industries

You have been asked to assist FooWidgets Industries with a new GKE cluster that they
have deployed. They quickly discovered that they did not have the internal skills to
complete their deployment, and, therefore, the current state of the cluster is a simple,
new cluster across three GCP zones.

CLUSTER OVERVIEW AND REQUIREMENTS

FooWidgets Industries has a GKE cluster that has been deployed across three zones:
us-east4-a, use-east4-b, and us-east4-c. The company has various requirements for Pod
placement based on internal standards and specialized hardware use. They have
included a breakdown of the desired placement of workloads and the labels that
should be assigned to nodes, outlined in table 3.11.

The statement of work requires you to provide the requirements in the table. The
cluster has not been configured past the initial deployment stage and will require you
to complete the following configuration:

 Create any node labels or taints that are required to achieve workload place-
ment based on the supported workloads documented in the table.

 Create an example deployment using an NGINX image to demonstrate success-
ful placement of workloads based on the requirements provided by FooWidgets
Industries.

Table 3.11 Placement of workloads

Zone Desired workloads Label/taint Node name

us-east4-a Any workload
Fast disk access

disk=fast gke-cls1-pool1-1d704097-4361

us-east4-b Only workloads that
require a GPU

workload=gpu gke-cls1-pool1-52bcec35-tf0q

us-east4-c Any workload gke-cls1-pool1-e327d1de-6ts3

653.4 Examples and case studies
The next section contains the solution to address FooWidgets’ requirements. You can
follow along with the solution or, if you are comfortable, configure your cluster to
address the requirements and use the solution to verify your results.

FOOWIDGETS INDUSTRIES SOLUTION: LABELS AND TAINTS

The first requirement is to create any labels or taints that may be required. Using the
requirements table, we can tell that we need to label the nodes in us-east4-a with
disk=fast. This label will allow a deployment to force scheduling on a node that has
the required fast disks for the application. The second requirement is to limit any run-
ning workloads in the us-east4-b zone to only applications that require a GPU. For this
requirement, we have decided to taint all nodes in the us-east4-b zone with work-
load=gpu.

 Why is a label used for one solution and a taint for the other? You may recall that
labels and taints are used to accomplish different scheduling requirements: we use
labels to attract workloads, whereas we use taints to repel them. In the requirements,
FooWidgets clearly states that us-east4-a and us-east4-c can run any type of workload,
but us-east4-b must run only workloads that require a GPU. If a deployment is created
that does not specify a label on a node, the scheduler will still consider that node as a
potential node for scheduling. Labels are used to force a deployment to a particular
node, but they do not reject workloads that do not contain a label request. This behav-
ior is far different from a node that has been assigned a taint. When a node is tainted,
it will repel any workloads that do not contain a toleration for the assigned node taint.
If a deployment is created without any tolerations for the node taint, the scheduler
will automatically exclude the tainted nodes from scheduling the workload.

Creating the labels and taints
We need to label the node in us-east4-a with disk=fast. To label the node, we use the
kubectl label command, supplying the node and the label:

kubectl label node gke-cls1-pool1-1d704097-4361 disk=fast

Next, we need to add a taint to the nodes in the us-east4-b zone with workload=gpu.
Remember that a taint will repel any request that does not tolerate the assigned node
taint, but it doesn’t attract a workload. This means that you also need to add a label to
direct the GPU Pods to the correct node. To taint the node, we use the kubectl taint
command, supplying the node name and the taint:

kubectl taint node gke-cls1-pool1-52bcec35-tf0q workload=gpu:NoSchedule

Then, label the node to attract the GPU Pods:

kubectl label node gke-cls1-pool1-52bcec35-tf0q workload=gpu

Notice that we did not add a label or a taint to the node in us-east4-c because that
zone can run any workload.

66 CHAPTER 3 Computing environment built on Kubernetes
 Now that the nodes are labeled, you need to create example deployments to verify
that workload placement matches the requirements from the table.

Creating a deployment that requires fast disk access
To force a deployment that requires fast disk access to the us-east4-a zone, you need to
add a nodeSelector to the deployment. The following code snippet creates an NGINX
server that contains a nodeSelector using the label disk=fast, forcing the workload
to run on a node in the us-east4-a zone:

apiVersion: v1
kind: Pod
metadata:
 labels:
 run: nginx-fast
 name: nginx-fast
spec:
 containers:
 - image: nginx
 name: nginx-fast
 restartPolicy: Always
 nodeSelector:
 disk: fast

When you create and execute the manifest, the nodeSelector tells the scheduler to
use a node with the label disk:fast. To verify the selector is working correctly, we can
list the Pods with -o wide to list the node that the Pod is running on. In us-east4-a we
have a single node, gke-cls1-pool1-1d704097-436. The abbreviated output from
kubectl get pods confirms that the Pod was scheduled correctly:

NAME READY STATUS AGE IP NODE
nginx-fast 1/1 Running 4m49s 10.8.0.4 gke-cls1-pool1-1d704097-4361

Now that you have confirmed that Pods requiring fast disk access can be scheduled
correctly, you need to create a deployment to test workloads that require GPUs.

Creating a deployment that requires a GPU
Any workload that requires a GPU needs to be scheduled on a node in us-east4-b. We
already tainted the node in that zone, and to confirm that a workload requiring a
GPU will be scheduled correctly, we need to create a test deployment with a toleration
using the code that follows:

apiVersion: v1
kind: Pod
metadata:
 labels:
 run: nginx-gpu
 name: nginx-gpu
spec:
 containers:
 - image: nginx
 name: nginx-gpu

67Summary
 restartPolicy: Always
 nodeSelector:
 workload: gpu
 tolerations:
 - key: "workload"
 operator: "Equal"
 value: "gpu"
 effect: "NoSchedule"

When this code snippet is applied, you can verify that the Pod is running on the cor-
rect node in us-east4-b using kubectl get pods -o wide:

NAME READY STATUS AGE IP NODE
nginx-gpu 1/1 Running 3s 10.8.2.6 gke-cls1-pool1-52bcec35-tf0q

Comparing the output with the table that lists the nodes in each zone verifies that the
Pod has been scheduled on a node in the us-east4-b zone.

 Congratulations! You have successfully addressed the workload requirements and
have proven that you understand how to schedule workloads based on node labels
and taints.

Summary
 The control plan receives and stores objects and schedules workloads, whereas

worker nodes are where the actual containers will execute once scheduled by
the Kubernetes scheduler.

 Two different deployment models are available: declarative and imperative.
 You gained an understanding of Kubernetes resources and their functions.
 You can use selectors, taints, tolerations, and anti-affinity and affinity rules to

control what nodes will be used for specific workloads.

Anthos Service Mesh:
Security and

observability at scale
Onofrio Petragallo

One of the key aspects of being cloud native is to break up your application into
microservices. This means an application that may have run on a single server now
has multiple services, backed by multiple Pods, as separate components. As applica-
tions scale out their services, it becomes difficult to troubleshoot problems that you
may encounter with the application. With this added complexity, we needed a tool
to help organize, secure, and add resilience to the expanding complexities that
microservices introduced. Another important problem is that enterprises often
have a huge number of microservices and aren’t always able to control, manage,
and observe them—something a service mesh could fix.

This chapter covers
 Sidecar proxy and proxyless architectures

 Introducing the main features of Istio

 Security and observability with Istio

 Exploring Anthos Service Mesh

 A practical example with code
68

694.1 What is a service mesh?
 In this chapter, we will discuss Anthos Service Mesh (ASM) and the features that
ASM inherits from Istio (https://istio.io/), a popular open source framework for cre-
ating, managing, and implementing a service mesh.

 The implementation of a service mesh not only facilitates communication between
microservices using a dedicated communication management control plane; it also
includes tools to observe communication between services—increase observability,
enhance security, control application traffic flow, and simulate faults in an application.

 Anthos Service Mesh is a Google-managed service that allows enterprise manage-
ment of all the service meshes present in a hybrid cloud or multicloud architecture
from a single point, providing complete and in-depth visibility of all microservices.
The visualization of the topography of the service mesh and the complete integration
with Cloud Monitoring provides users the tools to identify failing workloads or other
problems, making problem resolution faster.

 The security features made available by Anthos Service Mesh allow you to manage
the authentication, authorization, and encryption of communications through mutual
authentication (mTLS; http://mng.bz/1Mly), to secure and ensure trust in both direc-
tions for the communication between microservices; mTLS ensures a high level of secu-
rity, minimizing the related risks. The traffic management features of Istio provide users
the tools to manipulate traffic using request routing, fault injection, request timeouts,
circuit breaking, and mirroring.

 As you can see, Istio includes several complex features that may be difficult to trou-
bleshoot. Few offerings in the market today include support for Istio, leaving you to sup-
port your service mesh on your own. Google has addressed this lack by including ASM
in Anthos, providing a single support point for your Kubernetes clusters and Istio.

 Before talking about the Anthos Service Mesh features and Istio in detail, let’s start
by explaining what a service mesh actually is.

4.1 Technical requirements
The hands-on portion of this chapter will require you to have access to a Kubernetes
cluster running on GCP with the following deployment pattern: a GKE cluster with at
least three nodes with four CPUs and 16 GB of RAM.

4.2 What is a service mesh?
To understand how a service mesh works and why it’s becoming a standard tool in the
microservices toolbox, you need to understand what a service mesh provides. The
main advantages of adopting a service mesh are the ability to do the following:

 Observe and monitor all communications between the individual microservices
 Secure connections between the available microservices
 Deliver resilient services (distributed services) through multicluster and multi-

cloud architecture patterns
 Provide advanced traffic management: A/B testing, traffic splitting, and canary

rollouts

https://istio.io/
http://mng.bz/1Mly

70 CHAPTER 4 Anthos Service Mesh: Security and observability at scale
A service mesh is an infrastructure layer in a microservices architecture that controls
the communication between services. We can not only create a mesh of services within
a microservice’s architecture that runs in a Kubernetes cluster, but we can also create a
single service mesh that spans multiple clusters, or even nonmicroservice services run-
ning on virtual machines.

 A service mesh manages all the ingress, or inbound traffic, and egress, or outbound
traffic, for each microservice. Traffic management is a complex topic and something
that most users do not want to deal with. To remove this burden, Istio doesn’t require
the developer to make any changes in their application logic; instead, the service mesh
handles all of this by using a sidecar proxy approach or a proxyless approach.

 The sidecar proxy is one of the main components of a service mesh that manages
the ingress and egress traffic for each microservice, abstracting itself from the applica-
tion logic of the microservices. Because all the traffic flows through the sidecar proxy,
it can monitor this traffic to send metrics and logs to the centralized control plane.

 The following three approaches are available, with the sidecar proxy the most com-
mon approach to creating a service:

 Sidecar proxy—Used in a microservices architecture where a proxy is connected
to each microservice, with the same life cycle as the microservice itself, but exe-
cutes as a separate process, as shown in figure 4.1.

 Proxyless—Used in a microservices architecture where the microservice can send
the telemetry directly to the control plane by using gRPC, a remote procedure
call system developed by Google.

Figure 4.1 Sidecar proxy architecture

714.2 What is a service mesh?
 Proxy inside a VM—An L7 proxy runs inside VMs as a process or an agent that
can be added to the service mesh as if it were a sidecar proxy.

After seeing what a service mesh is and what the approaches are to create one, let’s
review how Anthos Service Mesh uses each of them. To monitor in real time the telem-
etry of all inbound and outbound communications between the microservices of the
various service mesh networks, ASM uses the following two approaches:

 The sidecar proxy approach, using Envoy (https://www.envoyproxy.io/) prox-
ies, an open source service proxy attached on each Pod to get the real-time
telemetry, as shown in figure 4.2.

 The proxyless approach using Google Cloud Traffic Director (https://cloud
.google.com/traffic-director), which can use gRPC with xDS API (https://github
.com/envoyproxy/data-plane-api), the same technology used by Envoy to com-
municate with the control plane, as shown in figure 4.3.

Figure 4.2 Sidecar proxy approach

Figure 4.3 Proxyless approach

https://www.envoyproxy.io/
https://cloud.google.com/traffic-director
https://cloud.google.com/traffic-director
https://cloud.google.com/traffic-director
https://github.com/envoyproxy/data-plane-api
https://github.com/envoyproxy/data-plane-api
https://github.com/envoyproxy/data-plane-api

72 CHAPTER 4 Anthos Service Mesh: Security and observability at scale
The proxyless approach removes the Istio sidecar from your deployments. By removing
the sidecar, we are removing an extra hop in the network traffic to the service, leading
to a reduction in network latency, enhancing the service overall response time.

 A single service mesh can have services that use both the standard Istio sidecar and
the proxyless approach. This flexibility allows you to use the correct approach for dif-
ferent applications, including gRPC using a proxyless approach, sidecars for services
that do not use gRPC, and sidecars for services that use gRPC.

 As discussed in previous chapters, Anthos is a complete platform from Google to
build applications running on hybrid or multicloud platforms. Anthos Service Mesh is
the main component that provides service management to developers and cluster
administrators.

 In the next section, we will examine the features of Istio, which is the basis for the
Anthos Service Mesh.

4.3 An introduction to Istio
Istio is an open platform that offers a uniform way to integrate microservices, manage
traffic flow across microservices, enforce policies, and aggregate telemetry data. Istio’s
control plane provides an abstraction layer over the underlying cluster management
platform, such as Kubernetes. The main features of Istio (http://mng.bz/WA6x) follow:

 Automatic load balancing for HTTP, gRPC, WebSocket, and TCP traffic
 Fine-grained control of traffic behavior with robust routing rules, retries, failover,

and fault injection
 A pluggable policy layer and configuration API supporting access controls, rate

limits, and quotas
 Automatic metrics, logs, and traces for all traffic within a cluster, including clus-

ter ingress and egress
 Secure service-to-service communication in a cluster with strong identity-based

authentication and authorization

Given its open source nature, Istio is extensible and usable in various environments:
for example, you can execute it on-prem, in the cloud, inside a VM, or with microser-
vices, allowing you to customize the service mesh to your security and monitoring
requirements.

 To understand Istio, you need to understand the underlying architecture of the
system. In the next section, we will explain the components of Istio and the features
they provide.

4.3.1 Istio architecture

Istio’s flexible architecture allows you to implement a service mesh from scratch. You
do not have to have Istio installed before developers start using the cluster—a service
mesh can be deployed before or after the developers have implemented and deployed
their services. Remember, as shown in figure 4.4, Istio uses the sidecar proxy injection

http://mng.bz/WA6x

734.3 An introduction to Istio
to intercept the ingress and egress traffic from inside and outside the network of
microservices, so there are no dependencies on the developers.

 Starting with Istio version 1.5, the main components of Istio’s architecture are
the sidecar proxy and istiod, which contains three subcomponents: Pilot, Citadel,
and Galley.

 Istiod provides service discovery, configuration, and certificate management, as
well as high-level routing rules that control traffic behavior into a specific configura-
tion for the Envoy proxy, injecting them into the sidecars at runtime. It also acts as a
certificate authority that generates certificates to allow secure mTLS communication
in the data plane. Istiod contains the following three processes to provide its services:

 Pilot—Responsible for the life cycle of Envoy sidecar proxy instances deployed
across the service mesh. Pilot abstracts platform-specific service discovery mech-
anisms and is conformant with any sidecar that can consume the Envoy API.

 Galley—Interprets the YAML files for Kubernetes and transforms them into a
format that Istio understands. Galley makes it possible for Istio to work with
environments other than Kubernetes—for example, virtual machine—because

Figure 4.4 Detailed Istio architecture

74 CHAPTER 4 Anthos Service Mesh: Security and observability at scale
it translates various configuration data into the common format that Istio
understands.

 Citadel—Enables robust service-to-service and end user authentication with
built-in identity and credential management.

So far, we have covered Istio at a high level, but now let’s go through the features of
Istio in detail. We can divide the features into three main categories: traffic manage-
ment, security, and observability.

4.3.2 Istio traffic management

Istio provides powerful traffic management (https://istio.io/latest/docs/tasks/traffic-
management/), which allows users to control ingress and egress traffic. This control is
not limited to simply routing traffic to a specific service; it also offers the ability to split
traffic between different versions and simulate failures and timeouts in applications.
Table 4.1 shows Istio’s traffic management features.

Traffic management is a powerful feature of Istio, allowing developers to completely
control traffic, down to the level where a single user could be directed to a new ver-
sion of an application, while all other requests are directed to the current version. The
fault injection feature enables developers to cause a delay between services, simulating
an HTTP delay or faults, to verify how the application will react to unexpected prob-
lems. All these features can be used by users without any code changes to their appli-
cation, providing a big advantage over the old “legacy” development days.

 Security is everyone’s job, but not everyone has a sufficient background in security
to create the code to enhance application security. Just like the traffic management
features, Istio provides extra security features, all without requiring developers to cre-
ate any code.

 In the next section, we will explain the security features included with Istio and ASM.

Table 4.1 Istio traffic management features

Feature Description

Ingress Controls the ingress traffic for the service mesh, to expose a service outside
the service mesh over TLS or mTLS using the Istio gateway. In another chapter,
we will deep-dive into ingress for Anthos.

Egress Controls the egress traffic from the service mesh, routes traffic to an external
system, performs TLS for outbound traffic, and configures the outbound gateway
to use an HTTPS proxy.

Request routing and
traffic splitting

Dynamically routes the traffic to multiple versions of the microservice or migrates
traffic from one version to another version gradually and in a controlled way.

Fault injection Provides configurable HTTP delays and fault injection with an HTTP status code,
allowing developers to discover problems before they would occur in production.

https://istio.io/latest/docs/tasks/traffic-management/
https://istio.io/latest/docs/tasks/traffic-management/

754.3 An introduction to Istio
4.3.3 Istio security

Services in the mesh need to communicate with each other over a network connection,
so you need to consider additional security to defend against various attacks, including
man-in-the-middle and unknown service communication. Istio includes components to
enhance your application security (https://istio.io/latest/docs/tasks/security/), rang-
ing from an included certificate authority to peer authentication and authorization,
helping you adopt a zero-trust posture.

 The first component that Istio provides to increase your application security is the
handling of certificate management, including an Istio certificate authority (CA) with
an existing root certificate. In cryptography, a certificate authority or certification
authority is an entity that issues digital certificates. A digital certificate certifies the
ownership of a public key by the named subject of the certificate. This allows others to
rely on signatures or assertions made about the private key that corresponds to the
certified public key—proving the identity of the certificate owner. A CA acts as a
trusted third party: trusted both by the owner of the certificate and by the party rely-
ing on the certificate.

 In an organization, the root certificate signatory may want to remain responsible
for signing all certificates issued for all entities in the organization. It is also possible
that whoever has the responsibility of signing the root certificate wants to delegate the
responsibility of signing the certificates to a subordinate entity. In this case, we refer to
the subordinate entity as a delegate CA.

 Istio’s certificate authority can be configured in multiple ways. By default, the CA
generates a self-signed root certificate and key, which is used to sign the certificates for
microservices. Istio’s CA can also sign certificates using an administrator-specified cer-
tificate and key and with an administrator-specified root certificate. The last configu-
ration is most common in enterprise environments, where the CA is configured with
an existing root certificate or delegated CA signing certificate and key.

 The CA in Istio is used to securely provision strong identities to every workload in
the mesh. Certificates are issued using X.509 certificates, which is a standard that
defines the format of public key certificates. X.509 certificates are used in many proto-
cols, including TLS/SSL, which is the basis for HTTPS, the secure protocol for brows-
ing the web.

 Istio agents, running alongside each Envoy proxy, work together with the Istio CA
component of istiod to automate key and certificate rotation at scale. Because the
rotation and distribution of certificates is automated, once configured, little overhead
remains for operators or users of the cluster—a powerful feature of Istio to secure
communications between services.

 Certificates are the building block for additional security in our service mesh. In
the next section, we will discuss authentication and mutual TLS encryption—a secu-
rity layer that relies on the issued certificates to secure the mesh workloads.

https://istio.io/latest/docs/tasks/security/

76 CHAPTER 4 Anthos Service Mesh: Security and observability at scale
ISTIO AUTHENTICATION

Istio uses peer authentication for service-to-service authentication and to verify the cli-
ent initiating the connection. Istio also makes mTLS available as a full-stack solution
for transport authentication, which can be enabled without requiring changes to any
application code. Peer authentication provides the following benefits:

 Each service has a strong identity that represents its role to enable interopera-
bility inside the clusters.

 Encryption of all communication between services.
 A key management system to automate the generation, distribution, and rota-

tion of keys and certificates.

Istio allows request-level authentication with JSON Web Token (JWT) validation with
many authentication providers (e.g., Google Auth [https://developers.google.com/
identity]).

ISTIO AUTHORIZATION
Istio provides a mechanism for operators to define authorization policies to control
access to the service mesh, namespace, and workloads within the service mesh, as
shown in figure 4.5. Traffic can be restricted by type, such as TCP or HTTP, and the
identity of the requestor. The advantages that authorization provides follow:

 Authorization—Between workloads and from user to workload.
 Flexible semantics—Operators can define custom conditions on Istio attributes

and use the DENY and ALLOW actions to tune the policies to suit their needs.
 High performance—Istio authorization is applied natively on the Envoy proxy.

Istio Mesh

istiod

JWT and TLS
mTLS

JWT and TLS
mTLS

Authorization
policies

Workload A
authorization

policies

Workload B
authorization

policies

Figure 4.5 Istio authorization architecture

https://developers.google.com/identity
https://developers.google.com/identity
https://developers.google.com/identity

774.3 An introduction to Istio
 Flexibility—Supports gRPC, HTTP, HTTPS, and HTTP2 natively as well as all
regular TCP protocols.

 Distributed—Each Envoy proxy runs its own authorization engine that autho-
rizes each request to be executed.

At the beginning of the chapter, we mentioned that one advantage of a service mesh
was the ability to organize microservices. As your number of services grows, so does
your architecture’s complexity. The only way to maintain health and to troubleshoot
problems in services is to have a powerful set of tools that allow you to look deep into
the mesh activities. In the next section, we will go over the tools that you can use with
Istio to view the activities in the mesh.

4.3.4 Istio observability

To offer a view into the service mesh, Istio features multiple add-on components
(https://istio.io/latest/docs/tasks/observability/) that provide distributed tracing, met-
rics and logging, and a dashboard.

 Istio contains a few options that provide a mesh with distributed tracing. Distrib-
uted tracing allows you to track the user through all the services and understand
request latency, serialization, and parallelism. You can configure Istio to send distrib-
uted metrics to different systems, including Jaeger (https://www.jaegertracing.io/),
Zipkin (https://zipkin.io/), and Lightstep (https://lightstep.com/).

 Jaeger, a distributed tracing system released as open source by Uber Technolo-
gies, is used for monitoring and troubleshooting microservices-based distributed sys-
tems, including the following features: distributed context propagation, distributed
transaction monitoring, root cause analysis, service dependency analysis, and perfor-
mance optimization.

 Zipkin and Lightstep are other distributed tracing systems. They help gather tim-
ing data needed to troubleshoot latency problems in service architectures. Features
include both the collection and lookup of this data.

 You can collect all the metrics and logs from Envoy proxies and TCP sessions and
customize the metrics using Istio metrics, making available all the data via Kiali (https://
kiali.io/), Prometheus (https://prometheus.io/), or Grafana (https://grafana.com/).

 Kiali, shown in figure 4.6, is a management console for Istio-based service meshes
that can build a service graph based on the telemetry data sourced from Envoy side-
car proxies. Kiali provides dashboards and observability and lets you operate your
mesh with robust configuration and validation capabilities. It shows the structure of
your service mesh by inferring traffic topology and displays the health of your mesh.
Kiali provides detailed metrics, powerful validation, Grafana access, and strong inte-
gration for distributed tracing with Jaeger. This application allows you to use Kuberne-
tes JWT tokens to provide native RBAC permission. The JWT presented by the user
allows access to all namespaces they have access to in the cluster while denying all

https://www.jaegertracing.io/
https://zipkin.io/
https://lightstep.com/
https://kiali.io/
https://kiali.io/
https://kiali.io/
https://prometheus.io/
https://grafana.com/
https://istio.io/latest/docs/tasks/observability/

78 CHAPTER 4 Anthos Service Mesh: Security and observability at scale
users that do not have permissions to the namespaces—all without any configuration
required by cluster admins.

 Prometheus is an open source system-monitoring and -alerting application that
has the following features: a multidimensional data model with time-series data identi-
fied by metric name and key-value pairs, and a flexible query language to use this
dimensionality named PromQL. The time-series collection happens via a pull model
over HTTP, and pushing time series is supported via an intermediary gateway.

 Grafana is open source visualization and analytics software application. It allows
you to query, visualize, alert on, and explore your metrics, no matter where they are
stored. It provides you with tools to turn your time-series database data into beautiful
graphs and visualizations. Grafana can connect with Prometheus and Kiali.

 Now that we have looked at Istio, let’s see what features and advantages Istio offers
when it is used by Anthos Service Mesh, managed by Google Cloud.

4.4 What is Anthos Service Mesh?
Anthos Service Mesh has a suite of features and tools that help you observe and man-
age secure, reliable services in a unified way. With Anthos Service Mesh, you get an
Anthos-tested and -supported distribution of Istio, managed by Google, letting you
create and deploy a service mesh on GKE on Google Cloud and other platforms, with
full Google support.

Figure 4.6 Kiali console UI

794.5 Installing ASM
 The use of Istio features in Anthos Service Mesh varies according to the architec-
ture you want to design and implement, including full cloud, multicloud, hybrid
cloud, or edge. Each implementation has different available features; therefore, it is
necessary to check the availability of the supported features for the various scenarios
(see http://mng.bz/81R2).

 Before installing Anthos Service Mesh, always check the documentation and
choose the most suitable and updated configuration profile. The configuration pro-
files, YAML files that are used by the IstioOperator API, define and configure the
features installed with Anthos Service Mesh. At time of writing, you can install ASM in
the following scenarios:

 Anthos cluster (GKE) on Google Cloud in a single project
 Anthos cluster (GKE) on Google Cloud between different projects
 Anthos cluster (GKE) on VMware
 Anthos cluster (GKE) on bare metal
 Anthos cluster (GKE) on AWS
 Attached cluster Amazon Elastic Kubernetes Service (Amazon EKS)
 Attached cluster Microsoft Azure Kubernetes Service (Microsoft AKS)

4.5 Installing ASM
You install ASM differently on GKE clusters on GCP and on-prem. You can view the
most current installation procedures on the ASM site at http://mng.bz/El7l. Explain-
ing each option of the installation is beyond the scope of a single chapter, but the
steps to deploy ASM on a GKE cluster with all components for testing requires only a
few steps, as described next for ASM 1.12 in a cluster:

1 Download the ASM installation script as follows:

curl https:/ /storage.googleapis.com/csm-artifacts/asm/asmcli_1.12 > asmcli

2 Make the script executable like this:

chmod +x asmcli

3 Install ASM using asmcli:

./asmcli install --project_id PROJECT_ID --cluster_name CLUSTER_NAME
--cluster_location CLUSTER_LOCATION --output_dir ./asm-downloads
--enable_all

After Istio is deployed into the Kubernetes cluster, you can start configuring and using
it right away. One of the first things to do is define which approach you want to follow
to make proxies communicate within the service mesh.

 In the next section, we will define how Istio handles the sidecar proxy injection.

http://mng.bz/81R2
http://mng.bz/El7l

80 CHAPTER 4 Anthos Service Mesh: Security and observability at scale
4.5.1 Sidecar proxy injection

Activating Anthos Service Mesh features is an easy, transparent process, thanks to
the possibility of injecting a sidecar proxy next to each workload or microservice.
You can inject a sidecar proxy manually by updating your Pods’ Kubernetes manifest,
or you can use automatic sidecar injection. By default, sidecar autoinjection is dis-
abled for all namespaces. To enable autoinjection for a single namespace, execute

kubectl label namespace NAMESPACE istio.io/rev=asm-managed --overwrite

where NAMESPACE is the name of the namespace for your application’s services and
rev=asm-managed is the release channel (see http://mng.bz/Nm72).

 All channels are based on a generally available (GA) release (although individual
features may not always be GA, as marked). New Anthos Service Mesh versions are
first released to the Rapid channel and over time are promoted to the Regular and
Stable channels. This progression allows you to select a channel that meets your busi-
ness, stability, and functionality needs.

 Because sidecars are injected when Pods are created, after you execute the command,
you must restart any running Pods for the change to take effect. When Kubernetes
invokes the webhook, the admissionregistration.k8s.io/v1beta1#Mutating-
WebhookConfiguration configuration is applied. The default configuration injects
the sidecar into Pods in any namespace with the istio-injection=enabled label.
The label should be consistent with the previous command. The istio-sidecar-
injector configuration map specifies the configuration for the injected sidecar.

 The way you restart Pods depends very much on the way they were created, as
described here:

1 If you used a deployment, you should update or recreate the deployment first
like this, which will restart all Pods, adding the sidecar proxies:

kubectl rollout restart deployment -n YOUR_NAMESPACE

2 If you didn’t use a deployment, you should delete the Pods as follows. They will
be automatically recreated with sidecars:

kubectl delete pod -n YOUR_NAMESPACE --all

3 Check that all the Pods in the namespace have sidecars injected:

kubectl get pod -n YOUR_NAMESPACE

4 In the following example, output from the previous command, you will notice
that the READY column indicates two containers exist for each of your work-
loads: the primary container and the container for the sidecar proxy:

NAME READY STATUS RESTARTS AGE
YOUR_WORKLOAD 2/2 Running 0 20s

http://mng.bz/Nm72

814.5 Installing ASM
We have now seen how to install Anthos Service Mesh, using the approach with a side-
car proxy, and how important it is to choose the right profile. Now let’s see what the
other features of Anthos Service Mesh are and the advantages of using them.

4.5.2 Uniform observability

One of the most important and useful features of the Anthos Service Mesh is observ-
ability. Implementing a service mesh through the proxy architecture and taking
advantage of the Google Cloud Monitoring services ensures in-depth visibility of what
is happening among the various microservices present in the mesh.

 Through the proxy, each microservice can send telemetry automatically, without
the developers having to add any code in their application. All traffic is intercepted by
proxies, and the telemetry data is sent to Anthos Service Mesh. In addition, each
proxy sends the data to Google Cloud Monitoring and Google Cloud Logging without
any extra development, using the APIs that Google makes available.

 The Anthos Service Mesh control plane discussed in chapter 1 provides two main
dashboards: table view and topology view. In the table view, you have a complete view
of all the services deployed in the cluster. You can see all the metrics, and you can add
SLI and SLO to better monitor your services.

 In the topology view, service meshes are represented as a graphical map. All the ser-
vices such as workloads, Pod, systems services, and relative owners are connected as a
network of nodes. This view provides a comprehensive look at the overall performance
of the entire service mesh and an inside look into each node with detailed information.

4.5.3 Operational agility

If observability is one of the most “visible” features for managing a service mesh, then
the management of traffic within a microservices architecture is another fundamental
asset to manage operations easily. Because Anthos Service Mesh is based on Istio, it
inherits most of the traffic and network management features that Istio provides
(http://mng.bz/DZ79), so let’s look at these features next.

REQUEST ROUTING AND TRAFFIC SPLITTING

Using Istio, you can redirect traffic to multiple versions of the same microservice
deployed in the cluster and safely (under a possible quota) control part of the traffic
from an old version of the microservice to a newly installed version. Both options
allow you to be agile in the deployment of new features or to fix bugs that may affect
the business.

 For example, let’s imagine we need to urgently fix a microservice. After the deploy-
ment of the new version, we can redirect a small part of the incoming traffic, verify
that the fix works correctly, and then completely redirect the traffic to the new version
without any downtime. If the fix is carried out only for a specific case, it is possible to
keep both versions of the microservice active, redirecting traffic to both versions
based on preestablished rules, without necessarily having to delete the old version,
which is working well for most cases.

http://mng.bz/DZ79

82 CHAPTER 4 Anthos Service Mesh: Security and observability at scale
 Through these traffic management features, Anthos Service Mesh can manage
A/B testing, allowing you to direct a particular percentage of traffic to a new version
of a service. This practice is helpful when you want to introduce a new version of a ser-
vice by first testing it using a small percentage of user traffic and, if all goes well, then
increasing the percentage while simultaneously phasing out the old version.

 Thanks to these functionalities, it is possible to implement canary deployments or
progressive rollout strategies, directly testing the new versions of the services released.
If the new version of the service experiences no problems with a small percentage of
the traffic directed toward it, you could move all traffic to the new version and discard
the old one.

 In figure 4.7, a canary deployment with traffic splitting is used to redirect 5% of
the traffic to test the new release of Service A.

In figure 4.8, a canary deployment with traffic splitting is used to redirect the iPhone’s
traffic to test the new release of Service A.

Figure 4.7 Istio canary deployment feature based on traffic

User agent: Android

User agent: iPhone

Figure 4.8 Istio canary deployment feature based on user-agent

834.5 Installing ASM
The operations departments that manage the production environment take advan-
tage of these features as they release plans for fixes and new versions of microservices.
Each of these scenarios can be executed on the fly without disrupting the end users.

Circuit breaking
Microservices architectures were born to be scalable, agile, and resilient, but it is not
always easy to design and implement these architectures to manage high workloads
or manage integration with external services with consequent possible downtime
or timeout. As mentioned earlier, the service mesh is independent of the applica-
tion code and the programming language used, and, consequently, this facilitates
the adoption of functions dedicated to the management of the office.

 The functionality that allows you to manage timeouts, failures, and loads on the
architecture is called circuit breaking (http://mng.bz/lJAM). When you design a micro-
services architecture, you must always put yourself in position to manage faults cor-
rectly. These faults may have been caused not only by bugs in the application code but
also from external factors, for example, in the network or infrastructure. In the event
of a fault or failure to reach the SLA (on availability and/or performance of a given
service), circuit breaking automatically allows you to redirect traffic to another micro-
service or external service to limit downtime or to limit the loss of functionality by the
end user.

 Let’s see an example. In figure 4.9, the service consumer is invoking Istio Ingress
to call Service A, which is distributed in two Pods. Let’s assume that Service A inside
Pod 1 has a load problem and becomes unreachable. Thanks to the circuit break-
ing feature, Istio will close the connection of the proxy to Service A inside Pod 1
and redirect all traffic to the proxy inside Pod 2, until Service A in Pod 1 works
properly again.

Egress control
Usually, when it comes to service mesh, an important feature is the control of the
Ingress gateway to ensure absolute security to the network. However, if we find our-
selves in situations for which the regulations (e.g., PCI [http://mng.bz/Bl7g]) or the

Figure 4.9 Istio circuit breaking feature example

http://mng.bz/lJAM
http://mng.bz/Bl7g

84 CHAPTER 4 Anthos Service Mesh: Security and observability at scale
customer’s requirements require us to also control the outgoing traffic from the ser-
vice mesh, then, thanks to Istio and thanks to the egress gateway control, we can cover
the security required.

 With Anthos Service Mesh, you can configure the routing of the traffic from the
service mesh to the external services (HTTP or HTTPS) using a dedicated Egress
gateway or an external HTTPS proxy, if necessary, to perform TLS origination (SDS
or file mount) from the service mesh for the connection on those external services.
See figure 4.10 for an illustration.

4.5.4 Policy-driven security

Since the adoption of containers, shared services, and distributed architectures, it has
become more difficult to mitigate insider threats and minimize and limit data breaches,
ensuring that communications between workloads remain encrypted, authenticated,
and authorized. Anthos Service Mesh security features (http://mng.bz/dJOX) help
mitigate these threats, configuring context-sensitive service levels or context-sensitive
networks.

 Before offerings like Istio, securing an application was the responsibility of the
application developer, and many of the tasks were complex and time consuming,
including the following:

 Encrypting the communications between the application and other services,
which required certificate management and maintenance

 Creating modules that were language specific to authenticate access based on
open identity standards like JSON web tokens (JWTs)

 Implementing a complex authorization system to limit the permissions allowed
using the assertions on the presented JWT

Instead of a developer taking time to create and manage this security, they can take
advantage of the features of Istio, which address each of these tasks without any addi-
tional code required.

Figure 4.10 Istio egress control example

http://mng.bz/dJOX

854.6 Conclusion
 With Anthos Service Mesh, it is possible to adopt an in-depth defense posture con-
sistent with zero-trust security principles via declarative criteria and without modify-
ing any application code. The principal security features in ASM are the managed
private certificate authority, Identity-Aware access controls, request claims–aware
access control policies, user authentication with Identity-Aware Proxy, and access
logging and monitoring.

 The first feature, the managed private certificate authority (Mesh CA), includes a
Google-managed multiregional private certificate authority for issuing certificates for
mTLS. The Mesh CA is a highly reliable and scalable service, optimized for dynami-
cally scaled workloads on a cloud platform. Mesh CA lets you rely on a single root of
trust across Anthos clusters. When using Mesh CA, you can rely on workload identity
pools to provide coarse-grained isolation. By default, authentication fails if the client
and the server are not in the same workload identity pool.

 The next feature, Identity-Aware access control (firewall) policies, allows you to
configure network security policies based on the mTLS identity versus the IP address
of the peer. This lets you create policies that are independent of the network location
of the workload. Only communications across clusters in the same Google Cloud proj-
ect are currently supported.

 The third feature, request claims–aware access control (firewall) policies, enables
you to grant access to services based on request claims in the JWT header of HTTP or
gRPC requests. Anthos Service Mesh lets you assert that a JWT is signed by a trusted
entity, so you can configure policies that allow access from certain clients only if a
request claim exists or matches a specified value.

 The fourth feature, user authentication with Identity-Aware Proxy, authenticates
users accessing any service exposed on an Anthos Service Mesh Ingress gateway by
using Identity-Aware Proxy (IAP). IAP can authenticate users that log in from a
browser, integrate with custom identity providers, and issue a short-lived JWT token or
an RCToken that can then be used to grant access at the Ingress gateway or a down-
stream service (by using a sidecar).

 The final features, access logging and monitoring, ensure that access logs and met-
rics are available in Google Cloud’s operations suite and provides an integrated dash-
board to understand access patterns for a service or workload based on this data. You
can also choose to configure a private destination. Anthos Service Mesh lets you
reduce noise in access logs by logging only successful accesses in a configurable time
window. Requests that are denied by a security policy or result in an error are always
logged, letting you significantly reduce the costs associated with ingesting, storing,
and processing logs, without the loss of key security signals.

4.6 Conclusion
In this chapter, we have seen what a service mesh is, what the advantages of imple-
menting it are, and how Anthos Service Mesh exploits the potential of Istio to manage
the entire service mesh. Thanks to Anthos Service Mesh, developers can be more agile

86 CHAPTER 4 Anthos Service Mesh: Security and observability at scale
in implementing microservices architectures and don’t need to worry about imple-
menting monitoring probes within the application code, by taking advantage of side-
car proxy and proxyless approaches.

 The operations structures can monitor everything that happens within the service
mesh in real time, guaranteeing the required service levels. The traffic splitting and
rolling release features allow you to efficiently release new versions of the services,
ensuring that everything works correctly. Thanks to the security features, the service
mesh is protected from risks that can come from outside or inside the network, imple-
menting effective authentication and authorization policies.

4.7 Examples and case studies
Using the knowledge from the chapter, address each of the requirements in the fol-
lowing case study.

4.7.1 Evermore Industries

Evermore Industries has asked you to enable ASM on a GKE cluster running in GCP.
The cluster will be used for initial service mesh testing and should be installed with
all features to allow the developers to test any feature. They have also asked you to
deploy an online Boutique application to prove that the service mesh is up and run-
ning as expected.

 Because they are new to Istio and the advantages of using a service mesh, they do
not have any special requirements outside of deploying ASM and the Boutique demo
application. The only additional requirement is to provide proof that the Boutique
application is running in the mesh as expected, from the GCP console.

 The next section contains the solution to address Evermore’s requirements. You
can follow along with the solution, or, if you are comfortable, you can configure your
cluster to address the requirements and use the solution to verify your results.

EVERMORE INDUSTRIES SOLUTION: INSTALLING ASM
To install ASM, you can download the ASM installation script to deploy ASM with all
components installed. Follow the next steps to install ASM with all components on
your GKE cluster running in GCP:

1 Download the ASM installation script:

curl https:/ /storage.googleapis.com/csm-artifacts/asm/asmcli_1.12 > asmcli

2 Make the installer executable:

chmod +x asmcli

3 You will need the following information from your project and GKE cluster to
execute the installation script: Project ID, GKE cluster name, and the GKE clus-
ter location.

874.7 Examples and case studies
4 Execute the installation script with the information from your cluster to
install ASM:

./asmcli install --project_id gke-test1-123456 --cluster_name gke-dev-
001 --cluster_location us-central1-c --output_dir ./asm-downloads --
enable_all

5 The installation will take a few minutes. Once the installation is complete, you
will see a message like the one shown here:

 asmcli: Successfully installed ASM.

6 Verify that the istio-system namespace has healthy Pods that have been started
successfully using the following code:

kubectl get pods -n istio-system

7 This should show you that there are four running Pods: two istio-ingress-
gateway Pods and two istiod Pods. Example output follows:

NAME READY STATUS
istio-ingressgateway-68fb877774-9tm8j 1/1 Running istio-ingressgateway-
68fb877774-qf5dp 1/1 Running
istiod-asm-1124-2-78fb6c7f98-n4xpp 1/1 Running
istiod-asm-1124-2-78fb6c7f98-sgttk 1/1 Running

Now that Istio has been deployed, you need to create a namespace and enable Istio
for sidecar injection.

EVERMORE INDUSTRIES SOLUTION: ENABLING SIDECAR INJECTION

To enable the namespace for sidecar injection, follow the steps shown here:

1 Create a namespace that will be used to deploy the Boutique application. In our
example, we will use a namespace called demo:

kubectl create namespace demo

2 Next, we need to label the namespace with the correct label to enable sidecar
injection. Starting with Istio 1.7, the label used to enable sidecar injection
changed from a generic istio-injection to using the value of the control
plane version.

3 To find the control plane version we will use in the label, retrieve the labels in
the istio-system namespace:

kubectl -n istio-system get pods -l app=istiod --show-labels

4 This will return the labels of the istiod Pods, which contains the value we need.
The output will look similar to the following example. (Note: The label value
we will need is in bold.)

88 CHAPTER 4 Anthos Service Mesh: Security and observability at scale
NAME READY STATUS RESTARTS AGE LABELS
istiod-asm-1124-2-78fb6c7f98-n4xpp 1/1 Running 0 44m
app=istiod,install.operator.istio.io/owning-
resource=unknown,istio.io/rev=asm-1124-
2,istio=istiod,operator.istio.io/component=Pilot,pod-template-
hash=78fb6c7f98,sidecar.istio.io/inject=false
istiod-asm-1124-2-78fb6c7f98-sgttk 1/1 Running 0 44m
app=istiod,install.operator.istio.io/owning-
resource=unknown,istio.io/rev=asm-1124-2,istio=istiod,opera-
tor.istio.io/component=Pilot,pod-template-hash=78fb6c7f98,side-
car.istio.io/inject=false

5 Using the istio/io value, label the demo namespace to enable sidecar injec-
tion as follows:

kubectl label namespace demo istio.io/rev=asm-1124-2

EVERMORE INDUSTRIES SOLUTION: INSTALLING THE BOUTIQUE APPLICATION

Now that ASM has been installed and we have created a new namespace with the cor-
rect label to enable sidecar injection, we can deploy the Boutique application. Follow
the next steps to deploy the Boutique demo:

1 Download the Boutique demo application from the Git repository. The following
command will download the GIT repo into a directory called online-boutique:

kpt pkg get https:/ /github.com/GoogleCloudPlatform/microservices-
demo.git/release online-boutique

2 Deploy the application using the files in the online-boutique directory:

kubectl apply -n demo -f online-boutique

This command will install several deployments and services into the demo
namespace. It will take a few minutes for the Pods to start up. You can watch the
namespace or list the Pods in the namespace to verify that each Pod enters a
running state and that each Pod shows two containers. (Remember that each
Pod will have a sidecar injected for the Istio proxy.)

3 Once all Pods are running, the demo namespace output should look similar to
the following:

NAME READY STATUS
adservice-6b74979749-2qd77 2/2 Running
cartservice-6fc79c6d86-tvncv 2/2 Running checkoutservice-
7c95787547-8dmzw 2/2 Running currencyservice-67674dbdf7-hkw78
2/2 Running emailservice-799966ff9f-qcb6s 2/2 Running frontend-
597d957cdf-dmdwr 2/2 Running loadgenerator-88f7dbff5-cn78t
2/2 Running paymentservice-5bdd645d9f-4w9f9 2/2 Running
productcatalogservice-7ffbf4fbf5-j98sq 2/2 Running
recommendationservice-599dfdc445-gpmww 2/2 Running redis-cart-
57bd646894-tdxwb 2/2 Running shippingservice-5f4d856dc-cwtcl
2/2 Running

894.7 Examples and case studies
4 As part of the deployment, a load balancer service was created that allows con-
nectivity to the Boutique application from the internet. To find the IP address
that has been assigned, get the service called frontend-external in the demo
namespace:

kubectl get services frontend-external -n demo

This code will output the service details, which will contain the external address
you can use to verify the application is working.

5 Use the address from the output in step 3 to connect to the application from a
web browser. Once you connect, you should see the main Boutique page, shown
in figure 4.11.

EVERMORE INDUSTRIES SOLUTION: OBSERVING SERVICES USING THE GCP CONSOLE

The final requirement from Evermore is to prove that the Boutique application is run-
ning in the mesh, using the GCP console. To prove this, you can navigate to Anthos >
Service Mesh from the GCP console, as shown in figure 4.12.

 This interface will provide a list of all services in the service mesh. The default
table view, shown in figure 4.13, will show each service and metrics including requests,
latency, and failures.

 You can change the view from the table view to a topology view by clicking the
topology button in the upper-right corner of the console. This will provide a graphical
topology layout of the mesh services, shown in figure 4.14.

 Both views will show services in the service mesh. Because we see the expected ser-
vices for the Boutique application, this proves that the deployment is successfully

Figure 4.11 Online Boutique web application

90 CHAPTER 4 Anthos Service Mesh: Security and observability at scale
Figure 4.12 Google Cloud Console: Anthos menu

Figure 4.13 Anthos Service Mesh: list of services

Figure 4.14 Anthos Service Mesh: topology view

91Summary
working inside of the mesh. In this exercise, you deployed ASM in a GKE cluster, cre-
ated a new namespace that was enabled for sidecar injection, and deployed a test
application into the service mesh.

Summary
 A service mesh based on Anthos Service Mesh helps organizations run micros-

ervices at scale.
 We covered all the components of Istio and what each component does to pro-

vide the service mesh features.
 ASM increases security between workloads using mutual TLS (mTLS) to

encrypt all communication between mesh resources and by using native Istio
authentication and authorization policies.

 ASM provides traffic-routing abilities, allowing for a more flexible release pro-
cess, including A/B testing and canary deployments.

 You can discover application failures before releasing any new code, which
increases availability and resilience, using circuit breakers and fault injection to
proactively find problems with how an application will handle common prob-
lems like network delays or HTTP errors.

 ASM provides visibility, monitoring, security, and control of the entire service
mesh and between multiple environments.

 To use the features of ASM, developers do not need to modify their code, thanks
to the Envoy proxy sidecar, which handles the traffic flow for the application.

Operations management
Jason Quek

Operations is the act of ensuring your clusters are functioning, active, secure, and
able to serve the application to the users. To that end, one prevailing school of
thought has gained adoption and momentum in the cloud era: an operations prac-
tice known as DevOps.

 The simplest definition of DevOps is “the combination of developers and IT
operations.” DevOps aims to address two major points. The first is to enable contin-
uous delivery through automated testing, frequent releases, and management of
the entire infrastructure as code. You can use frameworks such as Terraform or
Pulumi to implement this, depending on the developer’s skill set. The second, an
often overlooked part of DevOps, is IT operations, which includes tasks like logging
and monitoring and then using those indicators to scale and manage the system.

This chapter covers
 Using the Unified Cloud interface to manage

Kubernetes clusters

 Managing Anthos clusters

 Logging and monitoring

 Anthos deployment patterns
92

935.1 Unified user interface from Google Cloud console
You can use open source projects such as Prometheus and Grafana to manage these
tasks. Teams can further improve performance by implementing an additional secu-
rity tool chain to build a modern DevSecOps practice.

 Before the development of DevOps, Google developed an approach called site reli-
ability engineering (SRE). This approach automates and codifies all tasks in operating
the infrastructure to enhance reliability in the systems, and if something goes wrong,
it can be repaired automatically through code. An SRE team is responsible for not
only keeping the environment stable but also for handling new operational features
and improvements to the infrastructure.

 Both DevOps and SRE have different responsibilities assigned to different teams;
however, they have the same goal: to be able to implement changes rapidly and effi-
ciently, automate where possible, and continuously monitor and enhance the system.
This commonality underlies the “desire” from the engineering and operations teams
to break silos (closed teams) and take common responsibility for the system.

 Either approach will deliver many of the same advantages, but they solve problems
in different ways. For example, in a DevOps approach, a dedicated operations team
may take care of the operations management aspect of the infrastructure, handing off
problems to another development team to resolve. This differs from the SRE approach,
where operations are driven by the development team and approached from a soft-
ware engineering point of view, allowing for a single SRE team to address problems
within their own team.

 Anthos provides a path to build a strong DevOps or SRE culture using the tools
provided in the framework. This chapter will show product owners, developers, and
infrastructure teams that, through using Anthos, they are able to build a DevOps/SRE
culture that will help to reduce silos in their company, build reliable systems, and
enhance development efficiency.

 In the next section, we will explain the tools that Anthos includes, starting with the
unified user interface through Google Cloud console, then centralized logging and
monitoring, and, finally, environs, which are all key concepts that will provide the
building blocks to enable an operations practice.

5.1 Unified user interface from Google Cloud console
With everything-as-code these days, a software engineer takes pride in doing every-
thing from the command line or as code. However, when a production problem
occurs affecting real-life services, an intuitive and assistive user interface can help an
engineer identify the problem quickly. This is where Google’s unified user interface
comes in handy, as shown in figure 5.1.

 These tools allow you to view multiple items, like Kubernetes clusters, in a single
view. Having this view available to an administrator gives them oversight of all the
resources available, without having to log in to three separate clusters, as shown in fig-
ure 5.1. This view also shows where resources are located, who their providers are, and
any actions required to manage the clusters.

94 CHAPTER 5 Operations management
Accessing this view requires that the user is already logged in to Google Cloud console,
which is secured by Google Cloud Identity, providing an additional layer of security to
build defense against malicious actors. Having access to this type of view fulfills one of
the DevOps principles: using tooling to provide observability into the system.

 To have a single-pane-of-glass view, you need to register your clusters with your
GCP project. In the next section, we will cover how to register a cluster that is running
Anthos on any of the major cloud service providers or on-prem.

5.1.1 Registering clusters to Google Cloud console

The component responsible for connecting clusters to Google Cloud console is called
Connect and is often deployed as one of the last steps after a cluster is created. If a
cluster is deployed by Anthos on GKE, AWS, or Azure, the Connect Agent is automati-
cally deployed at the time of cluster creation. However, if the cluster is not deployed
by Anthos—such as EKS, AKS, OpenShift, and Rancher clusters—the agent will have
to be deployed separately, because Anthos is not involved in the installation process.
This process will be covered later in this chapter.

 Because Anthos is built following best practices from Kubernetes, the Connect
Agent is represented as a Kubernetes deployment, with the image provided by Google
as part of the Anthos framework. The agent can also be seen in the Google Cloud con-
sole and can be managed like any other Kubernetes object, as shown in figure 5.2.

 The Connect Agent acts as a conduit for Google Cloud console to issue commands
to the clusters in which it has been deployed and to report vCPU usage for licensing.
This brings up one important point: the clusters need to be able to reach Google
Cloud APIs (egress); however, the clusters do not need to be reachable by Google
Cloud APIs (ingress). The impact on latency is minimal due to the unidirectional tun-
nel initialized after the first connection.

 So, how does Google Cloud console issue Kubernetes API commands, such as list-
ing Pods to display on the Google Cloud console? The answer is through the Connect
Agent, which establishes a persistent TLS 1.2 connection to GCP to wait for requests,
eliminating the need for having an inbound firewall rule for the user cluster.

 Transport Layer Security (TLS) is a cryptographic protocol designed to provide
privacy and data integrity between the sender and receiver. It uses symmetric encryp-
tion based on a shared secret to ensure that the message is private. Messages are

Figure 5.1 Multiple clusters registered to Google Cloud console

955.1 Unified user interface from Google Cloud console
signed with a public key to ensure authenticity and include a message-integrity check
to make sure messages are complete. In short, the communication channel to the
Connect Agent over the internet is as secure as internet bank transfers. The full com-
munication flow can be seen in chapter 2, figure 2.2.

 One important point to note is that the outbound TLS-encrypted connection over
the internet is used for Anthos deployments to communicate with Google Cloud, as
shown in figure 5.3. This setup simplifies things, because no inbound firewall rules
have to be added to Anthos deployments—only outbound traffic to Google Cloud—
without any virtual private networks (VPN) required.

 One great thing about Kubernetes is its standardization, which means this agent
will be able to issue Kubernetes API commands on clusters created by Google or any
provider that provides a Kubernetes-compliant distribution as defined by the Cloud
Native Computing Foundation.

 In large enterprises, IT security usually wants to know what the Connect Agent is
sending to Google Cloud APIs, and this is a tricky problem to overcome, due to the
perceived worry that if Google shares the keys to decrypt the traffic, it is effectively
overriding the security put into place. More details of what information is actually sent
from the Connect Agent to Google Cloud can be found in this white paper by Google
(http://mng.bz/rdAZ). Google has also stated unequivocally that no customer data is
sent via the Connect Agent and that it is used only to provide functionality to commu-
nicate with the Kubernetes API and also provide licensing metrics for Anthos billing.

Figure 5.2 A Connect Agent deployed on a GKE cluster

96 CHAPTER 5 Operations management
5.1.2 Authentication

Authentication to Google Kubernetes Engine should use Identity and Access Manage-
ment (IAM) roles to govern access to the GKE clusters. The following section pertains
to GKE on-prem, GKE on AWS, GKE on Azure, and Anthos attached clusters.

 To access Anthos clusters, users with access to the project will always have to pro-
vide either a Kubernetes Service Account (KSA) token or basic authentication or
authenticate against an identity provider configured for the cluster.

 Using a KSA token would be the easiest to set up, but it requires token rotation
and a secure way to distribute tokens regularly to the users who need access to the
clusters. Using basic authentication would be the least secure due to having password
management requirements, but it is still supported as an authentication method if an
identity provider is not available. If you must use basic authentication, one tip would
be to implement a password-rotation strategy in the event of password leaks.

 The recommended practice would be to set up OpenID Connect (OIDC) with
Google Cloud Identity so that users can benefit from their existing security setup to
manage access to their clusters as well. As of September 2020, OIDC is supported on
GKE on-prem clusters from the command line (not from the console). A solid KSA
token rotation and distribution strategy is highly recommended. This can be as simple
as utilizing Google Secret Manager, where permissions to retrieve the token can be
controlled via IAM permissions, and the token can be updated every seven days using
Cloud Scheduler.

Figure 5.3 The outbound connection to Google Cloud from Anthos deployments

975.1 Unified user interface from Google Cloud console
 Once OIDC with Google Cloud Identity has been set up, users can authenticate
the user clusters using the gcloud CLI or from the Google Cloud console, as shown
in figure 5.4.

In figure 5.4, we show the identity flow using OIDC with Google Cloud Identity. With
Anthos Identity Service, other providers that follow the OIDC and Lightweight Direc-
tory Access Protocol (LDAP) protocols can provide identity. This process allows a seam-
less user administration with technologies such as Microsoft Active Directory or an
LDAP server and follows the principle of having one single source of truth of identity.

5.1.3 Cluster management

After registering the clusters and authenticating, users will be able to see Pods, Ser-
vices, ConfigMaps, and persistent volumes, which are normally available from GKE
native clusters. In this section, the cluster management options available via the Goo-
gle Cloud console will be covered. However, to build a good SRE practice, cluster

Log in to
cluster

Log in with
token

Figure 5.4 Authentication flow for OIDC with Google Cloud Identity

98 CHAPTER 5 Operations management
management should be automated and scripted. It is nice, however, to be able to mod-
ify these from a user-friendly interface.

 Administrators who have experience in Google Kubernetes Engine on GCP know
how easy it is to connect to the cluster from the Google Cloud console. They just navi-
gate to the cluster list, as seen in figure 5.5, and click the Connect button.

Once they click Connect, a pop-up window, as shown in figure 5.6, provides the com-
mand to run in a Google Cloud Shell to connect to the selected cluster.

For on-prem and other cloud clusters, the Connect gateway functionality, discussed
later in this chapter, allows operations administrators to manage their clusters remotely
but through a different command.

 Google Cloud console provides a user-friendly interface to edit and apply YAML
deployments, as shown in figure 5.7. Through this interface, administrators can mod-
ify Kubernetes configurations without having to go through the kubectl command

Figure 5.5 Cluster list in the GCP console

Figure 5.6 One of the best features in GKE— generating kubectl credentials via gcloud

995.1 Unified user interface from Google Cloud console
line, which can save some time in emergency situations. These actions on Google
Cloud console translate to Kubernetes API calls, or kubectl edit commands, and are
issued via the Connect Agent to the Anthos clusters. Of course, this method should
be used only in triage or development situations, not necessarily in production, but
it shows the future possibilities of opening up access to the Connect Agent from the
local command line.

 Google Cloud console also provides useful information about the underlying
Docker, kubelet, and memory pressure for the nodes, as seen in figure 5.8. Using this,
administrators can run a quick root cause analysis if a fault occurs with one of the
nodes, and they can cordon off and drain the node.

 When listing the workloads in Google Cloud console, a user can see deployments
across all clusters and filter them by cluster. This ability provides an overview of what
services are running across all clusters and indicates if problems arise with any services
and scaling limits. A common problem is that Pods cannot be provisioned due to lack
of CPU or memory. This is clearly visible as a bright red error message in the console,
as seen in figure 5.9.

Figure 5.7 Editing a YAML definition from the Google Cloud console

100 CHAPTER 5 Operations management
Viewing a cluster interactively with tools is beneficial for real-time views of object
states, node statuses, and more. Although this tool can be helpful in the right scenario
(e.g., when diagnosing a previously unknown problem that impacts production and a
user-friendly interface reduces the need to remember commands in a high-stress situ-
ation), you will find yourself looking at logs and creating monitoring events more
often than real-time views. In the next section, we will detail the logging and monitor-
ing features that Anthos includes.

Figure 5.8 Node information from Google Cloud console

Figure 5.9 Unschedulable Pods error

1015.1 Unified user interface from Google Cloud console
5.1.4 Logging and monitoring

Kubernetes offers different kinds of logs, which are useful for administrators to inves-
tigate when managing a cluster. One type is system logs, to which Kubernetes system
services such as kube-apiserver, etcd, kube-scheduler and kube-controller-manager
log. Clusters also have application logs, which contain log details for all the workloads
running on the Kubernetes cluster. These logs can be accessed through the Connect
Agent, which communicates with the Kubernetes API and essentially issues a kubectl
logs command.

 Both of these log types, shown in figure 5.10, are not stored in the cloud but are
retrieved on demand from the Kubernetes API, which translates to an increased
retrieval latency but is at times necessary in case of IT security requests.

Logs are primarily about errors—warnings that are output to the standard output
stream during the execution of any Kubernetes Pod. These logs are written to the
node itself, and if the Google Cloud operations suite (formerly Stackdriver) agent is
enabled on the GKE cluster, the logs are aggregated and forwarded to the Cloud Log-
ging API and written to the cloud.

 Metrics are observations about a service, such as memory consumption or requests
per second. These observations are saved as a historical trend, which can be used to
scale services or identify possible problems in implementation. Given that each service
can potentially have tens of observations occurring every second or minute, depend-
ing on the business requirements, managing this data in a usable manner is nontrivial.
We propose a couple of solutions in the next subsection involving Google’s Cloud

Figure 5.10 Container logs

102 CHAPTER 5 Operations management
Logging and Monitoring services. You can also use partner technology such as Elastic
Stack, Prometheus, Grafana, or Splunk to make sense of the metrics. See http://
mng.bz/VpmO or http://mng.bz/xdAY for more information.

LOGGING AND MONITORING GKE ON-PREM

Administrators can choose between a few different options for observability when
installing GKE on on-prem clusters. The first option is to use Google’s native Cloud
Logging and Cloud Monitoring solutions. Cloud Logging and Cloud Monitoring han-
dle infrastructure and cloud services, as well as Kubernetes logging and monitoring.
All logged data can be displayed in hierarchical levels according to the Kubernetes
object types. By default, GKE logging collects logs and metrics only from the kube-
system, gke-system, gke-connect, istio-system, and config-management system
namespaces, which are used to track cluster health and are sent to Cloud Logging and
Cloud Monitoring in Google Cloud. This service is fully managed and includes dash-
boarding and alerting capabilities to build a useful monitoring control panel. Cloud
Logging and Cloud Monitoring are often used to monitor Google Cloud resources
and issue alerts on certain logged events and also serve as a single pane of glass for
monitoring service health. This is the recommended option if an organization is open
to using and learning a new logging and monitoring stack and wants a low-cost and
fully managed option.

 Certain organizations may want to disable Cloud Logging and Cloud Monitoring
due to internal decisions. Although they can be disabled, the Google Support SLA will
be voided and Google support will be able to help only as a best effort when resolving
GKE on-prem operation problems.

 The second option is to use Prometheus, Alertmanager, and Grafana, a popular
open source collection of projects, to collect application and system-level logs, and
provide alerting and dashboarding capabilities. Prometheus and Grafana are deployed
as Kubernetes monitoring add-on workloads and, as such, benefit from the scalability
and reliability of running on Kubernetes. When using this solution, support from
Google is limited to basic operations and basic installation and configuration. For
more information on Prometheus and Alertmanager, visit https://prometheus.io, and
for Grafana, please visit https://grafana.com.

 This option can be used across any Kubernetes setup, and many prebuilt Grafana
packages can be used to monitor Kubernetes cluster health. One downside is that
administrators would have to manage Prometheus, ensure its health, and manage its
storage of historical metrics as it is running, as with any other application workload.
Other tools such as Thanos can be used to query, aggregate, downsample, and man-
age multiple Prometheus sources, as well as store historical metrics in object storage
such as Google Cloud Storage or any S3-compatible object stores. For more informa-
tion on Thanos, please visit https://thanos.io/.

 This option is easy for organizations that have built logging and monitoring services
using open source technologies and have deployed this stack before. It also improves
portability and reduces vendor lock-in due to the open source technologies used.

http://mng.bz/VpmO
http://mng.bz/VpmO
http://mng.bz/VpmO
http://mng.bz/xdAY
https://prometheus.io
https://grafana.com
https://thanos.io/

1035.1 Unified user interface from Google Cloud console
 The third option is to use validated solutions, such as Elastic Stack, Splunk, or
Datadog, to consume logs and metrics from Anthos clusters and make them available
to the operations team. This option is attractive if these current logging methods
are already in place and the organization relies on partners to manage the logging
and monitoring systems’ uptime. Organizations that choose this option often have
already purchased this stack and use it for their overall operations with many hetero-
geneous systems.

 A fourth option is also a tiered telemetry approach, which is recommended for
organizations embarking on a hybrid journey with Anthos. Multiple reasons exist for
this approach, the first being that platform and system data from Anthos clusters is
always tightly coupled with Cloud Monitoring and Cloud Logging, so administrators
would have to learn Cloud Monitoring and Cloud Logging to get the most up-to-date
logs and metrics anyway. In addition, it does not have any extra costs and is part of
the Anthos suite. The second reason is that building a hybrid environment often
requires migrating applications to the hybrid environment, with developers who are
used to working with these partner solutions and have built debugging and operat-
ing models around that stack. This makes it a supported option that reduces the oper-
ational friction of moving workloads to a hybrid environment. The third reason is to
build the ability to balance points of failure among different providers and have a
backup option.

5.1.5 Service Mesh logging

Anthos Service Mesh is an optional component but included in the Anthos platform,
as explained in depth in chapter 4. It is an extended and supported version of open
source Istio, included with Anthos and supported by Google. Part of what Google
extended is the ability to upload telemetry data from sidecar proxies injected with
your Pods directly to the Cloud Monitoring API and Cloud Logging API on Google
Cloud. These metrics are then used to visualize preconfigured dashboards in the Goo-
gle Cloud console. For more details, please refer to chapter 3.

 Storing these metrics on Google Cloud also allows you to have historical informa-
tion on latency, errors, and traffic between microservices, so that you can conduct a
postmortem on any problems. You can further use these metrics to drive your service-
level indicators and Pod-scaling strategy and identify services for optimization.

5.1.6 Using service-level indicators and agreements

Anthos Service Mesh service-level indicators (SLIs), service-level objectives (SLOs),
and service-level agreements (SLAs) are features that you can use to build an SRE
practice where Anthos is deployed. It is necessary to consider these concepts when
designing operations management procedures in Anthos.

 Two indicators measure service levels: latency and availability. Latency is how long
the service takes to respond, whereas availability represents how often the service
responds. When the system is designed from a DevOps view, administrators must

104 CHAPTER 5 Operations management
consider Anthos upgrade and scaling needs and plan accordingly so they do not affect
these indicators.

 For service-level objectives, you should think from the angle of the worst-case sce-
nario, and not the best-case scenario, making that decision as data driven as possible.
For example, if the latency is unrealistic and does not affect the user experience,
there will be no way to even release the service. Find the highest latency acceptable
according to the user experience and then work on reducing that based on business
needs. Educate your business stakeholders that a target approaching 99.99999% avail-
ability is very expensive to attain and that a practical trade-off often must be agreed
on. An important concept mentioned in the SRE book by Google is to strive to make a
service reliable enough but no more than it has to be. You can find more information
on the SRE book by Google at http://mng.bz/Al77. Understanding the procedures
and risks of Anthos upgrades, rollbacks, and security updates is essential input to
determine whether a service-level objective is realistic.

 You should also define a compliance period for the service-level objective to be
measured against. The set SLO can be any period of measurement—a day, a week, or
a month. This allows for the teams responsible for the service to decide when it is time
to roll back, make a hotfix, or slow down development to prioritize fixing bugs. The
SLI and SLO also empower product owners to propose service-level agreements with
users that require them and offer a realistic latency and availability agreement.

5.2 Anthos command-line management
You can use various command-line tools to deal with cluster creation, scaling, and
upgrading of Anthos versions, such as gkectl, gkeadmin and anthos-gke. This chapter
is not meant to replace the documentation on Google Cloud, but it summarizes the
actions and some of the gotchas to look out for.

 Reminder: Admin clusters are deployed purely to monitor and administer user
clusters. Think of them as the invisible control plane analogous to GKE, and do not
deploy services that can affect it there.

TIP You can use a kubeconfig manager like ktx from https://github.com/
heptiolabs/ktx, which allows administrators to switch between admin and
user cluster contexts easily.

In the next section, we’ll break up the segments into GKE on-prem and GKE on AWS
because the tools and installation process differ.

5.2.1 Using CLI tools for GKE on-prem

GKE on-prem installation uses the APIs from VMware1 to build an admin workstation,
admin cluster nodes, and user cluster nodes programmatically. Persistent volumes are
powered from individual VMware datastores or vSAN, and networking is provided by

1 In addition to VMware, it is possible to use Anthos on bare metal. That is the topic discussed in chapter 17.

http://mng.bz/Al77
https://github.com/heptiolabs/ktx
https://github.com/heptiolabs/ktx
https://github.com/heptiolabs/ktx

1055.2 Anthos command-line management
either distributed or standard vSphere switches. These act like the IaaS components
provided by Google Cloud when building a GKE cluster: thus the name, GKE on-
prem. The concept of having an admin cluster with user clusters and node pools mir-
rors GKE best practices.

 The current installation process is to download a tool named gkeadm, which cre-
ates an admin workstation. It is from this admin workstation that the admin cluster
and user clusters are installed, as described next. Although versions of gkeadm are
available for Windows, Linux, and macOS, this section will explain only an abbrevi-
ated process for Linux:

1 The first step is to download the tool from the cloud storage bucket:

gsutil cp gs://gke-on-prem-release-public/gkeadm/<anthos
version>/linux/gkeadm ./chmod +x gkeadm

2 Next, create a prepopulated config file:

./gkeadm create config

3 Fill in the vCenter credentials, GCP whitelisted service account key path (after
purchasing Anthos, customers are asked to provide a service account, which
Google will whitelist to be able to download images and other proprietary
tools), and vCenter Certificate Authority certification path.

The vCenter Certificate Authority certifications can be downloaded as follows:

curl -k "https://[SERVER_ADDRESS]/certs/download.zip" > download.zip

After unzipping the download.zip file, the relevant certifications can be found in the
certs/lin folder. The file with the .0 suffix is the root certificate. Rename it to vcen-
ter.crt, and use it in the reference from the installation config file.

 The vCenter and F5 Big-IP credentials are saved in plain text in the config file
when you create new user clusters or on installation. One way to secure the F5 creden-
tials is through using a wrapper around Google Cloud Secret Manager and gcloud.

 To create a password secured by Google Secret Manager, use the following code:

echo "vcenterp455w0rd" | gcloud secrets create vcenterpass --data-file=- --
replication-policy=user-managed --locations=us-east1

To retrieve a password secured by Google Secret Manager, enter the following code:

gcloud secrets versions access latest --secret="vcenterpass"

This secret is now protected via Google IAM policies and a wrapper script can be writ-
ten to retrieve the secret, replace the placeholder in the config file, apply it, and then
delete the file.

 The process to create Anthos cluster components is quickly evolving, and it’s not
uncommon for a newer version to have some changes to the config file. You can learn
about the latest release procedures at http://mng.bz/Zova.

http://mng.bz/Zova

106 CHAPTER 5 Operations management
CLUSTER MANAGEMENT: CREATING A NEW USER CLUSTER

The gkectl command is used for this operation. As a rule of thumb, admins should
constrain their setups so that they contain a ratio of one admin cluster to 10 user clus-
ters. User clusters should have a minimum of three nodes, with a maximum of 100
nodes. As previously mentioned, newer releases may increase these numbers. When a
new Anthos release is published, you can check the new limits in the Quotas and Lim-
its section of the respective release.

 The general advice is to leave some space for at least one cluster, which can be cre-
ated in your on-prem environment. This gives the operations team space to recreate
clusters and move Pods over when upgrading or during triage.

 Keep good documentation, like which IP addresses have been already assigned for
other user clusters, so that nonoverlapping IPs can be determined easily. Consider
that user clusters can be resized to 100 nodes, so reserve up to 100 IP addresses per
range to keep that possibility.

 Source control your configuration files, but do not commit the vSphere username
and passwords. Committing such sensitive information to repositories can open secu-
rity risks because anyone with access to the repository will be able to get those login
details. Tools like ytt can be used to template configuration YAML and perform code
reviews, and you should use repository scanners to prevent such mistakes from taking
place (e.g., http://mng.bz/Rl7O).

 Node pools can also be created with different machine shapes, so size them cor-
rectly to accommodate your workloads. Doing so also gives you granular control
over which machine types to scale and saves costs. For production workloads, use
three replicas for the user cluster master nodes for high availability, but for develop-
ment, one should be fine.

 Validate the configuration file to make sure the file is valid. The checks are both
syntactic and programmatic, such as checking for IP range clashes and IP availability
using the gkectl check-config command:

gkectl check-config --kubeconfig [ADMIN_CLUSTER_KUBECONFIG] --config
[CONFIG_FILE]

After the first few validations, most time-consuming validations can be skipped by
passing the --fast flag.

 Next, the seesaw load balancer should be created if the bundled load balancer is
chosen. If you do not create the seesaw node(s) before attempting a cluster build that
has been configured with the integrated load-balancer option, you will receive an
error during the cluster precheck. To create the seesaw node(s), use the gkectl create
loadbalancer command:

gkectl create loadbalancer --kubeconfig [ADMIN_CLUSTER_KUBECONFIG] --config
[CONFIG_FILE]

http://mng.bz/Rl7O

1075.2 Anthos command-line management
After the creation of a new user cluster, remember that for the bundled load-balanced
seesaw version, the user will then be able to create the user cluster as follows:

gkectl create cluster --kubeconfig [ADMIN_CLUSTER_KUBECONFIG] --config
[CONFIG_FILE]

You can also add the --skip-validation-all flag if the config file has already
been validated.

 The whole user cluster process, which consists of starting up new VMware virtual
machines with the master and worker node images and joining them into a cluster,
can take 20–30 minutes, depending on the hardware. The administrator is also able to
see the nodes being created from the VMware vCenter console.

High-availability setup
High availability is necessary for Anthos deployments in production environments
because failures can occur at different parts of the stack, ranging from networking, to
hardware, to the virtualization layer.

 High availability (HA) for admin clusters makes use of the vSphere HA in a
vSphere cluster setup to protect GKE on-prem clusters from going down in the event
of a host failure. This ensures that admin cluster nodes are distributed among differ-
ent physical nodes in a vSphere cluster, so in the event of a physical node failure, the
admin cluster will still be available.

 To enable HA user control planes, simply specify usercluster.master.replicas: 3
in the GKE on-prem configuration file. This will create three user cluster masters for
each user cluster, consuming three times the resources but providing an HA Kuber-
netes setup.

CLUSTER MANAGEMENT: SCALING

Administrators can use the gkectl CLI to scale up or down nodes. They change the
config file to set the number of expected replicas and execute the following com-
mand to update the node pool:

gkectl update cluster --kubeconfig [USER_CLUSTER_KUBECONFIG] --config
[CONFIG_FILE]

CLUSTER MANAGEMENT: UPGRADING ANTHOS

Like any upgrade process, failures can occur during the process. A lot of effort has been
put into making the upgrade process robust, including the addition of prechecks before
executing the upgrade to catch potential problems before they occur. Each product
team at Google works closely together when an upgrade is being developed to avoid any
potential incompatibilities between components like Kubernetes, ACM, and ASM. For
ease of access, bookmark this link for quick access: http://mng.bz/nJV8.

 New Anthos versions appear frequently due to industry demand for new features, and
so upgrading Anthos is a common activity. That can also mean upgrading to a new ver-
sion of Kubernetes, which impacts Anthos Service Mesh due to Istio dependency on
Kubernetes. The upgrade chain is complex, which is why we recommend keeping some
spare hardware resources that can be used to create new versions of Anthos clusters and

http://mng.bz/nJV8

108 CHAPTER 5 Operations management
then move workloads to the new cluster before tearing down the older-version cluster.
This process reduces the risk associated with upgrades by providing an easy rollback path
in case of a failed upgrade. In this type of upgrade path, you should have a load balancer
in front of the microservices running in the old cluster to be upgraded, which can direct
traffic from the old cluster to the new cluster, because they will exist at the same time.
However, if this is not an option, administrators can upgrade Anthos clusters in place.

 First, consult the upgrade paths. From GKE on-prem 1.3.2 onward, administrators
can upgrade directly to any version in the same minor release; otherwise, sequential
upgrades are required. From version 1.7 onward, administrators can keep their admin
cluster on an older version, while only upgrading the admin workstation and the user
cluster. As a best practice, administrators should still schedule the admin cluster
upgrades to keep up to date.

 Next, download the gkeadm tool, which must be the same as the target version of
your upgrade, and run gkeadm to upgrade the admin workstation and gkectl to upgrade
your user cluster and, finally, the admin cluster.

 When upgrading in place, a new node is created with the image of the latest ver-
sion, and workloads are drained from the older version and shifted over to the latest
version, one node after the other. Administrators should plan for additional resources
in their physical hosts to accommodate at least one user node for upgrade purposes.
The full flow can be seen in figure 5.11.

Figure 5.11 Upgrading flow

1095.2 Anthos command-line management
For a detailed list of commands, consult the upgrade documentation at http://mng
.bz/Px7v for exact details.

CLUSTER MANAGEMENT: BACKING UP CLUSTERS

Anthos admin clusters can be backed up by following the steps found at http://
mng.bz/Jl7a. It is recommended you do this as part of a production Anthos environ-
ment setup to regularly schedule backups and to do on-demand backups when
upgrading Anthos versions.

 An Anthos user clusters’ etcd can be backed up by running a backup script, which
you can read more about at http://mng.bz/wPAa. Do note that this backs up only the
etcd of the clusters, meaning the Kubernetes configuration. Google also states this
should be a last resort. Backup for GKE promises to make this simpler, and was
recently made available (http://mng.bz/X5MM).

 Any application-specific data such as persistent volumes are not backed up by this
process. Those should be backed up regularly to another storage device using one of
the several available tools, like Velero.

 You should treat your cluster backups the same as any data that is backed up from
a server. The recommendation is to practice restoring an admin and user cluster from
backup, along with application-specific data, to gain confidence in the backup and
recovery process.

 Google has several additions in development for Anthos. One important feature
being added will be named Anthos Enterprise Data Protection and will provide the
functionality to back up clusterwide config such as custom resource definitions, and
namespace-wide configuration and application data from Google Cloud console into
a Cloud storage bucket, as well the ability to restore using the backup.

5.2.2 GKE on AWS

GKE on AWS uses AWS EC2 instances and other components to build GKE clusters,
which means these are not EKS clusters. If a user logs in to the AWS console, they will
be able to see the admin cluster and user cluster nodes only as individual AWS EC2
instances. It is important to differentiate this from managing EKS clusters in Anthos
because the responsibilities assigned to the various cloud providers according to each
cluster type differ.

 GKE on AWS installation is done via the gcloud CLI with the command gcloud
container aws clusters create. For Terraform users, sample terraform code is avail-
able to install GKE on Anthos in the following repository: http://mng.bz/71R7. This
sample code will further simplify the installation process and remove the need for a
bastion host and management server mentioned in the steps that follow.

 The installation process is to first get an AWS Key Management Service (KMS) key,
then use anthos-gke, which in turn uses Terraform to generate Terraform code. Terra-
form, offered by HashiCorp, is an Infrastructure as Code open source tool to define a
target state of a computing environment. Terraform code is declarative and uses Ter-
raform providers, which are often contributed by cloud providers such as Google,

http://mng.bz/X5MM
http://mng.bz/Px7v
http://mng.bz/Px7v
http://mng.bz/Px7v
http://mng.bz/wPAa
http://mng.bz/Jl7a
http://mng.bz/Jl7a
http://mng.bz/Jl7a
http://mng.bz/71R7

110 CHAPTER 5 Operations management
AWS, and Microsoft, to map their cloud provisioning APIs to Terraform code. The
resulting Terraform code describes how the GKE on AWS infrastructure will look. It
has components analogous to GKE on-prem, such as a load balancer and EC2 virtual
machines, but it uses the Terraform AWS provider to instantiate the infrastructure on
AWS. You can learn more about Terraform at https://www.terraform.io/.

 The architecture of GKE on AWS can be seen in figure 5.12, which is from the
Google Cloud documentation at http://mng.bz/mJAW.

The use of node pools is like GKE, with the ability to have different machine sizes
within a cluster.

NOTE To do any GKE on AWS operations management, the administrator will
have to log in to the bastion host, which is part of the management service.

Figure 5.12 GKE on AWS architecture

http://mng.bz/mJAW
https://www.terraform.io/

1115.2 Anthos command-line management
CONNECTING TO THE MANAGEMENT SERVICE

When doing any management operations, the administrator needs to connect to the
bastion host deployed during the initial installation of the management service. This
script is named bastion-tunnel.sh and is generated by Terraform during the manage-
ment service installation.

CLUSTER MANAGEMENT: CREATING A NEW USER CLUSTER

Use the bastion-tunnel script to connect to the management service. After connecting
to the bastion host, the administrator uses Terraform to generate a manifest, configur-
ing an example cluster in a YAML file:

terraform output cluster_example > cluster-0.yaml

In this YAML file, the administrator then changes the AWSCluster and AWSNodePool
specifications. Be sure to save the cluster file to a code repository because it will be
reused for scaling the user cluster.

 Custom resources are extensions of Kubernetes to add additional functionality,
such as for provisioning AWS EC2 instances. AWS clusters and objects are represented
as YAML files, referencing the AWSCluster and AWSNodePool custom resources in the
management service cluster, which interpret this YAML file and adjust the resources
in AWS accordingly. To read more about custom resources, refer to http://mng
.bz/51R8.

CLUSTER MANAGEMENT: SCALING

You may experience a situation where a cluster requires additional compute power,
and you need to scale out the cluster. Luckily, an Anthos node pool can scale a clus-
ter, including a minimum and maximum node count. If you created a cluster with
the same count in both the minimum and maximum nodes, you can change that
setting at a later date to grow your cluster. To scale a cluster for GKE on AWS, you
just require the administrator to modify the YAML file by updating the minNode-
Count while creating the user cluster and applying it to the management service:

apiVersion: multicloud.cluster.gke.io/v1
kind: AWSNodePool
metadata:
 name: cluster-0-pool-0
spec:
 clusterName: cluster-0
 version: 1.20.10-gke.600
 minNodeCount: 3
 maxNodeCount: 10

CLUSTER MANAGEMENT: UPGRADING

Upgrading GKE on AWS is done in two steps, with the management service handled
first, and then the user clusters. To upgrade a GKE on the AWS management service,
the administrator must upgrade a GKE on the AWS management service from the

http://mng.bz/51R8
http://mng.bz/51R8
http://mng.bz/51R8

112 CHAPTER 5 Operations management
directory with the GKE on AWS configuration. Then, the user must first download the
latest version of the anthos-gke binary. Next, the user will have to modify the anthos-
gke.yaml file to the target version:

apiVersion: multicloud.cluster.gke.io/v1
kind: AWSManagementService
metadata:
 name: management
spec:
 version: <target_version>

Finally, to validate and apply the version changes, run the next code:

anthos-gke aws management init
anthos-gke aws management apply

The management service will be down, so no changes to user clusters can be applied,
but user clusters continue to run their workloads.

 To upgrade the user cluster, the administrator switches context in the manage-
ment service from the GKE on the AWS directory using the following command:

anthos-gke aws management get-credentials

Then, upgrading the version of the user cluster is as easy as using the following:

kubectl edit awscluster <cluster_name>

Edit the YAML file to point to the right GKE version:

apiVersion: multicloud.cluster.gke.io/v1
kind: AWSCluster
metadata:
 name: cluster-0
spec:
 region: us-east-1
 controlPlane:
 version: <gke_version>

On submission of this change, the CRD starts to go through the nodes in the control
plane one by one and upgrades them to the latest version of GKE on AWS. This
upgrade process causes a downtime of the control plane, which means the cluster may
be unable to report the status of the different node pools until it is completed.

 Finally, the last step is to upgrade the actual node pool. The same procedure
applies: the administrator just edits the YAML file to the version required and applies
the YAML file to the management service as follows:

apiVersion: multicloud.cluster.gke.io/v1
kind: AWSNodePool

1135.3 Anthos attached clusters
metadata:
 name: cluster-0-pool-0
spec:
 clusterName: cluster-0
 region: us-east-1
 version: <gke-version>

5.3 Anthos attached clusters
Anthos attached clusters let you view your Kubernetes clusters and are provisioned
and managed by Elastic Kubernetes Service (EKS) by AWS, Azure Kubernetes Ser-
vice (AKS), or any conformant Kubernetes cluster. In this case, the scaling and pro-
visioning of the clusters are done from the respective clouds. However, these
clusters can still be attached and managed by Anthos by registering them to Google
Cloud through deploying the Connect Agent, as illustrated in figure 5.13.

GKE is also handled in the same way and can be attached from another project into
the Anthos project as follows:

1 The administrator must generate a kubeconfig to the EKS or AKS cluster and
then provide that kubeconfig in a generated cluster registration command in
gcloud. Consult the documentation from AWS and Azure on how to generate a
kubeconfig file for the EKS or AKS clusters. The administrator can also gener-
ate one manually using the following template and providing the necessary cer-
tificate, server info, and service account token:

apiVersion: v1
kind: Config
users:
- name: svcs-acct-dply
 user:
 token: <replace this with token info>
clusters:
- cluster:
 certificate-authority-data: <replace this with certificate-authority-
data info>
 server: <replace this with server info>
 name: self-hosted-cluster
contexts:
- context:
 cluster: self-hosted-cluster
 user: svcs-acct-dply
 name: svcs-acct-context
current-context: svcs-acct-context

Figure 5.13 Adding an external cluster (bring your own Kubernetes)

114 CHAPTER 5 Operations management
2 The administrator must create a Google service account and a service account
key to provide for the registration, as shown in figure 5.14.

3 The administrator will provide these two items in the generated registration
command, and after the Connect Agent has been deployed to the external clus-
ter, it will be visible in the Google Cloud console.

Figure 5.14 Generating a registration command for the external cluster

1155.4 Anthos on bare metal
5.4 Anthos on bare metal
Operating and managing Anthos on bare metal often requires additional skill sets in
the OS configuration space because it is based on installing Anthos on RHEL,
Ubuntu, or CentOS. For the detailed steps for installing and upgrading Anthos on
bare metal, consult chapter 17.

 Anthos on bare metal is similar to Anthos on VMware but with more flexibility
in its deployment models and no dependency on VMware. The benefits of using
Anthos on bare metal versus managing Kubernetes running on a set of virtualized
machines include the performance gain, the support provided by Google during
installation of all Anthos components, and the ability to deploy applications from
the Google Cloud Marketplace directly into the Anthos cluster. However, the team
will have to manage their own storage devices to provide durable and performant
storage to Anthos on bare metal clusters, compared to having that natively sup-
ported with Anthos on VMware with custom-built storage drivers.

 You must make a few key decisions when designing the operations management
procedures for Anthos on bare metal. First is capacity planning and resource estima-
tion. Unlike the rest of the setups, where new nodes need to be provisioned using
either public cloud resources or a pool of VMware resources, new bare metal nodes
must be provisioned. This requires additional capacity requirements if there is a zero-
downtime requirement during upgrades of the nodes because there is always a risk of
nodes failing during upgrade and causing a decrease in capacity.

 Second is automating the prerequisite installation of the nodes as much as possi-
ble. Many companies also require a golden image of a base operating system, which
must be vetted by a security team and continuously updated with security patches and
latest versions. This should be built into the Anthos on bare metal provisioning pro-
cess to verify compatibility with Anthos installation. One option is to set up PXE boot
servers and have newly provisioned bare metal servers point to the PXE boot servers
to install the operating system of bare metal nodes to the right configuration.

 Third is determining the different deployments to run Anthos on bare metal, in
standalone, multicluster, or hybrid cluster deployments. Flexibility also means com-
plexity and having to build different operational models for the different deploy-
ments. Chapter 17 goes into more detail about the differences, but this chapter
highlights the following operational considerations when choosing the different
deployment models:

 Standalone cluster deployment—This deployment model, shown in figure 5.15,
has the admin and user clusters in the same cluster. In such a configuration,
workloads run in the same nodes, which have SSH credentials and in which
Google service account keys are stored. This configuration is well suited for
edge deployment, and as such, operational models should introduce SSH
credential and service account key generation for each new standalone cluster
provisioned and deployed, as well as a plan to decommission those credentials

116 CHAPTER 5 Operations management
when a cluster is compromised or lost. There is a minimum requirement of
five nodes for a high-availability setup.

 Multicluster deployment—This deployment model, illustrated in figure 5.16, has
an admin cluster and one or more user clusters, like Anthos on VMware. This
model features many benefits, such as admin/user isolation for the clusters,
multitenanted setups (i.e., each team can have their own cluster), and a central-
ized plan for upgrades. The downside is the increased footprint in node require-
ments and a minimum of eight nodes for a high-availability setup. Because of
this, this model requires more effort when setting up for multiple edge loca-
tions and is more for a data center setup.

 Hybrid cluster deployment—This deployment model, shown in figure 5.17, allows
for running user workloads on the admin clusters and managing other user

Control Plane Nodes 1–3

Work Nodes 1–5

Standalone
Deployment

HA

Figure 5.15 Standalone deployment

Control Plane Nodes 1–3

Worker Nodes 1–5

Multicluster
Deployment

Admin Cluster
HA

Worker Nodes 1–5

Multicluster
Deployment

User Cluster 1
HA

Multicluster
Deployment

User Cluster 2
HA Figure 5.16 Multicluster deployment

1175.5 Connect gateway
clusters. This model reduces the footprint required for multicluster deploy-
ment to five nodes for a high-availability setup, but it has the same security con-
cern of running user workloads on nodes that may contain sensitive data from
the standalone cluster deployment. Using a hybrid cluster deployments grants
flexibility to tier workloads by security levels and introduces user clusters for
workloads that require higher security.

5.5 Connect gateway
Registering Anthos clusters allows the user to interact with them through the UI, but
administrators often have a toolbox of scripts, which they use to work with clusters
through the kubectl command line. With GKE on-prem, on AWS, or on Azure, these
clusters often can be accessed only via the admin workstation or a bastion host. GKE
users, on the other hand, can use gcloud and generate kubeconfig details from
kubectl to their clusters on their local machines. With Connect gateway, this problem
is solved.

 Administrators can connect to any Anthos-registered cluster and generate kubecon-
fig that enables the user to use kubectl for those clusters via the Connect Agent. With
this feature, administrators will not be required to use jump hosts to deploy to the
GKE on clusters, but instead can run a gcloud command to generate a kubeconfig to
connect via kubectl.

 The setup requires an impersonation policy, which allows the Connect Agent ser-
vice account to impersonate a user account to issue commands on their behalf. An
example of the YAML file, which creates the ClusterRole and ClusterRoleBinding for
impersonation, can be seen here:

[USER_ACCOUNT] is an email, either USER_EMAIL_ADDRESS or GCPSA_EMAIL_ADDRESS
$ USER_ACCOUNT=foo@example.com
$ cat <<EOF > /tmp/impersonate.yaml
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
 name: gateway-impersonate

Control Plane Nodes 1–3 Worker Nodes 1–2

Worker Nodes 1–5

Hybrid
Deployment

Hybrid Cluster
HA

Hybrid
Deployment
User Cluster

HA
Figure 5.17 Hybrid deployment

118 CHAPTER 5 Operations management
rules:
- apiGroups:
 - ""
 resourceNames:
 - ${USER_ACCOUNT}
 resources:
 - users
 verbs:
 - impersonate

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
 name: gateway-impersonate
roleRef:
 kind: ClusterRole
 name: gateway-impersonate
 apiGroup: rbac.authorization.k8s.io
subjects:
- kind: ServiceAccount
 name: connect-agent-sa
 namespace: gke-connect
EOF

After the impersonation policy has been set up, the administrator must run the com-
mand shown in figure 5.18 to generate a kubeconfig, which appears in figure 5.19.

With this kubeconfig in place, administrators can manage GKE on-prem workloads,
even from their local machine, while being secured by Google Cloud Identity. This
method also opens the possibility for building pipelines to deploy to the different
Anthos clusters.

5.6 Anthos on Azure
Anthos GKE clusters can be installed on Azure with an architecture consisting of a
multicloud API hosted on GCP that provides life cycle management capabilities to
GKE clusters in Azure, as shown in figure 5.20. You can also access Azure GKE clusters
via the Connect gateway mentioned in this chapter. Anthos on Azure uses Azure-
native technologies like the Azure Load Balancer, Azure Active Directory, and Azure
Virtual Machines but relies on Anthos via the multicloud API to manage GKE cluster

Figure 5.18 Command to get credentials to the GKE on-prem cluster

Figure 5.19 kubeconfig generated via gcloud

1195.6 Anthos on Azure
life cycle operations. This creates a uniform way to deploy applications across the
three major public clouds and on-prem.

As a prerequisite, the administrator must install the gcloud CLI. In addition, the
administrator has to have the following Azure built-in roles shown here:

 Application administrator
 User access administrator
 Contributor

The next steps would be to create an Azure Active Directory application, a virtual net-
work, and a resource group for the clusters, and grant the necessary permissions to
the Azure Active Directory application. Detailed prerequisite information can be
found in the public documentation at http://mng.bz/61Rp.

5.6.1 Cluster management: Creation

To create a new user cluster, the administrator must first set up an Azure client with an
SSH key pair:

export SUBSCRIPTION_ID=$(az account show --query "id" --output tsv)
export TENANT_ID=$(az account list \
 --query "[?id=='${SUBSCRIPTION_ID}'].{tenantId:tenantId}" --output tsv)
export APPLICATION_ID=$(az ad app list --all \
 --query "[?displayName=='APPLICATION_NAME'].appId" --output tsv)

gcloud alpha container azure clients create CLIENT_NAME \
 --location=GOOGLE_CLOUD_LOCATION \
 --tenant-id="${TENANT_ID}" \
 --application-id="${APPLICATION_ID}"

CERT=$(gcloud alpha container azure clients get-public-cert --
location=GOOGLE_CLOUD_LOCATION \

 CLIENT_NAME)

Figure 5.20 Anthos on Azure architecture

http://mng.bz/61Rp

120 CHAPTER 5 Operations management
az ad app credential reset --id "${APPLICATION_ID}" --cert "${CERT}" --append

ssh-keygen -m PEM -t rsa -b 4096 -f KEY_PATH

SSH_PUBLIC_KEY=$(cat KEY_PATH.pub)

ssh-keygen -m PEM -t rsa -b 4096 -f ~/.ssh/anthos-multicloud-key
SSH_PUBLIC_KEY=$(cat ~/.ssh/anthos-multicloud-key.pub)

Next, the administrator will need to assign Azure resource groups, VNet, and subnet
IDs to environment variables; add IAM permissions; and run the gcloud command to
create the Anthos on Azure cluster:

CLUSTER_RG_ID=$(az group show --resource-group=CLUSTER_RESOURCE_GROUP_NAME \
 --query "id" -otsv)
VNET_ID=$(az network vnet show --resource-group=VNET_RESOURCE_GROUP_NAME \
 --name=VNET_NAME --query "id" -otsv)
SUBNET_ID=$(az network vnet subnet show \
 --resource-group=VNET_RESOURCE_GROUP_NAME --vnet-name=VNET_NAME \
 --name default --query "id" -otsv)

PROJECT_ID="$(gcloud config get-value project)"
gcloud projects add-iam-policy-binding "$PROJECT_ID" \
 --member="serviceAccount:$PROJECT_ID.svc.id.goog[gke-system/gke-multicloud-

agent]" \
 --role="roles/gkehub.connect"

gcloud alpha container azure clusters create CLUSTER_NAME \
 --location GOOGLE_CLOUD_LOCATION \
 --client CLIENT_NAME \
 --azure-region AZURE_REGION \
 --pod-address-cidr-blocks POD_CIDR \
 --service-address-cidr-blocks SERVICE_CIDR \
 --vm-size VM_SIZE \
 --cluster-version 1.19.10-gke.1000 \
 --ssh-public-key "$SSH_PUBLIC_KEY" \
 --resource-group-id "$CLUSTER_RG_ID" \
 --vnet-id "$VNET_ID" \
 --subnet-id "$SUBNET_ID"

This cluster should then be available on the administrator’s GKE console. Finally, the
admin adds a node pool to deploy workloads to the cluster:

SUBNET_ID=$(az network vnet subnet show \
 --resource-group=VNET_RESOURCE_GROUP_NAME --vnet-name=VNET_NAME \
 --name default --query "id" -otsv)
SSH_PUBLIC_KEY=$(cat KEY_PATH.pub)

gcloud alpha container azure node-pools create NODE_POOL_NAME \
 --cluster=CLUSTER_NAME \
 --location GOOGLE_CLOUD_LOCATION \
 --node-version=1.19.10-gke.1000 \

121Summary
 --vm-size=VM_SIZE \
 --max-pods-per-node=110 \
 --min-nodes=MIN_NODES \
 --max-nodes=MAX_NODES \
 --ssh-public-key="${SSH_PUBLIC_KEY}" \
 --subnet-id="${SUBNET_ID}"

5.6.2 Cluster management: Deletion

To delete a cluster, administrators must first delete all the node pools that belong to
a cluster:

gcloud alpha container azure node-pools delete NODE_POOL_NAME \
 --cluster CLUSTER_NAME \
 --location GOOGLE_CLOUD_LOCATION

gcloud alpha container azure clusters delete CLUSTER_NAME \
 --location GOOGLE_CLOUD_LOCATION

With an autoscaler ready to go with Anthos on Azure, it is easy for the administrator to
control costs and manage minimum resource requirements for each cluster. It is rec-
ommended to have a security device like HashiCorp Vault to store the SSH keys for
retrieval and rotation.

Summary
 The best way to learn is by trying, and the best advice is to try building clusters

on the various providers to understand the optimizations available and the
actions that an administrator would need to do in their day-to-day life managing
operations in Anthos. This is key to building a continuous improvement pro-
cess because new features in Anthos are released frequently to make Kuberne-
tes cluster management easier and faster.

 We covered how to use the Google Cloud console to operate and manage work-
loads of the various Anthos cluster types.

 You read about the various logging and monitoring options available with
Anthos deployments and the criteria to consider.

 You now understand how to operate and manage various types of Anthos
deployments through the command line and how and what kind of communi-
cation happens between Google Cloud and the deployments.

 You learned how to upgrade, scale, and design operations management proce-
dures in Anthos across a hybrid environment.

Bringing it all together
Onofrio Petragallo

As we have seen in the previous chapters, Anthos is a modern application platform
that provides a consistent development and operations experience for cloud and
hybrid environments. In this chapter, you will get an overview of the main layers of
the platform and the main functionalities. Figure 6.1 illustrates the Anthos compo-
nents and features and how they provide Anthos’s functionality across your environ-
ments, from infrastructure management to supporting application development.

This chapter covers
 How Anthos components provide a unique

and powerful developer experience

 Deploying applications using different Anthos
offerings

 Using policy enforcement for management
and consistency

 Using Anthos Service Mesh to observe and
secure applications
122

1236.1 Application development
6.1 Application development
For the developer, Anthos provides a state-of-the-art container management platform
based on Kubernetes. Developers can use this platform to quickly and easily build and
deploy existing container-based applications and microservices-based architectures.
The key benefits to developers include the following:

 Git-compliant management and CI/CD workflows for configuration as well as
code, using Anthos Config Management

 A code-free abstraction layer, using Anthos Service Mesh and Cloud Monitoring
and Cloud Logging to provide uniform observability

 Code-free protection of services, using mTLS and throttling

Developers can develop modern applications using the IDEs they prefer: for example,
they can use IntelliJ (https://www.jetbrains.com/idea/) or Visual Studio Code for the
implementation of cloud native applications that can run on Anthos.

 Google Cloud provides Cloud Code (https://cloud.google.com/code), which is a
plug-in for IntelliJ, Visual Studio Code, and Google Cloud Shell that allows you to
obtain a Kubernetes development and debugging environment fully integrated with
the IDE. Thanks to Cloud Code, you can create and manage clusters directly from the
IDE, and you can deploy your code in an Anthos cluster or Cloud Run for Anthos in a
few clicks. You can also do the following:

 Debug the code within your IDEs using Cloud Code, taking advantage of built-
in IDE debugging features

Monitoring and
logging

Figure 6.1 Anthos components and features

https://www.jetbrains.com/idea/
https://cloud.google.com/code

124 CHAPTER 6 Bringing it all together
 View underlying resources and metadata for your Kubernetes clusters and Cloud
Run services. You’re a click away from acting on these resources: you can fetch a
description, view logs, manage secrets, or get a terminal directly into a Pod.

 While interacting with Google Cloud configuration files, get out-of-the-box sup-
port for IDE features including code completion, inline documentation, lint-
ing, and snippets.

Under the covers, Cloud Code for IDEs uses popular tools such as Skaffold (https://
skaffold.dev/), Jib (https://github.com/GoogleContainerTools/jib), and kubectl
(http://mng.bz/Nm9X) to provide continuous feedback on your code in real time.

6.2 Application deployment
Once your application has been developed, you can reuse your favorite CI/CD tools
for full application testing and deployment. Google Cloud provides several cloud
native tools that allow you to speed up the build, test, and release applications.

6.2.1 Cloud Source Repositories

Cloud Source Repositories are Git repositories managed by Google (see https://cloud
.google.com/source-repositories). Git (https://git-scm.com) is a free, open source,
distributed version-control system designed to handle everything from small to very
large projects with speed and efficiency. With Cloud Source Repositories, you get free
access to unlimited private repositories to organize your code the way you want. Mir-
ror code from GitHub or Bitbucket repositories to use powerful code search, code
exploration, and diagnostics.

 Figure 6.2 shows the first page of the Google Cloud console, where we can select to
create a new repository or connect an existing one.

Figure 6.2 Connection of an existing Git repository from the Google Cloud console

https://skaffold.dev/
https://skaffold.dev/
https://skaffold.dev/
https://github.com/GoogleContainerTools/jib
http://mng.bz/Nm9X
https://cloud.google.com/source-repositories
https://cloud.google.com/source-repositories
https://cloud.google.com/source-repositories
https://git-scm.com

1256.2 Application deployment
Assuming we would like to create a new repository, figure 6.3 shows the list view of the
Git repository inside the project “onofrio.” “hello-world” is the new Git repository cre-
ated inside the project.

Figure 6.4 shows the content of the new repository, the example.py file.

If we click the single file, we can see the content of the file, as shown in figure 6.5.
 With Cloud Source Repositories, you get feedback on code changes quickly with

built-in integrations for continuous integration. You can easily configure triggers
to automatically build and test with Cloud Build when you push changes to Cloud
Source Repositories.

Figure 6.3 List of Git repositories

Figure 6.4 Repository root view

126 CHAPTER 6 Bringing it all together
You can also use powerful regular expressions to search across multiple directories, as
displayed in figure 6.6. Regular expressions (regex) allow you to refine your search or
perform a single targeted search across projects, files, and code repositories.

Figure 6.5 File content view

Figure 6.6 File search with regex

1276.2 Application deployment
6.2.2 Cloud Build

Cloud Build (https://cloud.google.com/build) is a service that runs your builds on
Google Cloud Platform infrastructure. Cloud Build can import source code from a
variety of repositories or cloud storage spaces, build to your specifications, and pro-
duce artifacts such as Docker containers or Java Archives. With Cloud Build, you
access connected machines via Google’s global network to significantly reduce the
build time of your applications. You can run builds on high CPU VMs or cache source
code, images, or other dependencies to further increase build speed. Figure 6.7 shows
the history of a build in Cloud Build.

The process of pulling requests from the Git repository for building, testing, and
deployment is easy. You can set up a trigger on the Google Cloud console to automati-
cally create, test, or deploy source code when you push changes to a Cloud Source
repository, Bitbucket, or GitHub. Figure 6.8 shows how to integrate Cloud Build with
an existing Cloud Source repository. Inside the dashboard, you can find all the Git
repositories on Cloud Source Repositories. You can create a trigger by clicking Add
Trigger, as shown in figure 6.8.

Figure 6.7 History of a build

Figure 6.8 Adding a trigger from an existing repository

https://cloud.google.com/build

128 CHAPTER 6 Bringing it all together
After selecting the repository, you can create a trigger that will build the software. As
shown in figure 6.9, the trigger with the tag “prod” will build each time a push is done
in the repository.

For each build, you can see the details of the execution with all the logs, as illustrated
in figure 6.10.

Figure 6.9 Trigger configuration

Figure 6.10 Build execution details

1296.2 Application deployment
Cloud Build helps you secure your containers by allowing you to identify package vul-
nerabilities. You can automatically run package vulnerability scans for Ubuntu, Debian,
and Alpine.

 Once you’ve built your containerized application, you can deploy to multiple
clouds via Anthos as part of your CI/CD pipeline. Cloud Build includes builder
images with languages and tools already installed.

 You can also run builds locally on your development machine before sending
them to Cloud Build. You build and debug on the local machine with the local open
source builder.

6.2.3 Artifact Registry

Once you’ve built your containerized application, Artifact Registry (https://cloud
.google.com/artifact-registry) offers a single location from which your team can man-
age Docker images, perform vulnerability scans, and decide who has access to what with
granular access control. You can automatically create and push images to the private
registry when you commit code to Cloud Source Repositories, GitHub, or Bitbucket.

 Artifact Registry allows you to scan Docker containers for package vulnerabilities
in Linux distributions. You can also add and remove image tags with a single click in
the Google Cloud console web interface, as well as perform the following tasks:

 Create triggers to automatically save your builds
 Create containers based on code or tag changes in a repository
 Search all previous builds from the Google Cloud console
 View information about a build, such as trigger, source, steps, and logs

6.2.4 Google Cloud Marketplace

In addition to applications developed by you, you can deploy ready-to-market applica-
tions that Google partners and vendors make available on Google Cloud Marketplace
(https://cloud.google.com/marketplace). You can find integrated solutions reviewed
by Google Cloud to meet all your IT needs. Thanks to the tight integration with
Anthos, you can choose solutions and applications that can be deployed on-prem and
multicloud. Using the Google Cloud Marketplace allows you to speed up the acquisi-
tion process for you and your teams. You can make purchases without needing an
internal vendor review if Google is already one of your preferred partners. You can
build a scalable and repeatable procurement process with deployments integrated
with Google Cloud without having to contact the product vendor separately. All the
details relating to the deployment modalities of containerized and ready-to-use appli-
cations and solutions for Anthos can be found in chapter 14.

6.2.5 Migrate for Anthos

If you already have an application running in VM on-prem or in another cloud and
you want it to be deployed on Anthos, you can take advantage of the exclusive Migrate
for Anthos technology (https://cloud.google.com/migrate/anthos). Migrate for Anthos

https://cloud.google.com/artifact-registry
https://cloud.google.com/artifact-registry
https://cloud.google.com/artifact-registry
https://cloud.google.com/marketplace
https://cloud.google.com/migrate/anthos

130 CHAPTER 6 Bringing it all together
simplifies and speeds up the modernization of traditional applications by allowing
them to be moved from virtual machines to native containers. This unique automated
approach allows you to extract critical application elements from the VM so you can
easily place them in containers in Google Kubernetes Engine or an Anthos cluster.
The details of Migrate for Anthos can be found in chapter 15.

6.3 Policy enforcement
Extending multiple hybrid, on-prem, and multicloud environments adds complexity in
terms of resource management and consistency. Anthos provides a unified declarative
model for computing, networking, and even managing cloud and data center services.

 Configuration as data is a common approach to managing this complexity, allow-
ing you to store the desired state of your hybrid environment under version control
and apply it directly with repeatable results. Anthos makes this possible with Anthos
Config Management, which integrates with Anthos clusters locally or in the cloud,
allowing you to deploy and monitor configuration changes stored in a central Git
repository, as shown figure 6.11.

This approach uses core Kubernetes concepts, such as namespaces, labels, and anno-
tations, to determine how and where to apply configuration changes to all of your
Kubernetes clusters, from where they reside. Anthos Config Management offers the
following advantages for your Anthos environments:

 Single source of truth, control, and management
 One-step deployment across all clusters

Figure 6.11 Apply and enforce common policy with Anthos Config Management.

131Summary
 Rich inheritance model for applying changes
 Advanced policy enforcement and control with Policy Controller

You can find all the details about Anthos Config Management in chapters 11 and 13.

6.4 Service management
As we saw in chapter 4, Anthos Service Mesh manages your service mesh environment
by offering you the following features and services:

 Service metrics and logs for all traffic within your mesh’s GKE cluster are auto-
matically imported into Google Cloud.

 It automatically generates in-depth telemetry in the Anthos Service Mesh
dashboard.

 Service-to-service relationships at a glance—understand who connects to each
service and which services they depend on.

 Protect your traffic between services through the Anthos Service Mesh Certifi-
cate Authority (Mesh CA), automatically generating and rotating certificates so
you can easily enable TLS authentication (mTLS) with Istio policies.

 Quickly view the communication security status of not only your service but also
its relationships with other services.

 Dig deeper into your service metrics, and combine them with other Google
Cloud metrics using Cloud Monitoring.

 Get clear and simple insights into your service health with service-level objectives,
which allows you to easily define and send alerts on your service health standards.

Summary
 The Anthos components provide all the tools a developer requires to develop

and deploy their applications.
 Anthos application development features include Cloud Code, a plug-in for

IntelliJ, Visual Studio Code, and Google Cloud Shell.
 Various components can be used for deploying an application, including version-

ing using Cloud Source Repository and Cloud Build to build the source code.
 Policy enforcement provides management and consistency across multiple cloud

providers and hybrid cloud environments.
 Anthos Service Mesh provides service metrics and logs to communicate security

status and health.

Hybrid applications
Jason Quek

In the real world, applications are bound by rules such as data locality require-
ments, resource constraints, situations where a stable connection to the cloud
cannot be guaranteed—such as at a baseball stadium, a construction site, or on a
fighter jet—to do low-latency computation locally on the edge to avoid large amounts
of data transfer. The application must be available and survive a regional disaster
or cloud outage.

 However, a need to run applications with the same consistency and stability that
the Kubernetes platform provides still exists. Thus, solutions such as Anthos are
designed to create this conformant distributed cloud platform for such applications.

This chapter covers
 Highly available applications

 Geographically distributed applications

 Hybrid multicloud applications

 Applications regulated by law

 Applications that must run on the edge
132

1337.1 Highly available applications
 In this chapter, we will go over these different situations and show various architec-
tures involving the use of Anthos and its suite of products to support these types of
applications.

7.1 Highly available applications
This class of applications must run 24 hours a day, 7 days a week. Financial institutions
managing transactions, health care applications, and traffic management are just
some of the examples of applications that affect the real world if they are unavailable
for a short period of time.

 In Google Kubernetes Engine, you can create clusters to span availability zones
within a region. This practice provides insurance in the event one of the availability
zones within a region goes down—the other availability zones are still running the
application. The Kubernetes scheduler would then spin up additional replicas on the
nodes still active on the other availability zones to meet replica requirements defined
in the Kubernetes configuration.

 However, what if an entire region, or an entire cloud provider, was down? An arti-
cle found in Forbes (http://mng.bz/DZa0) mentioned a scenario where a banking cli-
ent wanted to use a single cloud and the regulator was concerned about what would
happen during an outage. The client estimated they would have a maximum of two
hours of downtime during the cloud outage, but the plan was rejected by the regula-
tor as an unviable option.

 In this situation, companies would have to span multiple clouds and regions, but
doing so would introduce complexity and overhead in managing multiple cloud pro-
viders and require double the skill set across their operations, development, and secu-
rity management at the same time.

 With Anthos, companies can standardize on Kubernetes with one unified pattern
of deployment, scaling, security, and development, while still being able to take advan-
tage of the availability of multiple cloud providers and move workloads across regions
and availability zones.

7.1.1 Architecture

The setup shown in figure 7.1 is simple: installing Anthos GKE, GKE on AWS, and
GKE on-prem, and including them all in a service mesh. Such a setup would give high
availability not just on the regional level but also at the cloud provider level.

 Note that this structure assumes that the application just has to be available but
may not be required to be accessible from the internet. This distinction is important
because this architecture will survive even in the extremely unlikely event that one of
the cloud providers has a severe outage. Anthos clusters can still function, even if they
cannot reach Google Cloud APIs for a limited amount of time.

7.1.2 Benefits

Installation of the managed Kubernetes service across all three clouds may seem simple,
but each has different processes, options, and best practices. Versions of Kubernetes

http://mng.bz/DZa0

134 CHAPTER 7 Hybrid applications
available also differ across cloud providers. By using Anthos, such problems are han-
dled by Google engineers who work behind the scenes to make sure that everything
works on the different clouds. Solutions such as Workload Identity can be deployed
across hybrid and multiclouds to provide a unified authentication framework. This sit-
uation provides a true sense of a multicloud managed service where the customer says
to Google, “Take my budget and help me manage my clusters everywhere, even on
your competitors’ services.”

On-prem

Figure 7.1 Multicloud availability with Service Mesh connectivity

1357.2 Geographically distributed applications
7.1.3 Limitations

Such applications normally require somewhere to persist state, which then creates a
dependency on a provider, unless the organizations choose to host their own data
solution on the cloud. With the emergence of Kubernetes-native databases such as
CockroachDB, which can be deployed across multiple clusters, or using MirrorMaker
to replicate messages across Kafka deployments in multiple clusters, this problem is
beginning to have robust solutions.

 Anthos does not manage the underlying networks, storage, and compute used to
build the clusters, and organizations still need to manage networking and ensure stor-
age and compute availability across hybrid and multiple clouds. It is all about the
Kubernetes API and making it available to developers on any surface throughout the
organization—a shared responsibility that differs from competing products.

 It is important to understand that such architecture might not be easy to build and
maintain, but for organizations that have regulatory, financial, and reputational rea-
sons to have their applications always available and disaster resistant, Anthos provides
a path to that.

7.2 Geographically distributed applications
These applications must be located around the world to serve a worldwide audience.
Having a managed service be able to route to the nearest cluster from one single IP
from anywhere in the world makes application scaling across the world much simpler.

 The most important point for this setup is to provide the user access to this appli-
cation from the location nearest to them to minimize latency. The application is often
an exact copy of microservices deployed to clusters in different regions but with no
requirement that it span multiple clouds. This is coupled with multigeographical data-
bases, which can be used either as a managed service from Google, (e.g., Spanner) or
CockroachDB, which can be deployed across multiple Kubernetes clusters spanning
the globe.

 However, with Anthos, the same application can be deployed in multiple regions,
which opens new opportunities in various markets. One important component that
ties this together is Ingress for Anthos, a cloud-hosted gateway for distributed clusters.

 With Ingress for Anthos, all users of the application can access it through an any-
cast IP and get routed to the cluster nearest to the user. One use case where this ability
is important is the retail sector, where customer churn is proven to be directly related
to the latency of the e-commerce site.

7.2.1 Ingress for Anthos architecture

Ingress for Anthos builds on top of the existing Google HTTP load-balancing archi-
tecture, using Google Cloud points of presence to route traffic efficiently to the near-
est available cluster, as can be seen in figure 7.2. With such an architecture, you can
deploy applications that need to serve a new audience in a different region on an

136 CHAPTER 7 Hybrid applications
Anthos cluster on that specific region and configure Ingress for Anthos to send traffic
to that new region, while keeping the same IP address and domain name.

 Any cluster can be designated as a config cluster, and two custom Kubernetes objects,
MultiClusterIngress and MultiClusterService, are deployed on this one, which is
just a centralized configuration storage for the Anthos Ingress controller to read from.

 The Anthos Ingress controller is a set of Compute Engine instances that sit in mul-
tiple Google Cloud regions outside of the user’s control and are managed by Google.
These instances must be placed nearest to the Google points of presence where traffic
enters to make routing decisions based on Anthos clusters that are members in the
same Anthos fleet1 and Pod availability.

 The key concept of Ingress for Anthos is the use of network endpoint groups
(NEGs). NEGs are groups of backend endpoints or services, which can be deployed on
Anthos clusters. The Compute Engine instances in the Ingress for Anthos service seen
in figure 7.2 route to the correct NEG, based on the availability of the service.

 To understand more about Ingress for Anthos networking, please refer to chapter 10.

1 See chapter 2 for the definition of a fleet.

Google

Point of Presence

Google

Point of Presence

Figure 7.2 Ingress for Anthos architecture

1377.3 Hybrid multicloud applications with internet access
7.2.2 Ingress for Anthos benefits

Creating load balancers to route traffic to clusters from points of presence that are
also aware of the state of service availability of each cluster is a complex task. This pro-
cess breaks down the problem into a single cluster problem, so developers can con-
centrate on building more features and know that they can be deployed in a
standardized way across the globe and be accessible to their users with low latency.

7.2.3 Ingress for Anthos limitations

Ingress for Anthos is currently restricted to only Anthos Google Kubernetes Engine
clusters and does not support GKE on-prem or GKE on AWS clusters. It is possible,
however, to have a solution that also supports GKE on-prem clusters—using the Traf-
fic Director would be a possible solution.

7.3 Hybrid multicloud applications with internet access
Some enterprises have invested in remote data centers or have a multicloud strategy,
which makes Anthos a good fit as a product for them. However, when exposing their
services to the public internet, they need to protect these applications so bad actors
are unable to disrupt their availability and latency. One limitation of Ingress for
Anthos is that these clusters must be on Google Cloud, but they also need to route to
applications deployed across private and public clouds. Thus, they can use the Traffic
Director, which can route traffic to clusters in a hybrid multicloud architecture.

7.3.1 Traffic Director architecture

Traffic Director architecture looks similar to the Ingress for Anthos setup, with a key
difference being that all the services must be in a Service Mesh for Traffic Director to
work. For more details on Service Mesh, please refer to chapter 4. See figure 7.3 for an
overview of using the Traffic Director for routing hybrid applications.

Figure 7.3 Traffic Director architecture for hybrid applications

138 CHAPTER 7 Hybrid applications
In figure 7.3, the GKE on-prem cluster provides backend services to be used with the
Traffic Director. The Traffic Director then directs the Google Cloud load balancer to
direct traffic to the GKE on-prem cluster. This paradigm works for Anthos clusters on
other clouds as well.

7.3.2 Traffic Director benefits

The Traffic Director allows the use of Google Cloud load balancers to front hybrid
applications, and, in doing so, can use cloud native services such as Google Cloud
Armor (https://cloud.google.com/armor), Cloud CDN (https://cloud.google.com/
cdn), Identity-Aware Proxy (https://cloud.google.com/iap), and managed certificates
(http://mng.bz/lJPz).

 All traffic coming into the application, regardless of where the services are hosted,
will enter via a Google point of presence to a Google Cloud load balancer, which is
then proxied via Envoy proxies programmed by the Traffic Director to a service that is
part of the service mesh. The service can be hosted on-prem or across multiple clouds
but is known through the service mesh. By using these services, hybrid applications
on-prem can be protected from denial of service (DDoS) attacks, which can be a prob-
lem for hybrid applications.

 The Traffic Director can also direct traffic to Google Compute Engines if the appli-
cation is not running on Google Kubernetes Engine. The Traffic Director can also be
used to split traffic between cloud services and on-prem services, to aid migration of
services from on-prem to the cloud with no downtime.

7.3.3 Traffic Director limitations

In figure 7.3, the middle proxy is deployed on a managed instance group, which scales
according to traffic from the external load balancer before forwarding it to the GKE
on-prem cluster. This additional compute cost is borne by the application owner.

7.4 Applications regulated by law
One set of applications belongs to highly regulated industries, which are bound to
data locality restrictions. A list of these industries includes financial institutions,
health care providers, pharmaceutical companies, and government agencies.

 Such applications require constant monitoring and complicated audit and security
policies, which are aided using GKE on-prem, Anthos Config Management, Anthos
Service Mesh, and VPC Service Controls.

7.4.1 Architecture

VPC Service Controls enable administrators to restrict access to certain Google Cloud
APIs to allowed IP addresses, identities, and client devices. Such APIs include gke-
hub.googleapis.com, gkeconnect.googleapis.com, meshca.googleapis.com, and con-
tainerregistry.googleapis.com, which are the GKE Hub, GKE Connect, Anthos Service
Mesh, and Container Registry services used throughout the Anthos offering. This

http://mng.bz/lJPz
https://cloud.google.com/armor
https://cloud.google.com/cdn
https://cloud.google.com/cdn
https://cloud.google.com/cdn
https://cloud.google.com/iap

1397.4 Applications regulated by law
process uses BeyondCorp (https://cloud.google.com/beyondcorp), a concept made
popular by Google Cloud: that trust should be built on identity, not on networking, and
a zero-trust policy is used within a network. This allows users to work more securely from
any trusted locations without a VPN. See figure 7.4 for a visualization of the setup.

Enterprises can configure Anthos clusters to read config management from a reposi-
tory hosted on-prem, set up role-based access controls in one location, and have that
setup propagated through a continuous sync. With the Policy Controller deployed

GitLab

Figure 7.4 Regulated application with VPC Service Control, ACM, and ASM

https://cloud.google.com/beyondcorp

140 CHAPTER 7 Hybrid applications
with Anthos Config Management, administrators and security teams can define poli-
cies to restrict the use of unapproved container registries, prevent the creation of priv-
ileged Pods, and define read-only operating system filesystems. To understand how to
do this in detail, please refer to chapter 13.

 With Anthos Service Mesh, administrators can enforce mutual TLS communica-
tion between all Pods as well as define which Pods can communicate with each
other—and only with each other, nothing more. This restriction prevents unautho-
rized access to sensitive data and prevents data exfiltration in the event a rogue Pod is
deployed on the system. For a deeper dive into this subject, please refer to chapter 4.

7.4.2 Benefits

All the services mentioned in the previous section are built for purpose and have secu-
rity as their highest consideration. For example, if the Anthos Config Management is
disconnected from the repo, the last synced policies are still in effect. All components
have also been tested to work with each other, and any problems are a quick ticket
away from Google Support.

 This architecture is also extensible and automatable, so that new on-prem regu-
lated clusters can be created, be hooked up to the same ACM and ASM artifacts, and
benefit from the work already done.

7.5 Applications that must run on the edge
Edge devices mean different things for different companies and business use cases.
For example, a telecom edge use case would refer to computing requirements for 5G
capabilities. See chapter 8 for a detailed look at how Anthos enables this case.

 Edge devices can also be used by retailers and remote manufacturing sites, where
applications can be deployed closer to users to provide a low-latency experience while
delivering high-performance compute. One example is calculating statistics for a
baseball game right in the stadium while the game is going on and delivering those
statistics in real time to commentators and the audience. This was a driving force
behind Major League Baseball’s decision to use Anthos to process and analyze data in
the cloud as well as on-prem at each of their ballparks (see http://mng.bz/Blyq).

 These applications must run on edge appliances with low resource requirements
and without depending on a continuous internet connection. The biggest problem
relates to deploying the latest versions of your software over the air to these edge
nodes. Anthos at the edge provides this capability while still giving developers the abil-
ity to deploy their applications uniformly in a cloud native way and trust that their
applications will work in the same way as on the cloud due to the conformant deploy-
ment of Kubernetes.

7.5.1 Architecture

The architecture shown in figure 7.5 represents retail stores of the future, where shop-
pers can shop without any cashiers. The retailer can still monitor purchases securely

http://mng.bz/Blyq

1417.5 Applications that must run on the edge
through video and transact via an application in the store, as well as identify hot spots
of traffic, identify when to restock goods, and comply with privacy regulations while
providing a real-time low-latency experience.

 For such a use case, many machine learning models would be used for detection of
theft, detection of low stocks, recommendations, and determining traffic hot spots.
Models such as RetailNet can be used for people counting and hot spot detection in
retail stores, referenced here: http://mng.bz/dJ9z. What is required for this setup is a
way to continuously train and update the model and deploy it reliably on the edge
with high performance compute for inference. As can be seen in figure 7.5, you can

Retailer Store 1: Anthos on bare metal

Retailer Store 2: Anthos on bare metal

Bare metal cluster 1

Bare metal cluster 1

Figure 7.5 Anthos at the edge retail architecture

http://mng.bz/dJ9z

142 CHAPTER 7 Hybrid applications
use Anthos on bare metal to deliver just that. Streaming video data back to the cloud
for inference requires large bandwidth and causes a lag, degrading the real-time expe-
rience in the store.

 Aggregated and anonymized data can then be sent back to the cloud, and models
can be trained via Kubeflow and updated and then deployed on-prem again, creating
a feedback loop to continuously update and enhance the accuracy of the models.

7.5.2 Benefits

One key benefit is the improved performance of applications on the edge due to the
direct application access to hardware and skipping the cost of a virtual machine license.
Anthos on edge 1.9+ can also use a private registry mirror instead of gcr.io to pull con-
tainer images so it can run completely air-gapped from the internet.

7.5.3 Limitations

Without a virtualization layer, node scaling requires you to install new hardware nodes
and connect them to the fleet of bare metal devices.

Summary
 The different Google Cloud and Anthos services play an important role in the dif-

ferent use cases of high availability, geographical spread, regulated industries,
and edge computing. Many enterprises need these different use cases to enrich
their digital offerings and can use the prescribed architectures to do this.

 With Anthos, companies can standardize on Kubernetes with one unified pat-
tern of deployment, scaling, security, and development and maintain the ability
to move workloads across regions and availability zones.

 Solutions such as Workload Identity can be deployed across multiple and hybrid
clouds to provide a unified authentication framework.

 Ingress for Anthos allows you to create load balancers to route traffic to clusters
from points of presence, which allows the deployment of features in a standard-
ized way globally, with accessibility to users with low latency.

 The Traffic Director allows the use of Google Cloud load balancers to front hybrid
applications and use cloud native services, which are part of the service mesh.

 VPC Service Controls enable administrators to restrict access to certain Google
Cloud APIs to specific IP addresses, identities, and client services.

 Anthos on the edge improves performance of applications via direct applica-
tion access to hardware, thus bypassing the cost of a virtual machine license.

Working at the edge
and the telco world
Giovanni Galloro

This chapter is about using Anthos as an enabling platform for edge and telco
workloads, which fall into the following two categories:

 Cloud native network functions—An evolution of telecom network functions,
either already virtualized or still deployed as physical appliances, toward
containerized workloads to reach greater efficiency, performance, and ease
of management. This evolution will be driven also by new 5G-related net-
work functions.

 New edge applications—Workloads to be deployed in edge locations, near the
end customer, to reduce latency and enable new types of applications such as

This chapter covers
 Evolution of telco network functions toward cloud

native network functions

 Edge application use cases

 Anthos-specific capabilities for supporting telco
and edge workloads

 Google Distributed Cloud Edge
143

144 CHAPTER 8 Working at the edge and the telco world
autonomous driving, smart cities, smart video surveillance, augmented reality,
virtual reality, and remote healthcare/surgery. Often this type of application
will benefit and be powered by 5G networks and, in large part, will be deployed
as containerized workloads.

8.1 Evolution of telecom applications
In this section, you will find a recap of the evolution of telecom network functions
toward network functions virtualization and cloud native network functions.

8.1.1 Introduction to network functions virtualization

Traditionally, network operators used to implement network functions on dedicated,
proprietary hardware appliances. From the mid 2010s, the concept of network functions
virtualization (NFV) emerged as telcos looked at virtualizing their networking function-
ality, following the same pattern that led to the virtualization of IT servers, to consoli-
date the many network equipment types into industry-standard high-volume servers,
switches, and storage to reduce costs and increase efficiency, agility, and resilience.

 A trend started to transform network appliances in virtual network functions
(VNFs): virtual machines deployed on industry standard x86 servers through a
hypervisor. As depicted in figure 8.1, the three main working domains of an NFV
architecture follow:

 Virtualized network functions (VNFs)—x86-compliant virtual machine versions of
the network appliances

 Network function virtualized infrastructure (NFVI)—All hardware (servers, storage,
network gear) and software components (virtualization software) that build up
the environment hosting the virtual network functions

 Management and orchestration (MANO)—Life cycle management and orchestra-
tion of physical or software resources that support the infrastructure virtualiza-
tion and the life cycle management of the virtual network functions

Figure 8.1 High-level NFV
architecture framework

1458.1 Evolution of telecom applications
8.1.2 NFV use cases

Some virtualized network functions created as part of this initiative, with different suc-
cess in the adoption, follow:

 vCPE (virtualization of home and enterprise CPE [customer premises equipment])—
Routers into the operator network. With this approach, the advanced routing
and network functions are moved from the access router, which service provid-
ers traditionally deployed in enterprise premises or in consumer homes, to
VNFs running on industry-standard hardware in the provider’s own NFVI. The
customer’s on-prem appliance is replaced with simpler hardware.

 vPE (virtualization of PE [provider edge] routers—In this approach, the routers
deployed in the service provider edge, which typically connect with those
deployed on customer premises, are also virtualized.

 vEPC (evolved packet core) virtualization—Virtualization of network functions that
are part of the mobile core networks and IP multimedia subsystem: mobility
management entity, serving gateway, and packet data network gateway.

 vCDN—Virtualization of CDNs. This use case aims to virtualize third-party CDN
appliances that are usually deployed on-prem.

 vRAN—Virtualization of mobile base stations in radio access networks (RANs)
was initially considered a use case for NFV, mainly because mobile base stations
account for most of the total cost of ownership and energy consumption of
mobile networks. This approach didn’t effectively materialize in NFV, but the
aim to get the benefits of containerized workloads described earlier and the
need for new radio network functions related to 5G is pushing the transforma-
tion of these functions to CNFs.

8.1.3 Evolution to cloud native network functions

Telco operators and network functions vendors are looking at container-based cloud
native network functions, as an evolution of VNFs, to fully realize the above-mentioned
NFV benefits and add the improvements carried by cloud native applications in terms
of portability, agility, manageability, and efficiency.

 Various initiatives inside Cloud Native Computing Foundation (CNCF) aim to sup-
port telecom operators (and network vendors) in obtaining the benefits touted by
cloud native technologies. These are mainly led by the Telecom User Group (https://
github.com/cncf/telecom-user-group), which produced various assets, including a
white paper available in the repository and the following definition for cloud native
network functions:

A cloud-native network function (CNF) is a cloud-native application that implements
network functionality. A CNF consists of one or more microservices and has been developed
using Cloud Native Principles including immutable infrastructure, declarative APIs, and
a “repeatable deployment process.”

https://github.com/cncf/telecom-user-group
https://github.com/cncf/telecom-user-group
https://github.com/cncf/telecom-user-group

146 CHAPTER 8 Working at the edge and the telco world
8.2 New edge applications
The following paragraphs contain a description of the characteristics of new edge appli-
cations, which take advantage of 5G networks’ higher bandwidth and lower latency.

8.2.1 5G as the enabler of new edge applications

Characteristics of the 5G network, including its larger contiguous spectrum, more
advanced radio antenna technologies (Massive MIMO), better modulation schemes,
and changes to/optimization of signaling flows between the core and RAN, provide
network capabilities with significantly higher bandwidth and lower latency. Telco ser-
vice providers and applications/digital services developers are looking to use these
characteristics in applications that will have more devices connected and will exchange
information at a very high speed, enabling improved scenarios: autonomous driving,
smart cities, smart factories, smart video surveillance, augmented reality, virtual reality,
and remote health care/surgery.

 To align with these requirements, workloads will be deployed, in many cases, in
edge locations, near the end devices or user, to do near-real-time data processing and
analysis of data, allowing smart devices to act and respond to inputs without sending
that data to the cloud and back. This kind of application will largely be deployed as
containerized workloads. Generally, 5G will be mainly software defined, continuing
the transformation started with NFV; will have a further need for automation, due the
speeds and volumes it will handle; and will be based on open source software.

8.2.2 Edge computing

Edge computing will allow applications to respond quickly, provide near-real-time
insights, be less dependent on the network connection to the central datacenter or
cloud, and reduce the amount of data that is transmitted centrally. Gartner predicts
that by 2025, 75% of enterprise-generated data will be created and processed outside
a traditional centralized data center or cloud (see http://mng.bz/rdDE).

 As shown in figure 8.2, edge infrastructure will be deployed in locations with wide-
spread distribution and, in many cases, smaller than a central datacenter, as follows:

 Telco edge—Telco operators’ small data centers, points of presence, and network
cabinets

 Public cloud edge—Cloud providers’/global broadcasters’ points of presence and
CDN edges

 Enterprise edge—Enterprise/end users’ locations as branch offices, retail stores,
warehouses, and factories

Compute node numbers will typically grow, and the need will arise to have a central
management plane capable of managing a larger compute fleet in the order of tens
of thousands.

http://mng.bz/rdDE

1478.2 New edge applications
8.2.3 Edge application examples

Some examples follow of applications and use cases that will take advantage of
deployed-at-edge locations and perform analysis and predictions on images, video,
audio, and other types of data through local execution of AI models:

 Predictive maintenance—Analyzing manufacturing plants and machine data on-
site to predict faults before they happen and optimize uptime and maintenance
team work

 Manufacturing quality check—Analyzing pictures and videos of products on the
assembly line to check conformance to quality standards

 Worker safety—Analyzing correct security measure implementation and safety
equipment usage through pictures and videos

 Diagnostic services and patient monitoring—Using a computer vision solution
deployed to the edge to process imaging, which could improve diagnostic accu-
racy and exam efficiency

 Queue and shelf management in retail stores—Analyzing video feeds to check how
many people are in line or the availability of goods on shelves and open cash
registers or fill goods accordingly

 Self-driving cars and industrial vehicles—Low-latency processing for data ingested
and gathered by autonomous vehicles

 Manufacturing workers’ guidance and training through AR/VR—AI models deployed
on the edge with object detection and recognition, live capture, and the like

 Logistics tracking—AI models that recognize packages, items, pallets, and vehi-
cles in transit from images and videos and update tracking systems

 Inventory management and production planning—Near-real-time analysis of asset sta-
tus through images to provide inputs to production and supply chain fulfillment

On-prem

Figure 8.2 Edge deployment

148 CHAPTER 8 Working at the edge and the telco world
8.3 Anthos as a platform for edge and telco workloads
In this section, we’ll discuss how Anthos can provide the foundation to support edge
Anthos deployments and the execution of telco workloads. We’ll also delve into spe-
cific solutions Google has designed for this purpose.

8.3.1 Google Distributed Cloud Edge

Google Distributed Cloud Edge (GDCE), shown in figure 8.3, is a fully managed solu-
tion from Google, designed to support telco virtualized and cloud native network
functions and edge applications, including software, OS, and hardware (servers and
TOR network switches) in Google-managed racks. It’s based on Anthos on bare metal
(described in detail in chapter 17) and can be deployed in the following site types,
described in the previous sections:

 Public cloud edge—Google edge locations
 Telco edge—Owned by telco providers
 Enterprise edge—Owned by the final customer (such as in retail stores, factory

floors, branch offices, and stadiums)

GDCE provides fleet management capabilities to manage all the hardware and soft-
ware assets and supports both containerized workloads and virtual machines through
Anthos on bare metal capabilities.

 GDCE also provides users a VPN connection to GCP, allowing users to interact with
other applications running in a customer’s VPC and other GCP services. To service
high-performance and low-latency workloads, GDCE also provides several high network

Anthos on Bare Metal

Figure 8.3 Google
Distributed Cloud Edge
high-level architecture

1498.3 Anthos as a platform for edge and telco workloads
performance features such as SR-IOV and DPDK. Google Cloud operates and man-
ages the underlying infrastructure, extending the cloud experience to the customer
premises.

 Google provides the compute, network, and storage hardware. Those are shipped
to the target location and managed by Google. The Google operations team manages
and monitors the Google gear remotely.

 The customer needs to have a designated contact person (part of the customer
personnel, not a Google person) at the target location with access to the gear and
permissions to perform basic administrative tasks. Those include, for example, cold
restart, replacing of parts, ability to run local diagnostics on the gear, and common
system administration tasks. After the hardware is connected and operational, users
can consume the service using standard Google API tools and use the service.

 A GDCE Kubernetes cluster consists of a control plane and worker nodes. Worker
nodes are organized into node pools. The control plane is hosted on GCP in a single
compute region. Worker nodes are servers on GDCE racks, with each worker node
using a full physical server. A rack or a group of racks with shared space, power, cool-
ing, and contiguous network fabric is defined as a GDCE zone.

GOOGLE DISTRIBUTED CLOUD EDGE CONTAINER RESOURCE MODEL

GDCE has a different resource model compared to Anthos and other Anthos deploy-
ment options. Here you will find a list of the container resources used to describe,
implement, and manage the compute architecture of a GDCE implementation,
described schematically in the figure 8.4:

 Zone—A zone represents a set of machines sharing a network fabric or a single
fault domain. A zone can represent one rack or a number of racks placed in the
same location. The GDCE zone resource is different from GCE compute zones.

Figure 8.4 Google Distributed Cloud Edge container resource model

150 CHAPTER 8 Working at the edge and the telco world
Listing the GCE compute zones will not return the GDCE zones. A zone rep-
resents a single failure domain. To deploy fault-tolerant applications with high
availability and help protect against failures, users need to deploy applications
across multiple zones linked to the same region.

 Machine—A machine represents a physical server. The machine resource meta-
data includes which rack it is on and other properties and tags. Machines are
read-only resources for users. At deployment, a machine is assigned to a specific
region based on the physical location of the GDCE system. Each physical
machine is a node within the Distributed Cloud Edge cluster. A machine can be
part of a Kubernetes cluster deployed only in its designated region.

 Cluster—A cluster consists of a control plane and zero or more node pools. It is
housed in a specific region and can connect node pools only from that region.
If a user tries to connect a node pool with machines homed in a different
region, the operation will fail.

 Node pool—A node pool is a logical grouping of machines in a GDCE zone and
is used to add worker nodes to clusters.

 VPN connection—GDCE supports setting up a VPN connection to a GCP project
allowing workloads running on a GDCE Kubernetes cluster to connect directly
to GCP resources. At least one node pool should be created in the cluster
before establishing a VPN connection.

GOOGLE DISTRIBUTED CLOUD EDGE NETWORK RESOURCE MODEL

In addition to Kubernetes cluster resources, APIs, and the default Kubernetes Pod net-
work, GDCE also allows customers to provision additional networks in a GDCE zone and
connect them with customer networks for different purposes. For example, in a network
functions use case, a customer might create an operations, administration, and manage-
ment network and a signal network, each with different multiple subnets that connect
to the secondary interfaces of the network function Pods.

 Figure 8.5 describes the resources and their relationships for the network model in
GDCE. From the high level, the following five types of resources are related to the
edge network configuration:

 Network—A virtual network in a GDCE zone with private address space, which
may contain one or more subnetworks. A network is isolated from other net-
works in the same GDCE zone.

 Subnetwork—A layer-2 (VLAN) subnet in a GDCE network. A subnetwork has its
own broadcast domain and customer-assigned classless interdomain routing.
Subnetworks within a network can reach each other. Subnetworks of different
networks in a GDCE zone cannot reach each other.

 Interconnect—Represents a bundled logical link of one or more physical links
between GDCE and a customer network. An interconnect can be created only
at GDCE site initiation time. Multiple interconnects are typically configured to
provide high availability.

1518.3 Anthos as a platform for edge and telco workloads
 Interconnect attachment—A virtual link provisioned on top of an interconnect based
on customer requests, to provide an isolated connection between a GDCE net-
work and a customer network (e.g., a VRF). Packets flowing through an intercon-
nect attachment will be untagged or tagged with a customer-specified VLAN ID.

 Router—A virtual routing instance to configure routing functionalities for a
network in a GDCE zone. For example, customers can use it to configure a
BGP peering session over an interconnect attachment between a GDCE net-
work and a customer network, or over a Pod subnet, so that certain Pods can
advertise prefixes to GDCE. By default, the routes received from subnetworks
will be readvertised.

Figure 8.5 Google Distributed Cloud Edge network resource model

152 CHAPTER 8 Working at the edge and the telco world
These resources are similar to the Google Cloud network abstractions, with a few dif-
ferences, described here:

 All network resources created for GDCE are local to the GDCE zone. A GDCE
network doesn’t have direct connectivity to a GCP VPC. Networks in different
GDCE zones also don’t have direct connectivity to each other, unless they are
intentionally connected by the customer.

 GDCE subnetworks support VLAN and are thus isolated from each other in
layer 2.

System administrators should create and maintain all network resources. An app
developer/owner has only view access to network resources.

8.3.2 Anthos capabilities for telco and edge workloads

Besides the specific characteristics of GDCE, Anthos capabilities are available in the
standard product to help the deployment, execution, and management of edge and
telco workloads. Some of these capabilities have been designed specifically for this
purpose and are mainly provided with Anthos on bare metal, which is the most suit-
able version for these workloads and is also the core of GDCE. Other capabilities, such
as Anthos Config Management, are provided for general purpose but can be adapted
for edge and telco applications.

MULTIPLE NETWORK INTERFACES FOR PODS

A common containerized network functions (CNFs) requirement is to have additional
network interfaces provisioned to Pods on top of the default Kubernetes interface.
This is often needed to keep separation between the data plane and the manage-
ment/control plane, for performance or security reasons, or to isolate network flows
for other reasons. Anthos provides this capability on Anthos on bare metal, using a
specific implementation of the Multus CNI plug-in.

Architecture
This capability allows a single Pod to connect to multiple networks. The default
Kubernetes interface will be seen in the Pod as eth0, whereas additional interfaces,
created through the Multus CNI, will be seen by default as net1, net2, and so on, and
can be configured. The CNI used for the additional interfaces can be as follows:

 IPvlan
 MacVLAN
 Bridge
 SR-IOV

Setup
To enable this feature, the user must perform the following three actions:

1 Enable multi-NIC. Enable multi-NIC for pods by adding the multipleNetwork-
Interfaces field to the clusterNetwork section of the Anthos bare metal clus-
ter custom resource and setting it to true, as shown here:

1538.3 Anthos as a platform for edge and telco workloads
...
 clusterNetwork:
 multipleNetworkInterfaces: true
 pods:
 cidrBlocks:
 - 192.168.0.0/16
 services:
 cidrBlocks:
 - 10.96.0.0/12
 ...

2 Specify network interfaces. Use the NetworkAttachmentDefinition custom resources
to specify additional network interfaces. The NetworkAttachmentDefinition
custom resources correspond to the networks that are available for the Pods.
It’s possible to specify these custom resources within the cluster configuration
manifest at cluster creation time or add them directly to an existing target
cluster:

apiVersion: "k8s.cni.cncf.io/v1"
kind: NetworkAttachmentDefinition
metadata:
 name: gke-network-1
spec:
 config: ‘{
 "type": "ipvlan",
 "master": “ens224”,
 “mode”: “l2”,
 "ipam": {
 "type": "whereabouts",
 "range": "172.120.0.0/24"
 }
}’

3 Assign network interfaces to Pods. You can enable multiple NICs in the Pod or
deployment manifest through the k8s.v1.cni.cncf.io/networks: annotation,
using the value corresponding to the specific NetworkAttachmentDefinition
custom resource and its namespace, as in the following example where the net-
work interfaces are specified by names of two NetworkAttachmentDefinition
custom resources, gke-network-1 and gke-network-2, in the default namespace
of the target cluster:

apiVersion: apps/v1
kind: Deployment
metadata:
 name: sample-deployment
spec:
...
 template:

154 CHAPTER 8 Working at the edge and the telco world
 metadata:
 annotations:
 k8s.v1.cni.cncf.io/networks: default/gke-network-1, default/gke-network-2
 labels:
 app: sample-deployment
 ...

Restricting network interfaces to a node pool
Use the k8s.v1.cni.cncf.io/nodeSelector annotation to specify the pool of nodes
for which a NetworkAttachmentDefinition custom resource is valid. Anthos clusters
on bare metal force any Pods that reference this custom resource to be deployed on
those specific nodes. In the following example, Anthos clusters on bare metal force
deployment of all Pods that are assigned the gke-network-1 network interface to the
multinicNP node pool. Anthos clusters on bare metal labels a node pool with the
baremetal.cluster.gke.io/node-pool label accordingly:

apiVersion: "k8s.cni.cncf.io/v1"
kind: NetworkAttachmentDefinition
metadata:
 annotations:
 k8s.v1.cni.cncf.io/nodeSelector: baremetal.cluster.gke.io/node-

pool=multinicNP
 name: gke-network-1
spec:
...

A note on the SR-IOV plug-in
SR-IOV is a specification that essentially enables the virtualization of physical PCIe
devices. It allows you to segment a compliant network device, recognized on the host
node as a physical function (PF, which usually represents a single NIC port), into mul-
tiple virtual functions (VFs) that can be directly accessed by a virtualized workload.
SR-IOV direct access to network hardware provides enhanced performance, so it is
widely used in VM-based VNFs.

 The SR-IOV CNI plug-in (https://github.com/intel/sriov-cni) enables a Kuberne-
tes Pod to attach directly to an SR-IOV VF and also bind the VF to a DPDK driver,
which provides enhanced network performance for cloud native network functions as
previously done for VNFs.

 In figure 8.6, you can see an example diagram showing multiple CNFs chained
together to provide different services (firewall, deep packet inspection, SD-WAN)
using multi-NIC Pods to connect multiple network segments.

RUNNING VM-BASED WORKLOADS ON ANTHOS ON BARE METAL

Not all the network functions will be deployed as CNFs, and some will stay as VNFs, so
a coexistence between the two deployment models will be required for some time. To
cater to this situation and other requirements of running part of a workload as a VM

https://github.com/intel/sriov-cni

1558.3 Anthos as a platform for edge and telco workloads
rather than as a container, Anthos on bare metal provides the possibility of running
VM-based workloads through Anthos VM Runtime, based on KubeVirt.

 A synthetic description of the task you need to perform to run VMs on Anthos on
bare metal is shown in the next sections.

Enabling Anthos VM Runtime
To enable Anthos VM Runtime you need to do the following:

1 Update the VMRuntime custom resource to set enabled to true as shown in the
next example:

apiVersion: vm.cluster.gke.io/v1
kind: VMRuntime
metadata:
 name: vmruntime
Spec:
 enabled: true
 # useEmulation default to false if not set.
 useEmulation: true
 # vmImageFormat default to "qcow2" if not set.
 vmImageFormat: qcow2

2 If your node doesn’t support hardware virtualization, or you aren’t sure, set
useEmulation to true. If available, hardware virtualization provides better per-
formance than software emulation. The useEmulation field defaults to false, if
it isn’t specified.

3 You can change the image format used for the VMs you create by setting the
vmImageFormat field that supports two disk image format values: raw and qcow2.
If you don’t set vmImageFormat, the Anthos VM Runtime uses the raw disk
image format to create VMs. The raw format may provide improved perfor-
mance over qcow2, a copy-on-write format, but may use more disk.

Figure 8.6 CNF using multiple NICs to connect different network segments

156 CHAPTER 8 Working at the edge and the telco world
4 Save the configuration and verify that the VMRuntime custom resource is enabled:
you can execute kubectl describe vmruntime vmruntime and check that the
description shows VMRuntime.Status.Ready set to true.

Creating a VM
Before creating a VM, it’s recommended to configure a cloud-init file to ensure that
you have console access to the VM once it’s created. You can create a custom cloud-
init file in two ways. The easiest way is to specify the --os=<OPERATING_SYSTEM> flag
when creating the VM. This method automatically configures a simple cloud-init file
and works for the following operating systems:

 Ubuntu
 CentOS
 Debian
 Fedora

Once your VM is created, you can access it for the first time with the following creden-
tials and then change the password:

user: root
password: changeme

If your image contains a different Linux-based OS or you need a more advanced con-
figuration, you can manually create a custom cloud-init file and specify the path to
that file by specifying the --cloud-init-file=<path/to/file> flag. In its most basic
form, the cloud-init file is a YAML file that contains the following:

#cloud-config
user: root
password: changeme
lock_passwd: false
chpasswd: {expire: false}
disable_root: false
ssh_authorized_keys:
- <ssh-key>

To create a VM using kubectl, you need to use the following steps:

1 Install the virtctl plug-in with the following command: sudo -E ./bmctl install
virtctl.

2 Execute the command kubectl virt create vm. The next example contains
parameters:

kubectl virt create vm VM_NAME \
 --boot-disk-access-mode=MODE \
 --boot-disk-size=DISK_SIZE \
 --boot-disk-storage-class="DISK_CLASS" \
 --cloud-init-file=FILE_PATH \
 --cpu=CPU_NUMBER \
 --image=IMAGE_NAME \
 --memory=MEMORY_SIZE

1578.3 Anthos as a platform for edge and telco workloads
The parameters are explained here:

 VM_NAME—The name of the VM that you want to create.
 MODE—The access mode of the boot disk. Possible values are ReadWriteOnce

(default) or ReadWriteMany.
 DISK_SIZE—The size you want for the boot disk. The default value is 20Gi.
 DISK_CLASS—The storage class of the boot disk. The default value is local-

shared.

 FILE_PATH—The full path of the customized cloud-init file. Depending on the
image, this may be required to gain console access to the VM after it is created.

 CPU_NUMBER—The number of CPUs you want to configure for the VM. The
default value is 1.

 IMAGE_NAME—The VM image, which can be ubuntu20.04 (default), centos8,
or a URL of the image.

 MEMORY_SIZE—The memory size of the VM. The default value is 4Gi.

If parameters are not specified, the default values are used.
 Alternatively, it’s possible to apply a manifest defining a VirtualMachine custom

resource, which also enables popular GitOps deployment methods (declarative and
asynchronous management).

ORCHESTRATION AND AUTOMATION FOR LARGE COMPUTE FLEETS

One of the impacts of edge and radio access network CNFs deployments is the need to
have a central control plane capable of managing a wider and more granularly distrib-
uted compute fleet, and, moreover, deploying several application instances that could
be orders of magnitude bigger than what is typically deployed in traditional data cen-
ters or public clouds. In some cases, you will need to deploy instances of the same
application on tens, hundreds, or thousands of compute clusters, distributed in edge
locations. Often, you’ll need to define the locations where the instances must be
deployed, dynamically based on specific criteria, with very short notice to adapt to
changing needs from network, monitored objects, or application users. Central con-
figuration and policy management capabilities provided by Anthos Config Manage-
ment will be key to satisfying this requirement.

Anthos Config Management
Anthos Config Management capabilities are described extensively in chapter 11. Here
we discuss a couple of them that are especially useful for managing applications and
network functions deployments on a large fleet of clusters:

 Multiple repository mode
 Cluster selectors

Multiple repository mode
Enabling multirepository mode on Anthos Config Management allows you to sync con-
figuration from multiple repositories to the same set of clusters, as shown in figure 8.7.
A single root repository, typically managed by a central platform team, hosts cluster and

158 CHAPTER 8 Working at the edge and the telco world
centrally defined namespace-scoped configurations, whereas optional namespace reposito-
ries are used to configure objects in specific namespaces. This capability extends ACM
usage, beyond platform configuration and policies management, to the deployment of
applications: it is possible to delegate the setup and control of a namespace repository
to an application release team. Centrally defined namespaces resources are inherited,
whereas the application team is free to configure application-related ones (deploy-
ments, config maps, etc.). If conflicts arise between the root and the namespace reposi-
tory, only the declaration in the root repository is applied to the cluster.

Namespace repositories are defined by a RepoSync resource, deployed in the specific
namespace by the central platform team or directly by the application team, if dele-
gated by the central team.

 The diagram in figure 8.8 represents the structures of a root repository and two
namespace repositories where numbers identify the following:

1 The root configuration defined by the central admin/platform team.
2 The configuration defined by the central team, common to multiple namespaces

because it’s placed in their parent folder and is inherited by the namespaces.

Figure 8.7 Anthos Config Management with multiple repositories

1598.3 Anthos as a platform for edge and telco workloads
3 Resources defined by the central team in each specific namespace folder,
including the RepoSync resource. (This can be delegated to the applications
team, too.)

4, 5 Application configuration manifests managed by the application team.

Cluster selectors
ACM provides two specific resource objects that allow you to selectively choose clus-
ters where a specific configuration or deployment is applied, using the Kubernetes
label and selector approach.

 Cluster objects identify specific clusters managed by ACM and assign them arbi-
trary labels to identify all cluster-relevant attributes (location, hardware capabilities,
purpose, etc.):

kind: Cluster
apiVersion: clusterregistry.k8s.io/v1alpha1
metadata:
 name: edge-cluster-112a
 labels:
 location: london-12
 environment: production
 kind: edge
 gpu: yes

ClusterSelector objects are used to select only clusters with a given label or com-
bination of labels. The following ClusterSelector selects only clusters with the

Figure 8.8 ACM example config with multiple repositories

160 CHAPTER 8 Working at the edge and the telco world
environment: production and kind: edge labels—useful, for example, to target all
production clusters deployed in edge locations:

kind: ClusterSelector
apiVersion: configmanagement.gke.io/v1
metadata:
 name: production-edge
spec:
 selector:
 matchLabels:
 environment: production
 kind: edge

ClusterSelector objects can be referenced, using the configmanagement.gke.io/
cluster-selector: annotation, from any ACM-managed Kubernetes resource to select
on which cluster that resource will be deployed.

 The following ClusterRole will be created only on production clusters deployed
in edge locations:

kind: ClusterRole
apiVersion: rbac.authorization.k8s.io/v1
metadata:
 name: node-reader
 annotations:
 configmanagement.gke.io/cluster-selector: production-edge
rules:
- apiGroups: [""]
 resources: ["nodes"]
 verbs: ["get", "list", "watch"]

ClusterSelector objects can also be referenced by application-specific resources to
selectively define the clusters that will host the application instance, and, if multiple
repositories are used, in RepoSync resources to sync the specific namespace repository
only to specific clusters.

 In figure 8.9, you can see an example of a distributed unit CNF, defined by an
operator-managed custom resource (kind: DU), deployed on hundreds of Anthos
clusters labeled with cnfs: du-slice-1 but not on the ones dedicated to central units
(cnfs: cu-cp-slice1, cu-up-slice-1).

 All these configurations are driven by continuously synchronizing with a Git repos-
itory (root and, if present, namespace) that acts as the source of truth. All the fleet will
regularly converge to the desired state, so, for example, the following things occur:

 Any cluster assigned the cnfs: du-slice-1 label will immediately have the CNF
deployed.

 Any cluster that changes destination or purpose by changing any of the labels will
have the CNF deleted and the new desired configuration immediately applied.

 Any update to the CNF configuration will be immediately deployed on all the
desired clusters.

1618.3 Anthos as a platform for edge and telco workloads
8.3.3 Solution architecture example: Smart retail

In addition to the deployment examples provided in this chapter, here we will describe
an edge application architecture built on Anthos for a retailer.

 One of the goals of the retailer is to have the smallest possible infrastructure
deployed in stores, leaving only video cameras as endpoints. The application deployed
is a real-time queue management, as shown in figure 8.10. It starts with a video camera

Figure 8.9 ACM example config using cluster selectors to deploy different CNFs to different clusters

Retailer Story

Figure 8.10 High-level architecture for an edge smart retail solution

162 CHAPTER 8 Working at the edge and the telco world
monitoring the checkout line at the cash register and streaming the video feed in real
time through a 5G modem in the store over a 5G connection to a telecom operator
edge location. The telecom operator network edge receives all 5G traffic, and the soft-
ware there intelligently sends the retail store traffic to an Anthos bare metal cluster
deployed in this edge. There, a container-based ML app runs machine learning infer-
ence on the incoming video feed and detects how many people are in line at the retail
store. If that number crosses a certain threshold, a notification to open another cash
register is sent back to the store over the same low-latency 5G path on which the video
feed came in.

 In addition, the AI/ML app also sends metadata about this and other events to
Google Cloud. Later, Google Cloud securely processes this information to provide
insight to the retailer and to train future iterations of the models. With Google Cloud’s
sophisticated AI/ML product suite, we can easily train and deploy highly accurate
models for any applications anywhere.

 This architecture can be extended to other smart retail applications, such as per-
customer personalization and digital signage, real-time recommendations, contactless
checkout, and automatic restocking of shelves. All the latency-sensitive processing,
such as video or image ML inference, happens at the telecom edge, whereas all the
non-real-time components, like model training and data analytics, run in the cloud.

Summary
 Market trends and continuously evolving platform capabilities drive telco net-

work functions and edge applications toward Kubernetes and Anthos as the
ideal deployment platform.

 NFV had the goal of transitioning telco network functions from dedicated, pro-
prietary hardware appliances to virtual machines deployed on industry-standard
x86 servers. This transformation has started but has not completely material-
ized as expected.

 5G is driving the rise of new applications, deployed on edge locations as con-
tainerized workloads and using 5G networks’ higher bandwidth and lower
latency, providing near-real-time data processing and allowing smart devices to
act and respond to inputs without sending that data to the cloud and back.

 Anthos provides specific capabilities that are key enablers for the deployment,
execution, and management of edge and telco workloads: VM runtime, hardware
accelerators, multiple network interfaces per Pod, and large fleet management.

 Google Distributed Cloud Edge (GDCE) is a fully managed solution from Goo-
gle, based on Anthos on bare metal, designed to support telco virtualized and
cloud native network functions and edge applications and including software,
OS, and hardware in Google-managed racks. It can be deployed in Google, telco,
or enterprise edge.

Serverless compute
engine (Knative)
Konrad Cłapa

Before we get into the details, let’s set the scene. In this chapter, we’re going to talk
about Google Cloud Platform’s managed service based on an open source project
called Knative. The project was started to allow for quicker development of Kuber-
netes applications without the need to understand the complex Kubernetes con-
cepts they use. With this service, Google installs and manages Knative serving inside
your Anthos GKE cluster. One of the benefits of using Knative with Anthos instead
of open source Knative is that Google’s automation and site reliability engineers
handle all installation and maintenance. Anthos integrates with numerous GCP ser-
vices like Cloud Load Balancing (https://cloud.google.com/load-balancing), Cloud
Armor (https://cloud.google.com/armor), Cloud CDN (https://cloud.google.com
/cdn/docs/overview), and many others, making an enterprise-ready Knative a reality.

This chapter covers
 Introduction to serverless

 Knative Serving and Eventing components

 Knative on Anthos
163

https://cloud.google.com/load-balancing
https://cloud.google.com/armor
https://cloud.google.com/cdn/docs/overview
https://cloud.google.com/cdn/docs/overview
https://cloud.google.com/cdn/docs/overview

164 CHAPTER 9 Serverless compute engine (Knative)
 We have already discussed Kubernetes in chapter 3, so we understand how com-
plex the installation and maintenance of it can be. This problem is solved for us with
Google Kubernetes Engine. In addition to Kubernetes, we still need to know how to
run and operate cloud native applications. What Knative does is abstract those imple-
mentation details and allow you to serve your serverless container-based workloads on
any Kubernetes cluster.

 In this chapter, we will look at what serverless is, introduce you to Knative, and dis-
cuss how Anthos delivers an enterprise-grade container-based serverless platform.

9.1 Introduction to serverless
A lot of discussion occurs about what serverless is. Comparisons between serverless
and function as a service (FaaS) are common—it is almost an ideological dispute. To
keep this simple, let’s look at the Cloud Native Computing Foundation’s definition:

Serverless computing refers to a new model of cloud-native computing, enabled by
architectures that do not require server management to build and run applications.

Google’s fully managed cloud-run service perfectly fits into this definition because it
abstracts the compute layer from the developer and operator. It allows you to deploy
the containers that will be serving HTTP(S) requests. The scaling of the application is
handled by the platform itself.

 Although Google Cloud Functions deliver similar capabilities, they are more opin-
ionated about the runtime languages you can use. With Cloud Run, you can use any
language that can run a service that answers HTTPS calls. Cloud Run does not require
you to use Anthos.

 When we think about Cloud Run, we can think about the following set of serverless
features:

 No server—Developers don’t need to worry about underlying compute infra-
structure.

 Multilanguage—The application can be written in any language.
 Event-driven—The container/function is triggered by an external event.
 Autoscaling—The container can automatically scale based on requests.
 Portability—Your container/application should be able to run on any Kuberne-

tes platform.

9.2 Knative
Because you already know Kubernetes is a platform for building platforms, why not use
it for building serverless platforms based on containers? Knative runs on top of Kuber-
netes like any other Kubernetes application. You can even see some statements from
Knative contributors that it should not be called “serverless,” so let’s look at Knative as a
platform to deliver serverless anywhere where you run Kubernetes. Sound fair?

1659.2 Knative
9.2.1 Introduction

Say you would like to build your own Kubernetes-based serverless platform. You might
come up with the diagram shown in figure 9.1 showing all the required components.
Clearly some duplication of effort exists related to building the primitives like auto-
scalablity, observability, rollouts, and many others. What Knative is doing is providing
all these primitives for you so you have a common experience of running a serverless
workload on Kubernetes.

Now think of it from the developer’s perspective. All they have to do is define the
dependencies, write their code, and put it in a container. Then they deploy the appli-
cation to Knative. The details of how it is served is not their concern. This does not
mean, however, that they lose the capability to fine tune the service. They can set mul-
tiple parameters like concurrency (how many requests can be served per container),
minimum/maximum instances (minimum/maximum container instances that can be
provisioned for the Knative service), and many others. Knative hides all the complexi-
ties of Kubernetes involved with scaling and traffic management and provides a means
to observe the workloads. That is what you call an easy start with development of
Kubernetes applications, right?

Roll Out

Figure 9.1 Kubernetes serverless stack architecture

166 CHAPTER 9 Serverless compute engine (Knative)
KNATIVE VS. CAAS, FAAS, AND PAAS
In the second section of this chapter, we learn what problems Knative is trying to
solve: enable serverless workloads to run anywhere with the flexibility of Kubernetes
but hiding the complexity. Table 9.1 presents a comparison of Knative against plat-
form as a service (PaaS; http://mng.bz/WAKX), container as a service (CaaS; http://
mng.bz/81gg), and function as a service (FaaS; https://www.ibm.com/topics/faas),
with various features being supported. Do-it-yourself (DIY) means you need to do
some development to be able to use that feature.

As we can see, Knative provides all the advantages of FaaS but also gives you the ability
to run your application in almost any language. The limits on the execution time are
much higher compared to FaaS. In many cases, where there is a need for longer
request-processing time, Knative is a solution. You finally have access to advanced fea-
tures like volumes and networking so you can tweak your workload if needed. Like with
all compute services with greater flexibility, the responsibility demarcation line shifts
more toward you. You need to build your own container and make sure you can make
use of all the advanced features. But let’s be honest: who does not like to be in more
control of your application until you get all the benefits of FaaS?

9.2.2 Knative history

Google started Knative but now has multiple companies contributing to it, like IBM,
RedHat, and SAP. The full documentation and source code can be found here:
https://github.com/knative. Knative started as a set of components that allows you to
build and run stateless workloads together with subscriptions to events. The following
two active projects, shown in figure 9.2, are in progress on GitHub:

Table 9.1 Knative vs. PaaS, CaaS, and FaaS

Feature Knative PaaS CaaS FaaS

Simple UX/DX Yes Yes Yes

Event driven Yes Yes Yes

Container based Yes Yes Yes Yes

Autoscaling Yes Yes DIY Yes

Scale resources to 0 Yes Yes Yes

Load balancing Yes Yes DIY Yes

Unrestricted execution time Yes* Yes Yes

Unrestricted compute/memory limits Yes** Yes** Yes**

Variety of programming languages support Yes Yes Yes Limited

* Might be restricted for managed services like Cloud Run.
** Depends on the platform.

http://mng.bz/WAKX
http://mng.bz/81gg
http://mng.bz/81gg
http://mng.bz/81gg
https://www.ibm.com/topics/faas
https://github.com/knative

1679.3 Knative architecture
 Knative Serving—Allows you to serve serverless containerized workloads
 Knative Eventing—Allows subscriptions to external events

The third project, Knative Build, which helped build containers, was deprecated and
turned into the Tekton Pipelines (https://github.com/tektoncd/pipeline) project. As
you will learn in chapter 9, it was used by Google to build Cloud Build for Anthos.

 At the time of writing, both Knative Serving and Eventing are already in version
1.x, with Eventing being slightly behind Serving. Knative was developed with the
vision to deliver the simplicity of App Engine (https://cloud.google.com/appengine)
but allowing for the flexibility that Kubernetes brings. As an example, with Knative
you can modify the routing to different versions of the application by setting the traf-
fic configuration on a Knative Serving1 object rather than changing the low-level net-
work object’s configuration (e.g., Istio). This setup resembles App Engine, where you
simply run one command to perform a task, and it can be used for canary deploy-
ments and A/B testing. Knative gives you the ability to run your serverless containers
anywhere, whether in the cloud or in an on-prem data center.

 As you will shortly learn, multiple Knative-based, fully managed services already
exist that make it even easier to avoid getting into the complexity of Kubernetes. The
most interesting one for this book is, of course, Knative for Anthos, which is one of the
most advanced offerings existing on the market.

9.3 Knative architecture
Let’s look at Knative architecture, presented in figure 9.3. As you can see, multiple lay-
ers exist, with some of the components being plug and play or optional.

 Knative can run on any compute platform that can run Kubernetes. It can be
based on either virtual machines or bare metal servers. For traffic routing, Service
Mesh Gateway is used. Obviously, the most popular is Istio, but alternative solutions
are also supported, including Gloo, Ambassador, Contour, and Kourier, with more to
come. To learn more about Istio, refer to chapter 4. On top of that, we have Knative
components installed as a Kubernetes application. Note that each of those compo-
nents can be installed and operated separately. If you are not interested in managing
the Knative installation yourself, you can use one of the many already existing man-
aged services—Google Cloud Run and Google Cloud Run for Anthos, OpenShift

1 Knative Serving is explained in the next section of this chapter.

Figure 9.2
Knative components

https://github.com/tektoncd/pipeline
https://cloud.google.com/appengine

168 CHAPTER 9 Serverless compute engine (Knative)
Serverless, managed Knative for IBM Cloud Kubernetes Service—where both Knative
and underlying Kubernetes are managed by the provider. A list of those services can
be found here: http://mng.bz/El6r.

9.3.1 Knative Kubernetes resource types

Knative comes with a set of controllers and custom resource definitions (CRDs) that
extend the native Kubernetes API. Therefore, integration with Knative is very much
like interaction with the Kubernetes API itself. We will look at the Knative resources in
the next section.

 If you think of a simple Kubernetes application, you should have objects like Pods,
Deployments, and Services. If you include Service Mesh, you will have additional
resources to handle the traffic management like virtual services and destination rules.
With Knative, you control your deployment with a single resource—Knative Service—
which allows you to both deploy the workload and handle the traffic. All the required
Kubernetes and Service Mesh resources are created for you.

9.3.2 Knative Serving

Knative Serving allows you to easily deploy container-based serverless workloads and
serve them to users via HTTP(s) requests (with gRPC recently announced). As an
example, you can serve an entire e-commerce website frontend using Knative Serving.
It automatically scales your workload as per demand (from 0 to N) and routes or splits
traffic to the version (revision) you choose. To achieve this with native Kubernetes,

Figure 9.3 Knative architecture

http://mng.bz/El6r

1699.3 Knative architecture
you would need to use additional Kubernetes resources like HorizontalPodAutoscaler
(HPA; http://mng.bz/NmaX). Knative Serving extends the Kubernetes API with new
CRDs like Knative Serving Service, Configuration, Route, and Revision. Figure 9.4
shows how the Knative resources depend on each other.

Each of the CRDs is described next:

 Service (API path service.serving.knative.dev)—The most important resource in
Knative Serving. It automatically creates other Knative resources needed for the
entire life cycle of your workload. With the update of the services, a new Revi-
sion is created. Within the Knative Service, you define both the container ver-
sion and the traffic rules.

NOTE This is different from the native Kubernetes Service object, which might
be confusing to new users at first.

For example, a Service definition that deploys a simple Hello World workload to
Knative Serving will automatically create other resources: Revision, Configura-
tions, and Route:

apiVersion: serving.knative.dev/v1
kind: Service

Figure 9.4 Knative Serving resources

http://mng.bz/NmaX

170 CHAPTER 9 Serverless compute engine (Knative)
metadata:
 name: helloworld
 namespace: default
spec:
 template:
 spec:
 containers:
 - image: docker.io/{username}/helloworld
 env:
 - name: TARGET
 value: "Python Sample v1"

 Revision (API path revision.serving.knative.dev)—An immutable snapshot of the con-
tainer version and its configuration. It defines what is actually served to the user.

 Configuration (API path configuration.serving.knative.dev)—The configuration part
of your application that enforces the desired state of your workload. It allows
you to separate your code (container) from the configuration piece. Modifica-
tion of the configuration results in new Revision creation.

 Route (API path route.serving.knative.dev)—Maps the endpoints to one or more
revisions.

When you use Knative, you no longer need to worry about the native Kubernetes and
Service Mesh resources like Deployments, Services, and VirtualServices. You define your
application as a Knative Service and all the “backend” resources are created for you.

TRAFFIC MANAGEMENT

When you want to update your Knative Service with a new image, a new revision is cre-
ated, and by default, the traffic is directed to the new revision, as shown in figure 9.5. You
can perform A/B (http://mng.bz/DZ50) testing on a canary (https://martinfowler
.com/bliki/CanaryRelease.html) release, controlling how much traffic should be
directed to a particular revision by defining the metadata.spec.traffic attribute.
You can also just tag a particular revision to be accessible by a dedicated URL.

 To achieve the routing shown in figure 9.5, you would set up the metadata.spec
.traffic attribute in the Knative Service:

 traffic:
 - tag: current
 revisionName: helloworld-v1
 percent: 95%
 - tag: candidate
 revisionName: helloworld-v2
 percent: 5%
 - tag: latest
 latestRevision: true
 percent: 0

As you can see, with a single Kubernetes object, a developer can control how the
entire workload is served. There is no need to dive deep into the Kubernetes backend.

http://mng.bz/DZ50
https://martinfowler.com/bliki/CanaryRelease.html
https://martinfowler.com/bliki/CanaryRelease.html
https://martinfowler.com/bliki/CanaryRelease.html

1719.3 Knative architecture
KNATIVE SERVING CONTROL PLANE

Now let’s look at the Knative Serving control plane, which allows for all this magic to
happen. As we’ve already said, Kubernetes uses Istio, or any other supported service
mesh, for traffic management. It also comes with several services that take care of run-
ning and scaling the workload.

 To retrieve the list of the services in the knative-serving namespace you installed
with Knative, use kubectl get services -n knative-serving. It will show the follow-
ing services:

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
activator-service ClusterIP 10.96.61.11 <none> 80/TCP,81/TCP,9090/TCP 1h
autoscaler ClusterIP 10.104.217.223 <none> 8080/TCP,9090/TCP 1h
controller ClusterIP 10.101.39.220 <none> 9090/TCP 1h
webhook ClusterIP 10.107.144.50 <none> 443/TCP 1h

As you can see, for such a complex service, it doesn’t have many supporting services.
Let’s look at them one by one:

 Activator—Receives and buffers requests for inactive revisions and reporting
metrics to the Autoscaler. It also retries requests to a Revision after the Auto-
scaler scales the revision based on the reported metrics.

 Autoscaler—Sets the number of Pods required to handle the load based on the
defined parameters.

Figure 9.5 Knative Service traffic flows

172 CHAPTER 9 Serverless compute engine (Knative)
 Controller—Monitors and reconciles Knative objects defined in CRDs. When a
new Knative Service is created, it creates Configuration and Route. It will create
a Revision and corresponding Deployment and Knative Pod Autoscaler.

 Webhook—Intercepts, validates, and mutates Kubernetes API calls, including
CRD insertions and updates. Sets the default value and rejects inconsistent and
invalid objects.

If you retrieve the list of the deployments in the namespace you installed Knative
to using kubectl get deployments -n knative-serving, you will see the following
deployments:

NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
activator 1 1 1 1 1h
autoscaler 1 1 1 1 1h
controller 1 1 1 1 1h
networking-certmanager 1 1 1 1 1h
networking-istio 1 1 1 1 1h
webhook 1 1 1 1 1h

We have already discussed four of these services, but we have not yet seen the follow-
ing two deployments:

 Networking-certmanager—Reconciles cluster ingresses into cert manager objects.
 Networking-istio—Reconciles a cluster’s ingress into an Istio virtual service.

9.3.3 Knative Eventing

Eventing is the Knative component that orchestrates events originating from various
sources inside or outside of the Kubernetes cluster. This important element of event-
driven architecture allows you to trigger your service using existing event sources and
build new ones for scenarios where you need a custom source not already available. This
process is different from FaaS, where the functions are triggered using only HTTP
requests or other predefined triggers, like Google Cloud Storage events.

 All the Knative Eventing objects are defined as CRDs. This ensures that the events
are handled as defined in the Knative objects using controllers. Scalability is taken
care of automatically as events trigger calls to your container. It gives you scalability
similar to Knative Serving, so you can start with a small load of a few events and scale
to handle a stream of events.

 You can use around 20 predefined sources, and the list is growing. You can also
develop your own source. Knative Eventing is also pluggable, so you can choose how
you want to store your event—whether in memory or persistent storage—while it’s
being processed. Knative uses an open CNCF standard, CloudEvents, to parse the
original events. The target for the events can be both Knative and Kubernetes Ser-
vices. The Eventing pipelines are simple—like a simple event being sent to a single
Service—but they can also get very complex. For the sake of understanding Cloud
Run, let’s concentrate on the basics first.

1739.3 Knative architecture
KNATIVE EVENTING RESOURCES

The most essential component of Knative events are Brokers and Triggers. If we look
at figure 9.6, we see that the events are generated from external sources and are cap-
tured by the Broker. There, one or more Triggers receives the events, filters them, and
passes them to the Service.

The architecture of Knative clearly separates concerns. Knative Eventing Broker is
an event mesh that pulls or receives events, whereas Knative Trigger filters and
routes events to targets. Event sources are the control plane of Knative Eventing
that makes sure events are sent to the Broker. Now let’s look more closely at the
resources.

 The Broker API path broker.eventing.knative.dev is essentially an addressable
event delivery system that you install by setting a label on your namespace, similar to
what you do with Istio when you want to do sidecar injections into the Pods. Events are
received by the Broker and then sent to subscribers. The messages are stored in a
channel managed by the Broker.

 The channel can be a simple in-memory channel or it can use persistent storage
for reliability purposes. Examples of these are Pub/Sub and Kafka. The configuration
of the channels is stored in ConfigMaps. If you want to have different types of mes-
sages, you can install Broker into multiple namespaces. You can also filter which
events are accepted by the Broker. An example definition of a Knative Broker follows:

apiVersion: eventing.knative.dev/v1
kind: Broker
metadata:
 annotations:
 eventing.knative.dev/broker.class: MTChannelBasedBroker
 name: default
 namespace: default

Figure 9.6 Knative Eventing resources

174 CHAPTER 9 Serverless compute engine (Knative)
spec:
 config:
 apiVersion: v1
 kind: ConfigMap
 name: config-br-default-channel
 namespace: knative-eventing

The Triggers API path trigger.eventing.knative.dev matches the event with a Ser-
vice, so it is defined for the type of event (e.g., a Cloud Storage object sending the
event to that Service). Triggers can filter events based on one or more attributes. If
multiple attributes exist, all attribute values need to match. This method can also pro-
duce new event types from the received event. This can be a nice use case for filtering
events with sensitive data. An example definition of a Knative Trigger is shown next:

apiVersion: eventing.knative.dev/v1alpha1
kind: Trigger
metadata:
 name: helloworld-python
 namespace: knative-samples
spec:
 broker: default
 filter:
 attributes:
 type: dev.knative.samples.helloworld
 source: dev.knative.samples/helloworldsource
 subscriber:
 ref:
 apiVersion: v1
 kind: Service
 name: helloworld-python

The Source API path <source_name>.eventing.knative.dev is defined as a CRD.
The list is still growing and includes AWS SQS, Google Cloud Pub/Sub, Google Cloud
Scheduler, Google Cloud Storage, GitHub, and GitLab. A full list of events appears at
https://knative.dev/docs/eventing/sources/. You can either use an existing Source
or create your own. The following example shows how to configure a CloudPubSub-
Source event source. The event will be generated whenever a message is published to
a Pub/Sub topic named testing:

apiVersion: events.cloud.google.com/v1
kind: CloudPubSubSource
metadata:
 name: cloudpubsubsource-test
spec:
 topic: testing
 sink:
 ref:
 apiVersion: v1
 kind: Service
 name: event-display

https://knative.dev/docs/eventing/sources/

1759.3 Knative architecture
In figure 9.7, you can see how an event source works.

The events are pulled or pushed to the adapters, depending on whether the source
is capable of pushing events. If it is not, the events need to be pulled. The adapters
are developed to understand the events and translate them into a common Cloud-
Events format. Once translated, they are available for the Broker to pick them up in
the new format.

HOW EVENT SOURCES WORK

Event sources consist of control and data planes. The control plane is responsible for
configuration of the event delivery with the authoritative source, the setup of the data
plane, and the cleanup—put simply, it creates the webhooks and subscriptions. The
data plane performs the push/pull operations, then validates and converts the data
into CloudEvents.

 On top of existing sources, you can create your own event sources using Kuberne-
tes operators, container sources, or existing services. To see how you can develop your
own source, refer to the Knative Eventing documentation (http://mng.bz/lJBz).

KNATIVE USE CASES

With Knative, you can cover several use cases, from a simple single service to very com-
plex multimicroservice applications. Using Knative Serving, you can create both
HTTP and gRPC (https://grpc.io/docs/what-is-grpc/introduction/) services, web-
hooks, and APIs. You can also manage rollouts and rollbacks and control the traffic to
your application. With Knative Eventing, you can create simple or very complex event-
ing pipelines. By combining those two services, you can deliver a fully cloud native,
event-driven application.

Figure 9.7 How an event source works

http://mng.bz/lJBz
https://grpc.io/docs/what-is-grpc/introduction/

176 CHAPTER 9 Serverless compute engine (Knative)
 Let’s look at a simple example of binding running services to a Cloud IoT Core
(https://cloud.google.com/iot-core), as shown in figure 9.8. The messages from the
IoT devices are sent to the Google Cloud IoT Core and synced to Pub/Sub. The Kna-
tive Eventing service uses the Pub/Sub source to get the messages from the topic. The
messages are sent to a Broker and converted to CloudEvents. A Trigger ensures the
events are sent to the proper service that can further process, log, or display them to
the user.

If you would like to try the Pub/Sub example yourself, we encourage you to follow the
step-by-step tutorial at http://mng.bz/Bljq.

9.3.4 Observability

Knative comes with logging and tracing capabilities, as shown in figure 9.9. The fol-
lowing open source software is supported:

 Prometheus and Grafana for metrics
 ELK (Elasticsearch, Logstash, and Kibana) stack for logs
 Jaeger or Zipkin for distributed tracing

To learn more about metrics and tracing, see chapter 4.
 You can also integrate with Google Cloud Logging (formerly Stackdriver Logging)

for logs using the Fluent Bit agent. The installation procedure for each of the compo-
nents is well described in the article found at http://mng.bz/dJlz.

Pub/Sub
Source

Figure 9.8 Binding running services to IoT Core

http://mng.bz/Bljq
http://mng.bz/dJlz
https://cloud.google.com/iot-core

1779.3 Knative architecture
Because these components are deployed like any other Kubernetes application, you
can access them by exposing the Kubernetes service. An example of Pods running on
a cluster after deployment follows:

NAME READY STATUS RESTARTS AGE
grafana-798cf569ff-v4q74 1/1 Running 0 2d
kibana-logging-7d474fbb45-6qb8x 1/1 Running 0 2d
kube-state-metrics-75bd4f5b8b-8t2h2 4/4 Running 0 2d
node-exporter-cr6bh 2/2 Running 0 2d
node-exporter-mf6k7 2/2 Running 0 2d
node-exporter-rhzr7 2/2 Running 0 2d
prometheus-system-0 1/1 Running 0 2d
prometheus-system-1 1/1 Running 0 2d

9.3.5 Installing Knative

You can install Knative on multiple cloud platforms or on-prem, if you run a Kuberne-
tes cluster that includes but is not limited to the following:

 Amazon EKS
 Google GKE
 IBM IKS
 Red Hat OpenShift Cloud Platform
 Minikube

Elasticsearch

Figure 9.9 Knative observability ecosystem

178 CHAPTER 9 Serverless compute engine (Knative)
In the end, Knative is nothing but a Kubernetes application. You can install it either
using YAML files or an operator. To learn more about operators, see http://mng
.bz/rdRE. The installation process for the Knative Serving component consists of
the following:

 Installation of the custom resource definitions
 Installation of the core components of Serving
 Installation of the networking layer
 Configuration of DNS
 Installation of optional Serving extensions

Installation of the Knative Eventing component consists of the following:

 Installation of the custom resource definitions
 Installation of the core components of Eventing
 Installation of the default channel (messaging) layer
 Installation of a Broker (Eventing) layer
 Optional Eventing extensions (sources)

Once you are done with the installation of Serving and Eventing, you can install the
observability components described in the previous section. The step-by-step proce-
dure for end-to-end installation is available at http://mng.bz/Vp0r.

9.3.6 Deploying to Knative

You can follow a simple guide to deploy your first application to Knative, which is as
simple as applying a single Knative Service object, as follows. This is assuming you
already have a containerized Python application that responds with the response
“Hello Python Sample v1!” stored in Docker Hub (see http://mng.bz/xdRq to check
the source code for that application):

1 Run the following command to create a Knative Service:

kubectl apply -f service.yaml

where Service is defined in the service.yaml file as follows:

apiVersion: serving.knative.dev/v1
kind: Service
metadata:
 name: test
 namespace: default
spec:
 template:
 spec:
 containers:
 - image: docker.io/<user>/<image_name>
 env:
 - name: TARGET
 value: "v1"

http://mng.bz/rdRE
http://mng.bz/rdRE
http://mng.bz/rdRE
http://mng.bz/Vp0r
http://mng.bz/xdRq

1799.3 Knative architecture
2 Once deployed, multiple objects are created for you, including Pods, Knative
Service, Configuration, Revision, and Route. You can verify them by running
the next code:

kubectl get pod,ksvc,configuration,revision,route

3 You can access the service and get the IP address of the Istio ingress gateway
as follows:

kubectl get ksvc helloworld-python --output=custom-
columns=NAME:.metadata.name,URL:.status.url

This will return the following URL:

NAME URL
helloworld-python http:/ /helloworld-python.default.1.2.3.4.xip.io

4 Now test the application by running a curl query:

curl http:/ /helloworld-python.default.1.2.3.4.xip.io

Note that the xip.io domain is called a magic DNS. You can configure it when
installing Knative (see http://mng.bz/Al9E).

5 You should see the following output:

Hello Python Sample v1!

You have successfully deployed your first Knative application!

To get some hands-on experience with Knative, we suggest you check out the exam-
ples shown in table 9.2. They cover end-to-end Knative app development and deploy-
ment scenarios with multiple language support. We especially recommend the Mete
Atamel tutorial on Knative, which takes you by hand from a very simple deployment to
very complex ones, including usage of Google Cloud services like Pub/Sub, AI APIs,
and BigQuery. We are sure you will have a lot of fun!

KNATIVE SUMMARY

With Knative service, you no longer must choose between the flexibility of Kubernetes
and the simplicity of function as a service—you get the best of both worlds. You can

Table 9.2 References for deploying to Knative

Title URL

Knative Serving code samples https://knative.dev/docs/serving/samples/

Knative Eventing code samples https://knative.dev/docs/eventing/samples/

Mete Atamel Knative tutorial with multiple examples https://github.com/meteatamel/knative-tutorial

https://knative.dev/docs/serving/samples/
https://knative.dev/docs/eventing/samples/
https://github.com/meteatamel/knative-tutorial
http://mng.bz/Al9E

180 CHAPTER 9 Serverless compute engine (Knative)
run your serverless workload anywhere. With Knative Eventing, you can subscribe and
receive events from several predefined sources as well as define your own source using
cloud native architecture.

CLOUD RUN VS. KNATIVE ON ANTHOS
Cloud Run is a fully managed serverless offering, whereas Knative on Anthos runs on
top of your Anthos clusters, as shown in figure 9.10. You can interact with Cloud Run,
whichever version you go for. Cloud Run, however, runs on Google infrastructure, so
you don’t need to worry about the underlying platform.

NOTE For the purposes of this book, we will refer to Cloud Run (fully man-
aged) as Cloud Run.

Although we know what the main differences are, you still might be wondering which
service better fulfills your workload needs. Table 9.3 shows a little bit more detail on
the differences.

Table 9.3 Cloud Run vs. Knative on Anthos

Feature Cloud Run Knative on Anthos

Price Pay per use GKE Anthos cost

Compute CPU and memory limits As per GKE cluster nodes capabili-
ties (includes GPU)

Isolation Based on gVisor or other sandbox Default GKE isolation

Scaling 1,000 containers with extensible
quota

As per GKE cluster

URL/SSL URL and SSL autogenerated Can configure custom domain

Figure 9.10 Cloud Run and Knative on Anthos architecture

181Summary
So, when to choose each of the offerings? This very much depends on how much con-
trol you want to have over your application execution and whether you need custom
hardware for GKE nodes. As an example, you might want to use GPUs to boost the
performance of your ML pipelines. In such a case, Knative on Anthos is the way to go.

Summary
 Knative abstracts away the complexity of Kubernetes.
 Workloads are portable to any Kubernetes cluster.
 Knative has multiple components that can address multiple use cases.
 Eventing is the component that orchestrates events originating from various

sources.
 Serving is the component that allows you to deploy container-based serverless

workloads and serve them to users.
 Serverless Kubernetes workloads can be deployed and served using Knative on

Anthos.
 Versions of the application can be controlled using revisions.
 Traffic to the application can be managed using revision parameters.
 You can get insights into your application using a rich, open source ecosystem

of tools for monitoring, logging, and tracing.

Domains Custom domain can be created

Network Access to VPC via serverless VPC
access

Direct access to VPC

Service mesh Integrated with service mesh Services connected to Istio Service
Mesh

Execution environment Google infrastructure GKE cluster

Table 9.3 Cloud Run vs. Knative on Anthos (continued)

Feature Cloud Run Knative on Anthos

Networking environment
Ameer Abbas

Anthos networking can be divided into four sections. Each section provides a layer
of connectivity between entities such as environments (e.g., public cloud and on-
prem), Anthos GKE clusters, and service-to-service communications. The four lay-
ers, shown in figure 10.1, follow:

 Cloud networking and hybrid connectivity—Addresses the lowest layer of net-
working and covers how different infrastructure environments can be
interconnected.

This chapter covers
 Anthos cloud networking and hybrid connectivity

between multiple cloud environments

 Anthos Kubernetes and GKE networking,
including Dataplane v2

 Anthos multicluster networking, including service
discovery and routing

 Service-to-service and client-to-service
connectivity
182

18310.1 Cloud networking and hybrid connectivity
 Anthos GKE networking—Anthos GKE clusters come in a variety of implementa-
tions, depending on the infrastructure in which they are deployed. This section
covers Anthos GKE cluster networking, including how ingress works in various
environments.

 Multicluster networking—Addresses how various Anthos GKE clusters connect to
each other. Anthos GKE clusters may be deployed in a single infrastructure
environment (e.g., in GCP), or they can be deployed across multiple infrastruc-
ture environments (e.g., GCP and in an on-prem data center).

 Service and client connectivity—Addresses how applications running on Anthos
connect to each other. This section also addresses how clients and services
running outside of Anthos can connect to services running inside the Anthos
platform.

10.1 Cloud networking and hybrid connectivity
This section addresses various aspects of network connectivity at the infrastructure
environment level. Anthos is a multicloud platform and can run in one or more pub-
lic and private cloud environments. At the infrastructure layer, you can deploy Anthos
in the following ways:

 In a single cloud environment—For example, GCP or on-prem data center or even
in another public cloud

 In a multi-/hybrid cloud environment—For example, a platform deployed in GCP
and in one or more on-prem data centers

Multicluster Networking

Service/Client Connectivity

Anthos GKE Networking

Cloud networking and
Hybrid Connectivity

On-prem data centers Google Cloud Platform Other Clouds

Anthos Platform Services/Users outside Anthos

Figure 10.1 Four layers of Anthos networking

184 CHAPTER 10 Networking environment
10.1.1 Single-cloud deployment

The Anthos platform can be deployed in a single-cloud environment. The single-cloud
environment can be on GCP, another public or private cloud, or on-prem data centers.

ANTHOS ON GCP
Anthos on GCP uses resources that are placed within a virtual private cloud (VPC;
https://cloud.google.com/vpc). You can configure VPCs in GCP in multiple ways.
Depending on the needs of the company, a single VPC (in a single GCP project)
might suffice. In a more complex design, shared VPC, peered VPC, or even multiple
disparate VPCs are required. The Anthos platform can work with a variety of VPC
designs. Choosing the right VPC architecture up front is important because it may
pose scalability and operational consequences later. We discuss various VPC design
and decision criteria next.

Single VPC
Single VPC is the simplest design. For small environments, where everything is con-
tained in a single GCP project, you may choose a single VPC. A single VPC results in a
flat network, meaning all resources using the VPC are on the same network. You can
control connectivity between resources via security features at various layers in the
Anthos platform. For example, you can use a VPC firewall (https://cloud.google.com/
vpc/docs/firewalls) at the network layer, Kubernetes NetworkPolicies (http://mng
.bz/ZoWj) inside Kubernetes Dataplane, and Anthos Service Mesh (http://mng.bz/
RlOn) authentication and authorization policies at the service mesh layer. With this
approach, multiple teams use resources in the same GCP project and same VPC. Single
VPC design, shown in figure 10.2, also simplifies network administration. All resources,
whether inside or outside of the Anthos platform, reside on the same flat network and
can communicate easily as allowed via security rules. No additional configuration is
required to connect resources together.

 The primary challenge with a single VPC design is scale. Although a single VPC
design might be sufficient for small- to medium-sized implementations, large imple-
mentations may not be possible because you will start to hit VPC limits (https://cloud
.google.com/vpc/docs/quota). As the organization grows, separate projects may need
to be created for separate products, teams, or environments. A single VPC design does
not support multiproject environments. Depending on the industry, regulations
might exist that prohibit hosting all resources in a single VPC and require some level
of network or project separation.

 When designing your network structure for Anthos, you must understand and
account for the longevity of the platform up front. For example, in two to four years,
how much will the platform scale, and will any other restrictions arise that need to be
considered, quota- or regulation-wise?

http://mng.bz/ZoWj
http://mng.bz/ZoWj
http://mng.bz/ZoWj
http://mng.bz/RlOn
http://mng.bz/RlOn
http://mng.bz/RlOn
https://cloud.google.com/vpc
https://cloud.google.com/vpc/docs/firewalls
https://cloud.google.com/vpc/docs/firewalls
https://cloud.google.com/vpc/docs/firewalls
https://cloud.google.com/vpc/docs/quota
https://cloud.google.com/vpc/docs/quota
https://cloud.google.com/vpc/docs/quota

18510.1 Cloud networking and hybrid connectivity
Shared VPC
Using a shared VPC (https://cloud.google.com/vpc/docs/shared-vpc) is the recom-
mended way to provision a network on GCP for the Anthos platform. You can use a
shared VPC design, shown in figure 10.3, for both simple and complex (large-scale
and multitenant) Anthos environments. A shared VPC allows a single VPC to be
shared across multiple projects, which results in a single flat network space shared by
multiple tenants, each within their own project. Separating GCP projects by prod-
ucts/tenants allows for granular IAM permissioning at the project level. At the same
time, resources in multiple projects can still connect to each other (if allowed) as if
they were on a single network.

 A network host project contains a centralized “shared” VPC. All network resources
are located in this network host project, including subnets, firewall rules, and network
permissions. A centralized networking team owns and controls the network host proj-
ect. This arrangement ensures that the organization’s network best practices are
enforced by a single qualified team of networking experts. Multiple service projects
can then use network resources from the host project. Subnets are shared from the
network host project to multiple service projects and are used by resources inside
each service project.

 For Anthos on GCP, it is recommended to create a service project and name it sim-
ilar to platform_admins. The Anthos platform (all GKE clusters) resides inside the
platform_admins project. The platform_admins project (as the name suggests) is

Non-Anthos Resources

GCE Instances

Anthos Platform

Anthos on GKE clusters

GCP Project

VPC

Figure 10.2 Single VPC architecture in GCP

https://cloud.google.com/vpc/docs/shared-vpc

186 CHAPTER 10 Networking environment
owned by the platform administrator team who manages and maintains the life cycle
of the Anthos platform. Platform administrators are one of many tenants of the net-
work host project. Similarly, products and environments get their own service proj-
ects. Anthos is a shared multitenant platform where each tenant gets a “landing zone”
in which to run their services on Anthos. A landing zone is a set of resources required
to run a service on the Anthos platform and is typically one (or more) namespaces in
one (or more) Anthos GKE clusters and a set of policies required to run that service.
All non-Anthos resources (belonging to a service) are provisioned and managed in
the individual service’s GCP project. This way, multiple tenants can have their own
projects for non-Anthos resources, and they can all share a single Anthos GKE on GCP
clusters. Using a shared VPC allows Anthos and non-Anthos resources to connect to
each other.

Multiple VPC
The two previous VPC implementations result in a flat network where all resources are
provisioned in a single logical VPC. In some cases, security or regulatory restrictions
may require the separation of resources into multiple VPCs. The company or organi-
zation may also want each team or product to manage their own network.

 The Anthos GKE on GCP platform can be installed in one VPC. Multitenancy
allows you to share the Anthos GKE on GCP with multiple tenants, as shown in fig-
ure 10.4. You might have to connect services running on the Anthos platform to services

Figure 10.3 Shared VPC architecture in GCP

18710.1 Cloud networking and hybrid connectivity
outside of the platform. In this design, these services run in different VPCs. For exam-
ple, services running on Anthos GKE in GCP may be running on a VPC called
anthos_vpc and non-Anthos resources may be running on a VPC called product_1_
vpc. You can connect these services in the following ways:

 IPsec VPN (http://mng.bz/2a4N)—You can create an IPsec VPN tunnel
between two VPCs. IPsec VPN traffic flows over the public internet in a secure
manner. Traffic traveling between the two networks is encrypted by one VPN gate-
way and then decrypted by the other VPN gateway to protect your data as it travels
over the internet. Flowing through the public internet may result in performance
degradation, however. IPsec VPN can be helpful for large-scale environments.

 VPC Network Peering (http://mng.bz/1MvZ)—You can peer multiple VPCs to
allow VPC interconnectivity without having to connect VPCs via IPsec VPN. VPC
peering offers the same data plane and performance characteristics as a single
VPC but with boundaries for administration (security and configurations),
resulting in better security and performance for VPC-to-VPC traffic. VPC Net-
work Peering requires coordination between the network admins of the two
VPCs. It does not allow for overlapping IP addresses. Also, both VPC owners
maintain separate firewalls with desired rules allowing traffic between subnets
belonging to the two VPCs.

Figure 10.4 Multiple VPC architecture in GCP

http://mng.bz/1MvZ
http://mng.bz/2a4N

188 CHAPTER 10 Networking environment
 Public internet and secure ingress—If VPC peering or VPN is not an option, ser-
vices can communicate over the public internet. In this case, higher-level func-
tionality like Anthos Service Mesh can be used to encrypt traffic between
networks using TLS or mTLS (mutual TLS). This method works well if only a
small number of services require connectivity across VPCs because this method
requires per-service (destination service) configuration as opposed to the previ-
ous two methods, which connect two networks at the TCP/IP layer.

ANTHOS ON A SINGLE NON-GCP ENVIRONMENT

You can deploy Anthos in a variety of non-GCP environments, including on-prem data
centers, public clouds, and private clouds. At the infrastructure layer, you should con-
sider two primary network designs: single and multiple.

Single flat network
As the name suggests, flat networks are composed of a single logical network space
where both Anthos and non-Anthos resources (e.g., VMs running outside of the
Anthos platform) reside on the same network. A flat network is a set of subnets con-
nected by routers and switches where each IP endpoint can switch or route to
another endpoint given the correct routing (and firewall) rules. A single GCP VPC
is an example of a flat network where you may have multiple subnets and rout-
ing/firewall rules to allow routing between any two endpoints.

 Flat networks are easier to manage compared to multiple disparate networks, but
they require more rigor when it comes to security because all entities are on the
same logical network space. Firewall rules, network policies, and other functionality
can ensure only the allowed entities have network access. Flat networks may also run
into scalability problems. Typically, these networks use RFC1918 address space
(https://datatracker.ietf.org/doc/html/rfc1918), which provides a finite number of IP
addresses (just under 18 million addresses). Typically, a flat logical network requires
all resources use the same RFC1918 space. Exceptions to this general rule arise where
large organizations may use their own public IP address space for internal addressing.
Regardless of the IP address usage, it is important to note that, in a flat network, no
two endpoints may have the same IP address.

Multiple networks
Anthos can also be deployed in a multinetwork environment. Anthos GKE clusters
can be deployed on single or multiple networks as required. Typically, it is easier to
manage network connectivity for applications running on an Anthos platform if
Anthos is deployed in the same network. You can deploy the Anthos platform across
multiple disconnected networks, though, in some cases, it may be required to connect
these multiple networks. You have the following ways to connect applications running
on an Anthos platform across multiple networks:

 VPN/ISP—You can connect multiple networks together via a VPN, or the cho-
sen ISP may provide this connectivity. These are the typical choices for connect-
ing multiple on-prem data centers.

https://datatracker.ietf.org/doc/html/rfc1918

18910.1 Cloud networking and hybrid connectivity
 VPC peering—You can use VPC peering if Anthos is deployed on a public cloud
that offers VPC peering functionality.

 Gateways or mTLS—Services may be connected securely over the public internet
using TLS, mTLS, or a secured API gateway. This functionality exists through
service meshes like Anthos Service Mesh (ASM; https://cloud.google.com/service
-mesh/docs/overview) or API gateways like Apigee (https://cloud.google.com/
apigee). This is done on a per-service level, whereas the first two options are
configured at the network layer.

10.1.2 Multi/hybrid cloud deployment

Anthos is a multicloud platform and can be deployed to multiple environments, for
example, public/private clouds and on-prem data centers. Managing networking
across multiple environments is challenging because each environment is unique, and
managing resources differs depending on the provider. For instance, the way a GCP
VPC is provisioned is different from an AWS VPC or a data center network. Anthos
provides a common interface across multiple environments. You can deploy the
Anthos platform to multiple environments in the following three ways:

 Multicloud deployment—You can deploy the Anthos platform to multiple public
cloud environments, for example, GCP and one or more public clouds like
AWS and Azure.

 Hybrid cloud deployment—You can deploy the Anthos platform to GCP and one
or more on-prem data centers.

 Multi and hybrid cloud deployment—This deployment is a combination of the two
deployments previously mentioned. For example, you can deploy the Anthos
platform to GCP, to one or more on-prem data centers, and to one or more
non-GCP public clouds.

MULTI/HYBRID NETWORKING

When you deploy Anthos across multiple infrastructure environments, these environ-
ments must have network connectivity to GCP. Three network connectivity options are
available to connect multiple infrastructure environments: Cloud Interconnect,
Cloud VPN, and public internet.

Cloud Interconnect
Cloud Interconnect (http://mng.bz/Pxe2) extends an on-prem network to Google’s
network through a highly available, low-latency connection. You can use Dedicated
Interconnect to connect directly to Google or use Partner Interconnect to connect to
Google through a supported service provider. Dedicated Interconnect provides direct
physical connections between your on-prem network and Google’s network. Dedi-
cated Interconnect enables you to transfer large amounts of data between networks,
which can be more cost effective than purchasing additional bandwidth over the pub-
lic internet.

https://cloud.google.com/service-mesh/docs/overview
https://cloud.google.com/service-mesh/docs/overview
https://cloud.google.com/service-mesh/docs/overview
https://cloud.google.com/apigee
https://cloud.google.com/apigee
https://cloud.google.com/apigee
http://mng.bz/Pxe2

190 CHAPTER 10 Networking environment
 For Dedicated Interconnect, you provision a Dedicated Interconnect connection
between the Google network and your own router in a common location (see http://
mng.bz/JlQp). Figure 10.5 shows a single Dedicated Interconnect connection between
a VPC network and your on-prem network.

For this basic setup, a Dedicated Interconnect connection is provisioned between the
Google network and the on-prem router in a common colocation facility.

 When you create a VLAN attachment (http://mng.bz/wPR7), you associate it with
a Cloud Router (http://mng.bz/qdlK). This Cloud Router creates a BPG session for
the VLAN attachment and its corresponding on-prem peer router. The Cloud Router
receives the routes that your on-prem router advertises. These routes are added as cus-
tom dynamic routes in your VPC network. The Cloud Router also advertises routes for
Google Cloud resources to the on-prem peer router.

 Depending on your availability needs, you can configure Dedicated Interconnect
to support mission-critical services or applications that can tolerate some downtime.
To achieve a specific level of reliability, Google offers the following two prescriptive
configurations:

 Achieve 99.99% (52.60 minutes per year) availability for Dedicated Intercon-
nect (http://mng.bz/71ax)(recommended)

 Achieve 99.9% availability for Dedicated Interconnect (http://mng.bz/516q)

Cloud Interconnect is the most robust and secure option to connect GCP and non-
GCP environments and is the recommended option to connect GCP and one or more
on-prem data centers.

On-prem network

On-prem
Router User

Google
Peering
Edge

Cloud
RouterCompute

Figure 10.5 Dedicated Interconnect between GCP and an on-prem data center

http://mng.bz/JlQp
http://mng.bz/JlQp
http://mng.bz/JlQp
http://mng.bz/wPR7
http://mng.bz/qdlK
http://mng.bz/71ax
http://mng.bz/516q

19110.2 Anthos GKE networking
Cloud VPN
Cloud VPN (http://mng.bz/mJPn) securely connects your peer network to your VPC
network through an IPSsec VPN connection. Traffic traveling between the two net-
works is encrypted by one VPN gateway, and then decrypted by the other VPN gate-
way, which protects your data as it travels over the internet. Google Cloud offers high-
availability VPN, which provides higher uptime and throughput with an additional/
redundant VPN connection at a higher cost.

 Each Cloud VPN tunnel can support up to 3 gigabits per second total for ingress
and egress. You can use multiple Cloud VPN tunnels to increase your ingress and
egress bandwidth.

 You can use Cloud VPN between GCP and on-prem data centers as well as between
GCP and other public cloud vendors. This is the easiest option to set up, and you can
be running without any delays. Cloud VPN can also be used in conjunction with
Cloud Interconnect as a secondary connectivity option.

Public internet
Applications running on the Anthos platform on multiple environments can be con-
nected over the public internet without using Cloud Interconnect or VPN. Applica-
tions running on the platform connect over the public internet using TLS/mTLS.

 Anthos Service Mesh (ASM) is part of the Anthos platform. ASM uses client-side
proxies injected into each Pod to connect services. One of the security features of
these proxies is to secure connectivity using mTLS. Using a common root certificate
authority on multiple environments, the sidecar proxies can connect using a secure
mTLS connection via gateways (e.g., ingress or east-west gateways) across the public
internet. For details on Anthos Service Mesh, please refer to chapter 4.

 If many services require connectivity between environments, then this option
might not be operationally scalable. In such a case, it is recommended you use one of
the network connectivity options mentioned earlier.

Disconnected environments
In some situations, you may be required to have environments that are completely dis-
connected from each other. Anthos platform supports disconnected environments.
The disconnected environments must have network connectivity to GCP so that the
platform (i.e., Anthos clusters) can be registered to a GCP project. This is required for
control plane traffic only. For certain Anthos functionalities, registering a cluster is
required. For example, to use multicluster ingress on Anthos clusters, all participating
clusters must be registered to GCP. The services across disconnected environments
will not be able to communicate to each other.

10.2 Anthos GKE networking
Anthos GKE clusters can be deployed to a variety of environments, for example, on
GCP, on VMware in an on-prem data center, on bare metal servers, and on AWS. In
addition to the supported Anthos clusters, you can also register any conformant
Kubernetes cluster to the Anthos platform. For example, you can register EKS clusters

http://mng.bz/mJPn

192 CHAPTER 10 Networking environment
running in AWS and AKS clusters running in Azure to the Anthos platform. Currently,
the following six types of Anthos clusters are available:

 Anthos clusters on GCP (GKE)
 Anthos clusters on VMware (GKE on-prem)
 Anthos clusters on bare metal
 Anthos clusters on AWS (GKE on AWS)
 Anthos clusters on Azure (GKE on Azure)
 Anthos attached clusters (conformant Kubernetes clusters)

10.2.1 Anthos cluster networking

CLUSTER IP ADDRESSING

All Anthos GKE clusters require the following three IP subnets:

 Node and API server IP addresses
 Pod IP addresses
 Services or ClusterIP addresses

Node and API server IP addresses are LAN (for on-prem data centers) or VPC (for public
clouds) IP addresses. Each node and API server gets a single IP address. Depending
on the number of nodes/API servers required, ensure you have the required number
of IP addresses.

 Pod IP addresses are assigned to every Pod in an Anthos GKE cluster. Each node in
an Anthos cluster is assigned a unique IP address range, which is used to assign Pod IP
addresses (running inside that node). If the Pod moves from one node to another, its
IP address changes based on the IP address range of the new node. The API server
takes a large IP range, often called the Pod CIDR IP range, for example a /14 or a /16
(you can learn about IP subnets at http://mng.bz/610G). The server then equally
divides this range into smaller IP ranges and assigns a unique range to each node. You
define the desired number of Pods per node, which is used by the API server to slice
the large subnet into smaller subnets per node. For example, if you want 30 Pods per
node, each node requires a minimum of a /27. Your Pod IP range must be large
enough to account for N subnets with 32 addresses each, where N is the maximum
number of nodes in the cluster.

 Pod IP addresses are routable within the cluster. They may or may not be routable
from outside of the cluster, depending on the type and implementation of the cluster.
This is discussed in detail in the next section.

 Service or ClusterIP addresses are assigned to every Kubernetes Service. Unlike Pod IP
addresses, which may change as Pods move between nodes, ClusterIP addresses
remain static and act as a load-balancing virtual IP address (VIP) to multiple Pods rep-
resenting a single Kubernetes Service. As the name suggests, service IPs or ClusterIPs
are locally significant to the cluster and cannot be accessed from outside of the clus-
ter. Services inside the cluster can access services using ClusterIPs.

http://mng.bz/610G

19310.2 Anthos GKE networking
CLUSTER NETWORKING DATA PLANE

Anthos GKE clusters provide two options for networking data planes.

GKE Dataplane v1: kube-proxy and Calico
Kubernetes manages connectivity among Pods and Services using the kube-proxy
component. This is deployed as a static Pod on each node by default. Any GKE cluster
running version 1.16 or later has a kube-proxy deployed as a DaemonSet.

 kube-proxy is not an in-line proxy but an egress-based load-balancing controller. It
watches the Kubernetes API server and continually maps the ClusterIP to healthy Pods
by adding and removing destination NAT rules to the node’s iptables subsystem. When
a container running in a Pod sends traffic to a Service’s ClusterIP, the node selects a
Pod at random and routes the traffic to that Pod.

 When you configure a Service, you can optionally remap its listening port by defining
values for port and targetPort. The port is where clients reach the application. The
targetPort is the port where the application is listening for traffic within the Pod. kube-
proxy manages this port remapping by adding and removing iptables rules on the node.

 In GKE Dataplane v1, Kubernetes NetworkPolicies are implemented using the Cal-
ico component. Calico is an open source networking and network security solution
for containers, virtual machines, and native host–based workloads. This implementa-
tion uses components that rely heavily on iptables functionality in the Linux kernel.
Dataplane v2 addresses and resolves some of these problems.

GKE Dataplane v2: eBPF and Cilium
GKE Dataplane v2, shown in figure 10.6, is an opinionated data plane that harnesses
the power of extended Berkeley Packet Filter (eBPF) and Cilium, an open source
project that makes the Linux kernel Kubernetes aware using eBPF.

Figure 10.6 GKE
Dataplane v2 architecture

194 CHAPTER 10 Networking environment
Dataplane V2 addresses the observability, scalability, and functional requirements by
providing a programmable data path. eBPF, a new Linux networking paradigm,
exposes programmable hooks to the network stack inside the Linux kernel. The abil-
ity to enrich the kernel with user-space information—without jumping back and forth
between user and kernel spaces—enables context-aware operations on network pack-
ets at high speeds.

 The new data plane adds two new cluster components: the cilium-agent Daemon-
Set that programs the eBPF data path and the cilium-operator Deployment that man-
ages the Cilium-internal CRDs and helps the cilium-agent avoid watching every Pod.

 The data plane also eliminates both Calico cluster components—the calico-node
DaemonSet and the calico-typha Deployment. These components provide Network-
Policy enforcement, which is provided by the cilium-agent DaemonSet.

 The data plane also removes the kube-proxy static Pod from the nodes. kube-proxy
provides service resolution functionality to the cluster, which is also provided by the
cilium-agent.

 Dataplane V2 offers networking programmability and scalability to Anthos clusters,
as shown in figure 10.7. Enterprises use Kubernetes NetworkPolicies to declare how
Pods can communicate with one another. However, there previously was no scalable
way to troubleshoot and audit the behavior of these policies. With eBPF in GKE, you
can now enforce real-time policies as well as correlate policy actions (allow/deny) to
Pod, namespace, and policy names at a line rate with minimal impact on the node’s
CPU and memory resources. As packets come into the VM, specialized eBPF programs
can be installed in the kernel to decide how to route the packet. Unlike iptables, eBPF
programs have access to Kubernetes-specific metadata, including network policy infor-
mation. This way, they can not only allow or deny the packet, they can also report
annotated actions back to the user space. These events make it possible for you to gen-
erate network policy logs.

Figure 10.7 GKE Dataplane v2: Network policy flow logging

19510.2 Anthos GKE networking
Table 10.1 shows a comparison of networking features between GKE Dataplane v1
and v2.

Depending on the type and implementation of the Anthos cluster, networking design
and requirements vary. In the next section, we look at each type of Anthos cluster in
terms of networking requirements and best practices.

ANTHOS GKE ON GCP
An Anthos GKE cluster runs on GCP and uses GCP VPC functionality for Kubernetes
networking. Two types of implementations of Anthos GKE on GCP are available: VPC-
native clusters and routes-based clusters.

VPC-native clusters
This is the default and recommended implementation for Anthos GKE on GCP clusters.
A cluster that uses alias IP address ranges is called a VPC-native cluster. VPC-native clus-
ters use real VPC IP addresses for Pod IP ranges. This option allows Pod-to-Pod commu-
nication within a single cluster as well as across multiple (VPC-native) clusters in the
same VPC. It also allows direct Pod connectivity to any routable VPC entity, for example,
GCE instances. VPC-native clusters use secondary IP address ranges for Pod IP and Ser-
vice IP ranges. VPC-native clusters offer the following benefits:

 Pod IP addresses are natively routable within the cluster’s VPC network and
other VPC networks connected to it by VPC Network Peering.

 Pod IP addresses are reserved in the VPC network before the Pods are created
in your cluster. This prevents conflict with other resources in the VPC network
and allows you to better plan IP address allocations.

 Pod IP address ranges do not depend on custom static routes. They do not con-
sume the system-generated and custom static routes quota. Instead, automati-
cally generated subnet routes handle routing for VPC-native clusters.

 You can create firewall rules that apply to just Pod IP address ranges instead of
any IP address on the cluster’s nodes.

 Pod IP address ranges, and subnet secondary IP address ranges in general, are
accessible from on-prem networks connected with Cloud VPN or Cloud Inter-
connect using Cloud Routers.

Table 10.1

Network feature Existing New Dataplane

ClusterIP service resolution kube-proxy using iptables cilium-agent using eBPF on sockets

NodePort service resolution kube-proxy using iptables cilium-agent using eBPF on eth0 TC hooks

Load balancer service
resolution

kube-proxy using iptables
redirecting to service chain

cilium-agent using eBPF on eth0 TC hooks
(same hook as previously)

Network policy enforcement Calico using iptables cilium-agent using eBPF on socket
as well as eth0 TC hooks

196 CHAPTER 10 Networking environment
Routes-based clusters
A cluster that uses Google Cloud Routes is called a routes-based cluster. Google Cloud
routes define the paths that network traffic takes from a VM instance to other destina-
tions. The Pod IP address ranges in a routes-based cluster are not VPC IP addresses
and, therefore, are not natively routable inside the VPC. Cloud Routes are created for
each Pod IP address range so that Pods within a cluster can communicate with other
Pods running on different nodes. Routes-based clusters do not provide Pod-to-Pod
intercluster connectivity for multiple Anthos GKE clusters. To create a routes-based
cluster, you must explicitly turn off the VPC-native option.

 In a routes-based cluster, each node is allocated a /24 range of IP addresses for
Pods. With a /24 range, you have 256 addresses, but the maximum number of Pods
per node is 110. By having approximately twice as many available IP addresses as possi-
ble Pods, Kubernetes can mitigate IP address reuse as Pods are added to and removed
from a node.

 A routes-based cluster has a range of IP addresses that are used for Pods and Ser-
vices. Even though the range is used for both Pods and Services, it is called the Pod
address range. The last /20 of the Pod address range is used for Services. A /20 range
has 4,096 addresses that are used for Services as well as Pods.

 In command output, the Pod address range is called clusterIpv4Cidr, and the
range of addresses used for Services is called servicesIpv4Cidr. For example, the out-
put of gcloud container clusters describe includes output like this:

clusterIpv4Cidr: 10.96.0.0/16
...
servicesIpv4Cidr: 10.96.240.0/20

For GKE version 1.7 and later, the Pod address range can be from any RFC1918 block:
10.0.0.0/8, 172.16.0.0/12, or 192.168.0.0/16. For earlier versions, the Pod address
range must be from 10.0.0.0/8.

 The maximum number of nodes, Pods, and Services for a given GKE cluster is
determined by the size of the cluster subnet and the size of the Pod address range.
You cannot change the Pod address range size after you create a cluster. When you
create a cluster, ensure that you choose a Pod address range large enough to accom-
modate the cluster’s anticipated growth.

Anthos GKE cluster IP allocation
Kubernetes uses the following IP ranges to assign IP addresses to nodes, Pods, and
Services:

 Node IP—In Anthos GKE clusters, a node is a GCE instance. Each node has an IP
address assigned from the cluster’s VPC network. This node IP provides connec-
tivity from control components like kube-proxy and the kubelet to the Kuberne-
tes API server. This IP is the node’s connection to the rest of the cluster.

 Pod IP CIDR—Each node has a pool of IP addresses that GKE assigns to Pods
running on that node (a /24 CIDR block by default). You can optionally specify

19710.2 Anthos GKE networking
the range of IPs when you create the cluster. The Flexible Pod CIDR range fea-
ture allows you to reduce the size of the range for Pod IPs for nodes in a given
node pool. Each Pod has a single IP address assigned from the Pod CIDR range
of its node. This IP address is shared by all containers running within the Pod
and connects them to other Pods running in the cluster. The maximum num-
ber of Pods you can run on a node is equal to half of the Pod IP CIDR range.
For example, you can run a maximum of 110 Pods on a node with a /24
range—not 256 as you might expect. This number of Pods provides a buffer so
that Pods don’t become unschedulable due to a transient lack of IP addresses in
the Pod IP range for a given node. For ranges smaller than /24, half as many
Pods can be scheduled as IP addresses in the range.

 Service IP—Each Service has an IP address, called the ClusterIP, assigned from
the cluster’s VPC network. You can optionally customize the VPC network
when you create the cluster. In Kubernetes, you can assign arbitrary key-value
pairs called labels to any Kubernetes resource. Kubernetes uses labels to group
multiple related Pods into a logical unit called a Service. A Service has a stable
IP address and ports and provides load balancing among the set of Pods
whose labels match all the labels you define in the label selector when you cre-
ate the Service.

Egress traffic and controls
For VPC-native clusters, traffic egressing a Pod is routed using normal VPC routing
functionality. Pod IP addresses are preserved in the TCP header as the source IP
address. You must create the appropriate firewall rules to allow traffic between
Pods and other VPC resources. You can also use NetworkPolicy to further control
the flow of traffic between Pods within a cluster, as well as traffic egressing Pods.
These policies are enforced by the GKE Dataplane implementation explained in
the previous section. At the Service layer, you can use egress policy through ASM to
control what traffic exits the clusters. In this case, an Envoy proxy called the istio-
egressgateway exists at the perimeter of the service mesh through which all egress
traffic flows. For routes-based clusters, all Pod egress traffic goes through NAT via
the node IP address.

Load balancers and ingress
GKE provides the following three types of load balancers to control access and to
spread incoming traffic across your cluster as evenly as possible. You can configure
one Service to use multiple types of load balancers simultaneously:

 External load balancers manage traffic coming from outside the cluster and
outside your Google Cloud VPC network. They use forwarding rules associated
with the Google Cloud network to route traffic to a Kubernetes node.

 Internal load balancers manage traffic coming from within the same VPC net-
work. Like external load balancers, they use forwarding rules associated with
the Google Cloud network to route traffic to a Kubernetes node.

198 CHAPTER 10 Networking environment
 HTTP(S) load balancers are specialized external load balancers used for HTTP(S)
traffic. They use an Ingress resource rather than a forwarding rule to route traf-
fic to a Kubernetes node.

The external and internal load balancers described here are TCP/L4 load balancers.
If your Service needs to be reachable from outside the cluster and outside your VPC
network, you can configure your Service as a load balancer by setting the Service’s
type field to Loadbalancer. GKE then provisions a network load balancer in front of
the Service. The network load balancer is aware of all nodes in your cluster and con-
figures your VPC network’s firewall rules to allow connections to the Service from out-
side the VPC network, using the Service’s external IP address. You can assign a static
external IP address to the Service.

 For traffic that needs to reach your cluster from within the same VPC network,
you can configure your Service to provision an internal load balancer. The internal
load balancer chooses an IP address from your cluster’s VPC subnet instead of an
external IP address. Applications or services within the VPC network can use this IP
address to communicate with Services inside the cluster. An example of a Service
manifest that creates an internal load balancer follows. You can configure an exter-
nal load balancer in the same way by removing the annotation (which creates an
internal load balancer):

apiVersion: v1
kind: Service
metadata:
 name: ilb-service
 annotations:
 cloud.google.com/load-balancer-type: "Internal"
 labels:
 app: hello
spec:
 type: LoadBalancer
 selector:
 app: hello
 ports:
 - port: 80
 targetPort: 8080
 protocol: TCP

Many applications, such as RESTful web service APIs, communicate using HTTP(S).
You can allow clients external to your VPC network to access this type of application
using a Kubernetes Ingress resource. An Ingress resource allows you to map host-
names and URL paths to Services within the cluster. An Ingress resource is associated
with one or more Service objects, each of which is associated with a set of Pods. When
you create an Ingress resource, the GKE Ingress controller creates a Google Cloud
HTTP(S) load balancer and configures it according to the information in the Ingress
and its associated Services. To use Ingress, you must have the HTTP load balancing

The annotation
creates an internal
Google load balancer.

Creates a
Google load
balancer

19910.2 Anthos GKE networking
add-on enabled. GKE clusters have HTTP load balancing enabled by default. GKE
Ingress resources come in the following two types:

 Ingress for external HTTP(S) load balancer deploys the Google Cloud external
HTTP(S) load balancer. This internet-facing load balancer is deployed globally
across Google’s edge network as a managed and scalable pool of load-balancing
resources.

 Ingress for Internal HTTP(S) load balancing deploys the Google Cloud inter-
nal HTTP(S) load balancer. This internal HTTP(S) load balancer is powered by
Envoy proxy systems outside of your GKE cluster, but within your VPC network.

HTTP(S) load balancing, configured by Ingress, includes the following features:

 Flexible configuration for Services. An Ingress defines how traffic reaches your
Services and how the traffic is routed to your application. In addition, an
Ingress can provide a single IP address for multiple Services in your cluster.

 Integration with Google Cloud network services.
 Support for multiple TLS certificates. An Ingress can specify the use of multiple

TLS certificates for request termination.

When you create the Ingress resource, GKE provisions an HTTP(S) load balancer in
the Google Cloud project according to the rules in the manifest and the associated Ser-
vice manifests. The load balancer sends a request to a node’s IP address at the NodePort.
After the request reaches the node, the chosen GKE Dataplane routes the traffic to the
appropriate Pod (for the desired Service). For Dataplane v1, the node uses its iptables
NAT table to choose a Pod. kube-proxy manages the iptables rules on the node. For
Dataplane v2, GKE provides this functionality using eBPF and Cilium agents.

 In the following example, the Ingress definition routes traffic for demo.exam-
ple.com to a Service named frontend on port 80, and demo-backend.example.com to
a Service named users on port 8080:

apiVersion: networking.k8s.io/v1beta1
kind: Ingress
metadata:
 name: demo
spec:
 rules:
 - host: demo.example.com
 http:
 paths:
 - backend:
 serviceName: frontend
 servicePort: 80
 - host: demo-backend.example.com
 http:
 paths:
 - backend:
 serviceName: users
 servicePort: 8080

Requests to host
demo.example.com are
forwarded to the Service
frontend on port 80.

Requests to host demo-
backend.example.com are
forwarded to the Service
users on port 8080.

200 CHAPTER 10 Networking environment
Container-native load balancing
Container-native load balancing is the practice of load balancing directly to Pod
endpoints in GKE using network endpoint groups (NEGs). With Ingress, Service-
bound traffic is sent from the HTTP load balancer to any of the node IPs on the
node port. After the request reaches the node, the GKE Dataplane routes the traffic
to the desired Pod, a process that results in extra hops. In some cases, the Pod may
not even be running on the node, and thus, the node sends the request to the node
where the desired Pod is running. Additional hops add latency and make the traffic
path more complex.

 With NEGs, traffic is load balanced from the load balancer directly to the Pod IP,
as opposed to traversing the nodes. In addition, Pod readiness gates are implemented
to determine the health of Pods from the perspective of the load balancer and not just
the Kubernetes in-cluster health probes. This improves overall traffic stability by mak-
ing the load balancer infrastructure aware of life cycle events such as Pod startup, Pod
loss, or VM loss. These capabilities resolve the previously described limitations and
result in more performant and stable networking.

 Container-native load balancing is enabled by default for Services when all the fol-
lowing conditions are true:

 For Services created in GKE clusters 1.17.6-gke.7 and up
 Using VPC-native clusters
 Not using a shared VPC
 Not using GKE network policy

For clusters where NEGs are not the default, it is still strongly recommended to use
container-native load balancing, but it must be enabled explicitly on a per-Service
basis. The annotation should be applied to Services in the following manner:

kind: Service
...
 annotations:
 cloud.google.com/neg: ‘{"ingress": true}’
…

In the Service manifest, you must use type: NodePort unless you’re using container-native
load balancing. If you’re using container-native load balancing, use type: ClusterIP.

Shared VPC considerations and best practices
The GKE Ingress controllers use a Google Cloud service account to deploy and man-
age Google Cloud resources. When a GKE cluster resides in a service project of a
shared VPC, this service account may not have the rights to manage network resources
owned by the host project. The Ingress controller actively manages firewall rules to
provide access between load balancers and Pods as well as between centralized health
checkers and Pods. You can manage this in the following ways:

 Manual firewall rule provisioning—If your security policies allow firewall manage-
ment only from the host project, you can provision these firewall rules manually.

The annotation creates a
network endpoint group
for Pods in the service.

20110.2 Anthos GKE networking
When deploying Ingress in a shared VPC, the Ingress resource event provides
the specific firewall rule you need to provide access. To manually provision a fire-
wall rule, view the Ingress resource using the describe command:

kubectl describe ingress INGRESS_NAME

The output of this command, shown next, should have the required firewall
rule that can be implemented in the host network project:

Events:
Type Reason Age From Message
---- ------ ---- ---- -------
Normal Sync 9m34s (x237 over 38h) loadbalancer-controller
Firewall change required by network admin: `gcloud compute firewall-
rules update k8s-fw-l7--6048d433d4280f11 --description "GCE L7 firewall
rule" --allow tcp:30000-32767,tcp:8080 --source-ranges
130.211.0.0/22,209.85.152.0/22,209.85.204.0/22,35.191.0.0/16 --target-
tags gke-l7-ilb-test-b3a7e0e5-node --project <project>`

 Automatic firewall rule provisioning—An automated approach is to provide the
GKE Ingress controller service account the permissions to update firewall rules.
You do this by creating a custom IAM role, providing the ability to manage fire-
wall rules in the host network project and then granting this role to the GKE
Ingress service account.

First, create a custom IAM role with the required permissions:

gcloud iam roles create ROLE_NAME \
 --project PROJECT_ID \
 --title ROLE_TITLE \
 --description ROLE_DESCRIPTION \
 --permissions=compute.networks.updatePolicy, compute.firewalls.*\
 --stage GA

Then, grant the custom role to the GKE Ingress controller service account:

gcloud projects add-iam-policy-binding my-project \
 --member=user:SERVICE_ACCOUNT \
 --role=roles/gke-ingress-fw-management

Multicluster Ingress
In some cases, you have to run the same service on multiple GKE clusters. Many fac-
tors drive multicluster topologies, including close user proximity for apps, cluster and
regional high availability, security and organizational separation, cluster migration,
and data locality. Multicluster Ingress (MCI), shown in figure 10.8, is a cloud-hosted
multicluster Ingress controller for Anthos GKE clusters. It’s a Google-hosted service
that supports deploying shared load-balancing resources across clusters and across
regions. Multicluster Ingress is designed to meet the load-balancing needs of multi-
cluster, multiregional environments. It’s a controller for the external HTTP(S) load

202 CHAPTER 10 Networking environment
balancer to provide Ingress for traffic coming from the internet across one or more
clusters. Multicluster Ingress’s multicluster support satisfies many use cases, including
the following:

 A single, consistent VIP for an app, independent of where the app is deployed
globally

 Multiregional, multicluster availability through health checking and traffic failover
 Proximity-based routing through public Anycast VIPs for low client latency
 Transparent cluster migration for upgrades or cluster rebuilds

Multicluster Ingress is an Ingress controller that programs the external HTTP(S) load
balancer using NEGs. When you create a MultiClusterIngress resource, GKE
deploys the Compute Engine load balancer resources and configures the appropriate
Pods across clusters as backends. The NEGs are used to track Pod endpoints dynami-
cally, so the Google load balancer has the right set of healthy backends.

 Multicluster Ingress uses a centralized Kubernetes API server to deploy Ingress
across multiple clusters. This centralized API server is called the config cluster. Any
GKE cluster can act as the config cluster. The config cluster uses two custom
resource types: MultiClusterIngress and MultiClusterService. By deploying
these resources on the config cluster, the Anthos Ingress controller deploys load bal-
ancers across multiple clusters. The following concepts and components make up
Multicluster Ingress:

 Anthos Ingress controller—A globally distributed control plane that runs as a ser-
vice outside of your clusters. This allows the life cycle and operations of the con-
troller to be independent of GKE clusters.

Multicluster Ingress (MCI)

Figure 10.8 Multicluster Ingress to multiple GKE clusters in GCP

20310.2 Anthos GKE networking
 Config cluster—A chosen GKE cluster running on Google Cloud where the
MultiClusterIngress and MultiClusterService resources are deployed. This
is a centralized point of control for these multicluster resources, which exist in
and are accessible from a single logical API to retain consistency across all clus-
ters. The Ingress controller watches the config cluster and reconciles the load-
balancing infrastructure.

 Fleet—A concept that groups clusters and infrastructure, manages resources,
and keeps a consistent policy across them (for more details about fleets, see
chapter 2). MCI uses the concept of fleets for how Ingress is applied across dif-
ferent clusters. Clusters that you register to a fleet become visible to MCI, so
they can be used as backends for Ingress. Fleets possess a characteristic known
as namespace sameness, which assumes that resources with identical names and
the same namespace across clusters are instances of the same resource. In
effect, this means that Pods in the ns1 namespace with the label app: foo across
different clusters are all considered part of the same pool of application back-
ends from the perspective of Multicluster Ingress. Figure 10.9 shows an exam-
ple of two services, foo and bar, running on two clusters being load balanced
by MCI.

 Member cluster—Clusters registered to a fleet are called member clusters. Member
clusters in the fleet comprise the full scope of backends that MCI is aware of.

After the config cluster has been configured, you create the two custom resources,
MultiClusterIngress and MultiClusterService, for your multicluster Service. Note
that the resource names are comparatively similar to Service and Ingress, required

Multicluster Ingress (MCI): Environ and namespace sameness

Figure 10.9 Multicluster Ingress: Fleet and namespace sameness

204 CHAPTER 10 Networking environment
for Ingress in a single cluster. Examples of these resources deployed to the config
cluster follow:

MulticlusterService with cluster selector
apiVersion: networking.gke.io/v1beta1
kind: MultiClusterService
metadata:
 name: foo
 namespace: blue
spec:
 template:
 spec:
 selector:
 app: foo
 ports:
 - name: web
 protocol: TCP
 port: 80
 targetPort: 80
 clusters:
 - link: "europe-west1-c/gke-eu"
 - link: "asia-northeast1-a/gke-asia-1"

MulticlusterIngress
apiVersion: networkin.g.gke.io/v1alpha1
kind: MultiClusterIngress
metadata:
 name: foobar-ingress
 namespace: blue
spec:
 template:
 spec:
 backend:
 serviceName: default-backend
 servicePort: 80
 rules:
 - host: foo.example.com
 backend:
 serviceName: foo
 servicePort: 80
 - host: bar.example.com
 backend:
 serviceName: bar
 servicePort: 80

Note that MulticlusterService includes a cluster selector stanza at the bottom.
Removing this sends Ingress traffic to all member clusters. Adding a cluster selector
may be useful if you want to remove MCI traffic from a specific cluster (or clusters)—
for example, if you are performing upgrades or maintenance to a cluster. If the clus-
ters stanza is present in the MulticlusterService resource, Ingress traffic is sent to
only the clusters available in the list. Clusters are explicitly referenced by <region |
zone>/<name>. Member clusters within the same fleet and region should have unique

The MultiClusterService spec
looks similar to the Service
spec, with a clusters section
added to define Service in
multiple clusters.

The GKE Cluster URI links for Service
running in multiple clusters

The MultiClusterIngress spec is
similar to the Ingress spec, except
that it points to a MultiClusterService
(instead of a Service).

20510.2 Anthos GKE networking
names so that there are no naming collisions. Like a Service, MulticlusterService is
a selector for Pods, but it is also capable of selecting labels and clusters. The pool of
clusters that it selects across are called member clusters, and these are all the clusters
registered to the fleet. This MulticlusterService deploys a derived Service in all
member clusters with the selector app: foo. If app: foo Pods exist in that cluster, then
those Pod IPs will be added as backends for the MulticlusterService.

ANTHOS ON-PREM (ON VMWARE)
Anthos on-prem clusters on VMware automatically create an island mode configuration
in which Pods can directly talk to each other within a cluster but cannot be reached
from outside the cluster. This configuration forms an “island” within the network that is
not connected to the external network. Clusters form a full node-to-node mesh across
the cluster nodes, allowing a Pod to reach other Pods within the cluster directly.

Networking requirements
Anthos on-prem clusters are installed using an admin workstation VM, which contains
all the tools and configurations required to deploy Anthos on-prem clusters. The
admin workstation VM deploys an admin cluster. The admin cluster deploys one or
more user clusters. Your applications run on user clusters. The admin cluster manages
the deployment and life cycle of multiple user clusters. You do not run your applica-
tions on the admin cluster. In your initial installation of Anthos on-prem, you create
the following virtual machines (VMs):

 One VM for an admin workstation
 Four VMs for an admin cluster
 Three VMs for a user cluster (you can create additional user clusters as well as

larger user clusters if needed)

In your vSphere environment, you must have a network that can support the creation
of these VMs. Your network must also be able to support a vCenter Server and a load
balancer. Your network needs to support outbound traffic to the internet so that your
admin workstation and your cluster nodes can fetch GKE on-prem components and
call certain Google services. If you want external clients to call services in your GKE
on-prem clusters, your network must support inbound traffic from the internet. IP
address architecture and allocation is discussed in the next section.

Anthos on-prem cluster IP allocation
The following IP addresses are required for Anthos on-prem on a VMware cluster:

 Node IP—Dynamic Host Configuration Protocol (DHCP) or statically assigned
IP addresses for the nodes (virtual machines or VMs). Must be routable within
the data center. You can manually assign static IPs. Node IP addressing depends
on the implementation of a load balancer in the Anthos on-prem cluster. If the
cluster is configured with integrated mode load balancing or bundled mode
load balancing, you can use DHCP or statically assigned IP addresses for the
nodes. If the cluster is configured with manual mode load balancing, you must

206 CHAPTER 10 Networking environment
use static IP addresses for nodes. In this case, ensure enough IP addresses are
set aside to account for cluster growth. Load-balancing modes are discussed in
detail in the next section.

 Pod IP CIDR—Non-routable CIDR block for all Pods in the cluster. From this
range, smaller /24 ranges are assigned per node. If you need an N node cluster,
ensure this block is large enough to support N x /24 blocks.

 Services IP—In island mode, like Pod CIDR block, so this is used only within the
cluster and is any private CIDR block that does not overlap with the nodes,
VIPs, or Pod CIDR block. You can share the same block among multiple clus-
ters. The size of the block determines the number of services. In addition to
your Services, a block of Service IP addresses is used for cluster control plane
Services. One Service IP is needed for the Ingress service, and 10 or more IPs
for Kubernetes services like cluster DNS.

Egress traffic and controls
All egress traffic from the Pod to targets outside the cluster is run through NAT by the
node IP. You can use NetworkPolicy to further control the flow of traffic between Pods
within a cluster as well as traffic egressing Pods. These policies are enforced by Calico
running inside each cluster. At the Service layer, you can use EgressPolicy through
ASM to control what traffic exits the clusters. In this case, an Envoy proxy called the
istio-egressgateway exists at the perimeter of the service mesh through which all
egress traffic flows.

Load balancers
Anthos on-prem clusters provide two ways to access Services from outside of the clus-
ter: load balancers and Ingress. This section addresses load balancers and different
modes of implementations.

 Anthos on-prem clusters can run in one of three load-balancing modes: inte-
grated, manual, or bundled:

 Integrated mode—With integrated mode, Anthos on-prem uses an F5 BIG-IP load
balancer. The customer provides the F5 BIG-IP load balancer with the appropri-
ate licensing. You need to have a user role with sufficient permissions to set up
and manage the F5 load balancer. Either the administrator role or the resource
administrator role is sufficient. For more information, see http://mng.bz/
oJnN. You set aside multiple VIP addresses to be used for Services, which are
configured to be type Loadbalancer. Each Service requires one VIP. The num-
ber of VIPs required depends on the number of Services of type Loadbalancer.
You specify these VIPs in your cluster configuration file, and Anthos on-prem
automatically configures the F5 BIG-IP load balancer to use the VIPs.

The advantages of integrated mode are you get to use an enterprise-grade
load balancer and its configuration is mostly automated. This mode is also
opinionated in that it requires an F5 load balancer, which may incur addi-
tional licensing and support cost.

http://mng.bz/oJnN
http://mng.bz/oJnN
http://mng.bz/oJnN

20710.2 Anthos GKE networking
 Manual mode—With manual mode, Anthos on-prem uses a load balancer of
your choice. Manual load-balancing mode requires additional configuration
compared to integrated mode. You need to manually configure the VIPs to be
used for Services. With manual load balancing, you cannot run Services of type
Loadbalancer. Instead, you can create Services of type NodePort and manually
configure your load balancer to use them as backends. You must specify the
NodePort values to be used for these Services. You can choose values in the
30000–32767 range. For more information, see http://mng.bz/nJov.

The advantage of manual mode is you get absolute freedom in terms of what
load balancer you choose. On the other hand, the configuration is manual,
which may result in increased operational overhead.

 Bundled mode—In bundled load-balancing mode, Anthos on-prem provides and
manages the load balancer. Unlike integrated mode, no license is required for a
load balancer, and the amount of setup that you must do is minimal. The bun-
dled load balancer that GKE on-prem provides is the Seesaw load balancer
(https://github.com/google/seesaw). Seesaw load balancers run as VMs inside
VMware. We recommend that you use vSphere 6.7+ and Virtual Distributed
Switch 6.6+ for bundled load-balancing mode. You can run Seesaw load bal-
ancer in high availability (HA) and non-HA mode. In HA mode, two Seesaw
VMs are configured. In non-HA mode, a single Seesaw VM is configured.

The advantage of bundled mode is a single team can oversee both cluster
creation and load balancer configuration. For example, a cluster administra-
tion team would not have to rely on a separate networking team to acquire, run,
and configure the load balancer ahead of time. Another advantage is that the
configuration is completely automated. Anthos on-prem configures the Service
VIPs automatically on the load balancer.

Anthos on VMware clusters can run Services of type Loadbalancer as long as a load-
BalancerIP field is configured in the Service’s specification. In the loadBalancerIP
field, you need to provide the VIP that you want to use. This will be configured on F5,
pointing to the NodePorts of the Service.

 An example of a Service manifest follows. You can access a Service running inside
an Anthos on-prem cluster called frontend via the SERVICE VIP:

apiVersion: v1
kind: Service
metadata:
 labels:
 app: guestbook
 name: frontend
spec:
 ports:
 - port: 80
 protocol: TCP
 targetPort: 80

http://mng.bz/nJov
https://github.com/google/seesaw

208 CHAPTER 10 Networking environment
 selector:
 app: guestbook
 type: LoadBalancer
 loadBalancerIP: [SERVICE VIP]

In addition to Service VIPs, a control plane VIP for the Kubernetes API server is
required by the load balancer. And last, an Ingress controller runs inside each Anthos
on-prem cluster. The Ingress controller Service also has a VIP called the Ingress VIP.
Services exposed via Ingress use the Ingress VIP to access Kubernetes Services.

 The Anthos on-prem high-level load-balancing architecture is shown in figure 10.10.

Table 10.2 summarizes what you must do to prepare for load balancing in various modes.

Table 10.2 How to prepare for load balancing

Integrated/bundled mode Manual mode

Choose VIPs before you create your clusters. Yes Yes

Choose node IP addresses before you create
your clusters.

No, if using DHCP
Yes, if using static IP addresses

Yes

Choose nodePort values before you create
your clusters.

No Yes

Manually configure your load balancer No Yes

The load balancer IP
address is defined in
the Service spec.

Anthos on-prem: Load balancers

Anthos on-prem Cluster

Figure 10.10 Anthos on-prem: load balancer network architecture

20910.2 Anthos GKE networking
Ingress
Anthos on-prem includes an L7 load balancer with an Envoy-based Ingress controller
that handles Ingress object rules for ClusterIP Services deployed within the cluster.
The Ingress controller itself is exposed as a NodePort Service in the cluster. The Ingress
NodePort Service can be reached through a L3/L4 F5 load balancer. The installation
configures a VIP address (Ingress VIP) (with port 80 and 443) on the load balancer.
The VIP points to the ports in the NodePort Service for the Ingress controller. This is
how external clients can access services in the cluster.

 To expose a Service via Ingress, you must create a DNS A record to point the DNS
name to the Ingress VIP. Then you can create a Service and an Ingress resource for
the Service. For example, let’s say you want to expose a frontend Service of a sample
guestbook application. First, create a DNS A record for the guestbook application
pointing to the Ingress VIP as follows:

*.guestbook.com A [INGRESS_VIP]

Next, create a Service for the frontend Deployment. Note that the Service is of type
ClusterIP:

apiVersion: v1
kind: Service
metadata:
 labels:
 app: guestbook
 name: frontend
spec:
 ports:
 - port: 80
 protocol: TCP
 targetPort: 80
 selector:
 app: guestbook
 type: ClusterIP

Finally, create the Ingress rule:

apiVersion: extensions/v1beta1
kind: Ingress
metadata:
 name: frontend
 labels:
 app: guestbook
spec:
 rules:
 - host: www.guestbook.com
 http:
 paths:
 - backend:
 serviceName: frontend
 servicePort: 80

For Ingress, the Service
type is ClusterIP (instead
of Loadbalancer).

The Ingress rule points to
the Service name and port.

210 CHAPTER 10 Networking environment
ANTHOS ON BARE METAL

Anthos on bare metal is a GCP-supported Anthos GKE implementation deployed on
bare metal servers. Anthos on bare metal eliminates the need for a virtualization layer
or a hypervisor. All cluster nodes and API servers run directly on bare metal servers.

 Anthos on bare metal deployment models and networking architecture are
described in detail in chapter 17.

ANTHOS ON AWS
Anthos clusters on AWS (GKE on AWS) is hybrid cloud software that extends Google
Kubernetes Engine to Amazon Web Services. Anthos on AWS uses AWS resources such as
Elastic Compute Cloud (EC2), Elastic Block Storage (EBS), and Elastic Load Balancer
(ELB). Anthos clusters on AWS have the following two components:

 Management service—An environment that can install and update your user clus-
ters, uses the AWS API to provision resources

 User clusters—Anthos on AWS clusters where you run your containerized
applications

Networking requirements
Both the management service and the user clusters are deployed inside an AWS VPC
on EC2 instances. You can create your management service in a dedicated AWS VPC
(http://mng.bz/v1ax) or an existing AWS VPC (http://mng.bz/41GB). You need a
management service in every AWS VPC where you run Anthos on AWS user clus-
ters. The management service is installed in one AWS Availability Zone. You only
need one management service per VPC; a management service can manage multi-
ple user clusters.

 A user cluster consists of two components: a control plane or the Kubernetes API
server and node pools where your applications run. The management service’s pri-
mary component is a cluster operator. The cluster operator is a Kubernetes operator
that creates and manages your AWSClusters and AWSNodePools. The cluster operator
stores configuration in an etcd database with storage persisted on an AWS EBS vol-
ume. An AWSClusters resource creates and manages the user clusters’ control plane,
and an AWSNodePools resource creates and manages the user clusters’ node pools.

 When you install a management cluster into a dedicated VPC, Anthos on AWS cre-
ates control plane replicas in every zone you specify in dedicatedVPC.availability-
Zones. When you install a management cluster into existing infrastructure, Anthos on
AWS creates an AWSCluster with three control plane replicas in the same Availability
Zones. Each replica belongs to its own AWS Auto Scaling group, which restarts
instances when they are terminated. The management service places the control
planes in a private subnet behind an AWS Network Load Balancer (NLB). The man-
agement service interacts with the control plane using NLB.

 As shown in figure 10.11, each control plane stores configuration in a local etcd data-
base. These databases are replicated and set up in a stacked, high-availability topology
(http://mng.bz/wPKW). One control plane manages one or more AWSNodePools.

http://mng.bz/v1ax
http://mng.bz/41GB
http://mng.bz/wPKW

21110.2 Anthos GKE networking
The following VPC resources are required when creating Anthos on AWS clusters in a
dedicated VPC:

 VPC CIDR range—The total CIDR range of IP addresses for the AWS VPC that
anthos-gke creates, for example, 10.0.0.0/16.

 Availability Zones—The AWS EC2 Availability Zones where you want to create
nodes and control planes.

 Private CIDR block—The CIDR block for your private subnet. Anthos on AWS
components, such as the management service, run in the private subnet. This
subnet must be within the VPC’s CIDR range specified in vpcCIDRBlock. You
need one subnet for each Availability Zone.

 Public CIDR block—The CIDR blocks for your public subnet. You need one sub-
net for each Availability Zone. The public subnet exposes cluster services such
as load balancers to the security groups and address ranges specified in AWS
network ACLs and security groups.

 SSH CIDR block—The CIDR block that allows inbound SSH to your bastion host.
You can use IP ranges, for example, 203.0.113.0/24. If you want to allow SSH

Figure 10.11 Anthos on AWS architecture

212 CHAPTER 10 Networking environment
from any IP address, use 0.0.0.0/0. When you create a management service using
the default settings, the control plane has a private IP address. This IP address
isn’t accessible from outside the AWS VPC. You can access the management ser-
vice with a bastion host or using another connection to the AWS VPC such as a
VPN or AWS Direct Connect (https://aws.amazon.com/directconnect/).

The following VPC resources are required when creating Anthos on AWS clusters in
an existing VPC:

 At least one public subnet.
 At least one private subnet.
 An internet gateway with a route to the public subnet.
 A NAT gateway with a route to the private subnet.
 DNS hostnames enabled.
 No custom value for domain-name in your DHCP options sets. Anthos on AWS

does not support values other than the default EC2 domain names.
 Choose or create an AWS security group that allows SSH (port 22) inbound

from the security groups or IP ranges where you will be managing your Anthos
clusters on AWS installation.

Anthos on AWS cluster IP allocation
The management service creates user clusters and uses a cluster operator with the
resources AWSClusters and AWSNodePools to create the user clusters’ control planes and
node pools, respectively. The IP address per user cluster is defined in the AWSCluster
resource. An example of an AWSCluster resource follows:

apiVersion: multicloud.cluster.gke.io/v1
kind: AWSCluster
metadata:
 name: CLUSTER_NAME
spec:
 region: AWS_REGION
 networking:
 vpcID: VPC_ID
 podAddressCIDRBlocks: POD_ADDRESS_CIDR_BLOCKS
 serviceAddressCIDRBlocks: SERVICE_ADDRESS_CIDR_BLOCKS
 ServiceLoadBalancerSubnetIDs: SERVICE_LOAD_BALANCER_SUBNETS
 controlPlane:
 version: CLUSTER_VERSION
 instanceType: AWS_INSTANCE_TYPE
 keyName: SSH_KEY_NAME
 subnetIDs:
 - CONTROL_PLANE_SUBNET_IDS
 securityGroupIDs:
 - CONTROL_PLANE_SECURITY_GROUPS
 iamInstanceProfile: CONTROL_PLANE_IAM_ROLE
 rootVolume:
 sizeGiB: ROOT_VOLUME_SIZE
 etcd:
 mainVolume.sizeGIB: ETCD_VOLUME_SIZE

Anthos on AWS
cluster networking
values are defined.

Anthos on AWS cluster
control plane values
are defined.

https://aws.amazon.com/directconnect/

21310.2 Anthos GKE networking
 databaseEncryption:
 kmsKeyARN: ARN_OF_KMS_KEY
 hub: # Optional
 membershipName: ANTHOS_CONNECT_NAME
 workloadIdentity: # Optional
 oidcDiscoveryGCSBucket: WORKLOAD_IDENTITY_BUCKET

You define the required IP addresses in the networking section.
 An Anthos on AWS cluster requires the following IP addresses:

 Node IP—Node IPs are assigned to the EC2 instances as they are created. Each
EC2 instance is assigned a single IP from the private subnet in its availability
zone. These addresses are defined in the management service spec.

 Pod IP CIDR—The CIDR range of IPv4 addresses used by the cluster’s Pods. The
range must be within your VPC CIDR address range but not part of a subnet.

 Services IP—The range of IPv4 addresses used by the cluster’s Services. The
range must be within your VPC CIDR address range but not part of a subnet.

Egress traffic and controls
All egress traffic from the Pod to targets outside the cluster is run through NAT by the
node IP. You can use NetworkPolicy to further control the flow of traffic between
Pods within a cluster as well as traffic egressing Pods. These policies are enforced by
Calico running inside each cluster. At the Service layer, you can use EgressPolicy
through ASM to control what traffic exits the clusters. In this case, an Envoy proxy
called the istio-egressgateway exists at the perimeter of the service mesh through
which all egress traffic flows.

 In addition, you can control the traffic flow at the AWSNodePools security group
layer. With security groups, you can further allow or deny traffic for both Ingress
and egress.

Load balancers
When you create a Service of type Loadbalancer, a Anthos on AWS controller config-
ures a classic or network ELB on AWS. Anthos on AWS requires tags on subnets that
contain load balancer endpoints. Anthos on AWS automatically tags all subnets speci-
fied in the spec.Networking.ServiceLoadBalancerSubnetIDs field (http://mng.bz/
X5mY) of the AWSCluster resource.

 To create the tag, get the subnet ID of the load balancer subnets. Use the aws
command-line utility to create the tag on the subnets as follows. For multiple subnets,
make sure the subnet IDs are separated by spaces:

aws ec2 create-tags \
--resources [SUBNET_IDs] \
--tags Key=kubernetes.io/cluster/$CLUSTER_ID,Value=shared

You need a tag for every user cluster on the subnet.
 You can create internal and external load balancers. Internal load balancers are

created on the private subnets whereas external load balancers are created on the

http://mng.bz/X5mY

214 CHAPTER 10 Networking environment
public subnets. You can create either type of load balancer using either a classic or a
network load balancer. For more information on the differences between load bal-
ancer types, see the AWS documentation (http://mng.bz/ydpJ).

 Different types of load balancers are created using annotations. Consider the fol-
lowing Service spec:

apiVersion: v1
kind: Service
metadata:
 name: my-lb-service
spec:
 type: LoadBalancer
 selector:
 app: products
 department: sales
 ports:
 - protocol: TCP
 port: 60000
 targetPort: 50001

This resource creates a classic public load balancer for the Service. To create a public
network load balancer, add the following annotation to the previous spec:

...
metadata:
 name: my-lb-service
 annotations:
 service.beta.kubernetes.io/aws-load-balancer-type: nlb
…

To create a private classic load balancer, add the following annotation to the Service spec:

...
metadata:
 name: my-lb-service
 annotations:
 service.beta.kubernetes.io/aws-load-balancer-internal: "true"
…

Finally, to create a private network load balancer, add both annotations to the Ser-
vice spec:

...
metadata:
 name: my-lb-service
 annotations:
 service.beta.kubernetes.io/aws-load-balancer-type: nlb
 service.beta.kubernetes.io/aws-load-balancer-internal: "true"
…

The annotation creates a
classic public load balancer
in AWS, exposing a Service.

The annotation creates an
internal load balancer in
AWS, exposing a Service.

Both annotations together create an
internal network load balancer in AWS.

http://mng.bz/ydpJ

21510.2 Anthos GKE networking
Ingress
You can use Ingress on Anthos on AWS clusters in the following two ways:

 Application Load Balancer—Application Load Balancer (ALB) (http://mng.bz/
Mlr2) is an AWS-managed L7 HTTP load balancer. After the load balancer
receives a request, it evaluates the listener rules in priority order to determine
which rule to apply and then selects a target from the target group for the rule
action. This method uses an alb-ingress-controller installed in the Anthos
on AWS cluster with proper permissions to create ALBs for Ingress.

 ASM Ingress—You can install Anthos Service Mesh on an Anthos on AWS cluster
and use ASM Ingress. ASM Ingress, a Service called istio-ingressgateway,
in an L7 Envoy proxy that lives at the perimeter of the service mesh. The
istio-ingressgateway Service itself is exposed using ELB, as described in
the previous section. All L7 load balancing and routing is handled by the
istio-ingressgateway.

Exposing Services using Ingress
To use the ALB method, follow the instructions at http://mng.bz/aMpJ and deploy the
alb-ingress-controller to the Anthos on AWS cluster. The alb-ingress-controller
is a Deployment that runs on the Anthos on AWS cluster with proper AWS credentials
and Kubernetes RBAC permission to create the rules and resources required to create
an ALB for Ingress.

 You can now create an Ingress resource with proper annotations to create an ALB
and the required resources for your Service. An example of a Service spec follows.
Note that the type of the Service must be NodePort:

apiVersion: v1
kind: Service
metadata:
 name: "service-2048"
 namespace: "2048-game"
spec:
 ports:
 - port: 80
 targetPort: 80
 protocol: TCP
 type: NodePort
 selector:
 app: "2048"

And the Ingress resource to expose this Service using an ALB is shown next. Note the
two annotations that configures an internet-facing ALB:

apiVersion: extensions/v1beta1
kind: Ingress
metadata:
 name: "2048-ingress"
 namespace: "2048-game"

http://mng.bz/Mlr2
http://mng.bz/Mlr2
http://mng.bz/Mlr2
http://mng.bz/aMpJ

216 CHAPTER 10 Networking environment
 annotations:
 kubernetes.io/ingress.class: alb
 alb.ingress.kubernetes.io/scheme: internet-facing
 labels:
 app: 2048-ingress
spec:
 rules:
 - http:
 paths:
 - path: /*
 backend:
 serviceName: "service-2048"
 servicePort: 80

You can also use ASM Ingress to expose your Services. To use ASM, follow the steps at
http://mng.bz/gJKR to install ASM on your Anthos on AWS cluster. Once ASM is
installed, you should see the istio-ingressgateway Deployment and Service in the
istio-system namespace.

 An example of the Service spec looks like the following. Note that the Service type
is ClusterIP instead of NodePort, used in the ALB method. The reason is that in the
case of ASM, the L7 proxy runs inside the cluster, whereas the ALB is a managed
HTTP load balancer that runs outside of the cluster:

apiVersion: v1
kind: Service
metadata:
 labels:
 app: hello-app
 name: hello-app
spec:
 type: ClusterIP
 selector:
 app: hello-app
 ports:
 - protocol: TCP
 port: 8080
 targetPort: 8080

And the Ingress resource looks like the following. Note the annotation that uses ASM
for Ingress:

apiVersion: networking.k8s.io/v1beta1
kind: Ingress
metadata:
 annotations:
 kubernetes.io/ingress.class: istio
 labels:
 app: hello-app
 name: hello-app
spec:
 rules:

These annotations
create an internet-
facing Application Load
Balancer in AWS.

The annotation
uses the Istio
Ingress controller.

http://mng.bz/gJKR

21710.2 Anthos GKE networking
 - host:
 http:
 paths:
 - backend:
 serviceName: hello-app
 servicePort: 8080

ANTHOS ATTACHED CLUSTERS

The final type of Anthos clusters is Anthos attached clusters. Attaching clusters lets
you view your existing Kubernetes clusters in the Google Cloud console along with
your Anthos clusters and enable a subset of Anthos features on them, including con-
figuration with Anthos Config Management. You can attach any conformant Kuberne-
tes cluster to Anthos and view it in the Cloud console with your Anthos clusters.

 Regardless of where your clusters are, you need to register any clusters that you
want to use with Anthos with your project’s fleet by using Connect. A fleet provides a
unified way to view and manage multiple clusters and their workloads as part of
Anthos. We previously discussed fleets in regard to Anthos GKE on GCP, but on-prem
clusters can join a fleet as well. Any Anthos cluster can be part of any one fleet, though
not all features are available, based on where the cluster is located.

Networking requirements
To successfully register your cluster, you need to ensure that the following domains
are reachable from your Kubernetes cluster:

 cloudresourcemanager.googleapis.com—Resolves metadata regarding the Goo-
gle Cloud project the connecting cluster

 oauth2.googleapis.com—To obtain short-lived OAuth tokens for agent opera-
tions against gkeconnect.googleapis.com

 gkeconnect.googleapis.com—To establish the channel used to receive requests
from Google Cloud and issue responses

 gkehub.googleapis.com—To create Google Cloud–side hub membership
resources that correspond to the cluster you’re connecting with Google Cloud

 www.googleapis.com—To authenticate service tokens from incoming Google
Cloud service requests

 gcr.io—To pull a GKE Connect Agent image

If you’re using a proxy for Connect, you must also update the proxy’s allow list with
these domains. If you use gcloud to register your Kubernetes cluster, these domains
also need to be reachable in the fleet where you run the gcloud commands.

 You only need outbound connectivity on port 443 to these domains. No inbound
connections are required to register Anthos attached clusters. You can also use VPC
Service Controls for additional TE security.

218 CHAPTER 10 Networking environment
Using VPC Service Controls
If you use VPC Service Controls (http://mng.bz/51z1) for additional data security in
your application, ensure that the following services are in your service perimeter:

1 Resource Manager API (cloudresourcemanager.googleapis.com)
2 GKE Connect API (gkeconnect.googleapis.com)
3 GKE Hub API (gkehub.googleapis.com)

You also need to set up private connectivity for access to the relevant APIs. You can
find out how to do this at http://mng.bz/610D.

10.2.2 Anthos GKE IP address management

Except for Anthos GKE on GCP, all other Anthos clusters operate in an island mode
configuration in which Pods can directly talk to each other within a cluster but cannot
be reached from outside the cluster. This configuration forms an “island” within the
network that is not connected to the external network. This allows you to create multi-
ple Anthos clusters using the same IP addressing.

 For Anthos clusters in island mode, IP address management and IP exhaustion is
not an problem. You can standardize on an IP schema and use the same schema for
all clusters.

 GCP recommends running Anthos GKE on GCP clusters in VPC-native mode. In
VPC-native mode, any IP address used by any cluster is a real VPC IP address. This
means with VPC-native clusters, you cannot use overlapping IP addresses, and you
must use unique subnets for every cluster. Recall that each Anthos GKE on GCP clus-
ter requires the following three IP ranges:

 Node IP—Assigned to GCE instances or nodes belonging to clusters. One IP is
required per node. These IP addresses are automatically assigned using the pri-
mary subnet.

 Pod IP CIDR—Assigned to every Pod that runs inside the cluster. A large subnet
is assigned to the cluster. The cluster control plane divides this large subnet into
smaller subnets, and each subnet (of equal size) is assigned to every node. For
example, you can have a Pod IP CIDR of 10.0.0.0/16, and the cluster control
plane assigns subnets of size /24 (from the Pod IP CIDR block) to each node,
starting with 10.0.0.0/24 for the first node, 10.0.1.0/24 for the second node,
and so on.

 Service IP CIDR—Assigned to Services running inside the cluster. Every Service
of type ClusterIP requires one IP address.

Let’s address these one at a time in a bit more detail.

NODE IP
To determine the size of the node IP pool, you must know the following:

 Number of clusters in a GCP region
 Number of maximum nodes per cluster

http://mng.bz/51z1
http://mng.bz/610D

21910.2 Anthos GKE networking
If you have equal-sized clusters, you can simply multiply the two numbers to get the
total number of maximum nodes required to run in that region:

total number of nodes = number of clusters x max number of nodes per cluster

You can then determine the host bits you need for the node IP subnet from table 10.3.

You can use a single subnet for multiple GKE clusters.

POD IP CIDR
To determine the Pod IP CIDR, determine the maximum number of Pods per node
you need in your cluster over its lifetime. If you cannot determine the maximum num-
ber you need, use the quota limit of 110 Pods per node as the maximum. Use table 10.4
to determine the host bits needed for the required number of Pods.

Table 10.3 Determining the required host bits

Nodes required Host bits for nodes

1–4 3 (or /29)

5–12 4 (or /28)

13–28 5 (or /27)

29–60 6 (or /26)

61–124 7 (or /25)

125–252 8 (or /24)

253–508 9 (or /23)

509–1020 10 (or /22)

1021–2044 11 (or /21)

2045–4092 12 (or /20)

4093–8188 13 (or /19)

Table 10.4 Determining the host bits required for the Pods

Pods-per-node count Host bits for Pods

1–8 4

9–16 5

17–32 6

33–64 7

65–110 8

220 CHAPTER 10 Networking environment
To calculate the Pod IP CIDR block, you need the host bits for nodes and pods, and
use the following formula:

Pod IP CIDR block netmask = 32 – (host bits for Nodes + host bits for Pods)

For example, let’s assume that you need 110 pods per node, and the total number of
nodes across all GKE clusters in the region is 5,000. First, determine the host bits for
nodes using table 10.3; this would be 13. Then, determine the host bits for Pods using
table 10.4; this would be 8. Then, using the formula, your Pod IP CIDR block netmask
needs to be the following:

Pod IP CIDR block netmask = 32 – (13 + 8) = 11

You would need a subnet with a mask of /11.

SERVICE IP CIDR
To calculate the Service IP CIDR, determine the maximum number of cluster IP
addresses you need in your cluster over its lifetime. Every Service requires one cluster
IP. You cannot share Service IP subnets between clusters. This means you need a dif-
ferent Service IP subnet per cluster.

 Once you know the maximum number of Services in a cluster, you can use table 10.5
to get the subnet mask you need.

Table 10.5 Determining the required subnet mask

Number of cluster IP addresses Netmask

1–32 /27

33–64 /26

65–128 /25

129–256 /24

257–512 /23

513–1,024 /22

1,025–2,048 /21

2,049–4,096 /20

4,097–8,192 /19

8,193–16,384 /18

16,385–32,768 /17

32,769–65,536 /16

22110.2 Anthos GKE networking
CONFIGURING PRIVATELY USED PUBLIC IPS FOR ANTHOS GKE
From the previous section, you can see that in very large GKE environments, you may
run into IP exhaustion. The biggest source of IP exhaustion in large GKE environ-
ments is the Pod IP CIDR block. GCP VPCs use the RFC1918 address space for net-
working resources. In large environments, the RFC1918 space might not be sufficient
to configure Anthos. This is especially a concern for managed service providers that
deliver their managed services to many tenants on Anthos.

 One way to mitigate address exhaustion is to use privately used public IP (PUPI)
addresses for the GKE Pod CIDR block. PUPIs are any public IP addresses not owned
by Google that a customer can use privately on Google Cloud. The customer doesn’t
necessarily own these addresses.

 Figure 10.12 shows a company (producer) that offers a managed service to a cus-
tomer (consumer).

This setup involves the following considerations:

 Primary CIDR block—A non-PUPI CIDR block used for nodes and internal load
balancing (ILB) and must be nonoverlapping across VPCs

 Producer secondary CIDR block—A PUPI CIDR block used for Pods (e.g.,
45.45.0.0/16)

 Consumer secondary CIDR block—Any other PUPI CIDR block on the customer
side (e.g., 5.5/16)

The company’s managed service is in the producer VPC (vpc-producer) and is built
on an Anthos GKE Deployment. The company’s GKE cluster uses the PUPI 45.0.0.0/8
CIDR block for Pod addresses. The customer’s applications are in the consumer VPC

Dataplane

Figure 10.12 Anthos GKE using privately used public IP (PUPI) addressing

222 CHAPTER 10 Networking environment
(vpc-consumer). The customer also has an Anthos GKE installation. The GKE cluster
in the consumer VPC uses the PUPI 5.0.0.0/8 CIDR block for Pod addresses. The two
VPCs are peered with one another. Both VPCs use the RFC1918 address space for
node, service, and load balancing addresses.

 By default, the consumer VPC (vpc-consumer) exports all RFC1918 address spaces
to the producer VPC (vpc-producer). Unlike RFC1918 private addresses and extended
private addresses (CGN, Class E), PUPIs aren’t automatically advertised to VPC peers by
default. If the vpc-consumer Pods must communicate with vpc-producer, the con-
sumer must enable the VPC peering connection to export PUPI addresses. Likewise,
the producer must configure the producer VPC to import PUPI routes over the VPC
peering connection.

 The vpc-consumer address space that is exported into vpc-producer must not
overlap with any RFC1918 or PUPI address used in vpc-producer. The producer
must inform the consumer which PUPI CIDR blocks the managed service uses and
ensure that the consumer isn’t using these blocks. The producer and consumer must
also agree and assign nonoverlapping address space for ILB and node addresses in
vpc-producer.

 PUPIs don’t support service networking. In most cases, resources in vpc-consumer
communicate with services in vpc-producer through ILB addresses in the producer
cluster. If the producer Pods are required to initiate communication directly with
resources in vpc-consumer, and PUPI addressing doesn’t overlap, then the producer
must configure the producer VPC to export the PUPI routes over the VPC peering
connection. Likewise, the consumer must configure the VPC peering connection to
import routes into vpc-consumer. If the consumer VPC already uses the PUPI address,
then the producer should instead configure the IP masquerade feature and hide the
Pod IP addresses behind the producer node IP addresses.

 The previous example shows a more complex producer/consumer model. You can
simply use this in a single project model. This would free up RFC1918 space that may
otherwise be used for Pod IP CIDR.

10.3 Anthos multicluster networking
This section addresses mechanisms for connecting Services running across multiple
clusters. Every hybrid and multicloud Anthos architecture, by definition, has more than
one cluster. For example, you have Anthos GKE clusters running in GCP and Anthos
GKE on-prem clusters running in on-prem data centers. The Services running on
Anthos clusters often require network connectivity to Services running in other Anthos
clusters. For multicluster Service networking, let’s look at the following scenarios:

 Multicluster networking on GCP—In this architecture, all Services run on multiple
Anthos GKE clusters in GCP.

 Multicluster networking in hybrid and multicloud environments—In this architec-
ture, Services run on multiple Anthos GKE clusters in hybrid and multicloud
environments.

22310.3 Anthos multicluster networking
10.3.1 Multicluster networking on GCP

Cloud native enterprises can run the Anthos platform on GCP. This can be on a single
cluster in a single region. Often, an Anthos platform consists of multiple clusters in
multiple regions for resiliency.

 In GCP, Google recommends using a shared VPC model with multiple Service
projects. One of these Service projects belongs to the platform_admins group and
contains all the Anthos GKE clusters that form the Anthos platform. Resources on
these clusters are shared by multiple tenants. We also recommend using VPC-native
clusters. VPC-native clusters use VPC IP addresses for Pod IPs, which allow direct Pod-
to-Pod connectivity across multiple clusters. A typical Anthos platform architecture on
GCP looks like the one shown in figure 10.13.

This architecture represents a single environment, for example, production in this case.
A single network host project called project-0-nethost-prod manages the shared VPC.
Two service projects exist, one for platform admins called project-1-platform_admins-
prod, where the Anthos platform is deployed and managed by the platform adminis-
trator, and one for a product called project-2-product1-prod, where resources per-
taining to product1 reside. In this example, the Anthos platform is deployed across
two GCP regions to provide regional redundancy. You can create the same architec-
ture with more than two regions or even a single region. Inside each region is a sin-
gle subnet with secondary ranges. Two zonal Anthos GKE clusters exist per region.

Figure 10.13 Anthos architecture: single environment

224 CHAPTER 10 Networking environment
Multiple clusters per region provide cluster- and zone-level resiliency. You can use
the same design for more than two clusters per region. All clusters are VPC-native
clusters allowing Pod-to-Pod connectivity between clusters. ASM is installed on all
clusters, forming a multicluster service mesh. ASM control planes discover Services
and endpoints running in all clusters and configure the Envoy sidecar proxy run-
ning inside each Pod with routing information pertaining to all Services running
inside the mesh.

 Every tenant or product gets a landing zone in the form of a Kubernetes name-
space (in all clusters inside the mesh) and a set of policies. Tenants can deploy
their Services inside their own namespaces only. You can run the same Service in
multiple Anthos GKE clusters for resiliency. These Services are called distributed ser-
vices. Distributed services act as a single logical Service from the perspective of all
other entities. In figure 10.13, product1-service is a distributed service with four
endpoints, where each endpoint runs in a different cluster. As shown in figure
10.14, ASM takes care of Service discovery, and VPC-native clusters allow for L3/L4
Pod-to-Pod connectivity.

10.3.2 Multicluster networking in hybrid and multicloud environments

Apart from Anthos GKE on GCP, all other Anthos GKE clusters run in island mode.
This means that the IP addressing used for Pods and Services inside the cluster is not
routable outside of the cluster. In this scenario, you can still connect Services running
on multiple clusters either in the same environment—for example, multiple Anthos
GKE clusters running in an on-prem data center—or across multiple infrastructure
environments—for example, Services running in Anthos GKE in GCP and in on-prem
data center environments.

Anthos GKE Multicluster Networking

Pod-to-Pod
connectivity in VPC-

native clusters

Service and Endpoint
DiscoveryEnvoy

Configuration

Figure 10.14 Anthos GKE multicluster networking

22510.3 Anthos multicluster networking
 You should consider the following three aspects when connecting multiple Anthos
GKE clusters in hybrid or multicloud environments:

 Network connectivity between Pods running on multiple clusters
 Service discovery across multiple clusters
 In the case of hybrid and multicloud architectures, connectivity between infra-

structure environments

NETWORK CONNECTIVITY

Every Anthos GKE cluster has a load balancer. The load balancer either comes bun-
dled during installation or can be configured manually. These load balancers allow
Services to be exposed via NodePort to resources running outside the cluster. Each
Service gets a VIP address (Service VIP), which is routable and reachable inside the
network. The load balancer routes the traffic to the node IP on the Service NodePort,
which gets forwarded to the Pod IP on the desired port.

 Services (and Pods) running in one cluster can access the Service VIP for a Service
running in another cluster, which gets routed to the desired Pod via the load balancer,
as shown in figure 10.15.

Anthos clusters can also be configured with Ingress controllers. Ingress controllers are
L7/HTTP load balancers that typically reside inside the cluster. The Ingress control-
lers themselves are exposed via an L3/L4 load balancer. This way you can use one VIP
(the Ingress VIP) for multiple Services running on the same cluster, as shown in fig-
ure 10.16. Ingress controllers act upon Ingress rules, which dictate how the traffic is to
be routed inside the cluster.

Anthos GKE Hybrid Multicluster Networking

Figure 10.15 Anthos GKE hybrid multicluster networking

226 CHAPTER 10 Networking environment
MULTICLUSTER SERVICE DISCOVERY

Anthos Service Mesh is used for multicluster Service discovery, as illustrated in fig-
ure 10.17. An ASM control plane is installed in each cluster. The ASM control plane
discovers Services and endpoints from all clusters. This is also known as the Service
Mesh. The ASM control plane must have network access to the Kubernetes API server
of all Anthos clusters inside the Service Mesh. ASM creates its own service registry,
which is a list of Services and their associated endpoints (or Pods).

In Anthos GKE on GCP, the endpoints are the actual Pod IP addresses if using VPC-
native clusters. Traffic flows from Pod to Pod using VPC routing. In non-GCP Anthos
clusters, traffic between clusters flows through an L7 Envoy proxy. This proxy runs as a

Anthos GKE Hybrid Multicluster Networking: Ingress

Figure 10.16 Anthos GKE hybrid multicluster networking: Ingress

Anthos GKE Hybrid Multicluster Networking: ASM

Figure 10.17 Anthos GKE hybrid multicluster networking: Anthos Service Mesh

22710.4 Services and client connectivity
Service in every Anthos cluster called the istio-ingressgateway. Traffic bound for
all Services inside a cluster flows through the istio-ingressgateway, which is config-
ured to inspect the host header and route the traffic to the appropriate Service inside
the cluster.

 For distributed Services, we recommend using ASM, which provides Service discov-
ery and traffic routing functionality across multiple clusters.

HYBRID AND MULTICLOUD CONNECTIVITY

You can connect Services running in multiple Anthos clusters across multiple infra-
structure environments as long as you can reach the Kubernetes API server and the
external public load balancer of the target Anthos cluster. You can connect infrastruc-
ture environments in the following three ways:

 Cloud Interconnect—Cloud Interconnect extends the on-prem network to Goo-
gle’s network through a highly available, low-latency connection. You can use
Dedicated Interconnect to connect directly to Google or use Partner Intercon-
nect to connect to Google through a supported service provider. Dedicated
Interconnect provides direct physical connections between your on-prem net-
work and Google’s network.

 Cloud VPN—Cloud VPN securely connects your peer network to your VPC net-
work through an IPsec VPN connection. Traffic traveling between the two net-
works is encrypted by one VPN gateway and then decrypted by the other VPN
gateway.

 Public internet—An Anthos platform on multiple environments can be connected
over the public internet without using Cloud Interconnect or VPN. Services run-
ning on the platform connect over the public internet using TLS/mTLS. This
type of connectivity is done at a per-service level using ASM and not at the net-
work level.

These connectivity models are explained in detail in section 10.1.2, “Multi/hybrid
cloud deployment.”

10.4 Services and client connectivity
This section addresses services and client connectivity in the Anthos platform, which
can be divided into the following three categories:

 Client-to-Service connectivity—This is also sometimes referred to as north-south
traffic, suggesting traffic originates from outside of the platform (north) and
travels into the platform (south).

 Service-to-Service connectivity—This is also sometimes referred to as east-west traf-
fic, suggesting traffic traverses the platform laterally (hence east-west). All traf-
fic originates and terminates inside the Anthos platform.

 Service-to–external service connectivity—This is traffic egressing the platform.

228 CHAPTER 10 Networking environment
10.4.1 Client-to-Service connectivity

In this context, a client refers to an entity that resides outside of the Anthos platform
and a Service that runs inside the Anthos platform. You can access Services inside the
Anthos platform in the following two ways:

 With ASM—With ASM, you can use ASM Ingress for HTTP(S) and TCP traffic.
ASM provides additional L7 functionality, for example, the ability to perform
authentication and authorization at Ingress. ASM is the recommended way of
accessing web-based Services in the Anthos platform. ASM can also be used for
TCP-based Services.

 Without ASM —All Anthos clusters support the option to configure a load bal-
ancer. The load balancer either comes integrated/bundled when you deploy
the Anthos cluster or it can be configured manually. Any TCP-based service can
be exposed using a service of type Loadbalancer, which creates a Service VIP
that can be accessed by the client. In addition, all Anthos clusters can be config-
ured with Ingress. Ingress controllers typically run inside the cluster as L7 prox-
ies (with the exception of Anthos GKE on GCP and Anthos on AWS using
ALB). The Ingress controllers themselves are exposed using the L3/L4 load
balancer. Ingress is the recommended way to expose web-based Services. Ingress
rules are implemented as part of the Service deploy pipeline, and Ingress con-
trollers enforce these rules, which include listening and routing traffic to the
appropriate service.

10.4.2 Service-to-Service connectivity

Services that run inside the cluster require network connectivity. This is accomplished
in two ways:

 With ASM—We recommend using ASM, especially in a multicluster Anthos plat-
form. ASM provides Service discovery as well as routing logic between Services.
ASM can also handle authentication and authorization between Services. For
example, you can enable mTLS at the service mesh level, encrypting all Service-
to-Service traffic. You can also configure security policies at an individual Ser-
vice layer. Besides Service discovery and networking, ASM provides additional
features such as telemetry, quotas, rate limiting, and circuit breaker. For more
on the features and benefits of ASM, please see chapter 4.

 Without ASM—If you choose to not use ASM, you can still configure Service-to-
Service connectivity. From a networking standpoint, you can use either the load
balancer or the Ingress pattern to access Services running inside clusters. You
would have to configure Service discovery yourself. You can use DNS to provide
this functionality.

In either case, you can also use NetworkPolicy inside the cluster to control/limit the
traffic between Pods and Services.

229Summary
10.4.3 Service-to-external Services connectivity

You can control egress traffic from any Anthos cluster in the following two ways:

 With ASM—ASM provides both an Ingress and an egress gateway. We have previ-
ously discussed how Ingress works with ASM. Similarly, you can configure a sec-
ond proxy at the perimeter of the Service Mesh called the istio-egressgateway.
You can then configure ServiceEntries for only the Services that are allowed
to be accessed from inside the cluster. You can set the outboundTrafficPolicy
mode to REGISTRY_ONLY. This blocks all outbound traffic that is not destined for
a Service inside the mesh. You can then create individual ServiceEntries for
access to Services running outside the platform. An example of ServiceEntry
may look like the following:

apiVersion: networking.istio.io/v1alpha3
kind: ServiceEntry
metadata:
 name: httpbin-ext
spec:
 hosts:
 - httpbin.org
 ports:
 - number: 80
 name: http
 protocol: HTTP
 resolution: DNS
 location: MESH_EXTERNAL

This rule allows traffic destined for httpbin.org on port 80. Note the location of
the Service is MESH_EXTERNAL, signifying this service is outside of the Service Mesh
and the Anthos platform.

 Without ASM—You can use NetworkPolicies inside the cluster to control Ingress
and egress traffic to Pods based on label selectors. Because all Pod egress traffic
exits via the node IP, you can further control egress traffic through firewall rules
by limiting what destinations the node IP subnets can access.

Summary
Anthos networking can be divided into the following four layers:

 Cloud networking and hybrid connectivity—The lowest layer of Anthos networking.
This layer describes how to set up networking within each cloud environment as
well as options to securely connect multiple cloud environments together.
Inside GCP, you can set up a single network (or VPC), a shared VPC, or multi-
ple VPCs, depending on the organizational and functional requirements. In
non-GCP environments, all Anthos clusters are treated as isolated networks (or
in “island mode”). Multiple hybrid connectivity options follow:
– Dedicated Interconnect—Provides direct physical connections between your on-

prem network and Google’s network. Dedicated Interconnect enables you to

The location MESH_EXTERNAL
signifies that the Service is
external to the Service Mesh,
and a DNS entry is manually
added to the mesh registry.

230 CHAPTER 10 Networking environment
transfer large amounts of data between networks, which can be more cost
effective than purchasing additional bandwidth over the public internet.

– Cloud VPN—Securely extends your peer network to Google’s network through
an IPsec VPN tunnel. Traffic is encrypted and travels between the two net-
works over the public internet. Cloud VPN is useful for low-volume data
connections.

– Public internet—Does not require any special software or hardware to connect
disparate networks together. Instead, TLS/mTLS connection is used to
secure Service-to-Service connections.

 Anthos GKE networking—The Kubernetes networking layer. Anthos GKE clusters
can be deployed to a variety of environments, for example, GCP, on VMware in
an on-prem data center, on bare metal servers, and on AWS. In addition to the
supported Anthos clusters, you can also register any conformant Kubernetes
cluster to the Anthos platform. For example, you can register EKS clusters run-
ning in AWS and AKS clusters running in Azure to the Anthos platform. The
following six types of Anthos clusters are currently available:
– Anthos clusters on GCP(GKE)
– Anthos clusters on VMware (GKE on-prem)
– Anthos clusters on bare metal
– Anthos clusters on AWS (GKE on AWS)
– Anthos clusters on Azure (GKE on Azure)
– Anthos attached clusters (conformant Kubernetes clusters)

 Anthos multicluster networking—Deals with environments with multiple clusters
where services need to communicate across cluster boundaries. This section
can be divided into the following two subsections:
– Anthos multicluster networking with GKE on GCP—In GKE on GCP, you can

either have a flat network architecture (using a single or shared VPC) or a
multiple-network (multiple-VPC) model. In a flat network architecture using
VPC-native GKE clusters, VPC networking automatically allows for Pod-to-
Pod connectivity between multiple clusters. Clusters can be in any region. No
additional configuration is required for Pod-to-Pod connectivity between
clusters. In a multiple VPC architecture, you need additional configuration
to connect Pods and Services between multiple clusters. For example, you
can use special gateways or Ingress model to communicate between clusters.

– Anthos multicluster networking in non-GCP environments—In all non-GCP clus-
ters, a cluster and its address range are isolated from other clusters. This
means that no direct connectivity exists between Pods in multiple clusters. To
connect multiple clusters, you must use special gateways or Ingress. Anthos
Service Mesh can be used to deploy such gateways. Often called “east-west gate-
ways,” these are deployed in all clusters participating in a multicluster mesh. In
addition, ASM also provides multicluster Service discovery.

231Summary
 Service layer networking—The top layer of Anthos networking is Service layer net-
working. This layer addresses how Services discover and communicate with one
another. In the previous section, we mentioned Anthos Service Mesh, which
can enable you to do the following tasks:
– ASM allows you to create a Service Mesh atop multiple Anthos clusters run-

ning in multicloud environments. This layer abstracts the complexity of
lower-layer networking and allows you to focus on the Service layer.

– ASM uses sidecar-per-workload and specialized gateways to connect multiple
clusters across multiple environments and networks.

– By using ASM, you can focus on Service layer functions—for example, authen-
tication, encryption, and authorization—instead of managing individual work-
loads at the cluster level. This allows operators and administrators to operate
at scale where there may be multiple clusters, in multiple environments, in
multiple networks running numerous services.

Config Management
architecture
Michael Madison

In the world of application development, we always desire more speed and more
capability as well as more applications that fulfill more tasks, automate more minu-
tiae, run faster, and operate in locations closer to where they are actually used. The
proliferation of smartphones, tablets, and IoT devices, as well as the continued
advancement of computers into every part of our daily lives, drives the need for more
compute power. Environmental factors, the availability of high-speed internet and
other utilities, and government regulations are changing the way companies deploy
resources. Depending on the circumstances, this could result in a concentration of
compute resources in a few data centers, a move to mostly cloud-based compute,
fragmenting to lots of “mini” data centers, or a combination of these solutions.

This chapter covers
 Why configuration at scale is a challenge

 An overview of Anthos Config Management

 Examples and case studies of ACM
implementations showing the utility and
versatility of the solution.
232

23311.1 What are we trying to solve?
 Organizations rarely decide to reduce the total resources they manage. Although
short-term reductions, consolidations, or even eliminations of applications might
occur, most companies will be managing more tomorrow than today. This has been
the path that application development has followed for the past 40 years or longer.

 But the expanding use of Kubernetes has brought this problem into focus for
many organizations as they come to grips with moving and managing thousands of
VMs and applications in the Kubernetes landscape. Although many legacy tools would
still work, using them in the same way would negate most of the advantages available
with Kubernetes. On top of that, legacy toolsets are often disconnected from one
another, forcing managers to make firewall changes in one tool, granting VM access in
another, and setting up routing through a third. These challenges fall largely on the
shoulders of IT operations teams who are charged with implementing and maintain-
ing all of this infrastructure.

 As more companies move to Kubernetes for their daily operations, the need for
security professionals and managers to be confident in their ability to configure,
administer, and audit Kubernetes clusters has become critical for business success. IT
security groups are responsible for developing and implementing security controls
around and within the IT infrastructure, including software, hardware, and physical
limitations, policies, procedures, and guidance. Many companies adopt a tiered per-
missions model, allowing super users a greater subset of abilities without becoming
full administrators. Because much of the work in Kubernetes is driven by a common
definition language, expressed in JSON or YAML, the security framework should also
be familiar to IT security teams who regularly work with Kubernetes.

 To help organizations address this need, Google has created Anthos Config Man-
agement (ACM) to simplify the development, deployment, and maintenance of Kuber-
netes policies, resources, and configuration. In the next section, you’ll examine the
full scope of challenges that ACM helps solve and the opportunities ACM provides to
drive efficiencies within an organization.

11.1 What are we trying to solve?
Over time, businesses have moved processes to digital formats. Even without the inter-
net as an engagement platform, companies have shifted their internal operations to
rely on digital applications and communications. When that’s added to the massive
drive to engage digital customers, companies’ need for compute power becomes
greater than ever before, and it shows no signs of slowing. One of the newest aspects
of computing, edge computing, is expected to be an over $155 billion market alone by
2030, according to Grandview Research (http://mng.bz/oJnr).

 Additionally, many businesses see greater efficiency by having these systems com-
municate with each other to automate their processes. The proliferation of, for exam-
ple, ticket-based self-service software such as ServiceNow, personnel management
solutions like Workday, and combined authentication and authorization services such
as Okta encourage companies to expand their capabilities on-site and in the cloud. As

http://mng.bz/oJnr

234 CHAPTER 11 Config Management architecture
companies pivot to depend more heavily on their staff’s development capabilities for
mission-critical solutions, the complexity involved in the deployment of these applica-
tions increases with each new vendor they bring into their ecosystem.

 The needs of any company diverge from their closest competitor as they design
their unique value to customers, but most businesses have a digital presence both on-
prem and in the cloud. Although some companies have used multiple data centers or
colocation facilities to provide their redundant and reliable infrastructure, many have
turned to cloud providers. But cloud providers’ best practices and user experiences
can vary widely. Each cloud brought online by an operations team greatly increases
their technical burden and operational overhead, as shown in figure 11.1. Even in the
case of data centers designed to be identical, security controls and physical separation
still impose barriers to their operation and maintainability.

The size of a company’s digital footprint also adds complexity to the configuration
and operation of their systems. Multiple working locations, more data centers, and a
corresponding increase of the number of people involved in the management of
these systems all add their own challenges. As an organization grows, introducing and
using systemic security and configuration controls becomes vital. ACM addresses these
challenges using the following central capabilities:

 Managing complexity
 Workload observability and inspection
 Remediating and preventing problems when they do occur

Next, you’ll examine how ACM manages complexity in modern infrastructure.

Figure 11.1 Bringing multiple infrastructure platforms online adds considerable
operations overhead.

23511.1 What are we trying to solve?
11.1.1 Managing complexity

You can configure compute infrastructure in innumerable ways, but most solutions do
follow some general patterns. These solutions can generally be grouped by whether
the system scales horizontally or vertically. For a company adopting or using a Kuber-
netes-based infrastructure, a similar decision must be made about the overall design
of all the Kubernetes clusters at a company. A company using multiple, smaller clus-
ters for different purposes (e.g., one or more per team) is implementing a horizontal
scaling solution. A company using a smaller number of larger clusters (e.g., one each
for Dev, Test, and Prod) is building vertical scalability into their Kubernetes infrastruc-
ture. Neither approach is better than the other, but a company should determine
what fits best with their approach to deployments and software design.

 Geographic limitations, edge-processing needs, and telecommunications opera-
tions also impose restrictions on how clusters are delineated. Government regulations
in certain countries prevent the egress of data from those regions, requiring the data-
bases and application layers to be located inside the country. Even without govern-
ment regulation, the operations of certain types of businesses, such as restaurants,
retail stores, or even banks, might prefer a local processing system running a subset of
applications that would benefit from, or require, a shorter communications loop.

 In addition, large businesses require more staff to efficiently organize and operate the
IT infrastructure. To mitigate single points of failure among IT personnel, developing
simple processes that can be scaled out to multiple people is critical to long-term success.

11.1.2 Transparency and inspection

Visibility and inspection of workloads and overall health of a Kubernetes cluster is out-
side the purview of this chapter (it is primarily covered in chapter 5). However, the
plaintext representation of policies and configurations for all clusters afforded by
Anthos Config Management can do a great deal on the frontend to ensure that appro-
priate policies are adhered to.

 The goal of Anthos Config Management is to maintain a cluster in a state specified
by a policy directory stored in a Git repository. This policy directory exists separate from
the clusters being managed and is stored in a text-based format. Thus, the policy direc-
tory itself can be used as a source of information about the configuration of the cluster.
By using the features of the Git repo itself, the IT operations team can determine when
a cluster is out of compliance and can easily track changes to a cluster’s configuration.

 ACM provides a command-line utility, via the nomos command, to interrogate clus-
ters directly and determine their current state. Operations teams can use nomos to
diagnose the rollout of a change and determine whether an error or lag occurs that
would be causing problems. Much of the information that is provided via nomos is visi-
ble in the Anthos UI1 within the Google Cloud console, showing what configuration
version each cluster is currently running, as well as the overall state of the ACM

1 The Anthos UI is covered primarily in chapter 1.

236 CHAPTER 11 Config Management architecture
installation. Also, the Kubernetes operator for the system logs events and information
in the same manner as other containers and, thus, can be viewed in Cloud Logging
and used in Cloud Monitoring alerts and metrics.

11.1.3 Remediating and preventing problems

One of the major responsibilities of an IT operations team is to maintain system reli-
ability and uptime. Knowing that a change has caused a disruption and being able to
quickly isolate the problem and rapidly apply a remediation are critical tools in the
team’s arsenal. On all three of these points, ACM brings unique features that enable
the team to respond to situations as they occur.

 Because ACM is driven from a Git repository, you can easily add guardrails and
policy enforcement through existing pull request mechanisms or tie activity on one or
many branches into a monitoring suite and bring additional alerting to bear after a
change to the policies. Using the repo as the source of truth, the team can investigate
what changes were applied at what times to narrow down any problematic configura-
tions. Existing Git tooling can then be used to revert or fix the configuration. Due to
ACM’s design, these changes normally take effect within a minute or two of the change
being pushed to the policy repo.

 In addition to fixing problems that have already been deployed, you can use exist-
ing CI/CD tooling and processes to verify configurations before they are allowed to
take effect. Other tooling around Git, such as pull and merge requests, branching,
and more, can also serve to allow multiple users to develop new policies, while permit-
ting the organization the ability to approve those changes prior to deployment.

 ACM includes the ability to apply a configuration to a subset of clusters. Although
we use this in our examples to deploy different versions of an application to clusters
by region, the same functionality can be used to deploy changes in a controlled fash-
ion, or to apply different roles per cluster. For example, a retail chain running a clus-
ter in each store can deploy a new version of an application to a specific set of test
stores before rolling it out to the entire chain. A company using different clusters for
Dev, Test, and Prod environments can grant users different permissions based on the
cluster while still taking advantage of a single policy repository.

11.1.4 Bringing it together

All three of these problems are well handled with Anthos Config Management. By
providing tools familiar to IT professionals and with a design that thrives in a highly
distributed ecosystem, ACM can help teams manage large systems easily. In the next
section, we will give a brief overview of how ACM works and the components that can
be included with an installation.

11.2 Overview of ACM
Now that we have a good idea of the problems we are trying to solve with Anthos
Config Management, let’s take a deeper look at the technical implementation of

23711.2 Overview of ACM
ACM. ACM works by way of a Kubernetes operator2 deployed onto each cluster to be
managed. A configuration file containing the canonical name of the cluster, a Git
configuration, and a set of feature flags are also applied to the cluster. The operator
uses the Git configuration to connect to a Git repository hosted in any accessible Git
service containing the full configuration information for the cluster. The feature
flags are switches to activate Config Sync, Policy Controller, or Hierarchy Controller,
which will be covered later in this chapter. ACM uses the name of the cluster, along
with the policy configurations in the Git repo, to add ephemeral tags to the cluster.
These tags can then be used within the policy repo to modify which resources are
deployed to each cluster.

 ACM works on a minimum-footprint mentality: it does not try to take over the
entire Kubernetes cluster. Rather, the operator knows what objects are defined in the
policy configuration and works to manage only those specific objects. This allows mul-
tiple deployment mechanisms to work in parallel on a single Kubernetes cluster without
stepping on each other. However, using multiple tools does add the additional burden
of needing to know which tools have deployed each object. ACM includes a specific
annotation on objects it manages,3 but that may not look the same for all tools. As we
will see later, ACM repos can be configured in an unstructured mode that allows an
organization to continue using existing tools that support outputting to YAML or JSON
while still using ACM to perform the actual deployment and management processes.

 The operator syncs every few minutes, and this frequency can be adjusted in the
configuration, depending on the needs of the organization. ACM can use both public
and private repos, with appropriate credentials, as the policy repository. In addition,
the Git configuration can be pointed at a directory below the top level of the reposi-
tory. This can be useful if the Git repository uses a templating engine or even applica-
tion code where a subdirectory can be used to store the policies.

 You can deploy Anthos Config Management in three primary ways, depending on
the type of Kubernetes cluster you are using: a Google Kubernetes Engine (GKE) clus-
ter deployed on GCP, a GKE on VMware cluster, or another flavor of Kubernetes. For
GKE on GCP, enabling ACM is a simple matter of selecting a checkbox on the cluster
configuration page. For GKE on VMware, ACM is enabled by default and cannot be dis-
abled. Only clusters that do not fit into either category require manual configuration
to install the operator: retrieve the most recent version of the operator’s custom
resource definition file, provided by Google, and apply it to the cluster.

 At this point, all flavors of Kubernetes have the operator installed and running, but
ACM still needs to be enabled and told where to pull policies from. This is done by
creating an operator configuration object and applying it to the cluster, along with
whatever Git credentials are required. Multiple methods of Git authentication are sup-
ported, including public repos with no authentication, SSH key pairs, personal access

2 For more information on the Kubernetes operator pattern, see http://mng.bz/nJog.
3 The annotation is configmanagement.gke.io/managed: enabled.

http://mng.bz/nJog

238 CHAPTER 11 Config Management architecture
tokens, and Google service accounts. Some of these methods require specific informa-
tion to be loaded into a Kubernetes Secret for the operator to load it properly. The
configuration object allows specifying proxies for the Git repository, if needed. In
addition to the Git connection information, the configuration object can contain set-
tings to enable or disable the individual components named earlier, as well as name
the cluster for use within ACM policy rules. Note that the ConfigManagement object
created on the cluster and the configuration YAML used by gcloud to initially install
ACM are similar but are not the same. As ACM’s capabilities expand, more options
will be added to this configuration object, but the current structure of the initial
deployment YAML follows:

applySpecVersion: 1
spec:
 clusterName: <name of cluster>
 enableMultiRepo: <true/false, enables multiple repository mode>
 enableLegacyFields: <true/false, used with multi repo, see below>
 policyController:
 enabled: <true/false>
 templateLibraryInstalled: <true/false, installs the Google-provided

template library for policy controller>
 sourceFormat: <hierarchy or unstructured. Sets the type of policy

organization>
 preventDrift: <if set to true, rejects changes to the cluster that conflict

with managed resources>
 git:
 syncRepo: <url of the git repository>
 syncBranch: <branch of the git repository to sync from>
 policyDir: <relative path in the git repository to the policy directory>
 syncWait: <number of seconds between sync attempts>
 syncRev: <git revision to sync from. Used if a specific commit or tag

should be used instead of a branch>
 secretType: <ssh, cookiefile, token, gcenode, gcpserviceaccount or none.

Specifies the type of authentication to perform>
 gcpServiceAccountEmail: <email of the service account to use for git

access. Only used when secretType is gcpserviceaccount>
 proxy:
 httpProxy: <proxy information for http connection, styled similarly to

the HTTP_PROXY environment variable>
 httpsProxy: <proxy information for https connection, styled similarly

to the HTTPS_PROXY environment variable>

The operator on the individual clusters is the mechanism ACM uses to update the
objects on each cluster. Although ACM uses a central Git repository, because the indi-
vidual clusters reach out to fetch the configuration, this greatly simplifies connectivity
between the cluster and the repository. The repository does not push out the configs,
so we do not need to introduce additional complexity or security ingress holes, nor
does the central repository need to know about every individual cluster beforehand.

23911.2 Overview of ACM
11.2.1 ACM policy structure

The ACM policy directory must be in one of two supported formats, either hierarchy
or unstructured, with hierarchy as the default. This setting is also reflected in the
operator configuration object referenced earlier, in the spec.sourceFormat key. In
both cases, the policy directory defines Kubernetes objects, which are then examined
and applied by the ACM operator on each of the clusters connected to the Git reposi-
tory. ACM itself uses some of these objects internally to determine which resources to
apply to the current cluster.

 In addition to the overall format of the repository, you can use multiple reposito-
ries to configure clusters. When using the enableMultiRepo functionality, a single
repository is used as the root repository (and may be hierarchy or unstructured),
whereas all other repositories are used to configure objects in a single namespace.

HIERARCHY

In a hierarchy repository, top-level directories in the policy directory separate configu-
ration files based on purpose and scope—system, clusterregistry, cluster, and name-
spaces—as shown in table 11.1.

ACM in hierarchy mode uses a concept of “abstract” namespaces, a grouping of one
or more actual namespaces, which should share a set of Kubernetes objects. For
instance, you might define a Role or ConfigMap in each namespace that a team
uses. When ACM analyzes the repository, any object defined in an abstract name-
space is automatically copied into every namespace beneath it. These abstract
namespaces can also be nested within each other to have multiple layers of abstrac-
tion. For example, you may place all application development teams under an app-dev
abstract namespace, and then each team in a separate abstract namespace within
app-dev.

 Although ACM will copy an object in an abstract namespace to all child name-
spaces, you can use a NamespaceSelector to restrict what namespaces the object is

Table 11.1 Top-level directories in a hierarchy repository

Directory Purpose

System Configs related to the policy repository itself, such as the version of the deployed
configuration.

Clusterregistry Stores Cluster and ClusterSelector objects, which are used together to select
subsets of clusters to restrict where a specific object is applied to. Cluster defini-
tions attach specific tags to a cluster by name; ClusterSelectors can then use
these tags to select a set of clusters meeting a certain set of requirements.

Cluster Contains objects that are defined for the entire cluster, except for namespaces.

Namespaces Contains objects that are assigned to one or more specific namespaces, as well the
Namespace and NamespaceSelector definitions.

240 CHAPTER 11 Config Management architecture
applied to. Using the app-dev example, we want to deploy a ConfigMap to multiple
namespaces across multiple teams, but only to the namespaces that contain finance-
related applications. By applying a label to those namespaces, we can then define a
NamespaceSelector to select only those namespaces, and then link the ConfigMap
config object to the NamespaceSelector. Although these selectors do have their pur-
pose in a hierarchy repo, their primary use is in an unstructured repo. Further, in a
hierarchy repo, a specific namespace must be a child of the folder containing the
object, as well as matching the selector. A full example in an unstructured repo with
the configuration objects defined can be found in the Evermore Industries example
at the end of the chapter.

 Once you have a specific namespace name to be created, you also should decide
on which abstract namespace to inherit from. This may mean that certain objects
must be defined at a higher level than you would normally do, simply to have them
inherited by the individual namespaces. Once you have the name and the abstract
namespaces, you create a folder with that name at the bottom of that set of namespace
directories. Inside the newly created directory, you must also create the Kubernetes
Namespace object with the same name. All the objects defined in the abstract name-
spaces are also created inside the leaf namespace. Let’s look at an example with the
following folder structure:

namespaces
├── staging
│ ├── qa-rbac.yaml
│ └── weather-app-staging
│ └── namespace.yaml
└── production
 ├── developer-rbac.yaml
 ├── app-service-account.yaml
 ├── weather-app-prod
 │ ├── namespace.yaml
 │ └── application.yaml
 ├── front-office-prod
 │ ├── namespace.yaml
 │ └── application.yaml
 └── marketing
 └── namespace.yaml

For the production abstract namespace, we are defining a role and binding for devel-
opers in the developer-rbac.yaml and a Kubernetes service account for the applications
in the app-service-account.yaml. Because the weather-app-prod, front-office-prod,
and marketing namespaces are under the production abstract namespace, the role,
role binding, and Kubernetes service account will be created in all three namespaces.
Due to how ACM analyzes the policy repository, actual namespaces cannot have subdi-
rectories in their folder, and every leaf directory must be an actual namespace with
the corresponding namespace declaration in the directory. Failing to adhere to this
restriction will cause a configuration error when ACM is deployed.

24111.2 Overview of ACM
 In addition to abstract namespaces, objects can use NamespaceSelectors (which
are declared in a manner similar to ClusterSelectors, covered later in this chapter),
to affect only a subset of namespaces within the object’s scope. In the previous exam-
ple, the app-service-account can use a selector to deploy only to the weather-app-
prod and front-office-prod namespaces, and not the marketing namespace. How-
ever, NamespaceSelectors in hierarchy repositories operate only on namespaces in
the current folder tree. For example, even if the namespace selector included weather-
app-staging in its criteria, the app-service-account defined under the production
abstract namespace would never be applied to the staging namespace because the
weather-app-staging directory is not a child of the directory that contains the
app-service-account.

Pros and cons
A hierarchy repository simplifies the deployment of objects to a subset of namespaces,
because an object can be deployed only to the namespaces at or below the level of the
configuration file in the repository. With the use of NamespaceSelectors, an organiza-
tion can further restrict what namespaces an object can be deployed to. This can be
especially useful if there are multiple ways to group namespaces. For example, a devel-
opment team might group namespaces, but they may also need to be grouped by
function (e.g., frontend, middleware) or business unit. Using a hierarchy repo, you
must choose one “primary” grouping strategy; if an object needs to be deployed to
multiple namespaces that are not grouped together, the object would be placed at a
higher level in the repo and restricted using a NamespaceSelector. This organization
makes it very simple to start determining which namespaces an object deploys to,
because it can be only those defined at or below the object’s definition file. Cluster-
level resources and resources that are primarily used to deliver ACM also have dedi-
cated folders where they must be located, making it easier to find a given object.

 However, this rigid structure can cause difficulties when implementing ACM at
your organization. Many organizations already have at least a basic familiarity with
Kubernetes and use existing toolsets and processes to deploy Kubernetes resources
and applications. Because cross-namespace objects must be configured in different
folders in a hierarchy repository, this can complicate the integration of ACM into
an existing CI/CD pipeline. An organization should weigh the benefits of the auto-
matic duplication of objects afforded by a hierarchy repository with the restrictions
it imposes.

UNSTRUCTURED

Unlike a hierarchy repo, an unstructured repo has no special directory structure.
Teams are free to use whatever style of organization they wish, such as grouping files
and objects by application or team. Using an unstructured repo, however, prevents
ACM from using the concept of an abstract namespace to automatically create a single
object in multiple namespaces. To compensate for this restriction, an object must
declare either a namespace, or a NamespaceSelector. Though NamespaceSelectors
behave in the same manner as in a hierarchy repository, without the restriction of only

242 CHAPTER 11 Config Management architecture
operating on namespaces in the same folder tree, greater care must be taken to make
sure only the desired namespace(s) actually matches the selector.

Pros and cons
When an organization is already using a templating engine to deploy objects to
Kubernetes, an unstructured repo becomes even more favorable. Because most
templating engines, including Helm, include the ability to export the completed
Kubernetes objects to a local directory, you can use the output from those com-
mands and simply place the generated configurations directly into the ACM policy
directory. An unstructured ACM repo does not care about the exact placement of
configurations under the policy directory, so this can provide a less-stressful upgrade
path when implementing ACM.

 However, unstructured repositories have a couple of wrinkles when it comes to
namespace assignment. Configurations in an unstructured repository cannot infer the
namespace they should be assigned to, so users must explicitly assign all objects. This
can result in the deployment of an object to an unintended namespace if the selector
is defined or used improperly. In addition, finding a resource becomes more compli-
cated because no implicit relationship exists between the location of the configura-
tion file and the deployment namespace.

MULTIPLE REPOSITORY MODE

Configuring ACM to pull from multiple repositories allows organizations to permit
individual teams to manage their own namespaces while still taking advantage of
many of the benefits of ACM. When the cluster configuration object is set to enable
multiple repository mode (http://mng.bz/zmB6), using the enableMultiRepo flag,
the spec.git set of fields is not supported. Instead, you create a separate RootSync
object to hold the configuration details for the root repository.

 With enableMultiRepo set, an organization can define the repository to be used
for each individual namespace. As with the RootSync object, these individual Repo-
Sync objects contain the configuration for fetching from a Git repository as well as the
directory in that repository for the top of the policy tree. Even when using multiple
repository mode, the root repository can still define objects to be managed in any
namespace. In the case of a conflict between the root repository and the individual
namespace repositories, the root repository’s version is the one used.

 The root repository of a multiple repository setup functions identically to a config-
uration that is not in multiple repository mode; only the configuration of how to fetch
the repository changes. Therefore, multiple repository mode is an ideal solution to
allow operations and security teams to impose policies, RBAC rules, and Istio rules,
configure namespaces, and so on while enabling application teams to manage and
deploy their own applications into individual namespaces. The team managing the
root repository also needs to add the appropriate policies to define which objects the
individual repositories can modify. This is done by defining a custom Role or Cluster-
Role, or using one of the built-in roles, and then using a RoleBinding to attach the
namespace’s worker service account to that role. This allows the operations team to

http://mng.bz/zmB6

24311.2 Overview of ACM
offload much of the work of configuring a given application to the teams and defining
custom permissions per team if needed, rather than requiring the central team to val-
idate or perform the work themselves.

11.2.2 ACM-specific objects

Although ACM can manage any valid Kubernetes object, custom objects can adjust
how the system operates and applies new configurations.

CONFIGMANAGEMENT

ACM uses this object to determine how and where to fetch the policy configurations
to be used for the cluster. Deploying a ConfigManagement object to the cluster acti-
vates ACM for that cluster. This object also defines the name of the cluster, as used
inside ACM, and determines which plug-ins (Config Sync, Policy Controller, and Hier-
archy Controller) are active for the cluster.

ROOTSYNC/REPOSYNC

When the cluster is running in multiple repository mode, the configuration for fetch-
ing policies, including Git URLs and Secrets, are not stored in the ConfigManagement
object but rather in either the RootSync object (for the core repository) or in Repo-
Sync objects in each namespace.

CLUSTER

A cluster config is created in the ACM policy repo and allows users to attach labels to a
specific cluster by cluster name. These labels are then used in ClusterSelectors to
select specific types of clusters. In a hierarchy repo, the Cluster definitions must be in
the clusterregistry directory.

CLUSTERSELECTOR

This object uses the common Kubernetes labelSelectors pattern4 to select a subset
of clusters. The ClusterSelector can then be used by an object, such as a Deployment,
ConfigMap, or Secret, to deploy only that object in clusters matching the selector. In a
hierarchy repo, these must be in the clusterregistry directory.

NAMESPACESELECTOR

Similar to the ClusterSelector, this selector also uses labelSelectors, but it is used
to select namespaces instead. It is primarily used in unstructured repos or in a hierar-
chy repo as an additional method to limit to which namespaces an object is deployed.

HIERARCHYCONFIGURATION

These objects are declared in individual namespaces and point to their parent. This
sets up the hierarchical namespace relationship that the Hierarchy Controller uses.
Note that using the Hierarchy Controller is not the same as a hierarchy repository; the
Hierarchy Controller will be explored further later in the chapter.

4 This is the same pattern Deployments and Jobs use and is detailed at http://mng.bz/41Ga.

http://mng.bz/41Ga

244 CHAPTER 11 Config Management architecture
11.2.3 Additional components

Although not strictly part of ACM itself, Config Connector, Policy Controller, and
Hierarchy Controller greatly enhance the functionality of ACM and your Kubernetes
environments. This section gives only a short introduction to each component, but all
three are demonstrated in the examples at the end of the chapter. Google is also inte-
grating additional components as development on Anthos continues. Please refer to
the online documentation at http://mng.bz/Q8rw for the most up-to-date informa-
tion on available add-ons.

CONFIG CONNECTOR

Config Connector (https://cloud.google.com/config-connector/docs) is an add-on
to Kubernetes that allows you to configure GCP resources, such as SQL instances, stor-
age buckets, and Compute Engine VMs, using Kubernetes objects. A full example of
the structure of one of these objects is provided in the Evermore Industries case study
in this chapter. With proper permissioning, this add-on allows a developer proficient
with Kubernetes to create several types of GCP resources, including SQL databases,
networks, BigQuery datasets and tables, Compute Instances, Pub/Sub topics and sub-
scriptions, and storage buckets. In addition, these configurations can reference each
other, simplifying configuration and allowing for a single source of truth.

 Users can also use Kubernetes Secrets to store sensitive information, such as pass-
words, and then use that information in Config Connector resources. Each of the
Config Connector objects also includes a status section, describing the current state of
the resource as it is created or updated in GCP.

POLICY CONTROLLER

Although the Kubernetes role-based access control system can finely control what a
specific user is permitted to do at the namespace and object-type level, it does not
enforce arbitrary policies, or policies on specific objects. For example, we may want all
Pods deployed in a specific namespace to declare CPU limits for the containers, or
require that all namespaces include a custom label that indicates the cost center that
should be billed for the resource usage. We may also want to protect a specific deploy-
ment and prevent modifications to that specific resource, while still allowing other
resources in the same namespace to be modified. This is where Policy Controller
comes into play.

 Built from the open source OPA Gatekeeper project (http://mng.bz/ydpG), Pol-
icy Controller (http://mng.bz/X5mG) is an admission controller that checks and veri-
fies any creation of, or update to, an object against the policies that have been declared
and loaded to the cluster. Each policy consists of a constraint template, which is written
using Rego to perform the test needed, and a constraint, which provides the arguments
to the template for the specific policy. A set of existing templates, known as a template
library, is provided by default when Policy Controller is enabled, though users can cre-
ate customized constraint templates as well. Users can then create constraints that use
these policy templates to enforce specific restrictions on the cluster.

http://mng.bz/Q8rw
https://cloud.google.com/config-connector/docs
http://mng.bz/ydpG
http://mng.bz/X5mG

24511.2 Overview of ACM
 Because we are utilizing ACM, we can pair the policy constraints with Cluster-
Selectors to restrict which clusters a particular policy applies to, locking some down
while allowing a more relaxed set of rules on others.

HIERARCHY CONTROLLER

Hierarchy Controller (http://mng.bz/Mlr7) is the newest add-on to fall under the
ACM umbrella and is still in open beta at the time of writing. This controller substan-
tially changes how namespaces work within Kubernetes by allowing for inheritance
between namespaces and is driven from the Kubernetes Working Group for Multiten-
ancy (https://github.com/kubernetes-sigs/multi-tenancy). Though similar to how
abstract namespaces work in a hierarchy ACM repo, this component takes it a step fur-
ther by allowing objects to be actively replicated from a parent namespace to a child.
This is especially useful when using an ACM repo that does omit Secrets as part of the
repo (due to the security considerations involved). By configuring the Hierarchy Con-
troller to replicate a Secret from a parent to a child or children, a single Secret can be
replicated to multiple namespaces, simplifying the amount of rework or manual inter-
vention required.

 One other useful feature of Hierarchy Controller is the synergy between the con-
troller and Cloud Logging. When the enablePodTreeLabels flag is set on the ACM
config file, Hierarchy Controller sets flags on all pods, including those in child name-
spaces. This also indicates how far down the hierarchy tree the pod is located. Fig-
ure 11.2 contains an example.

As you can see in this example, we have the eom-prod and eom-staging namespaces as
children of the end-of-month namespace. The end-of-month namespace is a child
of accounting, which is a child of the corporate namespace. As you can see in fig-
ure 11.2, the hierarchy labels applied to the reporter-backend Pods correspond to
the namespace hierarchy. In Kubernetes, you can query by the presence of a label, as

Pod Labels:

Pod Labels:

Figure 11.2 Namespaces and Pods with hierarchy-related labels when
enablePodTreeLabels is enabled

http://mng.bz/Mlr7
https://github.com/kubernetes-sigs/multi-tenancy

246 CHAPTER 11 Config Management architecture
well as by the value. So, if we wanted to see all Pods under the accounting and child
namespaces, we can run kubectl --all-namespaces get pods -l accounting.tree
.hnc.x-k8s.io/depth, and it would fetch both instances of the reporter backend.
These labels also appear in Cloud Logging and can be used to fetch Pods in multiple
namespaces there.

11.3 Examples and case studies
ACM is built on top of Kubernetes objects, operating within the cluster life cycle to
efficiently manage the state of the cluster. So far, we have seen the components of
ACM; in the next section, let’s examine three case studies in detail. Each of these fic-
tional companies is either using Kubernetes currently and wants to optimize their
deployment or is moving to Kubernetes for the first time; each will use ACM to per-
form slightly different functions.

 Our first company, Evermore Industries, has decided to use a single, large cluster
with many nodes. All their application teams will run their Dev, QA, and production
environments in parallel namespaces. Evermore wants to take advantage of GCP
resources whenever possible, but their application developers do not have a lot of
experience with infrastructure as code (IaC) tools. The core infrastructure team does
have experience in IaC but lacks sufficient members to provision everything the appli-
cation teams desire. Management has decided to allow the application teams to man-
age portions of their own cloud infrastructure but still wants to impose certain
guidelines and policy rails to prevent out-of-control expenditures. Finally, due to the
multitude of applications in the company and the variable permission levels involved,
a service mesh is needed to isolate and control traffic.

 Village Linen, LLC, was founded approximately two decades ago and previously
ran all their infrastructure locally in two data centers near their headquarters. Partially
due to a change in ownership at one of their data centers, but also due to bad results
on past high-traffic shopping days, the company has decided to use the cloud to
enable rapid scalability, while keeping several core functions in their one remaining
data center. However, corporate leadership wishes to retain the ability to run their
entire application stack solely from the local data center and has mandated that the
two environments be as close to identical as possible and that failover should be as
simple and quick as possible. Village Linen also wants to allow developers the freedom
to manage their own namespaces, without accidentally affecting other applications
and without creating a lot of overhead to approve each change.

 Our final company, Ambiguous Rock Feasting, runs several hundred restaurants
across the United States and Canada and has started expanding into Europe and Asia.
Currently, their onsite applications (including inventory control, payroll, FOH sys-
tems, scheduling, and accounting) are updated via a monthly patch process that
pushes the changes to the individual stores. This requires specialized networking and
can be temperamental at times. The company wishes to pivot to a solution that does
not require their central IT network to maintain persistent connections to the individual

24711.3 Examples and case studies
stores. They have also had problems in the past modifying their deployment processes
and technology when adding a new application to the suite, as well as when trying to
deploy targeted versions of the software to different regions.

11.3.1 Evermore Industries

For Evermore Industries, the simplicity of only having one large cluster to manage was
key. However, managing the large number of namespaces, users, permissions, and
GCP resources was proving too much for their IT operations. Thus, they turned to
ACM, Policy Controller, and Config Connector to take some of the heavy load.

 During a short proof of concept at the beginning of their migration, the IT opera-
tions team realized that an unstructured repo would allow them to more easily attach
specific policies to individual namespaces (such as applying consistent rules to pro-
duction namespaces) while also allowing the use of team-based rules without requir-
ing a large amount of duplication. The unstructured repository also permitted the IT
security team to easily restrict which users had permission to modify specific folders in
the repo. Thus, a developer on Team Griffins could not accidentally delete something
from Team Unicorns, and no application team members were allowed to modify the
global policies. This reduced, but did not eliminate, the amount of configuration
review needed for each change.

 Although Evermore has been using Kubernetes for a few years, their CI/CD pro-
cess5 uses a templating engine (Helm) to deploy directly to the cluster. This setup has
caused a few problems in the past, and management has decided to move away from
users having direct access to make changes to the prod namespace directly, including
the CI/CD service accounts. Because an unstructured repo does not mandate any par-
ticular organization for the config elements in the directory, Evermore has decided to
continue to use their templating engine but write the configs directly to the ACM
repo and create pull requests when a new version is to be deployed. Because these
actions can quickly be validated by the operations team administrators, they can be
quickly deployed to the active repo.

 In addition, several application teams have expressed interest in using GCP
resources to offload some of the workloads for their applications. Primarily, these
teams are interested in Cloud SQL, Pub/Sub, and storage buckets. Because the appli-
cation teams have almost no one with experience using IaC tools, or with GCP in gen-
eral, Evermore will be using Config Connector to allow the teams to remain in the
Kubernetes space for all deployment needs, as well as removing the need to configure
and train users to access both Kubernetes and GCP itself. Let’s take a look at the repo
outline, shown here:

<Git Repo Parent>
├── bin
└── policies

5 For more information on CI/CD and Anthos, see chapter 12.

248 CHAPTER 11 Config Management architecture
 ├── namespace_selectors
 ├── global
 │ ├── rbac
 │ ├── namespaces
 │ └── policy_controller
 └── teams
 ├── griffins (accounting)
 │ ├── rbac
 │ ├── namespaces
 │ └── applications
 │ ├── reconciler
 │ ├── expense_reports
 │ └── accounts_pay_recv
 ├── unicorns (public-facing stores and APIs)
 │ ├── rbac
 │ ├── namespaces
 │ └── applications
 │ ├── storefront
 │ ├── order_cap_and_ful
 │ ├── payment_auth
 │ └── inventory
 ├── dragons (internal apps)
 │ ├── rbac
 │ ├── namespaces
 │ └── applications
 │ ├── timesheets
 │ └── shipping_manager
 └── sylphs (reporting and analysis)
 ├── rbac
 ├── namespaces
 └── applications
 ├── etl
 └── reporting

We will not go into detail on every object and file created in this repo, but this outline
gives us a place to start with the structure Evermore has chosen.

 In an unstructured repo, the policy directory is not permitted to be at the top level
of the Git repository, so the company has chosen to place it in a policies directory one
level down. Within that directory, objects can be placed at any level, so the IT operations
team has placed a set of common namespace selectors in the namespace_selectors
directory. One of these is the production selector, as shown next:

kind: NamespaceSelector
apiVersion: configmanagement.gke.io/v1
metadata:
 name: production
spec:
 selector:
 matchLabels:
 env: production

To simplify the work for the application teams, IT operations also defined a selector
that would normally only reference one namespace as follows:

24911.3 Examples and case studies
kind: NamespaceSelector
apiVersion: configmanagement.gke.io/v1
metadata:
 name: cc-project-ns
spec:
 selector:
 matchLabels:
 evermore.com/is-active-project: true

To prevent massive changes in the event a new project is created, all Config Connec-
tor objects defined by the teams use the namespace selector method to choose the
appropriate namespace to deploy their objects to. For example:

apiVersion: storagebuckets.storage.cnrm.cloud.google.com/v1beta1
kind: StorageBucket
metadata:
 name: evermore-shipping-pk-list-archive
 annotations:
 configmanagement.gke.io/namespace-selector: cc-project-ns
spec:
 versioning:
 enabled: true
 storageClass: ARCHIVE

In the global directory are policies defined by the IT operations team that apply across
the cluster for both RBAC and Policy Controller. In the RBAC directory, the name-
space-scoped roles for Dev/QA and production are defined separately. The roles use
NamespaceSelectors to apply to multiple namespaces with one configuration. Name-
spaceSelectors are used via an annotation, and all namespace-scoped objects in an
unstructured repo must declare either a namespace directly (via metadata.name-
space) or use a NamespaceSelector. Here is the basic production role most develop-
ers will receive:

apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
 name: prod-developer
 annotations:
 configmanagement.gke.io/namespace-selector: production
rules:
- apiGroups: [""]
 resources: ["pods", "configmaps"]
 verbs: ["get", "watch", "list"]
- apiGroups: ["apps", "extensions"]
 resources: ["deployments", "replicasets"]
 verbs: ["get", "watch", "list"]
- apiGroups: [""]
 resources: ["secrets"]
 verbs: ["list"]

250 CHAPTER 11 Config Management architecture
The policy_controller directory is where Evermore has decided to put all their Policy
Controller constraints. In addition to constraints requiring the definition of container
limits and restrictions on the Istio6 Service Mesh, the IT operations team has also
added the following constraint to force teams to define the environment and team for
a given namespace:

apiVersion: constraints.gatekeeper.sh/v1beta1
kind: K8sRequiredLabels
metadata:
 name: ns-must-have-env-and-team
spec:
 match:
 kinds:
 - apiGroups: [""]
 kinds: ["Namespace"]
 parameters:
 labels:
 - key: "env"
 expectedRegex: "^(production|development|qa)$"
 - key: "team"
 expectedRegex: "^(griffins|unicorns|dragons|sylphs)$"

In addition to requiring the labels to be set on namespaces, this constraint also limits
what the valid values are. The Policy Controller infrastructure allows for the creation
of custom constraint templates, but Evermore has been able to implement all their
desired policies with those from the provided library.

 The namespaces directory in the global folder holds configurations that are
managed by IT operations and are either not used by any application team or are
used by most or all teams. For example, this includes the Istio namespace and the
Config Connector project namespace. In addition, subfolders underneath this folder
contain Secrets, ConfigMaps, and Deployments that would be used across the sys-
tem. The IT operations staff has placed some of the general Istio configs as well as
configs that should be replicated to multiple namespaces (including a contact infor-
mation ConfigMap that can be mounted via environment variables in each applica-
tion) in this structure.

 For each team’s folder, the rbac and namespaces directories are handled by the
individual application teams, though the changes must still be approved by a member
of IT operations via a pull request. The namespace directory holds the namespace
declarations for each application and environment, whereas the rbac directory holds
the RoleBindings and ClusterRoleBindings for each user.

 Inside each of the application folders (reconciler, storefront, etl, etc.), three fold-
ers exist for each environment. These folders are tied into the CI/CD processes that
already exist for each application. The CI/CD pipelines were already configured to
generate the Kubernetes objects to be loaded onto a cluster, so the teams changed the

6 Istio is explored in detail in chapter 4.

25111.3 Examples and case studies
destination to output to a set of files in the appropriate environment’s directory. This
CI/CD process also triggers an automatic pull request with the change, which can
then be quickly approved and processed by a member of the IT operations staff.

 Evermore chose this configuration for their repo because it best suits their needs
at the present time. However, they are using an unstructured repo, so changing the
directory structure is a low-cost option, if needed. Other companies might choose to
concentrate all RBAC-related objects into a single directory, or to eliminate the con-
cept of a “team” altogether and organize everything based on the individual applica-
tions. The unstructured repo allows the freedom to organize your policies in a
manner that makes the most sense for your organization, instead of being restricted
to a namespace-centered structure.

11.3.2 Village Linen, LLC

Village Linen has decided to go forward with a hierarchy repo, but they are going to
use Hierarchy Controller to help with automatic replication of some of their Secrets
and ConfigMaps. They are running GKE on GCP, as well as a GKE on VMware in their
existing data center and want both to operate almost identically inside the cluster.

 Disaster recovery is an important problem for corporate management, but man-
agement understands that data replication can sometimes be a problem when han-
dling failover. Therefore, the architects have developed a system that allows for users
to use both the cloud and the on-prem application layer but uses a single database
cluster in the cloud. The database is replicated locally (the configuration of the repli-
cation is not included or covered here), and a configuration change directs the appli-
cations to use the standby database located in the data center. The repo generally
looks as follows:

<Git Repo Parent>
├── bin
└── policy_directory
 ├── namespaces
 │ ├── rbac.yaml
 │ ├── central
 │ │ ├── namespace.yaml
 │ │ └── database_location_config.yaml
 │ ├── applications
 │ │ ├── service_account.yaml
 │ │ ├── website
 │ │ │ ├── namespace.yaml
 │ │ │ ├── hierarchy.yaml
 │ │ │ └── repo-sync.yaml
 │ │ └── inventory
 │ │ ├── namespace.yaml
 │ │ ├── hierarchy.yaml
 │ │ └── repo-sync.yaml
 │ └── village-linen-ac15e6
 │ ├── namespace.yaml
 │ ├── hierarchy.yaml
 │ └── repo-sync.yaml

252 CHAPTER 11 Config Management architecture
 ├── cluster
 │ ├── rbac.yaml
 │ ├── hierarchy.yaml
 │ └── constraints.yaml
 ├── clusterregistry
 │ ├── data center.yaml
 │ ├── cloud.yaml
 │ └── selectors.yaml
 └── system
 └── repo.yaml

Starting from the bottom, we have a definition for the repo that contains the current
version of the policies. In the clusterregistry directory, we have cluster definitions for
the cluster in the local data center, as well as the cluster in GCP. We also have selectors
defined for each of these clusters so that we can restrict resources in the namespaces
directory. The cloud cluster declaration and selector, for example, are as follows:

kind: Cluster
apiVersion: clusterregistry.k8s.io/v1alpha1
metadata:
 name: vili-cloud
 labels:
 locality: cloud

kind: ClusterSelector
apiVersion: configmanagement.gke.io/v1
metadata:
 name: sel-clu-cloud
spec:
 selector:
 matchLabels:
 locality: cloud

In the cluster directory, we have configurations that apply to the cluster as a whole.
These include ClusterRoles and ClusterRoleBindings and Policy Controller con-
straints. By default, Hierarchy Controller only propagates RBAC Roles and Role-
Bindings from parent to child namespaces. However, Village Linen wants to use
Hierarchy Controller to synchronize Secrets and config maps from the central name-
space to the application and project namespaces. This way, Secrets can be applied
directly to the central namespace and replicated automatically without needing to be
checked into a Git repository. The modified HNCConfiguration follows:

apiVersion: hnc.x-k8s.io/v1alpha1
kind: HNCConfiguration
metadata:
 name: config
spec:
 types:
 - apiVersion: v1
 kind: ConfigMap
 mode: propagate

25311.3 Examples and case studies
 - apiVersion: v1
 kind: Secret
 mode: propagate

Moving up to the namespaces directory, we have a top-level file to define a set of
RBAC roles to be created in each namespace. Village Linen can then bind these roles
at either the applications abstract namespace (which would apply the bindings to
the website and inventory namespaces), or to the explicitly defined namespaces to
control who has access to these roles.

 The directory here defines a total of four namespaces: central, website, inven-
tory, and village-linen-ac15e6. The last namespace matches the project ID used to
deploy resources for use with these clusters (also the location where the cloud GKE
cluster is deployed). The two application namespaces share a service account defini-
tion, though this will create two separate service accounts, one in each namespace. In
the central namespace, we declare a ConfigMap, which tells the applications which
database to use, either the Cloud SQL or the on-prem cluster.

 In each of the “child” namespaces (website, inventory, and village-linen-
ac15e6), the repository has a HierarchyConfiguration object that enables the Hierar-
chy Controller to propagate objects from parent to child:

apiVersion: hnc.x-k8s.io/v1alpha2
kind: HierarchyConfiguration
metadata:
 name: hierarchy
spec:
 parent: central

In this case, all the “child” namespaces inherit from a common parent, but it is possi-
ble to “stack” these namespaces into a chain. For example, we could introduce another
namespace—applications—which inherits from central and modify inventory and
website to inherit from applications instead. Performing this type of stacked hierar-
chy allows for a finer control of what is replicated, as well as adds additional tagging to
the logs, if enabled.

 When enabling Hierarchy Controller for a given cluster, an additional option can
be selected, which includes the tree labels on Pods. These labels indicate the hierar-
chy relationship for the Pod and can be used both with command-line tools and in
Cloud Logging, to filter for logs that descend from a given namespace.

 Because Village Linen is using a hierarchy repo, explicitly defining the metadata
.namespace field is not required for objects in the namespaces directory. However, the
namespace itself is required to be explicitly defined; Village Linen has chosen to place
these definitions in the namespace.yaml files, though that is not required. The objects
defined in the website and inventory namespaces are used to enable the multiple
repository functionality covered next. However, the Cloud SQL cluster is defined in
the final folder of the namespaces directory. The cloud_sql.yaml defines the SQL
database, instance, and user as follows:

254 CHAPTER 11 Config Management architecture

apiVersion: sql.cnrm.cloud.google.com/v1beta1
kind: SQLInstance
metadata:
 name: village-linen
 annotations:
 configmanagement.gke.io/cluster-selector: sel-clu-cloud
spec:
 region: us-central1
 databaseVersion: POSTGRES_9_6
 settings:
 tier: db-custom-16-61440

apiVersion: sql.cnrm.cloud.google.com/v1beta1
kind: SQLDatabase
metadata:
 name: village-linen-primary
 annotations:
 configmanagement.gke.io/cluster-selector: sel-clu-cloud
spec:
 charset: UTF8
 collation: en_US.UTF8
 instanceRef:
 name: village-linen

apiVersion: sql.cnrm.cloud.google.com/v1beta1
kind: SQLUser
metadata:
 name: village-linen-dbuser
 annotations:
 configmanagement.gke.io/cluster-selector: sel-clu-cloud
spec:
 instanceRef:
 name: village-linen
 password:
 valueFrom:
 secretKeyRef:
 name: db-creds
 key: password

As you can see, Config Connector allows references both to other Config Connector
objects (the instanceRef declarations in the previous code snippet) and Secrets. Con-
fig Connector can also pull information from ConfigMaps. For security reasons, the
db-creds Secret is not stored in the ACM repo. However, because the Hierarchy Con-
troller is configured to replicate Secrets and ConfigMaps, we can manually create or
update the Secret in the central namespace, and the Hierarchy Controller will handle
the replication to the application and project namespaces. When Config Connector
reconciles the next time, the new password will be used for the user.

 All the Config Connector configurations include an annotation with a cluster
selector. This references the cluster selector defined in the clusterregistry directory
for the cloud installation of GKE. Because Config Connector works to create GCP

25511.3 Examples and case studies
resources from Kubernetes objects, it is active only on GKE in GCP clusters. The com-
pany did not enable Config Connector in the local cluster, so trying to deploy these
resources would fail. Even if Config Connector were enabled on the local cluster,
deploying the resources there should not have any effect and would probably cause
more troubleshooting problems, so we only deploy them to the cloud cluster.

 With this configuration, if Village Linen needs to switch from the cloud database
back to a local database, a simple change to the database_location_config should
be made. After deploying and pushing the updated configuration, the individual
applications would need to be restarted.

 In the directory structure outlined earlier, each application namespace contains a
repo-sync file. These objects are used to implement multiple repository mode:

apiVersion: configsync.gke.io/v1alpha1
kind: RepoSync
metadata:
 name: repo-sync
 namespace: website
spec:
 git:
 repo: https://source.developers.google.com/p/village-linen-

ac15e6/r/website
 branch: master
 auth: gcenode
 secretRef:
 name: acm-website-repo

By using multiple repository mode, Village Linen can create separate repositories for
each namespace, allowing application teams a simpler experience when modifying
Kubernetes objects (including the Deployment, Services, and persistent volumes) for
their application. This arrangement also restricts the teams from accidentally deploy-
ing something outside of their namespace. The operations team is still able to add
items to each namespace using the core repository, and these exist in parallel with the
namespace-specific objects. In the event of a conflict, the core repository’s version is
the one used, preventing the application teams from overriding policies, service
accounts, Secrets, and so on that the operations team has already defined. In addition,
because the operations team has restricted which objects the namespace’s worker can
modify using RBAC, the individual repositories are sandboxed to control only a lim-
ited set of objects and cannot grant themselves permissions unless the operations
team allows it.

 For Village Linen, ACM provides a convenient location for all core configurations
to be centrally located and updated, while freeing the application teams to control
their own namespaces. It also provides a convenient audit trail when configurations
change. When either the local data center cluster or the cloud cluster fails for any rea-
son, a new cluster can be spun up and connected to the ACM repo, rapidly and auto-
matically deploying the full operational stack.

256 CHAPTER 11 Config Management architecture
11.3.3 Ambiguous Rock Feasting

For Ambiguous Rock Feasting (A.R. Feasting), managing their expanding set of restau-
rants and the technology deployed within has become increasingly difficult over the
past few years. The company now feels that the implementation time for the technol-
ogy pieces along with the additional operational overhead each new location places
on their IT operations team have become unsustainable. Therefore, they are moving
to a more flexible model that will scale better.

 The restaurants already ran Kubernetes clusters on their local servers, but updat-
ing the deployed applications or troubleshooting problems caused a significant time
loss for each location. Therefore, A.R. Feasting has pivoted to using ACM to manage
the individual clusters. In general, the repository layout matches that of Village Linen,
except A.R. Feasting is not using Hierarchy Controller.

 When deploying the ACM operators, each location’s cluster was given a dedicated
name, such as arf-043-01a. The IT operations team then labeled these clusters using
Cluster definitions in the policy repo like so:

kind: Cluster
apiVersion: clusterregistry.k8s.io/v1alpha1
metadata:
 name: arf-043-01a
 labels:
 sales-area: us-midwest
 country: us
 region: texas
 city: austin
 location-code: alpha

Or like this one for arf-101-01a:

kind: Cluster
apiVersion: clusterregistry.k8s.io/v1alpha1
metadata:
 name: arf-101-01a
 labels:
 sales-area: emea
 country: uk
 region: england
 city: london
 location-code: alpha
 is-rollout-tester: true

The IT operations team then define selectors based on these labels, some of which are
included here:

kind: ClusterSelector
apiVersion: configmanagement.gke.io/v1
metadata:
 name: rollout-testers

25711.3 Examples and case studies
spec:
 selector:
 matchLabels:
 is-rollout-tester: true

kind: ClusterSelector
apiVersion: configmanagement.gke.io/v1
metadata:
 name: non-testers
spec:
 selector:
 matchExpressions:
 - key: is-rollout-tester
 operator: DoesNotExist

kind: ClusterSelector
apiVersion: configmanagement.gke.io/v1
metadata:
 name: country-us
spec:
 selector:
 matchLabels:
 country: us

These selectors are then used to control deployments of new versions of applications,
or to deploy only certain applications in certain regions. For example, only restau-
rants in the United States have drive-throughs. Therefore, the drive-through manage-
ment application needs to be deployed only to the country-us clusters. The company
has also decided to have certain selected stores be test beds of new software, as indi-
cated by the is-rollout-tester flag on their cluster. An example deployment for an
application is included here. However, some portions of the template have been
removed because they are identical between the two examples:

apiVersion: apps/v1
kind: Deployment
metadata:
 name: foh-engine
 annotations:
 configmanagement.gke.io/cluster-selector: rollout-testers
spec:
 template:
 spec:
 containers:
 - name: engine
 image: gcr.io/ambiguous-rock/foh/engine:v2.1.0
 imagePullPolicy: IfNotPresent

apiVersion: apps/v1
kind: Deployment
metadata:
 name: foh-engine

258 CHAPTER 11 Config Management architecture
 annotations:
 configmanagement.gke.io/cluster-selector: non-testers
spec:
 template:
 spec:
 containers:
 - name: engine
 image: gcr.io/ambiguous-rock/foh/engine:v2.0.3
 imagePullPolicy: IfNotPresent

The differences between these two deployments are the cluster selector used and the
version of the engine image. Looking back at the cluster selectors defined, rollout-
testers and non-testers do not overlap. If we had not defined a non-testers group
and left the annotation off the second deployment earlier, we would have had a colli-
sion for the rollout-testers because both deployments would have been valid.

 Because ACM logs the changes it makes using the same logging standards as
Kubernetes, and with A.R. Feasting restaurants forwarding their logs to Cloud Log-
ging, the IT operations team can set up monitoring using Cloud Monitoring to deter-
mine the status of specific applications and versions on the various clusters. Using this
dashboard, they can quickly diagnose where potential problems might be (such as a
power outage at a store) and work more efficiently.

11.4 Conclusions
Organizations face increasing complexity managing their IT environments. Using
Anthos Config Management with Kubernetes clusters, whether on-prem, in Google
Cloud, or in another cloud provider, provides administrators with a familiar, declarative
method to control the foundations of their clusters. This chapter has provided a broad
overview of the service, some of the reasons to adopt a strategy incorporating ACM, and
a couple of examples to illustrate the power of Anthos Config Management.

 However, we have not fully explored the capabilities and possibilities of Anthos
Config Management: doing so would take a book all its own. Ultimately, ACM is
intended to make your business more efficient and to reduce the complexity of man-
aging your clusters. This chapter should have provided you with ideas on how to use
ACM in your own organization, as well as some examples of how to drive adoption.

 For more information and examples on various topics touched on in this chapter,
see the corresponding section of this book:

 Policy Controller: chapter 13
 Cloud Logging: chapter 5

Summary
 As the number of clusters an organization manages increases, enforcing best

practices or providing core functionality becomes exponentially more difficult.
 Modern development practices and the security landscape encourage organiza-

tions to adopt technologies that can rapidly adapt and deploy changes.

259Summary
 Anthos Config Management is a core component of the Anthos platform,
intended to provide the security and transparency that infrastructure, security,
and operations teams desire, while also giving development teams the ability to
deploy their applications with minimal additional hurdles.

 ACM can be deployed in the following two modes, both offering distinct
advantages:
– Hierarchical mode allows for easy deployment of a single resource across

multiple namespaces and requires a logical collection of namespaces to be
effective.

– Unstructured mode allows for developers and administrators to more easily
pick and choose which namespaces to deploy components to, with the draw-
back of needing to be explicit about which namespace(s) to use. This mode
is also compatible with many templating frameworks that may not function
properly in hierarchical mode.

 ACM includes custom resources allowing for greater control over which name-
spaces and which clusters to apply configuration elements to.

 ACM also brings in the following additional components based on open
source tools:
– Config Connector provides infrastructure-as-data capability to a Kubernetes

cluster, allowing for the provisioning of Google Cloud resources by declaring
a Kubernetes resource.

– Policy Controller gives administrators a convenient tool to create and enforce
policies across their clusters.

– Hierarchy Controller is the result of an initiative to provide an alternative
method of replicating resources between namespaces in a cluster. Because
storing Secrets in a Git repo is an antipattern, Hierarchy Controller defini-
tions allow an organization to define a Secret or configuration once and
have it replicated to the descendant namespaces automatically.

 The following three case studies explored different reasons for using and imple-
menting ACM:
– Evermore Industries wants to reduce the number of users directly working

in their production environment and allow development teams to provi-
sion certain Google Cloud resources directly. They are currently using, and
will continue to use, a templating engine for generating their Kubernetes
configurations.

– Village Linen, LLC, is using ACM both on- and off-prem, as well as Hierarchy
Controller to manage the replication of ConfigMaps and Secrets within both
sets of clusters.

– Ambiguous Rock Feasting is well versed in Kubernetes but is making specific
use of the ClusterSelector feature of ACM to more precisely control where
their applications are deployed.

Integrations with CI/CD

Konrad Cłapa and Jarosław Gajewski
In this chapter, we will guide you in developing and deploying Anthos applications.
To simplify this task, we will use a simple Hello World application. We will go
through the entire workflow, shown in figure 12.1, using examples in both Python
and Go. We’ll start with continuous development, where we will learn how we can
start developing an Anthos application and preview it even before we commit the
code to the Git repository. We’ll then look at continuous integration, and finally, we
will discuss continuous deployment and delivery.

This chapter covers
 Understanding CI/CD concepts

 Automating a continuous development
workflow

 Introducing continuous integration for your
Anthos application

 Using Cloud Deploy to manage continuous
deployment

 Understanding modern CI/CD platforms
260

261
 The following three personas interact with CI/CD pipelines:

 Developers—Develop the application code
 Operators—Configure the application deployments using Kubernetes manifests
 Security—Configures the policies to make the Kubernetes Deployments secure

In this chapter, we will concentrate on the first two personas. If you want to learn more
about the Security persona, refer to chapter 13.

Looking at the workflow of developers, we see that they develop the application code
and want to see the preview of the application immediately. Then, if they are finished
with their changes, they commit the code to the source code repository. This is where
CI kicks in with code reviews, testing, and builds of container images.

 When we think about the operators, we see that they are responsible for both con-
figuring the Kubernetes infrastructure and deploying the application. They need to
be able to configure the application for multiple environments, including development,
test, and production. Once the configuration is ready, the application can be deployed
using CD tools.

 Now that we understand the use case, let’s start with a brief introduction to CI/CD
concepts.

Figure 12.1 The CI/CD workflow

262 CHAPTER 12 Integrations with CI/CD
12.1 Introduction to CI/CD
Modern software development processes are complex. Producing high-quality soft-
ware at a consistent pace and in a sustainable manner involves several processes and
tools. The implementation of a CI/CD pipeline is one of the best practices to achieve
this. Continuous integration (CI) is the practice of software development where develop-
ers check in their code frequently, integrating regularly—at least once a day—and
each integration is followed by validation, which is an automated process to build and
test integrated change (http://mng.bz/aMpz). This process allows us to achieve reli-
able, repeatable, and reusable builds with constant speed and at a proper level while
preventing chaos and improving efficiency.

 Continuous integration is only one aspect of the software delivery process. For a
successful pipeline-driven development, CI must be followed by continuous delivery.
Continuous delivery (CD) (https://continuousdelivery.com/) is the ability to get changes
of all types, including new features, configuration changes, bug fixes, and experiments,
into production safely and quickly in a sustainable way. It applies to infrastructure con-
figurations, application deployment, and mobile app publishing, and database and
static resource modifications. Continuous delivery can be used in any environment,
regardless of the regulatory requirements for a particular organization. A CD pipeline
improves delivery of software from source to production by making this process more
automated, thus improving reliability, predictability, and visibility of the pipeline, which
reduces risks.1

 Let’s look at some features that characterize modern CI/CD platforms.

12.1.1 Repeatability

Repeatability allows for automation of requirements and processes around created
code and artifacts. Build processes should be deterministic, so developers have confi-
dence in produced artifacts. Repeatable builds and testing allow developers to run the
same processes in their local environments as well. Automation of deployment and
configuration management helps to provide consistency across environments.

12.1.2 Reliability

Reliability improves confidence of the development and operational teams in the pro-
cesses and systems that guarantee availability and suitability of the tools as well as the
completeness and sufficiency of integration, testing, and operational requirements.
Automated testing via defined workflows is key to capture and track components’ final
success and failure states, increasing team confidence and knowledge during develop-
ment and release cycles.

1 Jez Humble and David Farley, Continuous Delivery: Reliable Software Releases Through Build, Test, and Deployment
Automation (Addison-Wesley Professional, 2010).

http://mng.bz/aMpz
https://continuousdelivery.com/

26312.1 Introduction to CI/CD
12.1.3 Reusability

Reusability enables teams to scale up, simplify, and speed up development workflows.
A CI/CD pipeline should be implemented in such a way that allows for reusing com-
ponents of the pipeline for similar applications. This not only reduces the cost of set-
ting up new pipelines but also improves developer efficiency when working with
multiple applications across the enterprise.

12.1.4 Automated tests

In a high-quality delivery process, it is critical to validate developed systems’ archi-
tecture and functionality. This can be achieved via the implementation of a robust
automated testing flow as an integral part of the CD pipeline. Modern delivery pipe-
lines should have as many automated tests as possible, including not only unit, compo-
nent, and system functional tests but also nonfunctional ones that check capability,
availability, and security compliance. Automated tests provide almost immediate
feedback to developers, decreasing the number of bugs and the error rate for pro-
duction deployments.

12.1.5 Trunk-based development

Continuous delivery can be significantly slowed down when developers work in “split-
brain” environments, where feature or bug-fix code branches have a very long life-
time. As a result, in big teams, code changes can cause conflicts when integrating long
live branches. This may require manual activities, grinding CI processes to a halt.

12.1.6 Environment parity

Environmental consistency is one of the key aspects of reducing risk in production
deployments. Deployments to the development and production environment must
rely on the same processes, architectural principles, and configuration policies. Fully
automated deployments are essential to enable automated testing and feedback in the
CD pipeline. It allows easy reproduction of the entire state of the environment based
on the code and data stored in the version control systems.

12.1.7 Deployment automation

It’s important to acknowledge that deployment automation can be a journey that
should be realized in small steps. You should start with components that are easy to
automate, reduce the number of manual steps, and slowly progress to automate more
complex components. Looking at deployment automation and testing, one factor
plays an important role: architecture. The best processes and tools used for CD can-
not help us if our architecture introduces significant limitations and is a tightly cou-
pled design.

264 CHAPTER 12 Integrations with CI/CD
12.1.8 Team culture

Full cooperation between operations and development teams is required to automate
build, testing, deployment, and infrastructure. This ensures the entire process is fully
understood by all parties and does not introduce unnecessary complexity. It is not an
easy process, and it often requires long hours spent together to rework architecture
for existing processes.

12.1.9 Built-in security/DevSecOps

Prevention is better than cure. The same applies for software delivery and challenges
related to security. Shortening the feedback loop for teams during software delivery is
known as the shifting-left approach. The same approach is used to introduce security
processes early in the development process and across the entire continuous delivery
flow. This approach enables teams to build a development stack that is based on pre-
approved, standardized tools and policies (http://mng.bz/gJKl). This tooling helps
teams address security requirements as part of their regular development and delivery
activities. Standardization enables additional testing capabilities, where automated
tests can be extended to meet security and regulatory requirements in the production
setups. Like automated deployment, automation for security measures can be imple-
mented in small steps, reducing the need for manual reviews and tests over time. As a
result, developers don’t need to care about it anymore.

12.1.10 Version control

Version control must be applied to every single artifact of our delivery and integration
pipelines, starting from application code, configuration, and system configuration,
and closing on scripts used for automated build and configuration of environments. It
supports developers during application development via auditability or scalability of
“as a code”–based environments. It also reacts to demand for immediate changes or
disasters in production caused by vulnerability or defects discovered in the system or
environment, allowing them to be released in a controlled way with an easy way for
automated rollback.

 It is quite simple to maintain a small version control system, but when teams are
growing, code maintainability becomes more and more challenging. In such cases, it
is key to allow all team members easy access to code. Due to this, they will reuse exist-
ing code instead of creating duplicate copies and extend the code for new capabilities
or to fix bugs globally. Version control promotes quick software delivery because knowl-
edge can be passed between teams easily. It results in a higher quality of code and,
consequently, increases scalability and availability.

12.1.11 Artifact versioning

Build artifacts need to be idempotent and immutable for teams to trust the integrity
of the build system. Systems that create artifacts from the same source multiple times
risk generating slightly different artifacts in each step due to config drifts. Managing

http://mng.bz/gJKl

26512.2 Continuous development
build artifacts and their versions is important to prevent storing different versions of
the same artifact in multiple places. Immutable versioned artifacts provide full visibil-
ity into history and references in a single place. This also helps manage dependencies
and improves reuse.

12.1.12 Monitoring

The final capability to highlight is monitoring. Understanding and monitoring the
health of a system are critical to mitigate possible problems before they occur. Proac-
tive failure notifications based on threshold or rate-of-change warnings build opera-
tional knowledge about the system’s status. Extended by logging and monitoring,
failure alerts routed to teams or systems introduce a chance to react to these events in
a timely manner and prevent outages and downtime.

 Full-stack monitoring allows support teams to debug systems and measure their
behaviors against defined patterns or changes. Historical monitoring data allows us to
introduce continuous improvements fast, which improves efficiency of the CI/CD
pipelines.

12.2 Continuous delivery vs. continuous deployment
We talked a lot about continuous delivery, which often is mixed with continuous
deployment. Even though they are hidden behind the same CD abbreviation, a subtle
difference exists between the concepts. Continuous deployment extends continuous
delivery by adding autodeployment of delivered artifacts to user environments with-
out manual intervention. Though continuous delivery is applied to all kinds of soft-
ware, business applications, mobile apps, and firmware, continuous deployment is
applicable mostly when code changes can be immediately applied to production.

 As we have familiarized ourselves with the CI/CD concept and capabilities, we can
now move into detailed description of implementation options, practices, and tools.

12.3 Continuous development
Developing cloud native applications is very exciting but comes with some challenges.
Figure 12.2 shows the flow that developers need to follow to get the preview of a
Kubernetes application.

Define
Container

Change
Source Code Build Image Push Image

Deploy to
preview
cluster

Preview
available

Figure 12.2 Continuous development workflow

266 CHAPTER 12 Integrations with CI/CD
As we see, once the code is developed, an image needs to be built and pushed to the
container registry, following predefined steps. Next, the application needs to be
deployed to the target cluster. This means that for every change committed by the devel-
oper, the same workflow is triggered. Imagine a full day of running multiple commands
just to get your application previewed! This is becoming a developer’s nightmare.

 In this section, we will look at some tools that will allow us to both deploy the
Anthos application locally without the need to have a running Anthos cluster and
automate the entire flow we identified.

 Let’s start by setting our local execution environment based on minikube. Next, we
will look at how to automate the repeatable and laborious tasks needed to preview the
application after code changes. Finally, we will discuss how we can use an integrated
development environment (IDE) to deliver a complete Anthos application develop-
ment experience (DX).

12.3.1 Setting up a local preview minikube cluster

minikube (https://minikube.sigs.k8s.io/docs/start/) is a popular software applica-
tion that allows you to run Kubernetes applications locally on your laptop. It runs on
Windows, Linux, and macOS. Instead of deploying your application to an Anthos clus-
ter, you can deploy it locally and preview your application before pushing the code to
the Git repository. This will save you time and reduce development environment cost.
Even though minikube is not designed to host production workloads, it supports most
of the features supported by Kubernetes.

 You can interact with it like with a regular cluster using the kubectl command-line
interface. You can Minikube on any laptop that fulfills the following minimum
requirements:

 2 CPUs
 2 GB of free memory
 20 GB of free disk space
 Internet connectivity
 Virtualization software like Virtual Box

Figure 12.3 shows the tools that you can use to interact with minikube. We will review
Skaffold and Cloud Code in the following sections of this chapter. They provide a
great alternative for a development Anthos cluster.

Figure 12.3 minikube integrations

https://minikube.sigs.k8s.io/docs/start/

26712.3 Continuous development
The installation process is fairly simple but depends on the OS you use. This might
change with new version releases, so it is recommended you refer to the official page
at https://minikube.sigs.k8s.io/docs/start/ for the installation procedure. Let’s look
at how we can deploy our example application using minikube.

 Once minikube is successfully installed, you can start it by running the following
command:

minikube start

Now you can create a simple hello-minikube Deployment and expose it using the
NodePort service. We will use an already existing container image, echoserver:1.4,
but you can also build your own image:

1 Create a Deployment by running the following:

kubectl create deployment hello-minikube --image=k8s.gcr.io/echoserver:1.4

2 Expose the Deployment by creating a service:

kubectl expose deployment hello-minikube --type=NodePort --port=8080

3 Check the service exists:

kubectl get services hello-minikube

4 You should see the following prompt:

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
hello-minikube NodePort 10.102.94.116 <none> 8080:31029/TCP 8s

5 Configure port forwarding for the service to your local machine port:

kubectl port-forward service/hello-minikube 8080:8080

The following prompt will appear indicating the port is forwarded:

Forwarding from 127.0.0.1:8080 -> 8080
Forwarding from [::1]:8080 -> 8080

6 Now we can open the browser and see that the service is responding on the
address http:/ /localhost:8080, as shown in figure 12.4.

We have now seen how to preview our application. As you may have noticed, it still
requires us to build the images and use kubectl to update the preview of the applica-
tion followed by a change in code. This process is not very efficient, and, ideally, we
need a tool to automate these steps. A common tool to achieve that is Skaffold.

https://minikube.sigs.k8s.io/docs/start/

268 CHAPTER 12 Integrations with CI/CD
12.3.2 Continuous development with Skaffold

Skaffold (https://skaffold.dev/) is an open source project sponsored by Google. It was
started to address the needs for continuous development for Kubernetes applications.
As we learned in the previous section, for a developer to deploy an application, they
must write the necessary steps to create the container image, push the created image
to a repo, and finally, get it deployed to a cluster.

 Skaffold achieves this by handling all those steps automatically. It continuously
watches the source files and triggers the previously mentioned steps to create a pre-
view of the Kubernetes application on a local minikube or remote Anthos cluster. The
application resources are cleaned up automatically when the developer stops Skaffold
by simply pressing Ctrl+C.

 On top of continuous development capabilities, Skaffold offers building blocks for
CI/CD pipelines. It supports deployments using kubectl, Helm (https://helm.sh/),
and Kustomize (https://kustomize.io/). Let’s look at figure 12.5, which visualizes a
flow for how development with Skaffold looks.

 In this figure, you can see a simple pipeline visualization. Skaffold is watching for
source file changes in an indicated folder. When it detects a change, Skaffold automat-
ically builds images and pushes them to the registry. Once containers are built, Skaf-
fold deploys the container image to a predefined Kubernetes endpoint. In an upcoming
section, we will explain how Skaffold is integrated with Cloud Code (https://cloud
.google.com/code) for an even better developer experience.

WORKING WITH SKAFFOLD

The user interacts with Skaffold using a command-line interface (CLI). A complete
guide for Skaffold can be found here: https://skaffold.dev/docs/references/cli/. For

Figure 12.4 The browser results page

https://skaffold.dev/
https://helm.sh/
https://kustomize.io/
https://cloud.google.com/code
https://cloud.google.com/code
https://cloud.google.com/code
https://skaffold.dev/docs/references/cli/

26912.3 Continuous development
a quick overview of how to work with Skaffold, let’s look at the basic steps. We will see
how we can deploy the Hello World application written in Go.

INSTALLING SKAFFOLD
The process for installing Skaffold varies, depending on the underlying operating sys-
tem. Skaffold can be installed as a component of gcloud. It is also available as a con-
tainer image, gcr.io/k8s-skaffold/skaffold:latest, which can be used directly in
cloud native CI/CD tools. All installation options are explained at the official site
(https://skaffold.dev/docs/install/). For a local preview, you can use minikube, which
will allow you to deploy your application on your laptop.

SKAFFOLD CONFIGURATION FILE
Skaffold uses a single configuration YAML file, skaffold.yaml, to define the steps in a
CD pipeline. It resembles a Kubernetes resource manifest. Let’s look at a very basic
sample config file here:

apiVersion: skaffold/v2beta8
kind: Config
build:
 artifacts:
 - image: skaffold-example
deploy:
 kubectl:
 manifests:
 - k8s-*

Build image

Pull image

Deploy preview

Container
Registry

Cloud Code

Minikube

Kubernetes
Cluster

Kubernetes
Engine

Figure 12.5 Skaffold functionalities

https://skaffold.dev/docs/install/

270 CHAPTER 12 Integrations with CI/CD
Two phases are defined in the previous pipeline: build and deploy. In the build phase,
Skaffold looks for a Dockerfile definition and uses it to build a container image with
the name skaffold-example. In the deploy phase, Skaffold uses kubectl to deploy all
objects defined in the YAML files starting with the k8s- prefix. A comprehensive
explanation of the configuration file structure can be found on the Skaffold site
(https://skaffold.dev/docs/references/yaml/).

INITIATING SKAFFOLD

You can generate a skaffold.yaml configuration automatically by running the following:

skaffold init

This will detect the source files in the current folder and create a very simple configu-
ration file with build and deploy sections. Let’s create the following three files, as
shown in the next code snippet:

 Dockerfile—Container image definition
 main.go—Simple Hello World Go application
 k8s-pod.yaml—Kubernetes pod definition

Dockerfile content:

FROM golang:1.12.9-alpine3.10 as builder
COPY main.go .
ARG SKAFFOLD_GO_GCFLAGS
RUN go build -x -gcflags="${SKAFFOLD_GO_GCFLAGS}" -o /app main.go
FROM alpine:3.10
runtime
ENV GOTRACEBACK=single
CMD ["./app"]
COPY --from=builder /app .
Main.go content:
package main
import (
 "fmt"
 "time"
)

func main() {
 for {
 fmt.Println("Hello world!")
 time.Sleep(time.Second * 1)
 }
}
k8s-pod.yaml content:
apiVersion: v1
kind: Pod
metadata:
 name: getting-started
spec:
 containers:
 - name: getting-started
 image: skaffold-example

https://skaffold.dev/docs/references/yaml/

27112.3 Continuous development
This will generate a skaffold.yaml file, which we have already seen in the previous sec-
tion, with two phases:

apiVersion: skaffold/v2beta3
kind: Config
metadata:
 name: getting-started
build:
 artifacts:
 - image: skaffold-example
deploy:
 kubectl:
 manifests:
 - k8s-pod.yaml

You can take it from here and expand the file as per your needs, using the Skaffold
documentation.

DEVELOPING WITH SKAFFOLD

We ended up having four files in the folder, including the Skaffold config file. Now we
can start to do continuous development, where Skaffold will be watching the source
folder for changes and perform all the steps defined in the skaffold.yaml file. To start
the development, run the next command:

skaffold dev

Skaffold will automatically tail the logs from the deployed container to the console.
Now if you change the source file main.go to print hello from Skaffold instead of
hello world, Skaffold will automatically detect the change, rebuild the image, push it
to the registry, and deploy it. As the logs tail to the console, you should see the mes-
sage hello from Skaffold.

SINGLE RUN WITH SKAFFOLD

Although skaffold dev has been continuously watching the source files, you can also
perform a single execution of the workflow by running the skaffold run command.
This is useful when you want to run the execution only once and not trigger the flow
every time your code is modified.

SUPPORTED FEATURES
By now you should have a basic understanding of how to start development with Skaf-
fold, so let’s look at other useful features available.

Pipelines stages
Up to now, we have looked only at the basic functionalities of Skaffold. However, the
tool has more capabilities that can address advanced pipeline stages. For example, a
developer might not want to rebuild the images after every code change. In such a case,
Skaffold can synchronize the files into the container main.go source file. To achieve
this, you would use the file sync feature. Figure 12.6 shows all the steps in the workflow.

272 CHAPTER 12 Integrations with CI/CD
The following list shows all the Skaffold pipeline stages that can be used to execute
these steps:

 Init—Generates basic Skaffold configuration
 Build—Builds images with builders of choice
 Test—Tests images with structure tests2

 Tag—Tags images based on different policies
 Deploy—Deploys the application with kubectl, Kustomize, or Helm
 File sync—Synchronizes the changed files directly to running containers
 Log tailing—Tails logs from containers
 Port forwarding—Forwards ports from services to localhost
 Cleanup—Cleans up manifests and images

As you can see, we have a complete pipeline that allows us to deploy and preview
Anthos applications.

Supported environments
Skaffold supports both local and remote Kubernetes clusters. You can use a local
development cluster like minikube or an Anthos/Kubernetes cluster deployed in a
remote location.

 To connect to a remote Kubernetes cluster, you need to set a context in the
kubeconfig file as if connecting to any Kubernetes cluster. The default context can be
overwritten by running

skaffold dev --kube-context <myrepo>

or by updating the skaffold.yaml file deploy.kubeContext attribute:

deploy:
 kubeContext: minikube

2 Structure tests are a Google-developed mechanism of testing containers; for details consult http://mng.bz/eJzz.

File sync

Detect
source code

changes

Build
artifacts

Test
artifacts

Tag
artifacts

Rander
manifests

Deploy
manifests

Tail logs
and forward

ports

Clean up
images and
resources

Figure 12.6 Skaffold workflow

http://mng.bz/eJzz

27312.3 Continuous development
Supported build tools
If you need to use another tool to build container images, the build section of the
skaffold.yaml configuration file can be configured for custom builders. To use a cus-
tom builder, define the proper options for using that builder to the build section.
Details about customer builders are at http://mng.bz/pdvG. The following tools are
currently supported:

 Docker
 Jib (http://mng.bz/Oprn)
 Bazel (http://mng.bz/Y64N)
 Buildpacks (http://mng.bz/GRAq)

You can also use custom scripts that are in line with the Skaffold defined standard.

USING SKAFFOLD IN CI/CD PIPELINES

You can also use Skaffold as a tool in your CI/CD pipelines. An existing community-
maintained builder (http://mng.bz/zmOa) can be directly used with Cloud Build,
which is a native CI Google Cloud tool (we will have a look at it in detail in the next
section). Some of the most useful Skaffold commands in CI/CD workflows follow:

 skaffold build—Builds and tags your image(s)
 skaffold deploy—Deploys the given image(s)
 skaffold delete—Cleans up the deployed artifacts
 skaffold render—Builds and tags images and outputs templated Kubernetes

manifests

SKAFFOLD SUMMARY

In this section, we have learned how to install Skaffold and use it in a continuous devel-
opment workflow. Follow the Skaffold Quickstart guide at https://skaffold.dev/docs/
quickstart/ for more information on using Skaffold with development workflows.

12.3.3 Cloud Code: Developing with a local IDE

We have learned how we can preview the Anthos application, but now let’s look at how
we can elevate this experience. One of the unaddressed challenges so far is maintain-
ing the configuration for the development environment. Developers want to develop
their applications without leaving their favorite IDE. Cloud Code improves the devel-
oper experience by integrating the already known set of tools to provide containeriza-
tion and deployment of applications, including the following:

 kubectl
 Skaffold
 Google Cloud SDK (gcloud)

Cloud Code is a plug-in for IDEs like Visual Studio Code (https://code.visualstudio
.com/) and IntelliJ (https://www.jetbrains.com/idea/). It integrates with minikube
and Kubernetes clusters, including Anthos clusters. It comes with the Google Cloud

http://mng.bz/pdvG
http://mng.bz/Oprn
http://mng.bz/Y64N
http://mng.bz/GRAq
http://mng.bz/zmOa
https://skaffold.dev/docs/quickstart/
https://skaffold.dev/docs/quickstart/
https://skaffold.dev/docs/quickstart/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://www.jetbrains.com/idea/

274 CHAPTER 12 Integrations with CI/CD
platform API explorer and Kubernetes objects explorer. You can use it to view your
Kubernetes resources directly from IDE without running a single kubectl command.

 Figures 12.7 and 12.8 show the collection of prebuilt application templates that
can run and debug an Anthos application (both Kubernetes and Cloud Run). The
first figure allows you to generate all the files you need to deploy simple applica-
tions. The second automatically detects changes to source files, builds container
images, and deploys to the selected Kubernetes endpoint. All these tasks are deployed
by Skaffold.

 Figure 12.7 also shows the flow for an Anthos/Kubernetes application, which is
very similar to the Skaffold flow. The difference is that the developer uses an IDE to
perform these steps.

As shown in figure 12.8, Cloud Code helps us by setting up an emulator based on
minikube. It runs locally and enables the developer to run and test the Cloud Run
applications. It is also possible to deploy to GCP-managed services like Cloud Run or
Cloud Run for Anthos.

 For both options, you can debug your code running on the local and remote end-
point by creating breakpoints in your code. In the next section, you’ll start working on
our Hello World Anthos application with Cloud Code.

STARTING DEVELOPING WITH CLOUD CODE

You can kick-start development of your application by using prebuilt templates for
both Kubernetes and Knative (Cloud Run) applications. This includes both simple
single-service applications and multiservice apps for a variety of languages.

Automatic code-change detection

Figure 12.7 Running and debugging a Kubernetes application with Cloud Code

27512.3 Continuous development
Let’s look how we can start developing with Cloud Code. This time we will be using
Visual Studio Code to work on an example Python Hello World application using the
following steps:

1 Start by installing the Cloud Code from the Visual Studio Code Marketplace.
2 Open Visual Studio Code.
3 Find and click </> Cloud Code on the bottom blue bar in the main window,

shown in figure 12.9.

4 From the drop-down list that appears on the top of the screen, choose the New
Application option, shown in figure 12.10. Note: This is also the starting point
for other actions, such as the following:

– Running the application on Kubernetes
– Debugging the application on Kubernetes
– Running the application on a Cloud Run emulator
– Debugging the application on a Cloud Run emulator
– Deploy the application to Cloud Run

Automatic code-change detection

Figure 12.8 Running and debugging a Cloud Run application with Cloud Code

Figure 12.9 Visual Studio Code:
starting a new application

276 CHAPTER 12 Integrations with CI/CD
5 Now choose Kubernetes Application, shown in figure 12.11.

6 For simplicity, we will use the Python (Flask) Hello World application, as shown
in figure 12.12.

7 Wait a couple of seconds for Cloud Code to pull the templates with all the files,
including vscode configuration files, Kubernetes manifests, source code, and
the Skaffold config file, as illustrated in figure 12.13.

Figure 12.10 Cloud Code New Application

Figure 12.11 Cloud Code Kubernetes Application

Figure 12.12 Cloud Code Python (Flask): Hello World

27712.3 Continuous development
8 When all the files are ready, you can run the application by clicking </> Cloud
Code again and choosing Run on Kubernetes from the drop-down menu, as
shown in figure 12.14.

9 Cloud Code will ask if you want to use the default context. In this case, it is
pointing to minikube. Confirm with Yes or choose a different context to deploy
to different clusters, as shown in figure 12.15.

Figure 12.13 The Cloud Code skaffold.yaml

Figure 12.14 The Cloud Code option to run on Kubernetes

Figure 12.15 Cloud Code: setting the context to minikube

278 CHAPTER 12 Integrations with CI/CD
10 In the console, you should see the output shown in figure 12.16 with the URL
to access the application.

11 If you go to the URL, you will see the application is running, as shown in fig-
ure 12.17.

12 Now you can make a small change to the source code. In the app.py file, find
the Hello World message, shown in figure 12.18.

Figure 12.16 Cloud Code console output

Figure 12.17 Cloud Code
application output

27912.3 Continuous development
13 Change the message to “Hello Anthos” and save the file, as shown in figure 12.19.

14 You will notice, as shown in figure 12.20, that Cloud Code has detected the
change and deployed the app to minikube.

Figure 12.18 Cloud Code: browse the app.yaml.

Figure 12.19 Cloud Code: change the message to “Hello Anthos.”

280 CHAPTER 12 Integrations with CI/CD
15 Now when we access the application, we see a new message, shown in figure 12.21.

Any changes in the source code will be picked up automatically. Note that you can
pause or stop the application using the control bar, shown in figure 12.22, on the top
of the screen.

You have successfully created a preview of the Kubernetes Hello World application.
Now you can try more complex application examples.

 As you have seen in the drop-down menu in step 4, you can also create and deploy
applications to Cloud Run. You can also debug your applications by putting break
points in your source code. Follow the how-to guide to see a step-by-step tutorial on
how to do it at http://mng.bz/0yex.

SUMMARY OF CLOUD CODE

Cloud Code is a tool that not only seamlessly integrates with GCP but also makes the
development, containerization, and preview of your Anthos application easy. It bun-
dles the already discussed Skaffold functionality into your IDE to automate continu-
ous development workflows.

 Previewing Kubernetes applications requires a number of steps, like building a
container image and deploying it to the preview environment every time you make
changes to the code. With Cloud Code, you can concentrate on your source code and
let the Cloud Code integrations take care of all those steps. In this section, we have
used already existing templates to show you what the setup looks like. You can take it

Figure 12.20 Cloud Code: code change detection

Figure 12.21 Cloud Code:
application output

Figure 12.22 Cloud Code:
continuous development menu

http://mng.bz/0yex

28112.3 Continuous development
from there and start developing your own Anthos applications, and Cloud Code will
make sure the preview will be updated for you.

12.3.4 Anthos Developer Sandbox: Development with a cloud native IDE

Anthos Developer Sandbox is a free tool for developers that gives you the feeling of
what it looks like to develop on Anthos. It allows performing the same tasks described
in the previous section but using Google Cloud Shell instead of locally. It is built of the
following components:

 Cloud Shell—A computing environment with the best of Google Cloud Platform
tooling preinstalled

 Cloud Code—The IDE plug-in, which we’ve already seen
 Minikube—A single-node Kubernetes cluster, which we’ve already discussed
 Cloud Build Local Builder—Runs continuous integration locally in the Cloud

Shell

You don’t need to perform any up-front configuration to use Anthos Developer Sand-
box. You can access it from http://mng.bz/KlrK and start developing your first Anthos
application. The most important thing is that it is available for free for anyone with
a Google account. With Anthos Developer Sandbox, you can perform the following
day-to-day development tasks:

 Run applications locally on an emulated Anthos cluster or Cloud Run emulator
 Use Cloud Build for testing locally
 Iterate on your application with automated live updates as you develop
 Use buildpacks to create your images

If you just started developing Anthos applications, using Sandbox will help you to
kick-start your development journey because it comes with tutorials that are accessible
directly from the interface.

STARTING WITH ANTHOS DEVELOPER SANDBOX

Let’s have a quick look at the tool using the next steps:

1 Access the tool by opening the link we mentioned earlier in the browser. You will
be informed that the Anthos Developer Sandbox will be cloned, as shown in fig-
ure 12.23.

Figure 12.23 Anthos Developer Sandbox: Welcome screen

http://mng.bz/KlrK

282 CHAPTER 12 Integrations with CI/CD
2 Click Confirm and wait for the environment to be set up. You can see all the
components being configured for you, as shown in figure 12.24.

3 Once it is finished, you should see the IDE loaded and the workspace ready
with the cloned repo, as shown in figure 12.25. In the right pane, you can see
the tutorial.

Figure 12.24 Anthos Developer
Sandbox: preparation of the
environment

Figure 12.25 Anthos Developer Sandbox: main screen

28312.4 Continuous integration
4 Click Start to begin the tutorial. It will walk you through the same flow we had
with Cloud Code.

As you have seen, you can start continuous development on Anthos with a few clicks
and no special configuration.

12.4 Continuous integration
In this section, we will look at continuous integration. We will first walk through the
GCP native tools and then see what the third-party alternatives are. To introduce
continuous integration for your Anthos application, you will need the following
components:

 Git source repository
 Container registry
 CI server

Let’s start by creating a Git repository that will store and version the Anthos applica-
tion code.

12.4.1 Cloud Source Repositories

Cloud Source Repositories (https://cloud.google.com/source-repositories) are fully
featured, private Git repositories hosted on Google Cloud. The service helps devel-
opers to privately host, track, and manage changes to large codebases on Google
Cloud Platform. It’s designed to integrate easily with GCP services like Anthos, GKE,
Cloud Run, App Engine, and Cloud Functions, as shown in figure 12.26. You can
configure an unlimited number of repositories and also mirror Bitbucket and GitHub
repositories. Changes in Cloud Source Repositories are monitored and can trigger
event notifications to Cloud Pub/Sub or a Cloud Function. One of the differentia-
tors of Code Source Repositories is that you can use regex expression to search for
phrases in your repository (http://mng.bz/91jl). Cloud Source Repository audit logs
are available in Cloud Operations, so you always know who has accessed your reposi-
tory, and when.

 As you see in figure 12.26, the integration for Cloud Run is particularly interesting.
You can use a combination of Cloud Source Repositories and Cloud Build to create a
CD pipeline to trigger an automated deploy pipeline of your application whenever
there is code merge in your code repository. Cloud Run makes the operations more
streamlined by taking care of your traffic shaping (blue/green, canary, rolling
updates) based on your configuration under the hood. Refer to chapter 9 for details
on how to configure it.

CREATING A REPOSITORY

To start working with Cloud Source Repositories, you first need to create the reposi-
tory by running the following command:

gcloud init

http://mng.bz/91jl
https://cloud.google.com/source-repositories

284 CHAPTER 12 Integrations with CI/CD
The next snippet will initialize your gcloud command-line tool:

gcloud source repos create [REPO_NAME]

This will create a repository of the name REPO_NAME.
 Now that the repository is ready to use, you need to choose one of the following

three authentication methods:

 SSH
 Cloud SDK
 Manually generated credentials

Refer to the following link to see a step-by-step guide on how to do it: http://mng
.bz/jmWx.

 Once the repository is set up and you have successfully authenticated, you can
interact with it using Git commands like git clone, git pull, and git push.

12.4.2 Artifact Registry

Artifact Registry is the next iteration of the Google Container Registry service. On top
of being able to store container images, Artifact Registry can store other packages like
Maven (https://maven.apache.org/), npm (https://www.npmjs.com/), and Python,

GitHub

Figure 12.26 Cloud Source Repositories integrations

http://mng.bz/jmWx
http://mng.bz/jmWx
http://mng.bz/jmWx
https://maven.apache.org/
https://www.npmjs.com/

28512.4 Continuous integration
with more capabilities to come soon. The services are fully integrated with the Google
Cloud Platform ecosystem, so you can control access to your artifacts using IAM poli-
cies, access Cloud Source Repositories, trigger automatic builds using Cloud Build,
and deploy to Google Kubernetes Engine, App Engine, and Cloud Functions. You can
create Artifact Repositories in regions closest to your workloads so you can take advan-
tage of the high-speed Google network to pull your artifacts.

 From a security standpoint, you can scan your containers for vulnerabilities, and
Binary Authorization can be used to approve the images that can be pushed to pro-
duction. You can use native tools to interact with Artifact Registry so it is easy to inte-
grate them into CI/CD pipelines.

USING ARTIFACT REGISTRY WITH DOCKER

Let’s see how you can interact with the Artifact Registry to store container images,
using the next procedure:

1 Start by creating an artifact repository:

gcloud artifacts repositories create quickstart-docker-repo --
repository-format=docker \
--location=us-central1 [--description="Docker repository"]

2 You can list your repositories by running the next command:

gcloud artifacts repositories list

3 Before pushing images, you should authenticate to the repository:

gcloud auth configure-docker us-central1-docker.pkg.dev

4 Now, for demo purposes, just pull the official alpine image from Docker Hub
instead of building a new image:

docker pull alpine

5 Tag the image with the repository name:

docker tag alpine us-central1-docker.pkg.dev/PROJECT/quickstart-docker-
repo/quickstart-image:tag1

6 You can finally push the image to the Artifact Registry:

docker push us-central1-docker.pkg.dev/PROJECT/quickstart-docker-
repo/quickstart-image:tag1

Now you are ready to pull your container images from the registry.

286 CHAPTER 12 Integrations with CI/CD
SUMMARY OF ARTIFACT REGISTRY
At the time of writing, the Artifact Registry is generally available, though some of the
features might be in preview. As a successor of Container Registry, it will eventually be
the only container registry available in GCP, so all your new projects should be already
using Artifact Registry. The step-by-step tutorial on how to transition to Artifact Regis-
try for existing projects can be found here: http://mng.bz/WAn0.

12.4.3 Cloud Build

We have already seen how we can version the Anthos application code and build con-
tainer images. Now let’s look at how we can create a CI pipeline.

 Cloud Build is a managed, GCP-native CI/CD platform and is an alternative for
tools like GitLab CI/CD, Jenkins, or CircleCI. It allows you to deploy, test, and build
your application on all Google compute services including Anthos GKE and Cloud
Run for Anthos. The Cloud Build pipeline steps are run as containers, as shown in fig-
ure 12.27.

The pipeline steps are defined in a simple-to-understand cloudbuild.yaml file presented
here. These steps are read by Cloud Build and executed. Each step defines a container
to run as a task. The containers used in pipelines are specially built for Cloud Build and
are called cloud builders. We will learn more about them in the following section.

cloudbuild.yaml
steps:
This step runs the unit tests on the app
- name: 'python:3.7-slim'
 id: Test
…
This step builds the container image.
- name: 'gcr.io/cloud-builders/docker'
 id: Build
…
This step pushes the image to a container registry
- name: 'gcr.io/cloud-builders/docker'
 id: Push

Figure 12.27 Cloud Build steps run as containers.

http://mng.bz/WAn0

28712.4 Continuous integration
…
This step deploys the new version of our container image
- name: 'gcr.io/cloud-builders/kubectl'
 id: Deploy

Cloud Build is completely serverless and can scale up and down based on the load.
You pay only for the execution time. It does not require you to install any plug-ins and
can support a variety of tools with custom cloud builders. Because it is connected to
the GCP network, it can significantly reduce build and deployment time via direct
access to repositories, registries, and workloads. You can also combine Cloud Build
with tools like Spinnaker (https://spinnaker.io/) to execute even more complex pipe-
lines that include various deployment scenarios. Cloud Build pipelines can be trig-
gered either manually or by code repository pull requests.

 Now that we understand the basis of how Cloud Build works, let’s look at cloud
builders.

CLOUD BUILDERS

As we have already learned, Cloud Build runs a series of steps defined in the cloud-
build.yaml file that are executed within containers. The containers are deployed using
container images defined in the name attribute of each step. Those container images
are called cloud builders, which are specially packaged images that run a specific tool
like Docker, Git, or kubectl with a set of user-defined attributes. Three types of build-
ers follow:

 Google-supported builders
 Community-supported builders
 Custom-developed builders

Let’s look at each type.

Google-supported builders
You can find a full list of Google-supported builders on GitHub at http://mng.bz/
819P. All the images are available in a container registry under gcr.io/cloud-builders/
<builder name>. Some of the most important builders in the context of Anthos follow:

 docker
 git
 gcloud
 gke-deploy
 kubectl

Community-supported builders
If no official builder exists that fits your requirements, you can use one of the commu-
nity builders, which are available with tools like Helm, Packer, Skaffold, Terraform,
and Vault. The complete list of the community cloud builders can be found here:
http://mng.bz/ElrJ.

http://mng.bz/819P
http://mng.bz/819P
http://mng.bz/819P
http://mng.bz/ElrJ
http://mng.bz/ElrJ
https://spinnaker.io/

288 CHAPTER 12 Integrations with CI/CD
Custom-developed builders
You can create your own custom builder for use in your builds. A custom builder is
a container image that Cloud Build pulls and runs with your source. Your custom
builder can execute any script or binary inside the container. As such, it can do any-
thing a container can do. For instructions on creating a custom builder, see http://
mng.bz/NmrD.

BUILDING CONTAINER IMAGES

You can build containers with Cloud Build either using config files or by using Dock-
erfile only. Let’s look at each of the options.

Building container images using a configuration file
The first method of building the container requires you to provide the cloud-
build.yaml config file as an input, as shown in figure 12.28.

To build your image from the configuration file, you need to specify the build steps in
the cloudbuild.yaml file using the Docker cloud builder as follows:

steps:
- name: ‘gcr.io/cloud-builders/docker’
 args: [‘build’, ‘-t’, ‘us-central1-

docker.pkg.dev/$PROJECT_ID/${_REPOSITORY}/${_IMAGE}’, ‘.’]
images:
- ‘us-central1-docker.pkg.dev/$PROJECT_ID/${_REPOSITORY}/${_IMAGE}’

Next, run the following command to submit the build:

gcloud builds submit --config [CONFIG_FILE_PATH] [SOURCE_DIRECTORY]

This builds the image and stores it in Google Artifact Registry as indicated in the con-
figuration file. If you don’t specify the [CONFIG_FILE_PATH] and [SOURCE_DIRECTORY]
parameters, the current directory will be used.

Figure 12.28 Building container images with Cloud Build config files

http://mng.bz/NmrD
http://mng.bz/NmrD
http://mng.bz/NmrD

28912.4 Continuous integration
Using a Dockerfile to build a container image
You can create container images without using the configuration file because your
Dockerfile contains all information needed to build a Docker image using Cloud Build,
as shown in figure 12.29.

To run a build request using your Dockerfile, run the following command from the
directory containing your application code, Dockerfile, and any other assets:

gcloud builds submit --tag us-central1-docker.pkg.dev//[PROJECT_ID]/[IMAGE_NAME]

This builds the image and stores it in Google Artifact Registry.

Cloud Build notifications
You have multiple ways of getting notifications from Cloud Build. You can get noti-
fied about any changes in the build state, including start, transition, and completion
of the build.

 Cloud Build is well integrated with Pub/Sub and publishes messages to Pub/Sub
topics. Both push and pull subscription models are supported. Having the message
in the Pub/Sub queue gives you endless options for sending the notifications to the
next step.

 In addition to Pub/Sub, you can also get notifications from Cloud Build using one
of the following notifications channels:

 Slack—Posts notifications to a Slack channel
 SMTP—Emails notifications via SMTP protocol
 HTTP—Sends notifications in JSON format to an HTTP endpoint

All three types of notifications use containers running as a Cloud Run service. An
example of how to create such notifications can be found at http://mng.bz/DZrE.

DEPLOYING TO ANTHOS GOOGLE KUBERNETES ENGINE

Deployment to Google Kubernetes Engine can be done using either kubectl or the
gke-deploy builder. Note that gke-deploy (https://github.com/GoogleCloudPlatform/
cloud-builders/tree/master/gke-deploy) is basically a wrapper around kubectl that
incorporates Google best practices to deploy Kubernetes resources. For example, it
adds the label app.kubernetes.io/name to the deployed Kubernetes resources.

Figure 12.29 Building an image from a Dockerfile

http://mng.bz/DZrE
https://github.com/GoogleCloudPlatform/cloud-builders/tree/master/gke-deploy
https://github.com/GoogleCloudPlatform/cloud-builders/tree/master/gke-deploy
https://github.com/GoogleCloudPlatform/cloud-builders/tree/master/gke-deploy

290 CHAPTER 12 Integrations with CI/CD
 Next, you can see an example use of the gke-deploy builder to deploy to a GKE
cluster:

steps:
...
deploy container image to GKE
- name: "gcr.io/cloud-builders/gke-deploy"
 args:
 - run
 - --filename=[kubernetes-config-file]
 - --location=[location]
 - --cluster=[cluster]

In the future, we can expect other cloud builders like AnthosCLI that will make the
experience even more unified.

DEPLOYING TO CLOUD RUN AND CLOUD RUN FOR ANTHOS

Cloud Build allows you to build your Cloud Run container image and then deploy it
to either Cloud Run or Cloud Run for Anthos. In both cases, you would first build and
push the image using a standard Docker builder:

steps:
Build the container image
- name: ‘gcr.io/cloud-builders/docker’
 args: [‘build’, ‘-t’, ‘us-central1-docker.pkg.dev/$PROJECT_ID/${_IMAGE}’,

‘.’]
Push the container image to a registry
- name: ‘gcr.io/cloud-builders/docker’
 args: [‘push’, ‘us-central1-docker.pkg.dev/$PROJECT_ID/${_IMAGE}’]

Then use the cloud-sdk builder to run the gcloud run command. For Cloud Run, set
the --platform flag to ‘managed’:

Deploy container image to Cloud Run
- name: ‘gcr.io/google.com/cloudsdktool/cloud-sdk’
 entrypoint: gcloud
 args: [‘run’, ‘deploy’, ‘SERVICE-NAME’, ‘--image’, ‘us-central1-

docker.pkg.dev/$PROJECT_ID/${_IMAGE}’, ‘--region’, ‘REGION’, ‘--platform’,
‘managed’]

images:
- ‘us-central1-docker.pkg.dev/$PROJECT_ID/${_IMAGE}’

For Cloud Run for Anthos, set the --platform flag to ‘gke’ and indicate which clus-
ter to deploy to by setting the --cluster and --cluster-location flags:

Deploy container image to Cloud Run on Anthos
- name: ‘gcr.io/google.com/cloudsdktool/cloud-sdk’
 entrypoint: gcloud
 args: [‘run’, ‘deploy’, ‘SERVICE-NAME’, ‘--image’, ‘us-central1-

docker.pkg.dev/$PROJECT_ID/${_IMAGE}’, ‘--cluster’, ‘CLUSTER’,
‘--cluster-location’, ‘CLUSTER_LOCATION’, ‘--platform’, ‘gke’]

images:
- ‘us-central1-docker.pkg.dev/$PROJECT_ID/${_IMAGE}’

29112.4 Continuous integration
DEPLOYING TO ANTHOS USING THE CONNECT GATEWAY WITH CLOUD BUILD

The Connect gateway, shown in figure 12.30, allows users to connect to registered
clusters outside Google Cloud with their Google Cloud identity in the Cloud console.
You don’t need to have direct connectivity from the Cloud Build to the Anthos cluster
API. Anthos Hub acts as a proxy for the kubectl command run in the cloud builder.

To configure the Connect gateway and connect your Anthos cluster, follow the steps
described in the Google documentation at http://mng.bz/lJ5y.

 Once the Connect gateway is configured and the Anthos servers are registered,
check whether they are visible in the fleet by running the following:

gcloud container fleet memberships list

In this case, we see two clusters are registered—one is a GKE on VMware, and the other
is a GCP GKE cluster:

NAME EXTERNAL_ID
my-vmware-cluster 0192893d-ee0d-11e9-9c03-42010a8001c1
my-gke-cluster f0e2ea35-ee0c-11e9-be79-42010a8400c2

Let’s define the following step to deploy an application defined in the myapp.yaml
manifest:

steps:
- name: ‘gcr.io/cloud-builders/gcloud’
 entrypoint: /bin/sh
 id: Deploy to Anthos cluster on VMware
 args:
 - ‘-c’
 - |
 set -x && \
 export KUBECONFIG="$(pwd)/gateway-kubeconfig" && \
 gcloud beta container fleet memberships get-credentials my-vmware-cluster && \
 kubectl --kubeconfig gateway-kubeconfig apply -f myapp.yaml

As we see, in this case, the gateway kubeconfig is used rather than the cluster kubeconfig
itself. The request will be sent to the gateway, and then the gateway will forward it to

Google Cloud Platform colo/dc/on-premises

GKE on-Prem

Figure 12.30 Connect gateway

http://mng.bz/lJ5y

292 CHAPTER 12 Integrations with CI/CD
the my-vmware-cluster. This means that no hybrid connectivity like Cloud VPN or
Interconnect is required to deploy your Anthos cluster outside of GCP.

TRIGGERING CLOUD BUILD

In the previous section, we learned how to deploy the application to any Anthos clus-
ters. Now let’s look at how we can trigger a Cloud Build pipeline by using either the
gcloud command (which we have already looked at in the previous section) or auto-
matic triggers. With Cloud Build, you can use the following three types of repositories:

 Cloud Source Repositories
 GitHub
 Bitbucket

To create a trigger, you can use both the Google Cloud console and the command
line. First, add the repository to Cloud Build:

 gcloud beta builds triggers create cloud-source-repositories \
 --repo=[REPO_NAME] \
 --branch-pattern=".*" \
 --build-config=[BUILD_CONFIG_FILE] \

Then, add the trigger:

 gcloud beta builds triggers create github \
 --repo-name=[REPO_NAME] \
 --repo-owner=[REPO_OWNER] \
 --branch-pattern=".*" \
 --build-config=[BUILD_CONFIG_FILE] \

With the --branch-pattern, you can specify which branch will trigger the build. In
this case, it will be all branches.

 If you would like know how to create triggers from the other repositories, consult
the documentation at http://mng.bz/BlrJ.

SUMMARY OF CLOUD BUILD
Cloud Build, though simple to use, can provide an E2E CI/CD experience for deliv-
ering your Anthos applications, as shown in figure 12.31. If you want to get more
hands-on experience with E2E pipelines, we encourage you to follow a tutorial at your
own pace: http://mng.bz/dJGQ. In this tutorial, you will develop a pipeline that will
support the following:

 Test of the committed code
 Build container image
 Push image to the registry
 Update the Kubernetes manifest and push it to the environment repository
 Detect changes on the branch
 Apply the manifest to an Anthos GKE cluster
 Update the production branch with the Kubernetes manifest applied

http://mng.bz/BlrJ
http://mng.bz/dJGQ

29312.4 Continuous integration
This tutorial will give you a good idea of how to perform advanced tasks with Cloud
Build. Note that you can deliver the same result with third-party tools like GitHub,
GitLab, or Bitbucket, but Cloud Build is a native GCP tool that integrates nicely
with Anthos.

12.4.4 Kustomize for generating environment-specific configuration

In real-life scenarios, you will deploy your application to multiple environments. In
the CI/CD pipeline, you need a tool that will adjust the configuration of your app for
each environment without changing the actual code base.

 Kustomize is a standalone tool to customize Kubernetes resources by using a kus-
tomization.yaml file. The good news is that since version 1.14 of Kubernetes, Kustom-
ize has been merged into the kubectl tool, as shown in figure 12.32.

Figure 12.31 Steps in the CI/CD pipeline based on Cloud Build

Kubernetes Manifests

Figure 12.32 Customizing a Kubernetes manifest

294 CHAPTER 12 Integrations with CI/CD
As we see in figure 12.32, the basic manifest is patched and applied to each of the
environments.

 In figure 12.33, we see the following three files residing in a single folder:

 Definition of the Deployment—deployment.yaml
 Kustomize file—kustomization.yaml
 Patch file—patch.yaml, which defines which attributes should be changed in the

Deployment

To perform the customization, run the next command:

kubectl apply -k <kustomization_directory>

As a result, the output has the spec.template.containers.image attribute updated.

Figure 12.33 Patching deployment images with Kustomize

29512.4 Continuous integration
KUSTOMIZE FEATURE LIST

Kustomize comes with all the features needed to customize your Kubernetes deploy-
ment, including the following, as shown in figure 12.34:

 Generating resources (ConfigMaps and Secrets)
 Setting cross-cutting fields
 Composing and customizing resources

Let’s look at each of them in detail.

Composing
You can use the resources attribute to define which resource definitions you want to
customize. If you don’t include any other customization feature in the file, the resources
will be simply composed into one definition. In the following example, we compose
the deployment.yaml and service.yaml definitions:

kustomization.yaml

resources:
- deployment.yaml
- service.yaml

To run the customization, execute the next command:

kubectl kustomize ./

Customizing
Customization allows you to patch your resources with specific values using the follow-
ing methods:

 patchesStrategicMerge (http://mng.bz/rdQX)

 patchesJson6902 (http://mng.bz/Vpo5)

For example, you can patch the my-deployment Deployment defined in the deploy-
ment.yaml file with the number of replicas by creating the following files:

Figure 12.34 Kustomize features

http://mng.bz/rdQX
http://mng.bz/Vpo5

296 CHAPTER 12 Integrations with CI/CD
increase_replicas.yaml

apiVersion: apps/v1
kind: Deployment
metadata:
 name: my-deployment
spec:
 replicas: 3

kustomization.yaml

resources:
- deployment.yaml
patchesStrategicMerge:
- increase_replicas.yaml

And run the following code:

kubectl kustomize ./

In addition to this customize feature, you can also change container images in your
Deployment by defining the image attribute.

Setting cross-cutting fields
Using cross-cutting fields, you can set the following attributes for your Kubernetes
resources:

 namespace

 namePrefix

 nameSuffix

 commonLabels

 commonAnnotation

In the next example, we set the namespace to my-namespace for the deployment.yaml
definition. Note: You can use the resources attribute to define the resources you want
to be affected.

kustomization.yaml

apiVersion: kustomize.config.k8s.io/v1beta1
kind: Kustomization
namespace: my-namespace
resources:
- deployment.yaml

Generating resources
With Kustomize, you can generate ConfigMaps and Secrets resources. As we have
already learned, they are used for feeding configuration and credentials to your
application. You can generate objects either from a literal or a file. The following gen-
erators are supported:

29712.4 Continuous integration
 configMapGenerator

 secretGenerator

For example, to generate a ConfigMap with the key-value pair, you can use the follow-
ing file:

kustomization.yaml

configMapGenerator:
- name: example-configmap
 literals:
 - FOO=Bar

And run the next code:

kubectl kustomize ./

Using variables
Variables are useful when you want to capture an attribute of one resource and pass it
to other resources. For example, you might want to use the service name to pass it to a
container command to be executed. Note that this currently supports string types. You
can see an example of this usage at http://mng.bz/xdEB.

BASES AND OVERLAYS

Now that we have a good understanding of what features Kustomize offers, we can
look at how we can use them to prepare Kubernetes for different environments in
your CI/CD pipeline. Kustomize comes with the concepts of bases and overlays. A base
is a root directory with Kubernetes resource definitions and the main kustomiza-
tion.yaml file. It performs a first layer of customization. Note that you can also set your
base in a Git repository. Overlay is a directory that stores the kustomization.yaml that
customizes resources already customized in the base layer. You can create multiple
overlays to represent each of your environments, as shown in figure 12.35.

 Next, you can see an example of file structure for a single base with three overlays
for the dev, test, and prod environments:

├── base
│ ├── deployment.yaml
│ ├── kustomization.yaml
│ └── service.yaml
└── overlays
 ├── dev
 │ ├── kustomization.yaml
 │ └── patch.yaml
 ├── test
 │ ├── kustomization.yaml
 │ └── patch.yaml
 └── prod
 ├── kustomization.yaml
 └── patch.yaml

http://mng.bz/xdEB

298 CHAPTER 12 Integrations with CI/CD
You could use this file structure to set the number of replicas to be different for each
environment. For example, maybe for development, you don’t need to consume as
many resources as for tests, where you might want to run performance testing.

SUMMARY OF KUSTOMIZE

As we have seen, Kustomize can be a powerful tool in your CI/CD pipeline to generate
and patch Kubernetes resources for each of your environments. If you want to learn
more about how to use Kustomize, check out the Kustomize examples at http://mng
.bz/AlKW and the API references at https://kubectl.docs.kubernetes.io/references/.

12.5 Continuous deployment with Cloud Deploy
Cloud deploy is a fully managed CD service that allows you to deliver your applica-
tions to a defined series of target environments according to a promotion sequence.
The life cycle of your applications is managed using releases and is controlled by
delivery pipelines.

12.5.1 Cloud Deploy in the Anthos CI/CD

Google Cloud Deploy integrates with the Google Cloud Platform ecosystem of services
that we have already learned about, as shown in figure 12.36, to complete the end-to-end
CI/CD solution for GKE and Anthos clusters.

Figure 12.35 Kustomize base and overlays

http://mng.bz/AlKW
http://mng.bz/AlKW
http://mng.bz/AlKW
https://kubectl.docs.kubernetes.io/references/

29912.5 Continuous deployment with Cloud Deploy
Figure 12.36 shows the Google Cloud Deploy interface with the following services:

 CI tooling—Calls the Google Cloud Deploy API or CLI to create a release.
Hence, most of the CI tools are supported, including Cloud Build.

 Cloud Build—Used to render the manifests and to deploy to the target runtime.
 Skaffold—Used by Cloud Build to render and deploy the manifests. As a result,

the application is deployed.
 Cloud Storage—Stores the rendering source and rendered manifests.
 Google Cloud’s operations suite—Collects and stores the audit logs of the Cloud

Deploy service.
 Pub/Sub—Allows publishing Cloud Deploy messages to Pub/Sub topics. This

can be used to integrate with external systems.
 GKE and Anthos clusters—The target runtimes to which Google Cloud Deploy

deploys the applications using Skaffold, through Cloud Build, to your target
runtime.

Now that we know how Cloud Deploy interacts with the other Anthos CI/CD tools,
let’s see how we can configure it for CD of Anthos applications.

12.5.2 Google Cloud Deploy delivery pipeline for Anthos

Cloud Deploy uses delivery pipeline manifests that define the promotion sequence to
describe the order in which to deploy to targets. The targets are described in the pipe-
lines’ definition or in separate files. The Skaffold configuration file is used to render
and deploy the Kubernetes resource manifest. Figure 12.37 defines the components
and the flow that Cloud Deploy uses.

 Let’s look at the sequences of action needed to configure continuous delivery with
Cloud Build, shown in the next set of steps. As a prerequisite, we should already have

Operations

suite
Pub/Sub Audit

Cloud Deploy GCSCI tooling

Cloud Build

Skaffold
Target

runtime

Figure 12.36 The Cloud Deploy CI/CD ecosystem

300 CHAPTER 12 Integrations with CI/CD
three GKE/Anthos clusters deployed for each of your environments, as shown in fig-
ure 12.38:

1 The first step is to define the delivery pipeline with the progressions (the pro-
motion sequence) and, optionally, the runtime targets. In this example, we will
create separate target files, so we can define the following pipeline:

delivery-pipeline.yaml
apiVersion: deploy.cloud.google.com/v1
kind: DeliveryPipeline
metadata:
 name: web-app
description: web-app delivery pipeline
serialPipeline:
 stages:
 - targetId: test
 - targetId: staging
 - targetId: prod

2 The targets can be defined as separate files. You can define a separate file per
target and will end up with the following three files:

– target_test.yaml
– target_staging.yaml
– target_prod.yaml

Figure 12.37 Cloud Deploy workflow

30112.5 Continuous deployment with Cloud Deploy
In each of the files, you define the name of the target and the target cluster.
Here you can see an example for the test target:

target-test.yaml
apiVersion: deploy.cloud.google.com/v1
kind: Target
metadata:
 name: test
description: test cluster
gke:
 cluster: projects/${PROJECT_ID}/locations/${REGION}/clusters/test

3 In the next step, you define the Skaffold configuration file needed for the ren-
dering and deployment of the application manifest. At this stage, you should
already have a container image to deploy and a Kubernetes manifest that identi-
fies the container image—these should be generated in your CI process. For
more information on how to use Skaffold with Cloud Deploy, check out sec-
tion 12.3.2, “Continuous development with Skaffold.”

Your Skaffold configuration might look like the following:

skaffold.yaml
apiVersion: skaffold/v2beta29
kind: Config
build:
 artifacts:
 - image: example-image
 context: example-app
 googleCloudBuild:
 projectId: ${PROJECT_ID}
deploy:
 kubectl:
 manifests:
 - kubernetes/*
portForward:
 - resourceType: deployment
 resourceName: example-app
 port: 8080
 localPort: 9000

Figure 12.38 Target GKE/Anthos clusters

302 CHAPTER 12 Integrations with CI/CD
4 Next, register the pipeline and the target by running the following commands:

gcloud deploy apply --file=delivery-pipeline.yaml --region=us-central1 && \
gcloud deploy apply --file=target_test.yaml --region=us-central1 && \
gcloud deploy apply --file=target_staging.yaml --region=us-central1 && \
gcloud deploy apply --file=target_prod.yaml --region=us-central1

Now Cloud Deploy knows your application, and it will manage the deployment
to targets according to your defined promotion sequence.

5 Now you can initiate the delivery pipeline by creating a release either from the
command line or from your CI tooling. Google Cloud Deploy creates a rollout
resource, which associates the release with the first target environment. Based
on that rollout, your application is deployed to the first target. Run the follow-
ing command from the directory containing your Skaffold config:

gcloud deploy releases create RELEASE_NAME --delivery-pipeline=PIPELINE_NAME

6 If you want to use Cloud Build as your CI tool, the following YAML file shows an
example Cloud Build configuration, which includes a call to Google Cloud
Deploy to create a release, with a release name based on the date and Skaffold
used for the build:

- name: gcr.io/k8s-skaffold/skaffold
 args:
 - skaffold
 - build
 - ‘--interactive=false’
 - ‘--file-output=/workspace/artifacts.json’
- name: gcr.io/google.com/cloudsdktool/cloud-sdk
 entrypoint: gcloud
 args:
 [
 "deploy", "releases", "create", "rel-${SHORT_SHA}",
 "--delivery-pipeline", "PIPELINE_NAME",
 "--region", "us-central1",
 "--annotations", "commitId=${REVISION_ID}",
 "--build-artifacts", "/workspace/artifacts.json"

7 Once you are ready to deploy the application to the next target of the sequence,
you can promote it. Make a call to Google Cloud Deploy and create a new rollout:

gcloud deploy releases promote --release=RELEASE_NAME --delivery-
pipeline=PIPELINE_NAME

8 You can continue the promotion to the last environment. In the example
sequence, shown in figure 12.39, it is production.

30312.5 Continuous deployment with Cloud Deploy
9 If you want to introduce approvals into the progression process, you can do it in
the target definitions. For example, we might want to approve all promotions in
testing to staging and production as shown in figure 12.40.

You can define approvals in each of the target definitions as follows:

 apiVersion: deploy.cloud.google.com/v1
 kind: Target
 metadata:
 name:
 annotations:
 labels:
 description:
 requireApproval: true
 gke:
 cluster: projects/[project_name]/locations/[location]/clusters/[cluster_name]

The parameter requireApproval: true indicates whether promotion to this target
requires manual approval. The value can be true or false and is optional; the default
is false.

 Now you can either approve or reject the rollout. To approve the rollout, run the
next command:

gcloud deploy rollouts approve rollout-name --delivery-pipeline=pipeline-name

Figure 12.39 Promotion sequence

Figure 12.40 Manual approvals

304 CHAPTER 12 Integrations with CI/CD
Or reject the approval by running the following:

gcloud deploy rollouts reject rollout-name --delivery-pipeline=pipeline-name

As you can see, this gives you full control over your application rollouts.

SUMMARY OF CLOUD DEPLOY

In this section, we have learned how Cloud Deploy can be used for CD of your applica-
tion. It comes with many important features like approvals, logging, and integrations
with third-party tools, making it an enterprise-grade solution. It seamlessly integrates
with the end-to-end CI/CD pipeline for Anthos. To learn more about Cloud Deploy,
see https://cloud.google.com/deploy.

 If you want to get hands-on experience with Cloud Build, we encourage you to
look at the example tutorials that cover even more features and integrations: http://
mng.bz/ZoKZ.

12.6 Modern CI/CD platform
Modern CI/CD platforms must allow sustainable software development and operation
of the entire application delivery pipeline. No single way to achieve that goal exists,
and it is always dependent on application and organization specifics. All of them
should follow the same pattern when addressing tree key layers, as shown here and in
figure 12.41:

 Infrastructure—Used for hosting
 Platforms—Used by developers to create, maintain, and consume continuous

integration capabilities
 Applications—Consumption layers for end users

Each layer is under the responsibility of at least the following three types of personas:

 Developers—Mostly focused on application development, automated testing, and
releases

 Operators—Focused on keeping the application, the underlying platform, and the
infrastructure working to deliver agreed performance and availability indicators

 Security officers—Guarantee that agreed policies and security standards are applied,
regardless of environment type, structure, or layer

Depending on the organization, more personas could exist. Each of them not only
must have different responsibilities and roles and different constraints and restrictions

Application

Platform

Infrastructure
Figure 12.41 CI/CD platform layers

http://mng.bz/ZoKZ
http://mng.bz/ZoKZ
http://mng.bz/ZoKZ
https://cloud.google.com/deploy

30512.6 Modern CI/CD platform
applied on them, but they also must share the same methodologies across entire
teams, which leads to a shared responsibility for delivery, as illustrated in figure 12.42.

Anthos introduced the capabilities to centralize management and unify toolsets while
maintaining the flexibility to integrate external tools into the pipeline. The goal for
modern CI/CD platforms is to support enterprise-ready and secure GitOps imple-
mentations. That means every component must be described as a set of configuration
files and definitions stored in the version control system. Each set is managed and
maintained by a separate team. It was already mentioned that the modern CI/CD plat-
form relies on shared responsibility. In such models, there are always touch points for
all parties via common interfaces like the code repository, the image build, and the
Kubernetes manifest definition stage.

 Modern application delivery relies on Kubernetes orchestration and microservices-
based architecture. In such, there must be separation between developers and the
operator playground. Implementation depends on defined requirements. We can use
single cluster with multiple namespaces for single-site or nonproduction setups. If ser-
vices we are delivering must be highly available or deliver high latency across a globe
or we must limit infrastructure life cycle activity impact, consider using multiple
Anthos clusters. Multicluster setup allows us to roll out applications in small steps to
individual clusters before they are fully released.

 Let’s define an example application: a simple microservices-based voting system
capable of visualizing voting results, as presented in figure 12.43.

Container Image

Kubernetes Manifest

Figure 12.42 Personas vs. code repositories

306 CHAPTER 12 Integrations with CI/CD
The underlying infrastructure consumes Anthos GKE cluster on GCP. Three name-
spaces are created, one for each service:

 Voting
 Transfer
 Results

It also uses the following three Google-managed services:

 Cloud Memorystore as managed Redis
 Cloud SQL as a central database for all votes delivered as managed Postgres
 Secret Manager as a secure Secrets management system to store credentials for

Memorystore and Cloud SQL

Developers consume infrastructure and do not care how it is delivered. It must meet
their requirements related to namespaces and managed services. A responsible team
must create a CI/CD pipeline that can be used for application-hosting purposes and
have full flexibility to test any changes.

 To achieve this goal, we can use multiple different tools. If our teams are familiar
with Terraform, we can use already available knowledge and integrate it into our CI/CD
pipeline. Such an approach is fully in line with DORA’s State of DevOps research pro-
gram (https://www.devops-research.com/research.html). It defines one of the key
success factors for implementation of DevOps in organizations: the freedom to choose
the tools developers and operation people are using. One more question exists: can we
deliver such infrastructure even more simply? Because we are using GCP-managed
resources instead of using external tools, we can take advantage of the Anthos Config
Connector capability to deliver Secret Manager, Cloud Memorystore, and Cloud SQL as
declared objects in our code repository.

Figure 12.43 Application schema

https://www.devops-research.com/research.html

30712.6 Modern CI/CD platform
 If we are required to deliver services for other sources like Anthos on-prem, it is
important to introduce infrastructure changes starting from day one in an automated
way, as shown in figure 12.44. Every Anthos on VMware or Anthos on bare metal must
rely on predefined practices and security policies that can be constantly reused if needed.

Going deeper into our modern platform infrastructure, it must deliver the following
elements to enable successful application delivery:

 High performance, high availability, and a stable shared tooling infrastructure—It is
used as a central repository for CI/CD, container images, and application and
infrastructure code and configuration. It can be expanded for additional busi-
ness support tools mandated by your company.

 Separate preproduction and multiple production environments with coherent configuration—
Consistent security policies, RBAC, or networking configuration improves test-
ing quality and efficiency, reduces error rate, and increases production soft-
ware delivery.

 Development infrastructure—Used for extensive unit testing and delivering free-
dom to our developers to work in their own namespaces.

That moves us into the target CI/CD platform. It is important that platform choice is
multidimensional and must be driven by the following factors:

 The platform must be known to the teams that are operating it. It is not necessary that
the platform is already used, but proper training must be delivered, and teams
must have time to get familiar with it.

Preproduction

Anthos Config Management

Figure 12.44 Infrastructure resources

308 CHAPTER 12 Integrations with CI/CD
 The platform must fit into the desired state of application and infrastructure delivery model.
That includes operational models and business logic implemented in enterprise.

 The availability and health of the application must be properly measured and monitored
on all levels. This means starting from infrastructure, through tooling platform,
and closing at application level itself.

 As described in the introduction section, the platform must be DevOps ready.

When choosing a code repository, consider what capabilities are mandatory for you.
For simple code version management at a small scale, Google Cloud Source Reposi-
tory can be enough. When additional functionality is required, you must consider
other Git providers. Common patterns for GitLab, GitHub, or Bitbucket adoption
would be a demand to keep code in your on-prem data center or to introduce respon-
sibility for particular folders in Git by implementing code owners. Similar choices
must be made for integration and deployment tools. Driven by additional require-
ments, we can have already on-prem implementation of GitLab CI/CD. For complex
application delivery, you can use Spinnaker as a CD tool. The Anthos-based platform
is flexible in that area. We can use Google Cloud Platform tools or easily integrate into
external tools and still benefit from out-of-the-box Anthos automation and features, as
shown in figure 12.45.

As soon as we have our infrastructure and CI/CD platform ready, we can enable them
for development activities. We defined personas and what interfaces they use to coop-
erate with each other. Let’s look at the end-to-end workflow for that cooperation, pre-
sented in figure 12.46.

Figure 12.45 Software resources

30912.6 Modern CI/CD platform
As soon as code is ready, it must be shipped into a production-like environment to
guarantee quality in the new code update’s validation process. As already described,
code can be pushed to Cloud Code or any other Git repository, where quality and
sanity checks are performed. When it passes, you can produce container images and
push them into the container registry. After the image is acknowledged by opera-
tors, they apply to them best practices, applications, and company standards from
an operational practices Git repository. Operators define pipelines using tools like
Kustomize, creating environment-specific repositories that become the source of truth
for environment-specific manifests. Moreover, because all environments rely on the
same application and operational practices code repositories, they are guaranteed to
be consistent. As a result, nonproduction environments are as close to production
environments as possible.

 We already mentioned the importance of shifting security adaptation left as much
as possible in the development life cycle. Kubernetes cluster consistency between
development and production environments plays an important role in application
delivery speed. In chapter 13, we will learn how Anthos Policy Controller works,
whereas in chapter 11, we already learned how Anthos Config Management helps to
keep the configuration consistent. We can apply both policy and infrastructure con-
trollers to the final version of our CI/CD pipeline. Similar to application consistency, a

Environment
nonproduction

Anthos cluster
nonproduction

Policies and
Infrastructure
configuration

Kustomize

Figure 12.46 Application delivery workflow

310 CHAPTER 12 Integrations with CI/CD
single source of truth for all environments guarantees consistency for security mea-
sures, which allows us to incorporate infrastructure and security changes in a modern,
declarative way.

 Let’s come back to our reference application and look at how the previous work-
flow applies to it. In our case, we can have three separate development teams. Each
of them is producing a separate image that is handed over to operators responsible
for the end-to-end application. A Kubernetes cluster delivers an application landing
zone, as shown in figure 12.47, as a dedicated namespace. This provides us the capa-
bility for workload isolation between applications on resource, security, and connec-
tivity levels.

Summary
 Modern application delivery CI/CD platforms play a significant role in the

modern enterprise application delivery process.
 Developers can focus on applications, which increases the performance and

efficiency of development teams.
 The same applies to operators that can control application delivery on early

stages, offload daily routines, and minimize configuration overhead.
 Automated pipelines unify the ways of working with an application and infra-

structure.
 Security teams become an inseparable part of the integration and delivery process.

Figure 12.47 Application landing zones

311Summary
 Modern CI/CD platforms introduced unified tools. They built knowledge, aware-
ness of expectations, and a way of working across all involved parties.

 Unified toolsets improve cooperation in the shared responsibility model that
the platform introduced into organization.

 Processes, operating models, learning, and communication paths must be adapted
to fit that new model. Its benefits include reduced lead time for changes,
increased deployment frequency, and a significant drop in service recovery time.

Security and policies
Scott Surovich

Google has made deploying Anthos clusters an easy, automated process. Because
the process is automated, administrators may not consider anything past the initial
simple cluster creation. When you deploy a cluster without considering postinstalla-
tion tasks like security, the likelihood is high that an attacker will be able to take
control of your cluster with little effort.

 Like many base installations of a product, a new Kubernetes cluster will include
few, if any, enhanced security settings. For most enterprise systems, this setup is by
design. Rather than force a rigid security model on an organization, potentially
enabling features that may not be usable in some organizations, Kubernetes design-
ers opt to make security a post-cluster-installation process that is designed and
implemented by the organization.

This chapter covers
 Kubernetes security overview

 Anthos security features

 Understanding root versus privileged containers

 Using ACM to secure a cluster
312

31313.2 Hypervisors vs. container runtimes
 In today’s connected world, it seems that not a day goes by without news of a new
hacking attack. Ransomware, botnets, distributed denial-of-service attacks, and count-
less others are becoming a daily cat-and-mouse game between organizations and hack-
ers. Regardless of the placement of your cluster, on-prem or off-prem, you need to
secure all areas that could be exploited. Failure to sufficiently plan for these attacks
can lead to data leaks, service interruptions, fines, brand change, or loss of revenue.

 In this chapter, we will discuss the features that Anthos provides to secure your
Kubernetes clusters. Utilities like Anthos Config Management (ACM) and the Anthos
Service Mesh (ASM) offer features to secure a cluster, limiting or blocking the effects
from bad actors and honest user mistakes.

 For example, a default installation of Kubernetes may allow a user to deploy a con-
tainer that mounts host volumes, uses the host PID and host networking, runs as root,
or runs in privileged mode. All of these can lead to different problems, but let’s look
at one of the most dangerous: privileged containers. A privileged container allows a
user to mount the host’s root filesystem into a mount point in the running container.
Once the filesystem is mounted, a user can get into the running container and browse
the entire filesystem of the worker node. With the host filesystem mounted, the
attacker could go one step further and remount the root filesystem, allowing them to
halt a running container, start a new rogue container, or destroy the host operating
system filesystem.

 Running a privileged container is a commonly used example that shows why you
need to add additional security to a cluster. Although security policies are usually the
first type of policy created for a cluster, you can’t forget about other settings that can
have an effect on the cluster and your services. To secure a cluster, you need to under-
stand what an attacker may do that will lead not only to a security breach but service
interruptions and data loss as well.

13.1 Technical requirements
The hands-on portion of this chapter will require you to have access to a Google
Kubernetes Engine cluster running in GCP with ACM and Policy Controller enabled.

13.2 Hypervisors vs. container runtimes
When a new technology is released, it’s commonly deployed without the appropriate
knowledge required to run it securely. This often causes people to consider the new
technology as less secure than a more mature technology, like containers versus vir-
tual machines. Until recently, it was common for people to say that containers are not
as secure as a virtual machine, with many pointing out that the containers sharing the
host’s kernel is the primary security concern.

 This shared kernel opens an avenue of attack for malicious actors, possibly allow-
ing them to hack into a less-than-secure container and, from there, break out into the
host itself. If an attacker breaks out of a container, they could, potentially, gain com-
plete control of the host operating system. This is commonly contrasted with a virtual

314 CHAPTER 13 Security and policies
machine running on a hypervisor, where there’s no way a breakout could happen. Or
could it?

 Over the years, different hypervisors have had common vulnerabilities and expo-
sures (CVEs) that have led to varying levels of security problems, including privileged
escalations, allowing an attacker access to the hypervisor with administrative permis-
sions. (More information about CVEs can be found at https://cve.mitre.org/.) Once
they have compromised the hypervisor, an attacker would have access to every virtual
machine on the host, including the virtual disks used to run the virtual machine.

 This section is not intended to spark a debate about container security versus vir-
tual machine security. Our intention is to call out that no system is completely secure,
and when a system, like Kubernetes, is deployed without understanding basic security,
you put yourself and your organization at risk.

 Let’s look at some common Kubernetes security concerns that need to be exam-
ined before a cluster should be considered “production ready.”

13.3 Kubernetes security overview
A basic Kubernetes cluster usually enables limited security settings, if any at all, which
leaves organizations to address security on their own as follows:

 Configuring any base Kubernetes security features
 Finding add-on products to address any missing security not included with a

base cluster
 Educating staff on the installation and support of each component
 Scanning images for vulnerabilities
 Enabling network security to encrypt traffic between workloads

These tasks may not sound like large obstacles to overcome in some organizations.
You may already know about various open source packages that add security to clus-
ters, like admission controllers such as OPA (Open Policy Agent) or Gatekeeper
(https://github.com/open-policy-agent/gatekeeper). An organization can decide to
deploy Gatekeeper using the open source project release, but doing so would leave
them to handle support internally or by submitting an issue on the GitHub reposi-
tory for Gatekeeper. Problems with an admission controller can have detrimental
effects on the cluster, potentially causing obstacles with every deployment request.
Until you have been on the receiving end of an admission controller problem, you
may not fully understand the effect and how having a support contact can be a clus-
ter lifesaver.

 Throughout this book, we have discussed how Anthos brings Kubernetes clusters
to the next level by providing add-ons to a cluster backed by full Google support.
Security is one of the key areas that Anthos excels in, as you read in chapter 11, where
you learned about some of the features of ACM, including configuration syncing and
Config Connector. ACM can also be used to configure the base aspects of Kubernetes

https://cve.mitre.org/
https://github.com/open-policy-agent/gatekeeper

31513.3 Kubernetes security overview
security, including Roles and RoleBindings, but also provides additional security by
including the Gatekeeper policy engine.

 Before taking a deeper look at Policy Controller and the policies that can be imple-
mented with it, let’s quickly go over the security mechanisms that are provided as part
of a base Kubernetes installation.

13.3.1 Understanding Kubernetes security objects

As a cluster administrator, you need to understand the included security options and
how they address, or don’t address, your organization’s security policies. Fully cover-
ing the base security objects included with Kubernetes is beyond the scope of this
chapter. They are presented here to provide an overview that you can further look
into using the reference links provided. Some commonly used security objects follow:

 NetworkPolicies—Defines conditions to control Ingress and egress traffic to ser-
vices (http://mng.bz/61vy)

 Role-based access control (RBAC)—Provides granular access to Kubernetes objects
using user and group membership (http://mng.bz/oJMM)

A once common Kubernetes security concept, pod security policies (PSPs), is depre-
cated with the current release of Kubernetes. However, Policy Controller addresses
the conditions previously provided by PSPs.

 Because this chapter and book are intended to highlight the advantages Anthos
itself brings to your Kubernetes experience, we will not be covering RBAC policies or
NetworkPolicies, which are explained in more detail on the kubernetes.io pages
referred to earlier and in several other Kubernetes books. This chapter is not intended
to provide an exhaustive tutorial for securing Kubernetes clusters and workloads.
Rather, we will focus on the additional tooling that Anthos provides to streamline,
implement, and monitor the solutions for common security concerns. We will use spe-
cific vulnerabilities to demonstrate solutions, but in no way is this coverage exhaustive.

13.3.2 Types of security

Securing any digital service must include several avenues of attack: physical, internal
(either malicious or accidental by employees or contractors), and external. In addi-
tion, the purpose of such attacks takes several forms. Is the intent to steal data or code,
disrupt the service, or hold the system hostage? No solution is ever 100% secure—the
very fact that it needs to be usable means it will always be susceptible to some form of
attack. However, as an industry, we should work to make our services as difficult to dis-
rupt as possible.

 Part of the driving force behind Kubernetes is to reduce the barriers to deploying
functional workloads. This reduces the support overhead on the team that runs the
cluster itself, with the tradeoff that more people have access to deploy workloads and
configurations that may cause service disruption. Therefore, from the cluster security
perspective, we need to put specific policies in place to minimize the possibility of a

http://mng.bz/61vy
http://mng.bz/oJMM

316 CHAPTER 13 Security and policies
vulnerability being exploited. Although some organizations can do this entirely with
people-oriented policies, the best security policies are those where the enforcement
mechanism is automatic and does not rely on manual intervention.

 As with any compute-abstraction platform, Kubernetes contains multiple avenues
of attack, especially in the default configuration. Some of these will always be pres-
ent, to one degree or another, to deliver the value of the workloads in the cluster.
For example, a middleware service that stores and retrieves data from a database is
always going to need access to the database server, leaving an opening between the
two components.

 Every organization should reduce the possible avenues of attack on their systems.
However, no organization is exactly like another. Therefore, most Kubernetes flavors
are distributed with intentionally less-restrictive security settings. The first task of a
Kubernetes administrator should be to apply a more rigorous set of security policies,
in keeping with their organization’s directives and needs. We can’t provide an exhaus-
tive list of every possible policy for every organization.1 However, we will cover a cou-
ple of basic policies that apply to most clusters.

PRIVILEGED CONTAINERS AND THE ROOT USER

One of the great advantages of container-based orchestration systems is the reduction
of resource usage by sharing the system’s kernel (and typically, a portion of the filesys-
tem) with the underlying containers; Kubernetes is no different. These orchestrators,
including Kubernetes, include safeguards to prevent processes inside containers
from accessing the host machine’s resources directly. However, certain components of
the orchestration system may need access to specific portions of the host infrastruc-
ture, either as a user or root. Before the development of in-container image build-
ers, this was a common way to build images while running in a clean environment
within a container.

 In Kubernetes, the ability for a container to “break out” and issue commands to
the host system is governed through the privileged flag on a container or Pod spec.
Running commands on the host system as an individual user may be of limited use in
most cases, unless the container is running as a superuser or assumes the identity of
one. For simplicity, many container images available publicly run internally as the root
user, to avoid permissions issues within the container. However, if the privileged flag
is set to true, this would allow processes inside the container to break out and affect
the host system as the superuser.

 Two safeguards must be put in place to prevent a container from running as a
superuser account: force containers to prevent privilege escalation, and prevent
images from running as the root user by default.

 Previously, Kubernetes included the PodSecurityPolicy object type to enforce
specific policies for deployed Pods. However, PSPs have been deprecated starting in

1 Kubernetes.io does provide an initial set of recommendations: http://mng.bz/nJyK.

http://mng.bz/nJyK

31713.4 Common security concerns
Kubernetes 1.21 and will be removed, in their current form, in the 1.25 release. The
Kubernetes SIG decided to deprecate PSPs for many reasons, including these:

 Difficulty in troubleshooting policies due to how they are applied. PSPs are bound
to either the Pod’s Service Account or the user that submitted the request.

 Cannot limit the type of PersistentVolumeClaims, which means a user could
create a PersistentVolumeClaim using a HostPath.

 Failing closed, which means that if a policy has not been defined, the action will
fail. Due to this behavior, you cannot enable PSPs at the start of rolling out a
cluster—you need to have all your policies created before enabling PSPs for the
entire cluster.

Even before the deprecation of PSPs, many organizations skipped using them due to
the limitations mentioned. Instead, they decided to implement an admission control-
ler like Gatekeeper (previously known as OPA, or Gatekeeper 1.0).

 To secure a cluster, you need to think about what a malicious actor would attempt
to execute before you can mitigate the risk. Let’s discuss some of the common security
concerns that you need to consider before a new cluster goes live.

13.4 Common security concerns
The Kubernetes API and configuration design provides for a large amount of flexibil-
ity to support a wide range of deployment scenarios and applications. However, most
organizations do not need, nor do they want, the more security-sensitive configuration
options to be enabled. Some of these sensitive fields that are permitted by default are
included in table 13.1.

One vulnerability occurs in Kubernetes if containers are set to run as root and the
privileged field is set to true. Many widely distributed images use the root user as

Table 13.1 Manifest fields that may lead to a security incident

pod.spec fields

Field Description

hostPID Allows containers to share the host’s process namespace

hostIPC Allows containers to share the host’s IPC namespace

hostNetwork Allows container to share the host’s network namespace

pod.spec.containers.securityContext fields

Field Description

privileged Allows containers to access all the host’s devices

allowPrivilegeEscalation Allows a process to have more access than its parent process

318 CHAPTER 13 Security and policies
the default user—developers and administrators can, and should, change this to use a
nonroot user. However, just running as a root user does not give the container access
to the host system, because the container daemon will prevent access. But, if users can
set the privileged field to true, then a run-as-root container will be able to access the
host system and make changes or extract data they should not have access to. To pre-
vent this from occurring, we need to create a new Gatekeeper policy instance.

 These fields represent only a small list of items that may be used to compromise a
host. Later in the chapter, we will use these options to demonstrate how an attacker
can use them to gain full access to a Kubernetes host in a cluster.

 Attackers don’t always want to take over a host system. They may be content sim-
ply disrupting services and causing general havoc. Unfortunately, this type of inci-
dent can also be triggered by an innocent user who may not have full knowledge of
the system, leading to a system outage or degradation. Your security standards need
to consider all actions that may lead to a service interruption initiated from outside
entities, such as permitted but malicious users or potential misconfigurations from
well-meaning users.

 The following list outlines some often overlooked settings that, if not addressed,
may have an effect that could lead to revenue losses, fines, service outages, or negative
company brand consequence:

 Duplicate Ingress controller URLs
– Could lead to service interruption for the Ingress rules that conflict

 An application, or namespace, that consumes all a node’s resources
– Leads to host resource problems, affecting all applications on the host

 Rogue container images that have not been pulled from an approved registry
– May lead to malware or ransomware

 An Istio policy that uses “*”
– Leads to service interruption for all Istio services

 Unencrypted traffic between Pods in a cluster
– Could lead to data leaks

This is just a small list of common concerns that need to be considered to increase
the security and availability of a cluster. If you had to think about every scenario that
could affect a Kubernetes application, it could take you months to create policies
that address each task, and they would not cover scenarios you did not think of. Far
too often, you will learn about an action that you didn’t consider only after an event
has occurred.

 Anthos includes products that provide configuration management and enhanced
security to your cluster, including a set of policies developed by the community and
Google. But, before getting into the Anthos security and policy features, let’s review gen-
eral container security, so we can understand the need for the tools Anthos provides.

31913.4 Common security concerns
13.4.1 Understanding the Policy Controller

The ACM Policy Controller provides an admission controller to a cluster. An admission
controller is a component that validates or mutates requests to the Kubernetes API
Server, executing the logic of the controller before allowing or denying the request.

 When you enable the policy engine, a ValidatingWebHook configuration is cre-
ated, which registers the engine as an admission controller with the API server. Once
registered, the API server will send object requests to the admission controller to be
evaluated, as shown in figure 13.1.

In the workflow shown in figure 13.1, the API server has received a request to create a
new Pod. Because the cluster has ACM installed with the Policy Controller enabled,
the request is sent to the Gatekeeper service. The service then forwards the request to
the Gatekeeper Pod, which checks the configured policies for any violations.

 At this point, you may be wondering what kind of latency or performance effects a
cluster may experience once Gatekeeper has been deployed. On average, policy evalu-
ation takes about one millisecond, even when larger policies are evaluated. Like any
system that allows you to create your own objects, you can create a policy that will
affect the performance of the policy engine, resulting in overall system latency. Creat-
ing policies is beyond the scope of this chapter. If you want to learn more about poli-
cies and performance, you can find additional details on the Open Policy Agent
website at http://mng.bz/v1GM.

 In the example shown in figure 13.1, a policy was found that denied the request,
resulting in the admission controller sending the denial to the API server. Because the
admission controller returned a denial, the API server will not create the object and
will update the status of the object with the error provided by the policy engine.

.

.

.

.

Figure 13.1 Admission controller policy validation flow

http://mng.bz/v1GM

320 CHAPTER 13 Security and policies
 A policy engine is a simple evaluation system that checks a request and decides
whether the request will be allowed. Policy engines have an easy flow to them, but the
real power in them is the policies themselves, which provide the logic for the decision
process. In ACM we use constraint templates and constraints to implement security
policies in our clusters. In the next sections, we will explain what constraint templates
are and how they are implemented in a cluster by creating constraints.

INTRODUCING GATEKEEPER CONSTRAINT TEMPLATES

Think of constraint templates as the logic that is used by the policy engine to make
decisions about requests. When Gatekeeper is enabled on a cluster, it will create a set
of default policies that contain rules for common use cases. At the time of writing,
ACM’s policy controller includes 32 templates, including these:

 Allowed container registries
 Istio-specific policies
 Resource constraints
 Alternative security that provides security similar to PSPs

NOTE You can find a complete list of each template and a description of what
each does by visiting http://mng.bz/41oV.

Each policy is a custom resource type known as a ConstraintTemplate. You can view
all the templates in a cluster by executing kubectl get constrainttemplates. An
abbreviated list is shown in figure 13.2.

Constraint templates, by themselves, are only a definition of a policy—the logic that will
be used for the evaluation. In the next section, we will explain how to use constraint
templates to create a constraint, which will enable a selected policy on the cluster.

ENABLING A POLICY

To enable the enforcement of a policy, you need to create a YAML file that defines a
constraint, which will be evaluated when a new object is created. This is a key behavior

Figure 13.2 Constraint template list

http://mng.bz/41oV

32113.4 Common security concerns
to remember: because the policy engine is an admission controller, it evaluates objects
only when they are created or admitted to the cluster. It will not enforce the policy
against any existing objects until they are recreated, but it will show violations of the
policy running in the cluster. This aspect is often overlooked by users who are newer
to Gatekeeper and is a key point to remember when you implement a new policy in
your cluster.

 Earlier we explained how a container that is started as a privileged container could
be used to compromise the host and, ultimately, the cluster. Because of this potential,
you may want to deny the creation of privileged Pods. Because this is a common use
case, ACM includes a template to deny privileged containers. The example manifest
that follows creates an object called deny-privileged, using the custom resource kind
K8sPSPPrivilegedContainer:

apiVersion: constraints.gatekeeper.sh/v1beta1
kind: K8sPSPPrivilegedContainer
metadata:
 name: deny-privileged
spec:
 match:
 kinds:
 - apiGroups: [""]
 kinds: ["Pod"]

Notice that, in the spec section of the manifest, we define a match parameter. This
parameter defines which object(s) the policy engine will evaluate against the con-
straint. In the example, the policy will be evaluated against all apiGroups for the
object type pod. This means that any time a Pod request is received, it will be checked
to see whether it is attempting to start as a privileged container.

 You might be wondering why we are matching only Pods, and not Deployments or
ReplicaSets. The Pods match will evaluate any attempts to create a Pod, which includes a
manifest that uses a type of Pod, or when any other object like a Deployment tries to
create a Pod. When a Deployment is submitted, the API server will create a Deployment
object, which creates a ReplicaSet object, which creates the Pods. No matter how the
Pod is created, it will be checked against the policy.

 By default, once a constraint has been created, it will be enforced for every object
defined in the match list. This includes Anthos system namespaces like kube-system,
gke-system, and gke-connect. If you were to add the constraint in the previous exam-
ple, Pods like kube-proxy and CNI Pods like Calico or Cilium would be blocked from
starting up. If CNI Pods are denied startup, the cluster nodes will not have any net-
work connectivity, causing all Pods to fail. Because constraints have a clusterwide
effect, you need to carefully plan and understand how the policy will affect the entire
cluster, including existing objects.

 It may seem that a policy will affect every namespace, and by default, that it is true
of a new policy. Luckily, ACM allows you to exclude a namespace by adding a con-
straint that includes the namespace in the spec.match.excludedNamespaces, or you

322 CHAPTER 13 Security and policies
can configure the Policy Controller to have exemptableNamespaces as documented
here: http://mng.bz/Q84j.

 Because policies can have unintended consequences, the Anthos policy manager
has an option that allows you to audit the results of a constraint without actually
enforcing it. In the next section, we’ll discuss auditing a constraint.

AUDITING A CONSTRAINT
Before enforcing a new constraint, you should test it against the cluster to avoid any
unexpected results. As mentioned in the previous section, when you create a new con-
straint, it will be enforced by default. You can change this default behavior from
enforcement to auditing by adding the enforcementAction: dryrun option to the
constraint manifest. Using the psp-privileged-container example, we can add the
dryrun option to change the default enforcement behavior from enforcement to
auditing as follows:

apiVersion: constraints.gatekeeper.sh/v1beta1
kind: K8sPSPPrivilegedContainer
metadata:
 name: psp-privileged-container
spec:
 enforcementAction: dryrun
 match:
 kinds:
 - apiGroups: [""]
 kinds: ["Pod"]

Now that the enforcement has been changed to auditing, any Pod that violates the
constraint will only be logged as a violation, but it will still be allowed to start up. Also,
unlike the default enforcement behavior, setting the constraint to dryrun will evaluate
not only new requests but all running Pods as well. This allows you to verify the effects
of a constraint on every Pod, rather than just new requests, so you will know how it
would affect any Pods that are restarted.

 Once set to dryrun, you can view the results of the audit using kubectl get
<constraint kind> <constraint name> -o yaml. For our example, we can view the
affected Pods by executing kubectl get K8sPSPPrivilegedContainer psp-privileged-
container -o yaml. Depending on how many violations there are, you may receive a
lengthy list of affected containers. The next output is an abbreviated list from a
default cluster running Anthos on bare metal:

 violations:
 - enforcementAction: dryrun
 kind: Pod
 message: 'Privileged container is not allowed: cilium-agent, securityContext:
 {"capabilities": {"add": ["NET_ADMIN", "SYS_MODULE"]}, "privileged": true}'
 name: anetd-4nldm
 namespace: kube-system
 - enforcementAction: dryrun
 kind: Pod

http://mng.bz/Q84j

32313.4 Common security concerns
 message: 'Privileged container is not allowed: kube-proxy, securityContext:
{"privileged":

 true}'
 name: kube-proxy-4z8qh
 namespace: kube-system

The output shows that if we were to enforce this policy, the kube-proxy and Cilium
Pods would be denied startup. This presents a catch-22: we want to deny privileged
containers from running, but we need to have privileged containers to allow the sys-
tem container to run. It is not uncommon for certain containers to go against a policy
that would deny the container starting. Because this is a common scenario, the pol-
icy engine allows you to exempt namespaces from being evaluated from either all
policies or only certain policies.

CREATING A NAMESPACE EXEMPTION

Once a constraint is created, it will affect every container that is started, without any
regard for the type of Pod that is being started. Many common system containers, like
networking or logging agents, require privileges that may be denied by a cluster
policy. Because policies secure a cluster, they are enforced at the cluster level, across
all namespaces. This may work for certain policies, but others may block a legitimate
container from being scheduled. To allow exemptions, the admission controller
includes controls that allow namespaces to be exempt from either all policies or just
select policies.

Exempting a namespace from specific processing
To exempt namespaces from all Gatekeeper policies, you can create a config object
that contains the namespace(s) that you want to exempt. You can exempt each name-
space from all Gatekeeper functions or only certain processes, like auditing, by adding
one or more processing options. Table 13.2 shows the four processing options that
can be set.

For example, we may want to exempt a few namespaces from all Gatekeeper process-
ing. To exempt all processes, we can create a new config that contains the name-
spaces, with an * in the processes field. The manifest shown next creates a config that

Table 13.2 Namespace exemption options

Process option Results of exemption

Audit Namespace(s) will not report audit results but will still be part of the webhook and
sync processes.

Webhook Namespace(s) will be exempt from the admission controller but will still be part of
the audit and sync processes.

Sync Namespace(s) resources will not be reported into Gatekeeper but will still be part
of the audit and webhook processes.

* Exempts the namespace(s) from all Gatekeeper processes.

324 CHAPTER 13 Security and policies
exempts the kube-system and gatekeeper-system namespaces from all Gatekeeper
processes:

apiVersion: config.gatekeeper.sh/v1alpha1
kind: Config
metadata:
 name: config
 namespace: "gatekeeper-system"
spec:
 match:
 - excludedNamespaces: ["kube-system", "gatekeeper-system"]
 processes: ["*"]

You can add different process exemptions for different namespaces by adding addi-
tional matches. For example, you can create a match that exempts a namespace only
from the webhook process, whereas another namespace may be exempt only from
Gatekeeper’s auditing process.

Exempting a namespace from all policies
In some organizations, creating an exemption for all Gatekeeper policies might violate a
security standard. Creating a namespace exemption is quick and easy, but it will exempt
every deployment in that namespace from all Gatekeeper policies, without exception.

 To exclude a namespace from all policies is a two-step process. The first step is to
add a list of namespaces that the policy engine will allow to ignore policies, and the sec-
ond is to label the namespace(s) that you want to exempt with admission.gatekeeper
.sh/ignore=true.

 If you attempt to skip the first step and you only label a namespace to exempt it,
you will receive the following error from the API server that only exempt namespaces
can have the ignore label:

Error from server (Only exempt namespace can have the
admission.gatekeeper.sh/ignore label): admission webhook "check-ignore-
label.gatekeeper.sh" denied the request: Only exempt namespace can have
the admission.gatekeeper.sh/ignore label

Before labeling any namespaces, you must first add the namespaces by editing the
installed configManagement object and adding a list of namespaces in the exemptable-
Namespaces field, which is added using the GCP console.

 To allow a namespace to be added as an exemption using the Anthos console, you
need to edit the config management settings for the cluster. In the GCP console, open
Anthos > Config Management to see the list of clusters that are available. Select the
button next to the cluster you want to configure and click Configure at the top of the
GCP console page. If you expand the settings and scroll to the bottom, you will see the
Policy Controller section. Click on the ACM settings for your clusters to open a list of
exempt namespaces, as shown in figure 13.3.

NOTE You must be careful when adding a new namespace. The console does
not verify whether a namespace already exists or if it is misspelled.

32513.4 Common security concerns
In figure 13.3, you can see that we have created the ability to exempt four namespaces.
To add another namespace, you only need to click in the Exempt Namespaces box,
type the name of the namespace, and click Done. Always double-check that the name-
spaces you enter are spelled correctly. The system does not validate the list against the
cluster, so any errors in spelling will fail to add the namespace to the exemption list.
Once the namespaces have been added to the exemption list, you must label the
namespace with the admission.gatekeeper.sh/ignore=true label, exempting the
namespace from all Gatekeeper policies.

 Labeling the namespace to ignore Gatekeeper will cause the admission controller
to ignore every policy for any object that is created in the namespace. Rather than
exempting a namespace from every policy, you may want to consider exempting the
namespace from individual policies, allowing you to enforce some policies, while
exempting only the required policies for object creation in the namespace.

Exempting a namespace from a constraint template
If you find yourself in a situation where you need to exempt a certain namespace from a
policy, but you cannot exempt the namespace from all policies, you can add an exemp-
tion to the constraint itself. For example, suppose we have a policy that requires all name-
spaces to have a billing code assigned to them. However, we want to exempt the kube-
system namespace and a new namespace that will be created called web-frontend. We
can do this by adding the excludedNamespaces field to our constraint as follows:

apiVersion: constraints.gatekeeper.sh/v1beta1
kind: K8sRequiredLabels
metadata:
 name: ns-billing

Figure 13.3 Adding an exemption using the GCP console

326 CHAPTER 13 Security and policies
spec:
 match:
 kinds:
 - apiGroups: [""]
 kinds: ["Namespace"]
 excludedNamespaces:
 - kube-system
 - web-frontend
 parameters:
 labels:
 - key: "billing"

If we attempt to create a new namespace called test-fail without a label, Gatekeeper
will deny the request with the following error:

Error from server ([denied by ns-billing] you must provide labels:
{"billing"}): admission webhook "validation.gatekeeper.sh" denied the
request: [denied by ns-billing] you must provide labels: {"billing"}

However, if we try to create the web-frontend namespace without a label, as shown
next, Gatekeeper will allow it, because it is included in the excludedNamespaces for
the constraint:

[root@localhost gke-bm]# kubectl create ns web-frontend
namespace/web-frontend created

ACM provides granular controls to exempt namespaces by providing the ability to
exempt a namespace from either all policies or only certain policies. You can use a
mix of each type for different namespaces, exempting one namespace for all policies,
whereas other namespaces may be exempt from only certain policies. Try to avoid
exempting namespaces from all policies, unless you have strong justification to do so.
Once exempt, no policies will ever be enforced for a fully exempted namespace.

 Although Anthos includes several constraint templates, some scenarios may exist
where you need to create a custom constraint. In the next section, we will explain how to
create a custom constraint template, allowing you to extend the included set of policies.

CREATING A CONSTRAINT TEMPLATE

The default template library included with ACM has grown from a handful of policies
in the early releases to more than 32 with the most current release. Google and the
community continue to add policies to the default library, but you may have a unique
policy requirement for your clusters that Google does not provide.

 If you find yourself needing to create a policy, you can create a custom constraint
template by creating your own policy using a language called Rego. Covering Rego in
depth is beyond the scope of this book, but you can read more about Rego and how to
use it to create policies at http://mng.bz/X5e6.

 To create a new template, you need to create a new ConstraintTemplate object,
which will contain the Rego code to evaluate the policy. Google offers documentation
to assist you in creating a template at http://mng.bz/ydKq.

http://mng.bz/X5e6
http://mng.bz/ydKq

32713.4 Common security concerns
 The next example creates a new template that will check for an image digest when
a new container is created:

apiVersion: templates.gatekeeper.sh/v1
kind: ConstraintTemplate
metadata:
 name: k8simagedigests
 annotations:
 metadata.gatekeeper.sh/title: "Image Digests"
 description: >-
 Requires container images to contain a digest.

 https:/ /kubernetes.io/docs/concepts/containers/images/
spec:
 crd:
 spec:
 names:
 kind: K8sImageDigests
 validation:
 openAPIV3Schema:
 type: object
 description: >-
 Requires container images to contain a digest.

 https:/ /kubernetes.io/docs/concepts/containers/images/
 properties:
 exemptImages:
 description: >-
 Any container that uses an image that matches an entry in

this list will be excluded
 from enforcement. Prefix-matching can be signified with '*'.

For example: 'my-image-*'.

 It is recommended that users use the fully-qualified Docker
image name (e.g. start with a domain name)

 in order to avoid unexpectedly exempting images from an
untrusted repository.

 type: array
 items:
 type: string
 targets:
 - target: admission.k8s.gatekeeper.sh
 rego: |
 package k8simagedigests

 import data.lib.exempt_container.is_exempt

 violation[{"msg": msg}] {
 container := input.review.object.spec.containers[_]
 not is_exempt(container)
 satisfied := [re_match("@[a-z0-9]+([+._-][a-z0-9]+)*:[a-zA-Z0-9=_-

]+", container.image)]
 not all(satisfied)

328 CHAPTER 13 Security and policies
 msg := sprintf("container <%v> uses an image without a digest
<%v>", [container.name, container.image])

 }

 violation[{"msg": msg}] {
 container := input.review.object.spec.initContainers[_]
 not is_exempt(container)
 satisfied := [re_match("@[a-z0-9]+([+._-][a-z0-9]+)*:[a-zA-Z0-9=_-

]+", container.image)]
 not all(satisfied)
 msg := sprintf("initContainer <%v> uses an image without a digest

<%v>", [container.name, container.image])
 }

 violation[{"msg": msg}] {
 container := input.review.object.spec.ephemeralContainers[_]
 not is_exempt(container)
 satisfied := [re_match("@[a-z0-9]+([+._-][a-z0-9]+)*:[a-zA-Z0-9=_-

]+", container.image)]
 not all(satisfied)
 msg := sprintf("ephemeralContainer <%v> uses an image without a

digest <%v>", [container.name, container.image])
 }
 libs:
 - |
 package lib.exempt_container

 is_exempt(container) {
 exempt_images := object.get(object.get(input, "parameters",

{}), "exemptImages", [])
 img := container.image
 exemption := exempt_images[_]
 _matches_exemption(img, exemption)
 }

 _matches_exemption(img, exemption) {
 not endswith(exemption, "*")
 exemption == img
 }

 _matches_exemption(img, exemption) {
 endswith(exemption, "*")
 prefix := trim_suffix(exemption, "*")
 startswith(img, prefix)
 }

It’s important to note that the Rego code contains multiple violation sections. At first
glance, it may appear that the code is the same for each, but on closer inspection, you
will notice one minor difference on the container := lines. The first violation block
checks all containers for a digest, whereas the second violation block checks all init-
Containers for a digest, and the third checks any ephemeralContainers. Because
they are all unique objects, we need to include each object in our code, or it will not
be checked by the policy engine.

32913.4 Common security concerns
 Finally, to activate the constraint, we apply a manifest that uses the new custom
resource created by the previous template, K8sImageDigests:

apiVersion: constraints.gatekeeper.sh/v1beta1
kind: K8sImageDigests
metadata:
 name: container-image-must-have-digest
spec:
 match:
 kinds:
 - apiGroups: [""]
 kinds: ["Pod"]

Once applied to the cluster, any new Pod request that does not supply a digest will be
denied by the admission controller.

13.4.2 Using Binary Authorization to secure the supply chain

Since the SolarWinds security breach, there has been a spotlight on how you need to
secure your software supply chain. You should always consider and implement this,
but it often takes an event like the SolarWinds breach to capture the attention of the
public. Securing the supply chain is a large topic, and to give it the coverage it
deserves would require a dedicated chapter, but we wanted to provide an overview of
the tools Google provides to help you secure your supply chain.

 You may have recently heard the phrase “Shifting left on security.” This term refers
to the practice of considering security earlier in the software development process.
You should consider a number of topics when shifting left, and if you want to read an
independent report sponsored by companies including Google, CloudBees, Deloitte,
and more, read the State of DevOps from 2019, which covers key findings from mul-
tiple companies and their DevOps practices, located at https://cloud.google.com/
devops/state-of-devops.

 Anthos includes a powerful tool that centralizes software supply chain security for
workloads on both Anthos on GCP and Anthos on-prem, called Binary Authorization
(BinAuth). At a high level, BinAuth adds security to your clusters by requiring a trusted
authority signature on your deployed images, which is attested when a container is
deployed. If the deployed container does not contain a signature that matches the
trusted authority, it will be denied scheduling and fail to deploy. Google’s BinAuth
provides you several features, including the following:

 Policy creation
 Policy enforcement and verification
 Cloud security command center integration
 Audit logging
 Cloud KMS support
 Uses the open source tool, Kritis, for signature verification
 Dry-run support

https://cloud.google.com/devops/state-of-devops
https://cloud.google.com/devops/state-of-devops
https://cloud.google.com/devops/state-of-devops

330 CHAPTER 13 Security and policies
 Break-glass support
 Third-party support, including support for Twistlock, Terraform, and CloudBees

Along with the features provided, you can integrate BinAuth with Google’s Cloud
Build and Container registry scanning, allowing you to secure your supply chain
based on build metadata and vulnerability scans. Google has several integrations docs
that will step you through integrating BinAuth with several systems like CircleCI,
Black Duck, Terraform, and Cloud Build on the Binary Authorization page, located at
https:// cloud.google.com/binary-authorization/.

13.4.3 Using Gatekeeper to replace PSPs

As Kubernetes deprecates PSPs, you may want to start moving away from using PSPs to
secure your clusters. One way to move away from PSPs as your main security mecha-
nism is to migrate to using Gatekeeper policies instead. The Gatekeeper project has a
GitHub repository dedicated to policies that are designed to replace PSPs at http://
mng.bz/Ml6n.

 In the next section, we will close out the chapter by learning about securing your
images using Google container Scanning.

13.5 Understanding container scanning
Like any standard operating system or application, containers may contain binaries
that have known vulnerabilities. To keep your cluster secure, you need to verify the
integrity of your containers by continuously scanning each one.

 Many solutions on the market today, including Aqua Security, Twistlock, Harbor,
and Google’s Container Registry, scan containers for vulnerabilities. Each of these
tools offers different levels of scanning abilities—in most cases, for an additional cost.
At a minimum, you will want to scan your images for any vulnerabilities from the com-
mon vulnerabilities and exposures (CVE) list.

 The CVE list (http://cve.mitre.org/cve) is a publicly disclosed list of security vul-
nerabilities for various software components, including operating systems and librar-
ies. Entries in the list contain only a brief overview of the vulnerability—they do not
contain any detailed information like consequences, risks, or how to remediate the
problem. To retrieve the details for the CVE, each entry has a link that will take you to
the National Vulnerability Database, which will provide additional details about the
CVE, including a description, the severity, references, and a change history.

 Although Anthos does not include a vulnerability scanner, Google does provide
scanning if you store your images in the Google Container Registry. In this section,
we will explain how to enable scanning on your repository and how to view the scan-
ning results.

13.5.1 Enabling container scanning

The first requirement to enable scanning in your registry is to enable two APIs on
your GCP project: the Container Analysis API and the Container Scanning API. The

https://cloud.google.com/binary-authorization/
http://mng.bz/Ml6n
http://mng.bz/Ml6n
http://mng.bz/Ml6n
http://cve.mitre.org/cve

33113.5 Understanding container scanning
Container Analysis API enables metadata storage in your project and is free, whereas
the Container Scanning API will enable vulnerability scanning and is charged per
scanned image. You can view the pricing details for the scanning API at http://mng
.bz/aMjB.

 To enable the required APIs using the gcloud CLI, use the following steps:

1 Set your default project as follows. Our example is using a project called test1-
236415:

gcloud config set project test1-236415

2 Next, enable the Container Analysis API:

gcloud services enable containeranalysis.googleapis.com

3 Finally, enable the Container Scanning API:

gcloud services enable containerscanning.googleapis.com

Once the APIs are enabled on the project, you will need to create a repository in
which to store your images. The next example creates a Docker registry called docker-
registry in the us-east4 location with a description of the registry:

gcloud artifacts repositories create docker-registry --repository-format=docker
--location=us-east4 --description="Docker Registry"

To push images to your repository, you need to configure Docker on your client to use
your GCP credentials. Authentication to repositories in GCP is configured on a per-
region basis. In the previous step, we created a registry in the us-east4 zone, so to con-
figure authentication, we would execute the gcloud command here:

gcloud auth configure-docker us-east4-docker.pkg.dev

Now that your registry and Docker have been configured, you can start to use your
registry to store images. In the next section, we will explain how to tag images and
push them to your new repository.

13.5.2 Adding images to your repository

To add an image to a GCP registry, you follow the same steps that you would use for
any other Docker registry, but the tag may be different from what you are used to:

1 If you do not have the image locally, you must either build a new image using
Docker or pull the image from another registry.

2 Tag the image with your GCP registry.
3 Push the new image to the registry.

http://mng.bz/aMjB
http://mng.bz/aMjB
http://mng.bz/aMjB

332 CHAPTER 13 Security and policies
For example, to add a CentOS 8 image to a registry, follow these steps:

1 Download the CentOS 8 image from Docker Hub:

docker pull centos:8

2 Next, tag the newly pulled image with the Google registry information. When
you tag an image that will be stored in a GCP registry, you must follow a specific
naming convention. The image tag will use the convention LOCATIONdocker
.pkg.dev/<project_ID>/<repository>/<image_name>. In the next example, the
region is us-east4, the project is test-236415, and the registry is named docker-
registry:

docker tag centos:8 us-east4-docker.pkg.dev/test1-236415/docker-
registry/centos:8

3 Finally, push the new image to the registry:

docker push us-east4-docker.pkg.dev/test1-236415/docker-registry/centos:8

In the next section, we will explain how to look at your images and any vulnerabilities
that have been found in them.

13.5.3 Reviewing image vulnerabilities

Because our project has the required APIs enabled, each image will be scanned when
it is pushed to the registry. To review the vulnerabilities, open the GCP console and
click Artifact Registry > Repositories, as shown in figure 13.4.

This will bring up all the registries in your project. Continuing with our example, we
created a registry called docker-registry, as shown in figure 13.5.

Figure 13.4 Navigating to your registries

33313.5 Understanding container scanning
Open the repository that you pushed the image to and click the image to view it. Pre-
viously, we pushed the CentOS image to our registry, as shown in figure 13.6.

Clicking the image displays the digests for the image and the number of vulnerabili-
ties that the image contains. Our example is shown in figure 13.7.

To view each of the vulnerabilities, click the number in the Vulnerabilities column. A
new window opens, listing all CVEs for the image. Depending on the image and the
scan results, you may see different links or options for the CVEs. Using our CentOS
image example, shown in figure 13.8, we can see that the results have a link to view
fixes for each CVE.

 In another example, an Ubuntu image, no fixes are listed in the CVEs, so the
results screen will contain different options, as shown in figure 13.9.

Figure 13.5 Project registries

Figure 13.6 Images list

Figure 13.7 Image hash list

334 CHAPTER 13 Security and policies
You can view additional details for each CVE by clicking the CVE in the name col-
umn, or you can click View on the right-hand side. Clicking the CVE name will take
you to the vendor’s site, whereas clicking View will provide additional details about
the vulnerability.

 In this section, we introduced Google’s container registry scanning, how to enable
it, and how to view the scanning results. This was only an introduction to the service,
but you can expand the functionality by integrating with Pub/Sub, adding access con-
trols, and more. To see additional documentation, you can visit Google’s how-to
guides at http://mng.bz/gJ6E.

13.6 Understanding container security
You should consider two main concepts when you are creating a security policy: the
user the container will run as and whether the container can run in privileged mode.
Both ultimately decide what access, if any, a potential container breakout will have on
the host.

Figure 13.8 CVE example list with fixes

Figure 13.9 CVE example without fixes

http://mng.bz/gJ6E

33513.6 Understanding container security
 When a container is started, it will run as the user that was set at the time of image
creation, which is often the root user. However, even if you run a container as root, it
doesn’t mean that the processes inside the container will have root access on the
worker node because the Docker daemon itself will restrict host-level access, depend-
ing on the policy regarding privileged containers. To help explain this, table 13.3 shows
each setting and the resulting permissions.

Both values determine what permissions a running container will be granted on the
host. Simply running an image as root does not allow that container to run as root on
the host itself. To explain the effect in greater detail, we will show what happens when
you run a container as root and how allowing users to deploy privileged containers
can enable someone to take over the host.

13.6.1 Running containers as root

Over the years, container security has received a somewhat bad reputation. Many of
the examples that have been used as evidence to support this are, in fact, not con-
tainer problems but configuration problems on the cluster. Not too long ago, many
developers created new images running as root, rather than creating a new user and
running as the new user, which limited any security consequences. This is a good time
to mention that if you commonly download images from third-party registries, you
should always run them in a sandboxed environment before using them in produc-
tion. You don’t know how the image was created, who it runs as, or whether it contains
any malicious code. Always inspect images before running them in production. In the last
section of this chapter, we will cover Google Container Scanning, which will scan your
images for known security concerns.

 You can use multiple tools to limit deployments of malicious containers, including

 Container scanning—Included in the Google Container Registry with scanning
 Allowing only trusted container repositories—Either internal or trusted partner

registries
 Requiring images to be signed

One of the most dangerous, and commonly overlooked, security concerns is allowing
a container to run as root. To explain why this is a bad practice, let’s use a virtual

Table 13.3 Root and privileged container permissions

Running container user Privileged value Host permissions

Running as root False None

Running as root True Root access

Running as nonroot False None

Running as nonroot True Limited; only permissions that have been granted
to the same user on the host system

336 CHAPTER 13 Security and policies
machine example: would you allow an application to run as root or as administrator?
Of course you wouldn’t. If you had a web server running its processes as an adminis-
trator, any application breakout would be granted the permissions of the user that was
running the process. In this case, that would be an account with root or administrator
privileges, which would provide full access to the entire system.

 To mitigate any problems from a breakout, all applications should be run with
their least-required set of permissions. Unfortunately, it is far too common for devel-
opers to run their container as root. If we ran a container as root, any container break-
out would grant the intruder access to any resources on the host. Many images on
Docker Hub and GitHub are distributed using root as the default user, including the
common busybox image.

 To avoid running an image as root, you need to create and set a user account in
your image or supply a user account when you start the container. Because busybox is
normally pulled from Docker Hub, we can run it with a nonroot account by configur-
ing a security context in the deployment.

 As part of a Pod definition, the container can be forced to run as a user by adding
the securityContext field, which allows you to set the context for the user, group,
and fsGroup:

spec:
 securityContext:
 runAsUser: 1500
 runAsGroup: 1000
 fsGroup: 1200

Deploying the image with the additional securityContext will execute the container
as user 1500. We also set the group to 1000 and the fsGroup to 1200. We can confirm
all these values using the whoami and groups command, as shown in figure 13.10.

 The UID and group IDs that were used are unknown in the image because it was
pulled from Docker Hub and it contains only the users and groups that were included
when the image was created. In an image that you or someone in your organization
created, you would have added the required groups during the Docker build and
would not receive the unknown ID warnings.

 In this section, we explained how you can set a security context to run an image
as a nonroot user or group at deployment time. This covers only the first half of
securing our hosts from malicious containers. The next section will explain how
privileged containers can affect our security and how they work together to provide
access to the host.

13.6.2 Running privileged containers

By default, containers execute without any host privileges. Even when you start a
container as root, any attempts to edit any host settings will be denied, as shown in
figure 13.11.

33713.6 Understanding container security
For example, we can try to set a kernel value from a container that is running as root,
but not as a privileged container, as illustrated in figure 13.12.

Figure 13.10 A Pod running as the root user and using securityContext
to change the defined user and user groups

Change denied because
privileged is set to false.

Kernel changes attempted.
Figure 13.11 A nonprivileged
container running as root

338 CHAPTER 13 Security and policies
The kernel change is denied because the running image does not have elevated privi-
leges on the host system. If there was a reason to allow this operation from a container,
the image could be started as a privileged container. To run a privileged container,
you need to allow it in the securityContext of the Pod:

apiVersion: v1
kind: Pod
metadata:
 name: root-demo
spec:
 containers:
 - name: root-demo
 image: busybox
 command: ["sh", "-c", "sleep 1h"]
 securityContext:
 privileged: true

Now that the Pod has been allowed to run as a privileged container, and it is running
as root, it will be allowed to change kernel parameters, as shown in figure 13.13.

In figure 13.14, notice that the domain name change does not return an error, which
verifies that the container can modify host-level settings.

 This time, the kernel change worked for two reasons: the container is running as
the root user, and the container was allowed to start up as a privileged container.

Figure 13.12 An attempted kernel change from a container without privileges

Change denied because
privileged is set to true
and the container is
running as root.

Kernel changes attempted.
Figure 13.13 The privileged
container running as root

33913.6 Understanding container security
For the last scenario, the manifest has been edited to run as user 1000, who does not
have root privileges, and to start as a privileged container:

apiVersion: v1
kind: Pod
metadata:
 name: root-demo
spec:
 containers:
 - name: root-demo
 image: busybox
 command: ["sh", "-c", "sleep 1h"]
 securityContext:
 privileged: true
 runAsUser: 1000

Even though the container is running as a privileged container, the user is a standard
user, so any kernel changes will be denied, as shown in figure 13.15.

In summary, securing the actions that a container can take on the host is controlled by
the user running in the container and whether the container is allowed to run as a
privileged container. To secure a cluster, you need to create a policy that defines con-
trols for each of these values.

 Right now, you know why containers should not be allowed to run as root and why
you should limit Pods that are allowed to run as a privileged container, but we haven’t

Figure 13.14 The host kernel change allowed from a running container

Change denied because
user 1000 does not have
permissions on the host to
change kernel parameters.

Kernel changes attempted.
Figure 13.15 The privileged
container running as nonroot

340 CHAPTER 13 Security and policies
explained how to stop either of these actions from occurring on a cluster. This is an
area that Anthos excels in! By providing Anthos Config Manager, Google has included
all the tools you need to secure your cluster with these and many other common secu-
rity settings.

 In the next section, we will explain how to use ACM to secure a cluster using the
included policy manager, Gatekeeper.

13.7 Using ACM to secure your service mesh
As you have seen throughout this book, Anthos goes beyond simply providing a basic
Kubernetes cluster. It also provides additional components like Anthos Service Mesh
(ASM) to provide a service mesh, Binary Authorization, serverless workloads, and
ACM to handle infrastructure as code.

 In chapter 11, you learned about designing and configuring ACM to enforce
deployments and objects on an Anthos cluster. In this section, we will use ACM to
secure communication between services in a cluster by using a policy. We will then move
on to an additional component included with ACM, the Policy Controller, which pro-
vides an admission controller based on the open source project Gatekeeper.

NOTE When enabling mTLS using an ACM policy, remember that the policy
will be applied to all clusters that are managed by the external repository,
unless you use a ClusterSelector to limit the clusters that will be configured.

13.7.1 Using ACM to enforce mutual TLS

In chapter 4, you learned that ASM includes the ability to encrypt traffic between ser-
vices using mutual TLS (mTLS). Mutual TLS is the process of verifying service identi-
ties before allowing communication between the services, via Istio’s sidecar. Once the
identities have been verified, the communication between the services will be encrypted.
However, by default, Istio is configured to use permissive mTLS. Permissive mTLS
allows a workload that does not have a sidecar running to communicate with a sidecar-
enabled service using HTTP (plaintext).

 Developers or administrators who are new to service meshes generally use the per-
missive setting. Although this is beneficial for learning Istio, allowing HTTP traffic into a
service running a sidecar makes it insecure, nullifying the advantages of Istio and the
sidecar. Once you are comfortable with Istio, you may want to consider changing the
permissive policy to the more secure strict setting.

 You can force strict mTLS for the entire mesh or just certain namespaces by creat-
ing a Kubernetes object called PeerAuthentication. Deciding on the correct scope
for mTLS is different for each organization and cluster. You should always test any
mTLS policy changes in a development environment before implementing them in
production, to avoid any unexpected application failures.

 Because this is an important policy, it’s a perfect example to demonstrate the
importance of using ACM as a configuration management tool. Remember that once
an object is managed by ACM, the configuration manager will control it. This means

34113.8 Conclusion
that the manager will recreate any managed object that is edited or deleted for any
reason. For the mTLS use case, you should see the importance of using ACM to make
sure that the policy is set and, if edited, remediated to the configured strict value.

 To enable a strict mTLS meshwide policy, you need to create a new Peer-
Authentication object that sets the mTLS mode to strict. An example manifest is
shown next:

apiVersion: security.istio.io/v1beta1
kind: PeerAuthentication
metadata:
 name: default
 namespace: istio-system
spec:
 mtls:
 mode: STRICT

The manifest assumes that Istio has been installed in the istio-system namespace.
Because the namespace selector is the istio-system namespace, it will enforce a
strict mTLS policy for all namespaces in the cluster.

NOTE To enforce a strict mTLS policy for every namespace in the cluster, the
PeerAuthentication object must be created in the same namespace that Istio
was installed in. By default, this is the istio-system namespace.

If you have decided to implement per-namespace enforcement, the manifest requires
a single modification, the namespace value. For example, if we wanted to enable
mTLS on a namespace called webfront, we would use the following manifest:

apiVersion: security.istio.io/v1beta1
kind: PeerAuthentication
metadata:
 name: default
 namespace: webfront
spec:
 mtls:
 mode: STRICT

To use either of these manifests with ACM to enforce a strict mTLS mesh policy, you
simply need to store it in your ACM repository. Because the policy is stored in the
ACM repository, it will be managed by the controller, and any changes or deletion
will result in the object being recreated using the strict setting. The mTLS policy is
just an example of how we can use ACM and ASM together to enforce a security pol-
icy for a cluster.

13.8 Conclusion
ACM’s policy engine is a powerful add-on included with all Anthos clusters. Gate-
keeper allows an organization to create granular policies to secure a cluster against
potential attackers by providing additional security and stability. Google provides a

342 CHAPTER 13 Security and policies
collection of default policies that address some of the most common security concerns
that have been collected from the community and Google’s own experiences. If the
included policy library doesn’t address a security problem in your organization, you
can create your own policies by using Gatekeeper’s policy language, Rego.

13.9 Examples and case study
Using the knowledge from the chapter, address each of the requirements in the fol-
lowing case study.

13.9.1 Evermore Industries

Evermore Industries has asked you to evaluate the security of their Anthos Kubernetes
cluster. The cluster has been configured as follows:

 Multiple control plane nodes
 Multiple worker nodes
 ASM to provide Istio, configured with permissive mTLS
 ACM configured with the policy engine enabled, including the default tem-

plate library

They have asked you to document any current security concerns and remediation
steps to meet the following requirements:

 Audit for any security concerns, and provide proof of any exploit covered by
policies.

 All containers must only be allowed to pull from an approved list of registries,
including these:
– gcr.io
– hub.evermore.local

 All policies, other than the approved registry policy, must be tested to assess their
consequences before being enforced.

 Containers must deny any privilege escalation attempts, without affecting any
Anthos namespaces, including these:
– kube-system

– gke-system

– config-management-system

– gatekeeper-system

– gke-connect

 Containers must not be able to use hostPID, hostNetwork, or hostIPC in any
namespace other than the kube-system namespace.

 All requirements must be addressed using only existing Anthos tools.

The next section contains the solution to address Evermore’s requirements. You can
follow along with the solution or, if you are comfortable, configure your cluster to
address the requirements and use the solution to verify your results.

34313.9 Examples and case study
EVERMORE INDUSTRIES SOLUTION: TESTING THE CURRENT SECURITY

Meets requirement 1
The first requirement necessitates you document any security concerns with the cur-
rent cluster. To test the first three security requirements, you can deploy a manifest
that attempts to elevate the privileges of a container. The test manifest should pull an
image from a registry that is not on the approved list and set the fields to elevate privi-
leges and the various host values. We have provided an example manifest here:

apiVersion: v1
kind: Pod
metadata:
 labels:
 run: hack-example
 name: hack-example
spec:
 hostPID: true
 hostIPC: true
 hostNetwork: true
 volumes:
 - name: host-fs
 hostPath:
 path: /
 containers:
 - image: docker.io/busybox
 name: hack-example
 command: ["/bin/sh", "-c", "sleep infinity"]
 securityContext:
 privileged: true
 allowPrivilegeEscalation: true
 volumeMounts:
 - name: host-fs
 mountPath: /host

This manifest will test all the security requirements in a single deployment. The image
tag that is being pulled is from docker.io, which is not on the approved registry list. It
also maps the host’s root filesystem into the container at mount /host, and it is start-
ing as a privileged container.

 Because the container started successfully, we can document that the cluster can
pull images from registries that are not in the accepted list. A successful start also
shows that the Pod started as a privileged container and that the mount to hostPath
also succeeded. To document that the container does have access to the host filesys-
tem, we can access the image and list the /host directory. Figure 13.16 shows that we
can successfully list the host’s root filesystem.

 After capturing the output and adding it to the documentation, you can delete the
Pod because we will need to test the same deployment with the policies enabled in the
next test. You can delete it by executing kubectl delete -f use-case1.yaml.

344 CHAPTER 13 Security and policies
EVERMORE INDUSTRIES SOLUTION: ADDING REPO CONSTRAINTS

Meets requirement 2
Evermore’s second requirement is that containers can be pulled only from trusted
registries. In the requirements, only images pulled from gcr.io and hub.evermore.local
are allowed to be deployed in the cluster.

 To limit images to only the two registries, we need to create a new Constraint-
Template that uses the k8sallowedrepos.constraints.gatekeeper.sh object. An
example ConstraintTemplate is provided next:

apiVersion: constraints.gatekeeper.sh/v1beta1
kind: K8sAllowedRepos
metadata:
 name: allowed-registries
spec:
 match:
 kinds:
 - apiGroups: [""]
 kinds: ["Pod"]
 parameters:
 repos:
 - "gcr.io"
 - "hub.evermore.local"

Once this manifest is deployed, any attempts to pull an image from a registry other
than gcr.io and hub.evermore.local will result in the admission controller denying the
Pod creation with the following error that an invalid image repo was used:

Figure 13.16 Accessing the host filesystem in a container

34513.9 Examples and case study
Error creating: admission webhook "validation.gatekeeper.sh" denied the
request: [denied by allowed-registries] container <nginx2> has an
invalid image repo <bitnami/nginx>, allowed repos are ["gcr.io",
""hub.evermore.local""]

Now that we have addressed requirement 2, we can move on to address require-
ments 3 and 4.

EVERMORE INDUSTRIES SOLUTION: ADDING PRIVILEGED CONSTRAINTS

Meets requirements 3 and 4
We need to address the security requirements for Evermore’s cluster. To secure the
cluster from running privileged Pods in the cluster, but not affect Pods in any Anthos
system namespaces, we need to enable a constraint with exemptions. However, before
enabling a constraint, Evermore has required that all constraints be tested and the
output of affected Pods be supplied as part of the documentation.

 The first step is to create a manifest to create the constraint. The manifest shown
next creates a constraint called privileged-containers in auditing mode only. It also
excludes all of the system namespaces that Evermore has supplied in the require-
ments document:

apiVersion: constraints.gatekeeper.sh/v1beta1
kind: K8sPSPPrivilegedContainer
metadata:
 name: privileged-containers
spec:
 enforcementAction: dryrun
 excludedNamespaces:
 - kube-system
 - gke-system
 - config-management-system
 - gatekeeper-system
 - gke-connect
 match:
 kinds:
 - apiGroups: [""]
 kinds: ["Pod"]

To add the audit output to the documentation, you must describe the constraint and
direct the output to a file by executing the following kubectl command:

kubectl get K8sPSPPrivilegedContainer psp-privileged-container -o yaml > privtest

This will create a file called privtest in the current folder, containing the audit results
for the psp-privileged-container constraint. You should check the file to verify that
it contains the expected audit results under the violations section. An abbreviated out-
put from our audit follows:

 violations:
 - enforcementAction: dryrun
 kind: Pod

346 CHAPTER 13 Security and policies
 message: 'Privileged container is not allowed: cilium-agent, securityContext:
 {"capabilities": {"add": ["NET_ADMIN", "SYS_MODULE"]}, "privileged": true}'
 name: anetd-4qbw5
 namespace: kube-system
 - enforcementAction: dryrun
 kind: Pod
 message: 'Privileged container is not allowed: clean-cilium-state,

securityContext:
 {"capabilities": {"add": ["NET_ADMIN"]}, "privileged": true}'
 name: anetd-4qbw5

You may have noticed that the audit output contains Pods running in namespaces that
were added as an exclusion. Remember that when you exclude a namespace in a con-
straint, the namespace will still be audited—the exclusion only stops the policy from
being enforced.

 Because the output looks correct, we can enforce the policy to meet the security
requirements to deny privileged containers. To remove the existing constraint, delete
it using the manifest file executing kubectl delete -f <manifest file>.

 Next, update the manifest file and remove the enforcementAction: dryrun line
from the manifest and redeploy the constraint.

EVERMORE INDUSTRIES SOLUTION: ADDING HOST CONSTRAINTS

Meets requirement 5
The fifth requirement from Evermore is to deny hostPID, hostNetwork, and hostIPC
in all namespaces, except kube-system. We also need to test the policy before imple-
mentation, as stated in the requirements.

 To meet the set requirements, we need to implement two new policies. The first,
k8spsphostnamespace, will block access to host namespaces including hostPID and
hostIPC. Finally, to address blocking hostNetwork, we need to implement the k8sps-
phostnetworkingports policy.

 To block access to host namespaces from all namespaces except kube-system, you
need to create a new constraint that exempts kube-system. We also need to test the
constraint before it’s implemented, so we need to set the enforcementAction to
dryrun. An example manifest follows:

apiVersion: constraints.gatekeeper.sh/v1beta1
kind: K8sPSPHostNamespace
metadata:
 name: psp-host-namespace
spec:
 enforcementAction: dryrun
 excludedNamespaces:
 - kube-system
 match:
 kinds:
 - apiGroups: [""]
 kinds: ["Pod"]

347Summary
After this manifest has been deployed, any attempts by a Pod to use a host name-
space like hostPID will be denied startup by the admission controller. Setting the
dryrun option will only audit the policy, without enforcing it. Once it’s tested, you
can remove enforcementAction: dryrun from the manifest and deploy it to enforce
the policy.

 To block hostNetworking, we will need to create another constraint that will use
the k8spsphostnetworkingports policy:

apiVersion: constraints.gatekeeper.sh/v1beta1
kind: K8sPSPHostNetworkingPorts
metadata:
 name: psp-host-network-ports
spec:
 enforcementAction: dryrun
 excludedNamespaces:
 - kube-system

 match:
 kinds:
 - apiGroups: [""]
 kinds: ["Pod"]
 parameters:
 hostNetwork: false

Just like the previous constraint, we have included the dryrun option to test the con-
straint before being enforced. Once tested and deployed, any Pod that attempts to set
hostNetwork to true will be denied by the admission controller with the following
error stating that only hostNetwork=false is allowed:

Error creating: admission webhook "validation.gatekeeper.sh" denied the
request: [denied by psp-host-network-ports] The specified hostNetwork and
hostPort are not allowed, pod: privileged-test-7694b64776-qmp47. Allowed
values: {"hostNetwork": false}

Congratulations! By deploying the last two constraints, we have met all Evermore’s
requirements.

Summary
 Root and privileged containers can be used to take over an unprotected host.
 Anthos can secure a cluster by deploying built-in policies or custom policies

that are deployed using Anthos Configuration Management.
 Virtual machines provide better security than containers. Both patterns have

unique security concerns and must be deployed correctly, keeping security in
mind from the beginning of their deployments.

 We covered an overview of Kubernetes security and features included with
Anthos to help remediate security concerns in clusters, including ACM and ASM.

348 CHAPTER 13 Security and policies
 Security problems with containers running as root or as a privileged container
can be used to compromise a host.

 You can use ACM features to secure a cluster by using Gatekeeper and the
included constraint template libraries provided by Anthos.

 Google’s container vulnerability scanning engine can identify container
vulnerabilities.

Marketplace
Antonio Gulli

Google Cloud Marketplace is a one-stop solution to try, buy, configure, manage,
and deploy software products. Frequently, multiple vendors offer the same pack-
age, providing an array of options for your specific use case and industry in terms
of operative systems, VMs, containers, storage costs, execution environment, and
SaaS services. Google Cloud offers new users an initial credit that can also be used
in the Marketplace. As of January 2023, this credit is $300, but it might change in
the future. In this chapter, we will discuss how you can use Google Cloud Market-
place to deploy packages automatically in different Kubernetes environments,
including Anthos, GKE, and GKE on-prem. When it comes to simplifying the devel-
oper experience, Marketplaces add value by making it as easy as possible for users

This chapter covers
 The public Google Marketplace

 The private Google Marketplace

 Deploying a Marketplace solution

 Real-world scenarios
349

350 CHAPTER 14 Marketplace
to install components, while making use of the maintainers’/providers’ opinionated,
best practice configuration.

14.1 The Google Marketplace
The Google Cloud Platform (GCP) Marketplace website (http://cloud.google.com/
marketplace) offers a single place for GCP customers to find free and fee-based
applications, provided either by Google or third-party partners, who extend what is
offered in the platform. Deployments can use either default configurations or be spe-
cialized for specific needs, such as increased memory, storage, or more computational
power with larger vCPUs. Each package has specific instructions for getting assis-
tance after installation. Note that the Marketplace team keeps each image updated
to fix critical problems and bugs. However, it is your responsibility to update the
solutions that are already deployed in your environments.

14.1.1 Public Marketplace

Currently, more than two thousand solutions are available across GCP, including
proper application packages and datasets. You can access the GCP Marketplace by
clicking the Marketplace link in the Cloud console. To select a package, either search
for a package name or browse using the left-hand pane of the Marketplace screen, as
shown in figure 14.1. The solutions from the Marketplace makes it easy to deploy new

Figure 14.1 Accessing the Marketplace via the GCP console and listing packages

http://cloud.google.com/marketplace
http://cloud.google.com/marketplace
http://cloud.google.com/marketplace

35114.1 The Google Marketplace
applications with a simple “point-and-click” operation, which is the same across multi-
ple environments, either in public clouds or on-prem.

 For the scope of this book, we are interested in applications running on Kuberne-
tes. From the Google Cloud Marketplace website, choose Explore the Marketplace,
and you will reach the Marketplace offerings (http://mng.bz/41Nv). In the Type
pane on the left, choose Kubernetes Apps. Currently, about 100 solutions are available
for GKE in different areas such as networking, databases, analytics, machine learn-
ing, monitoring, storage, and more, as shown in figure 14.2.

Solutions are categorized according to the license model: either open source, paid, or
“bring your own license” (BYOL). BYOL is a licensing model that allows enterprises to
use their licenses flexibly, whether on-prem or in the cloud.

 As of March 2023, about 70 solutions have been tested against the GKE on-prem
environment. We can view the solutions for on-prem by adding the appropriate filter
deployment-env:gke-on-prem, as shown in figure 14.3, to the search options. As of
March 2023, 93 solutions have been tested against Anthos environments.

 While browsing the solutions in the marketplace, you can identify third-party solu-
tions that are compatible with Anthos by looking for the “Works with Anthos” logo

Figure 14.2 Solutions available for the Anthos GKE environment

http://mng.bz/41Nv

352 CHAPTER 14 Marketplace
attached to the listing. In figure 14.4, you can see solutions that have a small Anthos
button. This button showcases the solutions that have been certified to work with
Anthos. These listings conform to the requirements of the Anthos Ready program
(https://cloud.google.com/anthos/docs/resources/anthos-ready-partners), which iden-
tifies partner solutions that adhere to Google Cloud’s interoperability requirements
and have been validated to work with the Anthos platform to meet the infrastructure
and application development needs of enterprise customers. To qualify, partner-pro-
vided solutions must complete, pass, and maintain integration requirements to earn
the Works with Anthos badge.

 If you select one of the offerings that are certified for Anthos, you will see the “Works
with Anthos” logo in the details screen for the selected offering, as shown in figure 14.5.

 The public Marketplace provides enterprises with a quick deployment for several
applications provided by various vendors, including NetApp, Aqua, JFrog, and Citrix.

Figure 14.3 Solutions available for Anthos GKE-on-prem environment

https://cloud.google.com/anthos/docs/resources/anthos-ready-partners

35314.1 The Google Marketplace
Figure 14.4 Solutions available for the Anthos environment

Figure 14.5 An example solution, certified “Works with Anthos”

354 CHAPTER 14 Marketplace
But what if you want to add your own solution for your developers? Of course, you prob-
ably wouldn’t want this included in the public Marketplace, and Google accommodates
this by offering a private Marketplace, which we will discuss in the next section.

14.1.2 Service Catalog

Service Catalog offers Marketplace capabilities to private enterprises to be used inter-
nally without exposing their internals to the rest of the world. Administrators can
manage the visibility of applications and deployment rights at organization, folder,
and project levels. The deployment manager can be used to define preset configura-
tions, such as deploy regions, types of servers used for deployment, deployments
rights, and other parameters, according to enterprise policy.

You can access the Service Catalog via the Cloud console Navigation menu under
Tools (see figure 14.6). From there, you can create new private Marketplaces, add
applications, and configure access rights. Each Service Catalog should be hosted by a
GCP project, and you can add catalog IAM permissions at the folder and project level.
Sharing a catalog with a GCP organization, folder, or project allows customers to share
their solutions with their end users. The steps are very intuitive, and the interested
reader can find more information online (https://cloud.google.com/service-catalog).

14.1.3 Deploying on a GKE on-prem cluster

If you intend to deploy solutions from the Marketplace to an Anthos GKE on-prem
cluster, then you need to define one or more namespaces on the target clusters and
annotate them with a Secret, which will allow you to deploy the chosen solutions. The
following steps are required:

1 If your cluster runs Istio, any external connections to third-party services are
blocked by default, so it’s important to configure Istio egress traffic to allow
connection to the external OS package repository (see chapter 4).

2 You need to allow the downloading of images from the Google Container Regis-
try by creating a firewall or proxy rule that allows access to marketplace.gcr.io.

3 In your GKE on-prem cluster, you might need to create a Google Cloud service
account. This can be done via a cloud shell like this:

Figure 14.6 Accessing the Service Catalog

https://cloud.google.com/service-catalog

35514.1 The Google Marketplace
gcloud iam service-accounts create sa-name \
 --description="sa-description" \
 --display-name="sa-display-name"

4 Sign in to your Anthos GKE on-prem cluster using a token or credentials for a
Kubernetes Service Account with a Kubernetes cluster-admin role. (Roles were
discussed in chapter 3.) This would allow you to have superuser access to per-
form any action on any resource.

From the console, you can generate a new public/private key-pair down-
loaded to your machine by running the following command:

gcloud iam service-accounts keys create ~/key.json \
 --iam-account sa-name@project-id.iam.gserviceaccount.com

5 If you are deploying from the Cloud Marketplace for the first time, create an
application-system namespace in your cluster by running the next command:

kubectl create namespace application-system

6 Then, create the Kubernetes Secret that contains an imagePullSecret for
application-system:

JSON_KEY_FILENAME=path_to/service_account_key.json
IMAGEPULLSECRET_NAME=gcr-json-key
kubectl create secret docker-registry $IMAGEPULLSECRET_NAME \
 --namespace="application-system" \
 --docker-server=gcr.io \
 --docker-username=_json_key \
 --docker-password="$(cat $JSON_KEY_FILENAME)"

7 The next step is to apply imagePullSecret to the default service account in the
application-system namespace:

kubectl patch sa default -n application-system -p '"imagePullSecrets":
[{"name": "gcr-json-key" }]'

8 Finally, for each namespace to which you want to deploy an application, you
must create a new Secret and annotate the namespace with that Secret with the
following command:

JSON_KEY_FILENAME=path_to/service_account_key.json
IMAGEPULLSECRET_NAME=gcr-json-key
kubectl create secret docker-registry $IMAGEPULLSECRET_NAME \
 --namespace=$NAMESPACE_NAME \
 --docker-server=gcr.io \
 --docker-username=_json_key \
 --docker-password="$(cat ~/$JSON_KEY_FILENAME)"

kubectl annotate namespace $NAMESPACE_NAME
marketplace.cloud.google.com/imagePullSecret=$IMAGEPULLSECRET_NAME

9 Once $NAMESPACE_NAME is defined as explained in the previous step, this name-
space can be used to install on your on-prem cluster.

356 CHAPTER 14 Marketplace
In other words, deploying on Anthos, whether on GCP or on-prem, is just a matter of
defining the appropriate namespace on your target Kubernetes clusters and annotat-
ing the namespace with the Secret keys needed to pull images for your solutions.

 In the next section, we describe how to install several predefined solutions belong-
ing to different categories, including modernization tools, databases, monitoring and
logging, CI/CD, productivity, and machine learning.

14.2 Real-world scenarios
In this section, we briefly describe how to deploy Marketplace solutions available for
Anthos. Our examples are intentionally heterogeneous and belong to different cate-
gories. Note that after you launch deployments from Cloud Marketplace, you can use
Google Cloud tools to view, modify, and monitor your deployment. For example, you
can use Cloud Deployment Manager to add resources to a deployment or remove soft-
ware deployments that you no longer need.

14.2.1 Example 1: Elasticsearch

Elasticsearch is an open source solution for searching and analyzing your data in real
time. This solution can be deployed on-prem, but this example shows deployment on
GKE. The solution (see figure 14.7) is available at http://mng.bz/Q8OQ.

Figure 14.7 Deploying an Elasticsearch solution

http://mng.bz/Q8OQ

35714.2 Real-world scenarios
After selecting the solution, you can choose the cluster and the namespace where it
should be deployed (see figure 14.8). In this case, we leave the default choices, which
will install on a cluster in us-central-1 region with the instance name elasticsearch-1
and two replicas.

Creating the clusters might take a few minutes (see figure 14.9), which is always a
good reason to have a coffee break and let Marketplace do all the work.

Once the cluster is created, Marketplace will start deploying the solution (see fig-
ure 14.10).

Figure 14.8 Deploying an Elasticsearch solution

Figure 14.9 Creating a cluster for
the new Elasticsearch solution

358 CHAPTER 14 Marketplace
When the deployment is successfully executed, you can see the deployed solution on
your chosen cluster, as shown in figure 14.11—easy, indeed. Marketplace saves you a
lot of time and speeds up the administrative tasks needed to maintain your Anthos
applications.

Once Elasticsearch is deployed from the Marketplace, you can use Anthos to manage
the cluster. In figure 4.12, you will see CPU, memory, and disk details.

Figure 14.10 Deploying application components for the Elasticsearch solution

Figure 14.11 The Elasticsearch solution deployed

35914.2 Real-world scenarios
14.2.2 Example 2: MariaDB

Let’s now focus on how to deploy MariaDB, a popular open source database, which
was forked from the more popular MySQL relational database management system
after being acquired by Oracle in 2009. The solution (see figure 14.13) is available at
https://console.cloud.google.com/marketplace/details/google/mariadb.

Figure 14.12 CPU, memory, and disk monitoring for Elasticsearch deployed from Marketplace

Figure 14.13 Deploying a MariaDB solution

https://console.cloud.google.com/marketplace/details/google/mariadb

360 CHAPTER 14 Marketplace
In this case, we decide to change the default parameters and require a higher number
of replicas—two (see figure 14.14).

The result of our deployment is straightforward (see figure 14.15). Once again, Mar-
ketplace allows us to save time while administering our Anthos clusters.

Figure 14.14 Deploying a MariaDB solution with a higher number of replicas

Figure 14.15 MariaDB deployed solution

36114.2 Real-world scenarios
Once MariaDB is deployed from the Marketplace, you can use Anthos to manage
the cluster. Figure 14.16 shows an example of inspecting the cluster and the running
Pods.

14.2.3 What we have done so far

So far, we have installed two applications on Anthos cluster on GKE. If we want to check
their status, we can access our GKE under Applications, as shown in figure 14.17.

Figure 14.16 MariaDB inspecting the solution deployed from the Marketplace

362 CHAPTER 14 Marketplace
14.2.4 Example 3: Cassandra

Cassandra is a NoSQL, highly scalable, high-performance distributed database with
high availability. Deploying a Cassandra cluster is easy. You can access the solution at
https://console.cloud.google.com/marketplace/details/google/cassandra?q=anthos
(figure 14.18).

After installation, you can access and manage your deployed solutions. For instance,
you might be interested in monitoring CPU, memory, and disk usage for a given period,
as shown in figure 14.19.

Figure 14.17 Solutions deployed via Marketplace

Figure 14.18 Deploying a Cassandra solution

https://console.cloud.google.com/marketplace/details/google/cassandra?q=anthos

36314.2 Real-world scenarios
14.2.5 Example 4: Prometheus and Grafana

Once you understand the mechanism, installing a new solution is a streamlined pro-
cess. For instance, suppose we want to install a more complex set of applications that
work together. A classic example is Prometheus and Grafana. Prometheus is an open
source monitoring and alerting platform adopted by many companies as a monitoring
tool, and Grafana provides several dashboards, which visualize the metrics collected
by the Prometheus server. The solution can be accessed at https://console.cloud.google
.com/marketplace/details/google/prometheus?q=anthos and is shown in figure 14.20.

Figure 14.19 Managing a Cassandra solution

Figure 14.20 Deploying a Prometheus and Grafana solution

https://console.cloud.google.com/marketplace/details/google/prometheus?q=anthos
https://console.cloud.google.com/marketplace/details/google/prometheus?q=anthos
https://console.cloud.google.com/marketplace/details/google/prometheus?q=anthos

364 CHAPTER 14 Marketplace
Let’s use the default parameters, shown in figure 14.21, for deploying the solution.

Once deployed, we can see the solution available from the Application details, shown
in figure 14.22.

Of course, you can use Anthos to manage the deployed solution, as illustrated in fig-
ure 14.23.

Figure 14.21 Using the default
parameters for the Prometheus
and Grafana solution

Figure 14.22 Prometheus and Grafana deployed solution

365Summary
Once the solution is deployed, you can start recording real-time metrics in the Pro-
metheus time-series database. Then you can use Grafana to create dashboards and
monitor your system performance.

 This example concludes the section. It might be worth noticing that Grafana can
be deployed via the Marketplace separately and is supported in Anthos, so it can be
compatible with managed Prometheus.

Summary
 Both the public and private Marketplaces can be used to deploy simple and

complex workloads for developers.
 The public Google Marketplace is a service provided by Google that contains

several vendor solutions, including solutions specific for Kubernetes, both in
GCP and on-prem.

 The private Google Marketplace allows a company to offer private solutions for
their internal developers, enabling companies to provide the same deployment
simplicity that Google offers in the public Marketplace.

 Consuming Marketplace solutions on-prem requires additional setup steps that
a GCP cluster does not require.

 We deployed a few Marketplace solutions to demonstrate how easy it is to
deploy a workload in the real world, using a provided solution.

Figure 14.23 Managing the Prometheus and Grafana solution

Migrate
Antonio Gulli

Containers provide developers multiple advantages, including increased speed when
deploying and provisioning workloads, higher resource utilization, portability, and
cost efficiency compared to virtual machines (VMs).

 However, many customers have several thousands of applications written over
multiple years running on VM infrastructure using heritage frameworks. For these
customers, it would be too time consuming and expensive to rewrite their applica-
tions. Therefore, they need tools to modernize workloads and to provide the bene-
fits of modern cloud native environments without incurring the cost of rewriting
applications from scratch. The whole value proposition is to decrease customers’

This chapter covers
 The benefits of using Migrate for Anthos

 Recommended workloads for migration

 Migrate for Anthos architecture

 Using Migrate for Anthos to migrate a workload

 Best practices for Migrate for Anthos
366

367
time to market during transformation projects and to augment and optimize tradi-
tional workloads with modern cloud infrastructure and services.

 Google believes that modernization doesn’t have to be all or nothing. Microser-
vices architectures structure an application as a collection of services that are highly
maintainable and testable, loosely coupled via APIs, and independently deployable.
However, even if you don’t use a microservice architecture from the beginning, you
can convert your applications into containers and still take advantage of many of
the benefits typically obtained by cloud native applications. This is what we’ll see in
this chapter.

 Migrate for Anthos (in short, M4A) is a tool that helps extract your legacy work-
loads from your VMs and transform them into containers, including all you need for
execution—the runtime, system tools, libraries, code, configurations, and settings.
Once your application is migrated, you can run it on Anthos, either on Google’s
Kubernetes Engine (GKE), on-prem, or in other clouds. In this way, the management
of infrastructure, hardware, and the OS/kernel are “abstracted away” and delegated
to your cloud provider(s).

 Furthermore, M4A generates the artifacts that enable you to switch to modern soft-
ware development using CI/CD pipelines and shifting from package management to
container-/image-based management. You can think about M4A as an accelerator to
the ultimate goal of modernization, and this acceleration can happen at scale, with
many legacy applications migrated together in bulk. M4A can let you operate thou-
sands of legacy applications at scale by modernizing the underlying compute infra-
structure, network, storage, and management.

 M4A supports both Linux and Windows migration to containers. Source environ-
ments can include either a GCP Compute Engine environment, a VMware vSphere
environment, a Microsoft Azure VM environment, or an Amazon Elastic Compute
Cloud (Amazon EC2) environment. All workloads are directly migrated with no need
for access to the original source code, rewriting your workloads, or manually contain-
erizing your workloads.

 Most of the migration work is done automatically, and you can modify the gener-
ated migration plans to fine tune the desired modernization. While the migration
process executes, the application can continue to run uninterrupted, and you can
be up and running with the containerized app in minutes. If you want to go back to
the initial state, you can roll back with no data lost. Migrated workload container
images that are generated by M4A are automatically deployed into Google Con-
tainer Registry (GCR) or other local repositories and can run in any environment
without you having to install an M4A component on target workload clusters. Of
course, the whole M4A process can be performed and monitored via the Google
Cloud console UI.

 Now that we have set up the context, let’s look at M4A’s benefits in detail.

368 CHAPTER 15 Migrate
15.1 Migrate for Anthos benefits
M4A allows us to unbundle more and more infrastructure from inside VMs and man-
age it with Kubernetes. This modernization unifies app management with modern IT
skills. Indeed, in the numerous cases described in detail in this chapter, it is possible
to promote legacy applications to first-class objects in a cloud native environment with
no need to change or access the code. The unlocked improvements at scale follow:

 Define the infrastructure with declarative APIs, dynamic scaling, self-healing,
and programmatic rollout.

 Take advantage of improved workload density on the data center, allowing for
better resource utilization.

 Maintain the infrastructure metrics, business metrics, network policies, and
project access control.

 Integrate CI/CD pipelines and build systems.

M4A benefits are transparently gained in different areas: density, cost, security, infra-
structure, automation, service management, and Day 2 operations. Let’s discuss each
class in more detail.

15.1.1 Density

VMs are abstracted from the underlying physical hardware. Whereas legacy bare metal
servers can support only a single application, hypervisor1 virtualization allows the
applications of multiple VMs to run on a single bare metal server, sharing the underly-
ing resources. Bare metal use is described here:

 Typically, bare metal utilization is at 5%–15%, and virtual machines can increase
it up to 30%.

 Containers enhance workload density, because multiple containers are typically
run on the same VM or bare metal server. In addition, the density is increased
because things like OS/kernels, networking, and storage are abstracted away, as
discussed earlier in the chapter.

The actual utilization gains will depend on several specific factors in your environ-
ment. Frequently, many organizations report significant gains as they move from phys-
ical servers, to VMs, to containers. For instance, the Financial Times content platform
team reported an 80% reduction of server costs by adopting containers (see http://
mng.bz/mJ0P).

15.1.2 Cost

An increase in density results in immediate cost savings for infrastructure. As discussed
earlier, density increase is a result of two facts: multiple containers can be packed on the

1 A hypervisor is software, firmware, or hardware that creates and runs virtual machines.

http://mng.bz/mJ0P
http://mng.bz/mJ0P
http://mng.bz/mJ0P

36915.1 Migrate for Anthos benefits
same physical machine, and many software layers are abstracted away, which results in
better usage of the available resources, requiring fewer servers, leading to an overall
cost savings. Cost is a by-product of being able to elastically scale. If demand is low,
then resources can be reduced, thus saving on the operating cost.

 Moreover, after migration, legacy applications are promoted to first-class citizens
together with cloud native applications. As a side effect, you don’t need to maintain
two working environments (both the legacy and the modern one), so, the unified
management of workloads allows further cost reduction at scale.

 If you want to know more about cost reduction, check the Google Cloud pricing
calculator at https://cloud.google.com/products/calculator to estimate your monthly
charges, including cluster management fees and worker node pricing for GKE.

15.1.3 Infrastructure

After moving the application to containers, you can see the whole infrastructure as
code, knowing how the applications, processes, and dependencies work together. Any
change in infrastructure can be stored in a repository (in short, repo) with operations
such as commit, push, pull, merging, and branching applied to any part of your
infrastructure, including config files. Traditionally, maintaining an infrastructure is
a considerable cost for enterprise. Moving to infrastructure as code allows teams to
implement DevOps/SRE methodologies, which leads to further cost savings at scale
due to enhanced agility and reliability.

15.1.4 Automation

Managing virtual machines is an expensive, time-consuming, and error-prone process
due to the need to patch and upgrade infrastructure either manually or with a pleth-
ora of third-party tools, which might increase the level of complexity. Anthos is an
enabler for modernization and facilitates the move to containers for legacy workloads,
which has an indirect effect on cost. For instance, on GKE for Anthos many opera-
tions are run automatically on the customer’s behalf, including the following:

 Node autorepair—Keeps the nodes in your Kubernetes cluster in a healthy, run-
ning state.

 Node autoupgrade—Keeps the nodes in your Kubernetes cluster up to date with
the cluster master version when your master is updated on your behalf.

 Node autosecurity—Security patches can be automatically deployed in a transpar-
ent way.

 Node autoscale—Dynamically scales your Kubernetes nodes up and down accord-
ing to instantaneous load increase/decrease.

 Node autoprovisioning—Automatically manages a set of Kubernetes node pools
on the user’s behalf.

 Progressive rollout/canary/A/B testing—Programmatically rolls out applications on
Kubernetes clusters, with rollbacks in case of problems.

https://cloud.google.com/products/calculator

370 CHAPTER 15 Migrate
As a rule of thumb, increasing the automation in your infrastructure will reduce the risk
of accidental errors, enhance the reliability of the whole system, and reduce the cost.

15.1.5 Security

Once you move into containers, several security operations are facilitated. On Anthos,
these operations include the following:

 Security-optimized node kernel and OS updates—Anthos offers automatic operating
system upgrades and kernel patches for the worker nodes, freeing you from the
burden of maintaining the OS, which is a substantial cost if your server fleet is
large. VMs must run a full guest operating system, even if they host only a single
app. Instead, containers reduce operational cost because there is no need to
run an OS.

 Binary authorization and container analysis—Anthos offers a deploy-time secu-
rity control that ensures only trusted container images are deployed in your
environment.

 Zero-trust security model—Anthos Service Mesh (ASM), covered in chapter 4, and
the core capabilities of Kubernetes allow us to provide network isolation and
TLS security without changing the application code.

 Identity-based security model—With ASM, you can get security insights, security poli-
cies, and policy-driven security. These cases are discussed in detail in chapter 4.

Transparently increasing security will reduce the risk of an incident and the associated
high cost.

15.1.6 Service management

After moving to the containers, you can use Anthos Service Mesh (see chapter 4) to
determine where your services are connected and get telemetry and visibility into your
application without changing code. Some of the benefits transparently gained on
Anthos follow:

 Encryption—Applications can communicate with end-to-end encryption with no
need for changing the code.

 Integrated logging and monitoring—You can get uniform metrics and traffic flow
logs across your application.

 Uniform observability—You can observe service dependencies and understand
the critical customer journey and how they affect your service-level agreement
(SLA2) from end to end. You do this by setting up service-level objectives (SLOs3)
on your applications.

2 The SLA is the agreement that specifies what service is to be provided, how it is supported, times, locations,
costs, performance, and responsibilities of the parties involved.

3 SLOs are specific measurable metrics of an SLA such as availability, throughput, frequency, response time,
or quality.

37115.1 Migrate for Anthos benefits
 Operational agility—You can dynamically migrate traffic and perform circuit
breaking,4 retries within your environment, canaries,5 and A/B testing. Taking a
canary as an example, you can move, based on a weighting, a certain amount of
traffic from one service to a newer version of that service.

 Bridging—You can use service meshes to bridge traffic between on-prem and
multiple clouds.

In general, adopting a service mesh will enhance your understanding of your infra-
structure, which might become quite complex over time.

15.1.7 Day 2 operations

Anthos relieves the burden of Day 2 operations. Once your application is migrated,
you can benefit from many Google Cloud Platform (GCP) capabilities, such as the
following:

 Cloud Logging and Cloud Monitoring—Cloud Logging allows you to store, search,
analyze, monitor, and alert on log data and events from Google Cloud, whereas
Cloud Monitoring provides visibility into the performance, uptime, and overall
health of cloud-powered applications. After migration, both services are avail-
able via configuration change only.

 Unified policy and integrated resource management—Anthos offers a declarative
desired-state management via Anthos Config Management, which is covered in
chapter 11. Declarative means that the user defines only the desired end state,
leaving Anthos the definition of optimized steps to implement the changes.
Anthos Config Management allows you to automate and standardize security
policies and best practices across all your environments with advanced tagging
strategies and selector policies. As users, you will have a single UI for defining
unified policy creation and enforcement (chapter 13).

 Cloud Build to implement Day 2 maintenance procedures—Cloud Build offers control
over defining custom workflows for building, testing, and deploying across mul-
tiple environments and multiple languages.

 CI/CD pipelines—Anthos integrates CI/CD pipelines for enhancing the agility of
your environment. This allows you to have smaller code changes, faster turn-
around on feature changes, shorter release cycles, and quicker fault isolation.

 GCP Marketplace—Anthos is integrated within GCP Marketplace, including a
Service Catalog for deploying new applications with a single click. This is cov-
ered in detail in chapter 14.

4 Circuit breakers are a design pattern used in modern software development to detect failures and to prevent
a failure from constantly reappearing, during maintenance, external failures, or unforeseen problems.

5 Canary deployments are a pattern for rolling out releases to a subset of users or servers. The idea is to first
deploy the change to a small subset of servers/users, test it, and then roll the change out to the remaining
servers/users.

372 CHAPTER 15 Migrate
One of the most important benefits of M4A is that legacy applications are promoted
to first-class objects with the same benefits in terms of Day 2 operations as those typi-
cally expected in a cloud native environment.

 In this section, we have discussed the benefits of using Migrate for Anthos to mod-
ernize VM workloads in place and containerize your application automatically with no
need to rewrite it. As discussed, containerized applications increase agility and effi-
ciency because they require less management time compared to VMs. In addition,
they offer an increase of infrastructure density and a related reduction in cost. Finally,
containerized applications can benefit from the service mesh in terms of observability,
Day 2 operation streamlining, and uniform policy management and enforcement
across environments.

 In the next section, we will take a deep dive into what workloads are best suited
for migration.

15.2 Recommended workloads for migration
Modernizing applications for the cloud can be difficult. Complex apps are often mul-
titiered and typically have multiple dependencies. Data has gravity, and migration
might depend on large volumes of data, either in files or in databases. Legacy applica-
tions might have been written in outdated code with legacy frameworks, and in many
situations, the code itself might not be available for recompiling in a modern environ-
ment. In this section, we discuss the following types of applications that are particu-
larly suitable for automatic migration:

 Stateless web frontend—A suitable class consists of stateless applications such as
web servers and similar applications serving customer traffic. Containers are
generally more lightweight than virtual machines, and it is, consequently, easier
to scale them up and down according to various load situations.

 Multi-VM, multitier stacks, and business logic middleware—In this class are multitier
web service stacks such as LAMP (Linux, Apache, MySQL, PHP/Perl/Python)
or WordPress, because they can be broken down into multiple independent
containers. Also in this class are J2EE Middleware such as Java Tomcat and
other COTS (commercial off-the-shelf) apps. In M4A jargon, we typically say
that the sweet-spot application categories include multitier web-based enter-
prise applications.

 Medium to large-sized databases—Databases such as MySQL, Postgres, and Redis
are supported; the data layer can be typically separated from the compute layer,
and containers can, therefore, help to manage lightweight computation.

 Low duty cycle and bursty workloads—Containers are the preferred solution in any
situation where intermittent rises and decreases in compute activity occur because
they are more lightweight than virtual machines. So, M4A should be considered
any time we need to rapidly set up Dev/Test environments, training environ-
ments, or labs.

37315.3 M4A architecture
Overall, we can say that ideal migration candidates include the following:

 Workloads where modernization through a complete rewrite is either impossi-
ble or too expensive

 Workloads with unknown dependencies that could break something if touched
 Workloads that are maintained but not actively developed
 Workloads that aren’t maintained anymore
 Workloads without source code access

Sometimes it might be difficult to have automatic migration. This is true if depen-
dencies exist on specific kernel drivers or specific hardware, or if software licenses
need to be tied to certain hardware or virtual machines. Another relevant case is
VM-based workloads that require the whole Kubernetes node capacity, including
high-performance and high-memory databases (such as SAP HANA). Except for
these specific cases, all the other workloads should be considered for a migration
from VMs to containers.

 In this section, we have rapidly reviewed relevant workloads suitable for migration.
In the next few paragraphs, we will discuss the migration architecture and some real
examples of migration.

15.3 M4A architecture
In this section, we will discuss a typical migration workflow and how a virtual machine
is transformed into several different containers. Once the migration is finished, the
generated artifacts can run anywhere. In the case of failure, tools report detailed moti-
vations for debugging and inspection.

NOTE You no longer need to install the migration components on target
clusters.

15.3.1 Migration workflow

Migration consists of three phases: the setup, actual migration, and optimization (see
figure 15.1). Let’s take a closer look at each step.

 During the setup phase, a processing cluster is created, and the migration sources
are defined. Among the supported migration sources we have VMware, AWS EC2,
Azure VM, GCE VM, bare metal, and local VMware. As of version 1.9 of Anthos Migrate,
the operating systems supported for migrations are RHEL, CentOS, SUSE, Ubuntu,
Debian, and Windows. The list is always expanding, however, and it is good to check
online for the latest list (see http://mng.bz/51Gz).

 During the setup phase, we need to set up the cloud landing zone, considering iden-
tity, network configuration, security, and billing. Several tools can help make an infra-
structure as code task more automatic, including Cloud Foundation Toolkit (https://
cloud.google.com/foundation-toolkit) and Terraform (https://www.terraform.io/).
These templates can be used off the shelf to rapidly build a repeatable, enterprise-
ready foundation, depending on your specific needs. Furthermore, during setup, you

http://mng.bz/51Gz
https://cloud.google.com/foundation-toolkit
https://cloud.google.com/foundation-toolkit
https://cloud.google.com/foundation-toolkit
https://www.terraform.io/

374 CHAPTER 15 Migrate
need to discover the workloads that you want to migrate. The desired workloads can
be identified either manually or via discovery tools such as StratoZone (https://www
.stratozone.com/; now acquired by Google), modelizeIT (https://www.modelizeit.com/),
Cloudamize (https://www.cloudamize.com/en/home/), or CloudPhysics (https://
www.cloudphysics.com/). Since version 1.5 of M4A, native discovery tools are included,
which will be covered in the next section.

 During the migration phase, M4A is run and new container images are automati-
cally generated, together with a Dockerfile, data volumes, and new YAML files for
deployment. We will see the details in the next sections, where we will cover both the
command-line interface (CLI) and graphical user interface (GUI) processes. Once
these artifacts are automatically generated, you can test them on GKE/Anthos or in
another cloud, and if everything looks good, you can deploy them to GKE/Anthos.
It’s also important to note that data is automatically moved and synchronized as part
of the migration process.

 Anthos supports live migrations, which means that applications can be migrated to
modern environments without any interruptions. Behind the scenes, M4A creates a
snapshot for the source VM, and this source VM is left running and operational with
no need for downtime. In the meantime, all the storage operations are done on that
snapshot of the VM. All workloads are directly migrated without requiring the original
source code.

 During the optimization phase, deployed artifacts can be integrated with CI/CD
platforms such as Cloud Build, GitHub, Jenkins (https://www.jenkins.io/), Spinnaker
(https://spinnaker.io/), GitLab CI/CD (https://docs.gitlab.com/ee/ci/), and others
according to your specific preferences (see chapter 12).

Generate and
Review Plan

SRE and
Ops

Figure 15.1 Setup and Migrate for Anthos

https://www.stratozone.com/
https://www.stratozone.com/
https://www.stratozone.com/
https://www.modelizeit.com/
https://www.cloudamize.com/en/home/
https://www.cloudphysics.com/
https://www.cloudphysics.com/
https://www.cloudphysics.com/
https://www.jenkins.io/
https://spinnaker.io/
https://docs.gitlab.com/ee/ci/

37515.3 M4A architecture
15.3.2 From virtual machines to containers

A typical VM consists of multiple layers (see figure 15.2, left side). At the top are the
applications run by users, together with cron jobs, config files, and user data. Just
below are multiple services, including services running in the user space and SysV or
Systemd6 service. Then, a logging and monitoring layer sits on the top of the OS ker-
nel and OS drivers. At the very bottom is the virtual hardware, including networking,
storage with logical volumes on various filesystems, CPUs, and memory.

For each application, M4A produces CI/CD artifacts in the form of a Docker Image, a
Dockerfile, and deployment YAML files, including the applications, the user services,
and the persistent volumes (see figure 15.2, right side). In particular, storage is refac-
tored into a Kubernetes-supported persistent volume. Common functions such as net-
working, logging and monitoring, and OS kernel and drivers are abstracted away and
delegated to Kubernetes management. A persistent volume is mounted using the
Migrate for Anthos Container Storage Interface (CSI) driver (see appendix D). Then
data is streamed directly from the source VM filesystem. Internally, Migrate also takes
care of generating command-line input and Customer Resource Definitions (CRD7).
Logically, the migration produces two layers in the containerized image: the first layer
is the captured user-mode system, whereas the second layer is the runtime environ-
ment for migration, together with all the necessary CRDs. However, after migration, you

6 Two common Unix service layers; see https://fossbytes.com/systemd-vs-sys-v-vs-upstart/.
7 CRD is an extension of the Kubernetes API, which is not necessarily available in a default Kubernetess instal-

lation. CRD is a standard mechanism to customize Kubernetes in a modular way. See http://mng.bz/61zy.

OS kernel
and drivers

Applications

OS kernel
and

drivers

Virtual hardware
- networking
- storage
- CPUs
- memory

Services

Logging

OS kernel
and drivers

Applications

Services

Figure 15.2 Anthos Migrate: From
virtual machines to containers

https://fossbytes.com/systemd-vs-sys-v-vs-upstart/
http://mng.bz/61zy

376 CHAPTER 15 Migrate
don’t need to maintain the second layer and the generated artifacts can run on any
Kubernetes-conformant distribution.8

 VM-related files and components that are not essential for the application in the
Kubernetes environment are explicitly left out. In fact, this exclusion implies benefits.
As discussed, containers allow higher density and cost reduction due to their light-
weight nature when compared to virtual machines. The application life cycle stays
within the system container. Once ported, applications can run on either any Anthos
environment (on-prem, on GCP, etc.) or any Kubernetes-conformant distribution
independently of M4A deployment.

15.3.3 A look at the Windows environment

Version 1.4+ of Migrate for Anthos supports the migration of workloads from Win-
dows servers to GKE/Windows. Like Linux environments, the goal is to automate the
replatforming of the workload and then integrate it with a more modern cloud envi-
ronment. At the end of 2021, all the Windows server platforms from Windows Server
2008r2 to Windows Server 2019 are available as targets. Currently, only GCE is sup-
ported as a source for Windows applications modernization, with direct support for
on-prem VMware, AWS, and Azure planned for the next version. However, you can use
Migrate for Compute Engine (sometime referred to as Migrate to Virtual Machines9)
to migrate or clone a Windows VM from other sources into Compute Engine and then
migrate the resulting VM into a container. The good news is that a migrated Windows
VM does not have to be configured to run on Compute Engine.

 Behind the scenes, the migration works by extracting the ASP.NET application and
the IIS configuration and applying them on top of the official Windows 2019 server
image. M4A for Windows works well with applications developed with IIS 7+, ASP.NET,
especially with web and business logic middleware. Sweet spots for migration are state-
less tiers of Windows web applications, application servers, and web frontends.

15.3.4 A complete view of the modernization journey

Now that we have discussed the modernization journey with both Linux and Windows
workloads, we provide a comprehensive view, which also includes mainframes (see fig-
ure 15.3).

 If the source application is a modern app, then it is containerized, integrated with
CI/CD, and can run on Anthos where integration with the whole ecosystem can facili-
tate further refactoring into a microservice environment. If the source application is a
traditional monolithic application in either Linux or Windows, then we can use M4A
to containerize it.

 If the source application is a Linux/Window application with particular needs
either for specific drivers or legacy support, then it is still possible to directly migrate

8 As of 2023, there are 90 certified Kubernetes-conformant distributions. See http://mng.bz/oJ9M.
9 See https://cloud.google.com/migrate/compute-engine.

http://mng.bz/oJ9M
https://cloud.google.com/migrate/compute-engine

37715.4 Real-world scenarios
the VM to GCP either in bare metal (BMS; https://cloud.google.com/bare-metal) or
in GCVE (Google Cloud VMware Engine; https://cloud.google.com/vmware-engine)
and manually refactor the application into microservices later.

15.4 Real-world scenarios
In this section, we will review real examples of migration with M4A. First, we’ll intro-
duce the migration fit assessment tool (http://mng.bz/v1VM). Then, we’ll provide a
hands-on session on how to migrate for both Linux and Windows.

15.4.1 Using the fit assessment tool

In this section, we present a self-service fit assessment tool used to determine the
workload’s suitability for migration to a container. The tool consists of a utility called
mfit, a standalone Linux CLI tool used to drive the assessment process along with
dedicated Linux and Windows data-collection scripts that are invoked either automat-
ically by mfit or manually, depending on the scenario.

 The fit assessment tool generates a report presenting pre-VM assessment results
including both a score for the VM’s suitability for migration to a container and recom-
mendations on resolving various obstacles. Table 15.1 provides a summary of possible
fit scores.

Table 15.1 Fit scores produced by the fit assessment tool

Fit score Description

Score 0 Excellent fit

Score 1 Good fit with some findings that might require attention

Score 2 Requires minimal effort before migrating

Stay on-prem

Figure 15.3 A complete
modernization journey

http://mng.bz/v1VM
https://cloud.google.com/bare-metal
https://cloud.google.com/vmware-engine

378 CHAPTER 15 Migrate
FIT ASSESSMENT PROCESS

The fit assessment process consists of three distinct phases: discovery, assessment, and
reporting. Each of the phases is detailed next:

 Discovery—Gather data about the VMs and store it in a local lightweight data-
base for use in the next phases (located in the ~/.mfit folder by default). The
two types of data discovery methods follow:
– (Optional) VM/inventory-level discovery—Use the mfit tool to pull inventory

and configuration about VMs in one or more vCenters using the vSphere
API. Future versions of the fit assessment tool will support pulling inventory
from public clouds such as GCP, AWS, and Azure. This method is optional,
and fit assessment can be performed without it, albeit somewhat less thor-
oughly.

– Guest-level data collection—Consists of running a data-collection script inside the
VM to be assessed. The fit assessment tool provides a Bash script for Linux VMs
and a PowerShell script for Windows VMs. Each script gathers data about the
OS configuration and about running services, processes, installed packages,
and so on and produces a single archive file to be imported into the database
by the mfit tool and used later in the assessment phase. The process of run-
ning the collection script and importing the data can be either manual or
automated, using the mfit tool in the following scenarios:
 Linux only—Run collection script and collect results via SSH.
 Linux and Windows on vSphere—Run collection script and collect results

using the vSphere API.
 Assessment—Use the mfit tool to analyze the collected data and apply a set of fit

assessment rules10 for each VM assessed.
 Reporting—Use the mfit tool to produce a report to present the assessment out-

comes in either CSV, HTML, or JSON format. The latter can then be displayed
in Google’s cloud console (http://mng.bz/ydVq).

Now that you know how the tool will discover and report the workloads, we can move
on to how to use the tool so you can start your migration journey.

Score 3 Requires moderate effort before migrating

Score 4 Requires major effort before migrating

Score 5 No fit

Score 6 Insufficient data collected to assess the VM

10 For a list of fit assessment rules see http://mng.bz/v1VM.

Table 15.1 Fit scores produced by the fit assessment tool (continued)

Fit score Description

http://mng.bz/v1VM
http://mng.bz/ydVq

37915.4 Real-world scenarios
BASIC TOOL USAGE INSTRUCTIONS

A basic overview for using the fit assessment tool follows. Full documentation is avail-
able at http://mng.bz/41YV.

 Note that appending --help to each mfit command will show detailed command
usage, including all possible flags and subcommands.

Installation
At the time of writing, you can download the mfit tool (version 1.9) on your worksta-
tion used for driving the fit assessment with the following commands:

wget https:/ /anthos-migrate-release.storage.googleapis.com/v1.9.0/linux/amd64/mfit
chmod +x mfit

Inventory discovery
Run the following command to perform discovery of all VMs in a vCenter:

./mfit discover vsphere -u <vcenter username> --url <https:/ /vcenter-host-
name-or-ip>

NOTE If your Virtual Center is using a certificate that is not trusted by the
machine you are running mfit on, you can add the -i option to ignore SSL
errors.

You will be prompted to enter the vCenter password, and once executed, you will see a
summary of the discovery process:

Running preflight checks...
[✓] DB Readable
[✓] DB Writable
[✓] Available Disk Space
[✓] Supported VC version
[+] Found 27 VMs
Collecting data...
27 / 27 [---] 100.00% 13 p/s

You may be wondering what actually happened because the output is limited from the
discovery process, telling you only that the prechecks have passed and the tool discov-
ered 27 virtual machines. This is just the initial collection step, and once everything is
collected, you can assess and create a report of the VMs using the mfit tool, which we
will cover after the manual collection process is explained.

Manual guest-level data collection
At the time of writing, you can download the Linux collection script on the VM that
you want to evaluate for migration using these commands:

wget https:/ /anthos-migrate-release.storage.googleapis.com/v1.9.0/linux/
amd64/mfit-linux-collect.sh

chmod +x mfit-linux-collect.sh

http://mng.bz/41YV

380 CHAPTER 15 Migrate
Run the collection script like this:

sudo ./mfit-linux-collect.sh

The script will generate a TAR file named m4a-collect-<MACHINE NAME>-
<TIMESTAMP>.tar in the current directory.

 For Windows users, at the time of writing, you can download the Windows collec-
tion script on the VM that you want to evaluate for migration from the following URL:
http://mng.bz/X5E6.

 Run the collection script as follows:

powershell -ExecutionPolicy ByPass -File .\mfit-windows-collect.ps1

The script will generate a TAR or ZIP file (depending on OS version) named m4a-
collect-<MACHINE NAME>-<TIMESTAMP>.tar/zip in the current directory.

Import the collected data file
After running the collection script on the assessed VM, download it to the workstation
where mfit was installed by any means. Then, import it into mfit’s local database:

./mfit discover import m4a-collect-<MACHINE NAME>-<TIMESTAMP>.tar/zip

Automatic guest-level data collection
mfit contains the guest-collection script embedded in it and can automatically run it
and retrieve the results in the following scenarios.

VMware tools
If the assessed VM is running on vSphere and has VMware tools installed, mfit can use
vSphere APIs to automate the execution of the collection script (the one suited for
the VM’s OS type) and the retrieval of the results. To run guest-level collection via
VMware tools, run the following command:

./mfit discover vsphere guest -u <vcenter username> --url <https:/ /vcenter-
host-name-or-ip> --vm-user <vm username> <vm MoRef id or name>

You will be prompted to enter both the vCenter and VM/OS passwords.

SSH
If the Linux machine running mfit has SSH access to the assessed VM, mfit can use
that to automate the execution of the collection script and the retrieval of the results.
To run guest-level collection via SSH using the SSH key of the current local user
(located in ~/.ssh), run the following command:

./mfit discover ssh <vm-ip-or-hostname>

To run guest-level collection via SSH with additional authentication options, run the
following command:

./mfit discover ssh -i </path/to/ssh_private_key> -u <remote-username> <vm-
ip-or-hostname>

http://mng.bz/X5E6

38115.4 Real-world scenarios
For additional options for running guest-level collection via SSH, consult the official
documentation or run ./mfit discover ssh –help.

Assessment
To examine the discovered VMs and collected data, run the following command:

./mfit discover ls

To perform assessment on this data, run the following command:

./mfit assess

This will create an assessment result and store it in mfit’s local database for use when
generating reports.

Report generation
Once assessment has been performed, we are ready to generate a report. To generate
a standalone HTML report, run the following command:

./mfit report --format html > REPORT_NAME.html

To generate a JSON report, run the following command:

./mfit report --format json > REPORT_NAME.json

The report can then be displayed on Google’s cloud console: http://mng.bz/Q8zj.
 In this section, we discussed the fit assessment tool used to determine a workload’s

suitability for migration to a container. Once the assessment is made and the work-
loads suitable for migration are chosen, we can start the migration process itself.
That’s the topic of the next section.

15.4.2 Basic migration example

In this basic example, we will use the CLI to set up a Compute Engine virtual machine
on GCE and then use M4A to migrate the VM to a GKE cluster. Note that we need to
create another Kubernetes “processing cluster” used with the intent of driving the
migration process itself. The processing cluster will do the work of pulling the applica-
tion from the VM and generating all the artifacts as containers. Let’s start.

 First, we create a source VM. In this basic example, the VM will host an Apache web
server. The VM can be created with the following command:

gcloud compute instances create http-server-demo --machine-type=n1-standard-1
--subnet=default --scopes="cloud-platform" --tags=http-server,https-server
--image=ubuntu-minimal-1604-xenial-v20200702 --image-project=ubuntu-os-cloud
--boot-disk-size=10GB --boot-disk-type=pd-standard

Then, let’s make sure that the VM is accessible from internet with the next command:

http://mng.bz/Q8zj

382 CHAPTER 15 Migrate
gcloud compute firewall-rules create default-allow-http --direction=INGRESS -
-priority=1000 --network=default --action=ALLOW --rules=tcp:80 --source-
ranges=0.0.0.0/0 --target-tags=http-server

Now we can now log in to the VM just configured using the GUI (see figure 15.4) and
install Apache:

sudo apt-get update && sudo apt-get install apache2 -y

Now we have a source virtual machine with an Apache web server running. The next
step is to create the Kubernetes processing cluster:

gcloud container clusters create migration-processing --machine-type n1-
standard-4 --image-type ubuntu --num-nodes 1 --enable-stackdriver-
kubernetes

Next, let’s make sure that we give the processing cluster the correct processing rights.
We need to create a specific service account for M4A, add a policy binding with
storage.admin rights, create a JSON key to access the processing cluster, and get the
credentials for the processing cluster. We can do this with the following four com-
mands. Note that named-tome-295414 is the name of my project and you should
change it to match yours:

gcloud iam service-accounts create m4a-install
gcloud projects add-iam-policy-binding named-tome-295414

--member="serviceAccount:m4a-install@named-tome-
295414.iam.gserviceaccount.com" --role="roles/storage.admin"

gcloud iam service-accounts keys create m4a-install.json --iam-account=m4a-
install@named-tome-295414.iam.gserviceaccount.com --project=named-
tome-295414

gcloud container clusters get-credentials migration-processing

Once we have the credentials, we can log in to the processing cluster and install M4A.
Let’s do that with the following command. Note that m4a-install.json is the JSON
key we have just created:

migctl setup install --json-key=m4a-install.json

We can use migctl to check whether the deployment is successful:

migctl doctor
[✓] Deployment

Figure 15.4 Connecting
the migration cluster

38315.4 Real-world scenarios
After that, we can set up the source for migration, together with a specific service
account, m4a-ce-src, the compute.viewer and compute.storageAdmin policy bind-
ings required during the migration process, and the creation of a JSON key m4a-ce-
src.json:

gcloud iam service-accounts create m4a-ce-src
gcloud projects add-iam-policy-binding named-tome-295414

--member="serviceAccount:m4a-ce-src@named-tome-
295414.iam.gserviceaccount.com" --role="roles/compute.viewer"

gcloud projects add-iam-policy-binding named-tome-295414
--member="serviceAccount:m4a-ce-src@named-tome-
295414.iam.gserviceaccount.com" --role="roles/compute.storageAdmin"

gcloud iam service-accounts keys create m4a-ce-src.json --iam-account=m4a-
ce-src@named-tome-295414.iam.gserviceaccount.com --project=named-tome-
295414

Once we have created the credentials for the source, we can proceed to set up the
source with the following command. Note that ce stands for Google Compute Engine
(GCE):

migctl source create ce http-source --project named-tome-295414 --json-
key=m4a-ce-src.json

After creating a migration source, we can now create a migration plan to containerize
our VM:

migctl migration create my-migration --source http-source --vm-id http-
server-demo --intent Image

If you want to look at the migration plan (e.g., to modify it), you can use the following
command:

migctl migration get my-migration

You can then start the actual migration:

migctl migration generate-artifacts my-migration

As result, you should see something like this:

running validation checks on the Migration...
migration.anthos-migrate.cloud.google.com/my-migration created

Once the migration starts, you can check the progress with the following command.
Note that the flag -v gives a verbose dump of the status, which is useful if something
goes wrong:

migctl migration status my-migration

384 CHAPTER 15 Migrate
When the migration is concluded, you will see something similar to the output shown
here:

NAME CURRENT-OPERATION PROGRESS STEP STATUS AGE
my-migration GenerateMigrationPlan [2/2] CreatePvcs Completed 11m23s

The next step is to get the generated artifacts:

migctl migration get-artifacts my-migration

Once the generation has completed, you should see something like this:

Downloaded artifacts for Migration my-migration. The artifacts are located in
/home/a_gulli.

To access the migrated workload, we need to expose the Pods using a Service. Modify-
ing the generated deployment_spec.yaml to add a Service of type LoadBalancer will
enable us to reach the workload on port 80:

apiVersion: v1
kind: Service
metadata:
 name: hello-service
spec:
 selector:
 app: http-server-demo
 ports:
 - protocol: TCP
 port: 80
 targetPort: 80
 type: LoadBalancer

We can now deploy the artifacts on our Kubernetes cluster like this:

kubectl apply -f deployment_spec.yaml

deployment.apps/app-source-vm created
service/app-source-vm created
service/my-service created

It might be useful to check that everything went well:

kubectl get service

As a result, you should see something like this:

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
app-source-vm ClusterIP None <none> <none> 44s
kubernetes ClusterIP 10.63.240.1 <none> 443/TCP 41m
my-service LoadBalancer 10.63.243.209 35.232.24.49 80:32417/TCP 43s

38515.4 Real-world scenarios
In this case, the external IP address is 35.232.24.49. Now we can open a browser and
check that everything is OK (see figure 15.5).

Congratulations! You have successfully migrated a virtual machine running on GCE
into a container running on GKE using the CLI. If you want to see another example of
basic migration, we suggest you consider the hands-on lab, “Migrate to Containers:
Qwik Start,” available at http://mng.bz/X5jp.

 Now that you know how to execute a migration
using the CLI, we will move on to the next section
where we will use the Cloud console UI to perform
a migration.

15.4.3 Google Cloud console UI migration example

In this section, we use M4A to migrate an applica-
tion running as a virtual machine on Google Com-
pute Engine to GKE. When using the console UI,
Google Cloud clusters are the only supported envi-
ronment, not Anthos on AWS or VMware. The GKE
processing clusters can be in the cloud or on-prem.
The migration will be run through the graphical
user interface (GUI) available via the Google Cloud
console. Note that the migration process is consis-
tent between the CLI and the GUI.

 A GKE cluster will be used as a “processing
cluster” to control the migration. The artifacts
generated during the process will be stored on
Google Cloud Storage (GCS), and the final con-
tainer images are pushed to Google Container
Registry. Under the hood, this is identical to the
CLI-driven migration.

 The first step is to access Anthos Migrate from the
console (see figure 15.6) at http://mng.bz/Mlpn.

 For the sake of simplicity, we will deploy a VM
from Marketplace with a Tomcat server prein-
stalled. Then, we will migrate Tomcat from the VM
to a container.

This page was created from a simple startup script!

Figure 15.5 Accessing the web server
migrated from VM to containers

Figure 15.6 Accessing Anthos
Migrate to containers

http://mng.bz/X5jp
http://mng.bz/Mlpn

386 CHAPTER 15 Migrate
 Let’s start by accessing the Google Click to Deploy repository with Tomcat (see fig-
ure 15.7). The URL is https://console.cloud.google.com/ marketplace/details/click-to-
deploy-images/tomcat.

Then, let’s select the zone where we want to deploy (see figure 15.8).

Once the VM with the Tomcat server is deployed, you can access the website from an
external IP, as shown in figure 15.9.

Figure 15.7 Deploying a
Tomcat application to VMs

Figure 15.8 Deployed Tomcat application

Figure 15.9 Tomcat solution deployed
with Google Click to Deploy

https://console.cloud.google.com/marketplace/details/click-to-deploy-images/tomcat
https://console.cloud.google.com/marketplace/details/click-to-deploy-images/tomcat

38715.4 Real-world scenarios
In this deployment, the IP address is http://35.238.48.196/, so if you access the web-
site, you should see the output shown in figure 15.10.

The next step is to start the proper migration process. First, create a “processing clus-
ter,” a cluster that will be used to control the migration of our source VM. You can per-
form this task by accessing the Migrate to Containers menu on Anthos and selecting
the Add Processing Cluster option (see figure 15.11).

It is convenient to follow the suggestion provided in the GUI and create a new cluster
dedicated to processing (see figure 15.12).

Once the cluster is ready, you should be able to see it via the Google Cloud console in
the GKE section (see figure 15.13).

Figure 15.10 Accessing Tomcat with a web browser

Figure 15.11 Starting the migration process

Figure 15.12 Choosing a name for the processing cluster

Figure 15.13 The processing cluster is ready for use.

http://35.238.48.196/

388 CHAPTER 15 Migrate
Then, you can select the cluster (see figure 15.14) and select whether the target is
Linux or Windows.

At this point, we need to make sure that the processing cluster has the proper process-
ing rights. To this extent, the GUI suggests running a number of commands in the
cloud shell. You just need to click Run in Cloud Shell, as shown in figure 15.15.

Let’s see the required steps in detail. First, we need to enable the Google Cloud APIs.
Then, we need to create a service account for storing the migration artifacts in the
Container Registry and Cloud Storage. Then, we need to add the permissions to
access the Container Registry and Cloud Storage. Finally, we need to create and export a
new key to a file required by M4A to use the service account.

 Once these steps are done, we can migrate to containers. Again, the GUI makes
this step very intuitive. The last step is to check with migctl doctor that the deploy-
ment status is correct (see figure 15.16).

Once the processing cluster is configured, select a migration source from where the
VM will be pulled (see figure 15.17).

Currently, you can pull from GCE (see figure 15.18). (You can also use Migrate for
Compute Engine [http://mng.bz/eJav] to import local vSphere environments, AWS,
and Azure to GCE.)

Figure 15.14 Selecting the processing cluster

Figure 15.15 Using the UI to
run the setup required by M4A

Figure 15.16 Correct deployment of M4A

Figure 15.17 Adding a migration source

http://mng.bz/eJav

38915.4 Real-world scenarios
Once you have chosen a name, you can select the project in which the source VMs are
placed (see figure 15.19).

Now that the processing cluster and the migration source have been created, we can
start the migration (see figure 15. 20).

The migration requires a name, a source, a VM OS type, the VM ID, and the migra-
tion intent. Let’s specify these via the GUI, as shown in figure 15.21.

Figure 15.18 Adding a migration source

Figure 15.19 Selecting the project in which the source VMs are placed

Figure 15.20 Starting a migration process

390 CHAPTER 15 Migrate
Then, M4A will start generating the migration plan (see figure 15.22).

During the migration, we can check the progress with the following command, which
will produce a detailed debug log:

migctl migration status my-migration -v

Once the migration plan is generated (see figure 15.23), you can inspect the results
with the GUI.

Figure 15.21 Specifying the migration name, the migration source, the VM OS type, the
VM ID, and the migration intent.

Figure 15.22 Generating the migration plan

Figure 15.23 An overview of the migration plan generated by M4A

39115.4 Real-world scenarios
In particular, the Options menu allows you to edit the generated migration plan, as
shown in figure 15.24.

Let’s look at what has been generated by editing the migration plan, as shown in fig-
ure 15.25.

Normally, you don’t need to change the migration plan. However, being able to is use-
ful if you either need to strip out unneeded VM components or need to add some
additional configuration. After checking and, if necessary, editing the migration plan,
you can start generating the artifacts (see figure 15.26).

Figure 15.24 Reviewing and editing
the generated migration plan

Figure 15.25 Editing the generated migration plan

392 CHAPTER 15 Migrate
Once the migration plans are generated, you can inspect them by accessing the Arti-
facts tab from the Google Cloud console. This includes the Dockerfile, the container
image for deployment (that can be directly deployed), the container image base layer
(the nonrunnable image layers), the Deployment spec YAML, the migration plan
YAML, and the artifact links YAML (see figure 15.27).

The generated artifacts are stored in GCS with separate buckets for base and image
layers (see figure 15.28).

Let’s look now at the system image with the Dockerfile, the Deployment spec, the
manifest and the migration YAML (see figure 15.29).

Figure 15.26 Generating artifacts with the
edited migration plan

Figure 15.27 Generated
migration artifacts

Figure 15.28 Artifacts stored in GCS

Figure 15.29 Dockerfile, Deployment spec, manifest, and migration files

39315.4 Real-world scenarios
In addition, images generated for migration are automatically pushed to the Google
Container Registry, and you can browse them via the console, as shown in figure 15.30.

All the generated artifacts can be downloaded via the CLI as follows:

migctl migration get-artifacts my-migration

These artifacts include the following:

 deployment_spec.yaml—Configures your workload
 Dockerfile—Used to build the image for your migrated VM
 migration.yaml—A copy of the migration plan

AN OVERVIEW OF DOCKERFILE

In this section, we take a deep look at the Dockerfile generated by M4A. You can edit
the file to customize your image, for instance, either for installing new packages or for
installing an upgraded version of the M4A runtime. The file contains the original con-
tainer repository for runtime, the image containing data captured from the source
VM, and the initial entry point. A typical M4A Dockerfile follows:

Please refer to the documentation:
https:/ /cloud.google.com/migrate/anthos/docs/dockerfile-reference

FROM anthos-migrate.gcr.io/v2k-run-embedded:v1.5.0 as migrate-for-anthos-
runtime

Image containing data captured from the source VM
FROM gcr.io/named-tome-295414/tomcat-vm-gulli-vm-non-runnable-base:11-13-

2020--15-0-39 as source-content

If you want to update parts of the image, add your commands here.
For example:
RUN apt-get update
RUN apt-get install -y \
package1=version \
package2=version \
package3=version
RUN yum update
RUN wget http:/ /github.com

Figure 15.30 Images generated for migration and pushed to the GCR

394 CHAPTER 15 Migrate
COPY --from=migrate-for-anthos-runtime //

Migrate for Anthos image includes entrypoint
ENTRYPOINT ["/.v2k.go"]

We will see more details on the M4A-generated Dockerfile later in this chapter when
we discuss the postmigration integration with CI/CD pipelines. In the next section,
we will discuss the details of the deployment_spec.yaml file.

AN OVERVIEW OF DEPLOYMENT_SPEC.YAML

In this section, we will discuss the deployment_spec.yaml generated by M4A. First, let’s
define some terminology we will use later:

 Stateless—An application is stateless when the server does not store any state
about the client session. In other words, there is no stored knowledge of or ref-
erence to past transactions.

 Stateful—An application is stateful when the server stores data about the client
session. In other words, the current transaction may be affected by what hap-
pened during previous transactions. For this reason, a stateful application
needs to use the same servers each time a request from a user is processed.

With this context in mind, let’s consider deployment_spec.yaml. This file will be dif-
ferent according to the intent flag selected in the UI, as described next:

 Intent: Image—The YAML defines a stateless application with identical Pods11

managed as a service. Different parts of the YAML follow:
– Deployment—The set of identical Pods deployed from the image generated

from your migrated VM. They are stored in GCR.
– Service—Groups Pods in your deployment into a single resource accessible

from a stable IP address. By default, a single cluster internal IP is reachable
only from within the cluster with no load balancing. The Kubernetes end-
points controller will modify the DNS configuration to return records
(addresses) that point to the Pods, which are labeled with "<app>": "<app-
name>"where the name of the app is inferred from the migctl migration
create my-migration command. Note that Pods will be visible only within
the cluster by default, so, it might be appropriate to expose Pods outside of
your cluster. We will see an example later in the chapter.

– Logging configuration—Configures logging to Cloud Logging by listing many
of the most common log files.

 Intent: ImageAndData—The YAML defines a stateful application with different
Pods associated with persistent volumes. Different parts of the YAML follow:
– StatefulSet—The set of Pods deployed from the image generated from your

migrated VM. They are stored in GCR.
– Service—Similar to the Service defined in the Image section.

11 A Pod encapsulates one or more applications and is the smallest unit of execution in Kubernetes.

39515.4 Real-world scenarios
– PersistentVolume—Used to manage the durable storage.
– PersistentVolumeClaim—Represents a request for and claim to the Persistent-

Volume resource (such as specific size and access mode).
– Logging configuration—Similar to what was defined for stateless.

 Intent: Data—Different parts of the YAML follow:
– PersistentVolume—Similar to what was defined for stateful.
– PersistentVolumeClaim—Similar to what was defined for stateful.

A typical M4A deployment_spec.yaml is shown in the next listing.

Stateless application specification
The Deployment creates a single replicated Pod, indicated by the 'replicas'

field
apiVersion: apps/v1
kind: Deployment
metadata:
 creationTimestamp: null
 labels:
 app: tomcat-vm-gulli-vm
 migrate-for-anthos-optimization: "true"
 migrate-for-anthos-version: v1.5.0
 name: tomcat-vm-gulli-vm
spec:
 replicas: 1
 selector:
 matchLabels:
 app: tomcat-vm-gulli-vm
 migrate-for-anthos-optimization: "true"
 migrate-for-anthos-version: v1.5.0
 strategy: {}
 template:
 metadata:
 creationTimestamp: null
 labels:
 app: tomcat-vm-gulli-vm
 migrate-for-anthos-optimization: "true"
 migrate-for-anthos-version: v1.5.0
 spec:
 containers:
 - image: gcr.io/named-tome-295414/tomcat-vm-gulli-vm:11-13-2020--15-0-39
 name: tomcat-vm-gulli-vm
 readinessProbe:
 exec:
 command:
 - /code/ready.sh
 resources: {}
 securityContext:
 privileged: true
 volumeMounts:
 - mountPath: /sys/fs/cgroup
 name: cgroups

Listing 15.1 The deployment_spec.yaml generated by M4A

396 CHAPTER 15 Migrate
 volumes:
 - hostPath:
 path: /sys/fs/cgroup
 type: Directory
 name: cgroups
status: {}

Headless Service specification -
No load-balancing, and a single cluster internal IP, only reachable from

within the cluster
The Kubernetes endpoints controller will modify the DNS configuration to

return records (addresses) that point to the Pods, which are labeled with
"app": "tomcat-vm-gulli-vm"

apiVersion: v1
kind: Service
metadata:
 creationTimestamp: null
 name: tomcat-vm-gulli-vm
spec:
 clusterIP: None
 selector:
 app: tomcat-vm-gulli-vm
 type: ClusterIP
status:
 loadBalancer: {}

DEPLOYING THE CONTAINER GENERATED BY M4A
In this section, the steps needed to deploy the container generated by M4A are dis-
cussed. Deploying the deployment_spec.yaml is very easy:

migctl setup install --runtime
kubectl apply -f deployment_spec.yaml

As a result, you should see something like this:

deployment.apps/tomcat-vm-gulli-vm created
service/tomcat-vm-gulli-vm created

If you want, you can check the status of the deployed Pods:

kubectl get pods

You should see something like this:

NAME READY STATUS RESTARTS AGE
tomcat-vm-gulli-vm-66b44696f-ttgq6 1/1 Running 0 21s

By default, the container is deployed with no load balancing and a single-cluster inter-
nal IP, which is reachable only from within the cluster. The Kubernetes endpoints

39715.4 Real-world scenarios
controller will modify the DNS configuration to return addresses that point to the
Pods, which are labeled with "app": "tomcat-vm-gulli-vm". Of course, you can
change the deployment and add a Service of type LoadBalancer. Let’s do that by add-
ing the following to the deployment spec:

apiVersion: v1
kind: Service
metadata:
 name: hello-service
spec:
 selector:
 app: tomcat-vm-gulli-vm
 ports:
 - protocol: TCP
 port: 80
 targetPort: 80
 type: LoadBalancer

Then, let’s check that the Service is indeed accessible:

kubectl get service hello-service
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
hello-service LoadBalancer 10.88.10.207 34.67.239.170 80:32033/TCP 76s

Figure 15.31 shows what happens when we try to access the Service from the internet.

Congratulations! You now have a routable container holding the full Tomcat installa-
tion previously available in a VM! The migration happened automatically, with no
need to either recompile or access the original source code.

 Before concluding, here’s a hint about the GUI: if you need to edit multiple files,
it might be convenient to use the built-in editor, which is based on Eclipse. The edi-
tor is a quick and easy way to review and change all the files generated by M4A (see
figure 15.32).

 One note before concluding: in addition to Google Container Registry and Goo-
gle Cloud Storage for data repositories, M4A version 1.6 and higher supports addi-
tional repositories including ECR, S3, and Docker registries. In the next section, we
are going to talk about Windows migration.

If you’re seeing this page via a web browser, it means you’ve set up Tomcat
successfully. Congratulations!

Figure 15.31 Accessing the
Tomcat container after migration
with M4A

398 CHAPTER 15 Migrate
15.4.4 Windows migration

In this section, we discuss how to migrate Windows VMs to GKE. Please note that Win-
dows migration supports Compute Engine as a source. However, as discussed earlier, it
is possible to migrate a Windows VM from other sources into Compute Engine using
Migrate for Compute Engine (sometime referred as Migrate to Virtual Machines; see
http://mng.bz/pdj8). The resulting VM can be then migrated to GKE. Unsurpris-
ingly, Windows migration is similar to that for Linux. Indeed, behind the scenes, M4A
uses a unified M4A CLI utility named migctl. Let’s see a quick example using the
CLI interface.

 First, similarly to Linux, you can use migctl with the following statement for add-
ing a migration source:

migctl source create ce my-ce-src --project my-project --json-key=m4a-ce-src.json

Remember that my-ce-src is the name of the source, my-project is the name of the
project, and m4a-ce-src.json is the name of the JSON key file obtained after creating a
service account for using Compute Engine as a migration source. Then you can create
a migration with the following command

migctl migration create my-migration --source my-ce-src --vm-id my-id --
intent Image -workload-type=WindowsIIS

where my-migration is the name of the migration and vm-id is the name of the Com-
pute Engine instance, as shown in the Google Cloud console. The migration plan just
created can be retrieved with the following command:

migctl migration get my-migration

Figure 15.32 The built-in editor used to manipulate migration configuration

http://mng.bz/pdj8

39915.4 Real-world scenarios
If needed, you can customize the migration plan by editing the file my-migra-
tion.yaml. When editing is completed, you can then upload the edited migration plan
with the following command:

migctl migration update my-migration

The next step is to execute the migration and generate artifacts:

migctl migration generate-artifacts my-migration

During the migration, you can monitor the status:

migctl migration list

When the migration concludes you can access the artifacts:

migctl migration get-artifacts my-migration

As a results, you should see something like this:

Artifacts are accessible through 'gsutil cp gs://PATH/artifacts.zip ./'

Hence you can get the artifacts with the following command:

gsutil cp gs://PATH/artifacts.zip ./

The next step is to use the artifacts to build a Docker image. We can use Windows
PowerShell to expand the artifacts.zip:

Expand-Archive .\artifacts.zip

Then log in to the Container Registry:

docker login gcr.io

The next step is to build the container using the next code snippet:

docker build -t gcr.io/myproject/myimagename:v1.0.0 .\artifacts\
docker push gcr.io/myproject/myimagename:v1.0.0

When you generate artifacts for Windows workloads, the artifacts are copied into a
Cloud Storage bucket as an intermediate location that you can download. This file
contains a Dockerfile, the deployment_spec.yaml file, and several directories from the
source, which you then use to build the Windows container. Once the build is com-
pleted, the container image will be placed in the Container Registry, and the image
can be deployed to a GKE cluster. Note that the Google Cloud console for Anthos has

400 CHAPTER 15 Migrate
included Windows workload support since M4A v1.5. The experience is identical to
the one already discussed for Linux. If you want to see another example of Windows
migration, consider the hands-on lab “Migrate for Anthos: Windows” available at
http://mng.bz/yd7y.

15.4.5 Migration from other clouds

As of November 2021, migration from other clouds is based on a two-step approach.
First, virtual machines are migrated (technically, they are converted into GCE
instances). Then, the migrated virtual machines are containerized.

 M4A uses the product Migrate for Compute Engine (M4CE) (sometime referred
as Migrate to Virtual Machines; https://cloud.google.com/migrate/compute-engine)
to stream virtual machines located on other clouds or on-prem, moving them onto
GCE instances. Migrate for Compute Engine can be installed via the marketplace
(http://mng.bz/Mlao) and allows the migration of thousands of applications across
multiple data centers and clouds from source platforms such as VMware, Microsoft
Azure, and Amazon EC2.

 To use M4CE, you need to set up a site-to-site VPN connection and firewall rules to
enable communication between the VPC in which the manager is positioned and the
VPC of the source VM on the other cloud. The interested reader may find the online
firewall documentation at https://cloud.google.com/vpc/docs/firewalls useful. Dynamic
routing based on the BGP protocol (http://mng.bz/zmVB) can be set up via GCP
Cloud Router (http://mng.bz/0ygN) working on either Cloud VPN (http://mng.bz/
aMro) or dedicated high-speed Cloud Interconnect (http://mng.bz/Klgj). Cloud
Interconnect extends your on-prem network to Google’s network through a highly
available, low-latency connection.

 In addition, thousands of virtual machines can be migrated in batches by aggre-
gating them in waves according to their logical role. M4CE allows us to define run-
books to decide which VM should be migrated and in what order. A simulated
testing phase can be planned before the effective migration. The main components
of M4CE follow:

 A migration manager—Used to orchestrate migration. The manager runs on a
separate Google Compute Engine VM and offers a migration console to man-
age and monitor all the system components. Note that the manager might
require specific permissions to handle specific actions, such as turning on and
off a VM. These permissions can be defined with policies.

 A Cloud Extension—Used to handle storage migrating from the source platform.
An extension is a conduit for VM storage between the migration source and
destination. These extensions run on separate Compute Engine VMs and serve
data to migrated workloads during the migration process itself. Note that exten-
sions work with a dual-node active/passive configuration for high availability;
each node serves workloads and, at the same time, provides backup for the
other node.

http://mng.bz/yd7y
https://cloud.google.com/migrate/compute-engine
http://mng.bz/Mlao
https://cloud.google.com/vpc/docs/firewalls
http://mng.bz/zmVB
http://mng.bz/0ygN
http://mng.bz/aMro
http://mng.bz/aMro
http://mng.bz/aMro
http://mng.bz/Klgj

40115.5 Advanced topic: M4A best practices
Different components are then deployed on source platforms, as described here:

 On vSphere—A backend component serves runtime data from VMware to exten-
sions on Google Cloud. Data is then used by the VMs on Compute Engine. In
addition, a vCenter plug-in connects vSphere to the migration manager and
orchestrates the migration on vCenter.

 On Amazon EC2 and Azure—An importer is deployed at runtime and serves run-
time data from the source to extensions on Google Cloud. Data is then used by
the VMs on Compute Engine.

Since Migrate 1.9, you can also deploy containers to GKE Autopilot clusters and
Cloud Run, but that topic is outside the subject of this book.

 In this section, we have briefly introduced M4CE, which M4A uses to move VMs
between clouds and on-prem. Migration can happen in minutes, while data migrates
transparently in the background. The interested reader can learn more online at
http://mng.bz/GRXv. In addition, more helpful information on how to migrate an
EC2 instance from AWS to Compute Engine on Google Cloud is available at http://mng
.bz/gJ2x. The next section is about several Google best practices adopted for M4A.

15.5 Advanced topic: M4A best practices
In this section, we discuss some best practices for M4A. The idea is to provide guidance
on real-time scenarios frequently encountered by customers. This section is rather
advanced and assumes that you are very familiar with Kubernetes environments. Differ-
ent details of Kubernetes are discussed in detail. Let’s start with the following:

 VM hostnames—One convenient pattern is to transform VM hostnames into
Kubernetes service names (see http://mng.bz/WAQa). Note that service names
are a set of Pod endpoints grouped into a single resource. So, retaining this
naming convention helps with consistency.

 Multiple apps/services per VM—If multiple applications or services exist per VM, it
might be convenient to define a Kubernetes Service for each of them. Again,
this naming convention helps with consistency.

 Host file customizations—If your VMs use specific customization on the host file
for DNS resolution, then it is recommended to use the Kubernetes Pod spec
hostAliases (http://mng.bz/81qz). Adding entries to a Pod’s /etc/hosts file
provides a Pod-level override of hostname resolution. Moreover, it helps to
replicate multiple application environments, such as production, staging, and
testing.

 Multi-VM stacks—If you have a multi-VM-stacks environment, then it might be
convenient to place codependent Pods in the same Kubernetes namespace and
use short DNS names. In addition, you should use Kubernetes’ NetworkPolicy
to restrict access between frontend and backend Pods. This organization would
help keep your environment organized, safer, and more effective.

http://mng.bz/GRXv
http://mng.bz/gJ2x
http://mng.bz/gJ2x
http://mng.bz/gJ2x
http://mng.bz/WAQa
http://mng.bz/81qz

402 CHAPTER 15 Migrate
 Referring to external services—If your applications use external services, it is worth
considering using the Kubernetes ExternalName Service without a selector
(http://mng.bz/Elqd), a best practice in Kubernetes to abstract external
backends.

 NFS file share —Currently, M4A does not automatically migrate NFS mounts.
Therefore, you need to manually define NFS persistent volume directives and
add them to the generated Pod YAML. The interested reader can find more
information on mounting external volumes online (http://mng.bz/Nmqn).

 Unneeded services—Migration is a consolidation moment. Therefore, it is appro-
priate to double-check all the services running on your virtual machine and
disable those that are not needed on containers. Migrate for Anthos will auto-
matically disable unnecessary hardware or environment-specific services and a
predefined set of additional services running on VMs. See a detailed list of dif-
ferent services automatically disabled at http://mng.bz/DZqR.

 Environmental variables—If your application requires an environment variable, it
is a good practice to move definitions to the Kubernetes Pod YAML, ensuring
you follow the best practice of having all your infrastructure as code.

 Scripts using Cloud instance metadata—If your scripts look up metadata, it is
worth replacing this lookup with either Kubernetes ConfigMap (http://mng
.bz/lJl2) or, again, using the env variables defined in your Kubernetes Pod
YAML definition.

 Application logs—You can have logs generated by workload containers migrated
with M4A and written to Cloud Logging. By default, M4A considers entries writ-
ten to stdout of init, the parent of all Linux processes, and contents from
/var/log/syslog. Adopting this strategy will enhance the level of automation in
your environment and the observability of your applications.

 GKE Ingress controller—If you migrate to GKE, it might be convenient to use GKE
network ingress control for controlling the network traffic accessing workloads.
Doing so will eliminate the need for changing your application with additional
routing rules, VPNs, filters, or VLANs. For instance, if you migrate a three-
tiered application, you might want to split it into multiple containers. The front-
end service is accessed via a GKE Google load balancer (http://mng.bz/Blq1)
for load scalability. In addition, you might want to define network policies for
enforcing access to the application service only by the frontend Pods and not
from the external world. Similarly, you might want to define policies to access
the database layer from the application layer only. These choices would increase
the security of your environment.

 Linux-specific runlevel 3—In a Linux environment, certain services are config-
ured to start by default only at runlevel 5. Currently, M4A reaches runlevel 3
only. VMs migrated into GKE with M4A will be booted in the container at
Linux runlevel 3. Consequently, certain services should be configured to start

http://mng.bz/Elqd
http://mng.bz/Nmqn
http://mng.bz/DZqR
http://mng.bz/lJl2
http://mng.bz/lJl2
http://mng.bz/lJl2
http://mng.bz/Blq1

40315.6 Postmigration integration with CI/CD pipelines
automatically at runlevel 3. These might include X11, XDM, and the GUI
used for VNC.

In this advanced section, we have discussed several best practices that you can adopt
for fine-tuning environments migrated with M4A. In the next section, we will discuss
how to upgrade images postmigration.

15.6 Postmigration integration with CI/CD pipelines
Artifacts generated with M4A can be used for Day 2 operations, such as software
updates, configuration changes, security patches, and additional operations with files.
You can easily integrate these artifacts with a CI/CD typical pipeline consisting of
source, build, test, and deploy (see figure 15.33).

Artifacts are generated with multistage builds so they can be incrementally maintained
without incurring the risk of inflating the generated container image. Figure 15.34
shows an example of integration of M4A with CI/CD pipelines.

Figure 15.33 Typical CI/CD
development phases

Nonrunnable

system image

System container

image (updated)

Figure 15.34 Integration
of M4A with CI/CD pipelines

404 CHAPTER 15 Migrate
A typical Docker artifact is composed of two parts (see figure 15.35). The first part is
the M4A runtime, and the second part is the nonrunnable base representing the cap-
ture system image layer from the migrated VM.

If you need to update the M4A runtime, you can simply replace the first FROM direc-
tive as appropriate from the Dockerfile. For instance, suppose that you need to sup-
port M4A 1.8.1. You can achieve with the following new directive, which replaces the
current one:

FROM anthos-migrate.gcr.io/v2k-run-embedded:v1.8.1 as migrate-for-anthos-runtime

If you need to update your application, you can change the second Docker FROM
directive. In detail, you typically download the generated Dockerfile from your con-
tainer registry (such as GCS), edit the Dockerfile to apply your desired changes, build
a new layered image, and update the existing deployment with a rolling update. As
discussed, this image-layered approach is very suitable for a CI/CD-based (see chap-
ter 12) deployment environment where DevOps and site reliability engineering (SRE)
methodologies are the key.

 In this section, we have discussed how to integrate with CI/CD pipelines for
increasing your organizational agility. In the next section, we will discuss how to inte-
grate with service meshes.

Figure 15.35 A typical Dockerfile generated by M4A, useful for CI/CD pipelines

40515.7 Postmigration integration with ASM
15.7 Postmigration integration with ASM
Earlier in this chapter, we discussed the benefits of using a service mesh—transparent
gains in terms of communication, policy management, observability, and agility. The
key observation is that the adoption of Anthos Service Mesh (see chapter 4) is another
step toward the adoption of SRE and DevOps methodologies.

 For instance, ASM makes it possible to check the service status together with key
metrics for our applications such as error, latency, and request rates; visualize the
topology; check the estimated cost; and define service-level indicators (see figure 15.36).

Once again, it is important to point out that these gains are free with no need to
change any code in your migrated application. Once it is containerized, your applica-
tion becomes a first-class cloud native application, which can be managed with mod-
ern cloud native methodologies and significant cost savings. You can arguably add
your legacy VM into the mesh by using WorkloadEntry. The point is more that you
gain all the benefits of being on Kubernetes (portability, scalability, etc.), as well as the
Service Mesh encapsulating all the services within a cluster, without having to extend
beyond the cluster perimeter.

Figure 15.36 Using ASM for inspecting an application after migration

406 CHAPTER 15 Migrate
Summary
 Moving to cloud-based applications offers the benefit of having a modern

container-based environment using infrastructure in a more efficient way than
traditional virtual machines. Gains are in terms of reduced costs, improved por-
tability, scalability, resiliency, simplified developer experience, and reduced time
to market.

 You can use Migrate for Anthos to have a fully automated transformation, with
no need for the original source code.

 The best workload candidates for migration include stateless web frontend,
multi-VM, multitiered stacks, business logic middleware, medium- to large-sized
databases, and low duty-cycle and bursty workloads. We have reviewed the com-
ponents that make up the Migrate for Anthos architecture together with real-
world migration scenarios.

 We have learned some common best practices for migration using Migrate for
Anthos including postmigration integration with CI/CD pipelines and with
Anthos Service Mesh.

Breaking the monolith
Phil Taylor

Developing and supporting applications at scale in today’s markets is harder than
ever before. With the rapid acceleration of business markets, applications rapidly
evolve from early-stage prototypes to large-scale applications. With traditional deploy-
ment methodologies and processes, we can evolve our architectures and organically
find and fix problems as the application scales. Because of the speed at which teams
need to move today to keep up with business demands, our architecture and deploy-
ment processes need to be agile and scalable from day 1. Thankfully, recent innova-
tions in containers and container platforms like Anthos coupled with modern
development patterns, such as microservice architectures, help us easily build and
deploy applications, without compromising on efficiency, performance, or quality.

This chapter covers
 Modernizing legacy applications

 Using Anthos for modernization

 Benefits of Anthos for microservices

 Real-world examples

 Antipatterns to avoid
407

408 CHAPTER 16 Breaking the monolith
16.1 Modernizing legacy applications
Although these new patterns and tools are great for greenfield development projects,
it can be frustrating and sometimes overwhelming to support our legacy applications.
Many teams face the challenge of keeping the airplane flying while rebuilding it mid-
flight. It can be tempting to put all your eggs in one basket and focus only on rebuild-
ing your application using modern, software architecture patterns and containers. We
have seen several teams take this approach and fail. The teams who have the most suc-
cess see the journey as a series of incremental improvements to the original design.

 We recommend the following approach when thinking about how to move from
monolithic legacy design to modern architecture design:

 Modernize the legacy application development and deployment process.
 Consider language and/or framework upgrades or replacements that may

improve the development and deployment life cycle. For example, if we have
a Java WebSphere application, we may consider moving this to an Apache
Tomcat web server framework if the application is not heavily tied into the
features of WebSphere.

 Modernize to containers where you can use Migrate for Anthos to rapidly move
your application’s operating environment from VMs to containers. This will
help make incremental improvements to the operations of your application
that should give your team time to focus on modernization efforts.

 Adding a continuous integration pipeline for building and unit-testing your
application can help teams identify and fix problems faster. In turn, this will
provide them a quick feedback loop that will give them the confidence they
need to start modernizing the application.

 Adding a continuous deployment pipeline that deploys your application to a
lower environment and performs automated integration or user acceptance
testing will further increase the productivity of the team.

 Adding end-to-end observability and instrumentation is key at this phase. We
can no longer rely on logging into a dedicated virtual machine to view logs or
debug our application. We need the ability to monitor and investigate incidents
that may be occurring across a large set of nodes in our operating environment.

 Using a managed container operating environment like GKE or Anthos here
will allow your teams to focus on software and deployment innovations rather
than operating the container environment.

Next, you will want to modernize the legacy application itself, not just the develop-
ment and deployment process. This will create agility, velocity, and efficiency for the
development teams and infrastructure. Breaking the application into smaller domains
and decoupling its capabilities into individual services with well-known contracts will
create additional efficiencies. For example, you will be able to build and test a single
business domain service in isolation, allowing for rapid iteration of capabilities. Stan-
dard contracts between services will create a well-defined boundary to determine

40916.1 Modernizing legacy applications
when you are introducing breaking changes that may affect other dependent services.
You will have two options: incrementally extract and rewrite capabilities or rewrite the
entire application. Most of the time, this choice will depend on the business’s goals
and appetite for investment. We will cover the first option briefly here because it is the
most common approach we see customers adopting.

 You have ways to peel off capabilities on the edge and rewrite them to be cloud
native. We would like to say it’s always so easy in real life. A lot of teams start with com-
mon services like authentication and authorization or logging. This approach will
allow your teams to take smaller bites of the apple to start moving your application
architecture into a modern microservices design.

 At this point, you might be asking yourself, why not just use Migrate for Anthos on
the legacy application and be done with it?. The answer depends on your particular
use case and the life of the application. That approach may be well suited for an appli-
cation that is scheduled to sunset or be replaced. For applications that will be around
longer, you will want to eventually rewrite them to take advantage of modern architec-
ture patterns like microservices and serverless architecture. The many advantages to
the aforementioned architectures are highlighted here:

 Development advantages
– Smaller teams focus on a single business problem domain.
– Modern techniques for development and testing of code support the 100%

autonomous build, test, and deployment of services. Although it is possible
to achieve 100% test coverage and automated deployments with legacy appli-
cations, the amount of effort required is significantly greater than starting
with a design that supports it up front.

– Decoupled services allow us to choose the technology stack that is best suited
for the business capabilities the team is building.

– Different teams can manage different microservices. This approach is often
used to create a service per team where the team needs to understand only
the business domain that applies to the service they’re developing. Consider
a service that contains payment and taxation logic. In this scenario, the
developer needs to understand concepts like payment transactions and gate-
ways, PCI compliance, and federal or local tax rules. By splitting the service
domain boundary between payments and taxes, we can reduce the domain
knowledge required by the developers supporting each service. With a
microservices approach, the payment team no longer needs to understand
the intricacies of federal or local tax rules; they simply need to understand
the API contact for adding the appropriate taxes to a given transaction.

 Operational advantages
– Increased reliability/high availability—Each application service is compiled and

deployed separately by design. This reduces the blast radius of service out-
ages to a single microservice.

410 CHAPTER 16 Breaking the monolith
– Portability—Containers create mobility, allowing us to run a service where it
makes sense, on-prem or in a cloud provider. Although this can be accom-
plished with VMs, container platforms have made it easier to deploy and
schedule the workloads in other environments or automatically move work-
loads to better operating nodes with zero downtime.

– Lower operating costs—Containers provide a higher density than VMs, yielding
additional savings compared to VMs or physical environments.

– Elasticity of demand for individual services—With a microservice design, we can
automatically scale up services to meet demand and scale them back during
idle times for cost efficiency. This is also possible with VM-based designs, but
teams traditionally scale the entire VM due to lack of understanding of how
to scale an individual service running within the VM.

– Automated deployment pipelines—Using a container-based solution allows us to
more easily automate end-to-end operations.

– Self-healing—By moving services that require high availability into the con-
tainer platform, we can more easily set up automations to handle common
failure and recovery tasks. Kubernetes provides liveness and readiness checks
as well as rescheduling capabilities natively, which make this a simple task in
most cases.

16.2 Using Anthos for modernization
Anthos provides a complete solution to run our containerized applications or legacy
applications we want to migrate to containers. Anthos can help us modernize in place,
move our workloads to the cloud, and enable hybrid application strategies more easily
with capabilities for keeping clusters consistent between cloud and on-prem environ-
ments and advanced service mesh networking. See figure 16.1 for an overview of the
Anthos components described here:

 Anthos Config Management provides an easy way to centrally manage configu-
ration as code.

 Anthos Service Mesh provides a way for us to specify loosely coupled service
dependencies, establish secure communication channels between services, and
instrument a centralized observability system.

 Anthos GKE provides a reliable and consistent runtime environment for our
Kubernetes-based workloads on-prem or in public cloud environments.

 Cloud Logging and Cloud Monitoring provide centralized tooling for monitor-
ing, auditing, and troubleshooting clusters and workloads.

41116.2 Using Anthos for modernization
16.2.1 Approach to modernization

As we discussed in the introduction, a couple of ways to modernize your applications
exist, and the path you choose may be different, depending on the specific applica-
tion and business needs. Some applications or components in your application may
not be great candidates for containerization. Some factors that may affect your deci-
sion to containerize your application or a component of your application follow:

 Using GCE—If the application is business critical and poses too high of a risk,
you may consider migrating this application to Google Compute Engine (GCE)
VMs before proceeding with containerization. By moving the application to
GCE first, you mitigate the risk of having to learn new operational patterns to
support the application. This can give your team the time they need to learn
Kubernetes and Anthos applied to less critical workloads first.

 Licensing constraints—For example, your application may depend on a software
application that does not allow containerization.

 Operational support—The team that supports your application is not ready to
take on the new tool chain required to support a containerized application.

 Other factors—These include regulatory compliance requirements, performance
when interacting with other applications, and existing hardware investments.

Consider figure 16.2, which visualizes the high-level flow of modernizing a Java
application.

Monitoring

and Logging

Figure 16.1 Overview of Anthos components

412 CHAPTER 16 Breaking the monolith
The approach would be the same regardless of the technology stack you originally
used to build your application. Also keep in mind that this is a simple example—your
application may consist of multiple application components or services, which all
need to interact to create the end-to-end application user experience. Based on the
criteria listed earlier, you will need to decide which application components you will
replatform into containers and which ones you will keep as VMs. Then you can work
through the modernization plan as illustrated. The following outline adds a little more
clarity to each step:

 Step 0—Identify the target application or component to be modernized.
 Step 1—If the application is suitable, we will use Anthos Migrate (chapter 15) to

containerize the target application.
 Step 2—If the application is too complex, we will manually containerize the

application. We will go into more detail on this approach in the next section.
 Step 3—Update your existing CI/CD pipeline, or build a new one that will

build, test, and deploy the application to Anthos.
 Step 4—Operate your application using Anthos to manage configuration, secu-

rity, and connectivity to legacy applications.
 Step 5—Refactor your application into a microservices architecture.
 Step 6—Move legacy applications not currently suited for containers to Compute

Engine, then modernize them by refactoring each application into microservices,
using modern open source frameworks designed for cloud native applications.

 Legacy applications not in scope for the modernization plan will remain in
their current form and will likely remain in a legacy data center. We will use
Anthos Service Mesh for securing connections to these workloads, such as ERP
systems and core mainframe applications.

Containerize with
Migrate for Anthos.

Migrate to VMs on
Google Cloud.

Legacy apps stay
as VMs (not fit for
containerization).

Containerize. Modern CI/CD

Refactor into
microservices.

Java App

Secure connectivity to legacy VMs
using Anthos Service Mesh.

Lift and modernize to
containers

Containerize and CI/CDMigrate to VMs on
Google Cloud

Refactor into
microservices

Preffered path

Figure 16.2 Modernizing a Java application

41316.2 Using Anthos for modernization
Figure 16.3 illustrates a three-tiered Java application, aka monolithic. In some cases,
the legacy app will use a commercial Java application server (e.g., WebSphere, Web-
Logic). If you have analyzed the application source and it is not taking advantage of
proprietary features of the commercial application server, now would be a good time
to move to an open source application server (Apache Tomcat, JBOSS) and eliminate
unnecessary licensing costs. After all, you will be rebuilding the application deploy-
ment anyway, and public container images are available as starting points for either of
the open source application servers mentioned. If your team is considering a redesign
or rewrite, you may also want to consider moving to modern Java frameworks within
your application, like Spring Boot (https://spring.io/projects/spring-boot). If you go
down this path, you may also consider using the Spring Cloud GCP (https://spring
.io/projects/spring-cloud-gcp) project, which will accelerate your migration and pro-
vide libraries for interacting with common GCP services like Pub/Sub, Cloud Span-
ner, and Cloud Storage. If you are looking to avoid getting locked in to a specific
vendor, you may consider abstracting the aforementioned services by using interface
design to abstract away the cloud provider–specific implementations.

Once you have figured out which applications or application components are best
suited for containerization, you can follow the next steps.

CONTAINERIZE YOUR APPLICATION

The first step in the journey is getting your application running inside a container. If
you’re containerizing an ASP.NET application, you will have two approaches to consider:
port to .NET Core or use Windows classic Kubernetes nodes. The approach you choose
will depend on how easily you can port the application for ASP.NET to .NET Core and

Traditional three-tiered

Java App

Business

Logic/Application
Presentation Data

Figure 16.3 Traditional three-tiered Java application

https://spring.io/projects/spring-boot
https://spring.io/projects/spring-cloud-gcp
https://spring.io/projects/spring-cloud-gcp
https://spring.io/projects/spring-cloud-gcp

414 CHAPTER 16 Breaking the monolith
how long the application will be supported. In general, we recommend porting the appli-
cation to .NET Core, which will run on Linux, thus simplifying your Anthos clusters.
Additionally, as with Java applications, it might potentially require a major rewrite.

 In this chapter, we will focus on the steps required to replatform a typical enter-
prise Java application to containers running on Anthos. A couple of tools are available
for Java developers to make the process of building a container image for an applica-
tion easier, which plug into an existing build workflow (see figure 16.4). If your team
is not comfortable writing container image descriptors, you may consider using tools
such as the following:

 Jib (https://github.com/GoogleContainerTools/jib)—Integrates with Maven
and doesn’t require a Docker daemon on the build machine. Developers follow
a typical build process, and Jib builds and outputs an optimized container
image for your application. The optimized container image splits dependencies
from classes, making it fast and efficient on future builds. Only the layers that
have changed will be rebuilt.

 Google Cloud buildpacks (http://mng.bz/dJKo)—Buildpacks are designed to
abstract the container image–building process, so the developer can follow a
normal build process. Based on the CNCF v3 specification, these buildpacks
output container images following best practices designed to run on GCP con-
tainer services: Anthos, Cloud Run, or GKE.

Figure 16.4 Docker build vs. Jib/buildpack flow

https://github.com/GoogleContainerTools/jib
http://mng.bz/dJKo

41516.2 Using Anthos for modernization
Once you have chosen your path and containerized your application, it’s time to con-
nect it to a CI/CD build pipeline for faster deployment iterations. At this point, you
have containerized the monolith. Later in this chapter, we will discuss how to refactor
it into microservices.

BUILD AND DEPLOY YOUR APPLICATION USING MODERN CI/CD
Next, we want to build a CI/CD pipeline to manage our new build process and deploy
our application. This will create more efficiencies in our development process by elim-
inating manual tasks in favor of automation, thus allowing us to build, validate, and
ship code faster. As we refactor to microservices, we decouple our application services
into independently deployed components, which increases the overall complexity to
deploy and manage our modern application. Without well-defined and complete
CI/CD pipelines and an automated approach to address quality control and deploy-
ments, we see teams slow down rather than speed up.

 Figure 16.5 depicts the necessary stages and flow for building a CI/CD pipeline to
build and deploy a Kubernetes application.

OPERATING YOUR APPLICATION ON ANTHOS

At this point, you can use Anthos as a consistent Kubernetes operating environment
to reduce your operational overhead while increasing development cycle velocity.
Refer to chapter 5 for more information on operating your application. Moving your
applications into containers and adding CI/CD pipelines should give your operators
and developers more cycles to focus on modernizing additional applications or move
on to a deeper modernization (refactoring into microservices) of an application you
already have running on Anthos.

REFACTORING YOUR APPLICATION INTO MICROSERVICES

What we have learned since the invention of public cloud platforms is that one
architecture stands above all others for cloud native applications: microservices. The
microservices architecture was pioneered by companies like Google and has since
been adopted by mainstream companies performing in the elite DevOps space (see
http://mng.bz/rd4J). This chapter is not intended to be the holy grail of building

Figure 16.5 Example CI/CD pipeline for a Kubernetes application

http://mng.bz/rd4J

416 CHAPTER 16 Breaking the monolith
microservice applications—plenty of good books on the topic are out there. We will
take the time to highlight the architecture and key advantages to this approach,
though. As illustrated in figure 16.6, with a monolithic architecture, we couple all of
the service code into a single compiled application, which creates a hard coupling
between the technical components and the teams building them. It also means that
when that application is running in a single process, known side effects exist: an applica-
tion crash in one component may take out the entire app, and scaling the application
means scaling all components, which leads to waste in our computing environment.

Most teams use domain-driven design (see http://mng.bz/Vp4y) in the design and cre-
ation of their microservices. With a microservice architecture, we decouple the services
responsible for separate business domains into their own isolated services. This allows us
to decouple the teams responsible for developing each service, reducing the domain
expertise required. We standardize interactions between services by using industry best
practices for protocols and data payloads, which provides the following technical and
development benefits as outcomes to a microservices-based architecture:

 We decompose an app into a set of smaller services that are easier to understand.
 They are faster to develop and easier to maintain because we limited the

breadth of domain knowledge required.
 They can be developed independently by a team focused on that service,

increasing overall product development velocity.
 They are deployed and scaled independently; we’re scaling services, not servers.
 They make it easy to enable continuous deployment on complex applications

because we can limit our test boundaries to a single service during service devel-
opment iterations.

Figure 16.6 Monolith vs. microservice architecture

http://mng.bz/Vp4y

41716.2 Using Anthos for modernization
The business benefits follow:

 We gain increased deployment frequency, resulting in reduced time to market
for new features and patches. We can iterate development and add new capabil-
ities to a single service with little or no effect to other application services.

 We get better infrastructure utilization because we scale services, not servers.
Because we have more cleanly defined application service boundaries, we can
deploy services individually and scale only the ones we need to scale. In the
past, it was common for operations teams to scale an entire server or VM
because scaling an individual service was a complex task, and they didn’t under-
stand the application well enough to split it up.

 We achieve faster mean time to recovery for security patches. Because microser-
vices are mainly deployed using containers, we simply patch the code and rede-
ploy the application using a Kubernetes rolling update with zero downtime. In
the past, we would have attempted to patch the VM and do an in-place upgrade
of the application. Most operations teams would agree this led to more down-
time than was typically planned.

 We experience reduced deployment failure or rollback. Because we have iso-
lated the service boundaries, the scope of our deployments is also reduced.
Combining this with automated testing and deployment of the application, our
success rate increases significantly.

You can take two approaches when choosing to refactor your application into a micro-
services architecture: first, spin up a team focused on rewriting the entire application
using a greenfield approach. This approach will be less disruptive to your production
application, but it will add more risk to the overall project because you need the
entire application to be rewritten before you can realize the benefits. The second
approach is to apply the strangler fig pattern (http://mng.bz/xdgd) to slowly iterate
away the design of the legacy application and refactor it into microservices.

 We recommend using the strangler fig pattern because it reduces the risk in adopt-
ing the new design patterns and overall refactoring of the application into a microser-
vices architecture. This method may add a little more work to the overall project
because we need to extract the logic and work it back into the existing application. It
allows us to incrementally improve our application architecture, providing more and
more value each time we create a new production release, which reduces the amount
of risk and starts to provide value more quickly to the business.

 Many teams struggle with the simple question, where do we start? The answer will
be different for each application. However, the pattern is generally the same: look for
features that support the application and are easy to decouple. For example, a central-
ized authentication and authorization service is usually a good choice.

http://mng.bz/xdgd

418 CHAPTER 16 Breaking the monolith
 Consider using the framework Google recommends (http://mng.bz/Alqo) for
evaluating which feature to move first. A summary of the framework follows:

 Business process
 Design and development
 Operations
 People and teams

Business process
You should evaluate and consider the effects that moving the feature will have on the
business users. Developers and operations teams need to learn a lot of new concepts
to successfully modernize an application. Early in your modernization process you
should avoid moving business-critical systems or features.

Design and development
Next, you should evaluate the complexity of the feature, its dependencies, and the
amount of refactoring required to move it. Consider the following factors:

 Data usage, number of schemas (isolated or shared), and size
 Dependencies on other features
 Other features that depend on this feature
 Connectivity requirements
 Design elements that may create complexity in refactoring or have no clear

solution

Operations
While evaluating which features to move first, you should consider the following:

 Service-level agreements with the business
 Maintenance windows and tolerance for downtime

Consider focusing on features that are more lenient on downtime and don’t have crit-
ical business SLAs requiring high availability.

People and teams
In the early stage, it is preferable to focus on teams that are in support of moderniza-
tion and have well-defined processes. If possible, avoid teams that are holding out or
where processes are available only through tribal knowledge.

OPTIMIZE YOUR ON-PREM LEGACY APPLICATIONS USING ANTHOS SERVICE MESH

Most people taking this approach to modernize their application will end up with
some components or dependencies still running on VMs. We can use Anthos Service
Mesh (ASM) to add observability and security capabilities in managing these work-
loads, consistent with our Kubernetes workloads. The benefits ASM provides to VMs
are listed here (and see figure 16.7):

 Use the same declarative policy and security management framework as con-
tainers running on Anthos.

http://mng.bz/Alqo

41916.3 Benefits of Anthos for microservices
 No code changes required; once the VM registers with Anthos, it is treated like
a service running in GKE.

 Take advantage of the same observability you get from your container work-
loads in a single dashboard; metrics appear just like a service running in GKE.

16.3 Benefits of Anthos for microservices
The goal of a microservice architecture is to decouple the business service logic into
individual, self-contained services to provide acceleration of development and optimi-
zation of performance. The drawback is that you are creating complexity in the con-
figuration, deployment, and maintenance operations of your application. The packages
that you need to reinstall due to updates in the common software introduce a pain in
the neck every time you have to redo and update lots of different environments.
Anthos solves the most common problems associated with supporting these types
of applications:

 Consistency—A consistent runtime environment across multiple public cloud and
on-prem data centers.

 Automation—A key to success with microservices is your ability to automate the
deployment of your entire application. Anthos provides configuration as code
to enable this capability. You can apply configuration and security policies and
even deploy your application components using ACM.

 Dependency management and security—Increased complexity in decoupled services
is more easily managed using a service mesh. Instead of embedding physical

Figure 16.7 Integrating VMs with Anthos Service Mesh

420 CHAPTER 16 Breaking the monolith
service-to-service dependencies in our applications, a popular pattern in
microservices-based solutions is to embed logical references that are resolved
by the service mesh. ASM provides this capability as well as the ability to inject
security policy, enforce mutual TLS, and bridge traditional VMs into your appli-
cation as though they were other Kubernetes-based services.

 Observability—Understanding your application’s performance is more difficult
once you have broken it into microservices. Instead of monitoring one Java pro-
cess with a sophisticated tool, you will need to monitor lots of services for per-
formance and understand when one is degraded or broken. Anthos Service
Mesh provides the ability to visualize and inspect your application performance
as well as set service-level objectives (SLOs) so you can be alerted or have auto-
mated processes remediate service performance.

16.4 Real-world examples
Lots of real-world examples exist where we need to run compute workloads close to
the user (aka running on the edge). These are great use cases for Anthos, which
provides the ability to apply configuration and security policies as code. Two easy-to-
identify use cases are retail and manufacturing.

 Imagine you are a large cruise line. You have developed a new user experience
using many of the concepts we have described in this book. Your team has built a new
microservices-based architecture with web and mobile application user experiences.
This new digital experience is used to provide lots of shipboard capabilities to your
customers, like activity planning, meal ordering, events, announcements, and con-
cierge services. The problem you keep having is a lack of consistency in the fleet. You
are running into problems keeping the hardware and software updated on each ship,
leading to an inconsistent user experience, outages, and many more problems. The
effort to update is a time-consuming human effort to apply patches and upgrade soft-
ware. So, even though your development team took a modern approach, you are
struggling to operate this complex solution. You need Anthos. Although it won’t elim-
inate the process of updating hardware or core networking changes, it will handle
everything else, lessening the gap between manual and automated processes and
reducing your overhead to operate the solution. Anthos will provide you with the fol-
lowing capabilities to get a handle on your environments and avoid configuration and
deployment problems:

 Anthos GKE—Provides a managed Kubernetes distribution that ensures you are
running the same runtime platform on each environment.

 Anthos Service Mesh—Provides security and observability capabilities to ensure
your container environment and workloads are secure and your developers can
easily find problems by using SLOs.

 Anthos Configuration Management—Provides a centralized policy-as-code approach
to core cluster configuration, security policies, and application deployment
consistency.

42116.5 Antipatterns to avoid
Now imagine that your team has built the solution with Anthos at the center of opera-
tions. Your team has designed each cluster and documented your core cluster configu-
ration and security policies as code using Anthos Config Management. To bring a new
shipboard data center online, it’s as simple as racking and stacking the gear, getting
the hardware on the network, installing Anthos, and then registering the cluster with
the control plane and ACM. Then ACM will bootstrap the cluster with the right con-
figuration and security policies.

16.5 Antipatterns to avoid
We have discovered several antipatterns over the years while helping teams modernize
their applications into a microservice architecture:

 Tempting big bang approaches—Many teams decide to scrap what they have and start
over, rewriting the entire application all at once into a microservice architecture.
In our experience, this tends to lead to a waterfall approach, with significantly
longer efforts and overrun budgets before the business can realize the benefits. A
better approach is to peel the onion, one layer at a time, as we have mentioned
earlier in the chapter. This fits better into a lean or agile approach to moderniz-
ing the application and starts to provide benefits much faster.

 Ignoring architecture design principles of microservices (http://mng.bz/ZoMR)—To
correctly create microservices, we isolate all functionality within a new service.
This typically means moving the interface logic, the business logic, and the data
schemas required for stateful services. Many teams stumble here and leave the
data schemas in a shared data store. This can be tempting when teams don’t
understand the services boundaries well or don’t understand how to solve
downstream capabilities like analytics or reporting. In a mature microservice-
based solution, all components must be isolated and independently versioned
and deployed.

 Data-driven migration (http://mng.bz/Rl6Z)—Given the first antipattern we dis-
cussed, it becomes tempting to focus heavily on the data and attempt to use the
data boundaries as service boundaries. This is typically a mistake in legacy sys-
tems and generally results in migration thrashing (lots of migration iterations
to get it right). Instead, consider an intermediary step where you focus on logic
first and data second. This will allow you to get the business service boundaries
correct and better understand how to split out the data.

 Decoupling capabilities not code (http://mng.bz/2adg)—Developers and technical
managers take ownership of the code written, which is why they are tempted to
extract and reuse existing code when refactoring the monolithic code base into
microservices, when, in reality, a high cost and low value results from this
approach. Most organizations and teams will benefit from a rewrite of the code.
This allows them to revisit the business process, potentially optimize legacy pro-
cesses, and improve the code base in the process (add unit tests, standardize on

http://mng.bz/ZoMR
http://mng.bz/Rl6Z
http://mng.bz/2adg

422 CHAPTER 16 Breaking the monolith
new languages, etc.). In some cases, it makes sense to reuse existing code—a
good example would be to extract a complex algorithm that is not well under-
stood or documented. In this situation, it would be safer to extract and reuse
the code and then modernize at a later stage, once the team understands what
it is doing and can safely rewrite.

Summary
 Modernizing legacy applications doesn’t always have to start with a complete

rewrite or refactor. Moving the application into containers can help reduce
operational burden and give your team time to innovate on the next version
of the app.

 While modernizing your application, look for opportunities to reduce technical
debt, like migrating your web server framework or updating core libraries.

 Other ways to reduce technical debt include removing code for bootstrapping
TLS security or observing and relying on Anthos for these capabilities at the
platform level.

 Consider new design patterns like microservices if you will be rewriting or refac-
toring your application.

 Avoid taking a big bang approach—give preference to incremental improve-
ments to the application.

 Use Anthos for consistent runtimes, automation, dependency management,
security, and observability to ensure development teams have a consistent set of
capabilities to rely on in their operating environments.

Compute environment
running on bare metal
Giovanni Galloro

The original release of Anthos required you to deploy your clusters on a vSphere
infrastructure and didn’t offer the option to deploy on a different hypervisor or to
physical servers. For the initial release, this made sense because vSphere is used by
numerous enterprises, and it allowed businesses to use their existing infrastructure
and skill sets. As the use cases for containers and Kubernetes grew, however, it
became clear that organizations wanted, and needed, more flexible deployment
options.

 To address these additional use cases, Google expanded Anthos to include a
bare metal deployment model. One point to highlight is that you do not have to
deploy Anthos on bare metal to actual physical servers. The bare metal model

This chapter covers
 An introduction to Anthos on bare metal

 Deployment options

 Networking architecture

 Storage architecture

 Installing and configuring Anthos on bare metal
423

424 CHAPTER 17 Compute environment running on bare metal
allows you to deploy to any supported operating system, whether a physical server or
virtual machine, or even VMs running on Hyper-V or KVM.

 You can think of the bare metal option as a “bring your own Linux” deployment
model. Rather than having an appliance to deploy your nodes, like the vSphere
deployment model, you need to provide ready-to-use servers before you can deploy
Anthos on bare metal. Now let’s introduce you to Anthos on bare metal.

17.1 Introduction to Anthos on bare metal
As described in previous chapters, Anthos is a platform designed for multiple deploy-
ment environments, as summarized in figure 17.1.

Anthos on bare metal is a deployment option to run Anthos on physical servers,
deployed on an operating system provided by the customer. It ships with built-in net-
working, life cycle management, diagnostics, health checks, logging, and monitoring.
Additionally, it supports CentOS, Red Hat Enterprise Linux (RHEL), and Ubuntu,
all validated by Google. With Anthos on bare metal, you can use an organization’s
standard hardware and operating system images, taking advantage of existing invest-
ments, which are automatically checked and validated against Anthos infrastructure
requirements.

17.1.1 Comparing Anthos on-prem deployment options

Now that you have options to deploy Anthos on-prem, how do you decide which is the
best for your organization? Both options have their own advantages and disadvan-
tages, and to decide which deployment is best for you, you’ll need to consider your
personal requirements. In table 17.1, we have provided an overview of some advan-
tages and disadvantages of each option.

Container Management │Configuration │ Policy Service Management │Operations │ Security

Anthos GCP and AWS Anthos on VMware Anthos on bare metal

Figure 17.1 Anthos deployment environments

42517.2 Anthos bare metal architecture
17.2 Anthos bare metal architecture
Whereas Anthos on VMware cluster nodes are deployed from preconfigured VM
images provided by Google, Anthos on bare metal relies on customers to provide a
supported operating system version that they manage and patch themselves. As you
can see in figure 17.2, the operating system can be installed directly on a physical
server or on a VM running on any virtualization platform (KVM, OpenStack) that sup-
ports one of the Linux distributions compatible with Anthos on bare metal.

Table 17.1 Advantages and disadvantages of Anthos on VMware and Anthos on bare metal

Anthos on VMware Anthos on bare metal

Runs on VMware
Best for organizations who want
 vSphere as a corporate standard
 Hardware shared across multiple teams

or clusters (Dev/Test)
 Integrated OS life cycle management
 Self-healing/autoscaling for clusters

Runs on bare-metal or on-prem IaaS
Best for organizations who want
 Reduced cost and complexity (due to elimination of

the vSphere license)
 Low-latency workloads (telco and high-performance

computing)
 To unlock new use cases for edge computing with

simplified software stack
 To run closer to the hardware for better performance

Deployment advantages

 Easier to deploy multiple clusters
 Provided node appliance requires little

maintenance
 Includes two vSphere storage providers

for persistent disks
 Node autohealing
 Easy to scale cluster nodes up or out

 Can be deployed to any supported Linux node, on-prem,
or in a CSP

 No workload scheduling conflicts
 Expanded GPU compatibility
 Allows node customizations to meet an organization’s

requirements
 Better node performance
 Uses existing corporate standards (e.g., logging and

monitoring standards)

Deployment disadvantages

 Requires additional VMware licensing.
 Customization of node appliance not

supported.
 Limited GPU supported through

pass-through.
 Requires additional training for either

the VM teams or the Kubernetes sup-
port teams.

 The vSphere scheduler and Kubernetes
scheduler are not aware of each other.

 Storage DRS can break your cluster.

 Requires planning to right-size nodes to avoid wasted
resources

 Does not include a storage provisioner other than local
host storage

 Difficult to scale in most enterprises
 No node autohealing
 Managing and updating nodes underlying the OS

426 CHAPTER 17 Compute environment running on bare metal
17.2.1 Cluster architecture

In this section, we will discuss the architecture of a bare metal cluster. Much of the
architecture you know from the Anthos on VMware deployment is the same for bare
metal; however, the bare metal option includes a few architecture differences from
the VMware model.

CLUSTER ROLES

An Anthos bare metal installation has the following two kinds of clusters:

 User cluster—Where applications are deployed, it includes control plane nodes
and worker nodes where containerized application instances run.

 Admin cluster—A cluster that manages one or more user clusters. It is used to
install, update, upgrade, and delete user clusters through an Anthos on bare
metal–specific operator configured through two custom resources: Cluster
and NodePool.

Customer Provided And Managed

Google Provided, Customer Managed

Figure 17.2 Anthos on-prem deployment options, shared responsibility model

42717.2 Anthos bare metal architecture
An admin cluster includes only control plane nodes, where the components used to
manage the installation run. It also hosts some security-sensitive data, including SSH
keys to access nodes’ OS and GCP service account keys. Unlike Anthos on VMware,
user cluster control plane nodes are decoupled from the admin cluster.

HIGH AVAILABILITY
You can run the user or admin cluster control plane in high-availability (HA) mode,
so a control plane node failure does not affect cluster operations. This mode requires
three or more control plane nodes. If high availability is not required, you can run a
single control plane node in each cluster, but this method should be used only for
nonproduction workloads.

 Along with the control plane, you need to consider high availability for the worker
nodes as well. For applications with high availability, you’ll need a minimum of two
worker nodes. As with the control plane, you should never run production workloads
without HA for the worker nodes.

DEPLOYMENT MODELS
This is where you will start to see the differences between how Anthos deploys
between VMware and bare metal. Anthos on bare metal provides a few different
deployment models, offering flexibility to meet different organization requirements.

Standalone cluster deployment
In a standalone cluster deployment model, shown in figure 17.3, a single cluster serves
both as the admin cluster and the user cluster. Because this model doesn’t require a
separate admin cluster, you save three nodes in an HA setup. This situation can be
helpful in scenarios where each cluster is managed independently or for a single clus-
ter where each deployment location is required, for example, an edge use case or for
an isolated network.

From a security perspective, you need to consider that user workloads will run on the
same cluster as the control plane. You will need to carefully consider securing your
cluster to protect information like the node SSH keys and GCP service account keys.
Implementing RBAC policies, OPA policies, network policies, and proper auditing
will help to secure the cluster.

 To provide more flexibility for these types of deployments, starting with Anthos
version 1.8, Google reduced the minimum number of supported nodes per cluster

Kubernetes
Control Plane

Kubernetes
Worker(s)

Figure 17.3 Standalone
cluster deployment

428 CHAPTER 17 Compute environment running on bare metal
from two to one and introduced, for standalone clusters, the new edge profile, which
further reduces the hardware requirements.

Multicluster deployment
This is the same deployment model that Anthos on VMware uses. In a multicluster
deployment model, shown in figure 17.4, you have a single admin cluster managing
multiple user clusters. This model is useful if you need to centrally manage a fleet of
clusters deployed in the same data center.

Hybrid cluster deployment
The hybrid cluster deployment model, shown in figure 17.5, is similar to the multi-
cluster deployment with one difference: you can use the admin cluster to run user
workloads along with the standard worker nodes.

 As you can see, Anthos on bare metal added greater deployment flexibility compared
to the VMware deployment model. The added flexibility doesn’t stop there, though. In
the next subsection, we will discuss the updates to the networking architecture.

Kubernetes
Control Plane

Kubernetes
Worker(s)

Kubernetes
Control Plane

Kubernetes
Control Plane(s)

Kubernetes
Worker(s)

Kubernetes
Control Plane(s)

Kubernetes
Worker(s)

Anthos Bare Metal User Cluster #N

Anthos Bare Metal User Cluster #2

Anthos Bare Metal
(Admin) Cluster

Anthos Bare Metal User Cluster #1

Figure 17.4 Multicluster deployment

42917.2 Anthos bare metal architecture
NETWORKING ARCHITECTURE

It makes sense that the networking architecture for the bare metal option would differ
from the VMware model’s. In the VMware deployment, you can use an external load
balancer, or you can use the bundled load balancer, Seesaw. If you use the Seesaw
option, Anthos deploys a preconfigured virtual machine, or machines in HA mode, to
your VMware environment.

 In the bare metal deployment, Google doesn’t supply any appliances or VM images
for any component. Don’t worry, though—Google has this covered using other com-
ponents like HAProxy and MetalLB.

Load balancing
Anthos on bare metal requires layer-4 (L4) load balancing to expose the control plane
endpoint, ingress endpoint, and applications, using the LoadBalancer type Service. The
load balancer’s responsibility is to route and balance the traffic to the appropriate nodes.

 Whichever cluster deployment model you choose, Anthos on bare metal can pro-
vide the needed load-balancing capabilities through a bundled L4 load balancer (bun-
dled load balancer mode) or, alternatively, you can use an external load-balancing
solution provided and configured by the customer (manual load balancer mode).

Kubernetes
Control Plane

Kubernetes
Worker(s)

Kubernetes
Control Plane

Kubernetes
Worker(s)

Anthos Bare Metal
(Admin) Cluster Kubernetes

Control Plane(s)
Kubernetes
Worker(s)

Anthos Bare Metal User Cluster #2

Anthos Bare Metal User Cluster #1

Kubernetes
Control Plane(s)

Kubernetes
Worker(s)

Anthos Bare Metal User Cluster #N

Figure 17.5 Hybrid cluster deployment

430 CHAPTER 17 Compute environment running on bare metal
 Whichever option you choose for L4 load balancing, during the installation an
Envoy-based Istio Ingress gateway is deployed, and it’s exposed through a LoadBalancer
type Service using the L4 load balancer. This Envoy deployment is used to provide
application proxy capabilities to applications, exposing them through standard Kuber-
netes ingress objects.

Bundled load balancer mode
To begin with, let’s discuss load balancing for the control plane. If you choose bun-
dled load balancing, Anthos on bare metal deploys L4 load balancers during cluster
installation, removing the requirement of providing an external load balancer. The
load balancers can run on a dedicated pool of worker nodes, or they can be located on
the same nodes as the control plane. In either case, the load balancer nodes must be
in the same subnet.

 Starting with Anthos 1.9, Google changed how L4 load balancers are deployed.
Previously, the HAProxy container image was deployed to the node(s) as a standard
Docker (i.e., not Kubernetes controlled) container as a systemd Service. Starting with
version 1.9, the Keepalived and HAProxy containers have been updated to run as
static Kubernetes Pods on the load balancer nodes.

 HAProxy is used only for load-balancing the control plane. To provide L4 to the
data plane, Anthos deploys a popular, open source solution called MetalLB, which ser-
vices requests in the cluster for any service that is deployed using the LoadBalancer
type.

 To recap the bundled load balancer components:

 Control plane load balancing—The control plane virtual IP address (VIP), routing
traffic to the Kubernetes API server running on control plane nodes, is exposed
through an HAProxy load balancer running as a Kubernetes Pod on the load
balancer nodes, together with a containerized Keepalived service that manages
HAProxy high availability.

 Data plane load balancing—The LoadBalancer type Service objects created for
the applications and the Istio Ingress gateway deployed with Anthos on bare
metal are exposed through an Anthos-managed MetalLB deployment running
on the load balancer nodes. IP addresses for LoadBalancer type Services can be
automatically assigned from a predefined pool and are part of the same subnet
where load balancer nodes are deployed.

Both control plane load-balancing components (HAProxy and Keepalived) and data
plane load-balancing components (MetalLB) run together on designated nodes (clus-
ter control plane nodes or dedicated load balancer worker nodes).

 Figure 17.6 shows an architecture example of a user cluster deployed in a single
subnet with bundled load balancers running on control plane nodes. Figure 17.7
shows an architecture example of an user cluster deployed in a single subnet with
bundled load balancers running on dedicated worker nodes.

43117.2 Anthos bare metal architecture
Data Center Network

All Node and VIP IP(s) to
be allocated from this
subnet.

Ingress VIP
Control Plane VIP
Service VIP

Node IP

Figure 17.6 Load balancers running on control plane nodes

Data Center Network

All Node and VIP IP(s) to
be allocated from this
subnet.

Node IP

Ingress VIP
Control Plane VIP
Service VIP

Figure 17.7 Load balancers running on dedicated worker nodes

432 CHAPTER 17 Compute environment running on bare metal
Manual load balancer mode
If you choose manual load balancer mode, the Anthos installation doesn’t deploy
the bundled load balancers, and you are responsible for deploying an external load-
balancing solution.

 Figure 17.8 shows an example of a user cluster deployed in a single subnet with an
external load balancer configured in manual load balancer mode.

Internal cluster networking
Anthos on bare metal deploys an overlay network based on GENEVE tunnels that
requires layer-3 (L3) connectivity between the nodes in the cluster, except for load
balancer nodes that are required to be in the same layer-2 (L2) domain.

 Similar to how Anthos on VMware works, Pod IP addressing works in island mode,
which means IP addresses assigned to Pods are accessible only from the same cluster,
and Pod CIDR ranges can be reused across clusters.

STORAGE ARCHITECTURE

The main approach to provide persistent storage for workloads running on Anthos on
bare metal is through a Container Storage Interface driver from an Anthos-ready stor-
age partner. You can find a list of partners and validated storage solutions at http://
mng.bz/1MdX.

 Anthos on bare metal also bundles the sig-storage-local-static-provisioner,
which provides mount points on each node and creates a local persistent volume (PV)
for each mount point. Because of its limitations, you should use local PVs only for
nonproduction environments or specific advanced use cases.

Data Center Network

Ingress VIP
Control Plane VIP
Service VIP

Customer-managed
Load Balancer

Node IP

Figure 17.8 Manual load-balancing architecture

http://mng.bz/1MdX
http://mng.bz/1MdX
http://mng.bz/1MdX

43317.3 Installation and configuration overview
OBSERVABILITY

You can use Google Cloud operations to collect logs and monitoring metrics for
Anthos on bare metal, just like in other Anthos deployment environments. By default,
system components logs are sent to Cloud Logging and system components metrics
are sent to Cloud Monitoring. Cloud operations can also collect application logs and
metrics (using Google Managed Service for Prometheus) by enabling it in the cluster
configuration.

 As an alternative to Cloud operations, you can use other solutions if preferred,
such as Prometheus/Grafana, Elastic Stack, Sysdig, Datadog, or Splunk.

IDENTITY INTEGRATION

Anthos on bare metal can integrate, through the Anthos Identity Service authentica-
tion proxy, with any identity provider that supports OpenID Connect (OIDC) or
LDAP to manage user and group authentication to clusters using existing user identi-
ties and credentials. If you already use or want to use Google IDs to log in to your
Anthos clusters instead of an OIDC or LDAP provider, is it recommended you use the
Connect gateway for authentication.

 With this integration, you can manage access to an Anthos on bare metal cluster by
using standard procedures in your organization for creating, enabling, and disabling
accounts. You can employ Kubernetes RBAC to bind specific roles to users and groups
defined in the identity provider to authorize them to perform specific actions on spe-
cific resources.

17.3 Installation and configuration overview
In this section, we will provide an overview of the requirements to deploy a cluster.
Understanding the requirements is an important step before attempting to deploy a
cluster, which we will discuss in the next section.

 Google has made deploying Anthos on bare metal an easy process. Like the
VMware deployment, you configure the cluster options in a configuration file and
perform the deployment using a single binary executable called bmctl.

 Anthos requires you to meet requirements for both software and hardware. Most
organizations easily meet the requirements, but you should always verify that your
infrastructure meets all requirements before deploying.

17.3.1 Operating systems and software requirements

As described in the introduction and architecture sections, Anthos on bare metal is
installed on servers provided and configured by the customer. Servers can be physical
or virtual, as long as they have one of the supported operating systems, configured to
meet the Anthos requirements. Servers to be used as Anthos on bare metal nodes
need to have one of the following operating systems:

 CentOS 8.2/8.3/8.4/8.5
 Red Hat Enterprise Linux (RHEL) 8.2/8.3/8.4/8.5/8.6
 Ubuntu 18.04 and 20.04

434 CHAPTER 17 Compute environment running on bare metal
Each supported version requires a slightly different configuration. If you are using
RHEL or CentOS, the firewalld service must be configured to allow traffic to TCP and
UDP ports—these will be covered in the internal connectivity requirements in sec-
tion 17.3.4. On these operating systems, if SELinux is enabled in enforcing mode, a
policy for container isolation and security is configured during the Anthos on bare
metal setup. If you are running the nodes on Ubuntu, you must disable the Uncompli-
cated Firewall service.

 Time is very important for a cluster. To ensure that all nodes have their clocks in
sync, all servers need to have an NTP service configured and enabled. Finally, because
the installation establishes an SSH connection to the nodes, you’ll need an SSH key
pair to access each node with root privileges.

17.3.2 Hardware capacity requirements

Anthos on bare metal will work on any hardware compatible with one of the sup-
ported operating systems. The number of nodes required for an installation depends
on the chosen deployment and load-balancing model, as described earlier. The num-
ber of worker nodes required will depend on the capacity requirements of the appli-
cations that the cluster(s) will host.

 Table 17.2 describes the minimum and recommended hardware requirements for
each node, whatever its role, using the default profile, excluding the applications capac-
ity requirements that should be added.

Table 17.3 describes the hardware requirements for the edge profile introduced in
Anthos on bare metal version 1.8.

Table 17.2 Hardware requirements for Anthos on bare metal

Resource Minimum Recommended

CPUs/vCPUs 4 core 8 core

RAM 16 GiB 32 GiB

Storage 128 GiB 256 GiB

Table 17.3 Hardware requirements for the edge profile

Resource Minimum Recommended

CPUs/vCPUs 2 core 4 core

RAM Ubuntu: 4 GB
CentOS/RHEL: 6 GiB

Ubuntu: 8 GB
CentOS/RHEL: 12 GiB

Storage 128 GiB 256 GiB

43517.3 Installation and configuration overview
17.3.3 Admin workstation

Besides the nodes, it’s suggested to have an additional workstation to run the installa-
tion tool. This workstation must have the same Linux operating system running on
cluster nodes with Docker 19.03 or higher configured to be managed by nonroot users.
In addition to Docker, the machine must have the following:

 gcloud with anthos-auth and kubectl installed.
 More than 50 GB of free disk space.
 L3 connectivity to all cluster node machines.
 Access to all cluster node machines through SSH via private keys with password-

less root access. Access can be either direct or through sudo.
 Access to the control plane VIP.

17.3.4 Networking requirements

Anthos has different requirements for external versus internal network connectivity.

EXTERNAL CONNECTIVITY REQUIREMENTS

All Anthos on bare metal nodes will need outbound HTTPS connectivity to the inter-
net to do the following:

 Register to the GCP console and be managed from there through GKE Connect
 Send metrics and logs to Cloud operation endpoints
 Pull images from the Google Container Registry

This connectivity can use the public internet, an HTTP proxy, or a private connection
like Google Cloud VPN or Dedicated Interconnect.

INTERNAL CONNECTIVITY REQUIREMENTS

This section will detail the internal networking requirements for your cluster. Each
component of the cluster has different requirements, and tables 17.4–17.7 list the spe-
cific connectivity ports used for cluster node traffic.

Table 17.4 Control plane nodes

Protocol Direction Port range Purpose Used by

UDP Inbound 6081 GENEVE encapsulation Self

TCP Inbound 22 Provisioning and updates
of admin cluster nodes

Admin workstation

TCP Inbound 6444 Kubernetes API server All

TCP Inbound 2379–2380 etcd server client API kube-apiserver and etcd

TCP Inbound 10250 kubelet API Self and control plane

TCP Inbound 10251 kube-scheduler Self

TCP Inbound 10252 kube-controller-manager Self

436 CHAPTER 17 Compute environment running on bare metal
With the networking requirements covered, let’s move on to the additional require-
ments for configuring the cluster load balancer.

TCP Inbound 10256 Node health check All

TCP Both 4240 CNI health check All

Table 17.5 Worker nodes

Protocol Direction Port range Purpose Used by

TCP Inbound 22 Provisioning and updates
of user cluster nodes

Admin cluster nodes

UDP Inbound 6081 GENEVE encapsulation Self

TCP Inbound 10250 kubelet API Self and control plane

TCP Inbound 10256 Node health check All

TCP Inbound 30000–32767 NodePort services Self

TCP Both 4240 CNI health check All

Table 17.6 Load balancer nodes

Protocol Direction Port range Purpose Used by

TCP Inbound 22 Provisioning and updates
of user cluster nodes

Admin cluster nodes

UDP Inbound 6081 GENEVE encapsulation Self

TCP Inbound 443 Cluster management All

TCP Both 4240 CNI health check All

TCP Inbound 7946 Metal LB health check Load balancer nodes

TCP Inbound 10256 Node health check All

UDP Inbound 7946 Metal LB health check Load balancer nodes

Table 17.7 Multicluster port requirements

Protocol Direction Port range Purpose Used by

TCP Inbound 22 Provisioning and updates
of cluster nodes

All nodes

TCP Inbound 443 Kubernetes API server for
added cluster

Control plane and load
balancer nodes

Table 17.4 Control plane nodes (continued)

Protocol Direction Port range Purpose Used by

43717.3 Installation and configuration overview
LOAD-BALANCING REQUIREMENTS

Before installing Anthos on bare metal, you need to choose an architecture for load
balancing (manual versus bundled) and, in the case of bundled, decide whether your
load balancers will be installed on control plane nodes or dedicated worker nodes.
Whatever solution you choose, the following VIP addresses must be reserved:

 One VIP for the control plane for each cluster—If you’re using the bundled load bal-
ancer, this will be automatically created based on the configuration you defined
during installation. If you’re using a manual load balancer, this needs to be
manually associated with a backend server group containing all the IP addresses
of the cluster’s control plane nodes. The backend port the control plane listens
on is 6444.

 One VIP for the Ingress service for each user cluster—If you’re using the bundled load
balancer, this will be automatically created based on the configuration defined
during installation. If you’re using a manual load balancer, this needs to be
manually configured with the same IP address assigned to the istio-ingress
Service created in the gke-system namespace in the cluster and associated with
a backend server group containing the IP addresses of the cluster nodes. The
backend port would be the NodePort of the istio-ingress Service. If you want
to use the Ingress gateway both for HTTP and HTTPS traffic, it’s possible that
you have to configure one VIP (and backend pool) for each port.

 One VIP for each LoadBalancer type Service created in the cluster—If you’re using
the bundled load balancer, these will be automatically assigned based on the
pool defined during installation. If you’re using a manual load balancer, it
needs to be manually configured with the same IP address assigned to the Ser-
vice object and associated with a backend server group containing all the IP
addresses of the cluster worker nodes. The backend port would be the Node-
Port of the Service object.

If the cluster deployment will use the bundled load balancer, the following items must
be configured:

 The load-balancing nodes need to be in the same L2 network, whereas other
connections, including worker nodes, require only L3 connectivity.

 All VIPs must be in the load balancer machine subnet and fully routable.
 The gateway of the load balancer subnet must listen to gratuitous ARP messages

and forward ARP packets to the load balancer nodes.

Moving on, the next section will cover the Google Cloud Platform requirements.

17.3.5 Google Cloud Platform requirements

The Anthos on bare metal installation has a few GCP project requirements, including
required APIs, service accounts, and required roles.

438 CHAPTER 17 Compute environment running on bare metal
REQUIRED GCP APIS
For a successful deployment, the project to which the cluster will be connected must
have several APIs enabled. You can do this manually, or you can enable them automat-
ically as an option when you execute the deployment using bmctl. The following APIs
must be enabled in the GCP project used for installation:

 anthos.googleapis.com
 anthosaudit.googleapis.com
 anthosgke.googleapis.com
 cloudresourcemanager.googleapis.com
 container.googleapis.com
 gkeconnect.googleapis.com
 gkehub.googleapis.com
 iam.googleapis.com
 serviceusage.googleapis.com
 stackdriver.googleapis.com
 monitoring.googleapis.com
 logging.googleapis.com
 opsconfigmonitoring.googleapis.com

If any of the APIs is not enabled before you run the deployment, the preflight check
will catch the missing API and stop the deployment from continuing.

REQUIRED SERVICE ACCOUNTS AND ROLES

Another requirement before deploying Anthos on bare metal is to create the required
service account(s) and required roles. Although you can use a single account with
all the roles, it is considered a bad security practice. Your organization will have its
own security requirements, but it is advised that you create all the accounts as dis-
tinct service accounts.

 You can elect to create the service accounts manually, or you can create them during
the installation, using a parameter of the bmctl installation tool. Anthos on bare metal
needs the following Google Cloud service accounts with the roles specified:

 A service account Container Registry (gcr.io) with no special role
 A service account used to register the cluster to the GCP console with the GKE

hub admin IAM role
 A service account used to maintain a connection between the cluster and Goo-

gle Cloud with the GKE Connect Agent IAM role
 A service account used to send logs and metrics to Google Cloud’s operations

suite with the following IAM roles:
– Logs writer
– Monitoring metric writer

43917.4 Creating clusters
– Stackdriver resource metadata writer
– Monitoring dashboard configuration editor
– Ops config monitoring resource metadata writer

If you want to enable these APIs and create the needed GCP service accounts during
installation using the bmctl tool, the account used for installation must have either
the project owner/editor role or, at least, the following roles assigned:

 Service account admin
 Service account key admin
 Project IAM admin
 Compute viewer
 Service usage admin

Finally, we will cover one more requirement that Anthos will use for cluster metrics.

CLOUD METRIC REQUIREMENTS

To send metrics to Google Cloud’s operations suite, in addition to the service accounts
listed in the previous section, you must create a Cloud Monitoring workspace within
the GCP project.

17.4 Creating clusters
After all the requirements have been satisfied, you can proceed with the cluster cre-
ation. The following sections assume that all the installation tasks are performed from
a machine that satisfies the requirements stated in section 17.3.3.

17.4.1 Creating an admin, hybrid, or standalone cluster

As we have detailed, you can deploy Anthos on bare metal using a few different cluster
models, including separate admin/user clusters, hybrid clusters, or standalone clus-
ters. In this section, we will discuss the process of deploying each model.

SUMMARY OF INSTALLATION FLOW

You install the first cluster in a specific deployment environment, regardless of the
selected model, using the bmctl tool. Additional user clusters in the same environ-
ment can be created by applying an Anthos on bare metal user cluster configuration
file, which is similar to the first cluster configuration, with a few minor changes. The
high-level steps to create the first cluster follow:

1 Download the bmctl tool.
2 Use bmctl to create a cluster config template file.
3 Modify the config file with desired settings.
4 Run bmctl to create the cluster.

Figure 17.9 shows the flow for the first cluster creation with bmctl.

440 CHAPTER 17 Compute environment running on bare metal
The initial four steps are initiated by the user, and when you perform step 4, the bmctl
create cluster command, the following steps are executed:

 Validate Config—The cluster configuration file is checked to verify that specs are
well formed, no IP address overlap occurs, service account keys are available,
and the cluster has not been already registered in GCP console.

 Create kind cluster—As part of the setup, bmctl initially creates a temporary kind
(Kubernetes in Docker) cluster on the admin workstation in which some of the
resources needed for the admin cluster, such as cluster and NodePool objects
or Secrets containing static site generator and service account keys, are created
from the configuration file specs.

 Preflight check—Checks are performed on cluster machines and network require-
ments, such as OS version and configuration, filesystem available space, and
reachability of GCP API endpoints.

 Provision bare metal cluster—Binaries are copied to target nodes, and installation
is executed, including node initialization and join.

 Install add-ons—Add-on components like GKE Connect Agent, logging and moni-
toring components, bare metal operator, and MetalLB are installed.

 Pivot—The process of moving bare metal resources from the kind cluster to the
provisioned cluster. Kubernetes resources will be deleted from the kind cluster
afterward.

Finally, let’s dive into creating a cluster!

Download
bmctl.

Modify
config.yaml.

bmctl create
config

Preflight check

bmctl create
cluster

Provision bm
cluster.

Create kind
cluster. Validate config.

Install add-ons. Pivot.

Figure 17.9 Cluster creation flow using bmctl

44117.4 Creating clusters
LOGGING IN TO GCP AND DOWNLOADING THE BMCTL TOOL

Remember that Google supplies a tool to deploy Anthos on bare metal called bmctl.
On the workstation that you will use to deploy the cluster, download the bmctl tool by
following the steps here (for our example, we will assume the working directory is
~/baremetal):

1 Log in with gcloud, using gcloud auth application-default login, as a user
that has the roles described in the “Installing account role requirements” subsec-
tion of the Installation requirements section.

2 Download the bmctl tool from the URL or storage bucket you will find in the
documentation, shown here:

gsutil cp gs://anthos-baremetal-release/bmctl/<VERSION>/linux-amd64/bmctl
bmctl)

3 Make bmctl executable:

chmod a+x bmctl

Now that we have the bmctl executable, we can move on to creating the cluster
configuration.

CREATING THE CLUSTER CONFIGURATION

To deploy a cluster, we need to have a cluster configuration file that contains all the
parameters and options for the deployment. The bmctl tool can create a new configu-
ration file for us by using the create config option:

bmctl create config -c CLUSTER_NAME --project-id=CLOUD_PROJECT_ID

where CLUSTER_NAME is the name you want to give to the cluster and CLOUD_PROJECT
_ID is the project ID of the project you want to use with Anthos on bare metal.

 If you haven’t already enabled the required APIs, you can add the --enable-apis
option to the previous command to enable them, and if you haven’t created the
required service accounts yet, you can add the option --create-service-accounts to
have them created along with the needed roles.

POPULATING THE CLUSTER CONFIGURATION FILE

Before creating the cluster, we need to properly prepare the configuration file created
by bmctl. The file is saved by default in a folder named with the cluster name inside a
folder named bmctl-workspace. In this section, we will explain the options in the con-
figuration file.

SSH private key
This is the SSH private key that will be used to connect to the nodes during the cluster
deployment. Add to the sshPrivateKeyPath: spec the full path to access an SSH pri-
vate key authorized to access all the target nodes as root, for example:

sshPrivateKeyPath: /root/.ssh/anthoskey

442 CHAPTER 17 Compute environment running on bare metal
GCP service account keys
If you manually created the GCP service accounts before running bmctl, you need to
populate the related fields with the full paths to service account keys as in the next
example. If you used the bmctl --create-service-accounts parameter, they will be
already populated:

gkeConnectAgentServiceAccountKeyPath: /root/bmctl-workspace/.sa-keys/anthos-
demos-anthos-baremetal-connect.json

gkeConnectRegisterServiceAccountKeyPath: /root/bmctl-workspace/.sa-
keys/anthos-demos-anthos-baremetal-register.json

cloudOperationsServiceAccountKeyPath: /root/bmctl-workspace/.sa-keys/anthos-
demos-anthos-baremetal-cloud-ops.json

gcrKeyPath: /root/bmctl-workspace/.sa-keys/anthos-demos-anthos-baremetal-
gcr.json

Cluster type
Depending on the chosen cluster deployment model, set the type spec value in the
Cluster custom resource accordingly, choosing between admin, hybrid, or standalone
as in the following example:

apiVersion: baremetal.cluster.gke.io/v1
kind: Cluster
metadata:
 name: admin-cluster
 namespace: cluster-admin-cluster
spec:
 type: hybrid

Control plane configuration
Depending on the chosen control plane architecture, add the IP address of the target
control plane node in the nodePoolSpec: specification in the controlPlane: section.
An example follows with an HA architecture based on three control plane nodes.
Remember, if you want to enable a highly available control plane, you need to supply
at least three IP addresses:

 controlPlane:
 nodePoolSpec:
 nodes:
 # Control plane node pools. Typically, this is either a single machine
 # or three machines if using a high availability deployment.
 - address: 172.16.0.3
 - address: 172.16.0.4
 - address: 172.16.0.5

Pod and Services CIDR blocks
The clusterNetwork: section includes the CIDR ranges assigned to Pods and
Kubernetes Service objects inside the cluster; these ranges are visible only inside the
cluster and are never used externally. Change the defaults only if there is any overlap

44317.4 Creating clusters
with existing services on your network that any running Pod in the cluster could
need to contact.

Load balancer configuration
You need to populate the loadBalancer: section based on the chosen load balancer
mode (bundled or manual) and the desired configuration options for that mode. A
description of the various specifications follows:

 mode—The load balancer mode; you need to choose between bundled or manual.
 ports.controlPlaneLBPort—The port on which the load balancer serves the

Kubernetes API server.
 vips.controlPlaneVIP—The VIP assigned to the Kubernetes API server on the

cluster.
 vips.ingressVIP—The VIP assigned to the layer-7 (L7) Istio Ingress gateway

on the cluster; this must be part of the address pool defined later. This VIP is
needed only if the cluster is hybrid, standalone, or user; it’s not needed on the
admin cluster and can stay commented out.

 addressPools—The pool used by the data plane load balancer to assign VIPs to
the Ingress gateway and LoadBalancer type Kubernetes Service objects; it must
include the Ingress VIP defined earlier, but it’s not needed on the admin clus-
ter and can stay commented out.

 nodePoolSpec—Lists the address of the nodes in which you want to deploy the
bundled load balancers. It needs to be used only if you want to specify dedi-
cated worker nodes for bundled load balancers. If left commented out, the load
balancers will be deployed on control plane nodes.

Remember that if the bundled load balancer is being deployed, all the VIPs (control
plane and address pools, including the Ingress gateway) must be in the same subnet of
the load balancer nodes. The following code shows a configuration for a hybrid clus-
ter with bundled load balancers deployed on two dedicated worker nodes with the IP
addresses 172.16.0.7 and 172.16.0.7:

Load balancer configuration
 loadBalancer:
 mode: bundled
 ports:
 controlPlaneLBPort: 443
 vips:
 controlPlaneVIP: 172.16.0.16
 ingressVIP: 172.16.0.17
 addressPools:
 - name: pool1
 addresses:
 - 172.16.0.17-172.16.0.26
 nodePoolSpec:
 nodes:
 - address: 172.16.0.7
 - address: 172.16.0.8

444 CHAPTER 17 Compute environment running on bare metal
Proxy configuration
If nodes need to pass through an HTTP proxy to connect to the internet, populate
the proxy: section with the needed information:

 url—The URL that the proxy server is accessible on in the format http://
username:password@fqdn:port

 noProxy—A list of IPs, hostnames, or domains that should not be proxied

The following example configures an entry for a proxy server accessible at http://
172.16.0.101:3128 with no authentication needed and a noProxy entry for the
172.16.0.0/16 range, which tells the system to exclude sending IPs in that range to the
proxy server:

proxy:
 noProxy: // specifies a list of IPs, hostnames, and domains that should

skip the proxy.
 - 172.16.0.0/16
 url: http:/ /172.16.0.101:3128 // address of the proxy server.

Cloud operations for logging and monitoring
To configure the options for logging and monitoring, you need to add the projectID
and location, described next, in the clusterOperations: section:

 projectID—The project ID of the project in which you want to host metrics
and logs.

 location—A Google Cloud region where you want to store logs and metrics.
It’s a good idea to choose a region that is near your on-prem data center.

By default, Cloud operations collect only logs and metrics from workloads in the
admin cluster and for user clusters and workloads in system namespaces such as kube-
system, gke-system, gke-connect, istio-system, and config-management-system.
System components logs and metrics are used also by Google support to troubleshoot
problems in case of support cases. In addition to the metrics for system namespaces,
Cloud operations also collect metrics on resource usage on nodes from all the Pods.

 You can also configure Cloud operations to collect application logs and use Man-
aged Service for Prometheus to collect application metrics. You can enable both capa-
bilities after installation by modifying the stackdriver custom resources, as in other
Anthos deployment options.

Storage configuration
The storage: section includes the configuration for the local volume provisioner
(LVP) that you can use to provide persistent volumes using mount points on local
nodes. Using local persistent volumes binds the Pod to a specific disk and node. If that
disk or node becomes unavailable, then the Pod also becomes unavailable. Due to
this, workloads using local PVs need to be resilient to this kind of failure. Therefore,
using local persistent volumes generally fits proof of concept or advanced use cases
where data persistence is not critical or data is replicated to other volumes and is
recoverable in case of node or disk unavailability.

http://username:password@fqdn:port
http://username:password@fqdn:port
http://username:password@fqdn:port
http://172.16.0.101:3128
http://172.16.0.101:3128
http://172.16.0.101:3128

44517.4 Creating clusters
 The three types of storage classes for local PVs in an Anthos on bare metal cluster
follow:

 LVP node mounts—This storage class creates a local PV for each mounted disk in
a specified directory. Each PV maps to a disk with a capacity equal to the under-
lying disk capacity. The total number of local PVs created in the cluster is the
number of disks mounted under the path across all nodes.

 LVP share—This storage class creates a local PV backed by subdirectories in a
local, shared filesystem on every node in the cluster. These subdirectories are
automatically created during cluster creation. Workloads using this storage class
will share capacity and input/output operations per second because the PVs are
backed by the same shared filesystem.

 Anthos system—This storage class creates preconfigured local PVs during cluster
creation that are used by Anthos system Pods. Do not change or delete this stor-
age class, and do not use this storage class for stateful apps.

The lvpNodeMounts: section contains the parameters described here to configure the
LVP node mounts:

 path—Local node directory path under which the disk to be used as local per-
sistent volumes are mounted.

 storageClassName—The StorageClass with which PVs will be created. The
StorageClass is created during cluster creation.

The lvpShare: section contains the following parameters to configure the LVP share:

 path—The local node directory path under which subdirectories will be created
on each host. A local PV will be created for each subdirectory.

 storageClassName—The StorageClass with which PVs will be created. The
StorageClass is created during cluster creation.

 numPVUnderSharedPath—The number of subdirectories to create under path.
The total number of LVPs that share persistent volumes in the cluster would be
this number multiplied by the number of nodes.

The example configuration that follows uses the default parameters for a hybrid cluster:

 storage:
 lvpNodeMounts:
 path: /mnt/localpv-disk
 storageClassName: local-disks
 lvpShare:
 path: /mnt/localpv-share
 storageClassName: local-shared
 numPVUnderSharedPath: 5

Authentication
As mentioned earlier, Anthos on bare metal uses the Anthos Identity Service authenti-
cation proxy to integrate with existing identity providers through OpenID Connect

446 CHAPTER 17 Compute environment running on bare metal
(OIDC) or LDAP. Anthos Identity Service allows users to authenticate using existing
corporate credentials both through the GCP console and kubectl (in that case, the
gcloud CLI is used to authenticate and create a kubeconfig file containing the ID
token to be used by kubectl).

 The authentication: section in the cluster configuration file can be used to con-
figure authentication during cluster creation. It is also possible to configure authenti-
cation after cluster creation using the ClientConfig object or fleet-level Anthos
Identity Service.

 The following example configuration sets the parameters for OIDC authentication
during cluster creation:

 authentication:
 oidc:
 issuerURL: "https:/ /infra.example.dev/adfs"
 clientID: "be654652-2c45-49ff-9d7c-3663cee9ba51"
 clientSecret: "clientSecret"
 kubectlRedirectURL: "http:/ /localhost:44320/callback"
 username: "unique_name"
 usernamePrefix: "oidc:"
 group: "groups"
 groupPrefix: "oidc:"
 scopes: "allatclaims"
 extraParams: "resource=token-groups-claim"
 deployCloudConsoleProxy: true
 certificateAuthorityData: base64EncodedCACertificate
 proxy: http:/ /10.194.2.140:3128

The example shown next uses LDAP:

authentication:
 - name: ldap
 ldap:
 connectionType: ldaps
 group:
 baseDN: ou=Groups,dc=onpremidp,dc=example,dc=net
 filter: (objectClass=*)
 identifierAttribute: dn
 host: ldap.google.com:636
 user:
 baseDN: ou=Users,dc=onpremidp,dc=example,dc=net
 filter: (objectClass=*)
 identifierAttribute: uid
 loginAttribute: uid
 serviceAccountSecret:
 name: google-ldap-client-secret
 namespace: anthos-identity-service
 type: tls

Node pools for worker nodes
If the first cluster in an installation is a hybrid or standalone cluster intended to host
user workloads, you will need to configure the worker nodes NodePool resource in

44717.4 Creating clusters
the cluster config file, providing the IP addresses of the target worker nodes. An
example using three worker nodes in a node pool follows:

Node pools for worker nodes
apiVersion: baremetal.cluster.gke.io/v1
kind: NodePool
metadata:
 name: node-pool-1
 namespace: cluster-hybrid-cluster
spec:
 clusterName: hybrid-cluster
 nodes:
 - address: 172.16.0.8
 - address: 172.16.0.9
 - address: 172.16.0.10

NOTE If the cluster is an admin cluster, this section is not needed.

CREATING THE CLUSTER

Now that we have a fully populated configuration file, we can deploy the cluster using
the bmctl create cluster option as follows:

bmctl create cluster -c CLUSTER_NAME

Replace CLUSTER_NAME with the name of the cluster you defined when you created the
cluster configuration file. This process will take some time, and once the cluster has
been successfully created, you will be able to connect to it by using the generated
kubeconfig file.

CONNECTING TO THE CLUSTER

After cluster creation is completed, you can use the kubeconfig file created by the
installation tool inside the bmctl-workspace/CLUSTER_NAME folder to connect to it
using kubectl.

 You can also connect from the GCP console using a bearer token. Many kinds of
bearer tokens are supported. The easiest method is to create a Kubernetes Service
Account in the cluster and use its bearer token to log in.

 If you configured the cluster for identity integration with an identity provider, you
can authorize existing users and groups to perform specific actions on specific
resources creating RoleBindings or ClusterRoleBindings to assign them to roles
that have the desired permissions. After you have created the needed bindings, you
can log in to the cluster from the GCP console by selecting the option Authenticate
with Identity Provider Configured for the Cluster.

 To authenticate to the cluster to perform actions through kubectl, you need to
perform the following steps after you created the needed RoleBindings and/or
ClusterRoleBindings:

1 Create and distribute the authentication configuration file. You need to create an
authentication configuration file that will be distributed to the clients that

448 CHAPTER 17 Compute environment running on bare metal
would need to access the cluster with kubectl. This file contains the OIDC con-
figuration needed from the gcloud CLI to initiate the authentication and token
request from the client.

Execute the following command from the admin workstation or any machine
that has access to the kubeconfig file created by the installation:

gcloud anthos create-login-config --kubeconfig CLUSTER_KUBECONFIG

Replace CLUSTER_KUBECONFIG with the kubeconfig file created by the installa-
tion. If the command completes successfully, the authentication configuration
file, named kubectl-anthos-config.yaml, is created in the current directory. This
kubeconfig file provides admin access to the cluster and should be provided
only to people who need to access the cluster with kubectl for administrative
tasks. Most organizations should secure this file using existing security stan-
dards that are part of a “break-glass” process.

2 Authenticate with the cluster. The client machine used to access the cluster needs
to have kubectl and the gcloud CLI, including the anthos-auth component.
From the client machine, execute the following command to obtain an ID
token from the OIDC provider and configure the local kubeconfig accordingly
to successfully authenticate with the cluster:

gcloud anthos auth login \
 --cluster CLUSTER_NAME \
 --user USER_NAME \
 --login-config AUTH_CONFIG_FILE_PATH \
 --login-config-cert CA_CERT_PEM_FILE \
 --kubeconfig CLUSTER_KUBECONFIG

The login options are described here:

– CLUSTER_NAME—Optional. This is the name of the cluster as you want it to be
defined in the target kubeconfig file. If this flag is omitted, you are prompted
to choose from the clusters that are specified in your authentication configu-
ration file.

– USER_NAME—Optional. This is the username to use in the kubeconfig file; if
omitted, it defaults to CLUSTER_NAME-anthos-default-user.

– AUTH_CONFIG_FILE_PATH—Specifies the path of the authentication configu-
ration file.

– CA_CERT_PEM_FILE—Specifies the path to a PEM certificate file from your
CA, which is needed if the authentication configuration file is stored on an
HTTPS server.

– CLUSTER_KUBECONFIG—The target kubeconfig file where the OIDC ID token
is written; if omitted, it defaults to the kubectl default location.

The command will open the browser on the OIDC provider consent login page where
you need to insert credentials. Your kubeconfig file now contains an ID token that

44917.4 Creating clusters
your kubectl commands will use to authenticate with the Kubernetes API server on
your cluster.

17.4.2 Creating a user cluster

Once you’ve created an admin or hybrid cluster, you can add user clusters to it. You
do this by applying a new config file that contains only the Cluster and NodePool cus-
tom resource manifests for the new cluster. The high-level steps to create the first clus-
ter follow:

1 Use bmctl to create a cluster config template file.
2 Modify the config file with the desired settings.
3 Apply the config file with bmctl.

These tasks are a subset of what you already did to create the first cluster. In the next
section, we will detail the configuration file to deploy the user cluster.

CREATING THE CLUSTER CONFIGURATION

As you did for first cluster creation, launch the following command to create the clus-
ter config file

bmctl create config -c CLUSTER_NAME

where CLUSTER_NAME is the name you want to give to the user cluster.

POPULATING THE CLUSTER CONFIGURATION FILE

As you did for the first cluster creation, you need to prepare the configuration file cre-
ated by the create config command. The file is saved by default in a folder named
with the cluster name inside a folder named bmctl-workspace.

 For many of the sections of the config file, the same instructions already given for
first cluster creation apply to the user cluster, too, so follow the instructions given in
the “Populating the cluster configuration file” in section 17.4.1.

NOTE It’s important to ensure the IP addresses used in the control plane and
load balancer sections and NodePool resources don’t overlap with the ones
you already used for the first cluster.

In the next section, you will find the tasks that are specific for a user cluster.

Removing the credentials section
The user cluster will use the credentials provided during admin/hybrid cluster cre-
ation, so we do not need to supply the credentials for GCP. Because these are not
required, we need to delete the lines from the file, such as the section containing
pointers to keys:

gcrKeyPath: <path to GCR service account key>
sshPrivateKeyPath: <path to SSH private key, used for node access>
gkeConnectAgentServiceAccountKeyPath: <path to Connect agent service account

key>

450 CHAPTER 17 Compute environment running on bare metal
gkeConnectRegisterServiceAccountKeyPath: <path to Hub registration service
account key>

cloudOperationsServiceAccountKeyPath: <path to Cloud Operations service
account key>

Cluster type
Set the type spec value in the Cluster to user:

apiVersion: baremetal.cluster.gke.io/v1
kind: Cluster
metadata:
 name: user-cluster
 namespace: cluster-user-cluster
spec:
 # Cluster type. This can be:
 type: user

LOAD BALANCER CONFIG

Next, you need to supply the configuration for the user cluster load balancer as fol-
lows. The IP addresses used here cannot overlap with those assigned to the first clus-
ter’s load balancing:

Sample user cluster config for load balancer and address pools
loadBalancer:
 vips:
 controlPlaneVIP: 10.200.0.71
 ingressVIP: 10.200.0.72
 addressPools:
 - name: pool1
 addresses:
 - 10.200.0.72-10.200.0.90

CREATING THE CLUSTER

After you complete the cluster configuration file, you can create the first cluster with
the following command:

bmctl create cluster -c CLUSTER_NAME --kubeconfig ADMIN_KUBECONFIG

Once the user cluster deployment is completed, you can use the kubeconfig that is
generated to connect to the new cluster.

CONNECTING TO THE CLUSTER

After cluster creation, you can get the kubeconfig to connect to it using kubectl from
the Secret created in the user cluster namespace by the installation process. An exam-
ple command to extract the kubeconfig follows:

kubectl --kubeconfig ADMIN_KUBECONFIG get secret USER_CLUSTER_NAME-kubeconfig
-n USER_CLUSTER_NAMESPACE -o ‘jsonpath={.data.value}’ | base64 -d > bmctl-
workspace/user-cluster/USER_CLUSTER_NAME-kubeconfig

45117.5 Upgrading clusters
You can also connect from the GCP console using a bearer token, or, if you config-
ured the cluster for identity integration, users can authenticate with the cluster from
the GCP console and gcloud CLI following the steps described in “Connecting to the
cluster” in section 17.4.1.

17.5 Upgrading clusters
When a new version of Anthos on bare metal is released, you can upgrade your clus-
ters. In nonstandalone cluster installations, you need to upgrade the admin/hybrid
cluster first, and then the user clusters.

17.5.1 Upgrading an admin, standalone, or hybrid cluster

The steps to perform an upgrade to an admin, standalone, or hybrid cluster follow:

1 Modify the cluster config file used during cluster creation to change the
Anthos on bare metal cluster version from the existing one to the one you
want to upgrade to. See the following example configuration for an upgrade
to version 1.13:

apiVersion: baremetal.cluster.gke.io/v1
kind: Cluster
metadata:
 name: admin-cluster
 namespace: cluster-admin-cluster
spec:
 type: hybrid
 # Anthos cluster version.
 anthosBareMetalVersion: 1.13.0

2 Download the desired version of the bmctl tool (the version to which you want
to upgrade the cluster):

 gs://anthos-baremetal-release/bmctl/<VERSION>/linux-amd64/bmctl

3 Execute the following command to upgrade the cluster

bmctl upgrade cluster -c CLUSTER_NAME --kubeconfig ADMIN_KUBECONFIG

where CLUSTER_NAME is the name of the cluster and ADMIN_KUBECONFIG is the
kubeconfig file created by the installation.

17.5.2 Upgrading a user cluster

After you have upgraded the admin or hybrid cluster, you can upgrade the user clus-
ter(s) with the following steps:

1 As done for the admin/hybrid cluster config file, modify the user cluster config
file to change the Anthos on bare metal cluster version from the existing one to
the one you want to upgrade to.

452 CHAPTER 17 Compute environment running on bare metal
2 Execute the following command to upgrade the cluster version

bmctl upgrade cluster -c CLUSTER_NAME --kubeconfig ADMIN_KUBECONFIG

where CLUSTER_NAME is the user cluster name to be upgraded and ADMIN_
KUBECONFIG is the kubeconfig file created by the installation of the first admin/
hybrid cluster.

Summary
 Anthos on bare metal allows an organization to deploy Anthos on non-VMware

platforms, including bare metal or alternate hypervisors.
 Different deployment options are provided when using the bare metal installa-

tion, including admin/user, hybrid, and standalone clusters.
 Anthos on bare metal includes multiple choices for load balancing, including

using an external load balancer, known as manual mode, or the included
option, known as bundled mode. Bundled mode will deploy an HAProxy solu-
tion for the control plane and MetalLB for workloads.

 The default storage option provided by the bare metal installation is limited to
local host storage and should be used only for development clusters.

 Installing Anthos on bare metal provides an easy deployment and upgrade pro-
cess, using a few self-documented configuration files that are deployed using a
single executable, bmctl.

index
Numerics

5G, as enabler of edge applications 146

A

access approval 16
ACM (Anthos Config Management) 232–259

add-ons 244–246
Config Connector 244
Hierarchy Controller 245–246
Policy Controller 244–245, 319–329

Ambiguous Rock Feasting case study 256–258
enforcing mutual TLS 340–341
Evermore Industries case study 247–251
policy structure 239–243

hierarchy 239–241
multiple repository mode 242–243
unstructured 241–242

problems solved by 233–236
complexity 235
remediating and preventing problems

236
transparency and inspection 235–236

securing service mesh 340–341
specific objects 243

clusters 243
ClusterSelector object 243
ConfigManagement object 243
HierarchyConfiguration object 243
NamespaceSelector object 243
RootSync and RepoSync objects 243

Village Linen, LLC case study 251–255
Activator, Knative Service 171
activity visibility 16
addressPools 443

admin clusters 439–449
connecting to 447–449
creating 447
creating cluster configuration 441
installation flow 439–440
logging in to GCP and downloading bmctl

tool 441
populating cluster configuration file 441–447
upgrading 451

affinity and anti-affinity rules 55–57
nodes, creating affinity rules for 56–57
Pods 58–59

creating affinity rules for 58–59
creating anti-affinity rules for 59

aggregated-example-admin ClusterRole 63
AKS (Azure Kubernetes Service) 24, 31, 113
ALB (Application Load Balancer) 215
Amazon EC2 (Amazon Elastic Compute

Cloud) 367
Amazon EKS (Amazon Elastic Kubernetes

Service) 79
Amazon Web Services. See AWS
Ambiguous Rock Feasting case study 256–258
annotations 49
anthos-auth component 448
Anthos Config Management 157
Anthos GKE networking 183, 420
Anthos ingress controller 202
Anthos Sandbox 281–283
Anthos system storage class 445
anthos_vpc VPC 187
antipatterns 421–422
app-dev abstract namespace 239
app: foo label 203
app: foo selector 205
app key 48
453

INDEX454
application deployment 124–130
Artifact Registry 129
Cloud Build 127–129
Cloud Source Repository 124–126
Google Cloud Marketplace 129
Migrate for Anthos 129–130

application development 123–124
application logs 402
applications namespace 253
application-system namespace 355
apply command 41
Artifact Registry 284–286

application deployment 129
using with Docker 285

artifact versioning 264–265
ASM (Anthos Service Mesh) 68–91

Evermore Industries case study 86–91
enabling sidecar injection 87–88
installing ASM 86–87
installing Boutique application 88–89
observing Services using GCP console

89–91
installing 79–85

operational agility 81–84
policy-driven security 84–85
sidecar proxy injection 80–81
uniform observability 81

Istio 72–78
architecture of 72–74
security 75–77
traffic management 74

optimizing on-prem legacy applications
418

overview of 78–79
postmigration integration 405
service meshes, defined 69–72
technical requirements 69

ASM ingress 215
attached clusters 217–218

networking requirements 217
operations management 113–114
VPC Service Controls 218

attracting, repelling vs. 52–53
Audit process option 323
AUTH_CONFIG_FILE_PATH login option

448
authentication

bare metal compute environment
445–446

operations management 96–97
with Istio 76

authentication: section 446
authorization, with Istio 76–77
automated deployment pipelines 410
automatic firewall rule provisioning 201

automation 419
automated testing 263
M4A 369–370

Autoscaler, Knative Service 171
autoscaling feature 166
Availability Zones 211
AWS (Amazon Web Services) 210

Anthos on 210–216
cluster IP allocation 212–213
egress traffic and controls 213
exposing Services using Ingress 215–216
Ingress 215
load balancers 213–214
networking requirements 210–212

GKE on 109–112
connecting to management service 111
creating new user clusters 111
scaling 111
upgrading Anthos 111–112

AWSClusters resource 210, 212–213
aws command-line utility 213
AWS KMS (Key Management Service) key 109
AWS NLB (Network Load Balancer) 210
AWSNodePools 210, 212–213
Azure, Anthos on 118–121

creating clusters 119–120
deleting clusters 121

Azure Kubernetes Service (AKS) 24, 31, 113

B

bare metal (BMS) 377
baremetal.cluster.gke.io/node-pool label 154
bare metal compute environment 423–452

admin, hybrid, or standalone clusters
439–449

connecting to 447–449
creating 447
creating cluster configuration 441
installation flow 439–440
logging in to GCP and downloading bmctl

tool 441
populating cluster configuration file

441–447
upgrading 451

Anthos on-prem deployment options vs. 424
cluster architecture 426–433

cluster roles 426–427
deployment models 427–428
high availability 427
identity integration 433
networking architecture 429–432
observability 433
storage architecture 432

cluster networking 210

INDEX 455
bare metal compute environment (continued)
installation and configuration 433–439

admin workstation 435
GCP requirements 437–439
hardware capacity requirements 434
networking requirements 435–437
operating systems and software

requirements 433–434
operations management 115–117
overview of 424
running VM-based workloads on 154–157
user clusters 449–451

connecting to 450–451
creating 450
creating cluster configuration 449
load balancer configuration 450
populating cluster configuration file

449–450
upgrading 451–452

bar service 203
bases 297
bespoke software and UIs 11
BGP (Border Gateway Protocol) session 190
BinAuth (Binary Authorization) 329–330
bmctl create cluster command 440, 447
BMS (bare metal) 377
Border Gateway Protocol (BGP) session 190
bridging 371
Broker API path 173
brownfield applications 2
build pipeline stage, Skaffold 272
build section 273
bundled mode 207
busybox image 336
BYOL (bring your own license) 351

C

CaaS (container as a service), Knative vs.
166

CA (Certificate Authority) 73, 75, 191
CA_CERT_PEM_FILE login option 448
Calico 193
Cassandra 362
catalog IAM permissions 354
centralization 9
central namespace 252–253
CI/CD (continuous integration/continuous

delivery) 260–311
artifact versioning 264–265
automated tests 263
building and deploying applications 415
built-in security and DevSecOps 264
continuous delivery vs. continuous

deployment 265

continuous delivery with Cloud Deploy 298–304
delivery pipeline for Anthos 299–304
in Anthos CI/CD 298–299

continuous development 265–283
Anthos Sandbox 281–283
Cloud Code 273–281
setting up local preview minikube

cluster 266–267
Skaffold 268–273

continuous integration 283–298
Artifact Registry 284–286
Cloud Build 286–293
Cloud Source Repositories 283–284
Kustomize 293–298

deployment automation 263
environment parity 263
modern platform 304–310
monitoring 265
postmigration integration 403–404
reliability 262
repeatability 262
reusability 263
team culture 264
trunk-based development 263
version control 264

CI/CD pipelines 371
Cilium 193–195
cilium-agent DaemonSet cluster component 194
cilium-operator Deployment cluster

component 194
circuit breaking 83
Citadel service 74
cleanup pipeline stage, Skaffold 272
CLI (command-line interface) 10, 104–112, 268,

374, 381
GKE on AWS 109–112

cluster management 111–112
connecting to management service 111

GKE on-prem 104–109
backing up clusters 109
creating new user clusters 106–107
scaling 107
upgrading Anthos 107

ClientConfig object 446
Client-to-Service connectivity 228
Cloud Build 286–293

application deployment 127–129
building container images using configuration

files 288
Cloud Build notifications 289
using Dockerfile 289

Cloud Builders 287–288
community-supported 287
custom-developed 288
Google-supported 287

INDEX456
Cloud Build (continued)
deploying

to Anthos GKE 289–290
to Anthos using Connect gateway with Cloud

Build 291–292
to Cloud Run 290

triggering 292
Cloud Code 273–281
cloud controller manager 37–38
Cloud Deploy 298–304

delivery pipeline for Anthos 299–304
in Anthos CI/CD 298–299

Cloud Extensions, component of M4CE 400
Cloud Interconnect, Anthos deployment in

189–190
Cloud Logging 23, 371
Cloud Monitoring 23
cloud native 2
cloud native network functions 143
cloud networking and hybrid connectivity

183–191
multi/hybrid networking and deployment

189–191
Cloud Interconnect 189–190
Cloud VPN 191
disconnected environments 191
public internet 191

single-cloud deployment 184–188
Anthos on GCP 184–187
Anthos on single non-GCP environment 188

CloudPubSubSource event source 174
cloudresourcemanager.googleapis.com

domain 217
Cloud Run

deploying Cloud Build to 290
Knative vs. 180–181

cloud-sdk builder 290
Cloud Shell 281
Cloud Source Repositories 283–284

application deployment 124–126
creating repositories 283–284

Cloud VPN, Anthos deployment in 191
Cluster custom resource 426, 442, 449
- -cluster flag 290
cluster IP addressing and allocation

Anthos GKE 192
Anthos on AWS 212–213
Anthos on-prem on VMware 205–206
GKE on GCP 196–197

ClusterIP service resolution 195
ClusterIP Services 209, 216, 218
CLUSTER_KUBECONFIG login option 448
cluster layers 34–35
cluster.local cluster 45, 47
- -cluster-location flag 290

CLUSTER_NAME login option 448
CLUSTER_NAME user cluster name 452
cluster networking 192–218

Anthos attached clusters 217–218
networking requirements 217
VPC Service Controls 218

Anthos on AWS 210–216
cluster IP allocation 212–213
egress traffic and controls 213
exposing Services using Ingress 215–216
Ingress 215
load balancers 213–214
networking requirements 210–212

Anthos on bare metal 210
Anthos on-prem on VMware 205–209

cluster IP allocation 205–206
egress traffic and controls 206
ingress 209
load balancers 206–208
networking requirements 205

cluster IP addressing 192
cluster networking dataplane 193–195

eBPF and Cilium 193–195
kube-proxy and Calico 193

GKE on GCP 195–205
cluster IP allocation 196
egress traffic and controls 197
load balancers and ingress 197–200
multicluster ingress 201–205
routes-based clusters 196
shared VPC considerations and best

practices 200–201
VPC native clusters 195

clusterNetwork section 152, 442
Cluster objects 159
clusterOperations 444
ClusterRoleBinding 51
ClusterRoles

aggregate 62–63
overview of 50–51

clusters 150
ACM 243
Anthos on Azure 118–121

creating clusters 119–120
deleting clusters 121

attached 217–218
networking requirements 217
operations management 113–114
VPC Service Controls 218

bare metal compute environment 426–433,
439–451

cluster roles 426–427
connecting to 447–451
creating 447, 450
creating cluster configuration 441, 449

INDEX 457
clusters, bare metal compute environment
(continued)
deployment models 427–428
high availability 427
identity integration 433
installation flow 439–440
load balancer configuration 450
logging in to GCP and downloading

bmctl tool 441
networking architecture 429–432
observability 433
populating cluster configuration file

441–447, 449–450
storage architecture 432

connecting to remote clusters 24–27
FooWidgets Industries case study 64–65
GKE on AWS

creating new user clusters 111
scaling 111
upgrading Anthos 111–112

GKE on-prem
backing up clusters 109
creating new user clusters 106–107
high availability setup 107
scaling 107
upgrading Anthos 107

managing 31–32, 97–100
registering 94–95

ClusterSelector objects 159–160, 243
cluster selectors 159–160
Clusters page, in GCP console 20
CNCF (Cloud Native Computing Foundation)

30, 145
CNF (cloud native network function) 145
CNFs (common containerized network

functions) requirement 152
cnfs: du-slice-1 label 160
CNI (Container Network Interface) 38
command-line interface. See CLI
common vulnerabilities and exposures

(CVEs) 330
compute feature 180
compute.storageAdmin policy 383
Config cluster 202–203
Config Connector add-on 244
Config Connector project namespace 250
[CONFIG_FILE_PATH] parameter 288
configmanagement.gke.io/cluster-selector:

annotation 160
ConfigManagement object 243, 324
Config Management page, in GCP console 19
config-management system namespace

102, 444
ConfigMap config object 240
ConfigMaps 49

Config Sync plugin 243
Configuration, Knative CRD 170
Connect framework

installation and registration 16
overview of 13–16

Connect gateway
deploying Cloud Build to Anthos

291–292
operations management 117–118

consistency 9, 419
ConstraintTemplate object 326
consumer secondary CIDR block 221
container as a service (CaaS), Knative vs.

166
containers

building container images using
configuration files 288

Cloud Build notifications 289
using Dockerfile 289

containerizing applications 413–415
container runtime 38–40
container runtimes vs. hypervisors

313–314
M4A 375–376
privileged containers and root user

316–317
scanning 330–334

adding images to repositories 331–332
enabling 330–331
reviewing image vulnerabilities

332–334
security 334–340

running containers as root 335–336
running privileged containers 336–340

container scanning 335
continuous deployment 265
continuous development 265

Anthos Sandbox 281–283
Cloud Code 273–281
setting up local preview minikube cluster

266–267
Skaffold 268–273

configuration file 269–270
developing with 271
initiating 270–271
installing 269
pipelines stages 271–272
single run with 271
supported build tools 273
supported environments 272
supported features 271
using in CI/CD pipelines 273
working with 268–269

Controller, Knative Service 172
control loops 40–41

INDEX458
control plane
bare metal compute environment 442
Knative Serving 171–172
Kubernetes 35–38

cloud controller manager 37–38
etcd 35–36
Kubernetes API server 36
Kubernetes controller manager 36–37
Kubernetes scheduler 36

control plane load balancing 430
controlPlane: section 442
corporate namespace 245
CPU_NUMBER parameter 157
CPUs/vCPUs 434
CRDs (custom resource definitions) 42, 169, 178,

375
create action 63
create command 41
create config command 449
create config option 441
create loadbalancer command 106
- -create-service-accounts option 441
- -create-service-accounts parameter 442
CRI (Container Runtime Interface) 39
custom-scheduler1 custom scheduler 63
CustomServiceDefinitionKubernetes resource 43
CVEs (common vulnerabilities and

exposures) 314, 330

D

DaemonSet Kubernetes resource 44
Dashboard page, in GCP console 16–17
data-driven migration 421
data plane load balancing 430
DDoS (denial of service) attacks 138, 313
declarative implementation methods 40–41
declarative model 41
delegate CA 75
delete command 41
delivery pipelines 298
deny-privileged object 321
dependency management and security 419
deploy.kubeContext attribute 272
deployment 394
deployment automation 263
deployment-env:gke-on-prem filter 351
Deployment Kubernetes resource 44
deployment manager 354
Deployment object 321
deployment_spec.yaml 394–395
Deployments Service Mesh 170
deploy pipeline stage, Skaffold 272
describe command 201
DevOps Research Assessment study (DORA) 4

DevSecOps 264
DHCP (Dynamic Host Configuration

Protocol) 205
disconnected environments, Anthos deployment

in 191
discovery 378
DISK_CLASS parameter 157
disk:fast label 66
DISK_SIZE parameter 157
distributed services 224
Docker, using Artifact Registry with 285
Dockerfile

building container images using configuration
files 289

Google Cloud console UI migration 393–394
DoesNotExist operator 56, 58
domains feature 181
DORA (DevOps Research Assessment 4
dryrun option 322, 347
Dynamic Host Configuration Protocol

(DHCP) 205

E

eBPF (Extended Berkeley Packet Filter) 193–195
EBS (Elastic Block Storage) 210
EC2 (Elastic Compute Cloud) 210
edge applications 140–142, 146–147

5G as enabler of 146
Anthos as platform for 148–162

Google Distributed Cloud Edge 148–152
multiple network interfaces for Pods

152–154
orchestration and automation for large

compute fleets 157–160
running VM-based workloads on bare

metal 154–157
smart retail example 161–162

architecture of 140–142
benefits of 142
edge computing 146
examples of 147
limitations of 142

egress traffic and controls
Anthos on AWS 213
Anthos on-prem on VMware 206
ASM 83–84
GKE on GCP 197

EKS (Amazon Elastic Kubernetes Service)
31, 113

Elastic Block Storage (EBS) 210
Elastic Compute Cloud (EC2) 210
Elasticsearch 356–358
ELB (Elastic Load Balancer) 210
ELK (Elasticsearch, Logstash, and Kibana) 176

INDEX 459
- -enable-apis option 441
enableMultiRepo functionality 239, 242
enablePodTreeLabels flag 245
encryption 370
end-of-month namespace 245
endpoint controller 37
EndpointSlices 48–49
enforcementAction: dryrun option 322
enterprise edge 146, 148
environmental variables 402
environment parity 263
environment: production label 160
eom-prod namespace 245
eom-staging namespace 245
Equals operator 61
etcd 35–36
Evermore Industries case study 86–91

ACM 247–251
enabling sidecar injection 87–88
installing ASM 86–87
installing Boutique application 88–89
observing Services using GCP console 89–91
security and policies 342–347

adding host constraints 346–347
adding privileged constraints 345–346
adding repo constraints 344–345
testing current security 343

execution environment 181
Exists key 61
Exists operator 56, 58
explain command 42
Extended Berkeley Packet Filter (eBPF) 193–195

F

FaaS (function as a service), Knative vs. 166
failure-domain.beta.kubernetes.io/zone key 57
- -fast flag 106
fault injection 74
Features page, in GCP console 22
FILE_PATH parameter 157
file sync pipeline stage, Skaffold 272
fit assessment tool 377–381

assessment 381
guest-level data collection

automatic 380
manual 379–380

installation 379
inventory discovery 379
process 378
report generation 381
SSH 380–381
using 377
VMware tools 380

flat networks, Anthos deployment on 188

fleets
Google Anthos GUI 12–13
large compute fleets 157–160

Anthos Config Management 157
cluster selectors 159–160
multiple repository mode 157–158

Fluent Bit agent 176
foo service 203
FooWidgets Industries case study 64–67

cluster overview and requirements 64–65
labels and taints 65–67

creating deployment that requires fast disk 66
creating deployment that requires GPU 66–67
creating labels and taints 65–66

frontend cluster 207
frontend-external service 89
frontend Service 199, 209
frontend-web service 47
front-office-prod namespace 240–241
full-stack monitoring 265
function as a service (FaaS), Knative vs. 166

G

Galley process 73
Gatekeeper Service

auditing constraints 322–323
constraint templates 320
creating namespace exemptions 323–326

creating constraint templates 326–329
exempting namespace from all policies

324–325
exempting namespace from constraint

templates 325–326
exempting namespace from specific

processing 323–324
enabling policies 320–322
to replace Pod Security Policies (PSPs) 330

gatekeeper-system namespace 324
Gateways or mTLS network 189
GCE (Google Compute Engine) 383, 411
gcloud command 292, 331
gcloud container aws clusters create

command 109
gcloud run command 290
GCP (Google Cloud Platform)

Anthos GKE on 195–205
cluster IP allocation 196–197
egress traffic and controls 197
load balancers and ingress 197–200
multicluster ingress 201–205
routes-based clusters 196
shared VPC considerations and best

practices 200–201
VPC native clusters 195

INDEX460
GCP (Google Cloud Platform) (continued)
bare metal compute environment 437–439

APIs 438
metrics 439
service account keys 442
service accounts and roles 438–439

console 16–23
Clusters page 20
Config Management page 19
Dashboard page 16–17
Features page 22
Migrate to containers page 22–23
operations management 93–104
Security page 23
Service Mesh page 18, 89–91
UI migration example 385–397

multicluster networking on 223–224
single-cloud deployment 184–187

multiple VPC 186–187
shared VPC 185–186
single VPC 184

GCP Marketplace 350, 371
GCR (Google Container Registry) 367, 393, 397
gcr.io domain 217
GCS (Google Cloud Storage) 385, 392
GCVE (Google Cloud VMware Engine) 377
GDCE (Google Distributed Cloud Edge)

148–152
container resource model 149–150
network resource model 150–152

geographically distributed applications
135–137

architecture of 135–136
benefits of 137
limitations of 137

get action 63
get nodes command 53
git clone GIT command 284
Git configuration 237
git pull command 284
git push command 284
Git repository 235–239, 242, 248, 252
Git Service 237
gke-connect Anthos system namespace 321
gkeconnect.googleapis.com domain 217
gke-connect system namespace 102, 423
GKE (Google Kubernetes Engine) 191–222

cluster networking 192–218
Anthos attached clusters 217–218
Anthos on AWS 210–216
Anthos on bare metal 210
Anthos on-prem on VMware 205–209
cluster IP addressing 192
cluster networking dataplane 193–195
GKE on GCP 195–205

dashboard 24
deploying Cloud Build to 289–290
IP address management 218–222

configuring privately used public IPs for
GKE 221–222

Node IP pool 218–219
Pod IP CIDR 219–220
Services IP CIDR 220

on AWS 109–112
connecting to management service

111
creating new user clusters 111
scaling 111
upgrading Anthos 111–112

on-prem 104–109
backing up clusters 109
creating new user clusters 106–107
deploying Marketplace on GKE on-prem

cluster 354–356
logging and monitoring 102–103
scaling 107
upgrading Anthos 107

gkehub.googleapis.com domain 217
GKE ingress controller 402
gke-network-1 NetworkAttachmentDefinition

custom resources 153
gke-network-1 network interface 154
gke-network-2 NetworkAttachmentDefinition

custom resources 153
gke-system Anthos system namespace 321
gke-system namespace 102, 437
Google Anthos 1–7

edge and telecom applications 148–162
Google Distributed Cloud Edge

148–152
multiple network interfaces for Pods

152–154
orchestration and automation for large

compute fleets 157–160
running VM-based workloads on bare

metal 154–157
smart retail example 161–162

modern application anatomy 2–4
origins of 5–7
software development acceleration 4–5
standardizing operations at scale 5

Google Anthos GUI 8–28
characteristics of 9–10
Cloud Monitoring and Cloud Logging

23
Connect framework

installation and registration 16
overview of 13–16

connecting to remote clusters 24–27
fleets 12–13

INDEX 461
Google Anthos GUI (continued)
GCP console 16–23

Clusters page 20
Config Management page 19
Dashboard page 16–17
Features page 22
Migrate to containers page 22–23
Security page 23
Service Mesh page 18

GKE dashboard 24
Google Anthos layers 122–131

application deployment 124–130
Artifact Registry 129
Cloud Build 127–129
Cloud Source Repository 124–126
Google Cloud Marketplace 129
Migrate for Anthos 129–130

application development 123–124
overview of 122
policy enforcement 130–131
Service management 131

Google Cloud’s operations suite service 299
Google Cloud buildpacks tool 414
Google Cloud Logging 176
Google Cloud Marketplace 129, 349

deploying on GKE on-prem cluster
354–356

private 354
public 350–354
real-world scenarios 356–365

Cassandra 362
Elasticsearch 356–358
MariaDB 359–361
Prometheus and Grafana 363–365

Google Cloud Storage (GCS) 385, 392
Google Cloud VMware Engine (GCVE) 377
Google Compute Engine. See GCE
Google Container Registry (GCR) 367, 393,

397
gpu 52
Grafana 363–365
groups command 336
Gt operator 56
guest-level data collection 378

H

Helm tool 287
HierarchyConfiguration object 243
Hierarchy Controller add-on 245–246
highly available applications 133–135

architecture of 133
bare metal compute environment 427
benefits of 133–134
limitations of 135

highly-regulated industry applications 138–140
architecture of 138–140
benefits of 140

historical monitoring data 265
host file customizations 401
HTTP notification channel 289
hybrid applications 132–142

edge applications 140–142
architecture of 140–142
benefits of 142
limitations of 142

geographically distributed applications 135–137
architecture of 135–136
benefits of 137
limitations of 137

highly available applications 133–135
architecture of 133
benefits of 133–134
limitations of 135

highly-regulated industry applications 138–140
architecture of 138–140
benefits of 140

hybrid multicloud applications with internet
access 137–138

architecture of 137–138
benefits of 138
limitations of 138

hybrid cluster deployment model 116
hybrid clusters 439–449

connecting to 447–449
creating 447
creating cluster configuration 441
deployment 428
installation flow 439–440
logging in to GCP and downloading bmctl

tool 441
populating cluster configuration file 441–447
upgrading 451

hybrid multicloud applications with internet
access 137–138

architecture of 137–138
benefits of 138
limitations of 138

hypervisors, container runtimes vs. 313–314

I

IaC (infrastructure as code) 246, 369
IAM (Identity and Access Management) 9, 96
IAP (Identity-Aware Proxy) 85
identity-based security model operation 370
ILB (internal load balancing) 221
image attribute 296
IMAGE_NAME parameter 157
imperative implementation methods 40–41

INDEX462
imperative model 41
IMS (IP multimedia subsystem) 145
infrastructure as code (IaC) 246, 369
Ingress

Anthos on AWS 215
Anthos on-prem on VMware 209
exposing Services using 215–216
GKE on GCP 197–205

Ingress for Anthos
architecture of 135–136
benefits of 137
limitations of 137

init pipeline stage, Skaffold 272
In operator 56, 58–59
integrated mode 206
internal cluster networking 432
internal load balancing (ILB) 221
inventory namespace 253
-i option 379
IP address management

Anthos GKE 218–222
configuring privately used public IPs for

GKE 221–222
Node IP pool 218–219
Pod IP CIDR 219–220
Services IP CIDR 220

cluster IP addressing and allocation
Anthos GKE 192
Anthos on-prem on VMware 205–206
GKE on GCP 196–197

configuring privately used public IPs for
GKE 221–222

island mode configuration 218
isolation feature 180
is-rollout-tester flag 257
Istio 72–78

architecture of 72–74
security 75–77

authentication 76
authorization 76–77
observability 77–78

traffic management 74
istiod Pods 87
istio-egressgateway Envoy proxy 197, 206
istio-ingressgateway 87, 215–216, 227
istio-ingress Service 437
istio-injection 80
istio-sidecar-injector configuration map 80
istio-system namespace 87, 216, 341
istio-system system namespace 102, 433

J

Jib tool 414
JSON JWTs (Web Tokens) 76, 84

K

k8sallowedrepos.constraints.gatekeeper.sh
object 344

k8spsphostnetworkingports policy 346–347
K8sPSPPrivilegedContainer custom resource

kind 321
k8s.v1.cni.cncf.io/networks: annotation 153
k8s.v1.cni.cncf.io/nodeSelector annotation 154
Key Management Service (AWS KMS) key 109
key to match 61
key-value pair labels 46
kind: edge label 160
kind (Kubernetes in Docker) 440
Knative 164–167

architecture of 167–181
Knative Eventing 172
Knative Serving 168–172
observability 176–177
resource types 168

CaaS, FaaS, and PaaS vs. 166
Cloud Run vs. 180–181
deploying to 178–181
history of 166–167
installing 177–178
overview of 165–166

Knative Build project 167
Knative Eventing 172–176

event sources 175
resources 173–175
use cases 175–176

Knative Serving 168–172
control plane 171–172
traffic management 170

knative-serving namespace 171
KPAs (Knative Pod Autoscalers) 172
KSA (Kubernetes Service Account) 26, 96, 447
kubectl command 117, 274
kubectl edit commands 99
kubectl logs command 101
kubectl virt create vm command 156
kubelet 38
kube-proxy

cluster networking 193
overview of 38

Kubernetes 29–67
advanced topics 62–64

aggregate ClusterRoles 62–63
custom schedulers 63–64

architecture of 32–61
cluster layers 34–35
control loops 40–41
control plane components 35–38
declarative and imperative implementation

methods 40–41

INDEX 463
Kubernetes, architecture of (continued)
Kubernetes resources 42–51
Pod scheduling control 51–61
worker node components 38–40

FooWidgets Industries case study 64–67
cluster overview and requirements 64–65
labels and taints 65–67

importance of understanding 30–32
managing clusters 31–32
security 314–317

security objects 315
types of 315–317

technical requirements 31
Kubernetes API server 36
Kubernetes controller manager 36–37
Kubernetes Dashboard 10–11
Kubernetes in Docker (kind) 440
Kubernetes scheduler 36
kube-system namespace 102, 324–325, 342, 442
Kustomize 293–298

bases and overlays 297–298
feature lists 295–297

composing 295
customizing 295–296
generating resources 296–297
setting cross-cutting fields 296
using variables 297

L

labels
FooWidgets Industries case study 65–67

creating deployment that requires fast disk
66

creating deployment that requires GPU
66–67

creating labels and taints 65–66
node labels 52
overview of 46–47

label selectors 47
labelSelectors pattern 243
LAMP (Linux, Apache, MySQL,

PHP/Perl/Python) 372
large compute fleets, orchestration and automa-

tion for 157–160
Anthos Config Management 157
cluster selectors 159–160
multiple repository mode 157–158

LDAP (Lightweight Directory Access Protocol) 97
license=widgets label 58
life cycle of applications 298
list action 63
load balancers

Anthos on AWS 213–214
Anthos on-prem on VMware 206–208

bare metal compute environment 429–430, 443
bundled load balancer mode 430
configuration 443
manual load balancer mode 432
requirements 437

GKE on GCP 197–200
logging and monitoring 101–103

bare metal compute environment 444
CI/CD 265
Cloud Monitoring and Cloud Logging 23
GKE on-prem 102–103
Service Mesh 103

log tailing pipeline stage, Skaffold 272
Lt operator 56
LVP (local volume provisioner) 444
lvpNodeMounts: section 445
lvpShare: section 445

M

m4a-ce-src.json JSON key 383
M4A (Migrate for Anthos) 129–130, 366–406

architecture of 373–377
from VMs to containers 375–376
modernization journey 376–377
Windows environment 376
workflow 373–374

benefits of 368–372
automation 369–370
cost 368–369
Day 2 operations 371–372
density 368
infrastructure 369
security 370
Service management 370–371

best practices 401–403
postmigration integration

with ASM 405
with CI/CD pipelines 403–404

real-world scenarios 377–401
basic migration example 381–385
fit assessment tool 377–381
Google Cloud console UI migration

example 385–397
migration from other clouds 400–401
Windows migration 398–400

recommended workloads for migration
372–373

M4CE (Migrate for Compute Engine) 400
MANO (management and orchestration) 144
MariaDB 359–361
match parameter 321
MCI (Multicluster Ingress) 201–205
mean time to recovery (MTTR) 417
Member cluster 203

INDEX464
MEMORY_SIZE parameter 157
Mesh CA 85, 131
metadata.spec.traffic attribute 170
Mete Atamel Knative tutorial 179
mfit 377, 379
microservices

benefits of Anthos for 419–420
refactoring applications into 415–418

business process 418
design and development 418
operations 418
people and teams 418

Microsoft AKS (Microsoft Azure Kubernetes
Service) 79

migctl migration create my-migration
command 394

Migrate for Anthos. See M4A
Migration Manager component, M4CE 400
migration.yaml 393
minikube cluster, setting up local preview 266–267
MME (mobility management entity) 145
MODE parameter 157
modernization 407–422

antipatterns to avoid 421–422
approach to 411–418

building and deploying applications using
modern CI/CD 415

containerizing applications 413–415
operating applications on Anthos 415
optimizing on-prem legacy applications using

ASM 418
refactoring applications into

microservices 415–418
benefits of Anthos for microservices 419–420
legacy applications 408–409
real-world examples 420–421
using Anthos for 410–418

mTLS (mutual TLS) 69, 188, 340, 420
MTTR (mean time to recovery) 417
multi- and hybrid cloud deployment 183, 189
multicluster deployment 428
MultiClusterIngress 202–203
Multicluster Ingress (MCI) 201–205
multicluster networking 222–227

in multi/hybrid cloud environments 224–227
connectivity 227
multicluster service discovery 226–227
network connectivity 225

on GCP 223–224
MultiClusterService 202–203
MulticlusterService 204
multi/hybrid cloud environments 224–227

connectivity 227
multicluster service discovery 226–227
network connectivity 225

multi/hybrid networking and deployment 189,
191

Cloud Interconnect 189–190
Cloud VPN 191
disconnected environments 191
public internet 191

multinetwork environment, Anthos deployment
in 188

multinicNP node pool 154
Multiple Repository mode 243, 255
MutatingWebhookConfiguration

configuration 80
my-ce-src source 366
my-deployment Deployment 295
my-migration migration name 398
my-project project name 398

N

name attribute 287
Namespace object 240
namespace repositories 158
namespaces 45
namespace sameness 203
NamespaceSelector object 243
National Vulnerability Database (NVD) 330
NEGs (network endpoint groups) 136, 200, 202
NetworkAttachmentDefinition custom

resources 153–154
networking environment 182

Anthos GKE networking 191–222
Anthos cluster networking 192–218
IP address management 218–222

cloud networking and hybrid connectivity
183–191

multi-/hybrid cloud deployment 189–191
single-cloud deployment 184–188

multicluster networking 222–227
in multi/hybrid cloud environments

224–227
on GCP 223–224

Services and client connectivity 227–229
Client-to-Service connectivity 228
Service-to-external-Services connectivity

229
Service-to-Service connectivity 228

networking-istio deployment 172
networking section 213
Network Load Balancer (AWS NLB) 210
NetworkPolicies security object 315
NetworkPolicy 44
network policy enforcement network 195
newapi apiGroup action 63
newresource action 63
next command 355

INDEX 465
NFVI (network function virtualized
infrastructure) 144

NFV (network functions virtualization)
overview of 144
use cases 145

nginx-frontend application 48
nginx-service service 48
nginx-test2 Pod 55
nginx-widgets 59
NLB (Network Load Balancer), AWS 210
node1 node 60
node and API server IP addresses 192
node autoprovisioning 369
node autorepair operation 369
node autoscale operation 369
node autosecurity operation 369
node autoupgrade operation 369
node controller 37
node IP 196, 205, 213, 218
node pool 150
NodePool custom resource 426, 449
nodePoolSpec 443
NodePort Service 47, 195, 207, 209, 225, 267
nodes

creating affinity rules 56–57
creating node taints 60
Node IP pool 218–219
node labels 52
node pools for worker nodes 446–447
restricting network interfaces to node

pool 154
nodeSelectors 53–55
NoExecute effect 53, 60
nomos command 235
non-testers group 258
noProxy 444
NoSchedule 53, 60
NotIn operator 56, 58
ns1 namespace 203
numPVUnderSharedPath storage class 445
NVD (National Vulnerability Database) 330

O

OA&M (operations, administration, and
management) network 150

oauth2.googleapis.com domain 217
observability

ASM 81
bare metal compute environment 433
Istio 77–78
Knative 176–177

OIDC (OpenID Connect) 96, 433, 446
OPA (Open Policy Agent) 314
OpenID Connect (OIDC) 96, 433, 446

operational agility 371
operational support 411
operations, administration, and management

(OA&M) network 150
operations management 92–121

Anthos on Azure 118–121
creating clusters 119–120
deleting clusters 121

Anthos on bare metal 115–117
attached clusters 113–114
CLI 104–112

GKE on AWS 109–112
GKE on-prem 104–109

Connect gateway 117–118
Google Cloud console 93–104

authentication 96–97
cluster management 97–100
logging and monitoring 101–103
registering clusters 94–95
Service Mesh logging 103
SLIs and SLAs 103–104

optional value toleration 61
outboundTrafficPolicy mode 229
overlays 297
-o wide option 54

P

PaaS (platform as a service), Knative vs.
166

Packer tool 287
packet data network gateway (PGW) 145
patch action 63
path storage class 445
PeerAuthentication object 340–341
PersistentVolume 43, 395
PersistentVolumeClaim 43, 395
PGW (packet data network gateway) 145
Pilot service 73
platform_admins group 223
platform_admins project 185
- -platform flag 290
Pod address range 196
Pod IP addresses 192
Pod IP CIDR 196, 206, 213, 218
pod object type 321
Pods 45–46

multiple network interfaces for 152–154
architecture of 152
restricting network interfaces to node

pool 154
setting up 152–153
SR-IOV plug-in 154

Pod CIDR blocks 442–443
Pod IP CIDR 219–220

INDEX466
Pods (continued)
scheduling control 51–61

affinity and anti-affinity rules 58–59
affinity rules 55–57
attracting vs. repelling 52–53
node labels and taints 52
nodeSelectors 53–55
taints and tolerations 60–61

using Gatekeeper to replace PSPs 330
PodSecurityPolicy 44, 316
pod.spec section 61
Policy Controller add-on 319–329

auditing constraints 322–323
creating namespace exemptions 323–326

creating constraint templates 326–329
exempting namespace from all policies

324–325
exempting namespace from constraint

templates 325–326
exempting namespace from specific

processing 323–324
enabling policies 320–322
Gatekeeper constraint templates 320
overview of 244–245

policy enforcement 130–131
port forwarding pipeline stage, Skaffold 272
ports.controlPlaneLBPort 443
PreferNoSchedule effect 53, 60
privileged container 338
privileged-containers constraint 345
privileged flag 316
producer VPC 221–222
product_1_vpc VPC 187
project-0-nethost-prod project 223
project-1-platform_admins-prod platform

admins 223
project-2-product1-prod product 223
Prometheus 363–365
provider-specific UIs 11
proxy: section 444
psp-privileged-container 322, 345
PSPs (Pod Security Policies) 330
Public CIDR block 211
public cloud edge 146, 148
public internet, Anthos deployment in 191
Pub/Sub Service 299

R

RANs (radio access networks) 145
RBAC (role-based access control) 14, 50, 244, 315
Red Hat Enterprise Linux (RHEL) 424
regex (regular expressions) 126
releases 298
remote clusters, connecting to 24–27

repelling, attracting vs. 52–53
ReplicaSet 44, 321
replication controller 37
reporter-backend Pods 245
RepoSync 158–160, 243
request routing and traffic splitting 74
requireApproval: true parameter 303
RequiredDuringSchedulingIgnoredDuring-

Execution 56
ResourceQuotas 50
resources

Knative 168
Knative Eventing 173–175
Kubernetes 45–51

annotations 49
ConfigMaps 49
EndpointSlices 48–49
labels and selectors 46–47
namespaces 45
overview of 42–44
Pods 45–46
RBAC 50
ResourceQuotas 50
RoleBinding and ClusterRoleBinding 51
roles and ClusterRoles 50–51
Secrets 49
Services 47–48

resources attribute 295–296
RHEL (Red Hat Enterprise Linux) 424
role-based access control (RBAC) 14, 50,

244, 315
RoleBinding 51
roles 50–51
root repository 157
RootSync object 243
route controller 37
routes-based clusters 196
run command 41

S

sameness 12
schedulers

custom 63–64
Kubernetes 36
Pod scheduling control 51–61

affinity and anti-affinity rules 58–59
affinity rules 55–57
attracting vs. repelling 52–53
node labels and taints 52
nodeSelectors 53–55
taints and tolerations 60–61

scripts, using Cloud instance metadata 402
Secret keys 356
secrets 49

INDEX 467
security 312–348
ACM

enforcing mutual TLS 340–341
securing service mesh 340–341

ASM 84–85
CI/CD 264
common concerns 317–330

Binary Authorization 329–330
Gatekeeper to replace PSPs 330
Policy Controller 319–329

container scanning 330–334
adding images to repositories 331–332
enabling 330–331
reviewing image vulnerabilities 332–334

container security 334–340
running containers as root 335–336
running privileged containers 336–340

Evermore Industries case study 342–347
adding host constraints 346–347
adding privileged constraints 345–346
adding repo constraints 344–345
testing current security 343

hypervisors vs. container runtimes 313–314
Istio 75–77

authentication 76
authorization 76–77
observability 77–78

Kubernetes 314–317
security objects 315
types of security 315–317

M4A 370
technical requirements 313

securityContext field 336
security-optimized node kernel and OS

updates 370
Security page, in GCP console 23
selectors 46–47
serverless compute engine 163–181

Knative 164–167
architecture of 167–181
CaaS, FaaS, and PaaS vs. 166
Cloud Run vs. 180–181
deploying to 178–181
history of 166–167
installing 177–178
Knative Eventing 172–176
Knative Serving 168–172
observability 176–177
overview of 165–166
resource types 168

problem solved by 164
serverless overview 164

ServiceAccount 43
service accounts/token controller 37
service and client connectivity 183

Service Catalog 354
Service IP 197
Service IP CIDR 218
service-level agreements (SLAs) 103–104
service-level indicators (SLIs) 103–104
service-level objectives (SLOs) 103, 131, 370, 420
Service management 5, 131
service meshes

ASM 68–91, 405
defined 69–72
logging 103
securing with ACM 340–341

Service Mesh page, in GCP console
Evermore Industries case study 89–91
overview of 18

Service or ClusterIP addresses 192
Services 47–48
Services and client connectivity 227–229

Client-to-Service connectivity 228
Service-to-external-Services connectivity 229
Service-to-Service connectivity 228

Services CIDR blocks 442–443
Services IP 206, 213
Services IP CIDR 220
Service-to-external-Services connectivity 229
Service-to-Service connectivity 228
SGW (serving gateway) 145
- -show-labels option 53
sidecar proxy injection

ASM 80–81
Evermore Industries case study 87–88

simple UX/DX 166
single-cloud deployment 184–188

Anthos on GCP 184–187
multiple VPC 186–187
shared VPC 185–186
single VPC 184

Anthos on single non-GCP environment 188
multiple networks 188
single flat network 188

Site Reliability Engineering (SRE) 4, 93, 404
Skaffold 268–273, 287, 299

configuration file 269–270
developing with 271
initiating 270–271
installing 269
pipelines stages 271–272
single run with 271
supported build tools 273
supported environments 272
supported features 271
using in CI/CD pipelines 273
working with 268–269

skaffold build command 273
skaffold delete command 273

INDEX468
skaffold deploy command 273
skaffold render command 273
skaffold run command 271
- -skip-validation-all flag 107
Slack notification channel 289
SLAs (service-level agreements) 103–104
SLIs (service-level indicators) 103–104
SLOs (service-level objectives) 103, 131, 370, 420
smart retail example 161–162
SMTP notification channel 289
[SOURCE_DIRECTORY] parameter 288
specify network interfaces 153
spec.template.containers.image attribute 294
SRE (Site Reliability Engineering) 4, 93, 404
SR-IOV plug-in 154
SSH

bare metal compute environment 441
fit assessment tool 380–381

SSH CIDR block 211
SSH key pairs 237
stackdriver custom resources 444
standalone cluster deployment model 115
standalone clusters 439–449

connecting to 447–449
creating 447
creating cluster configuration 441
deployment 427–428
installation flow 439–440
logging in to GCP and downloading bmctl

tool 441
populating cluster configuration file

441–447
upgrading 451

StatefulSet 44, 394
stateless web frontend 372
storage.admin rights 382
StorageClass 44
storageClassName storage class 445
storage: section 444
sudo -E ./bmctl install virtctl command 156

T

tag pipeline stage, Skaffold 272
taint command 60, 65
taints

creating node taints 60
FooWidgets Industries case study 65–67

creating deployment that requires fast
disk 66

creating deployment that requires GPU
66–67

creating labels and taints 65–66
node labels and 52
overview of 60–61

telco edge 146, 148
telecom applications 144–147

Anthos as platform for 148–162
Google Distributed Cloud Edge 148–152
multiple network interfaces for Pods

152–154
orchestration and automation for large

compute fleets 157–160
running VM-based workloads on bare

metal 154–157
smart retail example 161–162

cloud native network function 145
network functions virtualization

overview of 144
use cases 145

Terraform tool 287
test pipeline stage, Skaffold 272
TLS (Transport Layer Security), enforcing

mutual 340–341
tolerations, creating Pods with 61
topologyKey parameter 59
Traffic Director, Google Cloud

architecture of 137–138
benefits of 138
limitations of 138

traffic management
ASM traffic splitting 81–84
Istio 74
Knative Serving 170

trigger.eventing.knative.dev 174
trunk-based development 263
TSDB (time-series database) 78

U

UFW (Uncomplicated Firewall) service 434
unified policy and integrated resource

management 371
uniform observability 370
user clusters 449–451

connecting to 450–451
creating 450
creating cluster configuration 449
load balancer configuration 450
populating cluster configuration file

449–450
cluster type 450
removing credentials section 449

upgrading 451–452
USER_NAME login option 448

V

validate Config 440
ValidatingWebHook configuration 319

INDEX 469
Vault tool 287
vCDN (virtualization of CDN) 145
vCPE (virtualization of home and enterprise

CPE) 145
vEPC-EPC (evolved packet core)

virtualization 145
version control

artifact versioning 264–265
CI/CD 264

-v flag 383
VFs (virtual functions) 154
Village Linen, LLC case study 251–255
village-linen-ac15e6 namespace 253
vips.controlPlaneVIP 443
vips.ingressVIP 443
VirtualMachine custom resource 157
virtual services and destination rules 168
VirtualServices Service Mesh resources

170
VM hostnames 401
vm-id migration name 398
VM/inventory-level discovery 378
VM_NAME parameter 157
VMRuntime custom resource 155–156
VMs (virtual machines)

migration 375–376
running workloads on 154–157

creating VMs 156–157
enabling Anthos VM Runtime

155–156
VMware

Anthos on-prem on 205–209
cluster IP allocation 205–206
egress traffic and controls 206
ingress 209

load balancers 206–208
networking requirements 205

fit assessment tool 380
VNF (virtual network functions) 144
VPC Service Controls 218
VPC (virtual private cloud)

multiple 186–187
native clusters 195
shared 185–186

considerations and best practices 200–201
single 184

vPE (virtualization of PE routers) 145
VPN/ISP network 188
VPNs (virtual private networks), Cloud VPN 191
vRAN 145

W

watch action 63
weather-app-prod namespace 240–241
web-frontend namespace 325–326
webfront namespace 341
Webhook, Knative Service 172, 323
website namespace 253
whoami command 336
Windows migration 376, 398–400
worker node components 38–40

container runtime 38–40
kubelet 38
kube-proxy 38

www.googleapis.com domain 217

Z

zero-trust security model 370

For ordering information, go to www.manning.com

RELATED MANNING TITLES

Kubernetes in Action, Second Edition
by Marko Lukša

ISBN 9781617297618
1017 pages (estimated), $69.99
Summer 2023 (estimated)

Kubernetes for Developers
by William Denniss

ISBN 9781617297175
265 pages (estimated), $59.99
Summer 2023 (estimated)

Microservices Patterns
by Chris Richardson

ISBN 9781617294549
520 pages, $49.99
October 2018

Cloud Native Patterns
by Cornelia Davis

ISBN 9781617294297
400 pages, $49.99
May 2019

Anthos best practices by chapter

Integrations with CI/CD Enable and mentor your developers in how
the Anthos ecosystem can help them develop
cloud native applications.

Embrace the Anthos suite of products to
build a secure software supply chain.

Security and policies Understand the security concerns around
running Pods and the threats to which a
cluster without the correct tooling, like ACM,
exposes your cluster, such as to multiple
attacks that allow a person full access
to a node.

Secure your cluster by using ACM to block
and audit the most common security
concerns when a Pod is deployed.

Marketplace Understand how to use the 3P marketplace
for ready-to-install applications.

The easiest way to test and deploy a new
application in production.

Migrate Migrate legacy application to Anthos quickly. A great way to lift and modernize legacy
applications.

Breaking the monolith Moving the application into containers can
help reduce the operational burden and give
your team time to innovate on the next
version of the app.

Avoid taking a big bang approach. You
should give preference to incremental
improvements to the application.

Compute environment
running on bare metal

Choose your deployment model (standalone,
multicluster, or hybrid cluster) according to
your management strategy and network
architecture.

Online-only chapters

Cloud is the new
computing stack

Lessons from the field

Compute environment
running on VMware

Build Kubernetes on top of your VMware
infrastructure to meet your business and
technical requirements around scalability,
availability, and tenancy.

Consider load balancer integration options
for different types of payloads.

Data and analytics Understand the difference between portability
and mobility, and gain insight on which
workloads you should aim for: one, the
other, or both.

Use Anthos to place and manage
workloads close to where the data is,
decreasing latency and enhancing data
privacy and protection.

An end-to-end example
of ML application

Understand the need for MLOPS and learn
different orchestration tools available for
automating the ML pipeline.

Make an end-to-end MLOPS pipeline using
Kubeflow and Vertex AI.

Compute environment
running on Windows

Run and manage both Linux and Windows
workloads side by side in Anthos clusters
containing both Windows and Linux node
pools.

When modernizing your Windows
applications, consider the tradeoffs
between porting to .NET Core and running
in Linux containers.

Gulli ● Madison ● Surovich

ISBN-13: 978-1-63343-957-3

T
he operations nightmare: modern applications run
on-prem, in the cloud, at the edge, on bare metal, in
containers, over VMs, in any combination. And you’re

expected to handle the rollouts, dataOps, security, perfor-
mance, scaling, backup, and whatever else comes your way.
Google Anthos feels your pain. Th is Kubernetes-based system
simplifi es hybrid and multicloud operations, providing a
single platform for deploying and managing your applications,
wherever they live.

Google Anthos in Action introduces Anthos and shows you how
it can simplify operations for hybrid cloud systems. Written by
17 Googlers, it lays out everything you can do with Anthos,
from Kubernetes deployments to AI models and edge comput-
ing. Each fully illustrated chapter opens up a diff erent Anthos
feature, with exercises and examples so you can see Anthos in
action. You’ll appreciate the valuable mix of perspectives and
insight this awesome team of authors delivers.

What’s Inside
● Reduce dependencies and stack-bloat
● Run applications across multiple clouds and platforms
● Speed up code delivery with automation
● Policy management for enterprises
● Security and observability at scale

For software and cloud engineers with experience using
Kubernetes.

Google Anthos in Action is written by a team of 17 Googlers
involved with Anthos development, and Google Cloud
Certifi ed Fellows assisting customers in the fi eld.

For print book owners, all ebook formats are free:
https://www.manning.com/freebook

Google Anthos IN ACTION

CLOUD / SOFTWARE ENGINEERING

M A N N I N G

“Your guide into the world
of multicloud at scale.

A great read whether you
are just starting out or
 a seasoned veteran.”—Glen Yu, PwC Canada

“Great book for engineers
 who want to learn Anthos.”—Bhagvan Kommadi

Quantica Computacao

“Google Anthos can be
intimidating. Th is book is an
essential guide to using and

understanding it.”—Jose San Leandro, ioBuilders

“Complete, easy to
understand, with simple

explanations, useful diagrams,
and real-world examples.

 I recommend it.”—Rambabu Posa
Sai AAshika Consultancy

See first page

	Google Anthos in Action
	brief contents
	contents
	preface
	acknowledgments
	Authors

	about this book
	Who should read this book?
	How this book is organized: A road map
	About the code
	liveBook discussion forum

	about the lead authors
	about the cover illustration
	1 Overview of Anthos
	1.1 Anatomy of a modern application
	1.1.1 Accelerating software development
	1.1.2 Standardizing operations at scale

	1.2 Origins in Google
	Summary

	2 One single pane of glass
	2.1 Single pane of glass
	2.2 Non-Anthos visibility and interaction
	2.2.1 Kubernetes Dashboard
	2.2.2 Provider-specific UIs
	2.2.3 Bespoke software

	2.3 The Anthos UI
	2.3.1 Fleets
	2.3.2 Connect: How does it work?
	2.3.3 Installation and registration

	2.4 The Anthos Cloud UI
	2.4.1 The Anthos dashboard
	2.4.2 Service Mesh
	2.4.3 Config Management
	2.4.4 Clusters
	2.4.5 Features
	2.4.6 Migrating to containers
	2.4.7 Security

	2.5 Monitoring and logging
	2.6 GKE dashboard
	2.7 Connecting to a remote cluster
	Summary

	3 Computing environment built on Kubernetes
	3.1 Why do you need to understand Kubernetes?
	3.1.1 Technical requirements
	3.1.2 History and overview
	3.1.3 Managing Kubernetes clusters

	3.2 Kubernetes architecture
	3.2.1 Understanding the cluster layers
	3.2.2 The control plane components
	3.2.3 Worker node components
	3.2.4 Understanding declarative and imperative
	3.2.5 Understanding Kubernetes resources
	3.2.6 Kubernetes resources in depth
	3.2.7 Controlling Pod scheduling

	3.3 Advanced topics
	3.3.1 Aggregate ClusterRoles
	3.3.2 Custom schedulers

	3.4 Examples and case studies
	3.4.1 FooWidgets Industries

	Summary

	4 Anthos Service Mesh: Security and observability at scale
	4.1 Technical requirements
	4.2 What is a service mesh?
	4.3 An introduction to Istio
	4.3.1 Istio architecture
	4.3.2 Istio traffic management
	4.3.3 Istio security
	4.3.4 Istio observability

	4.4 What is Anthos Service Mesh?
	4.5 Installing ASM
	4.5.1 Sidecar proxy injection
	4.5.2 Uniform observability
	4.5.3 Operational agility
	4.5.4 Policy-driven security

	4.6 Conclusion
	4.7 Examples and case studies
	4.7.1 Evermore Industries

	Summary

	5 Operations management
	5.1 Unified user interface from Google Cloud console
	5.1.1 Registering clusters to Google Cloud console
	5.1.2 Authentication
	5.1.3 Cluster management
	5.1.4 Logging and monitoring
	5.1.5 Service Mesh logging
	5.1.6 Using service-level indicators and agreements

	5.2 Anthos command-line management
	5.2.1 Using CLI tools for GKE on-prem
	5.2.2 GKE on AWS

	5.3 Anthos attached clusters
	5.4 Anthos on bare metal
	5.5 Connect gateway
	5.6 Anthos on Azure
	5.6.1 Cluster management: Creation
	5.6.2 Cluster management: Deletion

	Summary

	6 Bringing it all together
	6.1 Application development
	6.2 Application deployment
	6.2.1 Cloud Source Repositories
	6.2.2 Cloud Build
	6.2.3 Artifact Registry
	6.2.4 Google Cloud Marketplace
	6.2.5 Migrate for Anthos

	6.3 Policy enforcement
	6.4 Service management
	Summary

	7 Hybrid applications
	7.1 Highly available applications
	7.1.1 Architecture
	7.1.2 Benefits
	7.1.3 Limitations

	7.2 Geographically distributed applications
	7.2.1 Ingress for Anthos architecture
	7.2.2 Ingress for Anthos benefits
	7.2.3 Ingress for Anthos limitations

	7.3 Hybrid multicloud applications with internet access
	7.3.1 Traffic Director architecture
	7.3.2 Traffic Director benefits
	7.3.3 Traffic Director limitations

	7.4 Applications regulated by law
	7.4.1 Architecture
	7.4.2 Benefits

	7.5 Applications that must run on the edge
	7.5.1 Architecture
	7.5.2 Benefits
	7.5.3 Limitations

	Summary

	8 Working at the edge and the telco world
	8.1 Evolution of telecom applications
	8.1.1 Introduction to network functions virtualization
	8.1.2 NFV use cases
	8.1.3 Evolution to cloud native network functions

	8.2 New edge applications
	8.2.1 5G as the enabler of new edge applications
	8.2.2 Edge computing
	8.2.3 Edge application examples

	8.3 Anthos as a platform for edge and telco workloads
	8.3.1 Google Distributed Cloud Edge
	8.3.2 Anthos capabilities for telco and edge workloads
	8.3.3 Solution architecture example: Smart retail

	Summary

	9 Serverless compute engine (Knative)
	9.1 Introduction to serverless
	9.2 Knative
	9.2.1 Introduction
	9.2.2 Knative history

	9.3 Knative architecture
	9.3.1 Knative Kubernetes resource types
	9.3.2 Knative Serving
	9.3.3 Knative Eventing
	9.3.4 Observability
	9.3.5 Installing Knative
	9.3.6 Deploying to Knative

	Summary

	10 Networking environment
	10.1 Cloud networking and hybrid connectivity
	10.1.1 Single-cloud deployment
	10.1.2 Multi/hybrid cloud deployment

	10.2 Anthos GKE networking
	10.2.1 Anthos cluster networking
	10.2.2 Anthos GKE IP address management

	10.3 Anthos multicluster networking
	10.3.1 Multicluster networking on GCP
	10.3.2 Multicluster networking in hybrid and multicloud environments

	10.4 Services and client connectivity
	10.4.1 Client-to-Service connectivity
	10.4.2 Service-to-Service connectivity
	10.4.3 Service-to-external Services connectivity

	Summary

	11 Config Management architecture
	11.1 What are we trying to solve?
	11.1.1 Managing complexity
	11.1.2 Transparency and inspection
	11.1.3 Remediating and preventing problems
	11.1.4 Bringing it together

	11.2 Overview of ACM
	11.2.1 ACM policy structure
	11.2.2 ACM-specific objects
	11.2.3 Additional components

	11.3 Examples and case studies
	11.3.1 Evermore Industries
	11.3.2 Village Linen, LLC
	11.3.3 Ambiguous Rock Feasting

	11.4 Conclusions
	Summary

	12 Integrations with CI/CD
	12.1 Introduction to CI/CD
	12.1.1 Repeatability
	12.1.2 Reliability
	12.1.3 Reusability
	12.1.4 Automated tests
	12.1.5 Trunk-based development
	12.1.6 Environment parity
	12.1.7 Deployment automation
	12.1.8 Team culture
	12.1.9 Built-in security/DevSecOps
	12.1.10 Version control
	12.1.11 Artifact versioning
	12.1.12 Monitoring

	12.2 Continuous delivery vs. continuous deployment
	12.3 Continuous development
	12.3.1 Setting up a local preview minikube cluster
	12.3.2 Continuous development with Skaffold
	12.3.3 Cloud Code: Developing with a local IDE
	12.3.4 Anthos Developer Sandbox: Development with a cloud native IDE

	12.4 Continuous integration
	12.4.1 Cloud Source Repositories
	12.4.2 Artifact Registry
	12.4.3 Cloud Build
	12.4.4 Kustomize for generating environment-specific configuration

	12.5 Continuous deployment with Cloud Deploy
	12.5.1 Cloud Deploy in the Anthos CI/CD
	12.5.2 Google Cloud Deploy delivery pipeline for Anthos

	12.6 Modern CI/CD platform
	Summary

	13 Security and policies
	13.1 Technical requirements
	13.2 Hypervisors vs. container runtimes
	13.3 Kubernetes security overview
	13.3.1 Understanding Kubernetes security objects
	13.3.2 Types of security

	13.4 Common security concerns
	13.4.1 Understanding the Policy Controller
	13.4.2 Using Binary Authorization to secure the supply chain
	13.4.3 Using Gatekeeper to replace PSPs

	13.5 Understanding container scanning
	13.5.1 Enabling container scanning
	13.5.2 Adding images to your repository
	13.5.3 Reviewing image vulnerabilities

	13.6 Understanding container security
	13.6.1 Running containers as root
	13.6.2 Running privileged containers

	13.7 Using ACM to secure your service mesh
	13.7.1 Using ACM to enforce mutual TLS

	13.8 Conclusion
	13.9 Examples and case study
	13.9.1 Evermore Industries

	Summary

	14 Marketplace
	14.1 The Google Marketplace
	14.1.1 Public Marketplace
	14.1.2 Service Catalog
	14.1.3 Deploying on a GKE on-prem cluster

	14.2 Real-world scenarios
	14.2.1 Example 1: Elasticsearch
	14.2.2 Example 2: MariaDB
	14.2.3 What we have done so far
	14.2.4 Example 3: Cassandra
	14.2.5 Example 4: Prometheus and Grafana

	Summary

	15 Migrate
	15.1 Migrate for Anthos benefits
	15.1.1 Density
	15.1.2 Cost
	15.1.3 Infrastructure
	15.1.4 Automation
	15.1.5 Security
	15.1.6 Service management
	15.1.7 Day 2 operations

	15.2 Recommended workloads for migration
	15.3 M4A architecture
	15.3.1 Migration workflow
	15.3.2 From virtual machines to containers
	15.3.3 A look at the Windows environment
	15.3.4 A complete view of the modernization journey

	15.4 Real-world scenarios
	15.4.1 Using the fit assessment tool
	15.4.2 Basic migration example
	15.4.3 Google Cloud console UI migration example
	15.4.4 Windows migration
	15.4.5 Migration from other clouds

	15.5 Advanced topic: M4A best practices
	15.6 Postmigration integration with CI/CD pipelines
	15.7 Postmigration integration with ASM
	Summary

	16 Breaking the monolith
	16.1 Modernizing legacy applications
	16.2 Using Anthos for modernization
	16.2.1 Approach to modernization

	16.3 Benefits of Anthos for microservices
	16.4 Real-world examples
	16.5 Antipatterns to avoid
	Summary

	17 Compute environment running on bare metal
	17.1 Introduction to Anthos on bare metal
	17.1.1 Comparing Anthos on-prem deployment options

	17.2 Anthos bare metal architecture
	17.2.1 Cluster architecture

	17.3 Installation and configuration overview
	17.3.1 Operating systems and software requirements
	17.3.2 Hardware capacity requirements
	17.3.3 Admin workstation
	17.3.4 Networking requirements
	17.3.5 Google Cloud Platform requirements

	17.4 Creating clusters
	17.4.1 Creating an admin, hybrid, or standalone cluster
	17.4.2 Creating a user cluster

	17.5 Upgrading clusters
	17.5.1 Upgrading an admin, standalone, or hybrid cluster
	17.5.2 Upgrading a user cluster

	Summary

	index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Adobe Gray - 20% Dot Gain)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /RUS <FEFF005b041d04300020043e0441043d043e043204350020044104420438043b044f00200027005000720069006e00650072006700790020005000610067006500730027005d0020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

